
8086

RELOCATABLE OBJECT MODULE

FORMATS

An Intel Technical Specification

Order Number: 121748-001

. Copyr;ght~1981 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Download from Www.Somanuals.com. All Manuals Search And Download.

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material. including, but not limited
to. the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use.
duplication or disclosure is subject to restrictions stated in Intel's software license. or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Cqrporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intelevision Multibus
CREDIT Intellec Multimodule
i iRMX Plug-A-Bubbk
ICE iSBC PROMPT
iCS iSBX Pwm\\are
im library Manager RMX/!lO
Insile MCS Sy,lcm :!OOO
Intel Megachassis UPI
inlel Micromap "Scope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS. or RMX and a numerical suffix.

IA 500/1181/500 IPI

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4."

TABLE OF CONTENTS

DOCUMENT CONTROL • • · 2

3 - 'fABLE OF CONTENTS

INTRODUCTION • • • • • • • • • •
DEFINITION OF TERMS ••••••
MODULE SEMANTICS

MODULE IDENTIFICATION • • • •
MODULE ATTRIBUTES ••••••
SEGMENT DEFINITION
SEGMENT ADDRESSING • • • •
SYMBOL DEFINITION ••••••
DATA • • • • • • • . . .
INDICES • • • • • • • • • • •
CONCEPTUAL FRAMEWORK FOR FIXUPS

~~ODULE SYN'fAX
RECORD ORDER • • • •

·
· · 5

5

• • • • • • • 9
• • • • • • • • • • -. • • 9
• • • • • • • • • • • •• 9
• • • • • • • • • • • • • 18
• • • • • • • • • • • 10
• • • • • • • • • • • • •. 11
• • • • • • • • • • • • • 12

• • • • • • • • • • • • 13

• •
INTRODUCTION to the RECORD FORMATS • • • •
RECORD FORl~ATS

• • • • • • • • 22
• • • • • • 24

'r-MODULE HEADER RECORD • • • •
L-MODULE HEADER RECORD • • • •
R-MODULE HEADER RECORD •
LIST OF NAMES RECORD • • • • •
SEG~ENT DEFINITION RECORD
~~OUP DEFINITION R~CORD •••
TYPE DEFINITION HECORD • • • •
SYMBOL DEFINITION RECORDS

• • • • • • • • • • • • • 21;
• • • • • • • • • • • • • 27
• • • • • • • • • • • • • 28
• • • • • • • • • • • • • 31
• • • • • • • • • • • 32
• • • • • • • • • 36
• • • • • • • • • (0

PUBLIC NAMES DEFINITION RECORD •
EXTERNAL NAMES DEFINITION RECORD •

• • • • • • • • • 44
• • • • • • • • 47

LOCAL SYMBOLS RECORD •• • • •
LINE NUMBERS RECORD • • •
BLOCK DEFINITION ~ECORD • • •
B LOCK END RECORD • • • • • • • • •
DE8UG SYMBOLS RECORD • • • • • • •

DATA RECORDS

• • • • • • • • • • 49
• • •• • • • • 51
• • • • • • • • • • 53
• • • • • • • • • • 56
• • • • • • • ... • • 57

RELOCATA9LE gNU~ERATED DATA RECORD • • • • • • • • • • ~0
RELOCATABLE ITERATED DATA RECORD • • • • • ~2
PHYSICAL E~U~ERATED DATA RECORD • • • • • • • • ~ ~4
PHYSICAL ITERATED DATA RECORD • • • • • • • • • • ~5
LOGICAL ENU~ERATED DATA RECORD • • • • • • • • ~~
LOGICAL ITERATED DATA RECORD • • • • • • • • • • • • • ~R

FIXUP RECORD • • • • • • • • • • • • • • • • •••• 70
OVERLAY DEFINITIO~ RECORD • • • • • • • • • • • • • 74
END RECORD • 7~
REGISTEa INITIALIZATION RECORO • • • • • • ••• 77
MODULE E~D RECORD • • • • • • • • • • • • • • • • • 80
LI i3RARY I~ECORDS

LIHRARY HEADER RECORD • • • • • • • • • • • • • 82
LIBRARY ~ODULE NAMES RECORD • 83
LIBRAHY r-10DULE LOCA'fIONS ~ECORD • • • • • • • • • • • 84

3

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

LIBRARY DICTIONARY RECORD
COMMENT RECORD • • • • • • •

· . . · . .
APPENDICES

1. NUMERIC LIST OF RECORD TYPES
2. TYPE REPRES ENTA'tIONS ••• · . .
3. SYNTAX DIAGRA~S • • • • • • · . .

Version 4.(J

• • · • 85
• • · • Sf;

· . . • • • • 88 · · • •
4. EXAMPLES OF FIXUPS ••

89
• • 91

• • • • 97

4

Download from Www.Somanuals.com. All Manuals Search And Download.

Sf) 86 Object i\4odule Formats Version 4.rrJ

INTRODUC'f ION

Here are the object record formats that define the object
lanquaqe for the 8686 microprocessor. The 8086 object lanquaqe is
the output of all lanquaqe translators with the 8086 as the tarqet
processor. 'fhe 8086 -object lanquaqe is input and output for object
languaqe processors such as linkers, locaters, librarians, and
debuqgers.

The 8086 object module formats permit specification of
relocatable memory imaqes that may be linked to one another.
Capabilities are provided that allow efficient use of the memory
mapping facilities of the 8086 microprocessor.

This section defines certain terms fundamental to S08~ R&L.
The terms are ordered not alphabetically, but so you can read
forward without forward references.

DEFINITION of-TERMS

OMF - acronym for Object Module Formats.

R&L - acronym for Relocation and Linkaqe.

MAS - acronym for Memory Address Space. The 8086 MAS is 1 meqabyte
(1,048,576). Note that the MAS is distinguished from actual memory,
which may occupy only a portion of the MAS.

MODULE an -inseparable" collection of object code and other
information produced by a translator or by the LINK-So proqram.
When a distinction must be made,

T-MODULE will denote a module created by a translator, such as PLM86
or ASM-86,

L-MODULE will denote a module created by (cross) LINK-86 VI.3 or
earlier versions, and

R-MODULE will denote a module created by (8rrJ86 based) LINK-86 from 1
or more constituent modules. (Note that modules are not "created"
in this sense by LOCATE-86; the output module from LOCATE-8fi is
merely a transformation of the input module.)

Two observations about modules must be made:

l} Every module must have a name, so that the 808~ Librarian,
LIB86, has a handle for the module for display to the user. (If
there is no need to provide a handle for LIB8o. the name may be
null.) Transl~tors will provide names for T-rnodules, orovidinq a
default name (possibly the file name or a null name) if neither
source code nor user specifies otherwise.

2) Every T-module in a collection of modules linked toqether
ouqht to have a different name, so that symbolic debuqoinq systems
(such as ICE-8n) can distinquish the various line numbers and local

5

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

symbols. This restriction is not reauired by R&L, and is not
enforced by it.

LOGICAL SEGMENT (LSEG) A contiquous reqion of memory whose
contents are determined at translation-time (except for address
binding) • Neither size nor location in MAS are necessarily
determined at translation-time: size, althouqh partially fixed, may
not be final because the LSEG ~ay be combined at LINK-time to other
LSEGts, forming a sinqle LSEG; location in MAS is usually determined
at LOCATE-time (althouqh some translators may produce Mabsolute~
object code, whose location is already determined).

FRAME - A contiguous region of 64K of MAS, beqinninq on a paragraph
boundary (i.e., on a multiple of 16 bytes). This concept is useful
because the content of the four 8086 seqment reqisters define four
(possibly overlappinq) FRAME's; no 16-bit address in the 8086 code
can access a memory location outside of the current four FRAME's.

An LSEG is constrained to be no qreater than fi4K, so that it
can fit in a FRAME. This means that any byte in an LSEG may be
addressed by a l6-bit offset from the base of a FRAME covering the
LSEG.

PSEG - This term is equivalent to FRAME. Some people ~refer MPSEG~ to
MFRAME· because the terms MPSEG M and MLSEG d reflect the ~physicaln

and Mlogical M nature of the underlyinq seqments.

FRAME NU~BER Every FRAME beqins on a paraqraph boundary. The
Mparaqraphs· in MAS can be numbered 0,l,2, ••• ,~5535. These numhers,
each of which defines a FRAME. are called FRAME NUMBERS.

PARAGRAPH NUMBER - This term is equivalent to "FRA,,.,E NUl'JfBER."

PSEG NU~BER - This term is equivalent to "FRAME NU~BER.~

PIC - acronym for Position Independent Code. A PIC module is a module
where load addresses and reqister initialization values are
specified relative to seqment and qroup bases. No fixups are
allowed.

LTL - acronym for Load-Time Locatable. An LTL module is similar to a
PIC module except that base fixups are allowed.

GROUP - a group is a collection of LSEG's defined at translation-time,
whose final locations in MAS have been constrained such that there
will be at least one fRAME which covers (contains) every LSEG in the
collection.

The notation ~Gr A(X,y,Z)d means that LSEG's X, Y and Z form a
arouo, and that the qroup's name is A.

The fact that X, Y and Z are all LSEG's in the same ~roup does
not imply any orderinq of X, Y and Z in MAS, nor does it imply any
contiquity between X, Y and Z.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

In the PIC/LTL case, an LSEG is not allowed to be in more than
one group (e.g. defininq two qroups such as Gr GI(A,C,B) and Gr
G2(B,C,D) in the same module is not legal). Otherwise an LSEG may
be in more than one group. The existence of qroups such as Gl and
G2 is not sufficient to infer that A,B,C,D all lie within some
single FRAME, althouqh they miqht.

CANONIC any location in MAS is contained in exactly 4996 distinct
FRAME's; but one of these FRAME's can be distinguished in that it
has a higher FRA~E NUMBER than any other FRAME. This distinguished
FRAME is called the canonic FRAME of the location.

Thus, if Foa is a symbol defininq a memory location, one may
speak of the "canonic FRAME of Faa·, or of -FOO's canonic FRAME".
By extension, if S is any set of memory locations, then there exists
a unique FRAME which has the lowest FRAME NU~BER in the set of
canonic FRAME'S of the locations in S. This unique FRAME is called
the canonic FRA~E of the set S. Thus, we may speak of the canonic
FRAME of an LSEG or of a Group of LSEG's.

SEGMENT NAME - LSEG's are assigned names at translation-time.
names serve only 3 purposes:

These

1) they playa role at LINK-time in determininq ~h~t LSEr,'s are
combined with what other LSEG's.

2) they may be used at LOCATE-time to desiqnate specific
LSEG·s.

3) they are used in assembly source code to specify groups.

CLASS NAME LSEG's may optionally be assiqned Class Names at
translation-time. Classes define a partition on ~~5EG's: two LSEG's
are in the same class iff they have the same Class Name.

R&L associates no semantics with specific Class Names; class
semantics are completely user-defined. Examples of Class Names
might be RED, BLUE, GREEN or ROM, RAM, DISPLAYMEMORY.

The uses of Class Names include the first 2 uses of Seqment
Names above; additionally, Class Names qive the user the power to
identify many LSEG's by a single handle at LOCATE-time.

OVERLAY NAME LSEG's may optionally be assiqned an Overlay Name at
translation-time oratLINK-time. This name is specified when the
translator or LINK-So is invoked, and all LSEG's within the same
module will be assiqned the same Overlay Name.

An Overlay Name is similar to a Class N~me in that it provides
a handle on user-defined equivalence classes of LSEG's. Unlike
Class Names, however, Overlay Names have semantics kno~n by the
LOCATE-86 proqram. (In brief. LSEG's in different overlays may be
~located" at overlappinq MAS locations.)

7

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

COMPLET~ NAME - The ~complete name H of an LSEG is defined to be the
three component identification consistinq of the Segment Name, Class
Name and Overlay Name. LSEG's from different modules will be
combined iff their Com~lete Names are identical.

8

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.9

MODULE IDENTIFICATION

In order to determin~ that a file contains an object program, a
module header record will always be the first record in a module.
There are three kinds of header records and each provides a module
name. The additional functions of the header records are explained
below.

A module name may be qenerated durinq one of two processes:
translation or linking. A module that results from translation is
called a T-MODULE. A T-MODULE will have a T-MODULE HEADER RECORD
(THEADR). A name may be provided in the THEADR record by a
translator. This name is then used to identify the source of all
symbols and line numbers found in the T-MODULE.

A module that results from linkinq is called an L-MODULE or an
R-MODULE. An L-MODULE will always have an L-MODULE HEADER RECORD
(LHEADR). An R-MODULE will always have an R-MODULE HEADER RECORD
(RHEADR). In the LHEADR record or the RHEADR record a name may also
be provided. This name is available for use as a means of referrinq
to the module without usinq any of its constituent T-MODULE names.
An example would be two T-MODULES, A and S, linked toqether to form
R-~ODULE C. R-MODULE C will contain two THEADR records and will
beqin with an RHEADR record with the name C provided by the linker
as a directive from the user. The ·R-MODULE C can be referred to by
other tools such as the library manaqer without h~vinq to know about
the oriqinatinq module's names, yet the oriainatinq module's names
are preserved for debugginq purposes.

MODULE ATTRIBUTES

In addition to an optional name, a module may have the
attribute of beinq a main program as well as havinq a specified
starting address. When linking multiple modules tog~ther, only one
module with the main attribute should be given. The linker EPS
specifies the result of finding two or more main modules.

If a module is not a main module yet has a starting address
then this value has been provided by a translator, possibly for
debuqginq purposes. A starting address specified for a non-main
module could be the entry point of a procedure, which may be loaded
and initiated independent of a main proqram.

In summarYr modules mayor may not be main as well as mayor
may not have a startinq address.

SEGMENT DEFINITIO~

A module is defined as a collection of object code defined by a
seauence of records produced hy a translator. The obiect code

9

Download from Www.Somanuals.com. All Manuals Search And Download.

808fi Object Module Formats Version 4.0

represents contiquous reqions of memory whose contents are
determined at translation-time. These reqions are called LOGICAL
SEGMENTS (LSEG's). A module must contain information that defines
the attributes of each LSEG. The SEG~ENT DEFINITION RECORD (SEGDEF)
is the vehicle by which all LSEG information (name, length, memory
alignment, etc.) is maintained. The LSEG information is required
when multiple LSEG's are combined and when seqment addressability
(GROUPING, see below) is est~blished. The SEGDEF records are
required to follow the first header record (THEADR, or LHEADR, or
RHEAOR) •

SEGMENT ADDRESSING

The 8086 addressing mechanism provides seqment base registers
from which a 64K byte reqion of memory, called a FRAME, may be
addressed. There is one code seqment base reqister (CS), two data
segment base registers (OS, ES), and one stack seqment base reqister
(SS) •

The possible number of LSEG' s that may make up a memory imaqe
far exceeds the number of available base registers. Thus, base
reqisters may require frequent loading. This would be the case in a
modular program with many small data and/or code LSEG's.

Hence the motivation to collect LSEG's toqether to form one
addressable unit that can be contained within a memory frame. The
name for this addressable unit is a GROUP and has been defined
earlier in the DEFINITION OF TERMS.

To allow addressa~ility of objects within a GROUP to be
established, each GROUP must be explicitly defined in the module.
The GROUP DEFINITION RECORD (GRPDEF) provides a list of constituent
segments either by segment name or by segment attribute such as ~the
segment defininq symbol FOO" or "the seqments with class name ROft1".

The GRPDEF records within a module must follow all SEGDEF
records asGRPDEF records may reference SEGDEF records in defininq a
GROUP. The GRPDEF records must also precede all other records but
header records as some R&L products must process them first. The
explicit orderinq of records is aiven Inter.

SYMBOL,DEFINITIO~

Within a module thera may be six different types of symhol
definition records. The necessity for these records is based on two
requirements: 1) references to externally defined symbols should
be resolved by eauivalently defined symbols in another module
(linkinq) and 2) attributes of locally defined symbols and line
numbers should be made availahle for debuqqinq purposes.

10

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

The requirements for symbol definition records for module
linkinq is satisfied by the PUBLIC NAMES DEFINITION RECORD (PUBDEF),
the EXTERNAL NAMES DEFINITION RECORD (EXTDEF), and the TYPE
DEFINITION RECORD (TYPDEF). Their semantics will be explained
later.

The requirements for debugqinq information are satisfied by the
LOCAL SYMBOLS RECORD (LOCSYM), the LINE NU~BERS RECORD (LINNU~), the
DEBUG SYMBOLS RECORD (DEBSYM), the BLOCK DEFINITION RECORD (BLKDEF),
the BLOCK END RECORD (BLKEND), and the TYPE DEFINITION RECORD
(T¥PDEF) • The association of the line numbers and local symbols to
their original defining modules is essential and maintained by the
THEADR record as explained earlier.

DATA

The data that defines the memory imaqe represented by a module
is maintained in six varieties of DATA records. The DATA records
are of three classes: relocatable, physical, and loqical.

There are two Relocatable DATA records: RELOCATABLE ENUMERATED
DATA RECORD (REOATA) and RELOCAT~BLE ITERATED DATA RECORD (RIOATA).
Each relocatable DATA record is associated with a SEGDEF record or a
FRA~E number, and perhaps a GRPDEF Record. The SEGDEF record or the
FRAME number, and the GRPDEF record provide information to determine
the absolute address at which the data bytes are to be loaded. The
RIDATA record differs in that the data bytes are represented within
a structure that must be expanded by the loader. The purpose of the
RIDATA record is to reduce module size by encodinq repeated data
rather than explicitly enumeratinq each ~yte, as the REDATA record
does.

There are two Physical DATA records: PHYSICAL ENUMERATED DATA
RECORD (PEDATA) and PHYSICAL ITERATED DATA RECORD (PIDATA). The
PEDATA and PIDATA records provide an absolute address at which the
data bytes it contains are to be loaded.

There are also two Loqical DATA records: LOGICAL ENU~ERATED
DATA RECORD (LEDATA) and LOGICAL ITERATED DATA RECORD (LIOATA).
Each logical DATA record is associated with a SEGDEF record. The
SEGDEF record provides information that allows the loqical DATA
records to be converted to either Relocatable DATA records or
Physical DATA records.

Data bytes for all LSEG's are maintained in loqical DATA
records, as an LSEG is either relocatable or it has been assiqned an
address (absolute) but has not been divorced from GROUP informntion.

In summary, there ~re three classes of DATA records,
RELOCATABLE, PHYSICAL, and LOGICAL. The data bytes of the "unnamed
absolute seqment~, divorced form all LSEG and GROUP information, are
found in PHYSICAL DATA RECORDS. Data bytes from all LSEG's,

11

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.~

absolute or relocatable, are found in LOGICAL DATA RECORDS. The
ENUMERATED and ITERATED attributes within the classes are two ways
of representinq the actual data bytes.

A 8086 loader can load RDATA or PDATA Records, but will
probably not be able to maintain the LSEG table information reauired
for loadinq LDATA Records. Thus, Relocatable and Physical DATA
records are sometimes called "Loadable" DATA records, and Logical
DATA records are called uNon-Loadable d DATA records.

INDICES

Throughout the 808~-OMF specification, "index U fields occur.
An index is an integer that selects some particular item from a
collection of such items. (Exhaustive list of examples: NA~E
INDEX, SEGMENT INDEX, GROUP INDEX, EXTERNAL INDEX, TYPE INDEX, BLOCK
INDEX.)

(Note) An index is normally a positive number.
The index value zero is reserved, and may carry a
special meaning dependant upon the type of index
(e.q., a Seqment I~dex of zero specifies the ·Unnamed,
absolute pseudo-segment; a Type Index of zero
specifies the "Untyped type U (which is different from
"Decline to state"» ~ (End of Note)

In general, indices must assume values quite larqe (i.e., much
larger than 255). Nevertheless, a qreat number of ob;ect files will
contain no indices with values qreater than 50 or 100. Therefore,
indices will be encoded in 1 or 2 bytes, as required:

The hiqh-order (left-most) bit of the first (and possibly the
only) byte determines whether the index occupies one hyte or two.
If the bit is 0, then the index is a number between 0 and 127,
occupying one byte. If the bit is 1, then the index is a number
between 0 and 32K-l, occupyinq two bytes, and is determined as
follows: the low-order 8 bits are in the second byte, and the hiqh
order 7 bits are in the first byte.

12

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.0

CONCEPTUAL FRAMEWORK for FIXUP's

A "Fixup" is some modification to object code, requested by a
translator, performed by the R&L system, achievinq address bindinq.
(see Appendix 4 for Examples)

(Note) This definition of "fixup- accurately
represents the viewpoint maintained by the R&L system.
Nevertheless. the R&L system can be used to achieve
modifications of object code (i.e., dfixups") that do
not conform to this definition. For example. the
bindinq of code to either of hardware floatinq point
or software floatinq point subroutines, is a
modification to an operation code, where the operation
code is treated as if it were an address. The above
definition of "fixup" is not intended to disallow or
disparaqe object code modifications in the wider
sense. ,End of Note)

8086 and/or 8089
data: (l) the place and
of two possible fixup
address to which LOCATION
defining a context within

translators specify a fixup by qivinq four
type of a LOCATION to be fixed up, (2) one

MODE'S. (3) a TARGET, which is a mem(cy
must be made to refer, and (4) a FRAME
which the reference takes place.

LOCATION There are 5 types of LOCATION: a POINTER, a BASE, an
OFFSET, a HIBYTE, and a LOBYTE:

+----+----+----+----+
Pointer:

+----+----+----+----+

+----+----+
Base: I ,

+----+----+

+----+----+
Offset: I I

+----+----+

+----+
Hibyte: I I

+----+

+----+
Lobyte: I I

+----+

The vertical alignment of this diaqram illustrates 4 points
(remember that the hiqh orner byte of a word in q~8~ me~ory is the
byte "Nith the hiqher address): (1) a B.~SE is merely the hi1h ':)rder
word of a pointer (and R~L ~oesn't care if the low order word of the

13

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats version 4.0

pointer is present or not): (2) an OFFSET is merely the low order
word of a pointer (and R&L doesn't care if the high order word
follows or not); (3) a HIBYTE is merely the hiqh order half of an
OFFSET (and R&L doesn't Nare if the low order half precedes or not);
(4) a LOBYTE is merely the low order half of an OFFSET (and R&L
doesn't care if the hiQh order half follows or not).

A LOCATION is specified -by 2 data: (1) which of the above 5
types the LOCATION is, and (2) where the LOCATION is. (1) is
specified by the LOC subfield of the LOCAT field of the FIXUPP
Record; (2) is specified by the DATA RECORD OFFSET subfield of the
LOCAT field of the FIXUPP Record.

MODE - R&L supports 2 kinds of fixups: dself-relative~ and dseqment
relative-.

Self-relative fixups support the 8- and 16-bit offsets that are
used in the CALL, JUMP and SHORT-JUMP instru~tions. Seqment
relative fixups support all other addressinq modes of the 8086.

TARGET - The TARGET is the location in MAS beina referenced. (More
explicitly, the TARGET may be considered to be the lowest byte in
the object beinq referenced.) A TARGET is specified in one of 8
ways. There are 4 -primary- ways, and 4 ~secondary- ways. -Each
primary way of specifyinq a TARGET uses 2 data: an INDEX-or-FRAME
NU~BER 'X', and a displacement '0':

(T0) X is a SEGMEN'r INDEX. The TARGET is the O'th byte in the
LSEG identified by the INDEX.

(TI) X is a GROUP INDEX. The TARGET is the O'th byte followinq
the first byte in the LSEG in the qroup that is eventually LOCATE'd
lowest in MAS.

(T2) X is an EXTERNAL INDEX. The
followinq the byte whose address is
External Name identified by the INDEX.

TARGET is the
(eventually)

O'th byte
qiven hy the

(T3) X is a FRAME NUMBER. The TARGET is the O'th byte in the
FRAME identified by the FRAME NUMBER (i.e., the address of TARGET is
(X*16)+D).

Each secondary way of specifyinq a TARGET uses only 1 datum:
the INDEX-or-FRAME-NUMBER X. An implicit displacement equal to zero
is assumed:

(T4) X is a SEGMENT INDEX. The TARGeT is the 0'th (first).byte
in the LSEG identified by the INDgX.

(TS) X is a GROUP INDEX. The TARGET is the ~'th (first) byte
in the LSEG in the specified qroup that is eventually LOCATE'd
lowest in ~AS.

14

Download from Www.Somanuals.com. All Manuals Search And Download.

R986 Object Module Formats Version 4.9

(T6) X is an EXTERNAL INDEX. The TARGET is the byte whose
address is (eventually qiven by) the External Name identified by the
INDEX.

(T7) X is a FRAME NUMBER. The TARGET is the byte whose 20-bit
address is (X*l6).

The following nomenclature is used to describe a TARGET:

TARGET: SI«seqment name» ,<displacement> (T0]
TARGET: GI«qroup name» ,<displacement> (TIl
TARGET: EI«symbol name» ,<displacement> [T21
TARGET: <FRAME NUM9ER>,<displacement> (T3]
TARGET: SI«seqment name» (T41
TARGET: GI«qroup name» (T51
TARGET: EI«symbol name» (T~l
TARGET: <FRAME NUMBER> (T71

Here are some examples of how this notation can be used:

TARGET: SI(CODE) ,1024

TARGET: GI(DATAAREA)

TARGET: EI(SIN)

TARGET: 8000H,24H

TARGET: EI(PAYSCHEDULE) ,24

The l025th byte in
the segment ·CODE"

the location in MAS of
a qroup called -DATAAREA d

the address of the external
subroutine ·SIN"

MAS location 800248

the 24th byte followinq the
location of an
EXTERNAL data structure
called dPAYSCHEOULE-

Altnouqh -TARGET: SICA)" and "TARGET: SI(A) ,0" both specify
the same TARG8T, their use can have different effects, as is
discussed below in the section on intermediate values in fixup
arithmetic.

FRAME - Every 8086 memory reference is to a location contained within
some FRAME; where the FRAME is desiqnated by the content of some
seqment register. In order for R&L to form a correct, usable memory
reference, it must know not only what the TARGET is, but also with
respect to which FRAME the reference is heinq made. Thus every
fixup specifies such a FRAME, in one of 5 ways (F0, ••• ,F5) described
below. Some ways use a datum, X, which is an INDEX-or-FRAME-NUMBER,
as above. Other ways require no datum.

This is
reference may
independently

not the case of an 8089 self-relative reference. The
be to any location within an 8089 proaram,
of FRA~E. The only restriction is that the

15

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.0

displacement between the LOCATION and the TARGET must be within 32K.
To indicate this type of fixup, a 7th way (F6) of specifyinq a frame
is introduced.

Below is the descriptlon of the seven ways of specifying
frames:

(Fe) x is a SEGMENT INDEX. The FRAME is the canonic FRAME of
the LSEG defined by the INDEX.

(FI) X is a GROUP INDEX. The FRA~E is the canonic FRAME
defined by the group (i.e •• the canonic FRAME defined by the LSEG in
the qroup that is eventually LOCATE'd lowest in MAS).

(F2) X is an EX'rERNAL INDEX. The FRAME is determined when the
External Name's public definition is found. There are 3 cases:

(F2a) The symbol is defined relative to some
LSEG, and there is no associated Group. The LSEG's
canonic FRAME is specified.

(F2b) The symbol is defined absolutely, without
reference to an LSEG, and there is no associated
Group. The FRAME is speci~ied by the FRAME NUMBER
subfield of the PUBDEF Record (a.v.) that qives the
symbol's definition.

(F2c) Reqardless of how the symbol is defined,
there is an associated Group. The canonic FRAME of
the Group is specified. (The qroup is specified by
the GROUP INDEX subfield of the PUBDEF Record (q.v.).)

(F3) X is a FRAME NUMBER (specifying the obvious FRAME).

CF4) No X. The FRA~E is the canonic FRAME of the LSEG
containing LOCATION. (If LOCATION is specified absolutely (i.e., in
a PEDATA Record or a PIDATA Record (a.v.», then it is not
~contained~ in an LSEG: in this case the FRAME is determined as in
(F2) above, taking the FRAME NUMBER from the FRAME NU~BER field of
the DATA Record.

(FS) No X. 'fhe FRA~E is determined by the TARGET. There are 4
cases:

, l~

(FSa) The TARGET specified a SEG~ENT INDEX: in
this case, the FRAME is determined as in (F0) above.

(FSb) The TARGET specified a GROUP INDEX: in
this case. the FRAME is determined as in (Fl) above.

(FSc) The TARGET specified an EXTERNAL INDEX: in
this case. the FRAME is determined ~s in (F2) above.

Download from Www.Somanuals.com. All Manuals Search And Download.

8886 Object Module Formats Verslon 4.8

(FSd) The TARGET is specified with an explicit
FRAME NUMBER: in this case the FRAME is determined as
in (F3) above.

(F6) No X. There is no FRAME. This is a way to indicate to
R&L that an 8089 self-relative reference is to be processed. A
siqned displacement between the LOCATION 20-bit address and the
TARGET 20-bit address must be computed.

Nomenclature describing FRAME's is similar to the
nomenclature for TARGET's, viz:

above

FRAME: SI«seqment name»
FRAME: GI«group name»
FRAME: EI«symbol name»
FRAME: <FRAME NUMB~R>
FRAME: LOCATION
FRAME: TARGET
FRAME: NONE

[FA1
[F11
[F21
[F3]
{F41
[F51
[F6]

In practice, for an 808~ memory reference, it is likely that
the FRAME specified by a self-relative reference will be the canonic
FRAME of the LSEG containinq the LOCATION, and the FRAME specified
by a seqment relative reference will be the canonic FRAME of the
LSEG containinq the TARGET. This will be further explained below.

SELF-RELATIVE FIXUPS '

A self-relative fixup operates as follows: A memory address is
implicitly defined by LOCATION: namely the address of the byte
following LOCATION (because at the time of a self-relative
reference, the 8086 IP (Instruction Pointer) or the 8989 TP (Task
block Proqram pointer) is pointing to the byte following the
reference) •

For 8086 self-relative references, if either LOCATION or TARGET
are outside the specified FRAME, R&L qives a warninq. Otherwise,
there is a uniaue l6-bit displacement which, when added to the
address implicitly defined by LOCATION, will yield the relative
position of TARGET in the FRAME.

For 8089 self-relative references (F~), if TARGET is not within
32K from LOCATION, R&L qives a warninq. Otherwise, there is a
unique l6-bit siqned displacement between the LOCATION and the
TARGET.

If the LOCATION is an OFFSET, the displacement is added to
LOCATION modulo ~553~: no errors are reported.

If the LOCATION is a LOBYTE, the displacement
the range {-128:l27}, otherwise R&L will qive
displacement is added to LOCATION modulo 25~.

must be within
a warninq. The

17

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

If the LOCATION is a BASE. POINTER. or HIBYTE. it is unclear
what the translator had in mind, and the action taken by R&L is
defined by LINK-86 and/or LOCATE-86 EPS·s.

SEGMENT-RELATIVE FIXUPS

A seqment-relative fixup operates in the followinq way: a non
neqative l~-bit number, FBVAL, is defined as the FRAME NUMBER of the
FRAME specified by the fixup, and a signed 20-bit number, FOVAL, is
defined as the distance from the base of the FRAME to the TARGET.
If this signed 20-bit number is less than 0 or qreater than 65535,
then R&L will report an error. Otherwise FBVAL and FOVAL are used
to fixup LOCATION in the following fashion:

(1) if LOCATION is a POINTER" then FBVAL is added (modulo
65536) to the high order word of POINTER, and FOVAL is added (modulo
65536) to the low order word of POINTER.

(2) if LOCATION is a BASE, then FBVAL is added (modulo ~5536)
to the BASE; FOVAL is ignored.

(3) if LOCATION is an OFFSET. then FOVAL is added (modulo
65535) to the OFFSET; FBVAL is ignored.

(4) if LOCATION is a HIBYTE, then (FOVAL / 25~) is added
(modulo 25~) to the HI8YTEi FBVAL is iqnored. (The indicated
division is dinteqer division d • i.e •• the remainder is discarded.)

(5) if LOCATION is a LOBYTE, then (FOVAL modulo 255) is added
(modulo 256) to the LOBYTE; FaVAL is iqnored.

IN'rERMEDIATE VALUES in FIXUP ARITHI\1ETIC

The 8086 Object Module Formats quarantee fixups in the sense
that, if a TARGET can not be accessed from a LOCATION with the
assumed FRAME, then that failure can be detected and R&L can issue a
warninq messaqe. This checkinq is called daccess verification·l

• In
order to perform this checkinq, LINK-8~ and LOCATE-8~ need to retain
intermediate values of its address arithmetic. These intermediate
values are retained either in the DATA Record, or in the FIXUP
Record. The followinq diaqram illustrates three cases:

18

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object ~odule Formats Version 4.9

<---- in OATA Record ----> <--- in FIXUP Record --->
+------+ +------+------+

+n or +n <null> <--- Case 1
+------+ +-------+ ... ------+

+------+ +-~----+------+ +------+----~~+
q or q +n <--- Case 2

+------+
+------+

q or <--- Case 3
+------+

Case 1 illustrates the situation where a fixup is specified in
a "secondary" way. No explicit displacement 10' is provided in the
FIXUP Record, so arithmetic must be done in the LOCATION itself, in
the DATA Record. As tha diagram shows, the LOCATION may be a byte
or a word. (If LOCATION is a POINTER, arithmetic is on each half
separately, so the above diagram applies separately to each half of
a POINTER.) In Case 1, the value(s) in LOCATION are considered to
be non-negative numbers ("+n"', and are considered to be equivalent
to a specification of a displacement '0'; thus the R&L access
verification incorporates the value "+n".

Case 2 illustrates the situation where a fixup is specified in
a "primary" wa:'. An explicit displacement '0' is provided in the
FIXUP Record. This displacement is considered to be a non-neqative
number ("+n-). When all arithmetic required by the fixup is
complete, the resultant value (in the FIXUP Record) is checked for
validity by R&L, and then, finally, that result is added (modulo 256
or modulo 65536) to the oriqinalcontent of LOCATION C'q"). The
value d g " may be considered as non-negative, or as siqned 2's
complement; R&L doesn't care because there is no checkinq in this
final staqe of the fixup.

Case 3 is the same as Case 2, except that the displacement '0',
instead of beinq restricted to non-negative numbers in the range
{0:65535}, may represent signed (2's complement) numbers in the
ranqe {-1,048,576:1,048,575}. (Note: initially, this case will not
be supported. It is desiqned into the formats for completeness: it
allows support, with R&L access verification, of TARGET'S specified
in a "primary" way, with negative displacefl\ents 10

1
.)

Here are some cases ~here a "primary" specification of a TARGET
is necessary or desirable:

First, yet another definition: a -REFERENT" is a memory
location, with respect to which a TARGE'r is positioned. This is
best made clear by an example: in the specification

TARGET: EI(STRUCT) ,24
the TARGET is the 24'th byte after the location named "STRUCT"; the
REFERENT is the location named "STRUCT" itself.

19

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

(1) A 5 HORT-JMP is being made to an external subroutine. In
this case, the TARGET should be specified as

TARGET: EI(subroutine) ,0000H
The reason is that when LINK-86 learns where the subroutine is
located, it will probably be a known offset (dl) within some LSEG A.
Thus, LINK-8~ will convert the above TARGET to the form:

. TARGET: SI(A) ,dl
Now the programmer may be correct in dknowinq· that when the proqram
is eventually LOCATE'd, the TARGET will be within 128 bytes of
LOCATION; however, this does not mean that dl is less than l28!
Thus, as LINK-86 maintains the (possibly changing) value of dl as
various pieces of LSEG A are combined, it needs a full word to
maintain the offset. Since the LOCATION is a sinqle byte, the
translator must provide an offset field in the fixup record itself
for LINK-86 to maintain intermediate fixup values.

(2) The translator
REFERENT. For example, if
external array ARY, and
register that will contain
translator would use

wishes to reference ·backwards~ from the
the TARGET is the word in front of the

the reference is with respect to a base
the address of the LSEG named FOO, the

FRAME: SI(FOO)
TARGET: EI(ARY) ,0000H

and place the dneqative offset- FFFEH in LOCATION. R&L will perform
access verification to the REFERENT ARY: however, access to the
TARGET is not guaranteed, and is the programmer's responsibility.

Note: if Case 3 in the above diaqram were available, the
translator could use

FRAME: SI(FOO)
TARGET: EI(ARY) ,-2

and R&L would perform access verification, not to the REFERENT ARY
(as above), but to the actual TARGET (in front of ARY)!

(2) (continued) The calculation by LOCATE-Sfi involves 3
quantities: the MAS-location of FOO, the MAS-location of the LSEG
(say, BAZ) containing ARY, and the relative offset of ARY within
BAZ. LOCATE-86 can enforce that the final offset, which is the
difference

(location of SAZ plus relative offset) - (location of FOO) r

is not qreater than ~5535r provided that all quantities enterinq
into this difference are known.--rl~he translator had specified the
fixup as

FRAME: SI(FOO)
TARGET: EI(ARY)

then LINK-86 would have had to maintain the (possibly chanqinq from
linkaqe to linkaae) relative offset of ARY within BAZ. in the
LOCATION itself, where it qets ~added~ to the content FFFEH. And
because the R&L system cannot know if the FFFEH was a neoative 2 or
a positive ~5534, the access verification of R~L may thNart the
translator'S intentions.

20

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats version 4.9

~he followinq example (3) is a case where access verification
works whether the TARGET specification is ~primary~ or ·secondary-:

(3) The translator wishes to reference ·forwards~ from a
REFERENT, and to ensure that the TARGET lies within the specified
FRAME. For example, we wish to reference the l00'th byte in an
external structure STRCT. The translator may specify the fixup as

FRAME: SI(FOO)
TARGET: EI(STRCT) ,99

R&L will ensure that the distance. from the canonic FRAME of Foa to
the 190'th byte of STRCT is less than 6553~. (Note that this
constraint miqht be achieved even if STRCT lies outside the canonic
FRAME of FOO.)

(4) Hibyte fixups specified in a primary way will be correct
in that a full word is used to accumulate the value of an offset.
Only after LOCATE'inq will the value of the hibyte of an offset be
used as a fixup value. This prevents the loss of accuracy due to
truncation of low byte before addinq the address at which an object
is LOCATE'd.

21

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

RECORD ORDER

A object code file must contain a seauence of (one or more)
modules, or a library containing zero or more modules. A module is
defined as a collection of object code defined by a sequence of
object records. The followinq syntax shows the valid orderinqs of
records to form a module. In addition, the qiven semantic rules
provide information about how to interpret the record sequence. The
syntactic description lan~uage used herein is defined in WIRTH:
CACM, November 1977, v 20, nIl, p 822 - 823.

object~file = sequence I library.

sequence = module {module}.

library = LIBHEO {module} 1ibtail.

module

tmod

lmod

rmod

omod

sqr. table

sqor.table

seQ.qrp

= tmod I lmod I rmod omod.

= THEADR sqr;_table {component} modtail.

= LHEADR sQr.table {data} It_component} modtail.

= RHEADR sgr_table {data} It_component} modtail.

= RHEADR sqor_table {o,:.component} o·modtail.

= seq~grp [REGINT1.

= seq qrp {OVLDEF} [REGINT1.

= {LNAMES} {SEGDEF} { TYPDEF I EXTDEF I GRPDEF }.

o. component = {data} It_component} ENOREC.

t~component = THEADR {co~ponent}.

component = data I debuq. record.

data = content .. def
TYPDEF

thread·def I
PUBDEF I Ex'rDEF.

debuq. record = LOCSYM I LINNUM I DEBSYM I
BLKDEF I BLKENO I ENOREe.

content def = data record {FIXUPP}.

thread def = FIXUPP. (containinq only thread fields)

data record = LIDATA I LEDATA I PIDATA I PEDATA I
REDATA I HIDATA.

o modtail = {OVLDEF} modtail.

22

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.9

mod tail = [REGINT1 MODEND.

libtail = LIBNAM LIBLOC LIBDIC.

NOTE: The character strinqs represented by capital letters above
are not literals but are identifiers that are further defined in the
section defininq the Record Formats.

The following rules apply:

1. A FIXUPP record always refers to the previous DATA record.

2. The debug records have as their originatinq module the module
named by the nearest precedinq THEADR record.

3. All LNAMES, SEGDEF, GRPDEF, TYPDEF, and EXTDE~ records must
precede all records that refer to them.

4. COMENT records may appear anywhere within a file, except as the
first or last record in a file or module, within a content~def,
or within a libtail.

5. OVLDEF records may app~ar either immediately after the seqment
and qroup definitio~s or at the end (before the REGINT and
MODEND records), but not at both places. The number of OVLDEF
records must be equal to the number of 0 components, and the
order of these records must be same as the -0, component order,
the first OVLDEF record pointinq to the 'root'" part.

6 •. As with the OVLDEF records, the REGINT record may appear either
at the beqinninq of a module (after SEGDEF's, GRPDEF's, and
OVLDEF's if any) or at the end (before the MODEND record), but
there can not be two REGINT records in the same module.

23

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

!~~B~P~~TION.to. the. RECORD FO~MATS

The followinq paqes
schematic form. Here
conventions:

present diaqrams
is a sample, to

of Record
illustrate

Formats in
the various

SAMPLE, RECORD FORMAT ... -. --.. ---- - .
(SAMREC)

** *********************111********* II I 1***********
* * * * * *
* REC *
* TYP *

RECORD
LENG'rH

*
*

NAME *
*

NUMBER * CHK *
* SUM *

* xxH * * * * *
* * * * * *
***********************1//*********1111***********

I I
+----rpt----+

TITLE and OFFICIAL ABBREVIATION

At the top is the name of the Record Format Described, toqether
with an official abbreviation. To promote uniformity among various
programs, including translators, debuqqers, the various R&L
products, and various tools such as EDOJ9~ and OJED8~, the
abbreviation should be used in both code and documentation. The
abbreviation is always 6 letters.

'fhe BOXES

Each format is drawn with boxes of - two sizes. The narrow
boxes, outlined entirely with asterisks, represent sinqle bytes.
The wide boxes, outlined entirely with ~sterisks, represent two
bytes each. The wide boxes, outlined with asterisks, but with three
slashes in the top and bottom, represent a variable number of bytes,
one or more, depending upon content. The wide boxes, outlined with
asterisks, but with four vertical bars in the top and bottom,
represent 4-byte fields.

REC 'ryp

The first byte in each record contains a value between ~ and
255, indicatinq which record type the record is.

RECORD LENGTH

The second field in each record contains the number of bytes in
the record, exclusive of the first 2 fields.

NAME

24

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

Any field that indicates a ~NAMEd has the followinq internal
structure: the 1st byte contains a number between 0 and 40,
inclusive, that indicates the number of remaininq bytes in the
field. The remaininq bytes are interpreted as a byte string1 each
byte must represent the Ascii code of a character drawn from this
set: { ?(rl:. 0l2345f;789ABCDEFGHIJKLMNOPQRSTUVWXYZ }. Most
translators will choose to constrain the character set more
strictlY1 the above set has been chosen to McoverM that required by
all current processors.

NUMBER

A 4-byte NUMBER field represents a 32-bit unsiqned inteqer,
where the first 8 bits (least-siqnificant) are stored in the first
byte (lowest address), the next 8 bits are stored in the second
byte, etc.

REPEATED OR CONDITIONAL FIELDS

Some portions of a Record Format contain a field or series of
fields that may be repeated 0 or more times. Such portions are
indicated by the MrepeatedM or -rPt- brackets below the boxes.

Similarly, some portions of a Record Format are present only if
some qiven condition is true; these fields are indicated by simIlar
.1 cond i tional" or d cond" br ackets below the boxes.

CHK SUM

The last field irt each record is a check sum, which contains
the 2's complement of the sum (modulo 256) of all other bytes in the
record. Therefore, the sum (modulo 25~) of all bytes in the record
equals 0.

BI'r FIELDS

Descriptions of contents of fields will sometimes qet down to
the bit level. Boxes outlined in asterisks, but with vertical lines
drawn throuqh them, represent bytes or words; the vertical lines
indicate bit boundaries, thus the byte, represented below, has 3
bit-fields of 3-, 1-, and 4-bits:

*
*
*

*
*
*

25

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object Module Formats

T-MODULE HEADER RECORD
(THEAi5R)

***********************///***********
* * * * *
* REC *
* TYP *
* 80H *

RECORD
LENG'fH

* T
* MODULE
* NAME

* CHK *
* SUI" *
* *

* * * * *
***********************///***********

version 4.0

Every module output from a translator must have aT-MODULE
HEADER RECORD. Its purpose is to provide the identity of the
original defining module for all line numbers and local symbols
encountered in the module up to the followinq T-MODULE HEADER RECORD
or MODULE END RECOR[.

This record can also serve as the header for a module r i.e •• it
can be the first record, and will be for modules output from
translators.

T-MODULE NAME

The T-MODULE NAME provides a name for the T-Module.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

Lr~ODULE, HEADER RECORD
(LHEADR)

***********************///***********
* * * * *
* REC * RECORD * L-MODULE * CHK *
* TYP * LENGTH * NAME * SU~ *
* 82H * * * *
* * * * *
***********************///***********

Version 4.0

Every module previously created by (cross) LINK-86 (Vl.3 or
earlier) or by LOCATE-8~ may have an L-MODULE HEADER RECORD. This
record serves only to identify a module that has been processed
(output) by LINK-86/LOCATE-86. When several modules are linked to
form another module, the new module requires a name, perhaps unique
from those of the linked modules, by which it can be referred to (by
the LIS86 proqram, for example).

L-MODULE NAME

The L-MODULE NAME provides a name for the L-Module.

27

Download from Www.Somanuals.com. All Manuals Search And Download.

8~8~ Object Module Formats "er~ ion 4., ~

R-~ODULE HEADER RECORD
(RHEADR)

***********************///*********///*********///***********
* * * * * * *
* REC *
* TYP *
* 6EH *

RECORD
LENG'fH

* R-MODULE
* NAME
*

* R-MODULE
* ATTR
*

* R-MOOULE
* INFO
*

* CHK *
* SUI., *
* *

* * * * * * *
***********************///*********///*********///***********

Every module created by LINK-8~/LOCATE-8~ may have an R-MODULg
HEADER RECORD. This record serves to identify a module that has
been processed (output) by LINK-86/LOCATE-86. It also specifies the
module attributes and gives information on memory usaqe and need.
When several modules are linked to form another module, the new
module requires a name, perhaps unique from those of the linked
modules, by which it can be referred to (by the LIB8~ proqram, for
example).

R-MODULE NAME

The R-~ODULE NAME provides a name for the R-Module.

R-MODULE ATTR

The R-MODULE ATTR field provides information on various module
attributes, and has the following format:

************************·******~·~~************I' I 1*****
* * * * * *
* MOD * SEGil\ENT * GROUP * OVERLAY * OVERLAY *
* OAT * RECORD *. RECORD * RECORD * RECORD *
* * COUNT * COUNT * COUNT * OFFSET *
* * * * * *
1 I I 1**

The ~OD OAT sunfield has the followinq format:

* , , I t I *
*Z, Z I z, Z, Z I Z TYP *
* I , I , , I *

Zis indicates that these l-bit fields have not currently been
assigned a function. These bits are reauired to be zero.

28

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

TYP is a 2-bit su~field that specifies the module type. The
semantics are defined as follows:

TYP=0
TYP=l

TYP=2

TYP=3

The module is an absolute module.
The module is a relocatable module. Fixups
other than base fixups may still be present.
The module is a Position Independent Code module.
It can be loaded anywhere. No fixups are needed.
The module is a Load-Time Locatable Module.
It can be loaded anywhere with perhaps some base
fixups to be performed.

The SEGMENT RECORD COUNT subfield indicates the number of
Segment Definition Records in the module.

The GROOP RECORD COUNT subfield indicates the number of Group
Definition Records in the module.

The OVERLAY RECORD COUNT subfield indicates the number of
Overlay Definition Records in the module (including Overlay
Definition Record for the 'Root').

The OVERLAY RECORD OFFSET subfield is a 4-byte field. It
contains a 32-bit unsigned number indicatinq the location in bytes,
relative to the start of the object file, of the first Overlay
Definition Record in the module. This field must be zero when
OVERLAY RECORD COUNT is zero.

R-MODULE INFO

The R-MODULE INFO field contains a sequence of four 32-bit
unsiqned numbers specifyinq the different types and sizes (in bytes)
of memory space that the module will need. It has the followinq
fo rmat:

*****1111*********1 1'1*********1111*********' I' 1*****
* * * * *
* STATIC * ft4AXIMUM * DYNAMIC * MAXIMUM *
* SIZE * STATIC * STORAGE * DYNAMIC *
* * SIZE * * STORAGE *
* * * * *
*****1111*********1111*********' 111*********1111*****

STATIC SIZE is the total size of the LTL seqments in the
module. This is the mlnlmum static memory space that must be
allocated to the module so that the module can be loaded.

MAXIMU!"1 S'fATIC SIZE is the maximum total size of the LTL
seqments in the module. This value must be qreater than or equal to
S'rATIC SIZE. (By defaul t MAXIJ\1UM STATIC SIZE is set e~ual to STATIC
SIZE) This value only qives the maximum soace needed. Dependina on
available memory, the loader may allocate any value between the
STATIC SIZE and the MAXIMUM STATIC SIZE.

29

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

DYNAMIC STORAGE is the memory space that must be allocated (for
buffer, for dynamic expansion, etc •••) at load-time. The d&faUl·
value is zero.

MAXIMUM DYNAMIC STORAGE is the maximum dynamic memory that
miqht be needed by the module. This .value must be qreater than or
equal to DYNAMIC STORAGE (By default MAXIMUM DYNAMIC STORAGE value
is set equal to DYNAMIC STORAGE· value) •

30

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

LIST OF· NAMES. RECORD
------ (LNAMEST-' -"-' ...

***********************///***********
* * * * *
* REC * RECORD * NAME * CHK *
* TYP * LENGTH * * SUM *
* 9~H * * * *
* * * * *
***********************///***********

I 1
+----rpt----+

Version 4.0

This Record provides a list
followinq SEGDEF and GRPDEF Records
Classes, Overlays and/or Groups.

of Names
as the

that may be used in
names of Seqments,

The ordering of LNAMES Records within a module, toqether with
the ordering of Names within each LNAMES Record, induces an orderinq
on the Names. Thus, these names are considered to be numbered: 1,
2, 3, 4, ••• These numbers are used as dName Indices d in the
Segment Name Index, Class Name Index, Overlay Name Index and Group
Name Index fields of the SEGDEF and GRPDEF Records.

This repeatable field provides a name. which may have zero
lenq th.

11

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module formats

SEG~ENT DEFINITION. RECORD
(SEGDEF)

Version 4.0

**********************///*****************///*******///*******///**********
* * * * * * * * *
* REC * RECORD * SEGMENT * SEGi-\EN'r * SEGMEN'r * CLASS * OVERLA'l * CHK *
* 'r'll' * LENG'fH * ATTR * LENG'fH "* NAME * NAME * NAME * SUM *
* 98H * * * * INDEX * INDEX * INDEX * *
* * * * * * * * *
**********************///*****************///*******///*******///**********

I I
+----c 0 n d i t ion a 1----+

SEGI\1EN'r INDEX values 1 throuqh 327fi7, which are used in other
record types to refer to specific LSEG's, are defined implicitly by
the sequence in which SEGDEF Records appear in the object file.
(SEGMENT INDEX 0 is reserved to indicate the ·unnamed absolute
seqment", which is not really a seqment: it is a possibly empty set
of possibly disjoint regions of memory; it is normally created by
LOCATE-86, although translators may create portions of it as well,
if they wish.)

SEG, AT'rR

The SEG ATTR field provides information on various attributes
of the segment, and has the followinq forMat:

* * * * * * *
* ACB * FRAME * OFF * LTL * MAXIMU,., * GROUP *
* p * NUMBER * SET * OAT * SEG,..,EN'r * OFFSET *
* * * * * LENG'rH * *
* * * * * * *

I
+---conditional---+--- con ~ i t ion a 1 ---+

The ACBP byte contains 4 numbers, the A, C, B, and P attribute
specifications. This byte has the following format:

* I , *
* A C I B I P *
* , I *

A (Alionment) is a 3-bit subfield that soecifies the aliqnment

32

Download from Www.Somanuals.com. All Manuals Search And Download.

d086 Object Module Formats version 4.0

attribute of the LSEG. The semantics are defined as follows:

A=0 SEGDEF describes an absolute LSEG.
A=l SEGDEF describes a relocatable, byte aliqned LSEG.
A=2 SEGDEF describes a relocatable, word aliqned LSEG.
A=3 SEGDEF describes a relocatable, paraqraph aligned LSEG.
A=4 SEGDEF describes a relocatable, paqe aligned LSEG.
A=5 SEGDEF describes an unnamed absolute portion of MAS.
A=6 SEGDEF describes a load-time locatable (LTL), paraqraph

aligned LSEG if not member of any qroup.

In addition the value of A determines if one or several
··conditional·· fields will be present. If A=0 or A=5 then the FRAME
NUMBER and OFFSET fields will be present. If A=6 then the LTL OAT,
MAXIMU~ SEGMENT LENGTH, and GROUP OFFSET fields will be present. If
A<>5 then the three NAME INDEX fields will be present.

C (Combination) is a 3-bit subfield that specifies the
combination attribute of the LSEG. Absolute seqments (A=0 or A=5)
must have combination zero (C=0). In this case the seqments will be
combined like C=6 below if and only if their FRAME NUMBER's and
OFFSET's match (For A=0 their complete names Must match as well).
For relocatable segments, the C field encodes a number 0,1,2,4,5,6
or 7 indicatinq how the segment may be combined. The interpretation
of this attribute is best qiven by considerinq how two LSEG's are
combined: Let X,Y be LSEG's, and let Z -be the LSEG resulting from
the combination of X,Y. Let LX and LY be the lenqths of X and Y,
and let MXY denote the maximum of LX,LY. Let G be the length of any
gap required between the X- and Y-components of Z to accommodate the
aliqnment attribute of Y. Let LZ denote the length of the
(combined) LSEG Zi let dx (0<=dx<LX) be the offset in X of a byte,
and let dy similarly be the offset in Y of a byte. Then the
followinq table qives the lenqth LZ of the combined LSEG Z, and the
offsets dx' and dye in Z for the bytes correspondinq to dx in X and
dy in Y:

C LZ dx' ~y~
'2 LX+LY+G di- dy+LX+G
4 LX+LY dx dy
5 LX+LY dx+LY dy+LX
~ MXY dx dy
7 I~XY dx+MXY-LX dy+MXY-LY

The above table has no lines for C=0, C=l or C=3. C=0
indicates that the relocatable LSEG may not be combined; C=l has the
same combination semantics as C=6, but addition~lly "distinquishes"
the LSEG so that LOCATE-8~ will (in the default case) place the LSEG
above all other LSEG's in MAS (this corresponds to the MEMORY
seqment semantics of 8080 R&L); C=3 is undefined.

B (Big) is a I-bit subfield which. if 1, indicates that the
Seament Lenqth is exactly ~4K (6553fi). In this case the SEGMENT
LENGTH field must contain zero.

33

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

P (Paqe-Resident) is a l-bit subfield which, if 1, demands that
the seqment be located in ~AS without crossinq a page boundary.
·(This corresponds to the Min-paqe- relocation type of 8080 R&L.)

The FRAME NUMBER and OFFSET fields (present only for absolute
seqments, A-9 or A-5) specify the placement in MAS of the absolute
segment. The range of OFFSET i$ constrained to be between 0 and 15
inclusive. If a value larQer than 15 is desired for OFFSET then an
adjustment of the FRAME NUMBER should be done.

The LTL OAT subfield
specifies the attributes
format:

(present only for
of an LTL seqment.

LTL seqments, A=n)
It has the followinq

* I I I I I I I *
* G I Z 1 z 1 z I Z I Z I Z 18SM*
* I I I I I I I *

- zls indicate that these I-bit fields have- not currently been
assigned a function. These bits are required to be zero.

G (Group) is a I-bit field that, if 1, specifies that the
seqment is a member of a group, and should be loaded as a part of
the group.

BSM (Big Segment ~aximum Length) is a I-bit field that, if 1,
specifies that the maximum segment lenqth is exactly ~4K. In this
case the MAXIMUM SEGMENT LENGTH must contain zero.

The MAXIMUM SEGMENT LENGTH subfield (present· only for LTL
seqments, A=6) specifies the maximum length in bytes of the LTL
segment. (The purpose of this field is to provide information to· a
loader as to reserve memory space as much as possible up to the
value in this field.) This va~.ue must be qreater than or equal to
the value in the SEGMENT LENGTH field. The MAXIMUM SEGMENT LENGTH
field is only big enouqh to hold numbers from 0 to n4K-l inclusive.
The 8SM attribute bit in the LTL OAT field (see above) must be used
to give the seqment a MAXIMU~ length of h4K.

The GROUP OFFSET subfield (present only for LTL seoments, A=6)
qives the offset of the first byte of the seqment relative to the
base of the parent qroup. It must be zero if the G bit is 0. This
value will be used by the loader to determine the location relative
to the qroup base of the data records belonainq to the seornent.

SEGMENT LENGTH

The SEGMENT LENGTH field qives the lenqth of the seq~ent in
bytes. The lenqth may be zero: if so, LINK-3~ (unlike LINK-SO) will
not delete the segment from the module. The SEG~ENT LENGTH field is
only bi~ enouqh to hold numbers from a to ~4K-l inclusive. The 8

34

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

attribute bit in the ACBP field (see above) must be used to give the
segment a length of 64K.

SEGMENT NAME INDEX -------.
The Segment Name is a name the programmer or translator assigns

to the segment. Examples: CODE, DATA, TAXDATA, MODULENAME CODE,
STACK. This field provides the Segment Name, by indexing into the
l;st of names provided by the LNAMES Record(s).

CLASS NAME INDEX

The Class Name is a name the proqrammer or translator can
assign to a segment. (If none is assigned, the name is null, and
has length 0.) The purpose of Class Names is to ,allow the
programmer to define a -candle· by which several LSEG's. may be
referred to (e.g. at LOCATE-time) by a single reference. Examples:
RED, WHITE, BLUE; ROM, FASTRAM, DISPLAYRAM. This field provides the
Class Name, by indexing into the list of names provided by the
LNAMES Record(s).

OVERLAY NAME INDEX

The Overlay Name is a name the translator and/or LINK-86, at
the programmer's behest, apply to a segment. The OVerlay Name, like
the Class Name, may be null. This field provides the Overlay Name,
by indexing into the list of names provided by the LNAMES Record(s).

(Note) The MComplete Name- of a segment is a 3-
component entity comprising a Segment Name, a Class
Name and an Overlay Name. (The latter 2 components
may be null.) (End of Note)

35

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

GROUP DEFINITiON RECORD
.......--..-..-- (GRPDEF)

***********************///**********///************
* * * * * *
* REC * RECORD * GROUP * GROUP * CHK *
* TYP * LENGTH * NAME * COMPONENT * SUM *
* 9AH * * INDEX * DESCRIPTOR * *
* * * * * *
***********************///**********///************

I I
+--repeated---+

GROUP NAME INDEX

Version 4.0

The Group Name is a name by which a collection of 1 or more
LSEG's may be referenced. The important property of such a qroup is
that. when the LSEG's are eventuallv fixed in MAS, there must exist
some FRAME which contains (or ~cove~sd) every LSEG of the qroup. If
this is not the case, LOCATE-8~ will issue a warning message.

The GROUP NAME INDEX field provides the Group Name, by indexinq
into the list of names provided by the LNAMES Record(s).

3t5

GROUP COMPONENT DESCRIPTOR

Each GROUP COMPONENT DESCRIPTOR has 1 of the followinq formats:

***********///*****
* * *
~ 51 * SEGMENT *
* * INDEX *
(FFH)
* *

*
*

***********///*****

***********///*****
* * *
* EI .* EXTERNAL *
* * INDEX *
(FEH) *
* * *
***********///*****

Download from Www.Somanuals.com. All Manuals Search And Download.

8186 Object Module Formats Version 4.1

***********///*********///*********///*****
* * * * *
* sea * SEGMENT * CLASS • OVERLAY *
* * NAME * NAME * NAME *
(FDH) INDEX * INDEX • INDEX *
* * * * *
***********///*********///********///******

* * * * *
• LTL * LTL * MAXIMUM * GROUP *
* GRP * OAT * GROUP * LENGTH *
(FBH) * LENGTH * *
* * * * *

* * * *
* ASS * FRAME * OFF *
* GRP * NUMBER * SET *
(FAH) * *
* * * *

These 5 kinds of DESCRIPTOR's are now discussed:

If the first byte of the DESCRIPTOR contains 0FFH, then the
DESCRIPTOR contains 1 more field, which is a SEGMgNT INDEX that
selects the LSEG described by a precedinq SEGDEF record.

If the first byte of the descriptor contains 0FEH, then the
DESCRIPTOR contains 1 more field, which is an EXTERNAL INDEX that
selects the LSEG that is (eventually) found to contain the specified
External Name.

(Note) If the definition of the External Index is
(eventually) found to be physical instead of logical
(i.e., the External is defined with respect to a PSEG
rather than an LSEG), then an error in qroup
specification has occurred. (End of note)

If the first byte of the DESCRIPTOR contains 0FDH, then the
DESCRIPTOR contains 3 more fields, which are Name Index fields,
which determine one or more Segment Name(s), Class Name{s), and
Overlay Name(s). respectively. This DESCRIPTOR allows a translator
or proqrammer to include in a ~roup, one or more LSEG's from
separate translations (for which SEG~ENT INDEX's cannot be known).

37

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

A Name Index with value zero carries special siqnificance: it
specifies all ~ames. (Note: Name Indices with zero value may not
occur in other record types.)

If the first byte of the DESCRIPTOR contains 0FBH. then the
DESCRIPTOR contains 3 more fields. which are the LTL OAT field. the
maximum length of the qroup, and the lenqth of the qroup. This
descriptor, if present. must· precede all other descriptors in the
record. There may be at most one descriptor of this type in a
GRPDEF record. There may not be any absolute component in the
qroup. A seqment can not be in two such qroups.

The LTL DATA field has the followinq format:

* I I I I I I , *
* Z I Z I Z I Z I Z I Z IBGLIBGM*
* I I I I I I I *

Zis indicate that these I-bit fields have not currently
assigned a function. These bits are required to be zero.

been

BGL (Biq Group Lenqth) is a I-bit subfield that. if 1.
specifies that the Group lenqth is exactly 64K. In this case the
GROUP LENGTH subfield must contain zero.

BGM (Biq Group Maximum Lenqth) is a I-bit subfield that, if 1,
specifies that the maximum qroup length is exactly ~4K. In this
case the MAXIMUM GROUP LENGTH subfield must contain zero.

The GROUP LENGTH subfield specifies the length of the group
that has been determined after the Group is ~locatedM, and the
seqments in the group arc put in contiquous memory area. All fixups
have been performed relative to the base of the Group.

The MAXIMU~ GROUP LENGTH subfield specifies the maximum lenqth . . ~
of the qroup that has been determined after the Group is ~located",
using the maximum lenqths of the segment components.

·If the first byte of the DESCRIPTOR contains 0FAH, then the
DESCRIPTOR contains the address of the Group. Once a Group has been
LOCATEd. it has an address chosen by LOCA rrE-8f), relative to which
all fixups have been performed. If fixups relative to the Group
base are required after LOCATE-8~ has assiqned an address to the
Group then the FRAME. NU~BER should be used as the base. The address
of the Group is also available for debuqqinq systems such as ICE.
If a Group has been assiqned an address by LOCATE-86 then it is
absolute and this descriptor must precede all other descriptors in
the record. There may be at most one descriptor of this type in a
GRPDEr"' reco rd.

38

Download from Www.Somanuals.com. All Manuals Search And Download.

80B6 Object Module Formats Version 4.0

(Examples) Assume that an LNAMES record exists such that the
names "DATA", I' RAM 'I , It MYPROG" , "CODE", .. " (null), "STACK-" "CONST"
and "MEMORY" are selected by Name Index values of 1, 2, 3, 4, 5, 6,
7 and 8, respectively •.

The Descriptor with 4 fields: [eFDH, 3, 1, 11 specifies the
LSEG with S'eqment Name "MYPROG", Class Name "DATA", and Overlay Name
"DATA" •

The Descriptor with fields: {0FDH, 3, 1, 51 specifies the LSEG
with Segment Name "MYPROG-, Class Name "DATA", and no (or ·null-# or
"unspecified") Overlay Name.

The Descriptor with fields: (eFDH, 3, 1, 01 specifies any and
all LSEG's with Seqment Name "MYPROG" and Class Name ·DATA II

,

regardless of their Overlay Name(s).

The PLM-86 compile~ will be able to inform LOCATE-86 of the
"Small" assumptions by emitting 2 GRPOEF (Group Definition) Records:
one contains the sinqle descriptor {0FDH, 4, 4, 51, the other
contains the descriptors [0FOH, 1, 1, 51, [eFDH, 6, 6, 51,
[eFOH, 7, 7, 5], and [~FDH, 8, 8, 5]. (End of Examples)

39

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

TYPE DEFINITION RECORD
-----(TyPDEF)-----

Version 4.9

************************///*********///************
* * * * * *
* REC * RECORD * NAME * EIGHT * CHK *
* TY P * LENGTH * (L"INK86 * LEAF * SUM *
* SEH * * USE) * DESCRIPTOR * *
* * * * * *
************************///*********///************

I I
+-----rpt----+

This record provides the description of the type of an object
or objects presumably named by one or more names provided in PU6DEF,
EXTDEF, BLKDEF, DEBSYI~ and/or LOCSY~ records. The type is described
as a Branch, which consists of a sequence of Leaves. The types
supported, and the correspondinq branches, are provided in an
appendix.

As many II EIGHT LEAF DESeRI PTOR" fields as necessary ,are used to
describe a branch. (Every such field except the last in the record
describes eiqht leaves; the last such field describes from one to
eiqht leaves.)

TYPE INDEX values 1 through 32767, which are contained in other
record types to associate ohject types with object names, are
defined implicitly by the sequence in which TYPDEF records appear in
the obj ect file.

Use of this field is reserved for LINK-8~. Translators should
place a sinqle byte containinq 3 in it (which is the representation
of a name of lenqth zero).

EIGHT LEAF DESCRIPTOR

This field can describe up to eiqht Leaves. If; more than eight,
Leaves are to be represented, the field may be repeated as
necessary. Unless the last leaf is a Repeat Leaf (see below), the
Branch is deemed to end in an indefinite sequence of easy null
leaves. This field has the followinq format:

***********///******
* * *
* E * LEAF *
* ~ * DESCRIPTOR *
*
*

*
*

*
*

***********///******
I I
+----rpt-----+

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4."

The EN field is a byte: the 8 bits, left to riqht, indicate if
the following 8 Leaves (left to riqht) are Easy (bit=0) or Nice
(bit=l) •

The LEAF DESCRIPTOR field. which occurs between 1 and 8 times,
has one of the followinq formats:

* *
* 0 *
* to *
* 128 *
* *

* * *
* * ·0 *
* 129 *
* *
* *

to
64K-1

*
*
*

***********///*****
* * *
* *
* 130 *
* *

NAME
*
*
*

* * *
***********///*****

***********///*****
* * *
* * *
* 131 * INDEX *
* * *
* * *
***********//1-*****

* * *
* *
* 132 *
* *
* *

e
to

11;M-1

*
*
*
*

41

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

* *
* *
* 133 *
* *
* *

* * *
* *-127 *
* 134 * to *
* *+127 *
* * *

* * *
* * -32K *
* 135 * to *
* * +32K *
* * *

**************************.***
* * *
* * 4-byte signed *
* 136 * integer *
* * *
* * *

The sinqle byte, containinq a value between 0
reoresents a Numeric Leaf or a Null Leaf. If the value is
represents a Null Leaf. If the value is less than
represents a Numeric Leaf with the indicated inteqer number.

anti 128
128. j t

128, it

The second form, with a leadinq byte containinq 129, represents
a Numeric Leaf. The number is contained in the followinq 2 bytes.

The third form, with a leadinq byte containinq 130, represents
a String Leaf. The field followinq the leadinq byte represents the
string, in OMF's standard representation.

The fourth form, with a leadinq byte containino 131, represents
an Index Leaf. The field fo1lowinq the leadinq byte represents an
Index, which is a number between 0 and 32K~., in OMF's standard
representation. Recursively defined types are allowed.

The fifth form, with a leading byte containinq 132, represents
a Numeric Leaf. The number is contained in the fo11owinq 3 bytes.

42

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

'fhe sixth
Repeat Leaf can
last leaf of
considered to
considered to
leaves.

form, ~ sinqle byte of 133, is a Repeat Leaf. A
only occur as the last leaf of a Branch. If the
a branch is a Repeat Leaf then the previous leaf is
repeat indefinitely. Otherwise the 'Branch is
end in an indefinitely lonq sequence of easy Null

The seventh form, with a leading byte containing 134,
represents a Siqned Numeric Leaf. The number is contained in the
followinq byte, which will be siqned extended if neccessary.

The eighth form, with a leading byte containing 135. represents
a Signed Numeric Leaf. The number is contained in the following 2
bytes, signed extended if neccessary.

'rhe ninth fo rm, wi th a lead in~ byte conta in inq 13;, represents
a Signed Numeric Leaf. The number is contained in the following 4
bytes, siqned extended if necessary.

43

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4."

PUBLIC NAMES DEFINITION RECORD
-------(PUBDEF)-----

***********************///*********///*********************///***********
* * * * * * * *
* REC * RECORD * PUBLIC * P~BLIC * PUBLIC * TYPE * CHK *
* TYP * LENG'rH * BASE * NAME * OFFSET * INDEX * SU,4 *
* 90H * * * * * * *
* * * * * * * *
***********************///*********///*********************///***********

I ,
+-------------repeated--------------+

This record provides a list of 1 or more PUBLIC NAME's; for
each one, 3 datums are provided: (1) a base value for the na~e, (2)
the offset value of the name, and (3) the type of entity represented
by the name.

PUSLIC BASE

The PUBLIC BASE has the followinq format:

*****///*********///*****************
* * * *
*
*
*

GROUP
INDEX

* SEGMENT *
* INDEX *
* *

FRAME *
NUMBER *

*
* * * *
*****///*********///*****************

, I
+conditional+

The GROUP INDEX field has a format qiven earlier, and provides
a number between 0 and 32767 inclusive. A non-zero GROUP INDEX
"associates· a qroup with the public sym~ol, and is used as
described on paqe 16, case (F2c). A zero GROUP INDEX indicates that
there is no associated qroup.

The SEGMENT INDEX field has a format qiven earlier, and
provides a number between 0 and 327~7 inclusive.

A non-zero SEGMEN~ INDEX selects an LSEG, in which case the
location of each public symbol defined in the record is taken as a
non-neqative displacement (qiven by a PUBLIC OFFSET field) from the
first byte of the selected LSEG, and the FRAME NU~BER field must be
absent.

A SEGMENT INDEX of 0 (leaal only if GROUP INDEX is also ~)
means that the location of each public symbol defined in the record
is taken ~s a displacement from the base of the FRAM~ rlefined by the
value in the FRAME NU~8ER field.

44

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

(Informal Discussion) The FRAME NUMBER is present iff
both the SEGMENT INDEX and GROUP INDEX are zero.

A non-zero GROUP INDEX selects some qroup1 this group
is taken as the -frame of reference- for references to all
public symbols defined in this record, e.q., LINK-86 and
LOCATE-86 will perform the following actions: (1) Any
fixup of the form:

TARGET: El (P)
FRAME: TARGET

(where .pM is a public symbol in this PUBDEF record) will
be converted by LINK-86 to a fixup of the form:

TARGET: SI(L),d
FRAME: GI (G)

where M SI (L)" and "d" are provided by the SEGMENT I,NDEX
and PUBLIC OFFSET fields. (The Mnormalft action would have
the frame specifier in the new fixup be the same as in the
old fixup, viz.: FRAME: TARGET.) (2) When the value of a
public symbol, as defined by the SEGMENT INDEX. PUBLIC
OFFSET, and (optionally) FRAME NUMBER fields, is converted
to a {base,offset} pair, the base part will be taken as
the base of the indicated group. (If a non-neqative 16-
bit offset cannot then complete the definition of the
public symbol's value, an error will occur.)

A GROUP INDEX of zero selects no qroup. LINK-S6 will
not alter the FRAME specification of fixups referencing
the symbol, and LOCATE-86 will take, as the base part of
the absolute value of the public symbol, the canonic frame
of the segment (either LSEG or PSEG) determined by the
SEG~ENT INDEX field. (End of Informal Discussion)

puaLIC NAME

The PUBLIC NAME field qives the name of the object whose
location in MAS is to be made available to other modules. The name
must contain 1 or more characters.

(Note) R&L's only cdnstraint upon the characters
in names is that they lie within the range 20H (space)
throuqh 7EH" (tilde) inclusive. Other characters may
be used, but may produce awkward results when output
to listing devices, etc.

However, translators may proscribe the admissible
character set more strictly. (End of Note)

PUBLIC OFFSET

The PUBLIC OFFSET field is a l~-bit value, which is either the
offset of the Public Symbol with respect to an LSEG (if SEG~EN'r
INDEX > 0), or the offset of the Public Symbol with respect to the
specified FRA~E (if SEGMENT INDEX = ~).

as

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.0

TYPE INDEX

The TYPE INDEX field identifies a sinqle precedinq TYPDEF (Type
Definition) Record containinq a descriptor for the typ~ of entity
represented by the Public Symbol.

Download from Www.Somanuals.com. All Manuals Search And Download.

898n Object Module Formats version 4.0

EXT~RNAL ... !AMES DEFINITION RECORD
(EXTDEF)

***********************///*********///***********
* * * * * *
* REC * RECORD * EXTERNAL * TYPE * C~K *
* TYP * LENGTH * NAME * INDEX * SUM *
* 8CH * * * * *
* * * * * *
***********************///*********///*********** , ,

+-------repeated--------+

This Record provides a list of external names, an~ for each
such name, the type of object it represents. LINK-S6 will assign to
each External Name the value provided by an identical Public ~ame
(if such a name is found). orovided that the two names name objects
of the same type.

EXTERNAL. NAME .. _._ .. _--
This field provides the name, which must have non-zero lenqth,

of an external object.

Inclusion of a Name in an External Names Record is an implicit
request that the object file be linked to a module containinq the
same name declared as a Public Symbol. This request obtains whether
or not the External Name is actually referenced within some FIXUPP
Record in the module.

The orderinq of EXTDEF Records within a module, tOQether with
the orderinq of External Names within each EXTDEF Record, induces an
orderinq on the set of all External Names requested by the module.
Thus, External Names are considered to be numbered: 1,2,3,4, •••
These numbers are used as II External Indices" in the TARGET DATUM
and/or FRAME DATUM fields of FIXUPP Records, in order to refer to a
particular External Name. The format of an External Index has been
given earlfer.

(Caution) 808~ External Names are numbered
positively: 1,2,3,... This is a chanqe from S080
gxternal Names, which were numbered startinq from
zero: ",1,2, ••. The reason is to conform with other
808~ Indices (Seqment Index, Type Index, etc.) which
use 3 as a default value with special meaninq. (End
of Caution)

External indices may not be forward referrinq. That is to say,
an external definition record definina the kith object must precede
any record referring to that object with index k.

47

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

T~il·E. INDEX

This field identifies a
Definition) Record containinq
named by the External Symbol.

48

Version 4.0

sinqle precedina TYPDEF (Type
a descriptor for the type of object

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

LOCAL SY~BOLS. RECORD
(LOCSYl~)

***********************///*********///*********************///***********
* * * * * * * *
* REC * RECORD * LOCAL * LOCAL * LOCAL * TYPE * CHK *
* TYP * LENGTH * SYMBOLS * SYMBOL * SY~BOL * INDEX * SUM *
* 928 * * BASE * NAME * OFFSET * * *
* * * * * * * *
***********************///*********///*********************///***********

I I
+-------------repeated--------------+

This record provides information about symbols that were used
in the source proqram input to the translator which produced the
module. The purpose of this information is to aid ICE and other
debugging proqrams.

The information provided by the LOCSYM record is processed but
not used by the R&L products.

The symbols in the record were originally defined in a source
module of name given by the most recently precedinq T-MODULE HEADER
reco rd.

LOCAL SYMBOLS BASE

The LOCAL SY~BOLS BASE has the followinq format:

*****///*********///*****************
* * * *
* GROUP * SEGMENT * FRAME *
* INDEX * INDEX * NUI~BER *
* * * *
* * * *
*****///*********///*****************

I I
+conditional+

The LOCAL SY,\<\BOLS BASE provides two thinas: (1) it qives a
dreferent~ value (location in ~AS) , with respect to which the value
(location in MAS) of every symbol in the record will be defined by
qivinq, for each symbol in the record, a non-neqative offset; and
(2) it gives an indication to LOCATE-8~ as to how the final (20-bit)
values of the symbols should be decomposed into {base,offset} pairs.

The referent value is qiven by the SEGMENT INDEX or by the
FRA~E NUMBER. If the SEGMENT INDEX field contains a number oreater
than ~, then the referent value is the location 6f the canonic frame

49

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.0

of the LSEG specified by the SEGMENT INDEX. (There must be no FRAME
NUMBER field in this case.) If both the GROUP INDEX field and the
SEGMENT INDEX field contain zero, then the next field is a FRAME
NU~BER: in this case, the referent value is the location of the
first byte of the specified frame.

If the GROUP INDEX is zero,-the base will be the canonic fra~e
of the LSEG specified by the SEGMENT INDEX (if non-zero), or by the
FRAME NU~BER (if SEGMENT INDEX field contains zero). If the GROUP
INDEX is non-zero, the base will be the canonic frame of the GroQP
specified by the GROUP INDEX. (If the value of a symbol cannot be
described with respect to such a base, then LOCATE-8~ will give a
warninq.)

(Note) When GROUP INDEX is > 3, then one must also
have SEGMENT INDEX> 0. (End of note)

LOCAL SYMBOL NAME

This field provides the name of the symbol.

LOCAL S~~BOL OFFSET

The LOCAL SYMBOL OFFSET is a l~-bit value, which is either the
offset of the Local Symbol with respect to an LSEG (if SEGMENT INDEX
> 0), or the offset of the Local Synbol with respect to the
specified FAAME (if SEGP1EN'r INDEX = 0).

TYPE INDEX

The TYPE INDEX field identifies a sinale preceding TYPDEF
Hecord containing a ~escriptor for the ty~e of entity represented by
the Local Symbol.

50

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.0

LINE NUMBERS RECORD
(LINNUM)

***********************///***********************************
* * * * * * *
* REC * RECORD * LINE * LINE * LINE * CHK *
* TYP * LENGTH * NUMBER * NUMBER * NUMBER * SUM *
* 94H * * BASE * * OFFSET * *
* * * * * * *
***********************///***********************************

I I
+--------repeated-------+

This record provides the means by which a translator may pass
to a debugger proqram, the correspondence between a line number in
source code and the correspondinq translated code.

Since several independent source modules, with independent line
numberinq, may be linked to form a sinqle module, a full
identification of a source text line must include both its number,
and also the name of the original containinq module. The latter
identification is provided by the previous T-MODULE HEADER Record.

LINE NU!\1BER SASE

The LINE NUMBER BASE has the following format:

*****///*********///*****************
* * * *
*
*
*

GROUP
INDEX

*
*
*

SEGMENT *
INDEX *

*

FRAME
NUMBER

*
*
*

* * * *
*****///*********///*****************

I ,
+conditional+

The LINE NU~BER BA~~ has the same format and interpretation as
the LOCAL SY~BOL BASE described for the LOCSYM record. The SEGMENT
INDEX and (if present) the FRAME NUMBER fields determine the
location of the first byte of code correspondinq to some source line
number. This location may be physical (SEGMENT INDEX is 0) or
logical (SEGMENT INDEX is non-zero). The value of the GROUP INDEX
field, if non-zero, informs LOCATE-8h what base-part to use for
describing the final, 20-bit location of the code line. An example
shows the use of a non-zero Group Index: A translator knows that
the code segment it is compiling is ~ut one LSEG of many in a Group,
and thus references to pieces of the code seqment are fixed up under
the assumption that the appropriate seqment register contains the
location of the base of the group. At debuq time, the user may tell

51

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Ob·ject Module Formats Version 4.0

ICE-86 to -GO TO LINE NUMBER 22 OF MODULE MODNAME M
• ICE-8~ may

respond by executinq a lonq jump to the appropriate location. This
long jump will set the CS register; it is important that the CS
register be set in accordance with the assumptions made while
translating the code. This is the purpose of the GROUP INDEX field.

LINE NUMBER ------
A line number between Band 32767, inclusive, is provided in

binary by this field. The high order bit is reserved for future use
and must be zero.

LINE NUMBER OFFSET ,-------_._-
The LINE NUMBER OFFSET field is a l6-bit value, which is either

the offset of the line number with respect to an LSEG (if SEGMENT
INDEX> 8), or the offset of the line number with respect to the
specified FRAME (if SEGMEN'r INDEX = 0).

52

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

BLOCK DEFINITION RECORD
--------(SLKDEF'-------

**********************///**********///*********///*********///***********
* * * * * * *

"REC * RECORD * BLOCK * BLOCK * PROCEDURE * TYPE * CHK *
TYP * LENGTH * BASE *INFORMATION*INFOR~ATION* INDEX * SUM *
7AH * * * * * * *

* * * * * * *
**********************///**********///*********///*********///***********

, I
+conditional+

This record provides information about blocks that were defined
in the source program input to the translator which produced the
module. A BLKDEF record will he qenerated for every procedure and
for every block that contains variables. The purpose of this
information is to aid ICE and other debuQginq proqrams.

The information provided by the BLKDEF record is processed but
not used by the R&L products.

The blocK in the record was oriqinally defined in a source
module of name given by the most recently precedina THEADR record.

BLOCK INDEX values, used in the DEBSYi~ record, are defined
implicitly by the sequence of BLKDEF records in the T-MODULE.

BLOCK BASE

The BLOCK eASE has the followinq format:

*****///*********///*****************
* * * *
* GROUP * SEGMENT * FRAME *
* INDEX * INDEX * NUMBER *
* * * *
* * * *
*****///*********///***************** , ,

+conditional+

The BLOCK eASE has the same format and interpretation as the
LOCAL SYMBOL BASE described for the LOCSY~ record.

53

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.0

SLOCK INFOR~ATIO~

The BLOCK INFORMATION block has the followinq format:

NAME

*****///*****************************
* * * *
* * BLOCK * BLOCK *
* NAME * OFFSET * LENG'rH *
* * * *
* * * *
*****///*****************************

This field contains the name of the block.
describes an unnamed block in the source code (e.q.
no label in PL/M) the NAME will be of lenqth 0.

BLOCK OFFSET -... -._---.....------

If the record
a DO block with

The BLOCK OFFSET is a l~-bit value which is the offset of the
1st byte of the block with respect to the referent value specified
by the BLOCK BASE.

BLOCK LENGTH

This field qives the lenqth of the hlock in bytes.

54

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object I~dule Formats Version 4.0

PROCEDURE INFORMATION

The PROCEDURE INFOR~ATION block has the followinq format:

**
* , I I I I I I *
* I I I I I I I *
PILI010101010IB
* , I I , , I I *
* , I I I , I I *

RETURN
ADDRESS

OFFSET

*
*
*
*
*

**

+----------conditional-----------+

The P (Procedure) bit, if 1, indicates that the BLKDEF record
was generated from a procedure in the source. The RETURN ADDRESS
OFFSET is present only if P=l.

The L (LONG) bit tells whether the return address is a 4-byte
value (CS and IP) or a 2-byte value (IP only) •

L=0 -> 2-byte return address
L=l -> 4-byte return address

If P=0 the L bit has no meaning and is required to be O.

The RETURN ADDRESS OFFSET, a l~-bit value, is the hyte offset
(from BP) of the procedure's return address in the procedure's
activation record on the stack.

TYPE INDEX

The TYPE INDEX field identifies a sinqle precedinq TYPDEF
record containinq the type descriptor for the procedure or block
name. This field is present only if the NAME is non-zero.

(Note) Symbols defined in BLKDEF
should not be repeated in DEBSY~ records.
Note)

reco rd s
(End of

55

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object Module Formats Version 4."

BLOCK ENn RECORD
(BLKEND)

* * * *
* REC * RECORD * CHK *
* TYP * LENGTH * SUM *
* 7CH * * *
* * * *

This record, toqether with the BLKDEF record, provides
information about the scope of variables in. the source program.
Each BLKOEF reco rd must be followed by a 8LKE~D record. The order
of the BLKDEF. debuq symbol records. and BLKENDs should reflect the
order of declaration in the source module.

5~

(Note) For translators whose variables don't have
scope (e.q. AS~86) the orderina of the records
need not reflect the order of declaration in the
source module. (End of Note)

Download from Www.Somanuals.com. All Manuals Search And Download.

808#; O,?ject Module Formats Version 4.(')

DEBUG. SYMBOLS. RECORD
--.---- - -{OEBSYM)

~*********************///*********///*********************///***********

* * * * * * *
REC * RECORD * FRAME * SYMBOL * * TYPE * CaK *
TYP * LENGTH *INFORMATION* NAME * OFFSET * INDEX * SUM *
7 EH * * * * * * *

* * * * * * *
~*********************///*********///*********************///***********

I I
+-------------repeated--------------+

This record provides information about all local symbols
includinq stack and based symbols. The purpose of this information
is to aid ICE and other debuqqinq programs.

The information in this record is processed but not used by the
R& L prod ucts.

The symbols in the ~ecord were oriqinally defined in a source
module of name qiven by the most recently precedinq T-~ODULE HEADER
record.

The scope of the symbols in the
block of the most recently precedinq
been closed by a BLKE~D. If no such
qlobal to the source module of
preceding THEADR.

record is defined to be the
BLKDEF whose extent has not yet
BLKDEF exists the symbols are
name qiven by the most recently

FRAME. INFOR~ATION

This field gives information about the frame of the symbols
defined in the record. It's format is as follows:

***********///*****
* * *
FRAME
*INfO *
* *

DATUM
*
*
*

* * *
***********///*****

The FRAME INFO byte has the followin~ format:

* , I I I I
* B I L I (l I " I ~ I
* I I I I ,

I , *
FRA~E *
r-1ETHOD *

57

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.0

The B (Based) bit, if 1, means that the location in MAS defined
by the FRAME INFORMATION and OFFSET fields contains a value that is
the address of a symbol.

The L (Long) bit tells the lenqth of this value.

L=0 -) 2 bytes
L=l -) 4 bytes

If L=0 the frame part of the symbol address is defined to be
the frame q i ven by the FRAME IN FORI"ATION fie ld •

If 8=0, the location defined by the FRAME INFORMATION and
OFFSET fields is the location of the symbol. In this case the L
bit has no meaning and is reQuired to be 0.

The FRAME METHOD field defines what kind of data is in the
DATUI~ field.

If FRAME ~ETHOD=0, the DATUM has the format:

*****///*********///*****************
* * * * * GROUP * SEGMENT * FRAME *
* INDEX * INDEX * NUMBER *
* * * *
* * * *
*****///*********///*****************

I I
+conditional+

The interpretation of the DATUM fields in the above format is
identical to the interpretation of the LOCAL. SYMBOLS BASE in the
LOCSYM reco rd.

58

If FRAME METHOD=l, the DATUM has the format:

*****///*****
* *
* EXTERNAL *
* INDEX *
* *
* *
*****///*****

Download from Www.Somanuals.com. All Manuals Search And Download.

8~86 Object Module Formats Version 4.0

If FRAME ~ETHOD=2, the DATUM has the format:

*****///*****
* *
*
*
*
*

BLOCK
INDEX

*
*
*
*

*****///*****

FRAME METHODs of 3 to 7 are illegal.

The FRA~E ~ETHOD field also specifies what kind of information
is in the OFFSET field (see below).

SYMBOL NAME

This field provides the name of the symbol.

OFFSET

The OFFSET field contains a l~-bit value which is interpreted
as follows:

If FRAME ~ETHOD is 0 then this field is the offset with respect
to the FRAME NUMBER or SEGMENT specified by the DATUM of the FRAME
INFORMATION field.

If FRAME ~ETHOD=1 then this field is the byte offset from the
external symbol specified by the DATU~ of the FRAME INFORMATION
field.

rf FRAME METHOD=2 then this field is the byte offset (from BP)
in the activation record of the block specified by the DATU~ of the
FHAME INFOR~ATION field.

TYPE INDEX

The TYPE INDEX field identifies a sinqle precedinq TYPDEF
record containinq a descriptor for the type of entity represented by
the symbol.

(Note on LOCSYMs) A DEB$'il" recor'i "Nhose FRA~E
INFO field is 0 is exactly equivalent to a LOCSYM

. record. (End of Note on LOCSY,t1s)

59

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Obiect Module Formats

RELOCATABLE ENUMERATED DATA RECORD
----------- --("~ E:DATA)--------------

Version 4.0

***********************///*****************************
* * * * * * *
* REC * RECORD * DATA * DATA * OAT * CHK *
* TY P * LENG'fH * RECORD * RECORD * * SUr-1 *
* 72H * * BASE * OFFSE:T * * *
* * * * * * *
***********************///*****************************

I I
+-rpt-+

This record provides contiquous data from which a portion of an
808~ memory imaqe may eventually be constructed. The data may be
loaded directly by an 8086 loader, with perhaps some base fixups.
For this reason the record may also be called Load-Time Locatable
(LTL) Enumerated Data Record.

The data provided in this record ~ay belonq to any LSEG or
Group or it may be assiqned absolute 3095 memory addresses and be
divorced from all LSEG/Group information. The data in this record
is subject to modification by FIXUPP reco-rds. if any. which follow.

This record may be qenerated by translators or (808~ based)
LINK-8fi to produce loadable modules. and will be converted to PEDATA
record by the LOCATE-8n proqram.

DATA RECORD BASE

rfhe DA'fA RECORD BASE has the followinq format:

*****///*********///*****************
* * * *
* GROUP * SEGI."EN'r * FRAME *
* INDEX * INDEX * NUMBER *
* * * *
* * * *
*****///*********///*****************

I I
+conditional+

The DATA RECORD BASE specifies the base relative to which the
final address of the data record may be defined. It has the same
format and interpretation as the LOCAL SYMBOL BASE described for the
LOCSYi-1 ceco rd.

DATA RECORD OFFSET

This field specifies an offset of the first byte of the OAT
field either with respect to an LSEG (if SEG~ENT INDEX) ~) or with

Download from Www.Somanuals.com. All Manuals Search And Download.

808fi Object Module Formats Version 4.8

respect to the specifi~d FRA~E (if SEGM.ENT INDEX = 0). Successive
data bytes in the OAT field occupy successively higher locations of
memory.

DAT

If one or more FIXUPP records follow then this field provides
up to 1024 consecutive bytes of load-time locatable or absolute
data. Otherwise, the repeated field is constrained only by the
RECORD LENGTH field.

(Note on data record size) All qata bytes in a
data record must be within the frame specified hy the
data record. This is true for all ~ data record types
(REDATA, RIDATA, PEDATA, PIDATA, LEOATA, LICATA).
(End of Note on data record size).

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats

RELOCATABLE. ITERATED.DATA~RECORD
- {RIDATA)

Ve:· sion 4.0

***********************111*********************//1***********
* * * * * * * * REC * RECORD * DATA * DATA * ITERATED * CHK *
* TYP * LENG'fH * RECORD * RECORD * DATA * SUM *
* 748 * * BASE * OFFSET * BLOCK * *
* * * * * * *
***********************111*********************1//***********

, I
+-repeated--+

This record provides contiouous data from which a portion of an
8086 memory imaqe may eventually be constructed. The data may be
loaded directly by an 8086 loader, with perhaps some hase fixups.
For this reason the record may also be called Load-Time Locatable
(LTL) Iterated Data Record.

The data provided in this record may belonq to any LSEG or
Group or it may be assiqned absolute 808~ memory addresses and be
divorced from all LSEG/Group information. The data in this record
.is subject to m~ification by FIXUPP records, if any, which follo-,.,.

This record may be qenerated by translators or (RA8~ based)
LINK-86 to produce load able modules, and will be converted to RIOATA
record by the LOCATE-8~ proqra~.

DATA RECORD BASE

The DATA RECORD SASE has the followin«1 format:

*****///*********///*****************
* * * *
* GROUP * SEG~ENT * FRAME *
* INDEX * INDEX * NU~8ER *
*
*

*
*

* *
* *

*****///****~****///*****************
I ,
+conditional+

The DATA RECORD BASE specifies the base relative to which the
final address of the data record may ~e defined. It has the sa~e
format and interpretation as the LOCAL 3Y~dOL BASE described for the
LOCSYl" reco rd •

DATA RECORD OFFSET

This field specifies an
ITEHATED DATA BLOCK field

62

offset
either

of
with

the first byte of the
respect to an LSEG (if

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

S~GMENT INDEX> 0) or with respect to the specified FRAME (if
SEGMENT INDEX = 0). Successive data bytes in the ITERATED DATA
BLOCK field occupy successively hiqher locations of memory.

ITERATED DATA BLOCK

This repeated field is a structure specifyinq the repeated data
bytes. It is a structure that has the following format:

*****************************///*****
* * * *
* REPEAT
* COUNT

*
*

BLOCK
COUNT

* *
* CONTENT *

* * * *
* * * *
*****************************///*****

REPEAT COUNT

This field specifies the number of times that the CONTENT
portion of this ITERATED DATA BLOCK is to be repeated. REPEAT COUNT
must be non-zero.

BLOCK COUNT

This field specifies the number of ITERATED DAT~ BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA BLOCK.
If this field has value zero then the CONTENT portion of this
ITERATED DATA BLOCK is interpreted as data bytes. If non-zero then
the CONTENT portion is interpreted as that number of ITERATED DATA
SLOCKs.

CON'rEN'r

This field ~ay be interpreted in one of two ways, dependinq on
the value of the previous BLOCK COUNT field.

If BLOCK COU~T is zero then this field is a 1 byte count
followed by the indicated number of data bytes.

If BLOCK COUNT is non-zero then this field is interpreted as
the first byte of another ITERATED DATA BLOCK.

(Note) From the outermost level, the number of
nested ITERATED DATA BLOCKS is li~ited to 17, i.e.,
the number of levels of recursion is limited to 17.
(End of Note)

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats

PHYSICAL ENUMERATED DATA RECORD
(PEOATA)

* * * * * * *
* REC * RECORD * FRAME * OFF * * CHK *
* TYP * LENGTH * NUMBER * SET * OAT * SUM *
* 848 * * * * * *
* * * * * * *

+-rpt-+

Version 4.9

This record provides contiquous data, from which a portion of
an 8086 memory imaqe may be constructed. The data belonqs to the
"unnamed absolute segment" in that is has been· assiqned absolute
8~8~ memory addresses and has been divorced from all LSEG
information. The data is subject to modification by FIXUPP records,
if any, which follow. If there are FIXUPp· records following, then
the RECORD LENG~H is constrained to be less than or equal to 1028.

This record may be qenerated by translators to produce a
loadable absolute data record and will be also qenerated by LOCATE-
8t;.

FRAME NU,SER

This field specifies a Frame Number relative to which the data
bytes will be loaded.

OFFSE'r

This field specifies an offset relative to the FRAM~ NUMBER
which defines the location of the first data byte of the OAT field.
Successive data bytes in the OAT field occupy successively hiaher
locations of memory. The value of OFFSET is constrained to be in
the ranqe 0 to 15 inclusive. If an OFFSET value qreater than 15 is
desired then an adjustment of the FRAME NUMBER should be done.

OAT

If one or more FIXUPP records follow then this field provides
up to 1~24 consecutive bytes of an 80S6 memory iMaqe. Otherwise,
the repeated field is ccnstrained only by the RECORD LENGTH field.

64

Download from Www.Somanuals.com. All Manuals Search And Download.

808fi Object Module Formats Version 4.0

PHYSICAL ITERATED DATA RECORD
(P tDA T A,--

///********
* * * * * * *
* REC *
* TYP *
* 86H *

RECORD
LENG'rH

*
*
*

FRAME
NUJ\1BER

* OFF * ITERATED
* SET * DATA
* * BLOCK

* CHK *
* SUM *
* *

* * * * * * *
///******** , ,

+-repeated--+

This record provides contiquous data. from which a portion of
an 8086 memory imaqe may be constructed. It allows initialization
of data seqments and provides a mechanism to reduce the size of
object modules when "there are repeated data to be used to initialize
a memory imaqe. The data belongs to the ~unnamed absolute seqment d

in that it has been assiqned absolute 8086 memory addresses and has
been divorced from all LSEG information. The data is subject to
modification by followinq FIXUPP records if any. If there are
FIXUPP records then the ITERATED DATA BLOCK len~th is constrained to
be less than 1025.

This record may be generated by translators to ~roduce a
loadahle absolute data record and will be also qenerated by LOCATE-
8~.

FRAME NUMBER

This field specifies a frame number relative to which the data
bytes will be loaded.

OFFSET

This field specifies an offset relative to the FRA~E NUMBER
which defines the location of the first data byte in the IT~RATED
DATA BLOCK. Successive data bytes in the ITERATED DATA BLOCK occupy
successively hiqher locations of memory. The ranQe of OFFSET is
constrained to be between ~ and 15 inclusive. If a value laroer
than 15 is desired for OFFSET then an adjustment of FRAME NUMBER
should be done.

Same as for RIDATA record.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

LOGICAL ENUMERATED DATA,RECORD -_._. ·------(tEDATA)"---·-· _ _ ...

Version 4.0

***********************///*****************************
* * * * * * *
* REC * RECORD * SEG~ENT * ENUMERATED* * CHK *
* TYP * LENG'rH * INDEX * DATA * OAT * SUM *
* ASH * * * OFFSET * * *
* * * * * * *
***********************///*****************************

. I I
+-rpt-+

This record provides contiquous data from which a portion of an
8086 memory image may eventually be constructed. The data will
probably NOT he loaded directly by an 80R~ loader as it must be
further processed by the 808~ R&L products.

The data provided in this record may helonq to.any LSEG. The
SASE portion of the address in the case of an absolute seqment will
be found in the SEG~ENT DEFINITION RECORD specified by the SEGMENT
INDEX. If the SEGMENT INDEX specifies a seament whose alianment
attribute is not absolute then the data provided by this record is
relocatable.

This record may be converted to a HEDATA RECORD by the (8A8~
based) LINK-86 proaram and will be converted to a PEDATA RECORD by
the LOCATE-8~ proaram.

S EGt..,Er4'r INDE:X

This field must be non-zero and specifies an index relative to
the SEGMENT DEFINITIO~ RECORDS found previous to the LEDATA RECORD.
The SEGMEN'r DEFINITION RECORD may specify that the data is absolute
as one of the attributes of the seqrnent. In this case a Frame
~umber is provided in the SEGDEF record. Absolute data must be able
to be placed into LEDATA RECORDs so that aroupinq of relocatable
LSEG's with absolute LSEG's can be achieved.

ENUMERATED DATA OFFSET

This field specifies an offset that is relative to the ~ase of
the LSEG that is specified by the SEGMENT INDEX and defines the
relative location of the first byte of the DAT field. Successive
data bytes in the OAT field occupy successively hiaher locations of
memory. If the SEG~ENT INDEX specified an absolute LS~G then the
offset is relative to the Frame Number providect in the correspondinq
SEGDEF RECORD.

OAT

Download from Www.Somanuals.com. All Manuals Search And Download.

808fi Object Module Formats version 4.0

This field provides up to 1024 consecutive bytes of relocatahle
or absolute data.

~7

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

LOGICAL ITERATED DATA RECORD
---(LIDATA)----·-

Version 4.9

***********************///*********************///***********
* * • * • * *
* REC * RECORD * SEGMENT ~ ITERATED· ITERATED * CHK •
* TYP * LENGTH * INDEX * DATA * DATA * SUM •
• AlH * * * OFFSET * BLOCK * *
* * * * • * *
*****.*****************///***~***********.*****///***********

I I
+- r e pe a ted --+

This record provides contiquous data, from which a portion of
an 80R5 memory imaqe may eventually be constructed. The data will
probably NOT be loaded directly by an 808~ loa~er as it must be
further processed by the 808~ R~L products.

'l'he data in this record may belono to any LSEG. The BASE
portion of the address in the case of named absolute data, will be
found in the SEGDEF record specified hy the SEG..,EN'r INDEX. If the
SEGMENT INDEX specifies an LSEG other than an absolute LSEG then the
data provided by this record is relocatable.

This record may be converted to a RIDATA RECORD by the (809~
based) LINK-8~ program and will be converted to a PIDATA RECORD by
the LOCATE-8~ proqram.

SEGMENT INDEX

This field must be non-zero and specifies an index relative to
the SEGDEF records found previous to the LIDATA HECORD. The SEGOEF
record may specify that the data is a~solute as one of the
attributes of the LSEG. In this case a Fra~e ~umber is provided in
the SEGDEF record. The LIDATA RECORD is reauired to allow ~roupina
of relocatable LSEG's with absolute LSEG's.

ITERATED DATA OFFSET

This field specifies an offset th~t is relative to the base of
the LSEG that is specified by the SEGMENT INDEX and defines the
relative location of the first byte in the ITERATED DATA ~LOCK.

Successive data bytes in the ITERATED DATA BLOCK occuPy successively
·hiqher locatiorts of memory. If the SEG~ENT INDEX specified an
absolute LSEG then the offset is relative to the Fr~me Number
provided in the correspondinq SEGOEF RECORD.

ITERATED DATA ~LOCK

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module' Formats Version 4.8

Same as for the RIDATA record.

-;9

Download from Www.Somanuals.com. All Manuals Search And Download.

8e8~ Object Module Formats

FIXUP RECORD
. (FIXUPP) .

***********************///***********
* * * * * * REC *
* TYP *
* 9CH *

RECORD
LENG'rH'

* THREAD
* or
* FIXUP

* CHK *
* SUM *
* * * * * * *

***********************///***********
I I
+----rpt----+

Version 4.8

This record specifies" or more fixups. Each fixup requests a
modification (fixup) to a LOCATION within a previous DATA record.
Each fixup is specified by a FIXUP field that specifies 4 data: a
location, a mode, a target and a frame. The frame and the tarqet
may be specified totally within the PIXUP field, or may be soecifiec
by reference to a precedinq THREAD field.

A THREAD field specifies a default tarqet or frame that may
subseauently be referred to in identifyinq a tarqet or a frame.
Eight threads are provided; four for frame specification and four
for tarqet specification. Once a tarqet or frame has been specified
by a THREAD, it may be referred to by followinq FIXUP fields (in the
same or followinq FIXUPP records), until another THREAD field with
th(;· 3ame type (TARGET 0 r FRAME) and thread number (B 3) appear!
(in the same or another FIXUPP record).

THREAD

THREAD is a field with the followinq format:

***********///*****
* * * * TRD * INDEX or *
* OAT * FRAMe *
* * NUI'18ER *
* * *
***********///*****

, I
+conditional+

The TRD OAT (ThReaD DATa) subfield is a byte with this internal
structure:

* I '1 I I I *
* 0 I 0 1 Z I METHOD I THRED *
* 1 I , I I I , *

70

Download from Www.Somanuals.com. All Manuals Search And Download.

8080 Object Module Formats Version 4.0

The 'Z' is a one bit subfield, currently without any defined
function, that is required to contain 0.

The '0' subfield is one bit that specifies what type of thread
is beinq specified. If 0=0 then a tarqet thread is beinq defined
and if 0=1 then a frame thread is beinq defined.

METHOD is a 3 bit subfield containinq a number between 0 and 3
(0=0) or a number between 0 and r, (0=1).

If 0=0. then ~ETHOD = (0, 1, 2, 3, 4, 5, ~, 7) mod 4, where the
0 , ••• , 7 indicate methods T0 , ••• , T7 of specifyinq a tarqet.
Thus, METHOD indicates what kind of Index or Frame Number is
required to specify the target, without indicatinq if the tarqet
will be specified in a primary or secondary way.

If 0=1, then METHOD = 0, 1, 2. 3, 4, 5, ~ correspondinq to
methods F0, ••• , F6 of specifyinq a frame. Here. METHOD indicates
what kind (if any) of Index or Frame Number is required to specify
the frame.

THRED is a number between 3 and 3, and associates a ~thread

number d to the frame or tarqet defined by the THREAD field.

INDEX or FRAME NU~8ER contains a Seqment Index, Group Index.
External Index, or Frame Number dependinq on the specification in
the METHOD subfield. This subfield will not be present if·F4 or F5
or F~ are specified by METHOD.

FIXUP

FIXUP is a field with the following format:

***********************///*********///*********///*****
* * * * * *
*
*
*

LOCAT * FIX *
* OAT *
* *

FRAME
DATUM

* TARGET
* DATUM
*

* TARGET
* 015-

*
*

* PLACEMENT *
* * * * * *
***********************///*********///*********///*****

r , , I
+conditional+conditional+conditional+

LOCAT is a byte pair with the followinq format:

* I , I
* 1 , ~ I 5 I
* , I r

I ,
LOC

I r

I *
o A T*A

f *

I I I I , , I *
R E COR 0 OFF 5 ~ T *

I I , ! I I , *
-*-*********-
I
+---~--------lo~byte------------+------------hi byte------------+

71

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.8

M is a one bit subfielG that sgecifies the mode of the fixUDS:
self-relative (M=0) or segment relative (M=l).

(~ote) Self-relative fixups may NO~ be applied to
RIDATA, LICATA, or PIDATA records. (End" of Note)

S is a one bit subfield that specifies that the lenoth of the
TARGET DISPLACEMENT subfield, if present, (see below), in this FIXUP
field will be either two bytes (containing a l~-bit non-ne~ative
number, 5=0) or three bytes (containing a sioned 24-bit number in
2's complement form, 5=1).

(Note) 3-byte subfields are a possible future
extension, and are not currently supported. Thus, S=0
is currently mandatory. (End of Note)

LOC is a 3 bit subfield indicatinq that the byte(s) in the
preceding DATA Record to be fixed up are a 'lobyte' (LOC=~), an
'of fset' (LOC=l), a • base' (LOC=2), a • po inter' (LOC=3), or a
'hibyte' (LOC=4). (Other values in LOC are invalid.)

The DATA RECORD OFFSET is a number between 0 and 1023,
inclusive, that gives the relative position of the lowest order byte
of LOCATION (the actual bytes beina fixed up) within the precedinq
DATA record. The DATA RECORD OFFSET is relative to the first byte
in the data fields in the DATA RECORDs.

(Cautionary Note) If the precedinq DATA record is an IDATA
record, it is possible for the value of DATA RECORD OFFS~T to
designate a ~locationH within a REPEAT COUNT subfield or a BLOCK
COU~T subfield of the ITERATED DATA field. Such" a reference is
deemed an error. LINK-86's and LOCATE-86's action on such a
mal formed reco rd is undefined, and probabl y awkward. (end of
Cautionary Note)

FIX DAT is a byte with the following format:

* ,
* F I
* I

I ,
FRAME
I I

I I I , *
I TIP I TARGT *
I I r I *

F is a one bit subfield that specifies whether the frame for
this FIXUP is specified by a thread (F=l) or explicitly (F=~).

FRAME is a number interpreted in one of two ways as indicated
by the F bit. If F is zero then FRAME is a number between J and h
and corresponds to methods F~, •••• F~ of specifyina a FRA~E. If
F=l then PRAME is a thread number (0-3). It specifies the frame
most recently defined by a THREAD field that ~efined a frame thrend
with the same thread number. (Note that the THREAD field ~ay aopear
in the saMe, or in an earlier FIXUPP record.)

72

Download from Www.Somanuals.com. All Manuals Search And Download.

808fi Object Module Formats Version 4.8

'r is a one bit subfield that specifies whether the target
specified for this fixup is defined by reference to a thread CT=l).
or is aiven explicitly in the FIXUP field (T=0).

P is
specified
specified
Since a
the P bit
attribute

a one bit subfield that indicates whether the tarqet ~
in a primary way (requires a TARGET DISPLACEMENT, P-0) or

in a secondary way (requires no TARGET DISPLACEMENT, P=l).
tarqet thread does not have a primary/secondary attribute,
is the only field that specifies the primary/secondary
of the target specification.

TARGT is interpreted as a two bit subfie1d. When T=I, it
provides a number between 0 and 3, corresponding to methods T0, ••• ,
T3 or T4, ••• , T7, depending on the value of P (P can be interpreted
as the high order bit of TO, ••• , T7). When the tarqet ia specified
by a thread (T=l) then TARGT specifies a thread number (0-3).

FRAME DATU~ is the "referent" portion of a frame specification,
and is a Segment Index, a Grou·p Index, an External Index, or a Frame
Number. The FRAME DATUM subfield is present only when the frame is
specified neither by a thread (F=O) nor explicitly by methods F4 or
F5 or Ffi.

'fARGET DATUM is the II referent" portion of a tarqet
specification. and is a Segment Index, a Group Index, an External
Index or a Frame Number. The TARGET DATU~ subfield is present only
when the target is not specified by a thread (T=0).

TARGET DISPLACEMENT is the 2- or 3-byte displacement required
by "primary" ways of specifyinq TARGETs. This 2- or 3-byte subfie1d
is present iff P=0.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4."

OVERLAY DEFINITION RECORD
(OVLDEFf ---- --

***********************///*********1 1'1*********///***********
* * * * * * *
* REC *
* TYP *
* 70H *

RECORD
LENG'fH

* OVERLAY
* NAME

*

..
*
*

OVERLAY
LOCATION

*
*
*

OVERLAY
ATTR

* CHK *
* SUM *
* *

* * * * * * *
***********************///*********~ 111*********///***********

This Record provides the overlay name, the location of the
overlay in the object file, and the attributes of the overlay. A
loader may use this record to locate the data records of the overlay
in the object file.

OVERLA~(NAME

The OVERLAY NAME field provides a name by which a collection of
1 or more LSEG's and/or Groups may be referenced for load ina.

The ordering of OVLOEF Records within a module induces an
ordering on the set of all Overlays defined in the module. Thus,
OVLDEF records are considered to be numbered: 1, 2, 3, 4, •••
These numbers are used as dOverlay Indices· in the OVERLAY ATTR
field of followinq OVLDEF records.

Overlay indices may not be forward referrinq. That is to say,
an overlay definition record defininq the kith overlay must precede
any record referrinci to that overlay with index k.

OVERLAY LOCATION

The OVERLAY LOCATIO~ is a 4-byte field which ~ives the location
in bytes relative to the start of the file of the first byte of the
records in the overlay.

74

OVERLAY ATTR

The OVERLAY ATTR field has the followino format:

***********///*********///*****
* * * *
* * SHARED *
* SA * OVERLAY *
* * INDEX *
* * *

ADJACENT *
OVERLAY *
INDEX *

*
***********///*********///*****

I I I
+conditional+conditionnl+

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

The SA subfield provides information for memory layout. It has
the followinq format:

**************************~******
* I I I I I , I *
* z I Z I Z I Z I Z I Z I S I A *
* I I I I , I I *

Z's indicates that these I-bit field have not been assigned a
function. These bits are required to be zero.

S (shared) is a I-bit field that. if 1, indicates that the
overlay will have to be loaded at the same location as the overlay
indicated in the SHARED OVERLAY INDEX field.

A (adjacent) is a I-bit field that, if 1, indicates that the
overlay will have to be loaded next in memory to the overlay
indicated in the ADJACENT OVERLAY INDEX field.

The SHARED OVERLAY INDEX subfield, present if bit S in the SA
subfield is 1, points to a previously defined OVLDEF record and
indicates that the segments with same seqment names and class names
and/or the groups with same names in the two overlays must be loaded
at the same location.

The ADJACENT OVERLAY INDEX subfield, present if bit A in the SA
subfield is 1, points to a previously defined OVLDEF record and
indicates that the seqments and/or qroups in the overlay defined by
the current OVLDEF record must be loaded adjacent to the ones with
the same names in the indicated overlay.

75

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats

END RECORD
--(ENOREe)

* * * * *
* REC * RECORD * END * CHK *
* TYP * LENGTH * TYP * SUM *
* 78H * * * *
* * * * *

Version 4."

This record is used to denote the end of a set ot records such
as a block. and an overlay.

END·TYP

~his field specifies the type of the set. It has the followinq
format:

ends:

* I I I I I I
* Z I Z , Z I Z I Z I z I
* I I I I I I

I *
TYP *

I *

TYP is a two bit subfield that specifies the fO'llowinq types of

TYP TYPE OF END
-0' - End- -of -o-virlay

1 End of block
2 (Illeqal)
3 (Illeqal)

z indicates th~t this bit has not currently been assianed a
functIon. These bits are required to be zero.

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats

REGISTER INITIALIZATION RECORD - .. ------ .. --fREGiNT,-----44-----

*****************************///***********
* * * * * *
* REC * RECORD * REG * REGISTER * CHK *
* TYP * LENGTH * TYP * CONTENTS * SUM *
* 708 * * * * *
* * * * * *
*****************************///***********

I I
+----repeated-----+

Version 4.0

This record provides information about the 8086
registers/register-pairs: CS and IP, SS and SP, OS, and ES. The
purpose of this information is for a loader to set the neccessary
reqisters for initiation of execution.

REG·TYP

The REG TYP field provides the reqister/reqister-pair name. It
also indicates the type of reqister content specification given in
the next field. It has the followinq format:

* , I I I I I , *
* REGID , Z I Z I Z I Z I Z I L *
* I I I I , I I *

Zis are I-bit subfields which indicate that these bits have not
currently been assigned a function. These bits are required to be
zero.

REGID is a two bit subfield that specifies the na~e of the
reqisterslreqister-pairs as follows:

REGID

o
1
2
3

~~9!§!~~/~~~l.EJ~~=~~!~
CS and IP
SS and SP
OS
ES

L is a one bit field that indicates whether the REGISTER
CONTENTS field is to be interpreted as a loqical address (L=l) that
reauires fixinq up by LINK-8~/LOCATE-8~, or as a pair of base and
offset specifications (L=0) appropriate for the initialization of
the correspondinq reqister/reqister-pair.

77

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

REGISTER CONTENTS

The REGISTER CONTENTS field has either of the following
fo rmats:

First form (L=l)

***********///*********///*****************
* * * * *
* REG *
* OAT *
* *

FRA~E

DATUM
* TARGET
* DATUM
*

* TARGET *
* 015- *
* PLACEMENT *

* * * *
***********///*********///*****************

, I I I
+conditional+conditional+conditional+

In this case the reqister contents are specified in exactly the
same manner as in the specification of the mappina of a logical
address to a physical address as used in the discussion of fixups
and the FIXUPP record. The above subfields of the REGISTER CONTENTS
field have the same semantics as the FIX DAT, FRAME DATU~, TARGET
DATU~, and TARGET DISPLACEMENT fields in the FIXUPP record. Frame
method F4 is not allowed.

§~~~ ~~._!2!!!' _J~=!l

LINK-86/LOCATE-8~ will convert the above REGISTER CONTENTS
field into a field having the following format:

78

*****///*****************
* * *
* REGISTER
* BASE
*

* REGISTER *
* OFFSET *
* *

* * *
*****///*****************

, I
+conrlitional+

The REGISTER 3ASE field has the followino for~at:

*****///*********///*****************
* * * *
*
*
*

GROUP
INDEX

* SEGMENT * FRAME
* INDEX * ~UM8ER

* *

*
*
*

* * * *
*****///*********///*****************

I ,
+contiitional+

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module- Formats Version 4.1

The format and the interpretation of the above REGISTER BASE
field is identical to the LOCAL SY~BOL BASE described in the LOCSYM
record.

The REGISTER OFFSET field (present only if REGID <= 1)
specifies an offset relative to the Seqment (if SEGMENT INDEX) 0)
or to the FRAME (if SEGCt1EN'r INDEX = 0) •

(Note) Once the seqments and/or groups are
absolutely located (by a loader or LOCATE-8~), the
base of the object pointed to by the REGISTER BASE
field is the appropriate value for the initialization
of the corresPQnding base reqister. The offset value
for the initialization of either the IP reqister
(REGID = 0) or the SP reqister (REGID = 1) is
determined as follows:

If GROUP INDE·X = 0, the offset value is given by
the value specified in the REGISTER OFFSET field.

If GROUP INDEX > 0, the offset value is the
offset relative to the base of the specified qroup of
the location specified by the pair (SEGMENT INDEX,
REGISTER OFFSET). (End of Note)

79

Download from Www.Somanuals.com. All Manuals Search And Download.

8g8~ Object Module Formats

MODULE ~ND RECORD
----(MODEND)

*****************************///***********
* * * * • *
* REC * RECORD * MOD * START * CHK •
* TYP * LENGTH * TYP * ADDRS * SUM *
* 8AH * • * * *
* * * * * *
*****************************///***********

. 1 ,
+conditional+

Version 4.8

This record serves two purposes. It denotes
module and indicates whether the module just
specified entry point for initiation of execution.
true then the execution address is specified.

the end of a
terminated has a
If the latter is

MOD 'ryp

This field specifies the attributes of the module. The bit
allocation and associated meanings are as follows:

* I I t I I I I *
* MATTR I Z , Z I Z I Z 1 z I L •
* I I I , I I , *

MATTR is a two bit subfield that specifies the followinq module
attr ibutes:

MA'r'rR
--O-~-·

1
2
3

~ODULE ATTRI8UTE
Non=maln-inOd uTe-wi th no START ADDRS
~on-main ~odule with START ADDRS
Main module with no START ADORS
~a in !nod ule wi th S'rAR~r ADDRS

L indicates wheth£r the START ADDRS field is to be interpreted
as a Ioqical address that requires fixinq up by LINK-8n/LOCATE-8~
(L=l) or as a physical address appropriate for placement into the CS
and IP registers of the 8085 (L=~).

Z indicates that this bit has not currently been assioned a
functIon. These bits are required to be zero.

8'"

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

'rhe START ADDRS field (present only if MATTR is 1 or 3) has
either of the following formats:

***********///*********///*****************
* * * * *
* END * FRAME * TARGET * TARGET *
* DAT * DATU~ * DATUM * D1S- *
* * * * PLACEMENT *
* * * * *
***********///*********///*****************

I I I I
+conditional+conditional+conditional+

The starting address of a module has all the attributes of any
other logical reference found in a module. The mappinq of a loqical
starting- address to a physical- startinq address is done in exactly
the same manner as mapping any other loqical address to a physical
address as specified in the discussion of fixups ahd the FIXUPP
record. The above subfields of the START ADDRS field have the same
semantics as the FIX OAT, FRAME DATUM, TARGET DATU,,,,, and TARGET
DISPLACEMENT flelds in the FIXUPP record. Only ·primary· fixups are
allowed. Frame method F4 is not allowed.

START AQDRS (second form)

When the logical address is mapped, by LOCATE-8~, to a physical
address, the START ADDR£ field takes on the following format:

* * *
* FRAME * OFFSET *
* NUMBER * *
* * *
* * *

FRAME NUMBER specifies a frame number relative to which the
~odule will beqin execution. This value is appropriate for
insertion into the CS reqister for proqram initiation.

OFFSET specifies an offset relative tn the FRAME NUMBER which
defines the exact location of the first nyte at which to ~eqin
execution. This value is appropriate for insertion into the IP
register for program initiation.

Rl

Download from Www.Somanuals.com. All Manuals Search And Download.

8~8~ Object Module Formats

LIBRARY HEADER RECORD
-------fCfSHED)------

Version 4.0

* * * * * * *
* REC * RECORD * MODULg * BLOCK * BYTE * CHK *
* TYP * LENGTH * COUNT .* NUMBER * NUMBER * SUM *
* A4H * * * * * *
* * * * * * *

This record is the fir~t record in a library file. It
immediately precedes the modules (if any) in the library. Followinq
the modules are three more records in the followinQ order: LIBRARY
MODULE NAMES RECORD, LIBRARY MODULE LOCATIO~S·RECORD, and LIBRARY
DICTIONARY RECORD.

MODULE COU~T
... _--

This field indicates how many modules are in the library. It
may have any value, includinq zero.

These fields indicate the relative location of the first byte
of the LIBRARY MODULE NAMES RECORD in the library file, usinq the
ISIS-II file format.

82

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats

LIBRARY. MODULE NAMES RECORD
(LiSNAM)

***********************///***********
* * * * *
* REC *
* TYP *
* A6H *
* *

RECORD
LENGTH

*
*
*
*

MODULE
NAME

* CHK *
* SUM *
* *
* *

***********************///***********
I I
+-repeated--+

Version 4.0

This record qives the names of all the modules in the library.
The names are qiven in the same sequence as the modules appear in
th eli bra ry •

The i'th MODULE NAME field in the record contains the module
name of the i'th module in the library.

A3

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats

LIBRARY MODULE LOCATIONS RECORD
------~-.-(LIBLOC)

* * * * * *
* REC * RECORD * BLOCK * BYTE * CHK *
* TYP * LENGTH * NUMBER * NUI~BER * SUI., ..

* ASH * * * * *
* * * * * *

+--------reoeated-------+

Version 4."0

This record provides the relative location, within- the library
file, of the first byte of the first record (either a THEADR or
LHEADH or RHEADR record) of each module in the library.

The order of the block-number/byte-number pairs corresponds t~
the order of the modules within the library.

~~OCK- NUMBER~ ~XTE ~UMBER

The i'th pair of fields provides the relative location within
the library file of the first byte of the first record of the i'th
module within the library, usinq the ISIS-II file format.

84

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module" Formats version 4.8

LIBRARY DICTIONARY R~CORD ---.-
(LIBDIC)

***********************///*****************
* * * * * * * REC * RECORD * PUBLIC * * CHK *
* TYP * LENGTH * NAME * 00H * SUM *
* AAH * * * * *
* * * * * *
***********************///*****************

I I I
+-re~eated--+ I
+----repeated-----+

This record
library. Since
in the format are
Thus, the '00'
names in the ilth
~ibrary.

qives all the names of public symbols within the
a name must have a non-zero lenqth, the '00' bytes
distinquishable from the PUBLIC NAME fields.

bytes separate the PUBLIC NAMES into qroups; all
group are defined in the i'th module of the

85

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.0

COMMENT RECORD
(COMENTf---

***********************************///***********
* * * * * *
* REC * RECORD * COM~ENT * * CHK *
* TYP * LENGTH * TYPE * COM~ENT * SUM *
* 8SH * * * * *
* * * * * *
***********************************///***********

This record allows
information in object text.

translators to include commentary

COr-1M EN'r TY P E

This field indicates the type of comment carried by this
record. This allows commentary information to be structured for
those processes that wish to selectively act on comments. The
format of this field is as follows:

**
* N I N I I I I I I *
pl LI ZI zl ZI ZI ZI z

COMMEN'r
CLASS

*
*

**

The NP (NOPURGE) bit. if 1. indicates that the COMENT record is
not purqable by object file utility .proqrams which implement the
capability of deletinq COMENT record.

The NL (NOLIST) bit, if 1, indicates that the text in the
COMMENT field is not to be listed in the listinq file of ohject file
utility proqrams which implement the capabiltiy of listina object
CO,.,EN'r reco rds.

The COMMENT CLASS field is defined as follows:

1

2-155

l5~-255

Lanquaqe translator comment

Intel_'£~2Y..E!9.!:!~_~~,!,!!~~~. 'rhe NP bi t mLlst he
set.

Reserved for Intel use.

Reserv~d for users. Intel prorlucts will
apply no semantics to these values.

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

COM(t1ENT

This field provides the commentary information.

P7

Download from Www.Somanuals.com. All Manuals Search And Download.

SgS6 Object Module Formats

APPENDIX 1

NUMERIC LIST OF RECORD TYPES

ae

~E RHEADR
70 REGINT
72 REDATA
74 RIDATA
76 OVLDEF
78 ENOREC
7A BLKOEF
7C BLKEND
7E DEBSY~
80 THEADR
82 LHEADR
84 PEOATA
86 PIDATA
88 COJ'ltENT
8A MOOEND
BC EXTDEF
8E TYPDEF
9" PUBDEF
92 LOCSY~
94 LINNUM
9t; LNAMES
98 SEGDEF
9'" GRPDEF
9C FIXUPP
9E (none)
A0 LEDATA
A2 LIDATA
A4 LIBHED
AF, LIBNAM
A8 LIBLOC
AA LIBDIC

Version 4.1

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.8

APPENDIX 2

TYPE REPRESENTATIONS

The leaves in the following diagrams may be Numeric Leaves
without relations, Strinq Leaves, Index Leaves or Null Leaves.
Andleaves and Orleaves are not supported at this time.

Types may be defined by branches of the followinq forms:

+------~~+----~-----+---~~----------+ I SCALAR I (length) , (scalar type) ,

+--~-----+~--------+~---~------~--+

+------... _---+
I POINTER ,
+-----.-----+

+-----~-~-+----------~-+-~-------~+ , SCALAR (length) I @pointer I

+-------~---+----------+~-----------~---~--~-+~--------~-----------+ I STRUCTURE I (lenqth) I (number of components) I ~list of components I

+-~-------~-+--------~-+----------------------+--~----~---~---------+

+------+-... -+---+---+ . +---+
I LIST , ? I ? I ? I ... I ? ,
+------+---+---+---+ +---+

+--~~---+----~-----+-------+ I ARRAY I (lenqth) I ~type ,

+-----~~+----------+-~-----+

89

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats Version 4.

+----~------+-~-----+
I PARAMETER I ~type I

+--~-~------+-----+-------+-~-~~-----+---~--~~~~---------~----+-------+
I PROCEDURE I nil I ~type I (return) , (number of parameters) I Alist I
+~----~-----+--~--+-------+----------+-----------~------------+-~-----+

+-------+-----+---~------+ I LABEL I nil I (return) I

where -(scalar type)· can be either UNSIGNED INTEGER. SIGNED
IN'rEGER. or REAL. • (return)" can be ei ther SHORT or LONG (wh ich
indicates, in the case of a LABEL. whether a jump to the l.Jbel
should be a "short" jump or a -lonqd jump, respectively), and the
following values are assiqned:

112 (reserved for 1enath)
113 LABEL
114 LONG

99 INTERRUPT 115 SHORT
100 FILE lIn PROCEDURE
101 PACKED 117 PARAMETER
102 UNPACKED 118 DIMENSION
103 SET 119 ARRAY
104 (reserved for 1enqth) 120 (reserved for len<1th)
105 CHAMELEON 121 STRUCTURE
10f' BOOLEAN 122 POIN'rER
107 'fRUE 123 SCALAR
108 FALSE 124 U~SIGNED INTEGER
109 CHAR 125 SIGNED INTEGeR
110 INTEGER 126 REAL
III CONST 127 LIST

(Note) 1. The above (decimal) values are chosen
for the convenience of utility. proqrams such as
EDOJ86, and OJED8~. All numbers are different
(althouqh conceptually there is no reason why REAL
and SCALAR, for example, can't be the same number),
and are rather 1arqe, so that object module display
proqrams may correctly decide whether to represent a
Numeric Leaf as a number or as an identifier, make
this choice correctly most of the time, and never
qive a wronq identifier.
2. For more detailed type descriPtions see the
translator EPS's (e.q. AS~-8~, PLM-8~, PASCAL-~~,

FORTRAN-8~). (end of Note)

Download from Www.Somanuals.com. All Manuals Search And Download.

8086 Object Module Formats version 4.e

APPENDIX 3

SYNTAX DIAGRAMS

+------------+
--+-->1 sequence 1

I +----------+
I

. I +---------+
1-->1 library 1

+---------+

sequence

+--... -----+
--+-->1 module 1--+-->

A + ___ ~ ___ _+ 1

+------~--~----~+

library

-~~(LIBHED)--+---------------+-->(LIBNAM)-->(LIBLOC)-->(LIBDIC)-->
-~~~~~-~ ~ +--------+ I ~------~ ~~------ ---~~-~-

+--1 module 1<--+
+---------+

module

+------+
--+-->1 tmod 1--+-->

I -+------+
I +------+ I
+--> I lmod 1--+
I +------+
I +------+ ,
+--> 1 rmod 1 --+
I +------+
I +------+ I
+-->1 omod 1--+

+------+

91

Download from Www.Somanuals.com. All Manuals Search And Download.

tmod

-->(

Imod

8086 Object Module Formats Version 4""

+---~~----... ---+ +------------+
THEADR) -> I sqr table ,-+---~~--~---+--+---~~-------~---+->I modtail 1--

+-----------+

+~ .. ---.----~

... +-------------+ 1
1<-+ +-1 component

+------------+
+---------+

+--~-... ----+
-->(LHEADR)->1 sgr table 1-+-----------+--+----------------+->1 modtail 1----------- +--------.--~ ft + ____ + I +---~------~+ I +-----.. --~-+

+-1 data 1<-+ +-It_componentl<-+
+------+ +----_ ... _----+

rmod

+---.. ~-.--.. -+ +---... -----+
-->(RHEADR)->1 sqr table I-+------~----+--+----------------+->I modtail 1--

+~--~------+ _ +~~-~-~+ I A +-----------+ I +---------+
+-1 data 1<-+ +-It co~ponentl<-+

+------+ +------------+

omod

+~--.... ~-----+ +---,.. .. ------+
-->(RHEADR)->1 sqor table 1-------------+----------------+->1 0 modtail 1--

~~------- +~----------+ +------~----+ , +--=~~------+
+-Io_componentl<-+

+-----------+

92

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats

sqr _table

+-------~-+ -->1 seq qrp 1--+---------------+--> + ____ ~_~ __ + I ________ A

+-->(REGINT)--+

sgor _table

+----~ ---+
-->1 seq qrp 1--+---------------+--+---------------+-->

+----~----+ ~ ----~--- I f ~~-~~--~ ~
+--(OVLDEF)<--+ +-->(REGINT)--+

-----...... -- I --------- I
+--(LNAMgS)<--+ +--(SEGDEF)<--+

rnodtail

--+--------------_+~->(MODE~D)-->
I -~---~-- ~ ~~------
+--> (REGINT)--+

-------- I
+--(TypOEF)<--+
, ---~~~-~ I

... ..,-~-.., .. - I
+--(EXTDEF)<--+
I -------- -,

~-.. --~-- I
+--(GRPDE~)<--+

--+---------------+--+---------------+-->(MODEND)--}
A _~~ ___ ~_ " ________ ~ _______ _

+--{ OVLDEF)<--+ +-->(REGINT)--+

Version 4.0

93

Download from Www.Somanuals.com. All Manuals Search And Download.

8986 Object ~odule Pormats

o _component

--~-+---------~~--+--+-~-----------~------+-->(ENOREe)-->
~ +--~---+ , - +-~--~--------+ I -----~--
+--1 data 1<--+ +--1 t_component 1<--+

+~---~~+ +------~------+

t. _component

-->('fHEADR)--+------------------+-->
A

+_ ... _---------- 1
1<--+ +--1 compOnent

+-----------+

component

+--.. ------~--.. +
--+--->1 data 1--+-->

I +--... --------~-+
1
+-->1

I
1--+

+--------------+
debug _reco rd

+--------------+

94

Version 4,

Download from Www.Somanuals.com. All Manuals Search And Download.

8e8~ Object Module Formats

iata

+---------------+
--+-->1 content deE 1---+--> I + ____ ~ ___ = ____ + A

I +------------+ I +-->1 thread def 1--->+
I +----~--.:----+ I
I -------- I
+---->(TYPDEF)----->+
t -------- I
, -------- I
+---->(PUBDEF)----->+
I --~----~ I
I -----~-- I
+---->(EXTDEF)----->+

.. _------
--+-->(LOCSYM)---+--> t ________ A

I ------~- ,
+--> (LINNUM)-->+
I -------- t
I ~------- ,
+--> (BLKDEF)-->+
t -------- t
I -------- I
+--> (BLKEND)-->+
I -------- t

I -------- 1
+-->(. DEBSYM)-->+

Version 4.rtJ

95

Download from Www.Somanuals.com. All Manuals Search And Download.

88.8~ Obj ect Mod ule Pormats

content def

--+-->(LIDATA)---+--+---------------+-->
I ---~-~-- - A ~--~~--- I
I -------- I +--(FIXUPP)<--+
+--> (LEDATA) -->+ -------
I ---~-~-- I
I ---~---- I
+-->(PIDATA)-->+
, ----~--- I
I -------- I
+-->(PEDATA)-->+
I ----~~-- I
I -------- I
+-->(RIDATA)-->+
I --~-~--- I
I -~---~-- ,
+-->(REDATA)-->+

thread def

--->(FIXUPP)-->

9~

~ote: Must contain thread fields only.

Version 4.

Download from Www.Somanuals.com. All Manuals Search And Download.

808~ Object Module Formats Version 4.9

APPENDIX 4

EXAMPLES OF FIXU~S

This appendix was originally written in November 1977, and
supplemented a paper, now obsolete, called "Overview of Proposed 8086
Fixupsd. It is included here because it provides copious examples of
fixups in pictorial represe~tation, and therefore is an aid to
understandinq the 8086 fixup meehanisms.

In the followinq examples, we assume that LINK is the name of a
linker and LOCATE is the name of a locater for the 808~ R&L system.

Examples of Self-relative fixu~s a~pear in PART 1 of this appendix1
examples of Seqment-relative fixups appear in PART 2.

KEY TO SAMPLe FIXUP DIAGRAMS

The diaqrams are coded as follows:

PPP . . . indicates the boundary of a PSEG

LLL indicates the boundary of an LSEG

~~~ indicates real memory boundaries 

Download from Www.Somanuals.com. All Manuals Search And Download.



868~ Object ~odule Formats Version 4.a 

PART 1. SELF-RELATIVE REFERE~CES 

PPPPPPPPPPPPPPPPPPPPPP <- PSEG -> 
P P 
p- - - - - - - - - - p <- PP 
p p 
P P 
p p 
p +------~------+ P <- PT 
P TARGET P 
P +-----~ .. -... --.. -+ P 
P P 
P P 
p P 
P P 
p P 
p +--~.----------+ p 
P LOCATION P 
P + .......... ~-.... -----.. + P 
P P 
P P 
P P 
P P 
P P 
P P 
p P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
PPPPPPPPPPPPPPPPPPPPPP 

PP - point defininq PSEG, usually an LSEG 
PT - point defining the TARG~T 

, 
I 

PPPPPPPPPPlppppPPPPPPP 
P I p 
p- - - - -1- - - - - p <- PP 
p I P 
P , P 
P I P 
P + .. _-_ .... __ .. _---+ P 
P LOCATION P 
P +_ .. _-------_ .... _+ P 
P P 
P P 
P P 
~ P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P P 
P +-------------+ P <- PT 
P TARGET P 
P. +-------------+ P 
P P 
P , P 
pppppppp~ptppPP?PPPPPP 

I 
I 
t 

If the positions of LOCATIO~ and TARGET were exchanqerl in the 
diaqrams, then the arrows would Doint down instead of UP. ~ote: The 
distance between the tepef the PSEG anrl point Pi? is less than 1~ bytes, 
and is commonly zero. 

98 

Download from Www.Somanuals.com. All Manuals Search And Download.



909~ Object Module Formats Version 4.0 

1 Self-Relative Intraseq~ent References 

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 
L L 
L L 
L L 

L +--------------+ L 
L TARGET L 
L +----~----~---~+ L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 

L +--------~--------~-+ L 
L LOCATION L 

L +~--------~---------+ L 
L I L 
L I L 
L I L 
L I L 
L V L 
L +--------------+ L 
L TARGET L 
L +-~~~----------+ L 
L L 
L L 
L L 
L L 
L L 
L L 
L L 
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 

Self-Relative references within a sin~le LSEG no not require a 
fixup, the translator puts the appropriate value into LOCATION. 

99 

Download from Www.Somanuals.com. All Manuals Search And Download.



808~ Object Module Formats 

1.2 Self-Relative Interseqment References 

Example: Self-relative jump or call to another segment. 

A LLLLLLLLLLLLLL <- pp B LLLLLLLLLLLLLL 
L L L L 
L +--_ ...... _--+ L L L 
L LOC ,-----~------- L L 
L +--.-------+ L I L +--------+ L 
L L ---------->1 TARGET I L 
L L L +~-----... -+ L 
L L L L 
LLLLLLLLLLLLLL LLLLLLLLLLLLLL 

Both LSEG's are created in the S~Me translation. 

FIXUP. REPRESENTATION: -.. -- --_.- -. 

LOCATION: OFFSET or LOBYTE 
P5EG: 51 (A) (thi sis the most common cho ice) 
TARGET: SI(B) ,dl 

, 
dl 
I 
V 

Version 4.1 

<- P'E 

or 51 (B) (see diaqram and discussion followinq LOCATE OPE~ 

LINK. OPERATION: 

If L5EG B combines then the LINKER will modify all fixups of the 
above form by chanqinq SI(B) ,dl to SI(8) ,dl+d2 

InO 

a' ••••••.••••••• 

B 

I 
• d2 

v 

LLLLLLLLLLLLLL .. 
L L dl 
L +--------+ L V 
L , 'fARGET , L 
L +--------+ L 
L L 
L L 
L L 
LLLLLLLLLLLLLL 

B 

L L 
L +--------+ L <- p'r 
L , TARGET I L 

=> L +--------+ L 
L L 
L L 
L L 
L L 
LLLLLLLLLLLLLL 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats Version 4.' 

~OCA'rE OPERATION: 

At LOCATE time these various sample possibilities can be detec,ted': 

L. PPPPPPPPPPPPPPPPPP 2. PPPPPPPPPPPPPPPPPP 3. PPPPPPPPPPPPPPPPPP 
P P P P P P 
P LLLLLLLLLLLLLL P <- pp P LLLLLLLLLLLLLL P <- pp. P LLLLL'LL·LLLLLLL P (- PI 
P L~ L P P LA L P P'LA' L P 
P L' +--------+ L P P L +--------+ L P P L +--------+ L P 
P L I LOe I L P P L I LOe I L P 'p L I LOC , L P 
P L +--------+ L P P L +--------+ L P P L +--------+ L P 
P L I L P P L I L P P L I L P 
P LLLLLLILt.LLLLL P P LLLLLL1LLLLLLL P P LLLLLLILLLLLLL P 
p I P P I p p I P 
P LLLLLLILLLLLLL p P. I P P I P 

,P LB V L P P I P P , P 
P L +---~-----+ L P <- PT' P LLLLLLILLLLLLL P P , P 
P L I 'rARGET , L P P LB V L P P , 
P L +---~----+ L P P L +-------!!!!!* L P <- PT p.' I p 
P L L P P L I TARGET I L P P LLLLLLILLLLLLL P 
P LLLLLLLLLLLLLL P P L +-.------.:..+ L P P LB I L P 
PPPPPPPPPPPPPPPPPP PPL LPP PPL V LPP 

LLLLLLLLLLLLLL L +--------+ L <- PT 
'L I TARGE'f I L 
L +-~------+ L 

s. PPPPPPPPPPP!PPPPPP LLLLLLLLLLLLLL 
P ,p 

4. LLLLLLLLLLLLLL P LLLLLLLLLILLLL P <- pp 
La L P LB v' L p 

L,+--------+ L <- PT P L +-~ ...... ----+ L P <- PT 
L t 'rARGET , L P L I TARGET I L P 
L +--------+ L ~ L +--------+ L P 
L L P L L P 
LLLLLLILLLLLLL P LLLLLLILLLLLLL P 

I P I P 
PPPPPPPPIPPPPPPPPP P I p 

P LLLLLLILLLLLLL P <- PP P LLLLLLILLLLLLL P 
P LA t L P P LA I L P 
P L +--------+ L P P L +--------+ L P 
p L I LOC , L P P L I Loe I L P 
P L- +--------+ L P P L +--------+ L P 
P L L P P L L P 
P LLLLLLLLLLLLLL P P LLLLLLLLL!LLLL P 
P P P P 
1:> P PPPt>PPPPPPPvpppppp 
p p 
p p 
p p 
p p 
p P 
PPPPPPPPPPPPPPPPPP 

1 QJ 1 

Download from Www.Somanuals.com. All Manuals Search And Download.



808~ Object Module Formats Version 4.~ 

Oiaqrams land 2 show valid fixups. In diaqram 3, the TARGET is not 
in the defined PSEG. A warning will be qiven by LOCATE. In diagram 4, 
if the choice for PSEG is chanqed from SICA) to SICS) then the fixup can 
be made, as in diagram 5, if the displacement is qreater than 32K a 
·clever- fixup, shown in diaqram 5 as an exclamatory arrow, will be
qenerated. 

R & L attempts to inform the us~r of any erroneous self-relative 
references. The symbol beinq referenced must be within the defined PSEG 
independent of the bias value to be applied: 

EXAMPLES: JMP SYM + 10 or JMP SYM - 2 

The symbol SYM will have an offset within its containinq LSEG. The 
values 10 and -2 are biases. If the offset of SYM is added to the bias 
in LOCATION and the result overflows, it is not known whether this is due 
to the offset of SYM beinq qreater than 64K or whether the bias (perhaps 
a neqative or positive numher) caused the overflow. If the bias caused 
the overflow then the reference is good accordinq to R & L, if not, then 
SYM is not in the defined PSEG and the reference is invalid. 

The solution to this problem is to maintain the offset of SYM 
independent of the bias. If the TARGE'r is specified in a primary way 
(e.q., "TARGE'r: SICS) ,d-. then the offset will be maintained in the 
fixup record itself and will be added to LOCATION only at LOCATE time. 
If the TARGET is specified in a secondary way (e.q., dTARGET: SI(8)"), 
then the offset must be maintained in LOCATION itself, and R & L can ~o 
less checking on the correctness of the fixup. 

If the LOCATION is an OFFSET (i.e., a full word, not just a byte) 
and the bias is known to be zero, then a fixup tarqet of: TARGET: SI(B) 
could be used instead of TARGET: SICS) ,dl, without sacrificinq any 
correctness checkinq. 

1" 2 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats Version 4.8 

3 Self-Relative Reference To An EXTERNAL Symbol 

A LLLLLLLLLLLLLL (- PP ? •••••••••••••• 
L L • • 
L +--------+ L •••••••••••• 
L I LOC 1-------------------->. SYM •• 
L +--------+ L 
L , L 
LLLI.LLLLLLLLLL 

FIXUP"REPRESENTATI IN: 

LOCATION: OFFSET or LOBYTE 

• •••••••••• • 
• 

• • • • • • • • • • • • • • 

PSEG: SI(A) (this is the most common choice) 
TARGeT: EI(SY~),0 

<- PT 

or EI(SYM) if the offset is to be maintained in LOCATION 

Or if the reference is to the i'th element of an external array: 

LOCATION: OFFSET or LOBYTE 
PSEG: SICA) this is the most common choice 
TARGET: EI(SYM) ,i-1 

LINK OPERATION: 

There are three ways in which an external self-relative reference 
,ay be resol ved • 

CASE 1: The EX'fERNAL symbol (SYM) is found (by LINK) to be in the same 
LSEG as the LOCATION. 

CASE 2: The EXTERNAL symbol (SYM) is found (by LINK) to be in a 
different LSEG, B. 

CASE 3: The EXTERNAL symbol (SYM) is found (by LINK) to !)e absolute. 

103 

Download from Www.Somanuals.com. All Manuals Search And Download.



S886 Object Module Formats Version 4. 

CASE 1: EX'fERNAL symbol (SYM) is found (by LINK) to be in the same LSEG 
as the reference. The followin1 four cases exist. 

Assume that PSEG is sgecified as .. PSeG: LOCATION". 

PPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPP 
P P P P 
p P P P 
P P P P 
P LLLLLLLLLLLLLL P P LLLLLLLLLLLLLL P 
P L + .. ---~---+ L P <- PP P L +-.-,-------,.-+ L P <- PT 
p L LOe L p P L I TARGET I L P 
P L +--------.f. L P P L +--.--~ ... --+ L P 
P L I L P P L .... 

L P 
P L I L P P L L P 
P L I L P P L L P 
P L V- L P P L L P 
P L +----.. ---+ L P <- PT P L +----.----+ L P <- PP 
P L I TARGET , L P P L LOC L P 
P L +-_ .... _----+ L P P L +---.,-_ ... _-+ L P 
P L L P P L L P 
P LLLLLLLLLLLLLL P P LLLLLLLLLLLLLL P 
PPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPP 

ppppppppftppppppppp PPPPPPPP!PPPPPPppp 
P p P P 
P LLLLLLILLLLLLL P P LLLLLL!LLLLLLL P 
P L L P P L V L P 
P L +---------+ L P <- pp P L + ____ 4a ___ + L P <- PT 
P L LOe L P P L I TARGE'r , L P 
P L +--------+ L P P L +--------+ L P 
P L L P P L L P 
P L L P P L L P 
P L L P P L L P 
P L L P I? L L P 
P L L P P L L P 
P L +--------+ L P <- PT P L +--------+ L P <- pp 
P L I TARGET I L P P L LOe L p 

P L +--------+ L P P L +--------+ L P 
P L L P P L L P 
P LLLLLLILLLLLLL P P LLLLLLILLLLLLL P 
PPPPPPPP!PPPPPPPPP PPPPPPPPVPPPPPPPPP 

Depending on the absolute lenqth of the arrow, LINK can perfor~ a 
"normal" fixup or a "clever" fi~un (exclam~tory arrow). Note that even 
if the LSEG continues to qrow in future LINKinq, the fixup is O~ as lona 
as the LSEG remains less than ~4K in lenath, which is enforced by LINK. 
Thus the fixup is ~o~ple~~!y .. !.e..~q!~~~_ by LINK."· 

1"4 

Download from Www.Somanuals.com. All Manuals Search And Download.



8~86 Object Module Formats Version 4.1 

CASE 2: EXTERNAL symbol (SYM) is found to be in a different LSEG, B. 
The followinq diaqram then applies and LINK converts the fixup to: 

A 

LOCATION: (no change) 
PSEG: (no chanqe) 
TARGET: SI(8) ,dl 

or SI(8) where dl is app~ied to LOCATION depending on 
original TARGET specification. 

LLLLLLLLLLLLLL 
L L 
L L 
L L 
L +-~-----~ L 

LINK will specify the new TARGET in a primary 
(secondary) way if the old TARGET was 
spe=ified in a primary (secondary) way. 

B LLLLLLLLLLLLLL 
L L I 
L L d1 
L L I 
L .......... L V 

L LOC I~--~----~-~~------->. SYM • L 
L +~------~ L L .......... L 
L L L L 
L L L L 
LLLLLLLLLLLLLL LLLLLLLLLLLLLL 

Note that this fixup is now exactly the same as the fixup specified 
in (1.2). 

105 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats Version 4.1 

CASE 3: EXTERNAL symbol (SYM) is found (by LINK) to be absolute. 

LINK will chanqe the fixup to the followinq: 

LOCATION: same 
PSEG: same 
TARGET: pi (SYM) ,d(SYM) 

where pI and d are from a PUBLIC DECLARATIONS record 
or pt(SYM), and d(SYM) is applied to LOCATION. 

LOCATE OPERATION: 

At LOCATE time, LOCATE knows the followinq: 

a) the memory address of LOCATION 
b) the memory address of the PSEG 
c) the memory address of the PUBLIC 

If either the LOCATION or TARGEr is not in the 
report a warninq: YOU CAN'T GET THERE FRO'''' HERE. 
relative fixup can be completed as shown in (1.2). 

PSEG, LOCATE can 
Otherwise, a self-

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats 

l.4 (8089) Self-Relative Reference To An EXTERNAL Symbol 

A LLLLLLLLLLLLLL <- PP ? •••••••••••••• 
L L • • 
L +--------+ L •••••••••••• 
L I LOC 1-------------------->. SYM •• 
L +--------+ L 
L L 
LLLLLLLLLLLLLL 

FIXUP REPRESENTATION: 

LOCATION: OFFSET 

. .......... . 

. . . . . . . . . . . . . . 

PSEG: SI (A) (thi sis the most common cho ice) 
TARGET: EI(SYM) rd 

or EI(SYM) if the offset is in LOCATION 

Version 4.8 

<- PT 

There are two waY$ in which an 8~89 self-relative reference to an 
external symbol may be resolved. 

CASE I: The EXTERNAL symbol (!;Y:-1) is found (by LINK) to be in a 
different LSEG, B. 

CASE 2: The EXTERNAL symbol (SYM) is found (by LINK) to be absolute. 

lA7 

Download from Www.Somanuals.com. All Manuals Search And Download.



808~ Object Module Formats Version 4, 

CASE 1: EXTERNAL symbol (SYM) is found (by LINK) to be in a different 
LSEG, B. 

LINK OPERATION: 

LINK will change the above fixup to the fo110win~: 

LOCATION: (no change) 
PSEG: (no change) 
TARGET: SI(8) ,d1 

wheredl is equal to the sum of d (if any) 
and the symbol offset. 

A LLLLLLLLLLLLLL B LLLLLLLLLLLLLL 
L L L L I 
L L L L dl 
L L L L , 
L +--------+ L L . . . . . . . . . . L V 
L LOC I-------~--~-~------). TARGET . L 
L +--------+ L L . . . . . . . . . . L 
L L L L 
L L L L 
LLLLLLLLLLLLLL LLLLLLLLLLLLLL 

LOCATE OPERATION: 

At LOCATE time various ~ossibi1ities can be detected: 

1. LLLLLLLLLLLLLL <- pp 2. LLLLLLLLLLLLLL <- PT 
LA L LB L 
L +--------+ L L +--------+ L 
L I LOe I L L , TARGET I L 
L +--------+ L L +-------- L 
L J L L L 
LLLLLLILLLLLLL LLLLLLILLLLLLL 

I I 
LLLLLLILLLLLLL I 
LB V L I 
L +--------+ L <- PT LLLLLLILLLLLLL 
L I TARGE'r I L LA , L 

L +--------+ L L +---------+ L <- pp 
L L L , LOe I L 
LLLLLLLLLLLLLL L +--------+ L 

L L 
LLLLLLLLLLLLLL 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats Version 4.0 

Diaqrams land 2 show two commom cases. 

R&L attempts to inform the user of any erroneous self-relative 
references (TARGET not within 32K from LaC). The 'symbol beinq referenced 
must be within the defined LSEG independent of the value at LOCATION to 
be applied: 

EXAMPLES: J~P SYM + 10 or JMP SYM - 2 

The symbol SYM will have an offset within its containinq LSEG. The 
values 10 and -2 are siqned numbers. The fixup output by an 8989 
translator may be 

LOCATION: OFFSET 
FRAME: F~ 

TARGET: EXTERNAL (SYM) , DISPLACE~ENT = number 

The output of LINK will be: 

LOCATION: OFFSET 
FRAME: F~ 

TARGET: SEGMENT(B), DISPLACEMENT = number + offset 

Where 'number + offset' is the sum of the siqned 'number' and the non
neoative 'offset' of the symbol from the base of the segment B. Warninq 
will be issued if overflow or underflow occurs durinq the co~putation of 
this displacement. 

LOCATE will compute the 20-bit address of TARGET and the 20-hit address 
of LOCATION, then the siqned displacement from the LOCATIO~ to TARGET. A 
warning will be issued if the displacement is not within 32K. Otherwise, 
the signed displacement is added to the value in LOCATION and no checkinq 
will be performed for this last addition. 

1(19 

Download from Www.Somanuals.com. All Manuals Search And Download.



8986 Object Module Formats Version 4.t? 

CAse 2: EXTERNAL symbol (Sy~) is found (by LINK) to be absolute. 

LINK~OPERA;rION 

LINK will chanqe the fixup to the following: 

LOCATION: (no chanqe) 
PSEG: (no chanqe) 
TARGET: pI (SYM) ,o(SYM) + d 

where pi and 0 are from a PUBLIC DECLARATIONS 
record and the sum is performed as in Case 1. 

LOCATE OPERATION: 

At LOCATE time, LOCATE knows the followin~: 

a) the memory address of LOCATION 
b) the memory address of the PSEG 
c) the memory address of the PUBLIC 

Computation and checkinq may be performed as in Case 1. 

lIe 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Obj ect Mod ule Fo rmats Version 4.0 

PART 2. SEGMENT RELATIVE REFERENCES 

MMMMMMMMIMMMMMMMMMMMM~MMMMMMMMMMMMM 090008 
~ I M 
M I M 
M I M 
M , M 
M I-F8VAL ~ 

1\1 I M 
M V f't1 
M PPPPPPPPPPPIPPPPPPPP <- canonic PSEG of L 
M P I p M 
M P , P !'1 
M P LLLLLLLLILLLLL P <- PP ..., 
.'4 P L , L P '" M P L FOVAL-I L P M 
M P L V L P f\t 
t4 P L +-~------+ L P <- PT M 
M P L , TARGET , L P M 

'" P L +------_ ... _+ L P M 
M P L L P M 
M P L L P M 
M P L L P ~ 

M P L L P M 
~ P L L P M 
r-1 P L L P fit 
M P LLLLLLLLLLLLLL P M 
1'4 P P I" 
M PPPPPPPPPPPPPPPPPPPP ft1 
M ..., 
M M 
/ / 
/ / 
M M 
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM FFFFFH 

& L enforces: FBVAL modulo lfi = 0 
FOVAL less than fi4K 

-e - --_. po-int--- de f-i-nlnq the PSEG---whlch----al-so -.defines-- FB.\lAL -- .... -- "." ... __ .... ,._--

'f - point definina the TARGET which also defines FOVAL (qiven PP) 

111 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats Version 4.' 

2.1 Seqment-Relative Pointer Reference (lonq call) With ~o GroupinQ and 
80th LSEG's Created In Same Translation 

A LLLLLLLLLLLLLL B LLLLLLLLLLLLLL 
L L L L 
L L L L 
L L L L 
L +---------+ L L +------.---+ L 
L LOC I--~---------------->I TARGET I L 
L +--------+ L. L +-----_.-_+ L 
L L L L 
L L L L 
LLLLLLLLLLLLLL LLLLLLLLLLLLLL 

FIXUP. REPRESENTATION: .--.-- . - - -- --. 

LOCATION: POINTER 
PSEG: TARGET (this is the most common choice) 
TARGET: SI(B) ,dl 

<- PP 
I 
d1 
I 
V <- PT 

or SI(8) where d1 is put in LOCATION by translator 

LINK. OPERATION: --.--- .- - - --

If LSEG B is combined, then the LINKER will modify all fixups of the 
above form that reference SICS) by chanqina SI(8) .dl to SI(8) .dl+d2 or by 
app1yina d2 to the LOCATION. 

8' . . . . . . . . . . . . . . 
I B . . . . . . . . . . . . . . <- pp . d2 
I . . . . . . . . . . . . . . V . . . . . . . . . . . . . . 

S LLLLLLLLLLLLLL A 

L L 
L L dl L +--------+ L <- PT 
L +---~---.--+ L V L I TARGET I L 
L I TARGET I L => L +-------..---+ L 
L +--------+ L L L 
L L L L 
L L L L 
L L L L 
LLLLLLLLLLLLLL LLLLLLLLLLLLLL 

112 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats Version 4.0 

LOCATE OPERATION: 

At LOCATE time: 
1. The BASE (FBVALl is determined by the PSEG directive as the 
canonic PSEG defined by PP. 

2. The offset is a positive value, less than or equal to ~4K, from 
the determined PSEG. LOCATE includes as part of the offset, FOVAL, 
the difference between the absolute location of the LSEG and the 
absolute location of the PSEG defined by the LSEG. (This difference 
will be less than 16.) 

113 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats Version 4.9 

2.2 Seqment-Relative Pointer Reference (lonq call) wil.h No Groupinq 
Where Reference is to an EXTERNAL Symbol 

A LLLLLLLLLLLLLL ? · . . . . . . . . . . . . . 
L L 
L +---.---~-+ L • . . . . . . . . . . · L LOe ,---~----.------------>. SYM • · L +---.. ----+ L • . . . . . . . . . . · L L 
LLLLLLLLLLLLLL · . . . . . . . . . . . . . 

FIXUP REPRESENTATION: 
~--------- ... ~.-----

LOCATION: POINTER 
PSEG: TARGET (this is the most common choice) 
TARGET: EI(SYM) 

LINK OPERATIO~: 

<- PP 

<- PT 

There are three ways in which an EXTER~AL seq~ent-relative reference 
may be resolved: 

CASE 1: Ex'rERNAL symbol (SYM) is found (by LINK) to be in the same 
LSEG as the reference. 

CASE 2: EXTERNAL symbol (SYM) is found (by LINK) to be in a 
d iff ere n t LS EG , B • 

CASE 3: EXTERNAL symbol (SYM) is found (by LINK) to he absolute. 

114 

Download from Www.Somanuals.com. All Manuals Search And Download.



898~ Object ~odule Formats Version 4.0 

CASE 1: EXTERNAL symbol (SYM) is found (by LINK) to be in the same 
LSEG as the reference. An example would be a reference to data (ROM 
DATA) stored in CODE seqment A. 

The PSEG is then determined by LINK to be SI(A) as the default, 
since no groupinq is specified. The followinq two cases may be 
found: 

PPPPPPPPPPPPPPPPPPPPPPPPP 
P P 
P LLLLLLLLLLLLLLLLL P <- PP -> 
P LA L P I 
p L L P I p'r -> 
P L L P I 
p L L P I 
P L +---_ ... _--+ L P I 
P L LOC L P d3 
P L +---------+ L P I 
P L L P I 
P LLLLLLLLLLLLLLLLL P I 
P L?=A L P I 
P L . . . . . . . . . . L P V <- PT 
p L SYM L P 
p L . . . . . . . . . . L P 
p L L P 
P L L P 
p L L ~ 

P L L P 
P L L P 
P L L P 
P L L P 
P LLLLLLLLLLLLLLLLL P 
p p 
p p 
ppppppppppppppppppppppppp 

LINK will modify the fixup as follows: 

LOCATION: same 
PSEG: 51 (A) 
TARGET: SI(A) .d3 

d.3 
V 

PPPPPPPPPPPPPPPPPPPPPPPPP 
P P 
P LLLLLLLLLLLLLLLLL P 
P L?=A L P 
P L . . . . . . . . . . L P 
p L SYM • L P 
p L .......... L P 
p L L P 
p L L P 
P L L P 
p L L P 
p L L P 
p L L P 
P L L P 
P LLLLLLLLLLLLLLLLL P 
P LA L P 
P L L P 
P L L P 
P L L P 
P L +--~--~--+ L P 
P L LOe L p 
P L +-.. ------+ L P 
P L L P 
P LLLLLLLLLLLLLLLLL P 
p p 
p p 
PPPPPPPPPPPPPPPPPPPP?PPPP 

or SI(A) where d3 is applied to the OFFSET part of the LC 

115 

Download from Www.Somanuals.com. All Manuals Search And Download.



808~ Object Module Formats Version 4.8 

CASE 2: EXTERNAL symbol (SYM) is found (by LINK) to be in a 
different LSEG, B. This case becomes the same fixup described in 
(2.1) • 

CASE 3: Ex·rERNAL symbol (SYM) is found (by LINK) to be absol ute. 

The PUBLIC declaration record for SYM will define an absolute 
address of the form PSEG, OFFSET. LINK chanqes the fixup to: 

LOCATION: same 
PS EG: P# (SYM) 
TARGET: ptCSYM) ,dCSYM) 

_ or pt(SYM) (where d(SYM) is applied to the LOCATION) 

Note that this fixup is completely re~olved by LINK. 

LOEA~~_.Qf.~~~!I.c>'~: (CASES 1 and 2) 

At LOCATE time, the absolute location of PSEG is determined. If the 
PSEG and its defininq LSEG are at different locations, then the 
difference, x, (which is less than l~), is calculated. If the TARGET 
specification was primary (e.~~, ~TARGET: SICA) .d3~), then LOCATE 
can calculate the sum -d3 + x~ ensuring ~d3 + x < ~4K-. If the 
TARGET specification was secondary (e.q., ~TARGE·r: SICA),"). then x 
is applied to LOCATION, and this assurance is sacrificed. 

llf; 

Download from Www.Somanuals.com. All Manuals Search And Download.



808~ Object Moduie Formats Version 4.8 

2.3 Seqment-Relative Pointer Reference (lonq call) With Groupinq 

This fixup is' much the same as the fixups described in (2.1) and 
(2.2). The only difference is that the PSEG is always specified to 
be a qroup base. The fixup would appear as one of the followinq 
(also see diaqram below): 

Group 

A 

LOCATION: POINTER 
PSEG: GI (G) 
TARGET: SI(D) ,dl 

or SI(D) where dl is applied to the LOCATION 

OR 

LOCATION: POIN"rER 
PSEG: GI (G) 
TARGET: EI(SYM) if SYM is external 

or EI (SY~"') ,0 

ppppppppppppppppppppppppp 
p p 
P LLLLLLLLLLLLLLLLLLL P 
P LB L P 
p L L P 
p L L P 

G = a, c, 0 P L L P 
P LLLLLLLLLLLLLLLLLLL P 
P P 
P LLLLLLLLLLLLLLLLLLL P 
p LC L P 
p L L P 
P L L P 

LLLLLLLLLLLLLLLLLLL P L L P 
L L P LLLLLLLLLLLLLLLLLLL P 
L L P P 
L L P LLLLLLLLLLLLLLLLLLL P 
L L P. LO L P 
L +--------+ L P L +--------+ L P 
L LOC 1----------------->1 TARGET , L P 
L +--------+ L P L +--------+ L P 
L L P L L P 
L L P LLLLLLLLLLLLLLLLLLL P 
LLLLLLLLLLLLLLLLLLL ppppppppppppppppppppppppp 

<- pp 

dl 
V <- PT 

117 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats Version 4.!.J 

2.4 Seqment-R~lative Offset Reference (data reference) With No Groupinq 
And Both LSEG's Created In The Same Translation 

Diagram in (2.1) can be used. 

LOCATION: OFFSET 
PSEG: TARGET (this is the most common choice) 
TARGET: SI(8) ,dl 

or SI(8) where dl is applied to the LOCATION 

Note that this fixup is exactly the same as the Seqment-Relative 
Pointer Reference shown in (2.l) with one exception: the LOCATION 
requires no BASE fixup. This means one less fixup value to calculate 
at LOCATE time. A Segment-Relative Offset Reference with qroupinq is 
exactly the same as th~ Seqment-Re1ative Pointer Reference with 
qroupinq shown in (2.3) with the same exception mentioned above. 

NOTE: 
for eX-1mple 

LOCATION could also be HIBYTE, if the source code were. 

MOV AH.HIGH(SYM) 

Note that. unlike the 8080 R & L, this fixup will take into account 
the final location of SYM. If SYM has the value 190H as an offset 
within its LSEG which is to be LOCATE'd at 3680H relati'le to tne 
PSEG. we have the followinq: 

8080 ~ lit L: 
._---- I-OCA'fION: 1 byte containinq HIGH(SYM) = 1 

LOCATE at 3680H => LOCATION IH 
+ HIGH (3680H) = 3~~ 

37H 

~ote that this value is not correct! 

8 qaf, R 5r L: 
------Ljt~TION: 1 byte containinq zero 

F'ixup record: 2 bItes containinq 190H 

LeCATE at 3~80H => Fixup value: 190H 
+ Base Address 3~~0H 

39l~H 

38H is then applied to the LOCATIO~ (HIBYT~) 

118 

Download from Www.Somanuals.com. All Manuals Search And Download.



8086 Object Module Formats 

2.5 Segment Relative Base Reference (used for 
initial ization) 

seqment 

Version 4." 

reqister 

This fixup is much the same as the Seqment-Relative Pointer 
Reference described in (2.1). The only difference is that the offset 
part, FOVAL, of the fixup is not required. 

FIXUP REPRESENTATION: 

LOCATION: BASE 
PSEG: TARGET 
TARGET: SI (B) 

This allows the base address (canonic PSEG) of LSEG B to be used. 

OR 

LOCATION: BASE 
PSEG: TARGET 
TARGET: El(SYM) 

This allows the base address (canonic PSEG) of LSEG containinq SYM to 
be used. 

OR 

LOCATION: BASE 
PSEG: TARGET 
'fARGET: GI (G) 

This allows the base address (canonic PSEG) of first LSEG in the 
qroup G to be used. 

119, 

Download from Www.Somanuals.com. All Manuals Search And Download.



Download from Www.Somanuals.com. All Manuals Search And Download.



Download from Www.Somanuals.com. All Manuals Search And Download.



INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 

Download from Www.Somanuals.com. All Manuals Search And Download.



Free Manuals Download Website
h�p://myh66.com

h�p://usermanuals.us
h�p://www.somanuals.com

h�p://www.4manuals.cc
h�p://www.manual-lib.com
h�p://www.404manual.com
h�p://www.luxmanual.com

h�p://aubethermostatmanual.com
Golf course search by state

h�p://golfingnear.com
Email search by domain

h�p://emailbydomain.com
Auto manuals search

h�p://auto.somanuals.com
TV manuals search

h�p://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

