HP 20b Business Consultant

HP 30b Business Professional
Financial Calculator User's Guide

HP Part Number: NW238-90001
Edition 1, December 2009

Legal Notice

This manual and any examples contained herein are provided "as is" and are subject to change without notice. Hewlett-Packard Company makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability, noninfringement and fitness for a particular purpose. In this regard, HP shall not be liable for technical or editorial errors or omissions contained in the manual.

Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual or the examples contained herein.

Copyright © 2009 Hewlett-Packard Development Company, L.P.

Reproduction, adaptation, or translation of this manual is prohibited without prior written permission of Hewlett-Packard Company, except as allowed under the copyright laws.

Hewlett-Packard Company
16399 West Bernardo Drive
MS 66M-785
San Diego, CA 92127-1899
USA

HP 20b Business Consultant

HP 30b Business Professional

Keyboard Map Legend

Number	Feature	Number	Feature
1	2-line, alphanumeric scrolling display screen	9	Common Mathematical functions and Math (Math) menu
2	Time Value of Money keys (TVM)	10	Program menu* RPN Swap/Close parenthesis
3	Cash Flow, IRR and NPV keys	11	Backspace key/Reset menu
4	Data and Statistics menus	12	Percent/Percent calculation (business) and Date menus
5	Input key and Memory menu	13	Recall and Store
6	Insert and Delete/scroll (up and down)	14	Black-Scholes** and Bond menus
7	Shift key	15	Amortization/Depreciation menus
8	On/Off/Cancel	16	Annunciators

[^0]
Table of Contents

Legal Notice ii
HP 20b Business Consultant iii
HP 30b Business Professional iv
Keyboard Map Legend v
1 Basic Features 1
Welcome to your new HP Financial Calculator 1
Turning the Calculator On and Off 1
Selecting a Language 1
Adjusting the Display Contrast 1
Cursor 2
Two Line Display 2
The Mode Menu: Setting Preferences 2
Changing the Calculation Mode 4
Key Presses, the Shift Key, Secondary, and Tertiary Functions* 4
Annunciators 6
The Input Key 6
The Equals Key 6
Using the Input and Equals Keys 6
Editing and Clearing Entries 7
The On/CE Key 7
The Reset Menu 7
Notes about Special Menus 8
Memory and the Memory Menu 8
Accessing Menus and Menu Maps 8
2 Mathematical Calculations 11
Mathematical Functions 11
Number Entry and Display 11
Chain Mode 12
Algebraic Mode 12
Reverse Polish Notation (RPN) Mode 13
The RPN Stack 13
Last Number 14
One-Number Functions and the Math Menu 18
Random number 19
The Math Menu 19
The Probability Sub-menu 21
Binomial Functions 23
Two-Number Functions 23
Storing and Recalling Numbers 24
Recall Arithmetic 24
Storing and Recalling with Time Value of Money (TVM) Keys 24
Recalling a Menu Item Value in a Menu 25
Recalling and Storing Values in the Data and Cash Flow Menus 25
Rounding Numbers 25
Percentages 25
3 Time Value of Money 27
Time Value of Money (TVM) Keys 27
Amortization 29
Interest Conversion Menu 33
4 Canadian Mortgages: TVM Canada 35
Canadian Mortgage Example 36
5 Cash Flows 37
Cash Flow Example 38
Sample Cash Flow Diagrams 46
6 Bonds 47
The Bond Menu 48
7 Black-Scholes Calculation Menu* 51
The Black-Scholes Menu 52
8 Date Calculation 57
The Date Calculation Menu 57
9 Break-even 59
The Break-even Menu 59
10 Business Problems 61
The Percent Calculation Menu 61
11 Depreciation 65
The Depreciation Menu 66
12 Statistical Operations 69
The Data and Stats Menus 70
13 Programming 75
Programming the HP 30b 75
Key Presses for Program Instructions 75
Programming Example 77
Program Step 0 78
Reassigning Menu Functions 79
The Program Menu and Program Editing 80
Tests and Jump Functions 81
Long Programs and Battery Life 82
Sub-Function Call 82
Other Programming Functions 83
Messages 84
Debugging a Program 85
Saving, Restoring, and Modifying Mode Settings 86
Solve 87
14 Error Messages 89
Error Messages and Calculator Status 89
15 Warranty, Regulatory, and Contact Information 91
Replacing the Batteries 91
HP Limited Hardware Warranty and Customer Care 91
Contact Information 95

1 Basic Features

Welcome to your new HP Financial Calculator

This manual is designed to familiarize you with the many features available on your new HP Business and Financial calculators. It includes menu maps, cash flow diagrams, and example problems and solutions with key presses and screen shots. Also included are sections which list the error messages, a chapter about programming, and an explanation of how Reverse Polish Notation (RPN) works. Refer to the Table of Contents for quick access to various topics. If you need more information about your calculator or calculator operation, please refer to the training materials available at: www.hp.com/calculators.

This manual describes in detail the features available on both the HP 20 b and the HP 30b calculators. In addition to all of the features found on the HP 20b, the HP 30b includes the Black-Scholes option pricing model, Modified Internal Rate of Return (MIRR), Financial Management Rate of Return (FMRR), and programming capabilities. When features apply only to a particular model, they will be identified throughout the manual with an asterisk*.

Turning the Calculator On and Off

Turning the calculator off does not erase any data. The calculator automatically turns itself off after approximately five minutes to conserve energy. If you see the low battery symbol (ص) in the display, replace the batteries. See the Chapter 15, Warranty, Regulatory, and Contact Information for instructions on replacing the batteries.

Selecting a Language

English is the default language for messages displayed on the screen. To select a language other than English:

1. Press
2. Press \square repeatedly until English displays on the screen.
3. Press in u until the desired language is displayed. The displayed language is the active setting.
4. Press $\frac{\text { ONCE }}{0}$ off to return to the default calculator screen.
5. For more information on accessing menus and changing calculator settings, refer to the section below titled, The Mode Menu: Setting Preferences.

Adjusting the Display Contrast

To adjust the contrast of the display, press and hold | ONCE |
| :--- |
| OFF | keys. Each press of the $+\frac{+}{--}$ or display.

Cursor

When you enter a number, the cursor (_) blinks in the display and indicates you are in number entry mode.

Two Line Display

There are two lines in the display screen as shown in Figure 1.

Figure 1 Display Screen
The top line of the screen displays operation status, operator symbols, annunciators, and abbreviations of the variables and menu names. Throughout this manual, this line is referred to as the top line. In Figure 1, SIN is on the top line. The bottom line displays numbers you have entered, or results. Throughout this manual, this line is referred to as the bottom line.
When no operations have been entered and no operations are pending, the bottom line of the screen displays $\mathbf{0 . 0 0}$. This state of the calculator is referred to as the default calculator screen.

The Mode Menu: Setting Preferences

The Mode menu allows you to customize the calculator. To access the Mode menu, press \square 是 (the number of digits displayed to the right of the decimal point). Once an item is displayed,
 press $\begin{aligned} & \text { ONCE } \\ & \text { OfF }\end{aligned}$. Table 1-1 lists the items in the Mode menu.

Table 1-1 Mode Menu Settings

Setting (top line)	Description
FIX $=2$	Display precision (number of digits displayed to the right of the decimal point). Default is 2. Key in the number of digits you want and press \square INPUT or press \square until the number of digits you want is displayed. The display precision can be any number from $0-11$. If you specify -1 , the calculator displays numbers with the most appropriate number of digits after the decimal point. If you find you need to change the FIX setting often, use the following shortcut: 1. Press \square and release it. Check that the secondary function indicator is displayed. 2. Press \square again, and, without releasing it, press a key, \square through \square that corresponds to the desired FIX setting. FIX settings for 10 and 11 are not available using this shortcut. If you press \square instead of a numbered key, $\mathbf{F I X}=\mathbf{- 1}$ is selected.
Degree or Radian	Angular mode in degrees or radians for trigonometric functions. Default is Degree. Pressing INPUT toggles between these options.
Date: mm.ddyyyy or dd.mmyyyy	Format for dates. December 3, 2010 is entered as $\mathbf{1 2 . 0 3 2 0 1 0}$ in mm.ddyyyy format, or 3.122010 in dd.mmyyyy format. Note the (.) in both formats separating the first and second groups. The valid range of dates is October 15, 1582 to December 31, 9999. Default is mm.ddyyyy format. Pressing INPUT Note that when a date is displayed, a number between $\mathbf{1}$ and $\mathbf{7}$ also displays at the right of the screen. This number indicates the day of the week corresponding to that date. Monday is 1 , and Sunday is 7 . NOTE: in 360-day calendar mode (Cal.360), days of the week are displayed only if the date is valid.
1.23 or 1,23	Selects point or comma as decimal separator. Default is decimal point, 1.23. Pressing INPUT toggles between these options.
$\begin{aligned} & 1000.00,1,000.00 \\ & 1000,00 \text { or } 1.000,00 \end{aligned}$	Selects thousands separator. Default is none, $\mathbf{1 0 0 0 . 0 0}$ Pressing \square INPUT toggles between these options. NOTE: the 1000.00 and $1,000.00$ options are only available if the decimal separator is set for point (.); 1000,00 and 1.000,00 are available only if the decimal separator is set for comma (,).
Chain, Algebraic, or	Calculation mode. For more information, refer to Chapter 2, Mathematical Calculations. cycles through these options.
English, Français, Deutch, or Español	Language setting for the messages displayed on the screen. Default is English. Pressing INPUT cycles through these options.

Table 1-1 Mode Menu Settings

Setting (top line)	Description
Actual or Cal. 360	Calendar options for bonds and date calculations.
	Default is Actual.
	PressingINPUT
Annual or Semiannual	Bond type.
	Default is Annual.
	PressingINPUT toggles between these options.
TVM Standard or TVM Canada	Activate or deactivate the compounding per year (C/YR) option in time value of money (TVM) calculations. This option is primarily used for Canadian mortgage calculations. See Chapter 4, Canadian Mortgages: TVM Canada for more information.
	toggles between these options.

Changing the Calculation Mode

After viewing the default settings, suppose you want to change the calculation mode from Chain to RPN. See Table 1-2.

Table 1-2 Changing the Calculation Mode

(Press five times)

$\begin{aligned} & \text { INPUT } \\ & \hline \text { DMemory } \end{aligned}$	INPUT	FiFry		Selects RPN as the active setting. Note the RPN annunciator to the right.
	Memory		${ }^{\text {mput }}$	
(Press two times)				
ON/CE				Exits the Mode menu and returns you to the default calculator screen.
			npm	
		Firir		

Key Presses, the Shift Key, Secondary, and Tertiary Functions*

To execute the function associated with a key, press and release the desired key. However, most of the calculators' keys have more than one function: the first, or primary function, the shifted, or secondary function, and, in some cases, a third, or tertiary function (see Figure 2).

[^1]- The primary function is printed on the top of the key.
- The secondary function is printed on the bevel of the key. To activate the secondary function of a key, press and release \square followed by the key with the secondary function printed on the bevel.
- The third, or tertiary functions are printed above specific keys on the keyboard. To activate the tertiary function of a key, press and hold \square and simultaneously press the key below the printed function. Release both keys.

Tertiary function: (press SHIFT and the function key simultaneously)

Figure 2 Primary, Secondary, and Tertiary Key Functions
In this manual, key symbols of the commands are provided throughout the manual so you can follow along with the examples.

- The primary functions are represented by the key symbol with the primary function.
- The secondary key functions are represented by the shift key symbol, \square, followed by the key with the secondary function. For example, to execute sine, press \square portion of the key is highlighted, while the $\mathbf{7}$ is grayed out. This highlighting focuses on the function of the key that will be activated in a given command.
- Commands with a tertiary function are represented by the shift key symbol, \square, followed by the term (HOLD), followed by the key with the tertiary function. For example, to activate the Black-Scholes feature shown above, press \square (HOLD) Bond *.

When \square is active, the down arrow annunciator appears on screen, indicating that the next key pressed will execute the secondary function of the key. To cancel an accidental press of \square, simply press \square a second time.

Key commands for example problems are provided throughout the text and in tables. Key symbols are placed in the order they are to be pressed, from left to right.

[^2]
Annunciators

Annunciators are symbols that appear in the display as messages, or after certain keys or key combinations have been pressed. Annunciators are special symbols indicating a specific status in the calculator. Figure 3 illustrates the annunciator symbols in the display.

Figure 3 Annunciator Symbols in the Screen Display

The Input Key

The \square key is used to input values for variables and execute menu items.

The $\frac{\text { INPUT }}{\text { meemory }}$ key is also used in Reverse Polish Notation (RPN) mode to enter a number on the stack or duplicate it.

The Equals Key

The $\begin{aligned}= \\ \text { and } \\ \text { and }\end{aligned}$ key is used at the end of a mathematical operation to calculate the final result. For example,	1	
RAND	+	

The $=\frac{a}{2}$ key, when pressed outside of a mathematical operation, also allows you to request a calculation for the value of an item. This request only applies to items that can be calculated.

Using the Input and Equals Keys

Suppose you wanted to calculate the effective interest rate for a 12% nominal interest rate with 12 payments per year in the Interest Conversion (IConv) menu. To open the IConv menu, press \square anvan . Nom \%= displays on the top line, and the current value assigned to the nominal
interest rate is displayed on the bottom line. With this screen displayed, press
 $=$ ands to calculate the value for the effective rate. See Figure 4.

Figure 4
When an item for which the $=2$ key is valid displays, the small annunciator (=) is displayed on the top line at the right of the screen. Do not confuse this small annunciator (=) with the larger annunciator ($=$) found to the right of a variable.

When an item for which the $\begin{aligned} & \text { INPUT } \\ & \text { CDMmory } \\ & \text { key }\end{aligned}$ is valid displays, the INPUT annunciator is displayed on the top line at the right of the screen.

Editing and Clearing Entries

The On/CE Key
 selection, in that order.
 time, from the latest to the earliest.

The Reset Menu

The Reset menu allows you to reset some, or all, of the menu items, variables, and registers to their default values.
To open the Reset menu, press \square Resett . TVM displays on the top line. Press $\frac{\square}{\square}$ or repeatedly to scroll to a specific item. To validate a choice and reset the selected items, press

 statistics (Stats), programs (Prgm)* or all values (All) items, you will be prompted to confirm your choice. At the Del. All?, Del. Data?, Del. Prgm?*, and Del. CF? prompts, press | INPUT |
| :--- |
| enemory | again to confirm the reset, or $\xlongequal{\text { ONCE }}$ OFF to cancel. While working within a specific menu, pressing Reset takes you directly to the item of the Reset menu that allows you to reset that specific menu. For example, if you are working in the Bond menu and you wish to reset all your entries in the Bond menu, with any item of the Bond menu displayed, press Reset . Bond displays on screen. At this prompt, pressing $\begin{aligned} & \text { INPUT } \\ & \text { Dinmory } \\ & \text { resets the Bond menu and returns you to the last }\end{aligned}$ item you were working with in the Bond menu.

[^3]
Notes about Special Menus

The Mode, Memory, Math and Reset menus are unique menus; they allow you to work in another menu simultaneously without having to exit. For example, if you were working in the Bond menu prior to entering one of these menus, pressing onct to exit returns you to your previous work in the Bond menu.

Memory and the Memory Menu

The Memory menu contains the following items: memories 1-9 (Mem 1-9) and 0 (Mem 0), Cash Flow, Statistics (Stats), programs (Prgm)*, and Memory. To enter the menu, press \square	INPUTR
Memory	\square

\square repeatedly to scroll through the items starting with memory 1 (Mem 1).

When a memory item is displayed, you can key in a new number and modify the value of the memory by pressing INPUT.

For more information about storing and recalling numbers, refer to the section titled, Storing and Recalling Numbers in Chapter 2.
The Cash Flow and Statistics data share the same memory and are limited to a combined total of 50 memory slots. The number displayed with Memory refers to the number of remaining memory slots. When the cash flow or statistics items are displayed, a number also appears on the bottom line. This number indicates the number of memory slots used by the cash flow or statistical data.

290 bytes are available for programs. The Prgm* menu item displays the number of bytes used.

Press INPUT on the Cash Flow, Statistic, or Prgm* menu item to erase the associated data. Since entering data in these menus can represent a significant amount of work, you will be asked to confirm your choice. At the Del.Data?, Del. Prgm?*, or Del.CF? prompts, press

Accessing Menus and Menu Maps

Many of the calculator's functions are located within menus. To access a menu, press the key, or secondary-function, key combination for the menu in which you wish to work. To exit a menu, press

For example, to access the Break-even menu, press \square Bing.

* Only applies to the HP 30b.

Once opened, you can scroll through the items in the menu by pressing

 repeatedly. In most menus, when you arrive at the last item in a menu, pressing you to the first item. Similarly, pressing onse on the first menu item scrolls to the last item in the menu.

Most items consist of two parts: a name and an associated number. For example, the Fixed item in the Break-even menu (Figure 7) is displayed in Figure 5.

Figure 5
The large (=) annunciator shows that the value assigned to Fixed is $\mathbf{1 2 0 , 0 0 0}$. For example, if you perform a calculation with the operating mode set to RPN with this item displayed by pressing $\frac{1}{1}$ (=) annunciator is now turned off, indicating that the $\mathbf{3}$ is not the value assigned to Fixed (see Figure 6).

Figure 6
At this point, to return to the display of the Fixed menu item shown in Figure 5, press onces.

Some menus have sub-menus. If an item represents a sub-menu, pressing $\begin{aligned} & \text { INPUT } \\ & \text { Whemery } \\ & \text { with that }\end{aligned}$ menu item displayed opens the sub-menu. Once the menu sub-menu is open, use © to navigate through the items of the sub-menu, unless otherwise directed.

In this manual, diagrams called Menu Maps are included at the beginning of each section to assist you with navigating through the menus described in that section. For an example of a menu map, see Figure 7 below. Once opened, use the \rightarrow and through the menu items of the Break-even menu. The downward arrows in the map indicate you press to scroll to the next item. If a press of the INPUT key is required to open a sub-menu, the word INPUT appears in the arrow(s). For examples of menu maps with submenus, see chapters 10-12. The return arrows direct you to the next item displayed after the last item in a menu. For example, in Figure 7, pressing on the last item in the menu returns you to the FIXED item.

Figure 7 Menu Map of the Break-even menu

There are four types of menu items:

1. Read/write. Read/write menu items, such as Fixed in the Break-even menu shown above, are easily recognizable, because when they are selected, both the INPUT and small (=) annunciators are lit. When lit, these annunciators indicate that keying in a number and pressing $\begin{aligned} & \text { INPUT } \\ & \text { insemory } \\ & \text { will store the entered number in the displayed menu }\end{aligned}$ item. Pressing $=\frac{1}{2}$ (outside of a mathematical operation) calculates the value for that item based on available data.
2. Read-only. Read-only items such as Internal Rate of Return (IRR\%) in the IRR menu are display-only; they are values computed internally by the calculator.
3. Write-only. Write-only items, such as investment interest rate (Inv. I\%) in the Net Present Value (NPV) menu, are similar to read/write items in that the INPUT annunciator is lit when these items are selected, indicating that keying in a number and pressing
 calculate a value for that item.
4. Special items. Special items, such as the Degree/Radian option in the Mode menu, the items of the Reset menu, and the items of the Percent Calculation (\%calc) menu perform an action when INPUT is pressed. Depending on the menu, this action can be the selection of a sub-menu (\%calc), changing a mode or setting (Mode menu), or erasing data (Reset menu)

2 Mathematical Calculations

Mathematical Functions

Mathematical functions are located:

- On keys, such as, $\frac{+}{\square}$
- On shifted, or secondary functions, such as, $\square \frac{7}{\sin }$
- In the Math menu,

Number Entry and Display

Numbers are entered by pressing:

- Numbered keys, $\frac{0}{\square}-\frac{9}{4}$
- The decimal point $\frac{.}{\square}$
- The $\xlongequal[+{ }^{+-}]{ }$key
- The $\square \underset{E E X}{+6 / 0}$ keys

To correct a number entry, press the backspace key, \leftarrow. Each press of \leftarrow erases the last digit or symbol you entered.
To enter a number in the display, press the number digits successively. A number can have up to 12 digits.
To change the sign of a number from positive to negative, press +/-2.
Use scientific notation to enter very large and very small numbers. For example, to enter the number 1.23×10^{127} in scientific notation, first enter the mantissa (1.23) and then press $\square E / 2$ value between -499 and +499 . If an expression has more than 12 digits, or if an operation returns a result with more than 12 digits, the calculator automatically displays scientific notation.

Figure 1 Scientific Notation in FIX=2 Mode

Chain Mode

Calculations in Chain mode are interpreted in the order in which they are entered. For example, entering the following numbers and operations as written from left to right,

Figure 2 Calculation in Chain Mode
NOTE: if you press an operator key, continued using the currently displayed value.

In Chain mode, if you wish to override the left to right order of entry, use parentheses

For example, to calculate $1+(2 \times 3)$, you may enter the problem as written from left to right, with parentheses to prioritize the multiplication operation. See Table 2-1 below.

Table 2-1 Simple Arithmetic Calculations in Chain Mode

Algebraic Mode

To set the calculator in Algebraic mode, refer to the section titled, The Mode Menu: Setting Preferences in Chapter 1.
In Algebraic mode, multiplication and division have a higher priority than addition and subtraction. For example, in Algebraic mode, pressing 1 returns a result of $\mathbf{7 . 0 0}$. In Chain mode, the same key presses return a result of $\mathbf{9 . 0 0}$. In Algebraic mode, operations between two numbers have the following priority:

- Highest priority: the power function (y^{x})
- Second priority: combinations and permutations
- Third priority: multiplication and division
- Lowest priority: addition and subtraction

For example, key in $1+2 \times 5 \mathrm{nPr} 2^{2}$ in Algebraic mode by pressing:

NOTE: the calculator is limited to 12 pending operations. An operation is pending when it is waiting for the input of a number or the result of an operation of higher priority.

Reverse Polish Notation (RPN) Mode

To set the calculator in RPN mode, refer to the section titled, The Mode Menu: Setting
Preferences in Chapter 1. In RPN mode, numbers are keyed in first, separated by pressing

 pressed is an operation.
Each time you press an operation or function key in RPN, the answer is calculated immediately and displayed. For example, suppose you wanted to add two numbers in RPN, 1 and 2. Press
 bottom line along with the (+) symbol on the top line.
 pressing these keys enters the number, but it also performs the action associated with the key for the menu item, which is generally saving the number in the variable or calculating the item's value.

The RPN Stack

RPN works by placing numbers in storage registers called the stack. The RPN stack has four levels numbered 1-4. The levels are stacked on top of one another. See Figure 3.

Stack Level 4	-15
Stack Level 3	12
Stack Level 2	41
Stack Level 1	23

Figure 3 The RPN Stack

In Figure 3, the stack contains four numbers, 23, 41, 12, and - 15 . Each level ($1-4$) contains one number. When a number is typed and entered into the stack by pressing new number is "pushed" into level one of the stack, and each number already in the stack moves up one level. The number in Level $4,-15$, is pushed out and is lost.
When an operation is performed on the stack, addition (${ }^{+}$) for instance, the calculator "pops" or moves the two numbers from the bottom levels (Levels 1 and 2) out of the stack, performs the operation, and "pushes" the results back into the stack.
With the numbers entered into the stack as shown in Figure 3, pressing + changes the stack as shown in Figure 4. Note that when the numbers are "popped" out to add 23 and 41, Level 4 of the stack remains unchanged.

Figure 4 The RPN Stack of Figure 3 Shown After the Addition Operation

Last Number

Each time you perform a mathematical operation, the content of Level 1 of the stack is saved. Pressing $\triangle \operatorname{lans}_{\text {ans }}^{\text {a }}$ recalls that number. This functionality can be used to undo an erroneous key press, or if you want to reuse a number, such as 56.123 in the expression:
$\underline{(1.23+56.123)}$
(56.123)

See Table $2 \cdot 2$ for an example using the last number function.

Table 2-2 Last Number

For more complex problems requiring two or more operations, you do not need to enter parentheses to set operational priority. Key in numbers and operations inside the parentheses first, followed by those outside of the parentheses. If a problem has more than one set of parentheses, start by working with the operations and numbers in the innermost parentheses and work out. For example, calculate:

$$
(3+4) \times(5+6)
$$

One way to calculate this problem is to key in the numbers and operations within the parentheses first, followed by the operation outside of the parentheses. See Table 2-3.

Table 2-3 Simple Arithmetic Calculations in RPN Mode

 Level 1 . That is, the number on Level 1 is pushed on the stack, making Levels 1 and 2 equal. In the example above, pressing | |
| :--- | :--- | Levels 1 and 2 equal. See Figure 5.

Previous Value
Previous Value
77
77

Figure 5 Duplicating a Number on the Stack
In RPN, the parentheses keys down of the stack. A roll down causes the stack to roll towards the bottom of the stack, during which the number in Level 2 to moves down to Level 1 , the number in Level 3 to moves down to Level 2, the number in Level 4 to moves down to Level 3, and the number of Level 1 to moves up to Level 4. The 目 key has a small down arrow on it to indicate the roll down feature. With the numbers entered into the stack shown in the left column in Figure 6, pressing (1: performs the roll down of the stack shown in the right column.

Figure 6 The RPN Stack and the Roll Down Operation

Pressing $\begin{aligned} & \rho_{\mathrm{x}} \\ & \text { ®ean } \\ & \text { performs a swap. A swap operation exchanges the numbers on Levels } 1 \text { and } 2\end{aligned}$
 the swap feature. With the numbers entered into the stack shown in the left column in Figure 7, pressing $\overbrace{\text { Rem }}^{1 \times 2}$ performs a swap to the stack as shown in the right column.

Figure 7 The RPN Stack and the Swap Operation

NOTE: when no menu is selected, the The

One-Number Functions and the Math Menu

The key presses for the one-number mathematical functions listed in Table 2-4 below apply to all modes, Chain, Algebraic, and RPN. To execute one-number functions, with a number displayed, press the key or key combination corresponding to the operation you wish to execute. The result is displayed on the bottom line.

For example, to calculate $\sqrt{6}$, press $\frac{6}{x^{2}} \square$ immediately and displayed on the bottom line. Note the square root symbol appears on the top line.
NOTE: before doing any trigonometric calculations in the Math menu, check whether the angle mode is set for degrees (Degree) or radians (Radian). You will need to change the setting if the active mode is not what your problem requires. For more information on the Mode menu and calculator settings, refer to the section titled, The Mode Menu: Setting Preferences in Chapter 1. Table 2-4 lists one-number functions along with their corresponding keys.

Table 2-4 Shifted Function Mathematical Operations

Cascription	
Calculates sine.	Calculates cosine.
Calculalatates tangent.	
Calculates natural exponent to the power of x.	

Random number

Press $\square \frac{0}{\square A N D}$ to generate a randomly distributed number between 0 and 1 .
Type a number and press \square generation.

The Math Menu

There are additional functions available in the Math menu. To open the Math menu, press $\square \frac{\square}{\square}$. See Figure 8 for the menu map of the Math menu.

Figure 8 The Menu Map for the Math Menu
Press to scroll through the menu items, starting with Trigonometry. The Trigonometry, Hyperbolic, and Probability items have sub-menus. Press $\begin{aligned} & \text { INPUT } \\ & \text { Memery }\end{aligned}$ on any of these items to access the functions within the sub menus. Press to scroll through the functions.

* IP and FP functions are not available on the HP $20 b$.

Press $\frac{\text { ONCE }}{\text { OFFF }}$ to cancel the Math menu and return to current work. Press to the top of the Math menu.

For example, using the math menu calculate $\operatorname{Sin}^{-1}(0.5)$, see Table 2-5.
Table 2-5 Math Menu Example

In the Math menu, PI does not perform calculations; it enters PI for calculations. You may start an operation, use the Math menu to execute a function, and continue calculating with your original operation without losing your work.

The Probability Sub-menu

Lower Tail Normal Distribution (LTND) calculates the probability for a normally distributed, random variable to be less than the input.

Inverse Lower Tail Normal Distribution (LTND ${ }^{-1}$) is the inverse function for LTND; it calculates the value (V) for which the probability of a normally distributed, random variable to be less than V is the given input. Student, Inverse Student, $\mathrm{Chi}^{2}\left(\chi^{2}\right)$, Inverse Chi ${ }^{2}$, F-Distribution and Inverse F-Distribution perform similar operations for Student, Chi ${ }^{2}$, and F-Distributions.

Student, Chi ${ }^{2}$, and F-Distribution and their inverse operations are special cases, as they require more than one number as input. Student and Chi^{2} require (N), the number of degrees of freedom, and F-Distribution requires (N1) and (N2), two degrees of freedom.
To perform Student and Chi^{2} operations or their inverse:

1. Enter the number of degree(s) of freedom by typing the number and pressing \square

INPUT DMemory or | ans |
| :--- |

2. Type the number for which you want to calculate the probability, or, for the inverse, the probability for which you want the number.
3. Navigate to the appropriate function in the Probability sub-menu of the Math menu.

To perform F-Distribution operations or their inverse:

1. Enter the two degrees of freedom by typing each number followed by $\stackrel{5}{=}$
2. Type the number for which you want to calculate the probability, or, for the inverse, the probability for which you want the number.
3. Navigate to the appropriate function in the Probability sub-menu of the Math menu. See Table 2-6. Note: the examples below are calculated with Chain set as the operating mode.
Table 2-6 Probability Example

kom	ispor	Doserimon
	Trisonore	Enters 10 degrees of freedom and the number Opens which probability isOpens math menu
图葍	$\frac{c \text { chid }}{63 i d}$	
Nemor or	037	Vildides forosut.

Table 2-7 Inverse Probability Example

Binomial Functions

The binomial function calculates the probability of having up to k successes out of n throws, when the probability of success is p. Enter n and p each followed by $=$ navigate to the binomial function in the math menu.

Two-Number Functions

Apart from the keyboard are:

- y^{x}
- $n C r$
- $n P r$
$\boldsymbol{y}^{\boldsymbol{x}}$ is the power function, $\boldsymbol{n C r}$ stands for the number of combinations of \boldsymbol{n} items taken \boldsymbol{r} at a time, and $n \mathrm{Pr}$ stands for the number of permutations of \boldsymbol{n} items taken r at a time.

Combination $=\frac{n!}{r!(n-r)!}$
Permutation $=\frac{n!}{(n-r)!}$
Perform calculations with these functions in the same way you would perform calculations with $\stackrel{+}{\square} \frac{-}{\square}$ example, to calculate 15^{3} :

2. Press

3. Press | 3 |
| :---: |
| y^{x} |

337500

Figure 9
In RPN mode, key in the numbers first, followed by $\begin{aligned} & \text { INPUT } \\ & \text { limemory } \\ & \text {, then press the function key. For }\end{aligned}$ example, for the power function example above, in RPN press:

| 1 |
| :---: | :---: |
| RAND |
| e^{x} |
| INPUT |
| Memory |
| y^{x} | | 3 |
| :---: |
| y^{x} |

Storing and Recalling Numbers

The calculator has ten memories available for use during calculations. These memories are numbered from 1-9 and 0 . To store a number in a memory, press \square Rro followed by the key representing the memory number. To recall a number stored in a memory, press RCL followed by the key representing the memory number. You can use the store and recall functions for these memories any time a number is displayed, or when you wish to enter a number.
For example, to store 15 in memory 1, press $\frac{1}{5}$

You can also perform operations to numbers stored in memories. For example, press
 to recall memory 2. Note how the current value now stored in memory 2 is $17,(5+12)$. $\stackrel{+}{\square}$ To view the stored values in memories 1-9 and 0, press \square Nemory, followed by or that in the Memory menu, you can change the value of any memory by selecting the memory and typing a number followed by the $\begin{aligned} & \text { NNPUTV } \\ & \text { Nemory } \\ & \text { key }\end{aligned}$

Recall Arithmetic

In RPN, typing $\stackrel{+}{\text { RCL }}$ it will not modify the stored value of memory 2 . This is useful, as it "saves" one stack level. You can also use $\frac{-1}{1 / x} \frac{x}{a}$ and $\frac{-}{\square}$

Storing and Recalling with Time Value of Money (TVM) Keys

To store the current number in the Time Value of Money (TVM) variables, press \square followed by the desired TVM key.
To recall the stored value of a TVM variable, press $\frac{\mathrm{RCL}}{}$ followed by the key of the desired TVM variable.
Note: pressing RCL does not calculate the variable; it recalls the current value.

Recalling a Menu Item Value in a Menu

In a menu, you can recall the current value of a menu item. For example, open the Interest Conversion menu (IConv) by pressing \square Nicom . With Nom.\% displayed, pressing 2 you need to insert the contents of a menu item into an algebraic operation.

Recalling and Storing Values in the Data and Cash Flow Menus

If you store an index (i) from 0 to 99 in the variable 0 , you can then use the store/recall features to store a number in the Data and Cash Flow menus. Press either followed by the CashFlow key Cshen , to either store or recall a number, as desired, in the $\operatorname{CF}(i / 2)$ (if \boldsymbol{i} is even) or \#CF($(i-1) / 2$) if \boldsymbol{i} is odd.
In addition, you can store or recall $x(i / 2+1)$ if i is even, or $y((i+1) / 2)$ if i is odd, as desired, by pressing the Data key \square Comen instead of the CashFlow key, csinte , as shown above.

Rounding Numbers

All calculations are performed internally with 15 -digit precision and are rounded to 12 digits when returning the results. In certain instances, calculations are performed internally with greater than 15 -digit precision.
When displayed, a number is further rounded to the number of digits after the decimal point set by the FIX item in the Mode menu. The default setting is two digits to the right of the decimal point. For more information, refer to the section titled, The Mode Menu: Setting Preferences in Chapter 1.
NOTE: the FIX setting only affects the display; it does not affect the actual numbers.

Percentages

In Algebraic or Chain modes, pressing \% \% divides a number by 100. For example, pressing

To find a percentage of a given number, key in the number and multiply it by the desired percentage, followed by $=$. For example, to find 25% of 200 , press

To add or subtract a percentage of a number, key in the first number, followed by ${ }_{\square}^{+}$or $\frac{-}{1 / x}$ and the percentage followed by $\%$. Finish your calculation with $\frac{=}{\square}$. For example, to add 10% to 50 , press $\frac{5}{\varepsilon^{z}}$
 the number on Level 1 of the stack. It does not modify the number on Level 2 of the stack, and thus allows you to perform addition or subtraction after pressing \% \% to add or subtract $x \%$ from the number.
 2 of the stack, and pressing $\frac{-}{1 / x}$ returns 150, or 200-25\%.

3 Time Value of Money

The examples in the following sections are calculated with the Mode menu preferences in their default settings, unless otherwise noted. For more information about basic features and setting preferences, see Chapter 1, Basic Features.

Time Value of Money (TVM) Keys

Cash flow diagrams are useful tools for analyzing financial situations, as they help you identify the TVM functions needed to resolve your problem. A cash flow diagram is a drawing with a set of vertical arrows arranged on a horizontal line. The horizontal line represents the period of time from the beginning of the financing to the end. The vertical arrows represent the money or cash flows at certain times throughout the period. The arrows' length is proportional to the cash flow amount each arrow represents; a longer arrow indicates a larger amount, a shorter arrow, a smaller amount. Each arrow's position on the line represents the time at which the cash flow occurs. The orientation of the arrow, up or down, represents the "direction" of the cash flow: up for money received, down for money paid out. See Figure 1.

Figure 1 Cash Flow Diagram Example with Corresponding TVM Keys
The TVM functions of the calculator can solve problems with at least one cash flow, and problems in which all the cash flows, except the first and last, are of the same value. To solve other types of cash flows, refer to Chapter 4, Canadian Mortgages: TVM Canada, or Chapter 5, Cash Flows.

Figure 1 illustrates a cash flow diagram and how the data in the diagram corresponds to the TVM keys. For a complete list of keys used for TVM problems, along with their descriptions, see Table 3-1.
To save values for the TVM variables, enter the desired number, followed by the corresponding TVM key. To calculate an unknown value, enter all known values and press the key of the item you want solved.

Table 3-1 TVM Keys

Calculating Payments on a Loan

You borrow 140,000.00 for 30 years (360 months) at 6.5% annual interest, compounded monthly. What is your monthly payment to the lender? Note: the following example is calculated with RPN set as the operating mode.
At the end of the 30 years, you expect to have a zero balance ($\mathbf{F V}=\mathbf{0}$). The example is calculated with RPN set as the operating mode

Table 3-2 TVM Example

| Lens | Description |
| :--- | :--- | :--- |

To reset the TVM variables to their default values, press \square Resess
 cancel. Note: the value for P / YR is not reset; it maintains its current entered value when TVM Reset is used.

Amortization

Refer to Figure 2 for a menu map of the Amortization menu (Amort). Table 3-3 lists the keys and variables of the Amortization menu. To open the menu, press amornse Amortization menu calculations are based on values stored in the following TVM registers: $\begin{aligned} & \mathrm{N} \text {, INR }, ~ \\ & \text { ICom }\end{aligned}$ PV, PMT and

To enter values for the TVM variables, enter a number followed by the corresponding key. For an amortization example, see Table 3-4.

Figure 2 The Menu Map for the Amortization Menu

Table 3-3 Amortization Menu Items

Menu ltem/Key	Description
Nb Period	Opens the Amortization menu (Amort).
Amort	Number of periods to group together in the amortization calculation. The default value is the number of payments per year defined by the Pavir Prar
key.	
Balance	Period on which to start amortization. Default is $\mathbf{1}$. If you want to amortize for the second year with 12 payments per year, enter 13 (the second year starts at the $13^{\text {th }}$ payment with 12 payments per year).
The loan balance at the end of the assigned amortized period.	
Amount of the loan payment applied to the principal at the end of the	Amortized period.

Enter the values for the TVM keys for the example below. Press followed by $\begin{aligned} & \text { amom } \\ & \text { and }\end{aligned}$ | $\mathbf{A N S}$ |
| :---: | to view the amortization schedule.

Creating an Amortization Schedule

You borrow 140,000.00 for 360 months at 10% interest. Create an amortization schedule for the loan. How much interest did you pay for the first year? What is the balance of your loan after the first year? See Table 3-4. The example below is calculated with Chain set as the operating mode, but it can be performed in RPN, Chain, or Algebraic.

Table 3-4 Amortization Example

Table 3-4 Amortization Example

Keys	Display	Description
\square		Displays the amount of interest paid on the loan for the first year. The amount of your payments applied towards interest for the first year is about 14,000.00.
\%		Displays the first payment in the next period to amortize (the second year). Note that the calculator automatically updates Start to the next group of periods to amortize.

To reset the menu items to their default values, with any item of the Amortization menu displayed press \square Rest

Interest Conversion Menu

Figure 3 The Menu Map for the Interest Conversion Menu

To open the Interest Conversion menu (IConv) press

$010{ }^{\circ}$
IConv.

Table 3-5 Interest Conversion Menu Items

Item	Description
Nom.\%	Nominal interest rate: the stated annual interest rate compounded as represented by
	C/YR, such as 18\% compounded monthly (C/YR=12).
Eff.\%	Effective annual interest rate taking compounding into account.
$\mathbf{C / Y R}$	Compounding periods per year. Default is $\mathbf{1 2 .}$

Using the Interest Conversion Menu

Find the effective rate of a 36.5% nominal rate compounded daily. See Table 3-6. See Figure 3 for help with navigating through the menu.

Table 3-6 Interest Rate Conversion Example
Keys

Note: in TVM Standard, C/YR is the same number as P/YR in TVM calculations, since most interest calculations are based on the same number of payments and compounding periods per year, and interest rate conversions are commonly linked to a subsequent TVM calculation. This feature is provided for your convenience, but this means modifying one number also modifies the other when you are calculating in TVM Standard.
The IConv menu permits you to solve for $\mathbf{C} / \mathbf{Y R}$, but the result is not always a positive integer. TVM calculations, however, require $\mathbf{C} / \mathbf{Y R}$ to be an integer larger than zero. If you attempt to perform a TVM calculation without a valid value for $\mathbf{C} / \mathbf{Y R}$ or $\mathbf{P} / \mathbf{Y R}$, an invalid $\mathbf{P} / \mathbf{Y R}$ error (ER: Invalid P/YR) will occur.

If you set $\mathbf{C} / \mathbf{Y R}$ to $\mathbf{0}$, the resulting interest conversions are calculated assuming a continuous compounding. As stated above, $\mathbf{0}$ is not a valid value for $\mathbf{P} / \mathbf{Y R}$ or $\mathbf{C} / \mathbf{Y R}$ when used in TVM calculations, and you will have to reset it to a valid value before performing TVM calculations. To reset the menu items to their default values, with any item of the Interest Conversion menu

 cancel. To exit the menu, press | ONCE |
| :---: |
| OFF |
| once again. |

4 Canadian Mortgages: TVM Canada

Figure 1 The Menu Map for the P / YR Menu

In Canada, interest rates for mortgages are, by law, given as a nominal interest rate, compounded twice yearly. This means that the compounding period for the per-period interest rate calculation differs from the compounding period when payments are made.

By default, the calculator performs calculations assuming that the number of compounding periods always equals the number of payments per year. You can, however, enable the TVM Canada option in the Mode menu, which enables you to select the number of compounding periods per year. For more information, refer to Chapter 1, Basic Features.
To open the $\mathbf{P} / \mathbf{Y R}$ menu, press \square PMTV. Note the following change in features with TVM Canada enabled:

1. The $P / Y R$ key opens a menu with two items: $\mathbf{P} / \mathbf{Y R}$ and $\mathbf{C} / \mathbf{Y R}$ in which you can specify the number of payments and compounding periods per year. See Figure 1.
2. In the Interest Conversion menu, the $\mathbf{C} / \mathbf{Y R}$ item is the same value as the $\mathbf{C} / \mathbf{Y R}$ item in the $\mathbf{P} / \mathbf{Y R}$ menu, and it no longer affects $\mathbf{P} / \mathbf{Y R}$. However, note how if you now change the value of $\mathbf{P} / \mathbf{Y R}$, the calculator automatically sets $\mathbf{C} / \mathbf{Y R}$ so it equals your new value assigned to $\mathbf{P} / \mathbf{Y R}$. This means that if you modify $\mathbf{P} / \mathbf{Y R}$, you also need to modify $\mathbf{C} / \mathbf{Y R}$, if $\mathbf{P} / \mathbf{Y R}$ and $\mathbf{C} / \mathbf{Y R}$ are different values in your TVM problem.

Canadian Mortgage Example

Calculate the monthly payment for a 25 -year ($\mathbf{N}=\mathbf{3 0 0}$) Canadian mortgage valued at 350,000.00, if the nominal interest rate is 6.0%, compounded twice yearly (C/YR=2) with 12 payments per year (P / YR). The example is calculated with RPN set as the operating mode.

Table 4-1 Canadian Mortgage Example

5 Cash Flows

Figure 1 Cash Flow Diagram
In the calculator, a cash flow list is a set of numbered pairs, $\operatorname{CF}(n)$ and $\# C F(n)$, where n is the index of the cash flow list. Each pair represents one or more cash flows in a cash flow diagram. As with TVM problems, it helps to sketch a cash flow diagram as a first step in solving cash flow problems. For some examples of cash flow diagrams, see Figure 3 at the end of this chapter.
$C F(n)$ represents the monetary value of the cash flow; $\# C F(n)$ is the number of consecutive occurrences of that cash flow. By default, \#CF(n) is equal to 1 , as most cash flows occur only once. However, in cases where a cash flow is repeated multiple times, using \#CF(n) instead of entering the cash flow value multiple times saves calculation time and memory space in the calculator.

To enter a cash flow list, press casher to open the cash flow menu.
For each cash flow item, first enter the monetary value followed by \square
INPUT mamery then enter the

If a cash flow occurs once, you do not need to type
 Simply press

Memory or \qquad as $\mathbf{1}$ is the default.

To erase a cash flow list, with any cash flow displayed press \square Resed . The number of cash flows in the list is displayed on the bottom line, along with Cash Flow=. At this prompt, press
 reset, or $\begin{aligned} & \text { ONCE } \\ & \text { OFF } \\ & \text { OF } \\ & \text { to concel. }\end{aligned}$

Table 5-1 lists the keys used for cash flow problems. For a cash flow example, see Table 5-2.
Table 5-1 Cash Flow Keys

Key	Description
CshFI	Opens the cash flow list.
0 Ond	
INPUT	Inputs new values for variables in the cash flow list, the Net Present Value (NPV) menu, and the Internal Rate of Return (IRR) menu.
Memory	
$\square \square$	Scrolls up and down.
ONS OEL	
\triangle	Inserts cash flows into a cash flow list.
ins	
∇	Removes cash flows from a cash flow list.
DEL	
IRR NPV	Opens the Internal Rate of Return (IRR) and Net Present Value (NPV) menus.
Sland BrkEv	

Cash Flow Example

After an initial investment of $80,000.00, \mathrm{CF}(0)$, you expect returns over the next five years as follows:

Cash Flow Number	Cash Flow Amount	Occurrences
1	$5,000.00$	1
2	$4,500.00$	1
3	0.00	1
4	$4,000.00$	1
5	$5,000.00$	5
6	$115,000.00$	1

Given this information, calculate the total of the cash flows and the internal rate of return (IRR) of the investment. Calculate net present value (NPV) and net future value (NFV), assuming an annual investment interest rate of 10.5%. See Figure 1 for the cash flow diagram and Table 5-2 for how to enter the cash flows. The example is calculated with RPN as the active operating mode.

Table 5-2 Cash Flow Example

Keys		Display		Description
$\begin{array}{\|c\|} \hline \text { CshFI } \\ \hline \end{array}$		E:	$=\quad \text { mput } \quad \text { npm }$	Opens the cash flow list.
	0 MPPr INPP INPUT Memory		$\begin{array}{lll\|} \hline \text { mput } & & \\ & & \text { npu } \\ \hline \end{array}$	Inputs -80000 as the monetary value of the initial cash flow. Note: the sign of the cash outflow is negative.
$\begin{array}{\|l\|} \hline \text { INPUT } \\ \hline \text { DMemory } \\ \hline \end{array}$		$\begin{aligned} & \text { E:F } \\ & \text { Fin } \\ & \text { R1. } \end{aligned}$	$=\quad \text { MPOTT } \quad \text { npm }$	Accepts 1 as the number of occurrences for $\mathbf{C F}(0)$. Displays the current monetary value of CF(1).
5 e^{x} INPUT amemory		$\begin{aligned} & \text { \#1 } \\ & 1.1 \end{aligned}$	$={ }^{\text {Imput }} \quad \text { npn }$	Inputs 5000 as the monetary value of CF(1). Displays the current value, 1, for the number of times $\mathbf{C F}(1)$ occurs.
INPUT			$=\begin{array}{ll} \text { mpout } \\ & \text { nen } \\ \hline \end{array}$	Accepts 1 as the number of occurrences for CF(1). Displays the current monetary value of $C F(2)$.
	(1) 0		$=\begin{array}{lll} \text { mpve } & \\ & \text { nen } \\ \hline \end{array}$	Inputs 4500 as the monetary value of $\mathbf{C F}(2)$. Displays the current value, 1 , for the number of times $\mathbf{C F}(2)$ occurs.
$\begin{array}{\|l\|} \hline \text { INPUT } \\ \hline \text { MMemory } \\ \hline \end{array}$		$\begin{aligned} & \text { E:F } \\ & \text { R10 } \end{aligned}$		Accepts 1 as the number of occurrences for $\mathbf{C F}(2)$. Displays the current monetary value of $\mathrm{CF}(3)$.
$\begin{array}{\|l\|} \hline \text { INPUT } \\ \hline \text { DMemory } \\ \hline \end{array}$			$=\quad \text { mpout } \quad \text { npm }$	Accepts $\mathbf{0}$ as the monetary value of $\mathbf{C F}(3)$. Displays the current value, $\mathbf{1}$, for the number of times CF(3) occurs.
$\begin{aligned} & \text { INPUT } \\ & \hline \text { OMemory } \end{aligned}$		E:F	$=\begin{array}{ll} \text { mput } & \\ & \text { nen } \\ \hline \end{array}$	Accepts 1 as the number of occurrences for $\mathbf{C F}(3)$. Displays the current monetary value of $\mathrm{CF}(4)$.
4 LN INPT INPUT MMemory	0	\#	$=\begin{array}{lll\|} \hline \text { mpor } & & \text { nrn } \\ & & \\ \hline \end{array}$	Inputs 4000 as the monetary value of CF(4). Displays the current value, 1, for the number of times CF(4) occurs.
INPUT anemory		$\begin{aligned} & \text { E:F } \\ & \text { R1. } \\ & \text { Lin } \end{aligned}$	$={ }^{\text {mpout }}$	Accepts 1 as the number of occurrences for CF(4). Displays the current monetary value of CF(5).

Table 5-2 Cash Flow Example

Keys

Analyzing Cash Flows

The various functions used to analyze cash flows are located in the NPV menus. If you press or cash flow menu to enter values into the cash flow list. The menu maps for the IRR and NPV menus are shown in Figure 2. Table $5-3$ describes the items within these menus. The results shown in Table 5-4 are based on the values entered in the cash flows as shown in Table 5-2.

Table 5-3 Analyzing Cash Flows

Item	Description
Inv. I\%	Investment or discount rate. Enter the investment rate or discount rate for the cash flow followed by menus.*
NetPV	Net Present Value. Shows the value of the cash flows at the time of the initial cash flow, discounting the future cash flows by the value set for Inv. I\%.
NetFV	Net Future Value. Shows the value of the cash flows at the time of the last cash flow, discounting the earlier cash flows by the value set for Inv. I\%.
NetUS	Net Uniform Series. Shows the per-period payment of a regular, periodic cash flow of equivalent present value to the cash flow list.
Payback	Payback. Shows the number of periods for the investment to return value. Discounted Payback return value if the cash flows are discounted using the value set in Inv. I\%.
Total	The sum of all the cash flows, equivalent to NPV if Inv. I\% is $\mathbf{0}$.
\#CF/Yr	The number of cash flows per year. The default is 1.
IRR\%	Internal Rate of Return. This is the discount rate that returns a Net Present Value for the entered cash flows.
Safe I\%*	Safe Interest Rate. Enter the safe investment rate followed by
MIRR*	Modified Internal Rate of Return. Used primarily when there is more than one sign change in a series of cash flows to evaluate the overall profitability of an investment.
sign change in a series of cash flows to evaluate the overall profitability of an	
investment.	

[^4]

Figure 2 The Menu Maps for the NPV and IRR Menus
*Does not apply to the HP 20b.

Table 5-4

Keys	Display	Description
NPV	$\begin{aligned} & \text { Inw. } \\ & \text { nigu } \end{aligned}$	Opens the NPV menu.
		Inputs 10.5 for investment rate.
		(Optional) Verifies one cash flow list per year, as per the example.
¢ DEL		Displays the NPV of the cash flow with the given Inv. I\%.
		Displays the NFV of the cash flow with the given Inv. I\%.
T \quad DEL		Displays the Net US of the cash flow with the given interest rate.
V		Displays the number of periods required for the cash flow to repay the investment
		Scrolls to the total value of the cash flow.
IRR		Displays the IRR for the cash flow.

Editing Cash Flows

In the cash flow list, you can view and modify the current monetary value of a specific cash flow, or cash flows. Press or or ins repeatedly to scroll through the list. To modify the
 monetary value of the cash flow three, CF(3), in the example in Table 5-2 from 0 to 200, with $\mathbf{C F}(\mathbf{3})=$ displayed, press 2

You can also modify the number of occurrences of a cash flow in the same manner with \#CF(n) displayed. Pressing $\square \square$ with a cash flow displayed erases the displayed cash flow. Pressing \square ins inserts a cash flow into the list before the displayed cash flow.
Note that the values for the number of cash flows occurring for a given year, (\#CF/Yr) Investment interest rate, (Inv. I\%), and safe interest rate (Safe I\%) can be entered in both the NPV and IRR menus*. Key in the desired number or rate followed by displayed. The other items are then calculated internally.
Modified Internal Rate of Return (MIRR) and Financial Management Rate of Return (FMRR)*

For the cash flow example you entered in Table 5-2, edit the cash flows using the cash flow amounts and number of occurrences shown in Table $5-5$ below. For the initial cash flow, $\mathrm{CF}(0)$, enter $-1, \mathbf{2 5 0}, \mathbf{0 0 0}$. In the IRR menu, enter $\mathbf{8 \%}$ for investment interest rate, and 5% as a safe rate. Verify the number of cash flows per year, \#CF/Yr, is set to $\mathbf{1}$. The results for MIRR and FMRR are shown in Table 5-6. This example was calculated in Algebraic mode.

Table 5-5

Cash Flow Number	Cash Flow Amount	Occurrences
1	$-300,000.00$	1
2	$200,000.00$	1
3	$450,000.00$	1
4	$-200,000.00$	1
5	$700,000.00$	1
6	$300,000.00$	1
7	$500,000.00$	1

[^5]Table 5-6

Keys	Display	Description
IRR	$\begin{aligned} & \text { 工FFi } \because \quad=\quad \text { men } \\ & 4196 \end{aligned}$	Opens the IRR menu. Displays the IRR for the cash flow.

\square	1		(Optional) Verifies one cash flow list per year, as per the example.
ONS	RAND		
INPUT			
Memory			

\checkmark		Displays FMRR\%.
DEEL	$\begin{aligned} & \text { Fr-1FiFi } z=\quad \text { nen } \\ & 506 \end{aligned}$	

Sample Cash Flow Diagrams

Figure 3 Sample Cash Flow Diagrams

6 Bonds

Figure 1 The Menu Map for the Bond Menu

[^6]
The Bond Menu

Before you enter the Bond menu, be sure to verify the date format is set appropriately for your problem. The default setting is mm.ddyyyy, but it can be set for dd.mmyyyy. The range of acceptable dates is October 15, 1582 to December 31, 9999. Bond day counts (360/365) and annual or semiannual coupon payment schedules may be set from either the Mode menu or the Bond menu. For more information on setting the preferences in the Mode Menu, see the section titled, The Mode menu: Setting Preferences in Chapter 1.

To open the Bond menu, press Bond
Press or repeatedly to scroll through the items shown in Figure 1.

To change the value of the displayed item, key in a number or a date and press | INPUT. |
| :--- |
| EWNemery |. Once you have entered all known data, Press or remeatedy to scroll to an unknown item, and press $=$ to calculate it.

Table 6-1 lists the items in the Bond menu.

Table 6-1 Bond Menu Items

Variable	Description
Settlement Date	Settlement date. Displays the current settlement date. Note: input only.
Maturity Date	Maturity date or call date. The call date must coincide with a coupon date. Displays the current maturity. Note: input only.
CPN\%	Coupon rate stored as an annual \%. Note: input only.
Call	Call value. Default is set for a call price per 100.00 face value. A bond at maturity has a call value of 100% of its face value. Note: input only.
Yield\%	Yield\% to maturity or yield\% to call date for given price. Note: input/output.
Price	Price per 100.00 face value for a given yield. Note: input/output.
Accrued	Interest accrued from the last coupon or payment date until the settlement date for a given yield. Note: this item is Read-only.
Mod. Duration*	Modified duration for the bond. This is a measure of bond price sensitivity to yield changes.
Macaulay D.*	Macaulay Duration for the bond. This is a measure of bond price sensitivity to yield changes.
Actual/Cal. 360	Actual (365-day calendar) or Cal. 360 (30-day month/360-day year calendar). Press INPUT to toggle between these options.
Annual/Semiannual	

[^7]
Bond Calculation Example

What price should you pay on April 28, 2010 for a 6.75% U.S. Treasury bond maturing on June 4, 2020, if you want a yield of 4.75% ? Assume the bond is calculated on a semiannual coupon payment on an actual/actual basis. See Table 6-2. The example below is calculated with RPN as the active operating mode.

Table 6-2 Bond Calculation Example

Table 6－2 Bond Calculation Example

Key	Display	Description
$\square \frac{\text { RCL }}{} \square \frac{1}{\text { STO }}$		Stores 115.89 in memory 1.
\square		Displays the current value for accrued interest．
	RPN 11850	Returns the result for total price（value of price＋value of accrued interest） in RPN mode．If calculating in Chain or Algebraic modes，at this point， press \square RCL \square The net price you should pay for the bond is 118.58 ．

To reset the menu items to their default values，with any item of the Bond menu displayed press
 again to exit the menu．

7 Black-Scholes Calculation Menu*

Figure 1 The Menu Map the Black-Scholes menu
*Does not apply to the HP 20b.

The Black-Scholes Menu

To open the Black-Scholes menu (the Black-Sholes key is \square (HOLD) Bond $)$. To open the menu:

1. Press and hold the \square key.
2. Press the Bond (the Black-Sholes key).
3. Release both keys.

In other words, press on the \square and Bond keys simultaneously and hold both keys, just as you would when accessing a shifted-function on a PC keyboard. If you press and release \square and then press on the Bond (Black-Sholes key), you will enter the Date menu.

To change the value of the displayed item, key in a number and press $\begin{aligned} & \text { INPUT } \\ & \text { Mememy }\end{aligned}$. Once you have entered all known data, the unknown items are calculated automatically. Press an or \square repeatedly to scroll to view the items.

An option is a contract between two parties giving party A the option to buy or sell an asset from/to party B at a given price.

The Black-Scholes model is used to calculate an estimated fair market price for that option, meaning that it calculates the fair price that someone would pay to buy or sell the option to later buy or sell an asset at a given price!

The asset or stock that the option refers to is often called the "underlying asset."
The Black-Scholes calculation is based on the contract terms (i.e., the price and date at which the underlying asset can be sold or bought), the quality of the asset itself, its price, volatility and return on investment, and the other available alternatives, such as storing your asset in a safe investment account, for example.
Intuitively, if the option is to buy a stock at 10, and the stock is already worth 30 and has little volatility, the value of the option is close to $30-10=20$, plus or minus other risk factors. Table 7 1 lists the Black-Scholes menu items along with their descriptions.

Table 7-1

Item	Description
Stock price (input)	Current underlying asset price
Strike price (input)	Predetermined price at which the option agrees to buy or sell the underlying asset at maturity.
Time to maturity (input)	Time remaining until expiration of the option in years.
Risk free\% (input)	Current risk-free interest rate (for example, the current US Treasury Bond rate).
Volatility \% (input)	Degree of unpredictable change of the stock price. This is usually approximated by the standard deviation of the variation of the stock price.
Dividend \% (input)	Estimation of the average dividend yield of the stock as a percentage of its price.
Call price (output)	Estimated fair market value for a call option at expiration (a call option is the right to purchase the asset at a given price).
Put price (output)	Estimated fair market value for a put option at expiration (a put option is the right to sell the asset at a given price).

Note that if you enter a history of the underlying asset price and its yield in the data menu, pressing the $=$ key on the Volatility \% menu item automatically calculates the standard deviation of the variation of the asset price based on the given data. Pressing $=$ in the Dividend \% menu item automatically calculates the average dividend as a percent of the asset price.

Black-Scholes Example

The historic prices for an asset and their dividends are listed in Table 7-2 below. Given this data, calculate the call and put prices for the asset. The example is calculated with RPN set as the operating mode.

First, enter the historical asset prices and the dividend as ordered pairs in the Data menu. Enter the historical prices for the x values, and the dividend for each y value. For more information about entering data in the Data menu, see Chapter 12, Statistical Operations.

Table 7-2

Historical Asset Price (x)	Dividend (y)
80	3
85	5
78	1
72	0

 With the menu item displayed, key in the value in the right column of the table followed by INPUT

Table 7-3

Menu item	Value
Stock Price	74
Strike Price	72
Time to Maturity	0.3 (years)
Risk Free\%	5
Volatility\%	8.21
Dividend\%	2.73

Table 7-4 Black-Scholes Example

| Keys | Display | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Inputs 72 for Strike Price. Scrolls to Time to Maturity.

Inputs 0.3 years for Time to Maturity. Scrolls to Risk Free\%.

Inputs 5 for Risk-Free\%. Scrolls to Volatility.

Table 7-4 Black-Scholes Example

Keys		Display	Description
Press \square next item.	to scroll to the	$\begin{aligned} & \text { Qolatilit's = mor = m } \\ & \text { BI: } \end{aligned}$	Calculates the standard deviation of the price of the underlying asset based on the historical data entered in the Data menu. If you have not entered the historical data, you can enter the standard deviation of the price of the underlying asset directly by typing the number and pressing Press \square to scroll to the next item.
	to scroll to the	$\begin{aligned} & \text { Lividend } Z=\text { mor } \\ & 2.15 \end{aligned}$	Calculates the average dividend return as a percentage of the underlying asset cost based on the historical data entered in the Data menu. If you have not entered the historical data, enter the average dividend return as a percentage of the underlying asset cost directly by typing the number and pressing \square INPUT
\%		$\begin{aligned} & \text { Call Pric= } \\ & 2.99 \end{aligned}$	Scrolls to Call Price.
家		Put Prias= 02	Scrolls to Put Price.

To reset the menu items to their default values, with any item of the Black-Scholes menu

8 Date Calculation

Figure 1 The Menu Map for the Date Calculation Menu

The Date Calculation Menu

The Date Calculation menu is used to calculate the number of days between two dates, or a second date given a number of days from an initial, or final date. To open the Date
 items shown in Figure 1. Before you enter dates, verify the date is set in the format required for your problem. Date and calendar formats may be set in the Mode menu. The range of acceptable dates is October 15, 1582 to December 31, 9999. For more information on setting the preferences in the Mode Menu, see the section titled, The Mode menu: Setting Preferences in Chapter 1.

To change the value of a displayed item, key in a number or a date and press | INPUT. |
| :--- |
| Whemary. |

 unknown item and press to calculate it.

Date Calculation Example

How many days remain in the 2010 fiscal year if today's date is June 4, 2010? Assume the fiscal year ends on October 31st, and you wish to calculate the actual number of days
(Actual).

Table 8-1 Date Calculation Example

Key	Display	Description
\square Bond		Opens the Date Calculation menu. NOTE: $\mathbf{2}$ in the right of the display represents the day of the week. 2 represents Tuesday.
		Inputs the starting date in the selected format.
INPUT		
		Inputs the ending date in the selected format.
\% $+=$		Calculates the number of actual days between the starting and ending dates.

To reset the menu items to their default values, with any item of the Date menu displayed press

9 Break-even

Figure 1 The Menu Map for the Break-even Menu

The Break-even Menu

To open the Break-even menu, press \square Cons. To change the value of the displayed item,
 or $\begin{aligned} & \text { M } \\ & \text { Ne }\end{aligned}$ repeatedly to scroll to the unknown item and press $=$ to calculate it.

The break-even function allows you to study problems involving a profit, when a quantity of items, with a cost to manufacture and a fixed price to develop and market, is sold at a given price (see Figure 1).

Break-even Example

The sale price of an item is 300.00 , the cost is 250.00 , and the fixed cost is $150,000.00$. How many units would have to be sold to make a profit of $10,000.00$?

Table 9-1 Break-even Example

Keys	Display	Description
	Fixed nign	Opens the Break-even menu starting with the current value for fixed costs.
		Inputs 150,000.00 for fixed cost.
	EOE = mor =	Inputs $\mathbf{2 5 0 . 0 0}$ for variable cost per unit.
	$\begin{array}{ll} \text { Price } \\ \text { Prom } \end{array}$	Inputs 300.00 for price.
		Inputs 10,000.00 for profit.
	$\begin{aligned} & \text { Quantit's }=\text { mor }{ }_{\mathrm{mm}} \\ & \text { Ingurio } \end{aligned}$	Calculates the current value for the unknown item. 3200 units would have to be sold to return a profit of 10,000.00.

To reset the menu items to their default values, with any item of the Break-even menu displayed
 cancel. Press $\begin{aligned} & \text { ONCE } \\ & \text { OFFF } \\ & \text { again to exit the menu. }\end{aligned}$

10 Business Problems

Figure 1 The Menu Map for the Percent Calculation (\%calc) Menu

The Percent Calculation Menu

Press \square \%cale to open the menu. There are four items in this menu:

1. Markup as a percentage of cost (Mkup. \%C)
2. Markup as a percentage of price (Mkup. \%P)
3. Part as a percentage of total (Part\%Tot.)
4. Percent change (\%Change).

To change the value of a displayed item, key in a number and press $\begin{aligned} & \text { INPUT } \\ & \text { insemory } \text {. Once you }\end{aligned}$ have entered all known data, press \square or

To return to the percent calculation menu, from anywhere within the menu or sub-menus, press

To exit the menu, press $\begin{gathered}\text { ONCE } \\ \text { OFFI }\end{gathered}$.

NOTE: for business problems, margin is based on price; markup is based on cost. The examples below are calculated with RPN as the active operating mode.

Percent Calculation Examples

See the tables below for examples of calculations in the \%calc menu.

1. Find the markup on an item if the cost price is 15.00 and the selling price is 22.00 .

Table 10-1 Markup Example

2. Find the percent change between 20 and 35 with no compounding.

Table 10-2 Percent Change Example

NOTE: although the example in Table 10-2 calls for no compounding, you may specify the number of compounding periods used in calculations with the Nb Period item in the \%Change sub-menu. Nb Period is the number of compounding periods used in calculations between the old value and new value. The default is 1 , but to change the setting, key in a number with Nb Period displayed, followed by | INPUT. |
| :--- |
| endemy |

After calculating the example above with no compounding, say, for example, you wish to calculate the percent change over six compounding periods:

Table 10-3 Percent Change Example with Compounding

| Keys | Display | Description |
| :--- | :--- | :--- | :--- |

3. 30 is what $\%$ of 80 ?

Table 10-4 Part \% of Total Example

To reset the menu items to their default values, with any item of the \%calc menu displayed
 cancel. Press

11 Depreciation

Figure 1 The Menu Map for the Depreciation Menu

The Depreciation Menu

Press \square Depr to open the Depreciation menu. To select a depreciation method, press
$\frac{\text { INPUT }}{\text { Dasemory }}$. See Figure 1. Input the values required for the calculation:

- Asset life
- Starting date or month of the depreciation
- Cost and salvage values
- Declining balance factor (DecBal and DBXover only)
- The first year for which you want to view the depreciation schedule

Scroll through the items of the sub-menu for the selected depreciation method by pressing
Eal or press INPUT. For the Start item, enter either a number or an actual date, depending on the type of depreciation selected. Press repeatedly to view the depreciation schedule. NOTE: pressing on the last item of a sub-menu returns you to the Year item and increments it (see Figure 1).

Brief descriptions of the methods used to calculate depreciation are provided in Table 11-1. Table 11-2 describes the items found in the depreciation sub-menus. For an example calculating depreciation using the straight-line method, see Table 11-3.

Table 11-1 Depreciation Methods

Depreciation Method	Description
Sline	Straight line is a method of calculating depreciation presuming an asset loses a certain percentage of its value annually at an amount evenly distributed throughout its useful life.
SOYD	Sum-of-the-years' digits is an accelerated depreciation method. In SOYD, the depreciation in year y is (Life-y +1)/SOY of the asset, where SOY is the sum-of-the-years for the asset, or, for an asset with a 5-year life, $5+4+3+2+1=15$.
DecBal	Declining balance is an accelerated depreciation method that presumes an asset will lose the majority of its value during the first few years of its useful life.
DBXover	Declining balance crossover is an accelerated depreciation method that presumes an asset will lose the majority of its value in the first few years of its useful life, but that it will revert to a consistent depreciation during the latter part of its life, which is then calculated using the straight line method.
French SL	Straight line French. This method of depreciation is similar to the Straight line method, except an actual calendar date in mm.dd format is entered in for Start= to indicate when the asset was first placed into service.
Amort F	French amortization. This method is an accelerated depreciation method with a crossover to the French Straight Line method.

Table 11-2 Depreciation Menu Items

Item	Description
Life	The expected useful life of the asset in years.
Start	Start refers to the date or month in which the asset is first placed into service. Depending on the type of depreciation, this can be the month (1-12), or, in the case of French Straight-line and Amort F, the actual date in the selected format. Note: for non-French depreciations, if the asset was placed into service in the middle of March, for example, enter 3.5 for Start.
Cost	The depreciable cost of the asset at acquisition.
Salvage	The salvage value of the asset at the end of its useful life.
Factor	The declining balance factor as a percentage. This is used for declining balance and declining balance crossover methods only.
Year	Year for which you want to calculate the depreciation.
Depreciation	Depreciation in the given year.
R.Book Value	Remaining book value at the end of the given year.
R.Depreciable Value	Remaining depreciable value at the end of the given year.

Depreciation Example

A metalworking machine, purchased for $10,000.00$, is to be depreciated over five years. Its salvage value is estimated at 500.00 . Using the straight-line method, find the depreciation and remaining depreciable value for each of the first two years of the machine's life. See Table 11-3.

Table 11-3 Straight Line Depreciation Example
Key

Table 11-3 Straight Line Depreciation Example

| Key | Description |
| :--- | :--- | :--- |

To reset the menu items to their default values, with any item of the Depreciation menu displayed press \square Reset . With Depreciation displayed, press $\begin{aligned} & \text { INPUT } \\ & \text { NMPmory }\end{aligned}$ to reset the menu,

12 Statistical Operations

Figure 1 The Menu Map for the Statistics Menu

* $a x^{2}+b x+c$ and Quartiles do not apply to the HP 20b.

The Data and Stats Menus

Statistics analysis functions are located in the Data and Statistics menus accessible with the \square Bata menus.
 statistics, a list of pairs, (x, F) for one-variable statistics with frequency, or a list of pairs, (x, y)

Press \square Sais to analyze the data. If you attempt to open the Statistics (Stats) menu before entering data, you will be redirected to the Data menu. When opened, the Stats menu
 statistical operations desired, two-variable, (2 Vars), one-variable, (1 Var), or one-variable with frequency (1 Freq).

After selecting the type of statistical operation you want, select a sub-menu by pressing or repeatedly to view the results. To return from the sub-menu to the Statistics menu, press

NOTE: in one-variable modes, there are no items for y, and the Predictions sub-menu is not available.
Pressing $\mathbb{I N P U T}$ with the Predictions sub-menu displayed opens a sub-menu, in which you can choose among seven different types of regression lines. See Figure 1. To select a specific type of regression line in the Predictions sub-menu, press INPUT options.

NOTE: if you press $\underset{\sim}{=}$, the calculator automatically selects the curve that is the best fit for your data.
Once you select a regression line, press to see the regression line parameters and perform predictions.
Table 12-1 The Statistics Menu Items

Menu ltem	Description
Nb ltem	Number of items.
$\overline{\mathbf{X}}$ Mean	Average of \boldsymbol{x} values.
$\overline{\mathbf{Y}}$ Mean	Average of \boldsymbol{y} values.
\boldsymbol{x} Std. Dev	Standard deviation for $\boldsymbol{x}:$ a measure of how dispersed the \boldsymbol{x} data values are about the mean.

Table 12-1 The Statistics Menu Items

Menu Item	Description
y Std. Dev	Standard deviation for y : a measure of how dispersed the y data values are about the mean.
\boldsymbol{x} Population Dev	Population Standard deviation for \boldsymbol{X} : a measure of how dispersed the \boldsymbol{X} data values are about the mean, assuming the data constitutes a complete set of data.
y Population Dev	Population Standard deviation for \boldsymbol{y} : a measure of how dispersed the \boldsymbol{y} data values are about the mean, assuming the data constitutes a complete set of data.
S.E.Samp. X	Standard error for the sample \boldsymbol{X} : a measure of the dispersion of \boldsymbol{X} mean, assuming the data is a sampling of a large, more complete data set.
S.E.Samp.y	Standard error for the sample \boldsymbol{y} : a measure of the dispersion of \boldsymbol{y} mean, assuming the data is a sampling of a large, more complete data set.
Pred \boldsymbol{X}	Predicts \boldsymbol{x} for a given hypothetical value of \boldsymbol{y}, based upon the model calculated to fit the data.
Pred y	Predicts \boldsymbol{y} for a given hypothetical value of \boldsymbol{x}, based upon the model calculated to fit the data.
a	The \boldsymbol{a} coefficient for the chosen regression model, which is the slope for a linear model.
b	The \boldsymbol{b} coefficient for the chosen regression model, which is the \boldsymbol{y}-intercept for a linear model.
c	The \boldsymbol{c} coefficient for the chosen regression model, applies only for $a x^{2}+b x+c$.
Correlation	The correlation coefficient for the given $(\boldsymbol{x}, \boldsymbol{y})$ data. The correlation coefficient is a number in the range -1 through 1 that measures how closely the calculated line fits the data.
Covariance	A measure of how much two variables change in relation to one another.
$\Sigma \mathrm{x}$	The sum of the \boldsymbol{X} values.
Σy	The sum of the \boldsymbol{y} values.
Σx^{2}	The sum of the squares of the \boldsymbol{X} values.
Σy^{2}	The sum of the squares for the \boldsymbol{y} values.
Exy	The sum of the products of the \boldsymbol{X} and \boldsymbol{y} values.
Quartiles*	The boundaries of a given frequency distribution divided into four parts.
Median*	The middle value in a given frequency distribution.
Maximum*	The largest value in a given frequency distribution.
Minimum*	The lowest value in a given frequency distribution.

[^8]
Statistics Example

Sales for the last five months are represented by the pairs of values shown below, with the month number as x, and the sales values as y. Enter these into the Data menu. Using the Statistics menu for Predictions, predict sales for month seven. What is the linear regression line? What is the sum of all the y values? See Table 12-2 and Table 12-3.

Table 12-2 Statistics Example Months and Sales Values

Month	Sales Values
1	150
2	165
3	160
4	175
5	170

Table 12-3 Statistics Example

Keys	Display	Description
	$\begin{array}{ll} \text { Pidi } \\ \text { inio } \end{array} \quad=\text { mor }$	Opens Data menu.
		Inputs values for $\boldsymbol{x}(1)$ and $\boldsymbol{y}(1)$.
		Inputs values for $\boldsymbol{x}(2)$ and $\boldsymbol{y}(2)$.
		Inputs values for $\boldsymbol{x}(3)$ and $\boldsymbol{y}(3)$.
		Inputs values for $\boldsymbol{x}(4)$ and $\boldsymbol{y}(4)$.
		Inputs values for $\boldsymbol{x}(5)$ and $\boldsymbol{y}(5)$.
	玉 U3F\% movern	Opens Stats menu.
SEI		Opens Descriptive sub-menu.
\%		Displays average \boldsymbol{y}.
INPUT Bixemory		Opens Predictions sub-menu. NOTE: this example performs calculations based on a linear ($\left.a^{*} x+b\right)$ regression line.
\% 7	$\begin{aligned} & \text { Fres } X=\mathrm{mor}=\mathrm{mm} \\ & \text { 7010 } \end{aligned}$	Inputs 7 as the Prediction \boldsymbol{x} value (month 7).
		Calculates Prediction y value (sales at month 7).

Table 12-3 Statistics Example

Keys		Display	Description
T 7		$3 \quad=$ 5.11	Displays value for \boldsymbol{a} : the slope of the regression line.
T C		E = H-9178	Displays current value for b: the \boldsymbol{y}-intercept of the regression line.
\%		Correlatin = R100	Displays value for Correlation.
			Opens Sums sub-menu. Displays the sum of all y values (Sigma \boldsymbol{y}).

To reset the menu items to their default values, with any item of the Data or Statistics menus displayed press \square Reset . At the prompt, Stats, press \begin{tabular}{|l|l}
\hline INPUT

MNemory

 . Confirm your choice by pressing

INPUT

\hline
\end{tabular}

13 Programming

Programming the HP 30b

This chapter applies only to the HP 30b, and explains how to program specifically on the HP 30b. If you are unfamiliar with the basics of programming, you may have trouble understanding some of the following information. Reviewing the material and practicing the concepts illustrated below will help you understand how this feature works on the HP30b.

The HP 30b Business Professional is a powerful business calculator, but it may lack a function important to you. The HP 30b programming functions allow you to create up to ten programs to fulfill your needs. In order to keep the calculator keyboard clear and consistent, the programming functions are not written on the keyboard.
However, included in the calculator package, you should find an overlay which shows the programming functions. This is designed to be placed on the top surface of the calculator and left in place for the life of the calculator. If you are interested in programming the calculator, you will need to place the overlay on your keyboard before getting started.

Key Presses for Program Instructions

Enter the Program menu by pressing followed by $\underset{\square}{\frac{D}{\text { RREM }} \text {. }}$. The instructions specific to programming (illustrated on the overlay) are inserted by pressing \square and simultaneously pressing the key with the desired programming instruction. Then release both keys before pressing any additional keys for your program. In the following chapter, this combination is represented in the following manner:

This sequence is identical to using the shift key on a computer keyboard to invoke the shiftedfunction.

For reference, the table on the following page lists the keys along with their associated programming instructions.

Table 13-1
Programming Key Instructions

All programming key combinations listed in the above table require you to press the
 key and (HOLD) it while simultaneously pressing the desired program instruction. The instructions are described in more detail in the following pages.
Almost any function you perform with the calculator can be programmed. A program allows you to repeat an algorithm or sequence of commands without having to retype all the keys each time you want to use that particular function.

Programming Example

The following programming example, and all examples in this chapter, were written with Chain or Algebraic set as the operating mode. Since a program executes the keys exactly as if you were manually pressing them, the current operating mode affects how the program executes. If you normally operate in RPN, verify your operating mode is set to either Chain or Algebraic before proceeding so you can follow along with the examples below.

For more information about setting the operating mode, refer to the section titled, The Mode Menu: Setting Preferences in Chapter 1, Basic Features.

The volume of a sphere is represented by the equation, $\frac{4}{3} \pi r^{3}$. We will create a program that can calculate the volume of a sphere without having to retype all the keys each time you wish to calculate the volume of a given sphere. Verify your FIX setting is set for three digits to the right of the decimal point. For more information on the FIX setting, refer to the section titled, The Mode Menu: Setting Preferences in Chapter 1, Basic Features.

Table 13-2

	Display	Description

Keys | Description |
| :--- |

Program Step 0

Programs start at step 1, however, if you edit a program by pressing INPUT $\begin{aligned} & \text { INAmory } \\ & \text { with the }\end{aligned}$ program displayed and press the up key Δ, you will find there is a step 0 . Press any key with step 0 displayed and that key becomes a shortcut for the program. You may also assign any \square (HOLD) key combination as well.

For example, with the sphere example shown in Table 13-2, after your program has calculated the solution, press \square

Figure 1

select step 0 . Press \square followed by $\frac{a}{L N}$ (assuming you are not interested in using the	a
LN	key). Exit the program by pressing \(\begin{aligned} \& ONCE

\& OFFF\end{aligned}\), key in a number, 5 , and then press and you will see the your program was executed with the same results as shown in the table!

If you assign a program to a shift key and there is no \square (HOLD) function on that key, the standard function will be executed by pressing the \square (HOLD) option of that key. This way you still have the option of using the standard shifted function of the key should you need it. Press once to clear your screen before the next section.

Reassigning Menu Functions

Often, the best use for a program is to bring a function you use frequently out onto the keyboard. For example, if you use SIN frequently, you may want to have ASIN available directly on the keyboard as well. Having the ability to assign keys permits you to do this easily. Table 13-3 below illustrates how to reassign a menu function to the keyboard.
Table 13-3 Reassigning Menu Functions

Keys	Display	Description

The Program Menu and Program Editing

Now that we have been through some short examples, let us look at some of the programming details.

The Program menu displays a list of the ten programs that are in the calculator. Use the and ∇ keys to scroll through the program menu. For each program, the number displayed at the bottom is the memory space used/occupied by the program and a checksum value of that program. For example, program 0 for the sphere uses 13 bytes and has a checksum of 104 (see Figure 2).

Figure 2
There are 290 bytes of program space available.
To erase all the programs, open the Reset menu (press Reset) from outside of program mode. In the reset menu, select Prgm. The number at the bottom of the display represents the amount of programming steps in use. Press $\begin{aligned} & \text { INPUT } \\ & \text { Namemory } \\ & \text { twice to erase all programs. }\end{aligned}$
To erase a specific program, go to the program menu, select the program with the $\bar{\square}$ \square keys, and press \square

To execute a program, select the program in the program menu and press $\begin{array}{r}\mathrm{a} \text { ass } \\ \text { and }\end{array}$
To edit or modify an existing program, select the program in the program menu and press INPUT:

1. Review your program by pressing the $\begin{aligned} \square \\ \square\end{aligned}$
2. Delete the currently displayed instruction by pressing \leftarrow.

3. Any other key that you press will be inserted as an instruction in the program.
4. Insert an \square

$\stackrel{\nabla}{\square},$| ONCE |
| :--- |
| OFF | , or \leftarrow

 to a specific label.

Tests and Jump Functions

When creating a program, there is often a need for the conditional execution of an instruction based on a specific condition, as well as the repetition of a set of instructions.

This is handled on the HP 30b using the GOTO, LBL (label) and Test instructions. LBL is an instruction that does not do anything by itself, but it acts as a marker for Jump instructions.

1. To enter a label or GOTO instruction, press and hold \square and simultaneously press the GOTO, GOTOT, or GOTOF key, then release both keys.
2. Type a number between 00 and 99 (for numbers smaller than 10 , you must type the 0 first, such as 03).
 then use a GOTO 03 instruction to jump to that label from any location in your program to the position of the label. GOTOT (Go To If True) and GOTOF (Go To If False) will only jump if the current displayed number is non-0 (true) for GOTOT or 0 (false) for GOTOF. Used together, these instructions allow you to create programs like the following:

$$
8=
$$

LBL 01
DISP 5

- $1=$

GOTOT 01
STOP
Use the following keystrokes to enter the program:
1.

2.

3. $\frac{-1}{v_{z}} \frac{1}{=} \square$ (HOLD)
4.
 . This program has 13 bytes, and the checksum is 234 . This program counts from eight to zero displaying each number 1 second.

Note:

- Label numbers must be unique. Only one label with a given number can exist in the calculator.
- You can jump from one program to another if you know that there is a specific label number in another program.
- Use the tests $\boldsymbol{?}=, \boldsymbol{?} \neq, \boldsymbol{?}<, \boldsymbol{?} \leq, \boldsymbol{?}>$ and $\boldsymbol{?} \geq$ (the top row of keys) to verify if two numbers are equal, different, and strictly, or not strictly, greater or smaller. These are dual operator-operands and are used in the same way as addition or multiplication (in Algebraic and Chain modes, number 1 ? $=$ number $2=$, and in RPN mode, number 1 and 1 if true. Note that in RPN mode, the tests do not remove the arguments from the stack, but do push a 0 or 1 .

Long Programs and Battery Life

Although it is possible to create programs on the HP 30b that can run for a long period of time (calculating PI to 700 decimal places, for example) this is not something that we advise, as it will drain the batteries in less than a day.
Programming on the HP 30b was designed to create small programs to perform a function not present in the calculator, or to automate a task requiring many keystrokes and then run relatively quickly. If a program takes more than one second to run, the CPU speed will be reduced in order to preserve battery life.

Sub-Function Call

It is often useful in a program to have the option to reuse a sub-program from various locations. To avoid having to retype these sub-programs each time they are necessary, you can use the

$$
\Xi(H O L D)
$$

CALL, followed by a label number, will jump to the specified label, in the same way a GOTO instruction does, but, when the RETURN instruction is encountered, the program will continue execution just after the CALL function. This is equivalent to you temporarily pausing in an activity to answer a phone call, and then returning to your prior activity after the call. Up to four calls can be nested at the same time. Another way to picture this might be going to turn off your stove, while you are answering the doorbell that rang while you were answering your phone, while you were writing an email... it's hard for us, but computers are good at stacking tasks in this way.
Enter a call function the same way you enter a GOTO function.

Other Programming Functions

DISP: takes a number that represents $1 / 5$ of a second. DISP5 is thus one second.

STOP: Stops the execution of the program. This instruction should be placed at the end of every program.
$\square(\mathrm{HOLD}) \mathrm{F}_{\mathrm{mod}}^{\mathrm{R} / \mathrm{t}} \mathrm{R} / \mathrm{S}$: Pauses the program execution and returns to the normal system.
You can then resume program execution by pressing
for example, when you need to enter a number.
 to 9): Loop control function. Place a number of the form ccccc.eeeii where cccc is the counter, eee is the end value for the counter and $i i$ is the increment in variable 1. For example, DSE 1 will decrement the counter part of the variable by ii (if ii is 0 , it decrements by 1) and, if cccc is less or equal to eee, it will skip the next instruction (usually a GOTO).
For example, to loop from 0 to 50, incrementing by 3 each loop, use 0.05003 as start the value and the ISG instruction. The following program will loop from 0-50, incrementing by 3 each loop and pause shortly at each loop to show the counter. At the end, it will leave 12 with a blinking cursor. Once in Program mode, select an unused program number and press:

This program has 22 bytes, and the Checksum is 146 .

Messages

The MSG function is used to display messages on screen; it is especially useful when used
before halting the program with \square (HOLD) on the screen for the user.

To enter a message while creating a program:

Press \square (HOLD) $\stackrel{\substack{\text { mss } \\ 9 \\ 9 \text { ren }}}{\square}$. Release both keys. You can now enter messages. In this mode, you may press \square or or to jump 10 characters at a time. Once you have found the desired character, press	ONFUTI
Memory	
and	to validate and move to the next character. Press to remove the last character. There are also shortcuts for commonly used characters:

- 0.0
- $\quad \square$ mast selects ?
- $\underset{\sim}{=}$ selects $=$
-- + +-- selects space
 If you want to modify a message that has been entered in a program, select the message and

As an example using the message mode, let's return to our sphere calculation program:

1. 0 . To insert a message at step 1 and push everything else down, simply begin editing at step 1 . If you want to delete the current step, press \leftrightarrows.

2. Press screen should display a?.
3. Press $\begin{gathered}\text { ONCE } \\ \text { OFF } \\ \text { to exit. }\end{gathered}$
4. Press \square (HOLD)
5. Now enter program mode again by pressing $\square \sum_{\Omega}$. The display will show \mathbf{R} ? in video inverse. Since program 0 has a message as the first command, it is now named \mathbf{R} ?. The video inverse signifies that it is assigned to a key, in this case $\frac{A}{L N}$. Press | ONCE |
| :--- |
| OPF |
| to |
6. Now press \square LN. Notice R? appears, and the program pauses to wait for input.
 calculates the volume.

Debugging a Program

At times, programs do not work as expected. You can debug your programs by pressing the $\square(\mathrm{HOLD}) \square$ or \square (HOLD) \square Rell keys as follows:

Open the Program menu and select the program you want to debug. To execute the first instruction, press \square (HOLD) \square. Press this key combination repeatedly to execute your program one instruction at a time. The current instruction is displayed as long as the $\quad \mathbf{\square}$ key is pressed.
If you want to see the next instruction without executing it, press \square (HOLD) \square in the same manner.

If you want to let the program continue by itself, press \square (HOLD) start debugging a program in the middle, place a run $/$ stop (R / S) instruction where you want to start debugging the program, run the program and start debugging using \square (HOLD) \square or

Saving, Restoring, and Modifying Mode Settings

Often, programs are designed to run in a specific mode (for example, FIX 4 or RPN). You can use

1. RCL

2. Your program: were at the beginning of the program.
3. RCL each digit.

Table 13-4

Digit	Description
A	is "1" for radian mode, "2" for degree mode.
a	is " 1 " in Semi-annual mode, "2" in Annual mode.
C	is "1" in Standard TVM mode, "2" in Canadian TVM mode.
c	is " 1 " in Actual day count mode, "2" in 360 day count mode.
d	is " 1 " if the decimal separator is ".", 2 for ","
ff	is " 00 " to " 11 " or " 13 " and indicates the FIX setting (13 is for FIX=-1).
m	is " 1 " for "mm.ddyyyy" mode, "2" for "dd.mmyyyy" mode.
0	is "1" for Chain mode, "2" for Algebraic mode, and "3" for RPN mode.
r	defines the regression line type. " 1 " for $a^{*} x+b, " 2$ " for $a^{*} \ln (x)+b, " 3$ " for $b^{*} e^{(a x)}, " 4$ " for $b^{*} x^{a}, " 5$ " for $b^{*} a^{x}$, " 6 " for $a / x+b$ and " 7 " for $a x^{2}+b x+c$.
t	is " 1 " if thousands separators are not visible, " 2 " if they are visible.
	is " 1 " for 2 variable statistics, " 2 " for 1 variable, and " 3 " for 1 variable frequency.

When using \square RCL change. For example:
$\frac{3}{y^{2}} \frac{1}{2}$ change.

Solve

The solve key is not programmable, but it is a powerful addition to the calculator functionality. The solve function utilizes HP Solve, a feature unique to HP calculators, which allows you to find a number for a variable that will cause a program to return a 0 . This can be used to solve complex equations.

For example, if you want to solve $x^{x}-y=0$.
1.

\square (select and edit program 2)
2.

(enter program var1 ${ }^{\text {var1 }}-$ var2=)
 $\square \sum_{R R E}^{D_{8}}$ and note that Prgrm 2 is selected, as the calculator displays the program that was last edited. For verification, this program has 11 bytes, and the checksum, 199.
4. Press \square (HOLD) find what value in variable 2 would cause the program to result in 0 . In this case, the result is 27.
5. Now store 10 into variable 2: 1 program selected in the program menu, you can use the SOLVE feature directly. Press
 0 . The result this time is $2.506184 \ldots$, since you stored 10 into variable 2.
6. You can verify this is correct by pressing RCL see that 10 is returned.

14 Error Messages

Error Messages and Calculator Status

Table 14-1 Error Messages

Error Message	Status
ER: Underflow	The calculation generated an underflow (result of 0).
ER: $x / 0$	Division by zero.
ER: 0/0	Zero divided by zero.
ER: ∞ * 0	Infinite multiplied by zero.
ER: ∞ / ∞	Infinite divided by infinite.
ER: $\sqrt{ } /(x<0)$	Square root of a negative number.
ER: LN (0)	LN of 0 .
ER: LN ($x<0$)	LN of a negative number.
ER: $\operatorname{ATrig}(\|\mathbf{x}\|>1)$	ASIN or ACOS of a number for which the absolute value is >1.
ER: $1^{\wedge} \times$	Attempted calculation of $1^{\wedge}+/-$ Infinite
ER: $(x<0) \wedge \infty$	Attempted calculation of the infinite power of a negative number.
ER: $\infty \wedge 0$	Attempted calculation of $+/-\infty \wedge 0$.
ER: $\infty \wedge$ (Frac)	Attempted calculation of $+/-\infty^{\wedge}$ (non-integer y).
ER: $(x<0)^{\wedge}$ (Frac)	Attempted calculation of (-x)^ (non-integer y).
ER: Out of Bounds	Input out of bounds.
ER: Invalid P/YR	Returned by TVM functions if payments per year are invalid (0 or non-integer).
ER: Invalid Input	Returned if arguments are invalid for any reason.
ER: Invalid I\%	Returned by finance functions if I is $\leq 100 \%$.
ER: No Solution	Returned when there is no solution to the problem.
ER: Many or No Solutions	Returned if there is no solution, or more than one solution to the problem.
ER: Many Solutions	Returned when there are many solutions to the problem.
ER: Invalid N	Returned by TVM/Amort if N is invalid.
ER: User Abort	Returned by long functions if user stops the calculation prior to completion.
ER: ∞ Result	Returned if the result is infinite.
ER: Insufficient Data	Returned by statistics functions if there is insufficient data for analysis.
ER: No Payback	Returned by payback function if there is no payback on this problem.

Table 14-1 Error Messages

Error Message	Status
ER: Unique solution to IRR Not Found	Returned if IRR tries to calculate a solution but cannot find it. User should supply a new guess...
ER: Stack	Stack overflow when performing calculations with more than 12 pending operations.
ER: Parenthesis:	An error linked to use of parentheses: unmatched, too many, etc.
ER: Insufficient Memory	Insufficient memory to complete the operation.
ER: No Solution Found	No solution found.

15 Warranty, Regulatory, and Contact Information

Replacing the Batteries

Use only fresh batteries. Do not use rechargeable batteries. The calculator takes two, 3-volt CR2032 lithium batteries. To install a new battery:

1. With the calculator turned off, slide the back cover off.
2. Remove one of the old batteries and replace it with a new battery with the positive polarity symbol facing outward.
3. Remove the second battery and replace it with a new battery with the positive polarity symbol facing outward.
4. Replace the back cover.

Warning! There is danger of explosion if the battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions. Do not mutilate, puncture, or dispose of batteries in fire. The batteries can burst or explode, releasing hazardous chemicals.

HP Limited Hardware Warranty and Customer Care

This HP Limited Warranty gives you, the end-user customer, express limited warranty rights from HP, the manufacturer. Please refer to HP's Web site for an extensive description of your limited warranty entitlements. In addition, you may also have other legal rights under applicable local law or special written agreement with HP.
Limited Hardware Warranty Period
Duration: 12 months total (may vary by region, please visit www.hp.com/support for latest information)

General Terms

HP warrants to you, the end-user customer, that HP hardware, accessories and supplies will be free from defects in materials and workmanship after the date of purchase, for the period specified above. If HP receives notice of such defects during the warranty period, HP will, at its option, either repair or replace products which prove to be defective. Replacement products may be either new or like-new.
HP warrants to you that HP software will not fail to execute its programming instructions after the date of purchase, for the period specified above, due to defects in material and workmanship when properly installed and used. If HP receives notice of such defects during the warranty period, HP will replace software media which does not execute its programming instructions due to such defects.

HP does not warrant that the operation of HP products will be uninterrupted or error free. If HP is unable, within a reasonable time, to repair or replace any product to a condition as warranted, you will be entitled to a refund of the purchase price upon prompt return of the product with proof of purchase.

HP products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.
Warranty does not apply to defects resulting from the following:
a. improper or inadequate maintenance or calibration
b. soffware, interfacing, parts or supplies not supplied by HP
c. unauthorized modification or misuse
d. operation outside of the published environmental specifications for the product
e. improper site preparation or maintenance.

HP MAKES NO OTHER EXPRESS WARRANTY OR CONDITION WHETHER WRITTEN OR ORAL. TO THE EXTENT ALLOWED BY LOCAL LAW, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY, SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED TO THE DURATION OF THE EXPRESS WARRANTY SET FORTH ABOVE. Some countries, states or provinces do not allow limitations on the duration of an implied warranty, so the above limitation or exclusion might not apply to you. This warranty gives you specific legal rights and you might also have other rights that vary from country to country, state to state, or province to province.

TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE YOUR SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE. Some countries, States or provinces do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. HP shall not be liable for technical or editorial errors or omissions contained herein.

FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

Regulatory Information

Federal Communications Commission Notice

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment
does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio or television technician for help.

Modifications

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by Hewlett-Packard Company may void the user's authority to operate the equipment.

Declaration of Conformity for Products Marked with FCC Logo, United States Only

 This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:1. This device may not cause harmful interference
2. This device must accept any interference received, including interference that may cause undesired operation.
If you have questions about the product that are not related to this declaration, write to
Hewlett-Packard Company
P. O. Box 692000, Mail Stop 530113

Houston, TX 77269-2000
For questions regarding this FCC declaration, write to
Hewlett-Packard Company
P. O. Box 692000, Mail Stop 510101

Houston, TX 77269-2000
or call HP at 281-514-3333
To identify your product, refer to the part, series, or model number located on the product.

Canadian Notice

This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Avis Canadien

Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

European Union Regulatory Notice

This product complies with the following EU Directives:
－Low Voltage Directive 2006／95／EC
－EMC Directive 2004／108／EC
Compliance with these directives implies conformity to applicable harmonized European standards（European Norms）which are listed on the EU Declaration of Conformity issued by Hewlett－Packard for this product or product family．
This compliance is indicated by the following conformity marking placed on the product：

Hewlett－Packard GmbH，HQ－TRE，Herrenberger Strasse 140， 71034 Boeblingen，Germany The official EU CE declaration of conformity for this device may be found at hitp：／／ www．hp．com／go／certificates．

Japanese Notice

この装置は，クラスB情報技術装置です。この装置は，家庭環境で使用 することを目的としていますが，この装置がラジオやテレビジョン受信機に近接して使用されると，受信障害を引き起こすことがあります。

取扱説明書に従って正しい取り扱いをして下さい。 VCCI—B

Korean Notice

| B 급 기기 |
| :--- | :--- |
| （가정용 방송통신기기） |\quad| 이 기기는 가정용（B급）으로 전자파적합등록을 한 기기로서 주 |
| :--- |
| 용할 가 숭있습니다． |

Disposal of Waste Equipment by Users in Private Household in the European Union

This symbol on the product or on its packaging indicates that this product must not be disposed of with your other household waste． Instead，it is your responsibility to dispose of your waste equipment by handing it over to a designated collection point for the recycling of waste electrical and electronic equipment．The separate collection and recycling of your waste equipment at the time of disposal will help to conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment．For more
information about where you can drop off your waste equipment for recycling, please contact your local city office, your household waste disposal service or the shop where you purchased the product.

Perchlorate Material - special handling may apply

This calculator's Memory Backup battery may contain perchlorate and may require special handling when recycled or disposed in California.

Customer Care

In addition to the one year hardware warranty your HP calculator also comes with one year of technical support. If you need assistance, HP customer care can be reached by either email or telephone. Before calling please locate the call center nearest you from the list below. Have your proof of purchase and calculator serial number ready when you call.
Telephone numbers are subject to change, and local and national telephone rates may apply. A complete list is available on the web at: www.hp.com/support.

Contact Information

Table 15-1 Contact Information

Country/Region	Contact
Algeria	www.hp.com/support
Anguila	1-800-711-2884
Antigua	1-800-711-2884
Argentina	0-800-555-5000
Aruba	800-8000 ; 800-711-2884
Austria Österreich	013602771203
Bahamas	1-800-711-2884
Barbados	1-800-711-2884
Belgique (Français)	026200085
Belgium (English)	026200086
Bermuda	1-800-711-2884
Bolivia	800-100-193
Botswana	www.hp.com/support
Brazil Brasil	0-800-709-7751
British Virgin Islands	1-800-711-2884
Bulgaria	www.hp.com/support
Canada	800-HP-INVENT
Cayman Island	1-800-711-2884
Chile	800-360-999

Table 15－1 Contact Information

Country／Region	Contact
China中国	800－820－9669
Colombia	01－8000－51－4746－8368（01－8000－51－HP INVENT）
Costa Rica	0－800－011－0524
Croatia	www．hp．com／support
Curacao	001－800－872－2881＋800－711－2884
Czech Republic Česká republikaik	296335612
Denmark	82332844
Dominica	1－800－711－2884
Dominican Republic	1－800－711－2884
Egypt	www．hp．com／support
El Salvador	800－6160
Equador	$\begin{aligned} & \text { 1-999-119 ; 800-711-2884 (Andinatel) } \\ & \text { 1-800-225-528; 800-711-2884 (Pacifitel) } \end{aligned}$
Estonia	www．hp．com／support
Finland Suomi	0981710281
France	0149939006
French Antilles	0－800－990－011；800－711－2884
French Guiana	0－800－990－011；800－711－2884
Germany Deutschland	06995307103
Ghana	www．hp．com／support
Greece E $\lambda \lambda$ áda	2109696421
Grenada	1－800－711－2884
Guadelupe	0－800－990－011；800－711－2884
Guatemala	1－800－999－5105
Guyana	159；800－711－2884
Haiti	183；800－711－2884
Honduras	800－0－123 ；800－711－2884
Hong Kong香港特別行政區	800－933011
Hungary	www．hp．com／support
India	1－800－114772
Indonesia	（21）350－3408
Ireland	016050356
Italy Italia	0275419782

Table 15-1 Contact Information

Country/Region	Contact
Jamaica	1-800-711-2884
Japan	00531-86-0011
日本	
Kazakhstan	www.hp.com/support
Latvia	www.hp.com/support
Lebanon	www.hp.com/support
Lithuania	www.hp.com/support
Luxembourg	27302146
Malaysia	1800-88-8588
Martinica	0-800-990-011; 877-219-8671
Mauritius	www.hp.com/support
México	
Montenegro	www.hp.com/support
Montserrat	1-800-711-2884
Morocco	www.hp.com/support
Namibia	www.hp.com/support
Netherlands	0206545301
Netherland Antilles	001-800-872-2881; 800-711-2884
New Zealand	0800-551-664
Nicaragua	1-800-0164; 800-711-2884
	23500027
Norwegen	
Panama	001-800-711-2884
Panamá	
Paraguay	(009) 800-541-0006
Peru	10-800-1010
Perú	
Philippines	(2)-867-3351
Poland	www.hp.com/support
Polska	
Portugal	0213180093
Puerto Rico	1-877 2320589
Romania	www.hp.com/support
Russia	495-228-3050
Россия	
Saudi Arabia	www.hp.com/support

Table 15-1 Contact Information

Country/Region	Contact
Serbia	www.hp.com/support
Singapore	6272-5300
Slovakia	www.hp.com/support
South Africa	0800980410
South Korea 한국	00798-862-0305
Spain España	913753382
St Kitts \& Nevis	1-800-711-2884
St Lucia	1-800-478-4602
St Marteen	1-800-711-2884
St Vincent	01-800-711-2884
Suriname	156; 800-711-2884
Swaziland	www.hp.com/support
Sweden Sverige	0851992065
Switzerland	0228278780
Switzerland (Suisse Français)	0228278780
Switzerland (Schweiz Deutsch)	014395358
Switzerland (Svizzeera Italiano)	0225675308
Taiwan臺灣	00801-86-1047
Thailand ไทย	(2)-353-9000
Trinidad \& Tobago	1-800-711-2884
Tunisia	www.hp.com/support
Turkey Türkiye	www.hp.com/support
Turks \& Caicos	01-800-711-2884
UAE	www.hp.com/support
United Kingdom	02074580161
Uruguay	0004-054-177
US Virgin Islands	1-800-711-2884
United States	800-HP INVENT
Venezuela	0-800-474-68368 (0-800 HP INVENT)

Table 15-1 Contact Information

Country/Region	Contact
Vietnam	$+65-6272-5300$
Viêt Nam	www.hp.com/support
Zambia	

产品中有击有害牧质或元素的名称及含量拫据中国〈电子后息产品厉染控制管理办迲〉						
	有毒有害特质或元素					
部件名称	梠（Pb）	禾 $(H g)$	铎（Cd）	六价路 （Cr（VI））	多渎咲葉 （PBB）	多涣二满噰 （PBDE）
PCA	X	0	0	0	0	0
外灝票／字維	0	0	0	0	0	0
O：表示该有毒有青物质在该部件所有竘质材料中的含量竘在SJ／T 11363－2006标准规定的限要要求以下。 X：表示该有毒有青物质至少在该部件的某一均质材料中的含是超出SJ／T11363－2006标准规定的限量要求。 表中标有 ${ }^{*} X$＂的所有部件都符合欧盟RoHS法规 欧洲议会和欧盟理事会2003年1月27日关于电子电器设备中限制使用梷些有書物质的2002／95／EC号譄命＂ 注：环保使用期险的参考标识取决于产品正常工作的泹度和温度等条件						

Symbols

A

Algebraic mode 12
Amortization 29
Amortization menu 29
creating a schedule 31
menu and menu items 30
resetting menu to defaults 32
Angular mode
degrees or radians 3
Annunciators 6
B
Battery
low battery symbol 1
replacing the batteries 91
Black-Scholes
Black-Scholes menu 52
call price 53
dividend 53
example 54
put price 53
resetting menu items to defaults 56
risk-free interest rate 53
signature return 53
Stock price 53
strike price 53
time to maturity 53
Bond
accrued interest 48
Bond menu 48
calendars 48
call 48
coupon rate 48
example 49
maturity date 48
price 48
resetting menu to defaults 50
settlement date 48
yield 48
Bond annual, semiannual 48
Bond type Annual, Semiannual 4
Break-even
Break-even menu 59
example 59
resetting menu items to defaults 60
Business problems
see Percent Calculation menu 61
C
Calculation mode
Chain, Algebraic, RPN, setting preferences 3
changing the 4

Calendar

setting, Actual or Cal. 3604
cash 38
Cash flow
analyzing with IRR and NPV 41
diagram, description of 27
editing 41
erasing lists and resetting to defaults 38
example 38
IRR and NPV menu items 41
keys used 38
lists 37
sample cash flow diagrams 46
Chain mode 12
checksum 78
Combinations 21
D
Date
calculation example 57
Date Calculation menu 57
resetting menu items to defaults 58
setting format for 3
debugging 85
Decimal
comma or point, setting preferences 3
Default settings
see Mode menu 2
Depreciation
cost 67
Declining balance 66
Declining balance crossover 66
Depreciation menu 66
example 67
factor 67
French amortization 66
French Straight line 66
life 67
methods 66
remaining book value 67
remaining depreciable value 67
resetting items to defaults 68
salvage 67
start 67
Straight line 66
Sum-of-the-years' digits 66
values required 66
year 67
Discounted payback 41
Display
contrast 2
degree or radian 3
precision and number format 3
two line 1

Error messages 89

F

FMRR 41
example 44

I

Insert and delete keys 38
Interest Conversion
Interest Conversion menu 33
resetting the menu to defaults 34
using P / YR and $\mathrm{C} / \mathrm{YR} 33$
Internal rate of return 41
Investment Rate 41
K
Key
ANS, last operation, last number 19
change sign 11
cosine 19
equals 6
factorial 19
input key 6
insert and delete 38
LN, natural log 19
natural exponent 19
On/CE 7
parentheses 12
presses 4
random function 19
recall 24
reciprocal 19
round 19
scientific notation 11
secondary functions 4
shift key 4
sine 19
square 19
square root 19
store 24
tangent 19
up and down scroll keys 2
key instructions 76
key presses 75
Keyboard map and legend v

Language
selecting a 1
M
Margin
See Percent Calculation menu 61
Markup
See Percent Calculation menu 61

Math

Math menu 18
Menu
Black-Scholes menu 51
Bond menu 47
Break-even menu 59
Data menu 70
Date Calculation menu 57
Depreciation menu 65
Math menu 19
Mode menu, setting preferences and number format 2
NPV and IRR menus 41
Percent Calculation menu 61
Reset menu 7
Statistics menu 70
Time Value of Money keys 27
messages 84
MIRR 41
example 44
mode settings 86
N
Net Future Value 41
Net Present Value 41
Net US 41
Number
entry 11
last number function 14
rounding 25
storing and recalling 24
Number format
setting preferences 2
0
on HP 30b 75
P
Parentheses
prioritizing operations 12
Payback 41
Percent Calculation
compounding periods 63
examples 62
markup and margin 61
Percent Calculation menu 61
percentage of total 61
resetting menu items to defaults 64
sub-menus 61
Percentages 25
Permutations 23
PI
location of, entering for calculations. See also, Math menu 21
Probability Sub-menu
see also, Math menu 21
program step 078

Programming 75, 76, 78, 79, 83, 84, 85, 86
Decrement, skip 83
display 83
editing programs 80
erasing 80
example 77
executing 80
Program menu 75
R/S pause and return 83
solve 87
sub-function call 82
test and jump 81
R
reassigning menu functions 79
Recall
number 24
Reverse Polish Notation
see RPN 13
RPN
description of 13
example 15
manipulating the stack 15
roll down 17
stack 13
swap 18
S
Safe interest rate 41
saving, storing, modifying 86
Scientific notation 11
Statistics
a slope for linear model 71
b y-intercept for linear model 71
covariance 71
data entry, sub-menus 70
example 72
maximum and minimum 71
median 71
number of items 70
one-variable 70
population standard deviation for X and $Y 71$
predictions for X and $Y 71$
quartile 71
resetting items to defaults 74
sample error for X and $Y 71$
standard deviation, X and Y 70
Statistics menu 69
two-variable 70
X mean 70
Y mean 70
stop 83
Store
numbers 24

Thousands separator 3
Time Value of Money
see TVM 27
TVM
begin mode 28
Canadian Mortgage example 35
end mode 28
example 28
future value 28
keys 28
nominal interest rate 28
number of payments 28
number of payments per year 28
periodic payment value 28
present value 28
setting for TVM Standard or TVM Canada 4
storing and recalling with TVM keys 24
storing values in TVM variables 28
TVM Canada, Canadian mortgages 35
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

[^0]: * Only applies to HP 30b.
 **Does not apply to the HP 20 b.

[^1]: * Tertiary functions do not apply to the HP 20b.

[^2]: * Does not apply to the HP 20b.

[^3]: * Only applies to the HP 30b.

[^4]: *Does not apply to the HP 20b.

[^5]: *Does not apply to the HP 20b.

[^6]: *Does not apply to the HP 20b.

[^7]: *Does not apply to the HP 20b.

[^8]: *Does not apply to the HP 20b.

