POWERTEC Industrial Motors

INSTALLATION AND
 OPERATION

INSTRUCTION MANUAL
Production Release
August, 1994

A subsidiary of

Errata

Corrections to page 44 of the manual, Attachment A: Detailed Commands Read Speed/Status (81)

Changes shown in gray
[ST2]-76543210

[ST1]-76543210

DFS Software M odification For Dynamic Braking or Output C ontactor Operation

25 October, 1994

Functional Description

A new function for Contactor Aux has been added to the digital input choices. When configured as described in the example, 24VDC must be present at this input for the drive to run. Parameter \#62, Contactor Delay, is a number of 25 ms intervals that will occur between the DFS controller acceptance of a run command and the firing of the transistors. If the Contactor Aux input signal is low, the DFS starts the timer and closes the Contactor Output. If the Contactor Aux input does not switch high before the timer runs out, the drive will return to the stop condition. If the Contactor Aux input does switch high, the drive will start running when the timer runs out.

Example Setup for Dynamic Braking

1 Set Digital Input \#7 mode to Contactor Aux, polarity to Active Low.
2 Set Digital Output \#4 modeto Contactor, pol arity to Normall y Closed.
3 Set Contactor Delay to 20 ($20 \times 25 \mathrm{~ms}=500 \mathrm{~ms}=1 / 2$ second $)$.
Run command causes the Contactor Output to close, the Contactor Relay opens, the feedback contacts close and the drive starts to run.

Example Setup for Output Contactor
1 Set Digital Input \#\# mode to Contactor Aux, polarity to Active Low.
2 Set Digital Output \#4 modeto Contactor, pol arity to Normally Closed.
3 Set Contactor Delay to 10 ($10 \times 25 \mathrm{~ms}=250 \mathrm{~ms}=1 / 4$ second $)$.
Run command causes the Contactor Output to close, the Contactor Relay closes, the feedback contacts close and the drive starts to run.

The difference in the operation of the two types of contactors is that the Dynamic Braking Contactor is normally cl osed whereas the Output Contactor is normally open. In both contactors, the auxilliary contacts are normally open.

Terms Used
1 Contactor Aux - The digital input on the DFS board which is connected to the feedback contacts on the contactor relay.
2 Contactor Output - The digital output on the DFS board which activates the solenoid on the contactor relay.
3 Signal low - OVDC
4 Signal high-24VDC

1.0 Installation

The DFS-1 printed circuit board mounts on any POW ER TEC Brushless DC motor control except the Model 500. The Model 1000 is used here for illustration purposes only.
1.1 MOUNTING -- READ THIS ENTIRE SECTION BEFORE STARTING!

The DFS-1 printed circuit board mounts on the Model 1000 or Model 1000AR motor control in place of both the Current Controller board (part \#141-108) and the Speed Controller board (part \#141-107 on the non-regenerative model 1000, part \#147-101 on the regenerative model 1000AR). These boards are mounted side by side on all standard motor controls. TB1 is located on the Current Controller (left hand board) and TB2 is on the Speed Controller (right hand board). The first eight connections which normally come into TB1 (the motor cable leads) will connect to the same places on the DF S-1. The connections going into TB2 (mainly operators and speed pot) on the standard motor control will go to different connections on the DF S-1.

Figure 1: The DFS-1 replaces two boards.
If the board is being installed to replace the boards on a standard control, unplug the strips on TB1 and TB2, but do not disconnect any wires from them yet. Unplug the 14-pin connector on P2 (at the Base Driver Board) and the 10-pin connector on P3 (at the Capacitor Board). Remove these cables and the Speed and Current controller boards from the chassis and set them aside. Remove the studs at the top right of where the Current Controller board was, and at the top left of where the Speed Controller was located (the center studs - see figure 1).

There are two flat ribbon cables which must be connected from the DF S-1 to the other parts of the motor control: one goes to the Base Driver Board (part \#141-105), and the other cable goes to the Capacitor Board (part \#141-106). Se figure 2 for the physical layout of the control and the location of these boards. If the DFS-1 board is being installed in the fied, the cables should come with the new board, since the connectors on the DFS-1 end are different from the connectors on the Speed and Current controller ends of the previous cables. Make sure that you have these new cables before proceeding to install the board. If you do not have them, call POW ERTEC's service department before proceeding.

The DF S-1 board may be used as either a nonregenerative control or as a regenerative control. This selection is made by one of its parameter settings. The DFS-1 may be instal led on a Model 1000 non-regenerative brushless DC control, but if the unit is to be used for a regenerative application, a bus loader of the appropriate voltage and resistors of sufficient wattage must be added before the drive may be used regeneratively. If a bus loader is not installed before regenerative operation occurs, it is likely that the control will trip out repeatedly. A Model 1000AR will al ready have a bus loader and resistors attached.

Figure 2: The Model 1000 chassis

Contents

Introduction 1
Summary of Warranty and Disclaimer 2
WARNING! 2
1.0 Connections 3
POWER CONNECTIONS: 3
MOTOR ENCODER CABLE: 4
ANALOG INPUTS: 4
ANALOG OUTPUTS: 5
FREQUENCY INPUT: 5
FREQUENCY OUTPUT: 6
DIGITAL INPUTS: 6
DIGITAL OUTPUTS: 7
COMMUNICATIONS: 7
DEFAULT SETUP 9
2.0 Specifications 11
POWER SUPPLIES 11
ANALOG INPUTS 11
ANALOG OUTPUTS 11
FREQUENCY INPUTS AND OUTPUTS 12
DIGITAL INPUTS 12
DIGITAL OUTPUTS 12
COMMUNICATIONS 13
3.0 DFS-1 Parameters 15

1. UNIT ID 15
2. BAUD RATE 15
3. LOCAL / REMOTE CONTROL 15
4. COMMUNICATIONS PROTOCOL 16
5. MODES OF OPERATION 16
6. MAXIMUM MOTOR SPEED 17
7. ENCODER PULSES PER REVOLUTION 17
8. MASTER RAMP UP TIME 18
9. MASTER RAMP DOWN TIME 18
10. SLAVE RAMP UP TIME 18
11. SLAVE RAMP DOWN TIME 18
12. MASTER PRESET SPEED 19
13. SLAVE RATIO PRESET 19
14. ENGINEERING UNITS 19
15. BASE RATIO 19
16. MAXIMUM RATIO 20
17. ANALOG INPUT \# MODE SELECT 20
18. ANALOG INPUT \# SIGNAL CONDITIONING 21
19. ANALOG INPUT \#1 LOW ENGINEERING UNITS (EGU) 21
20. ANALOG INPUT \# HIGH ENGINEERING UNITS (EGU) 22
21. ANALOG INPUT \#2 MODE SELECT 22
22. ANALOG INPUT \#2 SIGNAL CONDITIONING 22
23. ANALOG INPUT \#2 LOW ENGINEERING UNITS (EGU) 22
24. ANALOG INPUT \#2 HIGH ENGINEERING UNITS (EGU) 22
25. ANALOG OUTPUT \#l MODE SELECT 23
26. ANALOG OUTPUT \# LOW ENGINEERING UNITS (EGU) 23
27. ANALOG OUTPUT \#1 HIGH ENGINEERING UNITS (EGU) 23
28. ANALOG OUTPUT \#2 MODE SELECT 23
29. ANALOG OUTPUT \#2 LOW ENGINEERING UNITS (EGU) 24
30. ANALOG OUTPUT \#2 HIGH ENGINEERING UNITS (EGU) 24
31. DIGITAL INPUT \#l FUNCTION 25
32. DIGITAL INPUT \#2 FUNCTION 25
33. DIGITAL INPUT \#3 FUNCTION 25
34. DIGITAL INPUT \#4 FUNCTION 25
35. DIGITAL INPUT \#5 FUNCTION 26
36. DIGITAL INPUT \#6 FUNCTION 26
37. DIGITAL INPUT \# FUNCTION 26
38. DIGITAL OUTPUT \#l FUNCTION 26
39. DIGITAL OUTPUT \#2 FUNCTION 27
40. DIGITAL OUTPUT \#3 FUNCTION 27
41. DIGITAL OUTPUT \#4 FUNCTION 27
42. DRIVE GAIN SETTING 27
43. DRIVE STABILITY SETTING 27
44. DRIVE MOTORING CURRENT LIMIT 27
45. DRIVE REGENERATIVE CURRENT LIMIT 28
46. PULSE MULTIPLIER 28
47. MODULATION AND OPERATION MODES 28
48. JUMP OR MOP OPERATION 28
49. MASTER JUMP UP AMOUNT 29
50. MASTER JUMP DOWN AMOUNT 29
51. SLAVE JUMP UP AMOUNT 29
52. SLAVE JUMP DOWN AMOUNT 29
53. INPUT DEBOUNCE VALUE 30
54. FLOAT OR FREEZE 30
55. MINIMUM RATIO 30
56. COMMUNICATIONS TURNAROUND DELAY 30
57. MASTER JOG SPEED 31
58. SLAVE JOG RATIO 31
59. EGU TAG SELECT 31
60. MASTER PRESET \#2 31
61. SLAVE PRESET \#2 31
4.0 DFS - 1 Setup 33
4.1 BASIC SETUP OF THE DFS-1 CONTROLLER 34
4.2 MASTER MODE SETUP 35
4.3 SLAVE MODE SETUP 36
4.4 INPUTS AND OUTPUTS SETUP 37
4.5 COMMUNICATIONS SETUP 38
5.0 DFS-1 ERROR CODES 39
6.0 COMMUNICATION PROTOCOL 41
COMMAND LIST 42
PARAMETER LIST 43
ATTACHMENT A: DETAILED COMMANDS 44
ATTACHMENT B: PARAMETER DESCRIPTION 50
Additional Info 51
Typical Output Contactor Connections 52
Typical Dynamic Braking Connections 53
Appendix A 55
RETROFITTING THE MODEL 1000,1000A, OR 1000AR
Appendix B 57
MENU AND KEYPAD HIERARCHY

This page was intentionally left blank.

As the computer revolution takes greater control of industrial processes, there is a growing need for more intimate control of the process parameters. It is becoming ever more necessary to control the important characteristics of motors di rectly from computers and microprocessorbased controllers. Such control cannot wait for operator intervention when changes occur in milliseconds and tolerances are measured in thousandths.

All of the operational characteristics of a motor are controllable by manipulating its speed, torque, and power. POW E R TEC digitally implemented, speed, torque, and power control - the DF S-1.

The Brushless DC motor and its control are digitally based, and are a natural choice for a computer controlled environment. Now computers and PLC's talk to the drive itself when the fieddinstallable DF S-1 control board replaces the Speed and Current boards on the standard POW ER TEC Brushless DC drive.

One of the first things you will notice about the DF S-1 is that there are no adjustment potentiometers and no setup switches. All characteristics of the drive are controlled by software parameters which may be entered by the optional KDU-1 keypad or host computer. The KDU-1 keypad can be mounted on the DFS-1 board, in a remote location (usually the enclosure door), or in a handheld unit. A default set of parameters which represent the most common operating conditions will facilitateimmediate operation and testing after installation.

Capable of operating on a single drive or in networks, the DFS-1 is programmable by an optional keypad with its two line, 16-character display. A single computer port may be used to monitor and control up to 32 units in an RS-485 communi cations link.

Programmable anal og inputs and anal og outputs allow many possibilities for control through external voltages, currents, and frequencies. They may also be used to monitor drive operation. Digital inputs and outputs (al so programmable) give control and monitoring flexibility as well as coordination functions.

Provision is madefor plug-in options which add input and output options and accomplish special functions. Optional software packages may be ordered for specific application needs.

Summary of Warranty and Disclaimer

PO W ERTEC Industrial Corporation warrants theDFS-1 to befree from defects in materials and workmanshi p for a period of one year from the date of shi pment from the factory, or if purchased from an authorized POW ERTEC distributor or Original Equi pment Manufacturer, not morethan 18 months from the date of shipment from the factory. Upon written notification to the factory of a possible defect in materials or workmanship, POW E RTEC will, at its sole option, repair or replace, at the factory, such defective parts as it deems necessary to restore the unit to its original specifications.

There is no other warranty, express or implied, including fitness of purpose for the appli cation intended. This warranty does not cover accidental or intentional damage; physical or electrical misuse or abuse; defective or incorrect installation; effects on other equi pment or caused by other equi pment; attempted use outside of specified ranges; or any other situation outside of the control of POW ER TEC Industrial Corporation.

The user is responsible for the application of the DFS-1 product and the programming thereof.
This warranty does not encompass any other claims, including, but not limited to, special, incidental, or consequential damages.

This manual has been assembled as a guide to the use of a POW ERTEC product. It represents the best efforts to compile and present the information herein. Such errors as may appear in no way affect the above stated warranty. If mistakes of fact are found or suspected in this manual, please notify the factory or your distributor at once

TheDF S-1 contains static sensitive parts which may be damaged by careless handling of the printed circuit board. You can avoid this type of damage by al ways touching the frame of the drive before you touch the printed circuit board or any of its connections.

The DF S-1 is supplied for field installation in a protective bag. Bring the bag into contact with the motor controller frame before removing the board from the bag.

1.0 Connections

POWER CONNECTIONS:

POW ERTEC Brushless DC motor controllers are supplied with nominal input voltages of 230,380 , and 460 VAC . Three phase input power is required. The input is not phase sensitive Connect the appropriate power supply to the input fuses at L1, L2, and L3 (check nameplatefor proper input voltage and capacity).

Connect the output terminals T1, T2, and T3 to the respective terminals on the Brushless DC motor. It is very important that the T1 terminal on the motor connects to T1 on the drive, T2 of the motor connects to T2 of the drive, and T3 of the motor connects to T3 of the drive. An earth ground wire of the same gauge as the motor power leads or one gauge smaller (no smaller than \#4 AWG) must be run from a bolt
in the motor junction box to the ground terminal on the drive A wire must then be run from the ground terminal on the drive (next to the motor terminals) to an earth ground at or near the power source. The Model 1000 drive does not have the common circuitry connected to earth ground (chassis). In most cases this works best, but in some cases it does not. POW ERTEC recommends connecting a short jumper wirefrom the drive common at any one of the several places available on the terminal strips to a nearby point on the drive chassis or backpanel that will establish this ground. This is more important in applications where multiple drives are connected together or serial communi cations from a host are used. All other POW ERTEC drives have the common grounded by mounting screws on the regulator boards.

Figure 3: Basic connections to the DF S-1 controlled PO W ER TEC Brushless DC motor control, using the factory default settings for some of the inputs and outputs. Note that the speed pot input is the default, and that using the $4-20 \mathrm{~mA}$ input will require a change in the DF S-1 setup.

MOTOR ENCODER CABLE:

The motor encoder cable is connected to plug-in terminal strip TB1:A on the DFS-1 PC board. A shied ded cable must be used for the motor encoder cable. The recommended cable is a 9-conductor shielded cable (Belden Cable part \#9539 or equiva lent). The shied should be connected at the drive end to the shield terminal (TB1:A1) and to terminal 10 (if there is one) at the motor terminal strip and if not (as on motors built prior to A pril 1992), the shield should be cut off at the motor end and taped up.

TheDFS-1 PC Board contains all of the functions necessary to operate the Brushless DC motor control according to the inputs connected to its terminals and the programmed information in memory. The DF S-1 board takes care of all speed, torque, and control functions. It takes speed information from the encoder, environmental information and current (load) information from the power output circuits of the drive, and compares all that information to the input conditions and programmed parameters. It processes this information and turns the power transistors on and off according to the needs of the system

TheDFS-1 is delivered with an instal led set of default parameters which will allow it to operate with a standard set of connections (as illustrated in Figure 3) of thetypes used with standard motor controls.

However, these standard connections will not be in the same physical positions as they are in the standard control, and the default setting will not take care of any optional modes of operation.

There are three plug-in terminal strips on the bottom of the DFS-1 PC board label led in sections from left to right: TB1, TB2, and TB3. Though the three sections look like two rows of strips, there is a small separator between each of the sections. Each of the sections has an upper row (A) and a lower row (B). The B row is closest to the PC board. The terminals are numbered consecutively from left to right on each level.

ANALOG INPUTS:

There are two anal og input ports to the DF S-1 on TB1:B. When used as a voltage input, both of the analog inputs are a differential type of input with a minimum input impedance of 200 Kohms. When using one of the anal og inputs for a voltage input, the input common at terminal 1 on TB1:B should be used for shields.

When using an anal og input as a milliamp input, the $(-)$ side of the input (terminal 4 for Anal og Input \#1 or terminal 6 for Anal og Input \#2) should be connected to the common of the milliamp current source. The milliamp source should be connected to the (+) input (terminal 3 for Anal og Input \#l or terminal 5 for Anal og Input \#2).

Figure 4: Assignments of the DF S-1 terminals. There are default assignments, but any of the anal og and digital inputs and outputs (except the motor connections, power supplies, commons, emergency stop input, and frequency input) may be changed by setup.

The default speed reference input is A nal og Input \#l, located on TB1:B. The default input is for a 0 to +10 VDC for zero to full speed of the motor. Terminal 3 is the positive side of the input and terminal 4 is the negative side If the speed signal being used is externally supplied, the differential input will have a noise cancelling effect. Terminal 1 on TB1:B is a common for shields.

Reference sources of +10VDC and -10VDC are supplied on the terminal strips at TB2:B2 and TB2:B7, respectively. The default speed pot connections should be made as illustrated in figure 3. Notice that the (-) side of the differential input (terminal 4) is connected by a jumper to common (terminal 1), because the DF S-1 reference source is being used. If an external reference source is to be used, no jumper is necessary.

IN THE DEFAULT SETUP, ONLY ANALOG INPUT \# IS ACTIVE. WHILE THE OTHER ANALOG INPUT HAS A DEFAULT SETUP, IT IS NOT ACTIVE UNTIL THE USER CHANGES THE SETUP TO MAKE IT ACTIVE.

The microprocessor will look ONLY to Analog Input \#l for speed information until it is told to do otherwise in the setup program.

The other anal og input to the DFS-1 is at TB1:B (lower level) terminals 5 (+) and 6 (-). Both of the inputs may be programmed for one of six inputs as shown in the table bel ow.

4. Commset (value is set via Communica

 tions)5. Commanded speed

Anal og Output \#1 default is a -10 to +10 VDC signal representing motor speed. The outputs are on TB1:B terminals 8 (+) and 10 (-). The opposite polarity is available by a parameter change. Sethe description for parameters \#26 and \#27.

The default for A nal og Output \#2, terminals 9 $(+)$ and $10(-)$, is -10 to +10 VDC representing motor load, 0% to 150% load. The opposite polarity is available by changing a parameter.

The maximum output current for the anal og outputs is 20 milliamps.

FREQUENCY INPUT:

There is only one frequency input on the DF S-1. This input is used by the drive as the reference to follow when the drive is in the SLAVE Mode of operation. This input cannot be reassigned.

If the DF S-1 is in the MASTER mode, it will ignore the frequency input.

The Frequency input is located at TB2:A terminals $11(+)$ and $12(-)$. This input is a differential line receiver type intended to interface directly with another DF S-1, a BCDM AX or CRM-1. There may be multiple slaves connected to a single Master by

Input Signal Level	TB1:B (+) input term	TB1:B (-) input term	jumper terms	input impedance
-10 to +10 VDC	3 or 5	4 or 6	none **	200 Kohms
0 to +10 VDC	3 or 5	4 or 6	none **	200 Kohms
0 to +5 VDC	3 or 5	4 or 6	none **	200 Kohms
1 to +5VDC	3 or 5	4 or 6	none **	200 Kohms
0 to 20 mADC	3 or 5	1	4 or 6 to 1	250 ohms
4 to 20 mADC	3 or 5	1	4 or 6 to 1	250 ohms

ANALOG OUTPUTS:

There are two analog outputs on TB1:B. Each of the outputs may be programmed in several ways:

1. Disabled
2. Actual speed (value is proportional to motor speed)
3. Load output (value is proportional to motor load)
daisy-chaining the frequency referenceline. The last slave on the line should have the jumper at JP1 on the two rightmost pins. This inserts a terminating resistor at the end of the line to help eliminate electrical noisefrom the system. All others should beon the two leftmost pins.

Contact POW E R TEC'sApplication Engineering Department before trying to use another type of frequency on this input.

FREQUENCY OUTPUT:

There are two outputs avai lable to supply a frequency for external use

The first is located at TB2:B terminal $10(+)$ and $11(-)$. This is an output which is intended to provide a reference frequency input for another DFS-1, BCDM AX or CRM -1. This output is not compatible with the DI GIMAX. It will provide a signal of $H-$ 1.5 V minimum when connected to another DFS-1's reference frequency input. This output on a unit configured as a master, operates at 16 times the frequency of the motor speed output reference. There is a 120 ohm termination resistor built into the output for transmission linetermination.

When operating the DFS as a slave, the output frequency is internally divided by 16 in addition to being multiplied by the set ratio from the slave As a consequence, the frequency output from a DFS slave cannot be used as the reference to another DFS slave without some way of first multiplying this frequency by 16. POW E R TEC's CascadeRatio Multiplier option board (4001-153430-XXX) can be used for this purpose. Contact the factory for any frequency following application which requires a reference source other than a master DFS.

The other frequency output is at TB2:B13. This is a 24 VDC peak square wave referenced to the DFS1 common (TB2:B14). This signal is at the motor speed output reference frequency and may be used to interface with a DIGIM AX or a BLDC motor control. This output sources a maximum of 10 mA and can sink 30 mA .

DIGITAL INPUTS:

There are eight digital control inputs on TB2:A as well as a +24VDC supply (TB2-A14) and common (TB2-A1). The eight inputs are optical isol ator input di odes with a common cathode connection at TB2-A2. When the +24VDC, DF S-1 supply is used to power the inputs, TB2:A 2 must be jumpered to the 24VDC common terminal on TB2:A1.

The functions of all inputs are programmable except Emergency Stop (TB2-A3). All digital inputs are el ectrically isol ated from the DF S-1 power supplies and common when an external power supply is used to power the digital inputs (such as froma PLC).

The default parameter setup is for a set of standard motor controller input connections on TB2:A terminal strip (seefigure 3 on page 3).

Five of the inputs are set up for standard pushbutton operation of the DFS-1. They are:

Run	$4(+)$
Preset	$5(+)$
UP (increase)	$6(+)$
DOWN (decrease)	$7(+)$
Reverse	$8(+)$

All of these inputs are referred to TB2-A 2. Note that TB2-A2 (the common cathode connection) must be jumpered to common (TB2:A1) in the basic connections.

Each of these inputs will take a +24 VDC input (no more than 30VDC, not less than 18VDC). If an external source of +24 VDC is used, TB2-A2 on the upper level must be connected to the negative side of the external source.

Figure 5: Slaving DF S-1 units with the Reference F requency Output.

The programmable inputs (TB2-A4 through TB2-A10) may be programmed for jog, thread, or other preset speeds. The inputs may al so be used to change torque levels, trim values, or ramp rates. Any val ue which can be affected by a parameter can be changed by a digital input.

DIGITAL OUTPUTS:

Digital outputs are located on TB2:B. Thefour outputs are normal ly open relay contacts. The contacts are rated at 120VAC at 1 amp, resistive.

The default setup assigns the outputs as follows:
Digital Out \#l Run
Digital Out \#2 No Fault
Digital Out \#3 At Speed
Digital Out \#4 Reverse These assignments may be changed by parameters.

All of the digital outputs are programmable and may be configured as Normally Open or Normally Closed. If more than one contact is required for a certain function, an external relay may be used, or more than one output may be programmed for the samefunction.

COMMUNICATIONS:

The standard communi cations for the DF S-1 is the EIA standard RS-485 communi cations format over a single twisted pair cable into TB3:A terminals 1 and 2 . Terminal 3 is for the shield. DO NOT CONNECT TERMINAL 3 TO GROUND! Maximum all owable distance for twisted pair operation is 4000 meters (about 12,000 feet). Maximum nodes without repeaters is 32. M aximum communi cations rate is 38.4 kilobaud. The last unit on the commline should have a jumper at J P2 on the rightmost 2 pins. All other units should have the jumper on the leftmost two pins.

There is an RS-485 local programming input at TB3:B for an optional keypad display unit.

R S485 Communications C onnections:

Most host or converter devices (including the RS232/485 converter made by P OW ERTEC) include 1.2 Kohm pull up resistors which insure rx-tx- is pulled down to ground and rx/tx+is pulled up to +5 V when the line is inactive (tristated). This ensures the high impedance (floating) line does not change state due to noise when the line is not being driven. No matter how many units are connected in the network, only one such set of pull ups should be installed.

NOTE: The Allen Bradley RS485 connections on their coprocessor module for the Series 5 PLCs do not provide these pull ups and must be installed or noise will prevent proper communications.

This page was intentionally left blank.

The concept behind the DF S-1 callsfor fully programmable inputs and outputs. The ability to change anal og and di gital inputs and outputs at will lends a whole new meaning to the word "flexibility".

POW ERTEC has established a set of "default" parameters which will leave the setup of theDFS-1 in a way that will operate a motor in the basic configuration (seefigure 3 on page 3 and figure 4 on page 4). There are two good reasons for doing this:

1. This default setup allows the user to connect and operate a motor using common, everyday connections without having to program the DF S-1 prior to its initial use.
2. The default setup provides a baseline to which the user can return if it appears that something is wrong with either the user's setup or the motor control. There is a command which all ows the "reset" of the setup to the default configuration.

This page was intentionally left blank.

2.0 Specifications

POWER SUPPLIES

+24VDC • Availableat TB2:A14, and TB2:B1.

- The combinationis fusedat250milliamps (mA). The fuse is self-heal ing.
- The opening of thefuse alerts themicroprocessor.
- These supplies should only be used for push-buttons, relays, PLC outputs, etc. which interface directly with the DF S-1. They should not be used as general purpose supplies.
+10 VDC - Reference supply available at TB1:B2. This output is rated at 100 mA . This output is current limited and thermally protected.
-10VDC • Reference supply available at TB1:B7. This output is rated at 100 mA , current limited and thermal ly protected.
+5 VDC - Supply for motor encoder available at TB1:A9. This supply is fused at 100 mA with a self-heal ing fuse. When the fuse opens, it alerts the microprocessor.

THIS SUPPLY IS FOR THE MOTOR ENCODER ONLY!

ANALOG INPUTS

1.0 There are two analog inputs on TB1:B. (see section 1.2, page4)
2.0 Each input may be set up in one of several modes.
3.0 Pre-programmed modes are:
3.1 General purpose Input
3.2 Speed Reference Input
3.3 Trim (dancer or load cell) Input
3.4 Extemal Motoring TorqueLimit
3.5 Extemal Regenerative TorqueLimit
3.6 Horsepower Mode
4.0 The mode of the input is set by parameter (\#17 for Anal og Input \#l and parameter \#21 for Analog Input \#2).
5.0 Each of the two inputs may be set up one of six ways:

1.	-10 to +10	VDC
2.	0 to +10	VDC
3.	0 to 5	VDC
4.	1 to 5	VDC
5.	0 to 20	mADC
6.	4 to 20	mADC

6.0 Setup is by parameter selection (\#18 for Anal og Input \#1 and parameter \#22 for Analog Input \#2).
7.0 Voltage inputs are a differential input connection.
8.0 Input impedance of each input in voltage input mode is 200 Kilohms minimum.
9.0 Input impedance in milliamp input mode is 250 ohms.

Factory default setups are included so that the DF S-1 does not have to be programmed prior to its initial use Factory defaults are only one of the many ways the DF S-1 can be set up.

Default setups are as follows:
INPUT SETUP FUNCTION

1. 0 to +10 VDC Speed Reference Input
2. -10 to $+10 V D C$ General Purpose Input

ANALOG OUTPUTS

1.0 There are two anal og outputs on TB1:B.
2.0 The anal og outputs may be programmed for one of five modes:
2.1 Disabled
2.2 Motor Speed Output-10 to +10VDC =0 to 100\% (A ctual Motor Speed)
Default - Analog Output \#1
2.3 Motor Load Output -10 to +10VDC =0 to 150%
Default - Anal og Output \#2
2.4 Set by Communications Link
2.5 Commanded M otor Speed
3.0 Output impedance is less than 100 ohms.
4.0 Maximum output voltage is + - 10 VDC.
5.0 Maximum current is 25 mADC .

FREQUENCY INPUTS AND OUTPUTS

There is one frequency input and there are two frequency outputs available

INPUT
\#l REFERENCE FREQUENCY INPUT
TB2:A Terminals 11 (+) and 12 (-).

- This is a line receiver type input which must be driven by a differential line driver output.
- This frequency input requires a frequency 16 times the feedback from the motor.
- Thefeedback from the motor is normally 120 PPR for 4 pole motors and 240 PPR for 8 pole motors.
- Normal input is 56 Kilohert for 0 to full speed for a 1750 RPM motor with a 120ppr encoder.
- Terminal 13 is for the shield. Do not ground terminal 13 directly. It is internally terminated.

OUTPUTS
\#l REFERENCE FREQUENCY OUTPUT TB2:B Terminals $10(+)$ and 11 (-),

- This is a differential line driver output which must be used with a differential line driver input.
- This frequency output is 16 times the reference frequency to the motor.
- This output may drive up to 32 receivers.
- Connect the shield to terminal 12. This will ground the shield internally.
\#2 MOTOR SPEED FREQUENCY OUTPUT TB2:B Terminals 13 (+) and 14 (common),
- This output is a +24 VDC peak square wave at the motor feedback pulse rate, which is 2 times RPM for 4 pole motors and 4 times RPM for 8 polemotors.

The reference frequency input and output are capable of receiving and sending at up to 1 Megahert.

Motor Speed output emits frequencies up to 100 Kilohert.

DIGITAL INPUTS

The eight digital inputs of theDF S-1 are optically coupled requiring $+24 \mathrm{VDC}(H-6 \mathrm{VDC})$ at about 5 mA each. These inputs are isolated from the common of the board.

All inputs are programmable as to function, EXCEPT the EMERGENCY STOP input Inputs \#l through \#7 may be assigned as general purpose inputs.

The defaults are as follows:

TB2:A terminal 3(+)	Emergency Stop
(Cannot be reassigned)	
TB2:A4(+)	Run
TB2:A5(+)	Preset Speed
TB2:A6(+)	Up (Increase)
TB2:A 7(+)	Down (Decrease)
TB2:A8(+)	Reverse
TB2:A 9(+)	Frequency Mode
TB2:A10(+)	Local/Remote

Inputs \#l through \#7 may also be programmed for inverted input, i.e, active when input is low.

DIGITAL OUTPUTS

There are four dry contact outputs from the DF S-1. All of these outputs are on TB2:B. All outputs are programmable as to function, and all outputs may be set up as either normally open or normally closed.

Each relay output has a single, isol ated, contact output which may be programmed as normally open or normally closed, with the contact rated at 1 Amp, 125VAC resistive

The default assignments are as follows:
DO 1. TB2:B terminals 2 and 3 Run relay contact Closed whilerunning
DO 2. TB2:B terminals 4 and 5 No fault relay Closed while no faults
DO 3. TB2:B terminals 6 and 7 At Speed relay Closed when at speed
DO 4. TB2:B terminals 8 and 9 Remote M ode Closed when in Remote

COMMUNICATIONS

Standard: RS-485
Data Rates: 300, 600, 1200, 2400, 4800, 9600, 19.2K , and 38.4 K baud

Addresses: 1 to 255
Protocols: POW ERTEC Binary protocol
Distance: 4000 meters (about 12,000 feet) maximum with twisted pair shielded cable
Nodes: 32 maximum

This page was intentionally left blank.

3.0 DFS-1 Parameters

DF S-1 parameters are stored as DOUBLE WORD values (32 bits), regardless of the actual size of the data. This method is used to simplify the entire system at a cost of a little extra data storage

A double word consists of four BYTES (8 bits). Each byte is a hexadecimal (base 16) val ue which ranges from 00 h (0 decimal) to FFh (255 decimal). The largest number used in the DFS-1 parameters is 99,999 decimal, which, in hexadecimal notation is 0001 869Fh.

In many cases, information other than numbers is passed and stored in the parameters. The left byte is the most significant and the last byte is the least significant. The arrangement of the bytes for this purpose is: VL4VL3VL2 VL1 whereVL4 is the Most Significant Bit (MSB) and VL1 is the Least Significant Bit (LSB). Each parameter breaks down the bytes accordingly.

All four bytes are required in communications. A number which must beeither 0 or 1 must be passed as either 00000000 h or 00000001 h .

1 UNIT ID
USE PARAMETER \#I TO IDENTIFY THE ADDRESS OF THE UNIT ON A NETWORK. RANGE OF VALUES: 0000 0001h to 0000 00FFh 1 to 255 (decimal)
Default Value: 00000001 h 1 (decimal)
The Unit ID number is installed in parameter \#l. This serves as an address on the external communica tions link. Two DFS-1 units cannot have the same address while instal led on the same communi cations link.

There are 254 possible addresses if the default val ue of 1 is not used as an address. Since the default val ue is 1 , there could be a problem if a new unit is instal led without changing the \#l parameter.

2. BAUD RATE

USE PARAMETER \#2TO SET THE COMMUNICATIONS SPEED OF THE NETWORK. RANGE OF VALUES: 0000 0000h to 00000007 h 0 to 7 (decimal)
Default Value: 00000002 h 2 (decimal)
This establ ishes the rate at which data is exchanged in the communi cations link. Every DF S-1 in the communi cations link must have the same baud
rate set up in parameter \#2. The parameter sel ects from among eight industry standard baud rates:

$$
\begin{array}{ccc}
\text { NUMBER } & \text { BAUD RATE } & \\
0000 \text { 0000h } & 38.4 \text { Kilobaud } & \text { (} 38,400 \text { baud) }) \\
\ldots .01 & 19.2 \text { Kilobaud } & \text { (} 19,200 \text { baud) } \\
\ldots .02 & 9,600 & \text { baud } \\
\ldots .03 & 4,800 & \text { baud } \\
\ldots .04 & 2,400 & \text { baud } \\
\ldots .05 & 1,200 & \text { baud } \\
\ldots .06 & 600 & \text { baud } \\
\ldots .07 & 300 & \text { baud }
\end{array}
$$

3. LOCAL / REMOTE CONTROL USE PARAMETER \#3TO SET UP WHICH FUNCTIONS ARE CONTROLLED REMOTELY. RANGE OF VALUES: 0000 0000h to 0000 007Fh 0 to 127 (decimal)
 Default Value: 00000000 h 0 (decimal)

Parameter \#3 is first broken down into bytes, and then VL1 is further broken down into bits.

When broken down into bits, $00 \mathrm{~h}=00000000 \mathrm{~b}$, and 7Fh $=0111$ 1111b.

VL4 is al ways 00h.
VL3 is al ways 00 h .
VL2 is al ways 00 h .
VL1 is broken down into eight bits, which are numbered from right to left: 7654 3210h.

Functions are assigned as follows:
BitPosition Function
7 NOT USED
6 Master/Slave (not presently functional)
5 Frequency Mode
4 Reverse
3 Down
2 Up
1 Preset
0 Run
A zero in a bit position means that function may be controlled from an input terminal assigned to it. A one in a bit position means that the function may only be controlled via a communi cations link, such as the operator's station connection or the external RS485 communications link.

For instance, if VL1 is given a val ue of 01 (0000

0001b) , the Run FUNCTION cannot be controlled from the terminal strip, but can only be controlled through the external communications link or the local commlink (keypad display unit).

If VL1 has a value of 73 (0111 0011b), all functions except UP and DOWN are controlled remotely.

NOTE: Parameter \#3 ONLY determines whether a FUNCTION is controlled locally or remotely. This parameter has nothing to do with the assignment of functions to terminals.

Any input function can be assigned to any input terminal with the exception of the Emergency Stop input. The Emergency stop function is hard-wired on the DF S-1 board and cannot be changed by either programming or parameters.

If the RUN function is assigned to an input terminal, and this parameter is set to remote the RUN function control, the terminal will beIGNORED.

4. COMMUNICATIONS PROTOCOL

USE PARAMETER \#\#TO IDENTIFY THE NETWORK COMMUNICATIONS LANGUAGE. RANGE OF VALUES: 0000 0000h to 0000 0001h 0 to 1 (decimal)
Default Value: 00000000 h 0 (decimal)
At the present time, the only communications protocol avail able is Powertec's Binary protocol. This parameter has been included with the intent of providing alternative protocols at some time in the future

5. MODES OF OPERATION

USE PARAMETER \#5TO SET UP MASTER/ SLAVE AND TORQUE LIMITING MODES. RANGE OF VALUES: 0000 0000h to 0003 0002h no decimal significance
Default Value: 0000 0000h no decimal significance

This parameter is a dual purpose command used to set operational modes of the DFS-1:

VL2 VL1 sets the basic operation of the board. There are three modes of basic operation used to determine where the speed and/or torque commands originate:

0000h MASTER mode (the board generates its own speed/torque based on its parameters)
0001h SLAVE mode(the board follows an external signal in direct proportion)
0002h INVERSE Slave mode (board follows an extemal signal in inverse proportion)

The DFS-1 board in MASTER modegenerates its own speed and torque commands.

In SLAVE mode the board follows a reference frequency at TB2:A terminals $11(+)$ and $12(-)$, which should be nominally 16 times the desired speed of the motor. This signal is available from another DF S-1 board or froma BCDM A X board. It may also come from another source which has a compatible line driver output. (Seethe description for frequency input el sewhere in this manual).

In INVERSE slave mode, the board follows the external frequency in a proportion of 1/RATIO. Instead of setting a di rect ratio of 0.5000 , a ratio of 2.0000 may be entered for half speed. This is useful in cases requiring draw settings where the slave is physically located before the master, which is set for line speed.

VL4VL3 contains information on modified operational modes in which the torque in the motor is limited bel ow the current limit level (current limits are al ways set by parameters 44 and 45). These optional modes are defined as follows:

0000h Normal current limits (motor current not limited at a lower level)
0001h Motoring torque setpoint (motoring current to be limited at a lower leved)
0002h Regenerative torque setpoint (regenera tive current to belimited at a lower level)
0003h Horsepower setpoint (the product of motor current and motor speed is limited)
0004h through 000Fh avail able for future use
When in the normal mode, the current in the motor is not controlled bel ow current limit.

If one of the modified operational modes is chosen, the torque/horsepower setpoint is selectable in one of three places:

1. Anal og Input \#1 (must beset up in parameter \#17)
2. Anal og Input \#2 (must be set up in parameter \#21)
3. The Set Application Mode (8F) Command via communi cations
If one of these three setpoints is not present, the setpoint defaul ts to the appropriate current limit level.

6. MAXIMUM MOTOR SPEED

USE PARAMETER \#6TO SET THE ABSOLUTE MAXIMUM MOTOR SPEED.
RANGE OF VALUES: 0000 0001h to 0000 2710h 1 TO 10,000 (decimal)
Default Value: 0000 06D6h 1750 (decimal)
The maximum motor speed parameter is set directly in Revolutions Per Minute (RPM) once the Encoder Pulses Per Revolution (PPR) is set in parameter \#7. If the incorrect PPR is set in parameter \#1, the maximum motor speed will not be correct and the motor may overspeed or not be able to go fast enough.

The maximum motor speed is normally the number given on the nameplate of the motor. This number may be set higher than the motor nameplate in some situations because the Brushless DC motor is capable of some overspeed with light loads.

This parameter may be set to a value which is lower than the motor's base speed in cases where it is not desired to use the full speed of the motor.

7. ENCODER PULSES PER REVOLUTION

USE PARAMETER \# TO ESTABLISH THE PULSE FEEDBACK RATE FROM THE MOTOR. RANGE OF VALUES: 0000 0001h to 0000 4E20h 1 TO 20,000 (decimal) Default Value: $00000078 \mathrm{~h} \quad 120$ (decimal)

This parameter tells the DF S-1 the resolution of the encoder in Pulses Per Revolution (PPR). This is normally four times (4X) the rate of one channel of the motor's encoder.

Motors from the 42 frame through the 259T frame have a 30 PPR, two channel, quadrature internal encoder. For these motors using the internal encoders the parameter should be set to 120 PPR.

Motors from 287TZ through 5010ATZ have an internal 60 PPR, two channel, quadrature encoder. The parameter for these motors using the internal encoders should be set to 240 PPR.

External encoders may have al most any PPR rate, and they must have two channels in quadrature (the channels have the same pulse rate, but they are 90° out of phase with each other). The pulse rate will be on the ENCODER nameplate.

Encoders with higher pulse rates are normally used to obtain lower speeds and/or finer resolution of motor shaft position. The most common external encoder on POW ER TEC motors is a 600 PPR, two channel, quadrature optical encoder. For this encoder the PPR in this parameter will be 2400 .

For other encoders, multiply the pulse ratefor one channel (the usual number given on the nameplate) by four and enter that number in this parameter.

This parameter may not be changed while running. Attempting to change this parameter while running will result in the effect being del ayed until the next time a setpoint command is given or until the control is stopped. Changing this number will drastically affect the cal ibration of the system.
(Also see Parameter 46)

8. MASTER RAMP UP TIME

USE PARAMETER \#BTO SET THE TIME TO RAMP FROM ZERO TO FULL SPEED.
RANGE OF VALUES: 00000001 h to 0003 E418h 1 TO 255,000 (decimal)
Default Value: 0000 2710h 10,000 (decimal)
This is the acceleration time fromzero speed to full speed in the MASTER mode. Thetime may be set from 1 millisecond (.001 sec .) to 255 seconds. The default is 10 seconds ($10,000 \mathrm{mSec}$).

The acceleration rate is cal cul ated from zero to maximum motor speed (parameter 6). This rate is used when the speed command in MASTER mode is changed from a lower speed (including 0) to a higher speed.

If the change in speed is from zero speed to full speed, the full amount of time will be used. If the change is from 25% speed to 75% speed, it will take $1 / 2$ of the time set in this parameter to reach the new speed. If the change is from 80% speed to 90% speed, it will take 1/10th the time in this parameter.

The acceleration rate does not affect the JUMP UP change in speed.

9. MASTER RAMP DOWN TIME

USE PARAMETER \# TO SET THE TIME TO RAMP FROM FULL TO ZERO SPEED.
RANGE OF VALUES: 00000001 h to 0003 E418h 1 TO 255,000 (decimal)
Default Value: 0000 2710h 10,000 (decimal)
This is the decel eration rate in the MASTER mode The rate may be set from 1 millisecond (. 001 sec .) to 255 seconds. The default is 10 seconds.

The rate is cal cul ated from maximum speed (parameter 6) to zero speed. This rate is used whenever the speed command in the MASTER mode is changed from a higher speed to a lower speed (including 0).

If the change in speed is from full speed to zero speed, the full amount of time will be used. If the change is from 75% speed to 25% speed, it will take $1 / 2$ of the time set in this parameter to reach the new speed. If the change is from 80% speed to 90% speed, it will take 1/10th the time in thi s parameter.

The deceleration rate does not affect the J UMP DOWN change in speed.

10. SLAVE RAMP UP TIME

USE PARAMETER \#OTO SET THE UP RAMP TIME WHEN THE RATIO IS CHANGED. RANGE OF VALUES: 0000 0001h to 0003 E418h 1 TO 255,000 (decimal)
Default Value: 0000 2710h 10,000 (decimal)
This is the accel eration rate in the SLAVE mode. The rate may be set from 1 millisecond (.001 sec .) to 255 seconds. The default is 10 seconds (10,000 mSec).

This parameter sets a rate determined by the amount of time it takes to change from a ratio of 0.0000 to a ratio of 1.0000 . This rate is used whenever the ratio setpoint in the SLAVE or INVERSE SLAVE mode is changed froma lower ratio (including 0) to a higher ratio.

This rate does not affect the rate at which the DFS-1 responds to changes in the referencefrequency, nor does it affect the ratio when the drive is started as a slave if parameter \#54 is set to Freeze.

This rate does not affect the SlaveJUMP UP time.

II SLAVE RAMP DOWN TIME

USE PARAMETER \#11 TO SET THE down RAMP TIME WHEN THE RATIO IS CHANGED. RANGE OF VALUES: 00000001 h to 0003 E418h

1 TO 255,000 (decimal)
Default Value: 0000 2710h 10,000 (decimal)
This is the deceleration rate in the SLAVE mode The rate may be set from 1 millisecond (.001 sec .) to 255 seconds. The default is 10 seconds (10,000 mSec).

This parameter sets a rate determined by the amount of time it takes to change from a ratio of 1.0000 to a ratio of 0.0000 . This rate is used whenever the ratio setpoint in the SLAVE or INVERSE SLAVE mode is changed from a higher ratio to a lower ratio (including 0).

This rate does not affect the rate at which the DFS - 1 responds to changes in the reference frequency, nor does it affect the ratio when the drive is stopped as a slave if parameter \#54 is set to Freeze This rate does not affect the slave JUMP time.

12
 MASTER PRESET SPEED

USE PARAMETER \#12 TO SET A PRESET SPEED WHICH CAN BE TOGGLED IN AND OUT. RANGE OF VALUES: 0000 0000h to 0000 2710h 0 TO 10,000 (decimal)
Default Value: 0000 00C $8 \mathrm{~h} \quad 100$ (decimal)
The MASTER preset speed is the speed to which the motor will go when a PRESET input is activated on one of the Digital inputs (any of the seven digital inputs may be programmed as a PRESET input) when the DF S-1 is in the MASTER mode. If more than one input is programmed as a PRESET input, they must both be present to activate the PRESET Speed function (the inputs are logi cally ANDed).

13 SLAVE RATIO PRESET

USE PARAMETER \#13TO SET A PRESET RATIO WHICH CAN BE TOGGLED IN AND OUT.
RANGE OF VALUES: 0000 0000h to 0001 869Fh 0 TO 99,999 (decimal)
Default Value: 0000 2710h 10,000 (decimal)

The SLAVE prese ratio is the ratio to which the motor will go when a PRESET input is activated on one of the Digital inputs (any of the seven digital inputs may be programmed as a PRESET input) when the DF S-1 is in the SLAVE mode. If more than one input is programmed as a PRESET input, they must both be present to activate the PRESET Speed function (the inputs are logically ANDed).

Note: For all ratio setpoints, 4 decimal places are implied. Therefore, the maximum ratio setpoint is 9.999.

14. ENGINEERING UNITS

USE PARAMETER \#14TO SET THE ENGINEERING UNITS AT MAXIMUM MOTOR SPEED.
RANGE OF VALUES: 0000 0001h to 0001 869Fh 1 TO 99,999 (decimal)
Default Value: 0000 06D6h 1750 (decimal)
Engineering Units (EGU) define the relationship between motor speed or torque and process reference points. It al lows setting and reading of parameters in terms other than speed and torque. The basic rela
tionship between motor speed and EGU is defined in parameter \#14, which sets the val ue of EGU's at full motor speed. This parameter is used to determine the relationship between units of commanded speed and RPM. The number entered in this parameter is equivalent to the number in parameter \#6. This allows the user to enter speed commands in engineering units (such as Feet Per Minute, Yards Per Minute, etc).

Speed commands entered by commands \#82 and \#84 are entered in terms of this parameter. If the value of this parameter is the same as the value of parameter \#6, then there is a 1:1 relationship between the Engineering Units and the RPM (i.e, enter 1750 (06D6h) as a speed command for 1750 RPM).

However, if this parameter is set to 1000 (03E8h) and \#6 is set to 1750, then the relationship is 1:1.75. Entering 1000 (03E8h) as a command results in 1750 RPM, but entering 500 (01F4h) results in 875 RPM.

15. BASE RATIO

USE PARAMETER \#15 TO SET THE "GEAR RATIO" OF THE MOTOR IN A SLAVE SY STEM. RANGE OF VALUES: 0000 0001h to 0001 869Fh 1 TO 99,999 (decimal) Default Value: 0000 2710h 10,000 (decimal)

This is the "gearing" ratio which corrects for the mechani cs of the system and also for differences in motor speeds. The output frequency at TB2:B terminals $10(+)$ and $11(-)$ is determined by the settings of the maximum motor speed (parameter \#6) and the encoder PPR (parameter \#7). The output frequency will be:

Output ReferenceFrequency $=$ Motor max RPM x Encoder PPR x 16 / 60

A 1750 RPM motor with a 120 PPR encoder puts out a reference frequency of 56 Kilohert. This frequency varies with the commanded speed. When this frequency is used as a reference, it is first multiplied by the base ratio, and then by the SETPOINT. These steps change the frequency to the proper level.

For example, it is generally useful in a slave system to be able to enter a SETPOINT of 1.0000 on
the slave unit to match the line speed, motor speed, or section (master). Many times, however, the gearing between the slave motor and the surface of a roll is not the same as the master, or the diameter of the rolls vary from section to section, or motors of different RPM's may have to betracked. The BASE RATIO is a correction factor which allows the SETPOINT to be adjusted.

Thefollowing are other examples of how the Base Ratio parameter is used: if a standard 2500 RPM motor is to follow a standard 1750 RPM motor, and both motors must attain their full speed at the sametime, and a setpoint of 1.0000 is desired, enter 1.4826 (2500/1750) into parameter \#15 to make the follower motor go 48.26\% faster when the setpoint is 1.0000.

If the surface speed of a lead roll is 100 FPM at 1750 RPM (4-pole motor, 120 PPR encoder), and the surface speed of the follower roll is 100FPM at 1550 RPM (4-pole motor, 120 PPR encoder), enter 0.8857 in parameter \#15 to make the follower roll go 88.57% of the speed of the lead when the setpoint is set to 1.0000 .

If the lead motor is a $100 \mathrm{HP}, 1750$ RPM (8-pole, 240PPR), and the follower is a $5 \mathrm{HP}, 3000$ RPM (4pole, 120 PPR) motor, the reference output frequency of the lead is $1750 \times 240 * 16 / 60=112 \mathrm{kHz}$. The follower motor needs a frequency of $3000 \times 120 *$ $16 / 60=96 \mathrm{kHz}$ to operate at a 1.0000 setpoint. Therefore the maximum 112 kHz must be reduced to a maximum of 96 kHz by setting the base ratio to 0.8571.

If the SETPOINT needs to be something other than 1.0000, make a proportional adjustment in the base ratio. If the desired SETPOINT is 2.0000 , use a base ratio of $1 / 2$ of the val ue necessary for a 1.0000 setpoint.

16. MAXIMUM RATIO

USE PARAMETER \#16TO SET THE HIGHEST ALLOWABLE RATIO IN A SLAVE SY STEM. RANGE OF VALUES: 0000 0001h to 0001 869Fh 1 TO 99,999 (decimal)
Default Value: 0001 869Fh 99,999 (decimal)
Set the maximum ratio in the system if it is to be lower than the default, which is the absolute maximum

Note: For all ratio setpoints, 4 decimal places
are implied. Therefore, the maximum ratio setpoint is 9.999.

17. ANALOG INPUT \#1 MODE SELECT

USE PARAMETER \#17TO SELECT THE PURPOSE OF A SIGNAL AT ANALOG INPUT \#l.
RANGE OF VALUES: 0000 0000h to 0000 001Fh 0 TO 32 (decimal)
Default Value: 00000001 h 1 (decimal)
Analog Input \#l is a general purpose input which may be programmed for one of several modes of operation. The mode affects how the signal is used for setting or changing of the motor's speed and/or torque.

The following modes are provided for:
0000 0000h General Purpose Input - can be read via the COMM port
0000 0001h Speed Reference input - Sets the speed of the motor (see below)
0000 0002h Trim Input - may be used for dancer or other transducer input (not yet implemented)
0000 0003h External Torque Limit, Motoring Used in conjunction with parameter \#5
0000 0004h External Torque Limit, Regenera-tive- Used in conjunction with parameter \#5
00000005 h External Horsepower Limit- Used in conjunction with parameter \#5
00000006 h to 0000001 Fh Undefined Reserved for future use

If an undefined mode (...06h through ...1Fh) is selected, A nal og Input \#l will be inoperative.

The type of input is selected by parameter \#l8. Each type of input has a lowest val ue and a highest value.

The effective range of the input is set by parameters \#19 and \#20. Parameter \#19 sets the low threshold level and parameter \#20 sets the highest effectivelevel. These two levels are set in EGU (see parameter \#14).

As a general purpose input (... 00h) Analog input \#l may be used by the programto sense any anal og signal representing an external parameter for use by the program.

As a Speed Reference input (...01h), Anal og input \#l sets the speed of the controlled motor directly if the DF S-1 is set up in Master Mode (parameter \#5 - VL2 VL1).

If the DFS-1 is in SLAVE mode, Anal og Input \#l, when set to ...O1h will act as a Ratio SETPOINT.

The External Torque Limits are used to set limits on the motor current which are bel ow the current limit level. When parameter \#5 VL4 VL3 is set to 00 01 h , or 0002 h , A nal og Input \#l may be set to ... 03 h or ...04h respectively to supply the torque limiting reference.

The External Horsepower Limit sets the maximum horsepower produced by the drive. Horsepower is the PR ODUCT of speed and torque. When motor speed is low, motor current is high, and when speed is high, current is low. The drive increases speed until sufficient load is devel oped and the product of load and speed equals the setpoint. After that is achieved, increasing load reduces speed, and decreasing load increases speed.
18. ANALOG INPUT \#1 SIGNAL CONDITIONING

USE PARAMETER \#17 TO SELECT THE FORM OF THE SIGNAL AT ANALOG INPUT \#l. RANGE OF VALUES: 0000 0000h to 0000 001Fh 0 TO 32 (decimal)
Default Value: 0000 0001h 1 (decimal)
Six types of signals will be accepted by Anal og Input \#l. Parameter \#18 selects the form of signal to be processed.

The six types of signals are: $00000000 \mathrm{~h} \quad-10 \mathrm{VDC}$ to +10 VDC
bipolar voltage input with zero
center value
0000 0001h 0 to +10 VDC unipolar voltage signal
0000 0002h 0 to +5VDC unipolar voltage signal
0000 0003h 1 to +5 VDC unipolar voltage signal
00000004 h 0 to 20 mA unipolar current signal 00000005 h 4 to 20 mA unipolar current signal

0000 0006h to 0000 001Fh Undefined - Reserved for future use

If an undefined mode (... 06 through ...1F) is selected, Anal og Input \#l will be inoperative.

Choosing the incorrect signal conditioning for the actual input signal will result in erratic operation.
19. ANALOG INPUT \#1 LOW ENGINEERING UNITS (EGU)

USE PARAMETER \#17 TO SELECT THE THRESHOLD OF ANALOG INPUT \#1 EFFECT. RANGE OF VALUES: FFFE 7961h to 0001 869Fh -99,999 to +99,999(dec.)
Default Value: 00000000 h 0 (decimal)
(See Parameter 14 for the definition and purpose of EGU)
Parameter \#19 sets the threshold level for effectiveness of A nal og Input \#l at the lowest signal level.

Assume that the maximum speed of the 1750 RPM motor is set to 12500 EGU's in parameter \#14 (representing, perhaps, 125.00 RPM on an extruder screw) and the A nal og input is set for a Speed Reference Input of 0 to +10 VDC . The default value of parameter 19 is 0 . This means that when OVDC is present at Anal og Input \#1, the result will be zero speed.

Now, if we want to set a minimum speed on this system, we can set a value of 500 in parameter \#19. This means that when OVDC is present at Anal og Input \#l, the motor will run at a speed of 500/12500 or 4 percent (70 rpm) of the maximum speed of the motor. (see al so parameter \#20).

20. ANALOG INPUT \#1 HIGH ENGINEERING UNITS (EGU)

USE PARAMETER \#\#8TO SELECT THE MAXIMUM ANALOG INPUT \#1 EFFECT.
RANGE OF VALUES: FFFE 7961h to 0001 869Fh $-99,999$ to $+99,999$ (dec.)
Default Value: 0000 06D 6 h 1750 (decimal)
(See Parameter 14 for the definition and purpose of EGU)
Parameter \#20 sets the maximumlevel for effectiveness of Anal og Input \#l at the highest signal level.

Assume that the maximum speed of the 1750 RPM motor is set to 12500 EGU's in parameter \#14 (representing, perhaps, 125.00 RPM on an extruder screv) and the A nal og input is set for a Speed Reference Input of 0 to +10 VDC . The default value of parameter 20 is 1750 . This means that when 10VDC is present at A nal og Input \#1, the resulting speed will be 1750/12500 $=14$ percent of maximum speed, or 245 RPM.

Now, if we want to set the maximum speed of this system at 100.00, we set a val ue of 10000 in parameter \#20. This means that when 10VDC is present at A nalog Input \#1, the motor will run at a speed of 10000/12500 $=80$ percent of the maximum speed of the motor, or 1400 RPM. (see also parameter \#19).

2 ANALOG INPUT \#2 MODE SELECT

USE PARAMETER \#21 TO SELECT THE PURPOSE OF A SIGNAL AT ANALOG INPUT \#2. RANGE OF VALUES: 0000 0000h to 0000 001Fh 0 TO 32 (decimal) Default Value: 00000000 h 0 (decimal)

See parameter \#17. The operation of Analog Input \#2 is identical to the operation of Anal og Input \#1, EXCEPT the parameters which set the form of the input signal (\#22) and low and high EGU's (\#23 and \#24).

Both Anal og Inputs \#l and \#2 may be set up as General Purpose Inputs, but all other modes are mutual ly exclusive. If one of the Anal og Inputs is set up as a Speed Reference Input, the other Anal og

Input may not be set up as a Speed Reference Input. Attempting to set up a second Anal og Input as a Speed Reference Input when one is al ready set up in that mode will cause the second input to beinopera tive

22. ANALOG INPUT \#2 SIGNAL CONDITIONING

USE PARAMETER \#17TO SELECT THE FORM OF THE SIGNAL AT ANALOG INPUT \#l.
RANGE OF VALUES: 0000 0000h to 0000 001Fh OTO 32 (decimal)
Default Value: 0000 0000h 0 (decimal)
See parameter \#18. Signal conditioning selection for A nal og Input \#2 is identical to Anal og Input \#l.

23. ANALOG INPUT \#2 LOW ENGINEERING UNITS (EGU)

USE PARAMETER \#23TO SELECT THE MAXIMUM ANALOG INPUT \#2 EFFECT. RANGE OF VALUES: FFFE 7961h to 0001 869Fh $-99,999$ to $+99,999$ (dec.)
Default Value: 00000000 h 0 (decimal)
A nal og Input \#2 works exactly the same way that A nal og Input \#1 works. Parameter \#23 does for A nal og Input \#2 what parameter \#19 does for A nal og Input \#1. Refer to parameter \#19.

24. ANALOG INPUT \#2 HIGH ENGINEERING UNITS (EGU)

USE PARAMETER \#24TO SELECT THE MAXIMUM ANALOG INPUT \#2 EFFECT. RANGE OF VALUES: FFFE 7961h to 0001 869Fh $-99,999$ to $+99,999$ (dec.)
Default Value: 00000000 h 0 (decimal)
Anal og Input \#2 works exactly the same way that A nal og Input \#l works. Parameter \#24 does for Anal og Input \#2 what parameter \#20 does for A nal og Input \#l. Refer to parameter \#20.

25. ANALOG OUTPUT \#1 MODE SELECT

USE PARAMETER \#25TO SELECT THE SOURCE OF A SIGNAL AT ANALOG OUTPUT \#l.
RANGE OF VALUES: 0000 0000h to 0000 0003h 0 to 4 (decimal)
Default Value: 00000001 h 1 (decimal)

Anal og Output \#l may be programmed for several modes of operation. The mode affects where the signal at Analog Output \#l comes from. The following modes are provided for:
0000 0000h Disabled.
0000 0001h Actual Speed - Represents the speed of the motor from 0 to parameter \#14.
0000 0002h Load Output - Represents the load on the motor from 0 to 1500.
0000 0003h Anal og Output voltage set by communi cations from parameters \#26 and \#27.
0000 0004h Commanded Speed
If an undefined mode (...05h through ...1Fh) is selected, Anal og Input \#l will beinoperative.

26. ANALOG OUTPUT \#1 LOW ENGINEERING UNITS (EGU)

USE PARAMETER \#26TO SELECT THE THRESHOLD OF ANALOG OUTPUT \#l EFFECT. RANGE OF VALUES: FFFE 7961h to 0001 869Fh -99,999 to +99,998 (dec.)
Default Value: 0000 0000h 0 (decimal)

Parameter \#26 sets the point, in EGU's, at which the Anal og Output \#l will be-10VDC.

27. ANALOG OUTPUT \#1 HIGH ENGINEERING UNITS (EGU)

USE PARAMETER \#27TO SELECT THE MAXIMUM ANALOG OUTPUT \# EFFECT.
RANGE OF VALUES: FFFE 7961h to 0001 869Fh
-99,999 to +99,998 (dec.)
Default Value: 0000 06D6h 1750 (decimal)

If parameter \#27 is greater on the absol ute scale than \#26, voltage at Anal og Output \#l will be scaled proportionally from low EGU's (parameter \#26) to +10 VDC at the high engineering units (parameter \#27).

If \#27 is less than \#26, then output sense is inverted, i.e, the higher voltage (from-10VDC to $+10 \mathrm{VDC})$ will be at the low EGU setting (\#26) and the lower voltage will be at the high EGU setting (parameter \#27).

28. ANALOG OUTPUT \#2 MODE SELECT

USE PARAMETER \#28TO SELECT THE SOURCE OF A SIGNAL AT ANALOG OUTPUT \#2.
RANGE OF VALUES: 0000 0000h to 0000 0003h 0 to 4 (decimal)
Default Value: 0000 0000h 0 (decimal)

Anal og Output \#2 is a general purpose anal og output which may be programmed for one of several modes of operation. The mode defines the origin of the signal at Analog Output \#2. The following modes are provided for:

0000 0000h Disabled.
0000 0001h Actual Speed - Represents the speed of the motor from 0 to parameter \#14.
0000 0002h Load Output - Represents the load on the motor from 0 to 1500.
0000 0003h Anal og Output voltage set by communications from parameters \#29 and \#30.
0000 0004h Commanded Speed
If an undefined mode ...05h through ...1Fh is selected, Anal og Input \#2 will be inoperative.
29. ANALOG OUTPUT \#2 LOW ENGINEERING UNITS (EGU)

USE PARAMETER \#29TO SELECT THE THRESHOLD OF ANALOG OUTPUT \#2 EFFECT. RANGE OF VALUES: FFFE 7961h to 0001 869Fh -99,999 to +99,998 (dec.)
Default Value: 00000000 h 0 (decimal)
(See Parameter 14 for the definition and purpose of EGU)
Parameter \#29 sets the point, in EGU's, at which the Anal og Output \#2 will be-10VDC.

30. ANALOG OUTPUT \#2 HIGH ENGINEERING UNITS (EGU)

USE PARAMETER \#3OTO SELECT THE MAXIMUM ANALOG OUTPUT \#2 EFFECT.
RANGE OF VALUES: FFFE 7961h to 0001 869Fh
-99,999 to +99,998 (dec.)
Default Value: 00000096 h 150 (decimal)
If parameter \#30 is greater on the absol ute scale than parameter \#29, the voltage at Anal og Output \#2 will be proportionally scaled from the low EGU's (\#29) to +10 VDC at the high engineering units (\#30).

If parameter \#30 is less than parameter \#29 on the absolute scale, then the sense of the output will be inverted, i.e., the higher voltage (on an absolute scale from-10VDC to +10VDC) will be present at the low EGU setting (parameter \#29) and the lower voltage will be output at the high EGU setting (parameter \#30).

Low EGU	High EGU	Speed	Vout
0	+1750	0	-10
0	+1750	1750 (FWD)	+10 VDC
0	+1750	1750 (REV)	0 VDC
-1750	+1750	0	0 VDC
-1750	+1750	1750 (FWD)	+10 VDC
-1750	+400	1750 (REV)	-10 VDC
-100	-100	0	-6 VDC
+400	0	875 (FWD)	+6 VDC
+1750	$+5 V D C$		

Table of Values for Anal og Outputs

31 DIGITAL INPUT \#1 FUNCTION

USE PARAMETER \#31 TO SELECT THE \#l DIGITAL INPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance
Default Value: 0001 0001h no decimal significance

VL4 and VL2 are al ways 00. VL1 determines
function of the input. The following are predefined:
00h General Purpose Input
01h Run Input
02h Preset Input
03h UpInput
04h Down Input
05h Reverselnput
06h Frequency Mode
07h Remotel nput
08h Master/Slave (not functional at present)
09h Jog
OAh Preset 2
OBh Contactor Aux
OCh through OFh NotAssigned, selection will cause input to be General Purpose Input.
Any digital input may be assigned to any function. The factory defaults are included for testing purposes, to provide a baseline setup, and to be able to run the DF S-1 the first time before programming.

VL3 contains the polarity flag, which is either 00h or 01h. A 01h setting means that +24 VDC must be applied to the input to make it active A 00h setting means the input is active with no voltage applied.

A Digital Input may get its +24VDC signal from any source with TB2:A 1 common, and may be any parameter, transducer, or switch at which the program or communi cations wishes to look.

The default, by factory setting, is 00010001 h , which is a run input which must have +24 VDC applied with respect to TB2:A1 to be active.

32. DIGITAL INPUT \#2 FUNCTION

USE PARAMETER \#32 TO SELECT THE \#2 DIGITAL INPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance
Default Value: 0001 0002h no decimal significance

The setting options are the same as parameter \#31. The default, by factory selting, is 00010002 h , which is a preset input which must have +24VDC applied with respect to TB2:A 1 to be active

33. DIGITAL INPUT \#3 FUNCTION

USE PARAMETER \#33 TO SELECT THE \#3 DIGITAL INPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance
Default Value: 00010003 h no decimal significance

The setting options are the same as parameter \#31. The default, by factory setting, is 00010003 h , which is an UP (increase) input which must have $+24 V D C$ applied with respect to TB2:A to be active.

34. DIGITAL INPUT \#4 FUNCTION

USE PARAMETER \#34 TO SELECT THE \#4 DIGITAL INPUT FUNCTION.
RANGE OF VALUES: 00000000 to 0001 000Fh no decimal significance
Default Value: 0001 0004h no decimal significance

The setting options are the same as parameter \#31. The default, by factory selting, is 00010004 h , which is an DOWN (decrease) input which must have +24 VDC applied with respect to TB2:A1 to be active.

35. DIGITAL INPUT \#5 FUNCTION

USE PARAMETER \#35TO SELECT THE \#5 DIGITAL INPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance
Default Value: 00010005 h no decimal significance

The selting options are the same as parameter \#31. The default, by factory setting, is 0001 0005h, which is a reverse input which must have +24VDC applied with respect to TB2:A 1 to be active.

36. DIGITAL INPUT \#6 FUNCTION

USE PARAMETER \#36TO SELECT THE \#6 DIGITAL INPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance
Default Value: 0001 0006h no decimal significance

The setting options are the same as parameter \#31. The default, by factory setting, is 0001 0006h, which is the frequency mode input which must have $+24 V$ DC applied with respect to TB2:A 1 to be active

37. DIGITAL INPUT \#7 FUNCTION

USE PARAMETER \#37TO SELECT THE \#7 DIGITAL INPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance
Default Value: 00010007 h no decimal significance

The setting options are the same as parameter \#31. The default, by factory setting, is 0001 0007h, which is a local/remote input which must have +24V DC applied with respect to TB2:A 1 to activate remote.

38. DIGITAL OUTPUT \#1 FUNCTION

USE PARAMETER \#38TO SELECT THE \#l DIGITAL OUTPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh
no decimal significance
Default Value: 00010004 h no decimal significance

VL4 and VL2 are al ways 00. VL3 determines the function of the output. The following have been predefined:

00h General Purpose Output
01h No Fault Output
02h At Speed Output
03h Remote Output
04h Run Hold
05h Zero Speed
06h Set by comm
07h Contactor
08h through OFh - Not Assigned, selection will cause output to be General Purpose Output.
ANY DIGITAL OUTPUT MAY BE ASSIGNED ANY FUNCTION. Thefactory defaults are included for testing purposes, to provide a baseline setup, and to be able to run the DF S-1 the first time.

VL3 contains the sense flag, which is either 00h or 01h. A 01h setting means that contact between the output terminals will beclosed when the output function is active (a normally open contact). A 00h setting in VL3 means that the contact will be closed when the function is not active (a normally closed contact).

A General Purpose Output may be controlled by the program or communications.

The default, by factory setting, is 0001 0004h, which is a run output which is a closed output contact when the run is active (true). This is normally used as a run hold contact, but it may be used as a run output contact for some other purpose if the run signal is maintai ned, rather than a momentary push-button.
39. DIGITAL OUTPUT \#2 FUNCTION

USE PARAMETER \#39TO SELECT THE \#2 DIGITAL OUTPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance
Default Value: 0000 0001h no decimal significance

The setting options are the same as parameter \#38. The default, by factory setting, is 00000001 h, which is the FAULT output. The internal FAULT circuitry of the DFS-1 is off when the input power is applied and energizes if there are NO FAULTS in the drive (the contact closes because VL1 is set to 01h).
40. DIGITAL OUTPUT \#3 FUNCTION

USE PARAMETER \#40TO SELECT THE \#3 DIGITAL OUTPUT FUNCTION. RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance Default Value: 00010002 h no decimal significance

The setting options are the same as parameter \#38. The default, by factory setting, is 00010002 h , which is the AT SPEED output The internal AT SPEED circuitry of theDFS-1 is on when the actual speed of the motor matches the commanded speed (the contact closes becauseVL3 is set to 01). There are no AT SPEED window parameters because the microprocessor filters and averages the speed signal.

41. DIGITAL OUTPUT \#4 FUNCTION

USE PARAMETER \#41TO SELECT THE \#\# DIGITAL OUTPUT FUNCTION.
RANGE OF VALUES: 0000 0000h to 0001 000Fh no decimal significance
Default Value: 00010003 h no decimal significance

The setting options are the same as parameter \#38. The default, by factory setting, is 00010003 h ,
which is the REMOTE output. When the DF S- 1 is in the remote mode, the contact between the terminals closes (the contact closes becauseVL3 is set to 01h).

42. DRIVE GAIN SETTING

USE PARAMETER \#42 TO SET THE INTERNAL CURRENT GAIN OF THE DRIVE. RANGE OF VALUES: 0000 0000h to 0000 00FFh 0 to 255 (decimal) Default Value: 00000080 h 128 (decimal)

The gain of the DF S-1 is set by parameter \#42. The effect of the gain setting is to adjust an internal value which determines how many pulses of accumulated shaft position error it takes to reach current limit. A 00 h will allow about 90 pulses of position error while a setting of FFh allows only about 9 pulses, which makes the motor shaft very "stiff", in that turning it only a few degrees causes current to increase very rapidly. A middle setting is the default.

43. DRIVE STABILITY SETTING

USE PARAMETER \#43TO SET THE INTEGRAL CURRENT GAIN OF THE DRIVE. RANGE OF VALUES: 0000 0000h to 0000 00FFh 0 to 255 (decimal)
Default Value: 0000 0080h 128 (decimal)
The stability of the DF S-1 is set by parameter \#43. The effect of the setting is to adjust an intemal val ue which controls the integral and differential gains of the drive. Smaller numbers mean faster reaction to changes and for higher numbers reaction is more damped. A middle setting is the default.

44. DRIVE MOTORING CURRENT LIMIT

USE PARAMETER \#44TO SET THE MOTORING CURRENT LIMIT OF THE DRIVE.
RANGE OF VALUES: 0000 0000h to 00000096 h 0 to 150% (decimal) Default Value: 0000 0032h 50% (decimal)

Parameter \#44 allows current limit settings of up to 150% and must be set in terms of MOTOR current. Other circuitry in the motor control will
limit the output DRIVE current to 150\%. This parameter CANNOT OVERRIDE that limit, but this parameter may be set for an ultimate current limit on drives which are built with more capability than the motors they run. In this way, short term 300\% current ratings can be obtained.

45. DRIVE REGENERATIVE CURRENT LIMIT

USE PARAMETER \#45TO SET THE REGENERATIVE CURRENT LIMIT OF THE DRIVE. RANGE OF VALUES: 0000 0000h to 0000 0096h 0 to 150\% (decimal) Default Value: 0000 0032h 50\% (decimal)

Parameter \#44 allows current limit settings of up to 255% and must be set in terms of MOTOR current. Other circuitry in the motor control will limit the output DRIVE current to 150%. This parameter CANNOT OVERRIDE that limit, but this parameter may be set for an ultimate current limit on drives which are built with more capability than the motors they run. In this way, short term 300\% current ratings can be obtai ned.

46. PULSE MULTIPLIER

USE PARAMETER \#46TO SET THE VALUE BY WHICH THE ENCODER PULSE WILL BE MULTIPLIED.
RANGE OF VALUES: 0000 0000h to 0000 0003h
0 to 3 (decimal)
Default Value: 00000002 h 2 (decimal)
$0=X 1 \quad 2=X 4$
$1=\times 2 \quad 3=$ Commutation Mode
Encoder loss detection applies only when pulse multiplier is set to $4 X$.

47. MODULATION AND OPERATION MODES

USE PARAMETER \#47 TO SET REGEN / NONREGEN AND MODULATION MODES.
RANGE OF VALUES: 0000 0000h to 0001 0001h no decimal significance
Default Value: 0000 0000h no decimal significance

Parameter \#47 contains two pieces of information.

VL4 VL3 sets the operational mode of the drive:
0000h sets the drive for non-regenerative operation.
0001h sets the drive for regenerative operation.

VL2 VL1 sets the modulation mode for the drive:
0000h sets the modulation for bottom transistors only.
000h1 sets the modulation for top and bottom transistors.
Normal setup is:
Non-regenerative drives: 0000 0000h
Regenerativedrives: 0001 0001h
Normally, in P O W E R TEC Brushless DC motor controls, non-regenerative drives modulate the bottom transistors only (this generates less heat and makes them more efficient). Regenerative drives modulate both top and bottom transistors for better control. There are some cases where modul ating both top and bottom transistors in a non-regenerative drive may be desirable. This can be done by setting VL2 VL1 to 0001h.

Note: If regenerative mode is used, the drive may require an optional DC bus loader to dissipate the regenerative energy and avoid over voltage faults.

48. J UMP OR MOP OPERATION

USE PARAMETER \#48TO SET TEMPORARY OR PERMANENT UP/DOWN SPEED/RATIO CHANGES.
RANGE OF VALUES: 0000 0000h to 0000 0001h 0 to 1 (decimal)
Default Value: 0000 0000h 0 (decimal)
Parameter \#48 selects whether the change in speed or ratio made by the up/down inputs is a temporary change which lasts as long as the up or down input is active (J UMP mode), or whether the change will remain after the up/down input has been released (MOP mode). The up/down functions may be generated by software through setting of parameter \#3.

When parameter \#48 is set to 00000000 h , the DF S-1 is in the J UMP mode. In MASTER mode (set by parameter \#5), when the UP input function is activated, the speed will increase by the amount set in parameter \#49. As long as the UP function is active, the speed change will beheld. When the UP function is released the speed returns to the SETPOINT. The same action applies to the DOWN function, the speed change set by parameter \#50. In SLAVE mode, there is a temporary change in ratio determined by parameter \#51 for UP and \#52 for DOWN.

When parameter \#48 is set to 00000001 h, the DFS-1 is in the MOP mode. The MOP mode acts like a M otor O perated P otentiometer. When the UP function is activated, the speed, in MASTER mode, will change immediately by the amount in parameter \#49. If the function is released within $1 / 2$ second, that speed becomes the new SETPOINT. If the UP function is held for more than $1 / 2$ second, the speed will begin to increase at the ACCEL rate (determined by parameter \#8), increasing until the UP function is rel eased. After the UP function is released, the speed will remain at the latest, which becomes the new SETPOINT. The same action applies in the MASTER mode to the DOWN function (with parameter \#50 and the DECEL rate in parameter \#9). In SLAVE mode, the immedi ate increase is set by parameter \#51, the immediate decrease by parameter \#52, and the rates by parameters \#10 and \#11, respectively.
49. MASTERJUMP UP AMOUNT

USE PARAMETER \#49TO SET THE AMOUNT OF SPEED CHANGE ON AN UP FUNCTION. RANGE OF VALUES: 0000 0000h to 0001 869Fh 0 to 99,999 (decimal)
Default Value: 00000001 h 1 (decimal)
Parameter \#49 is the amount, in Engineering Units, by which the speed changes when the UP function is active.

50. MASTERJUMP DOWN AMOUNT

USE PARAMETER \#50 TO SET THE AMOUNT OF SPEED CHANGE ON A DOWN FUNCTION. RANGE OF VALUES: 0000 0000h to 0001 869Fh 0 to 99,999 (decimal)
Default Value: 00000001 h 1 (decimal)
Parameter \#50 is the amount, in Engineering Units, by which the speed changes when the DOWN function is active.

51 SLAVE J UMP UP AMOUNT

USE PARAMETER \#51 TO SET THE AMOUNT OF RATIO CHANGE ON AN UP FUNCTION. RANGE OF VALUES: 0000 0000h to 0001 869Fh 0 to 99,999 (decimal)
Default Value: 0000 0001h 1 (decimal)
Parameter \#51 is the amount, in Engineering Units, by which the ratio changes when the UP function is active.

52. SLAVE J UMP DOWN AMOUNT

USE PARAMETER \#52 TO SET THE AMOUNT OF RATIO CHANGE ON A DOWN FUNCTION. RANGE OF VALUES: 0000 0000h to 0001 869Fh 0 to 99,999 (decimal)
Default Value: 00000001 h 1 (decimal)
Parameter \#52 is the amount, in Engineering Units, by which the ratio changes when the DOWN function is active.

53. INPUT DEBOUNCE VALUE

USE PARAMETER \#53TO SET THE LENGTH OF TIME AN INPUT MUST BE ACTIVE TO BE ACTED UPON.
RANGE OF VALUES: 0000 0000h to 0000 00FFh 0 to 256 (decimal)
Default Value: 0000 0001h 1 (decimal)
Parameter \#53 is the length of time, in 10 milliseconds (1 millisecond $=01$ second), that a digital input must be active before it is considered legitimate It is used primarily to eliminate the contact bounce (which may generate multiple commands) from relays used on inputs, but it can also prevent noise problems from push-buttons.

54. FLOAT OR FREEZE

USE PARAMETER \#54TO SELECT WHERE THE SETPOINT WILL BE ON START-UP.
RANGE OF VALUES: 0000 0000h to 00000001 h 0 to 1 (decimal)
Default Value: 00000000 h 0 (decimal)
When parameter \#54 is set to 0000 0000h, the SETPOINT at start-up (whether after a stop or after a power loss) is al ways at zero. The speed SETPOINT "floats" down with the motor speed. A new speed SETPOINT must be entered or the UP MOP function may be used to set speed.

When parameter \#54 is set to 00000001 h , the SETPOINT at stop or power loss is "frozen" at the current value, and the DF S-1 will return to this speed when the drive next starts up. It is not necessary to enter a new SETPOINT on start-up if a return to the previous speed is desired.

Parameter \#54 al so affects the SLAVE mode, but the SETPOINT cannot go to less than the value of the minimum ratio (parameter \#55) in FLOAT mode.

55. MINIMUM RATIO

USE PARAMETER \#55TO SET THE LENGTH OF TIME AN INPUT MUST BE ACTIVE TO BE ACTED UPON.
RANGE OF VALUES: 0000 0000h to 0001 869Fh
0 to 99,999 (decimal)
Default Value: 00000000 h 0 (decimal)
Parameter \#55 is the minimum ratio allowed at any time in SLAVE mode.

NOTE THAT THE RATIO CANNOT GO BELOW THIS VALUE, EVEN IN RESPONSE TO DOWN FUNCTIONS OR WHEN THE FLOAT PARAMETER IS SET. This parameter must be set with these restrictions in mind.

56. COMMUNICATIONS TURNAROUND DELAY

SETS THE \#OF 500 MICROSECOND DELAYS FROM TRANSFER TOTRANSMIT RANGE OF VALUES: 0000 0000h to 0000 007Fh 0 to 128 (decimal

57. MASTERJ OG SPEED

USE PARAMETER \#57TO SET A JOG SPEED WHICH CAN BE TOGGLED IN AND OUT. RANGE OF VALUES: FFFE 7961h to 0001 869Fh -99,999 to 99,999 (decimal)
Default Value: $000000 \mathrm{C} 8 \mathrm{~h} \quad 100$ (decimal)
The MASTER JOG Speed is the speed to which the motor will go when aJ OG input is activated on one of the Digital inputs (any of the seven digital inputs may be programmed as aJ OG input) when the DFS-1 is in the MASTER mode If more than one input is programmed as aJ OG input, they must both be present to activate the Master Jog Speed function (the inputs are logically ANDed).

58. SLAVEJ OG RATIO

USE PARAMETER \#58TO SET A JOG SPEED WHICH CAN BE TOGGLED IN AND OUT. RANGE OF VALUES: FFFE 7961h to 0001 869Fh
-99,999 to 99,999 (decimal)
Default Value: $000000 \mathrm{C} 8 \mathrm{~h} \quad 100$ (decimal)
The SLAVE JOG Speed is the speed to which the motor will go when aJ OG input is activated on one of the Digital inputs (any of the seven digital inputs may be programmed as aJ OG input) when the DFS-1 is in the SLAVE mode. If more than one input is programmed as aJOG input, they must both be present to activate the SLAVE J OG Speed function (the inputs are logically ANDed).
59. EGU TAG SELECT
(Parameter 59 not functional at present)
RANGE OF VALUES: OTO F

$0=$	UNK	$6=$	LBS/HR
$1=$	RPM	$7=$	PCT
$2=$	GPM	$8=$	CFM
$3=$	FPM	$9=$	Y/MIN
$4=$	SPM	$10=$	M/MIN
$5=$	LBS-FT	$11=$	IN/SEC
fault Value: 0000	0000 h		0 (decimal)

60. MASTER PRESET \#2

USE PARAMETER \#60TO SET A PRESET SPEED WHICH CAN BE TOGGLED IN AND OUT. RANGE OF VALUES: FFFE 7961h to 0001 869Fh -99,999 to 99,999 (decimal)
Default Value: $000000 \mathrm{C} 8 \mathrm{~h} \quad 100$ (decimal)
The MASTER PRESET \#2 is the speed to which the motor will go when a PRESET \#2 input is activated on one of the Digital inputs (any of the seven digital inputs may be programmed as a PRESET \#2 input) when the DFS-1 is in the MASTER mode. If more than one input is programmed as a PRESET \#2 input, they must both be present to activate the MASTER PRESET \#2 function (the inputs are logically ANDed).

61 SLAVE PRESET \#2

USE PARAMETER \#61 TO SET A PRESET SPEED WHICH CAN BE TOGGLED IN AND OUT.
RANGE OF VALUES: FFFE 7961h to 0001 869Fh
-99,999 to 99,999 (decimal)
Default Value: 000000 C 8 h 100 (decimal)
TheSLAVE PRESET \#2 is the speed to which the motor will go when a PRESET \#2 input is activated on one of the Digital inputs (any of the seven digital inputs may be programmed as a PRESET \#2 input) when the DFS-1 is in the SLAVE mode If more than one input is programmed as a PRESET \#2 input, they must both be present to activate the SLAVE PRESET \#2 function (the inputs are logically ANDed).

62. CONTACTOR DELAY

USE PARAMETER \#62TO SET TIME
INTERVAL BETWEEN RUN COMMAND AND INITIAL FIRING OF TRANSISTORS. RANGE OF VALUES: 00000000 to 00000028 h OTO 40 (decimal)
Default Value: 0000 0000h 0 (decimal)
This parameter sets the time interval between the acceptance of a run command and the initial firing of the transistors. If the Contactor Aux input does not become active in this time period, the transistors will not fire and the drive will return to a stop condition. The val ue of this parameter is in increments of 25 ms . See the A dditional Info section for examples.

This page was intentionally left blank.

4.0 DFS - 1 Setup

Parameter	No.	Value	Parameter	No.	Value
Maximum Motor Speed	6	1750	Master Jump Up Amount	49	1
High Engineering Units	14	1750	Master Jump Down Amount	50	1
Encoder Pulses Per Rev	7	120	Analog Input \#1	17	0-10VDC
Pulse Multiplier	46	$\times 4$	Anal og Output \#1	25	Speed
PWM Mode	47	Non-Regen	Analog Output \#2	28	Load
DriveGain	42	128	Input Debounce Value	53	10 mSec
Drive Stability	43	128	Digital Input \#1	31	RUN
Motoring Current Limit	44	100	Digital Input \#2	32	PRESET
Regenerative Current Limit	45	100	Digital Input \#3	33	UP
Up/Down Function	48	Jump	Digital Input \#4	34	DOWN
Float or Freeze Setpoint	54	Float	Digital Input \#5	35	REVERSE
Mode of Operation	5	Master	Digital Output \#1	38	RUN
Master Accel Rate	8	10k mSec	Digital Output \#2	39	NO FAULT
Master Decel Rate	9	10k mSec	Digital Output \#3	40	AT SPD
Master Preset Speed	12	200	Digital Output \#4	41	REMOTE

The DF S-1 is shipped with a default set of parameters which allows it to be connected as shown in Figure 3 on page 3 and run with basic pushbuttons and a speed pot. This supplies a "baseline" of operation which may be used to test the functionality of the board.

The above parameters are the most commonly used ones. For other default settings, refer to the parameter descriptions beginning on page 15.

If your needs are met by the list above, then all you have to do is hook up the drive to power and to the motor and run it. No changes in parameter settings are necessary.

Making parameter changes requires the optional keypad display unit or a computer with serial communi cations capability.

This section covers the basic steps necessary to set up the DF S-1 beyond the needs of the default parameters. The setup is arranged roughly from the most basic and common steps to the least commonly used parameter changes. You need only follow the steps until you have all the parameters you will use checked and/or changed.

For the purposes of this chapter, it will be assumed that the setup is being accomplished through the use of the K DU-1 keypad display unit.

4.1 BASIC SETUP OF THE DFS-1 CONTROLLER

1. SET PARAMETER \#6FOR THE MAXIMUM SPEED OF THE MOTOR IN RPM.
The base speed of the motor is listed on the nameplate of the motor. If the base speed of the motor is other than 1750, you must change parameter \#6. For instance, if thebase speed of your motor is 2500 RPM, enter 2500 into parameter $\# 6$.
2. SET PARAMETER \#14TOTHE ENGINEERING UNITS VALUE FOR PARAMETER \#6.
This is a number which isset equal to thebasespeed of the motor. It may be any convenient value in process or referenceterms. If thespeed of themotor is 2500 RPM, but you want to scale this to 0 to 100.00 \%, enter 10000 in parameter \#14.
3. SET PARAMETER \#TO THE PULSES PER REVOLUTION OF THE ENCODER.
If the motor is a 4 pole motor ($259 T Z$ frame or smaller) this number will be 120 (the default). If the motor is an 8 pole motor, the number will be 240. A 600 PPR quadrature encoder will be set up as 2400 in this parameter.
4. SET PARAMETER \#46TO X4FOR MOST APPLICATIONS.
Notableexceptions arefor aservo application with a 600 ppr encoder or other application where the output frequency of the encoder may exceed 40 Khz. For example, amotor with a 600 ppr encoder will reach 46 Khz at 1150 rpm . This assumes that parameter \#7 (Encoder PPR) is set to 2400 and the pulse multiplier is set to X4. Where the motor would run faster than 1150 rpm , this parameter should be set to $X 2$ and parameter \#f should beset to 1200 ppr . With these settings, the encoder frequency would reach 50 Khz @ 2500rpm Above 2500 rpm, the settings should be X1 for Pulse Multiplier and 600 ppr for parameter \#7.
5. SET PARAMETER \#47 FOR THE MODULATION MODE.
This parameter is defaulted to Non-Regenerative operation. If you want Regenerativeoperation, you must change it. Servo operation is regenerative operation. There is also an option for the method of modulation. See page 28.
Note: If regenerative mode is used, the drive may require an optional DC bus loader to dissapate the regenerativeenergy and avoid over vol tage faults.
6. SET PARAMETER \#42 FOR THE DRIVE GAIN.
This value is defaulted to 50% of the range and therefore set to 128 . This should be adequate for many applications. If you are doing VERY close tracking with other motors, it may be necessary to increase this value, but it may be better to leave it alone in the initial setup.
7. SET PARAMETER \#43 FOR THE DRIVE STABILITY.
This value is also defaulted to 50% and, like parameter \#42, is set to 128 . If you have a high inertia or pulsating load, it may be necessary to increase this value, but it may be better to leave it alone in the initial setup.
8. SET PARAMETER \#A4 FOR MOTORING CURRENT LIMIT.
This val ue is defaulted to 100% of motor current. There may be reasons to set this to a lower value (such as during start-up), but, unless the drive is special ly set up, it doesn't do any good to set it to a higher value Other circuitry limits output current to 150% of drive rating.
9. SET PARAMETER \#45 FOR REGENERATIVE CURRENT LIMIT.
This val ue is defaulted to 100% of motor current. There may be reasons to set this to a lower value (such as during start-up), but, unless the drive is special ly set up, it doesn't do any good to set it to a higher value Other circuitry limits output current to 150% of drive rating.
10. SET PARAMETER \#5 FOR MASTER MODE OR A SLAVE MODE Setting this parameter determines whi ch remaining parameters must be set up.

If setting up in MASTER Mode, proceed to MASTER MODE SETUP (Section 4.2).

If setting up in aSLAVE mode, proceed to SLAVE MODE SETUP (Section 4.3).

After setting MASTER or SLAVE, proceed to INPUTS AND OUTPUT (Section 4.4).

If using an external communications, proceed to COMMUNICATIONS setup (Section 4.5).

4.2 MASTER MODE SETUP

1. SET PARAMETER \# 5 FOR THE MASTER MODE.
Set the basic operation in this parameter to MASTER.
This parameter al so has options for current control (see page 16). Selecting MASTER into the parameter takes careof the normal MASTER mode operation casebecausethedefault is normal current limits.
Other choices are torque limiting (either motoring or regenerative) and horsepower control. If one of thesechoices ismade, it will benecessary to either:
2. Set up one anal og input for a reference (see INPUTS and OUTPUTS), or
3. Make provision to supply reference through communications (see page 16).
4. SET PARAMETER \#17 OR PARAMETER \#21 IF AN ANALOG INPUT IS TO BE USED.
If an anal og speed reference is to be used, either Anal og I nput \#l (seepage 20) or A nal og Input \#2 (seepage22) must beset to Speed Referencel nput. By default, Anal og Input \#l is set up as a Speed Reference Input and Anal og Input \#2 is a General Purpose Input.
You must al so set parameter \#18 (0 to 10VDC by default) or parameter \#22 (4to 20 milliamps default) for the type of input. Then set up the scaling (Engineering units) in parameters \#19 and \#20 for Anal og Input \#1, or parameters \#22 and \#23 for Anal og Input \#2.
If neither anal og inputis setup as a speed reference, then the speed referencemust be supplied fromthe optional front panel control or from the communications.
5. SET PARAMETER \#8 FOR THE MASTER ACCELERATION RATE.
Set the master speed acceleration time in milliseconds (1 millisecond $=.001$ second). The range is from 0 (speed changes are step functions) to 255 seconds.
6. SET PARAMETER \#9 FOR THE MASTER DECELERATION RATE.
Set the master speed deceleration time in milliseconds (1 millisecond $=.001$ second). The range is from0 (speed changes are step functions) to 255 seconds.
7. SET PARAMETER \#12 FOR A MASTER PRESET SPEED.
This step is optional, if you wish to use a preset speed which can be toggled by the PRESET function. Enter the speed in Engineering Units.
8. SET PARAMETER \#54 FOR SETPOINT CONDITION (FLOAT OR FREEZE) AT START-UP.
If you want themotor to return to the speed at which it was running prior to shutdown or power loss, set this parameter to F reeze.
If you want the motor to wait for the speed to be reentered after a stop or power loss, enter F loat in this parameter. See page 30.
9. SET PARAMETER \#48 FOR JUMP OR MOP MODE.
Jump modeoperation is to makeUP/DOWN speed changes temporary. MOP mode makes the DF S-1 act like a Motor Operated Potentiometer. Sepage 28.
10. SET PARAMETER \#49FOR MASTER JUMP UP AMOUNT.
This is theamount (inEngineeringUnits) by which the speed command will increase when the UP function is activated. See page 29.
11. SET PARAMETER \#50 FOR MASTER JUMP DOWN AMOUNT.
This istheamount (in EngineeringUnits) by which the speed command will decrease whentheDOWN function is activated. See page 29.

4.3 SLAVE MODE SETUP

1. SET PARAMETER \#5 FOR THE SLAVE MODE.
Setbasic operation in this parameter to 1 for SLAVE mode. For INVERSE SLAVE mode enter 2. INVERSE SLAVE modeaffects theway a setpoint is entered.
This parameter al so has options for current control (see page 16). Setting a 1 takes care of the normal SLAVE modebecause the default is nomal current limits.
Other choices are torquelimiting (either motoring or regenerative) and horsepower control. For these options see page 16.
2. SET PARAMETER \#17 OR PARAMETER \#21 IF AN ANALOG INPUT IS TO BE USED.
If an anal og speed reference is to be followed in SLAVE mode, either Analog Input \#l (see page 20) or Analog Input \#2 (seepage 22) must beset to 1 (Speed Referencelnput). By default, Anal og Input \#l is set up as a Speed Reference Input.
Y ou must al so set parameter \#18 (0 to 10VDC by default) or parameter \#22 for thetypeof input Then set up the scaling parameters \#19 and \#20, or \#22 and \#23.
If neither anal og input is set up as a speed reference input, then the speed referenceto befoll owed must be supplied from the Frequency ReferenceIn.
3. SET PARAMETER \#I5 FOR THE BASE RATIO.
This is the number which is used to allow the SETPOINT to be set at a desired number instead of at a number dictated by gear ratios, motor speeds, and other factors. See page 19.
4. SET PARAMETER \#16 FOR THE MAXIMUM RATIO.
This setting is the highest ratio allowed under any circumstances.
5. SET PARAMETER \#55 FOR THE MINIMUM RATIO.
This setting is the small est ratio al lowed under any circumstances.
6. SET PARAMETER \#lO FOR THE SLAVE ACCELERATION RATE.
Set slave speed acceleration time in milliseconds (1 millisecond $=.001$ second). Therange isfrom0 (speed changes arestep functions) to 255 seconds. Sepage 18.
7. SET PARAMETER \#II FOR THE SLAVE DECELERATION RATE.
Settheslavespeed decel erationtimein milliseconds (1 millisecond $=.001 \mathrm{sec}$). The range is from 0 (speed changes arestep functions) to 255 seconds. See page 18.
8. SET PARAMETER \#13 FOR A SLAVE PRESET RATIO.
This step is optional, if you wish to use a preset ratio which can betoggled by thePRESET function. Enter the speed in Engineering Units.
9. SET PARAMETER \#54 FOR SETPOINT CONDITION AT START-UP.
If you want the motor to retum to the ratio at which it was running prior to shutdown or power loss, set this parameter to 1 . If you want the motor to wait for the ratio to be reentered after a stop or power loss, enter 0. See page 30.
10. SET PARAMETER \#48 FOR JUMP OR MOP MODE.
Jump mode operation is to makeUP/DOWN ratio changes temporary. MOP mode makes the DF S-1 act likea Motor Operated Potentiometer. Sepage 28.
11. SET PARAMETERS \#51 AND \#52 FOR SLAVE JUMP UP/DOWN AMOUNTS.
These are the amounts (in Engineering Units) by whichtheratio command will increase or decrease when the UP or DOWN functions are activated. See page 29.

4.4 INPUTS AND OUTPUTS SETUP

1. SET PARAMETERS \#17, \#18, \#19, AND \#20 TO SET UP ANALOG INPUT \#l. If Anal og Input\#l is to beused for speed reference, which is the default mode, and the reference is to be 0 to +10 VDC , no action is necessary to change from the defaults. If the input is to be 4 to 20 mA , then parameter \#18 must be changed. Set up parameters \#19 and \#20 to conform with the speed range set up by parameter \#14.
If Anal og Input \#l is not used as a speed reference, it may be used for any other signal which may be useful to the processor or theexternal program Preprogrammed purposes are listed on page 20, but the uses of theanal og inputs are not limited to those items.
2. SET PARAMETERS \#21, \#22, \#23, AND \#24 TO SET UP ANALOG INPUT \#2.
If Anal og Input\#2 isto beused for Speed Reference Input, A nal og Input \#1 must be changed to something else by changing parameter \#17 to something other than 1 , and then changing parameter \#21 to 1. Parameter \#22 must be set up for the form of input (4 to 20 mA is the default), and parameters \#23 and \#24 set up in EGU's conforming to parameter \#14.
Anal og Input \#2 may be used for any anal og input the processor or program may need, either as a predefineduse(seepage20) or as aGeneral Purpose Input.
3. SET PARAMETERS \#25, \#26, AND \#27 TO SET UP ANALOG OUTPUT \#l.
If Anal og Output\#1 is to beused for a Speed Output signal from -10 to +10 VDC , then nothing needs to bedone. If not used for this purpose, it may beused as a General Purpose Output, a Load Output, or a communi cations output port by changing parameter \#25. Parameters \#26 and \#27 may be set up in Engineering Units.
4. SET PARAMETERS \#28, \#29, AND \#30TO SET UP ANALOG OUTPUT \#2.
If Analog Output \#2 isto beused for a Load Output signal from-10 to +10 VDC , then nothing needs to bedone If not used for this purpose, it may beused as a General Purpose Output, a Load Output, or a communications output port by changing parameter \#28. Parameters \#29 and \#30 may be set up in Engineering Units.
5. SET PARAMETERS \#31 THROUGH \#37 FOR DIGITAL INPUT FUNCTIONS.
If the digital inputs as listed on page 6 are suitable, then no changes need to be made. However, note thatany Digital Inputmay beusedfor ANY purpose and more than one input may be used for the same purpose (the inputs will be logically ANDed - i.e., they must both be present to function). The same parameters make provisions for input sense. See page 25.
6. SET PARAMETERS \#53 FOR DEBOUNCE TIME.
If the inputs are driven by relays or push-button, contact bounceand/or noisecould generatemultiple commands. This command sets theminimumtime (in milliseconds) that a command must be present before it is considered valid.
7. SET PARAMETERS \#38, \#39, \#40, AND \#41 FOR DIGITAL OUTPUT FUNCTIONS.
If the outputs listed on page 7 (the defaults) are suitable, no changes need to be made, but each output can bereassigned as necessary (seepage 26 - parameter \#38) as required. Theoutput relays can also be assigned as normally open or normally closed.

4.5 COMMUNICATIONS SETUP

The local operator's panel operates at CPU level and does not require the setup of any communications parameters. The following setup is for an extemal communications link.
Before connecting to the external communi cations link, thefollowing parameters must beset properly. The other parameters may be set after the link is established.
Thedefaultparameters set up theD F S-1 asfollows:

- the unit has an address of 001
- the baud rate is 9600
- The unit is in local mode
- using a binary communications protocol

1. SET PARAMETER \# FOR COMMUNICATIONS NETWORK ADDRESS. This is the address which the DFS-1 will respond to on the extemal commlink. Since the default is 001, it might be a good idea to start the network addresses at 002 so that a unit being replaced does not cause an addressing conflict. Addresses up to 255 are valid, but the RS-485 protocol only allows for 32 units on a single line without repeaters.
2. SET PARAMETER \#2FOR

COMMUNICATIONS NETWORK SPEED.
This is the com muni cations rateat whichtheDFS1 will operate on an external comm link. Rates range from 300 baud to 38.4 Kilobaud (see page 16).
3. SET PARAMETER \# TO SELECT WHICH FUNCTIONS ARE REMOTE.
This parameter may be used to include or exclude control functionsfromlocal control and assign them to the remote link. Thesetup of this parameter has nothing to do with assigning functions to input terminals! This parameter ONLY AFFECTS WHETHER THE CONTROL OF THE FUNCTION IS LOCAL OR REMOTE.
4. SET PARAMETER \#\#TO SELECT THE COMMUNICATIONS PROTOCOL. This parameter selects the POW ERTEC binary protocol.
5. SET PARAMETER \#56 FOR COMMUNICATIONS TURN AROUND DELAY.
Set parameter $\# 56$ to default to 2 though it may have to be set to 6 or 8 for most reliable communications with Allen Bradley devices.

5.0 DFS - 1 ERROR CODES

ERROR CODES FOR ON-BOARD DISPLAY

TheDFS-1 has a single-digit al phanumeric di splay to show error codes when something is wrong. Following is a list of the meanings of the numbers in that display:
$0 \quad$ All conditions nominal
1 Undervoltagetrip .. Line voltage dropped below minimum level
2 Overvoltagetrip of drive \qquad Bus voltage exceeded safe limit

3 Undervoltagetimer tripped \qquad Line voltage low for too long

4 Instantaneous overcurrent Excessive transistor current
5 Loss of encoder signal
Encoder speed signals lost. Encoder loss detection applies only when pulse multiplier is set to 4 X

6 Motor thermal tripped \qquad Motor is too hot or thermal is disconnected

7 Commutationfault \qquad Signals from position encoder lost
$8 \quad+24 \mathrm{VDC}$ lostat TB2-A14 and TB2-B1 \qquad Fuse FR1 overloaded
$9+24 V D C$ lostat TB3-B1 \qquad Fuse FR2 overloaded

A +5 VDC lost at TB1-A8 \qquad Fuse FR4 overloaded

B $\quad+24 \mathrm{VDC}$ lostat TB1-A10 \qquad Fuse FR3 overloaded

C Current limit \qquad Drive is at maximum current output

D Timed Overload \qquad Timed overcurrent has occured

E Display fault...Fault in display module
F Applicationsfault \qquad Fault in appli cations program

This page was intentionally left blank.

6.0 COMMUNICATIONS PROTOCOL

General Definitions:

[STX] - 02h - Start of data
[ETX] - 03h - End of data
[ACK] - 06h - Acknowledge
[NAK] - 15h - Negative Acknowledge
[DLE] - 10h - Data Link Escape
[CMD] -xxh - Command to be executed
[CSM] - xxh - Checksum, 2's complement sum of the data between the [STX] and [ETX] characters

General Notes:

1. The use of brackets in this document means that there is a single byte of information contai ned within the brackets. This convention is used to insure that the construction of the message is clear.
2. If the bel ow message was sent, the following checksum would be computed:

DLE STX UID CMD DATA DLE ETX CSM
[10] [02] [01] [82] [00][00][10][10][00] [10] [03] [6D]
Note the delimited datum character. Since a 10h is the DLE, the only way the software can know that a 10 h in the middlle of a data word is datum and not the DLE is to put the datum in twice. The driver software must know that a single 10h is the DLE and not datum! The driver software must actual ly use only one 10h to compute the checksum value.
$01+82+00+00+10+00=93:$ 2's complement $=6 \mathrm{D}$
3. All data is sent in four bytes regardless of the needed length of data. For instance, parameter 48 has the value of 0 for jump and 1 for MOP. The actual parameter is passed in communications however as a [00][00][00][00] for jump mode and a [00][00][00][01] for MOP mode. In this way, all data has an expected length of 4 bytes.

COMMAND LIST

Following is a list of commands to the unit. Detailed descriptions of each command are shown in attachment A beginning on page 55.

Cmd \# Description:
81h Description: (Status R equest)
Respond with the current operating status which includes commanded speed, actual speed, and status bits.

82h Description: (Set Speed)
Commands the unit to set a new speed (or ratio) but to delay changing to the new speed until a command to do so is given (\#83)

83h Description: (Execute Speed) Commands the unit to execute the speed commanded in (\#82) above

84h Description: (Set and Execute Speed) Commands the unit to set a new speed (or ratio) and change to it immediately without waiting for an execution command.

85h Description: (R ead Par ameter)
Commands the unit to send a specified current parameter setting.

86h Description: (W rite P ar ameter)
Commands the unit to change a specific parameter to a new value.

87h Description: (R ead A nalog I nput) Commands the unit to send the value of an anal og input.

88h Description: (R ead A nalog Output) Commands the unit to send the value of an anal og output

89h Description: (W rite A nalog Output) Commands the unit to put a specific val ue out on one of the anal og outputs.

8Ah Description: (Read Digital Input) Commands the unit to send the status of a digital input.

8Bh Description: (Read Digital Output) Commands the unit to send the status of a digital output.

8Ch Description: (Set Digital Output) Commands the unit to tum on or off a specific digital output.

8Dh Description: (Set Operational M ode) Allows setting run, stop, preset, reverse commands via commlink rather than through the hardwired inputs.

8Eh Description: (R ead Operational M ode) Allows reading the status of all command conditions.

8F h Description: (Application M ode) Sets the setpoint for torque control or horsepower control or other type of special application when the setpoint is to be set by communi cation rather than anal og input value

PARAMETER LIST:

Following is a list of the parameters used in DFS-1. For a detailed description of each parameter see the list in attachment B beginning on page 57.

Param\#	Description
COM M UNICATI O NS SE TU P	
1	Unit I dentification number
2	Baud Rate
3	Local/Remote
4	Communi cations Protocol
5	Mode of Operation
56	Communi cation Response Delay
BA SIC	DRIV E SE T UP
6	Maximum Motor Speed
7	Encoder Pulses per Revolution
42	Drive Gain Setting
43	Drive Stability Setting
44	Motoring Current Limit
45	Regenerative Current Limit
46	PulseMultiplier
47	Pulse Width Modulation Mode
48	Jump Or MOP Function
14	High Engineering units
53	Input Debounce Value
54	Freeze or Float Setpoint
59	EGU Tag Select
M ASTE R SE TUP O NLY	
12	Master Preset Speed
8	Master Acceleration Rate
9	Master Deceleration Rate
49	Master Jump Up A mount
50	Master Jump Down Amount
57	Master J og Speed
60	Master Preset \#2

SLAVE SETUP ONLY
10 SlaveAcceleration Rate
11 Slave Deceleration Rate
13 SlavePreset Ratio
15 Base Ratio for Slave
16 Maximum Ratio for slave
51 Slave Jump Up Amount
52 Slave Jump Down Amount
55 SlaveMinimum Ratio
58 SlaveJ og Ratio
61 Slave Preset \#2

INPUT/OUTPUT SETUP
17 Analog Input \#l Mode Select
18 Analog Input \#l Input Signal Conditioning
19 Analog Input \#1 Low Engineering Units
20 Analog Input \#l High Engineering Units
21 Analog Input \#2 ModeSelect
22 Analog Input \#2 Input Signal Conditioning
23 Analog Input \#2 Low Engineering Units
24 Analog Input \#2 High Engineering Units
25 Anal og Output \#l Mode Select
26 Analog Output \#1 Low Engineering Units
27 Analog Output \#1 High Engineering Units
28 Anal og Output \#l Mode Select
29 Analog Output \#1 Low Engineering Units
30 Analog Output \#1 High Engineering Units
31 Digital Input \#1 Mode and Polarity
32 Digital Input \#2 Mode and Polarity
33 Digital Input \#3 Mode and Polarity
34 Digital Input \#4 Mode and Polarity
35 Digital Input \#5 Mode and Polarity
36 Digital Input \#6 Mode and Polarity
37 Digital Input \#7 Mode and Polarity
38 Digital Output \#l Mode and Polarity
39 Digital Output \#2 Mode and Polarity
40 Digital Output \#3 Mode and Polarity
41 Digital Output \#4 Mode and Polarity
62 Contactor Delay
FUTURE EXPANSION
63 Future General use parameters
80-95 Future Special use parameters

Attachment A: Detailed Commands
Read Speed/Status (81)
Command: \quad Read Speed/Status
Description:
This command tells the unit to respond with it's
current commanded speed, actual speed, load value,
\& status.
CMD $=[81]$
UID $=[01]$ - [FF]
Message:
[DLE][STX][UID][CMD][DLE][ETX][CSM]

Response

[DLEIISTX][UID][ACKI[CS4][CS3][CS2][CS1]IAS4][AS3][AS2] [AS1][LOD][ST2][ST1][DLE][ETX][CSM]

Definitions:

[CS4]..[CS1] - Commanded speed, unsigned long integer
[AS4]..[AS1] - Actual speed, unsigned long integer
[LOD] - Load percent
[ST2]..[ST1] - UNIT Status. ST1 is fault codes.

[ST2]-76543210

[ST1]-76543210

Command: Set Speed

Description:
This command tells the unit to set the new commanded speed to the val ue but not to execute it until told to do so by \#ß3.

CMD = [82]
UID $=[01]$ - [FF]

Message:

[DLE][STX][UID][CMD][CS4][CS3] [CS2][CS1][DLE][ETX][CSM]

Response:
If no errors
[DLE][STX][UID][ACK][DLE][ETX][CSM] else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]
Definitions:
[CS4]..[CS1] - Commanded speed, unsigned
long integer
[ERR] - Reported Error.
[80] - Unit not in remote mode
[81] - Illegal speed value
[86] - Illegal command number

Execute Speed (83)
Command: ExecuteSpeed
Description:
This command tells the unit to execute the new commanded speed set in 82.

$$
\begin{aligned}
& \text { CMD }=[83] \\
& \text { UID }=[00]-[F F]
\end{aligned}
$$

[ERR]- Reported error

[86]- Illegal command number.

Message:

[DLE][STX][UID][CMD][DLE][ETX][CSM]
Response:
If no errors and unit i.d. does not equal 0
[DLE][STX][UID][ACK][DLE][ETX][CSM]
If unit i.d. $=0$ (global command) then no response at all but all DIGIMAXes will execute simultaneously.
else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]

Definitions:
[ERR] - Reported Error.
[80] - Unit not in remote mode
[86] - Illegal Command number

Set \& E xecute Speed (84)
Command: Set \& Execute Speed
Description:
This command tells the unit to set the new commanded speed to the value and execute it immediately.

CMD $=[84]$
UID $=[01]-[F F]$
Message:
[DLEISTXIUIDICMDICS4ICS3ICS2ICSII[DLEIETXICSM]
Response:
If no errors
[DLE][STX][UID][ACK][DLE][ETX][CSM] else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]
Definitions:
[CS4]..[CS1] - Commanded speed, unsigned long integer
[ERR] - Reported Error.
[80] - Unit not in remote mode
[81] - Illegal speed value
[86] - Illegal Command number
R ead Par ameter (85)

Command: Read Parameter

Description:
This command tells the unit to send the val ue of the selected parameter.

$$
\begin{aligned}
& \text { CMD }=[85] \\
& \text { UID }=[01]-[F F]
\end{aligned}
$$

Message:
[DLE][STX][UID][CMD][PRM][DLE][ETX][CSM]

Response:
If no errors
[DLEISTXIUIDIACK]IDT4IDT3IDT2]DT1[DLE][ETXICSM] else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]
Definitions:
[DT4] THRU [DT1] Datum is returned as an
long integer.
[PRM] - Parameter number
[ERR] - Reported Error
[82] - Illegal parameter number
[86] - Illegal Command number

> W rite Parameter (86)

Command: Write Parameter
Description:
This command tells the unit to change the value of the selected parameter.

CMD $=[86]$
UID $=[01]-[F F]$

Message:
 [DLE][STX][UID][CMD][PRM][VL4] [VL3][VL2][VL1][DLE][ETX][CSM]

Response:
If no errors
[DLE][STX][UID][ACK][DLE][ETX][CSM]
else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]

Definitions:
[PRM] - Parameter number
[VL4]..[VL1] - parameter value cast as a long integer
[ERR] - Reported Error
[80] - Unit not in remote mode
[82] - Illegal parameter number
[83] - Illegal parameter value
[86] - Illegal Command number
Read Analog Input (87)
Command: Read Anal og Input

Description:
This command tells the unit to return the val ue of one of the analog inputs.

CMD $=[87]$
UID $=[01]$ - [FF]
ATD $=[01$]or [02] depending on which Anal og input
is being read.
Message:
[DLE][STX][UID][CMD][ATD][DLE][ETX][CSM]

Response:

If no errors
[DLE][STX][UID][ACK][AD4][AD3]
[AD2][AD1][DAT][DLE][ETX][CSM]
else
[DLE][STX][UID][NAK][ERR][DLR][ETX][CSM]
Definitions:
[ATD] - Anal og input number [01] or [02]
[AD4] - Value of anal og input, Most Sig Byte
[AD1] - Value of anal og input, Least Sig Byte
[ERR] - Reported error
[80] - Unit not in remote mode
[84] - Illegal channel number
[86] - Illegal Command number

Read A nalog Output (88)

Command: Read Analog Output
Description:
This command tells the unit to return the value of one of the anal og outputs.

CMD $=[88]$
UID $=[01]-[F F]$
DTA $=[01]$ or [02] depending on which Anal og output is being read.

Message:

[DLE][STX][UID][CMD][DTA][DLE][ETX][CSM]

Response:
If no errors
[DLE][STX][UID][ACK][DA4][DA3]
[DA2][DA1][DLE][ETX][CSM]
else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]
Definitions:
[DTA] - A nal og output number 01 or 02
[DA4] - [DA1] Value of anal og output, cast as unsigned long.
[ERR] - Reported error
[80] - Unit not in remote mode
[84] - Illegal channel number
[86] - Illegal Command number
W rite A nalog O utput (89)
Command: Write Anal og Output
Description:
This command tells the unit to put out a specific value of anal og voltage on a selected analog output.

CMD = [89]
UID $=[01]$ - [FF]
DTA $=[01$]or [02] depending on which analog output

Message:

[DLE][STX][UID][CMD][DTA][VL4]
[VL3][VL2][VL1][DLE][ETX][CSM]
Response:
If no errors
[DLE][STX][UID][ACK][DLE][ETX][CSM]
else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]
Definitions:
[DTA] - A nal og output number 01 or 02
[VL4]..[VL1] - Anal og val ue cast as sealed between low EGU and high EGU.
[ERR] - Reported Error
[80] - Unit not in remote mode
[84] - Illegal channel number
[85] - Illegal channel value
[86] - Illegal Command number

Read Digital Input (8A)

Command: Read Digital Input
Description:
This command tells the unit to return the val ue of one of the digital inputs.

CMD $=[8 \mathrm{~A}]$
UID $=[01]-[F F]$
DIG $=[01]$ - [07] depending on which digital input is being read.

Message:
[DLE][STX][UID][CMD][DIG][DLE][ETX][CSM]

Response:
If no errors
[DLE][STX][UID][ACK][VL4][VL3]
[VL2][VL1][DLE][ETX][CSM]
else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]
Definitions:
[DIG] - Digital input number [01]* thru [07] ([00]=Estop) not used
[VL4] - Always 00
[VL3] - Always 00
[VL2] - Always 00
[VL1] - Status of input [00] =off [01] =on
[ERR] - Reported error
[80] - Unit not in remote mode
[84] - Illegal channel number
[86] - Illegal Command number
Read Digital Output (8B)
Command: Read Digital Output
Description:
This command tells the unit to return the value of one of the digital outputs.

```
CMD \(=[8 \mathrm{~B}]\)
UID \(=[01]-[F F]\)
DIG \(=[01]\) - [04] depending on which Digital output is being read.
```


Message:

[DLE][STX][UID][CMD][DIG][DLE][ETX][CSM]
Response:
If no errors:
[DLE][STX][UID][ACK][VL4][VL3]
[VL2][VL1][DLE][ETX][CSM]
else
[DLE][STX][UID][NAK][ERR][DLR][ETX][CSM]

Definitions:
[DIG] - Digital output number 01 to 04
[VL4] - Always 00
[VL3] - Always 00
[VL2] - Always 00
[VL1] - Status of output $00=$ off $01=0$ n
[ERR] - Reported error
[80] - Unit not in remote mode
[84] - Illegal channel number
[86] - Illegal Command number
W rite Digital O utput (8C)

Command: WriteDigital Output
Description:
This command tells the unit to turn on or off a specific digital output contact.

CMD $=[8 \mathrm{C}]$
UID $=[01]$ - [FF]
DIG $=[01]$ - [04] depending on which Digital output

Message:

[DLE][STX][UID][CMD][DIG][VL4] [VL3][VL2][VL1][DLE][ETX][CSM]

Response:
If no errors
[DLE][STX][UID][ACK][DLE][ETX][CSM]
else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]

Definitions:

[DIG] - Digital Output channel choice [00] thru [04]
[VL4] - Always 00
[VL3] - Always 00
[VL2] - Always 00
[VL1] - [00] or [01] contact being open or closed.
[ERR] - Reported Error
[80] - Unit not in remote mode
[84] - Illegal channel number
[85] - Illegal channel value
[86] - Illegal Command number

Set Operational M ode (8D)
Command:
Set Operational Mode
Description:
This command tells the unit to tum on or off specific input control functions such as run, stop, etc. Refer to parameter 3 which defines which input controls are all owed by communi cations link and which MUST BE controlled by inputs on the terminal strip. An error message will be produced if set mode attempts to change the condition of an input that is not all owed to be remotely changed.

CMD $=[8 \mathrm{D}]$
UID $=$ [01] $-[F F]$
SMH $=[00]-[F F]$
SML $=[00]-[\mathrm{FE}]$ depending on which CONTROL input See parameter \#3 for DEFINITION. This is a bit map that defines the desired stateof each control input as follows:
7654 3210-Bit Position
00000000 -Bit value can be 0 (off) or 1 (on)
76543210 -Digital inputnumber

BIT PSN	SML
where:	0
1	is Estop
1	is Run
2	is Preset
3	is Up input
4	is Down input
5	is Reverse mode
6	is Frequency mode
7	is Local/Remote (O for local)

BIT PSN SMH
where: 0 is unused
1 isJog
2 is Preset 2
3 is Contactor Aux
Note that input 1 is Estop which must al ways be 0 since this cannot be set remotely. This can ONLY be a hardwired function. This means the largest value for [00][00][SMH][SML] is [00][00][FF][FE].

Example: To turn on inputs 1 and 5 the valuefor [00][00][SMH][SML] is 0000 0022, or [22]. Inputs 1 and 5 are defaulted to RUN and Reverse but can be redefined in parameters 31 through 37.

Message:

[DLE][STX][UID][CMD][00][00]
[SMH][SML][DLE][ETX][CSM]

Response:
 If no errors
 [DLE][STX][UID][ACK][DLE][ETX][CSM] else
 [DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]

Definitions:
[ERR] - Reported Error
[80] - Unit not in remote. Returned if this command is sent and remote mode is not al lowed in parameter 3.
[86] - Illegal Command number.
[87] - Illegal input number.
[88] - Illegal input value Returned if remote mode is allowed but the specific input asked to be changed is not all owed in remote by parameter \#3.

Read Operational M ode (8E)

Command: Read Operational Mode
Description:
This command tels the unit to retum the current status of the commands which are active whether from hardwired inputs or by remote Note that run, for instance may not be all owed by param \#3 from the terminal strip, but could be active from the comm link, or for that matter may even be mapped to operate from a different digital input. THE STATUS SHOWN HERE HAS NOTHING DIRECTLY TO DO WITH THE STATUS OF THE DIGITAL INPUTS EXCEPT FOR E-STOP STATUS WHICH IS ALWAYS HARDWIRED TO INPUT \#1. THE OTHER COMMANDS MAY OR MAY NOT BE ACTIVE FROM THE HARDWIRED INPUTS OR COULD BE REMAPPED. DO NOT be Confused between commands SUCH AS RUN, STOP, REVERSE AND THE SOURCE OF THOSE COMMANDS WHICH may be any of the digital inputs, EITHER OF THE TWO COMM INPUTS, OR INTERNAL SOFTWARE IN SPECIAL CASES.

If you wish to determine the status of the digital inputs you must use command 8A (Read Digital Input).

CMD $=[8 \mathrm{E}]$
UID $=[01]-[F F]$
Message:

[DLE][STX][UID][CMD][DLE][ETX][CSM]

Response:
If no errors
[DLE][STX][UID][ACK][00][00]
[RMH][RML][DLE][ETX][CSM]
else
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]
Example: If the drive was in remote mode (from Parameter \#3) and if the input assignments were the factory defaults, and the drive was in run, reverse, Down and not E-Stopped, then the val ue for [RML] would be constructed as follows:

76543210	Bit Positions	
00110011	Input Status	
$[3$	$3]$	[RMH][RML]=[00][33]

BIT PSN RML
where: 0 is E -stop
1 isRun
2 is Preset
3 is Upinput
4 is Down input
5 is Reverse mode
6 is Frequency mode
7 is Local/Remote (O for local)
BIT PSN RMH
where: 0 is unused
1 isJog
2 is Preset 2
3 is Contactor Aux
Definitions:
[ERR] - Reported error
[82] - Illegal parameter number
[86] - Illegal Command number

> A pplication M ode (8F)

Command: Application ModeCommand
Description:
This command reads/sets the operating setpoint by communications rather than using an analog input for the setpoint when a special application mode is active (see parameter 5). The modes currently defined are shown below. It is possible in the future that additional appli cation modes may be added.

$$
\begin{aligned}
& \text { CMD }=[8 F] \\
& \text { UID }=[01]-[F F] \\
& \text { AMD }=[20],[21],[22],[23],[30],[31],[32]
\end{aligned}
$$

Message:

[DLE][STX][UID][CMD][AMD][VL4]
[VL3][VL2][VL1][DLE][ETX][CSM]
Response:
If no errors,
[DLE][STX][UID][ACK][DLE][ETX][CSM]
else,
[DLE][STX][UID][NAK][ERR][DLE][ETX][CSM]
Definitions:
[AMD] - Application Mode
[20] - Set Motoring torque setpoint
[21] - Set Regen torque setpoint
[22] - Set Horsepower setpoint
[23] - Set Speed/Ratio with ramp rate
[30] - Read M otoring Torque Setpoint
[31] - Read Regen Torque Setpoint
[32] - Read Horsepower Setpoint
[VL4] - Depends on value passed
[VL3] - Depends on value passed
[VL2] - Depends on value passed
[VL1] - Depends on value passed
[ERR] - Reported Error
[80] - Unit not in remote
[82] - Illegal parameter number
[86] - Illegal Command number
[89] - Illegal Application val ue
[8A] - Illegal Application
any other mode than horsepower.
Examples:
[20] Motoring Torque setpoint can be0 to 1000 (hex 3E8) where torque is set in tenths of percent (1000 equals 100.0\%) A torque of 100.0\% would then be sent as [00][00][03][E8].
[21] Regen Torque same description as above
[22] Horsepower setpoint has the same description as torque where hp is set in tenths of percent, 100% maximum
[23] Set speed/ratio with accel and decel ramp. This is used whenever a temporary setpoint for speed is desired and the ramp up and down rates are different from those in the parameter table. This setpoint and ramp rate is temporary and the drive will revert automatically back to the normal setpoint and ramp rates on any successive commands. Speed/ratio requires 4 bytes, accel requires 4 bytes and decel requires 4 bytes. For instance a complete message including the header, etc. for a speed of 1400 rpm and accel rate of 10 seconds and decel rate of 5 seconds to unit \#5 would be:
[10][02][05][8F[23][00][00][05][78][00][00]
[00][0A][00][00][00][05][10][03][CSM]

ATTACHMENT B:

 PARAMETER DESCRIPTION:Following is a list of the parameters for the DFS1. All parameters are 4 byte val ues regardless of the data. For instance, parameter 5 is master slave and can be only [00] or [01] but the data bytes required for the parameter are [00][00][00][01] or [00][00][00][00]. This is done to keep communications simple when deal ing with parameter informa tion, especially with any packed message.

59 through 63 are general use parameters for future use and not currently defined.

80 through 95 are special use parameters for future use and not currently defined.

An error message [8A] will be sent if a setpoint for horsepower [22] for instance is sent when parameter 5 is set to allow motoring torque limit, or

Revised 7/95
POWERTEC Ind. Corp.©

Additional Info

DFS Software Modification For
Dynamic Braking or Output Contactor
Operation

Functional Description

A new function for Contactor Aux has been added to the digital input choices. When configured as described in the example, 24VDC must be present at this input for the drive to run. Parameter \#62, Contactor Delay, is a number of 25 ms intervals that will occur between the DFS controller acceptance of a run command and the firing of the transistors. If the Contactor Aux input signal is low, the DFS starts the timer and closes the Contactor Output. If the Contactor Aux input does not switch high before the timer runs out, the drive will return to the stop condition. If the Contactor Aux input does switch high, the drive will start running when the timer runs out.

Example Setup for Dynamic Braking

1 Set Digital Input \#7 mode to Contactor Aux, polarity to Active Low.
2 Set Digital Output \#4 mode to Normally Open, polarity to Normally Closed.
3 Set Contactor Delay to $20(20 \times 25 \mathrm{~ms}=500 \mathrm{~ms}=1 / 2$ second $)$.
Run command causes the Contactor Output to close, the Contactor Relay opens, the feedback contacts close and the drive starts to run.

Example Setup for Output Contactor
1 Set Digital Input \#/ mode to Contactor Aux, polarity to Active Low.
2 Set Digital Output \#4 modeto Normally Open, polarity to Normally Closed.
3 Set Contactor Delay to 10 ($10 \times 25 \mathrm{~ms}=250 \mathrm{~ms}=1 / 4$ second $)$.
Run command causes the Contactor Output to close, the Contactor Relay closes, thefeedback contacts close and the drive starts to run.

The difference in the operation of the two types of contactors is that the Dynamic Braking Contactor is normally closed whereas the Output Contactor is normally open. In both contactors, the auxilliary contacts are normally open.

Terms Used

1 Contactor Aux - The digital input on the DFS board which is connected to the feedback contacts on the contactor relay.
2 Contactor Output - The digital output on the DFS board which activates the solenoid on the contactor relay.
3 Signal low-OVDC
4 Signal high-24VDC

This page was intentionally left blank.

Appendix A

■IIIIIIIIIIIIIIIIIII
Retrofitting the Model 1000, 1000A, or 1000AR

The DFS-1 Model 1000 series retro-fit kit consists of:

Quantity	1	DFS-1 Printed Circuit Board with connector plugs
Quantity	1	10 Pin Connector Cable Part \#3570-141420-001
Quantity	1	14 Pin Connector Cable Part \#3570-141419-001
Quantity	2	Nylon Spacer \#6 $\times 1 / 4$ " diam $\times 1 / 4^{\prime \prime}$ long
Quantity	2	MachineScrew, Pan-head, $6 / 32 \times 1 / 2^{\prime \prime}$ long
Quantity	4	Star Washer, \# 6

1. Disconnect the cablesfromtheCurrent Controller board to the Driver board (P2) and the Capacitor board (P3) and let them hang for the time being.
2. Remove the 141-108 Current Controller board and the 141-107 Speed Controller board and set them aside. Theseboards have two screws each which hold themto the metal rail at the bottom and two hex nuts each which hold them to the Fuse board at the top. Save two of the hex nuts to mount the DFS-1 board.
3. Therearefour metal studs on the bottom of theFuseboard at thetop of thedrive The two outsidestuds will beused to mount theDFS board, but the two center studs must be removed. Remove them and set themaside.
4. Remove the 14 pin connector cable connected to the Driver board (left side of the chassis), and replace it with the new cable 3570-141419-001. WARNING: Do NOT use the or iginal drive cables with the DF S-1 board. This will causedamage to the dr ive circuitry. Either end of thecablemay beplugged into the Driver board. Let the other end hang down the left side of the chassis becauseit will connect to the left side of the DFS board.
5. Remove the 10 pin connector cable connected to the Capacitor board (right side of the main chassis) and replace it with the new cable 3570-141420-001. Either end of the cable may be plugged into the Capacitor board. The other end of this cable will connect to the left side of the DFS-1 board, so make sure you stretch it across the chassis behind the DFS-1 board.
6. Mount the top of theDFS-1 board on the two outside studs at the bottom of the Fuse board using a star washer on each and the hex nuts saved when the other boards were removed.
7. Secure the bottom of the DFS-1 board to the rail, which previously supported the bottom of the Current and Speed boards, with the two screws supplied. The nylon spacers must be mounted between the DFS-1 board and the metal rail. Use a star washer between the DFS-1 board and the head of the screw.
8. Connect the 14 Pin connector cable to P2 on the left side of the DFS-1 board.
9. Connect the 10 Pin connector cable to P4 on the left side of the DFS-1 board.

Tum to section 1.0 of the DFS-1 manual to make the connections required.

This page was intentionally left blank.

Appendix B

Menu and Keypad Hierarchy

When the DF S-1 is shipped, the factory presets the unit's parameters according to the motor and drive's specifications. The following pages describe the keypad's hierarchal menus when the KDU-1 keypad and di splay unit has been install led and configured.

At the opening menu leve, the DF S-1's status is displayed. The STATUS display shows the commanded speed, the load as a percent of Full Load Amps, and the actual motor speed. If speed setpoint changes are allowed, the up and down arrows can be used to trim the drive.

Of the seven keys on the keypad, the CMD key is the only one which al ways has the same function. If the drive is in LOCAL and there is no analog input associated with speed reference, the CMD key will return to the status display in the edit mode. This edit mode can be recognized by the presence of a cursor under one digit position of the commanded speed being displayed. In this mode, the right and left arrow keys move the cursor left and right changing the digit position being edited. The up and down arrows will modify the val ue of the di git being edited by incrementing or decrementing the val ue by one unit.

The SEL key will always return to the next higher level without saving changes.

The ENT key will save changes and return to the status display except in the Setup/Parameters mode where it will save changes and return to the previous parameter menu.

NEMA standards define forward as counterclockwise rotation of the shaft as viewed facing the front of the motor. On a brush DC motor, the front end is the commutator end while on a brushless DC motor the front end is the encoder end (normally opposite from the output shaft).

While in the status display mode, pressing the FWD key will cause the motor to run in the forward (clockwise) mode.

Likewise, pressing the REV key will cause the motor to run in the reverse (counterclockwise) mode. Pressing the STP key will command the motor to stop. The manner in which the motor stops is determined by Setup Parameters.

In order to begin changing drive setup parameters, one must first press the MENU button. This
action will return the options represented by Fig. 1 on the following page.

The charts on the following pages, show the hierachal order of the options available. In most every case, up and down arrow keys scroll through selection for a particular menu level while the ENTER key will either move to the next hierarchal level or set a point and save the change. The SELECT key will return to the top of the hierarchal level without saving any change. For example, pressing the Menu button will result in a two line display of SETUP/PARAMETERS. Pressing the down triangle(arrow) will cause the next menu item, SETUP/ENB/DSB BKLT to appear. At this point pressing ENT will result in choices of up arrow to Enable and Down arrow to disable the LCD backlight. On the other hand, choosing the SEL will go back to the SETUP/ENB/DSB BKLT menu. In cases where a sel ection will go to another hierarchal level, this chart will show a Fig. number which refers to the next chart. For example, in Figure 1, Parameters, pressing the ENTER key will take one to . . . Fig. 2.

Figure 1.0

* Not visible in some modes.

This page was intentionally left blank.

Fig. 3
Fig. 2 Select

Fig. 4
Fig. $2<\begin{gathered}\text { Select } \\ \text { Input/Output }\end{gathered}$

This page was intentionally left blank.

Fig. 5
Fig. 2

Fig. 6

Fig. 7
Fig. 2 Select Drive Setup
$\xrightarrow{\substack{\text { Input Debounce Enter } \\ \text { B }}}$
High EGU Enter

$$
\begin{aligned}
& \text { Up/Dn Function Enter } \\
& \text { Pig. } 28 \\
& \text { PWM Mode Enter } \\
& \text { Fig. } 27
\end{aligned}
$$

Figures 5 -
$\nabla^{\text {Enter }}>$ Fig. 25

This page was intentionally left blank.

Fig. 8

This page was intentionally left blank.

This page was intentionally left blank.

This page was intentionally left blank.

This page was intentionally left blank.
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

