8086
RELOCATABLE OBJECT MODULE
FORMATS

An Intel Technical Specification

Order Number: 121748-001

. Copyright@1981 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Download from Www.Somanuals.com. All Manuals Search And Download.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation. :

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intelevision Multibus
CREDIT Intellec Muhtimodule

i iRMX Plug-A-Bubbie
ICE iSBC PROMPT

iCS iSBX Promware

im Library Manager RMX/ 80
lusite MCS System 2000
Intel Megachassis upPl

intel Micromap uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

E

A 500/1181/500 1P|

Download from Www.Somanuals.com. All Manuals Search And Download.

3086 Object Module E‘ormats ’ Version 4.0

TABLE OF CONTENTS

DOCUMENT CONTROL L3 3 - . . - - - L] ® 2
- 'I.ABLB OF CONTENTS . L) . . . 3 L] L] . e o . - . . L] L] L3 L] L3 3

INTRODUCTION . & &+ ¢ o « o« o e o o o o o o o o o o o o o« & 5
DEFINITION OF TERMS . & ¢ & e ¢ ¢ o o « o o o o o o o« o« & 5
MODULE SEMANTICS
MODULE IDENTIFICATION
MODULE ATTRIBUTES

SEGMENT DEFINITION . ¢ ¢ 2 ¢ o o o o o o o o s « o« o o« « 9
SEGMENT ADDRESSING . « ¢ ¢ o o o o o o o o » o s o o o o 10
SYMBOL DEFINITION . o ¢ ¢ o o o « = o o o o o o o o o « 10
DATA o ¢ ¢ o 11
INDICES . [3 [2 . L] L] L4 Ll - L] L] L] L J L] L] L] * - L3 . - - - . 12
CONCEPTUAL FRAMEWORK FOR FIXUPS ¢ « o o o o o o o o o o 13

MODULE SYNTAX
RECORD ORDER e o o o
INTRODUCTION to the RECORD FORMATS « ¢ ¢« & o« & &

RECORD FORMATS

.
.
.
.
.
.
.
.
.
.
.
.
N
N

.
.
.
.
.
N
o+

T-MODULE HEADER RECORD . . & ¢ o« o ¢ ¢ o s o o o o o o o 26k
L-MODULE HEADER RECORD . . . & ¢ ¢ o o e o s ¢ o o o o « 27
R-MODULE HEADER RECORD . . ¢ ¢ ¢ o o o o o o o o « o « o 28
LIST OFf NAMES RECORD . . ¢ ¢ &« ¢ o e o o o = « = « o » o 31
SEGMENT DEFINITION RECORD . . ¢ o o + o o o o o o o o o 32
GROUP DIFINITION RSCORD . ¢ o ¢ o o o o o o o ¢ o o o o« 36
TYPE DEFINITION RECORD ¢ ¢ o ¢ ¢ o o o o o o o « o » o o 40

SYMBOL DEFINITION RECORDS
PUBLIC NAMES DEFINITION RECORD e ¢ ¢ o o o o o s o o 44
EXTERNAL NAMES DEFINITION RECORD'. e ¢ s e o o o o o o 47
LOCAL SYMBOLS RECORD ., & ¢ ¢ ¢ e o o o o o o o o o « o« 49

LINE NUMBERS RECORD . & o ¢ ¢ o o ¢ « o o o o o o o« o« 51
BLOCK DEFINITION RECORD .« « ¢ o o o o o o ¢ o o« o o « 53
BLOCK END RECORD ¢ ¢« ¢ ¢ o o o o o o o o « s o o « o o 56
DEBUG SYMBOLS RECORD «. ¢ ¢ ¢ ¢ o o o o o o ¢ o o -~ o o 57

DATA RECORDS _
RELOCATABLE ENUNERATED DATA RECORD . . + &« & « « « « o 50

RELOCATABLE ITERATED DATA RECORD . . « ¢ o « o o o o o 62
PHYSICAL ENUMERATED DATA RECORD . . « ¢ o o o « &« o « H4
PHYSICAL ITERATED DATA RECORD . o« ¢« ¢« ¢ o o o o o o « 65
LOGICAL ENUMERATED DATA RECORD ¢ o o & o o ¢ ¢ o o« « « K5
LOGICAL ITERATED DATA RECORD . + o o o o o « o ¢« » « o A8
FIXUP RECORD . &« ¢ « o o o o o o o o o o o o s o o o o o 10
OVERLAY DEFINITION RECORD &« ¢ ¢ o o o o o o o« o o o « « 74
END RECORD + « & & o o o« o & s e e s o e o s e o o s o 15
REGISTER INITIALIZATION RECORD e e e o s o n s e o o o & 17
MODULE END RECORD . o o ¢ ¢ o ¢ o o o o s o o o o o« « o 89

LIBRARY RECORDS
LIBRARY HEADER RECORD o ¢ o ¢ o o o o o o o o o o « o 82
LIBRARY MODULE NAMES RECORD . & ¢ . & o ¢ « o o o « o 83
LIBRARY MODULE LOCATIONS RECORD . . . ¢« ¢ ¢« o « « « o 84

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

LIBRARY DICTIONARY RECORD . « + « ¢ o o o o o o« + « o« 85
COMMENT RECORD [) L] . L] L Ll L L4 L d . L] L] L * L d L3 L] L] L L] L] 86

APPENDICES
1. NUMERIC LIST OF RECORD TYPES . . . e e« o o« o o o o . 88
2. TYPE REPRESENTATIONS . . . ¢« « .« &
3 L SYNTAX DIAGRAMS L] L L L] - L] L 2 . L J L
4., EXAMPLES OF FIXUPS . ¢ ¢« ¢« ¢ o o

e o o »
.
.
)
.
.
.

. 8
.
.
o}
[

Download from Www.Somanuals.com. All Manuals Search And Download.

8386 Object Module Formats : | Version 4.0

INTRODUCTION

Here are the object record formats that define the object
lanqguage for the 8086 microprocessor. The 8886 object lanquage is
the output of all lanquage translators with the 8086 as the target
processor. The 8086 object lanquage is input and output for object
lanquage processors such as 1linkers, 1locaters, 1librarians, and
debuggers.

The 8086 object module formats permit specification of
relocatable memory 1images that may be 1linked to one another.
Capabilities are provided that allow efficient use of the memory
mapping facilities of the 8086 microprocessor.

This section defines certain terms fundamental to 8084 R&L,
The terms are ordered not alphabetically, but so you can read
forward without forward references.

DEFINITION of TERMS

OMF - acronym for Object Module Formats.
R&L - acronym for Relocation and Linkage.

MAS - acronym for Memory Address Space. The 8086 MAS is 1 megabyte
(1,048,576). Note that the MAS is distingqguished from actual memory,
which may occupy only a portion of the MAS.

MODULE - an *inseparable® collection of object code and other
information produced by a translator or by the LINK-86 program.
When a distinction must be made,

T-MODULE will denote a module created by a translator, such as PLM86
or ASM-85, :

L-MODULE will denote a module created by (cross) LINK-86 V1.3 or
earlier versions, and _

R-MODULE will denote a module created by (8886 based) LINK-86 from 1
or more constituent modules. (Note that modules are not “created"
in this sense by LOCATE-86; the output module from LOCATE-86 is
merely a transformation of the input module.)

Two observations about modules must be made:

1) Every module must have a name, so that the 80686 Librarian,
LIB86, has a handle for the module for display to the user. (If
there is no need to provide a handle for LIB86, the name may be
null.) Translators will provide names for T-modules, providina a
default name (possibly the file name or a null name) if neither
source code nor user specifies otherwise.

2) Every T-module 1in a collection of modules linked together

ought to have a different name, so that symbolic debugaing systems
{such as ICE-8A) can distinquish the various line numbers and local

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

symbols. This restriction is not required by R&L, and is not
enforced by it.

LOGICAL SEGMENT - (LSEG) - A contiquous region of memory whose
contents are determined at translation-time (except for address-
binding) . Neither size nor 1location in MAS are necessarily
determined at translation-time: size, although partially fixed, may
not be final because the LSEG may be combined at LINK-time to other
LSEG's, forming a single LSEG; location in MAS is usually determined
at LOCATE-time (although some translators may produce “absolute*
object code, whose location is already determined).

FRAME - A contiguous region of 64K of MAS, beginning on a paragraph
boundary (i.e., on a multiple of 16 bytes). This concept is useful
because the content of the four 8086 seqment reqgisters define four
(possibly overlapping) FRAME's; no 16~bit address in the 8086 code
can access a memory location outside of the current four FRAME's,

An LSEG is constrained to be no greater than 4K, so that it
can fit 1in a FRAME, This means that any byte in an LSEG may be
addressed by a 16-bit offset from the base of a FRAME covering the
LSEG.

PSEG - This term is equivalent to FRAME. Some people vrefer “PSEG" to
*FRAME®" because the terms “PSEG" and "“LSEG" reflect the “physical”
and "logical" nature of the underlying segments.

FRAME NUMBER - Every FRAME begins on a paraagraph boundary. The
*paragraphs® in MAS can be numbered 9,1,2,...,65535. These numbers,
each of which defines a FRAME, are called FRAME NUMBERS.

PARAGRAPH NUMBER - This term is equivalent to "FRAME NUMBER.*
PSEG NUMBER - This term is eauivalent to "FRAME NUMBER,"

PIC - acronym for Position Independent Code. A PIC module is a module
where load addresses and reaister 1initialization values are
specified relative ¢to seament and aroup bases. No fixups are
allowed.

LTL - acronym for Load-Time Locatable. An LTL module is similar to a
PIC module except that base fixups are allowed.

GROUP - a group is a collection of LSEG's defined at translation-tinme,
whose final locations in MAS have been constrained such that there
will be at least one FRAME which covers (contains) every LSEG in the
collection.

The notation "Gr A(X,Y¥,Z)" means that LSEG's X, Y and Z form a
aroup, and that the group's name is A,

The fact that X, Y and Z are all LSEG's in the same aroup does

not imply any ordering of X, Y and Z in MAS, nor does it imply any
contiquity between X, Y and Z.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

In the PIC/LTL case, an LSEG is not allowed to be in more than
one group (e.q. defining two groups such as Gr Gl1(A,C,B) and Gr
G2(B,C,D) in the same module is not legal). Otherwise an LSEG may
be in more than one group. The existence of groups such as Gl and
G2 is not sufficient to infer that A,B,C,D all 1lie within some
single FRAME, although they might.

CANONIC - any location in MAS is contained in exactly 4096 distinct
FRAME's; but one of these FRAME's can be distinguished in that it
has a higher FRAME NUMBER than any other FRAME. This distinquished
FRAME is called the canonic FRAME of the location.

Thus, if FOO is a symbol defining a memory location, one may
speak of the ‘"canonic FRAME of FOO", or of “"FOO's canonic FRAME",
By extension, if S is any set of memory locations, then there exists
a unique FRAME which has the 1lowest FRAME NUMBER in the set of
canonic FRAME'S of the locations in S. This unique FRAME is called

- the canonic FRAME of the set S. Thus, we may speak of the canonic
FRAME of an LSEG or of a Group of LSEG's.

SEGMENT NAME - LSEG's are assigned names at translation-time. These
names serve only 3 purposes:

1) they play a role at LINK-time in determining what [SEG's are
combined with what other LSEG's.

2) they may be used at LOCATE-time to designate specific
LSEG's.

3) they are used in assembly source code to specify groups.

CLASS NAME =~ LSEG's may optionally be assiagned Class Names at
translation-time. Classes define a partition on '.5EG's: two LSEG's
are in the same class iff they have the same Class Name.

R&L associates no semantics with specific Class Names; class
semantics are completely user-defined. Examples of Class Names
might be RED, BLUE, GREEN or ROM, RAM, DISPLAYMEMORY.

The uses of Class Names include the first 2 uses of Segment
Names above; additionally, Class Names give the user the power to
identify many LSEG's by a single handle at LOCATE~-time.

OVERLAY NAME - LSEG's may optionally be assigned an Overlay Name at
translation-time or at LINK-time. This name is specified when the
translator or LINK-86 1is 1invoked, and all LSEG's within the same
module will be assiqgned the same Overlay Name. '

An Overlay Mame is similar to a Class Name in that it provides
a handle on user-defined equivalence classes of LSEG's. Unlike
Class Names, however, Overlay Names have semantics known by the
LOCATE-86 proaram. (In brief, LSEG's in different overlays may be
"located" at overlapping MAS locations.)

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

COMPLETE NAME - The “complete name" of an LSEG is defined to be the
three component identification consisting of the Seament Name, Class
Name and Overlay Name. LSEG's from different modules will be
combined iff their Complete Names are identical.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

MODULE _IDENTIFICATION

In order to determinz that a file contains an object program, a
module header record will always be the first record in a module.
There are three kinds of header records and each provides a module
name. The additional functions of the header records are explained

below.

A module name may be generated during one of two processes:
translation or linking. A module that results from translation is
called a T-MODULE. A T-MODULE will have a T-MODULE HEADER RECORD
(THEADR) . A name may be provided in the THEADR record by a
translator. This name 1is then used to identify the source of all
symbols and line numbers found in the T-MODULE.

A module that results from linking is called an L-MODULE or an
R-MODULE. An L-MODULE will always have an L-MODULE HEADER RECORD
(LHEADR) . An R-MODULE will always have an R-MODULE HEADER RECORD
(RHEADR). In the LHEADR record or the RHEADR record a name may also
be provided. This name is available for use as a means of referring
to the module without using any of its constituent T-MODULE names.
An example would be two T-MODULES, A and B, linked together to form
R-MODULE C. R=-MODULE C€ will contain two THEADR records and will
begqin with an RHEADR record with the name C provided by the 1linker
as a directive from the user. The R-MODULE C can be referred to by
other tools such as the library manager without having to know about
the originating module'’s names, yet the oriaginating module's names
are preserved for debugging purposes.

MODULE ATTRIBUTES

In addition to an optional name, a module may have the
attribute of being a main proaram as well as having a specified
starting address. When linking multiple modules toaether, only one
module with the main attribute should be agiven. The 1linker EPS
specifies the result of finding two or more main modules.

If a module 1is not a main module yet has a starting address
then this value has been provided by a translator, possibly for
debuqging purposes. A starting address specified for a non-main
module could be the entry point of a procedure, which may be 1loaded
and initiated independent of a main program.

In summary, modules may or may not be main as well as may or
may not have a starting address.

SEGMENT DEFINITION

A module is defined as a collection of object code defined by a
sequence of records produced by a translator. The object code

Download from Www.Somanuals.com. All Manuals Search And Download.

8886 Object Module Formats : Version 4.0

represents contiguous regions of memory whose contents are
determined at translation-time. These regions are called LOGICAL
SEGMENTS (LSEG's). A module must contain information that defines
the attributes of each LSEG. The SEGMENT DEFINITION RECORD (SEGDEF)
is the vehicle by which all LSEG information (name, length, memory
alignment, etc.) is maintained. The LSEG information 1is reduired
when multiple LSEG's are combined and when segment addressability
(GROUPING, see below) 1is established. The SEGDEF records are
required to follow the first header record (THEADR, or LHEADR, or
RHEADR) . .

SEGMENT_ ADDRESSING

The 8086 addressing mechanism provides segment base registers
from which a 64K byte region of memory, called a FRAME, may be
addressed. There 1is one code segment base reagister (CS), two data
segment base registers (DS, ES), and one stack seqgment base register
(SS) .

The possible number of LSEG's that may make up a memory image
far exceeds the number of available bhase registers. Thus, base
registers may require freaquent loadina. This would be the case in a
modular program with many small data and/or code LSEG's.,

Hence the motivation to collect LSEG's together to form one
addressable unit that can be contained within a memory frame. The
name for this addressable unit is a GROUP and has been defined
earlier in the DEFINITION OF TERMS.

To allow addressability of objects within a GROUP to be
established, each GROUP must be explicitly defined in the module.
The GROUP DEFINITION RECORD (GRPDEF) provides a list of constituent
segments either by segment name or by segment attribute such as "the
seament definina symbol FOO" or “the segments with class name ROM*,

The GRPDEF records within a module must follow all SEGDEF
records as GRPDEF records may reference SEGDEF records in defining a
GROUP. The GRPDEF records must also precede all other records but
header records as some R&L products must process them first. The
explicit ordering of records is aiven later.

SYMBOL. DEFINITION

Within a module ther2 may be six different types of symhol
definition records. The necessity for these records is based on two
requirements: 1) references to externally defined symbols should
be resolved hy eauivalently defined symbols in another module
(linking) and 2) attributes of locally defined symbols and line
numbers should be made available for debuaging purposes.

10

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

The requirements for symbol definition records for module
linking is satisfied by the PUBLIC NAMES DEFINITION RECORD (PUBDEF),
the EXTERNAL NAMES DEFINITION RECORD (EXTDEF), and the TYPE
DEFINITION RECORD (TYPDEF) . Their semantics will be explained
later.

The requirements for debugging information are satisfied by the
LOCAL SYMBOLS RECORD (LOCSYM), the LINE NUMBERS RECORD (LINNUM), the
DEBUG SYMBOLS RECORD (DEBSYM), the BLOCK DEFINITION RECORD (BLKDEF),
the BLOCK END RECORD (BLKEND), and the TYPE DEFINITION RECORD
{TYPDEF) . The association of the line numbers and local symbols to
their original defining modules is essential and maintained by the
THEADR record as explained earlier.

DATA

, The data that defines the memory image represented by a module
is maintained in six varieties of DATA records. The DATA records
are of three classes: relocatable, physical, and loqical.

There are two Relocatable DATA records: RELOCATABLE ENUMERATED
DATA RECORD (REDATA) and RELOCATABLE ITERATED DATA RECORD (RIDATA).
Each relocatable DATA record is associated with a SEGDEF record or a
FRAME number, and perhaps a GRPDEF Record. The SEGDEF record or the
FRAME number, and the GRPDEf record provide information to determine
the absolute address at which the data bytes are to be loaded. The
RIDATA record differs in that the data bytes are represented within
a structure that must be expanded by the loader. The purpose of the
RIDATA record is to reduce module size by encodina repeated data
rather than explicitly enumerating each bYyte, as the REDATA record
does.

There are two Physical DATA records: PHYSICAL ENUMERATED DATA
RECORD (PEDATA) and PHYSICAL ITERATED DATA RECORD (PIDATA). The
PEDATA and PIDATA records provide an absolute address at which the
data bytes it contains are to be loaded.

There are also two Logical DATA records: LOGICAL ENUMERATED
DATA RECORD (LEDATA) and LOGICAL ITERATED DATA RECORD (LIDATA).
Each 1logical DATA record is associated with a SEGDEF record. The
SEGDEF record provides information that allows the 1loaical DATA
records to be converted to either Relocatable DATA records or
Physical DATA records.

Data bytes for all LSEG's are maintained 1in 1logical DATA
records, as an LSEG is either relocatable or it has been assigned an.
address (absolute) but has not been divorced from GROUP information.

In summary, there are three classes of DATA records,
RELOCATABLE, PHYSICAL, and LOGICAL. The data bytes of the "unnamed

absolute segment”, divorced form all LSEG and GROUP information, are
found in PHYSICAL DATA RECORDS. Data bytes from all LSEG's,

11

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

absolute or relocatable, are found in LOGICAL DATA RECORDS. The
ENUMERATED and ITERATED attributes within the classes are two ways
of representing the actual data bytes.

A 8086 loader can load RDATA or PDATA Records, but will
probably not be able to maintain the LSEG table information required
for loading LDATA Records. Thus, Relocatable and Physical DATA
records are sometimes called "Loadable" DATA records, and Logical
DATA records are called “Non-Loadable" DATA records.

"INDICES

Throughout the 8086~-0OMF specification, "index" fields occur.
An index is an integer that selects some particular item from a
collection of such items, (Exhaustive 1list of examples: NAME
INDEX, SEGMENT INDEX, GROUP INDEX, EXTERNAL INDEX, TYPE INDEX, BLOCK
INDEX.)

(Note) An index is normally a positive number.
The 1index value zero 1is reserved, and may carry a
special meaning dependant upon the type of index
(e.g., a Segqment Index of zero specifies the "Unnamed,
absolute pseudo-seqment; a Type Index of zZero
specifies the "Untyped type" (which is different from
“Decline to state”)). (End of Note)

In general, indices must assume values quite large (i.e., much
larger than 255). Nevertheless, a great number of object files will
contain no indices with values greater than 50 or 104. Therefore,
indices will be encoded in 1 or 2 bytes, as required:

The high~order (left-most) bit of the first (and possibly the
only) byte determines whether the index cccupies one byte or two.
If the bit is 8, then the index is a number between 8 and 127,
occupying one byte. If the bit is 1, then the index is a number
between @ and 32K-1, occupying two bytes, and is determined as
follows: the low-order 8 bits are in the second byte, and the high-
order 7 bits are in the first byte. :

12

Download from Www.Somanuals.com. All Manuals Search And Download.

88845 Object Module Formats Version 4.9

CONCEPTUAL FRAMEWORK for FIXUP's

A "Fixup" is some modification to object code, requested by a
translator, performed by the R&L system, achieving address binding.
(see Appendix 4 for Examples)

(Note) This definition of *“fixup* accurately
represents the viewpoint maintained by the R&L system.
Nevertheless, the R&L system can be used to achieve
modifications of object code (i.e., "fixups“) that do

not conform to this definition. For example, the
binding of «code to either of hardware floating point
or software floating point subroutines, is a

modification to an operation code, where the operation
code is treated as if it were an address. The above
definition of “fixup* is not intended to disallow or
disparage object code modifications 1in the wider
sense. {(End of Note)

8086 and/or 8089 translators specify a fixup by giving four
data: (1) the place and type of a LOCATION to be fixed up, (2) one
of two possible fixup MODE's, (3) a TARGET, which is a memcry
address to which LOCATION must be made to refer, and (4) a FRAME
defining a context within which the reference takes place.

LOCATION - There are 5 types of LOCATION: a POINTER, a BASE, an
OFFSET, a HIBYTE, and a LOBYTE:

IR TN NN WIS W §

Pointer: | | |
R W T WU D ——
fom et
Base: | |
¥ SR RS
teeatonmant
Of fset: | |
tommmt et
$e———t
Hibyte: | |
tom——t
tomm——t
Lobyte: | |
bt

The vertical alignment of this diagram 1illustrates 4 points
(remember that the high order byte of a word in 8986 memory is the
byte with the hiqgher address): (1) a BASE is merely the high order
word of a pointer (and R&L doesn't care if the low order word of the

13

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

pointer is present or not); (2) an OFFSET is merely the 1low order
word of a pointer (and R&L doesn‘t care if the high order word
follows or not); (3) a HIBYTE is merely the high order half of an
OFFSET (and R&L doesn't Nare if the low order half precedes or not);
(4) a LOBYTE is merely the low order half of an OFFSET (and R&L
doesn't care if the hiah order half follows or not).

A LOCATION is specified by 2 data: (1) which of the above 5
types the LOCATION is, and (2) where the LOCATION is. (1) 1is
specified by the LOC subfield of the LOCAT field of the FIXUPP
Record; (2) is specified by the DATA RECORD OFFSET subfield of the
LOCAT field of the FIXUPP Record.

MODE - R&L supports 2 kinds of fixups: “self-relative®” and “segment-
relative®,

Self~-relative fixups support the 8- and 16-bit offsets that are
used in the CALL, JUMP and SHORT-JUMP instructions. Segment-
relative fixups support all other addressing modes of the 8086.

TARGET - The TARGET is the location in MAS beina referenced. (More
explicitly, the TARGET may be considered to be the lowest byte in
the object being referenced.) A TARGET is specified in one of 8
ways. There are 4 “primary” ways, and 4 “secondary® ways. Each
primary way of specifying a TARGET uses 2 data: an INDEX-or-FRAME-
NUMBER 'X', and a displacement *'D':)

(T9) X is a SEGMENT INDEX. The TARGET is the D'th byte in the
LSEG identified by the INDEX.

(T1l) X is a GROUP INDEX. The TARGET is the D'th byte followinq
the first byte in the LSEG in the group that is eventually LOCATE'd
lowest in MAS,

(T2) X is an EXTERNAL INDEX. The TARGET 1is the D'th byte
following the byte whose address 1is (eventually) agiven hy the
External Name identified by the INDEX.

(T3) X is a FRAME NUMBER. The TARGET is the D'th byte 1in the
FRAME identified by the FRAME NUMBER (i.e., the address of TARGET is
(X*16)+D). '

Each secondary way of specifyina a TARGET uses only 1 datum:
the INDEX-or-FRAME-NUMBER X. An implicit displacement equal to zero
is assumed:

(T4) X is a SEGMENT INDEX. The TARGET is the @°'th (first).byte
in the LSEG identified by the INDEX.

(TS) X 1is a GROUP INDEX. The TARGET is the a'th (first) byte
in the LSEG in the specified qroup that 1is eventually LOCATE'd
lowest in MAS,

14

Download from Www.Somanuals.com. All Manuals Search And Download.

8486 Object Module Formats Version 4.0

(T6) X is an EXTERNAL INDEX. The TARGET is the byte whose
address is (eventually given by) the External Name identified by the
INDEX.

(T7) X is a FRAME NUMBER. The TARGET is the byte whose 28-~bit
address is (X*16).

The following nomenclature is used to describe a TARGET:

TARGET: SI(<{segment name)>) ,Kdisplacement> (T3}
TARGET: GI(<group name>) ,<{displacement> {T1]
TARGET: EI(<symbol name>) ,<displacement> {T2]
TARGET: <FRAME NUMSER)»,<displacement> T3]
TARGET: SI(<segment name>) [T4]
TARGET: GI(<group name>) {TS]
TARGET: EI(<{symbol name>) {TA8]
TARGET: <FRAME NUMBER>» [T71

Here are some examples of how this notation can be used:

TARGET: SI(CODE),1024 The 1825th byte in
the segment "CODE*

TARGET: GI (DATAAREA) the location in MAS of
a group called "DATAAREA"

TARGET: EI(SIN) the address of the external
subroutine “SIN"

TARGET: 8090H,24H MAS location 88824H

TARGET: EI(PAYSCHEDULE) ,24 the 24th byte followinag the
location of an
EXTERNAL data structure
called "PAYSCHEDULE™"

Although *“TARGET: SI(A)* and “TARGET: SI(A),?" both specify
the same TARGET, their use can have different effects, as |is
discussed below in the section on intermediate values in fixup
arithmetic.

FRAME - Every 8086 memory reference is to a location contained within
some FRAME; where the FRAME is designated by the content of some
segment register. In order for R&L to form a correct, usable memory
reference, it must know not only what the TARGET is, but also with
respect to which FRAME the reference 1is bheing made. Thus every
fixup specifies such a FRAME, in one of 6§ ways (F0,...,F5) described
below. Some ways use a datum, X, which is an INDEX-or-FRAME-NUMBER,
as above. Other ways require no datum.

This 1is not the case of an 8889 self-relative reference. The

reference may be to any location within an 8689 proaram,
independently of FRAME, The only restriction 1is that the
15

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

displacement between the LOCATION and the TARGET must be within 32K.
To indicate this type of fixup, a 7th way (F8) of specifying a frame
is introduced.

Below is the description of the seven ways of specifying
frames:

(F) X 1is a SEGMENT INDEX. The FRAME is the canonic FRAME of
the LSEG defined by the INDEX.,

(F1) X is a GROUP INDEX. The FRAME is the canonic FRAME
defined by the group (i.e., the canonic FRAME defined by the LSEG in
the qroup that is eventually LOCATE'd lowest in MAS).

(F2) X is an EXTERNAL INDEX. The FRAME is determined when the
External Name's public definition is found. There are 3 cases:

(F2a) The symbol is defined relative to some
LSEG, and there is no associated Group. The LSEG's
canonic FRAME is specified.

(F2b) The symbol is defined absolutely, without
reference to an LSEG, and there 1is no associated
Group. The FRAME 1is specified by the FRAME NUMBER
subfield of the PUBDEF Record (q.v.) that gives the
symbol's definition.

(F2c) Regardless of how the symbol is defined,
there is an associated Group. The canonic FRAME of
the Group 1is specified. (The group is specified by
the GROUP INDEX subfield of the PUBDEF Record (dg.v.).)

(F3) X is a FRAME NUMBER (specifying the obvious FRAME).

(F4) No X. The FRAME 1is the canonic FRAME of the LSEG
containing LOCATION, (If LOCATION is specified absolutely (i.e., in
a PEDATA Record or a PIDATA Record (a.v.)), then it 1is not
“contained” in an LSEG; in this case the FRAME is determined as in
(F2) above, taking the FRAME NUMBER from the FRAME NUMBER field of
the DATA Record.

(FS) No X. The FRAME is determined by the TARGET. There are 4
cases:

(FSa) The TARGET specified a SEGMENT INDEX: in
this case, the FRAME is determined as in (F8) above.

(F5b) The TARGET specified a GROUP INDEX: in
this case, the FRAME is determined as in (Fl) above.

(FS5c) The TARGET specified an EXTERNAL INDEX: in
this case, the FRAME is determined as in (F2) above.

16

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

(F5d) The TARGET 1is specified with an explicit
FRAME NUMBER: in this case the FRAME is determined as
in (F3) above.

(F6) No X. There is no FRAME. This is a way to indicate to
R&L that an 8089 self-relative reference is to be processed. A
signed displacement between the LOCATION 28-bit address and the
TARGET 28~-bit address must be computed.

Nomenclature describing FRAME's is similar to the above
nomenclature for TARGET's, viz:

FRAME: SI(<segment name>) (Fa)
FRAME: GI (<gqroup name>) (F1]
FRAME: EI(<symbocl name>) [F2]
FRAME: <FRAME NUMBER> [(F3]
FRAME: LOCATION {F4]
FRAME: TARGET {F5]
FRAME: NONE [F6]

In practice, for an 8086 memory reference, it is likely that
the FRAME specified by a self-relative reference will be the canonic
FRAME of the LSEG containing the LOCATION, and the FRAME specified
by a segment relative reference will be the canonic FRAME of the
LSEG containing the TARGET. This will be further explained below.

SELF-RELATIVE FIXUPS

A self-relative fixup operates as follows: A memory address is
implicitly defined by LOCATION; namely the address of the byte
following LOCATION (because at the time of a self-relative
reference, the 80886 IP (Instruction Pointer) or the 8889 TP (Task
block Program pointer) 1is pointing to the byte following the
reference).

For 8086 self-relative references, if either LOCATION or TARGET
are outside the specified FRAME, R&L gives a warnina. Otherwise,
there is a unique 16-bit displacement which, when added to the
address implicitly defined by LOCATION, will yield the relative
position of TARGET in the FRAME,

For 8089 self-relative references (F6), if TARGET is not within
32K from LOCATION, R&L gives a warning. Otherwise, there is a
unique l6-bit signed displacement between the LOCATION and the
TARGET.

If the LOCATION is an OFFSET, the displacement is added to
LOCATION modulo A553%5; no errors are reported.

If the LOCATION is a LOBYTE, the displacement must be within

the range {-128:127}, otherwise R&L will give a warning. The
displacement is added to LOCATION moduloc 254.

17

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

If the LOCATION is a BASE, POINTER, or HIBYTE, it 1is unclear
what the translator had in mind, and the action taken by R&L is
defined by LINK-86 and/or LOCATE-86 EPS's.

SEGMENT-RELATIVE FIXUPS

A segment-relative fixup operates in the following way: a non-
negative l6-bit number, FBVAL, is defined as the FRAME NUMBER of the
FRAME specified by the fixup, and a signed 20-bit number, FOVAL, is
defined as the distance from the base of the FRAME to the TARGET.
If this signed 26-bit number is less than # or greater than 5535,
then R&L will report an error. Otherwise FBVAL and FOVAL are used
to fixup LOCATION in the following fashion:

(1) if LOCATION is a POINTER, then FBVAL 1is added (modulo
65536) to the high order word of POINTER, and FOVAL is added (modulo
65536) to the low order word of POINTER.

(2) if LOCATION is a BASE, then FBVAL is added (modulo 65536)
to the BASE; FOVAL is ignored.

(3) if LOCATION is an OFFSET, then FOVAL is added (modulo
65535) to the OFFSET; FBVAL is ignored.

(4) if LOCATION is a HIBYTE, then (FOVAL / 254/) is added
(modulo 254) ¢to the HIBYTE; FBVAL 1is iqnored. (The indicated
division is “"integer division”, i.e., the remainder is discarded.)

(5) if LOCATION is a LOBYTE, then (FOVAL modulo 255) is added
(modulo 256) to the LOBYTE; FBVAL is ignored.

INTERMEDIATE VALUES in FIXUP ARITHMETIC

The 8886 Object Module Formats quarantee fixups in the sense
that, if a TARGET can not be accessed from a LOCATION with the
assumed FRAME, then that failure can be detected and R&L can issue a
warninag message., This checking is called *“access verification®. In
order to perform this checkinag, LINK-86 and LOCATE-84 need to retain
intermediate values of its address arithmetic. These intermediate
values are retained either in the DATA Record, or in the FIXUP
Record. The following diagram illustrates three cases:

18

Download from Www.Somanuals.com. All Manuals Search And Download.

898A Object Module Formats ‘ Version 4.0

{===e in DATA Record ====> (=== in FIXUP Record =-==>

| +n | or | +n | <null> (=== Case 1
| g9 | or | q o +n | <{--- Case 2
I aq | or | q P n | ¢--- Case 3

Case 1 illustrates the situation where a fixup is specified 1in
a "secondary" way. No explicit displacement °'D' is provided in the
FIXUP Record, so arithmetic must be done in the LOCATION itself, in
the DATA Record. As th2 diagram shows, the LOCATION may be a byte
or a word. (If LOCATION is a POINTER, arithmetic is on each half
separately, so the above diagram applies separately to each half of
a POINTER.) In Case 1, the value(s) in LOCATION are considered to
be non-negative numbers (*+n"), and are considered to be equivalent
to a specification of a displacement 'D'; thus the R&L access
verification incorporates the value “+n".)

Case 2 illustrates the situation where a fixup is specified in
a "primary” wa'. An explicit displacement 'D*’ is provided in the
FIXUP Record. This displacement is considered to be a non-negative
number (*+n*). When all arithmetic required by the fixup |is
complete, the resultant value (in the FIXUP Record) is checked for
validity by R&L, and then, finally, that result is added (modulo 256
or modulo 65536) to the original content of LOCATION (“q“"). The
value "g" may be considered as non-negative, or as sianed 2°'s
complement; R&L doesn't care because there is no checking in this
final stage of the fixup.

Case 3 is the same as Case 2, except that the displacement °'D’,
instead of being restricted to non-negative numbers in the range
{9:65535}, may represent signed (2's complement) numbers in the
range {-~1,048,576:1,048,575}. (Note: 1initially, this case will not
be supported. It is designed into the formats for completeness: it
allows support, with R&L access verification, of TARGET's specified
in a "primary" way, with negative displacements 'D'.)

Here are some cases where a "primary" specification of a TARGET
is necessary or desirable:

First, yet another definition: a "REFERENT" is a memory
location, with respect to which a TARGET 1is positioned. This is
best made clear by an example: in the specification

TARGET: EI (STRUCT) ,24
the TARGET is the 24°'th byte after the location named "STRUCT"; the
REFERENT is the location named "STRUCT® itself.

19

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

{l1) A SHORT-JMP 1is being made to an external subroutine. 1In

this case, the TARGET should be specified as
TARGET: EI(subroutine) ,0000H
The reason is that when LINK-86 1learns where the subroutine is
located, it will probably be a known offset (dl) within some LSEG A.
Thus, LINK-8A will convert the above TARGET to the form:
. TARGET: SI(A),dl

Now the proarammer may be correct in "knowing* that when the program
is eventually LOCATE'd, the TARGET will be within 128 bytes of
LOCATION; however, this does not mean that dl1 1is 1less than 128!
Thus, as LINK-86 maintains the (possibly changing) value of dl as
various pieces of LSEG A are combined, it needs a full word to
maintain the offset. Since the LOCATION is a single byte, the
translator must provide an offset field in the fixup record itself
for LINK-86 to maintain intermediate fixup values. '

{2) The translator wishes to reference "backwards® from the
REFERENT. For example, if the TARGET is the word in front of the
external array ARY, and the reference is with respect to a base
register that will contain the address of the LSEG named FOO, = the
translator would use

FRAME: SI(F00)

TARGET: EI(ARY) ,0000Hd
and place the "negative offset® FFFEH in LOCATION. R&L will perform
access verification ¢to the REFERENT ARY; however, access to the
TARGET is not quaranteed, and is the programmer's responsibility.

Note: 1if Case 3 in the above diagram were available, the
translator could use
FRAME: SI(FO00)
TARGET: EI(ARY) ,-2
and R&L would perform access verification, not to the REFERENT ARY
(as ahove), but to the actual TARGET (in front of ARY)!

(2) (continued) The <calculation by LOCATE-86 involves 3
quantities: the MAS~location of FOO, the MAS-location of the LSEG
(say, BAZ) containing ARY, and the relative offset of ARY within
BAZ. LOCATE-86 can enforce that the final offset, which 1is the
difference ’

(location of BAZ plus relative offset) - (location of F0O0),

is not areater than K5535, provided that all aquantities entering
into this difference are known. 1If the translator had specified the
fixup as

FRAME: SI(F00)

TARGET: EI(ARY)
then LINK-86 would have had to maintain the (vossibly changina from
linkage to 1linkaade) relative offset of ARY within BAZ, in the
LOCATION itself, where it gets *"added* to the content FFFEH, And
because the R&L system cannot know if the FFFEH was a neaative 2 or
a positive /45534, the access verification of R&L may thwart the
translator's intentions.

20

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats : Version 4.4

The following example (3) is a case where access verification
works whether the TARGET specification is “primary” or “secondary®:

(3) The translator wishes to reference “forwards® from a
REFERENT, and to ensure that the TARGET lies within the specified
FRAME. For example, we wish to reference the 106'th byte in an
external structure STRCT. The translator may specify the fixup as

FRAME: SI(F0O0)
. TARGET: EI(STRCT) ,99
R&L will ensure that the distance from the canonic FRAME of FOO to
the 188°'th byte of STRCT is 1less than 65534. (Note that this
constraint might be achieved even if STRCT lies outside the canonic
FRAME of FO00.)

(4) Hibyte fixups specified in a primary way will be correct
in that a full word is used to accumulate the value of an offset.
Only after LOCATE'ing will the value of the hibyte of an offset be
- used as a fixup value. This prevents the loss of accuracy due to
truncation of low byte before adding the address at which an object
is LOCATE'd.

21

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

RECORD_ORDER

A object code file must contain a seaquence of (one or nmore)
modules, or a library containing zero or more modules. A module is
defined as a collection of object code defined by a sequence of
object records. The following syntax shows the valid orderings of
records to form a module. In addition, the given semantic rules
provide information about how to interpret the record sequence. The
syntactic description lanjuage used herein 1is defined in WIRTH:
CACM, November 1977, v 20, n 11, p 822 - 823,

object, file sequence | library.

sequence = module {module}.

library = LIBHED {module} libtail.

module = tmod | lmod | rmod | omod.

tmod = THEADR sqgr. table {component} modtail.
1mod = LHEADR sar. table {data} {t_component} modtail.
rmod = RHEADR sgr_table {data} ({t_component} modtail.
omod = RHEADR sgor_table {o. component} o modtail.
sqgr_table = seqg.dqarp [REGINT].

sgor. table seq qrp {OVLDEF} {REGINT].

seq. qrp {LNAMES} {SEGDEF} { TYPDEF | EXTDEF | GRPDEF }.

(]

0. component {data} {t _component} FENDREC.

"

t. component THEADR {coaponent}.

component data | debug. record.

data = content.def | thread.def |
TYPDEF | PUBDEF | EXTDEF.

LOCSYM | LINNUM | DEBSYM |
BLKDEF | BLKEND | ENDREC.

debug.record

content_def data_record {FIXUPP}.

]

thread def FIXUPP. (containing only thread fields)

LIDATA | LEDATA | PIDATA | PEDATA |
'REDATA | RIDATA.

data record

o _modtail {OVLDEF} modtail.

22

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

modtail

libtail

[(REGINT] MODEND.

LIBNAM LIBLOC LIBDIC.

NOTE: The character strings represented by capital letters above

are

not literals but are identifiers that are further deflned in the

section defining the Record Formats.

The

following rules apply:
A FIXUPP record always refers to the previous DATA record.

The debug records have as their originating module the module
named by the nearest preceding THEADR record.

All LNAMES, SEGDEF, GRPDEF, TYPDEF, and EXTDEF records must
precede all records that refer to them.

COMENT records may appear anywhere within a file, except as the
first or last record in a file or module, within a content.def,
or within a libtail.

OVLDEF records may appzar either immediately after the segment
and group definitions or at the end (before the REGINT and
MODEND records), but not at both places. The number of OVLDEF
records must be equal to the number of o_components, and the
order of these records must be same as the o,component order,
the first OVLDEF record pointing to the 'root' part.

.As with the OVLDEF records, the REGINT record may appear either

at the beginning of a module (after SEGDEF's, GRPDEF's, and
OVLDEF's 1if any) or at the end (before the MODEND record), but
there can not be two REGINT records in the same module.

23

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

INTRODUCTION. to. the. RECORD FORMATS

The following pages present diaarams of Record Formats in
schematic form. Here 1is a sample, to illustrate the various

conventions:

SAMPLE. RECORD FORMAT

(SAMREC)
***********************///*********' ' | I***********
* t x * * k]
* REC * RECORD * NAME * NUMBER * CHK *
* TYP * LENGTH * * * QUM *
* yxH * * * * *
* ® ® * * *
******'k************t***///*********| l | '*********t*

|]
+===-rpt-———-+

TITLE and OFFICIAL ABBREVIATION

- = - - D W W e W wm e m o em ww e W e wm owm . o

At the top is the name of the Record Format Described, toagether
with an official abbreviation. To promote uniformity among various
programs, including translators, debuggers, the various R&L
products, and various tools such as EDOJS%s and OJED85, the
abbreviation should be wused in both code and documentation. The
abbreviation is always 6 letters.

The BOXES

- e - - - -

Each format is drawn with boxes of "~two sizes. The narrow
boxes, outlined entirely with asterisks, represent single bytes.
The wide boxes, outlined entirely with asterisks, represent two
bytes each. The wide boxes, outlined with asterisks, but with three
slashes in the top and bottom, represent a variable number of bytes,
one or more, depending upon content. The wide boxes, outlined with
asterisks, but with four vertical bars in the top and bottom,
represent 4-byte fields.

REC TYP

B ———————

The first byte 1in each record contains a value between 9 and
255, indicating which record type the record is.

RECORD LENGTH

The second field in each record contains the number of byvtes in
the record, exclusive of the first 2 fields.

NAME

24

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

Any field that indicates a “NAME" has the following internal
structure: the 1lst byte contains a number between 3 and 44,
inclusive, that indicates the number of remaining bytes in the
field. The remaining bytes are interpreted as a byte string; each
byte must represent the Ascii code of a character drawn from this
set: { ?@:., 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ }. Most
translators will choose to constrain the character set more
strictly; the above set has been chosen to "cover" that required by
all current processors.

NUMBER

A 4-byte NUMBER field represents a 32-bit unsigned integer,
where the first 8 bits (least-siqgnificant) are stored in the first
byte (lowest address), the next 8 bits are stored in the second
byte, etc.

REPEATED OR CONDITIONAL FIELDS

Some portions of a Record Format contain a field or series of
fields that may be repeated @ or more times. Such portions are
indicated by the “repeated"” or "rpt" brackets below the boxes.

Similarly, some portions of a Record Format are present only if
some given condition is true; these fields are indicated by similar
"conditional" or “cond" brackets below the boxes.

. CHK_SumM

The last field in each record is a check sum, which contains
the 2's complement of the sum (modulo 255) of all other bytes in the
record. Therefore, the sum (modulo 25FA) of all bytes in the record
eauals 9.

- BIT FIELDS

[———

Descriptions of contents of fields will sometimes get down to
the bit level. Boxes outlined in asterisks, but with vertical lines
drawn through them, represent bytes or words; the vertical lines
indicate bit boundaries, thus the byte, represented below, has 3
bit-fields of 3-, 1=, and 4-bits:

khkkhkhhhkhhkkhhkhkhhkhkhkhkhkhkhhkhkk

* 0 *
* ' | *
Lo/ A R T R R R B

kkkkhkhhkhkhkhkhhkkhhkhkhkhhkihkhktkx

25

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

T-MODULE HEADER RECORD
— (THEADR)

t*******************i**///***********

* * * * *
* REC * RECORD * T * CHK *
* TYP * LENGTH * MODULE * SUM *
* 8pH * * NAME * *
* * * * *
***********************///***********

Every module output from a translator must have a T-MODULE
HEADER RECORD. Its purpose is to provide the identity of the
original defining module for all 1line numbers and 1local symbols
encountered in the module up to the following T-MODULE HEADER RECORD
or MODULE END RECORL,

This record can also serve as the header for a module, i.e., it
can be the first record, and will be for modules output from
translators.

T-MODULE NAME

The T-MODULE NAME provides a name for the T-Module.

25

Download from Www.Somanuals.com. All Manuals Search And Download.

8486 Object Module Formats Version 4.0

L-MODULE. HEADER RECORD

(LHEADR)
*****t*****************///***********
* * * * *
* REC * RECORD * L-MODULE * CHK *
* TYP * LENGTH * NAME * SUM *
* 82H * * * *
* * * x* *

***********************///******t****

Every module previously created by (cross) LINK-86 (V1.3 or
earlier) or by LOCATE-86 may have an L-MODULE HEADER RECORD. This
record serves only to identify a module that has been processed
(output) by LINK-86/LOCATE-86. When several modules are 1linked to
form another module, the new module requires a name, perhaps unique
from those of the linked modules, by which it can be referred to (by
the LIB86 program, for example).

L-MODULE NAME

The L~-MODULE NAME provides a name for the L-Module.

27

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats VTersion 4.9

R-MODULE HEADER RECORD

(RHEADR)
***********************///*i*******///*********///***********
* * * * * * *
* REC * RECORD * R-MODULE * R-MODULE * R-MODULE * CHK *
* TYP * LENGTH * NAME * ATTR *+ INFO * SUM *
* GEH * * * * * *
* * * * * %* %*

*

*****t*****************///*********///*********///**********

Every module created by LINK-86/LOCATE-8fA may have an R-MODULE
HEADER RECORD. This record serves to identify a module that has
been processed (output) by LINK-86/LOCATE-86. It also specifies the
module attributes and gives information on memory usage and need.
When several modules are linked to form another module, the new
module requires a name, perhaps unique from those 6f the linked
modules, by which it can be referred to (bv the LIB8f program, for
example) .

R-MODULE NAME

The R-MODULE NAME provides a name for the R-Module,

R-MODULE ATTR

The R-MODULE ATTR field provides information on various module
attributes, and has the following format:

************************i*****%*ﬁk*************'ll]*****
* * * * * *
* MOD * SEGMENT * GROUP * OVERLAY * OVERLAY *
* DAT * RECORD * RECORD * RECORD * RECORD *
* * COUNT .* COUNT * COUNT * OFFSET *
%* * * . * * *
***********t***tt******************************l'"*****

The MOD DAT subfield has the following format:

L2 R RS 2222 RS R RRRRERRRER XSRS

* | | | | I l P
*zlzlzlz1z]z TYP *
* | l | | | I I

KRRk RRRRARRkhhhkXhkhkhkrxhhhkhkhkkkhhkkx

2's indicates that these 1-bit fields have not <currently been
assiqned a function. These bits are reauired to be zero.

28

Download from Www.Somanuals.com. All Manuals Search And Download.

8886 Object Module Formats Version 4.0

TYP is a 2-bit subfield that specifies the module type. The
semantics are defined as follows:

TYP=@ The module is an absolute module,.
TYP=1 The module is a relocatable module. Fixups
other than base fixups may still be present.
TYP=2 The module is a Position Independent Code module.
It can be loaded anywhere. No fixups are needed.
TYP=3 The module is a Load-Time Locatable Module.
It can be loaded anywhere with perhaps some base
fixups to be performed.

The SEGMENT RECORD COUNT subfield indicates the number of
Segment Definition Records in the module.

The GROUP RECORD COUNT subfield indicates the number of Group
Definition Records in the module.

The OVERLAY RECORD COUNT subfield indicates the number of
Overlay Definition Records in the module {including Overlay
Definition Record for the *Root').

The OVERLAY RECORD OFFSET subfield 1is a 4-byte field. It
contains a 32-bit unsigned number indicating the location in bytes,
relative to the start of the object file, of the first Overlay
Definition Record in the module. This field must be zero when
OVERLAY RECORD COUNT is zero.

R-MODULE INFO

The R-MODULE INFO field contains a sequence of four 32-bit
unsigned numbers specifying the different types and sizes (in bytes)
of memory space that the module will need. It has the following
format:

*****' | | I*********' | | |******t**l . l !*********' ' l |*****
* * * * *
* STATIC * MAXIMUM * DYNAMIC * MAXIMUM *
* SIZE * STATIC * STORAGE * DYNAMIC *
* * SIZE * * STORAGE *
* * * * *
*****' | l |*******'k*' ' ' '*********‘ l , '*********' ' | I**t**

STATIC SIZE is the total size of ¢the LTL seqments in the
module. This is the minimum static memory space that must be
allocated to the module so that the module can be loaded.

MAXIMUM STATIC SIZE is the maximum total size of the LTL
seqments in the module. This value must be greater than or equal to
STATIC SIZE. (By default MAXIMUM STATIC SIZE is set eaual to STATIC
SIZE) This value only aives the maximum space needed. Dependina on
available memory, the loader may allocate any value between the
STATIC SIZE and the MAXIMUM STATIC SIZE.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

DYNAMIC STORAGE is the memory space that must be allocated (for
buffer, for dynamic expansion, etc...) at load-time. The defaul*
value is zero.

MAXIMUM DYNAMIC STORAGE is the maximum dynamic memory that
might be needed by the module. This value must be greater than or

equal to DYNAMIC STORAGE (By default MAXIMUM DYNAMIC STORAGE value
is set equal to DYNAMIC STORAGE value).

39

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object ModulevFormats Version 4.9

LIST OF . NAMES. RECORD

(LNAMES)
AhkkRhRAhhkRkhhhrhhhhkhk // /RRRRREIAXAR
* * * %* %*
* REC * RECORD * NAME * CHK *
* TYP * LENGTH * * SUM *
* QRH * * * *
* * %* * *

***************t*******///*****i*****

| |
4==—erpt=——=t

This Record provides a 1list of Names that may be used in
following SEGDEF and GRPDEF Records as the names of Segments,
Classes, Overlays and/or Groups.

The ordering of LNAMES Records within a module, together with
the ordering of Names within each LNAMES Record, induces an ordering
on - the Names. Thus, these names are considered to be numbered: 1,
2, 3, 4, ... These numbers are used as “Name Indices®” in the
Segment Name Index, Class Name Index, Overlay Name Index and Group
Name Index fields of the SEGDEF and GRPDEF Records.

NAME

This repeatable field provides a name, which may have =zero
length,

31

Download from Www.Somanuals.com. All Manuals Search And Download.

8486 Object Module Formats Version 4.0

SEGUENT DEFINITION. RECORD
(SEGDEF)

t********t******///*****************///*******///******t///**********

* * * * * * * *
* REC * RECORD * SEGMENT * SEGMENT * SEGMENT * CLASS * OVERLAY * CHK *
* TYP * LENGTH * ATTR * LENGTH * NAME * NAME * NAME * SUM *
* 98H * * * * INDEX * |[INDEX * INDEX * *
* * * * * * * * *
ARKXRKRKKKKRRKKRRKKRKKK [[[RRKKRKRKRRKRRKRKRKKKR) [[ARRRRKK [[[RAhRRAKR [[RhRRT Rk kR ®

¢+4====c onditionagle==—+

SEGMENT INDEX values 1 through 32767, which are used in other
record types to refer to specific LSEG's, are defined implicitly by
the sequence in which SEGDEF Records appear 1in the object file.
(SEGMENT INDEX @ 1is reserved to indicate the "unnamed absolute
seqment”, which is not really a segment: it is a possibly empty set
of possibly disjoint regions of memory; it is normally created bhy
LOCATE~86, although translators may create portions of it as well,
if they wish.) ‘

SEG, ATTR

The SEG ATTR field provides information on various attributes
of the segment, and has the following format:

It EE AR SRR RS LSRR RRRRRRRRRREREREREEEESSERERRR SRR

* * * * * _ * *
* ACB * FRAME * OFF * LTL * MAXIMUM * GROUP *
* P * NUMBER * SET * DAT * SEGMENT * OFFSET *
* * * * * [ENGTH * *
* * * * * %* *
Lt E S22 222 SR 22222222222 X2 2Rt s 22 22222 2 22222 2R 2 2 2 R 8

! | |

+=-==conditional===+=-=~- condi tional ===+

The ACBP byte contains 4 numbers, the A, C, B, and P attribute
specifications. This byte has the following format:

khkkhkhkkhkhkhkhkhkhkhhkhhhkkhkhhhkhhkhhxhkhhkhhkkk

* I I ! | I ! ! *
* A] C | Bl p *
* I ! | | I | *

Ahkkkkhkhkhkkkdrhhhkhkhkhkhkhhkkhkhkhkhkhkkkhkihhk

A (Alianment) is a 3-bit subfield that specifies the alignment

32

Download from Www.Somanuals.com. All Manuals Search And Download.

3086 Object Module Formats Version 4.0

attribute of the LSEG. The semantics are defined as follows:

A=@ SEGDEF describes an absolute LSEG.

A=1 SEGDEF describes a relocatable, byte aliagned LSEG.

A=2 SEGDEF describes a relocatable, word aliagned LSEG.

A=3 SEGDEF describes a relocatable, paraqraph aligned LSEG.

A=4 SEGDEF describes a relocatable, page aligned LSEG.

A=5 SEGDEF describes an unnamed absolute portion of MAS,

A=6 SEGDEF describes a load-time locatable (LTL), paragraph
aligned LSEG if not member of any group.

~ In addition the value of A determines if one or several
“conditional" fields will be present. If A=0 or A=5 then the FRAME
NUMBER and OFFSET fields will be present. If A=6 then the LTL DAT,
MAXIMUM SEGMENT LENGTH, and GROUP OFFSET fields will be present. If
A<>S then the three NAME INDEX fields will be present.

Cc (Combination) 1is a 3-bit subfield that specifies the
combination attribute of the LSEG. Absolute segqments (A= or A=5)
must have combination zero (C=@). In this case the segments will be
combined like C=6 below if and only if their FRAME NUMBER's and
OFFSET's match (For A= their complete names nust match as well).
For relocatable segments, the C field encodes a number @,1,2,4,5,6
or 7 indicating how the segment may be combined. The interpretation
of this attribute is best given by considering how ¢two LSEG's are
combined: Let X,Y be LSEG's, and let Z -be the LSEG resulting from
the combination of X,Y. Let LX and LY be the lengths of X and Y,
and let MXY denote the maximum of LX,LY. Let G be the length of any
gap required between the X- and Y-components of Z to accommodate the
alignment attribute of VY. Let LZ denote the 1length of the
(combined) LSEG Z; let dx (0<=dx<LX) be the offset in X of a byte,
and let dy similarly be the offset 1in Y of a byte. Then the
followinag table aives the lenath LZ of the combined LSEG Z, and the
offsets dx* and dy*' in Z for the bytes corresponding to dx in X and
dy in Y:

¢ Lz dx’ dy!

2 LX+LY+G dx dy+LX+G

4 LX+LY dx dy

5 LX+LY dx+LY dy+LX

6 MXY dx dy

7 MXY dx+MXY=-LX dy+MXY-LY

The above table has no 1lines for C=6, C=1 or C=3, C=4
indicates that the relocatable LSEG may not be combined; C=1 has the
same combination semantics as C=6, but additionally "distingquishes"
the LSEG so that LOCATE-85 will (in the default case) place the LSEG
above all other LSEG's in M™MAS (this corresponds to the MEMORY
seament semantics of 8489 R&L); C=3 is undefined.

B (Big) is a 1~-bit subfield which, if 1, indicates that the
Seament Length 1is exactly 6A4K (65536). In this case the SEGMENT
LENGTH field must contain zero.

33

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

P (Page-Resident) ig a l=-bit subfield which, if 1, demands that
the segment be 1located in MAS without crossing a page boundary.
-(This corresponds to the "in-page” relocation type of 8080 R&L.)

The FRAME NUMBER and OFFSET fields (present only for absolute
segqments, A= or A=5) specify the placement in MAS of the absolute
segment. The range of OFFSET is constrained to be between @ and 15
inclusive. If a value larger than 15 is desired for OFFSET then an
adjustment of the FRAME NUMBER should be done.

The LTL DAT subfield (present only for LTL segments, A=6)
specifies the attributes of an LTL segment. It has the following
format:

RhhkhkRhkhhhhkhkkhhhhhhhhhkhhrhhkhkhhhkhhk

* 0| | | | | P
Glzlzlz})z) z | z |BSmM

* | | | ! | ! I *

khkhhkhkhkhhkkhhhhkhhhkhhkhhkhkkkxhkkhkkkkhkhk

“Z's indicate that these 1-bit fields have not currently been
assigned a function. These bits are required to be zero.

G (Group) 1is a 1l-bit field that, if 1, specifies that the
segment is a member of a group, and should be loaded as a part of
the group. ’

BSM (Big Segment Maximum Lenqgth) is a 1-bit field that, if 1,
specifies that the maximum segment length is exactly #A4K. In this
case the MAXIMUM SEGMENT LENGTH must contain zero.

The MAXIMUM SEGMENT LENGTH subfield (present only for LTL
segments, A=6) specifies the maximum length 1in bytes of the LTL
segment. {The purpose of this field is to provide information to a
loader as to reserve memory space as much as possible up to the
value in this field.) This va.ue must be greater than or equal to
the value in the SEGMENT LENGTH field. The MAXIMUM SEGMENT LENGTH
field 1is only big enouah toc hold numbers from 0 to 64K-1 inclusive.
The BSM attribute bit in the LTL DAT field (see above) must be used
to give the segment a MAXIMUM length of 64K.

The GROUP OFFSET subfield (present only for LTL seaments, A=6)
qgives the offset of the first byte of the seament relative to the
base of the parent aqroup. It must be zero if the G bit is 8. This
value will be used by the loader to determine the location relative
to the group base of the data records bhelonaina to the seament.

SEGMENT LENGTH

The SEGMENT LENGTH field aives the length of the seament in
bytes. The lenath may be zero; if so, LINK-8% (unlike LINX-8¢) will
. not delete the segment from the module. The SEGMENT LENGTH field is
only biag enough to hold numbers from 9 to 64K-1 inclusive. The 8

34

Download from Www.Somanuals.com. All Manuals Search And Download.

8¢86 Object Module Formats Version 4.0

attribute bit in the ACBP field (see above) must be used to give the
segqment a length of 64K.

SEGMENT NAME INDEX

The Segment Name is a name the programmer or translator assigns
to the segment. Examples: CODE, DATA, TAXDATA, MODULENAME“CODE,
STACK. This field provides the Segment Name, by indexing into the
list of names provided by the LNAMES Record(s).

CLASS NAME INDEX

The Class Name 1is a name the programmer or translator can
assign to a segment. (If none is assigned, the name is null, and
has 1length #8.) The purpose of Class Names 1is to allow the
programmer to define a "handle* by which several LSEG's may be
referred to (e.g. at LOCATE-time) by a single reference. Examples:
RED, WHITE, BLUE; ROM, FASTRAM, DISPLAYRAM. This field provides the
Class Name, by indexing inte the 1list of names provided by the
LNAMES Record(s).

OVERLAY NAME INDEX

The Overlay Name is a name the translator and/or LINK-86, at
the programmer's behest, apply to a segment. The Overlay Name, like
the Class Name, may be null. This field provides the Overlay Name,
by indexing into the list of names provided by the LNAMES Record(s).

{Note) The “Complete Name” of a segment is a 3-
component entity comprising a Segqment Name, a Class

Name and an Overlay Name. (The latter 2 components
may be null.) (End of Note)

35

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

GROUP DEFINITION RECORD
(GRPDEF)

*************i**i******///**********///***********t

*
*
*
»
*

REC
TYP
9AH

*
*
*
*
&®

* *
RECORD * GROUP * GROUP
LENGTH * NAME * COMPONENT
* INDEX * DESCRIPTOR
* *

*
*
*
*
*

*

CHK *

SUM *
*

*

*********t*****t*******///*** *t*****///*********i**

+--repeated---+

GROUP NAME INDEX

The Group Name is a name by which a collection

LSEG's may be referenced.

of

Version 4.0

l1 or more

The important property of such a gqroup is

that, when the LSEG's are eventually fixed in MAS, there must exist
some FRAME which contains (or "covers®) every LSEG of the group. If
this is not the case, LOCATE-8h will issue a warning messaqe.

The GROUP NAME INDEX field provides the Group Name, by indexing
into the list of names provided by the LNAMES Record(s).

GROUP COMPONENT DESCRIPTOR

Each GROUP COMPONENT DESCRIPTOR has 1 of the followina formats:

35

**********t///*****

* * *
* SI * SEGMENT *
* * INDEX *
* (FFH) * *
* * *

i******///t****

***********///*****

* * *
EI ' EXTERNAL *
* * INDEX *
* (FEH) * *
* * *

*

tt***///****

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

******t****///**t*t***i///*********///*****
* *

* * *
* SCO * SEGMENT * CLASS * OVERLAY *
* * NAME » NAME * NAME »
* (FDH) * INDEX * INDEX * INDEX *
» * * * *

t**********///t**t**i**///t****t**///**i***

I 22 AR 2222222222222 222222 22 2 22 X]

* * * * *
* LTL * LTL * MAXIMUM * GROUP *
* GRP * DAT * GROUP * LENGTH *
* (FBH) * * LENGTH * *
* * * * *

22222222222 222222 X222 2222222222222)

22222 222X 2 X222 X222 XXX 2 X
* * *

* ABS * FRAME * OFF *
* GRP * NUMBER * SET *
* (FAH) * * *
* * * *
RRARRARRREXRRRRERRTAARR A RRR K

These S kinds of DESCRIPTOR®'s are now discussed:

If the first byte of the DESCRIPTOR contains 8FFH, then the
DESCRIPTOR contains 1 more field, which is a SEGMENT INDEX that
selects the LSEG described by a preceding SEGDEF record.

If the first byte of the descriptor contains @FEH, then the
DESCRIPTOR contains 1 more field, which is an EXTERNAL INDEX that
selects the LSEG that is (eventually) found to contain the specified
External Name.

(Note) If the definition of the External Index is
(eventually) found to be physical instead of logical
{i.e., the External is defined with respect to a PSEG
rather than an LSEG), then an error in aroup
specification has occurred. (End of note)

If the first byte of the DESCRIPTOR contains @FDH, then the
DESCRIPTOR contains 3 more fields, which are Name 1Index fields,
which determine one or more Segment Name(s), Class Name(s), and
Overlay Name(s), respectively. This DESCRIPTOR allows a translator
or programmer to include in a aroup, one or more LSEG's from
separate translations (for which SEGMENT INDEX's cannot be known).

37

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

A Name Index with value zero carries special significance: it
specifies all Names. (Note: Name Indices with zero value may not
occur in other record types.)

If the first byte of the DESCRIPTOR contains 0OFBH, then the
DESCRIPTOR contains 3 more fields, which are the LTL DAT field, the
maximum length of the group, and the length of the group. This
descriptor, if present, must precede all other descriptors in the
record. There may be at most one descriptor of this type in a
GRPDEF record. There may not be any absolute component in the
aroup. A segment can not be in two such groups.)

The LTL DATA field has the following format:

RhkhkRRkhkhhkhhhhkhhkrhhhkhhkkhhhhhhkhkhhkh

* I l I I I Poo*
* 21221 2Z2| 2| Z |BGL|BGM*
* | | I | I | Poo*

Rhkkhkhkhkhkhkhkhkhkhkhhhkhkhhkhkhhkkkhkrkkhhkk

Z's indicate that these 1-bit fields have not currently been
assigned a function. These bits are required to be zero.

BGL (Big Group Lenagth) 1is a 1l-bit subfield that, if 1,
specifies that the Group length is exactly 64K. In this case the
GROUP LENGTH subfield must contain zero.

BGM (Big Group Maximum Length) is a 1l-bit subfield that, if 1,
specifies that the maximum group length is exactly 44K, In this
case the MAXIMUM GROUP LENGTH subfield must contain zero.

The GROUP LENGTH subfield specifies the lenqgth of the group
that has been determined after the Group 1is *“located®, and the
segments in the group are put in contiquous memory area. All fixups
have been performed relative to the base of the Group.

The MAXIMUM GROUP LENGTH subhfield specifies the maximum lepath
of the group that has been determined after the Group is “located"”,
using the maximum lenqgths of the segment components.

‘If the first byte of the DESCRIPTOR contains @FAH, then the
DESCRIPTOR contains the address of the Group. Once a Group has been
LOCATEd, it has an address chosen by LOCATE-86, relative to which
all fixups have been performed. If fixups relative to the Group
base are required after LOCATE-8A has assigned an address to the
Group then the FRAME NUMBER should be used as the base. The address
of the Group is also available for debuaging systems such as ICE.
If a Group has been assiagned an address by LOCATE-85 then it is
absolute and this descriptor must precede all other descriptors 1in
the record. There may be at most one descriptor of this type in a

GRPDEF record.

38

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.9

(Examples) Assume that an LNAMES record exists such that the
names “DATA", "“RAM", “MYPROG*, “CODE", “" (null), “STACK", “CONST*
and “MEMORY" are selected by Name Index values of 1, 2, 3, 4, 5, 6,
7 and 8, respectively.

The Descriptor with 4 fields: [@FDH, 3, 1, 1] specifies the
LSEG with Segment Name “"MYPROG", Class Name "DATA?, and Overlay Name
“DATA".

The Descriptor with fields: (@FDH, 3, 1, 5] specifies the LSEG
with Segment Name "MYPROG", Class Name “DATAY, and no (or “null”, or
‘unspecified") Overlay Name.

The Descriptor with fields: (0OFDH, 3, 1, 8] specifies any and
all LSEG's with Segment Name “MYPROG” and Class Name “DATA",
regardless of their Overlay Name(s).

The PLM~-86 compiler will be able to inform LOCATE-86 of the
“Small" assumptions by emitting 2 GRPDEF (Group Definition) Records:
one contains the single descriptor ({6FDH, 4, 4, S]], the other
contains the descriptors (@FDH, 1, 1, 51, {8FDH, 6, 6, 5},
{6FDH, 7, 7, 5], and [OFDH, 8, 8, 5]. (End of Examples)

39

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4;0

TYPE DEFINITION RECORD

(TYPDEF)
************************///*********///************
* * * * * *
* REC * RECORD * NAME * EIGHT * CHK *
* TYp * LENGTH * (LINK86 * LEAF * SUM *
* SEH * * USE) * DESCRIPTOR * *
* * * * * *
*******************t*t**///*********///************

|
te———— rpt=———+

This record provides the description of the type of an object
or objects presumably named by one or more names provided in PUBDEF,
EXTDEF, BLKDEF, DEBSYM and/or LOCSYM records. The type is described
as a Branch, which consists of a sequence of Leaves. The types
supported, and the corresponding branches, are provided in an

appendix.

As many "EIGHT LEAF DESCRIPTOR" fields as necessary are used to
describe a branch. (Every such field except the last in the record
describes eight leaves; the last such field describes from one to
eight leaves.)

TYPE INDEX values 1 through 32767, which are contained in other
record types to associate object types with object names, are
defined implicitly by the sequence in which TYPDEF records appear in
the object file.

NAME_(LINK86_USE)

Use of this field is reserved for LINK-86. Translators should
place a single byte containing @ in it (which is the representation
of a name of length zero).

EIGHT LEAF DESCRIPTOR

This field can describe up to eiaht Leaves. If more than eight.
Leaves are to be represented, the field may be repeated as
necessary. Unless the last leaf is a Repeat Leaf (see below), the
Branch is deemed to end in an indefinite sequence of easy null
leaves. This field has the following format:

***********///******

* * *
* E % LEAF *
* N * DESCRIPTOR *
* * *
* * *
ARKKKKKKRRK [[[hkkkk*

t=—=—rpt=———- +

40

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

The EN field is a byte: the 8 bits, left to riqht, indicate if
the following 8 Leaves (left to right) are Easy (bit=8) or Nice
(bit=1).

The LEAF DESCRIPTOR field, which occurs between 1 and 8 times,
has one of the following formats:

kkkkRkx

*

* 9
* to
* 128
*

*

* % % ¥ W

kRkkkkk

2222222222 222222 X2]

* * *
* * @ *
* 129 * to *
* * 64K-1 *
* * *
I 222 222222222222 XXX]

***********///*****
%* *
* *
* 136 * NAME
* *
* *
t*ft***///****t

* % % % *

***********///*****

* * *
E 4 * *
* 131 * INDEX *
* * *
* * *
***********///*****

L2 A2 22222222222 X222 22 X X

* * *
* * o) *
* 132 * to *
* * 1AM=1 *
* * k
khkhkhkhkhkhkhhhkhkhkhhhhkhkhhhhkhhiki

41

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

kR kkk

% % % % ¥

*®
®
* 133
*
®
Rhkhkkhk

Rhhhrkhhhkhhhk
*®

*

* *-127
* 134 * to
* *4+127
*
*

* % % % %

*
(A2 2222 222 2 2]

L E RS L2222 2222 22X

* * *
* * =32k *
* 135 * to *
* * 432K *
* * *
I3 22 222222222222 2 4

ERREXRRRRARRKRRAR AR AR kR A RS X

* ® *
* * ' 4-byte signed *
* 136 * integer *
* * *
* * *
* *

hhkhhkhkhhhhkhhkhhkhkhkhkhhkhkhkhkhkhhrh

The single byte, containing a value between # and 128
represents a Numeric Leaf or a Null Leaf. If the value is 128, it
represents a Null Leaf. If the wvalue 1is 1less than 128, it
represents a Numeric Leaf with the indicated integer number.

The second form, with a leading byte containing 129, represents
a Numeric Leaf. The number is contained in the following 2 bytes.

The third form, with a leading byte containing 130, represents
a String Leaf. The field following the leading byte represents the
string, in OMF's standard representation. '

The fourth form, with a leading byte containina 131, represents
an Index Leaf. The field following the leading byte represents an
Index, which is a number between @ and 32K-., in OMF's standard
representation. Recursively defined types are allowed.

The fifth form, with a leading byte containina 132, represents
a Numeric Leaf. The number is contained in the following 3 hytes.

42

Download from Www.Somanuals.com. All Manuals Search And Download.

8A86 Object Module Formats Version 4.0

The sixth form, & single byte of 133, is a Repeat Leaf. A
Repeat Leaf can only occur as the last leaf of a Branch. If the
last leaf of a branch is a Repeat Leaf then the previous leaf is
considered to repeat indefinitely, Otherwise the ' Branch is
considered to end in an indefinitely lonqg sequence of easy Null
leaves.

The seventh form, with a 1leading byte containing 134,
represents a Signed Numeric Leaf. The number is contained in the
following byte, which will be signed extended if neccessary.

The eiaghth form, with a leading byte containing 135, represents
a Signed Numeric Leaf. The number is contained in the foliowing 2
bytes, signed extended if neccessary.

The ninth form, with a leadina byte containing 136, represents

a Signed Numeric Leaf. The number is contained in the following 4
bytes, siqgqned extended if necessary.

43

Download from Www.Somanuals.com. All Manuals Search And Download.

*
x®
]
]

8086 Object Module Formats Version 4.0

PUBLIC NAMES DEFINITION RECORD

(PUBDEF)
t***************t******///*********///*********************///***********
* ® x * * * *®
REC * RECORD * PUBLIC * PUBLIC * PUBLIC * TYPE * CHK *
TYP * LENGTH * BASE * NAME * OFFSET * INDEX * SUM *
9@H * * * * * * *
* * * * * * *

*

***********************///*********///*********************///***********

- repeated +

This record provides a list of 1 or more PUBLIC NAME's; for
each one, 3 datums are provided: (1) a base value for the name, (2)
the offset value of the name, and (3) the type of entity represented
by the name. -

PUSLIC BASE

— e e wew ™=

The PUBLIC BASE has the following format:

*****///****t****///****t*t****t*****_
*

* SEGMENT * FRAME
INDEX * INDEX * NUMBER
* *

* % % % »

* *
****///t*ﬁ******///*********tt******

| |
+conditional+

*
*
*
*
*
*

The GROUP INDEX field has a format given earlier, and provides
a number between @ and 32767 inclusive. A non-zero GROUP INDEX
"associates” a qroup with the public symbol, and 1is used as
described on page 16, case (F2c). A zero GROUP INDEX indicates that
there is no associated aroup.

The SEGMENT INDEX field has a format given earlier, and
provides a number between # and 32767 inclusive.

A non-zero SEGMENT INDEX selects an LSEG, in which case the

location of each public symbol defined in the record is taken as a -

non-neqative displacement (given by a PUBLIC OFFSET field) from the
first byte of the selected LSEG, and the FRAME NUMBER field must be

absent,

A SEGMENT INDEX of @ (leaal onlv if GROUP INDEX is also 9)
means that the location of each public symbol defined in the record
is taken as a displacement from the base of the FRAME defined by the
value in the FRAME NUMBER field.

44

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object Module Formats Version 4.0

(Informal Discussion) The FRAME NUMBER is present iff
both the SEGMENT INDEX and GROUP INDEX are zero.

A non-zero GROUP INDEX selects some group; this group
is taken as the “frame of reference" for references to all
public symbols defined in this record, e.g., LINK-86 and
LOCATE~-86 will perform the following actions: (1) Any
fixup of the form:

TARGET: EI(P)

FRAME: TARGET
(where “P* is a public symbol in this PUBDEF record) will
be converted by LINK-86 to a fixup of the form:

TARGET: SI(L),d

FRAME: GI (G)
where “SI(L)" and “d" are provided by the SEGMENT INDEX
and PUBLIC OFFSET fields. (The “normal" action would have
the frame specifier in the new fixup be the same as in the
old fixup, viz.: FRAME: TARGET.) (2) When the value of a
public symbol, as defined by the SEGMENT INDEX, PUBLIC
OFFSET, and (optionally) FRAME NUMBER fields, is converted
to a {base,offset} pair, the base part will be taken as
the base of the indicated group. (If a non-negative 16~
bit offset cannot then complete the definition of the
public symbol‘s value, an error will occur.)

A GROUP INDEX of 2zero selects no aroup. LINK-86 will
not alter the FRAME specification of fixups referencing
the symbol, and LOCATE-86 will take, as the base part of
the absolute value of the public symbol, the canonic frame
of the segment (either LSEG or PSEG) determined by the
SEGMENT INDEX field. (End of Informal Discussion)

PUSLIC_NAME

The PUBLIC NAME field gives the name of the object whose
location in MAS is to be made available to other modules. The name
must contain 1 or more characters.

(Note) R&L's only constraint upon the characters
in names is that they lie within the ranae 20H (space)
throuah 7EH (tilde) inclusive. Other characters may
be used, but may produce awkward results when output
to listing devices, etc.

However, translators may proscribe the admissible
character set more strictly. (End of Note)

PUBLIC OFFSET

The PUBLIC OFFSET field is a 15-bit value, which is either the
of fset of the Public Symbol with respect to an LSEG (if SEGMENT
INDEX >), or the offset of the Public Symbol with respect to the
specified FRAME (if SEGMENT INDEX = 9).

a5

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

TYPE INDEX
The TYPE INDEX field identifies a single preceding TYPDEF (Type

Definition) Record containing a descriptor for the type of entity
represented by the Public Symbol.

46

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats ‘ Version 4.0

EXTERNAL. NAMES DEFINITION RECORD

(EXTDEF)
*****t*****************///*********///*******'h*i*
%* * * * * *
* REC * RECORD * EXTERNAL * TYPE * CHK *
* TYP * LENGTH * NAME * INDEX * SUM *
* 8CH * * * * *
* * * * %* *

***********************///*****i***///*******t***
| |
b mmmo— repeated ________ +

This Record provides a 1list of external names, and for each
such name, the type of object it represents. LINK-86 will assign to
each External Name the value provided by an identical Public Name
(if such a name is found). provided that the two names name objects

of the same type.
EXTERNAL NAME

This field provides the name, which must have non~zero length,
of an external object.

Inclusion of a Name in an External Names Record is an implicit
request that the object file be linked to a module containing the
same name declared as a Public Symbol. This request obtains whether
or not the External Name is actually referenced within some FIXUPP
Record in the module.

The orderinag of EXTDEF Records within a module, toagether with
the ordering of External Names within each EXTDEF Record, induces an
orderina on the set of all External Names requested by the module.
Thus, External Names are considered to be numbered: 1, 2, 3, 4, ...
These numbers are used as "External Indices® in the TARGET DATUM
and/or FRAME DATUM fields of FIXUPP Records, in order to refer to a
particular External Name. The format of an External Index has been

given earlier.

(Caution) 8086A External ©Names are numbered
positively: 1,2,3,... This is a change from 30890
Zxternal Names, which were numbered starting from
zero: 0,1,2,... .The reason is to conform with other
8886 Indices (Segment Index, Type Index, et¢.) which
use 3 as a default value with special meanina. (End

of Caution)

External indices may not be forward referring. That is to say,
an external definition record definina the k'th object must precede
any record referring to that object with index k.

47

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

TYPE. INDEX

This field 1identifies a single precedina TYPDEF (Type
Definition) Record containing a descriptor for the type of object
named by the External Symbol.

48

Download from Www.Somanuals.com. All Manuals Search And Download.

*
*
*
*

REC
TYP
92H

8086 Object Module Formats Version 4.0

LOCAL SYMBOLS. RECORD

(LOCSYM)
**********ﬁ************///*********///***************i****t///****i******
* * * * * * *

* RECORD * LOCAL * LOCAL * LOCAL * TYPE * CHK *

LENGTH * SYMBOLS * SYMBOL * SYMBOL * INDEX * SUM *

* * BASE * NAME * OFFSET * * *

* * * * * %* *

*

*t*i*******************///*********//’/*********************///***********

|
towrmemeeee——=repeated ———

This record provides information about symbols that were used
in the source program input to the translator which produced the
module. The purpose of this information is to aid ICE and other
debugaing programs.

The information provided by the LOCSYM record is processed but
not used by the R&L products.

The symbols in the record were originally defined in a source
module of name given by the most recently preceding T-MODULE HEADER
record.

LOCAL SYMBOLS BASE

The LOCAL SYMBOLS BASE has the followina format:

*****///*********///*****************

* * * *
* GROUP * SEGMENT * FRAMZE *
* INDEX * INDEX * NUMBER *
* * * *
* * * *
KhKRK) [/ RRRRRIRKK [[[KRR AR RRRA KRR RK

| |
+conditional+

The LOCAL SYMBOLS BASE provides two thinas: (1) it gives a
*referent” value (location in MAS), with respect to which the value
(location in MAS) of every symbol in the record will be defined by
aiving, for each symbol in the record, a non-negative offset; and
(2) it gives an indication to LOCATE-86 as to how the final (28-bit)
values of the symbols should be decomposed into {hase,offset} pairs.

The referent value is gqiven by the SEGMENT INDEX or by the
FRAME NUMBER. If the SEGMENT INDEX field contains a number areater
than 9, then the referent value is the location of the canonic frame

49

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object Module Formats Version 4.0

of the LSEG specified by the SEGMENT INDEX. (There must be no FRAME
NUMBER field in this case.) If both the GROUP INDEX field and the
SEGMENT INDEX field contain zero, then the next field is a FRAME
NUMBER; 1in this case, the referent value is the location of the
first byte of the specified frame.

If the GROUP INDEX is zero, the base will be the canonic frame
of the LSEG specified by the SEGMENT INDEX (if non-zero), or by the

'FRAME NUMBER (if SEGMENT INDEX field contains zero). If the GROUP

INDEX 1is non—-zero, the base will be the canonic frame of the Group
specified by the GROUP INDEX. (If the value of a symbol cannot be
described with respect to such a base, then LOCATE-85 will qgive a
warning.)

(Note) When GROUP INDEX is > 8, then one must also
have SEGMENT INDEX > 8. (End of note)

LOCAL SYMBOL NAME

This field provides the name of the symbol.

LOCAL SYMBOL OFFSET

The LOCAL SYMBOL OFFSET is a 16-bit value, which is either the
offset of the Local Symbol with respect to an LSEG (if SEGMENT INDEX
> 0), or the offset of the Local Symbol with respect to the
specified FRAME (if SEGMENT INDEX = 0).

TYPE INDEX

- —— - - ——

The TYPE INDEX field 1identifies a sinale preceding TYPDEF
Record containing a descriptor for the tyve of entity represented by
the Local Symbol.

50

Download from Www.Somanuals.com. All Manuals Search And Download.

8686 Object Module Formats ' Version 4.0

LINE NUMBERS RECORD

(CINNOM)
***********************///***********************************
* * * * %* * *
* REC * RECORD * LINE * LINE * LINE * CHK *
*# TYP * LENGTH * NUMBER * NUMBER * NUMBER * SUM #*
* 94H * * BASE * \ * OFFSET * *
*] * * * *® *
***********************///*****t********************t********

| |
+=-em=e--repeated-======t

This record provides the means by which a translator 'may pass
to a debugger program, the correspondence between a line number in
source code and the corresponding translated code.

Since several independent source modules, with independent line
numbering, may be 1linked to form a single module, a full
identification of a source text line must include both 1its number,
and also the name of the original containing module. The latter
identification is provided by the previous T-MODULE HEADER Record.

LINE NUMBER_ BASE

—— e —- - ———— —— —— —

The LINE NUMBER BASE has the followina format:

*ﬁ***///*********///******ﬁ**********
*

SEGMENT * FRAME

*

* %*

* INDEX * INDEX * NUMBER
* * *
*

%*

* *
****///*********///************t****
! |

+conditional+

* % % % *»

The LINE NUMBER BA<: has the same format and interpretation as
the LOCAL SYMBOL BASE described for the LOCSYM record. The SEGMENT
INDEX and (if present) the FRAME NUMBER fields determine the
location of the first byte of code corresponding to some source line
number. This 1location may be physical (SEGMENT INDEX is @) or
logical (SEGMENT INDEX is non-zero). The value of the GROUP INDEX
field, if non-zero, informs LOCATE-8A what base-part to use for
describing the final, 20-bit location of the code line. An example
shows the use of a non-zero Group Index: A translator knows that
the code segment it is compiling is hut one LSEG of many in a Group,
and thus references to pieces of the code segment are fixed up under
the assumption that the appropriate seqment register contains the
location of the base of the group. At debua time, the user may tell

S1

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

ICE-86 to "GO TO LINE NUMBER 22 OF MODULE MODNAME", ICE-86 may
respond by executing a long jump to the appropriate location. This
long jump will set the CS register; it 1is important that the CS
register be set in accordance with the assumptions made while
translating the code. This is the purpose of the GROUP INDEX field.

LINE NUMBER

A line number between # and 32767, inclusive, is provided in
binary by this field. The high order bit is reserved for future use
and must be zero. .

LINE _NUMBER OFFSET

The LINE NUMBER OFFSET field is a 16-~bit value, which is either
the offset of the line number with respect to an LSEG (if SEGMENT
INDEX > 8), or the offset of the line number with respect to the
specified FRAME (if SEGMENT INDEX = 4).

52

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

BLOCK DEFINITION RECORD
(BLRDEF)

t*t*t*************///**********///*** ******///*********///**********i

' 'REC
- TYP
7AH

* %* * * * %* *
* RECORD * BLOCK * BLOCK * PROCEDURE * TYPE * CHK *
*+ LENGTH * BASE *INFORMATION* INFORMATION* INDEX * SUM *
* * * ® 3 * *
* * x %* * * *

*

‘***t*******t**********///********'h*///*********///*********///**********

+conditional+

This record provides information about blocks that were defined
in the source program input to the translator which produced the
module. A BLKDEF record will be generated for every procedure and
for every block that contains variables., The purpose of this
information is to aid ICE and other debuaging proqgqrams.

The information provided by the BLKDEF record is processed but
not used by the R&L products.

The block in the record was originally defined in a source
module of name given by the most recently precedina THEADR record.

BLOCK INDEX values, used in the DEBSYM record, are defined
implicitly by the sequence of BLKDEF records in the T-MODULE.

BLOCK_BASE

The BLOCK BASE has the following format::

*****///t********///*******t*********

* * * *
* GROUP * SEGMENT * FRAME *
* INDEX * INDEX * NUMBER *
* * * *
* * * *
RhkkR/)/ RRRRRKRKKK [[[RIRKKARRKRRRKRER®

+conditional+

The B8LOCK BASE has the same format and interpretation as the
LOCAL SYMBOL BASE described for the LOCSY¥ record.

53

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

BLOCK INFORMATION

The BLOCK INFORMATION block has the following format:

tt///**t***********************

* * : * *
* * BLOCK * BLOCK *
* NAME * OFFSET * LENGTH *
* * * *
* % * *
RRKRK) [[R RRRRRRRR AR ERRRRRARR AR RN AR

NAME

This field contains the name of the block, If the record
describes an unnamed block in the source code (e.q. a DO block with
no label in PL/M) the NAME will be of lenaqth 7.

BLOCK_OFFSET

—— — o -

The BLOCK OFFSET is a 16-bit value which is the offset of the
1st byte of the block with respect to the referent value specified
by the BLOCK BASE.

BLOCK LENGTH

—— - —— - - -

This field gives the lenath of the block in bytes.

54

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

PROCEDURE INFORMATION

- ————— - A - - - — -

The PROCEDURE INFORMATION block has the following format:

1222222222222 X222 222222 22X2 222222 222222222222]

LA I T T N A B N *
LA R T I N A N B RETURN *
pPILIOIOICID|BI0 ADDRESS *
LA F (N T O O I OFFSET *
LA I T A O I I *
I X X 222X X222 23X XXXXXXXX2XXXXXXXX3 XXX 2ZXS SRR X

| |

+ conditional e==ccccaee=t

The P (Procedure) bit, if 1, indicates that the BLKDEF record
was aqenerated from a procedure in the source. The RETURN ADDRESS
OFFSET is present only if P=1,

The L (LONG) bit tells whether the return address is a 4-byte
value (CS and IP) or a 2-byte value (IP only).

L= -> 2<-byte return address
L=1 ~> 4-byte return address

If P=@ the L bit has no meaning and is required to be 0.

The RETURN ADDRESS OFFSET, a l6-bit value, is the bhyte offset
(from BP) of the ©procedure'’s return address in the procedure's
activation record on the stack.

TYPE INDEX

The TYPE INDEX field 1identifies a single precedina TYPDEF
record containina the type descriptor for the procedure or block
name. This field is present only if the NAME is non-zero.

(Note) Symbols defined in BLKDEF records
should not he repeated in DEBSY4 records. (End of
Note)

55

Download from Www.Somanuals.com. All Manuals Search And Download.

8886 Object Module Formats Version 4.0

8LOCK END RECORD
{BLKEND)

RRRAREIRRARRRTRRRRRANT R AR
* * * *
* REC * RECORD . * CHK ¥
* TYP * LENGTH * SUM *

* JCH * * *
* * * *

L2 2 X222 2222222222222 R 2R 2]

This record, together with the BLKDEF record, provides
information about the scope of variables in the source program.
Each BLKDEF record must be followed by a BLKEND record. The order
of the BLKDEF. debua symbol records, and BLKENDs should reflect the
order of declaration in the source module.

(Note) For translators whose variables don't have
scope (e.g. ASM86) the orderina of the records

need not reflect the order of declaration in the
source module. (End of Note)

54

Download from Www.Somanuals.com. All Manuals Search And Download.

ki %%k

REC
TYP
7EH

LA 2 X d

8086 Object Module Fofmats Version 4.0

DEBUG. SYMBOLS. RECORD

(DEBSYM)

ARERKRRARKRRRRKRRRRK [[/ RRRRKRRRK) [[RRRRRRRRARRRRRRRERRRRR [[[RRARRRR AR R
* * * * * _ * *
* RECORD * FRAME * SYMBOL * TYPE * CHK *

x
* LENGTH *INFORMATION* NAME * OFFSET * INDEX * SUM *
* * * * ® * *
* *] * * * *

ttiﬁ*t************//,*********///**t*************t****///*****‘l‘*****

<

+ repeated +

This record vprovides information about all 1local symbols
including stack and based symbols. The purpose of this information
is to aid ICE and other debugqing programs.

The information in this record is processed but not used by the
R&L products.

The symbols in the record were originally defined in a source
module of name given by the most recently preceding T-MODULE HEADER

record.

The scope of the symbols in the record is defined to be the
block of the most recently preceding BLKDEF whose extent has not yet
been closed by a BLKEMD. If no such BLKDEF exists the symbols are
global to the source module of name given by the most recently
preceding THEADR. :

FRAME. INFORMATION

This field gives information about the frame of the symbols
defined in the record. 1It's format is as follows:

***********///*****
* *

*
FRAME *
*INFO * DATUM *
* * *
® * *
RkRkRRRRKKKE [[/ /RR* KK

The FRAME INFO byte has the followina format:

RRRRRARARRRRARRRKR A AR ARk Rk Xk hknkhkk

* | | | | | | | *
* B | LI oatal gl FRAME *
* | | | | | METHOD *

L2 S X R RS2 RERR2RRRRRRRARERARZRXRRR 2 &)

57

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

The B (Based) bit, if 1, means that the location in MAS defined
by the FRAME INFORMATION and OFFSET fields contalns a value that |is
the address of a symbol.

The L (Long) bit tells the length of this wvalue.

L=6 -> 2 bytes
L=1 -> 4 bytes

If L=0 the frame part of the symbol address is defined to be
the frame given by the FRAME INFORMATION field.

If B=0, the location defined by the FRAME INFORMATION and
OFFSET fields is the location of the symbol. 1In this case the L
bit has no meaning and is required to be 9.

The FRAME METHOD field defines what kind of data is in the
DATUM field.

If FRAME METHOD=0, the DATUM has the format:

*****///****t****///***t********i*t**
* *

GROUP SEGMENT * FRAME

*
* *

* INDEX * INDEX * NUMBER
* * *
*

*

* *
****///****i****///*****************

+conditional+

* % % % %

The interpretation of the DATUM fields 1in the above format is
identical to the interpretation of the LOCAL SYMBOLS BASE in the
LOCSYM record. :

If FRAME METHOD=1, the DATUM has the format:

*****///*i***

EXTERNAL
INDEX

* % % x %

*
*
*
*
*
*

****///*****

58

Download from Www.Somanuals.com. All Manuals Search And Download.

8386 Object Module Formats Version 4.0

If FRAME METHOD=2, the DATUM has the format:

*****///*****

BLOCK
INDEX

* * % % ¥
¥ % ¥ * »

*****///**t**

FRAME METHODs of 3 to 7 are illegal.

The FRAME METHOD field also specifies what kind of 1nformation
is in the OFFSET field (see below).

SYMBOLANAME

This field provides the name of the symbol.

OFFSET

The OFFSET field contains a 16-bit value which 1is interpreted
as follows:

If FRAME METHOD is @ then this field is the offset with respect
to the FRAME NUMBER or SEGMENT specified by the DATUM of the FRAME
INFORMATION field.

If FRAME METHOD=1 then this field is the byte offset from the
external symbol specified by the DATUM of the FRAME INFORMATION
field.

If FRAME METHOD=2 then this field is the byte offset (from BP)
in the activation record of the block specified by the DATUM of the
FRAME INFORMATION field.

TYPE INDEX

a0 g o e e it e

The TYPE INDEX field 1identifies a single preceding TYPDEF
record containinag a descriptor for the type of entity represented by
the symbol.

(Note on LOCSYMs) A DEBSY4 recori whose FRAME
INFO field is 0 is exactly eaquivalent to a LOCSYM
record. (End of Note on LOCSY™s)

59

Download from Www.Somanuals.com. All Manuals Search And Download.

8886 Object Module Formats Version 4.0

RELOCATABLE ENUMERATED DATA RECORD

TTTTTTTTTTTTTAREDATAY T

#**********************///**t******************t*******

* * * * * * *
* REC * RECORD * DATA * DATA * DAT * CHK *
* TYP * LENGTH * RECORD * RECORD * * SUmMm *
* 72H * * BASE * OFFSET * * *
* * * * * * *

***********************///***************************t*

| |
+-rpt—-+

This record provides contiquous data from which a portion of an
8085 memory image may eventually be constructed. The data may be
loaded directly by an 8086 loader, with perhaps some bhase fixups.
For this reason the record may also be called Load-Time Locatable
(LTL) Enumerated Data Record.

The data provided in this record may belona to any LSEG or
Group or it may be assigned absolute 8485 memory addresses and be
divorced from all LSEG/Group information. The data in this record
is subject to modification by FIXUPP records, if anv, which follow.

This record may be generated by translators or {8085 based)
LINK-86 to produce loadable modules, and will be converted to PEDATA
record by the LOCATE-85 proaram.

DATA RECORD BASE

——————— ———— " — -

The DATA RECORD BASE has the followina format:

*****///*********///*****************

* * * *
* GROUP * SEGMENT * FRAME *
* INDEX * INDEX * NUMBER *
%* * x* *
* * * ¥
*****///*********///*****************

+conditional+

The DATA RECORD BASE specifies the base relative to which the
final address of the data record may be defined. It has the same
format and interpretation as the LOCAL SYMBOL BASE described for the
LOCSYM record.

DATA RECORD OFFSET

This field specifies an offset of the first byte of the DAT
field either with respect to an LSEG (if SEGMENT INDEX > 3) or with

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

respect to the specifiad FRAME (if SEGMENT INDEX = 0#). Successive
data bytes in the DAT field occupy successively higher locations of
memory.

DAT

If one or more FIXUPP records follow then this field provides
up to 1824 consecutive bytes of 1load-time 1locatable or absolute
data. Otherwise, the repeated field is constrained only by the
RECORD LENGTH Eield.

(Note on data record size) All data bytes in a
data record must be within the frame specified by the
data record. This is true for all 6 data record types
(REDATA, RIDATA, PEDATA, PIDATA, LEDATA, LIDATA).
(End of Note on data record size).

ARl

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Ve:sion 4.0

RELOCATABLE;ITERA!BD.DATAQRECORD

(RIDATA)
*t*********************///***************t*****///t*****t****
B * * *K *] B 4
* REC * RECORD * DATA . * DATA * ITERATED * CHK *
* TYP * LENGTH * RECORD * RECORD * DATA * SUM *
* T4H * * BASE * QOFFSET * BLOCK * *
* * * * * 3 *®

***********************///**************i****t*///***********

+-repeated-—-+

This record provides contiquous data from which a portion of an
8986 memory imaqge may eventually be constructed. The data may be
loaded directly by an 8086 loader, with perhaps some base fixups.
For this reason the record may also bYe called Load-Time Locatable
(LTL) Iterated Data Record.

The data provided in this record may belong to any LSEG or
Group or it may be assianed absolute 8#8A memory addresses and bhe
divorced from all LSEG/Group information. The data in this record
is subject to modification by FIXUPP records, if any, which follow.

This record may be aenerated by translators or (86086 based)
LINK-86 to produce loadable modules, and will be converted to RIDATA
record by the LOCATE-84 progranm.

DATA RECORD BASE

The DATA RECORD BASE has the followina format:

*****///*********///t********i*******
* *
GROUP * SEGMENT * FRAME

*

*

INDEX * INDEX * NUMBER
* * *

*
»

* *
****///*********///*****************
| |

+conditional+

* % % % ¥

The DATA RECORD BASE specifies the hase relative to which the
final address of the data record may bYe defined. It has the same
format and interpretation as the LOCAL 5YMB30L BASE described for the

LOCSYM record.
DATA RECORD OFFSET

- - - - -

This field specifies an offset of the first bvte of the
ITERATED DATA BLOCK field either with respect to an LSEG (if

62

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

SEGMENT INDEX > 8) or with respect to the specified FRAME (if
SEGMENT INDEX = @). Successive data bytes in the ITERATED DATA
BLOCK field occupy successively higher locations of memory.

ITERATED DATA BLOCK

This repeated field is a structure specifying the repeated data
bytes. It is a structure that has the following format:

*****************************///*****

* * * *
* REPEAT * BLOCK * *
* COUNT * COUNT * CONTENT *
* * * %*
* * * *
*

****************************///*****

REPEAT COUNT

This field specifies the number of times that the CONTENT
portion of this ITERATED DATA BLOCK is to be repeated. REPEAT COUNT
must be non-zero.

BLOCK COUNT

This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT pnortion of this ITERATED DATA BLOCK.
If this field has value zero then the CONTENT portion of this
ITERATED DATA BLOCK is interpreted as data bytes. If non-zero then
the CONTENT portion is interpreted as that number of ITERATED DATA
BLOCKs.

CONTENT

This field may be interpreted in one of two ways, dependinag on
the value of the previous BLOCK COUNT field.

If BLOCK COUNT is zero then this field is a 1 byte count
followed by the indicated number of data bytes.

If BLOCK COUNT 1is non-zero then this field is interpreted as
the first bvte of another ITERATED DATA BLOCK.

(Note) From the outermost level, the number of
nested ITERATED DATA BLOCKS is limited to 17, i.e.,
the number of levels of recursion is 1limited to 17.
(End of Note)

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats : Version 4.0

PHYSICAL ENUMERATED DATA RECORD

(PEDATA)
(2 X2 R 22222 2222222222222 222X XX2XXXXRXXXERXXXX 2R 2
* * * * *® * *
* REC * RECORD * FRAME * OFF * * CHK *
* TYP * LENGTH * NUMBER * SET * DAT * SUM *
* 84H * * * * % *
] * * *® * * 4
RERXRRRRRRRRRRRRRRARRRR AR R AR CRRERRR AR MRk

| !
+-rpt-+

This record provides contiquous data, from which a portion of
an 8986 memory image may be constructed. The data belongs to the
“unnamed absolute segment® in that is has been assigned absolute
8086 memory addresses and has been divorced from all LSEG
information. The data is subject to modification by FIXUPP records,
if any, which follow. If there are FIXUPP records following, then
the RECORD LENGTH is constrained to be less than or equal to 1028.

This record may be aenerated by translators to produce a
loadable absolute data record and will be also generated by LOCATE-
84. !

FRAME_NUMBER.
This field specifies a Frame Number relative to which the data
bytes will be loaded.

OFFSET

This field specifies an offset relative to the FRAME NUMBER
which defines the location of the first data byte of the DAT field.
Successive data bytes in the DAT field occupy successively hiagher
locations of memory. The value of OFFSET is constrained to be in
the range 9 to 15 inclusive. If an OFFSET value greater than 15 1is
desired then an adjustment of the FRAME NUMBER should be done.

DAT

e

If one or more FIXUPP records follow then this field provides
up to 1024 consecutive bytes of an 8086 memorv imaae, Otherwise,
the repeated field is ccnstrained only by the RECORD LENGTH field.

64

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

PHYSICAL ITERATED DATA RECORD
(PIDATA)

****t************************************///***********
* * * * %* *

* REC * RECORD * FRAME * OFF * ITERATED * CHK

* TYP * LENGTH * NUMBER * SET * DATA * SUM
*
*
*

*
*
*
86H * * * * BLOCK * *
* » * ® ® *

*

t*******************************i***///**********

+-repeated--+

This record provides contiquous data, from which a portion of
an 8986 memory image may be constructed., It allows initialization
of data seaments and provides a mechanism to reduce the size of
object modules when there are repeated data to be used to initialize
a memory image. The data belongs to the “unnamed absolute segment"
in that it has been assigned absolute 8086 memory addresses and has
been divorced from all LSEG information. The data is subject to
modification by following FIXUPP records 1if any. If there are
FIXUPP records then the ITERATED DATA BLOCK lenath is constrained to
be less than 1025.

This record may be generated by translators to produce a
loadable absolute data record and will be also generated by LOCATE-
8A.

FRAME NUMBER

This field specifies a frame number relative to which the data
bytes will be loaded.
OFFSET

This field specifies an offset relative to the FRAME NUMBER
which defines the location of the first data byte in the ITERATED
DATA BLOCK. Successive data bytes in the ITERATED DATA BLOCK occupy
successively hiqgher locations of memory. The ranae of OFFSET |is
constrained to be between @ and 15 inclusive. If a value larqer
than 15 is desired for OFFSET then an adjustment of FRAME NUMBER

should be done.
ITERATED_DATA BLOCK

Same as for RIDATA record.

55

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats | Version 4.0

LOGICAL ENUMERATED DATA. RECORD

(LEDATA)
t*******t**t****t******///*t**********************t****
* *® * ® * * *
* REC * RECORD * SEGMENT * ENUMERATED* * CHK *
* TYP * LENGTH * INDEX % DATA * DAT * SUM *
* AQH * * * OFFSET * * *
® * E * * * *

***********************///**************i**************

| !
+-rpt-+

- This record provides contiquous data from which a portion of an
8086 memory image may eventually be constructed. The data will
probably NOT be 1loaded directly by an 8085 loader as it must be
further processed by the 8686 R&L products.

The data provided in this record may belong to any LSEG. The
BASE portion of the address in the case of an absolute seagment will
be found in the SEGMENT DEFINITION RECORD specified by the SEGMENT
INDEX. If the SEGMENT INDEX specifies a seament whose alianment
attribute is not absolute then the data provided by this record |is
relocatable.

This record may be converted to a REDATA RECORD by the (8086
based) LINK-86 proaram and will be converted to a PEDATA RECORD by
the LOCATE-84 proaram.

SEGMENT INDEX

This field must be non-zero and specifies an index relative to
the SEGMENT DEFINITION RECORDS found previous to the LEDATA RECORD.
The SEGMENT DEFINITION RECORD may specify that the data is absolute
as one of the attributes of the seament. In this case a Frame
Number is provided in the SEGDEF record. Absolute data must be abhle
to be pvlaced into LEDATA RECORDs so that arouping of relocatable
LSEG's with absolute LSEG's can be achieved.

This field specifies an offset that is relative to the base of
the LSEG that is specified by the SEGMENT INDEX and defines the
relative location of the first byte of the DAT field. Successive
data bytes in the DAT field occupy successively hiaher locations of
memory. If the SEGMENT INDEX specified an absolute LSEG then the
offset is relative to the Frame Number provided in the corresponding
SEGDEF RECORD.

DAT

(4

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

This field provides up to 1024 consecutive bytes of relocatable
or absolute data.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

LOGICAL ITERATED DATA RECORD

(LIDATA)
' 13 *********************///*****************t*t*///****t_******
* * * %* * * *
* REC * RECORD * SEGMENT * ITERATED * ITERATED * CHK *
* TYP * LENGTH * INDEX * DATA * DATA * SUM *
* AJH * Tk * OFFSET * BLOCK * *
* *) * * . * x* *
-k*********************t///***************t*****///***********

| |
+-repeated--+

This record provides contiquous data, from which a portion of
an 8084 memory image may eventually be constructed. The data will
probably NOT be loaded directly by an 8484 1loader as it mnust be
further processed by the 8886 R&L nroducts.

The data in this record may belona to any LSEG. The BASE
vortion of the address in the case of named absolute data, will be
found in the SEGDEF record specified by the SEGMENT INDEX. If the
SEGMENT INDEX specifies an LSEG other than an absolute LSEG then the
data provided by this record is relocatable.

This record may be converted to a RIDATA RECORD by the (8984
based) LINK-86 program and will be converted to a PIDATA RECORD by
the LOCATE-86 program.

SEGMENT_INDEX

This field must be non-zero and specifies an index relative to
the SEGDEF records found previous to the LIDATA RECORD. The SEGDEF
record may specifv that the data 1is absolute as one of the
attributes of the LSEG. In this case a Frame Number is provided in
the SEGDEF record. The LIDATA RECORD is reauired to allow arouping
of relocatable LSEG's with absolute LSEG's,.

ITERATED DATA OFFSET

This field specifies an offset that is relative to the base of
the LSEG that 1is specified by the SEGMENT INDEX and defines the
relative location of the first bvte 1in the ITERATED DATA BLOCK.
Successive data bytes in the ITERATED DATA BLOCK occupy successively
‘higher locations of memory. If the SEGMENT INDEX specified an
absolute LSEG then the offset is relative ton the Frame Number
provided in the corresponding SEGDEF RECORD.

ITERATED DATA BLOCK

- a——— . . - =

B)}
{0

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

Same as for the RIDATA record.

Download from Www.Somanuals.com. All Manuals Search And Download.

Version 4.0

A9

888~ Object Module Formats Version 4.0

FIXUP RECORD

(FIXUPP)
I 12X XXX XXX X ***t***///*******tt**
* * * * *
* REC * RECORD * THREAD * CHK *
* TYP * LENGTH * or * SUM *
* QCH * * FIXUP * *
* ® ® * *

***********************///***********

4ommmPte———t

This record specifies @ or more fixups. Each fixup requests a
modification (fixup) to a LOCATION within a previous DATA record.
BEach fixup 1is specified by a FIXUP field that specifies 4 data: a
location, a mode, a target and a frame. The frame and the tarqget
may be specified totally within the FIXUP field, or may be specifiec
by reference to a preceding THREAD field.

A THREAD field specifies a default taraqet or frame that may
subsequently be referred to in identifying a target or a frame,
Eight threads are provided; four for frame specification and four
for target specification. Once a tarqget or frame has been specified
by a THREAD, it may be referred to by following FIXUP fields (in the
same or following FIXUPP records), until another THREAD field with
the same type (TARGET or FRAME) and thread number (@ - 3) appears
(in the same or another FIXUPP record).)

THREAD
THREAD is a field with the following format:

***********///*****
* * *
* TRD * INDEX or *
* DAT * FRAME *
* * NUMBER *
* * *
***********///t****

+conditional+

‘ The TRD DAT (ThReaD DATa) subfield is a byte with this internal
structure:

AR R R AR RRRRREERRRRRERRRRRSRE]

* | | ! | l | ! *
* 9 | DI 2| METHOD | THRED *
* | ! | ! ! l Poo*

khkhkhhkhhkhkhkhkhkhkhkhhhkhhhhhhhhhkhkhhhkhtk

70

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object Module Formats Version 4.0

The 'Z' is a one bit subfield, currently without any defined
function, that is required to contain 4.

The ‘D' subfield is one bit that specifies what type of thread
is being specified. If D=0 then a tarqget thread is being defined
and if D=1 then a frame thread is being defined.

METHOD 1is a 3 bit subfield containing a number between 8 and 3
(D=8) or a number between @ and 5 (D=1l).

If D=9, then METHOD = (0, 1, 2, 3, 4, 5, A4, 7) mod 4, where the
@, eee, 1 indicate methods T@O, ..., T7 of specifying a target.
Thus, METHOD indicates what kind of 1Index or Frame Number is
required to specify the target, without indicating if the tarqget
will be specified in a primary or secondary way.

If D=1, then METHOD = ¢, 1, 2, 3, 4, 5, & correspondina to
methods F@, ..., F6 of specifyina a frame. Here, METHOD indicates
what kind (if any) of Index or Frame Number is required to specify
the frame.

THRED is a number between 3 and 3, and associates a "thread
number® to the frame or target defined by the THREAD field.

INDEX or FRAME NUMBER contains a Segment Index, Group Index,
External 1Index, or Frame Number depending on the specification in
the METHOD subfield., This subfield will not be present if F4 or F5
or F6 are specified by METHOD.

FIXUP
FIXUP is a field with the following format:

***********************///****t****///*********///****i

* * * * %* *
* LOCAT * FIX * FRAME * TARGET * TARGET *
* * DAT * DATUM * DATUM * DIS- *
* * * * * PLACEMENT *
* * * * * *
****************t******///*********///*********///*****

! : | | |

+conditional+conditional+conditional+

LOCAT is a byte pair with the followina format:

I ZE X3RS 2222 2R R R R X222 2 X2 R RERZXS 2222 X222 X222t a s R 2 2 2 2 8 X

* [! I I | | I * | | ! | I | P
*1 1 M| s | LoC | DAT*A RECORD OFFSET *
* ! I I I | l I * I I ! ! | | i *

IR AR RS R R RRRRRRRRRR R 2R RRRRRRRRRSRRRR2R RREERRERRRRRRRRERRRREEE]

71

Download from Www.Somanuals.com. All Manuals Search And Download.

8285 Object Module Formats Version 4.4

M is a one bit subfiela that specifies the mode of the fixups:
self-relative (M=@#) or segment relative (M=1).

(Note) Self-relative fixups may NOT be apnlied to
RIDATA, LIDATA, or PIDATA records. (End of Note)

S is a one bit subfield that specifies that the lenath of the
TARGET DISPLACEMENT subfield, if present, (see below), in this FIXUP
field will be either two bytes (containing a 16A-bit non-neaative
number, S=0) or three bytes (containing a signed 24-bit number in

2's complement form, S=1).

(Note) 3-byte subfields are a possible future
extension, and are not currently supported. Thus, S=0
is currently mandatory. (End of Note)

LOC is a 3 bit subfield indicating that the byte(s) in the
preceding DATA Record to be fixed up are a 'lobyte' (LOC=4), an
‘offset' (LOC=1l), a 'base' (LOC=2), a ‘pointer’ (LOC=3), or a
‘hibyte' (LOC=4)., (Other values in LOC are invalid.)

The DATA RECORD OFFSET is a number between & and 1023,
inclusive, that gives the relative position of the lowest order byte
of LOCATION (the actual bytes beina fixed up) within the precedinqg
DATA record. The DATA RECORD OFFSET is relative to the first byte
in the data fields in the DATA RECORDs.

(Cautionary Note) If the preceding DATA record is an IDATA
record, it is possible for the value of DATA RECORD OFFSET to
designate a “"location" within a REPEAT COUNT subfield or a BLOCK
COUNT subfield of the ITERATED DATA field. Such’ a reference |is
deemed an error. LINK-86's and LOCATE-86's action on such a
mal formed record 1is wundefined, and probabhly awkward. (end of
Cautionary Note)

FIX DAT is a byte with the followina format:

khhkhhhhhhhhkhhhkhhhkhhkhkhkhkhkhhkhkkhkhhkhkk

* | | | I I | | *
* F | FRAME | T | P | TARGT *
* | | I ! I ! | *

I Z 2 2222222222222 2R R X2 R R R 2

F is a one bit subfield that spvecifies whether the frame for
this FIXUP is specified by a thread (f=1) or explicitly (F=0).

FRAME is a number interpreted in one of two ways as indicated
by the F bit. If F is zero then FRAME is a number between 3 and A
and corresponds to methods F8, ..., F6 of specifvina a FRAME. If
F=1 then FRAME 1is a thread number (9-3). It specifies the frame
most recently defined by a THREAD field that defined a frame thread
with the same thread number. (Note that the THREAD field may aopear
in the same, or in an earlier FIXUPP record.)

72

Download from Www.Somanuals.com. All Manuals Search And Download.

8486 Object Module Formats Version 4.9

T is a one bit subfield that specifies whether the target
specified for this fixup is defined by reference to a thread (T=1),
or is aiven explicitly in the FIXUP field (T=9).

P is a one bit subfield that indicates whether the target {igs
specified in a primary way (requires a TARGET DISPLACEMENT, P=8) or
specified in a secondary way (requires no TARGET DISPLACEMENT, P=1l).
Since a target thread does not have a primary/secondary attribute,
the P bit is the only field that specifies the primary/secondary
attribute of the target specification.

TARGT is interpreted as a two bit subfield. When T=8, it
provides a number between @ and 3, corresponding to methods T@, ...,
T3 or T4, ..., T7, depending on the value of P (P can be interpreted
as the high order bit of T8, ..., T7). When the target is specified
by a thread (T=1) then TARGT specifies a thread number (0-3).

FRAME DATUM is the "referent® portion of a frame specification,
and is a Segment Index, a Group Index, an External Index, or a Frame
Number. The FRAME DATUM subfield is present only when the frame is
specified neither by a thread (F=0) nor explicitly by methods F4 or
F5 or F4. : '

TARGET DATUM is the “referent” portion of a target
specification, and is a Segment Index, a Group Index, an External
Index or a Frame Number. The TARGET DATUM subfield is present only
when the target is not specified by a thread (T=0).

TARGET DISPLACEMENT is the 2- or 3-byte displacement required

by “primary* ways of specifying TARGETs. This 2- or 3-byte subfield
is present iff P=4.

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object Module Formats Version 4.9

OVERLAY DEFINITION RECORD
(OVLDEF)

***********************///*********l'll*********///***********
* * * * * *

REC * RECORD OVERLAY * OVERLAY * QVERLAY * CHK *

*

* *

* TYP * LENGTH * NAME *+ LOCATION * ATTR * SUM *
* 76H * * * * * *
*
*

* * * * * *
**********************///*********1'I'*********///***********

This Record provides the overlay name, the location of the
overlay in the object file, and the attributes of the overlay. A
loader mayv use this record to locate the data records of the overlay
in the object file.

OVERLAY NAME

The OVERLAY NAME field provides a name by which a collection of
1l or more LSEG's and/or Groups may be referenced for loadina.

The ordering of OVLDEF Records within a module induces an
ordering on the set of all Overlays defined in the module. Thus,
OVLDEF records are considered to be numbered: 1, 2, 3, 4, ...
These numbers are used as “"Overlay Indices* in the OVERLAY ATTR
field of followina OVLDEF records.)

Overlay indices may not be forward referring. That is to say,
an overlay definition record definina the k'th overlay must precede
any record referrina to that overlay with index k.

OVERLAY LOCATION

The OVERLAY LOCATION is a 4-byte field which aives the location
in bytes relative to the start of the file of the first byte of the
records in the overlay.

OVERLAY ATTR

The OVERLAY ATTR field has the followina format:

***********///*********///*****

* * * *
* * SHARED * ADJACENT *
* SA * OVERLAY * OVERLAY *
* * INDEX * INDEX *
* * * *

*i*tt******///*********///*****

|] |
+conditional+conditional+

74

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats ‘ Version 4.0

The SA subfield provides information for memory layout. It has
the following format:

AARkRRRRARRRRRR R RRI AR KRR AR PR RAk R

* | | | | | | | *
zlzlzl|lzlz!lzZz!ls!|ar-z
* | | | | | | | *

L A2 2 X222 2222222 2222222222 22222 222

Z's indicates that these 1l-bit field have not been assigned a
function. These bits are required to be zero.

S (shared) is a 1l=bit field that, if 1, indicates that the
overlay will have to be loaded at the same location as the overlay
indicated in the SHARED OVERLAY INDEX field.

A (adjacent) 1is a 1l-bit field that, if 1, indicates that the
overlay will have to be 1loaded next in memory to the overlay
indicated in the ADJACENT OVERLAY INDEX field.

The SHARED OVERLAY INDEX subfield, present if bit S in the Sa
subfield is 1, points to a previously defined OVLDEF record and
indicates that the segments with same seqment names and class names
and/or the groups with same names in the two overlays must be loaded
at the same location.

The ADJACENT OVERLAY INDEX subfield, present if bit A in the SAa
subfield is 1, points to a previously defined OVLDEF record and
indicates that the segments and/or groups in the overlay defined by
the current OVLDEF record must be loaded adjacent to the ones with
the same names in the indicated overlay.

75

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

END_RECORD
(ENDREC)

12 2222 X2 2222222 222222222 222 22 X)

* * * * *
* REC * RECORD * END * CHK *
* TYP * LENGTH * TYP * SUM *
* 78H * * * *
* * * * *

A2 22222222222 22 X222 2 2 R RatEd]

This record is used to denote the end of a set of records such
as a block, and an overlay.

END TYP

this field specifies the type of the set. It has the following
format:

12222222 222222222222 X2 2222 2 2 R 22

* | ! | l | I
*z1lzlzilzlz| z| TYP *
* | | | | ! P

IS 2222 2222222 2R 2Rt R 2t 2 a 2 0 S 2 2 2

TYP is a two bit subfield that specifies the following typmes of

YP TYPE OF END

- W - -

(Illeqal)

a9

1 End of block
2

3 (Illegal)

Z indicates that this bit has not currently been assianed a
function. These bits are required to bhe zero.

Download from Www.Somanuals.com. All Manuals Search And Download.

8885 Object Module Formats Version 4.4

REGISTER INITIALIZATION RECORD

I T T T N R A e e e

*****************************///***ﬁ*******

* * * * * *
* REC * RECORD * REG * REGISTER * CHK *
* TYP * LENGTH * TYP * CONTENTS * SUM *
* 7gH * * * * *
% * * * * *
*****************************///***********
| .
+---~repeated———-- +
This record provides information about the 8086

registers/register-pairs: CS and IP, SS and SP, DS, and ES. The
purpose of this information is for a loader to set the neccessary
registers for initiation of execution.

REG- TYP

- - -

The REG TYP field provides the register/reaister-pair name. It
also indicates the type of register content specxf1cat1on given in
the next field. It has the following format:

kkkRkhkkkhkkhkhkhkkhkkhkhhhkhhkhhhkhhkhkhhi

* | ! l | | P
* REGID | 2 | z | 21 z | 2z | L *
* I | l | ! I

khhkhkhkhkhhkhhkhkhkhhkhkhkhhhkhkhhhkhhkhkhkhkhhkhhk

%'s are l-bit subfields which indicate that these bits have not
currently been assigned a function. These bits are required to be
zero.

BQQQD is a two bit subfield that specifies the name of the
registers/reqister-pairs as follows:

REGID REGISTER/REGISTER-PAIR

CS and IP
SS and SP
DS , L
ES

WS

. is a one bit field that indicates whether the REGISTER
CONTENTS field is to be interpreted as a loagical address (L=1) that
reaquires fixing up by LINK-86/LOCATE-85, or as a pair of base and
offset specifications (L=@) appropriate for the initialization of
the corresponding register/register-pair.

77

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

REGISTER_CONTENTS

The REGISTER CONTENTS field has either of the following
formats:

First form (L=1)

***********///*********///*****************

REG * FRAME * TARGET * TARGET
DAT * DATUM * DATUM * DIS-
* * * PLACEMENT

* % ¥ * ¥
* % ¥ ¥ ¥

* * :
ﬁ****///t*t******///*****************
! - ! |

+conditional+conditional+conditional+

In this case the register contents are specified in exactly the
same manner as in the specification of the mappina of a 1loagical
address to a physical address as used in the discussion of fixups
and the FIXUPP record. The above subfields of the REGISTER CONTENTS
field have the same semantics as the FIX DAT, FRAME DATUM, TARGET
DATUM, and TARGET DISPLACEMENT fields in the FIXUPP record. Frame
method F4 is not allowed.

Second_form_(L=0)
LINK-86/LOCATE~-86 will convert the above REGISTER CONTENTS
field into a field having the following format:

*****///*****************
*

REGISTER * REGISTER

*
*

* BASE * OFFSET
* *

*
*

*
****///*****************

! |
+conditional+

* ¥ % ¥ *

The REGISTER BASE field has the followinag format:

RhkRR /[JRRRRRRRKE [[[Rk KA RTIRRE R IR KK **
* * *

* GROUP * SEGMENT * FRAME
* INDEX * INDEX * NUMBER
* * *

*
*

* % % % ¥

* *
RrhKk [[[huhhhhkhkh /[/[hhhhhkhhkhhkhkhhkhkhk

| |
+conditional+

78

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

The format and the interpretation of the above REGISTER BASE
field is identical to the LOCAL SYMBOL BASE described in the LOCSYM
record.

The REGISTER OFFSET field (present only if REGID <= 1)
specifies an offset relative to the Segment (if SEGMENT INDEX > 0)
or to the FRAME (if SEGMENT INDEX = 2).

(Note) Once the segments and/or groups are
absolutely located (by a loader or LOCATE=-8A), the
base of the object pointed to by the REGISTER BASE
field is the appropriate value for the 1initialization
of the corresponding base register. The offset value
for the 1initialization of either the 1IP register

- (REGID = @) or the SP register (REGID = 1) is
determined as follows:

If GROUP INDEX = @, the offset value is given by
the value specified in the REGISTER OFFSET field.

If GROUP INDEX > @, the offset value is the
offset relative to the base of the specified aroup of

the location specified by the pair (SEGMENT INDEX,
REGISTER OFFSET). (End of Note)

79

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

MODULE END RECORD
{MODEND)

t**********************///***********

* * * * * *
* REC * RECORD * MOD * START * CHK *
* TYP * [LENGTH * TYP * ADDRS * SUM *
* 8AH * * * * *
* * * * * *
*****************************///***********
' |
+conditional+
This record serves two purposes. It denotes the end of a

module and indicates whether the module just terminated has a
specified entry point for initiation of execution. 1If the latter is
true then the execution address is specified.

MOD TYP

- - -

This field specifies the attributes of the module. The bit
allocation and associated meanings are as follows:

khkhhkkhkkhhkhhhhhkkxhkhhkkhkhhhrhkhkhkekkkkk

* | | | | | | | *
* MATTR | Z 1 2 1 211 21| Z | L *
* | | | | | ! | *

hkhkhkkhkhkhkhkhkhkkhkkhkhkhkhrkhkhkhkkhkhkhkhkhkhkrd

MATTR is a two bit subfield that specifies the following module

attributes:

MATTR MODULE ATTRIBUTE
- Non-main module with no START ADDRS
Non-main module with START ADDRS
Main module with no START ADDRS

Main module with START ADDRS

w N~ &

L indicates whether the START ADDRS field is to be interpreted
as a logical address that requires fixing up by LINK-86/LOCATE-84
(L=1) or as a physical address appropriate for placement into the CS
and IP reaisters of the 8086 (L=3).

Z indicates that this bit has not currently been assianed a
function. These bits are required to he zero.

80

Download from Www.Somanuals.com. All Manuals Search And Download.

8886 Object Module Formats Version 4.0

The START ADDRS field (present only if MATTR is 1 or 3) has
either of the following formats:

START_ADDRS_(first_form)

***********///*********///*****************

&* * 4 * *
* END * FRAME * TARGET * TARGET *
* DAT * DATUM * DATUM * DIS- *
* * * * PLACEMENT *
* 4 * % *
***********///*********///ﬁ****************

+conditional+conditional+conditional+

The starting address of a module has all the attributes of any
other logical reference found in a module. The mapping of a logical
starting- address to a physical starting address is done in exactly
the same manner as mapping any other logical address to a physical
address as specified in the discussion of fixups and the FIXUPP
record. The above subfields of the START ADDRS field have the same
semantics as the FIX DAT, FRAME DATUM, TARGET DATUM, and TARGET
DISPLACEMENT fields in the FIXUPP record. Only “primary” fixups are
allowed. Frame method F4 is not allowed.

START ADDRS (second form)

When the logical address is mapped, by LOCATE-8f, to a physical
address, the START ADDRE field takes on the following format:

kkkhkkhkhkhhkkhkhhkhkhkhkhkhkhhhhhhk
*

*

* FRAME * OFFSET
* NUMBER *

* *

* *

*

khkkhkhkhkhkhhkkhkhhhkhkhkkhkkhhhikk

* % * % »

FRAME NUMBER specifies a frame number relative to which the
module will begin execution. This wvalue 1is appropriate for
insertion into the CS reqister for program initiation. '

OFFSET specifies an offset relative tn the FRAME NUMBER which
defines the exact location of the first byte at which to beqgin

execution. This wvalue 1is appropriate for insertion into the IP
register for program initiation.

81

Download from Www.Somanuals.com. All Manuals Search And Download.

8886 Object Module Formats Version 4.0

LIBRARY HEADER RECORD

- - - > s . wmm w - . . -

(LIBHED)

t2 2R 2RSSR R RRRRRRRRRR R RS2 RRYXX2 2 RRXXS2 2SR R R
* *] * * * *

* REC * RECORD * MODULE * BLOCK * BYTE * CHK *
* TYP * LENGTH * COUNT -* NUMBER * NUMBER * SUM *

* AQH * * * * * *
* * * * * * *

L E 2222223222222 2222222222222 X222 2 22l 2222t 22 22 2 22 2 2 2 22t Rl

This record is the first record in a 1library file. ~ It

immediately precedes the modules (if any) in the library. Following
the modules are three more records in the followina order: LIBRARY
MODULE ° NAMES RECORD, LIBRARY MODULE LOCATIONS.RECORD, and LIBRARY

DICTIONARY RECORD.
' MODULE COUNT
This field indicates how many modules are in the library. It
may have any value, including zero.

BLOCK NUMBER, BYTE NUMBER

These fields indicate the relative location of the first byte
of the LIBRARY MODULE NAMES RECORD in the library file, using the
ISIS-11 file format. .

82

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

LIBRARY. MODULE NAMES RECORD
(LIBNAM)

***********************///******i****

*
*
*
*
*
*

*

REC * RECORD *
TYP * LENGTH *
*

A6H *
*

*

MODULE
NAME

*
*
*
*
*

*
CHK *

SUM *
*

*

**********************l///**t**t***t*

+-repeated--+

Version 4.0

This record gives the names of all the modules in the library.
The names are qiven in the same sequence as the modules

the library.

MODULE. NAME

The i'th MODULE
name of the i'th module in the library.

appear

in

NAME field in the record contains the module

Download from Www.Somanuals.com. All Manuals Search And Download.

83

898f Object Module Formats Version 4.9

LIBRARY MODULE LOCATIONS RECORD

(LIBLOC)
(I 22222222222 X222 22222 X2 2 22X XXX XXX XXX R XS
* * * * * *
* REC * RECORD * BLOCK * BYTE * CHK *
* TYp * LENGTH * NUMBER * NUMBER * SUM =
* ASH * * * * *
* * *® * * %*

222 222 2R R R R RRR2 22222222222 2 2 2 2 2 2 XX R oX XX 2 F

This record provides the relative location, within the 1library
file, of the first byte of the first record (either a THEADR or
LHEADR or RHEADR record) of each module in the library.

The order of the block-number/byte-number pairs corresponds t.
the order of the modules within the library.

BLOCK. NUMBER, BYTE NUMBER

The 1i*'th pair of fields’provides the relative location within
the library file of the first byte of the first record of the 1i'th
module within the lihrary, using the ISIS-II file format.

84

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

LIBRARY DICTIONARY. RECORD

(LIBDIC)
*******t***************///******t*********t
* * * * * *
REC * RECORD * PUBLIC * * CHK *
* TYP * LENGTH * NAME * G@GH * SUM *
* AAH * * * * .
*® * * * ®x *®
*t**t******************///*****t***********

| | |
+-repeated--+ |
+e===repeated-e-—- +

This record gives all the names of public symbols within the
library. Since a name must have a non-zero lenqgth, the '20' bytes
in the format are distinqguishable from the PUBLIC NAME fields.
Thus, the '00' bytes separate the PUBLIC NAMES into groups; all
names in the i'th group are defined in the i'th module of the

library.

85

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.4

COMMENT RECQORD

(COMENT)
***************t*********tttt******///t**********
* * * *x * *
* REC * RECORD * COMMENT * * CHK *
* TYP * LENGTH * TYPE * COMMENT * SUM *
* 88H * * * * *
* * * * * *
****t**************t**t************///***********

This record allows translators to include commentary
information in object text.

COMMENT TYPE

This field indicates the type of comment carried by this
record. This allows commentary information to be structured for
those processes that wish to selectively act on comments. The
format of this field is as follows:

AR R E R X2 2 2 R R Y R R Y R R R T LS T
* N | N | ! | | ! | * COMMENT *

p L1 ZI1 zZ})zZ) Z) Z]| Z+ CLASS : *
s L L L T

The NP (NOPURGE) bit, if 1, indicates that the COMENT record is
not purgable by object file utilitv .programs which implement the
capability of deleting COMENT record. :

The NL (NOLIST) bit, if 1, 1indicates that the text in the
COMMENT field is not to be listed in the listing file of obiject file
utility proqrams which implement the capabiltiy of listina object
COMENT records.

The COMMENT CLASS field is defined as follows:

0 Langquage translator comment

1 Intel cooyright comment. The NP bit must be
set,

2-155 Reserved for Intel use.

15/-255 Reserved for users. Intel nroducts will

apply no semantics to these values.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.9

COMMENT

This field provides the commentary information,

27

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

ge

APPENDIX 1

NUMERIC LIST OF RECORD TYPES

6E
70
72
74
76
78
7A
7C
7E
80
82
84

88
8A
8C
8E
90
92
924
96
98
9a
9C
9E
AQ
A2
A4
Af
A8
AA

Download from Www.Somanuals.com. All Manuals Search And Download.

RHEADR
REGINT
REDATA
RIDATA
OVLDEF
ENDREC
BLKDEF
BLKEND
DEBSY#M
THEADR
LHEADR
PEDATA
PIDATA
COMENT
MODEND
EXTDEF
TYPDEF
PUBDEF
LOCSYM
LINNUM
LNAMES
SEGDEF
GRPDEF
FIXupp
{none)

LEDATA
LIDATA
LIBHED
LIBNAM
LIBLOC
LIBDIC

Version 4.0

8886 Object Module Formats

APPENDIX 2

Version 4.0

TYPE REPRESENTATIONS

The leaves in the following diagrams
Leaves,

without relations, String

Index

may be

Andleaves and Orleaves are not supported at this time.

Types may be defined

-

by branches of the following forms:

-

— e — -

—_—t -t -

B o e

Numeric ‘Leaves
Leaves or Null Leaves.

- o -

fmammm-

| SCALAR (length) (scalar type)
-
. !
T POINTER ;
. I
. ! ! !
T SCALAR T (length) i @pointer T
) 1 i |
| | |
tm——— + + +
| STRUCTURE (length) | (number of components)| @list of components |
| 1

—_— — 4 -

| LIST | 2 | ?

?

e ST

| |

-
« I 21
-t

|
-+

o
| ARRAY

(lenath)

etype |

e

I R

— 4 —+ —

e o

-+

Download from Www.Somanuals.com. All Manuals Search And Download.

89

8086 Object Module Formats Version 4.

Atype

‘ PARAMETER
+

— e - —
—_— -t -

PROCEDURE nil étype (return) (number of parameters) Blist

+—+

— - —
—_ -4 —
— e —
— e e e —
—_— -t -
—_—t—+ —

+ -

LABEL | nil

I
D et T T

where "(scalar type)" can be either UNSIGNED INTEGER, SIGNED
INTEGER, or REAL, “(return)® can be either SHORT or LONG (which
indicates, in the case of a LABEL, whether a jump to the l.bel
should be a “short” jump or a “long" jump, respectively), and the
following values are assianed:

(return)

—_—.—t -
—_——+ -

112 (reserved for lenath)

113 LABEL
114 LONG
99 INTERRUPT 115 SHORT
100 FILE 116 PROCEDURE
121 PACKED 117 PARAMETER
162 UNPACKED 118 DIMENSION
183 SET 119 ARRAY
184 (reserved for lenath) 120 (reserved for lenath)
1065 CHAMELEON 121 STRUCTURE
106 BOOLEAN 122 POINTER
197 TRUE 123 SCALAR
108 FALSE 124 UNSIGNED INTEGER
109 CHAR 125 SIGNED INTEGER
110 INTEGER 126 REAL
111 CONST . 127 LIST

(Note) 1. The above (decimal) values are chosen
for the convenience of wutility programs such as
EDOJ86, and O0OJEDS8A. All numbers are different
(although conceptually there 1is no reason why REAL
and SCALAR, for example, can‘t bhe the same number),
and are rather large, so that object module display
programs may correctly decide whether to represent a
Numeric Leaf as a number or as an identifier, make
this choice correctly most of the time, and never
qgive a wrong identifier.

2. For more detailed type descriptions see the
translator EPS's (e.q. ASM-8A, PLM~8A, PASCAL=SAK,
FORTRAN=-8K) , (end of Note)

99

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

>bject file

. -t
-=+==>| sequence |
| e +

A tomeemeee—t
|==>| library |

-=t+==>| module |==+==>
" pmemmmeeet |

APPENDIX 3

SYNTAX

DIAGRAMS

==>(LIBHED)==t==

+==| module

trmmcaa——d

module

$mwwmamwod

>(LIBNAM)-=>(LIBLOC)==>(LIBDIC)-==>

Download from Www.Somanuals.com. All Manuals Search And Download.

Version 4.0

91

8886 Object Module Formats Version 4.0

tmod

-=>(THEADR)->| sgr table | =+ e +=>| modtail |=-=
+-| component |<-+
D e o
lmod
-=->(LHEADR)=>| sar_table | =+ dom-pm +=>| modtail |--
+-| data [<-+ +-|t_component|<-+
rmod

-=>(RHEADR)=>| sgr table |=t=—ce=eececcci—st +=>| modtail |-~

+-| data |<-+ +-|t component|<-+
omod
-->(RHEADR)->| sqor table | + - -+=>| o _modtail |--
crmm———— - + ® pemmmmmcmm—met | dmmCemm— e +

+-]o component|<-+

92

Download from Www.Somanuals.com. All Manuals Search And Download.

8084 Object Module Formats

sqr _table
tomm————— +
-->| seq_grp |-=+-- : +==>

+==>(REGINT)-=+

D > s wn -

sgor _table

ittt 4
-=>| seqg _grp |-=+ St St >
+ ------- ‘.+ -~ S D SRS D D D D ' ' D) W D WP e -‘,
+==(OVLDEF)<{==+ +==>(REGINT)==+
seq grp
——fm———— et =t +
-~ - AP SR SED D WD P ' -~ D ARD D WP TP D S Y I - S D W R D D D '
4=« (LNAMES)<{~=~+ +==(SEGDEF)<==+ +=-=(TYPDEF)<{-—+
........ P S D S B - ' R R D WP W '
+==(EXTDEF)<~-~+
| ——————- 1
-~ . D WP S A e ’
+=--(GRPDEF)<—-~+
modtail
te——— - ——t==>(MODEND)==>
' . - - - - = S —
+==>(REGINT)--+
o_modtail
-— - ———t———t—— +-=>(MODEND)-=>

-------- I
+==(OVLDEF)<==+ +==>(REGINT)=-=+

Download from Www.Somanuals.com. All Manuals Search And Download.

Version 4.0

93

8086 Object Module Formats

o _component

+ ——t oo +==>(ENDREC)=-=>
-~ +---—-.+ ' -~ L #) ' - - - e > - -
+-=| data |<==+ <+==| t component | L mmt

e e $ +

t_component

-=>(THEADR) ==+

b
L
~ .
- - e - - - + '

+=-=| component |-~

L L Rt e Lt

>

component

--+--->' data ‘l—-*--)
| +—- + °
| S e |

+-->| debug record |--+

- > o =

24

Download from Www.Somanuals.com. All Manuals Search And Download.

Version 4.

8085 Object Module Formats Version 4.0

jata

-—+-->| content_def |-—-=+-=>
T ——— + "
| tmm——————— —-——t |

| 4 +
| m—————— |
+====>(TYPDEF)=====>+

| | m———— |

+====>(PUBDEF)=====>+

+====>(EXTDEF)=====>+

lebuqg record

smt==>(LOCSYM)===t==>
' -~

| PR p— |
+==>(LINNUM)==>+
| ------- - '

+==>(BLKDEF)==>+

95

Download from Www.Somanuals.com. All Manuals Search And Download.

8486 Object Module Formats ' Version 4,

content def
==+==>(LIDATA) S b

I —————— +==(FIXUPP)<~-=+
+==>(LEDATA)==>+ et '

s
v
~ ~
| c—————— |

+==>(PIDATA)-=>+

+=-=>(PEDATA)-=>+

+==>(RIDATA)==>+

| ——————— !

+==>(REDATA)=-=>+

thread def

we==>(FIXUPP)==> Note: Must contain thread fields only.

9A

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

APPENDIX 4
EXAMPLES OF FIXupPS

This appendix was originally written in VNovember 1977, and
supplemented a paper, now obsolete, called "Overview of Proposed 8@86
Fixups". It is 1included here because it provides copious examples of
fixups in pictorial represemtation, and therefore 1is an aid to
understanding the 8086 fixup methanisms.

In the following examples, we assume that LINK is the name of a
linker and LOCATE is the name of a locater for the 8884 R&L system.

Examples of Self-relative fixuos aopear in PART 1 of'this appendix;
examples of Segment~relative fixups appear in PART 2.

KEY TO SAMPLE FIXUP DIAGRAMS

The diagrams are coded as follows:

PPP ... 1indicates the boundary of a PSEG
LLL ... indicates the boundary of an LSEG

MMM ..., indicates real memory boundaries

97

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

PART 1. SELF-RELATIVE REFERENCES

!
_ |
PPPPPPPPPPPPPPPPPPPPPP <~ PSEG -> PPPPPPPPPP|PPPPPPPPPPP

P P P | P
Pe = = = = = === =P (- PP Pe = = = | - - - - P <- PP
P P P | P
P P p] P
P P P i P
P + + P <= PT P === + P
P | TARGET ! P P | LOCATION | P
P 4==- + P P 4==- + P
P - P P P
P | P P P
P | P P P
P | P P p
P | P P P
P 4= + P P P
2 | LOCATION | P P P
I + P P P
P ' P P P
P P P P
P P P P
P P p P
P P P P
P P P P
P P P P
P P P P
P P P P
P [P P
P P P P
P P P +emececececcecee—- + P <= PT
P P P TAR”ET ! p
P P - J S + P
P P P - P
p v P P | P
PPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPP|PPPPPPPPPPP

PP - point definina PSEG, usually an LSEG
PT - point defining the TARGET

If the ©positions of LOCATION and TARGET were exchanged in the
diagrams, then the arrows would voint down instead of up. Note: The
distance between the top of the PSEG and point PP is less than 1A bhytes,
and is commonly zero.

Download from Www.Somanuals.com. All Manuals Search And Download.

8084 Object Module Formats Version 4.9

1 Self-Relative Intraseaqment References

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

L L
L L
L L
L + + L
L ! TARGET I L
L PR + L
L - L
L ! L
L | L
L | L
L [L
L | L
L | L
L + + L
L | LOCATION I L
L + -—+ L
L | L
L [L
L | L
L | L
L v L
L T —— + L
L ! TARGET I L
L - + L
L L
L L
L L
L L
L L
L L
L L
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Self-Relative references within a sinale LSEG do not require a
fixup, the translator puts the appropriate value into LOCATION,

99

Download from Www.Somanuals.com. All Manuals Search And Download.

8884 Object Module Formats Version 4.

1.2 Self-Relative Interseament References

Example: Self-relative jump or call to another segment.

A LLLLLLLLLLLLLL <~ PP 8 LLLLLLLLLLLLLL °

L L L v

L 4===e————t L L L 41

L! roc | L L |

L +==——=ee—t L I L 4=—em———- +L V <= pT
L L ~~====-==>| TARGET | L

L L L +eemem——e + L

L L L L
LLLLLLLLLLLLLL | . LLLLLLLLLLLLLL

Both LSEG's are created in the same translation.
FIXUP. REPRESENTATION:

LOCATION: OFFSET or LOBYTE
PSEG: SI(A) (this is the most common choice)
TARGET: SI(B),dl
or S1(B) (see diagram and discussion following LOCATE OPER

LINK. OPERATION:

If LSEG B combines then the LINKER will modify all fixups of the
above form by chanaing SI(B),dl1 to SI(B),dl+d2

B' -
® 90060 000000000

. . | B % 8 0600 0068 0o oo

. . d2 . .
B . .
8 LLLLLLLLLLLLLL ~° L L
L L d1 L 4= + L <= PT
L 4=cemeeae + L V L | TARGET | L
L | TARGET | L => L +-—meee—e + L
L +=cmeemm + L L L
L L L L
L L L L
L L L L
LLLLLLLLLLLLLL LLLLLLLLLLLLLL

180

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

LOCATE OPERATION:

L.

At LOCATE time these various sample possibilities can be detected:

PPPPPPPPPPPPPPPPPP
P [
P LLLLLLLLLLLLLL P
P LA LP
PL +emee——— -+ L P
PL | LOC Il LP
PL 4+=—e———e -+ L P
PL | LP
P LLLLLLILLLLLLL P
P | P
P LLLLLLILLLLLLL P
P LB v L P
P L +=—ceeeeeqd L P
PL | TARGET | L P
P L +=—wee—e—t L P
PL L P
P LLLLLLLLLLLLLL P
PPPPPPPPPPPPPPPPPP
4., LLLLLLLLLLLLLL

LB L

L 4=——==—=—+ L <-

L | TARGET | L

R N -+ L

L - L

LLLLLL|LLLLLLL
|
PPPPPPPP|PPPPPPPPP
P LLLLLLILLLLLLL
P LA | L

p

P
P L P
P L P
P L 4= L P
P L. P
P LLLLLLLLLLLLLL P
P 14
P P
4 14
P P
p P
p P
P P
P p

PPPPPPPPPPPPPPPP

2.

<~ PP

=

=

PT

5.

PP

PPPPPPPPPPPPPPPPPP
P S -
P LLLLLLLLLLLLLL P
P LA ' L P
P L 4 + L P
PL | LOC | L P
P L +==meeeeet L P
PL] L P
P LLLLLLILLLLLLL P
P { P
P - P
P | P
P LLLLLL|LLLLLLL P
P LB v L P
P L 4+=- + [P
PL) TARGET | L P
PL +=——w—eeet [P
PPL _ LPP
LLLLLLLLLLLLLL
PPPPPPPPPPP! PPPPPP
P ' | P
P LLLLLLLLL!LLLL P
P LB Vv L©P
P L +=——ceeeest L P
PL | TARGET | L P
D L +=—m—————— + L P
PL - L P
P LLLLLL|LLLLLLL P
P | P
p | P
P LLLLLLILLLLLLL P
P LA | L P
P L +-ememeee + L P
PL | LOC i Le
P L 4=mmmmeeeee + L P
P L ! L P
P LLLLLLLLL!LLLL P
P] P
PPPPPPPPPPPVPPPPPP

Version

4.9

3. PPPPPPPPPPPPPPPPPP

PL

LLLLLLLLLLLLLL
LA ' L
L +e=e=e-e=t L
L'l Loc | L
| R SS—
L | L
LLLLLL|LLLLLLL

-

—— v — c—

LLLLLL|LLLLLL
LB [
v

L

L | TARGET | L

P
<- PP P
P
p
P
P
P
P
P
P
P
P
v P
<~ PT P
P
P
P
<- PP
- L= PT

Download from Www.Somanuals.com. All Manuals Search And Download.

L +=———mee—t L
LLLLLLLLLLLLLL

(-

TNV UUVTUV U g U

o
14
4

LPP

=

1a1

Pl

PT

89086 Object Module Formats Version 4.¢

Diagrams 1 and 2 show valid fixups. 1In diagram 3, the TARGET is not
in the defined PSEG. A warning will be given by LOCATE. In diagram 4,
if the choice for PSEG is changed from SI(A) to SI(B) then the fixup can
be made, as in diagram 5; if the displacement 1is qreater than 32K a
“clever* fixup, shown 1in diagram 5 as an exclamatory arrow, will be:

generated.

R & L attempts to inform the user of any erroneous self-relative
references. The symbol being referenced must be within the defined PSEG
independent of the bias value to be applied:

EXAMPLES: JMP SYM + 10 or JMP SYM - 2

The symbol SYM will have an offset within its containing LSEG. The
values 10 and =2 are biases. If the offset of SYM is added to the bias
in LOCATION and the result overflows, it is not known whether this is due
to the offset of SYM being greater than 64K or whether the bias (perhaps
a neqgative or positive numher) caused the overflow. If the bias caused
the overflow then the reference is good according to R & L, if not, then
SYM is not in the defined PSEG and the reference is invalid.

The solution to this problem is to maintain the offset of S¥Y™m
independent of the bias. If the TARGET is specified in a primary way
{e.g., “TARGET: s1(8),d*, then the offset will be maintained in the
fixup record itself and will be added to LOCATION only at LOCATE time.
If the TARGET is specified in a secondary way (e.q., “"TARGET: SI(B)"),
then the offset must be maintained in LOCATION itself, and R & L can Ao
less checking on the correctness of the fixup.

If the LOCATION is an OFFSET (i.e., a full word, not just a byte)
and the bias is known to be zero, then a fixup target of: ' TARGET: SI(B)

could be wused instead of TARGET: SI(B),dl, without sacrificing any
correctness checking. :

192

Download from Www.Somanuals.com. All Manuals Search And Download.

8886 Object Module Formats Version 4.0

3 Self-ReLative Reference To An EXTERNAL Symbol

A LLLLLLLLLLLLLL <- PP ? ceecscsscscsss
L L ’) .
L $rrmcce=st [, ’ ¢ eeevecccce o {= PT
L | LoC | > sym , .
L $+=——wme——t L e eeecsceccse o
L . L . .
LLLLLLLLLLLLLL cecsscccccssae

FIXUP. REPRESENTATI IN:

LOCATION: OFFSET or LOBYTE
PSEG: SI(A) (this is the most common choice)
TARGET: EI(SY™) ,0 : . :
or EI(SYM) if the offset is to be maintained in LOCATION

Or if the reference is to the i'th element of an external array:

LOCATiON: OFFSET or LOBYTE
PSEG: SI(A) this is the most common choice
TARGET: EI(SYM),i-1

LINK OPERATION:

There are three ways in which an external self-relative reference
ray be resolved.

CASE 1: The EXTERNAL symbol (S¥YM) is found (by LINK) to be in the same
LSEG as the LOCATION. '

CASE 2: The EXTERNAL symbol (SYM) is found (by LINK) to be in a
different LSEG, B,

vCASS 3t The EXTERNAL symbol (SYM) is found (by LINK) to be absolute.

103

Download from Www.Somanuals.com. All Manuals Search And Download.

8686 Object Module Formats

CASE 1:

as the reference.

Assume that PSEG is svecified as “PSEG:

Depending on

‘normal®

EXTERNAL symbol (SYM) is found (by LINK) to be in the same
The following four cases exist.

PPPPPPPPPPPPPPPPPP

LLLLLLLLLLLLLL
O e &

| LOC |

P ----.+
| TARGET |

[N ol i ol ol S Sl
[3 Sl Sl ol Sl Sl Sl S Sl Sl

LLLLLLLLLLLLLL

P
14
p
P
P
P
P
P
P
P
P
| 2
P
P
P
P
PPPPPPPPPPPPPPPPP

P
P
P
P
P
p
P
P
P
P
P
4
P
P
| 2
p
P

PPPPPPPP" PPPPPPPPP
!

LLLLLL! LLLLLLL
1

e &
] LOC]

o i ol il ol ol ol ol 2l ol 2l o
o S S S 3l ol an ol ol el

LLLLLL! LLLLLLL

P
p
P
P
P
P
P
P
p
P
P
P
P
P
P
P
PPPPPPPP! PPPPPPPP

P
P
p
2
P
P
14
P
P
P
P
P
P
P
P
P
P

fixup or a

"clever"
if the LSEG continues to aqrow in future LINKina,
as the LSEG remains less than f4K in lenath,

<- PP

<= PT

<= PP

<= PT

the absolute lenath of the

LOCATION",

PPPPPPPPPPPPPPPPPP

LLLLLLLLLLLLLL

L

| TARGET |

D et

-~

|
|
|

T s
| LoC |

| il ol ol ol ¥ ol ol ol ol o
[l ol il il ol ol ol ol ol ol o

LLLLLLLLLLLLLL

p
P
4
P
p
P
p
P
P
P
P
P
P
P
P
p
PPPPPPPPPPPPPPPPP

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

PPPPPPPP! PPPPPPPPP
1

LLLLULILLLLLLL

skl sl sl alsl sl sl sl ol n
el ainl sl nl sl sl a sl o

LLLLLL!LLLLLLL

P
P
P
P
p
P
P
p
P
124
P
P
P
P
P
P
PPPPPPPRPVPPPPPPPPP

arrow,

fikxun (exclamatory arrow).

Thus the fixup is completely resolved by LINK.:-

104

Download from Www.Somanuals.com. All Manuals Search And Download.

'"WUVTUVUVUVYVVUTUTUVUTUTUDT

Version 4.

{= PT

<~ PP

<=~ PT

<=~ PP

Note that

which is enforced by

LSEG

LINK can perform a

even

the fixup is 0K as lona

LINK.

8986 Object Module Formats Version 4.0

CASE 2: EXTERNAL symbol (SYM) is found to be in a different LSEG, B.
The following diagram then applies and LINK converts the fixup to:

LOCATION: {no change)

PSEG: (no change)

TARGET: SI(B).dl

or SI(B) where dl is applied to LOCATION depending on

original TARGET specification.
LINK will specify the new TARGET in a primary
(secondary) way if the old TARGET was
specified in a primary (secondary) way.

A LLLLLLLLLLLLLL B LLLLLLLLLLLLLL -
L L L L |
L L L L dl
L L L L |
L - -t L L TR N I) L V
L | LoOC | >. syMm . L
L +e=ececece==t L | P A
L L L L
L L L L
LLLLLLLLLLLLLL LLLLLLLLLLLLLL

Note that this fixup is now exactly the same as the fixup specified
in (1.2).

185

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object Module Formats Version

CASE 3: EXTERNAL symbol (SYM) is found (by LINK) to be absolute.

LINK will change the fixup to the followina:

LOCATION: same

PSEG: same

TARGET: p#(SYM) ,d (SYM)
where p# and @ are from a PUBLIC DECLARATIONS record
or p#(SYM), and d(SYM) is applied to LOCATION.

LOCATE OPERATION:

At LOCATE time, LOCATE knows the followina:

a) the memory address of LOCATION
b) the memory address of the PSEG
c) the memory address of the PUBLIC

4.1

If either the LOCATION or TARGET is not 1in the PSEG, . LNCATE can
report a warnina: YOU CAN'T GET THERE FROM HERE, Otherwise, a self-

relative fixup can be completed as shown in (l1.2).

1904

Download from Www.Somanuals.com. All Manuals Search And Download.

8386 Object Module Formats Version 4.0

1.4 (8089) Self-Relative Reference To An EXTERNAL Symbol

A LLLLLLLLLLLLLL <~ PP 2 cecsccsccscccs
L L . o
L +=—ecmcee=t L . ® @eseevcscecr o <= PT
L| Loc | > Sym . .,
Lk"""’*’ L e evcescessseoe o
L L . .
LLLLLLLLLLLLLL ceecscscssssase

FIXUP REPRESENTATION:

LOCATION: OFFSET
PSEG: SI(A) (this is the most common choice)

TARGET: EI(SY) ,4d
or EI(SYM) if the offset is in LOCATION

There are two ways in which an 8089 self-relative reference to an
external symbol may be resolved.

CASE 1: The EXTERNAL symbol (5YM) is found (by LINK) to be in a
different LSEG, B.

CASE 2: The EXTERNAL symbol (SYM) is found (by LINK) to be absolute.

187

Download from Www.Somanuals.com. All Manuals Search And Download.

8486 Object Module Formats

CASE 1:
LSEG, B.

EXTERNAL symbol

LINK OPERATION:

LINK will change the above fixup to the followina:

LOCATION:
PSEG:
TARGET:

(SYM) is found (by LINK) to be

(no change)

(no change)

SI(B),dl
where dl is equal to the sum of d (if any)

and the symbol offset.

LLLLLLLLLLLLLL
L
L
L
PR

8 LLLLLLLLLLLLLL

L
L
L

L ® ® ® s ¢ 00800

| Loc |
$mmmmm———t L
L
L
LLLLLLLLLLLLLL

[l ol ol ol

LOCATE OPERATION:

L ® ® ® 60 0 00 0

L
L

L
L
L
L
>. TARGET . L
L
L
L
LLLLLLLLLLLLLL

in a

At LOCATE time various possibilities can be detected:

108

LLLLLLLLLLLLLL <- PP
La L
L +=ee————— + L
L | LoC | L
L +=—e=————t L
L ! L
LLLLLL|LLLLLLL
!
LLLLLL|{LLLLLLL
LB v L
L $ececn———— + L <= PT
L | TARGET | L
L +=—em——— -+ L
L L
LLLLLLLLLLLLLL

2.

LLLLLLLLLLLLLL
L8 L
| T S——— + L
L | TARGET | L
T S L
L - L

LLLULLUILLLLLLL
{
|
!
LLLLLL|LLLLLLL

LA | L
L 4=e—————e + L
LI Loc It
I S, + L
L L

L

LLLLLLLLLLLLL

Download from Www.Somanuals.com. All Manuals Search And Download.

<=~ PT

<= PP

Version 4.

different

8086 Object Module Formats Version 4.0

Diagrams 1 and 2 show two commom cases.

R&L attempts to inform the user of any erroneous self-relative
references (TARGET not within 32K from LOC). The symbol beinag referenced
must be within the defined LSEG independent of the value at LOCATION to
be applied:

EXAMPLES: JMP SYM + 10 or JMP SYM - 2

The symbol SYM will have an offset within its containing LSEG. The
values 14 and -2 are signed numbers. The fixup output by an 8089
translator may be

LOCATION: OFFSET
FRAME: F6
TARGET: EXTERNAL (SYM) , DISPLACEMENT = number

The output of LINK will be:

LOCATION: OFFSET
FRAME: F&
TARGET: SEGMENT (B) , DISPLACEMENT = number + offset

where ‘number + offset’ is the sum of the siagned ‘number®* and the non-
neqgative ‘offset' of the symbol from the base of the segment B. Warning
will be issued if overflow or underflow occurs during the computation of
this displacement.

LOCATE will compute the 20-hit address of TARGET and the 20-bit address
of LOCATION, then the signed displacement from the LOCATION to TARGET. A
warning will be issued if the displacement is not within 32K. Otherwise,
the signed displacement is added to the value in LOCATION and no checkina
will be performed for this last addition.

109

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version

CASE 2: EXTERNAL symbol (SYW) is found (by LINK) to be absolute.

E;NK.OPBRATION
LINK will change the fixup to the following:

LOCATION: (no change)

PSEG: (no change)

TARGET: p#(SYM) ,o0(S¥YM) + d
where p% and o are from a PUBLIC DECLARATIONS
record and the sum is performed as in Case 1.

LOCATE_OPERATION:

At LOCATE time, LOCATE knows the followinqa:

a) the memory address of LOCATION
b) the memory address of the PSEG
c) the memory address of the PUBLIC

Computation and checking may be performed as in Case 1.

110

Download from Www.Somanuals.com. All Manuals Search And Download.

4.¢

- 8086 Object Module Formats

PART 2.‘ SEGMENT RELATIVE REFERENCES

MMMMMMMM | MMMMMMMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

& L enforces: FBVAL modulo 16 = 9
FOVAL less than 64K

A6000H

FFFFFH

Version 4.9

M | M
f\] | M
M | M
M | M
M | -FBVAL M
M |]
M v M
M PPPPPPPPPPP| PPPPPPPP <~ canonic PSEG of L
M P | P M
M P | p "
M f LLLLLLLLILLLLL P <=- PP ™
M P L | L P M
M P L FOVAL-| L P]
M P L \'4 L P M
M P L 4=cecwmee-=t+ [L P K= PT M
M P L | TARGET | L P M
M P L +rmcce=w==t+ [, P M
M P L L P ™M
M P L L P M
™M P L L P M
M P L L P M
M P L L P M
M P L L P M
M f LLLLLLLLLLLLLL P M
M p |4 L
M PPPPPPPPPPPPPPPPPPPP M
M ™
M M
/ /
/ /
M M
M M

P = point . defining the PSEG which also defines FBVAL

T - point definina the TARGET which also defines FOVAL (agiven PP)

Download from Www.Somanuals.com. All Manuals Search And Download.

111

8086 Object Module Formats '~ Version 4.¢

2.1 Segment-Relative Pointer Reference (long call) With No Groupinag and
Both LSEG's Created In Same Translation

A LLLLLLLLLLLLLL B LLLLLLLLLLLLLL =~ <= PP
L L L L |
L L L L d1
L L L L
L +=—=m————t L L 4=—mmmmmm + L V < PT
Ll roc | >1 TARGET | L
L 4==—me————t L R S + L
L L L L
L L L L
LLLLLLLLLLLLLL LLLLLLLLLLLLLL

FIXUP. REPRESENTATION:

LOCATION: POINTER
PSEG: TARGET (this is the most common choice)
TARGET: SI(B),dl
or SI(B) where dl is put in LOCATION by translator

LINK. OPERATION:

If LSEG B is combined, then the LINKER will modify all fixups of the
above form that reference SI(B) by changina SI(B) ,dl to SI(B),d1+d2 or by
applyina d2 to the LOCATION,

B. ® © 8 ® ® 0 09600 =

B @eo s e s secccoo oo <- PP

- L 2

|
. . d2 . R
. « 1 . .
® ® © ® ¢ © 0 0O 0 00 o0 v) *
B LLLLLLLLLLLLLL ~ L L
L L 41 L e + L <= PT
L +=eeemce=t+ L V L | TARGET | L
L | TARGET | L => L +=—eme—e—e=t L
L +=emeewe- + L L L
L L L I
L L L L
L L L L
LLLLLLLLLLLLLL LLLLLLLULLLLLLLL

112

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

LOCATE OPERATION:

- . - ————— - " Gb=m W B = -

At LOCATE time:
1. The BASE (FBVAL) 1is determined by the PSEG directive as the
canonic PSEG defined by PP. '

2. The offset is a positive value, less than or equal to 564K, from
the determined PSEG. LOCATE includes as part of the offset, FOVAL,
the difference between the absolute location of the LSEG and the
absolute 1location of the PSEG defined by the LSEG. (This difference
will be less than 16.)

113

Download from Www.Somanuals.com. All Manuals Search And Download.

8486 Object Module Formats Version 4.0

2.2 Segment~Relative Pointer Reference (long <call) Wiih No Grouping
Where Reference is to an EXTERNAL Symbol

-~

@00 eocesccccccee <~ PP

A LLLLLLLLLLLLLL

L L . .
A S -+ L : e cecesssces o &= PT
L | LoOC i >. sym . .
L +emcwcw——yt L e ®see0eo0c00ee o
L L . .

LLLLLLLLLLLLLL csecccscscccss

FIXUP REPRESENTATION:

LOCATION: POINTER
PSEG: TARGET (this is the most common choice)

TARGET: EI(SYM)

LINK OPERATION:

- - . - W W @ -

There are three ways in which an EXTERNAL seqment-relative reference
may be resolved:

CASE 1: EXTERNAL symbol (S¥M) is found (by LINK) to be in the same
LSEG as the reference.

CASE 2: EXTERNAL symbol (SYM) is found (by LINK) ¢to be in a
dif ferent LSEG, B.

CASE 3: EXTERNAL symbol (SYM) is found (by LINK) to he absolute.

114

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

CASE 1: EXTERNAL symbol (SYM) is found (by LINK) to be in the same
LSEG as the reference. An example would be a reference to data (ROM
DATA) stored in CODE segment A.

The PSEG is then determined by LINK to be SI(A) as the default,
since no grouping is specified. The following two cases may be
found:

PPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPP
P p P P
P LLLLLLLLLLLLLLLLL P ° (K= PP => °~ P LLLLLLLLLLLLLLLLL P
P LA L P | a3 P L?2=A L P
P L L p | PT -> v P L P # P
P L L p | P L . sSsym . L P
P L L P | P L esecesssee L P
P L e ———— -+ L P | P L L P
P L | LOC | L P d3 P L L P
P L temmmme—et L, P | P L L P
P L L I | P L L P
P LULLLLLLLLLLLLLLL P | P L L P
P L?=A L P | P L L p
p L cesescsses L P Vv <= PT P L L P
P L . SYM . L p P LLLLLLLLLLLLLLLLL P
P L escecssees L p P LA L P
p L L P P L L P
P L L P P L L P
P L L p P L L P
P L L P P L et TS & P
P L L P P L | LOC] L P
P L L P P L tocccmcme=t [, P
] L L P p L L 2
P LLLLLLLLLLLLLLLLL P P LLLLLLLLLLLLULLLLL P
P P P P
P P P P
P P PPPPPPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPPPPPPPPPPPP

LINK will modify the fixup as follows:

LOCATION: same
PSEG: SI(A) —
TARGET: SI(A) .43
or SI(A) where d3 is applied to the OFFSET part of the LC

115

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

' CASE 2: EXTERNAL symbol (SYM) is found (by LINK) to bhe in a
different LSEG, B. This case becomes the same fixup described in
(2.1).

CASE 3: EXTERNAL symbol (SYM) is found (by LINK) to be absolute.

The PUBLIC declaration record for SYM will define an absolute
address of the form PSEG, OFFSET. LINK changes the fixup to:

LOCATION: same
PSEG: p#(S¥YM)
TARGET: p#(SYM) ,d(SYM)
or p*(SYM) (where d(SYM) is applied to the LOCATION)

Note that this fixup is completely resolved by LINK.

LOCATE_OPERATION: (CASES 1 and 2)
At LOCATE time, the absolute location of PSEG is determined. If the
PSEG and its defining LSEG are at different 1locations, then the
difference, x, (which is less than 1A), is calculated. 1If the TARGET
specification was primary (e.a., “TARGET: SI(A) ,d3"), then LOCATE
can calculate the sum "@d3 + x* ensuring "d3 + x < A4K". If the
TARGET specification was secondary (e.qg., “TARGET: SI(A)"), then x
is applied to LOCATION, and this assurance is sacrificed.

116

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

2.3 Segment-Relative Pointer Reference (long call) With Grouping

This fixup is much the same as the fixups described in (2.1) and
(2.2). ‘The only difference is that the PSEG is always specified to
be a group base. The fixup would appear as one of the following
(also see diagram below):

LOCATION: POINTER
PSEG: GI(G)
TARGET: SI(D),.dl
or SI(D) where dl is applied to the LOCATION

OR
LOCATION: POINTER
PSEG: GI(G)

TARGET: EI(SYM) if SYM is external
or EI{(SY™),0

PPPPPPPPPPPPPPPPPPPPPPPPP

P P '
P LLLLLLLLLLLLLLLLLLL P <~ PP
P LB L P
P L L P
P L L P
Group G = B, C, D P L L P
f LLLLULLLLLLLLLLLLLL P
P P
f LLLLULLLLLLLLLLLLLL P
p LC L P
P L L P
P L L P
A LLLLLLLLLLLLLULLLLLL P L L P
L L P LULLLLLLLLLLLLLULLL P
L L P P
L L P LLLLLLLLLULLLLLLLLL P =
L L P LD L P d1
L e ——— + L P L R L T + L P V <= PT
L | LOC | = e >] TARGET | L P
L D et T + L P L it + L P
L L P L L P
L L P LLLLLLLLLLLLLLLLLLL P
LLULLLLLLLLLLLLLLLLL PPPPPPPPPPPPPPPPPPPPPPPPP

117

Download from Www.Somanuals.com. All Manuals Search And Download.

2.4

8086 Object Module Formats Version 4.9

Segment-Relative Offset Reference (data reference) With No Grouping
And Both LSEG's Created In The Same Translation

Diagram in (2.1) can be used.

FIXUP REPRESENTATION:

LOCATION: OFFSET .

PSEG: TARGET (this is the most common choice)

TARGET: SI(B),dl A
or SI(B) where dl is applied to the LOCATION

Note that this fixup is exactly the same as the Segment-Relative
Pointer Reference shown in (2.1) with one exception: the LOCATION
requires no BASE fixup. This means one less fixup value to calculate
at LOCATE time. A Segment—-Relative Offset Reference with grouping is
exactly the same as th2 Segment-Relative Pointer Reference with
grouping shown in (2.3) with the same exception mentioned above.

NOTE: LOCATION could also be HIBYTE, if the source code were,
for example

MOV AH, HIGH (SYM)

Note that, unlike the 80880 R & L, this fixup will take into account .
the final location of SYM., If SYM has the value 1994 as an offset
within 1its LSEG which 1is to be LOCATE'd at 3680H relative to tne
PSEG, we have the followina:

§E§Q*R‘ﬁhpz
LOCATION: 1 byte containing HIGH(SYM) = 1

LOCATE at 3630 => LOCATION 1H
+ HIGH (3688H) = 354
Note that this value is not correct!
848K _R_ & L:
LOCATION: 1 byte containing zero

Fixup record: 2 bytes containing 190H

LCCATE at 35804 => Fixup value: 1904
+ Base Address 3fS80QH

- D~ T WD - > >~ ——

384 is then aoplied to the LOCATION (HIBYTE)

118

Download from Www.Somanuals.com. All Manuals Search And Download.

2.5

8086 Object Module Formats Version 4.0

Segment Relative Base Reference (used for segment reqister
initialization)

This fixup is much the same as the Segment-Relative Pointer
Reference described in (2.1). The only difference is that the offset
part, FOVAL, of the fixup is not required.

FIXUP REPRESENTATION:

- A W WD W W e w W wm W . -

LOCATION: BASE

PSEG: TARGET

TARGET: SI(B)
This allows the base address (canonic PSEG) of LSEG B to beﬂused.
OR

LOCATION: BASE

PSEG: TARGET

TARGET: EI(SYM)

This allows the base address (canonic PSEG) of LSEG containing SYM to
be used.

OR

LOCATION: BASE
PSEG: TARGET
TARGET: GI(G)

This allows the base address (canonic PSEG) of first LSEG in the
group G to be used.

119

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

Download from Www.Somanuals.com. All Manuals Search And Download.

Free Manuals Download Website
http://myh66.com
http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

