TPS S System 1000

Programs

Version 2.2
English

Leica

Congratulations on your purchase of your programs for a TPS - System 1000 !

\triangle 图In order to use the software correctly and reliably, you must follow the instructions given in the user manual or in the on-line help system. You must also adhere to the directions given in the user manual for the product with which you are using the software.
The rights and responsibilities accruing in respect to Leica as a result of acquisition of the software are set out in the Leica Software License Agreement.
To secure your rights with regard to the software acquired, it is essential that you follow the directions given on the Leica Software - Support Registration Card.

TPS S System 1000

Programs

Product identification Enter your programs' version number in your manual and always refer to this information when you need to contact your agency or authorized service workshop.

Version number:

Symbols used in this Manual

The symbols used in this User's Manual have the following meanings:

DANGER :
Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING :

Indicates a potentially hazardous situation or an unintended use which, if not avoided, could result in death or serious injury.

CAUTION :

Indicates a potentially hazardous situation or an unintended use which, if not avoided, may result in minor or moderate injury and / or appreciable material, financial and environmental damage.

Important paragraphs which must be adhered to in practice as they enable the product to be used in a technically correct and efficient manner.

Contents	6	CO
Introduction	11	IN
General notes	23	GN
Orientation and Height Transfer	27	OH
Resection	39	RE
Tie Distance	49	TD
Stakeout	59	SO
Free Station	79	FS
Reference Line	93	RL
Remote Height	105	RH
Hidden Point	111	HP
Area (Computation of Area)	117	AR
Sets of Angles	129	SA
Traverse	147	TR
Local Resection	165	LR
Road Line	171	RO
COGO	205	CG
Road Plus	249	RP
File Editor	303	FE
Monitoring	333	MO
Index	341	IX

Contents

Introduction 11
General 11
Installation in the PC 12
Hardware and software required 12
Rules for naming files 15
Loading files into the TPS1000 instruments 17
Loading system texts 19
Loading application programs 20
Licence code 21
Solving problems 21
General notes 23
Units in this manual 23
Preparation 23
Settings 23
Data exchange 24
Using the program 24
Instrument field setup 24
Calling up the program 25
Designation of keys 26
Target eccentricity 26
Orientation and Height Transfer 27
Introduction 27
Target Point 28
Point List 29
Measure Mode 30
Calculation 31
More Information 32
Plot 34
Configuration 35
Configuration Editor 35
Dual-face Measurement 37
Log file 37
Resection 39
Introduction 39
Station Data 40
Target Point 41
Measure Mode 42
Calculation 43
Configuration 45
Configuration Editor 45
Dual-face Measurement 47
Log File 47
Tie Distance 49
Introduction 49
Measure Mode 51
Results 53
Configuration 55
Configuration Editor 55
Dual-face Measurement 56
Log File 57
Stakeout 59
Introduction 59
Search Point 59
Coarse Positioning 60
Line Offset 60
Orthogonal 62
Azimuth and Distance 64
Stakeout 66
Polar Stakeout 66
Orthogonal Stakeout 68
Stakeout with auxiliary points 70
Stakeout from Coordinate Differences 72
Select Stakeout Method 74
Plot 75
Configuration 76
Log File 77
Free Station 79
Introduction 79
Station Data 80
Target Point 80
Point List 81
Measure Mode 82
Calculation 83
More Information 85
Plot 87
Configuration 88
Configuration Editor 88
Dual-face Measurement 90
Log File 90
Reference Line 93
Introduction 93
Baseline Points 95
Determine Base Points 95
Measure a Base Point 96
Define Reference Line 98
Results Reference Line 99
Configuration 101
Configuration Editor 101
Log File 103
Remote Height 105
Introduction 105
Measure Base Point 106
Measure Remote Point 108
Configuration 110
Hidden Point 111
Introduction 111
Configuration 112
Measure Rod 114
Results 115
Area (Computation of Area) 117
Introduction 117
Measure Mode 118
Straight line 118
Arcs 120
Calculation 123
Plot 124
Configuration 125
Configuration Editor 125
Dual-face Measurement 126
Log File 127
Sets of Angles 129
Introduction 129
Sets Menu 130
Sets menu - view 130
Measure Mode 131
Calculate Mode 135
Examples and used formulae 140
Configuration 143
Configuration Editor 143
Log File 145
Traverse 147
Introduction 147
Traverse Menu 148
Traverse menu 148
New traverse 149
Occupy station 153
Traverse Point / Sideshot Point 155
Close traverse 156
Plot 159
Configuration 160
Configuration Editor 160
Dual-face Measurement 161
Multiple Measurement 161
Log File 163
Local Resection 165
Introduction 165
Station Data 166
Target Points 167
Calculation 168
Configuration 169
Configuration Editor 169
Dual-face Measurement 170
Road line 171
Introduction 171
Program concept 174
Alignment 175
Selection of files 175
Checking files 176
Program flow 178
Chainage and centre-line offset 178
Cross sections 180
Stakeout 183
X-section Check 184
Configuration 188
Configuration Editor 188
Log File 190
Data format 192
Hz-alignment 192
The Road - Data Entry program 204
COGO 205
Introduction 205
Configuration 207
Function selection (COGO Menu) 208
Inverse (polar calculation) 209
Traverse 212
Defining direction by magnetic bearing 214
Defining direction by Azimuth 216
Defining horizontal distance 218
Intersections 221
Bearing-Bearing Intersection 222
Bearing-Distance Intersection 227
Distance-Distance Intersection 233
Offsets 237
Distance-Offset 238
Orthogonal point calculation 241
Three Point Arc 246
Road Plus 249
Introduction 249
Alignment Definition 249
Data Files 249
Creating Data Files 252
Program Overview 252
Getting Started 253
Configuration 254
Select Alignment Files 256
Vertical Alignment File 257
Horizontal Alignment File 257
Cross Section/template File 257
Cross Section Assignment File 259
Station Equation File 262
File Checking 263
Stakeout Using Horizontal Offset 264
Preparing for the example 264
Select Template point and offset 270
Stakeout and Record point 273
Horizontal Offset Stake Out Summary 280
Start ROADPLUS \& Set Configuration Options 280
Select Alignment Files 281
Set offset value and select point to stakeout 282
Stakeout the point 283
Select new chainage 284
Slope Staking 285
Reference Point 289
Data Formats 291
Horizontal Alignment 291
Vertical Alignment 294
Cross Sections 296
Cross Section Assignments 298
Station Equations 300
Log File 301
File Editor 303
Introduction 303
Creation of files 303
Editing files 304
Open file 305
Coordinates 306
Horizontal Alignment 311
Vertical Alignment 317
Template 321
Station Equation 325
Cross-section Assignment 329
Monitoring 333
Main menu 335
Selecting points 336
Measurement menu 337
Selecting the points to be measured 338
Timer selection 339
Point measurement 340
End monitoring 340
Index 341

Introduction

General

The electronic theodolites and total stations in the TPS System 1000 are equipped with programs for processing field data and control-point coordinates. The systems are therefore highly functional and classical survey tasks are simplified appreciably.

When delivered, the instruments are already equipped for the following standard applications:

- Orientation and height transfer
- Resection
- Tie distance
- Stakeout
- Free-station survey (Licence code required)

In addition, the following applications are delivered on diskette:

- Reference line / building alignment
- Remote height
- Hidden points
- Computation of area
- Sets of angles
- Traverse
- Local resection
- Roadline
- File Editor
- Road Plus
- COGO
- Monitoring

This list is extended continuously. Find actual information in file README.TXT on diskette.

The additional application programs can be loaded into the instrument, but can only be run as a demonstration version in which certain functions are disabled. Full functionality can be obtained with a licence code, available from your Leica agency, where you can also obtain information about the newest programs available in the ongoing applications-software development
project.
All installation programs and applications are supplied on normal 3 1/2" diskettes.

For optimal use of the programs and instruments read this manual carefully.

Installation in the PC

Hardware and software required

The hardware and software used to transfer the individual program packages must meet the following requirements:

- IBM-compatible PC, 386 or higher
- 4 MB RAM
- 3.5" floppy-disk drive
- RS 232 interface, including interface cable for Leica survey instruments (stock no. 563625)
- MS DOS 5.0 or higher
- MS Windows 3.1

Four diskettes are supplied with each instrument:

- disk 1 = SYSTEM FIRMWARE
- disk $2=$ Programs and Languages
- disk 3 = TPS-WORKBENCH
- disk $4=$ RCS 1000

More information can be found in the file README.TXT on each diskette.

Recommended installation procedure:

1. TPS-WORKBENCH (disk 3)
2. SYSTEM FIRMWARE (disk 1)
3. Programs and languages (disk 2)
4. RCS 1000 (disk 4)

On the diskette bearing the label

> TPS 1000/2000/5000 TPS-WORKBENCH
is the PC software needed to install applications or foreign-language texts on the TPS 1000 instruments.

Workbench TPS Tools 2.21 Installation

Installation TPS		
$\left[\begin{array}{l} \text { Install to:- } \\ \text { C:ILEICA.WB } \end{array}\right.$		Continue
		Exit
Installation Options:		
\square TPS Software Upload	378 KB	Directory...
\square RCS 1000 Controller Upload	57 KB	
\square TPS Code Development	157 KB	
\square Software Radio Configuration	123 KB	
\square TPS PC to MC / MC to PC	277 KB	

$$
\text { Installation Drive: } \mathrm{C} \text { : }
$$

Space Required: 1697 KB
Space Available: KB

The "WORKBENCH" program is installed in the PC by running the program "SETUP.EXE" under WINDOWS on the diskette. For further details, refer to the handbook or to the HELP file of WINDOWS.

TPS-user just have to install the "TPS Softwae
Upload".

The diskette bearing the label

> TPS 1000 SYSTEM FIRMWARE
contains the necessary system software for the TPS 1000 instrument:

- theodolite system software
- ATR system software
- EDM system software

The diskette bearing the label
TPS 2000/5000 SYSTEM FIRMWARE
contains the necessary system software for the TPS2000/5000 instrument:

- theodolite system software
- ATR system software
- EDM system software

The diskette bearing the label
TPS 1000/2000/5000
Programs and Languages
contains:

- all applications (both the standard ones and the additional ones),
- the appropriate text files for the languages available.

The text for the languages available are also included for the TPS 1000 system software.

The diskette bearing the label

> TPS 1000/2000/5000
> RCS 1000
contains the remote control software:

- for RCS 1000 based on CR233/333
- for RCS 1000 based on GPC1

Rules for naming files

The files are named in accordance with the following rules:

Application programs: ?????VVV.PRG

????? Maximum of 5 characters for name of application
VVV 3 characters for version (release) number
PRG Identification tag for loadable application

Text files: ?????VVV.LSS

????? identical name of relevant application
VVV identical version (release) number of relevant application
L Identification tag for text file of application SS Identification tag for language
SS => EN English
GE German
FR French
SP Spanish
System texts:SYS?_VVV._SS
SYS?_ Seven text files (SYS1_ ... SYS7_)
VVV Version (release) number of system texts
Identification tag for text file of system
SS Identification tag for language
SS => GE German
FR French
SP Spanish

After the installation is complete, you will find the following files in the subdirectory in your PC:

Standard applications			
Application	File name	Text file	Remarks
All		prtxtVVV.LEN prtxtVVV.LGE prtxtVVV.LFR prtxtVVV.LSP	Texts common to all applications
Orientation and height transfer	ORI__VVV.PRG	ORI__VVV.LEN	English German French Spanish
Tie distance	TIE__VVV.PRG	TIE_VVV._VVV.LGE	ORI__VVV.LFR

Additional applications				
Application	File name	Text file	Stock no.	
Free-station survey	FREE_VVV.PRG	FREE_VVV.LEN etc.	663156	
Reference line / building alignment	REFL_VVV.PRG	REFL_VVV.LEN etc.	663198	
Hidden points	HDNPTVVV.PR	HDNPTVVV.LEN etc.	663213	
Remote height	REMHTVVV.PR	REMHTVVV.LEN etc.	663200	
Traverse	TRAV_VVV.PRG	TRAV_VVV.LEN etc.	663197	
Computation of area	AREA_VVV.PRG	AREA_VVV.LEN etc.	663196	
Sets of angles	SETS_VVV.PRG	SETS_VVV.LEN etc.	663199	
Local Resection	LRES_VVV.PRG	LRES_VVV.LEN etc.	663267	
Road Line	ROADLVVV.PR	ROADLVVV.LEN etc.	663216	
File Editor	FILEDVVV.PRG	FILEDVVV.LEN etc.	663217	
Road Plus	RPLUSVVV.PRG	RPLUSVVV.LEN etc.	663218	
COGO	COGO_VVV.PRG	COGO_VVV.LEN etc.	664401	
Monitoring	MONIT222.PRG	MONIT222.LEN etc.	664411	

Loading files into the TPS 1000 instruments

Applications, and system- and application texts, are loaded into the TPS1000 by means of the "TPS SOFTWARE UPLOAD" program.

Use the interface cable 563625 to connect the TPS 1000 to the serial interface COM1 or COM2 on the PC.

Start the "TPS SOFTWARE UPLOAD" program with a double-click from the WINDOWS program manager.

Select the command "Sensor/Settings" and inspect the interface selected and the baud rate. The baud rate should be set to the maximum. The baud rate for the TPS1000 instrument is set automatically.

Switch the instrument off! Select the command "View Applications + System" to inspect the connection to the instrument. The instrument switches itself on again and establishes the connection. The display of the applications available on the instrument shows that the connection was successful. If it was not successful, read section "Solving problems".

View Applications \& System
Stakeout
663155 <none>
V 2.20
ENGLISH
\qquad

Loading system texts

- Select the command "Transfer files" in the "Utilities" menu,
- Mark "System Language",
- select relevant drive under "Directories",
- select desired language under "Language" and
- mark relevant file under "Components".

Then press the Transfer key to start the transfer.
The progress of the transfer is shown in a bar diagram.

Component Type
O System SoftwareSystem LanguageApplication ProgramEDM/ATR Firmware

Language:

ENGLISH-T	\underline{Q}

Components:

Directories:
i:\softwareltps1000lV_2_20

Drives:

Transfer

Cancel

Settings ... Help

System Language (ENGLISH-T Version 2.20)

Afterwards, enter the language on the instrument (see section "Configuration" of "System" - user manual).

Loading application programs

- Select the command "Transfer files" in the "Utilities" menu,
- Mark "Application Program",
- select relevant drive under "Directories",
- select desired language under "Language" and
- mark desired program(s) under "Components".

Then press the Transfer key to start the transfer.
The progress of the transfer is shown in a bar diagram.

Transfer			
Component Type Directories:			Transfer
O System Software i:lsoftwareltps_1000IV_2_20			Cancel
\square System Language $\square_{\text {i }} \mathrm{l}$		\uparrow	
\square Application Program			Settings ...
\square EDM/ATR Firmware			Help
		\downarrow	
Language: Drives:			
ENGLISH-T	$\underline{1}$	\pm	
Components:			
TPS-Application Area (V2.20)			
TPS-Application COGO (V2.20)			
TPS-Application FreeSt_Ori_Res (V2.20)			
TPS-Application HiddenPoint (V2.20)			
TPS-Application LocalRes (V2.20)			
TPS-Application RefLine (V2.20)			

It is absolutely necessary that the program files (*.prg) are be in the same directory as the language files (*.LSS) and the Prtxt220.LSS file.

Licence code

When an additional application is first started up, a licence code is requested, so that the application will be fully functional. Without this licence code, you can run the applications as a demonstration version, but you will not be able to calculate and store the results.

The licence code is available from your Leica agency, who will inform you about licence fees for additional applications. Details of the licence agreement are given in the registration card, which is a part of the "System" manual.
To expedite formalities, please fill in a copy of the form at the end of this section and fax it to your local Leica agency.

Solving problems

1. Instrument does not switch on when "Utilities/View Applications + System..." option is selected. Inspect the cable connections and that the serial interface COM1 or COM2 has been set correctly.
2. Instrument does not switch to "ON-LINE-MODE (GeoCOM)" mode when "Utilities/View Applications + System..." option is selected. Make sure that the instrument is switched off before the "Utilities/View Applications + System..." option is activated.
3. Instrument does not switch to "ON-LINE-MODE (GeoCOM)" mode when "Utilities/View Applications + System..." option is selected; "MEASURE \& RECORD" menu or another autostart application is displayed instead.

Carry out the following operations on the instrument:

- F3 [CONF] Configuration

[Autostart] Autoexec-application

Switch off the instrument and start the data transfer process from the beginning.

Put crosses against the applications you require and send the form to your nearest Leica agency, which will process your order.

Address of customer	(please use Company stamp or write legibly)
Name	
Company	
Street	
Zip code / City	
Country	
Telephone	
Telefax	
Remarks	

Leica Geosystems AG Geodesy CH-9435 Heerbrugg (Switzerland) Software Management Dept.
Phone +41717273681
Fax +41717274705

General notes

Units in this manual

- in m (meters)
- in addition, within brackets in ft (feet)

Units of angle:

- in ${ }^{\circ} \mathrm{C}$
- in addition, within brackets in gon

Units of temperature:

- in ${ }^{\circ} \mathrm{C}$
- in addition, within brackets in ${ }^{\circ} \mathrm{F}$

Preparation

Specifications within this manual always apply to the following units:

Units of length:

All program sequences are based on a unified structure. The clearly-designed display with the function keys makes learning easy. Each program has a configuration dialog. In this dialog, the user can match programspecific parameters to changes in requirements and sequences. The various possibilities are described in the instructions for the individual programs.

To avoid temporarily-stored information being lost when the TPS 1000 automatically switches off after long periods of disuse, you should set the "sleep mode" instead of the automatic switchoff. For more information, please refer to section "Fixed keys" ("Power off, Sleep") of "System" - user manual.

Each application takes over the settings (units, recording format, display format etc.) allocated to the appropriate user.

If required, these user settings must be defined in advance. For more information, please refer to section "User configuration" of "System" - user manual.

Data exchange

The station number, the coordinates, the direction of the line of sight, and the instrument height, are all displayed

The dialog enables station coordinates to be set or imported and also permits a direction to a tie point to be set.

Calling up the program

Select the application required and

or

alternatively type in the number which appears after the program name in the display.

Designation of keys

CODE
-

Quits current dialog and calls up previous dialog. Changes and inputs to dialog are rejected and are not stored.

Shift Displays the second level of the function keys ${ }^{\text {FI }}$ ${ }^{\circ}{ }^{F 6}$.
The effects of the fixed keys and of a few function keys are the same as their effects in "MEASURE AND RECORD". These keys are generally omitted from the descriptions of the applications and from the ON-LINE help.

Continues sequence after input, measurements etc. have been concluded. If the measurement dialog is concluded

Erases incorrect alphanumeric input.
Records in a pre-established format manually-entered coordinates, measurements or the results of calculations.

Closes application.
Calls up code input or code function in measurement dialog.

If the reflector cannot be set up directly over the desired point, or if the point cannot be seen from the instrument, the function 'OFFS' may be used to make an offset measurement.

Previous to the input of the values for eccentricity, a distance must be measured to the reflector.

For more information, please refer to section
'Measurement \& recording' of 'System'-user manual.

Orientation and Height Transfer

Introduction

This manual describes the "Orientation and Height Transfer" program of the TPS SYSTEM 1000 theodolite series.

The instrument must be set up on a known point. The program "ORIENTATION" calculates an angular correction for the instruments horizontal circle, so that 0.0000 of the horizontal circle corresponds with grid north (Orientation correction), using reference points with known Easting and Northing.

For simultaneous determination of the station elevation, height of instrument and height of reflector must already have been input and the elevation of the target points must be known.

The program handles a maximum of 10 points.

Target Point

Run the calculation. Note, the \square key will be assigned after the first measurement.

Entry of target points into a list as well as selecting points for further use.

Displays the previous point from the list of points entered. Note that this key will not be available until there is at least one point in the list.

F4 Displays the next point in the list of points entered. Note that this key will not be available until there is at least one point in the list.

Retrieve the coordinates of the target point from the selected file. For further information, please refer to dialog "IMPORT" described in the "System" - user manual.

Point List

Enter a maximum of 10 points. The same point can be retrieved several times.

$\square_{\odot}^{\text {CONT }}$ Return to the dialog "Target Point".

This dialog is similar to the TPS 1000's basic "Measure Mode" dialog. Once a measurement is taken, the program will return to the dialog "Target Point" to acquire the next point for measuring.
If the orientation correction can be calculated successfully from any of the first measurements, the $\Delta \mathrm{Hz}$ and $\Delta \mathrm{V}$ values are displayed for further entered target point. Motorized theodolites will automatically drive the telescope to the target point.

${ }^{\circ}{ }^{F 1}$
Simultaneously measure and record data on the active recording device. Return to the dialog "Target Point".
${ }^{\circ}$ F2 Measure a distance.

Record the measurement on the active recording device. Return to the dialog "Target Point".

Enter target data. For further information, please refer to chapter "Measure \& Record" described in the "System" - user manual.

Call up the CODE function, as described in chapter "Measure \& Record" described in the "System" - user manual.

Calculates the orientation, the elevation and the respective standard deviations.

Station no : Point number assigned to the station
No. of Pts : Number of points measured
Inst.Height : Instrument Height
Easting : Easting of the station entered.
Northing : Northing of the station entered.
Elevation : Calculated elevation of the station
Orientation : Oriented direction
$\boldsymbol{\sigma}$ Elevation : Standard deviation of the Elevation
$\boldsymbol{\sigma}$ Orient : Standard deviation of the Orientation

F1 Set orientation on the instrument. Note that once this key has been pressed it will not be possible to execute more measurements.
${ }_{-}^{F 2}$ Set station elevation on the instrument. Note that once this key has been pressed it will not be possible to execute more measurements.
${ }^{\circ}$ F3 Record the following results into the active file:
WI 11 Station Point Number
WI 25 Orientation correction
WI 84 Station Easting
WI 85 Station Northing
WI 86 Station Elevation
WI 87 Last reflector height used
WI 88 Instrument Height
$\odot^{F 4}$ Sketch of the station and the reference points used.

Show the results of individual measurements on the screen (see dialog "More Information").

ESC Measure more points. The program will recall the "TARGET POINT" dialog.

Select between the "Robust" method and the "Variation" method.

More Information

Display the residuals of individual measurements. You can also disable points from the calculation of orientation or height as well as delete erroneous measured points.

: Sequence number of the current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Use for Ht. : Use this measurement for height determination (YES/NO)
Status : Use this measurement for calculation

Point no : The target point number.
Error Flag : Identified erroneous measurements. Possible values are: NONE measurement is OK HZ horizontal angle error DIST distance error HT height difference error The flags may also be combined, i.e. DIST + HZ

$\Delta \mathbf{H z}$. : Difference between calculated and measured horizontal angle

Δ Distance : Difference between calculated and measured distance
Δ Height : Difference between calculated and measured height
Refl. Ht. : Reflector height used for the target point

Easting, Northing, Elevation: Target coordinates used.

F1 Recalculate the result.
F2 Scroll to the measurements of the previous point.
F3 Scroll to the measurements of the following point.
F4 Measure more points. Return to the dialog "Target Point".

Delete a point from the set of measurements. You can now measure a new point in its place.

Shift	ESC	$\begin{array}{c}\text { ESC }\end{array}$

Generates a plot showing the measurement configuration.
The station point is in the center and the top of the sketch shows the direction of grid north. The sketch is true in angular but not true in distances.
Points are numbered sequentially in the order in witch they were measured.
Points not used in the calculation are marked with a dotted line.
 "TARGET POINT" dialog.

Toggle any point ON or OFF by pressing the numeric key corresponding to the sequence number of the point. Note, that $\xlongequal{.0}$ represents point 10

Configuration

Configuration Editor

Start the "Configuration Editor" from the "TARGETPOINT" dialog.

The "Configuration Editor "sets parameters for further program operations:
$\mathbf{H z}$ Ori Acc: Limit for the standard deviation of the orientation. The orientation is regarded as "error free", if the computed standard deviation of the orientation is within twice the entered value.

Ht Acc TP : Height accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The height is regarded as "error free", if the computed standard deviation is within twice the entered value.

Posn Acc TP : Position accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The position is regarded as "error free", if the computed standard deviation is within twice the entered value.

Two Faces : YES for dual-face measurement, NO for single-face.

User Disp : YES; the measured value indication is used from application "Measure and record". NO; the default indication is used for "Orientation and Height Transfer".

Log File : ON, records measurements in a LogFile.The format is described on page 37.

Log FIName : Enter the Log File Name.
${ }_{-}{ }^{F 1}$ Displays date and version.
Set the values to default. Default values are shown in dialog on page 35 .

CONT Store the current configuration and proceed to the dialog "TARGET POINT".

Dual-face Measurement

Log file

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within $\mathbf{2 7}^{\prime}$ ($\mathbf{0 . 5}$ gon) and the difference of two measured distances is within $0.5 \mathrm{~m}(1.64 \mathrm{ft})$, the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

If "Log File" is set to "ON" the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Logfile.

The Log-file contains the following information:
Header The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Record For each measurement, a record will be stored containing :

- Station coordinates
- station height,
- orientation correction
- standard deviations for height and orientation correction

The residuals for:

- horizontal angles,
- heights and
- measured distances are also listed.

Leica VIP Orientation + Ht. Transfer V 2.10
Instrument
User templ.
Meas. file
Program Start
Station no.
Using Robust Solution
Station Elev. : 398.3929m
Ori.Corr.
: 40'36"
S.Dev. Elev. : 0.0035 m
S.Dev. Orient. : $0^{\circ} 00^{\prime} 04^{\prime \prime}$

3 point(s) measured :

\#\#	Point no.	$\Delta \mathrm{Hz}$	Δ Height	Δ Distance	Error Flag
1	500	$-0^{\circ} 00^{\prime} 55^{\prime \prime}$	0.0026 m	0.0020 m	NONE
2	501	$-0^{\circ} 00^{\prime} 48^{\prime \prime}$	0.0044 m	0.0016 m	NONE
3	502	$0^{\circ} 00^{\prime} 52^{\prime \prime}$	-0.0070 m	-0.0000 m	NONE

Typical log file entry in the "Orientation and Height Transfer" program

Introduction

This manual describes the "Resection" program of the TPS SYSTEM 1000 theodolite series.

RE

The program can be used to deduce the three-dimensional coordinates for the instrument station and the orientation of the horizontal circle from measurements to 2 target points with know Easting and Northing. To compute the position coordinates, at least the distances and the directions for both points are necessary.

For simultaneous determination of the station elevation, height of instrument and height of reflector must already have been input and the elevation of the target points must be known.

The program allows measurement in single or dual-face mode.

${ }_{\bullet}^{\text {CONT }}$ Proceed to the dialog "Target Point"

Enter the target point number and height of the reflector.

$\overline{F 1}$		F3	$F 4$	$F 5$	\bigcirc F6

RE

Retrieve the coordinates of the point entered from the active file. For further information, please refer to dialog "Import" described in the "System" - user manual.

Measure Mode

This dialog is similar to the TPS System1000's basic "Measure Mode" dialog. Once a measurement is taken, the program will return to the dialog "Target Point" to acquire the next point for measuring.

Simultaneously measure and record data on the active recording device. Return to the dialog "TARGET POINT".

F2 Measure a distance.
F3 Record the measurement on the active recording device. Return to the dialog "TARGET POINT".
${ }^{\text {F4 }}$ Enter target data as described in chapter "Measure \& Record" of the "System" - user manual.

Assigned with "aNUM" at point number input; assigned with "EDIT" at numerical input.

Change the theodolite face.

Call up the CODE function, as described in chapter "Measure \& Record" of the "System" - user manual.

Shitf 0	Exit the program.
$\underbrace{\text { CONT }}_{\bullet}$	Accept the measurement and return to the dialog "TARGET POINT".

Calculation

In this dialog the calculated station coordinates are shown with the orientation.

Station no : Station point number
No. of Pts : Number of points measured
Inst.Height : Instrument Height
Easting : Calculated Easting (Y) for the station.
Northing : Calculated Northing (X) for the station.
Elevation : Calculated elevation for the station
Orientation : Oriented direction
$\boldsymbol{\sigma}$ Easting : Standard deviation of Easting
$\boldsymbol{\sigma}$ Northing : Standard deviation of Northing
$\boldsymbol{\sigma}$ Elevation : Standard deviation of the Elevation
$\boldsymbol{\sigma}$ Orient : Standard deviation of the Orientation

F3 Record the following results on the active recording device:

WI 11 Station Point Number
WI 25 Orientation correction
WI 84 Station Easting
WI 85 Station Northing
WI 86 Station Elevation
WI 87 Last rflector height used
WI 88 Instrument Height

Shitt ${ }_{-1}^{E S C}$ Exit the program.

Configuration

Configuration Editor

Start the "Configuration Editor" from the "STATION DATA" dialog.

The "Configuration Editor" sets parameters for further program operations:

Hz Ori Acc: Limit for the standard deviation of the orientation. The orientation is regarded as "error free", if the computed standard deviation of the orientation is within twice the entered value.

Ht Acc TP : Height accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The height is regarded as "error free", if the computed standard deviation is within twice the entered value.

Posn Acc TP : Position accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The position is regarded as "error free", if the computed standard deviation is within twice the entered value.

Two Faces : YES for dual-face measurement, NO for single-face.

Ben.Anzeige : YES; the measured value indication is used from application "Measure and record".
NO; the default indication is used for the "Resection".

Log File : Set to ON, the program will record measurement data in a log file as described on page 47.

Log FIName : Enter the Log File Name.
${ }_{-}{ }^{\text {F1 }}$ Displays date and version.

Set the value to the default as described in dialog on page 45 .

Store the current configuration and proceed to the dialog "STATION DATA".

Dual-face Measurement

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within 27' (0.5 gon) and the difference of two measured distances is within $0.5 \mathbf{~ m}(1.64 \mathbf{f t})$, the observations will be averaged.
These tolerances are used to avoid errors in target identification.
If exceeded an error message will be displayed.

Log File

If "Log File" is set to "ON" the measurements and the
results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Record For each measurement, a record will be stored containing :
Station coordinates and orientation correction, standard deviation for Easting, Northing, Height of station and orientation correction.
The residuals for horizontal angles, heights and measured distances are also listed.

Leica VIP Resection V 2.10
Instrument : TCM1100, Serial 412160, (not named)
User templ. : User 1
Meas. file : FILE12.GSI
Program Start $\quad: 09 / 04 / 1996$ at 12:52

Using Least-Squares Solution

Station no. : 2000

$$
\mathrm{E}=-0.0011 \mathrm{~m} \quad \mathrm{~N}=-0.0006 \mathrm{~m} \quad \mathrm{ELV}=398.3951 \mathrm{~m} \quad \mathrm{hi}=1.6000 \mathrm{~m}
$$

Ori.Corr.	$;$	$240^{\circ} 50^{\prime} 51 "$
S.Dev. East	$:$	0.0003 m
S.Dev. North	$:$	0.0003 m
S.Dev. Elev.	$:$	0.0047 m
S.Dev. Orient.	$:$	$0^{\circ} 00^{\prime} 49^{\prime \prime}$

2 point(s) measured :

\#\#	Point no.	$\Delta \mathrm{Hz}$	Δ Height	Δ Distance	Error Flag
1	500	$-0^{\circ} 00^{\prime} 555^{\prime \prime}$	0.0047 m	0.0001 m	NONE
2	501	$-0^{\circ} 00^{\prime} 18^{\prime \prime}$	-0.0047 m	0.0002 m	NONE

Typical log file entry in the "Resection" program

Introduction

This manual describes the "Tie Distance" program of the TPS SYSTEM 1000 theodolite series.
The program calculates the length and azimuth of a line connecting two points.
Polygonal or Radial methods can be used as shown in the illustrations.

The data for the points can either be measured or retrieved from the selected file. Measured points and points retrieved from the selected file can be used together in the calculations, if the station coordinates and orientation are set correctly.

In Polygonal Mode, the program will calculate the distance between the last two points measured (eg. Pt3Pt4).

Polygonal Mode

In Radial Mode, the program will calculate the distance between the last point measured (called a Radial Point) (Pt2, Pt3 ...) and a fixed Center Point (Pt1).

Radial Mode

Toggling between Polygonal and Radial Mode at any time while working is possible.

Easting	$:$	-----	m
Northing	$:$	-----	m
Elevation	$:$	-----	m

TD
HELP CONF \quad I<>II

	F1		F2		F3		F4		F5	

The input for the start point is only possible after the program start or with the function ${ }_{\bullet}{ }^{F 2}$ in the dialog "RADIAL MODE".
For all following points the program requests (NEXT POINT).
The dialog for the following points is identical with dialog above, except for the title.

Simultaneously measure and record in the active file. Proceed with the dialog "NEXT POINT". If the second point has already been measured, the program will proceed to the "RESULT" dialog.

Measure a distance. Record the measurement in the active file and proceed with the dialog "NEXT POINT". If the second point has already been measured, the program will proceed to the "RESULT" dialog.

Measure the distance. Accept the measurement without recording. If the second point has already been measured, the program will proceed with the "RESULT" dialog.

Enter the target data.
For further information refer to chapter "Measure \& Record" of "System" - user manual.

F5 Import target coordinates.

For further information, please refer to chapter "Setup" of "System" - user manual.

Change the theodolite face.
CODE Call up the CODE function, as described in chapter "Measure \& Record" of "System" - user manual.

This dialog shows the results computed from the last two points, which can be measured or retrieved from the active file. The same results are calculated for both methods.

Using "Polygon Mode" the calculations are always based on the last two points, where as the "Radial Mode" always uses the first point as a reference point.

TD

Center Pt. : Point number of the center point
Radial Pt. : Point number of the radial point
Hori.Dist : Horizontal distance between the two points

Azimuth : Azimuth from point 1 to point 2
Δ Height $\quad:$ Height difference between point 1 and point $2\left(\mathbf{H}_{2}-\mathbf{H}_{1}\right)$.

Slope Dist : Slope distance between the two points

Δ Easting : Difference in Easting between point 1 and point $2\left(\mathbf{E}_{2}-\mathbf{E}_{1}\right)$. The grid coordinates are only valid for oriented instruments set up on a known point.
 Δ Northing : Difference Northing between point 1 and point $2\left(\mathbf{N}_{2}-\mathbf{N}_{1}\right)$.
 Note, the grid coordinates are only relevant for oriented instruments set up on a known point.

. F1 Return to the dialog "NEXT POINT" and measure the next point.

F2 Delete previous inputs. Proceed with the dialog "FIRST POINT" to enter a new reference point. This function is available for "RADIAL MODE" only.

F3 Record the following results in the active file:
WI 11 Point number of point 2 or radial point number
WI 25 Azimuth from point1 to point 2
WI 35 Horizontal distance
WI 37 Height difference between point 1 and point 2
WI 39 Slope distance
WI 79 Point number of point 1 or center point number

Configuration

Configuration Editor

The "Configuration Editor" sets parameters for further program operations:

Two Faces : Set YES for dual-face measurement,	
	NO for single-face.

User Disp. : YES to use the measurement display set in the application "Measure \& Record".
Set NO to use the "Tie Distance" default display.

Log File : Set to ON, the program will record measurement data in the Log File according to the format described on page 57.

Log FIName : Enter the Log File Name.
${ }^{\text {F1 }}$ Displays date and version of the running application.
F5 Set the values to default. Default values are displayed in dialog on page 55 .

CONT
${ }^{-}$

Store the current configuration and proceed to the dialog "MEASURE MODE".

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within $\mathbf{2 7}^{\prime}$ (0.5 gon)) and the difference of two measured distances is within $0.5 \mathrm{~m}(1.64 \mathrm{ft})$, the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header	The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.
Record	For each measurement, a record will be stored containing : Point No 1, Point No. 2, Hori. Dist., Azimuth, Δ Height, Slope Dist.

Typical log file entry in the "Tie Distance" program (Polygonal Mode)

Stakeout

Introduction

This manual describes the "STAKEOUT" program of the TPS SYSTEM 1000 theodolite series. The program allows points with known coordinates to be placed in the field.
"STAKEOUT" requires the instrument to be set up on a known point with the instrument oriented. The station point can be determined also with the programs "FREE STATION" and "RESECTION".
The stakeout points can either be retrieved from the selected file or entered manually.
The program permits selection of either 2 D or 3 D stakeout modes.

Search Point

Manually enter the stakeout point. The TPS 1000 manual input dialog will appear.

Allows program configuration.

Coarse Positioning

Line Offset

The stakeout values of each point are computed in relation to the base formed by the last two points. If the elevation is known for the point to be staked out, the height difference in relation to the last base point (Pt2), is displayed. In particular, this method is advantageous for long objects (traffic routes). Values for positioning are only displayed after two stakeout points.

Pt3 ... point to be staked

Target no : Number of the point to be staked.
Azimuth : Azimuth from the station to the point to be staked.

Hz : Present theodolite direction. Note, if the instrument is oriented and the azimuth and Hz angle are corresponding, the instrument is pointing to the point to be staked.

Line : Distance along the line defined by the last two points staked

Offset : Orthogonal offset from the defined line
Δ Height : Height difference from the last point staked.
 drive the telescope to the horizontal and vertical direction of the point to be placed.

Change stakeout method. For more information refer to chapter "Select Stakeout Method".

Generate a plot of the stakeout data. For more information to chapter "Plot".

Orthogonal

Setting out values are computed as orthogonal coordinates to the baseline between instrument station and prism. If the elevation is also known, $\Delta \mathrm{H}$ is given in relation to the last prism - point measured.
Note, data will be displayed if there is at least one point measured.

Target no. : Number of the point to be staked.
Azimuth : Azimuth from the station to the point to be staked.

Azimuth and Distance

This method defines the point to be staked in terms of the azimuth and distance from the theodolite station to the point.

Target No. : Number of the point to be staked.
Azimuth : Azimuth from the station to the point to be staked.
$\mathrm{Hz} \quad:$ Present theodolite direction. Note, if the instrument is oriented and the azimuth and Hz angle are corresponding, the instrument is pointing to the point to be staked.

Slope Dist : Slope distance from the instrument station to the stakeout point.

Horiz. Dist : Horizontal distance from the instrument station to the stakeout point.
Δ Height : Height difference from the instrument station to the stakeout point.
 drive the telescope to the horizontal and vertical direction of the point to be placed.

Change stakeout method.
For more information refer to chapter "Select Stakeout Method".

| Shift |
| :---: | :---: |
| \ominus |$\quad \odot^{\text {F4 }}$

Generate a plot of the stakeout data. For more information to chapter "Plot".

$\begin{array}{c}\text { Shift } \\ \Theta\end{array}$	$\begin{array}{c}\text { ESC } \\ \Theta\end{array}$	Exit the program.

Stakeout

Polar Stakeout

Points must have known coordinates. Various methods can be used, depending on the Stakeout Method set. Motorized instruments can drive the telescope to the horizontal and vertical direction of the point to be staked. For more information refer to chapter "Select Stakeout Method".

After the first distance has been measured, the differences between calculated and measured direction and between calculated and measured horizontal distance are displayed. If the elevation of the point to be staked is available, the height difference between the last measured reflector and the point to be staked is shown together with the measured elevation of the reflector point.

Values for $\Delta \mathrm{Hz}$ and $\Delta \mathrm{D}$ will be updated each time a new distance is measured.

Target no. : Point number of the point to be staked.
$\begin{array}{ll}\Delta \mathbf{H z}: & \begin{array}{l}\text { Difference in } \mathrm{Hz} \text { circle reading } \\ \text { between the actual horizontal } \\ \text { direction and the calculated direction. }\end{array}\end{array}$
Δ Dist $\quad:$ Difference in horizontal distance between the measured and calculated distance.
Δ Height : $\begin{aligned} & \text { Difference in height between the } \\ & \text { measured reflector point and the } \\ & \text { stakeout point, expressed both } \\ & \text { numerically and as CUT/FILL. }\end{aligned}$
Elevation : Elevation of the measured target point.

F1 Simultaneously measure and record data on the active recording device.

Measure a distance.
F3 Record the measurement on the active recording device.

F4 Enter target data as described in chapter "Measure \& Record" of "System" - user manual.

F5 Re-position the telescope on the target. Note, this function is only available for motorized theodolites.

Change stakeout method. For more information refer to chapter "Select Stakeout Method".

Generate a plot of the stakeout data. For more information refer to chapter "Plot".

Shift	
0	

${ }_{\odot}^{\operatorname{CONT}}$ Acquire the next point to stake.

Orthogonal Stakeout

Orthogonal offsets are computed using the baseline between the last measured point and the instrument station.
After the first distance measurement, the transverse and longitudinal differences are displayed. If the elevation of the stakeout point is available, the height difference between the measured reflector and the point to be staked is shown, and also the measured elevation of the reflector point.

Values for $\Delta \mathrm{Q}$ and $\Delta \mathrm{D}$ will be updated each time a new distance is measured.

Target no. : Point number of the point to be
$\boldsymbol{\Delta} \mathbf{Q} \quad:$ Transversal displacement of the reflector. Positive in sign if point is right.

Δ D : Longitudinal displacement of the reflector. Positive in sign if stakeout point is further away from station.

Δ Height : Difference in height between measured reflector point and the stakeout point. Positive in sign if stakeout point is higher than the reflector position.

Elevation : Elevation of the measured reflector point.

F1 Simultaneously measure and record data on the active recording device.

F2 Measure a distance.
F3 Record the measurement on the active recording device.
F4 Enter target data as described in chapter "Measure \& Record" of "System" - user manual.

F5 Re-position the telescope on the target. Note, this function is only available for motorized theodolites.

Generate a plot of the stakeout data. For more information refer to chapter "Plot".

${ }_{-}^{\text {CONT }}$ Acquire the next point to stake.

Stakeout with auxiliary points

The stakeout method computes values for points which cannot be sighted directly.
Measure to the auxiliary point Pt1. The distance "Dist 1 " and angle "Hz angle 1 " to the stakeout point are computed. Likewise proceed for auxiliary point Pt 2 . The stakeout point can be set out using the 2 calculated distances and/or angles from auxiliary points Pt1 and Pt2.
The program automatically updates both distance and angle values whenever a new point is measured. The previous point Pt 2 becomes Pt 1 and the new point Pt becomes Pt2.

Note, the auxiliary point to be measured will be marked with an asterisk (*).

Target no : Point number of the point to be staked.

Hz Angle 1 : Angle from the first auxiliary point to the stakeout point.

Dist 1 : Distance from the first auxiliary point to the stakeout point.

Hz Angle 2 : Angle from the second auxiliary point to the stakeout point.

Dist 2 : Distance from the second auxiliary point to the stakeout point.
Δ Height : Difference in height between the last measured reflector point and the stakeout point. Positive in sign if stakeout point is higher than the reflector position.

Simultaneously measure and record data on the active recording device.
-F2 Measure a distance.
F3 Record the measurement on the active recording device.
F4 Enter target data as described in chapter "Measure \& Record" of "System" - user manual.

F5 Re-position the telescope on the target. Note, this function is only available for motorized theodolites.

Change stakeout method. For more information refer to chapter "Select Stakeout Method".

Generate a plot of the stakeout data. For more information refer to chapter "Plot".

Shift	ESC	
		Exit the program.

Acquire the next point to stake.

Stakeout from Coordinate Differences

After the first distance measurement, the displacements along the grid coordinate axes are displayed. If the elevation of the point to be staked is available, the height difference between the measured reflector and the stakeout point is shown as well as the measured elevation of the reflector point.

Values for $\Delta \mathrm{E}$ and $\Delta \mathrm{N}$ will be updated each time a new distance is measured.

Target no. : Point number of the point to be staked.
Δ Easting : Displacement of the reflector along the East-coordinate axis.
Δ Northing : Displacement of the reflector along the North-coordinate axis.
Δ Height : Difference in height between the measured reflector point and the stakeout point. Positive in sign if stakeout point is higher than the reflector position.

Elevation : Elevation of the measured reflector point.

F1 Simultaneously measure and record data on the active recording device.

F2 Measure a distance.
F3 Record the measurement on the active recording device.

F4 Enter target data as described in chapter "Measure \& Record" of "System" - user manual.

F5 Re-position the telescope on the target. Note, this function is only available for motorized theodolites.

Change stakeout method. For more information refer to chapter "Select Stakeout Method".

Generate a plot of the stakeout data. For more information refer to chapter "Plot".

| Shift | ESC |
| :---: | :---: | :---: |
| $\bigcirc \bigcirc$ | Exit the program. |

Acquire the next point to stake.

Coarse Meth :

Select the method for "COARSE POSITIONING":

NONE
LINE OFFSET
ORTHOGONAL
AZIMUTH \& DISTAN
no static method used see chapter "Line Offset" see chapter "Orthogonal" see chapter "Azimuth and Distance"

Choosing NONE, the program will automatically proceed to the selected "STAKEOUT METHOD" and bypass the "COARSE POSITIONING" method after you selected a new stakeout point.

Stakeout M. :

Select the method for "STAKEOUT":
POLAR STAKEOUT see chapter "Polar Stakeout"
ORTHOGONAL STAKE see chapter "Orthogonal Stakeout"

AUXILIARY POINTS

GRID COORDINATES
see chapter "Stakeout with auxiliary points"
see chapter "Stakeout from Coordinate Differences"

3D Stakeout : ON for 3D stakeout, OFF for 2D stakeout.

Position : Select positioning method. (Motorized instruments only):
Off Automatic positioning off
2D Positioning of the horizontal drive
3D Positioning vertical and horizontal drive

Hght. Shift : All heights are changed by this amount. The value can be changed only when you are in this dialog.

Plot

A plot is generated of the stakeout situation with a list of the numeric values, corresponding to the "STAKEOUT METHOD".

Note, below a typical plot is shown using the coordinate "STAKEOUT METHOD".

Configuration

Start the "Configuration Editor" from the "SEARCH POINT" dialog.

The "Configuration Editor" sets parameters for further program operations:

${ }^{\text {F1 }}$ Display software-version
${ }^{\text {FF }}$ Set the value to default. (3 D stake $=\mathbf{O N}$).

${ }^{\text {CONT }}$ Store the current configuration and proceed to the dialog "SEARCH POINT".

Log File

If "Log File" is set to "ON" the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header | The header line will contain the |
| :--- |
| program used, information about the |
| instrument, the name of the data file as |
| well as date and time. |

LONG recording of design coordinates, setout coordinates und differences of coordinates in the log file.

Leica VIP Stakeout V 2.10
Instrument : TCM1100, Serial 412160, (not named)
User templ. : User 1
Meas. file : FILE12.GSI
Program Start : 09/04/1996 at 01:18
Station no. : 3000

$$
\mathrm{E}=21.016 \mathrm{~m} \quad \mathrm{~N}=64.666 \mathrm{~m} \quad \mathrm{ELV}=420.467 \mathrm{~m} \quad \mathrm{hi}=1.700 \mathrm{~m}
$$

Point no. $: \quad 1152$, Hght. Shift $=0.000 \mathrm{~m}$
Design : $\mathrm{E}=21.602 \mathrm{~m} \quad \mathrm{~N}=62.184 \mathrm{~m} \quad \mathrm{ELV}=420.115 \mathrm{~m}$
Staked : $\mathrm{E}=21.606 \mathrm{~m} \quad \mathrm{~N}=62.166 \mathrm{~m} \quad \mathrm{ELV}=420.355 \mathrm{~m} \quad \mathrm{hr}=1.500 \mathrm{~m}$
Deltas : $\mathrm{dO}=-0.004 \mathrm{~m} \quad \mathrm{dN}=0.018 \mathrm{~m} \quad \mathrm{dELV}=-0.240 \mathrm{~m}$

Typical log file entry in the "STAKEOUT" program

Introduction

This manual describes the "FREE STATION" program of the TPS SYSTEM 1000 theodolite series.

This program can be used to deduce the three-dimensional coordinates for the instrument station and the horizontal orientation of the from measurements to a maximum of 10 target points.
For simultaneous determination of the station elevation, height of instrument and height of reflector must already have been input and the elevation of the target points must be known.

The program allows measurement in single or dual-face mode.
Directions to target points can be determined, as can any combination of direction and distance. To compute the position coordinates, at least three elements (2 directions and 1 distance) are necessary.

Start the "CONFIGURATION"
${ }_{-}{ }^{F 6}$ Alpha-numerical/numerical input.

Target Point

Enter the target point number and height of the reflector.

Run the calculation. Note, the \square key will be assigned after sufficient measurements were taken to calculate a position.

F2 Entry of target points into a list as well as selecting points for further use.

F3 Displays the previous point from the list of points you entered. Note that this key will not be available until there is at least one point in the list.
${ }^{\text {F4 }}$ Displays the next point in the list of points you entered. Note that this key will not be available until there is at least one point in the list.

Retrieve the coordinates of the target point from the active file. For further information, please refer to dialog "IMPORT" described in the "SYSTEM" - user manual.
${ }^{\text {F6 }}$ Alpha-numerical/numerical input.

Point List

Enter a maximum of 10 points. The same point can be retrieved several times.
The same point number can be used several times without new input.

Return to the dialog "Target Point".

Measure Mode

This dialog is similar to the TPS System 1000's basic "MEASURE MODE" dialog. Once a measurement is taken, the program will return to the dialog "DEFINE POINT" to acquire the next point for measuring. If the station coordinates can be calculated successfully from the first few measurements, the $\Delta \mathrm{Hz}$ and $\Delta \mathrm{V}$ values are displayed for further entered target points. Motorized theodolites will automatically drive the telescope to the target point.

Simultaneously measure and record data on the active recording device. Return to the dialog "TARGET POINT".

- ${ }^{F 2}$ Measure a distance.

Record the measurement on the active recording device. Return to the dialog "TARGET POINT".

- ${ }^{\text {F4 }}$ Enter target data. For further information, please refer to chapter "Measure \& Record" described in the "System" - user manual.

Change the theodolite face.
Call up the CODE function, as described in chapter "Measure \& Record" described in the "System" - user manual.

CONT Accept the measurement and return to the dialog "TARGET POINT".

Calculation

Calculates the 3D station coordinates and orientation as well as the standard deviation of the results.

FREST\ RESULTS <L.SQRS>					
Station no.: 1					
No. of Pts : 6					
Inst	:		635	m	
Easting : 2134.234 m				m	
Northing : 4231.365					
Elevation : 580					
SET	STORE	PLOT	MORE		
Orientation : $2^{\circ} 12$ '34"					
OEasting : 0.003 m					
oNorthing : 0.005					
OElevation : 0.005 m					
OOrient : 0000'03"					
Calc Scale : YES					
Scal	:	0.9	956		

HELP	ROBST				
$\bigcirc^{\text {F1 }}$	$\bigcirc^{F 2}$	$O^{F 3}$	${ }^{F 4}$	$\bigcirc^{\text {F5 }}$	$\bigcirc^{F 6}$

FS

Station no : Point number assigned to the station
No. of Pts : Number of points measured
Inst.Height : Instrument Height

Easting	$:$ Calculated Easting for the station
Northing	$:$ Calculated Northing for the station
Elevation	$:$ Calculated Elevation for the station
Orientation	$:$ Oriented direction
$\boldsymbol{\sigma}$ Easting	$:$ Standard deviation of Easting
$\boldsymbol{\sigma}$ Northing	$:$ Standard deviation of Northing
$\boldsymbol{\sigma}$ Elevation	$:$ Standard deviation of the Elevation

$\boldsymbol{\sigma}$ Orient : Standard deviation of the Orientation
Calc Scale : YES scale factor is calculated, NO scale factor is not calculated

Scale : The scale factor of the free station calculation.
Note that the scale is not shown if set to NO.
Fl $^{\text {F1 }}$
Set orientation and station coordinates on the
instrument. Note that this key will end the program.

F3 Record the following results on the active recording device:

WI 11 Station Point Number
WI 25 Orientation correction
WI 84 Station Easting
WI 85 Station Northing
WI 86 Station Elevation
WI 87 Last reflector height used
WI 88 Instrument Height
$\square^{\text {F4 }}$ Sketch of the station and the reference points used.

Show the results of individual measurements on the screen (see dialog "More Information").

Measure more points. The program will recall the "TARGET POINT" dialog.

Select between the "Robust" method and the "Variation" method

Shift		
0	ESC	Exit the program.

More Information

Display the residuals of individual measurements. You can also disable points from the calculation of position or height as well as delete erroneous measured points.

FREST\MEHR INFORMATIONEN 14:03				
			9/10	
Use for Ht	: YES	tatu	ON	
Point no.	:		12	
Error Flag	:		JONE	
$\Delta \mathrm{Hz}$:		$03^{\prime \prime}$	
Δ Distance	:		050	
RECLC <--	-->	MEAS	DEL	NO
Δ Height	:		020	
Refl.Height	:		555	
Easting	:		427	
Northing	:		162	
Elevation	:		. 466	

HELP					
$F 1$		$F 3$	F4	$O^{F 5}$	$\bigcirc{ }^{\circ} \mathrm{F}$

FS

9/10 : Sequence number of the current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Use for Ht. : Use this measurement for height determination (YES/NO)

Status : Use this measurement for calculation (ON/OFF).

Point no : The target point number.
Error Flag : Identified erroneous measurements. Possible values are:
NONE measurement is OK
HZ horizontal angle error
DIST distance error HT height difference error
The flags may also be combined, i.e. DIST + HZ
$\Delta \mathrm{Hz}$.
: Difference between calculated and measured Hz . angle
Δ Distance : Difference between calculated and measured distance
Δ Height : Difference between calculated and
Refl. Ht. : Reflector height used for that target point

Easting, Northing, Elevation : Target coordinates used.

Recalculate the result.
F2 Scroll to the measurements of the previous point.
F3 Scroll to the measurements of the following point.

- F4 Measure more point. Return to dialog "TARGET POINT".

Delete a point from the set of measurements. You can now measure a new point in its place.

| Shit |
| :--- | :--- |

Plot

Generates a plot showing the measurement configuration. The station point is in the center and the top of the sketch shows the direction of Grid north. The sketch is true in angular but not true in distances. Points are numbered sequentially in the order in which they were measured. Points not used in the calculation are marked with a dotted line.

Recalculate the solution and return to the dialog "CALCULATION RESULTS" (see page 83).

F4 Measure more points. The program will recall the
 "TARGET POINT" dialog. (see page 80).

Toggle any point ON or OFF by pressing the numeric key corresponding to the sequence number of the point. Note, that $\stackrel{.0}{ }$ represents point 10 .

Configuration

Configuration Editor

. ${ }^{-7}$
 Start the "Configuration Editor" from the "STATION
 DATA" dialog.

The "Configuration Editor" sets parameters for further program operations:

Hz Ori Acc: Limit for the standard deviation of the orientation. The orientation is regarded as "error free", if the computed standard deviation of the orientation is within twice the entered value.

Ht Acc TP : Height accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The height is regarded as "error free", if the computed standard deviation is within twice the entered value.

Posn Acc TP : Position accuracy of the target points. The entered value, is used as an "a priori" accuracy in the calculation. The position is regarded as "error free", if the computed standard deviation is within twice the entered value.

Two Faces : YES for dual-face measurement, NO for single-face.

User Disp : YES; the measured value indication is used from application "Measure and record". NO; the default indication is used for the "Free Station".

Log File : ON, records measurements in a LogFile.The format is described on page 90.

Log FiName : Enter the Log File Name

Display software-version
Set the values to default. Default values are shown in the previous dialog.

${ }^{\text {CONT }}$ Store the current configuration and proceed to the dialog "STATION DATA".

Dual-face Measurement

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within 27' (0.5 gon) and the difference of two measured distances is within $0.5 \mathbf{~ m}(\mathbf{1 . 6 4} \mathbf{f t})$, the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:
Header The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Record For each measurement, a record will be stored containing :

- Station coordinates and
- orientation correction,
- standard deviations for

Easting,
Northing,
Height of station and orientation correction.

The residuals for

- horizontal angles,
- heights and
- measured distances
are also listed.

Leica VIP Free Station V 2.10					
Instrument	: TCM1800, Serial 410000, (not named)				
User templ.	User 1				
Meas. file	: FILE01.GSI				
Program Start	02/05/1996 at 11:23				
Using Least-Squares Solution					
Station no.	$\mathrm{E}=-3.5461 \mathrm{~m} \quad \mathrm{~N}=-$		m $\quad \mathrm{ELV}=-0.6518 \mathrm{~m}$		$\mathrm{hi}=0.0000 \mathrm{~m}$
Ori.Corr.	: $0^{\circ} 00^{\prime} 2$				
S.Dev. East	: 0.0003				
S.Dev. North	: 0.0003				
S.Dev. Elev.	: 0.001				
S.Dev. Orient.	: 0"00'0				
4 point(s) measured :					
\#\# Point no.	d Hz	d Height	d Distance	Erro	
1109	$0^{\circ} 01^{\prime} 21{ }^{\prime \prime}$	0.0012 m	-0.0000m	NON	
2110	$-0^{\circ} 00^{\prime} 00^{\prime \prime}$	-0.0045m	-0.0002m	NON	
3112	$-0^{\circ} 00^{\prime} 25^{\prime \prime}$	0.0018 m	0.0010 m	NON	
4113	$0^{\circ} 00^{\prime} 48{ }^{\prime \prime}$	0.0014 m	-0.0002m	NON	

Continued next page

Using Robust Solution
Station no. : 200
$\mathrm{E}=-3.5461 \mathrm{~m} \quad \mathrm{~N}=-0.7683 \mathrm{~m} \quad \mathrm{ELV}=-0.6518 \mathrm{~m} \quad \mathrm{~h} i=0.0000 \mathrm{~m}$
Ori.Corr. : $0^{\circ} 00^{\prime} 20^{\prime \prime}$
S.Dev. East : 0.0003m
S.Dev. North : 0.0003 m
S.Dev. Elev. : 0.0015 m
S.Dev. Orient. : $0^{\circ} 00^{\prime} 02^{\prime \prime}$

4 point(s) measured :

\#\# Point no.	d Hz	d Height	d Distance	Error Flag
1	109	$0^{\circ} 01^{\prime} 21^{\prime \prime}$	0.0012 m	-0.0000 m
2	110	$-0^{\circ} 00^{\prime} 00^{\prime \prime}$	-0.0045 m	-0.0002 m
3	112	$-0^{\circ} 00^{\prime} 25^{\prime \prime}$	0.0018 m	NONE
4	113	$0^{\circ} 00^{\prime} 48^{\prime \prime}$	0.0014 m	-0.0002 m
NONE				
				NONE

Typical log file entry in the "FREE STATION" program

Introduction

This manual describes the "REFERENCE LINE" program of the TPS SYSTEM 1000 theodolite series. The distance and the angle between two points is calculated by the program.
"REFERENCE LINE" is a specialized form of stakeout used for construction and building alignment. It permits positioning of a point referred to a line. Points for use in the program can be measured, entered manually, or read from the database.
The program records individual measurements in the database. In addition, the program generates a log file containing all data for a given measurement session.

The program also allows to determine various values of height determination as shown in the figure below.

$\mathbf{F P}$	Point of intersection of vertical with line P1-P2
$\mathbf{N P}$	Point of intersection with line P1- P2 of perpendicular to P1- P2
$\mathbf{\Delta H 1}$	Height difference to start of line P1
$\mathbf{\Delta H 2}$	Height differencein relation to the interpolated height FP of reference line P1-P2.
$\mathbf{\Delta L i n e}$	Horizontal distance from P1 to FP (abscissa)
$\mathbf{\Delta S p a t . d i s t ~}$	Spatial distance from P1 to NP
$\mathbf{\Delta P e r p . l}$	Length of perpendicular from Target point to Reference line

Baseline Points

Determine Base Points

RL
Manually enter the first base point. The TPS 1000 manual input dialog will appear.

F2 Proceed to determine the base point by a measurement.

Initiate a search of the point in the database.

Start the "Configuration Editor".

Shift Θ	$\begin{array}{c}\text { ESC } \\ \Theta\end{array}$

Measure a Base Point

Simultaneously measure and record in the active file. Proceed with the dialog "1 POINT BASELINE" (page 95). If the second point has already been measured, the program will proceed to the "DEFINE REF LINE" dialog.

Measure a distance.
Record the measurement in the active file and proceed with the dialog "1 POINT BASELINE" (page 95). If the second point has already been measured, the program will proceed to the "DEFINE REF LINE" dialog.

Measure the distance. Accept the measurement without recording. If the second point has already been measured, the program will proceed with the "DEFINE REF LINE" dialog.

Enter the target data. For further information refer to chapter "Measure \& Record" of "SYSTEM" - user manual.
${ }^{\text {CODE }}$ Call up the CODE function, as described in chapter "Measure \& Record" of "SYSTEM" - user manual.

Shift	ESC	
		Exit the program.

Define Reference Line

The reference line can be defined by entering a distance value, a line offset value and an angle value for the base line. Heights can be changed by a constant rate (eg, 1m) by entering a H offset value.

1.BasePoint : The first base point that defines the
base line.
2.BasePoint : The second base point that defines the base line.

Offset : Establishes the displacement parallel to the base line.

Line : Establishes the distance from the first reference point to the starting point of the new reference line.

Alpha : Establishes the angle between the base line and the new reference line.

H Offset : Displaces the base line parallel in height.

Define a new base line.

Accept parameters as displayed and proceed to the "RESULT REF LINE" dialog.

The "RESULTS REF LINE" dialog displays the data of the measured point refering to the reference line, as shown in dialog below:

RL
Point No. : The point number of the stakeout point.
Δ Offset : The delta value of line Offset in reference to the stakeout point. (ordinate)
Δ Line : The delta value of Line in reference to the stakeout point. (abscissa)
$\boldsymbol{\Delta H} \quad:$ Height difference between the stakeout point as measured and the height reference point.
Δ Perp.lngth. : Length of perpendicular
Δ Spat.dist. : Spatial distance
Elevation : Height of target point.

If " Δ Offset" is brought to " 0 " by turning the instrument, a distance measurement must always be carried out for control purpose.
${ }^{\text {© }}$ F1 Simultaneously execute distance measurement and record the measurement.

F2 Measure a distance.

F3 Record the measurement in the database.
Depending on the setting in the "Configuration" dialog a measurement block containing delta values is recorded:

WI 11 Point Number of target
WI 35Δ Offset
WI $37 \quad \Delta \mathrm{H}$
WI 39Δ Line
or
WI 11 Point Number of target
WI 35Δ Offset
WI 37Δ Perpendicular
WI 39Δ Spatial distance
Depending on the setting in the "Configuration" dialog a record is written in the log file.
When finished, the program will proceed the "DEFINE REF LINE" dialog.

F4 Enter target data as described in the Measure \& Record of the System Manual.

| Shift | ESC |
| :--- | :--- | :--- |
| | Exit the program. |

${ }_{-}^{\text {CONT }}$ Proceed with dialog "DEFINE REF LINE".
CODE Call up the CODE function, as described in chapter "Measure \& Record" of "SYSTEM" - user manual.

Configuration

Configuration Editor

. 1.8
 Start the "Configuration Editor" from the "1. POINT BASELINE" dialog.

The "Configuration Editor" lets you change and set the following parameters that determine program operation:

Offset	$:$ Line $/ \boldsymbol{\alpha}$ Set to $\mathbf{O N}$, the program will allow the input of an offset from the reference line.
$:$: Set to ON, the program will allow the input of a distance from the first base point to the starting point of the new reference line, and also an angle between the base line and the new reference line .	
H Offset $\quad:$Set to ON, the program will allow the input of a height offset.	

Set to \mathbf{O} / \mathbf{L}, the program will record both Δ Offset and Δ Line values.
Set to $\mathbf{O} / \mathbf{L} / \mathbf{H}$, the program will record Δ Offset, D Line and Δ Height of target values.

If the option "Height" is set to "Inter" you can in addition calculate the values:
Set to \mathbf{O} / \mathbf{S} the program will record both Δ Offset and Δ Spatial distance values.
Set to $\mathbf{O} / \mathbf{S} / \mathbf{P}$, the program will record Δ Offset, Δ Spatial distance and Δ Perp.length of the perpendicular line. (Refer to figure page 94)

User Disp : Set to YES, the display defined in the MEAS application will be used. If set to NO, the "REFERENCE LINE" default display applies.

Height : Set to Ref, Δ Height (1) will be calculated from the first base point and the reflector.
Set to Inter, the program will calculate Δ Height (2) from the interpolated height of the base line at Δ Line of the reflector position and the reflector position itself.

If set to Inter, the Line / a option is set to NO automatically.

Log File : Set to ON, the program will record measurement data in a \log file in the format described on page 103.

Log FIName : Enter the Log File Name.

F1 Displays date and version of the running application.
F5 Press to reset configuration parameters to their default values. Default settings are shown in the previous dialog.

CONT Store the current configuration and proceed with dialog
 "1. POINT BASELINE".

F6 Key to choose the different functions.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header The header line will contain the program used, information about the instrument, the name of the data file as well as dateand time.

Configuration each modification of baseline and reference line is stored.

Record For each measurement, a record will be stored containing: Point No., asstaked Easting, Northing, and Elevation and their delta values.

Typical log file entry in the "REFERENCE LINE" program

Remote Height

Introduction

This manual describes the "Remote Height" program of the TPS System 1000 theodolite series. The distance and the angle between two points is calculated by the program.

The elevation of a remote height point is calculated from the zenith angle to the target and from the measured distance to a reflector situated vertically below or above that target.
To ensure correct results, the target and the reflector must be lined up vertically. In practice it is not generally possible to maintain an exactly-vertical line, and so you must decide what lateral deviation can be tolerated. The horizontal distance to the inaccessible target must however coincide with the horizontal distance to the reflector.
When the instrument is aligned and the station coordinates have been set, the position coordinates of the remote height can be calculated and stored in the data file.

Measure Base Point

Point No. : The point number of the base point.
$\mathrm{Hz} \quad:$ Horizontal direction from the remote point to the base point.

V : Vertical angle to the remote point.
Refl.Height : Reflector height used for the target point.

Slope dist. : Slope distance from the instrument station to the base point.

Height diff : Height difference between the base point ground and the instrument ground.

F1 Simultaneously measure and record in the active file. Proceed with the "REMOTE POINT" dialog.

Measure a distance. Record the measurement in the active file and proceed with the "REMOTE POINT" dialog.
 Measure the distance. Accept the measurement without recording. Proceed with the "REMOTE POINT" dialog.

F4 Enter the target data. . For further information refer to chapter "Measure \& Record" of the "SYSTEM" - user manual.
${ }_{\bullet}{ }^{\text {F5 }}$ Proceed with "REMOTE POINT" dialog.
Start the "Configuration Editor".
Change the theodolite face.

Call up the CODE function, as described in chapter "Measure \& Record" of the "SYSTEM" - user manual.

Exit the program.
${ }^{\text {F6 }}$ Alpha-numerical/numerical input.

Once the base point has been measured, this dialog shows the position of the point - above or below the base point - aimed with the telescope. The data are immediately updated while turning the instrument.

Point No. : The point number of the remote point.

$\mathbf{H z}$	$:$ instrument to the remote point. insizontal direction from the
\mathbf{V}	$:$ Vertical angle to the remote point.
Slope dist.	: Slope distance from the instrument station to the remote point. (calculated)

Δ Hgt diff : Height difference between the remote

Easting : Calculated Easting (Y) for the remote point.

Northing : Calculated Northing (X) for the remote point.

Elevation : Calculated Elevation for the remote point.

F3 Record the measurement in the database.
F4 Enter the target data. . For further information refer to chapter "Measure \& Record" of the "SYSTEM" - user manual.

- ${ }^{\text {F5 }}$ Return to the "MEASURE BASE POINT" dialog.

CODE Call up the CODE function, as described in chapter "Measure \& Record" of the "SYSTEM" - user manual.

CONT Return to the "MEASURE BASE POINT" dialog.

Shift		

Configuration

Shift	$๑^{\text {F2 }}$	$\begin{array}{l}\text { Start the "Configuration Editor" from the "MEASURE } \\ \text { REMOTE POINT" dialog. }\end{array}$

The "Configuration Editor" sets parameters for further program operations:

User Disp : Set to YES, the display defined in the "MEAS" application will be used. If set to NO, the "REMOTE HEIGHT" default display applies.

Hor.Pos.Tol : Horizontal distance tolerance that valid point measurements cannot exceed.

Rec $\mathbf{\Delta H}$ WI37:Set to $\mathbf{O N}$, the program will store Δ height difference as record WI37 in the database.

F1
 Displays date and version of the running application.

Reset configuration parameters to their default values. Default settings are shown in dialog above.

Accept the current configuration and proceed to the dialog "MEASURE BASE PT".

Introduction

This manual describes the "HIDDEN POINT" program of the TPS SYSTEM 1000 instruments.

The program allows measurements to a point that is not directly visible using a special hidden-point rod. The data for the hidden point are calculated from measurements to the prisms mounted on the pole with a known spacing and a known length of pole. The pole still may be kept slope.
"Measurements" are calculated as if the hidden point was observed directly. These "calculated measurements" can also be recorded.

The hidden-point rod can have either two or three reflectors. The rod you are using is defined in the "CONFIGURATION" of the program. Here, you enter the length of the rod, spacing between reflectors, and the prism constant. Refer to Figure on page 112, which illustrates a hidden-point rod with three reflectors.

If the hidden-point rod you are using has three reflectors, the program calculates coordinates for the hidden point from three combinations:

Reflector 1 + Reflector 2
Reflector 3 + Reflector 2
Reflector 1 + Reflector 3

In the case of motorized theodolites, you can configure the program in such a way, that it points the telescope at the third reflector automatically after the first two reflectors have been measured.

Configuration

Start the "Configuration Editor" from the "MEASURE" dialog.

HELP

| | F1 | | F2 | | F3 | | F4 | | F5 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| F6 |
| :--- | :--- |

The "Configuration" let you set the following parameters that determine program operation and define the hidden-point rod you are using:

User Displ : YES use the display defined in "MEASURE \& RECORD".
Set NO use the default display of the program "HIDDEN POINT".

Meas. Tol : Limit for the difference between the given and measured spacing of the reflectors. If the tolerance value is exceeded, the program will issue a warning.
In case of measurements with 3 prism the values are also used as limit for the max. deviation of the 3 measurements.

Add. const. : Input of prism constant for the prisms of the pole. The prism constant set in the system is disregarded.

No. of Refl. : Number of the reflectors on the rod you are using. Move the input cursor to this line, then toggle to either 2 or 3 .

Auto pos. : On the program will automatically point the telescope of a motorized theodolite at the third reflector once the first two reflectors have been measured. The exact pointing must be made manually.

Rod Length : Total length of hidden-point rod.
Space R1-R2 : Spacing between the centers of reflector R1 and reflector R2.

Space R1-R3 : Spacing between the centers of reflector R1 and reflector R3. Enter only for rods with three reflectors. Reflector 3 must be situated between reflector 1 and 2.

Displays date and version of the running application.
Set values to default. Default values are displayed on page 112.

Accept the current configuration and proceed to "MEASURE ROD"
Note that all parameters for the rod you are using must be defined before you can proceed. If any of the parameters have not been defined, the program will issue an error message to this effect. Press OK to clear the message, then make any necessary settings in the "CONFIGURATION".

The program will display the TPS 1000 "Measure \& Record"dialog or the dialog shown below.
If the difference of the given and measured spacing between the reflectors exceeds the "Meas. Tol. limit" a message is displayed.
You may accept the measurement or re-measure the reflector.

F1 Simultaneously measure and record in the active file. Proceed with the same dialog for the next reflector. If the last point has already been measured, the program will proceed to the "RESULT" dialog.

Measure a distance. Record the measurement in the active file and proceed with the same dialog for the next reflector. If the last point has already been measured, the program will proceed to the "RESULT" dialog.

Measure the distance. Accept the measurement without recording. Proceed with the same dialog for the next reflector. If the last point has already been measured, the program will proceed to the "RESULT" dialog.

The prism constant used in the program is shown in the distance measurement display during the distance measurement. The prism name also shown in this display has nothing to do with the prism constant and can be ignored.

Enter the target data. For further information refer to chapter "Measure \& Record" of "SYSTEM" - user manual.

Choosing another reflector and therefore another prism constant via this function is NOT recommended because the actually selected prism constant is only used for the current measurement. After confirming/ storing a measurement with $\square_{\bullet}^{\text {cont / / "REC" or "ALL" the }}$ prism constant set in the program configuration is automatically used again. This could result in errors. Therefore always set the prism constant of the pole in the configuration of the program. Refer to pages 112 and 113 .

Call up the CODE function, input of a code block.

Results

Once all reflectors have been measured, the program will display the results of the hidden-point calculation. If 3 reflectors are used, the hidden point position obtained from the median value of the 3 combinations is displayed.

HDNP T \}	RES	ULTS	Station12:03						
Point no. Hz V Slope Dist. Height diff Easting									
		:	16055'50"			\square			
		:	$91^{\circ} 16^{\prime}$	20 "					
		:	3.	345	m				
		:	-0.	435					
		:	2253.	635					
		REC	TARGT						
Northing Elevation		:	$\begin{array}{r} 12145.281 \\ 306.005 \end{array}$		mm				
		:							
HELP									
F1	F2	F3	F4		F5		F6		
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc			

Point no. : The Point number.
$\mathbf{H z} \quad: \begin{aligned} & \text { Horizontal direction to the hidden } \\ & \text { point. }\end{aligned}$

V : Vertical angle to the hidden point.
Slope. Dist. : Slope distance to the hidden point.
Height Diff : Height difference from instrument station to the hidden point.

Easting : Calculated Easting (E) for the hidden point.

Northing : Calculated Northing (N) for the hidden point.

Elevation : Calculated Elevation for the hidden point.

- ${ }^{\text {F1 }}$ Take a new hidden-point measurement.

F3 Store the point calculation on the recording device.

If the prism constant is also stored (depending on the REC mask) during storing of the calculated data of the hidden point this value can be ignored because it is not relevant for the calculation.

F4 Enter target data as described in chapter "Measure \& Record" of "SYSTEM" - user manual.

Call up the CODE function, as described in chapter "Measure \& Record" of "SYSTEM" - user manual.

CONT Proceed to measure a new hidden point.

Shift	$\begin{array}{c}\text { ESC } \\ 0\end{array}$	Exit the program.

Area (Computation of Area)

Introduction

This manual describes the "AREA" program of the TPS SYSTEM 1000 theodolite series.

An area can be defined by a series of straight lines and arcs. Arcs are defined by 3 radial points or 2 radial points and radius.

Measure Mode

Straight line

| | F1 | | F2 | | F3 | | F4 | | $F 5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| | F6 |
| :--- | :--- |

Segs Meas. : Counts the number of segments. With a new area the segment counter will be set to zero.

Seg. Len. : Length of the last straight line segment measured.

F1
 Simultaneously measure and record data on the active recording device. Return to dialog "MEASURE POINT"

Measure a distance and record data on the active recording device.
${ }^{\text {F2 }} \int^{\text {CONT }}$ Measure a distance without recording.
${ }_{-}{ }^{\text {F4 }}$ Enter the target data. For further information refer to chapter "Measure \& Record" of "SYSTEM" - user manual.
$๑^{F 5}$ Import target coordinates. For further information, please refer to chapter "Setup" of "SYSTEM" - user manual.
${ }^{\circ}$ F2 Start the "Configuration editor".
Shift
F3 Deletes last completed segment. Resume at the start of a new segment.

Close the area polygon to the start point and calculates area and length of perimeter. The display of the results is shown in chapter "CALCULATION".
${ }_{\bullet}^{\text {Shitt }}{ }^{\text {F5 }}$ Select arc as the next segment.
Shitt ${ }_{0}{ }^{\text {F6 }}$ Resets the segment counter to zero. Results of the last area computation will be erased.
$\triangle_{-}^{C O D E}$ Call up the CODE function.

Arcs

During measurement, you can choose the ARC function to measure an arc defined by 3 radial points or 2 points and radius.
Select the correct options before proceeding with the first point of the segment.

Ensure the central angle of any arc is always smaller than $\mathbf{1 8 0}{ }^{\circ}$ (200 gon).

- Three Points

Determine the three points of an arc sequentially. Completing the third point the program continues with Dialog "Measure point" (page 118).

HELP				RAD	
${ }^{F} \quad F 1$	$0^{F 2}$	$F 3$	$F 4$	$F 5$	$F 6$

Simultaneously measure and record data on the active recording device.

Measure a distance and record data on the active recording device.

Measure a distance without recording.

> F4 Enter the target data. For further information refer to chapter "Measure \& Record" of "SYSTEM" - user manual.
> - F5 Import target coordinates. For further information, please refer to chapter "Setup" of "SYSTEM" - user manual.

Call up the CODE function, as described in chapter "Measure \& Record" of "SYSTEM" - user manual.
${ }_{-}^{\text {CODE }}$ Exit the program.

- Radius Arc

Determine the two points of an arc sequentially. After the second point the "Measure point" dialog (page 118) prompts to input the radius.

Height diff	\vdots	-----	m
Easting	\vdots	----	m
Northing	\vdots	----	m
Elevation	\vdots	----	m

HELP
3 PT

Simultaneously measure and record data on the active recording device.

Measure a distance and record data on the active recording device.
${ }_{-}^{\text {F2 }}{ }_{-}^{\text {CONT }}$ Measure a distance without recording.

Enter the target data. For further information refer to chapter "Measure \& Record" of "SYSTEM" - user manual.

Import target coordinates. For further information, please refer to chapter "Setup" of "SYSTEM" - user manual.

	Call up the CODE function, as described in chapter "Measure \& Record" of "SYSTEM" - user manual.
${ }_{\bullet}^{\text {CODE }}$	Exit the program.

For arcs to the left enter the radius negative and for arcs to the right enter the radius positive.

Accept the input. Continue with dialog "MEASURE POINT" (pagell8).

Displays number of segments, computed area and length of perimeter.

No. Segs. : Number of segments used.
Area : Computed area in units of measure.
Hectares/ : Computed area in hectares or acres ${ }^{1}$.
Acres $\quad 1$ acre $=43560 \mathrm{ft}^{2}$.
Perimeter : Length of perimeter of the current unit of measure.
${ }^{1}$ depending on the setting of the distance unit metre or feet.

F1 Start a new area. Resets the segment counter to zero. Results of the last area computation will be erased.

. 8
 The following format will be used to record calculated area results:

WI 41: Code block identification (default $=36$)
WI 42: Number of segments used.
WI 43: Area in the current measurement units, always with one decimal place.
WI 44: Length of perimeter in the current units of measure with one decimal place.

Area results recording format

$\begin{gathered} \text { Code } \\ (\text { default }=36) \end{gathered}$	no. of segments $=4$	area polygon $4500.3 \mathrm{~m} 2$	length polygon perimeter 392.2 m
41001+00000036	42...+00000004	43...+00045003	44...+00003922
WI 41	WI 42	WI 43	WI 44

${ }^{\text {F5 }}$ Generate a plot of the area.
CONT Continue with dialog "MEASURE POINT".

Plot

Shows a plot of the present area.

- ${ }^{\text {F4 }}$ Return to the dialog "RESULTS".

Configuration

Configuration Editor

The "Configuration Editor" sets parameters for further program operations:

Two Faces $:$	Set YES for dual-face measurement, \quad AR
	NO for single-face.

Code : Enter the block identification code for recording the area results (max. eight alpha numeric characters)

Log File : Set to ON, the program will record measurement data in a log file in the format described on page 128.

Log FIName : Enter the Log File Name.
${ }_{-}{ }^{\text {F1 }}$ Display date and version of the running application
Set the values to default. Default values are displayed in dialog above.

CONT Store the current configuration and proceed to the dialog "MEASURE POINT". Points can be added to the current area or a new area can be started.

Dual-face Measurement

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within 27' (0.5 gon) and the difference of two measured distances is within $0.5 \mathbf{~ m}(\mathbf{1 . 6 4} \mathbf{f t})$, the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header	The header line will contain the program used, information about the instrument, the name of the data fi well as date and time.
Record	For each section of the area, start point and end point, horizontal distance and azimuth are stored.

For arcs with 2 points and radius the azimuth of arc, radius and length of arc are also stored.

For 3 point arcs the direction of arc, radius and length of arc are also stored.

Leica VIP Area V 2.10	
Instrument	TCM1100, Serial 430000, Joe's theodolite
User templ.	User 1
Meas. file	FILE01.GSI
Program Start	02/23/1995 at 13:00
Segment Number	: 1
Start Point	: 1
End Point	: 2
H Distance	: 5.5555 m
Azimuth	: $140^{\circ} 11^{\prime} 17{ }^{\prime \prime}$
Segment Number	: 2
Start Point	: 2
End Point	: 4
Curve Right	
Radius	: 4.9089 m
ARC Length	: 2.326 m
Segment Number	: 3
Start Point	: 4
Second Point	: 5
End Point	: 6
Curve Right	
Radius	5.362 m
ARC Length	2.254 m
Number of Segments : 3	
Area	9.8496 m 2
Hectares	: 0.0010
Perimeter	: 13.8396 m

Typical log file entry in the "AREA" program

Sets of Angles

Introduction

This manual describes the "Sets of Angles" program of the TPS SYSTEM 1000 theodolite series.

The program permits direction measurements to targets of which coordinates are not necessarily known. The average direction of all sets, the standard deviation for one observed direction and the standard deviation for the average of all directions is computed for each target. To calculate a result, a minimum of two full sets must be observed. Measurements in two faces must exist for each target .
Once the program has "learned" the targets and their respective sequence during the first set in face I , the observer is guided throughout the following measuring sequence.
A maximum of 250 measurements per instrument station (in 2 faces) can be handled in one calculation.

Sets menu - view

The point numbers and sequence of the targets are stored in the program during the observation of the first half set in face I. This is designated as the "Learning Phase". The observer is thereafter guided throughout the observation sequence, i.e. the targets are proposed as per "learned" sequence using the selected observation method. To locate the targets easily, the horizontal and vertical differences in direction are displayed. Turning these differences to "zero", the relevant target is visible. Motorized theodolites will automatically drive the telescope to the specified target point, if the first half set was measured successfully. Complete directions must be observed for all targets within the first set. A complete direction is defined as a direction observed in both faces.
During observation the program tests, if the correct face is used. As soon as the last "learned" target has been observed, the program changes automatically to face II.

Start the "CONFIGURATION".

Measure Mode

- Measure First Set

This option starts the first set and the "Learning Phase" of a new instrument station. The point number for the targets must be entered in Dialog "FIRST SET".

Set no. : Displays the active set.
Seq. no. : Displays the sequence number of the selected target out of the total number of target used.

Face : Displays the face.
Point no. : Target point number.
Refl.Height : Reflector height of target point.
Auto Meas. : Automatic measurement ON/OFF

Entry of target points into a list as well as selecting points for multiple use.

Displays the previous point from the list of points you entered. Note that this key will not be available until there is at least one point in the list.

Displays the next point in the list of points you entered.
Note that this key will not be available until there is at least one point in the list.

- ${ }^{\text {F5 }}$ Ends the 1. half set and returns to the dialog "SETS
MENU".
- F6 Select alpha-numeric/numeric input.

${ }_{-}^{\text {CONT }}$ Proceed to the "MEASURE" dialog (displayed below).
This "MEASURE" dialog is shown during the measurement to targets. The program return to the dialog "FIRST SET" (page 131) on completion of a measurement or to the "FURTHER SET" dialog (page 133).

$\Delta \mathbf{H z} / \Delta \mathrm{V}$: Are not activ during the first set. The differences are shown for all further sets relative to the measurements of the first half set.
-F1 Simultaneously measure and record data on the active

Measure and record a distance. ${ }^{1}$

Measure without recording the measurement on the active recording device.

- F4
 Enter the target data. For further information refer to chapter "Measure \& Record" of the "SYSTEM" - user manual.

${ }^{1}$ Distance measurement is optional.

- Measure Further Set

To measure the sets, the user is guided the measurement sequences. The following dialog selects points used within the 1 . half set. The measurement sequence requires no special target selection due to the predefined configuration.

Set no. : Displays the active set.
Seg. no : Internal ordinal number from 1st half set.

Face : Displays the face.

F3 Selects the previous point from a list of points.

- F4 Selects the next point from a list of points.

Turn the telescope to the selected point.

Returns to the "Sets Menu"

To detect the targets easily, the horizontal and vertical angle differences are shown in a special display. If these are "turned to zero", the selected target is visible within the field of view.
Motorized instruments sight the target automatically after the successful measurements of the first half set.

$\Delta \mathbf{H z}$: Difference in horizontal direction. $\Delta \mathbf{V}$: Difference in vertical direction

Ends the telescope positioning. Are activated if the present telescope position is within 27 (0.5 gon) of the expected position. This is confirmed accustically.

Further measurements follow the same rules as described in chapter "Measure first set".

The display-format is the same for horizontal and vertical directions. The data displayed, refer to the selected calculation.
Standard deviations of a single direction in both faces (mR) and the standard deviation for an averaged direction from all sets (mM) are calculated.

Computations of standard deviations require, that all targets and sets are observed in two faces. Exceptions may exist, in which case the standard deviation should be seen as an approximation to be used as a field control. The correct standard deviations a posteriori can be calculated using the recorded data and a suitable computation method.

Pts. Active	$:$Number of observed points used in the calculation.
Sets Active	$:$Number of observed sets used in the calculation.
$\mathbf{m R}$	$:$Standard deviation of one observed horizontal or vertical direction.
$\mathbf{m M}$	$:$Standard deviation of an average direction from all sets.

F5 Show the results of individual measurements on the screen. (For details see dialog "MORE INFORMATI$\left.O N^{\prime \prime}\right)$

Shift	ESC	Exit the program

- Formats and Data Recording

The following format is used to record results in the activ file for measurements.

Number of measurements and accuracies.
WI 41 Code "HZ-RESLT" or "V0-RESLT"
WI 42 Number of targets.
WI 43 Number of observed sets.
WI 44 Standard deviation of a horizontal or vertical direction.
WI 45 Standard deviation of a horizontal or a vertical direction averaged from all sets.
HZ-RESLT: (Number of observations and accuracies)

Code	Number of targets $=4$	$\begin{aligned} & \text { Number of } \\ & \text { sets } \\ & =3 \end{aligned}$	$\begin{gathered} \mathrm{mR} \\ =\mathbf{5 2} \end{gathered}$	$\begin{aligned} & \mathbf{m M} \\ & =37 \prime \end{aligned}$
410039+HZ-RESLT	42....+00000004	43....+00000003	44....+00000520	45....+00000370
WI 41	WI 42	WI 43	WI 44	WI 45

Directions averaged from all valid sets.

WI 41: Code "HZ-MEAN0" or "V0-MEAN0".

WI 42: Point number
WI 43: Averaged direction from all sets.
HZ-MEAN0: (Average from all valid sets)

Code	Target number	Average of all sets
$410040+$ HZ-MEAN0	$42 \ldots .+00000001$	$43 \ldots .+00000000$
$410041+$ HZ-MEAN0	$42 \ldots .+00000002$	$43 \ldots .+00641040$
$410042+$ HZ-MEAN0	$42 \ldots .+00000003$	$43 \ldots .+01354568$
$410043+$ HZ-MEAN0	$42 \ldots .+00000004$	$43 \ldots .+01944557$
WI 41	WI 42	WI 43

Differences or residuals for the points observed.

WI 41:	Code "HZ-DIFF0" oder
"V0-DIFF0".	
WI 42:	Point number.
WI 43 - WI 48:	Difference or residual

HZ-DIFF0: (Difference (r) for Hz-directions and residuals (\mathbf{v}) for vertical directions).

Code	Target numbers	Differences or residuals
410044+HZ-DIFF0	42....00000001	43....+10000000.....48...+60000000
410045+HZ-DIFF0	42....+00000002	43...+10000216.....48...-60000216
410046+HZ-DIFF0	42...+00000003	43...-10000168.....48....+60000168
410047+HZ-DIFF0	42....+00000004	43....-10000041......48....+60000141
WI 41	WI 42	WI 43........ untilWI 48

Further information is given relating to the differences of the measurements. Single points or full sets can be deactivated prior to the calculation.

Active Pts

Sets

Point no. : Target point.
Pnt. Status

Set no. : Present displayed set.
Set Status : Point used for computation (ON/ OFF).

Residual : Difference in horizontal direction, using the direction of the active set and the averaged direction of all sets. For the vertical directions, the residual is used to compute the standard deviations.

F1 Re-calculate the results and return to the dialog showing the results.
F2 Display previous set.

F3 Display the next set.

F4 Display the previous point.

F5 Display the next point.

Examples and used formulae

A typical example of a Hz - measurement is shown in the following list:
The example shows a survey with 3 sets and 4 targets with directions in ${ }^{\circ}$ ' .
The calculations are carried out according to the following table.

PtNr	Face I	Face II	Average face I+II (a)	Reduced average of set (b)	Average (d)	$\mathbf{r}=\mathbf{d}-\mathrm{b}$	$\mathbf{v}=\mathbf{r}+\mathbf{q}$	\mathbf{v}^{2}
1	$0^{\circ} 00^{\prime} 20^{\prime \prime}$	$180^{\circ} 00^{\prime} 17^{\prime \prime}$	$0^{\circ} 00^{\prime} 19{ }^{\prime \prime}$	$0^{\circ} 00^{\prime} 00{ }^{\prime \prime}$	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	0	+1	1
2	24*43'34"	204*43'31"	2443'33'	$24^{\circ} 43{ }^{\prime} 14{ }^{\prime \prime}$	$24^{\circ} 43^{\prime} 10^{\prime \prime}$	-4	-3	9
3	84*47'15"	264**7'11"	84* $47{ }^{\prime} 13{ }^{\prime \prime}$	$84^{\circ} 46{ }^{\prime} 54{ }^{\prime \prime}$	$84^{\circ} 46{ }^{\prime} 53{ }^{\prime \prime}$	-1	0	0
4	30641'52"	12641'42"	306* $1^{\prime} 47^{\prime \prime}$	306²1'28"	306²1'28"	0	+1	1
					$\mathrm{q}=-(\Sigma \mathrm{r}) / \mathrm{N}$ $\mathrm{q}=$	$-\left(5{ }^{\prime \prime}\right) / 4$ +1	$\Sigma \mathrm{v}=-1$	
1	$45^{\circ} 00^{\prime} 13{ }^{\prime \prime}$	$225^{\circ} 00^{\prime} 16^{\prime \prime}$	$45^{\circ} 00{ }^{\prime} 15{ }^{\prime \prime}$	$0^{\circ} 00^{\prime} 00^{\prime \prime}$		0	0	0
2	69 ${ }^{\circ} 43{ }^{\prime} 24{ }^{\prime \prime}$	2490 43 '23"	69 ${ }^{\circ} 43{ }^{\prime 2} 4^{\prime \prime}$	$24^{\circ} 43^{\prime} 09{ }^{\prime \prime}$		+1	+1	1
3	$129^{\circ} 47^{\prime} 06^{\prime \prime}$	249047'08"	$129^{\circ} 47^{\prime} 07^{\prime \prime}$	$84^{\circ} 46{ }^{\prime} 52 \prime$		+1	+1	1
4	$351{ }^{\circ} 41^{\prime} 45{ }^{\prime \prime}$	171** ${ }^{\circ} 1^{\prime} 44{ }^{\prime \prime}$	$351^{\circ} 41^{\prime} 45^{\prime \prime}$	$306^{\circ} 41^{\prime} 30^{\prime \prime}$		-2	-2	4
					$\begin{array}{r} \mathrm{q}=-(\Sigma \mathrm{r}) / \mathrm{N} \\ \mathrm{q}= \end{array}$	-(0)/4	$\Sigma \mathrm{v}=0$	
1	$90^{\circ} 00^{\prime} 19{ }^{\prime \prime}$	$270^{\circ} 00^{\prime} 19^{\prime \prime}$	$90^{\circ} 00^{\prime} 19{ }^{\prime \prime}$	$0^{\circ} 00^{\prime} 00{ }^{\prime \prime}$		0	-1	1
2	$114^{\circ} 43{ }^{\prime} 28^{\prime \prime}$	$294{ }^{\circ} 43{ }^{\prime} 26^{\prime \prime}$	$114^{\circ} 43{ }^{\prime 2} 7^{\prime \prime}$	$24^{\circ} 43^{\prime} 08^{\prime \prime}$		+2	+1	1
3	$174^{\circ} 47^{\prime} 10^{\prime \prime}$	$354{ }^{\circ} 47{ }^{\prime \prime} 15^{\prime \prime}$	174*47'13"	$84^{\circ} 46^{\prime} 54{ }^{\prime \prime}$		-1	-2	4
4	3641'47"	2160 ${ }^{\prime}$ '45"	$36^{\circ} 41^{\prime} 46{ }^{\prime \prime}$	30641'27"		+1	0	0
					$\begin{array}{r} \mathrm{q}=-(\Sigma \mathrm{r}) / \mathrm{N} \\ \mathrm{q}= \end{array}$	-(2)/4-1	$\Sigma \mathrm{v}=-2$	
							$\Sigma \mathrm{v}^{2}=$	23

$$
\mathrm{mR}=\sqrt{\frac{\sum \mathrm{v}^{2}}{(\mathrm{~N}-1)(\mathrm{s}-1)}}=\sqrt{\frac{23{ }^{\prime \prime}}{(4-1)(3-1)}}= \pm 2^{\prime \prime}
$$

$$
\mathrm{mM}=\frac{\mathrm{mR}}{\sqrt{\mathrm{~s}}}=\frac{2^{\prime \prime}}{\sqrt{3}}= \pm 1^{\prime \prime}
$$

A typical example of a \mathbf{V} - measurement is shown in the following list:

The example shows a survey with 3 sets and 4 targets and directions in ${ }^{\circ}$ ".
The calculations are carried out according to the following table.

PtNr	Face I	Face II	Average face I+II (a)	Average (d)	$\mathrm{v}=\mathrm{d}-\mathrm{a}$	v^{2}
1	$87^{\circ} 13{ }^{\prime} 58{ }^{\prime \prime}$	$272^{\circ} 46{ }^{\prime \prime} 2{ }^{\prime \prime}$	$87^{\circ} 13^{\prime} 47{ }^{\prime \prime}$	$87^{\circ} 13^{\prime} 46{ }^{\prime \prime}$	-1	1
2	$88^{\circ} 42^{\prime} 12^{\prime \prime}$	$271^{\circ} 18^{\prime} 18^{\prime \prime}$	$88^{\circ} 41^{\prime} 57{ }^{\prime \prime}$	$88^{\circ} 41^{\prime \prime} 55^{\prime \prime}$	-2	4
3	89 ${ }^{\circ} 44^{\prime} 22{ }^{\prime \prime}$	$270^{\circ} 16^{\prime} 00^{\prime \prime}$	89 ${ }^{\circ} 44^{\prime} 11{ }^{\prime \prime}$	89 ${ }^{\circ} 44^{\prime \prime 11}$	0	0
4	$91^{\circ} 06^{\prime} 47{ }^{\prime \prime}$	268 ${ }^{\circ} 53$ '38 ${ }^{\prime \prime}$	$91^{\circ} 06{ }^{\prime} 34$	$91^{\circ} 06{ }^{\prime} 33 \prime$	-1	1
1	$87^{\circ} 14^{\prime} 01{ }^{\prime \prime}$	$272^{\circ} 46{ }^{\prime \prime} 22^{\prime \prime}$	$87^{\circ} 14^{\prime} 49{ }^{\prime \prime}$		-3	9
2	$88^{\circ} 42^{\prime} 09{ }^{\prime \prime}$	$271^{\circ} 18^{\prime} 20{ }^{\prime \prime}$	$88^{\circ} 41^{\prime} 54{ }^{\prime \prime}$		+1	1
3	$89^{\circ} 44^{\prime} 27{ }^{\prime \prime}$	$270^{\circ} 16^{\prime} 00^{\prime \prime}$	890 $44{ }^{\prime} 13 \prime$		-2	4
4	$91^{\circ} 06^{\prime} 47{ }^{\prime \prime}$	$268^{\circ} 53^{\prime} 40^{\prime \prime}$	$91^{\circ} 06^{\prime} 33^{\prime \prime}$		0	0
1	$87^{\circ} 14^{\prime} 01{ }^{\prime \prime}$	$272^{\circ} 46{ }^{\prime \prime} 3{ }^{\prime \prime}$	$87^{\circ} 13^{\prime} 43{ }^{\prime \prime}$		+3	9
2	$88^{\circ} 42^{\prime} 09^{\prime \prime}$	$271^{\circ} 18^{\prime} 20^{\prime \prime}$	$88^{\circ} 41^{\prime} 54 \prime$		+1	1
3	$89^{\circ} 44^{\prime} 23 \prime \prime$	$270^{\circ} 16^{\prime} 04^{\prime \prime}$	$89^{\circ} 44^{\prime} 09^{\prime \prime}$		+2	4
4	9106'49"	268 ${ }^{\circ} 53^{\prime} 42^{\prime \prime}$	$91^{\circ} 06^{\prime} 33{ }^{\prime \prime}$		0	0
					$\Sigma \mathrm{V}=-2$	
					$\Sigma \mathrm{v}^{2}=$	34

$\mathrm{mR}=\sqrt{\frac{\sum \mathrm{v}^{2}}{\mathrm{~N}^{*} \mathrm{~s}-1}}=\sqrt{\frac{34^{\prime \prime}}{4^{*} 3-1}}= \pm 2^{\prime \prime}$
$\mathrm{mM}=\frac{\mathrm{mR}}{\sqrt{\mathrm{s}}}=\frac{2^{\prime \prime}}{\sqrt{3}}= \pm 1^{\prime \prime}$

Used formulae and designations

$\mathrm{a}=$ In both faces observed and averaged direction.
$\mathrm{b}=$ In both faces averaged and reduced direction of a set
$d=$ Final averaged direction from all sets.
$r=$ Difference between a final direction averaged from all sets and a single direction of a set.
$\mathrm{q}=$ Average of the differences (r).
$\mathrm{v}=$ Residuals.
$\mathrm{s}=$ Number of sets
$\mathrm{N}=$ Number of targets.
$r=d-b$
$\mathrm{v}=\mathrm{r}+\mathrm{q}$ for horizontal directions
$v=d-a \quad$ for vertical directions

Average of the differences for horizontal directions.
$\mathrm{q}=-\frac{\Sigma \mathrm{r}}{\mathrm{N}}$

Standard deviation of one horizontal direction observed in two faces.

$$
\mathrm{mR}=\sqrt{\frac{\sum \mathrm{v}^{2}}{(\mathrm{~N}-1)(\mathrm{s}-1)}}
$$

Standard deviation of one vertical direction observed in two faces.
$\mathrm{mR}=\sqrt{\frac{\Sigma \mathrm{v}^{2}}{\mathrm{~N}^{*} \mathrm{~s}-1}}$

Standard deviation of an averaged direction from all sets.
$\mathrm{mM}=\frac{\mathrm{mR}}{\sqrt{\mathrm{s}}}$

Configuration

Configuration Editor

The "Configuration Editor" sets parameters for further program operations:

Meas Method : > <All targets have to be observed for face II in opposite order to the observations in face I.
\ggAll targets have to be observed in face II using the same sequence as for the observations in face I.
\checkmark Each target has to be observed in face II immediately after its measurement for face I has been completed.

User Displ : Set to YES, the display defined in the "MEAS" application will be used. NO uses the "SETS OF ANGLES" default display.
: Input the tolerance for Hz -directions. This defines the limit for the difference between the actual direction and the direction observed within the first half set. A change in the horizontal circle orientation is always accounted for, after observing the first target within a new set. If the tolerance is exceeded, a warning is given.

V Angle Tol : Input the tolerance for vertical directions. This defines the limit for the difference in the vertical directions between the actual observations and the directions observed within the first half set. If the tolerance is exceeded, a warning is given.

Log File : ON, records measurements in a LogFile.The format is described on page 146.

Log FIName : Enter the Log File Name.
${ }^{\text {© }}$ F1 Displays date and version.
${ }^{\text {- }}{ }^{F 5}$
Set default values. Default values are displayed in dialog "CONFIGURATION" (page 143).

Shift	$\left.\begin{array}{c}\text { ESC } \\ \hline\end{array}\right]$	Exit the program

Store the current configuration and proceed to the dialog "SETS MENU".

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:
Header The header line will contain the program used, information about the instrument, the name of the data file as well as date and time.

Record The average horizontal and vertical angles of all sets, the standard deviation for one measurement and the standard deviation of an angle averaged from all sets, are stored in the Log-File.

Leica VIP Sets of Angles V 2.10
Instrument : TCM1100, Serial 430000, Joe's theodolite
User Templ. : User 1
Meas. File : FILE01.GSI
Program Start : 01/05/1996 at 13:00
Station no
132
$\mathrm{E}=725362.235 \mathrm{~m} \quad \mathrm{~N}=263587.236 \mathrm{~m} \quad \mathrm{ELV}=569.587 \mathrm{~m} \mathrm{~h}=1.2000 \mathrm{~m}$
Horizontal set results:
5 Sets measured with 3 points each.
Standard deviation of any measurement: $0^{\circ} 00^{\prime} 02^{\prime \prime}$
Standard deviation of mean from all measurements: $0^{\circ} 00^{\prime} 01^{\prime \prime}$

1. Point no.: 1 mean direction: $0^{\circ} 00^{\prime} 00^{\prime \prime}$ Refl.Height: 0.0000 m
2. Point no.: 2 mean direction: $83^{\circ} 25^{\prime} 53^{\prime \prime}$ Refl.Height: 0.0000 m
3. Point no.: 3 mean direction: $179^{\circ} 56^{\prime} 28^{\prime \prime}$ Refl.Height: 0.0000 m

Results of single sets:

1. Point no.: 1

Set 1 :	Residual :	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	average :	$0^{\circ} 00^{\prime} 00{ }^{\prime \prime}$
Set 2 :	Residual :	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	average :	$0^{\circ} 00^{\prime} 00^{\prime \prime}$
Set 3:	Residual :	$0^{\circ} 00^{\prime} 00{ }^{\prime \prime}$	average :	$0^{\circ} 00^{\prime} 00{ }^{\prime \prime}$
Point no.: 2				
Set 1 :	Residual :	$0^{\circ} 00^{\prime} 33{ }^{\prime \prime}$	average :	$83^{\circ} 25^{\prime} 50 \prime \prime$
Set 2 :	Residual :	$-0^{\circ} 00^{\prime} 01{ }^{\prime \prime}$	average :	$83^{\circ} 25^{\prime} 44{ }^{\prime \prime}$
Set 3 :	Residual :	-000'32"	average :	$83^{\circ} 25^{\prime} 15{ }^{\prime \prime}$
Point no.: 3				
Set 1 :	Residual :	-0 ${ }^{\circ} 00^{\prime} 50 "$	average :	$179^{\circ} 56{ }^{\prime \prime} 28^{\prime \prime}$
Set 2 :	Residual :	$0^{\circ} 00^{\prime} 57{ }^{\prime \prime}$	average :	$179^{\circ} 56{ }^{\prime \prime} 30$
Set 3:	Residual :	-0 $000 \cdot 47{ }^{\prime \prime}$	average :	$179^{\circ} 56{ }^{\prime \prime}$

Vertical set results:
5 Sets measured with 3 points each.
Standard deviation of any measurement: $0^{\circ} 00^{\prime} 05^{\prime \prime}$
Standard deviation of mean from all measurements: $0^{\circ} 00^{\prime} 03^{\prime \prime}$

1. Point no.:1 mean direction: $100^{\circ} 53^{\prime} 56^{\prime \prime}$
2. Point no. $: 2$ mean direction: $94^{\circ} 15^{\prime} 47^{\prime \prime}$ Refl.Height: 0.0000 m
3. Point no. 3 mean direction: $85^{\circ} 57^{\prime} 56^{\prime \prime}$ Refl.Height: 0.0000 m

Results of single sets:

1. Point no.: 1

Set 1:	Residual :	$-0^{\circ} 00^{\prime} 45^{\prime \prime}$	average:	$100^{\circ} 53^{\prime} 21^{\prime \prime}$
Set $2:$	Residual	$0^{\circ} 00^{\prime} 27^{\prime \prime}$	average:	$100^{\circ} 53^{\prime} 49 \prime \prime$

Set 2: Residual: $0^{\circ} 00^{\prime} 27^{\prime \prime}$ average: 100 ${ }^{\circ} 53^{\prime} 49^{\prime \prime}$
Set 3: Residual: $-0^{\circ} 00^{\prime} 52^{\prime \prime} \quad$ average: 100 $53^{\prime} 59^{\prime \prime}$
2. Point no.: 2

Set 1 :
Set 2 :
Set 3 :
Residual : $0^{\circ} 00^{\prime} 55^{\prime \prime}$
average: $94^{\circ} 15^{\prime} 52^{\prime \prime}$
average: $94^{\circ} 15^{\prime} 39^{\prime \prime}$
average : $\quad 94^{\circ} 15^{\prime} 10^{\prime \prime}$
3. Point no.: 3

Set 1 :
Set 2 :
Set 3 :
Residual : $0^{\circ} 00^{\prime} 38$
average: $85^{\circ} 57^{\prime} 12^{\prime \prime}$
average : $85^{\circ} 57^{\prime} 37^{\prime \prime}$
average : $85^{\circ} 57^{\prime} 38^{\prime \prime}$

Typical Log-File for "SETS OF ANGLES"

Introduction

This manual describes the "Traverse" program of the TPS-System 1000 instruments.

Using data about direction and distance, the program continuously computes the coordinates of the station (in the example shown above, the instrument "moves" from one station to the next, previously measured point) and aligns the horizontal circle.
For a point the coordinates of which are known, the deviation from the coordinates determined by measurement can be computed and displayed. There is no adjustment of these differences in coordinates and direction. Subsequently, however, the measurements stored on the PCMCIA can be processed with the assistance of an appropriate software program. Individual stations can be calculated as "sideshots" (SP). The coordinates and directions of these points are also determined in the course of this program.
If the program is terminated (e.g. to record a detail point), the values remain stored. The measurement procedure can be resumed after calling up the program again.

Traverse Menu

Traverse menu

In this display, the individual functions of the program can be called. After a function has been performed, the user returns to this display.

Start the "CONFIGURATION".

New traverse

Any data of a previous traverse in the memory will be erased at the start of a new traverse. To avoid unintentional erasing, a confirmation must be made. The first dialog requests the entry of the station point number, height of instrument, station coordinates and the setting of a spezified Hz -angle.

| {TRAV $\$ NEW TRAV STATION} \hline \multicolumn{2}{\|l|}{\multirow[t]{7}{*}{Station no. Inst.Height Stat.Eastng Stat.Northg Stat.Elev. Hz}} & \multicolumn{3}{|r|}{\multirow[t]{6}{*}{Station100
 1.635 m
 23541.025 m
 55231.177 m
 521.358 m
 $233^{\circ} 15.25 \mathrm{l}$ }} & \hline & & & & & \sum | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | REC | HzO | IMPOR | QNUM |
| HELP | | | | | |
| $\bigcirc^{\text {F1 }}$ | $O^{F 2}$ | $\bigcirc^{\text {F3 }}$ | \bigcirc | $\bigcirc^{F 5}$ | $\bigcirc^{F 6}$ |

Records manually entered station data on the active recording device. The program proceeds to the "MEASURE MODE" dialog.

F4 Set horizontal-circle direction. For further information, please refer to chapter "Measure \& Record" of "SYSTEM" - user manual.

Import station coordinates. For further information, please refer to chapter "Setup" of "SYSTEM" - user manual.

- ${ }^{\text {F6 }}$ Alpha-numeric or numeric input.

Shiff	ESC	
		Exit the program.

CONT Proceed to the "DEFINE BACKSIGHT POINT MODE" dialog.

- Select method of orientation

Three different methods of the orientations are available

1. Confirm the orientation already set in the system. ${ }^{1}$ No measurements are performed (SYS).
2. Calculation of an azimuth from coordinates to one tie point. A following measurement to a tie point orientates the Hz-circle (INPUT). See page 151.
3. Manual input of the azimut to one tie point. A measurement to the tie point is required (AZI). See page 152 .
${ }^{1}$ If the orientation was determined with the "ORIENTATION" program, for example.

TRAV\DEFINE BACKSIGHT PT 14:03					
Rec. Search	$\begin{gathered} \text { evict } \\ \text { in } \end{gathered}$	$\begin{gathered} \text { Memory card } \\ \text { FILEO1.GSI } \end{gathered}$			\pm
Point/	Code	:		2	
INPUT	AZI	SYS		SEARC	QNUM
HELP					
${ }^{F 1}$			$O^{F 4}$	$0^{F 5}$	$\bigcirc^{\text {F6 }}$

Manual entry of coordinates for tie points. The standard input dialog of TPS 1000 is used. Continue with the "MEAS" dialog.
. ${ }^{2}$ Select the "MEAS" dialog and enter the azimuth.

Confirms the present orientation. Continues with the dialog "TRAVERSE MENU".

Search coordinates in the active file.

This dialog corresponds to the TPS-System 1000 basic dialog. On completion of a measurement, the program continues either with "MULTIPLE MEAS" or with the "TRAVERSE MENU" according to the settings in the configuration.

- Enter Backsight Azimuth

This dialog corresponds to the TPS-System 1000 basic dialog with the additional entry of the backsight azimuth.
On completion of the first measurement, the program continues either with "MULTIPLE MEAS" or with the "TRAVERSE MENU" according to the settings in the configuration.

BS Azimuth : Enter the backsight azimuth for the orientation.

F1 Simultaneously measure and record data on the active recording device.

${ }^{1}$ Distance measurement is optional.

Occupy station

The instrument is set up for a new traverse point or sideshot. The angle measurement (distance measurement is optional) is made to a tie point or to the last traverse point. This dialog corresponds to the TPSSystem 1000 basic dialog. After the function has been performed, the station coordinates and orientation are set in the instrument.

Slope Dist.	$:$	-----	m
Height diff	$:$	-----	m
Easting	$:$	-----	m
Northing	$:$	-----	m
Elevation	$:$	-----	m

Station no. : Station point number.
Backsight : Backsight to tie point.

Simultaneously measure and record data on the active recording device.

Measure a distance ${ }^{1}$ and record data on the active recording device.

Measure a distance without recording.
F4 Enter target data as described in chapter "Measure \& Record" of "SYSTEM" - user manual.

1 Distance measurement is optional.

> F5 Selects the last measured sideshot or the last traverse point as the new station. ${ }^{2}$

${ }^{\text {CONT }}$ Proceed to the dialog "TRAVERSE MENU".
${ }_{-}^{\text {CODE }}$ Call up the CODE function.
${ }^{2}$ Only active if a sideshot point was measured.

Traverse Point / Sideshot Point

A distance measurement is carried out to the respective tie point. Both functions use the same dialog. This corresponds to the TPS-System 1000 "MEASURE" dialog. On completion of the measurement, the program continues either with "MULTIPLE MEAS" or with the "TRAVERSE MENU" according to the settings in the configuration.

TRAV\MEAS TRAVERSE PT							
Point no. : 2							
Refl.Height : 1.300 m							
V : 90019'52"							
Slope Dist. Height diff -----							
ALL	DIST	REC	TARGT				
Easting : ----- m							
Northing : ----- m							
Elevation : ----- m							
HELP			I<>II				
F1			F4		F5		F6
\bigcirc	\bigcirc		\bigcirc	\bigcirc		-	

F1 Simultaneously measure and record data on the active recording device.

Measure a distance and record data on the active recording device.

Measure a distance without recording.

F4 Enter target data as described in chapter "Measure \& Record" of "SYSTEM" - user manual.

Close traverse

The program requires a closing point for comparison with the last traverse point measured. The default point number is the starting point of the travers.

Enter coordinates using the standard input dialog.
${ }^{\circ}$ F3 Confirms the coordinates of the starting point.
\square

Search coordinates in the database.

No. of Pts. : Number of traverse points
Length : Length of traverse
Crd. miscl. : Coordinate misclosure
Hgt.miscl. : Height misclosure
Δ Easting : Misclosure in easting
Δ Northing : Misclosure in northing
AziCrdMisc1 : Azimuth of coordinate misclosure
\mathbf{H} Precision : Position precision $=$

$$
=\frac{\text { traverse length }}{\text { Crd. misclosure }}
$$

$\begin{aligned} \text { V Precision } & \text { Vertical precision }= \\ & =\frac{\text { height difference }}{\text { Hgt. misclosure }}\end{aligned}$

F3 The results of the traverse are recorded in the file for measurements on the active recording device.
${ }^{\text {F4 }}$ Plot of the traverse.
F5 Continue with the "TRAVERSE MENU".

| Shiff | ESC |
| :--- | :--- | :--- |
| 0 | |

${ }_{\square}^{\text {CONT }}$ Continue with the "TRAVERSE MENU".

Examples

Codeblock with results of the traverse closure :

WI 41: \quad Code 38
WI 42: Number of traverse points.
WI 43: Length of traverse (sum of legs).
WI 44: Azimuth of misclosure

$$
410010+0000003842 \ldots+0000000543 \ldots+0101351544 \ldots+01928220
$$

WI 41 Code 39
WI 42 Misclosure
WI 43: Misclosure easting
WI 44: Misclosure northing
WI 45: Misclosure in height

```
410011+00000039 42\ldots.+00000123 43\ldots.+00000045 44\ldots..+00000114 45\ldots..+00000087
```

WI 41 Code 40
WI 42 Position precision (traverse length / misclosure)
WI 43: Vertical precision (height difference / misclosure)

Measurementblock with the traverse Station Coordinates of station points

WI 11: Point number
WI 25: $\quad \Delta \mathrm{Hz}$ (correction of orientation)
WI 84: $\quad \mathrm{E}_{0}$ easting coordinate
WI 85: $\quad \mathrm{N}_{0}$ northing coordinate
WI 86: Height
WI 88: Instrument height

Generates a plot showing the measurement configuration.

- ${ }^{\text {F4 }}$ Return to the dialog "CLOSURE RESULTS".

Configuration

Configuration Editor

The "Configuration Editor" sets parameters for further program operations:

Two Faces : Set YES for dual-face measurement, NO for single-face.

Mult Meas : Set YES for the multiple measurement, NO for the single measurement.

Code $\quad:$| Input of code number for recording |
| :--- |
| results (maximum 8 characters) |

Log File : Set to ON, the program will record measurement data in the Log File according to the format described on page 163.

Log FIName : Enter the Log File Name.
๑° F1 Displays date and version.

Set all values to default. Default values are shown in dialog on page 160 .

Select (NO/YES, alpha-numeric/numeric input, ON/ OFF).

CONT Confirm displayed parameter and continues with the "TRAVERSE MENU".

Dual-face Measurement

In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within $\mathbf{2 7}^{\prime}$ (0.5 gon) and the difference of two measured distances is within $0.5 \mathrm{~m}(1.64 \mathrm{ft})$, the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

The measurement to a point can be repeated as often as desired to achieve a higher accuracy or reliability. The mean value of the measurements and the respective standard deviation is displayed.

Point no. : The target point number.
No. of Meas : Counter of the measurements.
$\mathbf{\sigma H z} \quad: \quad$ Standard deviation of the horizontal direction for a single measurement.
$\boldsymbol{\sigma V} \quad: \quad$ Standard deviation of the vertical angle for a single measurement.
σ Slope Dist : Standard deviation of the slope distance for a single measurement.

ØHz : Mean value of the HZ-measurements.

ØV : Mean value of the HZ-measurements.
ØSlope Dist : Mean value of the slope distances.
${ }^{\text {F1 }}$ Further measurements.
F2 Delete all measurements of the current point and start again.

F3 Record the mean value of the measurements on the active recording device. Return to the "TRAVERSE MENU" dialog.

F4 Enter target data as described in chapter "Measure \& Record" of "SYSTEM" - user manual.

Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:
Header The header line will contain the name of this program, information about the instrument, the name of the data file and date and time.

Record Computed coordinates of traverse points are continously stored. The option Close traverse in the "TRAVERSE MENU" (Dialog page 148) displays and stores at any time the coordinate - differences of traverse points of which the coordinates are known.

Leica VIP Traverse V 2.10

Instrument : TCM1100, Serial 430000, Joe's theodolite
User Templ : User 1
Meas. File : FILE01.GSI
Program Start: 02/23/1995 at 10:25
Backsight : 500
Station : Pt. 1

$$
\mathrm{E}=-0.679 \mathrm{~m} \quad \mathrm{~N}=9.545 \mathrm{~m} \quad \mathrm{H}=400.062 \mathrm{~m} \quad \mathrm{hi}=1.530 \mathrm{~m}
$$

Station : Pt. 2

$$
\mathrm{E}=-13.462 \mathrm{~m} \quad \mathrm{~N}=10.528 \mathrm{~m} \quad \mathrm{H}=400.170 \mathrm{~m} \quad \mathrm{hi}=1.650 \mathrm{~m}
$$

Station : Pt. 3

$$
\mathrm{E}=26.513 \mathrm{~m} \quad \mathrm{~N}=16.821 \mathrm{~m} \quad \mathrm{H}=401.260 \mathrm{~m} \quad \mathrm{hi}=1.610 \mathrm{~m}
$$

Last Trav.Pt. : 501

$$
\mathrm{E}=-77.949 \mathrm{~m} \quad \mathrm{~N}=25.037 \mathrm{~m} \quad \mathrm{H}=399.923 \mathrm{~m}
$$

Closing Pt. : 501

$$
\mathrm{E}=-78.016 \mathrm{~m} \quad \mathrm{~N}=24.996 \mathrm{~m} \quad \mathrm{H}=400.181 \mathrm{~m}
$$

No. of Pts. : 4
Length : 82.788m
Hor. miscl. : 0.047 m
Vert. miscl. $: 0.268 \mathrm{~m}$
DEasting : -0.017 m
DNorthing : -0.031 m
Azi H.miscl : $226^{\circ} 51^{\prime} 25^{\prime \prime}$
H Precision : 2036
V Precision : 2356

Typical log file entry in the "TRAVERSE"

Local Resection

Introduction

This manual describes the "LOCAL RESECTION" program of the TPS SYSTEM 1000 theodolite series.

Two points are measured from any instrument station. The first point measured forms the centre of a local coordinate system ($\mathrm{N}=0 ; \mathrm{E}=0 ; \mathrm{H}=0$). The second point measured determines the direction of the positive N axis.
The distance between the two points must be at least 50 mm
The program can be used to deduce the three-dimensional local coordinates for the instrument station and the orientation of the horizontal circle from measurements to 2 target points. To compute the position coordinates, at least 4 elements (2 distances and 2 directions) are necessary.

For simultaneous determination of the local station elevation, height of instrumentand height of reflector must already have been input.

The program allows measurement in single or dual-face mode.

$\underbrace{\text { CONT }}_{\bullet}$ Proceed to the dialog "MEASURE POINT 1".

Target Points

This dialog is similar to the TPS System 1000's basic "MEASURE MODE" dialog. Once the measurement to the first and to the second point is taken, the program will proceed to the dialog "RESULTS".

Height diff	$:$	1.002	m
Easting	$:$	231.463	m
Northing	\vdots	56.785	m
Elevation	$:$	72.235	m

Shift	HELP			I<>II		
	$\bigcirc^{F 1}$	$\bigcirc^{F 2}$	$\bigcirc^{F 3}$	${ }^{\text {F4 }}$	$\bigcirc^{\text {F5 }}$	$\bigcirc^{\text {F6 }}$

Simultaneously measure and record data on the active recording device.

F2 Measure a distance.

- F3 Record the measurement on the active recording device.
${ }^{\circ}$ F4 Enter target data as described in chapter "Measure \& Record" of "SYSTEM" - user manual.

Accept the measurement.

Call up the CODE function, input of a code block.

Calculation

In this dialog the calculated station coordinates are shown with orientation.

Station no : Station point number
 Easting : Calculated E (local) for the station
 Northing : Calculated N (local) for the station
 Elevation : Calculated Elevation (local) for the station
 Orientation : Angular correction needed to orient the instrument

- F3 Record the following results on the active recording

 device:WI 11 Station Point Number
WI 25 Orientation correction
WI 84 Station Easting
WI 85 Station Northing
WI 86 Station Elevation
WI 87 Last reflector height used
WI 88 Instrument Height

| $\begin{array}{c}\text { Shift } \\ \Theta\end{array}$ | $\begin{array}{c}\text { ESC } \\ \Theta\end{array}$ |
| :---: | :---: | :---: |

Configuration

Configuration Editor

The "Configuration Editor" sets parameters for further program operations:

Two Faces $\quad:$	YES for dual-face measurement,
	NO for single-face.

${ }^{\circ}$ F1 Displays date and version of the running application.

F5 Set the value to the default. (Two Faces $=$ NO, see display above)

Store the current configuration and proceed to the dialog "STATION DATA".

Dual-face Measurement In the dual-face mode, the program will prompt for measurements in both faces. When both measurements are taken, the program will check the difference between the two. If the difference in angle is within $\mathbf{2 7}^{\prime}$ (0.5 gon) and the difference of two measured distances is within $0.5 \mathrm{~m}(\mathbf{1 . 6 4} \mathrm{ft})$, the observations will be averaged. These tolerances are used to avoid errors in target identification. If exceeded an error message will be displayed.

Road line

Introduction

The manual describes the program "ROAD LINE" for the Leica TPS 1000 series.

The program is suitable for setting out points which are determined by chainage and centre-line offset along a calculated alignment. If V -alignments and crosssections are defined for the alignment, the points can be calculated and set out spatially ("ROAD STAKEOUT").
Conversely, if a point in the vicinity of the alignment has been determined by measurement, the chainage and centre-line offset can be determined ("X-SECTION CHECK").
This version of "ROAD LINE" is only valid for a GSI configuration.

The program reads the geometrical elements of an alignment from files expressed in GSI format. The data for the alignment are grouped in accordance with the three components of an alignment. The file names must comply with certain rules:

1. Hz-alignment

File name: ALN?????.GSI
2. V-alignment

File name: PRF?????.GSI
3. Cross section

File name: CRS?????.GSI

You can insert a permitted character for a DOS file name in place of a? .

1. Permitted elements in the Hz-alignment

- Straight defined by chainage and coordinates of tarting point
- Curve defined by chainage and coordinates of starting point Radius of arc ($-=$ left-hand curve $+=$ right-hand curve)
- Spiral defined by chainage and coordinates of starting point parameter $=$ spiral into left-hand curve)
- End of project (EOP) chainage and coordinates of end-point
${ }^{1} \mathrm{~A}^{2}=\mathrm{L} \times \mathrm{R}$ where $\mathrm{L}=$ length of spiral; $\mathrm{R}=$ radius of curve

2. Permitted elements in V -alignments

- Straight
- Curve
- Parabola
defined by
chainage and height of starting point
defined by
chainage and height of starting point
radius of arc $(-=$ crest $+=$ dip $)$
defined by
chainage and height of starting point
parameters of parabola ${ }^{1}(-=$ crest
$+=$ dip)
- End of project (EOP) chainage and height of endpoint of gradient

3. Permitted elements in cross sections

- Chainage
- Offset
- Height difference relative to axis

To enter the data, you can use a PC and the program ROADDATA.EXE supplied, or you can use the program FILE EDITOR on the TPS 1000.

[^0]The "ALIGNMENT CALCULATION" program only permits measurements in one face.

Before the program is started, the following procedures are carried out:

1. Setting user profile and name of the data file.
2. Determining the instrument station and the orientation
'ROAD STAKEOUT" requires the following input:
3. Chainage for the point to be set out
4. Offset and height displacement of the point to be set out, or zero point of cross section relative to axis (optional)
5. Selection of a point on the cross section (optional)

On the basis of this input, the coordinates of the point to be set out are determined and are transferred to the program "SETTING OUT" for post-processing.

The "X-SECTION CHECK" requires the following input:

1. Measurement to ground point

The parameters calculated and displayed are respectively the chainage, the offset, and the height difference of the point measured with respect to the centre-line.

Alignment

Selection of files

Horiz.Aln : Selects definition of Hz-alignment.

Vert. Aln : | Selects definition of gradient (optio- |
| :--- |
| nal) |

Cross Secs : | Selects definition of cross section. |
| :--- |
| (optional) |

Log FIName : Name of the log file in use.

Start the "Configuration".

The files with the definitions for the Hz-alignment, the V -alignment and the cross sections are selected. The names of the files must be in accordance with the guidelines laid down in section "Introduction".
The Hz-alignment must always be selected. The choice of a V-alignment and of transverse sections is optional. If no \mathbf{V}-alignment is selected, points can only be set out or inspected in two dimensions. Without Valignments, no transverse sections can be selected.
\square Continues with dialog "CHECKING FILES".

Checking files

Geometrical deviations include the tangent directions of adjacent elements and the chord lengths of elements. Deviations which exceed the permitted tolerance are displayed. The inspection of the files can be continued or interrupted.

After inspection, the program returns to Dialog 2. The input values can be corrected, either on a PC using the program "ROADDATA.EXE" or on the TPS1000 using the programm "FILE EDITOR".

F5 Exceeding the permitted tolerance is accepted and the inspection is continued. Longitudinal errors are distributed proportionally by changing the scale. Because of the variable curvature, deviations in the tangential direction are not taken into account.

When the program is called up again, the permitted tolerance is inspected only if the data have been changed or if the tolerance limits have been changed.

Program flow

Chainage and centre-line offset

The dialog is used to enter the longitudinal and cross section data for a point to be set out, or to call the function "X-SECTION CHECK".
$\begin{array}{rrr}\text { Hght. Shift : } & 0.000 & \mathrm{~m} \\ \text { ChaingeIncr }: & 100.000 & \mathrm{~m}\end{array}$

F1	$F 2$	F3	$F 4$	F5		F6
	○	0	○	O	\bigcirc	

Chainage : The present chainage for "STAKEOUT".
After setting-out is completed, the chainage is automatically changed to the next value divisible by ChaingeIncr.
The chainage of the main points (change of elements) is displayed independently of ChaingeIncr. Any desired chainage can be keyed in. For the function "X-SECTION CHECK" the values displayed and data from the cross section do not influence the calculation in the "XSECTION CHECK".

Element \quad\begin{tabular}{l}

$:$| The element type on which the |
| :--- |
| chainage displayed is located. |

The elements are output in full. Both

adjacent elements are displayed in the

main points.
\end{tabular}

Offset : Horizontal displacement (offset) of the point to be set out in relation to the centre line.

HghtOffset : Height displacement of the point to be set out in relation to the centre line.
(The amount of the vertical displacement is also taken into account.)

Hght. Shift : All heights in the alignment are changed by this amount. The value can only be changed in the dialog "CONFIGURATION".

ChaingeIncr : The chainage difference when setting out. The chainage is automatically incremented by this amount.

F1 Calls the function "X-SECTION CHECK".

Displays the next chainage up which is divisible by ChaingeIncr. If the end of the alignment is overshot, a warning is given once. After the end of the alignment, the calculation is based on the tangent of the last element.

RO

F3 Displays the next chainage down which is divisible by ChaingeIncr. If there is a shortfall at the beginning of the alignment, a warning is given once. Before the beginning of the alignment, the calculation is based on the tangent of the first element.

- F4 Calls the dialog "CROSS SECTIONS".

CONT Calls the dialog "POINT COORDINATES" in order to display the coordinates of the point to be set out. From there, calls the program "STAKEOUT".

- Selecting points in the cross section

For setting out, points on the defined cross section can be selected.
Hght. Shift : 0.999999 m

ROADL CROSS SETIONS				14:		
				1 R *		\pm
Chainage			100.000			
Cross Sect.			+TMPL0001			
$\Delta C L$ Offset			0.000 m			
$\Delta \mathrm{CL} \mathrm{HGTDiff}$			0.000 m			
Offset			3.000 m			
\|<--	<--	CENTR	->	-->		
Hghtof	set			000		

```
HELP
```


1R : Numbering the profile points from the centre line outwards: 1L, 2L, 3L, etc. for points to the left; 1R, 2R, 3R etc. for points to the right. The centre of the cross-sectional profile is numbered 0 C . Points already set out are marked *. The display bar displays in graphical form the position of the point in the profile.

Chainage : Chainage currently valid.
Cross Sect. : Name of the valid cross section. A different profile can be searched for.
$\Delta \mathbf{C L}$ Offset : Horizontal distance from the centre of the profile to the current profile point.
$\Delta \mathbf{C L}$ Hgt Diff : Vertical distance from the centre of the profile to the current profile point.

Offset : Horizontal displacement (centre-line offset) of the centre of the X-section by this amount.

HghtOffset : Height displacement of the centre of the X-section
(The value of the HghtOffset is also taken into account.)

Hght. Shift : All heights in the alignment are changed by this amount. The value can only be altered in this dialog.

Displays far-left profile point.
Displays profile point one place further to the left.
Displays centre of profile.
Displays profile point one place further to the right.
Displays far-right profile point.
Displays diagram of cross section.

Calls dialog "POINT COORDS" to display coordinates of point to be set out. From there, calls program "STAKEOUT".

- Plot

A simple diagram of the cross section is displayed. The vertical scale is exaggerated three times.

$\odot^{\text {F4 }}$ Returns to dialog "CROSS SECTION".

Stakeout

The coordinates calculated from the input values of the dialog "CHAINAGE \& OFFSET" or "CROSS SECTION" are displayed.

Calls program "STAKEOUT". The coordinates displayed are transferred.

X-section Check

${ }^{\text {® }}$ F1 The function "X-SECTION CHECK" is called in the dialog "CHAINAGE \& OFFSET".
Any desired point in the topography is measured.
The program calculates

- the chainage,
- the offset and
- the height difference
of the point in relation to the defined centre line.

This displays the defined standard measuring dialog, which may be different from the one depicted above.

Measures and records in the active file and goes on to display the chainage and the offset relative to the centre-line definition.

Measures the distance. Stores the measurement in the active file and goes on to display the chainage and the offset of the point.
 Measures the distance. Does not store the measurement. Goes on to display the chainage and the offset relative to the centre-line definition.
${ }^{\text {F4 }}$ Enters the target-point data. This function is described in chapter "Measure \& Record" of "SYSTEM" - user manual.

For manually entering the coordinates of a point, or for reading in the active coordinate file. Displays the chainage and the offset of the point.

Calls the code function.

Display of results

Displayed are

- chainage,
- offset and
- height offset
in relation to the centre line.

Hght. Shift	$:$	0.000
ChaingeIncr	100.000	m

Chainage : The chainage of the point measured is displayed.

Element : The type of element on which the point measured is located.
The names of the elements are displayed without abbreviation. In the main points, the two adjacent elements are displayed.

Offset : Horizontal displacement (offset) of the point measured in relation to the centre line. If several results are available (eg, at tight corners) the point with the shortest distance to the centre line is indicated. By changing the calculation limits in the configuration, the calculation range can be limited and as a result, the found stationing can be influenced.

HghtOffset
: Height displacement of the point measured in relation to the centre line. (The amount of the vertical displacement is also taken into account.)

Hght. Shift : All heights in the alignment are changed by this amount. The value can only be changed in the dialog "CONFIGURATION".

ChaingeIncr : The chainage difference when setting out. The chainage is automatically incremented by this amount.

F1 Re-calls the function "X-SECTION CHECK".
F2 See section "Chainage and centre-line offset".
See section "Chainage and centre-line offset".

The result of the road station and offset is stored.
F4 See section "Chainage and centre-line offset".
$\square_{\bullet}^{\text {CoNT }}$ See section "Chainage and centre-line offset".

Configuration

Configuration Editor

Start the "Configuratio ALN FILES" dialog.

The parameters defining the further course of the program are determined in the "Configuration Editor":

BaseChainge : Setting the starting point for calculation when in the "X-SECTION CHECK" function.

EndChainage : Setting the end point for calculation in the "X-SECTION CHECK" function.

ChaingeIncr : Difference in chainage when setting out. The chainage is automatically incremented by this amount.

Hght. Shift : All heights in the alignment are changed by this amount. The value can be changed only when you are in this dialog.

Deflct.Tol. : | Permissible deviation of the tangent |
| :--- |
| directions for adjacent elements. A |
| message appears if this value is |
| exceeded. The input is always in |
| milligon. |

ChaingeTol. : Permissible deviation of the (chord) length of an element and of the distance calculated from the end-point coordinates, expressed in the length units set. A message appears if this value is exceeded.

3D Stake : ON for setting out positions and heights. The height can be set out only if the V -alignment has been defined. OFF for setting out only positions. Neither a V-alignment nor a typical cross-section can be set out.

Log File : Set to ON, the program will record measurement data in a log file in the format described on page 190.

Log FIName : Enter the log file name.
${ }^{\circ}$ F1 Displays date and version of the program.
F5 Sets standard values . The values are displayed in dialog on page 188.

CONT Accepts and stores parameters displayed. Continues to

 display "SELECT ALN FILES".
Log File

If "Log File" is set to ON the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:

Header \quad includes: \quad - the program used, \begin{tabular}{rl}

- information about the instrument,

- the file to store the measurement

\& data,

\& - the date and the time.
\end{tabular}

Configuration the name of the input files for:

- the Hz-alignment,
- the V -alignment and
- the transverse section.

Measurement - Instrument station with coordinates and instrument height.

- Stakeout point with chainage, - offset ${ }^{1}$ and height displacement ${ }^{2}$ relative to centre line,
- comparison values from planning, and associated differences.

For the alignment inspection,

- the coordinates of the point measured are stored along with
- the associated station,
- the offset and
- the height difference.

1 This value results from

- the displacement of the zero point of the profile and
- the displacement taken from the transverse profile.

2 This value results from

- the displacement of the zero point of the profile and - the displacement taken from the transverse profile
- the height displacement in the configuration.

Leica VIP Road line V 2.10			
Instrument	:	TCM1800, Serial 410000, TCM1800	
User templ.	:	User 1	
Meas. file	:	FILE01.GSI	
Program Start	:	02/07/1996 at 10:43	
Hz-alignment	:	ALNMSPLZ.GSI	
V-alignment	:	PRFMSPLZ.GSI	
Cross Sect.	:	CRSMSPLZ.GSI	
Station no.	:	TRASSE $\mathrm{E}=-10.0000 \mathrm{~m} \quad \mathrm{~N}=25.0000 \mathrm{~m}$	$\mathrm{ELV}=400.0000 \mathrm{~m} \quad \mathrm{hi}=0.0000 \mathrm{~m}$
Point no.	:	3386	
Chainage	:	49.2812, Offset $=-4.9130 \mathrm{~m}$,	HghtOffset= 0.2473 m
As Measured	:	$\mathrm{E}=-11.6393 \mathrm{~m}, \mathrm{~N}=27.8821 \mathrm{~m}$,	ELV= 400.8301 m
Point no.	:	3386	
Chainage	:	49.2812 , Offset $=-4.9130 \mathrm{~m}$,	HghtOffset= 0.2473 m
Design	:	$\mathrm{E}=-11.6391 \mathrm{~m}, \quad \mathrm{~N}=27.8823 \mathrm{~m}$,	ELV= 400.8301 m
Staked	:	$\mathrm{E}=-11.6394 \mathrm{~m}, \quad \mathrm{~N}=27.8830 \mathrm{~m}$,	$\mathrm{ELV}=400.8266 \mathrm{~m}$
Deltas	:	$\mathrm{dE}=0.0004 \mathrm{~m}, \quad \mathrm{dN}=-0.0007 \mathrm{~m}$,	$\mathrm{dELV}=0.0035 \mathrm{~m}$

Example of a log file for the program "ROAD LINE"

Data format

This section describes the input-data format for the $\mathrm{Hz}-$ alignment, the V -alignment and the cross section. To enter the data, you can use a PC and the program "ROADDATA.EXE" supplied, or you can use the program "FILE EDITOR" on the TPS 1000.

Hz-alignment

The definition of the road elements is based on the main points (= starting and finishing points of the geometrical element) and on the element parameters.
Refer to the example in the next diagram.

The alignment starts at main point no. 1 and finishes at main point no. 4 .
Here, the geometrical elements are:
Straight - curve - straight.
The curve radius is R.
The starting point of a geometrical element is also the finishing point of the preceding adjacent element.

Element	Defined by:	Declaration
Straight	Starting point [E, N]	STRAIGHT
Arc	Start of curve [E, N], radius R.	000 CURVE
Spiral into curve starting with $\mathrm{R}=\infty^{*}$)	Start of curve [E, N], A-parameter	00 SPIRIN
Spiral out of curve ending at $\mathrm{R}=\infty^{*}$)	Start of curve [E, N], A-parameter	0 SPIROUT
End of project	End point [E, N]	00000 EOP

*) The spiral must begin or end with $\mathrm{R}=\infty$.

The Hz-alignment file is structured as follows:

1. Header

2. Data block: Definition 1st geometrical element
3. Data block: Definition 2nd geometrical element
4. Data block: Definition 3rd geometrical element
n. Data block: Definition of end of project

The header

WI 41 Job-ID: Job identification consists of 8 alphanumeric characters.

WI 42 Fixed name of the Hz-alignment file. May not be changed.

WI 43 Fixed name of the main-point method. May not be changed.

```
11...+0STATION 71....+GEOM_ELE 72....+RAD/PARA 73....+TEMPLATE
81..10+00000000 82..10+00000000
```

WI 11 STATION: Chainage at the start of the element. 8-digit number.

WI 71 GEOM_ELE: Geometrical element according to table page 190 (STRAIGHT, 000CURVE, 00SPIRIN, 0SPIROUT, 00000EOP).

WI 72 RAD/PARA: Arc radius or A-parameter for the spirals. 8 -digit number. If WI $71=$ STRAIGHT / 00000EOP, then WI $72=00000 \mathrm{NON}$.
Sign:

+ , for curves to the right (centre of circle to the right of the alignment), -, for curves to the left (centre of circle to the left of the alignment).

WI 73 TEMPLATE: Name/number of the crosssectional profile for the geometrical element defined in WI 71.8 alphanumeric characters. The following combinations are reserved and are not to be used: 00000 NON and LASTTMPL.

WI 81 E-coordinate of the main point (starting point, start of curve, end point according to table page 190). 8 -digit number.

WI 82 N-coordinate of the main point (starting point, start of curve, end point according to table page 190). 8-digit number.

Also:

- The header is always at the beginning of the file.
- The Hz-alignment file must always contain at least two elements.
- The units and decimal places used in the WIs 11 and 72 are in accordance with the definitions in WIs 81 and 82 .
- The chainage is produced from the sum of the element lengths.
- A cross-sectional profile may be assigned more than once.
- Geometrical elements can be combined freely, for example as:
- Transition curve (straight - spiral - arc)
- Vertex spiral (straight - spiral into curve
- spiral out of curve - straight)

Unusual applications are also possible:

- Breakpoint (straight - straight)
- Right-angle (straight - straight, or straight - 90° arc - straight)
- There is no limitation on the size of the Hz-alignment file. As a result, as many data blocks as required can be entered if a file is created on the PC using the DOS program "ROADDATA.EXE". If a file is created/edited using the program "FILE EDITOR" on the TPS 1000 there is a limitation of 200 data blocks.

Check your data for errors (typing errors, signs etc.) before you load it into the memory card.

RO

The program supports the user during the setting-out by controlling the length of curves. It compares the length of the element from the chainage (WI 11) with the calculated main-point values, thus enabling input errors in the chainage or in the coordinates to be detected. However, the signs of arcs and of spirals are not checked (see example below).

If the wrong sign $(-R)$ is used, the arc is mirrored between the main points 2 and 3 .

Example: S-line with a straight connection
410001+Example1 42...+HZALIGNM 43....+STACOORD
$110002+0000000071 \ldots+$ STRAIGHT 72....+00000NON 73....+Tmpl0125
$81 . .10+0200000082 . .10+06000000$
110003+00198832 71...+00SPIRIN 72...-00122474 73...+Tmpl0123
81..10+02186841 82..10+06068005
110004+00348832 71...+000CURVE 72...-00100000 73...+Tmpl0123
$81 . .10+0230775182 . .10+06150344$
110005+00450725 71...+0SPIROUT 72...-00100000 73....+Tmpl0123
81..10+02304071 82..10+06247816
110006+00550725 71...+STRAIGHT 72....+00000NON 73...+Tmpl0125
$81 . .10+0222779482 . .10+06310759$
110007+00714138 71...+00SPIRIN 72...+00054772 73...+Tmpl0124
81..10+02086275 82..10+06392465
110008+00789138 71...+000CURVE 72...+00040000 73...+Tmpl0124
$81 . .10+0203780782 . .10+06445859$
110009+00824376 71...+0SPIROUT 72...+00044721 73...+Tmpl0124
$81 . .10+0204888682 . .10+06478120$
110010+00874376 71...+STRAIGHT 72....+00000NON 73...+Tmpl0125
81..10+02094478 82..10+06496445
$110011+01127904$ 71...+00000EOP 72...+00000NON 73...+Tmpl0125
$81 . .10+0234415482 . .10+06540469$

The project start is at the nadir. After the first straight there follows a left curve, then a right curve. There are also spirals and a straight between the arcs.

The cross sections are assigned as follows:

Straight	Tmpl0125
Left curve	Tmpl0123
Right curve	Tmpl0124

The last character at the end of each data line must be a space (ASCII character 32).

WI 11 and WI 41: The block number is located from position 3 to 6 .

- V-alignment

The \mathbf{V}-alignment definition (= V-alignment)

The V-alignment is defined with the main points (1-6). The main points form the starting and finishing points

of the geometrical elements. The starting point of one element is also the finishing point of the previous element.

Element	Defined by:	Declaration
Straight	Starting point [chainage, H]	STRAIGHT
Arc	Start of curve [chainage, H], radius R.	000CURVE
Parabola	Start of curve [chainage, H], parabola parameter p	PARABOLA
End of project	Finishing point [chainage, H]	00000 EOP

The V-alignment file is structured as follows:

1. Header
2. Data block: Definition 1st geometrical element
3. Data block: Definition 2nd geometrical element
4. Data block: Definition 3rd geometrical element
n. Data block: Definition of end of project

The Header

41....+00Job-ID 42....+0VALIGNM 43....+STACOORD

WI 41 Job-ID: Job identification consists of 8 alphanumeric characters.

WI 42 Fixed name of the V-alignment file. May not be changed.

WI 43 Fixed name of the main-point method. May not be changed.

```
11...+0STATION 71....+GEOM_ELE 72...+RAD/PARA 83..10+00HEIGHT
```

WI 11 STATION: Chainage (from the Hzalignment) at the start of the element. 8-digit number.

WI 71 GEOM_ELE: Geometrical element according to table page 195 (STRAIGHT, 000CURVE, PARABOLA, 00000EOP).

WI 72 RAD/PARA: Arc radius or parabola parameter. 8-digit number. If WI $71=$ STRAIGHT / 00000EOP, then WI $72=00000 \mathrm{NON}$.
Sign: \quad "+" = dip, "-" = crest
WI 83 HEIGHT: Height H of the main point (starting point, start of curve, end point, in accordance with table page 195). 8-digit number.

Also:

- The header is always at the beginning of a data file.
- The V-alignment file must be composed of at least two parts (starting- and finishing point).
- The units and decimal places used in the WIs 11 and 72 are in accordance with the definition in WI 83.
- The chainage is given by the sum of the horizontal element lengths.
- Geometrical elements can be combined freely.
- There is no limitation on the size of the V -alignment file. As a result, as many data blocks as required can be entered if a file is created on the PC using the DOS program "ROADDATA.EXE". If a file is created/edited using the program "FILE EDITOR" on the TPS 1000 there is a limitation of 200 data blocks.

Check your data for errors (typing errors, signs etc.)

 before you load it into the memory card.An example of the wrong sign used with an arc of radius R or with the parabola parameter p :

If the wrong sign $(+R /+p)$ is used, the summit becomes a trough.

Example: Crest and dip

410001+Example1 42...+0VALIGNM 43....+STACOORD
110002+00000000 71...+STRAIGHT 72...+00000NON 83..10+00400000
110003+00300000 71....+PARABOLA 72...-01142936 83..10+00422500
110004+00500000 71...+STRAIGHT 72...+00000NON 83..10+00420000
$110005+0055000071 \ldots+$ PARABOLA 72....+02091126 83..10+00415000
110006+00850000 71...+STRAIGHT 72...+00000NON 83..10+00406522
$110007+01127904$ 71...+00000EOP 72...+00000NON 83..10+00418605

RO

The last character in each data line must always be a space (ASCII character 32).

WI 11 and WI 41: The block number is located from position 3 to 6 .

- Cross sections

The points in the cross section are defined in accordance with:

- the centre-line offset sCLO (neg.: pt. left / pos.: pt. right) and
- the height difference sH related to the alignment point (neg.: pt. lower / pos.: pt. higher than alignment)

Aspect:
chainage increasing

Element	Defined by:	Declaration
Height difference	Planned height difference with respect to alignment	-
Centerline offset	Planned centre-line offset	-

The template file is structured as follows:

1. Header
2. Data block: Cross section $1 /$ point no. 1
3. Data block: Cross section 2 / point no. 2
4. Data block: Cross section 3 / point no. 3
n. Data block: Cross section $\mathrm{x} /$ point no. y

41....+00Job-ID 42....+TEMPLATE

WI 41 Job-ID: Job identification consists of 8 alphanumeric characters.
WI 42 Fixed name of the template file. May not be changed.

The data block

11....+TMPLNAME 35..10+DISTANCE 36..10+000HDIFF

WI 11 TMPLNAME: Name/number of the cross section, consisting of 8 alphanumeric characters. The following designations are reserved and may not be used: 00000 NON and LASTTMPL.

WI 35 DISTANCE: Centre-line offset of a transverse-profile point. 8-digit number.

WI 36 HDIFF: Height difference of a transverseprofile point. 8-digit number

Also:

- The header must always be at the start of a data file.
- The file must contain at least one cross section.
- Profile points belonging to the same cross section must always be together in a single data set. The points need not be sorted within the data set.
- The individual transverse-profile data sets need not be sorted within the template file.
- For a cross section file there is a limitation of 200 data blocks. The maximum number of points in a cross section is 48 .

Recommendation:
If in general you prepare an empty template (only the zero point), you can at any time choose this template in order to manually enter points or to call up axis points. Call this template something like AXIS or EMPTY.

Check your data for errors (typing errors, signs etc.) before you load it into the memory card.

Example: Cross section

41....+Example1 42....+TEMPLATE
110002+Tmpl0123 35..10-00013000 36..10-00003000
110003+Tmpl0123 35..10-00010000 36..10-00005000
110004+Tmpl0123 35..10-00004000 36..10-00000100
$110005+$ Tmpl0123 35..10+00004000 36..10+00000100
110006+Tmpl0123 35..10+00010000 36..10-00006000
110007+Tmpl0123 35..10+00013000 36..10-00003500
110008+Tmpl0124 35..10-00012000 36..10-00002000
110009+Tmpl0124 35..10-00011000 36..10-00004000
$110010+$ Tmpl0124 35..10-00004000 36..10+00000100
$110011+$ Tmpl0124 35..10+00004000 36..10-00000100
110012+Tmpl0124 35..10+00011000 36..10-00005000
110013+Tmpl0124 35..10+00012000 36..10-00002500

The last character at the end of each data line must always be a space (ASCII-character 32).

WI 11 and WI 41: The block number is located from position 3 to 6 .

The Road - Data Entry program

The Leica 'ROADDATA.EXE" for providing setting-out data files

Once the alignment has been designed using roaddesign software, the resulting data consist of main points, element parameters and cross sections. These data must be brought into a structure which can be loaded into the memory card. There are two ways to product the three setting-out data files (Hz-alignment file, V-alignment file and transverse-profile file):
a) writing an individually-customised program to automatically generate and convert the necessary data
b) entering the data by hand into the Leica "ROADDATA.EXE" program. The program offers a convenient way of entering the values by offering suitable menu controls. The program reformats the data into the structure required.

Once the three setting-out data files are ready, all you need to do is to transfer the data into the memory card, using a suitable transfer program.

Using the "ROADDATA.EXE" program

- Copy the program from the diskette to your hard disk, using the DOS command

COPY

and from there into e.g. disk drive $\mathrm{C}: \$.

- Start the program with the command

C: $1>$ roaddata

- Follow the menu directives. An integrated Help function gives you support, particularly when you are using the keyboard commands.

COGO

Introduction

This manual describes the "COGO" program of the TPS SYSTEM 1000 theodolite series. The following provides a general overview of the individual COGO functions.

The "Inverse" routine computes the direction and distance between two points.

The "Traverse" routine computes a new coordinate point given a direction and distance from a known point (Polar plotting).

The "Intersections" routine computes:

- Bearing-Bearing intersections,
- Bearing-Distance intersections or
- Distance-Distance intersections.

The function "Offsets" consists of the following subfunctions:

- "Distance point straight line"

Calculates the difference in length/abscissa and the lateral deviation/ordinate with reference to a basis line emanating from a known point.

- "Orthogonal point calculation"

A new point can be calculated which emanates from a basis line using the difference in length/abscissa and the lateral deviation/ordinate.

The "Point Arc" routine computes a radius point given any three points.

The point coordinates can either:

- be determined by measurement,
- entered manually using a keyboard or
- read from the memory card.

Data, both measured and read from the file, can be mixed. This means, however, that station coordinates and orientation have to be correctly set.

Directions and distances can be entered manually, called up or freshly determined. The values can then be amended by means of multiplication, division, addition and subtraction.

The program "Stakeout" can be called up directly from the individual result dialog boxes (if available) in order to set out the points immediately.
The program "Stakeout" assumes that the instrument is set and oriented to a known point.

Configuration

$\begin{array}{c}\text { Shiff } \\ \bigcirc\end{array} \bigcirc^{F 2}$	$\begin{array}{l}\text { Start the "Configurations Editor" from the "COGO } \\ \text { MENU" dialogue. }\end{array}$

The "Configuration Editor" sets parameters $\boldsymbol{S}_{\text {for further }}$ program operations:

Direc. Type : Bearing Azimuth

Offset : YES entering a parallel displacement is possible NO entering a parallel displacement is not possible

- ${ }^{\text {F1 }}$ Displays date and version.

F5 Set all values to default. The values are shown in the dialogue above.

CONT Accept displayed values and proceed to the dialogue "COGO MENU".

${ }_{-}^{E S C}$ Exit the program.

Function selection

(COGO Menu)

Inverse (polar calculation)

Computes distance and direction between two points.

Search
Given azimuth)

- Horizontal distance
- point $1(y, x)$
- point 2 (y, x)
- Direction (magnetic bearing or

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 (and/or 2) can be determined by measurement.
\ominus^{0} Call up the function in the "COGO MENU" dialog.

${ }^{\text {F1 }}$ F1 Manual entering of the first (second) point of the straight line. The standard TPS 1000 input dialog box appears.

| Shift |
| :---: | :---: |
| Θ |\(\quad \begin{gathered}ESC

\Theta\end{gathered} \quad\) Exit the program.

The following dialog box shows the result of the polar calculation from both the given points:

From : Display of point number of the first point

To : Display of point number of the second point

Southwest : Display of magnetic bearing. If "Azimuth" is selected in the configuration during "Direc. Type:", then the azimuth will be displayed between both the points.

Horiz.Dist. : Display of horizontal distance between the points

Return to "COGO MENU".

Computes a new point given a direction and distance from a known point.

Search
Given : • point $1(\mathrm{Y}, \mathrm{X})$,

- Direction (magnetic bearing or azimuth),
- Horizontal distance.

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 can be determined by measurement.
\odot^{1} Call up the function from the "COGO MENU".

F1 Manual entering of the first point. The standard TPS

 1000 input dialog box appears.F3 Measuring the first point.
This function is described in chapter "Measure \& Record" (Measurement dialogue) of the "System" user manual.
 coordinate file. This function is described in chapter "Setups" (Import function) of the "System" - user manual.

Shift	
Θ	$\begin{array}{c}\text { ESC } \\ \Theta\end{array}$

Defining direction by magnetic bearing

If "Bearing" is selected in the configuration during "Direc. Type:", then the following dialog box appears:

Quadrant : Enter quadrant:
1 = NorthEast
$2=$ SouthEast
$3=$ SouthWest
$4=$ NorthWest
Northeast : Enter magnetic bearing
Offset : Enter parallel displacement.
Only active if "YES" is entered in the configuration during "Offset:"
Left $=$ negative parallel offset
Right $=$ positive parallel offset

Enter quadrant, magnetic bearing.
Call up of a direction which has been previously stored using the function "Polar calculation".

Accept displayed values and proceed with dialogue "TRAVERSE" (page 218).

NorthEast	$:$Display of entered magnetic bearings (ref. to dialogue "TRAVERSE", page $214)$ Multiply
Divide $:$ Entering multiplication factor	
Add	$:$ Entering division factor

CONT Accept displayed values and proceed with dialogue
\qquad "TRAVERSE" (page 218).

Defining direction by Azimuth

If "Azimuth" is selected in the configuration during "Direc. Type:", then the following dialog box appears:

	COGO\ TRAVERSE 14:03					
	Direction to Traverse					\pm
	Azimut Offset	h		$0^{\circ} 00^{\prime}$	00"	
		INV			RCALL	EDIT
$\begin{gathered} \text { Shift } \\ \bigcirc \end{gathered}$	HELP				MODIF	
		${ }^{F 2}$	$O^{F 3}$	$\begin{array}{ll\|} \hline{ }^{\circ 4} \\ \hline \end{array}$	$\bigcirc^{\text {F5 }}$	$\bigcirc^{F 66}$

Azimuth : Entering Azimuth
Offset : Entering parallel displacement. Only active if "YES" is entered in the configuration during "Offset:"
Left $=$ negative parallel offset
Right $=$ positive parallel offset

- 2 Determining the direction by means of the function
"Polar calculation" (refer to chapter "Inverse").

$๑^{\text {F5 }}$	INPUT RCALL	Entering Azimuth Call up of a direction which has been previously stored using the function "Polar calculation".

Azimuth : Display of entered Azimuth (ref. to

Multiply : Entering multiplication factor
Divide : Entering division factor
Add : Entering angle for a correction to the right

Subtract : Entering angle for a correction to the
Azimuth : Display of corrected Azimuth

Defining horizontal distance

	COGO\TRAVERSE					
	Distance to Traverse					$\bar{\sum}$
	$\begin{aligned} & \text { Horiz.Dist. : } \\ & \text { Offset } \end{aligned}$			$\begin{array}{lll} 0.000 & \mathrm{~m} \\ 0.000 & \mathrm{~m} \end{array}$		
					RCALL	EDIT
$\begin{array}{\|c\|} \hline \text { Shift } \\ 0 \\ \hline \end{array}$	HELP				MODIF	
	F1	$F 2$	${ }^{F 3}$	$F 4$	$F 5$	${ }^{F 6}$

Horiz Dist : Entering horizontal distance
Offset : Entering parallel displacement. Only active if "YES" is entered in the configuration during "Offset:"
Left $=$ negative parallel offset
Right $=$ positive parallel offset

INPUT
RCALL
Entering horizontal distance
Call up of a distance which has been previously stored using the function "Polar calculation".
$\int_{\odot}^{\text {CONT }}$ "Trcept displayed values and proceed to dialogue

Changing the distance (refer to dialogue "MODIFY DISTANCE", page 219).

Horiz.Dist. : Display of entered horizontal distance (refer to dialogue "TRAVERSE", page 218)

Multiply : Entering multiplication factor
Divide : Entering division factor
Add : Entering distance for a positive correction

Subtract : Entering distance for a negative correction

Horiz.Dist. : Display of corrected horizontal distance

Accept displayed values and proceed to dialogue "TRAVERSE RESULTS" (page 220).

The following dialog box shows the result of the traverse:

Point no. : Entering point number of the point to be accepted

Easting : Display of east coordinate
Northing : Display of north coordinate
Elevation : Entering height (optional)

The following results have been stored in the active measurement data file:

WI 11 Station Point Number
WI 81 Easting coordinate
WI 82 Northing coordinate
WI 83 Elevation (optional)
If "Point no." has not be entered, the button is not occupied.

Call up the program "Stakeout". The program "Plotting" assumes that the instrument is set and oriented to a known point. If "Point no." has not be entered, the button is not occupied.

Return to "COGO MENU".
Exit the program.

Intersections

0^{2} Call up the function from the "COGO MENU".

Bearing-Bearing

 Intersection
Search

Given

: • Coordinates of intersection (Y, X)
: • point $1(\mathrm{Y}, \mathrm{X})$, direction (magnetic bearing or azimuth)

- point $2(\mathrm{Y}, \mathrm{X})$, direction (magnetic bearing or azimuth)

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 (and/or 2) can be determined by measurement.

0
 Call up the function from the menu "INTERSECTIONS".

F1 Manual entering of the first (second) point. The standard TPS 1000 input dialog box appears.

- F3 Measuring the first (second) point of the straight line.

This function is described in chapter "Measure \& Record" (Measurement dialogue) of the "System" - user manual.
$\square_{-}^{\text {CONT }}$ or $\quad{ }^{\text {F5 }}$ Search for the coordinates of the first (second) point in the coordinate file. This function is described in chapter "setups" (Import function) of the "System"-user manual.

If "Bearing" is selected in the configuration during
"Direc. Type:", then the following dialog box appears:

Quadrant	Enter quadrant (First or second straight lines) $1=$ Northeast $2=$ Southeast 3 = Southwest 4 = Northwest
NorthEast	Enter magnetic bearing (First or second straight lines) If "Azimuth" is selected in the configuration during "Direc.Type:", then the azimuth of the first straight line (or the second straight line) can be entered.
Offset	Entering parallel displacement. Only active if "YES" is entered in the configuration during "Offset:" Left $=$ negative parallel offset Right $=$ positive parallel offset

[^1]Enter bearing, mangnetic bearing resp. azimuth (if "Azimuth" is selected in the configuration during "Direc.
Type:"
RCALL Call up of a direction which has been previously stored using the function "Polar calculation".
$\Theta_{\bullet}^{\text {CONT }}$ Accept displayed values

5 Changing the direction (as dialog box "MODIFY BEARING", page 215 resp. "MODIFY AZIMUTH", page 217)

$\begin{array}{c}\text { Shift } \\ \odot\end{array}$	$\begin{array}{c}\text { ESC } \\ \ominus\end{array}$

The following dialog box shows the result of the bearing-bearing intersection:

Point no. : Entering point number of the bearingbearing

Easting : Display of east coordinate
Northing : Display of north coordinate
Elevation : Entering height (optional)

Call up the program "Stakeout". The program "Plotting" assumes that the instrument is set and oriented to a known point.
If "Point no." has not be entered, the button is not occupied.

Return to "INTERSECTIONS".

Exit the program.

Bearing-Distance

Intersection

Search
Given

- Bearing-bearing coordinates S1 and S2 (Y, X)
- point $1(\mathrm{Y}, \mathrm{X})$, direction (magnetic bearing or azimuth)
- point $2(\mathrm{Y}, \mathrm{X})$, radius

Station coordinates and orientation need to have been set correctly before the coordinates of point 1 (and/or 2) can be determined by measurement.

	COGO\ BEARING FROM 14:03					
	Rec. Search Point	vice in ode	Memory Card FILE01.GSI			\sum
	INPUT		MEAS		SEARC	QNUM
$\begin{array}{\|c} \hline \text { Shitt } \\ \Theta \end{array}$	HELP					
		$0^{F 2}$			$\bigcirc^{F 5}$	$\bigcirc^{\text {F6 }}$

${ }^{\circ}$ F1 Manual entering of the first point (or circle centre point). The standard TPS 1000 input dialog box appears.

F3 Measuring the first point (or circle centre point). This

function is described in chapter "Measure \& Record" (Measurement dialogue) of the "System"-user manual.	$\ominus_{\bullet}^{\text {CONT }}$ or $\quad \odot^{F 5} \quad$Search for the coordinates of the first point (or circle centre point) in the coordinate file. This function is described in chapter "Setups" (Import function) of the
"System"-user manual.	

| Shift |
| :---: | :---: |
| Θ |\(\quad \begin{gathered}ESC

\Theta\end{gathered} \quad\) Exit the program.

If "Bearing" is selected in the configuration during "Direc. Type:", then the following dialog box appears:

Quadrant : Enter quadrant:
$1=$ Northeast
$2=$ Southeast
$3=$ Southwest
$4=$ Northwest
NorthEast : Enter magnetic bearing
If "Azimuth" is selected in the configuration during "Direc. Type:", then the azimuth of the straight line can be entered.

Offset : Entering parallel displacement. Only active if "YES" is entered in the configuration during "Offset:" Left $=$ negative parallel offset Right $=$ positive parallel offset

F2 Determining the direction by means of the function "Polar calculation" (refer to chapter "Inverse").
\(\left.$$
\begin{array}{|ll}\hline \text { H }^{\text {F }} & \text { INPUT }\end{array}
$$ \begin{array}{l}Enter bearing, mangnetic bearing

resp. azimuth (if "Azimuth" is

selected in the configuration during\end{array}\right]\)| "Direc. Type:" |
| :--- |

${ }_{\bullet}^{\text {CONT }}$ Accept displayed values
Changing the direction (as dialog box "MODIFY BEARING", page 215 resp. "MODIFY AZIMUTH", page 217)
$\begin{array}{ll}\text { Shift } & \text { ESC } \\ 0 & \text { Exit the program. }\end{array}$

Enter distance from point:

Horiz.Dist. : Entering radius

F2 Determining the radius by means of the function "Polar calculation" (refer to chapter "Inverse").

| $๑^{\text {F5 }}$ | INPUT
 RCALL |
| :--- | :--- | | Entering radius |
| :--- |
| |

$\underbrace{\text { CONT }}_{\bullet}$

Accept displayed values

Changing the direction (as dialog box "MODIFY DISTANCE", page219).

The following dialog box shows the result of the bearing-distance intersection:

Point no.	$:$Entering point number of the bearing- bearing
Easting	$:$ Display of east coordinate
Northing	$:$ Display of north coordinate
Elevation	$:$ Entering height (optional)

- F2 Changing between both solutions

F3 The following results have been stored in the active measurement data file:

WI 11 Station Point Number
WI 81 Easting coordinate
WI 82 Northing coordinate
WI 83 Elevation (optional)
If "Point no." has not be entered, the button is not occupied.

- ${ }^{\text {F5 }}$ Call up the program "Stakeout".

The program "Plotting" assumes that the instrument is set and oriented to a known point.
If "Point no." has not be entered, the button is not occupied.

Return to "INTERSECTIONS".
Exit the program.

Distance-Distance

Intersection

Radius 2

Search

Given

- Bearing-bearing coordinates S1 and S2 (Y, X)
- point $1(\mathrm{Y}, \mathrm{X})$, radius 1
- point $2(\mathrm{Y}, \mathrm{X})$, radius 2

0^{2}
 Call up the function from the menu
 "INTERSECTIONS".

- F1 Manual entering of the first circle centre point (2 $2^{\text {nd }}$ circle centre point). The standard TPS 1000 input

 dialog box appears.Measuring the first circle centre point ($2^{\text {nd }}$ circle centre point). This function is described in chapter "Measure \& Record" (Measurement dialogue) of the "System"user manual.

Search for the coordinates of the first circle centre point ($2^{\text {nd }}$ circle centre point) in the coordinate file. This function is described in chapter "Setup" (Import function) in the "System" - user manual.

Enter distance from points:

Horiz.Dist. : Entering distance from first point (2 $2^{\text {nd }}$ point)

F2 Determining the radius by means of the function "Polar calculation" (refer to chapter "Inverse").

Entering radius
Call up of a radius which has been previously stored using the function "Polar calculation".
$\bigoplus_{\odot}^{\text {CONT }}$ Accept displayed values
$\overbrace{\odot}^{\text {Shift }} \bigcirc^{\text {F5 }}$ Changing the direction (as dialog box "MODIFY DISTANCE", page219).

The following dialog box shows the result of the distance/distance intersection:

Point no.	$:$Entering point number of the bearing- bearing
Easting	$:$ Display of east coordinate
Northing	$:$ Display of north coordinate
Elevation	$:$ Entering height (optional)

Changing between both solutions

F3 The following results have been stored in the active measurement data file:

WI 11 Station Point Number
WI 81 Easting coordinate
WI 82 Northing coordinate
WI 83 Elevation (optional)
If "Point no." has not be entered, the button is not occupied.

Call up the program "Stakeout".
The program "Plotting" assumes that the instrument is set and oriented to a known point.
If "Point no." has not be entered, the button is not occupied.

Return to "INTERSECTIONS".

Exit the program.

Offsets

${ }^{3}$ Call up the function in the "COGO MENU".

Search	- Difference in length/abscissa (L) - Lateral deviation/ordinate (Q) - Base point coordinates (Y, X)
Given	- Baseline Start Point 1 (Y, X), - Baseline End Point 2 (Y, X), - lateral point 3 (Y, X)

Station coordinates and orientation need to have been set correctly before the coordinates of point 1resp. 2 and/or point 3 can be determined by measurement.

Explanation of the polarity rule of L and Q
During entering, the polarity is based on the straight line 1 -> 2 .

+ Q Parallel displacement to the right
- Q Parallel displacement to the left
+L Displacement from basis point 1 in the direction of basis point 2
- L Displacement from basis point 1 in the opposite direction to basis point 2
0^{0} Call up the function from the menu "OFFSETS".

Manual entering of the baseline start point resp. the baseline end point (or the lateral point). The standard TPS 1000 input dialog box appears.

F3 Measuring the baseline start point resp. the baseline end point (or the lateral point).This function is described in chapter "Measure \& Record" (Measurement dialogue) of the "System"-user manual.
 the baseline end point (or the lateral point) in the coordinate file. This function is described in chapter "Setup" (Import function) of the "System"-user manual.

The following dialog box shows the results:

Point no. : Entering point number of the base
Easting : Display of east coordinate

Northing : Display of north coordinate
Elevation : Entering height (optional)
Distance : Display difference in length/abscissa (L)

Offset : Display lateral deviation/ordinate (Q)
${ }^{\text {F2 }}$ Entering the new lateral point with reference to the already existing basis line.

- F3 The following results have been stored in the active measurement data file:

WI 11 Station Point Number
WI 81 Easting coordinate
WI 82 Northing coordinate
WI 83 Elevation (optional)
If "Point no." has not be entered, the button is not occupied.

F5 Call up the program "Stakeout".

The program "Plotting" assumes that the instrument is set and oriented to a known point.
If "Point no." has not be entered, the button is not occupied.

CONT
 -

Return to the menu "OFFSETS".

Orthogonal point calculation

Search : • Lateral point 3 coordinates (Y, X)

$$
\text { Given } \quad: \quad \text { - Baseline Start Point } 1(\mathrm{Y}, \mathrm{X}),
$$

Station coordinates and orientation need to have been set correctly before the coordinates of point 1resp. point 2 can be determined by measurement.

Explanation of the polarity rule of L and Q
During entering, the polarity is based on the straight line 1 -> 2 .

+ Q Parallel displacement to the right
- Q Parallel displacement to the left
+L Displacement from basis point 1 in the direction of basis point 2
- L Displacement from basis point 1 in the opposite direction to basis point 2
๑^{1} Call up the function in the menu "OFFSETS".

Manual entering of the baseline start point (or the baseline end point). The standard TPS 1000 input dialog box appears.

Measuring the baseline start point (or the baseline end point). This function is described in chapter "Measure \& Record" (Measurement dialogue) of the "System"user manual.

Search for the coordinates of baseline start point (or the baseline end point) in the coordinate file. This function is described in chapter "Setup" (Import function) of the "System"-user manual.

Horiz.Dist. : Enter distance along baseline (L)

Determining the distance along baseline (L) by means of the function "Polar calculation" (refer to chapter "Inverse").

$๑^{\text {F5 }}$	INPUT	Entering distance along baseline Call up of a distance along baseline which has been previously stored using the function "Polar calculation".

${ }_{\bullet}^{\text {CONT }}$

Accept displayed values
Changing the direction (as dialog box "MODIFY DISTANCE", page219).

Exit the program.

Enter lateral deviation/distance from start (Q):

	COGO OFFSET					
	Perpendicular offset from BL					\sum
	Horiz.Dist. :			0.000 m		
		INV			RCALL	EDIT
Shift	HELP				MODIF	
	$F 1$	${ }^{F 2}$	F3		$O^{F 5}$	$F 6$

Horiz.Dist. : Enter lateral deviation/distance from start (Q)

Determining the lateral deviation/distance from start (Q) by means of the function "Polar calculation" (refer to chapter "Inverse").
\(\left.$$
\begin{array}{|ll}๑^{\text {F5 }} & \text { INPUT }\end{array}
$$ \begin{array}{l}Entering lateral deviation/distance

from start\end{array}\right]\)| Call up of a lateral deviation/distance |
| :--- |
| from start which has been previously |
| RCALL |
| calculation". |

$\underbrace{\text { CONT }}$ Accept displayed values

The following dialog box shows the results of the orthogonal point calculation:

Point no.	: Entering point number of the lateral point
Easting	$:$ Display of east coordinate
Northing	$:$ Display of north coordinate
Elevation	$:$ Entering height (optional)

F3 The following results have been stored in the active measurement data file:

WI 11 Station Point Number
WI 81 Easting coordinate
WI 82 Northing coordinate
WI 83 Elevation (optional)
If "Point no." has not be entered, the button is not occupied.

Call up the program "Stakeout".
The program "Plotting" assumes that the instrument is set and oriented to a known point. If "Point no." has not be entered, the button is not occupied.

Return to the menu "OFFSETS".
Exit the program.

Search
: - Circle centre coordinates (Y, X),

- Radius

Given
: • Arc point 1 (Y, X),

- Arc point 2 (Y, X),
- Arc point 3 (Y, X)

Station coordinates and orientation need to have been set correctly before the coordinates of point 1,2 and/or point 3 can be determined by measurement.

F1 Manual entering of the first resp. the second resp. the third arc point. The standard TPS 1000 input dialog box appears.

F3 Measuring the first resp. the second resp. the third arc point. This function is described in chapter "Measure \& Record" (Measurement dialogue) of the "System"-user manual.

Shift	
-	$\begin{array}{c}\text { ESC } \\ \ominus\end{array}$

The following dialog box shows the results of the calculation:

Point no.	$:$Entering point number of the circle centre
Easting	$:$ Display of east coordinate
Northing	$:$ Display of north coordinate
Elevation	$:$ Entering height (optional)

The following results have been stored in the active measurement data file:

WI 11 Station Point Number
WI 81 Easting coordinate
WI 82 Northing coordinate
WI 83 Elevation (optional)
If "Point no." has not be entered, the button is not occupied.

Call up the program "Stakeout".
The program "Plotting" assumes that the instrument is set and oriented to a known point. If "Point no." has not be entered, the button is not occupied.

Return to the "COGO MENU".
Exit the program.

Road Plus

Introduction

This manual describes the "ROADPLUS" program of the TPS SYSTEM 1000 theodolite series.

The program allows for the stakeout of roads using the typical offset method of construction staking. In addition the program supports station equations, cross section assignment by station, cross section definition, cross section interpolation, superelevation, widening and slope staking/catch points.

Alignment Definition

An alignment consists of the three basic components which are horizontal alignment, vertical alignment and cross-section template. "ROADPLUS" reads the elements of each of these components from data files that are in GSI file format. In addition, a file can be created for entering cross-section stations for specific locations such as points needed for the staking of superelevation points. If station equations are needed, "ROADPLUS" will read a file created for station equations and apply the appropriate corrections.

Data Files

Each of the data files "ROADPLUS" reads contain the necessary information specific to the component being defined. The files have unique identifiers and must be in the GSI file format:

Horizontal Alignment File	ALN?????.GSI
Vertical Alignment File	PRF?????.GSI
Template File	CRS?????.GSI
Cross-section Assignment File	STA?????.GSI
Station Equation File	EQN?????.GSI

The five identifiers ALN, PRF, CRS, STA and EQN identify the type of file and must be used when creating the data files. The ? can be any valid DOS character. The file extension GSI defines the file as a GSI file and must be used.

1. Permitted elements in the Hz -alignment

- Straight defined by chainage and coordinates of starting point
- Curve defined by chainage and coordinates of starting point
Radius of arc (- = left-hand curve; $+=$ right-hand curve)
- Spiral
defined by chainage and coordinates of starting point parameter A^{1} of spiral (negative parameter $=$ spiral into left-hand curve)
- Compound curve defined by chainage and coordinates of starting point Radius of arc (R1, R2)
- End of project (EOP) chainage and coordinates of end-point
$1 \mathrm{~A}^{2}=\mathrm{L} \times \mathrm{R}$ where $\mathrm{L}=$ length of spiral; $\mathrm{R}=$ radius of curve

2. Permitted elements in V -alignments

- Straight
- Curve
- Parabola
- End of project
defined by chainage and height of starting point
defined by chainage and height of starting point
radius of arc (- = crest; + = dip)
defined by chainage and height of starting point parameters of parabola ${ }^{2}$
(- = crest; + = dip)
(EOP) chainage and height of endpoint of gradient

3. Permitted elements in cross sections

- Chainage
- Offset
- Height difference relative to axis
${ }^{2} 2 \mathrm{px}\left(\mathrm{H}-\mathrm{H}_{0}\right)=\left(\mathrm{S}-\mathrm{S}_{0}\right)^{2}$
$\mathrm{S}_{0}, \mathrm{H}_{0}$ station and height of vertex

Creating Data Files

There are two methods that can be used to create the necessary data files. If the program called "FILE EDITOR" is loaded into the theodolite, all necessary data for a given component can be entered through the keyboard. To enter data on the computer a DOS program called "ROADDATA.EXE" can be used. If you create the files using the "ROADDATA.EXE" program, the files must be copied to the PCMCIA card in a directory called GSI.

The following table shows an overview of the max. file sizes:

Type of file	Limitations
Horizontal alignment	No limitation for "RoadPlus"; max. 200 blocks for "File Editor"
Vertical alignment	No limitation for "RoadPlus"; max. 200 blocks for "File Editor"
Cross section	200 data blocks (number of points in a cross section max. 48)
Cross section assignment	100 data blocks
Station equation	100 data blocks

Program Overview

"ROADPLUS" allows measurements in one telescope position only. A typical "ROADPLUS" session includes the following steps:

1. Enter setup information for the instrument and orient.
2. Start the ROADPLUS program and configure.
3. Select the alignment files
4. Select a station
5. Pick a point on the cross-section to stakeout, enter an offset, choose method.
6. Stake the point and record the data.
7. Choose another point on the cross-section and stake it out.
8. When all selected points on the cross section have been staked, enter a new station and repeat steps 5-7.

In the sections that follow, the operation of the program will be covered in more detail. The concepts of the program will be covered to assist you in becoming proficient with the "ROADPLUS" program for normal everyday operation such as staking a project with the

Getting Started

Before starting the program, enter the setup information for the location of the theodolite and orient the instrument to the reference point.

From the "MAIN MENU: PROGRAMS" display, move the highlighted cursor to the "ROADPLUS" program and press ${ }_{\bullet}^{\text {cont }}$ on the keyboard of the instrument. This will bring up the "SELECT ALN FILES" display.

The display illustration examples contain text and values for example purposes only. The actual values you will see on the display of your instrument will be different.

F2 Call up the "Configuration-Editor".
Before selecting the alignment files to use, you should enter the configuration parameters for the job.

Configuration

Start the "Configuration-Editor" from the "SELECT ALN FILES" dialog.

3D Stake	O	ON
Crs.Intrpl.	:	OFF
Crs.Movemnt	Left $>$ Right	
Hinge mode	Lef	normal
Log File	ON	
Log FlName	:	ROAD.LOG

Base Chainge : Enter the beginning chainage for the project

End Chainge : Enter the ending chainage for the project

Chainge Incr : Enter the chainage interval to be used
Hght. Shift : Enter a vertical shift value if needed. The value entered will be applied to the whole alignment.

Deflct. Tol. : Enter an angle tolerance for deflection angles. Make this a small value but not 0 .

Chainge Tol. : Enter a value for chainage tolerance. This value will determine how close the point will be to a 0 location.

3D Stake
: Use the ${ }_{{ }^{\text {F }}}{ }^{F 6}$ key to toggle between OFF or ON. For cut/fill capability this should be set to ON.

Crs. Intrpl. : The abbreviation means "Cross Section Interpolation". When this is set to ON, cross sections will be interpolated both along and between cross sections. The interpolation between cross sections makes superelevation and widening possible.

If cross section interpolation is enabled, all cross sections must have the same number of points.

Use the ${ }_{\bullet}{ }^{F 6}$ key to toggle between OFF and ON.

Crs. Movemnt: This function controls the movement along the cross section.
Press $\triangle^{\text {F6 }}$ to display the movement options. There are three choices: LEFT to RIGHT, RIGHT to LEFT and NONE. The direction chosen is for display purposes only. The rodperson can go in any direction desired along the cross section.

Hinge Mode : Normal: The points farest away from the axis are used for calculation of the slope piercing point. Not from End Pts: The points farest away from the axis are not used for calculation of the slope piercing point, i.e. the slope piercing point is already available in the cross section definition (catch point between digital ground pattern and cross section).
: When the log file is set to ON, staked out data can be stored in a file for printing at al later date. Use the $\triangle{ }^{\text {F6 }}$ key to toggle between OFF and ON.

Log FIName : Ente a file name for the log file. The default file name can be used.
LogFIName appears only if "Log File $=\mathrm{ON}$ " is seledted in the "Configuration".

- ${ }^{\text {F1 }}$ Displays date and version of the program.

${ }^{-1}$
Sets standard values. The values are displayed in dialog on page 253 .

Select Alignment Files

To proceed further, you must select a horizontal alignment file. The other files are optional and are dependent on what you are staking. For instance, if you are only staking the "shape" of the road for clearing purposes, then it would not be necessary to have a vertical alignment, template, cross section assignment or station equation file. If your application requires these other files then you will need to select them.

All alignment files must be stored in the memory card in the GIS directory.

Horizontal Alignment File

The horizontal alignment file contains the following elements:

- Station locations
- Straight line segments
- Circular curves
- Spiral curves
- Compound curves
- End of Project (EOP)

Select the horizontal alignment file. A dialog box appears with a list of all ALN?????.GSI files available. Move the cursor to the file needed and press $\underset{\sim}{6}$. The "SELECT ALN FILE" display will return and the cursor will be highlighting the vertical alignment file.

Vertical Alignment File

Cross Section/template File

The vertical alignment file contains the following elements:

- Station locations
- Straight line segments
- Circular vertical curves
- Parabolic vertical curves
- End of Project (EOP)

Select the vertical alignment file. A dialog box appears with a list of all PRF?????.GSI files available. Move the cursor to the file needed and press 5 . The "SELECT ALN FILE" display will return and the cursor will be highlighting the Cross Section file.

The template file contains the following elements:

- Station location
- Template name
- Offset from centerline
- Difference in height from the centerline profile

Select the cross section file. A dialog box appears with a list of all CRS?????.GSI files available. Move the cursor to the file needed and press $\overleftarrow{\text {. The "SELECT }}$ ALN FILE" display will return and the cursor will be highlighting the Cross section assignment file.

Cross Section Definition

When defining the cross section both a cut and fill template can be created similar to the following diagrams.

Cross section - Cut

Cross section - Fill

CL ... Centerline

Cross Section Assignment File

The cross section assignment file contains the following elements:

- Cross Section name
 - Starting Chainage

A cross section assigned in this manner will remain in effect until another cross section is defined. When the file is created you designate the name of the template to use and the chainage to begin using the template. The next template name entered also contains a starting chainage. A third template can be assigned to begin at another chainage and so forth.

For example, the file might contain the following information:

XSEC1, 0
XSEC2, 100
XSEC3, 300
XSEC1, 550
The program would interpret this to use the template XSEC 1 beginning at chainage 0 and end at chainage $1+00$, use XSEC 2 beginning at chainage $1+00$ and end at chainage $3+00$, use XSEC 3 from chainage $3+00$ and transition back to XSEC1 ending at chainage $5+50$.

Select the cross section assignment file. A dialog box appears with a list of all STA?????.GSI files available.

Move the cursor to the file needed and press

- Cross Section Interpolation

Cross sections can be interpolated both along the cross section i.e. between defined points, and between cross sections themselves. The interpolation between cross sections makes superelevtion and widening possible. The following diagrams illustrate these concepts.

Interpolation along a cross section

Interpolation between cross sections

- Superelevation/Widening

Superelevation is controlled by the cross sections. Cross sections must be placed at the appropriate chainage for the beginning of superelevation, full superelevation and back to no superelevation. The STA?????.GSI file contains these special locations for cross sections as well as cross section locations for widening. The diagram that follows illustrates the concept for superelevation.

Superelvation governed by cross sections

Station Equation File

Station equations are used to adjust the alignment stationing. The most common reason for doing so is the insertion or removal of curves. Inserting or removing a curve would require re-calculating the stationing of an entire alignment. Using station equations eliminates this.

Station equations can create either a gap or overlap as shown in the following diagram.

Forward Station Equation

Station Back $10+000=$ Station Ahead $15+000$

(15) 1617181920212223

Backward Station Equation
Station Back $13+000=$ Station Ahead $7+000$

Select the station equation file. A dialog box appears with a list of all EQN?????.GSI files available. Move the cursor to the file needed and press $\underset{\bullet}{\text {. The }}$ "SELECT ALN FILE" display will return and the cursor will be highlighting the Log Filename. The filename can be changed or the default name can be accepted.

When all files have been selected. Continues to display "CHAINAGE \& OFFSET". Prior to the "CHAINAGE \& OFFSET" display appearing, you will see a brief message about checking for errors in the selected files.

File Checking

During the file checking process, each file is inspected for possible errors in the data format such as missing or incorrect word index. If errors are found, an error message is displayed indicating the type of error. During the inspection process, if any errors are found that would cause erroneous data to be computed and displayed, the file checking routine will be aborted. If this occurs, the file(s) containing the problem must be fixed before continuing. In addition to checking for file errors, geometrical components are checked. This includes tangent directions of adjacent elements and chord lengths of elements. Any deviations which exceed permitted tolerances are displayed such as in the following example.

F3 Selecting the "NO" option to override will bring up another display that says "Continue checking alignment"? (no quotes). If you choose "NO" the display will return to the "SELECT ALN FILES" menu. If you choose "YES" the program will continue to check the other files. If no other errors are found the program will go to the opening "CHAINAGE \& OFFSET" display.

Selecting the "YES" option to override will cause the program to override the error and continue to check other files for possible errors. If no other errors are found the program will go to the "CHAINAGE \& OFFSET" opening display.

Stakeout Using Horizontal Offset

The most common method for staking out roads, pavement, curb \& gutter etc. is to use a horizontal offset from the actual point. For instance, a four foot offset from finished back of curb (BC) is commonly used to provide cut/fill stakes for a street and curb lines.

Preparing for the example

In this section of the manual, a sample project will be used to demonstrate the procedures to follow for staking a portion of the job. The project consists of a 3 m wide paved bicycle path with a curve. The project will be staked on a 0.6 m offset from the edge of pavement. The POB and PC will be staked for both sides.

The example project for the TPS System "ROADPLUS" program consists of a simple horizontal and vertical alignment accompanied by a simple template. The project is designed to illustrate the application of the "ROADPLUS" System. It is not intended to provide a demonstration of road design procedures.

Our bike path is about 30 m in length as illustrated here. The riding surface is 3 m wide, lying 1.5 m on each side of the centerline. From the edge of the driving surface, fill slopes extend downward at a slope of 2:1.

The vertical alignment (or profile) for the project is a simple 2% uphill slope. An assumed elevation of 30.50 is placed on the original ground at the Setup Point, and the road starts at elevation 31.1. This allows you to practice with all of the components of the "ROADPLUS" program. For the field work, we recommend a flat, open area about 25 m on a side.

The following pages contain illustrations and listings of all the data needed to run the example.

There are 3 easy steps to the example:

1. Use the "ROADDATA.EXE" program on your PC to enter the design information for the Horizontal Alignment, Vertical Alignment, and Templates. A special naming convention identifies the type of file that each alignment and template are stored in. The first three letters in the file name tell "ROADPLUS" what is in the file and how to view it. The GSI extension is also required.

Horizontal Alignment:	ALN?????.GSI
Vertical Alignment:	PRF?????.GSI
Templates:	CRS?????.GSI

In "ROADDATA.EXE", enter the following example project data. Let's call the project "EXAMPLE" and configure the units to m, 3 decimal places. Let's name the files "ALN_EX1.GSI", "PRF_EX1.GSI", and "CRS_EX1.GSI".

Horizontal Alignment: ALN_EX1.GSI					
Station	Element	Rad/Par	Template	E	N
0.000	Straight	0.000	Tutor	305.000	305.000
7.620	Curve	9.080	Tutor	305.000	312.620
20.298	Straight	0.000	Tutor	312.502	321.562
27.918	EOP	0.000	Tutor	320.007	322.885

Vertical Alignment : PRF_EX1.GSI				
	Chainage	Element	Rad/Par	H
1	0	Straight	0	31.100
2	27.918	EOP	0	31.654

Template: CRS_EX1.GSI

The horizontal alignment file specifies a template for each chainage. Our horizontal alignment file specifies only one template, "TUTOR". You can, however, specify different templates for any chainage as you may require. We will define two templates, "TUTOR" and "TYP_CUT", in our template file. Notice that while running "ROADPLUS", you can switch templates at any time.

Slope extends well beyond expected Catch Point

	Template	sCLO	$\mathbf{s} \boldsymbol{\Delta} \mathbf{H}$
1	Tutor	-35.000	-16.700
2	Tutor	-1.500	-0.030
3	Tutor	0.000	0.000
4	Tutor	1.500	-0.030
5	Tutor	35.000	-16.700
6	TypCut	-35.000	-16.630
7	TypCut	-1.500	-0.030
8	TypCut	0.000	0.000
9	TypCut	1.500	-0.030
10	TypCut	35.000	-16.630

2. Copy the alignment and template files to your

 PCMCIA card. Copy the files into the GSI subdirectory on your PCMCIA card. If the GSI subdirectory doesn't already exist on the PCMCIA card, you will need to create one. Place the PCMCIA card in your instrument.3. Set up the instrument in your work area and stakeout the example roadway. Set the instrument coordinates to the values shown for point 1 (see figure page 264). Orient the instrument towards a convenient "North", and set Hzo to zero (see figure page 264). Start "ROADPLUS" and continue reading this manual.

When the "CHAINAGE \& OFFSET" display appears, only the lower portion beginning with "Station" will be visible. To view the entire display, use the green up/ down arrow keys on the keyboard to scroll up to the top.

Hght. Shift : Vertical shift applied to the whole alignment.

Chainge Incr : The chainage increment set in the configuration is displayed. If desired, a new value can be entered.

Chainage : Enter the chainage location for the points to be staked.

Element \quad| $:$ |
| :--- |
| |
| Offset |
| chosen chainage such as POB, PC, |
| |
| |
| CURVE etc. |

$:$| Horizontal offset to apply to the |
| :--- |
| current chainage. |

Hght Offset : Vertical offset to apply to the current chainage.

Switches to measuring mode to allow for a measurement to determine the chainage and offset for the point shot. After taking the measurement, press ${ }^{\text {cont }}$ and the program will return to the "CHAINAGE \& OFFSET" opening display. The chainage value of where the shot was taken along with the horizontal and vertical offset are displayed.

Changes to the next chainage.
Changes to the previous chainage.
Activates the cross section options.

The result of the road chainage and offset is stored. Just active after taking a measurement.

Activates the "Station Equation" option. Active only if a "Station Equation File" is selected during display "SELECT ALN FILES" (page 254).

Allows insertion of a note into a log file. This may be use for comments, errors, etc.

Calls the dialog "POINT COORDS" in order to display the coordinates of the point to be set out. From there, calls the program "STAKEOUT".

> Select Template point and offset

$\bullet^{\text {F4 }}$ Access the cross section options.
The first step in the procedure is to select a point on the cross section to be staked and enter the offset.

ROAD+\ CROSS SECTIONS						
Chainage			$\begin{array}{lll} 0.000 & \\ 0.000 & \mathrm{~m} \end{array}$			
Hght.	Shift	:				
Templa	e	:	+000tutor			
$\Delta \mathrm{CL}$ Of	set	:	-1	500		
$\triangle \mathrm{CL} \mathrm{Hg}$	Dif	:		030		
CATCH	<-	CENTR	->			
Stake	ffs.	:	-0	600	m	
S.Off	t Ht	H	Horizon	tal	∇	
Offset		:		000	m	
Hght	fset	:		000	m	
HELP			PLOT			
${ }^{F 1}$		${ }^{F 3}$	${ }^{F 4}$	\bigcirc	F5	\bigcirc

1L : Indicates the location of the cross section point in relation to the centerline. In this example, the "1L" means the first point of the template left of centerline.

Chainage : Displays the current chainage.
Hght. Shift : Displays the vertical shift, if any, applied to the whole alignment.

Template : Displays the template name being used.
Δ CL Offset : Displays the horizontal distance of the template point from centerline (- for left)
Δ CL Hgt Diff : Displays the difference in elevation of the template point between the centerline and the point to be staked.

Stake Offs. : This is the offset value that will be used for setting the offset stake. If the point is left of centerline, the value entered must be a negative number.
S. Offset Ht : This display indicates the method used in computing the elevation of the point to be staked. The three methods are "PREVIOUS ELEMENT", "INTERPOLATED" and "HORIZONTAL".

Offset : Horizontal offset to apply to current chainage.

Hght Offset : Vertical offset to apply to current chainage.

Activates the slope staking options
F2 Move along the current cross section from right to left.
F3 Sets the cross section point to the centerline
Move across the current cross section from left to right
Displays a plot of the template.

The first point we want to stake for the bike path is the left edge of pavement. This point is 1.5 m left of centerline so the " Δ CL Offset" value should be set to a -1.5 m .

[^2]The offset value needs to be set to a -0.600 m . The negative value is used because the point to stake is left of centerline.
To accept the value press
The final step in the process is to select the method to use for computing the elevation of the offset point to be staked. The "ROADPLUS" program provides three methods to choose from:

Horizontal

- The elevation is computed horizontally to the catch point.

Previous Element - The elevation is computed on an extension of the grade of the previous element.

Interpolated - The elevation is interpolated to intersect the design slope of the cross section.

The following illustration shows the three vertical options for stake offset.

1 Horizontal
2 Previous Element
3 Interpolated

The most common method used is the "HORIZON-
TAL" method.
To select this method, move the cursor to "S. Offset Ht" and press $\longdiv { { } ^ { F 6 } }$ to display the three options.
Move the cursor to "HORIZONTAL" and press This setting will remain as the current method until a different method is chosen. Therefore it is not necessary to go through the procedure every time.

Accepts and stores parameters set. Continues to display "POINT COORDS".

Stakeout and Record point

The "POINT COORDS" dialog displays the current chainage location of the offset point to be staked. The display also shows the value for the prism pole (Refl. Height) and the Easting and Northing coordinates of the offset point and the finished grade elevation of the actual point (not the offset location).

Activates the stakeout program

The polar method of stakeout is the default for "ROADPLUS".
Turn the instrument until " $\Delta \mathrm{Hz}$ " is zero.
Line up the prism pole.

The " Δ Dist" value indicates how far away the measured point is from the point chosen to be staked. A positive value means to move away from the instrument by the amount shown. If the value is negative, move towards the instrument. The display will also show the cut or fill value for the measured point. When both the horizontal circle and distance read zero or close to it, the measurement can be recorded.

Record the staked out position, returns to the "CROSS SECTIONS" display and automatically moves to the next point on the cross section.

Stakeout Next point on Cross Section

To set the offset stake for the right side of our example project:

Set the " Δ CL Offset" value to positive 1.500 m .
Note when you do this the position changes from "1L" to "1R". Scroll down and highlight "Stake Offs.". Change the offset value to positive 0.600 m .

Returns to the "POINT COORDS" display.

Stakeout the 0.600 m offset stake for the right side of the bike path. The "POLAR STAKEOUT" display returns.

${ }_{\square}$ F2 Measures the distance.

Record the point when it has been staked. The "CROSS SECTION" display returns showing the next point on the cross section to stake.

For this example, the last point staked was the 0.600 m offset point for the right side. When the "CROSS SECTIONS" display appears, the " Δ CL Offset" changes to the next point on the cross section. The next point to stake is the 0.600 m offset for the right side at the next station.

Exits from the "CROSS SECTIONS" display and returns to the "CHAINAGE \& OFFSET".

Moves to the next chainage (you also may enter a chainage). The chainage and offset display will change to reflect the new chainage location.

- ${ }^{F 4}$ Brings up the "CROSS SECTIONS" display.

In our example the last point staked was on the right side. Rather than have the rod person cross back over to the left side, it makes sense to stay on the right side and stake that position and then cross over to the left side. To stake the catch point on the right side:

Set the " Δ CL Offset" from centerline value to positive 1.500 m . The offset value should be positive 0.600 m , but should not require a change because that was the last offset value used for the previous right side point.

Access the "POINT COORDS" display.

To stake the offset point on the right side for chainage $25+00$:

F5 Activates the stakeout program. The "POLAR STAKEOUT" display will appear.

	ALL	DIST	REC	TARGT		QNUM
$\begin{gathered} \text { Shift } \\ \bigcirc \\ \hline \end{gathered}$	HELP METHD		PLOT			
	$\bigcirc^{F 1}$	$\bigcirc^{F 2}$	$\bigcirc^{F 3}$	$\bigcirc^{\text {F4 }}$	$\bigcirc^{\text {F5 }}$	$\bigcirc^{F 6}$

Use the normal procedure previously outlined for staking out the point.

$๑^{\text {F4 }}$ Change the " Δ CL Offset" from centerline to negative 1.5 m . Change the "Stake Offs." value to negative 0.600 m .
${ }_{-}^{\text {CONT }}$ Access the "POINT COORDS" display.

Access the stakeout program. Follow the stakeout procedure previously outlined and record the staked out point. When the "CROSS SECTIONS" display returns, press ${ }_{{ }_{-8}^{E s C}}^{\text {Es }}$ to access the "CHAINAGE \& OFFSET" display.

Horizontal Offset Stake Out Summary

In this section, a brief summary of using the horizontal offset method is provided. It is assumed the reader has reviewed sections "Stakeout using horizontal offset" through "Stakeout and recording" which provide a detailed explanation of program functions. We recommend making a copy of this short guide and keeping it in the instrument case.

Start ROADPLUS \& Set Configuration Options

Start the "ROADPLUS" from the program menu.

Start the "Configuration-Editor" from the "SELECT ALN FILES" dialog.

Enter the beginning and ending chainage, the chainage increment and so forth. Make all entries.

Returns to the "SELECT ALN FILES" display.

$๑^{\text {F6 }}$ Select the alignment files.
Place the cursor on each file type, press ${ }^{\text {. }}{ }^{\text {F6 }}$ and pick the file from the displayed list. Select the files.

The "CHAINAGE \& OFFSET" options are displayed.

A horizontal file must be selected.

Set offset value and select point to stakeout

To select the template point to stake (back of curb, edge of pavement etc.):
$๑^{\text {F4 }}$ The "CROSS SECTIONS" options display appears.

Set the " $\Delta C L$ Offset" value. This value is the distance from centerline of the point you want to stake. Move the cursor to "Template" and pick the cross section template to use. Following set the "Stake Offs." (stake offset value). If the point is left of the centerline, enter the offset value as a negative value.

Continues with display "POINT COORDS".

The stakeout program will start with the polar stakeout method being used.

With the polar method, the theodolite is turned until the displayed horizontal circle reading is zero degrees. The rod person is moved on line and a distance is measured. The results are displayed telling you how far from the real point the prism pole is. Move the rodperson until the distance shows near zero. The CUT/FILL value is displayed along with the elevation of the point.

Record the point, and the "CROSS SECTIONS" display returns.

Move to a new chainage. The "CHAINAGE \& OFFSET" display returns.

$\square^{\text {F2 }}$ Select a new chainage (you also may enter a chainage).

Select the point to stake out and the offset.
Repeat the procedure outlined in sections "Set offset value and select point to stakeout" (page 282) through "Select new chainage" (page 284). Continue in this manner until all points have been staked.

Slope Staking

Slope staking involves determining a point where the cross section template meets the ground surface. This point of zero cut/fill is found primarily by trial and error and a lot of computing. The following diagram illustrates the concepts of slope staking.

The slope staking routine is accessed from the "CROSS SECTIONS" display.

Before proceeding, move the cursor to the "Template" option.

Choose the template to use for slope staking. If the displayed template is the correct one, then it will not be necessary to change it.
$\square^{\text {F1 }}$ Start the slope stake program.

F1		F2		$F 3$		$F 4$		$F 5$		$F 6$

The "STORE" and "REFPT" options are not available until after a measurement is taken.

Measure to the current position of the prism pole. The value for " $\Delta \mathrm{XS}$ Hgt Diff" needs to be zero or close to it. When this value is zero the catch point has been determined. However, the value for " Δ Chainage" is also important. This value shows where the actual point is in relation to the chainage of the cross section being used.

In the sample display shown, the value for " $\Delta \mathrm{XS} \mathrm{Hgt}$ Diff" is 1.089 m . The value is positive which means the catch point is higher than where the measurement was taken. Therefore the rodperson would look for a spot that is approximately 1 m higher than the current point.

Now look at the value for " Δ Chainage". This indicates where the prism pole is in relation to the chainage. In this example, the rodperson would move approximately 3 m to his/her right looking towards the instrument. If the value is negative the pole would be moved to the left.

In addition, the horizontal distance from centerline is displayed which is 9.867 m for this example.

After moving to a new location, measure a distance to the prism and view the results. When the " $\Delta \mathrm{XS}$ Hgt Diff" and " Δ Station" are at or near zero the catch point has been located both vertically and horizontally for the chosen chainage.

F3 Record the staked out position.
The "SLOPE STAKING" display returns and another catch point can be staked.

ESC
Θ

SLOPE STAKING Menu Function Key Summary

Measures the distance to the target, and automatically records the data as defined by the currently set recording mask.
\bigcirc_{0} F2 Measures the distance only, and updates the display.
F3 Records the information for the current measurements.
$๑^{\text {F4 }}$ Permits the user to change the height of the target.
Stores the data to the log file.

The store function is not available until a measurement is initiated with the "DIST" key.

Switches between face one and face two for measurements.

| Shift |
| :---: | :---: | :---: |
| O_{0} |$\bigcirc^{\text {F5 }}$ After a measurement is made to the prism pole the "REFPT" option will be available. See section "Reference Point" for a detailed discussion of this option.

is, move onto the correct cross section defined for that point. This allows checking against the actual cross section defined at that point.

The " $\Delta \mathrm{St}=0$ " function is not available until a measurement is initiated with the 'DIST" key.

Displays additional information about how the location of the prism pole relates to components of the crosssection. Do this after a measurement has been made.

Δ Hinge Offs	$:$	8.154	m
Δ Hinge HgtD	\vdots	-2.123	m
$\Delta \mathrm{CL}$ Offset	$:$	9.213	m
$\Delta \mathrm{CL}$ HgtDiff	$:$	-1.124	m

	F1		$F 2$		$F 3$		$F 4$		$F 5$	

1L \quad| $:$ | Indicates the location of the cross |
| ---: | :--- |
| section point in relation to the | |
| centerline. In this example, the "1L" | |
| | means the first point of the template |
| | left of centerline. |

Chainage : Displays the current chainage.
Template : Displays the template name being used.
Δ Chainage : Displays where the rod is in relation to the actual chainage. Move the rod to the right as you are looking from the pole towards the instrument if the value is positive. If the value is negative move to the left.
Δ Catch Offs : This value is where the pole is in relation to where the existing ground intersects the design slope of the template.
Δ Catch HgtD : This value is the vertical difference from the ground shot to where the existing ground catches the template.
Δ Hinge Offs : This is the horizontal distance from the prism to where the template begins the slope (hinges).
Δ Hinge HgtD : The vertical difference between the ground shot and the hinge point.
Δ CL Offset : The horizontal distance from the ground shot to the centerline.
Δ CL HgtDiff : The vertical distance from the ground shot to the centerline.

The following illustration represents the various components of the REFPT option.

The following describes the format and contents of the data stored for alignments and cross-sections in the RoadPlus program. All files are in GSI format and must be located in the \GSI directory of the memory card.

Horizontal Alignment

The following geometric elements are supported:

Element	Definition	Declaration in the alignment file
Tangent	Coordinates (X,Y) to Coordinates (X,Y)	"STRAIGHT"
Circular curve	Beginning of arc (X,Y), Radius,	"000CURVE" End of arc (X,Y);
Spiral In	Beginning of curve (X,Y), A-Parameter / Length of curve + Radius, End of curve (X,Y);	"00SPIRIN"
Spiral out	Beginning of curve (X,Y), A-Parameter / Length of curve + Radius, End of curve (X,Y);	"OSPIROUT"
Compound curve in	Beginning of curve (X, Y), Radius 1, Radius 2	"0CURVEIN"
Compound curve out	Beginning of curve (X, Y), Radius 1, Radius 2	"CURVEOUT"
End of Project	Coordinates (X,Y)	"00000EOP"

Header of the Horizontal Alignment File:
41....+000JOBID 42....+HZALIGNM 43......+STACOORD

> WI 41 Job-Identification. Max. 8 ASCII-characters, may be defined by user.

WI 42 Identification of Horizontal Alignment file. May not be changed by user.

WI 43 Identification of principal point type file. May not be changed by user.

The data block for a principal point in the file is structured as follows :

```
11....+KILOMETR 71....+0NEXTGEO 72....+0NEXTRAD
73....+OTEMPLNR 81..10+00000000 82..10+00000000
```

WI 11 Chainage of the point.
WI 71 Type of the following geometric element.
WI 72 Radius of the next horizontal geometric element, Radius 1 for a compound curve, or the A-Parameter for spirals.

WI 73 Number of a cross-section (Template) assigned to the next geometric element.

WI 74 Radius 2 for compound curves.
WI 81 E-Coordinate of the point.
WI 82 N-Coordinate of the point.

Comments:

- The header consists of a single block at the start of a data file.
- Tangents and the EOP contain "00000NON" in WI72
- Data units in WI's 11 and 72 are defined by WI81 and WI82.
- If the radius point for a curve (circular or spiral) is to the left of the alignment in the direction of increasing stations, the radius is negative.
- If the radius point for a curve (circular or spiral) is to the right of the alignment in the direction of increasing stations, the radius is positive.
- The same cross section (Template) may be assigned to more than one location.
- An alignment file must contain at least two elements.
- There is no limitation on the size of the Hz-alignment file. As a result, as many data blocks as you like can be entered if a file is created on the PC using the DOS program "ROADDATA.EXE". If a file is created/edited using the program "FILE EDITOR" on the TPS 1000 there is a limitation of 200 data blocks.

Example of a Horizontal Alignment:

	LE	42....+HZALIGNM	43
11	+00000000	71....+STRAIGHT	72....+00000NON
7	+QP000125	81..10+06000000	82..10+02000000
11	+00198832	71....+00SPIRIN	72....-00122474
7	+QP000123	81..10+06068005	82..10+02186841
1	+00348832	71....+000CURVE	72....-00100000
7	+QP000123	81..10+06150344	82..10+02307751
1	+00450725	71....+0SPIROUT	72....-00100000
7	+QP000123	81..10+06247816	82..10+02304071
1	+00550725	71....+STRAIGHT	72....+00000NON
73	+QP000125	81..10+06310759	82..10+02227794
11	+00714138	71....+00SPIRIN	72....+00054772
73.	+QP000124	81..10+06392465	82..10+02086275
11	. +00789138	71....+000CURVE	72....+00040000
73	+QP000124	81..10+06445859	82..10+02037807
11.	. +00824376	71....+0SPIROUT	72....+00044721
73	. +QP000124	81..10+06478120	82..10+02048886
11.	+00874376	71....+STRAIGHT	72....+00000NON
73.	. +QP000125	81..10+06496445	82..10+02094478
11	+01127904	71....+00000EOP	72....+00000NON
	+QP000125	81..10+06540469	82..10+02344154

The principal points method allows joining elements without the use of intermediate tangents.
The following combinations, for example, may be defined:

- Double spiral: spiral out followed by spiral in
- Multiple circular curves
- S curves with and without intermediate tangents

Element	Definition	Declaration in the Alignment file
Tangent	Coordinate $(\mathrm{Km}, \mathrm{H})$ to Coordinate $(\mathrm{Km}, \mathrm{H})$	"STRAIGHT"
Circular curve	beginning of curve(Km,H), Radius, end of curve $(\mathrm{Km}, \mathrm{H}) ;$	"000CURVE"
Parabola	Coordinate $(\mathrm{Km}, \mathrm{H})$, Parabola parameter / Parabola length;	"OPARABOL"
End of project	Coordinate $(\mathrm{Km}, \mathrm{H})$	"00000EOP"

Vertical Alignment File Header:

41...+000JOBID 42....+0VALIGNM 43......+STACOORD

WI 41 Job-Identification. Max. 8 ASCII-characters, may be defined by user.

WI 42 Identification of Vertical Alignment file. May not be changed by user.

WI 43 Identification of principal point type file. May not be changed by user.

Example for a data block for a vertical alignment point:

WI 11 Chainage of a vertical alignment point
WI71 Type of the following geometric element
WI72 Radius of the following geometric element or parabola parameter
WI83 Elevation of the point

Comments:

- The header consists of a single block at the start of a data file.
- Tangents and the EOP contain " 00000 NON" in WI72
- Data units in WI's 11, and 72 are defined by WI83.
- Tangent and arc lengths may be calculated from the stationing.
- The stationing is projected onto a horizontal plane.
- If the curve radius point lies above the centerline, the radius is positive.
- If the curve radius lies beneath the centerline, the radius is negative.
- An alignment file must contain at least two elements.
- There is no limitation on the size of the V-alignment file. As a result, as many data blocks as you like can be entered if a file is created on the PC using the DOS program "ROADDATA.EXE". If a file is created/edited using the program "FILE EDITOR" on the TPS 1000 there is a limitation of 200 data blocks.

Example of a vertical alignment file:

```
41....+OEXAMPLE 42....+0VALIGNM 43....+STACOORD
11....+00000000 71....+STRAIGHT 72....+00000NON
83..10+00400000
11....+00300000 71....+0PARABOL 72....-01142932
83..10+00422500
11....+00500000 71....+STRAIGHT 72....+00000NON
83..10+00420000
11....+00550000 71....+0PARABOL 72....+02091126
83..10+00415000
11....+00850000 71....+STRAIGHT 72....+00000NON
83..10+00406522
11....+01127904 71....+00000EOP 72....+00000NON
83..10+00418605
```


Cross Sections

Geometric elements supported:

Element	Definition
Height differences	Height difference to the centerline
Distance	Distance from the centerline
Cross section type	Differentiate between CUT and FILL cross sections
Slope	slope ratio

Header of the cross section file:
41....+00JOB_ID 42....+TEMPLATE

WI41 Job identification. Max. 8 ASCII characters, user definable.

WI42 Template file identification. May not be changed by user.

A data block for a cross section is structured as follows:

11....+ PROF_NR 35....+DISTANCE 36....+000HDIFF

WI 11 The cross section number.
WI 35 Horizontal distance from the centerline.
WI 36 Height difference from the centerline.
WI 71 Cross section type.
WI 72 Slope ratio.

Comments:

- The header consists of a single block at the start of a data file.
- All data blocks having the same cross section number (WI11) belong together.
- All data blocks belonging to a cross section must be consecutive in the file to minimize file access.
- The data blocks for a cross section must be sorted by ascending distance from the centerline.
- Cross-sections do not have to be sorted by number.
- A negative distance (WI35) indicates a point to the left of the centerline.
- A positive distance (WI35) indicates a point to the right of the centerline.
- A negative height difference (WI36) indicates a point below the centerline.
- A positive height difference (WI36) indicates a point above the centerline.
- For a cross section file there is a limitation of 200 data blocks. The maximum number of points in a cross section is 48 .
- A template file must contain at least one cross-section.
- The entries for cross section type and slope are optional.
- The slope entry must be attached to the last point on either side of the cross section.

Example:

```
41....+0EXAMPLE 42....+TEMPLATE
11....+OP000123 35..10-00013000
11....+QP000123 35..10-00010000
11....+QP000123 35..10-00004000
11....+QP000123 35..10+00004000 36..10+00000100
11....+QP000123 35..10+00010000 36..10-00006000
11....+QP000123 35..10+00013000 36..10-00003500
11....+QP000124 35..10-00012000 36..10-00002000
11....+QP000124 35..10-00011000 36..10-00004000
11....+QP000124 35..10-00004000 36..10+00000100
11....+QP000124 35..10+00004000 36..10-00000100
11....+QP000124 35..10+00011000 36..10-00005000
11....+QP000124 35..10+00012000 36..10-00002500
11....+QP000125 35..10-00012000 36..10-00002000
11....+QP000125 35..10-00011000 36..10-00002500
11....+QP000125 35..10-00004000 36..10-00000070
11....+QP000125 35..10+00004000 36..10-00000070
11....+QP000125 35..10+00011000 36..10-00002500
11....+QP000125 35..10+00012000 36..10-00002000
11....+TEMPLATE 35..41-00002000 36..11+00000000
71....+0000FILL 72....+00002000
11....+TEMPLATE 35..41-00000500 36..11+00000000
71....+0000FILL 72....+00000000
11....+TEMPLATE 35..41+00000000 36..11+00000000
71....+0000FILL 72....+00000000
11....+TEMPLATE 35..41+00001000 36..11+00000000
71....+0000FILL 72....+00000000
11....+TEMPLATE 35..41+00002000 36..11+00000000
71....+0000FILL 72....+00002000
```

Cross Section Assignments

Elements supported.

Element	Definition
Cross Section number	The number or identifier of the cross section
Chainage	The chainage from which the cross section is applied

Header of the Cross Section Assignment file: 410001+000asker 42..10+ASSIGNMT 43....+CRSASKER

WI41 Job identification. Max. 8 ASCII characters, user definable.

WI42 Cross section assignment file identification. May not be changed by user.
WI43 Name of the corresponding cross section file

A data block for a cross section assignment is structured as follows:

110002+0000NORM 71....+00382000

WI 11 The cross section number.
WI 71 Beginning chainage for that cross section

Comments:

- The header consists of a single block at the start of a data file.
- A cross section assignment file must have a corresponding cross section file.
- A cross section remains valid until a new cross section is assigned.
- A given cross section may be assigned to multiple chainage.
- The units for chainage are defined in WI 42 in the file header.
- For a cross section assignment file there is a limitation of 100 data blocks.

Example:

```
410001+000asker 42..10+ASSIGNMT 43....+CRSASKER
110002+0000NORM 71....+00382000
110003+0000NORM 71....+00552000
110004+00000568 71....+00568000
110005+000568.1 71....+00568100
110006+000585.1 71....+00585100
110007+000585.2 71....+00585200
110008+0000NORM 71....+00611000
110009+0000NORM 71....+00775000
110010+00000811 71....+00811000
110011+000826.9 71....+00826900
110012+00000827 71....+00827000
110013+00000827 71....+00844000
110014+000826.9 71....+00844100
110015+00000860 71....+00860000
```


Station Equations

Elements supported

Element	Definition
Station equation number	The number or identifier of the station equation
Chainage ahead	The chainage to be applied going forward along the alignment
Chainage back	The chainage to be applied going backward along the alignment

Header of the Station Equation file :

```
41....+00JOB_ID 42....+0STAEQTN
```

WI41 Job identification. Max. 8 ASCII characters, user definable.

WI42 Station Equation file identification. May not be changed by user.

A data block for a station equation is structured as follows:
41....+00000001 42....+00100000 43....+00200000

WI 41 The station equation number.
WI 42 Chainage ahead.
WI 43 Chainage back.

Comments:

- The header consists of a single block at the start of a data file.
- For a station equation file there is a limitation of 100 data blocks.

Example:

```
41....+00JOB_ID 42....+0STAEQTN
41....+00000001 42..10+00100000 43..10+00200000
41....+00000002 42..10+00566000 43..10+00600000
```


Log File

If "Log File" is set to "ON" the measurements and the results are stored in the ASCII-file specified within the "Configuration Editor". This file is created in the directory LOG on the memory card. Subsequently, you can read the memory card on your PC and obtain a hard copy of the Log-file.

Data will always be appended to the specified Log-file.

The Log-file contains the following information:
Header includes:

- the program used,
- information about the instrument,
- the file to store the measurement data,
- the date and the time.

Configuration the name of the input files for:

- the Hz-alignment,
- the V-alignment and
- the cross section.

Measurement - Instrument station with coordinates and instrument height.

- Stakeout point with heigth offset,
- offset ${ }^{1}$ and height displacement ${ }^{2}$ relative to centre line,
- comparison values from planning, and associated differences.

1 This value results from

- the displacement of the zero point of the profile and - the displacement taken from the transverse profile.

2 This value results from

- the displacement of the zero point of the profile and
- the displacement taken from the transverse profile
- the height displacement in the configuration.

Example of a log file for the program "ROAD PLUS"

File Editor

Introduction

The manual describes the program "FILE EDITOR (GSI)" of the LEICA TPS SYSTEM 1000 theodolite series. This version of the file editor is only valid for a GSI configuration.
This program is used to open/to view and edit existing project files for the program "RoadPlus" or for creation of new project files.
In order to create new project files, the file names must comply with certain rules.

1. Horizontal Alignment File File Name: ALN?????.GSI
2. Vertical Alignment File File Name: PRF?????.GSI
3. Template File

File Name: CRS?????.GSI

4. Station Equation File
 File Name: EQN?????.GSI

5. Cross-section Assignment File
 File Name: STA?????.GSI

You can insert a permitted character for a DOS file name in place of a ?.

Creation of files

The following table shows an overview of the max. file sizes:

Type of file	Limitations
Horizontal alignment	200 data blocks
Vertical alignment	200 data blocks
Cross section	200 data blocks (number of points in a cross section max. 48)
Cross section assignment	100 data blocks
Station equation	100 data blocks

Editing files

It is possible to insert also a new data set:

- With function "Coordinate", point coordinates, station coordinates or a code block can be inserted.
- With function "Horizontal Alignment" a tangent, a circular curve, a Spiral in, a Spiral out, a Curve in or a Curve out can be inserted.
For the circular curve radius the following sign rule applies:
With a right-hand curve (centre of circle right of alignment) the sign is positive.
With a left-hand curve (centre of circle left of alignment) the sign is negative.
- With function "Vertical Alignment" a tangent, a circular curve or a parabola can be inserted. For the circular curve radius and/or the parabola parameter the following sign rule applies:

If the centre of circle is above the alignment (dip) the sign is positive.
If the centre of circle is below the alignment (crest) the sign is negative.

- With function "Template" an offset or a height difference relative to axis can be inserted. For the offset and/or the height difference the following sign rule applies:
If the point is left of alignment the offset is negative. If the point is right of alignment the offset is positive. If the point is above the alignment the height difference is positive.
If the point is below the alignment the height difference is negative.
- With function "Station Equation" a number for the station equation, a station ahead or a station back can be inserted.
- With function "Cross-section Assignment" the name of the template and the start station for this template can be inserted.

Start program "FILE EDITOR" from the "MAIN MENU: PROGRAMS" dialog.

File Type : Select type of file:
Coordinate, refer to chapter
"Coordinates"
Horiz. Align, refer to chapter "Horizontal Alignment"
Vert. Align, refer to chapter "Vertical
Alignment"
Template, refer to chapter "Template"
Sta. Eqn., refer to chapter "Station
Equation"
CRS Assignmnt, refer to chapter "Cross-section Assignment"

File Name : Select file name.

F1 Displays date and version of the running application.
Create new file "Coordinate", see dialog page 306.
$\overbrace{-}^{\text {CONT }}$ View and edit existing file.

Coordinates

F2 Press within dialog page 305 in order to create a new file Coordinates (see dialog below).

Press within dialog page 305 in order to view and edit the selected file (see dialog page 307-309).

File Type : Display of type of file.
File Name : Select file name. Only files, which are not created yet, can be selected.

No.Decimals : Select number of decimals.
${ }_{-}^{\text {CONT }}$ Insert a new data set.

๑^{1} Insert point coordinates, see page 307.
0^{2} Insert station coordinates, see dialog page 308.
3 Insert code block, see dialog page 309.

	FilEd\ VIEW / EDIT FILE 14:03					
	Point no.					
	Northing : 0.000 m					
	Elevation : 0.000 m					
	<--	-->	SAVE	INSRT	IMPOR	ONUM
Shift	HELP	<--	-->		SEARC	
	$\bigcirc^{\text {FI }}$	$\bigcirc^{F 2}$	\bigcirc	$\bigcirc^{\text {F4 }}$	$\bigcirc^{\text {F5 }}$	${ }^{\text {F6 }}$

2/ 3
: Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Point no. : Input of point number.
Easting : Input of easting.
Northing : Input of northing.
Elevation : Input of elevation.
Display of previous point.
Display of following point.
Save file.
${ }^{\text {F4 }}$ Insert new data set, see dialog page 306, bottom.
F5 Import of coordinates by reading in the active coordinate file. This function is described in chapter "Select user template ..." of the "SYSTEM" Users Manual.

Goto start of file.

Goto end of file.

Point search, see dialog page 310.

$$
\text { 2/3 : Sequence number of current point and } \begin{aligned}
& \text { total number of points in the } \\
& \text { measurement set. The scroll bar shows } \\
& \text { the sequential position of the } \\
& \text { measurements, graphically. }
\end{aligned}
$$

Point no. : Input of point number.
Stn. Eastng : Input of station easting.
Stn. Northg : Input of station northing.
Stn. Elev. : Input of station elevation.

Meaning of the function keys is similar to dialog page 307.

Call function "Insert Code Block" in menu "INSERT RECORD" (page 306).

2/ 3 : Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Code : Input of code number.
Info 1-7 : Input of information 1 to 7.

Meaning of the function keys is similar to dialog page 307.

Direction : Forward: Searching for point or code numbers in direction end of file. Backward: Searching for point or code numbers in direction start of file.

Point/Code : Input of point or code number.

F2 Create new file 'Horiz. Align" in dialog page 305, see dialog bottom.

CONT

View and edit selected file in dialog page 305, see dialog page 312/314.

File Type : Display of type of file.
File Name : Input of file name (max. 5 char.), see chapter "Introduction".

No.Decimals : Selection of number of decimals.

1/ 1
: Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Job Id : Input of job identification.
File Id : Display of horizontal alignment file.
File Type : Display for the main point method.

Insert new data set.

INSERT RECORD 14:03						
1 Insert Tangent						
2 Insert Circular Curve						
3 Insert Spiral In						
4 Insert Spiral Out						
5 Insert Curve In 6 Insert Curve Out						
7 Insert End Of Positioning						
HELP						
F1	F2	F3	F4	F5		F6
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

Insert Tangent.
๑^{2} Insert Circular Curve.
๑^{3} Insert Spiral In.
๑^{4} Insert Spiral Out.
๑^{5} Insert Curve In, see dialog page 314.
๑^{6} Insert Curve Out.
\ominus^{7} Insert End Of Positioning.

The function "Insert Curve In" is used as an example.
For the other functions refer to dialog page 314.

0^{5}
 Call function "Insert Curve In" in menu "INSERT RECORD" (page 313).

FilEd\ VIEW / EDIT FILE					
Station			$\square \quad 2 / 13$		\pm
		:			
Ele Type		:	Curve In		
Radius ${ }^{\text {Template }}$:	0.000 m		
		:	TEMPLATE		
Radius 2		:	0.000 m		
<--	-->	SAVE	INSRT	IMPOR	EDIT
Easting Northing		:		0.000 m	
		:		0.000 m	
HELP	<--	-->	DEL	SEARC	
			${ }^{F 4}$	${ }^{F 5}$	$\bigcirc^{\text {F6 }}$

2/ 3	: Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.
Station	$:$ Input of station (chainage).
Ele Type	$:$ Display of geometric element.
Radius 1	$:$Input of circular curve radius 1.
Template	$:$Input of name/number of cross section.
Radius 2	$:$ Input of circular curve radius 2.
Easting	$:$ Input of easting.
Northing	$:$ Input of northing.

F1 Display of previous point.

F2 Display of following point.
F3 Save file.
F4 Insert new data set.

F5 Import of coordinates either by manual input or by reading in the active coordinate file. This function is described in chapter "Select user template ..." of the "SYSTEM" Users Manual.

F3 Goto end of file.

Shiff		
${ }_{9}$	$\Theta^{\text {F4 }}$	Delete a data block.

Sniff
$\Theta$$\Theta^{\text {F5 }}$ Point search.

| Shift | |
| :---: | :---: | :---: |
| $\underbrace{}_{0}$ F5 | Start dialog "SEARCH" in the dialogs "View / Edit | File" (pages 312, 314).

Direction	: Forward: Searching for station in direction end of file. Backward: Searching for station in direction start of file.
Station	$:$ Input of station (chainage).

> - F2 Create new file 'Vert. Align' in dialog page 305, see dialog bottom.

View and edit selected file in dialog page 305, see dialog page 318, 319 .

File Type : Display of type of file.
File Name : Input of file name (max. 5 char.), see chapter "Introduction".

No.Decimals : Selection of number of decimals.

	FilEd\ VIEW / EDIT FILE 14:03					
	Job Id \vdots JOB ID File Id \vdots OVALIGNM File Type \vdots STACOORD					
			SAVE	INSRT		ONUM
$\begin{array}{\|c\|} \hline \text { Shift } \\ \mathrm{O} \end{array}$	HELP	<--	-->		SEARC	
	$\bigcirc^{\text {F1 }}$	$\bigcirc^{F 2}$	$\bigcirc^{\text {F3 }}$	$\bigcirc^{\text {F4 }}$	$\bigcirc^{F 5}$	$\bigcirc^{F 6}$

: Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Job Id : Input of job identification.
File Id : Display for the vertical alignment file.
File Type : Display for the main point method.

Meaning of the function keys is similar to dialog page 312.

๑^{1} Insert Tangent.
0^{2} Insert Circular Curve.
Insert Parabola, see dialog page 319.
Insert End Of Positioning.

The function "Insert parabola" is used as an example.
For the other functions refer to dialog page 319.

3 Call function "Insert Parabola" in menu "INSERT RECORD" (page 318).

	FilEd\ VIEW / EDIT FILE 14:03					
	$2 /$ 3 Station \vdots 0.000 m EleType \vdots Parabola Parameter \vdots 0.000 m Elevation \vdots 0.000 m					
	<--	-->	SAVE	INSRT	IMP OR	EDIT
$\begin{array}{\|c\|} \hline \text { Shift } \\ \Theta \end{array}$	HELP $<--$ $-->$ DEL SEARC					
	$O^{F 1}$				F5	$\bigcirc \quad F 6$

2/ 3	: Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.
Station	: Input of station (chainage).
Ele Type	: Display of geometric element.
Parameter	: Input of parabola parameter.
Elevation	: Input of elevation.

Meaning of the function keys is similar to dialog page 314.
 File" (pages 317, 319).

Direction : Forward: Searching for station in direction end of file.
Backward: Searching for station in direction start of file.

Station : Input of station (chainage).
$๑_{\bullet^{\text {CONT }} \text { or }}^{\text {F }}$ Search for station.

Template

F2 Create new file "Template" in dialog page 305, see dialog bottom.

View and editselected file in dialog page 305, see dialoges page 322/323.

File Type : Display of type of file.
File Name : Input of file name (max. 5 char.), see chapter "Introduction".

No.Decimals : Selection of number of decimals.

1/1 : | Sequence number of current point and |
| :--- |
| total number of points in the |
| measurement set. The scroll bar shows |
| the sequential position of the |
| measurements, graphically. |

Job Id : Input of job identification.
File Id : Display of cross section file.

Meaning of the function keys is similar to dialog page 312.

$$
\begin{array}{ll}
\text { 2/ } 3 & \begin{array}{l}
\text { : Sequence number of current point and } \\
\text { total number of points in the } \\
\text { measurement set. The scroll bar shows } \\
\text { the sequential position of the } \\
\text { measurements, graphically. }
\end{array} \\
\text { Template } \quad \begin{array}{l}
\text { Input of name/number of cross section } \\
\text { point. }
\end{array}
\end{array}
$$

$\Delta \mathbf{H z}$-Dist. : Input of horiz. distance of cross section point.

SO Ht diff : Input of nom. height difference of cross section point to axis.

Cut/Fill : Selection of cross section type. Available are:
CUT
FILL STANDARD

Slope ratio : Input of slope ratio.

Meaning of the function keys is similar to dialog page 314.

| Shift |
| :---: | :---: | :---: | File" (pages 322, 323).

Direction	: Forward: Searching for templates in direction end of file. Backward: Searching for templates in direction start of file.
Template $\quad:$Input of template name.	

${ }_{\bullet}^{\text {CONT }}$ or ${ }_{-}^{\text {F5 }}$ Search for templates.

Station Equation

F2 Create new file "Sta. Eqn." in dialog page 305, see dialog bottom.

CONT

View and edit selected file in dialog page 305, see dialogs page 326/327.

File Type : Display of type of file.
File Name : Input of file name (max. 5 char.), see chapter "Introduction".

No.Decimals : Selection of number of decimals.

\(\left.$$
\begin{array}{ll}\text { 1/ } 1 & \begin{array}{l}\text { : } \\
\text { Sequence number of current point and } \\
\text { total number of points in the } \\
\text { measurement set. The scroll bar shows } \\
\text { the sequential position of the }\end{array}
$$

measurements, graphically.\end{array}\right\}\)	Job Id $\quad:$ Input of job identificaton.
File Id $\quad:$ Display for the station equation file.	

Meaning of the function keys is similar to dialog page 312.

> 2/ 3 : Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.

Sta. Eqn. : Input of number of station equation.
Ahead : Input of station ahead.
Back : Input of station back.

Meaning of the function keys is similar to dialog page 314. Start dialog "SEARCH" in dialogs "View / Edit File" (pages 326, 327).

Direction : Forward: Searching for station equations in direction end of file. Backward: Searching for station equations in direction start of file.

Sta. Eqn. : Input of number of station equation.

F2 Create new file "CRS Assignmnt" in dialog page 305, see dialog bottom.

View and edit selected file in dialog pagee 305, see dialogs page 330/331.

File Type : Display of type of file.
File Name : Input of file name (max. 5 char.), see chapter "Introduction".

No.Decimals : Selection of number of decimals.

1/ 1 : Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.
Job Id : Input of job identification.
File Id : Display of section assignment file.
CRS File : Selection of relevant cross section file.

Meaning of the function keys is similar to dialog page 312.

2/ 3	: Sequence number of current point and total number of points in the measurement set. The scroll bar shows the sequential position of the measurements, graphically.
Template $:$: Selection of template.	
Station $\quad:$ Input of start station for this template.	

Meaning of the function keys is similar to dialog page 314.

Direction : Forward: Searching for templates in direction end of file.
Backward: Searching for templates in direction start of file.

Station : Input of station (chainage).

Monitoring

The manual describes the "Monitoring" program of the Leica TPS SYSTEM 1000 theodolite series. The program allows for automatic measurement repetition.

Max. 50 measuring points and as many measurement repetitions as desired, at any time intervals.

Introduction

The instrument must be firmly mounted on a tripod or pillar.

Requirements to run this program:

- the licence number
- a PCMCIA card which is inserted into the instrument

By means of a timer function, the program can trigger the automatic measurement, at predetermined intervals, of points which have already been measured once and learned by the instrument and which are stored on the PCMCIA card.

The measurements can be:

- repeated as often as is necessary,
- at any time
- performed in both faces.

The point number, the horizontal and vertical angles and the slope distance for the individual measurements are stored on the memory card.

The points to be measured must be permanently equipped with Leica prisms.
The measurements are limited only by the storage capacity of the PCMCIA memory card.

Main menu

๑^{1} Selection of points to be measured, see page 336.
๑^{2} Set timer requirements, see page 339 .
๑^{3} Start point measurement, see page 340.
0^{4} Exit the "Monitoring" program.

The points to be measured are selected from this menu:

- by storing the appropriate measurement file, points already measured at the same station
- by entering the LEARNED file, points yet to be determined.

To learn points, the "LEARNED" file must be used as a control file.

To use points from another file, use ${ }_{\bullet^{F 6}}$ (LIST) to switch to the file selection und wählen die gewünschte Datei.
The point file must:

- be in the GSI directory on the PCMCIA card,
- include the point numbers and the angle measurements.
The instrument itself must have been positioned.

With the "Two Faces" option you can alternate between one-face and two-face measurement.
If you choose the two-face option, every single measurement is stored on the PCMCIA card.

Calls the measurement menu, for first-time point measurement.

Calls the point selection.

Selects from the list of GSI files.

MONIT LEARN POINT 14:03					
Point no. Remark 1					
Refl.Height : 0.0000 m					
Horiz.	Dist.	:	145.4	821 m	介
ALI	DIST	REC	TARGT	DONE	人NUM
HELP			I<>II		
${ }^{F 1}$	${ }^{F 2}$	$0^{F 3}$	${ }^{\circ} \quad \begin{gathered} F 4 \\ \hline \end{gathered}$	${ }^{F 5}$	$\bigcirc^{\text {F6 }}$

If the measurement file already includes points with the same point number, then when this function is called you will be asked whether the points are to be written over.

For the instrument to learn a point, the prism must be targeted manually
Triggering the distance measurement then initiates a distance measurement and a precise determination of the angle.
${ }^{F 2}$ Measure the distance.

- F3 Store the measurement into the selected file.
${ }^{\text {F5 }}$ Quit the function after all points have been measured; return to the "POINT SELECTION" menu.

${ }^{\text {FF }}$ (ALL) does not have any functions, for measuring and recording it is imperative to use and ${ }^{53}$.

The points will be saved in the set measurement file (refer to chapter "Select user template and measurement file" of "System" - user manual).

- F5 Start selection of the points to be measured in the dialog "POINT SELECTION" (page 336).

In this menu, you can select the points which you require for the automatic measurement.
A selected point can be either activated or deactivated. Several points with the same point number can be present.
When you have selected all the points you require, press ${ }_{\bullet}{ }^{\text {F }}$ (DONE) to quit the menu.

Display the next point in the file.

Quit the menu and goes to the main menu for the point selection (page 336).

Alternates between switching a point "IN" and "OUT".

No point from the current file is to be selected.

All points from the current file are to be selected.

Position the instrument for the point selected.

Timer selection

This menu decides when the measurement will be taken.

Enter the date and time for the beginning and end of the measurement.
An interval of at least one minute between measurements must be defined.
The number of repeats can be defined in the field "Repetitions".
$\odot^{F 6}$ Edit the preset values.

Point measurement

Choosing this option starts the measurement. If a point cannot be measured, the TCA starts its internal search routine and, if unsuccessful, goes on to the next point to be measured.

Abort the automatic measurement.

End monitoring

This option terminates the "Monitoring" program.

Index

A Abort 340
Abscissa 238, 241
Additional applications 16
Alignment 175
Angular correction 168
Arcs 120
Area 117
Azimuth and distance 64
B Backsight azimuth 152
Base point 106, 238
Baseline points 95
C Calling up the program 25
Calls ON-LINE help 26
Calls up code input 26
CAUTION 4
Centre-line offset 171
Chainage 171
Closes application 26
Coarse positioning 60
COGO 205
Computation of area 117
Create coordinate file 306
Create cross-section assignment file 329
Create horizontal alignment file 311
Create station equation file 325
Create template file 321
Create vertical alignment file 317
Cross section assignment 259, 298
Cross section interpolation 260
Cross sections 180, 201, 296
D DANGER 4
Data exchange 24
Designation of keys 26
Determination of the station elevation 27
Direction measurements 129
F File editor 303
Free station 79
G General notes 23
HHidden point111
Hz-alignment 192, 291
I Important paragraphs 4
Installation in the PC 12
Instrument field setup 24
Intersections 221
Introduction 11
Inverse 209
LLicence code11, 21
Line offset 60
Loading application programs 20
Loading system texts 19
Local coordinates 165
Local resection 165
Local station elevation 165
M Measurement file 336, 337
Measurement menu 337
Measurement repetition 333
Monitoring 333
N Naming files 15
0 Offsets 237
Ordinate 238, 241
Orientation 79, 83, 168
Orientation and height transfer 27
Orientation correction
$27,32,38,44,47,84,90,168$
Oriented direction 31, 43, 83
Orthogonal 62
Orthogonal stakeout 68
P PCMCIA memory card 334
Perimeter 123, 124
Point measurement 340
Polar calculation 209
Polar stakeout 66
Pole 111
Polygon mode 53, 54
Polygonal mode 49, 58
Product identification 3
Project files 303
R Radial methods 49
Radial mode 50, 53, 54
Reference line 93, 98
Reference point 289
Remote height 105
Remote point 108
Resection 39
Road line 171
Road plus 249
S Scale factor 84
Select stakeout method 74
Selecting points 336
Sets of angles 129
Sideshot 153
Sideshot point 154, 155
Sideshots 147
Slope staking 285
Software upload 17
Stakeout 59, 66, 183
Stakeout from coordinate differences 72
Stakeout with auxiliary points 70
Standard applications 11, 16
Station equations 262, 300
Superelevation 261
T Three point arc 246
Tie distance 49
Timer selection 339
TRANSFER 19, 20
Traverse 147, 212
Traverse point 153, 154, 155
Two faces 336
U Units in this manual 23
Using the program 24
VV-alignment197, 294
WWARNING4
WORKBENCH 13, 14
XX-section Check184

Leica Geosystems AG,
 Heerbrugg, Switzerland has been certified as being equipped with a quality system which meets the International Standard of Quality Management and Quality Systems (ISO standard 9001)

Total Quality ManagementOur commitment to total customer satisfaction

Ask your local Leica agent for more information about our
TQM program

Seica

Printed in switzerland - Copyright Leica Geosystems AG, Heerbrugg, Switzerland 1998
Translation of original text (664901-2.3.1de)
Leica Geosystems AG Geodesy
CH-9435 Heerbrugg
(Switzerland) Phone + 41717273131 Fax +41717274673
www.leica.com
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

[^0]: ${ }^{1} 2 \mathrm{px}\left(\mathrm{H}-\mathrm{H}_{0}\right)=\left(\mathrm{S}-\mathrm{S}_{0}\right)^{2} \mathrm{~S}_{0}, \mathrm{H}_{0}$ station and height of vertex

[^1]: F2 Determining the direction by means of the function "Polar calculation" (refer to chapter "Inverse").

[^2]: F4 Change the location to -1.5 m . The " $\Delta \mathrm{CL}$ Hght Diff" value will automatically change to the correct vertical difference based upon the design of the template.

