

Galaxy PW[™] 100 to 225 kVA

User's Manual

Download from Www.Somanuals.com. All Manuals Search And Download.

Galaxy PW[™] User's Manual

For service call 1-800-438-7373

86-133060-00 X1 08/02 Copyright © 2002 MGE UPS Systems, Inc.. All rights reserved. Printed in U.S.A.

MGE UPS Systems

1660 Scenic Avenue Costa Mesa, CA 92626 (714) 557-1636

www.mgeups.com 800/523-0142 This page intentionally left blank

IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS — This manual contains important instructions for EPS 6000 inverters that must be followed during installation, operation and maintenance of the equipment.

WARNING

Opening enclosures expose hazardous voltages. Always refer service to qualified personnel only.

ATTENTION

L'ouverture des cabinets expose des tensions dangereuses. Assurez-vous toujours que le service ne soit fait que par des personnes qualifiees.

WARNUNG!

Offene Raeume entladen gefaehrliche Stromspannungen. Bitte wenden sie sich an qualifiziertes Dienstpersonal.

WARNING

To reduce the risk of fire or electric shock, install in a temperature and humidity controlled indoor area free of conductive contaminants.

ATTENTION

Pour réduire le riske d'inccendie ou d'électrocution, installer dans une enciente intérieure contrôlée en température et humidité et sans contaminants conducteurs.

WARNUNG!

Um die Gefahr von Feuer und elektrischem Schock zu reduzieren, muss das Geraet in einem temperatur und feuchtigkeitskontrolliertem Raum, frei von leitungsfaehigen Verunreinigungen, installiert werden.

WARNING

As standards, specifications, and designs are subject to change, please ask for confirmation of the information given in this publication.

ATTENTION

Comme les normes, spécifications et produits peuvent changer, veuillez demander confirmation des informations contenues dans cette publication.

WARNUNG!

Normen, Spezifizierungen und Plaene unterliegen Aenderungen. Bitte beantragen Sie schriftliche Bestaetigung ueber Informationen die in dieser Herausgabe gemacht wurden.

NOTE

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Important Safety Instructions

This page intentionally left blank

Galaxy PW[™] User's Manual

Warranty

Seller warrants to the Ultimate Purchaser (the purchaser who buys for use, and not for resale) that all products furnished under this order and which are manufactured by Seller will conform to final specifications, drawings, samples and other written descriptions approved in writing by Seller, and will be free from defects in materials and workmanship. These warranties shall remain in effect for period of twelve (12) months after delivery to the Ultimate Purchaser. But if the Seller installs the equipment or supplies technical direction of installation by contract, said one year shall run from the completion of installation, provided installation is not unreasonably delayed by Ultimate Purchaser. Parts replaced or repaired in the warrant period shall carry the unexpired portion of the original warranty. A unit placed with the Purchaser on consignment and then later purchased will be warranted for twelve (12) months from the time the Seller receives notification of the Purchaser's intent to purchase said consigned item. The foregoing in its entirety is subject to the provision that in no case will the total warranty period extend beyond 18 months from date Seller ships equipment from point of manufacture.

The liability of Seller hereunder is limited to replacing or repairing at Seller's factory or on the job site at Seller's option, any part or parts which have been returned to the Seller and which are defective or do not conform to such specifications, drawings or other written descriptions; provided that such part or parts are returned by the Ultimate Purchaser within ninety (90) days after such defect is discovered. The Seller shall have the sole right to determine if the parts are to be repaired at the job site or whether they are to be returned to the factory for repair or replacement. All items returned to Seller for repair or replacement must be sent freight prepaid to its factory. Purchaser must obtain Seller's Return Goods Authorization prior to returning items. The above conditions must be met if warranty is to be valid. Seller will not be liable for any damage done by unauthorized repair work, unauthorized replacement parts, from any misapplication of the item, or for damage due to accident, abuse, or Act of God.

In no event shall the Seller be liable for loss, damage, or expense directly or indirectly arising from the use of the units, or from any other cause, except as expressly stated in this warranty. Seller makes no warranties, express or implied, including any warranty as to merchantability or fitness for a particular purpose or use. Seller is not liable for and Purchaser waives any right of action it has or may have against Seller for any consequential or special damages arising out of any breach of warranty, and for any damages Purchaser may claim for damage to any property or injury or death to any person arising out of its purchase of the use, operation or maintenance of the product. Seller will not be liable for any labor subcontracted or performed by Purchaser for preparation of warranted item for return to Seller's factory or for preparation work for field repair or replacement. Invoicing of Seller for labor either performed or subcontracted by Purchaser will not be considered as a liability by the Seller.

This warranty shall be exclusive of any and all other warranties express or implied and may be modified only by a writing signed by an officer of the Seller. This warranty shall extend to the Ultimate Purchaser but to no one else. Accessories supplied by Seller, but manufactured by others, carry any warranty the manufacturers have made to Seller and which can be passed on to Ultimate Purchaser.

Seller makes no warranty with respect to whether the products sold hereunder infringe any patent, U.S. or foreign, and Buyer represents that any specially ordered products do not infringe any patent. Buyer agrees to indemnify and hold Seller harmless from any liability by virtue of any patent claims where Buyer has ordered a product conforming to Buyer's specifications, or conforming to Buyer's specific design.

Buyer has not relied and shall not rely on any oral representation regarding the Product sold hereunder and any oral representation shall not bind Seller and shall not be part of any warranty.

There are no warranties which extend beyond the description on the face hereof. In no event shall MGE UPS SYSTEMS, Inc. be responsible for consequential damages or for any damages except as expressly stated herein.

Service and Factory Repair - Call 1 - 800 - 438 - 7373

Direct questions about the operation, repair, or servicing of this equipment to MGE UPS SYSTEMS, Inc. Customer Support Services. Include the part number, assembly number, and serial number of the unit in any correspondence. Should you require factory service for your equipment, contact MGE UPS SYSTEMS, Inc. Customer Support Services and obtain a Return Goods Authorization (RGA) prior to shipping your unit. Never ship equipment to MGE UPS SYSTEMS, Inc. without first obtaining an RGA.

Proprietary Rights Statement

The information in this manual is the property of MGE UPS SYSTEMS, Inc., and represents a proprietary article in which MGE UPS SYSTEMS, Inc., retains any and all patent rights, including exclusive rights of use and/or manufacture and/or sale. Possession of this information does not convey any permission to reproduce, print, or manufacture the article or articles shown herein. Such permission may be granted only by specific written authorization, signed by an officer of MGE UPS SYS-TEMS, Inc.

IBM, PC-AT, ES/9000, and AS/400 are trademarks of International Business Machines Corporation. MGE and MGE UPS SYSTEMS are trademarks of MGE UPS SYSTEMS, Inc. Other trademarks that may be used herein are owned by their respective companies and are referred to in an editorial fashion only.

Revision History

Galaxy PW[™] User's Manual 86-133060-00 Copyright © 2002 MGE UPS SYSTEMS. All rights reserved. Printed in U.S.A. Revision: X1 08/02

Warranty

This page intentionally left blank

contents

safety instructions	iii
warranty	V
how to use this manual	2
introduction	
deneral characteristics of Galaxy PW™ UPS	3

system description	4
different types of Galaxy PW™ systems	5
isolation and protection devices	5
operation in on-line mode	6
inverter shutdown or overload	
operation with an engine generator set	9
output voltage quality and continuity	
description of Galaxy PW™ cabinets	10
description of Galaxy PW [™] cabinets UPS battery	10
description of Galaxy PW [™] cabinets UPS battery control panel general	10 10 11
description of Galaxy PW [™] cabinets UPS battery control panel general indications	10 10 11 11

start-up

system start-up	
start-up of a module	

shutdown

shutdown of the inverter	 .14
shutdown of a rectifier/charger	 .14

control-panel display

general organization	15
display of messages	15
measurement system	19
voltage measurements	19
current measurements	19
power and frequency measurements	19
battery measurements	20
selections and settings	20

alarms

alainio	
general	
maintenance bypass	

environment information

signal reception	 23
signal transmission	 23

logging and time-stamping

presentation of event time-stamping by	/ Galaxy PW™24
utilization via the Galaxy PW™ display	/24
utilization via Teleservice	

maintenance

maintenance configuration	
battery maintenance	
visual check	
functional check	

options

galvanic and voltage matching transformers	
maintenance bypass	1
electrical supervision	1

This manual is designed for ease of use and easy location of information.

To quickly find the meaning of terms used within the text, look in the Glossary.

This manual uses Noteboxes to convey important information. Noteboxes come in four varieties:

All products in the **Galaxy PW[™]** range are protected by patents. They implement original technology not available to competitors of MGE UPS SYSTEMS.

To take into account evolving standards and technology, equipment may be modified without notice. Indications concerning technical characteristics and dimensions are not binding unless confirmed by MGE UPS SYSTEMS.

This document may be copied only with the written consent of MGE UPS SYSTEMS.

How to Use this Manual

general characteristics of Galaxy PW™ UPS

UPS power rating in kVA				100	130	150	180	200	225	
Normal AC input										
number of conductors	3 phase	s								
rated voltage and tolerances	480 V ±	10% (adj	ustable to	± 15%)						
rated frequency and tolerances	60 Hz /	± 10%	1		1	-	1	4	1	+
THDI				< 14%	< 11%	< 10%	< 8%	< 7.6%	< 7.5%	
power factor	up to 0,	9								
Bypass AC input										
number of conductors	3 phase	s 3	phases +	neutral						
rated voltage and tolerances	480 V /	± 10%	·							
rated frequency and tolerances	60 Hz /	± 10%								
Load										
number of conductors	3 phase	s 3	phases +	neutral						
Ph/Ph voltages	480 V									
Ph/N voltages	277 V									
voltage fluctuations	± 1%									
adjustable frequency and tolerances										
(on battery power)	60 Hz ±	0.05 Hz								
synchronization with bypass	+ 0.5 H	z (adiustal	ble from +	0.25 Hz	$t_0 + 2 H_7$)				
voltage variation for 0 to 100% load step change	+ 2% (w	/ith batters	/)			/				
permissible overloads	150% fc	or 1 minute	. 125% f	or 10 min	utes					
Isc Ph/Ph (% of L rated)				4 7	3.6	32	2.6	24	21	
Isc Ph/N (% of Litated)				7.4	5.7	5	4.1	3.7	33	
THDLL Ph/Ph and Ph/N for linear load	< 1.5%	Ph/Ph <	2% Ph/N	7.4	0.1	0	7.1	0.1	0.0	
THDU Ph/Ph and Ph/N for non-linear load	< 2% P	h/Ph < 39	4 Ph/N	1	1	1		1		1
(at 80% of Pn)	2/011	, , , , , , , , , , , , , , , , , , , ,								
Battery								1		
standard battery type	das-rec	ombinatio	l halcas n	ead-acid	hatterv					
	gas icc	ombination	1 Scalcu I		battery					
active power (kW)				100	130	150	180	200	225	
efficiency at 50% load (%)				90.5	01	02	92.5	02.5	03	
$(values \pm 1\%)$				30.5	51	52	32.5	32.5	30	
efficiency at 100% load (%)		1	1	02.5	03	03	03	03.5	035	1
$(values \pm 1\%)$				52.5	35	33	35	35.5	33.5	
$\frac{(\text{values } \pm 1\%)}{\text{host losses}}$				0.1	0.0	11.2	125	12.0	1.1.1	
				0.1	9.0	2700	13.0	13.9	14.1	
	25 00 +	0.70.00		1940	2330	2700	3240	3340	3300	
	-25 CT	0 +70 C	°C for 9 I							
	0 0 10	35 C (40		iours)						
movimum operating altitude without denoting	95% 118	motoro								
	< 1000	meters		60	60	64	C.F.	67	60	
dimensione (mm) width	1015			62	63	64	60	67	00	
dimensions (mm) width	1215									
deptn	840	40	1	1	1	1	1	1	1	1
neight	1900 ±	10				0050/40				
weight (IDS/Kg)						3050/13	88			
standards design	NFPA/	NEC / NE	MA/OSM	лА						
product and safety	UL 1778	S-ULC								
electromagnetic compatibility	гос Ра	Irt 15, Sub	oport J, Cl	ass A - IE	EE587//	ANSI 62.4	1			
(1). The lease indicated are these produced at full rated		the hetters	floot oborg	ing Thou		an into ano			(antilation)	

(1): The losses indicated are those produced at full rated load with the battery float charging. They must be taken into account when sizing the ventilation system.

Introduction

system description

(see figure 1)

■ a rectifier/charger module (A) converts 3-phase AC power from the normal AC source supply (1) into DC power for the normal inverter input and float charges or recharges the battery;

■ a battery unit **(D)** provides backup power for the inverter in the event of a voltage drop or a normal AC source failure;

■ an inverter module (B) converts the DC power supplied by the rectifier/charger module or the battery unit into 3-phase AC power for the load;

■ a static bypass module **(C)** ensures the instantaneous transfer of the load to the bypass AC source input in the event of an inverter shutdown (initiated by the user or by a protective device) or a sudden overload;

■ a maintenance bypass isolates the UPS for maintenance and transfers the load to bypass AC source input without interrupting the supply of power. The maintenance bypass is made up of three manual switches (Q3BP, Q4S and Q5N).

Note

■ the normal AC input and the bypass AC input have different functions and, depending on the installation, may be protected differently upstream and/or come from different sources.

■ when increased power is required, several **Galaxy PW**TM units may be connected in parallel (up to four). In this configuration, an "isolation" function is added for the UPS system as a whole for maintenance purposes, without interrupting the supply of power to the load.

rectifier/ inverter (B): charger (A): AC to DC DC to AC power isolation and power protection: Q5N *FUSE FUSE (1) normal AC input load Q1 isolation and protection QF1: isolation harmonic and protection fliter battery (D): backup power isolation: Q4S static bypass (C): (2) bypass AC input ₩ maintenance bypass:

The system may also include:

■ 2 CB or 3 CB maintenance bypass

input and output.

display systems.

■ Isolation or auto transformers on both

■ different remote control, indication and

Fig. 1 *The Fuse is to protect against catastrophic rectifier/inverter semiconductor failure.

Q3BP

different types of Galaxy **PW™** systems

single-UPS unit

parallel UPS system

See figure 3 showing two parallel-connected (redundant) UPS units.

When increased power is required (two to four parallel units), an external bypass must be added (see figure 4).

Fig. 4

isolation and protection devices

(See figure 1 on previous page):

Q1 (Molded circuit breaker NA): □ isolation of the rectifier/charger (A) from

- the normal AC source (1); □ rectifier/charger (A) start-up;
- QF1 (circuit breaker):
- □ battery (D) protection and isolation;
- Q5N (switch):
- isolation of the UPS (B) from the load; ■ Q4S (switch):

isolation of the static bypass (C) from the bypass AC source (2):

- Q3BP (switch):
- bypass switch for maintenance;
- FUE (fuses):

□ protection of the rectifier/charger (A) from the normal AC source;

■ FUS (fuses):

□ protection of the inverter (B) from the load.

Note:

■ switch Q3BP is lock on open position on parallel UPS systems constituted to increase available power.

external bypass for parallel UPSs and the hot-swap option

See figure 4.

■ Q5N: isolation of the inverters of all the parallel UPS systems from the load: ■ Q3BP: bypass for maintenance.

operation in on-line mode

normal operation

Normal AC source power is available (see figure 5).

■ lights 1, 4 and 5 shine green on the control panel;

the power necessary for the load is provided by the normal AC source (1) through the rectifier/charger (A) and the inverter (B):

the rectifier/charger (A) also supplies the power to float charge and recharge the battery if any.

The rectifier/charger output voltage (DC) is regulated to supply:

 the float-charging or the recharging voltage for vented lead-acid or Ni/Cd batteries,

a single charge voltage for sealed leadacid batteries.

The voltages depend on the number of battery cells and the battery manufacturer. Factory set, they may also be adjusted by after-sales support technicians. An electronic board continuously measures the battery temperature and automatically adjusts the voltages.

Note:

In parallel **Galaxy PW[™]** systems, the power drawn by the load is equally shared between the different units.

Fig. 5

operation with the normal AC source down

See figure 6.

In the event of a normal AC source failure or voltage outside specified tolerances of $\pm 10\%$ in amplitude ($\pm 15\%$ optionally), the rectifier/charger (**A**) stops and the battery (**D**) supplies the necessary backup power to the load via the inverter (**B**). The battery, float-connected between the rectifier/charger and the inverter, discharges during this operating mode.

Lights 2, 4 and 5 shine green. The user is warned of battery operation by the slow beeping of the buzzer 6 (see figure 16) and the message "LOAD PRO-TECTED, BATTERY DISCHARGING", followed by the remaining backup time and the percent load.

This information is also available via voltfree changeover contacts for remote control devices.

Fig. 6

battery time

The available battery time during a normal AC source outage depends on the:

- rated capacity of the battery;
- power consumed by the load;
- temperature of the battery;
- age of the battery.

The specified battery time corresponds to a minimum duration at full rated load. The actual backup time can therefore be greater if the system operates below its full rated load during the normal AC source outage. Operation on battery power can be extended beyond the specified time by reducing the load power consumption (by disconnecting non-critical loads).

A "low battery" warning signal is sent via volt-free changeover contacts for remote control devices when the battery voltage reaches a level slightly above the minimum level. This signal warns the user of the imminent end of battery power. On the device itself, the buzzer beeps rapidly. The message "LOW-BATTERY SHUT-DOWN WARNING" is displayed, followed by the remaining backup time and the percent load. Light 2 turns red and flashes. Battery power stops when the voltage supplied by the battery reaches the minimum threshold. This results in inverter shutdown and transfer of the load without interruption to the bypass AC source. Light

2 shines red (not flashing). The message "LOAD NOT PROTECTED, ON-LINE MODE" is displayed and the buzzer sounds continuously.

If the bypass AC source also fails, the load is no longer supplied. The inverter automatically shuts down when the time on battery power exceeds three times the specified backup time.

NOTE

The "low battery shutdown" warning signal can be sent with an adjustable time delay prior to the effective end of battery power.

operation with the normal AC source restored

See figure 7.

When normal AC source power (1) is restored or its voltage returns to within specified tolerances, the system automatically returns to its normal operating mode described above (on the condition it did not reach the end of battery power). If the end of battery power was reached (with the resulting inverter shutdown), the rectifier/charger (A) restarts automatically, but the inverter (B) must be restarted manual-Iv.

The rectifier/charger recharges the battery (D) which was discharged during the mains outage. During battery charging, light 2 flashes green.

The message "BATTERY CHARGING" is displayed, together with the value of the recharging current and battery voltage.

The battery charge cycle takes place in two steps (see figure 8):

■ step 1: the battery is recharged at a constant current limited to 0.1C10 (i.e. 1/10th of the battery capacity specified for a 10 hour discharge). The DC voltage increases with the battery charge until the charge level is reached;

■ step 2: the battery is recharged at constant voltage equal to the charge level. The charging current gradually decreases until reaching a specified low value (floating current).

For vented lead-acid batteries, the rectifier/charger supplies the charging voltage for 0 to 255 hours (parameter defined by the after-sales support department) and then the floating voltage. For sealed leadacid batteries, the charging and floating voltages are the same.

NOTE

If the normal AC source failure is shorter than 0 to 255 seconds (default value = 30 seconds) (parameter defined by after-sales support department), the charger automatically supplies the floating voltage given the low battery discharge.

Battery charge cycle

inverter shutdown or overload

See figure 9 for devices or installations operating in on-line mode with a bypass AC source.

single-UPS unit (on-line mode)

■ in the event of a UPS shutdown (initiated by the user or by an internal protective device), the load is automatically transferred to the bypass AC source. If transfer conditions are satisfied, transfer takes place instantly, without interruption to the load:

Note: transfer conditions are not satisfied when bypass AC source characteristics are outside tolerances (voltage: $\pm 10\%$; frequency as per personalization; phase sync with inverter $\pm 3^\circ$);

■ in the event of a major transient overload (greater than 1.65 ln), immediate transfer takes place as above, without interruption to the load.

The return to the inverter is automatic when the overload disappears if the number of possible returns has not been reached (0 to 255, programmable by personalization). If this number has been reached, the load continues to be supplied by the bypass AC source. This operating mode allows start-up of load devices causing high inrush currents. This system requires satisfied transfer conditions. If the conditions are not satisfied, the inverter will current limit to 165% of its rated current for 1 second before stopping;

■ in the event of a small but extended overload (i.e. a continuous level of power exceeding the full rated load), the inverter will continue to supply power for a period depending on the magnitude of the overload (10 minutes for a 125% overload, 1 minute for a 150% overload). See the overload curve in figure 10;

■ in all three of the above cases, inverter shutdown and supply of the load via the bypass AC source results in the following on the control panel:

light 4 goes off,

activation of the buzzer (continuous beep),

light 3 shines green,

the message "LOAD NOT PROTECT-ED, ON-LINE MODE" is displayed.

parallel UPSs without redundancy

The shutdown of one inverter results in overload on the other inverters in operation. Two cases may then arise:

if the overload on each remaining inverter is \geq than 1.65 ln, the load is immediately transferred to the bypass AC source;

■ if the overload is less than 1.65 In, the remaining inverters support the overload (see curve in figure 14), and the load is transferred to the bypass AC source;

■ after this transfer:

the light 4 goes off,

 the buzzer is activated and sounds continuously,

 the light 3 goes on and turns green,
 the message "LOAD NOT PROTECT-ED, PARALLEL ON-LINE MODE" is displayed.

parallel UPSs with redundancy

■ the shutdown of one UPS unit is of no consequence for the load. The others each take up an equal amount of load power and the load continues to be supplied normally;

Unit shutdown results in the following on the control panel:

□ lights 4 and 5 go off,

activation of the buzzer (continuous beep).

 the message "LOAD NOT PROTECT-ED, PARALLEL ON-LINE MODE" is displayed;

■ in the event of an overload, the system only loses its redundancy as long as the overload is less than the total rated power of the functioning units. If the overload is greater, the operating mode is that previously described for systems without redundancy.

Fig. 10

Introduction

operation with an engine generator set

See figure 11 below.

If a stand-by generator is included in the installation, it is generally started automatically in the event of a normal AC source failure and connected to the main low voltage switchboard. It is disconnected when normal AC source power is restored. With such a system, the required battery time may be reduced to the time necessary for starting and bringing on line the stand-by generator. The battery (D) supplies power to the inverter (B) during the transfers:

normal AC source to the generator; generator to the normal AC source. The transfer sequences described above (normal AC source → battery, battery → generator, generator -> battery, and battery → normal AC source) are fully automatic. They in no way affect the load and require no manual operation by the user.

NOTE

To avoid load surges on the generator, the rectifier/charger is started with a 10 second maximum current consumption walk-in (lasting 3 to 10 seconds, depending on the percent load). To avoid overloading an undersized engine generator set, it is possible to set a maximum power level drawn by the normal AC input. Any additional power required is supplied by the battery. This modification can be made on site by an MGE **UPS SYSTEMS field** engineer.

output voltage quality and continuity

The output voltage is stable in amplitude and frequency and is free of interruptions or transients outside specified tolerances, irrespective of normal AC source or load disturbances (outages, load step changes, etc.).

steady state voltage regulation

For stable or slowly varying load conditions, the inverter output voltage is regulated to within ±0.5% in amplitude. The frequency of the output voltage can theoretically be regulated to within 0.1% of the rated value, however the output frequency range may be intentionally extended to a maximum of ±2 Hz so that the inverter can remain synchronized with the bypass AC source and its inherent frequency fluctuations, thus enabling transfer of the load to the bypass line at any time.

NOTE The output frequency range can be personalized and if necessary modified on the customer site by a qualified MGE UPS SYS-TEMS support technician from ±0.25 Hz to ±2 Hz in 0.25 HZ steps. When the bypass AC source voltage moves outside this frequency range, the inverter is desynchronised and operates in "free running" mode, with the output frequency regulated to a high level of accuracy by a quartz oscillator.

Example of an installation with an engine generator set

Introduction

When the bypass AC source frequency returns to within the specified tolerances, the inverter is gradually re-synchronized to the bypass line at a rate of 0.5 Hz to 2 Hz/s (as per the value personalized by the after-sales support department), thus avoiding exposing the load to sudden frequency variations.

transient voltage regulation

The inverter output voltage is not notably affected by instantaneous major variations in load characteristics.

This is made possible by the PWM (Pulse Width Modulation) chopping technique and the microprocessor-based regulation system that instantly compensates for any variation. In particular, the inverter output voltage remains within +/- 2% of the rated voltage for load step changes of 0 to 100% or of 100 to 0%.

Description of Galaxy PW™ Cabinets

UPS cabinet

See figure 12 for the layout of the various cabinet components.

Legend for figure 12:

- 1 rectifier/charger module,
- 2 inverter module,
- 3 static-bypass module,
- 4 card case for electronic control boards,
- 5 rectifier/charger input fuses "FUE",
- 6 inverter output fuses "FUS" 7 - normal AC input circuit breaker Q1,
- 8 bypass AC input switch Q4S,

9 - maintenance bypass switch Q3BP (locked in open position on parallel UPSs for greater capacity),

10 - output switch Q5N,

11 - display board,

12 - Media Contacts 11 remote indications board,

13 - backfeed protection.

battery cabinet

Figure 13 shows an example of component layout in a battery cabinet or a battery circuit-breaker enclosure.

Legend for figure 13:

1 - battery isolation and protection circuit breaker QF1, 2 - battery cells.

Example only and may not represent actual units shipped

Description of Galaxy PW[™] Cabinets

general

The control panel on **Galaxy PW™** UPSs comprises the basic controls and indications required to check the general status of the system (see figure 14).

Located in the upper right part of the cabinet front, the control panel is designed to provide an easy and rapid overview of system status (see figure 14). Interpretation of symbols is very simple and requires no particular training. The information concerns only the cabinet on which the panel is located. The panel indicates:

■ normal operation (load protected);

operation with load on battery power;

 abnormal situations (operating problem);
 dangerous situations (load not protected)

ed).

indications

See figure 14.

- "Rectifier/charger" light 1
- light off: rectifier/charger OFF;
- light shines green: rectifier/charger ON;

■ light shines red: rectifier/charger fault, the stored alarm indicates one or several of the following faults:

input circuit breaker Q1 open,

 protection fuse at the rectifier/charger input (FUE) blown,

 abnormally high internal rectifier/charger temperature,

abnormally high battery charge current,
 abnormally high battery voltage,

a fault, non-calibration or non-personalization of the electronic control board for the rectifier/charger.

 fault on the electronic power-supply board,

abnormally high temperature in the harmonic filter inductor.

"Battery light" 2

■ light off: battery float charging;

light flashing green: battery recharging;
 light shines green: load on battery power;

■ light flashing red: low-battery shutdown warning;

■ light shines red: battery at end of backup time and circuit breaker QF1 open, or battery fault.

Fig. 14

"Static-bypass" light 3

■ light off: bypass AC source within specified tolerances and static bypass open;

light shines green: static bypass closed;
 light shines red: the stored alarm indi-

cates one or several of the following faults:

□ bypass AC source voltage or frequency outside specified tolerances,

□ static-bypass fault,

 abnormally high internal static-bypass temperature,

□ static-bypass ventilation fault,

power-supply fault for the static-bypass control function,

□ fault on the electronic board controlling the transfer function,

 non-calibration or non-personalization of the electronic control board for the inverter,

□ fault on the electronic power-supply board,

 fault on monitoring the "inverter ready" response channels (parallel UPS system).

"Inverter" light 4

- light off: inverter OFF;
- light flashing green: inverter starting,

inverter ON but not connected to the load; light shines green: normal inverter operation;

■ light shines red: inverter fault, the stored alarm indicates one or several of the following faults:

 inverter shutdown due to inverter output voltage outside specified tolerances,
 protection fuse at the inverter output

(FUS) blown,

abnormally high inverter-output transformer temperature,

abnormally high inverter temperature,
 output-voltage fault (amplitude or phase) (parallel UPSs),

a fault, non-calibration or non-personalization of the electronic control board for the inverter,

□ fault on the electronic power-supply board.

"Load" light 5

■ light off: load not supplied;

■ light shines green: load supplied via the inverter or the bypass AC source (via the static bypass).

Buzzer 6

The buzzer sounds in the following situations:

Ioad supplied by the bypass AC source;

load on battery;

operating problems.

It sounds slowly and discontinuously for a minor problem or when the inverter is on battery power.

When the alarm "LOW BATTERY SHUT-DOWN" is activated, the buzzer sounds more rapidly. Finally, if the inverter shuts down, the beep is loud and continuous. The buzzer may be reset by pressing a button. If the buzzer is reset, a higher level alarm will set it off again.

"Inverter ON" button 7

This button is used to start the inverter locally.

"Inverter OFF" button 8

This button turns the inverter off locally.

Keys 9 and 10

These keys are used to select commands in the main menu and access the secondary messages.

Key 11

This key is used to validate the user's choice.

Key 12

This key is used to access the main menu: display language, display-contrast setting, sound level of the buzzer, lamp test, date and time settings, inverse-video and event log.

"V" key 13

This key is used to access voltage measurements:

■ normal AC source phase-to-phase voltages;

■ bypass AC source phase-to-phase and phase-to-neutral voltages;

■ load phase-to-phase and phase-to-neutral voltages.

"A" key 14

This key is used to access current measurements:

normal AC source, bypass AC source and load currents;

■ percent load;

■ load crest factor.

"W.Hz" key 15

This key is used to access other measurements:

■ normal AC source, bypass AC source and inverter frequencies:

■ level of active and apparent power

drawn by the load;

Ioad power factor;

■ inverter load level (percent).

"Anomaly" indicator light 16

This indicator light indicates the presence of anomalies.

key 17

This key is used to access the primary messages.

"Battery" key 18

This key is used to access battery measurements:

battery voltage (or the DC voltage on frequency converters without a battery);

- battery current (charge or discharge);
- battery temperature:
- available battery backup time;
- inverter load level (percent).

"Forced-transfer" key 19

This key is used to voluntarily transfer the load to the inverter or from the inverter to the static bypass (return transfer). Transfer and return transfer are carried out only following confirmation requested by the system display and a warning as to the risk of an interruption in the supply of power to the load.

"Alarm reset" key 20

This key is used to reset stored alarms. The system accepts resetting only when alarms have been cleared.

"Buzzer reset" key 21

This key is used to stop the buzzer. However, new alarms set the buzzer off again.

Display 22

The display continuously indicates the system operating status.

system start-up

single-UPS unit or redundant parallel UPS

See figure 15.

Proceed in the following order:

close the upstream switches supplying normal and bypass AC source power (on the LV switchboard);

close normal AC input switch Q1. The system powers up:

the rectifier/charger automatically starts,
 green light 1 on the control panel goes on,

light 2 turns red;

close bypass AC input switch Q4S:
 green lights 3 and 5 on the control panel go on;

close inverter output switch Q5N;

■ close battery circuit breaker QF1;

□ light 2 goes off;

open maintenance bypass switch Q3BP;

■ press the "inverter on" button 7 on the control panel:

the green "inverter" light 4 flashes,
 the inverter starts, then, if the bypass AC source transfer conditions are satisfied, the load is transferred to the inverter if the on-line mode is selected.

□ the green "static-bypass" light 3 goes off.

□ the green "inverter" light **4** shines for on-line mode.

Q4S

0 🚭

0 \$

0 p¹

QF1

÷

0

0

Q3BP

0 p1

OD

 $0 p^1$

Q5N

0 🚭

0 0

0 92

0 1

Q1

1 0

1 0

Fig. 15

Fig. 16

parallel UPS unit for increased output

See figure 16.

Proceed in the following order: check that all load devices are off or that the load is disconnected:

 close the upstream switch supplying normal AC source power (on the LV switchboard);

close the normal AC input circuit breakers Q1 on the UPS units. The system powers up:

 the rectifier/chargers automatically start,
 the green "rectifier/charger" lights 1 in the control panels go on,

lights 2 turn red;

close the battery circuit breakers QF1;
 lights 2 go off;

green lights 3 and 5 on the control panels go on;

close output switches Q5N for the

inverters and in the external bypass unit; open maintenance bypass switch Q3BP

in the external bypass unit; ■ press the "inverter on" button **7** on each control panel:

□ the green "inverter" lights **4** flash;

 when a sufficient number of inverters are ready, the inverter-output contactors close:

□ the green "inverter" lights **4** shine permanently green;

□ the "static-bypass" lights 3 go off.

start-up of a module

start-up of a rectifier/charger

rectifier/charger start-up is automatic when the normal AC input circuit breaker Q1 is closed:

the green "rectifier/charger" light **1** on the control panel goes on;

■ close battery circuit breaker QF1.

WARNING Rectifier/charger start-up is automatic when normal AC input circuit breaker Q1 is closed. DC voltage is present in the DC bus.

start-up of an inverter

When the rectifier/charger is on: press the "inverter ON" button **7** on the control panel;

□ the green "inverter" light **4** flashes.

Single-UPS unit

■ the inverter starts, then, if the bypass AC source transfer conditions are satisfied, the load is transferred to the inverter if the on-line mode is selected. For online mode:

□ the green "inverter" light 4 remains on,
 □ the "static-bypass" light 3 goes off.

Parallel UPS unit

■ the inverter starts and awaits the start of the other inverters;

■ when they are all on or enough have been started to supply the rated load power, the output switch for each running inverter closes and the load is supplied with power:

□ the green "static-bypass" light 3 goes off,

• the green "inverter" light **4** on the control panels of the running inverters goes on.

shutdown of the inverter

■ press the "inverter OFF" button **8** on the control panel for three seconds (see figure 19).

single-UPS unit

■ the green "inverter" light 4 on the control panel goes off;

■ the green "static-bypass" light 3 goes on;

the inverter stops;

■ if bypass AC source (Mains 2) transfer conditions are satisfied, the inverter shuts down and the load is transferred to the bypass AC source;

■ if bypass AC source (Mains 2) transfer conditions are not satisfied, the inverter does not shut down. The message "MAINS 2 OUTSIDE TOLERANCES, TRANSFER DISABLED" is displayed.

parallel UPS unit

■ if the system is redundant, i.e. the other parallel-connected inverters can supply the load on their own, the inverter shuts down and the green "inverter" light **4** goes off.

The load is not affected in that the other inverters continue to supply it normally;

■ if the system is not redundant, the other inverters go to overload status. If overload conditions are overrun, the

load is transferred to the bypass AC source:

□ the green lights 3 turn green,

the green "inverter" light 4 goes off.

shutdown of a rectifier/charger

It is recommended not to stop the rectifier/charger because the battery will no longer be charged. Except in the case of a test of the inverter on battery power, the rectifier/charger should be shutdown after the inverter to avoid unnecessary battery discharge.

Proceed in the following order:

open battery circuit breaker QF1;

open normal AC input circuit breaker Q1:

 the rectifier/charger shuts down,
 the green "rectifier/charger" light 1 goes off.

general organization

The display is structured around primary and secondary messages, measuring tables and setting screens. As a rule, the message displayed on the screen is always a primary one. The secondary messages, if any, are accessed by pressing keys 9 \checkmark and 10 \checkmark (see figure 16). The presence of secondary messages is indicated by the arrow \downarrow at the end of the primary message. Return to the primary messages is automatic if the keypad is not used for 2 minutes, or direct by pressing key 17 (see figure 14). The display screen lights up when a key is pressed, and goes off if no key is pressed for 5 minutes.

NOTE

Most functions may be directly accessed. For example, when voltage measurements are currently displayed, it is possible to directly access current measurements by pressing the "A" button.

display of messages

In addition to keypad operations, the graphical display brings up a window giving the overall device status. The message displayed is then said to be primary (see list in the paragraph below). A primary message can be used to access the measuring tables using keys 13, 14, 15 and 18 on the keypad (see figure 17 in the general appendix). The configuration screens can be accessed by pressing key 12.

A flashing arrow appears at the end of a primary message if there is a problem or an alarm; secondary messages can be accessed by pressing key **9** on the keypad (see the list of secondary messages). The presence of another message is indicated by the arrows \downarrow and \uparrow at the end of the secondary message. They can be accessed by pressing keys **9** and **10** on the keypad.

The return to the primary message is automatic after a 2 minute time delay or by pressing key **17** on the keypad.

Display of alarms

IMPORTANT

Select English U. S. as the display language to match the displays as presented in this manual.

Fig. 17

list of primary messages

LOAD PROTECTED ON-LINE MODE

This is the normal display when there are no alarms or problems and the load is correctly supplied by the inverter, in on-line mode.

LOAD PROTECTED PARALLEL ON-LINE MODE

This is the normal display when there are no alarms or problems and the load is correctly supplied by the inverter in a parallel UPS system, in on-line mode.

This display indicates that the load is not supplied by the inverter, or that there is no battery backup. The arrow \downarrow indicates the presence of one or more problems specified in secondary messages. The buzzer sounds continuously.

Situation identical to that in the previous screen, but for parallel UPS systems.

LOAD PROTECTED BATTERY DISCHARGING Remaining battery time (min) = XX % kW used = XXX

The load is supplied by the inverter, but the normal AC source is down or outside tolerances and power is supplied by the battery.

This message indicates the remaining battery time in minutes prior to inverter shutdown and the percent load. The battery time calculation takes into account:

■ the percentage of full rated load power currently being drawn;

the type of battery;

■ battery temperature;

■ battery age.

L

T

The buzzer sounds slowly and discontinuously.

This message replaces the preceding if the power outage persists and the warning level has been reached. The user is warned that the battery is

about to shut down.

The buzzer sounds rapidly and discontinuously.

LOAD PROTECTED ECO MODE

This is the normal display when there are no problems: the load is supplied by the inverter or the bypass AC source, and battery backup is available.

LOAD NOT PROTECTED ECO MODE

This display indicates that the load is supplied but has no battery backup. The arrow \downarrow indicates the presence of one or more problems specified in secondary messages.

The buzzer sounds continuously.

LOAD FORCED TO INVERTER ECO MODE

The load has been transferred to the inverter following a specific request by the user.

list of secondary messages

LOAD ON MAINS 2

The load has been transferred to the bypass AC source (M2) and is no longer protected (only in on-line mode). The buzzer sounds continuously.

MAINS 2 OUTSIDE TOLERANCES TRANSFER DISABLED CHECK MAINS 2

The bypass AC source (M2) frequency or voltage is outside tolerances and the inverter is unable to synchronize. Transfer of the load from the inverter to the bypass AC source (M2) or vice-versa will result in an interruption of the supply of power to the load. The buzzer sounds slowly and discontinuously.

BATTERY OVERTEMPERATURE, CHECK VENTILATION

The battery temperature is outside tolerances. The buzzer sounds slowly and discontinuously.

BATTERY ROOM VENTILATION FAULT, CHECK VENTILATION

A fault requiring servicing has occurred in the battery room ventilation system. The rectifier/charger shuts down after a 30second time delay.

The user must take steps to re-establish correct operation of the ventilation system. This message also signals an abnormally high temperature in the filter inductor. The buzzer sounds slowly and discontinuously.

MAINS 1 OUTSIDE TOLERANCES, CHECK MAINS 1

The normal AC source (M1) frequency or voltage is outside specified tolerances and the rectifier/charger has shut down. The inverter is on battery power.

MAINS 1 INPUT SWITCH Q1 IS OPEN

The normal AC input (M1) switch Q1 is open. It must be closed for rectifier/charger start-up. The buzzer sounds slowly and discontinuously.

INTERNAL UPS FAULT, LOAD TRANSFER FAULT, CALL MAINTENANCE

A fault has occurred in the static switch that transfers the load between the inverter and the bypass AC source (M2). Servicing by the after-sales support department is required. The buzzer sounds continuously.

OVERLOAD
RATED CURRENT PER PHASE =
XXX A
CHECK LOAD LEVEL

This display informs the user that load current is greater than rated current, and gives the value. The buzzer sounds continuously.

UPS SHUTDOWN DUE TO AN	
OVERLOAD,	
CHECK LOAD LEVEL	

This message follows the preceding when the overload persists. The UPS has shut down and the buzzer sounds continuously.

INVERTER NOT IN PHASE WITH MAINS 2. TRANSFER DISABLED, CHECK MAINS 2

The phase difference between the inverter and the bypass AC source (M2) is outside tolerances. Transfer of the load between the inverter and the bypass AC source (M2) will result in an interruption in the supply of power to the load.

For parallel UPSs, this message should be interpreted as meaning the phase difference between the inverter for which the message is displayed and the other inverters is outside tolerances.

UPS SHUTDOWN BY AN EXTERNAL COMMAND

The inverter has received a command to shut down. The command is in the form of a signal from received the remote-indications relay board which has been set for this function.

n the inverter is started again.

MAINS 2 INPUT SWITCH Q4S IS OPEN

The bypass AC source (M2) input switch Q4S is open, i.e. backup power for the load via the bypass AC source (M2) is not available.

INVERTER OUTPUT SWITCH Q5N IS OPEN

Inverter output switch Q5N is open, i.e. the load cannot be supplied via the inverter.

BYPASS SWITCH Q3BP IS CLOSED

Maintenance bypass switch Q3BP is closed. The system is in maintenance configuration and the load is supplied by the bypass AC source.

STATIC SWITCH (M2) OFF DUE TO AN OVERLOAD

The load is no longer supplied by the bypass AC source (M2), due to an extended overload. The buzzer sounds continuously.

BATTERY CHARGING I BAT. = XXX A U BAT. = XXX V

The battery is currently being recharged.

BATTERY AT END OF SERVICE LIFE CALL MAINTENANCE

The battery is nearing the end of its estimated service life. This information is based on average service-life calculations since its initial installation. The buzzer sounds slowly and discontinuously.

EMERGENCY OFF

This message is displayed when the external emergency-off pushbutton is pressed. The result is:

- shutdown of the inverter;
- shutdown of the rectifier/charger;
- opening of the battery circuit breaker;
- blocking of the static bypass;

opening of the backfeed protection contactor (M2),

 opening of the Q1 circuit breaker (M1),
 activation of a relay contact on the remote-indications relay board.
 Servicing by the after-sales support department is required.

The buzzer sounds discontinuously.

THE BATTERY C.B. QF1 IS OPEN, CHECK THE INSTALLATION

Battery circuit breaker QF1 is open. The load is no longer protected because battery power is no longer available in the event of a normal AC source outage. The buzzer sounds continuously.

LOW BATTERY SHUTDOWN

The inverter has shut down at the end of battery power. The buzzer sounds continuously.

INTERNAL UPS FAULT, INVERTER FAULT, CALL MAINTENANCE

A fault has occurred in the inverter. Servicing by the after-sales support department is required. The buzzer sounds continuously.

INTERNAL UPS FAULT, CHARGER FAULT, CALL MAINTENANCE

A fault has occurred in the rectifier/charger. Servicing by the after-sales support department is required.

The buzzer sounds slowly and discontinuously.

The requested transfer to the inverter may provoke an interruption in the supply of power to the load if Mains 2 characteristics are not within the specified tolerances.

THE NUMBER OF UPS READY IS INSUFFICIENT, LOAD TRANSFER IN STAND BY

This message may be displayed in nonredundant, parallel UPS systems, when the number of ready inverters in not sufficient to supply the load.

INVERTER NOT CONNECTED

This message may be displayed in parallel UPS systems, when the inverter is not connected to the load.

PARALLEL UPS, FORCED TRANSFER INHIBITED

This message is displayed when forced connection is requested on a parallel UPS system for a power extension.

INTERNAL UPS FAULT, SELF-TEST FAULT

Communication between the system and the display is faulty. The buzzer sounds slowly and discontinuously.

This message is displayed following pressing of the "forced-transfer" key **20**, when the load is supplied via the inverter.

UPS SUPPLIED BY A GENERATOR SET

This message informs the user that the UPS has received the order to limit the current drawn by the rectifier/charger. It is displayed when the corresponding signal is transmitted by the remote indications board which must be configured for this function.

VENTILATION FAULT

This message is displayed when a fault occurs on a fan.

measurement system

The display may be used to read a number of input and output measurements made at different points in the system. See figure 18.

■ normal AC source 1

- phase-to-phase voltages,
- currents of the three phases,
- frequency;

■ bypass AC source 2

- phase-to-neutral voltage,
- phase-to-phase voltages,
- □ frequency,
- currents of the three phases;

■ battery 3

- voltage;
- charge or discharge current;
- remaining battery time (for the UPS unit)
- concerned);
- battery temperature;

■ inverter output 4

□ frequency;

- total load 6
- □ phase-to-neutral voltage,
- phase-to-phase voltages,
- currents of the three phases,
- frequency,
- active and apparent power.

Fig. 19

voltage measurements

These measurements may be accessed by pressing the "V" key 13. The following data is displayed.

Note:

M1: normal AC source M2: bypass AC source

current measurements

These measurements may be accessed by pressing the "A" key **14**. The following data is displayed.

Note: CF: crest factor

power and frequency measurements

These measurements may be accessed by pressing the "W.HZ" key **16**. The following data is displayed.

Note:

PF: power factor

RMS	M1	M2	LOAD	RMS	M2	LOAD
U12				V1		
U23				V2		
U31				V3		

RMS	M1	M2	LOAD	FC-LOAD	I-LOAD/I-NOM
11					%
12					%
13					%

LOAD	KW	KVA	PL/PN = %	FREQ.HZ
P1				M1
P2				M2
P3			FP.LOAD =	INV

Control-panel Display

battery measurements

These measurements may be accessed by pressing the "battery" key 18. The following data is displayed.

BATTERY

U	=	V
Ι	=	А

REMAINING TIME ---- MIN PL/PN ----=

Т° = ---- °C

%

selections and settings

These selections and settings may be accessed by pressing the "contrast" key 12. The following menu is displayed.

CHOOSE LANGUAGE	DATE AND TIME
CONTRAST SETUP	INVERSE VIDEO
BUZZER SETUP	PAST EVENTS
LAMP TEST	BATTERY TEST

FRENCH	SPANISH
ENGLISH	DUTCH
GERMAN	SWEDISH
ITALIAN	PORTUGUESE

adjusting the display contrast:

selecting the language:

DISPLAY CONTRAST SETUP CHOOSE WITH KEYS ▼ OR ▼ لم VALIDATE WITH KEY

■ adjusting the buzzer volume:

CHOOSE WITH KEYS ▼ OR ▼

VALIDATE WITH KEY 니

BUZZER VOLUME SETUP

■ lamp test:

When this function is selected, all the lights shine orange for three seconds.

■ set date and time:

Use the "▲▼" keys to enter the data and confirm using the "الم" key.

DATE AND TIME SETUP YEAR MONTH ----DAY HOURS --___ **MINUTES** SECONDS ----

■ inverse video: When this function is selected, the text and background colours are reversed (white text on black or black text on white).		
■ past events:	CHARGE LEVEL	= %
See section "logging and time-stamping".	REMAINING SERVICE LIFE	= MONTH
■ battery test: □ the screen opposite is displayed when a	■ MANUAL TEST press key	
battery test is requested. It indicates the battery charge status and the remaining service life. A manual or automatic test may be requested,	■ AUTO TEST press key →	
□ the screen opposite is displayed during	TESTING BATTERY	
a battery test, whether manual or automat- ic,	U BATTERY =	V
the screen opposite is displayed follow- ing a positive, manual battery test,	BATTERY TEST RESULT OK	
 the screen opposite is displayed follow- ing a negative, manual battery test, 	BATTERY TEST RESULT NOT OK	
the screen opposite is displayed follow- ing a positive, automatic battery test. It indicates the time since the last test and provides access to test settings,	TIME SINCE LAST TEST WEEK DAY HOUR LAST BATTERY TEST RESULT OK NEW PARAMETERS YES = ▼	NO = ▼
□ the screen opposite is displayed follow- ing a negative, automatic battery test. It indicates the time since the last test and provides access to test settings,	TIME SINCE LAST TEST WEEK DAY HOUR LAST BATTERY TEST RESULT NO NEW PARAMETERS YES = ▼	T OK NO = ▼
□ the screen opposite is displayed when the user requests access to the automatic test settings. It is possible to modify the interval between two automatic tests,	SELECT TIME OF NEXT TEST WIT CHANGE UNITS WITH J WEEK DAY HOUR confirm with key	H KEYS ▼ ▼
□ the screen opposite is displayed when the battery test cannot be completed.	TEST INTERRUPTED CHECK PRESENCE OF THE BATTI CHECK ALARMS	ERY

Control-panel Display

general

The auto diagnostic system considers any system status other than normal as a problem.

Before taking any action, note down the messages displayed on the control panel. Certain problems may prevent the control panel from functioning.

In this case, it is strongly recommended to call the MGE UPS SYSTEMS aftersales support department.

■ If the load is still correctly supplied with power, it has probably been transferred to the bypass AC source (static bypass) and is therefore no longer protected (if the system is in on-line mode);

■ if the load is no longer supplied with power, transfer it manually to the maintenance bypass (see section below).

maintenance bypass

This operation is possible only if the system includes a bypass AC source. It results in the load being directly supplied by the bypass AC source via maintenance bypass switch Q3BP, thus ensuring a higher level of security in the event of a malfunction.

Switching procedures are explained on drawings next to each switch in the UPS cabinet and the external bypass unit. See section "maintenance configuration". Terminals XR2, XR3, XR4 and XR5 on the "Media Contacts 11" board of each type of unit can be used to receive signals from the operating environment and to transmit signals concerning the operating status of the UPS (see figure 16 for the position of the board, item 12).

signal reception

The signals should be provided by voltfree contacts.

emergency off:

An NC contact causes shutdown of the inverter and the rectifier/charger, opening of the battery circuit breaker, blocking of the static bypass and activation of a relay contact on the "Media Contacts 11" board;

battery room ventilation fault: An NO contact causes shutdown of the rectifier/charger;

■ battery circuit breaker QF1 closed:

An NO contact prevents inverter start-up if the circuit breaker is open;

■ battery temperature:

A PC-board, placed near the battery, supplies information on the battery temperature, thus enabling the rectifier/charger to regulate the battery voltage;

auxiliary signals:

Depending on the selected settings, these signals may be used to provoke: forced shutdown of the inverter (whatever the status of the bypass AC source), protected shutdown of the inverter (load transfer to the bypass AC source). limiting of the current drawn by the rectifier/charger (programmable value) when supplied by an engine generator set with an insufficient power rating. The additional power required by the inverter is supplied by the battery which discharges, limiting of the battery charge current (programmable value) if the normal AC source is replaced by an engine generator set with an insufficient power rating.

signal transmission

■ an auxiliary 24 V power supply, isolated and backed up, is used to supply: □ the undervoltage release of the battery circuit breaker(s) QF1,

the board that measures the temperature in the battery room;

■ "low battery" warning signal (volt-free changeover contact) indicating that battery time is about to run out. The warning threshold may be personalized;

■ "load on UPS" signal (volt-free changeover contact) indicating that the load is supplied by the inverter. For a single-UPS unit, one volt-free changeover contact may be used to indicate that the load is supplied by the bypass AC source;

■ "load on battery power" signal (voltfree changeover contact) indicating that the inverter is supplied by the battery in the following cases:

normal AC source outage or voltage drop,

rectifier/charger shutdown,

 rectifier/charger current limiting.
 This signal, which may be used to initiate process saving and shutdown procedures, is time-delayed 30 seconds to avoid unnecessary operations following microbreaks;

■ "maintenance position" signal (voltfree changeover contact) indicating that: □ maintenance bypass switch Q3BP is closed,

bypass AC source input switch Q4S is open,

a inverter output switch Q5N is open,

battery circuit breaker QF1 is open;

signal to open battery circuit break-

er(s) QF1 in the event the "emergency off" button is pressed or to avoid an excessive battery discharge (lasting more than three times the rated backup time plus two hours);

■ repo contact (volt-free changeover contact) used to trip switching devices in the event of an emergency shutdown.

■ "general alarm" information (volt-free changeover contact) which includes: □ internal faults,

 information on temperatures outside tolerances in the battery room (optional),

overload information (> In),

 static-switch ventilation and power-supply faults.

NOTE The maximum breaking capacity of the changeover contacts is 5A at 250V.

presentation of event time-stamping by Galaxy PW™

Time-stamping of events by **Galaxy PW™** makes it possible to:

■ log the events;

■ consult the last 500 events that occurred on the **Galaxy PW**[™] UPS;

consult general statistical data on UPS operation;

utilization via the Galaxy PW™ display

main menu

The time and date can be set for the UPS via the main menu on the display (see below), using the DATE AND TIME command. The time-stamping information, statistics and measurement records are also available via the same menu, using the PAST EVENTS command.

Simply select the desired command with the ">" sign that can be moved using the \bigvee and \bigvee keys. The selected command can be confirmed by pressing the \downarrow key.

general instructions for using most screens

You can display the desired information and enter commands using the $\mathbf{\nabla}, \mathbf{\nabla}$ and $\mathbf{\downarrow}$ keys.

Press the \triangle key to exit the time-stamping consultation mode and return to the main menu. If no commands are entered for five minutes, the system automatically returns to the normal display mode. You can scroll through the screens displaying information. Press the \checkmark and \checkmark keys to scroll up and down through the screens. consult measurement records for a number of physical values concerning system operation.

The time-stamping information may be accessed via the **Galaxy PW™** keypad and display (standard equipment). This information may also be forwarded for the Teleservice function using the JBUS RS232/485 communications board.

DATE AND	TIME SETUP			
>YEAR	1997	MONTH	9	
DAY	8	HOURS	8	
MINUTES	11	SECONDS	42	▼ ▼

For time-stamped events, the display begins with the last event logged. To access older events, press the \checkmark key. If during consultation, you wish to review more recent events, press the \checkmark key.

setting the date and time for the UPS

When the DATE AND TIME command is selected, the screen presented opposite is displayed:

 the current values are automatically displayed;

you can modify any of the displayed values;

■ position the ">" sign opposite the value to be modified. Then press the ↓ key;

■ use the ∇ and ∇ keys to modify the value;

■ the V key increments the value by one;
 ■ the V key decrements the value by one;

■ the selected value can be confirmed by pressing the J key. A second value may then be selected for modification, again using the ∇ and ∇ keys;

modifications are made and confirmed value by value;

• press the \triangle key at any time to exit the DATE AND TIME function.

Logging and time-stamping

That is the only means to leave the function.

If no modifications to values are confirmed, exiting the function corresponds to cancelling the request.

consulting logged (timestamped) events

When the PAST EVENTS command is selected, the system displays a screen indicating the last event logged. Log screens are very similar to those displayed for current events. However, log screens include a line indicating the corresponding date and time with the mention "Appearance of" or "Disappearance of", followed by the standard text for the event (see example opposite). Consult the user manual for indications on the meaning of events.

The complete log may comprise up to 500 events. If over 500 events have occurred, only the last 500 may be consulted: ■ press the ▼ key to display the event that occurred just before the displayed event. If the displayed event is the oldest in the list, the display is not modified; ■ press the ▼ key to display the event that occurred just after the displayed event. If the displayed event is the not be vent that occurred just after the displayed event. If the displayed event is the most recent in the list, the displayed event is the most recent in the list, the display is not modified.

DATE AND	TIME SETUP			
>YEAR	1997	MONTH	9	
DAY	8	HOURS	8	
MINUTES	11	SECONDS	42	••

Example:

02/09/1997 07:25:03 Appearance: MAINS 2 INPUT SWITCH Q4S IS OPEN

Note: numerical values are never indicated in screens for time-stamped events. For example:

03/09/1997	15:30:23	Disappearance:
OVERLOAD		
RATED CURRE	NT PER PHAS	Е
CHECK LOAD	LEVEL	

consulting statistics

See the screen opposite.

■ total backup time (h): this is the total time of operation on battery power since initial startup of the UPS. It is expressed in hours;

■ total time on static switch (h): this is the total time of operation on the static switch since initial startup of the UPS. It is expressed in hours;

■ total time on UPS (d): this is the total time that the load has been supplied by the UPS since initial startup. It is expressed in days;

FIGURES SINCE COMMISSIONING	
total backup time (h):	0
total time on static switch (h):	0
total time on UPS (d):	3627
total time with Tbatt >25 $^{\circ}$ (h):	1
FIGURES SINCE RESET	
last reset: 05/09	9/1997
elapsed backup time (min):	0

■ total time with Tbatt > 25° C (h): this is the total time of operation with the battery temperature greater than 25° C since initial startup of the UPS. It is expressed in hours;

■ **last reset:** this is the date that the information was last set to zero by the Teleservice function;

■ elapsed backup time (min): this is the total time of operation on battery power since the last reset. It is expressed in minutes.

nb of backups: this is the number of times the load was supplied by the UPS from battery power since the last reset;

nb of backups < 1 min: this is the number of times the load was supplied by the UPS from battery power for less than one minute, since the last reset;

■ 1 min < nb of backups < 3 min: this is the number of times the load was supplied by the UPS from battery power for more than one minute and less than three minutes, since the last reset;

consulting recorded measurements

Recorded measurements are presented in the same manner (see opposite): ■ the lists indicate the last 30 measurements recorded for the given parameter. The chronological order of the measurements is indicated in the figure opposite; ■ the most recent measurement is presented first, in the upper left-hand corner of the list. The following measurement is listed just below, and so on until the 30th value listed in the bottom right-hand corner of the list;

the period T between two successive measurements is 30 days. The displayed measurements are instantaneous values.

NOTE

when this screen is selected, approximately ten seconds are required to call up and display the information. If the number of measurements is greater than 30, only the last 30 (the most recent) are displayed Use the $\mathbf{\nabla}$ and $\mathbf{\nabla}$ keys to shift between the beginning and the end of the display.

FIGURES SINCE RESET	
nb of backups:	0
nb of backups < 1 min:	0
1 min < nb of backups < 3 min:	0
nb of backups > 3 min:	0
nb of overloads < 5 s:	0
nb of overloads > 5 s:	0
nb of times TBatt. > 25°C:	0

nb of backups > 3 min: this is the number of times the load was supplied by the UPS from battery power for more than three minutes, since the last reset;
 nb of overloads < 5 s: this is the number of times the UPS was overloaded (output current greater than In) for less than five seconds, since the last reset;

nb of overloads > 5 s: this is the number of times the UPS was overloaded (output current greater than In) for more than five seconds, since the last reset;
 nb of times TBatt. > 25° C: this is the number of times the battery temperature was measured at over 25° C, since the last reset.

PARAMETER NAME (units)	T=3	0 days	
earrow last read: 05,	/09/1997			
M(t+29T) M(t+23T)	M(t+17T)	M(t+11T)	M(t+05T)	
M(t+28T) M(t+22T	M(t+16T)	M(t+10T)	M(t+04T	
M(t+27T) M(t+21T	M(t+15T)	M(t+09T)	M(t+03T	
M(t+26T) M(t+20T	M(t+14T)	M(t+08T)	M(t+02T	
M(t+25T) M(t+19T	M(t+13T)	M(t+07T)	M(t+T)	
M(t+24T) M(t+18T)	M(++12T)	M(++06T)) M(+)	

Logging and time-stamping

User's Manual

The battery capacity is the value measured by the UPS microprocessor. It is expressed in Ampere-hours. This value changes over time depending on the parameters of the battery itself and its environment. This measurement is used to check that the battery is capable of supplying the rated power in the event of a mains outage.

The backup time is the value calculated by the UPS microprocessor on the basis of measurements carried out on the battery. It is expressed in minutes. The calculation uses the percent load and the battery charge status at the time of the measurement.

The load level is the ratio between the power supplied by the UPS to the load at the time of the measurement and the rated output of the UPS. It is expressed as a percentage.

BATTERY CAPACITY (Ah) T=30 days						
▼ last read: 05/09/1997						
97 96 95 94 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		
[
BACKUP (mi	BACKUP (min) T=30 days			ays		
▼ last read: 05/09/1997						
120 115 110 105 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		
OUTPUT LOAD LEVEL(%) T=30 days			ays			
▼ last read: 05/09/1997						
63 52 63 63 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		

utilization via Teleservice

When the optional JBUS RS232/485 communications board is installed, the timestamped information can be sent to the Teleservice center.

The center can remotely consult the same information and carry out the same modifications as the user locally on the display. Note that only the Teleservice centre can reset the counters for the statistical data.

maintenance configuration

single-UPS unit

See figure 19. During maintenance, the UPS must be isolated from the normal and bypass AC source, the battery and the load.

UPS isolation

Proceed in the following order (see figure 20):

shut down the inverter (press the "inverter OFF" button 8 for three seconds),
close bypass switch Q3BP,

open isolating switches Q5N, Q4S, QF1 and Q1.

The UPS is powered down once the capacitors have discharged (a few minutes);

■ start-up

Following servicing, proceed in the following order (see figure 21):

 close switch Q1, then after approximately ten seconds, switches QF1, Q5N and Q4S,

open bypass switch Q3BP,

 start the inverter (press the "inverter ON" button 7).

CAUTION

■ work should be carried out in accordance with applicable safety regulations;

■ to avoid interrupting the load, the various switching operations must be carried out in the correct order. Operations are explained in diagrams placed next to the switches:

■ the system cabinet is only partially powered down. The load is still supplied via the bypass AC source and switch Q3BP.

maintenance

Fig. 21

Maintenance

parallel UPS redundant and for increased output

See figure 22.

■ isolate all UPSs

Proceed in the following order (see figure 23):

 shut down the inverters (press the "inverter OFF" buttons 8 for three seconds),

close switch Q3BP and open switch Q5N in the external bypass unit,
 open switches Q1, QF1 and Q5N on the UPS units.

■ start-up

Following servicing, proceed in the following order (see figure 24):

close switches Q5N on the UPS units,
 close switch in the external bypass unit,
 open switch Q3BP in the parallel-connection unit,

 close switches Q1 and QF1 on the UPS units,

start the inverters (press the "inverter ON" buttons 7).

NOTE

We recommend that you call on the after-sales support department to carry out these operations.

Note that for parallel UPSs for increased output, the entire installation must be bypassed because it is not possible to isolate just one UPS unit.

Maintenance

battery maintenance

Consult the instructions supplied by the battery manufacturer. Below are a few general indications:

■ sealed lead-acid batteries: these batteries require no maintenance, but check the terminals of each cell from time to time and clean if necessary;

■ vented lead-acid batteries:

check the electrolyte level regularly and add water if necessary,

check the voltage of each cell to determine if it is necessary to equalize the battery,

check the terminals of each cell and clean if necessary.

CAUTION

Battery maintenance is undertaken with the system powered up. Operations must be carried out in accordance with applicable safety regulations by qualified personnel using insulated tools, gloves and safety goggles.

Batteries contain dangerous substances that will harm the environment if thrown away. If you change the batteries yourself, call on qualified organizations for battery recovery and recycling.

visual check

Power down the system prior to any maintenance operations.

Note: in redundant parallel UPS systems the check may be carried out successively on each UPS unit without interrupting the load. In other configurations, the load must be supplied via the maintenance bypass (see "maintenance bypass" in the "Alarm" section);

 clean the system regularly, particularly the air filter inlet and outlet grills. Check that the air circulates freely in the cabinets. Use a vacuum cleaner if necessary;
 check that nothing hinders the ventilation at the top and at the back of the system.

functional check

■ Check that lights **1**, **2** and **3** on the control panel are not red, to avoid an interruption in the supply of power to the load due to incorrect transfer conditions or a battery problem;

 press the "inverter OFF" button and check that the buzzer and control panel lights function correctly (see the section on operating modes in the introduction);
 press the "inverter ON" button and

check again that the control panel lights function correctly;

■ run a transfer to battery test. With the inverter on, open input circuit breaker Q1. The orange "battery" light on the control panel should light. After two minutes on battery power, close input circuit breaker Q1. The rectifier/charger should automatically restart and the orange "battery" light on the control panel should go off;

■ in parallel systems, run these tests on each UPS unit.

Maintenance

Galvanic isolation and voltage matching transformers

The UPS can be equipped with an isolation or auto transformer on both the input and output to provide galvanic isolation or voltage step-up or step-down as required.

Maintenance bypass

Maintenance bypass option provides a direct bypass AC input source (mains 2) that can be used to supply the critical load while the UPS is being serviced.

electrical supervision

"Teleservice"

"Teleservice" is a contract offering continuous remote supervision and maintenance of UPS systems via a modem. Real-time communication is established with our "Teleservice" centre for communication of all alarms and events occurring in the installation.

GTC board

This electronic board provides user access to the J-Bus communications protocol. Using the data and address tables provided, the user can customize his installation.

GTC + software

The user has access to the J-Bus protocol and, in addition, the associated software acquires system parameters (measurements, status conditions) and transforms them into diagrams, alarm messages and tables. With the click of a mouse, the user can locally or remotely supervise the UPS system (comprising one or many UPS units).

management of computer networks

Integrated SNMP agent

This electronic board, installed in the UPS system, enables direct connection to all Ethernet networks using TCP/IP. The UPSs may then be supervised via the computer network. Furthermore, they can be used to close system files without having to add an external SNMP agent. This board is <u>fully</u> compatible with "Solution PacTM" software. The RJ45 connector of the communications option delivers information using the SNMP protocol. The sticker located on the board indicates the UPS MAC address.

your MAC address is written in the following way : 0080C8 ZZ XX YY ;
 your default IP address is 168.8.xx.yy (xx and yy are decimal values of XX and YY).

For example, MAC address 00 80 C8 AB AA 01 is related to IP address 168.8.170.1.

Please refer to the "userman.doc" user manual contained in the directory "emb/galaxy/snmp/release3.xx" of the Solution-Pac CD-ROM in order to discover the management capabilities of your SNMP Galaxy PW™ UPS. Please contact your sales representative for more detailed information.

Two-channel network board

This electronic board comprises two ports, each of which may be user set, either for the U-Talk protocol or as a relay contact. U-Talk is the protocol required to establish contact with the communications software. Relay contacts may be used for specific network applications (IBM AS400, Novell, etc.). This page intentionally left blank

Reorder form

MGE UPS SYSTEMS 1660 Scenic Avenue Costa Mesa, CA 92626

Use this form to order additional copies of this document, or to report any errors,

omissions, or other problems you have experienced.

STATE	ZIP					
would like to order (quantity @ \$50.00 each) additional copies of the:						
Galaxy PW™						
100 to 225 kVA						
User's Manual						
86-133060-00 X1						
	STATE (quantity @ \$50.00 each) additional co Galaxy PW TM 100 to 225 kVA User's Manual 86-133060-00 X1					

I would like to report the following problems with this document:

w w w . m g e u p s . c o m

1660 Scenic Avenue, Costa Mesa, California 92626 • (714) 557-1636

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com