R5C841 PCI-CardBus/IEEE1394/SD Card /MemoryStick/xD/ExpressCard Data Sheet

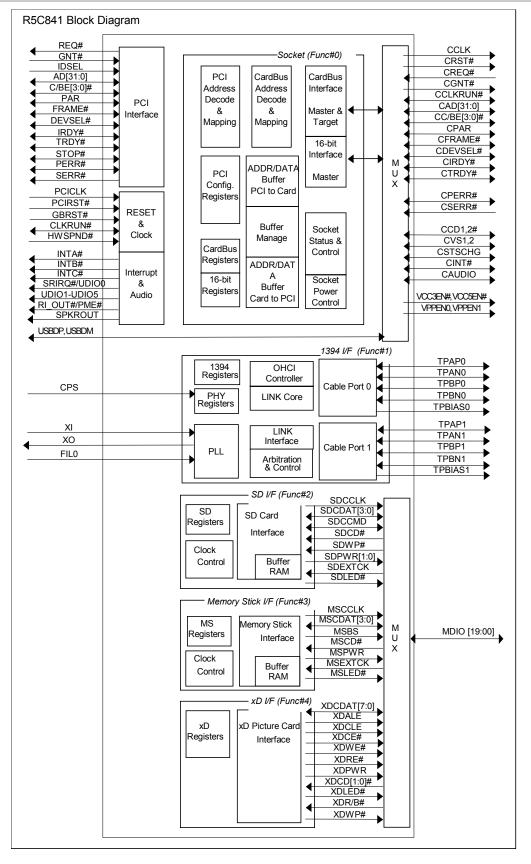
REV. 1.10

RIGOH

Download from Www.Somanuals.com. All Manuals Search And Download.

REVISION	DATE	COMMENTS			
0.60	7/24/03	First Draft (described Overview, Block Diagram and Pin description only)			
0.70	9/10/03	Addition of the regulator description (Spec 4) and the electrical characteristics Spec 5).			
0.80	11/6/03	Change from NewCard to ExpressCard. Mistakes in writing are corrected.			
1.00	1/30/04	First Public Release Mistakes in writing are corrected.			
1.10	5/18/04	Changes in the chart of Global Reset Timing (Ch. 5.3.6). Deletion of the 2.5V power supply support for the core logic.			

-REVISION HISTORY-


1 OVERVIEW

The R5C841 is a single chip solution offering five PCI functions (a PCI bus bridge to a PC Card, an IEEE 1394, an SD Card, a Memory Stick and an xD Picture Card) with an ExpressCard (USB Interface Type) switch.

- PC98/99/2001 compliant
 - PC2001 Design Guide compliant (Subsystem ID, Subsystem Vendor ID)
 - Compliant with ACPI and PCI Bus Power Management 1.1
 - Support Global Reset
- Low Power consumption
 - Low operating power consumption due to the improvement of Power Management
 - Software Suspend mode compliant with ACPI
 - Hardware Suspend
 - CLKRUN#, CCLKRUN# support
 - The core logic powered at 1.8V, the others powered at 3.3V
- PCI-CardBus/1394 Bridge/SD Card/Memory Stick/xD Picture Card/ExpressCard interface
 - 1-slot PC Card
 - 2 ports of IEEE1394
 - MDIOxx pins shared by SD Card, Memory Stick and xD Picture Card
 - Providing Ricoh's proprietary driver for Memory Stick and xD Picture Card
 - ExpressCard (USB Interface Type) supported by the PC Card passive adapter
- PCI Bus Interface
 - Compliant with PCI Local Bus Specification2.3
 - The maximum frequency 33MHz
 - PCI Master/Target protocol support
 - PCI configuration space for each function
 - 3.3V Interface (5V tolerant)
- CardBus PC card Bridge
 - Compliant with PC Card Standard Release 8.1 Specification
 - The maximum frequency 33MHz
 - Support CardBus Master/Target protocol
 - Support Memory Write Posting/ Read Prefetching
 - Transfer transactions
 - All memory read/write transaction (bi-direction)
 - I/O read/write transaction (bi-direction)
 - Configuration read/write transaction (PCI \rightarrow Card)
 - 2 programmable memory windows
 - 2 programmable I/O windows
- PC Card-16 Bridge
 - Compliant with PC Card Standard Release 8.1 16-bit Specification
 - 5 programmable memory windows
 - 2 programmable I/O windows
 - Compliant with i82365SL compatible register set/ExCA
 - Support Legacy 16-bit mode (3E0, 3E2 I/O ports)

- ♦ IEEE1394 Interface
 - Compliant with IEEE1394-1995 Standard Specification and IEEE1394a-2000 Standard Specification
 - Compliant with 1394 OHCI Release 1.1/1.0 Standard Specification
 - Support Cycle Master
 - Provide the Asynchronous receive/transmit FIFO and isochronous receive/transmit FIFO
 - Support Self-ID, physical DMA
 - Data transmission rate of 100, 200 and 400Mbps
 - 2 ports of 1394 Cable interface
 - 24.576MHz crystal oscillator and Internal 393.216MHz PLL
 - Support Cable Power monitoring (CPS)
 - Set Initial values of Power Class and CMC by PCI Configuration registers
- Small Card Interface
 - SD Card
 - Compliant with SD Memory Card Specification Version 1.01
 - Compliant with SD Input/Output (SDIO) Card Specification Version 1.0
 - Compliant with SD Host Controller Standard Specification Version 1.0
 - Memory Stick
 - Compliant with Memory Stick Standard Format Specification Version 1.4
 - Compliant with Memory Stick PRO Format Specification Version 1.00
 - xD Picture Card
 - Compliant with xD Picture Card Specification Version 1.00
 - Compliant with xD Picture Card Host Guideline Version 1.00
 - Backward compatible with the Smart Media
- ExpressCard Interface
 - Compliant with EXPRESSCARD STANDARD Draft Release 1.0 (USB Interface Type only)
 - Pass USB signals from a USB-HOST to a Card Slot
- System Interrupt
 - Support INTA#, INTB# and INTC# for PC system interrupt (Each unit is programmable.)
 - Support Serialized IRQ
 - IRQx support for ISA system interrupt
 Support Parente Wake Up by CSTSCH
 - Support Remote Wake Up by CSTSCHG
- Support an internal regulator to convert the 3.3V power into the power for the internal core logic
- Support Zoomed Video Port (Bypass type)
- Support PC Card LED, 1394 LED, SD LED, Memory Stick LED and xD Picture Card LED
- Support BAY function with the PC Card passive adapter
 - Pin Compatible With: R5C811 (CSP1616-208) R5C821 (CSP1616-208) R5C821PA (CSP1616-208) R5C851 (CSP1616-208) R5C851PA (CSP1616-208)
- Package
 - 208pin CSP (size=16x16mm, pitch=0.8mm, t=1.4mm)

2 BLOCK DIAGRAM

3 PIN DESCRIPTION

3.1 Pin Assignments (208 pin CSP)

• CSP Pin Assignment

Bottom View

	А	В	С	D	Е	F	G	Н	J	K	L	М	Ν	Р	R	Т	U	V	W
1	×	O MDIO00	O NC	O NC	O NC	O SPKROU	O r udio5		GND	O		O AD30	O AD26		O AD21	O AD19	O AD17	O AD16	$\overline{\}$
2	O MDIO01		O NC	O NC	O NC	O	O#GBRST#	O UDIO2	O INTA#	O INTC#	O NC	O AD31	O AD27	O C/BE3#	O AD22	O AD20	O AD18		O C/BE2#
3	O MDIO02	O MDIO03																O FRAME#	VCC_ PCI3V
4	VCC_ MD3V	O MDIO04			O NC	O TEST	RI_OUT#/ PME#	O UDIO3	UDIO0/ SRIRQ#	O INTB#	O PCIRST#	O REQ#	O AD28	O AD24	O AD23			O IRDY#	O TRDY#
5	O MDIO05	O MDIO06		O MDIO07		VCC_3V	VCC_3V	O UDIO4	GND	GND	O CLKRUN#	O GNT#	O AD29	O AD25		O DEVSEL#		O STOP#	O PERR#
6	O MDIO08	O MDIO09		O MDIO10	O MDIO11										VCC_ RIN	O SERR#) Par	O C/BE1#
7	MDIO12	O MDIO13		O MDIO14	O MDIO15										O REGEN#	O AD15		O AD14	O AD13
8	O MDIO16	O MDIO17		O MDIO18	O MDIO19										O AD12	O AD11		O AD10	O AD9
9	AGND	AGND		AGND	GND										O AD8	O C/BE0#		O AD7	O AD6
10	O TPAN1	O TPAP1		O TPBIAS1	AVCC_ PHY3V										GND	GND		GND	GND
11	O TPBN1	O TPBP1		O CPS	AVCC_ PHY3V											O AD5		O AD4	O AD3
12	O TPAN0	O TPAP0		O TPBIAS0	O NC										VCC PCI3V	O AD2		O AD1	O AD0
13	O TPBN0	O TPBP0		O VREF	VCC_ RIN										O VCC5EN#	O VCC3EN#		O VPPEN0	O VPPEN1
14	O FIL0	O REXT		AGND											O CDATA3	O CD1#		OUSBDP	O USBDM
15	AGND	AGND		O CD2#		O CADR2	O CADR4	O CADR6	O CADR24	O CADR15	GND	O WE#	O CADR13	O CADR8		O CDATA4		O CDATA11	O CDATA5
16	O XI	O xo			O CADR0	O REG#	O WAIT#	O VS2#	O CADR7	O CADR23	O CADR22	O CADR20	O CADR18	O CADR17	O VS1#			O CDATA12	O CDATA6
17	AVCC_ PHY3V	AVCC_ PHY3V																O CDATA13	O CDATA7
18	WP/ IOIS16#		O CDATA9	O CDATA8	O BVD1	O CADR1	O CADR3	O CADR5	O CADR25	O CADR12	O CADR21	O RDY/ IREQ#	O CADR14	O IORD#	O CARD11	O CE2#	O CDATA15		O CDATA14
19		O CDATA10	O CDATA2	O CDATA1	O CDATA0	O BVD2	O INPACK#	O RESET	VCC_3V	VCC_3V	O CADR16	GND	O CADR19	O IOWR#	O CADR9	O OE#	O CADR10	O CE1#	

•	CSP	Pin	List
---	-----	-----	------

Ball	Signal Name	Ball	Signal Name	Ball	Signal Name	Ball	Signal Name
F4	TEST	V5	STOP#	T19	OE#	C19	CDATA2
F2	HWSPND#	W5	PERR#	R16	VS1#	B19	CDATA10
F1	SPKROUT	T6	SERR#	R18	CADR11	A18	WP/IOIS16#
G4	RI OUT#/PME#	V6	PAR	R19	CADR9	D15	CD2#
G2	GBRST#	W6	C/BE1#	P18	IORD#	E8	MDIO19
G1	UDIO5	T7	AD15	P19	IOWR#	D8	MDIO18
H5	UDIO4	V7	AD14	P15	CADR8	B8	MDIO17
H4	UDIO3	W7	AD13	P16	CADR17	A8	MDIO16
H2	UDIO2	R8	AD12	N15	CADR13	E7	MDIO15
H1	UDIO1	Т8	AD11	N16	CADR18	D7	MDIO14
J4	UDIO0/SRIRQ#	V8	AD10	N18	CADR14	B7	MDIO13
J2	INTA#	W8	AD9	N19	CADR19	A7	MDIO12
K4	INTB#	R9	AD8	M15	WE#	E6	MDIO11
K2	INTC#	Т9	C/BE0#	M16	CADR20	D6	MDIO10
L5	CLKRUN#	V9	AD7	M18	RDY/IREQ#	B6	MDIO09
L4	PCIRST#	W9	AD6	L16	CADR22	A6	MDIO08
K1	PCICLK	T11	AD5	L18	CADR21	D5	MDIO07
M5	GNT#	V11	AD4	L19	CADR16	B5	MDIO06
M4	REQ#	W11	AD3	K15	CADR15	A5	MDIO05
M2	AD31	T12	AD2	K16	CADR23	B4	MDIO04
M1	AD30	V12	AD1	K18	CADR12	B3	MDIO03
N5	AD29	W12	AD0	J15	CADR24	A3	MDIO02
N4	AD28	R13	VCC5EN#	J16	CADR7	A2	MDIO01
N2	AD27	T13	VCC3EN#	J18	CADR25	B1	MDIO00
N1	AD26	V13	VPPEN0	H15	CADR6	B16	XO
P5	AD25	W13	VPPEN1	H16	VS2#	A16	XI
P4	AD24	V14	USBDP	H18	CADR5	B14	REXT
P2	C/BE3#	W14	USBDM	H19	RESET	A14	FIL0
P1	IDSEL	R14	CDATA3	G15	CADR4	D13	VREF
R4	AD23	T14	CD1#	G16	WAIT#	B13	TPBP0
R2	AD22	T15	CDATA4	G18	CADR3	A13	TPBN0
R1	AD21	V15	CDATA11	G19	INPACK#	D12	TPBIAS0
T2	AD20	W15	CDATA5	F15	CADR2	B12	TPAP0
T1	AD19	V16	CDATA12	F16	REG#	A12	TPAN0
U2	AD18	W16	CDATA6	F18	CADR1	D11	CPS
U1	AD17	V17	CDATA13	F19	BVD2	B11	TPBP1
V1	AD16	W17	CDATA7	E16	CADR0	A11	TPBN1
W2	C/BE2#	W18	CDATA14	E18	BVD1	D10	TPBIAS1
V3	FRAME#	V19	CE1#	E19	CDATA0	B10	TPAP1
V4	IRDY#	U18	CDATA15	D18	CDATA8	A10	TPAN1
W4	TRDY#	U19	CADR10	D19	CDATA1	R7	REGEN#
Т5	DEVSEL#	T18	CE2#	C18	CDATA9		

Pin Name	Ball#	Pin Name	Ball#	
VCC_PCI3V	W3, R11, R12	AGND	A9, B9, D9, D14, A15, B15	
VCC_3V	F5, G5, J19, K19	GND	J1, J5, K5, E9, R10, T10, V10,	
VCC_MD3V	A4	GND	W10, L15, M19	
VCC_RIN	R6, E13	NC	L2, C1, D1, E1, C2, D2, E2,	
VCC_ROUT	L1, E14		E4, E12	
AVCC_PHY3V	E10, E11, A17, B17			

3.2 Pin Characteristics

16-bit Card Int	erface	CardBus Card I	nterface	Pin	Characteristi	cs	Note
Pin Name	Dir	Pin Name	Dir	5Vtolerant	PwrRail	Drive	Note
TEST	I	TEST	Ι		3V	-	
HWSPND#	I	HWSPND#	Ι	✓	3V	-	
SPKROUT	I/O	SPKROUT	I/O		3V	4mA	
RI_OUT#/ PME#	O (OD)	RI_OUT#/ PME#	O (OD)	✓	3V	4mA	
GBRST#	I	GBRST#	I		3V	_	
UDIO5	0	UDIO5	0	✓	3V	4mA	
UDIO4	I/O	UDIO4	I/O	✓	3V	4mA	
UDIO3	I/O	UDIO3	I/O	✓	3V	4mA	
UDIO2	I/O	UDIO2	I/O	√	3V	4mA	
UDIO1	I/O	UDIO1	I/O	✓	3V	4mA	
UDIO0/ SRIRQ#	I/O	UDIO0/ SRIRQ#	I/O	✓	3V	4mA	
INTA#	O (OD)	INTA#	O (OD)	✓	Р	PCI	
INTB#	O (OD)	INTB#	O (OD)	✓	Р	PCI	
INTC#	O (OD)	INTC#	O (OD)	~	Р	PCI	
CLKRUN#	I/O	CLKRUN#	I/O	✓	Р	PCI	
PCIRST#	I	PCIRST#	I	✓	Р	_	
PCICLK	I	PCICLK	I	✓	Р	_	
GNT#	I	GNT#	I	✓	Р	_	
REQ#	O (TS)	REQ#	O (TS)	✓	Р	PCI	
AD31	I/O	AD31	I/O	✓	Р	PCI	
AD30	I/O	AD30	I/O	✓	Р	PCI	
AD29	I/O	AD29	I/O	✓	Р	PCI	
AD28	I/O	AD28	I/O	✓	Р	PCI	
AD27	I/O	AD27	I/O	✓	Р	PCI	
AD26	I/O	AD26	I/O	✓	Р	PCI	
AD25	I/O	AD25	I/O	✓	Р	PCI	
AD24	I/O	AD24	I/O	✓	Р	PCI	
C/BE3#	I/O	C/BE3#	I/O	✓	Р	PCI	
IDSEL	1	IDSEL	I	✓	Р	_	
AD23	I/O	AD23	I/O	✓	Р	PCI	
AD22	I/O	AD22	I/O	✓	Р	PCI	
AD21	I/O	AD21	I/O	√	Р	PCI	
AD20	I/O	AD20	I/O	✓	Р	PCI	
AD19	I/O	AD19	I/O	✓	Р	PCI	
AD18	I/O	AD18	I/O	✓	Р	PCI	1
AD17	I/O	AD17	I/O	✓	Р	PCI	
AD16	I/O	AD16	I/O	✓	Р	PCI	
C/BE2#	I/O	C/BE2#	I/O	~	Р	PCI	
FRAME#	I/O	FRAME#	I/O	✓	Р	PCI	

16-bit Card In	iterface	CardBus Card	Interface	Pin	Pin Characteristics			
Pin Name	Dir	Pin Name Dir		5Vtolerant	PwrRail	Drive	Note	
IRDY#	I/O	IRDY#	I/O	\checkmark	Р	PCI		
TRDY#	I/O	TRDY#	I/O	✓	Р	PCI		
DEVSEL#	I/O	DEVSEL#	I/O	✓	Р	PCI		
STOP#	I/O	STOP#	I/O	✓	Р	PCI		
PERR#	I/O	PERR#	I/O	✓	Р	PCI		
SERR#	O (OD)	SERR#	O (OD)	✓	Р	PCI		
PAR	I/O	PAR	I/O	~	Р	PCI		
C/BE1#	I/O	C/BE1#	I/O	~	Р	PCI		
AD15	I/O	AD15	I/O	✓	Р	PCI		
AD14	I/O	AD14	I/O	✓	Р	PCI		
AD13	I/O	AD13	I/O	✓	Р	PCI		
AD12	I/O	AD12	I/O	✓	Р	PCI		
AD11	I/O	AD11	I/O	✓	Р	PCI		
AD10	I/O	AD10	I/O	✓	Р	PCI		
AD9	I/O	AD9	I/O	✓	Р	PCI		
AD8	I/O	AD8	I/O	✓	Р	PCI		
C/BE0#	I/O	C/BE0#	I/O	✓	Р	PCI		
AD7	I/O	AD7	I/O	✓	Р	PCI		
AD6	I/O	AD6	I/O	✓	Р	PCI		
AD5	I/O	AD5	I/O	✓	Р	PCI		
AD4	I/O	AD4	I/O	✓	Р	PCI		
AD3	I/O	AD3	I/O	✓	Р	PCI		
AD2	I/O	AD2	I/O	✓	Р	PCI		
AD1	I/O	AD1	I/O	✓	Р	PCI		
AD0	I/O	AD0	I/O	✓	Р	PCI		
VCC5EN#	0	VCC5EN#	0	✓	3V	4mA		
VCC3EN#	0	VCC3EN#	0	✓	3V	4mA		
VPPEN0	0	VPPEN0	0	✓	3V	4mA		
VPPEN1	0	VPPEN1	0	✓	3V	4mA		
USBDP	I/O	USBDP	I/O		_	_		
USBDM	I/O	USBDM	I/O		_	_		
CDATA3	I/O	CAD0	I/O	✓	3V	4mA		
CD1#	I (PU)	CCD1#	I (PU)		3V	_		
CDATA4	I/O	CAD1	I/O	✓	3V	4mA	1	
CDATA11	I/O	CAD2	I/O	✓	3V	4mA		
CDATA5	I/O	CAD3	I/O	✓	3V	4mA	1	
CDATA12	I/O	CAD4	I/O	✓	3V	4mA		
CDATA6	I/O	CAD5	I/O	✓	3V	4mA		
CDATA13	I/O	CAD6	I/O	✓	3V	4mA		
CDATA7	I/O	CAD7	I/O	✓	3V	4mA		
CDATA14	1/O	-		✓	3V	4mA	1	

16-bit Card In	iterface	CardBus Card	Interface	Pin	Characteristi	cs	Note
Pin Name	Dir	Pin Name	Dir	5Vtolerant	PwrRail	Drive	Note
CE1#	0	CC/BE0#	I/O	✓	3V	4mA	
CDATA15	I/O	CAD8	I/O	✓	3V	4mA	
CADR10	0	CAD9	I/O	✓	3V	4mA	
CE2#	0	CAD10	I/O	✓	3V	4mA	
OE#	0	CAD11	I/O	✓	3V	4mA	
VS1#	I/O	CVS1	I/O		3V	1mA	
CADR11	0	CAD12	I/O	✓	3V	4mA	
IORD#	0	CAD13	I/O		3V	4mA	
CADR9	0	CAD14	I/O	✓	3V	4mA	
IOWR#	0	CAD15	I/O		3V	4mA	
CADR8	0	CC/BE1#	I/O	✓	3V	4mA	
CADR17	0	CAD16	I/O	✓	3V	4mA	
CADR13	0	CPAR	I/O	~	3V	4mA	
CADR18	0	-	_	~	3V	4mA	
CADR14	0	CPERR#	I/O (PU)	✓	3V	4mA	1
CADR19	0	-	I/O (PU)	✓	3V	4mA	1
WE#	0	CGNT#	0	✓	3V	4mA	
CADR20	0	CSTOP#	I/O (PU)	✓	3V	4mA	1
RDY/ IREQ#	I (PU)	CINT#	I (PU)	✓	3V	_	
CADR21	0	CDEVSEL#	I/O (PU)	✓	3V	4mA	1
CADR16	O (TS)	CCLK	O (TS)	✓	3V	СВ	
CADR22	0	CTRDY#	I/O (PU)	✓	3V	4mA	1
CADR15	0	CIRDY#	I/O (PU)	✓	3V	4mA	1
CADR23	0	CFRAME#	I/O	✓	3V	4mA	
CADR12	0	CC/BE2#	I/O	✓	3V	4mA	
CADR24	0	CAD17	I/O	~	3V	4mA	
CADR7	0	CAD18	I/O	\checkmark	3V	4mA	
CADR25	0	CAD19	I/O	✓	3V	4mA	
CADR6	0	CAD20	I/O	✓	3V	4mA	
VS2#	I/O	CVS2	I/O		3V	1mA	
CADR5	0	CAD21	I/O	✓	3V	4mA	
RESET	O (TS)	CRST#	O (TS)	~	3V	2mA	
CADR4	0	CAD22	I/O	~	3V	4mA	
WAIT#	I (PU)	CSERR#	I (PU)	~	3V	-	
CADR3	0	CAD23	I/O	~	3V	4mA	
INPACK#	I (PU)	CREQ#	I (PU)	~	3V	-	
CADR2	0	CAD24	I/O	✓	3V	4mA	
REG#	0	CC/BE3#	I/O	✓	3V	4mA	
CADR1	0	CAD25	I/O	~	3V	4mA	
BVD2/ SPKR#/ LED	I (PU)	CAUDIO	I (PU)	~	3V	_	

16-bit Card In	nterface	CardBus Card	Interface	Pin	Characteristi	cs	Note
Pin Name	Dir	Pin Name	Dir	5Vtolerant	PwrRail	Drive	NOLE
CADR0	0	CAD26	I/O	✓	3V	4mA	
BVD1/ STSCHG#/ RI#	I (PU)	CSTSCHG	I (PD)	~	3V	-	2
CDATA0	I/O	CAD27	I/O	✓	3V	4mA	
CDATA8	I/O	CAD28	I/O	✓	3V	4mA	
CDATA1	I/O	CAD29	I/O	✓	3V	4mA	
CDATA9	I/O	CAD30	I/O	✓	3V	4mA	
CDATA2	I/O	-	-	✓	3V	4mA	
CDATA10	I/O	CAD31	I/O	√	3V	4mA	
WP/ IOIS16#	I (PU)	CCLKRUN#	I/O (PU)	√	3V	4mA	1
CD2#	I (PU)	CCD2#	I (PU)		3V	-	
MDIO00	I (PU)	MDIO00	I (PU)	✓	3V	-	
MDIO01	I (PU)	MDIO01	I (PU)	✓	3V	-	
MDIO02	O (PU)	MDIO02	O (PU)	~	3V	8mA	
MDIO03	I (PU)	MDIO03	I (PU)	~	3V	_	
MDIO04	0	MDIO04	0	~	3V	8mA	
MDIO05 (SD) (MS) (xD)	O/ _/ O(PD)	MDIO05 (SD) (MS) (xD)	O/ _/ O(PD)	V	3V	8mA	
MDIO06	0	MDIO06	0	✓	3V	8mA	
MDIO07	I	MDIO07	I	✓	3V	_	
MDIO08 (SD) (MS) (xD)	I/O(PU)/ O(TS)/ O(PU)	MDIO08 (SD) (MS) (xD)	I/O(PU)/ O(TS)/ O(PU)		М	8mA	
MDIO09 (SD) (MS) (xD)	I/O(PU)/ I/O(PU)/ O(PU)	MDIO09 (SD) (MS) (xD)	I/O(PU)/ I/O(PU)/ O(PU)		М	8mA	
MDIO10 (SD) (MS) (xD)	I/O(PU)/ I/O/ I/O(PD)	MDIO10 (SD) (MS) (xD)	I/O(PU)/ I/O/ I/O(PD)		М	8mA	
MDIO11 (SD) (MS) (xD)	I/O(PU)/ I/O/ I/O(PD)	MDIO11 (SD) (MS) (xD)	I/O(PU)/ I/O/ I/O(PD)		М	8mA	
MDIO12 (SD) (MS) (xD)	I/O(PU)/ I/O/ I/O(PD)	MDIO12 (SD) (MS) (xD)	I/O(PU)/ I/O/ I/O(PD)		М	8mA	
MDIO13 (SD) (MS) (xD)	I/O(PU)/ I/O/ I/O(PD)	MDIO13 (SD) (MS) (xD)	I/O(PU)/ I/O/ I/O(PD)		М	8mA	
MDIO14	I/O(PD)	MDIO14	I/O(PD)		М	8mA	
MDIO15	I/O(PD)	MDIO15	I/O(PD)		М	8mA	
MDIO16	I/O(PD)	MDIO16	I/O(PD)		М	8mA	
MDIO17	I/O(PD)	MDIO17	I/O(PD)		М	8mA	
MDIO18	O(PD)	MDIO18	O(PD)		М	8mA	
MDIO19	O(PD)	MDIO19	O(PD)		М	8mA	

16-bit Card In	terface	CardBus Card I	nterface	Pin	Characteristi	cs	Note
Pin Name	Dir	Pin Name	Dir	5Vtolerant	PwrRail	Drive	Note
XI	I	XI	I		AP		
XO	0	ХО	0		AP		
FIL0	I/O	FIL0	I/O		AP		
CPS	l(PD)	CPS	l(PD)		AP	1394	
VREF	I/O	VREF	I/O		AP		
REXT	I/O	REXT	I/O		AP		
TPBN0	I/O	TPBN0	I/O	✓	AP	1394	
TPBP0	I/O	TPBP0	I/O	✓	AP	1394	
TPAN0	I/O	TPAN0	I/O	✓	AP	1394	
TPAP0	I/O	TPAP0	I/O	✓	AP	1394	
TPBIAS0	I/O	TPBIAS0	I/O		AP	1394	
TPBN1	I/O	TPBN1	I/O	✓	AP	1394	
TPBP1	I/O	TPBP1	I/O	✓	AP	1394	
TPAN1	I/O	TPAN1	I/O	✓	AP	1394	
TPAP1	I/O	TPAP1	I/O	✓	AP	1394	
TPBIAS1	I/O	TPBIAS1	I/O		AP	1394	
REGEN#	1	REGEN#	I		R	_	

Pin Type

I: Input Pin, O: Output Pin, I/O: Input Ou I (PU): Input Pin with Internal Pullup Resister, I (PD): Input Pin with Internal Pulldown Resister, I/O (PU): Input Output Pin with Internal Pulldown Resister, I/O (PD): Input Output Pin with Internal Pulldown Resister, I/O (PD): Input Output Pin with Internal Pulldown Resister, I/O (PD): Input Output Pin with Internal Pulldown Resister, I/O (PD): Input Output Pin with Internal Pulldown Resister, I/O (PD): Input Output Pin with Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I/O (PD): Input Output Pin With Internal Pulldown Resister, I (PD): Input Output Pin With Internal Pulldown Resister, I (PD): Input Output Pin With Internal Pulldown Resister, I (PD): Input Output Pin With Internal Pulldown Resister, I (PD): Input Pin With Int I/O: Input Output Pin,

O (TS): Three State Output Pin, O (OD): Open Drain Output Pin

Power Rail

P: VCC_PCI3V AP: AVCC_PHY3V R: VCC_RIN 3V: VCC_3V M: VCC_MD3V

Drive

PCI: PCI Compliant CB: PCMCIA CardBus PC Card Compliant 1394: IEEE1394a-2000 Compliant

Note

Pullup is attached when PC Card Interface is configured as a CardBus Interface Mode.
 Pullup or Pulldown is configured according to the type of a card inserted.

Pin	Media I/F	SD Card	Memory Stick	xD Picture Card
1	MDIO00	SDCD#	—	XDCD0#
2	MDIO01		MSCD#	XDCD1#
3	MDIO02		—	XDCE#
4	MDIO03	SDWP#	—	XDR/B#
5	MDIO04	SDPWR0	MSPWR	XDPWR
6	MDIO05	SDPWR1	—	XDWP#
7	MDIO06	SDLED#	MSLED#	XDLED#
8	MDIO07	SDEXTCK	MSEXTCK	—
9	MDIO08	SDCCMD	MSBS	XDWE#
10	MDIO09	SDCCLK	MSCCLK	XDRE#
11	MDIO10	SDCDAT0	MSCDAT0	XDCDAT0
12	MDIO11	SDCDAT1	MSCDAT1	XDCDAT1
13	MDIO12	SDCDAT2	MSCDAT2	XDCDAT2
14	MDIO13	SDCDAT3	MSCDAT3	XDCDAT3
15	MDIO14		_	XDCDAT4
16	MDIO15		_	XDCDAT5
17	MDIO16	_	_	XDCDAT6
18	MDIO17	_	_	XDCDAT7
19	MDIO18	_	—	XDCLE
20	MDIO19			XDALE

Small Card Pin Assignments

• ExpressCard Pin Assignments PC Card Pin

PC CARD PIN 1-68 ASSIGNMENTS

Pin	16bit Card	CardBus	ExpressCard
1	GND	GND	GND
2	D3	CAD0	—
3	D4	CAD1	—
4	D5	CAD3	—
5	D6	CAD5	—
6	D7	CAD7	—
7	CE1#	CCBE0#	—
8	A10	CAD9	—
9	OE#	CAD11	—
10	A11	CAD12	—
11	A9	CAD14	—
12	A8	CCBE1#	—
13	A13	CPAR	—
14	A14	CPERR#	—
15	WE#	CGNT#	—
16	READY/IREQ#	CINT#	—
17	VCC	VCC	VCC
18	VPP	VPP	_
19	A16	CCLK	—
20	A15	CIRDY#	—

Pin	16bit Card	16bit Card CardBus	
21	A12	A12 CCBE2#	
22	A7	CAD18	_
23	A6	CAD20	_
24	A5	CAD21	_
25	A4	CAD22	_
26	A3	CAD23	_
27	A2	CAD24	_
28	A1	CAD25	_
29	A0	CAD26	_
30	D0	CAD27	_
31	D1	CAD29	
32	D2	RFU	(PERST#)
33	WP/IOIS16#	CCLKRUN	(· _···· /
34	GND	GND	GND
35	GND	GND	GND
36	CD1#	CCD1#	CCD1#
37	D11	CAD2	
38	D12	CAD4	_
39	D13	CAD6	_
40	D14	RFU	
41	D15	CAD8	
42	CE2#	CAD10	
43	VS1#	CVS1	CVS1
44	IORD#/RFU	CAD13	USBD+
44	IOWR#/RFU	CAD15	USBD-
45	A17	CAD15 CAD16	0360-
40	A17 A18	RFU	
	A18 A19	CBLOCK#	
48 49	A19 A20	CSTOP#	
50	A21	CDEVSEL#	
51	VCC	VCC	VCC
52	VPP	VPP	
53	A22	CTRDY#	CPUSB#
54	A23	CFRAME#	-
55	A24	CAD17	_
56	A25	CAD19	-
57	VS2#	CVS2	CVS2
58	RESET	CRST#	—
59	WAIT#	CSERR#	—
60	INPACK#/RFU	CREQ#	
61	REG#	CCBE3#	
62	SPKR#/BVD2	CAUDIO	-
63	STSCHG#/BVD1	CSTSCHG	—
64	D8	CAD28	-
65	D9	CAD30	-
66	D10	CAD31	—
67	CD2#	CCD2#	CCD2#
68	GND	GND	GND

Small Card Pin Assignments PC Card Pin (using BAY)

PC CARD	PIN 1-68	ASSIGNMENTS

1 2 3	GND				Card
		GND	GND	GND	GND
3	D3	CAD0		—	_
	D4	CAD1		_	
4	D5	CAD3	_	—	_
5	D6	CAD5	_	_	_
6	D7	CAD7		_	
7	CE1#	CCBE0#	_	_	_
8	A10	CAD9	_	—	XDWP#
9	OE#	CAD11	_	—	_
10	A11	CAD12	_	—	XDCE#
11	A9	CAD14	_	—	XDALE
12	A8	CCBE1#	_	_	XDCLE
13	A13	CPAR	_	_	SMWP#
14	A14	CPERR#	_	—	_
15	WE#	CGNT#	SDCCLK	MSCCLK	XDRE#
16	READY/IREQ#	CINT#	_	_	XDCD#
17	VCC	VCC	VCC	VCC	VCC
18	VPP	VPP		_	
19	A16	CCLK	_	_	_
20	A15	CIRDY#	_	_	_
21	A12	CCBE2#	_	_	_
22	A7	CAD18		_	XDCDAT7
23	A6	CAD20	_	_	XDCDAT6
24	A5	CAD21	_	_	XDCDAT5
25	A4	CAD22	_	_	XDCDAT4
26	A3	CAD23	SDCDAT3	MSCDAT3	XDCDAT3
27	A2	CAD24	SDCDAT2	MSCDAT2	XDCDAT2
28	A1	CAD25	SDCDAT1	MSCDAT1	XDCDAT1
29	A0	CAD26	SDCDAT0	MSCDAT0	XDCDAT0
30	D0	CAD27	_	_	
31	D1	CAD29	_	_	
32	D2	RFU	_	_	_
33	WP/IOIS16#	CCLKRUN	_	_	
34	GND	GND	GND	GND	GND
35	GND	GND	GND	GND	GND
36	CD1#	CCD1#	CCD1#	CCD1#	CCD1#
37	D11	CAD2	—		_
38	D12	CAD4	_		_
39	D13	CAD6	_	_	_
40	D14	RFU	_	_	_
41	D15	CAD8	_		_
42	CE2#	CAD10	SDCCMD	MSBS	XDWE#
43	VS1#	CVS1	CVS1	CVS1	CVS1
44	IORD#/RFU	CAD13	_	_	_
45	IOWR#/RFU	CAD15	_		

Pin	16bit Card	CardBus	SDCard	Memory Stick	xD Picture Card
46	A17	CAD16	—	_	—
47	A18	RFU	—	_	_
48	A19	CBLOCK#	—	_	—
49	A20	CSTOP#	—	—	—
50	A21	CDEVSEL#	—	_	_
51	VCC	VCC	VCC	VCC	VCC
52	VPP	VPP	_	_	_
53	A22	CTRDY#	_	_	_
54	A23	CFRAME#	—	—	—
55	A24	CAD17	_	_	_
56	A25	CAD19	—	_	—
57	VS2#	CVS2	CVS2	CVS2	CVS2
58	RESET	CRST#	_	—	_
59	WAIT#	CSERR#	_	MSCD#	_
60	INPACK#/RFU	CREQ#	SDCD#	—	—
61	REG#	CCBE3#	_	_	_
62	SPKR#/BVD2	CAUDIO	SDWP#	_	XDR/B#
63	STSCHG#/BVD1	CSTSCHG	—	—	—
64	D8	CAD28		_	
65	D9	CAD30	_	_	_
66	D10	CAD31	_	_	_
67	CD2#	CCD2#	CCD2#	CCD2#	CCD2#
68	GND	GND	GND	GND	GND

3.3 **Pin Functions Outline**

In this chapter, the detailed signal pins in the R5C841 are explained. Every signal is divided according to their relational interface.

Card Interface signal pin is multi–functional pin. Card Interface mode is configured automatically by the card insertion; CardBus card or 16-bit card. And the pin function is redefined again.

mark means the signal is on either active or asserted when the signal is low-level. Otherwise, no-mark means the signal is asserted when the signal is high-level.

The following the notations are used to describe the signal type.

IN	Input Pin
OUT	Output Pin
OUT (TS)	Three State Output Pin
OUT (OD)	Open Drain Output Pin
I/O	Input Output Pin
I/O (OD)	Input Output Pin (Output is Open Drain)
s/h/z	Sustained Tri–State is an active low tri–state signal owned and driven by one and only one agent at a time. The agent that drives an s/h/z pin low must drive it high for at least one clock before letting it float. A new agent cannot start driving an s/h/z signal any sooner than one clock after the previous owner tri–state is.

3.3.1 PCI Local Bus interface signals

Pin Name	Туре	Description
		PCI Bus Interface Pin Descriptions
PCICLK	IN	PCI CLOCK: PCICLK provides timing for all transactions on PCI. All other PCI signals are sampled on the rising edge of PCICLK.
CLKRUN#	I/O (OD)	PCI CLOCK RUN: This signal indicates the status of PCICLK and an open drain output to request the starting or speeding up of PCICLK. This pin complies with Mobile PCI specification. If CLKRUN# is not implemented, then this pin should be tied low. In this case, CardBus clock is controlled by setting of StopClock bit included Socket Control Register. This signal has no meaning for the PC Card16 Cards, the CardBus Cards that does not support CCLKRUN# and not insert Cards to socket. During PCI bus reset is asserted, this pin placed in a high-impedance state. And also, refer to the chapter 4.21 for the LED output.
PCIRST#	IN	PCI RESET: This input is used to initialize all registers, sequences and signals of the R5C841 to their reset states. PCIRST# causes the R5C841 to place all output buffers in a high-impedance state. The negation of PCIRST# requires no-bounds.
AD [31:0]	I/O	ADDRESS AND DATA: Address and Data are multiplexed on the same PCI pins.
C/BE [3:0]#	I/O	BUS COMMAND AND BYTE ENABLES: Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of transaction, C/BE [3:0]# define the bus command. During the data phase C/BE [3:0]# are used as Byte Enables. The Byte Enables are valid for the entire data phase and determine which byte lanes carry meaningful data.
PAR	I/O	PARITY: Parity is even parity across AD [31:0] and C/BE [3:0]#. PAR is stable and valid one clock after the address phase. For data phases, PAR is stable and valid one clock after either IRDY# is asserted on a write transaction or TRDY# is asserted on a read transaction. The master drives PAR for address and write data phases; the target drives PAR for read data phases.
FRAME#	I/O s/h/z	CYCLE FRAME: This signal is driven by the current master to indicate the beginning and duration of an access. FRAME# is asserted to indicate a bus transaction is beginning. While FRAME# is asserted, data transfers continue. When FRAME# is deasserted, the transaction is in the final data phase or has complete.
TRDY#	l/O s/h/z	TARGET READY: This signal indicates the initialing agent's ability to complete the current data phase of the transaction. TRDY# is used in conjunction with IRDY#. A data phase is completed on any clock both TRDY# and IRDY# are sampled asserted. During a read, TRDY# and IRDY# are sampled asserted. During a read, TRDY# and IRDY# are sampled asserted. During a read, TRDY# and IRDY# are sampled asserted. During a complete that valid data is present on AD [31:0]. During a write, it indicates the target is prepared to accept data. Wait cycles are inserted both IRDY# and TRDY# are asserted together.
IRDY#	l/O s/h/z	INITIATOR READY: This signal indicates the initiating agent's ability to complete the current data phase of the transaction. IRDY# is used in conjunction with TRDY#. A data phase is completed on any clock both TRDY# and IRDY# are sampled asserted. During a write, IRDY# indicates that valid data is present on AD [31:0]. During a read, it indicates the target is prepared to accept data. Wait cycles are inserted both IRDY# and TRDY# are asserted together.
STOP#	I/O s/h/z	STOP: This signal indicates the current target is requesting the master to stop the current transaction.
IDSEL	IN	INITIALIZATION DEVICE SELECT: This signal is used as chips select during configuration read and write transactions.
DEVSEL#	l/O s/h/z	DEVICE SELECT: When actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, DEVSEL# indicates whether any device on the bus has been selected.
PERR#	I/O s/h/z	PARITY ERROR: This signal is only for the reporting of data parity errors during all PCI transactions except a Special Cycle. The R5C841 drives this output active "low" if it detects a data parity error during a write phase.

Pin Name	Туре	Description
		PCI Bus Interface Pin Descriptions (Continued)
SERR#	OUT (OD)	SYSTEM ERROR: This signal is pure open drain. The R5C841 actively drives this output for a single PCI clock when it detects an address parity error on either the primary bus or the secondary bus.
REQ#	OUT (TS)	REQUEST: This signal indicates to the arbiter that the R5C841 desires use of the bus. This is a point to point signal.
GNT#	IN	GRANT: This signal indicates the R5C841that access to the bus has been granted. This is a point to point signal.
GBRST#	IN	GLOBAL RESET: This input is used to initialize registers for control of PME_Context register. This should be asserted only once when system power supply is on.

3.3.2 System Interrupt signals

Pin Name	Туре	Description		
	System Interrupt Pin Descriptions			
INTA#	OUT (OD)	PCI INTERRUPT REQUEST A: This signal indicates a programmable interrupt request generated from the PC Card interface. This signal is connected to the interrupt line of the PCI bus.		
INTB#	OUT (OD)	PCI INTERRUPT REQUEST B: This signal indicates a programmable interrupt request generated from the IEEE 1394 interface. This signal is connected to the interrupt line of the PCI bus.		
INTC#	OUT (OD)	PCI INTERRUPT REQUEST C: This signal indicates a programmable interrupt request generated from the Memory Stick interface, the SD Card interface or the xD Picture Card interface. This signal is connected to the interrupt line of the PCI bus.		
UDIO0/SRIRQ# UDIO1/GPIO0 UDIO2/GPIO1 UDIO3/GPIO2 UDIO4/GPIO3 UDIO5/LED0#	I/O (TS)	USER DEFINABLE INPUT/OUTPUT: These signals can be used as user-definable input/output. Users can define functions such as *GPIO, LED, IRQ and so on for each pin in the PC Card Misc Control 4 Register. For details, refer to "PCI-CardBus Bridge Registers Description" in the registers description. *GPIO : General Purpose I/O		
RI_OUT#/ PME#	OUT (OD)	RING INDICATE OUTPUT: When 16-bit card is inserted and Ring Indicate Enable bit in the Interrupt and General Control register is set to one, RI# on the IO Card is forwarded to RI_OUT#. POWER MANAGEMENT EVENT: When PME_En bit in Power Management Control/Status register is set or when Power Status is set to any state mode except D0, this signal is assigned as PME#.		

3.3.3 16-bit PC Card Interface signals

Pin Name	Туре	Description
		16-bit PC Card Interface Pin Descriptions
CDATA [15:0]	I/O	16-bit Card DATA BUS SIGNALS [15:0]: Input buffer is disabled when the card socket power supply is off or card is not inserted.
CADR [25:0]	OUT (TS)	16-bit Card ADDRESS BUS SIGNALS [25:0]:
IORD#	OUT (TS)	16-bit Card I/O READ:
IOWR#	OUT (TS)	16-bit Card I/O WRITE:
OE#	OUT (TS)	16-bit Card OUTPUT ENABLE:
WE#	OUT (TS)	16-bit Card WRITE ENABLE:
CE1#	OUT (TS)	16-bit Card CARD ENABLE 1:
CE2#	OUT (TS)	16-bit Card CARD ENABLE 2:
REG#	OUT (TS)	16-bit Card ATTRIBUTE MEMORY SELECT: This signal selects Attribute Memory access or common memory access during 16bit memory cycle. Attribute memory access is selected when this signal is "low" and common memory access is selected when this signal is "high".
READY/ IREQ#	IN	16-bit Card READY/BUSY or INTERRUPT REQUEST: This signal has two different functions. READY/BUSY# input on the memory PC card, and IREQ# input on the I/O card.
WP/ IOIS16#	IN	16-bit Card WRITE PROTECT or CARD IS 16-BIT PORT: This signal has two different functions. Write Protect Switch input on the memory PC card, and IOIS16 input on the I/O card.
RESET	OUT (TS)	16-bit Card CARD RESET:
WAIT#	IN	16-bit Card BUS CYCLE WAIT:
BVD1/ STSCHG#/ RI#	IN	16-bit Card BATTERY VOLTAGE DETECT 1 or STATUS CHANGE: This signal has three different functions. The battery voltage detect input 1 on the memory PC card, and Card Status Change#/Ring Indicate# input on the I/O card.
BVD2/ SPKR#/ LED	IN	16-bit Card BATTERY VOLTAGE DETECT 2 or DIGITAL AUDIO or LED INPUT: This signal has three different functions. The battery voltage detect input 2 on the memory PC card, and SPEAKER# input or LED input on the I/O card.
INPACK#	IN	16-bit Card INPUT ACKNOWLEDGE:
CD1#	IN	16-bit Card CARD DETECT 1: CD [2:1]# pins are used to detect the card insertion. CD [2:1]# pins are used in conjunction with VS [2:1] to decode card type information.
CD2#	IN	16-bit Card CARD DETECT 2: CD [2:1]# pins are used to detect the card insertion. CD [2:1]# pins are used in conjunction with VS [2:1] to decode card type information.
VS1	I/O	16-bit Card CARD VOLTAGE CAPABILITY SENSE 1: VS [2:1] pins are used in conjunction with CD [2:1]# to decode card type information.
VS2	I/O	16-bit Card CARD VOLTAGE CAPABILITY SENSE 2: VS [2:1] pins are used in conjunction with CD [2:1]# to decode card type information.

3.3.4 CardBus PC Card Interface signals

Pin Name	Туре	Description
		CardBus PC Card Interface Pin Descriptions
CCLK	OUT (TS)	CardBus Clock: This signal provides timing for all transactions on the PC Card Standard interface and it is an input to every PC Card Standard device. All other CardBus PC Card signals, except CRST# (upon assertion), CCLKRUN#, CINT#, CSTSCHG, CAUDIO, CCD [2:1]#, and CVS [2:1], are sampled on the rising edge of CCLK, and all timing parameters are defined with respect to this edge.
CCLKRUN#	l/O s/h/z	CardBus Clock Run: This signal is used by cards to request starting (or speeding up) clock; CCLK. CCLKRUN# also indicates the clock status. For PC cards, CCLKRUN# is an open drain output and it is also an input. The R5C841 indicates the clock status of the primary bus to the CardBus card.
CRST#	OUT (TS)	CardBus Card Reset: This signal is used to bring CardBus Card specific registers, sequencers and signals to a consistent state. Anytime CRST# is asserted, all CardBus card output signals will be driven to their begin state.
CAD [31:0]	I/O	<i>CardBus Address/Data:</i> These signals are multiplexed on the same CardBus card pins. A bus transaction consists of an address phase followed by one or more data phases. CardBus card supports both read and write bursts. CAD [31:0] contains a physical address (32 bits). For I/O, this is a byte address; for configuration and memory it is a DWORD address. During data phases, CAD [7:0] contains the east significant byte (LSB) and CAD [31:24] contains the most significant byte (MSB). Write data is stable and valid when CIRDY# is asserted and read data is stable and valid when CTRDY# is asserted during those clocks where both CIRDY# and CTRDY# are asserted.
CC/BE [3:0]#	I/O	CardBus Command/Bye Enables: These signals are multiplexed on the same CardBus card pins. During the address phase of a transaction, CC/BE [3:0]# define the bus command. During the data phase, CC/BE [3:0]# are used as Byte Enables. The Byte Enables are valid for the entire data phase and determine which byte lanes carry meaningful data. CC/BE [0]# applies to byte 0 (LSB) and CC/BE [3]# applies to byte 3 (MSB).
CPAR	I/O	CardBus Parity: This signal is even parity across CAD [31:0] and CC/BE [3:0]#. All CardBus card agents require parity generation. CPAR is stable and valid clock after either CIRDY# is asserted on a write transaction or CTRDY# is asserted on a read transaction. Once CPAR is valid, it remains valid until one clock after the completion of the current data phase. (CPAR has the same timing as CAD [31:0] but delayed by one clock.) The master drives CPAR for address and write data phases; the target drives CPAR for read data phases.
CFRAME#	l/O s/h/z	CardBus Cycle Frame: This signal is driven by the current master to indicate the beginning and duration of a transaction. CFRAME# is asserted to indicate that a bus transaction is beginning. While CFRAME# is asserted, data transfers continue. When CFRAME# is deasserted, the transaction is in the final data phase.
CIRDY#	l/O s/h/z	CardBus Initiator Ready: This signal indicates the initiating agent's (bus master's) ability to complete the current data phase of the transaction. CIRDY# is used in conjunction with CTRDY#. A data phase is completed on any clock both CIRDY# and CTRDY# are sampled asserted. During a write, CIRDY# indicates that valid data is present on CAD [31:0]. During a read, it indicates the master is prepared to accept data. Wait cycles are inserted until both CIRDY# and CTRDY# are asserted together.
CTRDY#	l/O s/h/z	CardBus Target Ready: This signal indicates the agent's (selected target's) ability to complete the current data phase of the transaction. CTRDY# is used in conjunction with CIRDY#. A data phase is completed on any clock both CTRDY# and CIRDY# are sampled asserted. During a read, CTRDY# indicates that valid data is present on CAD [31:0]. During a write, it indicates the target is prepared to accept data. Wait cycles are inserted until both CIRDY# and CTRDY# are asserted together.
CSTOP#	l/O s/h/z	<i>CardBus Stop:</i> This signal indicates the current target is requesting the master to stop the current transaction.
CDEVSEL#	l/O s/h/z	CardBus Device Select: This signal indicates the driving device has decoded its address as the target of the current access when actively driven. As an input, CDEVSEL# indicates whether any device on the bus has been selected.
CREQ#	IN	CardBus Request: This signal indicates to the arbiter that this agent desires use of the bus. Every master has its own CREQ#.

Pin Name	Туре	Description			
	CardBus PC Card Interface Pin Descriptions (Continued)				
CGNT#	OUT	CardBus Grant: This signal indicates to the agent that access to the bus has been granted. Every master has its own CGNT#.			
CPERR#	l/O s/h/z	CardBus Parity Error: This signal is only for the reporting of data parity errors during all CardBus Card transactions except a Special Cycle. An agent cannot report a CPERR# until it has claimed the access by asserting CDEVSEL# and completed a data phase.			
CSERR#	IN	CardBus System Error: This signal is for reporting address parity errors, data parity errors on the Special Cycle command, or any other system error where the result could be catastrophic.			
CINT#	IN	CardBus Interrupt Request: This signal is an input signal from CardBus card. It is level sensitive, and asserted low (negative true), using an open drain output driver. The assertion and deassertion of CINT# is asynchronous to CCLK.			
CSTSCHG	IN	CardBus Card Status Change: This signal is an input signal used to alert the system to changes in the READY, WP, or BVD [2:1] conditions of the card. It is also used for the system and/or CardBus card interface Wake up. CSTSCHG is asynchronous to CCLK.			
CAUDIO	IN	CardBus Card Audio: This signal is a digital audio input signal from a CardBus Card to the system's speaker. CAUDIO has no relationship to CCLK.			
CCD1#	IN	CardBus Card Detect 1: CCD [2:1]# pins are used to detect the card insertion. CCD [2:1]# pins are used in conjunction with CVS [2:1] to decode card type information.			
CCD2#	IN	CardBus Card Detect 2: CCD [2:1]# pins are used to detect the card insertion. CCD [2:1]# pins are used in conjunction with CVS [2:1] to decode card type information.			
CVS1	I/O	CardBus Card Voltage Sense 1: CVS [2:1] pins are used in conjunction with CCD [2:1]# to decode card type information.			
CVS2	I/O	<i>CardBus Card Voltage Sense 2:</i> CVS [2:1] pins are used in conjunction with CCD [2:1]# to decode card type information.			

3.3.5 Socket Power Control signals

Pin Name	Туре	Description	
	Socket Power Control Signal Descriptions		
VCC5EN#	OUT	VCC 5V ENABLE:	
VCC3EN#	OUT	VCC 3.3V ENABLE:	
VPPEN0	OUT	VPP ENABLE 0:	
VPPEN1	OUT	VPP ENABLE 1:	

3.3.6 Other signals

Pin Name	Туре	Description				
	Other Signals Descriptions					
SPKROUT	I/O	SPEAKER OUTPUT: This signal is a digital audio output from SPKR#, and Connecting this signal to pull-down sets the Serial ROM mode.				
as long as HWSPND# is asserted so that VCC_PCl3V can be powered off. IRQ mode is set, HWSPND# must be asserted after Serial IRQ mode on th has been deasserted. When Hardware Suspend mode is off, HWSPND# m deasserted before Serial IRQ mode is enabled. When a power is on, follow		Hardware Suspend: This signal works as HWSPND# input. PCIRST# is not accepted as long as HWSPND# is asserted so that VCC_PCI3V can be powered off. When Serial IRQ mode is set, HWSPND# must be asserted after Serial IRQ mode on the chip-set has been deasserted. When Hardware Suspend mode is off, HWSPND# must be deasserted before Serial IRQ mode is enabled. When a power is on, follow the reset sequence shown in the chapter 4.10 in order to confirm the input of PCIRST# and PCLK.				
TEST	IN	TEST: This signal is a test mode pin. Usually, this pin must be tied low.				

Pin Name	Туре	Description				
	IEEE1394 Cable Interface Pin Descriptions					
TPAP1 TPAP0	I/O	TPA Positive : Twisted-pair cable A (positive) differential signal terminals.				
TPBP1 TPBP0	I/O	TPB Positive : Twisted-pair cable B (positive) differential signal terminals.				
TPAN1 TPAN0	I/O	TPA Negative : Twisted-pair cable A (negative) differential signal terminals.				
TPBN1 TPBN0	I/O	TPB Negative : Twisted-pair cable B (negative) differential signal terminals.				
TPBIAS1 TPBIAS0	I/O	TP Bias : Twisted-pair bias output. This pin is compliant with the IEEE1394a-2000, and also monitors Insertion/desertion of other cables				
CPS	IN	Cable Power Status : This pin detects the Cable Power Status. See in Spec.4.22.3 for details of CPS.				

3.3.7 IEEE1394 PHY Interface signals

3.3.8 IEEE1394 Control signals

Pin Name	Туре	Description			
		IEEE1394 Control Pin Descriptions			
VREF	I/O	Voltage reference Resistance : It is necessary to connect a capacitance of 0.01uF between this pin and AGND.			
REXT	I/O	sistance External: It is necessary to connect a resistor of $10k\Omega \pm 1\%$ between this pind AGND.			
XI	IN	X'tal In : 24.576MHz			
ХО	OUT	X'tal Out : 24.576MHz			
FIL0	I/O	<i>Filter :</i> This pin connects to the PLL Filter. It is necessary to connect a capacitance of 0.01uF between this pin and AGND.			

3.3.9 USB Interface signals

Pin Name	Туре	Description				
	USB Interface Pin Descriptions					
USBDP USBDM	I/O	USB Data Port: These signals are differential signals. These signals are connected to HOST USB D+/D- signals.				

Pin Name	PC Card Pin Name	Туре	Description			
	USB Interface Pin Descriptions					
USBD+	IORD#	I/O	USB Data Port: These signals are differential signals.			
USBD-	IOWR#					
CPUSB#	CADR22	IN	USB ExpressCard Detect: This signal indicates whether the USB ExpressCard is inserted to a socket.			
PERST#	CDATA2	OUT	ExpressCard Reset : This signal is a reset signal to ExpressCard.			

3.3.10 Small Card Interface signals

SD Card

Pin Name	MDIO Pin Name	Туре	Description	
		_	SD Card Control Pin Descriptions	
SDCDAT0	MDIO10	I/O	SD Data [3:0] : SD Card 4bit data bus signals.	
SDCDAT1	MDIO11	I/O		
SDCDAT2	MDIO12	I/O		
SDCDAT3	MDIO13	I/O		
SDCCMD	MDIO08	I/O	SD Command : SD Card Command signal.	
SDCCLK	MDIO09	OUT	SD Clock : SD Card Clock signal.	
SDWP#	MDIO03	IN	SD Write Protect : This signal indicates the state of SD card's write protect switch. This pin is connected to a reserved pin of the SD card socket.	
SDCD#	MDIO00	IN	SD Card Detect : This signal indicates whether the SD card is inserted to a socket. This pin is connected to a reserved pin of the SD card socket.	
SDEXTCK	MDIO07	IN	SD External Clock : This signal must be connected to GND because the R5C841 does not support SDEXTCK for the SD Card.	
SDPWR0	MDIO04	OUT	SD Card Power0 Control : This signal is provided to control the power supply (3.3V) for an SD card.	
SDPWR1	MDIO05	OUT	SD Card Power1 Control : This signal is provided to control the power supply (1.8V) for an SD card. R5C841does not support this signal.	
SDLED#	MDIO06	OUT	SD Card LED Control : This signal indicates an access state to the SD card.	

Memory Stick

Pin Name	MDIO Pin Name	Туре	Description	
			Memory Stick Control Pin Descriptions	
MSCDAT0	MDIO10	I/O	Memory Stick Data [3:0] : Memory Stick Data signals. Normally, MSCDAT0 only	
MSCDAT1	MDIO11	I/O	is used.	
MSCDAT2	MDIO12	I/O		
MSCDAT3	MDIO13	I/O		
MSBS	MDIO08	OUT	Memory Stick Bus State : Memory Stick Bus State signal.	
MSCCLK	MDIO09	OUT	Memory Stick Clock : Memory Stick Clock signal.	
MSCD#	MDIO01	IN	<i>Memory Stick Card Detect :</i> This signal indicates whether the Memory Stick is inserted to a socket. This pin is connected to the INS signal of Memory Stick.	
MSEXTCK	MDIO07	IN	Memory Stick External Clock : This signal is input to the Memory Stick block. This clock supports 0 - 40MHz. If the internal PCICLK is used, this signal can be connected to GND.	
MSPWR	MDIO04	OUT	<i>Memory Stick Power Control :</i> This signal is provided to control the power supply for the Memory Stick.	
MSLED#	MDIO06	OUT	<i>Memory Stick LED Control :</i> This signal indicates an access state to the Memory Stick.	

xD Picture Card

Pin Name	MDIO Pin Name	Туре	Description				
	xD Picture Card Control Pin Descriptions						
XDCDAT0	MDIO10	I/O	xD Picture CardData [7:0] : xD Picture Card Data bus signals.				
XDCDAT1	MDIO11	I/O					
XDCDAT2	MDIO12	I/O					
XDCDAT3	MDIO13	I/O					
XDCDAT4	MDIO14	I/O					
XDCDAT5	MDIO15	I/O					
XDCDAT6	MDIO16	I/O					
XDCDAT7	MDIO17	I/O					
XDCLE	MDIO18	OUT	xD Picture Card CLE : xD Picture Card Command Latch Enable signal.				
XDALE	MDIO19	OUT	xD Picture Card ALE : xD Picture Card Address Latch Enable signal.				
XDCD0#	MDIO00	IN	xD Picture Card Detect : These signals indicate a detection of the xD Picture				
XDCD1#	MDIO01		Card when two signals are set to 'Low' by insertion of xD Picture Card.				
XDWP#	MDIO05	OUT	xD Picture Card Write Protect : This signal indicates the state of xD Picture Card's write protect. This pin is connected to the -WP signal of the xD Picture Card.				
XDPWR	MDIO04	OUT	xD Picture Card Power Control : This signal is provided to control the power supply for the xD Picture Card.				
XDR/B#	MDIO03	IN	xD Picture Card R/B : xD Picture Card Ready/Busy signal. When this signal is low, xD Picture Card is busy.				
XDLED#	MDIO06	OUT	<i>xD Picture Card LED Control:</i> This signal indicates an access state to the xD Picture Card.				
XDWE#	MDIO08	OUT	xD Picture Card Write Enable: xD Picture Card Write Enable signal.				
XDCE#	MDIO02	OUT	xD Picture Card Enable: xD Picture Card Enable signal.				
XDRE#	MDIO09	OUT	xD Picture Card Read Enable: xD Picture Card Read Enable signal.				

3.3.11 Power and GND signals

Pin Name	Туре	pe Description				
	Power Pin Descriptions					
REGEN#	IN	Regulator Enable: This pin controls an internal regulator. Setting this pin to 'Low' enables the internal regulator, and setting this pin to 'High' disables it.				
VCC_PCI3V	PWR	PCI VCC: Power Supply pins for the PCI interface signals. This pin can be powered at 3.3V.				
VCC_3V	PWR	3V VCC : This supply pin is connected to 3.3V. This pin must not be off on the suspend mode because of the power supply for PME# and GBRST#. This pin supplies for a socket of the PC Card Controller also.				
VCC_MD3V	PWR	<i>Media VCC:</i> Power Supply pins for the Media interface signals. This pin can be powered at 3.3V.				
VCC_RIN	PWR	Regulator Input: Power supply input pins for an internal regulator. This pin is connected to 3.3V when an internal regulator is enabled, and to the same power as that of VCC_ROUT (1.8V) when the regulator is disabled.				
VCC_ROUT	PWR	Regulator Output: Power supply output pins for an internal regulator and power supply pins for the internal core logic. This pin is powered as an output from an internal regulator and as an input to the core logic when an internal regulator enabled, and connected to 1.8V as input to the core logic when the regulator disabled. Add bypass condensers between this pin and GND.				
AVCC_PHY3V	PWR	1394 PHY VCC: Power supply for PHY analog block. This pin can be powered at 3.3V. This pin must not be off on the suspend mode because of the power supply for Cable interface block.				
GND	PWR	Digital GND:				
AGND	PWR	Analog GND:				

4 FUNCTIONAL DESCRIPTION

4.1 Device Configuration

The R5C841 supports PCI-CardBus Bridge Interface functions for the PC Card socket, the PCI-IEEE1394 bridge function, the SD Card interface, the Memory Stick interface and the xD Picture Card interface. Logically the R5C841 looks to the primary PCI as a separate secondary bus residing in a single device. The PC Card, the IEEE 1394, the SD Card, the Memory Stick and the xD Picture Card have their own register spaces.

4.1.1 PCI Configuration Register Space

The PCI Configuration registers are used to control the basic operations, as settings and status control of the PCI device. Each function has 256 byte of configuration space.

4.1.2 CardBus (32-bit) Card Control Register Space

The CardBus Card Control registers are used to manage status changed events, remote wakeup events and status information about the PC Card in the socket. These registers are used for PC Card-32 as well as PC Card-16. The PC Card Control Register Base Address register points to the 4 Kbyte memory mapped I/O space that contains both the PC Card-32 and PC Card-16 Status and Control registers. Socket Status/Control Registers for Card-32 are placed in the lower 2Kbyte of the 4Kbyte and start at offset 000h.

4.1.3 16-bit Card Control Register Space

The Socket Status/Control Registers for the PC Card-16 are placed in the upper 2Kbyte of the 4Kbyte pointed by the PC Card Control Register Base Address register and start at offset 800h.

4.1.4 16-bit Legacy Port

Legacy mode allows all 16-bit Card Control registers to be accessed through the index/data port at I/O address 3E0/3E2 in order to maintain the backward compatibility like the Ricoh RF5C396/366 that is the Intel 82365-compatible device.

4.1.5 1394 OHCI-LINK Register Space

The 1394 OHCI-LINK registers are 2Kbyte of register compliant with the 1394 OHCI specifications. The 1394 OHCI Register Base Address register points to the 2Kbyte memory mapped I/O space. These registers are used to control OHCI-LINK and to set DMA context.

4.1.6 1394 PHY Register Space

The 1394 PHY registers are compliant with the IEEE1394a-2000 standard specifications. These registers are used to set the PHY block (ex. the value of Gap count.) and are accessed through the PHY Control register in the 1394 OHCI-LINK register space.

4.1.7 SD Card Control Register Space

The SD Card Control registers, compliant with the SD Host Controller Standard specification, are 256byte of register assigned to control the SD card. These registers are used to set for access to the SD card, to give commands and to read/write data. These are placed in the memory mapped I/O space by the SD Card Register Base Address register.

4.1.8 Memory Stick Control Register Space

The Memory Stick Control registers are 256byte of register assigned to control the Memory Stick. These registers are used to set for access to the Memory Stick, to give commands and to read/write data. These are placed in the memory mapped I/O space by the Memory Stick Register Base Address register.

4.1.9 xD Picture Card Control Register Space

The xD Picture Card Control registers are 256byte of register assigned to control the xD Picture Card. These registers are used to set for access to the xD Picture Card, to give commands and to read/write data. These are placed in the memory mapped I/O space by the xD Picture Card Register Base Address register.

4.2 CardBus Card Configuration Mechanism

The R5C841 provides a mechanism to access to configuration spaces of a CardBus Card, which is compliant with the PCI specifications. The R5C841 supports functions of changing Type 1 PCI configuration command into Type 0 CardBus configuration command and transferring them.

4.3 Address Window and Mapping Mechanism

The R5C841 supports two kinds of PCI-Card Bridge Interface functions, and determines automatically whether an inserted card is a CardBus Card or a 16-bit Card. Each interface can be set independently.

On the CardBus Card interface, the transaction is implemented by two I/O windows and two memory map I/Os or a prefetchable memory window that defined in the PCI configuration space. The CardBus Card address and the PCI system address use a flat address in common. So the address range specified by a base register and a limit register is forwarded from the PCI to the CardBus Card. The R5C841 supports a CardBus Master also, so the address forwarding transaction from the CardBus Card to the PCI or to the other card also is enabled. If the address of the transaction started on the CardBus is out of the address range, it will be forwarded to the PCI.

On the 16-bit Card interface, the transaction is implemented by two I/O windows and five memory windows, which are set by the 16-bit Card Status Control register and are compliant with the PCIC. The address forwarding transaction is enabled only from PCI to CardBus.

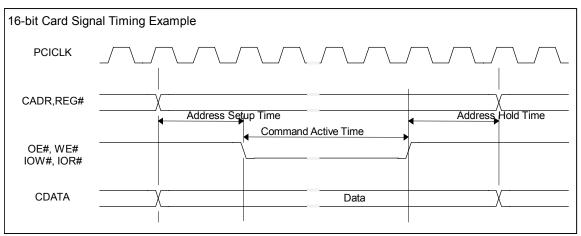
4.3.1 ISA Mode

The R5C841 supports ISA mode for PCI-CardBus Bridge function. Setting ISA enable bit of the Bridge Control register enables the ISA mode. The ISA mode is applied to the I/O transaction of particular address range specified by the I/O Base registers and the I/O Limit registers, which are also in the first 64K Byte of PCI I/O space (0000_0000h-0000_FFFFh).

By enabled the ISA mode, the I/O transaction for the first 256-byte of each 1-Kbyte, which start address are 0000x000h, 0000x400h, 0000x800h and 0000xC00h, are forwarded from PCI to CardBus. The last 768-byte is blocked. Conversely, the I/O transaction in the last 768-byte is forwarded from CardBus to PCI.

4.3.2 VGA Support

The R5C841 supports accesses to the CardBus interface bridge and the VGA compatible devices that is downstream of the bridge. When the VGA Enable bit in the Bridge Control register is set, the R5C841 positively decodes and forwards accesses to VGA frame buffer addresses and I/O accesses to VGA registers from PCI to CardBus interface. The address range is as follows.


Memory address :	0A0000h to 0BFFFFh
I/O address :	AD[9:0] = 3B0h to 3BBh, and 3C0h to 3DFh
	(inclusive of ISA address aliases - AD[15:10] are not decoded.)

And also, the R5C841 can forward only write transaction to the VGA Palette register of the following ranges.

Palette address : AD [9:0] = 3C6h, 3C8h, and 3C9h (Inclusive of ISA address aliases - AD [15:10] are not decoded.)

4.4 16-bit Card Interface Timing Control

The R5C841 generates the timing of address, data, and command for the 16-bit Card interface. Each timing is set in a timer granularity of PCI clock as shown below. When 16-bit I/O enhanced Timing or 16-bit Memory Enhanced Timing bit in each socket control register space is cleared, the default timing is selected regardless of the I/O Win 0-1 Enhanced Timing bit or Memory Enhanced Timing bit. Default timing is selected when the value smaller than the minimum value is set.

Symbol	Parameter	Min	Мах	Default	Unit		
	I/O Read/ Write						
Tsu	Address Setup Time	2	7	3	PCI Clocks (Typ=30ns)		
Tpw	Command Active Time	3	31	6	PCI Clocks (Typ=30ns)		
Thl	Address Hold Time	1	7	1	PCI Clocks (Typ=30ns)		
	Memory Read/ Write						
Tsu	Address Setup Time	1	7	3 (4) Note 1	PCI Clocks (Typ=30ns)		
Tpw	Command Active Time	3	31	6 (8or18) Note 2	PCI Clocks (Typ=30ns)		
Thl	Address Hold Time	1	7	1(2) Note 3	PCI Clocks (Typ=30ns)		

Note1 : 4PCI clocks for 3.3v card attribute memory access.

Note2: 8 PCI clocks for 5v card attribute memory access.

18 PCI clocks for 3.3v card attribute memory access.

Note3 : 2PCI clocks for 3.3v card attribute memory access.

4.5 Data Buffers, Posting Write, Prefetching Read

The R5C841 provides data buffers, address buffers, and command buffers in order to maintain a high-speed data transfer between the PCI bus and the CardBus. The transaction from the PCI bus to the CardBus allows 8-DWORD buffers of Posting Write Data and Prefetching Read Data. Conversely, the transaction from the CardBus to the PCI bus allows 12-DWORD buffers of Posting Write Data and Prefetching Read Data. Posting of write data is permitted a master to end writing data before a target's end of writing data. The transactions that cross the R5C841 in either direction enable a high-speed transfer.

The R5C841 provides a high-speed data transfer by PCI burst transfers when Prefetching Read Data or Posting Write Data is implemented on the PCI bus and the 1394 bus. Accesses to the SD Card, the Memory Stick and the xD Picture Card do not support the PCI burst transfers.

4.6 Error Support

4.6.1 Parity Error

The R5C841 provides the parity generation and the parity error detection on both the primary PCI bus and the secondary CardBus. Having detected an address parity error, the R5C841 asserts SERR# and sets the Detected Parity Error bit in the PCI Status register. Having detected a data parity error, the R5C841 asserts PERR# and sets the Detected Parity Error bit in the PCI Status register. And also, having detected a data parity error, the R5C841 passes the bad data and bad parity on to the opposite interface if possible. This enables the parity error recovery mechanisms outlines in the PCI Local Bus Specification without special considerations for the presence of a bridge in the path of the transaction.

4.6.2 Master Abort

Having the occurred master abort at the destination, the R5C841 implements one of two transactions. One is a transaction that is compatible with ISA to invalidate data. (Returns all "1" when read and invalidates the data when write.) The other way is to assert SERR#.

4.6.3 Target Abort

Having the occurred target abort at the destination, the R5C841 transmits errors as target abort to the original master as thoroughly as possible. But, if cannot, the R5C841 asserts SERR# and transmits errors to the system.

4.6.4 CardBus System Error

Having the asserted CSERR# on the secondary CardBus interface, the R5C841 always asserts SERR# on the primary PCI interface and transmits errors to the system.

4.6.5 PCI Bus Error concerned with 1394 OHCI

On the 1394 OHCI function, the R5C841 provides occurred PCI Bus errors and some information to recover the errors to system software, via the Context register or the descriptor.

4.7 Interrupts

The R5C841 supports PCI interrupt signals INTA#, INTB# and INTC# as well as ISA interrupt signals IRQx. They transmit to the system the Card Status Change Interrupt as a card insert/remove event, the Function Interrupt by the PC card, the DMA Interrupt and the Device Interrupt defined on 1394 OHCI, and interrupts defined on SD Card/Memory Stick/xD Picture Card interface. INTA# is assigned to the PC Card interface, INTB# is assigned to the 1394 OHCI and INTC# is assigned to the SD Card/Memory Stick/xD Picture Card interface. Interrupts of the PC Card interface and the 1394 can be reassigned by the INT Select bits (bit1, 0) of the 1394 Misc Control 2 register, and Interrupts of SD Card/Memory Stick/xD Picture Card interface can be reassigned by the INT Select bits (bit26, 25) of the SD Misc Control register / the MS Misc Control register.

INT S	Select		
bit1	bit0	PC Card	1394
0	0	INTA#	INTB#
0	1	INTA#	INTB#
1	0	INTA#	INTA#
1	1	INTA#	INTA#

INT Select		
bit26	bit25	SD/MS/xD
0	0	Reserved
0	1	INTC#
1	0	INTB#
1	1	INTA#

On the PC Card, setting the IRQ-ISA Enable bit of the Bridge Control register enables the IRQx routing register for PC Card-16/32. On the other hand, setting CINT-ISA Disable bit (Config.A0h bit6) disables the 32bit Function Interrupt to route into the ISA Interrupt and enables to route into the INT Interrupt. And also, setting the Card Status Change Interrupt Configuration register on the 16bit Control registers the 16bit Card Status Change Interrupt to route into the ISA Interrupt. But, the R5C841 doesn't support IRQ-ISA function on 1394 OHCI.

On the 1394 OHCI, the R5C841 transmits interrupt signals to the host on the end of the DMA transaction, and also transmits interrupts of the LINK layer and the PHY layer. The IntEvent register and the IntMask register in the OHCI registers control these interrupts. The IntEvent register is used to indicate generations of an interrupt event and the IntMask register is used to enable the selected interrupt. Writing into the IntEventClear by software enables to clear the interrupt.

On the SD Card interface, the Memory Stick interface and the xD Picture Card interface, the R5C841 can inform a card insert/remove event or an error as an interrupt to the system. PCI interrupt signals are open drain outputs. When ISA-IRQ mode is enabled, IRQx signals are programmable to either positive edge mode or level mode. RI_OUT# can be reassigned to an interrupt signal such as Remote Wakeup signal.

In addition to primary interrupt functions, the R5C841 supports Serialized IRQ. When SRIRQ Enable bit (bit 7) of the PC Card Misc Control register is set to '1b', UDIO0 works as SRIRQ# (default). And GPIO and LED0# are also enabled. SRIRQ# output enables a Wired-OR structure that simply transfer a state of one or more device's IRQ to the host controller. Both of a device and a host controller enables a transferring start.

A transferring, called an IRQSER Cycle, consists of three frame types: one Start Frame, several IRQ/Data Frames, and one Stop Frame. When the SR_PCI_INT_Disable bit (bit5) of the PC Card Misc control register is 'Low', frames of INTA#, INTB#, INTC# and INTD# (PCI Interrupt signals) are output following IOCHK# frame are output. When it is 'High', IRQx only are output from SRIRQ#.

All cycle uses PCICLK as its clock source. The IRQSER Start Frame has two operation modes: Quiet (Active) mode and Continuous (Idle) mode. On the Quiet (Active) mode, any device can initiate a Start Frame. By occurring of interruptive requests, the R5C841 outputs 1-pulse of PCICLK (Low) and Serialized IRQ is kept on Hi-Z during the rest of a Start Frame. After that, IRQ/DATA Frame follows.

In Continuous (Idle) mode, only Host Controller can initiate a Start Frame. The R5C841 becomes waiting state to detect 4-8 PCICLK of Start Pulse. These modes change automatically by monitoring the Stop pulse width in a Stop Frame. Quiet (Active) mode is repeated when width of Stop Pulse is 2PCICLK, and Continuous (Idle) mode is repeated when it is 3PCICLK. After assertion of the GBRST#, the default is Continuous (Idle) mode.

Timing of the Start Frame and the Stop Frame is as follows.

Start Frame timing with source sampled a low pulse on IRQ1			
SL START FRAME IRQ0 FRAME IRQ1 FRAME IRQ2 FRAME or H H R T S R T S R T S R T			
IRQSER START ¹			
Drive Source IRQ1 Host Controller None IRQ1 None			
1. Start Frame pulse can be 4-8 clocks wide.			
Stop Frame Timing with Host using 17 IRQSER sampling period			
IRQ14 IRQ15 IOCHCK# STOP FRAME NEXT CYCLE FRAME FRAME FRAME FRAME I I S R T S R T I			
IRQSER START3			
Driver None IRQ15 None Host Controller			
H=Host, SL=Slave Control, R=Recovery, T=Turn-around, S=Sample			

- 1. Stop Pulse is 2 clocks wide for Quiet mode, and 3 clocks wide for Continuous mode.
- 2. There may be none, one or more Idle states during the Stop Frame.
- 3. The next IRQSER cycle's Start Frame pulse may or may not start immediately after the turn-around clock of the Stop Frame.

IRQSER Sampling Periods			
IRQ/Data Frame	Signal Sampled	# of clocks past Start	
1	IRQ0	2	
2	IRQ1	5	
3	SMI#	8	
4	IRQ3	11	
5	IRQ4	14	
6	IRQ5	17	
7	IRQ6	20	
8	IRQ7	23	
9	IRQ8	26	
10	IRQ9	29	
11	IRQ10	32	
12	IRQ11	35	
13	IRQ12	38	
14	IRQ13	41	
15	IRQ14	44	
16	IRQ15	47	
17	IOCHCK#	50	
18	INTA#	53	
19	INTB#	56	
20	INTC#	59	
21	INTD#	62	
32:22	Unassigned	95	

4.8 Card Type Detection

If once a valid insertion is detected, the socket state machine in the R5C841 starts to interrogate the PC Card to determine whether it is a CardBus Card, a 16-bit PC Card or an ExpressCard. The R5C841 supports VCC values of 5V, 3.3V and combination of them at the socket interface. Card type can be known by reading the Socket Present State register.

				Card Type		
CD2#	CD1#	VS2#	VS1#	Key	Interface	Voltage
ground	ground	open	open	5V	16bit PC Card	5V
ground	ground	open	ground	5V	16bit PC Card	5V and 3.3V
ground	ground	ground	ground	5V	16bit PC Card	5V, 3.3V and X.XV
ground	ground	open	ground	LV	16bit PC Card	3.3V
ground	connect to CVS1	open	connect to CCD1#	LV	CardBus PC Card	3.3V
ground	ground	ground	ground	LV	16bit PC Card	3.3V and X.XV
connect to CVS2	ground	connect to CCD2#	ground	LV	CardBus PC Card	3.3V and X.XV
connect to CVS1	ground	ground	connect to CCD2#	LV	CardBus PC Card	3.3V, X.XV and X.XV
ground	ground	ground	open	LV	16bit PC Card	X.XV
connect to CVS2	ground	connect to CCD2#	open	LV	CardBus PC Card	X.XV
ground	connect to CVS2	connect to CCD1#	open	LV	CardBus PC Card	X.XV and Y.YV
connect to CVS1	ground	open	connect to CCD2#	LV	CardBus PC Card	Y.YV
ground	connect to CVS1	ground	connect to CCD1#	Reserved		
ground	connect to CVS2	connect to CCD1#	ground	Reserved		
connect to CVS2	connect to CVS2	connect to CCD1#, CCD2#	open	ExpressCard Small Card (BAY)		

4.9 Mixed Voltage Operation

The R5C841 has 5 independent power rails. The power for Card (VCC_3V) and PCI (VCC_PCI3V) is powered at 3.3V. The R5C841 can support either 3.3V or 5V for the PCI and the PC Card, as so the R5C841's interface has the structure of 5V tolerant. VCC_RIN and VCC_ROUT are powered at 1.8V when an internal regulator disabled, and VCC_RIN is powered at 3.3V when an internal regulator enabled. The 1394 OHCI interface (AVCC_PHY3V) is powered at 3.3V. The SD Card Interface, the Memory Stick interface and the xD Picture Card interface (VCC_3V and VCC_MD3V) are powered at 3.3V.

4.10 Reset Event

Anytime GBRST# is asserted, all R5C841 internal state machines are reset and all registers are set to their default values (provided that each signals has followed the reset sequence below). PCIRST# is asserted, all registers are set to their default value except the following. The default values of each register are described in each register description.

1. These registers are initialized only by GBRST#, not by PCIRST#. (PCI RESET Resistant register).

PCI-CardBus Bridge Config. Space:

· 40h	Subsystem Vendor ID	[15:0]
· 42h	Subsystem ID	[15:0]
· 80h	Bridge Configuration	[15:0]
· 82h	PC Card Misc Control	[15:0]
· 84h	16-bit Interface Control	[15:0]
· 88h	16-bit I/O Timing 0	[15:0]
· 8Ah	16-bit Memory Timing 0	[15:0]
· 8Dh	Func. Disable Write Key	[15:0]
· A0h	PC Card Misc Control 2	[15:0]
· A2h	PC Card Misc Control 3	[15:0]
· A4h	PC Card Misc Control 4	[31:0]
· B0h	PC Card Misc Control 5	[31:0]
· B4h	PC Card Misc Control 6	[23:0]
· B7h	Function Disable	[7:0]
· B8h	Serial ROM Control	[31:0]
· C0h	Writable Subsystem Vendor ID	[15:0]
· C2h	Writable Subsystem ID	[15:0]
1394 OHCI-LINK Confi		
· 2Ch	Subsystem Vendor ID	[15:0]
· 2Eh	Subsystem ID	[15:0]
· 3Eh	MIN Grant & MAX Latency	[15:0]
·ACh	Writable Subsystem Vendor ID	[15:0]
·AEh	Writable Subsystem ID	[15:0]
· 80h	1394 Misc Control	[15:0]
· 9Ch	1394 Misc Control 2	[7:0]
· 9Eh	1394 Misc Control 3	[7:0]
· BEh	Writable MIN_GNT & MAX_LAT	[15:0]
· 98h	PHY Power Management	[7:0]
· 99h	PHY Shadow	[7:0]
SD Card Interface Con	fig Space:	
· 2Ch	Subsystem Vendor ID	[15:0]
· 2Eh	Subsystem ID	[15:0]
·ACh	Writable Subsystem Vendor ID	[15:0]
· AEh	Writable Subsystem ID	[15:0]
· B0h	SD Clock Control	[23:0]
· BAh	PME Trigger Disable	[7:0]
·BCh	SD Card Detect Control	[23:0]
· E0h	SD Capabilities 0	[15:0]
· E2h	SD Capabilities 1	[15:0]
· E4h	SD Capabilities_RSV	[31:0]
· E8h	SD Maximum Current Capabilities	[31:0]
· ECh	SD Maximum Current Capabilities_RSV	[31:0]
· F8h	SD Misc Control	[31:0]
· FCh	Key	[7:0]
Memory Stick Interface		
· 2Ch	Subsystem Vendor ID	[15:0]
· 2Eh	Subsystem ID	[15:0]
· 40h	Memory Stick Clock Control	[23:0]

· 4Ah · ACh · AEh · F8h · FCh	PME Trigger Enable Writable Subsystem Vendor ID Writable Subsystem ID MS Misc Control Key	[7:0] [15:0] [15:0] [31:0] [7:0]
xD Picture Card Interfa · 2Ch · 2Eh · 40h · 4Ah · ACh · AEh · F8h · FCh 1394 OHCI Register:	Subsystem Vendor ID Subsystem ID xD Picture Card Clock Control PME Trigger Enable Writable Subsystem Vendor ID Writable Subsystem ID xD Misc Control Key	[15:0] [15:0] [23:0] [7:0] [15:0] [15:0] [31:0] [7:0]
· 24h · 28h 1394 PHY Register: · All Registers SD Card Register: · All Registers Memory Stick Register · All Registers xD Picture Card Regist · All Registers		[31:0] [31:0]

2. These registers are not initialized by PCIRST# when the power state is D3 and PME Enable bit is set to "1". (PME_Context register)

PC Card Socket Status	Control Register Space:	
· 000h	Socket Event	[3:0]
· 004h	Socket Mask	[3:0]
· 008h	Socket Present State	[11,10,5,4]
· 010h	Socket Control	[6:4]
· 802h	Power Control	[7:2]
· 804h	Card Status Change	[3:0]
· 805h	Card Status Change interrupt Configuration	[3:0]
· 82Fh	Misc Control 1	[0]
PC Card Bridge Config	. Space:	
· DEh	Power Management Capabilities	[15]
· E0h	Power Management Control/ Status	[15,8]
1394 OHCI-LINK Confi	g. Space:	
· DEh	Power Management Capabilities	[15]
· E0h	Power Management Control/ Status	[15,8]
SD Card Config. Space		
· 82h	Power Management Capabilities	[15]
· 84h	Power Management Control/ Status	[15,8]
Memory Stick Config. S		
· 82h	Power Management Capabilities	[15]
· 84h	Power Management Control/ Status	[15,8]
xD Picture Card Config		
· 82h	Power Management Capabilities	[15]
· 84h	Power Management Control/ Status	[15,8]

3. Excepting the above registers (PCI RESET Resistant register, PME_Context register) and the global register, all the registers are initialized by the power state transition from D3 to D0 as long as the power state is D3.

≡Reset Sequence≡

Follow the sequence for initialization when a power is on.

- 1. Supply a power to VCC_3V, AVCC_PHY3V, VCC_MD3V, VCC_RIN and VCC_ROUT*. (*: in case of an internal regulator disabled)
- 2. Supply a power to VCC_PCI3V.
- 3. Deassert GBRST#.
- 4. Deassert HWSPND#.
- Deassert PCIRST#. (PCLK has to be supplied for 100µsec@33MHz before deasserting PCIRST#.)

Following Step3 by Step2 has no problem.

See the timing a detail of the timing shown in Chapter 5.3.6.

4.11 Power Management

The R5C841 implements two kinds of power management, software suspend mode and hardware suspend mode, in order to reduce the power consumption on suspend, in addition to the adoption of circuit to reduce the power consumption when power on. The software suspend mode conforms to the ACPI (Advanced Configuration and Power Interface) specification and the PCI Bus Power Management Standard. The R5C841, as a PCI device, implements four power states of D0, D1, D2, and D3. Each power state on the PC Card is the following.

The power management events for the R5C841 and their sources are listed below. The PME# source supports the Card Detect Change event only.

When the power state is except D0, the interrupt is disabled and only PME# can be asserted.

Event	Source
Card Detect Change	R5C841
Ready/Busy change	card
Battery Warning	card
Ring Indicate (Card Status Change)	card
1394 LINKON	R5C841
SD Card Detect Change	R5C841
Memory Stick Detect Change	R5C841
xD Picture Card Detect Change	R5C841

4.11.1 Function on PC Card

i	
D0	The maximum powered state. All PCI transactions are acceptable.
D1	Only the PCI Configuration Space access is allowed while the power and clock are provided.
	CardBus CLK is output.
D2	Only the PCI Configuration Space access is allowed while the power and clock are provided.
	CardBus CLK is stopped by the protocol of CLKRUN.
D3hot	Only the PCI Configuration Space access is allowed while the power and clock are provided.
	CardBus CLK is stopped compulsorily. If CardBus card is inserted, CardBus RESET# is
	asserted at the same time this state is set. When the function is brought back to the D0 state,
	the reset is automatically performed regardless of the assertion of PCIRST#. PCI interface is
	disabled when reset. CardBus interface is reset by the assertion of CRST# on CardBus card.
D3cold	PCI-CardBus Bridge defines D3cold state is to change from VCC_RIN, VCC_ROUT*, VCC_3V
	and VCC MD3V to the auxiliary power source. The R5C841 supports power management
	events from D3cold with the auxiliary power source. The R5C841 can generate PME# even in
	D3cold state without PCI clock if the event source is Card Detect Change or Ring Indicate.
	*: in case of an internal regulator disabled

On the software suspend mode, the interface signals on the PC Card keep to the following levels when the card is inserted.

CardBus : CCLK=low, CPAR=low, CAD=high or low, CCBE#=high or low, CRST#=low, CGNT#=high, Pull-up=high, Pull-down=low

Other pins keep the level before the software suspend mode.

In addition to the Operating system-directed power management like ACPI, the R5C841 can control to stop or slow the clock by supporting CLKRUN# and CCLKRUN# protocol. Therefore, it is possible to reduce the power consumption. The state of the card interface signals is the same as the software suspend mode. The hardware suspend mode is enabled when HWSPND# is asserted. Once HWSPND# is asserted, all PCI bus interface signals are disabled and VCC_PCI3V can be powered off. If PCIRST# is asserted, the internal registers of the R5C841 hold the data as long as VCC_RIN, VCC_ROUT*, VCC_3V and VCC_MD3V are on.

(*: in case of an internal regulator disabled)

4.11.2 Function on 1394 OHCI-LINK

D0	Fully function of OHCI device state. Unmasked interrupts generate INTx#. And also, PME# can be generated by PME_EN after setting PME_STS.
D1	Ack_tardy is returned on accesses from the 1394. The PCI configuration space, the 1394 OHCI register and the GUID register are preserved. Functional interrupts are masked. Unmasked interrupts can be generated by PME_EN after setting PME_STS. All transmit contexts must be inactive before it attempts to place the R5C841 into the D1 power state. IEEE1394 bus manager shall not be placed into D1. Placing the R5C841 into D1 enables the ack_tardy generation. Software must ensure that IntEve.ack_tardy is 0b and should unmask wake-up interrupt events such as IntEvent.phy and IntEvent.ack_tardy before placing the R5C841 into D1.
D2	LPS is deasserted and stopping supply of SCLK is requested to the PHY. The PCI configuration space is retained and capable of access. The GUID register is retained, but the1394 OHCI register is lost. Functional interrupts are masked. But when the LinkOn signal that is occurred by accepting LinkOn packet or PHY.INTERRUPT is accepted from the PHY, PME# is generated by PME_EN after setting PME_STS.
D3hot	LPS is deasserted and stopping SCLK supply is requested to the PHY. The PCI configuration Space is capable of access, but all register except the PME context is lost. The GUID register is retained, but the1394 OHCI register is lost. On transitioning back to D0, the internal reset is automatically done even if PCIRST# is not asserted. Functional interrupts are masked. But when the LinkOn signal is accepted from the PHY, PME# is generated by PME_EN after setting PME_STS.
D3cold	D3cold indicates the state that VCC_RIN, VCC_ROUT*, VCC_3V, VCC_MD3V and AVCC_PHY3V are changed to the auxiliary power on D3hot state. D3cold supports functions like D3hot's. (*: in case of an internal regulator disabled)

¹⁶⁻bit : CDATA=hi-z, CADR=low

PHY function

On D2 and D3 states, the PHY can be set to any one of the following low power consumption by Software.

	Doze Mode	Sleep Mode	
Select Condition	All of Ports status is set to Disconnected, Disabled or Suspended.		
Resume Time	less than 200ns	less than 10ms	

Doze Mode: Stopping clock of the PHY digital block and getting the Cable Interface's power down enables the low power consumption.

Sleep Mode: In addition to the low power consumption by Doze mode, getting power down of PLL and the oscillator enables the lower power consumption than on Doze mode.

Setting D2PhyPM bit or D3PhyPM bit on the PHY Power Management register (the 1394 OHCI-LINK Configuration register addr.98h) enables a selection of Doze mode or Sleep mode. On Doze mode or Sleep mode, LinkOn event enables to resume from the power saving mode automatically and PME# is asserted. Each power saving modes cannot be set without the above selected conditions, even if the R5C841 is set to D2 state or D3 state. If the above Ports conditions are not satisfied, the R5C841 transacts as the Repeater PHY. In this time, setting D2ForcePM bit or D3ForcePM bit to 1b enables to ignore above conditions and to set Doze mode or Sleep mode automatically. But, it is disabled LinkOn event to resume from the power consumption mode automatically and to assert PME#. Writing into Power State bits enables to return to D0 state.

In addition, don't the power supply of VCC_RIN, VCC_ROUT*, VCC_3V, VCC_MD3V and AVCC_PHY3V on the suspend mode in spite of the Software and the Hardware.

(*: in case of an internal regulator disabled)

4.11.3 Function on SD Card / Memory Stick/xD Picture Card

D0	The maximum powered state. All PCI/SD Card/Memory Stick/xD Picture Card transactions are acceptable.
D1	Only the PCI Configuration Space access is allowed while the power and clock are provided. SDCCLK and MSCCLK are output.
D2	Only the PCI Configuration Space access is allowed while the power and clock are provided. SDCCLK and MSCCLK are output.
D3hot	Only the PCI Configuration Space access is allowed while the power and clock are provided. SDCCLK and MSCCLK are stopped compulsorily. When the function is brought back to the D0 state, the reset is automatically performed regardless of the assertion of PCIRST#.
D3cold	PCI-CardBus Bridge defines D3cold state is to change from VCC_RIN, VCC_ROUT*, VCC_3V and VCC_MD3V to the auxiliary power source. The R5C841 supports power management events from D3cold with the auxiliary power source. The R5C841 can generate PME# even in D3cold state without PCI clock if the event source is SD Card Detect Change or Memory Stick Detect Change or xD Picture Card Detect Change. (*: in case of an internal regulator disabled)

4.12 GPIO

UDIO1, 2, 3 and 4 pins work as GPIO (General Purpose I/O) pin when GPIO Enable bit of the PC Card Misc Control 4 register (A4h bit31) is set to "1" on Serialized IRQ (default) mode or on UDIO_Select mode of the PC Card Misc Control 4 register. When GPIO Enable bit is set to "0", GPIO outputs are Hi-Z and GPIO Inputs are disabled. User can change the characteristics of the GPIO pins to either Input or Output by setting either I/O control bits on the GPIO register (83Ah) or the General Purpose I/O 1 register of the Config register space (AAh). When GPIO Enable bit is set to "1", setting of GPIO is input mode (default). And it is possible to read the states of their pins through each bit of the GPIO register. On Output mode, the written states of each bit are output. If GPIO functions are not used on Serialized IRQ mode, no pull-up is required.

4.13 ZV port Interface

The R5C841 has the Bypass type ZV port interface. On the 16-bit interface, when ZV port Enable bit of either the Misc Control 1 register (82Fh) or the PC Card Misc Control 2 register (A0h) is enabled, CADR [25:6], IOIS16#, INPACK#, SPKR# are assigned to ZV port input signal as shown in the below diagram.

The R5C841 has no on chip buffer for the ZV port interface. So if ZV port is enabled, the signals for ZV port such as CADR [25:4] will be "Hi-Z" or "Input disable" and they will be reconfigured for the ZV port interface. The R5C841 outputs the control signal for the external buffer, which is used to switch sockets, so that the buffer control for switching sockets is enabled.

16 bit Interface Signal Name	ZV Port Interface Signal Name	ZV Port card I/O ¹	Comments
A10	HREF	0	Horizontal Sync to ZV Port
A11	VSYNC	0	Vertical Sync to ZV Port
A9	Y0	0	Video Data to ZV Port YUV:4:2:2 format
A8	Y2	0	Video Data to ZV Port YUV:4:2:2 format
A13	Y4	0	Video Data to ZV Port YUV:4:2:2 format
A14	Y6	0	Video Data to ZV Port YUV:4:2:2 format
A16	UV2	0	Video Data to ZV Port YUV:4:2:2 format
A15	UV4	0	Video Data to ZV Port YUV:4:2:2 format
A12	UV6	0	Video Data to ZV Port YUV:4:2:2 format
A7	SCLK	0	Audio SCLK PCM Signal
A6	MCLK	0	Audio MCLK PCM Signal
A[5:4]	RESERVED	RFU	Put in three state by Host Adapter No connection in PC Card
A[3:0]	ADDRESS[3:0]	I	Used for accessing PC Card
IOIS16#	PCLK	0	Pixel Clock to ZV Port
A17	Y1	0	Video Data to ZV Port YUV:4:2:2 format
A18	Y3	0	Video Data to ZV Port YUV:4:2:2 format
A19	Y5	0	Video Data to ZV Port YUV:4:2:2 format
A20	Y7	0	Video Data to ZV Port YUV:4:2:2 format
A21	UV0	0	Video Data to ZV Port YUV:4:2:2 format
A22	UV1	0	Video Data to ZV Port YUV:4:2:2 format
A23	UV3	0	Video Data to ZV Port YUV:4:2:2 format
A24	UV5	0	Video Data to ZV Port YUV:4:2:2 format
A25	UV7	0	Video Data to ZV Port YUV:4:2:2 format
INPACK#	LRCLK	0	Audio LRCLK PCM signal
SPKR#	SDATA	0	Audio PCM Data signal

ZV Port Interface Pin Assignments

1. "I" indicates signal is input to PC Card, "O" indicates signal is output from PC Card.

4.14 Subsystem ID, Subsystem Vendor ID

The R5C841 supports Subsystem ID and Subsystem Vendor ID to meet PC98/99/2001 Design Requirements. There are three ways to write into the Subsystem ID and the Subsystem Vendor ID registers from the system through BIOS.

1. Write Enable bit (Card: bit6 in the PC Card Misc Control, 1394: bit4 in the 1394 Misc Control 2, SD: bit0 in the Key, Memory Stick: bit0 in the Key, xD Picture Card: bit0 in the Key) control method.

The BIOS can turn this bit on, change the Subsystem IDs, and turn it off.

2. Copy of the Subsystem ID and the Subsystem Vendor ID in PCI user defined space method.

> Card: C0h, C2h 1394/SD/MS/xD: ACh, AEh

Load the Subsystem IDs from the Serial ROM method. 3. Connecting SPKROUT to pull-down enables to use the Serial ROM. The R5C841 has the Serial ROM interface, and load the Subsystem ID and the Subsystem Vendor ID after PCI reset disabled.

These registers are initialized only by GBRST#.

4.15 Power Up/Down Sequence

Follow the sequence when the power sequence is ON/OFF.

- * On the power sequence is ON.

 - Supply to VCC_RIN and VCC_ROUT*.
 Supply to VCC_3V, VCC_MD3V and AVCC_PHY3V.
 - 3. Supply to VCC_PCI3V.
- * On the power sequence is OFF.
 - 1. Stop supplying to VCC PCI3V.
 - 2. Stop supplying to VCC 3V, VCC MD3V and AVCC PHY3V.
 - 3. Stop supplying to VCC RIN and VCC ROUT*.

*: in case of an internal regulator disabled

On the power sequence is on, sustain to timing of Global Reset (Chapter 5.3.6) in regards to the control of HWSPND# and GBRST#. GBRST# must be specially asserted on the power supply to AVCC_PHY3V, because the only GBRST# enables to initialize the Cable interface block. The rising of VCC PCI3V should be within HWSPND# asserted time. When the power sequence is off, the special limit for Delay Time is none.

The R5C841 can operate the PHY as Repeater. Follow the power sequence when the R5C841 operates PHY as Repeater without providing VCC PCI3V.

- * On the power sequence is ON.
 - 1. Supply to VCC_ RIN and VCC_ROUT*.
 - 2. Supply to VCC 3V, VCC MD3V, and AVCC PHY3V.
- * On the power sequence is OFF.
 - 1. Stop supplying to VCC 3V, VCC MD3V, and AVCC PHY3V.
 - 2. Stop supplying to VCC RIN and VCC ROUT*.

*: in case of an internal regulator disabled

In this case also, the special limit for delay time is none on the power sequence is off. Note the following.

- a. Asserting GBRST# enables to supply power to AVCC PHY3V, because the only GBRST# enables to initialize Cable interface. Also, sustain the delay time shown in the chapter 5.3.6 on use of GBRST#.
- b. HWSPND# is always set to 'Low'.

4.16 1394 OHCI

The 1394 OHCI block in the R5C841 employs DMA engines for high-performance data transfer, host bus interface and FIFO. The R5C841 supports two types of data transfer: asynchronous and isochronous. Prefer to the 1394 OHCI release 1.1/1.0 specifications for settings and procedures of the controller.

4.16.1 Asynchronous Functions

The R5C841 supports all of transmission and reception defined in 1394 packet formats. Transmitted packets are read out of host memory and received packets are written into host memory, both using DMA. And the R5C841 can be programmed as a bus bridge between the host bus and the 1394 interface by the direct execution of the 1394 read/write requests to the host bus memory space.

4.16.2 Isochronous Functions

The R5C841 includes the cycle master function as defined in the 1394 specification. The cycle start packet is transferred at intervals of 8KHz cycle clock. This cycle master uses the internal cycle clock. When the R5C841 is not the cycle master, the R5C841 can sustain its internal cycle timer sychronized with the cycle master node by correcting its own cycle timer with the reload value from the cycle start packet. The R5C841 supports each DMA controller for each isochronous transmit and isochronous receive. Each DMA controller supports 4 different DMA contexts.

4.16.3 DMA

The R5C841 supports seven types of DMA. Each type of DMA has register space and data stream referred to as a DMA context.

DMA Туре	Number of Contexts
Asynchronous Transmit	Request x 1, Response x 1
Asynchronous Receive	Request x 1, Response x 1
Isochronous Transmit	X 4
Isochronous Receive	X 4
Self-ID Receive	X 1
Physical Request & Physical Response	No Context

Each asynchronous and isochronous context is composed of buffer descriptor lists called a DMA context program, which is stored in main memory. The DMA controller finds the necessary data buffers through the DMA context programs.

The Self-ID receive controller is controlled not by the DMA context program but by the two other registers. The R5C841 supports the Physical Request DMA and the Physical Response DMA controllers in order to transmit the receive request, which is to read and write directly to the bus memory space. These controllers are also controlled not by the DMA context program but by the other reserved register.

4.16.4 LINK

The Link module sends packets which appear at the transmit FIFO interfaces to the PHY, and places correctly addressed packets into the receive FIFO. The features are as follows.

- Transmits and receives correctly formatted 1394 serial bus packets.
- Generates the appropriate acknowledge for all received asynchronous packets.
- Performs the cycle master function.
- Generates and checks 32-bit CRC.
- · Detects missing cycle start packets.
- Interfaces to PHY.
- Receives isochronous packets at all times (Supports of asynchronous streams and cycle start packets including a CRC error).
- Ignores asynchronous packets received during the isochronous phase.

4.17 SD Card Interface

The R5C841 has one port of SD Card interface, consists of four serial data lines, one serial command line, card detection, write protection and SD clock.

4.17.1 Protocol

After the SD Card interface block in the R5C841 is initialized, the R5C841 outputs the data through the serial SDCMD signal by the host's command (Writing into the SD_CMD register), and the SD Card's response to the command is inputted to the SDCMD signal. The contents of this card's response are stored into bits [7:0] of the SD_RSP register. The SD Card is initialized after the SD Card interface block checked CRC, etc. After that, the data is transmitted between the R5C841 and the SD Card through the data lines. When the data is written into the SD memory card, the host writes the divided data (default 512byte) into the SD buffer of SD interface block, and the R5C841 transmits the serialized data from the SDDAT [3:0] of SD Interface block. Conversely, when the data is read from the SD memory card, the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card writes the divided data (default 512byte) into the SD Card by the command response signal.

4.18 Memory Stick Interface

The R5C841 has one port of Memory Stick interface, consists of four serial data lines, one bus state line, card detection and MS clock.

4.18.1 Protocol

The Memory Stick interface block accesses to the Memory Stick registers and the Page Buffer by the Transfer Protocol Command (TPC) in compliance with the host. The R5C841 checks transmission of data between the Page Buffer in the Memory Stick and the Flash Memory and a status after accepting INT signal of the Memory Stick. After that, the R5C841 starts to read / write / erase the data.

4.19 xD Picture Card Interface

The R5C841 has one port of xD Picture Card interface, consists of eight serial data lines, seven control signals and card detection.

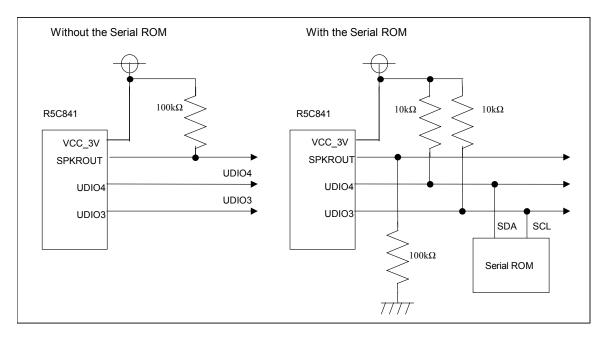
4.19.1 Protocol

The R5C841 accesses to the xD Picture Card through the 32-bit Data port register. Writing to the Data port register can transfer address, command and data to the xD Picture Card. The data transfer to the xD Picture Card enables in units of 8-bit, 16-bit or 32-bit. On the 16-bit or 32-bit access, the R5C841 can access to the xD Picture Card by increments of 8-bit unit automatically. Note that only lower 1byte works when write of address and command data.

4.20 Serial ROM Interface

The R5C841 can load data for Subsystem ID, Subsystem Vendor ID (the PCI Interface) and some PCI configuration registers default value from the Serial ROM (I²C BUS). After that, the R5C841 can set them to each register automatically.

 I²C BUS is registered trademark of PHILIPS ELECTRONICS N.V.


 Purchase of Ricoh's I²C components conveys a license under the Philips I²C patent to use the
 components of the I²C system, provided the system conforms to the I²C specifications defined by
 Philips.

4.20.1 Outline

The R5C841 supports 100k mode and 7-bit address, and automatically stores the data (See. Chapter 4.20.3) from the Serial ROM when the first PCI Reset is deasserted after deassertion of the GBRST#.

4.20.2 User's Setting

Connecting the SPKROUT pin to a pull-down resistor of $100k\Omega$ enables the use of the Serial ROM. When the first PCI Reset is deasserted, the R5C841 starts to sample SPKROUT pin. When SPKROUT pin is connected to a pull-down resistor of $100k\Omega$, the R5C841 attempts to load data through the Serial ROM. In this case, UDIO3 is reassigned to SCL (the clock signal) and UDIO4 is reassigned to SDA (the data signal). The SDA and the SCL must be connected to VCC_3V through pull-up resistors of $100k\Omega$, the R5C841 does not load data through the Serial ROM. See the PC Card Misc Control 4 register for setting of UDIO3 and UDIO4.

4.20.3 Format

The R5C841 starts accesses to the Serial ROM by detecting a pull-down of the SPKROUT when the first PCI Reset is deasserted after deassertion of the GBRST#. The accessed data is stored to each register as follows. The retry states don't allow PCI's slave access during accesses to the Serial ROM. Each parts register of 1394 OHCI-LINK Configuration Space, 1394 OHCI Registers Space, PCI-CardBus Bridge Configuration Space, SD Card Configuration Space, Memory Stick Configuration Space and xD Picture Card Configuration Space.

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00h		Subsystem Vendor ID[7:0]						•
01h		Subsystem Vendor ID[15:8]						
02h				Subsyste	m ID[7:0]			
03h				Subsyste	m ID[15:8]			
04h	LEDTX[1]	LEDTX[0]	LEDRX[1]	LEDRX[0]	-	-	-	-
05h	OHCI10	-	-	-	-	-	-	-
06h				-	_			
07h				-	_			
08h				-	_			
09h				-	_			
0Ah				-	_			
0Bh				-	_			
0Ch				-	_			
0Dh				-	_			
0Eh				-	_			
0Fh				-	_			
10h				-	_			
11h				-	_			
12h				-	_			
13h				-	_			
14h				-	_			
15h				_	-			
16h				-	_			
17h				-	_			
18h				-	_			
19h				-				
1Ah				-				
1Bh	DODIN			-				
1Ch	D2Phy	PM[1:0]	D2ForcePM	D3Phy	PM[1:0]	D3ForcePM P1Dis	CPSDis	CPSFixVal
1Dh	CMC Shadow	Р	rwCShadow[2	2:0]	P0Dis Shadow	Shadow	-	-
1Eh	Shauow	1	•	•	Shauow	Shauow		I
1En				-				
	PMbit15							
20h	-			SIDWREN	WrEn	-	INTXS	el[1:0]
21h								
21h	- 1394LED 1394LED LEDDurationSel[1:0] -						_	
	toLED1# toLED0#							
23h					_			
24h		Max Late	ency[3:0]			Min Gra	nt[3:0]	
25h	-	-	-	-	-	-	-	-

4.20.3.1 1394OHCI-LINK Configuration Space

4.20.3.2 1394 OHCI Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
26h	ProgPhyEn	ProgPhyEn aPhy						
27h				MiniROM A	ddress[7:0]			•
28h				Config ROM	Header[7:0]			
29h				Config ROM				
2Ah					Header[23:16]			
2Bh					Header[31:24]			
2Ch					tion[7:0]			
2Dh					ion[15:8]			
2Eh				Bus Opti	on[23:16]			
2Fh					on[31:24]			
30h					e ID High[7:0]			
31h					e ID High[15:8]			
32h					ID High[23:16]			
33h					ID High[31:24]			
34h		Global Unique ID Low[7:0]						
35h		Global Unique ID Low[15:8]						
36h		Global Unique ID Low[23:16]						
37h				Global Unique	ID Low[31:24]			

4.20.3.3 PCI-CardBus Bridge Configuration Space

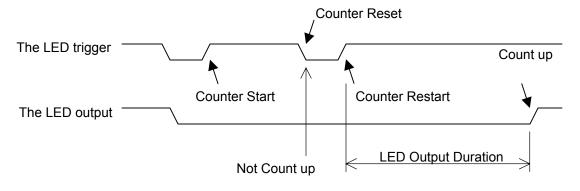
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
38h		•	•	Subsystem V	endor ID[7:0]			
39h				Subsystem Ve	endor ID[15:8]			
3Ah				Subsyste	m ID[7:0]			
3Bh				Subsyster	n ID[15:8]			
3Ch	-	-	16bitMemEnh Tim	16bitIOEnh Tim	LegacyldxSel	PrefetchEn	I/O1AdrMode	I/O0AdrMode
3Dh	SIRQEn	-	SR_PCIINTDis	-	LEDPol	5VDis	VPPENPol	VCCxENPol
3Eh		•	-		_			
3Fh	XDCardDis	ExpressCard Dis	-	MemoryStick Dis	SDCardDis	1394Dis	-	Internal_bay En
40h	CSCtoINT Dis	CINT-ISAEn	CCLKRUNPU Dis	StopClock Dis	LED toLED1#	-	CSTSCHGIn En	WaitSel
41h	WPPUPDis	External_bay En	-	-	-	-	IOMinTim	MemMinTim
42h	-	-	-	DecodeDis	SPKROUT HiZEn	DelatedClr Dis	CBCLKRUN Dis	5VReadEn
43h	-	-	LEDDuratio	onSel[1:0]	-	-	-	-
44h		UDIC	D1[3:0]			UDIO	0[3:0]	
45h		UDIC	D3[3:0]			UDIO	2[3:0]	
46h	UDIO5[3:0]					UDIO	4[3:0]	
47h	GPIOEn	-	-	-	-	-	-	-
48h								
49h					_			
4Ah				_	-			
4Bh				_	-			

4.20.3.4 Memory Stick Configuration Space

			1			1	1	
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
50h	Counter cut	-	-	-	-	-	Card Dete	ct Mode[1:0]
51h	-	-	-	-	-	-	CLK sele	ection[1:0]
52h	-	-	-	-	-	-	PMETrgIn	PMETrgRM
							(Card	(Card
							Inserted by	Removed by
							MSCD#)	MSCD#)
53h	_							
54h	Subsystem Vendor ID[7:0]							
55h				Subsystem V	/endor ID[15:8]			
56h				Subsyste	em ID[7:0]			
57h				Subsyste	m ID[15:8]			
58h	MSLED	MSLED	-	-	-	-	-	-
	toLED1#	toLED0#						
59h				Write En	able 0xFD			
5Ah	-	-	-	-	-	-	CLKRUNDis,	MSPWRPol
5Bh	-	-	LEDDurati	onSel[1:0]	-	INTSI	EL[1:0]	-

4.20.3.5 SD Card Configuration Space

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
5Ch	-	LED Control[2:0]							
5Dh			Class Code[7:0	0](specific regis	ter-level program	ming interface)			
5Eh			(Class Code[15:8	3](sub-class code	e)			
5Fh			C	lass Code[23:10	6](base class coo	le)			
60h				Subsystem '	Vendor ID[7:0]				
61h					/endor ID[15:8]				
62h					em ID[7:0]				
63h			-		em ID[15:8]	-			
64h	-	-	Timeout Cloo	ck Select{1:0}	-	-		ection[1:0]	
65h	-	-	-	-	-	PMETrgDis	PMETrgDis	PMETrgDis	
						(Card	(Card	(Card	
						Removed by	Inserted by	Interrupt by	
						SDCD#)	SDCD#)	SDCDAT1)	
66h		Card Detect	Counter[3:0]	I	-	-	Card Deter	ct Mode[1:0]	
67h	-	-	-	-	-	-	-	Counter cut	
68h	SDLED	SDLED	-	-	-	-			
COh	toLED1#	toLED0#							
69h 6Ah			SDWPPol	white En	able 0xFC	l .	CLKRUNDis.	SDPWRPol	
6Bh	-	-		ionSel[1:0]	-		/	SDPWRPOI	
6Ch	-	-	LEDDurat		- ility/0[7:0]	INTSE	L[1.0]	-	
6Dh	Capability0[7:0]								
6Eh		Capability0[15:8]							
6Fh	Capability1[7:0] Capability1[15:8]								
70h	Maximum Current for 3.3V								
71h	Maximum Current for 3.0V								
72h					urrent for 1.8V				
73h									


Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
74h			•	Subsystem	Vendor ID[7:0]			
75h				Subsystem V	Vendor ID[15:8]			
76h				Subsys	tem ID[7:0]			
77h				Subsyste	em ID[15:8]			
78h	XDLED	XDLED	-	-	-	-	-	-
	toLED1#	toLED0#						
79h	_	Write Enable 0xFD						
7Ah	-	-	-	-	-	-	CLKRUNDis,	XDPWRPol
7Bh	-	-	LEDDurati	ionSel[1:0]	-	INTSE	EL[1:0]	-
7Ch	Counter cut	-	-	-	-	-	Card Deter	ct Mode[1:0]
7Dh	-	-	-	-	-	-	CLK selection	-
7Eh	-	-	-	-	-	-	PMETrgIn	PMETrgRM
							(Card	(Card
							Inserted by	Removed by
							XDCD#)	XDCD#)

4.20.3.6 xD Picture Card Configuration Space

4.21 LED# Output

The R5C841 can output the activity signals of the PC card, the 1394OHCI, the SD Card, the Memory Stick and the xD PictureCard, as LED0#, LED1# and LED2#. The R5C841 uses UDIOx pins as LED0#/1#/2#. See the PC Card Misc Control 4 (Config. (Func.0) A4h) register for use these pins. The default of the LED signal is 'Low' active. But, setting the LED Polarity bit (Config, (Func.0) 82h bit11) to "1b" enables to set the LED signal to 'high' active. This bit is common to the PC card, the 1394 OHCI, the SD Card, the Memory Stick and the xD Picture Card.

The LED signal is asserted at the same time the trigger of its signal is asserted. And the internal counter works after the trigger is deasserted. In default, the LED signal is kept for 64msec after the deassertion of the trigger, and is deasserted. When the trigger is reasserted in operation of the counter, the counter is cleared and restarted to count up at the same time the deassertion of the LED signal. See the below chart.

The LED Output Duration is selected from among 64msec(default), 1msec and No Duration time (through the trigger). The card and the 1394 have the different registers for selecting each other (See the following). The trigger signals for them also are different.

The R5C841 uses a counter operating PCLK for the LED Output Duration and therefore a stop request of PCLK by the CLKRUN protocol is refused in operation of the counter. When PCLK must be stopped for 64msec on system, modify the LED Output Duration.

LED0#: PC_Card LED# + 1394 LED# + SD_Card LED# + Memory Stick LED# + xD LED# LED1#: PC_Card LED# + 1394 LED# + SD_Card LED# + Memory Stick LED# + xD LED# LED2#: 1394 LED#

4.21.1 PC Card LED (CardBus R2)

The trigger signals of the PC Card LED are as follows.

CardBus:	CFRAM#, CINT#
R2:	Card command by IORD#, IOWR#, OE#, WE#, IREQ#

Bit 13 and bit 12 of the Config (Func.0) A2h register can set the counter's duration.

bit 13 12	the LED Output Duration
0 0 1 1 1 0	64 msec (default) 1 msec No Duration Time (through)
0 1	Test Mode(3.8µsec)

4.21.2 1394 LED

The 1394 LED signal indicates the condition of the IEEE1394 interface block in the R5C841. This signal is asserted when the R5C841 is on transmission/reception.

Bit 2 and bit 1 of the Config (Func.1) 9Eh register can set the counter's duration.

0 0 64 msec (default)
1 1 1 1 msec
1 0 No Duration Time (through)
0 1 Test Mode(3.8µsec)

4.21.3 SD LED

The SD LED signal indicates conditions of the SD Card interface in the R5C841. This signal is asserted when the R5C841 is on the transmission, the reception and the debounce duration of the card detection. Bit 29 and bit 28 of the Config (SD: Func.2) F8h register can set the counter's duration.

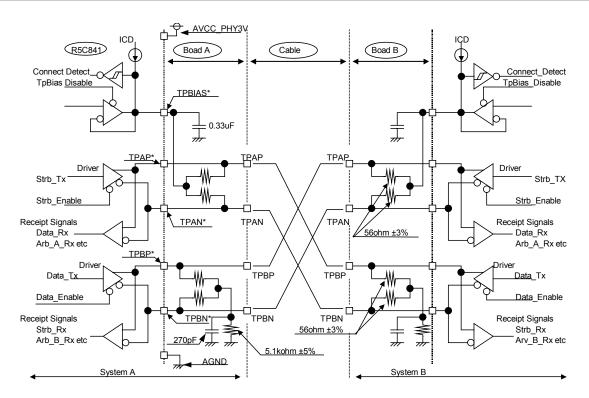
bit 29 28	the LED Output Duration
0 0	64 msec (default)
1 1	1 msec
1 0	No Duration Time (through)
0 1	Test Mode (3.8µsec)

4.21.4 MS LED/xD LED

The MS LED and the xD LED signals indicate conditions of the Memory Stick interface and the xD Picture Card interface in the R5C841. This signal is asserted when the R5C841 is on the transmission and the reception. Bit 29 and bit 28 of the Config (MS: Func.3, xD: Func.4) F8h register can set the counter's duration.

bit 29 28 t	he LED Output Duration
0 0	64 msec (default)
1 1	1 msec
1 0	No Duration Time (through)
0 1	Test Mode (3.8µsec)

4.21.5 LED Output Selection


All LED can be output to LED0#/LED1#. The LED for the 1394 is output by setting Config (Func.1) 9Eh bit [4:3] to "11b", the LED for the SD Card is output by setting Config (Func.2) F8h bit [7:6] to "11b", the LED for the Memory Stick is output by setting Config (Func.3) F8h bit [7:6] to "11b", and the LED for the xD Picture Card is output by setting Config (Func.4) F8h bit [7:6] to "11b".

Also, the LED for the IEEE1394 is output to LED2# by setting Config (Func.0) B0h bit6 to "0b".

4.22 1394 Cable Interface

The R5C841 builds in 2 ports of 1394 Cable interface that support the transmission speed of 400/200/100Mbps compliant with the IEEE1394a-2000 standard.

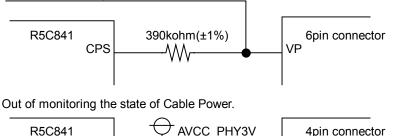
4.22.1 Cable Interface Circuit

* means a port number in this figure. (Example: TPBIAS*→TPBIAS0 or TPBIAS1)

Each port consists of two twist-pairs; TPA and TPB. The TPA and the TPB are used in order to monitor transmission/reception of a control signal (Arbitration signal) and data, and the state of a cable line (the insert of a cable).

It is necessary for the TPA and the TPB to be connected to a termination of 55Ω resistances according to the cable impedance. This termination resistance should be arranged near the R5C841. On TPA side, TPBIAS should be placed to the center node of the termination resistance in order to set up a cable's common-mode DC potential. A capacitor of 0.33μ F for decoupling should be connected to the TPBIAS. On TPB side, a termination of $5.1k\Omega$ and a capacitor of 270pF should be connected to between the center node of the termination resistance and AGND. See the application manual for the substrate layout.

4.22.2 Transaction of Unused Ports

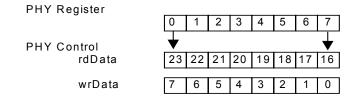

On no use of ports, TPBP* and TPBN* are directly connected to AGND, and TPAP*, TPAN* and TPBIAS* are OPEN. After that, set Port Disable bit of the 1394 PHY Register. The PHY Shadow register in the 1394 Configuration registers space also can set the Port disable bit. See the Read/Write of the 1394PHY register (Ch. 4.22.4).

4.22.3 CPS (Cable Power State)

The R5C841 builds in a function monitoring the state of the cable power. The CPS pin is connected to the cable power through the external resistor $(390k\Omega\pm1\%)$ and detects a condition that cable power has lowered under the threshold level (Normally 7.5V). When the four pins cable is used (when the CPS function is not used), it is possible to select two methods: one is the direct connection of the CPS pin with the AVCC_PHY3V, and the other is with the register's control of the CPS pin which is set to 'Open'. In case of the register's control, set CPSDis (bit1) and CPSFixVal (bit0) on the PHY Power Management Register (98h) in the 1394 Configuration Register space to "1b". The Serial ROM also can be set these registers. Refer to the Serial ROM (Chapter 4.20) for details.

On monitoring the state of Cable Power.

Cable power supply

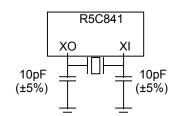


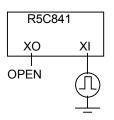
4.22.4 Read/Write of 1394 PHY Registers

CPS

The R5C841 builds in the 1394 PHY registers compliant with IEEE 1394-1995 and IEEE1394a-2000 standard. Refer to the 1394PHY Registers for details. Access to these registers is enabled by the PHY Control register of the 1394 OHCI Registers, and offsetting [31-11] bits of the 1394 OHCI Register Base Address (10h) in the 1394 Configuration register space enables access to the PHY Control register (0ECh).

The data of 1394 PHY register is the little endian description. On access of the PHY Control register, the R5C841 converts the data from a little endian to a bit endian. So the data is dealt only in a row without the bit number of data.

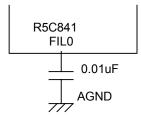



For example, when 53h is written in wrData of the PHY Control register (bit 6, 4, 1, and 0 are set to "1"), 53h is written in the PHY Register as they are (bit 1, 3, 6, and 7 are set to "1"). Access to Contender bit, Power_class field, and Disable bit for Port0/Port1 in the 1394 PHY register is enabled through the PHY Shadow register (99h) in the 1394 configuration register space. Refer to the PHY Shadow register in the Registers Description for details.

4.22.5 Clock Circuit

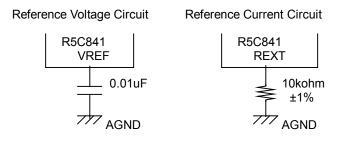
The PHY block of the R5C841 requires 24.576MHz of clock frequency.

Crystal OSC.


External Clock Driver

Recommended Conditions Crystal Oscillator Normal Frequency : 24.576MHz Frequency Tolerance : ±50ppm(at 25°C) Temperature stability : ±50ppm(reference to 25°C) Operating Temperature Range : -20~70°C Load Capacitance : 10pF Driver Level : 0.1mW : 50ohm Max Equivalent Series Resistance Insulation resistance : 500M ohm Min (at DC100V±15V) Shunt Capacitance : 7.0pF Max External Clock Driver Normal Frequency : 24.576MHz Frequency Tolerance : ±50ppm(at 25°C)

4.22.6 PLL

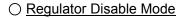

The PHY block of the R5C841 produces 393.216MHz of the internal clock that is 16 times as long as the 24.576MHz produced by the internal PLL circuit. Setting the Sleep Mode of the PHY block can stop the PLL circuit. Refer to the Power Management (Ch. 4.11) for settings of the Sleep Mode.

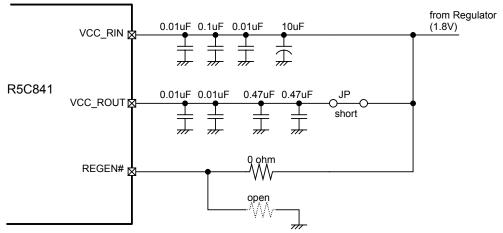
PLL External Circuit

4.22.7 Reference Voltage Circuit and Reference Current Circuit

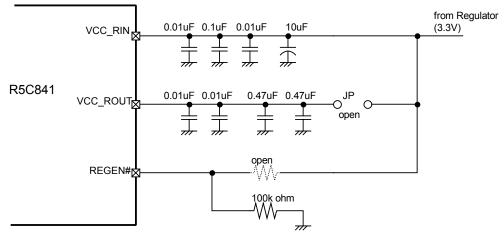
The PHY block of R5C841 supports terminals of the external parts for the Reference voltage circuit and the Reference current circuit. Each terminal should be connected to indicated capacitors and resistors.

4.23 Function's Selection

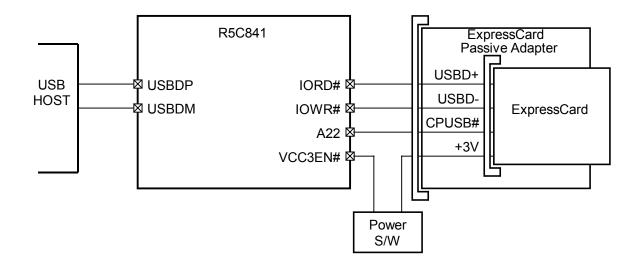

The R5C841 can make each function disable by UDIO3, UDIO4 and VPPEN0. Setting UDIO3 to pull-down disables the SD Card interface, setting UDIO4 to pull-down disables the Memory Stick interface, and setting VPPEN0 to pull-down disables the xD Picture Card interface. Disabled function cannot detect the corresponding configuration register. (Master Aborts) The function's selection is as follows.


On use of the Serial ROM, set the Serial ROM in order to disable each function, because UDIO3, UIDO4 and VPPEN0 are set to only pull-up.

							F	unction No	Э.	
UDIO3	UDIO4	VPPEN0	SD	MS	хD	0	1	2	3	4
Pull-up	Pull-up	Pull-up	Enable	Enable	Enable	PCCard	1394	SD	MS	хD
Pull-down	Pull-up	Pull-up	Disable	Enable	Enable	PCCard	1394	MS	хD	_
Pull-up	Pull-down	Pull-up	Enable	Disable	Enable	PCCard	1394	SD	хD	_
Pull-down	Pull-down	Pull-up	Disable	Disable	Enable	PCCard	1394	хD	-	_
Pull-up	Pull-up	Pull-down	Enable	Enable	Disable	PCCard	1394	SD	MS	_
Pull-down	Pull-up	Pull-down	Disable	Enable	Disable	PCCard	1394	MS		_
Pull-up	Pull-down	Pull-down	Enable	Disable	Disable	PCCard	1394	SD	_	_
Pull-down	Pull-down	Pull-down	Disable	Disable	Disable	PCCard	1394	_	_	_


4.24 Internal Regulator

The R5C841 has an internal regulator, which converts the single 3.3V power into the power for the internal core logic. REGEN# signal enables/disables an internal regulator. The following is the recommended circuit diagram.



ORegulator Enable Mode

4.25 ExpressCard Interface

Using the external USB host interface enables the R5C841 to connect a USB device to a PC Card socket. That is, inserting an ExpressCard passive adapter into the PC Card socket can support an ExpressCard for the USB interface.

4.26 BAY Function

With the PC Card passive adapter, the Small Card (the SD Card, the Memory Stick, the xD Picture Card), can be inserted in the PC Card slot. To enable this function, set "1" in PCI-CardBus Bridge Configuration register B7 [0]. (Internal Bay Mode)

Set PCI-CardBus Bridge Configuration register A0 [14] to "1" in order to use the External BAY function. (*External Bay Mode)

You can also set these registers by using Serial ROM.

*To use the External Bay Mode, you also need to wire the 6 pins of Pin Name 1 to the 6 pins of Pin Name 2 respectively.

Pin Name 1	Pin Name 2
CE2#	MDIO08
WE#	MDIO09
CADR0	MDIO10
CADR1	MDIO11
CADR2	MDIO12
CADR3	MDIO13

5 ELECTRICAL CHARACTERISTICS

5.1 Absolute Maximum Rating

Symbol	Parameter	Range	Unit	Condition	Note
Vcc 1	Supply Voltage Range 1	-0.3 ~ 2.5	V	GND=0V	1
Vcc 2	Supply Voltage Range 2	-0.3 ~ 4.6	V	GND=0V	2
Vte1	Voltage on Any Pin	-0.3 ~ 5.8	V	GND=0V	4
Vte2	Voltage on Any Pin	-0.3 ~ 4.6	V	GND=0V	
Topr	Ambient Temperature under bias	-40 ~ 85	°C		
Tstg	Storage Temperature Range	-55 ~ 125	°C		
ESD1	Human Body Model	±2.0	kV	C=100pF R=1.5kΩ	
ESD2	Charged Device Model	±1.0	kV		
LATUP	Latch-up	±100	mA	5ms	3

Note 1: Applied for VCC_ROUT.

Note 2: Applied for VCC_RIN, VCC_3V, VCC_PCI3V and VCC_MD3V and AVCC_PHY3V.

Note 3: The clamping voltage of the trigger pulse power source should be below a value of Vte. Note 4: Applied for all of Digital pins

Note: Stresses above those listed may cause permanent damage to system components. These are stress ratings only. Functional operation at these or any conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

5.2 DC Characteristics

5.2.1 Recommended Operating Conditions for Power Supply

Power Pin	Parameter	Min	Тур	Max	Unit	Note
VCC_PCI3V	Supply Voltage for PCI interface (3.3V Operation)	3.0	3.3	3.6	V	
VCC_RIN	RIN Supply Voltage for Regulator		3.3	3.6	V	
VCC_RIN, VCC_ROUT			1.8	1.95	V	
VCC_3V	Supply Voltage for System and Card Interface Signals	3.0	3.3	3.6	V	
VCC_MD3V	Supply Voltage for Media interface block	3.0	3.3	3.6	V	
AVCC_PHY3V Supply Voltage for Cable interface block		3.0	3.3	3.6	V	

5.2.2 PCI Interface

For 3.3V signaling

(VCC_ROUT= 1.65~1.95V, VCC_PCI3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Мах	Unit	Test Condition	Note
VIH	Input High Voltage	0.5xVCC_PCI3V	5.75	V		1
VIL	Input Low Voltage	-0.5	0.3xVCC_PCI3V	V		1
VOH	Output High Voltage	0.9xVCC_PCI3V		V	lout=-500μA	1
VOL	Output Low Voltage		0.1xVCC_PCI3V	V	lout=1500μA	1
IILk	Input Leakage Current		±10	μA	Vin=0~ VCC_PCI3V	1
Cin	Input Pin Capacitance		10	pF		1
Cclk	PCICLK Pin Capacitance		12	pF		1

Note 1: Applied for PCICLK, CLKRUN#, PCIRST#, AD[31:0], C/BE#[3:0], PAR, FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#, IDSEL, PERR#, SERR#, REQ#, GNT#, INTA#, INTB#, INTC# pins

5.2.3 16-bit PC Card Interface

For 3.3V signaling

(VCC_ROUT= 1.65~1.95V_VCC_3V=3.0~3.6V_Ta=0~70°C)

Symbol	Parameter	Min	Тур	Мах	Unit	Test Condition	Note
VIH	Input High Voltage	2.0		5.5	V		2,4
VIL	Input Low Voltage	-0.3		0.6	V		2,4
VOH1	Output High Voltage	2.4			V	lout=-4mA	2
VOH2	Output High Voltage	2.4			V	lout=-2mA	3
VOL1	Output Low Voltage			0.4	V	lout=4mA	2
VOL2	Output Low Voltage			0.4	V	lout=2mA	3
IILk	Input Leakage Current			±10	μA	Vin=0~VCC_3V	2
IIL1	Input Leakage Current (Pull-up)		-50		μA	Vin=0	4
Cin	Input Pin Capacitance			10	pF		2,4

Note 2: Applied for CADR [25:0], CDATA [15:0], CE [2:1]#, IOR#, IOW#, OE#, WE#, REG#, WAIT#, if Card interface is configured as a 16-bit Card Socket.

Note 3: Applied for Note 4: Applied for

RESET pin RDY/IREQ#, WAIT#, BVD1/STSCHG#/RI#, BVD2/SPKR#, INPACK#, WP/IOIS16# pins

Symbol	Parameter	Min	Тур	Мах	Unit	Test Condition	Note
VIH	Input High Voltage	0.475xVCC_3V		VCC_3V +0.5	V		5,6,7
VIL	Input Low Voltage	-0.5		0.325xVCC_3V	V		5,6,7
VOH	Output High Voltage	0.9xVCC_3V			V	lout=-150μA	5,6,8
VOL	Output Low Voltage			0.1xVCC_3V	V	lout=700μA	5,6,8
IILk	Input Leakage Current			±10	μA	Vin=0~VCC_3V	5
IIL1	Input Leakage Current (Pull-up)		-230		μA	Vin=0	6
Cin	Input Pin Capacitance			10	pF		5,6,7
IIL2	Input Leakage Current (Pull-down)		16.5		μA	Vin=VCC_3V	7
IIL3	Input Leakage Current (Pull-up)		-70		μA	Vin=0	8

CCLK, CCLKRUN#, CRST#, CAD [31:0], CC/BE#[3:0], CPAR, CFRAME#, CGNT#,

5.2.4 CardBus PC Card Interface

Note 5: Applied for

CINT# pins, if Card interface is configured as a CardBus Card Socket. Note 6: Applied for

CIRDY#, CTRDY#, CSTOP#, CDEVSEL#, CPERR#, CSERR#, CREQ#, CINT#, CAUDIO pins

Note 7: Applied for CSTSCHG pin Note 8: Applied for CCLKRUN# pin

5.2.5 PC Card Interface Card Detect Pins and System Interface Pins

PC Card Interface Card Detect Pins and System Interface Pins (VCC ROUT= 1.65~1.95V, VCC 3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition	Note
VIH1	Input High Voltage	0.8xVCC_3V		VCC_3V+0.3	V		9
VIL1	Input Low Voltage	-0.3		0.3xVCC_3V	V		9
VIH2	Input High Voltage	2.4		VCC_3V+0.3	V		11
VIL2	Input Low Voltage	-0.3		0.8	V		11
VIH3	Input High Voltage	2.4		5.75	V		12
VIL3	Input Low Voltage	-0.3		0.8	V		12
VOH1	Output High Voltage	2.4			V	lout=-4mA	10
VOH2	Output High Voltage	2.4			V	lout=-1mA	11
VOL1	Output Low Voltage			0.4	V	lout=4mA	10
VOL2	Output Low Voltage			0.4	V	lout=1mA	11
IILk	Input Leakage Current			±10	μA	Vin=0~VCC_3V	11,12
IIL1	Input Leakage Current (Pull-up)		-80		μA	Vin=0	9
IOZ	Hi-Z Output Leakage Current			±10	μA	Vout=0~VCC_3V	10

Note 9: Applied for CD1#(CCD1#), CD2#(CCD2#), MDIO00, MDIO01, MDIO03 pins Note 10: Applied for RI OUT#, SPKROUT, VCC5EN#, VCC3EN#, VPPEN0, VPPEN1, MDIO04, MDIO05, MDIO06 pins Note 11: Applied for VS1#(CVS1#), VS2#(CVS2#) pins

Note 12: Applied for GBRST#, HWSPND#, MDIO07 pins

5.2.6 Cable Interface

	UI= 1.05~1.95V, AVCC		.u~૩.ov,	1a-0~1	0.0)	
Symbol	Parameter	Min	Max	Unit	Test Condition	Note
VID	Differential Input Voltage	118	260	mV	Cable input, during data reception	13,14
		168	265	mV	Cable input, during arbitration	
VICM	TpB Common Mode Input	1.165	2.515	V	100Mbps speed signaling off	14
	Voltage	0.935	2.515	V	200Mbps speed signaling	
		0.523	2.515	V	400Mbps speed signaling	
VOD	Differential Output Voltage	172	265	mV	Cable output, load 56Ω	13,14
ICM	TpA, TpB Common Mode Output Current	-0.81	0.44	mA	Driver enable, speed signal off	13,14
ISPD2	TpB200Mbps Speed Signal	-4.81	-2.53	mA		14
ISPD4	TpB400Mbps Speed Signal	-12.40	-8.10	mA		14
VTCPWD	CPS Threshold Voltage		7.5	V	CPS, R=390kΩ	16
VTPBIAS	TpBias Output Voltage	1.665	2.015	V		15

(VCC ROUT= 1.65~1.95V. AVCC PHY3V=3,0~3,6V, Ta=0~70°C)

Note 13: Applied for TPAP0/1, TPAN0/1 pins Note 14:Applied forTPBP0/1, TPBN0/1 pinsNote 15:Applied forTPBIAS0/1 pinsNote 16:Applied forCPS pin

5.2.7 UDIO0-5 pins

For PCI 3.3V signaling (VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

(100_100						-
Symbol	Parameter	Min	Мах	Unit	Test Condition	Note
VOH	Output High Voltage	2.4		V	lout=-4mA	17
VOL	Output Low Voltage		0.4	V	lout=4mA	17
IOZ	Hi-Z Output Leakage Current		±10	μA	Vout=0~VCC_3V	17
VIH	Input High Voltage	0.5xVCC_3V	5.75	V		18
VIL	Input Low Voltage	-0.5	0.3xVCC_3V	V		18
IILK	Input Leakage Current		±10	μA	Vin=0~VCC_3V	18

Note 17: Applied for UDIO0-5 pins Note 18: Applied for UDIO0-4 pins

5.2.8 SD Card Interface

(VCC_ROUT= 1.65~1.95V, VCC_MD3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Тур	Мах	Unit	Test Condition	Note
VIH	Input High Voltage	0.625x VCC_MD3V		VCC_MD3V +0.3	V		19
VIL	Input Low Voltage	-0.3		0.25x VCC_MD3V	V		19
VOH	Output High Voltage	0.75x VCC_MD3V			V	lout=-100μA@3V	19,20
VOL	Output Low Voltage			0.125xVCC_MD3V	V	lout=100µA@3V	19,20
IIL	Input Leakage Current (Pull-up)		80		μA	Vin=0	19
IOZ	HI-Z Output Leakage Current			±10	μA	Vout=0~ VCC_MD3V	20

Note 19: Applied forSDCDAT [3:0], SDCCMD pinsNote 20: Applied forSDCCLK pin

5.2.9 Memory Stick Interface

(VCC_ROUT= 1.65~1.95V, VCC_MD3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Тур	Мах	Unit	Test Condition	Note
			i	1		i	i
VIH	Input High Voltage	0.8x VCC_MD3V		VCC_MD3V	V		21
VIL	Input Low Voltage	0		0.2xVCC_MD3V	V		21
VOH	Output High Voltage	VCC_MD3V -0.3			V	lout=-8mA	21
VOL	Output Low Voltage			0.4	V	lout=8mA	21
IOZ	HI-Z Output Leakage Current			±10	μA		21

Note 21: Applied for MSCDAT [3:0], MSCCLK, MSBS pins

5.2.10 xD Picture Card Interface

(VCC_ROUT= 1.65~1.95V, VCC_MD3V=3.0~3.6V, Ta=0~70°C)

(
Symbol	Parameter	Min	Тур	Мах	Unit	Test Condition	Note	
VIH	Input High Voltage	2.1		VCC_MD3V+0.3	V		22	
VIL	Input Low Voltage	-0.3		0.7	V		22	
VOH	Output High Voltage	2.6			V	lout=-8mA	22,23	
VOL	Output Low Voltage			0.4	V	lout=8mA	22,23	
IOZ	HI-Z Output Leakage Current			±10	μA		22,23	

Note 22: Applied for XDDAT [7:0] pins

Note 23: Applied for XDRE#, XDWE#, XDCE#, XDALE, XDCLE, XDWP# pins

5.2.11 Serial ROM Interface

For 3.3V signaling

(VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

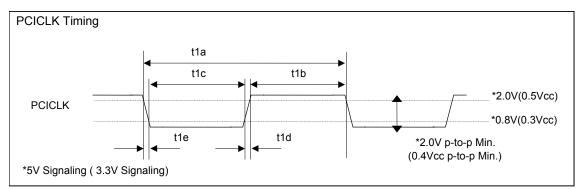
Symbol	Parameter	Min	Max	Unit	Test Condition	Note
VIL	Input Low Voltage	-0.5	0.3xVCC_3V	V		24
VIH	Input High Voltage	0.7xVCC_3V	VCC_3V+0.5	V		24
VOL1	Output Low Voltage		0.4	V	lout=3mA	24
Tof	Output fall time from V IHmin to V ILmax with a bus capacitance from 10 pF to 400 pF:	-	250	ns	with up to 3 mA sink current at V OL1	24
11	Input current each I/O pin		±10	μA	Vin=0.4~0.9xVCC_3V	24
Cin	Input Pin Capacitance		10	pF		24

Note 24: Applied for UDIO3-4 (On use of Serial ROM) pins

5.2.12 Power Consumption

Power Supply Current

Power Pin	Parameter	Min	Тур	Max	Unit	Condition	Note
Icc	Power Supply Current, Operating			150	mA	PCICLK=33MHz VCC_3V=3.6V VCC_MD3V=3.6V VCC_PCI3V=3.6V AVCC_PHY3V=3.6V REGEN#=0V VCC_RIN=3.6V Vin=0V or VCC	

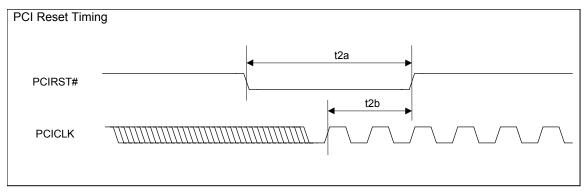

5.3 AC Characteristics

5.3.1 PCI Interface signals

PCI Clock

(VCC_ROUT= 1.65~1.95V, VCC_PCI3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Max	Unit	Note
	PCICLK				
t1a	Cycle Time, PCICLK	30		ns	
t1b	Pulse Width Duration, PCICLK High	11		ns	
t1c	Pulse Width Duration, PCICLK Low	11		ns	
t1d	Slew Rate, PCICLK Rising Edge	1	4	V/ns	
t1e	Slew Rate, PCICLK Falling Edge	1	4	V/ns	

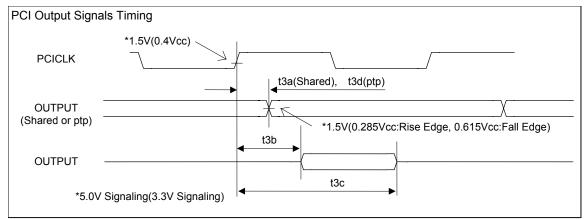


PCICLK Timing

PCI Reset

```
(VCC_ROUT= 1.65~1.95V, VCC_PCI3V=3.0~3.6V, Ta=0~70°C)
```

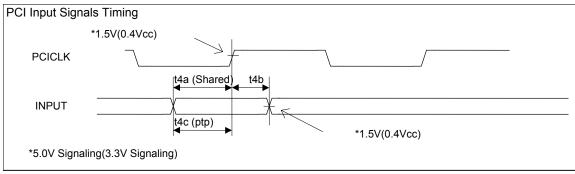
Symbol	Parameter		Max	Unit	Note
	PCIRST#				
t2a	Pulse Duration, PCIRST#	1		ms	
t2b	Setup Time, PCICLK active at PCIRST# Negation	100		μs	



PCI Reset Timing

PCI Interface Output Signals

(VCC ROUT= 1.65~1.95V, VCC PCI3V=3.0~3.6V, Ta=0~70°C)

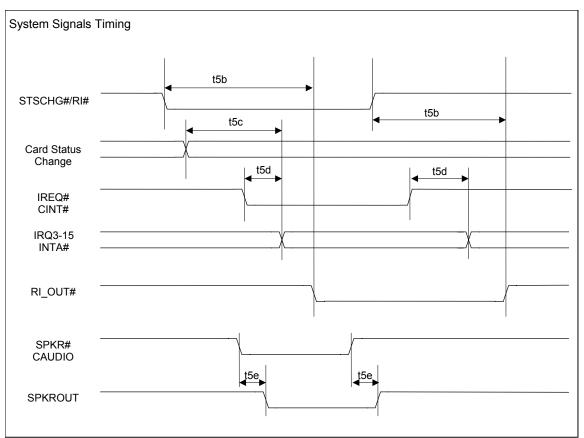

Symbol	Parameter	Min	Max	Unit	Note
	AD [31:0], C/BE#[3:0], PAR, FRAME#, DEVSEL#, IR	RDY#, TRDY	′#, STOP#,	PERR#, SE	ERR#, CLKRUN#
t3a Shared Signal Valid delay time from PCICLK		2	11	ns	Min: CL=0 pF Max: CL=50 pF (10 pF 3.3v)
t3b	Enable Time, Hi-Z to active delay from PCICLK	2		ns	
t3c	Disable Time, Active to Hi-Z delay from PCICLK		28	ns	
	REQ#				
t3d	Point to Point Signal Valid delay time from PCICLK	2	12	ns	Min: CL=0 pF Max: CL=50 pF (10 pF 3.3v)

PCI Output Signals Timing

PCI Interface Input Signals (VCC ROUT= 1.65~1.95V, VCC PCI3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter		Max	Unit	Note
	AD [31:0], C/BE#[3:0], PAR, FRAME#, DEVSEL#, IRDY#, CLKRUN#	TRDY#, ST	op#, idsel	., PERR#, S	SERR#,
t4a	Setup Time, Shared Signal Valid before PCICLK	7		ns	
t4b	Hold Time, Shared Signal Hold Time after PCICLK High	0		ns	
	GNT#				_
t4c	Setup Time, Point to Point Signal Valid before PCICLK	10		ns	

PCI Input Signals Timing


5.3.2 System Interface signals

System Interface Signals AC Characteristics

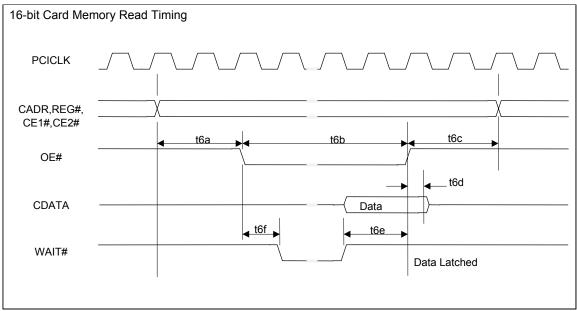
(VCC_ROUT= 1.65~1.95V, VCC_PCI3V=3.0~3.6V, VCC_3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Max	Unit	Note
	RI_OUT#, UDIO0-5, INTA#	_	_		
t5b	RI# to RI_OUT# Delay		50	ns	
t5c	Card Status Change to UDIO0-5/INTA# Delay		2Tcyc+0	ns	1
t5d	Card IREQ#/CINT# to UDIO0-5/INTA# Delay		50	ns	
	SPKROUT				
t5e	SPKR#/CAUDIO to SPKROUT Delay		50	ns	

Note1: Tcyc is PCICLK cycle time. (Typically 30ns)

System Signals Timing

5.3.3 16-bit PC Card Interface signals

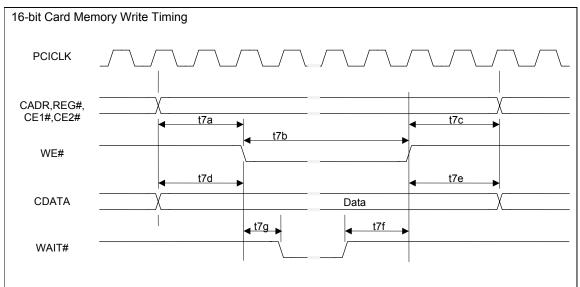

Memory Read

(VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Мах	Unit	Note
	CADR [25:0], REG#, CE [2:1]#			<u>.</u>	
t6a	Setup Time, CADR [25:0], REG# and CE [2:1]# before OE# Low	Tsu-20		ns	1,2 Tsu=1~7Tcyc Programmable
t6c	Hold Time, CADR [25:0], REG# and CE [2:1]# after OE# High	Thl-10		ns	1,2 Thl=1~7Tcyc Programmable
	OE#				
t6b	Pulse Duration, OE# Low	Tpw-20		ns	1,2 Tpw=3~31Tcyc Programmable
	CDATA [15:0]			<u>.</u>	
t6d	Hold Time, CDATA [15:0] after OE# High	0		ns	
	WAIT#			<u>.</u>	
t6e	Hold Time, OE# Low after WAIT# High	1Tcyc+0		ns	1
t6f	Valid Delay, OE# Low to WAIT# Low		50	ns	

Note1: Tcyc is PCICLK cycle time. (Typically 30ns)

Note2: Tsu, Tpw, ThI can be programmed by setting 16-bit Memory Timing 0 register.

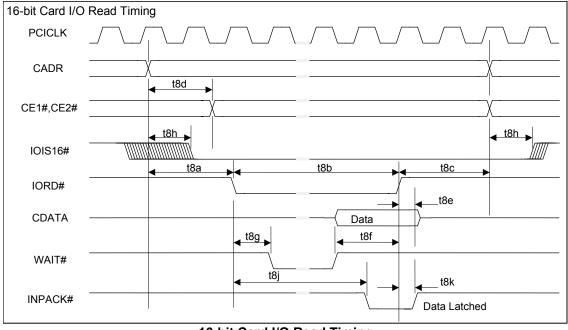

16-bit Card Memory Read Timing

Memory Write	
(VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)	

Symbol	Parameter	Min	Мах	Unit	Note
	CADR [25:0], REG#, CE [2:1]#			•	
t7a	Setup Time, CADR [25:0], REG# and CE [2:1]# before WE# Low	Tsu-20		ns	1,2 Tsu=1~7Tcyc Programmable
t7c	Hold Time, CADR [25:0], REG# and CE [2:1]# after WE# High	Thl-10		ns	1,2 Thl=1~7Tcyc Programmable
	WE#	• •			
t7b	Pulse Duration, WE# Low	Tpw-20		ns	1,2 Tpw=3~31Tcyc Programmable
	CDATA [15:0]	• •			
t7d	Setup Time, CDATA [15:0] before WE# Low	Tsu-20		ns	1,2 Tsu=1~7Tcyc Programmable
t7e	Hold Time, CDATA [15:0] after WE# High	Thl-10		ns	1,2 Thl=1~7Tcyc Programmable
	WAIT#			÷	-
t7f	Hold Time, WE# Low after WAIT# High	Tcyc+0		ns	1
t7g	Valid Delay, WE# Low to WAIT# Low		50	ns	

Note1: Tcyc is PCICLK cycle time. (Typically 30ns)

Note2: Tsu, Tpw, ThI can be programmed by setting 16-bit Memory Timing 0 register.

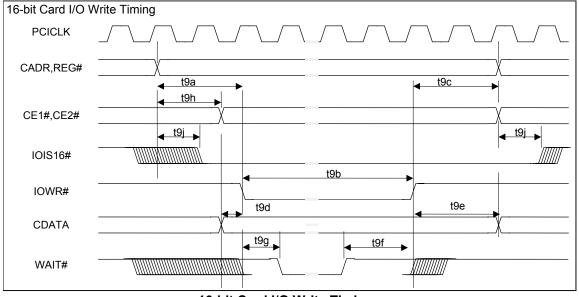

16-bit Card Memory Write Timing

Symbol	Parameter	Min	Max	Unit	Note
	CADR [25:0], REG#				
t8a	Setup Time, CADR [25:0] and REG# before IORD# Low	Tsu-20		ns	1,3 Tsu=2~7Tcyc Programmable
t8c	Hold Time, CADR [25:0] and REG# after IORD# High	Thl-10		ns	1,3 Thl=1~7Tcyc Programmable
	IORD#				
t8b	Pulse Duration, IORD # Low	Tpw-20		ns	1,3 Tpw=3~31Tcyc Programmable
	CE [2:1]#				
t8d	Valid Delay, CADR [25:0] and REG# to CE [2:1]#	1Tcyc-10		ns	1
	CDATA [15:0]				
t8e	Hold Time, CDATA [15:0] after IORD # High	0		ns	
	WAIT#				
t8f	Hold Time, IORD # Low after WAIT# High	1Tcyc+0		ns	1
t8g	Valid Delay, IORD # Low to WAIT# Low		50	ns	
	IOIS16#				
t8h	Valid Delay, CADR [25:0] to IOIS16# Low		50	ns	
	INPACK#				
t8k	Hold Time, INPACK# Low after IORD# High	0		ns	
t8j	Valid Delay, IORD # Low to INPACK# Low		50	ns	

I/O Read	
(VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)	

Note1: Tcyc is PCICLK cycle time. (Typically 30ns)

Note3: Tsu, Tpw, ThI can be programmed by setting 16-bit I/O Timing 0 register.

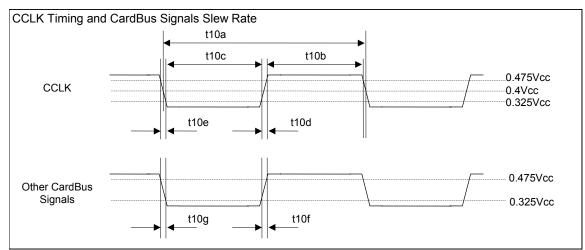

16-bit Card I/O Read Timing

Symbol	Parameter	Min	Max	Unit	Note
	CADR [25:0], REG#				•
t9a	Setup Time, CADR [25:0] and REG# before IOWR # Low	Tsu-20		ns	1,3 Tsu=2~7Tcyc Programmable
t9c	Hold Time, CADR[25:0], REG# and CE[2:1]# after IOWR # High	Thl-10		ns	1,3 Thl=1~7Tcyc Programmable
	IOWR#				
t9b	Pulse Duration, IOWR# Low	Tpw-20		ns	1,3 Tpw=3~31Tcyc Programmable
	CE[2:1]#				
t9h	Valid Delay, CADR [25:0] and REG# to CE [2:1]#	1Tcyc-10		ns	1
	CDATA [15:0]				
t9d	Setup Time, CDATA [15:0] before IOWR# Low	Tsu-2Tcyc-10		ns	1,3 Tsu=3~7Tcyc Programmable
t9e	Hold Time, CDATA [15:0] after IOWR# High	Thl-10		ns	1,3 Thl=1~7Tcyc Programmable
	WAIT#				
t9f	Hold Time, IOWR# Low after WAIT# High	1Tcyc+0		ns	3
t9g	Valid Delay, IOWR# Low to WAIT# Low		50	ns	
	IOIS16#				
t9j	Valid Delay, CADR [25:0] and REG# to IOIS16# Low		50	ns	

I/O Write (VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

Note1: Tcyc is PCICLK cycle time. (Typically 30ns)

Note3: Tsu, Tpw, ThI can be programmed by setting 16-bit I/O Timing 0 register.

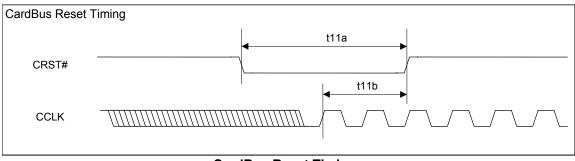

16-bit Card I/O Write Timing

5.3.4 CardBus PC Card Interface signals

Clock and Signal Slew Rate

(VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Max	Unit	Note
	CCLK				
t10a	Cycle Time, CCLK	30		ns	
t10b	Pulse Width Duration, CCLK High	12		ns	
t10c	Pulse Width Duration, CCLK Low	12		ns	
t10d	Slew Rate, CCLK Rising Edge	1	4	V/ns	
t10e	Slew Rate, CCLK Falling Edge	1	4	V/ns	
	Other CardBus Signals				
t10f	Slew Rate, Rising Edge	0.25	1	V/ns	
t10g	Slew Rate, Falling Edge	0.25	1	V/ns	

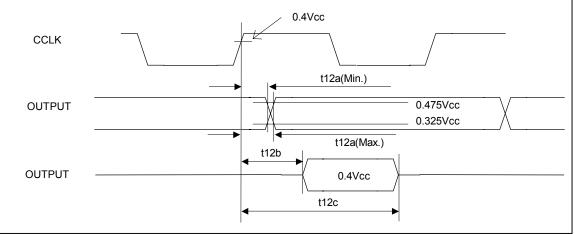


CCLK Timing and CardBus Slew Rate

Card Reset

(VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Max	Unit	Note
	CRST#				
t11a	Pulse Duration, CRST#	1		ms	
t11b	Setup Time, CCLK active at CRST# Negation	100		μs	



CardBus Reset Timing

Card Output (VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

<u>(100_</u> K	(400_1001=1:05~1:554, 400_54=5:0*, 18=0~70 0)							
Symbol	Parameter	Min	Max	Unit	Note			
	CAD [31:0], CC/BE#[3:0], CPAR, CFRAME#, CDEVSEL#, CIRDY#, CTRDY#, CSTOP#, CPERR#, CSERR#, CCLKRUN#, CGNT#							
t12a	Valid delay time from CCLK	2	18	ns	Min: CL=0 pF Max: CL=30 pF			
t12b	Enable Time, Hi-Z to active delay from CCLK	2		ns				
t12c	Disable Time, Active to Hi-Z delay from CCLK		28	ns				

CardBus Interface Output Signals Timing

CardBus Interface Output Signals Timing

Card Input

(VCC_ROUT=1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

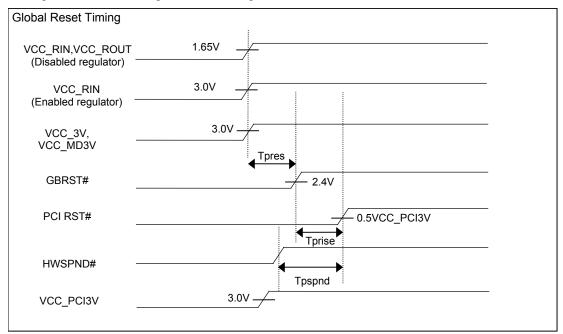
Symbol	Parameter	Min	Max	c Unit Not			
	CAD [31:0], CC/BE#[3:0], CPAR, CFRAME#, CDEVSEL#, CIRDY#, CTRDY#, CSTOP#, CPERR#, CSERR#, CCLKRUN#, CREQ#						
t13a	Setup Time, Signal Valid before CCLK	7		ns			
t13b	Hold Time, Signal Hold Time after CCLK High	0		ns			

CardBus Interface Input Signals Timing
CCLK
Utilize
UNPUT
UNPUT
UNPUT
UNPUT
UNPUT

CardBus Input Signals Timing

5.3.5 Hardware Suspend mode

Hardware Suspend Timing
VCC_PCI3V
HWSPND#
PCI RST#
Tpd
Tpd
Tpu


Timing chart for keeping the value of the internal register on the Suspend mode.

Symbol	Parameter	Min	Тур	Max	Unit
Tpd	HWSPND# to PCIRST# delay	100* ¹			ns
Tpu	PCIRST# Setup time to HWSPND#	100* ¹			ns

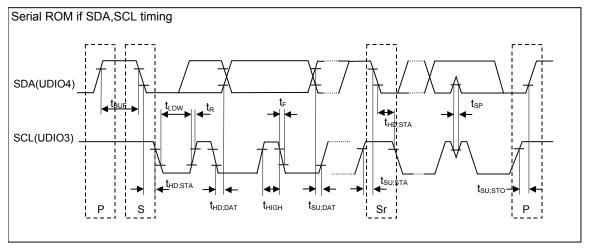
5.3.6 Global Reset signals

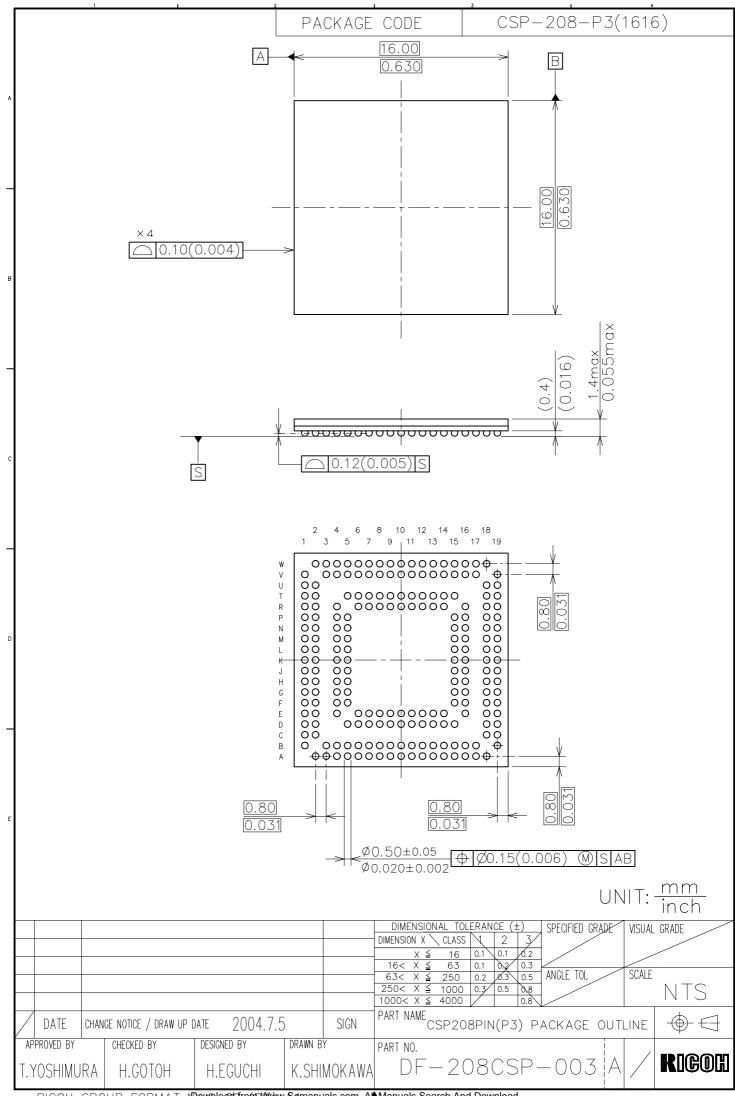
*¹: PCICLK=33MHz

Timing chart for initializing the internal register on the Power's on.

Symbol	Parameter	Min	Тур	Max	Unit
Tpres	Power_On to GBRST# delay	1		100	ms
Tprise	GBRST# to PCIRST# delay	60* ²			ns
Tpspnd	HWSPND# to PCIRST# delay	100* ²			ns

*²: PCICLK=33MHz


5.3.7 Serial ROM Interface signals


SDA (UDIO4), SCL(UDIO3)

(VCC_ROUT= 1.65~1.95V, VCC_3V=3.0~3.6V, Ta=0~70°C)

Symbol	Parameter	Min	Max	Unit	Note
	SDA (UDIO4), SCL (UDIO3)	<u>.</u>	-	-	
f SCL	SCL clock frequency	0	100	kHz	
t BUF	Bus free time between a STOP and START condition	4.7	-	us	
t HD;STA	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	-	us	
t LOW	LOW period of the SCL clock	4.7	-	us	
t high	HIGH period of the SCL clock	4.0	-	us	
t su;sta	Set-up time for a repeated START condition	4.7	-	us	
t HD;DAT	Data hold time for I 2 C-bus devices	0		us	
t SU;DAT	Data set–up time	250	-	ns	
t R	Rise time of both SDA and SCL signals	-	1000	ns	
t F	Fall time of both SDA and SCL signals	-	300	ns	
t su;sto	Set-up time for STOP condition	4.0	-	us	
t sp	Pulse width of spikes which must be suppressed by the input filter	n/a	n/a	ns	
Сb	Capacitive load for each bus line	-	400	pF	

All values referred to V IHmin and V ILmax levels (see 5.2.11).

RICOH GROUP FORMAT Now Bear from William Search And Download.

NOTICE

- 1. The products and the product specifications described in this Data Sheet are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. This Data Sheet may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this Data Sheet shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this Data Sheet are intended and designed for use as general electronic components in standard applications (office equipment, computer equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or miss-operation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire-containment feature, and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this Data Sheet.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH Company, Ltd. Electronic Devices Company

Head Office

13-1, Himemurocho, Ikeda-shi, Osaka 563-8501 JAPAN Phone: +81-72-748-6262, Fax: +81-72-753-2120

Yokohama Office

3-2-3, Shinyokohama, Kouhoku-ku, Yokohama-shi, Kanagawa 222-8530 JAPAN Phone: +81-45-477-1703, Fax: +81-45-477-1694

RICOH CORPORATION Electronic Devices Division

Cupertino Office

4 Results Way, Cupertino, CA, 95014 USA Phone: 408-346-4463 Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com