CASIO.

QUICK START GUIDE fx-CG50

The status bar will display messages and current status like battery level, angle mode, fraction results, complex mode, or input/output settings.

Select the desired icon by highlighting it and pressing ExE or pressing the number or letter in the upper right corner.

The function keys allow you to access the tab (soft key) menus that appear at the bottom of the screen. When an (>) appears above the F6 key, selecting F6 will offer more on-screen choices.

The IIENU key displays every mode the calculator has. To select a mode, press (1) to the desired icon and press ExE or press the number or letter in the upper right hand corner of the icon.

The EXIT key operates like the back arrow on a web browser; it will take you back one screen each time you select it. The Exit key will not take you to the icon menu.

The sHIf key activates any function displayed on or above the calculator buttons that is yellow. For example, to find the square root of a number, you would need to press sHifT , then x^{2}. SHIFT 5 gives you access to on-screen color formatting.

The ACOON key will power the unit on. To turn the unit off, press ssili actoo
The 4 ALPHA key activates any function displayed on or above the calculator buttons that is in red. For example, to type the letter A, press ALPHA , then X, $, \boldsymbol{\theta}, \mathrm{T}$.

The ExE key executes operations. When data is entered, the ExE button must be pressed to store the data.

http://edu.casio.com/

The following explains the meaning of each icon on the fx-CG50 icon menu
Icon Menu Name Description

RUN-MATRIX
This icon menu is used for general computations, including binary, octal, decimal, and hexadecimal functions and matrices.

STATISTICS
This icon menu is used to perform single-variable (standard deviation) and paired variable (regression) statistical calculations, to perform tests, to analyze data and to draw statistical graphs.
eACTIVITY
This icon menu lets you input text, math expressions, and other data in a notebook-like interface. Use this mode when you want to store text, formulas, or built-in application data in a file.

SPREADSHEET

This icon menu is used for creating spreadsheets.
Spreadsheet

Graph
GRAPH This icon menu is used to draw, store and calculate information from functions.

W国 ${ }^{\text {b }}$
Dyna Graph
DYNAMIC GRAPH

This icon menu is used to store graph functions and to draw multiple versions of a graph by changing the values assigned to the variables in a function.

TABLE
This icon menu is used to store functions, to generate a numeric table of different solutions as the values assigned to variables in a function change, and to draw graphs.

This icon menu is used to store recursion formulas, to generate a numeric table of different solutions as the values assigned to variables in a function change, and to draw graphs.

This icon menu is used to graph parabolas, circles, ellipses, and hyperbolas. Conic sections can

EQUATION
This icon menu is used to solve linear equations with two through six unknowns, and high-order equations from 2nd to 6th degree.

The following explains the meaning of each icon on the fx-CG50 icon menu
Icon Menu Name Description

PROGRAM This icon menu is used to store programs in the program area and to run programs.

Financial
FINANCIAL
This icon menu is used to perform financial calculations and to draw cash flow and other types of graphs.

This icon menu is used to control the optionally available EA-200 Data Analyzer. For information about this icon menu, download the E-CON manual from http://edu.casio.com.

LINK This icon menu is used to transfer memory contents or back-up data to another unit or PC.

MEMORY This icon is used to manage data stored in memory.

SYSTEM

This icon menu is used to initialize memory, adjust contrast, reset memory, and to manage other system settings.

GEOMETRY This icon menu allows you to draw, analyze and animate geometric objects.

PICTURE
PLOT
This icon menu allows you to plot points (that represent coordinates) on the screen and then perform various analysis based on the plotted data.

This icon menu allows you to draw 3-dimensional graphs.

RUN-MATRIX

For basic calculations, like those that can be done on a scientific calculator, use the Run-Matrix menu.
From the Main Menu, press 1 .

To select how certain commands and results will be interpreted or displayed, press SHIFT INENO (SET UP). For Input/ Output, select Math for natural display of fractions, radicals and other expressions. For Frac Result, select d/c for a fraction result as the default or ab/c for a mixed number as the default. For Angle, select Deg or Rad for degrees or radians.

Note: the status bar at the top of the screen displays the selection for some of these options.

首	
Input/Output:Math	
Mode	: Comp
Frac Result	:d/c
Func Type	: $\mathrm{Y}=$
Draw Type	: Connect
Derivative	: Off
Angle	: Deg
[d/c ab/c	

1. Evaluate $2 \frac{3}{4}+\frac{5}{6}$.

Press sshir press ssinf $\left(5+0\left(a \frac{b}{c}+\frac{d}{c}\right)\right.$. To see the result as a decimal, press $s+0$.

	$\frac{43}{12}$
$\square \quad 12$	

$2 \frac{3}{4}+\frac{5}{6}$	
	$3 \frac{7}{12}$
\square	
JUMP [ELETE WEANCI MAIT	

RUN-MATRIX

2. Simplify $\sqrt{18}$.

Press shlif $x^{2}(\sqrt{ }) 18$ EXE. To see the result as a decimal, press 540 .

3. Add 48 and 24. Then, divide by 2. Finally, subtract from 56.

The purpose of this example is to demonstrate the Ans key. Ans represents the previous answer. Press
$48 \square 24$ ExE. Then, press $\div 2$ ExE. Ans appears automatically when an operation symbol is pressed. However, Ans has to be pressed for the subtraction part. Press $56 \square$ (SHIFT$\Theta($ Ans) EXE

自 [math[Deg [iorm1] [doc Real$48+24$	
\square	
JUMP DELETE WWAIVCTIMATH	

$48+24$	
Ans $\div 2$	
\square	
JUMP DELETE MWANVCT MATH	

$48+24$	
Ans $\div 2$	
56-Ans	
\square	20
JUMP DELETE RWATVCT/ MATH	

To construct graphs and use graphical analysis commands, use the Graph menu. From the Main Menu, press 5.

The first screen is the function/relation editor. To select how certain results will be displayed, press [sHIFT IENO (SET UP). The suggested selections for Coord, Grid, Axes and Label are shown. Scroll down to these selections. To make a change, highlight the item and use the function button that appears directly below the desired tab. For example, when Coord is highlighted, F1)(On) will turn coordinates on and F2) (Off) will turn coordinates off. Press EXIT to return to the editor.

- Math Dea Norm1]	Real
Graph Func	: Y =
Y1:	[-]
Y2:	[-]
Y3:	[-]
Y4:	[-]
Y5:	[-]
Y6:	[-]
SELECT DELETE TYPE	TOOL MODIFY DRAW

首	
Angle	: Deg
Complex	Mode
Coord	Real
Grid	On
Axes	: Line
Label	On
Display	On
On	Norm1

The Math Club plans to sell t-shirts. Previous experience suggests that the number of t-shirts sold depends on the price. A good model for the number sold, y, as a function of the price, x, is $y=-2 x+40$.

1. Construct a graph of this equation.

SHIIFT F3 (V-Window). Change the values for the window, as shown, pressing EXE after each value. The values for
Scale determines the location for the marks on the axes and the gridlines. Press EXIT to return to the editor.

To draw the graph, press F6(DRAW). When a graph is displayed the \mp key can be used to zoom in, the \square key to zoom out, and $(\odot$ to scroll.

2. How many shirts would be sold at a price of $\$ 12$ per t-shirt?

To trace on the graph, press shlif F1 (Trace). Use © to move the cursor. To select a specific value, type the value, in this case 12 . A dialogue box opens, press ExE. To mark a point and keep the coordinates on the display, press ExE a second time.

3. There is a price that is too high, meaning no shirts are sold. This point occurs at the x-intercept of the graph (where $y=0$) and the value of x is a root of the equation $-2 x+40=0$.

To find the root, press shlif F5 (G-Solv) F1 (ROOT). The result, \$20, is shown at the bottom of the screen. To mark this intercept and keep the coordinates on the display, press ExE a second time.

4. If $-2 x+40$ shirts are sold at price, x , then the number of dollars collected for the sale is $x(-2 x+40)$ or $-2 x^{2}+40 x$.

To graph this function, first, deselect the previous equation by pressing EXIT, © so the cursor is on $\mathbf{Y 1}$, then press $\operatorname{F1}($ SELECT $)$. Note, the $=$ sign is not highlighted. The cursor should now be on Y2.

GRAPH

To set up the view window, press SHIFT F3 (V-Window). Change the values for the window so that Ymax is 250 and Yscale is 50. Press EXIT to return to the editor. To draw the graph, press F6 (DRAW).

5. Compute the number of dollars earned, if each t-shirt is sold at $\$ 12$.

To compute the number of dollars earned if shirts are sold for $\$ 12$, press sHIF F1 (Trace). Type the value, in this case 12 . A dialogue box opens, press ExE. The models predict that at a price of $\$ 12,16$ shirts will be sold for a total of $\$ 192$.

6. Determine the price that will give the greatest profit.

To determine the price that is predicted to make the most money, press sHiFT F5 (G-Solv) F2 (MAX). The results, $\$ 10$ and $\$ 200$, are shown at the bottom of the screen. To mark the point and keep the coordinates on the display, press ExE.

GRAPH

7. Determine the price of each t-shirt in order to collect $\$ 150$.

To determine the price of each t-shirt, in order to collect a total of \$150, press $\operatorname{sHfF5}$ (G-Solv) F6 (\triangleright)
F2 (X-CAL) 150 EXE. (The (\triangleright) symbol moves to the next page of commands.)

There is another point where $y=150$. Use to move to the next point. Press ExE to mark one or both of these points. $\$ 150$ can be earned by selling shirts at $\$ 5$ or at $\$ 15$.

8. Find the intersection of the equations in $\mathbf{Y} 1$ and $\mathbf{Y} \mathbf{2}$.

Although it is not particularly meaningful in this example, a common problem is to find the intersection point of two graphs. Press EXIT to return to the editor. Highlight Y1 and press (F1(SELECT). Now, both graphs will be drawn. Press F6 (DRAW). To find the intersection points for the two graphs, press F5 (G-Solv) F5 (INTSECT). 38 shirts are sold at the price of $\$ 1$, for a total of $\$ 38$. (These graphs also intersect at $(20,0)$ where no shirts were sold.)

TABLE

1. Construct a table of values that shows the price, number of shirts, and total dollars using increments of $\$ 0.50$.

To construct tables, from the Main Menu, press 7 . The equations for the functions appear if they have been previously entered, including those entered in the Graph menu.

To set the initial value, end value and the increment, press F5 (SET). Enter the values for Start, End and Step. Press EXE after entering each value, then press EXIT. To display the table, press F6(TABLE). Use \odot to scroll through the table.

Note: values in the x-column can also be changed manually. Press any value desired, then press ExE. Here, the value of 3 was changed to 7 .

- Math Dea [ormi] [dic] Real		
X	Y1	Y2
1.5	37	55.5
2	36	72
2.5	35	87.5
7	26	182
FORNOLADELETE	ROW	T GPH-CO

GRAPH-MODIFY

1. Explore how the graph of the function $y=A x+B$ changes for different values of A and B .

From the Main Menu, press 5. Use F1 (SELECT) to deselect any functions and \odot to move to a new line; in this screen shot, it is Y3. Press F4 (TOOL) F3 (BUILT-IN). With $\mathbf{Y}=\mathbf{A x + B}$, highlighted, press F1 (SELECT).

[Math[Deg[[10rm] Reeal
$\mathrm{Y}=\mathrm{A} x+\mathrm{B}$
$\mathrm{Y}=\mathrm{A}(x-\mathrm{B})^{2}+\mathrm{C}$
$\mathrm{Y}=\mathrm{A} x^{2}+\mathrm{B} x+\mathrm{C}$
$\mathrm{Y}=\mathrm{A} x^{\wedge} 3+\mathrm{B} x^{2}+\mathrm{C} x+\mathrm{D}$
$\mathrm{Y}=\mathrm{As}$ in ($\mathrm{B} x+\mathrm{C}$)
$\mathrm{Y}=\mathrm{Acos} \quad(\mathrm{B} x+\mathrm{C})$
$\mathrm{Y}=\mathrm{Atan}(\mathrm{B} x+\mathrm{C})$
SELLCCT

To use a standard window, press shifi F3 (V-Window) F3 (STANDRD) EXIT.

 the lower left portion of the screen. The active value is magenta, in this case, \mathbf{A}. Press \mathbb{D} to increase \mathbf{A} by the value shown as Step. Press () to decrease A. Alternately, press any number keys to change the value of \mathbf{A}. A dialogue box opens displaying the new desired value, then, press ExE. Notice, the previous graph is drawn in faint yellow. Use \odot (o change the value of a different variable or the value for Step.

EQUATION

1. The equation $-2 x^{2}+40 x=150$ was previously solved in the Graph menu. It can also be solved in the Equation menu by transforming it to $-2 x^{2}+40 x-150=0$.

Press [IENO X,日,T (A). (It is not necessary to push alliPA .) To solve polynomial equations, press F2 (POLY).
Press F1(2) for a second degree polynomial.

Enter the 3 coefficients, pressing ExE after each one. Note, equations must be in standard form to solve. To solve, press F1(SOLVE). Both solutions are displayed. Note, when solutions are not rational, both a decimal and an exact solution are displayed. The third screenshot displays the solutions to $-2 x^{2}+40 x-160=0$.

[math[Deg (Norm] [do Read	
$\mathrm{aX}^{2}+\mathrm{bX}+\mathrm{c}=0$	
$\begin{aligned} & \mathrm{X} 1\left[\begin{array}{l} 14.472 \\ \mathrm{x} 2 \\ 5.5278 \end{array}\right] \end{aligned}$	
	$10+2 \sqrt{5}$
REPEAT	

EQUATION

2. Solve the system $\left\{\begin{array}{l}a+4 b-5 c=23 \\ 2 a-b+6 c=5 \\ 3 a+7 b+c=32\end{array}\right.$

The Equation menu can also be used to solve linear systems. Within the Equation menu, press sHIF EXIT (QUIT). Press F1 (SIMUL), then F2 (3).

Enter all 12 values, pressing EXE after each one. To solve this system, press F1 (SOLVE).

CONICS

1. Construct the graph of the conic section $\frac{(x-3)^{2}}{4}-\frac{(y+1)^{2}}{16}=1$.

From the Main Menu, press 9. Scroll down to the correct form and press ExE.

首 De9 (Norm1	a+bil
Select Equa	
$\underline{(\mathrm{X}-\mathrm{H})^{2}}+\underline{(\mathrm{Y}-\mathrm{K})^{2}}$	\uparrow
$\mathrm{A}^{2}+\frac{\mathrm{B}^{2}}{}$	\bigcirc
$\mathrm{CX}^{(\mathrm{X}-\mathrm{H})^{2}}{ }^{(\mathrm{Y}-\mathrm{K})^{2}}$	\square
$\mathrm{A}^{2}-\frac{\mathrm{B}^{2}}{}$	
$(\mathrm{Y}-\mathrm{K})^{2}(\mathrm{X}-\mathrm{H})^{2}$	\square
$\mathrm{A}^{2}-\frac{\mathrm{B}^{2}}{}$	\rightarrow
RECT POL PARAM	

Enter the correct values. Note, the exponents in the denominators, so $A=2$, rather than 4. Also, note the minus signs in the numerator, so $\mathrm{H}=3$ and $\mathrm{K}=-1$. Press EXE after each value. As before, press sHIFT F3 (V-Window) to change the values for the window, then press EXIT. To draw the graph, press F6(DRAW).

2. Find the asymptotes for the conic graph.

To draw the asymptotes, press (sHIFT F5 (G-Solv) F5 (ASYMPT). The slope for each line is also displayed.

CONICS

3. Find and label the vertices and foci for the conic graph.
 press SHIFT F5 (G-Solv) F1 (FOCUS). In each case, press © to move to the second point. To mark points and label the coordinates on the display, press ExE.

STATISTICS

1. Suppose one of the questions asked on a survey was "What type of pet do you have?", and the results from 50 people are shown in this table. Construct a pie chart and a bar chart of these data.

Pet Category	Dog	Cat	Fish	Bird	Other	None
Frequency	14	12	9	6	4	5

From the Main Menu, press 2. The list editor opens. Enter the values in the table in List 1, pressing ExE after each value.

To construct a graph, press F1 (GRAPH). Then, press F6 (SET). Scroll to Graph Type and select F4 (Pie).

If necessary, scroll to Data and change to List1. Display can be used to select percentages or counts with the chart. Press EXIT and (F1 (GRAPH1). The color and shading of plots can be changed by using shlir 5 (FORMAT).

自	Dea Horm1	d/c a+bi
\square	28\%	
$\square \mathrm{B}$	24\%	
$\square C$	18\%	F
$\square \mathrm{D}$	12\%	E A
$\square \mathrm{E}$	8\%	D
$\square \mathrm{F}$	10\%	

STATISTICS

To change to a bar chart, press EXIT F6 (SET) \odot F6 (\triangleright) F3 (Bar). Press EXIT F1 (GRAPH1) to view the bar chart. To display the frequencies, press sHIFT F1(Trace).

StatGraph1		
Graph T	h Type : Bar	
Datal	$1 \quad:$ List1	
Data2	2 : None	
Data3	3 : None	
Stick S	k Style : Length	
Color L	r Link : Off	\downarrow
Hist MedBox	MedBox Bar $\mathbb{N - D i s t)}$ Broken)	

2. The number of games won (out of 162) by a certain baseball team for the years 2002 - 2013 are shown in the table. Construct a histogram and a boxplot for these data.

67	88	89	79	66	85
97	83	75	71	61	66

Enter these data in the list editor. To set StatGraph1 to a histogram, press F1 (GRAPH) and F6 (SET).
For Graph Type, select F1(Hist).

Press EXIT (F1)(GRAPH1). Select Start and Width values to determine the rectangles that will be plotted.
Press F1 (1-VAR) to see the statistical analysis of the data.

- [Deg [Vorm] [dica [ati]		
1-Variable		
$\overline{\mathrm{x}} \quad=77.25$		
$\Sigma \mathrm{x}=927$		
$\Sigma \mathrm{X}^{2}=73017$		
$\sigma \mathrm{x}=10.8253175$		
$\mathbf{S X}=11.3066754$		
n	$=12$	
		DRAW

STATISTICS

Press F6 (DRAW) to return to the plot. To display the frequencies, press shlif F1 (Trace).

To change to a box-and-whisker plot (boxplot or median box plot), press EXIT F6 (SET). Scroll to Graph Type and press F2 (MedBox). Press EXIT F1 (GRAPH1). To display the minimum, maximum, and quartiles, press SHIFT F1 (Trace). Use © to display the next value.

[Deal Morm1] [doc [atiol	
StatGraph1	
Graph Type	:MedBox
XList	: List1
Frequency	: 1
Outliers	: Off
Box	: Black
Whisker	: Black
Hist MedBox Bar	-Dist Broken

RECURSON

1. Suppose $\$ 100.00$ is deposited into a savings account with an interest rate of 4% compounded quarterly. How much is in the account for each of the first 8 quarters?

Because this is a discrete model, it can be modeled as a sequence. Although the menu says Recursion, it can be used for both explicit and recursive sequences. From the Main Menu, press 8 to open the sequence editor. If the type is not $\mathbf{a n}_{\mathrm{n}}$, press F3(TYPE) F1($\mathbf{(a n}$). The account pays 1\% per quarter so enter the formula as shown, using (F1)(n) for n. Press ExE.

To create a table of values, press F5 (SET). Select Start and End values and press ExE after entering each value. To display the table, press EXIT F6 (TABLE).

This sequence can also be viewed as a graph. Before plotting the graph, set a window by pressing [sHIF F3 (V-Window). Press EXITT. To see the graph, press F6 (GPH-PLT). To trace on the graph, press sHIFT F1 (Trace).

RECURSON

The sequence can also be created as a recursive formula. Return to the editor using shlif EXIT (QUIT). To change the type, press F3 (TYPE) F2 $\left(\mathbf{a}_{\mathbf{n}+1}\right)$ and edit the equation. To insert $\mathbf{a}_{\mathbf{n}}$, press $\mathrm{F}^{2}\left(\mathbf{a}_{\mathbf{n}}\right)$ then ExE. To specify the initial value, press ${ }^{\text {F5 } 5(S E T) . ~ F o r ~ a o, ~ e n t e r ~} 1000$ ExE.

Recursion	
$\mathrm{a}_{\mathrm{n}}+1=1.01 \mathrm{an}^{\text {n }}$	[-]
bn+1 :	[-]
Cn+1:	[-]
SEL+S DELETE TYPE	TABLE

Table Setting	$\mathrm{n}+1$
Start:0	
End : 8	
ao : 100	
bo :0	
co : 0	
anStr:0	
20 ${ }^{2}$	

To see the table, press EXIT F6(TABLE). To view a graph, press F6 (GPH-PLT).

2. How long will it take for the account to double in value to $\$ 200.00$?

One good way to answer this question is to return to the Equation menu. Press पENO X, B, T (A). To enter the equation, press F3 (SOLVER). If F3 (SOLVER) is not an option, press EXIT until it is. To insert the $=$, press SHIFT $\bullet(=)$. Once the equation is entered, press EXE or F6 (SOLVE). It will take 70 quarters or $17 \frac{1}{2}$ years for the investment to double.

$\begin{aligned} & \mathrm{Eq}: 100(1.01)^{x}=200 \\ & x=69.66071689 \\ & \mathrm{Lft}=200 \\ & \mathrm{Rg}=200 \end{aligned}$

FINANCIAL

Financial analysis can be done from the Finance menu (\boxed{I}).

1. Compute the amount in the account (from our previous example) after 8 quarters.

To compute the amount in the account after 8 quarters, use compound interest. For compound interest, press F2 (COMPND). Enter the values, as shown, for $\mathbf{n}, \mathbf{I \%}, \mathbf{P V}$, and $\mathbf{P / Y}$. PV is the present value, the initial amount. \mathbf{P} / \mathbf{Y} is the number of payments per year. Remember to press EXE after entering each value.

To compute the future value, press F5(FV). The negative sign is correct, as a reasonable interpretation is that $\$ 100$ was deposited and $\$ 108.28$ can be withdrawn. This value agrees with the previous result from the Recursion menu.

首 Norm1		End	
Compound Interest$\mathrm{FV}=-108.2856706$			
REPEAT	AHORTZ	GRAPH	

2. Determine how long it will take for the account to double in value to $\$ 200.00$.

To determine how long it will take for the account to double in value to $\$ 200.00$, press (F1)(REPEAT). For FV, enter (-) 200 EXE, then press $\mathbf{F 1 (n)}$. This value agrees with the previous result from the Equation menu.

自 Norm1		HEnd
Compound I	terest	
$\mathrm{n}=8$		
I\% = 4		
$\mathrm{PV}=100$		
$\mathrm{PMT}=0$		
$\mathrm{FV}=-200$		
$\mathrm{P} / \mathrm{Y}=4$		\downarrow
n [1\%	PMT FV	AKORTZ

Norm1Compound Interest$n=69.66071689$		
REPEAT	CHORTZ	GRAPH

CONIC GRAPHS

CONIC GRAPHS IMAGE BACKGOUND

1．What is an equation for a circle in the image？

From the Main Menu，press 9．To select a background，press SHIFT MENO（SET UP）．Scroll to Background and press（F3（OPEN）．Highlight the CASIO folder and press F1（OPEN）．

首 Deg Norm1		Rea］	
	Select E	tion	
	$\mathrm{A}=\mathrm{A}(\mathrm{Y}-\mathrm{K})^{2}+\mathrm{H}$		4
	$=A Y^{2}+B Y+C$		$+$
	$=\mathrm{A}(\mathrm{X}-\mathrm{H})^{2}+\mathrm{K}$		

首	
Func Type	：Y＝
Draw Type	：Connect
Graph Func	：On
Slope	：Off
Background	：None
Plot／Linecol	：Magenta
Sketch Line	：Norm
None PICTnLOPEN	

Scroll down to the $\mathbf{g 3 p}$ folder and press F1（OPEN）．Scroll down to Amusem～1．g3p and press F1（OPEN）．

見	
Func Type	：Y＝
Draw Type	Connect
Graph Func	On
Slope	Off
Background	：Amusement＿
Plot／LineCol	：Magenta
Sketch Line	：Norm
None PICTn OPEN	

Press EXXIT．Scroll down to the equation for the circle and press ExE．To change the color，press
SHIIF 5 （FORMAT） 3 （Red）．

自 Deen Norm1 Real	
Select Equation	
$\mathrm{Y}=\mathrm{A}(\mathrm{X}-\mathrm{H})^{2}+\mathrm{K}$	$\cdots{ }^{+1}$
$\mathrm{Y}=\mathrm{AX}^{2}+\mathrm{BX}+\mathrm{C}$	4
$(\mathrm{X}-\mathrm{H})^{2}+(\mathrm{Y}-\mathrm{K})^{\mathbf{2}}=\mathrm{R}^{\mathbf{2}}$	$\bigcirc 1$
RECT POL PARAM	

首 Dea Norm1 Real	
Select Equation	
$\mathrm{Y}=\mathrm{A}(\mathrm{X}-\mathrm{H})^{2}+\mathrm{K}$	$\square 7{ }^{+}$
$Y=A X^{2}+B X+C$	17
$(\mathrm{X}-\mathrm{H})^{2}+(\mathrm{Y}-\mathrm{K})^{2}=\mathrm{R}^{2}$	（1）
RECT POL PARAM	

Press F1 (MODIFY). Modify the coefficients to find a good model.

面 (Dea) [Norm1]	Real
$(\mathrm{X}-\mathrm{H})^{2}+(\mathrm{Y}-\mathrm{K})^{2}=\mathrm{R}^{2}$	Θ
H=0	
$\mathrm{K}=0$	
$\mathrm{R}=1$	($\mathrm{R}>0$)
MODIFY	DRAW

As an alternate to Modify, the PRIZM ${ }^{\text {TM }}$ fx-CG50 allows you to plot points on a image and use regression to find a model.

1. What is an equation for a line in the image?

Highlight the CASIO folder and press F1 (OPEN). Scroll down to the g3p folder and press F1 (OPEN).

Scroll down to Bridge.g3p and press F1 (OPEN). To plot points, press OPTN F2 (Plot).

PICTURE PLOT

Use the direction wheel to move the arrow to a point on the line. Press EXE to mark the point. Continue to mark several additional points. When done, press EXIT. To perform a regression, press F6 (\triangleright) F2 (REG).

For linear regression, press F1 (X) and select either form. Here, F2 (a+bx) is used.

To save the result, press F5 (COPY). The display is improved if the graph is not blue, so scroll to Y2 and press EXE. Press (DRAW) to view the equation of the line. The graph is drawn but as a thin blue line.

To draw the graph that was saved, press OPTN F4 (DefG) F6 (DRAW).

Graph Func : $\mathrm{Y}=$	
Y1: ${ }^{\text {Y2 }}$, 05264846665 [二]	
Y3	
Y4:	[[]
Y5 :	[[]
Y6:	[
SEELECTIDEEETE \mathbf{Y} STYLE	DRAW

In a similar manner, a quadratic model can be used for another portion of the bridge.

CASIO

http://edu.casio.com/

Worldwide education website for teachers and students
for
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

