MIL-S1000

User's Manual

Copyright Statement

© COPYRIGHT 1999

ALL RIGHT RESERVED. First Edition. Printed in Taiwan.
All trademarks are the properties of their respective owners. No portion of this document may be reproduced, altered, adapted or translated without the prior written approval.

Warranty

This information in this document is subject to change without notice. We make no warranty of any kind regarding this material, including, but not limited to, the implied warranties or merchantability and fitness for a particular purpose. Furthermore, we shall not be liable for errors contained herein or for incidental or consequential damage in connection with the furnishing, performance, or use of this material.

FCC Statement

This equipment has been tested and found to comply with the limits for a class A device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a commercial installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with instructions, may cause harmful interference on radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case, the user will be requires to correct the interference at the user's own expense.

Table of Contents

Chapter 1 Introduction
Package Contents 1-2
Device Description, Features and Capabilities 1-3
MIL-S1000 Front and Rear Panels 1-3
8 ports 10/100Base-TX Module 1-5
8 ports 10/100Base-TX Module Features 1-5
2 ports 100Base-FX Fiber Module 1-8
2 ports 100Base-FX Fiber Module Features 1-9
4 ports 100Base-FX Fiber Module 1-11
4 ports 100Base-FX Fiber Module Features 1-12
1000Base-SX/LX Fiber Module 1-14
1000Base-SX/LX Fiber Module Features 1-14
Chapter 2 Planning your Network
10Base-T Ethernet Network Guidelines 2-1
100Base-T Ethernet Network Guidelines 2-2
1000Base-SX and LX Network Guidelines 2-3
Network Planning 2-3
Expanded Networks 2-4
10Base-TX Networks 2-4
100Base-TX Networks 2-5
Collapsed Backbone Line 2-6
Fileserver Link 2-7
Multiport Bridge with High-Bandwidth Backbone 2-9
Chapter 3 Installation
Choosing A Location 3-1
Rack Installation 3-2
Supplying Power 3-3
Connecting the Switch. 3-4
Chapter 4 Module Install and Removed
Handling the Modules 4-1
Module Setup and installation 4-2
Installing the Modules 4-3
Installing 10/100Base-TX Modules 4-3
Installing 100Base-FX Modules 4-3
Installing 1000Base-SX/LX Modules 4-4
Removing the Modules 4-4
Appendix A Pin and Cable Specification A-1
Appendix B Technical Specification $B-1$

Chapter 1 Introduction

MIL-S1000 switches are multi-speed network devices combining Ethernet, Fast Ethernet and Gigabit Ethernet capabilities in a single compact, rack-mountable cabinet. Combining 10Mbps Ethernet, 100Mbps Fast Ethernet and Gigabit Ethernet interfaces in one unit allows these switches to unclog existing LANs and provide a path to efficient, high-speed networking.

The MIL-S1000 switch is a combination of a 4-slot host cabinet which accepts 4 different media modules and One RS-232 port for SNMP(Optional). A maximum configuration of $32 \times 10 / 100$ Base-Tx switched ports can be achieved using 4×8 port 10/100Base-Tx modules. In the same way, a maximum configuration of $32 \times 10 / 100$ Base-TX or 16×100 Base-FX ports or $4 x$ 1000Base-SX can be accommodated in the host cabling. Any of the above modules can be integrated to give up to many different configurations.

Package Contents

Figure 1-1. Package Contents
The MIL-S1000 package contains the following:
\checkmark MIL-S1000 switch
\checkmark AC power cord
\checkmark Rack mounting kit
\checkmark Four Rubber feet
\checkmark Warranty card
\checkmark User manual

Device Description, Features and Capabilities

MIL-S1000 Front and Rear Panels

This section describes the features on the front and rear panels of the MIL-S1000 unit.

Figure 1-2. Front Panel

Figure 1-3. Rear Panel

All LED status indicators are located on the FRONT panel of the switches. They provide a real-time indication of system and operational status. The ports for connections to other devices and networks are also on the front panels, along with the crossover switches. The following sections provide descriptions of the LED indicators and ports.

LED Indicators	Explanation
Power	lhe red power indicator is illuminated when power is provided to the switch and the switch is turned in the ON position.
Link/Activity	Green Link/Activity indicators are illuminated when the switch detects a connection to that port. The indicator blinks when data is transmitted over the network connected to that port. When a port is not connected, the indicator is off.
Full	Red Full Duplex/Col indicators are illuminated when that port is in full duplex mode. The indicator is off when that port is in half duplex mode. When a collision occurs on the network
Duplex/Col	
indicator blinks.	

when the port is operating in 100Mbps

mode. The indicator is off when the port is

operating in 10Mbps mode.\end{array}\right|\)

> Power Port

The power port accepts the power plug.

Power Switch

The power switch, located on the rear panel, controls the power supply.

8 ports 10/100Base-TX Module

Figure 1-4. 8 port 10/100Base-TX Module
When installed into a MIL-S1000 switch, the 10/100BaseTX Module provides 8 10/100Mbps Switch ports which can connect the MIL-S1000 to a 10Mbps or 100Mbps switch or end station.

8 Ports 10/100Base-Tx Module Features

> 10/100Base-TX N-Way Switch ports.
\diamond Conforms to IEEE 802.3 10Base-T and IEEE 802.3u 100Base-TX and IEEE 802.3x standards
\diamond Store and forward switch architecture for abnormal packet filtering
\diamond Support for half and full duplex on all ports
\diamond Backplane up to 2.4Gbps
« 2M memory Buffer support
A Automatic address learning with 12 K address entry storage
\triangleleft Filtering and forwarding rate of 14,880~148,800 packets per second

DIP Switch with Link Mode

The 8 port 10/100Base-TX module provides dip switch for 1 to 4 port to adjust link mode with other network devices. Another 4 ports use auto-negotiation protocol only. There are three type of link mode can be chosen, Autonegotiation, 100Mbps/Full duplex and 10Mbps/Full duplex.

Figure 1-5. Dip switch location and mode settings
If you adjust to auto-negotiation, then the DIP for 100Mbps and 10 Mbps is not effective. If you adjust to Full duplex, then the DIP for 100 Mbps and 10 Mbps is effective.

The following Table 1-1. lists the ports' operating modes based on the DIP switch position.

	PORT 1		PORT 2		PORT3		PORT4	
SW	1	2	3	4	5	6	7	8
ON	Full	10 M						
OFF	Auto	100 M						

Table 1-1. 8 Ports 10/100Base-TX Module DIP switch functions

2 ports 100Base-FX Fiber Module

Figure 1-6. 2 port 100Base-FX Module Front View
When installed into a MIL-S1000 switch, this Module provides a 100Mbps Fast Ethernet fiber port which can be used to:

- Connect the Switch to the backbone of your network; that is, to a basement switch, hub or router
- Connect the Switch to a 100Mbps server or end-station

An ST, SC, MT-RJ or VF-45 connector provides the link to the multi-mode fiber cabling and two indicators show the status of the Module at-a glance. A DIP-switch sets the operating mode to half duplex or full duplex (default).

Figure 1-7. Dip switch location and mode settings
The following Table 1-2. lists the ports' operating modes based on the DIP switch position.

	PORT 1	PORT 2
SW	1	2
ON	Half-Duplex	Half-Duplex
OFF	Full-Duplex	Full-Duplex

Table 1-2. 2 ports 100Base-FX Fiber ModuleDIP switch functions

2 ports 100Base-FX Fiber Module Features

\triangleleft Conforms to IEEE 802.3u Fast Ethernet standard
\diamond Support for SC, ST, MT-RJ or VF-45 fiber connectors (optional)
\diamond Supports half and full duplex modes via DIP switches
\diamond Store-and-forward switch architecture for abnormal packet filtering
$\diamond 2$ switching 100Mbps Fiber Ethernet ports
\diamond Backplane up to 2.4 Gbps
\diamond Automatic address learning with 12 K address entry storage
\diamond Filtering and forwarding rate of 148,800 packets per second
\triangleleft 100Base-FX uses 62.5/125 micron multi-mode fiber

4 Ports 100Base-FX Fiber Module

Figure 1-8. 4 port 100Base-TX/FX Front View
When installed into a MIL-S1000 switch, this Module provides $4 \times 100 \mathrm{Mbps}$ Fast Ethernet fiber ports which can be used to:

- Connect the Switch to the backbone of your network; that is, to a basement switch, hub or router.
- Connector the Switch to a 100 Mbps server or end station.

An ST, SC, MT-RJ or VF-45 connector provides the link to the multi-mode fiber cabling and three LEDs show five status of the Module at-a glance. A DIP-switch sets the operating mode to half duplex or full duplex (default).

Figure 1-9. Location and setting duplex mode
The following Table1-3. lists the ports operating modes based on the DIP switch position.

	PORT 1	PORT 2	PORT3	PORT4
SW	1	2	3	4
ON	Half-Duplex	Half-Duplex	Half-Duplex	Half-Duplex
OFF	Full-Duplex	Full-Duplex	Full-Duplex	Full-Duplex

Table 1-3. 4 ports 100Base-FX Fiber Module DIP switch functions

4 ports 100Base-FX Fiber Module Feature

৯ Conforms to IEEE 802.3u Fast Ethernet standard
\& Support SC, ST, MT-RJ or VF-45 fiber connector (optional)
> Support half and full duplex via DIP switches
২ Store-and-forward switch architecture for abnormal packets filtering
\diamond Backplane up to 2.4 Gbps
\diamond Automatic address learning with 12 K address entry storage
\triangleleft Filtering and forwarding rate 148,800 packets per second for 100Mbps
\diamond 100Base-FX uses 62.5/125 micron multi-mode fiber

1000Base-SX/LX Fiber Module

Figure 1-10. 1000Base-SX/LX Front View
When installed into a MIL-S1000 switch, the 1000BaseSX/LX Module provides 1 Gigabit Ethernet ports which can connect the MIL-S1000 to a Gigabit Backbone Switch or Server with Gigabit NIC.

1000Base-SX/LX Fiber Module Features

\diamond Conforms to IEEE $802.3 z$ draft 4.2 and $802.3 x$ standard
« 1x1000Base-SX/LX Ethernet Port
\diamond 3M memory buffer support
\diamond Standard auto-negotiation for speed, duplex mode and flow-control for MII and GMII PHYs

B Backpressure option and Limit4 option for half duplex
\diamond Automatic address learning with 12 K address entry storage

Figure 1-11. Location and setting duplex mode
If you adjust to Enable N-Way, then the DIP for Half-Duplex and Full-Duplex is not effective. If you adjust to Disable NWay, then the DIP for Half-Duplex and Full-Duplex is effective.

The following Table 1-4. lists the ports' operating modes based on the DIP switch position.

	Gigabit Port	
SW	1	2
ON	Disable N-way	Half Duplex
OFF	Enable N-way	Full Duplex

Table 1-4. 1000Base-SX/LX Fiber Module DIP switch functions

Chapter 2 Planning your Network

Before you install your MIL-S1000, you should review the guidelines for setting up Ethernet networks. Further, you should plan your network to take maximum advantage of its switching capabilities.

10Base-T Ethernet Network Guidelines

- The maximum length of a 10Base-T cable segment is 100 meters (328 feet).
- The maximum number of nodes on a 10Base-T segment is one (1) for regular 10Base-T.
- The recommended cable type is EIA/TIA Category 3 or higher.
- The maximum network diameter is 500 meters $(1,640$ feet) for Ethernet networks.
- The maximum number of segments between any two nodes in the network is five.
- The maximum number of hubs or repeaters between any two nodes in the network is four.

100Base-TX Ethernet Network Guidelines

- The maximum length of a 100Base-TX cable segment is 100 meters (328 feet).
- The maximum number of hubs on a 100Base-TX segment is one if using Class I hubs and two if using Class II hubs.
- The recommended cable type is EIA/TIA Category 5 unshielded twisted-pair.
- The maximum network diameter is 200 meters (656 feet) when using Class I hubs and 205 meters (672.5 feet) when using Class II hubs.

100BASE-FX Network Guidelines

- In half duplex mode, the fiber optic segment cannot exceed $412 \mathrm{~m}(1,135 \mathrm{ft})$ in length.
- In full duplex mode, the fiber optic segment cannot exceed 2 km (6562 ft) in length.

1000BASE-SX and LX Network Guideline

1000BASE-SX

- In multi-mode, the fiber optic segment cannot exceed $220 \mathrm{~m}(62.5 / 125 \mu \mathrm{~m})$ or $500 \mathrm{~m}(50 / 125 \mu \mathrm{~m})$ in length.

1000BASE-LX

- In multi-mode, the fiber optic segment cannot exceed $550 \mathrm{~m}(62.5 / 125 \mu \mathrm{~m}), 550 \mathrm{~m}(50 / 125 \mu \mathrm{~m})$ in length.
- In single-mode the fiber optic segment cannot exceed 10km(9/125 $\mu \mathrm{m})$.

Network Planning

Using a switch, such as a MIL-S1000, can expand network topologies and enhance network performance.

Each port on a switch connects to a separate network with its own collision domain. Separating networks with these switches allows you to expand 10Base-T networks past the four-hub limit and expand 100Base-TX networks past the one or two hub limit.

These switches also filter incoming traffic. On standard hubs and repeaters, any data received on a port is forwarded to all of the other ports. On switches, data received on one port is forwarded only to the port of the destination device, and if the traffic is local, the data is not forwarded at all. Also, switches can forward multiple data transaction at once.

To expand your network topology or enhance network performance, use the MIL-S1000 as collapsed backbone or to increase file server performance, to segment large networks, to interconnect 10Mbps networks with 100Mbps networks, or to overcome the limitations of 10Base-T and 100Base-TX networks.

Expanded Networks

You can expand your 10Base-T or 100Base-TX or 1000Base-SX/LX network beyond its hub limit by adding a MIL-S1000.

10Base-T Networks

10Base-T Networks are limited to four hubs between any two nodes. By adding your MIL-S1000 to a network, you can divide that network into segments with their own collision domains. In other words, you can connect one 10Base-T network with four hubs to your MIL-S1000. Then you can connect another 10Base-T network with four hubs to your MIL-S1000. You will then have one network with two collision domains, allowing four hubs on each port.

Figure 2-1. Expanding your 10Base-T Network

100Base-TX Networks

The hub limit of a 100Base-TX network depends on the class of the hub in the network. With a Class I hub, the network is limited to one hub. With a Class II hub, the network is limited to two hubs.

However, you can expand your 100Base-TX network that includes either class of hub by adding a MIL-S1000. With the MIL-S1000 added to your 100Base-TX network, you can separate that network into individual segments with their own collision domains. In other words, you can connect one 100Base-T network with one or two hubs to the MIL-S1000, and you can connect another 100Base-TX network with one or two hubs to the MIL-S1000. You will then have one network with two collision domains.

Figure 2-2. Expanding your 100Base-TX network (Class I)

Collapsed Backbone Link

Traditionally, bridges and routers have been used to link local area networks into one interconnected network. But these devices involve difficult management and long traffic delays.

The MIL-S1000 providers multiport bridges with short delays, easy setup and maintenance, making it ideal for backbone links. Also, the Built-in filtering on this hub deceases network traffic, while the multiple ports that communicate simultaneously increases network performance.

One or more of your hub's 100Mbps or 1000Mbps ports can be used as a high-speed backbone link to other hubs serving as collapsed backbones.

Figure 2-3. MIL-S1000 100/1000 Hub in a collapsed backbone
link

Fileserver Link

100Base Solution

With a fileserver link, you can increase file server performance by increasing the Hub's bandwidth between one or more fileservers and the workgroups they serve.

If you connect 10Mbps workgroup hubs to the 10 Mbps ports on the MIL-S1000, traffic in one workgroup will not interfere with the performance of another workgroup.

Figure 2-4. Fileserver Link
Connecting servers through 100Base-TX ports increases performance to the clients, even if the clients are on 10Base-T segments.

Because multiple 10Base-T devices can access the file server at the same time through a 100Base-TX connection, performance increases to beyond the performance of standard 10Base-T or 100Base-TX hubs. Operating the MIL-S1000 at full duplex further increases performance

1000Base Solution

You can upgrade your server with a Gigabit Ethernet NIC, and introduce a Gigabit backbone switch too. This contains several switch ports which provides much faster access to your server with minimum disruption. See Figure 16.

Multiport Bridge with High-Bandwidth Backbone

With a MIL-S1000, you can divide large network to ease congestion, and connect 10Base-T networks to 100BaseTX or 100Base to 1000Base networks for more flexibility. Adding your MIL-S1000 to a large network creates more segments in that network. The MIL-S1000 built-in filtering function separates a segment's local traffic from network traffic, reducing the amount of network traffic and easing congestion.

Figure 2-5. Used as a Multiport Bridge
Using your hub, you can also connect 10Base-T networks and 100Base-TX and 1000Base-SX/LX networks together for more flexibility in your network topology. As in the Figure 16 shown above, the MIL-S1000 can connect through one port to a 10Base-T network, and through another port, connect to a 100Base-TX port, creating one network. This switch can also connect to a 1000Base-LX or SX port.

Chapter 3 Installation

The MIL-S1000 can be installed quickly and easily. However, for an installation with minimum impact on the existing network, please read this chapter carefully.

Installing a MIL-S1000 involves three steps:

1. Choosing a location
2. Supplying power
3. Connecting the switch

Choosing A Location

The location of the switch is based on the following criteria:
\diamond Avoid dusty locations.
\triangleleft Avoid electromagnetic noisy areas, such as locations close to power transformers or radio transmitters.
\diamond Avoid temperatures below 32 Degrees Fahrenheit and over 122 Degrees Fahrenheit.
\diamond Allow a clear view of the front panel LED indicators.
\diamond Allow easy access to the front panel ports and the rear panel switches.

After choosing an appropriate location, you can install the
switch on a desktop or in a rack.

Figure 3-1. Attaching self-adhesive feet for desktop installation

Rack Installation

Your switch comes with two rack mounting brackets. you can use these brackets to mount the switch on an EIA standard 19" rack. Attach the brackets to the switch, using the screws provided.

Figure 3-2. Attaching the mount brackets for rack installation
Next, install the switch in the rack using the screws provided to attach the brackets to the rack.

Supplying Power

The MIL-S1000 switch is equipped with a universal switching power supply that accepts AC input voltages from 100 to 240 VAC and 50 to 60 Hz .

To supply power to your switch:

1. Plug the connector of the power cord into the power port on the rear panel of your switch.
2. Plug the other end of the power cord into an AC wall outlet.
3. Set the power switch to ON and verify that the Power LED is lit. If it is not, check the following:
\diamond The power switch is in the ON position.
\diamond The power cord is properly connected to the wall outlet and to the power connection on the switch.
\triangleleft The wall outlet is functional.
Note: Network cable segments can be connected or disconnected from the switch while the power is on, without interrupting the operation of the switch.

Connecting the Switch

You can connect your switch to network devices such as desktops and workgroups or to other hubs.

Before connecting your switch to a desktop or workgroup make sure that:

- The 10Base-T twisted pair Ethernet cabling is Category 3 or above.
- The 100Base-TX Fast Ethernet cabling is tested Category 5.
- The 100Base-FX fiber cabling is $62.5 / 125$ micron multimode fiber.
- The 1000Base-SX/LX fiber cabling is $50 / 125,62.5 / 125$ micron multi-mode or $9 / 125$ micron single-mode fiber.

Chapter 4. Module Installation and Removal

WARNING

Before installing the Modules into a MIL-S1000, you must disconnect the Switch from the main power supply.

Handling the Modules

The Module can be easily damaged by electrostatic discharge. To prevent damage, please observe the following:

- Do not remove Modules from their packaging until you are ready to install it into a Switch.
- Do not touch any of the pins, connections or components on the Modules.
- Handle the Modules only by its edges and front panel.
- Always wear an anti-static wristband connected to a suitable grounding point.
- Always store or transport Modules in appropriate antistatic packaging.

Module Setup and Installation

1. Ensure that the Switch is disconnected from the main power supply and that you are wearing an anti-static wrist-band connected to a suitable grounding point.
2. Place the Switch on a flat surface. Using a small crossbladed screwdriver, remove the blanking plate from the rear of the Switch. Do not remove any other screws from the rear of the Switch.
3. Keep the blanking plate and screws in a safe place. If you remove the Module at any time, you must replace the blanking plate to prevent dust and debris from entering the Switch and to aid the circulation of cooling air.
4. Hold the Module so that the text on the front panel is oriented correctly, and insert it into the Switch, ensuring the connectors are fully engaged. Tighten the two captive thumbscrews that secure the Module in place.

Figure 4-1. Insert the module

Installing the Modules

Installing 10/100Base-TX Modules

a. Insert the RJ-45 connector on your cable into the socket of the Module.
b. Connect the other end of the cable to an appropriate device with a 100Mbps Fast Ethernet or 10Mbps Ethernet twisted pair interface.
c. Power up the Switch.

Installing 100Base-FX Modules

a. Remove the protective plastic covers from the fiber connectors on the Module.
b. Ensure that the Switch is powered up.
c. Plug the ST (or SC) connector on the fiber cable into the fiber socket on the Module.
d. Connect the other end of the fiber optic segment to an appropriate device fitted with a 100Mbps adapter.

Check the LED indicators on the front of the Switch to ensure that the Module is operating correctly.

Installing 1000Base-SX/LX Modules

a. Remove the protective plastic covers from the fiber connectors on the Module.
b. Ensure that the Switch is powered up.
c. Plug the SC connector on the fiber cable into the fiber socket on the Module.
d. Connect the other end of the fiber optic segment to an appropriate device fitted with a 1000Mbps adapter.

Check the LED indicators on the front of the Switch to ensure that the Module is operating correctly.

Removing the Modules

a. Ensure that the power supply and the backbone connection cables are disconnected from the Switch.
b. Place the Switch on a flat surface. Undo the two captive thumbscrews securing the Module into the Switch. Do not remove any other screws from the rear of the Switch.
c. If you are not installing another Module immediately, you must replace the blanking plate to ensure that dust and debris do not enter the Switch, as well as to aid circulation of cooling air.

Appendix A. Technical Specifications

Compatibility with Ethernet Standards:

The MIL-S1000 has been designed in accordance with IEEE Standard 802.3 and 802.3 u and $802.3 z$.

Power Input:

Voltage
100 V AC to 240 V AC

Frequency

Environment:
Operating

Storage

Temperature 0 to 45
-40 to 70
Humidity 10\% to 90% RH
10% to 90% RH

Dimensions:

$440 \mathrm{~mm} \times 225 \mathrm{~mm} \times 66 \mathrm{~mm}$
EMI \& Safety:
FCC Class A, CE CISPR 22, UL/CSA

Physical Characteristics:

Buffer Size

2 Mbytes memory share per 10/100Base-TX module, maxi 8 Mbytes

2 Mbytes memory share per 100Base-FX module, maxi 8 Mbytes

3 Mbytes memory share per 1000Base-SX/LX module, maxi 12 Mbytes

Address Table

12K entry MAC Address table / per module

Switching Architecture

Store and Forward

Forwarding Rate

14,880 pps/10Base-T port
148,800 pps/100Base-TX port
148,800 pps/100Base-FX port
1,488,000 pps/1000Base-SX/LX port

Filtering Rate

14,880 pps/10Base-T port
148,800 pps/100Base-TX port
148,800 pps/100Base-FX port
1,488,000 pps/1000Base-SX/LX port

LED Indicators

Link/Transmit/Receive data indicator per port
Collision/Full-Duplex indicator per port
100Mbps indicator for $10 / 100 \mathrm{Mbps}$ Module
Power on/off indicator

Appendix B. Pin Assignments

RJ-45 station ports can be attached to any device which use a standard network interface (e.g., a workstation, server, bridge or router). RJ-45 daisy-chain ports can be cascaded to a station port on similar networking devices (e.g., another switch or hub). Use unshielded twisted-pair (UTP) for RJ-45 connections: 100 ohm Category 3,4 or 5 cable for 10 Mbps connections or 100 ohm Category 5 cable for 100Mbps connections. Also be sure that the length of any twisted-pair connection does not exceed 100 meters (328 feet).

Figure B-1. RJ-45 Connector

Pin	Pin Station Ports $\mathbf{1 \sim \mathbf { 8 }}$	Cascade Ports
1	Receive Data +	Transmit Data +
2	Receive Data -	Transmit Data -
3	Transmit Data +	Receive Data +
6	Transmit Data -	Receive Data -
$4,5,7,8$	Not Used	Not Used

Table B-1. RJ-45 Pin Assignments

Schematics for both straight and crossover twisted-pair cable are shown below.

Straight-Through		Cross-Over / Swap	
Switch	Adapter	Switch	Hub
1 RD +	1 TD +	1 RD +	1 RD +
2 RD -	2 TD -	2 RD -	2 RD -
3 TD +	3 RD +	3 TD +	3 TD +
6 TD -	6 RD -	6 TD -	6 TD -

Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

