intel)

Intel® I1XP42X Product Line of
Network Processors and 1XC1100

Control Plane Processor

Developer’s Manual

September 2006

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel
or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

The Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel Centrino logo, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon,
PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your Command, Sound Mark, The Computer Inside., The Journey Inside, VTune,
and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright © 2006, Intel Corporation. All Rights Reserved.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
2 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

http://www.intel.com

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

Contents
0 TR o) o Yo [T '] o 26
1.1 ADOUL ThisS DOCUMENT.ttt ettt e e e e e aneeas 26
1.1.1 How to Read ThisS DOCUMENT ... ae e 26
1.2 Other Relevant DOCUMENTS ...ttt ettt e e e aeeaas 26
1.3 Terminology and CONVENTIONSciiiiiii ittt ettt e e e e e aneeas 26
1.3.1 Number RepresSentation.ot 26
1.3.2 Acronyms and TermMiNOIOQYttt eeeas 27
2.0 OVerview Of ProdUCTE LiNe. e 30
2.1 Intel XScale® MicroarchiteCture PrOCESSONcewuue e 35
2.1.1 Intel XScale® Processor OVEIVIEWcouueeee oo 36
2.1.1.1 ARM™ COMPALIDIILY ... 36
2.1.1.2 Multiply/Accumulate (MAC)oueiiii e eeas 36
2.1.1.3 Memory ManagemeENtcoooiit ittt aaas 37
2.1.1.4 INStruction CaChB.......iiiiiiii ittt 37
2.1.1.5 Branch Target Buffero e 37
2.1.1.6 Data CaChe .. .o e 37
2.1.1.7 Intel XScale® Processor Performance Monitoringc.ceeeeeunee... 38
2.2 Network Processor ENGINES (NPE) ...ttt eens 38
2.3) (=T g = 2 39
P2 /1 I 1 g =T = o = 39
2.5 AHB QUEUE MBNAGET ...ttt et et ettt et e e et e et e et e e e e e e e e e e e e aaannas 39
22 S T U 8 I = 40
2 A 1] = TV e 40
D220 < = 0 40
2N B [T 0 aToT VA ©e T o} 4 o] | 1= o PPN 40
P2 O T o q o = 1 [0 I =T 1 PP 41
2.11 High-Speed Serial INTErfacCes.eiu et aeens 41
2.12 Universal Asynchronous ReceiVer TranSCeIVENt 42
22000 T T €1 1 42
2.14 INterrupt CONTrOllEro e e ettt 42
P20 1 T T 1= 42
2200 T I A 43
3.0 INtEl XSCAIE® PrOCESSONo 44
3.1 Memory Management UNit et e e aeeaas 44
8 0 0 T |V =Y T] oV A o o 1 1) (= 45
3.1.1.1 Page (P) Attribute Bitcciiiiiii i 45
3.1.1.2 Cacheable (C), Bufferable (B), and eXtension (X) Bits.................... 45
3.1.2 Interaction of the MMU, Instruction Cache, and Data Cachecccccuveeen... 47
8 00 IC T |V 11/ L B @ o | 1 e 48
3.1.3.1 Invalidate (Flush) Operation..........cccooeiiiiiiiiiiiiii e aas 48
3.1.3.2 ENabling/Disablingcc.cieoiiiiii e 48
3.1.3.3 LOCKING ENTFIES ...ttt 49
3.1.3.4 Round-Robin Replacement Algorithm ... 51
3.2 INSTrUCHION CaCRE ... e 52
3.2.1 Operation When Instruction Cache is Enabled.............c.cooiiiiiiiiiiiiiiii ... 52
3.2.1.1 Instruction-Cache ‘MiSS’ i 53
3.2.1.2 Instruction-Cache Line-Replacement Algorithmooo.... 54
3.2.1.3 Instruction-Cache CONEreNCe......ccoiiiiiiiii i 55
3.3 Branch Target BUffer ... e 58
3.3.1 Branch Target Buffer (BTB) Operationcoociiiiii i 58
B TG i I A T 59
Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 3

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

B4 DA CaCNE . 60
3.4.1 Data Cache OVEIVIEW e e 60
3.4.2 Cacheability ... e 63
3.4.3 Reconfiguring the Data Cache as Data RAMo 68

R T @o] o 1 o |81 =1 (o] o S 73
G S R O o R =0 [ES] (] TP 75

3.5.1.1 Register O: ID and Cache Type RegiStersc.cceiiiiiieiiiiiieiiiaennenn. 76
3.5.1.2 Register 1: Control and Auxiliary Control Registers 77
3.5.1.3 Register 2: Translation Table Base Registercccoiiiiviiiiiiinnnn... 79
3.5.1.4 Register 3: Domain Access Control Registerccoocviiiiiiiiiiiieie.n. 80
3.5.1.5 Register 4: RESEIVEd ..ot 80
3.5.1.6 Register 5: Fault Status Registerccoviiiiiiiiiiii e 80
3.5.1.7 Register 6: Fault Address RegiStercoiiiiiiiiiiiii i 81
3.5.1.8 Register 7: Cache FUNCLIONS.......coiiiii e 81
3.5.1.9 Register 8: TLB Operationsccviiiiiiiiiii i eeea 82
3.5.1.10 Register 9: Cache LOCK DOWN ...t 82
3.5.1.11 Register 10: TLB LOCK DOWN ... 83
3.5.1.12 Register 11-12: RESEIVEAcoieiiii i eeea 84
3.5.1.13 Register 13: ProCess ID ... 84
3.5.1.14 The PID Register Affect On AddreSSesSc.eeiiiiiiiiiiiiiiiiaieaaenn. 84
3.5.1.15 Register 14: Breakpoint RegiSters.......covviiiiiiiiiiiiiii i 85
3.5.1.16 Register 15: Coprocessor Access Register.......covvieviiiiiiiiiinnnnnn.. 85
G S T O = I O o L= T 1S3 = S 86
3.5.2.1 Performance Monitoring Registers.ccoiiiiiiiiiii i 87
3.5.2.2 Clock and Power Management Registers........ccoeviiieiiiiiiiiiiinenannnn. 87
3.5.2.3 Software Debug ReQISTErsS ..o 88

3.6 SOftWAIre DebUQ. ... e 88
B.6.1 D iNitiONS .. 89
3.6.2 DebUQG REGISTEIS ... et 89
3.6.3 DEDUQG MOES ...ttt 89

3.6.3.1 Halt MOUE ..o e e 90
3.6.3.2 MONITOEr MOOE.. ...t 90
3.6.4 Debug Control and Status Register (DCSR)coouiiiiiiiieiiieieee e eeeas 90
3.6.4.1 Global Enable Bit (GE)coieiiiiii e 91
3.6.4.2 Halt MOde Bit (H) «ooueiiiiiiii et 91
3.6.4.3 Vector Trap Bits (TF,TI,TD,TA,TS,TU,TR) ..ciuiiiiiiiiiiiiiiiieeeeeaen 92
3.6.4.4 StiCKy ADOIT Bit (SA) . u et 92
3.6.4.5 Method of Entry Bits (MOE) ...ttt e eee e 92
3.6.4.6 Trace Buffer Mode Bit (M)couiiiiii e 92
3.6.4.7 Trace Buffer Enable Bit (E)cooiiiiiiii e 92
3.6.5 DEBUQG EXCOPIIONS .ottt ettt e 92
3.6.5.1 Halt MOUE ..o e et 93
3.6.5.2 MONITOr MOOE.. ... e 94
3.6.6 HW BreakpOint RESOUICES ...ttt et et et e et ee e eneeeens 95
3.6.6.1 Instruction BreakpoOintsoo.oiiiii e 95
3.6.6.2 Data Breakpointscoiiiiiiiiiii it 96
3.6.7 Software BreakpOinNts . ..ot e 98
3.6.8 Transmit/Receive Control REGISTEro e o8
3.6.8.1 RX Register Ready Bit (RR) ...coiiiiiiii e 99
3.6.8.2 OVerflow FIag (OV) ..cuucneiii it eeaeas 100
3.6.8.3 Download FIag (D)euuiii ettt 100
3.6.8.4 TX Register Ready Bit (TR) ...coiiiiiii e 100
3.6.8.5 Conditional Execution Using TXRXCTRL......ccciiiiiiiiiiiiiiiiieeens 101
I T N I = g] 1 o 2 (=T o] = 101
3.6.10 RECEIVE REQISTEY ...ttt et et e e 102
3.6.11 DEDUQY JTAG ACCESS .. uttntteee ettt et ettt er e ettt et e e e ae e an e naneanes 102
3.6.11.1 SELDCSR JTAG COMMANG ...uuniiiiiit ittt ee et eeeaeeeas 102

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
4 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

3.6.11.2 SELDCSR JTAG ReEQISTEr ...t eeas 103
3.6.11.3 DBGTX JTAG COMMAN ...uttniiiiee ettt et e ae e e 105
3.6.11.4 DBGTX JTAG REQISTEI ...uuiiiiiie it 105
3.6.11.5 DBGRX JTAG COMMANG ...ttt et eeeeeens 106
3.6.11.6 DBGRX JTAG REQISTEN .. .uutiiie ittt et eaeee 106
3.6.11.7 Debug JTAG Data Register Reset Values...........cccovieiviiiiiiiinninn... 109

3.6.12 TracCe BU eI oo e 109
3.6.12.1 Trace Buffer CP ReQIStersS.o 109

3.6.13 Trace Buffer ENtries ... 111
3.6.13.1 MeSSage Byte ... e 111
3.6.13.2 Trace BUuffer Usage.......ccueeiiniiiii it et 114

3.6.14 Downloading Code in ICACNE.........ciuiii i 116
3.6.14.1 LDIC JTAG COMMANGetii ittt aeeaaeaas 116
3.6.14.2 LDIC JTAG Data ReQISTerouuiiieiiiii e 117
3.6.14.3 LDIC Cache FUNCLIONS.ttt 118
3.6.14.4 Loading IC DUNNG RESETcnuiiiii e 119
3.6.14.5 Dynamically Loading IC After ReSet.......ccoviiiiiiiiiiiiiiiiiii e 123
3.6.14.6 Mini-Instruction Cache OVEerVIEWccvuiiuiiiiiiiieiiiiieeeeaeeaens 126

3.6.15 Halt Mode Software ProtOCOlcvuiii e eees 126
3.6.15.1 Starting a Debug SeSSIONuiiii e 126
3.6.15.2 Implementing a Debug Handler 128
3.6.15.3 Ending a DebUQ SeSSIONuiiiiiiiiii i 131

3.6.16 Software Debug Notes and Errata.........ccoooiiiiiiiiiiiii i 132
3.7 Performance MONITOFINGcuuee ettt ettt e e e et e eneeaeens 133
B 0t R © 1Y Y 133
3.7.2 Register DeSCHIPLION.ttt ettt 134
3.7.2.1 Clock Counter (CCNT) .o e aeea 134

3.7.2.2 Performance Count RegIStErsS.c.ouiiiiiiiiii i 134

3.7.2.3 Performance Monitor Control Register...........ccviiiiiiiiiiiiiiienenns 135
3.7.2.4 Interrupt Enable RegiSter.......cooiiiiiii e 136
3.7.2.5 Overflow Flag Status Register.........ccooiiiiiiiiiiiiii e 136
3.7.2.6 EVENt SeleCt REQISTEro e eaaeas 137

3.7.3 Managing the Performance MONITOKcoieeiiii i eeens 138
3.7.4 Performance Monitoring EVENTS ... 139
3.7.4.1 Instruction Cache Efficiency Modeccciiiiiiiiiiiiiiiiiiie 140
3.7.4.2 Data Cache Efficiency Mode........coouiiiiiiiiiii e 140
3.7.4.3 Instruction Fetch Latency MOdec.oiiiiiiiiiiiiiiiii e eeeeen 140
3.7.4.4 Data/Bus Request Buffer Full Mode...........ccooooiiiiiiiiiiiiiiiin 141
3.7.4.5 Stall/Write-Back StatiStiCS......coouiiiiieiiiii i 141
3.7.4.6 Instruction TLB Efficiency Modeo 142
3.7.4.7 Data TLB Efficiency MOcoiiiiiiiiii i 142

3.7.5 Multiple Performance Monitoring Run Statistics..........ccooiiiiiiiiiiiiiiiiien, 142
B R S T - 1 1 0] = 142
3.8 Programming MOEl. ... e 144
3.8.1 ARM” Architecture CoOmMPatibilityueeeeeeeeiiiee e 144
3.8.2 ARM” Architecture Implementation OPtioNS........oiiiiiiii i 144
3.8.2.1 Big Endian versus Little Endianccooiiiiiiiiiiiiiiii i 144
3.8.2.2 26-Bit ArchiteCture.o e 145
B.8.2.3 ThUMID e 145
3.8.2.4 ARM” DSP-Enhanced INStruction Set..............cccceeeeeeeuuueeeeeeennnnn.. 145
3.8.2.5 Base Register Updatecoiiiieiiiii i 145

3.8.3 EXteNnsions t0 ARM ™ ArCHItECIUI. e e 146
3.8.3.1 DSP Coprocessor O (CPO) . ..ottt eaeeeens 146
3.8.3.2 New Page Attributes.......ccooiiiiii e 152

3.8.3.3 Additions to CP15 Functionalityc.coiieiiiiiiiiiii e 153
3.8.3.4 EVENt ArChiteCtUIeo 154

3.9 Performance CONSIAEratioNS. ettt e eaaeens 159
Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

September 2006 DM
Order Number: 252480-006US 5

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

4.0
5.0

6.0

I T A 1 0 (=T 0] o] A = =] o oY P 159

3.9.2 BranCh PrediCtioN. ...t et e 160

3.9.3 AdAresSiNg MOOESttt 160

3.9.4 INSErUCLION LATENCIES net ettt et ettt e aaees 160
3.9.4.1 PerformancCe TEIMSttt eeenens 160

3.9.4.2 Branch INstruction TiMINgScooeiiiiii e 162

3.9.4.3 Data Processing Instruction TimMiNgS.......coeviiiiiiiiiiii it 162

3.9.4.4 Multiply INnStruction TimiNgSccoeeiiiiiiii i eaeeeaaas 163

3.9.4.5 Saturated Arithmetic INStructionscooiiiiiiiiiiiiiiiiiieeeeae 165

3.9.4.6 Status Register Access INSTrUCtiONS.coiiiiiiiiiiiiiiiiiieeiiaeenas 165

3.9.4.7 Load/Store INStrUCTIONS........iutiiiii i 165

3.9.4.8 Semaphore INStrUCIONS ...t 166

3.9.4.9 Coprocessor INSTFUCTIONS e e eaaas 166

3.9.4.10 Miscellaneous Instruction TimMiNgGcoooiiiiiiiiiii i eiieeens 167

3.9.4.11 Thumb INSTIUCTIONSiei e e 167

3.10 OptiMIZAtioN GUIAEt ettt et e anae 167
RC 205 0 ¢ R 1 o) e T [o i T I 167
3.10.1.1 ADBOUL ThiS SECLION ...t ees 168

3.10.2 Processors’ PIPeliNe.o e 168
3.10.2.1 General Pipeline CharaCterisStiCS.......ouviiiiiiiiii i 168

3.10.2.2 Instruction Flow Through the Pipeline........ ... 170

3.10.2.3 Main Execution Pipelineo 171

3.10.2.4 Memory Pipeline.o e 172

3.10.2.5 Multiply/Multiply Accumulate (MAC) Pipelinecocoviiiiiieiinnnnen. 173

3.10.3 BasiC OPtimMIZatiONS. e e 173
3.10.3.1 Conditional INStrUCLIONSot aae e 173

3.10.3.2 Bit Field Manipulation....... ..o 178

3.10.3.3 Optimizing the Use of Immediate Values ..., 178

3.10.3.4 Optimizing Integer Multiply and Divide ..., 178

3.10.3.5 Effective Use of Addressing MOAESccoviiiiiiiiiiiiiiiieiieeieens 179

3.10.4 Cache and Prefetch Optimizationsciieiiiiiiiii e eee 180
3.10.4.1 INStruction CacChe ..ot e 180

3.10.4.2 Data and Mini CaChe ..ot 181

3.10.4.3 Cache ConSiderationsS.ccvueiuiiuiii e 184

3.10.4.4 Prefetch ConsSiderationsS........ooeiiie i 185

3.10.5 Instruction Scheduling.........o i 191
3.10.5.1 Scheduling LOAdSccuuiit e e 191

3.10.5.2 Scheduling Data Processing Instructions...........coooiiiiiiiiiiiiiieennn, 195

3.10.5.3 Scheduling Multiply INStructionsooiiiiii i iiieiaeeaas 196

3.10.5.4 Scheduling SWP and SWPB INStructionsccooooiiiiiiiiiiiniiaaanns 197

3.10.5.5 Scheduling the MRA and MAR Instructions (MRRC/MCRR) 197

3.10.5.6 Scheduling the MIA and MIAPH Instructionsccooooviiiiaiia... 198

3.10.5.7 Scheduling MRS and MSR INStruCtioNS.........ccoiiiiiiiiiiiii i aiieeanas 198

3.10.5.8 Scheduling CP15 Coprocessor INStructionsS.........c.ocovviiieiiieeniinennn. 199

3.10.6 Optimizing C LIDFari@s ... e 199
3.10.7 Optimizations fOr Size ... 199
3.10.7.1 Space/Performance Trade Offccoiiiiiiiiii e 199

Network Processor ENgines (NPE) ... et e 202
LN =Y = L = 1 204
5.1 TN ST T I =IO TS AN g oY1 =Y 204
5.1.1 Priority MeChaniSM. 205

5.2 1Y =T 0 aTeT V1Y, =T o 1 N 205
O IO T o o] I 1= PP 208
6.1 PCI Controller Configured as HOSEcoiiiiiiiiiii e e e 213
6.1.1 Example: Generating a PCI Configuration Write and Read 216

6.2 PCI Controller Configured as OPtiONc..iieeiir it aneeaes 218

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
6

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

—Intel® I1XP42

6.3

6.4
6.5
6.6

6.7
6.8

6.9
6.10

6.11
6.12
6.13
6.14

September 2006

[®
X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

Initializing PCI Controller Configuration and Status Registers for Data Transactions.. 219
6.3.1 Example: AHB Memory Base Address Register, AHB 1/0
Base Address Register, and PClI Memory Base Address

ST 1S3 (= PP 220
6.3.2 Example: PCI Memory Base Address Register and South-AHB Translation 222
Initializing the PCI Controller Configuration RegiStersc.c.oviiviiiiiiiiiiiiiiieiaenns 222
PCI Controller South AHB TranSacCtiONS ...t e eaas 225
PCI Controller Functioning as Bus INitiatorccoiiiiiiii e 226
6.6.1 PCI BYte ENADIES ... e 226
6.6.2 Initiated Type-0 Read TranSaCtionoueieiiiiiei it aeeaas 227
6.6.3 Initiated Type-0 Write TranSacCtiONcouiuiiii i eaaes 227
6.6.4 Initiated Type-1 Read TranSaCtioNcoueiieiiniit it eaneneeaas 228
6.6.5 Initiated Type-1 Write TranSacCtiONciiiiii i 229
6.6.6 Initiated Memory Read TranSacCtioNcoiiiiii i 229
6.6.7 Initiated Memory Write Transactioncceiiiiiiiieiiii i eeieeeeeaas 230
6.6.8 Initiated 1/0 Read TranSaCtiONc.o.oiiiiiii i e 231
6.6.9 Initiated 1/0 Write TranSaCtioNcouueitii i e 231
6.6.10 Initiated Burst Memory Read TranSaction...........ccvieeiieeineriieiaieienaeeaaeennes 232
6.6.11 Initiated Burst Memory Write TranSactioncooiiiiiiiiiiiiiiii i 233
PCI Controller Functioning as BUS Target ...t 234
PCI Controller DMA CONIOIIEN ...t 234
6.8.1 AHB to PCI DMA Channel Operationcooceiuiiieie it aeeaes 238
6.8.2 PCIl to AHB DMA Channel Operationcoocvoeeiiiieaiaai i eaeeeeeaeaes 238
PCI Controller Door Bell REQISTEr ... e et eeeas 239
PCl Controller INTerrUPTSt et ettt ettt eeaes 240
6.10.1 PCI INterrupt GENEIratiON et aaeeaes 240
6.10.2 Internal Interrupt Generation.........coiiiiii i eaaas 240
PCI Controller Endian CONtrol........c.uiini ettt eeaee 241
PCI Controller Clock and Reset GENerationcvieiiiiin et aeeaes 248
O B 10 1Y e O] o U Y/ PP 249
Rt ISy =T gl BT TTod g o] £ e] o I PP 249
6.14.1 PCI Configuration REQISTErS 249
6.14.1.1 Device ID/Vendor ID RegiSter.....cuiieiiiiiiiii i eeiaeeas 250
6.14.1.2 Status Register/Control REQISTErcoiiiii i 250
6.14.1.3 Class Code/ReVvision ID ReQISterccviuiiiiiii i eeees 252
6.14.1.4 BIST/Header Type/Latency Timer/Cache Line Register................. 252
6.14.1.5 Base AdAress O ReQISTEr ...t 253
6.14.1.6 Base AdAress 1 ReQISTEr ... e 254
6.14.1.7 Base AAAress 2 REQISTENviniiiii i e 254
6.14.1.8 Base AdAress 3 ReQISTEr ...t 255
6.14.1.9 Base AdAress 4 ReQISTEr ...t eneeaes 255
6.14.1.10Base AdAress 5 ReQISTEr ...t e e 256
6.14.1.11Subsystem ID/Subsystem Vendor ID Register.........c.ccccovvvvviinnn... 256
6.14.1.12Max_Lat, Min_Gnt, Interrupt Pin, and Interrupt Line Register-........ 257
6.14.1.13Retry Timeout/TRDY Timeout Register....coovviiiiiiiiiiiii 257
6.14.2 PCI Controller Configuration and Status Registers.........cc.ooeviiiiiiiiiniinennn.. 258
6.14.2.1 PCI Controller Non-pre-fetch Address Registerc.ccvvieiieiinen... 259
6.14.2.2 PCI Controller Non-pre-fetch Command/Byte Enables Register...... 259
6.14.2.3 PCI Controller Non-Pre-fetch Write Data Register 260
6.14.2.4 PCI Controller Non-Pre-fetch Read Data Register......................... 260
6.14.2.5 PCI Controller Configuration Port Address/Command/
Byte Enables ReQISter... ..o 260
6.14.2.6 PCI Controller Configuration Port Write Data Register 261
6.14.2.7 PCI Controller Configuration Port Read Data Register................... 262
6.14.2.8 PCI Controller Control and Status Registercccoiiiiiiiiiinn.... 262
6.14.2.9 PCI Controller Interrupt Status Registerc.coviiiiiiiiiiiiieniennns 263
6.14.2.10PCI Controller Interrupt Enable Register...........c.ccoiiiiiiiiiiiiinenn.. 264

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 7

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

6.14.2.11DMA CONLrol REGISTEY .. .t 265
6.14.2.12AHB Memory Base Address Register..........ooiiiiiiiiiiiiiiiiiiiieeans 266
6.14.2.13AHB 1/0 Base Address RegiSterccooiiiiiiiiiiiiii i 266

6.14.2.14PCl Memory Base Address RegiSter.......cooviiiiiiiiiiiiieiiiiiiiaeenne 267
6.14.2.15AHB Doorbell RegQISter. ... e 267

6.14.2.16PCIl Doorbell REQISTEr 268
6.14.2.17AHB to PClI DMA AHB Address Register Occcovevieiiiiiienieninenn.. 268
6.14.2.18AHB to PCI DMA PCI Address Register Oooeiiiiiiiiiiiiiiiiiieans 269
6.14.2.19AHB to PCI DMA Length Register Occoiiiiiiiiiiiiiiiiiieeieens 269
6.14.2.20AHB to PClI DMA AHB Address Register 1ccoiiivieiiiiiieiienanann.. 270
6.14.2.21AHB to PCI DMA PCI Address Register 1oooiiiiiiiiiiiiiiiiiiiaans 270
6.14.2.22AHB to PCI DMA Length Register 1ccoiiiiiiiiiiiiiiiiiiieeiieeeans 270

6.14.2.23PCI to AHB DMA AHB Address Register Occooieviiiiiiiieiienieenn.. 271

6.14.2.24PCI to AHB DMA PCI Address Register Oooeiiiiiiiiiiiiiiiiiieans 271

6.14.2.25PCI to AHB DMA Length Register Occoiiiiiiiiiiiiiiiiiiiieiieeens 272

6.14.2.26PCI to AHB DMA AHB Address Register 1ccoiviiiiiiiiiienienaeann.. 272

6.14.2.27PCIl to AHB DMA PCI Address Register 1oociiiiiiiiiiiiiiiiiiaans 273

6.14.2.28PCl to AHB DMA Length Register 1ccooiiiiiiiiiiiiiiiiiiieiieeeans 273

7.0 SDRAM CONTIOIIET ... et ettt ettt a et e e e e et eaaeaanes 276
7.1 SDRAM MEMOIY SPACE ... ettt et et ettt et e et ettt ettt e e et e e e et aane e eanneeanees 279
7.2 Initializing the SDRAM CoNntroller ... e 279
7.2.1 Initializing the SDRAM e 283

7.3 SDRAM MEIMOIY ACCESSES ..ttt ettt e et a e et e aan et et e e aanne e e eaaaaneeeeeaaannes 285
7.3.1 ReAd TraNSTer ...t 285
7.3.1.1 Read Cycle Timing (CAS Latency of Two Cycles)ccovvevieinenn... 285

7.3.1.2 Read Burst Transfer (Interleaved AHB Reads)ccocoviiiieiiiaaan. 286

7.3.2 W TraNS O <o e 286
7.3.2.1 Write Transier. ... e 286

A S == To 151 (=Yl D T= TS ol | o) 1 o o 287
7.4.1 Configuration ReQISTEr ...o..uii i et e 287

T.4.2 Refresh ReQISTer e 288

7.4.3 INStrUCHION REQISTEr ...t e 288

8.0 EXpansion BUS CONTIrOlIer ... 292
8.1 EXPansSion BUS AdArESS SPACE ...ttt 293
8.2 Chip Select Address AllOCatioNciiiiii et e e e 294
8.3 Address and Data Byte SteeIriNGcoiueiiiiiiii ittt eaeaanes 295
8.4 EXPAnSioN BUS CONNECTIONSc.uu ittt ettt et ettt et e et e ee e eae s 297
8.5 Expansion Bus Interface Configuration......... ..ot 298
£ G I O E Y1 To B 7@ I = 1) PP 301
8.7 Special Design Knowledge for Using HPI mode..........cooiiiiiiiiiiiii it 303
8.8 Expansion Bus Interface Access Timing DiagramsS.......ccooeiiiiiiiiiiiiiiiiieieeieeeae 305
8.8.1 Intel® MultipleXxed-Mode WIIte ACCESSu.eeeneeeee e 305

8.8.2 Intel® Multiplexed-Mode Read ACCESScieiiiiii i e 306

8.8.3 Intel® SIMPIEX-MOAE WITE ACCESSuee ettt aeeaeens 307

8.8.4 Intel® Simplex-Mode Read ACCESS. ...t e aaens 308

8.8.5 Motorola* Multiplexed-Mode WIite ACCESSiiuuiiii it 309

8.8.6 Motorola* Multiplexed-Mode Read ACCESS.......uiiiiiiieiiie i eaieeaanenn 310

8.8.7 Motorola®* Simplex-Mode WIte ACCESSuuiiiii ittt ee e eeaaes 311

8.8.8 Motorola* Simplex-Mode Read ACCESSuiiiiiiiieiii it eaaaeaenees 312

8.8.9 T HPI-8 Wit ACCESS - ittt ettt ettt e e aanas 313
8.8.10 TI™ HPI-8 REAO ACCESS .. nnutini ettt et eanees 314
8.8.11 TI* HPI-16, Multiplexed-Mode WIite ACCESSciuuiiiii it 315
8.8.12 TI* HPI-16, Multiplexed-Mode Read ACCESSccctiiiiiiiieiiiiiieiiieeaeieeaanen 316
8.8.13 TI* HPI-16 Simplex-Mode WIte ACCESScuiuiiiiiiiiiie it eaaeaenans 317
8.8.14 TI* HPI-16 Simplex-Mode Read ACCESSuiiuiiieiii i 318

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
8

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

£S IR T S{=To [151 £=] gl B =2 of] o o o E- 3 S 319
8.9.1 Timing and Control Registers for Chip Select Ocociiiiiiiiiiiiiiiieiens 319

8.9.2 Timing and Control Registers for Chip Select 1ooiiiiiiiiiiiiiiiiiiieans 319

8.9.3 Timing and Control Registers for Chip Select 2ccoiiiiiiiiiiiiiiiiiians 320

8.9.4 Timing and Control Registers for Chip Select 3ccoiiiiiiiiiiiiiiiiiiiieees 320

8.9.5 Timing and Control Registers for Chip Select 4 ..o 320

8.9.6 Timing and Control Registers for Chip Select 5 ..o 321

8.9.7 Timing and Control Registers for Chip Select 6c.ccoiiiiiiiiiiiiiiiiiiiens 321

8.9.8 Timing and Control Registers for Chip Select 7oooiiiiiiiiiiiii i iieans 321

8.9.9 Configuration REGISTEr Ot e 322
8.9.9.1 User-Configurable Field........ ..o 324

8.9.10 Configuration REGISTEr Lt e et eens 324

8.10 Expansion Bus Controller Performancecooiiiiiiiiii e 326
9.0 AHBZAPB BIIOQEttt et ettt 328
10.0 Universal Asynchronous Receiver Transceiver (UART) ..o i 332
0 Tt R o [T | IS o T=T=To B A 333
10.2 Configuring the UAR T ... ettt et aeeees 335
10.2.1 Setting the Baud RaAE.. ... e eaes 335
10.2.2 Setting Data Bits/Stop BitS/Parityo.cieiie o 336
10.2.3 Using the Modem Control Signalso.ooiiii it 338
O A U Y o I 101 (=T U o) £ PN 339

10.3 Transmitting and Receiving UART Data.......ccuiiiiiiiiiiiiiii i e anee 342
10.4 RegiSter DeSCHIPTIONSttt ettt et e et 344
10.4.1 Receive BUffer REQISTEN e e 345
10.4.2 Transmit HOIAING REQISTEL ... e e 345
10.4.3 Divisor Latch LOW ReQISTer.t 346
10.4.4 Divisor Latch High RegiSter 346
10.4.5 Interrupt Enable REQISTEr ... e 346
10.4.6 Interrupt Identification REQISTEroiiiiiiiiiii e 347
10.4.7 FIFO CONrol REGISTEYttt et enes 349
10.4.8 Line CONTIOl REQISTENnuii e ettt eeees 350
10.4.9 Modem CONrol REGISTEYui et et eaeeaees 352
10.4.10LIiNe StatUS ReQISTOYttt ettt et eaeeaes 353
10.4.11Modem Status REQISTEN ..ot e ee e e eaaas 354
10.4.12Scratch-Pad REQISTEN ... e e aaes 355
10.4.13Infrared Selection REGISTENo e 356

I S 00 1T 1= U P 357
10.5.1 RegiSter DeSCIHIPTION. ...ttt et e et e et et e e e eaneenee 357
10.5.1.1 Receive Buffer Register... ... 358

10.5.1.2 Transmit Holding ReQISterc.oviiiiii i 358

10.5.1.3 Divisor Latch LOW REQISTeruiuiiiiii i eaees 359

10.5.1.4 Divisor Latch High RegisSter ... 359

10.5.1.5 Interrupt Enable RegiSter......ccoiiiiiiiiiii i 360

10.5.1.6 Interrupt Identification RegiStercooiiiiiiiiiiii i 360

10.5.1.7 FIFO Control REQISTer ... 362

10.5.1.8 Line Control REQISTeroiniiiii e e e 363

10.5.1.9 Modem CoNntrol REGISTEN........eui et eae s 365

10.5.1.10Line Status REQISTErot 366
10.5.1.11Modem Status RegiSter......ccuiiiiiii et aaas 367
10.5.1.12Scratch-Pad ReQISTEr ... e eaaes 368
10.5.1.13Infrared Selection RegiSter.oui i 369

11.0 Internal Bus Performance Monitoring Unit (IBPMU) ..ot 372
11.1 Initializing the IBPMUottt e e e e et e e e aaneaanean 372
11.2 USING The IBPMU ...t ettt et ettt ettt e e e e eaens 373

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 9

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

11.2.1 Monitored Events South AHB and North AHBooiiiiiiii e 375
11.2.2 Monitored SDRAM EVENTSot 377

IS 2 B OV o [o 11 | o | 377

11.3 RegiSter DeSCIIPTIONS. ...ttt et ettt et ettt ettt e aee 378
11.3.1 EVeNnt SeleCt REQISTEr ... e et e 378
11.3.2 PMU Status Register (PSR) ...t et 381
11.3.3 Programmable Event Counters (PECL)ouiiiiiiii i 381
11.3.4 Programmable Event Counters (PEC2)ouiiiiiiiii e e 382
11.3.5 Programmable Event Counters (PEC3)coiiiiiiii i 382
11.3.6 Programmable Event Counters (PECA) ... 382
11.3.7 Programmable Event Counters (PEC5)coiieiiiiiiii e 383
11.3.8 Programmable Event Counters (PECB)c.oiiiiiiiiii i 383
11.3.9 Programmable Event Counters (PECT7)euiiieiiiii i e 384
11.3.10Previous Master/Slave Register (PSMR) ..ot 384

12.0 General Purpose InputZO0utput (GPIO) ... e 386
12.1 Using GPIO as INPUES/OULPULSttt et et e e e 386
12.2 Using GPIO as INterrupt INPULSoiniii ittt et et e e e e aneas 387
12.3 Using GPIO 14 and GPIO 15 @S CIOCKScnuiiiiie i 389
12.4 RegiSter DESCIIPLIONttt et ettt et ettt e anean 391
12.4.1 GPIO OULPUL REGISTEN .. ettt et ettt ettt e aneeneeaeens 391
12.4.2 GPIO Output Enable RegiSter. 392
12.4.3 GPIO INPUL REGISTON ...t et et e aaaes 392
12.4.4 GPIO Interrupt Status RegiSter ... oottt aeea 393
12.4.5 GP Interrupt TYpPe REGISTEI L. ..uuiii ittt aeens 393
12.4.6 GPIO Interrupt Type REQISTEN 2. it 394
12.4.7 GPIO CIOCK REQISTEY ... ettt et et ettt e e e e e neanens 395

13.0 INterrupt CONrOller ... e e 398
R T R 1 oY (=T T o Lo Y/ 398
13.2 Assigning FIQ oOr TRQ INterTUP S . .ue ittt e e et e aaneas 399
13.3 Enabling and Disabling INterruptsooimiiiiiiii e e aeeas 399
13.4 Reading INerrupt STATUS ...t et et ettt e e eaeeaees 400
13.5 Interrupt Controller Register DeSCIIPtIONcvuuiii e e eee e 401
13.5.1 Interrupt Status REGISTEN ... et neanen 402
13.5.2 Interrupt-Enable RegiSter ... 404
13.5.3 Interrupt SeleCt REQISTEr oo e e 404
13.5.4 IRQ Status REQISTEN ... e e et aeeas 404
13.5.5 FIQ Status REQISTE ...t ettt ee e 404
13.5.6 Interrupt Priority REQISTENuii et 405
13.5.7 IRQ Highest-Priority REQISTEro e eeas 405
13.5.8 FIQ Highest-Priority REQISTOrot e eens 406

I O T T 1= = PSPPI 408
I R VAV 7= (o 9 T T T 0 1 P 408
I T L= TS] =T g o o TN T 1= PPN 409
14.3 GeNeral-PUrPOSE TIMEIS ...ttt et ettt et ettt et e e e e e e en e enenn 409
14.4 Timer Register Definition ...t et eae e 411
14.4.1 TimMeE-StamP TiMer .. e ettt et e ae e 411
14.4.2 General-Purpose TiMer O ..ottt aeeaanees 411
14.4.3 General-Purpose Timer O Reloadoooiiiiiiiiii e 412
14.4.4 General-Purpose TIMEI L ...ttt eanens 412
14.4.5 General-Purpose Timer L Reloadc.oouiiiiiiiiii e 413
14.4.6 WaALCh-DOQg TiMEI ...t ettt e et e aneeeens 413
14.4.7 Watch-Dog Enable RegiSter ... 414
14.4.8 Watch-Dog KeY ReQISTEr ...couuuiiii it e ea e 414

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
10

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

14.4.9 TIMEE STATUS. ...ttt ettt et et e ettt e et e e e e e e e eeeaaaannan 415
IS T O T o o g 1Y g T o 1 7N o 416
ST R = d g T=T g o (=] M@0 o] e Tot =21 o] 417
15.1.1 Ethernet Coprocessor APB INterface........cooiiiiiiiiii it 418
15.1.2 Ethernet Coprocessor NPE Interface.........cooooiiiiiiiiiiii e 418
15.1.3 Ethernet Coprocessor MDIO INterfaceccooeiiiiiiiiiii i 418
15.1.4 Transmitting Ethernet Frames with MII Interfaces............ccoooiiiiiiiiiiiinen. 420
15.1.5 Receiving Ethernet Frames with MIl Interfaces ..., 423
15.1.6 General Ethernet Coprocessor Configurationooooiiiiiiiiiiiiiiiiiaaann.. 425
15.2 ReQISTEr DESCIIPTIONS ..ttt e et et ettt e e e e e aneas 427
15.2.1 Transmit CONTrol L ...ttt ettt e e et e e e aaeaanas 428
15.2.2 TranSmit CONTIOl 2 ... ettt ee e eeeeeeaaaanns 429
15.2.3 RECEIVE CONIOl L ... e ettt et e e eeeaaaanns 429
15.2.4 RECEIVE CONLIOI 2 .. e et eeeeeeaaaannns 430
15.2.5 RaANAOM SEEA ..o et ettt e eaaaaaa—aa—an 430
15.2.6 Threshold For Partially EmMpPLy........ooiii e 431
15.2.7 Threshold For Partially Full...........coiiiii e e 431
15.2.8 Buffer Size FOr TranSmMit.......ooveiiiiiiii e 431
15.2.9 Transmit Deferral PArametersoovviiiiiiiiiii e 432
15.2.10Receive Deferral Parameters........ooeveiiiiiiiiii e 432
15.2.11Transmit Two Part Deferral Parameters 1oovviiiiiiiiiiiiii i eeeeeeeannn. 433
15.2.12Transmit Two Part Deferral Parameters 2oovviiiiiiiiiiii e 433
I 5 31 [0 A T 2 =Y 433
15.2.14MDIO Commands REQISTEIS ...ttt e eeaes 434
15.2.15MDIO COMMANG L ..ttniiiiiii ittt et e ettt et et e e e e eaaneeannes 434
15.2.16MDIO COmMMANA 2. .. et e e e et 434
15.2. 27 MDIO COMMAN B .auiiiiiiie ettt e ettt e e et e eee e e eeanneeeeannns 435
15.2.18MDIO COMMEAN 4 ..ttt ettt ettt ettt e et e e e eeneeeeannns 435
15.2.19MDIO Status ReQISTEIS «.uuuiiiit it ettt e e e et e et e anaeeaaas 435
15.2.20MDIO STAtUS L oottt ittt et et e e et e eae e e eeaanneeeeeeanneeeeannns 436
15.2.21MDIO STALUS 2 ..tnneiiiieee ettt ettt et et ettt e e ean e eneeeanreaaneeannes 436
15.2.22MDI0O STAtUS B ..inniiiiiii ittt e ettt et e 436
15.2.23MDIO STATUS 4 ..nnneiiiie ettt e e et et e 436
15.2.24 Address Mask ReQISTErS.t 437
15.2. 25 Address Mask L. ..ottt e 437
15.2. 26 AdAress Mask 2. ...t e 438
15.2. 27 AdAress MASK 3. ... e 438
15.2.28AdAresSS MASK 4. ... e 438
15.2.29AdAresS MaASK B. 438
15.2.30AdAreSS MASK B.....ooiiiiiiiiiiii e et eaaaaaaaan 439
15.2. 3L AdArESS REQISTEIS .. ittt ettt et e 439
IS . A o [| /=TT Y 440
S T2 1C 72X o Lo =TT 440
A5.2.34AAAIESS ..ottt eaaaaeaaaaaaaan 440
A5.2.35AAAIESS ... et eaaaaaaaan 440
15, 2. BB AAAIESS ..ottt eeeaeeaaaaeaaaaaaaan 441
S i o [0 | (=TT T 441
15.2.38Threshold for Internal ClOCK..........oiiiiiii e 442
15.2.39Unicast AdAress ReQISTEIS. i ae e 442
15.2.40UNICast AAIresS L. ...cooiiiiiiiiii et ettt e e e aaaaaas 443
15.2.41UNICASsSt AAIESS 2. ..o e aaaaaaaaan 443
15.2.42UNICast AAresS S. ..o e aaeaaaaaaaaaaan 443
15.2.43UNICASt AQAIrESS 4. ..nniiiie ittt e et e 443
15.2.44UNICaSt AQOIrESS Bttt e e e e 444

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 11

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

15.2.45UNICAST AQAIESS B ...ttt ettt et et ettt et et 444
15.2.46C0rE CONTIOI .. e ettt e aaaaes 444

16.0 ETNEIrNEE MAC B ...ttt et et ettt ettt et ettt e aaas 446
17.0 High-Speed Serial INTErfacCes ... e e 448
17.1 High-Speed Serial Interface Receive Operationccoieviiiiiiiiii e aeeaeeaee 448
17.2 High-Speed Serial Interface Transmit Operation...........ocvieiiiiiiiiii i eens 449
17.3 Configuration of the High-Speed Serial Interfaceo 450
17.4 Obtaining High-Speed, Serial Synchronization.......... ..o 453
17.5 HSS Registers and Clock Configurationcoieiiiiiiii i 454
17.5.1 HSS ClOCK @nd JItEer. ittt ettt et eeas 455
17.5.2 Overview of HSS Clock Configuration............ooiieiiiiii i 455

17.6 HSS Supported Framing ProtOCOIS ... et eee e 457
< T R ¢ PP 457

I T e PP 459

A7 68,3 MV o 460
17.6.3.1 MVIP using 2.048Mbps Backplane..........ccccoiiiiiiiiiiiiiiiiian, 461

17.6.3.2 MVIP Using 4.096-Mbps Backplanec.ccoiiiiiiiiiiiiiiiiiiiaaen. 463

17.6.3.3 MVIP Using 8.192-Mbps Backplaneccooioiiiiiiiiiiiiiiiiiiaae.. 464

18.0 Universal Serial Bus (USB) v1.1 Device Controller..........coiiiiiiiiiiiiiiciie i 468
R R U 1] = B @ A =T oV 1= PP 468
18.2 DeVvice CONFIQUIATIONt ettt ettt ettt e e e e aeeaee 469
R T I U151 = @ o 1= =1 4 e o I PPN 470
18.3.1 SigNalling LEVEISottt ettt et 470
18.3.2 Bit ENCOAING ...t 471
18.3.3 Field FOIMALS ...t ettt et e 472
18.3.4 PACKEL FOMMMNATS ...ttt ettt ettt et et ettt et et et et e e e eaeeas 473
18.3.4.1 ToKen PacKel TY P .oouuuiiiiii ittt eaneas 474

18.3.4.2 Start-of-Frame Packet TYPeoiiiiiiiiii e 474

18.3.4.3 Data PaCKet TYPe ...t e 474

18.3.4.4 Handshake Packet TYPEcouiuiiiiiii e 475

18.3.5 TransaCtion FOIMATS.ttt ettt e et ene e aeens 475
18.3.5.1 BUIK TransSacCtion TYPeuiue ettt et ae e eanens 475

18.3.5.2 Isochronous Transaction TYPe ...ttt 476

18.3.5.3 Control TranSaction TYPecuiiiuii ettt et eneaeeaeas 476

18.3.5.4 Interrupt TranSaction TYPE .. .cuueiuiii i eee e 477

18.3.6 UDC DEViCE REQUESTEScnuiite ittt et et ettt et e e e ee e eneeanens 477
18.3.7 UDC CoNfigQUIAtIONttt et e e e 478

18.4 UDC Hardware COMNECTIONSttt ettt et ettt ettt ettt re e e e rneenans 479
18.4.1 Self-POWEred DEVICEuiniiiiie ettt e 479
18.4.2 BUS-POWEIEd DEVICES ...ttt ettt e e 479

18.5 RegiSter DESCIIPEIONS. ...ttt ettt ettt et et et et e 479
18.5.1 UDC Control Register (UDCCR)cuiiueiiiiiee et ettt e e e ee e neanens 481
18.5.1.1 UDC ENADIEeeiii e e e 481

18.5.1.2 UDC ACHIVE ...ttt ettt et e 481

18.5.1.3 UDC ReSUME (RSM)ttt 481

18.5.1.4 Resume Interrupt Request (RESIR).......coiiiiiiiiiiiiiiiii i 481

18.5.1.5 Suspend Interrupt Request (SUSIR)......coiiiiiiiiiiiiiiiiiecieee e 482

18.5.1.6 Suspend/Resume Interrupt Mask (SRM)ccoiiiiiiiiiiiiiiiieaens 482

18.5.1.7 Reset Interrupt Request (RSTIR) ..o 482

18.5.1.8 Reset Interrupt Mask (REM) ... oo 482

18.5.2 UDC Endpoint O Control/Status Register (UDCCSO0)covuiiiiiiiiiiiiiiaeennenns 483
18.5.2.1 OUT Packet Ready (OPR) ..ot 483

18.5.2.2 IN Packet Ready (IPR) ..ot 483

18.5.2.3 FIUSh TX FIFO (FTF) . ntiiiie ittt et ettt et et eeeas 484

18.5.2.4 Device Remote Wake-Up Feature (DRWF)......ccoiiiiiiiiiiiiiiiiennens 484

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
12

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

18.5.2.5 Sent Stall (SOt) . uuu ittt e 484
18.5.2.6 FOrce Stall (FST) cuuuii ittt ettt eae e 484
18.5.2.7 Receive FIFO Not Empty (RNE) ..couiiiiiiiii e 484
18.5.2.8 SetUP ACTIVE (SA) -ttt ees 484

18.5.3 UDC Endpoint 1 Control/Status Register (UDCCS1)ccvvieiiueiieeiiiinannennnens 485
18.5.3.1 Transmit FIFO Service (TFS) ...ttt 485
18.5.3.2 Transmit Packet Complete (TPC)coiueiiiiiiiiii e 486
18.5.3.3 FIUSh TX FIFO (FTF) ettt et e e e 486
18.5.3.4 Transmit Underrun (TUR) ..ot 486
18.5.3.5 SNt STALL (SST) tuuiuiiiiniiii e e et e eeas 486
18.5.3.6 FOrCe STALL (FST) tuuiiiiiiiii et et e e e 486
18.5.3.7 Bit 6 RESEIVEA ...t 487
18.5.3.8 Transmit Short Packet (TSP)oiiiiiiiiiiii et 487

18.5.4 UDC Endpoint 2 Control/Status Register (UDCCS2)ccvieiiiiiiiiiiiieieannens 487
18.5.4.1 Receive FIFO Service (RFS) ..o 488
18.5.4.2 Receive Packet Complete (RPC) ... 488
18.5.4.3 Bit 2 RESEIVEU. ... 488
18.5.4.4 Bit 2 RESEIVEA. ..ottt e et aaaaes 488
18.5.4.5 Sent Stall (SST) uuiuu ittt 488
18.5.4.6 FOrce Stall (FST) .ttt ettt ee s 488
18.5.4.7 Receive FIFO Not EmMpty (RNE)eiuiiiii i e 488
18.5.4.8 Receive Short Packet (RSP)ooiiiii s 489

18.5.5 UDC Endpoint 3 Control/Status Register (UDCCS3)cciiiiiiiiiiiiiiiiiaanenn 490
18.5.5.1 Transmit FIFO Service (TFS) ...ttt 490
18.5.5.2 Transmit Packet Complete (TPC)cvieiiiiiiiii i 490
18.5.5.3 FIUSh TX FIFO (FTF) . tuuitiiiit ettt et ettt ne e 490

8.5.5.4 Transmit Underrun (TUR)oiiiiiiiiiiii e e 490
18.5.5.5 Bit 4 RESEIVEAuui it 490
18.5.5.6 Bit 5 RESEIVEA...cnuiii i 490
18.5.5.7 Bit 6 RESEIVEU.....oneiiiiiiii et 490
18.5.5.8 Transmit Short Packet (TSP)cviiiiii e 491

18.5.6 UDC Endpoint 4 Control/Status Register (UDCCS4)ccviviiiiiiiiiiiiennennnens 491
18.5.6.1 Receive FIFO Service (RFS) ..o 491
18.5.6.2 Receive Packet Complete (RPC) ... 492
18.5.6.3 Receive Overflow (ROF) ... e 492
18.5.6.4 Bit 3 RESEIVEA ...t e 492
18.5.6.5 Bit 4 RESEIVEU.....oneiiiiii e 492
18.5.6.6 Bit 5 RESEIVEA. ... 492
18.5.6.7 Receive FIFO Not Empty (RNE) ... 492
18.5.6.8 Receive Short Packet (RSP) ... 492

18.5.7 UDC Endpoint 5 Control/Status Register (UDCCS5)cccviiiiiiiiiiiiiiieannen. 493
18.5.7.1 Transmit FIFO Service (TFS) ...t 493
18.5.7.2 Transmit Packet Complete (TPC) ..o 493
18.5.7.3 FIUSh TX FIFO (FTR) ettt ettt aeeas 494
18.5.7.4 Transmit Underrun (TUR)coiiiiiiiii e e 494
18.5.7.5 SNt STALL (SST) tuuiutititiii e et eas 494
18.5.7.6 FOICe STALL (FST) uiuiitiiii ettt ettt ettt aeeaeeas 494
18.5.7.7 Bit 6 RESEIVEA. ...ttt e e aanees 494
18.5.7.8 Transmit Short Packet (TSP)coiiiii i 495

18.5.8 UDC Endpoint 6 Control/Status RegiSterccoiiiiiiiii i 495
18.5.8.1 Transmit FIFO Service (TFS) ...ttt eeeeees 496
18.5.8.2 Transmit Packet Complete (TPC)c.eiieiiiiii i 496
18.5.8.3 FIUSh TX FIFO (FTF) . euuiiiiiie ittt ettt e eeeas 496
18.5.8.4 Transmit Underrun (TUR)ciiiiiiiii it e s 496
18.5.8.5 SNt STALL (SST) ttuutttiiiiit ettt ettt ae e aaees 496
18.5.8.6 FOICE STALL (FST) tuiuuiuiiiiii et et ettt ettt e ae e aaeaeeas 496
18.5.8.7 Bit 6 RESEIVEd. .. .o e 497
18.5.8.8 Transmit Short Packet (TSP)cviiiiiiiii e 497

18.5.9 UDC Endpoint 7 Control/Status Register (UDCCS7) ...ccoeiiiiiiiiiiiiiiiiiaaaaee, 498

Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 13

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

18.5.9.1 Receive FIFO Service (RFS) ..o 498
18.5.9.2 Receive Packet Complete (RPC)o 498
18.5.9.3 Bit 2 RESEIVEA ... 498
18.5.9.4 Bit 3 RESEIVEA ...nuiiiiii e 498
18.5.9.5 Sent Stall (SST) cuuuiiiiit i 498
18.5.9.6 FOrce Stall (FST) ciiiiiii it e 498
18.5.9.7 Receive FIFO Not EMpPty (RNE).....oieiiiiiiiii i 499
18.5.9.8 Receive Short Packet (RSP) ... 499
18.5.10 UDC Endpoint 8 Control/Status Register (UDCCS8)......ccoiieiiiiiiiiiiiiiainnann. 500
18.5.10.1 Transmit FIFO Service (TFS) c.uuiiiiiiii i 500
18.5.10.2 Transmit Packet Complete (TPC) ...coceiieiiiiiiiiiiiiiiie e 500
18.5.10.3 FIUSh TX FIFO (FTF) tuuiiiitiiiiiii ettt et ettt 500
18.5.10.4 Transmit Underrun (TUR) ... 500
18.5.10.5 Bit 4 RESEIVEA . .cuueiii e e 500
18.5.10.6 Bit 5 RESEIVEdo 501
18.5.10.7 Bit 6 RESEIVEAouuiiiiiiiii et 501
18.5.10.8 Transmit Short Packet (TSP)ciieiiiiiiiii e 501
18.5.11 UDC Endpoint 9 Control/Status Register (UDCCS9)coceviniiiiiniiieianennnnns 502
18.5.11.1 Receive FIFO Service (RFS) ...coiiiii i 502
18.5.11.2 Receive Packet Complete (RPC)...coiueiiiiiiiii i 502
18.5.11.3 Receive OVerflow (ROF) ... 502
18.5.11.4 Bit 3 RESEIVEA ... e 502
18.5.11.5 Bit 4 RESEIVEAonuiniiiiii et 502
18.5.11.6 Bit 5 RESEIVEA ...uneiii e 502
18.5.11.7 Receive FIFO Not Empty (RNE).....cuiiiiiii i 502
18.5.11.8 Receive Short Packet (RSP)ooniiiiiiii e 502
18.5.12 UDC Endpoint 10 Control/Status Register (UDCCS10)coceviueiiiennennnnnnnn. 503
18.5.12.1 Transmit FIFO Service (TFS) ..ot 503
18.5.12.2 Transmit Packet Complete (TPC) ... 503
18.5.12.3 FIUSh TX FIFO (FTF) .enuinitiite ittt et et ettt et e eeas 504
18.5.12.4 Transmit Underrun (TUR) ..ot e 504
18.5.12.5 SeNt STALL (SOt) uuuiuiitiuiiei ettt eeaa s 504
18.5.12.6 FOrce STALL (FST) tutuieiit ittt ettt ettt eas 504
18.5.12.7 Bit 6 RESEIVEA ...t 504
18.5.12.8 Transmit Short Packet (TSP) ..o 505
18.5.13 UDC End point 11 Control/Status Register (UDCCS11)ccciuviiiniiiiieanannnnn. 505
18.5.13.1 Transmit FIFO Service (TFS) c.uuiiiiiiii i 506
18.5.13.2 Transmit Packet Complete (TPC) ...cieiiiiiiiiiii i 506
18.5.13.3 FIUSh TX FIFO (FTF) .euuiiiiiie it et et et et e eas 506
18.5.13.4 Transmit Underrun (TUR) ..o e 506
18.5.13.5 SNt STALL (SOt) ittt e e e 506
18.5.13.6 FOrCe STALL (FST) cuutuinii ittt et et ettt e e e e eas 506
18.5.13.7 Bit 6 RESEIVEA ...uuiiiiiieie e 507
18.5.13.8 Transmit Short Packet (TSP)o.oiiiiiiiii e 507
18.5.14 UDC Endpoint 12 Control/Status Register (UDCCS12)ccceiiiiiiiiiniiaannnen. 508
18.5.14.1 Receive FIFO Service (RFS) ..o 508
18.5.14.2 Receive Packet Complete (RPC)....coiuiiiiiiiiiiiiiii i 508
18.5.14.3 Bit 2 RESEIVEA ... ettt aen 508
18.5.14.4 Bit 3 RESEIVEA ... 508
18.5.14.5 Sent Stall (SST) tuuiiiiiiiii i e 508
18.5.14.6 FOrce Stall (FST) «uiuuiiiiiii ittt eas 509
18.5.14.7 Receive FIFO Not Empty (RNE).....coiiiiiii i 509
18.5.14.8 Receive Short Packet (RSP)ooiiiiiiiiiii e 509
18.5.15 UDC Endpoint 13 Control/Status Register (UDCCS13)ccevviiiiiieniniennnnn. 510
18.5.15.1 Transmit FIFO Service (TFS) ..ot e 510
18.5.15.2 Transmit Packet Complete (TPC) ... 510
18.5.15.3 FIUSh TX FIFO (FTF) .enuiiiiiiti ittt et ettt ettt et e eeas 510
18.5.15.4 Transmit Underrun (TUR) ...coueiiiiiiiiiii et eees 511
18.5.15.5 Bit 4 RESEIVEAeoii e 511

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
14 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

18.5.15.6 Bit 5 RESEIVEU. . ..nuiii e 511
18.5.15.7 Bit 6 RESEIVEU. . ..cuuiiii it 511
18.5.15.8 Transmit Short Packet (TSP) ...coiiiiiiiiii e 511
18.5.16 UDC Endpoint 14 Control/Status Register (UDCCS14).....ccceviuiiiiiininanennnnn. 512
18.5.16.1 Receive FIFO Service (RFS) ...uciuuiiiiii i 512
18.5.16.2 Receive Packet Complete (RPC)coiueiiiiiiiii it 512
18.5.16.3 Receive Overflow (ROF)oiiiiii e 512
18.5.16.4 Bit 3 RESEIVEU. . ..niiiii e e 512
18.5.16.5 Bit 4 RESEIVEU. . ..uuiii it e s 512
18.5.16.6 Bit 5 RESEIVed.o 512
18.5.16.7 Receive FIFO Not Empty (RNE) ...coiiiiiiiii e 513
18.5.16.8 Receive Short Packet (RSP)coiuiiiiii e 513
18.5.17 UDC Endpoint 15 Control/Status Register (UDCCS15)......coiieiiiiiiiiinaninnnnn. 514
18.5.17.1 Transmit FIFO Service (TFS)....oiiiiiiii i 514
18.5.17.2 Transmit Packet Complete (TPC)cvieiiiiiiiii e 514
18.5.17.3 FIUSH TX FIFO (FTF) ..ttt et ettt et eeaeas 514
18.5.17.4 Transmit Underrun (TUR)coiiiiiiiiii it eeaes 514
18.5.17.5 SNt STALL (SO tiuttuiiuiiii ettt ettt e eas 515
18.5.17.6 FOICe STALL (FST) tututiuiiii ettt ettt e e e eas 515
18.5.17.7 Bit 6 RESEIVEU.o 515
18.5.17.8 Transmit Short Packet (TSP)ciieiiiiii e 515
18.5.18 UDC Interrupt Control Register O (UICRO)ottt 516
18.5.18.1 Interrupt Mask Endpoint x (IMx), Where x is O through 7 516
18.5.19 UDC Interrupt Control Register 1 (UICRL)....coiiiiiiiiiii i 517
18.5.19.1 Interrupt Mask Endpoint x (IMx), where x is 8 through 15. 517
18.5.20 UDC Status/Interrupt Register O (UISRO)......coieiiiiiiiiiiii i 518
18.5.20.1 Endpoint O Interrupt Request (IRO)ccoiiiiiiiiiiiiiiiieeieeeenae 519
18.5.20.2 Endpoint 1 Interrupt Request (IR1)coiiiiiiiiiiiiiiiiiiianee 519
18.5.20.3 Endpoint 2 Interrupt Request (IR2)ccoiiiiiiiiiiiiiieeieane 519
18.5.20.4 Endpoint 3 Interrupt Request (IR3)coieiiiiiiiiiiiiiiieeieeeeenae 519
18.5.20.5 Endpoint 4 Interrupt Request (IR4)ooiiiiiiii i 519
18.5.20.6 Endpoint 5 Interrupt Request (IR5)cccoiiiiiiii i 519
18.5.20.7 Endpoint 6 Interrupt Request (IR6)ccooeiiiiiiiiiiiiiiiiiiiiaeenne. 520
18.5.20.8 Endpoint 7 Interrupt Request (IR7)coieiiiiiiiiiiiiiiieeiee e 520
18.5.21 UDC Status/Interrupt Register 1 (USIRL)....coiiiiiiiiii it 521
18.5.21.1 Endpoint 8 Interrupt Request (IR8)cceviiiiiiiiiiiiiiiiiieenee 521
18.5.21.2 Endpoint 9 Interrupt Request (IR9)ccoiiiiiiiiiiiiiiiiiieeeenae 521
18.5.21.3 Endpoint 10 Interrupt Request (IR10)......cviiiiiiiiiii it 521
18.5.21.4 Endpoint 11 Interrupt Request (IR11)....cccviiiiiiiiiiiiiiiiiieanes 521
18.5.21.5 Endpoint 12 Interrupt Request (IR12)......ccoiiiiiiiiiiiiiiiiieieane. 521
18.5.21.6 Endpoint 13 Interrupt Request (IR13) ... oot 521
18.5.21.7 Endpoint 14 Interrupt Request (IR14).....ccviiiiiiiiiiiiiiiiiieens 521
18.5.21.8 Endpoint 15 Interrupt Request (IR15)......ccoiiiiiiiiiiiiiiiiieaeaneen 522
18.5.22 UDC Frame Number High Register (UFNHR)ot 522
18.5.22.1 UDC Frame Number MSB (FNMSB)ccoiiiiiiiiiiiiiei e 522
18.5.22.2 Isochronous Packet Error Endpoint 4 (IPE4)......cccovviiiiiiininn... 523
18.5.22.3 Isochronous Packet Error Endpoint 9 (IPE9).........cooiiiiiiiiiinann.n. 523
18.5.22.4 Isochronous Packet Error Endpoint 14 (IPE14)ccoiiiiiiiaann.. 523
18.5.22.5 Start of Frame Interrupt Mask (SIM)cccoiiiiiiiiiiiiiiieeas 523
18.5.22.6 Start of Frame Interrupt Request (SIR)c.cciiiiiiiiiiiiiiiiieene. 523
18.5.23 UDC Frame Number Low Register (UFNLR)ot 524
18.5.24 UDC Byte Count Register 2 (UBCR2)oiiiiiiiiii i 524
18.5.24.1 Endpoint 2 Byte Count (BC[7:0]) -cceueiiiimiiii i 525
18.5.25 UDC Byte Count Register 4 (UBCR4)ciiiiiii i 525
18.5.25.1 Endpoint 4 Byte Count (BC[7:0]) eeveuriiiiiiiiiii e 525
18.5.26 UDC Byte Count Register 7 (UBCR7) ...t 526
18.5.26.1 Endpoint 7 Byte Count (BC[7:0]) -.eeiuemiiiiiii i 526
18.5.27 UDC Byte Count Register 9 (UBCRO) ... oot 526

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 15

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

18.5.27.1 Endpoint 9 Byte Count (BCL7:0]) ...ciiueiiiiiiiiiiieie i 526

18.5.28 UDC Byte Count Register 12 (UBCRL12)ciiiiiuiiiiii i eeeeaen 527
18.5.28.1 Endpoint 12 Byte Count (BC[7:0]) «euuueimiiiiiii i 527

18.5.29 UDC Byte Count Register 14 (UBCR14)uuuiii i 528
18.5.29.1 Endpoint 14 Byte Count (BC[7:0]) +eeueiiiiiiiiiiiii i 528

18.5.30 UDC Endpoint O Data Register (UDDRO)ciiuiiiiiiiiii i eaeeeeeeen 528
18.5.31 UDC Data Register 1 (UDDRL)uuiuuiieiieeie ettt e e 529
18.5.32 UDC Data Register 2 (UDDR2)uiuiiei et 529
18.5.33 UDC Data Register 3 (UDDRS)uuiuteuieieeeeee ettt e e e 530
18.5.34 UDC Data Register 4 (UDDRA) ...t e s 531
18.5.35 UDC Data Register 5 (UDDRS) ...ttt et et eae e aaneas 531
18.5.36 UDC Data Register 6 (UDDRB)ciuiieiiiie ettt aeee 532
18.5.37 UDC Data Register 7 (UDDR7) ...ttt eeee 532
18.5.38 UDC Data Register 8 (UDDRS)iutuiuieiiieae et eaae s 533
18.5.39 UDC Data Register 9 (UDDRO)uiuiiuiiie ettt e e 533
18.5.40 UDC Data Register 10 (UDDRIO)cuueuuiuiiniiee et eee e e eeeeeaes 534
18.5.41 UDC Data RegiSter L.coiiiiiiii it e ettt e e e et eae e eaeeaanans 535
18.5.42 UDC Data Register 12 (UDDRIL2) ...ttt et et aeens 535
18.5.43 UDC Data Register 13 (UDDRIL3) ..uuiiuiiiiiieiteaa et e et e aeeeeaeens 536
18.5.44 UDC Data Register 14 (UDDRIL4) ...t e 536
18.5.45 UDC Data Register 15 (UDDRIL5)ciuiuuiueiiiii e ee e 537

19.0 UTOPIA LeVel-2. . et ettt ettt ettt ettt eaneaeaas 538
19.1 UTOPIA Transmit MOAUIE ...ttt e eanens 540
19.2 UTOPIA RECEIVE MOAUIE ...ttt et et e e e e e e e e ane e eaneens 543
19.3 UTOPIA-2 Coprocessor / NPE Coprocessor: Bus Interfacec.ocovviiiiiiiiiiiiiennen. 545
19.4 MPHY POIlING ROUTINES ...ttt et e et ettt et et ettt et e e e e e e e aneenen 546
19.5 UTOPIA LeVEI-2 CIOCKS ...ttt et et e ettt aee e eas 546
20.0 JTAG INEEITACE ...ttt ettt et et ettt et et n e e eneens 548
b2 It R 17 = @0) o] | 1= 548
20.1.1 TeSt-LOgIC-RESET STate ..ot ettt aans 549
20.1.2 RUN-TESH/IAIE STate ..uuiiii i e et e e e e e e aaneas 550
20.1.3 SeleCt-DR-SCaAN State ...t e 550
20.1.4 Capture-DR StAtecoini e 550
20.1.5 Shift-DR StaTE ...ttt e e aas 550
20.1.6 EXITL-DR STA ..ottt ettt ettt 551
20.1.7 PaAUSE-DR STALE . ..ottt e 551
20.1.8 EXIT2-DR STAT ..ouuuiiniiiiiiiit ittt et eas 551
20.1.9 UpPdate-DR STAleciuiiiiie et et ettt et e e aaeaaes 551
20.1.10 SeleCt-1R-SCan STate oo et 552
20.1.11 Capture-IR SEate ...ttt ean 552
20.1.12 Shift-IR State ... et et e 552
20.1.13 EXITL-IR STate ...uneiiiiiii et ettt ettt 552
20.1.14 PaUSE-IR State .ttt e 552
20.1.15 EXIT2-TR STate . ouuinniiiii ittt 553
20.1.16 UPdate-1R STAte ...ttt 553

20.2 JTAG INSTIUCTIONS ..ttt ettt ettt et et ettt ettt e e et et e e e aan e e aaneeanns 553
P2 R T B T | = T = L= |15 =] 554
20.3.1 BouNdary SCan ReEQISTerot e et 555
20.3.2 INSTrUCtION REGISTEN ...\ ei et et et eeees 555
20.3.3 JTAG DeViCe ID REQISTEY ...ttt et ettt et et aeeaes 555

21.0 AHB Queue Manager (AQM) ...t 556
0 R R © 1V V= 556
b == AU = N 1 S PP 556

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
16

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

21.3 FUNCLIONAI DESCIIPTION .. . e ettt ettt et ettt e et ettt et et e e e e e e e aneans 557
214 AHB INteI At ..ot et e 558
21.4.1 QUEUE CONTIOl .o ettt et e e eaneeeaan 559
21.4.2 QUEUE STaTUS. ...ttt ettt e et e et et eaeaa e e et eaeaaaaaaaaaaaaaaaaaaaaaannn 560
21.4.2.1 StatuUs UpPdatecoiniiiiii it 560
21.4.2.2 FIag BUS . .eiiiiii e e e eas 561
21.4.2.3 Status INTerTUPTSttt e aaaneees 562
21.5 RegISter DESCIIPULIONSttt et ettt et ettt et et et e e eaaas 562
21.5.1 Queue Access Word Registers 0 - B3ciiiiiiiiii it 562
21.5.2 Queues 0-31 Status Register 0 - 3. ...t 563
21.5.3 Underflow/Overflow Status Register O - 1oiiiiiiiiiiiiii e eeeas 563
21.5.4 Queues 32-63 Nearly Empty Status RegiStercooviiiiiiiiiiiiiiiieiaeeaeenas 564
21.5.5 Queues 32-63 Full Status RegiSter.ot 564
21.5.6 Interrupt O Status Flag Source Select Register O — 3ooiiiiiiiiiiiiiiiiii et 565
21.5.7 Queue Interrupt Enable Register O — 1ooiiiiiiiiiii e 566
21.5.8 Queue Interrupt Register O — L ... e 566
21.5.9 Queue Configuration Words O - B3ttt eaeeaes 566
Figures
1 Intel® IXP425 Network Processor Block Diagram ... 31
2 Intel® 1XP423 Network Processor Block Diagram ... 32
3 Intel® 1XP422 Network Processor BIOCK DIagrameeeeee e 33
4 Intel® 1XP421 Network Processor Block (D)= To | = Lo o TP 34
5 Intel® IXP420 Network Processor and Intel® 1XC1100 Control Plane Processor
122 o Tod 1 I =T | =1 o 1 35
6 Intel XScale® Technology Architecture FEAtUIesSot 36
7 Example of Locked ENtries in TLBo e ettt eaneas 52
8 Instruction Cache Organizationcoiuiiiiiiiii it ettt et ean e eeaneaans 53
9 Locked Line Effect on Round-Robin Replacemento 57
O T = = = o) Y PP 59
I = =T T T 15 e Y2 PPN 59
12 Data Cache Organization..o ettt ettt aeeaaas 61
13 Mini-Data Cache Organizationoieiiiiiiii i ettt e e aeeaaas 62
14 Locked Line Effect on Round-Robin Replacementoooiiiiiiii i 72
15 SELDCSR HaFOWaAIEttt ettt et ettt et e et e et e et e a e e e e e e e e eanneeannenn 103
16 SELDCSR Data REQISTEYttt et et ettt et et e et e et et e e e e e e e e e enes 104
17 DBGTX HAFAWANE ...ttt e e et ettt ettt et e e e e aane e aanenn 105
18 DBGRX HarQWANE ...ttt ettt ettt ettt e e e eaaeens 106
I G VY 1 (= X T | [107
20 DBGRX Dala REgIS Ol ...ttt ettt ettt ettt e e et e e aaeaaaas 108
21 MeSSage BYte FOIMaAtSttt et e e eaaes 111
22 Indirect Branch Entry Address Byte Organizationcooeeoeeiieii e eaeieeaeeaeeeaeenes 114
23 High Level View of Trace BUFfer.o e e eaes 114
24 LDIC JTAG Data Register HardWAarecoiiiiiie i e eeaas 117
25 Format of LDIC Cache FUNCHIONS ...ttt e 119
26 Code Download During a Cold Reset FOr DebUQgcoiiiiiiiiiii it 120
27 Code Download During a Warm Reset FOr Debug.......ccooiiiiiiiii e 122
28 Downloading Code in IC During Program EXECULION........coiiiiiiieiii i eaes 123
29 Processors’ RISC SUPEr-Pipelineo e eaes 169
30 Processors’ PCI Bus Configured as a HOSE ... e 209
31 Processors’ PCI Bus Configured as an Optioncooiiiiiiiiiiiiii i eae e 209
32 Processors’ PCI Controller BIOCK Diagramcooeiiiiiiii it eanee s 210
33 Type 0 Configuration AdAress PRaSe ... e e 214
34 Type 1 Configuration AdAress PhasSeeiuiiii it eeas 215
Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 17

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

48

49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Initiated PCI TYPE O Configuration Read CyCle ... e 227
Initiated PCI Type-0 Configuration Write CYCleo e e 228
Initiated PCI Type-1 Configuration Read Cycle ... e 228
Initiated PCI Type-1 Configuration Write CYCle ... 229
Initiated PCI Memory Read CyYCle e et eaneas 230
Initiated PCl Memory WIIte CYCle.t es 231
Initiated PCl 1/0 Read CYCIE ... et 231
Initiated PCl 170 WITE CYCIE ... e ettt ae e e 232
Initiated PCI Burst Memory Read CYCle. ... 233
Initiated PCI Burst Memory Write CYCIeo 234
AHB to PCI DMA Transfer Byte Lane SWappPiNg ...cc.eeoiioiiieiii et e e e eaieeeaneeaaneen 236
PCI to AHB DMA Transfer Byte Lane SWappiNgeeeueeniie ittt eeeanens 236
Byte Lane Routing During PCI Target Accesses of the AHB —

AHB Configured as a Big-ENdian BUS ... 243
Byte Lane Routing During PCI Target Accesses of the AHB —

AHB Configured as a Little-ENdian BUS. ..o e 244
Byte Lane Routing During AHB Memory Mapped Accesses of the PCI Bus —

AHB Configured as a Big-ENdian BUS ... 245
Byte Lane Routing During AHB Memory Mapped Accesses of the PCl Bus —

AHB configured as a Little-ENdian BUS ..o 246
Byte Lane Routing During DMA Transfers e e 247
Byte Lane Routing During Configuration and Status Register ACCESSESccevveviuerinennenns 248
8-, 16-, 32-, 64- or 128-Mbyte — One-Bank SDRAM Interface Configuration 277
64-, 128- or 256-Mbyte — Two-Bank SDRAM Interface Configuration 278
SDRAM Read Example (CAS Latency of 2 CyCleS) ..ot 285
SDRAM Shared South AHB and NOrth AHB ACCESSuuiieiii i e 286
SDRAM WHITE EXAMIPIE ..ottt et ettt e e e e aeeaes 287
Chip Select ADAress AlIOCATIONttt ettt et et e e e e e aneeaes 295
EXPansion BUS MEMOIY SIZINQ ...t ettt et et ettt et e e r e e eneenens 295
Expansion Bus Peripheral CONNECTION ... i 297
170 Wait Normal Phase TimiNgeooiiiiii ittt et e et e et e e e aneeannean 302
1/0 Wait Extended Phase TimiNg.....cooeoiiiiii ittt e e ettt e e aneeeaneann 303
Expansion-Bus Write (Intel® Multiplexed MOAE)ceii e 305
Expansion-Bus Read (Intel® Multiplexed MOAE)ouiieiiii e e 306
Expansion-Bus Write (Intel® Simplex Write Mode) ..o 307
Expansion-Bus Read (Intel® SIMPIEX MOAE) ... e 308
Expansion-Bus Write (Motorola* Multiplexed Mode)........ccoviiiiiiiiiiiiii i 309
Expansion-Bus Read (Motorola* Multiplexed MOde)cc.oiiiiiiiiiiii i 310
Expansion-Bus Write (Motorola* Simplex MOde) ..o 311
Expansion-Bus Read (Motorola®* SimplexX MOAE) ..o 312
Expansion-Bus Write (T1* HPI-8 MOOE)uiiuiii e e e ee e 313
Expansion-Bus Read (T1* HPI-8 MOAE) ... e 314
Expansion-Bus Write (T1* HPI-16 Multiplexed Mode)ccoiiiiiiiiiiii e 315
Expansion-Bus Read (T1* HPI-16 Multiplexed MoOde).........ccoiiiiiiiiiiiiiii i 316
Expansion-Bus Write (T1* HPI-16 SimplexX MOAE)ouiiiiiiiii i 317
Expansion-Bus Read (TI1* HPI-16 SIimplex MOde)cieiiiiiiiiiii e 318
= B 1 g (= = T = PPN 329
(872 I T o a1 o B 5 =T | = 1 o S 333
1872 = I =1 [T2 S T = o | - 1o o S 334
Multiple Ethernet PHYS Connected tO ProCeSSOrot e 407
Ethernet Coprocessor INTEITACEe ... e e 407
Y1 T L@ N | PPN 410
Y 1T L@ =T To PP 410
Tx Frame-Sync Example (Presuming an OffSet of O)coiiiiiiiiiii it 444
Rx Frame-Sync Example (Presuming Zero OffSet)coooiiiiiiiiiiiiii e 444

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
18

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

ST T I A I =T 1= o 0 T = U = 448
87 T1 RECEIVE Frame ...t e et ettt e e 448
TS I A I = g 1= o o T o = o U= S 449
89 EL RECEIVE Framme ... e et et e 450
90 MVIP, Interleaved Mapping of a TL1 Frame toan EL Framecccoiiiiiiiiiiiiiiiiiiiens 452
91 MVIP, Frame Mapping a T1 Frame to an EL Frameccoiiiiiiiii e 453
92 MVIP, Byte Interlacing Two E1 Streams Onto a 4.096-Mbps Backplane.......................... 453
93 MVIP, Byte Interleaving Two T1 Streams Onto a 4.096-Mbps Backplane 454
94 MVIP, Byte Interleaving Four E1 Streams on a 8.192-Mbps Backplane Bus..................... 455
95 MVIP, Byte Interleaving Four T1 Streams on a 8.192-Mbps Backplane Bus..................... 455
96 NRZI Bit ENCOAING EXAMIPIE ...ttt ettt ettt et et e e e e e eaneeas 462
97 UTOPIA LEVEI-2 COPFOCESSON ...ttt ettt ettt ettt et ettt ettt et e n e et n e en e aeens 530
98 UTOPIA Level-2 MPHY Transmit POIINGconiii e e ee 532
99 UTOPIA Level-2 MPHY ReCeiVe POIING ...t et et eees 535
100 TAP Controller State DIAgIaimot ettt et e eae e aaneen 539
101 AHB QUEUE MANBGET ...ttt et ettt e ettt e et ettt e e et ettt et e e e e e aane e e e eaannneeeeann 547
Tables
1 Acronyms and TermMiNOIOQYttt ettt et et e e e e e e e aneeas 27
2 NetwOrk ProCesSOr FUNCHIONSuite et ettt et ettt ettt ettt et e et et e e e e e e aneaenn 38
3 Data Cache and Buffer Behavior When X = O ...ttt e 46
4 Data Cache and Buffer Behavior When X = L ... e 47
5 Memory Operations that IMPOSE & FENCE........iiiii e e e anen 47
6 Valid MMU and Data/Mini-Data Cache Combinationscoiiiiiiiiiiii i iiaeeenes 48
A |7 2007 417 (@3 = S o ¢ o 0T 74
8 LDC/STC Format when AcCeSSING CPLA ...ttt ettt e e eaaas 75
L N O e R =T o 113 (=] = PPN 75
I 5 B =T |1 (= PP 76
R O Tl o L= Y/ o T =T 1S3 (] PP 77
12 ARM” CONEIOI REGISTEToue et 77
13 AuXiliary CoNtrol REQISTEr ettt eaaas 79
14 Translation Table Base RegiSTerottt et e e e e anean 79
15 Domain AcCeSS CONTIOl REQISTETot e ettt e e e eaneann 80
16 FAUIL STAtUS REQGISTET ...ttt ettt ettt et ettt e et e e e e aneeeens 80
17 FAUIt AAreSS REGISTEY ...ttt ettt ettt et ettt ettt ettt e et e et e e enneanennens 81
RS T @ T o =N U o Vo o] o 1= S 81
I I 8 = B] 1o T 0 S 82
20 Cache LOCK-DOWN FUNCHIONSttt et ettt ettt et et et r e et et e e e e e naeees 83
21 Data Cache LOCK REQISTr ittt e et et et ettt e e e e e e aanean 83
P22 N I 2 o Yo o Lo 1 o I o T o 83
23 ACCESSING PrOCESS ID ...ttt ettt ettt e 84
24 ProCeSS ID REQISTEY ..ttt ettt et et et ettt nean 84
25 Accessing the Debug RegISTErS. e 85
26 COPrOCESSOr ACCESS REGISTON .. . ittt e ettt et e e e e 86
DA A O = 0 R =T] =Y = 86
28 Accessing the Performance Monitoring REQISTErS ..ot 87
29 PWRMODE REQISTEL ...ttt ettt et ettt ettt ettt ettt et e naan 87
30 Clock and Power ManagemENT ...ttt e et e e et et e e nenn 88
G 31 R O O I (01 o =T 1= (= 88
32 Accessing the DebUg ReQISTErS. . ..o i e et e e e eaeeaaes 88
33 Debug Control and Status Register (DCSR) ...t et e e e eaans 90
G R Y £ o1 o = o 4 1 Y PP 93
35 Instruction Breakpoint Address and Control Register (IBCRX) ...ooueieiineiiiiiieiieiieeieaeenens 96
36 Data Breakpoint Register (DBRX)ciuueiii ettt et et e e anens 96
37 Data Breakpoint Controls Register (DBCON) ...t e 97
Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 19

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

38 TX RX Control Register (TXRXCTRL) ...ttt ettt et et ettt et e e e e aeeaas 98
39 Normal RX HandsShakKingottt e e et 99
40 High-Speed Download Handshaking STatesooiiiiii i 99
41 TX HANASNAKING .. et ettt ettt e 100
42 TXRXCTRL MNemMONIC EXTENSIONSuuiiiiiet it ettt ettt et e et e e e e anens 101
e T 1D =T o 1153 (= PP 101
B QR =T o 1153 (= PP 102
45 DEBUG Data Register RESEt VAlUES ..o et e aaeeas 109
46 CP 14 Trace Buffer RegiSter SUMMAIYt aae e 110
47 Checkpoint Register (CHKPTX) ... e et eaes 110
G T I = =l N o] 0 = PP 111
49 MesSsage Byte FOIMATS ...t ettt et ettt 112
50 LDIC CAChe FUNCHIONS ...ttt et et ettt et ettt et et e ettt et e e e e e eeeaanes 118
51 Debug-Handler Code to Implement Synchronization During Dynamic Code Download 125
52 Debug Handler Code: Download Bit and Overflow Flag.........coooiiiiiiiiii e 131
53 Performance MoNitoring REQISTEIS e aee 133
54 CloCK CoUNt ReGISTEI (CONT) 1ttt ittt ettt ettt e e e e e e e e e e e ean e eaneaannes 134
55 Performance Monitor Count Register (PMNO - PMN3) ...ttt eee 135
56 Performance Monitor CoNtrol REGISTEN ... et aeens 135
57 Interrupt ENADIE REQISTOr ...ttt et e et et 136
58 Overflow Flag Status ReQISTEr et aaaes 137
59 EVENT SelECt REGISTEN ... ettt 138
60 Performance MONItOrNG EVENTS ...t ettt e e eaeeanes 139
61 CommON USES Of the PMU ...t ettt et ae e 139
62 Multiply with Internal Accumulate FOrmato e 147
63 MIAL<CONd=F ACCO, RIM, RS, ..t et 147
64 MIAPH{<cONd=F} aCCO, RIM, RS ... et et 148
65 MIAXYy{<<cond=} accCO, RM, RS ... e 148
66 Internal Accumulator ACCESS FOIMALuuui ettt et et eeeeaeeas 150
67 MAR{<cond>=} accO, RALO, RAHIciiiiiii i e e 151
68 MRA{<cond>=} RALO, RAHI, @CCOciiiiiii ittt et ettt e e e ee et eaneeans 151
70 Second-Level Descriptors for Coarse Page Table ... 153
71 Second-Level Descriptors for Fine Page Table ... 153
(S1S I o 1 £ e IV D 1T Yo] o] o = 153
2 =5 ot =T o] o1 IS8T o] 4 = 1/ 154
S T V=T o) o g [0 ¢ 1 Y/ 155
74 Processors’ Encoding of Fault Status for Prefetch AbOrts ..o 156
75 Intel XScale® Processor Encoding of Fault Status for Data AbOrtS...........ccovvieiiiiiennnnns 156
76 Branch LatenCy PENAILY ..ottt et ettt aens 160
T7 LatenCy EXamMIDIe ... e 162
78 Branch Instruction Timings (Those Predicted by the BTB).....cccoviiiiiiiiiiiiiiiiiieeceeee e 162
79 Branch Instruction Timings (Those not Predicted by the BTB)cccovviiiiiiiiiiiiieiceenee 162
80 Data Processing INStruction TiMINGS ettt ettt neeaeens 162
81 Multiply INSTrUCTION TIMINGS ...ttt et ettt e et e et e e e e e e e e enes 163
82 Multiply Implicit Accumulate INStrucCtion TiMINGS .. .cueinei i eens 165
83 Implicit Accumulator Access INStruction TiMINGS ... 165
84 Saturated Data Processing INStruction TimiNgSoviiiiii i e eneas 165
85 Status Register Access INStruction TiMINGSooiiiiiiiiiiii i e aeeas 165
86 Load and Store INSTruCtioN TiMINGS ... e ettt eeeens 165
87 Load and Store Multiple INSTruction TiMINGSeeueee e e e aneeeeanens 166
88 Semaphore INSTrUCTION TiMINGS - .. ettt et et e e et r e e e e rae e e e eaneenenes 166
89 CP15 Register Access INStruCtion TIMINGS . ..ot aaees 166
90 CP14 Register Access INStruCtion TiMiNGgS . .couiuiiiiiieii et eaeeaanaes 166
91 Exception-Generating INStruction TimMiNgSo.uiiiiiiii i eaneas 167
92 Count Leading Zeros INSTrUCtioN TiMINGSeuueeuntt et e et e aeenes 167

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
20 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel >

O3 PIpelines and PipE STagESttt et et et 169
94 Network ProCessSOr FUNCLIONSttt et et ettt et et ettt e et e e e e e e eaaeenens 202
95 Bus Arbitration Example: Three Requesting Masterscooiiiiiiiiiiiiiiii it 205
LG \V (=T o g o] V1Y = o T P 206
97 PCI Target Interface Supported COmMMAaNdScoiiiiiiiiiiii e e eeaeeaas 211
98 PCI Initiator Interface-Supported COMMANTSuenuiie et eaaeaas 212
99 PCIl Memory Map AIIOCALIONottt et ettt et et e e e e aeenens 221
100 PCI Byte Enables Using CRP ACCESS Methodo e e 224
101 PCI CONFIQUIAtION SPACE.ttt ettt ettt et e e e e e eaae e eaneens 225
102 Command Type for PCI Controller Configuration and Status Register Accesses 225
103 PCI Configuration RegiSTEr Mapioini ittt et e e et et e e e e eaeeaaneas 249
104 PCI Controller CSR AdAreSS MaAP cuuet ettt e et ettt et ettt e e et e ae e aaees 258
105 Supported Configuration of the SDRAM Controller........ .o 278
B0 1V =T T V0 o= o = 279
107 Memory Configurations for Writing the SDRAM Configuration (SDR_CONFIG) Register..... 280
108 Memory Configurations for Writing the SDRAM Configuration (SDR_CONFIG) Register..... 280
109 SDRAM Command DeSCIiPtiONuiiiii ittt e e e et e e e e aaneaaanean 281
110 SDRAM 1/0 For Various COMIMANGSuuiteei ettt et e et e et e e e ane e aeeaaes 282
111 Page Register AlIOCATIONt ettt et et e e 284
112 Data Transfer Sizes Of AHBttt e e ee e anea s 285
113 SDRAM REQISTEI OVEIVIEWttt et et e ettt ettt et ettt et e e e e eaaeens 287
114 SDRAM CoNnfiguration OPTiONSttt ettt ettt e e eaeeaanee 289
115 SDRAM BUFSE DEfINITIONS ... ettt et ettt et ettt et e e e eeaes 289
116 SDRAM COMIMBNGS.ttt ettt et ettt ettt ettt et ettt e et et e a et e e et e n e eaneaneenes 290
117 Processors’ Trimmed Version of the Memory Mapcooooiiiiiii e 293
118 Expansion Bus Address and Data Byte Steering.......coceveiieiiiiii i aeeee e 296
119 Expansion Bus Cycle Type SeleCtion ... e ee e 298
120 Multiplexed Output Pins for HPI Operationcoiiiiiiiii i 303
121 HPI HCNTL Control Signal DeCOAiNgcennniiiie ittt e e e eaneas 304
122 EXpansion BUS ReQISTEr OVeIVIBWc...ii ettt e e e et e e e e aeaneas 319
123 Bit Level Definition for each of the Timing and Control Registers...........coooviiiiiiiiiiiannen. 322
124 Configuration Register O DeSCHIPTIONei ettt eeeenens 323
125 Intel XScale® Processor Speed Expansion Bus Configuration Strappingsc.ccveeevuenne.. 324
126 Expansion Bus Configuration Register 1-Bit Definitiono, 325
127 Simulated Expansion BUs PerformanCe.........c.viiiiiiii i e anea 326
128 AdAress Map for The AP B ... ittt ettt e e e aanean 330
129 Typical Baud RaAte SetliNGSttt e ettt ettt et e e aeeaaes 335
130 UART Transmit Parity OPEratiONcoueeueiee ettt e e et et e e e e e e e e reeaaneaneanens 337
131 UART ReceivVe Parity OPErationco.ciueieoe ittt et e et e e e e e eanenes 337
132 UART Word-Length Select Configuration...........o.oiiiiiii e 338
133 UART FIFO TrigQer LEVEI ... e e ettt e e e et e e e aneas 343
134 High-Speed UART ReQISTErS OVEIVIEWueiie ettt et e et e et e e e e eaneaeaneas 344
135 UART IDD Bit MAPPDIiNg - uceueeetee ettt et et ettt ettt et ettt e et et ettt e e e e e e e e enes 349
136 Console UART REQISTEIS OVEIVIEWniteeit et ettt e et et e e et e n et e ean e enens 357
137 Priority Levels of Interrupt Identification RegiSterccveiiiiiiiii e eeen 361
138 UART Interrupt Identification Bit Level Definition 362
139 Bus Arbitration Example: Three Requesting MaStersccoiiiiiiiiiiiiiiiii i eeea 373
1220 I Y/ T=T 0 g To T Y0 1Y, = T o 374
141 GPIO INtErrupt SEIECHIONSui ittt ettt et ettt et e e e e 378
142 GPIO CIOCK FreqUENCY SEIECTottt ettt eenes 380
143 GPIO DULY CYCIE SEIECT.ttt et et et e e ettt e e e e e eeeanens 380
144 GPIO REQISTEIS OVEIVIBW ...ttt ettt ettt et ettt ettt ettt e e et eane e aneas 381
145 Interrupt Controller REQISTELS ... e et eaaneas 391
I T I T g =Yl =T] T P 401
147 Processors’ Devices with Ethernet Interfaceo e 406
Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

September 2006 DM
Order Number: 252480-006US 21

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

148 Processors’ with Ethernet INterfaceo e 436
149 Ethernet MAC B ReGISTEISttt eaneens 436
150 ProcessOrs With HS S ... e e aee e 438
151 HSS TX/RX ClOCK OULPULottt ettt et ettt e e e e aane e e 445
152 HSS Tx/Rx Clock Output Frequencies and PPM EFror........ccoviiiiiiiiiii i 446
153 HSS Tx/Rx Clock Output Frequencies And Their Associated Jitter Characterization 446
154 HSS Frame Output CharaCteriZationco.eieoie ettt neeaeens 446
155 JItter DefinitioNS et 447
156 Endpoint Configuration: Universal Serial Bus Device Controllero, 460
LA U S S S - = 461
158 ENdpoint Field AdAreSSiNg e ettt ettt e e anaan 463
159 IN, OUT, and SETUP Token Packet FOrmatuuunue e eeeeeeeeeeeeeeeeeas 464
160 SOF TOKEN PaCKETt FOIMIAT. ..ottt ettt e et ettt e e et e e e e e e e aan e eaaneann 464
161 Data Packet FOIrMAL ...t ettt e e e 464
162 Handshake PacCket FOrMAt e aaee 465
163 Bulk Transaction FOIMALS ...ttt ettt e e aae e eanens 465
164 Isochronous Transaction FOMMALScuiiiuiie et ae e 466
165 Control TransSacCtion FOIMIATSiiii ettt et e e e e e e eane e eaneaaanens 466
166 Interrupt TranSaCtioN FOIMNATSt ettt ettt et e et e ane e e aeens 467
167 HOSt DeVIiCe REQUEST SUMIMIAIYttt et et et ettt e e e et e e e e e e rae e e eneanens 468
168 USB-Device Register DeSCIHPLIONSt e aee 470
169 Processors’ Devices With UTOP LA e aee e 528
170 JTAG INSTIUCTION STiiii ittt ettt ettt e ettt e ettt e aeaenaes 543
171 JTAG DeVice ReQISTEr VAlUESottt aeeas 545
172 AHB Queue Manager MemMOKY MaPt ettt ettt e et e e e e aeeraneenn 548
173 QUEUE STATUS FlaGS -« ue ettt ettt ettt ettt et et ettt e et ettt e e n e e et ne re e e e ean e aneeanenn 551

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
22

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

®

]
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor tel

Revision History

Date Revision Description
1. Added the 533MHz IXP423 to Figure 2
2. Updated Table 3.1.1.1, Table 3.8.2.1, and the note for Table 126
3. Updated Section 12.1
4. Added clarifying information regarding the MDI Interface to Section 15.1.3,

September 2006 006 Section 15.2.46, and Table 153
5. Added additional description information to bit 3 of Table 124
6. Updated Table 96, “Memory Map”

Inco%orated specification changes, specification clarifications and document changes from the
Intel™ IXP4XX Product Line Specification Update (306428-004 and 306428-005)

Inco%)orated specification changes, specification clarifications and document changes from the
Intel™ I1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
Specification Update (252702-006).

1. Removed Table 1, “Processor Features”. Refer to the Intel® 1XP42X Product Line of
Network Processors and 1XC1100 Control Plane Processor Datasheet.

Replaced Figure 1, Figure 2, Figure 3, Figure 4, and Figure 5. Added new product
IXP423, Figure 2.

3 Updated Table 2, “Network Processor Functions”.

4 Added Section 2.12, “Universal Asynchronous Receiver Transceiver”

5. Updated note on Section 3.1.1.1, “Page (P) Attribute Bit”.

6. Updated Table 94, “Network Processor Functions”.
7
8
9

N

Added Implication to Section 6.1, “PCI Controller Configured as Host”.
Added Section 6.6.1, “PCI Byte Enables”.
Corrected Register table bit 15, Section 6.14.2.8, “PCI Controller Control and Status

Register”.

10. Corrected Figure 60, “Expansion Bus Peripheral Connection®.

11. Replaced all figures in the Expansion Bus Controller chapter (Figure 63—Figure 76).

12. Corrected register table bits 20:17, Section 8.9.9, “Configuration Register 0”.

13. Corrected Table 125, “Intel XScale® Processor Speed Expansion Bus Configuration
Strappings”.

14. Added new Table 127, “Simulated Expansion Bus Performance”.

March 2005 005 15. Updated Table 151, “Processors’ Devices with Ethernet Interface”.

16. Updated Figure 80, “Multiple Ethernet PHYS Connected to Processor”.

17. Enhanced Deferral Parameter Registers information in Section 15.1.4, “Transmitting
Ethernet Frames with MII Interfaces”.

18. Enhanced information regarding Dropped Broadcast Frames in Section 15.1.5,
“Receiving Ethernet Frames with MII Interfaces”.

19. Corrected register description in Section 15.2, “Register Descriptions”.

20. Corrected register description in Section 15.2.1, “Transmit Control 1”.

21. Corrected register description in Section 15.2.2, “Transmit Control 2”.

22. Corrected register description and added notes to Section 15.2.3, “Receive Control 1”.

23. Corrected register description in Section 15.2.4, “Receive Control 2”.

24. Corrected register description in Section 15.2.9, “Transmit Deferral Parameters”.

25. Corrected register description in Section 15.2.10, “Receive Deferral Parameters”.

26. Corrected register description in Section 15.2.11, “Transmit Two Part Deferral
Parameters 1”.

27. Corrected register description in Section 15.2.12, “Transmit Two Part Deferral
Parameters 2”.

28. Corrected register description in Section 15.2.46, “Core Control”.

29. Updated Table 152, “Processors’ with Ethernet Interface”.

30. Updated Table 154, “Processors with HSS”.

31. Updated Table 173, “Processors’ Devices with UTOPIA”.

Change bars indicate areas of change.

Updated Intel® product branding. Change bars were retained from the previous release of this

June 2004 004 document (003).
Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 23

Download from Www.Somanuals.com. All Manuals Search And Download.

®
l n tel Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor—

Date Revision Description

Incozgorated specification changes, specification clarifications and document changes from the
Intel™ IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
Specification Update (252702-003).

1. Added Section 2.5, AHB Queue Manager

. Updated Ethernet MAC A and High-Speed Serial Interfaces sections.

. Added footnote to Table 1, Processor Features

. Updated PCI and Expansion Bus Controller functional overview

. Updated product number on Table 9, ID Register

. Updated Section 6.2, PCI Controller in Option Mode

. Updated Table 104, Support Configuration of the SDRAM Controller, 32 Mbyte 64 Mbit support
. Updated Section 7.2.1, Initializing the SDRAM, routine

. Added footnote to Table 117, Expansion Bus Address and Data Byte Steering

10. Updated Section 8.6, Using 1/0 Wait

11. Updated Section 8.8.14, TI* HPI-16, Simplex-Mode Read Access, Figure 73, Expansion-Bus
Read

12. Updated Table 123, Configuration Register O Description, bit values
13. Added Section 8.9.9.1, User-Configurable Field

14. Updated Section 8.10, Expansion Bus Controller Performance

15. Updated Table 126, Address Map for the APB, peripheral descriptions
16. Updated Section 12, GPIO, description

17. Updated Table 143, GPIO Interrupt Selections

18. Added Sections 15, Ethernet MAC A

19. Added Sections 17.5-17.6, High Speed Serial Interface

© 0O~NO U~ WN

March 2004 003

Incozgorated specification changes, specification clarifications and document changes from the
Intel™ 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
June 2003 002 | gpecification Update. (252702-001).

Incorporated information for the Intel® IXC1100 Control Plane Processor.

February 2003 001 Initial release of this document. Document reissued, without “Confidential” marking.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
24 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
—Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane Processor l n tel

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 25

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—Introduction

1.0 Introduction
1.1 About This Document
This document is the main reference for the external architecture of the Intel® I1XP42X
Product Line of Network Processors and 1XC1100 Control Plane Processor.
1.1.1 How to Read This Document
Familiarity with ARM™ Version 5TE Architecture is necessary in order to understand
some aspects of this document.
Each chapter in this document focuses on a specific architectural feature of the Intel®
IXP42X product line and 1XC1100 control plane processors.
Note: This document’s special terms and acronyms are listed in “Terminology and
Conventions” on page 26.
1.2 Other Relevant Documents
Document Title Document #
Intel® IXP4XX Product Line Specification Update 306428
Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane
252479
Processor Datasheet
Intel® IXP400 Software Specification Update 273795
Intel® IXP400 Software Programmer’s Guide 252539
ARM DDI 0100E
ARM” Architecture Version 5TE Specification (ISBN 0 201
737191)
PCI Local Bus Specification, Rev. 2.2 N/A
Universal Serial Bus Specification, Revision 1.1 N/A
UTOPIA Level 2 Specification, Revision 1.0 N/A
IEEE 802.3 Specification N/A
IEEE 1149.1 Specification N/A
1.3 Terminology and Conventions
1.3.1 Number Representation

All numbers in this document can be assumed to be base 10 unless designated
otherwise. In text and pseudo code descriptions, hexadecimal numbers have a prefix of
Ox and binary numbers have a prefix of Ob. For example, 107 would be represented as
0x6B in hexadecimal and 0b1101011 in binary.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
26

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

®
Introduction—Intel® 1XP42X product line and 1XC1100 control plane processors l n tel

1.3.2

Table 1.

September 2006

Acronyms and Terminology

Acronyms and Terminology

Acronym/
Terminology

Description

AAL ATM Adaptation Layers
AES Advanced Encryption Standard
AHB Advanced High-Performance Bus
APB Advanced Peripheral Bus
API Application Program Interface
ARBS South Arbiter
Assert The logically active value of a signal or bit.
ATM-TC Asynchronous Transmission Mode — Transmission Convergence
AQM AHB Queue Manager
BTB Branch Target Buffer
An operation that updates external memory with the contents of the specified line in the
data/mini-data cache if any of the dirty bits are set and the line is valid. There are two
Clean dirty bits associated with each line in the cache so only the portion that is dirty will get
written back to external memory.
After this operation, the line is still valid and both dirty bits are deasserted.
Bringing together a new store operation with an existing store operation already resident
in the write buffer. The new store is placed in the same write buffer entry as an existing
Coalescing store when the address of the new store falls in the four-word, aligned address of the
existing entry. This includes, in PCI terminology, write merging, write collapsing, and write
combining.
CRC Cyclical Redundancy Check
FCS Frame-Check Sequence
Deassert The logically inactive value of a signal or bit.
DMA Direct Memory Access
DSP Digital Signal Processor
El Euro 1 trunk line
FIFO First In First Out
An operation that invalidates the location(s) in the cache by de-asserting the valid bit.
Flush Individual entries (lines) may be flushed or the entire cache may be flushed with one
command. Once an entry is flushed in the cache it can no longer be used by the program.
GClI General Circuit Interface
GPIO General-purpose input/output
G.SHDSL ITU G series specification for Single-Pair HDSL
HDLC High-level Data Link Control
HDSL High-Bit-Rate Digital Subscriber Line
HDSL2 High-Bit-Rate Digital Subscriber Line, Version 2
HEC Head-Error Correction
HPI (Texas Instrument) Host Port Interfaces
HSS High-Speed Serial (port)
ISDN Integrated Services Digital Network
IOM ISDN Orientated Modular
LFSR Linear Feedback Shift Register
LSb Least-Significant bit

Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
27

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Introduction

Table 1. Acronyms and Terminology (Continued)

Acronym/

Terminology Description

LSB Least-Significant Byte

LUT Look-Up Table

MAC Media Access Controller
MDIO Management Data Input/Output
MIB Management Information Base
MI1 Media-Independent Interface
MMU Memory Management Unit

MSb Most-Significant bit

MSB Most-Significant Byte

MVIP Multi-Vendor Integration Protocol
NPE Network Processor Engine

NRZI Non-Return To Zero Inverted

PCI Peripheral Component Interconnect
PEC Programmable Event Counters
PHY Physical Layer (Layer 1) Interface

A field that may be used by an implementation. Software should not modify reserved

Reserved fields or depend on any values in reserved fields.
RX Receive (HSS is receiving from off-chip)
SFD Start of Frame Delimiter
SRAM Static Random Access Memory
SDRAM Synchronous Dynamic Random Access Memory
T1 Type 1 trunk line
TDM Time Division Multiplex
TLB Translation Look-Aside Buffer
X Transmit (HSS is transmitting off-chip)
UART Universal Asynchronous Receiver-Transmitter
WAN Wide Area Network

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
28 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

®
Introduction—Intel® 1XP42X product line and 1XC1100 control plane processors l n tel

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 29

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and I1XC1100 control plane processors—Overview of Product Line

2.0

Overview of Product Line

The Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane
Processor contain an ARM™ V5TE-compliant microprocessor referred to as the Intel
XScale® Processor. The Intel® IXP42X product line and 1XC1100 control plane
processors are designed with Intel 0.18-micron production semiconductor process
technology. This process technology, along with the compactness of the Intel XScale
processor, simultaneous processing of three integrated Network Processing Engines,
and numerous dedicated function peripheral interfaces enables the 1XP42X product line
and 1XC1100 control plane processors to operate over a wide range of low-cost
networking applications, producing industry-leading performance.

As indicated in Figure 1 through Figure 5, the I1XP42X product line and 1XC1100 control
plane processors combine many features with the Intel XScale processor to create a
highly integrated processor applicable to LAN/WAN based networking applications. The
IXP42X product line and IXC1100 control plane processors provide two MII interfaces;
a UTOPIA Level -2 interface; a USB v1.1 device controller with embedded transceiver;
a 32-bit, 33/66-MHz PCI bus; an 16-bit expansion bus; a 32-bit, 133-MHz SDRAM
Interface; two UARTs; two High-Speed Serial Interfaces and 16 GPIOs.

Unless otherwise specified, the functional descriptions apply to all of the IXP42X
product line and IXC1100 control plane processors. Refer to the table, “Processor
Features”, in the Intel® 1XP42X Product Line of Network Processors and 1XC1100
Control Plane Processor Datasheet for an overview feature matrix that includes
software enables for all supported processors.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
30

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Overview of Product Line—Intel® IXP42X product line and 1XC1100 control plane processors

intel.

Figure 1. Intel® I1XP425 Network Processor Block Diagram

UTOPIA 2

AR

WAN/Noice NPE
UTOPIA
mm\Vlax 24 xDSL PHYs)
AAL, HSS, HDLC

MIl-0

NPE A

‘ Ethernet
Ethernet MAC .32 MHz x 32 bits North Advance High-Performance Bus

Ethernet

Mil-1 ueue Status Bus
' NPE B 9

Ethernet MAC

SHA-1/MD5, NOAthAHB
DES/3DES, AES rbiter Queue

Manager

SDRAM
Controller
8 - 256 MB

8 KB SRAM

North/South [South AHB

m AHB Bridge Arbiter

66.66 MHz Advanced Peripheral Bus AE‘ E(/iAng 133.32 MHz x 32 bits South Advance High-Performance Bus

UsB PMU

921Kbaud [controller | Device [§ (AHB) Intel XScale’ Processor
V1.1 266/400/533 MHz

32 KB Data Cache PCI

Interrupt
921Kbaud f Controller

Expansion

Bus
Controller

32 KB Instruction Cache Controller
2 KB Mini-Data Cache

@t

B1563-04

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006

DM
Order Number: 252480-006US 31

Download from Www.Somanuals.com. All Manuals Search And Download.

™1 ®
l n tel Intel® IXP42X product line and 1XC1100 control plane processors—Overview of Product Line

Figure 2. Intel® 1XP423 Network Processor Block Diagram

< HSS-0 E UTOPIA-2 >
AR

WAN/Voice NPE

UTOPIA

mmMax 24 xDSL PHYs)
AAL, HSS, HDLC

MII-0 Ethernet

NS 1 2 MH 2 bits North Ad H"hPrf B
Ethernet MAC 33.3 1z x 32 bits Nortl lvance High-Performance Bus

Queue Status Bus

Mil-1 Ethernet

NPE B
North AHB
Ethernet MAC Queue
Manager
8 KB SRAM

SDRAM
Controller
8 - 256 MB

North/South jlSouth AHB
LS m AHB Bridge Arbiter
66.66 MHz Advanced Peripheral Bus AEE{QZB 133.32 MHz x 32 hits South Advance High-Performance Bus
usB PMU
<i 921Kbaud fController | Device (AHB) Intel XScale® Processor
Vil 266/533 MHz

Expansion

PCI BUS

Controller

32 KB Data Cache
32 KB Instruction Cache
2 KB Mini-Data Cache

Controller

4
@
N4

<:: OIdO 9T
<

B4285-02
Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
32 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Overview of Product Line—Intel® IXP42X product line and 1XC1100 control plane processors

Figure 3. Intel® I1XP422 Network Processor Block Diagram

intel.

P FI—

Mil-1

Interrupt
921Kbaud | Controller

o

Ethernet

NPE A I
Ethernet MAC

133.32 MHz x 32 bits North Advance High-Performance Bus

Queue Status Bus

Ethernet

NPE B North AHB
Ethernet MAC Arbiter Queue
SHA-1/MD5,

Manager

DES, 3DES, AES 8 KB SRAM

North/South [South AHB
AHB Bridge Arbiter

66.66 MHz Advanced Peripheral Bus

SDRAM
Controller
8 - 256 MB

921Kbaud | Controller

usB
Device
V1.1

PMU
(AHB)

Intel XScale" Processor
266 MHz
32 KB Data Cache PCI
32 KB Instruction Cache Controller

2 KB Mini-Data Cache

AE ﬁ gzzB 133.32 MHz x 32 bits South Advance High-Performance Bus

Expansion
Bus
Controller

3

N
Y
[}
ny

@

B1566-04

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
33

intel.

Figure 4.

Intel® IXP42X product line and 1XC1100 control plane processors—Overview of Product Line

Intel® 1XP421 Network Processor Block Diagram

Ethernet

Mil-0

NPE A

Ethernet MAC

h-Performance Bus

Queue Status Bus

North/South
AHB Bridge

North AHB
Arbiter

South AHB
Arbiter

Queue
Manager
8 KB SRAM

66.66 MHz Advanced Peripheral Bus

921Kbaud] Controller

Bus

32 KB Data Cache
32 KB Instruction Cache
2 KB Mini-Data Cache

UsB PMU
Device [(AHB) Intel XScale" Processor
Vi1 266 MHz

Expansion

PCI BUS

Controller

Controller

o
@

@
=

B1565-04

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
34

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Overview of Product Line—Intel® IXP42X product line and 1XC1100 control plane processors l n tel

Figure 5. Intel® 1XP420 Network Processor and Intel® 1XC1100 Control Plane
Processor
Block Diagram

I

Ethernet
NPE A

133.32 MHz x 32 hits North Advance High-Performance Bus

Ethernet MAC
Queue Status Bus
VIR Ethernet
d \PEB

Ethernet MAC]
-] |
‘ 66.66 MHZ’ Tdvanced Pe‘nTheraI Bus ’ ‘ 133.32 MHz x 32 bits South Advance High-Performance Bus

<: Intel XScale" Processor
266/400/533 MHz

32 KB Data Cache
32 KB Instruction Cache

2 KB Mini-Data Cache

<:Old9 ST

v

B1564-04

2.1 Intel XScale® Microarchitecture Processor

The Intel XScale® Processor incorporates an extensive list of architecture features that
allows it to achieve high performance. This rich feature set allows programmers to
select the appropriate features that obtains the best performance for their application.
Many of the architectural features added to Intel XScale processor help hide memory
latency which often is a serious impediment to high-performance processors.

Intel XScale® Processor features include:

« The ability to continue instruction execution even while the data cache is retrieving
data from external memory

« A write buffer
= Write-back caching

= Various data cache allocation policies that can be configured different for each
application

= Cache-locking

All these features improve the efficiency of the memory bus external to the 1XP42X
product line and 1XC1100 control plane processors.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 35

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® I1XP42X product line and I1XC1100 control plane processors—Overview of Product Line

The 1XP42X product line and 1XC1100 control plane processors have been equipped to
efficiently handle audio processing through the support of 16-bit data types and 16-bit
operations. These audio-coding enhancements center around multiply and accumulate
operations which accelerate many of the audio filter operations.

2.1.1 Intel XScale® Processor Overview
Figure 6 shows the major functional blocks of the Intel XScale processor. This section
gives brief, high-level overviews of these blocks.
Figure 6. Intel XScale® Technology Architecture Features
Data Cache
Instruction Cache ;32K or 1ok bytes #
« 32K or 16K bytes Lol ey ,’Data RAM
= 32 ways withrough 7+ 28K or 12K
« Lockable by line ﬁf' LN
« Hit under » bytes
miss _ < * Re-map of data
== cache
Branch Target IMMU DMMU Fill
Buffer_ « 32 entry TLB *32entry TLB Buffer
* 128 entries « Fully associative * Fully Associative « 4 - 8 entries
* Lockable by entry * Lockable by entry
Performance I
Monitoring MAC }’;’”Ee Buffer
* Single Cycle . Ftﬁrcgzslescin
Debu Throughput (16*32)
. Hardwege Breakpoints : 16-bit SIMD ﬁ
- Branch History Table * 40 bit Accumulator JTAG
Note: The Power Management Control feature was not implemented in the 1XP42X product
line and IXC1100 control plane processors.
2.1.1.1 ARM™ Compatibility
ARM™ Version 5 Architecture added floating point instructions to ARM Version 4. The
Intel XScale processor implements the integer instruction set architecture of ARM V5,
but does not provide hardware support of the floating point instructions.
Intel XScale processor provides the Thumb™* instruction set (ARM V5T) and the ARM
V5E DSP extensions.
Backward compatibility with ARM products is maintained for user-mode applications.
Operating systems may require modifications to match the specific hardware features
of the I1XP42X product line and IXC1100 control plane processors and to take
advantage of added performance enhancements.
2.1.1.2 Multiply/Accumulate (MAC)

The MAC unit supports early termination of multiplies/accumulates in two cycles and
can sustain a throughput of a MAC operation every cycle. Several architectural
enhancements were made to the MAC to support audio coding algorithms, which
include a 40-bit accumulator and support for 16-bit packed data.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
36

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Overview of Product Line—Intel® IXP42X product line and 1XC1100 control plane processors l n tel

2.1.1.3

2.1.1.4

2.1.1.5

2.1.1.6

September 2006

Memory Management

The Intel XScale processor implements the Memory Management Unit (MMU)
Architecture specified in the ARM Architecture Reference Manual. The MMU provides
access protection and virtual-to-physical address translation.

The MMU Architecture also specifies the caching policies for the instruction cache and
data cache. These policies are specified as page attributes and include:

= Identifying code as cacheable or non-cacheable

Selecting between the mini-data cache or data cache

Write-back or write-through data caching

Enabling data-write allocation policy

Enabling the write buffer to coalesce stores to external memory

For more details, see Section 3.1, “Memory Management Unit” on page 44.

Instruction Cache

The Intel XScale processor comes with a 32-Kbyte instruction cache. The instruction
cache is 32-way set associative and has a line size of 32 bytes. All requests that “miss”
the instruction cache generate a 32-byte read request to external memory. A
mechanism to lock critical code within the cache also is provided.

For more details, see “Instruction Cache” on page 52.

Branch Target Buffer

The Intel XScale processor provides a Branch Target Buffer (BTB) to predict the
outcome of branch-type instructions. It provides storage for the target address of
branch type instructions and predicts the next address to present to the instruction
cache, when the current instruction address is that of a branch.

The BTB holds 128 entries. For more details, see “Branch Target Buffer” on page 58.

Data Cache

The Intel XScale processor comes with a 32-Kbyte data cache. Besides the main data
cache, a mini-data cache is provided whose size is 1/16™ the main data cache. (A
32-Kbyte main data cache has a 2-Kbyte mini-data cache.)

The main data cache is 32-way set associative and the mini-data cache is two-way set
associative. Each cache has a line size of 32 bytes and supports write-through or write-
back caching.

The data/mini-data cache is controlled by page attributes defined in the MMU
Architecture and by coprocessor 15.

For more details, see “Data Cache” on page 60.

The Intel XScale processor allows applications to reconfigure a portion of the data
cache as data RAM. Software may place special tables or frequently used variables in
this RAM. For more information on this, see “Reconfiguring the Data Cache as Data
RAM” on page 68.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 37

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and I1XC1100 control plane processors—Overview of Product Line

| 2.1.1.7 Intel XScale® Processor Performance Monitoring

Two performance-monitoring counters have been added to the Intel XScale processor

| that can be configured to monitor various events in the Intel XScale processor. These
events allow a software developer to measure cache efficiency, detect system
bottlenecks, and reduce the overall latency of programs.

For more details, see “Performance Monitoring” on page 133 and Section 11.0,
“Internal Bus Performance Monitoring Unit (IBPMU)” on page 372.

2.2 Network Processor Engines (NPE)

The network processor engines are dedicated function processors integrated into many
of the IXP42X product line and IXC1100 control plane processors to off load processing
function required by the Intel XScale processor. Table 2 specifies which devices, of the
IXP42X product line and IXC1100 control plane processors, have which of these
capabilities.

Table 2. Network Processor Functions

Multi-
Device UTOPIA | HSS [MI1 O|MII 1 AES / DES Channel
/ 3DES HDLC

SHA-1/
MD-5

Intel® IXP425 Network
Processor

Intel® IXP423 Network
Processor

Intel® 1XP422 Network
Processor

Intel® IXP421 Network
Processor

Intel® IXP420 Network
Processor

Intel® 1XC1100 Control Plane
Processor

The network processor engines are high-performance, hardware-multi-threaded
processors. All instruction code is stored locally with a dedicated instruction-memory
bus. These engines support processing of the dedicated peripherals. The peripherals
supported using the network processor engines are the following interfaces:

e up to 2 MlI

e UTOPIA Level-2

e up to 2 HSS
The combined forces of the hardware multi-threading, local code store, independent
instruction memory, and parallel processing allows the Intel XScale processor to be
utilized purely for application purposes. This parallel processing of the peripheral

interface functions allows unsurpassed performance to be achieved by the application
running on the IXP42X product line and IXC1100 control plane processors.

For further information on the network processor engines, see Section 4.0, “Network
Processor Engines (NPE)” on page 202.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM September 2006
38 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Overview of Product Line—Intel® IXP42X product line and 1XC1100 control plane processors l n tel >

2.3

2.4

2.5

September 2006

Internal Bus

The internal bus architecture of the Intel XScale processor is designed to allow parallel
processing to occur and isolate bus utilization based on particular traffic patterns. The
bus is segmented into three major buses: the North AHB, the South AHB, and the APB.

The North AHB is a 133.32 MHz, 32-bit bus that can be mastered by the WAN NPE or
both of the Ethernet NPEs. The targets of the North AHB can be the SDRAM or the AHB/
AHB Bridge.

The AHB/AHB Bridge will allow access by the NPEs to the peripherals and internal
targets on the South AHB. Data transfers by the NPEs on the North AHB to the South
AHB are targeted predominately to the queue manager. Transfers to the AHB/AHB
Bridge may be “posted” when writing or “split” when reading. This allows control of the
North AHB to be given to another master on the North AHB and enables the bus to
achieve maximum efficiency.

Transfers to the AHB/AHB Bridge are considered to be small and infrequent relative to
the traffic passed between the NPEs on the North AHB and the SDRAM.

The South AHB is a 133.32 MHz, 32-bit bus that can be mastered by the Intel XScale
processor, PCI Controller DMA engines, AHB/AHB Bridge, and the AHB/APB Bridge. The
targets of the South AHB can be the SDRAM, PCI Interface, Queue Manager, or the
APB/AHB Bridge. Accessing across the APB/AHB allows interfacing to peripherals
attached to the APB.

The APB is a 66.66 MHz, 32-bit bus that can be mastered by the AHB/APB Bridge only.
The targets of the APB can be the High-Speed UART Interface, Console UART Interface,
USB v1.1 interface, all NPEs, the Performance Monitoring Unit (PMU), Interrupt
Controller, General-Purpose Input/Output (GP10O), and timers. The APB interface to the
NPEs are used for code download and part configuration.

For more information, see Section 5.0, “Internal Bus” on page 204.

MI1 Interfaces

Two industry-standard Media Independent Interfaces (MIl) are integrated into the
IXP42X product line and IXC1100 control plane processors with separate Media Access
Controllers and Network Processing Engines. This enables parallel processing of data
traffic on the interfaces and off loading of processing overhead required by the Intel
XScale processor.

The IXP42X product line and 1XC1100 control plane processors are compliant with the
IEEE, 802.3 specification.

AHB Queue Manager

The AHB Queue Manager (AQM) provides queue functionality for various internal
blocks. It maintains the queues as circular buffers in an embedded 8KB SRAM. It also
implements the status flags and pointers required for each queue.

The AQM manages 64 independent queues. Each queue is configurable for buffer and
entry size. Additionally status flags are maintained for each queue.

The AQM interfaces include an Advanced High-performance Bus (AHB) interface to the
NPEs and Intel XScale processor (or any other AHB bus master), a Flag Bus interface,
an event bus (to the NPE condition select logic) and two interrupts to the Intel XScale
processor. The AHB interface is used for configuration of the AQM and provides access
to queues, queue status and SRAM. Individual queue status for queues 0-31 is

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

| Order Number: 252480-006US 39

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and I1XC1100 control plane processors—Overview of Product Line

communicated to the NPEs via the flag bus. Combined queue status for queues 32-63
are communicated to the NPEs via the event bus. The two interrupts, one for queues O-
31 and one for queues 32-63, provide status interrupts to the Intel XScale processor.

For more information on the AHB Queue Manager, see Section 21.0, “AHB Queue
Manager (AQM)” on page 556.

2.6 UTOPIA 2

The integrated UTOPIA Level -2 interface has a dedicated network-processing engine.
The interface allows a multiple- or single-physical-interface configuration. The network
processing engine handles segmentation and reassembly of Asynchronous Transfer
Mode (ATM) cells, CRC Checking/Generation, and the transfer of data to and from
memory. This enables parallel processing of data traffic on the UTOPIA Level-2
interface, off loading processor overhead required by the Intel XScale processor.

The 1XP42X product line and 1XC1100 control plane processors are compliant with the
ATM Forum, UTOPIA Level -2, Revision 1.0 specification.

For more information on the UTOPIA Level-2 interface, see Section 19.0, “UTOPIA
Level-2” on page 538.

2.7 USB vl1.1

The integrated USB v1.1 interface is a device-only controller. The interface supports
full-speed operation and 16 end points and includes an integrated transceiver. The
endpoints include:

= Six isochronous endpoints (three input and three output)
= Two control endpoints (one input and one output)

= Two interrupt endpoints (one input and one output)

= Six bulk endpoints (one input and one output)

For more information on the USB v1.1 interface, see Section 18.0, “Universal Serial Bus
(USB) v1.1 Device Controller” on page 468.

2.8 PCI

The IXP42X product line and IXC1100 control plane processors’ PCI controller is
compatible with the PCI Local Bus Specification, Rev. 2.2. The PCI interface is 32-bit
compatible bus and capable of operating as either a host or an option (i.e. not the

Host)
For more information on the PCI interface, see Section 6.0, “PCI Controller” on
page 208.

2.9 Memory Controller

The memory controller manages the interface to external SDRAM memory chips. The
interface:

* Operates at 133.32 MHz (which is 4 * OSC_IN input pin.)
= Supports eight open pages simultaneously
= Has two banks to support memory configurations from 8 Mbyte to 256 Mbyte

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
40 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Overview of Product Line—Intel® IXP42X product line and 1XC1100 control plane processors l n tel

2.10

2.11

September 2006

The memory controller only supports 32-bit memory. If a xX16 memory chip is used, a
minimum of two memory chips would be required to facilitate the 32-bit interface
required by the IXP42X product line and IXC1100 control plane processors. A maximum
of four SDRAM memory chips may be attached to the processors.

The memory controller internally interfaces to the North AHB and South AHB with
independent peripherals. This architecture allows SDRAM transfers to be interleaved
and pipelined to achieve maximum possible efficiency. The maximum burst size
supported to the SDRAM Interface is 8-32 bit words. This burst size allows the best
efficiency/fairness performance between accesses from the North and South AHB.

For more information on the memory controller, see Section 7.0, “SDRAM Controller”
on page 276.

Expansion Bus

The expansion interface allows easy and — in most cases — glue-less connection to
peripheral devices. It also provides input information for device configuration after
reset. Some of the peripheral device types are flash, ATM control interfaces, and DSPs
used for voice applications. (Some voice configurations can be supported by the HSS
interfaces and the Intel XScale® Processor, implementing voice-compression
algorithms.)

The expansion bus interface is a 16-bit interface that allows an address range of
512 bytes to 16 Mbytes, using 24 address lines for each of the eight independent chip
selects.

Accesses to the expansion bus interface consists of five phases. Each of the five phases
can be lengthened or shortened by setting various configuration registers on a per-
chip-select basis. This feature allows the 1XP42X product line and 1XC1100 control
plane processors to connect to a wide variety of peripheral devices with varying speeds.

The expansion bus interface supports Intel or Motorola* microprocessor-style bus
cycles. The bus cycles can be configured to be multiplexed address/data cycles or
separate address/data cycles for each of the eight chip-selects.

Additionally, Chip Selects 4 through 7 can be configured to support Texas Instruments
HPI-8 or HPI-16 style accesses for DSPs.

The expansion bus interface is an asynchronous interface to externally connected
chips. However, a clock must be supplied to the 1XP42X product line and 1XC1100
control plane processors’ expansion bus interface for the interface to operate. This
clock can be driven from GPIO 15 or an external source. The maximum clock rate that
the expansion bus interface can accept is 66.66 MHz.

At the de-assertion of reset, the 24-bit address bus is used to capture configuration
information from the levels that are applied to the pins at this time. External pull-up/
pull-down resistors are used to tie the signals to particular logic levels

For more information on the Expansion Interface, see Section 8.0, “Expansion Bus
Controller” on page 292.

High-Speed Serial Interfaces

The High-Speed Serial interfaces are a six-signal interface that supports serial transfer
speeds from 512 KHz to 8.192 MHz.

For more information on the High-Speed Serial Interfaces, see Section 17.0, “High-
Speed Serial Interfaces” on page 448.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 41

Download from Www.Somanuals.com. All Manuals Search And Download.

n 0>
l n tel Intel® IXP42X product line and 1XC1100 control plane processors—Overview of Product Line

2.13

2.14

2.15

Universal Asynchronous Receiver Transceiver

The UART interfaces are 16550-compliant UARTs with the exception of transmit and
receive buffers. Transmit and receive buffers are 64 bytes-deep versus the 16 bytes
required by the 16550 UART specification.

The interface can be configured to support speeds from 1,200 baud to 921 Kbaud. The
interface support configurations of:

= Five, six, seven, or eight data-bit transfers
= One or two stop bits
= Even, odd, or no parity

The request-to-send (RTS_N) and clear-to-send (CTS_N) modem control signals also
are available with the interface for hardware flow control.

For more information on the UART interfaces, see Section 10.0, “Universal
Asynchronous Receiver Transceiver (UART)” on page 332.

GPIO

There are 16 GPIO pins supported by the IXP42X product line and 1XC1100 control
plane processors. GPIO pins O through 13 can be configured to be general-purpose
input or general-purpose output. Additionally, GPIO pins O through 12 can be
configured to be an interrupt input.

GPIO Pin 14 can be configured similar to GPIO pin 13 or as a clock output. The output-
clock configuration can be set at various speeds, up to 33.33 MHz, with various duty
cycles. GPIO Pin 14 is configured as an input, upon reset.

GPIO Pin 15 can be configured similar to GPIO pin 13 or as a clock output. The output-
clock configuration can be set at various speeds, up to 33.33 MHz, with various duty
cycles. GPIO Pin 15 is configured as a clock output, upon reset. GPIO Pin 15 can be
used to clock the expansion interface, after reset.

For more information on the GPIO pins, see Section 12.0, “General Purpose Input/
Output (GPIO)” on page 386.

Interrupt Controller

The I1XP42X product line and IXC1100 control plane processors consist of 32 interrupt
sources to allow an extension of the Intel XScale processor’s FIQ and IRQ interrupt
sources. These sources can originate from external GPIO pins or internal peripheral
interfaces.

The interrupt controller can configure each interrupt source as FIQ, IRQ, or disabled.
The interrupt sources tied to Interrupt O to 7 can be prioritized. The remaining
interrupts are prioritized in ascending order. (For example, 8 has a higher priority than
9.)

For more information on the interrupt controller, see Section 13.0, “Interrupt
Controller” on page 398.

Timers

The IXP42X product line and 1XC1100 control plane processors consists of four internal
timers operating at 66.66 MHz (which is 2 * OSC_IN input pin.) to allow task
scheduling and prevent software lock-ups. The device has four 32-bit counters:

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
42

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Overview of Product Line—Intel® IXP42X product line and 1XC1100 control plane processors l n tel

= Watch-Dog Timer e Timestamp Timer = Two general-purpose
timers

For more information on the timers, see Section 14.0, “Timers” on page 408.

2.16 JTAG

Testability is supported on the I1XP42X product line and 1XC1100 control plane
processors through the Test Access Port (TAP) Controller implementation, which is
based on IEEE 1149.1 (JTAG) Standard Test Access Port and Boundary-Scan
Architecture. The purpose of the TAP controller is to support test logic internal and
external to the 1XP42X product line and 1XC1100 control plane processors, such as
built-in self test and boundary scan.

For more information on JTAG, see Section 20.0, “JTAG Interface” on page 548.

88

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006 DM
Order Number: 252480-006US 43

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

3.0 Intel XScale® Processor
This chapter provides functional descriptions of the Intel XScale® Processor.
3.1 Memory Management Unit
This section describes the memory management unit implemented in Intel® IXP42X
Product Line of Network Processors and 1XC1100 Control Plane Processor.
The Intel XScale® Processor implements the Memory Management Unit (MMU)
Architecture specified in the ARM* Architecture Reference Manual. To accelerate
virtual-to-physical address translation, Intel XScale processor uses both an instruction
Translation Look-Aside Buffer (TLB) and a data TLB to cache the latest translations.
Each TLB holds 32 entries and is fully associative.
Not only do the TLBs contain the translated addresses, but also the access rights for
memory references.
If an instruction or data TLB miss occurs, a hardware translation-table-walking
mechanism is invoked to translate the virtual address to a physical address. Once
translated, the physical address is placed in the TLB along with the access rights and
attributes of the page or section. These translations can also be locked down in either
TLB to guarantee the performance of critical routines.
For more information, refer to “Exceptions” on page 47.
The Intel XScale processor allows system software to associate various attributes with
regions of memory:
« Cacheable
- Bufferable
= Line-allocate policy
* Write policy
- |I/0
= Mini data cache
= Coalescing
For a description of page attributes, see “Cacheable (C), Bufferable (B), and eXtension
(X) Bits” on page 45. For information on where these attributes have been mapped in
the MMU descriptors, see “New Page Attributes” on page 152.
Note: The virtual address with which the TLBs are accessed may be remapped by the PID

register. For a description of the PID register, see “Register 13: Process ID” on page 84.

ARM MMU Version 5 Architecture introduces the support of tiny pages, which are

1 Kbyte in size. The reserved field in the first-level descriptor (encoding Ob11) is used
as the fine page table base address. The exact bit fields and the format of the first and
second-level descriptors can be found in “New Page Attributes” on page 152.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
44

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.1.1

3.1.1.1

Note:

3.1.1.2

3.1.1.2.1

September 2006

The attributes associated with a particular region of memory are configured in the
memory management page table and control the behavior of accesses to the
instruction cache, data cache, mini-data cache, and the write buffer. These attributes
are ignored when the MMU is disabled.

To allow compatibility with older system software, the new Intel XScale processor
attributes take advantage of encoding space in the descriptors that was formerly
reserved.

Memory Attributes

Page (P) Attribute Bit

The selection between address or data coherency is controlled by a software-
programmable P-Attribute bit in the Intel XScale processor’'s Memory Management Unit
(MMU) and BYTE_SWAP_EN bit. The BYTE_SWAP_EN bit will be from the Expansion-
Bus Controller Configuration Register 1 Table 126, bit 8. When the 1XP42X product line
and IXC1100 control plane processors is reset, this bit will reset to 0.

The default endian-conversion method for IXP42X product line and 1XC1100 control
plane processors is address coherency. This was selected for backward compatibility
with the IXP425 AO-step device.

The BYTE_SWAP_EN bit is an enable bit that allows data coherency to be performed,
based on the P-Attribute bit.

= When the bit is O, address coherency is always performed.

= When the bit is 1, the type of coherency performed is dependent on the P-Attribute
bit.

The P-Attribute bit is associated with each 1-Mbyte page. The P-Attribute bit is output
from the Intel XScale processor with any store or load access associated with that

page.

When preparing data for processing by the NPE memory (if byte swapping is necessary
for the application), the P-attribute bit should be used to byte-swap the entire memory
map belonging to the NPE region. For instance, when the Intel XScale processor is
operating in little endian mode, all data arriving from the NPE that is to be read by the
Intel XScale processor should be configured to swap all bytes of data. When writing this
data from the Intel XScale processor to memory (with the intention of the NPE using
this data) all bytes should be swapped using the P-attribute. Using the P-attribute bit to
byte swap all of the NPE memory region will ensure compatible software code porting
to future releases of the Intel XScale processor. Using the P-attribute bit to byte-swap
1-Mbyte regions of the NPE memory may not allow compatible software code porting to
a future Intel XScale microarchitecture.

Cacheable (C), Bufferable (B), and eXtension (X) Bits

Instruction Cache

When examining these bits in a descriptor, the Instruction Cache only utilizes the C bit.
If the C bit is clear, the Instruction Cache considers a code fetch from that memory to
be non-cacheable and will not fill a cache entry. If the C bit is set, then fetches from the
associated memory region will be cached.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 45

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.1.1.2.2

3.1.1.2.3

Table 3.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Details on Data Cache and Write Buffer Behavior

If the MMU is disabled, all data accesses will be non-cacheable and non-bufferable. This
is the same behavior as when the MMU is enabled and a data access uses a descriptor
with X, C, and B all set to O.

The X, C, and B bits determine when the processor should place new data into the Data
Cache. The cache places data into the cache in lines (also called blocks). Thus, the
basis for making a decision about placing new data into the cache is a called a “Line-
Allocation Policy.”

If the Line-Allocation Policy is read-allocate, all load operations that miss the cache,
request a 32-byte cache line from external memory and allocate it into either the data
cache or mini-data cache. (This statement assumes that the cache is enabled.) Store
operations that miss the cache will not cause a line to be allocated.

If read/write-allocate is in effect, load or store operations that miss the cache will
request a 32-byte cache line from external memory if the cache is enabled.

The other policy determined by the X, C, and B bits is the Write Policy. A write-through
policy instructs the data cache to keep external memory coherent by performing stores
to both external memory and the cache. A write-back policy only updates external
memory when a line in the cache is cleaned or needs to be replaced with a new line.
Generally, write-back provides higher performance because it generates less data
traffic to external memory. For more details on cache policies, see “Cacheability” on
page 63

Data Cache and Write Buffer

All of these descriptor bits affect the behavior of the Data Cache and the Write Buffer.
If the X bit for a descriptor is zero, the C and B bits operate as mandated by the ARM
architecture, refer to the ARM* Architecture Reference Manual. This behavior is
detailed in Table 3.

If the X bit for a descriptor is one, the C and B bits’ meaning is extended, as detailed in
Table 4.

Data Cache and Buffer Behavior When X =0

CB Cacheable Bufferable Write Policy AIIcI;(I:g?ion Notes
Policy

0o N N - - Stall until complete™

0 1 N Y - -

10 Y Y Write Through Read Allocate

11 Y Y Write Back Read Allocate

Note: Normally, the processor will continue executing after a data access if no dependency on that access is
encountered. With this setting, the processor will stall execution until the data access completes. This
guarantees to software that the data access has taken effect by the time execution of the data access
instruction completes. External data aborts from such accesses will be imprecise (but see “Data
Aborts” on page 156 for a method to shield code from this imprecision).

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
46

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

Table 4.

3.1.1.2.4

Table 5.

3.1.1.2.5

3.1.2

September 2006

intel.

Data Cache and Buffer Behavior When X =1

Line
CcB Cacheable Bufferable Werite Policy Allocation Notes
Policy
00 - - - - Unpredictable -- do not use
0 1 N v _ _ Writes \1N|II not coalesce into
buffers
L Cache policy is determined
1 o | (MiniData - - - by MD field of Auxiliary
Cache) . 2
Control register
11 Y Y Write Back Read/Write
Allocate
Notes:
1. Normally, bufferable writes can coalesce with previously buffered data in the same address range.
2. See “Register 1: Control and Auxiliary Control Registers” on page 77 for a description of this register.

Memory Operation Ordering

A fence memory operation (memop) is one that guarantees all memops issued prior to
the fence will execute before any memop issued after the fence. Thus software may
issue a fence to impose a partial ordering on memory accesses.

Table 5 on page 47 shows the circumstances in which memops act as fences.

Any swap (SWP or SWPB) to a page that would create a fence on a load or store is a
fence.

Memory Operations that Impose a Fence

Operation X C B
load - 0 -
store 1 0 1
load or store 0 0 0

Exceptions

The MMU may generate prefetch aborts for instruction accesses and data aborts for
data memory accesses. The types and priorities of these exceptions are described in
“Event Architecture” on page 154.

Data address alignment checking is enabled by setting bit 1 of the Control Register
(CP15, register 1). Alignment faults are still reported even if the MMU is disabled. All
other MMU exceptions are disabled when the MMU is disabled.

Interaction of the MMU, Instruction Cache, and Data Cache

The MMU, instruction cache, and data/mini-data cache may be enabled/disabled
independently. The instruction cache can be enabled with the MMU enabled or disabled.
However, the data cache can only be enabled when the MMU is enabled. Therefore only
three of the four combinations of the MMU and data/mini-data cache enables are valid.
The invalid combination will cause undefined results.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 47

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 6.

3.1.3

3.1.3.1

3.1.3.2

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
48

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Valid MMU and Data/Mini-Data Cache Combinations

MMU Data/mini-data Cache
Off Off
On Off
Oon Oon
MMU Control

Invalidate (Flush) Operation

The entire instruction and data TLB can be invalidated at the same time with one
command or they can be invalidated separately. An individual entry in the data or
instruction TLB can also be invalidated. See Table 19, “TLB Functions” on page 82 for a

listing of commands supported by the Intel XScale processor.

Globally invalidating a TLB will not affect locked TLB entries. However, the invalidate-
entry operations can invalidate individual locked entries. In this case, the locked
contents remain in the TLB, but will never “hit” on an address translation. Effectively,
creating a hole is in the TLB. This situation may be rectified by unlocking the TLB.

Enabling/Disabling

The MMU is enabled by setting bit O in coprocessor 15, register 1 (Control Register).

When the MMU is disabled, accesses to the instruction cache default to cacheable
accesses and all accesses to data memory are made non-cacheable.

A recommended code sequence for enabling the MMU is shown in Example 1 on

page 49.

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Example 1.

3.1.3.3

September 2006

Enabling the MMU

; This routine provides software with a predictable way of enabling the MMU.
; After the CPWAIT, the MMU is guaranteed to be enabled. Be aware

; that the MMU will be enabled sometime after MCR and before the instruction
; that executes after the CPWAIT.

; Programming Note: This code sequence requires a one-to-one virtual to

; physical address mapping on this code since

; the MMU may be enabled part way through. This would allow the instructions

; after MCR to execute properly regardless the state of the MMU.

MRC P15,0,R0,C1,C0,0; Read CP15, register 1
ORR RO, RO, #0x1; Turn on the MMU

MCR P15,0,R0,C1,C0,0; Write to CP15, register 1

; For a description of CPWAIT, see

; “Additions to CP15 Functionality” on page 153

CPWAIT

; The MMU is guaranteed to be enabled at this point; the next instruction or

; data address will be translated.

Locking Entries

Individual entries can be locked into the instruction and data TLBs. See Table 20,
“Cache Lock-Down Functions” on page 83 for the exact commands. If a lock operation
finds the virtual address translation already resident in the TLB, the results are
unpredictable. An invalidate by entry command before the lock command will ensure
proper operation. Software can also accomplish this by invalidating all entries, as
shown in Example 2 on page 50.

Locking entries into either the instruction TLB or data TLB reduces the available number
of entries (by the number that was locked down) for hardware to cache other virtual to
physical address translations.

A procedure for locking entries into the instruction TLB is shown in Example 2 on
page 50.

If a MMU abort is generated during an instruction or data TLB lock operation, the Fault
Status Register is updated to indicate a Lock Abort (see “Data Aborts” on page 156),
and the exception is reported as a data abort.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 49

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Example 2.

Note:

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Locking Entries into the Instruction TLB

; R1, R2 and R3 contain the virtual addresses to translate and lock into

; the instruction TLB.

; The value in RO is ignored in the following instruction.

; Hardware guarantees that accesses to CP15 occur in program order

MCR P15,0,R0,C8,C5,0 ; Invalidate the entire instruction TLB

MCR P15,0,R1,C10,C4,0 ; Translate virtual address (R1) and lock into

; instruction TLB
MCR P15,0,R2,C10,C4,0 ; Translate

; virtual address (R2) and lock into instruction TLB
MCR P15,0,R3,C10,C4,0 ; Translate virtual address (R3) and lock into

; instruction TLB

CPWAIT

; The MMU is guaranteed to be updated at this point; the next instruction will

; see the locked instruction TLB entries.

If exceptions are allowed to occur in the middle of this routine, the TLB may end up
caching a translation that is about to be locked. For example, if R1 is the virtual
address of an interrupt service routine and that interrupt occurs immediately after the
TLB has been invalidated, the lock operation will be ignored when the interrupt service
routine returns back to this code sequence. Software should disable interrupts (FIQ or
IRQ) in this case.

As a general rule, software should avoid locking in all other exception types.

The proper procedure for locking entries into the data TLB is shown in Example 3 on
page 51.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
50

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Example 3.

Note:

3.1.3.4

September 2006

Locking Entries into the Data TLB

; R1, and R2 contain the virtual addresses to translate and lock into the data TLB

MCR P15,0,R1,C8,C6,1 ; Invalidate the data TLB entry specified by the
; virtual address in R1
MCR P15,0,R1,C10,C8,0 ; Translate virtual address (R1) and lock into

; data TLB

; Repeat sequence for virtual address in R2
MCR P15,0,R2,C8,C6,1 ; Invalidate the data TLB entry specified by the

; virtual address in R2

MCR P15,0,R2,C10,C8,0 ; Translate virtual address (R2) and lock into
; data TLB
CPWAIT ; wait for locks to complete

; The MMU is guaranteed to be updated at this point; the next instruction will

; see the locked data TLB entries.

Care must be exercised here when allowing exceptions to occur during this routine
whose handlers may have data that lies in a page that is trying to be locked into the
TLB.

Round-Robin Replacement Algorithm

The line replacement algorithm for the TLBs is round-robin; there is a round-robin
pointer that keeps track of the next entry to replace. The next entry to replace is the
one sequentially after the last entry that was written. For example, if the last virtual to
physical address translation was written into entry 5, the next entry to replace is
entry 6.

At reset, the round-robin pointer is set to entry 31. Once a translation is written into
entry 31, the round-robin pointer gets set to the next available entry, beginning with
entry O if no entries have been locked down. Subsequent translations move the round-
robin pointer to the next sequential entry until entry 31 is reached, where it will wrap
back to entry O upon the next translation.

A lock pointer is used for locking entries into the TLB and is set to entry O at reset. A
TLB lock operation places the specified translation at the entry designated by the lock
pointer, moves the lock pointer to the next sequential entry, and resets the round-robin
pointer to entry 31. Locking entries into either TLB effectively reduces the available
entries for updating. For example, if the first three entries were locked down, the
round-robin pointer would be entry 3 after it rolled over from entry 31.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 51

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Only entries O through 30 can be locked in either TLB; entry 31can never be locked. If
the lock pointer is at entry 31, a lock operation will update the TLB entry with the
translation and ignore the lock. In this case, the round-robin pointer will stay at

entry 31.

Figure 7. Example of Locked Entries in TLB

Eight entries locked, 24 entries available for
round robin replacement

entry O
entry 1

Locked

entry 7 = -
entry 8

entry 22
entry 23

entry 30
entry 31

3.2 Instruction Cache

The Intel XScale processor instruction cache enhances performance by reducing the
number of instruction fetches from external memory. The cache provides fast execution
of cached code. Code can also be locked down when guaranteed or fast access time is
required.

Figure 8 shows the cache organization and how the instruction address is used to
access the cache.

The instruction cache is available as a 32 K, 32-way set, associative cache. Each set is
1,024 bytes in size. Each set contains 32 ways. Each way of a set contains eight 32-bit
words and one valid bit, which is referred to as a line. The replacement policy is a
round-robin algorithm and the cache also supports the ability to lock code in at a line
granularity.

The instruction cache is virtually addressed and virtually tagged.

Note: The virtual address presented to the instruction cache may be remapped by the PID
register. For a description of the PID register, see “Register 13: Process ID” on page 84.

3.2.1 Operation When Instruction Cache is Enabled

When the cache is enabled, it compares every instruction request address against the
addresses of instructions that it is currently holding. If the cache contains the
requested instruction, the access “hits” the cache, and the cache returns the requested
instruction. If the cache does not contain the requested instruction, the access “misses”
the cache. The cache requests an eight-word, also known as a line, fetch from external
memory that contains the requested instruction using the fetch policy described in
“Instruction-Cache ‘Miss’” on page 53. As the fetch returns instructions to the cache,
the instructions are placed in one of two fetch buffers and the requested instruction is
delivered to the instruction decoder.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
52 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Figure 8.

3.2.1.1

September 2006

A fetched line will be written into the cache if it is cacheable. Code is designated as
cacheable when the Memory Management Unit (MMU) is disabled or when the MMU is
enable and the cacheable (C) bit is set to 1 in its corresponding page. See “Memory
Management Unit” on page 44 for a discussion on page attributes.

Note that an instruction fetch may “miss” the cache but “hit” one of the fetch buffers.
When this happens, the requested instruction will be delivered to the instruction
decoder in the same manner as a cache “hit.”

Instruction Cache Organization

Set 31
Example: 32K byte cache way 0 8 Words (cache line)
way 1
Set Index “‘
HSet 1 Ll DATA
way 0 | 8 Wards (cache line)
FSEt 0 | wavi 1 e
way 0 8 Wards (cache line)
way 1
This example
shows Set 0 being CAM DATA
selected by the
set index.
way 31
A CAM: Content
Tag Addressable Memory
Word Select > +
Instruction Word
(4 bytes)
Instruction Address (Virtual) — 32-Kbyte Cache
31 10 9 5 4 2 10
I Tag Set Index | Word | I

Disabling the cache prevents any lines from being written into the instruction cache.
Although the cache is disabled, it is still accessed and may generate a “hit” if the data is
already in the cache.

Disabling the instruction cache does not disable instruction buffering that may occur
within the instruction fetch buffers. Two 8-word instruction fetch buffers will always be
enabled in the cache disabled mode. So long as instruction fetches continue to “hit”
within either buffer (even in the presence of forward and backward branches), no
external fetches for instructions are generated. A miss causes one or the other buffer to
be filled from external memory using the fill policy described in “Instruction-Cache
‘Miss’” on page 53.

Instruction-Cache ‘Miss’

An instruction-cache “miss” occurs when the requested instruction is not found in the
instruction fetch buffers or instruction cache; a fetch request is then made to external
memory. The instruction cache can handle up to two “misses.” Each external fetch
request uses a fetch buffer that holds 32-bytes and eight valid bits, one for each word.

A miss causes the following:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 53

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

« A fetch buffer is allocated

* The instruction cache sends a fetch request to the external bus. This request is for
a 32-byte line.

e |nstructions words are returned back from the external bus, at a maximum rate of
1 word per core cycle. The instruction cache can have the eight words of data
return in any order, which allows the Intel XScale processor to send the requested
instruction first, thus reducing fetch latency. (This is referred to as critical word
first.)As each word returns, the corresponding valid bit is set for the word in the
fetch buffer.

« As soon as the fetch buffer receives the requested instruction, it forwards the
instruction to the instruction decoder for execution.

< When all words have returned, the fetched line will be written into the instruction
cache if it’s cacheable and if the instruction cache is enabled. The line chosen for
update in the cache is controlled by the round-robin replacement algorithm. This
update may evict a valid line at that location. For more information on enabling or
disabling instruction cache, refer to “Instruction-Cache Coherence” on page 55

1. Once the cache is updated, the eight valid bits of the fetch buffer are invalidated.

3.2.1.2 Instruction-Cache Line-Replacement Algorithm

The line replacement algorithm for the instruction cache is round-robin. Each set in the
instruction cache has a round-robin pointer that keeps track of the next line (in that
set) to replace. The next line to replace in a set is the one after the last line that was
written. For example, if the line for the last external instruction fetch was written into
way 5-set 2, the next line to replace for that set would be way 6. None of the other
round-robin pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line
is written into way 31, the round-robin pointer points to the first available way of a set,
beginning with wayO if no lines have been locked into that particular set. Locking lines
into the instruction cache effectively reduces the available lines for cache updating. For
example, if the first three lines of a set were locked down, the round-robin pointer
would point to the line at way 3 after it rolled over from way 31. For more details on
cache locking, see “Instruction-Cache Coherence” on page 55.

The instruction cache is protected by parity to ensure data integrity. Each instruction
cache word has 1 parity bit. (The instruction cache tag is NOT parity protected.) When
a parity error is detected on an instruction cache access, a prefetch abort exception
occurs if the Intel XScale processor attempts to execute the instruction. Before
servicing the exception, hardware places a notification of the error in the Fault Status
Register (Coprocessor 15, register 5).

A software exception handler can recover from an instruction cache parity error. The
parity error can be accomplished by invalidating the instruction cache and the branch
target buffer and then returning to the instruction that caused the prefetch abort
exception. A simplified code example is shown in Example 4 on page 55. A more
complex handler might choose to invalidate the specific line that caused the exception
and then invalidate the BTB.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
54 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Example 4.

3.2.1.3

September 2006

Recovering from an Instruction Cache Parity Error

; Prefetch abort handler

MCR P15,0,R0,C7,C5,0 ; Invalidate the instruction cache and branch target
; buffer
CPWAIT ; wait for effect (see “Additions to CP15 Functionality”

on page 153 for a

; description of CPWAIT)

SUBS PC,R14,#4 ; Returns to the instruction that generated the

; parity error

; The Instruction Cache is guaranteed to be invalidated at this point

If a parity error occurs on an instruction that is locked in the cache, the software
exception handler needs to unlock the instruction cache, invalidate the cache and then
re-lock the code in before it returns to the faulting instruction.

The instruction cache does not detect modification to program memory by loads, stores
or actions of other bus masters. Several situations may require program memory
modification, such as uploading code from disk.

The application program is responsible for synchronizing code modification and
invalidating the cache. In general, software must ensure that modified code space is
not accessed until modification and invalidating are completed.

Instruction-Cache Coherence

To achieve cache coherence, instruction cache contents can be invalidated after code
modification in external memory is complete.

If the instruction cache is not enabled, or code is being written to a non-cacheable
region, software must still invalidate the instruction cache before using the newly-
written code. This precaution ensures that state associated with the new code is not
buffered elsewhere in the processor, such as the fetch buffers or the BTB.

Naturally, when writing code as data, care must be taken to force it completely out of
the processor into external memory before attempting to execute it. If writing into a
non-cacheable region, flushing the write buffers is sufficient precaution (see “Register
7: Cache Functions” on page 81 for a description of this operation). If writing to a
cacheable region, then the data cache should be submitted to a Clean/Invalidate
operation (see “Cacheability” on page 63) to ensure coherency.

After reset, the instruction cache is always disabled, unlocked, and invalidated
(flushed).

The instruction cache is enabled by setting bit 12 in coprocessor 15, register 1 (Control
Register). This process is illustrated in Example 5, Enabling the Instruction Cache.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 55

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Example 5.

Example 6.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Enabling the Instruction Cache

; Enable the ICache

MRC P15, 0, RO, C1, CO, O ; Get the control register
ORR RO, RO, #0x1000 ; set bit 12 -- the 1 bit
MCR P15, 0, RO, C1, CO, O ; Set the control register
CPWAIT

The entire instruction cache along with the fetch buffers are invalidated by writing to
coprocessor 15, register 7. (See Table 18, “Cache Functions” on page 81 for the exact
command.) The invalidate command does not unlock any lines that were locked in the
instruction cache nor does it invalidate those locked lines. To invalidate the entire cache
including locked lines, the unlock instruction cache command needs to be executed
before the invalidate command. The unlock command can also be found in Table 20,
“Cache Lock-Down Functions” on page 83.

There is an inherent delay from the execution of the instruction cache invalidate
command to where the next instruction will see the result of the invalidate. The
following routine can be used to guarantee proper synchronization.

Invalidating the Instruction Cache

MCR P15,0,R1,C7,C5,0 ; Invalidate the instruction cache and branch

; target buffer

CPWAIT

; The instruction cache is guaranteed to be invalidated at this point; the next

instruction sees the result of the invalidate command.

The Intel XScale processor also supports invalidating an individual line from the
instruction cache. See Table 18, “Cache Functions” on page 81 for the exact command.

Software has the ability to lock performance critical routines into the instruction cache.
Up to 28 lines in each set can be locked; hardware will ignore the lock command if
software is trying to lock all the lines in a particular set (i.e., ways 28-31can never be
locked). When all ways in a particular set are requested to be locked, the instruction
cache line will still be allocated into the cache but the lock will be ignored. The round-
robin pointer will stay at way 31 for that set.

Cache lines can be locked into the instruction cache by initiating a write to
coprocessor 15. (See Table 20, “Cache Lock-Down Functions” on page 83 for the exact
command.) Register Rd contains the virtual address of the line to be locked into the
cache.

There are several requirements for locking down code:

« The routine used to lock lines down in the cache must be placed in non-cacheable
memory, which means the MMU is enabled.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
56

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

As a result: no fetches of cacheable code should occur while locking instructions
into the cache.

= The code being locked into the cache must be cacheable

= The instruction cache must be enabled and invalidated prior to locking down lines.

Failure to follow these requirements will produce unpredictable results when accessing
the instruction cache.

System programmers should ensure that the code to lock instructions into the cache
does not reside closer than 128 bytes to a non-cacheable/cacheable page boundary. If

the processor fetches ahead into a cacheable page, then the first requirement noted
above could be violated.

Lines are locked into a set starting at way O and may progress up to way 27; which set
a line gets locked into depends on the set index of the virtual address. Figure 9 is an
example (32-Kbyte cache) of where lines of code may be locked into the cache along
with how the round-robin pointer is affected.

Figure 9. Locked Line Effect on Round-Robin Replacement

32-Kbyte Cache Example

set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only way 28-31 available for replacement

set 31: all 32 ways available for round robin replacement

set0 setl set 2 set 31
way 0 = T
wal Q@
y 1 <
: o
H | o] e}
way 7 = = o o
way 8 3 3
- -
Wa:y 22 B |
way 23
) 4

Wa:y 30
way 31

Software can lock down several different routines located at different memory

locations. This may cause some sets to have more locked lines than others as shown in
Figure 9.

Example 7 on page 58 shows how a routine, called “lockMe” in this example, might be
locked into the instruction cache. Note that it is possible to receive an exception while
locking code (see “Event Architecture” on page 154).

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
57

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Example 7.

3.3

3.3.1

Locking Code into the Cache

lockMe: ; This is the code that will be locked into the cache
mov r0, #5

add r5, rl1, r2

lockMeEnd:

codelLock: ; here is the code to lock the “lockMe” routine
Idr rO, =(lockMe AND NOT 31); rO gets a pointer to the first line we
should lock
Idr r1, =(lockMeEnd AND NOT 31); rl contains a pointer to the last line we

should lock

lockLoop:

mcr pl5, 0, rO, c9, cl, 0; lock next line of code into ICache

cmp rO, ril ; are we done yet?
add rO, rO, #32 ; advance pointer to next line
bne lockLoop ; 1If not done, do the next line

The Intel XScale processor provides a global unlock command for the instruction cache.
Writing to coprocessor 15, register 9 unlocks all the locked lines in the instruction
cache and leaves them valid. These lines then become available for the round-robin
replacement algorithm. (See Table 20, “Cache Lock-Down Functions” on page 83 for
the exact command.)

Branch Target Buffer

The Intel XScale processor uses dynamic branch prediction to reduce the penalties
associated with changing the flow of program execution. The Intel XScale processor
features a branch target buffer that provides the instruction cache with the target
address of branch type instructions. The branch target buffer is implemented as a 128-
entry, direct-mapped cache.

This section is primarily for those optimizing their code for performance. An
understanding of the branch target buffer is needed in this case so that code can be
scheduled to best utilize the performance benefits of the branch target buffer.

Branch Target Buffer (BTB) Operation

The BTB stores the history of branches that have executed along with their targets.
Figure 10 shows an entry in the BTB, where the tag is the instruction address of a
previously executed branch and the data contains the target address of the previously
executed branch along with two bits of history information.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
58

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Figure 10.

Figure 11.

3.3.1.1

September 2006

BTB Entry

TAG DATA

History

Branch Address[31:9,1] Target Address[31:1] Bits[1:0]

The BTB takes the current instruction address and checks to see if this address is a
branch that was previously seen. The BTB uses bits [8:2] of the current address to read
out the tag and then compares this tag to bits [31:9,1] of the current instruction
address. If the current instruction address matches the tag in the cache and the history
bits indicate that this branch is usually taken in the past, the BTB uses the data (target
address) as the next instruction address to send to the instruction cache.

Bit[1] of the instruction address is included in the tag comparison in order to support
Thumb execution. This organization means that two consecutive Thumb branch (B)
instructions, with instruction address bits[8:2] the same, will contend for the same BTB
entry. Thumb also requires 31 bits for the branch target address. In ARM mode, bit[1]
is zero.

The history bits represent four possible prediction states for a branch entry in the BTB.
Figure 11, “Branch History” on page 59 shows these states along with the possible
transitions. The initial state for branches stored in the BTB is Weakly-Taken (WT). Every
time a branch that exists in the BTB is executed, the history bits are updated to reflect
the latest outcome of the branch, either taken or not-taken.

“Performance Considerations” on page 159 describes which instructions are
dynamically predicted by the BTB and the performance penalty for incorrectly
predicting a branch.

The BTB does not have to be managed explicitly by software; it is disabled by default
after reset and is invalidated when the instruction cache is invalidated.

Branch History

Taken

Taken

Not Taken

Taken
Not Taken
Not Taken
SN: Strongly Not Taken ST: Strongly Taken
WN: Weakly Not Taken WT: Weakly Taken

Reset

After Processor Reset, the BTB is disabled and all entries are invalidated.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 59

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.4

3.4.1

Intel® 1XP42X Pro
DM
60

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

A new entry is stored into the BTB when the following conditions are met:
= The branch instruction has executed
= The branch was taken
= The branch is not currently in the BTB

The entry is then marked valid and the history bits are set to WT. If another valid
branch exists at the same entry in the BTB, it will be evicted by the new branch.

Once a branch is stored in the BTB, the history bits are updated upon every execution
of the branch as shown in Figure 11.

The BTB is always disabled with Reset. Software can enable the BTB through a bit in a
coprocessor register (see “Register 1: Control and Auxiliary Control Registers” on
page 77).

Before enabling or disabling the BTB, software must invalidate the BTB (described in
the following section). This action will ensure correct operation in case stale data is in
the BTB. Software should not place any branch instruction between the code that
invalidates the BTB and the code that enables/disables it.

There are four ways the contents of the BTB can be invalidated.
* Reset

= Software can directly invalidate the BTB via a CP15, register 7 function.
Refer to “Register 7: Cache Functions” on page 81.

= The BTB is invalidated when the Process ID Register is written.

= The BTB is invalidated when the instruction cache is invalidated via CP15, register 7
functions.

Data Cache

The Intel XScale processor data cache enhances performance by reducing the number
of data accesses to and from external memory. There are two data cache structures in
the Intel XScale processor: a 32-Kbyte data cache and a 2-Kbyte mini-data cache. An
eight entry write buffer and a four-entry, fill buffer are also implemented to decouple
the Intel XScale processor instruction execution from external memory accesses, which
increases overall system performance.

Data Cache Overview

The data cache is a 32-Kbyte, 32-way set, associative cache. The 32-Kbyte cache has
32 sets. Each set contains 32 ways. Each way of a set contains 32 bytes (one cache
line) and one valid bit. There also exist two dirty bits for every line, one for the lower
16 bytes and the other one for the upper 16 bytes. When a store hits the cache the
dirty bit associated with it is set. The replacement policy is a round-robin algorithm and
the cache also supports the ability to reconfigure each line as data RAM.

Figure 12, “Data Cache Organization” on page 61 shows the cache organization and
how the data address is used to access the cache.

Cache policies may be adjusted for particular regions of memory by altering page
attribute bits in the MMU descriptor that controls that memory. See “Memory
Attributes” on page 45 for a description of these bits.

The data cache is virtually addressed and virtually tagged. The data cache supports
write-back and write-through caching policies. The data cache always allocates a line in
the cache when a cacheable read miss occurs and will allocate a line into the cache on

duct Line of Network Processors and 1XC1100 Control Plane Processor
September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Figure 12.

September 2006

a cacheable write miss when write allocate is specified by its page attribute. Page
attribute bits determine whether a line gets allocated into the data cache or mini-data
cache.

Data Cache Organization

Set 31
Example: 32-Kbyte cache way 0 32 hytes (cache line)
way 1
Set Index ‘ﬂ‘
Set 1 CAM DATA
>| way 0 | 32 hytes (cache line)
Set 0 I wavi1 |
way 0 32 hytes (cache line)
. way 1
This example shows
Set 0 being selected
by the set index. CAM DATA
way 31
Tag | l l l l l l l l CAM: Content Addressable Memory
Word Select s N ‘
Byte Alignment
Byte Select > Sign Extension

Data Word)
(4 bytes to Destination Register)

Data Address (Virtual) — 32-Kbyte Cache

31 10 9 5 4 2 1 0

I Tag | Set Index | Word |Byte|

The mini-data cache is 2 Kbytes in size. The 2-Kbyte mini data cache has 32 sets and is
two-way set associative. Each way of a set contains 32 bytes (one cache line) and one
valid bit. There also exist two dirty bits for every line, one for the lower 16 bytes and
the other one for the upper 16 bytes. When a store hits the cache the dirty bit
associated with it is set. The replacement policy is a round-robin algorithm.

Figure 13, “Mini-Data Cache Organization” on page 62 shows the cache organization
and how the data address is used to access the cache.

The mini-data cache is virtually addressed and virtually tagged and supports the same
caching policies as the data cache. However, lines can’t be locked into the mini-data
cache.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 61

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

intel.

Figure 13. Mini-Data Cache Organization

Example: 2K byte cache

>Set 31
[way0 | 32 hytes (cache line) |
[way1 | |
Set Index ‘¢
This example ISes/vla T :]
gg?r\]/éssse%c?ed by »Set 0 I an - 32 hytes (cache lmp)|_|
: |_wayO | 32 hytes (cache line)
the set index. [way1 | |
Word Select L N
Byte Alignment
| .
Byte Select "| Sign Extension

Data Word
(4 bytes to Destination Register)

Data Address (Virtual) — 2-Kbyte Cache

31 10 9 5 4 2 10

I Tag Set Index | Word |Byte|

The Intel XScale processor employs an eight entry write buffer, each entry containing
16 bytes. Stores to external memory are first placed in the write buffer and
subsequently taken out when the bus is available.

The write buffer supports the coalescing of multiple store requests to external memory.
An incoming store may coalesce with any of the eight entries.

The fill buffer holds the external memory request information for a data cache or mini-
data cache fill or non-cacheable read request. Up to four 32-byte read request
operations can be outstanding in the fill buffer before the Intel XScale processor needs
to stall.

The fill buffer has been augmented with a four entry pend buffer that captures data
memory requests to outstanding fill operations. Each entry in the pend buffer contains
enough data storage to hold one 32-bit word, specifically for store operations.
Cacheable load or store operations that hit an entry in the fill buffer get placed in the
pend buffer and are completed when the associated fill completes. Any entry in the
pend buffer can be pended against any of the entries in the fill buffer; multiple entries
in the pend buffer can be pended against a single entry in the fill buffer.

Pended operations complete in program order.

The following discussions refer to the data cache and mini-data cache as one cache
(data/mini-data) since their behavior is the same when accessed.

When the data/mini-data cache is enabled for an access, the data/mini-data cache
compares the address of the request against the addresses of data that it is currently
holding. If the line containing the address of the request is resident in the cache, the
access “hits” the cache. For a load operation the cache returns the requested data to
the destination register and for a store operation the data is stored into the cache. The
data associated with the store may also be written to external memory if write-through

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
62 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.4.2

September 2006

caching is specified for that area of memory. If the cache does not contain the
requested data, the access ‘misses’ the cache, and the sequence of events that follows
depends on the configuration of the cache, the configuration of the MMU and the page
attributes, which are described in “Cacheability” on page 63.

The data/mini-data cache is still accessed even though it is disabled. If a load hits the
cache it will return the requested data to the destination register. If a store hits the
cache, the data is written into the cache. Any access that misses the cache will not
allocate a line in the cache when it’s disabled, even if the MMU is enabled and the
memory region’s cacheability attribute is set.

Cacheability

Data at a specified address is cacheable given the following:
« the MMU is enabled
= the cacheable attribute is set in the descriptor for the accessed address
= and the data/mini-data cache is enabled

The following sequence of events occurs when a cacheable (see “Cacheability” on
page 63) load operation misses the cache:

1. The fill buffer is checked to see if an outstanding fill request already exists for that
line.
If so, the current request is placed in the pending buffer and waits until the
previously requested fill completes, after which it accesses the cache again, to
obtain the request data and returns it to the destination register.
If there is no outstanding fill request for that line, the current load request is placed
in the fill buffer and a 32-byte external memory read request is made. If the
pending buffer or fill buffer is full, the Intel XScale processor will stall until an entry
is available.

2. Aline is allocated in the cache to receive the 32-bytes of fill data. The line selected
is determined by the round-robin pointer. (See “Cacheability” on page 63.) The line
chosen may contain a valid line previously allocated in the cache. In this case both
dirty bits are examined and if set, the four words associated with a dirty bit that’s
asserted will be written back to external memory as a four word burst operation.

3. When the data requested by the load is returned from external memory, it is
immediately sent to the destination register specified by the load. A system that
returns the requested data back first, with respect to the other bytes of the line,
will obtain the best performance.

4. As data returns from external memory it is written into the cache in the previously
allocated line.

A load operation that misses the cache and is NOT cacheable makes a request from
external memory for the exact data size of the original load request. For example,
LDRH requests exactly two bytes from external memory, LDR requests 4 bytes from
external memory, etc. This request is placed in the fill buffer until, the data is returned
from external memory, which is then forwarded back to the destination register(s).

A write operation that misses the cache will request a 32-byte cache line from external
memory if the access is cacheable and write allocation is specified in the page. In this
case the following sequence of events occur:

1. The fill buffer is checked to see if an outstanding fill request already exists for that
line.
If so, the current request is placed in the pending buffer and waits until the
previously requested fill completes, after which it writes its data into the recently
allocated cache line.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 63

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

intel.

If there is no outstanding fill request for that line, the current store request is
placed in the fill buffer and a 32-byte external memory read request is made. If the
pending buffer or fill buffer is full, the Intel XScale processor will stall until an entry
is available.

2. The 32-bytes of data can be returned back to the Intel XScale processor in any
word order, i.e, the eight words in the line can be returned in any order. Note that it
does not matter, for performance reasons, which order the data is returned to the
Intel XScale processor since the store operation has to wait until the entire line is
written into the cache before it can complete.

3. When the entire 32-byte line has returned from external memory, a line is allocated
in the cache, selected by the round-robin pointer. The line to be written into the
cache may replace a valid line previously allocated in the cache. In this case both
dirty bits are examined and if any are set, the four words associated with a dirty bit
that’s asserted will be written back to external memory as a 4 word burst
operation. This write operation will be placed in the write buffer.

4. The line is written into the cache along with the data associated with the store
operation.

If the above condition for requesting a 32-byte cache line is not met, a write miss will
cause a write request to external memory for the exact data size specified by the store
operation, assuming the write request doesn’t coalesce with another write operation in
the write buffer.

The Intel XScale processor supports write-back caching or write-through caching,
controlled through the MMU page attributes. When write-through caching is specified,
all store operations are written to external memory even if the access hits the cache.
This feature keeps the external memory coherent with the cache, i.e., no dirty bits are
set for this region of memory in the data/mini-data cache. However write through does
not guarantee that the data/mini-data cache is coherent with external memory, which
is dependent on the system level configuration, specifically if the external memory is
shared by another master.

When write-back caching is specified, a store operation that hits the cache will not
generate a write to external memory, thus reducing external memory traffic.

The line replacement algorithm for the data cache is round-robin. Each set in the data
cache has a round-robin pointer that keeps track of the next line (in that set) to
replace. The next line to replace in a set is the next sequential line after the last one
that was just filled. For example, if the line for the last fill was written into way 5-set 2,
the next line to replace for that set would be way 6. None of the other round-robin
pointers for the other sets are affected in this case.

After reset, way 31 is pointed to by the round-robin pointer for all the sets. Once a line
is written into way 31, the round-robin pointer points to the first available way of a set,
beginning with way O if no lines have been re-configured as data RAM in that particular
set. Re-configuring lines as data RAM effectively reduces the available lines for cache

updating. For example, if the first three lines of a set were re-configured, the round-

robin pointer would point to the line at way 3 after it rolled over from way 31. Refer to
“Reconfiguring the Data Cache as Data RAM” on page 68 for more details on data RAM.

The mini-data cache follows the same round-robin replacement algorithm as the data
cache except that there are only two lines the round-robin pointer can point to such
that the round-robin pointer always points to the least recently filled line. A least
recently used replacement algorithm is not supported because the purpose of the mini-
data cache is to cache data that exhibits low temporal locality, i.e.,data that is placed
into the mini-data cache is typically modified once and then written back out to
external memory.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
64 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Example 8.

September 2006

The data cache and mini-data cache are protected by parity to ensure data integrity;
there is one parity bit per byte of data. (The tags are NOT parity protected.) When a
parity error is detected on a data/mini-data cache access, a data abort exception
occurs. Before servicing the exception, hardware will set bit 10 of the Fault Status
Register register.

A data/mini-data cache parity error is an imprecise data abort, meaning R14_ABORT
(+8) may not point to the instruction that caused the parity error. If the parity error
occurred during a load, the targeted register may be updated with incorrect data.

A data abort due to a data/mini-data cache parity error may not be recoverable if the
data address that caused the abort occurred on a line in the cache that has a write-
back caching policy. Prior updates to this line may be lost; in this case the software
exception handler should perform a “clean and clear” operation on the data cache,
ignoring subsequent parity errors, and restart the offending process.

The SWP and SWPB instructions generate an atomic load and store operation allowing
a memory semaphore to be loaded and altered without interruption. These accesses
may hit or miss the data/mini-data cache depending on configuration of the cache,
configuration of the MMU, and the page attributes.

After processor reset, both the data cache and mini-data cache are disabled, all valid
bits are set to zero (invalid), and the round-robin bit points to way 31. Any lines in the
data cache that were configured as data RAM before reset are changed back to
cacheable lines after reset, i.e., there are 32 Kbytes of data cache and zero bytes of
data RAM.

The data cache and mini-data cache are enabled by setting bit 2 in coprocessor 15,
register 1 (Control Register). See “Configuration” on page 73, for a description of this
register and others.

Equation 8 shows code that enables the data and mini-data caches. Note that the MMU
must be enabled to use the data cache.

Enabling the Data Cache

enableDCache:

MCR p15, 0, rO, c7, cl0, 4; Drain pending data operations...

; (see Chapter 7.2.8, Register 7: Cache functions)
MRC p15, 0, rO, c1, c0, O; Get current control register
ORR r0, rO, #4 ; Enable DCache by setting “C” (bit 2)

MCR p15, 0, rO, cl1, cO, O; And update the Control register

Individual entries can be invalidated and cleaned in the data cache and mini-data cache
via coprocessor 15, register 7. Note that a line locked into the data cache remains
locked even after it has been subjected to an invalidate-entry operation. This will leave
an unusable line in the cache until a global unlock has occurred. For this reason, do not
use these commands on locked lines.

This same register also provides the command to invalidate the entire data cache and
mini-data cache. Refer to Table 18, “Cache Functions” on page 81 for a listing of the
commands. These global invalidate commands have no effect on lines locked in the
data cache. Locked lines must be unlocked before they can be invalidated. This is
accomplished by the Unlock Data Cache command found in Table 20, “Cache Lock-
Down Functions” on page 83.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 65

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

A simple software routine is used to globally clean the data cache. It takes advantage
of the line-allocate data cache operation, which allocates a line into the data cache.

This allocation evicts any cache dirty data back to external memory. Example 9 shows
how data cache can be cleaned.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
66

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

Example 9. Global Clean Operation

September 2006

intel.

Global Clean/Invalidate THE DATA CACHE

R1 contains the virtual address of a region of cacheable memory reserved for
this clean operation

RO is the loop count; lterate 1024 times which is the number of lines in the
data cache

;> Macro ALLOCATE performs the line-allocation cache operation on the
;; address specified in register Rx.

MACRO ALLOCATE Rx
MCR P15, O, Rx, C7, C2, 5

ENDM

MOV RO, #1024

LOOP1:
ALLOCATE R1 ; Allocate a line at the virtual address
; specified by R1.
ADD R1, R1, #32 ; Increment the address in R1 to the next cache line
SUBS RO, RO, #1 ; Decrement loop count
BNE LOOP1

;Clean the Mini-data Cache
; Can’t use line-allocate command, so cycle 2KB of unused data through.

R2 contains the virtual address of a region of cacheable memory reserved for
cleaning the Mini-data Cache

RO is the loop count; lterate 64 times which is the number of lines in the
Mini-data Cache.

MOV RO, #64

LOOP2:

LDR R3,[R2],#32 ; Load and increment to next cache line
SUBS RO, RO, #1 ; Decrement loop count

BNE LOOP2

Invalidate the data cache and mini-data cache

MCR P15, 0, RO, C7, C6, O

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
67

intel.

3.4.3

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

The line-allocate operation does not require physical memory to exist at the virtual
address specified by the instruction, since it does not generate a load/fill request to
external memory. Also, the line-allocate operation does not set the 32 bytes of data
associated with the line to any known value. Reading this data will produce
unpredictable results.

The line-allocate command will not operate on the mini Data Cache, so system software
must clean this cache by reading 2 Kbytes of contiguous unused data into it. This data
must be unused and reserved for this purpose so that it will not already be in the
cache. It must reside in a page that is marked as mini Data Cache cacheable (see “New
Page Attributes” on page 152).

The time it takes to execute a global clean operation depends on the number of dirty
lines in cache.

Reconfiguring the Data Cache as Data RAM

Software has the ability to lock tags associated with 32-byte lines in the data cache,
thus creating the appearance of data RAM. Any subsequent access to this line will
always hit the cache unless it is invalidated. Once a line is locked into the data cache it
is no longer available for cache allocation on a line fill. Up to 28 lines in each set can be
reconfigured as data RAM, such that the maximum data RAM size is 28 Kbytes for the
32-Kbyte cache and 12 Kbytes for the 16-Kbyte cache.

Hardware does not support locking lines into the mini-data cache; any attempt to do
this will produce unpredictable results.

There are two methods for locking tags into the data cache; the method of choice
depends on the application. One method is used to lock data that resides in external
memory into the data cache and the other method is used to re-configure lines in the
data cache as data RAM. Locking data from external memory into the data cache is
useful for lookup tables, constants, and any other data that is frequently accessed. Re-
configuring a portion of the data cache as data RAM is useful when an application needs
scratch memory (bigger than the register file can provide) for frequently used
variables. These variables may be strewn across memory, making it advantageous for
software to pack them into data RAM memory.

Code examples for these two applications are shown in Example 10 on page 69 and
Example 11 on page 70. The difference between these two routines is that Example 10
on page 69 actually requests the entire line of data from external memory and
Example 11 on page 70 uses the line-allocate operation to lock the tag into the cache.
No external memory request is made, which means software can map any unallocated
area of memory as data RAM. However, the line-allocate operation does validate the
target address with the MMU, so system software must ensure that the memory has a
valid descriptor in the page table.

Another item to note in Example 11 on page 70 is that the 32 bytes of data located in a
newly allocated line in the cache must be initialized by software before it can be read.

The line allocate operation does not initialize the 32 bytes and therefore reading from

that line will produce unpredictable results.

In both examples, the code drains the pending loads before and after locking data. This
step ensures that outstanding loads do not end up in the wrong place -- either
unintentionally locked into the cache or mistakenly left out in the proverbial cold. Note
also that a drain operation has been placed after the operation that locks the tag into
the cache. This drains ensures predictable results if a programmer tries to lock more
than 28 lines in a set; the tag will get allocated in this case but not locked into the
cache.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
68

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

Example 10. Locking Data into Data Cache

intel.

; R1 contains the virtual address of a region of memory to lock,

; configured with C=1 and B=1

; example 16 lines of data are locked into the cache.

; MMU and data cache are enabled prior to this code.

MACRO DRAIN
MCR P15, 0, RO, C7, C10, 4 ; drain pending loads and stores

ENDM

DRAIN

MOV R2, #0x1
MCR P15,0,R2,C9,C2,0 ; Put the data cache in lock mode
CPWAIT

MOV RO, #16

; in R1 to the next cache line.
SUBS RO, RO, #1; Decrement loop count

BNE LOOP1

; Turn off data cache locking

MOV R2, #0xO0

CPWAIT

MCR P15,0,R2,C9,C2,0 ; Take the data cache out of lock mode.

; RO is the number of 32-byte lines to lock into the data cache. In this

LOOP1:

MCR P15,0,R1,C7,C10,1 ; Write back the line if it’s dirty in the cache
MCR P15,0,R1, C7,C6,1 ; Flush/Invalidate the line from the cache

LDR R2, [R1], #32 ; Load and lock 32 bytes of data located at [R1]

; Iinto the data cache. Post-increment the address

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
69

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Example 11. Creating Data RAM

; R1 contains the virtual address of a region of memory to configure as data RAM,
; which is aligned on a 32-byte boundary.

; MMU is configured so that the memory region is cacheable.

; RO is the number of 32-byte lines to designate as data RAM. In this example 16
; lines of the data cache are re-configured as data RAM.

; The inner loop is used to initialize the newly allocated lines

; MMU and data cache are enabled prior to this code.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
70 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Example 11. Creating Data RAM

MACRO ALLOCATE Rx
MCR P15, 0, Rx, C7, C2, 5

ENDM

MACRO DRAIN
MCR P15, 0, RO, C7, C10, 4 ; drain pending loads and stores

ENDM

DRAIN
MOV R4, #0x0
MOV R5, #0x0

MOV R2, #Ox1

MCR P15,0,R2,C9,C2,0 ; Put the data cache in lock mode
CPWAIT

MOV RO, #16

LOOP1:

ALLOCATE R1 ; Allocate and lock a tag into the data cache at

; address [R1].
; initialize 32 bytes of newly allocated line
DRAIN
STRD R4, [R1],#8 ;

STRD R4, [R1].#8 ;

STRD R4, [R1],#8 ;

STRD R4, [R1],#8 ;

SUBS RO, RO, #1 ; Decrement loop count
BNE LOOP1

; Turn off data cache locking
DRAIN ; Finish all pending operations
MOV R2, #0Ox0

MCR P15,0,R2,C9,C2,0; Take the data cache out of lock mode.

CPWAIT
Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 71

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Figure 14.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Tags can be locked into the data cache by enabling the data cache lock mode bit
located in coprocessor 15, register 9. (See Table 20, “Cache Lock-Down Functions” on
page 83 for the exact command.) Once enabled, any new lines allocated into the data
cache will be locked down.

Note that the PLD instruction will not affect the cache contents if it encounters an error
while executing. For this reason, system software should ensure the memory address
used in the PLD is correct. If this cannot be ascertained, replace the PLD with a LDR
instruction that targets a scratch register.

Lines are locked into a set starting at wayO and may progress up to way 27; which set
a line gets locked into depends on the set index of the virtual address of the request.
Figure 9, “Locked Line Effect on Round-Robin Replacement” on page 57 is an example
of where lines of code may be locked into the cache along with how the round-robin
pointer is affected.

Locked Line Effect on Round-Robin Replacement

set 0: 8 ways locked, 24 ways available for round robin replacement
set 1: 23 ways locked, 9 ways available for round robin replacement
set 2: 28 ways locked, only ways 28-31 available for replacement
set 31: all 32 ways available for round robin replacement

set0 setl set 2 T set 31

wayo |8 4
way 1 e

s S 3 5
way 7 = - < 3
way 8 o] o

. - -
way 22
way 23 - a

wéy 30
way 31

Software can lock down data located at different memory locations. This may cause
some sets to have more locked lines than others as shown in Figure 9.

Lines are unlocked in the data cache by performing an unlock operation. See “Register
9: Cache Lock Down” on page 82 for more information about locking and unlocking the
data cache.

Before locking, the programmer must ensure that no part of the target data range is
already resident in the cache. The Intel XScale processor will not refetch such data,
which will result in it not being locked into the cache. If there is any doubt as to the
location of the targeted memory data, the cache should be cleaned and invalidated to
prevent this scenario. If the cache contains a locked region which the programmer
wishes to lock again, then the cache must be unlocked before being cleaned and
invalidated.

See “Terminology and Conventions” on page 26 for a definition of coalescing.

The write buffer is always enabled which means stores to external memory will be
buffered. The K bit in the Auxiliary Control Register (CP15, register 1) is a global
enable/disable for allowing coalescing in the write buffer. When this bit disables
coalescing, no coalescing will occur regardless the value of the page attributes. If this
bit enables coalescing, the page attributes X, C, and B are examined to see if
coalescing is enabled for each region of memory.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
72

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

All reads and writes to external memory occur in program order when coalescing is
disabled in the write buffer. If coalescing is enabled in the write buffer, writes may
occur out of program order to external memory. Program correctness is maintained in
this case by comparing all store requests with all the valid entries in the fill buffer.

The write buffer and fill buffer support a drain operation, such that before the next
instruction executes, all Intel XScale processor data requests to external memory have
completed. See Table 18, “Cache Functions” on page 81 for the exact command.

Writes to a region marked non-cacheable/non-bufferable (page attributes C, B, and X
all 0) will cause execution to stall until the write completes.

If software is running in a privileged mode, it can explicitly drain all buffered writes. For
details on this operation, see the description of Drain Write Buffer in “Register 7: Cache
Functions” on page 81.

3.5 Configuration

This section describes the System Control Coprocessor (CP15) and coprocessor 14
(CP14). CP15 configures the MMU, caches, buffers and other system attributes. Where
possible, the definition of CP15 follows the definition of the ARM products. CP14
contains the performance monitor registers, clock and power management registers
and the debug registers.

CP15 is accessed through MRC and MCR coprocessor instructions and allowed only in
privileged mode. Any access to CP15 in user mode or with LDC or STC coprocessor
instructions will cause an undefined instruction exception.

All CP14 registers can be accessed through MRC and MCR coprocessor instructions.
LDC and STC coprocessor instructions can only access the clock and power
management registers, and the debug registers. The performance monitoring registers
can’t be accessed by LDC and STC because CRm != 0x0. Access to all registers is
allowed only in privileged mode. Any access to CP14 in user mode will cause an
undefined instruction exception.

Coprocessors, CP15 and CP14, on the Intel XScale® Processor do not support access
via CDP, MRRC, or MCRR instructions. An attempt to access these coprocessors with
these instructions will result in an Undefined Instruction exception.

Many of the MCR commands available in CP15 modify hardware state sometime after
execution. A software sequence is available for those wishing to determine when this
update occurs and can be found in “Additions to CP15 Functionality” on page 153.

Like certain other ARM architecture products, the Intel XScale® Processor includes an

extra level of virtual address translation in the form of a PID (Process ID) register and
associated logic. For a detailed description of this facility, see “Register 13: Process ID”
on page 84. Privileged code needs to be aware of this facility because, when interacting
with CP15, some addresses are modified by the PID and others are not.

An address that has yet to be modified by the PID (“PIDified”) is known as a virtual
address (VA). An address that has been through the PID logic, but not translated into a
physical address, is a modified virtual address (MVA). Non-privileged code always deals
with VAs, while privileged code that programs CP15 occasionally needs to use MVAs.

The format of MRC and MCR is shown in Table 7.

cp_num is defined for CP15, CP14 and CPO on the Intel XScale processor. CPO supports
instructions specific for DSP and is described in “Programming Model” on page 144

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 73

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Unless otherwise noted, unused bits in coprocessor registers have unpredictable values
when read. For compatibility with future implementations, software should not rely on
the values in those bits.

Table 7. MRC/MCR Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
cond 1|1|1|0 |opcode_1|n CRnNn Rd cp_num (opcode_2| 1 CRm
Bits Description Notes

31:28 cond - ARM condition codes -

Should be programmed to zero for future

23:21 opcode_1 - Reserved compatibility

n - Read or write coprocessor register

20 0= MCR -
1= MRC
19:16 CRnN - specifies which coprocessor register -

15:12 Rd - General Purpose Register, RO..R15 -

Intel XScale processor defines three
coprocessors:
0Ob1111 = CP15
0Ob1110 = CP14
. 0x0000 = CPO
11:8 cp_num - coprocessor number ! . . .
P P Note: Mappings are implementation defined
for all coprocessors below CP14 and
above CPO. Access to unimplemented
coprocessors (as defined by the
cpConfig bus) cause exceptions.

This field should be programmed to zero for
7:5 opcode_2 - Function bits future compatibility unless a value has been
specified in the command.

This field should be programmed to zero for
3:0 CRm - Function bits future compatibility unless a value has been
specified in the command.

The format of LDC and STC for CP14 is shown in Table 8. LDC and STC follow the
programming notes in the ARM* Architecture Reference Manual. Note that access to
CP15 with LDC and STC will cause an undefined exception.

LDC and STC transfer a single 32-bit word between a coprocessor register and
memory. These instructions do not allow the programmer to specify values for
opcode_1, opcode_2, or Rm; those fields implicitly contain zero, which means the
performance monitoring registers are not accessible.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM September 2006
74 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

intel.

Table 8. LDC/STC Format when Accessing CP14
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cond 1(1|0|P|U|[N|W|L RN CRd cp_num 8_bit_word_offset
Bits Description Notes
31:28 cond - ARM condition codes -
P, U, W - specifies 1 of 3 addressing modes
24:23,21 | identified by addressing mode 5 in the ARM* -
Architecture Reference Manual.
22 N - should be 0 for CP14 coprocessors. Setting
this bit to 1 has will have an undefined effect.
L - Load or Store
20 0= STC -
1= LDC
19:16 RN - specifies the base register -
15:12 CRd - specifies the coprocessor register -
Intel XScale processor defines the following:
0b1111 = Undefined Exception
0Ob1110 = CP14
Note: Mappings are implementation defined
11:8 cp_num - coprocessor number for all coprocessors below CP13.
Access to unimplemented
coprocessors (as defined by the
cpConfig bus) cause exceptions.
7:0 8-bit word offset -
3.5.1 CP15 Registers
Table 9 lists the CP15 registers implemented in Intel® 1XP42X Product Line of Network
Processors and 1XC1100 Control Plane Processor.
Table 9. CP15 Registers (Sheet 1 of 2)
Register Opcode_2 Access Description
(CRN) —
(o] 0 Read / Write-lIgnored ID
0 1 Read / Write-lgnored Cache Type
1 (o] Read / Write Control
1 1 Read / Write Auxiliary Control
2 0 Read / Write Translation Table Base
3 (6] Read / Write Domain Access Control
4 - Unpredictable Reserved
5 0 Read / Write Fault Status
6 (6] Read / Write Fault Address
7 (o] Read-unpredictable / Write Cache Operations
8 0 Read-unpredictable / Write TLB Operations
9 6] Read / Write Cache Lock Down
10 (0] Read-unpredictable / Write TLB Lock Down

September 2006
Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
75

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Table 9. CP15 Registers (Sheet 2 of 2)
Register Opcode_2 Access Description
(CRnN)
11 - 12 - Unpredictable Reserved
13 0 Read / Write Process ID (PID)
14 [0] Read / Write Breakpoint Registers
15 (] Read / Write (CRm = 1) CP Access

3.5.1.1 Register O: ID and Cache Type Registers

Register O houses two read-only register that are used for part identification: an ID
register and a cache type register.

The ID Register is selected when opcode_2=0. This register returns the code for the
Intel® IXP42X product line and 1XC1100 control plane processors.

Table 10. ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16151413 12 11 10 9 8 7 6 5 4 3 2 1 O

Core Core Product

01101 0O0 1[0 00O O0O0OT1I 01 L Product Number .
Gen Revision Revision

reset value: As Shown

Bits Access Description

Implementation trademark

31:24 Read / Write Ignored (0x69 = ‘i'= Intel Corporation)

Architecture version = ARM Version 5TE

23:16 Read / Write Ignored
9 (0x05 will be value returned)

Core Generation

0b010 = Intel XScale processor

15:13 Read / Write Ignored This field reflects a specific set of architecture features
supported by the core. If new features are added/
deleted/modified, this field will change.

Intel XScale processor Revision:

This field reflects revisions of core generations.

12:10 Read / Write Ignored Differences may include errata that dictate different
operating conditions, software work-around, etc. Value
returned will be 000b

Product Number for:
IXP42X 533-MHz processor - 011100b

9:4 Read / Write Ignored
g IXP42X 400-MHz processor - 011101b
IXP42X 266-MHz processor - 011111b
Product Revision for:1XP42X product line
. IXP42X 533-MHz processor - 0001b
3:0 Read / Write Ignored

IXP42X 400-MHz processor - 0001b
IXP42X 266-MHz processor - 0001b

The Cache Type Register is selected when opcode_2=1 and describes the cache
configuration of the Intel XScale processor.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
76 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 11.

3.5.1.2

Table 12.

September 2006

Cache Type Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

O 0O 0|01 O 1|12|0 O O| Dsize (1 O 1|01 O|O0O O Of Isize 1 0 1|01 O

reset value: As Shown

Bits Access Description
31:29 Read-as-Zero / Write Ignored Reserved
Cache class = 0b0101
28:25 Read / Write Ignored The caches support locking, write back and round-robin
replacement. They do not support address by index.
24 Read / Write Ignored Harvard Cache
23:21 Read-as-Zero / Write Ignored Reserved

Data Cache Size (Dsize)

20:18 Read / Write Ignored 0b110 = 32 KB

17:15 Read / Write Ignored Data cache associativity = 0b101 = 32-way
14 Read-as-Zero / Write Ignored Reserved
13:12 Read / Write Ignored Data cache line length = Ob10 = 8 words/line
11:9 Read-as-Zero / Write Ignored Reserved
. Instruction cache size (Isize
8:6 Read / Write Ignored 0b110 = 32 KB ()
5:3 Read / Write Ignored Instruction cache associativity = 0b101 = 32-way
2 Read-as-Zero / Write Ignored Reserved
1:0 Read / Write Ignored Instruction cache line length = 0b10 = 8 words/line

Register 1: Control and Auxiliary Control Registers

Register 1 is made up of two registers, one that is compliant with ARM Version 5TE and
referred by opcode_2 = 0x0, and the other which is specific to the Intel XScale
processor is referred by opcode_2 = Ox1. The latter is known as the Auxiliary Control
Register.

The Exception Vector Relocation bit (bit 13 of the ARM control register) allows the
vectors to be mapped into high memory rather than their default location at address 0.
This bit is readable and writable by software. If the MMU is enabled, the exception
vectors will be accessed via the usual translation method involving the PID register
(see “Register 13: Process ID” on page 84) and the TLBs. To avoid automatic
application of the PID to exception vector accesses, software may relocate the
exceptions to high memory.

ARM™ Control Register (Sheet 1 of 2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

VITZ|O0O|[R|S|B|1|1|1|12|C|A|M

reset value: writeable bits set to O

Bits Access Description

Read-Unpredictable /

31:14 Write-as-Zero

Reserved

Exception Vector Relocation (V).

13 Read / Write 0 = Base address of exception vectors is 0x0000,0000
1 = Base address of exception vectors is OxFFFF,0000

Instruction Cache Enable/Disable (1)
12 Read / Write 0 = Disabled

1 = Enabled

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 77

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 12.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

ARM™ Control Register (Sheet 2 of 2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ViT|Z|O|R|[S|B|1|1|1[12|C|A|M

reset value:

writeable bits set to O

Bits

Access

Description

11

Read / Write

Branch Target Buffer Enable (Z)
0 = Disabled
1 = Enabled

10

Read-as-Zero / Write-as-Zero

Reserved

Read / Write

ROM Protection (R)

This selects the access checks performed by the memory
management unit. See the ARM* Architecture Reference
Manual for more information.

Read / Write

System Protection (S)

This selects the access checks performed by the memory
management unit. See the ARM* Architecture Reference
Manual for more information.

Read / Write

Big/Little Endian (B)

0 = Little-endian operation
1 = Big-endian operation

6:3

Read-as-One / Write-as-One

= Ob1111

Read / Write

Data cache enable/disable (C)

0 = Disabled
1 = Enabled

Read / Write

Alignment fault enable/disable (A)

0 = Disabled
1 = Enabled

Read / Write

Memory management unit enable/disable (M)

0 = Disabled
1 = Enabled

The mini-data cache attribute bits, in the Auxiliary Control Register, are used to control
the allocation policy for the mini-data cache and whether it will use write-back caching
or write-through caching.

The configuration of the mini-data cache should be setup before any data access is

made that may be cached in the mini-data cache. Once data is cached, software must
ensure that the mini-data cache has been cleaned and invalidated before the mini-data
cache attributes can be changed.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
78

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 13. Auxiliary Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

PTEX MD |C|B|P|K

reset value: writeable bits set to O

Bits

Access

Description

31:6

Read-Unpredictable /
Write-as-Zero

Reserved

5:4

Read / Write

Mini Data Cache Attributes (MD)

All configurations of the Mini-data cache are cacheable,
stores are buffered in the write buffer and stores will be
coalesced in the write buffer as long as coalescing is
globally enable (bit O of this register).

0b00 = Write back, Read allocate

0b01 = Write back, Read/Write allocate

0b10 = Write through, Read allocate

Ob11 = Unpredictable

3:2

Read-Unpredictable/
Write-as-Zero

(Reserved)

Read/Write

Page Table Memory Attribute (P)

This is a request to the core memory bus for a hardware
page table walk. An ASSP may use this bit to direct the
external bus controller to perform some special operation
on the memory access.

Read / Write

Write Buffer Coalescing Disable (K)

This bit globally disables the coalescing of all stores in the
write buffer no matter what the value of the Cacheable
and Bufferable bits are in the page table descriptors.

0 = Enabled

1 = Disabled

3.5.1.3 Register 2: Translation Table Base Register

Table 14. Translation Table Base Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Translation Table Base

reset value: unpredictable

Bits

Access

Description

31:14

Read / Write

Translation Table Base - Physical address of the base
of the first-level table

13:0

Read-unpredictable / Write-as-Zero

Reserved

September 2006

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

DM
79

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

3.5.1.4 Register 3: Domain Access Control Register

Table 15. Domain Access Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

D15 | D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO

reset value: unpredictable

Bits Access Description

Access permissions for all 16 domains - The meaning
31:0 Read / Write of each field can be found in the ARM* Architecture
Reference Manual.

3.5.1.5 Register 4: Reserved

Register 4 is reserved. Reading and writing this register yields unpredictable results.

3.5.1.6 Register 5: Fault Status Register

The Fault Status Register (FSR) indicates which fault has occurred, which could be
either a prefetch abort or a data abort. Bit 10 extends the encoding of the status field
for prefetch aborts and data aborts. The definition of the extended status field is found
in “Event Architecture” on page 154. Bit 9 indicates that a debug event occurred and
the exact source of the event is found in the debug control and status register (CP14,
register 10). When bit 9 is set, the domain and extended status field are undefined.

Upon entry into the prefetch abort or data abort handler, hardware will update this
register with the source of the exception. Software is not required to clear these fields.

Table 16. Fault Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

X|D|O Domain Status

reset value: unpredictable

Bits Access Description

31:11 Read-unpredictable / Write-as-Zero | Reserved

Status Field Extension (X)

) This bit is used to extend the encoding of the Status field,
10 Read / Write when there is a prefetch abort and when there is a data
abort. The definition of this field can be found in “Event

Architecture” on page 154

Debug Event (D)

; This flag indicates a debug event has occurred and that
9 Read / Write
the cause of the debug event is found in the MOE field of
the debug control register (CP14, register 10)

8 Read-as-zero / Write-as-Zero =0

Domain - Specifies which of the 16 domains was being

74 Read / Write accessed when a data abort occurred

3:0 Read / Write Status - Type of data access being attempted

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
80 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.5.1.7

Table 17.

3.5.1.8

Table 18.

September 2006

Register 6: Fault Address Register

Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Fault Virtual Address

reset value: unpredictable

Bits Access Description
31:0 Read / Write Fault Virtual Address - Contains the MVA of the data
access that caused the memory abort

Register 7: Cache Functions

All the functions defined in existing ARM products appear here. The Intel XScale
processor adds other functions as well. This register should be accessed as write-only.
Reads from this register, as with an MRC, have an undefined effect.

The Drain Write Buffer function not only drains the write buffer but also drains the fill
buffer.

The Intel XScale processor does not check permissions on addresses supplied for cache
or TLB functions. Due to the fact only privileged software may execute these functions,
full accessibility is assumed. Cache functions will not generate any of the following:

« Translation faults

e Domain faults

e Permission faults
The invalidate instruction cache line command does not invalidate the BTB. If software
invalidates a line from the instruction cache and modifies the same location in external

memory, it needs to invalidate the BTB also. Not invalidating the BTB in this case may
cause unpredictable results.

Disabling/enabling a cache has no effect on contents of the cache: valid data stays
valid, locked items remain locked. All operations defined in Table 18 work regardless of
whether the cache is enabled or disabled.

Since the Clean DCache Line function reads from the data cache, it is capable of
generating a parity fault. The other operations will not generate parity faults.

Cache Functions

Function opcode_2 CRm Data Instruction
Invalidate 1&D cache & BTB 0b000 0b0111 Ignored MCR p15, O, Rd, c7, c7, 0
Invalidate | cache & BTB 0b000 0b0101 | Ignored MCR p15, O, Rd, c7, c5, 0
Invalidate | cache line 0b001 0b0101 | MVA MCR p15, O, Rd, c7, c5, 1
Invalidate D cache 0b000 0b0110 | Ignored MCR p15, O, Rd, c7, c6, O
Invalidate D cache line 0b001 0b0110 | MVA MCR p15, O, Rd, c7, c6, 1
Clean D cache line 0b001 0b1010 | MVA MCR p15, O, Rd, c7, c10, 1
Drain Write (& Fill) Buffer 0b100 0b1010 | Ignored MCR p15, O, Rd, c7, cl10, 4
Invalidate Branch Target Buffer 0Ob110 0b0101 | Ignored MCR p15, O, Rd, c7, c5, 6
Allocate Line in the Data Cache 0b101 Ob0010 | MVA MCR p15, O, Rd, c7, c2, 5

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 81

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

The line-allocate command allocates a tag into the data cache specified by bits [31:5]
of Rd. If a valid dirty line (with a different MVA) already exists at this location it will be
evicted. The 32 bytes of data associated with the newly allocated line are not initialized
and therefore will generate unpredictable results if read.

Line allocate command may be used for cleaning the entire data cache on a context
switch and also when reconfiguring portions of the data cache as data RAM. In both
cases, Rd is a virtual address that maps to some non-existent physical memory. When
creating data RAM, software must initialize the data RAM before read accesses can
occur. Specific uses of these commands can be found in Chapter 3.0, “Data Cache”.

Other items to note about the line-allocate command are:
= It forces all pending memory operations to complete.

« Bits [31:5] of Rd is used to specific the virtual address of the line to be allocated
into the data cache.

- If the targeted cache line is already resident, this command has no effect.
= The command cannot be used to allocate a line in the mini Data Cache.

= The newly allocated line is not marked as “dirty” so it will never get evicted.
However, if a valid store is made to that line it will be marked as “dirty” and will get
written back to external memory if another line is allocated to the same cache
location. This eviction will produce unpredictable results.
To avoid this situation, the line-allocate operation should only be used if one of the
following can be guaranteed:

— The virtual address associated with this command is not one that will be
generated during normal program execution. This is the case when line-allocate
is used to clean/invalidate the entire cache.

— The line-allocate operation is used only on a cache region destined to be
locked. When the region is unlocked, it must be invalidated before making
another data access.

3.5.1.9 Register 8: TLB Operations
Disabling/enabling the MMU has no effect on the contents of either TLB: valid entries
stay valid, locked items remain locked. All operations defined in Table 19 work
regardless of whether the TLB is enabled or disabled.

This register should be accessed as write-only. Reads from this register, as with an
MRC, have an undefined effect.

Table 19. TLB Functions

Function opcode_2 CRm Data Instruction
Invalidate 1&D TLB 0b000 0b0111 Ignored MCR p15, O, Rd, ¢8, ¢7, 0
Invalidate | TLB 0b000 0b0101 Ignored MCR p15, 0, Rd, c8, c5, 0
Invalidate | TLB entry Ob001 0b0101 MVA MCR p15, O, Rd, c8, ¢5, 1
Invalidate D TLB 0b000 0b0110 Ignored MCR p15, O, Rd, c8, c6, O
Invalidate D TLB entry 0b001 0b0110 MVA MCR p15, O, Rd, c8, c6, 1

3.5.1.10 Register 9: Cache Lock Down

Register 9 is used for locking down entries into the instruction cache and data cache.
(The protocol for locking down entries can be found in Chapter 3.0, “Data Cache”.)

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
82 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 20.

Table 21.

3.5.1.11

Table 22.

September 2006

Table 20 shows the command for locking down entries in the instruction and data
cache. The entry to lock in the instruction cache is specified by the virtual address in
Rd. The data cache locking mechanism follows a different procedure than the
instruction cache. The data cache is placed in lock down mode such that all subsequent
fills to the data cache result in that line being locked in, as controlled by Table 21.

Lock/unlock operations on a disabled cache have an undefined effect.
Read and write access is allowed to the data cache lock register bit[0]. All other

accesses to register 9 should be write-only; reads, as with an MRC, have an undefined
effect.

Cache Lock-Down Functions

Function opcode_2 CRm Data Instruction
Fetch and Lock | cache line 0Ob000O 0b0001 MVA MCR p15, O, Rd, c9, c1, 0
Unlock Instruction cache 0b001 0b0001 Ignored MCR p15, O, Rd, c9, c1, 1
Read data cache lock register 0b000 oboo1o | Readlockmode | o 15 o Rd, c9, c2, 0

value

Set/Clear lock

Write data cache lock register 0Ob000 0b0010
mode

MCR p15, O, Rd, c9, c2, 0

Unlock Data Cache Ob0O0O1 0b0010 Ignored MCR p15, O, Rd, c9, c2, 1

Data Cache Lock Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

reset value: writeable bits set to O

Bits Access Description

31:1 Read-unpredictable / Write-as-Zero | Reserved

Data Cache Lock Mode (L)

; 0 = No locking occurs
0 Read / Write
: 1 = Any fill into the data cache while this bit is set gets
locked in

Register 10: TLB Lock Down

Register 10 is used for locking down entries into the instruction TLB, and data TLB.
(The protocol for locking down entries can be found in Chapter 3.0, “Memory
Management Unit”.) Lock/unlock operations on a TLB when the MMU is disabled have
an undefined effect.

This register should be accessed as write-only. Reads from this register, as with an
MRC, have an undefined effect.

Table 22 shows the command for locking down entries in the instruction TLB, and data
TLB. The entry to lock is specified by the virtual address in Rd.

TLB Lockdown Functions

Function opcode_2 CRm Data Instruction

Translate and Lock | TLB entry 0b000 0b0100 MVA MCR p15, O, Rd, c10, c4, 0

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 83

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Table 22. TLB Lockdown Functions

Function opcode_2 CRm Data Instruction
Translate and Lock D TLB entry 0b000 0b1000 MVA MCR p15, 0, Rd, c10, c8, 0
Unlock | TLB 0b001 0b0100 Ignored MCR p15, 0, Rd, c10, c4, 1
Unlock D TLB 0b001 0b1000 Ignored MCR p15, 0, Rd, c10, c8, 1

3.5.1.12 Register 11-12: Reserved

These registers are reserved. Reading and writing them yields unpredictable results.

3.5.1.13 Register 13: Process ID

The Intel XScale processor supports the remapping of virtual addresses through a
Process ID (PID) register. This remapping occurs before the instruction cache,
instruction TLB, data cache and data TLB are accessed. The PID register controls when
virtual addresses are remapped and to what value.

The PID register is a 7-bit value that is ORed with bits 31:25 of the virtual address
when they are zero. This action effectively remaps the address to one of 128 “slots” in
the 4 Gbytes of address space. If bits 31:25 are not zero, no remapping occurs. This
feature is useful for operating system management of processes that may map to the
same virtual address space. In those cases, the virtually mapped caches on the Intel
XScale processor would not require invalidating on a process switch.

Table 23. Accessing Process ID
Function opcode_2 CRm Instruction
Read Process ID Register 0b000 0b0000 MRC p15, 0, Rd, c13, c0, O
Write Process ID Register 0b000 0b0000 MCR p15, 0, Rd, c13, c0, O

Table 24. Process ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Process ID

reset value: 0x0000,0000

Bits Access Description

Process ID - This field is used for remapping the virtual

31:25 Read / Write address when bits 31-25 of the virtual address are zero.

Reserved - Should be programmed to zero for future

24:0 Read-as-Zero / Write-as-Zero compatibility

3.5.1.14 The PID Register Affect On Addresses

All addresses generated and used by User Mode code are eligible for being “PIDified” as
described in the previous section. Privileged code, however, must be aware of certain
special cases in which address generation does not follow the usual flow.

The PID register is not used to remap the virtual address when accessing the Branch
Target Buffer (BTB). Any writes to the PID register invalidate the BTB, which prevents
any virtual addresses from being double mapped between two processes.

A breakpoint address (see “Register 14: Breakpoint Registers” on page 85) must be
expressed as an MVA when written to the breakpoint register. This requirement means
the value of the PID must be combined appropriately with the address before it is
written to the breakpoint register. All virtual addresses in translation descriptors (see
“Memory Management Unit” on page 44) are MVAs.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
84 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.5.1.15

Table 25.

3.5.1.16

September 2006

Register 14: Breakpoint Registers

The Intel XScale processor contains two instruction breakpoint address registers
(IBCRO and IBCR1), one data breakpoint address register (DBR0O), one configurable
data mask/address register (DBR1), and one data breakpoint control register (DBCON).
The Intel XScale processor also supports a 256-entry, trace buffer that records program
execution information. The registers to control the trace buffer are located in CP14.

Refer to “Software Debug” on page 88 for more information on these features of the
Intel XScale processor.

Accessing the Debug Registers

Function opcode_2 CRm Instruction
fcess nstruton Breskpoit Obiooo | MECPIS O R i 8 O read
B fntructon Breakgorn obioos | MRS RIS O R cid €80 read
focess Dats prsakpont Adcress | 00 dboooo | MAC PES. 0 Ak 4 00,0 read
Ao Dets sk dres oo | ovoorn | MESPIZ O RG cid e 07 read
focess Data Breapomt Conrol | apo0p cboroo | MRS IS O R cid 4,0 read

Register 15: Coprocessor Access Register
This register is selected when opcode_2 = 0 and CRm = 1.

This register controls access rights to all the coprocessors in the system except for
CP15 and CP14. Both CP15 and CP14 can only be accessed in privilege mode. This
register is accessed with an MCR or MRC with the CRm field set to 1.

This register controls access to CPO, atypical use for this register is for an operating
system to control resource sharing among applications. Initially, all applications are
denied access to shared resources by clearing the appropriate coprocessor bit in the
Coprocessor Access Register. An application may request the use of a shared resource
(e.g., the accumulator in CPO) by issuing an access to the resource, which will result in
an undefined exception. The operating system may grant access to this coprocessor by
setting the appropriate bit in the Coprocessor Access Register and return to the
application where the access is retried.

Sharing resources among different applications requires a state saving mechanism.
Two possibilities are:

= The operating system, during a context switch, could save the state of the
coprocessor if the last executing process had access rights to the coprocessor.

= The operating system, during a request for access, saves off the old coprocessor
state and saves it with last process to have access to it.

Under both scenarios, the OS needs to restore state when a request for access is made.
This means the OS has to maintain a list of what processes are modifying CPO and their
associated state.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 85

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Example 12. Disallowing access to CPO

;5 The following code clears bit 0 of the CPAR.
; This will cause the processor to fault if software

;; attempts to access CPO.

LDR RO, =0x3FFE bit 0 is clear

MCR P15, 0, RO, Ci5, C1, O move to CPAR

CPWAIT wait for effect

Table 26. Coprocessor Access Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ggggCCCCCCCCCC
olol1l1|1]1|P|P|P|IP|P|P|P|P|P|P
32109876543210
reset value: 0x0000,0000
Bits Access Description
31:16 Read-unpredictable / Write-as-Zero Reserved - Should be programmed to zero for future
compatibility
15:14 Read-as-Zero/Write-as-Zero Reserved - Should be programmed to zero for future
compatibility

Coprocessor Access Rights-
13:1 Read / Write Each bit in this field corresponds to the access rights for
each coprocessor.

Coprocessor Access Rights-

This bit corresponds to the access rights for CPO.

o Read / Write 0 = Access den?ed. Any attempt to access the
corresponding coprocessor will generate an
undefined exception.

1 = Access allowed. Includes read and write accesses.

3.5.2 CP14 Registers
Table 27 lists the CP14 registers implemented in the Intel XScale processor.

Table 27. CP14 Registers

Description Access Register# (CRnN) Register# (CRm)
0,1,4,5,8 1
Performance Monitoring Read / Write
0-3 2
Clock and Power Management Read / Write 6-7 0
Software Debug Read / Write 8-15 (o]

All other registers are reserved in CP14. Reading and writing them yields unpredictable
results.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM September 2006
86 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

3.5.2.1

Table 28.

3.5.2.2

Table 29.

September 2006

Performance Monitoring Registers

intel.

The performance monitoring unit contains a control register (PMNC), a clock counter
(CCNT), interrupt enable register (INTEN), overflow flag register (FLAG), event
selection register (EVTSEL) and four event counters (PMNO through PMN3). The format
of these registers can be found in “Performance Monitoring” on page 133, along with a
description on how to use the performance monitoring facility.

Opcode_2 should be zero on all accesses.

These registers can’t be accessed by LDC and STC coprocessor instructions.

Accessing the Performance Monitoring Registers

CRnN CRmM
Description Register Register Instruction
#H H
(PMNC) Performance Monitor Control Read: MRC p14, 0, Rd, c0, c1, 0
Register 0b0000 0b0001 Write: MCR p14, 0, Rd, c0, c1, 0
. Read: MRC p14, O, Rd, c1, c1, 0
(CCNT) Clock Counter Register 0b0001 0b0001 Write: MCR pi4, 0, Rd, c1, c1, 0
. Read: MRC p14, 0O, Rd, c4, c1, 0
(INTEN) Interrupt Enable Register 0b0100 0b0001 Write: MCR p14, 0, Rd, c4, c1, 0
. Read: MRC p14, 0, Rd, ¢5, c1, 0
(FLAG) Overflow Flag Register 0b0101 0b0001 Write: MCR p14, 0, Rd, c5, c1, 0
. . Read: MRC p14, O, Rd, c8, c1, 0
(EVTSEL) Event Selection Register 0Ob1000 0b0001 Write: MCR pi4, 0, Rd, c8, c1, 0
. Read: MRC p14, 0O, Rd, cO, c2, 0
(PMNO) Performance Count Register O 0b0000 0b0010 Write: MCR p14, 0, Rd, c0, c2, 0
. Read: MRC p14, 0, Rd, c1, c2, 0
(PMN1) Performance Count Register 1 0b0001 0b0010 Write: MCR p14, 0, Rd, c1, c2, 0
. Read: MRC p14, O, Rd, c2, c2, 0
(PMN2) Performance Count Register 2 0b0010 0b0010 Write: MCR pi4, 0, Rd, 2, ¢2, 0
. Read: MRC p14, 0O, Rd, c3, c2, 0
(PMN3) Performance Count Register 3 0b0011 0b0010 Write: MCR p14, 0, Rd, c3, c2, 0

Clock and Power Management Registers

These registers contain functions for managing the core clock and power.

For the I1XP42X product line and 1XC1100 control plane processors, these registers are
not implemented and reserved for future use.

PWRMODE Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

6

5 4 3 2 1 O

reset value: writeable bits set to O

Bits Access Description
31:0 Read-unpredictable / Write-as-Zero | Reserved
1:0 Read / Write Mode (M)

0 = ACTIVE Never change from 00b

The Intel XScale processor clock frequency cannot be changed by software on the
IXP42X product line and IXC1100 control plane processors.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
87

intel.

Table 30.

Table 31.

3.5.2.3

Table 32.

3.6

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Clock and Power Management

Function Data Instruction
Read CCLKCFG ignored MRC p14, 0O, Rd, c6, c0, 0
Write CCLKCFG CCLKCFG value MCR p14, 0, Rd, c6, c0, 0

CCLKCFG Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

CCLKCFG

reset value: unpredictable

Bits Access Description

Read-unpredictable / Write-as-Zero

31:0
always

Reserved (write as zero)

Software Debug Registers

Software debug is supported by address breakpoint registers (Coprocessor 15,
register 14), serial communication over the JTAG interface and a trace buffer.
Registers 8 and 9 are used for the serial interface and registers 10 through 13 support
a 256 entry trace buffer. Register 14 and 15 are the debug link register and debug
SPSR (saved program status register). These registers are explained in more detail in
“Software Debug” on page 88.

Opcode_2 and CRm should be zero.

Accessing the Debug Registers

Function CRn (Register #) Instruction

MRC p14, 0, Rd, ¢8, c0, 0

Access Transmit Debug Register (TX) 0b1000 MCR p14. 0, Rd. c8, cO. 0

MCR p14, 0, Rd, ¢9, c0, 0

Access Receive Debug Register (RX) 0b1001 MRC p14. 0, Rd., ¢9. cO. O
Access Debug Control and Status Register 0b1010 MCR p14, O, Rd, c10, c0, 0
(DBGCSR) MRC p14, 0, Rd, c10, c0, 0
. MCR p14, 0, Rd, c11, c0, 0

Access Trace Buffer Register (TBREG) 0Ob1011 MRC p14. 0, Rd. c11. O, 0
. . MCR p14, O, Rd, c12, c0O, O

Access Checkpoint O Register (CHKPTO) Ob1100 MRC p14. 0. Rd. c12. 0. 0
. . MCR p14, 0, Rd, ¢c13, c0, 0

Access Checkpoint 1 Register (CHKPT1) 0b1101 MRC p14. 0, Rd. c13. 0, 0
Access Transmit and Receive Debug Control 0b1110 MCR p14, O, Rd, c14, c0O, 0

Register MRC p14, 0, Rd, c14, c0, 0

Software Debug

This section describes the software debug and related features implemented in the
IXP42X product line and IXC1100 control plane processors, namely:

= Debug modes, registers and exceptions

A serial debug communication link via the JTAG interface

A trace buffer

A mechanism to load the instruction cache through JTAG

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
88

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel >

3.6.1

3.6.2

3.6.3

September 2006

= Debug Handler SW requirements and suggestions

Definitions

Debug handler: Debug handler is event handler that runs on IXP42X product line
and 1XC1100 control plane processors, when a debug event
occurs.

Debugger: The debugger is software that runs on a host system outside of

IXP42X product line and IXC1100 control plane processors.

Debug Registers

CP15 Registers

CRn = 14; CRm = 8: instruction breakpoint register O (IBCRO)
CRn = 14; CRm = 9: instruction breakpoint register 1 (IBCR1)
CRn = 14; CRm = 0: data breakpoint register 0 (DBRO)

CRn = 14; CRm = 3: data breakpoint register 1 (DBR1)

CRn = 14; CRm = 4: data breakpoint control register (DBCON)

CP15 registers are accessible using MRC and MCR. CRn and CRm specify the register to
access. The opcode_1 and opcode_2 fields are not used and should be set to O.

CP14 Registers

CRn = 8; CRm = 0: TX Register (TX)

CRn = 9; CRm = 0: RX Register (RX)

CRn = 10; CRm = 0: Debug Control and Status Register (DCSR)
CRn = 11; CRm = 0: Trace Buffer Register (TBREG)

CRn = 12; CRm = 0: Checkpoint Register O (CHKPTO)

CRn = 13; CRm = 0: Checkpoint Register 1 (CHKPT1)

CRn = 14; CRm = 0: TXRX Control Register (TXRXCTRL)

CP14 reqisters are accessible using MRC, MCR, LDC and STC (CDP to any CP14
registers will cause an undefined instruction trap). The CRn field specifies the number
of the register to access. The CRm, opcode_1, and opcode_2 fields are not used and
should be set to 0.

Software access to all debug registers must be done in privileged mode. User mode
access will generate an undefined instruction exception. Specifying registers which do
not exist has unpredictable results.

The TX and RX registers, certain bits in the TXRXCTRL register, and certain bits in the
DCSR can be accessed by a debugger through the JTAG interface.

Debug Modes

The IXP42X product line and 1XC1100 control plane processors’ debug unit, when used
with a debugger application, allows software running on an IXP42X product line and
IXC1100 control plane processors’ target to be debugged. The debug unit allows the
debugger to stop program execution and re-direct execution to a debug handling
routine. Once program execution has stopped, the debugger can examine or modify
processor state, co-processor state, or memory. The debugger can then restart
execution of the application.

On IXP42X product line and IXC1100 control plane processors, one of two debug
modes can be entered:

e Halt mode

= Monitor mode

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 89

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

3.6.3.1 Halt Mode

When the debug unit is configured for halt mode, the reset vector is overloaded to
serve as the debug vector. A new processor mode, DEBUG mode (CPSR[4:0] = 0x15),
is added to allow debug exceptions to be handled similarly to other types of ARM
exceptions.

When a debug exception occurs, the processor switches to debug mode and redirects
execution to a debug handler, via the reset vector. After the debug handler begins
execution, the debugger can communicate with the debug handler to examine or alter
processor state or memory through the JTAG interface.

The debug handler can be downloaded and locked directly into the instruction cache
through JTAG so external memory is not required to contain debug handler code.

3.6.3.2 Monitor Mode

In monitor mode, debug exceptions are handled like ARM prefetch aborts or ARM data
aborts, depending on the cause of the exception.

When a debug exception occurs, the processor switches to abort mode and branches to
a debug handler using the pre-fetch abort vector or data abort vector. The debugger
then communicates with the debug handler to access processor state or memory
contents.

3.6.4 Debug Control and Status Register (DCSR)

The DCSR register is the main control register for the debug unit. Table 33 shows the
format of the register. The DCSR register can be accessed in privileged modes by
software running on the processor or by a debugger through the JTAG interface. Refer
to “SELDCSR JTAG Register” on page 103 for details about accessing DCSR through
JTAG.

Table 33. Debug Control and Status Register (DCSR) (Sheet 1 of 2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

G T T T T| T| T| T S
E| Fl 1 D| Al s| Ul R a| MOE | M| E
. P Reset TRST
Bits Access Description value value
Global Enable (GE
SW Read / Write (GE) unchange

31 0: disables all debug functionality 0
JTAG Read-Onl
Y 1: enables all debug functionality d

Halt Mode (H
30 SW Read Only o Monitor(Mgde unchange 0
TAG R Wri :
JTAG Read / Write 1- Halt Mode d
29:24 Read-undefined / Write-As-Zero Reserved undefined undefined
SW Read Only unchange
23 JTAG Read / Write Trap F1Q (TF) d 0
SW Read Only unchange
22 JTAG Read / Write Trap IRQ (Th) d 0
Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
90 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 33. Debug Control and Status Register (DCSR) (Sheet 2 of 2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

G T T T T| T T| T S
E H Fl 1 Dl Al S| Ul R A MOE M| E
. - Reset TRST
Bits Access Description value value
21 Read-undefined / Write-As-Zero Reserved undefined undefined
SW Read Only unchange
20 TTAG Read / Write Trap Data Abort (TD) d 0
SW Read Only unchange
19 TTAG Read / Write Trap Prefetch Abort (TA) d 0
SW Read Only unchange
18 JTAG Read / Write Trap Software Interrupt (TS) d 0
SW Read Only)) unchange
17 TTAG Read / Write Trap Undefined Instruction (TU) d 0
SW Read Only unchange
16 JTAG Read / Write Trap Reset (TR) d 0
15:6 Read-undefined / Write-As-Zero Reserved undefined undefined
SW Read / Write . unchange
5 JTAG Read-Only Sticky Abort (SA) 0 d
Method Of Entry (MOE)
000: Processor Reset
001: Instruction Breakpoint Hit
; 010: Data Breakpoint Hit h
SW Read / Writ unchange
4:2 TTAG %aead—ogllf 011: BKPT Instruction Executed 0b000 d 9
100: External Debug Event Asserted
101: Vector Trap Occurred
110: Trace Buffer Full Break
111: Reserved
L | SwRead/write 52 Wrep avound mesie o | unchange
TAG R -Onl -
JTAG Read-Only 1: fill-once mode d
Trace Buffer Enable (E
o SW Read / Write o Disasled ® 0 unchange
TAG R -Onl -
JTAG Read-Only 1: Enabled d

3.6.4.1 Global Enable Bit (GE)

The Global Enable bit disables and enables all debug functionality (except the reset
vector trap). Following a processor reset, this bit is clear so all debug functionality is
disabled. When debug functionality is disabled, the BKPT instruction becomes a loop
and external debug breaks, hardware breakpoints, and non-reset vector traps are
ignored.

3.6.4.2 Halt Mode Bit (H)

The Halt Mode bit configures the debug unit for either halt mode or monitor mode.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 91

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.6.4.3

3.6.4.4

3.6.4.5

3.6.4.6

3.6.4.7

3.6.5

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Vector Trap Bits (TF,T1,TD,TA,TS,TU,TR)

The Vector Trap bits allow instruction breakpoints to be set on exception vectors
without using up any of the breakpoint registers. When a bit is set, it acts as if an
instruction breakpoint was set up on the corresponding exception vector. A debug
exception is generated before the instruction in the exception vector executes.

Software running on 1XP42X product line and 1XC1100 control plane processors must
set the Global Enable bit and the debugger must set the Halt Mode bit and the
appropriate vector trap bit through JTAG to set up a non-reset vector trap.

To set up a reset vector trap, the debugger sets the Halt Mode bit and reset vector trap
bit through JTAG. The Global Enable bit does not effect the reset vector trap. A reset
vector trap can be set up before or during a processor reset. When processor reset is
de-asserted, a debug exception occurs before the instruction in the reset vector
executes.

Sticky Abort Bit (SA)

The Sticky Abort bit is only valid in Halt mode. It indicates a data abort occurred within
the Special Debug State (see “Halt Mode” on page 93). Since Special Debug State

disables all exceptions, a data abort exception does not occur. However, the processor
sets the Sticky Abort bit to indicate a data abort was detected. The debugger can use
this bit to determine if a data abort was detected during the Special Debug State. The
sticky abort bit must be cleared by the debug handler before exiting the debug handler.

Method of Entry Bits (MOE)

The Method of Entry bits specify the cause of the most recent debug exception. When
multiple exceptions occur in parallel, the processor places the highest priority exception
(based on the priorities in Table 34) in the MOE field.

Trace Buffer Mode Bit (M)

The Trace Buffer Mode bit selects one of two trace buffer modes:

= Wrap-around mode — Trace buffer fills up and wraps around until a debug
exception occurs.

= Fill-once mode — The trace buffer automatically generates a debug exception
(trace buffer full break) when it becomes full.

Trace Buffer Enable Bit (E)

The Trace Buffer Enable bit enables and disables the trace buffer. Both DCSR.e and
DCSR.ge must be set to enable the trace buffer. The processor automatically clears this
bit to disable the trace buffer when a debug exception occurs. For more details on the
trace buffer refer to “Trace Buffer” on page 109.

Debug Exceptions

A debug exception causes the processor to re-direct execution to a debug event
handling routine. IXP42X product line and 1XC1100 control plane processors’ debug
architecture defines the following debug exceptions:

« Instruction breakpoint
« Data breakpoint

« Software breakpoint
= External debug break

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
92

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

« Exception vector trap
« Trace-buffer full break

When a debug exception occurs, the processor’s actions depend on whether the debug
unit is configured for Halt mode or Monitor mode.

Table 34 shows the priority of debug exceptions relative to other processor exceptions.

Table 34. Event Priority

Event Priority

Reset

Vector Trap

data abort (precise)

data bkpt

data abort (imprecise)

external debug break, trace-buffer full
FIQ
IRQ

instruction breakpoint

O|lo| N0~ W[N]| PR

[y
o

pre-fetch abort

undef, SWI, software Bkpt

=
[

3.6.5.1 Halt Mode

The debugger turns on Halt mode through the JTAG interface by scanning in a value
that sets the bit in DCSR. The debugger turns off Halt mode through JTAG, either by
scanning in a new DCSR value or by a TRST. Processor reset does not effect the value
of the Halt mode bit.

When halt mode is active, the processor uses the reset vector as the debug vector. The
debug handler and exception vectors can be downloaded directly into the instruction
cache, to intercept the default vectors and reset handler, or they can be resident in
external memory. Downloading into the instruction cache allows a system with memory
problems, or no external memory, to be debugged. Refer top “Downloading Code in
ICache” on page 116 for details about downloading code into the instruction cache.

During Halt mode, software running on IXP42X product line and 1XC1100 control plane
processors cannot access DCSR, or any of hardware breakpoint registers, unless the
processor is in Special Debug State (SDS), described below.

Wh_en a debug exception occurs during Halt mode, the processor takes the following
actions:

= Disables the trace buffer

= Sets DCSR.moe encoding

* Processor enters a Special Debug State (SDS)

= For data breakpoints, trace buffer full break, and external debug break:
R14 dbg = PC of the next instruction to execute + 4
for instruction breakpoints and software breakpoints and vector traps:
R14_dbg = PC of the aborted instruction + 4

- SPSR_dbg = CPSR
- CPSR[4:0] = 0b10101 (DEBUG mode)

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 93

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Note:

3.6.5.2

- CPSR[5] =0
- CPSR[6] =1
- CPSR[7] =1
- PC = 0x0

When the vector table is relocated (CP15 Control Register[13] = 1), the debug vector is
relocated to OxffffO000.

Following a debug exception, the processor switches to debug mode and enters SDS,
which allows the following special functionality:

= All events are disabled. SWI or undefined instructions have unpredictable results.
The processor ignores pre-fetch aborts, FIQ and IRQ (SDS disables FIQ and IRQ
regardless of the enable values in the CPSR). The processor reports data aborts
detected during SDS by setting the Sticky Abort bit in the DCSR, but does not
generate an exception (processor also sets up FSR and FAR as it normally would for
a data abort).

= Normally, during halt mode, software cannot write the hardware breakpoint
registers or the DCSR. However, during the SDS, software has write access to the
breakpoint registers (see “HW Breakpoint Resources” on page 95) and the DCSR
(see Table 33, “Debug Control and Status Register (DCSR)” on page 90).

= The IMMU is disabled. In halt mode, since the debug handler would typically be
downloaded directly into the IC, it would not be appropriate to do TLB accesses or
translation walks, since there may not be any external memory or if there is, the
translation table or TLB may not contain a valid mapping for the debug handler
code. To avoid these problems, the processor internally disables the IMMU during
SDS.

= The PID is disabled for instruction fetches. This prevents fetches of the debug
handler code from being remapped to a different address than where the code was
downloaded.

The SDS remains in effect regardless of the processor mode. This allows the debug
handler to switch to other modes, maintaining SDS functionality. Entering user mode
may cause unpredictable behavior. The processor exits SDS following a CPSR restore
operation.

When exiting, the debug handler should use:

subs pc, Ir, #4

This restores CPSR, turns off all of SDS functionality, and branches to the target
instruction.

Monitor Mode

In monitor mode, the processor handles debug exceptions like normal ARM exceptions.
If debug functionality is enabled (DCSR[31] = 1) and the processor is in Monitor mode,
debug exceptions cause either a data abort or a pre-fetch abort.
The following debug exceptions cause data aborts:

= Data breakpoint

= External debug break

« Trace-buffer full break

The following debug exceptions cause pre-fetch aborts:

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
94

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel >

= Instruction breakpoint
e BKPT instruction

The processor ignores vector traps during monitor mode.

When an exception occurs in monitor mode, the processor takes the following actions:
« Disables the trace buffer
* Sets DCSR.moe encoding
= Sets FSR[9]

= R14_abt = PC of the next instruction to execute + 4 (for Data Aborts)
R14_abt = PC of the faulting instruction + 4 (for Prefetch Aborts)

= SPSR_abt = CPSR

« CPSR[4:0] = 0b10111 (ABORT mode)
= CPSR[5] =0

« CPSR[6] = unchanged

e CPSR[7]1=1

= PC = Oxc (for Prefetch Aborts),
PC = 0x10 (for Data Aborts)

During abort mode, external debug breaks and trace buffer full breaks are internally
pended. When the processor exits abort mode, either through a CPSR restore or a write
directly to the CPSR, the pended debug breaks will immediately generate a debug
exception. Any pending debug breaks are cleared out when any type of debug
exception occurs.

When exiting, the debug handler should do a CPSR restore operation that branches to
the next instruction to be executed in the program under debug.

3.6.6 HW Breakpoint Resources

IXP42X product line and IXC1100 control plane processors’ debug architecture defines
two instruction and two data breakpoint registers, denoted IBCRO, IBCR1, DBRO, and
DBR1.

The instruction and data address breakpoint registers are 32-bit registers. The
instruction breakpoint causes a break before execution of the target instruction. The
data breakpoint causes a break after the memory access has been issued.

In this section Modified Virtual Address (MVA) refers to the virtual address ORed with
the PID. Refer to “Register 13: Process ID” on page 84 for more details on the PID. The
processor does not OR the PID with the specified breakpoint address prior to doing
address comparison. This must be done by the programmer and written to the
breakpoint register as the MVA. This applies to data and instruction breakpoints.

3.6.6.1 Instruction Breakpoints

The Debug architecture defines two instruction breakpoint registers (IBCRO and
IBCR1). The format of these registers is shown in Table 35., Instruction Breakpoint
Address and Control Register (IBCRx). In ARM mode, the upper 30 bits contain a word
aligned MVA to break on. In Thumb mode, the upper 31 bits contain a half-word aligned
MVA to break on. In both modes, bit O enables and disables that instruction breakpoint
register. Enabling instruction breakpoints while debug is globally disabled (DCSR.GE=0)
may result in unpredictable behavior.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 95

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Table 35. Instruction Breakpoint Address and Control Register (IBCRx)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
IBCRx E
reset value: unpredictable address, disabled
Bits Access Description

Instruction Breakpoint MVA

31:1 Read / Writ
ea re in ARM mode, IBCRx[1] is ignored

IBCRx Enable (E) -

0 Read / Write 0 = Breakpoint disabled
1 = Breakpoint enabled

An instruction breakpoint will generate a debug exception before the instruction at the
address specified in the ICBR executes. When an instruction breakpoint occurs, the
processor sets the DBCR.moe bits to Ob0O01.

Software must disable the breakpoint before exiting the handler. This allows the break-
pointed instruction to execute after the exception is handled.

Single step execution is accomplished using the instruction breakpoint registers and
must be completely handled in software (either on the host or by the debug handler).

3.6.6.2 Data Breakpoints

IXP42X product line and IXC1100 control plane processors’ debug architecture defines
two data breakpoint registers (DBRO, DBR1). The format of the registers is shown in
Table 36.

Table 36. Data Breakpoint Register (DBRXx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

DBRXx

reset value: unpredictable

Bits Access Description

DBRO: Data Breakpoint MVA

. ; DBR1:
1: R W
31:0 ead / Write Data Address Mask OR

Data Breakpoint MVA

DBRO is a dedicated data address breakpoint register. DBR1 can be programmed for
one of two operations:

e Data address mask

= Second data address breakpoint

The DBCON register controls the functionality of DBR1, as well as the enables for both
DBRs. DBCON also controls what type of memory access to break on.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
96 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

Table 37.

September 2006

Data Breakpoint Controls Register (DBCON)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

M E1 EO

reset value: 0xO00000000

Bits Access Description

31:9 Read-as-Zero / Write-ignored Reserved

DBR1 Mode (M) -
8 Read / Write 0: DBR1 = Data Address Breakpoint
1: DBR1 = Data Address Mask

7:4 Read-as-Zero / Write-ignored Reserved

DBR1 Enable (E1) -

When DBR1 = Data Address Breakpoint

Ob00: DBR1 disabled

3:2 Read / Write Ob01: DBR1 enabled, Store only

0Ob10: DBR1 enabled, Any data access, load or store
Ob11: DBR1 enabled, Load only

When DBR1 = Data Address Mask this field has no effect

DBRO Enable (EO) -

Ob0O: DBRO disabled

1:0 Read / Write 0Ob01: DBRO enabled, Store only

0b10: DBRO enabled, Any data access, load or store

Ob11: DBRO enabled, Load only

When DBR1 is programmed as a data address mask, it is used in conjunction with the
address in DBRO. The bits set in DBR1 are ighored by the processor when comparing
the address of a memory access with the address in DBRO. Using DBR1 as a data
address mask allows a range of addresses to generate a data breakpoint. When DBR1
is selected as a data address mask, it is unaffected by the E1 field of DBCON. The mask
is used only when DBRO is enabled.

When DBR1 is programmed as a second data address breakpoint, it functions
independently of DBRO. In this case, the DBCON.E1 controls DBR1.

A data breakpoint is triggered if the memory access matches the access type and the
address of any byte within the memory access matches the address in DBRx. For
example, LDR triggers a breakpoint if DBCON.EO is Ob10 or Ob11, and the address of
any of the 4 bytes accessed by the load matches the address in DBRO.

The processor does not trigger data breakpoints for the PLD instruction or any CP15,
register 7, 8, 9, or 10 functions. Any other type of memory access can trigger a data
breakpoint. For data breakpoint purposes the SWP and SWPB instructions are treated
as stores - they will not cause a data breakpoint if the breakpoint is set up to break on
loads only and an address match occurs.

On unaligned memory accesses, breakpoint address comparison is done on a word-
aligned address (aligned down to word boundary).

When a memory access triggers a data breakpoint, the breakpoint is reported after the
access is issued. The memory access will not be aborted by the processor. The actual
timing of when the access completes with respect to the start of the debug handler
depends on the memory configuration.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 97

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.6.7

3.6.8

Table 38.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

On a data breakpoint, the processor generates a debug exception and re-directs
execution to the debug handler before the next instruction executes. The processor
reports the data breakpoint by setting the DCSR.MOE to 0b010. The link register of a
data breakpoint is always PC (of the next instruction to execute) + 4, regardless of
whether the processor is configured for monitor mode or halt mode.

Software Breakpoints

Mnemonics: BKPT (See ARM* Architecture Reference Manual, ARMV5T)

Operation: If DCSR[31] = 0, BKPT is a nop;
If DCSR[31] =1, BKPT causes a debug exception

The processor handles the software breakpoint as described in “Debug Exceptions” on
page 92.

Transmit/Receive Control Register
(TXRXCTRL)

Communications between the debug handler and debugger are controlled through
handshaking bits that ensures the debugger and debug handler make synchronized
accesses to TX and RX. The debugger side of the handshaking is accessed through the
DBGTX (“DBGTX JTAG Register” on page 105) and DBGRX (“DBGRX JTAG Register” on
page 106) JTAG Data Registers, depending on the direction of the data transfer.The
debug handler uses separate handshaking bits in TXRXCTRL register for accessing TX
and RX.

The TXRXCTRL register also contains two other bits that support high-speed download.
One bit indicates an overflow condition that occurs when the debugger attempts to
write the RX register before the debug handler has read the previous data written to
RX. The other bit is used by the debug handler as a branch flag during high-speed
download.

All of the bits in the TXRXCTRL register are placed such that they can be read directly
into the CC flags in the CPSR with an MRC (with Rd = PC). The subsequent instruction
can then conditionally execute based on the updated CC value

TX RX Control Register (TXRXCTRL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Rlo| .| T
R|V|P|r

reset value: 0x00000000

Bits Access Description
31 SW Read-only / Write-ignored RR
JTAG Write-only RX Register Ready
. ov
30 SW Read / Write .
RX overflow sticky flag
29 SW Read-only/ Write-ignored D
JTAG Write-only High-speed download flag
28 SW Read-only/ Write-ignored TR
JTAG Write-only TX Register Ready
27:0 Read-as-Zero / Write-ignored Reserved

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
98

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.6.8.1

Table 39.

Table 40.

September 2006

RX Register Ready Bit (RR)

The debugger and debug handler use the RR bit to synchronize accesses to RX.
Normally, the debugger and debug handler use a handshaking scheme that requires
both sides to poll the RR bit. To support higher download performance for large
amounts of data, a high-speed download handshaking scheme can be used in which
only the debug handler polls the RR bit before accessing the RX register, while the
debugger continuously downloads data.

Table 39 shows the normal handshaking used to access the RX register.

Normal RX Handshaking

Debugger Actions

« Debugger wants to send data to debug handler.
= Before writing new data to the RX register, the debugger polls RR through JTAG until the bit is cleared.

= After the debugger reads a ‘0’ from the RR bit, it scans data into JTAG to write to the RX register and sets
the valid bit. The write to the RX register automatically sets the RR bit.

Debug Handler Actions

= Debug handler is expecting data from the debugger.
= The debug handler polls the RR bit until it is set, indicating data in the RX register is valid.

= Once the RR bit is set, the debug handler reads the new data from the RX register. The read operation
automatically clears the RR bit.

When data is being downloaded by the debugger, part of the normal handshaking can
be bypassed to allow the download rate to be increased. Table 40 shows the
handshaking used when the debugger is doing a high-speed download. Note that
before the high-speed download can start, both the debugger and debug handler must
be synchronized, such that the debug handler is executing a routine that supports the
high-speed download.

Although it is similar to the normal handshaking, the debugger polling of RR is
bypassed with the assumption that the debug handler can read the previous data from
RX before the debugger can scan in the new data.

High-Speed Download Handshaking States

Debugger Actions

= Debugger wants to transfer code into I1XP42X product line and 1XC1100 control plane processors’ system
memory.

« Prior to starting download, the debugger must polls RR bit until it is clear. Once the RR bit is clear,
indicating the debug handler is ready, the debugger starts the download.

= The debugger scans data into JTAG to write to the RX register with the download bit and the valid bit set.
Following the write to RX, the RR bit and D bit are automatically set in TXRXCTRL.

= Without polling of RR to see whether the debug handler has read the data just scanned in, the debugger
continues scanning in new data into JTAG for RX, with the download bit and the valid bit set.

= An overflow condition occurs if the debug handler does not read the previous data before the debugger
completes scanning in the new data, (See “Overflow Flag (OV)” on page 100 for more details on the
overflow condition).

= After completing the download, the debugger clears the D bit allowing the debug handler to exit the
download loop.

Debug Handler Actions

= Debug is handler in a routine waiting to write data out to memory. The routine loops based on the D bit in
TXRXCTRL.

= The debug handler polls the RR bit until it is set. It then reads the Rx register, and writes it out to memory.
The handler loops, repeating these operations until the debugger clears the D bit.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 99

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.6.8.2

3.6.8.3

3.6.8.4

Table 41.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Overflow Flag (OV)

The Overflow flag is a sticky flag that is set when the debugger writes to the RX register
while the RR bit is set.

The flag is used during high-speed download to indicate that some data was lost. The
assumption during high-speed download is that the time it takes for the debugger to
shift in the next data word is greater than the time necessary for the debug handler to
process the previous data word. So, before the debugger shifts in the next data word,
the handler will be polling for that data.

However, if the handler incurs stalls that are long enough such that the handler is still
processing the previous data when the debugger completes shifting in the next data
word, an overflow condition occurs and the OV bit is set.

Once set, the overflow flag will remain set, until cleared by a write to TXRXCTRL with
an MCR. After the debugger completes the download, it can examine the OV bit to
determine if an overflow occurred. The debug handler software is responsible for saving
the address of the last valid store before the overflow occurred.

Download Flag (D)

The value of the download flag is set by the debugger through JTAG. This flag is used
during high-speed download to replace a loop counter.

The download flag becomes especially useful when an overflow occurs. If a loop
counter is used, and an overflow occurs, the debug handler cannot determine how
many data words overflowed. Therefore the debug handler counter may get out of sync
with the debugger — the debugger may finish downloading the data, but the debug
handler counter may indicate there is more data to be downloaded - this may result in
unpredictable behavior of the debug handler.

Using the download flag, the debug handler loops until the debugger clears the flag.

Therefore, when doing a high-speed download, for each data word downloaded, the
debugger should set the D bit.

TX Register Ready Bit (TR)
The debugger and debug handler use the TR bit to synchronize accesses to the TX

register. The debugger and debug handler must poll the TR bit before accessing the TX
register. Table 41 shows the handshaking used to access the TX register.

TX Handshaking

Debugger Actions

= Debugger is expecting data from the debug handler.

« Before reading data from the TX register, the debugger polls the TR bit through JTAG until the bit is set.
NOTE: while polling TR, the debugger must scan out the TR bit and the TX register data.

= Reading a ‘1’ from the TR bit, indicates that the TX data scanned out is valid
= The action of scanning out data when the TR bit is set, automatically clears TR.

Debug Handler Actions

= Debug handler wants to send data to the debugger (in response to a previous request).

= The debug handler polls the TR bit to determine when the TX register is empty (any previous data has
been read out by the debugger). The handler polls the TR bit until it is clear.

= Once the TR bit is clear, the debug handler writes new data to the TX register. The write operation
automatically sets the TR bit.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
100

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.6.8.5

Table 42.

3.6.9

Table 43.

September 2006

Conditional Execution Using TXRXCTRL

All of the bits in TXRXCTRL are placed such that they can be read directly into the CC
flags using an MCR instruction. To simplify the debug handler, the TXRXCTRL register
should be read using the following instruction:

mrc pl4, 0, rl5, Cl4, CO, O |

This instruction will directly update the condition codes in the CPSR. The debug handler
can then conditionally execute based on each C bit. Table 42 shows the mnemonic
extension to conditionally execute based on whether the TXRXCTRL bit is set or clear.

TXRXCTRL Mnemonic Extensions

TXRXCTRL bit | mnemonic extension to execute if bit set mnemonic extenjleo;r to execute if bit
31 (to N flag) M1 PL
30 (to Z flag) EQ NE
29 (to C flag) CS CcC
28 (to V flag) VS VvC

The following example is a code sequence in which the debug handler polls the
TXRXCTRL handshaking bit to determine when the debugger has completed its write to
RX and the data is ready for the debug handler to read.

loop: mcr pl4, 0, rl15, cl4, cO, O# read the handshaking bit in TXRXCTRL

mcrmi pl4, 0, rO, c9, cO, O # if RX is valid, read it

bpl loop # 1f RX is not valid, loop

Transmit Register
(TX)

The TX register is the debug handler transmit buffer. The debug handler sends data to
the debugger through this register.

TX Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

X

reset value: unpredictable

Bits Access Description

SW Read / Write
31:0 Debug handler writes data to send to debugger
JTAG Read-only

Since the TX register is accessed by the debug handler (using MCR/MRC) and the
debugger (through JTAG), handshaking is required to prevent the debug handler from
writing new data before the debugger reads the previous data.

The TX register handshaking is described in Table 41, “TX Handshaking” on page 100.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 101

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

3.6.10 Receive Register
(RX)

The RX register is the receive buffer used by the debug handler to get data sent by the
debugger through the JTAG interface.

Table 44. RX Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

RX
reset value: unpredictable
Bits Access Description
31-0 SW Read-only Software reads to receives data/commands from
JTAG Write-only debugger

Since the RX register is accessed by the debug handler (using MRC) and the debugger
(through JTAG), handshaking is required to prevent the debugger from writing new
data to the register before the debug handler reads the previous data out. The
handshaking is described in “RX Register Ready Bit (RR)” on page 99.

3.6.11 Debug JTAG Access

There are four JTAG instructions used by the debugger during software debug: LDIC,
SELDCSR, DBGTX and DBGRX. LDIC is described in “Downloading Code in ICache” on
page 116. The other three JTAG instructions are described in this section.

SELDCSR, DBGTX and DBGRX use a common 36-bit shift register (DBG_SR). New data
is shifted in and captured data out through the DBG_SR. In the UPDATE_DR state, the
new data shifted into the appropriate data register.

3.6.11.1 SELDCSR JTAG Command

The ‘SELDCSR’ JTAG instruction selects the DCSR JTAG data register. The JTAG op code
is ‘01001’. When the SELDCSR JTAG instruction is in the JTAG instruction register, the
debugger can directly access the Debug Control and Status Register (DCSR). The
debugger can only modify certain bits through JTAG, but can read the entire register.

The SELDCSR instruction also allows the debugger to generate an external debug
break.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
102 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel >

3.6.11.2 SELDCSR JTAG Register

Placing the “SELDCSR” JTAG instruction in the JTAG IR, selects the DCSR JTAG Data
register (Figure 15), allowing the debugger to access the DCSR, generate an external
debug break, set the hold_rst signal, which is used when loading code into the
instruction cache during reset.

Figure 15. SELDCSR Hardware

Capture_DR
0 010
— AL
TD | mili- =i TDO
3534 3|2|1{0|DBG_SR
‘ 1
ignored l Update_DR
_ I 1 Tek 34(33 2|1|o| DBG_REG
I I =HN BN BN I BN BN BN B BD B B = . l-----
Core CLK
S - hold_rst
external debug break
DCSR
31 0
L |
software read/write

A Capture_DR loads the current DCSR value into DBG_SR[34:3]. The other bits in
DBG_SR are loaded as shown in Figure 15.

A new DCSR value can be scanned into DBG_SR, and the previous value out, during the
Shift_DR state. When scanning in a new DCSR value into the DBG_SR, care must be
taken to also set up DBG_SR[2:1] to prevent undesirable behavior.

Update_DR parallel loads the new DCSR value into DBG_REG[33:2]. This value is then
loaded into the actual DCSR register. All bits defined as JTAG writable in Table 33,
“Debug Control and Status Register (DCSR)” on page 90 are updated.

An external host and the debug handler running on IXP42X product line and 1XC1100
control plane processors must synchronize access the DCSR. If one side writes the
DCSR at the same side the other side reads the DCSR, the results are unpredictable.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 103

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Figure 16.

3.6.11.2.1

3.6.11.2.2

SELDCSR Data Register

DCSR
? ¢ 010 Capture_DR
¢| I‘ ‘ ‘ B
DBG_SR
TD| e | 35| 34 3(2(1|0 m—TDO
¢I |
ignored l
Update_DR
| |
DBG_REG
34|33 210
TCK If DBG.HLD_RST
DBG.BRK
DBG.DCSR

DBG.HLD_RST

The debugger uses DBG.HLD_RST when loading code into the instruction cache during
a processor reset. Details about loading code into the instruction cache are in
“Downloading Code in ICache” on page 116.

The debugger must set DBG.HLD_RST before or during assertion of the reset pin. Once
DBG.HLD_RST is set, the reset pin can be de-asserted, and the processor will internally
remain in reset. The debugger can then load debug handler code into the instruction
cache before the processor begins executing any code.

Once the code download is complete, the debugger must clear DBG.HLD_RST. This
takes the processor out of reset, and execution begins at the reset vector.

A debugger sets DBG.HLD_RST in one of two ways:

= Either by taking the JTAG state machine into the Capture_DR state, which
automatically loads DBG_SR[1] with ‘1’, then the Exit2 state, followed by the
Update_Dr state. This will set the DBG.HLD_RST, clear DBG.BRK, and leave the
DCSR unchanged (the DCSR bits captured in DBG_SR[34:3] are written back to the
DCSR on the Update_DR).

= Alternatively, a ‘1’ can be scanned into DBG_SR[1], with the appropriate value
scanned in for the DCSR and DBG.BRK.

DBG.HLD_RST can only be cleared by scanning in a ‘O’ to DBG_SR[1] and scanning in
the appropriate values for the DCSR and DBG.BRK.

DBG.BRK

DBG.BRK allows the debugger to generate an external debug break and
asynchronously re-direct execution to a debug handling routine.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
104

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel >

3.6.11.2.3

3.6.11.3

3.6.11.4

Figure 17.

September 2006

A debugger sets an external debug break by scanning data into the DBG_SR with
DBG_SR[2] set and the desired value to set the DCSR JTAG writable bits in
DBG_SR[34:3].

Once an external debug break is set, it remains set internally until a debug exception
occurs. In Monitor mode, external debug breaks detected during abort mode are
pended until the processor exits abort mode. In Halt mode, breaks detected during
SDS are pended until the processor exits SDS. When an external debug break is
detected outside of these two cases, the processor ceases executing instructions as
quickly as possible. This minimizes breakpoint skid, by reducing the number of
instructions that can execute after the external debug break is requested. However, the
processor will continue to process any instructions which may have already begun
execution. Debug mode will not be entered until all processor activity has ceased in an
orderly fashion.

DBG.DCSR

The DCSR is updated with the value loaded into DBG.DCSR following an Update_DR.
Only bits specified as writable by JTAG in Table 33 are updated.

DBGTX JTAG Command

The ‘DBGTX’ JTAG instruction selects the DBGTX JTAG data register. The JTAG op code
for this instruction is ‘Ob10000’. Once the DBGTX data register is selected, the
debugger can receive data from the debug handler.

DBGTX JTAG Register

The DBGTX JTAG instruction selects the Debug JTAG Data register (Figure 17). The
debugger uses the DBGTX data register to poll for breaks (internal and external) to
debug mode and once in debug mode, to read data from the debug handler.

DBGTX Hardware

software write set by SW write to TX software read-only

v

31 0

TX

TXRXCTRL

0x0000 0000 _|_|_ Core CLK

I Capture_DR 0 1 /< L TaK delay

|
i) ¢ 91 clear by Debugger read
T l‘ ¢ y

TD | mli - TDO
DBG_SR

35|34 3121
L

o

Update_DR ¢
Ignored

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 105

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

A Capture_DR loads the TX register value into DBG_SR[34:3] and TXRXCTRL[28] into
DBG_SR[O0]. The other bits in DBG_SR are loaded as shown in Figure 33.

The captured TX value is scanned out during the Shift_DR state.
Data scanned in is ignored on an Update_DR.
A ‘1’ captured in DBG_SR[0] indicates the captured TX data is valid. After doing a

Capture_DR, the debugger must place the JTAG state machine in the Shift_DR state to
guarantee that a debugger read clears TXRXCTRL[28].

3.6.11.5 DBGRX JTAG Command
The ‘DBGRX’ JTAG instruction selects the DBGRX JTAG data register. The JTAG op code

for this instruction is ‘Ob00010’. Once the DBGRX data register is selected, the
debugger can send data to the debug handler through the RX register.

3.6.11.6 DBGRX JTAG Register

The DBGRX JTAG instruction selects the DBGRX JTAG Data register. The debugger uses
the DBGRX data register to send data or commands to the debug handler.

Figure 18. DBGRX Hardware

software read/write 1 undefined
e 1 |
delay I 0 l 01 i Capture_DR
TXRXCTRL I J 1
31{30| 29 1 TD| i =i~ TDO
A 1 35|34 3|2|1|0|DBG_SR
I 1
DBG_REG[1] |
1 Update DR
clear by|SW read from RX 1
set by Debugger Write
y 99 I I S [
: 34|33 2|1|0| DBG_REG
‘ I N I B S S E-. B | l- I - - .
clear DBG_REG[34]
{ Flush RR
set overflow to TXRXCTRL[29]
RX
set TXRXCTRL[31] =] Wrt€ —enapie™ RX
Logic 31 0
TXRXCTRL[31]—= ' ‘ :
[CoreCLK software read

A Capture_DR loads TXRXCTRL[31] into DBG_SR[0]. The other bits in DBG_SR are
loaded as shown in Figure 18.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
106 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel >

3.6.11.6.1

Figure 19.

3.6.11.6.2

September 2006

The captured data is scanned out during the Shift_DR state.

Care must be taken while scanning in data. While polling TXRXCTRL[31], incorrectly
setting DBG_SR[35] or DBG_SR[1] may cause unpredictable behavior following an
Update_DR.

Update_ DR parallel loads DBG_SR[35:1] into DBG_REG[34:0]. Whether the new data
gets written to the RX register or an overflow condition is detected depends on the
inputs to the RX write logic.

Rx Write Logic

The RX write logic (Figure 20) serves 4 functions:

= Enable the debugger write to RX - the logic ensures only new, valid data from the
debugger is written to RX. In particular, when the debugger polls TXRXCTRL[31] to
see whether the debug handler has read the previous data from RX. The JTAG state
machine must go through Update_DR, which should not modify RX.

* Clear DBG_REG[34] - mainly to support high-speed download. During high-speed
download, the debugger continuously scan in a data to send to the debug handler
and sets DBG_REG[34] to signal the data is valid. Since DBG_REG[34] is never
cleared by the debugger in this case, the ‘0O’ to ‘1’ transition used to enable the
debugger write to RX would not occur.

e Set TXRXCTRL[31] - When the debugger writes new data to RX, the logic
automatically sets TXRXCTRL[31], signalling to the debug handler that the data is
valid.

« Set the overflow flag (TXRXCTRL[30] - During high-speed download, the debugger
does not poll to see if the handler has read the previous data. If the debug handler
stalls long enough, the debugger may overwrite the previous data before the
handler can read it. The logic sets the overflow flag when the previous data has not
been read yet, and the debugger has just written new data to RX.

Rx Write Logic

DBG_REG[34]

— = Clear DBG_REG[34]

=
Y D—» RX write enable

$——> set TXRXCTRL[31]

set overflow flag
TXRXCTRL[31] ::D—> (TXRXCTRL[30])
ﬁ Core CLK

DBGRX Data Register

The bits in the DBGRX data register (Figure 20) are used by the debugger to send data
to the processor. The data register also contains a bit to flush previously written data
and a high-speed download flag.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 107

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Figure 20. DBGRX Data Register

RX TXRXCTRL[31]
0 0 1
‘ * Capture_DR
I 1 *
DBG_SR
TD| el | 35| 34 32|10 p—TDO
| | L
DBG.RR
cleared by
RX Write Logic —a= Y Update_DR
I |
DBG_REG
34|33 2|10
lTCK L DBG.FLUSH
DBG.D
DBG.RX
DBG.V

3.6.11.6.3 DBG.RR

The debugger uses DBG.RR as part of the synchronization that occurs between the
debugger and debug handler for accessing RX. This bit contains the value of
TXRXCTRL[31] after a Capture_DR. The debug handler automatically sets
TXRXCTRL[31] by doing a write to RX.

The debugger polls DBG.RR to determine when the handler has read the previous data
from RX.

The debugger sets TXRXCTRL[31] by setting the DBG.V bit.

3.6.11.6.4 DBG.V

The debugger sets this bit to indicate the data scanned into DBG_SR[34:3] is valid data
to write to RX. DBG.V is an input to the RX Write Logic and is also cleared by the RX
Write Logic.

When this bit is set, the data scanned into the DBG_SR will be written to RX following
an Update_DR. If DBG.V is not set and the debugger does an Update_DR, RX will be
unchanged.

This bit does not affect the actions of DBG.FLUSH or DBG.D.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
108 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

3.6.11.6.5

3.6.11.6.6

3.6.11.6.7

3.6.11.7

Table 45.

3.6.12

3.6.12.1

September 2006

intel)

DBG.RX is written into the RX register based on the output of the RX Write Logic. Any
data that needs to be sent from the debugger to the processor must be loaded into
DBG.RX with DBG.V set to 1. DBG.RX is loaded from DBG_SR[34:3] when the JTAG
enters the Update_DR state.

DBG.RX

DBG.RX is written to RX following an Update_DR when the RX Write Logic enables the
RX register.

DBG.D

DBG.D is provided for use during high speed download. This bit is written directly to
TXRXCTRL[29]. The debugger sets DBG.D when downloading a block of code or data to
IXP42X product line and IXC1100 control plane processors system memory. The debug
handler then uses TXRXCTRL[29] as a branch flag to determine the end of the loop.

Using DBG.D as a branch flags eliminates the need for a loop counter in the debug
handler code. This avoids the problem were the debugger’s loop counter is out of

synchronization with the debug handler’s counter because of overflow conditions that
may have occurred.

DBG.FLUSH

DBG.FLUSH allows the debugger to flush any previous data written to RX. Setting
DBG.FLUSH clears TXRXCTRL[31].

Debug JTAG Data Register Reset Values
Upon asserting TRST, the DEBUG data register is reset. Assertion of the reset pin does

not affect the DEBUG data register. Table 45 shows the reset and TRST values for the
data register. Note: these values apply for DBG_REG for SELDCSR, DBGTX and DBGRX.

DEBUG Data Register Reset Values

Bit TRST RESET
DBG_REGIO] (o] unchanged
DBG_REGI[1] (0] unchanged

DBG_REG[33:2] unpredictable unpredictable

DBG_REG[34] (o] unchanged

Trace Buffer

The 256-entry trace buffer provides the ability to capture control flow information to be
used for debugging an application. Two modes are supported:

= The buffer fills up completely and generates a debug exception. Then SW empties
the buffer.

« The buffer fills up and wraps around until it is disabled. Then SW empties the
buffer.

Trace Buffer CP Registers

CP14 defines three registers (see Table 46) for use with the trace buffer. These CP14
registers are accessible using MRC, MCR, LDC and STC (CDP to any CP14 registers wiill
cause an undefined instruction trap). The CRn field specifies the number of the register
to access. The CRm, opcode_1, and opcode_2 fields are not used and should be set to
0.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 109

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 46.

3.6.12.1.1

Table 47.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

CP 14 Trace Buffer Register Summary

CP14 Register Number Register Name
11 Trace Buffer Register (TBREG)
12 Checkpoint O Register (CHKPTO)
13 Checkpoint 1 Register (CHKPT1)

Any access to the trace buffer registers in User mode will cause an undefined
instruction exception. Specifying registers which do not exist has unpredictable results.

Checkpoint Registers

When the debugger reconstructs a trace history, it is required to start at the oldest
trace buffer entry and construct a trace going forward. In fill-once mode and wrap-
around mode when the buffer does not wrap around, the trace can be reconstructed by
starting from the point in the code where the trace buffer was first enabled.

The difficulty occurs in wrap-around mode when the trace buffer wraps around at least
once. In this case the debugger gets a snapshot of the last N control flow changes in
the program, where N <= size of buffer. The debugger does not know the starting
address of the oldest entry read from the trace buffer. The checkpoint registers provide
reference addresses to help reduce this problem.

Checkpoint Register (CHKPTX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

CHKPTX
reset value: Unpredictable
Bits Access Description
31:0 Read/write tcal;':ei-zt(j:dress for corresponding entry in trace buffer

The two checkpoint registers (CHKPTO, CHKPT1) on IXP42X product line and 1XC1100
control plane processors provide the debugger with two reference addresses to use for
re-constructing the trace history.

When the trace buffer is enabled, reading and writing to either checkpoint register has
unpredictable results. When the trace buffer is disabled, writing to a checkpoint register
sets the register to the value written. Reading the checkpoint registers returns the
value of the register.

In normal usage, the checkpoint registers are used to hold target addresses of specific
entries in the trace buffer. Only direct and indirect entries get check-pointed. Exception
and roll-over messages are never check-pointed. When an entry is check-pointed, the
processor sets bit 6 of the message byte to indicate this (refer to Table 49., Message
Byte Formats)

When the trace buffer contains only one check-pointed entry, the corresponding
checkpoint register is CHKPTO. When the trace buffer wraps around, two entries will
typically be check-pointed, usually about half a buffers length apart. In this case, the
first (oldest) check-pointed entry read from the trace buffer corresponds to CHKPT1,
the second check-pointed entry corresponds to CHKPTO.

Although the checkpoint registers are provided for wrap-around mode, they are still
valid in fill-once mode.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
110

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.6.12.1.2

Table 48.

Trace Buffer Register (TBREG)

The trace buffer is read through TBREG, using MRC and MCR. Software should only
read the trace buffer when it is disabled. Reading the trace buffer while it is enabled,
may cause unpredictable behavior of the trace buffer. Writes to the trace buffer have
unpredictable results.

Reading the trace buffer returns the oldest byte in the trace buffer in the least
significant byte of TBREG. The byte is either a message byte or one byte of the 32 bit
address associated with an indirect branch message.Table 48 shows the format of the
trace buffer register.

TBREG Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

reset value: unpredictable

Bits Access Description
31:8 Read-as-Zero/Write-ignored Reserved
7:0 Read / Write-unpredictable Message Byte or Address Byte

3.6.13

3.6.13.1

Figure 21.

September 2006

Trace Buffer Entries

Trace buffer entries consist of either one or five bytes. Most entries are one byte
messages indicating the type of control flow change. The target address of the control
flow change represented by the message byte is either encoded in the message byte
(like for exceptions) or can be determined by looking at the instruction word (like for
direct branches). Indirect branches require five bytes per entry. One byte is the
message byte identifying it as an indirect branch. The other four bytes make up the
target address of the indirect branch. The following sections describe the trace buffer
entries in detail.

Message Byte
There are two message formats, (exception and non-exception) as shown in Figure 21.

Message Byte Formats

MlV|V|v]c|c|c|C M[M[M[M C|C|C|C

7 0 7 0

M = Message Type Bit MMMM = Message Type Bits
VVV = exception vector[4:2] CCCC = Incremental Word Count

CCCC = Incremental Word Count

Exception Format Non-exception Format

Table 49 shows all of the possible trace messages.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 111

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 49.

3.6.13.1.1

3.6.13.1.2

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Message Byte Formats

Message Name Message Byte Type Message Byte Format # gc):i/?;zss
Exception exception ObOVVV CCCC (o]
Direct Branch?’ non-exception 0b1000 CCCC (o]
Check-Pointed Direct Branch® non-exception 0Ob1100 CCCC [¢]
Indirect Branch? non-exception 0b1001 CCCC 4
Check-Pointed Indirect Branch? non-exception 0b1101 CCCC 4
Roll-over non-exception Ob1111 1111 (0]
Notes:
1. Direct branches include ARM and Thumb bl, b.
2. Indirect branches include ARM Idm, Idr, and dproc to PC; ARM and Thumb bx, bIx(1) and bIx(2); and
Thumb pop.

Exception Message Byte

When any kind of exception occurs, an exception message is placed in the trace buffer.
In an exception message byte, the message type bit (M) is always O.

The vector exception (VVV) field is used to specify bits[4:2] of the vector address
(offset from the base of default or relocated vector table). The vector allows the host
SW to identify which exception occurred.

The incremental word count (CCCC) is the instruction count since the last control flow
change (not including the current instruction for undef, SWI, and pre-fetch abort). The
instruction count includes instructions that were executed and conditional instructions
that were not executed due to the condition of the instruction not matching the CC
flags.

A count value of O indicates that O instructions executed since the last control flow
change and the current exception. For example, if a branch is immediate followed by a
SWI, a direct branch exception message (for the branch) is followed by an exception
message (for the SWI) in the trace buffer. The count value in the exception message
will be 0, meaning that O instructions executed after the last control flow change (the
branch) and before the current control flow change (the SWI). Instead of the SWI, if an
IRQ was handled immediately after the branch (before any other instructions
executed), the count would still be 0, since no instructions executed after the branch
and before the interrupt was handled.

A count of Ob1111 indicates that 15 instructions executed between the last branch and
the exception. In this case, an exception was either caused by the 16th instruction (if it
is an undefined instruction exception, pre-fetch abort, or SWI) or handled before the
16th instruction executed (for FIQ, IRQ, or data abort).

Non-Exception Message Byte

Non-exception message bytes are used for direct branches, indirect branches, and
rollovers.

In a non-exception message byte, the four-bit message type field (MMMM) specifies the
type of message (refer to Table 49).

The incremental word count (CCCC) is the instruction count since the last control flow
change (excluding the current branch). The instruction count includes instructions that
were executed and conditional instructions that were not executed due to the condition

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
112

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

of the instruction not matching the CC flags. In the case of back-to-back branches the
word count would be O indicating that no instructions executed after the last branch
and before the current one.

A rollover message is used to keep track of long traces of code that do not have control
flow changes. The rollover message means that 16 instructions have executed since
the last message byte was written to the trace buffer.

If the incremental counter reaches its maximum value of 15, a rollover message is
written to the trace buffer following the next instruction (which will be the 16th
instruction to execute). This is shown in Example 13. The count in the rollover message
is Ob1111, indicating that 15 instructions have executed after the last branch and
before the current non-branch instruction that caused the rollover message.

Example 13. Rollover Messages Examples

count=>5

BL labell branch message placed in trace buffer after branch executes
count=0 “® " count = 0b0101

MOV

count=1

MOV

count =2

MOV

count =14

MOV

count =15

MOV rollover message placed in trace buffer after 16th instruction executes
count =0 count = 0b1111

If the 16th instruction is a branch (direct or indirect), the appropriate branch message
is placed in the trace buffer instead of the roll-over message. The incremental counter
is still set to Ob1111, meaning 15 instructions executed between the last branch and
the current branch.

3.6.13.1.3 Address Bytes

Only indirect branch entries contain address bytes in addition to the message byte.
Indirect branch entries always have four address bytes indicating the target of that
indirect branch. When reading the trace buffer the MSB of the target address is read
out first; the LSB is the fourth byte read out; and the indirect branch message byte is
the fifth byte read out. The byte organization of the indirect branch message is shown

in Figure 22.
Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 113

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Figure 22. Indirect Branch Entry Address Byte Organization

target[31:24]

Trace buffer is read by

software in this target[23:16]
direction. The message

byte is always the last of target[15:8]
the 5 bytes in the entry target[7:0]
to be read.

| indirect br msg

3.6.13.2 Trace Buffer Usage

IXP42X product line and 1XC1100 control plane processors’ trace buffer is 256 bytes in
length. The first byte read from the buffer represents the oldest trace history
information in the buffer. The last (256th) byte read represents the most recent entry
in the buffer. The last byte read from the buffer will always be a message byte. This
provides the debugger with a starting point for parsing the entries out of the buffer.
Because the debugger needs the last byte as a starting point when parsing the buffer,
the entire trace buffer must be read (256 bytes on IXP42X product line and 1XC1100
control plane processors) before the buffer can be parsed. Figure 23 is a high level view
of the trace buffer.

Figure 23. High Level View of Trace Buffer

first byte read — | target[7:0]
(oldest entry)

1001 CCCC (indirect)

1000 CCCC (direct)
1100 CCCC (direct)

CHKPTL 4 |

CHKPTO

1111 1111 (roll-over)

target[31:24]
target[23:16]
target[15:8]

target[7:0]
1101 CCCC (indirect)

1000 CCCC (direct)
1111 1111 (roll-over)

last byte read :
(most recent entry) —» | 1000 CCCC (direct)

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
114 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

September 2006

The trace buffer must be initialized prior to its initial usage, then again prior to each
subsequent usage. Initialization is done be reading the entire trace buffer. The process
of reading the trace buffer also clears it out (all entries are set to 0bO000 0000), so
when the trace buffer has been used to capture a trace, the process of reading the
captured trace data also re-initializes the trace buffer for its next usage.

The trace buffer can be used to capture a trace up to a processor reset. A processor
reset disables the trace buffer, but the contents are unaffected. The trace buffer
captures a trace up to the processor reset.

The trace buffer does not capture reset events or debug exceptions.

Since the trace buffer is cleared out before it is used, all entries are initially 0ObOO00
0000. In fill-once mode, these O’s can be used to identify the first valid entry in the
trace buffer. In wrap around mode, in addition to identifying the first valid entry, these
0 entries can be used to determine whether a wrap around occurred.

As the trace buffer is read, the oldest entries are read first. Reading a series of 5 (or
more) consecutive “0b0000 0000” entries in the oldest entries indicates that the trace
buffer has not wrapped around and the first valid entry will be the first non-zero entry
read out.

Reading 4 or less consecutive “Ob0000 0000” entries requires a bit more intelligence in
the host SW. The host SW must determine whether these Os are part of the address of
an indirect branch message, or whether they are part of the “Ob0000 0000” that the
trace buffer was initialized with. If the first non-zero message byte is an indirect branch
message, then these Os are part of the address since the address is always read before
the indirect branch message (see “Address Bytes” on page 113). If the first non-zero
entry is any other type of message byte, then these Os indicate that the trace buffer
has not wrapped around and that first non-zero entry is the start of the trace.

If the oldest entry from the trace buffer is non-zero, then the trace buffer has either
wrapped around or just filled up.

Once the trace buffer has been read and parsed, the host SW should re-create the
trace history from oldest trace buffer entry to latest. Trying to re-create the trace going
backwards from the latest trace buffer entry may not work in most cases, because once
a branch message is encountered, it may not be possible to determine the source of
the branch.

In fill-once mode, the return from the debug handler to the application should generate
an indirect branch message. The address placed in the trace buffer will be that of the
target application instruction. Using this as a starting point, re-creating a trace going
forward in time should be straightforward.

In wrap around mode, the host SW should use the checkpoint registers and address
bytes from indirect branch entries to re-create the trace going forward. The drawback
is that some of the oldest entries in the trace buffer may be untraceable, depending on
where the earliest checkpoint (or indirect branch entry) is located. The best case is
when the oldest entry in the trace buffer was check-pointed, so the entire trace buffer
can be used to re-create the trace. The worst case is when the first checkpoint is in the
middle of the trace buffer and no indirect branch messages exist before this checkpoint.
In this case, the host SW would have to start at its known address (the first
checkpoint) which is half way through the buffer and work forward from there.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 115

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.6.14

Note:

3.6.14.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Downloading Code in ICache

On IXP42X product line and IXC1100 control plane processors, a 2-K mini instruction
cache — physically separate from the 32-K main instruction cache — can be used as an
on-chip instruction RAM. An external host can download code directly into either
instruction cache through JTAG. In addition to downloading code, several cache
functions are supported.

A cache line fill from external memory will never be written into the mini-instruction
cache. The only way to load a line into the mini-instruction cache is through JTAG.

The 1XP42X product line and 1XC1100 control plane processors support loading the
instruction cache during reset and during program execution. Loading the instruction
cache during normal program execution requires a strict handshaking protocol between
software running on the I1XP42X product line and 1XC1100 control plane processors and
the external host.

In the remainder of this section the term ‘instruction cache’ applies to either main or
mini instruction cache.

LDIC JTAG Command

The LDIC JTAG instruction selects the JTAG data register for loading code into the
instruction cache. The JTAG op code for this instruction is ‘00111’. The LDIC instruction
must be in the JTAG instruction register in order to load code directly into the
instruction cache through JTAG.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
116

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel >

3.6.14.2 LDIC JTAG Data Register

The LDIC JTAG Data Register is selected when the LDIC JTAG instruction is in the JTAG
IR. An external host can load and invalidate lines in the instruction cache through this
data register.

Figure 24. LDIC JTAG Data Register Hardware

unpredictable

‘ Capture_DR
TD | sl s>~ TDO
LDIC_SR1 [sj2|t|o
l Update_DR
LDIC_REG |32 2|1]o0 TCK

.--_______l_________________.

_ 1 corecLk

LDIC_SR2 |a2 2|1]0

T To Instruction Cache

LDIC
State Machine

The data loaded into LDIC_SR1 during a Capture_DR is unpredictable.

All LDIC functions and data consists of 33-bit packets which are scanned into LDIC_SR1
during the Shift_DR state.

Update_ DR parallel loads LDIC_SR1 into LDIC_REG which is then synchronized with the
IXP42X product line and IXC1100 control plane processors’ clock and loaded into the
LDIC_SR2. Once data is loaded into LDIC_SR2, the LDIC State Machine turns on and
serially shifts the contents if LDIC_SR2 to the instruction cache.

Note that there is a delay from the time of the Update_DR to the time the entire
contents of LDIC_SR2 have been shifted to the instruction cache. Removing the LDIC
JTAG instruction from the JTAG IR before the entire contents of LDIC_SR2 are sent to
the instruction cache, will result in unpredictable behavior. Therefore, following the
Update_DR for the last LDIC packet, the LDIC instruction must remain in the JTAG IR
for a minimum of 15 TCKs. This ensures the last packet is correctly sent to the
instruction cache.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 117

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

3.6.14.3 LDIC Cache Functions

The IXP42X product line and IXC1100 control plane processors support four cache
functions that can be executed through JTAG. Two functions allow an external host to
download code into the main instruction cache or the mini instruction cache through
JTAG. Two additional functions are supported to allow lines to be invalidated in the
instruction cache. The following table shows the cache functions supported through
JTAG.

Table 50. LDIC Cache Functions

Arguments
Function Encoding
Address # Data Words

Invalidate IC Line 0b000 VA of line to invalidate 0]
Invalidate Mini IC 0b00O1 - 0]
Load Main IC 0b010 VA of line to load 8
Load Mini IC 0b0O11 VA of line to load 8
RESERVED 0b100-0b111 - -

Invalidate IC line invalidates the line in the instruction cache containing specified virtual
address. If the line is not in the cache, the operation has no effect. It does not take any
data arguments.

Invalidate Mini IC will invalidate the entire mini instruction cache. It does not effect the
main instruction cache. It does not require a virtual address or any data arguments.

Note: The LDIC Invalidate Mini IC function does not invalidate the BTB (like the CP15
Invalidate IC function) so software must do this manually where appropriate.

Load Main IC and Load Mini IC write one line of data (eight ARM instructions) into the
specified instruction cache at the specified virtual address.

Each cache function is downloaded through JTAG in 33 bit packets. Figure 25 shows the
packet formats for each of the JTAG cache functions. Invalidate IC Line and Invalidate
Mini IC each require 1 packet. Load Main IC and Load Mini IC each require 9 packets.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
118 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Figure 25.

3.6.14.4

Format of LDIC Cache Functions

Invalidate IC Line VA[31:5] |00 0|0 0|o
32 31 5 2 0
i ini x| ...|x|0]JO|OfO|0O|2
Invalidate Mini IC -indicates first
32 31 5 > 0 bit shifted in
I Data Word 7
: - indicates last
bit shifted in
Load Main IC
(CMD = 0b010) = Data Word 0
and
Load Mini IC
(CMD = 0b011) VA[31:5] |0|o|of €MD
32 31 5 2 0

All packets are 33 bits in length. Bits [2:0] of the first packet specify the function to
execute. For functions that require an address, bits[32:6] of the first packet specify an
eight-word aligned address (Packet1[32:6] = VA[31:5]). For Load Main IC and Load
Mini IC, eight additional data packets are used to specify eight ARM instructions to be
loaded into the target instruction cache. Bits[31:0] of the data packets contain the data
to download. Bit[32] of each data packet is the value of the parity for the data in that
packet.

As shown in Figure 25, the first bit shifted in TDI is bit O of the first packet. After each
33-bit packet, the host must take the JTAG state machine into the Update_DR state.
After the host does an Update_DR and returns the JTAG state machine back to the
Shift_DR state, the host can immediately begin shifting in the next 33-bit packet.

Loading IC During Reset

Code can be downloaded into the instruction cache through JTAG during a processor
reset. This feature is used during software debug to download the debug handler prior
to starting an application program. The downloaded handler can then intercept the
reset vector and do any necessary setup before the application code executes

In general, any code downloaded into the instruction cache through JTAG, must be
downloaded to addresses that are not already valid in the instruction cache. Failure to
meet this requirement will result in unpredictable behavior by the processor. During a
processor reset, the instruction cache is typically invalidated, with the exception of the
following modes:

= LDIC mode — Active when LDIC JTAG instruction is loaded in the JTAG IR; prevents
the mini instruction cache and the main instruction cache from being invalidated
during reset.

= HALT mode — Active when the Halt Mode bit is set in the DCSR; prevents only the
mini instruction cache from being invalidated; main instruction cache is invalidated

by reset.
Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 119

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

During a cold reset (in which both a processor reset and a JTAG reset occurs) it can be
guaranteed that the instruction cache will be invalidated since the JTAG reset takes the
processor out of any of the modes listed above.

During a warm reset, if a JTAG reset does not occur, the instruction cache is not
invalidated by reset when any of the above modes are active. This situation requires
special attention if code needs be downloaded during the warm reset.

Note that while Halt Mode is active, reset can invalidate the main instruction cache.
Thus debug handler code downloaded during reset can only be loaded into the mini
instruction cache. However, code can be dynamically downloaded into the main
instruction cache. (refer to “Dynamically Loading IC After Reset” on page 123).

The following sections describe the steps necessary to ensure code is correctly
downloaded into the instruction cache.

3.6.14.4.1 Loading IC During Cold Reset for Debug

The Figure 26 shows the actions necessary to download code into the instruction cache
during a cold reset for debug.

Note: In the Figure 26 hold_rst is a signal that gets set and cleared through JTAG When the
JTAG IR contains the SELDCSR instruction, the hold_rst signal is set to the value
scanned into DBG_SR[1].

Figure 26. Code Download During a Cold Reset For Debug

RESET pin asserted until hold_rst signal is set

Reset Pin
TRST resets JTAG IR to IDCODE

TRST

RESET/'nvaIidates IC

RESET does not affect IC

Internal
RESET

hold_rst keeps internal reset asserted | §
; | Processor branches

to address 0

clock 15 tcks after

wait 2030 tcks after last update_dr
| Reset deasserted in LDIC mode |

e = |
JtAGIR(_ X ibcopE) SELDCSR ><| LDIC | ><| SELI]|)CSR

|
|
|
|
|
|
|
|
|
|
|

[
I
I
I
hold_rst |
[
I
I
I

An external host should take the following steps to load code into the instruction cache
following a cold reset:

1. Assert the Reset and TRST pins: This resets the JTAG IR to IDCODE and invalidates
the instruction cache (main and mini).

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
120 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.6.14.4.2

September 2006

2. Load the SELDCSR JTAG instruction into JTAG IR and scan in a value to set the Halt
Mode bit in DCSR and to set the hold_rst signal. For details of the SELDCSR, refer
to “SELDCSR JTAG Register” on page 103.

3. After hold_rst is set, de-assert the Reset pin. Internally the processor remains held
in reset.

4. After Reset is de-asserted, wait 2030 TCKs.
5. Load the LDIC JTAG instruction into JTAG IR.

6. Download code into instruction cache in 33-bit packets as described in “LDIC Cache
Functions” on page 118.

7. After code download is complete, clock a minimum of 15 TCKs following the last
update_dr in LDIC mode.

8. Place the SELDCSR JTAG instruction into the JTAG IR and scan in a value to clear
the hold_rst signal. The Halt Mode bit must remain set to prevent the instruction
cache from being invalidated.

9. When hold_rst is cleared, internal reset is de-asserted, and the processor executes
the reset vector at address O.

An additional issue for debug is setting up the reset vector trap. This must be done
before the internal reset signal is de-asserted. As described in “Vector Trap Bits

(TKTI, TD,TA,TS,TU,TR)” on page 92, the Halt Mode and the Trap Reset bits in the DCSR
must be set prior to de-asserting reset in order to trap the reset vector. There are two
possibilities for setting up the reset vector trap:

= The reset vector trap can be set up before the instruction cache is loaded by
scanning in a DCSR value that sets the Trap Reset bit in addition to the Halt Mode
bit and the hold_rst signal; OR

= The reset vector trap can be set up after the instruction cache is loaded. In this
case, the DCSR should be set up to do a reset vector trap, with the Halt Mode bit
and the hold_rst signal remaining set.

In either case, when the debugger clears the hold_rst bit to de-assert internal reset,
the debugger must set the Halt Mode and Trap Reset bits in the DCSR.

Loading IC During a Warm Reset for Debug

Loading the instruction cache during a warm reset may be a slightly different situation
than during a cold reset. For a warm reset, the main issue is whether the instruction
cache gets invalidated by the processor reset or not. There are several possible
scenarios:

= While reset is asserted, TRST is also asserted.
In this case the instruction cache is invalidated, so the actions taken to download
code are identical to those described in “Loading IC During Cold Reset for Debug”
on page 120

= When reset is asserted, TRST is not asserted, but the processor is not in Halt Mode.

In this case, the instruction cache is also invalidated, so the actions are the same
as described in “Loading IC During Cold Reset for Debug” on page 120, after the
LDIC instruction is loaded into the JTAG IR.

= When reset is asserted, TRST is not asserted, and the processor is in Halt Mode.

In this last scenario, the mini instruction cache does not get invalidated by reset,
since the processor is in Halt Mode. This scenario is described in more detail in this
section.

In the last scenario described above is shown in Figure 28.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 121

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Figure 27. Code Download During a Warm Reset For Debug

RESET pin asserted until hold_rst signal is set

¥

Reset pin

|
TRST |

RESET does not affect Mini IC (Halt Mode Bit set)

Internal
RESET4 | # l—

hold+rst keeps internal reset asserted |

|
hold_rst | |

clock 15 tcks after
| wait 2030 tcks after ~ last update_dr |
| Reset deasserted in LDIC mode |
|
JTAG IR JTAG INSTR) SELDCSR X LDIC)\ SELDCSR
set hold_rst signal enter LDIC mode clear hold_rst signal
keep Halt Mode bit set Load codeinto IC keep Halt Mode bit set
Halt Mode

As shown in Figure 27, reset does not invalidate the instruction cache because of the
processor is in Halt Mode. Since the instruction cache was not invalidated, it may
contain valid lines. The host must avoid downloading code to virtual addresses that are
already valid in the instruction cache (mini IC or main IC), otherwise the processor may
behave unpredictably.

There are several possible solutions that ensure code is not downloaded to a VA that
already exists in the instruction cache.

Since the mini instruction cache was not invalidated, any code previously downloaded
into the mini IC is valid in the mini IC, so it is not necessary to download the same code
again.

If it is necessary to download code into the instruction cache:
1. Assert TRST.

This clears the Halt Mode bit allowing the instruction cache to be invalidated.
2. Clear the Halt Mode bit through JTAG.

This allows the instruction cache to be invalidated by reset.

3. Place the LDIC JTAG instruction in the JTAG IR, then proceed with the normal code
download, using the Invalidate IC Line function before loading each line.
This requires 10 packets to be downloaded per cache line instead of the 9 packets
described in “LDIC Cache Functions” on page 118

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
122 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel >

3.6.14.5

Figure 28.

September 2006

Dynamically Loading IC After Reset

An external host can load code into the instruction cache “on the fly” or “dynamically.”
This occurs when the host downloads code while the processor is not being reset.
However, this requires strict synchronization between the code running on the 1XP42X
product line and IXC1100 control plane processors and the external host. The
guidelines for downloading code during program execution must be followed to ensure
proper operation of the processor. The description in this section focuses on using a
debug handler running on the IXP42X product line and IXC1100 control plane
processors to synchronize with the external host, but the details apply for any
application that is running while code is dynamically downloaded.

To dynamically download code during software debug, there must be a minimal debug
handler stub, responsible for doing the handshaking with the host, resident in the
instruction cache. This debug handler stub should be downloaded into the instruction
cache during processor reset using the method described in “Loading IC During Reset”
on page 119. “Dynamic Code Download Synchronization” on page 124 describes the
details for implementing the handshaking in the debug handler.

Figure 28 shows a high level view of the actions taken by the host and debug handler
during dynamic code download.

Downloading Code in IC During Program Execution

Debugger Actions signal handler
wait for handler to signal download is complete
ready to start download download code (1”50."3_'&(3
[1]
JTAG IR DBGTX X LDIC X DBGRX

| !
T continue execution.

Handler begins execution signal host ready

for download wait for host to signal

download complete

Debug Handler Actions

The following steps describe the details for downloading code:

= Since the debug handler is responsible for synchronization during the code
download, the handler must be executing before the host can begin the download.
The debug handler execution starts when the application running on the IXP42X
product line and IXC1100 control plane processors generate a debug exception or
when the host generates an external debug break.

= While the DBGTX JTAG instruction is in the JTAG IR (see “DBGTX JTAG Command”
on page 105), the host polls DBG_SR[0], waiting for the debug handler to set it.

= When the debug handler gets to the point where it is OK to begin the code
download, it writes to TX, which automatically sets DBG_SR[0]. This signals the
host it is OK to begin the download. The debug handler then begins polling
TXRXCTRL[31] waiting for the host to clear it through the DBGRX JTAG register (to
indicate the download is complete).

= The host writes LDIC to the JTAG IR, and downloads the code. For each line
downloaded, the host must invalidate the target line before downloading code to

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 123

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

that line. Failure to invalidate a line prior to writing it may cause unpredictable
operation by the processor.

< When the host completes its download, the host must wait a minimum of 15 TCKs,
then switch the JTAG IR to DBGRX, and complete the handshaking (by scanning in
a value that sets DBG_SR[35]). This clears TXRXCTL[31] and allows the debug
handler code to exit the polling loop. The data scanned into DBG_SR[34:3] is
implementation specific.

= After the handler exits the polling loop, it branches to the downloaded code.
Note that this debug handler stub must reside in the instruction cache and execute out

of the cache while doing the synchronization. The processor should not be doing any
code fetches to external memory while code is being downloaded.

3.6.14.5.1 Dynamic Code Download Synchronization
The following pieces of code are necessary in the debug handler to implement the

synchronization used during dynamic code download. The pieces must be ordered in
the handler as shown below.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
124 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 51.

September 2006

Debug-Handler Code to Implement Synchronization During Dynamic Code
Download

Before the download can start, all outstanding instruction fetches must
complete.

The MCR invalidate IC by line function serves as a barrier instruction in

the core. All outstanding instruction fetches are guaranteed to complete before
the next instruction executes.

NOTE1l: the actual address specified to invalidate is implementation defined,
but
must not have any harmful effects.

NOTE2: The placement of the invalidate code is implementation defined, the only
requirement is that it must be placed such that by the time the debugger starts
loading the instruction cache, all outstanding instruction fetches have
completed

mov r5, address

mcr pl5, 0, r5, c7, c5, 1

The host waits for the debug handler to signal that it is ready for the

code download. This can be done using the TX register access handshaking
protocol. The host polls the TR bit through JTAG until it is set, then begins
the code download. The following MCR does a write to TX, automatically
setting the TR bit.

* OHHHEER

NOTE: The value written to TX is implementation defined.

mcr pl4, O, r6, c8, cO, O

The debug handler waits until the download is complete before continuing. The
debugger uses the RX handshaking to signal the debug handler when the download
is complete. The debug handler polls the RR bit until it is set. A debugger
write

to RX automatically sets the RR bit, allowing the handler to proceed.

NOTE: The value written to RX by the debugger is implementation defined - it can
be a bogus value signalling the handler to continue or it can be a target address
for the handler to branch to.

loop:
mrc pl4, 0, ri5, cl14, c0, O @ handler waits for signal from
debugger
bpl loop
mrc pl4, 0, rO, c8, cO, O @ debugger writes target address to RX
bx ro

In a very simple debug handler stub, the above parts may form the complete handler
downloaded during reset (with some handler entry and exit code). When a debug
exception occurs, routines can be downloaded as necessary. This basically allows the
entire handler to be dynamic.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 125

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.6.14.6

3.6.15

3.6.15.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Another possibility is for a more complete debug handler is downloaded during reset.
The debug handler may support some operations, such as read memory, write memory,
etc. However, other operations, such as reading or writing a group of CP register, can
be downloaded dynamically. This method could be used to dynamically download
infrequently used debug handler functions, while the more common operations remain
static in the mini-instruction cache.

The Intel Debug Handler is a complete debug handler that implements the more
commonly used functions, and allows less frequently used functions to be dynamically
downloaded.

Mini-Instruction Cache Overview

The mini instruction cache is a smaller version of the main instruction cache. (For more
details on the main instruction cache, see “Instruction Cache” on page 52.) It is a
2-Kbyte, two-way set associative cache. There are 32 sets, each containing two ways
with each way containing eight words. The cache uses the round-robin replacement

policy.

The mini instruction cache is virtually addressed and addresses may be remapped by
the PID. However, since the debug handler executes in Special Debug State, address
translation and PID remapping are turned off. For application code, accesses to the mini
instruction cache use the normal address translation and PID mechanisms.

Normal application code is never cached in the mini instruction cache on an instruction
fetch. The only way to get code into the mini instruction cache is through the JTAG
LDIC function. Code downloaded into the mini instruction cache is essentially locked - it
cannot be overwritten by application code running on the I1XP42X product line and
IXC1100 control plane processors. However, it is not locked against code downloaded
through the JTAG LDIC functions.

Application code can invalidate a line in the mini instruction cache using a CP15
Invalidate IC line function to an address that hits in the mini instruction cache.
However, a CP15 global invalidate IC function does not affect the mini instruction
cache.

The mini instruction cache can be globally invalidated through JTAG by the LDIC
Invalidate IC function or by a processor reset when the processor is not in HALT or LDIC
mode. A single line in the mini instruction cache can be invalidated through JTAG by the
LDIC Invalidate IC-line function.

Halt Mode Software Protocol

This section describes the overall debug process in Halt Mode. It describes how to start
and end a debug session and details for implementing a debug handler. Intel provides a
standard Debug Handler that implements some of the techniques in this section. The
Intel Debug Handler itself is a a document describing additional handler
implementation techniques and requirements.

Starting a Debug Session

Prior to starting a debug session in Halt Mode, the debugger must download code into
the instruction cache during reset, via JTAG. (“Downloading Code in ICache” on
page 116). This downloaded code should consist of:

« A debug handler
< An override default vector table

= An override relocated vector table (if necessary)

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
126

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.6.15.1.1

3.6.15.1.2

September 2006

While the processor is still in reset, the debugger should set up the DCSR to trap the
reset vector. This causes a debug exception to occur immediately when the processor
comes out of reset. Execution is redirected to the debug handler allowing the debugger
to perform any necessary initialization. The reset vector trap is the only debug
exception that can occur with debug globally disabled (DCSR[31]=0). Therefore, the
debugger must also enable debug prior to existing the handler to ensure all subsequent
debug exceptions correctly break to the debug handler.

Setting up Override Vector Tables

The override default vector table intercepts the reset vector and branches to the debug
handler when a debug exception occurs. If the vector table is relocated, the debug
vector is relocated to address Oxffff0000. Thus, an override relocated vector table is
required to intercept vector OxffffOO00 and branch to the debug handler.

Both override vector tables also intercept the other debug exceptions, so they must be
set up to either branch to a debugger specific handler or go to the application’s
handlers.

It is possible that the application modifies its vector table in memory, so the debugger
may nhot be able to set up the override vector table to branch to the application’s
handlers. The Debug Handler may be used to work around this problem by reading
memory and branching to the appropriate address. Vector traps can be used to get to
the debug handler, or the override vector tables can redirect execution to a debug
handler routine that examines memory and branches to the application’s handler.

Placing the Handler in Memory

The debug handler is not required to be placed at a specific pre-defined address.
However, there are some limitations on where the handler can be placed due to the
override vector tables and the two-way set associative mini instruction cache.

In the override vector table, the reset vector must branch to the debug handler using:

« A direct branch, which limits the start of the handler code to within 32 Mbytes of
the reset vector, or

= An indirect branch with a data processing instruction. The data processing
instruction creates an address using immediate operands and then branches to the
target. An LDR to the PC does not work because the debugger cannot set up data in
memory before starting the debug handler

The two-way set associative limitation is due to the fact that when the override default
and relocated vector tables are downloaded, they take up both ways of Set 0 (w/
addresses 0x0 and Oxffff0000). Therefore, debug handler code can not be downloaded
to an address that maps into Set 0, otherwise it will overwrite one of the vector tables
(avoid addresses w/ lower 12 bits=0).

The instruction cache two-way set limitation is not a problem when the reset vector
uses a direct branch, since the branch offset can be adjusted accordingly. However, it
makes using indirect branches more complicated. Now, the reset vector actually needs
multiple data processing instructions to create the target address and branch to it.

One possibility is to set up vector traps on the non-reset exception vectors. These
vector locations can then be used to extend the reset vector.

Another solution is to have the reset vector do a direct branch to some intermediate
code. This intermediate code can then uses several instructions to create the debug
handler start address and branch to it. This would require another line in the mini
instruction cache, since the intermediate code must also be downloaded. This method
also requires that the layout of the debug handler be well thought out to avoid the
intermediate code overwriting a line of debug handler code, or vice versa.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 127

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.6.15.2

3.6.15.2.1

3.6.15.2.2

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

For the indirect branch cases, a temporary scratch register may be necessary to hold
intermediate values while computing the final target address. DBG_r13 can be used for
this purpose (see “Debug Handler Restrictions” on page 128 for restrictions on
DBG_r13 usage).

Implementing a Debug Handler

The debugger uses the debug handler to examine or modify processor state by sending
commands and reading data through JTAG. The APl between the debugger and debug
handler is specific to a debugger implementation. Intel provides a standard debug
handler and APl which can be used by third-party vendors. Issues and details for
writing a debug handler are discussed in this section and in the Intel Debug Handler.

Debug Handler Entry

When the debugger requests an external debug break or is waiting for an internal
break, it should poll the TR bit through JTAG to determine when the processor has
entered Debug Mode. The debug handler entry code must do a write to TX to signal the
debugger that the processor has entered Debug Mode. The write to TX sets the TR bit,
signalling the host that a debug exception has occurred and the processor has entered
Debug Mode. The value of the data written to TX is implementation defined (debug
break message, contents of register to save on host, etc.).

Debug Handler Restrictions

The Debug Handler executes in Debug Mode which is similar to other privileged
processor modes, however, there are some differences. Following are restrictions on
Debug Handler code and differences between Debug Mode and other privileged modes.

= The processor is in Special Debug State following a debug exception, and thus has
special functionality as described in “Halt Mode” on page 93.

= Although address translation and PID remapping are disabled for instruction
accesses (as defined in Special Debug State), data accesses use the normal
address translation and PID remapping mechanisms.

= Debug Mode does not have a dedicated stack pointer, DBG_r13. Although DBG_r13
exists, it is not a general purpose register. Its contents are unpredictable and
should not be relied upon across any instructions or exceptions. However, DBG_r13
can be used, by data processing (hon RRX) and MCR/MRC instructions, as a
temporary scratch register.

= The following instructions should not be executed in Debug Mode, they may result
in unpredictable behavior:

— LDM

— LDR w/ Rd=PC

— LDR w/ RRX addressing mode
— SWP

— LDC

— STC

= The handler executes in Debug Mode and can be switched to other modes to access
banked registers. The handler must not enter User Mode; any User Mode registers
that need to be accessed can be accessed in System Mode. Entering User Mode
may cause unpredictable behavior.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
128

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.6.15.2.3

September 2006

Dynamic Debug Handler

On the IXP42X product line and 1XC1100 control plane processors, the debug handler
and override vector tables reside in the 2-Kbyte, mini instruction cache, separate from
the main instruction cache. A “static” Debug Handler is downloaded during reset. This
is the base handler code, necessary to do common operations such as handler entry/
exit, parse commands from the debugger, read/write ARM registers, read/write
memory, etc.

Some functions may require large amounts of code or may not be used very often. As
long as there is space in the mini-instruction cache, these functions can be downloaded
as part of the static Debug Handler. However, if space is limited, the debug handler also
has a dynamic capability that allows a function to be downloaded when it is needed.
There are three methods for implementing a dynamic debug handler (using the mini
instruction cache, main instruction cache, or external memory). Each method has their
limitations and advantages. “Dynamically Loading IC After Reset” on page 123
describes how do dynamically load the mini or main instruction cache.

* Using the Mini IC
The static debug handler can support a command which can have functionality
dynamically mapped to it. This dynamic command does not have any specific
functionality associated with it until the debugger downloads a function into the
mini instruction cache. When the debugger sends the dynamic command to the
handler, new functionality can be downloaded, or the previously downloaded
functionality can be used.

There are also variations in which the debug handler supports multiple dynamic
commands, each mapped to a different dynamic function; or a single dynamic
command that can branch to one of several downloaded dynamic functions based
on a parameter passed by the debugger.

Debug Handlers that allow code to be dynamically downloaded into the mini
instruction cache must be carefully written to avoid inadvertently overwriting a
critical piece of debug handler code. Dynamic code is downloaded to the way
pointed to by the round-robin pointer. Thus, it is possible for critical debug handler
code to be overwritten, if the pointer does not select the expected way.

To avoid this problem, the debug handler should be written to avoid placing critical
code in either way of a set that is intended for dynamic code download. This allows
code to be downloaded into either way, and the only code that is overwritten is the
previously downloaded dynamic function. This method requires that space within
the mini instruction cache be allocated for dynamic download, limiting the space
available for the static Debug Handler. Also, the space available may not be suitable
for a larger dynamic function.

Once downloaded, a dynamic function essentially becomes part of the Debug
Handler. Since it is in the mini instruction cache, it does not get overwritten by
application code. It remains in the cache until it is replaced by another dynamic
function or the lines where it is downloaded are invalidated.

« Using the Main IC.

The steps for downloading dynamic functions into the main instruction cache is
similar to downloading into the mini instruction cache. However, using the main
instruction cache has its advantages.

Using the main instruction cache eliminates the problem of inadvertently
overwriting static Debug Handler code by writing to the wrong way of a set, since
the main and mini instruction caches are separate. The debug handler code does
not need to be specially mapped out to avoid this problem. Also, space for dynamic
functions does not need to be allocated in the mini instruction cache and dynamic
functions are not limited to the size allocated.

The dynamic function can actually be downloaded anywhere in the address space.
The debugger specifies the location of the dynamic function by writing the address
to RX when it signals to the handler to continue. The debug handler then does a
branch-and-link to that address.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 129

Download from Www.Somanuals.com. All Manuals Search And Download.

3.6.15.2.4

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

If the dynamic function is already downloaded in the main instruction cache, the
debugger immediately downloads the address, signalling the handler to continue.

The static Debug Handler only needs to support one dynamic function command.
Multiple dynamic functions can be downloaded to different addresses and the
debugger uses the function’s address to specify which dynamic function to execute.
Since the dynamic function is being downloaded into the main instruction cache,
the downloaded code may overwrite valid application code, and conversely,
application code may overwrite the dynamic function. The dynamic function is only
guaranteed to be in the cache from the time it is downloaded to the time the debug
handler returns to the application (or the debugger overwrites it).

« External memory
Dynamic functions can also we downloaded to external memory (or they may
already exist there). The debugger can download to external memory using the
write-memory commands. Then the debugger executes the dynamic command
using the address of the function to identify which function to execute. This method
has the many of the same advantages as downloading into the main instruction
cache.

Depending on the memory system, this method could be much slower than
downloading directly into the instruction cache. Another problem is the application
may write to the memory where the function is downloaded. If it can be guaranteed
that the application does not modify the downloaded dynamic function, the debug
handler can save the time it takes to re-download the code. Otherwise, the ensure
the application does not corrupt the dynamic functions, the debugger should re-
download any dynamic functions it uses.

For all three methods, the downloaded code executes in the context of the debug
handler. The processor will be in Special Debug State, so all of the special functionality
applies.

The downloaded functions may also require some common routines from the static
debug handler, such as the polling routines for reading RX or writing TX. To simplify the
dynamic functions, the debug handler should define a set of registers to contain the
addresses of the most commonly used routines. The dynamic functions can then access
these routines using indirect branches (BLX). This helps reduce the amount of code in
the dynamic function since common routines do not need to be replicated within each
dynamic function.

High-Speed Download

Special debug hardware has been added to support a high-speed download mode to
increase the performance of downloads to system memory (vs. writing a block of
memory using the standard handshaking).

The basic assumption is that the debug handler can read any data sent by the
debugger and write it to memory, before the debugger can send the next data. Thus, in
the time it takes for the debugger to scan in the next data word and do an Update_DR,
the handler is already in its polling loop, waiting for it. Using this assumption, the
debugger does not have to poll RR to see whether the handler has read the previous
data - it assumes the previous data has been consumed and immediately starts
scanning in the next data word.

The pitfall is when the write to memory stalls long enough that the assumption fails. In
this case the download with normal handshaking can be used (or high-speed download
can still be used, but a few extra TCKs in the Pause_DR state may be necessary to
allow a little more time for the store to complete).

The hardware support for high-speed download includes the Download bit (DCSR[29])
and the Overflow Flag (DCSR[30]).

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
130

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 52.

3.6.15.3

The download bit acts as a branch flag, signalling to the handler to continue with the
download. This removes the need for a counter in the debug handler.

The overflow flag indicates that the debugger attempted to download the next word
before the debugger read the previous word.

More details on the Download bit, Overflow flag and high-speed download, in general,
can be found in “Transmit/Receive Control Register” on page 98.

Following is example code showing how the Download bit and Overflow flag are used in
the debug handler:

Debug Handler Code: Download Bit and Overflow Flag

hs_write_word_loop:
hs_write_overflow:

bl read_RX @ read data word from host

@@ read TXRXCTRL into the CCs

mrc pl4, 0, ri15, cl4, cO0, O

bcc hs_write_done @ if D bit clear, download complete, exit loop.

beq hs_write_overflow @ if overflow detected, loop until host clears D
bit

str ro, [r6], #4 @ store only if there is no overflow.

b hs_write_word_loop @ get next data word

hs_write_done:
@@ after the loop, if the overflow flag was set, return error message to host
moveq rO, #OVERFLOW_RESPONSE
beq send_response

b write_common_exit

Ending a Debug Session

Prior to ending a debug session, the debugger should take the following actions:

1. Clear the DCSR (disable debug, exit Halt Mode, clear all vector traps, disable the
trace buffer)

2. Turn off all breakpoints.
3. Invalidate the mini instruction cache.
4. Invalidate the main instruction cache.
5. Invalidate the BTB.
Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 131

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.6.16

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

These actions ensure that the application program executes correctly after the
debugger has been disconnected.

Software Debug Notes and Errata

Trace buffer message count value on data aborts:

LDR to non-PC that aborts gets counted in the exception message. But an LDR to
the PC that aborts does not get counted on exception message.

SW Note on data abort generation in Special Debug State.
— Avoid code that could generate precise data aborts.

— If this cannot be done, then handler needs to be written such that a memory
access is followed by 1 nops. In this case, certain memory operations must be
avoided - LDM, STM, STRD, LDC, SWP.

Data abort on Special Debug State:

When write-back is on for a memory access that causes a data abort, the base
register is updated with the write-back value. This is inconsistent with normal (non-
SDS) behavior where the base remains unchanged if write-back is on and a data
abort occurs.

Trace Buffer wraps around and loses data in Halt Mode when configured for fill-once
mode:

It is possible to overflow (and lose) data from the trace buffer in fill-once mode, in
Halt Mode. When the trace buffer fills up, it has space for 1 indirect branch
message (5 bytes) and 1 exception message (1 Byte).

If the trace buffer fills up with an indirect branch message and generates a trace
buffer full break at the same time as a data abort occurs, the data abort has higher
priority, so the processor first goes to the data abort handler. This data abort is
placed into the trace buffer without losing any data.

However, if another imprecise data abort is detected at the start of the data abort
handler, it will have higher priority than the trace buffer full break, so the processor
will go back to the data abort handler. This 2nd data abort also gets written into the
trace buffer. This causes the trace buffer to wrap-around and one trace buffer entry
is lost (oldest entry is lost). Additional trace buffer entries can be lost if imprecise
data aborts continue to be detected before the processor can handle the trace
buffer full break (which will turn off the trace buffer).

This trace buffer overflow problem can be avoided by enabling vector traps on data
aborts.

TXRXCTRL.RR prevents TX register from being updated (even if TXRXCTRL.TR is
clear). This will be fixed on BO-step.

The problem is that there is incorrect (and unnecessary) interaction between the
RX ready (RR) flag and writing the TX register. The debug handler looks at the TX
ready bit before writing to the TX register. If this bit is clear, then the handler
should be able to write to the TX register. However, in the current implementation
even if the TR bit is clear, if the RR bit is set, TX will be unchanged when the
handler writes to it. It is OK to prevent a write to TX when the TR bit is set (since
the host has not read the previous data in the TX, and we don’t want a write to TX
to overwrite previous data).

The TXRXCTRL.OV bit (overflow flag) does not get set during high-speed download
when the handler reads the RX register at the same time the debugger writes to it.
If the debugger writes to RX at the same time the handler reads from RX, the
handler read returns the newly written data and the previous data is lost. However,
in this specific case, the overflow flag does not get set, so the debugger is unaware
that the download was not successful.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
132

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.7

3.7.1

Table 53.

September 2006

Performance Monitoring

This section describes the performance monitoring facility of the 1XP42X product line
and IXC1100 control plane processors. The events that are monitored can provide
performance information for compiler writers, system application developers and
software programmers.

Overview

The IXP42X product line and IXC1100 control plane processors hardware provide four
32-bit performance counters that allow four unique events to be monitored
simultaneously. In addition, the IXP42X product line and IXC1100 control plane
processors implement a 32-bit clock counter that can be used in conjunction with the
performance counters; its main purpose is to count the number of core clock cycles
which is useful in measuring total execution time.

The IXP42X product line and 1XC1100 control plane processors can monitor either
occurrence events or duration events. When counting occurrence events, a counter is
incremented each time a specified event takes place and when measuring duration, a
counter counts the number of processor clocks that occur while a specified condition is
true. If any of the five counters overflow, an interrupt request will occur if it’'s enabled.
Each counter has its own interrupt request enable. The counters continue to monitor
events even after an overflow occurs, until disabled by software.

Each of these counters can be programmed to monitor any one of various events.

To further augment performance monitoring, the 1XP42X product line and 1XC1100
control plane processors clock counter can be used to measure the executing time of an
application. This information combined with a duration event can feedback a
percentage of time the event occurred with respect to overall execution time.

All of the performance monitoring registers are accessible through Coprocessor 14
(CP14). Refer to Table 27 for more details on accessing these registers with MRC and
MCR coprocessor instructions. Access is allowed in privileged mode only. Note that
these registers can’t be access with LDC or STC coprocessor instructions.

Performance Monitoring Registers (Sheet 1 of 2)

CRnN CRm
Description Register | Register Instruction
H H

(PMNC) Performance Monitor Control Read: MRC p14, O, Rd, cO, c1, 0
Register 0b0000 | 0b000L | \yrite: MCR pi4, 0, Rd, c0, c1, O

. Read: MRC p14, O, Rd, c1, c1, 0
(CCNT) Clock Counter Register 0b0001 0b0001 Write: MCR p14, 0, Rd, c1, c1, 0

. Read: MRC p14, 0, Rd, ¢4, c1, 0

(INTEN) Interrupt Enable Register 0b0100 0b0001 Write: MCR p14, 0, Rd, ¢4, c1, 0

. Read: MRC p14, O, Rd, c5, c1, 0

(FLAG) Overflow Flag Register 0b0101 0b0001 Write: MCR pi4, 0, Rd, ¢5, c1, 0

. . Read: MRC p14, 0O, Rd, c8, c1, 0

(EVTSEL) Event Selection Register 0b1000 0b0001 Write: MCR p14, 0, Rd, c8, c1, 0

. Read: MRC p14, 0, Rd, c0, c2, 0

(PMNO) Performance Count Register O 0b0000 0b0010 Write: MCR p14, 0, Rd, c0, c2, 0

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 133

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Table 53.

3.7.2

3.7.2.1

Table 54.

3.7.2.2

Performance Monitoring Registers (Sheet 2 of 2)

CRnN CRm
Description Register | Register Instruction
#H
. Read: MRC p14, O, Rd, c1, c2,0
(PMN1) Performance Count Register 1 0b0001 0b0010 Write: MCR p14, 0, Rd, c1, c2, 0
. Read: MRC p14, O, Rd, c2, c2,0
(PMN2) Performance Count Register 2 0b0010 0b0010 Write: MCR p14, 0, Rd, c2, 2, 0
. Read: MRC p14, O, Rd, c3, c2,0
(PMN3) Performance Count Register 3 0b0011 0b0010 Write: MCR p14, 0, Rd, 3, c2, 0

Register Description

Clock Counter (CCNT)

The format of CCNT is shown in Table 54. The clock counter is reset to ‘O’ by setting bit
2 in the Performance Monitor Control Register (PMNC) or can be set to a predetermined
value by directly writing to it. It counts core clock cycles. When CCNT reaches its
maximum value OxFFFF,FFFF, the next clock cycle will cause it to roll over to zero and
set the overflow flag (bit 0) in FLAG. An interrupt request will occur if it is enabled via
bit O in INTEN.

Clock Count Register (CCNT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Clock Counter

reset value: unpredictable

Bits Access Description

32-bit clock counter - Reset to ‘O’ by PMNC register.
When the clock counter reaches its maximum value
OXFFFF,FFFF, the next cycle will cause it to roll over to
zero and generate an interrupt request if enabled.

31:0 Read / Write

Performance Count Registers
(PMNO - PMN3)

There are four 32-bit event counters; their format is shown in Table 55. The event
counters are reset to ‘0’ by setting bit 1 in the PMNC register or can be set to a
predetermined value by directly writing to them. When an event counter reaches its
maximum value OxFFFF,FFFF, the next event it needs to count will cause it to roll over
to zero and set its corresponding overflow flag (bit 1,2,3 or 4) in FLAG. An interrupt
request will be generated if its corresponding interrupt enable (bit 1,2,3 or 4) is set in
INTEN.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
134

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 55. Performance Monitor Count Register (PMNO - PMN3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Event Counter

reset value: unpredictable

Bits Access Description

32-bit event counter - Reset to ‘O’ by PMNC register.
When an event counter reaches its maximum value

31:0 Read / Write OXFFFF,FFFF, the next event it needs to count will cause it
to roll over to zero and generate an interrupt request if
enabled.

3.7.2.3 Performance Monitor Control Register
(PMNC)

The performance monitor control register (PMNC) is a coprocessor register that:
= Contains the PMU ID
= Extends CCNT counting by six more bits (cycles between counter rollover = 238)
= Resets all counters to zero

< And enables the entire mechanism

Table 56 shows the format of the PMNC register.

Table 56. Performance Monitor Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ID D|C|P|E

reset value: E and ID are O, others unpredictable

Bits Access Description

Performance Monitor Identification (ID) -

31:24 Read / Write Ignored Intel® 1XP42X product line and 1XC1100 control plane
processors = 0x14

23:4 Read-unpredictable / Write-as-0 Reserved

Clock Counter Divider (D) -

3 Read / Write 0 = CCNT counts every processor clock cycle
1 = CCNT counts every 64th processor clock cycle

Clock Counter Reset (C) -
2 Read-unpredictable / Write 0 = no action

1 = reset the clock counter to ‘0x0’

Performance Counter Reset (P) -

1 Read-unpredictable / Write 0 = no action
1 = reset all performance counters to ‘Ox0’
Enable (E) -

0 Read / Write 0 = all counters are disabled

1 = all counters are enabled

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM

Order Number: 252480-006US 135

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

3.7.2.4 Interrupt Enable Register
(INTEN)

Each counter can generate an interrupt request when it overflows. INTEN enables
interrupt requesting for each counter.

Table 57. Interrupt Enable Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PIP|IP|P
3l2]1]|0|€
reset value: [4:0] = ObO000O, others unpredictable
Bits Access Description
31:5 Read-unpredictable / Write-as-0 Reserved

PMN3 Interrupt Enable (P3) -

4 Read / Write 0 = disable interrupt
1 = enable interrupt
PMNZ2 Interrupt Enable (P2) -

3 Read / Write 0 = disable interrupt
1 = enable interrupt
PMN1 Interrupt Enable (P1) -

2 Read / Write 0 = disable interrupt
1 = enable interrupt
PMNO Interrupt Enable (PO) -

1 Read / Write 0 = disable interrupt
1 = enable interrupt
CCNT Interrupt Enable (C) -

(6] Read / Write 0 = disable interrupt
1 = enable interrupt

3.7.2.5 Overflow Flag Status Register

FLAG identifies which counter has overflowed and also indicates an interrupt has been
requested if the overflowing counter’s corresponding interrupt enable bit (contained
within INTEN) is asserted. An overflow is cleared by writing a ‘1’ to the overflow bit.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
136 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

intel.

Table 58. Overflow Flag Status Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
PIP|P|P
3210 =
reset value: [4:0] = 0b0O0000, others unpredictable
Bits Access Description
31:5 Read-unpredictable / Write-as-0 Reserved

PMN3 Overflow Flag (P3) -
Read Values:
0 = no overflow

4 Read / Write 1 = overflow has occurred
Write Values:
0 = no change
1 = clear this bit
PMN2 Overflow Flag (P2) -
Read Values:
0 = no overflow

3 Read / Write 1 = overflow has occurred
Write Values:
0 = no change
1 = clear this bit
PMN1 Overflow Flag (P1) -
Read Values:
0 = no overflow

2 Read / Write 1 = overflow has occurred
Write Values:
0 = no change
1 = clear this bit
PMNO Overflow Flag (PO) -
Read Values:
0 = no overflow

1 Read / Write 1 = overflow has occurred
Write Values:
0 = no change
1 = clear this bit
CCNT Overflow Flag (C) -
Read Values:
0 = no overflow

(o] Read / Write 1 = overflow has occurred
Write Values:
0 = no change
1 = clear this bit

3.7.2.6 Event Select Register

EVTSEL is used to select events for PMNO, PMN1, PMN2 and PMN3. Refer to Table 60,
“Performance Monitoring Events” on page 139 for a list of possible events.

September 2006
Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
137

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 59.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Event Select Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

evtCount3 evtCount2 evtCountl evtCountO

reset value: unpredictable

Bits Access Description

31:24 Read / Write Identifies the source of events that PMN3 counts. See

Event Count 3 (evtCount3) -

Table 60 for a description of the values this field may
contain.

23:16 Read / Write Identifies the source of events that PMN2 counts. See

Event Count 2 (evtCount2) -

Table 60 for a description of the values this field may
contain.

Event Count 1 (evtCountl) -

. ; Identifies the source of events that PMN1 counts. See
15:8 Read / Write
Table 60 for a description of the values this field may
contain.

3.7.3

Event Count O (evtCountO) -

7:0 Read / Write Identifies the source o_f events that PMNO_cot_mts. See
Table 60 for a description of the values this field may
contain.

Managing the Performance Monitor

The following are a few notes about controlling the performance monitoring
mechanism:

An interrupt request will be generated when a counter’s overflow flag is set and its
associated interrupt enable bit is set in INTEN. The interrupt request will remain
asserted until software clears the overflow flag by writing a one to the flag that is
set. (Note that the product specific interrupt unit and the CPSR must have enabled
the interrupt in order for software to receive it.) The interrupt request can also be
deasserted by clearing the corresponding interrupt enable bit. Disabling the facility
(PMNC.E) doesn’t deassert the interrupt request.

The counters continue to record events even after they overflow.

To change an event for a performance counter, first disable the facility (PMNC.E)
and then modify EVTSEL. Not doing so will cause unpredictable results.

To increase the monitoring duration, software can extend the count duration
beyond 32 bits by counting the number of overflow interrupts each 32-bit counter
generates. This can be done in the interrupt service routine (ISR) where an
increment to some memory location every time the interrupt occurs will enable
longer durations of performance monitoring. This does intrude upon program
execution but is negligible, since the ISR execution time is in the order of tens of
cyglzes compared to the number of cycles it took to generate an overflow interrupt
(2°9).

Power can be saved by selecting event OxFF for any unused event counter. This
only applies when other event counters are in use. When the performance monitor
is not used at all (PMNC.E = 0x0), hardware ensures minimal power consumption.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
138

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

intel.

3.7.4 Performance Monitoring Events
Table 60 lists events that may be monitored. Each of the Performance Monitor Count
Registers (PMNO, PMN1, PMN2, and PMN3) can count any listed event. Software selects
which event is counted by each PMNX register by programming the evtCountx fields of
EVTSEL.
Table 60. Performance Monitoring Events
Event Number R
(evtCountx) Event Definition
0x0 Instruction cache miss requires fetch from external memory.
ox1 Instruction cache cannot deliver an instruction. This could indicate an ICache miss or an
ITLB miss. This event will occur every cycle in which the condition is present.
ox2 Stall due to a data dependency. This event will occur every cycle in which the condition is
present.
0x3 Instruction TLB miss.
Ox4 Data TLB miss.
0x5 Branch instruction executed, branch may or may not have changed program flow. (Counts
only B and BL instructions, in both ARM and Thumb mode.)
0x6 Branch incorrectly predicted. (Counts only B and BL instructions, in both ARM and Thumb
mode.)
Oox7 Instruction executed.
ox8 Stall because the data cache buffers are full. This event will occur every cycle in which the
condition is present.
0x9 Stall because the data cache buffers are full. This event will occur once for each contiguous
sequence of this type of stall.
OXA Data cache access, not including Cache Operations (defined in “Register 7: Cache
Functions” on page 81)
OxB Data cache miss, not including Cache Operations (defined in “Register 7: Cache Functions”
on page 81)
o Data cache write-back. This event occurs once for each 1/2 line (four words) that are
xC :
written back from the cache.
Software changed the PC. All ‘b’, ‘bl’, ‘bIx’, ‘mov[s] pc, Rm’, ‘Ildm Rn, {Rx, pc}’, ‘Idr pc,
OxD [Rm]’, pop {pc} will be counted. An ‘mcr p<cp>, 0,pc, ..., will not. The count also does not
increment when an event occurs and the PC changes to the event address, e.g., IRQ, FIQ,
SWI, etc.
0x10 through
Ox17 Reserved.
all others Reserved, unpredictable results
Some typical combinations of counted events are listed in this section and summarized
in Table 61. In this section, we call such an event combination a mode.
Table 61. Common Uses of the PMU
Mode EVTSEL.evtCountO EVTSEL.evtCountl
Instruction Cache Efficiency 0x7 (instruction count) 0x0 (ICache miss)
Data Cache Efficiency OxA (Dcache access) OxB (DCache miss)
Instruction Fetch Latency 0x1 (ICache cannot deliver) 0x0 (ICache miss)
Data/Bus Request Buffer Full 0x8 (DBuffer stall duration) 0x9 (DBuffer stall)
Stall/Writeback Statistics 0x2 (data stall) 0OxC (DCache writeback)
Instruction TLB Efficiency 0x7 (instruction count) 0x3 (ITLB miss)
Data TLB Efficiency OxA (Dcache access) 0x4 (DTLB miss)
Note: PMNO and PMN1 were used for illustration purposes only. Given there are four event

September 2006

counters, more elaborate combination of events could be constructed. For example,
one performance run could select OxA, 0xB, 0xC, 0x9 events from which data cache

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

DM
139

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.7.4.1

3.7.4.2

3.7.4.3

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

performance statistics could be gathered (like hit rates, number of write-backs per data
cache miss, and number of times the data cache buffers fill up per request).

Instruction Cache Efficiency Mode

PMNO totals the number of instructions that were executed, which does not include
instructions fetched from the instruction cache that were never executed. This can
happen if a branch instruction changes the program flow; the instruction cache may
retrieve the next sequential instructions after the branch, before it receives the target
address of the branch.

PMN1 counts the number of instruction fetch requests to external memory. Each of
these requests loads 32 bytes at a time.

Statistics derived from these two events:
= Instruction cache miss-rate. This is derived by dividing PMN1 by PMNO.

= The average number of cycles it took to execute an instruction or commonly
referred to as cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by
PMNO, where CCNT was used to measure total execution time.

Data Cache Efficiency Mode

PMNO totals the number of data cache accesses, which includes cacheable and non-
cacheable accesses, mini-data cache access and accesses made to locations configured
as data RAM.

Note that STM and LDM will each count as several accesses to the data cache
depending on the number of registers specified in the register list. LDRD will register
two accesses.

PMN1 counts the number of data cache and mini-data cache misses. Cache operations
do not contribute to this count. See “Register 7: Cache Functions” on page 81 for a
description of these operations.

The statistic derived from these two events is:
Data cache miss-rate. This is derived by dividing PMN1 by PMNO.

Instruction Fetch Latency Mode

PMNO accumulates the number of cycles when the instruction-cache is not able to
deliver an instruction to the IXP42X product line and 1XC1100 control plane processors
due to an instruction-cache miss or instruction-TLB miss. This event means that the
processor core is stalled.

PMN1 counts the number of instruction fetch requests to external memory. Each of
these requests loads 32 bytes at a time. This is the same event as measured in
instruction cache efficiency mode.

Statistics derived from these two events:

= The average number of cycles the processor stalled waiting for an instruction fetch
from external memory to return. This is calculated by dividing PMNO by PMN1. If
the average is high then IXP42X product line and 1XC1100 control plane processors
may be starved of the bus external to the IXP42X product line and IXC1100 control
plane processors.

= The percentage of total execution cycles the processor stalled waiting on an
instruction fetch from external memory to return. This is calculated by dividing
PMNO by CCNT, which was used to measure total execution time.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
140

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.7.4.4

3.7.4.5

September 2006

Data/Bus Request Buffer Full Mode

The Data Cache has buffers available to service cache misses or uncacheable accesses.
For every memory request that the Data Cache receives from the processor core a
buffer is speculatively allocated in case an external memory request is required or
temporary storage is needed for an unaligned access. If no buffers are available, the
Data Cache will stall the processor core. How often the Data Cache stalls depends on
the performance of the bus external to the IXP42X product line and 1XC1100 control
plane processors and what the memory access latency is for Data Cache miss requests
to external memory. If the IXP42X product line and 1XC1100 control plane processors
memory access latency is high, possibly due to starvation, these Data Cache buffers
will become full. This performance monitoring mode is provided to see if the IXP42X
product line and IXC1100 control plane processors are being starved of the bus
external to the 1XP42X product line and 1XC1100 control plane processors, which will
effect the performance of the application running on the IXP42X product line and
IXC1100 control plane processors.

PMNO accumulates the number of clock cycles the processor is being stalled due to this
condition and PMN1 monitors the number of times this condition occurs.

Statistics derived from these two events:

= The average number of cycles the processor stalled on a data-cache access that
may overflow the data-cache buffers. This is calculated by dividing PMNO by PMN1.
This statistic lets you know if the duration event cycles are due to many requests or
are attributed to just a few requests. If the average is high, the IXP42X product line
and IXC1100 control plane processors may be starved of the bus external to the
IXP42X product line and 1XC1100 control plane processors.

= The percentage of total execution cycles the processor stalled because a Data
Cache request buffer was not available. This is calculated by dividing PMNO by
CCNT, which was used to measure total execution time.

Stall/Write-Back Statistics

When an instruction requires the result of a previous instruction and that result is not
yet available, the IXP42X product line and IXC1100 control plane processors stall in
order to preserve the correct data dependencies. PMNO counts the number of stall
cycles due to data-dependencies. Not all data-dependencies cause a stall; only the
following dependencies cause such a stall penalty:

= Load-use penalty: attempting to use the result of a load before the load completes.
To avoid the penalty, software should delay using the result of a load until it's
available. This penalty shows the latency effect of data-cache access.

= Multiply/Accumulate-use penalty: attempting to use the result of a multiply or
multiply-accumulate operation before the operation completes. Again, to avoid the
penalty, software should delay using the result until it’s available.

= ALU use penalty: there are a few isolated cases where back to back ALU operations
may result in one cycle delay in the execution. These cases are defined in
Table 3.9, “Performance Considerations” on page 159.

PMN1 counts the number of write-back operations emitted by the data cache. These
write-backs occur when the data cache evicts a dirty line of data to make room for a
newly requested line or as the result of clean operation (CP15, register 7).

Statistics derived from these two events:

= The percentage of total execution cycles the processor stalled because of a data
dependency. This is calculated by dividing PMNO by CCNT, which was used to
measure total execution time. Often a compiler can reschedule code to avoid these
penalties when given the right optimization switches.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 141

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.7.4.6

3.7.4.7

3.7.5

3.7.6

Intel® 1XP42X Pro
DM
142

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

= Total number of data write-back requests to external memory can be derived solely
with PMNL1.

Instruction TLB Efficiency Mode

PMNO totals the number of instructions that were executed, which does not include
instructions that were translated by the instruction TLB and never executed. This can
happen if a branch instruction changes the program flow; the instruction TLB may
translate the next sequential instructions after the branch, before it receives the target
address of the branch.

PMN1 counts the number of instruction TLB table-walks, which occurs when there is a
TLB miss. If the instruction TLB is disabled PMN1 will not increment.

Statistics derived from these two events:
= Instruction TLB miss-rate. This is derived by dividing PMN1 by PMNO.

= The average number of cycles it took to execute an instruction or commonly
referred to as cycles-per-instruction (CPI). CPI can be derived by dividing CCNT by
PMNO, where CCNT was used to measure total execution time.

Data TLB Efficiency Mode

PMNO totals the number of data cache accesses, which includes cacheable and non-
cacheable accesses, mini-data cache access and accesses made to locations configured
as data RAM.

Note that STM and LDM will each count as several accesses to the data TLB depending
on the number of registers specified in the register list. LDRD will register two
accesses.

PMN1 counts the number of data TLB table-walks, which occurs when there is a TLB
miss. If the data TLB is disabled PMN1 will not increment.

The statistic derived from these two events is:
Data TLB miss-rate. This is derived by dividing PMN1 by PMNO.

Multiple Performance Monitoring Run Statistics

There may be times when more than four events need to be monitored for performance
tuning. In this case, multiple performance monitoring runs can be done, capturing
different events from each run. For example, the first run could monitor the events
associated with instruction cache performance and the second run could monitor the
events associated with data cache performance. By combining the results, statistics like
total number of memory requests could be derived.

Examples

In this example, the events selected with the Instruction Cache Efficiency mode are
monitored and CCNT is used to measure total execution time. Sampling time ends
when PMNO overflows which will generate an IRQ interrupt.

duct Line of Network Processors and 1XC1100 Control Plane Processor
September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Example 14.

Example 15.

September 2006

Configuring the Performance Monitor

; Configure the performance monitor with the following values:
; EVTSEL.evtCountO = 7, EVTSEL.evtCountl = O instruction cache efficiency
; INTEN. inten = Ox7 set all counters to trigger an interrupt on overflow
; PMNC.C = 1 reset CCNT register

; PMNC.P = 1 reset PMNO and PMN1 registers

; PMNC.E = 1 enable counting

MOV RO, #0x700

MCR P14,0,R0,C8,c1,0 ; setup EVTSEL

MOV RO, #0x7

MCR P14,0,R0,C4,c1,0 ; setup INTEN

MCR P14,0,R0,C0,c1,0 ; setup PMNC, reset counters & enable

; Counting begins

Counter overflow can be dealt with in the IRQ interrupt service routine as shown below:

Interrupt Handling

IRQ_INTERRUPT_SERVICE_ROUTINE:

; Assume that performance counting interrupts are the only IRQ in the system
MRC P14,0,R1,C0,cl1l,0 ; read the PMNC register

BIC R2,R1,#1 ; clear the enable bit, preserve other bits in PMNC
MCR P14,0,R2,C0,cl1,0 ; disable counting

MRC P14,0,R3,C1,c1,0 ; read CCNT register

MRC P14,0,R4,C0,c2,0 ; read PMNO register

MRC P14,0,R5,C1,c2,0 ; read PMN1 register

<process the results>

SUBS PC,R14,#4 ; return from interrupt

As an example, assume the following values in CCNT, PMNO, PMN1 and PMNC:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 143

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Example 16. Computing the Results

3.8

3.8.1

3.8.2

3.8.2.1

Note:

Note:

; Assume CCNT overflowed

CCNT = 0x0000,0020 ;Overflowed and continued counting
Number of instructions executed = PMNO = Ox6AAA,AAAA
Number of instruction cache miss requests = PMN1 = 0x0555,5555

Instruction Cache miss-rate = 100 * PMN1/PMNO = 5%

CPI = (CCNT + 2732)/Number of instructions executed = 2.4 cycles/instruction

In the contrived example above, the instruction cache had a miss-rate of 5% and CPI
was 2.4.

Programming Model

This section describes the programming model of the 1XP42X product line and IXC1100
control plane processors, namely the implementation options and extensions to the
ARM Version 5TE architecture.

ARM™ Architecture Compatibility

The 1XP42X product line and IXC1100 control plane processors implement the integer
instruction set architecture specified in ARM V5TE. T refers to the thumb instruction set
and E refers to the DSP-Enhanced instruction set.

ARM V5TE introduces a few more architecture features over ARM V4, specifically the
addition of tiny pages (1 Kbyte), a new instruction that counts the leading zeroes (CLZ)
in a data value, enhanced ARM-Thumb transfer instructions and a modification of the
system control coprocessor, CP15.

ARM™ Architecture Implementation Options

Big Endian versus Little Endian

The IXP42X product line and IXC1100 control plane processors can operate in big or
little endian mode. The B-bit of the Control Register, coprocessor 15, register 1, bit 7
(see Section 3.5.1.2) contained within the IXP42X product line and IXC1100 control

plane processors selects the endianess mode of the Intel XScale processor.

This bit takes effect even if the MMU is disabled.

If you choose little endian then you have further options that control whether address
and/or data coherency modes. Refer P-Attribute bit in the MMU (see Section 3.1.1.1,
“Page (P) Attribute Bit” on page 45) and Expansion Bus Configuration Register 1, Bit 8,
BYTE_SWAP_EN (Table 126, “Expansion Bus Configuration Register 1-Bit Definition” on
page 325).

The NPEs on the I1XP42X product line and 1XC1100 control plane processors are Big-
Endian only; so if you change the endianess of the Intel XScale processor to little
endian for your operating system, then this has an impact on how the NPEs and Intel
XScale processor exchange data. The Intel® IXP400 Software Release handles this.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
144

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.8.2.2

3.8.2.3

3.8.2.4

3.8.2.5

September 2006

26-Bit Architecture

The Intel XScale processor does not support 26-bit architecture.

Thumb

The Intel XScale processor supports the thumb instruction set.

ARM™ DSP-Enhanced Instruction Set

The Intel XScale® Processor implements ARM’s DSP-enhanced instruction set which is a
set of instructions that boost the performance of signal processing applications. There
are new multiply instructions that operate on 16-bit data values and new saturation
instructions. Saturated instructions are used to ensure accuracy during DSP operations
to ensure the signed extension is maintained during an overflow arithmetic operation.
Further information on saturated integer arithmetic can be found in the ARM*
Architecture Reference Manual.

Some of the new instructions are:

DS 1V QP 32<=16x16+32
& S L A Y ettt aa 32<=32x16+32
LS 1 Y P 64<=16x16+64
LS 11/ 16 1 g 32<=16x16
® SIMUL Y et et aaans 32<=32x16
e QADD Adds two registers and saturates the result if an overflow occurred
= QDADD..... Doubles and saturates one of the input registers then add and saturate
 QSUB........ Subtracts two registers and saturates the result if an overflow occurred

= QDSUB Doubles and saturates one of the input registers then subtract and saturate

The Intel XScale processor also implements Load Two words (LDRD), Store Two Words
(STRD) and cache preload (PLD) instructions with the following implementation notes:

= PLD is interpreted as a read operation by the MMU and is ignored by the data
breakpoint unit, i.e., PLD will never generate data breakpoint events.

= PLD to a non-cacheable page performs no action. Also, if the targeted cache line is
already resident, this instruction has no affect.

= Both LDRD and STRD instructions will generate an alignment exception when the
address bits [2:0] = 0b100.

The transfers of two ARM register values to a coprocessor (MCRR) and the transfer of
values from a coprocessor to two ARM registers (MRRC) are only supported on the
IXP42X product line and IXC1100 control plane processors when directed to
coprocessor 0 and are used to access the internal accumulator. See “Internal
Accumulator Access Format” on page 149 for more information. Access to coprocessors
15 and 14 generate an undefined instruction exception.

Base Register Update

If a data abort is signalled on a memory instruction that specifies write-back, the
contents of the base register will not be updated. This holds for all load and store
instructions. This behavior matches that of the first generation ARM processor and is
referred to in the ARM V5TE architecture as the Base Restored Abort Model.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 145

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.8.3

3.8.3.1

3.8.3.1.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Extensions to ARM™ Architecture

The Intel XScale processor adds a few extensions to the ARM Version 5TE architecture
to meet the needs of various markets and design requirements. The following is a list of
the extensions which are discussed in the next sections.

= A DSP coprocessor (CP0O) has been added that contains a 40-bit accumulator and
eight new instructions.

= New page attributes were added to the page table descriptors. The C and B page
attribute encoding was extended by one more bit to allow for more encodings:
write allocate and mini-data cache.

= Additional functionality has been added to coprocessor 15. Coprocessor 14 was also
created.

e Enhancements were made to the Event Architecture, which include instruction
cache and data cache parity error exceptions, breakpoint events, and imprecise
external data aborts.

DSP Coprocessor 0 (CPO)

The Intel XScale processor adds a DSP coprocessor to the architecture for the purpose
of increasing the performance and the precision of audio processing algorithms. This
coprocessor contains a 40-bit accumulator and eight new instructions.

The 40-bit accumulator is referenced by several new instructions that were added to
the architecture; MIA, MIAPH and MI1AXxy are multiply/accumulate instructions that
reference the 40-bit accumulator instead of a register specified accumulator. MAR and
MRA provide the ability to read and write the 40-bit accumulator.

Access to CPO is always allowed in all processor modes when bit O of the Coprocessor
Access Register is set. Any access to CPO when this bit is clear will cause an undefined
exception. (See “Register 15: Coprocessor Access Register” on page 85 for more
details). Note that only privileged software can set this bit in the Coprocessor Access
Register located in CP15.

The 40-bit accumulator will need to be saved on a context switch if multiple processes
are using it.

Two new instruction formats were added for coprocessor 0: Multiply with Internal
Accumulate Format and Internal Accumulate Access Format. The formats and
instructions are described next.

Multiply With Internal Accumulate Format

A new multiply format has been created to define operations on 40-bit accumulators.
Table 7, “MRC/MCR Format” on page 74 shows the layout of the new format. The op
code for this format lies within the coprocessor register transfer instruction type. These
instructions have their own syntax.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
146

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 62.

Table 63.

September 2006

Multiply with Internal Accumulate Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1{1{1|0|0 O 1|0| opcode_3 Rs Oo|O0|O|O acc 1 Rm

Bits Description Notes

31:28 cond - ARM condition codes -

Intel XScale processor defines the following:
0b0000 =
0b1000 = M HQEE
.) - 0b1100 =
19:16 _o;:cod(le_B - spelcTes the type of multiply with obii01 = MIABT
internal accumulate obii10 = MIATB
ob1111 = MIATT
The effect of all other encodings are
unpredictable.

15:12 Rs - Multiplier

Intel XScale processor only implements accO;
7:5 acc - select 1 of 8 accumulators access to any other acc has unpredictable
effect.

3:0 Rm - Multiplicand -

Two new fields were created for this format, acc and opcode_3. The acc field specifies
one of eight internal accumulators to operate on and opcode_3 defines the operation
for this format. The Intel XScale processor defines a single 40-bit accumulator referred
to as accO; future implementations may define multiple internal accumulators. The
Intel XScale processor uses opcode_3 to define six instructions, MIA, MIAPH, MIABB,
MIABT, MIATB and MIATT.

MIA{<cond>=} accO, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1({1|1{0|0 O 1|0{O0 O O O Rs O O O 0[O0 O O]|1 Rm

Operation: if ConditionPassed(<cond>) then
accO = (Rm[31:0] * Rs[31:0])[39:0] + acc0[39:0]
Exceptions: none
Qualifiers Condition Code
No condition code flags are updated
Notes: Early termination is supported. Instruction timings can be found
in “Multiply Instruction Timings” on page 163.

Specifying R15 for register Rs or Rm has unpredictable results.

accO is defined to be 0b000 on Intel XScale processor.

The MIA instruction operates similarly to MLA except that the 40-bit accumulator is
used. MIA multiplies the signed value in register Rs (multiplier) by the signed value in
register Rm (multiplicand) and then adds the result to the 40-bit accumulator (accO).

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 147

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 64.

Table 65.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

MIA does not support unsigned multiplication; all values in Rs and Rm will be
interpreted as signed data values. MIA is useful for operating on signed 16-bit data
that was loaded into a general purpose register by LDRSH.

The instruction is only executed if the condition specified in the instruction matches the
condition code status.

MIAPH{<cond>} accO, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1(1|{1{0)J0 O 1|0(1 O O O Rs O 0O 0O 00 O O]|1 Rm

Operation: if ConditionPassed(<cond>) then
accO = sign_extend(Rm[31:16] * Rs[31:16]) +
sign_extend(Rm[15:0] * Rs[15:0]) +
acc0[39:0]
Exceptions: none
Qualifiers Condition Code
S bit is always cleared; no condition code flags are updated

Notes: Instruction timings can be found
in “Multiply Instruction Timings” on page 163.

Specifying R15 for register Rs or Rm has unpredictable results.

accO is defined to be Ob000 on Intel XScale processor

The MIAPH instruction performs two 16-bit signed multiplies on packed half word data
and accumulates these to a single 40-bit accumulator. The first signed multiplication is
performed on the lower 16 bits of the value in register Rs with the lower 16 bits of the
value in register Rm. The second signed multiplication is performed on the upper

16 bits of the value in register Rs with the upper 16 bits of the value in register Rm.
Both signed 32-bit products are sign extended and then added to the value in the 40-
bit accumulator (acc0).

The instruction is only executed if the condition specified in the instruction matches the
condition code status.

MIAxy{<cond=} accO, Rm, Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1(1|1{0|J0 O 1|01 1 x vy Rs O 0O O 00O O O]|1 RmM

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
148

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 65.

3.8.3.1.2

September 2006

MIAxy{<cond=} accO, Rm, Rs (Continued)

Operation: if ConditionPassed(<cond>) then
if (bit[17] == 0)
<operandl> = Rm[15:0]
else

<operandl> = Rm[31:16]

if (bit[16] == 0)
<operand2> = Rs[15:0]
else

<operand2> = Rs[31:16]

acc0[39:0] = sign_extend(<operandl> * <operand2>) + accO[39:0]

Exceptions: none
Qualifiers Condition Code
S bit is always cleared; no condition code flags are updated

Notes: Instruction timings can be found
in “Multiply Instruction Timings” on page 163.

Specifying R15 for register Rs or Rm has unpredictable results.

accO is defined to be 0b0O00O on Intel XScale processor.

The MIAXy instruction performs onel6-bit signed multiply and accumulates these to a
single 40-bit accumulator. x refers to either the upper half or lower half of register Rm
(multiplicand) and y refers to the upper or lower half of Rs (multiplier). A value of Ox1
will select bits [31:16] of the register which is specified in the mnemonic as T (for top).
A value of 0x0 will select bits [15:0] of the register which is specified in the mnemonic
as B (for bottom).

MIAXxy does not support unsigned multiplication; all values in Rs and Rm will be
interpreted as signed data values.

The instruction is only executed if the condition specified in the instruction matches the
condition code status.

Internal Accumulator Access Format

The Intel XScale processor defines a new instruction format for accessing internal
accumulators in CPO. Table 66, “Internal Accumulator Access Format” on page 150
shows that the op code falls into the coprocessor register transfer space.

The RdHi and RdLo fields allow up to 64 bits of data transfer between ARM registers
and an internal accumulator. The acc field specifies 1 of 8 internal accumulators to
transfer data to/from. The Intel XScale processor implements a single 40-bit
accumulator referred to as accO; future implementations can specify multiple internal
accumulators of varying sizes, up to 64 bits.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 149

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Access to the internal accumulator is allowed in all processor modes (user and
privileged) as long bit O of the Coprocessor Access Register is set. (See “Register 15:
Coprocessor Access Register” on page 85 for more details).

The 1XP42X product line and 1XC1100 control plane processors implement two
instructions MAR and MRA that move two ARM registers to accO and move accO to two
ARM registers, respectively.

Table 66. Internal Accumulator Access Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
cond 1l1|o|o|lo|1|o|L RdHi RdLo 0O 0O 0O 0|0 O O 0O acc
Bits Description Notes

31:28 cond - ARM condition codes -

L - move to/from internal accumulator
20 0= move to internal accumulator (MAR) -
1= move from internal accumulator (MRA)

On a read of the acc, this 8-bit high order field
RdHi - specifies the high order eight (39:32) | will be sign extended.

19:16 . p
bits of the internal accumulator. On a write to the acc, the lower 8 bits of this
register will be written to acc[39:32]
15:12 RdLo - specifies the low order 32 bits of the _
: internal accumulator
7:4 Should be zero
3 Should be zero -
. _ . . Intel XScale processor only implements accO;
2:0 acc - specifies 1 of 8 internal accumulators access to any other acc is unpredictable
Note: MAR has the same encoding as MCRR (to coprocessor 0) and MRA has the same

encoding as MRRC (to coprocessor 0). These instructions move 64-bits of data to/from
ARM registers from/to coprocessor registers. MCRR and MRRC are defined in ARM’s
DSP instruction set.

Disassemblers not aware of MAR and MRA will produce the following syntax:

MCRR{<cond>} pO, O0x0, RdLo, RdHi, cO

MRRC{<cond>} pO, Ox0, RdLo, RdHi, cO

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
150 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 67. MAR{<cond=>} accO, RdLo, RdHi

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1({1|]0(0|J0|21|0]|O RdHi RdLo O 0O 0O 0O(0 O O OjO(O O O

Operation: if ConditionPassed(<cond>) then
acc0[39:32] = RdHi[7:0]
accO[31:0] = RdLo[31:0]

Exceptions: none

Qualifiers Condition Code
No condition code flags are updated

Notes: Instruction timings can be found in

“Multiply Instruction Timings” on page 163

Specifying R15 as either RdHi or RdLo has unpredictable results.

The MAR instruction moves the value in register RdLo to bits[31:0] of the 40-bit
accumulator (acc0) and moves bits[7:0] of the value in register RdHi into bits[39:32]
of accO.

The instruction is only executed if the condition specified in the instruction matches the
condition code status.

This instruction executes in any processor mode.

Table 68. MRA{<cond>%} RdLo, RdHi, accO

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 1({1|]0(0|j0|21|0O|1 RdHi RdLo O 0O 0O 0Of0O O O OjO|O O O

Operation: if ConditionPassed(<cond>) then
RdHi[31:0] = sign_extend(acc0[39:32])
RdLo[31:0] = accO[31:0]

Exceptions: none

Qualifiers Condition Code
No condition code flags are updated

Notes: Instruction timings can be found in
“Multiply Instruction Timings” on page 163

Specifying the same register for RdHi and RdLo has unpredictable
results.

Specifying R15 as either RdHi or RdLo has unpredictable results.

The MRA instruction moves the 40-bit accumulator value (accO) into two registers.
Bits[31:0] of the value in accO are moved into the register RdLo. Bits[39:32] of the
value in accO are sign extended to 32 bits and moved into the register RdHi.

The instruction is only executed if the condition specified in the instruction matches the
condition code status.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
151

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.8.3.2

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

This instruction executes in any processor mode.

New Page Attributes

The Intel XScale processor extends the page attributes defined by the C and B bits in
the page descriptors with an additional X bit. This bit allows four more attributes to be
encoded when X=1. These new encodings include allocating data for the mini-data
cache and write-allocate caching. A full description of the encodings can be found in
“Memory Attributes” on page 45.

The Intel XScale processor retains ARM definitions of the C and B encoding when X = 0,
which is different than the ARM products. The memory attribute for the mini-data cache
has been moved and replaced with the write-through caching attribute.

When write-allocate is enabled, a store operation that misses the data cache
(cacheable data only) will generate a line fill. If disabled, a line fill only occurs when a
load operation misses the data cache (cacheable data only).

Write-through caching causes all store operations to be written to memory, whether
they are cacheable or not cacheable. This feature is useful for maintaining data cache
coherency.

Bit 1 in the Control Register (coprocessor 15, register 1, opcode=1) is used reserved
for the P bit memory attribute for memory accesses made during page table walks. The
P bit is not implemented on IXP42X product line and I1XC1100 control plane processors.

These attributes are programmed in the translation table descriptors, which are
highlighted in:

- Table 69, “First-Level Descriptors” on page 153
e Table 70, “Second-Level Descriptors for Coarse Page Table” on page 153
« Table 71, “Second-Level Descriptors for Fine Page Table” on page 153
Two second-level descriptor formats have been defined for the IXP42X product line and

IXC1100 control plane processors, one is used for the coarse page table and the other
is used for the fine page table.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
152

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

intel.

Table 69. First-Level Descriptors
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SBZ oo
Coarse page table base address P Domain SBZ 0|1
Section base address SBZ TEX AP | P Domain 0 I C | B|1]|0
Fine page table base address SBZ | P Domain SBZ 1(1
Table 70. Second-Level Descriptors for Coarse Page Table
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SBZ 0|0
Large page base address TEX AP3 | AP2 | AP1 | APO B(O|1
Small page base address AP3 | AP2 | AP1 | APO |C[B|1]|O0
Extended small page base address SBZ TEX AP Bl1|1
Table 71. Second-Level Descriptors for Fine Page Table
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SBzZ 0|0
Large page base address TEX AP3 | AP2 | AP1 | APO |C|B|O |1
Small page base address AP3 | AP2 | AP1 | APO B|1|O0
Tiny Page Base Address TEX AP [C(B|1]|1

The TEX (Type Extension) field is present in several of the descriptor types. In the Intel
XScale processor, only the LSB of this field is defined; this is called the X bit. The
remaining bits are reserved for future use and should be programmed as zero (SBZ) on
the IXP42X product line and 1XC1100 control plane processors.

A Small Page descriptor does not have a TEX field. For these descriptors, TEX is

implicitly zero; that is, they operate as if the X bit had a ‘0O’ value.

The X bit, when set, modifies the meaning of the C and B bits. Description of page

attributes and their encoding can be found in “Memory Management Unit” on page 44.

3.8.3.3 Additions to CP15 Functionality

To accommodate the functionality in the Intel XScale processor, registers in CP15 and

CP14 have been added or augmented. See “Configuration” on page 73 for details.

At times it is necessary to be able to guarantee exactly when a CP15 update takes

effect. For example, when enabling memory address translation (turning on the MMU),
it is vital to know when the MMU is actually guaranteed to be in operation. To address
this need, a processor-specific code sequence is defined for the Intel XScale processor.
The sequence — called CPWAIT — is shown in Example 12 on page 86.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
153

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Example 17. CPWAIT: Canonical Method to Wait for CP15 Update

3.8.3.4

3.8.3.4.1

Table 72.

;; The following macro should be used when software needs to be
;; assured that a CP15 update has taken effect.
;; 1t may only be used while in a privileged mode, because it

;; accesses CP15.

MACRO CPWAIT

MRC P15, 0, RO, C2, CO, O ; arbitrary read of CP15
MOV RO, RO ; wait for it
SUB PC, PC, #4 ; branch to next instruction

; At this point, any previous CP15 writes are
; guaranteed to have taken effect.

ENDM

When setting multiple CP15 registers, system software may opt to delay the assurance
of their update. This is accomplished by executing CPWAIT only after the sequence of
MCR instructions.

The CPWAIT sequence guarantees that CP15 side-effects are complete by the time the
CPWAIT is complete. It is possible, however, that the CP15 side-effect will take place

before CPWAIT completes or is issued. Programmers should take care that this does
not affect the correctness of their code.

Event Architecture

Exception Summary

Table 72 shows all the exceptions that the Intel XScale processor may generate, and
the attributes of each. Subsequent sections give details on each exception.

Exception Summary (Sheet 1 of 2)

Exception Description Exception Type1 Precise Updates FAR
Reset Reset N N
FIQ FIQ N N
IRQ IRQ N N
External Instruction Prefetch Y N
Instruction MMU Prefetch Y N
Instruction Cache Parity Prefetch Y N
Notes:
1. Exception types are those described in the ARM* Architecture Reference Manual.
2. Refer to “Software Debug” on page 88 for more details.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
154

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 72.

3.8.3.4.2

Table 73.

3.8.3.4.3

September 2006

Exception Summary (Sheet 2 of 2)

Exception Description Exception Type1 Precise Updates FAR
Lock Abort Data Y N
MMU Data Data Y Y
External Data Data N N
Data Cache Parity Data N N
Software Interrupt Software Interrupt Y N
Undefined Instruction Undefined Instruction Y N
Debug Events? varies varies N
Notes:
1. Exception types are those described in the ARM* Architecture Reference Manual.
2. Refer to “Software Debug” on page 88 for more details.

Event Priority

The Intel XScale processor follows the exception priority specified in the ARM*
Architecture Reference Manual. The processor has additional exceptions that might be
generated while debugging. For information on these debug exceptions, see “Software
Debug” on page 88.

Event Priority

Exception Priority
Reset 1 (Highest)
Data Abort (Precise & Imprecise) 2
FIQ 3
IRQ 4
Prefetch Abort 5
Undefined Instruction, SWI 6 (Lowest)

Prefetch Aborts

The Intel XScale processor detects three types of prefetch aborts: Instruction MMU
abort, external abort on an instruction access, and an instruction cache parity error.
These aborts are described in Table 74.

When a prefetch abort occurs, hardware reports the highest priority one in the
extended Status field of the Fault Status Register. The value placed in R14_ABORT (the
link register in abort mode) is the address of the aborted instruction + 4.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 155

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Table 74. Processors’ Encoding of Fault Status for Prefetch Aborts
Priority Sources FS[10,3:0]" | Domain FAR
Instruction MMU Exception

Several exceptions can generate this encoding:

Highest |~ translation faults 0b10000 invalid | invalid
- domain faults, and
- permission faults

It is up to software to figure out which one occurred.

External Instruction Error Exception
This exception occurs when the external memory system Ob10110 invalid invalid
reports an error on an instruction cache fetch.

Lowest | Instruction Cache Parity Error Exception 0Ob11000 invalid invalid

Note: All other encodings not listed in the table are reserved.
3.8.3.4.4 Data Aborts

Two types of data aborts exist in the Intel XScale processor: precise and imprecise. A
precise data abort is defined as one where R14_ABORT always contains the PC (+8) of
the instruction that caused the exception. An imprecise abort is one where R14_ABORT
contains the PC (+4) of the next instruction to execute and not the address of the
instruction that caused the abort. In other words, instruction execution will have
advanced beyond the instruction that caused the data abort.

On the Intel XScale processor precise data aborts are recoverable and imprecise data
aborts are not recoverable.

Precise Data Aborts

= Alock abort is a precise data abort; the extended Status field of the Fault Status
Register is set to 0xb10100. This abort occurs when a lock operation directed to the
MMU (instruction or data) or instruction cache causes an exception, due to either a
translation fault, access permission fault or external bus fault.
The Fault Address Register is undefined and R14_ABORT is the address of the
aborted instruction + 8.

= A data MMU abort is precise. These are due to an alignment fault, translation fault,
domain fault, permission fault or external data abort on an MMU translation. The
status field is set to a predetermined ARM definition which is shown in Table 75.
The Fault Address Register is set to the effective data address of the instruction and
R14_ABORT is the address of the aborted instruction + 8.

Table 75. Intel XScale® Processor Encoding of Fault Status for Data Aborts (Sheet 1 of 2)
P”;’”t Sources FS[10,3:01" | Domain | FAR
1
Highest Alignment 0b00OX invalid valid
. First level 0b01100 invalid valid
External Abort on Translation Second level 0b01110 valid valid
Translation Section 0b00101 invalid valid
Page 0b00111 valid valid
Domain Section 0b01001 valid valid
Page 0b01011 valid valid
. Section 0b01101 valid valid
Permission Page 0b01111 valid valid

Note: All other encodings not listed in the table are reserved.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
156 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Table 75.

September 2006

Intel XScale® Processor Encoding of Fault Status for Data Aborts (Sheet 2 of 2)

Pr'§r't Sources FS[10,3:0]" | Domain | FAR
Lock Abort
This data abort occurs on an MMU lock operation (data or 0b10100 invalid invalid
instruction TLB) or on an Instruction Cache lock operation.
Imprecise External Data Abort 0b10110 invalid invalid
Lowest | Data Cache Parity Error Exception 0Ob11000 invalid invalid

Note: All other encodings not listed in the table are reserved.

Imprecise Data Aborts

« A data cache parity error is imprecise; the extended Status field of the Fault Status
Register is set to Oxb11000.

= All external data aborts except for those generated on a data MMU translation are
imprecise.

The Fault Address Register for all imprecise data aborts is undefined and R14_ABORT is
the address of the next instruction to execute + 4, which is the same for both ARM and
Thumb mode.

Although the Intel XScale processor guarantees the Base Restored Abort Model for
precise aborts, it cannot do so in the case of imprecise aborts. A Data Abort handler
may encounter an updated base register if it is invoked because of an imprecise abort.

Imprecise data aborts may create scenarios that are difficult for an abort handler to
recover. Both external data aborts and data cache parity errors may result in corrupted
data in the targeted registers. Because these faults are imprecise, it is possible that the
corrupted data will have been used before the Data Abort fault handler is invoked.
Because of this, software should treat imprecise data aborts as unrecoverable.

Note that even memory accesses marked as “stall until complete” (see “Details on Data
Cache and Write Buffer Behavior” on page 46) can result in imprecise data aborts. For
these types of accesses, the fault is somewhat less imprecise than the general case: it
is guaranteed to be raised within three instructions of the instruction that caused it. In
other words, if a “stall until complete” LD or ST instruction triggers an imprecise fault,
then that fault will be seen by the program within three instructions.

With this knowledge, it is possible to write code that accesses “stall until complete”
memory with impunity. Simply place several NOP instructions after such an access. If
an imprecise fault occurs, it will do so during the NOPs; the data abort handler will see
identical register and memory state as it would with a precise exception, and so should
be able to recover. An example of this is shown in Example 18 on page 158.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 157

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Example 18. Shielding Code from Potential Imprecise Aborts

;; Example of code that maintains architectural state through the

;; window where an imprecise fault might occur.

LD RO, [R1] ; R1 points to stall-until-complete
; region of memory

NOP

NOP

NOP

; Code beyond this point is guaranteed not to see any aborts

; from the LD.

If a system design precludes events that could cause external aborts, then such
precautions are not necessary.

Multiple Data Aborts

Multiple data aborts may be detected by hardware but only the highest priority one will
be reported. If the reported data abort is precise, software can correct the cause of the
abort and re-execute the aborted instruction. If the lower priority abort still exists, it
will be reported. Software can handle each abort separately until the instruction
successfully executes.

If the reported data abort is imprecise, software needs to check the SPSR to see if the
previous context was executing in abort mode. If this is the case, the link back to the
current process has been lost and the data abort is unrecoverable.

3.8.3.45 Events from Preload Instructions
A PLD instruction will never cause the Data MMU to fault for any of the following
reasons:
< Domain Fault
* Permission Fault
« Translation Fault

If execution of the PLD would cause one of the above faults, then the PLD causes no
effect.

This feature allows software to issue PLDs speculatively. For example, Example 19 on
page 159 places a PLD instruction early in the loop. This PLD is used to fetch data for
the next loop iteration. In this example, the list is terminated with a node that has a
null pointer. When execution reaches the end of the list, the PLD on address 0x0 will
not cause a fault. Rather, it will be ignored and the loop will terminate normally.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
158 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Example 19. Speculatively issuing PLD

3.8.3.4.6

3.9

3.9.1

September 2006

;> RO points to a node in a linked list. A node has the following layout:
;; Offset Contents

0 data

4 pointer to next node

;> This code computes the sum of all nodes in a list. The sum is placed into R9.

MOV R9, #0 ; Clear accumulator
sumList:

LDR R1, [RO, #4] ; R1 gets pointer to next node

LDR R3, [RO] ; R3 gets data from current node

PLD [R1] ; Speculatively start load of next node
ADD R9, R9, R3 ; Add into accumulator

MOVS RO, R1 ; Advance to next node. At end of list?
BNE sumList ; 1T not then loop

Debug Events

Debug events are covered in “Debug Exceptions” on page 92.

Performance Considerations

This section describes relevant performance considerations that compiler writers,
application programmers and system designers need to be aware of to efficiently use
the IXP42X product line and IXC1100 control plane processors. Performance numbers
discussed here include interrupt latency, branch prediction, and instruction latencies.

Interrupt Latency

Minimum Interrupt Latency is defined as the minimum number of cycles from the
assertion of any interrupt signal (IRQ or FIQ) to the execution of the instruction at the
vector for that interrupt. This number assumes best case conditions exist when the
interrupt is asserted, e.g., the system isn’t waiting on the completion of some other
operation.

A sometimes more useful humber to work with is the Maximum Interrupt Latency. This
is typically a complex calculation that depends on what else is going on in the system
at the time the interrupt is asserted. Some examples that can adversely affect interrupt
latency are:

= The instruction currently executing could be a 16-register LDM
= The processor could fault just when the interrupt arrives
= The processor could be waiting for data from a load, doing a page table walk, etc.

= High core-to-system (bus) clock ratios

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 159

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.9.2

Table 76.

3.9.3

3.9.4

3.94.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Maximum Interrupt Latency can be reduced by:

« Ensuring that the interrupt vector and interrupt service routine are resident in the
instruction cache. This can be accomplished by locking them down into the cache.

= Removing or reducing the occurrences of hardware page table walks. This also can
be accomplished by locking down the application’s page table entries into the TLBs,
along with the page table entry for the interrupt service routine.

Branch Prediction

The I1XP42X product line and I1XC1100 control plane processors implement dynamic
branch prediction for the ARM instructions B and BL and for the thumb instruction B.
Any instruction that specifies the PC as the destination is predicted as not taken. For
example, an LDR or a MOV that loads or moves directly to the PC will be predicted not
taken and incur a branch latency penalty.

These instructions — ARM B, ARM BL and thumb B -- enter into the branch target
buffer when they are “taken” for the first time. (A “taken” branch refers to when they
are evaluated to be true.) Once in the branch target buffer, IXP42X product line and
IXC1100 control plane processors dynamically predict the outcome of these
instructions based on previous outcomes. Table 76 shows the branch latency penalty
when these instructions are correctly predicted and when they are not. A penalty of
zero for correct prediction means that the 1XP42X product line and 1XC1100 control
plane processors can execute the next instruction in the program flow in the cycle
following the branch.

Branch Latency Penalty

Core Clock Cycles
Description
ARM™ Thumb*

+0 +0 Predicted Correctly. The instruction is in the branch target cache and is
correctly predicted.
Mispredicted. There are three occurrences of branch misprediction, all of
which incur a 4-cycle branch delay penalty.
1. The instruction is in the branch target buffer and is predicted not-

+4 +5 taken, but is actually taken.
2. The instruction is not in the branch target buffer and is a taken branch.
3. The instruction is in the branch target buffer and is predicted taken, but

is actually not-taken

Addressing Modes

All load and store addressing modes implemented in the IXP42X product line and
IXC1100 control plane processors do not add to the instruction latencies numbers.

Instruction Latencies

The latencies for all the instructions are shown in the following sections with respect to
their functional groups: branch, data processing, multiply, status register access, load/
store, semaphore, and coprocessor.

The following section explains how to read these tables.

Performance Terms

= Issue Clock (cycle 0)

The first cycle when an instruction is decoded and allowed to proceed to further
stages in the execution pipeline (i.e., when the instruction is actually issued).

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
160

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

= Cycle Distance from Ato B
The cycle distance from cycle A to cycle B is (B-A) -- that is, the number of cycles
from the start of cycle A to the start of cycle B. Example: the cycle distance from
cycle 3 to cycle 4 is one cycle.

= Issue Latency

The cycle distance from the first issue clock of the current instruction to the issue
clock of the next instruction. The actual number of cycles can be influenced by
cache-misses, resource-dependency stalls, and resource availability conflicts.

* Result Latency

The cycle distance from the first issue clock of the current instruction to the issue
clock of the first instruction that can use the result without incurring a resource
dependency stall. The actual number of cycles can be influenced by cache-misses,
resource-dependency stalls, and resource availability conflicts.

= Minimum Issue Latency (without Branch Misprediction)
The minimum cycle distance from the issue clock of the current instruction to the
first possible issue clock of the next instruction assuming best case conditions (i.e.,
that the issuing of the next instruction is not stalled due to a resource dependency
stall; the next instruction is immediately available from the cache or memory
interface; the current instruction does not incur resource dependency stalls during
execution that can not be detected at issue time; and if the instruction uses
dynamic branch prediction, correct prediction is assumed).

= Minimum Result Latency

The required minimum cycle distance from the issue clock of the current
instruction to the issue clock of the first instruction that can use the result without
incurring a resource dependency stall assuming best case conditions (i.e., that the
issuing of the next instruction is not stalled due to a resource dependency stall; the
next instruction is immediately available from the cache or memory interface; and
the current instruction does not incur resource dependency stalls during execution
that can not be detected at issue time).

= Minimum Issue Latency (with Branch Misprediction)
The minimum cycle distance from the issue clock of the current branching
instruction to the first possible issue clock of the next instruction. This definition is
identical to Minimum Issue Latency except that the branching instruction has been
incorrectly predicted. It is calculated by adding Minimum Issue Latency (without
Branch Misprediction) to the minimum branch latency penalty number from
Table 76, which is four cycles.

= Minimum Resource Latency

The minimum cycle distance from the issue clock of the current multiply instruction
to the issue clock of the next multiply instruction assuming the second multiply
does not incur a data dependency and is immediately available from the instruction
cache or memory interface.

For the following code fragment, here is an example of computing latencies:

Example 20. Computing Latencies

UMLALYr6,r8,r0,rl
ADD r9,r10,ri11
SUB r2,r8,r9

MOV rO,rl

Table 77 shows how to calculate Issue Latency and Result Latency for each instruction.
Looking at the issue column, the UMLAL instruction starts to issue on cycle 0 and the
next instruction, ADD, issues on cycle 2, so the Issue Latency for UMLAL is two. From

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 161

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

the code fragment, there is a result dependency between the UMLAL instruction and
the SUB instruction. In Table 77, UMLAL starts to issue at cycle O and the SUB issues
at cycle 5. thus the Result Latency is five.

Table 77. Latency Example

Cycle Issue Executing
0 umlal (1st cycle) --
1 umlal (2nd cycle) umlal
2 add umlal
3 sub (stalled) umlal & add
4 sub (stalled) umlal
5 sub umlal
6 mov sub
7 -- mov
3.9.4.2 Branch Instruction Timings

Table 78. Branch Instruction Timings (Those Predicted by the BTB)

Mnemonic Minimum Issue Latency When Minimum Issue Latency with Branch
Correctly Predicted by the BTB Misprediction
B 1 5
BL 1 5

«

Table 79. Branch Instruction Timings (Those not Predicted by the BTB)

Mnemonic Minimum Issug Latency Minimum Issue I_.atency
When the Branch is not Taken When the Branch is Taken
BLX(1) N/A 5
BLX(2) 1 5
BX 1 5
bata I:’lg)‘caesstsri]r;g dl(;stg]:%t(i)?]n with Same as Table 80 4 + numbers in Table 80

LDR PC,<> 2 8

LDM with PC in register list 3+ numreg* 10 + max (0, numreg-3)

Note: numreg is the number of registers in the register list including the PC.
3.9.4.3 Data Processing Instruction Timings

Table 80. Data Processing Instruction Timings (Sheet 1 of 2)

<shifter operand> is NOT a Shift/ <shifter operand_> is a Shift/Rotate
. by Register OR
. Rotate by Register <shifter operand> is RRX
Mnemonic
Minimum Issue Minimum Rgsult Minimum Issue Minimum Rgsult
Latency Latency Latency Latency
ADC 1 1 2 2
ADD 1 1 2 2
AND 1 1 2 2
BIC 1 1 2 2

Note: If the next instruction needs to use the result of the data processing for a shift by immediate or as Rn
in a QDADD or QDSUB, one extra cycle of result latency is added to the number listed.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
162 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

intel.

Table 80. Data Processing Instruction Timings (Sheet 2 of 2)
<shifter operand> is NOT a Shift/ <shifter o%erand_> is a Shift/Rotate
Rotate by Register oY Register OR
. <shifter operand> is RRX
Mnemonic
Minimum Issue Minimum Rgsult Minimum Issue Minimum Rgsult
Latency Latency Latency Latency
CMN 1 1 2
CMP 1 1 2 2
EOR 1 1 2 2
MoV 1 1 2 2
MVN 1 1 2 2
ORR 1 1 2 2
RSB 1 1 2 2
RSC 1 1 2 2
SBC 1 1 2 2
SuB 1 1 2 2
TEQ 1 1 2 2
TST 1 1 2 2
Note: If the next instruction needs to use the result of the data processing for a shift by immediate or as Rn
in a QDADD or QDSUB, one extra cycle of result latency is added to the number listed.
3.9.4.4 Multiply Instruction Timings
Table 81. Multiply Instruction Timings (Sheet 1 of 2)
. Rs Value S-Bit Minimum Minimum Result Minimum Resource
Mnemonic (Early Valu Issue Latency™ Latency (Throughput)
Termination) e Latency
Rs[31:15] = 0 1 2 1
0x00000
or 1 2 2 2
Rs[31:15] = Ox1FFFF
MLA Rs[31:27] = 0x00 0 1 3 2
or
Rs[31:27] = Ox1F 1 3 3 3
(0] 1 4 3
all others
1 4 4 4
Rs[31:15] = 0 1 2 1
0x00000
or 1 2 2 2
Rs[31:15] = Ox1FFFF
MUL Rs[31:27] = 0x00 0 1 3 2
or
Rs[31:27] = Ox1F 1 3 3 3
0 1 4 3
all others
1 4 4 4
Note: If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a

QDADD or QDSUB, one extra cycle of result latency is added to the number listed.

September 2006
Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
163

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Table 81. Multiply Instruction Timings (Sheet 2 of 2)

Rs Value S-Bit Minimum o o
. Minimum Result Minimum Resource
Mnemonic (Early Valu Issue Latency™ Latency (Throughput)
Termination) e Latency Y Y gnhp
Rs[31:15] = 0 2 RdLo = 2; RdHi = 2
0x00000 3
or
Rs[31:15] = OX1FFFF 1 3 3 3
Rs[31:27] = Ox00 RdLo = 3; RdHi =
SMLAL (31:271 0 2 4 3
Rs[31:27] = Ox1F 1 4 a4 4
0 > RdLo = 4; RdHi = 4
all others 5
1 5 5 5
SMLALxy N/A N/A 2 RdLo = é; RdHi = 2
SMLAWY N/A N/A 3
SMLAXyY N/A N/A 2
Rs[31:15] = 0 1 RdLo = 2; RdHi = 2
0x00000 3
or
Rs[31:15] = Ox1FFFF 1 3 3 3
Rs[31:27] = Ox00 RdLo = 3; RdHi =
SMULL (31:271 0 1 4 3
Rs[31:27] = Ox1F 1 4 4 4
0 1 RdLo = 4; RdHi = 4
all others 5
1 5
SMULWy N/A N/A 3
SMULxy N/A N/A 2
RdLo = 2; RdHi =
Rs[31:15] = 0 2 3 2
0x00000
1 3 3 3
0 2 RdLo = 3; RdHi = 3
UMLAL Rs[31:27] = 0x00 4
1 4 4 4
0 > RdLo = 4; RdHi = 4
all others 5
1 5 5 5
RdLo = 2; RdHi =
Rs[31:15] = 0 1 3 2
0x00000
1 3 3 3
0 1 RdLo = 3; RdHi = 3
UMULL Rs[31:27] = 0x00 4
1 4 4 4
0 1 RdLo = 4; RdHi = 4
all others 5
1 5 5 5

Note: If the next instruction needs to use the result of the multiply for a shift by immediate or as Rn in a
QDADD or QDSUB, one extra cycle of result latency is added to the number listed.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
164 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

Table 82.

Table 83.

3.9.4.5

Table 84.

3.9.4.6

Table 85.

3.9.4.7

Table 86.

September 2006

intel.

Multiply Implicit Accumulate Instruction Timings

Mnemonic

Minimum Resource
Latency
(Throughput)

Minimum Result
Latency

Minimum Issue
Latency

Rs Value (Early
Termination)

Rs[31:15] = 0x0000
or 1 1 1
Rs[31:15] = OXFFFF

MIA Rs[31:27] = O0x0
or 1 2 2

Rs[31:27] = OxF
all others 1 3 3
MIAxy N/A 1 1 1
MIAPH N/A 1 2 2

Implicit Accumulator Access Instruction Timings

Minimum Resource

Mnemonic Minimum Issue Latency Minimum Result Latency Latency (Throughput)
MAR 2 2 2
MRA 1 (RdLo = 2; RdHi = 3)” 2

Note: If the next instruction needs to use the result of the MRA for a shift by immediate or as Rn in a

QDADD or QDSUB, one extra cycle of result latency is added to the number listed.

Saturated Arithmetic Instructions

Saturated Data Processing Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
QADD 1 2
QSuB 1 2
QDADD 1 2
QbsuB 1 2

Status Register Access Instructions

Status Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
MRS 1 2
MSR 2 (6 if updating mode bits) 1

Load/Store Instructions

Load and Store Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

LDR 1 3 for load data; 1 for writeback of base
LDRB 1 3 for load data; 1 for writeback of base
LDRBT 1 3 for load data; 1 for writeback of base

. . 3 for Rd; 4 for Rd+1;

LDRD 1 (+1ifRdis R12) 1 (+1if Rd is R12) for write-back of base
LDRH 1 3 for load data; 1 for writeback of base
LDRSB 1 3 for load data; 1 for writeback of base

Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
165

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 86.

Table 87.

3.9.4.8

Table 88.

3.9.4.9

Table 89.

Table 90.

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Load and Store Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

LDRSH 1 3 for load data; 1 for writeback of base
LDRT 1 3 for load data; 1 for writeback of base
PLD 1 N/A
STR 1 1 for writeback of base

STRB 1 1 for writeback of base

STRBT 1 1 for writeback of base

STRD 2 2 for write-back of base

STRH 1 1 for writeback of base

STRT 1 1 for writeback of base

Load and Store Multiple Instruction Timings

Mnemonic

Minimum Issue Latency

Minimum Result Latency

5-18 for load data (4 + numreg for last
register in list; 3 + numreg for 2nd to last

LDm® 2 + numreg? register in list; 2 + numreg for all other
registers in list);
2+ numreg for write-back of base
STM 2 + numreg 2 + numreg for write-back of base
Notes:
1. See Table 79 on page 162 for LDM timings when R15 is in the register list.
2. numreg is the number of registers in the register list.

Semaphore Instructions

Semaphore Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
SWP 5 5
SWPB 5 5

Coprocessor Instructions

CP15 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
MRC™ 4 4
MCR 2 N/A

Note: MRC to R15 is unpredictable.

CP14 Register Access Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency
MRC 8 8
MRC to R15 9
MCR 8 N/A
LDC 11 N/A
STC 8 N/A

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
166

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.9.4.10

Table 91.

Table 92.

3.9.4.11

3.10

3.10.1

September 2006

Miscellaneous Instruction Timing

Exception-Generating Instruction Timings

Mnemonic Minimum latency to first instruction of exception handler
SWi 6
BKPT

UNDEFINED 6

Count Leading Zeros Instruction Timings

Mnemonic Minimum Issue Latency Minimum Result Latency

CLz 1 1

Thumb Instructions

In general, the timing of Thumb instructions are the same as their equivalent ARM
instructions, except for the cases listed below.

= If the equivalent ARM instruction maps to one in Table 78 on page 162, the
“Minimum Issue Latency with Branch Misprediction” goes from 5 to 6 cycles. This is
due to the branch latency penalty. (See Table 76 on page 160.)

= If the equivalent ARM instruction maps to one in Table 79 on page 162, the
“Minimum Issue Latency when the Branch is Taken” increases by 1 cycle. This is
due to the branch latency penalty. (See Table 76 on page 160.)

e A Thumb BL instruction when H = 0 will have the same timing as an ARM data
processing instruction.

The mapping of Thumb instructions to ARM instructions can be found in the ARM*
Architecture Reference Manual.

Optimization Guide

Introduction

This document contains optimization techniques for achieving the highest performance
from the 1XP42X product line and I1XC1100 control plane processors architecture. It is
written for developers who are optimizing compilers or performance analysis tools for
the devices based on these processors. It can also be used by application developers to
obtain the best performance from their assembly language code. The optimizations
presented in this section are based on the IXP42X product line and 1XC1100 control
plane processors, and hence can be applied to all products that are based on it.

The IXP42X product line and 1XC1100 control plane processors’ architecture includes a
super-pipelined RISC architecture with an enhanced memory pipeline. The I1XP42X
product line and IXC1100 control plane processors instruction set is based on the ARM
V5TE architecture; however, the I1XP42X product line and 1XC1100 control plane
processors include new instructions. Code generated for the SA110, SA1100 and
SA1110 will execute on the IXP42X product line and I1XC1100 control plane processors,
however to obtain the maximum performance of your application code, it should be
optimized for the 1XP42X product line and 1XC1100 control plane processors using the
techniques presented in this document.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 167

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.1.1

3.10.2

3.10.2.1

3.10.2.1.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

About This Section

This guide assumes that you are familiar with the ARM instruction set and the C
language. It consists of the following sections:

* “Introduction” on page 167 — Outlines the contents of this guide.

= “Processors’ Pipeline” on page 168 — This section provides an overview of IXP42X
product line and 1XC1100 control plane processors pipeline behavior.

* “Basic Optimizations” on page 173 — This section outlines basic optimizations that
can be applied to IXP42X product line and IXC1100 control plane processors.

e “Cache and Prefetch Optimizations” on page 180 — This section contains
optimizations for efficient use of caches. Also included are optimizations that take
advantage of the prefetch instruction of IXP42X product line and 1XC1100 control
plane processors.

* “Instruction Scheduling” on page 191 — This section shows how to optimally
schedule code for IXP42X product line and 1XC1100 control plane processors
pipeline.

= “Optimizing C Libraries” on page 199 — This section contains information relating
to optimizations for C library routines.

* “Optimizations for Size” on page 199 — This section contains optimizations that
reduce the size of the generated code. Thumb optimizations are also included.

Processors’ Pipeline

One of the biggest differences between the I1XP42X product line and 1XC1100 control
plane processors and ARM processors is the pipeline. Many of the differences are
summarized in Figure 29. This section provides a brief description of the structure and
behavior of the IXP42X product line and I1XC1100 control plane processors pipeline.

General Pipeline Characteristics

While the I1XP42X product line and IXC1100 control plane processors pipeline are scalar
and single issue, instructions may occupy all three pipelines at once. Out of order
completion is possible. The following sections discuss general pipeline characteristics.

Number of Pipeline Stages

The 1XP42X product line and 1XC1100 control plane processors have a longer pipeline
(seven stages versus five stages) which operates at a much higher frequency than its
predecessors do. This allows for greater overall performance. The longer the IXP42X
product line and IXC1100 control plane processors pipeline have several negative
consequences, however:

« Larger branch misprediction penalty (four cycles in the IXP42X product line and
IXC1100 control plane processors instead of one in ARM Architecture). This is
mitigated by dynamic branch prediction.

= Larger load use delay (LUD) - LUDs arise from load-use dependencies. A load-use
dependency gives rise to a LUD if the result of the load instruction cannot be made
available by the pipeline in due time for the subsequent instruction. An optimizing
compiler should find independent instructions to fill the slot following the load.

= Certain instructions incur a few extra cycles of delay on the IXP42X product line
and IXC1100 control plane processors as compared to ARM processors (LDM,
STM).

= Decode and register file lookups are spread out over two cycles in the IXP42X
product line and IXC1100 control plane processors, instead of one cycle in
predecessors.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
168

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.2.1.2 Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane
Processor Pipeline Organization

The IXP42X product line and 1XC1100 control plane processors single-issue super-
pipeline consist of a main execution pipeline, MAC pipeline, and a memory access
pipeline. These are shown in Figure 29, with the main execution pipeline shaded.

Figure 29. Processors’ RISC Super-Pipeline

Memory pipeline

D1 | D2 |DWB

Main execution pipeline

F1 F2 ID RF X1 X2 [XWB
MAC pipeline
M1 [M2 Mx

Table 93 gives a brief description of each pipe-stage.

Table 93. Pipelines and Pipe Stages

Pipe / Pipe State Description Covered In
Main Execution Pipeline Handles data processing instructions “Main Execution Pipeline” on
page 171
IF1/1F2 Instruction Fetch “
ID Instruction Decode
RF Register File / Operand Shifter
X1 ALU Execute *
X2 State Execute
XWB Write-back
Memory Pipeline Handles load/store instructions “Memory Pipeline” on page 172
D1/D2 Data Cache Access
DwB Data cache writeback
MAC Pipeline Handles all multiply instructions (h&ﬂg;algl/rl:glﬂl:eplyg?c;:grguﬁts
M1-M5 Multiplier stages
MWB (not shown) MAC write-back - may occur during M2-M5 “

3.10.2.1.3 Out-of-Order Completion

Sequential consistency of instruction execution relates to two aspects: first, to the
order in which the instructions are completed; and second, to the order in which
memory is accessed due to load and store instructions. The IXP42X product line and
IXC1100 control plane processors preserve a weak processor consistency because
instructions may complete out of order, provided that no data dependencies exist.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006 DM
Order Number: 252480-006US 169

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.2.1.4

3.10.2.1.5

3.10.2.2

3.10.2.2.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

While instructions are issued in-order, the main execution pipeline, memory, and MAC
pipelines are not lock-stepped, and, therefore, have different execution times. This
means that instructions may finish out of program order. Short ‘younger’ instructions
may be finished earlier than long ‘older’ ones. (The term ‘to finish’ is used here to
indicate that the operation has been completed and the result has been written back to
the register file.)

Register Scoreboarding

In certain situations, the pipeline may need to be stalled because of register
dependencies between instructions. A register dependency occurs when a previous
MAC or load instruction is about to modify a register value that has not been returned
to the register file and the current instruction needs access to the same register. Only
the destination of MAC operations and memory loads are scoreboarded. The
destinations of ALU instructions are not scoreboarded.

If no register dependencies exist, the pipeline will not be stalled. For example, if a load
operation has missed the data cache, subsequent instructions that do not depend on
the load may complete independently.

Use of Bypassing

The IXP42X product line and 1XC1100 control plane processors pipeline make extensive
use of bypassing to minimize data hazards. Bypassing allows results forwarding from
multiple sources, eliminating the need to stall the pipeline.

Instruction Flow Through the Pipeline

The IXP42X product line and IXC1100 control plane processors’ pipeline issues a single
instruction per clock cycle. Instruction execution begins at the F1 pipe stage and
completes at the WB pipe stage.

Although a single instruction may be issued per clock cycle, all three pipelines (MAC,
memory, and main execution) may be processing instructions simultaneously. If there
are no data hazards, then each instruction may complete independently of the others.

Each pipe stage takes a single clock cycle or machine cycle to perform its subtask with
the exception of the MAC unit.

ARM™ V5TE Instruction Execution

Figure 29 on page 169 uses arrows to show the possible flow of instructions in the
pipeline. Instruction execution flows from the F1 pipe stage to the RF pipe stage. The
RF pipe stage may issue a single instruction to either the X1 pipe stage or the MAC unit
(multiply instructions go to the MAC, while all others continue to X1). This means that
M1 or X1 will be idle.

All load/store instructions are routed to the memory pipeline after the effective
addresses have been calculated in X1.

The ARM V5TE bx (branch and exchange) instruction, which is used to branch between
ARM and thumb code, causes the entire pipeline to be flushed (The bx instruction is not
dynamically predicted by the BTB). If the processor is in Thumb mode, then the ID pipe
stage dynamically expands each Thumb instruction into a normal ARM V5TE RISC
instruction and execution resumes as usual.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
170

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.2.2.2

3.10.2.3

3.10.2.3.1

3.10.2.3.2

3.10.2.3.3

September 2006

Pipeline Stalls

The progress of an instruction can stall anywhere in the pipeline. Several pipe stages
may stall for various reasons. It is important to understand when and how hazards
occur in the 1XP42X product line and 1XC1100 control plane processors’ pipeline.
Performance degradation can be significant if care is not taken to minimize pipeline
stalls.

Main Execution Pipeline

F1 / F2 (Instruction Fetch) Pipe Stages

The job of the instruction fetch stages F1 and F2 is to present the next instruction to be
executed to the ID stage. Several important functional units reside within the F1 and F2
stages, including:

« Branch Target Buffer (BTB)
= Instruction Fetch Unit (IFU)
An understanding of the BTB (See “Branch Target Buffer” on page 58) and IFU are

important for performance considerations. A summary of operation is provided here so
that the reader may understand its role in the F1 pipe stage.

= Branch Target Buffer (BTB)

The BTB predicts the outcome of branch type instructions. Once a branch type
instruction reaches the X1 pipe stage, its target address is known. If this address is
different from the address that the BTB predicted, the pipeline is flushed, execution
starts at the new target address, and the branch’s history is updated in the BTB.

= Instruction Fetch Unit (IFU)

The IFU is responsible for delivering instructions to the instruction decode (ID) pipe
stage. One instruction word is delivered each cycle (if possible) to the ID. The
instruction could come from one of two sources: instruction cache or fetch buffers.

ID (Instruction Decode) Pipe Stage

The ID pipe stage accepts an instruction word from the IFU and sends register decode
information to the RF pipe stage. The ID is able to accept a new instruction word from
the IFU on every clock cycle in which there is no stall. The ID pipe stage is responsible
for:

= General instruction decoding (extracting the op code, operand addresses,
destination addresses and the offset).

= Detecting undefined instructions and generating an exception.

= Dynamic expansion of complex instructions into sequence of simple instructions.
Complex instructions are defined as ones that take more than one clock cycle to
issue, such as LDM, STM, and SWP.

RF (Register File / Shifter) Pipe Stage
The main function of the RF pipe stage is to read and write to the register file unit, or
RFU. It provides source data to:

= EX for ALU operations

= MAC for multiply operations

= Data Cache for memory writes

= Coprocessor interface

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 171

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.2.3.4

3.10.2.3.5

3.10.2.3.6

3.10.2.4

3.10.2.4.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

The ID unit decodes the instruction and specifies which registers are accessed in the
RFU. Based upon this information, the RFU determines if it needs to stall the pipeline
due to a register dependency. A register dependency occurs when a previous
instruction is about to modify a register value that has not been returned to the RFU
and the current instruction needs to access that same register. If no dependencies
exist, the RFU will select the appropriate data from the register file and pass it to the
next pipe stage. When a register dependency does exist, the RFU will keep track of
which register is unavailable and when the result is returned, the RFU will stop stalling
the pipe.

The ARM architecture specifies that one of the operands for data processing
instructions as the shifter operand, where a 32-bit shift can be performed before it is
used as an input to the ALU. This shifter is located in the second half of the RF pipe
stage.

X1 (Execute) Pipe Stages

The X1 pipe stage performs the following functions:

* ALU calculation - the ALU performs arithmetic and logic operations, as required for
data processing instructions and load/store index calculations.

« Determine conditional instruction execution - The instruction’s condition is
compared to the CPSR prior to execution of each instruction. Any instruction with a
false condition is cancelled, and will not cause any architectural state changes,
including modifications of registers, memory, and PSR.

= Branch target determination - If a branch was incorrectly predicted by the BTB, the
X1 pipe stage flushes all of the instructions in the previous pipe stages and sends
the branch target address to the BTB, which will restart the pipeline

X2 (Execute 2) Pipe Stages

The X2 pipe stage contains the program status registers (PSRs). This pipe stage selects
what is going to be written to the RFU in the WB cycle: PSRs (MRS instruction), ALU
output, or other items.

WB (Write-Back)

When an instruction has reached the write-back stage, it is considered complete.
Changes are written to the RFU.

Memory Pipeline

The memory pipeline consists of two stages, D1 and D2. The data cache unit, or DCU,
consists of the data-cache array, mini-data cache, fill buffers, and write buffers. The
memory pipeline handles load / store instructions.

D1 and D2 Pipe Stage

Operation begins in D1 after the X1 pipe stage has calculated the effective address for
load/stores. The data cache and mini-data cache returns the destination data in the D2
pipe stage. Before data is returned in the D2 pipe stage, sign extension and byte
alignment occurs for byte and half-word loads.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
172

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.2.5

3.10.2.5.1

3.10.3

3.10.3.1

3.10.3.1.1

September 2006

Multiply/Multiply Accumulate (MAC) Pipeline

The Multiply-Accumulate (MAC) unit executes the multiply and multiply-accumulate
instructions supported by the 1XP42X product line and 1XC1100 control plane
processors. The MAC implements the 40-bit IXP42X product line and 1XC1100 control
plane processors accumulator register accO and handles the instructions, which
transfer its value to and from general-purpose ARM registers.

The following are important characteristics about the MAC:

= The MAC is not truly pipelined, as the processing of a single instruction may require
use of the same data path resources for several cycles before a new instruction can
be accepted. The type of instruction and source arguments determines the number
of cycles required.

= No more than two instructions can occupy the MAC pipeline concurrently.

= When the MAC is processing an instruction, another instruction may not enter M1
unless the original instruction completes in the next cycle.

= The MAC unit can operate on 16-bit packed signed data. This reduces register
pressure and memory traffic size. Two 16-bit data items can be loaded into a
register with one LDR.

= The MAC can achieve throughput of one multiply per cycle when performing a 16-
by-32-bit multiply.

Behavioral Description

The execution of the MAC unit starts at the beginning of the M1 pipe stage, where it
receives two 32-bit source operands. Results are completed N cycles later (where N is
dependent on the operand size) and returned to the register file. For more information
on MAC instruction latencies, refer to “Instruction Latencies” on page 160.

An instruction that occupies the M1 or M2 pipe stages will also occupy the X1 and X2
pipe stage, respectively. Each cycle, a MAC operation progresses for M1 to M5. A MAC
operation may complete anywhere from M2-M5. If a MAC operation enters M3-M5, it is
considered committed because it will modify architectural state regardless of
subsequent events.

Basic Optimizations

This section outlines optimizations specific to ARM architecture. These optimizations
have been modified to suit the IXP42X product line and 1XC1100 control plane
processors where needed.

Conditional Instructions

The IXP42X product line and 1XC1100 control plane processors’ architecture provides
the ability to execute instructions conditionally. This feature combined with the ability
of the IXP42X product line and 1XC1100 control plane processors instructions to modify
the condition codes makes possible a wide array of optimizations.

Optimizing Condition Checks

The IXP42X product line and 1XC1100 control plane processors’ instructions can
selectively modify the state of the condition codes. When generating code for if-else
and loop conditions it is often beneficial to make use of this feature to set condition
codes, thereby eliminating the need for a subsequent compare instruction.

Consider the C code segment:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 173

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

|if(a+b)

Code generated for the if condition without using an add instruction to set condition
codes is:

;Assume rO contains the value a, and rl1 contains the value b
add ro,ro,rl
cmp ro, #0

However, code can be optimized as follows making use of add instruction to set
condition codes:

;Assume rO contains the value a, and rl contains the value b
adds r0,r0,rl

The instructions that increment or decrement the loop counter can also be used to
modify the condition codes. This eliminates the need for a subsequent compare
instruction. A conditional branch instruction can then be used to exit or continue with
the next loop iteration.

Consider the following C code segment:

for (i = 10; 1 = 0; i--)
{

}

do something;

The optimized code generated for the above code segment would look like:

L6:

subs r3, r3, #1
bne .L6

It is also beneficial to rewrite loops whenever possible so as to make the loop exit
conditions check against the value 0. For example, the code generated for the code
segment below will need a compare instruction to check for the loop exit condition.

for (i = 0; i < 10; i++)
{

}

do something;

If the loop were rewritten as follows, the code generated avoids using the compare
instruction to check for the loop exit condition.

for (i = 9; 1 >=0; i--)
{

}

do something;

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
174 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.3.1.2

September 2006

Order Number: 252480-006US

Optimizing Branches

Branches decrease application performance by indirectly causing pipeline stalls. Branch
prediction improves the performance by lessening the delay inherent in fetching a new
instruction stream. The number of branches that can accurately be predicted is limited
by the size of the branch target buffer. Since the total number of branches executed in
a program is relatively large compared to the size of the branch target buffer; it is often
beneficial to minimize the number of branches in a program. Consider the following C

code segment.

int foo(int a)

{
if (a > 10)
return O;
else
return 1;
3

The code generated for the if-else portion of this code segment using branches is:

cmp ro, #10
ble L1
mov ro, #0
b L2

L1:

mov ro, #1

L2:

The code generated above takes three cycles to execute the else part and four cycles
for the if-part assuming best case conditions and no branch misprediction penalties. In
the case of the IXP42X product line and I1XC1100 control plane processors, a branch
misprediction incurs a penalty of four cycles. If the branch is incorrectly predicted 50
percent of the time, and if we assume that both the if-part and the else-part are
equally likely to be taken, on an average the code above takes 5.5 cycles to execute.

=55 cycles

If we were to use the IXP42X product line and 1XC1100 control plane processors to
execute instructions conditionally, the code generated for the above if-else statement

IS:

cmp ro, #10
movgt rO, #0

movle rO, #1

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

175

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® IXP42X Pro
DM
176

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

The above code segment would not incur any branch misprediction penalties and would
take three cycles to execute assuming best case conditions. As can be seen, using
conditional instructions speeds up execution significantly. However, the use of
conditional instructions should be carefully considered to ensure that it does improve
performance. To decide when to use conditional instructions over branches consider the
following hypothetical code segment:

if (cond)
if_stmt
else

else_stmt

Assume that we have the following data:

* Nlg.ioovinrnnnnn. Number of cycles to execute the if_stmt assuming the use of branch
instructions

* N2g........... Number of cycles to execute the else_stmt assuming the use of branch
instructions

e Pl Percentage of times the if_stmt is likely to be executed

e P2.......... Percentage of times we are likely to incur a branch misprediction penalty

* N1c... Number of cycles to execute the if-else portion using conditional instructions
assuming the if-condition to be true

* N2c... Number of cycles to execute the if-else portion using conditional instructions
assuming the if-condition to be false

Once we have the above data, use conditional instructions when:

P1 100-P1\ , (P2

P1 100 - P1
(Nlcx)+(N2Cx) (NleE— +(Nsz—————loo)+(loox4)

100 100

IN

The following example illustrates a situation in which we are better off using branches
over conditional instructions. Consider the code sample shown below:

cmp ro, #0

bne L1

add ro, ro, #1
add rl, rl, #1
add r2, r2, #1
add r3, r3, #1
add rd, rd4, #1

b L2
L1:
sub ro, rO, #1
sub rl, rl, #1
sub r2, r2, #1
sub r3, r3, #1
sub rd, rd, #1
L2:

In the above code sample, the cmp instruction takes 1 cycle to execute, the if-part
takes 7 cycles to execute and the else-part takes 6 cycles to execute. If we were to
change the code above so as to eliminate the branch instructions by making use of
conditional instructions, the if-else part would always take 10 cycles to complete.

duct Line of Network Processors and 1XC1100 Control Plane Processor
September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.3.1.3

September 2006

If we make the assumptions that both paths are equally likely to be taken and that
branches are mis-predicted 50% of the time, the costs of using conditional execution
Vs using branches can be computed as follows:

Cost of using conditional instructions:

50 50 _
1+(100 X 10) +(100 x 10) =11 cycles

Cost of using branches:

S0, 7). (50, 6) 4 (52) =
1+(100X7)+(100X6 ¥ 100“0 =95 cycles

As can be seen, we get better performance by using branch instructions in the above
scenario.

Optimizing Complex Expressions

Conditional instructions should also be used to improve the code generated for complex
expressions such as the C shortcut evaluation feature. Consider the following C code
segment:

int foo(int a, int b)
{
if (a'!'=04&& b 1=0)
return O;
else
return 1;
3

The optimized code for the if condition is:

cmp ro, #0
cmpne rl, #0

Similarly, the code generated for the following C segment

int foo(int a, int b)

{
if@!'!=01]] b 1=0)
return O;
else
return 1;
}
is:
cmp ro, #0

cmpeq rl, #0

The use of conditional instructions in the above fashion improves performance by
minimizing the number of branches, thereby minimizing the penalties caused by branch
incorrect predictions. This approach also reduces the utilization of branch prediction
resources.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 177

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.3.2

3.10.3.3

3.10.3.4

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Bit Field Manipulation

The I1XP42X product line and 1XC1100 control plane processors shift and logical
operations provide a useful way of manipulating bit fields. Bit field operations can be
optimized as follows:

;Set the bit number specified by rl in register rO

mov r2, #1
orr ro, ro, r2, asl ri1
;Clear the bit number specified by rl in register rO
mov r2, #1
bic rO, rO, r2, asl ri1

;Extract the bit-value of the bit number specified by rl1 of the
;value in rO storing the value in r0

mov rl, rO, asr rl

and ro, ri, #1
;Extract the higher order 8 bits of the value in rO storing
;the result in ril

mov rl, rO, Isr #24

Optimizing the Use of Immediate Values

The IXP42X product line and IXC1100 control plane processors’ MOV or MVN
instruction should be used when loading an immediate (constant) value into a register.
Please refer to the ARM* Architecture Reference Manual for the set of immediate values
that can be used in a MOV or MVN instruction. It is also possible to generate a whole
set of constant values using a combination of MOV, MVN, ORR, BIC, and ADD
instructions. The LDR instruction has the potential of incurring a cache miss in addition
to polluting the data and instruction caches. The code samples below illustrate cases
when a combination of the above instructions can be used to set a register to a
constant value:

;Set the value of rO to 127

mov ro, #127
;Set the value of rO to OxFFfffefb.
mvn ro, #260
;Set the value of rO to 257
mov ro, #1
orr ro, rO, #256
;Set the value of rO to Ox51f
mov ro, #O0x1F
orr ro, r0, #0x500

;Set the value of rO to OxF100FFFF

mvn r0, #Oxff, 16
bic ro, rO, #0Oxe, 8
; Set the value of r0 to 0x12341234
mov ro, #0x8d, 30
orr rO, rO, #0x1, 20
add rO, rO, rO, LSL #16 ; shifter delay of 1 cycle

Note that it is possible to load any 32-bit value into a register using a sequence of four
instructions.

Optimizing Integer Multiply and Divide

Multiplication by an integer constant should be optimized to make use of the shift
operation whenever possible.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
178

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.3.5

September 2006

;Multiplication of RO by 2"
mov rO, rO, LSL #n

;Multiplication of RO by 2"+1
add rO, rO, rO, LSL #n

Multiplication by an integer constant that can be expressed as (2n +1)- (Zm) can
similarly be optimized as:

;Multiplication of rO by an integer constant that can be
;expressed as (2"'+1)*(2™

add rO, rO, rO, LSL #n

mov rO, rO, LSL #m

Please note that the above optimization should only be used in cases where the
multiply operation cannot be advanced far enough to prevent pipeline stalls.

Dividing an unsigned integer by an integer constant should be optimized to make use
of the shift operation whenever possible.

;Dividing rO containing an unsigned value by an integer constant
;that can be represented as 2"
mov ro, rO, LSR #n

Dividing a signed integer by an integer constant should be optimized to make use of
the shift operation whenever possible.

;Dividing rO containing a signed value by an integer constant
;that can be represented as 2"

mov rl, rO, ASR #31

add rO, rO, rl1, LSR #(32 - n)

mov rO, rO, ASR #n

The add instruction would stall for 1 cycle. The stall can be prevented by filling in
another instruction before add.

Effective Use of Addressing Modes

The IXP42X product line and 1XC1100 control plane processors provide a variety of
addressing modes that make indexing an array of objects highly efficient. For a detailed
description of these addressing modes please refer to the ARM* Architecture Reference
Manual. The following code samples illustrate how various kinds of array operations can
be optimized to make use of these addressing modes:

;Set the contents of the word pointed to by rO to the value
;contained in rl1 and make rO point to the next word

str rl,[r0], #4
;Increment the contents of rO to make it point to the next word
;and set the contents of the word pointed to the value contained
;in rl

str rl, [rO, #4]!
;Set the contents of the word pointed to by rO to the value
;contained in rl1 and make rO point to the previous word

str rl,[r0], #-4
;Decrement the contents of rO to make it point to the previous
;word and set the contents of the word pointed to the value
;contained in rl

str rl,[r0, #-4]!

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 179

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.4

3.10.4.1

3.10.4.1.1

3.10.4.1.2

3.10.4.1.3

3.10.4.1.4

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Cache and Prefetch Optimizations

This section considers how to use the various cache memories in all their modes and
then examines when and how to use prefetch to improve execution efficiencies.

Instruction Cache

The 1XP42X product line and IXC1100 control plane processors have separate
instruction and data caches. Only fetched instructions are held in the instruction cache
even though both data and instructions may reside within the same memory space with
each other. Functionally, the instruction cache is either enabled or disabled. There is no
performance benefit in not using the instruction cache. The exception is that code,
which locks code into the instruction cache, must itself execute from non-cached
memory.

Cache Miss Cost

The 1XP42X product line and I1XC1100 control plane processors’ performance is highly
dependent on reducing the cache miss rate.

Note that this cycle penalty becomes significant when the Intel XScale processor is
running much faster than external memory. Executing non-cached instructions severely
curtails the processor's performance in this case and it is very important to do
everything possible to minimize cache misses.

For the I1XP42X product line and IXC1100 control plane processors, care must be taken
to optimize code to have a maximum cache hit when accesses have been requested to
the Expansion Bus Interface or the PCl Bus Controller. These design recommendations
are due to the latency that may be associated with accessing the PCI Bus Controller
and Expansion Bus Controller. Retries will be issued to the Intel XScale processor until
the requested transaction is completed.

Round Robin Replacement Cache Policy

Both the data and the instruction caches use a round robin replacement policy to evict
a cache line. The simple consequence of this is that at sometime every line will be
evicted, assuming a non-trivial program. The less obvious consequence is that
predicting when and over which cache lines evictions take place is very difficult to
predict. This information must be gained by experimentation using performance
profiling.

Code Placement to Reduce Cache Misses

Code placement can greatly affect cache misses. One way to view the cache is to think
of it as 32 sets of 32 bytes, which span an address range of 1,024 bytes. When
running, the code maps into 32 blocks modular 1,024 of cache space. Any sets, which
are overused, will thrash the cache. The ideal situation is for the software tools to
distribute the code on a temporal evenness over this space.

This is very difficult if not impossible for a compiler to do. Most of the input needed to
best estimate how to distribute the code will come from profiling followed by compiler
based two pass optimizations.

Locking Code into the Instruction Cache

One very important instruction cache feature is the ability to lock code into the
instruction cache. Once locked into the instruction cache, the code is always available
for fast execution. Another reason for locking critical code into cache is that with the
round robin replacement policy, eventually the code will be evicted, even if it is a very
frequently executed function. Key code components to consider for locking are:

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
180

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.4.2

3.10.4.2.1

September 2006

Interrupt handlers

Real time clock handlers
= OS critical code
= Time critical application code
The disadvantage to locking code into the cache is that it reduces the cache size for the

rest of the program. How much code to lock is very application dependent and requires
experimentation to optimize.

Code placed into the instruction cache should be aligned on a 1,024-byte boundary and
placed sequentially together as tightly as possible so as not to waste precious memory
space. Making the code sequential also insures even distribution across all cache ways.
Though it is possible to choose randomly located functions for cache locking, this
approach runs the risk of landing multiple cache ways in one set and few or none in
another set. This distribution unevenness can lead to excessive thrashing of the Data
and Mini Caches.

Data and Mini Cache

The IXP42X product line and 1XC1100 control plane processors allow the user to define
memory regions whose cache policies can be set by the user (see “Cacheability” on
page 63). Supported policies and configurations are:

= Non Cacheable with no coalescing of memory writes.

= Non Cacheable with coalescing of memory writes.

= Mini-Data cache with write coalescing, read allocate, and write-back caching.

= Mini-Data cache with write coalescing, read allocate, and write-through caching.

= Mini-Data cache with write coalescing, read-write allocate, and write-back caching.
= Data cache with write coalescing, read allocate, and write-back caching.

= Data cache with write coalescing, read allocate, and write-through caching.

= Data cache with write coalescing, read-write allocate, and write-back caching.

To support allocating variables to these various memory regions, the tool chain
(compiler, assembler, linker and debugger), must implement named sections.

The performance of your application code depends on what cache policy you are using
for data objects. A description of when to use a particular policy is described below.

The IXP42X product line and 1XC1100 control plane processors allow dynamic
modification of the cache policies at run time, however, the operation is requires
considerable processing time and therefore should not be used by applications.

If the application is running under an OS, then the OS may restrict you from using
certain cache policies.

Non-Cacheable Regions

It is recommended that non-cache memory (X=0, C=0, and B=0) be used only if
necessary as is often necessary for 1/0 devices. Accessing non-cacheable memory is
likely to cause the processor to stall frequently due to the long latency of memory
reads.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 181

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.4.2.2

3.10.4.2.3

3.10.4.2.4

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Write-Through and Write-Back Cached Memory Regions

Write through memory regions generate more data traffic on the bus. Therefore is not
recommended that the write-through policy be used. The write back policy must be
used whenever possible.

However, in a multiprocessor environment it will be necessary to use a write through
policy if data is shared across multiple processors. In such a situation all shared
memory regions should use write through policy. Memory regions that are private to a
particular processor should use the write back policy.

Read Allocate and Read-Write Allocate Memory Regions

Most of the regular data and the stack for your application should be allocated to a
read-write allocate region. It is expected that you will be writing and reading from them
often.

Data that is write only (or data that is written to and subsequently not used for a long
time) should be placed in a read allocate region. Under the read-allocate policy if a
cache write miss occurs a new cache line will not be allocated, and hence will not evict
critical data from the Data cache.

Creating On-Chip RAM

Part of the Data cache can be converted into fast on chip RAM. Access to objects in the
on-chip RAM will not incur cache miss penalties, thereby reducing the number of
processor stalls. Application performance can be improved by converting a part of the
cache into on chip RAM and allocating frequently allocated variables to it. Due to the
IXP42X product line and IXC1100 control plane processors’ round-robin replacement
policy, all data will eventually be evicted. Therefore to prevent critical or frequently
used data from being evicted it should be allocated to on-chip RAM.

The following variables are good candidates for allocating to the on-chip RAM:
= Frequently used global data used for storing context for context switching.

= Global variables that are accessed in time critical functions such as interrupt service
routines.

The on-chip RAM is created by locking a memory region into the Data cache (see
“Reconfiguring the Data Cache as Data RAM” on page 68 for more details).

When creating the on-chip RAM, care must be taken to ensure that all sets in the on-
chip RAM area of the Data cache have approximately the same number of ways locked,
otherwise some sets will have more ways locked than the others. This uneven
allocation will increase the level of thrashing in some sets and leave other sets under
utilized.

For example, consider three arrays arrl, arr2 and arr3 of size 64 bytes each that are
being allocated to the on-chip RAM and assume that the address of arrl is O, address of
arr2 is 1024, and the address of arr3 is 2048. All three arrays will be within the same
sets, i.e. set0 and setl, as a result three ways in both sets setO and setl, will be
locked, leaving 29 ways for use by other variables.

This can be overcome by allocating on-chip RAM data in sequential order. In the above
example allocating arr2 to address 64 and arr3 to address 128, allows the three arrays
to use only 1 way in sets 0 through 5.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
182

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.4.2.5

3.10.4.2.6

September 2006

Mini-Data Cache

The mini-data cache is best used for data structures, which have short temporal lives,
and/or cover vast amounts of data space. Addressing these types of data spaces from
the Data cache would corrupt much if not all of the Data cache by evicting valuable
data. Eviction of valuable data will reduce performance. Placing this data instead in
Mini-data cache memory region would prevent Data cache corruption while providing
the benefits of cached accesses.

A prime example of using the mini-data cache would be for caching the procedure call
stack. The stack can be allocated to the mini-data cache so that it’s use does not trash
the main dcache. This would keep local variables from global data.

Following are examples of data that could be assigned to mini-dcache:

= The stack space of a frequently occurring interrupt, the stack is used only during
the duration of the interrupt, which is usually very small.

= Video buffers, these are usual large and can occupy the whole cache.
Over use of the Mini-Data cache will thrash the cache. This is easy to do because the

Mini-Data cache only has two ways per set. For example, a loop which uses a simple
statement such as:

for (i=0; I< IMAX; i++)

ALi] = BLI] + C[i];

Where A, B, and C reside in a mini-data cache memory region and each is array is
aligned on a 1-K boundary will quickly thrash the cache.

Data Alignment

Cache lines begin on 32-byte address boundaries. To maximize cache line use and
minimize cache pollution, data structures should be aligned on 32-byte boundaries and
sized to multiple cache line sizes. Aligning data structures on cache address boundaries
simplifies later addition of prefetch instructions to optimize performance.

Not aligning data on cache lines has the disadvantage of moving the prefetch address
correspondingly to the misalignment. Consider the following example:

struct {
long
long
long i
long id;

} tdata[IMAX];

a;
b;
c;

for (i=0, I<IMAX; i++)

{
PREFETCH(tdata[i+1]);
tdata[i].ia = tdata[i].ib + tdata[i].ic _tdata[i].-id];
tdata[i].id = 0;

}

In this case if tdata[] is not aligned to a cache line, then the prefetch using the address
of tdata[i+1].ia may not include element id. If the array was aligned on a cache line +
12 bytes, then the prefetch would halve to be placed on &tdata[i+1].id.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 183

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.4.2.7

3.10.4.3

3.10.4.3.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

If the structure is not sized to a multiple of the cache line size, then the prefetch
address must be advanced appropriately and will require extra prefetch instructions.
Consider the following example:

struct {
long ia
long ib;
long ic
long id;
long ie;

} tdata[IMAX];

ADDRESS preadd = tdata

for (i=0, i<IMAX; i++)

{
PREFETCH(predata+=16);
tdata[l].ia = tdata[l].ib + tdata[l].ic _tdata[l].id] +
tdata[l]-ie;
i&éia[l].ie = 0;
}

In this case, the prefetch address was advanced by size of half a cache line and every
other prefetch instruction is ignored. Further, an additional register is required to track
the next prefetch address.

Generally, not aligning and sizing data will add extra computational overhead.

Additional prefetch considerations are discussed in greater detail in following sections.

Literal Pools

The I1XP42X product line and I1XC1100 control plane processors do not have a single
instruction that can move all literals (a constant or address) to a register. One
technique to load registers with literals in the IXP42X product line and IXC1100 control
plane processors is by loading the literal from a memory location that has been
initialized with the constant or address. These blocks of constants are referred to as
literal pools. See “Basic Optimizations” on page 173 for more information on how to do
this. It is advantageous to place all the literals together in a pool of memory known a
literal pool. These data blocks are located in the text or code address space so that
they can be loaded using PC relative addressing. However, references to the literal pool
area load the data into the data cache instead of the instruction cache. Therefore it is
possible that the literal may be present in both the data and instruction caches,
resulting in waste of space.

For maximum efficiency, the compiler should align all literal pools on cache boundaries
and size each pool to a multiple of 32 bytes (the size of a cache line). One additional
optimization would be group highly used literal pool references into the same cache
line. The advantage is that once one of the literals has been loaded, the other seven
will be available immediately from the data cache.

Cache Considerations

Cache Conflicts, Pollution, and Pressure

Cache pollution occurs when unused data is loaded in the cache and cache pressure
occurs when data that is not temporal to the current process is loaded into the cache.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
184

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.4.3.2

3.10.4.4

3.10.4.4.1

3.10.4.4.2

3.10.4.4.3

September 2006

Memory Page Thrashing

Memory page thrashing occurs because of the nature of SDRAM. SDRAMSs are typically
divided into four banks. Each bank can have one selected page where a page address
size for current memory components is often defined as 4 k. Memory lookup time or
latency time for a selected page address is currently two to three bus clocks. Thrashing
occurs when subsequent memory accesses within the same memory bank access
different pages. The memory page change adds three to four bus clock cycles to
memory latency. This added delay extends the prefetch distance correspondingly
making it more difficult to hide memory access latencies. This type of thrashing can be
resolved by placing the conflicting data structures into different memory banks or by
paralleling the data structures such that the data resides within the same memory
page. It is also extremely important to insure that instruction and data sections are in
different memory banks, or they will continually trash the memory page selection.

Prefetch Considerations

The IXP42X product line and 1XC1100 control plane processors have a true prefetch
load instruction (PLD). The purpose of this instruction is to preload data into the data
and mini-data caches. Data prefetching allows hiding of memory transfer latency while
the processor continues to execute instructions. The prefetch is important to compiler
and assembly code because judicious use of the prefetch instruction can enormously
improve throughput performance of the I1XP42X product line and 1XC1100 control plane
processors. Data prefetch can be applied not only to loops but also to any data
references within a block of code. Prefetch also applies to data writing when the
memory type is enabled as write-allocate.

The IXP42X product line and 1XC1100 control plane processors’ prefetch load
instruction is a true prefetch instruction because the load destination is the data or
mini-data cache and not a register. Compilers for processors which have data caches,
but do not support prefetch, sometimes use a load instruction to preload the data
cache. This technique has the disadvantages of using a register to load data and
requiring additional registers for subsequent preloads and thus increasing register
pressure. By contrast, the prefetch can be used to reduce register pressure instead of
increasing it.

The prefetch load is a hint instruction and does not guarantee that the data will be
loaded. Whenever the load would cause a fault or a table walk, then the processor will
ignore the prefetch instruction, the fault or table walk, and continue processing the
next instruction. This is particularly advantageous in the case where a linked list or
recursive data structure is terminated by a NULL pointer. Prefetching the NULL pointer
will not fault program flow.

Prefetch Loop Limitations

It is not always advantages to add prefetch to a loop. Loop characteristics that limit the
use value of prefetch are discussed below.

Compute versus Data Bus Bound

At the extreme, a loop, which is data bus bound, will not benefit from prefetch because
all the system resources to transfer data are quickly allocated and there are no
instructions that can profitably be executed. On the other end of the scale, compute
bound loops allow complete hiding of all data transfer latencies.

Low Number of lterations

Loops with very low iteration counts may have the advantages of prefetch completely
mitigated. A loop with a small fixed number of iterations may be faster if the loop is
completely unrolled rather than trying to schedule prefetch instructions.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 185

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.4.4.4

3.10.4.4.5

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Bandwidth Limitations

Overuse of prefetches can usurp resources and degrade performance. This happens
because once the bus traffic requests exceed the system resource capacity, the
processor stalls. The IXP42X product line and 1XC1100 control plane processors data
transfer resources are:

« Four fill buffers
= Four pending buffers

= Eight half-cache line write buffer

SDRAM resources are typically:
= Four memory banks
= One page buffer per bank referencing a 4K address range
= Four transfer request buffers

Consider how these resources work together. A fill buffer is allocated for each cache
read miss. A fill buffer is also allocated each cache write miss if the memory space is
write allocate along with a pending buffer. A subsequent read to the same cache line
does not require a new fill buffer, but does require a pending buffer and a subsequent
write will also require a new pending buffer. A fill buffer is also allocated for each read
to a non-cached memory and a write buffer is needed for each memory write to non-
cached memory that is non-coalescing. Consequently, a STM instruction listing eight
registers and referencing non-cached memory will use eight write buffers assuming
they don’t coalesce and two write buffers if they do coalesce. A cache eviction requires
a write buffer for each dirty bit set in the cache line. The prefetch instruction requires a
fill buffer for each cache line and O, 1, or 2 write buffers for an eviction.

When adding prefetch instructions, caution must be asserted to insure that the
combination of prefetch and instruction bus requests do not exceed the system
resource capacity described above or performance will be degraded instead of
improved. The important points are to spread prefetch operations over calculations so
as to allow bus traffic to free flow and to minimize the number of necessary prefetches.

Cache Memory Considerations

Stride, the way data structures are walked through, can affect the temporal quality of
the data and reduce or increase cache conflicts. The IXP42X product line and 1XC1100
control plane processors data cache and mini-data caches each have 32 sets of 32
bytes. This means that each cache line in a set is on a modular 1-K-address boundary.
The caution is to choose data structure sizes and stride requirements that do not
overwhelm a given set causing conflicts and increased register pressure. Register
pressure can be increased because additional registers are required to track prefetch
addresses. The effects can be affected by rearranging data structure components to
use more parallel access to search and compare elements. Similarly rearranging
sections of data structures so that sections often written fit in the same half cache line,
16 bytes for the IXP42X product line and IXC1100 control plane processors, can reduce
cache eviction write-backs. On a global scale, techniques such as array merging can
enhance the spatial locality of the data.

As an example of array merging, consider the following code:

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
186

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

int a_array[NMAX];
int b_array[NVMAX];

int ix;

for (i=0; I<NMAX]; i++)

{
ix = b[i];
it (a[i] '= 0)
ix = a[i];
do_other calculations;
3

In the above code, data is read from both arrays a and b, but a and b are not spatially
close. Array merging can place a and b specially close.

struct {
int a;
int b;
} c_arrays;
int ix;

for (i=0; I<NMAX]; i++)

{
ix = c[i]-b;
if (c[i]-a '= 0)
ix = c[i].a;
do_other_calculations;
3

As an example of rearranging often written to sections in a structure, consider the code
sample:

struct employee {
struct employee *prev;
struct employee *next;
float Year2DatePay;
float Year2DateTax;
int ssno;
int empid;
float Year2Date401KDed;
float Year2DateOtherDed;

¥

In the data structure shown above, the fields Year2DatePay, Year2DateTax,
Year2Date401KDed, and Year2DateOtherDed are likely to change with each pay check.
The remaining fields however change very rarely. If the fields are laid out as shown
above, assuming that the structure is aligned on a 32-byte boundary, modifications to
the Year2Date fields is likely to use two write buffers when the data is written out to
memory. However, we can restrict the number of write buffers that are commonly used
to 1 by rearranging the fields in the above data structure as shown below:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006 DM
Order Number: 252480-006US 187

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.4.4.6

3.10.4.4.7

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

struct employee {
struct employee *prev;
struct employee *next;
int ssno;
int empid;
float Year2DatePay;
float Year2DateTax;
float Year2Date401KDed;
float Year2DateOtherDed;

};

Cache Blocking

Cache blocking techniques, such as strip-mining, are used to improve temporal locality
of the data. Given a large data set that can be reused across multiple passes of a loop,
data blocking divides the data into smaller chunks which can be loaded into the cache
during the first loop and then be available for processing on subsequence loops thus
minimizing cache misses and reducing bus traffic.

As an example of cache blocking consider the following code:

for(i=0; i<10000; i++)
for(J=0; j<10000; j++)
for(k=0; k<10000; k++)
COI1[k1 += ALTILK] * BOILi1:

The variable A[i][Kk] is completely reused. However, accessing C[j][Kk] in the j and k
loops can displace A[i][j] from the cache. Using blocking the code becomes:

for(i=0; i<10000; i++)
for(J1=0; j<100; j++)
for(k1=0; k<100; k++)
for(J2=0; j<100; j++)
for(k2=0; k<100; k++)
{
Jj1 * 100 + j2;
ki * 100 + k2;
010Kkl += ALT1LK] > BOJ1Lil;

J
k
c

Prefetch Unrolling

When iterating through a loop, data transfer latency can be hidden by prefetching
ahead one or more iterations. The solution incurs an unwanted side affect that the final
interactions of a loop loads useless data into the cache, polluting the cache, increasing
bus traffic and possibly evicting valuable temporal data. This problem can be resolved
by prefetch unrolling. For example consider:

for(i=0; i<NMAX; i++)

prefetch(data[i+2]);
sum += data[i];

}

Interactions i-1 and i, will prefetch superfluous data. The problem can be avoid by
unrolling the end of the loop.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
188

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.4.4.8

Ffor(i=0; i<NMAX-2; i++)

prefetch(data[i+2]);
sum += data[i];

3
sum += data[NMAX-2];

sum += data[NMAX-1];

Unfortunately, prefetch loop unrolling does not work on loops with indeterminate
iterations.

Pointer Prefetch

Not all looping constructs contain induction variables. However, prefetching techniques
can still be applied. Consider the following linked list traversal example:

while(p) {
do_something(p->data);
p = p->next;

The pointer variable p becomes a pseudo induction variable and the data pointed to by
p->next can be pre-fetched to reduce data transfer latency for the next iteration of the
loop. Linked lists should be converted to arrays as much as possible.

while(p) {
prefetch(p->next);

do_something(p->data);
p = p->next;

Recursive data structure traversal is another construct where prefetching can be
applied. This is similar to linked list traversal. Consider the following pre-order traversal
of a binary tree:

preorder(treeNode *t) {
if(o {
process(t->data);
preorder(t->left);
preorder(t->right);
¥

}

The pointer variable t becomes the pseudo induction variable in a recursive loop. The
data structures pointed to by the values t->left and t->right can be pre-fetched for the
next iteration of the loop.

preorder(treeNode *t) {
if(H) {
prefetch(t->right);
prefetch(t->left);
process(t->data);
preorder(t->left);
preorder(t->right);

}
3
Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 189

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Note the order reversal of the prefetches in relationship to the usage. If there is a
cache conflict and data is evicted from the cache then only the data from the first
prefetch is lost.

3.10.4.4.9 Loop Interchange

As mentioned earlier, the sequence in which data is accessed affects cache thrashing.
Usually, it is best to access data in a contiguous spatially address range. However,
arrays of data may have been laid out such that indexed elements are not physically
next to each other. Consider the following C code which places array elements in row
major order.

for(J=0; J<NMAX; j++)
Ffor(i=0; iI<NMAX; i++)

prefetch(ALI+11Li1);
sum += ALi]1L];
}

In the above example, A[i][j] and A[i+1][j] are not sequentially next to each other.
This situation causes an increase in bus traffic when prefetching loop data. In some
cases where the loop mathematics are unaffected, the problem can be resolved by
induction variable interchange. The above examples becomes:

Ffor(i=0; iI<NMAX; i++)
for(§=0; jJ<NMAX; j++)

prefetch(ALi10+1]);
sum += ALII0T;

}

3.10.4.4.10 Loop Fusion

Loop fusion is a process of combining multiple loops, which reuse the same data, in to
one loop. The advantage of this is that the reused data is immediately accessible from
the data cache. Consider the following example:

for(i=0; iI<NMAX; i++)

prefetch(A[i+1], c[i+1], c[i+1]);
A[1] = b[i] + c[i];

}
Ffor(i=0; iI<NMAX; i++)

prefetch(D[i+1], c[i+1], A[i+1]);
DLi] = ALi] + c[i];

The second loop reuses the data elements A[i] and c[i]. Fusing the loops together
produces:

for(i=0; iI<NMAX; i++)

prefetch(D[i+1], A[i+1], c[i+1], b[i+1]);

ai = b[i] + c[i];
ALi] = ai;
D[i] = ai + c[i];

}

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
190 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.4.4.11 Prefetch to Reduce Register Pressure

3.10.5

3.10.5.1

September 2006

Pre-fetch can be used to reduce register pressure. When data is needed for an
operation, then the load is scheduled far enough in advance to hide the load latency.
However, the load ties up the receiving register until the data can be used. For
example:

Idr r2, [rO]
; Process code { not yet cached latency > 60 core clocks }
add rl, rl, r2

In the above case, r2 is unavailable for processing until the add statement. Prefetching
the data load frees the register for use. The example code becomes:

pld [r0] ;prefetch the data keeping r2 available for use
; Process code

Idr r2, [rO]
; Process code { Idr result latency is 3 core clocks }

add ri, rl, r2

With the added prefetch, register r2 can be used for other operations until almost just
before it is needed.

Instruction Scheduling

This section discusses instruction scheduling optimizations. Instruction scheduling
refers to the rearrangement of a sequence of instructions for the purpose of minimizing
pipeline stalls. Reducing the number of pipeline stalls improves application
performance. While making this rearrangement, care should be taken to ensure that
the rearranged sequence of instructions has the same effect as the original sequence of
instructions.

Scheduling Loads

On the 1XP42X product line and 1XC1100 control plane processors, an LDR instruction
has a result latency of three cycles assuming the data being loaded is in the data
cache. If the instruction after the LDR needs to use the result of the load, then it would
stall for 2 cycles. If possible, the instructions surrounding the LDR instruction should be
rearranged.

to avoid this stall. Consider the following example:

add rl, r2, r3
Idr r0, [r5]
add ré, ro, rl

sub rg8, r2, r3

mul r9, r2, r3

In the code shown above, the ADD instruction following the LDR would stall for two
cycles because it uses the result of the load. The code can be rearranged as follows to
prevent the stalls:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 191

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Idr rO, [r5]

add rl, r2, r3
sub r8, r2, r3
add ré, ro, ril

mul r9, r2, r3

Note that this rearrangement may not be always possible. Consider the following
example:

cmp rl, #0
addne r4, r5, #4
subeq r4, r5, #4
Idr ro, [r4]

cmp ro, #10

In the example above, the LDR instruction cannot be moved before the ADDNE or the
SUBEQ instructions because the LDR instruction depends on the result of these
instructions. Rewrite the above code to make it run faster at the expense of increasing
code size:

cmp rl, #0

Idrne r0, [r5, #4]
Idreq r0, [r5, #-4]
addne r4, r5, #4
subeq r4, r5, #4

cmp ro, #10

The optimized code takes six cycles to execute compared to the seven cycles taken by
the unoptimized version.

The result latency for an LDR instruction is significantly higher if the data being loaded
is not in the data cache. To minimize the number of pipeline stalls in such a situation
the LDR instruction should be moved as far away as possible from the instruction that
uses result of the load. Note that this may at times cause certain register values to be
spilled to memory due to the increase in register pressure. In such cases, use a preload
instruction or a preload hint to ensure that the data access in the LDR instruction hits
the cache when it executes. A preload hint should be used in cases where we cannot be
sure whether the load instruction would be executed. A preload instruction should be
used in cases where we can be sure that the load instruction would be executed.
Consider the following code sample:

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
192 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

; all other registers are in use
sub rl, r6, r7
mul r3,r6, r2
mov r2, r2, LSL #2
orr r9, r9, #O0xf
add ro,r4, r5
Idr r6, [rO]
add r8, r6, r8
add r8, r8, #4
orr r8,r8, #O0xf
; The value in register r6 is not used after this

In the code sample above, the ADD and the LDR instruction can be moved before the
MOV instruction. Note that this would prevent pipeline stalls if the load hits the data
cache. However, if the load is likely to miss the data cache, move the LDR instruction
so that it executes as early as possible - before the SUB instruction. However, moving
the LDR instruction before the SUB instruction would change the program semantics.
It is possible to move the ADD and the LDR instructions before the SUB instruction if
we allow the contents of the register r6 to be spilled and restored from the stack as
shown below:

; all other registers are in use
str ré,[sp, #-4]!
add ro,r4,r5
Idr ré6, [rO]
mov r2, r2, LSL #2
orr r9, r9, #O0xf
add r8, r6, r8
Idr r6, [sp], #4
add r8, r8, #4
orr r8,r8, #O0xf
sub rl, r6, r7
mul r3,r6, r2
; The value in register r6 is not used after this

As can be seen above, the contents of the register r6 have been spilled to the stack and
subsequently loaded back to the register r6 to retain the program semantics. Another
way to optimize the code above is with the use of the preload instruction as shown
below:

; all other registers are in use
add ro,r4, r5
pld [ro]
sub rl, r6, r7
mul r3,r6, r2
mov r2, r2, LSL #2
orr r9, r9, #0xf
Idr r6, [rO]
add r8, r6, r8
add r8, r8, #4
orr r8,r8, #O0xf
; The value in register r6 is not used after this

The IXP42X product line and 1XC1100 control plane processors have four fill-buffers
that are used to fetch data from external memory when a data-cache miss occurs. The
IXP42X product line and IXC1100 control plane processors stall when all fill buffers are
in use. This happens when more than 4 loads are outstanding and are being fetched
from memory. As a result, the code written should ensure that no more than four loads
are outstanding at the same time. For example, the number of loads issued

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 193

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.5.1.1

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

sequentially should not exceed four. Also note that a preload instruction may cause a fill
buffer to be used. As a result, the number of preload instructions outstanding should
also be considered to arrive at the number of loads that are outstanding.

Similarly, the number of write buffers also limits the number of successive writes that
can be issued before the processor stalls. No more than eight stores can be issued. Also
note that if the data caches are using the write-allocate with write-back policy, then a
load operation may cause stores to the external memory if the read operation evicts a
cache line that is dirty (modified). The number of sequential stores may be limited by
this fact.

Scheduling Load and Store Double (LDRD/STRD)

The 1XP42X product line and 1XC1100 control plane processors introduce two new
double word instructions: LDRD and STRD. LDRD loads 64 bits of data from an
effective address into two consecutive registers, conversely, STRD stores 64 bits from
two consecutive registers to an effective address. There are two important restrictions
on how these instructions may be used:

* The effective address must be aligned on an 8-byte boundary

= The specified register must be even (r0, r2, etc.).
If this situation occurs, using LDRD/STRD instead of LDM/STM to do the same thing is
more efficient because LDRD/STRD issues in only one/two clock cycle(s), as opposed

to LDM/STM which issues in four clock cycles. Avoid LDRDs targeting R12; this incurs
an extra cycle of issue latency.

The LDRD instruction has a result latency of 3 or 4 cycles depending on the destination
register being accessed (assuming the data being loaded is in the data cache).

add ré, r7, r8

sub r5, r6, r9
; The following ldrd instruction would load values
; into registers r0 and rl

ldrd rO, [r3]

orr r8, rl, #Oxf

mul r7, ro, r7

In the code example above, the ORR instruction would stall for three cycles because of
the four cycle result latency for the second destination register of an LDRD instruction.
The code shown above can be rearranged to remove the pipeline stalls:

; The following ldrd instruction would load values
; into registers r0 and ri

ldrd r0, [r3]

add ré, r7, r8

sub r5, r6, r9

mul r7, roO, r7

orr r8, ril, #OxF

Any memory operation following a LDRD instruction (LDR, LDRD, STR and so on)
would stall for 1 cycle.

; The str instruction below would stall for 1 cycle
Idrd r0, [r3]
str r4, [r5]

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
194

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors

3.10.5.1.2

3.10.5.2

September 2006

Order Number: 252480-006US

intel.

Scheduling Load and Store Multiple (LDM/STM)

LDM and STM instructions have an issue latency of 2-20 cycles depending on the
number of registers being loaded or stored. The issue latency is typically two cycles
plus an additional cycle for each of the registers being loaded or stored assuming a
data cache hit. The instruction following an LDM would stall whether or not this
instruction depends on the results of the load. A LDRD or STRD instruction does not
suffer from this drawback (except when followed by a memory operation) and should
be used where possible. Consider the task of adding two 64-bit integer values. Assume
that the addresses of these values are aligned on an 8-byte boundary. This can be
achieved using the LDM instructions as shown below:

; r0 contains the address of the value being copied
; rl contains the address of the destination location

Idm ro, {r2, r3}
Idm rl, {r4, r5}
adds rO0, r2, r4
adc ri,r3, r5

If the code were written as shown above, assuming all the accesses hit the cache, the
code would take 11 cycles to complete. Rewriting the code as shown below using LDRD
instruction would take only seven cycles to complete. The performance would increase
further if we can fill in other instructions after LDRD to reduce the stalls due to the
result latencies of the LDRD instructions.

; r0O contains the address of the value being copied
; rl contains the address of the destination location

Idrd r2, [r0]
Idrd r4, [ri]
adds rO0, r2, r4
adc ri,r3, r5

Similarly, the code sequence shown below takes five cycles to complete.

stm
add

ro, {r2, r3}
rl, rl, #1

The alternative version which is shown below would only take three cycles to complete.

strd
add

r2, [rO]
rli, rl, #1

Scheduling Data Processing Instructions

Most IXP42X product line and 1XC1100 control plane processors’ data processing
instructions have a result latency of one cycle. This means that the current instruction
is able to use the result from the previous data processing instruction. However, the
result latency is two cycles if the current instruction needs to use the result of the
previous data processing instruction for a shift by immediate. As a result, the following
code segment would incur a one-cycle stall for the MOV instruction:

sub ré, r7, r8
add rl, r2, r3
mov r4, rl, LSL #2

The code above can be rearranged as follows to remove the one-cycle stall:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
195

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.5.3

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
196

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

add
sub

mov

rl,
ré,
ra,

r2,
r7,
ri,

r3
r8
LSL #2

All data processing

instructions incur a two cycle issue penalty and a two-cycle result

penalty when the shifter operand is a shift/rotate by a register or shifter operand is
RRX. Since the next instruction would always incur a 2 cycle issue penalty, there is no
way to avoid such a stall except by re-writing the assembler instruction. Consider the
following segment of code:

mov r3, #10

mul rd, r2, r3

add r5, r6, r2, LSL r3
sub r7, r8, r2

The subtract instruction would incur a one-cycle stall due to the issue latency of the
add instruction as the shifter operand is shift by a register. The issue latency can be
avoided by changing the code as follows:

mov r3, #10

mul r4d, r2, r3

add r5, r6, r2, LSL #10
sub r7, r8, r2

Scheduling Multiply Instructions

Multiply instructions can cause pipeline stalls due to either resource conflicts or result
latencies. The following code segment would incur a stall of zero to three cycles
depending on the values in registers rl, r2, r4 and r5 due to resource conflicts.

ro,
r3,

ri, r2
rd, r5

mul
mul

The following code segment would incur a stall of one to three cycles, depending on the
values in registers rl and r2 due to result latency.

ro, ri1, r2
rd, rO

mul
mov

Note that a multiply instruction that sets the condition codes blocks the whole pipeline.
A four-cycle multiply operation that sets the condition codes behaves the same as a 4
cycle issue operation. Consider the following code segment:

muls rO0, rl, r2
add r3, r3, #1
sub rd, rd, #1
sub r5, r5, #1

The add operation above would stall for three cycles if the multiply takes four cycles to
complete. It is better to replace the code segment above with the following sequence:

mul ro, ri, r2
add r3, r3, #1
sub rd, rd, #1
sub r5, r5, #1
cmp ro, #0

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.5.4

3.10.5.5

September 2006

Please refer to “Instruction Latencies” on page 160 to get the instruction latencies for
various multiply instructions. The multiply instructions should be scheduled taking into
consideration these instruction latencies.

Scheduling SWP and SWPB Instructions

The SWP and SWPB instructions have a five-cycle issue latency. As a result of this
latency, the instruction following the SWP/SWPB instruction would stall for 4 cycles.
SWP and SWPB instructions should, therefore, be used only where absolutely needed.

For example, the following code may be used to swap the contents of two memory
locations:

; Swap the contents of memory locations pointed to by rO and ri
Idr r2, [rO]
swp r2, [ri]
str r2, [ri1]

The code above takes nine cycles to complete. The rewritten code below, takes six
cycles to execute:

; Swap the contents of memory locations pointed to by rO and ri
Idr r2, [rO]
Idr r3, [ri]
str r2, [ri1]
str r3, [rO]

Scheduling the MRA and MAR Instructions (MRRC/MCRR)

The MRA (MRRC) instruction has an issue latency of one cycle, a result latency of two
or three cycles depending on the destination register value being accessed and a
resource latency of two cycles.

Consider the code sample:

mra r6, r7, accO
mra r8, r9, accoO
add rl, rl, #1

The code shown above would incur a one-cycle stall due to the two-cycle resource
latency of an MRA instruction. The code can be rearranged as shown below to prevent
this stall.

mra ré6, r7, accO
add rl, rl, #1
mra r8, r9, accoO

Similarly, the code shown below would incur a two-cycle penalty due to the three-cycle
result latency for the second destination register.

mra r6, r7, accO
mov rl, r7

mov ro, r6

add r2, r2, #1

The stalls incurred by the code shown above can be prevented by rearranging the code:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 197

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.5.6

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

mra ré, r7, accO
add r2, r2, #1
mov ro, ré6

mov rli, r7

The MAR (MCRR) instruction has an issue latency, a result latency, and a resource
latency of two cycles. Due to the two-cycle issue latency, the pipeline would always stall
for one cycle following a MAR instruction. The use of the MAR instruction should,
therefore, be used only where absolutely necessary.

Scheduling the MIA and MIAPH Instructions

The MIA instruction has an issue latency of one cycle. The result and resource latency
can vary from one to three cycles depending on the values in the source register.

Consider the following code sample:

mia accO, r2, r3
mia accO, r4, r5

The second MIA instruction above can stall from zero to two cycles depending on the
values in the registers r2 and r3 due to the one-to-three-cycle resource latency.

Similarly, consider the following code sample:

mia accO, r2, r3
mra rd, r5, accO

The MRA instruction above can stall from zero to two cycles depending on the values in
the registers r2 and r3 due to the one-to-three-cycle result latency.

The MIAPH instruction has an issue latency of one cycle, result latency of two cycles
and a resource latency of two cycles.

Consider the code sample shown below:

add rl, r2, r3
miaph accO, r3, r4
miaph accO, r5, r6
mra ré, r7, accO
sub r8, r3, r4

The second MIAPH instruction would stall for one-cycle due to a two-cycle resource
latency. The MRA instruction would stall for one-cycle due to a two-cycle result latency.
These stalls can be avoided by rearranging the code as follows:

miaph accO, r3, r4
add rl, r2, r3
miaph accO, r5, r6
sub r8, r3, r4
mra ré, r7, accO

3.10.5.7

Scheduling MRS and MSR Instructions

The MRS instruction has an issue latency of one cycle and a result latency of two
cycles. The MSR instruction has an issue latency of 2 cycles (6 if updating the mode
bits) and a result latency of one cycle.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
198

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

3.10.5.8

3.10.6

3.10.7

3.10.7.1

September 2006

Consider the code sample:

mrs ro, cpsr
orr ro, rO, #1
add rl, r2, r3

The ORR instruction above would incur a one cycle stall due to the two-cycle result
latency of the MRS instruction. In the code example above, the ADD instruction can be
moved before the ORR instruction to prevent this stall.

Scheduling CP15 Coprocessor Instructions

The MRC instruction has an issue latency of one cycle and a result latency of three
cycles. The MCR instruction has an issue latency of one cycle.

Consider the code sample:

add rl, r2, r3

mrc pi15, 0, r7, C1, CO, O
mov ro, r7

add rl, rl, #1

The MOV instruction above would incur a two-cycle latency due to the three-cycle
result latency of the mrc instruction. The code shown above can be rearranged as
follows to avoid these stalls:

mrc p15, 0, r7, C1, CO, O
add rl, r2, r3

add rl, rl, #1

mov ro, r7

Optimizing C Libraries

Many of the standard C library routines can benefit greatly by being optimized for the
IXP42X product line and IXC1100 control plane processors architecture. The following
string and memory manipulation routines should be tuned to obtain the best
performance from the 1XP42X product line and 1XC1100 control plane processors’
architecture (instruction selection, cache usage and data prefetch):

strcat, strchr, strcmp, strcoll, strcpy, strcspn, strlen, strncat, strncmp, strpbrk, strrchr,
strspn, strstr, strtok, strxfrm, memchr, memcmp, memcpy, memmove, memset

Optimizations for Size

For applications such as cell phone software it is necessary to optimize the code for
improved performance while minimizing code size. Optimizing for smaller code size will,
in general, lower the performance of your application. This section contains techniques
for optimizing for code size using the IXP42X product line and IXC1100 control plane
processors instruction set.

Space/Performance Trade Off

Many optimizations mentioned in the previous sections improve the performance of
ARM code. However, using these instructions will result in increased code size. Use the
following optimizations to reduce the space requirements of the application code.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 199

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

3.10.7.1.1

3.10.7.1.2

3.10.7.1.3

Intel® I1XP42X product line and 1XC1100 control plane processors—Intel XScale® Processor

Multiple Word Load and Store

The LDM/STM instructions are one word long and let you load or store multiple
registers at once. Use the LDM/STM instructions instead of a sequence of loads/stores
to consecutive addresses in memory whenever possible.

Use of Conditional Instructions

Using conditional instructions to expand if-then-else statements as described in
“Conditional Instructions” on page 173 will result in increasing the size of the generated
code. Therefore, do not use conditional instructions if application code space
requirements are an issue.

Use of PLD Instructions

The preload instruction PLD is only a hint, it does not change the architectural state of
the processor. Using or not using them will not change the behavior of your code,
therefore, you should avoid using these instructions when optimizing for space.

88

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
200

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Intel XScale® Processor—Intel® IXP42X product line and IXC1100 control plane processors l n tel

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 201

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® IXP42X product line and 1XC1100 control plane processors—Network Processor Engines

(NPE)

Network Processor Engines (NPE)

Note:

Table 94.

The Network Processor Engines (NPE) are dedicated function processors containing
hardware co-processors that are integrated into the Intel® IXP42X Product Line of
Network Processors and 1XC1100 Control Plane Processor. The NPEs are used to off
load processing functions required by the Intel XScale® Processor.

The Network Processor Engines are high-performance, hardware multi-threaded
processors with additional local hardware assist functionality used to off load processor
intensive functions such as MIl (MAC), CRC checking/generation, AAL2, DES, 3DES,
AES, SHA-1, MD-5, etc.

Certain NPEs are not available — depending on which of the IXP42X product line and
IXC1100 control plane processors is used. Table 94 shows which network-processor
models have these NPEs available.

Network Processor Functions

Device UTOPIA | HSS | MI10 | MIT1 AES3/DESES/ M”'t}:gtgme' S',*A’E'_é/
IXP425 X X 8 X
IXP423 X X 8
IXP422 X X X
IXP421 X X X 8
IXP420 X
IXC1100 X

All instruction code for the NPEs is stored locally with a dedicated instruction memory
bus and dedicated data memory bus. These engines support processing of dedicated
peripherals interfaces on the IXP42X product line and IXC1100 control plane
processors. The peripherals supported by the use of the NPEs are the 2-MlI interfaces,
UTOPIA-2 interface, and two high-speed serial interfaces.

The NPE core is a hardware multi-threaded processor engine that is used to accelerate
functions that are difficult to achieve high performance in a standard RISC processor.
Each NPE core is a 133-MHz processor core that contains self-contained instruction
memory and self-contained data memory that operate in parallel.

In addition to having separate instruction/data memory and local code store, the NPE
core supports hardware multi-threading with support for multiple contexts. The support
of hardware multi-threading allows an efficient processor engine with minimal
processor stalls due to the ability of the processor core to switch context to a new
context in a single clock cycle based upon a prioritized/preemptive basis.

The prioritized/preemptive nature of the context switching allows time critical
applications to be implemented in a low-latency fashion, which is required when
processing multi-media applications. The NPE core also connects several hardware-
based co-processors. The co-processors are used to implement several functions that

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
202

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Network Processor Engines (NPE)—InteI® IXP42X product line and I1XC1100 control plane
processors

are difficult for a processor to implement. The type of functions implemented by the co-
processors are serialization/de-serialization, CRC checking/generation, DES/3DES,
AES, SHA-1, MD-5, and HDLC bit-stuffing/de-stuffing. These coprocessors are
implemented in hardware, therefore allowing the coprocessors and the Network
Processor Engine core to operate in parallel.

The combined forces of the hardware multi-threading, local code store, independent
instruction memory, independent data memory, and parallel processing allows the Intel
XScale processor to be utilized for application purposes. The multi-processing capability
of the peripheral interface functions allows unparalleled performance to be achieved by
the application running on the Intel XScale processor.

8§88

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006 DM
Order Number: 252480-006US 203

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Internal Bus

50

Internal Bus

51

The internal bus architecture of the Intel® IXP42X Product Line of Network Processors
and I1XC1100 Control Plane Processor are designed to allow parallel processing to occur
and isolate bus utilization based upon particular traffic patterns. The bus is segmented
into three major buses, the North AHB, the South AHB, and the APB.

The North AHB is a 133-MHz, 32-bit bus that can be mastered by the WAN/Voice
Network Processor Engine (NPE), Ethernet NPE A, or Ethernet NPE B. The targets of the
North AHB can be the SDRAM or the AHB/AHB Bridge. The AHB/AHB Bridge will allow
access by the NPEs to the peripherals and internal targets on the South AHB.

Data transfers by the NPEs from the North AHB to the South AHB are targeted
predominately to the queue manager. Transfers to the AHB/AHB Bridge may be
“posted” when writing or “split” when reading — allowing control of the North AHB to
be given to another master on the North AHB and allowing the bus to achieve
maximum efficiency.

Transfers to the AHB/AHB Bridge are considered to be small and infrequent, relative to
the traffic passed between the NPEs on the North AHB and the SDRAM.

The South AHB is a 133-MHz, 32-bit bus that can be mastered by the Intel XScale®
Processor, PCI Controller, and the AHB/AHB Bridge. The targets of the South AHB can
be the SDRAM, PCI Controller, Queue Manager, Expansion Bus Controller, or the AHB/
APB Bridge. Accessing across the AHB/APB Bridge allows interfacing to peripherals
attached to the APB Bus.

The APB is a 66.66 MHz (which is 2 * OSC_IN input pin.) (32-bit bus that can be
mastered by the AHB/APB Bridge only. The targets of the APB can be the High-Speed
UART Interface, Console UART Interface, USB v 1.1 interface, all NPEs, the Internal Bus
Performance Monitoring Unit (PMU), Interrupt Controller, GPIO, and Timers. The APB
interface to the NPEs is used for NPE code download, part configuration, and status
collection.

The maximum length that any AHB master can hold the AHB is for eight 32-bit words.
This feature allows for fairness among all masters on the AHBs.

Internal Bus Arbiters

The Intel® IXP42X product line and 1XC1100 control plane processors contain two
internal bus arbiters, one arbiter for North AHB transactions and one arbiter for South
AHB transactions. The arbiters are used to ensure that at any particular time only one
AHB master has access to a given AHB. The arbiters perform this function by observing
all of the AHB master requests to the given AHB segment and deciding which AHB
master will be the next owner of the AHB.

The arbiters have a standard interface to all bus masters and split-capable slaves in the
system. Any AHB master can request an AHB at any cycle. The arbiters sample the AHB
requests. If the particular AHB master is requesting the AHB and is next in the round
robin list, the arbiter will grant the Master the AHB.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
204

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Internal Bus—Intel® 1XP42X product line and 1XC1100 control plane processors l n tel

51.1

Table 95.

52

September 2006

The arbiters also have the capability to handle split transfers. A split transfer is when:
= An AHB master request a read from a split capable AHB target
= The split capable AHB target issues a split transfer indication to the arbiter

= The arbiter allows other transactions to take place on the AHB while the AHB
master that issued the request that resulted in the split transfer waits on the read
data to be returned from the split capable AHB target

= The split capable AHB target completes the read transaction and notifies the arbiter

= The arbiter will grant the AHB master that requested the split transfer the bus in
the normal round robin progression

= The read data will be transferred from the split capable AHB target to the AHB
master that issued the request that resulted in the split transfer

All split capable AHB targets split a single AHB master read request at any given
instance. If the split capable AHB target receives another read request while servicing a
split transaction, the split capable AHB target will issue a retry. The only split capable
targets on the South AHB is the Expansion Bus. The only split capable target on the
North AHB is the AHB/AHB Bridge.

The arbiters send event information to the Internal Bus Performance Monitoring Unit
(IBPMU) so that the North AHB and South AHB bus performance can be observed. The
events that may be monitored are provided in section 3.11 Internal Bus Performance
Monitoring Unit (IBPMU).

The North AHB Arbiter is identical to the South AHB Arbiter in all respects except for
the bus masters and targets in which they are connected.

Priority Mechanism

The arbiters allow the bus initiators access to the AHBs using a round-robin scheme.
Table 95 illustrates a generic arbitration example for three AHB masters requesting the
AHB. The functionality of the independent arbiters is identical.

Each of the bus initiators (X, Y, and Z) is constantly requesting the bus. The bottom row
of Table 95 lists the current bus initiator/winner of the initiators. For example, when all
three masters are requesting access, X will be the winner, and then Y and Z will be
requesting. Next, Y wins the AHB and X returns with a new request. So ZX are still valid
with Z being the oldest. Next, Z wins the bus, etc.

Bus Arbitration Example: Three Requesting Masters

Initial +1 +2 +3 +4 +5 +6 +7 +8 49

Requesting XYZ Yz ZX XY Yz zX XY Yz zX XY
Masters

Winning Bus _ X v 7 X v 2 X v 5
Initiator

Memory Map

Table 96 shows the memory map of peripherals connected to the AHB.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 205

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Internal Bus

Table 96. Memory Map

Start Address End Address Size Use

0000_0000 OFFF_FFFF 256 MB Expansion Bus Data (Mirrored)/SDRAM Data’
1000_0000 2FFF_FFFF 768 MB SDRAM Data (Aliased)’
3000_0000 3FFF_FFFF 256 MB (Reserved)
4000_0000 47FF_FFFF 128 MB (Reserved)
4800_0000 4FFF_FFFF 128 MB PCI Data
5000_0000 5FFF_FFFF 256 MB Expansion Bus Data
6000_0000 63FF_FFFF 64 MB Queue manager
6400_0000 BFFF_FFFF (Reserved)
C000_0000 C3FF_FFFF 64 MB PCI Controller Configuration and Status Registers
C400_0000 C7FF_FFFF 64 MB Expansion Bus Configuration Registers
C800_0000 C800_OFFF 1 KB High-Speed UART
C800_1000 C800_1FFF 1 KB Console UART
C800_2000 C800_2FFF 1 KB Internal Bus Performance Monitoring Unit
C800_3000 C800_3FFF 1 KB Interrupt Controller
C800_4000 C800_4FFF 1 KB GPIO Controller
C800_5000 C800_5FFF 1 KB Timers
o000 | conosrrE | ke | Bl WP NFE A (I00 softare
C800_7000 | C80O_7FFF LKB | Definition) - Not User Programmable.
o000 | conosrrr | ke | SAEUNPER S NPEC (0ao0 sorware
C800_9000 C800_9FFF 1 KB Ethernet MAC A
C800_A000 C800_AFFF 1 KB Ethernet MAC B
C800_B000 C800_BFFF 1 KB USB Controller
C800_C000 C800_FFFF (Reserved)
C801_0000 CBFF_FFFF (Reserved)
CC00_0000 CCOO_OOFF 256 Byte SDRAM Configuration Registers
CC00_0100 FFFF_FFFF (Reserved)

t The lowest 256 MB of address space is configurable based on the value of a configuration register

located in the Expansion Bus Controller.

= When bit 31 (MEM_MAP) of configuration register #0 (EXP_CNFGO) is set to logic 1, the Expansion Bus
occupies the lowest 256 MB of address space.

= When bit 31 (MEM_MAP) of configuration register #0 (EXP_CNFGO) is set to logic O the Expansion Bus
occupies 256 MB of address space starting at 5000_0000 while the SDRAM occupies the lowest 256 MB
of address address space
In both cases, regardless of the value of MEM_MAP, the SDRAM occupies the 768 MB (1000_0000 to
2FFF_FFFF) immediately following the lowest 256 MB and the Expansion Bus can be accessed starting
at address 5000_0000.
The largest SDRAM memory size supported by the Intel® IXP42X product line and 1XC1100 control
plane processors is 256 MB. The actual memory implemented in any given configuration will be aliased
(repeated) to fill the 1 GB SDRAM address space. Due to aliasing, all of the SDRAM will be accessible
even when the Expansion Bus occupies the lowest 256 MB of address space. On reset, bit 31
(MEM_MAP) of configuration register #0 (EXP_CNFGO) in the Expansion Bus will be set to logic 1. This
setting is required because the dedicated boot memory is flash memory located on the Expansion Bus.

8 8

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
206 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

®
Internal Bus—Intel® 1XP42X product line and 1XC1100 control plane processors l n tel

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 207

Download from Www.Somanuals.com. All Manuals Search And Download.

6.0

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

PCI Controller

The Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane
Processor contains a 32-bit, 66-MHz PCI interface compatible with PCI Version 2.2. The
PCI interface is capable of operating as either a host or an option (i.e., not the host).
The PCI Controller supports these modes of operation by enabllng access to the Intel®
IXP42X product line and IXC1100 control plane processors’ configuration register space
from either the Intel XScale® Processor when operating as a host or from an external
PCI Device using the PCI Bus when configured as an option. Initiator or target
operations are supported by the PCI interface irrelevant of the 1XP42X product line and
IXC1100 control plane processors’ configurations (could be configured as a PCI Host or
PCI Option Function).

When the PCI Controller is configured as a host, an internal PCI arbiter may be utilized
to allow up to four devices to be connected to the IXP42X product line and 1XC1100
control plane processors without the need for an external arbiter. However, even
though the internal PCI arbiter exists, the internal PCI arbiter is not required to be used
when the PCI Controller is configured in host or for that matter option mode of
operation.The arbiter functionality is completely independent from the PCI mode of
operation. An example connection of this configuration is contained in Figure 30. The
PCI arbiter function will allow access to the PCI bus in a round-robin fashion. The PCI
Controller operating as an initiator can generate Memory, 1/0, or Configuration PCI bus
cycles.

Operating as a target, the PCI Controller can accept Memory, 1/0, or Configuration PCI
bus cycles. When the PCI Controller is configured as an option, the internal PCI arbiter
can be disabled and REQO/GNTO are used to connect to an external arbiter on the PCI
bus.

An example of the IXP42X product line and IXC1100 control plane processors
connected in this configuration is shown in Figure 31. The PCI arbiter can be enabled/
disabled independently from the PCI host/option configuration. The PCI Controller also
contains two DMA engines to allow data movement between the PCI bus and the
SDRAM without the aid of the Intel XScale processor.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
208

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

Figure 30.

Figure 31.

September 2006

Processors’ PCI Bus Configured as a Host

intel.

PCI_REQO
PCI_GNTO
= P Intel® 82559
PCI Bused Signals PClI-to-Ethernet
® > Controller
PCI_REQ1
PCI GNT1
»| PCl-to-VGA
Controller
. ® >
Intel” IXP42X
Product Line /
IXC1100 Control PCI_REQ2
Plane ®
PCI_GNT2 Intel
Processor PCl-t0-802.11
Controller
@
PCI_REQ3
PCI_GNTS »| PCl-to-ATA
HDD Controller
P
B1734-02
Processors’ PCI Bus Configured as an Option
< PCI_REQO Intel® IXP42X
PC| GNTO Product Line /
— IXC1100 Control
. Plane
PCIB |
< €1 Bused Signals @ Processor
Host
Processor PCI_REQ
PCI_GNT
PCI-to-VGA Controller
—>

B1735-02

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

DM
209

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

The 1XP42X product line and 1XC1100 control plane processors PCI Controller block
diagram is given in Figure 32.

Figure 32. Processors’ PCI Controller Block Diagram

South AHB

*

South AHB Master Interface Nl DMA Controller South AHB Slave Interface

A A

CSR Interface

PCI
Arbiter

PCI
Controller

v CSRs

v y

Target Target Initiator Initiator Initiator
Receive Transmit PCI Controller Transmit Receive Request
FIFO FIFO PCI FIFO FIFO FIFO
. Configuration
Registers
PCI Target Interface PCI Initiator Interface
PCI Bus
B1733-02

The PCI Controller has two main interfaces that allow interconnection between an
external PCI bus and the South AHB. The external PCI bus has both a target and an
initiator controller that interfaces to the PCI bus.

When an external PCI device want to use the I1XP42X product line and IXC1100 control
plane processors as the target of a PCI transfer, the PCI Controller Target interface will
interpret the data and forward the appropriate information (data/address/control) to
the Target interface FIFOs. The Target Interface FIFOs are 8 words deep. The PCI-

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM September 2006
210 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

target interface — in conjunction with the target interface FIFOs — will use the South
AHB Master interface of the PCI Controller to provided read and write access to AHB
agents, PCI Controller PCI Configuration registers (through Configuration cycles). The
PCI Controller Configuration and Status Registers accessible through Target
transactions will be accessed directly from the PCl-Target Interface.

Table 97 lists the supported command types, when the 1XP42X product line and
IXC1100 control plane processors are used as a target of a PCI transaction. The PCI
Target interface does not support the following features:

« Lock cycles
= VGA palette snoop
« Dual address cycles

= Cache-line wrap mode addressing (Disconnected after first data phase of
transaction)

« Type 1 Configuration space

Table 97. PCI Target Interface Supported Commands

Pel CoErngbaizg/Byte Command Type Support
0x0 Interrupt Acknowledge Not Supported
Ox1 Special Cycle Not Supported
0x2 1/0 Read Supported
0x3 1/0 Write Supported
0x4 (Reserved)
0x5 (Reserved)
0x6 Memory Read Supported
0ox7 Memory Write Supported
0x8 (Reserved)
0x9 (Reserved)
OxA Configuration Read Supported
OxB Configuration Write Supported
OoxC Memory Read Multiple Converted To Memory Read
0xD Dual Address Cycle Not Supported
OxE Memory Read Line Converted To Memory Read
OxF Memory Write and Invalidate Converted To Memory Write

When the I1XP42X product line and 1XC1100 control plane processors want to use an
external PCI device as the target of a PCI transfer, the PCI Controller Initiator interface
will be used to generate the appropriate PCI bus cycles and forward the information to
the PCI bus. There are three ways in which PCI bus cycles may be initiated:

— The DMA channels generate PCI Memory cycles. Refer to “PCl Controller DMA
Controller” on page 234 for additional details.

— AHB masters generate PCI Memory cycles using memory-mapped direct access
on the AHB bus. Refer to “Example: AHB Memory Base Address Register, AHB
1/0 Base Address Register, and PClI Memory Base Address Register” on
page 220 for additional details.

— Interrupt Acknowledge, Special Cycle, 1/0, Configuration, and single-data-
phase Memory cycles are generated indirectly by AHB masters using a Non-

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 211

Download from Www.Somanuals.com. All Manuals Search And Download.

Table 98.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

pre-fetch CSR mechanism. Refer to “PCl Controller Configured as Host” on
page 213 for additional details.

For PCI bus memory cycles, the PCI Initiator interface will receive requests for PCI
transfer from the PCI Controller DMA channels. For PCI bus 1/0 cycles and configuration
cycles, the PCI Initiator interface will receive requests for PCI transfer from an AHB
master (a single word PCI Bus Memory Cycle can be produced using this method).

Requests for PCI transfers using the PCI Controller Initiator interface are buffered in
the Initiator Request FIFO and handled by the PCI Controller Initiator interface when
appropriate. The Initiator interface will receive the appropriate transfer information
from the Initiator Request FIFO; which is the address, word count, byte enables, and
PCI command type.

The Initiator Request FIFO is a four-entry FIFO allowing up to four requests to be
buffered. If a request is issued that generates an initiator transaction and the Initiator
Request FIFO is already full, a retry will be issued to the AHB master that initiated the
request.

After gathering the appropriate information, the PCI Initiator interface performs the
specified transaction on the PCI bus, handling all bus protocol and any retry/disconnect
situations. The data will be moved from the South AHB to the PCI bus using the
Initiator Data FIFOs. The Initiator Data FIFOs are eight words deep. Table 98 lists the
supported PCI transaction types produced by the IXP42X product line and 1XC1100
control plane processors’ PCI Controller Initiator Interface.

PCI Initiator Interface-Supported Commands

PCI Byte Enables Command Type Support
0x0 Interrupt Acknowledge Supported
Ox1 Special Cycle Supported
0x2 1/0 Read Supported
0x3 1/0 Write Supported
0ox4 (Reserved)
0x5 (Reserved)
0x6 Memory Read Supported
ox7 Memory Write Supported
0x8 (Reserved)
0x9 (Reserved)

OxA Configuration Read Supported
0xB Configuration Write Supported
oxC Memory Read Multiple Not supported
OxD Dual Address Cycle Not supported
OxE Memory Read Line Not supported
OxF Memory Write and Invalidate Not supported

It is important to note that the target interface — and the DMA channels used for
supporting the initiator interface — can contend for the use of the South AHB Master
Controller. When this contention occurs, arbitration for control of South AHB Master
Controller is carried out on two levels.

On the first level, the PCI Target Interface requests and the DMA requests alternate for
priority access. On the first transaction the PCI Target interface would gain access to
the South AHB Master Controller’s services, followed by one of the DMA channels

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
212

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

gaining access to the South AHB Master Controller’s services, then the PCI Target
interface would gain access to the South AHB Master Controller’s services again,
followed by the second DMA channel gaining access to the South AHB Master
Controller’s services, etc.

On the second level of arbitration for the South AHB Master Controller’s services, the
two DMA channels will alternate for priority access. DMA channel O would gain access
to the South AHB Master Controller’s services first, followed by DMA channel 1, and
then DMA channel 0, etc. This arbitration scheme balances the high-bandwidth DMA
traffic with what should be lower bandwidth PCI Target Interface traffic and is only used
in cases where contention exists. For instance, if there are only PCI Target Interface
requests being received by the South AHB Master Controller. The PCI Target would
continually get access to the South AHB Master Controller until a DMA request is
detected.

The PCI Controller also contains two configuration spaces. The PCI Controller Control
and Status Register (CSR) configuration space is used to configure the PCI Controller,
initiate single cycle PCI transactions using the non-pre-fetch registers, operate the DMA
channels, report PCI Controller status, and allow access to the PCI Controller PCI
Configuration Registers. The PCI Configuration Space is a 64-byte, PCI type-0
configuration space that supports a single function.

The PCI Configuration Space can be written or read using registers defined in the
Control and Status Registers when the 1XP42X product line and 1XC1100 control plane
processors are configured as a PCI Host. An external PCI Master using PCI
Configuration Cycles can write or read the PCl Configuration Space when the IXP42X
product line and IXC1100 control plane processors are configured as an Option. The
PCI Configuration Space may be accessed by the Intel XScale processor or the PCI bus
but never by both at the same time.

6.1 PCI Controller Configured as Host

The IXP42X product line and 1XC1100 control plane processors can be configured as a
host function on the PCI bus. Configuring the 1XP42X product line and 1XC1100 control
plane processors as a host does not require the internal PCI arbiter function in the PCI
Controller to be enabled.

The first step to using the PCI interface in any mode of operation is to determine the
mode of operation and then configure the interface. The PCI bus mode of operation can
be obtained by reading bit O of the PCI Controller Control and Status Register
(PCI_CSR). If bit O of the PCI Controller Control and Status Register (PCI_CSR) is set to
logic 0O, the IXP42X product line and 1XC1100 control plane processors is required to
function as an Option on the PCI bus. If bit O of the PCI Controller Control and Status
Register (PCI_CSR) is set to logic 1, the IXP42X product line and IXC1100 control plane
processors is required to function as the Host on the PCI bus.

Bit O of the PCI Controller Control and Status Register (PCI_CSR) will be set by the
logic level contained on Expansion Bus Address Bus bit 1 at the de-assertion of the
reset signal supplied to the IXP42X product line and IXC1100 control plane processors.
The internal arbiter will be enabled/disabled based on the logic level contained on
Expansion Bus Address Bus bit 2 at the de-assertion of the reset signal supplied to the
IXP42X product line and IXC1100 control plane processors. The PCI Controller Control
and Status Register (PCI_CSR) bit 1 captures the logic level contained on Expansion
Bus Address Bus bit 2 at the de-assertion of reset.

If bit 1 of the PCI Controller Control and Status Register (PCI_CSR) is set to logic 1, the
IXP42X product line and IXC1100 control plane processors’s internal arbiter is enabled.
If bit 1 of the PCI Controller Control and Status Register (PCI_CSR) is set to logic O, the
IXP42X product line and IXC1100 control plane processors’ Internal Arbiter is disabled.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 213

Download from Www.Somanuals.com. All Manuals Search And Download.

Figure 33.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Once the PCI controller has determined that the mode of operation is to be host, the

IXP42X product line and 1XC1100 control plane processors are required to configure the
rest of the PCI bus. However, before the IXP42X product line and IXC1100 control plane
processors can configure the rest of the PCI bus, the PCI Controller must be configured.

The Configuration and Status Registers must be initialized and the PCI Controller
Configuration and Status Registers must be initialized. (For more detail on initializing
the Configuration and Status Registers, see “Initializing PCI Controller Configuration
and Status Registers for Data Transactions” on page 219. For more detail on initializing
the PCI Controller Configuration and Status Registers, see “Initializing the PCI
Controller Configuration Registers” on page 222.)

After the local Configuration and Status Register and PCI Controller Configuration and
Status Registers have been initialized, the remainder of the PCI bus is ready to be
configured by the hosting 1XP42X product line and 1XC1100 control plane processors.
The IXP42X product line and 1XC1100 control plane processors will now begin to initiate
configuration cycles to all of the potential devices on the PCI bus.

The order and nature in which the devices are learned is up to the individual
application. However, one bit that must be configured prior to initiating PCI
Configuration Cycles with the 1XP42X product line and 1XC1100 control plane
processors. Bit 2 of the PCI Control Register/Status (PCI_SRCR) Register must be set
to logic 1 using the methods described in “Initializing the PCI Controller Configuration
Registers” on page 222. The setting of bit 2 to logic 1 enables PCI bus-mastering
capability.

Two types of PCI Configuration Cycles can be generated using the 1XP42X product line
and IXC1100 control plane processors: Type 0 and Type 1 Configuration Cycles. Type O
Configuration Cycles are use to communicate to a PCI device which is contained on the
same local segment that the generator of the Configuration Cycles. Type 1
Configuration Cycles are use to communicate to a PCI device which is contained on
another segment of the PCI bus other than the PCI bus segment that is generating the
Configuration Cycles, i.e., a segment on the other side of a PCI bridge.

A PCI bus can have up to 32 devices (logically but there are loading restrictions that
limit this number) per segment and up to 256 segments. Figure 33 shows the address
makeup for Type 0 PCI bus configuration cycles and Figure 34 shows the address
makeup Type 1 PCI bus configuration cycles.

Type O Configuration Address Phase

sL LTI IRE T faal [=~] [[] [«f<]e
(Reserved) llz\luunnc]tgcé? Register Number %//FC)I:

Cycle Type=00 for Type 0 Configuration Cycles
Register Number=Defines one of 64 PCI defined 32-bit registers

Function Number=Decodes 1 of 8 possible functions per PCI device (only Function O supported for the IXP42X
product line and I1XC1100 control plane processors)

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
214

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

Figure 34.

September 2006

Type 1 Configuration Address Phase

I < ™ ©of W -l O
sl [LTI LIR[RITTT LT [afal [] [=]8l [o]~[[[][s[<]e
(Reserved) Bus Segment Number Device Number Function Register Number Cycle
Number Type

Cycle Type =01 for Type 1 Configuration Cycles
Register Number =Defines one of 64 PCI defined 32-bit registers

Function Number=Decodes one of eight possible functions per PCI device (only Function O supported for the
IXP42X product line and I1XC1100 control plane processors)

Device Number =Decodes one of 32 possible devices per PCl bus segment (may be limited by loading
restrictions, refer to the PCI Local Bus Specification, Rev. 2.2)

Bus Segment Number = Decodes one of 256 possible bus segments per PCI Bus (refer to the PCI Local Bus

Specification, Rev. 2.2)

Configuration cycles will be produced by the IXP42X product line and 1XC1100 control
plane processors using four 32-bit Configuration and Status Registers referred to as the
Non-Pre-fetch Registers. These registers are

= PCI Non-Pre-fetch Access Address (PCI_NP_AD) Register

= PCI Non-Pre-fetch Access Command/Byte Enables (PCI_NP_CBE) Register
= PCI Non-Pre-fetch Access Write Data (PCI_NP_WDATA) Register

= PCI Non-Pre-fetch Access Read Data (PCI_NP_RDATA) Register

The Non-Pre-fetch Register accesses can also be used to produce memory and 1/0 PCI
bus cycle. However, these cycles can only be single cycle accesses.

Non-Pre-fetch Read Cycles will be implemented by placing a 32-bit PCI address in the
PCI Non-Pre-fetch Access Address (PCI_NP_AD) Register and then placing the PCI
Command Type and Byte Enables for the desired read cycle in the PCI Non-Pre-fetch
Access Command/Byte Enables (PCI_NP_CBE) Register. The PCI Controller then will
initiate the proper transaction on the PCI bus to read the requested data. Then the
returned data is placed in the PCI Non-Pre-fetch Access Read Data (PCI_NP_RDATA)
Register.

To avoid incorrect data from being read by the initiator of this transaction, retries will
be issued to any AHB master that attempts to read the PCI Controller Configuration and
Status Registers prior to the Non-Pre-fetch PCI read data being placed into the PCI
Non-Pre-fetch Access Read Data (PCI_NP_RDATA) Register. This action assures that the
next read of the PCI Non-Pre-fetch Access Read Data (PCI_NP_RDATA) Register does
not contain stale data.

Non-Pre-fetch Write Cycles will be implemented by:

« Placing a 32-bit PCI address in the PCI Non-Pre-fetch Access Address (PCI_NP_AD)
Register

« Placing the PCI Command Type and Byte Enables for the desired write cycle in the
PCI Non-Pre-fetch Access Command/Byte Enables (PCI_NP_CBE) Register

= Writing the data that is to be placed onto the PCI bus into the PCI Non-Pre-fetch
Access Write Data (PCI_NP_WDATA) Register

The PCI Controller then will initiate the proper transaction on the PCI bus to place the
requested write data onto the PCI bus. To avoid the write data from being corrupted by
new request from an AHB master, retries will be issued to any AHB master that
attempts to write the PCI Controller Configuration and Status Registers prior to the
completion of the requested PCI transaction.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 215

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Implication:

6.1.1

It is also noteworthy to mention that the PCI Controller does not interpret or
manipulate the contents of the Non-Pre-fetch Registers. The address, command, byte
enables, and write data are passed to the PCI bus as-is. For example, 1/0 read and 1/0
write requests must be set-up such that the byte-enables are consistent with the 2
LSBs of the address in accordance with the PCI local-bus specification.

If an external PCI device has non-prefetch memory and requires either a 16-bit or 8-bit
read, there is a possibility that the device will not respond correctly to the IXP42X
product line and I1XC1100 control plane processors’ memory reads. This is because the
IXP42X product line and IXC1100 control plane processors always perform a 32-bit
read to the non-prefetch memory region specified in register PCI_NP_AD.

The 8-bit or 16-bit external device should respond with a “target abort,” as per the PCI
2.2 specification, if a 32-bit read is performed to its non-prefetch memory and it
requires a 16-bit or 8-bit read.

The 1XP42X product line and 1XC1100 control plane processors will drive all the byte
enables asserted during all memory cycle reads of the external PCI device, no matter
what the PCI_NP_CBE register contains in the byte enable bits.

To read non-prefetch memory sub-DWORDS (8-bit or 16-bit), use 1/0 reads. If it is
necessary to use memory cycle reads of sub-DWORDS, a hardware resolution may be
required. Contact your Intel field application engineer if you require a hardware
resolution.

Example: Generating a PCI Configuration Write and Read

This example examines the initializing of the Base Address Register.

1. Assume a PCI device has been located and now the Base Address Register
configuration of this PCI device is going to be initialized. The first step is to write all
logic 1s to the PCI Base Address Registers.

Base Address Register O will be located at hexadecimal offset of 0x10 when the
ID_SEL of this device is active and the access is a PCI Bus Configuration Cycle. The
intent of this exercise is to initialize this Base Address Register.

2. Write a hexadecimal value of 0x00010010 to the PCI Non-Pre-fetch Access Address
(PCI_NP_AD) Register.
This value will allow a write to a Type 0 PCI configuration space address location
0x10. Notice also that address bit 16 is set to logic 1. This bit is set, assuming that
ID_SEL for a given device on the local segment is selected using address bit 16.
This value chosen for PCI_NP_AD follows the convention outlined in Figure 33,
“Type O Configuration Address Phase” on page 214.

3. Write a hexadecimal value of 0x0000000B to the PCI Non-Pre-fetch Access
Command/Byte Enables (PCI_NP_CBE) Register.

Bits 7:4 of this register specify the byte enables for the data transfer. The selection
of all bits to logic O signifies that all bytes are to be written. Bits 3:0 of this register
specify the PCI Command Type to be used for the data transfer. A logic value of
1011b signifies that a Configuration Write Cycle is being requested.

4. Write a hexadecimal value of OXFFFFFFFF to the PCI Non-Pre-fetch Access Write
Data (PCI_NP_WDATA) Register.
This write to the Configuration and Status Registers will cause a PCI Configuration
Write Cycle with all byte-enables active to be initiated on the PCI bus.

5. Base Address Register O has been written with all logic 1s. However, only some of
these bits will be set to logic 1.
Logic 1s will only be written to the bits corresponding to a given address space
defined for the PCI device. For instance, assume that the PCI device being
configured requires a 64-Mbyte address space for Base Address Register O used for

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
216

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

memory transactions with no adverse side effects to reads. Only bits (31:26) would
be written.

Now, the IXP42X product line and 1XC1100 control plane processors must read
Base Address Register O to determine the Address Space, Address space type
(memory or 1/0), and any limitations to reading this address space.

6. Write a hexadecimal value of 0x00010010 to the PCI Non-Pre-fetch Access Address
(PCI_NP_AD) Register.
This value will allow a read from a Type O PCI configuration space address location
0x10. Notice also that address bit 16 is set to logic 1.
This bit is set assuming that ID_SEL for a given device on the local segment is
selected, using address bit 16. This device is the one that is attempting to be
accessed.

7. Write a hexadecimal value of 0OXOOO0000A to the PCI Non-Pre-fetch Access
Command/Byte Enables (PCI_NP_CBE) Register.
Bits 7:4 of this register specify the byte-enables for the data transfer. The selection
of all bits to logic O signifies that all bytes are to be read.
Bits 3:0 of this register specify the PCI Command Type to be used for the data
transfer. A logic value of 1010b signifies that a Configuration Read Cycle is being
requested. This action causes the PCI Controller to initiate the read transaction.

8. The data returned will be placed in the PCI Non-Pre-fetch Access Read Data
(PCI_NP_RDATA) Register.
The returned value looks like hexadecimal OXFCO00008. This value signifies that an
address space of 64 Mbyte is being requested by Base Address Register 0 of the
PCI device to be mapped anywhere into the PCl address map, the address space is
a Memory Space, and there are no special read conditions that apply to this
address space. (See the PCI Local Bus Specification, Rev. 2.2 for more details.)

9. Now the IXP42X product line and IXC1100 control plane processors must specify
the PCI address space that this Base Address Register is going to occupy. This is
done by executing a Configuration Write to bits 31:26 of Base Address Register 0 —
with the logical value where the address is going to reside.

Assume we want the address to reside at PCI location OXAO000000. A Configuration
Write of OXA0000000 will be written to Base Address Register O of the external PCI
device. No other PCI assignment can be placed between PCIl addresses
OxA0000000 and OxXA3FFFFFF.

When the IXP42X product line and 1XC1100 control plane processors are functioning in
Host mode of operation, all other PCI Configuration Registers contained on external PCI
devices will be configured or used to configure the PCI Bus using PCI Configuration
Read/Write Cycles produced from the IXP42X product line and 1XC1100 control plane
processors for each device on the PCI bus. Some examples of these parameters are
Device ldentifications, Vendor ldentifications, Base Address Register, and Grant
Latencies. (For more details on exact settings/usage of these parameters for a given
application, see the PCI Local Bus Specification, Rev. 2.2.)

The IXP42X product line and 1XC1100 control plane processors have now been
successfully configured as a PCI host and successfully configured the PCI bus. PCI
memory and PCI 1/0 transaction can now take place.

For more detail on generating PCI Memory and PCI 1I/0 transactions using the I1XP42X
product line and IXC1100 control plane processors, see “PCl Controller Functioning as
Bus Initiator” on page 226. For more detail on accepting PClI Memory and PCI 1/0
transactions using the IXP42X product line and 1XC1100 control plane processors, see
“PCI Controller Functioning as Bus Target” on page 234.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 217

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

6.2 PCI Controller Configured as Option

The IXP42X product line and 1XC1100 control plane processors can be configured as an
option function on the PCI bus. As with configuring the PCI Controller as a host
functions, the I1XP42X product line and 1XC1100 control plane processors, functioning
as an option does not require the Internal Arbiter function in the PCI Controller to be
enabled. Therefore, the Internal Arbiter can be enabled independently and the host/
option configuration can be selected independently. The option function is selected
similarly to the manner in which the host function is selected. (For more details, see
“PCI Controller Configured as Host” on page 213.)

If the IXP42X product line and 1XC1100 control plane processors are configured as an
option, an external PCI Host will want to access the PCI Configuration Space of the
IXP42X product line and IXC1100 control plane processors. The PCI Host will complete
these accesses using PCI Configuration Cycles. However, if the IXP42X product line and
IXC1100 control plane processors receive Configuration Cycles prior to being initialized,
improper PCI bus configuration may occur.

To prevent this event from occurring, the 1XP42X product line and I1XC1100 control
plane processors can refuse to accept configuration cycles from an external source by
programming bit 15 of the PCI Controller Control and Status (PCI_CSR) Register. Bit 15
of the PCI Controller Control and Status (PCI_CSR) Register is the Initialization
Complete bit. When bit 15 is set to logic O, the PCI Controller Target Interface will
issue retries to PCI Configuration cycles. When bit 15 is set to logic 1, PCI Configuration
Cycles will be accepted.

In Option mode, the PCI bus initialization and bus enumeration will be performed by an
external host processor, not the 1XP42X product line and 1XC1100 control plane
processors. However, the processor still has a boot sequence and there are several PCI
Configuration registers that must be "initialized" by the Intel XScale processor before
the external host starts the PCI initialization. For example, the pci_sidsvid (Subsystem
ID and Vendor ID). This register is read-only from the external host processor but is
read-write from the Intel XScale processor because its contents are application
dependent. So when the IXP42X product line and IXC1100 control plane processors
comes out of reset in HOST mode, the PCI Configuration registers are accessible from
the Intel XScale processor and inaccessible from the PCI bus. (Note: by inaccessible
from the PCI bus, that the 1XP42X product line and 1XC1100 control plane processors
will respond to any bus cycle with a RETRY). This is necessary because the external
host cannot be allowed to read any of the PCI Configuration registers before they have
been initialized to valid values. Once the registers (like pci_sidsvid) are initialized, S/W
writes a 1 to the IC (Init Complete) bit of pci_csr which makes the PCI Configuration
Registers accessible from PCI but inaccessible from the Intel XScale processor. So the
complete sequence is:

1. Exit reset in Option mode (pci_csr.IC = 0, PCI cycles Retried, Intel XScale processor
has access to PCI Configuration registers)

2. The Intel XScale processor initializes PCI Configuration registers as appropriate.

3. Intel XScale processor writes a 1 to pci_csr.IC (PCI cycles now accepted, PCI
Configuration registers not accessible from Intel XScale processor)

4. External host initialization of 1XP42X product line and 1XC1100 control plane
processors PCI Configuration Registers can proceed.

The Initialization Complete bit allows time for the 1XP42X product line and 1XC1100
control plane processors to configure the chip prior to accepting cycles from an external
PCI device. If initialization is not completed in the first 22% PCI clocks after the PCI
reset signal is de-asserted, the possibility exists for the external PCl Host to assume
that no PCI device is resident or active at this particular IDSEL.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
218 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

An access to the IXP42X product line and 1XC1100 control plane processors’ PCI
Controller PCI Configuration Registers occurs when the PCI_IDSEL input is asserted,
the PCI command field as represented by the PCI Command/Byte enable signals is a
configuration read or write, PCI_AD[1:0] = 00 indicating a type O configuration cycle,
and the PCI Controller Target Interface is allowed to accept Type O Configuration Cycles
by asserting the Initialization Complete bit. The PCI Configuration Register accessed is
determined by the value contained on the PCI_AD[7:2] pins during the address phase
of the PCI Configuration Transaction. Accesses to the PCI Configuration Register can be
a single-word only. The PCI Controller Target Interface will disconnect any burst longer
than 1 word.

During reads of the PCI Configuration Registers, byte-enables are ignored and the full
32-bit register value is always returned. Read accesses to unimplemented registers
complete normally on the bus and return all zeroes.

During PCI Configuration Register writes, the PCl byte-enables determine the byte(s)
that are written within the addressed register. Write accesses to unimplemented PCI
Configuration Registers complete normally on the bus but the data is discarded. The
PCI Configuration Space supported by the IXP42X product line and 1XC1100 control
plane processors are a single-function, Type O configuration space. (For more
information on the PCI Configuration Space and additional configuration details, see
“PCI Configuration Registers” on page 249 and the PCI Local Bus Specification,

Rev. 2.2.)

6.3 Initializing PCI Controller Configuration and Status
Registers for Data Transactions

In order to use the PCI Controller for transactions other than single word initiator
transaction implemented by Non-Pre-fetch transactions, various registers must be set
in the PCI Controller Configuration and Status Registers. The registers that must be
initialized are:

= AHB Memory Base Address Register (PCI_AHBMEMBASE)
= AHB 1/0 Base Address Register (PCI_AHBIOBASE)
= PCI Memory Base Address Register (PCI_PCIMEMBASE).

The AHB Memory Base Address Register (PCI_AHBMEMBASE) is used to map the
address of a PCI Memory Cycle Target transfers from the address of the PCI Bus to the
address of the South AHB. The AHB 1/0 Base Address Register (PClI_AHBIOBASE) is
used to map the address of a PCI 1/0 Cycle Target transfers from the address of the PCI
Bus to the address of the South AHB. The PCI Memory Base Address Register
(PCI_PCIMEMBASE) is used to map the address of direct access PCI memory-mapped
transfers from the address of the South AHB to the address of the PCI Bus.

When the IXP42X product line and IXC1100 control plane processors are the target of a
PCI bus transaction, the values written or read by external PCI Bus Initiators using the
Base Address Registers contained within the 1XP42X product line and 1XC1100 control
plane processors must be translated to an address location within the IXP42X product
line and IXC1100 control plane processors. The configuration of the internal memory
allocation is implemented differently for each of the Base Address Registers (BAR). The
following paragraphs describe the implementation for each of the Base Address
Registers.

For Base Address Registers O through 3 — which are used to complete PCI Bus Memory
Cycles Target transactions — the AHB Memory Base Address (PCl_AHBMEMBASE)
register is used to translate PCI Memory Cycle accesses to their appropriate AHB
locations. The AHB Memory Base Address (PCI_AHBMEMBASE) register is used to
determine the upper 8 AHB address bits when an external Initiator on the PCI bus
accesses the memory spaces of the IXP42X product line and 1XC1100 control plane

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 219

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

6.3.1

processors. The IXP42X product line and 1XC1100 control plane processors PCI
Controller can be configured to support four 16-Mbyte locations for PCI Target Memory
Cycle transactions using the AHB Memory Base Address (PClI_AHBMEMBASE) register
and the PCI Base Address Registers.

The AHB Memory Base Address (PCI_AHBMEMBASE) register consists of four 8-bit
fields. Each of these fields corresponds to a PCI Base Address Register

« Bits 31:24 of the AHB Memory Base Address (PClI_AHBMEMBASE) register
corresponds to PCI Base Address O and the first 16-Mbyte AHB memory location
(AHB base 0)

= Bits 23:16 of the AHB Memory Base Address (PClI_AHBMEMBASE) register
corresponds to PCI Base Address 1 and the second 16-Mbyte AHB memory location
(AHB base 1)

= Bits 15:8 of the AHB Memory Base Address (PCI_AHBMEMBASE) register
corresponds to PCl Base Address 2 and the third 16-Mbyte AHB memory location
(AHB base 2)

« Bits 7:0 of the AHB Memory Base Address (PCI_AHBMEMBASE) register
corresponds to PCI Base Address 3 and the fourth 16-Mbyte AHB memory location
(AHB base 3).

Base Address Register 4 is used to complete accesses to internal PCI Controller
Configuration and Status registers. (These registers are not the PCI Controller PCI
Configuration Registers.) PCl Base Address Register 4 is used to decode that an access
has been made to the Configuration and Status Register Space. There are no AHB
cycles produced for this type of an access, as all accesses to this Base Address Register
will be internal to the PCI controller. Therefore, an address translation register is not
required.

For Base Address Register 5 — which is used to complete PCI bus 1/0 cycles — the AHB
1/0 Base Address (PCI_AHBIOBASE) register is used to translate 1/0 PCIl accesses to
their appropriate AHB locations. The IXP42X product line and 1XC1100 control plane
processors PCI Controller can be configured to support a single 256-Byte location for
PCI target 1/0 cycle transactions, using the AHB 1/0 Base Address (PCl_AHBIOBASE)
register and PCI Base Address Register 5.

The AHB 1/0 Base Address (PCI_AHBIOBASE) register consists of a single 24-bit field.
The AHB 1/0 Base Address (PCI_AHBIOBASE) register is used to determine the upper
24 AHB address bits, when an external initiator on the PCI bus accesses the 1/0 space
of the IXP42X product line and I1XC1100 control plane processors.

Example: AHB Memory Base Address Register, AHB 1/0
Base Address Register, and PCl Memory Base Address
Register

The following example can be used to understand the operation of the AHB Memory
Base Address Register (PCI_AHBMEMBASE), AHB 1/0 Base Address Register
(PCI_AHBIOBASE), and PCI Memory Base Address Register (PCl_PCIMEMBASE).

1. Assume that PCI_AHBMEMBASE = 0x04010506 and PCI_AHBIOBASE =
0x000A1200.

2. Assume that the PCI Bus has gone through configuration and the Base Address
Registers (BARO — BARS) are set as follows:

— BARO = 0xA0000000
— BAR1 = 0xA1000000
— BAR2 = 0xA2000000
— BAR3 = 0xA3000000

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
220

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

— BAR4 = 0xA4000000
— BARS5 = 0xA5123400

3. An external PCI device initiates a PCI bus transfer to the IXP42X product line and
IXC1100 control plane processors’ BARL1. The PCI address looks like the following
PCI Address = OxA100402C. The address placed on the South AHB is 0100402C.

Notice that the third byte from the right, of the PCI_AHBMEMBASE = 0x04010506,
is substituted for the Al located in the fourth byte from the right of the PCI Address
= 0xA100402C.

4. Next, an external PCI device initiates a PCI bus transfer to the IXP42X product line
and 1XC1100 control plane processors’ BAR3. The PCI address looks like the
following: PCI Address = OxA3004014. The address placed on the South AHB is
06004014.

Notice that the first byte from the right of the PCI_AHBMEMBASE = 0x04010506 is
substituted for the A3 located in the fourth byte from the right of the PCI Address =
O0xA3004014.

5. PCI 1/0 space example is an external PCI device initiates a PCI bus transfer to the
IXP42X product line and 1XC1100 control plane processors’ BAR5. The PCI address
looks like the following PCI Address = 0xA5123418. The address placed on the
South AHB is 0x0A120018.

Notice that the first three bytes from the right of the PCI_AHBIOBASE =

0x000A1200 is substituted for the A51234 located in the PCI Address =
0xA5123418.

6. The final example is an external PCI device initiates a PCI bus transfer to the
IXP42X product line and 1XC1100 control plane processors’ BAR4. This allows
access to the PCI Controller Configuration and Status Register. The PCI address
looks like the following PCI Address = O0xA4000038. There is no address placed on
the South AHB. This causes an access of the PCI Doorbell Register on the 1XP42X
product line and IXC1100 control plane processors.

The PCI Doorbell Register can be used to generate an interrupt to the Intel XScale
processor.

When the IXP42X product line and IXC1100 control plane processors are the initiator of
a PCI Bus transaction and desires the transaction to produce PClI Memory Transactions,
the values may be written or read by providing a transfer to the PCI Memory Cycle
Address Space defined for the 1XP42X product line and 1XC1100 control plane
processors. The 64-Mbyte address space defined for the PClI Memory Cycle Address
Space is from AHB address location 0x48000000 to Ox4BFFFFFF.

Only four 16-Mbyte windows can be enabled. The four 16-Mbyte windows are divided
among the addresses as shown in Table 99.

Table 99. PCl Memory Map Allocation

Description Starting Address Ending Address
First 16-Mbyte window 0x48000000 Ox48FFFFFF
Second 16-Mbyte window 0x49000000 Ox49FFFFFF
Third 16-Mbyte window 0x4A000000 Ox4AFFFFFF
Fourth 16-Mbyte window 0x4B000000 Ox4BFFFFFF

The four 16-Mbyte windows translate their South AHB addresses to the PCI Bus
addresses using the PClI Memory Base Address Register (PCI_PCIMEMBASE).

The PCI Memory Base Address Register (PCI_PCIMEMBASE) register consists of four 8-
bit fields. Each of these fields corresponds to a given 16-Mbyte window:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 221

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

6.3.2

6.4

= Bits 31:24 of the PCI Memory Base Address Register (PClI_PCIMEMBASE) register
correspond to the first 16-Mbyte window from South AHB address 0x48000000 to
Ox48FFFFFF

* Bits 23:16 of the PCI Memory Base Address Register (PCI_PCIMEMBASE) register
correspond to the second 16-Mbyte window from South AHB address 0x49000000
to OX49FFFFFF

« Bits 15:8 of the PCI Memory Base Address Register (PCI_PCIMEMBASE) register
correspond to the third 16-Mbyte window from South AHB address 0x4A000000 to
OX4AFFFFFF

« Bits 7:0 of the PClI Memory Base Address Register (PCI_PCIMEMBASE) register
correspond to the fourth 16-Mbyte window from South AHB address 0x4B0O00000
to Ox4BFFFFFF.

The PCI Memory Base Address Register (PCI_PCIMEMBASE) register is used to
determine the upper eight PCI address bits when the 1XP42X product line and 1XC1100
control plane processors access the memory spaces of external Targets on the PCI bus.

Example: PClI Memory Base Address Register and South-AHB
Translation

The following example discusses the operation of the PClI Memory Base Address
Register (PCI_PCIMEMBASE) and the South AHB translation.

1. Assume that PCI_PCIMEMBASE = OxC3A24169.

2. The next example shows an access to the first 16-Mbyte window.

The South AHB address is for the access is 0x48123450. The address presented on
the PCI bus is 0xC3123450.

3. The next example shows an access to the second 16-Mbyte window.

The South AHB address is for the access is 0x49123450. The address presented on
the PCI bus is 0xA2123450.

4. The next example shows an access to the third 16-Mbyte window.

The South AHB address is for the access is 0x4A123450. The address presented on
the PCI bus is 0x41123450.

5. The next example shows an access to the fourth 16-Mbyte window.

The South AHB address is for the access is 0x4B123450. The address presented on
the PCI bus is 0x69123450.

Initializing the PCI Controller Configuration Registers

The PCI Base Address Registers along with any other pertinent PCI Configuration
Registers, located in the PCI Controller PCI Configuration Register space, must be
initialized by the Intel XScale processor when the IXP42X product line and 1XC1100
control plane processors are configured as the PCI host. The PCI Base Address
Registers must be initialized by an external PCI device when the IXP42X product line
and 1XC1100 control plane processors are configured as a PCI option.

The PCI Base Address Registers — along with any other registers in the PCI
Configuration Space — will be accessed by the Intel XScale processor using three
Configuration and Status Registers:

= PCI Configuration Port Address/Command/Byte Enables (PCI_CRP_AD_CBE)
Register

= PCI Configuration Port Write Data (PCI_CRP_WDATA) Register
= PCI Configuration Port Read Data (PCI_CRP_RDATA) Register.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
222

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

The IXP42X product line and 1XC1100 control plane processors are a single-function,
Type 0 Configuration space when functioning as a PCI option. For detailed information
on the values to program the PCI Controller Configuration and Status Registers, see the
PCI Local Bus Specification, Rev. 2.2.

The PCI Configuration Port Write Data (PCI_CRP_WDATA) Register is a 32-bit register
that is used to place the data that is to be written into the PCI Configuration Space.
The PCI Configuration Port Read Data (PCI_CRP_RDATA) Register is a 32-bit register
that is used to capture the data that is returned from the PCI Configuration Space. The
PCI Configuration Port Address/Command/Byte Enables (PCI_CRP_AD_CBE) Register is
a register that provides the address, byte enables, and control for the read and write
access to the PCI Configuration Space from the internal side of the IXP42X product line
and 1XC1100 control plane processors.

« Bits 23:20 of the PCI Configuration Port Address/Command/Byte Enables
(PCI_CRP_AD_CBE) Register specify the byte enables for the access to the PCI
Configuration Space
These bits directly correspond to the four - byte field associated with the PCI
Configuration Port Write Data (PCI_CRP_WDATA) Register. Table 100 on page 224
shows the mapping of the byte enables of the PCI Configuration Port Address/
Command/Byte Enables (PCI_CRP_AD_CBE) Register to the byte lane fields of the
PCI Configuration Port Write Data (PClI_CRP_WDATA) Register.

= Bits 7:2 of the PCI Configuration Port Address/Command/Byte Enables
(PCI_CRP_AD_CBE) Register specify the address for the register access within the
64 32-bit Word PCI Configuration Space.

The 64 32-bit Word PCI Configuration Space is shown in Table 101 on page 225.

* Bits 19:16 of the PCI Configuration Port Address/Command/Byte Enables
(PCI_CRP_AD_CBE) Register specify the command to execute on the PCI
Configuration Space. The only two commands currently defined are read and write.
Table 102 on page 225 shows valid command codes for accessing the PCI
Configuration Space. When a read command is written into the command field of
the PCI Configuration Port Address/Command/Byte Enables (PCI_CRP_AD_CBE)
Register along with the appropriate address of the PCI Configuration register to be
accessed, the data from the address requested will be returned to the PCI
Configuration Port Read Data (PClI_CRP_RDATA) Register.

A master on the AHB bus can then read the PCI Configuration Port Read Data
(PCI_CRP_RDATA) Register. For example:

1. PCI_CRP_AD_CBE is written with hexadecimal 0x00300004, which causes the
contents of the PCI Control Register/Status Register (PCl_SRCR) to be written into
the PCI_CRP_RDATA register.

Note that bits 23:20 are set to hexadecimal 3. For read accesses, byte-enables are
ignored. Bits 19:16 are set to hexadecimal O, which denotes a read command. Bits
7:0 are set to hexadecimal 04.

2. PCI_CRP_RDATA is read by the AHB master that requested the PCI_SRCR to be
returned to the PCI_CRP_RDATA register.

When a write to the PCIl Configuration Space is desired, the AHB master requesting the
write must update the PCI Configuration Port Write Data (PClI_CRP_WDATA) Register
with the data that is to be written to the PCI Configuration Register. Once the PCI
Configuration Port Write Data (PCI_CRP_WDATA) Register has been updated, a write
command is written into the command field of the PCI Configuration Port Address/
Command/Byte Enables (PCI_CRP_AD_CBE) Register along with the appropriate byte
enables and address of the PCI Configuration register to be accesses.

The data contained in the PCI Configuration Port Write Data (PCI_CRP_WDATA)
Register will be written to the PCI Configuration Register specified by the address and
byte enables contained in the PCI Configuration Port Address/Command/Byte Enables
(PCI_CRP_AD_CBE) Register. For Example:

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 223

Download from Www.Somanuals.com. All Manuals Search And Download.

intel)

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

1. An AHB master that wants to write a particular PCI Configuration Register writes

PCI_CRP_AD_CBE register first. Assume that the AHB master wants to write a
hexadecimal value of 0x85008086 to the Retry Timeout/TRDY Timeout
(PCI_RTOTTO) Register. The PCI_CRP_AD_CBE register is written with a
hexadecimal 0x00010040.

Note that bits 23:20 are set to hexadecimal 0. For write accesses byte enables are
active low. Bits 19:16 are set to hexadecimal 1, which denotes a write command.
Bits 7:0 are set to hexadecimal 40, which addresses the PCI_RTOTTO register.

Next, the hexadecimal value of 0x85008086 is written to the PCI Configuration
Register PCI_CRP_WDATA register, which causes the contents of the Retry
Timeout/TRDY Timeout (PCI_RTOTTO) Register to be written with a hexadecimal
value of 0x85008086.

One more example will demonstrate the effects of the byte-enables on write accesses
to the PCI Configuration Space:

1. Assume that the objective is to update the retry section of the Retry Timeout/TRDY

Timeout (PCI_RTOTTO) Register (Bits 15:8) without updating the TRDY terminal
count value of the Retry Timeout/TRDY Timeout (PCI_RTOTTO) Register (Bits 7:0).
The Retry Timeout/TRDY Timeout (PCI_RTOTTO) Register is located at hexadecimal
address 0x40. Also assume the value currently contained in the Retry Timeout/
TRDY Timeout (PCI_RTOTTO) Register is a hexadecimal 0x00008080.

The PCI_CRP_AD_CBE is written with hexadecimal 0x00D10040.

Note that bits 23:20 are set to hexadecimal D. For write accesses this allows only
byte 1 to be written (bits 15:8). Bits 19:16 are set to hexadecimal 1, which denotes
a write command. Bits 7:0 are set to hexadecimal 40, which addresses the
PCI_RTOTTO register.

Assume that the AHB master wants to write a hexadecimal value of 0OxO000ABOO to
the second byte of the retry section of the Retry Timeout/TRDY Timeout
(PCI_RTOTTO) Register (Bits 15:8). The PCI_CRP_WDATA will be loaded with a
value of 0OXO000ABOO, which causes the contents of the retry section of the Retry
Timeout/TRDY Timeout (PCI_RTOTTO) Register (Bits 15:8) to be written with a
hexadecimal value of 0OXOOO0OABOO. The value that is now contained within the
Retry Timeout/TRDY Timeout (PCI_RTOTTO) Register is 0XO0O00AB80. Notice that
only one byte of data was manipulated.

Table 100 shows the PCI Byte Enables Byte Lane Mapping (accesses to the PCI
Configuration Space from within the IXP42X product line and 1XC1100 control plane
processors) when using the CRP access mechanism.

Table 100. PCI Byte Enables Using CRP Access Method
PCI_CRP_AD_CBE(23:20 | PCI_CRP_WDATA PCI_CRP_WDATA PCI_CRP_WDATA PCI_CRP_WDATA
) (31:24) (24:16) (15:8) (7:0)
0000 X X X X
0001 X X X
0010 X X X
0011 X X
0100 X X
0101 X X
0110 X X
0111 X
1000 X
1001

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
224

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

Table 100. PCI Byte Enables Using CRP Access Method
PCI_CRP_AD_CBE(23:20 | PCI_CRP_WDATA PCI_CRP_WDATA PCI_CRP_WDATA PCI_CRP_WDATA
) (31:24) (24:16) (15:8) (7:0)
1010 X
1011
1100 X
1101
1110 X
1111

Table 101.

Table 102.

6.5

September 2006

PCI Configuration Space

Offset Register Name Description
0x00 PCI_DIDVID Device ID/Vendor ID
0x04 PCI_SRCR Status Register/Control Register
0x08 PCI_CCRID Class Code/Revision ID
0x0C PCI_BHLC BIST/Header Type/Latency Timer/Cache Line
0x10 PCI_BARO Base Address O
0x14 PCI_BAR1 Base Address 1
0x18 PCI_BAR2 Base Address 2
0x1C PCI_BAR3 Base Address 3
0x20 PCI_BAR4 Base Address 4
0x24 PCI_BARS5 Base Address 5
0x28 RESERVED (Reserved)
0x2c PCI_SIDSVID Subsystem ID/Subsystem Vendor ID
0x30-38 RESERVED (Reserved)
0x3C PCI_LATINT Defines Max_Lat, Min_Gnt, Interrupt Pin, and Interrupt Line
0x40 PCI_RTOTTO Defines retry timeout and trdy timeout parameters

Command Type for PCI Controller Configuration and Status Register Accesses

Command Value Command
pci_crp_ad_cbe Tvpe Description
[19:16] yp
Initiates a read of the PCI Controller Configuration and Status
0x0 Read]
Register Accesses
. Initiates a write to the PCI Controller Configuration and Status
ox1 Write .
Register Accesses
OX2 — OXF (Reserved) Reserv«_ad for future use. Use of these values produce
unpredictable results.

PCI Controller South AHB Transactions

The PCI Controller provides access to internal functionality within the IXP42X product
line and IXC1100 control plane processors. The PCI Controller provides access to the

South AHB through the AHB Target Interface and the AHB Master Interface.

Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
225

The AHB

Download from Www.Somanuals.com. All Manuals Search And Download.

6.6

6.6.1

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Target Interface is used to accept transaction request from other AHB Masters. The
AHB Master Interface is used to initiate transaction requests to other AHB Targets. The
two DMA channels as well as the PCI Target Interface use the AHB Master Interface.

The AHB Target Interface can accept 8-bit (1 Byte) transactions, 16-bit transactions,
and 32-bit transactions. Due to the South AHB not using byte enables, all 16-bit
transactions to the PCI Controller AHB Target Interface must be implemented as
consecutive-byte addresses. Inability to do this will result in multiple byte wide
transactions.

The AHB Master interface will initiate 8-bit (1 Byte) transactions and 32-bit (word)
transactions only. The DMA engines will initiate only 32-bit transactions. PCI Target
Interface initiated transactions will be 32-bit transactions. Sub 32-bit transactions —
initiated by the PCI Target Interface — will be implemented as multiple 8-bit
transactions initiated by the PCI Controller AHB Master on the AHB. For information on
prioritization of the three functional blocks that use the PCI Controller AHB Master
Interface, see “PCl Controller Functioning as Bus Initiator” on page 226.

PCI Controller Functioning as Bus Initiator

The I1XP42X product line and IXC1100 control plane processors can be used to initiate
PCI transactions in one of three ways:

= Using the Non-Pre-fetch Registers — as described in section “PCI Controller
Configured as Host” on page 213
The Non-Pre-fetch Registers allow various single 32-bit word PCI Cycles to be
produced. The Non-Pre-fetch Registers can be used to initiate Type 0 Configuration
Cycles, Type 1 Configuration Cycles, Memory Cycles, 1/0 Cycles, and Special
Cycles.

« Writing to the PCI Memory Cycle Address Space located between AHB address
0x48000000 and Ox4BFFFFFF as described in section “Initializing PCI Controller
Configuration and Status Registers for Data Transactions” on page 219

= Using the PCI Controller DMA channels — as described in “PCI Controller DMA
Controller” on page 234

The remainder of the section shows example of each cycle type that may be initiated.

The details in this section are provided to understand some functional aspects of the
PCI Controller on the IXP42X product line and 1XC1100 control plane processors. For
complete details please refer to the PCI Local Bus Specification, Rev. 2.2.

PCI Byte Enables

1/0 reads and memory-cycle writes drive individual byte enables. However, it is
important to note that the PCI controller drives all byte enables low (asserted) during a
memory cycle read of non-prefetch memory.

If an external PCI device has non-prefetch memory and requires either a 16-bit or 8-bit
read, there is a possibility that the device will not respond correctly to IXP42X product
line and IXC1100 control plane processors memory reads. This is because the IXP42X
product line and 1XC1100 control plane processors always perform a 32-bit read to the
non-prefetch memory region specified in register PCI_NP_AD.

The 8-bit or 16-bit external device should respond with a “target abort,” as per the PCI
2.2 specification, if a 32-bit read is performed to its non-prefetch memory and it
requires a 16-bit or 8-bit read.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
226

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

The IXP42X product line and 1XC1100 control plane processors will drive all the byte
enables asserted during all memory cycle reads of the external PCI device, no matter
what the PCI_NP_CBE register contains in the byte enable bits.

To read non-prefetch memory sub-DWORDS (8-bit or 16-bit), use I/0 reads. If it is
necessary to use memory cycle reads of sub-DWORDS, a hardware resolution may be
required. Contact your Intel field application engineer if you require a hardware
resolution.

6.6.2 Initiated Type-0 Read Transaction
The following transaction is a PCl Configuration Read Cycle initiated from the IXP42X
product line and 1XC1100 control plane processors. This diagram is to understand the
inner workings of PCI transfers and may not reflect actual operation of the PCI
Controller implemented on the I1XP42X product line and 1XC1100 control plane
processors. The Configuration transaction is initiated to the local PCI bus segment,
Device number (chosen by IDSEL), Function 0, and Base Address Register O.
The IDSEL signal is left up to the user to determine how to drive this signal. It may be
driven from one of the upper address signals on the PCI_AD bus. A hexadecimal value
of OXA, written on the PCI_C/BE_N bus during the PCI Bus address phase, signifies that
this is a PCI Bus Configuration Read Cycle.
Figure 35. Initiated PCI TYPE O Configuration Read Cycle
| | | \ | | |
PCLCLK [J 1 J L 1 1 J LJ L
| [l I |
nReon i a a a | :
T T T] 1 I |
INT_GNT_N i I i I | | [
f 1 | ! ; . I
PCI_FRAME_N i i | ' i i i
PCI_AD (31:0) : : : 0x00000010 I—‘ DATA = i
] 1] |
PCI_IDSEL i | 1 i | I
T 1 1 | |
PCI_C/BE_N : : OXA 00 :
| | | 1 l |
PCI_IRDY_N ! ! : | i | E
PCI_TRDY_N i ' ' ! l ' !
| | | \ |
PCI_DEVSEL_N i i i i |I |I i
i i i | i | |
! ! : | | | |
6.6.3 Initiated Type-0 Write Transaction

September 2006

The following transaction is a PCl Configuration Write Cycle initiated from the 1XP42X
product line and IXC1100 control plane processors. This diagram is to understand the
inner workings of PCI transfers and may not reflect actual operation of the PCI
Controller implemented on the 1XP42X product line and 1XC1100 control plane
processors. The transaction is initiated to the local PCI bus segment, Device number
(chosen by IDSEL), Function number 2, and Base Address Register O.

The IDSEL signal is left up to the user to determine how to drive this signal. It may be
driven from one of the upper address signals on the PCI_AD bus. A hexadecimal value
of OxB written on the PCI_C/BE_N bus — during the address phase — signifies that this
is a PCI Bus Configuration Write Cycle.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 227

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

intel.

Figure 36. Initiated PCI Type-0 Configuration Write Cycle

Il
PCI_CLK I I I I
'
1
I
T

INT_REQ_N _|

INT_GNT_N I

1

J

1

i

|

: H ;

PCI_FRAME_N i | l l i
1 | " 1

PCI_AD (31:0) . r { oxo0000110 | DATA .
1 1 L 1

PCI_IDSEL i i 1 :
T T 1 1

PCI_C/BE_N : : 0xB 0x0 :
1 | 1 I L L}

PCI_IRDY_N ! ! i | I | i
PCI_TRDY_N ! ! ! i I ' i
PCI_DEVSEL_N ! E i i || |l i
i i i ' i i i

! ! : : | | |

6.6.4 Initiated Type-1 Read Transaction

The following transaction is a PCI Configuration Read Cycle initiated from the IXP42X
product line and IXC1100 control plane processors. This diagram is to understand the
inner workings of PCI transfers and may not reflect actual operation of the PCI
Controller implemented on the IXP42X product line and IXC1100 control plane
processors. The transaction is initiated to PCI bus segment 0, Device number O,
Function 0, and Base Address Register 0.

This configuration cycle is a Type 1 configuration cycle and is intended for another PCI
bus segment. Binary 01 being located in bits 1:0 of the PCI_AD bus during the address
phase denotes a Type 1 PCI Configuration cycle.

A hexadecimal value of OXA — written on the PCI_C/BE_N bus during the address
phase — signifies that this is a PCI Bus Configuration Read Cycle. Due to the fact that
the access is on another PCI Bus Segment, the PCI_TRDY_N signal may take longer to
respond and therefore may be extended by several clocks and is not shown here.

Figure 37. Initiated PCI Type-1 Configuration Read Cycle

PCI_CLK []]

]
INT_REQ_N | !
INT_GNT_N ! I

| I

] L
| |
PCl_FRAME_N | | |
1] '
]] F
PCI_AD (31:0) . : 0x00000011 I—E
, , 1.0x00000011_|
PCI_IDSEL E E — ; !
| i I -
PCI_C/BE_N . : XA 0x0
| | 1 1
PCI_IRDY_N T T ! [
| |
PCI_TRDY_N B v l '
1 1
PCI_DEVSEL_N ! !
| |
]]
! :

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
228 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

6.6.5 Initiated Type-1 Write Transaction
The following transaction is a PCl Configuration Write working-site Cycle initiated from
the IXP42X product line and IXC1100 control plane processors. This diagram is to
understand the inner workings of PCI transfers and may not reflect actual operation of
the PCI Controller implemented on the 1XP42X product line and 1XC1100 control plane
processors. The transaction is initiated to PCI bus segment 5, Device number 3,
Function number 7, and Base Address Register O.
This configuration cycle is a Type 1 configuration cycle and is intended for another PCI
bus segment. Binary 01 — being located in bits 1:0 of the PCI_AD bus during the
address phase — denotes a Type 1 PCI Configuration cycle. A hexadecimal value of OxB
— written on the PCI_C/BE_N bus during the address phase — signifies that this is a
PCI Bus Configuration Write Cycle.
Due to the fact that the access is on another PCI Bus Segment, the PCI_TRDY_N signal
may take longer to respond and therefore may be extended by several clocks and is not
shown here.
Figure 38. Initiated PCI Type-1 Configuration Write Cycle
PCILCLK — 4 —J L L 1 LJ J I
INT_REQ_N — i E : i | :
INT_GNT_N : 1 i : i i |
PCI_FRAME_N i i i | i i i
PCI_AD (31:0) E i : 0x00028F91 DATA } :
PCI_IDSEL | | — | ' |
PCI_C/BE_N E : = o i
PCI_IRDY_N ; ; ! i i :
PCI_TRDY_N i i i ! |I ll i
PCI_DEVSEL_N ' ! ! i l | :
i i | i i i i
6.6.6 Initiated Memory Read Transaction

September 2006

The following transaction is a PCI Memory Read Cycle initiated from the IXP42X product
line and IXC1100 control plane processors. This diagram is to understand the inner
workings of PCI transfers and may not reflect actual operation of the PCI Controller
implemented on the IXP42X product line and IXC1100 control plane processors. The
transaction is initiated to address location hexadecimal 0x00000014. The value of
binary 00 in PCI_AD (1:0) indicates that this is a linear increment transfer type.

A hexadecimal value of 0x6 — written on the PCI_C/BE_N bus during the address
phase — signifies that this is a PCl Bus Memory Read Cycle. All byte enables are
asserted for the transaction.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 229

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

intel.

Figure 39. Initiated PCI Memory Read Cycle

PCI_CLK

1
|
PCI_REQ N |
PCI_GNT_N : '

| |

] |

I |

I |

I |

I |

I

: ! I ’

PCI_FRAME_N i i | ' i i
] 1

PCI_AD (31:0) ' : =0x00000014 I—‘ DATA = E i

] 1] I |

PCI_IDSEL i i i : | l | I

T 1 T | I |

PCI_C/BE_N : : 06 00 : !

]

| 1 |] 1 | Il

PCI_IRDY_N H 1 i l i | i i

! ! ! ! * ! ! !

PCI_TRDY_N i i i i l_' i i

PCI_DEVSEL_N ! ! !] i I ! |

1 ! ! i T 1 1 i

6.6.7 Initiated Memory Write Transaction

The following transaction is a PCI Memory Write Cycle initiated from the 1XP42X
product line and IXC1100 control plane processors. This diagram is to understand the
inner workings of PCI transfers and may not reflect actual operation of the PCI
Controller implemented on the IXP42X product line and IXC1100 control plane
processors. The transaction is initiated to address location hexadecimal 0x00000014.
The value of binary 00 in PCI_AD (1:0) indicates that this is a linear-increment transfer
type. A hexadecimal value of Ox7 — written on the PCI_C/BE_N bus during the address
phase — signifies that this is a PCI Bus Memory Read Cycle. All byte enables are
asserted for the transaction.

Notice that on this transaction the PCI_DEVSEL_N signal timing is different. This signal-
timing differential is due to the fact that the DEVSEL_N signal must become active
within the first three clocks after the FRAME_N becoming active. This requirement
could be different for every device that is on the PCI Bus. There is also no relationship
to when TRDY_N becomes active other than the TRDY_N signal must not become active
prior to the DEVSEL_N signal becoming active.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
230 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

Figure 40. Initiated PCI Memory Write Cycle

| 1 | | l | |
PCI_CLK | l | l | L1 1 | | | L1 1 | l | L_

1 1 1 | | | | |

INT_REQ_N 1 i i | [! ! !

T T T [1 I | |

INT_GNT_N ! | i i i | i l

! : ! ! ! : : !

1 T 1]]]

PCI_FRAME_N i E |_' ! E E i

PCI_AD (31.0) E E d oo000004 | pATA .: i i .

s] i

PCI_IDSEL i E E i | : : :

L T T]]

PCI_C/BE_N " . | 0x0 : : :

L - : : : I I]

|] | | |

PCI_IRDY_N ! ! ! l ' i i i

! ! ! | | 1

PCI_TRDY_N i ! i _! i | l

|

PCI_DEVSEL_N ! ! ! | I : | |

e

6.6.8 Initiated 170 Read Transaction

The following transaction is a PCI 1/0 Read Cycle initiated from the 1XP42X product line
and IXC1100 control plane processors. This diagram is to understand the inner
workings of PCI transfers and may not reflect actual operation of the PCI Controller
implemented on the 1XP42X product line and 1XC1100 control plane processors. The
transaction is initiated to address location hexadecimal 0x00000010.

A hexadecimal value of 0x2 — written on the PCI_C/BE_N bus during the address
phase — signifies that this is a PCI Bus 1/0 Read Cycle.

Figure 41. Initiated PCI 1/0 Read Cycle

1 |
PCI_CLK |] []
i
|
|

INT_REQ_N |
INT_GNT_N '

|
|
|
|
L
|
|
|
L
|
i

| [}
| |
| |
| 1
| !
1
: : ! ’
PCI_FRAME_N ! ! l | i |
1 |
PCI_AD (31:0) : : =o><0000001o I——' DATA = i E
I | | | |
PCI_IDSEL | i | ! i I I |
1 T 1 1 I 1
PCI_C/BE_N : : 02 0x0 : !
1
1 | | 1 1 | L
PCI_IRDY_N ! ! ! | i | i i
PCI_TRDY_N ! ! v i | '
TROY_ | | ; | — | |
PCI_DEVSEL_N ! ! ! | i | : !
i i | | ! ! | !
6.6.9 Initiated 1/0 Write Transaction
The following transaction is a PCI 1/0 Write Cycle initiated from the IXP42X product line
and 1XC1100 control plane processors. This diagram is to understand the inner
workings of PCI transfers and may not reflect actual operation of the PCI Controller
Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 231

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

implemented on the I1XP42X product line and 1XC1100 control plane processors. The
transaction is initiated to address location hexadecimal 0x00000015. The value of
binary 01 in PCI_AD (1:0) indicates that the transfer is a valid byte address of the first
byte of 32-bit word address 0x00000014 (0x00000014 + 0x00000001 = 0x00000015).

The byte-enables being OXxD — during the data transfer — signify that the transfer is a
byte transfer to the above-mentioned address. A hexadecimal value of Ox3 written on
the PCI_C/BE_N bus during the address phase signifies that this is a PCI Bus 1/0 Write
Cycle.

Figure 42. Initiated PCI 1/0 Write Cycle

| | | \ | | | |

RGILOLK L L L L L rLririri
1] | | |
INT_REQ N | ! ! i | | ! !
T 1 U] 1 | | |
INT_GNT_N : | i i i | ! :
l : | ! : I I !
PCI_FRAME_N i i ' | | V
S i i — i | | i
PCI_AD (31:0) ; : d o005 | pata | ; ; ;
| | ! | T | | |
PCI_IDSEL i i i ! : I I |
) 1 1 | |]
PCI_C/BE_N . . EE 0D : : !
1
|] | | | | | |
PCI_IRDY_N | : | | ' ! : !
PCLTRDY_N | i i | | | i |
] 1 | [l | | |
PCI_DEVSEL_N : : ! 1 ! | !
I | I ! ! ! ! !

6.6.10 Initiated Burst Memory Read Transaction

The following transaction is a two word bursting PCI Memory Read Cycle initiated from
the IXP42X product line and IXC1100 control plane processors. This diagram is to
understand the inner workings of PCI transfers and may not reflect actual operation of
the PCI Controller implemented on the I1XP42X product line and IXC1100 control plane
processors. The transaction is initiated to initial address location hexadecimal
0x00000014. The value of binary 00 in PCI_AD (1:0) indicates that this is a linear
increment transfer type. The second data word transferred will be from address
hexadecimal 0x00000018.

A hexadecimal value of 0x6 — written on the PCI_C/BE_N bus during the address
phase — signifies that this is a PCl Bus Memory Read Cycle. All byte-enables are active
for the transaction.

A maximum burst length of eight 32-bit words is supported for initiated Memory Cycle
transactions from the IXP42X product line and IXC1100 control plane processors.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
232

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

Figure 43.

Initiated PCI1 Burst Memory Read Cycle

PCI_CLK
INT_REQ N
INT_GNT_N
PCI_FRAME_N
PCIAD (31.0)
PCI_IDSEL
PCI_C/BE_N
PCI_IRDY_N
PCI_TRDY_N

PCI_DEVSEL N

DATA 1

0x00000014 DATAO
|

0x6 0x0

6.6.11

September 2006

Initiated Burst Memory Write Transaction

The following transaction is a two word bursting PClI Memory Write Cycle initiated from
the IXP42X product line and IXC1100 control plane processors. This diagram is to
understand the inner workings of PCI transfers and may not reflect actual operation of
the PCI Controller implemented on the IXP42X product line and I1XC1100 control plane
processors. The transaction is initiated to initial address location hexadecimal
0x00000014.

The value of binary 00 in PCI_AD (1:0) indicates that this is an linear increment
transfer type. The second data word transferred will be from address hexadecimal
0x00000018.

A hexadecimal value of Ox7 — written on the PCI_C/BE_N bus during the address
phase — signifies that this is a PClI Bus Memory Write Cycle. All byte-enables are active
for the transaction.

A maximum burst length of eight 32-bit words is supported for initiated Memory Cycle
transactions from the 1XP42X product line and IXC1100 control plane processors.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 233

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Figure 44. Initiated PCI Burst Memory Write Cycle
PCLCLK S S s S oy Y U S oy Ny O
INT_REQ_N 1 ! ! : ! ! | : I
. H i | i i i ; .
INT_GNT_N] | ! ! ! ! ! | !
; i | ' i . H H !
PCI_FRAME_N i i i ! ! |]] '
PCI_AD (31:0) i i I:0x00000014 | DATA0 | pata:i E E
| | ! T T 1 | 1
PCI_IDSEL i i i : I ; | | |
PCI_C/BE_N : : 0x7 : 0x0 : : :
PCI_IRDY_N ; ; i i i i i i
PCI_TRDY_N i i i : | i | : I
: j : : : i : : !
PCI_DEVSEL_N ; ; ; ! l : I ! !
I e T
! : : i | i - i i
6.7 PCI Controller Functioning as Bus Target
The IXP42X product line and 1XC1100 control plane processors can be the target of PCI
transactions. Operating as a PCI target, the PCI bus can accept Memory Cycles, 1/0
Cycles, or Configuration Cycles. Target transactions can take place independent of the
Host/Option configuration of the IXP42X product line and 1XC1100 control plane
processors. Please refer to Table 97, “PCI Target Interface Supported Commands” on
page 211 for additional information on supported commands.
Only Type O Configuration Cycles are supported.
Timing diagrams are not shown for the target transactions because they are similar to
initiated transactions. The only differences are the PCI devices that source/sink the
various PCI signals.
For target-read transactions, a retry will be issued upon the I1XP42X product line and
IXC1100 control plane processors receiving a request to transfer data. Between the
time that the retry occurs and the access to the IXP42X product line and 1XC1100
control plane processors reoccurs, the PCI Controller on the IXP42X product line and
IXC1100 control plane processors retrieve the data from the previously requested
location.
For additional details, see the PCI Local Bus Specification, Rev. 2.2.
6.8 PCI Controller DMA Controller

The 1XP42X product line and 1XC1100 control plane processors contain two channels
that can be used for DMA (Direct Memory Accesses) to/from the PCI bus and the AHB.
The DMA Controller function provides two channels of DMA capability to off load, from
the Intel XScale processor, large data transfers between the PCI bus and AHB.

The DMA channels are unidirectional: one DMA channel is used for PCI-to-AHB transfers
and one DMA channel is used for AHB-to-PCI transfers. The DMA transfers are
implemented using three of the PCI Controller Configuration and Status Registers to
specify the PCI address, the AHB address, and the transfer length. Each DMA channel
has two sets of three registers to provide buffering for consecutive transfers.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
234

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

For each direction, when a DMA channel is executing one transfer using the active DMA
register set, the other DMA register set can be set-up by the Intel XScale processor to
specify the next transfer. Both DMA channels can run concurrently so that individual
PCI-to-AHB transfers and AHB-to-PClI transfers that make up the DMA transfers are
interleaved on the AHB and PCI bus.

Individual DMA-complete and DMA-error status indication is provided for each channel
using the DMA Control Register (PCI_DMACTRL) with an interrupt that may be
optionally generated in each case.
The register sets associated with the DMA channels are as follows:
1. PCI to AHB Transfers
a. Register Set 0
— PCI to AHB DMA AHB Address Register 0 (PCI_PTADMAO_AHBADDR)
— PCI to AHB DMA PCI Address Register O (PCI_PTADMAO_PCIADDR)
— PCI to AHB DMA Length Register O (PCI_PTADMAO_LENGTH)
b. Register Set 1
— PCI to AHB DMA AHB Address Register 1 (PCI_PTADMA1_AHBADDR)
— PCI to AHB DMA PCI Address Register 1 (PCI_PTADMA1_PCIADDR)
— PCI to AHB DMA Length Register 1 (PCI_PTADMA1_LENGTH)
2. AHB to PCI Transfers
a. Register Set O
— AHB to PCI DMA AHB Address Register O (PCI_ATPDMAO_AHBADDR)
— AHB to PCI DMA PCI Address Register O (PCI_ATPDMAO_PCIADDR)
— AHB to PCI DMA Length Register O (PCI_ATPDMAO_LENGTH)
b. Register Set 1
— AHB to PCI DMA AHB Address Register 1 (PCI_ATPDMA1_AHBADDR)
— AHB to PCI DMA PCI Address Register 1 (PCI_ATPDMA1_PCIADDR)
— AHB to PCI DMA Length Register 1 (PCI_ATPDMA1_LENGTH)
The PCI Address Registers described above are used to specify the beginning 32-bit
word address for the PCI side of the DMA transfers. The AHB Address Registers,
described above, are used to specify the beginning 32-bit word address for the AHB
side of the DMA transfers. The least significant two bits of both addresses are hard-
wired to logic 0. Thus, all transfers are word-aligned.
The Length Registers are used for three purposes:

= Sixteen bits to define a word count
Bits 15:0 of the Length Registers define the word count.

= One bit to enable the DMA transfer
Bit 31 of the Length Registers enables the DMA transfer to execute. When bit 31 of
the Length Registers is set to logic 1, the DMA transfer executes until a word count
of zero is reached. When the word count reaches zero and bit 31 of the Length
Registers is set to logic 1, bit 31 of the Length Register is cleared to logic 0. When
bit 31 of the Length Register is set to logic O, the register set associated with the
DMA channel is disabled. The second register set may be active and using the DMA
channel when the first DMA has finished.

= One bit to define the byte order of the data transferred.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006 DM
Order Number: 252480-006US 235

Download from Www.Somanuals.com. All Manuals Search And Download.

intel)

Figure 45.

Figure 46.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Bit 28 of the Length Register is used to provide a byte swap on the DMA data as
data is transferred from the AHB to the PCI bus or from the PCIl Bus to AHB,
depending upon the direction of the DMA transfer. When bit 28 is set to logic 1, a
byte swap will occur on the DMA data. Figure 45 and Figure 46 demonstrates the
DMA transfer byte lane swapping.

AHB to PCI DMA Transfer Byte Lane Swapping

AHB Data Byte 3 Byte 2 Byte 1 Byte 0
PCI Data Byte 0 Byte 1 Byte 2 Byte 3

PCI to AHB DMA Transfer Byte Lane Swapping
PCI Data Byte 0 Byte 1 Byte 2 Byte 3
AHB Data Byte 3 Byte 2 Byte 1 Byte 0

The DMA channels share resources with the AHB Master and Target interfaces and
therefore must arbitrate for these resources. AHB-to-PClI DMA transfers use the AHB
Master Interface, the PCI Initiator Request FIFO, and Initiator Transmit FIFO. PCI-to-
AHB DMA transfers use the AHB Master Interface, the PCI Initiator Request FIFO, and
Initiator Receive FIFO. Use of the AHB Master Interface will revolve between the two
DMA channels and PCI requests that appear in the Target Receive FIFO.

While a particular channel is accessing the Initiator Request FIFO, accesses to the PCI
bus coming in to the AHB Target Interface from the AHB will be retried. The access will
be flagged by the hardware to signal the DMA Controller channels that a PCI access is
pending (AHB masters must attempt retried transfers until complete). This enables the
DMA channels to permit the AHB initiated PCI access to go through to the PCI bus.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
236

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

Additionally, while the AHB Master Interface is in use by a DMA channel, PCI requests
that appear in the Target Receive FIFO are flagged to allow these received requests to
gain access of the AHB bus.

Access to the PCI Controller Control and Status Registers from the AHB is unrestricted
while the DMA channels are operating. The ability to access the PCI Controller Control
and Status Registers is provided to allow the Intel XScale processor to set up the off-

line DMA Register set while the on-line DMA Register set is operating.

When the current transfer is complete, the DMA complete bit is set in the DMA Control
Register (PCI_DMACTRL) and the channel-enable bit is cleared in the Length Register.
If the channel is enabled in the second DMA Length Register, DMA execution starts
using the second set of DMA Registers. Transfers continue in this fashion until the
channel enable bits in both sets of DMA length registers for each channel are set to
logic O.

Whenever possible, the DMA channels use eight-word burst accesses for the PCI-to-
AHB and AHB-to-PClI transfers. Eight-word bursts are the maximum sustained length
that the AHB — and the PCI bus — can transfer. Every eight words, the PCI bus will
disconnect and reconnect later.

This implementation allows fairness among all devices on the PCI bus. In the general
case, a transfer will issue a beginning burst transfer from one to eight words to align
the AHB word address of the DMA to an eight-word boundary.

The subsequent transfers will be issued as eight-word bursts until the words remaining
to be transferred are eight words or less. The final transfer will complete the DMA with
a burst of one to eight words.

The example below demonstrates how to use the DMA channels.
1. The goal is to:

= Write a 16-word burst to the PCI Bus with no byte-swapping, using the AHB-to-PCI
DMA channel

= Initialize a 16-word burst read from the PCI Bus, using the PCI-to-AHB DMA
channel

= Initialize a six-word burst write to the PCI Bus using the AHB to PCI DMA channel.

The AHB-to-PCI DMA channel is used to complete PClI Memory Cycle write accesses
and the PCI-to-AHB DMA channel is used to complete PCI Memory Cycle read
accesses always.

2. Update the AHB to PCI DMA AHB Address Register O (PCI_ATPDMAO_AHBADDR)
with PCI_ATPDMAO_AHBADDR = 0x00004000 and the AHB to PCI DMA PCI Address
Register O (PCI_ATPDMAO_PCIADDR) with PCI_ATPDMAO_PCIADDR =
OxFC000004.

3. Update the AHB to PCI DMA AHB Address Register 1 (PCI_ATPDMA1_AHBADDR)
with PCI_ATPDMA1_AHBADDR = 0x00004F00 and the AHB to PCI DMA PCI Address
Register 1 (PCI_ATPDMA1_PCIADDR) with PCI_ATPDMAL_PCIADDR =
0xA2000004.

4. Update the PCI to AHB DMA AHB Address Register 0 (PCI_PTADMAO_AHBADDR)
with PCI_PTADMAO_AHBADDR = 0x00004A00 and the PCI to AHB DMA PCI Address
Register O (PCI_PTADMAO_PCIADDR) with PCI_PTADMAO_PCIADDR =
0x10000004.

5. Update the AHB to PCI DMA Length Register O (PCI_ATPDMAO_LENGTH) with
PCI_ATPDMAO_LENGTH = 0x80000010.
The DMA write transfer to the PCI bus begins.

6. Update the PCI to AHB DMA Length Register O (PCI_PTADMAO_LENGTH) with
PCI_PTADMAO_LENGTH = 0x80000010.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 237

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Assume that this DMA channel is enabled prior to the end of the first eight-word
burst of the first write DMA transfer ending. The DMA read transfer to the PCI bus
becomes interleaved with the first write transfer. So the first eight words of the
read starts towards completion.

7. Update the AHB to PCI DMA Length Register 1 (PCI_ATPDMA1_LENGTH) with
PCI_ATPDMA1_LENGTH = 0x90000006.
Assume this is set while the above read DMA transaction is occurring.

8. The next PCI transfer is completing the last eight words of the initial 16-word write
DMA transfer. That is followed by the last eight words of the 16-word read DMA
transfer and the execution of the six-word write transfer with the data byte lanes
swapped.

6.8.1 AHB to PCI DMA Channel Operation

The AHB-to-PCI (ATP) channel uses the PCI Core Initiator Request and Initiator
Transmit FIFOs. The channel reads data from the AHB bus and writes it to a PCI target
on word-aligned boundaries.

A DMA transfer from AHB to PCI is processed as follows:

1. An AHB master writes the PCI starting address, AHB starting address, and word

count to the PCI_ATPDMAO/1_PCIADDR, PCI_ATPDMAO/1_AHBADDR,
PCI_ATPDMAO/1_LENGTH registers respectively. If the channel enable bit is set in
the PCI_ATPDMAO/1_LENGTH register, the DMA transfer commences.

. The DMA Controller signals the AHB Slave Interface to retry all access attempts

from the AHB bus and waits for any AHB accesses of the PCI Bus to complete.

The DMA Controller signals the AHB Master Interface to stop servicing requests
from the PCI bus, and waits for any pending accesses from PCI to complete.

When access is obtained, data is read from AHB and loaded into the Initiator
Transmit FIFO. A PCI write request is loaded into the Initiator Request FIFO.

When the transfer completes on the PCI bus, the DMA address and length registers
are updated.

. Steps 4-6 are repeated until all data is transfered. Once the DMA Controller gets

control of the hardware, the DMA channel reads from AHB and writes to PCI 8
words at a time until the transfer is done or 1) an AHB or PCl access is attempted
or 2) the other DMA channel has a transfer enabled. In the case of 1) or 2), the
DMA channel will release the resources, then go to step 2 where it re-requests
access to these resources to continue the transfer. When done, the channel enable
bit in the PCI_ATPDMAO/1_LENGTH register is cleared, the DMA complete status bit
is set and — if enabled — an interrupt is asserted on PCC_ATPDMA_INT AND/OR
PCC_INT. PCC_PTADMA_INT and PCC_INT are signal internal to the 1XP42X product
line and IXC1100 control plane processors and are routed to the Interrupt
Controller.

In response to the interrupt, an AHB agent may read the DMA Control register
(PCI_DMACTRL) to determine the status of the transfer.

6.8.2 PCI to AHB DMA Channel Operation

The PCI to AHB (PTA) channel uses the PCI Core Initiator Request and Initiator Receive
FIFOs. The channel reads data from the PCI bus and writes it to an AHB slave on word-
aligned boundaries.

A DMA transfer from PCI to AHB is processed as follows:

1. An AHB master writes the PCI starting address, AHB starting address, and word

count to the PCI_PTADMAO/1_PCIADDR, PCI_PTADMAO/1_AHBADDR,

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
238

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

PCI_PTADMAO/1_LENGTH registers respectively. If the channel enable bit is set in
the PCI_PTADMAO/1_LENGTH register, the DMA transfer commences.

2. The DMA Controller signals the AHB Slave Interface to retry all access attempts
from the AHB bus and waits for any pending AHB accesses of the PCI Bus to
complete.

3. The DMA Controller signals the AHB Master Interface to stop servicing requests
from the PCI bus, and waits for any pending accesses from PCI to complete

4. The DMA Controller issues a read request to the PCI Core via the Request FIFO.

5. When the PCI data arrives in the Initiator Receive FIFO, the data is written to the
AHB Bus.

6. When the transfer completes on the AHB bus, the DMA address and length
registers are updated.

7. Steps 4-6 are repeated. Once the DMA Controller gets control of the hardware, the
DMA channel reads from the PCI Bus and write to the AHB Bus 8 words at a time
until the transfer is done or 1) an AHB or PCI access is attempted or 2) the other
DMA channel has a transfer enabled. In the case of 1) or 2) above, the currently
active DMA channel will release the resources, then go to step 2 where it re-
requests access to these resources to continue the transfer. When done, the
channel enable bit in the PCI_PTADMAO/1_LENGTH register is cleared, the DMA
complete status bit is set and, if enabled, an interrupt is asserted on
PCC_PTADMA_INT and/or PCC_INT. PCC_PTADMA_INT and PCC_INT are signal
internal to the IXP42X product line and 1XC1100 control plane processors and are
routed to the Interrupt Controller.

8. In response to the interrupt, an AHB agent may read the DMA Control register
(PCI_DMACTRL) to determine the status of the transfer.

6.9 PCI Controller Door Bell Register

The PCI Controller has two registers that make up the Door Bell register logic on the
IXP42X product line and IXC1100 control plane processors. These two registers are the
AHB Door Bell (PCI_AHBDOORBELL) register and the PCI Door Bell Register
(PCI_PCIDOORBELL).

An external PCI device writes the AHB Door Bell (PCI_AHBDOORBELL) register to
generate an interrupt signal to the Intel XScale processor. If the AHB doorbell interrupt
is enabled (PCI_INTEN.ADBEN = 1) in the PCI interrupt registers, any bit set to logic 1
in the AHB Door Bell (PCI_AHBDOORBELL) will force the interrupt signal to occur.

The AHB Door Bell (PCI_AHBDOORBELL) register is set from the PCI bus only by writing
logic 1 to the register. Writing logic 1 to the set bits from the SOUTH AHB clears bits
that are set in the AHB Door Bell (PCI_AHBDOORBELL).

An example of using the AHB Door Bell (PCI_AHBDOORBELL) is as follows:

1. An external PCI device writes logic 1 to a bit or pattern of bits to generate an
interrupt to the Intel XScale processor.

2. The AHB agent reads the AHB Door Bell (PCI_AHBDOORBELL) register and writes
logic 1(s) to all set bits clear the set bit(s). This in turn de-assert the interrupt
generated to the Intel XScale processor.

Using the South AHB, the Intel XScale processor writes the PCI Door Bell Register
(PCI_PCIDOORBELL) to generate an interrupt to an external PCI device over the
PCI_INTA_N signal. Any bit set to logic 1 in the PCI Door Bell Register
(PCI_PCIDOORBELL) will generate the PCI interrupt if the PCI doorbell interrupt is
enabled the PCI Interrupt Enable Register (PCI_INTEN).

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 239

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

6.10

6.10.1

6.10.2

The PCI Door Bell Register (PCI_PCIDOORBELL) register can only be written by the
AHB. The external PCI device must write logic 1 to all set bits in the PCI Door Bell
Register (PCI_PCIDOORBELL) in order to clear the bits set by the Intel XScale
processor.

An example of using the PCI Door Bell (PCI_PCIDOORBELL) is as follows:

1. The Intel XScale processor writes logic 1 to a bit or pattern of bits in the PCI Door
Bell Register (PCI_PCIDOORBELL) to generate an interrupt on the PCI bus using
PCI_INTA_N.

2. An external PCI device reads the PCI Door Bell Register (PCI_PCIDOORBELL) and
writes logic 1(s) to all set bits to clear the set bit(s). This causes the interrupt that
is asserted to de-assert.

PCI Controller Interrupts

The PCI Controller supports generation of a single PCI interrupt and interrupts to the
Intel XScale processor. Complete control of the interrupt sources and enabling is
provided using two registers: the PCI Interrupt Status Register (PCI_ISR) and PCI
Interrupt Enable Register (PCI_INTEN).

PCI Interrupt Generation

The PCI Door Bell Register (PCI_PCIDOORBELL) is used to generate an interrupt on the
PCI Bus using the PCI_INTA_N signal. For more information on the interrupt
generation, see “PCI Controller Door Bell Register” on page 239.

The PDB bit — Bit 7 of the PCI Interrupt Enable Register (PCI_INTEN) — is used to
enable the external PCI Interrupt. When bit 7 is set to logic 1, the external PCI
Interrupt logic is enabled. When bit 7 is set to logic O the external PCI Interrupt logic is
disabled.

Bit 7 of the PCI Interrupt Status Register (PCI_ISR) displays the status of the external
PCI Interrupt. This bit will be set to logic 1 when any of the PCI_PCIDOORBELL bits are
set to logic 1.

Internal Interrupt Generation

The PCI Controller employs three signals internal to the I1XP42X product line and
IXC1100 control plane processors that are sent to the Interrupt Controller to signal the
Intel XScale processor at the occurrence of various events:

= PCI Controller Interrupt signal (PCC_INT) — A general-purpose interrupt

= PCI Controller AHB to PCI DMA Interrupt signal (PCC_ATPDMA_INT) — A DMA
interrupt

= PCI Controller PCI to AHB DMA Interrupt signal (PCC_PTADMA_INT) — A DMA
interrupts.

All interrupts are active high and remain asserted until the Intel XScale processor
clears the interrupting source by writing the appropriate Configuration and Status
Register bits in the PCI Controller.
The PCI Controller Interrupt signal (PCC_INT) can be asserted when:

= A PCI error occurs

 An AHB error occurs

= A AHB-to-PCI DMA transfer is complete or terminates due to an error

= A PCI-to-AHB DMA transfer is complete or terminates due to an error

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
240

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel >

6.11

September 2006

= A Doorbell is “pushed” by an external PCI device

The PCI Interrupt Status Register (PCI_ISR) indicates the source(s) of the PCI
Controller Interrupt signal (PCC_INT). The PCI Controller Interrupt Enable
(PCC_INTEN) Register provides an enable for each of the sources located in the PCI
Interrupt Status Register (PCI_ISR).

When a bit is set in PCI Interrupt Status Register (PCI_ISR) and the corresponding bit
is enabled in the PCI Interrupt Enable (PCI_INTEN) register, then the PCI Controller
Interrupt (PCC_INT) signal will be asserted to the Interrupt Controller and then the
Intel XScale processor. The interrupt remains asserted until either the source of the
interrupt in the PCI Interrupt Status (PCI_ISR) register is cleared or the enable in the
PCI Interrupt Enable (PCI_INEN) Register is cleared.

Clearing an interrupt source may involve clearing bits in other Configuration and Status
registers.

The PCI_AHBDOORBELL register is used to generate the doorbell interrupt to an AHB

agent. This register is read/write-1-to-set from the PCI bus, and read/write-1-to-clear
from the AHB bus. All bits are ORed together to generate the interrupt. The sequence
is:

1. An external PCI agent writes a pattern of ones to the PCI_AHBDOORBELL register,
setting the corresponding bits in the register and asserting the interrupt to the AHB
agent.

2. The AHB agent reads the bit pattern in the doorbell register and writes the same
pattern back to clear the bits and de-assert the interrupt.

PCI Controller Endian Control

The PCI Local Bus Specification, Rev. 2.2 defines the byte-addressing convention on the
PCI Bus as little endian. Since the byte-addressing convention on the PCI bus is defined
as little endian and the convention used on the I1XP42X product line and 1XC1100
control plane processors’ AHB bus is defined as big-endian, the data passing from the
PCI bus and the South AHB may be translated from one endianness to the other
endianness.

The endian translation can be done by software implemented on the Intel XScale
processor. However, several endianness hardware assist functions have been added to
the PCI Controller to help remove the endian-swapping burden from the Intel XScale
processor, when 32-bit word transactions are occurring on the PCI bus.

There is a hardware-assist function that provides a 32-bit-word-wide, byte-lane
reversal process when the IXP42X product line and 1XC1100 control plane processors is
being used as a PCI target, when the IXP42X product line and 1XC1100 control plane
processors are initiating PCI Bus transactions using the PCI Memory Cycle Address
Space (AHB address 0x48000000 to Ox4BFFFFFF), and the DMA channels are being
used as described previously.

There are three bits of the PCI Controller Control and Status Register (PCI_CSR) that
control the steering of addresses between the South AHB and PCI Bus when the IXP42X
product line and 1XC1100 control plane processors are being used as a PCI target and
when the IXP42X product line and IXC1100 control plane processors are initiating PCI
Bus transactions using the PCI Memory Cycle Address Space (AHB address
0x48000000 to Ox4BFFFFFF). These three bits are:

= Bit 4 (AHB Big-endian Addressing Mode)
= Bit 3 (PCI Target Transfer Byte Swap)
« Bit 2 (AHB Memory Mapped Byte Swap).

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 241

Download from Www.Somanuals.com. All Manuals Search And Download.

®
n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Bit 4 (AHB Big-endian Addressing Mode) defines to the PCI Controller how the data
being sent to and from the AHB master and target interfaces are addressed. Figure 47
through Figure 52 shows the various configurations and the values returned from the
PCI Controller when the AHB Master and Target Interfaces are configured in both big
endian and little endian mode of operation. It is stressed that the PCI Controller will not
function properly if bit 4 is set to little-endian address mode (logic 0). Big-endian
mode of operation must always be used and this bit should be the first bit set in the PCI
Controller initialization process.

As shown in Figure 47, when an external PCI device accesses an AHB address using the
PCI Controller Target Interface with the South AHB configured in big-endian mode of
operation (Bit 4 (AHB Big-endian Addressing Mode) of the PCI Controller Control and
Status Register set to logic 1) and the PCI Target Transfer Byte Swap (Bit 3 of the PCI
Controller Control and Status Register set to logic 1), the data passed between the PCI
Bus and the AHB will be swapped.

When an external PCI device accesses an AHB address using the PCI Controller Target
Interface with the South AHB configured in big-endian mode of operation 4 (Bit 4 (AHB
Big-endian Addressing Mode) of the PCI Controller Control and Status Register set to
logic 1) and the PCI Target Transfer Byte Swap (Bit 3 of the PCI Controller Control and
Status Register) set to logic 0, the data passed between the PCI Bus and the AHB will
not be swapped. In the following figures, the PCI bytes are numbered according to the
corresponding PCI byte enables and AHB bytes are numbered according to the
corresponding byte address on the AHB bus.

For example, a PCI write with byte enable 2 asserted, the PCI Target Transfer Byte
Swap (Bit 3 of the PCI Controller Control and Status Register) set to logic 1, and the
AHB Big-endian Addressing Mode set to logic 1 will produce an AHB byte write with AHB
address bits [1:0] = 10b. When the PCI Target Transfer Byte Swap (Bit 3 of the PCI
Controller Control and Status Register) set to logic 0, the PCI write with PCI byte
enable 2 asserted will produce an AHB byte write with AHB address bits [1:0] = O1b.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
242

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

Figure 47. Byte Lane Routing During PCI Target Accesses of the AHB —
AHB Configured as a Big-Endian Bus
Write, Read,
pci_csr.PDS =1 pci_csr.PDS =1
31 24 23 16 15 8 7 31 24 23 16 15 8 7
PCI Data 3 2 1 0 PCI Data 3 2 1 0
31 %24 23716 157 8 7 31 724 23716 15 8 7
AHB Data| 00 01 10 11 AHB Data| 00 01 10 11
Write, Read,
pci_csr.PDS =0 pci_csr.PDS =0
31 24 23 16 15 8 7 31 24 23 16 15 8 7
PCI Data 3 2 1 0 PCI Data 2 1
3lvy 24 23y 16 15v 8 7 31| 24 23|16 15| 8 7
AHB Data| 00 01 10 11 AHB Data| 00 01 10 11

September 2006

Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
243

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Figure 48. Byte Lane Routing During PCI Target Accesses of the AHB —
AHB Configured as a Little-Endian Bus

Write, Read,
pci_csr.PDS =1 pci_csr.PDS =1
31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0
PCI Data 3 2 1 0 PCI Data 3 2 1 0
31 ®24 23 16 15 8 7 0 31 " 24 237 16 15 8 7 0
AHB Data| 11 10 01 00 AHB Data| 11 10 01 00
Write, Read,
pci_csr.PDS =0 pci_csr.PDS =0
31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0
PCI Data 3 2 1 0 PCI Data 3 2 1 0
31y 24 23vy 16 15 8 7 0 31| 24 23| 16 15 8 7 0
AHB Data| 11 10 01 00 AHB Data| 11 10 01 00

In a similar fashion — as described for PCI Target accesses directed towards the
IXP42X product line and 1XC1100 control plane processors — bit 2 (AHB Memory
Mapped Byte Swap) of the PCI Controller Control and Status Register (PClI_CSR)
controls byte-lane routing when an AHB agent accesses an external PCI device using
memory-mapped accesses (0x48000000 to Ox4BFFFFFF). Figure 49 and Figure 50
illustrate the data routing when the AHB is configured as big endian and little-endian

modes.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
244

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

Figure 49. Byte Lane Routing During AHB Memory Mapped Accesses of the PCI Bus —
AHB Configured as a Big-Endian Bus
Write, Read,
pci_csr.ADS =1 pci_csr. ADS =1
31 24 23 16 15 8 7 31 24 23 16 15 8 7
PCI Data 3 2 1 0 PCI Data 3 2 1 0
31 724 237 16 15 8 7 31 ©24 23 "16 15 8 7
AHB Data| 00 01 10 11 AHB Data| 00 01 10 11
Write, Read,
pci_csr.ADS =0 pci_csr.ADS =0
31 24 23 16 15 8 7 31 24 23 16 15 8 7
PCI Data 3 2 1 0 PCI Data 3 2 1 0
31| 24 23| 16 15 8 7 3lvy 24 23vy 16 15 8 7
AHB Data| 00 01 10 11 AHB Data| 00 01 10 11

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
245

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Figure 50. Byte Lane Routing During AHB Memory Mapped Accesses of the PCI Bus —
AHB configured as a Little-Endian Bus
Write, Read,
pci_csr. ADS =1 pci_csr.ADS =1
31 24 23 16 15 8 31 24 23 1615 8 7 0
PCI Data 3 2 1 0 PCI Data 3 2 1 0
31 724 23716 15" 8 31 ®24 23716 15" 8 7™ 0
AHB Data| 11 10 01 00 AHB Data| 11 10 01 00
Write, Read,
pci_csr. ADS =0 pci_csr. ADS=0
31 24 23 16 15 8 31 24 23 16 15 8 7 0
PCI Data 3 2 1 0 PCI Data 3 2 1 0
31| 24 23| 16 15| 8 3lvy 24 23y 16 15y 8 7 0
AHB Data| 11 10 01 00 AHB Data| 11 10 01 00

As described previously, during DMA transfers the DS bit in the DMA length registers
controls byte-lane routing. Figure 51 shows the byte lane routing between the PCI bus
and the South AHB during DMA transfers. The DMA channels are word-only accesses.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
246

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

inte

l(n)

Figure 51. Byte Lane Routing During DMA Transfers
AHB-to-PCl DMA, PCI-to-AHB DMA,
DS=1 DS=1
31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0
PCI Data 3 2 1 0 PCI Data 3 2 1 0
31 724 23716 15 8 7 0 31 ©24 23 16 15 " 8 7 0
AHB Data| 00 01 10 11 AHB Data| 00 01 10 11
AHB-to-PCl DMA, PCI-to-AHB DMA,
DS=0 DS=0
31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0
PCI Data 3 1 0 PCI Data 3 2 1 0
31| 24 23| 16 15| 8 7 0 3lv 24 23v 16 15v 8 7 0
AHB Data| 00 01 10 11 AHB Data| 00 01 10 11

September 2006

There is no byte-lane reversal process for accesses to PCI Controller Configuration and
Status Registers or PCI Configuration Registers. Figure 52 shows the byte-lane routing

for these types of accesses.

For example, a PCI Configuration Register write from an external PCI Device, with byte
enable 2 asserted, will write to bits 23:16 of the addressed register. An AHB write with
Address bits [1:0] = 10b — while being configured in big-endian mode (pci_csr.ABE =
1) of operation — will write bits 15:8 of an addressed PCI Controller Configuration and
Status Register. When the AHB is configured in little-endian mode (pci_csr.ABE = 0) of
operation, bits 23:16 of the same addressed PCI Controller Configuration and Status

Register will be written.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
247

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Figure 52. Byte Lane Routing During Configuration and Status Register Accesses
PCI CSR Read PCI CSR Write
31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0
PCI Data 3 2 0 PCI Data 2 1 0
311 24 231 16 15 8 7 0 3lv 24 23v 16 15v 8 7 0
CSR CSR
Register Register
AHB CSR Read AHB CSR Write
31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0
CSR CSR
Register Register
3lvy 24 23y 16 15 8 7 0 311 24 23] 16 15| 8 7 0
AHB Data AHB Data‘
6.12 PCI Controller Clock and Reset Generation

The PCI Reset and PCI clock signals can be provided using general-purpose input/
output (GPIO) outputs or from an external source. GPIO 14 can be used to source up to
a 33-MHz clock output that can be used as the PCI Clock input to the chip and other PCI

Devices.

One of GPIO 13:0 can be used to generate the PCI Reset. Both signals can be sourced
from an external device as well. The Intel XScale processor can generate the PCI reset
and PCI clock outputs to satisfy the reset timing requirements of the PCI bus.

A PCI startup sequence could be as follows:

1. Power-on reset occurs to the IXP42X product line and IXC1100 control plane
processors, the Intel XScale processor starts execution (internal PLL assumed

locked and internal clocks stable).

2. Software configures PCI reset and PCI clock GPIOs as outputs driving 0. A pull-
down on the GPIO pin chosen to drive the PCI reset signal is required. This pull-
down is required because the GPIO are at a tristated value until the device comes
completely out of reset and the PCI reset needs to be low from the start.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
248

September 2006

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

Note:

6.13

6.14

6.14.1

Table 103.

September 2006

3. Wait 1ms to satisfy minimum reset assertion time of the PCI specification.

4. Configure the PCI clock GPIO for the proper PCI bus frequency (defined in the
section GPIO).

5. Enable the PCI clock GPIO to drive the PCI clock

6. Wait 100 ps to satisfy the “minimum reset assertion time from clock stable”
requirement of the PCI specification.

7. Set the PCI reset GPIO output to drive a 1.
This releases the PCI bus.

The PCI reset can be asserted and de-asserted asynchronously with respect to the PCI
clock. It is also important to note the PCI reset signal can not be the same signal as the
RESET_IN_N signal going to the IXP42X product line and 1XC1100 control plane
processors due to PCI reset timing and PCI initialization requirements.

PCI RCOMP Circuitry

The PCI RCOMP circuitry dynamically compensates for variations in operating
conditions due to process, temperature and voltage. These variations are measured
through a resistive mechanism in a special 1/0 Pad and evaluated in the associated
compensation circuitry. Adjustments are made to the drive strength of the buffers for
the PCI interface ensuring error free operation over the entire range of operating
conditions.

The RCOMP circuitry requires an external reference resistor that models the load the
PCI pads will see in the board environment. For specific RCOMP pin requirements, see
the Intel® 1XP42X Product Line of Network Processors and 1XC1100 Control Plane
Processor Datasheet (252479). The circuitry adjusts the PCI pads' current sourcing
strength by comparing the voltage of the output buffer driven through the external
reference resistor with an internally generated 60% threshold voltage. The circuitry
adjusts the PCI pads' current sinking strength by comparing the output buffer voltage
with an internally generated 40% threshold voltage. Once drive strengths are
determined for the 60% and 40% thresholds a multiplier is applied to the drive
strengths to provide for a margin above and below the 60% and 40% thresholds,
respectively.

Register Descriptions

PCI Configuration Registers

Table 103 lists the registers comprising the configuration registers as defined in the PCI
Local Bus Specification, Rev. 2.2. They are accessible from the PCI bus using
configuration read and write transactions and from the Intel XScale processor by
accessing the PCI Controller CSR-based PCI Configuration register port. Access to these
registers are described in “Initializing the PCI Controller Configuration Registers” on
page 222

PCI1 Configuration Register Map (Sheet 1 of 2)

Offset Register Name Description
0x00 PCI_DIDVID Device ID/Vendor ID

0x04 PCI_SRCR Status Register/Control Register

0x08 PCI_CCRID Class Code/Revision ID

0x0C PCI_BHLC BIST/Header Type/Latency Timer/Cache Line
0x10 PCI_BARO Base Address O

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 249

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

intel.

Table 103. PCI Configuration Register Map (Sheet 2 of 2)
Offset Register Name Description
0x14 PCI_BAR1 Base Address 1
0x18 PCI_BAR2 Base Address 2
0x1C PCI_BAR3 Base Address 3
0x20 PCI_BAR4 Base Address 4
0x24 PCI_BARS Base Address 5
0x28 RESERVED (Reserved)
0x2C PCI_SIDSVID Subsystem ID/Subsystem Vendor ID
0x30-38 RESERVED (Reserved)
0x3C PCI_LATINT Defines Max_Lat, Min_Gnt, Interrupt Pin, and Interrupt Line
0x40 PCI_RTOTTO Defines retry timeout and trdy timeout parameters
6.14.1.1 Device ID/Vendor ID Register

(PCI1_DIDVID)

Register Name:

PCI_DIDVID

Hex Offset Address:

0x00 Reset Hex Value:

0x85008086 ‘

Register
Description:

Provides Device ID and Vendor ID values as specified in the PCI 2.2 Local Bus Specification

Access: See below.

] | L sl LTI]o
Device ID Vendor ID
Register PCI_DIDVID
Bits Name Description Reset PCI Access AHB Access
Value
316:1 DevicelD Unique device identifier assigned by Intel 0x8500 RO RO
15:0 VendorID Unique vendor identifier assigned to Intel by PCISIG 0x8086 RO RO
6.14.1.2 Status Register/Control Register
(PCI_SRCR)
Register Name: PCI_SRCR
Hex Offset Address: 0x04 | | Reset Hex Value: 0x02A00000 |
Register . . e e
D -2~ ~" |Contains the Command and Status registers as specified in the PCI 2.2 Local Bus Specification
escription:
Access: See below.
a1 | L PP PP sl [LT LT
Status Register Command Register

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
250

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

Register

PCl_SRCR (sheet 1 of 2)

Bits

Name

Description

Reset
Value

PCI Access

AHB Access

31

DPE

Detected Parity Error. Set when this device detects a
parity error on the bus even when parity handling is
disabled. Writing a 1 to this bit clears it.

RWI1C

RW1C

30

SSE

Signaled System Error. Set when this device
generates a System Error SERR#. Writing a 1 to this
bit clears it.

RWI1C

RW1C

29

RMA

Received Master Abort. Set by this device as a Master
when its transaction terminates due to a master abort
(except for special cycles). Writing a 1 to this bit
clears it.

RW1C

RW1C

28

RTA

Received Target Abort. Set by this device as a Master
when its transaction is terminated due to a target
abort. Writing a 1 to this bit clears it.

RwWi1C

RW1C

27

STA

Signaled Target Abort. Set by this device as a Target
when it terminates a transaction with a target abort.
Writing a 1 to this bit clears it.

RwWi1C

RW1C

DEVSEL

Defines the DEVSEL speed for this device. Set to
medium.

01

RO

RO

24

MDPE

Master Data Parity Error. Set by this device as a
Master if PER (bit 6) is set and this device either
asserted the PERR# signal or saw PERR# asserted for
one of its data phases.

RW1C

RW1C

23

FBBC

Fast Back-to-Back Capable.

RO

RO

22

UDF

User Definable Features supported. O = not supported

RO

RO

21

66MHZ

66MHz Capable. Indicates if this device is capable of
66-MHz operation. 1 = 66MHz capable.

RO

RW

20

CLI

Capabilities List Indicator, Not supported

RO

RO

19:1

(Reserved)

00

RO

RO

FBBE

Fast Back-to-Back Enable. When set to a 1 enables
the device to generate fast back-to-back cycles to
different targets as a Master.

RW

RW

SER

System Error Enable. When set to a 1, enables the
SERR# output driver. O disables the driver.

RW

RW

SC

Stepping Control. When set to a 1, enables address
stepping on the bus. This feature not supported.

RO

RO

PER

Parity Error Response. When set to a 1, enables
reporting of parity errors on PERR#. When set to 0,
parity errors not reported on PERR# but the DPE bit
(bit 31) is still set.

RW

RW

PSE

Palette Snoop Enable. When set to a 1, enables VGA
palette snooping. This feature not supported.

RO

RO

MWIE

Memory Write and Invalidate Enable. When set to a
one, enables this device to generate the memory
write and invalidate command.

RW

RW

SCE

Special Cycle Enable. When set, enables this device to
monitor for Special Cycles. This feature not
supported.

RO

RO

September 2006
Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
251

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Register PC |_SRCR (Sheet 2 of 2)
Bits Name Description Reset PCI Access AHB Access
Value
> BME Bus Master Enable. When set, enables this device to 0 RW RW

act as a bus Master.

Memory Access Enable. When set to a 1, enables

[0] RW RW
memory accesses as a target.

1 MAE

1/0 Access Enable. When set to a 1, enables 1/0

0 I0AE
accesses as a target.

6.14.1.3 Class Code/Revision ID Register
(PCI_CCRID)

Register Name: PCI_CCRID
Hex Offset Address: 0x08 ‘ | Reset Hex Value: 0x0B400000 ‘
Register ; . e e
D -2 - . |Provides Class Code and Revision ID values as specified in the PCI 2.2 Local Bus Specification.
escription:

Access: See below.

1] | | | el [L] o] [HOGEEEEERE
Class Code Sub-Class Code Interface RevisionID
Register PC |_CCR 1D
i L Reset
Bits Name Description value PCI Access AHB Access
31:2 Class/Sub-Class identifier for the device as defined in
4 Class Code the PCI specification. OxOb = processor 0x0b RO RW
23:1 Sub-Class | Sub-Class identifier for Class Code 0xOb. 0x40 = co- 0x40 RO RW
6 processor
15:8 Interface (F:’Ire(l)sgsrammlng Interface code. Always 0x00 for this 0x00 RO RW
7:0 RevisionlD Silicon revision for the device. 0x01 RO RW

6.14.1.4 BIST/Header Type/Latency Timer/Cache Line Register
(PC1_BHLC)

Register Name: PCI_BHLC

0x00000000

Hex Offset Address: 0x0C | | Reset Hex Value:

Register|Provides BIST, Header Type, Latency Timer, and Cache Line Size registers as specified in the PCI 2.2
Description: |Local Bus Specification.

Access: See below.

3] | [][] | [L pepsl T LT[o] [] | [°
BIST Header Type LatencyTimer CachelLine

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM September 2006

252 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

0x10

Register PC'_BHLC
Bits Name Description Reset PCI Access AHB Access
Value
31:2 .
4 BIST BIST control register, not supported 0x00 RO RO
23 Header Single Function/Multi-Function Device. Set to O to 0 RO RO
Type[7] identify this device as a single-function PCI device.
22:1 Header] . . .
6 Type[6:0] Configuration Header Type for this device. Set to 00 0x00 RO RO
15:1 _Latenc_y Latency Timer value in units of four PCI bus clocks. 0x00 RW RW
0 Timer[7:2]
B Latency 1 ; . .
9:8 Timer[1:0] Hard-wired low order Latency Timer bits 0x0 RO RO
7:0 Cache Line | Cache Line Size in units of 32-bit words. 0x00 RW RW
6.14.1.5 Base Address O Register
(PC1_BARO)
Register Name: PCI_BARO
0x00000008 |

Hex Offset Address:

‘ Reset Hex Value:

Register
Description:

PCI Base Address register for AHB memory space access. Format as specified in the PCI 2.2 Local Bus

Specification

Access: See below.

1] | [Ll LT[efe2]e]o

) L -

RWBase FixedBase Y| Type |@

o =

Register PC |_BARO
Bits Name Description Reset PCI Access AHB Access
Value
314:2 RWBase Read/Write bits of Base Address register. 0x00 RW RW
) . Read-only bits of Base Address register. Specifies

23:4 FixedBase fixed 16Mbyte address range for this BAR. 0x000 RO RO
3 PREF Pre-fetchable memory indicator. 1 RO RO
2:1 Type Relocatable anywhere in 32-bit address space. 00 RO RO
0 MsI gllpearggry space indicator. Hard-wire to O for memory 0 RO RO

September 2006

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
253

intel.

6.14.1.6 Base

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Address 1 Register

(PCI1_BAR1)

Register Name:

PCI_BAR1

Hex Offset Address:

0x14 | Reset Hex Value:

0x00000008 ‘

Register|PCl Base Address register for AHB memory space access. Format as specified in the PCI 2.2 Local Bus
Description: | Specification.

Access: See below.

L PP PP PP LT] efefefefe
[T -
RWBase FixedBase Wl Type |©
=
o
Register PC |_BAR1
Bits Name Description Reset PCI Access AHB Access
Value
3&2 RWBase Read/Write bits of Base Address register. 0x00 RW RW
i . Read-only bits of Base Address register. Specifies
23:4 FixedBase fixed 16Mbyte address range for this BAR. 0x000 RO RO
3 PREF Pre-fetchable memory indicator. 1 RO RO
2:1 Type Relocatable anywhere in 32-bit address space. 00 RO RO
0 MsI Memory space indicator. Hard-wire to O for memory 0 RO RO
space.
6.14.1.7 Base Address 2 Register
(PC1_BAR2)
Register Name: PCI_BAR2
Hex Offset Address: 0x18 0x00000008 ’

| Reset Hex Value:

Register
Description:

PCI Base Address register for AHB memory space access. Format as specified in the PCI 2.2 Local Bus

Specification.

Access: See below.

1] | Ll DL LT PP efel2]ele

[T -—

RWBase FixedBase Y| Type |©Q

o =

Register PC |_BAR2
Bits Name Description Reset PCI Access AHB Access
Value
332 RWBase Read/Write bits of Base Address register. 0x00 RW RW
. ; Read-only bits of Base Address register. Specifies

23:4 FixedBase fixed 16Mbyte address range for this BAR. 0x000 RO RO
3 PREF Pre-fetchable memory indicator. 1 RO RO
2:1 Type Relocatable anywhere in 32-bit address space. 00 RO RO
0 MsI Q/I;arggry space indicator. Hard-wire to O for memory 0 RO RO

Intel® 1XP42X Product L
DM
254

ine of Network Processors and 1XC1100 Control Plane Processor

September 2006

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

6.14.1.8 Base Address 3 Register
(PCI_BAR3)

Register Name: PCI_BAR3

‘ Reset Hex Value: 0x00000008 |

Hex Offset Address: 0x1C

Register [PCI Base Address register for AHB memory space access. Format as specified in the PCI 2.2 Local Bus
Description: | Specification

Access: See below.

1] | | Lol UL [efefefelo
[—-—
RWBase FixedBase Y| Type |@
o =
Register PC |_BAR3
Bits Name Description Reset PCI Access AHB Access
Value
314:2 RWBase Read/Write bits of Base Address register. 0x00 RW RW
) . Read-only bits of Base Address register. Specifies
23:4 FixedBase fixed 16Mbyte address range for this BAR. 0x000 RO RO
3 PREF Pre-fetchable memory indicator. 1 RO RO
2:1 Type Relocatable anywhere in 32-bit address space. 00 RO RO
0 Msl Memory space indicator. Hard-wire to O for memory 0 RO RO
space.
6.14.1.9 Base Address 4 Register
(PC1_BAR4)
Register Name: PCI_BAR4
Hex Offset Address: 0x20 Reset Hex Value: 0x00000008 |

Register [PCI Base Address register for PCI Controller PCI accessible CSRs. Format as specified in the PCI 2.2 Local
Description: |Bus Specification.

Access: See below.

1] | Ll DL PP fefe2]elo
[T —-—
RWBase FixedBase Y| Type g
[a
Register PC I_BAR4
Bits Name Description Reset PCI Access AHB Access
Value
314:2 RWBase Read/Write bits of Base Address register. 0x00 RW RW
) . Read-only bits of Base Address register. Specifies
23:4 FixedBase fixed 16Mbyte address range for this BAR. 0x000 RO RO
3 PREF Pre-fetchable memory indicator. 1 RO RO
2:1 Type Relocatable anywhere in 32-bit address space. 00 RO RO
0 MsI gllpearzgry space indicator. Hard-wire to O for memory 0 RO RO

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

September 2006
255

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

6.14.1.10 Base Address 5 Register

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

(PCI1_BARS5)

Register Name:

PCI_BARS5

Hex Offset Address: 0x24

| Reset Hex Value:

0x00000001 ‘

Register

Description: | Specification.

PCI Base Address register for AHB 1/0 space access. Format as specified in the PCI 2.2 Local Bus

Access: See below.
A VPP PP PP PP P defel PI[2[e]
~
i S|o
RWBase FixedBase Z 0
N
Register PCl_BARS
Bits Name Description Reset PCI Access AHB Access
Value
31:8 RWBase Read/Write bits of Base Address register. 0x000000 RW RW
. } Read-only bits of Base Address register. Specifies
72 FixedBase fixed 256 byte address range for this BAR. 0x00 RO RO
1 (Reserved) (o] RO RO
0] MSI 1/0 space indicator. Hard-wire to 1 for 1/0 space. 1 RO RO
6.14.1.11 Subsystem ID/Subsystem Vendor ID Register
(PCI1_SIDSVID)
Register Name: PCI_SIDSVID
Reset Hex Value: 0x00000000 ’

Hex Offset Address: 0x2C ’ |

Register

Description: | Specification

Provides Subsystem Device ID and Subsystem Vendor ID values as specified in the PCI 2.2 Local Bus

Access: See below.
- L L L PP PPl PP
SdevicelD SvendorID
Register PCl_SlDSVlD
Bits Name Description Reset PCI Access AHB Access
Value

31:1 . .

6 SDevicelD Subsystem Device ID 0x0000 RO RW
15:0 SVendorlID Subsystem Vendor ID 0x0000 RO RW

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
256

September 2006

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

6.14.1.12 Max_Lat, Min_Gnt, Interrupt Pin, and Interrupt Line Register
(PCI_LATINT)

Register Name:

PCI_LATENT

Hex Offset Address:

0x3C ‘ ‘ Reset Hex Value:

0x00000100

Register
Description:

Miscellaneous register provides Max Latency, Min Grant, Interrupt Pin and Interrupt Line parameters as

specified in the PCI 2.2 Local Bus Specification

Access: See below.

1] | | [l [L LD Pepel LT DL el LT
MaxLat MinGnt IntPin IntLine
Register PC I_LATENT
Bits Name Description Reset PCI Access AHB Access
Value
31:2 Indicates how often this device needs access to the
4' MaxLat bus, in units of 0.25us. Used by configuration 0x00 RO RW
software to set the value of the Latency Timer.
23:1 Indicates the time interval required for a burst
6- MinGnt operation, in units of 0.25us. Used by configuration 0x00 RO RW
software to set the value of the Latency Timer.
) . Indicates which interrupt pin this device connects to.
15:8 IntPin Set to connect to INT_A#. 0x01 RO RW
7:0 IntLine Indicates interrupt line routing information. 0x00 RW RW
6.14.1.13 Retry Timeout/TRDY Timeout Register
(PC1_RTOTTO)
Register Name: PCI_RTOTTO
Hex Offset Address: 0x40 ‘ ‘ Reset Hex Value: 0x00008080 |
Re.g'.Ste'_’ Specifies values for the Retry and TRDY timeout timers.
Description:
Access: See below.
3] | [LTI PP pepef PAT Lol DL LT o
(Reserved) RetryTO TRDYTO
Register PC |_RTOTTO
Bits Name Description Reset PCI Access AHB Access
Value
316:1 (Reserved) 0Xx00 RO RO
Specifies value for the Retry timer. Specifies the
15:8 RetryTO maximum number of retries the Master Interface will 0x80 RW RW
accept before terminating the transaction.
Specifies value for the TRDY timer. Specifies the
number of PCI clocks the Master Interface will wait
7:0 TRDYTO before terminating a transfer with Master Abort when 0x80 RW RW
a target accepts a transaction by asserting DEVSEL#
but does not assert TRDY# or STOP#.

September 2006

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
257

6.14.2

Table 104.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

PCI Controller Configuration and Status Registers

These registers are accessible from the AHB and are memory mapped in the AHB

address space. Table 104 shows the address map for the Control and Status Register.
The PCI offset is relative to the base address in PCI_BAR4 for accesses from the PCI

bus.

PCI Controller CSR Address Map

AHB Address PCI Offset Register Name Description

0 x CO000000 0x00 PCI_NP_AD PCI non-pre-fetch address register

0 x CO000004 0x04 PCI_NP_CBE rPeCQ:isnt((Jer:-pre-fetch command/byte enables
0 x CO000008 0x08 PCI_NP_WDATA PCI non-pre-fetch write data register

0 x CO00000C 0x0C PCI_NP_RDATA PCI non-pre-fetch read data register

0 x C0000010 0x10 PCI_CRP_AD_CBE zg{:\&%’:‘%‘;;‘gn port address/cmd/byte
0 x CO000014 0x14 PCI_CRP_WDATA PCI configuration port write data register
0 x C0000018 0x18 PCI_CRP_RDATA PCI configuration port read data register
0 x CO00001C 0x1C PCI_CSR PCI Controller Control and Status register
0 x CO000020 0x20 PCI_ISR PCI Controller Interrupt Status register
0 x CO000024 0x24 PCI_INTEN PCI Controller Interrupt Enable register
0 x CO000028 0x28 PCI_DMACTRL DMA control register

0 x C000002C 0x2C PCI_AHBMEMBASE AHB Memory Base Address Register

0 x CO000030 0x30 PCI_AHBIOBASE AHB 1/0 Base Address Register

0 x CO000034 0x34 PCI_MEMBASE PCI Memory Base Address Register

0 x CO000038 0x38 PCI_AHBDOORBELL AHB Doorbell Register

0 x CO00003C 0x3C PCI_PCIDOORBELL PCI Doorbell Register

0 x CO000040 0x40 PCI_ATPDMAO_AHBADDR | AHB to PClI DMA AHB Address Register O
0 x CO000044 0x44 PCI_ATPDMAO_PCIADDR AHB to PCI DMA PCI Address Register O
0 x CO000048 0x48 PCI_ATPDMAO_LENGTH AHB to PCI DMA Length Register O

0 x CO00004C 0x4C PCI_ATPDMA1_AHBADDR | AHB to PClI DMA AHB Address Register 1
0 x CO000050 0x50 PCI_ATPDMA1_PCIADDR AHB to PCI DMA PCI Address Register 1
0 x CO000054 0x54 PCI_ATPDMA1_LENGTH AHB to PCI DMA Length Register 1

0 x CO000058 0x58 PCI_PTADMAO_AHBADDR | PCI to AHB DMA AHB Address Register O
0 x CO00005C 0x5C PCI_PTADMO_PCIADDR PCI to AHB DMA PCI Address Register O
0 x CO000060 0x60 PCI_PTADMO_LENGTH PCI to AHB DMA Length Register O

0 x CO000064 0x64 PCI_PTADM1_AHBADDR PCI to AHB DMA AHB Address Register 1
0 x CO000068 0x68 PCI_PTADM1_PCIADDR PCI to AHB DMA PCI Address Register 1
0 x CO00006C 0x6C PCI_PTADM1_LENGTH PCI to AHB DMA Length Register 1

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
258

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

6.14.2.1

PCI1 Controller Non-pre-fetch Address Register

intel.

(PC1_NP_AD)

Register Name:

PCI_NP_AD

Hex Offset Address:

0xC0000000

Reset Hex Value:

0x00000000

Register [PCI non-pre-fetch access address register. Provides address for CSR-initiated non-pre-fetch PCI
Description: |accesses.
Access: See below.
A LI PP PPl TP L]
NP_ADDRESS NP_ADDRESS
Register PC'_NP_AD
Bits Name Description Reset PCI Access AHB Access
Value
. Address of the non-pre-fetch PCI cycle. The format of
31:0 np_address the address depends on the PClI command type used. 0x00000000 RO RW
6.14.2.2 PCI Controller Non-pre-fetch Command/Byte Enables Register

(PCI_NP_CBE)

Register Name:

PCI_NP_CBE

Hex Offset Address:

0xC0000004

| Reset Hex Value:

0x00000000 |

Register
Description:

PCI non-pre-fetch access command/byte enables register. Provides PCI command and data byte enables

for CSR-initiated non-pre-fetch PCI accesses

Access: See below.

] | LTI L[defe] [Jefel [o
(Reserved) NP_BE NP_CMD
Register PC I_N P_CBE
Bits Name Description Reset PCI Access AHB Access
Value

31:8 (Reserved) — Read as O 0x000000 RO RW
Byte enables driven onto the C/BE[3:0]# lines of the

7:4 NP_BE PCI bus during the data phase of the non-pre-fetch 0x0 RO RW
PCI access.
PCI command driven onto the C/BE[3:0]# lines of the

3:0 NP_CMD PCI bus during the address phase of the non-pre- 0x0 RO RW
fetch PCI access.

September 2006

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
259

] ®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

6.14.2.3 PCI Controller Non-Pre-fetch Write Data Register
(PCI_NP_WDATA)

Register Name: PCI_NP_WDATA

Hex Offset Address: 0xC0000008

| Reset Hex Value:

0x00000000 ‘

Register|PCI non-pre-fetch access write data register. Provides write data for CSR-initiated non-pre-fetch PCI
Description: |write access.

Access: See below.

a1 | IEEEEEEEEEEEEENENENENEEEEEE
NP_WDATA
Register PC'_NP_WDATA
Bits Name Description Reset PCI Access AHB Access
Value
31:0 np_wdata Write data for the non-pre-fetch PCI write cycle. 0x00000000 RO RW

6.14.2.4 PCI Controller Non-Pre-fetch Read Data Register
(PCI1_NP_RDATA)

Register Name: PCI_NP_RDATA

Hex Offset Address: 0xC000000C Reset Hex Value:

0x00000000 ’

Register|PCI non-pre-fetch access read data register. Holds read data from the CSR-initiated non-pre-fetch PCI
Description: |read access.

Access: See below.

AP PP PP PP
NP_RDATAH
Register PC I_NP_RDATA
Bits Name Description Reset PCI Access AHB Access
Value
31:0 np_rdata Read data from the non-pre-fetch PCI read cycle. 0x00000000 RO RO

6.14.2.5 PCI Controller Configuration Port Address/Command/
Byte Enables Register

(PCI1_CRP_AD_CBE)

Register Name: PCI_CRP_AD_CBE

Hex Offset Address: 0xC0000010 Reset Hex Value: 0x00000000

PCI configuration port address/command/byte enables register. Provides address, command, and data
byte enables for CSR-initiated accesses of the PCI Controller PCI configuration registers in the PCI Core.
A write to this register that sets the CRP_CMD[16] bit to a O (read) will initiate a read of the PCI
Controller PCI configuration register addressed by CRP_AD[7:2]. The resultant read data will be written
to the pci_crp_rdata register.

pepol PP LT LT

(Reserved) CRP_BE CRP_CMD (Reserved) CRP_AD

Register
Description:

Access: See below.

|

31

| | |2423| | |20 19‘ | |1e 15‘

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
260 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

Register PC |_CRP_AD_CBE
Bits Name Description Reset PCI Access AHB Access
Value
31:2
4 (Reserved) — Read as O 0x00 RO RO
Active-low byte enables for a PCI configuration port
write access. This field corresponds to byte lanes in
the pci_crp_wdata register and addressed PCI
23:2 configuration register as follows:
0 CRP_BE CRP_BE[0] & bits 7:0 0x0 RO RW
CRP_BE[1] a bits 15:8
CRP_BE[2] a bits 23:16
CRP_BE[3] a bits 31:24
: Command for the PCI configuration port access.
19:1 1 cre cmD g P 0x0 RO RW
6 XxxX0 = read, xxx1 = write
15:1
1 (Reserved) — Read as O 00000 RO RO
Byte address for the PCI configuration port access.
5 PCI configuration registers are word-addressed so bits
10:0 CRP_AD 1 and O should always be 0. Bits 10:8 specify the 0x000 RO RW
function number and must always be 000.

6.14.2.6 PC

Controller Configuration Port Write Data Register

(PCI_CRP_WDATA)

Register Name:

PCI_CRP_WDATA

Hex Offset Address:

0xC0000014 Reset Hex Value:

0x00000000

Register

Description:

PCI configuration port write data register. Provides write data for CSR-initiated accesses of the PCI

Controller PCI configuration registers in the PCI Core. If the pci_crp_ad_cmd_be.CRP_CMD[16] bit is 1
(write), a write to pci_crp_wdata will initiate a write to the PCI Controller PCI configuration register
addressed by pci_crp_ad_cmd_be.CRP_AD[7:2]. The pci_crp_ad_cmd_be.CRP_BE field determines

which bytes are affected.

Access: See below.

o HEEEEEEEEEEEEEEEEEEEEEEEEEE
CRP_WDATA
Register PCl_CRP_WDATA
. A Reset
Bits Name Description value PCI Access AHB Access
31:0 CRP_WDATA Write data for the configuration port write access. 0x00000000 RO RW

September 2006
Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
261

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

6.14.2.7 PCI1 Controller Configuration Port Read Data Register
(PCI_CRP_RDATA)

Register Name: PCI_CRP_RDATA

0x00000000

Hex Offset Address: 0xC0000018 | Reset Hex Value:

Register|PCI configuration port read data register. Provides read data for CSR-initiated read accesses of the PCI
Description:|Controller PCI configuration registers in the PCI Core.

Access: See below.

a1 | IEEEEEEEEEEEEENEEENENEEEEEE
CRP_RDATA
Register PC |_CR P_RDATA
Bits Name Description Reset PCI Access AHB Access
Value
31:0 CRP_RDATA | Read data for the configuration port read access. 0x00000000 RO RO

6.14.2.8 PCI Controller Control and Status Register

(PCI_CSR)
Register Name: PCI_CSR
Hex Offset Address: 0xC000001C ’ | Reset Hex Value: 0x0000000x ’
Register
Description: Control and status for the PCI Controller.
Access: See below.
31 | | | | ‘ l | | ‘ ‘ |17161514‘ l | | ‘987|654321O
= W Elw o v gl
(Reserved) &) IC (Reserved) 0 |[(Rsvd) | (@ @ |m |m@ 8
o < <|lo < |z |
<
Register PC |_CSR (Sheet 1 of 2)
Bits Name Description Reset PCI Access AHB Access
Value
31:1
7 (Reserved) — Read as O 0x0000 RO RO
PCI Reset, When set to a 1, initializes the PCI controller
16 PRST flip flops clocked by the PCI clock. 0x0 RO RW
Initialization Complete. When at a logic O state, forces the
15 IC PCI Controller Target Interface to retry PCI cycles. When 0 RO RW
set to a 1, PCI cycles will be accepted.
14:9 (Reserved) — Read as O 0x00 RO RO
Assert System Error. When set to a 1, the PClI SERR#
8 ASE output (PCI_SERR_N) will be asserted for 1 PCI clock 0 RO RW
cycle if the pci_srcr.SER bit is set.
7:6 (Reserved) — Read as O 00 RO RO
Doorbell Test mode enable. When set to a 1, the doorbell
5 DBT registers pci_ahbdoorbell, pci_pcidoorbell become normal 0 RO RW
read/write registers from the AHB bus.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
262

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

Register PC |_CSR (Sheet 2 of 2)
Bits Name Description Reset PCI Access AHB Access
Value

AHB big-endian addressing. When 0, little-endian
addressing is employed on both AHB master and slave) RO RW
interfaces. When 1, big-endian addressing is
implemented.

4 ABE

PCI byte swap. Controls byte lane data routing between
PCI and AHB buses during PCI Target accesses of the AHB 0 RO RW
bus. When 1, byte lane swapping is performed. When 0,
no swapping is done.

3 PDS

AHB byte swap. Controls byte lane data routing between
PCI and AHB buses during AHB Slave accesses of the PCI 0 RO RW
bus. When 1, byte lane swapping is performed. When 0,
no swapping is done.

2 ADS

Arbiter enable status. Indicates the state of the Expansion
1 ARBEN bus address input bit corresponding to the PCI arbiter Oor1l RO RO
setting at the de-assertion of reset_n.

Host status. Indicates the state of the Expansion bus
(0] HOST address input bit corresponding to the PCI host/option Oor1l RO RO
setting at the deassertion of reset_n

6.14.2.9 PCI Controller Interrupt Status Register
(PCI_ISR)

Register Name: PCI_ISR

Hex Offset Address: 0xC0000020 Reset Hex Value: 0x00000000

Indicates the interrupt source(s) for the pcc_int interrupt output and the PCI interrupt PCI_INTA_N. With

Register [the exception of PDB (PCI Doorbell), when any bit is a 1 and the corresponding bit in the pci_inten
Description: |register is set, pcc_int will be asserted. If the PDB bit is a 1 and the pci_inten.PDB bit is set, the
PCI_INTA_N output will be asserted to generate an interrupt on the PCI bus.

Access: See below.

31 | LT PP PP [efrfelefefe]z[s]o
O (O |W

(Reserved) 218 28 a el el 7

o S ol - - e e
Register PC |_| SR (Sheet 1 of 2)

Bits Name Description Reset PCI Access AHB Access
Value

31:8 (Reserved) — Read as 0 0x000000 RO RO

PCI Doorbell interrupt. Asserted high when any one of
the bits in the pci_pcidoorbell register is set. This bit
7 PDB does not cause an interrupt to be asserted on pcc_.int. 0 RO RO
When the pci_inten.PDB bit is set, the PCI_INTA_N
PCI interrupt output is asserted.

6 ADB. | G'the bits n the poi ahbdoorbell register 1 set. 0 RO RO
s | eaoc [ECLiefe oA Complte seried i whenarel | w0 w0
s | aeoc | fiorclowAcompiete sered igh whenate | w0 o
3 AHBE AHB Error indication. Set to a 1 when the AHB Master 0 RO RWI1C

Interface receives an ERROR response.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

September 2006
263

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Register

PCI1_ISR (sheet 2 of 2)

Bits

Name

Description

Reset
Value

PCI Access

AHB Access

PCI Parity Error. Set to a 1 when a parity error occurs
on the PCI bus:

Parity error detected during Master Interface read
cycle.

pad_perr_n (PERR#) asserted by an external target
during a Master write cycle.

0

RO

RW1C

PFE

PCI Fatal Error. Set to a 1 when one of the following
errors occurs on the PCI bus:

master abort (target did not respond)

target abort

TRDY timeout (external target asserts DEVSEL# but
never asserts TRDY#)

retry timeout (external target issued more retries
than specified by the RetryTO field in the pci_rtotto
register)

RO

RW1C

PSE

PCI System Error. Set to a 1 when the PCI Controller
detects that the PCI SERR# signal has been asserted.

RO

RW1C

6.14.2.10 PCI

Controller Interrupt Enable Register

(PCI_INTEN)

Register Name:

PCI_INTEN

Hex Offset Address:

0xC0000024

Reset Hex Value:

0x00000000 ‘

Register
Description:

Interrupt enables for the interrupt status bits in the pci_isr register. Set to a 1 to enable the particular
interrupt. With the exception of PDB (PCI Doorbell), when an interrupt is enabled and the corresponding
bit in the pci_isr register is set, pcc_int will be asserted. If the PDB interrupt is enabled and the
pci_isr.PDB bit is asserted, the PCI_INTA_N output will be asserted to generate an interrupt on the PCI

bus.
Access: See below.
o (LT PP PP] efrfelefefelz]s]o
(Reserved) 213 QI8 |8 wolw |u
gl | E =)¢
Register PC'_'NTEN

Bits Name Description SSISL?; PCI Access AHB Access

31:8 (Reserved) — Read as O 0x000000 RO RO

7 PDB PCI Doorbell interrupt enable. (o] RO RW

6 ADB AHB Doorbell interrupt enable. (o] RO RW

5 PADC PCI to AHB DMA Complete interrupt enable. 0] RO RW

4 APDC AHB to PCI DMA Complete interrupt enable. 0 RO RW

3 AHBE AHB Error indication interrupt enable. o] RO RW

2 PPE PCI Parity Error interrupt enable. o] RO RW

1 PFE PCI Fatal Error interrupt enable. (o] RO RW

0] PSE PCI System Error interrupt enable. 0 RO RW

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
264

September 2006

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

6.14.2.11 DMA Control Register

intel.

(PCI_DMACTRL)

Register Name: PCI_DMACTRL

Hex Offset Address: 0xC0000028 ‘ ‘ Reset Hex Value: 0x00000000

Register

= =~ |Control and status for the DMA Controller channels.
Description:

Access: See below.

[
al
[y
I
[y
~

3

[

31 2 1l| |9

HEEEREEEEEC

o
ul

N

(Reserved) (Rsvd)

PADE1
PADC1
PADEO
PADCO
PADCEN| o
APDE1

APDC1
APDEO

APDCO

APDCEN| o

Register PC |_D|\/|ACTRL (Sheet 1 of 2)

Reset

Bits Name Description value

PCI Access

AHB Access

(Reserved) — Read as 0 0x0000

RO

RO

PCI to AHB DMA error for buffer 1. Set to a 1 when
the DMA transfer specified by the pci_ptadmal_xxx 0
registers terminates due to an error. Read-only,
cleared when a 1 is written to the PADC1 bit.

15 PADE1

RO

RO

PCI to AHB DMA complete for buffer 1. Settoa 1
when the DMA transfer specified by the
14 PADC1 pci_ptadmal_xxx registers is complete or terminated 0
due to an error. If the PADCEN bit is a 1, the
pcc_ptadma_int output is asserted.

RO

RW1C

PCI to AHB DMA error for buffer 0. Set to a 1 when
the DMA transfer specified by the pci_ptadmaO_xxx 0
registers terminates due to an error. Read-only,
cleared when a 1 is written to the PADCO bit.

13 PADEO

RO

RO

PCI to AHB DMA complete for buffer 0. Setto a 1
when the DMA transfer specified by the
12 PADCO pci_ptadmaO_xxx registers is complete or terminated 0
due to an error. If the PADCEN bit is a 1, the
pcc_ptadma_int output is asserted.

RO

RW1C

11:9 (Reserved) — Read as O 000

RO

RO

PCI to AHB DMA Complete interrupt enable. If this bit
8 PADCEN is set and either PADCO or PADC1 are 1, the 0
pcc_ptadma_int output is asserted.

RO

RW

AHB to PCI DMA error for buffer 1. Set to a 1 when
the DMA transfer specified by the pci_atpdmal_xxx 0
registers terminates due to an error. Read-only,
cleared when a 1 is written to the APDCL1 bit.

7 APDE1

RO

RO

AHB to PCI DMA complete for buffer 1. Settoa 1
when the DMA transfer specified by the
6 APDC1 pci_atpdmal_xxx registers is complete or terminated (6]
due to an error. If the APDCEN bit is a 1, the
pcc_atpdma_int output is asserted.

RO

RW1C

AHB to PCI DMA error for buffer 0. Set to a 1 when
the DMA transfer specified by the pci_atpdmaO_xxx 0
registers terminates due to an error. Read-only,
cleared when a 1 is written to the APDCO bit.

5 APDEO

RO

RO

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
265

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Register PC |_D|\/|ACTRL (Sheet 2 of 2)
Bits Name Description Reset PCI Access AHB Access
Value

AHB to PCI DMA complete for buffer 0. Setto a 1
when the DMA transfer specified by the

4 APDCO pci_atpdmaO_xxx registers is complete or terminated 0 RO RW1C
due to an error. If the APDCEN bit is a 1, the
pcc_atpdma_int output is asserted high.

3:1 (Reserved) — Read as O 000 RO RO

AHB to PCI DMA Complete interrupt enable. If this bit
0 APDCEN is set and either APDCO or APDC1 are 1, the 0 RO RW
pcc_atpdma_int output is asserted active high.

6.14.2.12 AHB Memory Base Address Register
(PCI_AHBMEMBASE)

Register Name: PCI_AHBMEMBASE

Hex Offset Address: 0xC000002C ‘ Reset Hex Value:

0xc0000000 ‘

Provides upper 8 AHB address bits for PCI accesses of AHB bus. Lower 24 bits of AHB address provided
directly from PCI bus. Four AHBbase fields correspond to accesses from the PCI bus that target
addresses in PCI configuration base address registers pci_bar0/1/2/3.

Register
Description:

Access: See below.

a1 | Lol DL LD sl [T LT e[Ll L]]o
AHBbaseO AHBbasel AHBbase2 AHBbase3
Register PC'_AHBMEMBASE

Bits Name Description Reset PCI Access AHB Access

Value

31:2 Upper 8 AHB address bits for PCI accesses that target

4' AHBbaseO pci_bar0. By default this register maps to an upper 0xc0 RO RW
region of the AHB memory map.

23:1 AHBbasel Upper 8 AHB address bits for PCI accesses that target 0x00 RO RW
6 pci_barl.

15:8 AHBbase2 Up_per 8 AHB address bits for PCI accesses that target 0x00 RO RW
pci_bar2.

7:0 AHBbase3 Upper 8 AHB address bits for PCI accesses that target 0x00 RO RW

pci_bar3.

6.14.2.13 AHB 1/0 Base Address Register
(PCI_AHBIOBASE)

Register Name: PCI_AHBIOBASE

Hex Offset Address: 0xC0000030 ‘ | Reset Hex Value:

0x00000000 ‘

Register|Provides upper 24 AHB address bits for PCI accesses of AHB 1/0 space. Lower 8 bits of AHB address
Description: |provided directly from PCI bus.

| [Pl LL T L pepel TAL LTI o

(Reserved) I0base

Access: See below.

|

31

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
266 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

Register PC'_AHB'OBASE
Bits Name Description Reset PCI Access AHB Access
Value
31:2
4 (Reserved) — Read as O 0x00 RO RO
B Upper 24 AHB address bits for PCI accesses that
23:0 lobase target pci_bars. 0x000000 RO RW

6.14.2.14 PCI

Memory Base Address Register
(PCI1_PCIMEMBASE)

Register Name:

PCI_PCIMEMBASE

Hex Offset Address:

0xC0000034 ‘ Reset Hex Value: 0x00000000

Register
Description:

Provides upper 8 PCI address bits for AHB accesses of PCI memory space. Lower 24 bits of PCI address
provided directly from the AHB bus. Four Membase fields correspond to accesses from the AHB bus that
target specific AHB address ranges.

Access: See below.

a1 | el L LT [[feopel T [[Qefsl [TL[]]
MembaseO Membasel Membase2 Membase3
Register PCI_PCIMEMBASE
Bits Name Description sgISL?; PCI Access AHB Access
ro v
21| pomases | JePer 8RCH adoess bt for ATD accesees hat aroet | g0 ro w
o w
ro v

6.14.2.15 AHB Doorbell Register

(PC1_AHBDOORBELL)

Register Name:

PCI_AHBDOORBELL

Hex Offset Address:

0xC0000038 Reset Hex Value: 0x00000000

Register
Description:

An external PCI device writes this register to assert the pcc_int signal to interrupt the Intel XScale
processor. Any bit set to a 1 will assert pcc_int if the AHB doorbell interrupt is enabled (pci_inten.ADBEN
= 1). This register is write-1-to-set from PCI and write-1-to-clear from AHB. The PCI device writes a 1 to
a bit or pattern of bits to generate the interrupt. The AHB agent reads the register and writes 1(s) to
clear the bit(s) and de-assert the interrupt. If the DBT (Doorbell Test) bit is set in the pci_csr register, all
bits become read/write from the AHB bus.

Access: See below.

31

HEEEEEEEEEEEEEEEEEEEEEEEEE

September 2006

Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
267

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

intel.

Register PC'_AHBDOORBELL
Bits Name Description \F;eset PCI Access AHB Access
alue
PCI generated doorbell interrupt to an AHB agent.
Normally read/write-1-to-set from PCI and read/ RW1C (RW if
31:0 ADB write-1-to-clear from AHB. Read/write from the AHB 0x00000000 RW1S pci_csr.DBT
side if Doorbell Test mode is enabled by setting =1)
pci_csr.DBT to a 1.

6.14.2.16 PCI Doorbell Register

(PCI1_PCIDOORBELL)

Register Name: PCI_PCIDOORBELL

Hex Offset Address: 0xC000003C Reset Hex Value: 0x00000000

The Intel XScale processor writes this register to generate an interrupt to an external PCI device on
PCI_INTA_N (INTA# on PCI). Any bit set to a 1 will generate the PCI interrupt if the PCI doorbell interrupt

Register |is enabled (pci_inten.PDBEN = 1). This register is write-1-to-set from AHB and write-1-to-clear from PCI.
Description: | The Intel XScale processor writes a 1 to a bit or pattern of bits to generate the interrupt. The external
PCI device reads the register and writes 1(s) to clear the bit(s) and de-assert the interrupt. If the DBT
(Doorbell Test) bit is set in the pci_csr register, all bits become read/write from the AHB bus.

Access: See below.

AP PP PP PPl
PDB
Register PC1_PCIDOORBELL
Bits Name Description Reset PCI Access AHB Access
Value
AHB generated doorbell interrupt to PCI. Normally
read/write-1-to-set from AHB and read/write-1-to- RW1S (RW if
31:0 PDB clear from PCI. Read/write from the AHB side if 0x00000000 RW1C pci_csr.DBT
Doorbell Test mode is enabled by setting pci_csr.DBT =1)
toal.

6.14.2.17 AHB to PCI DMA AHB Address Register O
(PC1_ATPDMAO_AHBADDR)

Register Name: PCI_ATPDMAO_AHBADDR

Hex Offset Address: 0xC0000040 ‘ | Reset Hex Value:

0x00000000 ‘

Register|Source address on the AHB bus for AHB to PCI DMA transfers. Paired with pci_atpdmal_ahbaddr to allow
Description: |buffering of DMA transfer requests.

Access: See below.

1 | EEEEEEEENEEENEEEEEEEEEENERE
address 0|0
Register PC1_ATPDMAO_AHBADDR
Bits Name Description Reset PCI Access AHB Access
Value
31:2 address AHB word address 0x00000000 RO RW
1:0 Lower AHB address bits hard-wired to zero. 00 RO RO

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
268

September 2006

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

6.14.2.18 AHB to PCI DMA PCI Address Register O

intel.

(PCI_ATPDMAO_PCIADDR)

Register Name:

PCI_ATPDMAO_PCIADDR

Hex Offset Address:

0xC0000044 ‘ ‘

Reset Hex Value:

0x00000000 |

Register | Destination address on the PCI bus for AHB to PCI DMA transfers. Paired with pci_atpdmal_pciaddr to
Description: |allow buffering of DMA transfer requests.
Access: See below.
o HEEEEEEEENEEEENEEEEEEEENERE
address 0|0
Register PCI_ATPDMAO_PCIADDR
Bits Name Description 52?5; PCI Access AHB Access
31:2 address PCI word address 0x00000000 RO RW
1:0 Lower PCI address bits hard-wired to zero. 00 RO RO

6.14.2.19 AHB to PCI DMA Length Register O

(PCI_ATPDMAO_LENGTH)

Register Name:

PCI_ATPDMAO_LENGTH

Hex Offset Address:

0xC0000048 l l

Reset Hex Value:

0x00000000 |

Register [Provides word count and control for AHB to PCI DMA transfers. Paired with pci_atpdmal_length to allow
Description: |buffering of DMA transfer requests.
Access: See below.
aafoofaofealzr] [| [[| [[[[Jspel [[] []] HEEEEE
5 (Rsvd) 8 (Reserved) Wordcount
Register PCI1_ATPDMAO_LENGTH
Bits Name Description Reset PCI Access AHB Access
Value
Channel enable. When set to a 1, executes a DMA
transfer if wordcount is nonzero. When 0, the channel
31 EN is disabled. Hardware clears this bit when the DMA 0 RO Rw
transfer is complete.
3%:2 (Reserved). Read as O. 00 RO RO
Data Swap indicator. When set to a 1, data from the
28 DS AHB bus is byte swapped before being sent to the PCI 0 RO RW
bus. When 0, no swapping is done.
27:1
6 (Reserved). Read as 0. 0x000 RO RO
15:0 wordcount Number of words to transfer. 0x0000 RO RW

September 2006
Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
269

intel.

6.14.2.20 AHB to PCI DMA AHB Address Register 1

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Register Name:

(PCI_ATPDMA1_AHBADDR)

PC
Hex Offset Address:

I_ATPDMA1_AHBADDR

0xC000004C ‘ |

Register

Reset Hex Value:

0x00000000 ‘

Source address on the AHB bus for AHB

Description: |buffering of DMA transfer requests.

Access: See below.

to PCI DMA transfers. Paired with pci_atpdmaO_ahbaddr to allow

a1 | HEEEEEEENEEEEEEEEEEEEEEEaRE
address 0OfO0
Register PCI_ATPDMA1l AHBADDR
Bits Name Description Reset PCI Access AHB Access
Value
31:2 address AHB word address 0x00000000 RO RW
1:0 Lower AHB address bits hard-wired to zero. 00 RO RO

6.14.2.21 AHB to PCI DMA PCI Address Register 1

Register Name:

(PCI_ATPDMA1_PCIADDR)

Hex Offset Address: 0xC0000050

PCI_ATPDMA1_PCIADDR

| Reset Hex Value:

0x00000000 |

Register
Description:

allow buffering of DMA transfer requests.
Access: See below.

Destination address on the PCI bus for AHB to PCI DMA transfers. Paired with pci_atpdmaO_pciaddr to

1] | IR aRE
address 0Ofo0
Register PClI_ATPDMA1_ PCIADDR
Bits Name Description Reset PCI Access AHB Access
Value
31:2 address PCI word address 0x00000000 RO RW
1:0 Lower PCI address bits hard-wired to zero. 00 RO RO

6.14.2.22 AHB to PCI DMA Length Register 1

Register Name:

(PCI_ATPDMA1_LENGTH)

PCI_ATPDMAL1_LENGTH

Hex Offset Address: 0xC0000054 ‘ |

Reset Hex Value:
Register

0x00000000 ‘

Description:

buffering of DMA transfer requests.
Access: See below.

Provides word count and control for AHB to PCI DMA transfers. Paired with pci_atpdma0O_length to allow

31|30(|29|28

Al L] e

Z | (Rsvd) | W

(Reserved)

wordcount

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

270

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

Register PCI_ATPDMA1_LENGTH
Bits Name Description Reset PCI Access AHB Access
Value
Channel enable. When set to a 1, executes a DMA
transfer if wordcount is nonzero. When 0, the channel
31 EN is disabled. Hardware clears this bit when the DMA 0 RO RwW
transfer is complete.
309:2 (Reserved). Read as 0. 00 RO RO
Data Swap indicator. When set to a 1, data from the
28 DS AHB bus is byte swapped before being sent to the PCI 0 RO RW
bus. When 0, no swapping is done.
27:1
6 (Reserved). Read as O. 0x000 RO RO
15:0 wordcount Number of words to transfer. 0x0000 RO RW

6.14.2.23 PCI

to AHB DMA AHB Address Register O
(PCI_PTADMAO_AHBADDR)

Register Name:

PCI_PTADMAO_AHBADDR

Hex Offset Address:

0xC0000058 Reset Hex Value: 0x00000000

Register
Description:

Destination address on the AHB bus for PCI to AHB DMA transfers. Paired with pci_ptadmal_ahbaddr to
allow buffering of DMA transfer requests.

Access: See below.

] | HREEEEEEEEEEEEEEEEEEEERaRE
address 0O|O0
Register PCI1_PTADMAO_AHBADDR
. . Reset
Bits Name Description value PCI Access AHB Access
31:2 address AHB word address 0x00000000 RO RW
1:0 Lower AHB address bits hard-wired to zero. 00 RO RO

6.14.2.24 PCI to AHB DMA PCI Address Register O

(PCI_PTADMAO_PCIADDR)

Register Name:

PCI_PTADMAO_PCIADDR

Hex Offset Address:

0xC000005¢c ‘ ‘ Reset Hex Value: 0x00000000

Register
Description:

Source address on the PCI bus for PCI to AHB DMA transfers. Paired with pci_ptadmal_pciaddr to allow

Access: See below.

31

HEEEEEEEN

buffering of DMA transfer requests.
HEEEEEEEEEEEREAE

address 0o|O0

September 2006

Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
271

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Register PCI_PTADMAO_ PCIADDR
Bits Name Description Reset PCI Access AHB Access
Value
31:2 address PCI word address 0x00000000 RO RW
1:0 Lower PCI address bits hard-wired to zero. 00 RO RO

6.14.2.25 PCI to AHB DMA Length Register O

(PCI_PTADMAO_LENGTH)

Register Name:

PCI_PTADMAO_LENGTH

Hex Offset Address:

0xC0000060 ‘ | Reset Hex Value:

0x00000000 ‘

Register|Provides word count and control for PCI to AHB DMA transfers. Paired with pci_ptadmal_length to allow
Description: |buffering of DMA transfer requests.
Access: See below.
aafoofzoleelzr] | | [[[[[[[[sfre] [][]]] HEEEEE
& | (Rsvd) | H (Reserved) wordcount
Register PCI_PTADMAO_LENGTH
Bits Name Description Reset PCI Access AHB Access
Value
Channel enable. When set to a 1, executes a DMA
transfer if wordcount is nonzero. When 0, the channel
31 EN is disabled. Hardware clears this bit when the DMA 0 RO RW
transfer is complete.
309:2 (Reserved). Read as 0. 00 RO RO
Data Swap indicator. When set to a 1, data from the
28 DS PCI bus is byte swapped before being sent to the AHB (o] RO RW
bus. When 0, no swapping is done.
27:1
6 (Reserved). Read as 0. 0x000 RO RO
15:0 wordcount Number of words to transfer. 0x0000 RO RW

6.14.2.26 PCI

to AHB DMA AHB Address Register 1
(PC1_PTADMA1_AHBADDR)

Register Name:

PCI_PTADMA1_AHBADDR

Hex Offset Address:

0xC0000064 0x00000000

| Reset Hex Value:

Register
Description:

Destination address on the AHB bus for PCI to AHB DMA transfers. Paired with pci_ptadmaO_ahbaddr to
allow buffering of DMA transfer requests.

Access: See below.

31

HEEEEEEEEEEEEEaL

address 0|0

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
272

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors

intel.

Register PCl1_PTADMAl1l AHBADDR
Bits Name Description Reset PCI Access AHB Access
Value
31:2 Address AHB word address 0x00000000 RO RW
1:0 Lower AHB address bits hard-wired to zero. 00 RO RO

6.14.2.27 PCI to AHB DMA PCI Address Register 1

(PCI_PTADMA1_PCIADDR)

Register Name:

PCI_PTADMA1_PCIADDR

Hex Offset Address:

0xC0000068 ‘ ‘

Reset Hex Value:

0x00000000 |

Register

Description:

buffering of DMA transfer requests.

Source address on the PCI bus for PCI to AHB DMA transfers. Paired with pci_ptadma0O_pciaddr to allow

Access: See below.

o HEEEEEEENEEEEEEEEEEEEEEEaRE
address 0O|O0
Register PCI_PTADMA1_ PCIADDR
Bits Name Description Reset PCI Access AHB Access
Value
31:2 Address PCI word address 0x00000000 RO RW
1:0 Lower PCI address bits hard-wired to zero. 00 RO RO

6.14.2.28 PCI to AHB DMA Length Register 1

(PCI_PTADMA1_LENGTH)

Register Name:

PCI_PTADMAL1_LENGTH

Hex Offset Address:

0xC000006C l l

Reset Hex Value:

0x00000000 |

Register
Description:

Provides word count and control for PCI to AHB DMA transfers. Paired with pci_ptadmaO_length to allow

buffering of DMA transfer requests.

Access: See below.

aafoofeofeelzr| | | [[[[[[[[ofe] [] [][] HEEERE
Z |Rsvd) | 4 (Reserved) wordcount
Register PCl_PTADMAl_LENGTH (Sheet 1 of 2)
i . Reset
Bits Name Description value PCI Access AHB Access
Channel enable. When set to a 1, executes a DMA
transfer if wordcount is nonzero. When 0, the channel
31 EN is disabled. Hardware clears this bit when the DMA 0 RO RW
transfer is complete.
3%:2 (Reserved). Read as O. 00 RO RO

September 2006
Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
273

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—PCI Controller

Register PC |_PTADMA1_LENGTH (Sheet 2 of 2)
Bits Name Description \R/’eset PCI Access AHB Access
alue

Data Swap indicator. When set to a 1, data from the
28 DS PCI bus is byte swapped before being sent to the AHB o] RO RW
bus. When 0, no swapping is done.

27:1 (Reserved). Read as 0. 0x000 RO RO

15:0 wordcount Number of words to transfer. 0x0000 RO RW

8 8

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
274 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

®
PCI Controller—Intel® IXP42X product line and I1XC1100 control plane processors l n tel

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 275

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—SDRAM Controller

SDRAM Controller

The SDRAM Controller performs data movement between the Intel® 1XP42X Product
Line of Network Processors and 1XC1100 Control Plane Processor and an attached
SDRAM. The SDRAM Controller is a target only function on both AHB interfaces and
supports a maximum of 256 Mbyte of addressable space.

Table 105 shows the supported memory configuration. Support is included for two
memory banks of SDRAM devices. The SDRAM Controller supports a maximum burst
length of eight words. The eight-word burst length was derived from the Intel XScale®
Processor cache line size. This choice of the eight-word burst size optimizes the
performance of the Intel XScale processor at the same time ensuring fairness among
all resources trying to obtain access to the SDRAM.

The SDRAM Controller can be configured from the South AHB bus only. The SDRAM
controller provides separate interfaces to the South AHB and North AHB to allow for
maximum efficiency of the SDRAM accesses. The SDRAM Controller supports a RAS-to-
CAS delay of three clocks. The SDRAM Controller can be programmed to support a
CAS-to-data delay of two or three clocks. The SDRAM Controller can maintain up to
eight simultaneously open pages.

Two independent chip-selects are provided which allows the SDRAM Controller to
support a total of two physical banks of memory. A minimum of 8Mbyte (using 64Mbit
density chips) to maximum of 256Mbyte (using 512Mbit density chips) memory
configurations are supported.

Figure 53 shows a configuration of SDRAM using only BankO of the Intel® IXP42X
product line and IXC1100 control plane processors. Bank O consists of two SDRAM
devices that are of type by 16 (x16) or 16-bit.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
276

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
SDRAM Controller—Intel® I1XP42X product line and I1XC1100 control plane processors l n tel

Figure 53. 8-, 16-, 32-, 64- or 128-Mbyte — One-Bank SDRAM Interface Configuration

BANKO

|
SDM_DATA[31:0] L3 DQ[15:0] |
SDM_ADDR[12:0] >{AlL2:0] I

® SDM_CS_NO - yloss
8% sbm_cs[N10] i .
H SDM_RAS_N L yJrRAs# |
£ SDM_CAS_N >»|cas# i
2 SDM_WE_N <y wes !
%8 SDM__DQM[3:0] | SDM_DQM[3:0] siom | pomih) »| DOM[L] |
o SDM_BA[1:0] I »leapo i
SDM_CKE I »| cke .
SDM_CLKOUT »| cLk I
! I
| SDRAM#1 ©
. |
i : .
Intel® IXP 42X : DQ[15:0] I
Product Line/ ! A[12:0] |
Intel® IXC1100 g .
RAS# |
Control Plane i chos I
Processor | e !
SDM_DQM[3:2] boMm[L:0] |
! BA[1:0] |
} CKE |
i CLK .
|
| SDRAM#2 |

B4963-01

As stated previously, the supported memory types for each bank of SDRAM must be
64Mbit, 128-Mbit, 256-Mbit, or 512-Mbit memory device types. The IXP42X product
line and I1XC1100 control plane processors memory controller supports only two
memory devices per each bank. Figure 54 illustrates how to interface to two banks of
SDRAM memory. Each memory device in the below example is a 16-bit device (x16).

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 277

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—SDRAM Controller

Figure 54. 64-, 128- or 256-Mbyte — Two-Bank SDRAM Interface Configuration

BANKO BANKL
DATA[15:0] DATA[15:0]
SDM_DATA[31:0] »{DQ[15:0] DQ[15:0]
. A[12:0] »|A[12:0]
SDM_ADDRI[12:0 >
© — [12:0] SDM_CS_NO SDM_CS_N1
&8 sDM_CS[NL0] »|CS# »\Cs#
3 SDM_RAS_N »|RASH RASH#
£ SDM_CAS_N »|CASH »lcass
% SDM_WE_N WEH# WE#
z SDM__DQM[3:0] | SDM_DQM[3{0] |SDM_DQMIL:0l, | pom:0] | SOM_DQM[1:0] DQM[L0]
SDM_BA[1:0] »{BA[L:0] »[BA[L:0]
SDM_CKE »| cke »| CKE
SDM_CLKOUT S| e »cLk
>
> SDRAM#1 SDRAM#1
b
[
w .
Intel® IXP42X EL »pqus:0] | DATABLIE] 5005,
Product Line/ »|A[12:0] SoM S N1 »A[12:0]
Intel® IXC1100 L—>cs# OO N sk
Control Plane »RASH »|RASH
Processor »{CASH# »|CASH
»| WE# »| WEH#
SDM_DQM[3:2] | . SDM_DQM[3:2]_ |
»DQM[1:0] = »DQM[L:0]
»(BA[1:0] BA[L:0]
»{CKE »|CcKE
»| CLK »| CLK
SDRAM#2 SDRAM#2
B4964-01

To remove the need for SDRAM refreshes to be implemented by the Intel XScale
processor, the SDRAM controller can be configured to perform automatic refreshes by
utilizing an internal refresh counter.

Table 105. Supported Configuration of the SDRAM Controller

Total Memory 64 Mbit 128 Mbit 256 Mbit 512 Mbit

8 Mbyte One Chip 2M x 32

Two chips 4M x 16
16 Mbyte or
two chips 2M x 32

32 Mbyte Four chips 4M x Two chips 8 M x

16 16
64 Mbyte Four Chi%S 8 Mx Two chips 16 M x 16
128 Mbyte Four chips 16 M x16 | Two chips 32 M x 16
256 Mbyte Four chi{)g 32 M x

Note: 64-Mbit, 128-Mbit, 256-Mbit, and 512-Mbit columns refer to memory technologies.

The SDRAM Controller is a target-only device residing on the AHB. A master residing on
the North AHB and the South AHB initiates every transaction on the SDRAM interface
via the SDRAM Controller. Whenever an AHB Master initiates a data transfer to an
address location mapped to the SDRAM memory access location, the SDRAM controller
responds by decoding the address and the AHB transfer type.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
278 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
SDRAM Controller—Intel® I1XP42X product line and I1XC1100 control plane processors l n tel

7.1

Table 106.

7.2

September 2006

After decoding is complete, the SDRAM Controller completes the read or write
transaction to the SDRAM.

Byte and half-word transfers are implemented by controlling the DQM pins of the
SDRAM. The SDRAM Controller performs byte lane steering for write operations to the
SDRAM. Read operations performed by the SDRAM Controller to the SDRAM do not
support byte-lane steering. Read operations performed by the SDRAM Controller to the
SDRAM must be 32-bits. If sub-word accesses are requested a full 32-bits will be
returned.

SDRAM Memory Space

The SDRAM memory space is defined with the base address beginning at hexadecimal
0x00000000 and ending at hexadecimal Ox3FFFFFFF.

The SDRAM memory space overlaps the expansion bus memory space during the boot
sequence. Once the boot sequence has started, a configuration register — located in
the expansion bus configuration space — must be written to remove the expansion bus
mapping from the SDRAM space. Therefore enabling the SDRAM memory space to start
in hexadecimal location 0x000000000.

The mapping of the SDRAM and Expansion Bus is described in detail in Section 8.9.9,
“Configuration Register 0” on page 322.

Memory Space

Address Size
SDRAM Tech. SDRAM Type # Chips Total Mem. Size
Row Column
64 Mbit 2 M x32 1 11 8 8 Mbyte
2 11 8 16 Mbyte
64 Mbit 4 M x16 2 12 8 16 Mbyte
4 12 8 32 Mbyte
128 Mbit 8 M x16 2 12 9 32 Mbyte
4 12 9 64 Mbyte
256 Mbit 16 M x16 2 13 9 64 Mbyte
4 13 9 128 Mbyte
512 Mbit 32 M x16 2 13 10 128 Mbyte
4 13 10 256 Mbyte

During a read or write access, only one chip-select pin — SDR_CS_N (SDRAM Chip
Select) — will be active at a time.

Initializing the SDRAM Controller

In order to use the SDRAM interface, the device must be configured properly. There are
three configuration registers used to initialize the SDRAM Controller. Before using the
SDRAM Controller, the SDRAM Configuration (SDR_CONFIG) Register must be
initialized.

The SDRAM Configuration (SDR_CONFIG) Register will provide the CAS to data delay
parameter and the external Memory Configuration. Bit 3 of the SDRAM Configuration
(SDR_CONFIG) Register is used to specify the CAS to data delay. After reset, the CAS-

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 279

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 107.

Table 108.

Intel® I1XP42X product line and 1XC1100 control plane processors—SDRAM Controller

to-data delay will be initialized to two clocks. The initial value in bit 3 will be logic 0. If
a CAS to data delay of three clocks is required, bit 3 of the SDRAM Configuration
(SDR_CONFIG) Register must be set to logic 1.

Bits 2:0 of the SDRAM Configuration (SDR_CONFIG) Register are used to configure the
SDRAM Controller to operate with a given physical memory configuration. Table 108
shows the values that are necessary to be programmed into these register bits for
proper operation.

Memory Configurations for Writing the SDRAM Configuration (SDR_CONFIG)
Register

SDR7C-ONFIG Total 64 Mbit 64 Mbit
[2:0] memory
000 8 Mbyte One chip 2M x32
001 16 Mbyte Two chips 2M x32
010 16 Mbyte Two chips 4M x16
011 32 Mbyte Four chips 4M x16
100 (Reserved)
101 (Reserved)
110 (Reserved)
111 (Reserved)
Notes:
1. Bit 5 of the sdr_config register is set to “1”
2. It is possible to have different values sent to the SDRAM status mode register from what is written to
this register (CAS/RAS latencies). This may result in an undefined operation of the controller.
3. For more detail on the SDRAM Configuration register, see “Configuration Register” on page 287.

Memory Configurations for Writing the SDRAM Configuration (SDR_CONFIG)
Register

SDRfZC:%]NF'G mTe?ng'ry 128 Mbit 256 Mbit 512 Mbit
000 32 Mbyte Two chips 8 M x16
001 64 Mbyte Four chips 8 M x 16
010 64 Mbyte Two chips 16 M x 16
011 128 Mbyte Four chips 16 M x16
100 128 Mbyte Two chips 32 M x 16
101 256 Mbyte Four chips 32 M x 16
110 Reserved
111 Reserved
Notes:
1. Bit 5 of the sdr_config register is set to “0”
2. It is possible to have different values sent to the SDRAM status mode register from what is written to
this register (CAS/RAS latencies). This may result in an undefined operation of the controller.

Additionally, it is physically possible to have different memory configurations and types
attached to the controller than what is written to these registers. Two banks would be
attached when a one-bank configuration is written to SDR_CONFIG and one bank
would be attached when a two-bank configuration is written.

The results are undefined in this case.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
280

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
SDRAM Controller—Intel® I1XP42X product line and I1XC1100 control plane processors l n tel

Table 109.

September 2006

An example of configuring the SDRAM Configuration (SDR_CONFIG) Register is shown
below:

1. Assume that the application being configured is a 256-Mbyte configuration using
four chips (32 Mbyte x 16) and a CAS to data delay of three clocks. See Figure 54
for an SDRAM Connection Example of a similar configuration.

2. A hexadecimal value of 0xO000000Dis written to OxCC000000.

The SDRAM Refresh (SDR_REFRESH) Register is used to determine the number of
cycles before a mandatory refresh command is issued. The SDRAM Refresh
(SDR_REFRESH) Register is a 16-bit register that is used to determine the termination
count of the automatic refresh command. The counter used to implement the
automatic refresh timer is 16 bits operating at 133 MHz. The counter size allows a
maximum of 492 microseconds between mandatory refreshes.

When a hexadecimal value of 0x00000000 is programmed to this register, the
automatic refresh capability of the SDRAM Controller will be disabled. When an
automatic refresh is performed, the valid bits of the open page registers will be
“invalid.” In addition, when the refresh timer expires and the SDRAM Controller issues
an auto-refresh command, all pages are closed.

If the SDRAM controller is idle when the auto-refresh timer expires, the SDRAM
Controller initiates the refresh operation the next clock after detecting a refresh
request. If the SDRAM controller is busy processing a read or write transaction, the
SDRAM Controller does not initiate the refresh operation until it completes the previous
transaction. The default value of the SDRAM Refresh (SDR_REFRESH) Register is
hexadecimal 0x0384.

An example of how to use the SDRAM Refresh (SDR_REFRESH) Register is shown
below:

1. Assume that the application being configured requires an automatic refresh time of
hexadecimal 0xO0001AB5.

2. A hexadecimal value of 0XxO0001AB5 is written to OxCC000004. Therefore a refresh
would occur about every 51.4 microseconds.

The SDRAM Instruction (SDR_IR) Register is used to provide specific commands to the
SDRAM that can be useful in configuration of the SDRAM initialization and operation.
The SDRAM Instruction (SDR_IR) Register is a 3-bit register that contains a command
decode. Table 109 shows the commands that can be used to produce specific operation
over the SDRAM interface.

SDRAM Command Description (Sheet 1 of 2)

SDR_IR[2:

Command Name o1

Description

Produces SDRAM cycles that set the SDRAM mode register with a CAS to
data delay of 2, a write burst mode set to single location access
Mode-Register-Set 000 (meaning reads will be use the burst length value and writes will be
single location access), an operating mode set to standard operation, a
burst type set to sequential, and a burst length set to a value of 8.

Produces SDRAM cycles that set the SDRAM mode register with a CAS to
data delay of 3, a write burst mode set to single location access
Mode-Register-Set 001 (meaning reads will be use the burst length value and writes will be
single location access), an operating mode set to standard operation, a
burst type set to sequential, and a burst length set to a value of 8.

Used to pre-charge all banks of memory. A pre-charge is used to close all

Precharge-All 010 open banks of memory.

A command used to produce a null command to the SDRAM. This
NOP 011 command is used during initialization and can be used to filter any
spurious commands during idle or wait states.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 281

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Intel® I1XP42X product line and 1XC1100 control plane processors—SDRAM Controller

Table 109. SDRAM Command Description (Sheet 2 of 2)
Command Name SDRBER[Z: Description
Used to produce a refresh command to the SDRAM to avoid loss of data.
Auto-Refresh 100 The times between successive refresh commands is a function of the
SDRAM that is chosen.
Burst Terminate 101 ﬁuiZTmand issued to the SDRAM to terminate a current fixed length
(Reserved) 110 Writing to this location will cause undetermined results.
(Reserved) 111 Writing to this location will cause undetermined results.
Writing hexadecimal value 0x00000000 to address location OXxCCO00008 will cause a
Mode Register Set command to be initiated. See the chosen SDRAM Memory vendor’s
datasheet for Mode-Register-Set Timing with CAS to data delay of 2 to view the
signaling associated with this command.
Writing hexadecimal value 0x00000001 to address location OxCCO00008 will cause a
Mode Register Set command to be initiated. See the chosen SDRAM Memory vendor’s
datasheet for Mode-Register-Set Timing with CAS to data delay of 3 to view the
signaling associated with this command.
Writing hexadecimal value 0x00000002 to address location OXxCC0O00008 will cause a
Precharge All command to be initiated. See the chosen SDRAM Memory vendor’s
datasheet for Precharge-All Timing, to view the signaling associated with this
command.
Writing hexadecimal value 0x00000003 to address location OxCCO00008 will cause a
NOP command to be initiated. See the chosen SDRAM Memory vendor’s datasheet for
NOP Timing to view the signaling associated with this command.
Writing hexadecimal value 0x00000004 to address location OxCCO00008 will cause a
Auto-Refresh command to be initiated. See the chosen SDRAM Memory vendor’s
datasheet for Auto-Refresh Timing to view the signaling associated with this command.
Writing hexadecimal value 0x00000005 to address location OxCCO00008 will cause a
Burst Terminate command to be initiated. See the chosen SDRAM Memory vendor’s
datasheet for Burst Terminate Timing to view the signaling associated with this
command.
Table 110 shows the values contained on the control signals for each command that is
issued using the SDRAM Instruction Register (SDR_IR).
Table 110. SDRAM I/0 For Various Commands
Command SDR—ER[Z:O SDR_CS_N | SDR_RAS_N|SDR_CAS N |SDR_WE N | SDR_DQM | SDR_ADDR
MODE-REGISTER-SET 000 0 0 0 0 X CODE
MODE-REGISTER-SET 001
PRECHARGE-ALL 010 0 0 1 0 X CODE
NOP 011 0 1 1 1 X X
AUTO-REFRESH 100 0 0 0 1 X X
BURST TERMINATE 101 0 1 1 0 X X

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM

282

Download from Www.Somanuals.com. All Manuals Search And Download.

September 2006
Order Number: 252480-006US

[®
SDRAM Controller—Intel® I1XP42X product line and I1XC1100 control plane processors l n tel >

7.2.1 Initializing the SDRAM

Once the Intel XScale processor configures the SDRAM Configuration (SDR_CONFIG)
Register and the SDRAM Refresh (SDR_REFRESH) Register, the following sequence of
commands — using the SDRAM Instruction (SDR_IR) Register — must be performed to
initialize the SDRAM. (This routine can change depending on the SDRAM part that is
connected to the SDRAM interface.)

This routine is included for reference to demonstrate the initialization operation of an
SDRAM:

= The memory controller applies the clock pin (SDM_CKE) during power up and must
stabilize the clock signal within 100 us after power stabilizes.

= The memory controller holds all the control pins to the memory inactive
(SDM_RAS_N, SDM_CAS_N, SDM_WE_N, SDM_CS_N[1:0]=1) for a minimum of 1
millisecond after supply voltage reaches the desired level.

» SDM_CKE is driven to VCC all the time. The IXP42X product line and 1XC1100
control plane processors never de-assert SDM_CKE.

= Software disables the refresh counter by setting SDR_REFRESH to zero.

= Software issues one NOP cycle after the 1milliseconds SDRAM device deselect. A
NOP is accomplished by setting SDR_IR to 011. The memory controller asserts
SDM_CKE with the NOP.

= Software pauses 200 ps after the NOP.

= Software re-enables the refresh counter by setting the SDR_REFRESH to the
required value.

= Software issues a precharge-all command to the SDRAM interface by setting
SDR_IR to 010.

= Software provides eight auto-refresh cycles. An auto-refresh cycle is accomplished
by setting SDR_IR to 100. Software must ensure at least T, cycles between each
auto-refresh command. T, (active-to-active command period) is determined by the
SDRAM being used.

« Software issues a mode-register-select command by writing to SDR_IR to program
the SDRAM parameters. Setting SDR_IR to 000 programs the SDRAM Controller for
CAS Latency of two while setting the SDR_IR to 001 programs the memory
controller and SDRAM for CAS Latency of three.

= The SDRAM Controller may issue a row activate command three clocks after the
mode register set command.

Please refer to the chosen SDRAM Memory vendor’s datasheet for SDRAM Initialization
Access to view the operation on the SDRAM signals during the initialization sequence.

In addition to the above features, there is a set of eight registers used by the SDRAM
Controller to manage up to eight open pages. These registers are called the SDRAM
Page (SDR_PG) Registers.

The Intel XScale processor has the ability to read only the status of these registers.
Signals associated with these registers are routed to the Internal Bus Performance
Monitoring Unit (IBPMU). The Internal Bus Performance Monitoring Unit (IBPMU) can
then be used directly to monitor the SDRAM Page Hit/Miss characteristics and Intel
XScale processor code can be optimized to achieve the highest level of performance.

The memory controller may have eight memory pages open simultaneously (one per
leaf). The SDRAM Controller supports devices containing four internal banks. These
internal banks are defined as a leaf to help avoid confusion with a memory bank.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 283

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

Table 111.

Intel® I1XP42X product line and 1XC1100 control plane processors—SDRAM Controller

A page hit is valid if the memory location falls within the location as specified by the
open page register:

Page Register Allocation

SDM_(_:S_N [1:0] SDM_BA[1:0] valid bit Page Registers

(Physical Bank) (Internal Bank) (13 bits)
Bank O Leaf O RAS address O
Bank O Leaf 1 RAS address 1
Bank O Leaf 2 RAS address 2
Bank O Leaf 3 RAS address 3
Bank 1 Leaf O RAS address 4
Bank 1 Leaf 1 RAS address 5
Bank 1 Leaf 2 RAS address 6
Bank 1 Leaf 3 RAS address 7

If the RAS address for the current SDRAM access matches that stored within a valid
page registers, then there is a page hit. When the current transaction hits an open
page, then the page is already active. The read or write command may be issued
without a row-activate command. It is important to note that when the refresh timer
expires, the SDRAM Controller will issue a precharge command, which closes all pages,
followed by the issue of an auto-refresh command.

When the current transaction misses, the open page (maintained by the page
registers) is selected then the SDRAM controller closes the open page pointed to by
issuing a precharge command. The SDRAM controller then opens the correct page with
a row-activate command and the SDRAM Controller completes the requested
transaction with a read or a write command. When the SDRAM Controller opens the
new page, the RAS address is stored in the page address register. This new value
stored in the page register may be used to compare for future transaction page hit/
misses.

The SDRAM controller interfaces to the AHB as a non-splitting bus slave. In so doing
this, the SDRAM Controller follows a certain set of rules during any access. These rules
can be helpful in understanding the performance and capability of the overall chip
performance.

= The South AHB that host the Intel XScale processor will be the only master capable
of writing to the configuration register of the SDRAM.

= AHBs will access the SDRAM in a pipe-lined fashion (bus accesses will be pipe-lined
together whenever possible).

< The SDRAM controller will insert wait states back to an AHB Master if the SDRAM
Controller is currently involved in an SDRAM transaction from the other AHB.

= If both AHB interfaces try to access the SDRAM at the same time (two transactions
occur at the same time on both buses to access the SDRAM controller), the South
AHB bus that host the Intel XScale processor will have priority.

= Transfers on both AHBs have a maximum of eight words and will be word aligned.

= Data transfers on both AHBs support data size listed in the Table 112 but will be
word aligned. Therefore, the DQM(3:0) signals going to the SDRAM will always be
0x0, 0x1, O0x2, 0x3, 0x4, 0x6, 0x8, or OXC. Any other values on DQM(3:0) will be
unachievable.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
284

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

SDRAM Controller—Intel® I1XP42X product line and 1XC1100 control plane processors

®

(intel

Table 112. Data Transfer Sizes of AHB
Size Description
8 bits Byte
16 bits Half word
32 bits Word
7.3 SDRAM Memory Accesses
7.3.1 Read Transfer
When the AHBs generate a read transaction with an address located in the SDRAM
space, a read from SDRAM is initiated. The SDRAM detects the read initiation request
from the AHB. The SDRAM Interface control signals perform an SDRAM active cycle
with the appropriate row address followed by a RAS-to-CAS delay. After a RAS-to-CAS
delay of a three clocks, the SDRAM Interface control signal generates a read command
and presents the column address. The control signal then waits for a number of clocks
(CAS-to-data delay) before registering the data that is returned from the SDRAM. The
SDRAM controller performs these reads until either the end of the transfer on the AHB
or until the column address increments to hit a page-crossover condition. Upon such a
crossover condition, the SDRAM Controller terminates the transaction by performing a
Burst Terminate followed by pre-charge cycle and resumes the read transfer from the
incremented address.
7.3.1.1 Read Cycle Timing (CAS Latency of Two Cycles)
Figure 55 shows the timing cycles on the SDRAM for a read cycle with a CAS Latency of
2 Cycles.
Figure 55. SDRAM Read Example (CAS Latency of 2 Cycles)
nvr-v S O I O A R O B
SDM_ADDR
SDM_DATA DO D1 D2 D3
SDM_DQM ‘ | HI | HI ‘ HI | HI | HI | LOW ‘ LOwW | Low | LOW | |
SDM_CKE ‘ | HI | HI ‘ HI | HI | HI | HI ‘ HI | HI | HI | |

September 2006

Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM
285

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—SDRAM Controller

7.3.1.2 Read Burst Transfer (Interleaved AHB Reads)

The timing diagram in Figure 56 shows read requests from an NPE on the North AHB
and the Intel XScale processor on the South. Both masters access different memory
banks.

Figure 56. SDRAM Shared South AHB and North AHB Access

SDRAM CYCLE READ
CAS LATENCY =2
Transaction on AHB1 and AHBO

clock

AHBN ADDR
I | ADDR I DONT | DONT | DONT | DONT | DONT | DONT | DONT | DONT | DONT ' DONT | DONT I DONT I DONT | DONT ' DONT

CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE
AHBN DATA
| DONT | DONT ' DONT | DONT I DONT | DONT | DONT | DONT ' DONT | DONT ' DONT | DONT I DONT I DONT I DO | D1 |
CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE

AHBS ADDR
I | ADDR | DONT ' DONT DONT I DONT DONT DONT I DONT I DONT

DONT | DONT DONT I DONT I DONT DONT | DONT

CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE CARE
AHBS DATA
| DONT | DONT l DONT | DONT , DONT | DONT DO | D1 | D2 | D3 | D4 | D5 | D6 | D7 |DONT DONT
CARE CARE CARE CARE | CARE CA CARE CA
SDRAM COMMAND
I I NOP I NOP |ACTIVE| NOP IREADI NOP | NOP | NOP I NOP ' NOP |ACTIVE| NOP I READl NOP I NOP I NOP |
SDRAM
DI DONT I DONT | DONT DONT' DONT | DONT |DOAHBS|DlAHBS|D2AHBS|D3AHBS|D4AHBS|D5AHBS|D6AHBS|D7AHBS|DOAHBN|DlAHBN|
CARE CARE CARE CARE CARE CARE
7.3.2 Write Transfer

The AHBs need to generate a write transaction with the address located in the SDRAM
space in order to initiate a write from SDRAM. One of the AHB Masters addresses the
SDRAM memory space. Upon detection of the write initiation, the control signal
performs an active cycle with the appropriate row address, followed with a RAS-to-CAS
delay.

After a RAS-to-CAS delay of a finite number of clocks (determined by the latency
setting — which has a default of three), the control signal generates a write command
and presents the column address. The SDRAM controller performs such writes until
either the end of the transfer on the AHB or until the column address increments to hit
a page crossover condition.

Upon such a crossover condition, the SDRAM Controller terminates the transaction by

performing a Burst Terminate followed by pre-charge cycle and resumes the read
transfer from the incremented address.

7.3.2.1 Write Transfer

The timing diagram in Figure 57 shows cycles on the SDRAM for a write cycle.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
286 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

®
SDRAM Controller—Intel® I1XP42X product line and I1XC1100 control plane processors l n tel

Figure 57. SDRAM Write Example
wsvr-v i U O B I B
COMMAND | ACTIVE ‘ NOP ‘ NOP | WRITE | WRITE| WRITE ‘ WRITE | WRITE | WRITE | ‘
SDM_ADDR | RAS | XX | XX | CAS ‘ CAS | CAS | CAS | CAS ‘ CAS | ‘
SDM_DATA |XX‘XX|XX|DO|D1‘D2|D3|D4|D5||
SDM_DQM | HI | HI | HI | LOW ‘ LowW | Low | LOowW | Low ‘ Low | ‘
SDM_CKE | HI | HI | HI | HiI ‘ HI | HI | HI | HI ‘ HI | ‘
7.4 Register Description
The I1XP42X product line and 1XC1100 control plane processors’ SDRAM interface is
programmed through a set of configuration registers that are described in the following
sections. Many timing parameters are encoded as a number of SDM_CKE clock cycles.
The registers of the SDRAM controllers are 32-bit each. Each register access is 32-bits
only (no byte or half-word access). Therefore if software running on the Intel XScale
processor wishes to change one bit, it must read the entire contents of the register and
write them back with that one bit changed. These registers are accessible via the South
AHB interface. The table below shows the overview of the SDRAM controllers’
addresses.
Table 113. SDRAM Register Overview
Register Name R/W Reset Hex Value Hex Address Description
sdr_config R/W 0x00000010 0xCC000000 SDRAM Configuration Register
sdr_refresh R/W 0x00000384 0xCC000004 SDRAM Refresh Register
sdr_ir R/W 0x00000000 0xCC000008 SDRAM Instruction Register
7.4.1 Configuration Register

September 2006

The configuration register (SDR_CONFIG) is a read/write register that contains control
bits for configuring the SDRAM. The two physical SDRAM banks must be implemented
with the same type of SDRAM devices.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 287

Download from Www.Somanuals.com. All Manuals Search And Download.

Intel® I1XP42X product line and 1XC1100 control plane processors—SDRAM Controller

intel.

Register Name: SDR_CONFIG
Hex Offset Address: 0xCC000000 ’ | Reset Hex Value: 0x00000010 ’
Register) .
Description: Configuration of the memory/memory controller.
Access: Read/Write
SENEEEENE NN NN NN EREDEENE
SIEIE|
| em
(Reserved) 5 (Q 2 config
O |g |O
Register SDR_CONFlG
Bits Name Description
31:21 (Reserved) Reserved
Enable 64Mbit 1 = 64Mbit, 0 = 128/256/512 Mbit chips
4 RAS Latency 1 = Three-cycle latency. This is hard-coded.
3 CAS Latency 1 = Three-cycle latency. Default is two-cycle latency.
2:0 Memory Config Denotes memory size and type.
Note: It is possible to have different values sent to the SDRAM status mode register from what is written to
this register (cas/ras latencies). This may result in an undefined operation of the controller.
7.4.2 Refresh Register

The refresh register (SDR_REFRESH) is a read/write register and contains control bits
for refresh of the SDRAM banks. It holds the number of cycles before the Intel XScale
processor issues a mandatory refresh command. The SDRAM refresh interval field
applies to all types of SDRAM (asynchronous and synchronous).

SDR_REFRESH

Register Name:

| Reset Hex Value: 0x00000384 |

Hex Offset Address: 0xCC000004 |

D R(:T\g'.Ste'j Refresh register that holds Number of cycles before a mandatory refresh command is issued.
escription:

Access: Read/Write
VIl [ITPILIIITLT Lo
(Reserved) Refresh Time
Register SDR_REFRESH
Bits Name Description
31:16 (Reserved)
15:0 Refresh time Number of cycles before a mandatory refresh command is issued. Defaults to
900 cycles.
7.4.3 Instruction Register
The instruction register is a read/write register that holds commands that are used to
determine the operation mode of the SDRAM controller and the mode register of the
SRDAM devices.
Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
288 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

SDRAM Controller—Intel® I1XP42X product line and I1XC1100 control plane processors

intel.

Register Name: SDR_IR

Hex Offset Address: 0xCC000008 ‘ Reset Hex Value:

0x00000000 |

Register Description:

register for SDRAMs.

Instruction register, holds commands that determine operation mode of the SDRAM controller and mode

Access: Read/Write

A PP PP peef PP TP fof2] o
Instruction
(Reserved) (command)

Register SDR_l R

Bits Name Description

31:3 (Reserved)

Commands to be sent out to the SDRAM.

000 - Mode-Register-Set Command where CAS# Latency 2.
001 - Mode-Register-Set Command where CAS# Latency 3.

2:0 Instruction devices.

devices.

SDRAM devices. This is intended to be used after reset only.
11x - (Reserved)

010 - Precharge-All Command: The MCU issues one precharge-all command to the SDRAM

Register 011 - NOP Command: The MCU issues one NOP command to the SDRAM devices.
100 - Auto-Refresh Command: The MCU issues one auto-refresh command to the SDRAM

101 - Burst Terminate Command: The MCU issues one Burst Terminate command to the

A “set mode register” command would write the following to the SDRAM. This is a
standard definition of a mode register from an SDRAM and not a register within the

SDRAM controller:

Table 114. SDRAM Configuration Options

[15:11] Don’t Care Don’t Care
0 = Programmed burst length
10 Write Burst Mode . 9 . 9
1 = Single-location access
00 = Standard operation
9:7 Operating Mode P

All other values reserved.

010 = For two cycles
6:4 CAS Latency 011 = For three cycles
All other values are reserved.

0 = Sequential
3 Burst Type 1 = Interleaved
Note: This value is hard-coded to O.

2:0 Burst Length To set this value, refer to Table 115.

Table 115. SDRAM Burst Definitions

Order of Accesses within a Burst
Burst Length Starting Column Address
Type = Sequential Type = Interleaved
2 AO
0 0-1 0-1
1 1-0 1-0

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
289

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—SDRAM Controller

Table 115. SDRAM Burst Definitions

Order of Accesses within a Burst
Burst Length Starting Column Address
Type = Sequential Type = Interleaved
4 Al AO
[¢] 6] 0-1-2-3 0-1-2-3
[¢] 1 1-2-3-0 1-0-3-2
1 0 2-3-0-1 2-3-0-1
1 1 3-0-1-2 3-2-1-0
8 A2 Al AO
0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7
[¢] [¢] 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-7-6-5-4
(] 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4
1 0 6] 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1 1 (6] 6-7-0-1-2-3-4-5 6-7-5-4-2-3-0-1
1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0

These are the commands issued by the memory controller to the SDRAM and are not
accessible through the AHB (i.e. a master cannot issue these commands on the internal
bus to the memory controller unit).

Table 116. SDRAM Commands

Command CS# RAS# CAS# WE# DQM ADDR DATA
COMMAND INHIBIT H X X X X X
NO OPERATION L H H H X X
ACTIVE L L H H X Bank/Row”™
READ L H L H X Bank/Col
WRITE L H L L X Bank/Col VALID
BURST TERMINATE L H H L X X ACTIVE
PRECHARGE L L H L X CODE
eremesos | o o e [
LOAD MODE BA =00
REGISTER L L L L X ADDR =

opcode

A R I [[e
e R I [[e
Note: Bank is used in the “SDRAM” sense, synonymous to LEAF in the rest of the documentation.

88

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
290 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

®
SDRAM Controller—Intel® I1XP42X product line and 1XC1100 control plane processors l n tel

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 291

Download from Www.Somanuals.com. All Manuals Search And Download.

8.0

Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

Expansion Bus Controller

The Expansion Bus Controller provides an interface from internal South AHB to external
flash, Host-Port Interfaces (HPIl), SRAM and other devices such as ATM control
interfaces, and DSPs used for voice applications.

The Expansion Bus includes a 24-bit address bus and a 16-bit-wide data path and maps
transfers between the South AHB and external devices. Intel and Motorola*,
multiplexed and non-multiplexed, micro-controller-style address/data bus accesses are
both supported using the expansion interface. Applications having less than 16-bit
external data paths may connect to an 8-bit interface.

The Expansion Bus Controller occupies 256 Mbytes of address space in the Intel®
IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor’
memory map. Eight chip selects are supported to allow up to eight independent
external devices to be connected. The address space for each chip select is up to
16 Mbytes.

A clock input is required to operate the expansion interface. The maximum clock
frequency supported by the Expansion Bus Controller is 66.66 MHz. The clock input is
provided to allow a wide variety of different peripherals to be connected to the
expansion interface.

GPIO 15 provides a clock output after reset. The clock produced by GPIO 15 is
programmable at speeds up to 33.33 MHz and can be used to provide the clock input to
the expansion bus interface. GPIO 15 must be externally routed on the board to
connect to EX_CLK.

This implementation gives the designer the option to choose between a lower part
count and the speed of the interface operations.

To provide a glueless interface to a wide variety of devices, the Expansion Bus
Controller supplies eight chips selects to a 16-bit-wide external bus, which can be
configured as Intel, Motorola, or HPI-style controls. The signaling characteristics and
timing for each chip select is individually programmable. After chip reset, chip-select O
defaults to conservative timing values for controlling a flash device and the size of the
flash is determined by the value of Expansion Bus Address bit O at the de-assertion of
RESET_IN_N signal. The Expansion Bus address bit all have internal pull-up resistors.
Each bit may be pulled low by placing a pull-down resistor on the address signhal. The
remaining chip selects are un-programmed.

The Expansion Bus Controller contains configuration registers beyond what is required
for its own configuration. There are several bits of configuration signals provided as
output from the Expansion Bus Controller to the rest of the Intel® IXP42X product line
and IXC1100 control plane processors. These signals provide the AHB with function like
the software interrupt capabilities, location of Expansion Bus Controller in IXP42X
product line and IXC1100 control plane processors’ memory map, PCl Host/Arbiter
information, and configuration information on devices connected to the Expansion Bus
and SDRAM Controller.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
292

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors l n tel

8.1

Table 117.

September 2006

One of these general-purpose configuration registers is used to capture the value on
the address pins immediately after reset. In the Expansion Bus Interface, 24 address
lines are used to capture this configuration information at the release of reset. When
power up is complete and reset is asserted, the 24 address lines are configured as
inputs. When reset is released (RESET_IN_N), the configuration registers capture the
values contained on the 24 address lines and the 24 address lines become configured
as outputs. The Expansion Bus address signals have internal pull-up resistors of about
50 KQ. Pull-down resistors may be placed on some of the 24 address lines in order to
select the configuration values at reset. Please refer to Section 8.9.9, “Configuration
Register 0” on page 322 for additional details on particular configuration options.

In normal mode of operation, the 24 bit address bus is used to present the 24 bits of
the address [23:0] used for the requested transaction accompanied by an address latch
enable output signal, (EX_ALE). The address phase normally last one clock cycle in
non-multiplexed mode and two clock cycles in multiplexed mode but may be extended
by one to three clock cycles using the T1 parameter in the Timing and Configuration
Register for the particular Chip Select.

The remaining control signals used by the Expansion Bus Interface can be configured to
operate as Intel, Motorola, or HPI-style control signals. As an example, the write strobe
for Intel mode (EX_WR_N) would be translated to the data strobe (DS_N) when placed
into Motorola mode. Similarly, the Intel-mode read signal (EX_RD_N) would become
read-not-write (R/W_N) when placed in Motorola* mode.

The EX_IOWAIT_N signal is available to be shared by the devices attached to chip O
through 7, when the chip selects are configured in Intel or Motorola mode of operation.
The EX_IOWAIT_N signal allows an external device to hold off completion of the read
phase of a transaction until the external device can supply the data requested.

Similarly, EX_RDY[3:0] are provided for chip selects 7 through 4, respectively. The
EX_RDY[3:0] signals are used to hold off data transfers when chip selects 7 through 4
are configured in HPlI mode. For example when chip select 5 is configured in HPI mode
of operation. Chip select 5 will no longer respond to the EX_IOWAIT_N signal and will
only respond to the EX_RDY_N[1]. All other chip selects will respond to the
EX_IOWAIT_N signal. Chip selects 7 through 4 are the only chip selects that can be
configured in HPI mode of operation.

Expansion Bus Address Space

Processors’ Trimmed Version of the Memory Map

Start Address End Address Size Use
0000_0000 OFFF_FFFF 256 Mbyte Expansion bus
0000_0000 3FFF_FFFF 1 Gbyte SDRAM
4000_0000 47FF_FFFF 128 Mbyte (Reserved)
4800_0000 AFFF_FFFF 128 Mbyte PCI
5000_0000 5FFF_FFFF 256 Mbyte Expansion bus
6000_0000 63FF_FFFF 64 Mbyte Queue manager

As seen in Table 117, on the South AHB, the lowest 256 Mbytes of address space
(0Ox00000000 to OXOFFFFFFF) is overlapped with the SDRAM address space
(0Ox00000000 to Ox3FFFFFFF). The actual interface that is accessed when the
overlapped region is addressed is configurable based on the value of a configuration
register bit located in the Expansion Bus Controller.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 293

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

8.2

When bit 31 of the Configuration Register 0 (EXP_CNFGDO) is set to logic 1, the
Expansion Bus accesses occupy the lowest 256-Mbytes of address space. When bit 31
of the Configuration Register 0 (EXP_CNFGO) is set to logic O, the SDRAM occupies the
lowest 256 Mbytes of address.

On reset, bit 31 of the Configuration Register O (EXP_CNFGO) is set to logic 1. This
setting is required to allow the boot memory to be accessed which is located at
hexadecimal address 0x00000000 in non-volatile storage on the Expansion Bus.

The first instruction execution of the Intel XScale® Processor is located at address
0x00000000. Once the boot sequence starts, the Intel XScale processor will switch bit
31 of the Configuration Register 0 (EXP_CNFGO) from logic 1 to logic O, at an
appropriate time.

The information transfer from the flash to the SDRAM can be completed in one of two
ways:

= The configuration bit can be swapped to allow the SDRAM to have access at
address 0x00000000 and the remainder of the flash information can be retrieved
from the expansion-bus address location 0x50000000 to OxX5FFFFFFF

= The SDRAM can be written by writing to the aliased sections of the SDRAM address
space.

The SDRAM only supports a maximum of 256 Mbytes of addressable memory space.
The remaining three memory locations (0x10000000 to Ox1FFFFFFF, 0x20000000 to
Ox2FFFFFFF, 0x30000000 to OX3FFFFFFF) — in the 1-Gbyte address space defined by
the IXP42X product line and 1XC1100 control plane processors’ Memory Map — are re-
mapped to the address space located at 0x00000000 to OxXOFFFFFFF.

Chip Select Address Allocation

The Expansion Bus Controller occupies 256 Mbytes of address space in the I1XP42X
product line and 1XC1100 control plane processors memory map. The Expansion Bus
Controller uses bits 27:0, from the South AHB, to determine how to translate the South
AHB address to the Expansion Bus Address. The lower 24 bits of the South AHB address
are translated to the lower 24 bits of the Expansion Bus address, EX_ADDR [23:0].

Bits 26:24 of the South AHB are used to decode one of eight chip-select regions
implemented by the expansion bus, each region being 16 Mbytes. Address bit 27 is not
used and will currently alias each chip select region as shown on the left side of
Figure 58.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
294

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors l n tel >

Figure 58. Chip Select Address Allocation

—CNFG[3:0] = 0b1111
base + OXFFFFFFF o 'l 2(9]+ plvic
SIZE = 2%
128 // . // SIZE = 16 MBytes
~ ~
MBytes A . -1 SIZE =
¢ cs_n[0] (alias) 2(9 + CNFG)
base + 0x8000000
A cs_n[7]
base + 0x7000000
cs_n[6]
base + 0x6000000 —0b1110 : 8 MBytes
cs_n[5] /
base + 0x5000000
128 cs_n[4] /
MBytes base + 0x4000000
cs_n[3] /
base + 0x3000000 —0b1101 : 4 MBytes
cs_n[2] /
base + 0x2000000
+ cs_n[1] —0b1100 : 2 MBytes
base + 0x1000000 _]
y 5ws cs_n[o] 0b1011 : 1 MBytes
base + 0x0000000 —0b0000 : 512 Bytes
* cs_n[x]

The right side of Figure 58 shows the implementation of bit 13:10 of the each Timing
and Control (EXP_TIMING_CS) Register. A Timing and Control (EXP_TIMING_CS)
Register is implemented for each of the eight chip selects. Each chip select defines a
base region size of 512 bytes with the actual size of the region given by the formula
shown in Figure 59.

Figure 59. Expansion Bus Memory Sizing
Region Size = 2 (9+CNFG[3:0])

For Examples of how to use this feature:

If bits 13:10 of Timing and Control (EXP_TIMING_CSO) Register 0 = “0000” an
address space of 29=1512 Bytes is defined for chip select O (EX_CSO_N).

If bits 13:10 of Timing and Control (EXP_TIMING_CS1) Register 1 = “1000” an
address space of 217 = 128KBytes is defined for chip select 1 (EX_CS1_N).

If bits 13:10 of Timing and Control (EXP_TIMING_CS7) Register 7 = “1111” an
address space of 224 = 16Mbytes is defined for chip select 7 (EX_CS7_N).

8.3 Address and Data Byte Steering

Table 118 shows the address and data mapping from the South AHB to the Expansion
Bus. This table applies to Intel- and Motorola-defined cycles only. Note that — for 32-
bit operations — only read cycles are permissible. Also, for 32-bit read operations to a
byte wide interface. Multiple bytes are collected and then transferred as a complete 32-
bit word. This pattern occurs as shown below for any allowable sub-length read access.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM

Order Number: 252480-006US 295

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

Table 118. Expansion Bus Address and Data Byte Steering

Conaz\rlzltceed to South AHB Expansion Bus
South AHB Expansion BUS Address Value Address Value Data Location Translation Between
Bus Cycle (8p—bit or 16- (SAHB_ADDR[1:0] | (EX_ADDR[1:0] | Expansion Data Bus and South AHB Data Bus
bit)
32-bit write 8-bit Not allowed.
32-bit write 16-bit Not allowed.
32-bit read 8-bit 00 00 ?7|-|.I(3)]data bus [31:24] « Expansion data bus
AHB data bus [23:16] « Expansion data bus
01 .
[7:0]
10 AHB data bus [15:8] « Expansion data bus [7:0]
11 AHB data bus [7:0] « Expansion data bus [7:0]
32-pit read 16-bit 00 ox AHE: data bus [31:16] « Expansion data bus
[15:0]
1x AHB data bus [15:0] « Expansion data bus
[15:0]
16-bit read 8-bit Not allowed.
16-bit read 16-bit ox Ox AHBr data bus [31:16] « Expansion data bus
[15:0]
16-Dbit 1x 1x AHB_ data bus [15:0] « Expansion data bus
[15:0]
16-bit write 8-bit Not allowed.
16-bit write 16-bit Ox Ox AHB_ data bus [31:16] — Expansion data bus
[15:0]
16-bit 1x 1x AHE: data bus [15:0] — Expansion data bus
[15:0]
8-bit read 8-bit 00 00 ?7I-|_I(3)]data bus [31:24] « Expansion data bus
8-bit o1 o1 AH_B data bus [23:16] « Expansion data bus
[7:0]
8-bit 10 10 AHB data bus [15:8] « Expansion data bus [7:0]
8-bit 11 11 AHB data bus [7:0] « Expansion data bus [7:0]
8-bit read 16-bit BYTE_RD16 dependant
8-bit write 8-bit 00 00 ?;—I_I(B)]data bus [31:24] - Expansion data bus
8-bit o1 o1 AH_B data bus [23:16] — Expansion data bus
[7:0]
8-bit 10 10 AHB data bus [15:8] — Expansion data bus [7:0]
8-bit 11 11 AHB data bus [7:0] — Expansion data bus [7:0]
8-bit write 16-bit Not allowed.
This will cause an AHB error that will result in a data-abort error.

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
296 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors

intel.

8.4 Expansion Bus Connections
Figure 60 shows a typical connection for various devices connected on the expansion
bus. Note that GPIO(0) is used as an example, and that your design can use any GPIO
port. Also note that EX_CS2_N and EX_CS7_N are shown as examples, and that your
design can use any EX_CS_N port.

Figure 60. Expansion Bus Peripheral Connection

Intel® StrataFlash®
Intel® IXP42X Embedded (P30)

Product Line/
Intel® IXC1100 Control

A[23:0] DQ[15:0] WE# OE# CEx
Plane Processor x y ¥} x
GPIO[15]
" EX_ADDR[23:0] 4
)
g EX_DQI[15:0] @
o
% EX_WR_N @ o—
o EX_RD_N ® &
lﬁ ! —
EX_CSO_N
L J
[]
L]
EX_CS7_N
EX_RDYI[3] |
EX_CS2_N
i h 4 v h 4 h 4 \ 4 v v h 4
EN A[18:0] DQ[7:0] W_n G_n HCS HDO-7 HDSI_N H_R/W_N HRDY
Motorola MCM6946 SRAM TI HPI- 8 TMS320UC5409
HBIL HCNTL[1:0] HCSEL[1:0] HINT_N
EX_ADDRI[0]
EX_ADDR[2:1]
EX_ADDR[23:22] v
GPIO[0]
B4962-02

September 2006
Order Number: 252480-006US

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
297

intel.

8.5

Table 119.

Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

Expansion Bus Interface Configuration

There are eight registers — called the Timing and Control (EXP_TIMING_CS) Registers
— that define the operating mode for each chip select. When designing with the
Expansion Bus Interface, placing the devices on the correct chip selects is required.

Chip Select 0 through 7 can be configured to operate with devices that require an Intel
or Motorola Micro-Processor style bus accesses. These chip selects can be configured to
operate in a multiplexed or a simplex mode of operation — for either Intel- or Motorola-
style bus accesses. Additionally, Chip Select 4 through 7 can be configured to generate
Texas Instruments® HPI-style bus accesses. The mode of operation (Intel, Motorola, or
TI HPI) is set by bits 15:14 of each Timing and Control (EXP_TIMING_CS) Register.
Table 119 shows the possible settings for the Cycle Type selection using bits 15:14 of
the Timing and Control (EXP_TIMING_CS) Register.

Expansion Bus Cycle Type Selection

Bit[15:14] CYC_TYPE
00 Configures the Expansion Bus Chip Select (x) for Intel cycles
01 Configures the Expansion Bus Chip Select (x) for Motorola* cycles.
10 Configures the Expansion Bus Chip Select (x) for TI* HPI cycles (Only valid for Chip Select 4
through 7)
11 (Reserved)

Note: (x) Can be O through 7.

Once the cycle type has been determined, the mode of operation must be set. There
are two configurable modes of operation for each chip select, multiplexed and non-
multiplexed. Bit 4 of the Timing and Control (EXP_TIMING_CS) Registers is used to
select this mode. If bit 4 of the Timing and Control (EXP_TIMING_CS) Register is set to
logic 1, the access mode for that Chip Select is multiplexed. Likewise, if bit 4 of the
Timing and Control (EXP_TIMING_CS) Register is set to logic 0, the access mode for
that Chip Select is non-multiplexed.

Multiplexed and non-multiplexed can imply different operations depending upon the
Cycle Type that is selected. For more information refer to section “Expansion Bus
Interface Access Timing Diagrams” on page 305.

The size of the data bus for each device connected to the expansion bus must be
configured. The data bus size is selected on a per-chip-select basis, allowing the most
flexibility when connecting devices to the expansion bus.

There are two valid selections that can be configured for each data bus size, 8-bit or
16-bit. Bit 0 of each Timing and Control (EXP_TIMING_CS) Register is used to select
the data bus size on a per-chip-select basis. When bit 0 is set to logic O, the data bus
width for the given chip select will be set to 16-bits. When bit O is set to logic 1, the
data bus width for the given chip select will be set to 8-bits.

One special case for the data bus width selection is for chip select 0. Chip select O (data
bus width) is selected by the value contained on Expansion Bus Address bit O at the de-
assertion of reset. At the de-assertion of reset, Expansion Bus Address bit O will be
captured into Timing and Control (EXP_TIMING_CS) Register for Chip Select 0. This
feature allows either an 8-bit or 16-bit flash device to be connected to the Expansion
Bus Interface for a boot device.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
298

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors l n tel >

Each chip select can be independently enabled or disabled by setting a value in bit 31 of
each Timing and Control (EXP_TIMING_CS) Register. Setting bit 31 — of the Timing
and Control (EXP_TIMING_CS) Register — to logic O disables the corresponding chip
select. Setting bit 31 — of the Timing and Control (EXP_TIMING_CS) Register — to
logic 1 enables the corresponding chip select.

Split transfers are supported for all transfer types and controlled by setting bit 3 of the
Timing and Control (EXP_TIMING_CS) Register. Multi-word read transfers requested by
the South AHB might be split. Only one access at a time may be split.

These transfers require that the read data from the expansion bus be stored in an
eight-word FIFO — until all expansion-bus transfers are complete — before that data is
forwarded on the South AHB. When split transfers are initiated, the Expansion Bus
Controller acknowledges the read request. The South AHB will be relinquished until all
the data is acquired from the expansion bus and stored in the eight-word FIFO
contained in the Expansion Bus Controller.

After all of the data has been acquired by the Expansion Bus Controller, the requesting
master on the South AHB will be signaled that the read data is in the FIFO and the read
transfer will complete — uninterrupted in its normal rotation in the arbitration scheme.
This feature allows for slow devices — connected to the expansion bus — not to impede
the performance of data flow from high-speed peripherals (like PCI) on the South AHB.

Retries also are supported and used predominately when expansion-bus requests are
issued while a split transfer is in progress. Setting bit 3 — of each Timing and Control
(EXP_TIMING_CS) Register — to logic 1 enables split transfers for accesses to the
corresponding chip select. Setting bit 3 — of each Timing and Control
(EXP_TIMING_CS) Register — to logic 0 disables split transfers for accesses to the
corresponding chip select.

For Chip Select 0, split transfers are disabled after reset. This feature allows the boot
device to provide uninterrupted 32-bit data words to the Intel XScale processor.

Each chip select region has the ability to be write-protected by setting bit 1 of each
Timing and Control (EXP_TIMING_CS) Register. When bit 1 of Timing and Control
(EXP_TIMING_CS) Register is set to logic 0, writes to a specified chip select region are
ignored. When bit 1 of Timing and Control (EXP_TIMING_CS) Register is set to logic 1,
writes are allowed to a specified chip select region. Chip select O will be write-protected
after reset.

For chip selects 4 through 7 configured in HPI mode of operation, there is an associated
ready bit (EX_RDY [0:3]). The ready bit is only used when the mode of operation is set
to Texas Instruments HPl mode. The ready bits are used to hold off the Intel XScale
processor when the given DSP is not ready to complete the transfer.

However, the polarity of this ready bit can vary based upon the DSP that is selected. Bit
5 of each Timing and Control (EXP_TIMING_CS) Register allows the polarity used by
each ready bit to be independently set. When bit 5 — of the Timing and Control
(EXP_TIMING_CS) Register — is set to logic O, the ready bit is set to respond to an
active low signal (logic 0). When bit 5 — of the Timing and Control (EXP_TIMING_CS)
Register — is set to logic 1, the ready bit is set to respond to an active high signal (logic
1).

One final set of parameters that may be set prior to using Expansion Bus Interface Chip
Select 1 through Chip Select 8. After boot up, these parameters may be adjusted for
Chip Select 0 as well. These five parameters are the timing extension parameters for
each phase of an Expansion Bus access.

There are five phases to every Expansion Bus access:
e T1 — Address Timing

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 299

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
l n tel > Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

T2 — Setup/Chip Select Timing
e T3 — Strobe Timing
T4 — Hold Timing

» T5 — Recovery Phase

The expansion-bus address is used to present the 24 bits of the address [23:0] used
for the expansion bus access accompanied by an address latch enable output signal,
EX_ALE. The address phase normally last one clock cycle, in non-multiplexed mode,
and two clock cycles, in multiplexed mode. The address phase may be extended by one
to three clock cycles using the T1 — Address Timing parameter, bits 29:28 in the Timing
and Control (EXP_TIMING_CS) Register for the particular Chip Select. When the
address phase T1 is extended, the ALE pulse is extended and always de-asserts one
cycle prior to the end of the T1 phase.

In multiplexed mode only, the EX_ALE signal is asserted with the address at the
beginning of the address phase and de-asserted one clock cycle later to provide plenty
of address setup time to an external device or latch. The address is placed onto the 16-
bit data bus — along with EX_ADDR [0:7] signals during the first cycle of the address
phase — when using the ALE signal. The lower 16 bits of address are placed on the
data bus and the upper bits of address are placed on the address bus signals EX_ADDR
[23:16]. The ALE is used to capture the address signals.

During the second cycle of the address phase, the data bus now will output data —
when attempting to complete a write — or tristate — when attempting to complete a
read. The address signals will retain their state.

Due to the fact that, in HPI mode of operation, it is possible to begin an access to a
busy device (EX_RDY is false), special consideration must be taken with programming
the T1 — Address Timing parameter when using the chip select in HPI mode. The T1 —
Address Timing parameter must be set to a minimum of two additional cycles (T1 must
equal to 0x2). Programming the T1 — Address Timing parameter to this value ensures
that the asynchronous EX_RDY input is sampled and available to the controlling
hardware logic before beginning the new HPI access over the expansion bus.

The chip-select signal is presented for one expansion bus phase before the Strobe
Phase. The chip select will be presented for the remainder of the expansion bus cycles
(setup, strobe, and hold phases).

The Setup/Chip Select Timing phase may also be extended by one to three clock cycles,
using bits 27:26 of the Timing and Control (EXP_TIMING_CS) Register, T2 — Setup/Chip
Select Timing parameter. In HPI mode of operation, T2 is defined as the time required
by the external DSP device to drive EX_RDY false for the current access plus the time
required by the Expansion Bus Controller to sample and synchronize the EX_RDY
signal. The T2 — Setup/Chip Select Timing parameter must have a minimum value of
two additional cycles (T2 must equal 0x2). Programming the T2 — Setup/Chip Select
Timing parameter to be three clock cycles in length ensures that when the Strobe
Phase, T3, begins, the Strobe Phase will be able to sample the EX_RDY signal and exit
the Strobe Phase at the proper time.

The Strobe Phase of an expansion-bus access is when the read or write strobe is
applied. The 24 Expansion Bus Interface Address bits are maintained in non-
multiplexed mode or the Expansion Bus Interface Data bus is switched from address to
data when configured in multiplexed mode during the Strobe Phase.

The Strobe Phase may be extended from one to 15 clock cycles, as defined by
programming bits 25:22 of the Timing and Control (EXP_TIMING_CS) Register, T3 —
Strobe Timing parameter. In HPlI mode of operation, the T3 — Strobe Timing parameter
must have a minimum value of one additional cycle (T3 must equal 0x1). Programming

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor
DM September 2006
300 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors l n tel >

8.6

September 2006

the T3 — Strobe Timing parameter to be two clock cycles in length ensures that any
data sent to the DSP is captured regardless of when the EX_RDY signal is asserted by
the DSP.

The Hold Phase of an expansion-bus access is provided to allow a hold time for data to
remain valid after the data strobe has transitioned to an invalid state. During a write
access, the Hold Phase provides hold time for data written to an external device on the
expansion bus, after the strobe pulse has completed.

During a read access, the Hold Phase allows an external device time to release the bus
after driving data back to the controller. The Hold Phase may be extended one to three
clock cycles, using bits 21:20 of the Timing and Control (EXP_TIMING_CS) Register, T4
— Hold Timing parameter. In HPI mode of operation, the Hold Phase is defined the same
as described for the Intel and Motorola* modes of operation.

After the address and chip select is de-asserted, the Expansion Bus Controller can be
programmed to wait a number of clocks before starting the next Expansion Bus access.
This action is referred to as the Recovery Phase. The Recovery Phase is may be
extended one to 15 clock cycles using bits 19:16 of the Timing and Control
(EXP_TIMING_CS) Register, T5 — Recovery Timing parameter. In HPl mode of
operation, the Recovery Phase is defined the same as described for the Intel and
Motorola modes of operation.

Using 170 Wait

The EX_IOWAIT_N signal is available to be shared by devices attached to chip selects O
through 7, when configured in Intel or Motorola modes of operation. The main purpose
of this signal is to properly communicate with slower devices requiring more time to
respond during data access. During idle cycles, the board is responsible for ensuring
that EX_IOWAIT_N is pulled-up. The Expansion bus controller will always ignore
EX_IOWAIT_N for synchronous Intel mode writes.

As shown in Figure 61, a normal phase transaction is initiated during the T1 (Address
Timing) period, in which the processor drives the address lines with an address that is
decoded by the peripheral being accessed.

The next segment of the transaction is the T2 (Chip Select Timing) period, in which the
processor asserts Chip Select and the Address signals have reached a stable state.
EX_IOWAIT_N must be asserted during the T2 period. If not asserted at this time, the
processor ignores EX_IOWAIT_N and treats it as it never occurred. If EX_IOWAIT_N is
asserted during T2, the processor expects the signal to be deasserted during the T3
(Strobe Timing) period.

T3 can be programmed from O to F, where the value indicates the number of cycles that
the processor waits for EX_IOWAIT_N to be deasserted. The counter starts at the rising
edge of the clock when EX_RD_N or EX_WR_N is asserted. The following rules describe
processor operation during T3:

« If EX_IOWAIT_N is deasserted at least two clock cycles before the T3 counter
expires, then the processor deasserts EX_RD_N/EX_WR_N at the end of the
number of cycles programmed in T3.

« If EX_IOWAIT_N is deasserted after T3 counter has expired, it will take 2 more
clock cycles before the processor deasserts the EX_RD_N/EX_WR_N signal.

« If EX_IOWAIT_N is not deasserted before the T3 counter expires, then EX_RD_N/
EX_WR_N will continue to be asserted for as long as EX_IOWAIT_N continues to be
asserted, plus 2 more clock cycles.

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

Order Number: 252480-006US 301

Download from Www.Somanuals.com. All Manuals Search And Download.

Figure 61.

Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

The T4 (Hold Timing) period is the time interval in which Chip Select will be held after
READ is deasserted. T4 prevents bus contention while Chip Select is asserted, in case
the peripheral driving the bus continues to send data out after READ has been
deasserted. During T4 no other transaction can start, since the current transaction will
not finish until Chip Select is deasserted by the processor.

T5 is the recovery time required before the next transaction can start.

The EX_IOWAIT_N signal only affects the interface during T2 when it is asserted and
during T3 when it is deasserted. If Chip Selects 4 through 7 are configured in HPI mode
of operation, each chip select will have a corresponding HRDY signal called EX_RDY.
The polarity of the ready signal is programmable. Chip Select 4 corresponds to EX_RDY
signal O and Chip Select 7 corresponds to EX_RDY signal 3.

In the case of extended phase timing, EX_IOWAIT_N is used in the same way as the
normal phase, however, the T1, T2, T4 and T5 periods take place over 4 cycles. T3 is
still programmable but each value is a multiple of 4 cycles. See Figure 62 for details.

1/0 Wait Normal Phase Timing

T1=0h | T2=0h T3=2h or 1h or Oh > T4=0h | T5=0h |
| 1 Cycle I 1 Cycle | 3 Cycles | 1 Cycle | 1 Cycle |
EX_CLK [1 I l | l | LI LI 1 I l | l
| | | L 2cpes | | |
1 1 | |
EX_CS_N[0] 0 |\ ! |/ 0
| ; | |
EX_ADDR([23:0] | validlAddress , X
I 1 0 1 I 1
| | | . | | |
EX_IOWAIT_N : : _:_/ : : :
| | | | | |
1 L L | 1 1
EX_RD_N | | I\ y | |
| | | | |
EX_DATA[15:0] X Valid Data X }
I
|
|

B5242-01

Note: Notice that the access is an Intel-style simplex read access. The data strobe phase is set to a value to last

three clock cycles. The data is returned from the peripheral device prior to the three clocks and the
peripheral device de-asserts EX_IOWAIT_N. The data strobe phase terminates after two clocks even though
the strobe phase was configured to pulse for three clocks.

Intel® IXP42X Product Line of Network Processors and 1XC1100 Control Plane Processor

DM
302

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors

Figure 62. 1/0 Wait Extended Phase Timing

intel.

1=83h | T2=3 h T3=F h T4=3 h T5=F h
| | 4 Cycles I 16 Cycles | 4 Cycles | 16 Cycles |
| | I 2:Cyclds | |
l 1 ! |
EX_CS_N[0] | “ ! I }/]
l . | |
EX_ADDR[230]) I validladdress H | |
1 1 1 |
|] I I | |
EX_IOWAIT_N 1 ™\ I / T T 1
| | i | | |
| | | (| (
| l L (1 |
EX_RD_N | | N\ 4 | |
| (| (| (
EX_DATA[15:0] X Valid Data | i !
| | | | | |
| | | (((
I I 1 | I I
B5243-01

8.7 Special Design Knowledge for Using HPI mode

The Expansion Bus Controller supports a number of the 8-bit and 16-bit versions of the
Texas Instruments Host Port Interface (HPI) standards. This flexibility allows the
TMS320C54xx family of Digital Signals Processors (DSP) to seamlessly interface to the
IXP42X product line and IXC1100 control plane processors Expansion Bus.

If the Expansion Bus CS (Chip-Select) is configured to operate to operate in HPI1-8
Mode, then a STRH (16-bit write) Intel XScale processor instruction must be used for
writing to the HPI-8 device, even though it is in an 8-bit device. If a STRB (8-bit write)
instruction is used instead, then the Intel XScale processor’s data abort handler will be

initiated, causing the assignhed HPI-8 CS signal to deassert.

However, there are some special things to note when using the Expansion Bus in HPI

mode of operation. These features are shown in the following tables.

The expansion-bus address-pins bits 0, 1, 2, 22, and 23 are multiplexed with special
function signal pins for HPI as shown in Table 120.

Table 120. Multiplexed Output Pins for HP1 Operation

HPI1 Control Signal

Output Signal Pin

EX_HBIL

EX_ADDR [0]

EX_HCNTL [1:0]

EX_ADDR [2:1]

EX_HCSEL [1:0]

EX_ADDR [23:22]

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
303

intel.

Table 121.

Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

The byte identification signal, EX_HBIL, is used to determine the byte transfer order.
(EX_HBIL is driven low for the first byte of the transfer and driven high for the second
byte.)

The byte order bit (BOB) in the HPIC register (contained in the DSP) — within the HPI
device — is used to determine the placement for the two bytes of the transfer. Please

consult the datasheet of the specific DSP being connected to determine the order of the
transferred bytes.

When operating in HPl mode, bits 13:10 in the Timing and Control (EXP_TIMING_CS)
Registers are ignored.

When operating in HP1-16, non-multiplexed mode, the expansion bus address bus
provides direct accesses to the DSP memory space. The data associated with this
address will be read or written from the location specified by the value contained on the
Expansion Bus address bits.

The signals EX_HCNTL [1:0] are multiplexed onto the EX_ADDR [2:1] pins. When
communicating to a multiplexed HPI interface, the EX_HCNTL [1:0] signals are used to
select one of four internal registers used for interfacing to the DSP. The EX_HCNTL
[1:0] mapping is described in the Table 121 below:

HP1 HCNTL Control Signal Decoding

hentl[1:0] Required Access
00 Read / write control register (HPIC)
Read / write data register (HPID)
= HPI-8:
01 — Post-increment HPIA on reads, pre-increment on writes.
* HPI-16:
— Post-increment HPIA on reads and writes
10 Read / write address register (HPIA)
11 Read / write data register (HPID)

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor

DM
304

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors

8.8 Expansion Bus Interface Access Timing Diagrams

8.8.1 Intel® Multiplexed-Mode Write Access

Figure 63. Expansion-Bus Write (Intel® Multiplexed Mode)

intel.

Intel® Multiplexed
Write Mode

EX_CLK

T4

TS5

l< T1
2-5 Cycles
| ALE Extended

>|<T2 >|< T3

1-4 Cycles =~ 1-16 Cycles

1-4 Cycles

1-16 Cycles

EX_CS_N[0]

i

EX_ADDR[23:0]

I

ValidjAddress

|
EX_ALE : / \

EX_IOWAIT_N

EX_WR_N

V

EX_DATA[15:0]

J Valid Address

Valid Data

|
|
|
I
|
|
|
|
1
d
I
|
|
1

B4363-01

September 2006

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
305

tel Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

8.8.2 Intel® Multiplexed-Mode Read Access

Figure 64. Expansion-Bus Read (Intel® Multiplexed Mode)

Intel® Multiplexed

Read Mode
T1 T2 T3 T4 T5
|< 2-5 Cycles 1-4 Cycles 1-16 Cycles 1-4 Cycles 1-16 Cycles>|
| ALE Extended |
L [1 | | | |
I | I I I I I
EX_CS_NI0] | I |\ | | 1/ |
| : | 1 t T |
| | I | | |
EX_ADDR[23:0] \ | ! Valid Address | X
I | | | | | I
I | | | | |
EX_ALE 1/ I\ I I [I I
I :] I [I I
I [[| 1 I
EX_IOWAIT_N 1 I I [| I 1
I : I I [I I
| |] | | |
| | | A /A |
I : I I I I I
EX_DATA[15:0]) Valid Address |)—r_—r(I Valid Datg |
|
|
|

B4362-01

Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM

September 2006

306 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors

8.8.3 Intel® Simplex-Mode Write Access

Figure 65. Expansion-Bus Write (Intel® Simplex Write Mode)

intel.

Intel® Simplex Write Mode

|<T1>|<T2>|<T3>|<T4>|<T5>|

1-4 Cycles 1-4 Cycles ' 1-16 Cycles 1-4 Cycles * 1-16 Cycles

EX_CLK | | | | | | |
I I [I I I
EX_CS_N[0] I I\ | I 1/]
| | 1 T T |
| | | | | |
EX_ADDR[23:0] \ ! ValidjAddress | X
| | | | | |
} } ' J } I
EX_IOWAIT_N | | | | I |
| | | | | |
| | | | | |
EX_WR_N I | A\ |/ I I
I I [I I
| | | | | |
EX_DATA[15:0] Y ' Valid Data! X
[I
| |
| |

B4365-01

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor

September 2006
Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

DM
307

tel Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

8.8.4 Intel® Simplex-Mode Read Access

Figure 66. Expansion-Bus Read (Intel® Simplex Mode)

Intel® Simplex Read Mode

T1 >|< T2 >|< T3 >|< T4 >|< T5 >|
1-4 Cycles 1-4 Cycles ' 1-16 Cycles 1-4 Cycles ' 1-16 Cycles
| |

EX_CLK | | | | | | | |
I [I I [I
EX_CS_N[0] | | \ | | L/ |
| | T T 1 |
| | | | | |
EX_ADDR[23:0] X ! ValidAddress | LY
| | | | |
f f } ! J
EX_IOWAIT_N | | | | |
| | | | |
| | | | |
EX_RD_N I I [I
I I [I
| | | |

|

]

|

|

|

I\ 1/

|

|

ex_oaratisa

B4364-01
Intel® 1XP42X Product Line of Network Processors and IXC1100 Control Plane Processor
DM September 2006
308 Order Number: 252480-006US

Download from Www.Somanuals.com. All Manuals Search And Download.

[®
Expansion Bus Controller—Intel® IXP42X product line and 1XC1100 control plane processors l n tel

8.8.5 Motorola* Multiplexed-Mode Write Access

Figure 67. Expansion-Bus Write (Motorola* Multiplexed Mode)

Motorola* Multiplexed

Write Mode
|< T1 >|< T2 >|< T3 >|< T4 >|< T5
2-5 Cycles 1-4 Cycles ~ 1-16 Cycles = 1-4 Cycles = 1-16 Cycles
ALE Extended
| | | | | |
1
EX_CLK | | | | | L1 |
|
|
EX_CS_N[0] / |
|
|

|
\ |
I

EX_ADDR[23:0]

——
<

Valioﬂ Address

EX_ALE

|

—— e e ——— e —— e ——————

EX_IOWAIT_N

EX_RD_N
(exp_mot_rnw)

EX_WR_N

|
|
|
|
|
|
(exp_mot_ds_n) |

V/

EX_DATA[15:0] Y\ valili Address

|
|
|
|
|
|
|
|
N
|
|
|
]
|
|
|

|
Valid Dath
T
|
|
|

B4367-01

Intel® IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor
September 2006 DM
Order Number: 252480-006US 309

Download from Www.Somanuals.com. All Manuals Search And Download.

intel.

8.8.6

Figure 68.

Motorola* Multiplexed-Mode Read Access

Expansion-Bus Read (Motorola* Multiplexed Mode)

Intel® I1XP42X product line and 1XC1100 control plane processors—Expansion Bus Controller

Motorola* Multiplexed

(exp_mot_rnw)

EX_WR_N
(exp_mot_ds_n)

Read Mode
|< T1 T2 T3 T4 T5
2-5 Cycles 1-4 Cycles ~ 1-16 Cycles = 1-4 Cycles ' 1-16 Cycles
ALE Extended
| | | | | |
EX_CLK | ! | | |