

Reference

	Page
Outline of "PANATERM®", Setup Support Software	•
Communications	158
Description on Dividing/Multiplier Ratio	178
Conformance to EC Directives/UL Standards	180
Optional Parts	184
Recommended Parts	192
Dimensional Outline Drawing	193
Allowable Load of Output Shaft	196
Motor Characteristics (S-T Characteristics)	197
Servo Motor with Gear	198
Dimensional Outline Drawing of Motor with Gear	200
Allowable Load of Output Shaft of Servo Motor with Gear	202
Characteristics of Servo Motor with Gear (S-T Characteristics)	203
Driver Internal Block Diagram	204
Control Block Diagram	205
Specifications (Driver/Motor)	206
Hit-and-stop Initialization and Load Pressing Control	207
Index	209
Reference	214
After-sale Service (Repair)Bac	k cover

Outline of "PANATERM®", Setup Support Software

Connection Method

Windows® 2000, Windows® Me, Windows® XP

(Each English version)

Installing PANATERM_® on Hard Disk

<Cautions/Remarks>

- 1. The capacity of hard disk memory should be 15 MB or more. As OS, prepare Windows® 95, Windows® 98, Windows® NT, Windows® 2000, Windows® Me and Windows® XP (each of them should be a Japanese version).
- 2. You can start "PANATERM®" only after installing it on the hard disk with the setup disk, by following the steps described below.

Steps of Procedure

- (1) Power on your personal computer and start a corresponding OS (If there is any running application program, terminate it).
- (2) Insert PANATERM® Setup disk 1 into the floppy disk drive.
- (3) Start Explorer and select the floppy disk drive.

 (For starting of Explorer, see the manual of the corresponding OS.)
- (4) Double click on the setup program (Setup.exe) on the floppy disk (Then, PANATERM® setup program will start.).
- (5) To start the setup program, press OK .
- (6) Operate by following the guidance of the setup program.(Follow the instruction to change the setup disc 1 to disc 2 during the course.)
- (7) Click on Start installation button, and setup will start.
- (8) Click OK when the message "Setup completed" appears.
- (9) Close all application programs and then restart Windows®. When it restarts, PANATERM® will be added to the program menu.

Starting PANATERM®

<Cautions/Remarks>

- 1. Once you have installed "PANATERM®" on the hard disk, you do not have to reinstall it every time you boot up.
- 2. Before you start, connect the driver with the power supply, motor, and encoder. For the startup procedure, refer to the manual of the corresponding OS.

Steps of Procedure

- (1) Power on your personal computer and start the corresponding OS.
- (2) Turn on the driver.
- (3) Click on Start button of the corresponding OS of the personal computer. (For the startup procedure, refer to the manual of the corresponding OS.)
- (4) Select PANATERM® in the program ▶.
- (5) After opening splash is displayed for 2 seconds, PANATERM® screen will appear.

For any detailed information on operation/functions of "PANATERM®", refer to the operating instructions of "PANATERM®".

^{*} Windows®, Windows® 95, Windows® 98, Windows® NT, Windows® 2000, Windows® Me, Windows® XP are the trademarks of Microsoft Corporation in the United States.

Outline of Communications

With a personal computer or host NC connected with MINAS-E Series through RS232C-compliant serial communications, you can do the following:

- (1) Rewriting parameters
- (2) Browsing and clearing status and history of alarm data
- (3) Monitoring control status including status, I/O, etc.
- (4) Saving and Loading parameters

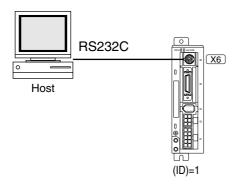
Advantages

- · You can write parameters all at once from the host when starting the machine.
- As you can display operating condition of the machine, serviceability will improve.

Note that the following application programs for a personal computer and cables are available for use. For information of PANATERM®, refer to the instruction manual of PANATERM®.

Name of Optional Components	Model Name
PANATERM® Japanese version (WIN95/98/Me/NT4.0/2000/XP)	DV0P4230
PANATERM® English version (WIN95/98/Me/NT4.0/2000/XP)	DV0P4240
Connection cable for personal computer (DOS/V)	DV0P1960

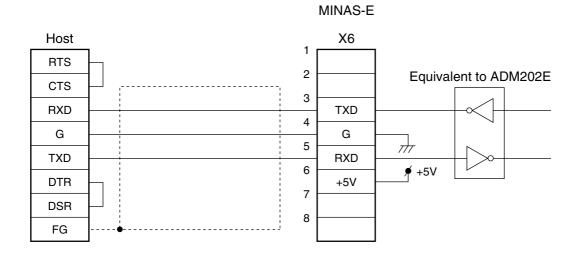
For the latest version, please contact us.


Communications Specification

Connection of Communications Line

MINAS-E Series has RS232C communications port. and is capable of communications between the host as follows:

RS232C Communications


In RS232C communications, a host and the driver are connected 1:1 and communicate with each other according to the RS232C transmission protocol.

You can change settings of the module ID with Pr00. In particular, you may set the same module ID unless • there is management problem on the host side.

Interface of Communication Connector Unit

■ Connection with a Host through RS232C

<Note>

You must leave pins 1, 2, 6, 7 and 8 of X6 unconnected.

Communications Method

	RS232C
	Full-duplex, asynchronous communication method
Communications baud rate	2400, 4800, 9600bps
Data	8 bit
Parity	No
Start bit	1 bit
Stop bit	1 bit

Set RS232C communications baud rate with Proc. Any change to these parameters will be valid when you
power on the control power supply. For detailed information, refer to list of parameters related to the following
communications:

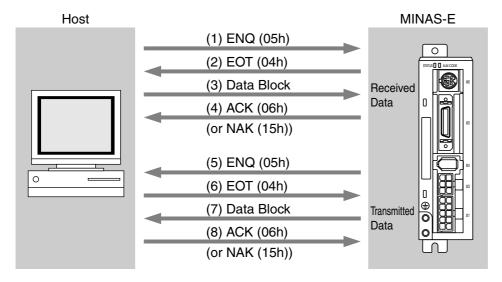
List of User Parameters Related to Communications

l	PrNo.	Parameter Name	Range of Setting	Functional Description
	00	Shaft name	1 - 15	Refer to descriptions on parameters on pages 88 and 116.
	0C	Setting of baud rate for RS232C communications	0 - 2	Set the communications speed of RS232C communications. 0: 2400[bps] 1: 4800[bps] 2: 9600[bps] A change will be valid when you power on the control power supply.

• Time for data transmission is calculated with the following expression, for instance, in the case of 9600 [bps]:

When the baud rates of 2400 bps and 4800 [bps] are used, data transmission time will be 4.17 [ms/byte] and 2.08 [ms/byte], respectively. Note, however, actual communication time will be added time necessary for processing received command, and necessary for switching between a line and transmission/reception control.

Handshaking Code


For line control, the following codes are used.

Name	Code	Functions
ENQ	05h	Transmission request
EOT	04h	Ready for receiving
ACK	06h	Acknowledgement
NAK	15h	Negative acknowledgement

- ENQ ... When the module has a block to transmit, it sends ENQ.
- EOT ... When the module is ready to receive a block, it sends EOT. The line enters transmission mode when sending ENQ and receiving EOT. It enters reception mode when receiving ENQ and sending EOT.
- ACK ... When a received block is judged normal, ACK is returned.
- NAK ... When a received block is judged as abnormal, NAK is returned. A judgment is made based on checksum and timeout.

■ Transmission Protocol

RS232C

Line Control

Direction of transmission and conflict are solved.

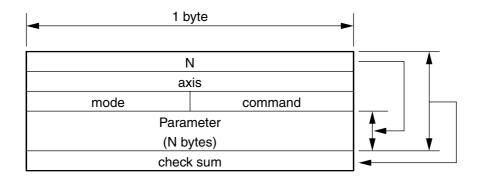
Reception mode ...The module enters reception mode after receiving ENQ and returning EOT.

Transmission mode ... The module enters transmission mode after sending ENQ and receiving EOT.

When there occurs a conflict between the transmitting module and receiving module:

When subsequent to transmission of ENQ, a slave receives ENQ while waiting for EOT, priority is given to ENQ sent from a maser, and the slave enters the reception mode.

Transmission Control


Entering transmission mode, a module transmits a command block continuously and then waits for reception of ACK. When the module receives ACK, transmission is complete. When the number of transferred command bytes is incorrect, ACK may not be returned. When ACK is not returned within T2 period, or when NAK or any code other than ACK is received, transmission retry will be executed. The retry will start with ENQ.

Receiving Control

Entering receiving mode, the module receives transmitted blocks continuously. It obtains the number of command bytes from the first byte, and receives as many command bytes as that number plus 3. When the sum of received data is zero, reception is considered successfully ended and ACK is returned. When abnormal checksum or timeout between characters occurs, NAK is sent.

Configuration of Data Block

A data block to be transmitted in physical phase is configured as illustrated below:

N : This is the number of command bytes (0 - 240),

which indicates the number of parameters needed by a command.

axis : This defines a module ID assigned to parameter No.00 axis name of the driver. (1 - 15)

command: This is the control command (0 - 15).

mode : This is the command execution mode (0 - 15),

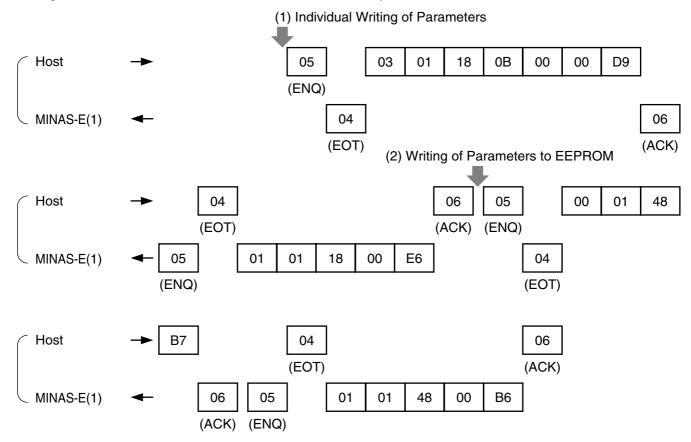
which differs depending on a command.

check sum: This is 2's complement of the total number of bytes, ranging from the first byte to the byte immedi-

ately before the checksum byte.

Protocol Parameter

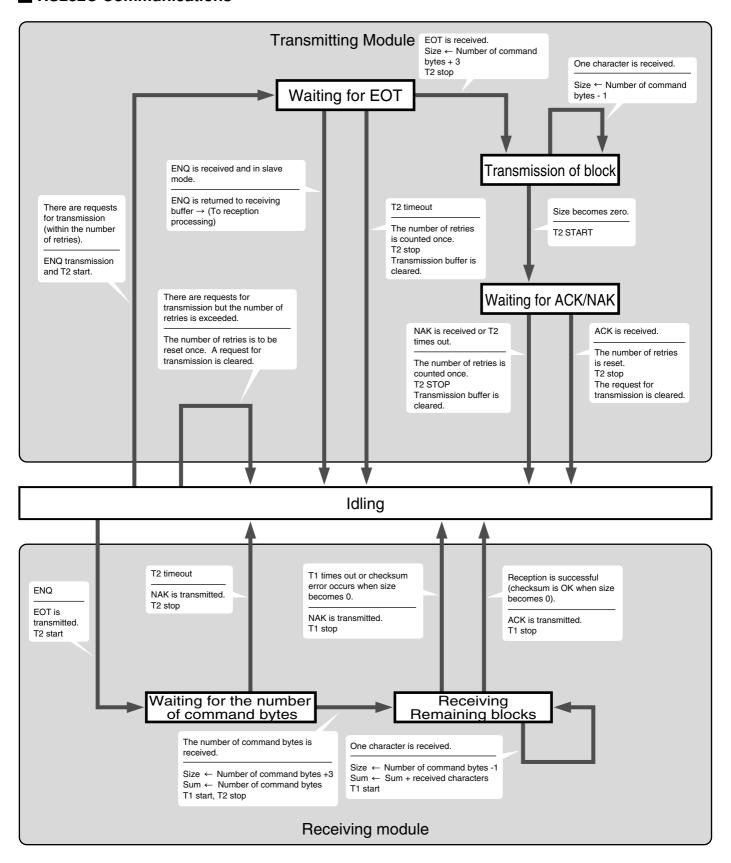
The following parameters can control transfer of a block. A user can set these parameters to any value with INIT command to be described later.

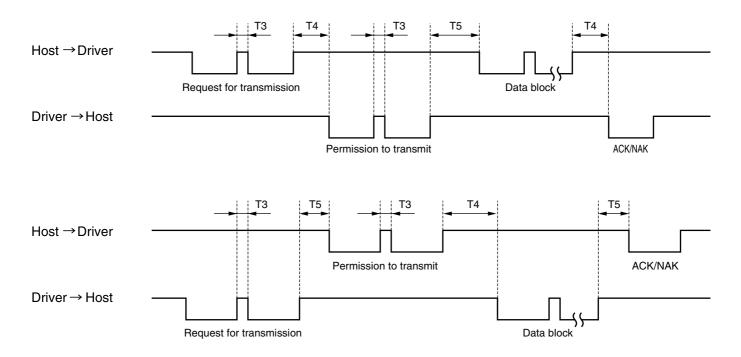

Name	Function	Initial Value	Range of Settings	Unit
T1	Timeout between character transmissions	5 (0.5 second)	1 - 255	0.1 second
T2	Protocol time limit	10 (10 seconds)	1 - 255	1 second
RTY	RTY Retry limit		1 - 8	once
M/S	Master/slave	0 (slave)	0, 1(master)	

- T1 This is allowable time between module identification byte and ENQ/EOT, or time from reception of a character code by this device to that of a next character code in a transmission/reception data block. When this specified time is exceeded, timeout error occurs and NAK is returned to the transmitting module.
- T2 This is allowable time after this device transmits ENQ till it receives EOT. When this specified time is exceeded, it means that the receiving module is not ready to receive data or fails to receive ENQ code for some reason. In this case, ENQ code will be resent to the receiving module (number of retries).
 - This is allowable time after EOT is sent out till a first character is received. When this specified time is exceeded, NAK is returned and the receiving mode ends.
 - This is allowable time after checksum byte is sent out till ACK is received. When this specified time is exceeded, ENQ code is resent to the receiving module, as in the case of reception of NAK.
- RTY This shows the maximum number of retries. When this specified value is exceeded, transmission error
- M/S..... This shows switching of a master/slave. When conflict of ENQ transmission occurs, this parameter determines to which priority is given. (0=slave mode, 1=master mode) Transmission of the module defined as a master should take precedence.

■ Example of Changing Parameters

The following illustrates time-series communications data flow when a change is made to a parameter.


Communications should be conducted in the sequence of outline, (1) individual writing of parameters and (2) writing to EEPROM if storage is needed. In this example of hardware connection, the device is directly connected with a host through RS232C communications with user ID=1. Data is represented in hexadecimals.


(Note) For details of commands, refer to "List of Communications Commands" on Page 166.

State Transition Diagram

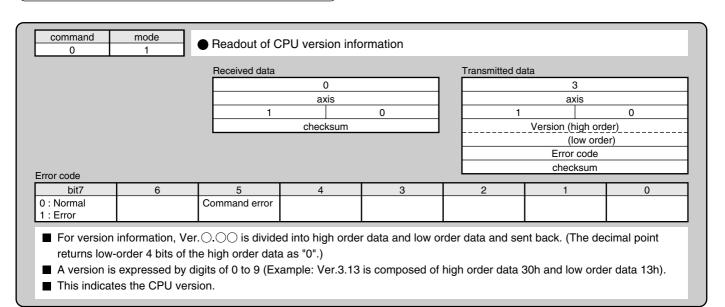
RS232C Communications

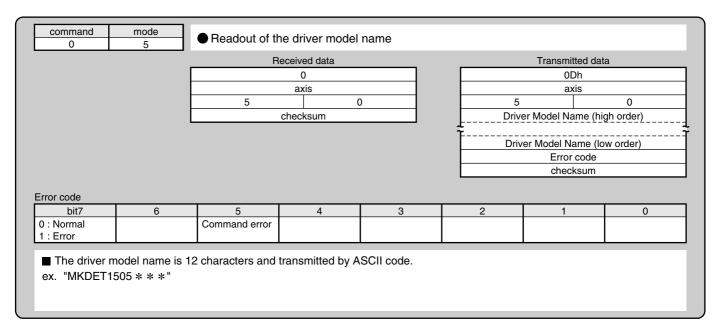
■ RS232C Communications

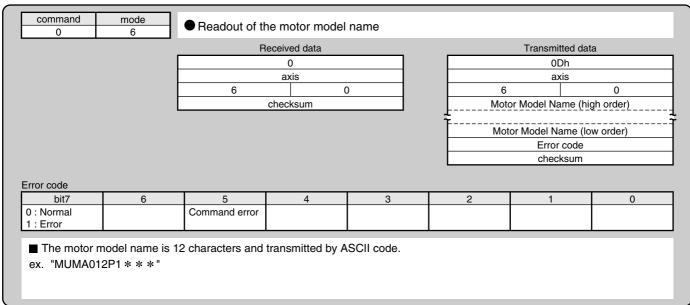
Code	Name	Minimum	Maximum
T3	Continuous inter-character time	Stop bit length	Protocol parameter T1
T4	Driver response time	4ms	Protocol parameter T2
T5	Host response time	2ms	Protocol parameter T2

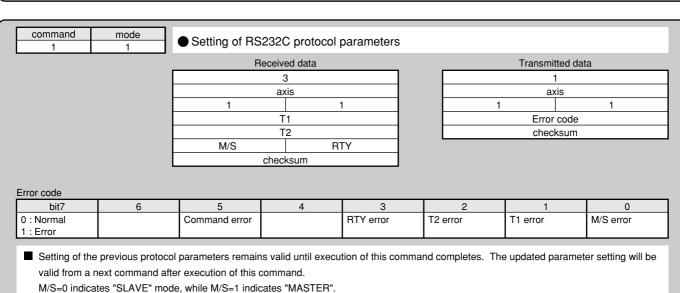
<Caution>

The time represents a period of time from stop bit rising edge.

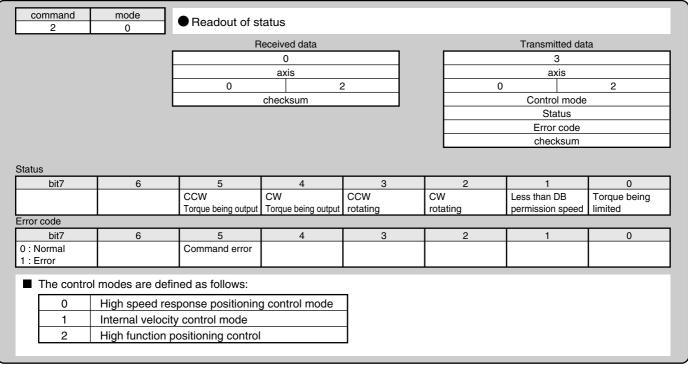

List of Communications Commands

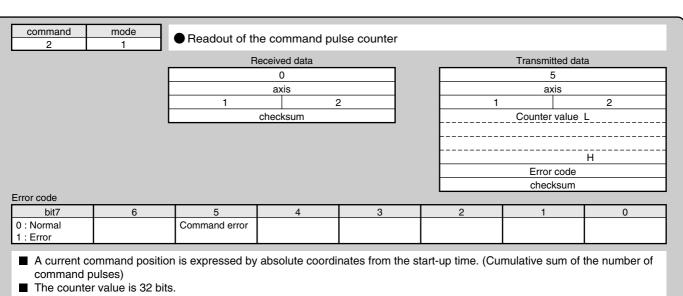

command	mode	Description			
		NOP			
	1	Readout of CPU version			
0	5	Readout of the driver model name			
	6	Readout of the motor model name			
4		INIT			
1	1	Setting of protocol parameters			
		POS, STATUS, I/O			
	0	Readout of status			
	1	Readout of the command pulse counter			
	2	Readout of the feedback pulse counter			
	4	Readout of current speed			
2	5	Readout of current torque output			
	6	Readout of the current deviation counter			
	7	Readout of input signal			
	8	Readout of output signal			
	9	Readout of current speed/torque/deviation counter			
	Α	Readout of status/input signal/output signal			
		PARAMETER			
	0	Individual readout of parameters			
8	1	Individual writing of parameters			
	4	Writing of parameters to EEPROM			
		ALARM			
	0	Readout of current alarm data			
9	1	Individual readout of alarm history			
9	2	Batch readout of alarm history			
	3	Alarm history clear (also on EEPROM)			
	4	Alarm clear			
		PARAMETER			
	0	Individual readout of user parameters			
В	1	Page readout of user parameters			
	2	Page writing of user parameters			

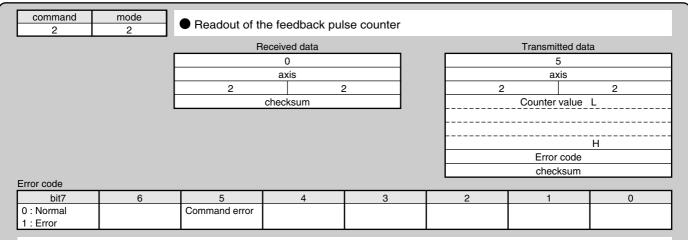

<Note>


Be sure to use the above commands only. We could not guarantee proper operation of the driver when you transmit a command not listed above.

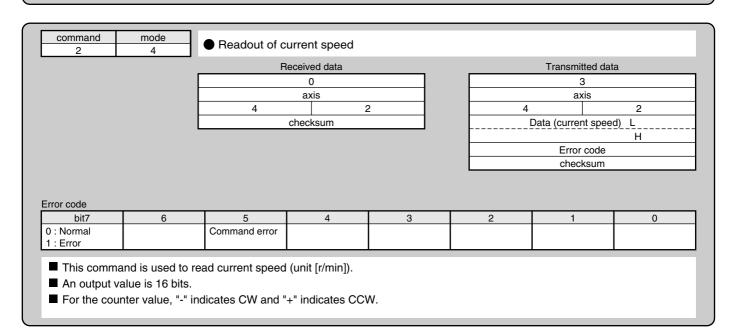
Details on Communications Commands

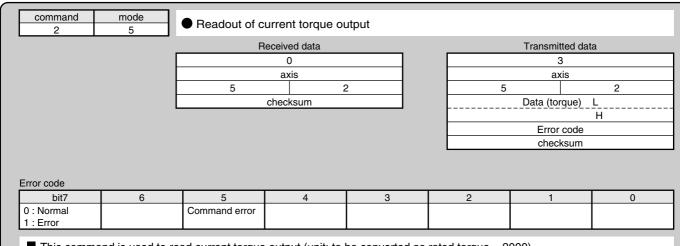




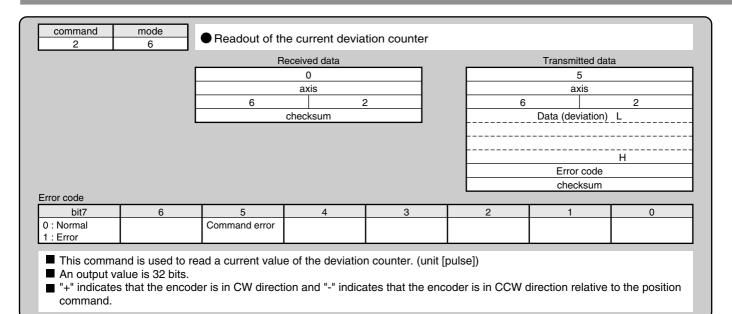

■ The RTY code is 4 bit and M/S is 1 bit.

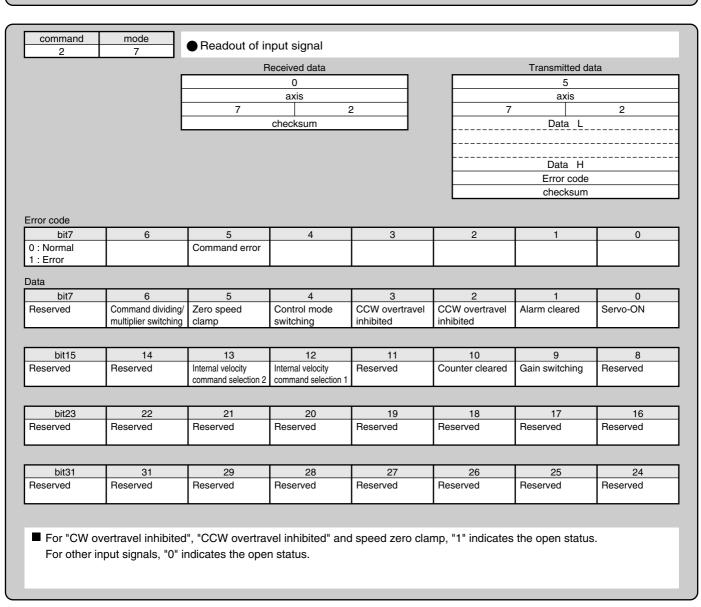
■ Unit of T1 and T2 are 0.1 second and 1 second, respectively.

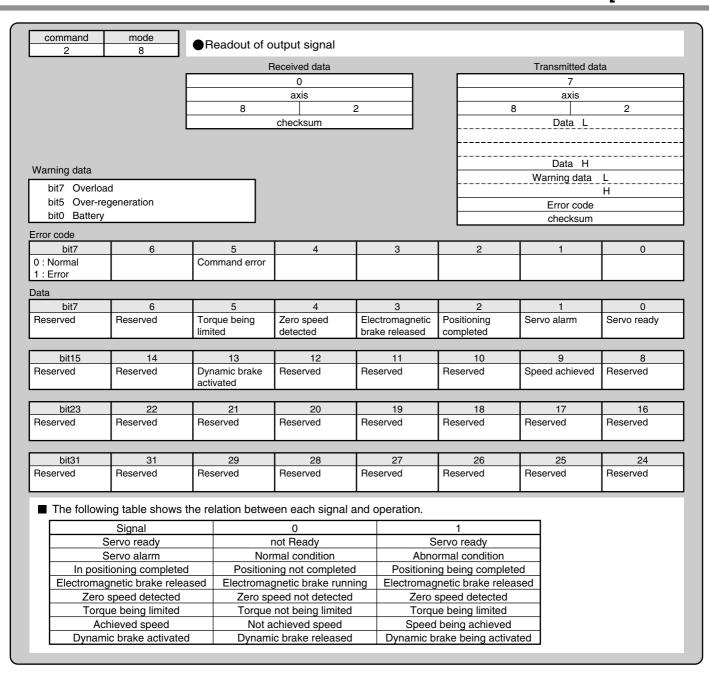


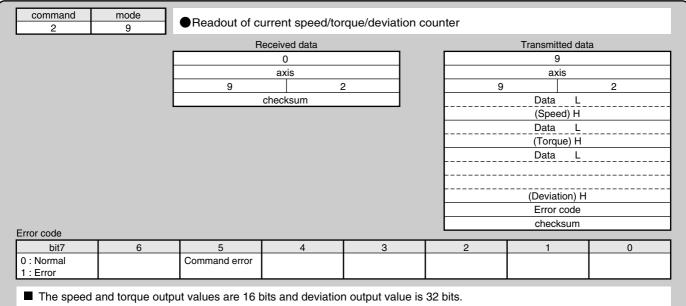


■ For the counter value, "-" indicates CW and "+" indicates CCW.

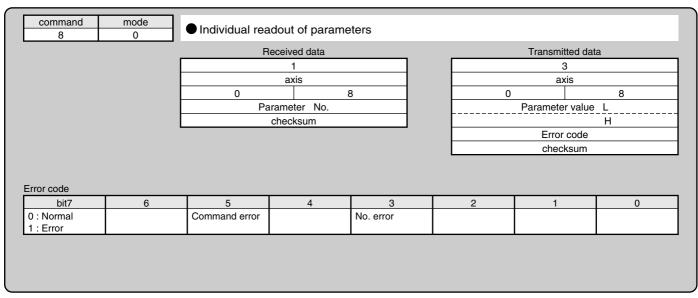


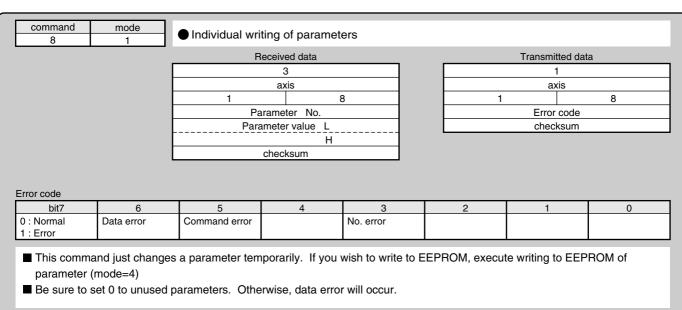

- A current position of the feedback pulse counter is expressed by absolute coordinates from the start-up time.
- For the counter value, "-" indicates CW and "+" indicates CCW.
- The feedback pulse counter indicates a cumulative sum of pulses of the position detector, which corresponds to a position of the motor that really moves.

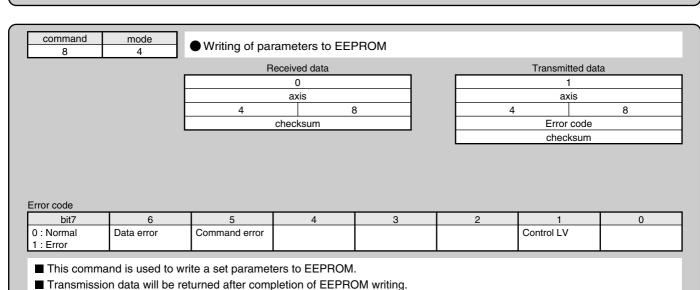




- This command is used to read current torque output (unit: to be converted as rated torque = 2000).
- An output value is 16 bits.

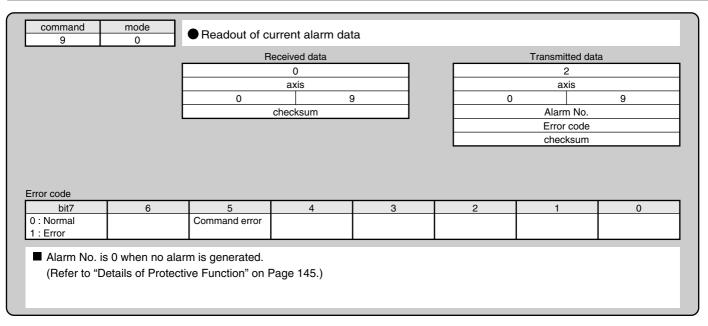


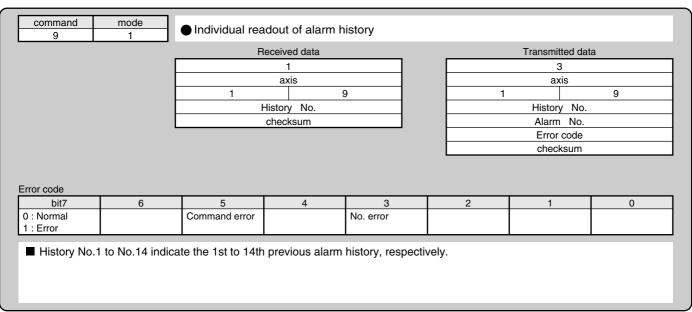


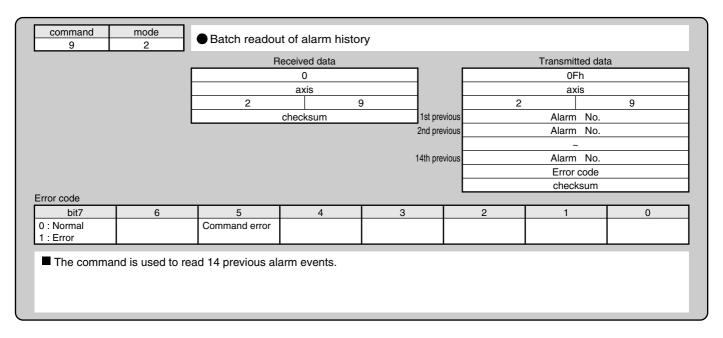


■ The unit and sign of output data are same for command Nos. 24, 25, and 26.

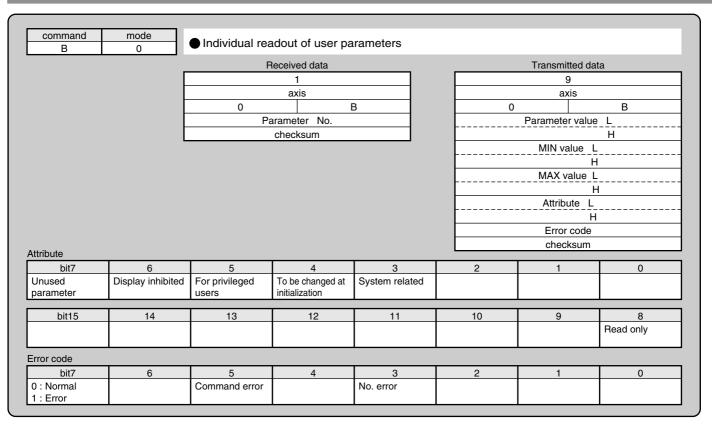
		Received data				Transmitted da	ata	
		0				0Dh		
		axis				axis		
		Α		2		Α	2	
	l		checksum			Control mod	<u>e</u>	
						Status		
						Input signal		
						Input signal	н	
						Output signal		
						Output signal	 	
						Warning data		
						Warning data		
						Error code		
						checksum		
rror code								
bit7	6	5	4	3	2	1	0	
: Normal : Error		Command error						
		ntrol mode, status						







Writing to EEPROM may take approx. 5 seconds max. (if all parameters are changed).


■ When writing of parameters fails, data error will occur.

		He	Received data 0			Transmitted da	ata
		4	axis 9			axis 4	9
			checksum			Error code	
						checksum	
ror code bit7	6	5 1	4	3	2		T 0
: Normal : Error		Command error					

		R	Received data			Transmitted da	ta
	Г		1			82h	
			axis			axis	
		1		3	1		В
			Page No.			Page No.	
			checksum			Parameter value	e L
	_					(No.0)	Н
					L	MIN value L	:
						(No.0) F	
						MAX value_L	
						(No.0) F	1
						Attribute_L	
						(No.0) H	
					~~~~		<u> </u>
						Parameter value	
						(No.0fh)  MIN value L	Н
						(No.0fh)	
						MAX value L	
						(No.0fh) F	
						Attribute L	
						(No.0fh) H	
						Error code	
						checksum	
ttribute							
bit7	6	5	4	3	2	1	0
Jnused	Display inhibited	For privileged	To be changed at	System related			
parameter		users	initialization				
bit15	14	13	12	11	10	9	8
							Read only
rror code							
bit7	6	5	4	3	2	1	0
) : Normal	Data error	Command error		No. error			

- The command writes 16 parameters at once.
- Be sure to set 0 to unused parameters. Otherwise, data error will occur.

# **Description on Dividing/Multiplier Ratio**

## Relation between Positional Resolution/Moving Speed and Command Dividing Multiplier Ratio

# Pulse row position command Distance: P1 [P] Traveling speed: F [PPS] Traveling speed: F [PPS] Description Command dividing multiplier ratio Pr4A Pr4A Pr4A Pr4B Rotation speed: N [r/min] Servo motor Reduction ratio: R

Number of encoder pulses E [P/r] *10000 = (phase A/B 2500 [P/r] x 4)

Example of driving ball screw using the servo motor

As an example of a machine, we describe a ball screw driving system below:

When lead of a ball screw is L [mm], actual distance of a ball screw M [mm] with respect to the distance command PI [P] is expressed with formula (1) below:

$$M = P1 \times (D/E) \times (1/R) \times L....(1)$$

Therefore, position resolution (distance DM per command pulse) is expressed by the following formula (2):

$$\Delta M = (D/E) \times (1/R) \times L \dots (2)$$

Through transformation of formula (2), a command dividing multiplier ratio D is determined by the formula (3):

$$D = (\Delta M \times E \times R)/L$$
 ......(3)

In addition, actual traveling speed V [mm/s] of a ball screw with respect to traveling speed command F [PPS] is expressed by formula (4), and the corresponding motor rotation speed N is determined by formula (5):

$$V = F \times (D/E) \times (1/R) \times L$$
 .....(4)  
 $N = F \times (D/E) \times 60$  ....(5)

Through transformation of formula (5), a command dividing multiplier ratio D is determined by the formula (6):

$$D = (N \times E)/(F \times 60)$$
 .....(6)

#### <Remarks>

4.

- 1. Set the positional resolution ( $\Delta M$ ) at approx. 1/5 to 1/10 of the positioning accuracy ( $\Delta \varepsilon$ ), in view of mechanical errors.
- 2. Set a value from 1 to 10000 to Pr46 and Pr4B.
- 3. You can set any value depending on numerator and denominator settings. However, if you specify an extreme dividing/multiplier ratio, we cannot guarantee proper operation of the motor. We recommend that you set the dividing/multiplier ratio in the range of 1/50 to 20 times.

2 ⁿ	Decimal
20	1
21	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
2 ⁶	64
27	128
28	256
2 ⁹	512
210	1024
211	2048
212	4096
213	8192
214	16384
2 ¹⁵	32768
216	65536
2 ¹⁷	131072

	Example	Command dividing multiplier ratio $D = \frac{\Delta M \times E \times R}{L}$ Formula (3) $D = \frac{Pr46}{P}$				
1	Lead of ball screw L = 10mm Reduction ratio R=1 Position resolution $\Delta M = 0.005$ mm For the encoder of 2500 P/r (E=10000P/r)	$D = \frac{0.005 \times 10000 \times 1}{10}$ = 5	Determine parameters Pr46, Pr4A and Pr4B so that D=5. Consider the following: $D = \frac{10000 \times 2^{0}}{2000}$	Pr46 = 10000 Pr4A = 0 Pr4B = 2000		
2	Lead of ball screw L = 20mm Reduction ratio R=1 Position resolution $\Delta M = 0.005$ mm For the encoder of 2500 P/r (E=10000P/r)	$D = \frac{0.0005 \times 10000 \times 1}{20}$ $= 0.25$	D<1 is not appropriate to determination of the accuracy.	D = 1 is a condition of minimum resolution.		
	Example	Motor rotation speed (r/min) $N = F \times \frac{D}{E} \times 60$ Formula (5)				
Ri Po Li 50	ead of ball screw L= 20mm eduction ratio R=1 position resolution $\Delta M = 0.005 mm$ ne driver pulse input 00 kpps or the encoder of 2500 P/r	$D = \frac{0.005 \times 10000 \times 1}{20} \text{ Formula (3)}$ = 25 $N = 500000 \times \frac{2.5}{10000} \times 60 \text{ Formula (5)}$ = 7500 Thus, motor specification is not met.				
		Command dividing $D = \frac{N \times E}{F \times 6}$	$D = \frac{\boxed{Pr46} \times 2^{\boxed{Pr4A}}}{\boxed{Pr4B}}$			
30 C0 b0	o make motor rotation speed 000 r/min under the same ondition as above, with lead of all screw of L = 20 mm and the ne driver pulse input of 500 kpps.	$D = \frac{3000 \times 10000}{500000 \times 60} = 1$ that D=1. Consider the following: $Pr4A = 0$		Pr46 = 10000 Pr4A = 0 Pr4B = 10000		
		Then, distance per command pulse (position resolution) $\Delta M = \frac{D}{E} \times \frac{1}{R} \times L = \frac{1}{10000}$	, ,			

# Conformance to EC Directives/UL Standards

#### **EC Directives**

The EC Directives apply to all such electronic products as those having specific functions and directly sold to general consumers in EU countries. These products are required to meet the EU unified standards and to be furnished with CE Marking.

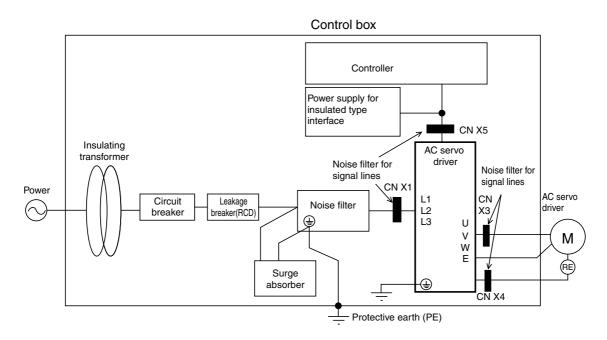
However, our AC servo meet the EC Directives for Low Voltage Equipment so that the machine or equipment comprising our AC servo can meet relevant EC Directives.

#### **EMC Directives**

Our servo systems can meet EMC Directives and related standards. However, to meet these requirements, the systems must be limited with respect to configuration and other aspects, e.g. the distance between the servo driver and motor is restricted, and some special wiring conditions must be met. This means that in some cases machines and equipment comprising our servo systems may not satisfy the requirements for wiring and grounding conditions specified by the EMC Directives. Therefore, conformance to the EMC Directives (especially the requirements for emission noise and noise terminal voltage) should be examined based on the final products that include our servo drivers and servo motors.

## **Applicable Standards**

Subject	Applicable standard			
Motor	IEC60034-1		Standards referenced by Low-Voltage	
Motor and	EN50178		Directives	
driver	EN55011	Radio Disturbance Characteristics of Industrial, Scientific		
		and Medical (ISM) Radio Frequency Equipment		
	EN61000-6-2	General standards for immunity in industrial environment		
	- IEC61000-4-2	Electrostatic Discharge Immunity Test		
	- IEC61000-4-3	Radio Frequency Electromagnetic Field Immunity Test	Standards	
	- IEC61000-4-4	Electric High-Speed Transition Phenomenon - Burst Immunity	referenced by	
		Test	EMC Directives	
	- IEC61000-4-5	Lightning Surge Immunity Test		
	- IEC61000-4-6	High Frequency Conduction Immunity Test		
	└ IEC61000-4-11	Instantaneous Outage - Immunity Test		


IEC: International Electrotechnical Commission

EN: Europaischen Normen

EMC: Electromagnetic Compatibility

#### **Environment**

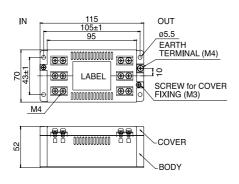
The servo driver should be used under Contamination Level 2 or 1 specified by IEC60664-1 (housing the driver in an IP54 control box).

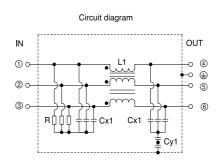


## Power

- (1) Use under the environment of Over-voltage Category II specified by IEC60664-1 In order to realize the environment of overvoltage category II, install in the power supply input unit an insulating transformer that is compliant with ICE or EN standard (EN 60742).
- (2) The power for interface should be marked CE or appropriate EN Standard type (EN60950), 12VDC to 24VDC, insulated.

## **Circuit Breaker**


Install a circuit breaker between the power supply and noise filter. The circuit breaker should be IEC Standard and UL listed (4) marked.


# Conformance to EC Directives/UL Standards

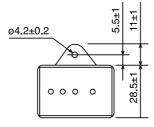
## **Noise Filter**

When, one set of noise filters is installed in the power unit with two or more drivers, be sure to consult with the noise filter manufacturer.

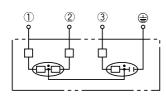
Option Part No.	Manufacturer's part No.	Manufacturer
DV0P4160	3SUP-HU10-ER-6	Okaya Electric
DV0F4160	330F-H010-EN-0	Industries Co., Ltd.

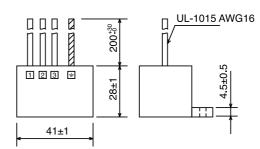





## **Surge Absorber**

Install the surge absorber on the primary line of the noise filter.

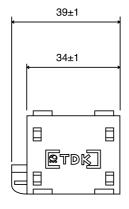

#### <Note>

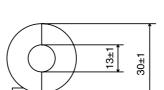

When conducting voltage-resistant test on the machine/equipment, remove the surge absorber. Otherwise the absorber may be damaged.

Option Part No.	Manufacturer's part No.	Manufacturer
DV0P1450	R•A•V-781BXZ-4	Okaya Electric
DV0F1430	N*A*V-701DAZ-4	Industries Co., Ltd.



## Circuit diagram




## Noise Filter for Signal cables

Provide all the cables (power supply cable, motor cable, encoder cable, interface cable) with the noise filter for signal cable.

Option Part No.	Manufacturer's part No.	Manufacturer	
DV0P1460	ZCAT3035-1330	TDK Co., Ltd.	





Weight: 62.8 g

# Grounding

- (1) Don't fail to connect the servo driver protective earth terminal ( ) and the protective earth plate of the control panel together.
- (2) When connecting to the protective earth terminal (ⓐ), avoid co-clamping. Two protective earth terminals are provided.

## Leakage Breaker

Connect Type-B leakage breaker (RCD) to the primary power supply of the servo driver.

#### **Driver and Peripheral Devices Applied Thereto (EC Directives)**

For the detail refer to "System Configuration and Wiring", Page 26.

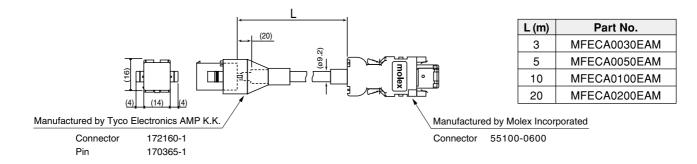
Install the noise filters in reference to DV0P4160 (page 182).

#### Conformance to UL Standards

The noise filters conform to UL508C (File No. E164620) to satisfy the following conditions.

- (1) The servo driver should be used under Contamination Level 2 or 1 specified by IEC60664-1 (housing the driver in an IP54 control box).
- (2) Install a circuit breaker or fuse between the power supply and noise filter. The circuit breaker or fuse should be a UL listed mark ((4)) type.

The current rating of the circuit breaker or fuse should be per the table in page 26.


# **Optional Parts**

## MINAS-E Series Table of Junction Cable by Model

Figure No.	Motor Type	Junction Cable	Part No.
2-1	MUMA50W - 400W	For an encoder (2500 P/r 5 wires) Incremental	MFECAO * * OEAM
3-1		For a motor	MFMCAO * * OAEB
4-1		For a brake	MFMCBO * * OGET

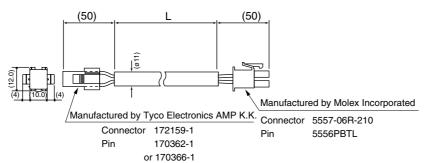
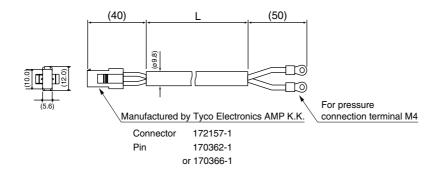

## **Junction Cable for Encoder**

Figure 2-1 MFECA0 * * 0EAM



#### Junction Cable for Motors (Robotop® 600V DP)

Figure 3-1 (MFMCA0 * * 0AEB)



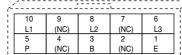

Robotop® is a trade mark of Daiden Co., Ltd.

L (m)	Part No.
3	MFMCA0030AEB
5	MFMCA0050AEB
10	MFMCA0100AEB
20	MFMCA0200AEB

# Junction Cable for Brakes (Robotop® 600V DP)

Figure 4-1 MFMCB0 * * 0GET




L (m)	Part No.
3	MFMCB0030GET
5	MFMCB0050GET
10	MFMCB0100GET
20	MFMCB0200GET

(1) Part No. DV0P2870

#### (2) Components

Name	Manufacturer's part No.	Number	Manufacturer	Remarks
Connector (10P)	5557-10R-210	1	Malay la saya syata d	For connector CN X1
Connector Pin	5556PBTL	6 Molex Incorporated		(pin 10)

(3) Pin arrangement of connector for CN x 1





(4) Recommended manual pressure bonding tool (Customers are requested to provide it by themselves.)

Manufacturer's part No.	Wire rod
57026-5000	UL1007
57027-5000	UL1015

#### <Cautions>

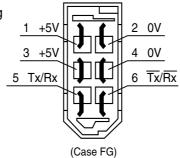
- 1. The above table shows arrangement of pins viewed from the pin inserting direction of the connector. Also check pin Nos. carved on the main body of the connector so as to avoid incorrect wiring.
- 2. For wiring and connection, refer to "System Configuration and Wiring", Wiring of Main Circuits (Page 27).
- 3. You should leave a pin labeled with (NC) unconnected.

# **Optional Parts**

#### **Connector Kits for Connection of Motor and Encoder**

● Used for: MUMA 50W to 400W

Incremental 2500 pulse 5-wire


- (1) Part No. DV0P3670
- (2) Components

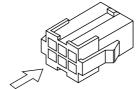
Name	Manufacturer's part No.	Number	Manufacturer	Remarks
Commontor	FF100 0000	1 Molex Incorporated	Malay Incompanatasi	For connector CN X4
Connector	55100-0600		Molex incorporated	(pin 6)
Connector (6P)	172160-1	1	Manufactured by	For junction of encoder
Connector pin	170365-1	6	Tyco Electronics AMP K.K.	cable (pin 6)
Connector (4P)	172159-1	1	Manufactured by	For junction of motor
Connector pin	170366-1	4	Tyco Electronics AMP K.K.	power line (pin 4)
Connector (6P)	5557-06R-210	1	Molex Incorporated	For connector CN X3
Connector pin	5556PBTL	4	wiolex incorporated	(pin 6)

#### <Note>

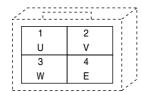
You may use parts of other manufacturer equivalent to the above parts for such components as connector, connector cover, etc.

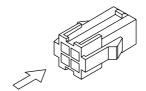
(3) Pin arrangement of connector CN X4 plug




(4) Recommended manual pressure bonding tool(A customer is requested to provide it by himself.)

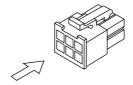
Name	Manufacturer's part No.	Manufacturer	Wire rod
For junction of encoder cable	r cable 755330-1		
For junction of motor power line	755331-1	Tyco Electronics AMP K.K.	_
For connector CN X3	57026-5000	Molex Incorporated	UL1007
For connector CN A3	57027-5000	widiex incorporated	UL1015


#### <Cautions>


- 1. The above figure shows the pin arrangement viewed from the soldering side of the connector. Also check pin Nos. carved on the main body of the connector so as to avoid incorrect wiring.
- 2. Be sure to connect shield of the shielded wire to be used to the case (FG).
- 3. For wiring and connection, refer to "System Configuration and Wiring", Connector CNX4 (Page 29).

<u>/</u> _	,			
	1	2	3	-
!	(NC)	TX/RX	TX/RX	
	4	5	6	-
	+5V	0V	FG	į
1				12




(6) Pin arrangement of connector for junction of motor power line





(7) Pin arrangement of connector for connector CN X3

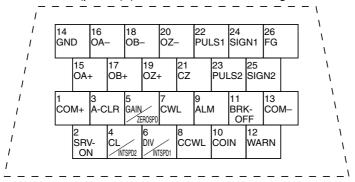
i			
6	5	4	Ĺ
W	(NC)	V	ŀ
3	2	1	ŀ
E	(NC)	U	į



#### <Cautions>

- 1. The above table shows arrangement of pins viewed from the pin inserting direction of the connector.

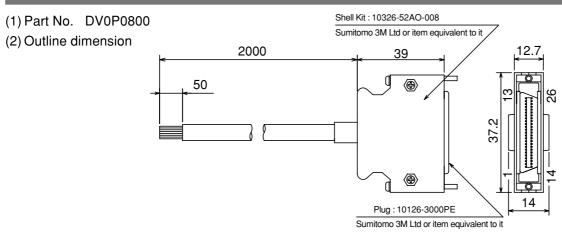
  Also check pin Nos. carved on the main body of the connector so as to avoid incorrect wiring.
- 2. For wiring and connection, refer to "System Configuration and Wiring", Wiring of Main Circuits (Page 27).


# **Optional Parts**

#### **Connector Kit for Connection with Host Controller**

- (1) Part No. DV0P0770
- (2) Components

Name	Manufacturer's part No.	Number	Manufacturer	Remarks
Connector	10126-3000PE	1	Occursite as a OM Ltd	For CN X5
Connector Cover	10326-52A0-008	1	Sumitomo 3M Ltd	(Pin 26)


(3) Pin arrangement of connector X5 (pin 26) (viewed from the soldering side of the connector)

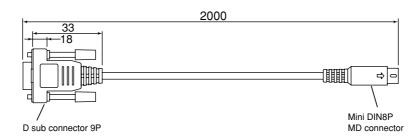


#### <Cautions>

- 1. When wiring, also check pin Nos. carved on the main body of the connector.
- 2. For codes representative of signal names in the above table or functions of signals, refer to Wiring to Connector CN X5 (Page 30, 67 and 105).

## **Interface Cable for Connection with Host Controller**




#### (3) Table of Wiring

Pin No.	Signal Name	Color of Core Wire	Pin No.	Signal Name	Color of Core Wire	Pin No.	Signal Name	Color of Core Wire
1	COM+	Orange (red 1)	10	COIN	Pink (black 1)	19	OZ+	Pink (red 2)
2	SRV-ON	Orange (black 1)	11	BRK-OFF	Orange (red 2)	20	OZ-	Pink (black 2)
3	A-CLR	Gray (red 1)	12	WARN	Orange (black 2)	21	CZ	Orange (red 3)
4	CL/INTSPD2	Gray (black 1)	13	COM-	Gray (red 2)	22	PLUS1	Gray (red 3)
5	GAIN/ZEROSPD	White (red 1)	14	GND	Gray (black 2)	23	PLUS2	Gray (black 3)
6	DIV/INTSPD1	White (black 1)	15	OA+	White (red 2)	24	SIGN1	White (red 3)
7	CWL	Yellow (red 1)	16	OA-	White (black 2)	25	SIGN2	White (black 3)
8	CCWL	Yellow (black 1)	17	OB+	Yellow (red 2)	26	FG	Orange (black 3)
9	ALM	Pink (red 1)	18	OB-	Yellow (black 2)			

#### <Remarks>

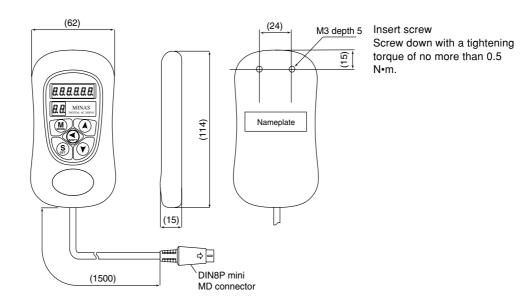
- For example, the color of the wire, Orange (Red 1) means that the lead wire is colored in orange with one red dot mark.
- The shield of this cable is not connected with the terminal of the connector.
   Please use the connector kit for connection with Host Controller when you connect the shield with FG or GND on the driver side.

(1) Part No. DV0P 1960 (for DOS/V compatible machines)



For pin arrangement of CN X6, see Page 159.

## "PANATERM®", software for communications control


- (1) Part No. DV0P4230 (Japanese version) DV0P4240 (English version)
- (2) This is supplied in the form of a 3.5 inch floppy disk.

#### <Cautions>

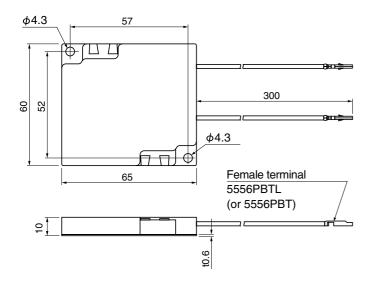
For details on the operating environment or others, refer to the operating instructions of "PANATERM®". For information on latest version, please contact us.

#### Console

Part No. DV0P3690



# **Optional Parts**


#### **External Regenerative Resistor**

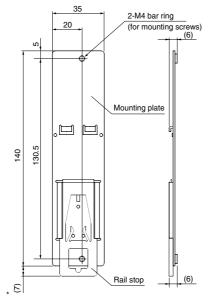
		Manufacturer's model name		Remarks		
	Part No.		Ohmic Value	Rated Power	Operating Temperature for	(Specifications for
					Built-in Temperature Fuse	the driver voltage)
	DV0P2890	45M03	50 Ω	10W	130±2°C	For single-phase 100V
	DV0P2891	45M03	100 Ω	10W	130±2°C	For single-phase/ three-phase 200V

Manufactured by: IWAKI MUSEN KENKYUSHO CO., LTD.

#### <Note>

For safety reasons, the external regenerative resistor has a built-in temperature fuse. The built-in temperature fuse may be disconnected depending on heat dissipation conditions, range of use temperatures, supply voltage, and load variations.




#### <Cautions>

The regenerative resistor may be hot.

Take preventive actions against a fire and burn. Do not mount the regenerative resistor in the vicinity of an inflammable object or in a place where an operator may easily touch it by hand.

#### **DIN Rail Mounting Unit**

- (1) Part No. DV0P3811
- (2) Outline Dimension



#### <Remarks>

- Two mounting screws (M4 x length 8, pan head machine screws) are supplied.
- * When extended, the rail stopper is 10mm long.

#### <Note>

For installation and removal, refer to "Installation" of Before Use edition on Pages 18 to 19.

#### Reactor

Driver Outline Frame Code	Voltage Specification for Power Source of Driver	Rated Output	Reactor Part No.	Figure
	Single- phase 100V	50 - 100W	DV0P227	1
MKDE	Single- phase 200V	50 - 100W	DV0P220	2
	Three- phase 200V	50 - 200W	DV0F220	2
	Single- phase 100V	200W	DV0P228	1
MLDE	Single- phase 200V	200 - 400W	DV0P220	2
	Three- phase 200V	400W	DV0P220	2

Figure 1

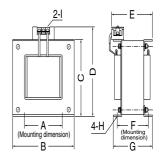
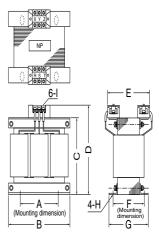




Figure 2



Fi	igure	Part No.	A	В	С	D	E	F	G	н	ı	Inductance (mH)	Rated Current (A)
		DV0P227	EE	00	CO	00	00	44		~ 7	MA	4.02	5
	ı	DV0P228	55	80	68	90	90	41	55	ø 7	M4	2	8
	2	DV0P220	65	125	83	118	145	70	85	Width 7 x Length 12	M4	6.81	3

- The former Agency of Natural Resources and Energy of Ministry of International Trade and Industry (present Ministry of Economy, Trade and Industry) established higher harmonics suppression guidelines in September 1994.
  - (1) Drivers rated 4kW or lower are subject to "Higher Harmonics Suppression Guidelines for Home Electric and General Purpose Appliances".
  - (2) Drivers rated over 4kW are subject to "Higher Harmonics Suppression Guidelines for High Voltage and Special Customers".
- The Ministry of Economy, Trade and Industry strongly demands manufacturers to enforce measures to curb harmonics.

In order to comply with the established regulatory level, connect a power-factor improvement reactor (L) to drivers of 4 kW or lower. For drivers of over 4kW, determine the level of harmonics according to the guideline and take a suppression measure, as appropriate.

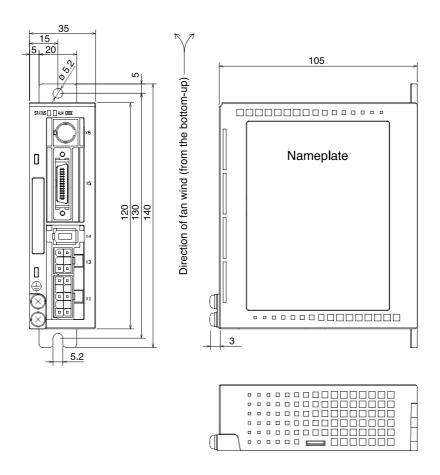
#### <Reference>

[Harmonics Suppression Technical Guideline], JEAG 9702-1995, Japan Electric Association [Harmonic Current Calculation Procedure for General-purpose Inverter at Special Customers], JEM-TR201-1996, Japan Electrical Manufacturers' Association

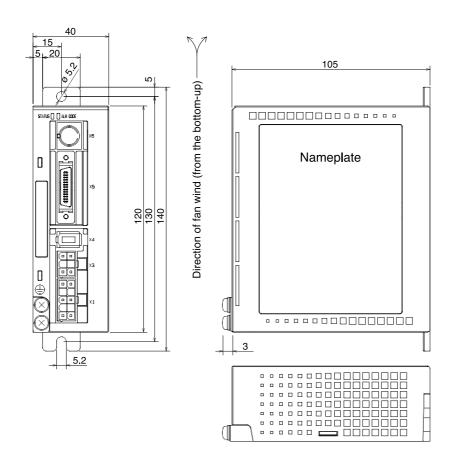
# **Recommended Parts**

## Surge Absorber for Motor Brake

Motor	Surge Absorber for Motor Brake
MUMA50W - 400W	• C-5A2 or Z15D151
MONASOV - 400V	Ishizuka Electronics Corporation


• The recommended parts are specified items to measure the brake release time.

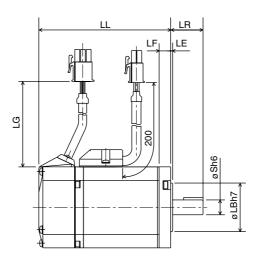
## List of Manufacturers of Peripheral Equipment


As of February 2003

Manufacturer/Agent	Phone Number	Equipment				
Matsushita Electric Works, Ltd.	+81-6-6908-1131	No-fuse breaker				
Automation Controls Company	http://www.mew.co.jp	Electromagnetic switch				
, ,	, ,	Surge absorber				
IWAKI MUSEN NKENKYUSHO CO., LTD.	+81-44-833-4311	Regenerative resistor				
	http://www.iwakimusen.co.jp/					
Ishizuka Electronics Corporation	+81-3-3621-2703					
ionizana zieonomos corporanom	http://www.semitec.co.jp/	Surge absorber for holding brake				
Renesas Technology Corpration.	+81-6-6233-9511	Sarge absorber for moraling brance				
Tionoda roomiciogy corpranom	http://www.renesas.com/jpn/					
TDK Corporation	+81-3-5201-7229	Noise filter for signal line				
1 Bit deliporation	http://www.tdk.co.jp/	140150 III.OF TOF SIGNAL III.O				
Okova Floatria Industrias Co. Ltd.	+81-3-3424-8120	Surge absorber				
Okaya Electric Industries, Co., Ltd.	http://www.okayatec.co.jp/	Noise filter				
Sumitomo 3M Ltd	+81-3-5716-7290					
Gamilonio Sivi Eta	http://www.mmmco.jp					
Tyco Electronics AMP K.K.	+81-44-844-8111	Connector				
Tydo Electronics Alvin Taxa.	http://www.tycoelectronics.com/japan/amp	Commedia				
Japan Molex Incorporated	+81-462-65-2313					
Capan Molex incorporated	http://www.molex.co.jp					
Daiden Co., Ltd.	+81-3-5805-5880	Cable				
Baiden Oo., Etd.	http://www.dyden.co.jp	Cable				

#### Driver (Frame K) Estimated Mass 0.35 kg

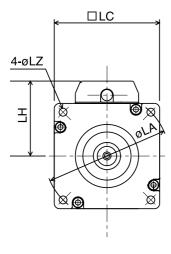


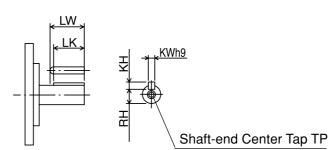

#### Driver (Frame L) Estimated Mass 0.4 kg



# **Dimensional Outline Drawing**

Motor


#### MUMA Series 50W to 400W




Output	LG
50W, 100W	230mm
200W, 400W	220mm

(Unit: mm)

		Model	Output (W)	LL	s	LB	LE	LF	LR
	ke	MUMA5A□P1□	50	75.5	8	22	2		0.4
	a brake	MUMA01 □ P1□	100	92.5	8	1	2	7	24
	Without	MUMA02 □ P1 □	200	96	11	50	3	/	30
MUMA	Wit	MUMA04 □ P1 □	400	124	14	3	9		30
M		MUMA5A□P1□	50	107	8	22	2		24
	brake	MUMA01 □P1□	100	124	0		2		24
	With a	MUMA02 □ P1 □	200	129	11	50		7	
	>	MUMA04 □ P1 □	400	157	14	30	3		30



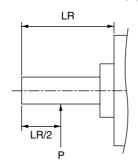


Specification of Keyed Version (Dimension)

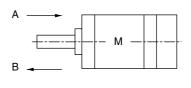
 Output
 Screw
 Depth

 50W, 100W
 M3
 6

 200W
 M4
 8


 400W
 M5
 10

(Unit: mm)

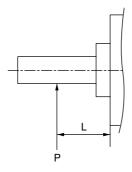

		LA	LC	LZ	LW	LK	KW	KH	RH	LH	Mass (kg)	Rotor Moment of Inertia (x10 ⁻⁴ kg·m²)
	a brake	48	42	3.4	14	12.5	3	3	6.2	34	0.40	0.021
		40	42	5.4	14	12.5	5	3	0.2	34	0.50	0.032
	Without		60	4.5	20	18	4	4	8.5	43	0.96	0.10
MUMA	Wit		60	4.5	25	22.5	5	5	11	.0	1.5	0.17
M		48	42	3.4	14	12.5	3	3	6.2	34	0.60	0.026
	brake	40	42	5.4	14	12.5	5				0.70	0.036
	With a	70	60		20	18	4	4	8.5	40	1.4	0.13
	Wit	70		4.5	25	22.5	22.5 5 5 11	1.9	0.20			

# **Allowable Load of Output Shaft**

Radial Load Direction (P)

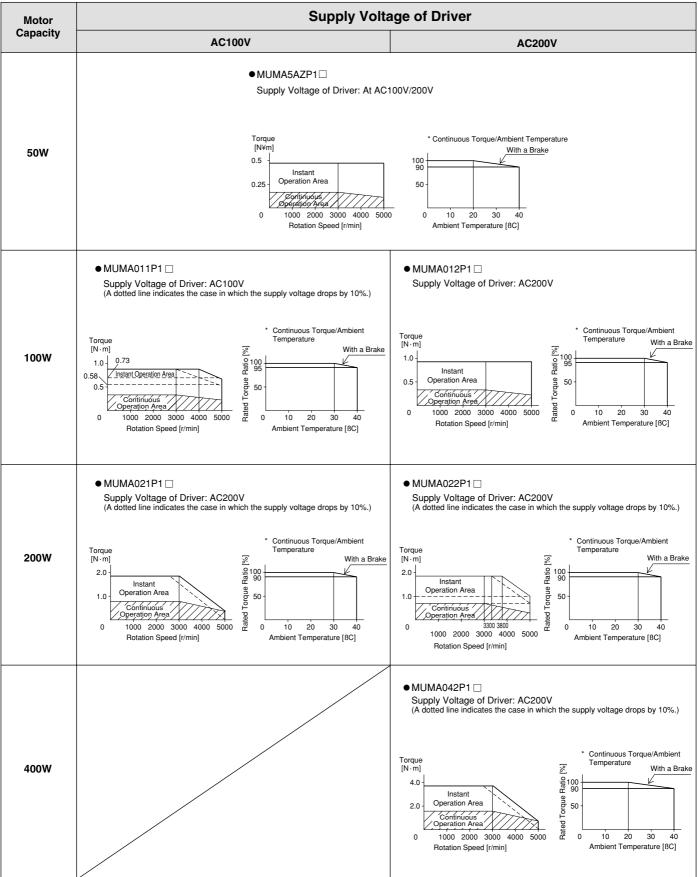


Thrust Load Directions (A, B)




Unit: N (1kgf = 9.8N)

Motor		Wh	en Assemb	In Operation			
Series	Motor Output	Radial Load	Thrus	t Load	Radial Load	Thrust Load	
Selles		naulai Luau	Direction A	Direction B	naulai Luau	Directions A, B	
NAL INA A	50W, 100W	147	88.2	117.6	68.6	58.8	
MUMA	200W, 400W	392	147	196	245	98	

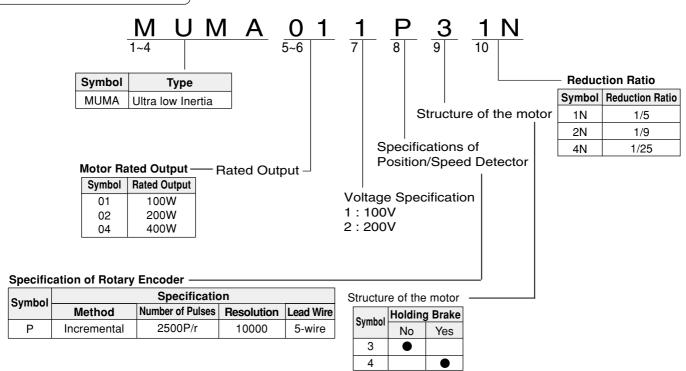

#### <Remarks>

If a position of load point varies, calculate allowable radial load P (N) from distance L (mm) of a load point from mounting flange face, based on the relational expression, so that the result of calculation will be as follows:



Motor Series	Motor Output	Relational Expression of Load - Load Point
	50\A/ 400\A/	1406
	50W, 100W	L + 7.5
MUMA	000144	2940
IVIOIVIA	200W	L-3
	400W	5831
	40000	L + 8.8

- Note that motor characteristics may vary depending on whether or not there is a brake.
- The continuous torque ambient temperature characteristic shows a value when our standard flange made of aluminum (having about doubled angle of that of the motor flange) is mounted.
- They are characteristics without an oil seal.




^{*} In the case of no oil seal and no brake, the rated torque ratio is 100% at ambient temperature of 40BC.

### **Servo Motor with Gear**

#### **Checking Model of Servo Motor with Gear**

#### How to check the model



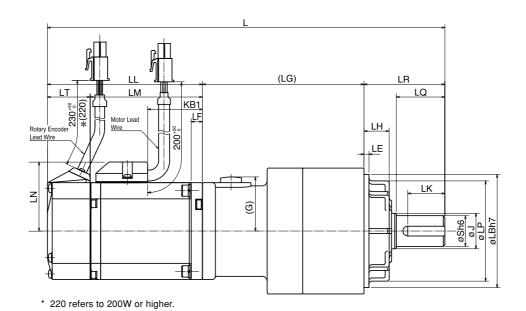
This driver was designed for use with the motor designated by us.

Check a name of the series, rated output, voltage specification, and encoder specification of the motor you plan to use.

#### Incremental Specification 2500 P/r

#### <Note>

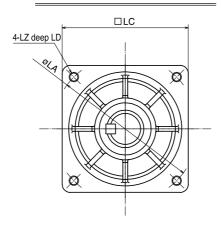
You must not use any combination other than those listed below.


		Applicable	Applicable [	Orivers		
Power Supply	Motor Rated Output	Reduction Ratio 1/5	Reduction Ratio 1/9	Reduction Ratio 1/25	<b>Driver Model</b>	Driver Frame
Single Phase	100W	MUMA011P * 1N	MUMA011P * 2N	MUMA011P * 4N	MKDET1110P	Frame K
100V	200W	MUMA021P * 1N	MUMA021P * 2N	MUMA021P * 4N	MLDET2110P	Frame L
Cinalo Dhooo	100W	MUMA012P * 1N	MUMA012P * 2N	MUMA012P * 4N	MKDET1505P	Frame K
Single Phase 200V	200W	MUMA022P * 1N	MUMA022P * 2N	MUMA022P * 4N	MLDET2210P	
200 V	400W	MUMA042P * 1N	MUMA042P * 2N	MUMA042P * 4N	MLDET2510P	Frame L
Three-Phase	100W	MUMA012P * 1N	MUMA012P * 2N	MUMA012P * 4N	MKDET1505P	- Frama I/
200V	200W	MUMA022P * 1N	MUMA022P * 2N	MUMA022P * 4N	MKDET1310P	Frame K
2007	400W	MUMA042P * 1N	MUMA042P * 2N	MUMA042P * 4N	MLDET2310P	- Frame L
	40000	MOMACHET IN	INIOINIAU4ZI ZIN	WOWAUTEL TIN	MLDET2510P	- ITAINEL

#### <Remarks>

[•] The mark "*" under the model name of the applicable motors refer to the structure of motor.

# **Dimensional Outline Drawing of Motor with Gear**


## Servo Motor with Gear

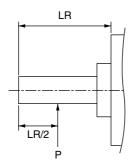


																			(uni	it: mm)																	
		Model	Motor Output	Reduction Ratio	L	LL	LM	LT	KB1	LF	LR	LQ	LB	S	LP	LH	7	(LG)	LE	(G)																	
		MUMA01□P31N	_	1/5	192						32	20	50	12	45	10	14	67.5																			
		MUMA01□P32N	100W	1/9	192	92.5	64	28.5	38.8		32	20	50	12	45	10	14	67.5		25																	
	ē	MUMA01□P34N		1/25	234,5						50	30	70	19	62	17	22	92																			
	brake	MUMA02□P31N		1/5	200.5					] [	32	20	50	12	45	10	14	72.5	3																		
	ut a	MUMA02□P32N	200W	1/9	235.5	96 69	69.5		34	7								89.5	3																		
	Without	MUMA02□P34N		1/25	246			00.5			50	30	70	10	62	17	00	100																			
	⋛	MUMA042P31N		1/5	263	123.5	97	26.5			50	30	/0	19	62	17	22	89.5		34																	
		MUMA042P32N	400W	1/9	203				61.5									89.5																			
ΑM		MUMA042P34N		1/25	288.5						61	40	90	24	75	18	28	104	5																		
MUMA		MUMA01□P41N		1/5	223.5		95.5	28.5	5 38.8		32	20	50	12	45	10	14	67.5																			
		MUMA01□P42N	100W	1/9	223.5	124					32	20	50	12	45	10	14	67.5		25																	
		MUMA01□P44N		1/25	266						50	30	70	19	62	17	22	92																			
	brake	MUMA02□P41N		1/5	233.5						32	20	50	12	45	10	14	72.5	3																		
	a	MUMA02□P42N	200W	1/9	268.5	129	102.5		34	7								89.5	3																		
	With 8	MUMA02□P44N		1/25	279			00.5			50	30	70	19	62	17	22	100		34																	
		MUMA042P41N		1/5	296			26.5			50	30	70	19	62	17	22	00.5		34																	
		MUMA042P42N	400W	1/9	296	156.5	130	5   130	130	130	130	130														61.5									89.5		
		MUMA042P44N		1/25	321.5						61	40	90	24	75	18	28	104	5																		

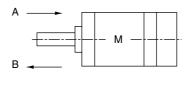


#### Detailed View of Shaft End




(unit: mm)

		LC	LA	LZ	LD	Key Dimensions (B $\times$ H $\times$ LK)	Т	LN	Mass (kg)	Moment of Inertia (×10 ⁻⁴ kg⋅m ² )
		52	60	M5	12	4 × 4 × 16	2.5		1.05	0.072
		52	60	CIVI	12	4 × 4 × 10	2.5	34	1.05	0.0663
	şe e	78	90	M6	20	6 × 6 × 22	3.5		2.20	0.0645
	a brake	52	60	M5	12	4 × 4 × 16	2.5	2.5		0.218
	ont 8								2.66	0.368
	Without	78 90	00	M6		6 v 6 v 00	3.5	43	2.00	0.388
	>		90	IVIO	20	6 × 6 × 22	0.5		3.2	0.533
									3.2	0.438
MUMA		98	115	M8		8 × 7 × 30	4		4.7	0.470
I₹		52	60	M5	12	4 × 4 × 16	2.5		1.25	0.076
		52	60	CIVI	12	4 × 4 × 10	2.5	34	1.25	0.0703
	a	78	90	M6	20	6 × 6 × 22	3.5		2.40	0.0685
	With a brake	52	60	M5	12	4 × 4 × 16	2.5		2.08	0.248
	la k								3.06	0.398
	N X	78	90	M6		6 × 6 × 22	0.5	43	3.00	0.418
		78	90	IVIO	20	6 × 6 × 22	3.5		3.6	0.563
									3.0	0.468
		98	115	M8		8 × 7 × 30	4		5.1	0.500


A value of moment of inertia is a motor shaft converted value (of the motor + speed reducer).

# Allowable Load of Output Shaft of Servo Motor with Gear

Radial Load (P) Direction



Thrust Loading (A, B) Direction



Unit: N

		Shaft Allowable Load		
Motor Output	Gear Ratio	Dadial Land	Thrust Load	
		Radial Load	A, B directions	
	1/5	490	245	
100W	1/9	588	294	
	1/25	1670	833	
200W	1/5	490	245	
	1/9	1180	588	
	1/25	1670	833	
	1/5	980	490	
400W	1/9	1180	588	
	1/25	2060	1030	

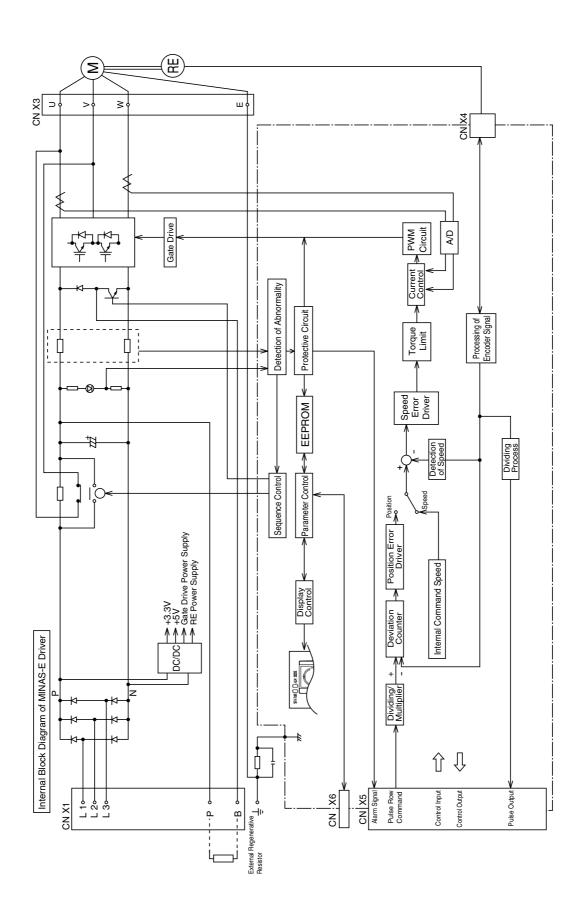
#### Requests Concerning Installation

- (1) Do not tap on the shaft when mounting the pulley, sprocket, etc. to the output shaft of the gear head. If you do tap on it, you may hear abnormal sound.
- (2) Give load to the pulley, sprocket, etc., so that force can act on the root of the output shaft, whenever possible.
- (3) If you plan to use a rigid coupling, ask us for information on the mounting precision and strength.
- (4) The motor has a built-in detector. If you inadvertently give excessive shock to the motor unit when coupling it with a device, the detector may be broken. Thus, assemble it carefully.

1/9

1/5

Reduction


Ratio

Motor

Driver

Supply

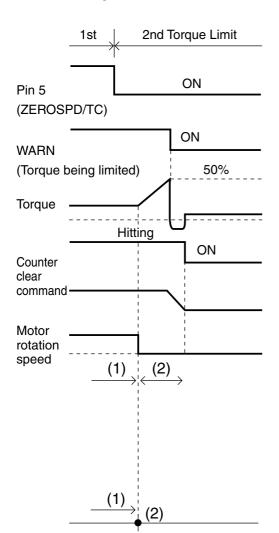
1/25





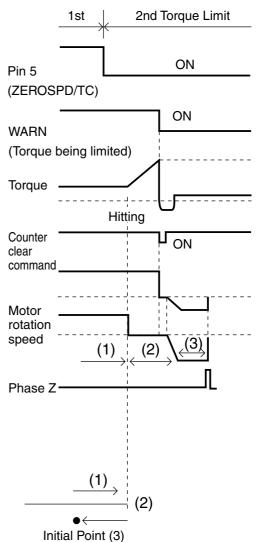
Feedback Pulse (OZ•CZ)

# : Position Control Mode Select with Pr02] Selection of Control Mode Control Mode Control Mode Servo Gain/Filter Time Constant Related Block Δ ۵ | Waveform Graphic | PANATERM | Actual Speed | | P Pr02 S Waveform Graphic Command Speed PANATERM Velocity Control Mode ■ Control Block Diagram Between Acceleration and Deceleration Acceleration Pr58 Deceleration Pr59 Dividing Pr44 Inversion Pr45 Setting of Filter Pr2C Speed Setting Internal/ External Switching Pr53 Internal 2nd Pr54 Command Dividing/ Multiplier Feedback Pulse (OA•OB)


# **Specifications**

		Single-phase 1	100V	Single-phase AC100V +10% -15% 115V +10% 50/60Hz	
	Power Supply	Single-phase 2	200V	Single-phase AC200V +10% -15% 50/60Hz	
	Оирргу	Three-phase 2	200V	Three-phase AC200V +10% -15% 50/60Hz	
	Allowable frequency variations Within –5%				
	Control met	thod		IGBT transistor PWM control (Sine wave driving)	
	Detector	Specification of applicable	rotary encoder	Incremental encoder 5-wire 2500 P/r	
		Regeneration	·	Externally installed regenerative resistor	
		Dynamic brake		At power-off, Servo-OFF, activation of protective function, and activation of limit switches	
	Built-in	Auto gain tuning		Normal, real time	
	functions	Electronic gear		A value requisition from the coloulation of 1 - 10000 × 20-17	
		(Dividing/multiplier of a co	mmand pulse)	A value resulting from the calculation of $\frac{1 - 10000}{1 - 10000} \times 2^{0-17}$	
		Dividing of feedback	pulse	Two-phase pulse of 5 to 2500 P/r output at any number of pulse	
Driver	Protective Function	Capable of storing 14 including a current ala No. Note, however, that a marked with * cannot	arm code llarm	Undervoltage*, overvoltage, overcurrent, overload, regenerative overload, encoder error, position over-deviation, over-speed, command pulse dividing error, position deviation overflow, EEPROM data error* (abnormal parameter, abnormal check code), overtravel input error*, etc.	
	Monitor	Panel Display		Status LED (STATUS), alarm code LED (ALM CODE)	
	Setting			RS232C	
	3		Frequency	Line driver 500 kpps, open collector 200 kpps	
	Position	Form	. ,	Line driver, open collector	
	Control	Control		90ß phase difference two-phase pulse, CW/CCW pulse, pulse row + sign	
	Velocity	Internal command sp	eed	Four-speed setup (Capable of setting CW/CCW, up to 20000r/min. However, use it within the use range of the motor.)	
	Control	Acceleration time set	ting	0 to 10 s/1000r/min, possible to individually set acceleration/deceleration.	
	Rotary	Rotary encoder	Phases A • B	Line driver output	
	Encoder	feedback signal	Phases Z	Line driver output, Open collector output	
	Control Inpo	ut	•	Refer to Section "System Configuration and Wiring".	
	Structure			Base mount type, open (IPOO)	
	Mass			Refer to Section "Dimensional Outline Drawing of Driver".	
				Refer to Section "Installation".	
	Rated Rota	tion Speed		3000r/min	
	100V		100V	50W - 200W: 5000r/min	
١. ا	Maximum Rotation Speed 200V		200V	50W - 400W: 5000r/min	
Motor	Holding Brake			Refer to Section "Holding Brake Built in the Servo Motor" for DC24V.	
M	Rotary Enc	oder		Incremental encoder 5-wire 2500 P/r	
	Structure (c	dust-proof/drip-proof pr	otection)	Equivalent to IP65 (excluding connector unit, shaft-through part)	
	Mass			Refer to Section "Dimensional Outline Drawing".	
	Ambient Co	onditions		Refer to Section "Installation".	

#### Hit-and-stop Initialization


When you find it difficult to install a sensor as the surroundings are not good, Hit-and-stop Initialization can be used.

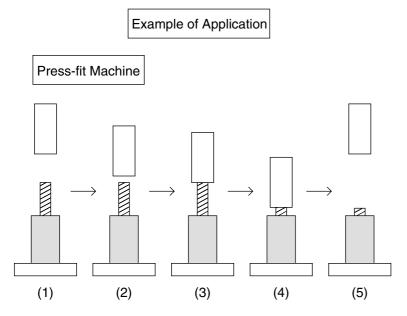
(1) When you set a point where the motor hits, as the origin:



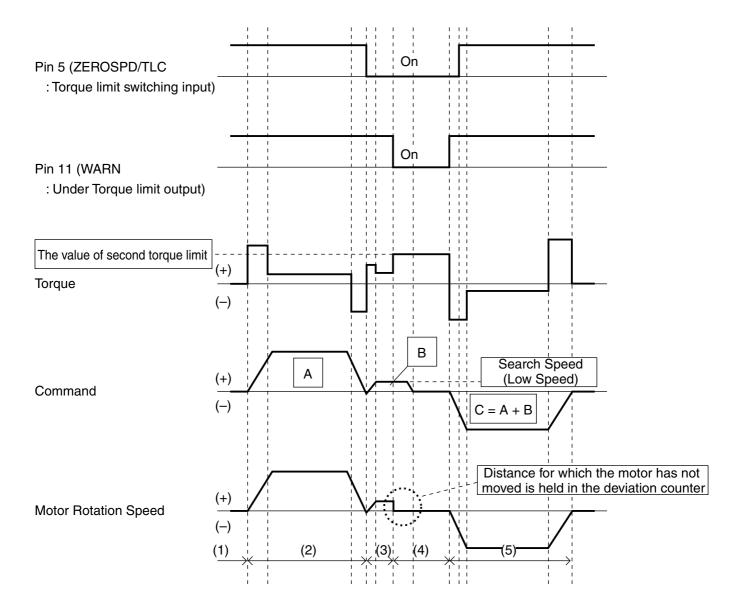
Initial Point

(2) When you stop the motor using phase Z with the hit point as a starting point, and make it an origin




		· /
Parameter No.	Name	Example of Settings
70	1st over-speed level set-up	6000
71	2nd torque limit set-up	50 (Set it 100% or less)
72	2nd position over-deviation set-up	1875 (Same as No.1)
73	2nd over-speed level set-up	6000
06	ZEROSPD/TC input selection	² (Speed zero clamp disabled. Torque limit switching input enabled.)
09	Warning output selection	0 (Torque being limited)

#### <Note>


Set pin 5 "H (OFF)" after hit-and-stop initialization completes.

# **Hit-and-stop Initialization and Load Pressing Control**

#### **Load Pressing Control**



PrNo.	Name	Example of Settings
06	ZEROSPD/TC input selection	2
09	Warning output selection	0
5E	Torque limit set-up	200
70	1st over-speed level set-up	3000
71	2nd torque limit set-up	50
72	2nd over-position deviation set-up	10000
73	2nd over-speed level set-up	3000



A		
Items	Terms	page
Adjustment	Real time Auto Gain Tuning (Position Control Mode)	86
	Real time Auto Gain Tuning (Velocity Control Mode)	114
	Gain Adjustment	128
	Normal Auto Gain Tuning	132
	Cancellation of the Automatic Gain Tuning	135
	Manual Gain Tuning	136
	To Reduce Mechanical Resonance	140
	Adaptive Filter	131
	Gain Switching Function	138
	Anti-Vibration Control	142
Alarm Code	Protective Functions	144
Driver	Model Designation	14
	Name plate	14
	Combination of Driver and Motor	15
	Check the Combination of Driver and Motor with Gear	199
	Parts Description	16
	Dimensional Outline Drawing	193
	Specifications (Driver/Motor)	206
В		
Items	Terms	page
Block Diagrams	Control Block Diagram in Position Control Mode	60
	Control Block Diagram in Velocity Control Mode	104
	Driver Internal Block Diagram	204
Brake	Holding Brake	35
	Dynamic Brake	36
С		
Items	Terms	page
Communications Protocol	Outline of Communications	158
	Communications Specification	159
	Interface of Communication Connector Unit	159
	Communications Method	160
	Transmission Sequence	161
	Configuration of Data Block	162
	Protocol Parameter	162
	State Transition Diagram	164
	Communications Timing	165
	List of communications Commands	166
Control Mode	Connections and Setting in Position Control Mode	65
	Connections and Setting in Internal Velocity Control Mode	103
	<u> </u>	

# Index

D		
Items	Terms	page
Display (Monitor)	Monitoring Mode	51
	EEPROM Writing Mode	50
	Parameter Setting Mode	57
	Normal Auto Gain Tuning Mode	58
	Alarm Clear	59
Dividing-Multiplier	Description on Dividing/Multiplier Ratio	178
E		
Items	Terms	page
Encoder	Incremental specification 2500P/r	15
Н		
Items	Terms	page
Hit-and-stop	Hit-and-stop Initialization	207
Homing Operation	Homing Operation (Precautions)	38
1		
Items	Terms	page
International Standards	EMC Directives	180
	EC Directives	180
	Peripheral Equipment	181
	Applicable Standards	180
	List of Available Components	183
L		
Items	Terms	page
Load Pressing	Load Pressing Control	208
M		
Items	Terms	page
Motor	Model Designation	15
	Name Plate	15
	Check the Combination of Driver and Motor	15
	Parts Description	16
	Allowable Load of Output Shaft	196
	Dimensional Outline Drawing	194
	Motor Characteristics (S-T Characteristics)	197
	Parts Description Allowable Load of Output Shaft Dimensional Outline Drawing	1 19 19

# [Reference]

0		
Items	Terms	page
Option	Noise Filter	182
Option	Surge Absorber	182
	Noise Filter for Signal cables	183
	Table of Junction Cable by Model	184
	Junction Cable for Encoder	184
	Junction Cable for Motors	184
	Junction Cable for Brakes	184
	Communications Cable (Connection with Personal computer)	189
	[PANATERM®], Software for Communications Control	189
	Connector Kits for Connection of Motor and Encoder	186
	Connector Kit for Connection with Host Controller	188
	Interface Cable for Connection with Host Controller	188
	External Regenerative Resistor	190
	Reactor	191
	Console	189
	DIN Rail Mounting Unit	190
Overload Time Limit Characteristics	Overload Protection	146

Р		
Items	Terms	page
PANATERM®	PANATERM®	39
Parameters	Parameter Groups and Listing	41
	Position Control Mode	88
	Velocity Control Mode	116
Peripheral Equipment	List of Driver and Compatible Peripheral Equipment	
	Magnetic Contactor	26
	Cable Diameter	26
	Circuit Breaker	26
	Surge Absorber	182
	Noise Filter	182
	Noise Filter for Signal Cables	183
	Grounding	183
	Leakage Breaker	183
	List of Manufacturers of Peripheral Equipment	192

# Index

R		
Items	Terms	page
Recommended Parts	Surge Absorber for Motor Brake	192
S		
Items	Terms	page
Safety Precautions	Safety Precautions	8
	Maintenance and Inspection	12
Servo Motor with Gear	Model Designation	14
	Checking the Combination of the driver and the motor with gear	199
	Dimensional Outline Drawing of Motor with Gear	200
	Allowable load of Output Shaft of Servo Motor with Gear	202
	Characteristics of Servo Motor with Gear (S-T Characteristics)	203
Т		
Items	Terms	page
Test Run	Inspection prior to Test Run	60
	Test Run Procedure	61
	Test Run in Position Control Mode	82
	Test Run in Internal Velocity Control Mode	110
Timing Chart	After Power-ON	32
	After an Alarm event	33
	After an Alarm is Cleared	33
	Servo-ON/OFF Operation When the Motor is Stopped	34
	Servo-ON/OFF Operation When the Motor is Rotating	34
Troubles	Troubleshooting	150
U	Tourne	
Items	Terms Structure of Operation Panel and Display	page
Using Console	Structure of Operation Panel and Display How to Operate	47
	CONTRACTOR AND	48

# [Reference]

W		
Items	Terms	page
Wiring	Installation of Driver	18
	Installation of Motor	20
	General Wiring Diagram	24
	Wiring of Main Circuits	27
	Wiring Diagrams	28
	Connection with Encoder	29
	Connection with Personal Computer/Console	31
	Connection with Host Controller	30
	Wiring in Position Control Mode	67
	Wiring in Velocity Control Mode	105

# Reference

Motor	Company, Matsushita Electric Industrial Co., Ltd. Marketing Group	
Tokyo:	Kyobashi MID Bldg, 2-13-10 Kyobashi, Chuo-ku, Tokyo 104-0031	TEL (03) 3538-2961 FAX (03) 3538-2964
Osaka:	1-1, Morofuku 7-chome, Daito, Osaka 574-0044	TEL (072) 870-3065 FAX (072) 870-3151

MEMO

# After-Sale Service (Repair)

#### Repair

Ask the seller where the product was purchased for details of repair work. When the product is installed in a machine or device, consult first the manufacture of the machine or device.

#### Cautions for Proper Use

- This product is intended to be used with a general industrial product, but not designed or manufactured to be used in a machine or system that may cause personal death when it is failed.
- Install a safety equipments or apparatus in your application, when a serious accident or loss of property is expected due to the failure of this product.
- Consult us if the application of this product is under such special conditions and environments as nuclear energy control, aerospace, transportation, medical equipment, various safety equipments or equipments which require a lesser air contamination.
- We have been making the best effort to ensure the highest quality of the products, however, application of exceptionally larger external noise disturbance and static electricity, or failure in input power, wiring and components may result in unexpected action. It is highly recommended that you make a fail-safe design and secure the safety in the operative range.
- If the motor shaft is not electrically grounded, it may cause an electrolytic corrosion to the bearing, depending on the condition of the machine and its mounting environment, and may result in the bearing noise. Checking and verification by customer is required.
- Failure of this product depending on its content, may generate smoke of about one cigarette. Take this into consideration when the application of the machine is clean room related.
- Please be careful when using in an environment with high concentrations of sulphur or sulphuric gases, as sulphuration can lead to disconnection from the chip resistor or a poor contact connection.
- Take care to avoid inputting a supply voltage which significantly exceeds the rated range to the power supply of this product. Failure to heed this caution may result in damage to the internal parts, causing smoking and/or a fire and other trouble.

#### Electronic data of this manual

Electronic data of this manual can be downloaded at the following web site.

Web Site of Motor Company, Matsushita Electric Industrial Co., Ltd.

<a href="http://panasonic.co.jp/motor/">http://panasonic.co.jp/motor/>

#### Memorandum (Fill in the blanks for convenience in case of inquiry or repair)

Date of purchase	Date:	Model No.	(Driver) (Motor)	
Place of purchase				
	TEL:			

# **Motor Company** Matsushita Electric Industrial Co., Ltd.

7-1-1, Morofuku, Daito, Osaka 574-0044, Japan

TEL: +81 -72-871 -1212

IMC80A S0303-3066 Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com