

User Guide

XB1 COM Express™ Module

Document No. 4162 • Edition 5 2007-05

Contents

About this Manual	4
Edition History	4
Related Documents	5
Nomenclature	5
Trade Marks	5
Legal Disclaimer - Liability Exclusion	5
XB1 COM Express Module Features	6
Feature Summary	
Short Description XB1 COM Express Module	
Block Diagram XB1 COM Express Module	
Assembly Drawing XB1 COM Express Module	
Strapping Headers	
Connectors & Sockets	
Indicators	
Microprocessor	
Thermal Considerations	
Main Memory	
LAN Subsystem	
Serial ATA Interface (SATA)	
Enhanced IDE Interface (PATA)	
Graphics Subsystem	
Real-Time Clock	
Universal Serial Bus (USB)	
LPC Super-I/O Interface	
Firmware Hub (Flash BIOS)	
Watchdog/Reset	
PG (Power Good) LED	
GP (General Purpose) LED	
Installing and Replacing Components	
Before You Begin	20
Installing the Board	
Removing the Board	
EMC Recommendations	
Installing or Replacing the Memory Modules	
Replacement of the Battery	24
Technical Reference	25
Local PCI Devices	
Local SMB Devices	
Hardware Monitor LM87	
GPIO Usage	
GPIO Usage ICH6	
GPIO Usage FWH	
GPIO Usage SIO	
Configuration Jumpers	
Reset Jumper BIOS CMOS RAM Values (J-GP)	
Reset Jumper ICH6 RTC Core (J-RTC)	
, , ,	

Connectors	31
PLD Programming Header ISPCON	31
J-COM	32
Processor Debug Header PITP	36
P-SIO	37
Board Dimensions	38
Top View, Bottom View	39
Literature	40

About this Manual

This manual describes the technical aspects of the XB1 COM Express Module, required for installation and system integration. It is intended for the experienced user only.

Edition History

Ed.	Contents/ <i>Changes</i>	Author	Date
1	User Manual XB1 COM Express Module, English, initial edition (Text #4162, File: xb1_uge.wpd)	jj	27 April 2006
2	Table J-COM modified (PCIe Lane #3)	jj	1 August 2006
3	Illustration 'Assembly Drawing'	jj	31 August 2006
4	Added XB1 photographs	jj	16 November 2006
5	Added XB1-060	jj	2 May 2007

Related Documents

For ordering information refer to document XB1 COM Express Module Product Information, available at http://www.ekf.com/x/xb1/xb1 pie.pdf.

Nomenclature

Signal names used herein with an attached '#' designate active low lines.

Trade Marks

Some terms used herein are property of their respective owners, e.g.

- ► Intel, Pentium, Celeron, SpeedStep: ® Intel
- ► PCI Express: ® PCI-SIG
- ► COM Express: ™ PICMG
- ► CompactPCI, CompactPCI Express, PICMG: ® PICMG
- ► Windows (2000, XP, Vista etc): ® Microsoft
- ► EKF, ekf system: ® EKF

EKF does not claim this list to be complete.

Legal Disclaimer - Liability Exclusion

This manual has been edited as carefully as possible. We apologize for any potential mistake. Information provided herein is designated exclusively to the proficient user (system integrator, engineer). EKF can accept no responsibility for any damage caused by the use of this manual.

XB1 COM Express Module Features

Feature Summary

	Feature Summary XB1
Form Factor	PICMG COM Express R1.0 (COM.0), Basic Module form factor (125x95mm²), Pin-out Type 2
Processor	 Designed for Intel® Pentium® M Micro FC-BGA 479 processors (90nm Dothan), maximum junction temperature 100°C XB1-060: 600MHz ULV Celeron® M (Banias 130nm), 400MHz FSB, 512KB L2 cache, 7W XB1-100: 1.0GHz ULV Celeron® M (Dothan 373), 400MHz FSB, 512KB L2 cache, 5W XB1-140: 1.4GHz LV Pentium® M (Dothan 738), 400MHz FSB, 2MB L2 cache, 10W XB1-200: 2.0GHz Pentium® M (Dothan 760), 533MHz FSB, 2MB L2 cache, 27W
Chipset	 Intel® i915 embedded systems chipset (Alviso) consisting of: ▶ 82915GM Graphics/Memory Controller Hub (GMCH) with Intel® Graphics Media Accelerator (GMA) 900 ▶ 82801FB I/O Controller Hub (ICH6) ▶ 82802 Compatible Firmware Hub (FWH)
Memory	Dual 200-pin SO-DIMM socket, DDR2 533 SDRAM, 2 x 1GB maximum, symmetric dual channel capable
Video	Up to 2048x1536 pixel 16M colours @75Hz refresh rate (analog), up to 1600 x 1200 pixel 16M colours @60Hz (digital), dual screen support ► Dual SDVO ► Analog VGA ► Dual LVDS ► TV Out ► PEG PCI Express x 16 external graphics interface, multiplexed with SDVO
USB	8 x USB2.0
Ethernet	PCIe to Gigabit Ethernet controller 10/100/1000Mbps
PATA (IDE)	ICH6 integrated Ultra ATA/100 I/F
SATA	4 x SATA-150
GPIO	8 GPIO lines
Sound System	AC '97 or HD Audio Azalia (external Codec)
PCI	ICH6 integrated 32-bit PCI bridge, 133MBps CPCI master
PCI Express	3-Lane PCIe if PCIe Gigabit Ethernet controller is stuffed 4-Lane PCIe (x 4 Link) w/o PCIe Gigabit Ethernet controller (stuffing option)
BIOS	Phoenix BIOS

Feature Summary XB1						
Drivers	_	 Intel graphics drivers Intel networking drivers 				
Power Requirements	$+12V \pm 0.5V$,	+12V ±0.5V, tbd A max. @2.0GHz (tbd A WinXP idle mode)				
Environmental Conditions	StorageHumiditAltitudeShock 1	 Operating temperature: 0°C +70°C (CPU dependent) Storage temperature: -40°C +85°C, max. gradient 5°C/min Humidity 5% 95% RH non condensing Altitude -300m +3000m Shock 15g 0.33ms, 6g 6ms Vibration 1g 5-2000Hz 				
MTBF	tbd					
EC Regulations	 EN55022, EN55024, EN60950-1 (UL60950-1/IEC60950-1) 2002/95/EC (RoHS) 					
Performance Rating	Board Processor CPU/MEM Score					
Measured with	XB1-060	XB1-060 600MHz ULV Celeron® M (Banias) tbd				
PCMark2005	XB1-100 1.0GHz ULV Celeron® M (Dothan 373) tb					
	XB1-140	XB1-140 1.4GHz LV Pentium® M (Dothan 738) tbd				
	XB1-201	2.0GHz Pentium® M (Dothan 760)	tbd			

Subject to technical changes

XB1 COM Express Module with Heatspreader

Short Description XB1 COM Express Module

COM Express™ (also known as ETXexpress™) is an open PICMG® standard for Computer-On-Modules, comprising of latest technologies such as PCI Express, Serial ATA, Gigabit Ethernet and SDVO. While designing the carrier board only once, users profit from upgrading or scaling their application by simply changing the CPU module.

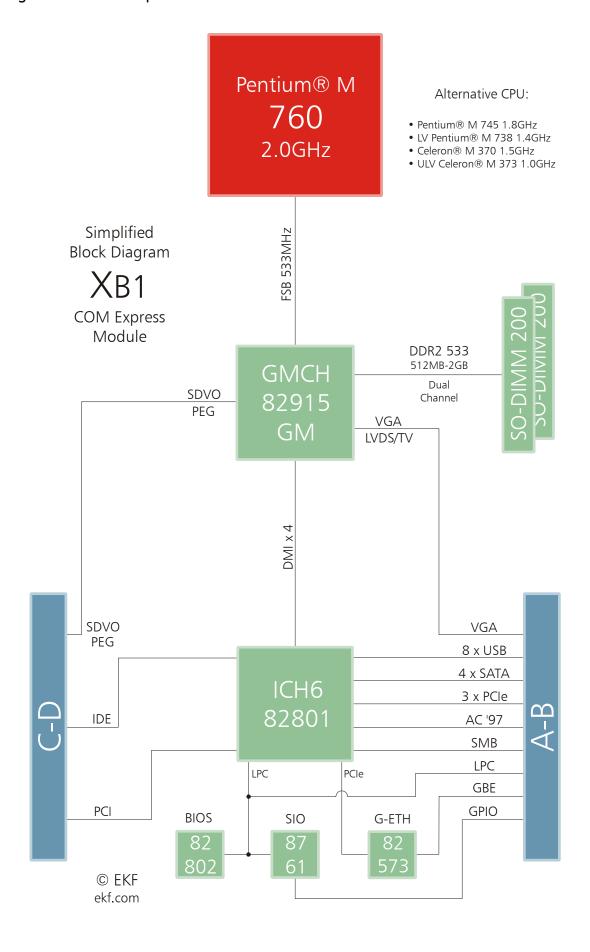
Alternatively equipped with the Intel series of (LV) Pentium® M and ULV Celeron® M processors and up to 2GB RAM, the EKF XB1 is a versatile COM Express basic form factor module, designed especially for systems which require high performance at low power consumption. The chipset is based on PCI Express technology and has integrated a powerful dual screen graphics accelerator. The SDVO and VGA video interfaces allow for attachment of digital flat panel displays and analog monitors.

The XB1 is provided with a Gigabit Ethernet controller, and eight USB 2.0 ports for high speed communication. Four Serial ATA channels are available in addition to the legacy PATA I/F. The dual slot DIMM socket is suitable to address up to 2GB interleaved (symmetric) dual channel memory.

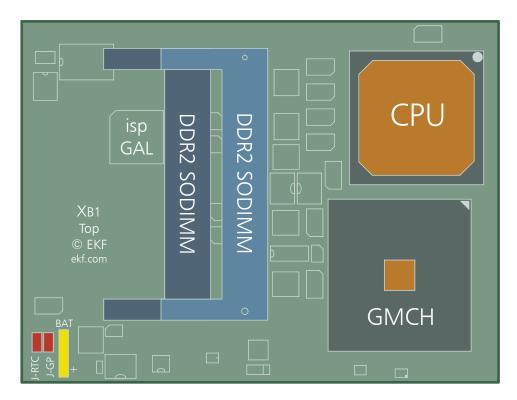
Typically, the XB1 will be combined with a custom specific carrier board. As a basic development tool, EKF can supply a third party evaluation carrier board. In addition, EKF offers their design services to create a turn-key ready customer solution.

The XB1 COM Express module is the perfect choice for embedded applications that require a low power standard processor at the centre of their design. OEMs can significantly improve their flexibility and reduce their total cost by adopting the open standards based architecture of COM Express.

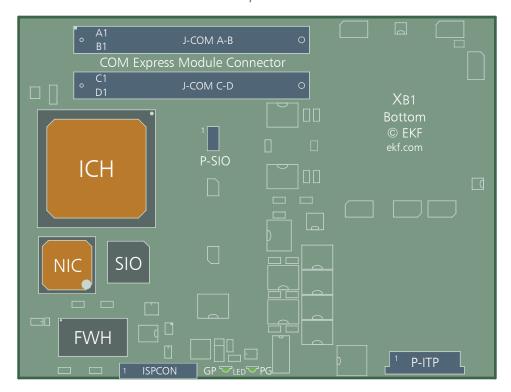
XB1 COM Express Module


Benefits of the XB1 COM Express Module

- PICMG COM.0 Compliant Module Type 2
- Pentium® M 2GHz (FSB 533MHz)
- PCI Express Chipset for Embedded Applications
- ► 2 x 1GB DDR2 Memory (Dual Channel Mode Capable)
- Dual-Screen Graphics Controller
- Video I/F SDVO, PEG, LVDS, VGA, TV
- Gigabit Ethernet Controller
- 4 x SATA I/F
- ► 8 x USB 2.0 Channels
- RoHS Compliant



XB1 from Bottom


Block Diagram XB1 COM Express Module

Assembly Drawing XB1 COM Express Module

© EKF • XB1 COM Express Module • ekf.com

Strapping Headers

J-GP	Jumper to reset BIOS CMOS RAM values
J-RTC	Jumper to reset RTC core of ICH6, not stuffed

Connectors & Sockets

ISPCON	PLD programming connector, not stuffed
J-COM A-B	COM Express connector rows A and B (VGA, LVDS, TV, PCIe, SATA, Ethernet, USB, AC'97, SMB, LPC)
J-COM C-D	COM Express connector rows C and D (Dual SDVO / PEG, IDE, PCI)
P-ITP	CPU debug port
P-SIO	I/O connector for debugging (not stuffed), comprises PS/2 mouse/keyboard signals, UART (TTL)
SODIMM1 SODIMM2	200-pin DDR2 SDRAM PC2-3200/4200 (DDR400/533) 1.8V memory module sockets

Indicators

GP	General Purpose LED
PG	LED indicating Power Good / Board Healthy

Microprocessor

The XB1 COM Express Module is designed for use with Pentium® M and Celeron® M processors manufactured in 90nm technology (Dothan). These include also the Ultra Low-Voltage (ULV) Celeron® M and the Low-Voltage (LV) Pentium® M processors as listed below. The processors are housed in a Micro FC-BGA package for direct soldering to the PCB, i.e. the CPU chip cannot be removed or changed by the user.

The processors supported by the XB1 COM Express Module are running at FSB clock speeds of 400MHz and 533MHz. The internal Pentium M processor speed is achieved by multiplying the host bus frequency by a variable value. The multiplier is chosen by currently required performance and the actual core temperature. This technology is called Enhanced Intel SpeedStep®.

Power is applied across the COM Express connectors J-COM (+12V). The processor core voltage is generated by a switched voltage regulator. The processor signals its required core voltage by 6 dedicated pins according to Intels IMVP-IV voltage regulator specification.

90nm (Dothan) Processors Supported								
Processor	Speed min/max [GHz]	Host Bus [MHz]	L2 Cache [MB]	TDP [W]	Die Temp [°C]	CPU ID	Stepping	sSpec
ULV Celeron M 373 1) 2)	1.0/1.0	400	0.5	5	0-100	06D8h	C-0	SL8LW
LV Pentium M 738 ²⁾	0.6/1.4	400	2	10	0-100	06D6h 06D8h	B-1 C-0	SL7P9 SL89N
Pentium M 745 ²⁾	0.6/1.8	400	2	21	0-100	06D6h 06D8h	B-0 C-0	SL7Q6 SL8U8
Pentium M 760 ²⁾	0.8/2.0	533	2	27	0-100	06D8h	C-0	SL869

¹⁾ This processor does not support SpeedStep® technology, instead it runs at a fixed core speed

²⁾ Following the Intel Embedded Roadmap, this processor is recommended for long time availability

Thermal Considerations

In order to avoid malfunctioning of the XB1 COM Express Module, take care of appropriate cooling of the processor and system, e.g. by a cooling fan suitable to the maximum power consumption of the CPU chip actually in use. Please note, that the processors temperature is steadily measured by a special controller (LM87), attached to the onboard SMBus® (System Management Bus). A second temperature sensor internal to the LM87 allows for acquisition of the boards surface temperature. Beside this the LM87 also monitors most of the supply voltages. A suitable software to display both, the temperatures as well as the supply voltages, is MBM (Motherboard Monitor), which can be downloaded from the web. After installation, both temperatures and voltages can be observed permanently from the Windows taskbar.

The XB1 COM Express Module is equipped with a passive heatsink (heat-spreader). In addition, a forced airflow through the system enclosure by a suitable fan unit is highly recommended (>15m³/h or 200LFM around the CPU module). As an exception, the XB1-100 (ULV Celeron M 1GHz) can be operated with natural convection only. Be sure to thoroughly discuss your actual cooling needs with EKF. Generally, the faster the CPU speed the higher its power consumption. For higher ambient temperatures, consider increasing the forced airflow to 400 or 600LFM.

The table showing the supported processors above give also the maximum power consumption (TDP = Thermal Design Power) of a particular processor. Fortunately, the power consumption is by far lower when executing typical Windows or Linux tasks. The heat dissipation may increase considerably when e.g. rendering software such as the Acrobat Distiller is executed.

The Pentium M processors support Intel's Enhanced SpeedStep® technology. This enables dynamic switching between multiple core voltages and frequencies depending on core temperature and currently required performance. The processors are able to reduce their core speed and core voltage in up to 8 steps down to 600MHz. This leads to an obvious reduction of power consumption (max. 7.5W @600MHz) resulting in less heating. This mode of lowering the processor core temperature is called TM2 (TM=Thermal Monitor). Note, that TM2 is not supported by Celeron M processors.

Another way to reduce power consumption is to modulate the processor clock. This mode (TM1) is supported also by the Celeron M processors and is achieved by actuating the 'Stop Clock' input of the CPU. A throttling of 50% e.g. means a duty cycle of 50% on the stop clock input. However, while saving considerable power consumption, the data throughput of the processor is also reduced. The processor works at full speed until the core temperature reaches a critical value. Then the processor is throttled by 50%. As soon as the high temperature situation disappears the throttling will be disabled and the processors runs at full speed again.

A similar feature is embedded within the Graphics and Memory Controller (GMCH) i915GM. An on-die temperature sensor is used to protect the GMCH from exceeding its maximum junction temperature ($T_{L_{max}}$ =105°C) by reducing the memory bandwidth.

These features are controllable by BIOS menu entries. By default the BIOS of the XB1 COM Express Module enables mode TM2 which is the most efficient.

Main Memory

The XB1 COM Express Module is equipped with two sockets for installing 200-pin SO-DIMM modules (module height = 1.25 inch). Supported are unbuffered DDR2 SO-DIMMs (V_{cc} =1.8V) without ECC featuring on-die termination (ODT), according the PC2-3200 or PC2-4200 specification. Minimum memory size is 128MB; maximum memory size is 2GB. Due to the video requirements of the i915GM chipset (some of the system memory is dedicated to the graphics controller), a minimum of 2x256MB memory is recommended for the operating systems Windows NT 4.0, Windows 2000 or Windows XP.

The contents of the SPD EEPROM on the SO-DIMMs are read during POST (Power-on Self Test) to program the memory controller within the chipset.

The i915GM chipset supports symmetric and asymmetric memory organization. The maximum memory performance can be obtained by using the symmetric mode. To achieve this mode, two SO-DIMMs of equal capacity must be installed in the memory sockets. In asymmetric mode different memory modules may be used with the drawback of less bandwidth. A special case of asymmetric mode is to populate only one memory module (i.e. one socket may be left empty).

LAN Subsystem

The Ethernet LAN subsystem is comprised of the Intel 82573 Gigabit Ethernet controller, which provides also legacy 10Base-T and 100Base-TX connectivity.

- Single PCI Express lane linkage
- ► 1000Base-Tx (Gigabit Ethernet), 100Base-TX (Fast Ethernet) and 10Base-T (Classic Ethernet) capability
- ► Half- or full-duplex operation
- ► IEEE 802.3u Auto-Negotiation for the fastest available connection
- Jumperless configuration (completely software-configurable)

The NIC (Networking Interface Controller) is connected by a single PCI Express lane to the chipset southbridge (ICH6). Its MAC address (unique hardware number) is stored in a dedicated EEPROM. The Intel Ethernet software and drivers for the 82573 is available from Intel's World Wide Web site for download (link provided on the EKF website).

By specification, the XB1 COM Express Module does not provide any I/O connector. Instead, the carrier board must provide the RJ45 receptacle with integrated magnetics for copper twisted pair Ethernet. All MDI (Media Dependent Interface) signals of the Ethernet PHY are routed to the connector J-COM A-B.

The 82573 controller is connected to the PCI Express lane #3. As an alternate stuffing option, this lane is available across the J-COM connector instead, for carrier board applications which require 4 PCIe lanes (typically configured as PCIe x 4 link). If this stuffing option had been ordered, no Ethernet connectivity is provided on the XB1 itself, but may be replicated on the carrier board.

Serial ATA Interface (SATA)

The XB1 COM Express Module provides four serial ATA (SATA) ports, each capable of transferring 150MB/s. Integrated within the ICH6, the SATA controller features different modes to support also legacy operating systems. The SATA channels are available to the carrier board across the J-COM A-B connector.

Available for download from Intel are drivers for popular operating systems, e.g. Windows® 2000, Windows® XP and Linux.

Enhanced IDE Interface (PATA)

The parallel ATA (PATA, also known as IDE) interface is provided for attachment of legacy peripheral devices such as hard disks, ATA CompactFlash cards and CD-ROM drives. The interface supports:

- Up to two ATA devices
- PIO Mode 3/4, Ultra ATA/33, Ultra ATA/66, Ultra ATA/100

The PATA port is available to the carrier board across the J-COM C-D connector. The IDE controller is integrated into the ICH6. Ultra ATA IDE drivers can be downloaded from the Intel website.

Graphics Subsystem

The graphics subsystem is part of the versatile Intel i915GM Graphics/Memory Controller Hub (GMCH), and is also known as Intel Graphics Media Accelerator (GMA) 900. As an alternative, PCI Express based graphics is supported (requires discrete PEG controller present on the carrier board). The main features of the GMA900 are:

- ► Dual Serial Digital Video Output (SDVO) allows for two independent DVI connectors
- ► RGB output suitable for a VGA style connector
- TV out (HDTV resolution)
- LVDS wide panel support

For legacy CRT style monitors, the XB1 COM Express Module is provided with RGB signals on the J-COM A-B connector, suitable for a VGA D-Sub accommodated on the carrier board. Also the TV out and the LCD panel signals (LVDS port) are routed to the J-COM A-B connector.

The GMCH multiplexes a PCI Express Graphics interface with two Intel SDVO ports. The SDVO ports can each support a single-channel SDVO device. If both ports are active in single-channel mode, they can have different display timing and data. Alternatively the SDVO ports can be combined to support dual channel devices, enabling higher resolutions and refresh rates. On the XB1 COM Express Module, the SDVO/PEG signals are routed to the connector J-COM C-D. Typically, one or two discrete display transmitter chips located on the carrier board are used to convert Intels proprietary, PCI express based SDVO interfaces to the differential DVI signals required for attachment of modern flat panel monitors. E.g., the Sil1362 (Silicon Image) transmitter uses PanelLink® Digital technology to support displays ranging from VGA to UXGA resolutions (25 - 165Mpps) in a single link interface. With two DVI connectors on the carrier board, independent dual screen operation is available (this also applies for one DVI and one D-Sub connector).

The GMCH supports several video resolutions and refresh rates. A partial list is contained in the table below. Please note, that flat-panel displays should be operated with their native (maximum) resolution at 60Hz refresh rate (some models also accept 75Hz). 16-bit high colour mode is recommended.

Partial List of i915GM GMCH Video Modes (analog / digital)						
Resolution	60Hz	70Hz	72Hz	75Hz	85Hz	
640x480	√ / √	/ / /	/ / /	√ / √	/ / /	
800x600	√ / √	/ / /	√ / √	√ / √	/ / /	
1024x768	✓ / ✓ ¹⁾	/ / /	√ / √	√ / √	/ / /	
1280x1024	✓ / ✓ ¹⁾	√ / √	√ / √	√ / √	/ / /	
1600x1200	✓ / ✓ ^{1) 2)}	√ / -	√ / -	√ / -	√ / -	
2048x1536	√ / -	√ / -	√ / -	√ / -	-/-	

¹⁾ This video mode is suitable for popular flat-panel displays

Graphics drivers for the i915GM can be downloaded from the Intel website.

²⁾ In dual screen mode 2 x 1600x1200, 32-bit true colours are not available for both outputs simultaneously

Real-Time Clock

The XB1 COM Express Module has a time-of-day clock and 100-year calendar, integrated into the ICH6.

A battery on the board keeps the clock current when the computer is turned off. The XB1 uses a Vanadium-Pentoxide-Lithium rechargeable battery, giving an autonomy of more than 50 days when fully loaded after 24 hours. The cell is free of memory effects and withstands deep discharging. Under normal conditions, replacement should be superfluous during lifetime of the board. Custom specific versions of the XB1 may not provide the accumulator.

In addition, VCC_RTC is also redundantly derived from the carrier board (if supported). The time keeping autonomy period is then defined by the battery capacity accommodated on the carrier.

Universal Serial Bus (USB)

The XB1 COM Express Module is provided with eight USB ports, all of them are USB 2.0 capable. Four active-low over-current sensing inputs are available in addition, suitable for attachment of electronic switches such as the LM3526-L on the carrier board. The USB controllers are integrated into the ICH6.

LPC Super-I/O Interface

In a modern system, legacy ports as PS/2 keyboard/mouse, COM1/2 and LPT have been replaced by USB and Ethernet connectivity. The 1.4MB floppy disk drive has been swapped against CD/DVD-RW drives or USB memory sticks. Hence, the XB1 COM Express Module is virtually provided with all necessary I/O functionality. However, for BIOS and OS software compatibility, the XB1 is additionally equipped with a simple Super-I/O chip. The Super-I/O controller resides on the local LPC bus (LPC = Low Pin Count interface standard), which is a serialized ISA bus replacement. For debug only, a connector P-SIO may be stuffed on the XB1, with KB/MS signals derived from the SIO and also a rudimentary serial I/F (TTL-level Tx/Rx RTS/CTS).

The SIO provides a rich set of GPIO lines. Four channels are used as GPIO..3, and another 4 channels as GPO0..3, all routed to the connector J-COM A-B, for use on the carrier board.

Firmware Hub (Flash BIOS)

The BIOS is stored in an 8Mbit Firmware Hub attached to the LPC bus. The firmware hub contains a nonvolatile memory core based on flash technology, allowing the BIOS to be upgraded. The XB1 firmware hub may be deselected by the carrier board from use as primary BIOS source, by activating the signal BIOS_DISABLE# on J-COM A-B. This allows a potential secondary firmware hub residing on the carrier board to be used as alternative BIOS source.

The FWH can be reprogrammed (if suitable) by a DOS based tool. This program and the latest XB1 COM Express Module BIOS are available from the EKF website. Read carefully the enclosed instructions. If the programming procedure fails e.g. caused by a power interruption, the XB1 COM Express Module may no more be operable. In this case you would have to send in the board, because the BIOS is directly soldered to the PCB and cannot be changed by the user.

Watchdog/Reset

The XB1 COM Express Module is provided with two supervisor circuits to monitor the supply voltages 1.8V, 3.3V, 5V, and to generate a clean power-on reset signal. The healthy state of the XB1 COM Express Module immideately after a reset is signalled by the LED PG (Power Good), indicating that all power voltages are within their specifications and the reset signal has been deasserted.

An important reliability feature is the watchdog function, which is programmable by software. The behaviour of the watchdog is defined within the PLD, which activates/deactivates the watchdog and controls its time-out period. The time-out delay is adjustable in the steps 2, 10, 50 and 255 seconds. After alerting the WD and programming the time-out value, the related software (e.g. application program) must trigger the watchdog periodically. All watchdog related functions are made available by calling service requests within the BIOS.

The watchdog is in a passive state after a system reset. There is no need to trigger it at boot time. The watchdog is activated on the first trigger request. If the duration between two trigger requests exceeds the programmed period, the watchdog times out and a system reset will be generated. The watchdog remains in its active state until the next system reset. There is no way to disable it once it had been put on alert, whwereas it is possible to reprogram its time-out value at any time.

PG (Power Good) LED

The XB1 COM Express Module offers a software programmable LED located. After system reset, this LED defaults to signal the board healthy respectively power good. By the first setting of the GPO20 of the ICH6 this LED changes its function and is then controlled only by the level of the GPO20 pin. Setting this pin to 1 will switch on the LED. The PG LED remains in the programmable state until the next system reset.

GP (General Purpose) LED

A second, programmable LED can be also observed from the front panel. The status of the GP LED is controlled by the GPO18 output of the ICH6. Setting this pin to 1 will switch on the LED. As of current, the GP LED is not dedicated to any particular hardware or firmware function (this may change in the future).

Installing and Replacing Components

Before You Begin

Warnings

The procedures in this chapter assume familiarity with the general terminology associated with industrial electronics and with safety practices and regulatory compliance required for using and modifying electronic equipment. Disconnect any telecommunication links, networks or procedures described in this chapter. Failure links before you open the system or perform or equipment damage. Some parts of the the power switch is in its off state.

the system from its power source and from modems before performing any of the to disconnect power, or telecommunication any procedures can result in personal injury system can continue to operate even though

Caution

Electrostatic discharge (ESD) can damage components. Perform the procedures described in this chapter only at an ESD workstation. If such a station is not available, you can provide some ESD protection by wearing an antistatic wrist strap and attaching it to a metal part of the system chassis or board front panel. Store the board only in its original ESD protected packaging. Retain the original packaging (antistatic bag and

antistatic box) in case of returning the board to EKF for rapair.

Installing the Board

Warning

This procedure should be done only by qualified technical personnel. Disconnect the system from its power source before doing the procedures described here. Failure to disconnect power, or telecommunication links before you open the system or perform any procedures can result in personal injury or equipment damage.

Typically you will perform the following steps:

- Switch off the system, remove the AC power cord
- Attach your antistatic wrist strap to a metallic part of the system

- Remove the board packaging, be sure to touch the board only at the heat spreader
- Insert module carefully into the complementary J-COM connectors on the carrier board
- Fix mounting screws
- Retain original packaging in case of return

Removing the Board

Warning

This procedure should be done only by qualified technical personnel. Disconnect the system from its power source before doing the procedures described here. Failure to disconnect power, or telecommunication links before you open the system or perform any procedures can result in personal injury or equipment damage.

Typically you will perform the following steps:

- Switch off the system, remove the AC power cord
- Attach your antistatic wrist strap to a metallic part of the system

- Identify the board, be sure to touch the board only at the front panel
- Unfasten screws
- Remove the module carefully
- Store board in the original packaging, do not touch any components, hold the board at the heat spreader only

Warning

Do not expose the card to fire. Battery cells and other components could explode and cause personal injury.

EMC Recommendations

In order to comply with the CE regulations for EMC, it is mandatory to observe the following rules:

- The chassis or rack including other boards in use must comply entirely with CE
- Close all board slots not in use with a blind front panel
- Front panels must be fastened by built-in screws
- Cover any unused front panel mounted connector with a shielding cap
- External communications cable assemblies must be shielded (shield connected only at one end of the cable)
- Use ferrite beads for cabling wherever appropriate
- External I/O connectors may require additional isolating parts

Reccomended Accessories

Blind CPCI Front Panels	EKF Elektronik	Widths currently available (1HP=5.08mm): with handle 4HP/8HP without handle 2HP/4HP/8HP/10HP/12HP
Ferrit Bead Filters	ARP Datacom, 63115 Dietzenbach	Ordering No. 102 820 (cable diameter 6.5mm) 102 821 (cable diameter 10.0mm) 102 822 (cable diameter 13.0mm)
Metal Shielding Caps	Conec-Polytronic, 59557 Lippstadt	Ordering No. CDFA 09 165 X 13129 X (DB9) CDSFA 15 165 X 12979 X (DB15) CDSFA 25 165 X 12989 X (DB25)

Installing or Replacing the Memory Modules

Note: If you decide to replace the memory, observe the precautions in 'Before You Begin'

By default, the XB1 COM Express Module comes fully equipped and tested with two DDR2 SDRAM memory modules. So normally there should be no need to install the memory modules.

The XB1 COM Express Module requires at least one PC2-3200/4200 (400/533MHz) DDR2 SDRAM SO-DIMM module. For optimum performance two SO-DIMMs of equal capacity are recommended. Further it is highly recommended that Serial Presence Detect (SPD) SO-DIMMs be used, since this allows the chipset to accurately configure the memory settings for optimum performance.

A replacement memory module must match the 200-pin SO-DIMM form factor (known from Notebook PCs), DDR2, $V_{CC}=1.8V$, PC2-3200/PC2-4200 (400/533MHz), on-die termination (ODT), unbuffered, non-ECC style. Suitable modules are available up to 1GB each. The i915GM supports modules of up to a maximum of 14 address lines (A0...A13). Memory modules organized by more than 14 address lines are not suitable.

Replacement of the Battery

When the XB1 is removed from the carrier board, an optional on-board battery maintains the voltage to run the time-of-day clock and to keep the values in the CMOS RAM over \sim 30 days. The battery is rechargeable und should last during the lifetime of the XB1 COM Express Module. For replacement, the old battery must be desoldered, and the new one soldered. We suggest that you send back the board to EKF for battery replacement.

Warning

Danger of explosion if the battery is incorrectly replaced. Replace only with the same or equivalent type. Do not expose a battery to fire.

Technical Reference

Local PCI Devices

The following table shows the on-board PCI devices and their location within the PCI configuration space. These devices reside mainly within the i915GM chipset.

Bus Number	Device Number	Function Number	Vendor ID	Device ID	Description
0	0	0	0x8086	0x2590	Host Bridge
0	2	0	0x8086	0x2592	Internal Graphics Device
0	2	1	0x8086	0x2792	Int. Graphics Config. Regs.
0	27	0	0x8086	0x2668	Intel High Definition Audio
0	28	0	0x8086	0x2660	PCI Express Port 1
0	28	1	0x8086	0x2662	PCI Express Port 2
0	28	2	0x8086	0x2664	PCI Express Port 3
0	28	3	0x8086	0x2666	PCI Express Port 4
0	29	0	0x8086	0x2658	USB UHCI Controller #1
0	29	1	0x8086	0x2659	USB UHCI Controller #2
0	29	2	0x8086	0x265A	USB UHCI Controller #3
0	29	3	0x8086	0x265B	USB UHCI Controller #4
0	29	7	0x8086	0x265C	USB 2.0 EHCI Controller
0	30	0	0x8086	0x244E	PCI-to-PCI Bridge
0	30	2	0x8086	0x266E	AC'97 Audio Controller
0	30	3	0x8086	0x266D	AC'97 Modem Controller
0	31	0	0x8086	0x2640	LPC Bridge
0	31	1	0x8086	0x266F	IDE Controller
0	31	2	0x8086	0x2651	SATA Controller
0	31	3	0x8086	0x266A	SMB Controller
3 1)	0	0	0x8086	0x108B ²⁾ 0x108C ²⁾	Ethernet Controller NC1

This bus number can vary depending on the PCI enumeration schema implemented in BIOS.

The XB1 COM Express Module is available with a 82573L or 82573E/V Ethernet controller.

Local SMB Devices

The XB1 COM Express Module contains a few devices that are attached to the System Management Bus (SMBus). These are the clock generation chip, the SPD EEPROMs on the SO-DIMM memory modules, a general purpose serial EEPROM and a supply voltage and CPU temperature controlling device in particular. Other devices could be connected to the SMB on the carrier board across J-COM A-B.

Address	Description
0x58	Hardware Monitor/CPU Temperature Sensor (LM87)
0xA0	SPD of SODIMM1
0xA2	SPD of SODIMM2
0xAE	General Purpose EEPROM
0xD2	Main Clock Generation (CK-410M)

Hardware Monitor LM87

The XB1 COM Express Module is provided with a LM87 hardware monitor attached to the SMB. This device is capable to observe board and CPU temperatures as well as several supply voltages generated on the board with a resolution of 8 bit. The following table shows the mapping of the voltage inputs of the LM87 to the corresponding supply voltages of the XB1 COM Express Module:

Input	Source	Resolution [mV]	Register
AIN1	CPU Core Voltage	9.8	0x28
AIN2	+1.05V	9.8	0x29
VCCP1	+1.5V	14.1	0x21
VCCP2/D2-	+1.8V	14.1	0x25
+2.5V/D2+	+2.5V	13	0x20
+3.3V	+3.3V	17.2	0x22
+5V	+5V	26	0x23
+12V	+12V	62.5	0x24

Besides the continuous measuring of temperatures and voltages the LM87 may compare these values against programmable upper and lower boundaries. As soon as a measurement violates the allowed value range, the LM87 may request an interrupt via the GPI[7] of the ICH6.

GPIO Usage

GPIO Usage ICH6

XB1 COM Express Module GPIO Usage ICH6					
GPIO	Туре	Tol.	Function	Description	
GPI 0	1	5V	EXCD1_CPPE#	PCI ExpressCard PCI Express capable card 1 request	
GPI 1	1	5V	EXCD0_CPPE#	PCI ExpressCard PCI Express capable card 0 request	
GPI 2	I	5V	PG_VR33	Power Good signal from 3.3V voltage regulator	
GPI 3	1	5V	WAKE1#	General purpose wake up signal from carrier board	
GPI 4	1	5V	PWR_OK	Power OK from main power supply	
GPI 5	1	5V	BATLOW#	Indicates that external battery is low	
GPI 6	1	3.3V	GP_JUMP#	BIOS CMOS Values Reset Jumper JGP	
GPI 7	I	3.3V	HM_INT#	Hardware Monitor LM87 Interrupt Line	
GPI 8	1	3.3V	I2C_DAT	I ² C emulated data signal (input only, see also GPIO 28)	
GPI 9	1	3.3V	USB_OC45#	USB Ports 4 & 5 Overcurrent Detect Line (GPI9/10 joined)	
GPI 10	1	3.3V	USB_OC45#	USB Ports 4 & 5 Overcurrent Detect Line (GPI9/10 joined)	
GPI 11	1	3.3V	SMB_ALERT#	System Management Bus Alert	
GPI 12	I	3.3V	PEG_ENABLE#	If pulled low externally, enables the PCI Express x 16 external graphics interface and disables internal graphics (internally pulled up 10k/3.3V)	
GPI 13	1	3.3V	12C_CK	I ² C emulated clock signal (input only, see also GPIO 27)	
GPI 14	1	3.3V	USB_OC67#	USB Ports 6 & 7 Overcurrent Detect Line (GPI14/15 joined)	
GPI 15	1	3.3V	USB_OC67#	USB Ports 6 & 7 Overcurrent Detect Line (GPI14/15 joined)	
GPO 16	0	3.3V	EXCD1_RST#	PCI ExpressCard reset card 1	
GPO 17	0	3.3V	EXCDO_RST#	PCI ExpressCard reset card 0	
GPO 18	0	3.3V	ICH_GPO18	Control output to PLD	
GPO 19	0	3.3V	ICH_GPO19	Control output to PLD	
GPO 20	0	3.3V	ICH_GPO20	Control output to PLD	
GPO 21	0	3.3V	ICH_GPO21	Control output to PLD	
GPO 23	0	3.3V		not used - open	
GPIO 24	I/O	3.3V	ICH_GPIO24	for future use as PLD control signal (either input or output)	
GPIO 25	0	3.3V		not used - open (configured as output by BIOS)	
GPI 26	1	3.3V	CLK_64HZ	64Hz clock from 4040 binary counter	
GPIO 27	0	3.3V	I2C_CK	I ² C emulated clock signal (output only, see also GPI 13)	
GPIO 28	0	3.3V	I2C_DAT	I ² C emulated data signal (output only, see also GPI 8)	
GPI 29	I	3.3V	BOARD_CFG1	Board configuration options line 1	

XB1 COM Express Module GPIO Usage ICH6					
GPIO	Туре	Tol.	Function	Description	
GPI 30	I	3.3V	BOARD_CFG2	Board configuration options line 2	
GPI 31	I	3.3V	BOARD_CFG3	Board configuration options line 3	
GPIO 32	0	3.3V		not used - open (configured as output by BIOS)	
GPIO 33	0	3.3V	NC1_OFF#	Enable Ethernet Controller NC1	
GPIO 34	I/O	3.3V	ICH_GPIO34	for future use as PLD control signal (either input or output)	
GPI 40	I	5V	PG_VR18	Power Good signal from 1.8V voltage regulator	
GPI 41	1	3.3V	LPC_DRQCOM#	LPC Port DMA request from COM Express carrier board	
GPO 48	0	3.3V		not used - open	
GPO 49	OD	1.05V	CPU_PWRGD	CPU Power Good signal	

italic blue -> signal available on J-COM

GPIO Usage FWH

XB1 COM Express Module GPIO Usage FWH						
GPIO	Туре	Tol.	Function	Description		
GPI 0	I	3.3V	FWH_ID	FWH Identity: Fixed to GND (indicates FWH #1)		
GPI 1	I	3.3V	IDE_CLBID#	IDE 80-pos. Cable Detection Line		
GPI 2	I	3.3V	WDOGRST	Last Hardware Reset caused by watchdog		
GPI 3	I	3.3V	LSB PCB REV	GPI 4 GPI 3 Rev. 0 0 0		
GPI 4	I	3.3V	MSB PCB REV	0 1 1 1 0 2 1 1 3+		

GPIO Usage SIO

XB1 COM Express Module GPIO Usage SIO						
GPIO	Туре	Tol.	Function	Description		
GPIO 10	I/O	5V/16mA 1)	MSDAT	PS/2 mouse data or custom GPIO		
GPIO 11	I/O	5V/16mA 1)	MSCLK	PS/2 mouse clock or custom GPIO		
GPIO 12	0		LPC_DRQSIO#	LPC Port DMA request from SIO		
GPIO 13	I/O	5V/8mA 1)		not used		
GPIO 14	I/O	5V/8mA 1)		not used		
GPIO 15	I/O	5V/8mA 1)		not used		
GPIO 16	I/O	5V/24mA 1)		not used		
GPIO 17	I/O	5V/24mA 1)		not used		
GPIO 20	1	5V 1)	GPI0	GPI signal from COM Express module carrier board		
GPIO 21	1	5V 1)	GPI1	GPI signal from COM Express module carrier board		
GPIO 22	1	5V 1)	GPI2	GPI signal from COM Express module carrier board		
GPIO 23	1	5V 1)	GPI3	GPI signal from COM Express module carrier board		
GPIO 24	OC	10k/3.3V 24mA	GPO0	GPO signal to COM Express module carrier board		
GPIO 25	OC	10k/3.3V 24mA	GPO1	GPO signal to COM Express module carrier board		
GPIO 26	OC	10k/3.3V 24mA	GPO2	GPO signal to COM Express module carrier board		
GPIO 27	OC	10k/3.3V 24mA	GPO3	GPO signal to COM Express module carrier board		

 $^{^{1)}}$ These GPIOs have pullup resistors of approx. $50k\Omega$ within the SIO

italic blue -> signal available on J-COM italic green -> signal available on P-SIO

Configuration Jumpers

Reset Jumper BIOS CMOS RAM Values (J-GP)

The jumper J-GP is used to reset the contents of the battery backed CMOS RAM to their default state. The BIOS uses the CMOS to store configuration values, e.g. the order of boot devices. Using this jumper is appropriate only, if it is not possible to enter the setup screen of the BIOS. To restore the CMOS RAM, install a short circuit jumper on JGP and perform a system reset. As long as the jumper is stuffed, the BIOS will use the default CMOS values after any system reset. To get normal operation again, the jumper has to be removed.



JGP	Function
Jumper removed 1)	No CMOS reset performed
Jumper set	CMOS reset performed

¹⁾ This setting is the factory default

Reset Jumper ICH6 RTC Core (J-RTC)

The jumper J-RTC can be used to reset the battery backed core of the ICH6. This effects some registers within the ICH6 RTC core that are important before the CPU starts its work after a system reset. Note that JRTC will neither perform the clearing of the CMOS RAM values nor resets the real time clock. Normally JRTC is not stuffed on the XB1 COM Express Module. To reset the RTC core, the XB1 COM Express Module must be removed from the carrier board. It is important to accomplish the RTC reset while the module has no power applied to it. Short-circuit the JRTC pads for about 1s. After that, reinstall the module to the carrier and switch on the power.

JRTC	Function
Jumper OFF 1)	No RTC reset performed
Jumper ON	RTC reset performed

¹⁾ This setting is the factory default

Connectors

Caution

Some of the internal connectors provide operating voltage (3.3V and 5V) to devices inside the system chassis, such as internal peripherals. Not all of these connectors are overcurrent protected. Do not use these internal connectors for powering devices external to the computer chassis. A fault in the load presented by the external devices could cause damage to the board, the interconnecting cable and the external devices themselves.

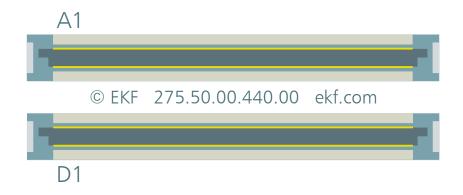
PLD Programming Header ISPCON

This pin header is the programming port for the on-board ispLSI2064 programmable glue logic chip. The ISPCON is normally not stuffed.

J-COM

J-COM is the pair of connectors which serves as interface between the XB1 COM Express Module and the carrier board. The assembly is composed of two double-row, high speed, 0.5mm pitch plugs. Each row has 110 leads, i.e. J-COM provides 440 contact positions in total. The COM.0 specification assigns each row a letter A, B and C, D. For Type 1 COM Express modules, rows A and B are sufficient (single connector, 220 leads). In addition, rows C and D (dual connector, 440 positions) are required for extended functionality incorporated into Type 2 modules such as the XB1.

А	В	#	С	D
GND	GND	1	GND	GND
ETH_MX3- 1)	ETH_LKACT# 1)	2	IDE_D7	IDE_D5
ETH_MX3+ 1)	LPC_FRAME#	3	IDE_D6	IDE_D10
ETH_LK100# 1)	LPC_AD0	4	IDE_D3	IDE_D11
ETH_LK1000# 1)	LPC_AD1	5	IDE_D15	IDE_D12
ETH_MX2- 1)	LPC_AD2	6	IDE_D8	IDE_D4
ETH_MX2+ 1)	LPC_AD3	7	IDE_D9	IDE_D0
ETH_LKACT# 1)	LPC_DRQCOM# (LPC_DRQ0#)	8	IDE_D2	IDE_DREQ
ETH_MX1- 1)	LPC_DRQ1#	9	IDE_D13	IDE_IOW#
ETH_MX1+ 1)	CLK_33LPC (LPC_CLK)	10	IDE_D1	IDE_DACK#
GND	GND	11	GND	GND
ETH_MX0-	PWRBTN#	12	IDE_D14	IDE_IRQ
ETH_MX0+	SMB_CLK	13	IDE_IORDY	IDE_A0
+2.5V (ETH_CTREF)	SMB_DATA	14	IDE_IOR#	IDE_A1
ICH_SLP_S3# (SUS_S3#)	SMB_ALERT#	15	PCI_PME#	IDE_A2
SATA_OTP	SATA_1TP	16	PCI_GNT2#	IDE_CS1#
SATA_0TN	SATA_1TN	17	PCI_REQ2#	IDE_CS3#
ICH_SLP_S4# (SUS_S4#)	SUS_STAT#	18	PCI_GNT1#	IDE_RST#
SATA_ORP	SATA_1RP	19	PCI_REQ1#	PCI_GNT3#
SATA_ORN	SATA_1RN	20	PCI_GNT0#	PCI_REQ3#
GND	GND	21	GND	GND
SATA_2TP	SATA_3TP	22	PCI_REQ0#	PCI_AD1
SATA_2TN	SATA_3TN	23	PCI_RST#	PCI_AD3
ICH_SLP_S5# (SUS_S5#)	PWR_OK	24	PCI_AD0	PCI_AD5
SATA_2RP	SATA_3RP	25	PCI_AD2	PCI_AD7
SATA_2RN	SATA_3RN	26	PCI_AD4	PCI_CBEO#
BATLOW#	WDOGRST (WDT)	27	PCI_AD6	PCI_AD9
SATA_ACT#	AC_SDIN2	28	PCI_AD8	PCI_AD11
AC_SYNC	AC_SDIN1	29	PCI_AD10	PCI_AD13
AC_RST#	AC_SDIN0	30	PCI_AD12	PCI_AD15


А	В	#	С	D
GND	GND	31	GND	GND
AC_BITCLK	SPKR	32	PCI_AD14	PCI_PAR
AC_SDOUT	I2C_CK	33	PCI_CBE1#	PCI_SERR#
BIOS_DISABLE#	I2C_DAT	34	PCI_PERR#	PCI_STOP#
THRMTRIP#	THRM#	35	PCI_LOCK#	PCI_TRDY#
USB_6N	USB_7N	36	PCI_DEVSEL#	PCI_FRAME#
USB_6P	USB_7P	37	PCI_IRDY#	PCI_AD16
USB_OC67#	USB_OC45#	38	PCI_CBE2#	PCI_AD18
USB_4N	USB_5N	39	PCI_AD17	PCI_AD20
USB_4P	USB_5P	40	PCI_AD19	PCI_AD22
GND	GND	41	GND	GND
USB_2N	USB_3N	42	PCI_AD21	PCI_AD24
USB_2P	USB_3P	43	PCI_AD23	PCI_AD26
USB_OC23#	USB_OC01#	44	PCI_CBE3#	PCI_AD28
USB_0N	USB_1N	45	PCI_AD25	PCI_AD30
USB_OP	USB_1P	46	PCI_AD27	PCI_IRQC#
+VCCRTC	EXCD1_RST#	47	PCI_AD29	PCI_IRQD#
EXCD0_RST#	EXCD1_CPPE#	48	PCI_AD31	PCI_CLKRUN#
EXCD0_CPPE#	SYS_RESET#	49	PCI_IRQA#	PCI_M66EN
SERIRQ (LPC_SERIRQ)	CB_RESET#	50	PCI_IRQB#	CLK_33PCI (PCI_CLK)
GND	GND	51	GND	GND
PCIE_TX5+	PCIE_RX5+	52	SDVO_TVCLKIN+ PEG_RX0+	SDVOB_RED0+ PEG_TX0+
PCIE_TX5-	PCIE_RX5-	53	SDVO_TVCLKIN- PEG_RX0-	SDVOB_RED- PEG_TX0-
GPI0	GPO1	54	TYPEO# (NC)	PEG_LANE_RV#
PCIE_TX4+	PCIE_RX4+	55	SDVOB_INT+ PEG_RX1+	SDVOB_GRN+ PEG_TX1+
PCIE_TX4-	PCIE_RX4-	56	SDVOB_INT- PEG_RX1-	SDVOB_GRN- PEG_TX1-
GND	GPO2	57	TYPE1# (NC)	TYPE2# (NC)
PCIE_TX3+ 1)	PCIE_RX3+ 1)	58	SDVO_FLDSTALL+ PEG_RX2+	SDVOB_BLU+ PEG_TX2+
PCIE_TX3- 1)	PCIE_RX3- 1)	59	SDVO_FLDSTALL- PEG_RX2-	SDVOB_BLU- PEG_TX2-

А	В	#	C	D
GND	GND	60	GND	GND
PCIE_TX2+	PCIE_RX2+	61	PEG_RX3+	SDVOB_CLK+ PEG_TX3+
PCIE_TX2-	PCIE_RX2-	62	PEG_RX3-	SDVOB_CLK- PEG_TX3-
GPI1	GPO3	63		
PCIE_TX1+	PCIE_RX1+	64		
PCIE_TX1-	PCIE_RX1-	65	PEG_RX4+	SDVOC_RED+ PEG_TX4+
GND	PE_WAKE# (WAKE0#)	66	PEG_RX4-	SDVOC_RED- PEG_TX4-
GPI2	WAKE1#	67		GND
PCIE_TX0+	PCIE_RX0+	68	SDVOC_INT+ PEG_RX5+	SDVOC_GRN+ PEG_TX5+
PCIE_TX0-	PCIE_RX0-	69	SDVOC_INT- PEG_RX5-	SDVOC_GRN- PEG_TX5-
GND	GND	70	GND	GND
LVDS_A0+	LVDS_B0+	71	PEG_RX6+	SDVOC_BLU+ PEG_TX6+
LVDS_A0-	LVDS_B0-	72	PEG_RX6-	SDVOC_BLU- PEG_TX6-
LVDS_A1+	LVDS_B1+	73	SDVO_I2C_DATA	SDVO_I2C_CLK
LVDS_A1-	LVDS_B1-	74	PEG_RX7+	SDVOC_CLK+ PEG_TX7+
LVDS_A2+	LVDS_B2+	75	PEG_RX7-	SDVOC_CLK- PEG_TX7-
LVDS_A2-	LVDS_B2-	76	GND	GND
LVDS_VDD_EN	LVDS_B3+	77		IDE_CBLID#
LVDS_A3+	LVDS_B3-	78	PEG_RX8+	PEG_TX8+
LVDS_A3-	LVDS_BKLT_EN	79	PEG_RX8-	PEG_TX8-
GND	GND	80	GND	GND
LVDS_A_CK+	LVDS_B_CK+	81	PEG_RX9+	PEG_TX9+
LVDS_A_CK-	LVDS_B_CK-	82	PEG_RX9-	PEG_TX9-
LVDS_I2C_CK	LVDS_BKLT_CTRL	83		
LVDS_I2C_DAT	VCC_5V_SBY	84	GND	GND
GPI3	VCC_5V_SBY	85	PEG_RX10+	PEG_TX10+
ICH_RCIN# (KBD_RST#)	VCC_5V_SBY	86	PEG_RX10-	PEG_TX10-
ICH_A20GATE (KBD_A20GATE)	VCC_5V_SBY	87	GND	GND
CLK_PE_COMP		88	PEG_RX11+	PEG_TX11+
CLK_PE_COMN	VGA_RED	89	PEG_RX11-	PEG_TX11-

А	В	#	С	D
GND	GND	90	GND	GND
	VGA_GREEN	91	PEG_RX12+	PEG_TX12+
	VGA_BLUE	92	PEG_RX12-	PEG_TX12-
GPO0	VGA_HSYNC	93	GND	GND
	VGA_VSYNC	94	PEG_RX13+	PEG_TX13+
	VGA_DDCCL (VGA_I2C_CK)	95	PEG_RX13-	PEG_TX13-
GND	VGA_DDCDAT (VGA_I2C_DAT)	96	GND	GND
+12V	TV_DAC_A	97		PEG_ENABLE#
+12V	TV_DAC_B	98	PEG_RX14+	PEG_TX14+
+12V	TV_DAC_C	99	PEG_RX14-	PEG_TX14-
GND	GND	100	GND	GND
+12V	+12V	101	PEG_RX15+	PEG_TX15+
+12V	+12V	102	PEG_RX15-	PEG_TX15-
+12V	+12V	103	GND	GND
+12V	+12V	104	+12V	+12V
+12V	+12V	105	+12V	+12V
+12V	+12V	106	+12V	+12V
+12V	+12V	107	+12V	+12V
+12V	+12V	108	+12V	+12V
+12V	+12V	109	+12V	+12V
GND	GND	110	GND	GND

marked light gray italic - signal not available marked light green italic - pin position reserved by specification

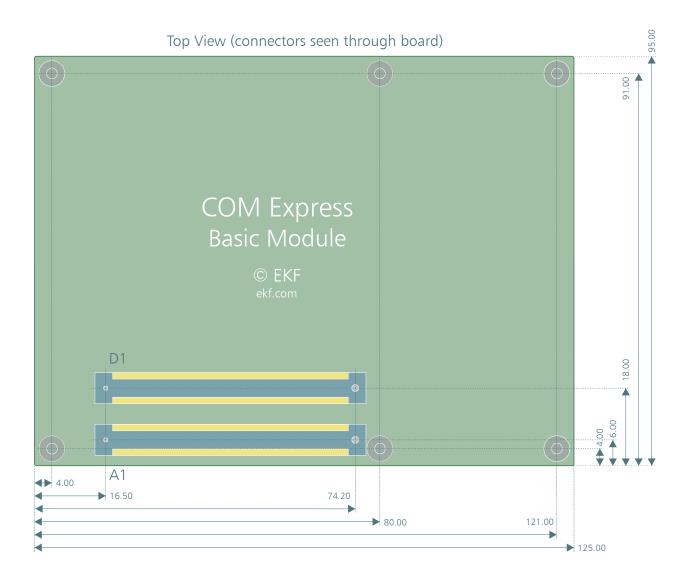
1) stuffing option: GB Ethernet provided by factory default, PCIe lane #3 via J-COM on request

J-COM (View on Bottom Side of Board)

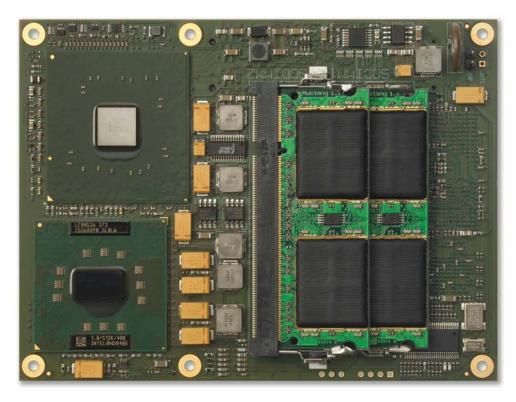
Processor Debug Header PITP

This FFC style connector (Molex 52435-2872) can be used to attach an emulator probe to the board. This is a valuable tool when debugging hardware or tracing software. The connector PITP is situated at the bottom side of the board.

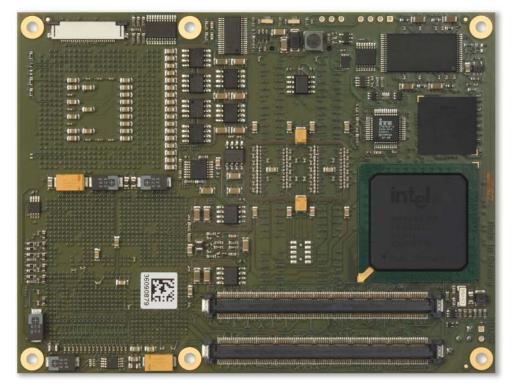
PITP				
1	TDI			
2	TMS			
3	TRST#			
4	NC			
5	TCK			
6	NC			
7	TDO			
8	BCLKN			
9	BCLKP			
10	GND			
11	FBO			
12	RST#			
13	BPM5#			
14	GND			
15	BPM4#			
16	GND			
17	BPM3#			
18	GND			
19	BPM2#			
20	GND			
21	BPM1#			
22	GND			
23	BPM0#			
24	DBA#			
25	DBR#			
26	VTAP			
27	V_{TT}			
28	V_{TT}			


P-SIO

The connector P-SIO is normally not stuffed. The mature PS/2 and UART ports have been overcome by USB in most applications. For low level debugging however, these interfaces can be very useful (e.g. the BIOS can communicate across the serial I/O). Please contact EKF before ordering the XB1 COM Express Module, if the P SIO connector is required by the user.


P-SIO						
1	MS_CLK	1	2	MS_DAT		
	KB_CLK	3	4	KB_DAT		
	COM_CTS# (TTL)	5	6	COM_RTS# (TTL)		
	COM_RXD (TTL)	7	8	COM_TXD (TTL)		
	GND	9	10	+5V		

The UART port does not include RS-232 transceivers (TTL level signals only). If necessary, the user must provide RS-232 or RS-485 transceivers externally.


Board Dimensions

Top View, Bottom View

XB1 Top View

XB1 Bottom View

Literature

Theme	Document Title	Origin
COM Express	PICMG [®] COM.0 COM Express [™] Module Base Specification Revision 1.0 2005-07	www.picmg.org
Ethernet	IEEE Std 802.3, 2000 Edition	standards.ieee.org
PCI Express	PCI Express Base Specification 1.1	www.pcisig.com
Serial ATA	Serial ATA Revision 2.5	www.serialata.org
USB	Universal Serial Bus Specification	www.usb.org

EKF Elektronik GmbH Philipp-Reis-Str. 4 59065 HAMM Germany

Fax. +49 (0)2381/6890-90 Tel. +49 (0)2381/6890-0 Internet www.ekf.com E-Mail info@ekf.com Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com