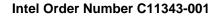
Intel[®] SHG2 DP Server Board


Technical Product Specification

Intel Order Number C11343-001

Revision 1.0

June 2002

Enterprise Platforms and Services Division

Download from Www.Somanuals.com. All Manuals Search And Download.

Revision History

Date	Revision Number	Modifications
06/05/02	1.0	Final draft.

Disclaimers

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The Intel[®] SHG2 Server Board may contain design defects or errors known as errata that may cause the product to deviate from published specifications. Current characterized errata will be available on request.

I²C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I²C bus/protocol and was developed by Intel Corporation. Implementations of the I²C bus/protocol or the SMBus bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel[®] is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © Intel Corporation 2002. *Other names and brands may be claimed as the property of others.

Table of Contents

1. Introc	luction1
1.1 Sł	IG2 Architecture Overview2
1.2 Do	ocument Structure and Outline4
2. Proce	essor and Chipset 6
2.1 Ov	/erview6
2.2 Pr	ocessor Support6
2.2.1	Processor Bus Termination/Regulation/Power7
2.2.2	Miscellaneous Processor Subsystem Logic7
2.2.3	Server Management Registers and Sensors7
2.2.4	ServerWorks* Grand Champion* LE Chipset8
2.2.5	CMIC-LE
2.3 M	emory Subsystem9
2.3.1	Chipkill*9
2.3.2	Memory Configuration9
2.3.3	CIOB-X211
2.4 CS	SB5 South Bridge11
2.4.1	PCI Interface12
2.4.2	PCI Bus Master IDE Interface12
2.4.3	USB Interface
2.4.4	BIOS Flash
2.4.5	Compatibility Interrupt Control
2.4.6	Power Management
2.4.7	General Purpose Input and Output Pins13
Revision 1.	0 Intel Order Number C11343-001 iii

2	2.5	Ch	ipset Support Components	14
	2.5	5.1	Legacy I/O (Super I/O) National* PC87417VLA	14
3.	Ва	seb	ooard PCI I/O Subsystem1	8
3	8.1	Ov	erview	18
3	8.2	64	-bit/100MHz PCI-X Subsystem	18
	3.2	2.1	Device IDs (IDSEL)	18
	3.2	2.2	64/100MHz PCI-X Arbitration	19
	3.2	2.3	82544GC Gigabit Ethernet Controller	19
3	3.3	64	-bit/133MHz PCI-X Subsystem	19
	3.3	8.1	Device IDs (IDSEL)	19
	3.3	8.2	64/133MHz Segment Arbitration	19
	3.3	8.3	Ultra 160 SCSI Controller (Adaptec* AIC- 7899)	20
3	8.4	Мс	odular RAID Capable PCI Slot 6	20
3	8.5	32	-bit/33-MHz PCI Subsystem	20
	3.5	5.1	Device IDs (IDSEL)	21
	3.5	5.2	32/33 MHz PCI Arbitration	21
	3.5	5.3	Network Interface Controller (NIC)	21
	3.5	5.4	Video Controller	22
3	8.6	Inte	errupt Routing	23
	3.6	5.1	Serialized IRQ support	26
	3.6	5.2	IRQ scan for PCIIRQ	26
4.	Clo	ock	Generation and Distribution2	27
5.	Se	rvei	r Management 2	9
5	5.1	Sa	halee Baseboard Management Controller	30
5	5.2	Sy	stem Reset Control	31

	5.2.1	Power-up Reset	31
	5.2.2	Hard Reset	32
	5.2.3	Soft Reset	32
5	.3 In	telligent Platform Management Buses	33
6.	Error	Reporting and Handling	35
6	.1 Ei	rror Sources and Types	35
6	.2 H	andling and Logging System Errors	35
	6.2.1	Logging Format Conventions	35
6	.3 S <u>y</u>	ystem Management Interrupt (SMI) Handler	37
	6.3.1	PCI Bus Error	37
	6.3.2	Intel [®] Xeon TM Processor Bus Error	37
	6.3.3	Memory Bus Error	37
	6.3.4	System Limit Error	37
	6.3.5	Processor Failure	37
	6.3.6	Boot Event	38
	6.3.7	Chip Set Failure	38
6	.4 Fi	irmware (BMC)	38
	6.4.1	System Event Log (SEL) Full	38
	6.4.2	Timestamp Clock	38
	6.4.3	Fault Resilient Booting	38
6	.5 Ei	rror Messages and Error Codes	39
	6.5.1	Alert Standard Forum (ASF) Progress Codes	40
	6.5.2	Power-On Self Test (POST) Codes	40
	6.5.3	POST Error Codes and Messages	44
	6.5.4	Liquid Crystal Display (LCD)	46

7.	Ju	mper	rs 4	8
	7.1	Hard	dware Configuration	48
8.	Со	onnec	ctions5	0
	8.1	Con	nector Locations	50
	8.2	Pow	ver Distribution Board Interface Connector	51
	8.3	SCS	SI Connectors	52
i	8.4	Flop	ppy Connector	53
	8.5	IDE	Connectors	54
	8.6	Fror	nt Panel Interface	55
	8.7	Proc	cessor Connector	56
	8.8	Syst	tem Management Interfaces	60
	8.8	3.1 I	CMB Connector	60
	8.8	3.2 A	Auxiliary I ² C* Connector	60
	8.9	Base	eboard Fan Connectors	61
	8.9	9.1 F	Fan Connector Pin-out	63
	8.10	St	andard I/O Panel Connectors	64
	8.1	0.1	Universal Serial Bus (USB) Interface	65
	8.1	0.2	Mouse and Keyboard Ports	66
	8.1	0.3	Serial Ports	66
	8.1	0.4	Parallel Port	67
	8.1	0.5	Video Port	68
	8.1	0.6	Ethernet Connectors	68
	8.11	Co	onnector Manufacturers and Part Numbers	70
9.	Ge	enera	I Specifications7	2'
1	9.1	Abs	olute Maximum Electrical and Thermal Ratings	72

9.2 Airf	flow Specification for CIOB-X2 and CMIC-LE	73
9.3 Ele	ctrical Specifications	73
9.3.1	Power Consumption	73
9.3.2	Power Supply Specifications	74
10. Mecha	nical Specifications7	8
11. Regula	atory and Integration Information8	0
11.1 P	Product Regulatory Compliance	30
11.1.1	Product Safety Compliance	30
11.1.2	Product EMC Compliance	30
11.1.3	Product Regulatory Compliance Markings	30
11.2 E	lectromagnetic Compatibility Notices	30
11.2.1	Europe (CE Declaration of Conformity)	30
11.2.2 Confor	Australian Communications Authority (ACA) (C-Tick Declaration of mity)	31
11.2.3 Confor	Ministry of Economic Development (New Zealand) Declaration of mity	31
11.2.4	BSMI (Taiwan)	31
11.3 R	Replacing the Back up Battery	31
Appendix	A: Glossary	I
Appendix	B: Reference Documents	11

List of Figures

Figure 1. Intel [®] SHG2 Server Board	1
Figure 2. SHG2 Server Board Placement Diagram	2
Figure 3. SHG2 Memory Bank Layout	10
Figure 4. SHG2 Interrupt Routing (PIC Mode)	24
Figure 5. SHG2 Interrupt Routing (Symmetric Mode)	25
Figure 6. SHG2 Baseboard Clock Distribution	
Figure 7. SHG2 Sahalee BMC Block Diagram	29
Figure 8. Basic Reset Flow	
Figure 9. Jumper Location	
Figure 10. SHG2 Baseboard Connector Identification and Locat	tions 50
Figure 11. SHG2 Board Fan Connector Locations	61
Figure 12. SHG2 System Redundant Cooling Fan Support	62
Figure 13. SHG2 I/O Panel Connector Graphical Locations	64
Figure 14. SHG2 I/O Panel Connector Location Dimensions	69
Figure 15. Output Voltage Timing	75
Figure 16. Turn On/Off Timing	76
Figure 17. SHG2 Baseboard Mechanical Diagram 1	78
Figure 18. SHG2 Baseboard Mechanical Diagram 2	79

List of Tables

Table 1. Memory DIMM Pairs	10
Table 2. CSB5 GPIO Usage Table	13
Table 3. Serial Port Connector Pinout	14
Table 4. Parallel Port Connector Pinout	15
Table 5. Floppy Port Connector Pinout	15
Table 6. Keyboard Connector Pinout	16
Table 7. Mouse Connector Pinout	16
Table 8. Super I/O* GPIO Usage Table	16
Table 9. PCI(-X) Bus Segment Characteristics	
Table 10. 64/100MHz Segment Configuration IDs	18
Table 11. 64/100MHz Segment Arbitration Connections	19
Table 12. 64/133MHz Segment Configuration IDs	19
Table 13. 64/133 MHz Segment Arbitration Connections	20
Table 14. 32/33MHz Segment Configuration IDs	21
Table 15. 32/33MHz Segment Arbitration Connections	21
Table 16. Standard VGA Modes	
Table 17. Video Port Connector Pinout	23
Table 18. ADM1026* Input Definition	
Table 19. Temperature Sensors	
Table 20: IPMB Bus Devices	
Table 21. Private I ² C* Bus 1 Devices	
Table 22: Private I ² C* Bus 2 Devices	
Table 23: Private I ² C* Bus 3 Devices	
Table 24: Private I ² C* Bus 4 Devices	
Table 25: Private I ² C* Bus 5 Devices	
Table 26. BIOS Logging SEL List	
Table 27. Event Request Message Event Data Field Contents	
Table 28. Event Request Message Event Data Field Contents	
Table 29. Port-80h Code Definition	
Table 30. Standard BIOS POST Codes	41

Table 31. Recovery BIOS POST Codes	44
Table 32. POST Error Messages and Codes	45
Table 33. SHG2 Configuration Jumper Options	49
Table 34. SHG2 Baseboard Connectors	50
Table 35. Main Power Connector	51
Table 36. +12V Power Connector	51
Table 37. Power Connector for I ² C* Bus	52
Table 38. 68-pin SCSI Connector Pin-out	52
Table 39. Legacy 34-pin Floppy Connector Pin-out	53
Table 40. Primary/Secondary IDE 40-pin Connector Pinout	54
Table 41. AT Front Panel Header Pinout	55
Table 42. Intel [®] Xeon [™] Processor Connector Pinout	56
Table 43. ICMB Connector Pin-out	60
Table 44. IPMB Connector Pinout	60
Table 45. SC5200 Fan Implementation	63
Table 46. Fan Connector Pinout	63
Table 47. I/O Panel Connectors	65
Table 48. USB Connector	65
Table 49. Internal USB Connector	65
Table 50. Mouse and Keyboard Ports	66
Table 51. Serial A Port Connector	66
Table 52. Serial B Port Header: COM2/EMP	67
Table 53. Parallel Port Connector	67
Table 54. Video Connector	68
Table 55. Ethernet Connectors	68
Table 56. LAN1 10/100 LED Schemes	69
Table 57. LAN2 10/100/1000 LED Schemes	69
Table 58. Baseboard Connector Manufacturer Part Numbers	70
Table 59. Absolute Maximum Electrical and Thermal Specifications	72
Table 60. Thermal Specification for Key Components	72
Table 61. Airflow Specification for Key Components	73
Table 62. SHG2 Power Budget	73
Table 63. SHG2 DC Power Supply Voltage Specification	74

Table 64. SHG2 Ripple and Noise Specification	74
Table 65. Voltage Timing Parameters	74
Table 66. Turn On/Off Timing	75
Table 67. Transient Load Requirements	77

< This page intentionally left blank. >

1. Introduction

This chapter provides an architectural overview of the Intel[®] SHG2 Server Board, including functional blocks and the electrical relationships.

Figure 1 shows the functional blocks of the SHG2 baseboard.

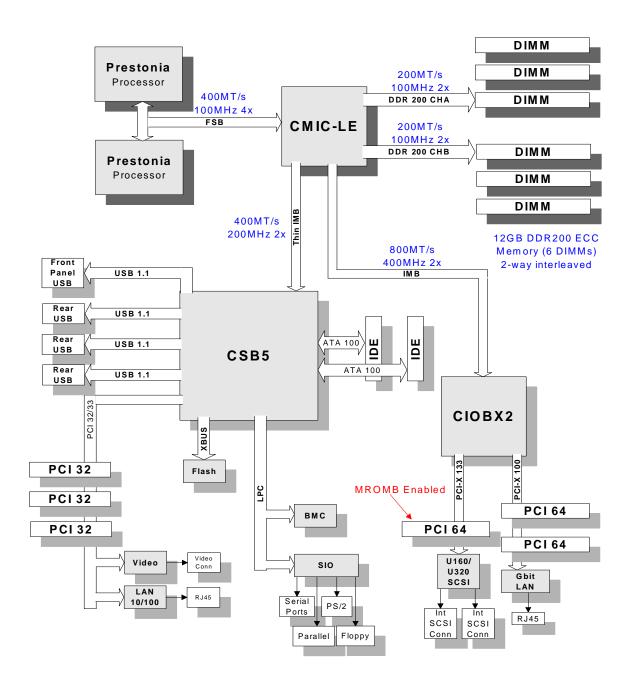


Figure 1. Intel[®] SHG2 Server Board

Revision 1.0

Intel Order Number C11343-001

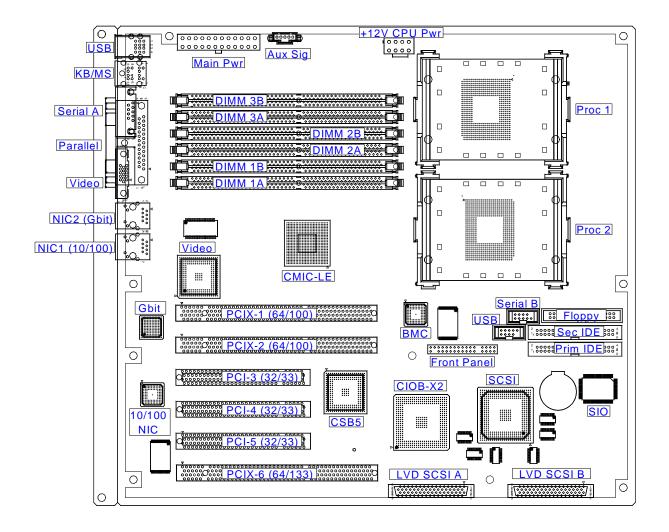


Figure 2. SHG2 Server Board Placement Diagram

1.1 SHG2 Architecture Overview

The Intel[®] SHG2 Server Board is designed around the Intel[®] Xeon[™] processor and the ServerWorks* Grand Champion* LE ServerSet* chipset. This combination provides the basis for a high performance system with leading edge processor, memory, and I/O performance.

The SHG2 baseboard architecture provides for two INT3-compliant (603 pin) processor sockets supporting dual processing operation using Intel Xeon processors. It also contains six industry standard PCI and PCI-X expansion slots supporting a mixture of 32-bit/33-MHz, 64-bit/100-MHz and 64-bit/133-MHz slots.

The processor baseboard provides an array of embedded I/O devices including a SCSI controller that provides two independent channels at SCSI bus speeds up to 160MB/sec with 7899 SCSI controller, one embedded 10/100 Network Interface Controller (NIC), one 10/100/1000 Gigabit Network Interface Controller, and a 2D/3D graphics accelerator.

Server management and monitoring hardware are also included. These features, and the others listed below, make this one of the most highly integrated server boards in this class.

SHG2 supports two interleaved memory channels at 100 MHz, each utilizing the rising edge and falling edge of the clock cycle for 200MT/s per channel (also known as "double pumped") for a combined throughput of 400 MT/s. The subsystem was originally intended for PC1600 DDR memory modules (DDR200), however up to 6 DDR200 of DDR266 registered memory modules (PC1600 or PC2100 DIMMs) inserted as pairs may be used. Each DIMM may provide up to 2 GB of memory capacity, providing up to 12 GB of system memory.

Note: Although the use of DDR266 modules is supported for upward compatibility, the channel throughput is fixed at 400 MT/s, and the use of higher speed DIMMs will not provide additional bandwidth. Mixed memory is not recommended, all DIMM sites should be populated with the same speed and, when possible, same manufacturer.

The SHG2 server board provides the following features:

- Dual Intel Xeon processor support.
 - Two processor sockets for installation of one to two identical Intel Xeon processors.
 - Embedded VRMs to support two Xeon processors.
- ServerWorks Grand Champion LE chipset.
 - Champion Memory and I/O Controller-Low End (CMIC-LE).
 - Champion South Bridge (CSB5).
 - Champion I/O Bridge (CIOBX2).
- Support for 6 DDR registered ECC Synchronous Dynamic RAM (SDRAM) DIMMs.
 - Error Correcting Code (ECC) single-bit correction, and multiple-bit error detection and memory scrubbing.
 - Supports Chipkill* technology
- 32-bit, 33-MHz 5V keyed PCI segment with three expansion connectors and two embedded devices with external connectors.
 - One PCI NIC—Intel 82550PM Fast Ethernet Controller with a dedicated RJ-45 connector at the rear I/O panel
 - 3D/2D Graphics Accelerator —ATI* RAGE XL Video Controller with DB15 VGA connector at the rear I/O panel
- 64-bit, 100-MHz, 3.3V PCI-X segment with two expansion connectors and one embedded device.
 - One PCI-X network interface controller—Intel 82544GC Gigabit Ethernet Controller with a dedicated RJ-45 connector at the rear I/O panel
- 64-bit, 133-MHz, 3.3V PCI-X segment with one expansion connector and one embedded device.
 - Dual Channel Ultra* 160 SCSI Controller—Adaptec* 7899 SCSI Controller.
 - **Note**: When the 7899 SCSI Controller is enabled, this bus segment will run at 66MHz in PCI mode. When disabled, the segment is capable of 133MHz PCI-X mode.
- X-bus segment with one embedded device.
 - 8-Mbit flash device for system BIOS.
- LPC bus segment with two embedded devices.

- Super I/O* controller chip providing all PC-compatible I/O (floppy, parallel, serial, keyboard, mouse).
- Sahalee Baseboard Management Controller (BMC) providing monitoring, alerting, and logging of critical system information obtained from embedded sensors on baseboard.
- Four Universal Serial Bus (USB) ports.
- Two 68 pin Ultra SCSI connectors, supporting two SCSI U-160 channels
- Two 40 pin fast ATA (IDE) connectors, supporting two ATA 33/66/100 channels

1.2 Document Structure and Outline

The information contained in this document is organized into 11 chapters. The content of each chapter is summarized below:

Chapter 1: Introduction

Architectural overview of the Intel SHG2 Server Board showing functional blocks and identifying major features.

Chapter 2: Processor and Chipset

Detailed description of the chipset and the supported processors.

Chapter 3: Baseboard PCI I/O Subsystem

Detailed descriptions of the PCI I/O subsystem. Three PCI buses are detailed, with specifics on embedded devices and provided slots. Interrupt routing information is also provided.

Chapter 4: Clock Generation and Distribution Identification of the clock signals generated and used on the SHG2 server board, and detailed drawings of their implementation.

Chapter 5: Server Management

Detailed description of the server management hardware integrated on the SHG2 baseboard. I^2C^* addresses and block diagrams are provided.

Chapter 6: Error Handling and Reporting

Defines how errors are handled by the system BIOS and SHG2 server board.

Chapter 7: Jumpers

Identification and description of all jumpers used on the SHG2 server board.

Chapter 8: Connections

Identification of all connectors on the SHG2 server board, by 'CN' number and manufacturer's part number. Interfacing specifics are identified where applicable.

Chapter 9: General Specifications Description of operational parameters and considerations, and other hardware specifications.

Chapter 10: Mechanical Specifications

Mechanical drawings of the Intel SHG2 Server Board.

Chapter 11 Regulatory and Integration Information

2. Processor and Chipset

2.1 Overview

The Intel SHG2 Server Board consists of one to two identical Intel Xeon processors, the Grand Champion LE chipset, and support circuitry. The baseboard houses two surface mount zero insertion force (ZIF) processor sockets and one embedded processor voltage regulator module (VRMs) to power one or both processors. The ServerWorks* Grand Champion LE chipset provides the 36-bit address/64-bit data processor host bus interface, operating at 100 MHz in the AGTL+ signaling environment. The Grand Champion Memory and I/O Controller (CMIC-LE) provides an integrated memory controller, a high-speed I/O connection (IMB) to the PCI-X bridge (CIOB-X2) and a connection (Thin IMB) to the south bridge (CSB5) for legacy devices and the PCI segment. The server board supports up to 12 GB of ECC memory, using 2GB DDR-registered PC1600 or PC2100 SDRAM DIMMs.

Additional descriptions and features include the following:

- ServerWorks Grand Champion LE chipset providing an integrated I/O bridge and memory controller, and a flexible I/O subsystem core (PCI) optimized for multiprocessor systems and standard high-volume (SHV) servers.
- Dual (603 pin) processor sockets that accept the Intel Xeon processors.
- Processor host bus AGTL+ supported circuitry, including termination power supply.
- Integrated APIC signals support.
- Miscellaneous logic for reset configuration, processor presence detection, ITP port, and server management.

2.2 **Processor Support**

SHG2 specifically supports Intel Xeon processors from 1.8 GHz to 2.6 GHz, with 512 KB of L2 advanced transfer cache.

The processor is packaged in a 603-pin micro- Pin-Grid Array (PGA) and provides an integrated heat spreader (IHS) for heat sink attachment.

The Intel Xeon processor socket that conforms to the 603-pin Socket Design Guidelines is a surface mount technology (SMT); ZIF socket using soldered ball attachment (BGA) to the platform.

As with previous versions of Intel[®] Pentium[®] Pro processors, the Intel Xeon processor external interface is designed to be DP-ready. Each processor contains a local advanced programmable interrupt controller (APIC) section for interrupt handling. When two processors are installed, both processors must be of identical revision, core voltage, cache voltage, and bus/core speeds.

Note: When using only one processor in the system, install the processor into the primary socket (PROC1, closest to the corner of the board). This will enable on-die termination on the end-agent processor the for system to function properly. The BMC will not allow DC power to

be applied to the system unless primary slot is populated with a processor, unless used in fault resilient booting (FRB) mode (details in Section 5).

When using two processors, notice that the processor pins are physically 180 degrees out-ofphase. Improper processor installation may permanently damage processor pins.

2.2.1 **Processor Bus Termination/Regulation/Power**

The termination circuitry required by the Intel Xeon processor bus (AGTL+) signaling environment, and the circuitry to set the AGTL+ reference voltage, are implemented directly on the processors. The baseboard provides 1.5 V AGTL+ termination power (VTT), and VRM 9.1compliant DC-to-DC converters to provide processor power (VCC_P) at each socket. The baseboard provides two embedded VRMs to power the processors, which derive power from the +5 V and 12 V supplies. Both processors share the same VRM to power their core.

2.2.2 Miscellaneous Processor Subsystem Logic

In addition to the circuitry described above, the processor subsystem contains the following:

- Reset configuration logic.
- Processor presence detection circuitry.
- Server management registers and sensors.

2.2.2.1 Reset Configuration Logic

On the SHG2 platform, the BMC is responsible for configuring the processor speeds. The BMC uses the processor speed information (derived from the Intel Xeon processor SECC FRU devices) to determine the appropriate speed to program into the speed-setting device (I²C-based EEPROM Mux).

The processor information is read at every system power-on. The EEMUX is set to correspond to the speed of the slowest processor.

2.2.2.2 Processor Presence Detection

Logic is provided on the baseboard to detect the presence and identity a properly installed processor. This prevents system power on if an empty socket in the primary section is detected in the primary processor socket (labeled Proc1, located closest to the edge of the server board), thus preventing operation of the system with an improperly terminated AGTL+ processor bus. The BMC checks this logic and will not turn on the system DC power until the bus is terminated properly with a processor in the primary socket.

2.2.2.3 APIC Bus

Interrupt notification and generation for the processors is done using a front side bus (FSB) between local APIC, in each processor, and the I/O APIC in the CSB5 located on the baseboard.

2.2.3 Server Management Registers and Sensors

The BMC manages registers and sensors associated with the processor/memory subsystem.

2.2.4 ServerWorks* Grand Champion* LE Chipset

The CMIC-LE, CIOB-X2, and CSB5 chips provide the pathway between processor and I/O systems. The CMIC-LE is responsible for accepting access requests from the host (processor) bus, and directing all I/O accesses to one of the PCI buses or legacy I/O locations. If the cycle is directed to one of the 64-bit PCI segments, the CMIC-LE communicates with the CIOB-X2 through a private interface called the IMB bus. If the cycle is directed to the 32-bit PCI segment or to the CSB5, the cycle is output on the private interface between the CMIC-LE and the CSB5 called the Thin-IMB bus. The CIOB-X2 translates the IMB bus operation to a 64-bit PCI-X signaling environment, operating at 100 MHz or 133 MHz (PCI Local Bus Specification 2.2 and PCI-X Specification 1.0a compliant).

The IMB bus consists of two data paths, one upstream (to the CMIC-LE from the CIOB-X2) and one downstream (from the CMIC-LE to the CIOB-X2). The interface is 16 bits wide and operates at 400 MHz with double-pumped data, providing over 1.6 GB per second of bandwidth in each direction, or 3.2 GB per second of bandwidth in both directions concurrently.

All I/O for the SHG2 server board, including PCI-X, is directed through the CMIC-LE and then through either the CIOB-X2 or the CSB5-provided 32-bit/33-MHz PCI bus.

- The CSB5 provides a 32-bit/33-MHz PCI bus.
- The CIOB-X2 provides a 64-bit/100-MHz PCI-X bus and the 64-bit/133-MHz PCI-X bus.

This independent bus structure allows all three PCI buses to operate concurrently and provides 1.2 GB per second of I/O bandwidth.

2.2.5 CMIC-LE

The Champion Memory and I/O Controller (CMIC-LE) is the fourth generation product in ServerWorks* Champion ServerSet Technology. The CMIC-LE is built on top of the proven components of previous generations like the Intel® Pentium® Pro Bus interface unit, the IMB interface unit, and the DDR SDRAM memory interface unit.

The CMIC-LE integrates two main functional units: 1) an integrated high performance main memory subsystem, and 2) an IMB bus interface that provides a high-performance data flow path between the processor bus and the I/O subsystem. In addition to the above-mentioned units, the CMIC-LE incorporates a Thin-Intra Module Bus (Thin-IMB) Interface.

Other features provided by the CMIC-LE include the following:

- Full support of processor bus protocol with multiprocessor support.
- Full support of ECC on the memory interface.
- An in-order queue (twelve deep).
- Full support of registered DDR ECC SDRAM DIMMs.
- Addressing support for 12 GB of 2-way interleaved SDRAM with 6 DIMMs sockets.
- Memory scrubbing.
- Multiple-bit error detection and Multiple-bit error correction for 1-4 bits on one DRAM within the same DIMM module (Chipkill*).

2.3 Memory Subsystem

Features provided in the SHG2 server board memory subsystem include the following:

- Six DIMM sockets, supporting three pairs of PC1600 (DDR200), upward compatible with PC2100 (DDR266) DIMMs.
- Memory can be implemented with either single-sided (one row) or double-sided (two row) DIMMs.
- Minimum memory capacity of 256 MB (2 x 128MB DIMMs).
- Maximum memory capacity of 12 GB (6 x 2GB DIMMs).
- The DIMM organization is x72, which includes 8 ECC check bits.
- Supports memory scrubbing, ECC single bit error correction, and multiple bit error detection.
- ECC from the DIMMs is passed through to the processor FSB.
- Supports Chipkill* multiple bit error detection and multiple bit error correction.
- Support for 2-way interleaved DDR SDRAM.
- The DDR SDRAM interface is comprised of 2 channels running at a frequency of 200 MHz each for for a total interleaved transfer rate of 400MT /s.

Note: Memory interleaving is a way to increase memory performance by allowing the system to access multiple memory modules simultaneously, rather than sequentially, in a similar fashion to hard-drive striping. Interleaving can only take place between identical memory modules.

Note: Although the use of DDR266 modules is supported for upward compatibility, the channel throughput is fixed at 400 MT/s, and the use of higher speed DIMMs will not provide additional bandwidth. Mixed memory is not recommended, all DIMM sites should be populated with the same speed and, when possible, same manufacturer.

2.3.1 Chipkill*

The CMIC-LE chipset supports Chipkill memory technology, which allows the system to recover when a multi-bit error is encountered within a single DDR SDRAM device on the same DIMM module. Chipkill memory technology provides protection up to, and including, a complete failure of a single DRAM device. The Chipkill technology incorporated in the CMIC-LE does not require any layout requirements on the memory boards. CMIC-LE contains the Chipkill algorithm and performs all the data correction logic required.

Chipkill memory technology works by re-ordering the data from the DDR SDRAMs so that if one DDR SDRAM device within a module should fail, the check bit algorithm provides sufficient information to recover from the multi-bit data error. The correctable errors are then written to the system error log (SEL) for evaluation at a later time.

2.3.2 Memory Configuration

Memory configuration requirements are as follows:

- DDR200 or DDR266 SDRAM-registered DIMM modules
- DIMM organization: x72 ECC
- Pin count: 184

- DIMM capacity (in pairs): 128 MB, 256 MB, 512 MB, 1 GB and 2 GB •
- Serial PD: JEDEC Rev 2.0 •
- Voltage Options: 2.5 V (VDD/VDDQ) •
- DIMMs must be populated in pairs for a x144 wide memory data path ٠

Memory DIMM	DIMM PAIR	Row
DIMM 1A, DIMM 1B	1	1, 2
DIMM 2A, DIMM 2B	2	3, 4
DIMM 3A, DIMM 3B	3	5, 6

Table 1. Memory DIMM Pairs

Figure 3. SHG2 Memory Bank Layout

2.3.3 CIOB-X2

The Champion I/O Bridge (CIOB-X2) provides an integrated I/O bridge that provides a highperformance data flow path between the IMB and the 64-bit I/O subsystem. This subsystem supports 2 peer 64-bit PCI (-X) segments. Having two PCI (-X) interfaces, the CIOB-X2 is able to provide large and efficient I/O configurations. The CIOB-X2 functions as the bridge between IMB and the two 64-bit PCI (-X) I/O segments or peers.

- The IMB interface is capable of supporting 1.6 GB/s of data bandwidth in both the upstream and downstream direction simultaneously.
- The internal PCI (-X) arbiter implements the least-recently used algorithm to grant access to requesting masters.
- The CIOB-X2 is a 352-pin ball-grid array (BGA) device.

2.3.3.1 64/100MHz I/O Subsystem

The 64/100MHz subsystem supports the following embedded devices and connectors:

- One PCI-X network interface controller—Intel 82544GC Gigabit Ethernet Controller with a dedicated RJ-45 connector.
- Two 184-pin, 3.3 V keyed, 64-bit PCI expansion slot connectors, numbered PCIX-1 and PCIX-2, supporting 100-MHz 3.3V-compliant PCI-X adapters, and both 66-MHz and 33-MHz 3.3V-compliant PCI adapters.

2.3.3.2 64/133 MHz I/O Subsystem

The 64/133 MHz subsystem supports the following embedded device and connector:

- Dual Channel Ultra 160 SCSI Controller—Adaptec 7899 SCSI Controller. **Note:** When the 7899 is enabled, the PCI expansion slot connector would only be capable of running at 66 MHz PCI mode.
- One 184-pin, 3.3 V keyed, 64-bit PCI expansion slot connector, numbered PCIX-6 (64/133), supporting 133-MHz 3.3V PCI-X-compliant PCI-X adapters, and MROMB SCSI adapters.

2.4 CSB5 South Bridge

CSB5 is a multi-function PCI device, housed in a 256-pin BGA device, providing a PCI-to-LPC bridge, PCI IDE interface, PCI USB controller, and power management controller. Each function within the CSB5 has its own set of configuration registers. Once configured, each appears to the system as a distinct hardware controller sharing the same PCI bus interface.

In the SHG2 server board implementation, the CSB5's primary role is to provide the gateway to all PC-compatible I/O devices and features. The SHG2 uses the following CSB5 features:

- PCI bus interface
- LPC bus interface
- IDE interface, with dual channel Ultra DMA 100 capability

- Four port USB interface
- PCI-compatible timer/counter and DMA controllers
- APIC and legacy 8259 interrupt controller
- Power management
- General purpose I/O

The following are descriptions of how each supported feature is implemented in SHG2.

2.4.1 PCI Interface

The CSB5 fully implements a 32-bit PCI master/slave interface, in accordance with the *PCI Local Bus Specification, Revision 2.2.* On the SHG2 baseboard, the PCI interface operates at 33 MHz, using the 5V-signaling environment.

2.4.2 PCI Bus Master IDE Interface

The CSB5 acts as a PCI-based fast IDE controller that supports programmed I/O transfers and bus master IDE transfers. The CSB5 supports two fast ATA-100 IDE channels, supporting two drives per channel. Two IDE connectors, primary and secondary, featuring 40 pins each (2 x 20), are provided on the baseboard.

The SHG2 ATA interface supports Ultra DMA 33/66/100 synchronous DMA mode transfers.

2.4.3 USB Interface

The CSB5 contains a USB controller and USB hub. The USB controller moves data between main memory and the four USB connectors provided.

The SHG2 baseboard provides three external USB connector interfaces on the rear I/O panel. All ports function identically and support the same bandwidth. The external connector is defined by the USB Specification, Revision 1.1. The SHG2 baseboard also provides a proprietary 10pin internal USB header, as the fourth USB port routable to an external location such as a front panel (see the Section 8, Connections, for interface specifics on all connectors).

2.4.4 BIOS Flash

The SHG2 baseboard incorporates a Fujitsu* 29LV800TA-90PFTN flash memory component. The 29LV800TA-90PFTN is a high-performance 8-Mbit memory organized as 1 MB of 8 bits each. There are 16 64-KB blocks within this device.

The 8-bit flash memory provides 1024K x 8 of BIOS and non-volatile storage space. The flash device is directly addressed as 20-bit XBUS memory.

2.4.5 Compatibility Interrupt Control

The CSB5 provides the functionality of two legacy 8259 programmable interrupt controller (PIC) devices, for ISA-compatible interrupt handling.

2.4.6 Power Management

One of the embedded functions of CSB5 is a power management controller. The SHG2 server board uses this to implement ACPI-compliant power management features. The SHG2 supports four sleep states: S0, S1, S4, and S5.

2.4.7 General Purpose Input and Output Pins

The CSB5 provides a number of general-purpose input (GPI) and general-purpose output (GPO) pins. Many of these pins have alternate functions, and thus all are not available. *Table 2* lists the GPI and GPO pins used on the SHG2 baseboard and gives a brief description of their function.

Pad	Usage	Description
V3	CMIC_FATALN	CMIC fatal error condition
W2	CMIC_ALERTN	CMIC error condition
W3	SCSI_IDSEL_EN	SCSI ID select enable
W4	CIOB1_ALERTN	CIOB error condition
Y4	CSB5_NMI	CSB5 NMI condition
Y1	BMC_IRQ_SMI-10	BMC SMI condition
Y2	LAN1_IDSEL_EN	LAN1 ID select enable
Y19	NVRAMCLR	Non-volatile RAM clear status
V17	PASSDIS-00	Allows password to be disabled
U16	CMOSCLR-00	CMOS clear status
V15	VENDER_SEL	Monitor PCIRST# signal
T20	F3SETUPEN-00	Enable Inspection Mode for factory use
T19	BMC_SCI-10	BMC system control interrupt status
T18	BMCISPMD-00	Reserved
Y16	SIDE_A+000	Secondary IDE addressbit 0
V12	SIDE_A+001	Secondary IDE address bit 1
U12	SIDE_A+002	Secondary IDE address bit 2
V19	LAN2_IDSEL_EN	LAN2 ID select enable
W20	VGA_IDSEL_EN	Video ID select enable
U14	FRWPN	Enable Frimware Write Protect Mode
Y20	ROM_CSN	BIOS flash chip select

Table 2. CSB5 GPIO Usage Table

2.5 Chipset Support Components

2.5.1 Legacy I/O (Super I/O) National* PC87417VLA

The National* PC87417VLA is integrated on the SHG2 baseboard as the Super I/O controller (SIO). The SIO is a Plug and Play-compatible device with ACPI-compliant controller/extender.

The SIO provides support for the following features:

- The system real-time clock (RTC)
- Two serial ports
- One parallel port
- Floppy disk controller
- PS/2-compatible keyboard and mouse controller
- Gereral purpose I/O (GPIO) pins
- Plug and Play functions
- Power management controller

The SHG2 baseboard provides the connector interface for the floppy, dual serial ports, parallel port, PS/2 mouse, and the PS/2 keyboard. See Section 8 (Connections) for connector pinout information. Upon reset, the SIO reads the values on GPO pins to determine its boot-up address configuration.

2.5.1.1 Serial Ports

One 9-pin connector in a D-Sub housing is provided for serial port A, while serial port B is optional via cable to the rear of the chassis through a 9-pin connector. Both ports are compatible with 16450 and 16550A modes, and both are re-locatable. Each serial port can be set to one of four different COM-x ports, and each can be enabled separately. When enabled, each port can be programmed to generate edge- or level-sensitive interrupts. When disabled, serial port interrupts are available to add-in cards. The serial port pinout is shown in *Table 3*.

Pin	Name	Description
1	DCD	Data Carrier Detected
2	RXD	Receive Data
3	TXD	Transmit Data
4	DTR	Data Terminal Ready
5	GND	Ground
6	DSR	Data Set Ready
7	RTS	Request to Send
8	CTS	Clear to Send
9	RIA	Ring Indication Active

Table 3. Serial Port Connector Pinout

2.5.1.2 Parallel Port

The SHG2 baseboard provides a 25-pin parallel port connector. The SIO provides an IEEE 1284-compliant, 25-pin bi-directional parallel port. BIOS programming of the SIO registers enables the parallel port and determines the port address and interrupt. When disabled, the interrupt is available to add in adapters. Parallel port pinouts are shown in *Table 4*.

Pin	Name	Pin	Name
1	STROBE_L	14	AUFDXT_L
2	D0	15	ERROR_L
3	D1	16	INIT_L
4	D2	17	SLCTIN_L
5	D3	18	GND
6	D4	19	GND
7	D5	20	GND
8	D6	21	GND
9	D7	22	GND
10	ACK_L	23	GND
11	BUSY	24	GND
12	PE	25	GND
13	SLCT		

Table 4. Parallel Port Connector Pinout

2.5.1.3 Floppy Port

The Floppy Disk Controller (FDC) is located in the the Super I/O controller (SIO). The SIO is software compatible with the PC8477, which contains a superset of the FDC functions in the uDP8473, NEC uPD765A, and N82077. The baseboard provides the 48-MHz clock, termination resistors, and chip selects. All other FDC functions are integrated into the SIO, including analog data separator and 16-byte FIFO. The FDC connector pinouts are shown below in *Table 5*.

Pin	Name	Pin	Name	Pin	Name
1	GND	13	GND	25	GND
2	FD_DENSEL	14	FD_DR0_L	26	FD_TRK0_L
3	GND	15	GND	27	FD_MSEN0
4	N/C	16	FD_MTR1_L	28	FD_WPROT_L
5	Кеу	17	FD_MSEN1	29	GND
6	FD_DRATE0	18	FD_DIR_L	30	FD_RDATA_L
7	GND	19	GND	31	GND
8	FD_INDEX_L	20	FD_STEP_L	32	FD_HDSEL_L
9	GND	21	GND	33	GND
10	FD_MTR0_L	22	FD_WDATA_L	34	FD_DSKCHG_L
11	GND	23	GND		

Table 5. Floppy Port Connector Pinout

Pin	Name	Pin	Name	Pin	Name
12	FD_DR1_L	24	FD_WGATE_L		

2.5.1.4 Keyboard and Mouse Connectors

The PS/2-compatible keyboard and mouse connectors are mounted within a single stacked housing. The mouse connector is stacked over the keyboard connector. External to the board, they appear as two connectors. The keyboard controller is functionally compatible with the 8042AH and PC87911. The keyboard and mouse connector pinouts are shown in Table 6 and Table 7

Table 6. Keyboard Connector Pinout

Pin	Signal	Description
1	KEYDAT	Keyboard Data
2	(NC)	
3	GND	Ground
4	FUSED_VCC	+5 V, fused
5	KEYCLK	Keyboard Clock
6	(NC)	

Table 7. Mouse Connector Pinout

Pin	Signal	Description
1	MSEDAT	Mouse Data
2	(NC)	
3	GND	Ground
4	FUSED_VCC	+5 V, fused
5	MSECLK	Mouse Clock
6	(NC)	

2.5.1.5 GPIO

The PC PC87417VLA provides several of the GPIO pins that the SHG2 server board utilizes. *Table 8* identifies the pin, the signal name specified in the schematic, and a brief description of its usage.

Pin	Usage	Descritpion
1,2,3	PKG_SELECT<1-3>	PKG ID
5	PCIXCAP1+SW	To enable/disable pcix mode to slot6
49	PCIX_PME-10	Power Management Event from PCIX bus
	PCI33_PME-10	Power Management Event from PCI bus
51	FP_PWR_LED+00	Front Panel LED control
50	PCI66_PME-10	Power Management Event from PCI 66bus

Table 8. Super I/O* GPIO Usage Table

2.5.1.6 Real-time Clock

The PC97417VLA contains a DS1287, MC146818, and PC87911-compatible RTC with external battery backup. The device also contains 242 bytes of general purpose battery-backed CMOS RAM.

2.5.1.7 Power Management Controller

The PC87417VLA contains functionality that allows various events to control the power state of the system (power-up or power-down). This functionality can be controlled from PCI power

management events, the BMC, or the front panel. This circuitry is powered from stand-by voltage, which is present anytime the system is plugged into an AC outlet.

3. Baseboard PCI I/O Subsystem

3.1 Overview

The I/O buses for the Intel SHG2 server board are both PCI-X and PCI, with one PCI and two PCI-X bus segments or peers. All the PCI (-X) buses comply with the *PCI Local Bus Specification, Revision 2.2 and PCI-X Specification, Revision 1.0a.* All three 64-bit slots on SHG2 are capable of supporting PCI-X mode (**note:** the 7899 on-board SCSI adapter must be disabled in BIOS Setup to enable PCIX-6 support of PCI-X mode). *Table 9* lists the characteristics of the three PCI (-X) bus segments.

PCI Bus Segment	Width	Speed	Туре	Add-in PCI Slot Support, Total Eight Slots
64/100MHz	64 bit	100MHz	PCI-X	2 slots (64-bit/100-MHz)
				Full-length cards supported
64/133MHz	64 bit	133 MHz	PCI-X	1 slots (64-bit/133-MHz)
				Full-length cards supported
32/33MHz	32 bit	33 MHz	PCI	3 slots (32-bit 33-MHz)
				Full-length cards supported

Table 9. PCI(-X) Bus Segment Characteristics

3.2 64-bit/100MHz PCI-X Subsystem

64/100 MHz segment supports these embedded devices and connectors:

- Two 184-pin, 3.3 V, 64-bit PCI (-X) expansion connectors, numbered PCIX-1 (64/100) and PCIX-2 (64/100).
- One embedded 82544GC Gigabit Ethernet Controller.

3.2.1 Device IDs (IDSEL)

All slots on this segment support PCI (X) and conform to the *PCI-X Specification, Revision 1.0a.* Each device under the PCI-X host bridge has its IDSEL signal connected to one bit of AD[31::16], which acts as a chip select on the PCI(-X) bus segment. This determines a unique PCI (-X) device ID value for use in configuration cycles. *Table 10* shows both the bit to which each IDSEL signal is attached for 64/100MHz devices, and the corresponding device number.

IDSEL Value	Device
25	PCI (X) Slot #1, PCIX-1 (64/100)
24	PCI (X) Slot #2, PCIX-2 (64/100)
20	82544GC Gigabit Ethernet Controller

Table 10. 64/100MHz Segment	Configuration IDs
-----------------------------	--------------------------

3.2.2 64/100MHz PCI-X Arbitration

A 64/100MHz segment supports three PCI (-X) masters: slots PCIX-1 (64/100), PCIX-2 (64/100), and 82544GC Gigabit Ethernet Controller. All PCI (-X) masters must arbitrate for PCI (-X) access, using resources supplied by the CIOB-X2. The host bridge PCI (-X) interface (CIOB-X2) arbitration lines REQx* and GNTx* are a special case in that they are internal to the host bridge. *Table 11* defines the arbitration connections.

Baseboard Signals	Device
P1_REQN1/P1_GNTN1	64/100MHz Slot PCIX-1 (64/100)
P1_REQN0/P1_GNTN0	64/100MHz Slot PCIX-2 (64/100)
P1_REQN2/P1_GNTN2	82544GC Gigabit Ethernet Controller

Table 11. 64/100MHz Segment Arbitration Connections

3.2.3 82544GC Gigabit Ethernet Controller

The Intel 82544GC Gigabit Ethernet Controller is an integrated third-generation Ethernet LAN component capable of providing 1000, 100, and 10 Mbps data rates. It is a single-chip device, containing both the MAC and PHY layer functions.

The 82544GC utilizes a 64 bit, 100 MHz direct interface to the PCI-X bus, compliant with the *PCI Local Bus Specification, Revision 1.0a.*

3.3 64-bit/133MHz PCI-X Subsystem

A 64/133 MHz segment supports these embedded devices and connectors:

- One dual channel Ultra 160 SCSI controller—Adaptec AIC7899 SCSI controller.
 Note: The AIC7899 is a PCI device, when enabled; the PCI expansion slot connector is limited to running at 66 MHz in PCI mode.
- One 184-pin, 3.3 V, 64-bit PCI (-X) expansion connector, numbered PCIX-6 (64/133).

3.3.1 Device IDs (IDSEL)

The PCI (-X) IDSEL signal connections to S1 AD[31::11] lines for 64/133 MHz devices are shown in *Table 12*.

IDSEL Value	Device
24	PCI (-X) Slot #6, PCIX-6 (64/133)
25	7899 or 7902 SCSI Controller

Table 12. 64/133MHz Segment Configuration IDs

3.3.2 64/133MHz Segment Arbitration

A 64/133 MHz segment supports three PCI (X) masters: slot PCIX-6 (64/133), 7899 SCSI controller, and the CIOB-X2 controller. All PCI (-X) masters must arbitrate for PCI (X) access

using resources supplied by the CIOB-X2. The CIOB-X2 interface arbitration connections are internal to the device. *Table 13* defines the external arbitration connections:

Baseboard Signals	Device		
S1_REQN0/S1_GNTN0	PCI-X Slot PCI-6 (64/133)		
S1_REQN1/S1_GNTN1	7899 SCSI Controller		

Table 13. 64/133 MHz Segment Arbitration Connections

3.3.3 Ultra 160 SCSI Controller (Adaptec* AIC- 7899)

The Intel SHG2 server board provides an embedded dual-function Adaptec AIC-7899 PCI (-X) SCSI host adapter on the 64/133 MHz segment. The AIC-7899 controller contains two independent SCSI controllers that share a single PCI (-X) bus master interface as a multifunction device, packaged in a 456-pin BGA package. Internally, each controller is identical, capable of supporting a data transfer rate up to 160 MB/s on a wide (16-bit) SCSI bus with low-voltage differential (LVD) devices. The combined available SCSI throughput of both channels is 320MB/s.

In the SHG2 baseboard implementation, both controller A and controller B attach to a 68-pin, 16-bit differential SCSI connector LVD interface. Each controller has its own set of PCI (-X) configuration registers and SCSI I/O registers.

The AIC-7899 performance levels at 3.3 $V_{\text{IO}}\,\text{are}$ as follows:

- When operating in PCI mode as a 64-bit bus master, the AIC-7899 can support memory data transfer rates up to 533 GB/s at 66MHz, and 266MB/s at 33MHz.
- When operating in PCI mode as a 32-bit bus master, the AIC-7899 can support memory data transfer rates up to 266MB/s at 66MHz, and at 133MB/s at 33MHz.

3.4 Modular RAID Capable PCI Slot 6

The SHG2 server board supports modular RAID controller on PCI (X) Slot 6. An add-in card installed in this slot leverages the on-board SCSI controller along with its own built-in intelligence to provide a complete RAID controller subsystem on board. If a specified modular RAID card is installed, then SCSI interrupts are routed to the RAID card, instead of the PCI (X) interrupt controller, and the host-based I/O device is effectively hidden from the system. The SHG2 server board uses an implementation commonly referred to as "RAIDOS" to support this feature.

3.5 32-bit/33-MHz PCI Subsystem

All 32-bit/33-MHz PCI I/O for the SHG2 baseboard are directed through the CSB5. The 32/33 MHz segment supports the following embedded devices and connectors:

- Three 120-pin, 32-bit PCI expansion connectors, numbered PCI-3 (32/330, PCI-4 (32/33) and PCI-5 (32/33).
- PCI ATI Rage* XL Video Controller.

• PCI 82550PM Network Interface Controller.

3.5.1 Device IDs (IDSEL)

Each device under the PCI host bridge has its IDSEL signal connected to one bit of AD[31::16], which acts as a chip select on the PCI bus segment in configuration cycles. This determines a unique PCI device ID value for use in configuration cycles. *Table 14* shows the bit to which each IDSEL signal is attached for 32/33 MHz devices, and the corresponding device number.

IDSEL Value	Device			
24	32/33MHz Slot , PCI-3 (32/33)			
25	32/33MHz Slot, PCI-4 (32/33)			
20	32/33MHz Slot, PCI-5 (32/33)			
19	NIC 82550PM			
18	ATI RAGE* XL Video Controller			

Table 14. 32/33MHz Segment Configuration IDs

3.5.2 32/33 MHz PCI Arbitration

A 32/33 MHz segment supports five PCI masters: slots PCI-3 (32/33), PCI-4 (32/33), PCI-5 (32/33), 82550PM network controller, and the ATI RAGE* XL controller. All PCI masters must arbitrate for PCI access, using resources supplied by the CSB5. The host bridge PCI interface (CSB5) arbitration lines REQx* and GNTx* are a special case in that they are internal to the host bridge. *Table 15* defines the arbitration connections.

Peeebaard Signala	Device
Baseboard Signals	Device
D_PCIREQN/D_PCIGNTN	32/33MHz Slot, PCI-3 (32/33)
D_REQN4/D_GNTN4	32/33MHz Slot, PCI-4 (32/33)
D_REQN2/D_GNTN2	32/33MHz Slot, PCI-5 (32/33)
PCIREQN_ETHER1/PCIGNTN_ETHER1	NIC 82550PM
PCIREQN_VGA/PCIGNTN_VGA	ATI* RAGE XL

3.5.3 Network Interface Controller (NIC)

The Intel SHG2 server board supports one 10Base-T/100Base-TX network subsystem based on the Intel 82550PM NIC. The 82550PM is a highly integrated PCI LAN controller in a thin BGA 15 mm2 package. The controller's baseline functionality is equivalent to that of the Intel 82559, with the addition of Alert-on-LAN functionality. The SHG2 server board supports independent disabling of the NIC using the BIOS setup menu.

The Intel 82550PM supports the following features:

• 32-bit PCI, CardBus master interface

- Integrated IEEE 802.3 10Base-T and 100Base-TX compatible PHY
- IEEE 820.3u auto-negotiation support
- Chained memory structure similar to the 82559, 82558, 82557, and 82596
- Full duplex support at both 10 Mbps and 100 Mbps operation
- Low power +3.3 V device

3.5.3.1 NIC Connector and Status LEDs

The 82550PM drives status LEDs on the NIC to indicate link/activity on the LAN and operational speed, 10- or 100-Mbps. The green LED indicates network connection when on, and TX/RX activity when blinking. The other green LED indicates 100-Mbps operation when it is lit and 10-Mbps operation when it is OFF.

3.5.4 Video Controller

The Intel SHG2 server board provides an ATI Rage XL PCI graphics accelerator, along with 8 MB of video, SDRAM, and support circuitry for an embedded super video graphics array (SVGA) video subsystem. The ATI Rage XL chip contains a SVGA video controller, clock generator, 2D and 3D engine, and RAMDAC in a 272-pin PBGA. One 2Mx32 SDRAM chip provides 8 MB of video memory.

The SVGA subsystem supports a variety of modes, up to 1600 x 1200 resolution in 8/16/24/32 bpp modes under 2D, and up to 1024 x 768 resolution in 8/16/24/32 bpp modes under 3D. It also supports both CRT and LCD monitors up to 100 Hz vertical refresh rate.

The SHG2 server board provides a standard 15-pin video graphics array (VGA) connector, and supports disabling of the onboard video through the BIOS Setup menu or when a plug-in video card is installed in any of the PCI slots.

3.5.4.1 Video Modes

The ATI Rage XL chip supports all standard IBM* VGA modes. *Table 16* shows the 2D/3D modes supported for both CRT and LCD. The table also specifies the minimum memory requirement for various display resolution, refresh rates, and color depths.

2D Mode	Refresh Rate (Hz)	SHG2 2D Video Mode Support			
		8 bpp	16 bpp	24 bpp	32 bpp
640x480	60, 72, 75, 90, 100	Supported	Supported	Supported	Supported
800x600	60, 70, 75, 90, 100	Supported	Supported Supported		Supported
1024x768	60, 72, 75, 90, 100	Supported	Supported	Supported	Supported
1280x1024	43, 60	Supported	Supported	Supported	Supported
1280x1024	70, 72	Supported	-	Supported	Supported
1600x1200	60, 66	Supported	Supported	Supported	Supported
1600x1200	76, 85	Supported	Supported	Supported	-
3D Mode	Refresh Rate (Hz)	SHG2 3D Video Mode Support with Z Buffer Enabled			

Table 16. Standard VGA Modes

640x480	60,72,75,90,100	Supported	Supported	Supported	Supported	
800x600	60,70,75,90,100	Supported	Supported	Supported	Supported	
1024x768	60,72,75,90,100	Supported Supported S		Supported	Supported	
1280x1024	43,60,70,72	Supported	Supported	-	-	
1600x1200	60,66,76,85	Supported	-	-	-	
3D Mode	Refresh Rate (Hz)	SHG2 3D Video Mode Support with Z Buffer Disabled				
640x480	60,72,75,90,100	Supported	Supported	Supported	Supported	
800x600	60,70,75,90,100	Supported	Supported	Supported	Supported	
1024x768	60,72,75,90,100	Supported	Supported	Supported	Supported	
1280x1024	43,60,70,72	Supported	Supported	Supported	-	
1600x1200	60,66,76,85	Supported	Supported	-	-	

3.5.4.2 VGA Connector

Table 17 shows the pinout of the VGA connector. For more information, see the ATI RAGE XL Technical Reference Manual.

Pin	Signal	Description	Pin	Signal	Description
1	RED	Analog color signal R	9	VREF	Video Power
2	GREEN	Analog color signal G	10	GROUND	Video ground
3	BLUE	Analog color signal B	11	N/C	No connect
4	N/C	No connect	12	DDCDAT	Monitor ID data
5	GROUND	Video ground (shield)	13	HSYNC	Horizontal Sync
6	GROUND	Video ground (shield)	14	VSYNC	Vertical Sync
7	GROUND	Video ground (shield)	15	DDCCLK	Monitor ID clock
8	GROUND	Video ground (shield)			

Table 17. Video Port Connector Pinout

3.6 Interrupt Routing

SHG2 interrupt architecture accommodates both a PC-compatible Programmable Interrupt Controller (PIC) mode and APIC mode interrupts through use of the integrated I/O APICs in the CSB5. *Figure 4* shows the PIC mode interrupt routing supported in the SHG2 baseboard. *Figure 5* shows the symmetric mode interrupt routing supported in the SHG2 baseboard.

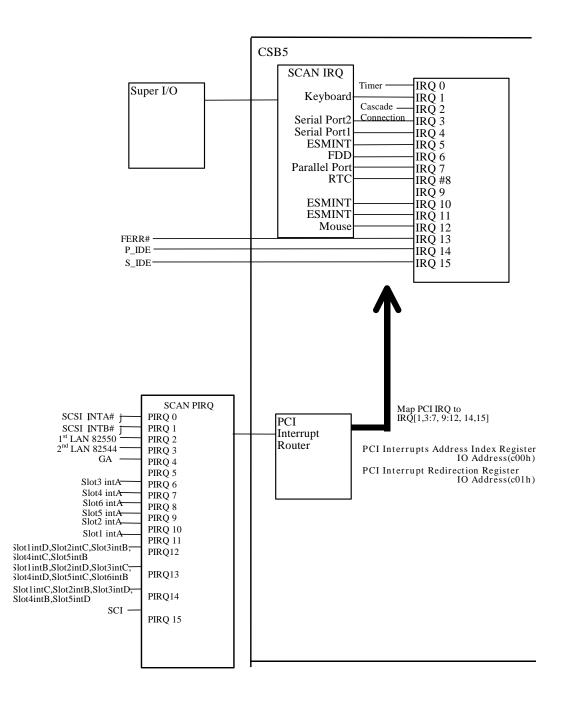


Figure 4. SHG2 Interrupt Routing (PIC Mode)

Figure 5. SHG2 Interrupt Routing (Symmetric Mode)

The XIOAPIC logic inside CSB5 has 48 entries of which 16 entries are for legacy interrupts 0-15, and 32 entries are for PCI interrupts. The 48 entries are implemented as three 16-entry XIOAPIC units. The basic building block for the XIOAPIC is a 16-entry IOAPIC.

The SHG2 baseboard supports mapping (redirection) of any of the 32 PCI interrupt sources to legacy interrupts. The legacy interrupt lines after mapping logic is connected to the input of 82559 inside of CSB5.

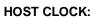
3.6.1 Serialized IRQ support

The SHG2 baseboard supports the serialized interrupt delivery mechanism. The serialized IRQ (SERIRQ) consists of a start frame, a minimum of 17 interrupt request (IRQ)/ data channels, and a stop frame. Any slave device in quiet mode may initiate the start frame. While in the continuous mode, the start frame is initiated by the host controller.

3.6.2 IRQ scan for PCIIRQ

The IRQ/data frame structure within the CSB5 includes the ability to handle up to 32 sampling channels with the standard implementation. The SHG2 baseboard has a total of 16 PCIIRQs that are connected through an external PCI interrupt serializer for PCIIRQ scan mechanism, which then serializes the PCIIRQ orders into the CSB5 IRQ/data frame structure.

4. Clock Generation and Distribution


All buses on the Intel SHG2 server board operate using synchronous clocks. Clock synthesizer/driver circuitry on the baseboard generates clock frequencies and voltage levels as required, including the following:

- 100 MHz at 2.5 V logic levels for CPU1 and CPU2, the CMIC-LE, memory buffer, and the ITP port.
- 48 MHz at 3.3V logic levels for CSB5 and Super I/O.
- 33.3 MHz at 3.3 V logic levels for reference clock for the PCI bus clock driver.

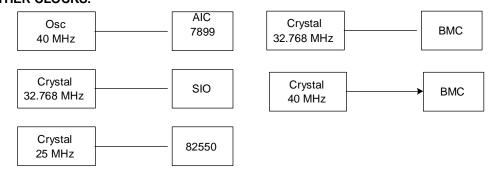
Other clock sources on the Intel SHG2 server board generates:

- 66/133 MHz at 3.3V logic levels for PCI-X Slot #6 and Ultra 160 SCSI.
- 100 MHz at 3.3V logic levels DDR DIMMs, PCI-X Slot #1, #2 and Gigabit 82544GC.
- 40 MHz XTAL for 7899 SCSI Controller.
- 40 MHz XTAL for BMC.
- 32.768 XTAL for Super I/O.
- 32.768 MHz for BMC.
- 25 MHz XTAL for NIC 82550PM.
- 14.318 XTAL for main clock generator.

Figure 6 illustrates clock generation and distribution on the SHG2 baseboard.

•••		n.				<u>n</u> .	
		100 MHz	CPU1			33 MHz	BMC
		100 MHz	CPU2			33 MHz	NIC 82550PM
		100 MHz	CMIC-LE			33 MHz	VGA
		100 MHz	MEM CLK BUF		33 MHz	SIO	
	HOST CLOCK	100 MHz	ITP			33 MHz	PCI Slot #3
	BUFFER	14 MHz	CSB5 / VGA	PCI CLOCK	33 MHz		
		48 MHz	SIO		BUFFER	33 MHz	
		48 MHz	CSB5 / SIO			33 MHz	- IRQ #1
		33 MHz	PCI CLK BUF			33 MHz	- IR1 #0
]				33 MHz	- CSB5
		4.318MHz				33 MHz	- CIOB-X2
ſ		K:	_				
		100 MHz	DIMM SLOT A1	1/	O CLOCK:		100 MHz
		100 MHz	DIMM SLOT B1		Primary ⁻	100 MHz	PCI-X Slot #1
		100 MHz	DIMM SLOT A2		-	100 MHz	PCI-X Slot #2
	MEM CLOCK	100 MHz	DIMM SLOT B2	CIOB-X2	100 MHz	NIC 82544GC	
	BUFFER	100 MHz	DIMM SLOT A3				PCI-X Slot #6
		100 MHz 🕝		5	econdary -	66/133 MHz	UI TRA 160

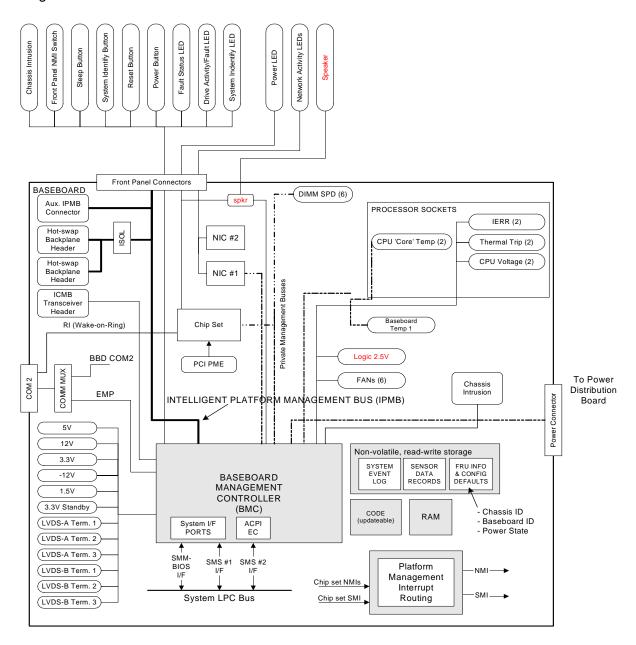
Secondary


66/133 MHz

ULTRA 160

OTHER CLOCKS:

100 MHz


DIMM SLOT B3

5. Server Management

The SHG2 server management features are implemented using the Sahalee BMC chip. The Sahalee BMC is an ASIC packaged in a 156-pin BGA that contains a 32-bit reduced instruction set computing (RISC) processor core and associated peripherals. *Figure* 7 illustrates the SHG2 server management architecture. A description of the hardware architecture follows the diagram.

5.1 Sahalee Baseboard Management Controller

The Sahalee BMC contains a 32-bit RISC processor core and associated peripherals used to monitor the system for critical events. The Sahalee BMC, packaged in a 156-pin BGA, monitors all power supplies, including those generated by the external power supplies, and those regulated locally on the server board. The Sahalee BMC also monitors SCSI termination voltage, fan tachometers for detecting a fan failure, and system temperature. Temperature is measured on each of the processors and at locations on the server board away from the fans. When any monitored parameter is outside of defined thresholds, the Sahalee BMC logs an event in the System Event Log (SEL).

Management controllers and sensors communicate on the I^2C -based Intelligent Platform Management Bus (IPMB). Attached to one of its private I^2C bus is Heceta5*, an ADM1026*, which is a versatile systems monitor ASIC. Some of its features include:

- Analog measurement channels
- Fan speed measurement channels
- General-Purpose Logic I/O pins
- Remote temperature measurement
- On-chip temperature sensor
- Chassis intrusion detect

Table 18 details some of the inputs on the Heceta5 (ADM1026) as used on the SHG2 server board.

Pin	ADM1026 Signal Name	Туре	External Signal Name / Function
1	GPIO9	Digital Input	CPU2_IERR / CPU2 IERR
2	GPIO8	Digital Input	CPU1_IERR / CPU1 IERR
3	FAN0/GPIO0	Digital Output	ADM_DIS_CPU1_L / CPU1 Stop Clock
4	FAN1/GPIO1	Digital Output	ADM_DIS_CPU2_L / CPU2 Stop Clock
5	FAN2/GPIO2	Digital Input	Not connected / None
6	FAN3/GPIO3	Digital Input	Not connected / None
9	FAN4/GPIO4	Digital Input	ADM_INTR / Control INTR signal for frequency select
10	FAN5/GPIO5	Digital Input	ADM_NMI / Control NMI signal for frequency select
11	FAN6/GPIO6	Digital Input	ADM_A20MN / Control A20MN signal for frequency select
12	FAN7/GPIO7	Digital Input	ADM_IGNNEN / Control IGNNEN signal for frequency select
13	SCL	Digital Input	SM3_CLK / Open-drain Serial Bus Clock. Requires 1k pull-up resistor.
14	SDA	Digital I/O	SM3_DATA / Serial Bus Data. Open-drain output. Requires 1k pull-up resistor.
16	CI (Chassis Intrusion)	Digital Input	FRONTOPEN+03 / An active high input which captures a Chassis Intrusion event in Bit 7 of Status Register 4. This bit will remain set until cleared, so long as battery voltage is applied to the VBAT input, even when the ADM1026 is powered off.
18	PWM	Digital Output	ADM_FAN_PWM / Pulse-width modulated output for control of fan speed. Open drain.
19	RESET_STBY	Digital Output	RST_BMCRST_L / Power-on Reset. 5 mA driver (open drain),

Table 18. ADM1026* Input Definition

Pin	ADM1026 Signal Name	Туре	External Signal Name / Function
			active low output with a 200 ms minimum pulse width. This is asserted whenever 3.3VSTBY is below the reset threshold. It remains asserted for approx. 200ms after 3.3VSTBY rises above the reset threshold.
30	P5VIN	Analog Input	VP50 / Monitors +5 V supply
31	N12VIN	Analog Input	XN12 / Monitors -12 V supply
32	P12VIN	Analog Input	XP12 / Monitors +12 V supply
33	VCCP	Analog Input	VCC_P / Monitors processor core voltage (0 to 3.0 V)
34	AIN7	Analog Input	ADM_VCC25 / Monitors +2.5V supply
35	AIN6	Analog Input	VDD15 / Monitors VTT supply
43	GPIO15	Digital Input	CPU2_THERMTRIPN / CPU2 Thermal Trip
44	GPIO14	Digital Input	CPU1_THERMTRIPN / CPU1 Thermal Trip
45	GPIO13	Digital Input	CPU2_PROCHOTN / CPU2 Processor Hot
46	GPIO12	Digital Input	CPU1_PROCHOTN / CPU1 Processor Hot
47	GPIO11	Digital Input	SC1TERMOFF+00 / SCSI Channel A Termination Off
48	GPIO10	Digital Input	SC2TERMOFF+00 / SCSI Channel B Termination Off

Eight-bit 'analog' readings for the following system temperatures are provided, described in *Table 19*.

Table 19. Temperature Sensors

Temperature Sensor	Description	Resolution	Accuracy
Primary Processor	Primary processor socket thermal sensor	8-bit	+/- 5°C or better
Secondary Processor	Secondary processor socket thermal sensor	8-bit	+/- 5°C or better

5.2 System Reset Control

Reset circuitry on the Intel SHG2 server board looks at resets from the front panel, CSB5, intarget probe (ITP), and the processor subsystem to determine proper reset sequencing for all types of resets. The reset logic is designed to accommodate a variety of ways to reset the system, which can be divided into the following categories:

- Power-up reset
- Hard reset
- Soft (programmed) reset

The following subsections describe each type of reset.

5.2.1 Power-up Reset

When the system is disconnected from AC power, all logic on the server board is powered off. When a valid input (AC) voltage level is provided to the power supply, 3.3-volt standby power will be applied to the server board. A power monitor circuit on 3.3-volt standby will assert **BMCRST_L**, causing the BMC to reset. The BMC is powered by 3.3 volt standby and monitors and controls key events in the system related to reset and power control. After the system is turned on, the power supply will assert the **PWRGD+00** signal after all voltage levels in the system have reached valid levels. The BMC receives **PWRGD+00** and after approximately 500 ms, asserts **RST_P6_PWRGOOD**, which indicates to the processors and CSB5 that the power is stable. Upon **RST_P6_PWRGOOD** assertion, the CSB5 will toggle PCI reset.

5.2.2 Hard Reset

A hard reset can be initiated by resetting the system through the front panel switch. During the reset, the Sahalee BMC de-asserts **RST_P6_PWR_GOOD**. After 500 ms, it is reasserted, and the power-up reset sequence is completed.

The Sahalee BMC is not reset by a hard reset. It may be reset at power-up.

5.2.3 Soft Reset

A soft reset causes the processors to begin execution in a known state without flushing caches or internal buffers. Soft resets can either be generated by SIO(**KBD_PINITN**), CSB5(**RSB_PINITN**), or by the CMIC-LE(**CMIC_PINITN**).

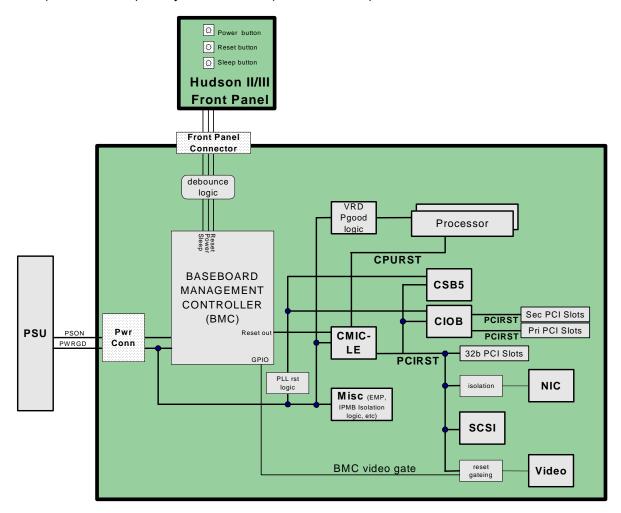


Figure 8. Basic Reset Flow

5.3 Intelligent Platform Management Buses

Management controllers (and sensors) communicate on the I²C-based IPMB. A bit protocol,

defined by the I^2C Bus Specification, and a byte-level protocol, defined by the Intelligent Platform Management Bus Communications Protocol Specification, provide an independent interconnect for all devices operating on this I^2C bus.

The IPMB extends throughout the server board and system chassis. An added layer in the protocol supports transactions between multiple servers on inter-chassis l²C bus segments.

Table 20: IPMB Bus Devices

Function	Voltage	Address	Notes
SCSI HSBP-A	5V	0xC0	
SCSI HSBP-B	5V	0xC2	
Front Panel Connector	5VSB	0x9A	
IPMB Connector	3VSB	TBD	Depends on plug-in card

In addition to the "public" IPMB, the Sahalee BMC also has five private I²C buses that are used on the baseboard. The Sahalee BMC is the only master on the private buses. The following tables list all server board connections to the Sahalee BMC private I²C buses.

Table 21. Private I²C* Bus 1 Devices

Function	Voltage	Address	Notes
PCI Slot 1	3VSB	TBD	Depends on plug-in card
PCI Slot 2	3VSB	TBD	Depends on plug-in card
PCI Slot 3	3VSB	TBD	Depends on plug-in card
PCI Slot 4	3VSB	TBD	Depends on plug-in card
PCI Slot 5	3VSB	TBD	Depends on plug-in card
PCI Slot 6	3VSB	TBD	Depends on plug-in card

Table 22: Private I²C* Bus 2 Devices

Function	Voltage	Address	Notes
CMIC-LE	2.5 V	0xC0	North Bridge
CIOB-X2	2.5 V	0xC4	I/O Bridge
CSB5	3.3 V	0xC2	South Bridge
DIMM 1	2.5 V	0xA0	DIMM1A
DIMM 2	2.5 V	0xA2	DIMM1B
DIMM 3	2.5 V	0xA4	DIMM2A
DIMM 4	2.5 V	0xA6	DIMM2B
DIMM 5	2.5 V	0xA8	DIMM3A
DIMM 6	2.5 V	0xAA	DIMM3B

Function	Voltage	Address	Notes
Aux Power Connector	3 VSB	0xBC, 0xAC	
		0xB0, 0xA0	
		0xB1, 0xA1	
		0xB2, 0xA2	
ADM1026	3 VSB	0x58	

Table 23: Private I²C* Bus 3 Devices

Table 24: Private I²C* Bus 4 Devices

Function	Voltage	Address	Notes
CPU1	3 VSB	0xC0, 0x30	
CPU2	3 VSB	0xC1, 0x31	
PC87417 SIO	3 VSB	0x60	

Table 25: Private I²C* Bus 5 Devices

Function	Voltage	Address	Notes
NIC1 (82550PM)	3 VSB	0x84	

6. Error Reporting and Handling

This section defines how errors are handled by the system BIOS on the Intel SHG2 server board. Also discussed is the role of BIOS in error handling, and the interaction between the BIOS, platform hardware, and server management firmware with regard to error handling. In addition, error-logging techniques are described, and beep codes for errors are defined.

6.1 Error Sources and Types

One of the major requirements of server management is to correctly and consistently handle system errors. System errors, which can be disabled and enabled individually or as a group, can be categorized as follows:

- PCI bus
- Memory correctable- and uncorrectable errors
- Sensors
- Processor internal error, bus/address error, thermal trip error, temperatures and voltages, and assisted gunning transceiver logic (AGTL+) voltage levels

Sensors are managed by the BMC. The BMC is capable of receiving event messages from individual sensors and logging system events.

6.2 Handling and Logging System Errors

This section describes actions taken by the SMI handler with respect to the various categories of system errors. It covers the events logged by the BIOS, and the format of data bytes associated with those events. The BIOS is responsible for monitoring and logging certain system events. The BIOS sends a platform event message to BMC to log the event. Some of the errors, such as processor failure, are logged during early POST, and not through the SMI handler.

6.2.1 Logging Format Conventions

The BIOS complies with the *Intelligent Platform Management Interface Specification, Revision 1.5.* The BIOS always uses system software ID within the range 00h-1Fh to log errors. As a result, the generator ID byte is an odd number in the range 01h-3fh. OEM user binary should use software IDs of 1. The software ID allows external software to find the origin of the event message.

The BIOS logs the following SEL entries:

Sensor Type	Sensor Number	Sensor Type Code	Sensor- Specific Offset	Event
Processor	98h	07h	02h	FRB1/BIST Failure
	99h		03h	FRB2/Hang in POST failure
			05h	Configuration Error (for DMI)
Memory	08h	0Ch	01h	Uncorrectable ECC (If BMC not available)
POST Memory	A0h	0Eh	-	POST Memory Resize
Resize				
POST Error	06h	0Fh	-	POST Error
System Event	87h	12h	00h	System Reconfigured
Critical	07h	13h	04h	PCI SERR
Interrupt			05h	PCI PERR
System Boot	A1h	1Dh	00h	Initiated by power up
Initiated			03h	User requested PXE boot
			04h	Automatic boot to diagnostic
Boot Error	A2h	1Eh	00h	No bootable media
			02h	PXE Server not found
Chipset Specific	A9h	F4h	06h	CMIC function 0 Errors
Critical Interrupt			07h	CMIC function 1-3 Errors
			08h	CIOBX2 #0 Errors

Table 26. BIOS Logging SEL List

Table 27 below describes the various fields in the event request message, as sent by the BIOS. (Regarding the detail, refer to the *SHG2 Basic Input Output System (BIOS) External Product Specification.*)

Table 27. Event Request Message Event Data Field Contents

Event Trigger Class	Event Data	
Discrete	rete 7:6 00 = Unspecified byte 2	
		01 = Previous state and/or severity in byte 2
		10 = OEM code in byte 2
		11 = Sensor specific event extension code in byte 2
	5:4	00 = Unspecified byte 3
		01 = Reserved
		10 = OEM code in byte 3
		11 = Sensor specific event extension code in byte 3
	3:0	Offset from Event Trigger for discrete event state

Event Trigger Class	Event Data		
	Event Data 2 7:4 3:0 unspecified.	Optional offset from 'Severity' Event Trigger. (0Fh if unspecified). Optional offset from Event Trigger for previous discrete event state. 0Fh if	

6.3 System Management Interrupt (SMI) Handler

The SMI handler is used to handle and log system level events that are not visible to the server management firmware. The SMI handler will preprocess all system errors; this includes errors that are normally considered to generate an NMI. The SMI handler sends a command to the BMC to log the event and provides the data to be logged, a *Set NMI Source* command to indicate BIOS as the source of the NMI, and a *BIOS LCD* command to display the Liquid Crystal Display (LCD) and LED messages. A correctable memory error does not generate an SMI. Correctable and uncorrectable memory errors are handled and logged by the BMC.

6.3.1 PCI Bus Error

The PCI bus defines two error pins, PERR# and SERR#, for reporting PCI parity errors and system errors, respectively.

6.3.2 Intel[®] Xeon[™] Processor Bus Error

In the case of irrecoverable errors on the host processor bus, proper execution of the SMI handler cannot be guaranteed and the SMI handler cannot be relied upon to log such conditions. The BIOS SMI handler records the error to the SEL only if the system has not experienced a catastrophic failure that compromises the integrity of the SMI handler. The BIOS always enables the error correction and detection capabilities of the processors by setting appropriate bits in the processor model-specific register (MSR).

6.3.3 Memory Bus Error

The BMC monitors and logs memory errors. The BIOS will configure the hardware to notify the BMC on correctable and uncorrectable memory errors. Uncorrectable errors generate an SMI to stop the system and prevent propagation of the error. The BMC will query the hardware for error information when notified.

6.3.4 System Limit Error

The BMC monitors system operational limits. It manages the A/D converter, defining voltage and temperature limits as well as fan sensors and chassis intrusion. Any sensor values outside of specified limits are fully handled by BMC, and there is no need to generate an SMI to the host processor.

6.3.5 Processor Failure

The BIOS detects processor built-in self test (BIST) failure and logs this event. The first OEM data byte field in the log can identify the failed processor. For example, if processor 0 fails, the

Revision 1.0

first OEM data byte is 0. The BIOS depends upon the BMC to log the watchdog timer reset event.

6.3.6 Boot Event

The BIOS downloads the system date and time to the BMC during POST and logs a boot event. This does not indicate an error, and software that parses the event log should treat it as such.

6.3.7 Chip Set Failure

The BIOS detects the chip set (CMIC-LE and CIOB-X2) failure and logs this event. The chip set error generates an SMI.

6.4 Firmware (BMC)

The BMC implements the logical SEL device as specified in the *Intelligent Platform Management Interface Specification*, Version 1.5. The SEL is accessible via all BMC transports. This allows the SEL information to be accessed while the system is down via out-ofband interfaces.

6.4.1 System Event Log (SEL) Full

The BIOS shall generate a POST warning message when the SEL is full. This warning will not inhibit the system from booting.

6.4.2 Timestamp Clock

The BMC maintains a four-byte internal timestamp clock used by the SEL and SDR subsystems. This clock is incremented once per second, and is read and set using the *Get SEL Time* and *Set SEL Time* commands, respectively. The *Get SDR Time* command can also be used to read the timestamp clock.

The BMC has direct access to the system RTC. This allows the BMC to automatically synchronize the SEL/SDR timestamp clock to the RTC time on BMC startup, and periodically reads the RTC to maintain synchrony even when software asynchronously changes the value. In addition to this, the BIOS sends a timestamp to the BMC using *Set SEL Time* command during POST.

6.4.3 Fault Resilient Booting

The Sahalee BMC implements FRB) levels 1, 2, and 3. If the default bootstrap processor (BSP) fails to complete the boot process, FRB attempts to boot using an alternate processor.

- FRB level 1 is intended to recover from a BIST failure detected during POST. This FRB recovery is fully handled by BIOS code.
- FRB level 2 is intended to recover from a watchdog timeout during POST. The watchdog timer for FRB level 2 is implemented in the Sahalee BMC.

• FRB level 3 is intended to recover from a watchdog timeout on hard reset or power-up. The Sahalee BMC provides hardware functionality for this level of FRB.

6.4.3.1 FRB-1

In a multiprocessor system, the BIOS registers the application processors in the multiprocessor (MP) table and the ACPI APIC tables. When started by the BSP, if an application processor (AP) fails to complete initialization within a certain time, it is assumed to be nonfunctional. If the BIOS detects that an application processor has failed BIST or is nonfunctional, it requests the BMC disable that processor. The BMC then generates a system reset while disabling the processor; the BIOS will not see the failed processor in the next boot cycle. The failing AP is not listed in the MP table, nor in the ACPI APIC tables, and is invisible to the OS. If the BIOS detects that the BSP has failed BIST, it sends a request to the BMC to disable the present processor. If there is no alternate processor available, the BMC beeps the speaker and halts the system. If the BMC can find another processor, BSP ownership is transferred to that processor via a system reset.

6.4.3.2 FRB-2

The second watchdog timer (FRB-2) in the BMC is set for approximately 6 minutes by BIOS and is designed to guarantee that the system completes BIOS POST. The FRB-2 timer is enabled before the FRB-3 timer is disabled to prevent any "unprotected" window of time. Near the end of POST, before the option ROMs are initialized, the BIOS will disable the FRB-2 timer in the BMC. If the system contains more than 1 GB of memory and the user chooses to test every DWORD of memory, the watchdog timer is disabled before the extended memory test starts, because the memory test can take more than 6 minutes under this configuration. If the system hangs during POST, the BIOS will not disable the timer in the BMC, which generates an asynchronous system reset (ASR).

6.4.3.3 FRB-3

The first timer (FRB-3) starts counting down whenever the system comes out of hard reset, which is usually about 5 seconds. If the BSP successfully resets and starts executing, the BIOS will disable the FRB-3 timer in the BMC by de-asserting the FRB_TIMER_HLT signal (GPIO) and the system continues on with the POST. If the timer expires because of the BSP's failure to fetch or execute BIOS code, the BMC resets the system and disables the failed processor. The system continues to change the BSP until the BIOS POST gets past disabling the FRB-3 timer in the BMC. The BMC sounds beep codes on the speaker if it fails to find a good processor. The process of cycling through all the processors is repeated upon system reset or power cycle.

6.5 Error Messages and Error Codes

The system BIOS displays error messages on the video screen. Prior to video initialization, beep codes inform the user of errors. Power-On Self Test (POST) error codes are logged in the event log. The BIOS displays POST error codes on the video monitor.

The following are definitions of POST error codes, POST beep codes, and system error messages.

Revision 1.0

6.5.1 Alert Standard Forum (ASF) Progress Codes

The BIOS utilizes ASF Progress Events as described in the ASF Specification, Revision 1.0a from the Distributed Management Task Force (DMTF). BIOS supported events are shown in *Table 28*.

ASF Code	Description	Comment
01h	Memory initialization.	At beginning of ECC initialization or memory test.
02h	Hard-disk initialization	At beginning of IDE device detection.
03h	Secondary processor(s) initialization	At beginning of MP Init
04h	User authentication	When waiting for User/Supervisor password
05h	User-initiated system setup	When Setup is invoked
06h	USB resource configuration	When USB devices scan/initialization begins
07h	PCI resource configuration	At beginning of configuring PCI devices in system.
08h	Option ROM initialization	At beginning of Option ROM scan
09h	Video initialization	At beginning of initialization primary video controller (if present)
0Ah	Cache initialization	At beginning of setting up processor cache
0Bh	SM Bus initialization	At beginning of configuring SMBus to communicate with BMC
0Ch	Keyboard controller initialization	At keyboard discovery scan
0Dh	Embedded controller/management controller initialization	When first checking for functional BMC
12h	Calling operating system wake-up vector	When waking from Wake-On-LAN, Wake-On-Ring, Magic Packet, etc.
13h	Starting operating system boot process, e.g. calling Int 19h	Immediately prior to calling INT19h

Table 28. Event Request Message Event Data Field Contents

6.5.2 Power-On Self Test (POST) Codes

The BIOS indicates the current testing phase to I/O location 80h and to the LCD on the front panel during POST after the video adapter has been successfully initialized. If a Port-80h card (Postcard*) is installed, it displays this 2-digit code on a pair of hex display LEDs.

Table 29. Port-80h Code Definition

Code	Meaning	
CP	Phoenix* check point POST code	

Table 30 contains the POST codes displayed during the boot process. A beep code is a series of individual beeps on the PC speaker, each of equal length. This table describes the error conditions associated with each beep code and the corresponding POST checks point code as seen by a 'port 80h' card and LCD. For example, if an error occurs at checkpoint 22h, a beep

code of 1-3-1-1 is generated. The dash between the numbers defines an audible pause that delimits the sequence.

POST codes will occur prior to the video display being initialized. To assist in determining the fault, a unique beep-code is derived from these checkpoints as follows:

- 1. The 8-bit test point is broken down to four 2-bit groups.
- 2. Each group is made one-based (1 through 4).
- 3. One to four beeps are generated based on each group's 2-bit pattern.

Example:

Checkpoint 04Bh is broken down to:	01 00 10 11
And the beep code is:	2 – 1 – 3 –4

СР	Beeps	Reason	
02		Verify Real Mode	
04		Get Processor type	
06		Initialize system hardware	
08		Initialize chipset registers with initial POST values	
09		Set in POST flag	
0A		Initialize Processor registers	
0B		Enable Processor cache	
0C		Initialize caches to initial POST values	
0E		Initialize I/O	
0F		Initialize the local bus IDE	
10		Initialize Power Management	
11		Load alternate registers with initial POST values	
12		Restore Processor control word during warm boot	
14		Initialize keyboard controller	
16	1-2-2-3	BIOS ROM checksum	
18		8254 timer initialization	
1A		8237 DMA controller initialization	
1C		Reset Programmable Interrupt Controller	
20	1-3-1-1	Test DRAM refresh	
22	1-3-1-3	Test 8742 Keyboard Controller	
24		Set ES segment register to 4GB	
28	1-3-3-1	Auto-size DRAM, system BIOS stops execution if it does not detect any usable memory	
2A		Clear 8 MB base RAM	
2C	1-3-4-1	Base RAM failure, BIOS stops execution here if entire memory is bad	
32		Test Processor bus-clock frequency	

Table 30. Standard BIOS POST Codes

Revision 1.0

СР	Beeps	Reason
34		Test CMOS
35		RAM Initialize alternate chipset registers
36		Warm start shut down
37		Reinitialize the chipset
38		Shadow system BIOS ROM
39		Reinitialize the cache
3A		Auto-size cache
3C		Configure advanced chipset registers
3D		Load alternate registers with CMOS values
40		Set Initial Processor speed new
42		Initialize interrupt vectors
44		Initialize BIOS interrupts
46	2-1-2-3	Check ROM copyright notice
47		Initialize manager for PCI Option ROMs
48		Check video configuration against CMOS
49		Initialize PCI bus and devices
4A		Initialize all video adapters in system
4B		Display QuietBoot screen
4C		Shadow video BIOS ROM
4E		Display copyright notice
50		Display Processor type and speed
52		Test keyboard
54		Set key click if enabled
55		USB initialization
56		Enable keyboard
58	2-2-3-1	Test for unexpected interrupts
5A		Display prompt "Press F2 to enter SETUP"
5C		Test RAM between 512 and 640k
60		Test extended memory
62		Test extended memory address lines
64		Jump to UserPatch1
66		Configure advanced cache registers
68		Enable external and processor caches
6A		Display external cache size
6B		Load custom defaults if required
6C		Display shadow message
6E		Display non-disposable segments
70		Display error messages
72		Check for configuration errors
74		Test real-time clock
76		Check for keyboard errors
7A		Test for key lock on

СР	Beeps	Reason	
7C		Set up hardware interrupt vectors	
7D		Intelligent system monitoring	
7E		Test coprocessor if present	
82		Detect and install external RS232 ports	
85		Initialize PC-compatible PnP ISA devices	
86		Re-initialize on board I/O ports	
88		Initialize BIOS Data Area	
8A		Initialize Extended BIOS Data Area	
8C		Initialize floppy controller	
90		Initialize hard disk controller	
91		Initialize local bus hard disk controller	
92		Jump to UserPatch2	
93		Build MPTABLE for multi-processor boards	
94		Disable A20 address line	
95		Install CD-ROM for boot	
96		Clear huge ES segment register	
98	1-2	Search for option ROMs. One long, two short beeps on checksum failure	
9A		Shadow option ROMs	
9C		Set up Power Management	
9E		Enable hardware interrupts	
A0		Set time of day	
A2		Check key lock	
A4		Initialize typematic rate	
A8		Erase F2 prompt	
AA		Scan for F2 key stroke	
AC		Enter SETUP	
AE		Clear in-POST flag	
B0		Check for errors	
B2		POST done – prepare to boot Operating System	
B4	1	One short beep before boot	
B5		Display MultiBoot menu	
B6		Check password, password is checked before option ROM scan	
B7		ACPI initialization	
B8		Clear global descriptor table	
BC		Clear parity checkers	
BE		Clear screen (optional)	
BF		Check virus and backup reminders	
C0		Try to boot with INT 19	
C8		Forced shutdown	
C9		Flash recovery	
DO		Interrupt handler error	
D2		Unknown interrupt error	

Revision 1.0

СР	Beeps	Reason	
D4		Pending interrupt error	
D6		Initialize option ROM error	
D8		Shutdown error	
DA		Extended Block Move	
DC		Shutdown 10 error	

Table 31. Recovery BIOS POST Codes

СР	Beeps	Reason
E0		Initialize chip set
E1		Initialize bridge
E2		Initialize processor
E3		Initialize timer
E4		Initialize system I/O
E5		Check forced recovery boot
E6		Validate checksum
E7		Go to BIOS
E8		Initialize processors
E9		Set 4 GB segment limits
EA		Perform platform initialization
EB		Initialize PIC and DMA
EC		Initialize memory type
ED		Initialize memory size
EE		Shadow boot block
EF		Test system memory
F0		Initialize interrupt services
F1		Initialize real time clock
F2		Initialize video
F3		Initialize beeper
F4		Initialize boot
F5		Restore segment limits to 64 KB
F6		Boot mini DOS
F7		Boot full DOS

6.5.3 POST Error Codes and Messages

defines POST error codes and their associated messages. The BIOS prompts the user to press a key in case of serious errors. Some of the error messages are preceded by the string, 'Error', to indicate that a system that might be malfunctioning. All POST errors and warnings are logged in the SEL unless it is full.

Code	Error Message	Failure Description
0200:	Failure Fixed Disk	hard disk error
0210:	Stuck Key	Keyboard connection error
0211:	Keyboard error	Keyboard failure
0212:	Keyboard Controller Failed	Keyboard Controller Failed
0213:	Keyboard locked– Unlock key switch	Keyboard locked
0220:	Monitor type does not match CMOS- Run SETUP	Monitor type does not match CMOS
0230:	System RAM Failed at offset	System RAM error
		Offset address
0231:	Shadow RAM Failed at offset	Shadow RAM Failed
		Offset address
0232:	Extend RAM Failed at address line	Extended RAM failed
		Offset address
0233:	Memory type mixing detected	Memory type mixing detected
0234:	Single – bit ECC error	Memory 1 bit error detected
0235:	Multiple- bit ECC error	Memory multiple-bit error detected
0250:	System battery is dead – Replace and run SETUP	NVRAM battery dead
0251:	System CMOS checksum bad – Default configuration used	CMOS checksum error
0252:	Password checksum bad - Passwords cleared	
0260:	System timer error	System timer error
0270:	Real time clock error	RTC error
0271:	Check date and time setting	RTC time setting error
02B0:	Diskette drive A error	
02B2:	Incorrect Drive A type – run SETUP	Incorrect Drive A type
02D0:	System cache error – Cache disabled	CPU cache error
0B00:	Rebooted during BIOS boot at Post Code	
0B1B:	PCI System Error on Bus/Device/Function	PCI system error in Bus/device/Function
0B1C:	PCI Parity Error in Bus/Device/Function	PCI system error in Bus/device/Function
0B22	Processors are installed out of order	
0B28	Unsupported Processor detected on Processor 1	
0B29	Unsupported Processor detected on Processor 2	
0B2A	Unsupported Processor detected on Processor 3	
0B2B	Unsupported Processor detected on Processor 4	
0B40	Invalid System Configuration Data	System configuration data destroyed
0B41	System Configuration Data Read Error	System configuration data read error
0B42	Resource Conflict	PCI card resource is not mapped correctly.
0B43	Warning: IRQ not configured	PCI interrupt is not configured correctly.
0B44	Expansion ROM not initialized.	PCI Expansion ROM card not initialized
0B45	System Configuration Data Write error	System configuration data write error
0B50:	Processor #1 with error taken offline	Failed Processor 1 because an error was detected.

Revision 1.0

Intel Order Number C11343-001

Code	Error Message	Failure Description
0B51:	Processor #2 with error taken offline	Failed Processor 2 because an error was detected.
0B52	Processor #3 with error taken off line	Failed Processor 3 because an error was detected.
0B53	Processor #4 with error taken off line	Failed Processor 4 because an error was detected.
0B5F:	Forced to use CPU with error	An error detected in the entire CPU.
0B60:	DIMM bank 1 has been disabled	Memory error, memory bank 1 failed
0B61:	DIMM bank 2 has been disabled	Memory error, memory bank 2 failed
0B62:	DIMM bank 3 has been disabled	Memory error, memory bank 3 failed
0B6F:	DIMM bank with error is enabled	An error detected in all the memory
0B70:	The error occurred during temperature sensor reading	Error while detecting a temperature failure.
0B71:	System temperature out of the range	Temperature error detected.
0B74:	The error occurred during voltage sensor reading	Error while detecting voltage
0B75:	System voltage out of the range	System voltage error
0B7C:	The error occurred during redundant power module confirmation.	The error occurred while retrieving the power information.
0B80:	BMC Memory Test Failed	BMC device (chip) failed
0B81:	BMC Firmware Code Area CRC check failed	
0B82:	BMC core Hardware failure	Access to BMC address failed
0B83:	BMC IBF or OBF check failed	
0B90:	BMC Platform Information Area corrupted.	BMC device(chip) failed
0B91:	BMC update firmware corrupted.	
0B92:	Internal Use Area of BMC FRU corrupted.	SROM storing chassis information failed
		(Available for use except for FRU command and EMP function)
0B93:	BMC SDR Repository empty.	BMC device (chip) failed
0B94:	IPMB signal lines do not respond.	SMC(Satellite Management Controller) failed
		(Available for use except for the access function to SMC via IPMB)
0B95	BMC FRU device failure.	SROM storing chassis information failed
		(Available for use except for FRU command and EMP function.)
0B96	BMC SDR Repository failure.	BMC device (chip) failed

6.5.4 Liquid Crystal Display (LCD)

There are three users of the LCD: BMC, BIOS, and software. Sometimes they may be using the LCD simultaneously.

6.5.4.1 BIOS Usage

The BIOS uses the first line of the LCD. It uses the LCD for messages related to failures and other conditions. The BIOS generates an LCD message during POST and as a result of errors handled by the BIOS SMI handler. Unless the LCD has been forcibly reserved by software (via

the *LCD Display Control* command), a BIOS message will override a software message written to the BIOS area.

Normally, the BIOS will use the *BIOS LCD Message* command that will cause the BMC to display a BMC-stored message in the BIOS message area (first line) of the LCD.

6.5.4.2 Message Format

During POST, the LCD panel displays the following:

	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
0	А	А		Р	Р		S	J	Р	2				Х	Х	Х
1																

Where:

AA = ASF Progress Code

PP = Port 80h Code

SHG2 = Platform Code

XXX = BIOS Build Number

During POST task (TP B9h), the following message is displayed:

	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
0	Р	r	е	Р	А	r	е		Т	0		В	0	0	t	
1																

When POST Error occurs, the following message is displayed. It displays up to 6 messages as shown below starting on Row0, Column0:

	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
0	Ν	Ν	Ν	Ν	,	Ν	Ν	Ν	Ν	,	Ν	Ν	Ν	Ν	,	
1	Ν	Ν	Ν	Ν	,	Ν	Ν	Ν	Ν	,	Ν	Ν	Ν	Ν	,	

6.5.4.3 Virtual LCD

The BMC implements a virtual LCD that provides LCD command functionality even if a physical LCD is not present in the chassis. This allows BIOS messages to be retrieved by a remote console independently of chassis configuration.

6.5.4.4 OEM Extensibility

In order to allow OEMs to provide LCD functionality in their own chassis, the BIOS provides *LCD Control Services* via INT15. These will automatically be directed to a satellite intelligent IPMI controller at slave address 22h on the IPMB.

Revision 1.0

7. Jumpers

7.1 Hardware Configuration

This section describes jumper options on the baseboard. The SHG2 server board has 10 jumpers to control various configuration options.

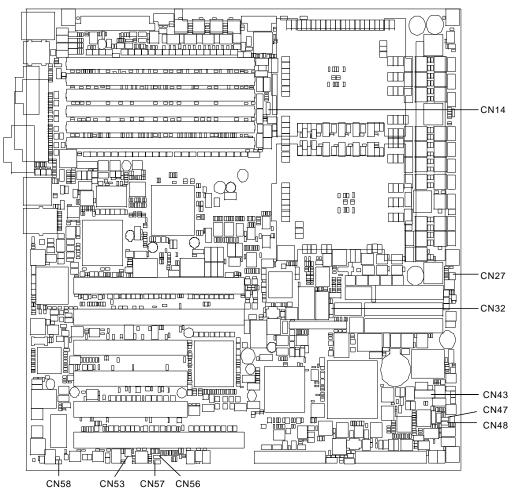


Figure 9. Jumper Location

Location	Pins	Feature	Initial Setting	Physical Shape
CN43	1-2 3-4 5-6 7-8 9-10 11-12	CMOS Clear Password Clear Reserved Reserved Recovery Bios Dummy	1-2 Open 3-4 Open 5-6 Open 7-8 Open 9-10 Open 11-12 Set	RSV 12 11 RSV GND 10 9 SIG GND 8 7 SIG GND 6 5 SIG GND 4 3 SIG GND 2 1 SIG GND 2 1 SIG
CN27	1-2 3-4	Bios Write Protect BMC Write Protect	1-2 Open 3-4 Open	12V 1 2 SIG 12V 3 4 SIG
CN53	1-2 3-4	PCIX1_DIS(Primary) Set: 66MHz PCIX2_DIS(Secondary) Set: 66MHz	1-2 Open 3-4 Set	SIG SIG 2 4 1 3 GNDGND
CN58	1-2	SIDE_CI Chassis Intrusion Detection	1-2 Connected	GND 2 1 SIG
		will be de-featured for production. These feature populated during production.	ures are intended for tes	st and evaluation only,
CN47	1-2	BMC_FRC_UPDATE Force BMC in update mode	1-2 Open	SIG 2 1 GND
CN48	1-2	FRB3STP To disable FRB3_TIMER	1-2 Open	SIG 2 1 GND
CN32	1-2 2-3	BMC Debug SRAM BMC SRAM (Default)	2-3 Set	3 2 3.3V 2 SIG 3.3V
CN57	1-2	FP_RESETSW-00 To reset system from front panel	1-2 Open	GND 1 2 SIG
CN56	1-2	FP_POWERSW-00 To power on/off system from front panel	1-2 Open	GND 1 2 SIG
CN14	1-2 2-3	Use for ITP 2 Processors Use for ITP 1 Processor	1-2 Set	3 P2_TD0 2 P1_TD0 1 P2_TDI

Table 33. SHG2 Configuration Jumper Options

8. Connections

8.1 Connector Locations

The diagram below identifies all the connector locations

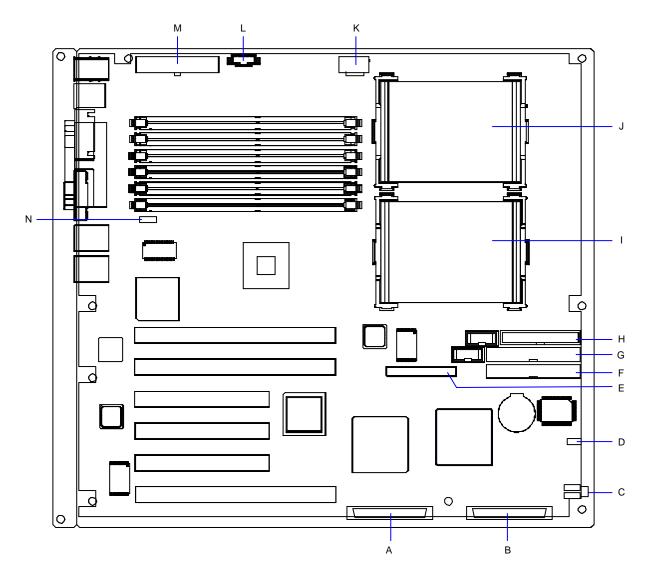


Figure 10. SHG2 Baseboard Connector Identification and Locations

Кеу	Connector Name / ID	Key	Connector Name / ID
А	SCSI channel A LVDS connector (CN54)	Н	Legacy Floppy connector (CN31)
В	SCSI channel B LVDS connector (CN55)	I	Processor #2 socket (U36)
С	HSBP-A&B connector (CN50, CN52)	J	Processor #1 socket (U14)

Table 34.	SHG2	Baseboard	Connectors
-----------	------	-----------	------------

D	IPMB connector (CN44)	K	+12 VDC power connector (CN7)
Е	Front Panel header (CN37)	L	Aux Sig connector for I ² C Bus (CN4)
F	Primary IDE connector (CN38)	М	Main Power connector (CN6)
G	Secondary IDE connector (CN34)	Ν	ICMB connector (CN21)

8.2 Power Distribution Board Interface Connector CN6 / CN7 / CN4 [Key - M & K & L]

The SHG2 baseboard receives its main power through two primary and one auxiliary power connector. The two main power connectors are identified as CN43 and CN42. The auxiliary power connector, identified as CN13, provides server management communication with the power supply.

Pin	Signal	Pin	Signal
1	+3.3V	13	+3.3V
2	+3.3V	14	-12V
3	Common (GND)	15	Common (GND)
4	+5V	16	DCON-00
5	Common (GND)	17	Common (GND)
6	+5V	18	Common (GND)
7	Common (GND)	19	Common (GND)
8	PWRGD+00	20	RESERVED_(5V)
9	5VSB	21	+5V
10	+12V_IO	22	+5V
11	+12V_IO	23	+5V
12	+3.3V	24	Common (GND)

Table 35. Main Power Connector CN6 [Key–M]

Table 36. +12V Power Connector

CN7 [Key-K]

Pin	Signal	Pin	Signal
1	COMMON (GND)	5	+12V
2	COMMON (GND)	6	+12V
3	COMMON (GND)	7	+12V
4	COMMON (GND)	8	+12V

Table 37. Power Connector for I²C* Bus

CN4 [Key-L]

Pin	Signal	Pin	Signal
1	SM3_CLK+PWBP	4	RETURN_S
2	SM3_DATA	5	+3.3V
3	PS_ALERT		

8.3 SCSI Connectors

CN54 & CN55 [Key-A & B]

The SHG2 baseboard provides two SCSI connectors. The two connectors have the same pinout. *Table 38* details the pin-out of the SCSI connectors.

Table 38. 68-pin SCSI Connector Pin-out

Connector Contact Number	Signal Name	Connector Contact Number	Signal Name	Connector Contact Number	Signal Name
1	+DT(12)	24	+ACK	47	-DT(7)
2	+DT(13)	25	+RST	48	-DTP(0)
3	+DT(14)	26	+MSG	49	GROUND
4	+DT(15)	27	+SEL	50	GROUND
5	+DTP(1)	28	+C/D	51	TERMPWR
6	+DT(0)	29	+REQ	52	TERMPWR
7	+DT(1)	30	+I/O	53	RESERVED
8	+DT(2)	31	+DT(8)	54	GROUND
9	+DT(3)	32	+DT(9)	55	-ATN
10	+DT(4)	33	+DT(10)	56	GROUND
11	+DT(5)	34	+DT(11)	57	-BSY
12	+DT(6)	35	-DT(12)	58	-ACK
13	+DT(7)	36	-DT(13)	59	-RST
14	+DTP(0)	37	-DT(14)	60	-MSG
15	GROUND	38	-DT(15)	61	-SEL
16	DIFFSNS	39	-DTP(1)	62	-C/D
17	TERMPWR	40	-DT(0)	63	-REQ
18	TERMPWR	41	-DT(1)	64	-I/O
19	RESERVED	42	-DT(2)	65	-DT(8)
20	GROUND	43	-DT(3)	66	-DT(9)
21	+ATN	44	-DT(4)	67	-DT(10)

CN54 & CN55 [Key-A & B]

52

Connector Contact Number	Signal Name	Connector Contact Number	Signal Name	Connector Contact Number	Signal Name
22	GROUND	45	-DT(5)	68	-DT(11)
23	+BSY	46	-DT(6)		

8.4 Floppy Connector CN31 [Key-H]

Table 39 details the pin-out of the 34-pin Legacy floppy connector.

Table 39. Legacy 34-pin Floppy Connector Pin-out *CN31 [Key-H]*

Pin	Signal Name	Pin	Signal Name
1	Ground	2	DENSEL
3	Ground	4	Reserved
5	Кеу	6	DRATE
7	Ground	8	INDEX#
9	Ground	10	Motor Enable A#
11	Ground	12	Drive Select B#
13	Ground	14	Drive Select A#
15	Ground	16	Motor Enable B#
17	Ground	18	DIR#
19	Ground	20	STEP#
21	Ground	22	Write Data#
23	Ground	24	Write Gate#
25	Ground	26	Track 00#
27	Ground	28	Write Protect#
29	Ground	30	Read Data#
31	Ground	32	Side 1 Select#
33	Ground	34	Diskette Change#

8.5 IDE Connectors CN38 & CN34 [Key-F & G]

Table 40 lists the pinout and signal names for the IDE connectors.

Table 40. Primary/Secondary IDE 40-pin Connector Pinout CN38 & CN34 [Key-F & G]

Pin	Signal Name	Pin	Signal Name
1	Reset IDE	2	Ground
3	Host Data 7	4	Host Data 8
5	Host Data 6	6	Host Data 9
7	Host Data 5	8	Host Data 10
9	Host Data 4	10	Host Data 11
11	Host Data 3	12	Host Data 12
13	Host Data 2	14	Host Data 13
15	Host Data 1	16	Host Data 14
17	Host Data 0	18	Host Data 15
19	Ground	20	Кеу
21	DDRQ0 (DDRQ1)	22	Ground
23	I/O Write#	24	Ground
25	I/O Read#	26	Ground
27	IOCHRDY	28	Vcc pull-down
29	DDACK0 (DDACK1)#	30	Ground
31	IRQ14 (IRQ15)	32	Reserved
33	DAG1	34	Reserved
35	DAG0	36	DAG2
37	Chip Select 0P (0S)#	38	Chip Select 1P (1S)#
39	Reserved (Activity#)	40	Ground

54

8.6 Front Panel Interface CN37 [Key-E]

A 34-pin header is provided that attaches to the system front panel. The header contains reset, NMI, sleep, and power control buttons, and LED indicators. *Table 41* summarizes the front panel signal pins, including the pin number, signal mnemonic, and a brief description.

Pin	Signal Name	Signal Description
1	VP50 (VCC)	Power LED Anode (VDC)
2	XP055	+5V Standby
3	Кеу	Pulled Pin – No Connect
4	XP055	Fan Fail LED Anode (VDC)
5	FP_PWR_LED-10	Power LED Cathode (Low True)
6	FP_COOL_FLT_LED-10	Fan Fail LED Cathode (Low True)
7	VP50 (VCC)	HDD Activity LED Anode (VDC)
8	XP055	Power Fault LED Anode (VDC)
9	HDD_LED-10	HDD Activity LED Cathode (Low True)
10	FP_SYS_FLT_LED-10	Power Fault LED Cathode (Low True)
11	FP_POWERSW-00	Power Switch (Low True)
12	LAN1_LINK_LED+10	NIC #1 Activity LED Anode (VDC)
13	GND	Power Switch (GROUND)
14	LAN1_ACTIVE_LED+10	NIC #1 Activity LED Cathode (Low True)
15	FP_RESETSW-00	Reset Switch (Low True)
16	IPMB_DATA+00	I ² C SDA
17	GND	Reset Switch (GROUND)
18	IPMB_CLK+FPD	I2C SCL
19	FP_SLEEPSW-00	ACPI Sleep Switch (Low True)
20	SIDE_CI / FP_CI	Side and Front Panel Chassis Intrusion
21	GND	ACPI Sleep Switch (GROUND)
22	LAN2_LINK_LED+10	NIC #2 Activity LED Anode (VDC)
23	FP_DUMPSW-00	NMI to CPU Switch (Low True)
24	LAN2_ACTIVE_LED+10	NIC #2 Activity LED Cathode (Low True)
25	Key	Pulled Pin – No Connect
26	Key	Pulled Pin – No Connect
27	XP055	ID LED Anode (VDC)
28	XP055	System Ready Anode
29	IDLED-10	ID LED Cathode (Low True)
30	SYSRDY_LED-10	System Ready Cathode
31	FP_IDSW-00	ID Switch (Low True)
32	VP50 (VCC)	HDD Fault Anode
33	GND	ID Switch (GROUND)
34	HDD_FAULT_LED-10	HDD Fault Cathode

Table 41. AT Front Panel Header Pinout

CN37 [Key-E]

Revision 1.0

Intel Order Number C11343-001

8.7 Processor Connector CPU1 & CPU2 [Key-J & I]

The Intel Xeon Processor connector pin-out, CPU1 & CPU2 [Key-J & I], lists the pins of the processor connector and the signal name that appears on the SHG2 baseboard schematic diagram.

Pin †	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	Reserved	E28	VCC	N9	VCC	AA3	Reserved
A2	VCC	E29	VSS	N23	VCC	AA4	VCC
A3	SKTOCC#	E30	No Connect	N24	VSS	AA5	VSSA
A4	Reserved	E31	No Connect	N25	VCC	AA6	VCC
A5	VSS	F1	No Connect	N26	VSS	AA7	TESTHI4
A6	A32#	F2	VSS	N27	VCC	AA8	D61#
A7	A33#	F3	VID0	N28	VSS	AA9	VSS
A8	VCC	F4	VCC	N29	VCC	AA10	D54#
A9	A26#	F5	BPM3#	N30	No Connect	AA11	D53#
A10	A20#	F6	BPM0#	N31	No Connect	AA12	VCC
A11	VSS	F7	VSS	P1	No Connect	AA13	D48#
A12	A14#	F8	BPM1#	P2	VCC	AA14	D49#
A13	A10#	F9	GTLREF	P3	VSS	AA15	VSS
A14	VCC	F10	VCC	P4	VCC	AA16	D33#
A15	Reserved	F11	BINIT#	P5	VSS	AA17	VSS
A16	Reserved	F12	BR1#	P6	VCC	AA18	D24#
A17	LOCK#	F13	VSS	P7	VSS	AA19	D15#
A18	VCC	F14	ADSTB1#	P8	VCC	AA20	VCC
A19	A7#	F15	A19#	P9	VSS	AA21	D11#
A20	A4#	F16	VCC	P23	VSS	AA22	D10#
A21	VSS	F17	ADSTB0#	P24	VCC	AA23	VSS
A22	A3#	F18	DBSY#	P25	VSS	AA24	D6#
A23	HITM#	F19	VSS	P26	VCC	AA25	D3#
A24	VCC	F20	BNR#	P27	VSS	AA26	VCC
A25	TMS	F21	RS2#	P28	VCC	AA27	D1#
A26	Reserved	F22	VCC	P29	VSS	AA28	SM_TS_A
A27	VSS	F23	GTLREF	P30	No Connect	AA29	SM_EP_A
A28	VCC	F24	TRST#	P31	No Connect	AA30	No Connec
A29	VSS	F25	VSS	R1	No Connect	AA31	No Connec
A30	No Connect	F26	THERMTRIP#	R2	VSS	AB1	No Connec
A31	No Connect	F27	A20M#	R3	VCC	AB2	VCC

Table 42. Intel[®] Xeon[™] Processor Connector Pinout CPU1 & CPU2 [Key-J & I]

Intel Order Number C11343-001

Revision 1.0

Pin †	Signal	Pin	Signal	Pin	Signal	Pin	Signal
B1	Reserved	F28	VSS	R4	VSS	AB3	Reserved
B2	VSS	F29	VCC	R5	VCC	AB4	VCCA
B3	VID4	F30	No Connect	R6	VSS	AB5	VSS
B4	No Connect	F31	No Connect	R7	VCC	AB6	D63#
B5	OTDEN	G1	No Connect	R8	VSS	AB7	PWRGOOD
B6	VCC	G2	VCC	R9	VCC	AB8	VCC
B7	A31#	G3	VSS	R23	VCC	AB9	DB13#
B8	A27#	G4	VCC	R24	VSS	AB10	D55#
B9	VSS	G5	VSS	R25	VCC	AB11	VSS
B10	A21#	G6	VCC	R26	VSS	AB12	D51#
B11	A22#	G7	VSS	R27	VCC	AB13	D52#
B12	VCC	G8	VCC	R28	VSS	AB14	VCC
B13	A13#	G9	VSS	R29	VCC	AB15	D37#
B14	A12#	G23	LINT1	R30	No Connect	AB16	D32#
B15	VSS	G24	VCC	R31	No Connect	AB17	D31#
B16	A11#	G25	VSS	T1	No Connect	AB18	VCC
B17	VSS	G26	VCC	T2	VCC	AB19	D14#
B18	A5#	G27	VSS	Т3	VSS	AB20	D12#
B19	REQ0#	G28	VCC	T4	VCC	AB21	VSS
B20	VCC	G29	VSS	T5	VSS	AB22	D13#
B21	REQ1#	G30	No Connect	T6	VCC	AB23	D9#
B22	REQ4#	G31	No Connect	T7	VSS	AB24	VCC
B23	VSS	H1	No Connect	Т8	VCC	AB25	D8#
B24	LINT0	H2	VSS	Т9	VSS	AB26	D7#
B25	PROCHOT#	H3	VCC	T23	VSS	AB27	VSS
B26	VCC	H4	VSS	T24	VCC	AB28	SM_EP_A2
B27	VCCSENSE	H5	VCC	T25	VSS	AB29	SM_EP_A1
B28	VSS	H6	VSS	T26	VCC	AB30	No Connect
B29	VCC	H7	VCC	T27	VSS	AB31	No Connect
B30	No Connect	H8	VSS	T28	VCC	AC1	Reserved
B31	No Connect	H9	VCC	T29	VSS	AC2	VSS
C1	No Connect	H23	VCC	T30	No Connect	AC3	VCC
C2	VCC	H24	VSS	T31	No Connect	AC4	VCC
C3	VID3	H25	VCC	U1	No Connect	AC5	D60#
C4	VCC	H26	VSS	U2	VSS	AC6	D59#
C5	Reserved	H27	VCC	U3	VCC	AC7	VSS
C6	RSP#	H28	VSS	U4	VSS	AC8	D56#
C7	VSS	H29	VCC	U5	VCC	AC9	D47#
C8	A35#	H30	No Connect	U6	VSS	AC10	VCC
C9	A34#	H31	No Connect	U7	VCC	AC11	D43#
C10	VCC	J1	No Connect	U8	VSS	AC12	D41#
	t	J2	VCC	U9	VCC	AC13	VSS

Revision 1.0

Intel Order Number C11343-001

C13 C14 C15 C16 C17 C18	A23# VSS A16# A15# VCC A8#	J3 J4 J5 J6	VSS VCC VSS	U23 U24	VCC VSS	AC14	D50#
C14 C15 C16 C17 C18	A16# A15# VCC	J5		U24	Vee		
C15 C16 C17 C18	A15# VCC		VSS		V33	AC15	DP2#
C16 C17 C18	VCC	J6		U25	VCC	AC16	VCC
C17 C18			VCC	U26	VSS	AC17	D34#
C18	A8#	J7	VSS	U27	VCC	AC18	DP0#
		J8	VCC	U28	VSS	AC19	VSS
C19	A6#	J9	VSS	U29	VCC	AC20	D25#
	VSS	J23	VSS	U30	No Connect	AC21	D26#
C20	REQ3#	J24	VCC	U31	No Connect	AC22	VCC
C21	REQ2#	J25	VSS	V1	No Connect	AC23	D23#
C22	VCC	J26	VCC	V2	VCC	AC24	D20#
C23	DEFER#	J27	VSS	V3	VSS	AC25	VSS
C24	TDI	J28	VCC	V4	VCC	AC26	D17#
C25	VSS	J29	VSS	V5	VSS	AC27	DBI0#
C26	IGNNE#	J30	No Connect	V6	VCC	AC28	SM_CLK
C27	SMI#	J31	No Connect	V7	VSS	AC29	SM_DAT
C28	VCC	K1	No Connect	V8	VCC	AC30	No Connect
C29	VSS	K2	VSS	V9	VSS	AC31	No Connect
C30	No Connect	K3	VCC	V23	VSS	AD1	Reserved
C31	No Connect	K4	VSS	V24	VCC	AD2	VCC
D1	No Connect	K5	VCC	V25	VSS	AD3	VSS
D2	VSS	K6	VSS	V26	VCC	AD4	VCCIOPLL
D3	VID2	K7	VCC	V27	VSS	AD5	TESTHI5
D4	STPCLK#	K8	VSS	V28	VCC	AD6	VCC
D5	VSS	K9	VCC	V29	VSS	AD7	D57#
D6	INIT#	K23	VCC	V30	No Connect	AD8	D46#
D7	MCERR#	K24	VSS	V31	No Connect	AD9	VSS
D8	VCC	K25	VCC	W1	No Connect	AD10	D45#
D9	AP1#	K26	VSS	W2	VSS	AD11	D40#
D10	BR3#	K27	VCC	W3	Reserved	AD12	VCC
D11	VSS	K28	VSS	W4	VSS	AD13	D38#
D12	A29#	K29	VCC	W5	BCLK1	AD14	D39#
D13	A25#	K30	No Connect	W6	TESTHI0	AD15	VSS
D14	VCC	K31	No Connect	W7	TESTHI1	AD16	COMP0
D15	A18#	L1	No Connect	W8	TESTHI2	AD17	VSS
D16	A17#	L2	VCC	W9	GTLREF	AD18	D36#
D17	A9#	L3	VSS	W23	GTLREF	AD19	D30#
D18	VCC	L4	VCC	W24	VSS	AD20	VCC
D19	ADS#	L5	VSS	W25	VCC	AD21	D29#
D20	BR0#	L6	VCC	W26	VSS	AD22	DBI1#
D21	VSS	L7	VSS	W27	VCC	AD23	VSS
D22	RS1#	L8	VCC	W28	VSS	AD24	D21#

Intel Order Number C11343-001

Pin †	Signal	Pin	Signal	Pin	Signal	Pin	Signal
D23	BPRI#	L9	VSS	W29	VCC	AD25	D18#
D24	VCC	L23	VSS	W30	No Connect	AD26	VCC
D25	Reserved	L24	VCC	W31	No Connect	AD27	D4#
D26	VSSSENSE	L25	VSS	Y1	No Connect	AD28	SM_ALERT#
D27	VSS	L26	VCC	Y2	VCC	AD29	SM_WP
D28	VSS	L27	VSS	Y3	Reserved	AD30	No Connect
D29	VCC	L28	VCC	Y4	BCLK0	AD31	No Connect
D30	No Connect	L29	VSS	Y5	VSS	AE2	VSS
D31	No Connect	L30	No Connect	Y6	TESTHI3	AE3	VCC
E1	No Connect	L31	No Connect	Y7	VSS	AE4	Reserved
E2	VCC	M1	No Connect	Y8	RESET#	AE5	TESTHI6
E3	VID1	M2	VSS	Y9	D62#	AE6	SLP#
E4	BPM5#	M3	VCC	Y10	VCC	AE7	D58#
E5	IERR#	M4	VSS	Y11	DSTBP3#	AE8	VCC
E6	VCC	M5	VCC	Y12	DSTBN3#	AE9	D44#
E7	BPM2#	M6	VSS	Y13	VSS	AE10	D42#
E8	BPM4#	M7	VCC	Y14	DSTBP2#	AE11	VSS
E9	VSS	M8	VSS	Y15	DSTBN2#	AE12	DBI2#
E10	AP0#	M9	VCC	Y16	VCC	AE13	D35#
E11	BR2#	M23	VCC	Y17	DSTBP1#	AE14	VCC
E12	VCC	M24	VSS	Y18	DSTBN1#	AE15	Reserved
E13	A28#	M25	VCC	Y19	VSS	AE16	Reserved
E14	A24#	M26	VSS	Y20	DSTBP0#	AE17	DP3#
E15	VSS	M27	VCC	Y21	DSTBN0#	AE18	VCC
E16	COMP1	M28	VSS	Y22	VCC	AE19	DP1#
E17	VSS	M29	VCC	Y23	D5#	AE20	D28#
E18	DRDY#	M30	No Connect	Y24	D2#	AE21	VSS
E19	TRDY#	M31	No Connect	Y25	VSS	AE22	D27#
E20	VCC	N1	No Connect	Y26	D0#	AE23	D22#
E21	RS0#	N2	VSS	Y27	Reserved	AE24	VCC
E22	HIT#	N3	VCC	Y28	Reserved	AE25	D19#
E23	VSS	N4	VSS	Y29	SM_TS_A1	AE26	D16#
E24	ТСК	N5	VCC	Y30	No Connect	AE27	VSS
E25	TDO	N6	VSS	Y31	No Connect	AE28	SM_VCC
E26	VCC	N7	VCC	AA1	No Connect	AE29	SM_VCC
E27	FERR#	N8	VSS	AA2	VSS		
Notes:	•						

Notes:

Pins are numbered with respect to the 604-pin grid array ZIF connector. The grid originates at the upper left corner of the socket and is numbered with columns 1 through 31 along the top, and letters A through AE (without I, O, Q, S, X, or Z) down the side. Columns 10 through 22 of rows G through W are vacant.
 # Signal is active low.

8.8 System Management Interfaces

8.8.1 ICMB Connector CN21 [Key-N]

The external Intelligent Chassis Management Bus (ICMB) provides external access to IMB devices that are within the chassis. This makes it possible to externally access chassis management functions, alert logs, post-mortem data, etc. It also provides a mechanism for chassis power control. As an option, the server can be configured with an ICMB adapter board to provide two RJ45 8-pin connectors to allow daisy-chained cabling. Additional information about the ICMB can be found in the *External Intelligent Management Bus Bridge External Program Specification*.

Table 43. ICMB	Connector Pin-out
----------------	--------------------------

ICMB [Key-N]

Pin	Name
1	XP05S
2	ICMB_TX
3	ICMB_TX_ENB
4	ICMB_RX
5	GND

8.8.2 Auxiliary I²C* Connector IPMB CN44 [Key-D]

The baseboard provides a 3-pin auxiliary I²C connector for OEM access to the IPMB. This connector is not isolated when power is off. Any devices connected must remain powered in this state or the BMC will not work properly.

Caution: A shorted I²C connection at the auxiliary I²C connector will prevent restoration of main power because the BMC needs the bus to boot the server from standby power.

Table 44. IPMB Connector Pinout

CN44 [Key-D]

Pin	Name
1	IPMB_DATA+00
2	GND
3	IPMB_CLK+00

8.9 Baseboard Fan Connectors (FAN1 through FAN8)

SHG2 provides eight 3-pin, shrouded, and keyed fan connectors. Each fan can be equipped with a sensor that indicates whether the fan is operating. Two fan connectors are for processor cooling fans, two fan connectors are for back of chassis, and four connectors on the baseboard attach to chassis fans equipped with a sensor that indicates whether the fan is operating. The chassis fans can also be turned on and off from the BMC. The sensor pins for all of these fans are routed to the BMC for failure monitoring

Figure 11 shows the fan connector locations on the SHG2 server board, and indicates the corresponding types of fan.

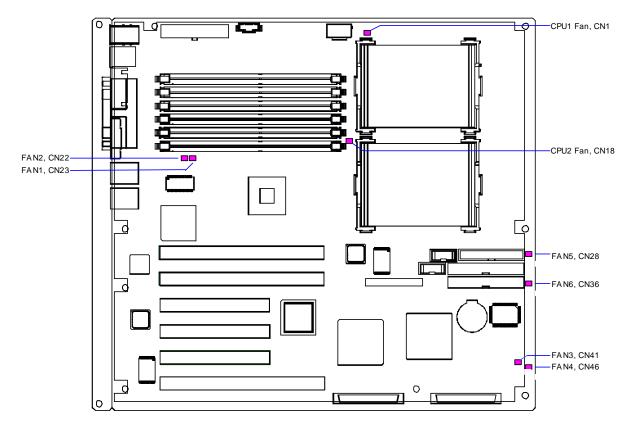


Figure 11. SHG2 Board Fan Connector Locations

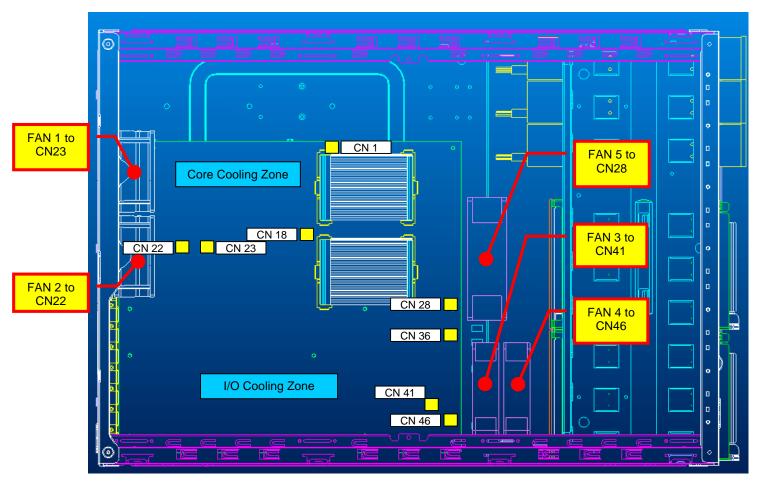


Figure 12. SHG2 System Redundant Cooling Fan Support

SHG2 Baseboard Area Cooled	Fan Location	SHG2 Fan Header	KHD3HSRP650 Fans Redundant Cooling Supported	KHD3BASE450 Fans
Core Cooling Zone	Back	Fan1, CN23	80 x 38mm	80 x 25mm
		Fan2, CN22	80 x 38mm	80 x 25mm
	Front	Fan5, CN28	80 x 38mm	80 x 32mm
		Fan6, CN36	Fan 6 not used	
I/O Cooling Zone	Front	Fan3, CN41	92 x 25mm	80 x 32mm
		Fan4, CN46	92 x 25mm	Fan 4 not used
Processors	PWT	CPU1 Fan, CN1	PWT and fans not used	60 x 25mm
		CPU2 Fan, CN18	PWT and fans not used	60 x 25mm

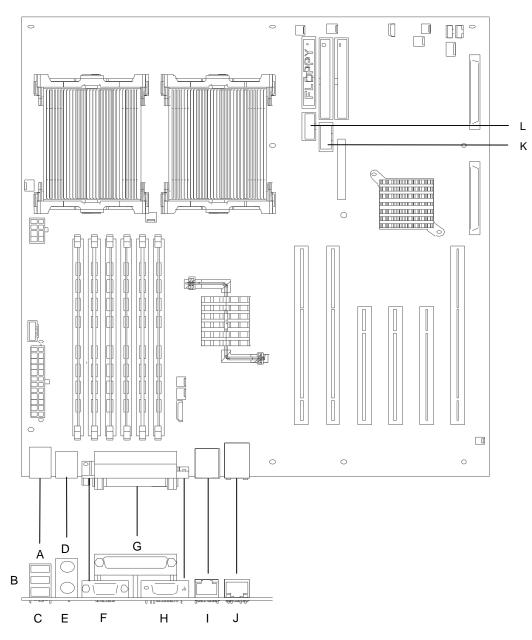
Table 45. SC5200 Fan Implementation

Note: For the KHD3HSRP650 Chassis, processor cooling is implemented via ducted Fans 1, 2 & 5 in the core cooling zone rather than using processor wind tunnels (PWT). The two 80 x 32mm KHD3BASE450 fans can be connected to any of the four front fan headers.

8.9.1 Fan Connector Pin-out

Table 46 lists the signals applied at each pin of the fan connectors, Fan1 – Fan6, CPU1 Fan and CPU2 Fan. The pinout is identical for all of the eight fan connectors.

Table 46. Fan Connector Pinout


Pin	Signal
1	Fan Sense
2	Fan Voltage
3	GROUND

FAN1 – FAN6, CPU1 Fan & CPU2 Fan

8.10 Standard I/O Panel Connectors

Figure 13 shows a graphical representation with identification of the physical connections at the I/O panel (also referred to as the back panel).

Note: The orientation of the RJ45 connectors for NIC and NIC2 are inverted with respect to one another (tab-up and tab-down). The initial production release boards will ship with connectors oriented in this fashion. A post production ECO is planned to change the orientation of these connectors. *Table 47* lists and identifies each of the connectors.

Intel Order Number C11343-001

Key	Connector Name	Key	Connector Name
А	USB connector, port C	F	Serial A (COM1) connector
В	USB connector, port B	G	Parallel Port connector
С	USB connector, port A	H VGA Video connector	
К	USB connector, port D	I	NIC2 connector (10/100/1000)
D	Mouse (Keyboard) connector	J	NIC1 connector (10/100)
E	Keyboard (Mouse) connector	L	Serial B (COM2/EMP) connector

Table 47. I/O Panel Connectors

8.10.1 Universal Serial Bus (USB) Interface

[Key A, B & C] The baseboard provides three stacked USB ports (Port 2 on top, Port 0 in middle, Port 1 on bottom). The built-in USB ports permit the direct connection of three USB peripherals without an external hub. A fourth USB port [Key K] is available through an on-board header (CN33). If more devices are required, an external hub can be connected to either the back-panel ports or the on-board header.

Table 48. USB Connector

[Key-A, B & C]

Pin	Signal	USB Connector
1, Port A	USBP1_VCC (Fused VCC, +5V with over current monitor of port 0, 1, and 2)	
2, Port A	USB_P1_N (Differential data line paired with USB_P1_P)	
3, Port A	USB_P1_P (Differential data line paired with USB_P1_N)	
4, Port A	USBP1_GND	
5, Port B	USBP0_VCC (Fused VCC, +5V with over current monitor of port 0, 1, and 2)	Port C
6, Port B	USB_P0_N (Differential data line paired with USB_P0_P)	Port B
7, Port B	USB_P0_P (Differential data line paired with USB_P0_N)	
8, Port B	USBP0_GND	Port A
9, Port C	USBP2_VCC (Fused VCC, +5V with over current monitor of port 0, 1, and 2)	
10, Port C	USB_P2_N (Differential data line paired with USB_P2_P)	
11, Port C	USB_P2_P (Differential data line paired with USB_P2_N)	
12, Port C	USBP2_GND	

Table 49. Internal USB Connector

USB [Key-K]

Pin	Name	Internal USB Connector
1	(No Connect)	2 10
2	USBP3_VCC	00000
3	(No Connect)	1 9
4	USB_P3_N	• –
5	(No Connect)	
6	USB_P3_P	
7	(No Connect)	

Revision 1.0

Pin	Name	Internal USB Connector
8	USBP3_GND	
9	Key	
10	Reserved for future use	

8.10.2 Mouse and Keyboard Ports

[Key-D & E] Two identical PS/2 compatible ports share a common stacked housing. The top PS/2 connector is labeled "mouse" and the bottom connector is labeled "keyboard," although the SHG2 server board will support swapping these connections.

Table 50. Mouse and Keyboard Ports

	Mouse		Mouse / Keyboard Connector	Keyboard		
Pin	Signal	Description		Pin	Signal	Description
1	MSDATA	Mouse Data		1	KBDATA	Keyboard Data
2	GND	Ground	4 0 0 3	2	GND	Ground
3	GND	Ground		3	GND	Ground
4	MSFUSE	+5V	2 1	4	KBFUSE	+5V
5	MSCLK	Mouse clock	Ζ Ι	5	KBCLK	Keyboard clock
6	GND	Ground		6	GND	Ground

[Key-D & E]

8.10.3 Serial Ports

[Key-F & L] The SHG2 server board provides one RS-232C serial port and a second serial port available through an onboard header [Key L]. The back panel serial port is a D-subminiature 9-pin connector.

Table 51. Serial A Port Connector

[Key-F]

Pin	Signal	Serial Port Connector
1	SIODCD + 00_1 (carrier detect)	
2	SIORXD – 00_1 (receive data)	
3	SIOTXD – 00_1 (transmit data)	1 5
4	SIODTR + 00_1 (data terminal ready)	
5	GROUND	0000
6	SIODSR + 00_1 (data set ready)	6 0
7	SIORTS + 00_1 (request to send)	6 9
8	SIOCTS + 00_1 (clear to send)	
9	SIORI + 00_1 (ring indicator)	

The COM2 serial port can be used either as an emergency management port (EMP) or as a normal serial port. As an EMP, COM2 is used as a communication path by the Server Management RS-232 connection to the BMC. This port can provide a level of emergency management through an external modem. The RS-232 connection can be monitored by the BMC when the system is in a powered down (standby) state.

Table 52 lists the signals present on the COM2 serial port header.

Pin	Signal	Serial Port Header
1	SIODCD + 00_2 (carrier detect)	
2	SIODSR + 00_2 (data set ready)	
3	SIORXD - 00_2 (receive data)	0 40
4	SIORTS + 00_2 (request to send)	2 10
5	SIOTXD - 00_2 (transmit data)	00000
6	SIOCTS + 00_2 (clear to send)	1 9
7	SIODTR + 00_2 (data terminal ready)	
8	SIORI + 00_2 (ring indicator)	
9	GROUND	
10	KEY	

Table 52. Serial B Port Header: COM2/EMP [Key-L]

8.10.4 Parallel Port

The IEEE 1284-compatible parallel port, used primarily for a printer, sends data in parallel format. The parallel port is accessed through a D-subminiature 25-pin connector.

[Key-G]

Pin	Signal	Parallel Port Con	nector	Pin	Signal
1	STROBE_L			14	AUFDXT_L (auto feed)
2	Data bit 0			15	ERROR_L
3	Data bit 1			16	INIT_L (initialize printer)
4	Data bit 2			17	SLCTIN_L (select input)
5	Data bit 3	13	1	18	GND (ground)
6	Data bit 4			19	GND
7	Data bit 5			20	GND
8	Data bit 6	05		21	GND
9	Data bit 7	25	14	22	GND
10	ACK_L (acknowledge)	1		23	GND
11	BUSY			24	GND
12	PE (paper end)	1		25	GND
13	SLCT (select)	1			

8.10.5 Video Port

The video port interface is a standard VGA-compatible 15-pin connector. An ATI Rage XL video controller, with 8 MB of onboard video SDRAM, supplies on-board video.

Table 54. Video Connector

[Key-H]

Pin	Signal	Video Connector	Pin	Signal
1	GRED+10 (analog color signal R)		9	5 V
2	GGREEN+10 (analog color signal G)	5 1	10	GND
3	GBLUE+10 (analog color signal B)		11	No connection
4	No connection	10 6	12	SDA –10
5	GND		13	GHSYNC+10 (horizontal sync)
6	GND	15 11	14	GVSYNC+10 (vertical sync)
7	GND		15	SCL -10
8	GND]		

8.10.6 **Ethernet Connectors**

[Key - I & J] The system supports two onboard network interface controllers, one 10/100 Mbps (NIC-1) and one 10/100/1000 Mbps (NIC-2) These Ethernet connectors are each single RJ-45 connectors with integrated activity / link and speed / status LEDs.

Table 55. Ethernet Connectors

[Key-I & J]

Pin	NIC1 Signal (10/100)	NIC2 Signal (10/100/1000)	Ethernet Connectors
1	L1TD +	TR0 +	
2	L1TD –	TR0 –	
3	GND	TR1 +	
4	Chassis GND	TR1 –	
5	Chassis GND	2.5V VCC	
6	GND	2.5V VCC	
7	L1RD +	TR2 +	
8	L1RD –	TR2 –	
9	LAN1_ACTIVE_LED +	TR3 +	
10	LAN1_LINK_LED +	TR3 –	
11	LAN1_SPEED_LED	LAN2_ACTIVE_LED	
12	3 V Standby	LAN2_LINK_LED	
13	Chassis GND	PSLED_YELLOW	
14	Chassis GND	PSLED_GREEN	

The 82550PM drives LEDs on the network interface connector that indicate transmit/receive activity on the LAN, a valid link to the LAN, and 10- or 100-Mbps operation. The green LED 68

indicates network connection when illuminated, and TX/RX activity when blinking. When the SPEED LED is OFF, it indicates network connection at 10Mbps; a green LED indicates 100-Mbps operation when illuminated.

SPEED LED Color	Speed	LNK/ACT LED	Function
OFF	10Mbps	GREEN	Valid LINK
GREEN	100Mbps	BLINKING	Valid ACTIVITY

Table 56. LAN1 10/100 LED Schemes

The 82544GC drives LEDs on the network interface connector that indicate transmit/receive activity on the LAN, a valid link to the LAN, and 10- or 100- or 1000-Mbps operation. The single green LED indicates network connection when illuminated, and TX/RX activity when blinking. When the SPEED LED is not illuminated, it indicates network connection at10-Mbps operation. When the SPEED LED is illuminated in green, it indicates network connection at100-Mbps operation. Amber illumination indicates a network connection at 1000-Mbps.

Table 57. LAN2 10/100/1000 LED Schemes

Function Valid LINK Valid ACTIVITY

SPEED LED Color	Speed	LNK/ACT LED
OFF	10Mbps	GREEN
GREEN	100Mbps	BLINKING
AMBER	1000Mbps	

The following diagram shows the I/O shield provided with the SHG2 board.

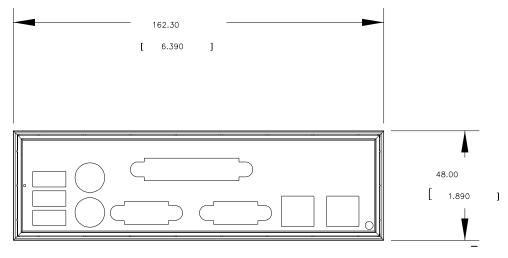


Figure 14. SHG2 I/O Panel Connector Location Dimensions

8.11 Connector Manufacturers and Part Numbers

Table 58 shows the quantity and manufacturers' part numbers for connectors on the baseboard. Item numbers reference the circled numbers on the mechanical drawing. Refer to manufacturers' documentation for more information on connector mechanical specifications.

Interface Definition	Description / Manufacturer	Item Number	Qty
SSI Main Power	CONN, HDR, 2 X 12, PLG, VT, 0.165, 093ST, KP P		1
	Molex Connector Corporation	0442060001	
	Foxconn Electronics, Inc.	HM91120-P2	
P2 +12V Power	CONN, HDR, 2 X 4, PLG, VT, 0.165, 093ST, KP PG		1
	Molex Connector Corporation	39-29-9082	
	Tyco Electronics Corporation	794305-1	
	Foxconn Electronics, Inc.	HM25040-P2	
P3 Signal Connector	Molex Connector Corporation	70541-0004	
VESA Video	CONN, I/O, 15P, DSUB, RA, 0.05, 062ST, SHIELDE		1
	Foxconn Electronics, Inc.	DZ11A36-R9	
Serial #1 Comm	CONN, I/O, 9P, DSUB, RA, .109, 062ST		1
	Foxconn Electronics, Inc.	DT10126-R9	
Parallel Comm	CONN, I/O, 25P, DSUB, RA, .109, 093ST		1
	Foxconn Electronics, Inc.	DM11356-R1	
NIC #1 with	CONN, I/O, 16P, RJ45/USB, RA, 0.1, 062ST		1
Integrated Activity Tyco Electronics Corporation		1116151-2	
Stacked Keyboard	CONN, I/O, 12P, DIN, RA, 0.1, 093ST		1
and Mouse	Tyco Electronics Corporation	84405-1	
	Foxconn Electronics, Inc.	MH11067-D5	
PCI 1 and PCI 2	CONN, CEDG, 120P, PCI, VT, 0.05, 093ST		1
	Foxconn Electronics, Inc.	EH06011-PC-W	
	Foxconn Electronics, Inc.	EH06013-GC-W	
PCI 3, PCI 4 and	CONN, CEDG, 184P, PCI, VT, 0.05, 062ST		1
PCI 5	Tyco Electronics Corporation	145169-4	
	Foxconn Electronics, Inc.	EH09211-R4-W	
PCI 6	CONN, CEDG, 184P, PCI, VT, 0.05, 062ST		1
	Tyco Electronics Corporation	145168-4	
	Foxconn Electronics, Inc.	EH09211-R3-W	
	Molex Connector Corporation	0711095005	
	Foxconn Electronics, Inc.	PC33013-20	1
Serial #2 Comm	CONN, HDR, 2 X 5, PLG, VT, 0.1, 062ST, KP 10, P		1
Header	Tyco Electronics Corporation	111950-1	1
Floppy	CONN, HDR, 2 X 17, PLG, VT, 0.1, 062ST, KP 5, S		1
	Foxconn Electronics, Inc.	HL09177-P4	1
	Tyco Electronics Corporation	111972-7	1

Intel Order Number C11343-001

Interface Definition	Description / Manufacturer	Item Number	Qty
	Foxconn Electronics, Inc.	HL13178	
	Tyco Electronics Corporation	111685-7	
	Molex Connector Corporation	0872563456	
Primary and	CONN, HDR, 2 X 20, PLG, VT, 0.1, 062ST, KP 20		1
Secondary ATA	Foxconn Electronics, Inc.	HL09207-D2	
	Tyco Electronics Corporation	111971-8	
	Foxconn Electronics, Inc.	HL13208	
	Tyco Electronics Corporation	111685-8	
	Molex Connector Corporation	0872564056	
SCSI U320	CONN, HDR, 2 X 34, RCP, VT, 0.1, 093ST, KP SHR		1
Internal and External	Foxconn Electronics, Inc.	QA01343-P4	
External	Molex Connector Corporation	0743051302	
SSI Front Panel	CONN, HDR, 2 X 12, PLG, VT, 0.1, 062ST, KP 3		1
	Foxconn Electronics, Inc.	HC1912G-D5	
Extended Front	CONN, HDR, ST, PLRZ, 2X(4)P		1
Panel	Foxconn Electronics, Inc.	HC1904G-D0	
	Tyco Electronics Corporation	2-146220-1	
Intrusion Switch	CONN, HDR, 1 X 2, PLG, VT, 0.1, 093ST, KP PG		1
Header	Foxconn Electronics, Inc.	HF06021-P1	
Stacked USB Port 1, 2 and 3	Foxconn Electronics, Inc.	UB1112C-M1	1
ICMB, Four Position version	Molex Connector Corporation	22-03-5055	1
Bay A Hot Swap	CONN, HDR, 1 X 4, PLG, VT, 2MM, 093ST, KP PG		1
Drive I ² C	Foxconn Electronics, Inc.	HF55040-C1	
Bay B Hot Swap	CONN, HDR, 1 X 4, PLG, VT, 2MM, 093ST, KP PG		1
Drive I ² C	Foxconn Electronics, Inc.	HF55040-C1	
All Eight Fans	CONN, HDR, 1 X 3, PLG, VT, 0.1, 093ST, KP 1, SH		1
	Foxconn Electronics, Inc.	HF08030-P1	
Speaker	AUDIO XDCR, 800HM, 2400HZ, 85DB, THM, 5V		1
	Challenge Electronics	DBX-05A	
	RDI Electronics, Inc.	DMT-1206[I]	
Retention Mechanisms			2

9. General Specifications

This chapter specifies the operational parameters and physical characteristics for the Intel SHG2 server board. This is a board-level specification only. System specifications are beyond the scope of this document.

9.1 Absolute Maximum Electrical and Thermal Ratings

Operation of the SHG2 server board at conditions, beyond those shown in the following table, may cause permanent damage to the system (provided for stress testing only). Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

Table 59 lists the maximum component case temperatures for baseboard components that could be sensitive to thermal changes. The operating temperature, current load, or operating frequency could affect case temperatures. Maximum case temperatures are important when considering proper airflow to cool the motherboard.

Operati	ing Temperature	5°C to +50°C ¹				
•	e Temperature	-55°C to +150°C				
Voltage	on any signal with respect to ground	-0.3V to V _{dd} + 0.3V ²				
3.3V su	upply voltage with respect to ground	-0.3 to +3.63V				
5V sup	ply voltage with respect to ground	-0.3 to +5.5V				
Notes:		•				
 Chassis design must provide proper airflow to avoid exceeding Intel® Xeon™ IHS (integrated heat spreader) maximum case temperature. 						
2.	V_{DD} means supply voltage for the device.					

Table 59. Absolute Maximum Electrical and Thermal Specifications

Caution: An ambient temperature that exceeds the board's maximum operating temperature by 5°C to 10°C might cause components to exceed their maximum case temperature. When determining system compliance, considerations should be given for maximum rated ambient temperatures.

Table 60.	Thermal S	pecification	for Kev	Components
		poonioanon		•••••••••••••••••••••••••••••••••••••••

Component	Maximum Temperature				
Intel® Xeon™ processor, rating to meet Flexible Motherboard (FMB) guidelines.	78°C (thermal plate)				
CMIC-LE	100°C (case)				
CIOB-X2	100°C (case)				
CSB5	100°C (case)				
82550PM Ethernet Controller	85°C (case)				
82544GC Gigabit Ethernet Controller	85°C (case)				
Lithium battery 70°C (case)					
Note: *The Intel® Xeon [™] processor uses an IHS. Thermal specifications relate to processor operation under maximum power dissipation conditions with the HIS installed.					

9.2 Airflow Specification for CIOB-X2 and CMIC-LE

The maximum thermal specifications for components listed require installation of a heat sink or maintenance of a minimum level of airflow. Failure to maintain sufficient cooling airflow will result in components exceeding maximum case temperature. *Table 61* lists several chipset components and their required airflow.

Component	Maximum Power	T _{ja} at 1 M/sec Airflow	T _{jc}	T _j (Max)
CIOB-X2	7.0 W	28 C/W	0.4 C/W	100 C
CMIC-LE	10 W	5 C/W	0.2 C/W	100 C

Table 61. Airflow Specification for Key Components

9.3 Electrical Specifications

DC and AC specifications for the SHG2 server board are summarized here.

9.3.1 Power Consumption

Table 62 shows the power consumed on each supply line for a SHG2 baseboard configured with two processors, each a 65W maximum, and 2 DIMMs stacked burst with 4 DIMMs in standby at 70% maximum.

Note: The following numbers are provided as an example. Actual power consumption will vary depending on the exact SHG2 configuration.

Description	# Items	3.3v	5v	12v	-12v	5v stby	3.3v stby
Peripheral Bay	2		0.7	0.7			
Hard Drives	5		4.7	5.6			
Add-In Slots	3	6.1	2.0				
Cooling	6			2.5			
Processors	4			12.7			
Server board (Misc.)	1		1.5	2.7			
Quick Server board Spec	1	3.8	5.1	1.4	0.2	1.5	
Total Power (Amps)		9.8	14.0	25.5	0.2	1.5	
Total Power (Watts)		32.4	69.8	306.2	2.4	7.7	
						Total	
						Watts	418

Table 62. SHG2 Power Budget

For your system or configured calculations, please add the power consumed by all devices plugged into the server board.

9.3.2 Power Supply Specifications

This section provides power supply design guidelines for an SHG2-based system, including voltage and current specifications, and power supply power cycling sequence characteristics.

Parameter	Min	Nom	Max	Units	Tolerance
+3.3 V	+3.168	+3.30	+3.46	V _{rms}	+5/-4%
+5 V	+4.80	+5.00	+5.25	V _{rms}	+5/-4%
+12 V	+11.52	+12.00	+12.60	V _{rms}	+5/-4%
-12 V	-11.40	-12.20	-13.08	V _{rms}	+9/-5%
+5 VSB	+4.85	+5.00	+5.25	V _{rms}	+5/-3%

Table 63. SHG2 DC Power Supply Voltage Specification

Table 64. SHG2 Ripple and Noise Specification

+3.3V	+5V	+12V	-12V	+5VSB
50mVp-p	50mVp-p	120mVp-p	120mVp-p	50mVp-p

9.3.2.1 Power Timing

These are the timing requirements for single power supply operation.

The output voltages must rise from 10% to within regulation limits (T_{vout_rise}) within 5 to 70ms. The +3.3 V, +5 V and +12 V output voltages should start to rise approximately at the same time. All outputs must rise monotonically. The +5 V output needs to be greater than the +3.3 V output during any point of the voltage rise. The +5 V output must never be greater than the +3.3 V output by more than 2.25 V. Each output voltage shall reach regulation within 50ms (T_{vout_on}) of each other during turn on of the power supply. Each output voltage shall fall out of regulation within 400msec (T_{vout_off}) of each other during turn off. *Table 65* shows the output voltage timing parameters.

Item	Description	Min	Max	Units
T _{vout_rise}	Output voltage rise time from each main output.	5	70	msec
T _{vout_on}	All main outputs must be within regulation of each other within this time.		50	msec
T _{vout_off}	All main outputs must leave regulation within this time.		400	msec

Table 65. Voltage Timing Parameters

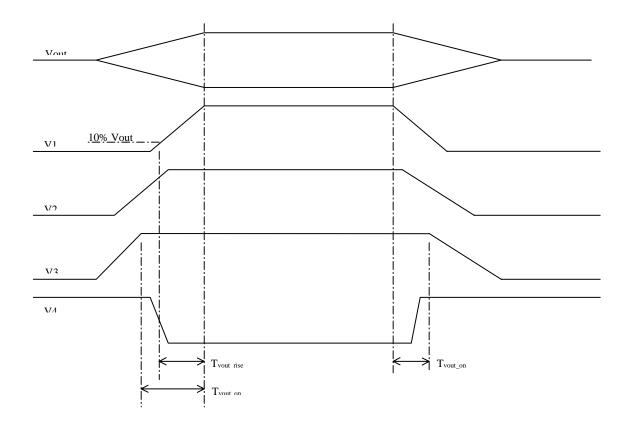


Figure 15. Output Voltage Timing

Table 66 shows the timing requirements for the power supply being turned on and off via the AC input with PSON held low, and the power supply being turned on and off with the PSON signal after AC input is applied.

ltem	Description	Min	Max	Units
T _{sb_on_delay}	Delay from AC being applied to 5VSB being within regulation.		1500	msec
T _{ac_on_delay}	Delay from AC being applied to all output voltages being within regulation.		2500	msec
T_{vout_holdup}	Time all output voltages stay within regulation after loss of AC.	21		msec
T _{pwok_holdup}	Delay from loss of AC to deassertion of PWOK	20		msec
T _{pson_on_delay}	Delay from PSON [#] active to output voltages within regulation limits.	5	400	msec
T pson_pwok	Delay from PSON [#] deactive to PWOK being deasserted.		50	msec
T_{pwok_on}	Delay from output voltages within regulation limits to PWOK asserted at turn on.	100	1000	msec

Table 66. Turn On/Off Timing

Revision 1.0

Item	Description	Min	Max	Units
T _{pwok_off}	Delay from PWOK deasserted to output voltages (3.3V, 5V, 12V, -12V) dropping out of regulation limits.	1		msec
T _{pwok_low}	Duration of PWOK being in the deasserted state during an off/on cycle using AC or the PSON signal.	100		msec
T _{sb_vout}	Delay from 5VSB being in regulation to O/Ps being in regulation at AC turn on.	50	1000	msec

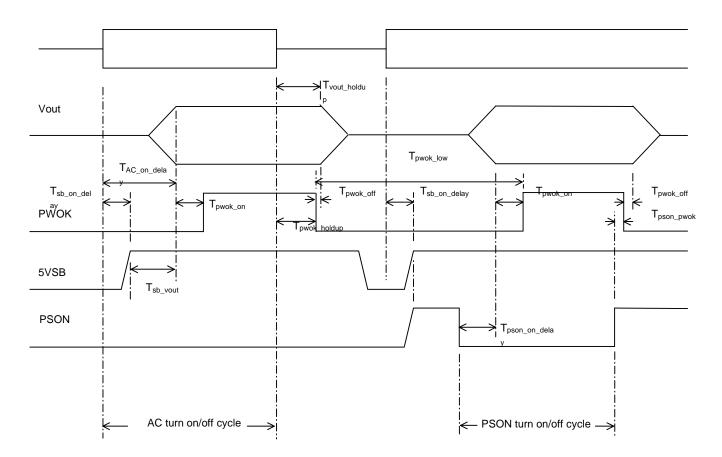


Figure 16. Turn On/Off Timing

9.3.2.2 Voltage Recovery Timing Specifications

The power supply must conform to the following specifications for voltage recovery timing under load changes:

1. Voltage shall remain within +/- 5% of the nominal set voltage on the +5 V, +12 V, 3.3 V, -5 V and -12 V outputs, during instantaneous changes in load shown in the table below.

- 2. Voltage regulation limits shall be maintained over the entire AC input range and any steady state temperature and operating conditions specified.
- 3. Voltages shall be stable as determined by bode plot and transient response. The combined error of peak overshoot, set point, regulation, and undershoot voltage shall be less than or equal to +/-5% of the output voltage setting. The transient response measurements shall be made with a load changing repetition rate of 50Hz to 5kHz. The load slew rate shall not be greater than 0.2A/μs.

Output	∆ Step Load Size	Load Slew Rate	Capacitive Load
+3.3V	25% of max load	0.5 A/µsec	1,000 μF
+5V	30% of max load	0.5 A/µsec	1,000 μF
12V1+12V2+12V3	65% of max load	0.5 A/µsec	1,000 μF
+5VSB	25% of max load	0.5 A/µsec	10 μF

Table 67. Transient Load Requirements

10. Mechanical Specifications

The following diagrams show the mechanical specifications of the SHG2 server baseboard. All dimensions are given in inches, and are dimensioned per ANSI Y15.4M. Connectors are dimensioned to pin 1.

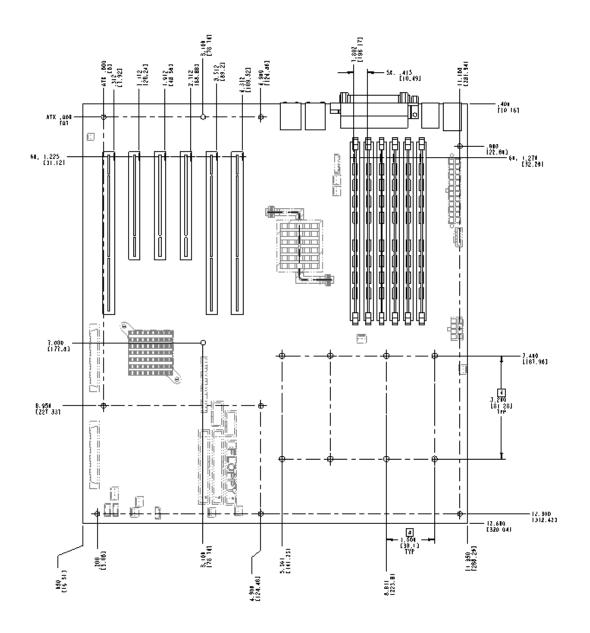


Figure 17. SHG2 Baseboard Mechanical Diagram 1

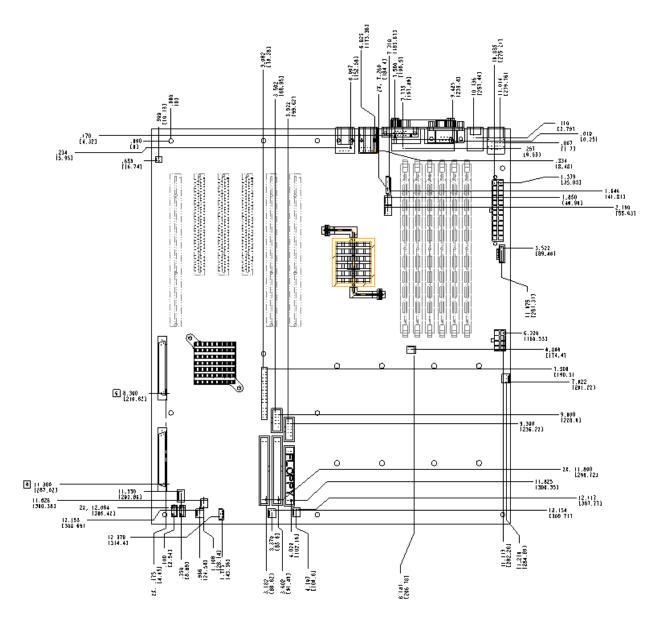


Figure 18. SHG2 Baseboard Mechanical Diagram 2

11. Regulatory and Integration Information

11.1 Product Regulatory Compliance

11.1.1 Product Safety Compliance

The Intel SHG2 Server Board complies with the following safety requirements:

- UL 1950 CSA60 950 (US/Canada)
- EN60 950 & 73/23/EEC (European Union)
- IEC60 950 (International)
- GOST R 50377-92 (Russia)

11.1.2 Product EMC Compliance

The SHG2 Server Board has been tested and verified to comply with the following electromagnetic compatibility (EMC) regulations when installed in a compatible Intel host system. For information on compatible host system(s), contact your local Intel representative.

- FCC (Class A Verification) Radiated & Conducted Emissions (USA)
- ICES-003 (Class A) Radiated & Conducted Emissions (Canada)
- CISPR 22 (3RD Edition) Radiated & Conducted Emissions (International)
- AS/NZS 3548 (Class A) Radiated & Conducted Emissions (Australia / New Zealand)
- RRL (MIC Notice 1997-42) Radiated & Conducted Emissions (Korea)
- BSMI (CNS13438) Radiated & Conducted Emissions (Taiwan)

11.1.3 **Product Regulatory Compliance Markings**

This product is provided with the following Product Certification Markings.

- CE Mark
- Korea MIC Mark
- Canada/US UR E139761Mark
- Canada ICES-003 CLASS A Mark
- Russian GOST Mark
- Australian/New Zealand C-Tick Mark
- Taiwan BSMI Certification Number D33025 and BSMI EMC Warning

11.2 Electromagnetic Compatibility Notices

11.2.1 Europe (CE Declaration of Conformity)

This product has been tested in accordance too, and complies with the Low Voltage Directive (73/23/EEC) and EMC Directive (89/336/EEC). The product has been marked with the CE Mark to illustrate its compliance.

11.2.2 Australian Communications Authority (ACA) (C-Tick Declaration of Conformity)

This product has been tested to AS/NZS 3548, and complies with ACA emission requirements. The product has been marked with the C-Tick Mark to illustrate its compliance.

11.2.3 Ministry of Economic Development (New Zealand) Declaration of Conformity

This product has been tested to AS/NZS 3548, and complies with New Zealand's Ministry of Economic Development emission requirements.

11.2.4 BSMI (Taiwan)

The BSMI Certification number 39021904 is silk screened on the component side of the server board. The following BSMI EMC warning is located on solder side of the server board.

警告使用者:

這是甲類的資訊產品,在居住的環境中使用時, 可能會造成射頻干擾,在這種情況下,使用者會 被要求採取某些適當的對策。

11.3 Replacing the Back up Battery

The lithium battery on the server board powers the RTC for up to 10 years in the absence of power. When the battery starts to weaken, it loses voltage, and the server settings stored in CMOS RAM in the RTC (for example, the date and time) may be wrong. Contact your customer service representative or dealer for a list of approved devices.

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Discard used batteries according to manufacturer's instructions.

ADVARSEL!

Lithiumbatteri - Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type. Levér det brugte batteri tilbage til leverandøren.

ADVARSEL

Lithiumbatteri - Eksplosjonsfare. Ved utskifting benyttes kun batteri som anbefalt av apparatfabrikanten. Brukt batteri returneres apparatleverandøren.

Revision 1.0

Explosionsfara vid felaktigt batteribyte. Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren. Kassera använt batteri enligt fabrikantens instruktion.

A VAROITUS

Paristo voi räjähtää, jos se on virheellisesti asennettu. Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.

Appendix A:	Glossary
-------------	----------

Term	Definition
AGTL+	Assisted Gunning Transceiver Logic +
AP	Application Processor
APIC	Advanced Programmable Interrupt Controller
ASF	Alert Standard Forum
ASR	Asynchronous System Reset
BGA	Ball-Grid Array
BIST	Built-In Self Test
BMC	Baseboard Management Controller
BSP	Bootstrap Processor
CIOB-X2	PCI-X 64-bit bridge
CMIC-LE	Processor, CIOB-X2, memory interface device, and legacy PCI bridge (P32-C)
CSB5	Legacy I/O controller bridge
DDR SDRAM	Double Data Rate SDRAM
DIMM	Dual Inline Memory Module
DMTF	Distributed Management Task Force
DP	Dual-processor
DRAM	Dynamic Random Access Memory
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
EMP	Emergency Management Port
FMB	Flexible Motherboard
FRB	Fault Resilient Booting
FSB	Front-Side Bus
GPI	General Purpose Input
GPIO	General Purpose I/O
GPO	General Purpose Output
ICMB	Intelligent Chassis Management Bus
IDE	Integrated Drive Electronics
IHS	Integrated Heat Spreader
IMB	Intra Module Bus
IPMB	Intelligent Platform Management Bus
IRQ1	Interrupt Request
LCD	Liquid Crystal Display
LVD	Low-Voltage Differential
MP	Multi-processor
MT/s	Mega Transfers per second
MSR	Model-Specific Register
NIC	Network Interface Card

NMI	Non-maskable Interrupt
PBGA	Pin Ball Grid Array
PGA	Pin Grid Array
PIC	Programmable Interrupt Controller
POST	Power On Self Test
RISC	Reduced Instruction Set Computing
RTC	Real Time Clock
SEC	Single Edge Contact
SEL	System Event Log
SERIRQ	Serialized IRQ
SDRAM	Synchronous Dynamic RAM
SHV	Standard High Volume
SIO	Super I/O* bridge
SM	Server Management
SMI	System Management Interrupt
SMM	Server Management Module
SMT	Surface Mount Technology
SVGA	Super Video Graphics Array
TAP	Test Access Port
TBD	To Be Determined
Thin-IMB	Thin-Intra Module Bus
USB	Universal Serial Bus
VGA	Video Graphics Array
VRM	Voltage Regulator Module
ZCR	Zero Channel RAID
ZIF	Zero Insertion Force

Appendix B: Reference Documents

Refer to the following documents for additional information:

- Foster Processor Electrical, Mechanical, and Thermal Specification Rev 1.5
- ServerWorks Champion Memory & I/O Controller-Low End (CMIC-LE) Specification Rev 2.0
- ServerWorks Champion South Bridge (CSB5) Specification Rev 2.0
- ServerWorks Champion IO Bridge (CIOB-X2) Specification Rev 1.3
- National PC87417 Datasheet Rev 0.13
- PCI Local Bus Specification, Revision 2.2
- PCI-X Addendum to the PCI Local Bus Specification Rev 1.0a
- USB Specification, Revision 1.1
- SHG2 Basic Input Output System (BIOS) External Product Specification, Revision 0.5, Intel reference number OR-xxxx.
- 3 Volt Flash File (29LV800TAx8) Datasheet.
- PCI Bus Power Management Interface Specification.
- AIC-7899 PCI Bus Master Dual-Channel Ultra160 Embedded SCSI ASIC Data Book
- AIC-7902 PCI-X Bus Master Dual-Channel Ultra320 Embedded SCSI ASIC Data Book
- ATI RAGE XL Technical Reference Manual.
- I²C Bus Specification.
- Intelligent Platform Management Bus Communications Protocol Specification
- VRM 9.1 DC-DC Converter Specification.
- Intel[®] 82550 Fast Ethernet Multifunction PCI/CardBus Controller Datasheet.
- Intelligent Platform Management Interface (IPMI) Specification Rev 1.5
- SSI Specification for Entry Server Rev 3.0

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com