View Safety Info

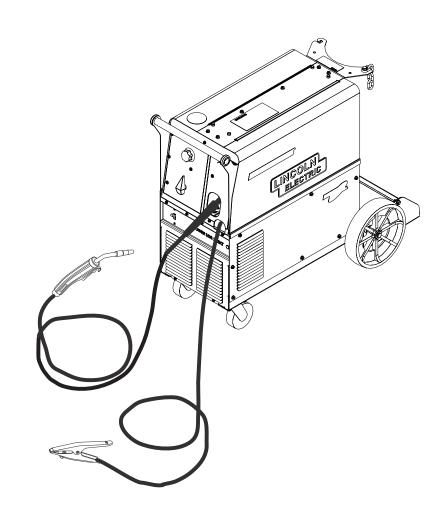
View Safety Info

View Safety Info

Safety Info

View

SVM209-A


April, 2011

POWER MIG® 215XT

For use with machine code number: 11521

Lincoln arc welding and cutting equipment is designed and built with safety in mind. However, your overall safety can be increased by proper installation . . . and thoughtful operation on your part. DO NOT INSTALL, OPERATE OR REPAIR THIS EQUIPMENT WITHOUT READING THIS MANUAL AND THE SAFETY PRECAUTIONS CONTAINED THROUGHOUT. And, most importantly, think before you act and be careful.

SERVICE MANUAL

Copyright © Lincoln Global Inc.

· World's Leader in Welding and Cutting Products ·

• Sales and Service through Subsidiaries and Distributors Worldwide •

Cleveland, Ohio 44117-1199 U.S.A. TEL: 216.481.8100 FAX: 216.486.1751 WEB SITE: www.lincolnelectric.com

Download from Www.Somanuals.com. All Manuals Search And Download.

Return

SAFETY

A WARNING

CALIFORNIA PROPOSITION 65 WARNINGS

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

The Above For Diesel Engines

The engine exhaust from this product contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

The Above For Gasoline Engines

ARC WELDING can be hazardous. PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS SHOULD CONSULT WITH THEIR DOCTOR BEFORE OPERATING.

Read and understand the following safety highlights. For additional safety information, it is strongly recommended that you purchase a copy of "Safety in Welding & Cutting - ANSI Standard Z49.1" from the American Welding Society, P.O. Box 351040, Miami, Florida 33135 or CSA Standard W117.2-1974. A Free copy of "Arc Welding Safety" booklet E205 is available from the Lincoln Electric Company, 22801 St. Clair Avenue, Cleveland, Ohio 44117-1199.

BE SURE THAT ALL INSTALLATION, OPERATION, MAINTENANCE AND REPAIR PROCEDURES ARE PERFORMED ONLY BY QUALIFIED INDIVIDUALS.

FOR ENGINE powered equipment.

 Turn the engine off before troubleshooting and maintenance work unless the maintenance work requires it to be running.

b. Operate engines in open, well-ventilated areas or vent the engine exhaust fumes outdoors.

- 1.c. Do not add the fuel near an open flame welding arc or when the engine is running. Stop the engine and allow it to cool before refueling to prevent spilled fuel from vaporizing on contact with hot engine parts and igniting. Do not spill fuel when filling tank. If fuel is spilled, wipe it up and do not start engine until fumes have been eliminated.
- 1.d. Keep all equipment safety guards, covers and devices in position and in good repair. Keep hands, hair, clothing and tools away from V-belts, gears, fans and all other moving parts when starting, operating or repairing equipment.
- 1.e. In some cases it may be necessary to remove safety guards to perform required maintenance. Remove guards only when necessary and replace them when the maintenance requiring their removal is complete. Always use the greatest care when working near moving parts.

- 1.f. Do not put your hands near the engine fan. Do not attempt to override the governor or idler by pushing on the throttle control rods while the engine is running.
- 1.g. To prevent accidentally starting gasoline engines while turning the engine or welding generator during maintenance work, disconnect the spark plug wires, distributor cap or magneto wire as appropriate.

 To avoid scalding, do not remove the radiator pressure cap when the engine is hot.

ELECTRIC AND MAGNETIC FIELDS may be dangerous

- 2.a. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding current creates EMF fields around welding cables and welding machines
- 2.b. EMF fields may interfere with some pacemakers, and welders having a pacemaker should consult their physician before welding.
- Exposure to EMF fields in welding may have other health effects which are now not known.
- 2.d. All welders should use the following procedures in order to minimize exposure to EMF fields from the welding circuit:
 - 2.d.1. Route the electrode and work cables together Secure them with tape when possible.
 - 2.d.2. Never coil the electrode lead around your body.
 - 2.d.3. Do not place your body between the electrode and work cables. If the electrode cable is on your right side, the work cable should also be on your right side.
 - 2.d.4. Connect the work cable to the workpiece as close as possible to the area being welded.
 - 2.d.5. Do not work next to welding power source.

" SAFETY "

ELECTRIC SHOCK can kill.

- 3.a. The electrode and work (or ground) circuits are electrically "hot" when the welder is on. Do not touch these "hot" parts with your bare skin or wet clothing. Wear dry, hole-free gloves to insulate hands.
- 3.b. Insulate yourself from work and ground using dry insulation. Make certain the insulation is large enough to cover your full area of physical contact with work and ground.

In addition to the normal safety precautions, if welding must be performed under electrically hazardous conditions (in damp locations or while wearing wet clothing; on metal structures such as floors, gratings or scaffolds; when in cramped positions such as sitting, kneeling or lying, if there is a high risk of unavoidable or accidental contact with the workpiece or ground) use the following equipment:

- · Semiautomatic DC Constant Voltage (Wire) Welder.
- · DC Manual (Stick) Welder.
- · AC Welder with Reduced Voltage Control.
- 3.c. In semiautomatic or automatic wire welding, the electrode, electrode reel, welding head, nozzle or semiautomatic welding gun are also electrically "hot".
- 3.d. Always be sure the work cable makes a good electrical connection with the metal being welded. The connection should be as close as possible to the area being welded.
- 3.e. Ground the work or metal to be welded to a good electrical (earth) ground.
- Maintain the electrode holder, work clamp, welding cable and welding machine in good, safe operating condition. Replace damaged insulation.
- 3.g. Never dip the electrode in water for cooling.
- 3.h. Never simultaneously touch electrically "hot" parts of electrode holders connected to two welders because voltage between the two can be the total of the open circuit voltage of both welders.
- When working above floor level, use a safety belt to protect yourself from a fall should you get a shock.
- 3.j. Also see Items 6.c. and 8.

ARC RAYS can burn.

- 4.a. Use a shield with the proper filter and cover plates to protect your eyes from sparks and the rays of the arc when welding or observing open arc welding. Headshield and filter lens should conform to ANSI Z87. I standards.
- 4.b. Use suitable clothing made from durable flame-resistant material to protect your skin and that of your helpers from the arc rays.
- 4.c. Protect other nearby personnel with suitable, non-flammable screening and/or warn them not to watch the arc nor expose themselves to the arc rays or to hot spatter or metal.

FUMES AND GASES can be dangerous.

5.a. Welding may produce fumes and gases hazardous to health. Avoid breathing these fumes and gases.When welding, keep your head out of the fume. Use enough ventilation and/or exhaust at the arc to keep

fumes and gases away from the breathing zone. When welding with electrodes which require special ventilation such as stainless or hard facing (see instructions on container or MSDS) or on lead or cadmium plated steel and other metals or coatings which produce highly toxic fumes, keep exposure as low as possible and within applicable OSHA PEL and ACGIH TLV limits using local exhaust or mechanical ventilation. In confined spaces or in some circumstances, outdoors, a respirator may be required. Additional precautions are also required when welding on galvanized steel.

- 5. b. The operation of welding fume control equipment is affected by various factors including proper use and positioning of the equipment, maintenance of the equipment and the specific welding procedure and application involved. Worker exposure level should be checked upon installation and periodically thereafter to be certain it is within applicable OSHA PEL and ACGIH TLV limits.
- 5.c. Do not weld in locations near chlorinated hydrocarbon vapors coming from degreasing, cleaning or spraying operations. The heat and rays of the arc can react with solvent vapors to form phosgene, a highly toxic gas, and other irritating products.
- 5.d. Shielding gases used for arc welding can displace air and cause injury or death. Always use enough ventilation, especially in confined areas, to insure breathing air is safe.
- 5.e. Read and understand the manufacturer's instructions for this equipment and the consumables to be used, including the material safety data sheet (MSDS) and follow your employer's safety practices. MSDS forms are available from your welding distributor or from the manufacturer.
- 5.f. Also see item 1.b.

2

Return

iii SAFETY iii

WELDING and CUTTING SPARKS can cause fire or explosion.

6.a. Remove fire hazards from the welding area.If this is not possible, cover them to prevent the welding sparks from starting a fire. Remember that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.

- 6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to "Safety in Welding and Cutting" (ANSI Standard Z49.1) and the operating information for the equipment being used.
- 6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.
- 6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even though they have been "cleaned". For information, purchase "Recommended Safe Practices for the Preparation for Welding and Cutting of Containers and Piping That Have Held Hazardous Substances", AWS F4.1 from the American Welding Society (see address above).
- 6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.
- 6.f. Sparks and spatter are thrown from the welding arc. Wear oil free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.
- 6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate circuits. This can create fire hazards or overheat lifting chains or cables until they fail.
- 6.h. Also see item 1.c.
- 6.I. Read and follow NFPA 51B "Standard for Fire Prevention During Welding, Cutting and Other Hot Work", available from NFPA, 1 Batterymarch Park,PO box 9101, Quincy, Ma 022690-9101.
- 6.j. Do not use a welding power source for pipe thawing.

CYLINDER may explode if damaged.

- 7.a. Use only compressed gas cylinders containing the correct shielding gas for the process used and properly operating regulators designed for the gas and pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.
- Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.
- 7.c. Cylinders should be located:
 - Away from areas where they may be struck or subjected to physical damage.
 - A safe distance from arc welding or cutting operations and any other source of heat, sparks, or flame.
- 7.d. Never allow the electrode, electrode holder or any other electrically "hot" parts to touch a cylinder.
- 7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.
- 7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.
- 7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-I, "Precautions for Safe Handling of Compressed Gases in Cylinders," available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.

FOR ELECTRICALLY powered equipment.

- 8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.
- 8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturer's recommendations.
- 8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturer's recommendations.

Refer to http://www.lincolnelectric.com/safety for additional safety information.

iv SAFETY iv

PRÉCAUTIONS DE SÛRETÉ

Pour votre propre protection lire et observer toutes les instructions et les précautions de sûreté specifiques qui parraissent dans ce manuel aussi bien que les précautions de sûreté générales suivantes:

Sûreté Pour Soudage A L'Arc

- 1. Protegez-vous contre la secousse électrique:
 - a. Les circuits à l'électrode et à la piéce sont sous tension quand la machine à souder est en marche. Eviter toujours tout contact entre les parties sous tension et la peau nue ou les vétements mouillés. Porter des gants secs et sans trous pour isoler les mains.
 - b. Faire trés attention de bien s'isoler de la masse quand on soude dans des endroits humides, ou sur un plancher metallique ou des grilles metalliques, principalement dans les positions assis ou couché pour lesquelles une grande partie du corps peut être en contact avec la masse.
 - c. Maintenir le porte-électrode, la pince de masse, le câble de soudage et la machine à souder en bon et sûr état defonctionnement.
 - d.Ne jamais plonger le porte-électrode dans l'eau pour le refroidir.
 - e. Ne jamais toucher simultanément les parties sous tension des porte-électrodes connectés à deux machines à souder parce que la tension entre les deux pinces peut être le total de la tension à vide des deux machines.
 - f. Si on utilise la machine à souder comme une source de courant pour soudage semi-automatique, ces precautions pour le porte-électrode s'applicuent aussi au pistolet de soudage.
- Dans le cas de travail au dessus du niveau du sol, se protéger contre les chutes dans le cas ou on recoit un choc. Ne jamais enrouler le câble-électrode autour de n'importe quelle partie du corps
- 3. Un coup d'arc peut être plus sévère qu'un coup de soliel, donc:
 - a. Utiliser un bon masque avec un verre filtrant approprié ainsi qu'un verre blanc afin de se protéger les yeux du rayonnement de l'arc et des projections quand on soude ou quand on regarde l'arc.
 - b. Porter des vêtements convenables afin de protéger la peau de soudeur et des aides contre le rayonnement de l'arc.
 - c. Protéger l'autre personnel travaillant à proximité au soudage à l'aide d'écrans appropriés et non-inflammables.
- 4. Des gouttes de laitier en fusion sont émises de l'arc de soudage. Se protéger avec des vêtements de protection libres de l'huile, tels que les gants en cuir, chemise épaisse, pantalons sans revers, et chaussures montantes.
- Toujours porter des lunettes de sécurité dans la zone de soudage. Utiliser des lunettes avec écrans lateraux dans les zones où l'on pique le laitier.

- Eloigner les matériaux inflammables ou les recouvrir afin de prévenir tout risque d'incendie dû aux étincelles.
- Quand on ne soude pas, poser la pince à une endroit isolé de la masse. Un court-circuit accidental peut provoquer un échauffement et un risque d'incendie.
- 8. S'assurer que la masse est connectée le plus prés possible de la zone de travail qu'il est pratique de le faire. Si on place la masse sur la charpente de la construction ou d'autres endroits éloignés de la zone de travail, on augmente le risque de voir passer le courant de soudage par les chaines de levage, câbles de grue, ou autres circuits. Cela peut provoquer des risques d'incendie ou d'echauffement des chaines et des câbles jusqu'à ce qu'ils se rompent.
- Assurer une ventilation suffisante dans la zone de soudage.
 Ceci est particuliérement important pour le soudage de tôles galvanisées plombées, ou cadmiées ou tout autre métal qui produit des fumeés toxiques.
- 10. Ne pas souder en présence de vapeurs de chlore provenant d'opérations de dégraissage, nettoyage ou pistolage. La chaleur ou les rayons de l'arc peuvent réagir avec les vapeurs du solvant pour produire du phosgéne (gas fortement toxique) ou autres produits irritants.
- Pour obtenir de plus amples renseignements sur la sûreté, voir le code "Code for safety in welding and cutting" CSA Standard W 117.2-1974.

PRÉCAUTIONS DE SÛRETÉ POUR LES MACHINES À SOUDER À TRANSFORMATEUR ET À REDRESSEUR

- Relier à la terre le chassis du poste conformement au code de l'électricité et aux recommendations du fabricant. Le dispositif de montage ou la piece à souder doit être branché à une bonne mise à la terre.
- 2. Autant que possible, l'installation et l'entretien du poste seront effectués par un électricien qualifié.
- Avant de faires des travaux à l'interieur de poste, la debrancher à l'interrupteur à la boite de fusibles.
- 4. Garder tous les couvercles et dispositifs de sûreté à leur place.

V SAFETY V

Electromagnetic Compatibility (EMC)

Conformance

Products displaying the CE mark are in conformity with European Community Council Directive of 15 Dec 2004 on the approximation of the laws of the Member States relating to electromagnetic compatibility, 2004/108/EC. It was manufactured in conformity with a national standard that implements a harmonized standard: EN 60974-10 Electromagnetic Compatibility (EMC) Product Standard for Arc Welding Equipment. It is for use with other Lincoln Electric equipment. It is designed for industrial and professional use.

Introduction

All electrical equipment generates small amounts of electromagnetic emission. Electrical emission may be transmitted through power lines or radiated through space, similar to a radio transmitter. When emissions are received by other equipment, electrical interference may result. Electrical emissions may affect many kinds of electrical equipment; other nearby welding equipment, radio and TV reception, numerical controlled machines, telephone systems, computers, etc. Be aware that interference may result and extra precautions may be required when a welding power source is used in a domestic establishment.

Installation and Use

The user is responsible for installing and using the welding equipment according to the manufacturer's instructions. If electromagnetic disturbances are detected then it shall be the responsibility of the user of the welding equipment to resolve the situation with the technical assistance of the manufacturer. In some cases this remedial action may be as simple as earthing (grounding) the welding circuit, see Note. In other cases it could involve construction of an electromagnetic screen enclosing the power source and the work complete with associated input filters. In all cases electromagnetic disturbances must be reduced to the point where they are no longer troublesome.

Note: The welding circuit may or may not be earthed for safety reasons according to national codes. Changing the earthing arrangements should only be authorized by a person who is competent to access whether the changes will increase the risk of injury, e.g., by allowing parallel welding current return paths which may damage the earth circuits of other equipment.

Assessment of Area

Before installing welding equipment the user shall make an assessment of potential electromagnetic problems in the surrounding area. The following shall be taken into account:

- a) other supply cables, control cables, signaling and telephone cables; above, below and adjacent to the welding equipment;
- b) radio and television transmitters and receivers;
- c) computer and other control equipment;
- d) safety critical equipment, e.g., guarding of industrial equipment;
- e) the health of the people around, e.g., the use of pacemakers and hearing aids;
- f) equipment used for calibration or measurement
- g) the immunity of other equipment in the environment. The user shall ensure that other equipment being used in the environment is compatible. This may require additional protection measures;
- h) the time of day that welding or other activities are to be carried out.

vi **SAFETY** vi

Electromagnetic Compatibility (EMC)

The size of the surrounding area to be considered will depend on the structure of the building and other activities that are taking place. The surrounding area may extend beyond the boundaries of the premises.

Methods of Reducing Emissions

Mains Supply

Welding equipment should be connected to the mains supply according to the manufacturer's recommendations. If interference occurs, it may be necessary to take additional precautions such as filtering of the mains supply. Consideration should be given to shielding the supply cable of permanently installed welding equipment, in metallic conduit or equivalent. Shielding should be electrically continuous throughout its length. The shielding should be connected to the welding power source so that good electrical contact is maintained between the conduit and the welding power source enclosure.

Maintenance of the Welding Equipment

The welding equipment should be routinely maintained according to the manufacturer's recommendations. All access and service doors and covers should be closed and properly fastened when the welding equipment is in operation. The welding equipment should not be modified in any way except for those changes and adjustments covered in the manufacturers instructions. In particular, the spark gaps of arc striking and stabilizing devices should be adjusted and maintained according to the manufacturer's recommendations.

Welding Cables

The welding cables should be kept as short as possible and should be positioned close together, running at or close to floor level.

Equipotential Bonding

Bonding of all metallic components in the welding installation and adjacent to it should be considered. However, metallic components bonded to the work piece will increase the risk that the operator could receive a shock by touching these metallic components and the electrode at the same time. The operator should be insulated from all such bonded metallic components.

Earthing of the Workpiece

Where the workpiece is not bonded to earth for electrical safety, not connected to earth because of its size and position, e.g., ships hull or building steelwork, a connection bonding the workpiece to earth may reduce emissions in some, but not all instances. Care should be taken to prevent the earthing of the workpiece increasing the risk of injury to users, or damage to other electrical equipment. Where necessary, the connection of the workpiece to earth should be made by a direct connection to the workpiece, but in some countries where direct connection is not permitted, the bonding should be achieved by suitable capacitance, selected according to national regulations.

Screening and Shielding

Selective screening and shielding of other cables and equipment in the surrounding area may alleviate problems of interference. Screening of the entire welding installation may be considered for special applications. ¹

Portions of the preceding text are contained in EN 60974-10: "Electromagnetic Compatibility (EMC) product standard for arc welding equipment."

	Page
Safety	i-v
Installation	Section A
Operation	Section B
Accessories	Section C
Maintenance	Section D
Theory of Operation	Section E
Troubleshooting and Repair	Section F
Electrical Diagrams	Section G
Parts Manual	P-580

A-1 TABLE OF CONTENTS - INSTALLATION SECTION

A-1

Ins	stallation	.A-1
	Technical Specifications	.A-2
	Safety Precautions	.A-3
	Uncrating the POWER MIG® 215XT	.A-3
	Location	.A-3
	Input Power, Grounding and Connection Diagrams	.A-3
	Output Polarity Connections	.A-4
	Gun and Cable Installation	.A-5
	Shielding Gas	.A-5
	Auxiliary Power Receptacles	.A-5

Return to Master TOC

Return to Master TOC

TECHNICAL SPECIFICATIONS - POWER MIG® 215XT

TECHNICAL 3		JT – SING	I F PHAS	E ONLY				
Standard Voltage/F					Input Current @	215 Amp Rated Output		
208/230/1/50/60 Hz		(With 115V re	•	ded to 15A)	(With 115V receptacle loaded to 15A) 45/41 Amps			
	RATED OUTPUT							
Duty C	Cycle		Amps			Rated Amperes		
30	%		215 Amps			22 Volts		
40	%	•	190 Amps			23 Volts		
60	%	•	170 Amps			24 Volts		
		OU	TPUT					
Welding Cur	rent Range	Maximum C	•	it Voltage		y Voltage Range		
30 – 250	DAmps		35 Volts		13	.5-24 Volts		
	RECOMMEND	DED INPU	T WIRE A	AND FUS	E SIZES			
Input Voltage/ Frequency (Hz)	Fuse or Breaker Size (Super Lag)	Input Ampere in Co Rating On AWG (IE Nameplate (For Id		opper Wire Conduit (IEC) Sizes lengths o 100 ft.)	75°C Copper Wire in Conduit AWG (IEC) Sizes (For lengths exceeding 100 ft.)			
208/50/60 230/50/60	60 60		15A 10 (6 n 11A 10 (6 n		6 mm ²) 6 mm ²)	8 (10 mm ²) 8 (10 mm ²)		
<u> </u>	NOTE	E: Use #10 A	WG Groun	ding Wire				
		WIRE SPI	EED RAN	IGE				
Wire S					– 17.8 m/min	ute)		
	P	HYSICAL	DIMENS	IONS				
Height		idth		epth	Weight			
31.79 ii 808 mr	_	3.88 in 30 mm	38.78 in 985 mm					
TEMPERATURE RANGES								

OPERATING TEMPERATURE RANGE	STORAGE TEMPERATURE RANGE
-4°F to 104°F(-20°C to +40°C)	-40°F to 185°F(-40°C to +40°C)

10C

Return to Master

Return to Master TOC

Read entire installation section before starting

SAFETY PRECAUTIONS

WARNING

installation.

ELECTRIC SHOCK can kill.

- Only qualified personnel should perform this installation.
- Only personnel that have read and understood the POWER MIG® 215XT Operating Manual should install and operate this equipment.
- Machine must be grounded per any national, local or other applicable electrical codes.
- The Power MIG® power switch is to be in the OFF position when installing work cable and gun and when connecting other equipment.

UNCRATING THE POWER MIG® 215XT

Cut banding and lift off cardboard carton. Cut banding holding the machine to the skid. Remove foam and corrugated packing material. Untape accessories from Gas Bottle Platform. Unscrew the two wood screws (at the Gas Bottle Platform) holding the machine to the skid. Roll the machine off the skid assembly.

LOCATION

Locate the welder in a dry location where there is free circulation of clean air into the louvers in the back and out the front. A location that minimizes the amount of smoke and dirt drawn into the rear louvers reduces the chance of dirt accumulation that can block air passages and cause overheating.

INPUT POWER, GROUNDING AND CONNECTION DIAGRAMS

WARNING

ELECTRIC SHOCK can kill.

- Do not touch electrically live parts such as output terminals or internal wiring.
- All input power must be electrically disconnected before proceeding.
- 1. Before starting the installation, check with the local power company if there is any question about whether your power supply is adequate for the voltage, amperes, phase, and frequency specified on the welder nameplate. Also be sure the planned installation will meet the U.S. National Electrical Code and local code requirements. This welder may be operated from a single phase line or from one phase of a two or three phase line.
- Models that have multiple input voltages specified on the nameplate (e.g. 208/230) are shipped connected for the highest voltage. If the welder is to be operated on lower voltage, it must be reconnected according to the instructions in *Figure A.1* for dual voltage machines.

WARNING

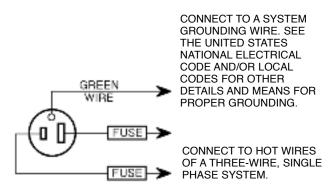

Make certain that the input power is electrically disconnected before removing the screw on the reconnect panel access cover.

FIGURE A.1 — Dual Voltage Machine Input Connections

INPUT SUPPLY CONNECTION DIAGRAM **Connect transformer** SINGLE PHASE input lead for 50/60 HZ desired voltage **A WARNING** range. Disconnect input power before inspecting or servicing machine. Do not operate with covers removed. **ELECTRIC** Do not touch electrically live parts. **SHOCK** Only qualified persons should install, CAN KILL use or service this equipment. Install and Ground machine per **National Electrical Code and local** codes. Use Grounding Stud or Lug inside. 230 V 208 V · Use CU wire only. **INPUT RECONNECT** Consult Instruction Manual before installing or operating.

- The 208/230 volt 50/60 Hz model Power MIG® is shipped with a 7 ft.(2.1m). input cable and plug connected to the welder.
- 4. Using the instructions in Figure A.2, have a qualified electrician connect a receptacle (Customer Supplied) or cable to the input power lines and the system ground per the U.S. National Electrical Code and any applicable local codes. See "Technical Specifications" at the beginning of this chapter for proper wire sizes. For long runs over 100 feet, larger copper wires should be used. Fuse the two hot lines with super lag type fuses as shown in the following diagram. The center contact in the receptacle is for the grounding connection. A green wire in the input cable connects this contact to the frame of the welder. This ensures proper grounding of the welder frame when the welder plug is inserted into a grounded receptacle.

FIGURE A.2 — Receptacle Diagram

OUTPUT POLARITY CONNECTIONS

The welder, as shipped from the factory, is connected for electrode positive (+) polarity. This is the normal polarity for GMA welding.

If negative (–) polarity is required, interchange the connection of the two cables located in the wire drive compartment near the front panel. The electrode cable, which is attached to the wire drive, is to be connected to the negative (–) labeled terminal and the work lead, which is attached to the work clamp, is to be connected to the positive (+) labeled terminal.

GUN AND CABLE INSTALLATION

The Magnum 250L gun and cable provided with the POWER MIG® 215XT is factory installed with a liner for .035-.045" (0.9-1.2 mm) electrode and an .035" (0.9 mm) contact tip. Be sure that the contact tip, liner, and drive rolls all match the size of the wire being used.

WARNING

Turn the welder power switch off before installing gun and cable.

- 1. Lay the cable out straight.
- Unscrew knurled screw on the drive unit front end (inside wire feed compartment) until tip of screw no longer protrudes into gun opening as seen from front of machine.
- Insert the male end of gun cable into the Gun Adapter casting through opening in front panel. Make sure connector is fully inserted and tighten knurled screw.
- 4. Connect the gun trigger connector from the gun and cable to the mating receptacle inside the compartment located above the gun connection made in item 3 above. Make sure that the keyways are aligned, insert and tighten retaining ring.

SHIELDING GAS

(For Gas Metal Arc Welding Processes) Customer must provide cylinder of appropriate type shielding gas for the process being used.

A gas flow regulator, for Argon blend gas, and an inlet gas hose are factory provided with the POWER MIG® 215XT. When using 100% CO₂ an additional adapter will be required to connect the regulator to the gas bottle.

WARNING

CYLINDER may explode if damaged.

Gas under pressure is explosive. Always keep gas cylinders in an upright position and always keep chained to undercarriage or stationary support. See American National Standard Z-49.1, "Safety in Welding and Cutting" published by the American Welding Society.

Install shielding gas supply as follows:

 Set gas cylinder on rear platform of POWER MIG® 215XT. Hook chain in place to secure cylinder to rear of welder.

Remove the cylinder cap. Inspect the cylinder valves and regulator for damaged threads, dirt, dust, oil or grease. Remove dust and dirt with a clean cloth.

INSTALLATION

- DO NOT ATTACH THE REGULATOR IF OIL, GREASE OR DAMAGE IS PRESENT! Inform your gas supplier of this condition. Oil or grease in the presence of high pressure oxygen is explosive.
- 3. Stand to one side away from the outlet and open the cylinder valve for an instant. This blows away any dust or dirt which may have accumulated in the valve outlet.

WARNING

Be sure to keep your face away from the valve outlet when "cracking" the valve.

- 4. Attach the flow regulator to the cylinder valve and tighten the union nut(s) securely with a wrench.
 - **NOTE:** If connecting to 100% CO₂ cylinder, an additional regulator adapter must be installed between the regulator and cylinder valve. If adapter is equipped with a plastic washer, be sure it is seated for connection to the CO₂ cylinder.
- 5. Attach one end of the inlet gas hose to the outlet fitting of the flow regulator, the other end to the POWER MIG® 215XT rear fitting, and tighten the union nuts securely with a wrench.
- Before opening the cylinder valve, turn the regulator adjusting knob counterclockwise until the adjusting spring pressure is released.
- 7. Standing to one side, open the cylinder valve slowly a fraction of a turn. When the cylinder pressure gauge pointer stops moving, open the valve fully.

WARNING

Never stand directly in front of or behind the flow regulator when opening the cylinder valve. Always stand to one side.

8. The flow regulator is adjustable. Adjust it to the flow rate recommended for the procedure and process being used before making the weld.

AUXILIARY POWER RECEPTACLES

(15 Amp 120 Volt Receptacle) The receptacles are UL and CSA approved.

Return to Section TOC Return to Master TOC

Return to Section TOC Return to Master TOC

Return to Section TOC Return to Master TOC Return to Section TOC Return to Master TOC

peration
Safety Precautions
Product Description
Recommended Processes and EquipmentB-3
Welding CapabilityB-3
LimitationsB-3
Description of Controls
Wire Drive Roll
Wire Size Conversion parts
Procedure for Changing Drive RollB-4
Wire Reel LoadingB-4
Mounting of 10 to 30 lbs. Spools
To Start the WelderB-5
Feeding ElectrodeB-5
Idle Roll Pressure Setting
Wire Drive Configuration
Making a WeldB-6
Avoiding Wire Feeding Problems
Fan Control
Input Line Voltage Protection

TABLE OF CONTENTS - OPERATION SECTION

Wire Feed Overload ProtectionB-7

Read entire Operation section before operating the POWER MIG® 215XT.

A WARNING

ELECTRIC SHOCK can kill.

- Do not touch electrically live parts or electrode with skin or wet clothing. Insulate yourself from work and ground.
- Always wear dry insulating gloves.

FUMES AND GASES can be dangerous.

- Keep your head out of fumes.
- Use ventilation or exhaust to remove fumes from breathing zone.

WELDING SPARKS can cause fire or explosion.

- · Keep flammable material away.
- · Do not weld on closed containers.

ARC RAYS can burn eyes and skin.

Wear eye, ear and body protection

Observe all safety information throughout this manual.

Return to Section TOC

TOC

OPERATION

The Power MIG® 215XT is a complete semiautomatic DC voltage arc welding machine built to meet NEMA specifications. It combines a tapped transformer voltage power source with a constant speed wire feeder to form a reliable robust performance welding system. A simple control scheme, consisting of continuous full range wire feed speed control, and 7 output voltage tap selections provides versatility with ease of use and accuracy. An enhanced feature to the Power MIG® 215XT, is that it is Magnum 100SG Spool Gun ready.

PRODUCT DESCRIPTION

Other features include a 2" (51 mm) O.D. wire reel spindle with adjustable brake, an integral gas cylinder mounting undercarriage, an adjustable Argon blend flow regulator with cylinder pressure gauge and inlet hose, a 15 ft. (3.6 m) Magnum 250L GMAW gun and cable with fixed (flush) nozzle, a 7 ft. (2.1 m) power cable with plug, and a 10 ft. (3.0 m) work cable with clamp.

Optional Magnum Spool Gun, Push-Pull Guns and Adapter kits, Dual Cylinder Mounting kit and Aluminum Feeding Kit for push feeding with standard built in feeder are also available.

RECOMMENDED PROCESSES AND **EQUIPMENT**

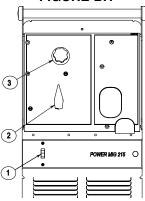
The POWER MIG® 215XT is recommended for GMA welding processes using 10 to 44 lb (4.5 to 20 kg) 2" (51 mm) I.D. spools or Readi-Reel® coils (with optional adapter) of .025" through .045" (0.6 - 1.2 mm) solid wire, .035" (0.9 mm) stainless, 3/64" (1.2 mm) aluminum, .035 (0.9 mm), .045" (1.2 mm) Outershield® and .045"(1.2mm) Ultracore® as well as .035" (0.9 mm) and .045" (1.2 mm) Innershield® self-shielding electrodes.

The Power MIG® is factory equipped to feed .035" (0.9 mm) electrodes. It also includes a 200A, 60% duty cycle (or 250A, 40% duty cycle) rated, 15 ft. (3.6 m) GMAW gun and cable assembly equipped for these wire sizes. Use of GMAW processes requires a supply of shielding gas.

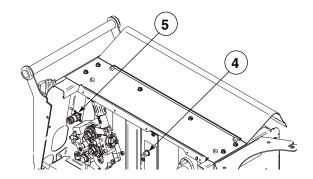
WELDING CAPABILITY

The POWER MIG® 215XT is rated at 215 amps @ 22 volts, at a 30% duty cycle based on a ten minute cycle time. It is capable of higher duty cycles at lower output currents. The tapped transformer design makes it well suited for use with most portable or in-plant generating systems.

LIMITATIONS


The output voltage/current of the POWER MIG® 215XT is subject to vary if the input power to the machine varies, due to its tapped transformer power topology. In some cases an adjustment of WFS preset and/or voltage tap selection may be required to accommodate a significant drift in input power.

DESCRIPTION OF CONTROLS


See Figure B.1

- 1. Power ON/OFF Switch Place the lever in the "ON" position to energize the POWER MIG® 215XT.
- 2. Voltage Control Seven voltage tap selections are provided Labeled "A" (minimum voltage) through "G" (maximum voltage). It should only be adjusted when not welding. The control selection can be preset to the setting specified on the Procedure Decal on the inside of the wire compartment door.
- 3. Wire Speed Control This controls the wire feed speed from 50 - 700 inches per minute (1.2 - 17.8)m/min). Wire speed is not affected when changes are made in the voltage control.

FIGURE B.1

- 4. Magnum Push Gun and spool gun toggle switch-Toggle the switch to select between push gun and spool gun. When spool gun operation is selected, insert the cable to 4-pin Connector Item 5. (See Figure B.1a)
- **5. 4-Pin Connector-**For Spool Gun Operation. FIGURE B.1a

B-4 OPERATION B-4

WIRE DRIVE ROLL

The drive rolls installed with the POWER MIG® 215XT have two grooves one for .035(0.9mm) wire and the other for .045(1.2mm) wire. Drive roll size is indicated by the stenciling on the exposed side of the drive roll.

WIRE SIZE CONVERSION PARTS

The POWER MIG® 215XT is rated to feed .025 through .045" (0.6-1.2 mm) solid or cored electrode sizes.

The drive roll kits and Magnum 250L gun and cable parts are available to feed different sizes and types of electrodes. See **Accessories** section.

PROCEDURE FOR CHANGING DRIVE AND IDLE ROLL SETS

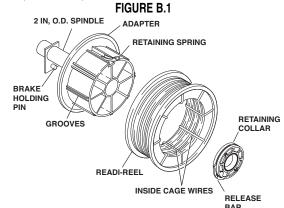
- 1. Turn off the power source.
- 2. Release the pressure on the idle roll by swinging the adjustable pressure arm down toward the back of the machine. Lift the cast idle roll assembly and allow it to sit in an upright position..
- 3. Remove the outside wire guide retaining plate by loosening the two large knurled screws.
- Twist the drive roll retaining mechanism to the unlocked position as shown below and remove the drive rolls. (See Figure B.2)

FIGURE B.2

UNLOCKED POSITION

- 5. Remove the inside wire guide plate.
- 6. Replace the drive rolls and inside wire guide with a set marked for the new wire size. **NOTE:** Be sure that the gun liner and contact tip are also sized to match the selected wire size.
- Manually feed the wire from the wire reel, over the drive roll groove and through the wire guide and then into the brass bushing of the gun and cable assembly.
- Replace the outside wire guide retaining plate by tightening the two large knurled screws. Reposition the adjustable pressure arm to its original position to apply pressure. Adjust pressure as necessary.

WIRE REEL LOADING - READI-REELS, SPOOLS OR COILS


To Mount a 30 Lb. (14 kg) Readi-Reel Package (Using the Molded Plastic K363-P Readi-Reel Adapter:)

- 1. Open the Wire Drive Compartment Door
- 2. Depress the Release Bar on the Retaining Collar and remove it from the spindle.
- 3. Place the Optional Adapter on the spindle
- 4. Re-install the Retaining Collar. Make sure that the Release Bar "pops up" and that the collar retainers fully engage the retaining ring groove on the spindle.
- Rotate the spindle and adapter so the retaining spring is at the 12 o'clock position.
- 6. Position the Readi-Reel so that it will rotate in a direction when feeding so as to be de-reeled from top of the coil.
- 7. Set one of the Readi-Reel inside cage wires on the slot in the retaining spring tab.
- Lower the Readi-Reel to depress the retaining spring and align the other inside cage wires with the grooves in the molded adapter.
- 9. Slide cage all the way onto the adapter until the retaining spring "pops up" fully.

A CAUTION

CHECK TO BE SURE THE RETAINING SPRING HAS FULLY RETURNED TO THE LOCKING POSITION AND HAS SECURELY LOCKED THE READI-REEL CAGE IN PLACE. RETAINING SPRING MUST REST ON THE CAGE, NOT THE WELDING ELECTRODE.

10. To remove Readi-Reel from Adapter, depress retaining spring tab with thumb while pulling the Readi-Reel cage from the molded adapter with both hands. Do not remove adapter from spindle.

To Mount 10 to 44 Lb. (4.5-20 kg) Spools (12"/300 mm Diameter) or 14Lb.(6 Kg) Innershield Coils:

(For 13-14 lb. (6 Kg) Innershield coils, a K435 Coil Adapter must be used).

- 1. Open the Wire Drive Compartment Door
- 2. Depress the Release Bar on the Retaining Collar and remove it from the spindle.
- 3. Place the spool on the spindle making certain the spindle brake pin enters one of the holes in the back side of the spool (Note: an arrow mark on the spindle lines up with the brake holding pin to assist in lining up a hole). Be certain the wire comes off the reel in a direction so as to dereel from the top of the coil.
- 4. Re-install the Retaining Collar. Make sure that the Release Bar "pops up" and that the collar retainers fully engage the retaining ring groove on the spindle.

TO START THE WELDER

Turn the "Power Switch" switch to "ON". With the desired voltage and wire speed selected, operate the gun trigger for welder output and to energize the wire feed motor.

FEEDING WIRE ELECTRODE

WARNING

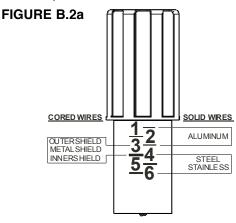
When triggering, the electrode and drive mechanism are electrically "hot" relative to work and ground and remain "hot" several seconds after the gun trigger is released.

NOTE: Check that drive rolls, guide plates and gun parts are proper for the wire size and type being used. Refer to Table C.1 in Accessories section.

- 1. Turn the Readi-Reel or spool until the free end of the electrode is accessible.
- 2. While securely holding the electrode, cut off the bent end and straighten the first six inches. (If the electrode is not properly straightened, it may not feed properly through the wire drive system).
- 3. Release the pressure on the idle roll by swinging the adjustable pressure arm down toward the back of the machine. Lift the cast idle roll assembly and allow it to sit in an upright position. Leave the outer wire guide plate installed. Manually feed the wire through the incoming guide bushing and through the guide plates (over the drive roll groove). Push a sufficient wire length to assure that the wire has fed into the gun and cable assembly without restriction. Reposition the adjustable pressure arm to its original position to apply pressure to the wire.
- 4. Press gun trigger to feed the electrode wire through the gun.

IDLE ROLL PRESSURE SETTING

WARNING


ELECTRIC SHOCK can kill.

- Turn the input power OFF at the welding power source before installation or changing drive rolls and/or guides.
- Do not touch electrically live parts.
- · When inching with the gun trigger, electrode and drive mechanism are "hot" to work and ground and could remain energized several seconds after the gun trigger is released.
- Only qualified personnel should perform maintenance work.

The pressure arm controls the amount of force the drive rolls exert on the wire. Proper adjustment of both pressure arm gives the best welding performance. For best results, set both pressure arms to the same value.

Set the pressure arm as follows (See Figure B.2a):

Aluminum wires between 1 and 3 Cored wires between 3 and 4 between 4 and 6 Steel, Stainless wires

WIRE DRIVE CONFIGURATION

(See Figure B.2b)

Changing the Gun Receiver Bushing

WARNING

OPERATION

ELECTRIC SHOCK can kill.

- Turn the input power OFF at the welding power source before installation or changing drive rolls and/or guides.
- Do not touch electrically live parts.
- · When inching with the gun trigger, electrode and drive mechanism are "hot" to work and ground and could remain energized several seconds after the gun trigger is released.
- Only qualified personnel should perform maintenance work.

Tools required:

• 1/4" hex key wrench.

NOTE: Some gun bushings do not require the use of the thumb screw.

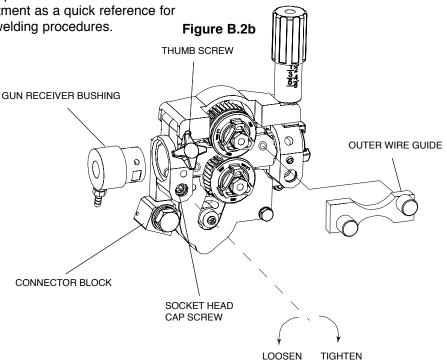
- 1. Turn power off at the welding power source.
- 2. Remove the welding wire from the wire drive.
- 3. Remove the thumb screw from the wire drive.
- 4. Remove the welding gun from the wire drive.

B-6 OPERATION B-6

- Loosen the socket head cap screw that holds the connector bar against the gun bushing.
 Important: Do not attempt to completely remove the socket head cap screw.
- Remove the outer wire guide, and push the gun bushing out of the wire drive. Because of the precision fit, light tapping may be required to remove the gun bushing.
- 7. Disconnect the shielding gas hose from the gun bushing, if required.
- 8. Connect the shielding gas hose to the new gun bushing, if required.
- Rotate the gun bushing until the thumb screw hole aligns with the thumb screw hole in the feed plate.
 Slide the gun receiver bushing into the wire drive and verify the thumb screw holes are aligned.
- 10. Tighten the socket head cap screw.
- 11. Insert the welding gun into the gun bushing and tighten the thumb screw.

MAKING A WELD

- Check that the electrode polarity is correct for the process being used, then turn the power switch ON.
- Set desired arc voltage tap and wire speed for the particular electrode wire, material type and thickness, and gas (for MIG and Outershield[®]) being used. Use the Application Chart on the door inside the wire compartment as a quick reference for some common welding procedures.


- Press the trigger to feed the wire electrode through the gun and cable. For solid wire cut the electrode within approximately 3/8" (10 mm) of the end of the contact tip [3/4" (20 mm) for Outershield[®]].
- 4. When welding with gas, turn on the gas supply and set the required flow rate (typically 25-35 CFH; 12-16 liters/min).
- Connect work cable to metal to be welded. Work clamp must make good electrical contact to the work. The work must also be grounded as stated in "Arc Welding Safety Precautions".

A WARNING

 When using an open arc process, it is necessary to use correct eye, head, and body protection.

- Position electrode over joint. End of electrode may be lightly touching the work.
- Lower welding helmet, close gun trigger, and begin welding. Hold the gun so the contact tip to work distance is about 3/8" (10 mm) [3/4" (20 mm) for Outershield[®]].
- To stop welding, release the gun trigger and then pull the gun away from the work after the arc goes out.

MIG® 215XT.

Return to Section TOC

9. When no more welding is to be done, close valve on gas cylinder (if used), momentarily operate gun trigger to release gas pressure, and turn off POWER

NOTE: When using Innershield electrode, the gas nozzle may be removed from the insulation on the end of the gun and replaced with the gasless nozzle. This will give improved visibility and eliminate the possibility of the gas nozzle overheating.

AVOIDING WIRE FEEDING **PROBLEMS**

Wire feeding problems can be avoided by observing the following gun handling procedures:

- 1. Do not kink or pull cable around sharp corners.
- 2. Keep the gun cable as straight as possible when welding or loading electrode through cable.
- 3. Do not allow dolly wheels or trucks to run over cables.
- 4. Keep cable clean by following maintenance instructions.
- 5. Use only clean, rust-free electrode. The Lincoln electrodes have proper surface lubrication.
- 6. Replace contact tip when the arc starts to become unstable or the contact tip end is fused or deformed.
- 7. Keep wire reel spindle brake tension to minimum required to prevent excess reel over-travel which may cause wire "loop-offs" from coil.
- 8. Use proper drive rolls and wire drive idle roll pressure for wire size and type being used.

FAN CONTROL

The fan is designed to come on when input power is applied to the POWER MIG® 215XT and go off when power is removed.

INPUT LINE VOLTAGE VARIATIONS

High Line Voltage — Higher than rated input voltage will result in output voltages higher than normal for a given tap setting. If your input line is high, you may want to select a lower voltage tap than given on the recommended procedure chart.

Low Line Voltage — You may not be able to get maximum output from the machine if the line voltage is less than rated input. The unit will continue to weld, but the output may be less than normal for a given tap setting. If your input line is low, you may want to select a higher voltage tap than given on the recommended procedure chart.

WIRE FEED OVERLOAD PROTECTION

The POWER MIG® 215XT has solid state overload protection of the wire drive motor. If the motor becomes overloaded, the protection circuitry turns off the wire feed speed and gas solenoid. Check for proper size tip, liner, and drive rolls, for any obstructions or bends in the gun cable, and any other factors that would impede the wire feeding, to resume welding, simply pull the trigger. There is no circuit breaker to reset, as the protection is done with reliable solid state electronics.

WELDING THERMAL OVERLOAD **PROTECTION**

The POWER MIG® 215XT has built-in protective thermostats that respond to excessive temperature. They open the wire feed and welder output circuits if the machine exceeds the maximum safe operating temperature because of a frequent overload, or high ambient temperature plus overload. The thermostats automatically reset when the temperature reaches a safe operating level and welding and feeding are allowed again, when gun is retriggered.

PROCEDURE CHART

OPERATION

				Wire Feed Speed/Voltage Tap Settings									
Wire Dia.	Gas Type	Wire Type	Polarity	18 gage	16 gage	14 gage	12 gage	10gage	3/16	1/4	5/16	3/8	1/2
Outershield	1" CTWD†												
.035	75Ar/25CO ₂	OS71M	DC+				250/D	300/E	350/F	500/G	*500/G		
.035	100%CO ₂	OS71M	DC+					300/E	350/F	500/G			
.045	75Ar/25CO ₂	OS71M	DC+						200/E	225/F	250/G	250/G	*250/G
Innershield	5/8" CTWD†												
.035	NoneReq'd	NR-211MP	DC-	50/B	70/B	80/B	90/C	100/C					
.045	NoneReq'd	NR-211MP	DC-				50/B	70/C	90/C	110/D	**130/E		
.045	NoneReq'd	NR212	DC-	40/B	50/B	60/B	65/C	70/C	90/C	110/D	*130/E	*150/E	*150/E

[†] Contact Tip to Work Distance

^{*} Note- Requires Multiple Pass

^{**.035 &}amp; .045 NR-211 MP are only recommended for a maximum steel thickness of 5/16"

Return to Section TOC Return to Master TOC

Power MIG® 215XT

INCOIN®
ELECTRIC

Download from Www.Somanuals.com. All Manuals Search And Download.

C-1

Ac	cessories	C-1
	Drive Roll Kits	C-2
	Aluminum Feeding Kit	C-2
	K363P Readi-Reel Adapter	C-2
	Dual Cylinder Mounting Kit	C-2
	Alternative Magnum GMAW Gun and Cable Assemblies	C-2
	Magnum Gun Connection Kit	C-2
	Optional Spool Guns and Adapters	C-2
	Magnum 250XL Push-Pull Gun and Adapter	C-3
	Connecting The Magnum 250lx Push-Pull Gun and Magnum 250LX Push-Pull Gun Adapter	C-3
	Make a Weld with the Magnum 250LX Push-Pull Gun	C-3
	Making a Weld with the Spool Gun Adapter Kit and Spool Gun Installed	C-4

DRIVE ROLL KITS

Refer to Table C.1 for various drive roll kits that are available for the POWER MIG® 215XT. The item in **Bold** is supplied standard with the POWER MIG® 215XT.

TABLE C.1

Wire	Size	Drive Roll Kit
Solid Steel	.023"030" (0.6-0.8 mm) .035" (0.9 mm) .045" (1.2 mm) .035045 (0.9-1.2mm) .040 (1.01)	KP1696-030S KP1696-035S KP1696-045S KP1696-1 KP1696-2
Cored	.035" (0.9 mm) .045" (1.2 mm)	KP1697-035C KP1697-045C
Aluminum	3/64" (1.2 mm)	KP1695-3/64A

3/64" (1.2 mm) ALUMINUM FEEDING KIT (K1703-1)

This kit helps push feeding aluminum through standard machine feeder and gun. It provides gun and wire drive conversion parts to weld with 3/64" (1.2 mm) aluminum wire. 5356 alloy aluminum wire is recommended for best push feeding performance.

Kit includes drive rolls and wire guide plate for the wire drive, liner and two contact tips for the gun, along with installation instructions.

READI-REEL ADAPTER (K363P)

The K363P Readi-Reel Adapter mounts to the 2" spindle. It is needed to mount the 22-30 lb. Readi-Reels.

DUAL CYLINDER MOUNTING KIT (K1702-1)

Permits stable side-by-side mounting of two full size 228.6mm dia x 1.524m high(9" dia. x 5' high) gas cylinders with "no lift" loading. Simple installation and easy instructions provided. Includes upper and lower cylinder supports, wheel axles and mounting hardware.

SMALL SPOOL SPINDLE ADAPTER (K468)

The K468 spindle adapter allows the use of 8" diameter small spools.

ALTERNATIVE MAGNUM GMAW GUN AND CABLE ASSEMBLIES

The following Magnum 250L gun and cable assemblies are separately available for use with the POWER MIG® 215XT. Each is rated 250 amps 40% duty cycle and is equipped with the integrated connector, twistlock trigger connector, fixed nozzle and insulator, and includes a liner, diffuser, and contact tips for the wire sizes specified:

Length	Part No.	English Wire Size	Metric Wire Size
10' (3.0 m) 12' (3.6 m) 15' (4.5 m)	K533-1 K533-7 K533-3	.035 – .045"	0.9 – 1.2 mm

A WARNING

 Unplug or Disconnect all input power from the POWER MIG® 215XT before installing the Spool Gun and Kit.

MAGNUM GUN CONNECTION KIT (Optional K466-6)

Using the optional K466-6 Magnum Connection kit for the POWER MIG® 215XT permits use of standard Magnum 200, 300 or 400 gun and cable assemblies.

OPTIONAL SPOOL GUNS AND ADAPTERS

The Power MIG® 215XT is capable of operating with the following optional spool guns:

SPOOL GUN	RATING	ADAPTER
Magnum 100SG (K2532-1)	Light Duty 130amp 30% Duty Cycle	Factory Capable No Adapter Required
Magnum SG (K487-25)	Medium Duty 250Amp 60% Duty Cycle	Spool Gun Adapter
Magnum 250LX (K2490-1)	Heavy Duty 300 Amp 60% Duty Cycle	K2703-1

Spool gun Adapter (K2703-1)

This kit is designed to allow the Magnum SG or Magnum 250LX spool gun to operate with the Power MIG® 215XT. The kit includes the solenoid, gas lines, wiring harness and gun connection panel. The gun connection panel features a 6 pin ms-type connector for the Magnum SG spool gun and a 7 pin ms-type connector for the Magnum 250LX spool gun and a selector switch to choose which gun you are using.

Note the K2703-1 spool gun adapter disables the Magnum 100SG capability.

MAGNUM 250LX PUSH-PULL GUN AND PUSH PULL ADAPTER

For heavier duty aluminum applications when use of large 16 pound aluminum spools of wire are desired the following push pull gun and adapter kit are available.

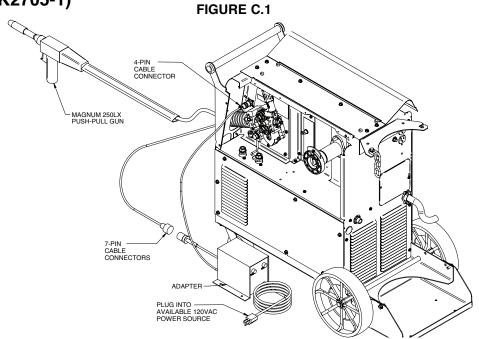
Magnum 250LX Push Pull Gun (K2704-1)

This pistol grip push pull gun is similar to the Magnum 250LX spool gun except it is designed to feed large spools of wire. The Magnum 250LX push pull features a 25 foot power, gas and control cable. It operates as an assist slave motor pulling the aluminum wire as the Power MIG® drive motor acts as the master push motor.

Magnum 250LX Push Pull Adapter (K2705-1)

This adapter box is designed to drive the Magnum 250LX push pull gun when used on a non push ready Lincoln power source feeder such as the Power MIG® 215XT or 255XT. This box features a 115V cord and plug to power the box, a control cable with receptacle to connect the push pull gun's control cable to, and a 4-pin connector to connect to the Power MIG® gun trigger receptacle.

Note the Magnum 250LX push pull gun has a wire feed speed adjustment potentiometer. However this potentiometer only functions on push-pull ready machines like the Power MIG® 350MP. When the Magnum 250LX is used on a non-push-pull machine with the K2705-1 adapter, the wire feed speed is set on the control panel of the machine.


CONNECTING THE MAGNUM 250LX PUSH-PULL GUN (K2704-1) AND MAGNUM 250LX PUSH-PULL GUN ADAPTER (K2705-1)

See Figure C.1

- Plug the 115 VAC cable into available 115V AC receptacle. The Power MIG[®] 215XT (K2701-1) furnishes the 15A 115V AC auxiliary supply. The receptacle is located at the back of the machine.
- Connect the 4-pin connector cable of the Push-Pull Gun Adapter to the 4-pin trigger receptacle located in the front section of the wire drive compartment.
- 3. Connect the 7-pin connector cable of the Push-Pull Gun to the 7-pin receptacle cable from the adapter.
- Connect the Push-Pull gas & power pin into the Power MIG[®] wire feeder brass bushing.
- 5. Attach a gas hose from the Gas supply to the rear inlet gas fitting on the Power MIG[®] 215XT

MAKE A WELD WITH THE MAGNUM 250LX PUSH-PULL GUN

- 1. Power MIG[®] 215XT
 - a. Set machine to non spool gun operation.
 - b. Turn the Power MIG[®] 215XT input power ON.
 - c. Adjust the voltage control at the front panel.
 - d. Adjust the wire speed control on the front panel. Refer to the procedure decal mounted at the inside of the wire feeder compartment cover.
- 2. Magnum 250LX Push-Pull Gun:
 - a. Set machine to non spool gun operation.
 - Closing Push-Pull gun trigger starts the Push-Pull gun welding and makes all guns connected to the machine electrically "Hot".
 - c. The Push-Pull Adapter will provide power and control to the "Pull" motor of the Push-Pull gun & the Power MIG[®] 215XT will control its wire drive.

Power MIG® 215XT

LINCOLN ELECTRIC

Download from Www.Somanuals.com. All Manuals Search And Download

Return to Master TOC

MAKING A WELD WITH THE SPOOL GUN ADAPTER KIT AND SPOOL GUN INSTALLED

CAUTION

In either toggle switch position, closing either gun trigger will cause the electrode of <u>both</u> guns to be electrically "HOT". Be sure unused gun is positioned so electrode or tip will not contact metal case or other metal common to work.

- Setting spool gun selector switch to the "Normal" position and pulling the trigger for the built-in feeder gun.
 - Disables spool gun operation and spool gun gas solenoid valve.
 - Closing feeder gun trigger starts feeder gun welding and makes <u>both</u> electrodes electrically "HOT".
- Setting spool gun selector switch to the Spool Gun Position, select either spool gun and pulling SPOOL GUN Trigger.
 - Disables built-in feeder gun operation and machine gas solenoid valve.
 - Enables spool gun operation and spool gun gas solenoid valve.
 - Closing spool gun trigger starts spool gun welding and makes <u>both</u> electrodes electrically "HOT".
- 3. Operation with POWER MIG® 215XT:
 - Turn the POWER MIG® 215XT input power ON.
 - Adjusting the voltage tap control will increase or decrease your welding voltage.
 - Adjusting the wire speed control on the spool gun will increase or decrease the spool gun wire feed speed.

NOTE: Adjusting the wire feed speed control on the Power MIG® Panel has no affect on the spool gun's wire feed speed.

- Refer to the procedure decal on the Power MIG® for initial aluminum settings. Make a test weld to determine the final settings.
- To return to normal POWER MIG® 215XT welding, release the spool gun trigger set spool gun selector switch to normal and reset feeder gun voltage procedure setting if necessary.

Ma	ntenanceD-1
	Safety Precautions
	General Maintenance
	Drive Rolls and guide Tubes
	Contact Tip and Gas Nozzle Installation
	Gun Tubes and Nozzles
	Gun Cable Cleaning
	Liner Removal and Replacement
	Gun Handle Disassembly
	Major Component Locations

Return to Section TOC

TOC

Return to Master

SAFETY PRECAUTIONS

A WARNING

ELECTRIC SHOCK can kill.

- Have an electrician install and service this equipment.
- Turn the input power off at the fuse box before working on equipment
- Do not touch electrically hot parts.

GENERAL MAINTENANCE

In extremely dusty locations, dirt may clog the air passages causing the welder to run hot. Blow dirt out of the welder with low-pressure air at regular intervals to eliminate excessive dirt and dust build-up on internal parts.

The fan motors have sealed ball bearings which require no service.

DRIVE ROLLS AND GUIDE PLATES

After every coil of wire, inspect the wire drive mechanism. Clean it as necessary by blowing with low pressure compressed air. Do not use solvents for cleaning the idle roll because it may wash the lubricant out of the bearing. All drive rolls are stamped with the wire sizes they will feed. If a wire size other than that stamped on the roll is used, the drive roll must be changed.

For instructions on replacing or changing drive roll, see *Wire Drive Rolls* in *Operation* section.

CONTACT TIP AND GAS NOZZLE INSTALLATION

- Choose the correct size contact tip for the electrode being used (wire size is stenciled on the side of the contact tip) and screw it snugly into the gas diffuser.
- Screw the appropriate fixed gas nozzle fully onto the diffuser. Either the standard .50" (12.7 mm) flush nozzle or other optional flush or recessed (spray arc) nozzle sizes may be used. (See *Table D.2* in this section.)
- If using optional adjustable slip-on nozzles, See Table D.2 in this section.

- Be sure the nozzle insulator is fully screwed onto the gun tube and does not block the gas holes in the diffuser.
- Slip the appropriate gas nozzle onto the nozzle insulator. Either a standard .50" (12.7 mm) or optional .62" (15.9 mm) I.D. slip-on gas nozzle may be used and should be selected based on the welding application.
- Adjust the gas nozzle as appropriate for the GMAW process to be used. Typically, the contact tip end should be flush to .12" (3.2 mm) extended for the short-circuiting transfer process and .12" (3.2 mm) recessed for spray transfer.

GUN TUBES AND NOZZLES

- Replace worn contact tips as required.
- Remove spatter from inside of gas nozzle and from tip after each 10 minutes of arc time or as required.

GUN CABLE CLEANING

To help prevent feeding problems, clean cable liner after using approximately 300 pounds (136 kg) of electrode. Remove the cable from the wire feeder and lay it out straight on the floor. Remove the contact tip from the gun. Using an air hose and only partial pressure, gently blow out the cable liner from the gas diffuser end.

A WARNING

Excessive pressure at the beginning of the cleaning procedure may cause the dirt to form a plug.

Flex the cable over its entire length and again blow out the cable. Repeat this procedure until no further dirt comes out. If this has been done and feed problems are experienced, try liner replacement, and refer to trouble shooting section on rough wire feeding. 200

Return to Master

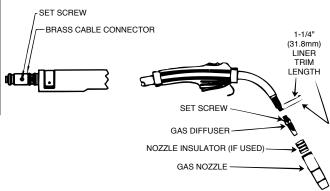
Return to Master TOC

LINER REMOVAL AND REPLACE-MENT

NOTE: Changing the liner for a **different** wire size requires replacement of the gas diffuser per Table D.1 to properly secure the different liner.

TABLE D.1

Diameter of Electrodes Used	Replacement Liner Part Number	Size Stencilled on End of Liner Bushing	Fixed Nozzle Gas Diffuser Part No. (and Stencil)	Adjustable Nozzle Gas Diffuser Part No. and Stencil)
.025030" Steel (0.6-0.8 mm)	KP1934-2	.030 (0.8 mm)	KP2026-3	KP2026-2
.035045" Steel (0.9-1.2 mm)	KP1934-1	.045 (1.2 mm)	KP2026-3	KP2026-2
3/64" Aluminum (1.2 mm)	KP1955-1	3/64" (1.2 mm)	KP2026-3	KP2026-2


LINER REMOVAL, INSTALLATION AND TRIMMING INSTRUCTIONS FOR MAGNUM 250L

NOTE: The variation in cable lengths prevents the interchangeability of liners between guns. Once a liner has been cut for a particular gun, it should not be installed in another gun unless it can meet the liner cutoff length requirement. Liners are shipped with the jacket of the liner extended the proper amount.

- Remove the gas nozzle and nozzle insulator, if used, to locate the set screw in the gas diffuser which is used to hold the old liner in place. Loosen the set screw with a 5/64" (2.0 mm) Allen wrench.
- 2. Remove the gas diffuser from the gun tube.
- 3. Lay the gun and cable out straight on a flat surface. Loosen the set screw located in the brass connector at the feeder end of the cable and pull the liner out of the cable.
- 4. Insert a new untrimmed liner into the connector end of the cable. Be sure the liner bushing is stencilled appropriately for the wire size bing used.
- Fully seat the liner bushing into the connector. tighten the set screw on the brass cable connector. the gas diffuser, at this time, should **not** be installed onto the end of the gun tube.
- 6. With the gas diffuser still removed from the gun tube, be sure the cable is straight, and then trim the liner to the length shown in Figure D.1. Remove any burrs from the end of the liner.

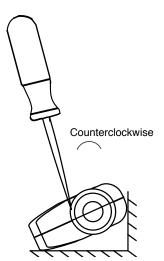
- Screw the gas diffuser onto the end of the gun tube and securely tighten. Be sure the gas diffuser is correct for the liner being used. (See table and diffuser stencil.)
- Tighten the set screw in the side of the gas diffuser against the cable liner using a 5/64" (2.0 mm) Allen wrench.

FIGURE D.1

A CAUTION

This screw should only be gently tightened. Overtightening will split or collapse the liner and cause poor wire feeding. Return to Section TOC

Return to Master TOC


Return to Master TOC

Return to Master TOC

GUN HANDLE DISASSEMBLY

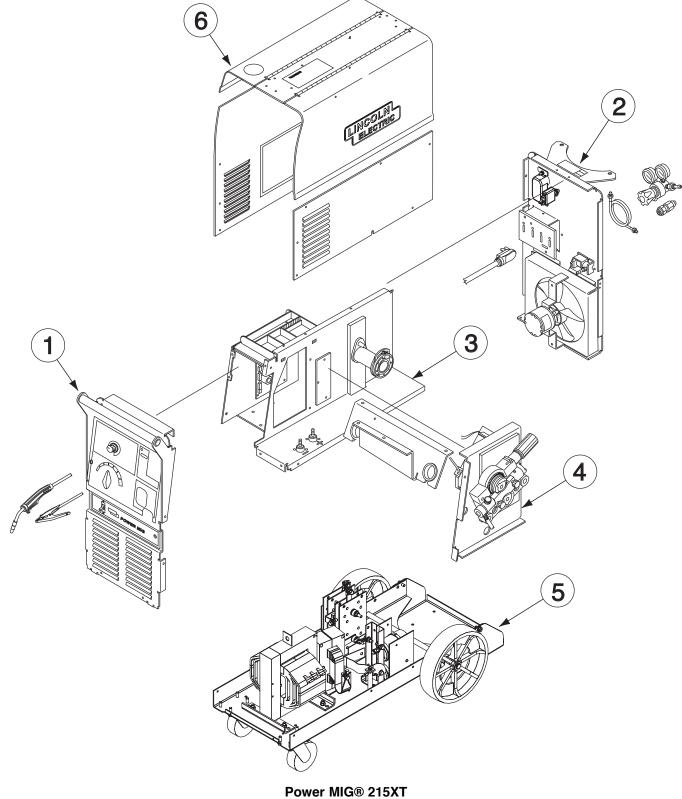
The internal parts of the gun handle may be inspected or serviced if necessary.

The gun handle consists of two halves that are held together with a collar on each end. To open up the handle, turn the collars approximately 60 degrees counterclockwise (the same direction as removing a right hand thread) until the collar reaches a stop. Then pull the collar off the gun handle. If the collars are difficult to turn, position the gun handle against a corner, place a screwdriver against the tab on the collar and give the screwdriver a sharp blow to turn the collar past an internal locking rib.

TABLE D.2 ACCESSORIES AND EXPENDABLE REPLACEMENT PARTS FOR MAGNUM 250L GUN AND CABLE ASSEMBLIES

е	TOTI MAGNOW 250E GON AND CADLE ASSEMBLIES				
	Description	Part No.	English Size	Metric Size	
at d. sednsest et al	CABLE LINER For 15' (4.5 m) or shorter Cable	KP1934-2 KP1934-1 KP1955-1	.025030" .035045" 3/64" (Alum. wire)	0.6 – 0.8 mm 0.9 – 1.2 mm 1.2 mm (Alum. wire)	
	CONTACT TIPS Standard Duty Heavy Duty Tapered	KP2020-6B1 KP2020-7B1 KP2020-1B1* KP2020-2B1 KP2021-1B1 KP2020-2B1 KP2022-5B1 KP2022-6B1	.025" .030" .035" .045" .035" .045" .025"	0.6 mm 0.8 mm 0.9 mm 1.2 mm 0.9 mm 1.2 mm 0.6 mm 0.8 mm	
	Tab (For Aluminum)	KP2022-1B1 KP2022-2B1 KP2010-5B1	.035" .045" 3/64" (Alum. Wire)	0.9 mm 1.2 mm 1.2 mm (Alum. Wire)	
	GAS NOZZLES Fixed (Flush)	KP1931-1 KP1931-2 * KP1931-3	3/8" 1/2" 5/8"	9.5 mm 12.7 mm 15.9 mm	
	(Recessed)	KP1930-1 KP1930-2 KP1930-3	3/8" 1/2" 5/8"	9.5 mm 12.7 mm 15.9 mm	
	Requires: Gas Diffuser As'bly	KP2026-3 *	.025 – .045"	0.6 – 1.2 mm	
	Adjustable Slip-On Requires:	KP1935-2 KP1935-1	1/2" 5/8"	12.7 mm 15.9 mm	
	Nozzle Insulator As'bly	KP2025-1			
	Requires: Gas Diffuser As'bly	KP2026-2 KP2026-1	.025 – .030" .035 – .045"	0.6 – 0.8 mm 0.9 – 1.2 mm	
	Gasless Nozzle (For Innershield)	KP1947-1 Δ			
	GUN TUBE ASSEMBLIES Standard (60°) 45°	KP2015-1 * KP2041-1			

^{*} Included with POWER MIG® 215XT


Δ Requires KP2026-1 Gas Diffuser Assembly.

Return to Master TOC

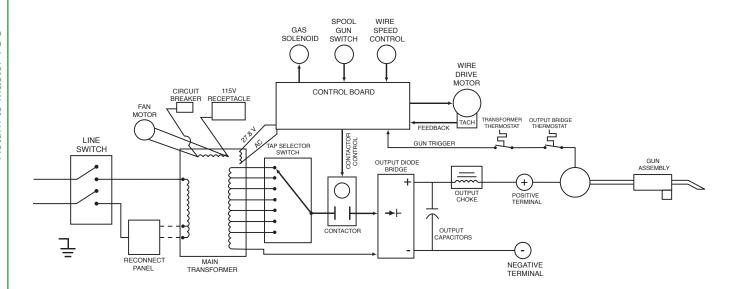
Return to Master TOC

FIGURE D.2 - MAJOR COMPONENT LOCATIONS

- 1. Case Front Assembly
- 2. Rear Panel Assembly
- 3. Center Assembly
- 4. Wire Drive Assembly
- 5. Base & Power Component Assembly
- 6. Covers Assembly

ELECTRIC

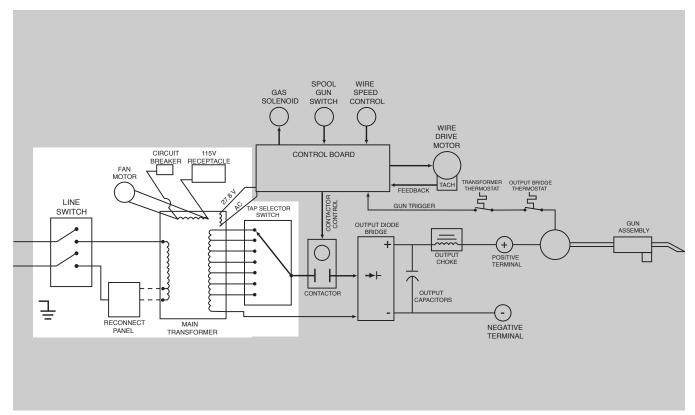
Download from Www.Somanuals.com. All Manuals Search And Download.


NOTES

Return to Master TOC

E-1 TABLE OF CONTENTS-THEORY OF OPERATION SECTION E-1

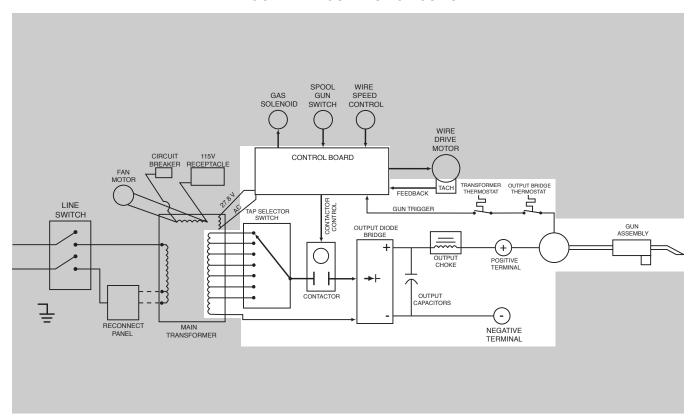
The	eory of OperationE-	1
	Input Power Circuit	2
	Input Line VoltageE-	2
	Main Transformer	2
	Voltage Selector Switch	2
	Baffle Mounted Diode Bridge	2
	Control Circuits	3
	Output Rectification, Contactor & Control Boards	3
	Optional Circuits	4
	Control Board, Gun Trigger, & Wire Drive Motor	4
	Protective Devices & Circuits	5
	Thermal Overload Protection	5
	Wirefeed Overload ProtectionE-	5


FIGURE E.1 BLOCK LOGIC DIAGRAM

Return to Master TOC

Return to Master TOC

FIGURE E.2 - INPUT POWER CIRCUIT

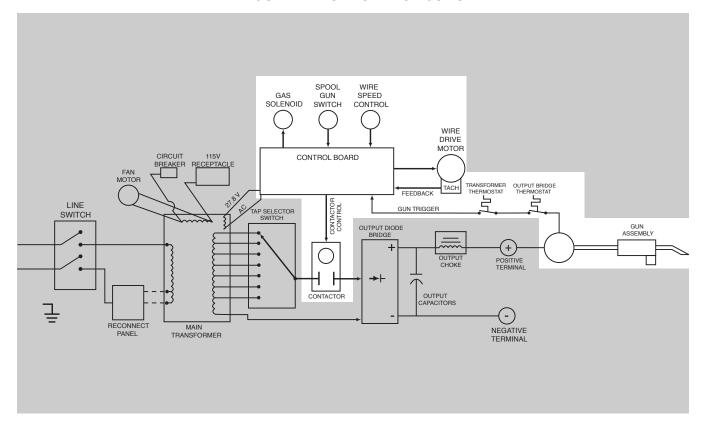

INPUT LINE VOLTAGE, MAIN TRANSFORMER, VOLTAGE SELECTOR SWITCH AND BAFFLE MOUNTED DIODE BRIDGE

The single phase input power is connected to the Power MIG® 215XT through a line switch located on the front panel.

A reconnect panel allows the user to configure the machine for the desired input voltage. The AC input voltage is applied to the primary of the main transformer. The cooling fan motor and 115v receptacle (115VAC) is powered from a portion of the secondary winding. For welding purposes, the main transformer converts the high voltage, low current input power to a low voltage, high current output. This tapped secondary winding is coupled to a voltage selector switch. By selecting one of seven positions on the switch the user can preset the desired voltage output from a minimum setting (A) to a maximum voltage setting (G).

NOTE: Unshaded areas of Block Logic Diagram are the subject of discussion

FIGURE E.2 - CONTROL CIRCUITS


OUTPUT RECTIFICATION, CONTACTOR AND CONTROL BOARD

The AC voltage developed on the secondary winding is applied, through the selector switch and output contactor, to the output rectifier bridge. This DC welding voltage is filtered by the output capacitors and applied to the output terminals and welding gun. Since the output choke is in series with the positive leg of the output rectifier and also in series with the gun and welding load, a filtered constant voltage output is applied to the output terminals of the machine.

> NOTE: Unshaded areas of Block Logic Diagram are the subject of discussion

> > Power MIG® 215XT LINCOLN ®

FIGURE E.2 - OPTIONAL CIRCUITS

CONTROL BOARD, GUN TRIGGER AND WIRE DRIVE **MOTOR**

When the control board receives an activation command from the trigger circuit the control board supplies 12VDC which activates the gas solenoid and output contactor. It also supplies 2 to 29 VDC (depending on the wire speed setting) to the wire drive motor. The control board monitors the motor's tach feedback signals and compares these to the wire speed control setting. The proper armature voltage is then applied to the wire drive motor. The drive motor speed is thus controlled which in turn regulates the electrode wire feed speed through the gun.

Two self re-setting thermostats are included in the trigger circuitry. If either of these thermostats would "open" due to excessive heat, the trigger circuit would be interrupted and the machine's output and the wire feed would be disabled. The board also contains overload protection circuitry which protects the drive motor from excessive current draw.

The Power MIG® 215XT is equipped with an adapter panel and switch to allow operation of a spool gun for feeding aluminum wires.

NOTE: Unshaded areas of Block Logic Diagram are the subject of discussion

Power MIG® 215XT **LINCOLN**

Return to Master

Return to Master TOC

Return to Master TOC

PROTECTIVE DEVICES AND CIRCUITS

THERMAL AND OVERLOAD PROTECTION

The Power MIG® 215XT has two built-in protective thermostats that respond to excessive temperatures. One is located on the main transformer. The other thermostat is located on the output rectifier heat sink assembly. They open the wire feed and welder output circuits if the machine exceeds the maximum safe operating temperature. This can be caused by a frequent overload or high ambient temperature.

The thermostats are self-resetting once the machine cools sufficiently. If the thermostat shutdown is caused by excessive output or duty cycle and the fan is operating normally, the power switch may be left on and the reset should occur within a 15 minute period. If the fan is not turning or the air intake louver are obstructed, then the input power must be removed and the fan problem or air obstruction must be corrected.

WIREFEED OVERLOAD PROTECTION

The Power MIG® 215XT has solid state overload protection of the wire drive motor. If the motor becomes overloaded, the protection circuitry turns off the wire feed speed and gas solenoid. Check for proper size tip liner, drive rolls, and any obstructions or bends in the gun cable. Check for any other factors that would impede the wire feeding. To resume welding, simply pull the trigger. There is no circuit breaker to reset, as the protection is done with reliable solid state electronics.

TABLE OF CONTENTS - TROUBLESHOOTING AND REPAIR F-1

Troubleshooting and Repair	F-1
How to Use Troubleshooting Guide	F-2
PC Board Troubleshooting Procedures	F-3
Troubleshooting Guide	F-4
Test Procedures	F-11
Main Transformer Test	F-11
Wire Drive Motor and Tachometer Feedback Test	F-15
Output Bridge Rectifier Test	F-19
Contactor Test	F-21
Voltage Waveforms	F-23
Component Replacement Procedures	F-27
Control Board Replacement	F-27
Wire Drive Motor Assembly Replacement	F-29
Output Diode Bridge Rectifier Replacement	F-33
Output Capacitors Replacement	F-37
Main Transformer Replacement	F-41
Fan Blade/Motor Replacement	F-47
Output Contactor Replacement	F-49
Retest After Repair	

WARNING

ELECTRIC SHOCK can kill.

· Never work on the inside of the machine without removing the input power. You can receive a life threatening electrical shock if you fail to do this. Only qualified technicians should perform installation, maintenance, and troubleshooting work on the machine.

Return to Master TOC

HOW TO USE TROUBLESHOOTING GUIDE

A WARNING

Service and Repair should only be performed by Lincoln Electric Factory Trained Personnel. Unauthorized repairs performed on this equipment may result in danger to the technician and machine operator and will invalidate your factory warranty. For your safety and to avoid Electrical Shock, please observe all safety notes and precautions detailed throughout this manual.

This Troubleshooting Guide is provided to help you locate and repair possible machine malfunctions. Simply follow the three-step procedure listed below.

Step 1. LOCATE PROBLEM (SYMPTOM).

Look under the column labeled "PROBLEM (SYMPTOMS)". This column describes possible symptoms that the machine may exhibit. Find the listing that best describes the symptom that the machine is exhibiting. Symptoms are grouped into the following categories: output problems, function problems, wire feeding problems, and welding problems.

Step 2. PERFORM EXTERNAL TESTS.

The second column labeled "POSSIBLE AREAS OF MISADJUSTMENT(S)" lists the obvious external possibilities that may contribute to the machine symptom. Perform these tests/checks in the order listed. In general, these tests can be conducted without removing the case wrap-around cover.

Step 3. RECOMMENDED COURSE OF ACTION

The last column labeled "Recommended Course of Action" lists the most likely components that may have failed in your machine. It also specifies the appropriate test procedure to verify that the subject component is either good or bad. If there are a number of possible components, check the components in the order listed to eliminate one possibility at a time until you locate the cause of your problem.

All of the referenced test procedures referred to in the Troubleshooting Guide are described in detail at the end of this chapter. Refer to the Troubleshooting and Repair Table of Contents to locate each specific Test Procedure. All of the specified test points, components, terminal strips, etc. can be found on the referenced electrical wiring diagrams and schematics. Refer to the Electrical Diagrams Section Table of Contents to locate the appropriate diagram.

A CAUTION

TROUBLESHOOTING AND REPAIR

PC BOARD TROUBLESHOOTING PROCEDURES

WARNING

ELECTRIC SHOCK can kill.

Have an electrician install and service this equipment. Turn the input power OFF at the fuse box before working on equipment. Do not touch electrically hot parts.

CAUTION

Sometimes machine failures appear to be due to PC board failures. These problems can sometimes be traced to poor electrical connections. To avoid problems when troubleshooting and replacing PC boards, please use the following procedure:

- 1. Determine to the best of your technical ability that the PC board is the most likely component causing the failure symptom.
- Check for loose connections at the PC board to assure that the PC board is properly connected.
- 3. If the problem persists, replace the suspect PC board using standard practices to avoid static electrical damage and electrical shock. Read the warning inside the static resistant bag and perform the following procedures:

PC board can be damaged by static electricity.

ATTENTION Static-Sensitive **Devices** Handle only at Static-Safe Workstations

- Remove your body's static charge before opening the staticshielding bag. Wear an anti-static wrist strap. For safety, use a 1 Meg ohm resistive cord connected to a grounded part of the equipment frame.
- If you don't have a wrist strap, touch an un-painted, grounded, part of the equipment frame. Keep touching the frame to prevent static build-up. Be sure not to touch any electrically live parts at the same time.
- Tools which come in contact with the PC board must be either conductive, anti-static or static-dissipative.

- Remove the PC board from the static-shielding bag and place it directly into the equipment. Don't set the PC board on or near paper, plastic or cloth which could have a static charge. If the PC board can't be installed immediately, put it back in the static-shielding bag.
- If the PC board uses protective shorting jumpers, don't remove them until installation is complete.
- If you return a PC board to The Lincoln Electric Company for credit, it must be in the static-shielding bag. This will prevent further damage and allow proper failure analysis.
 - 4. Test the machine to determine if the failure symptom has been corrected by the replacement PC board.

NOTE: It is desirable to have a spare (known good) PC board available for PC board troubleshooting.

NOTE: Allow the machine to heat up so that all electrical components can reach their operating temperature.

- 5. Remove the replacement PC board and substitute it with the original PC board to recreate the original problem.
 - a. If the original problem does not reappear by substituting the original board, then the PC board was not the problem. Continue to look for bad connections in the control wiring harness, junction blocks, and terminal strips.
 - b. If the original problem is recreated by the substitution of the original board, then the PC board was the problem. Reinstall the replacement PC board and test the machine.
- 6. Always indicate that this procedure was followed when warranty reports are to be submitted.

NOTE: Following this procedure and writing on the warranty report, "INSTALLED AND SWITCHED PC BOARDS TO VERIFY PROBLEM," will help avoid denial of legitimate PC board warranty claims.

Return to Master TOC

Observe Safety Guidelines detailed in the beginning of this manual.

PROBLEMS (SYMPTOMS)	POSSIBLE AREAS OF MISADJUSTMENT(S)	RECOMMENDED COURSE OF ACTION
Major physical or electrical damage is evident. The machine is deadno open circuit voltage and no wire feed	OUTPUT PROBLEMS 1. Contact your local Lincoln Electric authorized field service facility. 1. Make certain the input power switch (S1) is in the "ON"	Department 1-888-935-3877.
when the gun trigger is activated. The cooling fan is not running.	position. 2. Check the input voltage at the machine. The input voltage must match the rating plate and the reconnect panel. 3. Check for blown or missing fuses in the input lines.	 Check for broken or missing wires at the reconnect panel. Perform the <i>Main Transformer Test.</i>
There is no open circuit voltage or wire feed when the gun trigger is activated. The cooling fan is running.	 Make sure the input voltage is correct and matches the nameplate rating and reconnect panel configuration. One of the two thermostats may be open due to machine overheating. If the machine operates normally after a cooling off period then check for proper fan operation and ventilation. Make certain the machine's duty cycle is not being exceeded. 	 The baffle mounted rectifier bridge may be faulty. Check and replace if necessary. Perform the Main Transformer Test. Check the thermostats and associated leads for loose or faulty connections. See the Wiring Diagram. The internal triggering circuit/plugs may be faulty. See the Wiring Diagram. The control board may be faulty.

A CAUTION

Return to Master TOC

Observe Safety Guidelines detailed in the beginning of this manual.

PROBLEMS (SYMPTOMS)	POSSIBLE AREAS OF MISADJUSTMENT(S)	RECOMMENDED COURSE OF ACTION
(continued from previous page)		Check the output selector switch for proper operation and good connections. Perform the <i>Output Contactor</i>

A CAUTION

Return to Master TOC

Return to Master TOC

Observe Safety Guidelines detailed in the beginning of this manual.

PROBLEMS (SYMPTOMS)	POSSIBLE AREAS OF MISADJUSTMENT(S)	RECOMMENDED COURSE OF ACTION
Output voltage and wire feed speed is present when the gun trigger is NOT activated.	OUTPUT PROBLEMS 1. Remove the gun assembly. If the problem is resolved, the gun assembly is faulty. Repair or replace. If the problem is NOT resolved, the fault is within the Power MIG® 215XT machine.	Check for "shorts" in the trigger circuitry within the Power MIG® 215XT machine. See the Wiring Diagram. The control board may be faulty.
The machines output is low. Welds are "cold". The weld beads are rounded or "humped" demonstrating poor wetting into the plate. The machine cannot obtain full rated output of 200 amps at 22VDC.		nections on the heavy current carrying leads inside the Power MIG® 215XT. See the Wiring Diagram. 2. The output capacitors may be
	rect for the process being used.3. Make sure the electrode polarity is correct for the process being used.4. Check the welding cables and	Replace if necessary. WARNING: The liquid electrolyte
	gun for loose or faulty connections.	
		be faulty. Check for good contact and continuity (zero ohms) through the switch. See the Wiring Diagram.
		4. Perform the <i>Output Contactor Test.</i>
		5. Perform the <i>Output Bridge Rectifier Test.</i>
		6. Perform the <i>Main Transformer Test.</i>
The output voltage is continuous when the gun trigger is NOT activated. The wire feed functions normally.	The output contactor may be stuck closed.	Perform the Output Contactor Test.

A CAUTION

Return to Master TOC

Return to Master TOC

Observe Safety Guidelines detailed in the beginning of this manual.

PROBLEMS (SYMPTOMS)	POSSIBLE AREAS OF MISADJUSTMENT(S)	RECOMMENDED COURSE OF ACTION
There is no gas flow when the gun trigger is activated. The wire feeds and the arc voltage is present.	 If a spool gun adapter is installed, make certain the toggle switch in the spool gun kit in the correct position. Check to make sure the switch on the Magnum 100SG Adapter Panel is in the Magnum Push Gun Position. Check the gas source and hoses for kinks or leaks. 	2. Check the gas solenoid by disconnecting it from leads #108A and #116A&B. Apply a 12VDC external
The machine stops feeding wire while welding. When the gun trigger is released and pulled again, the wire feed starts.	in the wire feed path. The gun	Normal armature current is 2.0 to 2.7 amps maximum. If the motor armature current is normal, and the motor continues to shut-off, the control board may be faulty. Replace. 2. If the motor armature current is high

A CAUTION

Return to Master TOC

Observe Safety Guidelines detailed in the beginning of this manual.

PROBLEMS (SYMPTOMS)	POSSIBLE AREAS OF MISADJUSTMENT(S)	RECOMMENDED COURSE OF ACTION
Rough wire feeding or the wire will not feed but the drive rolls are turning. No control of wire feed speed. Other machine functions are nor-	be dirty. Rotate several times and	ter may be faulty. Check or replace.
mal.	check if the problem is resolved.	Normal potentiometer resistance is 10K ohms. 2. Perform the <i>Wire Drive Motor and Tachometer Feedback Test.</i> 3. The control board may be faulty.
There is no wire feed when the gun trigger is activated. Normal open circuit weld voltage is present and the gas solenoid functions normally.	 Check for adequate wire supply. If the drive rolls are turning, check for a mechanical restriction in the wire feed path. The gun liner may be clogged. Check or replace. If the drive rolls are not turning when the gun trigger is activated, contact your local Lincoln Electric Authorized Field Service Facility. 	

A CAUTION

Return to Master TOC

Return to Master TOC

Observe Safety Guidelines detailed in the beginning of this manual.

PROBLEMS (SYMPTOMS)	POSSIBLE AREAS OF MISADJUSTMENT(S)	RECOMMENDED COURSE OF ACTION
Poor arc striking with electrode sticking or blasting off.	feed speed and voltage are correct for the process being used. 2. Make certain the gas shielding is correct for the process being used. 3. Make sure the machine's reconnect panel is configured properly for the input voltage being applied.	Rectifier Test.
The arc is unstable and or "hunting"	 Check for a worn or melted contact tip. Check for loose or faulty connections on the work and gun cables. Make sure the electrode polarity is correct for the welding process being used. Check for rusted or dirty electrode wire. Make sure the machine's settings and shielding gas are correct for the process being used. 	 Check the output selector switch for proper operation and good connections. The output capacitors may be faulty. Check for loose connections at the capacitors. Also check for leaky

A CAUTION

Return to Section TOC

Return to Master TOC

Return to Master TOC

Observe Safety Guidelines detailed in the beginning of this manual.

PROBLEMS (SYMPTOMS)	POSSIBLE AREAS OF MISADJUSTMENT(S)	RECOMMENDED COURSE OF ACTION
The weld bead is narrow or ropy. May have porosity with the electrode stubbing into the plate.	 WELDING PROBLEMS Make sure the welding procedures and electrode polarity are correct for the process being used. Make certain the shielding gas is correct and the flow is proper. Make sure the weld joint is not "contaminated". 	1. Perform the <i>Output Bridge Rectifier Test</i> . 2. The output capacitors may be faulty. Check for loose connections at the capacitors. Also check for leaky capacitors. Replace if necessary. WARNING: The liquid electrolyte in these capacitors is toxic. Avoid contact with any portion of your body.
The contact tip seizes in the gas diffuser.	1. The tip is being over heated due to excessive current and/or high duty cycle. 2. A light application of high temperature anti-seize lubricant may be applied to the contact tip threads.	

A CAUTION

TROUBLESHOOTING AND REPAIR

MAIN TRANSFORMER TEST

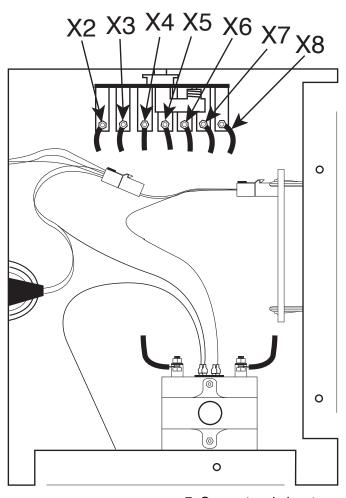
WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION

This test will determine if the correct voltages are being applied.


- a. Applied to the primary windings of the Main Transformers.
- b. Induced on the secondary and auxiliary windings of the Main Transformer.

MATERIALS NEEDED

3/8" wrench 5/16" Nutdriver Volt-ohmmeter

MAIN TRANSFORMER TEST (continued)

FIGURE F.1 - OUTPUT SELECTOR SWITCH TERMINALS

PROCEDURE

A WARNING

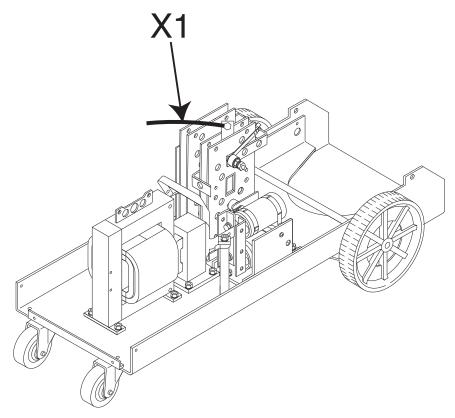
THE ON/OFF POWER SWITCH will be "hot" during these tests.

NOTE: Secondary voltages will vary proportionately with the primary input voltage.

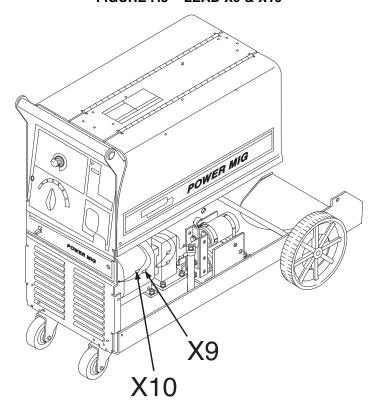
- 1. Disconnect the main input power supply to the machine.
- 2. Remove the case top and side panels with a 3/8" nutdriver.
- 3. Remove the tool tray with a 5/16" nut driver.
- 4. Locate leads X2 thru X8 located on the output selector switch. See Figure F.1.
- Locate lead X1 located on the output rectifier assembly. See Figure F.2.
- 6. Locate leads X9 and X10. See Figure F.3.

- 7. Connect main input power to the machine.
- 8. Turn the Power MIG® 215XT ON/OFF Power Switch to the ON position.

WARNING


ELECTRIC SHOCK can kill.

- Do not touch electrically live parts such as output terminals or internal wiring.
- All input power must be electrically disconnected before proceeding.
- Carefully make the following voltage tests. See Table F.1.
- 10. Turn Off the machine.
- 11. If any of the voltages are incorrect or missing, check for loose or broken connections between the main transformer and the test points.


Return to Master TOC

MAIN TRANSFORMER TEST (continued)

FIGURE F.2 - LEAD X1

FIGURE F.3 – LEAD X9 & X10

Power MIG® 215XT

LINCOLN®

ELECTRIC

Download from Www.Somanuals.com. All Manuals Search And Download.

Return to Master TOC

Return to Master TOC

TROUBLESHOOTING AND REPAIR

MAIN TRANSFORMER TEST (continued)

TABLE F.1 – TEST POINTS

INPUT VOLTAGE	TEST POINTS	EXPECTED VOLTAGE READING
230 VAC	X1-X2	11.9-13.0 VAC
230 VAC	X1-X3	14.1-15.2 VAC
230 VAC	X1-X4	16.2-17.5 VAC
230 VAC	X1-X5	18.4-19.7 VAC
230 VAC	X1-X6	20.5-22.0 VAC
230 VAC	X1-X7	22.7-24.2 VAC
230 VAC	X1-X8	24.8-26.5 VAC
230 VAC	X9-X10	26.9-28.8 VAC

- 12. If ALL the voltages tested are incorrect or missing, test for correct nameplate input voltage between the H1 lead at the ON/OFF POWER SWITCH to H2 or H3 at the reconnect panel. Voltage tested will vary depending on input voltage connection. See Wiring Diagram for test point locations.
- A. If the input voltage test is incorrect, check for loose or broken leads between the reconnect panel and the ON/OFF POWER SWITCH.
- B. Test the ON/OFF POWER SWITCH for proper operation.
- 13. If the correct nameplate voltage is being applied to the main transformer and one or more of the secondary voltages are missing or are incorrect, the main transformer may be faulty. Replace.
- 14. When test is complete, replace tool tray, case sides and top.

WIRE DRIVE MOTOR AND TACHOMETER FEEDBACK TEST

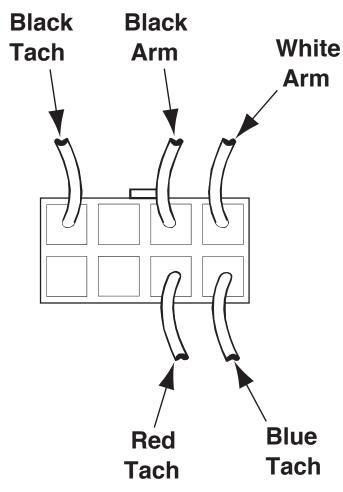
WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION

This test will determine if the Wire Drive Motor and Voltage Feedback Circuit are functioning properly.


MATERIALS NEEDED

5/16" Nutdriver Volt-Ohmmeter

Return to Master TOC

WIRE DRIVE MOTOR AND TACHOMETER FEEDBACK TEST (continued)

FIGURE F.4 - PLUG J4

PROCEDURE

NOTE: POLARITY MUST BE OBSERVED FOR THESE TESTS.

Test for correct wire drive motor armature voltage.

- 1. Disconnect main input power to the machine.
- 2. Open the side panels and remove the tool tray using a 5/16" nutdriver.
- 3. Locate plug J4 on the wiring harness. See Wiring Diagram.
- 4. Locate the black and white armature leads on plug J4. See Figure F.4.

10C

Return to Master TOC

Return to Master TOC

WIRE DRIVE MOTOR AND TACHOMETER FEEDBACK TEST (continued)

5. Make the following voltage tests:

WARNING

ELECTRIC SHOCK can kill.

- · Do not touch electrically live parts such as output terminals or internal wiring.
- All input power must be electrically disconnected before proceeding.
- a. Turn the machine OFF between each test.
- b. Carefully insert the meter probes into the lead side of plug J4. See Figure F.4.
- c. Turn the machine ON and pull the gun trigger to conduct the voltage test.

FROM LEAD	FROM LEAD	FROM LEAD
Black Armature Lead	White Armature Lead	2-29 VDC (varies depending on wire feed speed)

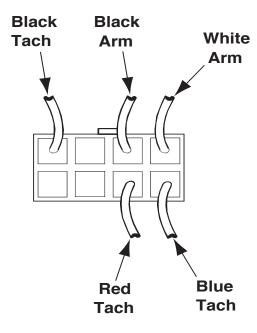
- 6. If the voltage to the wire drive motor armature is zero, check the wires between plug J4 and the wire drive motor. Also check the electrical connector J5 for proper connections and jumper plug. See the Wiring Diagram.
- 7. If all wires and connectors are good and the voltage to the drive motor armature is zero, the control PC board may be faulty. Replace the control PC board.
- 8. If the motor is running at high speed and the armature voltage is high and uncontrollable, Proceed with the tachometer test.

TEST FOR SUPPLY VOLTAGE TO TACHOME-

- 1. Disconnect the main AC input power to the machine.
- 2. Locate plug J4.
- 3. Locate the tach leads on plug J4. See Figure F.5.
- 4. Connect the main input power to the machine.
- 5. Make the following voltage tests:

WARNING

ELECTRIC SHOCK can kill.


- · Do not touch electrically live parts such as output terminals or internal wiring.
- · All input power must be electrically disconnected before proceeding.
- a. Turn the machine OFF between each test.
- b. Carefully insert the meter probes into the lead side of plug J4.

FROM LEAD	FROM LEAD	FROM LEAD
Black (-)	Red (+)	5-6 VDC

- 6. If the 5-6 VDC is present, check the leads to the tachometer circuit.
- 7. If the leads are okay and 5-6 VDC is present, the correct voltage is being received from the control PC board. Continue with the supply voltage to tachometer test.
- 8. If the 5-6 VDC is not present and the leads are okay, the control PC board may be faulty, replace the control PC board. Also check plug J5 and the jumper plug. See Wiring Diagram.

WIRE DRIVE MOTOR AND TACHOMETER FEEDBACK TEST (continued)

FIGURE F.5 - PLUG J4

TEST FOR FEEDBACK VOLTAGE TO CONTROL BOARD

- 1. Disconnect the main AC input power to the machine.
- 2. Locate plug J4 and the tach leads. See Figure F.5.
- 3. Connect main input power to the machine.
- 4. Make the following voltage tests:

▲ WARNING
 ELECTRIC SHOCK can kill.

- Do not touch electrically live parts such as output terminals or internal wiring.
- All input power must be electrically disconnected before proceeding.
- a. Turn the machine OFF between each test.
- b. Carefully insert the meter probes into the lead side of plug J4. See Figure F.5.
- c. Turn the machine ON and pull the gun trigger to conduct the voltage test.

FROM LEAD	TO LEAD	EXPECTED VOLTAGE
Black (-)	BLUE (+)	3.0 TO 4.0 VDC

- If the 3.0 to 4.0 VDC is present, the tachometer circuit is sending the correct feedback signal to the control PC board. Check the leads and plug J5. See the Wiring Diagram.
- If the 3.0 to 4.0 VDC is NOT present or NOT correct, the control PC board is not receiving the proper feedback voltage from the tachometer circuit.
- If the leads are okay, the tachometer circuit may be faulty, replace the tachometer circuit.
- 8. Replace the tool tray.

Return to Master TOC

TROUBLESHOOTING AND REPAIR **OUTPUT BRIDGE RECTIFIER TEST**

WARNING

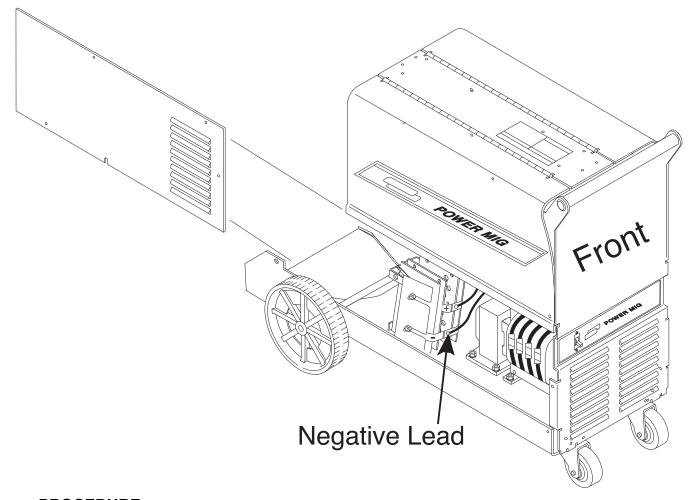
Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION

This test will determine if a diode is "shorted" or "leaky". See the machine waveform section in this manual for normal and abnormal output wave forms.

MATERIALS NEEDED


Analog Volt-ohmmeter or Diode Tester 3/8" Nutdriver 1/2" Nutdriver

Return to Master TOC

TROUBLESHOOTING AND REPAIR

OUTPUT BRIDGE RECTIFIER TEST (continued)

FIGURE F.6 - RECTIFIER TEST POINTS

PROCEDURE

- 1. Remove input power to the Power MIG® 215XT machine.
- 2. Using the 3/8" nutdriver, remove the left case side.
- 3. Locate and disconnect the negative lead from the output rectifier bridge assembly. Be sure there is no electrical contact between the rectifier and the lead. See Figure F.6.

NOTE: Do not disassemble the rectifier assembly.

- 4. Test for "shorted" or "leaky" diodes by checking from the anodes to the cathodes of the diode heatsink plates. The readings should be high resistance in one polarity and low resistance in the opposite polarity.
- 5. If any of the diodes are "leaky" or "shorted" the output rectifier assembly should be replaced.
- 6. When the test is complete, replace the negative output lead previously removed.
- 7. Replace the left case side.

Return to Master TOC

Return to Master TOC

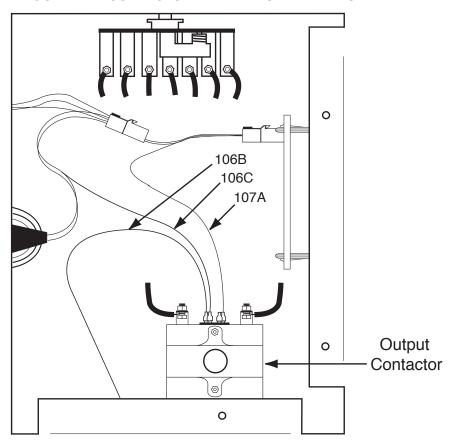
TROUBLESHOOTING AND REPAIR **CONTACTOR TEST**

WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION


This test will determine if the Contactor is functional.

MATERIALS NEEDED

12 VDC Supply Volt/Ohmmeter 7/16" Wrench

CONTACTOR TEST (continued)

FIGURE F.7 - CONTACTOR TERMINALS AND LEADS

PROCEDURE

- Remove the input power to the Power MIG® 215XT machine.
- 2. Using the 5/16" Nutdriver, remove the tool tray.
- Locate and remove leads 106B, 106C and 107A from the contactor coil terminals. See Figure F.7. See the Wiring Diagram.
- Using the 7/16" wrench, remove one lead from the contactors large terminals. See Figure F.7. See the Wiring Diagram.
- 5. Carefully apply 12 VDC to the contactor coil leads. (small terminals)

A CAUTION

Do not leave the 12 VDC applied to the contactor coil for a prolonged period of time (15 seconds maximum). Damage to contactor may result.

If the contactor does not activate when the 12VDC is applied, the contactor is faulty. Replace.


- 7. If the contactor activates when the 12VDC is applied, check the resistance between the two large terminals with the contactor activated. The resistance should be very low (0 to 1 ohm).
- If the resistance is "high" or "open" between the two large terminals when the contactor is activated, the contactor is faulty. Replace.
- If the contactor activates and the resistance between the terminals is low when the 12 VDC is applied, the contactor is good

NOTE: When the contactor is not activated, the resistance between the terminals should be very high (infinite). If the resistance is always low, the contacts are "stuck" and the contactor is faulty. Replace.

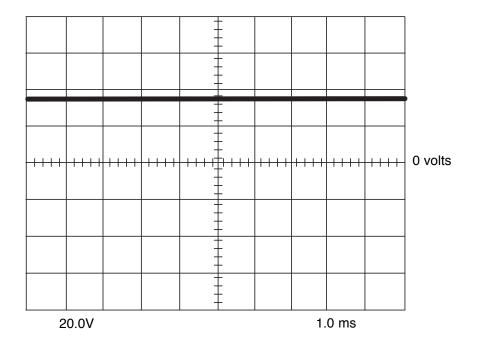
- When the test is complete, replace leads 106B, 106C and 107A.
- Replace the lead previously removed from one of the contactor large terminals.
- Replace the tool tray.

Return to Master TOC

TYPICAL OUTPUT VOLTAGE WAVEFORM - MACHINE LOADED (MAX TAP "G")

MACHINE LOADED TO 200 AMPS AT 22 VDC

This is a typical DC output voltage waveform generated from a properly operating machine. Note that each vertical division represents 10 volts and that each horizontal division represents 5 milliseconds in time. The machine was loaded with a resistance grid bank.


Note: Scope probes connected at machine output terminals: (+) probe to electrode, (-) probe to work.

SCOPE SETTINGS

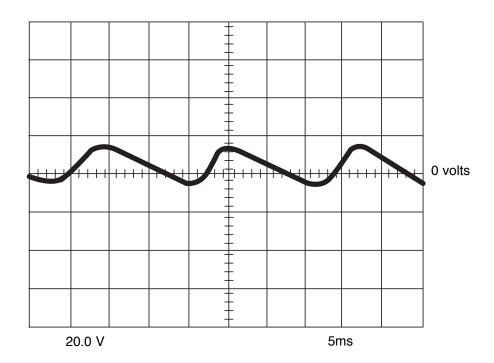
Volts/Div	10V/Div.
Horizontal Sweep	.5 ms/Div.
Coupling	DC
Trigger	Internal

Return to Master TOC

NORMAL OPEN CIRCUIT VOLTAGE WAVEFORM (MAX TAP "G")

This is a typical DC output voltage waveform generated from a properly operating machine. Note that each vertical division represents 20 volts and that each horizontal division represents 1.0 milliseconds in time.

Note: Scope probes connected at machine output terminals: (+) probe to electrode, (-) probe to work.


SCOPE SETTINGS

Volts/Div	20V/Div.
Horizontal Sweep	
Coupling	DC
Trigger	Internal

Return to Master TOC

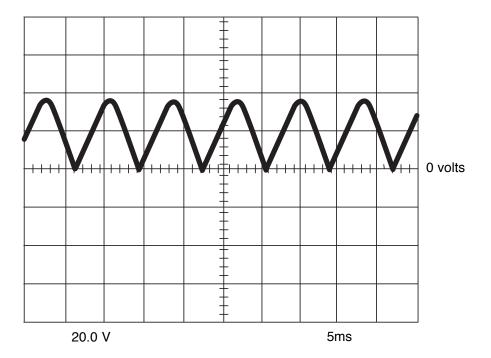
Return to Master TOC

ABNORMAL OUTPUT VOLTAGE WAVEFORM - MACHINE LOADED (MAX TAP "G") ONE OUTPUT DIODE NOT FUNCTIONING

MACHINE LOADED TO 180 AMPS AT 16 VDC

This is NOT a typical DC output voltage waveform. One output diode is not functioning. Note the increased ripple content. One diode was disconnected to simulate an open or nonfunctioning output diode. Each vertical division represents 20 volts and each horizontal division represents 5 milliseconds in time. The machine was loaded with a resistance grid bank.

Note: Scope probes connected at machine output terminals: (+) probe to electrode, (-) probe to work.


SCOPE SETTINGS

Volts/Div	20V/Div.
Horizontal Sweep	.5 ms/Div.
Coupling	DC
Trigger	Internal

Return to Master TOC

Return to Master TOC

ABNORMAL OPEN CIRCUIT VOLTAGE **OUTPUT CAPACITOR BANK NOT FUNCTIONING (MAX TAP "G")**

This is NOT a typical DC output voltage waveform. The output capacitors are not functioning. Note the lack of "filtering" in the output waveform. The output capacitor bank was disconnected. Each vertical division represents 20 volts and each horizontal division represents 5 milliseconds in time.

Note: Scope probes connected at machine output terminals: (+) probe to electrode, (-) probe to work.

SCOPE SETTINGS

Volts/Div	20V/Div.
Horizontal Sweep5	ms/Div.
Coupling	DC
Trigger	.Internal

Return to Master TOC

CONTROL BOARD REMOVAL AND REPLACEMENT PROCEDURE

WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION

The following procedure will aid the technician in removing the Control Board for replacement.

MATERIALS NEEDED

5/16" Nutdriver

Return to Master

Return to Master TOC

Return to Master TOC

CONTROL BOARD REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.8 - CONTROL BOARD MOUNTING PINS

PROCEDURE

- 1. Remove power to the machine.
- 2. Using a 5/16" nutdriver, remove the three screws securing the tool tray.
- 3. Locate the control board.
- 4. Disconnect all associated plugs and leads connected to the control board.
- 5. Depress the retaining pins on the sides of the four nylon mounts to release the control board. See Figure F.8.

- Carefully remove the control board.
- 7. Mount the new board to the nylon mounting pins.
- 8. Reconnect any plugs or leads previously removed.
- 9. Replace the tool tray previously removed.

WIRE DRIVE MOTOR REMOVAL AND REPLACEMENT PROCEDURE

WARNING

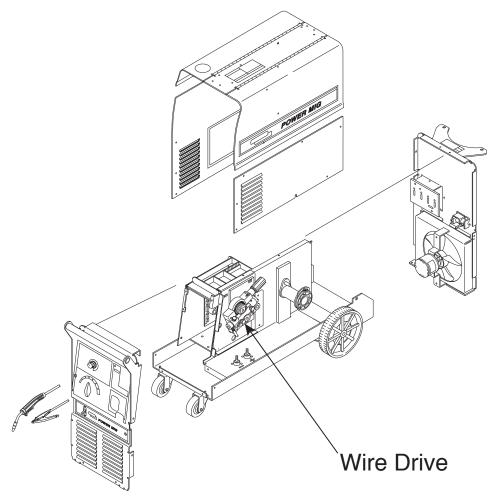
Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION

The following procedure will aid the technician in removing the Wire Drive and Tachometer for repair or replacement.

MATERIALS NEEDED


5/16" Nutdriver 9/16" Nutdriver Pliers Small Flathead Screwdriver

Return to Master TOC

Return to Master TOC

WIRE DRIVE MOTOR REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.9 - WIRE DRIVE LOCATION

PROCEDURE

- 1. Remove power to the machine.
- 2. Lift cover to gain access to the wire drive. See Figure F.9.
- 3. Using a pair of pliers, disconnect the gas hose from the bottom of the wire drive. **See Figure** *F.10.*
- 4. Using a 9/16" nut driver, remove the thick black positive lead located just above the gas hose. **See Figure F.10.**

NOTE: Disconnect lead from the wire drive motor assembly, not the machine.

- Using a 5/16" nutdriver, remove the three mounting screws next to the wire drive assembly. See Figure F.10.
- 6. Using a 5/16" nutdriver, remove the two screws on the case front assembly. **See Figure F.11.**
- Carefully maneuver the wire drive assembly out the side of the machine to gain access to plug J4. See Wiring Diagram.
- 8. Disconnect plug J4.

Return to Master TOC

WIRE DRIVE MOTOR REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.10 - WIRE DRIVE HOSE & LEAD LOCATION

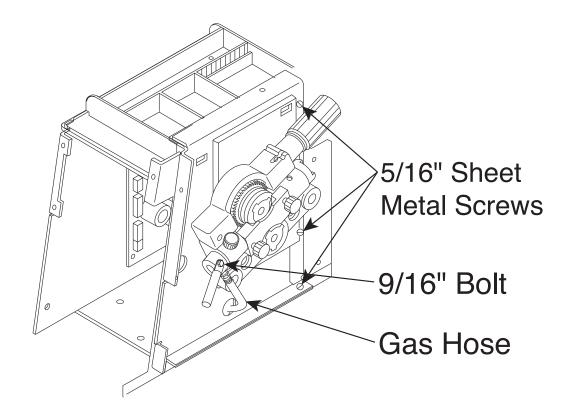
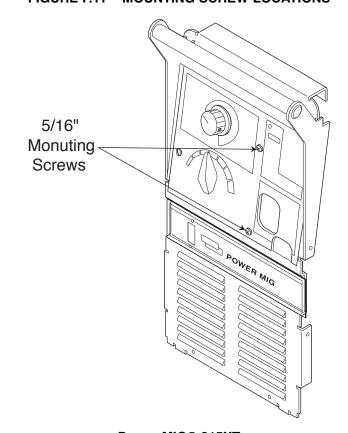



FIGURE F.11 - MOUNTING SCREW LOCATIONS

Power MIG® 215XT

LINCOLN ELECTRIC

Download from Www.Somanuals.com. All Manuals Search And Download.

Return to Master TOC

TROUBLESHOOTING AND REPAIR

WIRE DRIVE MOTOR REMOVAL AND REPLACEMENT PROCEDURE (continued)

- 1. Place the new wire drive assembly into its proper position.
- Connect plug J4.
- 3. Maneuver assembly back into its original position.
- 4. Replace all mounting screws previously removed.
- 5. Using a 3/4" nut driver, replace the thick black lead previously removed.
- 6. Reconnect the gas hose to the wire drive assembly.
- 7. Close case wrap around cover.

Return to Master TOC

Return to Master TOC

TROUBLESHOOTING AND REPAIR

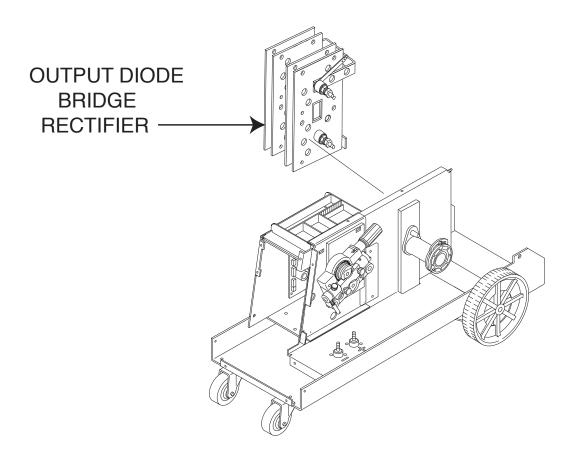
OUTPUT DIODE BRIDGE RECTIFIER REMOVAL AND REPLACEMENT PROCEDURE

WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION


The following procedure will aid the technician in removing the Output Diode Bridge Rectifier for repair or replacement.

MATERIALS NEEDED

3/8" Nutdriver 1/2" Nutdriver 5/16" Nutdriver

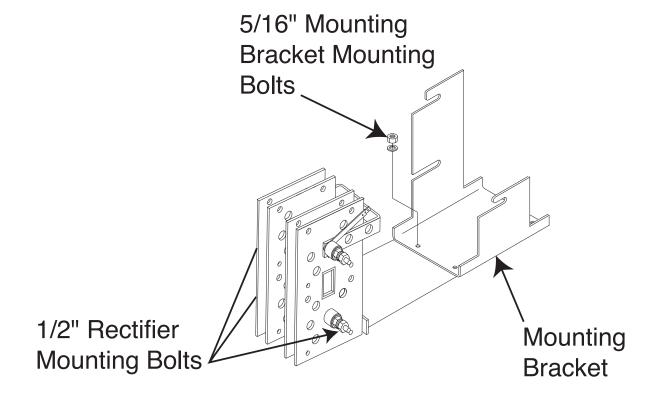
OUTPUT DIODE BRIDGE RECTIFIER REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.12 - OUTPUT DIODE BRIDGE RECTIFIER LOCATION

PROCEDURE

- 1. Using a 3/8" nutdriver, remove the left side of the case wraparound cover.
- 2. Locate the output diode bridge rectifier. See Figure F.12.
- 3. Using a 1/2" nutdriver label and remove the four thick black leads connected to the rectifier.

NOTE: Be sure to label lead terminals also. Take note of washer placement upon removal.


- 4. Label and remove leads 104A and 104B. See Wiring Diagram.
- Using a 5/16" nutdriver locate and remove the four bolts mounting the rectifier bracket to the bottom of the machine. These bolts can be accessed easily from the bottom of the machine. See Figure F.13.
- Carefully manipulate the output diode bridge rectifier and the mounting bracket out of the left side of the machine.

- Using a 1/2" nutdriver remove the three bolts mounting the bracket to the rectifier. The rectifier is now ready for repair or replacement. See Figure F.13.
- 8. Mount the new rectifier to the mounting bracket using the three 1/2" bolts.
- Carefully manipulate the rectifier and mounting bracket as a one back into the machine to its proper location.
- Mount the unit to the bottom of the machine using the four 5/16" mounting bolts previously removed.
- 11. Reconnect leads 104A and 104B previously removed.
- 12. Reconnect the four thick black leads previously labeled and removed using a 1/2" nutdriver.
- Replace the left side of the case wraparound cover.

Return to Master TOC

OUTPUT DIODE BRIDGE RECTIFIER REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.13 – OUTPUT DIODE BRIDGE RECTIFIER MOUNTING BRACKET

NOTES

Return to Master TOC

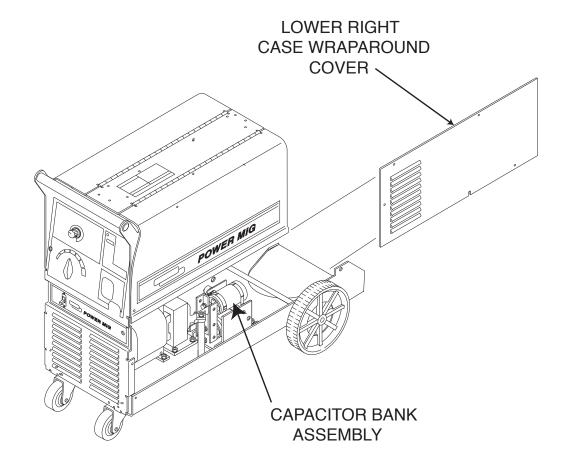
OUTPUT CAPACITORS REMOVAL AND REPLACEMENT PROCEDURE

WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION


The following procedure will aid the technician in removing the Output Capacitors for repair or replacement.

MATERIALS NEEDED

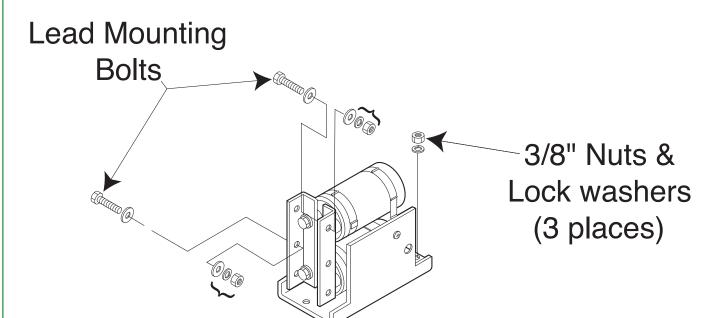
3/8" Nutdriver 1/2" Wrench

OUTPUT CAPACITORS REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.14 - CAPACITOR BANK LOCATION

PROCEDURE

- 1. Using a 3/8" nutdriver, remove the lower right side case wraparound cover. See Figure F.14.
- 2. Locate capacitor bank. See Figure F.14.
- Label and remove the five leads connected to the capacitor bank using a 1/2" wrench. Note washer position upon removal. See Figure F.15.
- 4. Using a 3/8" nutdriver, remove the three capacitor bank nuts and lock washers from the three mounting bolts. *See Figure F.15.*


- Remove the capacitor bank assembly from the machine.
- 6. Place the new capacitor bank into its proper location inside the machine.
- 7. Replace the three 3/8" nuts and lock washers previously removed.
- Using a 1/2" wrench, reconnect the five labeled leads and associated washers previously removed.
- 9. Replace the lower right side case wraparound cover previously removed.

Return to Master TOC

Return to Master TOC

OUTPUT CAPACITORS REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.15 - MOUNTING SCREW / BOLT LOCATIONS

NOTES

Return to Master TOC

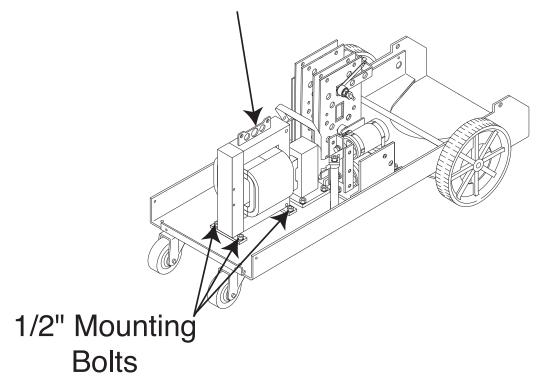
WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION

The following procedure will aid the technician in removing the Main Transformer for repair or replacement.


MATERIALS NEEDED

3/8" Nutdriver 7/16" Nutdriver 1/2" Nutdriver 5/16" Nutdriver Flathead Screwdriver

MAIN TRANSFORMER REMOVAL AND REPLACEMENT PROCEDURE (continued)

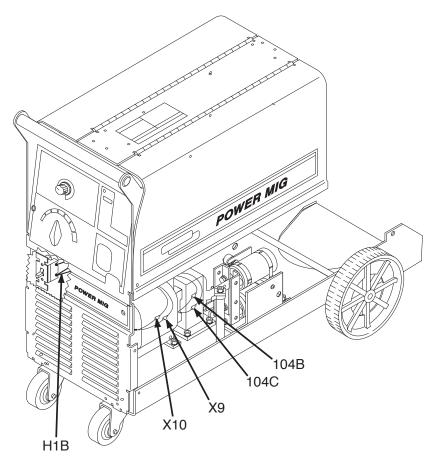
FIGURE F.16 - MAIN TRANSFORMER LOCATION

Main Transformer

PROCEDURE

- 1. Using a 3/8" nutdriver, remove both sides of the case wraparound cover.
- 2. Using a 5/16" nutdriver, remove the tool tray.
- 3. Locate the main transformer. See Figure F.16.
- 4. Label and disconnect leads X9, X10, 104B, & 104C. *See Figure F.17.*
- Using a flathead screwdriver, Label and disconnect lead H1B and other associated lead connected to the same terminal. These leads are connected to the ON/OFF switch. See Figure F.17.
- Using a 7/16" nutdriver, Label and disconnect leads X8, X7, X6, X5, X4, X3, & X2 from the switch assembly. Note washer position upon removal. See Figure F.18.

- 7. Using a 1/2" nutdriver, label and remove lead X1 from the output diode bridge rectifier.
- 8. Using a 5/16" Nutdriver, open the rear access panel. *See Figure F.20.*
- Disconnect lead 118 from the rear access panel. See Figure F.21.
- 10. Feed lead 118 toward the inside of the machine.
- 11. Cut any necessary cable ties.
- 12. Remove any necessary wiring harnesses.
- 13. Disconnect lead 121. See Figure F.19.
- 14. Using a 1/2" nutdriver, remove the four main transformer mounting bolts and associated washers. See Figure F.16.


T0C

Return to Master

Return to Master TOC

MAIN TRANSFORMER REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.17 - LEADS X9, X10, 104B, 104C, & H1B

15. Carefully maneuver the main transformer out the left side of the machine.

NOTE: Two people may be needed to maneuver the main transformer out of the machine.

REPLACEMENT

- Carefully maneuver the new main transformer back into the machine and onto its mounting studs.
- 2. Using a 1/2" nutdriver, mount the main transformer in its proper position.
- 3. Reconnect leads 118 and 121 previously removed.
- 4. Using a 5/16" nutdriver, close the rear access panel previously opened.

- Reconnect lead X1 to the output diode bridge rectifier.
- Reconnect leads X8, X7, X6, X5, X4, X3, & X2 previously removed from the switch assembly.
- 7. Reconnect lead H1B and the other associated lead connected to the same terminal. These leads are connected to the ON/OFF switch.
- Replace any necessary cable ties and wiring harnesses.
- Reconnect leads X9, X10, 104B, & 104C. See Wiring Diagram.
- 10. Using a 5/16" nutdriver, replace the tool tray.
- 11. Using a 3/8" nutdriver, replace both sides of the case wraparound cover.

F-44

Return to Master TOC

TROUBLESHOOTING AND REPAIR

F-44

MAIN TRANSFORMER REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.18 - LEADS SWITCH LEADS

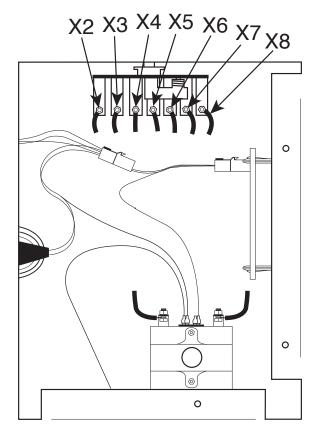
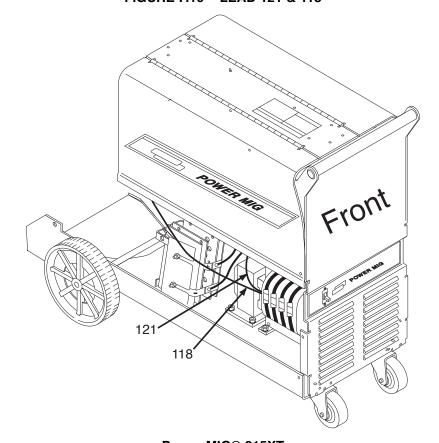



FIGURE F.19 - LEAD 121 & 118

Power MIG® 215XT

LINCOLN®
ELECTRIC
Download from Www.Somanuals.com. All Manuals Search And Download.

Return to Master TOC

MAIN TRANSFORMER REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.20 - REAR ACCESS PANEL

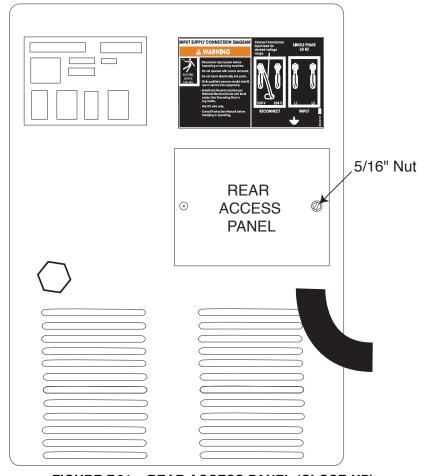
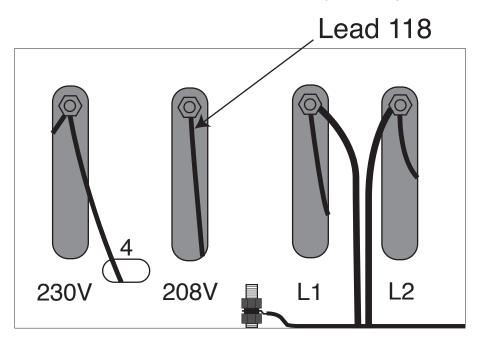



FIGURE F.21 - REAR ACCESS PANEL (CLOSE-UP)

Power MIG® 215XT

Return to Master

Return to Master TOC

Return to Master TOC

FAN BLADE / MOTOR REMOVAL AND REPLACEMENT PROCEDURE

WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

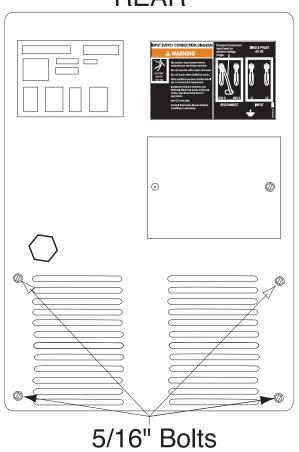
TEST DESCRIPTION

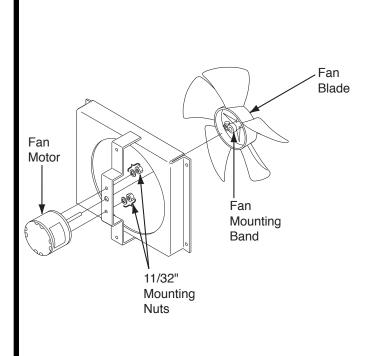
The following procedure will aid the technician in removing the Fan Blade and Fan Motor for repair or replacement.

MATERIALS NEEDED

3/8" Nutdriver 5/16" Nutdriver 11/32" Open-End Wrench Flathead Screwdriver

TOC


Return to Master


Return to Master TOC

FAN BLADE / MOTOR REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.22 - FAN MOUNTING BOLTS

REAR

PROCEDURE

- 1. Using a 3/8" nutdriver, remove the lower right side of the case wraparound cover.
- 2. Perform the *Output Capacitors Removal and Replacement Procedure.*
- 3. Using a 5/16" nutdriver, remove the four fan mounting screws from the rear of the machine. See Figure F.22.
- 4. Using an open end 11/32" wrench, remove the two fan motor mounting nuts and lockwashers. See Figure F.22.
- 5. Using a flathead screwdriver, loosen the fan blade mounting band. See Figure F.22.
- 6. Pry the fan blade off of the mounting shaft.

NOTE: If fan blade cracks or breaks upon removal, replace it.

7. Carefully maneuver the fan motor and fan blade out of the right side of the machine.

- Replace the fan motor and fan blade if necessary.
- 9. Tighten the fan blade mounting band.
- 10. Carefully maneuver the fan assembly into its original position.
- 11. Replace the two 11/32" fan motor mounting nuts and lockwashers.
- 12. Replace the four 5/16" fan assembly mounting screws in the rear of the machine.

NOTE: Make sure the fan blade is free to rotate when all of the mounting bolts are replaced.

- 13. Perform the *Output Capacitors Removal and Replacement Procedure.*
- 14. Replace the lower right case cover.

Power MIG® 215XT

OUTPUT CONTACTOR REMOVAL AND REPLACEMENT PROCEDURE

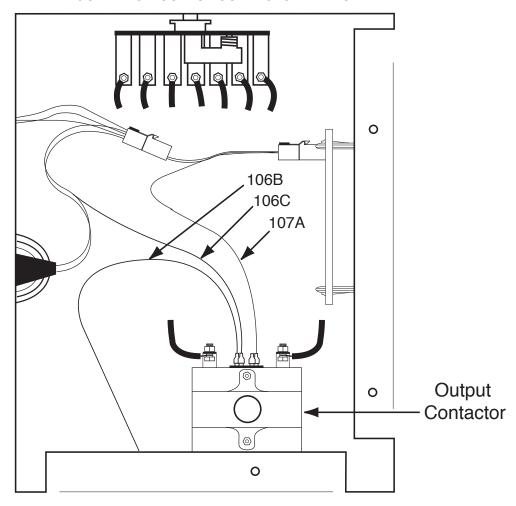
WARNING

Service and repair should be performed only by Lincoln Electric factory trained personnel. Unauthorized repairs performed on this equipment may result in danger to the technician or machine operator and will invalidate your factory warranty. For your safety and to avoid electrical shock, please observe all safety notes and precautions detailed throughout this manual.

If for any reason you do not understand the test procedures or are unable to perform the test/repairs safely, contact the Lincoln Electric Service Department for electrical troubleshooting assistance before you proceed. Call 1-888-935-3877.

TEST DESCRIPTION

The following procedure will aid the technician in removing the Output Contactor for repair or replacement.


MATERIALS NEEDED

7/16" Wrench 5/16" Nutdriver

Return to Master TOC

OUTPUT CONTACTOR REMOVAL AND REPLACEMENT PROCEDURE (continued)

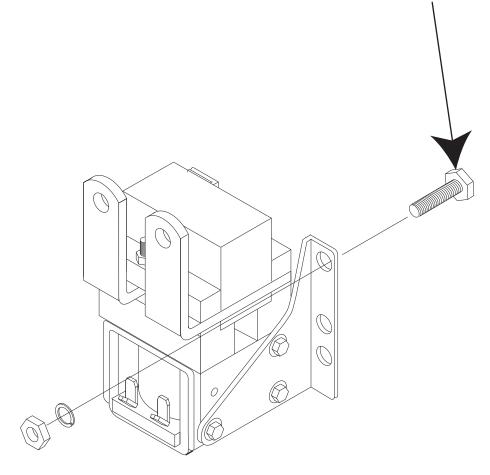
FIGURE F.23 - OUTPUT CONTACTOR LEADS

PROCEDURE

- 1. Using a 5/16" nutdriver, remove the three screws securing the tool tray.
- 2. Locate the output contactor. See Figure F.23.
- Using a 7/16" wrench, label and remove the two thick black leads at the top of the output contactor. Note lead and washer placement for reassembly.
- 4. Remove lead 107A and note lead placement. See Figure F.23.
- 5. Remove leads 106B and 106C. See Figure F.23.
- 6. Using a 7/16" wrench, remove the three mounting bolts from the output contactor. Note washer positions for replacement. *See Figure F.24.*

- 7. Replace output contactor.
- 8. Using a 7/16" wrench, mount the new output contactor in its proper location.
- Reconnect leads 106B, 106C, & 107A to their proper terminals. See Wiring Diagram.
- 10. Reconnect the two thick black leads previously removed from the top of the output contactor.
- 11. Replace the tool tray using a 5/16" nutdriver.

Return to Master TOC


Return to Master TOC

Return to Master TOC

OUTPUT CONTACTOR REMOVAL AND REPLACEMENT PROCEDURE (continued)

FIGURE F.24 - OUTPUT CONTACTOR MOUNTING BOLTS

7/16" Mounting **Bolts**

Power MIG® 215XT

Return to Master TOC

Return to Master TOC

TROUBLESHOOTING AND REPAIR **RETEST AFTER REPAIR**

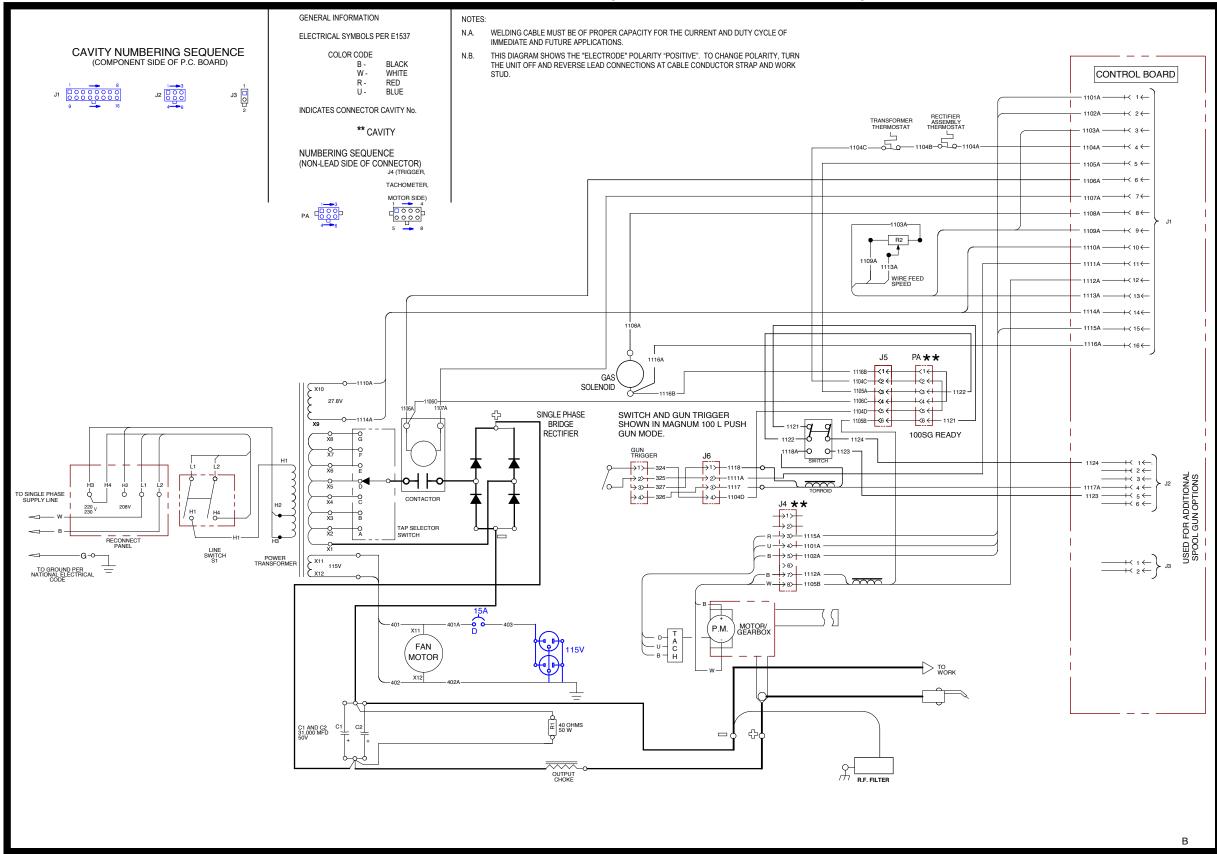
INPUT IDLE AMPS AND WATTS

Input Volts/Herts	Maximum Idle Amps	Maximum Idle Watts
230/60	2.0	150

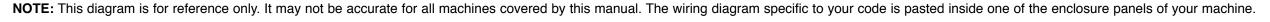
OPEN CIRCUIT VOLTAGE

35 - 40 VDC

WIRE SPEED RANGE

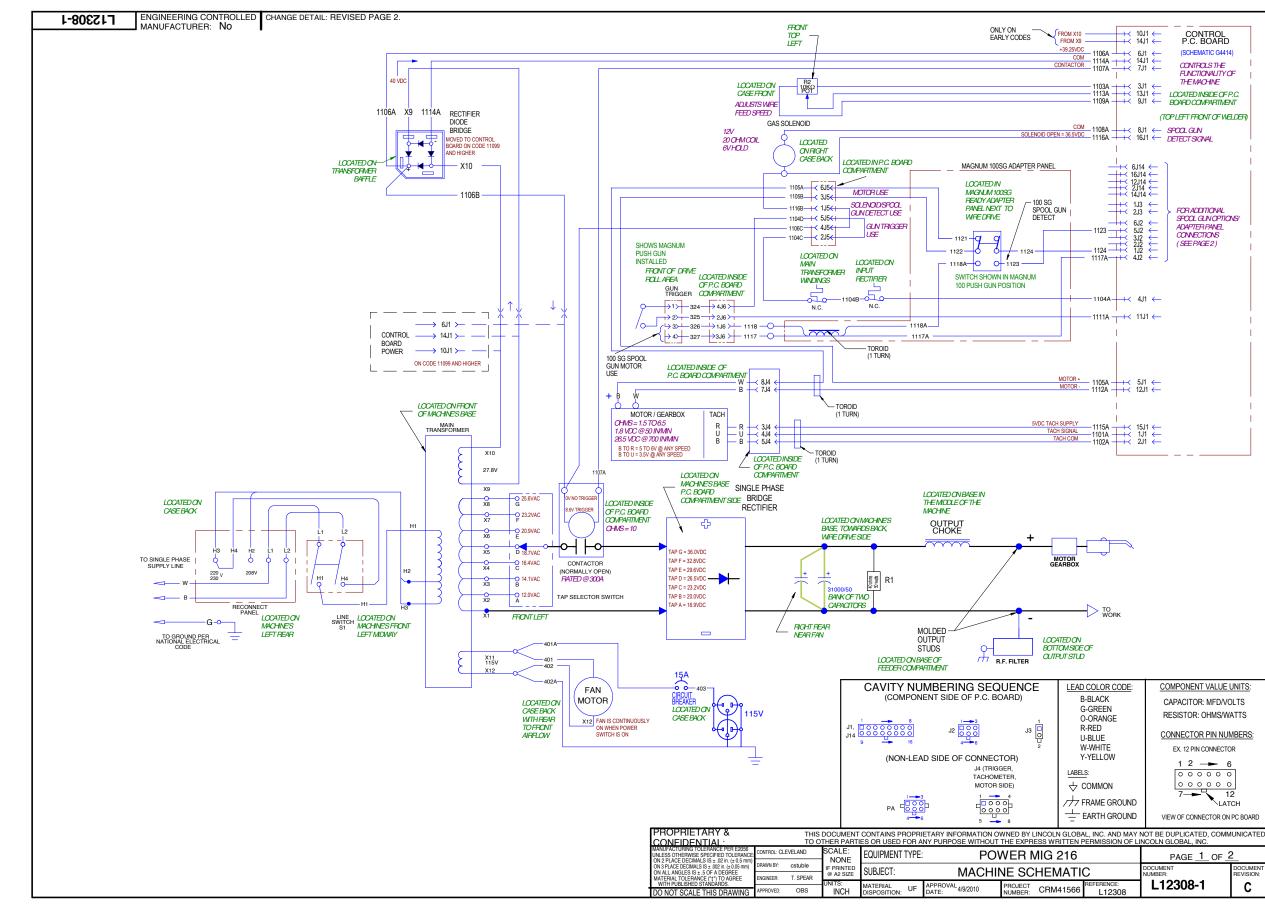

50 - 700 IPM (1.27 - 17.8 m/minute)

Power MIG® 215XT

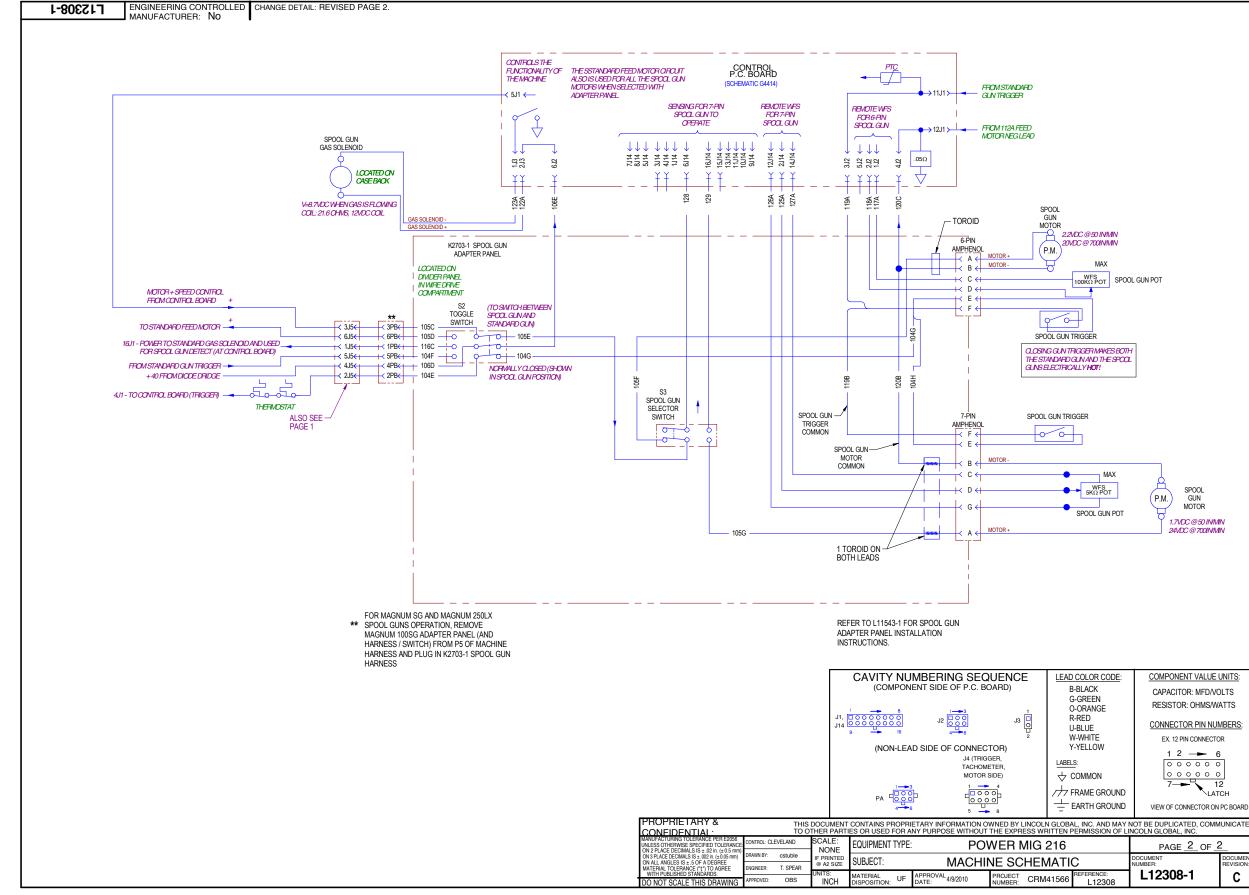

Electrical Diagrams	
Wiring Diagram (L12184-1)	
Schematic – Complete Machine (L12308-1 PG1)	
Schematic - Complete Machine with Spool Gun (L12308-1 PG2)	
Schematic – Control PC Board * – (G4414-2 PG1)	
Schematic – Control PC Board – (G4414-2 PG2)	
Schematic – Control PC Board – (G4414-2 PG3)	

* NOTE: Many PC Board Assemblies are now totally encapsulated, surface mounted and or multi-layered and are therefore considered to be unserviceable. Assembly drawings of these boards are no longer provided.

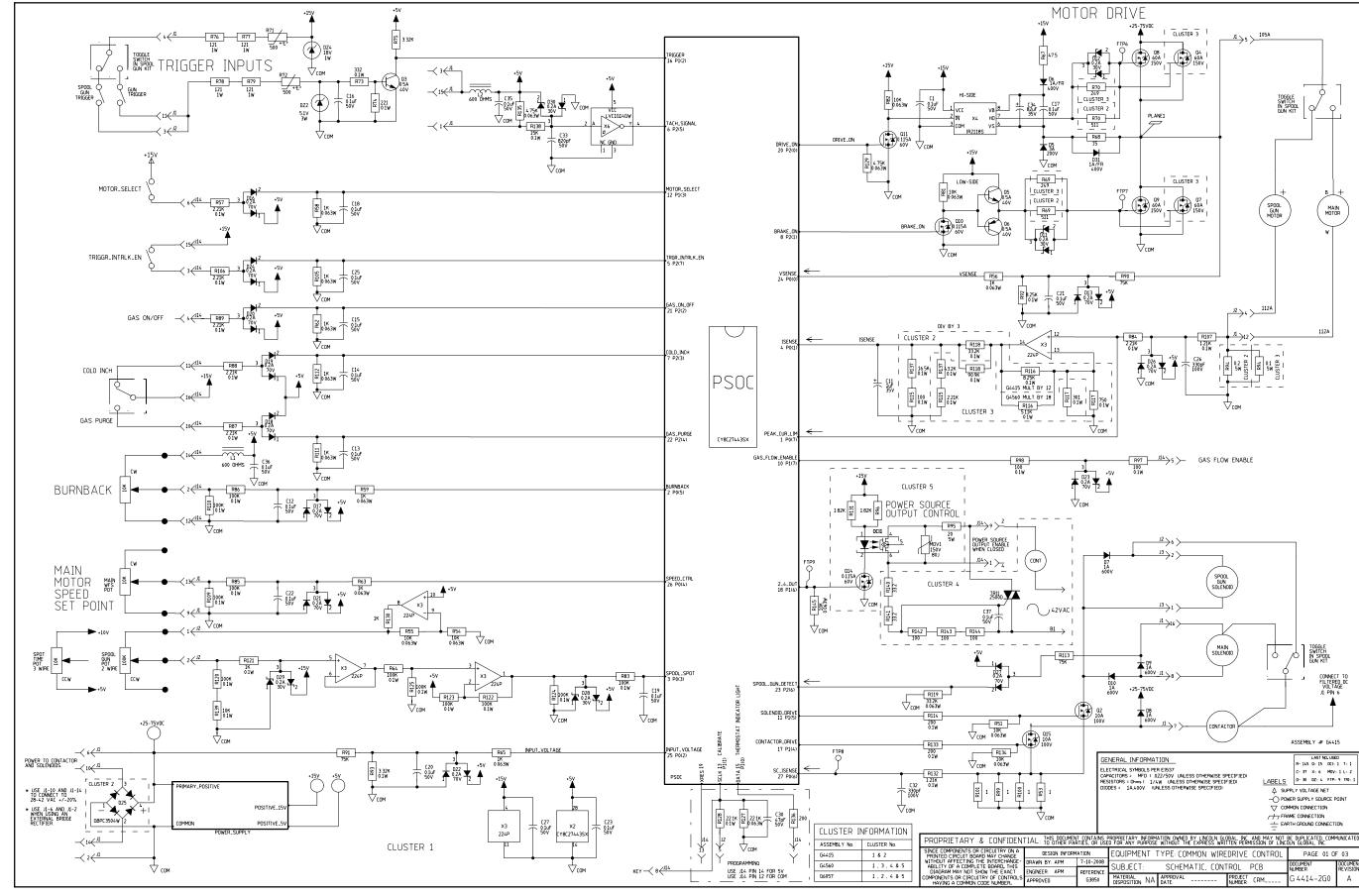
POWER MIG 215XT (208/220/230V) FOR CODE 11521



I 12184-1



SCHEMATIC - COMPLETE MACHINE - L12308-1 PG1



SCHEMATIC - COMPLETE MACHINE - L12308-1 PG2

SCHEMATIC - CONTROL BD - G4414 PG1

SCHEMATIC - CONTROL BD - G4414 PG2 POSITIVE_15V +15V 0.55A 25-75VDC OPERATION OR 20-60VAC OPERATION (D25 REQ.) POSITIVE_5V +5V 0.5A 101uF T 220uF CLUSTER 1 GENERAL INFORMATION LECTRICAL SYMBOLS PER E1537

PACLITORS = MF0 (022/50V UNLESS OTHERWISE SPECIFIED)

SISTORS = Dones (1/4W UNLESS OTHERWISE SPECIFIED)

ODES = 1A,400V (UNLESS OTHERWISE SPECIFIED) SEE PAGE 1 △ SUPPLY VOLTAGE NET POWER SUPPLY SOURCE POINT
 COMMON CONNECTION FRAME CONNECTION

EARTH GROUND CONNECTION PROPRIETARY & CONFIDENTIAL: THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OWNED BY LINCOLN GLOBAL, INC. AND MAY NOT BE DUPLICATED, CONFIDENTIAL: TO OTHER PARTIES, OR USED FOR ANY PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF LINCOLN GLOBAL, INC. DESIGN INFORMATION PAGE 02 OF 03 ENGINEER: APM APPROVED:

SCHEMATIC - CONTROL BD - G4414 PG3

Return to Section TOC Return to Master TOC

DRIVE_ON
BRAKE_ON
GAS_ON_OFF
COLD_INCH
GAS_PURGE SPOOL_SPOT SPEED_CTRL BURNBACK [TACH. SIGNAL
SPOOL. GUNL. DETECT
TRGR. INTRLK. EN
GAS. FLOW. ENABLE
2.4. OUT
SOLENDID. DRIVE
CONTACTOR_DRIVE SC_ISENSE [SC_ISENSE PEAK_CUR_LIM DATA THERMOSTAT INDICATOR LIGHT
SCLK CALIBRATE CY8C27443SX TRIGGER MOTOR_SELECT XRES CLUSTER 1 LAST NO. USED GENERAL INFORMATION ELECTRICAL SYMBOLS PER E1537

CAPACITORS = MFO (022/507 UNLESS OTHERWISE SPECIFIED)

RESISTORS = 0hms (1/44 UNLESS OTHERWISE SPECIFIED)

DIODES = 1,44007 (UNLESS OTHERWISE SPECIFIED) SEE PAGE 1 △ SUPPLY VOLTAGE NET O POWER SUPPLY SOURCE POINT
COMMON CONNECTION FRAME CONNECTION

EARTH GROUND CONNECTION PROPRIETARY & CONFIDENTIAL: THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OWNED BY LINCOLN GLOBAL, INC. AND MAY NOT BE DUPLICATED, COMMUNI PROPRIETARY DURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF LINCOLN GLOBAL, INC. DESIGN INFORMATION
DRAWN BY: APM 7-10-2008 EQUIPMENT TYPE: COMMON WIREDRIVE CONTROL PAGE 03 OF 03 SUBJECT: SCHEMATIC, CONTROL PCB ENGINEER: APM REFERENCE:
APPROVED: ------NOTE: This diagram is for reference only. It may not be accurate for all machines covered by this manual.

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com