Intel® Server Board SDS2

Technical Product Specification

Order Number: A85874-002

Revision 1.2

December 2, 2002

Enterprise Platforms and Services Marketing

Download from Www.Somanuals.com. All Manuals Search And Download.

Revision History

Date	Revision Number	Modifications
9/20/2001	1.0	Initial release.
5/15/2002	1.1	Added Section 13: Errata. Corrected miscellaneous document errors. Added Table 6.2.5.4: Baseboard Management Controller (BMC) Beep Code Generation.
12/2/02	1.2	Added Errata 19-37 that are corrected with FAB5. Updated Table 6.2.5.4. Added Table 25.

Disclaimers

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local sales office that you have the latest datasheet before finalizing a design.

The Intel® Server Board SDS2 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Intel, Pentium, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation.

*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation 2002.

Table of Contents

1.	Introd	luction	1
2.	Archi	tecture	2
3.	Proce	essor and Chipset	4
3	.1 P	rocessors	4
	3.1.1	Processor Voltage Regulator Module (VRM)	6
3	.2 M	lemory Subsystem	6
	3.2.1	Memory Configuration	6
	3.2.2	I ² C Bus	8
3	.3 C	hipset	8
	3.3.1	CNB20HE-SL Champion North Bridge	9
	3.3.2	CIOB20 Champion I/O Bridge	10
	3.3.3	CSB5 South Bridge	10
4.	I/O St	ıbsystem	11
4	.1 P	CI Subsystem	11
	4.1.1	32-bit, 33-MHz PCI Subsystem	11
	4.1.2	64-bit, 66-MHz PCI Subsystem	12
4	.2 U	ltra160 SCSI	14
4	.3 V	ideo Controller	14
	4.3.1	Video Modes	14
4	.4 N	etwork Interface Controller (NIC)	15
	4.4.1	NIC Connector and Status LEDs	16
4	.5 C	SB5 South Bridge (PCI-to-LPC Bridge, IDE, USB)	16
	4.5.1	PCI Bus Interface	16
	4.5.2	PCI Bus Master IDE Interface	16
	4.5.3	USB Interface	17
	4.5.4	Compatibility Interrupt Control	17
	4.5.5	APIC	17
	4.5.6	Power Management	17
	4.5.7	General Purpose Input and Output Pins	17
4	.6 C	hipset Support Components	18
	4.6.1	Super I/O	18

	4.6	.2	BIOS Flash	.20
4	4.7	Inte	errupt Routing	.20
	4.7	.1	Legacy Interrupt Routing	.20
	4.7	.2	APIC Interrupt Routing	.21
	4.7	.3	Serialized IRQ Support	.21
	4.7	.4	IRQ Scan for PCIIRQ	.21
5.	Sei	rver	Management	.25
į	5.1	Sal	halee Baseboard Management Controller	.27
	5.1	.1	Fault Resilient Booting	.29
į	5.2	Sys	stem Reset Control	.30
	5.2	.1	Power-up Reset	.30
	5.2	.2	Hard Reset	.30
	5.2	.3	Soft Reset	.30
į	5.3	Inte	elligent Platform Management Buses	.30
į	5.4	Err	or Reporting	.32
	5.4	.1	Error Sources and Types	.32
	5.4	.2	PCI Bus Errors	.32
	5.4	.3	Intel® Pentium® III Processor Bus Errors	.32
	5.4	.4	Memory Bus Errors	.33
	5.4	.5	ID LED	.33
į	5.5	AC	Pl	.33
į	5.6	AC	Link Mode	.33
6.	BIC	os		.35
(6.1	Sys	stem BIOS	.35
(6.2	BIC	OS Error Handling	.36
	6.2	.1	Error Sources and Types	.36
	6.2	.2	Handling and Logging System Errors	.36
	6.2	.3	SMI Handler	.38
	6.2	.4	Firmware (BMC)	.39
	6.2	.5	Error Messages and Error Codes	.45
(6.3	Set	tup Utility	.52
	6.3	.1	Configuration Utilities Overview	.52
	6.3	.2	Setup Utility Operation	.52
	6.3	.3	CMOS Memory Definition	.67

	(6.3.4	Clearing CMOS	6/
	6.4	4 FI	ash Update Utility	67
	(6.4.1	Loading the System BIOS	67
	(6.4.2	User Binary Area	68
	(6.4.3	Language Area	68
	(6.4.4	OEM Logo Screen	68
	(6.4.5	Recovery Mode	68
7.	. (Clock	/Voltage Generation and Distribution	70
	7.1	1 C	lock	70
	7.2	2 V	oltage	72
8.	. (Conn	ections	74
	8.1	1 P	ower Distribution Board Connector	74
	8.2	2 M	emory Module Connector	75
	8.3	3 S	ystem Management Headers	76
	8	8.3.1	ICMB Connector	76
	8	8.3.2	OEM IPMB Connector	76
	8	8.3.3	SCSI HSBP (IPMB) Connector	76
	8.4	4 Fı	ront Panel Header	77
	8.5	5 P	CI Slot Connector	78
	8.6	5 I/0	O Connectors	80
	8	8.6.1	VGA Connector	80
	8	8.6.2	SCSI Connector	80
	8	8.6.3	NIC Connectors	81
	8	8.6.4	IDE Connector	82
	8	8.6.5	Universal Serial Bus (USB) Connectors	82
	8	8.6.6	Floppy Connector	83
	8	8.6.7	Serial Port Connector	84
	8	8.6.8	Parallel Port	85
	8	8.6.9	Keyboard and Mouse Connector	85
	8.7	7 M	iscellaneous Headers	86
	8	8.7.1	Fan Headers	86
	8	8.7.2	Chassis Intrusion	86
	8	8.7.3	External SCSI Activity LED Input Signal Connector	86
	2 2	2 D	ear I/O Panel	87

Download from Www.Somanuals.com. All Manuals Search And Download.

	8.9	Co	nnector Manufacturers and Part Numbers	87
9.	Jui	mpe	rs	88
	9.1	Sys	stem Configuration Jumpers	88
	9.2	Pe	rforming CMOS Clear, BIOS Recovery, and BMC Force Update	92
	9.2	.1	Performing CMOS Clear	92
	9.2	.2	Performing BIOS Recovery Boot	92
	9.2	.3	Performing BMC Force Update	93
10). Ele	ctri	cal and Thermal Specifications	94
	10.1	A	Absolute Maximum Ratings	94
	10.2	F	Power Consumption	94
	10.3	F	Power Supply Specification	95
	10.	3.1	Power Timing	95
	10.	3.2	Voltage Recovery Timing Specifications	98
	10.4	Е	Estimateded Server Board MTBF	.100
11	1. Me	cha	nical Specifications	.101
12	2. Re	gula	ntory and Integration Information	.102
	12.1	F	Regulatory Compliance	.102
	12.2	lı	nstallation Instructions	.103
	12.	2.1	Ensure EMC	.103
	12.	2.2	Ensure Host Computer and Accessory Module Certifications	.104
	12.	2.3	Prevent Power Supply Overload	.104
	12.	2.4	Place Battery Marking on Computer	.104
	12.	2.5	Use Only for Intended Applications	.105
	12.	2.6	Installation Precautions	.105
	12.	2.7	External ICMB Cable Information	.105
13	3. Err	ata	Listing	.106
	13.1	S	Summary Errata Table	.106
	13.2	Е	Errata	.108
	1.	Inte	el® RAID controller SRCMR not yet supported with Intel® Server Board SDS2	.108
	2. Serve		el® Server Board SDS2 BIOS update utility does not allow updates from a PXE from network drives	.108
	3. BIOS		el® Server Board SDS2 FRU/SDR update fails with console redirection enabled in up	
	4	Fire	st characters and arrow keys not echoed with console redirection	109

5. durin	Intel® & ICP Vortex* RAID Controllers will cause the Intel® Server Board SDS2 to have post when the BIOS Logo screen is enabled	alt 109
6.	Intel® Server Board SDS2 CD-ROM issues	.110
7.	NIC driver set 5.12 v.2.3.15 for UnixWare* 7.1.1 drops DPC LAN connection	.111
8. conn	NIC driver set 5.12 v.5.41.27 for Microsoft* Windows* 2000 prevents a DPC LAN ection when the operating system is loaded	111
9.	Extended RAM Step disable option in BIOS Setup has no effect	112
10.	High resolution video modes do not work correctly	.112
11.	Lower performance with CAS Latency 2 memory	.113
12.	SDS2 reboots during POST with 4GB or more of total system memory installed	.113
13.	Novell NetWare* v. 6.0 does not install on SDS2	114
14.	Adaptec* 2100S RAID controller causes system lockup and video blanking	114
15. run	SDS2 Build Your Own (BYO) Platform Confidence Test (PCT) v. 1.00 fails on the fir 115	st
16.	SDS2 0B71: System Temperature out of the range POST message	115
17.	SDS2 0B75: System Voltage out of the range POST message	116
18.	Miscellaneous numeric keys entered during POST enable PXE boot	116
19. modit	SDS2 board level operating temperature and power supply voltage tolerance fication	117
20.	Recommendation for SDS2 rubber bumper installation	.117
21. USB	Keyboard and Mouse do not function under Microsoft* Windows* 2000 when legacy is enabled in BIOS setup	
22.	Data miscompares when using Seagate* ATA III model ST310215A hard drives	.120
23.	Boot to service partition via modem fails	.120
24.	Secondary IDE References Added To Documentation for FAB 5	.120
25.	Potential Mylex AcceleRAID 352 Adaptor Card Mechanical Interference at PCI Slot 6	. 120
26.	Bootable CD will not boot if inserted during OPTION ROM scan	.121
27.	Swapping bootable for non-bootable CDROM during POST causes hang at boot	.121
28.	OB P100 NICs do not show at POST but attempt PXE boot and appear in Boot Men	u122
29.	Dodson: Adaptec 39160 in slots 5 & 6 causes Expansion ROM error	.122
30.	Can Not Change BIOS SETUP IDE Options Using <enter> Key</enter>	123
31. One	Minimum Wait Time Between Power Off and Power On via Front Panel Power Butto	
32. 6.	Unable to boot Netware 6.0 (NW6) From CD ROM With Adaptec Adaptor 2100S in \$123	Slot
33. than	3COM* 3C980C-TX NIC causes Microsoft* Windows* 2000 blue screen when great 4GB of system memory is installed	

viii Revision 1.2

Index		IV
Refere	ence Documents	III
Gioss	aiy	••••••
Glass	ary	
36.	OB P100 NICs do not show at POST but attempt PXE boot and appear in Boot Men	J125
35.	SDS2 PCI slot current levels supported by the 5V rail	.125
PCI	bus and the legacy 32-bit PCI bus controlled by the HE-SL north bridge	.125
34.	Peer-to-peer PCI transactions are not supported between the CIOB-controlled 64-bit	

List of Figures

Figure 1. SDS2 Server Board Block Diagram	1
Figure 2. SDS2 Memory Bank Layout	7
Figure 3. SDS2 Interrupt Routing Diagram (CSB5 Internal)	22
Figure 4. SDS2 Interrupt Routing Diagram	23
Figure 5. SDS2 PCI Interrupt Mapping Diagram	24
Figure 6. SDS2 Sahalee BMC Block Diagram (View as Reference Only)	26
Figure 7. SDS2 Locations of ADM1026 and Sahalee	29
Figure 8. SDS2 Server Board Clock Generation/Distribution Diagram	71
Figure 9. SDS2 Server Board Voltage Generation/Distribution Diagram	73
Figure 10. SDS2 Server Board Rear I/O Panel	87
Figure 11. SDS2 Configuration Jumpers	89
Figure 12. SDS2 Configuration Jumper Locations	90
Figure 13. Output Voltage Timing	97
Figure 14. Turn On/Off Timing	98
Figure 15. SDS2 Server Board Mechanical Drawing	101

List of Tables

Table 1. SDS2 Intel® Pentium® III Processor Support Matrix	4
Table 2. Memory DIMM Pairs	7
Table 3. I ² C Addresses for DIMM Slots	8
Table 4. PCI Bus Segment Characteristics	11
Table 5. P32-A Configuration IDs	12
Table 6. P32-A Arbitration Connections	12
Table 7. P64-B Arbitration Connections	13
Table 8. P64-B Arbitration Connections	13
Table 9. Video Modes	15
Table 10. CSB5 GPIO Usage Table	17
Table 11. Super I/O GPIO Usage Table	18
Table 12. PCI Interrupt Routing/Sharing	20
Table 13. Interrupt Definitions	20
Table 14. ADM1026 Input Definition	27
Table 15. Temperature Sensors	28
Table 16. Sahalee Input Definition	28
Table 17. IPMB Bus Devices	31
Table 18. Private I ² C Bus 1 Devices	31
Table 19. Private I ² C Bus 2 Devices	31
Table 20. Private I ² C Bus 3 Devices	31
Table 21. Private I ² C Bus 4 Devices	32
Table 22. BIOS Generated SEL Errors	37
Table 23: Event Request Message Event Data Field Contents	38
Table 24 Platform SEL Log Sensors for SDS2	39
Table 25. Event Request Message Event Data Field Contents	45
Table 26. Port-80h Code Definition	45
Table 27. Standard BIOS POST Codes	46
Table 28. Recovery BIOS POST Codes	49
Table 29. POST Error Messages and Codes	50
Table 30. BMC Beep Codes	51
Table 31. Setup Utility Screen	52

Table 32. Main Menu Selections	55
Table 33. Primary Master and Slave IDE Submenu Selections	56
Table 34. Processor Settings Submenu Selections	57
Table 35. Advanced Menu Selections	58
Table 36. Memory Configuration Menu Selections	58
Table 37. PCI Configuration Menu Selections	59
Table 38. On-board SCSI and LAN Submenu Selections	59
Table 39. On-board VGA Submenu Selections	59
Table 40. PCI slot Submenu Selections	59
Table 41. I/O Device/Peripheral Configuration Submenu Selections	61
Table 42. Advanced Chipset Controller Submenu Selections	62
Table 43. PCI Device Submenu Selections	62
Table 44. Security Menu Selections	62
Table 45. Server Menu Selections	63
Table 46. System Management Submenu Selections	64
Table 47. Console Redirection Submenu Selections	65
Table 48. Boot Device Priority Selections	65
Table 49. Hard Drive Selections	66
Table 50. Removable Drive Selections	66
Table 51. Exit Menu Selections	66
Table 52. 24-Pin Main Power Connector Pin-out	74
Table 53. 8-Pin +12 V Power Connector Pin-out	74
Table 54. Aux Signal Connector Pin-out	74
Table 55. DIMM Connector Pin-out	75
Table 56. ICMB Connector Pin-out	76
Table 57. IPMB Connector Pin-out	76
Table 58. HSBP-A Connector Pin-out	76
Table 59. HSBP-B Connector Pin-out	77
Table 60. Front Panel 34-Pin Header Pin-out	77
Table 61. 32-bit 5 V PCI Slot Pin-out	78
Table 62: 64-bit 3.3V PCI Slot Pin-out	78
Table 63. VGA Connector Pin-out	80
Table 64. 68-pin SCSI Connector Pin-out	80
Table 65. RJ-45 Connector Pin-out	81

Table 66. IDE 40-pin Connector Pin-out	82
Table 67. Stacked Three-port USB Connector Pin-out	82
Table 68. 10-pin USB Connection Header (2 x 5) Pin-out	83
Table 69. 34-pin Floppy Connector Pin-out	84
Table 70. DB9 Serial Port Pin-out	84
Table 71. 10-pin Header Serial Port Pin-out	84
Table 72. DB25 Parallel Port Pin-out	85
Table 73. Keyboard and Mouse PS/2 Connector Pin-out	85
Table 74. Fan Header Pin-out	86
Table 75. Chassis Intrusion Header Pin-out	86
Table 76. External Drive Activity Header Pin-out	87
Table 77. Server Board Connector Manufacturer Part Numbers	87
Table 78. System Configuration Jumper Options	91
Table 79. CPU Frequency Select Jumper Options	91
Table 80. List of Assembled Jumpers in Production	92
Table 81. Absolute Maximum Ratings	94
Table 82. SDS2 Server Board Power Consumption	95
Table 83: SDS2 Power Supply Specification	95
Table 84: Voltage Timing Parameters	95
Table 85: Turn On/Off Timing	97
Table 86. Transient Load Requirements	99
Table 87. Estimated SDS2 Server Board MTBF	100
Table 88. Safety Regulations	102
Table 89. EMC Regulations	102
Table 90. ICMB External Cable Connectors	105
Table 91. Errata Summary	106

< This page intentionally left blank. >

Order Number: A85874-002

1. Introduction

This chapter provides an architectural overview of the Intel® SDS2 Server Board. It provides a view of the functional blocks and their electrical relationships. The figure below shows the functional blocks of the Server Board and the plug-in modules that it supports.

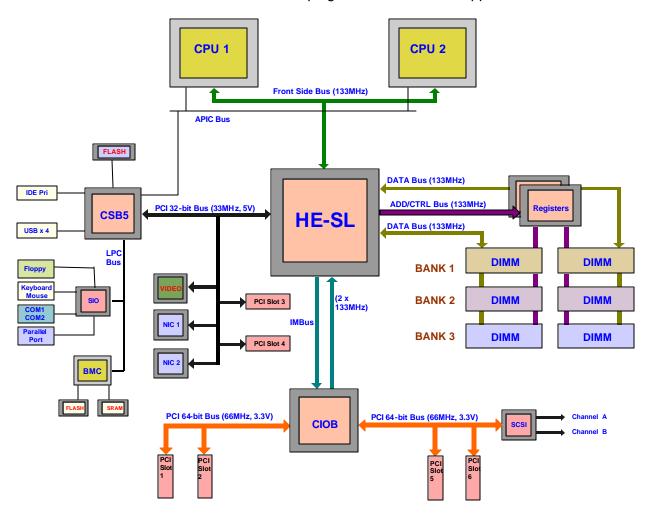


Figure 1. SDS2 Server Board Block Diagram

2. Architecture

The SDS2 Server Board is a monolithic printed circuit board that can accept two Intel[®] Pentium[®] III processors using the Socket 370 FCPGA2 package. The SDS2 Server Board complies with the Entry SSI version 1.0 and ATX version 2.03 (12 inch x 13 inch) form-factor. It is designed around the Server Works* ServerSet* III HE-SL chipset.

The chipset contains three components:

- The HE-SL CNB20 North Bridge provides an integrated memory controller
- The CIOB20 I/O Bridge provides the interface for two peer 64-bit, 66 MHz PCI busses
- The CSB5 South Bridge provides the LPC bus for legacy support.

The Server Board also contains other embedded devices such as:

- 2D/3D graphics accelerator
- Two 10/100 Network Interface Controller
- Dual channel Ultra160 SCSI
- Standard I/O
- Server management

The SDS2 Server Board provides six DIMM sockets for a maximum memory capacity of 6 GB. Only registered PC-133 compliant Registered SDRAM memory modules are supported. The current tested memory listing is posted on the Intel technical support web site: http://support.intel.com/support/motherboards/server/SDS2/

The SDS2 Server Board provides the following features:

- Dual Intel[®] Pentium[®] III FCPGA2 processors (Socket370)
- Server Works ServerSet III HE-SL chipset
 - HE-SL North Bridge
 - CIOB20 I/O Bridge
 - CSB5 South Bridge
- Support for six PC-133 compliant registered ECC SDRAM memory modules
- 32-bit, 33-MHz 5 V Full-length PCI segment A (P32-A) with three embedded devices
 - 2D/3D Graphics Controller: ATI* RAGE* XL Video Controller with 4MB of SDRAM
 - Two Network Interface Controller: Intel® 82550 Fast Ethernet Controller
 - Two 32-bit Slots: PCI Slots 3 and 4
- 64-bit, 66-MHz 3.3 V full-length PCI segment B (P64-B)
 - Two 64-bit Slots: PCI slots 1 and 2

- 64-bit, 66-MHz 3.3 V full-length PCI segment C (P64-C) with one embedded device
 - Dual Channel Wide Ultra160 SCSI controller: Adaptec* AIC-7899W
 - Two 64-bit 3.3 V Slots: PCI slots 5 and 6
- LPC (Low Pin Count) bus segment with two embedded devices
 - Baseboard Management Controller (BMC) providing monitoring, alerting, and logging of critical system information obtained from embedded sensors on the Server Board
 - Super I/O controller chip providing all PC-compatible I/O (floppy, serial, keyboard, mouse)
- X-Bus segment from CSB5 with one embedded device
 - Flash ROM device for system BIOS: Fairchild* 29LV008B 8Mbit Flash ROM
- Two IDE connectors, supporting up to two ATA-100 compatible devices each. Note: Fab 4 board PBA A58285-402 and –403 supported only one IDE connector. Fab 5 PBA A58285-502 (and later revisions) supports two IDE connectors.
- Four Universal Serial Bus (USB) ports: Three on the rear I/O and one on the Server Board as a 10-pin header
- Two serial ports: One out to rear I/O and one through a 10-pin header on the Server Board
- One floppy connector
- Four multi speed system fan connectors and two single speed CPU fan connectors.
- 34-pin SSI compliant front panel connector

3. Processor and Chipset

The Server Works* ServerSet III HE-SL chipset provides the 36-bit address, 72-bit data (64-bit data + 8-bit ECC) processor host bus interface, operating at 133 MHz in the AGTL signaling environment. The HE-SL North Bridge provides an integrated memory controller, the interface to 32-bit, 33-MHz Rev 2.2 compliant PCI bus, and two Inter-Module Bus interfaces. The Inter-Module Bus (IMB) provides the interface to two 64-bit, 66-MHz Rev 2.2 compliant PCI buses via the CIOB20.

The SDS2 DP Server Board directly supports up to 6 GB of ECC memory, using six PC-133-compliant registered SDRAM DIMMs. The ECC implementation in the HE-SL can detect and correct single-bit errors, and it can detect multiple-bit errors.

3.1 Processors

The SDS2 Server Board supports two Intel[®] Pentium[®] III processors in the Socket 370 FCPGA2 package. If two processors are installed, both processors must be of identical revisions with the same core voltage and speed for the bus and core. If one processor is installed, an AGTL terminator module must be installed in the other socket. The support circuitry on the Server Board consists of the following:

- Dual Socket 370 FCPGA2 processor sockets supporting 133-MHz FSB (if using one processor, an AGTL terminator module goes in the empty socket)
- Processor host bus AGTL support circuitry, including termination power supply

Processor Package MM## Speed Cache Core **CPUID** Supported **Family Type** Size Stepping Core/Bus S-Spec FCPGA 800MHz - 1.0GHz N/A 256KB N/A No Intel Pentium III Intel FCPGA2 836606 1.BGHz/133MHz 256KB cD0 068Ah Yes Pentium III -SL5QJ Tray FCPGA2 Intel 836716 1.13GHZ/133MHz 512KB tA1 06B1h Yes Pentium III -SL5PU Tray FCPGA2 836384 1.13GHZ/133MHz Intel 512KB tA1 06B1h Yes Pentium III -SL5LV Boxed Intel FCPGA2 836721 1.26GHZ/133MHz 512KB tA1 06B1h Yes Pentium III -SL5QL Tray FCPGA2 06B1h Intel 836583 1.26GHZ/133MHz 512KB tA1 Yes Pentium III -SL5LW **Boxed** FCPGA2 06B1h Intel 838253 1.4GHZ/133MHz 512KB tA1 Yes

Table 1. SDS2 Intel® Pentium® III Processor Support Matrix

4 Revision 1.2 Order Number: A85874-002

Pentium III – Tray						SL5XL	
Intel Pentium III – Boxed	FCPGA2	843849	1.4GHZ/133MHz	512KB	tA1	06B1h SL5XL	Yes

Notes:

- All processor sockets must be populated with either a processor or a terminator module.
 The BMC will not allow DC power to be applied to the system unless both processor sockets contain a properly seated processor or terminator module.
- Processors should be populated in the sequential order. In other words, processor socket #1 should be populated before processor socket #2.
- BIO 50 (released on FAB 5) supports the tB1 stepping, CPUID 06B4. These processors
 are being evaluated for addition to supported processor list. The current Intel support
 web site has the latest supported processor list for SDS2:
 http://support.intel.com/support/motherboards/server/SDS2/.

Revision 1.2 Order Number: A85874-002

3.1.1 Processor Voltage Regulator Module (VRM)

The SDS2 Server Board has dual, on board, RM circuitry to support the two processors. The circuit is compliant with the VRM8.5 specification and provides a maximum of 60A, which will support the currently available processors and future releases of the Pentium III processors.

The board hardware and the BMC read the processor VID (Voltage Identification) bits for each processor before turning on the power to the processors (VRMs). If the VIDs of the two processors are not identical, then the BMC will not turn on the VRMs and a beep code is generated. Table 30. BMC Beep Codes lists all of the error codes.

3.2 Memory Subsystem

The SDS2 Server Board supports up to six DIMM sockets for a maximum memory capacity of 6 GB using 1 GB DIMMs. The DIMM organization is x72, which includes 8 ECC check bits. ECC from the DIMMs is passed through to the processor front side bus.

The SDRAM interface runs at the same frequency as the processor bus. The memory controller supports 2-way interleaved SDRAM, memory scrubbing, single-bit error correction, and multiple-bit error detection. Memory can be implemented with either single-sided (one row) or double-sided (two row) DIMMs.

- Only registered PC-133 compliant memory is supported
- Support is 2-way interleaved SDRAM and requires two DIMMs to be installed per bank.
- ECC single-bit error correction and multiple-bit error detection
- Maximum memory capacity of 6 GB
- Minimum memory capacity of 128 MB

Note: Memory interleaving is a way to increase memory performance by allowing the system to access multiple memory modules simultaneously, rather than sequentially, in a similar fashion to Hard Drive striping. Interleaving can only take place between identical memory modules.

3.2.1 Memory Configuration

Memory configuration requirements are as follow:

- PC-133 SDRAM Registered DIMM modules
- DIMM organization: x72 ECC
- Pin count: 168
- SDRAM Supported: 64 Mb, 128 Mb, 256 Mb
- DIMM capacity: 64 MB, 128 MB, 256 MB, 512 MB, 1 GB
- Serial PD: JEDEC Rev 2.0
- Voltage Options: 3.3 V (VDD/VDDQ)
- Interface: LVTTL
- DIMMs must be populated in pairs for a x144 wide memory data path
- Any or all memory banks may be populated

Table 2. Memory DIMM Pairs

Memory DIMM	DIMM PAIR	Row
DIMM1A, DIMM1B	1	1, 2
DIMM2A, DIMM2B	2	3, 4
DIMM3A, DIMM3B	3	5,6

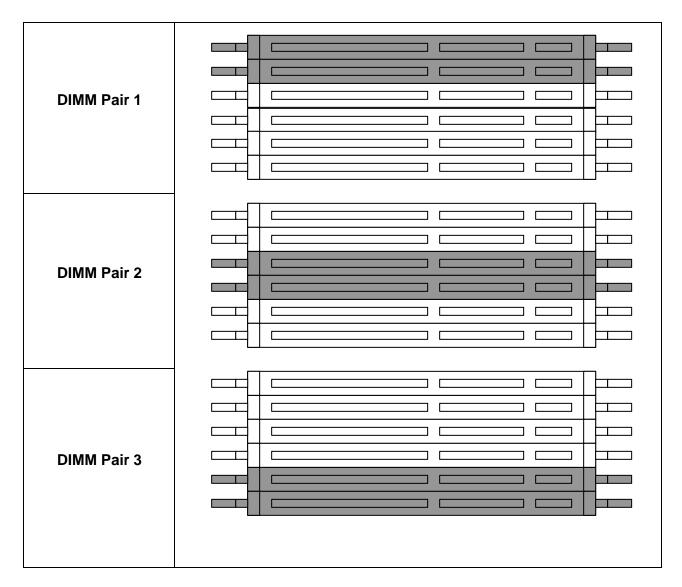


Figure 2. SDS2 Memory Bank Layout

3.2.2 I²C Bus

An I²C* bus is between the BMC and the six DIMM slots. This bus is used by the system BIOS to retrieve DIMM information needed to program the HE-SL memory registers which are required to boot the system.

The following table provides the I²C addresses for each DIMM slot.

Device	Address
DIMM 1A	0xA0
DIMM 1B	0xA2
DIMM 2A	0xA4
DIMM 2B	0xA6
DIMM 3A	0xA8
DIMM 3B	0xAA

Table 3. I²C Addresses for DIMM Slots

3.3 Chipset

The Server Works* ServerSet III HE-SL chipset provides an integrated I/O bridge and memory controller and a flexible I/O subsystem core (PCI), targeted for multiprocessor systems and standard high-volume servers. The Server Works* ServerSet III chipset consists of the three components listed below:

- CNB20HE-SL: Champion North Bridge. The HE-SL North Bridge is responsible for accepting access requests from the host (processor) bus and for directing those accesses to memory or to one of the PCI buses. The HE-SL monitors the host bus, examining addresses for each request. Accesses may be directed to a memory request queue, for subsequent forwarding to the memory subsystem, or to an outbound request queue, for subsequent forwarding to one of the PCI buses. The HE-SL also accepts inbound requests from the CIOB20 and the legacy PCI bus. The HE-SL is also responsible for generating the appropriate controls to control data transfer to and from the memory.
- CIOB20: Champion I/O Bridge. The CIOB20 provides the interface for two 64-bit, 66-MHz Rev. 2.2 compliant PCI bus. The CIOB is both master and target on both PCI buses.
- CSB5: South Bridge. The CSB5 controller has several components. It provides the interface for a 32-bit, 33-MHz Rev. 2.2-compliant PCI bus. The CSB5 can be both a master and a target on that PCI bus. The CSB5 also includes a USB controller and an IDE controller. The CSB5 is also responsible for much of the power management functions, with ACPI control registers built in. The CSB5 also provides a number of GPIO pins and has the LPC bus to support low-speed legacy I/O.

3.3.1 CNB20HE-SL Champion North Bridge

The Champion North Bridge Rev 2.0 High End Super Lite (CNB20HE-SL) is the third generation product in the Server Works Champion North Bridge Technology. The HE-SL is a 644-pin ball-grid array (BGA) device and uses the proven components of previous generations like the Pentium Pro Bus interface unit, the PCI interface unit, and the SDRAM memory interface unit. In addition, the HE-SL incorporates a proprietary Intra Module Bus (IMBus) Interface. The IMBus interface enables the HE-SL to directly interface with the CIOB20 through its two unidirectional 16-bit wide data busses with parity support. The HE-SL also increases the main memory interface bandwidth and maximum memory configuration with a 144-bit wide memory interface.

The HE-SL integrates three main functions:

- An integrated high-performance main memory subsystem
- An IMBus interface that provides a high-performance data flow path between the Pentium Pro bus and the I/O subsystem
- A PCI interface which provides an interface to the compatibility PCI bus segment and the CSB5 (South Bridge).

Other features provided by the HE-SL include the following:

- Full support of ECC on the processor bus
- Full support of ECC on the memory interface
- Eight deep in-order queue
- Full support of registered PC-133 ECC SDRAM DIMMs
- Support for 6 GB of 2-way interleaved SDRAM
- Memory scrubbing

3.3.1.1 PCI Bus P32-A I/O Subsystem

The HE-SL provides a legacy 32-bit PCI subsystem and acts as the central resource on this PCI interface.

P32-A supports the following embedded devices and connectors:

- CSB5: South Bridge
- Two Intel® 82550PM 10/100 Fast Ethernet PCI network interface controllers
- An ATI RAGE XL Video Controller with 3D/2D graphics accelerator
- Two 32-bit, 33-MHz 5V full length PCI Slots

3.3.2 CIOB20 Champion I/O Bridge

The Champion I/O Bridge (CIOB) is a 352-pin ball-grid array device and provides an integrated I/O bridge that provides a high-performance data flow path between the IMBus and the 64-bit I/O subsystem. This subsystem supports peer 64-bit PCI segments. Because it has multiple PCI interfaces, the CIOB can provide large and efficient I/O configurations. The CIOB functions as the bridge between the IMBus and the multiple 64-bit PCI I/O segments.

The IMBus interface can support 512 MB/s of data bandwidth in both the upstream and downstream direction simultaneously.

The internal PCI arbiter implements the Least Recently used algorithm to grant access to requesting masters.

3.3.2.1 PCI Bus P64-B I/O Subsystem

P64-B supports two 64-bit, 66-MHz 3.3V full-length PCI slots.

3.3.2.2 PCI Bus P64-C I/O Subsystem

P64-C supports the following embedded devices and connectors:

- Dual Channel Wide Ultra160 SCSI controller: Adaptec* AIC-7899W
- Two 64-bit, 66-MHz 3.3V full length PCI Slots

3.3.3 CSB5 South Bridge

Please refer to Section 4.5 for information on CSB5.

4. I/O Subsystem

4.1 PCI Subsystem

The primary I/O bus for SDS2 DP Server Board is PCI, with three PCI bus segments. The PCI buses comply with the PCI Local Bus Specification, Rev 2.2. The P32-A bus segment is directed through the HE-SL North Bridge while the two 64bit segments, P64-B and P64-C, are directed through the CIOB20 I/O Bridge. The table below lists the characteristics of the three PCI bus segments.

PCI Bus Segment Width **PCI Slots** Voltage Speed Type P32-A 5 V 32-bits 33-MHz Peer Bus Slots 3 and 4 - Full Length P64-B 3.3 V 66-MHz Peer Bus Slots 1 and 2 - Full Length 64-bits P64-C 3.3 V 64-bits 66-MHz Peer Bus Slots 5 and 6 - Full Length

Table 4. PCI Bus Segment Characteristics

Note: When an add-in 33-MHz PCI card is plugged into a P64 bus segment, such as in the P64-C slot 5, this reduces the bus speed for all devices attached to that bus segment, including the on-board SCSI controller.

4.1.1 32-bit, 33-MHz PCI Subsystem

All 32-bit, 33-MHz PCI I/O for the SDS2 Server Board is directed through the HE-SL North Bridge. The 32-bit, 33-MHz PCI segment created by the HE-SL is called the P32-A segment. The P32-A segment supports full-length, full-height PCI cards and contains the following embedded devices and connectors:

- 2D/3D Graphics Accelerator: ATI RAGE XL Video Controller
- Two Network Interface Controller: Intel 82550 Fast Ethernet Controller
- PCI Slots 3 and 4
- CSB5 South Bridge (PCI-to-LPC bridge)

Each of the embedded devices above, except for the CSB5 South Bridge, is allocated a GPIO to disable the device.

4.1.1.1 Device IDs (IDSEL)

Each device under the PCI hub bridge has its IDSEL signal connected to one bit of AD [31:16], which acts as a chip select on the PCI bus segment in configuration cycles. This determines a unique PCI device ID value for use in configuration cycles. The following table shows the bit to which each IDSEL signal is attached for P32-A devices, and corresponding device description.

Table 5. P32-A Configuration IDs

IDSEL Value	Device
18	ATI RAGE XL Video Controller
19	Intel® 82550 Fast Ethernet Controller 1
20	Intel 82550 Fast Ethernet Controller 2
24	PCI Slot 3
25	PCI Slot 4
31	CSB5 South Bridge

4.1.1.2 P32-A Arbitration

P32-A supports seven PCI masters (ATA RAGE XL, two Intel 82550s, PCI masters from slots 3 and 4, CSB5, and HE-SL). All PCI masters must arbitrate for PCI access, using resources supplied by the HE-SL. The following table defines the arbitration connections.

Table 6. P32-A Arbitration Connections

Baseboard Signals	Device
REQ_VGA / GNT_VGA	ATI* RAGE XL Video Controller
D_PCIREQL1 / D_PCIGNTL1	Intel® 82550 Fast Ethernet Controller 1
D_PCIREQL2 / D_PCIGNTL2	Intel® 82550 Fast Ethernet Controller 2
D_PCIREQL3 / D_PCIGNTL3	PCI Slot 3
D_PCIREQL4 / D_PCIGNTL4	PCI Slot 4
D_PCIREQL5 / D_PCIGNTL5	CSB5 South Bridge

4.1.2 64-bit, 66-MHz PCI Subsystem

There are two 64-bit, 66-MHz PCI busses directed through the CIOB20 I/O Bridge. Both segments support full-length, full-height PCI cards. The PCI cards must meet the PCI specification for height, inclusive of cable connections and memory. The two PCI segments are peer buses.

4.1.2.1 Device IDs (IDSEL)

Each device under the PCI hub bridge has its IDSEL signal connected to one bit of AD [31:16], which acts as a chip select on the PCI bus segment in configuration cycles. This determines a unique PCI device ID value for use in configuration cycles. The following tables show the bit to which each IDSEL signal is attached for P64-B and P64-C devices, and corresponding device description.

Table 4. P64-B Configuration IDs

IDSEL Value	Device
24	PCI Slot 1
25	PCI Slot 2

Table 5. P64-C Configuration IDs

IDSEL Value	Device
20	Adaptec AIC-7899W SCSI Controller
24	PCI Slot 5
25	PCI Slot 6

4.1.2.2 P64-B Arbitration

P64-B supports three PCI masters (PCI masters from slots 1 and 2, and CIOB). All PCI masters must arbitrate for PCI access, using resources supplied by the CIOB. The following table defines the arbitration connections.

Table 7. P64-B Arbitration Connections

Baseboard Signals	Device
FREQL1 / FGNTL1	PCI Slot 1
FREQL2 / FGNTL2	PCI Slot 2

4.1.2.3 P64-C Arbitration

P64-C supports four PCI masters (PCI masters from slots 5 and 6, onboard SCSI, and CIOB). All PCI masters must arbitrate for PCI access, using resources supplied by the CIOB. The following table defines the arbitration connections.

Table 8. P64-B Arbitration Connections

Baseboard Signals	Device
SCSIREQL0/SCSIGNTL0	Adaptec AIC-7899W SCSI Controller
P64REQL1 / P64GNTL1	PCI Slot 5
P64REQL2 / P64GNTL2	PCI Slot 6

4.1.2.4 Zero Channel RAID (ZCR) Capable PCI Slot 6

The SDS2 Server Board supports zero-channel RAID controller on PCI Slot 6. This add-in card leverages the on-board SCSI controller along with its own built-in intelligence to provide a complete RAID controller subsystem on-board. If a specified zero-channel RAID card is installed, then SCSI interrupts are routed to the RAID card instead of PCI interrupt controller and the host-based I/O device is effectively hidden from the system. The SDS2 Server Board uses an implementation commonly referred to as "RAIDIOS" to support this feature.

Note: Zero Channel Raid Cards (ZCR) cards are only supported on PCI slot 6.

Note: Intel zero channel raid cards SRCMR and SRCMRU are not supported on SDS2.

4.2 Ultra160 SCSI

The SDS2 Server Board provides an embedded dual-channel SCSI bus through the use of the Adaptec*'s AIC-7899W SCSI controller. The AIC-7899W controller contains two independent SCSI controllers that share a single 64-bit, 66-MHz PCI bus master interface as a multifunction device, packaged in a 456-pin BGA. Internally, each controller is identical, capable of operations using either 16-bit SE or LVD SCSI providing 40 MBps (Ultra-wide SE), 80 MBps (Ultra 2), or 160 MBps (Ultra160). Each controller has its own set of PCI configuration registers and SCSI I/O registers. The SDS2 Server Board supports disabling of the on-board SCSI controller through the BIOS setup menu.

The SDS2 Server Board provides active terminators, termination voltage, re-settable fuse, and protection diode for both SCSI channels. The SCSI BIOS setup menu (CNTRL-A) provides the ability to enable or disable the on-board terminators for both channels A and B.

4.3 Video Controller

The SDS2 Server Board provides an ATI* RAGE XL PCI graphics accelerator, along with video SDRAM and support circuitry for an embedded SVGA video subsystem. The ATI* RAGE XL chip contains a SVGA video controller, clock generator, 2D and 3D engine, and RAMDAC in a 272-pin PBGA. Two 2 MB SDRAM chips provide 4 MB of video memory. The SVGA subsystem supports a variety of modes, up to 1024 x 768 resolution in 8/16/24/32 bpp modes under 2D and up to 800 x 600 resolution in 8/16/24/32 bpp modes under 3D. It also supports both CRT and LCD monitors at up to 100 Hz vertical refresh rate. The SDS2 Server Board provides a standard 15-pin VGA connector.

4.3.1 Video Modes

The RAGE XL chip supports all standard IBM* VGA modes. The following table shows the 2D/3D modes supported on the CRT. The table specifies the various display resolution, refresh rates and color depths supported.

2D Mode Refresh Rate (Hz) SDS2 2D Mode Video Support 8 bpp 16 bpp 24 bpp 32 bpp 640x480 60, 72, 75, 90, 100 Supported Supported Supported Supported Supported 800x600 60, 70, 75, 90, 100 Supported Supported Supported 1024x768 60, 72, 75, 90, 100 Supported Supported Supported Supported 1280x1024 43.60 Supported Supported Supported 1280x1024 70.72 Supported Supported _ 60, 66, 76, 85 Supported 1600x1200 Supported SDS2 3D Mode Video Support with Z Buffer Enabled 3D Mode Refresh Rate (Hz) 640x480 60, 72, 75, 90, 100 Supported Supported Supported Supported 800x600 60, 70, 75, 90, 100 Supported Supported Supported 1024x768 60, 72, 75, 90, 100 Supported _ _ _ 1280x1024 43, 60, 70, 72 1600x1200 60, 66, 76, 85 3D Mode Refresh Rate (Hz) SDS2 3D Mode Video Support with Z Buffer Disabled 640x480 60, 72, 75, 90, 100 Supported Supported Supported Supported 800x600 60, 70, 75, 90, 100 Supported Supported Supported Supported 1024x768 60, 72, 75, 90, 100 Supported Supported _ 1280x1024 43, 60, 70, 72 Supported 1600x1200 60, 66, 76, 85 Supported

Table 9. Video Modes

4.4 Network Interface Controller (NIC)

The SDS2 Server Board supports two 10Base-T / 100Base-TX network subsystem using the Intel 82550-PM NIC. The 82550 components are highly integrated PCI LAN controllers in a thin BGA 15 mm2 package. The controller's baseline functionality is equivalent to that of the Intel 82559 with the addition of Alert on LAN* functionality.

The SDS2 Server Board supports independent disabling of either of the two NIC controllers under BIOS setup menu.

The 82550 supports the following features:

- 32-bit PCI/Card Bus master interface
- Integrated IEEE 802.3 10Base-T and 100Base-TX compatible PHY
- IEEE 820.3u auto-negotiation support
- Chained memory structure similar to the 82559, 82558, 82557 and 82596
- Full duplex support at both 10 and 100 Mbps operation
- Low power +3.3 V device

4.4.1 NIC Connector and Status LEDs

The 82550 drives LEDs on the network interface connector to indicate link/activity on the LAN and 10-Mbps or 100-Mbps operation.

- The green LED indicates a network connection when lighted solidly and TX/RX activity when blinking.
- The amber LED indicates 100-Mbps a network connection when lighted solidly and TX/RX activity when blinking.

4.5 CSB5 South Bridge (PCI-to-LPC Bridge, IDE, USB)

The CSB5 is a multi-function PCI device, housed in a 256-pin BGA device, providing PCI-to-LPC bridge, PCI IDE interface, PCI USB controller, and power management controller. Each function within the CSB5 has its own set of configuration registers. Once configured, each appears to the system as a distinct hardware controller sharing the same PCI bus interface.

In the SDS2 Server Board implementation, the primary role of the CSB5' is to provide the gateway to all PC-compatible I/O devices and features. The SDS2 uses the following CSB5 features:

- PCI bus interface
- LPC bus interface
- IDE interface, with Ultra DMA 100 capability
- Universal Serial Bus (USB) interface
- PC-compatible timer/counter and DMA controllers
- APIC and 8259 interrupt controller
- Power management
- General purpose I/O

Following are descriptions of how each supported feature is implemented in SDS2.

4.5.1 PCI Bus Interface

The CSB5 fully implements a 32-bit PCI master/slave interface, in accordance with the *PCI Local Bus Specification, Revision 2.2*. On the SDS2 Server Board, the PCI interface operates at 33 MHz, using the 5 V signaling environment.

4.5.2 PCI Bus Master IDE Interface

The CSB5 acts as a PCI-based Fast IDE controller that supports programmed I/O transfers and bus master IDE transfers. The CSB5 supports two IDE channels, supporting two drives each (drives 0 and 1). The FAB 5 (PBA A58285-502) SDS2 Server Board supports two IDE channels through the standard 40-pin (2x20) connector. Note FAB 4 boards (PBA A58285-402 and –403) supported only one IDE channel.

The SDS2 IDE interface supports the following features:

Order Number: A85874-002

- The scatter / gather mechanism supports both DMA and PIO IDE drives and ATAPI devices
- Support for ATA and ATAPI, PIO Mode 0, 1, 2, 3, 4, DMA Mode 0, 1, 2, and Ultra DMA Mode 0, 1, 2, 3, 4, 5
- The IDE drive transfer rate is capable of up to ATA-100 (100 MB/sec per channel)

4.5.3 USB Interface

The CSB5 contains a USB controller and four USB hubs. The USB controller moves data between main memory and the four USB connectors.

The SDS2 Server Board provides a three external USB connector interface on the rear I/O. One additional USB is supported internally through a 10-pin header (2 X 5) that can be cabled to a front panel board. All four ports function identically and with the same bandwidth. The USB Specification, Revision 1.1, defines the external connector. Table 68. 10-pin USB Connection Header (2 x 5) Pin-out.

4.5.4 Compatibility Interrupt Control

The CSB5 provides the functionality of two 82C59 PIC devices for ISA-compatible interrupt handling.

4.5.5 APIC

The CSB5 integrates a 32-entry I/O APIC that is used to distribute 32 PCI interrupts. It also includes an additional 16-entry I/O APIC for the distribution of legacy ISA interrupts.

4.5.6 Power Management

One of the embedded functions of CSB5 is a power management controller. The SDS2 Server Board uses this to implement ACPI-compliant power management features. The SDS2 supports sleep states S0, S1, S4, and S5.

4.5.7 General Purpose Input and Output Pins

The CSB5 provides a number of general purpose input and output pins. Many of these pins have alternate functions, and thus all are not available. The following table lists the GPI and GPO pins used on the SDS2 Server Board and gives a brief description of their function.

Pad	GPIO Name	Description
V3	N_SALERTN	Reporting for Fata Errors from HE-SL such as multi-bit ECC errors, Bus protocol errors, and FSBus parity errors
W2	MIRQL	Reporting for Correctable Errors from HE-SL such as single-bit errors on Front Side Data bus and Memory Data bus
W3	N_CIOBALERTN	Reporting for errors from CIOB
Y4	N_CSB5_NMI	Generation of NMI from CSB5
Y1	N_BMC_IRQ_SMI_00	Input from BMC of SMI event

Table 10. CSB5 GPIO Usage Table

Revision 1.2 Order Number: A85874-002

Pad	GPIO Name	Description
Y19	N_NVRAMCLR	Input from jumper to be in BIOS Recovery mode in case of corruption
V17	N_PASSDIS_00	Input from jumper to clear password assignments
U16	N_CMOSCLR_00	Input from jumper to clear setup info in CMOS
T20	N_F3SETUPEN_00	Input from jumper to to be in special test mode (manufacturing only)
T19	N_BMC_SCIN	Input from BMC of SCI event
T18	N_BMCISPMD_00	Input from jumper to to be in special test mode (manufacturing only)
U18	N_FRB3STP_00	Output signal to turn off FRB timer to stop fault conditions (this signal is wire-or with the 2-pin jumper
Y16	N_SCSI_IDSEL_EN	Output signal to disable onboard SCSI controller
V12	N_LAN2_IDSEL_EN	Output signal to disable onboard NIC2
U12	N_LAN1_IDSEL_EN	Output signal to disable onboard NIC1
V19	CSBPICD0	CSB5 APIC Data Bus 0
W20	CSBPICD1	CSB5 APIC Data Bus 1
Y20	N_ROM_CSN	Output signal for BIOS Chip Select
U19	N_VGA_IDSEL_EN	Output signal to disable onboard Video

4.6 Chipset Support Components

4.6.1 Super I/O

The National Semiconductor PC87417 Super I/O device contains all of the necessary circuitry to control two serial ports, one parallel port, floppy disk, and PS/2-compatible keyboard and mouse. The SDS2 Server Board supports the following features:

- GPIO
- Two serial ports
- Floppy
- Keyboard and mouse through PS/2 connectors
- Parallel port
- Real-time clock
- Wake-up control

4.6.1.1 General Purpose Input and Output - GPIO

The National Semiconductor* PC87417 Super I/O provides number of general-purpose input/output pins that the SDS2 Server Board utilizes. The following table identifies the pin, the signal name used in the schematic and a brief description of its usage.

Table 11. Super I/O GPIO Usage Table

Р	in#	Signal Name	Description
10	0	N_BMC_SYSIRQ_00	System Interrupt Controller interrupt from BMC
1:	3	N_SIO_CLK_40M_BMC	40MHz clock output to BMC

18 Revision 1.2 Order Number: A85874-002

Pin#	Signal Name	Description
35	N_BMC_SWIN	
36	N_BMCPWRN	Power LED from BMC
37	N_EXTEN_00	External Event
38	N_SUPERSCI_00	System Control Interrupt used to detect wake-up events
45	N_SIO_CLK_RTC_BMC	Real Time Clock output to BMC
49	N_P2_PME	Power Management Event from PCI Bus (P64-B segment)
50	N_P3_PME	Power Management Event from PCI Bus (P64-C segment)
51	N_FP_PWR_LED+00	Power LED indicator to Front Panel
52	N_LAN_PME	Power Management Event from PCI Bus (P32-A segment)
53	N_BMC_SCIN	System Management Interrupt from BMC
125	KBCLKL	Keyboard Clock
126	KBDATL	Keyboard Data
127	MSCLKL	Mouse Clock
128	MSDATL	Mouse Data

4.6.1.2 Serial Ports

Two serial ports are provided on the Server Board, a 9-pin DB9 connector is located on the rear I/O to supply COM1 and a 10-pin header on the Server Board provides COM2.

4.6.1.3 Floppy

The FDC in the SIO is functionally compatible with floppy disk controllers in the DP8473 and N844077. All the FDC functions are integrated into the SIO including analog data separator and 16-byte FIFO.

4.6.1.4 Keyboard and Mouse

Two PS/2 ports are provided for keyboard and mouse and are mounted within a single stacked housing. The mouse connector is stacked over the keyboard connector.

4.6.1.5 Parallel Port

The parallel port is supported on the Server Board through the rear I/O.

4.6.1.6 Real-time Clock

The SIO contains a real-time clock with external battery backup. The device also contains 242 bytes of general purpose battery-backed CMOS RAM.

4.6.1.7 Wake-up Control

The SIO contains functionality that allows various events to control the power-on and power-off of the system.

4.6.2 BIOS Flash

The SDS2 Server Board incorporates a Fairchild* 29LV008B 8Mbit Flash ROM. The flash device is connected through the X-bus of the CSB5.

4.7 Interrupt Routing

The SDS2 Server Board interrupt architecture implements both PC-compatible PIC mode and APIC mode interrupts through the use of the integrated I/O APICs in the CSB5.

4.7.1 Legacy Interrupt Routing

For PC-compatible mode, the CSB5 provides two 82C59-compatible interrupt controllers. The two controllers are cascaded with interrupt levels 8-15 entering on level 2 of the primary interrupt controller (standard PC configuration). A single interrupt signal is presented to the processors, to which only one processor will respond for servicing. The CSB5 contains configuration registers that define which interrupt source logically maps to I/O APIC INTx pins.

Interrupts, both PCI and IRQ types, are handled by the CSB5. The CSB5 then translates these to the APIC bus. The numbers in the table below indicate the CSB5 PCI interrupt input pin to which the associated device interrupt (INTA, INTB, INTC, INTD) is connected. The CSB5's I/O APIC exists on the I/O APIC bus with the processors.

Interrupt Device	INTA	INTB	INTC	INTD
ATI RAGE XL	4			
82550PM#1	2			
82550PM#2	3			
PCI Slot 1 (P64-B)	5	13	11	12
PCI Slot 2 (P64-B)	6	12	13	11
PCI Slot 3 (P32-A)	7	11	12	13
PCI Slot 4 (P32-A)	8	13	11	12
PCI Slot 5 (P64-C)	9	12	13	11
PCI Slot 6 (P64-C)	10	11	1	0
7899W-SCSI Ch A	0			
7899W-SCSI Ch B		1		

Table 12. PCI Interrupt Routing/Sharing

4.7.1.1 Legacy Interrupt Routing

The table below recommends the logical interrupt mapping of interrupt sources on the SDS2 Server Board. The actual interrupt map is defined using configuration registers in the CSB5.

Table 13. Interrupt Definitions

ISA Interrupt	Description
ion interrupt	Description

20 Revision 1.2 Order Number: A85874-002

ISA Interrupt	Description		
INTR	Processor interrupt		
NMI	NMI to processor		
IRQ1	Keyboard interrupt		
IRQ3	Serial port 1 or 2 interrupt from SIO device		
IRQ4	Serial port 1 or 2 interrupt from SIO device		
IRQ5			
IRQ6	Floppy Controller		
IRQ7			
IRQ8_L	Real Time Clock interrupt		
IRQ9			
IRQ10			
IRQ11			
IRQ12	PS/2 Mouse interrupt		
IRQ14	Primary channel IDE interrupt		
SMI*	System Management Interrupt. General purpose indicator sourced by the CSB5 and BMC to the processors		
SCI*	System Control Interrupt. Used by system to change sleep states and other system level type functions		

4.7.2 APIC Interrupt Routing

For APIC mode, the SDS2 interrupt architecture incorporates three Intel I/O APIC devices to manage and broadcast interrupts to local APICs in each processor. The I/O APICs monitor each interrupt on each PCI device including PCI slots in addition to the ISA compatibility interrupts IRQ (0-15). When an interrupt occurs, a message corresponding to the interrupt is sent across a three-wire serial interface to the local APICs. The APIC bus minimizes interrupt latency time for compatibility interrupt sources. The I/O APICs can also supply greater than 16 interrupt levels to the processor(s).

4.7.3 Serialized IRQ Support

The SDS2 Server Board supports a serialized interrupt delivery mechanism. Serialized IRQs (SERIRQ) consists of a start frame, a minimum of 17 IRQ / data channels, and a stop frame. Any slave device in the quiet mode may initiate the start frame. While in the continuous mode, the start frame is initiated by the host controller.

4.7.4 IRQ Scan for PCIIRQ

The IRQ / data frame structure includes the ability to handle up to 32 sampling channels with the standard implementation using the minimum 17 sampling channels. The SDS2 Server Board has an external PCI interrupt serializer for PCIIRQ scan mechanism of CSB5 to support 16 PCIIRQs.

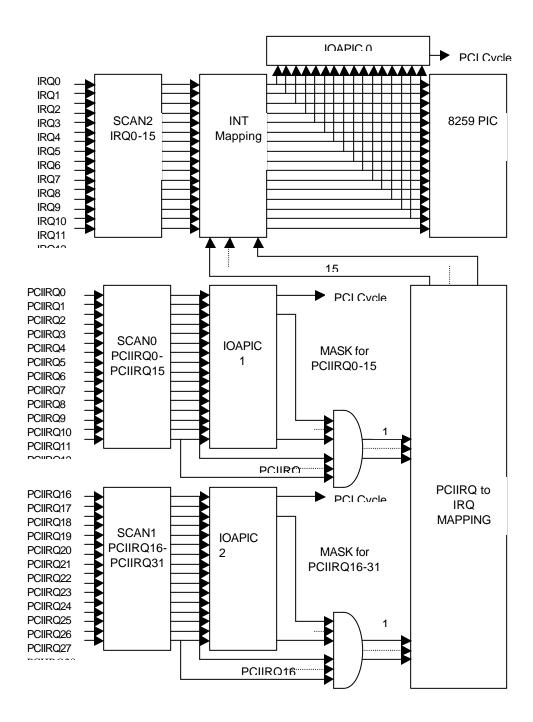


Figure 3. SDS2 Interrupt Routing Diagram (CSB5 Internal)

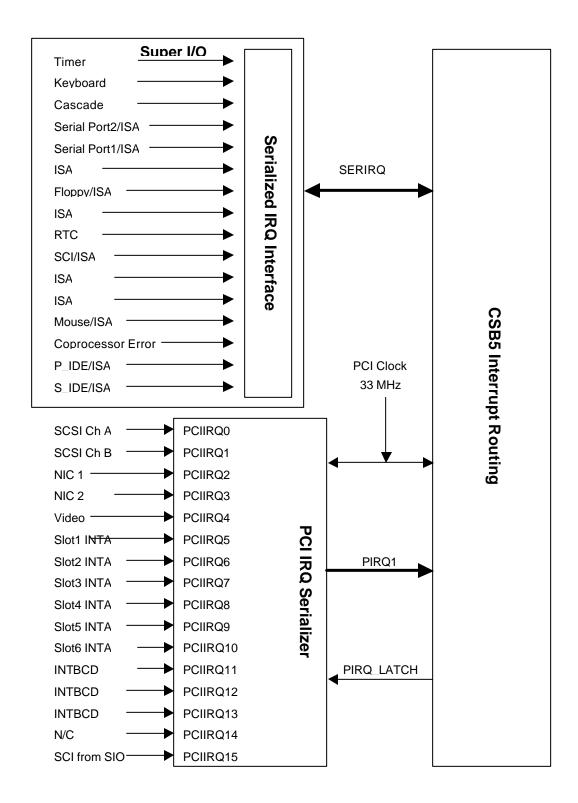


Figure 4. SDS2 Interrupt Routing Diagram

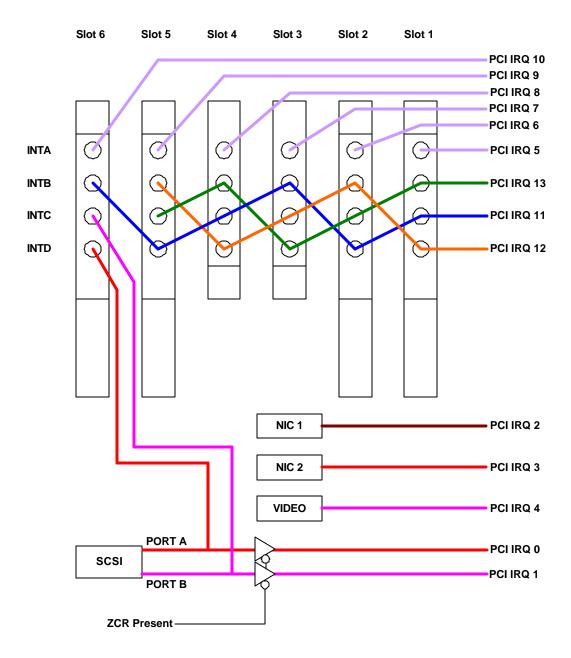


Figure 5. SDS2 PCI Interrupt Mapping Diagram

5. Server Management

The SDS2 server management features are implemented using the Sahalee Server Board Management Controller chip. The Sahalee BMC is an ASIC packaged in a 156-pin BGA that contains a 32-bit RISC processor core and associated peripherals. The following diagram illustrates the SDS2 server management architecture. A description of the hardware architecture follows.

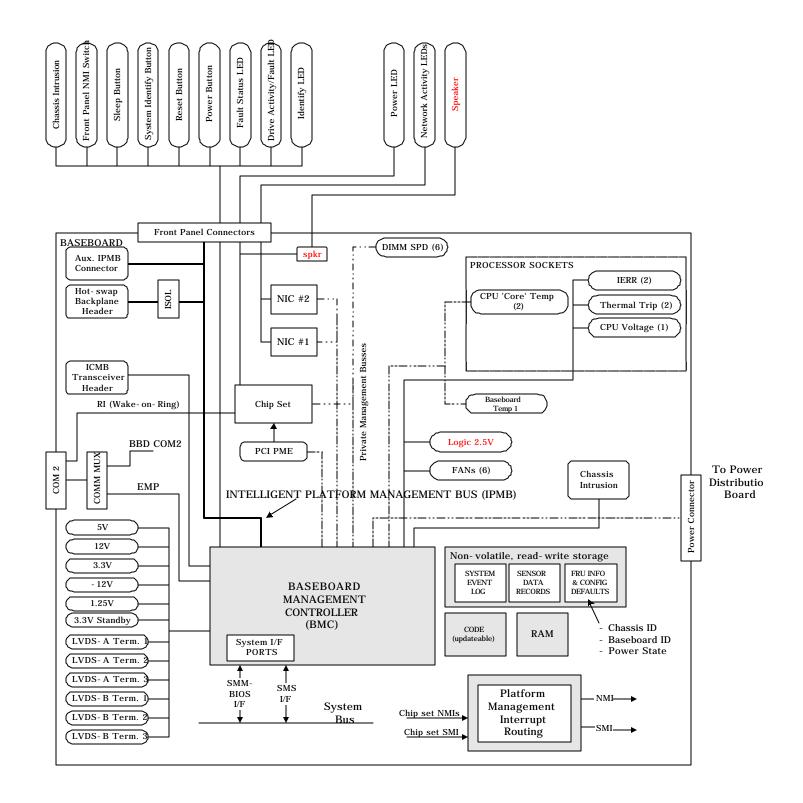


Figure 6. SDS2 Sahalee BMC Block Diagram (View as Reference Only)

5.1 Sahalee Baseboard Management Controller

The Sahalee BMC contains a 32-bit RISC processor core and associated peripherals used to monitor the system for critical events. The Sahalee BMC, packaged in a 156-pin BGA, monitors all power supplies, including those generated by the external power supplies and those regulated locally on the Server Board.

The Sahalee BMC also monitors SCSI termination voltage, fan tachometers for detecting a fan failure, and system temperature. Temperature is measured on each of the processors and at locations on the Server Board away from the fans. When any monitored parameter is outside the defined thresholds, the Sahalee BMC logs an event in the System Event Log (SEL).

Management controllers and sensors communicate on the I²C-based Intelligent Platform Management Bus. Attached to one of its private I²C bus is Hecetas, which is an ADM1026. The ADM1026 is a versatile Systems Monitor ASIC. Some of its features include:

- Analog measurement channels
- Fan speed measurement channels
- General-Purpose Logic I/O pins
- Remote temperature measurement
- On-chip temperature sensor
- Chassis intrusion detection

The table below details some of the inputs on Hecetas as used in the SDS2.

Pin Signal Name Description 3 N_ADM_DIS_CPU1_L CPU1 Stop Clock 4 N ADM DIS CPU2 L CPU2 Stop Clock 5 CPU2_VID0 CPU2 VID[0] CPU2 VID1 6 CPU2 VID[1] CPU2_VID2 9 CPU2 VID[2] 10 CPU2_VID3 CPU2 VID[3] 11 CPU2_VID4 CPU2 VID[4] 12 CPU1_VID0 CPU1 VID[0] 2 CPU1_IERRN CPU1 IERR 1 CPU2_IERRN CPU2 IERR CPU1 VID1 48 CPU1 VID[1] 47 CPU1_VID2 CPU1 VID[2] 46 CPU1_VID3 CPU1 VID[3] 45 CPU1 VID4 CPU1 VID[4] 44 N_CPU1_THERMTRIPN **CPU1 Thermal Trip** N_CPU2_THERMTRIPN CPU2 Thermal Trip 43 16 N_FRONTOPEN+00 **Chassis Intrusion**

Table 14. ADM1026 Input Definition

Pin	Signal Name	Description
13	N_SM2_CLK	Serial Bus Clock
14	N_SM2_DATA	Serial Bus Data
18	N_ADM_FAN_PWM	Pulse-width modulated output for control of fan speed
19	N_RST_BMCRST_L	Power-on Reset with minimum of 200ms pulse width
29	3VSB	Monitors 3V Standby supply
22	5VSB	Monitors 5V Standby supply
7	3V	Monitors 3V supply
30	5V	Monitors +5V supply
31	-12V	Monitors –12V supply
32	+12v	Monitors +12V supply
33	VCCORE1	Monitors CPU1 core voltage
34	+2.5V	Monitors 2.5V supply
35	VIT	Monitors VTT supply
36	N_SC2VREF3+00	Monitors SCSI channel 2 Terminator 3
37	N_SC2VREF2+00	Monitors SCSI channel 2 Terminator 2
38	N_SC2VREF1+00	Monitors SCSI channel 2 Terminator 1
39	N_SC1VREF3+00	Monitors SCSI channel 1 Terminator 3
40	N_SC1VREF2+00	Monitors SCSI channel 1 Terminator 2
41	N_SC1VREF1+00	Monitors SCSI channel 1 Terminator 1

An 8-bit analog readings of the following system temperatures are provided:

Table 15. Temperature Sensors

Temperature Sensor	Description	Resolution	Accuracy
Primary Processor	Primary processor socket thermal sensor	8-bit	+/- 5°C or better
Secondary Processor	Secondary processor socket thermal sensor	8-bit	+/- 5°C or better

The table below details some of the inputs on Sahalee as used in the SDS2.

Table 16. Sahalee Input Definition

Pin	Signal Name	Description
D12	N_SLOT1OCC_00	CPU1 Presence Detect
D14	N_SLOT2OCC_00	CPU2 Presence Detect
B12	N_FAN1_SENSE_P	CPU1 Fan Speed
A13	N_FAN2_SENSE_P	CPU2 Fan Speed
B13	N_FAN3_SENSE_P	Front System Fan 1 Speed
B14	N_FAN4_SENSE_P	Front System Fan 2 Speed
C13	N_FAN5_SENSE_P	Rear System Fan 1 Speed

28 Revision 1.2 Order Number: A85874-002

Download from Www.Somanuals.com. All Manuals Search And Download.

Pin	Signal Name	Description
C14	N_FAN6_SENSE_P	Rear System Fan 2 Speed
L12	N_MEM_ALERT_L	Memory ECC Error Detect
M12	N_BMC_SECUREMODE	Secure Mode Detect

Note: For a complete listing of BMC sensors, please refer to *SDS2 Baseboard Management Controller External Product Specification*.

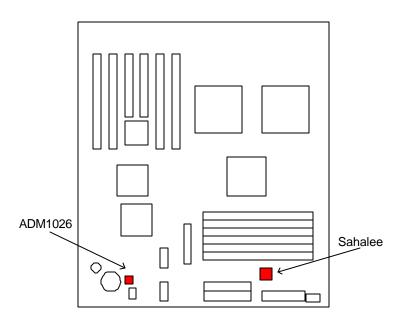


Figure 7. SDS2 Locations of ADM1026 and Sahalee

5.1.1 Fault Resilient Booting

The Sahalee BMC implements Fault Resilient Booting (FRB) levels 1, 2, and 3. If the default bootstrap processor (BSP) fails to complete the boot process, FRB attempts to boot using an alternate processor.

- FRB level 1 is for recovery from a BIST failure detected during POST. This FRB recovery is fully handled by BIOS code.
- FRB level 2 is for recovery from a Watchdog timeout during POST. The Watchdog timer for FRB level 2 detection is implemented in the Sahalee BMC.
- FRB level 3 is for recovery from a Watchdog timeout on Hard Reset/Power-up. The Sahalee BMC provides hardware functionality for this level of FRB.

5.2 System Reset Control

Reset circuitry on the SDS2 Server Board looks at resets from the front panel, CSB5, ITP, and processor subsystem to determine proper reset sequencing for all types of reset. The reset logic is designed to accommodate a variety of ways to reset the system, which can be divided into the following categories:

- Power-up reset
- Hard reset
- Soft (programmed) reset

The following subsections describe each category of reset.

5.2.1 Power-up Reset

When the system is disconnected from AC power, all logic on the Server Board is powered off. When a valid input (AC) voltage level is provided to the power supply, 3.3 V standby power is applied to the Server Board. A power monitor circuit on 3.3 V standby asserts $N_RST_BMCRST_L$, causing the BMC to reset. The BMC is powered by 3.3 V standby and monitors and controls key events in the system related to reset and power control.

After the system is turned on, the power supply asserts the *N_PWRGD+00* signal after all voltage levels in the system have reached valid levels. The BMC receives *N_PWRGD+00* and after approximately 500 ms it asserts *N_RST_P6_PWRGOOD*, which indicates to the processors and CSB5 that the power is stable. Upon *N_RST_P6_PWRGOOD* assertion, the CSB5 will toggle PCI reset.

5.2.2 Hard Reset

A hard reset can be initiated by resetting the system through the front panel switch. During the reset, the Sahalee BMC de-asserts the *N_RST_P6_PWRGOOD* signal. After approximately 500 ms, it is reasserted, and the Power-up Reset sequence is done.

The Sahalee BMC is not reset by a hard reset. It may be reset at power-up.

5.2.3 Soft Reset

A soft reset causes the processors to begin execution in a known state without flushing the caches or internal buffers. The keyboard controller located in the SIO or by the CSB5 can generate soft resets. The output of the SIO (*N_KBD_PINITL*) is input to the CSB5.

5.3 Intelligent Platform Management Buses

Management controllers and sensors communicate on the I^2 C-based Intelligent Platform Management Bus. A bit protocol defined by the I^2 C Bus Specification, and a byte-level protocol defined by the Intelligent Platform Management Bus Communications Protocol Specification, provide an independent interconnect for all devices operating on this I^2 C bus. The IPMB extends throughout the Server Board and system chassis. An added layer in the protocol supports transactions between multiple servers on inter-chassis I^2 C bus segments.

Table 17. IPMB Bus Devices

Function	Voltage	Address	Notes
SCSI HSBP-A	5VSB	0xC0	
SCSI HSBP-B	5VSB	0xC2	
OEM Connector	5VSB	N/A	

In addition to the "public" IPMB, the Sahalee BMC also has five private I²C busses. Four of these are used on the Server Board. The Sahalee BMC is the only master on the private busses. The following table lists all Server Board connections to the Sahalee BMC private I²C busses.

Table 18. Private I²C Bus 1 Devices

Function	Voltage	Address	Notes
PCI Slot 1	3 VSB	N/A	
PCI Slot 2	3 VSB	N/A	
PCI Slot 3	3 VSB	N/A	
PCI Slot 4	3 VSB	N/A	
PCI Slot 5	3 VSB	N/A	
PCI Slot 6	3 VSB	N/A	

Table 19. Private I²C Bus 2 Devices

Function	Voltage	Address	Notes
PC87417 SIO	3 VSB	0x60	
Front Panel Connector	3 VSB	0x9A	
ADM1026	3 VSB	0x58	
Power Supply #1	3 VSB	0xB0	
Power Supply #1 FRU	3VSB	0xA0	
Power Supply #2	3VSB	0xB2	
Power Supply #2 FRU	3VSB	0xA2	
Power Supply #3	3VSB	0xB6	
Power Supply #3 FRU	3VSB	0xA4	
Power Unit Cage	3VSB	0xBC	
Power Unit FRU	3VSB	0xAC	

Note: The power supply entries in Table 19 apply only to the Intel® SC5100 chassis. Reference chassis power supplies may utilize different addresses.

Table 20. Private I²C Bus 3 Devices

Function	Voltage	Address	Notes
HE-SL	3.3 V	0xC0	North Bridge
CIOB20	3.3 V	0xC4	I/O Bridge

Revision 1.2 Order Number: A85874-002

Download from Www.Somanuals.com. All Manuals Search And Download.

Function	Voltage	Address	Notes
CSB5	3.3 V	0xC2	South Bridge
DIMM 1	3.3 V	0xA0	
DIMM 2	3.3 V	0xA2	
DIMM 3	3.3 V	0xA4	
DIMM 4	3.3 V	0xA6	
DIMM 5	3.3 V	0xA8	
DIMM 6	3.3 V	0xAA	
PCK2001M	3.3 V	0xD2	Clock Buffers

Table 21. Private I²C Bus 4 Devices

Function	Voltage	Address	Notes
NIC1	3 VSB	0x84	
NIC2	3VSB	0x86	

5.4 Error Reporting

This section documents the types of system bus error conditions monitored by the SDS2 Server Board.

5.4.1 Error Sources and Types

One of the major requirements of server management is to correctly and consistently handles system errors. System errors on the SDS2, which can be disabled and enabled individually, can be categorized as follows:

- PCI bus
- Processor bus errors
- Memory single- and multi-bit errors
- General server management sensors, managed by the Sahalee BMC

5.4.2 PCI Bus Errors

The PCI bus defines two error pins, PERR# and SERR#, for reporting PCI parity errors and system errors, respectively. In the case of PERR#, the PCI bus master has the option to retry the offending transaction, or to report it using SERR#. All other PCI-related errors are reported by SERR#. SERR# is routed to NMI if enabled by BIOS.

5.4.3 Intel® Pentium® III Processor Bus Errors

The HE-SL supports all the data integrity features supported by the Pentium Pro bus including Address, Request and Response parity. The HE-SL always generates ECC data while it is driving the processor data bus although data bus ECC can be disabled or enabled by BIOS (enabled by default). The HE-SL generates MIRQ# on SBEs (Single-bit errors) and generates SALERT# on

32 Revision 1.2

uncorrectable errors. In addition, the HE-SL can generate BERR# on unrecoverable ECC errors detected on the processor bus. Unrecoverable errors are routed to NMI by BIOS.

5.4.4 Memory Bus Errors

The HE-SL is programmed to generate an SMI on single-bit data errors in the memory array if ECC memory is installed. The HE-SL performs the scrubbing. The SMI handler simply records the error and the DIMM location to the System Event Log. Double-bit errors in the memory array are mapped to SMI because the Sahalee BMC cannot determine the location of the bad DIMM.

5.4.5 ID LED

The blue "ID LED", located at the back edge of the Server Board near NIC2, is used to help locate a given server platform requiring service when installed in a multi-system rack. The LED is lit when the front panel ID button is pressed and is turned off when the button is pressed again.

5.5 ACPI

The Advance Configuration and Power Interface (ACPI)-aware operating system can place the system into a state where the hard drive spin down, the system fans stop, and all processing is halted. In this state, the power supply is still on and the processors still dissipate some power, such that the power supply fan and processor fans continue to run.

Note: ACPI requires an operating system that supports this feature.

The sleep states discussed below are defined as:

- S0: Normal running state
- S1: Processor sleep state. No content is lost in this state and the processor caches maintain coherency
- S4: Hibernate or Save to Disk. The memory and machine state are saved to disk.
 Pressing the power button or another wakeup event restores the system state from disk
 and resumes normal operation. This assumes that no hardware changes were made to
 the system while it was off
- S5: Soft off. Only the RTC section of the chip set and the BMC are running in this state

The SDS2 Server Board supports sleep states s0, s1, s4, and s5. When the Server Board is operating in ACPI mode, the operating system retains control of the system and the operating system policy determines the entry methods and wake up sources for each sleep state. Sleep entry and wake-up event capabilities are provided by the hardware but are enabled by the OS.

5.6 AC Link Mode

The AC link mode allows the system to monitor its AC input power so that if AC input power is lost and then restored, the system returns to one of the following pre-selected settings:

- Power On
- Last State (Factory Default Setting)
- Stay Off

Setup Utility (F2) can change the AC link mode settings.

Order Number: A85874-002

6. BIOS

This section describes the BIOS-embedded software for the SDS2 server board. The BIOS contains standard PC-compatible basic input/output (I/O) services, system-specific hardware configuration routines and register default settings that are embedded in Flash read-only memory (ROM). This document also describes BIOS support utilities (not ROM-resident) that are required for system configuration and flash ROM update. The BIOS is implemented as firmware that resides in the flash ROM.

The term BIOS, as used in the context of this document, refers to the system BIOS, the BIOS Setup, and option ROMs for on-board peripheral devices that are contained in the system flash. The system BIOS controls basic system functionality using stored configuration values. The terms flash ROM, system flash, and BIOS flash may be used interchangeably in this document.

BIOS Setup is a Flash ROM-resident setup utility that provides the user with control of configuration values stored in battery-backed CMOS configuration RAM. BIOS options can also be set utilizing the System Setup Utility (SSU). Operation of the SSU is discussed in a separate document. BIOS Setup is closely tied with the system BIOS and is considered a part of BIOS.

Phoenix* Phlash (PHLASH.EXE) is used to load areas of flash ROM with Setup, BIOS, and other code/data.

The following is the breakdown of the SDS2 product ID string.

- 4-byte board ID, 'SDS2'
- 1-byte board revision, starting from '0'
- 3-byte OEM ID, '86B' for standard BIOS
- 4-byte build number
- 1-3 bytes describing build type (D for development, A for Alpha, B for Beta, Pxx for production version xx)
- 6-byte build date in yymmdd format
- 4-byte time in hhmm format

6.1 System BIOS

The system BIOS is the core of the flash ROM-resident portion of the BIOS. The system BIOS provides standard PC-BIOS services and support for industry standards, such as the *Advanced Configuration and Power Interface Specification*, Revision 1.0b and *Wired for Management Baseline Specification*, Revision 2.0.

In addition, the system BIOS supports the following features.

- Security
- MPS support
- Server management and error handling
- CMOS configuration RAM management

- OEM customization
- PCI and Plug and Play (PnP) BIOS interface
- Console redirection
- Resource allocation support

6.2 BIOS Error Handling

This section defines how errors are handled by the system BIOS on the SDS2 server board. Also discussed are the role of BIOS in error handling, and the interaction between the BIOS, platform hardware, and server management firmware with regard to error handling. In addition, error-logging techniques are described and beep codes for errors are defined.

6.2.1 Error Sources and Types

One of the major requirements of server management is to correctly and consistently handles system errors. System errors, which can be disabled and enabled individually or as a group, can be categorized as follows:

- PCI bus
- Memory correctable- and uncorrectable errors
- Sensors
- Processor internal error, bus/address error, thermal trip error, temperatures and voltages, and GTL voltage levels

The BMC manages the sensors. It is capable of receiving event messages from individual sensors and logging system events.

6.2.2 Handling and Logging System Errors

This section describes actions taken by the SMI handler with respect to the various categories of system errors. It covers the events logged by the BIOS and the format of data bytes associated with those events. The BIOS is responsible for monitoring and logging certain system events. The BIOS sends a platform event message to BMC to log the event. Some of the errors, such as processor failure, are logged during early POST and not through the SMI handler.

6.2.2.1 Logging Format Conventions

The BIOS complies with the *Intelligent Platform Management Interface Specification, Revision 1.5.* The BIOS always uses system software ID within the range 00h-1Fh to log errors. As a result, the Generator ID byte is an odd number in the range 01h-3fh. OEM user binary should use software IDs of 1. The Software ID allows external software to find the origin of the event message.

The BIOS logs the following SEL entries.

Table 22. BIOS Generated SEL Errors

Sensor Type	Sensor Number	Sensor Type Code	Sensor- Specific Offset	Event
Processor	5Fh	07h	02h	FRB1/BIST Failure
	60h		03h	FRB2/Hang in POST Failure
Memory	08h	0Ch	01h	Uncorrectable ECC
POST Memory Resize	A0h	0Eh	_	POST Memory Resize
POST Error	06h	0Fh	_	POST Error
Event Logging	09h	10h	00h	Correctable Memory Error Logging Disabled
Disabled			01h	Event 'Type' Logging Disabled
System Event	7Ah	12h	00h	System Reconfigured
			01h	OEM System Boot Event (Hard Reset)
Critical Interrupt	07h	13h	04h	PCI SERR
			05h	PCI PERR
System Boot	A1h	1Dh	00h	Initiated by power up
Initiated			03h	User requested PXE boot
			04h	Automatic boot to diagnostic
Boot Error	A2h	1Eh	00h	No bootable media
			02h	PXE Server not found
			03h	Invalid boot sector
Sensor Failure	7Ch	F6h	00h	I2C Bus Device Address Not Acknowledged
			01h	I2C Bus Device Error Detected
			02h	I2C Bus Timeout
Chipset Specific	F4h	F4h	00h	CNB2.0HE-SL function 0 errors
Critical Interrupt			02h	CIOB20 #0 errors

The Event Request Message Event Data Field Contents table below describes the various fields in the event request message sent by the BIOS.

Event Event Data Trigger **Class** Discrete 7:6 00 = Unspecified byte 2 01 = Previous state and/or severity in byte 2 10 = OEM code in byte 2 11 = Sensor specific event extension code in byte 2 5:4 00 = Unspecified byte 3 01 = Reserved10 = OEM code in byte 3 11 = Sensor specific event extension code in byte 3 3:0 Offset from Event Trigger for discrete event state Event Data 2 7:4 Optional offset from 'Severity' Event Trigger. (0Fh if unspecified). 3:0 Optional offset from Event Trigger for previous discrete event state.

Table 23: Event Request Message Event Data Field Contents

6.2.3 SMI Handler

The SMI handler handles and logs system level events that are not visible to the server management firmware. The SMI handler, even those that are normally considered to generate an NMI, preprocesses all system errors. The SMI handler sends a command to the BMC to log the event and provides the data to be logged, a *Set NMI Source* command to indicate BIOS as the source of the NMI, and a *BIOS LCD* command to display the LCD and LED message(s). A correctable memory error does not generate an SMI. Correctable and uncorrectable memory errors are handled and logged by the BMC.

6.2.3.1 PCI Bus Error

The PCI bus defines two error pins, PERR# and SERR#, for reporting PCI parity errors and system errors, respectively.

6.2.3.2 Intel® Pentium® III Processor Bus Error

0Fh if unspecified.

In the case of irrecoverable errors on the host processor bus, proper execution of SMI handler cannot be guaranteed and SMI handler cannot be relied upon to log such conditions. The BIOS SMI handler records the error to the System Event Log only if the system has not experienced a catastrophic failure that compromises the integrity of the SMI handler. The BIOS always enables the error correction and detection capabilities of the processors by setting appropriate bits in processor model specific register (MSR).

6.2.3.3 Memory Bus Error

The BMC monitors and logs memory errors. The BIOS will configure the hardware to notify the BMC on correctable and uncorrectable memory errors. Uncorrectable errors generate an SMI to stop the system and prevent propagation of the error. The BMC will query the hardware for error information when notified.

6.2.3.4 System Limit Error

The BMC monitors system operational limits. It manages the A/D converter, defining voltage and temperature limits as well as fan sensors and chassis intrusion. Any sensor values outside of specified limits are handled by the BMC and there is no need to generate an SMI to the host processor.

6.2.3.5 Processor Failure

The BIOS detects processor BIST failure and logs this event. The first OEM data byte field in the log can identify the failed processor. For example, if processor 0 fails, the first OEM data byte is 0. The BIOS depends upon BMC to log the watchdog timer reset event.

6.2.3.6 Boot Event

The BIOS downloads the system date and time to the BMC during POST and logs a boot event. This does not indicate an error, and software that parses the event log should treat it as such.

6.2.3.7 Chipset Failure

The BIOS detects the chipset (CNB2.0HE-SL and CIOB20) failure and logs this event. The chipset error generates an SMI.

6.2.4 Firmware (BMC)

The BMC implements the logical System Event Log (SEL) device as specified in the *Intelligent Platform Management Interface Specification, Version 1.5.* The SEL is accessible via all BMC transports. This allows the System Event Log information to be accessed while the system is down via out-of-band interfaces.

6.2.4.1 Sensor Number and Types Codes

The BIOS generates a POST error message when the System Event Log is full. This warning will not inhibit the system from booting if halt on Post Error code is disabled in the BIOS Setup in the Advanced menu.

Sensor Name, Sensor number and Sensor type for the SDS2 platform are listed in the following Table 24 Platform SEL Log Sensors for SDS2.

Table 24 Platform SEL Log Sensors for SDS2

Sensor Name	Sensor #	Sensor Type	Event/ Reading Type	Event Offset Triggers
Power Unit Status	01h	Power Unit - 09h	Sensor Specific - 6Fh	Power Off, Power Cycle, A/C Lost,
Power Unit Redundancy	02h	Power Unit - 09h	Generic 0Bh	Redundancy Regain Redundancy lost
Watchdog	03h	Watchdog2 – 23h	Sensor Specific - 6Fh	Timer Expired, Hard Reset, Power Down, Power Cycle, Timer Interrupt
Platform Security Violation	04h	Platform Security Violation Attempt - 06h	Sensor Specific - 6Fh	- Secure mode violation attempt, - Out-of-band access password violation
Physical Security Violation	05h	Physical Security - 05h	Sensor Specific - 6Fh	General Chassis Intrusion, LAN Leash Lost
POST Error	06h	System Firmware Progress – 0Fh	Sensor Specific - 6Fh	POST error
FP Diag Interrupt (NMI for IA-32, INIT for IA-64)	07h	Critical Interrupt - 13h	Sensor Specific - 6Fh	Front Panel NMI
Memory	08h	Memory – 0Ch	Sensor Specific - 6Fh	Correctable ECC, Uncorrectable ECC
Event Logging Disabled	09h	Event Logging Disabled – 10h	Sensor Specific - 6Fh	Correctable Memory Error Logging Disabled, Log Area Reset/Cleared
BB +1.25V	0Ah	Voltage – 02h	Threshold - 01h	-
BB +2.5V	0Bh	Voltage – 02h	Threshold - 01h	-
BB +3.3V	0Ch	Voltage – 02h	Threshold - 01h	-
BB +3.3V Standby	0Dh	Voltage – 02h	Threshold - 01h	-
BB +5V	0Eh	Voltage – 02h	Threshold - 01h	-
BB +12V	0Fh	Voltage – 02h	Threshold - 01h	-

Sensor Name	Sensor #	Sensor Type	Event/ Reading Type	Event Offset Triggers
BB -12V	10h	Voltage – 02h	Threshold - 01h	-
BB V _{BAT}	11h	Voltage – 02h	Threshold - 01h	-
Proc VRM1	12h	Voltage – 02h	Threshold - 01h	-
Proc VRM2	13h	Voltage – 02h	Threshold - 01h	-
LVDS SCSI channel 1 terminator 1	14h	Voltage – 02h	Threshold - 01h	-
LVDS SCSI channel 1 terminator 2	15h	Voltage – 02h	Threshold - 01h	-
LVDS SCSI channel 1 terminator 3	16h	Voltage – 02h	Threshold - 01h	-
LVDS SCSI channel 2 terminator 1	17h	Voltage – 02h	Threshold - 01h	-
LVDS SCSI channel 2 terminator 2	18h	Voltage – 02h	Threshold - 01h	-
LVDS SCSI channel 2 terminator 3	19h	Voltage – 02h	Threshold - 01h	-
LVDS SCSI channel 1 Performance	1Dh	Voltage – 02h	Digital Discrete - 06h	Performance Lags
LVDS SCSI channel 2 Performance	1Eh	Voltage – 02h	Digital Discrete - 06h	Performance Lags
Baseboard Temp	30h	Temp - 01h	Threshold - 01h	-
Front Panel Temp	31h	Temp - 01h	Threshold - 01h	-
PDB Temp	32h	Temp - 01h	Threshold - 01h	-
Proc 1 Temp	33h	Temp - 01h	Threshold - 01h	-
Proc 2 Temp	34h	Temp - 01h	Threshold - 01h	-
Fan Boost Baseboard Temp	3Bh	OEM - C7h	Threshold - 01h	-

Sensor Name	Sensor #	Sensor Type	Event/ Reading Type	Event Offset Triggers
Fan Boost Front Panel Temp	3Ch	OEM - C7h	Threshold - 01h	-
Fan Boost PDB Temp	3Dh	OEM - C7h	Threshold - 01h	-
Fan Boost Proc 1 Core Temp	3Eh	OEM - C7h	Threshold - 01h	1
Fan Boost Proc 2 Core Temp	3Fh	OEM - C7h	Threshold - 01h	-
Tach Fan 1	48h	Fan - 04h	Threshold - 01h	-
Tach Fan 2	49h	Fan - 04h	Threshold - 01h	-
Tach Fan 3	4Ah	Fan - 04h	Threshold - 01h	-
Tach Fan 4	4Bh	Fan - 04h	Threshold - 01h	-
Tach Fan 5	4Ch	Fan - 04h	Threshold - 01h	-
Tach Fan 6	4Dh	Fan - 04h	Threshold - 01h	-
Digital Fan 1	50h	Fan - 04h	Digital Discrete - 06h	Performance Lags
Digital Fan 2	51h	Fan - 04h	Digital Discrete - 06h	Performance Lags
Digital Fan 3	52h	Fan - 04h	Digital Discrete - 06h	Performance Lags
Digital Fan 4	53h	Fan - 04h	Digital Discrete - 06h	Performance Lags
Digital Fan 5	54h	Fan - 04h	Digital Discrete - 06h	Performance Lags
Digital Fan 6	55h	Fan - 04h	Digital Discrete - 06h	Performance Lags
PDB Fan 1	58h	Fan - 04h	Threshold - 01h	-
PDB Fan 2	59h	Fan - 04h	Threshold - 01h	-
Power Supply 1	5Ah	Power Supply - 08h	Sensor Specific - 6Fh	Presence, Failure, Predictive Fail, A/C Lost

			-	
Sensor Name	Sensor #	Sensor Type	Event/ Reading Type	Event Offset Triggers
Power Supply 2	5Bh	Power Supply - 08h	Sensor Specific - 6Fh	Presence, Failure, Predictive Fail, A/C Lost
Power Supply 3	5Ch	Power Supply - 08h	Sensor Specific - 6Fh	Presence, Failure, Predictive Fail, A/C Lost
Missing CPU Module	5Eh	Module/Board – 15h	Digital Discrete - 03h	State Asserted
Proc 1 Status	5Fh	Processor - 07h	Sensor Specific - 6Fh	Presence, Thermal Trip, IERR, FRB1, FRB2, FRB3, Disabled
Proc 2 Status	60h	Processor - 07h	Sensor Specific - 6Fh	Presence, Thermal Trip, IERR, FRB1, FRB2, FRB3, Disabled
DIMM 1	68h	Slot Connector - 21h	Sensor Specific - 6Fh	Fault Status Asserted, Device Installed, Disabled
DIMM 2	69h	Slot Connector - 21h	Sensor Specific - 6Fh	Fault Status Asserted, Device Installed, Disabled
DIMM 3	6Ah	Slot Connector - 21h	Sensor Specific - 6Fh	Fault Status Asserted, Device Installed, Disabled
DIMM 4	M 4 6Bh Slot		Sensor Specific - 6Fh	Fault Status Asserted, Device Installed, Disabled
DIMM 5	6Ch	Slot Connector - 21h	Sensor Specific - 6Fh	Fault Status Asserted, Device Installed, Disabled

Sensor Name	Sensor #	Sensor Type	Event/ Reading Type	Event Offset Triggers
DIMM 6	6Dh	Slot Connector - 21h	Sensor Specific - 6Fh	Fault Status Asserted, Device Installed, Disabled
System ACPI Power State	78h	System ACPI Power State – 22h	Sensor Specific - 6Fh	S0 / G0, S1, S4, S5 / G2, G3 Mechanical Off
Button	79h	Button – 14h	Sensor Specific - 6Fh	Power Button, Sleep Button, Reset Button
System Event	7Ah	System Event – 12h	Sensor Specific - 6Fh	OEM System Boot Event (Hard Reset)
SMI Timeout	7Bh	SMI Timeout – F3h	Sensor Specific - 6Fh	State Asserted
Sensor Failure	7Ch	Sensor Failure – F6h	Sensor Specific - 6Fh	I ² C device not found, I ² C device error detected, I ² C Bus Timeout
NMI Signal State	7Dh	OEM - C0h	Digital Discrete - 03h	-
SMI Signal State	7Eh	OEM - C0h	Digital Discrete - 03h	-

6.2.4.2 Timestamp Clock

The BMC maintains a four-byte internal timestamp clock used by the System Event Log and Sensor Data Record subsystems. This clock is incremented once per second and is read and set using the *Get SEL Time* and *Set SEL Time* commands, respectively. The *Get SDR Time* command can also be used to read the timestamp clock.

The BMC has direct access the system real-time clock. This allows the BMC to automatically synchronize the SEL/SDR timestamp clock to the real-time clock time on BMC startup. The BMC periodically reads the real-time clock to maintain synchronization even when software asynchronously changes the value. In addition to this, the BIOS send a timestamp to the BMC using *Set SEL Time* command during POST.

6.2.5 Error Messages and Error Codes

The system BIOS displays error messages on the video screen. Before video initialization, beep codes inform the user of errors. POST error codes are logged in the System Event Log. The BIOS displays POST error codes on the video monitor.

6.2.5.1 ASF Progress Codes

The BIOS utilizes ASF Progress Events as described in the ASF Specification, Revision 1.0a from the DMTF. The events that the BIOS supports are shown in the following table.

ASF Code Description Comment 01h Memory initialization. At beginning of ECC initialization or memory test. 02h Hard-disk initialization At beginning of IDE device detection. At beginning of MP Init 03h Secondary processor(s) initialization 04h User authentication When waiting for User/Supervisor password 05h User-initiated system setup When Setup is invoked When USB devices scan/initialization begins 06h USB resource configuration 07h PCI resource configuration At beginning of configuring PCI devices in system. 08h Option ROM initialization At beginning of Option ROM scan 09h Video initialization At beginning of initialization primary video controller (if present) 0Ah Cache initialization At beginning of setting up processor cache 0Bh SM Bus initialization At beginning of configuring SMBus to communicate with BMC 0Ch Keyboard controller initialization At keyboard discovery scan 0DhEmbedded controller/management When first checking for functional BMC

When waking from Wake-On-LAN, Wake-On-Ring,

Immediately prior to calling INT19h

Table 25. Event Request Message Event Data Field Contents

6.2.5.2 POST Codes

12h

13h

controller initialization

Calling operating system wake-up

Starting operating system boot

process, e.g. calling Int 19h

The BIOS indicates the current testing phase to I/O location 80h and to LCD on the front panel during POST after the video adapter has been successfully initialized. If a Port-80h card (Postcard*) is installed, it displays this 2-digit code on a pair of hex display LEDs.

Magic Packet, etc.

Table 26. Port-80h Code Definition

Code	Meaning	
CP	Phoenix* check point POST code	

The following table contains the POST codes displayed during the boot process. A beep code is a series of individual beeps on the PC speaker, each of equal length. The following table describes the error conditions associated with each beep code and the corresponding POST checks point code as seen by a 'port 80h' card and LCD. For example, if an error occurs at checkpoint 22h, a beep code of 1-3-1-1 is generated. The "-" indicates a pause within the sequence.

Some POST codes occur before the video display is initialized. To assist in determining the fault, a unique beep-code is derived from these checkpoints as follows:

- The 8-bit test point is broken down to four 2-bit groups.
- Each group is made one-based (1 through 4)
- One to four beeps are generated based on each group's 2-bit pattern.

Note: Not all POST codes generate a Beep Code.

Example:

Checkpoint 4Bh is divided into: 01 00 10 11 The beep code is: 2-1-3-4

Table 27. Standard BIOS POST Codes

СР	Beeps	Reason
01		Initialize BMC
02		Verify Real Mode
03		Test BMC
04		Get Processor type
06		Initialize system hardware
08		Initialize chipset registers with initial POST values
09		Set in POST flag
0A		Initialize Processor registers
0B		Enable Processor cache
0C		Initialize caches to initial POST values
0E		Initialize I/O
0F		Initialize the local bus IDE
10		Initialize Power Management
11		Load alternate registers with initial POST values
12		Restore Processor control word during warm boot
13		Initialize PCI Bus mastering devices
14		Initialize keyboard controller
16	1-2-2-3	BIOS ROM checksum
17		Initialize external cache before memory auto size
18		8254 timer initialization
1A		8237 DMA controller initialization

46 Revision 1.2

CP	Beeps	Reason
1C		Reset Programmable Interrupt Controller
20	1-3-1-1	Test DRAM refresh
22	1-3-1-3	Test 8742 Keyboard Controller
24		Set ES segment register to 4GB
28	1-3-3-1	Auto size DRAM, system BIOS stops execution here if the BIOS does not detect any usable memory DIMMs
29		Initializes the POST Memory Manager
2A		Clear 8 MB base RAM
2C	1-3-4-1	Base RAM failure, BIOS stops execution here if entire memory is bad
2E		Test the first 4MB of RAM
2F		Initialize external cache before shadowing
32		Test Processor bus-clock frequency
33		Initializes the Phoenix Dispatch Manager
34		Test CMOS
35		RAM Initialize alternate chipset registers
36		Warm start shut down
37		Reinitialize the chipset
38		Shadow system BIOS ROM
39		Reinitialize the cache
ЗА		Auto size cache
3C		Configure advanced chipset registers
3D		Load alternate registers with CMOS values
41		Check unsupported processor
40		Set Initial Processor speed new
42		Initialize interrupt vectors
44		Initialize BIOS interrupts
45		POST device initialization
46	2-1-2-3	Check ROM copyright notice
47		Initialize manager for PCI Option ROMs
48		Check video configuration against CMOS
49		Initialize PCI bus and devices
4A		Initialize all video adapters in system
4B		Display Quiet Boot screen
4C		Shadow video BIOS ROM
4E		Display copyright notice
4F		Allocate memory for the multiboot data
50		Display Processor type and speed
52		Test keyboard
54		Set key click if enabled
55		USB initialization
56		Enable keyboard
58	2-2-3-1	Test for unexpected interrupts

СР	Beeps	Reason
59		Initialize the POST display service
5A		Display prompt "Press F2 to enter SETUP"
5B		Disable L1 cache during POST
5C		Test RAM between 512 and 640k
60		Test extended memory
62		Test extended memory address lines
64		Jump to UserPatch1
66		Configure advanced cache registers
67		Quick init of all AP's early in post
68		Enable external and processor caches
69		Initialize the SMM handler
6A		Display external cache size
6B		Load custom defaults if required
6C		Display shadow message
6E		Display non-disposable segments
70		Display error messages
72		Check for configuration errors
74		Test real-time clock
76		Check for keyboard errors
7A		Test for key lock on
7C		Set up hardware interrupt vectors
7D		Intelligent system monitoring
7E		Test coprocessor if present
81		POST device initialization routine
82		Detect and install external RS232 ports
83		Configure non-MCD IDE controllers
84		Initialize parallel ports
85		Initialize PC-compatible PnP ISA devices
86		Re-initialize on board I/O ports
87		Configure Mother Board Configurable Devices
88		Initialize BIOS Data Area
89		Enable Non-Maskable Interrupts
8A		Initialize Extended BIOS Data Area
8B		Test and initialize PS/S mouse
8C		Initialize floppy controller
90		Initialize hard disk controller
91		Initialize local bus hard disk controller
92		Jump to UserPatch2
93		Build MPTABLE for multi-processor boards
94		Disable A20 address line
95		Install CD-ROM for boot
96		Clear huge ES segment register

CP	Beeps	Reason
97		Fix up Multi Processor table
98	1-2	Search for option ROMs. One long, two short beeps on checksum failure
99		Check for SMART Drive
9A		Shadow option ROMs
9C		Set up Power Management
9D		Initialize security engine
9E		Enable hardware interrupts
A0		Set time of day
A2		Check key lock
A4		Initialize spermatic rate

Table 28. Recovery BIOS POST Codes

CP	Beeps	Reason
E0		Initialize chip set
E1		Initialize bridge
E2		Initialize processor
E3		Initialize timer
E4		Initialize system I/O
E5		Check forced recovery boot
E6		Validate checksum
E7		Go to BIOS
E8		Initialize processors
E9		Set 4 GB segment limits
EA		Perform platform initialization
EB		Initialize the hardware
EC		Initialize memory type
ED		Initialize memory size
EE		Shadow boot block
F0		Test system memory
F1		Initialize interrupt services
F2		Initialize real time clock
F3		Initialize video
F4		Initialize beeper
F5		Initialize boot
F6		Restore segment limits to 64 KB
F7		Boot mini DOS

6.2.5.3 POST Error Codes and Messages

The following table defines POST error codes and their associated messages. The BIOS prompts the user to press a key in case of serious errors. Some error messages are preceded by the string "Error" to indicate that the system may be malfunctioning. All POST errors and warnings are logged in the System Event Log unless it is full.

Table 29. POST Error Messages and Codes

Code	Error Message	Failure Description
0200	Failure Fixed Disk	Hard disk error
0210	Stuck Key	Keyboard connection error
0211	Keyboard error	Keyboard failure
0212	Keyboard Controller Failed	Keyboard Controller Failed
0213	Keyboard locked– Unlock key switch	Keyboard locked
0220	Monitor type does not match CMOS- Run SETUP	Monitor type does not match CMOS
0230	System RAM Failed at offset	System RAM error, Offset address
0231	Shadow RAM Failed at offset	Shadow RAM Failed , Offset address
0232	Extend RAM Failed at address line	Extended RAM failed, Offset address
0250	System battery is dead – Replace and run SETUP	NVRAM battery dead
0251	System CMOS checksum bad – Default configuration used	CMOS checksum error
0252	Password checksum bad - Passwords cleared	
0260	System timer error	System timer error
0270	Real time clock error	RTC error
0271	Check date and time setting	RTC time setting error
0280	Previous boot incomplete - Default configuration used	
0281	Memory Size found by POST differed from EISA CMOS	
02B0	Diskette drive A error	Diskette drive A failure
02B1	Diskette drive B error	Diskette drive B failure
02B2	Incorrect Drive A type – run SETUP	Incorrect Drive A type
02B3	Incorrect Drive B type – run SETUP	Incorrect Drive B type
02D0	System cache error – Cache disabled	CPU cache error
02D1	System Memory exceeds the CPU's caching limit.	
02F4	EISA CMOS not write able	
02F5	DMA Test Failed	
02F6	Software NMI Failed	
02F7	Fail-safe Timer NMI Failed	
0611	IDE configuration changed	
0612	IDE configuration error-device disabled	
0613	COM A configuration changed	

50 Revision 1.2

Code	Error Message	Failure Description
0614	COM A config. error - device disabled	
0615	COM B configuration changed	
0616	COM B config. error - device disabled	
0617	Floppy configuration changed	
0618	Floppy config. error - device disabled	
0619	Parallel port configuration changed	
061A	Parallel port config. error - device disabled	
0B00	Rebooted during BIOS boot at Post Code	
0B01	Rebooted during OS boot	
0B02	Rebooted during OS Runtime	
0B1B	PCI System Error on Bus/Device/Function	PCI system error in Bus/device/Function, PCI system error in Bus/device/Function
0B1C	PCI Parity Error in Bus/Device/Function	
0B22	Processors are installed out of order	
0B28	Unsupported Processor detected on Processore 1	Unsupported Processor was detected
0B29	Unsupported Processor detect on Processor 2	
0B30	Fan 1 Alarm occurred.	Fan failed
0B31	Fan 2 Alarm occurred.	
0B32	Fan 3 Alarm occurred.	
0B33	Fan 4 Alarm occurred.	
0B34	Fan 5 Alarm occurred.	
0B35	Fan 6 Alarm occurred.	Failed Processor#1 because an error was detected., Failed Processor#2 because an error was detected.
0B50	Processor #1 with error taken offline	
0B51	Processor #2 with error taken offline	
0B60	DIMM group #1 has been disabled	Memory error, memory group #1 failed
0B61	DIMM group #2 has been disabled	Memory error, memory group #2 failed
0B62	DIMM group #3 has been disabled	Memory error, memory group #3 failed
0B70	The error occurred during temperature sensor reading	Error while detecting a temperature failure.
0B71	System temperature out of the range	Temperature error detected.
0B74	The error occurred during voltage sensor reading	Error while detecting voltage

6.2.5.4 Baseboard Management Controller (BMC) Beep Code Generation

The BMC generates beep codes upon detection of the failure conditions listed in the following table. Each digit in the code is represented by a sequence of beeps whose count is equal to the digit.

Table 30. BMC Beep Codes

Code	Reason for Beep

Code	Reason for Beep
1-5-1-1	FRB failure (processor failure)
1-5-2-1	Empty Processor
1-5-2-2	No Processor
1-5-2-3	Processor configuration error (e.g., mismatched VIDs)
1-5-4-2	Power fault: DC power unexpectedly lost (power control failures)
1-5-4-3	Chipset control failure
1-5-4-4	Power control fault

6.3 Setup Utility

This section describes the ROM resident Setup utility that provides the means to configure the platform. The Setup utility is part of the system BIOS and allows limited control over on-board resources such as parallel port and mouse. The following topics are covered here:

- Setup utility operation.
- Configuration CMOS RAM definition.
- Function of CMOS clear jumper.

6.3.1 Configuration Utilities Overview

On-board devices are configured through the Setup utility that is embedded in flash ROM. Setup provides enough configuration functionality to boot a system diskette or CD-ROM. Setup is always provided in flash for basic system configuration.

The configuration utilities modify the CMOS and NVRAM under direction of the user. The actual hardware configuration is accomplished by the BIOS POST routines and the BIOS Plug-N-Play Auto-configuration Manager. The configuration utilities always update a checksum for both areas, so that any potential data corruption is detectable by the BIOS before actual hardware configuration takes place. If the data is corrupted, the BIOS load the default configuration and requests that the user reconfigure the system and reboot.

6.3.2 Setup Utility Operation

The ROM-resident Setup utility configures only on-board devices.

The Setup utility screen is divided into four functional areas. Table 31 describes each area:

Table 31. Setup Utility Screen

Keyboard Command Bar	Located at the bottom of the screen. This bar displays the keyboard commands supported by the Setup utility.
Menu Selection Bar	Located at the top of the screen. Displays the various major menu selections available to the user. The server Setup utility major menus are: Main Menu, Advanced Menu, Security Menu, System Menu, Boot Menu, and the Exit Menu.

52 Revision 1.2
Order Number: A85874-002

Download from Www.Somanuals.com. All Manuals Search And Download.

Options Menu	Each Option Menu occupies the left and center sections of the screen. Each menu contains a set of features. Selecting certain features within a major Option Menu drops you into submenus.
Item Specific Help Screen	An item-specific help screen is located at the right side of the screen.

6.3.2.1 Entering Setup Utility

During POST operation, the user is prompted to enter Setup using the F2 function key as follows:

Press <F2> to enter Setup

Note that a few seconds might pass before Setup is entered. This is the result of POST completing test and initialization functions that must be completed before Setup can be entered. When Setup is entered, the Main Menu options page is displayed.

6.3.2.2 Keyboard Command Bar

The bottom portion of the Setup screen provides a list of commands that are used for navigating the Setup utility. These commands are displayed at all times, for every menu and submenu.

Each Setup menu page contains a number of features. Except those used for informative purposes, each feature is associated with a value field. This field contains user-selectable parameters. Depending on the security option chosen and in effect via password, a menu feature's value can be changeable or not. If a value is not changeable due to insufficient security privileges (or other reasons), the feature's value field is inaccessible. The Keyboard Command Bar supports the following:

Key	Option	Description		
F1	Help	Pressing F1 on any menu invokes the general Help window. This window describes the Setup key legend. The up arrow, down arrow, Page Up, Page Down, Home, and End keys scroll the text in this window.		
Enter	Execute Command	The Enter key is used to activate sub-menus when the selected feature is a sub-menu, or to display a pick list if a selected option has a value field, or to select a sub-field for multi-valued features like time and date. If a pick list is displayed, the Enter key will undo the pick list, and allow another selection in the parent menu.		
ESC	Exit	The ESC key provides a mechanism for backing out of any field. This key will undo the pressing of the Enter key. When the ESC key is pressed while editing any field or selecting features of a menu, the parent menu is re-entered.		
		When the ESC key is pressed in any major menu, the exit confirmation window is displayed and the user is asked whether changes can be discarded.		
↑	Select Item	The up arrow is used to select the previous value in a pick list, or the previous options in a menu item's option list. The selected item must then be activated by pressing the Enter key.		
\	Select Item	The down arrow is used to select the next value in a menu item's option list, or a value field's pick list. The selected item must then be activated by pressing the Enter key.		
\leftrightarrow	Select Menu	The left and right arrow keys are used to move between the major menu pages. The keys have no affect if a sub-menu or pick list is displayed.		
F9	Setup Defaults	Pressing F9 causes the following to appear:		
		Setup Confirmation		
		Load default configuration now?		
		[<u>Yes</u>] [No]		
		If "Yes" is selected and the Enter key is pressed, all Setup fields are set to their default values. If "No" is selected and the Enter key is pressed, or if the ESC key is pressed, the user is returned to where they were before F9 was pressed without affecting any existing field values		
F10	Save and Exit	Pressing F10 causes the following message to appear:		
		Setup Confirmation		
		Save Configuration changes and exit now?		
		[Yes] [No]		
		If "Yes" is selected and the Enter key is pressed, all changes are saved and Setup is exited. If "No" is selected and the Enter key is pressed, or the ESC key is pressed, the user is returned to where they were before F10 was pressed without affecting any existing values.		

6.3.2.3 Menu Selection Bar

The Menu Selection Bar is located at the top of the screen. It displays the various major menu selections available to the user:

- Main Menu.
- Advanced Menu.
- Security Menu.
- Server Menu.
- Boot Menu.
- Exit Menu.

These and associated submenus are described below.

6.3.2.3.1 Main Menu Selections

The following tables describe the available functions on the Main Menu, and associated submenus. Default values are highlighted.

Table 32. Main Menu Selections

Feature	Option	Description
System Time	HH:MM:SS	Set the System Time.
System Date	MM/DD/YYYY	Set the System Date.
Legacy Floppy A	Disabled	Hidden if not detected.
	720 KB 3½"	
	1.44/1.25Mb 3½"	
	2.88 MB 3½"	
Legacy Floppy B	Disabled	Hidden if not detected.
	720 KB 3½"	
	1.44/1.25 MB 3½"	
	2.88 MB 3½"	
Hard Disk Pre-delay	Disabled	Allows slower spin-up drives to come ready.
	3 seconds	
	6 seconds	
	9 seconds	
	12 seconds	
	15 seconds	
	21 seconds	
	30 seconds	
Primary IDE Master		Selects sub-menu
Primary IDE Slave		Selects sub-menu
Processor Settings		Selects sub-menu
Language	English (US)	Selects which language BIOS displays.

Feature	Option	Description
	Spanish	
	Italian	
	French	
	German	

Table 33. Primary Master and Slave IDE Submenu Selections

Feature	Option	Description
Туре	Auto	Select the byte of device that is attached to the IDE.
	None	Channel.
	CDROM	If User is selected, the user will need to enter the parameters of IDE device (cylinders, head and
	User	sectors).
	ATAPI Removable	
	IDE Removable	
	Other ATAPI	
CHS format Cylinders	1 to 2048	Number of Cylinders on Drive. This field is only changeable for Type User.
		This field is informational only, for Type Auto.
CHS format Heads	1 to 16	Number of read/write heads on Drive. This field is only available for Type User.
		This field is informational only, for Type Auto.
CHS format Sectors	1 to 64	Number of Sectors per Track. This field is only available for Type User.
		This field is informational only, for Type Auto.
CHS format Maximum Capacity	See description	Computed size of Drive from Cylinders, Heads, and Sectors entered. This field is only available for Type User.
		This field is informational only, for Type Auto.
LBA Format	Information Only	Total number of sectors on the drive that are
Total Sectors		addressable in LBA format.
LBA Format	Information Only	Capacity of the drive while using LBA addressing.
Maximum Capacity		This value may be higher than the 'Maximum Capacity' above for drives bigger than 8.4 GB.
Multi-Sector Transfer	Disabled	Specifies the number of sectors that are transferred
	2 Sectors	per block during multiple sector transfers.
	4 Sectors	This field is informational only, for Type Auto.
	8 Sectors	
	16 Sectors	
LBA Mode Control	Disabled	Enable/Disable LBA instead of cylinder, head,
	Enabled	sector, addressing.
		This field is informational only, for Type Auto.
32 Bit I/O	Disabled	Enabling allows 32 bit IDE data transfers.
	Enabled	This field is informational only, for Type Auto.

Feature	Option	Description
Transfer Mode	Standard	Select the method for moving data to/from the drive.
	FPIO 1	This field is informational only, for Type Auto.
	FPIO 2	This field is updated to display only the modes
	FPIO 3	supported by the attached device.
	FPIO 4	
	FPIO 3 / DMA 1	
	FPIO 4 /DMA 2	
Ultra DMA Mode	Disabled	Selects the Ultra DMA mode used for moving data
	Mode 0	to/from the drive.Autotype the drive toselect the
	Mode 1	optimum transfer mode.
	Mode 2	
	Mode 3	
	Mode 4	
	Mode 5	

Table 34. Processor Settings Submenu Selections

Feature	Option	Description
Processor Retest	No	If yes, BIOS will clear historical processor status and
	Yes	retest all processors on the next boot.
Processor POST speed setting	Information Only	Displays measured processor speed.
Processor 1 CPUID	CPUID	Reports CPUID for Processor 1, if present. If empty,
	Not Installed	reports Vacant. If disabled by BMC, reports
	Disabled	Disabled.
Processor 1 L2 Cache Size	Information Only	Displays L2 Cache Size for Processor 1.
Processor 2 CPUID	CPUID	Reports CPUID for Processor 2, if present. If empty,
	Not Installed	reports Vacant. If disabled by BMC, reports
	Disabled	Disabled.
Processor 2 L2 Cache Size	Information Only	Displays L2 Cache Size for the next Processor.

6.3.2.3.2 Advanced Menu Selections

The following tables describe the menu options and associated submenus available on the Advanced Menu. Please note that MPS 1.4/1.1 selection is no longer configurable. The BIOS always builds MPS 1.4 tables.

Table 35. Advanced Menu Selections

Feature	Option	Description
Memory Configuration		Select sub-menu
PCI Configuration		Selects sub-menu.
I/O Device/peripheral Configuration		Selects sub-menu.
Advanced Chipset Control		Select sub-menu
Boot-time Diagnostic Screen	Disabled Enabled	If enabled, the BIOS will display the OEM logo during POST.
		This option is hidden if the BIOS does not detect a valid logo in the flash area reserved for this purpose.
Reset Configuration Data	No Yes	Select 'Yes' if you want to clear the System Configuration Data during next boot. Automatically reset to 'No' in next boot.
Installed O/S	Other PnP O/S	If PnP O/S is selected, only the devices required to boot the system are configured. If Other is selected, all devices are configured.
Numlock	On Off	Sets power on Numlock state.
Memory/Processor Error	Boot Halt	Selects the behavior of the system in response to a Memory or Processor reconfiguration. If set to Boot, the system will attempt to boot. If set to Halt, the system will require user intervention to complete booting.

Table 36. Memory Configuration Menu Selections

Feature	Option	Description
Memory Bank #1	Normal	Displays the current status of the memory bank.
Memory Bank #2	Not Installed	Disabled indicated that a DIMM in the bank has failed and the entire bank has been disabled.
Memory Bank #3	Disabled	laned and the entire bank has been disabled.
Memory Retest	No	Causes BIOS to retest all memory on next boot.
	Yes	

58 Revision 1.2 Order Number: A85874-002

Download from Www.Somanuals.com. All Manuals Search And Download.

Extended RAM Step	Disabled	Selects the size of step to use during Extended
	1 MB	RAM tests.
	1 KB	
	Every- Location	

Table 37. PCI Configuration Menu Selections

Feature	Option	Description
Embedded SCSI		Selects sub-menu
Embedded NIC 1		Selects sub-menu
Embedded NIC 2		Selects sub-menu
Embedded Video Controller		Selects sub-menu
PCI slot 1		Selects sub-menu
PCI slot 2		Selects sub-menu
PCI slot 3		Selects sub-menu
PCI slot 4		Selects sub-menu
PCI slot 5		Selects sub-menu
PCI slot 6		Selects sub-menu

Table 38. On-board SCSI and LAN Submenu Selections

Feature	Option	Description
SCSI Controller	Enabled	If Disabled, the BIOS will hold the embedded chip in
LAN Controller 1	Disabled	reset. In this configuration, the controller HW is
LAN Controller 2		completely disabled, and will be invisible to the PnP operating systems.
Option ROM Scan	Enabled	If Enabled, initialize device expansion ROM.
	Disabled	

Table 39. On-board VGA Submenu Selections

Feature	Option	Description
VGA Controller	Enabled Disabled	If Disabled, the BIOS will hold the embedded chip in reset. In this configuration, the controller HW is completely disabled, and will be invisible to the PnP operating systems.

Table 40. PCI slot Submenu Selections

Feature	Option	Description

Revision 1.2 59
Order Number: A85874-002

Feature	Option	Description
Option ROM Scan	Enabled	Enable option ROM scan of the selected device.
	Disabled	

Table 41. I/O Device/Peripheral Configuration Submenu Selections

Feature	Option	Description
Serial Port 1	Disabled	If set to "Auto," BIOS or OS configures the port.
	Enabled	
	Auto	
Base I/O Address	3F8h	Selects the base I/O address for COM port 1.
	2F8h	
	3E8h	
	2E8h	
Interrupt	4	Selects the IRQ for COM port 1.
	3	
Serial Port 2	Disabled	If set to "Auto", BIOS or OS configures the port.
	Enabled	
	Auto	
Base I/O Address	3F8h	Selects the base I/O address for COM port B.
	2F8h	
	3E8h	
	2E8h	
Interrupt	4, 3	Selects the IRQ for COM port B.
Parallel Port	Disabled	If set to "Auto," BIOS or configures the port.
	Enabled	
	Auto	
Mode	Output only	Selects Parallel Port Mode.
	Bi-Directional	
	EPP	
	ECP	
Base I/O Address	378h	Selects the base I/O address for LPT port.
	278h	
Interrupt	5	Selects the IRQ for LPT port.
	7	
DMA channel	1	Selects the DMA for LPT port.
	3	
Legacy USB support	Disabled	If disabled, legacy USB support is turned off at the
	Enabled	end of the BIOS POST.
PS/2 Mouse	Disabled	If disabled, PS/2 Mouse Port will not function.
	Enabled	Should make IRQ12 available for other devices.

Table 42. Advanced Chipset Controller Submenu Selections

Feature	Option	Description
PCI Device		Selects sub-menu
Wake On Ring	Enabled	Only controls legacy wake up. May not be present if
	Disabled	not supported.
Wake On LAN	Enabled	Only controls legacy wake up. May not be present if
	Disabled	not supported.
Sleep Button	Present	Selects the sleep button of the platform.
	Absent	

Table 43. PCI Device Submenu Selections

Feature	Option	Description
PCI IRQ line 1	Disable	Select the IRQ for PCI IRQ
:	Auto Select	
PCI IRQ line 16	IRQ3	
	IRQ4	
	IRQ5	
	IRQ7	
	IRQ9	
	IRQ10	
	IRQ11	
	IRQ14	
	IRQ15	

6.3.2.3.3 Security Menu Selections

Table 44. Security Menu Selections

Feature	Option	Description
User Password is	Clear Set	Status only; user cannot modify. Once set, can be disabled by setting to a null string, or clear password jumper on board.
Administrator Password is	Clear Set	Status only; user cannot modify. Once set, can be disabled by setting to a null string, or clear password jumper on board.
Set User Password	Press Enter	When the Enter key is pressed, the user is prompted for a password; press ESC key to abort. Once set, can be disabled by setting to a null string, or clear password jumper on board.

62 Revision 1.2

Feature	Option	Description
Set Administrative Password	Press Enter	When the Enter key is pressed, the user is prompted for a password; press ESC key to abort. Once set, can be disabled by setting to a null string, or clear password jumper on board.
Password on boot	Disabled	If enabled, requires password entry before boot.
	Enabled	
Fixed disk boot	Normal	Will write protect the boot sector of the hard drive to
sector	Write protect	prevent viruses from corrupting the drive under DOS if set to write protect.
Secure Mode Timer	2 minutes	Period of key/PS/2 mouse inactivity specified for
	5 minutes	Secure Mode to activate. A password is required for Secure Mode to function. Has no effect unless at
	10 minutes	least one password is enabled.
	20 minutes	·
	1 hour	
	2 hours	
Hot Key (CTRL-ALT-)	[], [A, B, L ., Z], [0-9]	Key assigned to invoke the secure mode feature. Cannot be enabled unless at least one password is enabled. Can be disabled by entering a new key followed by a backspace or by entering delete.
Secure Mode Boot	Disabled Enabled	System boots in Secure Mode. The user must enter a password to unlock the system. Cannot be enabled unless at least one password is enabled.
Video Blanking	Disabled Enabled	Blank video when Secure mode is activated. A password is required to unlock the system. This cannot be enabled unless at least one password is enabled. This option is only present if the system includes an embedded video controller.
Floppy Write Protect	Disabled	When Secure mode is activated, the floppy drive is
	Enabled	write protected. A password is required to re-enable floppy writes. Cannot be enabled unless at least one password is enabled.
Power Switch Inhibit	Disabled	Determines whether power switch function from front
	Enabled	panel.

6.3.2.3.4 Server Menu Selections

Table 45. Server Menu Selections

Feature	Option	Description
System Management		Selects sub-menu.
Console Redirection		Selects sub-menu.
Service Partition Type		Displays the partition type of the Service Partition; the default is 12h .
Clear Event Log	Enter	If selected, the System Event log will be cleared immediately.

Feature	Option	Description		
Assert NMI on PERR	Disabled	If enabled, PCI bus parity error (PERR) is		
	Enabled	enabled and is routed to NMI.		
Assert NMI on SERR	Enabled	If enabled, PCI bus system error (SERR) is		
	Disabled	enabled and is routed to NMI.		
FRB-2 Policy	FRB2 Disable	Controls the policy of the FRB-2 timeout. This		
	Disable Immediately	option determines when the Boot Strap		
	Never Disable	Processor (BSP) should be disabled if FRB-2 error occur. And Detemines when FRB2 stop.		
	Allow 3 Failures	Citor occur. And Determines when I NB2 stop.		
Thermal Sensor	Disabled	Determines wheter Thermal Sensor monitoring		
	Enabled	function		
BMC IRQ	IRQ11	Determines BMC IRQ.		
	IRQ5			
	IRQ10			
	Disabled			
Post Error Pause	Disabled	If enabled, the boot is stopped when Post error occurs.		
	Enabled			
AC Link	Power On	Selects system power state after AC loss.		
	Last State			
	Stay off			

Table 46. System Management Submenu Selections

Feature	Option	Description
BIOS Version		Information field only
Board Part Number		Information field only
Board Serial Number		Information field only
System Part Number		Information field only
System Serial Number		Information field only
Chassis Part Number		Information field only
Chassis Serial Number		Information field only
BMC Device ID		Information field only.
BMC Device Revision		Information field only.
BMC Firmware Revision		Information field only.
BMC Firmware BootBlock Revision		Information field only.
BMC Support IPMI Version		Information field only.
SDR Revision		Information field only.
PIA Revision		Information field only.
Primary HSBP Revision		Information field only, hidden if not detected
Secondary HSBP Revision		Information field only, hidden if not detected

Table 47. Console Redirection Submenu Selections

Feature	Option	Description				
Serial Port Address	Disabled	When enabled, Console Redirection uses the I/O port				
	On-board COM A	specified. Choosing "Disabled" completely disables				
	On-board COM B	Console Redirection.				
Baud Rate	9600	When Console Redirection is enabled, use the baud				
	19.2k	rate specified. When EMP is sharing the COM port as				
	38.4k	console redirection, the baud rate must be set to 19.2 k to match EMP baud rate, unless auto-baud feature				
	57.6K	is used.				
	115.2k					
Flow Control	None	None = No flow control.				
	CTS/RTS	CTS/RTS = Hardware based flow control.				
	XON/XOFF	XON/XOFF = Software flow control.				
	CTS/RTS + CD	CTS/RTS +CD = Hardware based + Carrier Detect flow control.				
		When EMP is sharing the COM port as console redirection, the flow control must be set to CTS/RTS or CTS/RTS+CD depending on whether a modem is used.				

6.3.2.3.5 Boot Menu Selections

Boot Menu options allow the user to select the boot device. The following table is an example of a list of devices ordered in priority of the boot invocation. Items can be re-prioritized by using the up and down arrow keys to select the device. Once the device is selected, use the plus (+) key to move the device higher in the boot priority list. Use the minus (-) key to move the device lower in the boot priority list.

Table 48. Boot Device Priority Selections

Boot Priority	Device	Description
1	Removable Devices	Attempt to boot from a legacy floppy A: or removable media device like LS-120.
2	Hard Drive	Attempt to boot from a hard drive device.
3	ATAPI CD-ROM Drive	Attempt to boot from an ATAPI CD-ROM drive.
4	PXE UNDI	Attempt to boot from a network. This entry will appear if there is a network device in the system that is controlled by a PXE compliant option ROM.

Table 49. Hard Drive Selections

Option	Description
Drive #1 (or actual drive string) Other bootable cards	To select the boot drive, use the up and down arrows to highlight a device, then press the plus key (+) to move it to the top of the list or the minus key (-) to move it down.
Additional entries for each drive that has a PnP header	Other bootable cards cover all the boot devices that are not reported to the system BIOS through BIOS Boot specification mechanism. It may or may not be bootable, and may not correspond to any device. If BIOS boot spec. support is set to limited, this item covers all drives that are controlled by option ROMs (like SCSI drives). Press ESC to exit this menu.

Table 50. Removable Drive Selections

Feature	Option	Description
Lists Bootable Removable Devices in the	+	Use +/- keys to place the removable devices in the
System	_	boot order you want. Includes Legacy 1.44 MB floppy, 120 MB floppy etc.

6.3.2.3.6 Exit Menu Selections

The following menu options are available on the Exit menu. Use the up and down arrow keys to select an option, and then press the Enter key to execute the option.

Table 51. Exit Menu Selections

Option	Description
Exit Saving Changes	Exit after writing all modified Setup item values to NVRAM.
Exit Discarding Changes	Exit leaving NVRAM unmodified. User is prompted if any of the setup fields were modified.
Load Setup Defaults	Load default values for all SETUP items.
Load Custom Defaults	Load values of all Setup items from previously saved Custom Defaults. NOTE: This is hidden if custom defaults are not valid or present.
Save Custom Defaults	Stores Custom Defaults in NVRAM.
Discard Changes	Read previous values of all Setup items from NVRAM.
Save Changes	Write all Setup item values to NVRAM.

Download from Www.Somanuals.com. All Manuals Search And Download.

6.3.3 CMOS Memory Definition

The CMOS map is available in the NVRAM.LST file generated for every BIOS release. The CMOS map is subject to change without notice.

6.3.4 Clearing CMOS

The BIOS detects the state of the CMOS jumper. If the jumper is set to "CMOS Clear" prior to power-on or a hard reset, the BIOS changes the CMOS and NVRAM settings to a default state. This guarantees the system's ability to boot from floppy.

Password settings are unaffected through CMOS clear. The BIOS clears the ESCD parameter block and loads a null ESCD image. The boot order information is also cleared when CMOS is cleared via jumper. The configuration data for the on-board SCSI controllers is not cleared during a clear CMOS event as each device controls its own default settings

If the Reset Configuration Data option is enabled in Setup, ESCD data and BIOS Boot specification data is cleared and reinitialized in next boot.

6.4 Flash Update Utility

Note: The Phoenix* PHLASH utility must be run without the presence of a 386 protected mode control program, such as Microsoft* Windows* NT* / 2000 or EMM386*. Phoenix* PHLASH uses the processor's flat addressing mode to update the flash ROM.

6.4.1 Loading the System BIOS

The BIOS update utility (PHLASH) loads a new copy of the BIOS into Flash ROM. The loaded code and data include the following:

- On-board Video BIOS and SCSI BIOS
- BIOS Setup Utility
- Quiet Boot Logo Area

When running PHLASH in interactive mode, the user may choose to update a particular Flash area. Updating a flash area takes a file or series of files from a hard or floppy disk, and loads it in the specified area of Flash ROM.

To manually load a portion of the BIOS, the user must specify which data file(s) to load. The choices include PLATCBLU.BIN, PLATCXLU.BIN, PLATCXXX.BIN, PLATCXXLBIN or PLATCXXU.BIN. The last three letters specify the functions to perform during the flash process:

C = Rewrite BIOS

B = Rewrite Boot block

L = Clear LOGO area

U = Clear user binary

X = place hold

This file is loaded into the PHLASH program with the /b=<bin file>.

The disk created by the BIOS.EXE program automatically runs "PHLASH /s /b=PLATCXLU.BIN command" in non-interactive mode. For a complete list of PHLASH options, run "PHLASH /h".

Once an update of the system BIOS is complete, the user is prompted for a reboot. The user binary area is also updated during a system BIOS update. User binary can be updated independently of the system BIOS. CMOS is cleared when the system BIOS is updated.

6.4.2 User Binary Area

The BIOS flash ROM includes a 16 KB area in flash for implementation-specific OEM add-ons. The user binary area can be saved and updated. The valid extension for user files is *.ROM.

6.4.3 Language Area

The system BIOS language area can be updated only by updating the entire BIOS. The BIOS supports English, Spanish, French, German, and Italian. These languages are selectable using Setup.

6.4.4 OEM Logo Screen

A 128 KB region of Flash ROM is available to store the OEM logo in compressed format. The BIOS contains the standard Intel logo. Using the Phoenix* PHLASH utility, this region can be updated with an OEM supplied logo image. The OEM logo must fit within 640 X 384 size. If an OEM logo is flashed into the system, it overrides the built in Intel logo.

6.4.5 Recovery Mode

The SDS2 baseboard supports a method for performing a BIOS recovery in order to restore the system from a failed flash. This utilizes a jumper on the baseboard. The system beeps through out the process. The recovery BIOS boots only from a 1.44 MB floppy diskette inserted into a 1.44 MB floppy drive or LS-120/240 drive. Nothing is displayed to the video screen during the recovery process.

Note: The user must make the Recovery floppy diskette following the instructions included in the release notes. Failure to do so will cause the process to fail.

6.4.5.1 Performing BIOS Recovery

The follow procedure boots the recovery BIOS and flashes the normal BIOS.

- 1. Prepare a BIOS recovery diskette by following the instructions included with the BIOS release.
- 2. Turn off system power.
- 3. Move the BIOS recovery jumper to the recovery position.
- 4. Insert the BIOS recovery diskette.

68 Revision 1.2
Order Number: A85874-002

Download from Www.Somanuals.com. All Manuals Search And Download.

5. Turn on system power.

The system boots from the recovery diskette. The BIOS will beep twice when the update process starts. The system will continue to beep while updating the BIOS. If BIOS update completes successfully, the system will stop beeping. If the update fails, the system will sound an alternating pattern of a buzz and a beep.

When the flash update completes:

- 1. Turn off system power.
- 2. Remove the recovery diskette.
- 3. Restore the recovery jumper to its original position.
- 4. Turn on system power.
- 5. Flash any custom blocks such as user binary.

The system should now boot normally using the updated system BIOS.

7. Clock/Voltage Generation and Distribution

7.1 Clock

All buses on the SDS2 Server Board operate using synchronous clocks. Clock synthesizer/driver circuitry on the Server Board generates clock frequencies and voltage levels as required, including the following:

- 133 MHz at 2.5 V logic levels: For CPU1, CPU2, HE-SL, DIMM Sockets and the ITP port
- 66 MHz at 3.3 V logic levels: For HE-SL, CIOB, P64-B and P64-C PCI slots
- 48 MHz at 3.3V logic levels: For CSB5's USB
- 33.3 MHz at 3.3 V logic levels: For CIOB, CSB5 and on-board PCI devices and slots
- 16.67 MHz at 2.5 V logic levels: For processor and the CSB5 APIC bus clocks
- 14.318 MHz at 3.3V logic levels: For CSB5 and Video

Other clock sources on the SDS2 Server Board generates:

- 80 MHz at 3.3 V logic levels: For Ultra 360 SCSI Controller
- 32.768 MHz at 3.3 V logic levels: For SIO and BMC
- 14.318 MHz at 3.3 V logic levels: for main clock generator

For information on processor clock generation, see the *CK133-WS Synthesizer/Driver Specification*.

The following figure illustrates clock generation and distribution on SDS2 Server Board.

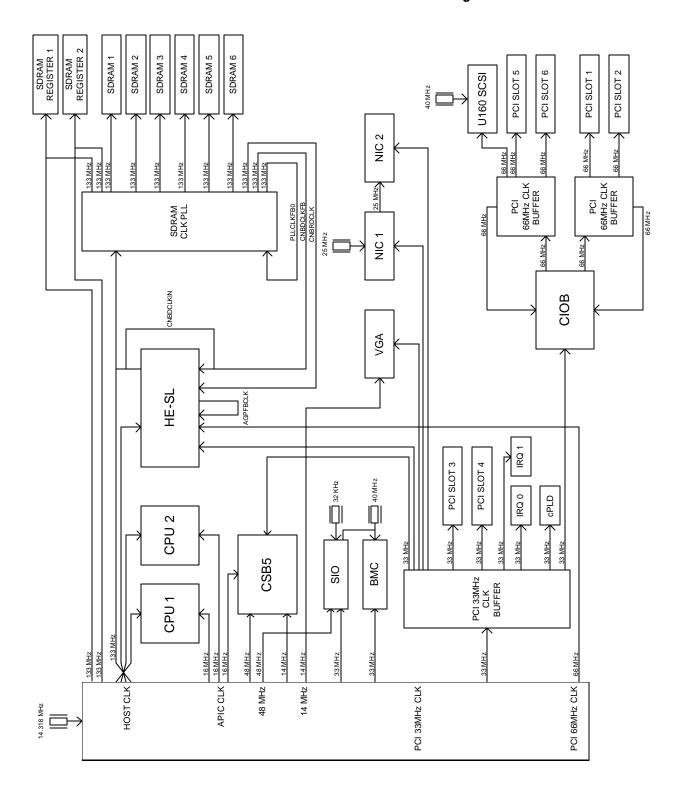


Figure 8. SDS2 Server Board Clock Generation/Distribution Diagram

7.2 Voltage

The system power supply provides +3.3V, +5V, +12V, -12V, and +5VSB and voltage regulators on the Server Board are used to create the following voltages:

- +3.3VSB
- VCORE for the CPUs
- VTT for the CPUs
- +2.5V for the chipsets
- +1.8V for the onboard SCSI

The following figure illustrates voltage generation and distribution on the SDS2 Server Board.

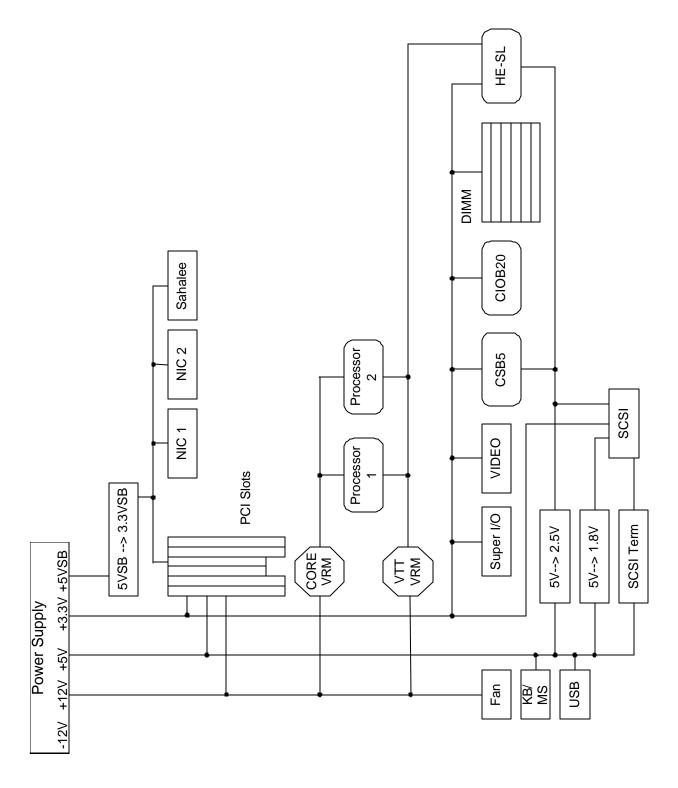


Figure 9. SDS2 Server Board Voltage Generation/Distribution Diagram

8. Connections

8.1 Power Distribution Board Connector

The main power supply connection is obtained using a 24-pin connector. A separate 8-pin connector is used for the +12 V power connector dedicated to providing power to the processor. A third 5-pin auxiliary signal connector is used to communicate with the power supply. The following tables define the pin-outs of these connectors.

Pin Signal Color Pin Signal Color +3.3 V Orange 13 +3.3 V Orange 2 +3.3 V Orange 14 -12 V Blue COM 3 Black 15 COM Black +5 V PS_ON# 4 Red 16 Green Black 5 COM 17 COM Black 6 +5 V Red 18 COM Black COM COM Black 19 Black PWR_OK 20 RSVD_(-5 V) 8 Gray White 5 VSB Purple 21 +5 V Red 10 +12 V_IO Yellow 22 +5 V Red +12 V_IO 23 +5 V 11 Yellow Red +3.3 V COM 12 Orange 24 Black

Table 52, 24-Pin Main Power Connector Pin-out

Table 53. 8-Pin +12 V Power Connector Pin-out

Pin	Signal	Color	Pin	Signal	Color
1	COM_CPU	Black	5	+12V_CPU	Yellow
2	COM_CPU	Black	6	+12V_CPU	Yellow
3	COM_CPU	Black	7	+12V_CPU	Yellow
4	COM_CPU	Black	8	+12V_CPU	Yellow

Note: The SDS2 server board requires a +12 V Power Connector. The board will not power on without +12 V Power supplied to this connector.

Table 54. Aux Signal Connector Pin-out

Pin	Signal Name
1	I2C Clock
2	I2C Data

74 Revision 1.2

3	PS_ALERT (Not Used)
4	ReturnS
5	3.3RS

8.2 Memory Module Connector

The SDS2 Server Board has six PC-133 SDRAM DIMM connectors and supports registered SDRAM modules. For more information on DIMM modules refer to *PC SDRAM Registered DIMM Design Support Document Rev 1.2.*

Table 55. DIMM Connector Pin-out

Pin	Front	Pin	Front	Pin	Front	Pin	Back	Pin	Back	Pin	Back
1	V _{SS}	29	DQM1	57	DQ18	85	V _{SS}	113	DQM5	141	DQ50
2	DQ0	30	CS0#	58	DQ19	86	DQ32	114	CS1#	142	DQ51
3	DQ1	31	DU 1	59	V_{DD}	87	DQ33	115	RAS#	143	V_{DD}
4	DQ2	32	V _{SS}	60	DQ20	88	DQ34	116	V _{SS}	144	DQ52
5	DQ3	33	A0	61	NC	89	DQ35	117	A1	145	NC
6	V_{DD}	34	A2	62	V_{REF}	90	V_{DD}	118	A3	146	V_{REF}
7	DQ4	35	A4	63	CKE1	91	DQ36	119	A5	147	REGE
8	DQ5	36	A6	64	V _{SS}	92	DQ37	120	A7	148	V _{SS}
9	DQ6	37	A8	65	DQ21	93	DQ38	121	A9	149	DQ53
10	DQ7	38	A10/AP	66	DQ22	94	DQ39	122	BA0	150	DQ54
11	DQ8	39	BA1	67	DQ23	95	DQ40	123	A11	151	DQ55
12	VSS	40	V_{DD}	68	V _{SS}	96	V _{SS}	124	V_{DD}	152	V _{SS}
13	DQ9	41	V_{DD}	69	DQ24	97	DQ41	125	CLK1	153	DQ56
14	DQ10	42	CLK0	70	DQ25	98	DQ42	126	A12	154	DQ57
15	DQ11	43	V _{SS}	71	DQ26	99	DQ43	127	V _{SS}	155	DQ58
16	DQ12	44	DU 1	72	DQ27	100	DQ44	128	CKE0	156	DQ59
17	DQ13	45	CS2#	73	V_{DD}	101	DQ45	129	CS3#	157	V_{DD}
18	V_{DD}	46	DQM2	74	DQ28	102	V_{DD}	130	DQM6	158	DQ60
19	DQ14	47	DQM3	75	DQ29	103	DQ46	131	DQM7	159	DQ61
20	DQ15	48	DU 1	76	DQ30	104	DQ47	132	A13	160	DQ62
21	CB0	49	V_{DD}	77	DQ31	105	CB4	133	V_{DD}	161	DQ63
22	CB1	50	NC	78	V _{SS}	106	CB5	134	NC	162	V _{SS}
23	V _{SS}	51	NC	79	CLK2	107	V _{SS}	135	NC	163	CLK3
24	NC	52	CB2	80	NC	108	NC	136	CB6	164	NC
25	NC	53	CB3	81	WP	109	NC	137	CB7	165	SA0
26	V_{DD}	54	V _{SS}	82	SDA	110	V_{DD}	138	V _{SS}	166	SA1
27	WE#	55	DQ16	83	SCL	111	CAS#	139	DQ48	167	SA2
28	DQM0	56	DQ17	84	V_{DD}	112	DQM4	140	DQ49	168	V_{DD}

Note:

1024 Don't Use

8.3 System Management Headers

8.3.1 ICMB Connector

The Intelligent Chassis Management Bus (ICMB) allows inter-chassis communications between intelligent chassis. This makes it possible to externally access chassis management functions, alert logs, port-mortem data, etc. Additional information about ICMB can be found in the *Intelligent Chassis Management Bus, Version 1.0.*

Table 56. ICMB Connector Pin-out

Pin	Signal Name	Туре	Description
1	5VSB	Power	
2	ICMB_TX	Signal	Transmit signal
3	ICMB_EN	Signal	Enable signal
4	ICMB_RX	Signal	Receive signal
5	GND	GND	

8.3.2 OEM IPMB Connector

Table 57. IPMB Connector Pin-out

Pin	Signal Name	Description
1	IPMB_SDA	5 VSB Data Line
2	GND	GND
3	IPMB_SCL	5 VSB Clock Line

8.3.3 SCSI HSBP (IPMB) Connector

The Intelligent Platform Management Bus (IPMB), as used on SDS2 Server Board allows for connections to Hot Swap Back planes (HSBP) with multiple hard drives.

Table 58, HSBP-A Connector Pin-out

Pin	Signal Name	Description	
1	IPMB_SDA	5 VSB Data Line	
2	GND	GND	
3	IPMB_SCL	5 VSB Clock Line	
4	I2C_ADR_CNTRL	Address Control	

Table 59. HSBP-B Connector Pin-out

Pin	Signal Name	Description		
1	IPMB_SDA	5 VSB Data Line		
2	GND	GND		
3	IPMB_SCL	5 VSB Clock Line		
4	I2C_ADR_CNTRL	Address Control		

8.4 Front Panel Header

A 34-pin header is provided for cabling to the system front panel. The header contains reset, NMI, power control buttons, and LED indicators. The table below details the pin-outs of the header.

Table 60. Front Panel 34-Pin Header Pin-out

Pin	Signal Name	Pin	Signal Name
1	Power LED Anode	2	5VSB
3	KEY	4	Fan Fail LED Anode
5	Power LED Cathode	6	Fan Fail LED Cathode
7	HDD Activity LED Anode	8	Power Fault LED Anode
9	HDD Activity LED Cathode	10	Power Fault LED Cathode
11	Power Switch	12	NIC#1 Activity LED Anode
13	GND (Power Switch)	14	NIC#1 Activity LED Cathode
15	Reset Switch	16	I2C SDA
17	GND (Reset Switch)	18	I2C SCL
19	ACPI Sleep Switch	20	Chassis Intrusion
21	GND (ACPI Sleep Switch)	22	NIC#2 Activity LED Anode
23	NMI to CPU Switch	24	NIC#2 Activity LED Cathode
25	KEY	26	KEY
27	ID LED Anode	28	System Ready Anode
29	ID LED Cathode	30	System Ready Cathode
31	ID Switch	32	HDD Fault Anode
33	GND (ID Switch)	34	HDD Fault Cathode

8.5 PCI Slot Connector

The Server Board support two 32-bit, 33-MHz 5V PCI Slots and four 64-bit, 66-MHz 3.3 V PCI Slots. The tables below define their pin-outs.

Table 61. 32-bit 5 V PCI Slot Pin-out

Pin	Side B	Side A	Pin	Side B	Side A
1	-12 V	TRST#	32	AD[17]	AD[16]
2	TCK	+12 V	33	C/BE[2]#	+3.3 V
3	Ground	TMS	34	Ground	FRAME#
4	TDO	TDI	35	IRDY#	Ground
5	+5 V	+5 V	36	+3.3 V	TRDY#
6	+5 V	INTA#	37	DEVSEL#	Ground
7	INTB#	INTC#	38	Ground	STOP#
8	INTD#	+5 V	39	LOCK#	+3.3 V
9	PRSNT1#	RSV	40	PERR#	SMBUS CLK
10	RSV	+5 V	41	+3.3 V	SMBUS DAT
11	PRSNT2#	RSV	42	SERR#	Ground
12	Ground	Ground	43	+3.3 V	PAR
13	Ground	Ground	44	C/BE[1]#	AD[15]
14	RSV	3.3 VSB	45	AD[14]	+3.3 V
15	Ground	RST#	46	Ground	AD[13]
16	CLK	+5 V (I/O)	47	AD[12]	AD[11]
17	Ground	GNT#	48	AD[10]	Ground
18	REQ#	Ground	49	Ground	AD[09]
19	+5 V	PME#	50	Connector Key	Connector Key
20	AD[31]	AD[30]	51	Connector Key	Connector Key
21	AD[29]	+3.3 V	52	AD[08]	C/BE[0]#
22	Ground	AD[28]	53	AD[07]	+3.3 V
23	AD[27]	AD[26]	54	+3.3 V	AD[06]
24	AD[25]	Ground	55	AD[05]	AD[04]
25	+3.3 V	AD[24]	56	AD[03]	Ground
26	C/BE[3]#	IDSEL	57	Ground	AD[02]
27	AD[23]	+3.3 V	58	AD[01]	AD[00]
28	Ground	AD[22]	59	+5 V	+5 V (I/O)
29	AD[21]	AD[20]	60	ACK64#	REQ64#
30	AD[19]	Ground	61	+5 V	+5 V
31	+3.3 V	AD[18]	62	+5 V	+5 V

Table 62: 64-bit 3.3V PCI Slot Pin-out

Pin Side B	Side A	Pin	Side B	Side A
------------	--------	-----	--------	--------

Pin	Side B	Side A	Pin	Side B	Side A
1	-12 V	TRST#	49	M66EN	AD[09]
2	TCK	+12 V	50	Ground	Ground
3	Ground	TMS	51	Ground	Ground
4	TDO	TDI	52	AD[08]	C/BE[0]#
5	+5 V	+5 V	53	AD[07]	+3.3 V
6	+5 V	INTA#	54	+3.3 V	AD[06]
7	INTB#	INTC#	55	AD[05]	AD[04]
8	INTD#	+5 V	56	AD[03]	Ground
9	PRSNT1#	RSV	57	Ground	AD[02]
10	RSV	+3.3 V	58	AD[01]	AD[00]
11	PRSNT2#	RSV	59	+3.3 V	+3.3 V
12	Connector Key	Connector Key	60	ACK64#	REQ64#
13	Connector Key	Connector Key	61	+5 V	+5 V
14	RSV	3.3 VSB	62	+5 V	+5 V
15	Ground	RST#			
16	CLK	+3.3 V			
17	Ground	GNT#	63	RSV	Ground
18	REQ#	Ground	64	Ground	C/BE[7]#
19	+3.3 V	PME#	65	C/BE[6]#	C/BE[5]#
20	AD[31]	AD[30]	66	C/BE[4]#	+3.3 V
21	AD[29]	+3.3 V	67	Ground	PAR64
22	Ground	AD[28]	68	AD[63]	AD[62]
23	AD[27]	AD[26]	69	AD[61]	Ground
24	AD[25]	Ground	70	+3.3 V	AD[60]
25	+3.3 V	AD[24]	71	AD[59]	AD[58]
26	C/BE[3]#	IDSEL	72	AD[57]	Ground
27	AD[23]	+3.3 V	73	Ground	AD[56]
28	Ground	AD[22]	74	AD[55]	AD[54]
29	AD[21]	AD[20]	75	AD[53]	+3.3 V
30	AD[19]	Ground	76	Ground	AD[52]
31	+3.3 V	AD[18]	77	AD[51]	AD[50]
32	AD[17]	AD[16]	78	AD[49]	Ground
33	C/BE[2]#	+3.3 V	79	+3.3 V	AD[48]
34	Ground	FRAME#	80	AD[47]	AD[46]
35	IRDY#	Ground	81	AD[45]	Ground
36	+3.3 V	TRDY#	82	Ground	AD[44]
37	DEVSEL#	Ground	83	AD[43]	AD[42]
38	Ground	STOP#	84	AD[41]	+3.3 V
39	LOCK#	+3.3 V	85	Ground	AD[40]
40	PERR#	SMBUS CLK	86	AD[39]	AD[38]
41	+3.3 V	SMBUS DAT	87	AD[37]	Ground
42	SERR#	Ground	88	+3.3 V	AD[36]
43	+3.3 V	PAR	89	AD[35]	AD[34]
44	C/BE[1]#	AD[15]	90	AD[33]	Ground

Pin	Side B	Side A	Pin	Side B	Side A
45	AD[14]	+3.3 V	91	Ground	AD[32]
46	Ground	AD[13]	92	RSV	RSV
47	AD[12]	AD[11]	93	RSV	Ground
48	AD[10]	Ground	94	Ground	RSV

8.6 I/O Connectors

8.6.1 VGA Connector

The video connector interface is a standard VGA compatible 15-pin connector. An ATI RAGE XL video controller with 4 MB of on-board video memory supplies video. The following table details the pin-out of the VGA connector.

Table 63. VGA Connector Pin-out

Pin	Signal Name		
1	Red (analog color signal R)		
2	Green (analog color signal G)		
3	Blue (analog color signal B)		
4	N/C		
5	GND		
6	GND		
7	GND		
8	GND		
9	Fused VCC (+5V)		
10	GND		
11	N/C		
12	DDCDAT		
13	HSYNC (horizontal sync)		
14	VSYNC (vertical sync)		
15	DDCCLK		

8.6.2 SCSI Connector

The SDS2 Server Board provides two SCSI connectors accessible internally. The following table details the pin-out of the 68-pin SCSI connector.

Table 64. 68-pin SCSI Connector Pin-out

Connector Contact Number	Signal Name	Signal Name	Connector Contact Number
1	+DB(12)	-DB(12)	35
2	+DB(13)	-DB(13)	36

80 Revision 1.2 Order Number: A85874-002

Connector Contact Number	Signal Name	Signal Name	Connector Contact Number
3	+DB(14)	-DB(14)	37
4	+DB(15)	-DB(15)	38
5	+DB(P1)	-DB(P1)	39
6	+DB(0)	-DB(0)	40
7	+DB(1)	-DB(1)	41
8	+DB(2)	-DB(2)	42
9	+DB(3)	-DB(3)	43
10	+DB(4)	-DB(4)	44
11	+DB(5)	-DB(5)	45
12	+DB(6)	-DB(6)	46
13	+DB(7)	-DB(7)	47
14	+DB(P)	-DB(P)	48
15	GROUND	GROUND	49
16	GROUND	GROUND	50
17	RESERVED	RESERVED	51
18	RESERVED	RESERVED	52
19	RESERVED	RESERVED	53
20	GROUND	GROUND	54
21	+ATN	-ATN	55
22	GROUND	GROUND	56
23	+BSY	-BSY	57
24	+ACK	-ACK	58
25	+RST	-RST	59
26	+MSG	-MSG	60
27	+SEL	-SEL	61
28	+C/D	-C/D	62
29	+REQ	-REQ	63
30	+I/O	-I/O	64
31	+DB(8)	-DB(8)	65
32	+DB(9)	-DB(9)	66
33	+DB(10)	-DB(10)	67
34	+DB(11)	-DB(11)	68

8.6.3 NIC Connectors

The SDS2 Server Board supports two RJ-45 connectors. The following table details the pin-out of these connectors.

Table 65. RJ-45 Connector Pin-out

Pin	Signal Name	Pin	Signal Name

Revision 1.2 81
Order Number: A85874-002

1	TXDP	7	RXDP
2	TXDM	8	RXDM
3	N/C	9	Activity LED Cathode
4	N/C	10	Link LED Anode
5	N/C	11	Speed LED Anode
6	N/C	12	3VSB

8.6.4 IDE Connector

There is one IDE channel on the Server Board through the use of a 40-pin connector. The connector pin-out is detailed in the table below. Note IDE LED hard disk drive activity (Pin 39) signal is not routed to the front panel connector. IDE hard disk activity will not cause the front panel LED's to turn on.

Table 66. IDE 40-pin Connector Pin-out

Pin	Signal Name	Pin	Signal Name
1	RESET_L	2	GND
3	DD7	4	IDE_DD8
5	DD6	6	IDE_DD9
7	DD5	8	IDE_DD10
9	DD4	10	IDE_DD11
11	DD3	12	IDE_DD12
13	DD2	14	IDE_DD13
15	DD1	16	IDE_DD14
17	DD0	18	IDE_DD15
19	GND	20	KEY
21	IDE_DMARQ_L	22	GND
23	IDE_IOW_L	24	GND
25	IDE_IOR_L	26	GND
27	IDE_IORDY	28	GND
29	IDE_DMAACK_L	30	GND
31	IRQ_IDE	32	N/C
33	IDE_A1	34	N/C
35	IDE_A0	36	IDE_A2
37	IDE_DCS0_L	38	IDE_DCS1_L
39	IDE_HD_ACT_L	40	GND

8.6.5 Universal Serial Bus (USB) Connectors

The Server Board provides four USB ports: three on the rear I/O and one internally through a 10-pin header. The following table details the pin-out of the stacked three-port USB connector.

Table 67. Stacked Three-port USB Connector Pin-out

82 Revision 1.2 Order Number: A85874-002

Pin	Signal Name		
1	Fused 5 V		
2	USB_PORT1_D-		
3	USB_PORT1_D+		
4	GND		
5	Fused 5 V		
6	USB_PORT2_D-		
7	USB_PORT2_D+		
8	GND		
9	Fused 5 V		
10	USB_PORT3_D-		
11	USB_PORT3_D+		
12	GND		

A 10-pin header (2X5) located at CN18 on the Server Board provides an option to cable out the USB to the front panel. The pin-out of the header is detailed in the following table that is representative of the Foxconn HL07051-P9 Housing located at CN18.

Pin 6 +5Volts	Pin 7 USB_PORT4_D-	Pin 8 USB_PORT4_D +	Pin 9 GND	Pin 10 N/C
Pin 1 N/C	Pin 2 N/C	Pin 3 N/C	Pin 4 N/C	Pin 5 KEY

Table 68. 10-pin USB Connection Header (2 x 5) Pin-out

Pin	Signal name	
1	N/C	
2	N/C	
3	N/C	
4	N/C	
5	KEY	
6	Fused 5 V	
7	USB_PORT4_D-	
8	USB_PORT4_D+	
9	GND	
10	N/C	

8.6.6 Floppy Connector

The following table details the pin-out of the 34-pin floppy connector.

Revision 1.2 83
Order Number: A85874-002

Signal Name Signal Name Pin Pin GND 2 FD_DENSEL 1 GND Test Point 3 4 KEY 5 FD_DRATE0 6 FD_INDEX_L 7 **GND** 8 FD MTRA L 9 **GND** 10 12 FD_DRVSELB_L **GND** 11 13 **GND** 14 FD_DRVSELA_L FD MTRB L 15 **GND** 16 FD_DIR_L 17 **GND** 18 19 **GND** 20 FD_STEP_L **GND** 22 FD_WDATA_L 21 FD_WGATE_L 23 **GND** 24 25 GND FD_TRK0_L 26 27 **GND** 28 FD_WPT_L **GND** FD_RDATA_L 29 30 FD_HDSEL_L **GND** 32 31 GND FD_DSKCHG_L 33 34

Table 69. 34-pin Floppy Connector Pin-out

8.6.7 Serial Port Connector

Two serial ports are provided on the Server Board, one DB9 connector is located on the rear I/O to supply COM1 and a 10-pin header at location CN33 provides COM2. The following tables detail their connector pin-outs.

Table 70. DB9 Serial Port Pin-out

Pin	Signal Name	Description
1	DCD	Data Carrier Detect
2	RXD	Receive Data
3	TXD	Transmit Data
4	DTR	Data Terminal Ready
5	GND	Ground
6	DSR	Data Set Ready
7	RTS	Request to Send
8	CTS	Clear to Send
9	RI	Ring Indicate

Table 71. 10-pin Header Serial Port Pin-out

Revision 1.2

Pin	Signal Name	Description
1	DCD	Data Carrier Detect
2	RXD	Receive Data
3	TXD	Transmit Data
4	DTR	Data Terminal Ready
5	GND	Ground
6	DSR	Data Set Ready
7	RTS	Request to Send
8	CTS	Clear to Send
9	RI	Ring Indicate
10	KEY	Key

8.6.8 Parallel Port

One DB25 parallel port connector is provided on the rear I/O. The following table details the pinout of the connector.

Pin **Signal Name** Pin Signal Name STROBE_L 14 AUTOFD_L 1 2 DATA0 ERROR_L 15 DATA1 INIT_L 16 DATA2 SLCT_INPUT_L 4 17 DATA3 GND 18 DATA4 GND 6 19 DATA5 7 20 **GND** DATA6 GND 8 21 DATA7 9 22 **GND** ACK L GND 10 23 BUSY 11 24 **GND** 12 PAPER_END 25 GND 13 SELECT

Table 72. DB25 Parallel Port Pin-out

8.6.9 Keyboard and Mouse Connector

Two PS/2 ports are provided for keyboard and mouse and share a common housing. The top one is labeled "mouse" and the bottom is labeled "keyboard," although the board set supports swapping these connections. The following table details the pin-out of the PS/2 connectors.

Table 73. Keyboard and Mouse PS/2 Connector Pin-out

Revision 1.2 85
Order Number: A85874-002

	Keyboard	Mouse		
Pin Signal Name		Pin	Signal Name	
1	KBDATA	1	MSDATA	
2	N/C	2	N/C	
3	GND	3	GND	
4	Fused 5V	4	Fused 5V	
5	KBCLK	5	MSCLK	
6	N/C	6	N/C	

8.7 Miscellaneous Headers

8.7.1 Fan Headers

There are two fan connectors for processors and four system fan connectors. All six fans are monitored by the BMC and they all share the same pin-out.

Table 74. Fan Header Pin-out

Pin	Signal Name	Туре	Description	
1	GND	Power	GROUND is the power supply ground	
2	12V	Power	Power Supply 12 V	
3	Fan Tach	Out	FAN_TACH signal is connected to the BMC to monitor the FAN speed	

8.7.2 Chassis Intrusion

The BMC monitors the chassis intrusion switch by polling the ADM1026 device. The cable from the chassis cover is connected through the 2-pin header below. To disable chassis intrusion detection, short the 2-pin header with a jumper.

Table 75. Chassis Intrusion Header Pin-out

Pin	Signal name		
1	CHASSIS_INTR		
2	GND		

8.7.3 External SCSI Activity LED Input Signal Connector

A 4-pin header (labeled HDD LED at CN44) is provided on the Server Board to track SCSI drive activity on the Hot Swap Back-plane. The following table details the pin-out of the header. This allows two RAID controller cards to connect their disk activity cables to the front panel hard disk LED activity light. Note that IDE hard disk activity LED is not enabled on the SDS2 board via the front panel connector at CN37. Pins 2 and 3 are tied together routed through an AND gate to Pin 9 of CN37 front panel connector.

86 Revision 1.2
Order Number: A85874-002

Table 76. External Drive Activity Header Pin-out

Pin	Signal name		
1	N/C		
2	DRIVE_ACTIVITY		
3	DRIVE_ACTIVITY		
4	N/C		

8.8 Rear I/O Panel

The following diagram shows the locations of keyboard, mouse, USB, serial, parallel, video, and NIC connector interfaces on the system I/O panel, as viewed from the rear of the system.

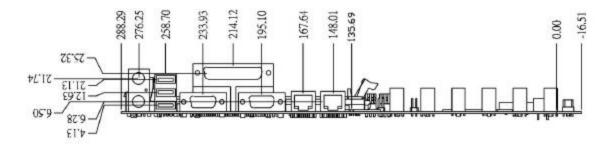


Figure 10. SDS2 Server Board Rear I/O Panel

8.9 Connector Manufacturers and Part Numbers

The following table shows the quantity and manufacturer's part numbers for connectors on the Server Board. Refer to manufacturer's documentation for more information on connector mechanical specifications.

Table 77. Server Board Connector Manufacturer Part Numbers

CN Numbers	Qty	Manufacturer	Mfg. Part #	Functional Description
U1, U4	2	Molex*	67276-3708 Rev. 4	P370 processor sockets
DIMM 1-6	6	FOXCONN*	390170-6	168-pin DIMM connectors
11,12,15,16	4	FOXCONN	EH09201-GY-V	64-bit PCI connectors (3.3V)
7, 9	2	FOXCONN	EH06001-GV-V	32-bit PCI connectors (5V)
13, 14	2	FOXCONN	QA11343-P1	68-pin SCSI connectors
30, 31	1	FOXCONN	HL07207-KD2	40-pin IDE connector
24	1	FOXCONN	HL07177-KD4	34-pin floppy connector
3, 4	2	PULSE*	J0026D01B	RJ-45 NIC connectors
27	1	AMP*	11076-4	15-pin DSUB video connector

Revision 1.2 87
Order Number: A85874-002

CN Numbers	Qty	Manufacturer	Mfg. Part #	Functional Description	
25	1	FOXCONN	MH11061-PD2	25-pin DSUB parallel port connector	
22	1	FOXCONN	DT10121-P5T	DB9 serial port connector	
33	1	FOXCONN	HL07051-P5	10-pin serial port header	
19	1	FOXCONN	UB1112C-M1	3-pole USB connector	
18	1	FOXCONN	HL07051-P9	10-pin USB header	
17	1	FOXCONN	MH11061-PD2	Dual PS/2 keyboard / mouse connector	
50	1	AMP	171825-2	2-pin chassis intrusion connector	
1	1	MOLEX	39-28-1243	2x12-Pin ATX12 main power connector	
10	1	MOLEX	39-28-1083	2x4-pin +12 V power connector	
BT1	1	FOXCONN	BB10209-A5	Battery holder	
40, 41	2	FOXCONN	HF55040	4-pin HSBP connector	
39	1	MOLEX	22-03-5035	3-pin OEM IPMB connector	
47	1	FOXCONN	HB11021	2-pin BMC firmware write protect header	
46	1	FOXCONN	HB11021	2-pin BIOS write protect header	
48	1	FOXCONN	HB11021	2-pin BMC FRB timer disable header	
49	1	FOXCONN	HB11021	2-pin BMC FRC update header	
5	1	SPEED TECH*	H111-1180-031	3-pin BMC SRAM header	
8	1	FOXCONN	HB11031	3-pin CPU ITP TDO header	
2, 20, 21, 29, 36, 38	6	FOXCONN	HF08030-P1	3-pin fan connector	
44	1	AMP	640456-4	4-pin drive activity connector	
6	1	MOLEX	70541-0004	5-pin AUX power connector	
59	1	SPEED TECH	H112-1180-121	2x6-pin processor speed ratio header	
37	1	SPEED TECH	H112-1180-121	2x17-pin front panel connector	
42	1	FOXCONN	HC11051	2x5-pin system configuration setting header	
J2	1	MOLEX		5-pin ICMB connector	
23	1			1x8-pin cPLD Programming Header	

9. Jumpers

9.1 System Configuration Jumpers

This section describes jumper options on the Server Board.

Jumper headers provide various configuration options, as shown in the figure below. All jumper headers except the Chassis Intrusion header (CN50) are located near the front of the board, between the coin-cell battery socket and the IDE connector. The Chassis Intrusion header is located near the back corner of the board, next to the PCI Slot 6 connector.

Intel® Server Board SDS2 Jumpers

CN42	DEFAULT	FUNCTION	CN48	DEFAULT	FUNCTION
① ②	OPEN	CLOSED = CMOS Clear	① ②	OPEN	CLOSED = FRB3 Timer Disable
(3 4)	OPEN	CLOSED = Password Disable			
(§ 6)	OPEN	CLOSED = RSV	CN49	DEFAULT	FUNCTION
(7 8)	OPEN	CLOSED = RSV	(1) (2)	OPEN	CLOSED = BMC Force Update
(9 (b)	OPEN	CLOSED = BIOS Recovery			
(O O)	CLOSED	SPARE JUMPER	CN50	DEFAULT	FUNCTION
			(0 2)	CABLED	CLOSED = Chassis Instrusion Disable
CN45	DEFAULT	FUNCTION			
$\overline{}$					
$(0 \ 2)$	OPEN	CLOSED = RSV	CN59	DEFAULT	FUNCTION
(O 2)	OPEN	CLOSED = RSV	CN59	DEFAULT OPEN	FUNCTION CPU Frequency Select
① ② CN46	OPEN DEFAULT	CLOSED = RSV FUNCTION		_	
			(1) (2)	OPEN	CPU Frequency Select
CN46	DEFAULT	FUNCTION	① ② ③ ④	OPEN OPEN	CPU Frequency Select CPU Frequency Select
CN46	DEFAULT	FUNCTION	① ② ③ ④ ⑤ ⑥	OPEN OPEN	CPU Frequency Select CPU Frequency Select CPU Frequency Select

Figure 11. SDS2 Configuration Jumpers

Note: CN59 CPU Frequency Select jumper header pins are not installed on production FAB4 (PBA A58285-402 or –403) and FAB5 (PBA A58285-502)

The following figure details the locations of these jumpers.

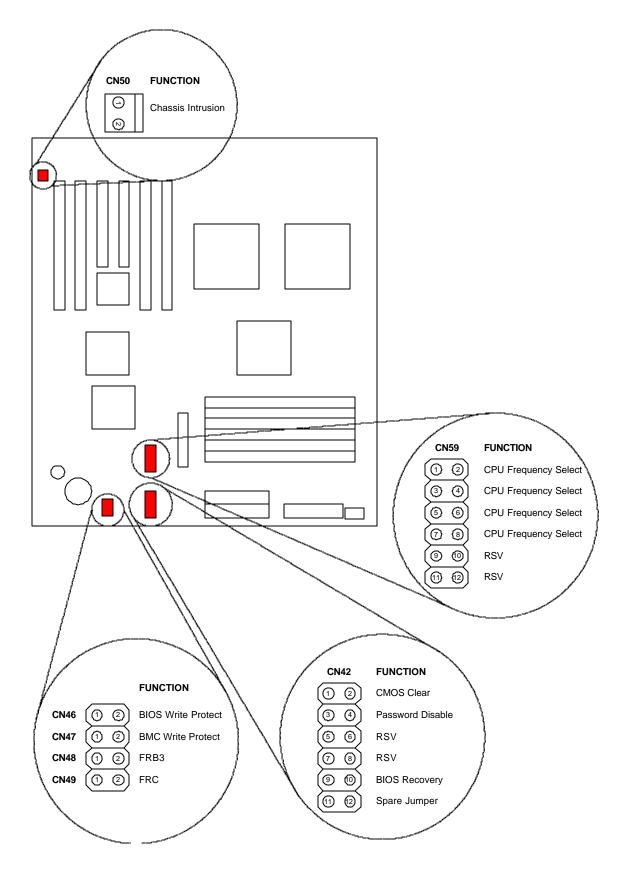


Figure 12. SDS2 Configuration Jumper Locations

The following tables describe each jumper options.

Table 78. System Configuration Jumper Options

Option	Description
CMOS Clear	When CN42's pins 1 and 2 are OPEN (default), CMOS contents are preserved through the system reset. When they are CLOSED, CMOS contents are set to manufacturing default during system reset.
Password Disable	When CN42's pins 3 and 4 are OPEN (default), the current system password is maintained during a system reset. When they are CLOSED, the password is cleared / disabled on reset.
BIOS Recovery Enable	When CN42's pins 9 and 10 are OPEN (default), the system attempts to boot using the BIOS programmed in the Flash memory. When they are CLOSED, the BIOS attempts a recovery boot, loading BIOS code from a floppy disk into the Flash device. This is typically used when the BIOS code has been corrupted.
BIOS Write Protect	When CN46's pins 1 and 2 are OPEN (default), BIOS boot block is protected from being updated. When they are CLOSED, BIOS boot block can be updated
BMC Write Protect	When CN47's pins 1 and 2 are OPEN (default), BMC boot block is protected from being updated. When they are CLOSED, BMC boot block can be updated.
Chassis Intrusion Disable	When CN50's pins 1 and 2 are cabled to the chassis (default), a switch installed on the chassis indicates when the cover has been removed. When they are CLOSED, the chassis intrusion feature is disabled.
BMC Forced Update Mode	When CN49's pins 1 and 2 are OPEN (default), the BMC enters operational mode upon the negation of its reset. When they are CLOSED, the BMC enters force update mode upon the negation of its reset.
FRB3 Timer Disable	When CN48's pins 1 and 2 are OPEN (default), FRB operation is enabled. This allows the system to boot from another processor if Processor 1 fails. When they are CLOSED, FRB2 and FRB3 are disabled.

Table 79. CPU Frequency Select Jumper Options

CPU	CN59 CPU Frequency Select Jumper Settings					
Frequency	1 – 2	3 – 4	5 – 6	7 – 8		
533 MHz	Open	Open	Open	Open		
933 MHz	Closed	Open	Open	Closed		
1.0 GHz	Closed	Open	Open	Open		
1.13 GHz	Closed	Open	Closed	Closed		
1.20 GHz	Closed	Open	Closed	Open		
1.26 GHz	Closed	Closed	Closed	Open		
1.33 GHz	Open	Closed	Open	Open		
1.40 GHz	Open	Closed	Closed	Closed		
1.46 GHz	Open	Open	Open	Closed		
1.53 GHz	Open	Closed	Closed	Open		
1.60 GHz	Open	Open	Closed	Closed		

Revision 1.2 91 Order Number: A85874-002

Jumper Pins Default Operation CN42 1 - 2Open When closed, clears CMOS during POST 3 - 4Open When closed, clears CMOS password 5 - 6Open RESERVED (Do Not Use) 7 - 8Open RESERVED (Do Not Use) 9 - 10Open When closed, forces BIOS Recovery Mode 11 - 12Closed SPARE jumper storage **CN46** 1 - 2Open When closed, permits BIOS boot block to be updated CN47 1 - 2Open When closed, permits BMC boot block to be updated **CN48** 1 - 2Open When closed, disables FRB timer **CN49** 1 - 2Open When closed, forces BMC in Update Mode CN50 1 – 2 Closed When closed, disables chassis intrusion sensor

Table 80. List of Assembled Jumpers in Production

9.2 Performing CMOS Clear, BIOS Recovery, and BMC Force Update

9.2.1 Performing CMOS Clear

Clear CMOS as follows.

- 1. Power off the system, unplug the power cord, and remove the chassis panel.
- 2. Add a jumper on CN42 pins 1-2 (CMOS Clear).
- 3. Replace the chassis panel, plug in the power cable(s), and power on the system.
- 4. After POST completes, power down the system, unplug the power cable(s), and remove the chassis panel.
- 5. Remove the jumper from CN42 pins 1-2.
- 6. Replace the chassis panel and connect system cables.
- 7. Power on the system, press **F2** at the prompt to run the BIOS Setup utility, and select "Get Default Values" at the Exit menu.

9.2.2 Performing BIOS Recovery Boot

In the event of BIOS corruption, the following procedure may be used to perform a BIOS Recovery boot.

1. Prepare a bootable floppy diskette containing the BIOS recovery files for the SDS2 Server Board obtained from Intel's web sites.

92 Revision 1.2

Intel® Server Board SDS2 Jumpers

2. Power off the system, unplug the power cord, and remove the chassis panel.

- 3. Add a jumper on CN42 pins 9-10 (BIOS Recovery).
- 4. Insert the BIOS Recovery floppy diskette into the disk drive.
- 5. Reinstall the chassis panel; plug in the power cord(s), and power on the system.
- 6. The screen will remain blank while the BIOS Recovery is performed. At the end of the BIOS Recovery, two high-pitched beeps will sound and the floppy drive access light will turn off. The BIOS Recovery may take several minutes to complete. When the BIOS Recovery is complete, it is safe to power off the system.
- 7. Power off the system, unplug the power cord(s), and remove the chassis panel.
- 8. Remove the BIOS Recovery jumper from CN42 pins 9-10.
- 9. Replace the chassis panel; plug in the power cord(s), and power on the system.

9.2.3 Performing BMC Force Update

In the event of a release of an updated BMC Firmware, the following procedure may be used to update the Firmware.

- 1. Prepare a bootable floppy diskette containing the updated BMC firmware files for the SDS2 Server Board obtained from Intel's web sites.
- 2. Power off the system, unplug the power cord, and remove the chassis panel.
- 3. Add a jumper on CN49 pins 1-2 (BMC Force Update).
- 4. Insert the BMC Firmware floppy diskette into the disk drive.
- 5. Reinstall the chassis panel; plug in the power cord(s), and power on the system.
- 6. If any POST errors occur, press **F1** to continue. BMC Firmware update may take several minutes to complete. When the BMC Firmware update is complete, it is safe to power off the system.
- 7. Power off the system, unplug the power cord(s), and remove the chassis panel.
- 8. Remove the BMC Force Update jumper from CN49 pins 1-2.
- 9. Replace the chassis panel; plug in the power cord(s), and power on the system.

Note: The instructions for BMC Force Update are general guideline. Please follow the specific instructions described in the release notes.

Revision 1.2 93
Order Number: A85874-002

10. Electrical and Thermal Specifications

This section describes the electrical and thermal specifications required to integrate this board in a system.

10.1 Absolute Maximum Ratings

Operation of the SDS2 Server Board at conditions beyond those shown in the following table may cause permanent damage to the system (provided for stress testing only). Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

Operating Temperature

O°C to 55°C

Storage Temperature

-55°C to 150°C

Voltage on any signal with respect to ground

-0.3V to V_{DD} + 0.3V ²

3.3V Supply Voltage with respect to ground

-0.3V to 3.63V

5V Supply Voltage with respect to ground

-0.3V to 5.5V

Table 81. Absolute Maximum Ratings

Notes:

- Chassis design must provide proper airflow to avoid exceeding Intel® Pentium® III processor maximum
 case temperature.
- 2. V_{DD} means supply voltage for the device.

10.2 Power Consumption

The following table shows the power consumed on each supply line for a SDS2 Server Board configured with the following manner.

- Two processors, each with 30 W max
- Four DIMMs total, two active (burst) and two standby
- Three PCI cards, two on 3.3 V and one on 5V
- Five fans total, two processor fans and three system fans
- Five SCSI HD with SCSI backplane

Note: The following numbers are provided as an example. Actual power consumption will vary depending on the exact configuration, temperature, voltage level, etc. Refer to the appropriate system chassis document for more information.

+12 V Device(s) +3.3 V +5 V -12 V 5 V Standby Server Board 3.85 A 2.5 A 0.3 A 0.1 A 1.2 A **Processors** _ 6.3A _ Memory 8.3A _ _ _ **PCI Slots** 6.1A 2A 0.2A 0.1A _ Fans 1.3A 4.7 A 4.6 A Peripherals **Total Current** 18.25 A 9.2 A 12.7 A 0.2 A 1.2 A Total **Total Power** 60.23 W 46.0 W 152.4 W 2.4 W 6.0 W 267.0W

Table 82. SDS2 Server Board Power Consumption

10.3 Power Supply Specification

This section provides power supply design guidelines for an SDS2-based system; including voltage and current specifications, and power supply on/off sequencing characteristics.

Output Min Nom Max Units **Tolerance** 3.3 V 3.3 3.47 ٧ ± 5% 3.14 5 V 5.25 4.75 5.0 ٧ ± 5% 12 V 11.40 12.0 12.60 ٧ ± 5% -12 V -10.80 -12.0 -13.20 ٧ ± 10% 5 VSB 4.75 5.0 5.25 ٧ ± 5%

Table 83: SDS2 Power Supply Specification

10.3.1 Power Timing

The following are the timing requirements for single power supply operation. Output voltages must rise from 10% to within regulation limits (T_{vout_rise}) within 5 to 70 ms. The +3.3 V, +5 V and +12 V output voltages begin to rise approximately at the same time. All outputs must rise monotonically. The +5 V output must be greater than the +3.3 V output during any point of the voltage rise, however, never by more than 2.25 V. Each output voltage shall reach regulation within 50 ms (T_{vout_on}) of each other and begin to turn off within 400 ms (T_{vout_off}) of each other. The following table shows the output voltage timing parameters.

Table 84: Voltage Timing Parameters

Item	Description	Min	Max	Units
T _{vout_rise}	Output voltage rise time from each main output.	5	70	msec
T _{vout_on}	All main outputs must be within regulation of each other within this time.		50	msec
T _{vout_off}	All main outputs must leave regulation within this time.		400	msec

Revision 1.2 95 Order Number: A85874-002

Electrical and Thermal Specifications

Intel® Server Board SDS2

Total Sub-assembly

103

10.4 Estimateded Server Board MTBF

turn on.

The estimated Mean-Time Between Failures (MTBF) is calculated at 103,996 hours at a maximum operating temperatur. The table below shows the calculated nuribers. Output Voltage Timing

Table 85: Turn On/Off Timing #ure tem Sub-assembly Duty **⊅** Scription 5 ਜ਼ੂUnits Iten€ Cycle Acc Fact Sub-assembly Description Delay From AC being applied & SVSB being within regulation b-assembly I 2000 Quote (Access 2500 Time au output von tages stay jiten regulate partie los of AC. -Om sec Del by from Idss of AC to de-assertion of PWOK 20**%** ج nsec Delay from PSON active to output voltages within regulation limits. 400 msec Baseboa 83,18 1.00 Delay from PSON deactive to PWOK being de-asserted 50 msec al Failure Rate (Delay from output voltages within regulation limits to PWOK asserted at msec' T_{pwok_on} 100 500 MTBF (h turn on. Delay from PWOK de-asserted to output voltages (3.3V, 5V, 12V, -12V) T $_{pwok_off}$ msec dropping out of regulation limits. Duration of PWOK being in the de-asserted state during an off/on cycle T_{pwok_low} msec 100 using AC or the PSON signal. Delay from 5VSB being in regulation to O/Ps being in regulation at AC $T_{\text{sb_vout}}$ msec 50 1000

Table 87. Estimated SDS2 Server Board MTBF

Revision 1.2 97 Order Number: A85874-002

> Download from Www.Somanuals.com. All Manuals Search And Download. Revision 1.2

11. Mechanical Specifications

The following figure shows the Server Board mechanical drawing.

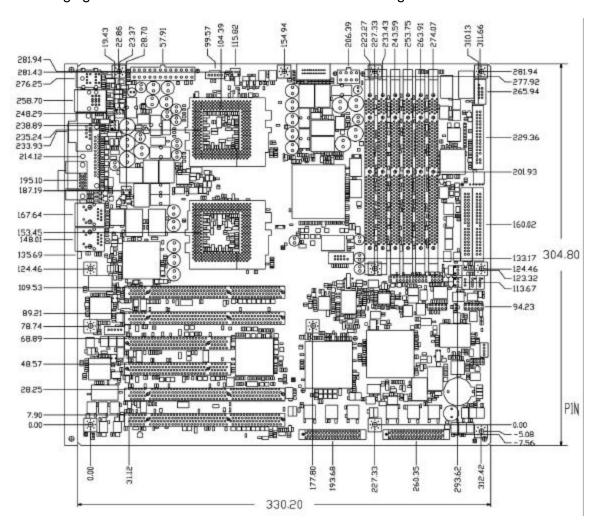


Figure 15. SDS2 Server Board Mechanical Drawing

12. Regulatory and Integration Information

12.1 Regulatory Compliance

The SDS2 server board complies with the following safety standard requirements.

Table 88. Safety Regulations

Regulation	Title
UL 1950/CSA950	Bi-National Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (USA and Canada)
EN 60950	The Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (European Community)
IEC60 950	The Standard for Safety of Information Technology Equipment including Electrical Business Equipment. (International)
EMKO-TSE (74-SEC) 207/94	Summary of Nordic deviations to EN 60950. (Norway, Sweden, Denmark, and Finland)
EU Low Voltage Directive 73/23/ECC	Compliance to EU Low Voltage Directive via EN60 950 / IEC 60950

The SDS2 server board has been tested and verified to comply with the following EMC regulations when installed in a compatible Intel host system. For information on Intel compatible host system(s), refer to Intel's Server Builder website, or contact your local Intel representative.

Table 89. EMC Regulations

Regulation	Title
FCC – Class A	Title 47 of the Code of Federal Regulations, Parts 2 and 15, Subpart B, pertaining to unintentional radiators. (USA)
ICES-003 – Class A	Interference-Causing Equipment Standard, Digital Apparatus, Class A (including CRC c. 1374) (Canada).
CISPR 22	Limits and methods of measurement of Radio Interference Characteristics of Information Technology Equipment. (International)
VCCI – Class A	Implementation Regulations for Voluntary Control of Radio Interference by Data Processing Equipment and Electronic Office Machines. (Japan)
EN55022	Limits and methods of measurement of Radio Interference Characteristics of Information Technology Equipment. (Europe)
EN55024	Generic Immunity Standard;
EU EMC Directive	Compliance to EU EMC Directive via EN55022 & EN55024
89/336/EEC	
BSMI (CNS13438) - Class A	Taiwan EMC Regulations based on CISPR 22
C-tick (AS/NZS 3548)	Australia & New Zealand EMS Regulations based on CISPR 22

The SDS2 Server Board is marked with the following regulatory markings:

102 Revision 1.2

UL Recognition Mark (USA/Canada)	c FLL®
CE Mark (Europe)	CE
C-Tick Mark (Australia)	N232
GOST Mark (Russia)	P
BSMI Mark (Taiwan)	檢磁 39021907 警告使用者: 這是甲類的資訊產品,在居住的環境中使用時, 可能會造成射頻干擾,在這種情況下,使用者會 被要求採取某些適當的對策。

12.2 Installation Instructions

CAUTION: Follow these guidelines to meet safety and regulatory requirements when installing this board assembly.

Read and adhere to these instructions and to the instructions supplied with the host computer and associated modules. If the instructions for the host computer are inconsistent with these instructions or the instructions for associated modules, contact the supplier's technical support to find out how to ensure that the system meets safety and regulatory requirements. If the instructions are not followed, the user increases safety risk and the possibility of noncompliance with regional laws and regulations.

12.2.1 Ensure EMC

Before computer integration, the host chassis, power supply, and other modules should pass EMC certification testing.

In the installation instructions for the host chassis, power supply, and other modules, pay close attention to the following:

- Certifications.
- External I/O cable shielding and filtering.
- Mounting, grounding, and bonding requirements.
- Keying connectors when incorrect mating of connectors could be hazardous.

Revision 1.2 103 Order Number: A85874-002 If the host chassis, power supply, and other modules have not passed applicable EMC certification testing before integration, EMC testing must be conducted on a representative sample of the newly completed computer.

12.2.2 Ensure Host Computer and Accessory Module Certifications

The host computer and any added subassembly (such as a board or drive assembly, including internal or external wiring) should be certified for the region(s) where the end product will be used. Marks on the product are proof of certification. Certification marks are as follows:

12.2.2.1 Europe

The CE marking signifies compliance with all relevant European requirements. If the host computer does not bear the CE marking, obtain a supplier's Declaration of Conformity to the appropriate standards required by the European EMC Directive and Low Voltage Directive. Other directives, such as the Machinery and Telecommunications Directives, may also apply depending on the type of product and final configuration.

12.2.2.2 United States

A certification mark by a Nationally Recognized Testing Laboratory (NRTL) such as UL, CSA, or ETL signifies compliance with safety requirements. Compliance to FCC requirements is also required. FCC Class A is for commercial or industrial environments; and FCC Class B is for residential environments.

12.2.2.3 Canada

A nationally recognized certification mark such as CSA or cUL signifies compliance with safety requirements. EMC compliance to Industry Canada ICE3-003 is required. Class A is for commercial or industrial environments; and FCC Class B are for residential environments.

12.2.3 Prevent Power Supply Overload

The power supply output must not be overloaded. To avoid overloading the power supply, the calculated total current load of all the modules within the server should be less than the maximum output current rating of the power supply. If this is not adhered to, the power supply may overheat, catch fire, or result in a shock hazard. If the load drawn by a module cannot be determined by the markings and instructions supplied with the module, contact the module supplier's technical support.

12.2.4 Place Battery Marking on Computer

There is insufficient space on this server board to provide instructions for replacing and disposing of the battery. The following warning must be placed permanently and legibly on the host server as near as possible to the battery.

WARNING: Danger of explosion if battery is incorrectly replaced.

Replace with only the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

12.2.5 Use Only for Intended Applications

This product was evaluated for use in ITE computers that will be installed in offices, schools, computer rooms and similar locations. The suitability of this product for other product categories other than ITE applications (such as medical, industrial, alarm systems, and test equipment) may require further evaluation.

12.2.6 Installation Precautions

During the installation and testing of the board, the user should observe all warnings and cautions in the installation instructions. To avoid injury, be aware of the following:

- Sharp pins on connectors.
- Sharp pins on printed circuit assemblies.
- Rough edges and sharp corners on the chassis.
- Hot components (like processors, voltage regulators, and heat sinks).
- Damage to wires that could cause a short circuit.
- Observe all warnings and cautions that instruct you to refer computer servicing to qualified technical personnel.

WARNING: Do not open the power supply. There is risk of electric shock and burns from high voltage and rapid overheating. Refer servicing of the power supply to qualified technical personnel.

12.2.7 External ICMB Cable Information

When the ICMB accessory is incorporated as part of a server solution, the external cable used to connect the ICMB cards will need to be manufactured. Note the female connectors on the early version and the universal version of the ICMB cards are different, as shown in Table 80: ICMB External Cable Connectors.

The electrical specifications for this cable are available in chapter eight of the *IPMI Intelligent* Chassis Management Bus Bridge Specification version 1.0 available at the following URL on the Intel web site.

http://developer.intel.com/design/servers/ipmi/license_icmb11_old.htm

Table 90. ICMB External Cable Connectors

Product Code	Description	Female Jack for External Cable
AXX2ICMBKIT	Universal ICMB card for integration with: SCB2, SDS2	Keyed RJ45 (Type B)

13. Errata Listing

13.1 Summary Errata Table

The following tables indicate the errata and the document changes that apply to the Intel® Server Board SDS2. Intel intends to fix some of the errata in a future stepping of components, and to account for the other outstanding issues through documentation or specification changes as noted. The tables use the following notations:

Fix: Intel intends to fix this erratum in a future release of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Table 91. Errata Summary

No.	Plans	Description of Errata
1.	Fixed	Intel® RAID controller SRCMR not yet supported with Intel® Server Board SDS2
2.	Fixed	Intel® Server Board SDS2 BIOS update utility does not allow updates from a PXE server or from network drives
3.	Fixed	Intel® Server Board SDS2 FRU/SDR update fails with console redirection enabled in BIOS Setup
4.	Fixed	First characters and arrow keys not echoed with console redirection
5.	Fixed	Intel® & ICP Vortex* RAID Controllers will cause the Intel® Server Board SDS2 to halt during POST when the BIOS Logo screen is enabled
6.	Fixed	Intel® Server Board SDS2 CD-ROM issues
7.	Fixed	NIC driver set 5.12 v.2.3.25 for UnixWare* 7.1.1 drops DPC LAN connection
8.	Fixed	NIC driver set 5.12 v.5.41.27 for Microsoft* Windows* 2000 prevents a DPC LAN connection when the operating system is loaded
9.	Fixed	Extended RAM step disable option in BIOS Setup has no effect
10.	Fixed	High resolution video modes do not work correctly
11.	Fixed	Lower performance with CAS Latency 2 memory
12.	Fixed	SDS2 reboots during POST with 4GB or more of total system memory installed
13.	Fixed	Novell NetWare* v. 6.0 does not install on SDS2
14.	Fixed	Adaptec* 2100S RAID controller causes system lockup and video blanking
15.	Fixed	SDS2 Build Your Own (BYO) Platform Confidence Test (PCT) v. 1.00 fails on first test run
16.	NoFix	SDS2 0B71: System temperature out of the range POST message
17.	Fixed	SDS2 0B75: System Voltage out of the range POST message
18.	Fixed	Mixcellaneous numeric keys entered during POST will enable PXE boot
19.	Fixed Fab 5	SDS2 board level operating temperature and power supply voltage tolerance modification
20.	Fixed Fab 5	Recommendation for SDS2 rubber bumper installation is on the base SC5200 Chassis

21.	Fixed Fab 5	Keyboard and Mouse do not function under Microsoft* Windows* 2000 when legacy USB is enabled in BIOS setup
22.	Fixed	Data miscompares when using Seagate* ATA III model ST310215A hard drives
23.	Fixed Fab 5	Boot to service partition via modem fails
24.	Fixed Fab 5	Secondary IDE References Added To Documentation for FAB 5
25.	No Fix	Potential Mylex AcceleRAID 352 Adaptor Card Mechanical Interference at PCI Slot 6.
26.	No Fix	Bootable CD will not boot if inserted during OPTION ROM scan
27.	No Fix	Bootable CD will not boot if inserted during OPTION ROM scan
28.	No Fix	The "On Board" NIC BIOS controls the add in PRO100 (P100+SA) adapter card when PRO100 boot agent is Disabled.
29.	No Fix	OB P100 NICs do not show at POST but attempt PXE boot and appear in Boot Menu
30.	No Fix	Dodson: Adaptec 39160 in slots 5 & 6 causes Expansion ROM error
31.	No Fix	Can Not Change BIOS SETUP IDE Options Using <enter> Key</enter>
32.	No Fix	Minimum Wait Time Between Power Off and Power On via Front Panel Power Button Is One Second.
33.	Fixed	Unable to boot Netware 6.0 (NW6) From CD ROM With Adaptec Adaptor 2100S in Slot 6.
34.	Fixed	3COM* 3C980C-TX NIC causes Microsoft* Windows* 2000 blue screen when greater than 4GB of system memory is installed
35.	No Fix	Peer-to-peer PCI transactions are not supported between the CIOB-controlled 64-bit PCI bus and the legacy 32-bit PCI bus controlled by the HE-SL north bridge
36.	No Fix	SDS2 PCI slot current levels supported by the 5V rail
37.	No Fix	OB P100 NICs do not show at POST but attempt PXE boot and appear in Boot Menu
38.	N/A	None

Following are in-depth descriptions of each erratum change indicated in the tables above. The errata and change numbers below correspond to the numbers in the tables.

Revision 1.2 107 Order Number: A85874-002

13.2 Errata[DD1]

1. Intel® RAID controller SRCMR not yet supported with Intel® Server Board SDS2

Problem: The Intel RAID Controller SRCMR installed on the Intel Server Board SDS2 is

currently an unsupported configuration. Intel has induced a failure condition in Intel Server Board SDS2 systems configured with the Intel RAID Controller SRCMR under extreme workloads during final validation testing. Intel has verfied that other Intel RAID controllers and Intel server boards are not affected by this issue. The Intel RAID controller SRCMR installed on the Intel Server

Board SCB2 does not exhibit this failure.

Implication: The Intel RAID Controller SRCMR installed on the Intel Server Board SDS2 is

currently not a supported configuration and should not be implemented in a

production environment. .

Workaround: None.

Status: Will not fix.

2. Intel® Server Board SDS2 BIOS update utility does not allow updates from a PXE Server or from network drives

Problem: The current Intel Server Board SDS2 BIOS update utility (PhoenixPhlash) does

not allow the BIOS updates to be performed from a PXE server or from a

network drive.

Implication: The Intel Server Board SDS2 BIOS cannot be updated from a PXE server or a

network drive. The BIOS update must be performed from a floppy diskette or

from a hard drive.

Workaround: None.

Status: Fixed. SDS2 BIOS Production Release 2.1 (Build 44) adds support for the Intel

iFLASH BIOS update utility. The iFLASH BIOS update utility has the ability to

perform BIOS updates from a PXE server or from network drives.

3. Intel® Server Board SDS2 FRU/SDR update fails with console redirection enabled in BIOS Setup

Problem: When using Intel Server Board SDS2 BIOS Production Release 2 (Build 41),

BMC v. 28, and FRU/SDR files v. 5.0.A, if console redirection is set to Enabled

108 Revision 1.2 Order Number: A85874-002

Download from Www.Somanuals.com. All Manuals Search And Download.

in BIOS Setup, the following error message will appear when attempting to update the FRU/SDR files:

Updating the FRU and Sensor Data Records

Packaged file is corrupt

Implication: If console redirection is set to enabled in BIOS Setup, the Intel Server Board

SDS2 FRU/SDR files cannot be updated.

Workaround: Make sure that console redirection is set to disabled in BIOS Setup (this is the

default BIOS setting) before performing a FRU/SDR file update.

Status: Fixed. This issue is fixed in SDS2 BIOS Production Release 2.1 (Build 44) and

later versions.

4. First characters and arrow keys not echoed with console redirection

Problem: Two issues occur with console redirection on the Intel® Server Board SDS2:

- 1. When booting to ROM DOS under console redirection, the first character of a command is not echoed to the screen until the Enter key is pressed.
- 2. In BIOS Setup under console redirection, the arrow keys are not properly echoed when pressed.

Implication: The first character and arrow keys are not correctly echoed to the screen with

console redirection.

Workaround: The user can workaround this issue by pressing the Enter key or by pressing

the arrow keys several times.

Status: Fixed. This issue is fixed in SDS2 BIOS Production Release 2.1 (Build 44) and

later versions.

5. Intel® & ICP Vortex* RAID Controllers will cause the Intel® Server Board SDS2 to halt during POST when the BIOS Logo screen is enabled

Problem: When booting the Intel Server Board SDS2 with an Intel RAID Controller or ICP

Vortex* RAID controller installed, the system will halt during POST when the Intel Server Board SDS2 BIOS Logo screen is enabled. This issue occurs only with Intel RAID Controllers running with version 6.2.6i firmware and ICP Vortex Controllers running version 28 firmware. Intel has found the root cause of this issue to be an INT 10 BIOS video interrupt call during RAID POST. The Intel

Revision 1.2 109 Order Number: A85874-002 Server Board SDS2 does not service this interrupt when the BIOS Logo screen is enabled.

Implication:

When booting the Intel Server Board SDS2 with an Intel RAID Controller or ICP Vortex* RAID controller installed, the system will halt during POST when the Intel Server Board SDS2 BIOS Logo screen is enabled.

Workaround:

A workaround for this issue is to press the ESC key when the Intel BIOS logo screen appears. Alternately, the Intel BIOS logo screen may be disabled. To disable the Intel BIOS logo screen, access the Intel Server Board SDS2 BIOS Setup (by pressing F2 when the Intel BIOS logo screen appears). In BIOS Setup, change the Advanced → Boot-Time Diagnostic Screen option to "Enabled".

Status:

Fixed: For the ICP Vortex RAID Controllers, please contact ICP technical support. Please refer to Technical Advisory 507 for firmware release schedules and additional details.

6. Intel® Server Board SDS2 CD-ROM issues

Problem:

The Intel Server Board SDS2 system resource CD-ROM has the following two issues:

- 1. The BYO Platform Confidence Test Manual on the SDS2 system resource CD-ROM is Rev. 2.0 dated 9/2001, rather than the latest Rev. 2.2 dated 10/2001. The instructions in the Rev. 2.0 manual for creating a bootable Platform Confidence Test floppy diskette are not correct and do not contain enough detail for the user to successfully create a bootable floppy diskette.
- 2. Editing a file with the DOS "Edit" command after booting to the SDS2 system resource CD-ROM will cause the system to hang.

Implication:

A bootable Platform Confidence Test floppy diskette cannot be successfully created by following the instructions in the SDS2 BYO Platform Confidence Test Manual Rev. 2.0 on the SDS2 system resource CD-ROM. Attempting to edit a file with the DOS "Edit" command after booting to the SDS2 system resource CD-ROM will cause the system to hang.

Workaround:

Users should not use the DOS "Edit" command to edit files after booting to the SDS2 System Resource CD-ROM. Users should also use the following insturctions for the BYO Platform Confidence Test Manual Rev. 2.2 to create a bootable Platform Confidence Test floppy diskette:

Installing the Server Board Platform Confidence Test Package on the Intel Server Board SDS2:

1. Insert the resource CD into a Windows* based system and let the auto run feature launch the graphical user interface (if auto run does not launch the GUI, launch it manually by double clicking on your CDROM drive).

110 Revision 1.2 Order Number: A85874-002

- 2. On the Utilities page, drop down the menu and choose the Platform Confidence Test option.
- 3. Click on the Create Diskette icon that appears and when prompted, choose to save the file to a temporary folder on your hard drive.
- 4. Locate the file you just saved and run the SDS2PCT.exe program obtained from the CD. This will extract the files for the Platform Confidence Test onto the floppy along with a file called MKBOOT.BAT.
- 5. Reboot the server to the resource CD and insert the floppy with the Platform Confidence Test files into the floppy drive.
- 6. Exit to DOS by choosing Quit from the menu and then selecting Quit Now. At the DOS prompt, change to the floppy disk and execute the MKBOOT.BAT file. This will make your floppy disk bootable and copy over the appropriate DOS components for creating a RAMDRIVE for the Platform Confidence Test to extract to.
- 7. Reboot your system using the floppy diskette.
- 8. You will be asked to agree to a licensing agreement prior to the actual file expansion occurring. The agreement is the file LEGAL.TXT.
- 9. A RAMDRIVE will be created into which the diagnostic tests are copied.
- 10. When the copy process is complete, you will be presented with a menu of five options. These menu options are discussed in greater detail in the Platform Confidence Test manual Rev. 2.2.

Status: Fixed. The SDS2 system resource CD-ROM with part number A58098-003 has corrected these issues.

7. NIC driver set 5.12 v.2.3.15 for UnixWare* 7.1.1 drops DPC LAN connection

Problem: When the NIC driver set 5.1.2 v.2.3.15 for UnixWare* 7.1.1 is utilized on the

Intel® Server Board SDS2, the DPC LAN connection to the SDS2 server is

dropped when a power control action is initiated.

Implication: NIC driver set 5.1.2 v.2.3.15 for UnixWare* 7.1.1 should not be used with the

Intel® Server Board SDS2 if DPC LAN is being used.

Workaround: Intel recommends using the driver version embedded in the UnixWare* 7.1.1

operating system CD-ROM distribution (v.1.3.9) in order to avoid this failure.

Status: Fixed. Intel recommends using the driver version embedded in the UnixWare*

7.1.1 operating system CD-ROM distribution (v. 1.3.9) as the fix for this issue.

8. NIC driver set 5.12 v.5.41.27 for Microsoft* Windows* 2000 prevents a DPC LAN connection when the operating system is loaded

Revision 1.2 Order Number: A85874-002

Problem: Microsoft* Windows* 2000 NIC driver set 5.1.2 v.5.41.27 prevents the Intel®

Server Board SDS2 from making a DPC LAN connection when the operating

system is loaded.

Implication: NIC driver set 5.1.2 v.5.41.27 for Microsoft* Windows* 2000 should not be used

with the Intel® Server Board SDS2 if DPC LAN is being used.

Workaround: Intel recommends using NIC driver set 5.0.1 v.5.40.11 or driver set 5.1.3

v.5.41.32 in order to avoid this failure.

Status: Fixed. Intel recommends using NIC driver set 5.0.1 v.5.40.11 or driver set 5.1.3

v.5.41.32 as the fix for this issue.

9. Extended RAM Step disable option in BIOS Setup has no effect

Problem: Setting the Intel® Server Board SDS2 BIOS Setup Advanced → Memory

Configuration → Extended RAM Step option to "Disabled" has no effect.

Implication: The Intel Server Board SDS2 will still perform the Extended RAM count even

when this option has been set to "Disabled" in BIOS Setup.

Workaround: None.

Status: Fixed. This issue is fixed in SDS2 BIOS Production Release 2.1 (Build 44) and

later versions.

10. High resolution video modes do not work correctly

Problem: Several of the high resolution video modes listed as supported in Table 6 of the

Intel® Server Board SDS2 Technical Product Specification (TPS) Rev. 1.0 are

currently not supported.

Implication: Selecting unsupported high resolution and high color video modes will cause

the monitor screen to turn gray, or to operate incorrectly. The following table

indicates the SDS2 video modes that are currently not supported:

Mode	Support Comments
640x480	Supported for all video modes indicated in the SDS2 TPS.
800x600	Supported for all video modes indicated in the SDS2 TPS.
1024x768	Supported for all color modes at refresh rates of 72Hz and lower.
	Supported for 8 and 16 bpp color modes only at 75Hz refresh rate.
	Not supported for refresh rates of 85Hz and higher.
1280x1024 Supported for 8, 16, and 24 bpp color modes only at refree 47Hz and lower.	
	Supported for 8 bpp color mode only at 60Hz refresh rate.
	Not supported for refresh rates of 70Hz and higher.

112 Revision 1.2
Order Number: A85874-002

Download from Www.Somanuals.com. All Manuals Search And Download.

1600x1200	Not supported.
-----------	----------------

Workaround: Utilize a video mode that is currently supported by the SDS2 Server Board.

Status: Fixed. SDS2 BIOS Production Release 2.4 (Build 47) and later versions have

added support for additional high resolution video modes. The following video modes are supported by SDS2 BIOS Production Release 2.4 (Build 47) and

later versions:

640x480: Supported at refresh rates of 120Hz and lower 800x600: Supported at refresh rates of 100Hz and lower 1024x768: Supported at refresh rates of 80Hz and lower 1152x864: Supported at refresh rates of 75Hz and lower 1280x1024: Supported at refresh rates of 60Hz and lower

1600x1200: Not supported

Selecting an unsupported video mode no longer causes the monitor to turn gray or to operate incorrectly.

11. Lower performance with CAS Latency 2 memory

Problem: Performance of the Intel® Server Board SDS2 memory subsystem is lower

than expected when CAS Latency 2 memory is used. The copy bandwidth observed with CAS Latency 2 memory installed is less than the copy bandwidth

with CAS Latency 3 memory installed.

Implication: The memory subsystem copy performance of the SDS2 Server Board is lower

with CAS Latency 2 memory installed than with CAS Latency 3 memory

installed.

Workaround: Use of CAS Latency 3 memory is recommended for optimum memory

subsystem copy performance.

Status: Fixed. This issue is fixed in SDS2 BIOS Production Release 2.4 (Build 47) and

later versions. When using SDS2 BIOS Production Release 2.4 (Build 47), the copy bandwidth observed with CAS Latency 2 memory installed is greater than

the copy bandwidth with CAS Latency 3 memory installed.

12. SDS2 reboots during POST with 4GB or more of total system memory installed

Problem: When 4GB or more of total system memory is installed in the SDS2 server

board, and the Extended RAM step option in BIOS Setup is set to "Every

Location", the SDS2 server board will reboot during the memory scan portion of

POST. This is due to a timeout of the FRB-2 timer.

Implication: The SDS2 server board will not complete POST if more than 4GB or more of

total system memory is installed and the Extended RAM step option in BIOS

Setup is set to "Every Location".

Workaround: Choose a different option besides "Every Location" for the Advanced → Memory

Configuration → Extended RAM Step BIOS Setup option. The default setting for

this option is "Disabled".

Status: Fixed. This issue is fixed in SDS2 BIOS Production Release 2.4 (Build 47) and

later versions.

13. Novell NetWare* v. 6.0 does not install on SDS2

Problem: Novell NetWare* v. 6.0 will not install on the SDS2 server board. The install

proceeds normally until the NetWare v. 6.0 splash screen appears for the first time. The install will then start iterating the portion of the install from "initializing

system resources" to the splash screen indefinitely.

Implication: Novell NetWare* v. 6.0 cannot be installed to the SDS2 server board.

Workaround: None.

Status: Fixed. This issue has been root caused as a Novell NetWare* v. 6.0 operating

system issue. Novell has released NetWare v. 6.0 support pack (SP) 1, which

fixes this issue. Intel has verified the Novell NetWare* v. 6.0 can be

successfully installed to the SDS2 server board when SP1 is applied. The

procedure for applying SP1 is as follows:

- 1. Create a 200MB bootable DOS partition on the installation hard drive.
- 2. Format the partition and create a directory called "nwupdate".
- 3. Copy server.exe from the SP1 directory "startup" into the "nwupdate" directory.
- 4. Launch the Novell NetWare* v. 6.0 install, and select to use the existing boot partition.

14. Adaptec* 2100S RAID controller causes system lockup and video blanking

Problem: When an Adaptec* 2100S RAID controller is installed in the SDS2 server board,

the video will blank and the system will lock up during POST when the onboard SCSI controller option ROM is set to "Enabled" in the SDS2 BIOS setup (defalt

option).

Implication: The Adaptec* 2100S RAID controller cannot be used with the SDS2 server

board when the onboard SCSI controller option ROM is set to "Enabled" in the

SDS2 BIOS setup.

114 Revision 1.2 Order Number: A85874-002

Workaround: This issue does not occur when the SDS2 onboard SCSI controller option ROM

is set to "Disabled". To disable the SDS2 onboard SCSI controller option ROM, access the Intel® Server Board SDS2 BIOS Setup by pressing F2 during POST. In BIOS Setup, change the Advanced → PCI Configuration →

Embedded SCSI → Option ROM Scan option to "Disabled".

Status: Fixed. This issue is fixed in SDS2 BIOS Production Release 2.5 (Build 48) and

later versions.

15. SDS2 Build Your Own (BYO) Platform Confidence Test (PCT) v. 1.00 fails on the first run

Problem: The first time the SDS2 BYO PCT v. 1.00 is run on an SDS2 system following a

cold boot, the following error message will be encountered:

***ERROR BMC.CHECKCHASSISSTATUS V4.11.1.0107

Chassis Status miscompared with known values. EXP: 210101h, RCVD: 210001h, MASK: FFFFFFFh

Standard Error Code = 0BE1501F BMC.CHECKCHASSISSTATUS FAILED

This issue is not seen if the SDS2 BYO PCT v. 1.00 is re-run a second time without restarting the system, or after restarting the system with a Ctrl-Alt-Del

warm boot.

Implication: The SDS2 PCT v. 1.00 will fail with the BMC Check Chassis Status test when

the test is run following a cold boot.

Workaround: None.

Status: Fixed. This issue is due to the SDS2 BYO PCT v. 1.00 incorrectly identifying an

error condition. This issue has been fixed in SDS2 BYO PCT v. 1.01. SDS2 BYO PCT v. 1.01 will be added to the SDS2 system resource CD-ROM in

future engineering change order (ECO).

16. SDS2 0B71: System Temperature out of the range POST message

Problem: When the SDS2 server board is installed in the SC5100 chassis, if the SC5100

front panel cable is disconnected from the SDS2 server board and then

reconnected while 5V standby voltage is applied to the system (AC power cord connected to the system), the following message will be seen during POST the

next time the system is powered on:

System Monitoring Check

0B71: System Temperature out of the range

(Press <F1> to override boot suppression, or <F2> to enter Setup)

Revision 1.2 Order Number: A85874-002

In addition to this message, the SC5100 front panel system status LED will light solid amber, indicating a system temperature fault.

This condition will continue to appear during POST each time the SDS2 system is rebooted, until AC power is removed from the system by disconnecting the AC power cord.

Implication: The described condition will appear if the SC5100 front panel cable is

disconnected from the SDS2 server board and then reconnected while 5V

standby voltage is applied to the system.

Workaround: Disconnecting the AC power cord from the system will clear this condition.

Status: NoFix. Disconnecting and reconnecting the SC5100 front panel cable from the

SDS2 server board while 5V standby voltage is applied to the system is not a supported action. This action causes the SC5100 front panel temperature sensor to report an invalid temperature reading. Customers must disconnect the AC power cord from the SDS2/SC5100 system before disconnecting or

reconnecting the SC5100 front panel cable to the server board.

17. SDS2 0B75: System Voltage out of the range POST message

Problem: The following message may be encountered during POST when SDS2

FRU/SDR files v. 5.0.B and previous versions are programmed on the SDS2

server board:

System Monitoring Check

0B75: System Voltage out of the range

(Press <F1> to override boot suppression, or <F2> to enter Setup)

This issu

Implication: The described condition may appear if SDS2 FRU/SDR files v. 5.0.B or

previous versions are programmed on the SDS2 server board.

Workaround: Disconnecting the AC power cord from the system will clear this condition.

Status: Fixed. SDS2 FRU/SDR files v. 5.0.B and previous versions contain slightly

incorrect SDR values for the Vbat voltage (battery backup voltage). The Vbat voltage sensor values have been corrected in SDS2 FRU/SDR files v. 5.0.D

and later versions.

18. Miscellaneous numeric keys entered during POST enable PXE boot

Problem: Entering various numeric key sequences during POST will cause the SDS2

system BIOS to enter the PXE boot sequence. The BIOS should only enter the

PXE boot sequence when the F12 key is pressed during POST.

116 Revision 1.2

Implication: The SDS2 system BIOS will enter the PXE boot sequence if various numeric

keys are pressed during POST.

Workaround: Do not enter numeric keys during the POST process.

Status: Fixed. This issue is fixed in SDS2 BIOS Production Release 2.5 (Build 48) and

later versions.

19. SDS2 board level operating temperature and power supply voltage tolerance modification

Problem:

In Table 73 of the Intel® Server Board SDS2 Technical Product Specification (TPS) Rev. 1.0, the board level operating temperature is specified as 0° C to 55° C. In Table 75 of the SDS2 TPS Rev. 1.0, the power supply tolerance is specified as $\pm 5\%$ for the 3.3V rail. Intel has induced a failure condition during board level temperature and voltage margin testing at 55° C and $\pm 5\%$ voltage on the 3.3V rail in SDS2 Server Boards configured with PCI adapters in the 64bit/66MHz PCI slots under extreme workloads during final validation testing. As a result, the SDS2 Server Board board level operating temperature specification has been modified to 0° C to 45° C, and the power supply tolerance specification for the 3.3V rail has been modified to $\pm 3\%$. The SDS2 Server Board passes board level temperature and voltage margin testing performed according to these modified specifications.

Implication:

The SDS2 Server Board's operating environment should be maintained within the modified board level operating temperature specification of 0° C to 45° C and the modified power supply tolerance specification of $\pm 3\%$ for the 3.3V rail. The power supply tolerance specification for the 5V, 12V, and 5V standby rails is still $\pm 5\%$. The system level operating temperature specification of the Intel® Server Board SDS2 integrated into the Intel® SC5100 Server Chassis is still 0° C to 35° C. The Intel SC5100 Server Chassis' cooling system is capable of maintaining a SDS2 board level temperature below 45° C at a 35° C system ambient temperature.

Workaround: None.

Status: Fix. Intel has identified a fix for this issue, which will be incorporated in the

SDS2 FAB 5 server board.

20. Recommendation for SDS2 rubber bumper installation

Problem: A rubber bumper is included with the Intel® Server Board SDS2. Intel

recommends installing this bumper on the chassis before integrating the board into the chassis, in order to improve the board's tolerance to vibration that may

occur during shipment of the integrated system product.

Revision 1.2 Order Number: A85874-002

Implication:

If you are installing the Intel Server Board SDS2 into the Intel SC5100 Server Chassis, Intel recommends installing the rubber bumper included with the server board. If you are installing the Intel Server Board SDS2 into a chassis other than the Intel SC5100 Server Chassis, compare the rubber bumper height to the chassi standoff height. If the bumper is the same height as the standoffs in the chasis, install the rubber bumper included with the SDS2 Server Board. If the suport is not the same height, procure a bumper that matches the height of the standoffs used in your chassis. The rubber bumper should be installed on the chassis as follows:

For the Intel SC5100 chassis:

- 1.Remove the backing from one of the rubber bumpers included with your chassis.
- 2.Press the rubber bumper firmly into place approximately ½ inch (2 cm) to the right of the chassis baseboard hole marked "9." See location **A** below.

For other chassis:

- 1.Remove the backing from one of the rubber bumpers included with your chassis.
- 2.Locate the chassis standoff labeled "1" in your chassis.
- 3.Place the rubber bumper at a location 6.25 inches (16 cm) toward the front of the chassis and 7.75 inches (19 cm) toward the center of the chassis from standoff 1. See location **B** below.
- 4. Press the rubber firmly into place.

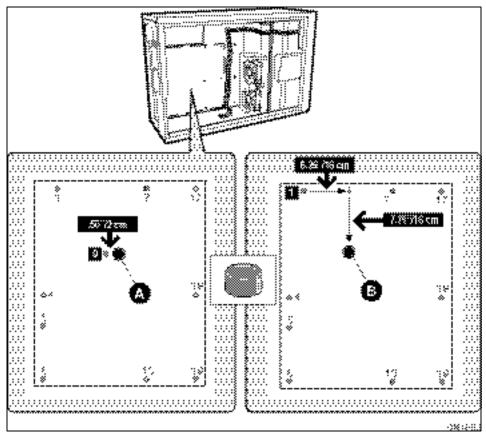


Figure 1. Placing the Rubber Bumper in the Chassis

Workaround: Utilizing the rubber bumper with the SDS2 Server Board is a workaround for

issues that may occur due to vibration during shipment of the integrated system

product.

Status: NoFix.

21. Keyboard and Mouse do not function under Microsoft* Windows* 2000 when legacy USB is enabled in BIOS setup

Problem: When the Legacy USB Support option is set to "Enabled" in BIOS setup, a PS/2

keyboard and mouse do not function under Microsoft* Windows* 2000. This

has not been seen to occur with other operating systems.

Implication: Enabling the Legacy USB Support option in BIOS setup will make a PS/2

keyboard and mouse non-functional under Microsoft* Windows* 2000.

Workaround: Leave the Legacy USB Support option in BIOS setup set to "Disabled", which is

a default option, if Microsoft* Windows* 2000 is being used.

Status: Fix. Intel has identified a fix for this issue, which will be incorporated in the

SDS2 FAB 5 server board.

22. Data miscompares when using Seagate* ATA III model ST310215A hard drives

Problem: Intel has induced data miscompares in SDS2 sytems configured with a

Seagate* ATA III model ST310215A hard drive under extreme workloads during validation testing. Intel has verfied that other hard drive models are not affected

by this issue.

Implication: The Seagate* ATA III model ST310215A hard drive installed on the Intel® Server

Board SDS2 is currently not a supported configuration and should not be

implemented in a production environment.

Workaround: None.

Status: Fix. Intel has identified a fix for this issue, which will be incorporated in the

SDS2 FAB 5 server board.

23. Boot to service partition via modem fails

Problem: When utilizing the direct platform control (DPC) feature of Intel Server Control

(ISC) v. 3.5.2 software to boot a SDS2 server board to the service partition via

modem, the server board will hang during ROM-DOS load.

Implication: The DPC feature of ISC v. 3.5.2 software cannot be used to remotely boot the

SDS2 server board to the service partion via modem.

Workaround: None.

Status: Fixed. SDS2 BIOS Production Release 2.6, Build 49 and later versions include

a fix for this issue.

24. Secondary IDE References Added To Documentation for FAB 5

Problem: New FAB5 AXXXX-502 has second IDE (ATA 100) connector enabled.

Implication: Users now have second IDE channel for use in system configurations

Workaround: None

Status: Fixed with the release of FAB5 SDS2 severboard in October 2002.

25. Potential Mylex AcceleRAID 352 Adaptor Card Mechanical Interference at PCI Slot 6.

120 Revision 1.2

Problem: Mechanical interference between the Myelex installed memory module (DIMM)

and the onboard SCSI connector occurs if a Wide or Singled Ended SCSI cable is installed on embedded SCSI A or B connector. LVD SCSI cable connectors

do not interfer.

Implication: Mechanical interference may damage the Mylex memory module connector and

DIMM when the Mylex AcceleRADI 352 Adaptor Card ins fully seated in PCI slot

6 connector.

Workaround: Insure correct SCSI cable connector is used if a cables are installed on the

onboard SCSI connectors at SCSI A or B.

Status: Will not fix.

26. Bootable CD will not boot if inserted during OPTION ROM scan

Problem: During POST while the OPTION ROM scan for the on board (OB) devices and

add in PCI adapters is in process, if an bootable CD-ROM is inserted in to he CD-ROM, the system will not attempt to boot to the CD-ROM. An attempt to boot to the floppy was made and then the OS on the hard drive booted. No

attempt was made to boot to the bootable CDROM.

Implication: Bootable CD-ROM must be inserted before POST begins or the system is

reset.

Workaround: Reset system after CD-ROM is inserted.

Status: Will not fix.

27. Swapping bootable for non-bootable CDROM during POST causes hang at boot.

Problem: Powered on the system with a bootable Win2k AS CD in the CDROM drive. As

soon as the BIOS began to POST add-in cards with OPTION ROMS the Bootable CD was ejected and a non-bootable CD was inserted. When the system completed POST and attempted to boot, the floppy drive showed an access attempt. The system then hanged with a blinking cursor on a black background. The boot order was set with 1)Floppy 2) CDROM 3) Hard Drive.

Workaround: Reset the system. BIOS does not rescan status of boot devices upon

completion of POST.

Status: Will not fix.

28. OB P100 NICs do not show at POST but attempt PXE boot and appear in Boot Menu

Problem: On board NIC are not displayed during post but do appear in Boot Device menu.

These controllers will also attempt to do a PXE boot if no other bootable devices

are found.

Implication: Not all boot devices displayed during POST when diagnostic display is enabled.

Workaround: None. This is by design. The system BIOS builds the on-board network

controller Option ROM with an option that always makes the OPROM "quiet". It therefore does not display any text messages and does not allowing the CTRL-

S option.

Status: Will not fix.

29. Dodson: Adaptec 39160 in slots 5 & 6 causes Expansion ROM error

Problem: Add in Adaptec 39160 Ultra 160 controller installed in slots 5 & 6 causes an

Expansion ROM error after last system POST. No other adapters are present.

Implication: Error message: Expansion ROM not initialized - PCI Mass Storage controller in

slot 06. Bus: 02, Device: 09, Function: 01

Workaround: Adaptec's single image Option ROM requires one 'master' controlling channel

that is set using the <Ctrl-A> SCSI Select utility. Each channel loads the Option ROM, determines whether it is the 'master' channel, and if not it unloads completely. If it is the 'master', it proceeds to scan all devices and list all possible drives. Only one channel does this scanning, but ALL channels load

the Option ROM initially if the Option ROM is enabled on the slot.

The error is coming from the second channel on the Adaptec 39160, even though the first channel has already completed the 'master' scan. The reason it is only happening in Slots 5 and 6 and when the NIC Option ROMs are all loaded is because that is when the available Option ROM space is at a minimum. The NIC Option ROM's are small, but apparently they make enough difference. The onboard 7899 Option ROM loads after Slots 1-4, but before Slots 5 & 6.

The solution here is to enable channel B of the ASC39160 as the 'master' channel. When this is done, channel A loads the Option ROM, sees that it is not the 'master', and unloads. Then channel B loads the Option ROM, does the full scan of all devices, and remains in memory. At this point no other channels are found, so no other devices error. The key here is that the LAST available Adaptec channel should be listed as the Master - unfortunately, this is opposite from their default - they default to the first available channel.

122 Revision 1.2
Order Number: A85874-002

Status: Will Not Fix.

30. Can Not Change BIOS SETUP IDE Options Using <Enter> Key

Problem: In SETUP, when attempting to change any option under the Primary/Secondary

IDE controller sub-menu, one must use the space bar. The enter key does not function. The TPS does not mention having to use the SPACE bar to change

the options.

Implication: Possible confusion on how to select the options in the BIOS Setup IDE sub

menu.

Workaround: None.

Status: Will not fix.

31. Minimum Wait Time Between Power Off and Power On via Front Panel Power Button Is One Second.

Problem: Minimum wait time between power off and power on using the front panel power

button on the SC5100 chassis is not documented.

Implication: System will not respond to the power button until one second has elapsed.

Workaround: Wait longer than one second when cycling the AC power via the front panel

power button.

Status: Will not fix.

32. Unable to boot Netware 6.0 (NW6) From CD ROM With Adaptec Adaptor 2100S in Slot 6.

Problem: Unable to install or boot to NW6 from CD Rom with Adaptec SCSI Adaptor

2100S installed in Slot 6. NW6 requires SP1 updated drivers to be installed.

Implication: System hangs and fails to load drivers completely. Unable to boot to SSU floppy

if NW6 CD is installed in CD-ROM drive.

Workaround: Recommended installation methodology is to install from the Netware 6 SP1

Overlay CD. This CD installs Netware 6 with all the SP1 fixes already

incorporated.

The SP1 Overlay CD is available from

http://support.novell.com/filefinder/13659/index.html

Alternatively, the updated drivers may installed using the following procedure to install NW6. .

- a) Boot to DOS and fdisk/format the C: partition.
- b) Boot to C: drive and load loddvc.com and cdex from there:

"loddvc aoatapi.sys /D:cdr0m001 cdex.exe /D:cdr0m001 /L:z" (aotapi.sys is whatever driver is appropriate for the cd -- /L:z requires lastdrive=z in config.sys)

- c) Copy server.exe from SP1 to the nwupdate directory.
- d) Run "Install.bat" from the Z: drive

Status: Fixed.

33. 3COM* 3C980C-TX NIC causes Microsoft* Windows* 2000 blue screen when greater than 4GB of system memory is installed

Problem: Intel has induced blue screens under Microsoft* Windows* 2000 in SDS2

sytems configured with a 3COM* 3C980C-TX NIC with driver el98xn5.sys v3.48.0.0, and greater than 4GB of system memory installed, under extreme workloads during network validation testing. This issue is not seen when up to

4GB of system memory is installed in the SDS2 system.

Implication: Blue screens may be encountered under Microsoft* Windows* 2000 when

using a 3COM* 3C980C-TX NIC in an SDS2 system with greater than 4GB of

system memory installed.

Workaround: This issue results because the 3COM 3C980C-TX NIC does not physically

support dual address cycles (DAC), therefore, the NIC is not able to access physical addresses above 4GB. Due to negative performance impact, Intel does not recommend using a NIC adapter that does not support DAC or 64-bit PCI on a system with greater than 4GB of system memory installed. Intel recommends installing a maximum of 4GB of system memory in the SDS2

system when utilizing the 3COM* 3C980C-TX NIC.

This issue does not occur when 3COM driver el98xn5.sys v4.0.0.15, which is available on the Microsoft* Windows.NET* CDROM, is used, instead of 3COM driver el98xn5.sys v3.48.0.0. This is another possible workaround for this

issue.

Status: Fixed.

34. Peer-to-peer PCI transactions are not supported between the CIOB-controlled 64-bit PCI bus and the legacy 32-bit PCI bus controlled by the HE-SL north bridge

Problem: Peer-to-peer PCI transactions are supported between the two peer CIOB-

controlled, 64-bit, 66MHz, 3.3V PCI busses. Peer-to-peer PCI transactions are not supported between the CIOB-controlled 64-bit, 66MHz, 3.3V PCI bus and the legacy 32-bit, 33MHz, 5V PCI bus, which is controlled by the HE-SL north

bridge.

This information is not officially documented in ServerWorks datasheets or

confidential chipset documents.

Implication: PCI adapter card transactions between 64-bit PCI bus and the 32-bit PCI bus

will fail.

Workaround: Peer-to-peer PCI transactions must use the 64-bit buses controlled by the

CIOB.

Status: NoFix.

35. SDS2 PCI slot current levels supported by the 5V rail

Problem: The SDS2 server board is capable of supporting a maximum total of 21 amps

on the 5V rail to the six PCI slots on the server board.

Implication: The SDS2 server board can support a maximum total of 21 amps on the 5V rail

to the six PCI slots on the server board. Integrators must consider this when

selecting PCI card configurations for use in the SDS2 server board.

Workaround: Select PCI cards that utilize a combination of 3.3V and 5V voltage in order to

minimize the current utilized by the PCI cards on the 5V rail.

Status: No Fix.

36. OB P100 NICs do not show at POST but attempt PXE boot and appear in Boot Menu

Problem: On board NIC are not displayed during post but do appear in Boot Device menu.

These controllers will also attempt to do a PXE boot if no other bootable devices

are found.

Implication: Not all boot devices displayed during POST when diagnostic display is enabled.

Workaround: None. This is by design. The system BIOS builds the on-board network

controller Option ROM with an option that always makes the OPROM "quiet". It

Revision 1.2 125 Order Number: A85874-002 therefore does not display any text messages and does not allowing the CTRL-S option.

Status: Will not fix.

Intel® Server Board SDS2 Glossary

Glossary

This appendix contains important terms used in the preceding chapters. For ease of use, numeric entries are listed first (e.g., "82460GX") with alpha entries following (e.g., "AGP 4x"). Acronyms are then entered in their respective place, with non-acronyms following.

Term	Definition	
ACPI	Advanced Configuration and Power Interface	
ASIC	Application specific integrated circuit	
BIOS	Basic input/output system	
BIST	Built-in self test	
BMC	Baseboard Management Controller	
Bridge	Circuitry connecting one computer bus to another, allowing an agent on one to access the other.	
Byte	8-bit quantity.	
BYO	Build your own	
CIOB	PCI 64-bit hub	
CMOS	In terms of this specification, this describes the PC-AT compatible region of battery-backed 128 bytes of memory, which normally resides on the baseboard.	
CSB5	Legacy I/O controller hub	
EEPROM	Electrically erasable programmable read-only memory	
EMP	Emergency management port	
EPS	External Product Specification	
FRB	Fault resilient booting	
FRU	Field replaceable unit	
GB	1024 MB.	
GPIO	General Purpose I/O	
GTL	Gunning Transceiver Logic	
HSC	Hot-swap controller	
Hz	Hertz (1 cycle/second)	
I ² C	Inter-integrated circuit bus	
IA	Intel [®] architecture	
ICMB	Intelligent Chassis Management Bus	
IERR	Internal error	
IPMB	Intelligent Platform Management Bus	
IPMI	Intelligent Platform Management Interface	
ITP	In-target probe	
KB	1024 bytes.	
LAN	Local area network	
LPC	Low pin count	
LUN	Logical unit number	
MAC	Media Access Control	
MB	1024 KB	
Ms	milliseconds	

Revision 1.2 Order Number: A85874-002

Term	Definition
Mux	multiplexor
NMI	Non-maskable Interrupt
OEM	Original equipment manufacturer
Ohm	Unit of electrical resistance
P32-A	32 bit PCI Segment
P64-B	Full Length 64/66 MHz PCI Segment
P64-C	Full Length 64/66 MHz PCI Segment
PBGA	Pin Ball Grid Array
PCT	Platform Confidence Test
PLD	programmable logic device
PMI	Platform management interrupt
POST	Power On Self Test
RAM	Random Access Memory
ROM	Read Only Memory
RTC	Real-time clock. Component of ICH peripheral chip on the baseboard.
SDRAM	Synchronous Dynamic RAM
SEEPROM	Serial electrically erasable programmable read-only memory
SEL	System event log
SM	Server Management
SMI	Server management interrupt. SMI is the highest priority non-maskable interrupt.
SMM	Server management mode.
SMS	Server management software
SNMP	Simple Network Management Protocol.
TBD	To Be Defined
UART	Universal asynchronous receiver and transmitter
USB	Universal Serial Bus

Intel® Server Board SDS2 Reference **Documents**

Reference Documents

Refer to the following documents for additional information:

Refer to the following documents for additional information:

- Coppermine-T Processor Data Sheet Rev 1.0, FM-2051
- Tualatin Processor Electrical, Mechanical, and Thermal Specification Rev 0.9, FM-2024
- Tualatin Dual Processor Platform Design Guide Rev 1.0, OR2660
- ServerWorks Champion North Bridge 2.0 HE Version 1.8
- ServerWorks Champion North Bridge 2.0 HE SuperLite Version 1.2
- ServerWorks Champion IO Bridge Version 1.6
- ServerWorks Champion South Bridge Version 1.5
- PCI Local Bus Specification Revision 2.2
- USB Specification, Revision 1.0
- Adaptec AIC-7902 PCI Bus Master Dual-Channel Ultra320 SCSI Controller Datasheet, preliminary
- ATI RAGE XL Graphics Controller Specifications, Technical Reference Manual, Rev 2.01
- VRM 8.5 DC-DC Converter Specification
- Intel[®] 82550 Fast Ethernet PCI Controller Datasheet
- Intelligent Platform Management Interface (IPMI) Specification
- SDS2 Baseboard Management Controller External Product Specification Rev 0.81, Ref. NO. 10282

Index

1	В
1.25V, 39	Baseboard Temp, 40
12V, 39	Beep Codes, 6, 35, 45, 50
-12V, 39	Beep Codes, 44
	BIOS, 45, 46, 47, 48
2	BIOS components, 34
2.5 V logic lovels 68	BIOS defined, 34
2.5 V logic levels, 68 2.5 V, 39	BIOS features, 34
29LV008B, 3, 20	BIOS flash, 34
2-way interleaved SDRAM, 6, 9	BIOS implementation, 34
2-way intericaved SDKAIVI, 0, 9	BIOS LCD command, 37
3	BIOS Setup, 34, 90
3.3 V logic levels, 68	C
3.3v Standby, 39	Certification marks, 101
3.3VI, 39	Chained memory structure, 15
_	Chassis intrusion, 27, 38
5	Chassis intrusion detection, 84
5V, 39	Chassis Intrusion header, 86
	Chip select, 11, 12
8	Chipset failure, 38
82550, 2, 11, 12, 15, 16	CIOB20, 2, 4, 8, 9, 11, 12, 31, 38
82550PM, 9, 20	CIOB20 I/O Bridge, 2, 11, 12
8259, 16	CMOS, 45, 46, 66
82C59, 17, 20	CMOS clear, 65
02009, 17, 20	CMOS Clear, 89, 90
\mathbf{A}	CMOS clear jumper, 51, 65
	CMOS map, 65
A/D converter, 38	CMOS modification, 51
AC link mode, 33	CN49, 89, 90, 91
ACPI control registers, 8	CN50, 86, 89, 90
Active terminators, 14	CNB2.0HE-SL, 38
ADM1026, 27, 31, 84	CNB20, 2
Advanced Menu, 51, 54, 57	CNB20HE-SL, 8, 9
AGTL terminator module 4	Configuration registers, 14, 16, 20
AGTL terminator module, 4	Controller, 45
AIC-7899W, 3, 10, 13, 14	CPU Fan 1, 41
Alert on LAN, 15	CPU Fan 2, 41
Analog measurement channels, 27	CPU fans, 3
ASF Progress Events, 43	CSB5, 2, 3, 8, 9, 10, 11, 12, 16, 17, 18, 20, 21, 22
Auxiliary signal connector, 72	30, 32, 68
Auxiliary signal connector, 72	CSB5 South Bridge, 2, 11, 12
	Current specifications 93

Graphics Controller, 2 D Data channels, 21 Η Data transfer, 8 Hard reset, 30 Device ID, 11, 12 Hecetas, 27 **DIMM.** 42 HE-SL CNB20 North Bridge, 2 DIMM sockets, 2, 6 HE-SL memory registers, 8 DMA Mode, 17 Host bus interface, 4 DP8473, 19 Host controller, 21 \mathbf{E} T Errata Summary Table, 103 I/O APIC, 17, 20, 21 Error handling, 34, 35 I/O bridge, 8, 10 Error logging, 35 I/O Bridge, 8, 10, 31 Error pins, 32 I/O bus, 11 ESCD parameter block, 65 I/O subsystem core, 8 Event Logging, 39 I^2C^* bus, 8 Event, Trigger, 37 ID button, 33 Exit Menu, 51, 54, 64 ID LED, 33, 75 F IDE channels, 16, 80 IDE controller, 8 Fan connectors, 84 IDSEL signal, 11, 12 Fan speed measurement, 27 IMBus interface, 9, 10 Fan tachometers, 27 Install, 47 Fast IDE controller, 16 Intel logo, 66 Fault Resilient Booting, 29 Interrupt Controller, 45 flash ROM, 34 ISA, 47 Flash ROM, 65, 66 Floppy connector, 3, 81, 85 K Form factor, 2 keyboard and mouse, 18, 19, 83 Front panel connector, 3, 86 Keyboard Command Bar, 51, 52 Front Panel reset, 45 Front Panel Temp, 40 \mathbf{L} Full duplex support, 15 Language, 54, 66 G LED indicators, 75 Legacy support, 2 General purpose I/O, 16 Load slew rate, 95 General-Purpose Logic I/O, 27 Low-speed legacy I/O, 8 Generator ID, 35 LPC bus, 2, 8, 16 Get SDR Time command, 43 LVDS SCSI channel 1 terminator, 40 Get SEL Time command, 43 LVDS SCSI channel2 terminator 1, 40 GPI pin, 17 GPIO, 8, 11, 17, 18 M GPIO pins, 8 GPO pin, 17 Main Menu, 51, 52, 54 Graphics accelerator, 2, 9, 14 Memory, 39 Graphics Accelerator, 11 Memory capacity, 2, 6

Revision 1.12

Index Server Board SDS2

Memory configuration requirements, 6 Plug-N-Play Auto-configuration Manager, 51 Memory controller, 2, 4, 6, 8 Port-80h card, 44 Memory interleaving, 6 POST, 45 Memory scrubbing, 6, 9 POST codes, 44 MIRQ#, 32 POST Error, 39 Missing CPU Module, 41 POST error codes, 43, 49 MPS, 57 POST routines, 51 Multiple-bit error detection, 6 Postcard, 44 Multiple-bit errors, 4 Power connector, 72, 86 Power consumtion, 92 N Power control buttons, 75 Power Status, 39 N KBD PINITL, 30 Power supply connection, 72 N PWRGD+00, 30Power Unit Reduncancy, 39 N_RST_BMCRST_L, 28, 30 Power-on Self-Test N_RST_P6_PWRGOOD, 30 See POST, 45 N844077, 19 Power-up Reset sequence, 30 Network Interface Controller, 2, 11 Proc 1 Status, 42 NIC connector, 85 Proc 1 Temp, 40 NMI. 39 Proc 2 Status, 42 North Bridge, 2, 4, 8, 9, 11, 31 Proc 2 Temp, 40 NVRAM, 65 Processor BIST failure, 38 NVRAM modification, 51 Product ID string, 34 NVRAM.LST file, 65 Protection diode, 14 0 Q OEM logo, 57, 66 Quiet Boot Logo, 65 P R P32-A, 2, 9, 11, 12, 19, 20 RAGE XL, 2, 9, 11, 12, 14, 20, 78 P64-B, 2, 10, 11, 12, 13, 19, 20, 68 RAIDIOS, 14 P64-C, 3, 10, 11, 12, 13, 19, 20, 68 Real-time clock, 19, 43 Parallel port, 18, 19, 83, 85 Recovey floppy, 66 Password settings, 65 Regulatory markings, 99 PC87417, 18, 31 Reset Configuration Data, 65 PCI bus segments, 11 Resettable fuse, 14 PCI masters, 12, 13 PDB Temp, 40 S PERR#, 32, 37, 76, 77 Phlash, 34 S0, 17, 33 PHLASH utility, 65, 66 S1, 17, 33 S4, 17, 33 Physical Security ViolationI, 39 PIO Mode, 17 S5, 17, 33 PLATCBLU.BIN, 65 Safety standard requirements, 99 Scatter / gather mechanism, 17 PLATCXLU.BIN, 65, 66 PLATCXLX.BIN, 65 SCSI BIOS, 65 PLATCXXX.BIN, 65 SCSI connectors, 78, 85 Platform Security Violation, 39 SCSI controller, 3, 10, 11, 14, 18, 65

Revision 1.2

SCSI Controller, 13, 68 SDRAM DIMM connectors, 73 Security, 51, 54 Processor, 45, 46 SEL Log Sensors, 38	Temperature measurement, 27 Termination voltage, 14, 27 Terminator module, 5 Timing requirements, 93
Sensor Event, 37	${f U}$
Sensor Failure, 43	
Sensor, Processor, 45, 46	Ultra DMA 66, 16
Serial ports, 3, 18, 19, 82	Ultra DMA Mode, 17
Serialized IRQs, 21	Ultra160, 2, 3, 10, 14
SERIRQ, 21	Ultra160 SCSI, 2
SERR#, 32, 37, 76, 77	Uncorrectable errors, 38
ServerSet* III HE-SL chipset, 2	Universal Serial Bus, 46
Set NMI Source command, 37	USB, 46
Set SEL Time command, 43	USB connector, 17, 80, 85
Setup utility, 51	USB connector interface, 17
Setup Utility, 65	USB controller, 8, 16, 17 USB interface, 16
Setup utility navigation, 52	USB ports, 3, 80
Setup utility, entering, 52	User binary, 35, 65, 66, 67
Shadow, 45, 46, 47	Osci biliary, 33, 63, 66, 67
Single-bit error correction, 6	${f v}$
Single-bit errors, 4, 17, 32	
Slave device, 21	Vbat, 40
SMI, 35, 38	VID, 6, 27
SMI handler, 35, 37	Video BIOS, 65
SMI Timeout, 42	Video connector interface, 78
Socket 370 FCPGA2, 2	Video Controller, 2, 11, 12
Socket370, 2, 4	Video memory, 14, 78
Soft reset, 30	Video SDRAM, 14
Software ID, 35	Voltage distribution, 70
South Bridge, 8, 9, 32	Voltage generation, 70
Start frame, 21	Voltage Identification, 6 Voltage Regulator Module, 6
Stop frame, 21	Voltage regulators, 70, 102
Super I/O controller, 3	Voltage regulators, 70, 102 Voltage specifications, 93
Synchronous clocks, 68	VRM, 6
System errors, 32, 35	VRM1, 40
System Event 7Ah, 42	VRM2, 40
System Event Log, 38, 49	VICI12, 40
System Event Log full, 38	\mathbf{W}
System Event Log timestamp, 43	
System flash, 34	Watchdogl, 39
System Setup Utility, 34	v
System temperature, 27	X
Systems Monitor ASIC, 27	X-Bus, 3
T	${f Z}$
Tach Fan, 41	Zero Channel Raid, 14, 105

Revision 11.12

Intel® Server Board SDS2

Zero-channel RAID controller, 14

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com