
RSA BSAFE®

Crypto-C
Cryptographic Components for C
Developer’s Guide
Version 5.2.2
Download from Www.Somanuals.com. All Manuals Search And Download.

© 2001 RSA Security Inc. All rights reserved. 001-019003-522-001-000
First printing: May 2001

See our Web Site for regional Customer Service telephone and fax numbers.

Trademarks

ACE/Server, BSAFE, Genuine RSA Encryption Engine, Keon, RC2, RC4, RC5, RSA,
RSA SecurPC, SecurCare, SecurID, SoftID, and WebID are registered trademarks, and
RC6, RSA Security, RSA Secured, SecurSight, and The Most Trusted Name in
e-Security are trademarks, of RSA Security Inc.

Other product and company names mentioned herein may be the trademarks of their
respective owners.

License agreement

This software and the associated documentation are proprietary and confidential to
RSA Security, are furnished under license, and may be used and copied only in
accordance with the terms of such license and with the inclusion of the copyright
below. This software and any copies thereof may not be provided or otherwise made
available to any other person.

Note on encryption technologies

This product may contain encryption technology. Many countries prohibit or restrict
the use, import, or export of encryption technologies, and current use, import, and
export regulations should be followed when exporting this product.

Distribution

Limit distribution of this document to trusted personnel.

RSA Security notice

The RC5® Block Encryption Algorithm With Data-Dependent Rotations is protected
by U.S. Patent #5,724,428 and #5,835,600.

The RC6™ Encryption Algorithm is the subject of pending U.S. and foreign patent
applications.

The DES implementation in this product contains code based on the "libdes" package
written by Eric A. Young (eay@pobox.com) and is included with his permission.

Compaq MultiPrime™ technology is protected by United States patent 5,848,159 and
is the subject of patent applications in other countries.

RSA Security Inc.
20 Crosby Drive
Bedford, MA 01730 USA
Tel (US) 1 877 RSA 4900, +1 781 301 5000
Fax +1 781 301 5170
www.rsasecurity.com

RSA Security Ireland Limited
Bay 127, Shannon Free Zone
Shannon, County Clare, Ireland
Tel +353 61 72 5100
Fax +353 61 72 5110
www.rsasecurity.ie

Download from Www.Somanuals.com. All Manuals Search And Download.

Contents
Preface xv
What’s New in Version 5.2.2? . xvi

Improved performance. .xvi
Hardware support .xvi
MultiPrime RSA .xvi
Serialization for algorithm objects performing RC4, Diffie Hellman key exchangexvi
Advanced Encryption Standard (AES) . xvii

Organization of This Manual .xvii

Conventions Used in This Manual . xviii

Terms and Abbreviations . xix

Related Documents .xx

How to Contact RSA Security .xxii
RSA Security Web Site . xxii
Getting Support and Service . xxii

SecurCare® Online . xxii
Technical Support Telephone Numbers . xxii
Call Handling and Escalation Process . xxii

Chapter 1 Introduction 1
The Crypto-C Toolkit . 2

Algorithms . 2
Symmetric Ciphers . 2
Message Digests . 2
Message Authentication . 2
Random-Number Generation . 2
Public-Key Algorithms. 3
Digital Signatures . 3
Elliptic Curve Public-Key Algorithms . 3
Secret Sharing . 3

Hardware Support . 3
i i i

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptographic Standards and Crypto-C . 4
PKCS Standards and Crypto-C . 4
NIST Standards and Crypto-C. 4
PKCS Compared with NIST. 5
ANSI X9 Standards and Crypto-C . 6

Chapter 2 Quick Start 7
The Six-Step Sequence . 8

Introductory Example . 9
Saving the Object State (optional). 16

Putting It All Together . 22

Decrypting the Introductory Example. 26

Multiple Updates . 29

Summary of the Six Steps . 32

Chapter 3 Cryptography 35
Cryptography Overview . 36

Symmetric-Key Cryptography . 36
Ciphers . 36

Block Ciphers . 37
Padding . 37
Ciphers in Crypto-C . 37
DES. 37
Triple DES. 38
DESX . 38
RC2 . 38
RC5. 39
RC6. 40
AES. 41
Modes of Operation. 41
Stream Ciphers . 46

Message Digests . 47
Message Digests and Pseudo-Random Numbers . 48
Hash-Based Message Authentication Codes (HMAC) . 49

Password-Based Encryption . 49
Public-Key Cryptography. 50

The RSA Algorithm . 51
Digital Envelopes . 55
i v R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Optimal Asymmetric Encryption Padding (OAEP) . 55
Authentication and Digital Signatures . 57
Digital Signature Algorithm (DSA) . 60
Digital Certificates . 61
Diffie-Hellman Public Key Agreement . 62

Elliptic Curve Cryptography . 65
Elliptic Curve Parameters. 66

The Finite Field . 66
The Point P and its Order . 69
Summary of Elliptic Curve Terminology . 71
Representing Fields of Even Characteristic . 72

Elliptic Curve Key Pair Generation. 72
Creating the Key Pair . 73

ECDSA Signature Scheme . 73
Signing a Message . 73
Verifying a Signature . 74
The Math. 74

Elliptic Curve Authenticated Encryption Scheme (ECAES) . 75
Encrypting a Message Using the Public Key . 76
Decrypting a Message Using the Private Key . 77

Elliptic Curve Diffie-Hellman Key Agreement . 77
Phase 1 . 78
Phase 2 . 78
The Math. 79

Secret Sharing . 80
Working with Keys. 81

Key Generation . 81
Key Management . 82
Key Escrow . 82

ASCII Encoding and Decoding . 83

Applications of Cryptography. 83
Local Applications . 83
Point-to-Point Applications . 84
Client/Server Applications. 85
Peer-to-Peer Applications . 86

Choosing Algorithms . 87
Public-Key vs. Symmetric-Key Cryptography. 87
Stream vs. Block Symmetric-Key Algorithms . 87
Block Symmetric-Key Algorithms . 88
Key Agreement vs. Digital Envelopes . 88
Secret Sharing and Key Escrow. 89
C o n t e n t s v

Download from Www.Somanuals.com. All Manuals Search And Download.

Elliptic Curve Algorithms . 89
Interoperability. 90
Elliptic Curve Standards. 91

Security Considerations . 91
Handling Private Keys. 91
Temporary Buffers. 92
Pseudo-Random Numbers and Seed Generation . 92
Choosing Passwords. 93
Initialization Vectors and Salts . 94
DES Weak Keys . 94
Stream Ciphers . 95
Timing Attacks and Blinding . 95
Choosing Key Sizes. 97

RSA Keys . 98
Diffie-Hellman Parameters and DSA Keys . 99
RC2 Effective Key Bits . 99
RC4 Key Bits. 99
RC5 Key Bits and Rounds. 99
Triple DES Keys . 99
Elliptic Curve Keys . 100

Chapter 4 Using Crypto-C 101
Algorithms in Crypto-C . 101

Information Formats Provided by Crypto-C. 102
Basic Algorithm Info Types . 102
BER-Based Algorithm Info Types . 102
PEM-Based Algorithm Info Types . 103
BSAFE1 Algorithm Info Types . 103

Summary of AIs. 103

Keys In Crypto-C . 113
Summary of KIs. 113

System Considerations In Crypto-C . 116
Algorithm Choosers . 116

An Encryption Algorithm Chooser . 116
An RSA Algorithm Chooser . 117

The Surrender Context . 118
A Sample Surrender Function . 119
Saving State. 120

When to Allocate Memory . 121
v i R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Memory-Management Routines . 122
Memory-Management Routines and Standard C Libraries 122
Memory Allocation . 123
Binary Data . 123

BER/DER Encoding. 123
Input and Output . 126

Symmetric Block Algorithms . 126
The RSA Algorithm . 127
General Considerations . 128

Key Size .129
DES Keys. 129
RSA Keys. 129

Using Cryptographic Hardware . 132
Interfacing with a BHAPI Implementation. 132
PKCS #11 Support .134
Using a PKCS #11 Device with Crypto-C .135
PKCS #11 Support for DSA Key Pair Generation. 144
Advanced PKCS #11. 147

Random Numbers . 148
Hardware Issues . 148

Chapter 5 Non-Cryptographic Operations 151
Message Digests . 152

Creating a Digest . 152
BER-Encoding the Digest . 155
Saving the State of a Digest Algorithm Object . 156

Saved State. 156

Hash-Based Message Authentication Code (HMAC) . 161

Generating Random Numbers . 165
Generating Random Numbers with SHA1. 165
Generating Independent Streams of Randomness . 170

Converting Data Between Binary and ASCII . 172
Encoding Binary Data To ASCII . 172
Decoding ASCII-Encoded Data . 174
C o n t e n t s v i i

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6 Symmetric-Key Operations 177
Block Ciphers . 178

DES with CBC . 178
Decrypting . 183

The RC2 Cipher . 184
Decrypting . 190

The RC5 Cipher . 190
Decrypting . 196

The RC6 Cipher . 196
Decrypting . 201

The AES Cipher . 201
Password-Based Encryption . 206

Decrypting . 211

Chapter 7 Public-Key Operations 213
Performing RSA Operations . 214

Generating a Key Pair . 214

MultiPrime . 218
What is MultiPrime?. 218
How Many Primes?. 219
Sample . 220
Generating an RSA MultiPrime Key . 222
Distributing an RSA Public Key. 223

Crypto-C Format . 224
BER/DER Encoding. 224

RSA Public-Key Encryption . 226
RSA Private-Key Decryption . 229
Optimal Asymetric Encryption Padding (OAEP) . 231
Raw RSA Encryption and Decryption . 231
RSA Digital Signatures . 233

Computing a Digital Signature . 233
Verifying a Digital Signature . 236

Performing DSA Operations . 239
Generating DSA Parameters. 239
Generating a DSA Key Pair. 242
DSA Signatures. 243

Computing a Digital Signature . 244
Verifying a Digital Signature . 246
v i i i R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement . 249
Generating Diffie-Hellman Parameters . 249
Distributing Diffie-Hellman Parameters . 253

Crypto-C Format . 253
BER Format . 254

Diffie-Hellman Key Agreement . 256
Saving the Object State . 259

Performing Elliptic Curve Operations. 260
Generating Elliptic Curve Parameters . 260
Retrieving Elliptic Curve Parameters . 264
Generating an Elliptic Curve Key Pair . 268
Retrieving an Elliptic Curve Key. 271
Generating Acceleration Tables . 273

Generating a Generic Acceleration Table. 273
Generating a Public-Key Acceleration Table . 277

Performing EC Diffie-Hellman Key Agreement . 280
Performing ECDSA in Compliance with ANSI X9.62 . 284

Generating EC Parameters . 285
Generating an EC Key Pair . 285
Computing a Digital Signature . 286
Verifying a Digital Signature . 289

Performing ECDSA with X9.62-Compliant BER . 291
Generating EC Parameters . 291
Generating an EC Key Pair . 293
Computing a Digital Signature . 293
Verifying a Digital Signature . 296

Using ECAES .297
Using Elliptic Curve Parameters . 298
Using an EC Key Pair. 298
ECAES Public-Key Encryption . 298
ECAES Private-Key Decryption . 302

Chapter 8 Secret Sharing Operations 305
Secret Sharing . 305

Generating Shares . 305
Reconstructing the Secret . 309

Chapter 9 Putting It All Together: An X9.31 Example 313
The X9.31 Sample Program . 314
C o n t e n t s ix

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix A Command-Line Demos 327
Overview of the Demos . 327

Command-Line Demo User’s Guide . 328
BDEMO . 328

Starting BDEMO. 328
Specifying User Keys . 329
Using BDEMO . 329

BDEMODSA . 332
Running BDEMODSA . 332
Using BDEMODSA. 332

BDEMOEC . 334
Running BDEMOEC . 334
Using BDEMOEC . 334

File Reference . 335

BSLite . 336

Glossary 339

Index 349
x R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

List of Figures
 Figure 3-1 Symmetric-Key Encryption and Decryption . 36

 Figure 3-2 Triple DES Encryption as Implemented in Crypto-C. 38

 Figure 3-3 Electronic Codebook (ECB) Mode . 42

 Figure 3-4 Cipher-Block Chaining (CBC) Mode . 43

 Figure 3-5 Cipher Feedback (CFB) Mode. 44

 Figure 3-6 Output Feedback Mode (OFB) . 46

 Figure 3-7 RC4 Encryption or Decryption . 47

 Figure 3-8 DES Key and IV Generation for Password Based Encryption 50

 Figure 3-9 Public-Key Cryptography . 51

 Figure 3-10 Digital Envelope. 56

 Figure 3-11 RSA Digital Signature . 59

 Figure 3-12 The Diffie-Hellman Key Agreement Protocol 63

 Figure 3-13 Elliptic Curve Diffie-Hellman Key Agreement 79

 Figure 3-14 Secret Sharing — Key Share Assignment . 81

 Figure 3-15 Secret Sharing — Full Key Generation From Shares 81

 Figure 4-1 Algorithm Object in a Software Implementation 132

 Figure 4-2 Algorithm Object in a Hardware Implementation 133
 x i

Download from Www.Somanuals.com. All Manuals Search And Download.

x i i R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

List of Tables

Table 3-1 Calculation of 827 mod 55. 54

Table 3-2 Elliptic Curve Parameters . 71

Table 3-3 DES Weak and Semi-Weak Keys . 94

Table 3-4 Summary of Recommended Key Sizes . 98

Table 4-1 Message Digests . 103

Table 4-2 Message Authentication . 104

Table 4-3 ASCII Encoding. 104

Table 4-4 Pseudo-Random Number Generation . 104

Table 4-5 Symmetric Stream Ciphers . 104

Table 4-6 Symmetric Block Ciphers . 105

Table 4-7 RSA Public-Key Cryptography . 107

Table 4-8 DSA Public-Key Cryptography . 109

Table 4-9 Diffie-Hellman Key Agreement . 110

Table 4-10 Elliptic Curve Public-Key Cryptography . 110

Table 4-11 Bloom-Shamir Secret Sharing . 111

Table 4-12 Hardware Interface . 111

Table 4-13 Advanced Encryption Standard (AES) . 112

Table 4-14 Generic Keys . 113

Table 4-15 Block Cipher Keys . 113

Table 4-16 RSA Public and Private Keys . 114

Table 4-17 DSA Public and Private Keys . 114

Table 4-18 Elliptic Curve Keys . 115

Table 4-19 Token Keys . 115

Table 4-20 Input Limits for RSA PKCS Encryption . 127

Table 5-1 Code Sample: DigestDataSavedState() . 159

Table A-1 Demo Program Source Files . 335
 x i i i

Download from Www.Somanuals.com. All Manuals Search And Download.

x i v R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Preface
Dear Crypto-C Developer:

Congratulations on your purchase of RSA BSAFE® Crypto-C (Crypto-C), the state-of-
the-art in cryptographic software toolkits. Crypto-C provides developers with the
most important privacy, authentication, and data integrity routines. Crypto-C
contains a full palette of popular cryptographic algorithms. This software
development kit enables you to develop applications for a wide range of purposes,
including electronic commerce, home banking, Webcasting, and enterprise security.

RSA BSAFE® Crypto-C 5.2.2 is the latest version of RSA Security’s cryptographic
software for enabling applications to share encrypted information, verify the
correspondent’s authenticity, and confirm data integrity. RSA Security’s general-
purpose cryptography software has the flexibility to suit a wide variety of security
applications or services. This robust, fully supported product is from the most trusted
name in e-security: RSA Security.

Crypto-C is written in C and is intended to be completely portable. It is available on a
number of platforms and can be ported to most platforms with a minimum of effort.
Crypto-C is a toolkit, not an application; it is intended to be integrated into operating
systems, communications systems, and other applications. Therefore, you have a
modest amount of work ahead of you. We have tried to make this task as clear as
possible without limiting your options. This User’s Manual, with its code samples and
tutorials, is the best place to start.

Thanks, and welcome to the RSA Security family.

Sincerely,

The Crypto-C Development Team
RSA Security
xv

Download from Www.Somanuals.com. All Manuals Search And Download.

What’s New in Version 5.2.2?
What’s New in Version 5.2.2?
Following is a list of RSA BSAFE Crypto-C features that are new in version 5.2.2:

Improved performance
With the new performance improvements, you’ll be able to use RSA BSAFE Crypto-
C’s algorithms at unprecedented levels of speed and throughput across a wide range
of hardware platforms. RSA BSAFE Crypto-C’s support for the Intel Itanium™ and
Pentium™4 processors will allow developers the ability to take advantage of benefits
of these powerful processors. Also, RSA Security’s implementation of Compaq’s
patented MultiPrime technology is designed to process encryption/decryption tasks
more than two times faster than previous methods. Typical tasks where customers
will experience these performance enhancements are for SSL transactions (signing on
the server or client side) and non-repudiation operations (verifying on the client side).

Hardware support
RSA BSAFE Crypto-C products include PKCS #11 hardware support to allow
communication with hardware like smart cards (for secure key storage) and
cryptographic accelerator cards (for performance improvements). PKCS #11 support
is in addition to the BHAPI hardware support offered in previous versions of Crypto-
C.

MultiPrime RSA
MultiPrime RSA functionality has been added to Crypto-C v5.2. Use this new
function to generate RSA public/private key pairs. RSA MultiPrime key generation
follows the same steps as standard RSA key generation with two exceptions: the use
of a different AI, AI_RSAMultiPrimeKeyGen, and a different AM must be passed in
during the B_GenerateInit call: AM_RSA_MULTI_PRIME_KEY_GEN.

Serialization for algorithm objects performing RC4,
Diffie Hellman key exchange
A new algorithm information type, AI_RC4Serialize, has been added to Crypto-C
x v i R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Organization of This Manual
V5.2. Use this AI to save the internal state of an RC4 encryption or decryption object,
or to create a new object from the saved state of a previous RC4 object.

Advanced Encryption Standard (AES)
Crypto-C includes basic AES support for the cutting edge in processor technology:
Intel Itanium and Pentium 4.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, “Introduction,” introduces the Crypto-C toolkit. It lists the algorithms,
cryptographic standards, NIST standards, and ANSI X9 standards used in
Crypto-C.

• Chapter 2, “Quick Start,” uses a code example to describe the basic encryption
and decryption operations in Crypto-C.

• Chapter 3, “Cryptography,” presents a brief outline of the basic cryptographic
principles and terminology that are used in this manual.

• Chapter 4, “Using Crypto-C,” presents a brief description of the Crypto-C
algorithm info types and key info types by functionality. It also covers system
considerations when using Crypto-C.

• Chapters 5-8 present sample code for the major Crypto-C operations.

• Chapter 9, “Putting it all Together: An X9.31 Example,” presents sample code for
the steps involved in creating and verifying RSA digital signatures in accordance
with the X9.31 standard.

• Appendix A, “Command-Line Demos,” describes the three Crypto-C command
line demo applications: BDEMO, BDEMODSA, and BDEMOEC.

• Glossary

• Index
P r e f a c e x v i i

Download from Www.Somanuals.com. All Manuals Search And Download.

Conventions Used in This Manual
Conventions Used in This Manual
The following typographical conventions are used in this manual.

Italic is used for:

• new terms where they are introduced

• the names of manuals and books

Lucida Typewriter Sans is used for:

• anything that appears literally in a C program, such as the names of structures
and functions supplied by Crypto-C: for example, B_DecodeInit

Lucida Typewriter Sans Italic is used for:

• function parameters and placeholders that indicate that an item is replaced by
some actual value in your own program: for example, randomAlgorithm

Lucida Typewriter Bold is used for:

• text the user types in command line demos and text that is printed to the screen
by the demos (Appendix A only)

Structures and routines defined by Crypto-C are boxed. Direct quotes from the RSA
BSAFE Crypto-C Reference Manual are also boxed:

Application code and samples are displayed in a box with a shaded outline:

Some Crypto-C functions are only available when used with a hardware
application that has a BSAFE Hardware API interface (BHAPI). These
functions are marked with the icon of a hammer.

/* Structures defined by Crypto-C */

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal;

/* Application code and samples */
x v i i i R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Terms and Abbreviations
Terms and Abbreviations
The following table lists terms and abbreviations used in this document. Refer to the
Glossary for a list of security and cryptographic terms and abbreviations, along with
their definitions, that are used throughout the RSA BSAFE Crypto-C documentation
set.

Term or Abbreviation Definition

Crypto-C RSA BSAFE Crypto-C: Cryptographic software development kit developers
use to develop secure applications.

.doc (file) Word for Windows, version 6.x or version 7.x files.

.htm (file) Hypertext Markup Language formatted files used for releasing documents on
the RSA Security internet site.

.pdf (file) Portable Document Format created by Adobe Acrobat Distiller and read by
using Adobe Acrobat Reader.

.rtf (file) Rich Text Format files that are compatable with Microsoft Word for Windows.

.txt (file) Unformatted, cross-platform text files.

PKI The Public Key Infrastructure that combines private key, trust, and certificate
databases for the reserve of needed private keys and certificates for signing
or encrypting messages.

Public Client API The default application programming interface between PKI services and the
developer's application.

SPI Service provider interfaces that enable customized implementation to
augment or replace the default Cert-J functionality.

User Interface Any interface that the end user sees or accesses. This includes any HTML
browser-based interfaces
P r e f a c e x i x

Download from Www.Somanuals.com. All Manuals Search And Download.

Related Documents
Related Documents
Following is a list of documents referenced in this book and suggested material for
further reading.

1. The Public-Key Cryptography Standards (PKCS), RSA Laboratories.
(http://www.rsasecurity.com/rsalabs/PKCS/)

2. Frequently Asked Questions (FAQ) About Today’s Cryptography, RSA Laboratories.
(http://www.rsasecurity.com/rsalabs/faq/)

3. The following Internet Standard documents:
• RFCs 1421, 1422, 1423, 1424 on Privacy Enhancement for Internet

Electronic Mail.

• RFCs 1319 (MD2), 1321 (MD5).

4. The following CCITT Recommendation documents:
• X.690: Specifications for the Basic Encoding Rules (BER) for Abstract

Notation One (ASN.1).

• X.509: The Directory — Authentication Framework.

5. Rivest, Shamir, and Adleman, A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120-126, February
1978.

6. A. Shamir, How to share a secret. Communications of the ACM, 22(11):
612-613, November 1979.

7. W. Diffie and M. E. Hellman, New directions in cryptography. IEEE Transactions
on Information Theory, IT-22:644-654, 1976.

8. Data Encryption Standard, FIPS Pub 46-2, National Institute of Standards and
Technology. Available from http://www.nist.gov.itl/div897/pubs/index.htm.

9. DES Modes of Operations, FIPS Pub 81, National Institute of Standards and
Technology, 1980.

10. Digital Signature Standard and Secure Hashing Algorithm (DSS and SHA):
• FIPS Pub 180-1

• X9.30 Part III

11. The following reports from RSA Laboratories (http://www.rsasecurity.com/
rsalabs/technotes and http://www.rsasecurity.com/rsalabs/bulletins):

• Stream Ciphers

• MD2, MD4, MD5, SHA and Other Hash Functions

• On Pseudo-collisions in MD5
x x R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Related Documents
• Results from the RSA Factoring Challenge

• Recommendations on Elliptic Curve Cryptosystems

• Recent Results for MD2, MD4, and MD5

12. The following OAEP specifications:
• SET Secure Electronic Transaction Specification. Book 3: Formal Protocol

Definition, version 1.0. SETCo, 1997. (http://www.setco.org/)

• PKCS#1: RSA Cryptography Specifications. Version 2.0. RSA Security, 1998.
(http://www.rsasecurity.com/rsalabs/pkcs/)

13. The following ANSI Financial Services Industry documents:
• X9.31 (RSA signatures, reversible DSA)

• X9.52 Draft (Triple DES)

• X9.62 and X9.63 (Elliptic Curves)

14. IEEE Standard Specifications for Public-Key Cryptography on
http://stdsbbs.ieee.org/groups/1363/index.html.

15. B. Schneier, Applied Cryptography, John Wiley & Sons, Inc., New York, 1994.
16. G. Simmons, Contemporary Cryptography, IEEE Press.
17. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996. Chapter 2 of this book, which covers all
aspects of modern cryptography, provides mathematical background on finite
fields.

18. A. Menezes, I. Blake, X. Gao, R. Mullin, S. Vanstone, and T. Yaghoobian.
Applications of Finite Fields. Kluwer Academic Publishers, 1993. Provides further
reference material on finite fields, including techniques for representing elements.

19. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,
1993.

20. Joseph H. Silverman and John Tate, Rational Points on Elliptic Curves, Springer-
Verlag New York, Inc., 1992.
P r e f a c e x x i

Download from Www.Somanuals.com. All Manuals Search And Download.

How to Contact RSA Security
How to Contact RSA Security

RSA Security Web Site
You can visit the RSA Security Web site at http://www.rsasecurity.com. It contains
the latest RSA Security news, security bulletins, and information about coming
events.

RSA BSAFE product information is available at http://www.rsasecurity.com/
products/bsafe. RSA Laboratories’ Cryptography FAQ can also be found at
http://www.rsasecurity.com/rsalabs/faq.

Getting Support and Service
You can get technical support as follows:

SecurCare® Online
www.rsasecurity.com/securcare/index.html

Technical Support Telephone Numbers
www.rsasecurity.com/support/news/tollfree.html

Call Handling and Escalation Process
www.rsasecurity.com/support/news/escproc.html
x x i i R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1

Introduction
This chapter introduces the Crypto-C toolkit. It lists the algorithms, cryptographic
standards, NIST standards, and ANSI X9 standards used in Crypto-C. This chapter is
organized as follows:

• The Crypto-C Toolkit
- Algorithms
- Hardware Support

• Cryptographic Standards and Crypto-C
- PKCS Standards and Crypto-C
- NIST Standards and Crypto-C
- PKCS Compared with NIST
- ANSI X9 Standards and Crypto-C
1

Download from Www.Somanuals.com. All Manuals Search And Download.

The Crypto-C Toolkit
The Crypto-C Toolkit
Crypto-C provides developers with a state-of-the-art implementation of the most
important privacy, authentication, and data integrity routines.

Algorithms
The following algorithms are implemented in Crypto-C:

Symmetric Ciphers
• AES
• DES
• Triple DES
• DESX
• RC2® block cipher
• RC4® stream cipher
• RC5™ block cipher
• RC6™ block cipher

Message Digests
• MD
• MD2
• MD5
• SHA1

Message Authentication
• HMAC

Random-Number Generation
• MD2
• MD5
• SHA1
• X931
2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

The Crypto-C Toolkit
Public-Key Algorithms
• RSA Public Key Cryptosystem
• Diffie-Hellman Key Agreement

Digital Signatures
• DSA
• RSA Digital Signatures

Elliptic Curve Public-Key Algorithms
• Elliptic Curve Digital Signature Algorithm (ECDSA)
• Elliptic Curve Diffie-Hellman Key Agreement
• Elliptic Curve Authenticated Encryption Scheme (ECAES)

Secret Sharing
• Bloom-Shamir Secret Sharing

Hardware Support
In addition to the cryptographic algorithms listed here, Crypto-C offers a hardware
interface that allows vendors of cryptographic hardware to support the Crypto-C
API. One such vendor is Intel®, whose Intel hardware security primitives include the
Intel Random Number Generator.

For information on using the Intel hardware (when present) with Crypto-C, see the
Intel Security Hardware User’s Guide, included on the Crypto-C CD-ROM. For
information about using Crypto-C with other cryptographic hardware, contact the
specific hardware vendor.

RSA BSAFE Crypto-C products include PKCS #11 hardware support to allow
communication with hardware like smart cards (for secure key storage) and
cryptographic accelerator cards (for performance improvements). PKCS #11 support
is in addition to the BHAPI hardware support offered in previous versions of Crypto-
C.
C h a p t e r 1 I n t r o d u c t i o n 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptographic Standards and Crypto-C
Cryptographic Standards and Crypto-C

PKCS Standards and Crypto-C
Crypto-C is a general-purpose programming tool that developers can use to write a
wide variety of applications. Crypto-C was built to help developers implement the
Public-Key Cryptography Standards (PKCS), a series of documents that specify a
standard way of performing basic cryptographic operations. Several higher-level
standards, such as S/MIME, SET, IPSec, and SSL, require implementation of various
PKCS standards. Since Crypto-C complies with PKCS standards, developers should
find it fairly easy to integrate Crypto-C into software that implements the PKCS
standards.

For copies of the PKCS documents, see the PKCS section of RSA Security’s Web site at
http://www.rsasecurity.com/rsalabs/pkcs, or contact our sales department for a
PKCS diskette.

NIST Standards and Crypto-C
Certain Crypto-C releases may be used to produce applications that are compliant
with the Federal Information Processing Standards. Compliance with the FIPS
standards is often required by government agencies and contractors. The National
Institute of Standards and Technologies (NIST) establishes the FIPS standards, and
certifies FIPS-compliant applications.

As changes are made in a new release, RSA Security may need to reapply for NIST
certification. If you need to verify whether or not a specific release is compliant with
FIPS, contact your sales representative.

NIST Approval and Windows 32-bit Platforms
If you require NIST approval for your Windows 32-bit applications, you may benefit
from using the FIPS-compliant Crypto-C algorithms listed following this paragraph.
NIST may approve the use of these algorithms in your application without requiring
further algorithm-level testing of your application, based on the algorithm certificates
issued to Crypto-C. For more information, see the algorithm compliance Web site
provided by NIST.

Crypto-C includes the following FIPS-compliant algorithms:
4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptographic Standards and Crypto-C
• Secure Hash Algorithm (SHA1), as specified in FIPS PUB 180-1, Secure Hash
Standard (SHS)

• RSA Digital Signatures (rDSA), as specified in FIPS PUB 186-2
• Digital Signature Algorithm (DSA), as specified in FIPS PUB 186, Digital

Signature Standard (DSS)
• Data Encryption Standard (DES), as specified in FIPS PUB 46-2

• DES Modes of Operation, as specified in FIPS PUB 81

NIST Approval and Windows NT Platforms
If you require NIST approval for your Windows NT applications, you may benefit
from using the “Crypto-C Cryptographic Services Module,” a DLL that is compliant
with the FIPS 140-1 standard. NIST may approve the use of this module in your
application without requiring further testing of your application, based on the NIST
certification issued to the Crypto-C module. For more information, see the \FIPS140
folder on the Crypto-C CD-ROM for Windows NT.

PKCS Compared with NIST
In some cases, such as the RSA algorithm, the PKCS standards differ from the NIST
standards. In such cases, the standard you choose depends primarily on the scope of
your application and how it will be deployed.

As mentioned previously, the PKCS standards, many of which have been in place for
a long time, have widespread acceptance and are used as the base for many other
higher-level standards (for example, S/MIME, SET, IPSec, and SSL). Therefore, if you
are implementing one of these higher-level standards, or if you want compatibility
with other applications that use the PKCS standards, you should use the PKCS-based
implementation.

However, the United States government may have specific standards requirements
for certain government agencies and for government contractors. These are usually
the standards as defined by NIST. If you are creating applications for U.S.
government use, you should ensure that you are in compliance with any required
protocols.
C h a p t e r 1 I n t r o d u c t i o n 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptographic Standards and Crypto-C
ANSI X9 Standards and Crypto-C
Crypto-C also complies with a number of standards established by the X9 Financial
Services Industry committee of the American National Standards Institute (ANSI). If
you are writing a financial or government application that must comply with one of
the X9 standards, you may benefit by using Crypto-C. This release is fully compliant
with the following ANSI X9 standards:

• The ANSI X9.31 Standard, which specifies an implementation of RSA Digital
Signatures (rDSA). (Note that this implementation also complies with the NIST
standard for rDSA, specified in FIPS PUB 186-2, as mentioned previously.)

• The ANSI X9.62 Standard, which specifies an implementation of the Elliptic
Curve Digital Signature Algorithm (ECDSA).

For more information, see the X9 Web site at http://www.x9.org.
6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2

Quick Start
This chapter provides an introduction to using Crypto-C. You are first presented with
the Crypto-C model and then you are presented an introductory example. This
chapter is organized as follows:

• The Six-Step Sequence
• Introductory Example
• Decrypting the Introductory Example
• Multiple Updates
• Summary of the Six Steps
7

Download from Www.Somanuals.com. All Manuals Search And Download.

The Six-Step Sequence
The Six-Step Sequence
The Crypto-C model generally follows a six-step sequence:

1. Create
2. Set
3. Init
4. Update
5. Final
6. Destroy

In addition, for every application, you must include the necessary header files; we
will call this Step 0.

The six-step sequence makes it easier to maintain your code. For example, if you have
implemented a message digest routine using MD2 and wish to use SHA1 instead, you
simply need to make changes in Steps 2 and 3, Set and Init. The rest of your code can
be reused. Similarly, if you originally programmed a routine under the assumption
that it would get all the data from a single buffer, and you want to modify it to take
data from multiple buffers, you can simply change Step 4, Update.

Note: In some cases, an algorithm may not require an Update step.

The sections in this chapter show the following:

• A six-step encryption example
• A six-step decryption example
• An example using multiple Updates
• A summary of the six-step process
8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
Introductory Example
The CD containing the Crypto-C library distribution also includes sample source code
to accompany this Developer’s Guide. One of the files on that CD, introex.c, is an
example of converting the Introductory Example into a program. Later in this manual
are instructions on writing code for many Crypto-C operations. There are sample
programs on the CD to accompany all the topics covered.

With the RSA BSAFE Crypto-C Reference Manual handy, we will encrypt the sentence,
“Encrypt this sentence.” To do this, we will use what is called a stream cipher, that is,
an encryption method that encrypts data one character at a time, in a single stream.
The cipher we will use is called the RC4 cipher. This cipher can take a key size from 1
to 256 bytes. The RC4 cipher creates a “key stream” based on the key and XORs the
stream of data with the key stream to create ciphertext.

The example in this section corresponds to the file introex.c.

Step 0: Include Files
You must include the following header file and the Crypto-C library in every
application you write using Crypto-C:

When writing a Crypto-C application, include bsafe.h. If you want to use the
DEMO_ALGORITHM_CHOOSER, see Selecting an Algorithm Chooser on page
15. In addition, you must compile and link in tstdlib.c, which contains the memory
management functions called by the Crypto-C library.

Note: For backward compatibility, the BSAFE 2.x include file names, global.h and
bsafe2.h, are still valid. If your source code contains the older names, you
should not have any problems.

Step 1: Creating an Algorithm Object
Whatever operation Crypto-C performs, it does so from an algorithm object. An
algorithm object is used to hold information about an algorithm’s parameters and to
keep a context during a cryptographic operation such as encryption or decryption.
For our example, we will build an algorithm object that performs encryption.

You build an algorithm object in Steps 1 to 3. As you go through these steps, you

#include “bsafe.h”
C h a p t e r 2 Q u i c k S t a r t 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
specify the type of algorithm that is being used, supply any special information or
parameters that the algorithm requires, and generate or supply a key for algorithms
that need one.

In Step 1, we simply create the object. We do this by declaring a variable to be an
algorithm object and calling B_CreateAlgorithmObject.

In this case, we name our algorithm object rc4Encrypter and declare it as follows:

The data type B_ALGORITHM_OBJ is defined in bsafe.h:

typedef POINTER B_ALGORITHM_OBJ;

where POINTER is defined in aglobal.h:

typedef unsigned char *POINTER;

and NULL_PTR is also defined in aglobal.h:

#define NULL_PTR ((POINTER)0)

So our variable, rc4Encrypter, is a pointer. To prevent problems when the algorithm
object is destroyed, it is a good idea to initialize it to NULL_PTR. See Step 6 for details.

To create an algorithm object, we call B_CreateAlgorithmObject. Chapter 4 of the
Reference Manual gives the function prototypes and descriptions of all the Crypto-C
calls. For B_CreateAlgorithmObject, we find:

Because B_CreateAlgorithmObject takes a pointer to a B_ALGORITHM_OBJ as its
argument, we have to pass the address of rc4Encrypter. The return value is an int.
Most Crypto-C calls return either a 0 (zero), which indicates success, or a non-zero
error code. After the call, look at the return value: if it is 0, continue; if not, stop. At
RSA Security, the tradition is to name the return value status:

B_ALGORITHM_OBJ rc4Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

int B_CreateAlgorithmObject (
 B_ALGORITHM_OBJ *algorithmObject /* new algorithm object */
);
1 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
Standard RSA Security coding practices use the above do-while construct to make it
easy to break out of a sequence when encountering an error. If a Crypto-C function
returns a non-zero value, break will exit the do-while, and further code dependent on
the offending call will not be executed. However, any clean-up code, such as
overwriting sensitive memory with zeroes (see Step 6), can follow the do-while and
will always execute, whether or not there was an error.

Step 2: Setting the Algorithm Object
The variable rc4Encrypter is now an algorithm object, but we have not yet determined
what type of operations it can perform. In Step 2, we associate the algorithm object
with an algorithm and supply any special information or parameters the algorithm
requires. We do this with B_SetAlgorithmInfo. Chapter 4 of the Reference Manual
gives this function’s prototype and description:

The first argument is rc4Encrypter. The second argument is an algorithm info type, or
AI. In Crypto-C, you specify the type of operation an algorithm object performs by
setting the object to a particular AI. Chapter 2 of the Reference Manual describes the
available AIs. Each AI description also lists the information that must accompany that
AI when setting an algorithm object. That accompanying information is the third
argument of B_SetAlgorithmInfo.

For our example, we want to choose a stream cipher AI. A stream cipher processes
data in a stream of arbitrary length. This is in contrast to another common type of
cipher, the block cipher, which processes data in blocks of a fixed size. In Crypto-C,

int status;
do {
 if ((status = B_CreateAlgorithmObject (&rc4Encrypter)) != 0)
 break;

.

.

.
} while (0);

int B_SetAlgorithmInfo (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_INFO_TYPE infoType, /* type of algorithm information */
 POINTER info /* algorithm information */
);
C h a p t e r 2 Q u i c k S t a r t 11

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
there is a single stream cipher, the RC4 cipher, and a number of AIs that can be used
to implement it. For this example we will use AI_RC4; we pass this as the second
argument to B_SetAlgorithmInfo.

The third argument is information that is specific to the AI we chose. For complex
algorithms, this is input that is required by the algorithm, including parameters for
algorithms that require them, “salt” and the desired number of iterations for
password-based encryption, or an “initialization vector” for block ciphers. In our
example, AI_RC4 is a simple algorithm that does not require any parameters; its entry
in Chapter 2 of the Reference Manual states that the format of the info supplied to
B_SetAlgorithmInfo is NULL_PTR.

Thus, we can make the call to B_SetAlgorithmInfo:

Note: Once you have set an algorithm object, do not set it again. If you need an
algorithm object to perform another type of operation, create a new one.

Step 3: Init
Now that we have created and set our algorithm object, rc4Encrypter, it is ready to
encrypt. Actually, since we haven’t called B_EncryptInit, it is ready to decrypt as
well. In Step 3, we choose the operations our algorithm object can perform by
supplying the desired function pointers to the Crypto-C library; we also create and set
a key object that will supply the key data the algorithm needs.

Note: An algorithm object can be used for either encryption or decryption, but not
for both. You should create separate algorithm objects to handle each case.

Look at the entry for AI_RC4 in Chapter 2 of the Reference Manual:

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal;
and B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal.
You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.

From this, you can see that AI_RC4 can be used with encryption or decryption
procedures; that is, it can be used to encrypt or to decrypt. We want to encrypt, so in
Step 3, we will call B_EncryptInit to initialize our algorithm object to perform
encryption. This call will also associate a key with the algorithm object.

if ((status = B_SetAlgorithmInfo
 (rc4Encrypter, AI_RC4, NULL_PTR)) != 0)
 break;
1 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
See the description and prototype in Chapter 4 of the Reference Manual for
B_EncryptInit:

As in Step 2, the first argument is the algorithm object; once again, we use
rc4Encrypter. The next three arguments are new.

Step 3a: Creating a Key Object
The second argument is a key object, which is used to hold any key-related
information, such as the RC4 key, and to supply this information to functions that
require it. Before we can pass a key object as an argument, we must create and set it.
Creating a key object is similar to creating an algorithm object. We name our key
object rc4Key and declare it as follows:

where B_KEY_OBJ is defined in bsafe.h:

typedef POINTER B_KEY_OBJ;

Chapter 4 of the Reference Manual gives the description and prototype of
B_CreateKeyObject:

For our example, we use:

Step 3b: Setting a Key Object
We have a key object, but it is not yet distinguished as an RC4 key. To distinguish the

int B_EncryptInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ keyObject, /* key object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;

int B_CreateKeyObject (
 B_KEY_OBJ *keyObject /* new key object */
);

if ((status = B_CreateKeyObject (&rc4Key)) != 0)
 break;
C h a p t e r 2 Q u i c k S t a r t 13

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
object as an RC4 key, we need to use B_SetKeyInfo. See Chapter 4 of the Reference
Manual for this function’s description and prototype:

This function is similar to B_SetAlgorithmInfo. The first argument is the key object
just created, rc4Key. The second argument is a key info type (KI), and the third
argument is information that must accompany the given KI. We want to use a KI
compatible with RC4 encryption, so we return to the entry for our AI, AI_RC4, in
Chapter 2 of the Reference Manual:

Key info types are described in Chapter 3 of the Reference Manual. Under the entry for
KI_ITEM we find that the format of info supplied to B_SetKeyInfo is a pointer to an
ITEM structure:

len is the length of the key in bytes. The RC4 cipher takes key sizes of 1 to 256 bytes. A
10-byte key is generally sufficient for most applications. data is the key data. A real
application would use a random number generator to produce 10 bytes for the key
(see “Generating Random Numbers” on page 165). For this example, we can simply
use:

int B_SetKeyInfo (
 B_KEY_OBJ keyObject, /* key object */
 B_INFO_TYPE infoType, /* type of key information */
 POINTER info /* key information */
);

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
KI_Item that gives the address and length of the RC4 key.

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
1 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
Now we can complete the call to B_SetKeyInfo:

As with algorithm objects, once you have set a key object, you should not set it again.
If you need another key object, you should create a new one.

Note: In a real application, for security reasons, you might want to zeroize and free
your key data immediately after setting the key.

Now that we have created and set our key object, rc4Key, we can pass it as the second
argument to B_EncryptInit.

Selecting an Algorithm Chooser
The third argument to B_EncryptInit is an algorithm chooser; this is a structure that
specifies which algorithm methods to link in. An algorithm method (AM) is the
underlying code that actually performs the cryptographic operation. Because many
AIs can perform more than one cryptographic function (for example, AI_RC4 can
perform encryption and decryption), an application often has a choice of which
underlying algorithm methods need to be linked in.

An algorithm chooser lists all the AMs the application will use; only these AMs will
be linked in. Crypto-C comes with a demonstration application containing the
algorithm chooser DEMO_ALGORITHM_CHOOSER. You can use this algorithm chooser in
any Crypto-C application as long as the module which defines it (choosc.c) is
compiled and linked in. However, DEMO_ALGORITHM_CHOOSER will link in all the
algorithm methods available, even though an application might use only two or three.

A developer can write an algorithm chooser for the specific application to make the
executable image smaller. See “Algorithm Choosers” on page 116 in this manual for

static unsigned char rc4KeyData[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
};

ITEM rc4KeyItem;
rc4KeyItem.data = rc4KeyData;
rc4KeyItem.len = sizeof(rc4keyData);

if ((status = B_SetKeyInfo
 (rc4Key, KI_Item, (POINTER)&rc4KeyItem)) != 0)
 break;
C h a p t e r 2 Q u i c k S t a r t 15

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
instructions on writing an algorithm chooser. For the purposes of our example, we see
that the Reference Manual entry for AI_RC4 states that we should use
AM_RC4_ENCRYPT in our chooser. Include the following algorithm methods in
your chooser:

Surrender Context
The fourth argument of B_EncryptInit is a surrender context, which controls when
and how the application surrenders control during time-consuming operations. The
application developer can put together an A_SURRENDER_CTX structure containing a
surrender function and other information. Crypto-C applications call this surrender
function at regular intervals.

The surrender function can simply print out information to the user that indicates that
the Crypto-C operation is currently executing, or it can provide the user with a means
of halting the operation if it is taking too much time. A surrender context is not
required; if none is desired, simply pass a properly cast NULL_PTR. See “The Surrender
Context” on page 118 for a more detailed description of the A_SURRENDER_CTX
structure. For this example, we will use (A_SURRENDER_CTX *)NULL_PTR.

We can now complete our call to B_EncryptInit:

Saving the Object State (optional)
This step is optional. Refer to “Saving State” on page 120 for information on how to
receive a buffer that contains all of the data necessary to reconstruct the object, using
the call B_SetAlgorithmState, to the state it was in at the time of calling the Get
routine. This can be done after B_EncryptInit and B_EncryptUpdate, or B_DecryptInit
and B_DecryptUpdate.

Step 4: Update
In Steps 1 through 3, we created our algorithm object and initialized it with the

AM_RC4_ENCRYPT for encryption
B_ALGORITHM_METHOD*rc4EncryptChooser[]={
& AM_RC4_ENCRYPT, NULL};

if ((status = B_EncryptInit
 (rc4Encrypter, rc4Key, rc4EncryptChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
1 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
information that it needs to perform RC4 encryption. In Step 4, we can enter the data
to encrypt with the B_EncryptUpdate function. Chapter 4 of the Reference Manual
provides the following description and prototype:

The first argument is our algorithm object, rc4Encrypter.

The other arguments call for the plaintext input and encrypted output. Because the
output depends on the input, we start with the fifth and sixth arguments, which
describe the input.

We name our input dataToEncrypt and declare it as follows:

Crypto-C needs to know how many bytes our input is, so we use strlen:

If your data is not a string — that is, if it does not end with a NULL-terminating
character — do not use strlen to determine its length.

The output is described by the second, third, and fourth arguments.

The second argument is described in the prototype as unsigned char *partOut. This
does not mean you simply declare a variable to be unsigned char * and pass it as the
argument. The output argument that you pass is a pointer to a buffer of allocated
memory. This is an important point; see “Algorithm Choosers” on page 116 for a
detailed discussion of this topic.

int B_EncryptUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 unsigned char *partIn, /* input data */
 unsigned int partInLen, /* length of input data */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

static char dataToEncrypt[] = “Encrypt this sentence.”;

unsigned int dataToEncryptLen;
dataToEncryptLen = (unsigned int)strlen (dataToEncrypt) + 1;
C h a p t e r 2 Q u i c k S t a r t 17

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
For now, we declare:

For a stream cipher, the length of the encrypted (output) data is equal to the length of
the input data. So we allocate dataToEncryptLen bytes with T_malloc:

The previous code sample uses the Crypto-C routine T_malloc. Crypto-C supplies its
own memory management routines to increase code portability and to meet the
special requirements of handling encrypted data. The Crypto-C memory
management routines reside in the file tstdlib.c; make sure this file is compiled and
linked in. These routines are described in Chapter 4 of the Reference Manual and in
“Memory-Management Routines” on page 122 of this manual.

In our example, the T_malloc routine from tstdlib.c returns a pointer to the
allocated memory. If, for some reason, it cannot allocate memory (for example, when
there is not enough memory available), T_malloc will return NULL_PTR. It is
imperative to always check the return value of T_malloc, even if you are allocating
only a small number of bytes. T_malloc also sets an unsigned char * variable; it is a
good idea to initialize this variable to NULL_PTR. See “Step 6: Destroy” on page 20 for
more information.

The third argument to B_EncryptUpdate is a pointer to an unsigned int.
B_EncryptUpdate returns a value indicating how many bytes it placed into the output
buffer. It will place this value at the address specified by the pointer to the unsigned
int. Make the proper declaration:

Crypto-C might not encrypt all the input data during a call to B_EncryptUpdate. Any
unprocessed data will be saved in a buffer inside the algorithm object created by
Crypto-C and encrypted during a subsequent call to Update (see “Multiple Updates”
on page 29) or during the call to B_EncryptFinal (see “Step 5: Final” on page 19). This
is why it is important to keep track of how many bytes Crypto-C wrote to the output
buffer.

The fourth argument to B_EncryptUpdate is the size of the output buffer. The Update

unsigned char *encryptedData = NULL_PTR;

encryptedData = T_malloc (dataToEncryptLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

unsigned int outputLenUpdate;
1 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
function must know the size of the buffer. The Update function will not attempt to
place data into unallocated memory; instead, it returns an error if it needs to place
more bytes into the buffer than are allocated. In our example, we will use
dataToEncryptLen as our output data size.

The seventh argument is a random algorithm. Recall that in Chapter 2 of the Reference
Manual, the description of AI_RC4 states:

That is exactly what we will supply in our example.

For the eighth argument, once again we pass a properly cast NULL_PTR as the
surrender context. When we put this all together, our Update call is:

Note the warning in the Reference Manual Chapter 2 entry for AI_RC4:

This simply means that you should not use the same key for two different encryption
sessions.

Step 5: Final
B_EncryptFinal finalizes the encryption process by encrypting any data that
B_EncryptUpdate could not. See Chapter 4 of the Reference Manual for the function’s
description and prototype:

You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.

if ((status = B_EncryptUpdate
 (rc4Encrypter, encryptedData, &outputLenUpdate,
 dataToEncryptLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

encryptedDataLen = outputLenUpdate + outputLenFinal

Due to the nature of the RC4 algorithm, security is compromised if multiple data
blocks are encrypted with the same RC4 key. Therefore, B_EncryptUpdate cannot be
called after B_EncryptFinal. This is because after a call to B_EncryptFinal and
B_DecryptFinal, the state of the algorithm object is reset to the state in which it was
following the call to B_EncryptInit and B_DecryptInit. To begin an encryption
operation for a new data block, you must call B_EncryptInit and supply a new key.
C h a p t e r 2 Q u i c k S t a r t 19

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
For our example, the first argument is rc4Encrypter.

The second argument is a pointer to the output buffer that we created for
B_EncryptUpdate. However, B_EncryptUpdate has already placed some data into that
buffer, so we must pass the address of the next byte that is available after the already
filled bytes to B_EncryptFinal. That is the address of the beginning of the buffer plus
the number of bytes that B_EncryptUpdate filled, or encryptedData + outputLenUpdate.

The third argument is a pointer to an unsigned int; B_EncryptFinal will set that
unsigned int to the number of bytes it encrypted.

The fourth argument is the size of the buffer available to B_EncryptFinal. Because
B_EncryptUpdate has already written to part of the buffer, this value will be the total
size of the buffer minus the number of bytes B_EncryptUpdate has used, or
dataToEncryptLen - outputLenUpdate.

Once again, we can pass properly cast null pointers for the fifth and sixth arguments,
which are the random algorithm and surrender context.

Then, for our example, we have:

Step 6: Destroy
When you are done with an algorithm or key object, you must destroy it. The Destroy
function frees up any memory that was allocated by Crypto-C and zeroizes any
sensitive memory. Because you will always want to destroy the objects, place these

int B_EncryptFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

if ((status = B_EncryptFinal
 (rc4Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, dataToEncryptLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
function calls after the do-while construct. That way, even if there is an error
somewhere and the program breaks out of the do-while before executing all the calls
within the do-while, the Destroy functions will execute. In case the error occurs
before an object has been created, it is a good idea to initialize objects to NULL_PTR. If
an object is NULL_PTR, the Destroy function does nothing.

Chapter 4 of the Reference Manual gives the description and prototype of the Destroy
functions:

For our example, we use the following:

Note: Following these calls, rc4Key and rc4Encrypter will be set to NULL if the
objects were disposed of properly.

In addition to destroying any objects that you created, any memory you allocated
must be freed when you are done with it. This means that each T_malloc must have a
corresponding T_free. Placing the T_free after the do-while guarantees that it will be
called even if there is an error somewhere. However, there is a concern that if there is
an error before the T_malloc and the program breaks out of the do-while before
memory is allocated, then T_free will be called without a corresponding T_malloc.
That is why it is important to initialize the pointer to NULL_PTR. If the argument to
T_free is NULL_PTR, the extra call to T_free does nothing.

See Chapter 4 of the Reference Manual for the T_free prototype:

void B_DestroyKeyObject (
 B_KEY_OBJ *keyObject /* pointer to key object */
);
void B_DestroyAlgorithmObject (
 B_ALGORITHM_OBJ *algorithmObject /* pointer to algorithm object */
);

B_DestroyKeyObject (&rc4Key);
B_DestroyAlgorithmObject (&rc4Encrypter);

void T_free (
 POINTER block /* block address */
);
C h a p t e r 2 Q u i c k S t a r t 21

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
For this example, call T_free as follows:

Note: Using T_free means you can no longer access the data at that address. Do not
free a buffer until you no longer need the data it contains. If you will need the
data later, you might want to save it to a file first.

You may want to zeroize any sensitive data before you free it. To do this, duplicate
the following sequence after the do-while. If there is an error inside the do-while
before you zeroize and free, these important tasks will still be performed:

Putting It All Together
Now we can put Steps 0 through 6 into a program. This program can be found in the
file introex.c:

T_free (encryptedData);

if (rc4KeyItem.data != NULL_PTR) {
 T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
 T_free (rc4KeyItem.data);
 rc4KeyItem.data = NULL_PTR;
 rc4KeyItem.len = 0;
}

#include "bsafe.h"

void PrintBuf PROTO_LIST ((unsigned char *, unsigned int));

void main()
{
 B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ rc4Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

 /* The RC4 key is hard-coded in this example. In a real application,
 use a random number generator to produce the key. */
 unsigned char rc4KeyData[10] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
 };
2 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
 static char dataToEncrypt[] = "Encrypt this sentence.";
 unsigned char *encryptedData = NULL_PTR;
 unsigned int dataToEncryptLen, encryptedDataLen;
 unsigned int outputLenUpdate, outputLenFinal;
 int status;

 do {
 dataToEncryptLen = strlen (dataToEncrypt) + 1;

 /* Step 1: Create an algorithm object. */
 if ((status = B_CreateAlgorithmObject (&rc4Encrypter)) != 0)
 break;

 /* Step 2: Set the algorithm to a type that does rc4 encryption.
 AI_RC4 will do. */
 if ((status = B_SetAlgorithmInfo
 (rc4Encrypter, AI_RC4, NULL_PTR)) != 0)
 break;

 /* Step 3a: Create a key object. */
 if ((status = B_CreateKeyObject (&rc4Key)) != 0)
 break;

 /* Step 3b: Set the key object with the 10-byte key. */
 rc4KeyItem.data = rc4KeyData;
 rc4KeyItem.len = rc4KeyDataLen;

 if ((status = B_SetKeyInfo
 (rc4Key, KI_Item, (POINTER)&rc4KeyItem)) != 0)
 break;

 if (rc4KeyItem.data != NULL_PTR) {
 T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
 T_free (rc4KeyItem.data);
 rc4KeyItem.data = NULL_PTR;
 rc4KeyItem.len = 0;
 }

 /* Step 3: Init */
 if ((status = B_EncryptInit
 (rc4Encrypter, rc4Key, DEMO_ALGORITHM_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 2 Q u i c k S t a r t 23

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
 /* Step 4: Update */
 encryptedData = T_malloc (dataToEncryptLen);
 if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

 if ((status = B_EncryptUpdate
 (rc4Encrypter, encryptedData, &outputLenUpdate,
 dataToEncryptLen, (unsigned char *)dataToEncrypt,
 dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Step 5: Final */
 if ((status = B_EncryptFinal
 (rc4Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, dataToEncryptLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 encryptedDataLen = outputLenUpdate + outputLenFinal;
 printf ("Encrypted data (%u bytes):\n", encryptedDataLen);
 PrintBuf (encryptedData, encryptedDataLen);

 } while (0);

 /* Done with the key and algorithm objects, so destroy them. */
 B_DestroyKeyObject (&rc4Key);
 B_DestroyAlgorithmObject (&rc4Encrypter);

 /* Free up any memory allocated, save it to a file or print it out first
 if you need to save it. */
 if (rc4KeyItem.data != NULL_PTR) {
 T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
 T_free (rc4KeyItem.data);
 rc4KeyItem.data = NULL_PTR;
 rc4KeyItem.len = 0;
 }
2 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Introductory Example
You may find it a useful exercise to compile and link this program. Also, it could also
be instructive to add some print statements. For instance, what are the values of
outputLenUpdate and outputLenFinal?

While it is possible to print the encryptedData, it will not be an ASCII string — it is not
any kind of string, because there is no NULL-terminating character. The encrypted data
is binary data, so it may be more useful to print out the result byte-by-byte in hex-
ASCII strings. For an example of a function that does this, see the RSA_PrintBuf()
routine in samples/common/source/demoutil.c. In addition, note that when writing
Crypto-C output to (and reading it from) files, it is usually more useful (in some cases,
even necessary) to open the files in binary mode.

To run this exercise, first compile introex.c and tstdlib.c. You can find makefiles in
the samples/make directory. Then link the object files with bsafe.lib or the
equivalent platform-specific library.

 if (encryptedData != NULL_PTR){
 T_memset (encryptedData, 0, dataToEncryptLen);
 T_free (encryptedData);
 encryptedData = NULL_PTR;
 }

} /* end main */
C h a p t e r 2 Q u i c k S t a r t 25

Download from Www.Somanuals.com. All Manuals Search And Download.

Decrypting the Introductory Example
Decrypting the Introductory Example
Decrypting data is similar to encrypting. The RC4 cipher uses symmetric-key
encryption, which means the key that was used to encrypt will be the key needed for
decryption.

The example in this section corresponds to the file dintroex.c.

Step 1: Creating an Algorithm Object
First create the algorithm object.

Step 2: Setting the Algorithm Object
Use the same AI and parameters as for encryption:

Step 3: Init
Use the same key data as for encryption. Once again, we must create and set the key
object.

Step 3a: Creating the Key Object
As before, we name our key object rc4Key and declare it as follows:

Then we allocate space for the key object using B_CreateKeyObject:

B_ALGORITHM_OBJ rc4Decrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc4Decrypter)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (rc4Decrypter, AI_RC4, NULL_PTR)) != 0)
 break;

B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc4Key)) != 0)
 break;
2 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Decrypting the Introductory Example
Step 3b: Setting the Key Object
We need to fill our key with the same 10 bytes of data we used for encryption. We
must make sure that we use the same key as we used to encrypt. For our sample
application, we can simply re-create the key data we had before:

Now we can complete the call to B_SetKeyInfo:

Step 4: Update
Here, we must set the buffer that will store the decrypted data; for the RC4 cipher, it
should be the same size as the encrypted data’s buffer:

static unsigned char rc4KeyData[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
};

if ((status = B_SetKeyInfo
 (rc4Key, KI_Item, (POINTER)&rc4KeyData)) != 0)
 break;

unsigned char *decryptedData = NULL_PTR;

decryptedData = T_malloc (encryptedDataLen);
if ((status = (decryptedData == NULL_PTR)) != 0)
 break;

if ((status = B_DecryptUpdate
 (rc4Decrypter, decryptedData, &decryptedLenUpdate,
 encryptedDataLenTotal, encryptedData, outputLenTotal,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 2 Q u i c k S t a r t 27

Download from Www.Somanuals.com. All Manuals Search And Download.

Decrypting the Introductory Example
Step 5: Final

In the “Introductory Example” on page 9, the plaintext was a string. Therefore, we can
compute the sum of decryptedLenUpdate and decryptedLenFinal to determine how
many characters make up the decryption.

Note: For some algorithms, the decrypted data may not be a string — for example,
when the NULL-terminating character was not encrypted. In these cases, if you
want to print the decrypted data, you will not be able to because the data is in
binary form, not ASCII. You could print the binary data using
RSA_PrintBuf(), or you can convert the decrypted data. Crypto-C offers
encoding and decoding functions to convert between binary and ASCII. See
“Converting Data Between Binary and ASCII” on page 172 for more
information.

Step 6: Destroy
Always destroy objects when you no longer need them:

if ((status = B_DecryptFinal
 (rc4Decrypter, decryptedData + decryptedLenUpdate,
 &decryptedLenFinal, encryptedDataLen - decryptedLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyAlgorithmObject (&rc4Decrypter);

if (decryptedData != NULL_PTR) {
 T_memset (decryptedData, 0, encryptedDataLen);
 T_free (decryptedData);
 decryptedData = NULL_PTR;
}

2 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Multiple Updates
Multiple Updates
An application can do multiple updates before the Final call. For example, suppose
you have data from three different files that you want to encrypt into a single buffer.
You could do this in three steps: read the contents of the first file into a buffer; read
the next file, appending the contents to the end of the existing buffer; then append the
contents of the third. But that would be clumsy if the contents of the three files are
already in three buffers.

You do not have to put data together into a single buffer to encrypt it. Instead, call
B_EncryptUpdate with the first buffer, call it a second time with the second buffer, and
one last time with the third buffer. Then call B_EncryptFinal once, after you have
finished all Updates. Similarly, you can call B_DecryptUpdate more than once with
blocks of encrypted data.

Multiple updates can also be useful for encrypting or decrypting large amounts of
data. If you need to process a one-megabyte file, you could allocate a megabyte of
memory, put the entire file into that memory buffer, and call Update once. But using
such a large amount of memory is impractical or even impossible in some situations.
An application is more robust if it allocates a smaller buffer — say, 64, 128 or 1024
bytes — transfers data from the file in increments, and processes each unit with a
separate call to Update. Then it can call Final once for all Updates.

Crypto-C does not always encrypt or decrypt an entire block during an Update call.
One reason it might not handle the whole block is because of padding. Padding is
used with block ciphers to ensure the data satisfies input restrictions and may add
bytes to the original data. See “Padding” on page 37 for more information. Padding
and pad operations (encrypting or decrypting the padding, or stripping the pad) take
place in Final, so Crypto-C may keep the last few bytes of any input to an Update call
in a buffer. If there is another call to Update, then the bytes in that buffer were not the
last bytes of input, and Crypto-C continues to encrypt or decrypt. If the next call is to
Final, the bytes in the buffer are the last bytes of input, so Crypto-C adds the pad and
encrypts it, or decrypts the final bytes and strips the pad.

Note: The output of a particular update may be larger than the input, because
Crypto-C may be processing the current input plus some data in the buffer.
Hence, an output buffer of an Update call should always be larger than the
input length. For block ciphers, for example, the size of the output buffer may
be as large as the length of the input plus the block size.

The following example demonstrates multiple updates. It corresponds to the file
multencr.c; a similar example for decryption is in the file multdecr.c. Assume that
the subroutine GetDataFromFile gets, at most, a specified number of bytes from a file,
C h a p t e r 2 Q u i c k S t a r t 29

Download from Www.Somanuals.com. All Manuals Search And Download.

Multiple Updates
places them into the given buffer, and sets a flag indicating whether the bytes
returned are the last ones in the file or not. Assume also that the subroutine
AppendDataToFile appends output data to a file. Finally, assume we have already
called B_CreateAlgorithmObject, B_SetAlgorithmInfo, and B_EncryptInit:

#define UPDATE_SIZE 64
#define UPDATE_OUTPUT_SIZE (UPDATE_SIZE + 16)

 FILE *inputFile = (FILE *)NULL_PTR;
 FILE *outputFile = (FILE *)NULL_PTR;

 unsigned char dataToEncrypt[UPDATE_SIZE];
 unsigned char blockOfEncryptedData[UPDATE_OUTPUT_SIZE];
 unsigned int dataToEncryptLen, totalBytesSoFar;
 unsigned int outputLenUpdate, outputLenFinal;
 unsigned int sizeToUpdate = UPDATE_SIZE;
 int endFlag, status;

 do {

 totalBytesSoFar = 0;

 while ((status = GetDataFromFile
 (inputFile, sizeToUpdate, dataToEncrypt,
 &dataToEncryptLen, &endFlag)) == 0) {
 printf ("dataToEncryptLen = %i \n", dataToEncryptLen);
 PrintBuf (dataToEncrypt, dataToEncryptLen);
 if ((status = B_EncryptUpdate
 (encryptionObject, blockOfEncryptedData,
 &outputLenUpdate, UPDATE_OUTPUT_SIZE, dataToEncrypt,
 dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Save the encrypted data. */
 if ((status = AppendDataToFile
 (outputFile, blockOfEncryptedData,
 outputLenUpdate)) != 0)
 break;

 totalBytesSoFar += outputLenUpdate;
 if (endFlag == 1)
 break;
 } /* end while */
3 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Multiple Updates
In the preceeding code example, we took dataToEncryptLen bytes of data to encrypt
and passed them to B_EncryptUpdate. The number of bytes of output may or may not
be dataToEncryptLen; check outputLenUpdate to see. If fewer than dataToEncryptLen
bytes were output, the as-yet-unencrypted input waits in a buffer.

Notice that we did not allocate memory but used the stack; we did this by declaring
our buffers to be arrays of unsigned char. This means that the operating system will
do the allocating and freeing.

Also notice the call to T_memset, another memory management routine from
tstdlib.c. The T_memset routine sets all the bytes of a buffer to a particular value; in
this case, it wrote a 0 to every byte in dataToEncrypt. T_memset is described in Chapter
4 of the Reference Manual. When memory is freed, whether by a call to T_free or
automatically by the operating system, the data still exists at that location; the
operating system has simply marked that area as available for use. For security,
overwrite any memory that held sensitive data when you are done with it. This
prevents attackers from reconstructing secrets by examining your computer’s
memory.

 /* If there was an error in the above while loop, break out of the
 do-while construct. */
 if (status != 0)
 break;

 /* Call B_EncryptFinal once after all Updates. */
 if ((status = B_EncryptFinal
 (encryptionObject, blockOfEncryptedData, &outputLenFinal,
 UPDATE_OUTPUT_SIZE, (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Save the encrypted data. */
 if ((status = AppendDataToFile
 (outputFile, blockOfEncryptedData,
 outputLenFinal)) != 0)
 break;

 totalBytesSoFar += outputLenFinal;

 } while (0);

 /* Free up any memory allocated, save it to a file or print it out first
 if you need to save it. */
 T_memset (dataToEncrypt, 0, sizeof (dataToEncrypt));
C h a p t e r 2 Q u i c k S t a r t 31

Download from Www.Somanuals.com. All Manuals Search And Download.

Summary of the Six Steps
Summary of the Six Steps
A typical implementation uses the six steps as follows:

Step 0: Include
Include the necessary header files. In addition, make sure that:

• Your compiler can locate the Crypto-C header files.
• Your compiler can locate and link in the Crypto-C library.
• You compile and link in the file containing the definitions for the T_ functions; an

example is provided in tstdlib.c.

Step 1: Create
Create an algorithm object by declaring a variable to be an algorithm object and
calling B_CreateAlgorithmObject.

Step 2: Set
Use B_SetAlgorithmInfo to associate the algorithm object with an algorithm and to
supply any special information or parameters the algorithm requires.

Step 3: Init
Choose the operations the algorithm object can perform by supplying the desired
algorithm methods from the Crypto-C library. If the algorithm requires a key, create
and set a key object that will supply the key data that the algorithm needs.

Step 4: Update
Initiate an action. The action depends on the algorithm. Update is the only step that
can be performed more than once on the same object. For example:

• For an encryption or decryption algorithm, an Update step encrypts or decrypts
all or part of the data. You can use multiple Update steps to encrypt or decrypt
data.

• For a message digest, the Update step is used to enter the data to digest.
• For a random number generator, the Update step is used to seed the random

number generation.
3 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Summary of the Six Steps
• For some algorithms, such as generating a public/private key pair, there is no
Update step.

Step 5: Final
Finalize the action initiated in Step 4. Again, the finalization depends on the
algorithm; for some algorithms, Final is replaced by Generate. For example:

• For an encryption or decryption algorithm, the Final step encrypts or decrypts the
final portion of the data. For some algorithms, this data may need special
handling, such as padding, that is different from the Update step.

• For a message digest, the digest action takes place during Final.
• For a random number generator, the Final (or Generate) step generates the

random bytes.
• For generating a public/private key pair, the key pair generation takes place in

the Generate step.

Step 6: Destroy
Free any memory allocated in the previous steps and overwrite any sensitive memory
with zeroes. The Destroy step is crucial to the security of an application.
C h a p t e r 2 Q u i c k S t a r t 33

Download from Www.Somanuals.com. All Manuals Search And Download.

3 4

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3

Cryptography
This chapter contains a brief outline of the basic cryptographic principles and
terminology used throughout this manual and documentation set. Refer to Terms and
Abbreviations on page xix of the Preface for a list of terms and abbreviations used in
this documentation set. The publications listed in “Related Documents” on page xx
provide more comprehensive discussions of cryptographic functions and operations.
This chapter is organized as follows:

• Cryptography Overview
• Applications of Cryptography
• Choosing Algorithms
• Security Considerations
35

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Cryptography Overview

Symmetric-Key Cryptography
In symmetric-key cryptography, as Figure 3-1 shows, the encrypting key is the same as
the decrypting key. Using any other key to decrypt will produce incorrect results.
Symmetric-key cryptography is also sometimes called secret-key cryptography,
because the key used to both encrypt and decrypt must be kept secret.

Ciphers
There are two categories of symmetric encryption algorithms, block ciphers and stream
ciphers. As the name implies, a block cipher processes data in blocks. A stream cipher,
on the other hand, processes a unit of data at a time, where a unit is generally a bit or
byte. This allows a stream cipher to take in a variable length stream of data, encrypt it,
and output a stream of ciphertext the same length as the input. Crypto-C offers the
following block ciphers: DES, Triple DES, DESX, the RC2 cipher, the RC5, the RC6
cipher, and theAES cipher. Crypto-C offers the following stream cipher: the RC4
cipher.

Figure 3-1 Symmetric-Key Encryption and Decryption

Encryption Operation

Original
Message

Encryption
Algorithm

Encrypted
Message

Encrypted
Message

Decryption
Algorithm

Decrypted
Message

Decryption Operation

Key

Key

Key Data
3 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Block Ciphers
Block ciphers encrypt data block-by-block. They can encrypt each block separately as
in ECB mode, or they can use other modes to make the cipher less vulnerable to
attacks based on regular patterns. A mode of operation usually combines the
underlying cipher with feedback and other simple operations. The security remains a
function of the cipher and not of the mode. See “Modes of Operation” on page 41 for
more information.

Padding
When you encrypt a message using a block cipher, usually your message length will
not be a multiple of the block size. Some modes can deal with variable size blocks, but
others require the message be a multiple of the block size. For these modes, padding
provides a solution to this problem. To pad, you add a regular pattern of bytes to the
end of the last block to make it a complete block. With padding, the actual number of
bytes encrypted can be as much as one block more than the original data.

Ciphers in Crypto-C
Crypto-C implements the following block ciphers:

• DES
• Triple DES
• DESX
• RC2
• RC5
• RC6
• AES

DES
The Digital Encryption Standard, DES, is a commercial encryption US standard that
has been available for over 15 years. The federal standard document FIPS PUB 46-2
describes the algorithm.

For DES, the block size is eight bytes. Therefore, the input must be a multiple of eight
bytes, or else it must be padded to be a multiple of eight bytes for DES to operate in
CBC or ECB modes properly. The key consists of 56 random bits and 8 parity bits,
forming a 64-bit, or 8-byte, key.
C h a p t e r 3 C r y p t o g r a p h y 37

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Triple DES
Triple DES executes DES three times, which triples the number of bits in an
encryption key. A number of different methods achieve this function. The technique
that Crypto-C uses is depicted in Figure 3-2 on page 38.

This technique is known as EDE, or “Encrypt-Decrypt-Encrypt.” The decryption
process in the middle stage of Triple DES encryption provides compatibility with
DES. If the three keys are the same, the Triple DES operation is equivalent to a single
DES encryption. That way, an application that has only DES capabilities can still
communicate with applications that use Triple DES. If the three keys are different, the
decryption in the middle will scramble the message further; it will not decrypt the
first stage. Triple DES decryption is the inverse operation of the previous sequence,
that is, DES decryption followed by DES encryption and then another DES
decryption.

Figure 3-2 Triple DES Encryption as Implemented in Crypto-C

DESX
DESX is an RSA Security proprietary extension of the DES encryption algorithm that
increases the effective number of key bits from 56 to 120 bits. Crypto-C includes DESX
for backward compatibility with BSAFE 1.x versions, or as a faster alternative to
Triple DES.

RC2
The RC2 cipher was developed by Ronald Rivest as an alternative to DES encryption;

DES
encryption

DES
decryption

DES
encryption

8 byte
message

block

8 byte
message

block

First 8 bytes
of the key

Middle 8 bytes
of the key

Last 8 bytes
of the key

24 byte Triple DES key (including parity bits)
3 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
it is proprietary to RSA Security. The RC2 cipher has an eight-byte block size.
Therefore, the input must be a multiple of eight bytes, or be padded to be a multiple
of eight bytes, for the RC2 cipher to operate properly in CBC or ECB modes.

The RC2 input key can be of any length from 1 to 128 bytes. The algorithm uses the
input key to generate an effective key that is actually used for encryption purposes.
Internally, the algorithm builds a key table based on the bits of the key data; the
chosen number of effective key bits limits the number of possible key tables. The
effective key size is variable and takes values from one bit up to 1024 bits.

Note: Control over your effective key size benefits you, because you can generate
up to 128 bytes of key data and set the algorithm to use a smaller number of
effective bits, such as 80. Then, in the future, if you want to increase the
number of effective key bits, you do not have to change the code that
generates the key data, only the effective key bit parameter.

RC5
The RC5 cipher was developed by Ronald Rivest as an alternative to DES encryption;
it is proprietary to RSA Security. It is a block cipher with the block being either 4
bytes, 8 bytes, or 16 bytes, depending on the word size. The input must be a multiple
of the block size, or it must be padded to a multiple of the block size for the RC5
cipher to operate properly. The RC5 cipher’s speed and security are dependent on
input parameters determined by the user. These parameters are:

• word size
• rounds
• key size (in bytes)

Word size generally refers to the size of a hardware register. For hardware
implementations of the RC5 cipher, developers can take advantage of larger registers
to increase speed. On chips with smaller registers, the word size can be emulated in
software. Version 1.0 of the RC5 cipher accepts word sizes of 16, 32, or 64 bits. Crypto-
C accepts a word size of 32 or 64 bits. The block size is twice the word size. For a word
size of 32 bits, the block size is 64 bits, or 8 bytes, the same as for DES and the RC2
cipher. For a word size of 64 bits, the block size is 128 bits, or 16 bytes.

The number of rounds is the number of times the operation employs the inner
encryption function. Varying the number of rounds allows developers to make a
tradeoff between speed and security. The greater the number of rounds, the greater
the security, but the slower the execution. The number of rounds can be anywhere
from 0 (zero) to 255. For the RC5 cipher with a 32-bit word size, RSA Security
recommends at least 16 rounds for applications; while no practical attacks are known
C h a p t e r 3 C r y p t o g r a p h y 39

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
for 12-round RC5-32, recent cryptanalytic work suggests 16 rounds is now a more
conservative choice. For the RC5 cipher with a 64-bit word size, RSA Security
recommends at least 20 rounds.

The key size can be as little as 0 (zero) and as many as 255 bytes. The RC5 cipher uses
the secret key bytes to generate an expanded key table during the Init phase. The key
table is then used during encryption or decryption. Therefore, key length will have no
appreciable effect on algorithm speed.

The RC5 cipher is more formally described as RC5 w/r/b. For instance, the RC5
cipher with a 32-bit word, 16 rounds, and a 10 byte key would be described as RC5
32/16/10.

RC6
The RC6 cipher was developed by Ronald Rivest and Matthew Robshaw, Ray Sidney,
and Lisa Yin of RSA Laboratories West as a candidate for the Advanced Encryption
Standard (AES)

The guidelines for the RC6 cipher were aimed at creating a cipher which could take
advantage of modern computing power and architecture. These guidelines specify
that a submitted algorithm must accept 16-byte blocks (8-byte word). This is in
contrast to many previous block ciphers, such as DES and Triple DES, which operate
only on 8-byte blocks.

In accordance with these guidelines, RC6 allows a 16-byte block size, which has the
following implications:

• When you use RC6 with a feedback mode in Crypto-C, your initialization vector
must be 16 bytes.

• If you use RC6 with padding, the resulting output might be as many as 16 bytes
more than the input.

The full RC6 algorithm also allows you to specify different levels of security by setting
the number of rounds. However, the version submitted for the AES specifies 20
rounds. At 20 rounds, RC6 provides an optimal balance between security and speed.
The current implementation of Crypto-C only accepts 20 rounds.

Note: At 20 rounds, the fastest known attack on the cipher is a brute-force attack on
the key, and encryption and decryption operations are faster than with a
higher number of rounds. While fewer rounds would still offer good security,
there are attacks that would be faster than a brute-force attack on the key.
More than 20 rounds might offer more security, but the fastest attack would
still be a brute-force attack on the key, and the increased rounds number
4 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
would slow down the encryption and decryption operations. In addition, if
the 20-round version of RC6 is accepted as submitted to the AES, a round
count other than 20 rounds might not be AES.

AES
The National Institute of Standards and Technology (NIST) selected an alogorithm
(Rijndael) as the replacement for the Data Encryption Standard (DES) in its Advanced
Encryption Standard project. Crypto-C includes basic AES support.

Modes of Operation
When you use a block cipher to encrypt a message of arbitrary length, you can also
choose a mode of operation.

Modes of operation can use techniques such as feedback or chaining to make identical
plaintext blocks encrypt to different ciphertext blocks. Modes are designed so that
they do not weaken the security of the underlying cipher, but they may have
properties in addition to those inherent in the basic cipher.

Most of the modes of operation in Crypto-C are feedback modes. Feedback modes use
the previous block of output to alter the current block of input before encrypting. In
this way, encrypting the same block of plaintext twice will virtually never produce the
same ciphertext.

A feedback algorithm requires an initialization vector, or IV, to alter the first block. The
IV has no cryptographic significance. It is used to alter the first block of data before
any encryption takes place; therefore, it does not need to be secret. It should be
random, though, so that the first block of encrypted data is not predictable. In order to
start the decryption process, it is necessary to use the IV that was employed in the
encryption process.

Four Modes

Crypto-C offers the following four block cipher modes:

• Electronic Codebook (ECB) mode
• Cipher Block Chaining (CBC) mode
• Cipher Feedback (CFB) mode
• Output Feedback (OFB) mode

A brief description of these modes follows. Most cryptography texts, such as Bruce
Schneier’s Applied Cryptography [15], provide full descriptions of the various modes.
C h a p t e r 3 C r y p t o g r a p h y 41

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Electronic Codebook (ECB) Mode
ECB is not a feedback mode; it encrypts each block of input independently of all other
blocks. Plaintext patterns are not concealed; instead each identical block of plaintext
yields an identical block of ciphertext. This could help an eavesdropper break the
code. In addition, the plaintext can be easily manipulated by removing, repeating, or
interchanging blocks. The speed of each encryption operation is identical to that of the
block cipher. ECB mode is as secure as the underlying block cipher.

Figure 3-3 Electronic Codebook (ECB) Mode

Key (K)

2nd message
block

2nd cipher
blockBlock Cipher

Key (K)

1st message
block

1st cipher
blockBlock Cipher
4 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Cipher Block Chaining (CBC) Mode
With CBC mode, each plaintext block is XORed with the previous ciphertext block,
then encrypted. CBC mode is as secure as the underlying block cipher against
standard attacks. In addition, any patterns in the plaintext are concealed by the
XORing of the previous ciphertext block with the plaintext block.

The decryptor follows the same sequence of steps to decrypt, using the same (secret)
key and initialization vector (IV).

Figure 3-4 Cipher-Block Chaining (CBC) Mode

An initialization vector is added to the beginning of the plaintext before encryption.
This gives you something to XOR the first block with and ensures that identical
plaintexts encrypt to different ciphertexts.

Cipher Feedback (CFB) Mode
In cipher feedback (CFB) mode, the cipher object acts as a byte generator. CFB mode
encrypts the previous block of ciphertext and XORs the plaintext with this block to
produce ciphertext. For the first block, the initialization vector is encrypted. CFB
mode is as secure as the underlying cipher against standard attacks. In addition, any
patterns in the plaintext are concealed by XORing the previous ciphertext block with
the plaintext block.

Key (K)

2nd message
block

2nd cipher
blockBlock Cipher

Initialization
Vector (IV)

1st message
block

1st cipher
blockBlock Cipher

XOR

XOR

Key (K)
C h a p t e r 3 C r y p t o g r a p h y 43

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview

Figure 3-5 Cipher Feedback (CFB) Mode

To encrypt plaintext using CFB mode:

1. Generate your key and your IV.
2. Encrypt the IV with the key to get a block of output, B1.

3. XOR B1 with the first block of your plaintext, P1, to get the first block of
ciphertext, C1.

4. Encrypt C1 with the key to get the second block of output, B2.

5. XOR B2 with the second block of your plaintext message, P2, to get the second
block of ciphertext, C2.

6. Repeat Steps 4 and 5 until the entire text is encrypted.

To decrypt the ciphertext, the decryptor uses the same (secret) key and initialization
vector and follows the same sequence of steps.

CFB mode does not require padding. If your data length is not a multiple of the block
size, simply truncate the final block of output to be the same size as the final segment
of the data, and then XOR it. You can use CFB mode to encrypt a stream of data.

2nd message
block

2nd cipher
block

Key (K)

Block Cipher

Initialization
Vector (IV)

1st message
block

1st cipher
blockXORBlock Cipher

Key (K)

XOR

P1

B1

B2

C1

C2

P2
4 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Output Feedback (OFB) Mode
Output feedback mode is similar to CFB mode, except that the quantity XORed with
each plaintext block is generated independently of both the plaintext and the
ciphertext.

To encrypt a plaintext using OFB, first generate the “output” used for encryption.
This is intermediate data that is used in the encryption process. In OFB, the output
depends only on the key and the initialization vector.

1. Generate your key and your IV.
2. Encrypt the IV with the key to get a block of output, B1.

3. Encrypt B1 with the key to get the second block of output, B2.

4. Continue encrypting recursively: encrypt Bi to get Bi+1.

This process gives you an arbitrarily long sequence of pseudo-random blocks that you
can use to encrypt the data. To use the output to encrypt:

5. XOR your plaintext with the output, block by block. The result of the XOR is the
ciphertext.

OFB does not require padding. If your data length is not a multiple of the block size,
simply truncate the final block of the output to be the same size as the final segment of
the data, and then XOR it.

The decryptor can use the same (secret) key and IV to generate the same sequence of
output blocks and XOR the sequence with the ciphertext to recover the plaintext.
C h a p t e r 3 C r y p t o g r a p h y 45

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Figure 3-6 Output Feedback Mode (OFB)

Stream Ciphers
A stream cipher processes the input data one unit at a time. A unit of data is generally a
byte, or sometimes even a bit. In this way, encryption or decryption can execute on a
variable length of input. The algorithm does not have to wait for a specified amount
of data to be input before processing, nor does it have to append and encrypt extra
bytes.

RC4
The RC4 cipher is a symmetric stream-encryption algorithm developed by Ronald
Rivest and proprietary to RSA Security. It is actually a keyed pseudo-random
sequence. It uses the provided key to produce a pseudo-random number sequence
which is then XORed with the input data. This means that the encryption and
decryption operations are identical.

The number of key bits is variable and ranges from eight to 2048 bits. Using the RC4
cipher with a key size of less than 40 bits is not recommended.

Because RC4 encryption is an XOR between the message bytes and the pseudo-
random byte stream generated from the key, the same key should not be used more
than once. Otherwise, if some of the bytes of one input message are known (or easy to

2nd message
block

2nd cipher
block

Key (K)

Block Cipher

Initialization
Vector (IV)

1st message
block

1st cipher
blockXORBlock Cipher

Key (K)

XOR
4 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
guess), an attacker would be able to determine some of the original message bytes by
XORing two sets of cipher bytes.

Figure 3-7 RC4 Encryption or Decryption

The RC4 algorithm with MAC
The RC4-with-MAC algorithm is an extension of the RC4 cipher. It provides data
integrity by using a Message Authentication Code (MAC) with the RC4 encryption
algorithm. The authentication code does not provide cryptographic authentication;
rather, it provides the equivalent of a checksum that can be used to determine if any
errors were introduced within the cipher bytes. The MAC guards against
transmission or retrieval errors, but it may not detect deliberate tampering with the
data.

Message Digests
A message digest (also sometimes referred to as a one-way hash function) is a fixed-
length computationally unique identifier corresponding to a set of data. That is, each
unit of data (for example, a file, a string, or a buffer) will map to a particular short
block, called a message digest. It is not random: digesting the same unit of data with
the same message digest algorithm will always produce the same short block.

A good message digest algorithm possesses the following qualities:

• The algorithm accepts any input data length.
• The algorithm produces a fixed length output for any input data.

Nth message
byte

Nth cipher
byte

XOR

Pseudo-
random
bytes

Key Key
Mixing
C h a p t e r 3 C r y p t o g r a p h y 47

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
• It is computationally infeasible to produce data that has a specific digest. In other
words, given a particular block of the proper size, it will be virtually impossible to
determine a unit of data that will digest to that particular block.

• It is computationally infeasible to produce two different units of data that
produce the same digest. In other words, given some data, it is virtually
impossible to create different data that will digest to the same block as the first.
This quality is also called collision-free.

Message digests have many uses. They can authenticate data, for instance. To create a
digest for authentication, digest the data and save the digest. Later, if you need to see
if the data has been altered, digest it again and compare the new digest to the old. If
the digests are different, the data is different. Although there will exist other sets of
data that will digest to the original value, it is virtually impossible to find them. Minor
changes in data will produce very different digests.

Crypto-C includes the MD, MD2, MD5, and SHA1 message digest algorithms. MD is
included for backward compatibility with BSAFE 1.x. MD, MD2, and MD5 produce a
16-byte digest for any input message; SHA1 produces a 20-byte digest. MD5 is the
fastest message digest algorithm implemented in Crypto-C.

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal
compression function, and there is some chance that the attack on MD2 may
be extended to the full hash function. The same attack applies to MD. Another
attack has been applied to the compression function on MD5, though this has
yet to be extended to the full MD5. RSA Security recommends that before you
use MD, MD2, or MD5, you should consult the RSA Laboratories Web site at
http://www.rsasecurity.com/rsalabs to be sure that their use is consistent
with the latest information. One bulletin that discusses this issue is Recent
Results for MD2, MD4, and MD5; it can be found at
http://www.rsasecurity.com/rsalabs/bulletins/.

Message Digests and Pseudo-Random Numbers
Random number generation (for software implementation, usually pseudo-random
number generation) is a key component of cryptographic operations. Random
numbers are usually used as cryptographic keys or as a basis for generating keys.
Crypto-C uses message digest algorithms with a random seed for generating random
numbers. See “Pseudo-Random Numbers and Seed Generation” on page 92 for a
discussion of the security considerations of random number generation.
4 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Hash-Based Message Authentication Codes (HMAC)
A hash-based message authentication code (HMAC) combines a secret key with a
message digest to create a message authentication code. This method of creating a
MAC makes it possible to update the underlying message digest if a new attack
makes the original message digest unsecure. Crypto-C provides an HMAC
implementation based on SHA1.

Recall that SHA1 produces a 20-byte digest; in addition, we need to know that SHA1
takes input in 64-byte blocks.

Given a message M and a key k, the HMAC of M is computed as follows:

1. Create two different fixed strings that are used in the calculation:
ipad = the byte 0x36 repeated 64 times
opad = the byte 0x5C repeated 64 times

2. Extend k to 64 bytes in length by appending zeros to the end of k. For example, if k
is 25 bytes, append 39 copies of the zero byte 0x00. We will call the extended key
k’.

3. Compute the following:

SHA1(k’ XOR opad || SHA1((k’ XOR ipad) || M))

where || denotes concatenation.

The same key can be used for multiple authentications, but the key should be replaced
periodically. For security considerations, the key should be at least as long as the
message digest output. For SHA1, this means an HMAC key should be at least 20
bytes. If the key is “weakly random”—that is, if knowing some of the key bits might
help an attacker generate other key bits, then a longer key should be used.

Password-Based Encryption
Password-based encryption (PBE) generates a symmetric key from a password, and
encrypts data using that generated key. Usually, though, a password will not have
enough effective random bits to qualify as a candidate for a key or even a random
seed to generate a key. For example, each character of an 8-byte alphanumeric
password that also allows case-sensitive letters has the equivalent of slightly less than
six bits of randomness. For eight-character passwords, this is far less than the required
key size of a block cipher such as DES.

Therefore, a good PBE implementation not only uses the password, but mixes in a
random number, known as a salt, to create the key (see Figure 3-8 on page 50).
C h a p t e r 3 C r y p t o g r a p h y 49

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Normally, the mixing is a message digest. This makes the task of getting from
password to key very time-consuming for an attacker. Digesting a password with a
salt helps thwart dictionary attacks. An attacker could put together a “dictionary” of
keys generated from likely passwords, and try out each key on encrypted data. This
would greatly reduce the amount of work necessary to find the key and may make it
feasible to recover encrypted material. With a salt, the attacker would have to create a
dictionary of keys generated from each password, but each password would then
have to have a dictionary of each possible salt.

Crypto-C uses the methods described in PKCS v1.5 to implement password-based
encryption. The methods use a message digest algorithm with a specific means of
padding to increase the search space for dictionary attacks against the key. The
applicable Algorithm Information Types (AIs) are: AI_MD2WithDES_*,
AI_MD2WithRC2_*, AI_MD5WithDES_*, AI_MD5WithRC2_*, and
AI_SHA1WithDES_*.

Figure 3-8 DES Key and IV Generation for Password Based Encryption

Public-Key Cryptography
In 1976, Stanford graduate student Whitfield Diffie and Stanford professor Martin
Hellman invented public-key cryptography. In this system, each person owns a pair of
keys, called the public key and the private key. The owner of each key pair publishes
the public key and keeps the private key secret.

Suppose Alice wants to send a message to Bob. She finds his public key and encrypts

Password Message digest

Pseudo-random
bytes

Salt

Key

8 bytes

I V

8 bytes
5 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
her message using that public key. Unlike symmetric-key cryptography, the key used
for encryption will not decrypt the message. That is, knowledge of Bob’s public key
will not help an attacker. To decrypt a message, Bob uses his private key. If Bob wants
to respond to Alice, he can encrypt his message using her public key.

To understand this idea, think of taking a number to a power. For instance, given
values x and y, compute z = xy. To recover x, you would not compute zy, but rather
z1/y. You end up with the original x, because z1/y = (xy)1/y = xy·1/y = x1 = x. You need
two values to perform this exercise: a “public key,” y, to compute the encrypted value,
and the inverse of the public key, or a “private key,” 1/y, to recover the original value.

This example, of course, is not practical because if you made y public, anyone could
easily compute 1/y and know your private key. Therefore, a good public-key
cryptosystem relies on a key pair for which it is impossible (or at least intractable) to
derive the private key from the public key.

Figure 3-9 Public-Key Cryptography

In practice, public-key algorithms are slow compared to symmetric-key algorithms.
Therefore, they are more often used for shorter messages, such as encrypting the
symmetric key for a message encrypted with a symmetric cipher, or for encrypting a
digest.

The RSA Algorithm
The RSA algorithm is a public-key cryptosystem for both encryption and

 Input
Message

Public Key
Cryptosystem

Encrypted
Message

Public Key

Encryption Operation

Encrypted
Message

Public Key
Cryptosystem

Decrypted
Message

Private Key

Decryption Operation

The decrypted message is equal to the input message
 if the public and private keys form a key pair.
C h a p t e r 3 C r y p t o g r a p h y 51

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
authentication that MIT professors Ronald L. Rivest, Adi Shamir, and Leonard M.
Adleman invented in 1977. It is actually similar to the example in the previous section
that takes numbers to a power, except that it works in modular math.

Modular Math
Modular math uses a positive integer as a modulus; the only numbers under
consideration are the integers from 0 to one less than the modulus. So for mod n, only
the integers from 0 to (n–1) are valid operands, and the results of operations will
always be numbers from 0 to (n–1). When an operation such as addition or
multiplication would give a result that is greater than the modulus, the remainder of
the result after division by n is used instead. Therefore, two numbers are equal mod n
if and only if their difference is an even multiple of n.

For example, think of military time where the modulus is 2400. For instance, 2200
hours (10:00 P.M.) plus 4 hours is not 2600, but 0200 hours, or 2:00 in the morning.
Likewise, if we start at 0, or midnight, 6 times 5 hours (say six 5-hour shifts) is not
3000, but 0600, or 6:00 A.M. the following day.

Another aspect of modular math is the concept of an inverse. Two numbers are the
inverse of each other if their product equals 1. For instance, 7·343 = 2401, but if our
modulus is 2400, the result is (7·343) mod 2400 ≡ 2401 – 2400 = 1 mod 2400.

Prime Numbers
The RSA algorithm also employs prime numbers, or primes. A prime number is a
number that is evenly divisible by only 1 and itself. For example, 10 is not prime
because it is evenly divisible by 1, 2, 5, and 10. But 11 is prime, because its only factors
are 1 and 11.

MultiPrime Numbers
MultiPrime RSA functionality was added to Crypto-C V5.1. This new function allows
you to generate RSA public/private key pairs. RSA MultiPrime key generation
follows the same steps as standard RSA key generation with only a couple of
exceptions: the use of a different AI, AI_RSAMultiPrimeKeyGen, and a different AM,
AM_RSA_MULTI_PRIME_KEY_GEN, must be passed in during the B_GenerateInit
call.

The RSA Algorithm
The RSA algorithm works as follows: take two large primes, p and q, and find their
product n = pq; n will be the modulus. Choose a public value, e (also known as the
public exponent), that is less than n. There are other constraints on e that are described
5 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
below. To compute ciphertext c from a plaintext message m, find c = me mod n. To
decrypt, determine the private key d, the inverse of e, and compute m = cd mod n. The
relationship between e and d ensures that the algorithm correctly recovers the original
message m, because cd = (me)d = med ≡ m1 = m mod n. Only the entity that knows d can
decrypt.

The security of the system relies on the fact that if you know p, q and e, it is easy to
compute d; but if you know only n and e, it is more difficult to determine d. This is due
to the following property of the math: the value d is actually not the inverse of e mod
n, but rather the inverse of e mod (p–1)(q–1). The value you pick for e must be
relatively prime to (p–1)(q–1), which means e and (p–1)(q–1) share no common factors,
so that there exists d such that ed ≡ 1 mod (p–1)(q–1). Therefore, you find the private
value using a modulus of (p–1)(q–1), but when you apply the RSA algorithm to
encryption or decryption, you use a modulus of n = p·q.

Why, if d is the inverse of e mod (p–1)(q–1), does cd = (me)d = med = m1 = m mod n?
Aren’t we mixing moduli? That is the quirk of the math; it may seem counterintuitive,
but this mixing of moduli is what makes the algorithm work. A complete proof of this
fact is beyond the scope of this chapter, so if you want to learn more about the
underlying mathematical principle, find a math book that discusses Euler’s phi-
function.

Incidentally, in practice, you would generally pick e, the public exponent first, then
find the primes p and q, which satisfy the requirement that e be relatively prime to (p–
1)(q–1).

Consider the following example with small numbers. Choose public exponent e = 3.
Then, let p = 5 and q = 11, which means n = 55 and (p–1)(q–1) = 40. This is a valid p and
q combination because 3 is relatively prime to 40. The inverse of 3 mod 40 is 27.

(3·27) = 81
81 – (2·40) = 81 – 80 = 1
3·27 = 1 mod 40

Apply the RSA algorithm with these parameters to the “plaintext message” m = 2.

c = me = 23 = 8 mod 55

This yields an encrypted message of 8.

To decrypt, raise the message to the power of the inverse of 3, which is 27.

cd = 827 mod 55

Rather than computing 827 directly, a shortcut would be to compute:

816+8+2+1 = 816·88·82·81 = 2 mod 55
C h a p t e r 3 C r y p t o g r a p h y 53

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
The calculation is shown in Table 3-1:

Summary
Take two large primes, p and q, and find their product n = p · q. Set n to be the
modulus. Choose a public exponent, e, less than n and relatively prime to (p–1)(q–1).
Find d, the inverse of e mod (p–1)(q–1), that is, ed ≡ 1 mod (p–1)(q–1). The pair (n,e) is
the public key; d is the private key (or the private exponent). The primes p and q must
be kept secret or destroyed.

To compute ciphertext c from a plaintext message m, find c = me mod n. To recover the
original message, compute m = cd mod n. Only the entity that knows d can decrypt.

Note: In public-key cryptography, it is also possible to encrypt using a private key.
In this case, the sender takes the plaintext input and the private key and
follows the same steps need to decrypt an encrypted file. This creates a
ciphertext that can be read using the public key; to read it, the recipient
follows the same steps needed to encrypt with the public key and restores it
to the plaintext. This is used in authentication and digital signatures.

Security
The security of the RSA algorithm relies on the difficulty of factoring large numbers.
In theory, it is possible to obtain the private key d from the public key (n,e) by
factoring n into p and q. To find d, one must know the product (p–1)(q–1). But to find
that value, one must know p and q. For example, in the earlier example, an attacker
would know that p · q = 55, but what is (p–1)(q–1)? Factoring 55 into its component
primes is easy: the answer is 5 and 11.

Table 3-1 Calculation of 827 mod 55

80 1 mod 55
81 8 mod 55
82 81 · 81 = 8 · 8 = 64 64 � 55 = 9 9 mod 55

84 82 · 82 = 9 · 9 = 81 81 � 55 = 26 26 mod 55

88 84 · 84 = 26 · 26 = 676 676 � (12 · 55) = 16 16 mod 55

816 88 · 88 = 16 · 16 = 256 256 � (4 · 55) = 36 36 mod 55

81 · 82 8 · 9 = 72 72 � 55 = 17

(81 · 82) · 88 17 · 16 = 272 272 � (4 · 55) = 52 52 mod 55

(81 · 82 · 88) · 816 52 · 36 = 1872 1872 � (34 · 55) = 2 2 mod 55
5 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
However, for very large numbers, factoring is very difficult. The RSA Laboratories
publication, Frequently Asked Questions About Today’s Cryptography (the FAQ), describes
the state of the art in factoring. Factoring numbers takes a certain number of steps,
and the number of steps increases exponentially as the size of the number increases.
Even on supercomputers, the time to execute all the steps is so great that for large
numbers it could take years to compute. Within a short period of time, the current
threshold of general numbers that can be factored will probably rise to 155 digits,
approximately the size of a 512-bit RSA modulus. Currently, the limit to the size of an
RSA modulus in Crypto-C is 2048 bits.

Digital Envelopes
A digital envelope is a way of combining the advantages of symmetric-key and public-
key cryptography. In general, public-key algorithms are slower than symmetric-key
ciphers, and for some applications may be too slow to be of practical use, while for
symmetric-key ciphers, there is the problem of transmitting the key. A digital
envelope provides a solution to this dilemma. The sender encrypts the message using
a symmetric-key encryption algorithm, then encrypts the symmetric key using the
recipient’s public key. The recipient then decrypts the symmetric key using the
appropriate private key and decrypts the message with the symmetric key. In this
way, a fast encryption method processes large amounts of data, yet secret information
is never transmitted unencrypted.

Optimal Asymmetric Encryption Padding (OAEP)
Optimal Asymmetric Encryption Padding (OAEP) is a general class of methods for
constructing digital envelopes from public-key encryption algorithms. OAEP
methods have been proposed for the RSA algorithm. OAEP thwarts the
Bleichenbacher attack on PKCS #1 digital envelopes.

Recent research by cryptographer Daniel Bleichenbacher of Bell Labs, the research
and development arm of Lucent Technologies, indicates that the combination of
PKCS #1 and SSL is potentially vulnerable to a class of attacks known as Adaptive
Chosen Ciphertext Attacks. Such a potential attack relies on sending a million
carefully constructed messages to a target server and observing the variations in the
server’s response. The potential attack is detectable by network administrators
because of the large number of needed messages. The threat is only against digital
envelopes; it does not affect digital signatures.

OAEP is a pre-processing step that is applied to data before it is encrypted and after it
is decrypted. OAEP prevents a wide range of attacks on the envelope format and
ensures that the attacker must break the underlying cryptographic algorithm in order
C h a p t e r 3 C r y p t o g r a p h y 55

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
to reveal the contents of a digital envelope.

The main features of OAEP are redundancy and randomization. The redundancy feature
makes it difficult for an attacker to create a new derived message from an existing
ciphertext message. The recipient of a derived message checks the redundancy after
decrypting the message and rejects redundant messages. The PKCS #1 format has
only about 16 bits of redundancy, whereas OAEP formats have 64 to 160 bits of
redundancy.

The randomization feature makes each bit of the input to the public key operation
dependent on each bit of the message and on 64 to 160 bits of randomness. This makes
it difficult for chosen input attacks to work, and it causes ciphertext tampering to
change many bits in the decrypted message.

Together, redundancy and randomization create verifiable properties for securing
digital envelopes.

Figure 3-10 Digital Envelope

Message

Symmetric
Key Data

Recipient’s
Public Key

Public-Key
Encryption

Private Key

Digital
Envelope

Private-Key
Decryption

Encrypted
Message

Symmetric-Key
Encryption

Encrypted
Key

Symmetric-Key
Decryption

Data-Encrypting
Key

Encrypted
Message

Sealing
Operation

Envelope
Open
Operation

Message

Digital
EnvelopeEncrypted

Key

Symmetric Key
5 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Authentication and Digital Signatures
Suppose Alice and Bob are disputing a contract. Alice says that Bob must uphold
certain obligations because he agreed to them in a contract. Bob says that this is not
the contract he signed. He offers as evidence his copy of the contract and sure enough,
it differs from Alice’s. One of them has altered their copy of the contract, but who? Or
maybe the dispute centers on Bob’s assertion that he never signed a contract, that the
signature at the bottom is not his. In that case, either Bob is not telling the truth or
Alice forged his signature.

If the contract was signed physically, there are ways to determine the truth. Contracts
are often filed with government agencies, so comparing Bob’s and Alice’s copies with
the third party’s copy reveals who made alterations. Witnesses may also sign the
contract and later testify that both parties did sign it, and the signatures are not
forgeries. For electronic documents, there is also a method to determine if a document
has been altered or if someone truly did sign it. This method is the digital signature.

There are two types of signature algorithms. The first is a public-key cryptosystem
that can perform block encryption, while the second is only capable of digital
signatures. The RSA algorithm is an example of the first type. The Digital Signature
Algorithm, DSA, is an example of an algorithm of the second type. Crypto-C includes
the RSA and DSA signature methods.

A digital signature uses a public/private key pair to sign a document. First the signer
digests the document, as described in “Message Digests” on page 47, then encrypts it
with their private key. A good digital signature algorithm possesses the following
properties:

• Only the owner of a private/public key pair can generate a signature. Knowledge
of the public key does not enable anyone else to forge a signature.

• Knowledge of the public key enables anyone to verify the signature.
• The digital signature guarantees the authenticity of the message and its author.

The digital signature is computationally unique for each message and signer.
While a normal signature can be imitated, a digital signature is immune to
imitation.

• Any altering of the message renders the signature invalid.

Note: If a digital signature is invalid, you cannot be sure it was a deliberate forgery.
Transmission errors will also produce errors in a digital signature.

For example, to create a digital signature on a contract:
C h a p t e r 3 C r y p t o g r a p h y 57

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
1. Alice and Bob compose a contract in digital format. The file can be in any form,
such as a word processing file or an ASCII file.

2. Each party digests the file and encrypts the digest with their private key.
3. That encrypted digest is their digital signature.
4. The contract now consists of the file and the two copies of the encrypted digest,

one using Alice’s private key, the other using Bob’s private key. Everyone gets
copies of this contract.

The digital signature can be used to verify the data at a later time. Suppose that Bob
produces a file that is different from Alice’s. To discover which copy has been altered:

1. Digest the new copy.
2. Decrypt each party’s encrypted digest with the corresponding public key.
3. Compare the new digest to the old one.
4. If one of the new digests does not match the old one, that is the altered file.

If a file has been altered, it will produce a different digest, because it is virtually
impossible to produce data that will digest to a given value. Even if someone
could manipulate the digest, it would be extremely difficult to produce data that
has value to anyone.

The digital signature can also be used to verify that a message came from a given
person. What if Bob claims Alice forged his digital signature on the original
document? He might say her copy of his encrypted digest is not the true version.
However, the digest was encrypted using Bob’s private key, to which only Bob has
access. Therefore, it is unlikely that Alice forged Bob’s signature.

The following example shows how to verify a message and its signature. Suppose you
have the following information:

• A message
• An entity who claims to have sent the message
• A block of data 96 bytes long that purports to be the encrypted digest

To verify the message and the sender:

1. Request the possible sender’s 768-bit (96-byte) RSA public key from a certification
authority.

2. Use that public key to decrypt the 96-byte block of data.
3. If the decryption process results in a 16-byte output, you can say it is a message

digest. There is a message that will digest to those 16 bytes, but you do not yet
know what it is.
5 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
4. Digest the message file.
5. If the digest matches the 16 bytes you obtained from decrypting the original 96-

byte block, the message is verified. That is, you can assume the 96-byte block is
the file’s digest encrypted with the RSA private key associated with the public
key you used. It would have been computationally infeasible to produce that 96-
byte block any other way.

There are other uses for a digital signature. Suppose that Bob wishes to buy
something from Alice over the Internet. He e-mails her a credit card number. Alice
can easily find out from the credit card issuer that the number she received is valid
and indeed belongs to Bob. But how does she know that it was Bob who sent the
number and not someone posing as Bob? She sends the purchaser a randomly
generated message and asks him to digitally sign it with his private key. She then
retrieves his public key from a certification authority and verifies the signature. Only
the person with access to Bob’s private key will be able to generate a digital signature
from the message she generated in such a way that Bob’s public key will verify it
properly. In this way, Alice authenticates Bob’s identity.

Figure 3-11 RSA Digital Signature

Message
Digest

RSA Private
Encryption

Signature

Private Key

Signature Operation

Original
Message

Message
Digest

Signature
Valid

Original
Message

RSA Public
Decryption

Signature
Not Valid

Public Key

Verification Operation

Signature

YES

NO

EQUAL?
C h a p t e r 3 C r y p t o g r a p h y 59

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Digital Signature Algorithm (DSA)
The Digital Signature Algorithm (DSA) is part of the Digital Signature Standard
(DSS), published by the National Institute of Standards and Technology (NIST), a
division of the US Department of Commerce. It is the digital authentication standard
of the US government. The DSS specifies the Secure Hash Algorithm (SHA1) as the
message digest to use with DSA when generating a digital signature.

To generate a DSA key pair:

1. Find a prime, p, at least 512 bits long.
2. Find a second prime, q, exactly 160 bits long that satisfies the property q|(p–1). q is

called the subprime.
3. Generate a random value, h, the same length as p but less than p.

4. Compute g = h(p-1)/q mod p. g is called the base.
5. Generate another random value, x, 160 bits long. x is the private value.

6. Compute the public value: y ≡ gx mod p.

Note: The three values p, q, and g (the prime, subprime, and base, respectively) are
called the DSA parameters. The parameters are public and must be generated
before you can sign a message.

To sign a message using DSA:

1. Digest the message using SHA1. This yields a 20-byte (160-bit) digest.
2. Generate a random value, k, 160 bits long and less than q.
3. Find the following values:

kinv = k–1 mod q
r = (gk mod p) mod q
xr = (x · r) mod q
s = [kinv · (digest + xr)] mod q

4. Output the signature (r,s).

To verify a message:

1. Digest the message using SHA1.
2. From the signature (r,s), compute:

sinv = s–1 mod q
u1 = (digest · sinv) mod q
u2 = (r · sinv) mod q
6 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
a = gu1 mod p

b = yu2 mod p
v = (a · b mod p) mod q

3. If v = r, the signature is verified. If v ≠ r, the signature is invalid.

The Math
To see that this is indeed the signature, consider the following. We have the values:

y = gx mod p

and

u2 = r · sinv mod q

Make the following algebraic substitutions:

a · b mod p = gu1 · gx·u2 mod p

= gu1 + x·u2 mod p

= gdigest·sinv + x·r·sinv mod p

= gsinv(digest + x·r) mod p

= gk mod p

Recall that:

r = (gk mod p) mod q

This means that:

v = (a · b mod p) mod q

 = (gk mod p) mod q
 = r

Digital Certificates
Suppose you own an RSA public/private key pair. You must make your public key
public so that others can use it to verify your digital signature or to encrypt session
keys when creating an RSA envelope. How do you publicize your key?

Probably the best way is to register public keys with a trusted authority. Then, this
trusted authority can certify that a particular public key belongs to a particular entity.
Currently, such a public key registration infrastructure exists in the form of digital
certificates.
C h a p t e r 3 C r y p t o g r a p h y 61

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
A certificate connects an entity to a public key. For instance, it can list an individual’s
name, address, and public key. When people want to use a person’s public key, they
look up the certificate associated with that person’s name and address. A certificate
can contain a wide variety of information on its owner, such as the person’s
organization or job title. This helps differentiate between people who have the same
name. The certificate can also contain information on when it was issued or when the
public key expires.

For a certificate system to work, there need to be individuals or organizations that
issue and maintain the certificates. These are known as a certificate authorities, or CAs.
An individual can request a certificate by presenting a CA with a public key and a
name and any other identifying information. It is then the CA’s responsibility to
verify that the entity making the request is indeed the person identified by the
information or is authorized to be associated with that key. The level of trust users
place in a CA will depend on the level of verification it performs.

When you ask for an individual’s public key, the CA sends the certificate and signs it
with the digest of the certificate encrypted with the CA’s private key. To verify that
the certificate is genuine, you must digest the certificate and decrypt the signature
using the CA’s public key. Compare the two results: if they are the same, you have a
proper certificate.

If the CA you deal with does not have a certificate for the individual in question, that
CA can communicate with another CA that might have the right certificate. In fact, to
find a particular certificate, a CA may have to go through a chain of CAs until it finds
one that possesses the desired certificate.

Names that uniquely distinguish users are necessary for digital certificates to be of
real use. The CCITT X.500 series of documents offer more discussion regarding
naming conventions and related topics.

Diffie-Hellman Public Key Agreement
The Diffie-Hellman Public Key Agreement, invented by Whitfield Diffie and Martin
Hellman in 1976, was the first true public-key algorithm. It provides a method for key
agreement; that is, it allows two parties to each compute the same secret key without
exchanging secret information. Diffie-Hellman key agreement does not provide
encryption or authentication.

The Algorithm
The Diffie-Hellman algorithm is made up of three parts (see Figure 3-12 on page 63):

• Parameter Generation
6 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
• Phase 1
• Phase 2

Figure 3-12 The Diffie-Hellman Key Agreement Protocol

Parameter Generation
A central authority selects a prime number p of length k bytes, and an integer g greater
than 0 but less than p, called the base. The central authority may optionally select an
integer l, the private-value length in bits, that satisfies 2l–1 ≤ p.

Phase 1
Each of the two parties executing the Diffie-Hellman protocol does the following:

1. Each party, i, i = 1 or 2, randomly generates a private value, which is a number, xi,
greater than 0 but less than the prime. If the central authority has specified the
length l, the private value shall satisfy 2l–1 ≤ xi < 2l.

2. Each party computes a public value yi = gx
i mod p.

Parameters

Bob

Private value

Public value

Bob

Alice

Private value

Public value

Alice

Phase 1

Phase 2

Agreed upon
key

Agreed upon
key

=

C h a p t e r 3 C r y p t o g r a p h y 63

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
3. The two parties exchange the public values.

These private and public values correspond to the private and public key components
of a key pair. The public value is generated in such a way that computing the private
value from the public number is computationally infeasible.

Phase 2
Each participant computes the agreed-upon secret key, z, using the other participant’s
public value, y', their own private value, x, and the prime, p.

z = (y')x mod p

Even with knowledge of the parameters and both public keys, an outside individual
will not be able to determine the secret key. You must have one of the private values
to determine the secret key. This means secret information is never sent over unsecure
lines.

The Math
Even though the two parties involved are making computations using different
private values, they will both end up with the same secret key, as illustrated by the
following.

p: prime
g: base
x1: 1st party’s private value
x2: 2nd party’s private value
y1: 1st party’s public value
y2: 2nd party’s public value
z: secret key

In Phase 1, each party computes a private value, xn, and a public value, yn:

y1 = gx1 mod p

y2 = gx2 mod p

In Phase 2, the parties trade public values and compute the same secret key:

z = y2
x

1 mod p

z = y1
x

2 mod p

They both compute the same z, because:

y2
x

1 = (gx
2)x1 = (gx

1)x2 = y1
x

2 mod p
6 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Security
The security of Diffie-Hellman key agreement relies on the difficulty of computing
nth roots modulo a prime number. It takes very little time to exponentiate a number
modulo a prime, but it takes a great deal of time to compute its roots. This problem in
modular arithmetic is called the discrete logarithm problem. (Recall that, in the real
numbers, if you can compute the logarithm of a number, you can easily compute all of
its roots.) The RSA Laboratories publication, Frequently Asked Questions About Today’s
Cryptography, states, “The best discrete log problems have expected running times
similar to that of the best factoring algorithms.” That is, the time it takes to compute
discrete logs modulo a prime of a certain length is approximately equivalent to the
time it takes to factor a number of that same length. See “The RSA Algorithm” on
page 51 for a discussion of factoring.

Multiple-Party Key Agreement
The previous protocol can be extended to more than two parties. For a multiple-party
agreement, each individual chooses a private value, then uses the collection of public
values from other parties to generate a common secret key.

Elliptic Curve Cryptography
Elliptic curves are mathematical constructs that have been studied by mathematicians
for over 100 years. The application of elliptic curves to cryptosystems is more recent;
in 1985, Neal Koblitz and Victor Miller independently devised a public-key system
using a group of points on an elliptic curve.

The core of elliptic curve cryptosystems rests on the difficulty of a particular type of
calculation. For some public-key algorithms, such as Diffie-Hellman key agreement,
the security is based in part on the fact that given a modulus n, a number g, and gk
mod n, it is difficult to determine k. This is called the discrete logarithm problem.
Elliptic curve cryptosystems rest on a similar problem: given an elliptic curve E and
two points on the curve, P and Q, such that Q = k · P for some number k, it is difficult
to determine k. This is called the elliptic curve discrete logarithm problem. (See the next
subsection, Elliptic Curve Parameters, for a discussion of these terms.) Many
algorithms that are based on the discrete logarithm problem can be translated to
analogous algorithms based on the elliptic curve discrete log problem.

Elliptic curves can be used for a variety of public-key cryptosystems. Crypto-C
supports the following elliptic curve features:

• Generation of elliptic curve parameters
• Elliptic curve key pair generation
C h a p t e r 3 C r y p t o g r a p h y 65

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
• Elliptic Curve Signature Schemes (ECDSA)
• Elliptic Curve Authenticated Encryption Scheme (ECAES)
• Elliptic Curve Diffie-Hellman key agreement (ECDH)

Crypto-C also allows you to generate precomputed acceleration tables to speed up
certain elliptic curve operations. For more information, see the example “Generating a
Public-Key Acceleration Table” on page 277.

Elliptic Curve Parameters
A number of parameters are necessary for elliptic curve cryptosystems. These
parameters must be generated before you generate a key pair, create an acceleration
table, initiate encryption, or perform key agreement with these systems. You can use
the same parameters to generate more than one key. These parameters include:

• The finite field, Fq, over which the elliptic curve is defined.
• Two elements of Fq, a and b, which define the elliptic curve; a and b are also called

the coefficients of the curve.
• A point P of prime order on the elliptic curve E .
• The order, n, of P .
• The cofactor h = #E(Fq)/n. Here, E(Fq) means the set of points on the elliptic curve

and #E(Fq) means the number of points in that set. See “The Order of an Elliptic
Curve” on page 70 for more information.

Note: In all discussions of elliptic curves, the upper case letters P and Q are used to
denote points on an elliptic curve. The lower case letter p is used to denote a
prime.

The next section discusses these terms in detail. We will try to give enough of the
math to give you a feel for what the underlying concepts are without going too deeply
into the details. A full discussion of elliptic curve cryptography is far beyond the
scope of this manual. For background on elliptic curves, see the book by J. Silverman
and J. Tate, Rational Points on Elliptic Curves [20]. For more information on elliptic
curves in cryptography, see the ANSI X9.62 and X9.63 standards [13], the IEEE
Standard Specifications for Public-Key Cryptography [14], and A. Menezes’s book, Elliptic
Curve Public Key Cryptosystems [19].

The Finite Field
The elliptic curves used in cryptography are always defined over a finite field, denoted
Fq. There are two choices for this field:
6 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
• An odd prime field, Fp, where p is an odd prime.
• A field of even characteristic, F2m.

For more information about finite fields, see the book by A. Menezes, I. Blake, X. Gao,
R. Mullin, S. Vanstone, and T. Yaghoobian, Applications of Finite Fields [18] and also
Chapter 2 of Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone’ s book,
Handbook of Applied Cryptography [17].

Odd Prime Fields
The odd prime field Fp is simply Zp, the integers mod p. Modular math is described in
the section “The RSA Algorithm” on page 51. Recall that in modular math, we have
addition and multiplication, with the additional twist that the numbers loop around,
so that, for example, p+1 = 1 mod p.

Although you don’t need it to use the cryptosystem, a little background may help.
Because p is prime, Fp has an interesting property that not all modular math systems
have: except for 0, every number in Fp has a multiplicative inverse. That is, given any
number c between 1 and p–1, there is another number d in the same range such that
cd = 1 mod p. This is the crucial property that distinguishes Fp from other modular
math systems and makes it a field.

Not all moduli will give you a field. For instance, our earlier example, arithmetic mod
55, is not a field. You can see this by looking at the number 5 in this system. The first
ten multiples of 5 are: 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. When we multiply 5 by 11,
we get 55, which is just 0 mod 55. Now, when we multiply 5 by 12, we just fall back
down to 60 = 60–55 = 5 mod 55. In fact, no matter by what we multiply 5, we will just
get a multiple of 5, which will reduce back down to the ten numbers listed above.
There is no way we can get to 1 as a multiple of 5 in this particular modular system.

In fact, the only numbers that will give a field in modular arithmetic are the primes.
So you can see that fields are fairly special. The crucial thing to remember is:

An odd prime field, Fp, is just modular arithmetic, where the modulus p is prime.

Fields of Even Characteristic
The fields of even characteristic, also known as characteristic 2, are more complicated. If
you were looking for a field of that size, you might start with the integers mod 2m.
However, it turns out that integers mod 2m cannot be a field for any m>1.

Why is this? Remember, we said every element in a field, except 0, has a
multiplicative inverse. But, for example, 2m�1 cannot be invertible in the integers mod
2m (except for m = 1). To see this, consider the product 2·2m�1 = 2m ≡ 0 mod 2m. If 2m�1
did have an inverse, I, then we would have:
C h a p t e r 3 C r y p t o g r a p h y 67

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
0 = 0·I

≡ (2·2m�1)·I mod2m

= 2·(2m�1·I)

≡ 2·1 mod 2m

= 2

Instead, we create the field F2m in a completely abstract manner. We start by letting
the elements of the finite field F2m be the bit strings of bit-length m. Mathematicians
have shown that it is possible to create an addition and a multiplication that make
these strings, called m-tuples, into a field.

Addition is easy to define: to add two strings, just XOR them. This is the same as
adding them bit by bit, with no carry. Notice that with this field addition rule, for
every x in F2m, we have that x + x = 0. That is already very different from addition in
the integers mod 2m.

Note: If you look closely, you will see that we are trying to create a system where 2
can equal 0. In fact, it is because of this property — that the number 1 added
to itself two times gives us 0 — that we say this is a field of “characteristic 2”
or “even characteristic.”

Multiplication is even more difficult to define. When you multiply two m-tuples, you
can’t just multiply them bit-by-bit, or else you would never be able to invert any
string that had a 0 in it somewhere. Instead, multiplication in F2m is a complicated
operation involving ordinary multiplication and addition of cross terms.

The mathematics underlying the construction of F2m is deep, but it is very well-
understood by mathematicians. For an in-depth discussion of this field, refer to
“Related Documents” on page xx.

An elliptic curve, E, can be thought of as a particular type of equation. Elliptic curves
look slightly different in the two different cases.

Coefficients Over an Odd Prime Field
An elliptic curve E over an odd prime field Fp is all the pairs of points (x,y) that satisfy
the equation:

y2 = x3 + ax +b

In this equation, x and y are elements of Fp, and so are a and b. The whole equation is
evaluated over Fp. For computational reasons, there is also a “point at infinity”, Ο,
that is included as well.

The numbers a and b are called the coefficients of the elliptic curve; they are part of the
6 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
elliptic curve parameters.

Coefficients Over a Field of Even Characteristic
An elliptic curve E over a field of even characteristic F2m is all the pairs of points (x,y)
that satisfy the equation:

y2 + xy = x3 + ax2 +b

In this equation, x and y are elements of F2m, and so are a and b. The whole equation is
evaluated over F2m. For computational reasons, there is also a “point at infinity”, Ο,
that is included as well.

The numbers a and b are called the coefficients of the elliptic curve; they are part of the
elliptic curve parameters.

Note: Note that the equation over F2m is different from the equation over Fp. Over
F2m there is a quadratic term, ax2, instead of the linear term ax in the odd
prime case, as well as a new cross-term, xy. The differences in the equation
arise because of the differences in arithmetic between the two types of fields.

The Point P and its Order
Obviously, you can’t create a cryptosystem out of just any equation. The elliptic curve
equation is important because it has special properties. One of these properties is that
it is possible to set up an addition system that lets you add one point on the elliptic
curve to another. The addition is complex and non-obvious, but it is possible to set up
a system of equations that determine the sum of two points. Adding two points on an
elliptic curve involves several operations in the underlying field, Fq, including
multiplications, additions, and the computation of inverses. The complexity of the
addition is what makes elliptic curve cryptosystems work — if you add a point P to
itself k times to get kP, there is no known fast way to get k.

To implement an elliptic curve cryptosystem, we need to specify a point P on our
curve that has some special properties. To understand these properties, we need some
more concepts: the points on a curve, the order of a curve, and the order of a point on
the curve.

The Points of an Elliptic Curve
For our field, Fq, and our elliptic curve E, determined by a and b, we can consider all
the pairs (x,y) in Fq that satisfy the elliptic curve equation. Each such pair is called a
point of the elliptic curve. The collection of all the points that satisfy the equation,
along with the special point Ο mentioned earlier, is called the points of E over Fq; this
C h a p t e r 3 C r y p t o g r a p h y 69

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
is written E(Fq).

The Order of an Elliptic Curve
The addition system that makes the points on the elliptic curve into what is called a
group has a number of properties. First, there can only be a finite number of points on
the curve. If every possible pair (x,y) were on the curve, there would be only p2 or
(2m)2 = 22m possibilities of pairs. The total number of points, including the point Ο, is
called the order of the elliptic curve. The order is written as #E(Fq).

The special point Ο plays the role of the additive identity, zero, in the group of the
elliptic curve.

The Order of a Point
Given any point on the curve, P, the addition rule lets you add that point to itself.
Then you can add your new point to the old point, and so on. When you add a point
to itself a number of times, it is called scalar multiplication. Although this is not
multiplication in the usual sense — it is an iteration of point addition k times — it still
has the usual math properties like commutativity and associativity over addition.
Adding a point P to itself k times gives another point denoted kP.

No matter what P is, there is always some n such that nP = Ο. The smallest n that
works for a given P is called the order of P. Not only does n exist, but it is always true
that n evenly divides the order of the elliptic curve, #E(Fq).

The order n of P is important because it means that when we use P as the starting
point of our calculations, we can apply the rules of arithmetic modulo n. That is, we
have the following important fact:

r = r’ mod n if and only if rP = r’P

A Point of Prime Order
Now that we have those concepts, we can go on to the next parameter. Given our
elliptic curve, E, defined over our finite field, Fq, we want to fix a special point that
will be used to mask the private key in a public/private key pair. The properties of P
are important to the security of our system. Not just any point will do: we need a
point P whose order n is prime; the larger the prime, the more secure the
cryptosystem.

Remember, P is of the form P = (x,y) where x and y satisfy the elliptic curve equation.
To show that x and y are specific to P, we usually write them as xP and yP. Therefore,
the special point P gives us two parameters:

• A point P = (xP,yP) of prime order
7 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
• The order n of P

P is sometimes called the base point.

The Cofactor
We mentioned previously that the prime number n that is the order of P must evenly
divide the order of the elliptic curve. That is, we know that the number h = #E(Fq)/n is
an integer. We call h the cofactor, and set it as our last parameter:

• The cofactor h = #E(Fq)/n

Summary of Elliptic Curve Terminology
Table 3-2 lists the elliptic curve parameters and gives a short description of each
parameter. For a brief description,refer to the previous sections in this chapter; for a
detailed discussion, see [13], [14], and [19] in “Related Documents” on page xx.

Table 3-2 Elliptic Curve Parameters

Notation Name Description

Fq base field Either:

Fp : {0,1,...,p–1} with arithmetic mod p
or
F2m : strings of m bits. Addition is bitwise XOR,
multiplication exists, but has no quick description

a, b coefficients of the curve a and b are elements of Fq. They determine an
equation, which depends on the base field:

For Fp:y2 = x3 + ax +b

For F2m:y2 + xy = x3 + ax2 +b

P point of prime order
or
base point

(xP,yP)

The pair xP, yP satisfies the curve equation.

n order of P The smallest nonzero number such that P added
to itself n times is the zero point, Ο, on the curve.

n is prime.

h cofactor The order of the curve divided by the order of P:

#E(Fq)/n
C h a p t e r 3 C r y p t o g r a p h y 71

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Representing Fields of Even Characteristic
For fields of even characteristic (fields of the form F2m), Crypto-C allows you to choose
how you want the field to be represented. The representation you choose is internal to
Crypto-C and affects how field arithmetic is performed. The choice of representation
is also one of the formal elliptic curve parameters that must be transmitted along with
the public key. Some representations lead to more efficient implementations in
hardware or software.

When we talk about representations of F2m, we use the term basis to reflect the original
mathematics underlying the construction of F2m. From our point of view, it is most
important to know that a different basis corresponds to a different representation in
Crypto-C. Crypto-C offers two types of representation for fields of even characteristic:

• Polynomial basis: this representation closely reflects how the field was originally
constructed by mathematicians. Every field of even characteristic has a
polynomial basis representation.

• Optimal normal basis (ONB): this representation is constructed to optimize certain
multiplicative operations. Not all fields have an ONB representation; it can be
constructed only for certain values of m.

The difference in the choice of basis shows up most clearly in how multiplication is
defined. For example, for any polynomial basis representation, the multiplicative
identity is represented as (000…01). For any optimal normal basis, the multiplicative
identity is (111…11).

Note: Although arithmetic looks different when you choose a different
representation, the field is still the same. Just as you can represent
“normal”arithmetic using a hexadecimal or a decimal system, you can
represent F2m inmore than one way.

Elliptic Curve Key Pair Generation
Elliptic curve parameters can be used to generate a public/private key pair. Elliptic
curve parameters can either be common to several key pairs or specific to one key
pair. The elliptic curve parameters can be public; the security of the system does not
rely on these parameters being secret.
7 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Creating the Key Pair
To compute a public/private key pair:

1. Generate a random value, d, between 1 and n–1.
2. Compute the elliptic curve point dP, that is, P added to itself d times. Call this

point Q; it is a pair of field elements (xQ,yQ).

The key pair is (Q,d): Q is the public key, d is the private key. As previously
mentioned, even if you know P and Q, you cannot easily calculate d.

ECDSA Signature Scheme
Once you have generated elliptic curve parameters and created a public/private key
pair, you can use this information to create an elliptic curve analogue of the Digital
Signature Algorithm (DSA).

Signing a Message
The holder of the private key can sign a message as follows:

1. Digest the outgoing message using SHA1. This yields a 20-byte (160-bit) digest, e.
2. Compute a random value, k, between 1 and n–1.
3. Compute the elliptic curve point kP = (x1,y1).

4. Currently, the first coordinate, x1, is an element of the finite field. To perform
further calculations, we must convert x1 to an integer, called . We do this as
follows:
For Fp, x1 is an integer α in the range 0 to p–1. Let = α. (Essentially, no
conversion is required.)
For F2m, x1 is a bit string of length m bits: s1s2...sm. Because F2m has a very strange
arithmetic, we need a way to think of its elements as integers. To do this, let the
integer be a weighted sum of the bits of x1:

In either case, once you have calculated , set r = . If r is zero, go back to step 2.

Note: Although this lets you take a member of the field F2m and represent it as an
integer, it has some limitations. If you perform any arithmetic operations on

x1

x1

x1

x1 2 m i–() si⋅
i 1=

m

∑=

x1 x1
C h a p t e r 3 C r y p t o g r a p h y 73

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
, you will be using regular arithmetic. This is so different from arithmetic in
F2m that, for example, . However, if you convert two field
elements and perform operations on them that show they are equal after
conversion, then they were equal before conversion.

5. Compute s = k�1(e+dr) mod n. Again, you must check that s is nonzero.

The signature for this message is the pair r and s. Notice that, as with DSA, the
signature depends on both the message and the private key. This means no one can
substitute a different message for the same signature.

Note: The previous equation is merely an outline. For cryptographic purposes, it is
necessary to verify that certain numbers are nonzero, or that they satisfy other
conditions. Crypto-C makes the appropriate verifications when it generates
your key pair.

Verifying a Signature
When a message is received, the recipient can verify the signature using the received
signature values and the signer’s public key, Q. Because the pair (r,s) that has been
received may not actually be a valid signature pair, it is customary to call the received
pair (r’,s’) instead.

To verify a signature:

1. First verify that r’ and s’ are between 1 and n-1. If they are not, the output is
invalid.

2. Digest the received message using SHA1. This yields a 20-byte (160-bit) digest, e.

3. Compute c = (s’)-1. Remember, s’ is an integer mod n, so its inverse is also an
integer mod n.

4. Compute u1 = ec mod n and u2 = r’c mod n.

5. Compute the elliptic curve point (x1,y1) = u1P +u2Q.

6. Convert x1 to an integer, . See Step 5 on page 74 for details.

7. Compute v = mod n

If v = r’, the signature is verified. If they are different, the signature is invalid.

The Math
The ECDSA algorithm depends in part on the fact that if r = r’ mod n, then rP = r’P.
(See “The Point P and its Order” on page 69.)

x1
x1 x2+ x1 x2+≠

x1

x1
7 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
The following calculations are really just a series of substitutions that can be made by
looking back at the definition. You may find it more convincing to go through the
substitution steps yourself, by glancing back at the preceding sections Creating the
Key Pair, Signing a Message, and Verifying a Signature.

If the message has been signed correctly, then s = s’. Expanding the elliptic curve
point (x1,y1) = u1P +u2Q calculated by the recipient, we see that:

u1P +u2Q = es�1P + rs-1Q

=s�1(eP + rQ)

Recall that Q = dP, so:

u1P +u2Q = s�1(eP + rQ)

= s�1(eP + rdP)

= s�1(e + rd)P

= s�1(e + dr)P

Now recall that s = k�1(e+dr) mod n, so:

u1P +u2Q = s�1(e + dr)P

= [k�1(e+dr)]-1(e + dr)P

= (k�1)�1(e+dr)�1(e+dr)P
= kP

This is the point calculated by the recipient. But this is also the point generated by the
sender. The recipient then checks that the x-coordinate of the calculated point is in fact
the x-coordinate that was received.

Elliptic Curve Authenticated Encryption Scheme
(ECAES)
You can use elliptic curves to create an authenticated encryption scheme with a
public/private key pair.

As always with elliptic curves, we assume that the elliptic curve parameters have
been defined in advance. Suppose Bob has a key pair based on these parameters. The
pair is (Q,k2), where Q = k2P, where P is the base point of prime order specified in the
elliptic curve parameters. The point Q is the public value and the number k2 is the
private value.
C h a p t e r 3 C r y p t o g r a p h y 75

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Encrypting a Message Using the Public Key
Anyone who wishes to send Bob an encrypted message can do so using the elliptic
curve parameters and Q. To encrypt a message M, where the length (in bytes) of the
message is f, another party follows these steps:

1. Compute a random value, k1, between 1 and n – 1.

2. Compute the elliptic curve point Q1 = k1P. This will be transmitted along with the
encrypted message.

3. Compute the elliptic curve point S1 = k1Q. S1 is a pair (x1,y1). This is the secret
information the sender uses to encode the message.

4. Compute a one time pad, otp, of length f, from x1 using a key derivation function
(KDF). otp is a concatenation of a series of hashes; it is constructed using f, x1, and
SHA1. otp is described below. The description uses the following notation: (1) ||
denotes the concatenation of two numbers, (2) for a number a, [a] denotes the
integer part of a. In particular, [f/160] denotes the integer part of f/160.
a. Initiate a 32-bit, big-endian bit string counter. In hex, counter is initialized to

0000000116.

b. For i = 1 to [f/160], create a series of hashes, as follows:

Compute Hashi = SHA1(x1 || counter), that is, the SHA1 hash of the
concatenation of x1 and counter.

Increment counter.
Increment i.

c. We want the length of the pad to be exactly the same as the length, f, of the
message M. If f/160 is not an integer, we need to truncate the last hash to
make the lengths equal. Therefore, we define Hash’[f/160] as follows:

d. Set otp to be the concatenation of the series of hashes:

otp = Hash1 || Hash2 ||…|| Hash[f/160]-1 || Hash’[f/160]

5. Compute M’ = otp XOR M.

Hash’[f/160] = { Hash[f/160] if f/160 is an integer

the [f/160] – (160 × [f/160])
leftmost bits of Hash[f/160]

if f/160 is not an integer
7 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
6. Compute an authentication tag, tag = SHA1 (x1 || M’). That is, tag is the SHA1
hash of concatenation of the x-coordinate of the secret point k1Q and the message
M’. Since tag is an SHA1 hash, tag is 20 bytes long.

7. Transmit the ciphertext c = (Q1,M’,tag). The total length of c in bytes is: 21+2 · (the
length of a field element in bytes) + f.

Decrypting a Message Using the Private Key
A message that had been encrypted in the previous example can be decrypted using
the private key as follows:

1. Parse the received ciphertext c = (Q1,M’,tag) into its components, Q1, M’, and tag.

2. Use the private key k2 to compute the elliptic curve point S2 = k2Q1. S2 is a pair
(x2,y2). If the message was transmitted correctly and encoded with the correct
public key, S2 is equal to S1.

3. To verify that S2 is equal to S1, compute tag' = SHA1 (x2 || M'). If tag' is different
from tag, output an error and stop.

4. Compute a one time pad, otp’, of length f, from x2 using the key derivation
function outlined in Step 4 on page 76. Use x2 instead of x1. Since x1 = x2,
otp’ = otp.

5. Compute M = otp XOR M’.

Elliptic Curve Diffie-Hellman Key Agreement
It is possible to construct a version of the Diffie-Hellman key agreement that uses
elliptic curves. (For more information on Diffie-Hellman key agreement, see “Diffie-
Hellman Public Key Agreement” on page 62.) Like Diffie-Hellman, EC Diffie-
Hellman provides for key agreement, but not encryption or authentication.

The elliptic curve Diffie-Hellman key agreement algorithm provides a method for two
parties to each compute the same secret key without exchanging secret information.
The algorithm is made up of two parts: Phase 1 and Phase 2. Before they begin, the
two parties must agree on the elliptic curve parameters: a base field, an elliptic curve
over the base field, and point P of prime order, along with its order n. See the section
“Elliptic Curve Parameters” on page 66 for details. See Figure 3-13 on page 79 for an
illustration of Elliptic Curve Diffie-Hellman key agreement.
C h a p t e r 3 C r y p t o g r a p h y 77

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Phase 1
The first party randomly generates a private value, a number k1, greater than 0 but
less than n. Similarly, the second party generates a random private value, k2.

Each party then computes a public value. To do this, they each compute Ri = kiP. For
each party, this is an elliptic curve point. The two parties exchange their public values.

These private and public values correspond to the private and public key components
of a key pair. The public value is generated in such a way that computing the private
value from the public value is computationally infeasible.

Phase 2
Each participant computes the agreed-upon secret key, z, from the other’s public
value, Rj, and their own private value, ki. The parties compute kiRj to get the elliptic
curve point S. This is a pair, (xS,yS). They then use the first coordinate of S, xS, as their
secret value.

Even with knowledge of the parameters and both public keys, an outside individual
will not be able to determine the secret key. One must have one of the private values
to determine the secret key. This means secret information is never sent over unsecure
lines.
7 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Figure 3-13 Elliptic Curve Diffie-Hellman Key Agreement

The Math
Even though the two parties involved are making computations using different
private values, they will both end up with the same secret key, as illustrated by the
following.

P: point on the elliptic curve
k1: 1st party’s private value
k2: 2nd party’s private value
R1: 1st party’s public value

Parameters

Bob

Private value

Public value

Bob

Alice

Private value

Public value

Alice

Phase 1

Phase 2

Agreed upon
key

Agreed upon
key

=

C h a p t e r 3 C r y p t o g r a p h y 79

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
R2: 2nd party’s public value
xS: secret key

In phase 1, each party computes a private value, ki, and then a public value, Ri:

R1 = k1P

R2 = k2P

In phase 2, the parties trade public values and compute the same elliptic curve point
S:

S = k1R2 = k1k2P

S = k2R1 = k2k1P

The first coordinate of S, xS, is their agreed-upon secret key.

Secret Sharing
Secret sharing, also known as a threshold scheme, takes a message or other data and
divides it up into pieces in such a way that while each piece means nothing
individually, some or all of the pieces can be assembled to retrieve the secret.
Typically, the secret is a key used for encrypting sensitive data.

A good secret-sharing algorithm allows an application to share the secret among a
variable number of shares. It should also be possible to set how many of the shares are
needed to recover the secret. That is, if the total number of shares is N, you should be
able to decide in advance that any K of them can recover the secret. The number K, the
required number of shares, is known as the threshold.

With secret sharing, access can be split among several individuals, with
reconstruction requiring a threshold number of shares. In this way, if one or more of
the individuals are not available, it is still possible to recover the data. In addition,
secret sharing contains some level of checks and balances: no one can recover data
without at least one other individual knowing about it.

The algorithm used in Crypto-C is Bloom-Shamir secret sharing.

Figure 3-14 and Figure 3-15 show the schema for secret sharing and recovery.
8 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Figure 3-14 Secret Sharing — Key Share Assignment

Figure 3-15 Secret Sharing — Full Key Generation From Shares

Working with Keys

Key Generation
The techniques for generating public/private key pairs and symmetric keys are quite
different. Symmetric-key algorithms generally require an arbitrary random-byte
sequence, while a public/private key pair must satisfy a mathematical formula. Key
generation depends on the availability of a good random number generator, and the
security of a random number generator depends on the seed. See “Pseudo-Random
Numbers and Seed Generation” on page 92 for more information.

Share #1

A Secret
Value

Share # N

Secret
Splitting

N Shares.
.
.

The
Original
Secret

Secret
Reconstruction.

.

.

Any K
out of the
N shares
C h a p t e r 3 C r y p t o g r a p h y 81

Download from Www.Somanuals.com. All Manuals Search And Download.

Cryptography Overview
Key Management
The term key management refers to the collection of processes and methods for
assigning the right keys to communication sessions, providing the right keys to the
right persons, and making sure unauthorized personnel cannot gain access to keys.
Key management is the most difficult security problem. To manage keys properly, an
application must address the following issues:

• Generating keys
• Choosing appropriate values for the keys
• Guarding the privacy of keys transmitted between nodes
• Verifying the authenticity of keys transmitted between nodes
• Using keys in a software environment in an open system
• Keeping backup keys
• Dealing with compromised keys
• Destroying old keys
• Changing keys

Often, the bulk of a security application’s focus will be on key management. Crypto-C
provides a rich suite of cryptographically secure algorithms, but it is up to the
application designer to carefully consider how to manage the keys.

Key Escrow
Key escrow allows a designated authority or authorities to recover keys belonging to
someone else. This can be a desirable feature when users lose access to their keys
because they leave an organization or simply forget a password. Key escrow can be
implemented through secret sharing or by encrypting keys with a security officer’s
RSA public key and storing the encrypted copy. To recover the escrowed key, you
must either assemble the necessary shares or have the security officer decrypt the
encrypted key using the appropriate RSA private key.

Key escrow is never automatic with Crypto-C. There is no Crypto-C encryption
method that offers key escrow as part of the algorithm; the developer must make key
escrow part of the application. Crypto-C offers the techniques to implement key
escrow, but it is the developer’s responsibility to decide whether it will be part of the
application, and if so, how it will be executed.
8 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Applications of Cryptography
ASCII Encoding and Decoding
ASCII encoding and decoding is required when you need to send encrypted or signed
data using communication protocols that allow transmission of printable characters
only. In this case, the application must convert the encrypted 8-bit values to a string of
printable characters. Crypto-C uses the Internet RFC1113 method for implementing
ASCII-encoding. The Internet Draft RFC1113 is a publication that describes this
system.

Applications of Cryptography
Crypto-C offers application developers the tools to add privacy and authentication
features to software and hardware systems. This section discusses a number of areas
where such features are useful.

Historically, privacy has been the main use of cryptographic techniques. In these
applications, cryptography is used to hide critical information from attackers or
unauthorized personnel. Crypto-C provides algorithms and methods for encrypting
data in a variety of applications.

Authentication is a cornerstone of the forever-pursued paperless office. Authentication
enables users to prove authenticity and authorship of messages and non-tampering of
data.

Cryptography can be useful in any of the following situations:

• Local applications, to control access and prevent tampering
• Point-to-point applications, to protect the privacy of communications
• Client/server applications, to control access and provide authentication
• Peer-to-peer applications, to protect privacy between nodes

Local Applications
One of the most basic applications of cryptography is local file encryption. There are
many reasons why one would find it useful to encrypt files even if they are not being
transmitted. For example, you can use cryptographic techniques to:

• Save files in encrypted form to protect against unauthorized access.
C h a p t e r 3 C r y p t o g r a p h y 83

Download from Www.Somanuals.com. All Manuals Search And Download.

Applications of Cryptography
• Ensure file integrity and protect against tampering. Cryptographic techniques can
be used to guarantee that only authorized personnel can modify or install certain
files.

• Archive important data so that it can be accessed only by authorized personnel.
• Protect intellectual property.

Point-to-Point Applications
Applications that require establishing a secure link between two nodes are very
common and may have different topologies. However, their similarities allow them to
be treated in a comparable manner. Secure point-to-point communication is needed if:

• Communication takes place between exactly two nodes.
• The primary security consideration is to allow the two nodes to communicate

privately and to prevent others from eavesdropping on the traffic.

Here are some applications that require secure point-to-point data communication:

• Computer hardware links connecting two nodes
• Satellite or cellular communications
• A single transaction between two nodes in a larger network

Here is a typical scenario for implementing applications in this class, using key
agreement with stream-cipher encryption.

1. Compute the Diffie-Hellman parameters for both nodes. This must be done before
a communication session is established. When a link is requested, the parameters
should be waiting for the nodes.
A new Diffie-Hellman parameter set is not necessary each time you generate a
session key; it is safe to use one set of Diffie-Hellman parameters for many key-
agreement sessions. In addition, either of the nodes can generate the parameters
and transmit the values over any channel.

2. Establish an agreed-upon secret value using Phase 1 and Phase 2 of the Diffie-
Hellman key-agreement protocol. See “Diffie-Hellman Public Key Agreement” on
page 62 for an overview of this process.

3. Compute an RC4 key for the session using the agreed-upon secret value. The RC4
key may be shorter than a Diffie-Hellman secret value. The application must
determine the procedure for extracting the required bits. A single Diffie-Hellman
agreement may also be used to generate multiple RC4 keys.
8 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Applications of Cryptography
4. Perform the encryption and decryption using the RC4 cipher with the established
key. If the application requires multiple session keys, use a message digest on the
agreed-upon secret value and a counter to generate a new key.

There is an attack against this kind of protocol known as “man-in-the-middle.”
Someone could intercept all messages between the two parties and pose as each
individual’s other participant. For example, if Alice wants to communicate with Bob,
she sends a message to initiate a session. The man-in-the-middle intercepts Alice’s
message, builds a secure session with Alice, and initiates his own session with Bob.
Now, all messages Alice sends to Bob go through the attacker. The man-in-the-middle
decrypts Alice’s messages based on the session he created with Alice and saves the
results to examine later. He then re-encrypts the message based on the session he
created with Bob. If a particular application is vulnerable to such an attack, it is
advisable to use a peer-to-peer protocol (see page 86) instead.

Client/Server Applications
A client/server application is distinguished by one central server node that provides
services to several client nodes. Many client/server applications have a need for
cryptographic tools. For example:

• Network applications: Any network that connects several computer nodes to one
central server, such as a local or wide area network, can use cryptography to
establish secure communications between the clients and the server. The network
can also employ authentication to guarantee that intruders do not have access to
the network.

• Database applications: Multiple clients — in this case, database queries — need
access to a server — the database. To ensure that not all fields in the database are
accessible to all clients, restricted fields can be encrypted or signed. In addition,
by distributing secret shares among authorized personnel, you can ensure that
very sensitive data can be accessed only according to the security rules.

• Cryptographic smart cards: Here, you must authenticate users to service providers
such as banks. A smart card holds the individual private keys and includes a
processor that runs the cryptographic algorithms needed to achieve the
appropriate authentication level.

In all these applications, the server generates a public/private key pair for use with all
clients requiring secure communications. The server uses the private key to sign
digital certificates for all nodes that require access to the server and its resources.

It also starts a public key table to register client RSA public keys. Each client computes
an RSA public/private key pair when it is first established as a secure client. The
C h a p t e r 3 C r y p t o g r a p h y 85

Download from Www.Somanuals.com. All Manuals Search And Download.

Applications of Cryptography
public key is communicated to the server and an entry is made in the table maintained
by the server for the public keys.

As an alternative, the server can certify the public keys of the client nodes by
generating a digital certificate to be signed by the server’s private key. In this case, the
server only trusts messages from previously-certified keys. There is no table to
maintain because the digital certificate can be used to verify the identity of a node
each time a connection or request is needed.

There are two approaches to establishing a link between a client and the server.

In the first approach, the server and a client determine a session key using a Diffie-
Hellman key agreement protocol. The Diffie-Hellman parameters are established
once at the initial setup of the server, and communicated publicly to each client when
a secure connection is requested. The session key is used for bulk-data encryption; the
established client RSA key pair is used for authentication or for envelope
communications. Any block or stream cipher can be used for encryption with the
session key. For stream ciphers, a new key should be computed for each session; this
prevents attacks that compare blocks of data encrypted with the same key.

In the second approach, the server uses the client’s RSA public key (contained in the
digital certificate) to generate a digital envelope for the encrypted data sent from the
server to the client. Likewise, the client uses the server’s public key (known to all
nodes) to create a digital envelope. In addition, each message contains digital
signatures to authenticate the originator.

Peer-to-Peer Applications
Unlike a client/server application, a peer-to-peer network application provides each
node with access to any other node in the network. For example, users may wish to
communicate privately with other known or unknown users through secure email. In
a peer-to-peer situation, no single node is capable of authenticating other client nodes.

Digital signatures can be used to provide proof of authorship to any recipient. Each
node must generate its public/private key pair and obtain a digital certificate from
some approved central authority. VeriSign can provide details about how to obtain a
digital certificate.

Each message between any two or more nodes can be authenticated by attaching the
originator’s digital certificate to the message. The recipient can verify the authenticity
of the message and the originator by verifying the validity of the certificate.

Nodes on peer-to-peer applications can encrypt using digital envelopes. To do so, the
sender obtains the digital certificate of each recipient and extracts the public key.
8 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Choosing Algorithms
Choosing Algorithms
In some cases, an application’s constraints determine the algorithm. In other cases, the
developer can choose among a number of algorithm options and still produce a viable
PKI solution. This section presents suggestions to help you determine the best choice.

Public-Key vs. Symmetric-Key Cryptography
Because symmetric-key encryption algorithms are much faster than public-key
algorithms, they are most suited for bulk data encryption.

Public-key encryption should not be used for encrypting large amounts of data. It is
best used to encrypt keys for either a digital envelope method or for key escrow
applications.

Stream vs. Block Symmetric-Key Algorithms
Crypto-C has only one stream encryption algorithm, the RC4 cipher. The RC4 cipher
produces an encrypted output the same size as the original input message and is
significantly faster than block-encryption algorithms. However, once a key has been
used to encrypt a particular message, it should not be used again. Hence, employing
the RC4 cipher requires using many keys. If managing many keys is difficult, the RC4
cipher may not provide the easiest solution.

Some applications do not save keys outside of the session. For these applications, the
RC4 cipher will generally be a good choice. For instance, in encrypted phone
conversations, the symmetric key is a session key. It encrypts for one call; once the
session is over, the key is discarded. Another example would be an email application
where the session key is encrypted with an RSA public key and is a part of the data
package.

The RC4 cipher has a variable length key. If you set the key to be long enough, the
RC4 cipher offers greater security than DES.

Block-encryption algorithms are best used for applications that require repeated
encryptions without changing the value of the key. In addition, DES is a standard
used by many applications. If an application must be able to communicate with other
applications, DES is a safe choice for universal support.
C h a p t e r 3 C r y p t o g r a p h y 87

Download from Www.Somanuals.com. All Manuals Search And Download.

Choosing Algorithms
Block Symmetric-Key Algorithms
The following considerations may help when choosing between DES, DESX, Triple
DES, and the RC2, RC5, and RC6 algorithms.

DES is a standard algorithm in use by many applications. Using DES ensures
widespread connectivity. However, DES is limited to an effective key size of 56 bits.
The cryptography community expects that, because of the continued increase in
computing power, within a few years, DES will not be strong enough to withstand
attacks. Triple DES is gaining in acceptance as a substitute for DES to counter this
problem.

DESX is viewed as a fast and secure alternative to Triple DES.

The RC2 algorithm is faster in software than DES and Triple DES and has gained
momentum in the marketplace, although it is not as widely implemented as DES. In
addition, the RC2 algorithm employs a variable key size, which allows you to increase
the security beyond that supplied by DES or Triple DES.

The RC5 algorithm is even faster than the RC2 algorithm; its speed and security can
be increased or decreased through the word size, rounds, and key length parameters.
In the years since it was developed, RC5 has received a lot of attention from the
cryptographic community. No serious weaknesses have been discovered during this
time, and RC5 is considered secure.

The RC6 algorithm is faster than the RC2 algorithm, and is also faster than the RC5
algorithm on most hardware. Like the RC5 algorithm, the RC6 algorithm has a
variable number of rounds, which has the potential to allow tradeoffs between speed
and security. Although the RC6 algorithm is fairly new, as a submission to the
Advanced Encryption System process, the algorithm has been made public and has
been subjected to intense scrutiny by the cryptographic community.

Unless communication with other applications that do not support the RC algorithms
is an issue, the RC2 and RC5 algorithms offer greater security and are much faster in
software than DES.

Key Agreement vs. Digital Envelopes
Both key agreement and digital envelopes allow two nodes communicating over an
unsecure medium to establish a secret symmetric-encryption key. Key agreement is
easier and faster when the two nodes are in current contact, such as in a phone
conversation. Crypto-C employs the Diffie-Hellman key agreement algorithm and the
implementation requires an interactive session.
8 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Choosing Algorithms
Digital envelopes are more convenient when the contact between nodes is not
interactive, such as email. One node can send a message to another without waiting
for the other node to respond.

To thwart man-in-the-middle attacks, authentication by digital signatures should be
built into any communication system.

Secret Sharing and Key Escrow
Also known as emergency access, secret sharing and key escrow both allow for
recovery of keys by parties other than the owner. Without some form of emergency
access, data that is encrypted using a session key that is itself protected by password-
based encryption is inaccessible or even lost if the owner forgets the password or is
unavailable.

To enable recovery using key escrow, you can encrypt all session keys with a security
officer’s RSA public key. Any time access is required, the officer can decrypt the
session key with the appropriate RSA private key. This method is the easiest to
implement and execute. However, it requires trust in the security officer not to abuse
this power, and it requires that a single individual be available.

With secret sharing, access can be split among several individuals, with
reconstruction requiring a threshold number of shares. In this way, if one or more of
the individuals are not available, it is still possible to recover the data. In addition,
secret sharing contains some level of checks and balances: no one can recover data
without at least one other individual knowing about it.

Elliptic Curve Algorithms
Elliptic curve cryptosystems have recently come into strong consideration,
particularly by standards developers, as alternatives to established standard
cryptosystems such as the RSA cryptosystem, Diffie-Hellman, and DSS. Elliptic curve
cryptosystems have a number of interesting properties, which may make them
appropriate tools for meeting security requirements in some cases, and not in others.

From a cryptographic perspective, the primary motivation for development of elliptic
curve cryptosystems is that they are based on a different hard mathematical problem
than established systems, and appear to have a reasonable expectation of security,
without significant additional cost. In particular, in certain applications, elliptic curve
cryptosystems can provide security where other systems currently do not fit.
However, the range of applications where they make a significant difference is
C h a p t e r 3 C r y p t o g r a p h y 89

Download from Www.Somanuals.com. All Manuals Search And Download.

Choosing Algorithms
limited. In typical applications of cryptography, public-key operations are employed
in combination with other techniques. In particular, public-key operations often
represent only a minor overhead in the total processing, whether in storage or in
computation time. A “faster” or “smaller” public-key technique thus may have little
overall impact in many applications.

Elliptic curve cryptosystems have, at this point, relatively fewer cryptanalytic results
than established systems. It could be that the systems are stronger, or it could be that
they are just not that well understood. In either case, this is an observation that calls
for further study.

In conclusion, RSA Security is currently recommending that elliptic curve
cryptosystems continue to be studied as additional tools in the public-key repertoire,
and that they be considered as near-term solutions in the particular cases where the
alternative would be to have no security at all.

For more information about elliptic curve cryptosystems, see the RSA Laboratories
technical note, Recommendations on Elliptic Curve Cryptosystems, at
http://www.rsasecurity.com/rsalabs/technotes/.

Interoperability
Elliptic curve public-key methods can be constructed in a number of ways.
Parameters can be chosen over odd prime fields or fields of even characteristic. The
underlying mathematics of these implementations is different enough that a
successful implementation of only one of these approaches could not handle another
implementation. In essence, this means that one could build two different
cryptosystems, both using elliptic curve cryptography, but unable to interoperate
with each other.

The two main interoperability issues for elliptic curve cryptosystems are the choice of
finite field over which the elliptic curve is defined and the representation of elements
in the finite field.

There are two types of finite fields: finite fields with p elements, where p is an odd
prime, denoted Fp, and called “odd prime fields”, and a finite field with 2m elements
for some integer m, denoted Fm, and called “even characteristic.” It is not possible to
convert between the two types of finite field, so the choice of finite field is critical to
interoperability.

The even characteristic implementations offer greater gains in hardware
implementation. However, the odd prime implementations can use the same special-
purpose circuitry that is available for implementations such as RSA encryption. This
can make the odd characteristic a better choice for situations where RSA hardware is
9 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
already in place, or where a hardware developer wants to be able to provide a
platform that supports both RSA and elliptic curve encryption.

For the even characteristic finite field, F2m, there is also a choice of representation. For
these fields, elements can be represented using a polynomial basis, a normal basis, or
some other basis. For some values of m, elements can also be represented in an
optimal normal basis, which is generally more efficient than an ordinary normal basis.
In order for systems that use different bases to communicate, they need to convert
from one representation to another. Each representation has advantages and
disadvantages, including efficiency and potential patent coverage, so in current
elliptic curve standards the choice is typically left to the implementation.

Elliptic Curve Standards
The elliptic curve algorithms in Crypto-C are compliant with the ANSI X9.62
standard. The elliptic curve implementation is also based on the IEEE P1363 draft
standard.

Security Considerations
This section discusses security considerations when using public-key cryptography.
The following issues are discussed: handling private keys, temporary buffers,
pseudo-random numbers and seed generation, choosing passwords, initialization
vectors and salts, DES weak keys, stream ciphers, timing attacks and blinding, and
choosing key sizes.

Handling Private Keys
In public-key cryptography, only the owner of a private key can create a digital
signature or open digital envelopes. However, if someone other than the owner is able
to obtain the private key, the security fails. To ensure that no one other than the owner
has access to a private key, it should be stored encrypted, generally with a password-
based encryption method. An application will decrypt the private key when it is
needed. Always overwrite the memory that held a private key with zeroes or random
bytes immediately after the key has performed its function.

Operating systems will frequently use the hard disk space as virtual memory, so an
unencrypted private key may, through no intention of a user, end up on a hard disk.
Hence, for key buffers, an application should use the operating system’s mechanisms
C h a p t e r 3 C r y p t o g r a p h y 91

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
that ensure allocation of core memory, and not of virtual memory.

It is a good idea to generate new public/private key pairs every so often to thwart
long-term factoring attacks. Material encrypted using the old key pair should be re-
encrypted with the new. However, an application may not have access to all material
protected by an old key pair, so it may be necessary to retain old key pairs in a secure
environment.

Temporary Buffers
Even though a temporary buffer may not contain a private key, it still may hold
sensitive data, such as a message to be encrypted or a symmetric key. Such temporary
buffers require the same security as private-key buffers. After using the data,
overwrite the buffer with zeroes or random bytes. Make sure the operating system
uses core memory and not hard disk virtual memory.

Pseudo-Random Numbers and Seed Generation
Crypto-C uses pseudo-random number algorithms for generating both symmetric
keys and public/private key pairs. The random number generation algorithms are the
same as the message digest algorithms, and are verified to have very high degree of
randomness.

Any method that is employed to generate random values begins with a random seed.
The security issue then becomes one of making sure that an attacker cannot determine
the seed. Generally, any random number generator will produce pseudo-random
numbers, given any seed. Therefore, to generate a random number, you do not need
to start with a seed that is itself random. However, the seed should be “unrepeatable.”
That is, no one should be able to apply some sort of algorithm that can “guess” the
seed in a reasonable amount of time.

For instance, suppose that a message was encrypted using the RC2 cipher with 80
effective key bits from 10 bytes of key data, but that the key data was generated using
an MD5 random byte-generating algorithm with a 4-byte seed. An attacker could try
every possible 10-byte key combination to crack the message, or could try every 4-
byte seed combination to generate 10 bytes of key data. Further, suppose that 4-byte
seed was the time of day. Now the attacker has an even smaller range of possible
seeds to test before finding the right one.

The seed should contain at least as many unrepeatable bits as the key. If the seed is
based on a user’s typing a series of letters and characters on the keyboard, then an
9 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
attacker can predict two or three of the bits in each seed byte. Bit 7, for instance, will
always be 0. Furthermore, many of the keystrokes can be predicted: they will
probably be lowercase letters that alternate between the left and right hand. Analysis
of this issue has determined that there is only one bit of entropy from each keystroke
(think of the term “entropy” as “unrepeatability”). When using keystrokes, use at
least one for each bit of key size.

There are other schemes for finding seed bytes, including tracking mouse movements,
timing keystrokes, “listening” to hardware noise, or capturing machine state
information. Many schemes will provide more than one bit of entropy per byte of
seed; however, it is an easy-to-remember rule of thumb to use as many bytes of seed
data as bits of key.

Whatever the scheme, it may seem unusual to expend more effort to produce a seed
than it will take to produce the random key data itself. Why not simply use the seed
data in the key? The strength of cryptography relies on key data that is random or
pseudo-random. If an attacker knows that the key data is not random, cracking the
cipher becomes easier. The seed will almost certainly not be random. The attacker
may not be able to repeat the seed gathering process exactly, but non-random key
data leaves a cipher algorithm as a whole open to various attacks. Hence, use a large
unrepeatable seed to generate pseudo-random data.

Choosing Passwords
In almost any security application, users are required to have passwords that indicate
authorized access to the system. Often, when given a choice, users choose the same
password for various applications. For instance, they may use their login password to
encrypt a private key. Many times, users will choose passwords an attacker can easily
deduce. Therefore, it is a good idea for developers to build good password protocols
into their applications. Following is a list of possible guidelines for choosing
passwords.

• Enforce a minimum password length, generally eight characters.
• Inform users to avoid easy to guess passwords, such as common names or

birthday dates.
• Check an entered password against a dictionary.
• Require a combination of numeric, special, and upper- and lower-case alphabetic

characters.
• Include support for password expiration dates to limit the available searching

time an attacker has to break into the system.
C h a p t e r 3 C r y p t o g r a p h y 93

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
Initialization Vectors and Salts
Although IVs and salts are not secret information, it is still a good idea to use random
values. If a salt is not random, an attacker will have much fewer precomputations to
make in generating keys from possible password/salt combinations.

An IV should also be used for only one message. Using the same IV with the same key
on two separate messages may provide an attacker with useful information.

DES Weak Keys
Researchers over the years have found that some DES keys are more susceptible to
attack than others. Some of these keys are known as “weak”; others, when used in
pairs, are called “semi-weak.” Using a weak key or a semi-weak pair may not
necessarily pose a security risk; it could depend on the mode of DES. However, it is
simply easier to avoid these keys (listed in Table 3-3) altogether.

Table 3-3 DES Weak and Semi-Weak Keys

0101010101010101

FEFEFEFEFEFEFEFE

1F1F1F1F1F1F1F1F

E0E0E0E0E0E0E0E0

01FE01FE01FE01FE

1FE01FE00EF10EF1

01E001E001F101F1

1FFE1FFE0EFE0EFE

011F011F010E010E

E0FEE0FEF1FEF1FE

FE01FE01FE01FE01

E01FE01FF10EF10E

E001E001F101F101

FE1FFE1FFE0EFE0E

1F011F010E010E01

FEE0FEE0FEF1FEF1
9 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
Stream Ciphers
A stream cipher (such as the RC4 cipher) will create a stream of pseudo-random bytes
based on the secret key; this is known as the key stream. To encrypt, you XOR the
plaintext with the key stream, byte by byte. The XOR operation has the property that
the ciphertext XORed with the same key stream decrypts, restoring the plaintext. This
also means that an XOR operation between the plaintext and the ciphertext will
reproduce the key stream. Hence, knowing or guessing part of the plaintext allows an
attacker to determine the corresponding part of the key stream. This still will not
enable the attacker to deduce the entire key or any more of the key stream, but this
does pose a threat if the same key is used in two different messages.

The same key always produces the same key stream. Therefore, if two messages use
the same key, knowing part of the key stream in one message means knowing the
same part of the key stream in the second message. An attacker can thus determine
some of the plaintext in the second message. That is why you should never use the
same stream cipher key twice.

Incidentally, this attack does not work on block ciphers. Knowledge of part of the
plaintext does not automatically grant to the attacker knowledge of the key.

Another stream cipher attack involves a dictionary of key streams. Suppose you had
kept the key size to 40 bits. An attacker could create a dictionary of the first eight
bytes of the key stream from every possible 40-bit (5-byte) key. Then, the attacker
“decrypts” the first eight bytes of an intercepted message with each possible key
stream, until one produces a reasonable result. The key that generated the stream that
worked is the right one.

To thwart this attack, you can implement salting. Design the application to use an 80-
bit (10-byte) key, but send 40 bits in the clear. That 40 bits in the clear is known as a
salt. For example, in an email application, encrypt the message using the RC4 cipher
with a 10-byte key. Then encrypt the first five bytes of the key using the recipient’s
RSA public key. Now the RSA digital envelope consists of the public-key-encrypted
five secret bytes, five salt bytes sent in the clear and the RC4-encrypted message. In
this way, the attacker’s dictionary is rendered useless. That dictionary is valid for 40-
bit keys, but the message used an 80-bit key. Still, only 40 bits are kept secret. A
dictionary of 80-bit key streams is not feasible — it would require 280 entries. That is
about 1.2 · 1024, or 1.2 times one trillion times one trillion.

Timing Attacks and Blinding
If the time it takes to execute a cryptographic operation varies based on the input
C h a p t e r 3 C r y p t o g r a p h y 95

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
parameters, then in theory, an attacker with access to accurate timings can determine
unknown values. This is the case for RSA, Diffie-Hellman, and DSA operations. For
instance, in an RSA signing operation, purportedly an attacker who knows the
message being signed and exactly how long it takes to create the digital signature can
determine the signer’s RSA private key.

Currently, there is no known successful implementation of such a procedure.
Proposed algorithms under scrutiny either require several absolutely exact timings or
thousands of inexact (but still accurate to the millisecond) timings to succeed.
However, there are two simple ways to guard against this attack. One is to equalize
private key operations, by padding shorter transactions with a few extra milliseconds
to make sure that all times are the same. The second method is known as blinding.

For a timing attack to succeed, the eavesdropper must know that the input being
processed is only altered before the operation is performed and that the true answer is
recovered after the operation by reversing the alteration procedure.

For example, in an RSA signature operation, the input is the BER-encoding of the
digest of the data to sign and some pad bytes. To blind the attacker, that input is
modular multiplied by a secret random number. Then the product, not the input, is
modular exponentiated. To produce the actual signature, the result is modular
multiplied by the inverse of the random number.

In mathematical terms, instead of performing the usual RSA encryption process:

sig = md mod n

pick a random value r and compute:

m' = mre mod n

where e is the public exponent. Now find:

s = (m')d mod n

Then to compute the actual signature, find:

sig = (r-1) · s mod n

In this way, the timing attack fails because the attacker does not know what value was
exponentiated.

To see that the signature is the same in both cases, note that:

r(mre)d mod n = (r�1)(m)d(re)d

 = (r)(red)(md)
9 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
 = (r-1)(r)(md)

 = (1)(md) mod n

Crypto-C offers both blinding and non-blinding RSA private operations through
separate algorithm methods. It currently offers no blinding technique in Diffie-
Hellman or DSA operations.

Crypto-C uses MD5 random number generation to produce the random value r. The
seed is the following digest:

MD5(p || padP || MD5(q || padQ || m))

where p and q are the two primes, padP and padQ are paddings of zeros to make sure
the length is a multiple of 64 bytes, and the symbol || means concatenation. An
attacker will not know what r is without knowing what the seed is, and will not know
what the seed is without knowing what p and q are. An attacker who knows p and q is
not going to implement a timing attack to determine the private key, because
knowledge of p and q is equivalent to knowledge of the private key already.

Choosing Key Sizes
In cryptography, security is measured in key size: the bigger the key, the greater the
security. Key size, in turn, is measured in bits. However, that bit number might not
describe the entire key.

For instance, a DES key is 56 bits. However, that size refers to its cryptographic size,
not its “physical” size. To build a DES key, you need 64 bits, but because eight of
those bits are “parity bits,” that is, bits that are known, out of the 64, you really only
get 56 secret bits. Hence, a DES key, while consisting of 64 bits of data, is only 56
cryptographic bits large.

An RSA key pair measurement describes the modulus length. When cryptographers
talk about a “768-bit RSA key pair,” what they really mean is that the modulus is 768
bits long. The security of an RSA key pair is tied up in how big the modulus is; hence,
the measurement used is the bit size of the modulus. The actual keys themselves will
contain more information than the modulus, so the “physical” size will be much
larger.

In choosing a key size, if larger keys offer greater security, why not simply always
choose the largest possible key? Larger RSA, Diffie-Hellman, DSA, and elliptic curve
keys can slow down cryptographic operations.

For the RC2, RC4, and RC5 ciphers, larger keys generally do not significantly degrade
performance. However, larger keys do require more management.
C h a p t e r 3 C r y p t o g r a p h y 97

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
Table 3-4 gives a summary of the recommended key sizes for the algorithms
supported in Crypto-C. These recommendations were current at the time this manual
went to press. Please note, however, that such recommendations are always
provisional and can be affected by changes in the cryptographic state of the art.

RSA Keys
The security of the RSA algorithm is based on the difficulty of factoring large integers.
Therefore, the choice for the key size depends on the efficiency of integer-factoring
algorithms. Because users will probably want a key pair to last a few years, it is
advisable to choose a size that will not only remain secure against current state of the
art factoring, but will probably defeat improved factoring attempts of the future. The
RSA Laboratories publication, “Frequently Asked Questions About Today’s
Cryptography,” describes current factoring capabilities.

For normal user data, RSA Security recommends a modulus size of 768 bits. For
organization keys or for long-term applications, a 1024-bit modulus is advisable. For
root keys, RSA Security recommends a 2048-bit modulus. This safeguards against

Table 3-4 Summary of Recommended Key Sizes

Algorithm User Key
Organizational or
Long-Term Key Root Key

AES 128 (192 or 256 is also
acceptable)

Diffie-Hellman 768-bit prime 1024-bit prime 2048-bit prime

DSA 768-bit prime 1024-bit prime 2048-bit prime

ECAES 160-170-bit modulus Not recommended
at this time

EC Diffie-Hellman 160-170-bit modulus Not recommended
at this time

ECDSA 160-170-bit modulus Not recommended
at this time

RC2 –––––––––––––––––––––––80-128 effective key bits ––––––––––––––––––––––

RC4 –––––––––––––––––––––––––– 80-128 key bits –––––––––––––––––––––––––

RC5 –––––––––––––––––––––––– 80-128 key bits with
–––––––––––– 16 rounds for 32-bit word or 20 rounds for 64-bit word –––––––––––

RC6 –––––––––––––––––––– 80-128 key bits with 20 rounds –––––––––––––––––––

RSA 768-bit modulus 1024-bit modulus 2048-bit modulus
9 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
progress in factoring algorithms and improvements in computing power.

Diffie-Hellman Parameters and DSA Keys
The security of the Diffie-Hellman algorithm and DSA are both dependent on the
complexity of computing logarithms modulo a prime number. Generally, this is
equivalent to the complexity of the factoring problem, because modern factoring
algorithms generally apply to the discrete logarithm problem. Therefore, the designer
is advised to use similar sizes for the Diffie-Hellman parameters and DSA keys as for
RSA operations: a 768-bit prime for user keys, 1024-bit prime for organizational keys
and a 2048-bit prime for root keys.

Note: The Digital Signature Standard lists a maximum of 1024 bits for DSA, but the
algorithm does not have an inherent limit. Crypto-C’s implementation allows
up to 2048-bit DSA keys.

RC2 Effective Key Bits
A key with 80 to 128 effective key bits is sufficient for most applications using the RC2
algorithm.

RC4 Key Bits
An 80- to 128-bit key is sufficient for most applications using the RC4 cipher.

RC5 Key Bits and Rounds
An 80- to 128-bit key is sufficient for most applications using the RC5 cipher. Note
also that the security of the RC5 cipher is dependent on the number of rounds. For the
RC5 cipher with a 32-bit word size, RSA Security recommends at least 16 rounds for
applications; while no practical attacks are known for 12-round RC5-32, recent
cryptanalytic work suggests 16 rounds is now a more conservative choice. For the
RC5 cipher with a 64-bit word size, RSA Security recommends at least 20 rounds.

Triple DES Keys
It is possible to implement Triple DES with one, two, or three keys. One key in EDE
mode (encrypt-decrypt-encrypt) is equivalent to DES, and is used to provide
compatibility with applications that only understand DES. There are known attacks
against Triple DES using two keys, so RSA Security recommends using three keys.
C h a p t e r 3 C r y p t o g r a p h y 99

Download from Www.Somanuals.com. All Manuals Search And Download.

Security Considerations
Elliptic Curve Keys
For prototyping and evaluation, RSA Security recommends setting the order of the
base point to be between 160 and 170 bits. Currently, RSA Security does not
recommend using elliptic curve cryptography for long-term applications.
1 0 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4

Using Crypto-C
Algorithms in Crypto-C
Whatever algorithm Crypto-C performs, it does so from an algorithm object. An
algorithm object is used to hold information about an algorithm’s parameters and to
keep a context during cryptographic operations.

To build an algorithm object, create an empty object with B_CreateAlgorithmObject.
Then, use B_SetAlgorithmInfo to fill the object with the information necessary to
distinguish it as an object performing the desired operation. The information for
B_SetAlgorithmInfo consists of two elements: an Algorithm Info Type, or AI, and its
specific accompanying info. This chapter gives a brief summary of the AIs
categorized by function.

Chapter 2 of the Reference Manual gives a complete listing of AIs in alphabetical order.
Each entry in the Reference Manual contains a description of information that must
accompany the AI, including keys and algorithm methods.
1 0 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
Information Formats Provided by Crypto-C
There are four types of AIs in Crypto-C. These AIs differ in the format in which they
provide information:

• Basic algorithm info types provide information in Crypto-C’s internal format.
• BER-based algorithm info types provide information in a format that complies

with Open Systems Interconnection’s Basic Encoding Rules.
• PEM-based algorithm info types provide information in a format that complies

with the Privacy Enhanced Mail draft standard.
• BSAFE1 algorithm info types provide information in a format that is backward-

compatible with BSAFE 1.x.

Basic Algorithm Info Types
The basic algorithm is used to start a new process because its info (the accompanying
information specific to the AI) is the simplest to format.

BER-Based Algorithm Info Types
BER-based algorithms are algorithms that comply with Basic Encoding Rules, as
defined in ANSI X.690. BER-based algorithms are necessary because the format of the
info in a basic AI is not standard. Much of the data in cryptography is passed between
two or more individuals. Not every cryptographic application uses Crypto-C, and
other packages may not organize the necessary information the same way. When one
person needs to tell another person which algorithm was used to encrypt, for
instance, there needs to be a standard way to present the information. The standard
description of information is known as Basic Encoding Rules, or BER, which is a
product of Open Systems Interconnection and is defined in ANSI X.690.

BER-based algorithms end with the letters BER. Such AIs will read in or output
information according to the BER.

Unfortunately, BER is often complicated, and it is difficult to determine the proper
BER encoding without a translator. Therefore, it is simpler to use
B_SetAlgorithmInfo to define algorithm objects with the basic algorithm AI, get the
information in BER format using B_GetAlgorithmInfo, and send the BER-encoding to
those who need the information. The recipient will translate the BER information into
something they can understand.

When a Crypto-C application receives information in BER format, it can set using the
BER AI and build an algorithm object to match that information.
1 0 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
PEM-Based Algorithm Info Types
The Privacy Enhanced Mail (PEM) draft standard is a product of the Internet
Activities Board, Network Working Group (see RFC 1421-1424). It defines the proper
formatting of information passed between entities in electronic mail. Formatting
information to follow this standard is fairly simple.

BSAFE1 Algorithm Info Types
The fourth kind of AI ends with BSAFE1. These algorithm info types are only for
backward compatibility with applications using the BSAFE 1.x formats.

Summary of AIs
This section lists all of the algorithm info types offered in RSA BSAFE Crypto-C. A
typical application supplies an algorithm information type as the infoType argument
to B_SetAlgorithmInfo. Algorithm info types are grouped by function into the
following tables.

Table 4-1 Message Digests

Algorithm Info Type Description Standards BER PEM

AI_MD2 MD2 message digest RFC 1319

AI_MD2_BER MD2 message digest; BER-encoded
algorithm identifier

RFC 1319 a

AI_MD2_PEM MD2 message digest with PEM RFC 1423 a

AI_MD5 MD5 message digest RFC 1321

AI_MD5_BER MD5 message digest; BER-encoded
algorithm identifier

RFC 1321 a

AI_MD5_PEM MD5 message digest, PEM-encoded
algorithm identifier

RFC 1423 a

AI_MD Supplied for backward compatibility
with the BSAFE 1.x message digest
algorithm

none

AI_SHA1 SHA1 message digest FIPS PUB 180-1

AI_SHA1_BER SHA1 message digest; BER-
encoded algorithm identifier

FIPS PUB 180-1
C h a p t e r 4 U s i n g C r y p t o - C 1 0 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
Note: Not all message digests are recommended. See “Message Digests” on page 47 for details.

Table 4-2 Message Authentication

Algorithm Info Type Description Standards

AI_MAC BSAFE 1.x message authentication code; supplied for
backward compatibility with BSAFE 1.x

AI_HMAC Hash-Based Message Authentication Code SET Draft

Table 4-3 ASCII Encoding

Algorithm Info Type Description Standards

AI_RFC1113Recode ASCII/binary conversion RFC1113/RFC1421; RFC1521; MIME Base64

Table 4-4 Pseudo-Random Number Generation

Algorithm Info Type Description

AI_MD2Random MD2 pseudo-random number generator

AI_MD5Random MD5 pseudo-random number generator

AI_SHA1Random Identical to AI_X962Random_V0. For forward compatibility,
we recommend that you use AI_X962Random_V0.

AI_X931_Random Generates pseudo-random numbers for RSA key generation in
conformance with ANSI X9.31 standard. This AI is intended for
use with AI_RSAStrongKeyGen only.

AI_X962Random_V0 SHA1 pseudo-random number generator based on X9.62

Table 4-5 Symmetric Stream Ciphers
Some stream ciphers include message authentication codes to detect tampering with the data stream.

Algorithm Info Type Description BER MAC

AI_RC4 RC4

AI_RC4_BER RC4 a
1 0 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
AI_RC4WithMAC RC4 with message authentication code a

AI_RC4WithMAC_BER RC4 with message authentication code;
BER-encoded algorithm identifier

a a

Table 4-6 Symmetric Block Ciphers

Algorithm Info Type Description Padding BER PEM

General Purpose

AI_FeedbackCipher DES, Triple DES, DESX, RC2, or RC5 in
ECB, CBC, CFB, or OFB feedback modes

DES

AI_DES_CBC_IV8 DES-CBC, 8-byte IV none

AI_DES_CBCPadIV8 DES-CBC, 8-byte IV PKCS #5

AI_DES_CBCPadBER DES-CBC, 8-byte IV, BER-encoded
algorithm identifier

PKCS #5 a

AI_DES_CBCPadPEM DES-CBC, 8-byte IV, PEM-encoded
algorithm identifier

RFC 1423 a

AI_DES_CBC_BSAFE1 DES-CBC, 8-byte IV, padding optional;
backward compatibility with BSAFE 1.x

Triple DES

All 3DES algorithms in Crypto-C use the encrypt-decrypt-encrypt (EDE) sequence.

AI_DES_EDE3_CBC_IV8 3DES-CBC

AI_DES_EDE3_CBCPadIV8 3DES-CBC, 8-byte IV PKCS #5

AI_DES_EDE3_CBCPadBER 3DES-CBC, 8-byte IV, BER-encoded
algorithm identifier

PKCS #5 a

DESX

AI_DESX_CBC_IV8 DESX-CBC, 8-byte IV

AI_DESX_CBCPadIV8 DESX-CBC, 8-byte IV PKCS #5

Table 4-5 Symmetric Stream Ciphers
Some stream ciphers include message authentication codes to detect tampering with the data stream.

Algorithm Info Type Description BER MAC
C h a p t e r 4 U s i n g C r y p t o - C 1 0 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
AI_DESX_CBCPadBER DESX-CBC, 8-byte IV, BER-encoded
algorithm identifier

PKCS #5 a

AI_DESX_CBC_BSAFE1 DESX-CBC, 8-byte IV, padding optional;
backward compatibility with BSAFE 1.x

RC2

AI_RC2_CBC RC2-CBC, 8-byte IV

AI_RC2_CBCPad RC2-CBC, 8-byte IV PKCS #5

AI_RC2_CBCPadBER RC2-CBC, 8-byte IV, BER-encoded
algorithm identifier

PKCS #5 a

AI_RC2_CBCPadPEM RC2-CBC, 8-byte IV, PEM-encoded
algorithm identifier

RFC 1423 a

AI_RC2_CBC_BSAFE1 RC2-CBC, 8-byte IV, padding optional;
backward compatibility with BSAFE 1.x

RC5

AI_RC5_CBC RC5-CBC, 8-byte IV

AI_RC5_CBCPad RC5-CBC, 8-byte IV PKCS #5

Initialization Vector

AI_CBC_IV8 Resets the IV in a CBC algorithm during
an Update or a Final for all CBC AIs
except AI_FeedbackCipher

AI_RESET_IV Resets the IV in a CBC algorithm during
an Update or a Final for all CBC
implementations of AI_FeedbackCipher

Password-Based Encryption

These composite algorithms generate a symmetric key by digesting a password with a salt, then using
the key for block cipher encryption.

Not all message digests are recommended. See “Message Digests” on page 47 for details.

AI_MD2WithDES_CBCPad MD2 digest followed by DES-CBC PKCS #5

AI_MD2WithDES_CBCPadBER MD2 digest followed by DES-CBC,
BER-encoded algorithm identifier

PKCS #5 a

AI_MD2WithRC2_CBCPad MD2 digest followed by RC2-CBC PKCS #5

Table 4-6 Symmetric Block Ciphers (Continued)

Algorithm Info Type Description Padding BER PEM
1 0 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
AI_MD2WithRC2_CBCPadBER MD2 digest followed by RC2-CBC,
BER-encoded algorithm identifier

PKCS #5 a

AI_MD5WithDES_CBCPad MD5 digest followed by DES-CBC PKCS #5

AI_MD5WithDES_CBCPadBER MD5 digest followed by DES-CBC,
BER-encoded algorithm identifier

PKCS #5 a

AI_MD5WithRC2_CBCPad MD5 digest followed by RC2-CBC PKCS #5

AI_MD5WithRC2_CBCPadBER MD5 digest followed by RC2-CBC,
BER-encoded algorithm identifier

PKCS #5 a

AI_MD5WithXOR MD5 digest followed by XOR for
encryption

not
needed

AI_MD5WithXOR_BER MD5 digest followed by XOR for
encryption, BER-encoded algorithm
identifier

not
needed

a

AI_SHA1WithDES_CBCPad SHA1 digest followed by DES-CBC PKCS #5

AI_SHA1WithDES_CBCPadBER SHA1 digest followed by DES-CBC,
BER-encoded algorithm identifier

PKCS #5 a

Table 4-7 RSA Public-Key Cryptography

Algorithm Info Type Description Pad BER PEM

Key Generation

AI_RSAKeyGen Key generation for RSA key pair

AI_RSAStrongKeyGen Key generation for RSA key pair; the
generated moduli are in accordance with
the strength criteria of the FIPS X9.31
standard

AI_RSAMultiPrimeKeyGen Key generation for a MultiPrime RSA
public/private key pair in accordance with
PKCS #1

Encryption and Decryption

AI_PKCS_OAEP_RSAPrivate RSA private-key encryption/decryption
with OAEP in accordance with PKCS #1

PKCS #1
v2 OAEP

Table 4-6 Symmetric Block Ciphers (Continued)

Algorithm Info Type Description Padding BER PEM
C h a p t e r 4 U s i n g C r y p t o - C 1 0 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
AI_PKCS_OAEP_RSAPrivateBER RSA private-key encryption/decryption
with OAEP in accordance with PKCS #1,
BER-encoded algorithm identifier

PKCS #1
v2 OAEP

a

AI_PKCS_OAEP_RSAPublic RSA public-key encryption/decryption with
OAEP in accordance with PKCS #1

PKCS #1
v2 OAEP

AI_PKCS_OAEP_RSAPublicBER RSA public-key encryption/decryption with
OAEP in accordance with PKCS #1,
BER-encoded algorithm identifier

PKCS #1
v2 OAEP

a

AI_SET_OAEP_RSAPrivate RSA private-key encryption with OAEP in
accordance with the SET v1 protocol

SET v1
OAEP

AI_SET_OAEP_RSAPublic RSA public-key encryption with OAEP in
accordance with the SET v1 protocol

SET v1
OAEP

AI_PKCS_RSAPrivate RSA private-key encryption/decryption
according to PKCS #1

PKCS #1
v1.5

AI_PKCS_RSAPrivateBER RSA private-key encryption/decryption
according to PKCS #1, BER-encoded
algorithm identifier

PKCS #1
v1.5

a

AI_PKCS_RSAPrivatePEM RSA private-key encryption/decryption
according to PKCS #1, PEM-encoded
algorithm identifier

PKCS #1
v1.5

a

AI_PKCS_RSAPublic RSA public-key encryption/decryption
according to PKCS #1

PKCS #1
v1.5

AI_PKCS_RSAPublicBER RSA public-key encryption/decryption
according to PKCS #1, BER-encoded
algorithm identifier

PKCS #1
v1.5

a

AI_PKCS_RSAPublicPEM RSA public-key encryption/decryption
according to PKCS #1, PEM-encoded
algorithm identifier

PKCS #1
v1.5

a

AI_RSAPrivate Raw RSA private-key encryption;
input must be a multiple of word size

none

AI_RSAPublic Raw RSA public-key encryption;
input must be a multiple of word size

none

AI_RSAPrivateBSAFE1 BSAFE 1.x RSA private-key encryption,
padding optional

AI_RSAPublicBSAFE1 BSAFE 1.x RSA public-key encryption

Table 4-7 RSA Public-Key Cryptography (Continued)

Algorithm Info Type Description Pad BER PEM
1 0 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
Digital Signatures

Composite operations for signing data: digest the data, then encrypt the BER encoding of the digest with
RSA.

BER-encoded digest is 34 bytes for 16-bit digests (MD2, MD5); min. RSA modulus is 45 bytes long.
BER-encoded digest is 35 bytes for 20-byte digests (SHA1); min. RSA modulus is 46 bytes long.

AI_MD2WithRSAEncryption MD2 digest with RSA encryption PKCS #1

AI_MD2WithRSAEncryptionBER MD2 digest with RSA encryption,
BER-encoded algorithm identifier

PKCS #1 a

AI_MD5WithRSAEncryption MD5 digest with RSA encryption PKCS #1

AI_MD5WithRSAEncryptionBER MD5 digest with RSA encryption,
BER-encoded algorithm identifier

PKCS #1 a

AI_SHA1WithRSAEncryption SHA1 digest with RSA encryption PKCS #1

AI_SHA1WithRSAEncryptionBER SHA1 digest with RSA encryption,
BER-encoded algorithm identifier

PKCS #1 a

Table 4-8 DSA Public-Key Cryptography

Algorithm Info Type Description BER

Parameter Generation

AI_DSAParamGen DSA parameter generation

Key Generation

AI_DSAKeyGen DSA key generation

Digital Signatures

AI_DSA DSA sign/verify a 20-byte input

AI_DSAWithSHA1 SHA1 digest with DSA sign/verify

AI_DSAWithSHA1_BER SHA1 digest with DSA sign/verify,
BER-encoded algorithm identifier

a

Table 4-7 RSA Public-Key Cryptography (Continued)

Algorithm Info Type Description Pad BER PEM
C h a p t e r 4 U s i n g C r y p t o - C 1 0 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
Table 4-9 Diffie-Hellman Key Agreement

Algorithm Info Type Description BER

Parameter Generation

AI_DHParamGen Diffie-Hellman parameter generation

Key Agreement

AI_DHKeyAgree Diffie-Hellman key agreement

AI_DHKeyAgreeBER Diffie-Hellman key agreement, BER-encoded
algorithm identifier

a

Table 4-10 Elliptic Curve Public-Key Cryptography

Algorithm Info Type Description

Parameter Generation

AI_ECParamGen EC parameter generation

AI_ECParameters EC parameter use and access

AI_ECParametersBER EC BER parameter use and access

Acceleration Tables

AI_ECAcceleratorTable Acceleration table use and access

AI_ECBuildAcceleratorTable Generates auxiliary data to speed EC operations

AI_ECBuildPubKeyAccelTable Generates auxiliary data to speed EC operations, including
ECDH-specific operations

AI_ECPubKey Generates auxiliary data to speed EC operations for a
specific public-key

AI_ECPubKeyBER Specifies public key and underlying EC parameters to build an
acceleration table

Key Generation

AI_ECKeyGen EC key pair generation

Elliptic Curve Diffie-Hellman

AI_EC_DHKeyAgree Two-phase EC Diffie-Hellman key agreement
1 1 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
Elliptic Curve DSA

AI_EC_DSA Raw ECDSA signature/verification

AI_EC_DSAWithDigest SHA1 digest followed by ECDSA signature/verification

Elliptic Curve Authenticated Encryption System

AI_EC_ES EC Authenticated Encryption System

Table 4-11 Bloom-Shamir Secret Sharing

Algorithm Info Type Description

AI_BSSecretSharing Bloom-Shamir secret sharing

Table 4-12 Hardware Interface
For use with hardware devices, when present. For information on the Intel hardware
security primitives, see the Intel Security Hardware User’s Guide, available on the Crypto-C
CD. For information on other hardware devices, see the documentation from your hardware manufacturer.

Algorithm Info Type Description

AI_HW_Random Provides access to random bytes generated by a hardware
device

AI_KeypairTokenGen Generates the token form of an RSA or DSA public/private
key pair

AI_SymKeyTokenGen Generates the token form of a DES, RC2, RC4, RC5, or TDES
symmetric key

AI_PKCS_OAEPRecode RSA raw or hardware encryption/decryption with OAEP
according to PKCS #1

AI_PKCS_OAEPRecodeBER RSA raw or hardware encryption/decryption with OAEP
according to PKCS #1
BER-encoded algorithm identifier

Table 4-10 Elliptic Curve Public-Key Cryptography (Continued)

Algorithm Info Type Description
C h a p t e r 4 U s i n g C r y p t o - C 1 1 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Algorithms in Crypto-C
Table 4-13 Advanced Encryption Standard (AES)

Algorithm Info Type Description

AI_AES_CBC AES encryption or decryption in CBC mode. No padding.

AI_AES128_CBC AES encryption or decryption in CBC mode. No padding.

AI_AES192_CBC AES encryption or decryption in CBC mode. No padding.

AI_AES256_CBC AES encryption or decryption in CBC mode. No padding.

AI_AES_CBCPad AES encryption or decryption in CBC mode. PKCS #5 padding.

AI_AES128_CBCPad AES encryption or decryption in CBC mode. PKCS #5 padding.

AI_AES192_CBCPad AES encryption or decryption in CBC mode. PKCS #5 padding.

AI_AES256_CBCPad AES encryption or decryption in CBC mode. PKCS #5 padding.

AI_AES_ECB AES encryption or decryption in EBC mode.

AI_AES128_ECB AES encryption or decryption in EBC mode.

AI_AES192_ECB AES encryption or decryption in EBC mode.

AI_AES256_ECB AES encryption or decryption in EBC mode.

AI_AES_CFB AES encryption or decryption in CFB mode.

AI_AES128_CFB AES encryption or decryption in CFB mode.

AI_AES192_CFB AES encryption or decryption in CFB mode.

AI_AES256_CFB AES encryption or decryption in CFB mode.

AI_AES128_CBCPadBER Similar to AI_AES128_CBCPad but uses ASN.1 BER format.

AI_AES192_CBCPadBER Similar to AI_AES192_CBCPad but uses ASN.1 BER format

AI_AES256_CBCPadBER Similar to AI_AES256_CBCPad but uses ASN.1 BER format

AI_AES128_ECB_BER Similar to AI_AES128_ECB but uses ASN.1 BER format

AI_AES192_ECB_BER Similar to AI_AES192_ECB but uses ASN.1 BER format

AI_AES256_ECB_BER Similar to AI_AES256_ECB but uses ASN.1 BER format

AI_AES128_CFB_BER Similar to AI_AES128_CFB but uses ASN.1 BER format

AI_AES192_CFB_BER Similar to AI_AES192_ CFB but uses ASN.1 BER format

AI_AES256_CFB_BER Similar to AI_AES256_CFB but uses ASN.1 BER format
1 1 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Keys In Crypto-C
Keys In Crypto-C
The key object is used to hold any key-related information and to supply this
information to functions that require it. To build a key, create an empty key object
with B_CreateKeyObject. Then, use B_SetKeyInfo to fill it with the information
necessary to distinguish it as the desired key. That information for B_SetKeyInfo is
made up of two items, a Key Info Type (KI) and its specific accompanying info.

Chapter 3 of the Crypto-C Reference Manual (RM) gives a complete listing of KIs in
alphabetical order. Each entry in the Reference Manual contains a description of the
information that must accompany the KI.

Summary of KIs
Refer to the following tables, organized by function, for a list of Crypto-C KIs.

Table 4-14 Generic Keys

Key Information Type Description

KI_8Byte Generic 8-byte key

KI_16Byte Generic 16-byte key

KI_24Byte Generic 24-byte key

KI_32Byte Generic 32-byte key

KI_Item Generic variable-length key

Table 4-15 Block Cipher Keys

Key Information Type Description

KI_DES8 8-byte DES key satisfying DES parity requirement

KI_DES8Strong 8-byte DES key satisfying DES parity requirement;
checks for weak DES keys

KI_24Byte 24-byte 3DES key

KI_DES24Strong 24-byte 3DES key; checks for weak 3DES keys

KI_DES_BSAFE1 8-byte DES in BSAFE1.x format

KI_DESX DESX key

KI_DESX_BSAFE1 DESX key in BSAFE 1.x format
C h a p t e r 4 U s i n g C r y p t o - C 1 1 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Keys In Crypto-C
KI_RC2_BSAFE1 RC2 key in BSAFE 1.x format

KI_RC2WithBSAFE1Params RC2 key with additional parameters in BSAFE 1.x
format

Table 4-16 RSA Public and Private Keys

Key Information Type Description BER

KI_PKCS_RSAMultiPrimePrivate PKCS #1-compatible RSA private key

KI_PKCS_RSA_Private PKCS #1-compatible RSA private key

KI_PKCS_RSA_PrivateBER BER encoding of an RSA private key of type PKCS #8
PrivateKeyInfo

a

KI_RSAPrivate RSA private key

KI_RSAPrivateBSAFE1 RSA private key in BSAFE 1.x format

KI_RSA_CRT RSA key with Chinese Remainder Theorem (CRT)
parameters

KI_RSAPublic RSA public key

KI_RSAPublicBER BER encoding of an RSA public key of type X.509
SubjectPublicKeyInfo

a

KI_RSAPublicBSAFE1 RSA public key in BSAFE 1.x format

Table 4-17 DSA Public and Private Keys

Key Information Type Description BER

KI_DSA_Private DSA private key

KI_DSA_PrivateBER BER-encoding of a DSA private key of type PKCS #8 a

KI_DSA_Public DSA public key

KI_DSA_PublicBER BER-encoding of a DSA private key of type X.509
SubjectPublicKeyInfo

a

KI_DSAPrivateX957BER BER encoding of a DSA private key of type ANSI
X9.57 PrivateKeyInfo that contains an RSA Security
DSAPrivateKey type

a

KI_DSAPublicX957BER the encoding of a DSA public key that is encoded as
ANSI X9.57 SubjectPublicKeyInfo type.

a

Table 4-15 Block Cipher Keys

Key Information Type Description
1 1 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Keys In Crypto-C
Table 4-18 Elliptic Curve Keys

Key Information Type Description

KI_ECPrivate EC private key and underlying EC parameters

KI_ECPrivateBER BER-encoded EC private key and underlying EC parameters

KI_ECPrivateComponent Private component of an EC private key

KI_ECPrivateComponentBER Private component of a BER-encoded EC private key

KI_ECPublic EC public key and underlying EC parameters

KI_ECPublicBER BER-encoded EC public key and underlying EC parameters

KI_ECPublicComponent Public component of an EC public key

KI_ECPublicComponentBER Public component of a BER-encoded EC public key

Table 4-19 Token Keys
For use with hardware devices, when present.

Key Information Type Description

KI_ExtendedToken Software-based token form of symmetric keys

KI_KeypairToken Software-based token forms of RSA or DSA public and private
keys

KI_Token Hardware-based token forms of symmetric and public/private
keys
C h a p t e r 4 U s i n g C r y p t o - C 1 1 5

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
System Considerations In Crypto-C

Algorithm Choosers
When you use an AI, it in turn calls one or more algorithm methods. An algorithm
method (or AM) is the underlying code that will actually perform the cryptography.
Because many AIs can perform more than one cryptographic function (for instance,
both encryption and decryption, as with AI_FeedbackCipher), an application will
often have a choice of which underlying cryptographic code to link in. An algorithm
chooser lists all the AMs the application can use. That is, it chooses in advance which
AMs to link in.

Crypto-C comes with a demonstration application containing the algorithm chooser
DEMO_ALGORITHM_CHOOSER. You can use this algorithm chooser in any Crypto-C
application as long as the module that defines it (choosc.c) is compiled and linked in.
However, DEMO_ALGORITHM_CHOOSER will link in all the algorithm methods available,
even though an application may use only two or three. A developer can write an
algorithm chooser tailored for the specific application to make the executable image
smaller.

The section “Defining an Algorithm Chooser” in the Reference Manual says: “An
algorithm chooser is an array of pointers to B_ALGORITHM_METHOD values. The last
element of the array must be (B_ALGORITHM_METHOD *)NULL_PTR.”

From this we see that an algorithm chooser is a pointer to an array. This array
contains pointers to algorithm methods, which are the AMs the application will use.

To determine which AMs to include in your algorithm chooser, you need to know
which AIs you will use in your application. Next, for each AI, find the Chapter 2 entry
in the Reference Manual and look at the AMs listed under the heading “Algorithm
methods to include in application’s algorithm chooser.” Finally, based on how your
application uses the given AI, decide which of those AMs you need to include in your
algorithm chooser.

An Encryption Algorithm Chooser
The section “Introductory Example” on page 9 describes a program that encrypted
data and did nothing else. It did not decrypt data, generate random numbers, execute
the Diffie-Hellman key agreement protocols, or use elliptic curve cryptography.
Therefore, the only cryptographic tools the program needed was encryption code.
And the only kind of encryption code it needed was RC4 encryption, not DES, RC2,
1 1 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
RC5, or RSA encryption. So we could have built an algorithm chooser that included
only one AM, the one we used for RC4 encryption.

To find the AM we need, look at the Reference Manual, Chapter 2, for the entry on the
AI in use. We used AI_RC4. The Reference Manual states that for this AI, the possible
AMs are AM_RC4_ENCRYPT for encrypting and AM_RC4_DECRYPT for decrypting. Because
we did not decrypt, our algorithm chooser only needs to include AM_RC4_ENCRYPT:

The last entry of an algorithm chooser must be (B_ALGORITHM_METHOD *)NULL_PTR.

As an argument in a Crypto-C function call, it would look like this.

An RSA Algorithm Chooser
In this example, we will build an algorithm chooser for the example in “Performing
RSA Operations” on page 214. We want to include all the AMs for generating an RSA
key pair, encrypting, and decrypting. We need the following: a random number
generator, a key pair generator, an RSA public encryption algorithm, and an RSA
private decryption algorithm. (Although the example doesn’t directly include a
random-number generator, it calls on the one from “Generating Random Numbers”
on page 165.)

The AIs used in the example are: AI_X962Random_V0 (also known as AI_SHA1Random),
AI_RSAKeyGen, AI_PKCS_RSAPublic, and AI_PKCS_RSAPrivate.

Note: AI_SHA1Random is identical to AI_X962Random_V0. The name AI_SHA1Random is
used in the demo applications; however, AI_SHA1Random may change in future
versions of Crypto-C. For forward compatibility, we recommend that you do
not use the name AI_SHA1Random in your applications; use AI_X962Random_V0
instead.

From the corresponding entries in Chapter 2 of the Reference Manual, you can
construct the following algorithm chooser. Note that you should reference the

B_ALGORITHM_METHOD *INTRODUCTORY_CHOOSER[] = {
 &AM_RC4_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_<function> (
 <arguments>, INTRODUCTORY_CHOOSER,
 <other arguments>)) != 0)
 break;
C h a p t e r 4 U s i n g C r y p t o - C 1 1 7

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
description of AI_X962Random_V0 instead of AI_SHA1Random:

Note: The previous algorithm chooser lists AM_RSA_CRT_DECRYPT. This AM will
not perform blinding (see “Timing Attacks and Blinding” on page 95). If you
want your application to perform blinding, use
AM_RSA_CRT_ENCRYPT_BLIND or AM_RSA_CRT_DECRYPT_BLIND.

The Surrender Context
Some Crypto-C functions are time-consuming. When an application calls one of these
functions, it can appear as if the computer has crashed or frozen. A lengthy Crypto-C
function can tie up the computer, forcing other applications or programs to wait until
the Crypto-C function is finished to continue their execution. The surrender context is
a way for an application to allow Crypto-C to surrender control.

In general, it is a good idea to include a surrender context whenever a function takes
several seconds to execute. The following functions are extremely time-consuming:

• Functions for parameter generation
• Functions for key generation
• Functions for creating acceleration tables

Other functions are less time-consuming and might not need a surrender context in
your application. These include many of the block-cipher and stream-cipher
symmetric-key operations as well as message digests.

Note: Using a surrender context with private-key operations (such as signing or
opening a digital envelope) makes your key more susceptible to a timing
attack. You may want to pass in a NULL surrender context for private key
operations for security reasons.

The surrender context information is contained in an A_SURRENDER_CTX structure. The
file aglobal.h gives the definition; this is described in Chapter 1 of the Reference
Manual:

B_ALGORITHM_METHOD *RSA_SAMPLE_CHOOSER[] = {
 &AM_SHA_RANDOM,
 &AM_RSA_KEY_GEN,
 &AM_RSA_ENCRYPT,
 &AM_RSA_CRT_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
1 1 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
Chapter 1 also gives the form that a surrender function must have:

If you define a surrender function within the surrender context, Crypto-C functions
will call it at regular intervals during execution. Depending on the application, the
surrender function can perform one of a number of operations.

For example, a surrender function can:

• Notify the user of the current status of execution, either once at the beginning or
once every second, for instance.

• Allow the user to cancel the operation.
• Suspend the Crypto-C function to allow other operations to execute.

Even when you do not need a surrender function to manage lengthy function calls,
you can create one to perform other tasks. For example, you could use a surrender
function to allow other applications to cut into a Crypto-C routine, no matter how
quickly the routine executes. A surrender context is a potent debugging tool as well.

A Sample Surrender Function
As an example, we will construct a surrender function that announces the start of a
Crypto-C function, and prints out a dot on the screen every second.

typedef struct {
 int (*Surrender) (POINTER); /* surrender function callback */
 POINTER handle; /* application-specific information */
 POINTER reserved; /* reserved for future use */
} A_SURRENDER_CTX;

int (*Surrender) (
 POINTER handle /* application-specific information */
);

#include <time.h>

int GeneralSurrenderFunction (handle)
POINTER handle;
{
 static time_t currentTime;
 time_t getTime;
C h a p t e r 4 U s i n g C r y p t o - C 1 1 9

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
A routine that calls Crypto-C functions would use the above surrender function as
follows:

For this surrender function, the handle contains a flag passed from the user. If handle
is 0, this is the first time the surrender function has been called by the particular
Crypto-C routine currently executing. Then the surrender function will reset the flag
and the next time it is called, it will skip the if clause and execute the else clause.

The coding examples in this manual use the example in this section as their surrender
context. The examples also note when a routine is lengthy enough to warrant use of a
surrender context. When a surrender context is not necessary, you can pass a properly
cast NULL_PTR.

Saving State
Crypto-C v5.1 offers two new functions: B_GetAlgorithmState and
B_SetAlgorithmState. Use these functions to “serialize” (create and use) an algorithm

 if ((int)*handle == 0) {
 printf (“\nSurrender function ...\n”);
 *handle = 1;
 time (¤tTime);
 }
 else {
 time (&getTime);
 if (currentTime != getTime) {
 printf “ .");
 currentTime = getTime;
 }
 }
 return (0);
}

A_SURRENDER_CTX generalSurrenderContext;
int generalFlag;
generalSurrenderContext.Surrender = GeneralSurrenderFunction;
generalSurrenderContext.handle = (POINTER)&generalFlag;
generalSurrenderContext.reserved = NULL_PTR;
generalFlag = 0;

if ((status = B_<function>
 (<other arguments>, &generalSurrenderContext)) != 0)
 break;
1 2 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
object. When you call B_GetAlgorithmState, you receive a buffer that contains all of
the data necessary to reconstruct the object, using the call B_SetAlgorithmState, to
the state it was in at the time of calling the Get routine (B_GetAlogorithmState).

This is useful in SSL, for example. The SSL protocol at one point requires the user to
finish digesting data (B_DigestFinal), yet retain the digest state so that it is possible to
continue as if the final digesting had never taken place. With these two new function
calls, you can get the state, call the Final routine, and then create a new object with
the saved value and continue on as if the Final routine never took place. You can use
this feature when performing message digests, RC4, or in Diffie-Hellman key
agreement.

The state value for Diffie-Hellman is actually the BER encoding following this ASN.1
definition.

When to Allocate Memory
Whenever you use Crypto-C, you will produce output. The output might be
encrypted or decrypted data, or information you are retrieving concerning keys or
algorithms. This output must go somewhere; there must be memory that is allocated
to hold it. If memory is not allocated for a particular output, the computer will still try
to put the output somewhere, possibly in a location that already contains other data
or programs. When is it the application’s responsibility to allocate memory and when
will Crypto-C do the allocating?

The application must allocate memory whenever a Crypto-C function produces
output and the prototype indicates that the output argument is a pointer (for instance,
POINTER or unsigned char *). In this situation, Crypto-C asks for a pointer and places
the output at the address indicated by the pointer. It is the application’s responsibility
to make sure that the pointer points to allocated memory.

Crypto-C allocates memory whenever a function produces output and the prototype
indicates the output argument is a pointer to a pointer (for instance, POINTER *). Here,
Crypto-C asks for the address of a pointer. Crypto-C goes to that address and deposits
a pointer there. If the application goes to where the pointer points, it will find the

SEQUENCE {
 OBJECT IDENTIFIER dhOID,
 INTEGER prime,
 INTEGER base,
 INTEGER maxExponentBits,
 INTEGER publicValue,
 INTEGER privateValue }
C h a p t e r 4 U s i n g C r y p t o - C 1 2 1

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
information it is looking for. This information, though, belongs to Crypto-C;
subsequent Crypto-C calls can alter or erase it. If an application needs to save the
information, it should copy it into its own buffer or allocated space. See “Distributing
Diffie-Hellman Parameters” on page 253 for an example.

Note: Crypto-C will sometimes call for an unsigned int argument and other times
an unsigned int *. For unsigned int, Crypto-C is expecting a number; for
unsigned int *, Crypto-C will supply the number, so you just supply the
address of an int variable.

Memory-Management Routines
Crypto-C uses the following memory-management routines:

• T_malloc

• T_realloc

• T_free

• T_memset

• T_memcpy

• T_memmove

• T_memcmp

Sample implementations of these routines reside in the memory management file,
tstdlib.c, supplied with Crypto-C. See the final section of Chapter 4 in the Reference
Manual for descriptions and prototypes of these routines. You can also write your
own versions of these routines to satisfy the needs of your operating system or
application. It is a good idea to examine tstdlib.c before writing your own code.

Supplying memory management routines with Crypto-C provides several
advantages:

• Reduced dependency on standard C libraries
• Increased control over memory allocation
• Increased ability to handle binary data

Memory-Management Routines and Standard C Libraries
The memory-management routines in tstdlib.c organize the arguments to the
standard call to best suit Crypto-C’s purposes. They do type checking and verify that
the arguments follow the Crypto-C conventions. This helps you to keep your code
portable, because any call to these routines will behave uniformly, regardless of
platform. This uniform behavior best suits the needs of Crypto-C.
1 2 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
Some applications may need to be completely autonomous; that is, they should have
no need to link in any external libraries. As far as possible, the Crypto-C library is
autonomous, but Crypto-C does need the functionality of certain standard C library
routines, such as malloc. For Crypto-C to remain autonomous, the user must supply
these routines.

The routines in tstdlib.c do call the standard C library routines, so to use tstdlib.c
you must still link in the standard C library. If your application does not need to be
autonomous, you can use these supplied versions of the T_ routines. If, however, your
application will eventually require autonomy, you can supply versions of the T_
routines that do not call the standard C library.

If a particular platform and compiler offers an optimized version or simply a
platform-specific version of one or more of the memory management routines,
Crypto-C can call that routine without requiring a change in the source code. You
only have to modify the module containing the memory management routines.

Memory Allocation
For security reasons, it is often important that space be allocated from core memory,
not a hard disk virtual memory. If an application makes a call to the standard malloc
or alloc, the operating system may decide to use virtual memory. The T_malloc call
can be made to guarantee core memory allocation and never virtual memory.

Binary Data
Remember that the C calls beginning with str, such as strlen and strcpy, operate on
strings. Length is not a necessary input argument; instead, the function acts on
everything from the beginning of the string to the NULL-terminating character.
However, the output from a Crypto-C call is a block of memory, not a string. Even if
the data to encrypt is a string, the encrypted data is not. Similarly, data that has been
decrypted will not be a properly terminated string unless the NULL-terminating
character was encrypted as well.

The mem routines supplied with Crypto-C, such as T_memcpy and T_memset, address
this problem. They operate on blocks of memory and need to know how many bytes
to act on. Whether or not there is a NULL-terminating character in the block of memory
does not matter.

BER/DER Encoding
Much of the data in cryptographic applications needs to be passed between two or
C h a p t e r 4 U s i n g C r y p t o - C 1 2 3

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
more individuals. For example, users may need to transmit a public key, elliptic curve
parameters, or an algorithm name. Not everyone uses Crypto-C, and how
information is processed in Crypto-C may be different from another company’s
package. There needs to be a standard for describing certain information. BER/DER is
such a standard.

Open Systems Interconnection (OSI, described in ANSI’s X.200) is an internationally
standardized architecture that governs the interconnection of computers from the
physical layer up to the user-application layer. OSI’s method of specifying abstract
objects is called ASN.1 (Abstract Syntax Notation One, defined in X.680), and one set
of rules for representing such objects as strings of ones and zeros is called BER (Basic
Encoding Rules, defined in X.680). There is generally more than one way to BER-
encode a given value, so another set of rules, called the Distinguished Encoding Rules
(DER), which is a subset of BER, gives a unique encoding to each ASN.1 value. The
PKCS document includes “A Layman’s Guide to a Subset of ASN.1, BER and DER,”
which is more accessible than the actual standard.

If your application must transfer information to another computer or software
package, you may need to convert the data into BER-encoded format before you send
it. Crypto-C offers a way to get information into DER format, using
B_GetAlgorithmInfo or B_GetKeyInfo with the BER version of the AI or KI used to set
the algorithm or key object.

The following example corresponds to the file berder.c.

In the “Introductory Example” on page 9, we set the algorithm object to AI_RC4. The
Reference Manual Chapter 2 entry on this AI reports that a compatible representation is
AI_RC4BER. That AI provides the BER-encoded algorithm identifier for the RC4
algorithm. Look up the Reference Manual Chapter 4 entry for B_GetAlgorithmInfo.
This function takes three arguments: an address for Crypto-C to deposit a pointer to
the info, the algorithm object from which we are getting the info and the info type.

The Reference Manual Chapter 2 entry on AI_RC4BER tells us that the info returned by
B_GetAlgorithmInfo is a pointer to an ITEM. The type ITEM is defined in aglobal.h as:

We will declare a variable to be a pointer to an ITEM and use its address as the info
argument. The prototype calls for the address of a POINTER, not the address of a
pointer to an ITEM, so type casting is necessary.

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
1 2 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
Crypto-C returns a pointer to the location where we can find the info, not the info
itself. When we destroy the object, that info will disappear. If we want to save it, we
have to copy it over into our own buffer, the memory for which we must allocate.

Remember to use T_free to free any memory you allocated with T_malloc when you
are done with it.

Now, if we need to let anyone know what algorithm we used to encrypt, we can send
the BER-encoded algorithm identifier.

For additional examples that use BER, see “Distributing an RSA Public Key” on
page 223 and “Distributing Diffie-Hellman Parameters” on page 253.

Note: BER-encoding does not put data into an ASCII string; it is simply a standard
way of describing certain universal objects. To convert binary data to and
from an ASCII string (to e-mail it, for example) see “Converting Data Between
Binary and ASCII” on page 172.

Note: Conversion into BER or DER is known as BER-encoding or DER-encoding;
the conversion between binary and ASCII is known as encoding and
decoding. This may get confusing, but the word encoding, without a BER in
front of it, generally means binary to ASCII. If the encoding is BER- or DER-
encoding, the BER or DER should be explicitly stated.

ITEM *getInfoBER;
ITEM infoBER;

infoBER.data = NULL_PTR;

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&getInfoBER, encryptionObject,
 AI_RC4_BER)) != 0)
 break;

infoBER.len = getInfoBER–>len;
infoBER.data = T_malloc (infoBER.len);
if ((status = (infoBER.data == NULL_PTR)) != 0)
 break;

T_memcpy (infoBER.data, getInfoBER->data, infoBER.len);
C h a p t e r 4 U s i n g C r y p t o - C 1 2 5

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
Input and Output
Some of the AI entries in the Reference Manual include the categories “Input
Constraints” and “Output Considerations”:

• Input constraints generally describe the input requirements of the algorithm
specified by the AI.

• Output considerations warn you that there may be more (or fewer) output bytes
than input bytes.

Two algorithm types that typically have input constraints or output considerations
are symmetric block algorithms and the RSA algorithm.

Symmetric Block Algorithms
Symmetric block algorithms may have both input constraints and output
considerations.

Input constraints
• In symmetric block-encryption algorithms, the total number of input bytes must

be a multiple of the block size. That does not mean the input to each call to an
Update function must be a multiple of the block size, just the total.
For instance, with the RC2 algorithm, the block size is eight bytes. You can pass 23
bytes in the first call to Update, then 18, then 7, for a total of 48.

Output considerations
• For a symmetric block-encryption algorithm, the output from each Update call

may be different from the input size.
In the previous example, the RC2 algorithm was able to process 16 of the first 23
bytes but saved 7 in a buffer. The input was 23, but the output was 16. During the
second call to Update, Crypto-C had the 18 new input bytes plus the old 7, or 25
bytes to work with. It could process 24 (and save 1). Hence, the input was 18, but
the output was 24 bytes long. The last 7 input bytes combined with the saved 1
byte make up the final 8-byte block. It is important to allow for this difference in
length between output and input in your application.

• In addition to the difference in size during Updates, the overall data size can
differ between input and output.
1 2 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
Crypto-C offers padding for the symmetric block-encryption algorithms, which
have no restrictions on the total input length. Padding means that the total length
of the encrypted data can be as many as eight bytes more than the total length of
the input.

Note: For algorithm info types that supply padding, Crypto-C will pad even if the
input is a multiple of the block size. This way, when decrypting, Crypto-C
knows that the last byte is guaranteed to be a pad byte. For AIs that use PKCS
#5 padding, the last byte, when decrypted, will be a number: the number of
pad bytes Crypto-C should strip.

The RSA Algorithm
The second common input constraint is the RSA algorithm. Recall that this algorithm
uses modular math.

Input constraints
The following input restrictions apply:

• Whenever modular math is used a calculation, the values passed must be less
than the RSA modulus n. For example, if the modulus is 55, the input must be
from zero to 54; the number 57 is invalid.

• For RSA encryption that is PKCS v1.5-compatible, the input to encryption or
decryption must be no more than k – 11 bytes long, where k is the modulus length
in bytes. For example, with a 768-bit modulus, the input can be no more than 85,
or 96 – 11, bytes. This is because the padding scheme needs at least an 11-byte area
to work. The output will be the same size as the modulus.
For the most common key sizes, Table 4-20, which follows, shows the maximum
number of bytes you can encrypt using the RSA algorithm with PKCS padding.

Table 4-20 Input Limits for RSA PKCS Encryption

Key Size in Bits
Modulus Length (k) in
Bytes

Maximum Number of Bytes
That Can Be Encrypted (k-11)

512 64 53

768 96 85

1024 128 117

2048 256 245
C h a p t e r 4 U s i n g C r y p t o - C 1 2 7

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
This applies to PKCS #1 v1.5 block 02 padding. Set OAEP or PKCS #12 OAEP
have different requirements. Refer to the RSA BSAFE Crypto-C Reference Manual
for the corresponding algorithm information type (AI) to obtain more
information.

• For raw RSA encryption and decryption, the application must divide the
encryption or decryption input into blocks. Each block must have the same
number of bits as the RSA modulus and, when interpreted as an integer with the
most significant byte first, must be numerically less than the modulus. In
addition, the size of the total input must be a multiple of the size of the modulus.
That is, if the modulus is k bits long, each block of input must be k bits long, and
the total input must be a multiple of k bits.
For example, if the modulus is 768 bits (96 bytes) long, the input must be divided
into blocks of 96 bytes, and the total input must be a multiple of 96 bytes. See
“Raw RSA Encryption and Decryption” on page 231 for more information on how
to pass data properly.
The output of raw RSA encryption and decryption is the same size as the input.
In general, there should be no need for raw RSA encryption or decryption. We do
not recommend using raw RSA encryption and decryption unless you are
familiar with the issues involved.

General Considerations
In general, Crypto-C has mechanisms to keep you aware of input constraints and
output considerations. If your input does not meet these constraints, Crypto-C will
return an error message.

For output, Crypto-C requires that you pass the size of the output buffer. In this way,
Crypto-C will determine whether there is enough space available before trying to
store output. If your buffer is not big enough, Crypto-C will return an error.

Most important of all, when it comes to output, Crypto-C tells you how many bytes it
placed into the output buffer. That argument is unsigned int *partOutLen in the
Update and Final function prototypes. Pass an address to an unsigned int and
Crypto-C will go to that address and drop a value there. That value is the number of
bytes Crypto-C placed into the output buffer. After the call to Crypto-C, you can look
at that value to determine how many bytes were processed. It may not be the same
number as the input length. It might be more; it might be less. It may even be zero.
1 2 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
Key Size
In cryptography, security is measured in key size: the bigger the key, the greater the
security. Key size, in turn, is measured in bits. However, a bit number does not
necessarily describe the entire key.

DES Keys
A DES key is 56 bits. However, that size refers to its cryptographic size, not its
physical size. To build a DES key, you need 64 bits, but because eight of those bits are
“parity bits,” which are known, you really only get 56 secret bits. Therefore, a DES
key, while consisting of 64 bits of data, is only 56 cryptographic bits in length.

RSA Keys
An RSA key-pair measurement describes the modulus length. When cryptographers
talk about a “768-bit RSA key pair,” what they really mean is that the modulus is 768
bits long. Because the security of an RSA key pair depends on how big the modulus is,
the measurement used is the bit-size of the modulus. However, the actual keys
themselves contain more information than the modulus, so the physical size is much
larger.

Public Key Size
A public key consists of a modulus and a public exponent. To store that public key
requires space for both of those components; so for a 768-bit public key, you need
more than 768 bits of storage space.

Many people who use the RSA algorithm use F4 as the public exponent. F4 is one of a
sequence of prime numbers with a special binary representation, which is 10.....01.
F4 is short for Fermat 4, first described by the 17th-century mathematician Pierre de
Fermat. Fermat believed that there are infinite prime numbers of the form
2^(2^n) + 1. Now it is believed that n = 4 is the last prime number in the sequence.

Because of their special representation, using these numbers speeds up the public key
operations of RSA encryption and RSA signature verification. F4 has been analyzed
by RSA Labs and others, and has been found to be secure.

F4 = 01 00 01 in hexadecimal notation (65,537 in decimal), and it is 17 bits long. If you
use F4, you need 785 bits of space to store a 768-bit public key and its public exponent.
Of course, storage space comes only in bytes, so you actually need 99 bytes of space.

In addition, when you access the public key, you need to know where the modulus
C h a p t e r 4 U s i n g C r y p t o - C 1 2 9

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
ends and the public exponent begins. It would be a good idea to put identifying
marks on the data to make it easier to parse. BER/DER encoding standardizes such
identifying marks as an industry standard so that people using different software
packages can still trade information. Hence, with Crypto-C, the user has the option of
storing a 768-bit public key simply as a modulus and public exponent (99 bytes), or in
its DER-encoded format, which requires 126 bytes.

Private Key Size
At its most basic form, the private key consists of a modulus and a private exponent.
The modulus for the private key is the same as the modulus for the public key. The
private exponent is the truly private part of the private key. The private value is
usually the same size as the modulus, or 1 bit smaller. Therefore, to store a 768-bit
private key, one needs at least 1536 bits (192 bytes) of storage space.

To perform private key operations, you require only the modulus and private
exponent. However, the computations can be much faster if you have access to more
information.

Recall that, in RSA encryption, the modulus is actually the product of two prime
numbers. The private exponent is derived from the two primes and the public
exponent. Given only the modulus and the public exponent, an attacker cannot
deduce the private exponent.

When computing the key pair, you can find two suitable primes, multiply them
together to get the modulus, use the primes to determine the private exponent, and
then throw the primes away. Or you can use the primes to compute two prime
exponents and a Chinese Remainder Theorem (CRT) coefficient, and save all this
information. Then, when executing private key operations with the extra information,
you can use the Chinese Remainder Theorem to make the appropriate computations
much more quickly.

So when saving a 768-bit private key, you actually need to save the following:

• The modulus: 96 bytes
• The public exponent — it is small and there are advantages to having it saved

with the private key: 3 bytes
• The private exponent: 96 bytes
• Two primes: 2 × 48 bytes
• Two prime exponents: 2 × 48 bytes
• A CRT coefficient: 48 bytes
• The identifying marks for DER encoding
1 3 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

System Considerations In Crypto-C
• Total: 484 bytes

In addition, when the most significant bit of the most significant byte of a value is set,
DER calls for a prepended 0 byte, so that it is not interpreted as a negative 2’s
complement number.

For example, converting the decimal number 3,260,571,825 into hex yields
0xC25860B1. As a byte string, it would be:

C2 58 60 B1

which is four bytes long. But is that a negative or positive number? Is the sign bit set,
or is this an unsigned value? To avoid confusion, we prepend a 0 byte, as follows:

00 C2 58 60 B1

Our string is now five bytes long.

For a 768-bit key pair, the most significant bit of the most significant byte of the
modulus and both primes should always be set. So three of the private key’s values
will have a prepended 0 byte. This increases the total key size to 487 bytes. Sometimes
the most significant bit of the most significant byte of the private exponent, prime
exponents and CRT coefficient will be set, sometimes not. So the total bytes could be
as many as 491.

Note: If the public exponent is F4 (01 00 01), do not prepend a 0 byte to that value.

All of this means that when you generate your RSA key pair, you do not know in
advance how big it is going to be when you store it in DER format. You know the
approximate size, but not the exact length.

Crypto-C has the tools to let you know the exact length of your encoded key. When
you call B_GetKeyInfo with a KI_* that specifies that DER-encoded data should be
output, you pass the address of a pointer nto an ITEM structure. Crypto-C drops off a
pointer at that address. If you go to the address indicated by the pointer, you will find
the key information, which includes the key’s length in the len field of the ITEM. Use
that value to find the exact length of your key.
C h a p t e r 4 U s i n g C r y p t o - C 1 3 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
Using Cryptographic Hardware
Crypto-C lets you enhance the security and speed of cryptographic
operations by exploiting cryptographic hardware that supplies an interface to Crypto-
C via the BSAFE Hardware Application Programming Interface (BHAPI). Capabilities
include a hardware algorithm method for random number generation and key token
types that encapsulate RSA, DSA, and symmetric keys inside of hardware.

For an example of a hardware implementation using Crypto-C, see the Intel Security
Hardware User’s Guide, available on the Crypto-C CD.

Interfacing with a BHAPI Implementation
When you Create, Set, and Init an algorithm object in a Crypto-C software
application, you set an algorithm info type (AI) and the parameters required by that
AI. You also choose which algorithm methods to use via the software chooser. The AI
itself doesn’t perform any cryptographic operations; rather, it is used to store
information, allocate space, and to create the necessary points of contact with the
underlying Crypto-C functions. Figure 4-1 shows the relation between the algorithm
object and the Crypto-C software library.

Figure 4-1 Algorithm Object in a Software Implementation

A hardware manufacturer can associate a hardware function with a Crypto-C AM
(algorithm method) and provide these methods to the software developer. You then
access the hardware by using B_CreateSessionChooser to create a hardware-based
chooser, for example, FIXED_HARDWARE_CHOOSER, that lists the available required
hardware methods. This substitution is made at link time, and does not change once

Functions

Alg Object

Type (AI)

Parameters

BSAFE Software Library
1 3 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
the application has been compiled.

If more than one hardware method is present for the same AM — for example, if the
application includes hardware methods implementing RSA encryption from two
different manufacturers — B_CreateSessionChooser includes all available hardware
methods. When an object’s methods are instantiated at initialization, Crypto-C loads
the object with the first compatible method from the session chooser. Figure 4-2
shows how an algorithm object operates with a hardware interface.

Figure 4-2 Algorithm Object in a Hardware Implementation

During the call to B_CreateSessionChooser, Crypto-C tests for the presence of the
hardware; if hardware is present, the hardware method is included in the session
chooser. If no hardware is present, then the application defaults to the Crypto-C
software AM or to a software emulation if one is included in the chooser.

To extend the functionality of the BHAPI interface to include key-token operations,
Crypto-C supplies some AIs that are only available when B_CreateSessionchooser is
used. These AIs have software-emulated versions, but can only be accessed via
inclusion in the hardware chooser.

Functions

Algorithm Object

Type (AI)

Parameters

BSAFE Software Library

Hardware Methods
C h a p t e r 4 U s i n g C r y p t o - C 1 3 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
PKCS #11 Support
PKCS #11 support has been added to Crypto-C v5.1. The routine will allow you to
create a new algorithm chooser from an existing chooser. It uses the hwInfoType to
determine which of the AM's in the currentChooser are to be supplemented with
hardware functionality. Then it uses this information to create a new AM. The routine
then creates a new chooser that contains all the AM's in currentChooser plus any new
AM's created. If the user passes in swReplacements, and the function is unable to create
the hardware versions of the methods, the software versions will be used instead. The
new chooser is deposited at the address specified by newChooser.

The call to the B_CreateHardwareChooser routine will create a brand new chooser. It
will contain all the AM's in the original chooser, plus the new ones created. If the
function cannot create a hardware version of the desired AM, it will find a software
version in RSA_GEN_SW_CHOOSER. If the software chooser is NULL_PTR or does not
contain an AM that can be used as a replacement for the desired hardware AM, the
function will return an error. To see what was actually used (hardware or software),
check the device field of the input info structure.

B_ALGORITHM_METHOD *RSA_GEN_HW_CHOOSER[] = {
 &AM_PKCS11_RSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_METHOD *RSA_GEN_SW_CHOOSER[] = {
 &AM_RSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_CHOOSER *hwChooser =
 (B_ALGORITHM_CHOOSER)NULL_PTR;

if ((status = B_CreateHardwareChooser
 (RSA_GEN_HW_CHOOSER, &hwChooser, RSA_GEN_SW_CHOOSER,
 HI_PKCS11Session, (POINTER)&p11Session)) != 0)
 break;

if ((status = B_GenerateInit (rsaGen, hwChooser, (A_SURRENDER_CTX*)NULL_PTR))
 break;
1 3 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
Using a PKCS #11 Device with Crypto-C
If you want to have Crypto-C use a PKCS #11 device to perform the crypto, you must
first build a hardware chooser. To do that, call, B_CreateHardwareChooser.

The call to the B_CreateHardwareChooser routine will create a brand new chooser. It
will contain all the AMs in the original chooser, plus new ones created "on-the-fly"
that will call down to the desired PKCS #11 token. If the function cannot create a
hardware version of the desired AM, it will find a software version in
RSA_GEN_SW_CHOOSER. If the software chooser is NULL_PTR or does not contain an AM
that can be used as a replacement for the desired hardware AM, the function will
return an error.

B_ALGORITHM_METHOD *RSA_GEN_HW_CHOOSER[] = {
 (B_ALGORITHM_METHOD *)&AM_PKCS11_RSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_METHOD *RSA_GEN_SW_CHOOSER[] = {
 &AM_RSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_CHOOSER *hwChooserGen =
 (B_ALGORITHM_CHOOSER)NULL_PTR;

B_PKCS11_SESSION p11Session;
unsigned char passPhrase[8] = {
 'p', 'a', 's', 's', 'w', 'o', 'r', 'd'
};

p11Session.sessionHandle = 0;
p11Session.passPhrase.data = passPhrase;
p11Session.passPhrase.len = 8;
p11Session.cryptokiFunctions = NULL_PTR;
p11Session.libraryName = (char *)"p11DLLName";
p11Session.tokenLabel.data = (unsigned char *)"myToken";
p11Session.tokenLabel.len =
 T_strlen ((char *) p11Session.tokenLabel.data);
p11Session.surrenderContext = (A_SURRENDER_CTX *)NULL_PTR;
if ((status = B_CreateHardwareChooser
 (RSA_GEN_HW_CHOOSER, &hwChooserGen,
 RSA_GEN_SW_CHOOSER, HI_PKCS11Session,
 (POINTER)&p11Info)) != 0)
 break;
C h a p t e r 4 U s i n g C r y p t o - C 1 3 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
In this example, we passed 0 for sessionHandle and NULL_PTR for cryptokiFunctions.
This means we want Crypto-C to load up the library (whose shared library name,
p11DLLName, is given in the libraryName field), do the necessary initializations, find the
appropriate token (if installed) using the given tokenLabel, then log on using the given
passPhrase and create a session. After the call to B_CreateHardwareChooser, if we
examined p11Session.sessionHandle, it would have a non-zero number there.
Likewise, p11Session.cryptokiFunctions would have an address there. Crypto-C
created a session and collected the function list. If you want to examine them now,
you can, if not, ignore them.

The token label is defined by the manufacturer, the user, or both. A manufacturer
would probably give each token a unique label. Most likely, there will also be tools
that accompany the token that allow you to find the label and possibly change it. If
you can label your token, the label can be up to 32 characters in length. Use unique
names for all your tokens. Incidentally, Cryptoki says a label is 32 characters, no more
no less. If the name is not 32 characters, then the rest of the label is blank spaces.
NULL-terminating characters (such as 0) are not allowed. If you pass to Crypto-C a
label that is not 32 characters or contains zeroes (as in the example above), the Crypto-
C code will strip the zeroes and pad with the blank spaces.

Crypto-C will try to find the token with the same label you pass in. If you pass
NULL_PTR for tokenLabel.data, Crypto-C will use the first token it finds. Upon return,
the tokenLabel.data field will point to the label of the token Crypto-C found. The len
field will be its length. If you have only one token, this could save you a tremendous
amount of time normally spent typing the token label.

The function list, by the way, is a way to isolate hardware dependencies. Different
operating systems have different ways of accessing functions in a shared library. For
instance, with Windows, you must call the routine GetProcAddress to get the address
of the routine, then "invoke that address." Every time you want to call a PKCS #11
function then, it would seem, you have to write platform-specific code. This makes
porting a little more difficult.

But with PKCS #11, you can make one platform-specific call to get the address of the
routine C_GetFunctionList, then use that routine to get the list of function addresses.
Now all future PKCS #11 calls are made from this list, so you have no more platform-
specific calls to make.

The last field in the data struct is the surrender context. If you want your operations
later on to use a surrender context, you must pass it in at this time. PKCS #11
associates a surrender context with a session (Crypto-C alternatively associates a
surrender context with an individual function call). So we must register the surrender
context right at the beginning. If you do not want the operation later on to use a
1 3 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
surrender context (private key operations are more susceptible to a timing attack
when you use a surrender context, for instance), you must pass in NULL_PTR. If you
want one operation to use a surrender context and another not to, you must create
two choosers.

When, later on, you call the Crypto-C function that will actually call down to the
token (such as B_GenerateKeypair or B_SignFinal), Crypto-C will ignore any
surrenderContext argument you pass at that time. PKCS #11 does not allow you to
have a surrender context associated with an individual function.

Suppose we were going to sign with the private key created.

We are passing in the same B_PKCS11_SESSION struct. This time, though, it has a
sessionHandle and a pointer to the cryptokiFunctions (set by Crypto-C during the last
call to B_CreateHardwareChooser) Now, Crypto-C will not load the library, initialize
or create a session. We could have reset the sessionHandle field to 0 but leave the
cryptokiFunctions field to the address given. In that case, Crypto-C would have
used the same token, but created a new session.

Both the generating chooser (hwChooserGen) and the signing chooser (hwChooserSign)
must be destroyed later. You should destroy choosers in the reverse order that they
were created. It will not be necessary in every situation, but there can be cases when it
is required. So it is simply a good idea always to destroy them in reverse order.

In both choosers, we have software backups. That is, if Crypto-C cannot create the
hardware chooser (for example, if the token is not in its slot), it will examine the
software replacement argument and see if there is a suitable AM in that array. If you

B_ALGORITHM_METHOD *RSA_SIGN_HW_CHOOSER[] = {
 &AM_MD5,
 (B_ALGORITHM_METHOD *)&AM_PKCS11_RSA_PRIVATE_SIGN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_METHOD *RSA_SIGN_SW_CHOOSER[] = {
 &AM_RSA_CRT_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_CHOOSER *hwChooserSign =
 (B_ALGORITHM_CHOOSER)NULL_PTR;

if ((status = B_CreateHardwareChooser
 (RSA_SIGN_HW_CHOOSER, &hwChooserSign,
 RSA_SIGN_SW_CHOOSER, HI_PKCS11Session,
 (POINTER)&p11Session)) != 0)
 break;
C h a p t e r 4 U s i n g C r y p t o - C 1 3 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
want to create a hardware chooser only, and if you want to do the task in hardware,
or if you can't you don't want to do it at all, then pass in a
(B_ALGORITHM_CHOOSER)NULL_PTR as the swReplacement argument.

Note that often a software backup is not necessarily possible. A token may possess the
signing key and does not allow it to leave the device. If you can not do the task in
hardware, you can not do it in software, since you do not have the key. On the other
hand, if the token is simply an accelerator, maybe it is possible to have a software
backup. If you have the key data and you can give it to the token or the Crypto-C
software, either "device" will be able to do the job. If the hardware is there, you get the
accelerator. If the hardware is not there, you still get the job done.

Now that we have our choosers our code does not need to change.

The code looks just the same as non-PKCS #11 code. This will work with the PKCS #11
hardware. However, there is a new key generating AI that allows you to include key
attributes. PKCS #11 (and other hardware interfaces) defines key attributes that
specify more about the key than just the key data. For instance, you may want your
private key to be a token key (the data resides on the token) and private (it is not
allowed to leave the token). You may want to define the key as signing only (it is not
allowed to be used to open a digital envelope). In this case, use AI_KeypairGen.

A_RSA_KEY_GEN_PARAMS keyGenParams;

if ((status = B_CreateKeyObject (&pubKey)) != 0)
 break;

if ((status = B_CreateKeyObject (&priKey)) != 0)
 break;

if ((status = B_CreateAlgorithmObject (&rsaGen)) != 0)
 break;

keyGenParams.modulusBits = 1024;
keyGenParams.publicExponent.data = expo;
keyGenParams.publicExponent.len = sizeof (expo);
if ((status = B_SetAlgorithmInfo
 (rsaGen, AI_RSAKeyGen, (POINTER)&keyGenParams)) != 0)
 break;
1 3 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
This AI has an associated info data struct that allows you to set attributes. See the
Reference Manual for complete lists of valid flags. To set more than one attribute, OR
them together.

Notice the start and end attributes. Those are for when you want to have a validity
period on your key. If you want to require the user to generate a new key every so
often, set the start and end dates. If not, pass in 0. The value to pass in is the number of
seconds since 12:00 AM GMT, January 1, 1970. This is generally the result of the
system call T_Time (or some such name). It is generally a 32-bit integer. We define it as
RSA_TIME_T which is typedef'd to a 32-bit unsigned int. In the future, some platforms
may decide to use a 64-bit integer for time. For those platforms, RSA_TIME_T will be
typedef'd to a 64-bit integer.

If you do not use this AI to generate your key pair, Crypto-C will allow the token to
decide what the attributes will be. That is, PKCS #11 defines some default attributes
and defines what is the default for each token attribute that PKCS #11 does not define.
However, some tokens still may not allow such a scheme. For instance, PKCS #11
defines an attribute CKA_TOKEN as false by default. If you set the token flag to TF-
RESIDE_ON_TOKEN, you are overriding the default value. But if you do not specify any
attributes, the token must create a non-token key pair. Some manufacturers may not
allow this, so a token may not be able to perform the default behavior. Therefore, you

B_KEYPAIR_GEN_PARAMS keypairGenParams;

keypairGenParams.privateKeyAttributes.keyUsage =
 CF_DIGITAL_SIGNATURE;
keypairGenParams.privateKeyAttributes.tokenFlag =
 TF_PRIVATE;
keypairGenParams.privateKeyAttributes.start = 0;
keypairGenParams.privateKeyAttributes.end = 0;
keypairGenParams.publicKeyAttributes.keyUsage =
 CF_DIGITAL_SIGNATURE;
keypairGenParams.publicKeyAttributes.tokenFlag =
 TF_RESIDE_ON_TOKEN;
keypairGenParams.publicKeyAttributes.start = 0;
keypairGenParams.publicKeyAttributes.end = 0;
keypairGenParams.keypairGenInfoType = AI_RSAKeyGen;
keypairGenParams.keypairGenInfo = (POINTER)&keyGenParams;
if ((status = B_SetAlgorithmInfo
 (rsaGen, AI_KeypairGen,
 (POINTER)&keypairGenParams)) != 0)
 break;
C h a p t e r 4 U s i n g C r y p t o - C 1 3 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
may need to set the attributes manually for the token to work.

You can use this AI for any key pair generation, not just RSA. If you use this AI for
software key pair generation, the attributes will be ignored.

After setting the algorithm object to generate a key pair, initialize.

Notice the new subroutine call, B_GetDevice, which you call to see if key pair
generation will be performed by hardware or software. Pass in an ITEM (a pointer to
an ITEM that you create) and Crypto-C will set the data and len fields with a pointer
and length of a description of the device. The name will be a NULL-terminated string.
If software is used, the result will be the word "software." The memory is owned by
Crypto-C, so do not overwrite it or free it.

Now generate.

In this example, we pass in a random object, because we have specified a software
backup. If the generation will be done in hardware, the random object will be ignored.
If you know the generation will be done in hardware, in fact, you could pass in
NULL_PTR for the random object.

We have passed in a NULL surrender context as well. If you pass in a valid surrender
context, Crypto-C will ignore it, because PKCS #11 demanded the surrender context
when we created the session.

Crypto-C sets the key objects to some value. If a key is a token key (the key resides on
the token), it was set with KI_Token. If a key does not reside on a token or is not
private (a public key can reside on a token but can never be private), it was set with
KI_PKCS_RSAMultiPrimePrivate or KI_RSAPublic. It may have been set with both key

 ITEM deviceName;

if ((status = B_GenerateInit
 (rsaGen, hwChooserGen, NULL_SURR)) != 0)
 break;

if ((status = B_GetDevice (&deviceName, rsaGen)) != 0)
 break;

if ((status = B_GenerateKeypair
 (rsaGen, pubKey, priKey, random, NULL_SURR)) != 0)
 break;
1 4 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
info types if it is a key that resides on the token and is not private.

Now you can send the public key to whomever you want. You can also save the
private key token info. If you give that token info (which consists of a manufacturer's
ID and a key handle) to Crypto-C again, you can use the key on the token.
Incidentally, the key handle is the internalKey field of the KI_TOKEN_INFO and for the
PKCS #11 interface, Crypto-C uses the key class, key type and digest of the modulus
as the handle. Crypto-C sets the CKA_ID attribute of the token key with the digest of
the modulus. See the "Advanced PKCS 11” section for more information.

Now that we have a key pair, we can sign.

KI_TOKEN_INFO *priKeyToken = (KI_TOKEN_INFO *)NULL_PTR;
ITEM *pubKeyInfo = (ITEM *)NULL_PTR;

if ((status = B_GetKeyInfo
 ((POINTER *)&priKeyToken, priKey, KI_Token)) != 0)
 break;

if ((status = B_GetKeyInfo
 ((POINTER *)&pubKeyInfo, pubKey,
 KI_RSAPublicBER)) != 0)
 break;

if ((status = B_CreateAlgorithmObject (&signer)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (signer, AI_MD5WithRSAEncryption, NULL_PTR)) != 0)
 break;

if ((status = B_SignInit
 (signer, priKey, hwChooserSign, NULL_SURR)) != 0)
 break;

if ((status = B_SignUpdate
 (signer, dataToSign, dataToSignLen, NULL_SURR)) != 0)
 break;

if ((status = B_SignFinal
 (signer, signature, &sigLen, sizeof (signature),
 NULL_RAND, NULL_SURR)) != 0)
 break;
C h a p t e r 4 U s i n g C r y p t o - C 1 4 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
This code looks just like regular code. Whether you are signing with software or
hardware, it looks the same. See the sample files in the sample\pkcs11 directory.

We are using the hardware chooser we created. To perform RSA signatures (with
MD5) we need to include AM_MD5 in our chooser. Our original chooser contained
AM_MD5 and AM_PKCS11_RSA_PRIVATE_SIGN. The new hardware chooser contains all the
AMs from the original chooser, plus, because of the PKCS 11 AM and HI (arguments
to the call B_CreateHardwareChooser), it can perform the signing using hardware.

Remember, there is the original chooser, containing all the AMs you will need plus an
inactive hardware AM. There is the software replacement chooser, containing only
those AMs that can be used as substitutes for hardware. And finally, there is the
hardware chooser Crypto-C created. It contains everything the original chooser did,
plus it will have a new AM (created "on-the-fly") that looks a lot like the inactive AM,
except it is connected to the hardware. We do not make the "inactive" AM active,
because a regular chooser is static: it is created when you link the application. You do
not link in the token at link time. You connect to the hardware token at run time, so
that is the only time possible to create an AM.

You must destroy what you create. Remember, we created two choosers, we
recommend that you destroy them in the reverse order that they were created.

When Crypto-C destroys hwChooserSign, it will not close the session or log off of the
token. Remember, when we created that hardware chooser, we had a session already
established. Crypto-C will not close a session or log off unless it opened the session or
logged on. When Crypto-C destroys hwChooserGen, it will close the session and log off.

Incidentally, the following is code similar to how Crypto-C initalizes, creates a
session, and logs in to a Cryptoki device in a Windows environment. (It is not the
actual code, but you can get a sense of how it works.)

B_DestroyHardwareChooser (&hwChooserSign);
B_DestroyHardwareChooser (&hwChooserGen);
B_DestroyAlgorithmObject (&rsaGen);
B_DestroyAlgorithmObject (&signer);
B_DestroyKeyObject (&pubKey);
B_DestroyKeyObject (&priKey);
1 4 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware

 CK_RV rv;
 CK_SESSION_HANDLE sessionHandle;
 HINSTANCE libHandle;
 GetFunctionList GetList;
 CK_FUNCTION_LIST_PTR fnctList;

 /* Load the library if possible. */
 libHandle = LoadLibrary (p11Info->session.libraryName);
 if (libHandle == (HINSTANCE)NULL_PTR)
 return (BE_HARDWARE);

 /* Get the PKCS 11 function C_GetFunctionList. With this
 function, we can get the function list (pointers to
 all PKCS 11 functions) with one call.
 */
 GetList = (GetFunctionList)GetProcAddress
 (libHandle, "C_GetFunctionList");
 if (GetList == (GetFunctionList)0)
 return (BE_HARDWARE);

 if ((rv = GetList (&fnctList)) != 0)
 return (BE_HARDWARE);

 /* We have to initialize PKCS 11.
 */
 if ((rv = fnctList->C_Initialize
 ((CK_VOID_PTR)NULL_PTR)) != 0)
 return (BE_HARDWARE);
 /* Now we need to open a session and log in. */
 if ((rv = fnctList->C_OpenSession
 ((CK_SLOT_ID)(session->slotID),
 CKF_RW_SESSION | CKF_SERIAL_SESSION,
 (CK_VOID_PTR)&(p11Info->surrenderCtx),
 (CK_NOTIFY)HI_PKCS11Notify, &sessionHandle)) != 0)
 return (BE_HARDWARE);

if ((rv = fnctList->C_Login
 (sessionHandle, CKU_USER,
 (CK_CHAR_PTR)(session->passPhrase.data),
 (CK_ULONG)(session->passPhrase.len))) != 0)
 return (BE_HARDWARE);
C h a p t e r 4 U s i n g C r y p t o - C 1 4 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
PKCS #11 Support for DSA Key Pair Generation
This section describes how to generate a DSA key pair using a PKCS #11 device. You
will need some DSA parameters, since PKCS #11 does not specify a way to generate
parameters. If you do not already have them, use Crypto-C to generate some DSA
parameters.

At this point, you will call B_GenerateParameters. The resulting parameters need to
be stored somewhere. They will be stored in an algorithm object. A limitation in
Crypto-C is that you cannot store them in an object from which you simply extract the
parameters. You must store them in an object that will be used to generate a key pair.
Then you must generate a key pair to extract the parameters.

B_ALGORITHM_METHOD *DSA_PARAM_GEN_CHOOSER[] = {
 &AM_DSA_PARAM_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR;
};

B_ALGORITHM_OBJ dsaParamGen = (B_ALGORITHM_OBJ)NULL_PTR;
B_DSA_PARAM_GEN_PARAM dsaParamGenParams;

dsaParamGenParams.primeBits = 1024;

if ((status = B_CreateAlgorithmObject (&dsaParamGen)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (dsaParamGen, AI_DSAParamGen,
 (POINTER)&dsaParamGenParams)) != 0)
 break;

if ((status = B_GenerateInit
 (dsaParamGen, DSA_PARAM_GEN_CHOOSER, NULL_SURR)) != 0)
 break;
1 4 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
Now that you have a key pair, extract the public key, part of the public key is a struct
containing the parameters.

Remember, the data in the A_DSA_PUBLIC_KEY struct belongs to the key object,
once you destroy that object, the data disappears. So either use the data before

B_ALGORITHM_METHOD *DSA_KEY_GEN_CHOOSER[] = {
 &AM_DSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR;
};

B_ALGORITHM_OBJ dsaKeyGen = (B_ALGORITHM_OBJ)NULL_PTR;
B_KEY_OBJ pubKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ priKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaKeyGen)) != 0)
 break;

if ((status = B_CreateKeyObject (&pubKey)) != 0)
 break;

if ((status = B_CreateKeyObject (&priKey)) != 0)
 break;

if ((status = B_GenerateParameters
 (dsaParamGen, dsaKeyGen, randomObject,
 NULL_SURR)) != 0)
 break;

if ((status = B_GenerateInit
 (dsaKeyGen, DSA_KEY_GEN_CHOOSER, NULL_SURR)) != 0)
 break;

if ((status = B_GenerateKeypair
 (dsaKeyGen, pubKey, priKey, random, NULL_SURR)) != 0)
 break;

A_DSA_PUBLIC_KEY *pubKeyData;

if ((status = B_GetKeyInfo
 ((POINTER *)&pubKeyData, pubKey, KI_DSAPublic)) != 0)
 break;
C h a p t e r 4 U s i n g C r y p t o - C 1 4 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
destroying, or copy it into your own buffer. Since you generated the key pair only to
be able to extract the parameters, you will almost certainly want to simply throw
away the generated keys.

Once you have the parameters, you can generate a key pair using PKCS #11. This will
look just like RSA key pair generation, except instead of using
AM_PKCS11_RSA_KEY_GEN, you will use AM_PKCS11_DSA_KEY_GEN. Also, when you use
AI_KeypairGen, you will fill the keypairGenInfoType field of the
B_KEYPAIR_GEN_PARAMS input data struct with AI_DSAKeyGen.

B_ALGORITHM_OBJ p11DSAKeyGen = (B_ALGORITHM_OBJ)NULL_PTR;
B_KEYPAIR_GEN_PARAMS p11KeyGenParams;

p11KeyGenParams.privateKeyAttributes.tokenFlag =
 TF_PRIVATE;
p11KeyGenParams.privateKeyAttributes.keyUsage =
 CF_DIGITAL_SIGNATURE;
p11KeyGenParams.privateKeyAttributes.start = 0;
p11KeyGenParams.privateKeyAttributes.end = 0;
p11KeyGenParams.publicKeyAttributes.tokenFlag = 0;
p11KeyGenParams.publicKeyAttributes.keyUsage =
 CF_DIGITAL_SIGNATURE;
p11KeyGenParams.privateKeyAttributes.start = 0;
p11KeyGenParams.privateKeyAttributes.end = 0;
p11KeyGenParams.keypairGenInfoType = AI_DSAKeyGen;
p11KeyGenParams.keypairGenInfo =
 (POINTER)&(pubKeyData->params);

if ((status = B_CreateAlgorithmObject
 (&p11DSAKeyGen)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (p11DSAKeyGen, AI_KeypairGen,
 (POINTER)&p11KeyGenParams)) != 0)
 break;
1 4 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
Advanced PKCS #11
This chapter earlier described internalKey as the collection of three items: CKA_CLASS,
CKA_TYPE and the digest of the modulus. A more rigorous description would be
CKA_CLASS, CKA_TYPE and CKA_ID. When Crypto-C generates a key pair, it uses the
SHA-1 digest of the modulus as the CKA_ID.

For an RSA private key, it would be this.

Suppose you have a generated key pair already, it has a CKA_ID already set, and you
want Crypto-C to be able to use it. Just create a buffer that looks like the previous
example, making sure you use the right value for the class and type. Then the next
part of the buffer will be your CKA_ID. Now create a KI_TOKEN_INFO struct with the
manufacturer's ID and the new buffer you created as the internal key. Crypto-C will
find it.

When Crypto-C asks for the key with the appropriate attributes, it receives in return a
key handle. This handle is valid only during the active session. If you get a key handle
for a particular key one day, the next day the handle for that very same key may be
different. Suppose you have that handle for the active session. You could give Crypto-
C the previously defined internalKey and Crypto-C would ask the token to return a
handle for that key. In other words, you searched for the key once, got a handle, and
now Crypto-C will search again. And it will probably get a new handle.

You could also pass in CKO_VENDOR_DEFINED | CKO_PRIVATE_KEY for the class,
CKK_RSA for the type, and then the rest would be the handle. It might look like this.

In this case, Crypto-C will recognize the most significant bit of the class set (the 8 in
the 80000003) and know that the value which would normally be the CKA_ID is
actually the key handle. It would then use that key handle. That is what
VENDOR_DEFINED means, the class is vendor-defined. We are the vendor, so we are
defining it to mean "private key class key handle," not just "private key."

CKA_CLASS CKA_TYPE CKA_ID

CKO_PRIVATE_KEY CKK_RSA <digest>

00 00 00 03 00 00 00 00 66 a9 47 2d 80 5a. . .

80 00 00 03 00 00 00 00 00 00 00 02
C h a p t e r 4 U s i n g C r y p t o - C 1 4 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
In real life, you may never have to use this feature. Mostly you will retrieve the
internalKey from your database, use it, close out the session and be done. But if there
is some odd case where you have the key handle and want to pass it to Crypto-C, this
is the way to do it.

Random Numbers
In our sample, we say the random object you create will not be used. If random
numbers are needed, the token will use its own random number generator. But you
do have the option of seeding that generator. For some tokens, seeding may do
nothing. But for others, if you want to add your own seed, you can. You do this
through the PKCS #11 API.

This is not a Crypto-C API. You called on Crypto-C to create a session. In return, you
received a session handle and a pointer to an array of functions. One of those
functions is a seeding routine. This is the most basic information you need to know
about PKCS #11 seeding. There is certainly more to learn about seeding, and the other
Cryptoki functions, in the PKCS #11 specification.

Hardware Issues
Working with hardware devices introduces new issues that must be addressed. A
cryptographic key on a hardware device might never leave the device; this is part of
the security. For instance, suppose you want to produce a digital envelope. You might
use a hardware accelerator to perform DES encryption of the bulk data, then want to
encrypt the DES key with the recipient’s public key. However, when you make the
call to retrieve the key, the hardware might return a handle to the key, rather than the
key itself. This enhances security, because the key never appears “in public.”

CK_RV rv;

rv =

 ((CK_FUNCTION_LIST_PT)(p11Session.cryptokiFunctions))->

 C_SeedRandom

 ((CK_SESSION_HANDLE)(p11Session.sessionHandle),

 (CK_BYTE_PTR)seedBuffer,

 (CK_ULONG)seedLen);
1 4 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Using Cryptographic Hardware
To implement this, the hardware accelerator might require you to call its key-
wrapping routines to build a digital envelope. When you request the key in order to
store it for later use, the hardware could return a handle to the key. But if you give
that data to another cryptographic package, the key will mean nothing.

So, once you build a key (symmetric or private) on a hardware device, it is possible
that only that hardware device will be able to use that key. Therefore, you should use
hardware accelerators only if you thoroughly understand their use.
C h a p t e r 4 U s i n g C r y p t o - C 1 4 9

Download from Www.Somanuals.com. All Manuals Search And Download.

1 5 0

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5

Non-Cryptographic Operations
Crypto-C supplies a number of non-cryptographic algorithms that are necessary for
cryptographic applications. These include:

• Message Digests
• Random-number generators
• ASCII-to-binary and binary-to-ASCII encoding
1 5 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
Message Digests
A message digest is a fixed-length, statistically-unique identifier that corresponds to a
set of data. That is, each unit of data — such as a file, string, or buffer — maps to a
particular byte sequence (usually 16 or 20 bytes long). A digest is not random:
digesting the same unit of data with the same message-digest algorithm will always
produce the same byte sequence.

Digests are used in random-number generation, password-based encryption, and
digital signatures.

Creating a Digest
The example in this section corresponds to the file mdigest.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Crypto-C offers four message digest algorithms: MD, MD2, MD5, and SHA1.

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal
compression function, and there is some chance that the attack on MD2 may
be extended to the full hash function. The same attack applies to MD. Another
attack has been applied to the compression function on MD5, though this has
yet to be extended to the full MD5. RSA Security recommends that before you
use MD, MD2, or MD5, you should consult the RSA Laboratories Web site to
be sure that their use is consistent with the latest information.

The AI for SHA1 is AI_SHA1; the Reference Manual Chapter 2 entry for this AI states
that the format of info supplied to B_SetAlgorithmInfo is NULL_PTR:

B_ALGORITHM_OBJ digester = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&digester)) != 0)
 break;
1 5 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
Step 3: Init
To initialize a message digest, call B_DigestInit. The Reference Manual Chapter 4
entry on B_DigestInit shows that it requires four arguments. The first argument is
the algorithm object. The second is a key object. All Crypto-C message digest AIs call
for a properly cast NULL_PTR as the key object; Crypto-C provides this argument for
algorithms, like HMAC, that require keys. The third argument is an algorithm
chooser. The fourth is a surrender context; this is a fast function, so it is reasonable to
pass a properly cast NULL_PTR:

Refer to “Saving State” on page 120 for a discussion of how to save the state of the
algorithm object for future use.

Step 4: Update
Use B_DigestUpdate to enter the data to digest. If you have separate units of data (for
example, two or more files or several strings), make a call to B_DigestUpdate for each
unit. Message digesting is quick, so unless you are digesting an extremely large
amount of data (a megabyte or more), it is reasonable to pass a properly cast NULL_PTR
for the surrender context.

if ((status = B_SetAlgorithmInfo
 (digester, AI_SHA1, NULL_PTR)) != 0)
 break;

B_ALGORITHM_METHOD *DIGEST_CHOOSER[] = {
 &AM_SHA,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_DigestInit
 (digester, (B_KEY_OBJ)NULL_PTR, DIGEST_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 5 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
Your call will be the following:

Step 5: Final
An MD2 or MD5 digest is always 16 bytes; an SHA1 digest is always 20 bytes. Because
you are using SHA1, create a 20-byte buffer to hold the output and call
B_DigestFinal. The Reference Manual gives the prototype for this function in Chapter
4.

The first argument is the algorithm object. The second is the buffer where Crypto-C
will deposit the digest. The third is an address for Crypto-C to return the number of
bytes in the digest. Because this value should always be 20, you can use this as a check
on the algorithm if you like. The fourth argument is the size of the output buffer. If
Crypto-C needs a bigger buffer, this function will return an error. The fifth argument
is the surrender context; this is a fast function, so there should be no problem with
using a properly cast NULL_PTR:

/* The variable dataToDigest should already point to allocated
 memory and contain the data, dataToDigestLen should
 already be set to the number of bytes to digest. */

unsigned char *dataToDigest;
unsigned int dataToDigestLen;

if ((status = B_DigestUpdate
 (digester, dataToDigest, dataToDigestLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define DIGEST_LEN 20

unsigned char digestedData[DIGEST_LEN];
unsigned int digestedDataLen;

if ((status = B_DigestFinal
 (digester, digestedData, &digestedDataLen, DIGEST_LEN,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
1 5 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
Step 6: Destroy
Remember to destroy all objects when you are done with them:

BER-Encoding the Digest
If you want to send your digest to someone, you should BER-encode the algorithm
identifier and the digest. The Crypto-C function B_EncodeDigestInfo offers a way to
put together a string containing your information in BER format.

The example in this section corresponds to the file mdber.c.

The Reference Manual Chapter 4 entry for B_EncodeDigestInfo shows that this
function takes six arguments:

The first argument is an address where Crypto-C can drop the BER-encoded digest
information. You will have to allocate the space for this buffer. This buffer will
contain the algorithm identifier and the 16- or 20-byte digest, the total for MD2 and
MD5 digests is 34; for a SHA1 digest, it is 35 bytes. If you want to be safe, you can
make the buffer larger.

The second argument is the address of an unsigned int; Crypto-C will place the final
length of the BER encoding at that address. The third argument is the buffer size. The
fourth is a pointer to an ITEM containing the DER encoding of the message digest
algorithm; you obtain the DER encoding by calling B_GetAlgorithmInfo with the
appropriate AI with BER encoding. The fifth argument is the digest itself; the sixth is
the length of the digest.

B_DestroyAlgorithmObject (&digester);

int B_EncodeDigestInfo (
 unsigned char *digestInfo, /* encoded output buffer */
 unsigned int *digestInfoLen, /* length of encoded output */
 unsigned int maxDigestInfoLen, /* size of digestInfo buffer */
 ITEM *algorithmID, /* message digest algorithm identifier */
 unsigned char *digest, /* message digest value */
 unsigned int digestLen /* length of digest */
);
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 5 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
The following example BER-encodes the preceeding sample digest:

To decode BER-encoded information, call B_DecodeDigestInfo. Simply pass the
addresses you need; Crypto-C will fill the ITEMs for you:

Note: When you create an RSA digital signature as specified in PKCS #1, the
digestInfo is the data which is encrypted with the RSA private key.

Saving the State of a Digest Algorithm Object

Saved State
The sample program in samples/hashalg/mdigsv.c demonstrates various ways to go
about digesting data. As shown in “Creating a Digest” on page 152, one could collect
the data to digest in one buffer and present it with one call to B_DigestUpdate() and a
call to B_DigestFinal() to retrieve the digest. The DigestDataAll helper function in
mdigsv.c shows this scenario. Alternatively, multiple calls could be made to

#define DIGEST_LEN 20
#define ALG_ID_LEN DIGEST_LEN + 18

ITEM *sha1AlgInfoBER;
unsigned char digestInfoBER[ALG_ID_LEN];
unsigned int digestInfoBERLen;

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&sha1AlgInfoBER, digester, AI_SHA1_BER)) != 0)
 break;

if ((status = B_EncodeDigestInfo
 (digestInfoBER, &digestInfoBERLen, ALG_ID_LEN, sha1AlgInfoBER,
 digestedData, digestedDataLen)) != 0)
 break;

ITEM retrievedAlgorithmID;
ITEM retrievedDigest;

if ((status = B_DecodeDigestInfo
 (&retrievedAlgorithmID, &retrievedDigest, digestInfoBER,
 digestInfoBERLen)) != 0)
 break;
1 5 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
B_DigestUpdate before calling B_DigestFinal(). This is useful when an application
is called upon to digest large amounts of data. It will feed "bite-sized" pieces of data to
the algorithm object instead of having to fit the entire input data into memory at one
time. The DigestDataMultipleUpdates helper function in mdigsv.c shows this
scenario. Another possibility, if an application needs to be able to save and restore an
algorithm object, is to take advantage of B_GetAlgorithmState and
B_SetAlgorithmState. Remember that a B_ALGORITHM_OBJ is an opaque pointer to
buffers controlled by the Crypto-C library; you cannot just save a B_ALGORITHM_OBJ
value to a file and expect to use it later.

In mdigsv.c, we demonstrate the serialization of an algorithm object by digesting a
file 100 bytes at a time, saving and restoring the algorithm object before each call to
B_DigestUpdate. Note that we begin by obtaining the initial state of the digest
algorithm object after calling B_DigestInit.

Since the buffer in initialState belongs to Crypto-C, we need to make our own local
copy, since subsequent calls to Crypto-C can change the data pointed to by
initialState.

The DigestDataSavedState() function takes in the given state info in order to restore
the algorithm object and continue with a call to B_DigestUpdate. We make a call to
this helper function for each block of data that we read from the file. Note that
stateInfo is both an input and output argument; on input, it contains the algorithm
object state that will be used to restore the object and is later updated to contain the

ITEM initialState = {NULL, 0};

 if ((status = B_GetAlgorithmState (&initialState, digestObj)) != 0)
 break;

ITEM stateInfo = {NULL, 0};

 stateInfo.len = initialState.len;
 stateInfo.data = T_malloc (stateInfo.len);
 if (stateInfo.data == NULL) {
 status = RSA_DEMO_E_ALLOC;
 break;
 }

 T_memcpy (stateInfo.data, initialState.data, stateInfo.len);
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 5 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
state of the algorithm object following the call to B_DigestUpdate. The digestAI
argument is simply the AI_* that we used in the original B_SetAlgorithmInfo call.
This is required because each AI_* has a routine associated with it internally, which it
uses to interpret the data in the given state info. The dataToDigest argument contains
the block to digest.
1 5 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
Table 5-1 Code Sample: DigestDataSavedState()

int DigestDataSavedState (ITEM *stateInfo, B_INFO_TYPE digestAI,
 ITEM *dataToDigest)
{
 int status = 0;
 B_ALGORITHM_OBJ digestObj = NULL;
 ITEM newStateInfo = {NULL, 0}, bsfStateInfo = {NULL, 0};
 do {

 if ((status = B_CreateAlgorithmObject (&digestObj)) != 0)
 break;

 if ((status = B_SetAlgorithmState (digestObj, digestAI, stateInfo,
 DIGEST_CHOOSER)) != 0)
 break;

 if ((status = B_DigestUpdate (digestObj, dataToDigest->data,
 dataToDigest->len, NULL)) != 0)
 break;

 if ((status = B_GetAlgorithmState (&bsfStateInfo, digestObj)) != 0)
 break;

 /* Make a copy of the information pointed to by bsfStateInfo for local
 use, since the info pointed to by bsfStateInfo could be changed or
 reclaimed by the Crypto-C library during subsequent calls. */
 newStateInfo.len = bsfStateInfo.len;
 newStateInfo.data = T_malloc (newStateInfo.len);
 if (newStateInfo.data == NULL) {
 status = RSA_DEMO_E_ALLOC;
 break;
 }
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 5 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Message Digests
This routine can be called until all of the data blocks have been digested. We can then
restore the algorithm object and call B_DigestFinal() to obtain the message digest.
Note that following a call to B_*Final, the algorithm object is restored to the state it
was in following the previous B_*Init call.

The mdigsv.c program shows that digesting a file using all three methods produce the
same result.

 T_memcpy (newStateInfo.data, bsfStateInfo.data, newStateInfo.len);
 } while (0);

 if (status != 0)
 RSA_PrintError ("DigestDataSavedState", status);
 else {
 /* update stateInfo so the caller can have an updated algorithm object */
 T_memset (stateInfo->data, 0, stateInfo->len);
 T_free (stateInfo->data);
 stateInfo->data = newStateInfo.data;
 stateInfo->len = newStateInfo.len;
 }

 B_DestroyAlgorithmObject (&digestObj);

 return status;
} /* end DigestDataSavedState */
1 6 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Hash-Based Message Authentication Code
Hash-Based Message Authentication
Code (HMAC)
A hash-based message authentication code (HMAC) combines a secret key with a
message digest to create a message authentication code. See “Hash-Based Message
Authentication Codes (HMAC)” on page 49 for a description of the algorithm.

Crypto-C provides an HMAC implementation based on SHA1. Recall that SHA1
produces a 20-byte digest and takes input in 64-byte blocks.

The example in this section corresponds to the file hmac.c.

Step 1: Creating an Algorithm Object
Declare a variable of type B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
There is only one AI for hash-based message authentication codes, AI_HMAC. The
Reference Manual Chapter 2 entry for AI_HMAC states that the format of info supplied to
B_SetAlgorithmInfo is a pointer to a B_DIGEST_SPECIFIER structure:

The only choice for digestInfoType in Crypto-C is AI_SHA1. In the case of AI_SHA1,
digestInfoParams should be set to NULL_PTR:

 B_ALGORITHM_OBJ HMACDigester = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&HMACDigester)) != 0)
 break;

typedef struct {
 B_INFO_TYPE digestInfoType;
 POINTER digestInfoParams;
} B_DIGEST_SPECIFIER;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 6 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Hash-Based Message Authentication Code (HMAC)
Step 3: Init
For hash-based message authentication, you need a key before you can initialize the
object.

Step 3a: Creating the Key Object
Create the key object:

Step 3b: Setting the Key Object
Generate a random 24-byte key using KI_24Byte:

 B_DIGEST_SPECIFIER hmacInfo;

 hmacInfo.digestInfoType = AI_SHA1;
 hmacInfo.digestInfoParams = NULL_PTR;

 if ((status = B_SetAlgorithmInfo
 (HMACDigester, AI_HMAC, (POINTER)&hmacInfo)) != 0)
 break;

#define KEY_SIZE 24

 B_KEY_OBJ HMACKey = (B_KEY_OBJ)NULL_PTR;
 unsigned char *keyData;

 /* Create a key object */
 if ((status = B_CreateKeyObject (&HMACKey)) != 0)
 break;

 ITEM keyDataItem = {NULL,0};
 keyData = T_malloc (KEY_SIZE);
 if ((status = (keyData == NULL_PTR)) != 0)
 break;
1 6 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Hash-Based Message Authentication Code
Once you have properly initialized the key object, you can call B_DigestInit. The
Reference Manual Chapter 4 entry on B_DigestInit shows that it requires four
arguments. The first argument is the algorithm object; the second is the key object.
The third is an algorithm chooser. The fourth is a surrender context; this is a fast
function, so it is reasonable to pass a properly cast NULL_PTR:

Step 4: Update
Once you have set the algorithm object, you can create the message authentication
code by calling B_DigestUpdate for all of the data to digest:

 /* Complete Steps 1-4 of Generating Random Numbers */
 /* Generate KEY_SIZE bytes of random data for the key. */
 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, keyData, KEY_SIZE,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

keyDataItem.data = keyData;
keyDataItem.len = key_Size;
/* Set the key object */
if ((status = B_SetKeyInfo (HMACKey, KI_Item, (pointer) & keyDataItem)) != 0)
 break;

 B_ALGORITHM_METHOD *HMAC_CHOOSER[] = {
 &AM_SHA,
 &AM_SHA_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_DigestInit
 (HMACDigester, HMACKey, HMAC_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned char dataToDigest[] = "Digest this sentence.";
 unsigned int dataToDigestLen = strlen (dataToDigest);

 if ((status = B_DigestUpdate
 (HMACDigester, dataToDigest, dataToDigestLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 6 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Hash-Based Message Authentication Code (HMAC)
Step 5: Final
After the data to digest has been processed by calls to B_DigestUpdate, call
B_DigestFinal. You need to pass a pointer to the location where B_DigestFinal can
store the output. In the case of AI_HMAC using SHA1, you need 20 bytes to store the
result.

Step 6: Destroy
Once you have generated the message authentication code, destroy any objects you
used, and free up any memory you allocated:

 unsigned char *digestedData;
 unsigned int digestedDataLen;

 digestedData = T_malloc (20);
 if ((status = (digestedData == NULL_PTR)) != 0)
 break;

 if ((status = B_DigestFinal
 (HMACDigester, digestedData, &digestedDataLen,
 20, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 B_DestroyKeyObject (&HMACKey);
 B_DestroyAlgorithmObject (&randomAlgorithm);
 B_DestroyAlgorithmObject (&HMACDigester);

 if (digestedData != NULL_PTR) {
 T_memset (digestedData, 0, 20);
 T_free (digestedData);
 digestedData = NULL_PTR;
 digestedDataLen = 0;
 }
1 6 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Generating Random Numbers
Generating Random Numbers
In the “Introductory Example” on page 9, we hard-coded the DES key. In an actual
application, you would use randomly-generated values. Crypto-C allows you to
generate a pseudo-random sequence of bytes using a pseudo-random number
generator (PRNG). These PRNGs are based on the message digests MD2, MD5, and
SHA1. This section shows how to use AI_X962Random_V0, a SHA1-based pseudo-
random number generator. Its implementation can also be used as a model for the
MD2 and MD5 random number generators. This model should be used for most
random-number generation methods.

Note: There is also AI_X931Random, which is a SHA1-based pseudo-random number
generator that allows multiple streams of randomness. It is intended
primarily for use with AI_RSAStrongKeyGen, and should not be used for
general-purpose random-number generation. For an example of how to use
AI_X931Random, see “Putting It All Together: An X9.31 Example” on page 313.

Generating Random Numbers with SHA1
The example in this section corresponds to the file genbytes.c. This example, which
uses AI_X962Random_V0, can easily be modified to use the PRNGs based on MD2 and
MD5, AI_MD2Random and AI_MD5Random, respectively.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&randomAlgorithm)) != 0)
 break;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 6 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Generating Random Numbers
Step 2: Setting The Algorithm Object
You need to supply an appropriate algorithm info type (AI) and the proper associated
info to B_SetAlgorithmInfo. For random-number generation, you have a choice
between AI_MD2Random, AI_MD5Random, AI_X962Random_V0 (also known as
AI_SHA1Random), and AI_X931Random, based on the message digest algorithms MD2,
MD5, and SHA1 described earlier. For this example, choose AI_X962Random_V0.

Note: AI_SHA1Random is identical to AI_X962Random_V0; the name AI_SHA1Random is
used in the demo applications. However, AI_SHA1Random may change in
future versions of Crypto-C. For forward compatibility, we recommend that
you do not use the name AI_SHA1Random in your applications; use
AI_X962Random_V0 instead.
Recent cryptanalytic work has discovered a collision in MD2’s internal
compression function, and there is some chance that the attack on MD2 may
be extended to the full hash function. The same attack applies to MD. Another
attack has been applied to the compression function on MD5, though this has
yet to be extended to the full MD5. RSA Security recommends that before you
use MD, MD2, or MD5, you should consult the RSA Laboratories Web site to
be sure that their use is consistent with the latest information.

The entry for AI_SHA1Random in Chapter 2 of the Reference Manual refers you to
AI_X962Random_V0; the entry for this second AI states that the info supplied to
B_SetAlgorithmInfo is NULL_PTR. So the proper way to set your random algorithm
object is:

Step 3: Init
Initialize randomAlgorithm with B_RandomInit. The prototype of this function in
Chapter 4 of the Reference Manual indicates that it takes three arguments: the
algorithm object, the algorithm chooser, and the surrender context. The first argument
is randomAlgorithm. For the second argument, build an algorithm chooser that
contains the AMs listed in the Reference Manual Chapter 2 entry for AI_X962Random_V0.
B_RandomInit is a fast function, so it is reasonable to use a properly cast NULL_PTR for
the surrender context as the third argument.

if ((status = B_SetAlgorithmInfo
 (randomAlgorithm, AI_SHA1Random, NULL_PTR)) != 0)
 break;
1 6 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Generating Random Numbers
Refer to “Saving State” on page 120 for a discussion of how to save the state of the
algorithm object for future use.

Step 4: Update
The B_RandomUpdate function mixes in a random seed to the algorithm object. The
function prototype in Chapter 4 of the Reference Manual shows that B_RandomUpdate
takes four arguments: an algorithm object, a random seed, the length of the random
seed, and a surrender context. So before you can call B_RandomUpdate, you need to
procure a random seed.

Step 4a: The Random Seed
The purpose of random number generation is to produce an unpredictable and
unrepeatable sequence of bytes. If you do not update a random algorithm object with
a random seed, you will generate a default sequence of pseudo-random bytes. In
addition, if someone else updates their random algorithm object with the same seed
that you used, they will generate the same sequence you did. Because unrepeatability
depends on the random seed, you want an unrepeatable seed.

Generating a seed that cannot be predicted or repeated is especially important in
cryptography. There are a number of sources for unrepeatable seeds. The best source
may be a hardware noise generator. The BSAFE Hardware API (BHAPI) offers a way
to interface with a hardware random number generator. One such implementation
interfaces with Intel’s Random Number Generator; see the RSA BSAFE Crypto-C Intel
Security Hardware User’s Manual for more information. Other seed-gathering methods
involve tracking mouse movement or timing keystrokes, system time, or processor-
elapsed time. There may be other schemes you can devise that do not depend on
someone entering a value from the keyboard.

The seed does not necessarily have to be random, but its value must be difficult to

B_ALGORITHM_METHOD *RANDOM_CHOOSER[] = {
 &AM_SHA_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_RandomInit
 (randomAlgorithm, RANDOM_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 6 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Generating Random Numbers
predict or reproduce. Once you have seeded the random algorithm, the algorithm can
produce a sequence of random bytes; these bytes are “more random” and are
generated more quickly than the seed. See “Pseudo-Random Numbers and Seed
Generation” on page 92 for more information.

Before you get your seed, you need to set aside memory to hold it. In this example,
you will allocate 256 bytes for your seed:

Now get the random seed. The exact method you use to get the seed will depend on
your application and how the seed is generated. Here is a quick method for getting
keyboard input. This method is not recommended for an actual application; it is
supplied for illustrative purposes only:

Note: Another method for acquiring a seed would be to use a hardware random
number generator, if available, such as the Intel Random Number Generator
described in the Crypto-C Intel Security Hardware User’s Guide. However, even
if you have access to random numbers from hardware, you will still want to
have a fallback method of seed collection, in case the hardware random
number generator is not available or fails for some reason.

Here you are using a 256-byte buffer. When the space was allocated, the contents of
the buffer were simply whatever happened to be in that memory location at the time.
In this case, when you enter a seed at the keyboard (the gets function), you overwrite
the first few bytes in the buffer, one byte for each keystroke. Now, the first bytes in the
buffer are the input from the keyboard; the rest of the 256 bytes are untouched.

Note: If you want to guarantee a repeatable seed (for example, if you are testing and
want to be able to reproduce your data), set the buffer with T_memset.

POINTER randomSeed = NULL_PTR;
unsigned int randomSeedLen;

randomSeedLen = 256;
randomSeed = T_malloc (randomSeedLen);
if ((status = (randomSeed == NULL_PTR)) != 0)
 break;

puts (“Enter a random seed”);
if ((status =
 (NULL_PTR ==
 (unsigned char *)gets ((char *)randomSeed))) != 0)
 break;
1 6 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Generating Random Numbers
Now that you have a random seed, you can call B_RandomUpdate. The length
argument tells Crypto-C how many bytes from the random seed buffer to use. See
“Pseudo-Random Numbers and Seed Generation” on page 92 for a discussion on how
many seed bytes to use. In this example, you will use all 256 bytes from the buffer,
even though you probably entered fewer than 256 characters at the keyboard. Once
again, it is reasonable to pass a NULL_PTR for the surrender context, because
B_RandomUpdate is a fast function:

Call B_RandomUpdate as many times as you wish with different seeds each time to
increase the unrepeatability of your random number generator. After each Update,
you may want to overwrite and free your seed immediately.

Step 5: Generate
When generating random bytes, you call B_GenerateRandomBytes instead of a Final
function. The function prototype in Chapter 4 of the Reference Manual calls for the
following arguments: a random algorithm object, an output buffer, the number of
bytes to generate, and a surrender context. You need to prepare a buffer before calling
B_GenerateRandomBytes:

Now you can generate some random bytes. Generating 64 bytes is quick, so you are
still safe in using a NULL_PTR for the surrender context.

if ((status = B_RandomUpdate
 (randomAlgorithm, randomSeed, randomSeedLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define NUMBER_OF_RANDOM_BYTES 64

unsigned char *randomByteBuffer = NULL_PTR;

randomByteBuffer = T_malloc (NUMBER_OF_RANDOM_BYTES);
if ((status = (randomByteBuffer == NULL_PTR)) != 0)
 break;

if ((status = B_GenerateRandomBytes
 (randomAlgorithm, randomByteBuffer, NUMBER_OF_RANDOM_BYTES,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 6 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Generating Random Numbers
Step 6: Destroy
Remember to destroy all objects when done with them. You must also call T_free
once for each call to T_malloc. For security reasons, overwrite the seed buffer with
zeros as well:

Generating Independent Streams of Randomness
AI_X931Random is a SHA1-based pseudo-random number generator that allows you to
generate multiple streams of randomness. This means that the Crypto-C
implementation of the X9.31 random algorithm is somewhat different from the
implementation of the other PRNGs in Crypto-C. This section describes the
modifications you would have to make to the previous example to use
AI_X931Random. These modifications take place at Step 2, Set and Step 3, Init.

The example in this section corresponds to the file x931rand.c.

Step 1: Create
This step is identical to the previous example.

Step 2: Set
Setting the X9.31 random algorithm object is the main difference working with the
other random algorithms. AI_X931Random requires you to pass in a structure
describing the number of independent streams of randomness and a seed which will
be divided between the streams.

B_DestroyAlgorithmObject (&randomAlgorithm);
T_memset (randomSeed, 0, randomSeedLen);
T_free (randomSeed);
T_free (randomByteBuffer);

typedef struct
{
 unsigned int numberOfStreams; /* number of independent streams */
 ITEM seed; /* additional seeding */
 /* to be equally divided among the streams */
} A_X931_RANDOM_PARAMS;
1 7 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Generating Random Numbers
For this example, you will specify six streams of randomness, and provide a seed
stored in an ITEM structure, randomSeed. The amount of seed data passed in the
A_X931_RANDOM_PARAMS structure must greater than or equal to 20 * (number of
streams) bytes and less than or equal to 64 * (number of streams) bytes. With six
streams, this means the seed size must be between 120 bytes and 384 bytes. If the
amount of seed data is outside this range, Crypto-C will return a BE_ALGORITHM_INFO
error.

In addition, Crypto-C checks the seed value for the amount of entropy. For example, a
constant seed (all zeros or all ones) will return an error.

Step 3: Init
Once the structure has been passed in, the Init is essentially the same as in the
previous example. The only difference is that AM_X931_RANDOM appears in the chooser.

Steps 4, 5, 6
These steps are identical to the previous example.

 ITEM randomSeed;
 A_X931_RANDOM_PARAMS x931Params;

 x931Params.numberOfStreams = 6;
 x931Params.seed.data = randomSeed.data;
 x931Params.seed.len = randomSeed.len;

 if ((status = B_SetAlgorithmInfo
 (randomAlgorithm, AI_X931Random, (POINTER)&x931Params)) != 0)
 break;

 B_ALGORITHM_METHOD *RANDOM_CHOOSER[] = {
 &AM_X931_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_RandomInit
 (randomAlgorithm, RANDOM_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 7 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Converting Data Between Binary and ASCII
Converting Data Between Binary and
ASCII
If you have data in binary format, yet need it in ASCII, or vice versa, Crypto-C offers
functions to encode and decode according to the RFC1113 standard.

The example in this section corresponds to the file encdec.c.

Encoding Binary Data To ASCII

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one ASCII encoding or decoding AI, AI_RFC1113Recode. The Reference
Manual Chapter 2 entry for this AI states that the format of info supplied to
B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
To initialize ASCII encoding, call B_EncodeInit. This function takes only one
argument, the algorithm object:

B_ALGORITHM_OBJ asciiEncoder = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&asciiEncoder)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (asciiEncoder, AI_RFC1113Recode, NULL_PTR)) != 0)
 break;
1 7 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Converting Data Between Binary and ASCII
Step 4: Update
Enter the data to encode through B_EncodeUpdate. The application is responsible for
allocating the space for the output of this routine. When encoding, for each three bytes
of input there are four bytes of output. So when allocating space, multiply the input
size by 4/3 and round up. If memory is not an issue, you can make the output buffer
twice the size of the input length.

Given pre-existing binary input, your calls to the Update functions would be as
follows:

if ((status = B_EncodeInit (asciiEncoder)) != 0)
 break;

/* We are assuming binaryData already points to allocated
 space and contains the data to encode into ASCII.
 */
unsigned char *binaryData;
unsigned int binaryDataLen;
unsigned char *asciiEncoding = NULL_PTR;
unsigned int asciiEncodingLenUpdate;

/* Allocate a buffer twice the size of the binary data */
asciiEncoding = T_malloc (binaryDataLen * 2);
if ((status = (asciiEncoding == NULL_PTR)) != 0)
 break;

if ((status = B_EncodeUpdate
 (asciiEncoder, asciiEncoding, &asciiEncodingLenUpdate,
 (binaryDataLen * 2), binaryData, binaryDataLen)) != 0)
 break;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 7 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Converting Data Between Binary and ASCII
Step 5: Final
Finalize the encoding process, writing out any remaining bytes:

Step 6: Destroy
Remember to destroy all objects and free up any memory allocated when done:

Decoding ASCII-Encoded Data

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one ASCII-encoding or decoding AI, AI_RFC1113Recode. The Reference
Manual Chapter 2 entry on this AI states that the format of info supplied to
B_SetAlgorithmInfo is NULL_PTR:

unsigned int asciiEncodingLenFinal;

if ((status = B_EncodeFinal
 (asciiEncoder, asciiEncoding + asciiEncodingLenUpdate,
 &asciiEncodingLenFinal,
 (binaryDataLen * 2) - asciiEncodingLenUpdate)) != 0)
 break;

B_DestroyAlgorithmObject (&asciiEncoder);
T_free (asciiEncoding);

B_ALGORITHM_OBJ asciiDecoder = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&asciiDecoder)) != 0)
 break;
1 7 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Converting Data Between Binary and ASCII
Step 3: Init
To initialize decoding, call B_DecodeInit. This function takes only one argument, the
algorithm object:

Step 4: Update
Enter the data to decode through B_DecodeUpdate. The application is responsible for
allocating the space for the output of this routine. When decoding, there will be three
bytes of output for every four bytes of input. If memory is a concern, you may want to
determine the exact number of bytes you will need. If memory is not a concern, make
the output size equal to the input length.

Given your pre-existing ASCII input, your call to the Update function would be as
follows:

if ((status = B_SetAlgorithmInfo
 (asciiDecoder, AI_RFC1113Recode, NULL_PTR)) != 0)
 break;

if ((status = B_DecodeInit (asciiDecoder)) != 0)
 break;

/* We are assuming asciiEncoding already points to allocated
 space and contains the data to decode into binary. Also,
 asciiEncodingLenTotal is already set with the length of
 the asciiEncoding.
 */
unsigned char *asciiEncoding;
unsigned int asciiEncodingLenTotal;
unsigned char *binaryDecoding = NULL_PTR;
unsigned int binaryDecodingLenUpdate;

/* Allocate a buffer the same size as the ascii data. */
binaryDecoding = T_malloc (asciiEncodingLenTotal);
if ((status = (binaryDecoding == NULL_PTR)) != 0)
 break;
C h a p t e r 5 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 7 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Converting Data Between Binary and ASCII
Step 5: Final
Finalize the decoding process, writing out any bytes remaining:

Step 6: Destroy
When you are done, remember to destroy all objects and free up any memory that has
been allocated:

if ((status = B_DecodeUpdate
 (asciiDecoder, binaryDecoding, &binaryDecodingLenUpdate,
 asciiEncodingLenTotal, asciiEncoding,
 asciiEncodingLenTotal)) != 0)
 break;

unsigned int binaryDecodingLenFinal;

if ((status = B_DecodeFinal
 (asciiDecoder, binaryDecoding + binaryDecodingLenUpdate,
 &binaryDecodingLenFinal,
 asciiEncodingLenTotal - binaryDecodingLenUpdate)) != 0)
 break;

B_DestroyAlgorithmObject (&asciiDecoder);
T_free (binaryDecoding);
1 7 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6

Symmetric-Key Operations
Recall that the RC4 algorithm of the “Introductory Example” on page 9 is called
symmetric-key encryption because the encryption key used is the same the
decryption key. Crypto-C offers two types of symmetric-key encryption operations:
stream ciphers and block ciphers. The RC4 cipher, the only stream cipher in Crypto-C,
was used in the “Introductory Example” on page 9. This chapter gives examples of
the RC2, RC5, RC6 and DES block ciphers.

For an example of public-key encryption, see “Performing RSA Operations” on
page 214.
1 7 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Block Ciphers

DES with CBC
The example in this section corresponds to the file descbc.c.

Step 1: Creating an Algorithm Object
Declare a variable to be a B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
There are a number of DES AIs from which to choose. See Table 4-6 on page 105 for a
summary. For this example, choose AI_FeedbackCipher. AI_FeedbackCipher is a
general-purpose AI that allows you to choose different block cipher methods, such as
DES, the RC2 cipher, and the RC5 cipher. It also allows you to choose different
feedback methods for your cipher. This makes updating your program to use a
different block cipher or feedback method easy: you simply have to replace the
arguments.

See “Block Ciphers” on page 37 of this manual for an overview of block cipher
algorithms and feedback methods. We will implement DES in CBC mode using the
padding scheme defined in PKCS V#5.

The description of AI_FeedbackCipher in Chapter 2 of the Reference Manual says that
the format of the info supplied to B_SetAlgorithmInfo is a pointer to a
B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

 B_ALGORITHM_OBJ encryptionObject = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&encryptionObject)) != 0)
 break;
1 7 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
encryptionMethodName is the block cipher that you will use; for this example, use “des”.
The information in the Reference Manual indicates that you do not need to supply any
parameters for the DES encryption algorithm, so set encryptionParams to NULL_PTR.

Use Cipher Block Chaining (CBC) for your feedback method. For this method, the
Reference Manual says that feedbackParams is an ITEM structure containing the
initialization vector:

See “Block Ciphers” on page 37 for an explanation of initialization vectors. Use a
random number generator to produce an IV. Remember, the IV is not secret and will
not assist anyone in breaking the encryption, but you should use a different IV for
different messages. The size of the IV is eight bytes, because DES encrypts blocks of
eight bytes. The size of the IV is always related to the size of the block, not the key:

typedef struct {
 unsigned char *encryptionMethodName; /* examples include “des”, “rc5” */
 POINTER encryptionParams; /* e.g., RC5 parameters */
 unsigned char *feedbackMethodName;
 POINTER feedbackParams; /* Points at init vector ITEM */
 /* for all feedback modes except cfb */
 unsigned char *paddingMethodName;
 POINTER paddingParams; /* Ignored for now, but may be used */
 /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;

 typedef struct {
 unsigned char *data;
 unsigned int len;
 } ITEM;

 unsigned char *ivBytes[BLOCK_SIZE];
 B_BLK_CIPHER_W_FEEDBACK_PARAMS fbParams;

 ITEM ivItem;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 7 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
You must also indicate that you want to use the standard CBC padding which is
defined in PKCS#5; do this by setting fbParams.paddingMethodName to "pad". You do
not need to pass in any padding parameters for this padding scheme. Again, “Block
Ciphers” on page 37 explains padding.

Now set up the B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

Step 3: Init
You need a key before you can initialize the object for encryption. You will need to
first create the key object, and then set the key object.

Step 3a: Creating the Key Object

 /* Complete steps 1 - 4 of Generating Random Numbers, then */
 /* call B_GenerateRandomBytes. */

 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, ivBytes, 8,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 ivItem.data = ivBytes;
 ivItem.len = 8;

 fbParams.encryptionMethodName = (unsigned char *)"des";
 fbParams.encryptionParams = NULL_PTR;
 fbParams.feedbackMethodName = (unsigned char *)"cbc";
 fbParams.feedbackParams = (POINTER)&ivItem;
 fbParams.paddingMethodName = (unsigned char *)"pad";
 fbParams.paddingParams = NULL_PTR;

 if ((status = B_SetAlgorithmInfo
 (encryptionObject, AI_FeedbackCipher,(POINTER)&fbParams)) != 0)
 break;

B_KEY_OBJ desKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&desKey)) != 0)
 break;
1 8 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 3b: Setting the Key Object
You want to use a KI compatible with DES encryption, so return to the entry for
AI_FeedbackCipher in Chapter 2 of the Reference Manual:

See “Summary of KIs” on page 113 of this manual for a discussion of the KIs. For this
example, you will use KI_DES8Strong. Its entry in the Reference Manual states:

Use a random number generator to produce eight bytes for the key:

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
Depends on cipher type, as follows:

Cipher KIs

DES KI_Item, KI_DES8, KI_DES8Strong, KI_8Byte

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array which holds the 8-byte DES key.
The key is DES parity-adjusted when it is copied to the key object.

 unsigned char keyData[8];

 /* Complete steps 1 - 4 of Generating Random Numbers, */
 /* then call B_GenerateRandomBytes. */
 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, keyData, 8,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SetKeyInfo
 (desKey, KI_DES8Strong, (POINTER)keyData)) != 0)
 break;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 8 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Now that you have a key, you need an algorithm chooser and a surrender context.
This is a speedy function, so you can use a properly cast NULL_PTR for the surrender
context; but you do want to build a chooser:

Step 4: Update
Enter the data to encrypt with B_EncryptUpdate. The Reference Manual Chapter 2 entry
for AI_FeedbackCipher states that you may pass (B_ALGORITHM_OBJ)NULL_PTR for all
randomAlgorithm arguments. Once you have your input, call B_EncryptUpdate.

Remember that DES is a block cipher and requires input that is a multiple of eight
bytes. Because you set fbParams.paddingMethodName to "pad" (see page 180), Crypto-
C will pad to make the input a multiple of eight bytes. That means that the output
buffer should be at least eight bytes longer than the input length. DES is a fast
algorithm, so for small amounts of data it is reasonable to pass a properly cast
NULL_PTR for the surrender context. If you want to pass a surrender context, refer to
the following code sample:

B_ALGORITHM_METHOD *DES_CBC_CHOOSER[] = {
 &AM_CBC_ENCRYPT,
 &AM_DES_ENCRYPT,
 &AM_SHA_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
 (encryptionObject, desKey, DES_CBC_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

static char *dataToEncrypt = "Encrypt this sentence.";
unsigned char *encryptedData = NULL_PTR;
unsigned int outputBufferSize;
unsigned int outputLenUpdate, outputLenFinal;
unsigned int encryptedDataLen;

encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
 break;
1 8 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy all objects that you created and free up any memory that you
allocated:

Note: Using T_free means you can no longer access the data at that address. Do not
free a buffer until you no longer need the data it contains. If you will need the
data later, you might want to save it to a file first.

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use
the same AI, IV, and key data. Use the proper decryption AM and call B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal.

if ((status = B_EncryptUpdate
 (encryptionObject, encryptedData, &outputLenUpdate,
 encryptedDataLen, (unsigned char *)dataToEncrypt,
 dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_EncryptFinal
 (encryptionObject, encryptedData + outputLenUpdate,
 &outputLenFinal, encryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyKeyObject (&desKey);
B_DestroyAlgorithmObject (&encryptionObject);
B_DestroyAlgorithmObject (&randomAlgorithm);
T_free (encryptedData);
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 8 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
The RC2 Cipher
The RC2 cipher is a variable-key-size block cipher. Whereas a DES key requires eight
bytes — no more, no less — an RC2 key can be anywhere between one and 128 bytes.
The larger the key, the greater the security. The RC2 cipher is called a block cipher
because it encrypts 8-byte blocks. Recall that DES also is a block cipher that encrypts
8-byte blocks. That means the RC2 cipher can serve as a drop-in replacement for DES.
The steps for using AI_FeedbackCipher with the RC2 cipher are almost identical to
those for DES.

The example in this section corresponds to the file rc2.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are a number of RC2 AIs from which to choose. Table 4-6 on page 105 gives a
summary of AIs. Choose AI_FeedbackCipher; as in the previous example, the format
of the info supplied to B_SetAlgorithmInfo is a pointer to a
B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

B_ALGORITHM_OBJ rc2Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc2Encrypter)) != 0)
 break;

typedef struct {
 unsigned char *encryptionMethodName; /* examples include “des”, “rc5” */
 POINTER encryptionParams; /* e.g., RC5 parameters */
 unsigned char *feedbackMethodName;
 POINTER feedbackParams; /* Points at init vector ITEM */
 /* for all feedback modes except cfb */
 unsigned char *paddingMethodName;
 POINTER paddingParams; /* Ignored for now, but may be used */
 /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;
1 8 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Once again, encryptionMethodName is the block cipher that you will use; in this
example, use “rc2”. All the other parameters are the same as for DES, except
encryptionParams. For the RC2 cipher, the Reference Manual indicates that you need to
supply an A_RC2_PARAMS structure for the RC2 encryption algorithm:

There is a distinction between key size and effective key bits. The RC2 algorithm
begins by building a 128-byte table based on the key. The total number of possible
tables is limited by the number of effective key bits. Using 80 effective key bits is
generally sufficient for most applications.

Use Cipher Block Chaining (CBC) for your feedback method. Once again, for this
method, you need an initialization vector; use a random number generator to produce
one. Remember, the IV is not secret and will not assist anyone in breaking the
encryption. Its size will be eight bytes, because the RC2 cipher encrypts blocks of eight
bytes. The Reference Manual says that feedbackParams is an ITEM structure containing
the initialization vector:

Now you can set your algorithm object as follows:

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
} A_RC2_PARAMS;

 typedef struct {
 unsigned char *data;
 unsigned int len;
 } ITEM;

ITEM ivItem;
unsigned char initVector[BLOCK_SIZE];
A_RC2_PARAMS rc2Params;
B_BLK_CIPHER_W_FEEDBACK_PARAMS fbParams;

/* Complete steps 1 - 4 of Generating Random Numbers,
 then call B_GenerateRandomBytes. */
if ((status = B_GenerateRandomBytes
 (randomAlgorithm, (unsigned char *)initVector, 8,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 8 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 3: Init
You need a key before you can initialize the algorithm object for encryption.

Step 3a: Creating a Key Object

Step 3b: Setting the Key Object
You are using 80 effective key bits. That does not mean you need exactly ten bytes of
key data, although for security reasons, it is important to use at least ten bytes. You
can generate 24 bytes (192 bits) of key data and the algorithm will still work at 80
effective bits. Thus, in the future, if you want to increase the effective key bits, you do
not have to change the code that generates key data, only the effective key bit
parameter.

Key generation is almost the same as with DES, but you will use a different KI. In the
Reference Manual Chapter 2 entry for AI_FeedbackCipher, you see you have a choice of
KIs. Because your key is going to be 24 bytes, you cannot use KI_8Byte, so choose
KI_Item. Looking up KI_Item in Chapter 3 of the Reference Manual, you find that the
info you supply to B_SetKeyInfo is a pointer to an ITEM struct, which is:

rc2Params.effectiveKeyBits = 80;
ivItem.data = initVector;
ivItem.len = BLOCK_SIZE;

fbParams.encryptionMethodName = (unsigned char *)"rc2";
fbParams.encryptionParams = NULL_PTR;
fbParams.feedbackMethodName = (unsigned char *)"cbc";
fbParams.feedbackParams = (POINTER)&ivItem;
fbParams.paddingMethodName = (unsigned char *)"pad";
fbParams.paddingParams = NULL_PTR;

if ((status = B_SetAlgorithmInfo
 (rc2Encrypter, AI_FeedbackCipher, (POINTER)&fbParams)) != 0)
 break;

B_KEY_OBJ rc2Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc2Key)) != 0)
 break
1 8 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Use a random number generator to come up with 24 bytes.

It is a good idea to zeroize any sensitive data after leaving the do-while. In fact, you
may want to zeroize the memory and free it up immediately after setting the key. To
do so, first free the memory using T_free, then reset rc2KeyItem.data to NULL_PTR,
duplicating the following sequence after the do-while. If there is an error inside the
do-while, you will still zeroize and free sensitive data; if there is no error, you have
reset to NULL_PTR, and the code after the do-while will not create havoc.

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;

ITEM rc2KeyItem;

rc2KeyItem.len = 24;
rc2KeyItem.data = T_malloc (rc2KeyItem.len);
if ((status = (rc2KeyItem.data == NULL_PTR)) != 0)
 break;

/* Complete steps 1 - 4 of Generating Random Numbers, then
 call B_GenerateRandomBytes. */
if ((status = B_GenerateRandomBytes
 (randomAlgorithm, rc2KeyItem.data, rc2KeyItem.len,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SetKeyInfo
 (rc2Key, KI_Item, (POINTER)&rc2KeyItem)) != 0)
 break;

if (rc2KeyItem.data != NULL_PTR) {
 T_memset (rc2KeyItem.data, 0, rc2KeyItem.len);
 T_free (rc2KeyItem.data);
 rc2KeyItem.data = NULL_PTR;
 rc2KeyItem.len = 0;
}

C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 8 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
You need an algorithm chooser and a surrender context. This is a speedy function, so
it is reasonable to use a properly cast NULL_PTR for the surrender context. However,
you do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Reference Manual
Chapter 2 entry on AI_FeedbackCipher, you see that you can pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Once you have your
input, call B_EncryptUpdate.

Remember that the RC2 cipher is a block cipher and requires that the input be a
multiple of eight bytes. Because you set fbParams.paddingMethodName to "pad" (see
page 184), Crypto-C will pad to make the input a multiple of eight bytes. That means
that the output buffer should be at least eight bytes larger than the input length.

The RC2 cipher is a fast algorithm, so for small amounts of data it is reasonable to pass
a properly cast NULL_PTR for the surrender context. If you want to pass a surrender
context, you can:

B_ALGORITHM_METHOD *RC2_CHOOSER[] = {
 &AM_CBC_ENCRYPT,
 &AM_RC2_ENCRYPT,
 &AM_SHA_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
 (rc2Encrypter, rc2Key, RC2_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

/* Assume dataToEncrypt points to already set data and
 dataToEncryptLen has been set to the number of bytes
 in dataToEncrypt. */

unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;
encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
1 8 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy all objects created and free up any memory allocated:

if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

if ((status = B_EncryptUpdate
 (rc2Encrypter, encryptedData, &outputLenUpdate,
 encryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

unsigned int outputLenFinal;
if ((status = B_EncryptFinal
 (rc2Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, encryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyKeyObject (&rc2Key);
B_DestroyAlgorithmObject (&rc2Encrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);

if (encryptedData != NULL_PTR) {
 T_memset (encryptedData, 0, encryptedDataLen);
 T_free (encryptedData);
 encryptedData = NULL_PTR;
}

if (rc2KeyItem.data != NULL_PTR) {
 T_memset (rc2KeyItem.data, 0, rc2KeyItem.len);
 T_free (rc2KeyItem.data);
 rc2KeyItem.data = NULL_PTR;
 rc2KeyItem.len = 0;
}

C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 8 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Decrypting
As with the “Introductory Example” on page 9, decrypting is similar to encrypting.
Use the same AI, IV, and key. Use the proper decrypting AM and call B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal.

The RC5 Cipher
The RC5 cipher is more properly known as RC5 w/r/b, where w stands for word-size,
r stands for rounds, and b stands for key size in bytes.

The word size parameter is designed to take advantage of variable hardware word
sizes. A hardware implementation can choose a 16-, 32-, or 64-bit word size,
depending on how many bits make up a register, or word. Software implementations
of the RC5 cipher can emulate any word size, regardless of the size of the machine’s
register size. Crypto-C implements word sizes of 32 or 64 bits; the 64-bit
implementation has not been optimized.

The next feature of the RC5 cipher is the rounds parameter. Increasing the number of
rounds increases security, but slows down the operation. This allows the application
developer to establish a desired trade-off between security and speed. The RC5 cipher
allows round counts from 0 to 255 rounds. RSA Security recommends using at least 16
rounds for the 32-bit word implementation. Analysis indicates that, in theory, the RC5
cipher may be susceptible to various attacks for values less than 16.

The last feature is the variable key size. Whereas a DES key requires eight bytes, an
RC5 key can be anywhere between zero and 255 bytes. The larger the key, the greater
the security. Key size has no appreciable effect on speed.

The RC5 cipher is a block cipher; the size of the blocks is twice the word size. For RC5
32/r/b, the block size is 64 bits or 8 bytes; for RC5 64/r/b, the block size is 128 bits or 16
bytes.

The example in this section corresponds to the file rc5.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ and as defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject.
1 9 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 2: Setting The Algorithm Object
There are a number of RC5 AIs from which to choose. Table 4-6 on page 105 describes
the AIs. For this example, you will use a different cipher from AI_FeedbackCipher.
Choose AI_RC5_CBCPad. The Reference Manual Chapter 2 entry for this AI indicates that
the format of info supplied to B_SetAlgorithmInfo is:

As a provision for future revisions of the RC5 algorithm, Crypto-C includes a version
number. So that the version number can be one byte, it is two hex digits. Version 1.0 is
therefore 0x10. Version 3.8, if there ever is one, would be 0x38. The hex number 0x10
is the decimal number 16. Both are valid, but it is probably better to use 0x10 because
it is easier to see as a version number.

For this example, you will use 12 rounds with a word size of 32.

Because you have chosen an AI that uses Cipher Block Chaining (CBC), you need an
initialization vector. Use a random number generator to produce an IV. Because the
word size is 32, the block size is 64 bits or eight bytes, and your IV must be eight bytes
long. Remember, the IV is not secret and will not assist anyone in breaking the
encryption. Its size will be eight bytes, because the RC5 cipher encrypts blocks of eight
bytes. Remember, the IV is related to the block, not the key:

B_ALGORITHM_OBJ rc5Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc5Encrypter)) != 0)
 break;

typedef struct {
 unsigned int version; /* currently 1.0 defined 0x10 */
 unsigned int rounds; /* number of rounds (0 - 255) */
 unsigned int wordSizeInBits; /* AI_RC5_CBCPad requires 32 */
 unsigned char *iv; /* initialization vector */
} A_RC5_CBC_PARAMS;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 9 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 3: Init
You need a key before you can initialize the algorithm object for encryption. You will
first create a key object, then set the key object.

Step 3a: Creating A Key Object

Step 3b: Setting The Key Object
For this example, you will use 10 key bytes (80 bits). In the Reference Manual Chapter 2
entry for AI_RC5_CBCPad, you see you must use KI_Item. Looking up KI_Item in
Chapter 3 of the Reference Manual, you find that the info you supply to B_SetKeyInfo
is a pointer to an ITEM struct, defined in algobal.h:

unsigned char initVector[8];
A_RC5_CBC_PARAMS rc5Params;

/* Complete steps 1 - 4 of Generating Random Numbers,
 then call B_GenerateRandomBytes. */

if ((status = B_GenerateRandomBytes
 (randomAlgorithm, (unsigned char *)initVector, 8,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

rc5Params.version = 0x10;
rc5Params.rounds = 12;
rc5Params.wordSizeInBits = 32;
rc5Params.iv = (unsigned char *)initVector;

if ((status = B_SetAlgorithmInfo
 (rc5Encrypter, AI_RC5_CBCPad, (POINTER)&rc5Params)) != 0)
 break;

B_KEY_OBJ rc5Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc5Key)) != 0)
 break;
1 9 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Use a random number generator to create 10 bytes:

It is a good idea to zeroize any sensitive data after leaving the do-while. In fact, you
may want to zeroize the memory and free it up immediately after you set the key. To
do so, first free the memory using T_free, then reset rc5KeyItem.data to NULL_PTR
and duplicate the following sequence after the do-while. If there is an error inside the
do-while before you zeroize and free, you will still perform this important task; if
there is no error, by resetting to NULL_PTR, you ensure that the code after the do-while
will not create havoc:

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;

ITEM rc5KeyItem;

rc5KeyItem.data = NULL_PTR;
rc5KeyItem.len = 10;
rc5KeyItem.data = T_malloc (rc5KeyItem.len);
if ((status = (rc5KeyItem.data == NULL_PTR)) != 0)
 break;

if ((status = B_GenerateRandomBytes
 (randomAlgorithm, rc5KeyItem.data, rc5KeyItem.len,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SetKeyInfo
 (rc5Key, KI_Item, (POINTER)&rc5KeyItem)) != 0)
 break;

if (rc5KeyItem.data != NULL_PTR) {
 T_memset (rc5KeyItem.data, 0, rc5KeyItem.len);
 T_free (rc5KeyItem.data);
 rc5KeyItem.data = NULL_PTR;
 rc5KeyItem.len = 0;
};
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 9 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Now that you have a key, you need an algorithm chooser and a surrender context.
This is a speedy function, so you can use a properly cast NULL_PTR for the surrender
context; but you do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Reference Manual
Chapter 2 entry on AI_RC5_CBCPad, you learn that you may pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have
some input, call B_EncryptUpdate.

Remember that the RC5 cipher is a block cipher and requires input that is a multiple
of eight bytes. Because you are using AI_RC5_CBCPad, Crypto-C will pad to make the
input a multiple of eight bytes. That means that the output buffer should be at least
eight bytes larger than the input length.

The RC5 cipher is a fast algorithm, so for small amounts of data it is reasonable to pass
a properly cast NULL_PTR for the surrender context. If you want to pass a surrender
context, you can:

B_ALGORITHM_METHOD *RC5_CHOOSER[] = {
 &AM_RC5_CBC_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
 (rc5Encrypter, rc5Key, RC5_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

/* Assume dataToEncrypt points to already set data and
 dataToEncryptLen has been set to the number of bytes
 in dataToEncrypt. */

unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;
1 9 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy all objects that you created and free up any memory that you
allocated.

encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

if ((status = B_EncryptUpdate
 (rc5Encrypter, encryptedData, &outputLenUpdate,
 encryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
 (rc5Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, dataToEncryptLen + 8 - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyKeyObject (&rc5Key);
B_DestroyAlgorithmObject (&rc5Encrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);
if (rc5KeyItem.data != NULL_PTR) {
 T_memset (rc5KeyItem.data, 0, rc5KeyItem.len);
 T_free (rc5KeyItem.data);
 rc5KeyItem.data = NULL_PTR;
 rc5KeyItem.len = 0;
}

C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 9 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use
the same AI, IV, and key data. Use the proper decrypting AM and call B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal.

The RC6 Cipher
The RC6 cipher was developed by Ronald Rivest and Matthew Robshaw, Ray Sidney,
and Lisa Yin of RSA Laboratories West as a candidate for the Advanced Encryption
Standard (AES). RC6 allows for a variable number of rounds; however, the
implementation in this version of Crypto-C fixes the number of rounds at 20. Later
versions of Crypto-C may extend this value.

The example in this section corresponds to the file rc6.c, which uses AI_RC6_CBCPad.
AI_FeedbackCipher also supports the RC6 symmetric block cipher.
AI_FeedbackCipher is useful if your application has a need to support block cipher
modes other than CBC. See the rc6fb.c sample program for more information.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ and as defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject.

Step 2: Set
For this example, you will perform an RC6 operation in CBC mode using PKCS V#5
padding. To do this, use AI_RC6_CBCPad in the call to B_SetAlgorithmInfo. Notice

if (encryptedData != NULL_PTR) {
 T_memset (encryptedData, 0, encryptedDataLen);
 T_free (encryptedData);
 encryptedData = NULL_PTR;
}

 B_ALGORITHM_OBJ rc6Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&rc6Encrypter)) != 0)
 break;
1 9 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
that, as specified in the Reference Manual entry for AI_RC6_CBCPad, this AI requires an
initialized A_RC6_CBC_PARAMS structure, which is defined as follows:

As mentioned previously, the number of rounds must be 20.

CBC mode requires an initialization vector, so assume that you have the following
buffer containing arbitrary bytes to use as the IV. Note that this information must be
made available to the entity which decrypts the message. The IV is not secret
information and may be sent in the clear with the ciphertext.

Now fill in an A_RC6_CBC_PARAMS structure and call B_SetAlgorithmInfo. As noted
previously, the only supported value for rc6Params.rounds is 20.

In this example, you can use AI_RC6_CBCPad for PKCS V#5 padding for simplicity.
This AI automatically pads the message to be a multiple of the block size, so that you
don't have to worry about the length of the data to encrypt.

Note: There is another AI, AI_RC6_CBC, which can be used to perform raw RC6
encryption. However, as is the case when doing raw encryption with any
block cipher, the length of the data to encrypt must be a multiple of the block
size. In the case of AI_RC6_CBC, the length of the data to encrypt must be a
multiple of 16 bytes. These AIs for performing raw encryption are useful if
you want to use your own padding scheme, instead of PKCS V#5.

 typedef struct {
 unsigned int rounds;
 unsigned char *iv;
 } A_RC6_CBC_PARAMS;

 #define BLOCK_SIZE 16
 unsigned char initVector[BLOCK_SIZE];

 A_RC6_CBC_PARAMS rc6Params;

 rc6Params.rounds = 20;
 rc6Params.iv = (unsigned char *)initVector;

 if ((status = B_SetAlgorithmInfo
 (rc6Encrypter, AI_RC6_CBCPad, (POINTER)&rc6Params)) != 0)
 break;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 9 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 3: Init
The next step is to make a call to B_EncryptInit. To do this, you need a key object.
You will first create a key object, and then set the key data.

Step 3a: Creating a Key Object

Step 3b: Setting the Key Data
Now you need to set the key size and pass the bytes of key data. According to the
Reference Manual entry for AI_RC6_CBCPad, the compatible KI type is KI_Item. A key
anywhere from 1-255 bytes is supported. Here, you can use a random 24-byte key. For
most applications, a 128-bit key should be sufficient.]

At this point, you can write the key data to rc6KeyItem.data. In the sample code, we
fill rc6KeyItem.data with random bytes:

Once you have passed in the key data, dispose of rc6KeyItem, because it is no longer
necessary. Crypto-C has already initialized the key object with the necessary data.

 B_KEY_OBJ rc6Key = (B_KEY_OBJ)NULL_PTR;

 if ((status = B_CreateKeyObject (&rc6Key)) != 0)
 break;

 #define KEY_SIZE 24 /* number of bytes in the key */

 ITEM rc6KeyItem = {NULL, 0};

 /* Step 3b: Set the key object with a random RC6 key */
 rc6KeyItem.len = KEY_SIZE;
 rc6KeyItem.data = T_malloc (rc6KeyItem.len);
 if ((status = (rc6KeyItem.data == NULL_PTR)) != 0)
 break;

 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, rc6KeyItem.data, rc6KeyItem.len,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_SetKeyInfo (rc6Key, KI_Item, (POINTER)&rc6KeyItem)) != 0)
 break;
1 9 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
To call B_EncryptInit, we also need an algorithm chooser. The Reference Manual
entry for AI_RC6_CBCPad gives us the AMs necessary. Because you will use this
chooser for decryption also, you should also include those AMs:

Once you have passed in the key data and created the chooser, you are ready to make
the call to B_EncryptInit:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Reference Manual
Chapter 2 entry on AI_RC6_CBCPad you learn that you may pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have
some input, call B_EncryptUpdate.

Remember that the RC6 cipher is a block cipher. The current version requires input
that is a multiple of sixteen bytes. Because you are using AI_RC5_CBCPad, Crypto-C
will pad to make the input a multiple of sixteen bytes. That means that the output
buffer should be at least sixteen bytes larger than the input length.

The RC6 cipher is a fast algorithm, so it is reasonable to pass a properly cast NULL_PTR

 if (rc6KeyItem.data != NULL_PTR) {
 T_memset (rc6KeyItem.data, 0, rc6KeyItem.len);
 T_free (rc6KeyItem.data);
 rc6KeyItem.data = NULL_PTR;
 rc6KeyItem.len = 0;
 }

 B_ALGORITHM_METHOD *RC6_CHOOSER[] = {
 &AM_RC6_CBC_ENCRYPT,
 &AM_RC6_CBC_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_EncryptInit (rc6Encrypter, rc6Key, RC6_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 1 9 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
for the surrender context:

Step 5: Final

Step 6: Destroy
Remember to destroy any objects that you created and to free up any memory that has

 unsigned char *dataToEncrypt = (unsigned char *)"Encrypt this sentence.";
 unsigned int dataToEncryptLen;

 unsigned char *encryptedData = NULL_PTR;
 unsigned int outputLenUpdate, outputLenFinal, outputLenTotal;
 unsigned int encryptedDataLen;

 dataToEncryptLen = T_strlen ((char *)dataToEncrypt) + 1;
 RSA_PrintBuf ("Data To Encrypt", dataToEncrypt, dataToEncryptLen);

 encryptedDataLen = dataToEncryptLen + BLOCK_SIZE;
 encryptedData = T_malloc (encryptedDataLen);
 if ((status = (encryptedData == NULL_PTR)) != 0) {
 status = RSA_DEMO_E_ALLOC;
 break;
 }

 if ((status = B_EncryptUpdate
 (rc6Encrypter, encryptedData, &outputLenUpdate,
 encryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_EncryptFinal
 (rc6Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, encryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 outputLenTotal = outputLenUpdate + outputLenFinal;
2 0 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
been allocated:

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use
the same AI, IV, and key data. Use the proper decrypting AM and call B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal.

The AES Cipher
The AES Cipher, Rijndael, is the replacement for the Data Encryption Standard (DES).
The example in this section corresponds to the file aes.c.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ and as defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject.

Step 2: Set
For this example, you will perform an AES operation in CBC mode using PKCS V#5
padding. To do this, use AI_AES_CBCPad in the call to B_SetAlgorithmInfo. Notice
that, as specified in the Reference Manual entry for AI_AES_CBCPad, this AI requires
an initialization vector. This is due to using CBC. This AI requires an unsigned char
*iv as its parameters.

 B_DestroyAlgorithmObject (&rc6Encrypter);

 if (rc6KeyItem.data != NULL_PTR) {
 T_memset (rc6KeyItem.data, 0, rc6KeyItem.len);
 T_free (rc6KeyItem.data);
 rc6KeyItem.data = NULL_PTR;
 rc6KeyItem.len = 0;
 }

 /* Create an algorithm object. */
 if ((status = B_CreateAlgorithmObject (&aesEncrypter)) != 0)
 break;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 2 0 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
CBC mode requires an initialization vector, so assume that you have the following
buffer containing arbitrary bytes to use as the IV. Note that this information must be
made available to the entity which decrypts the message. The IV is not secret
information and may be sent in the clear with the ciphertext.

Now fill in an A_AES_CBC_PARAMS structure and call B_SetAlgorithmInfo. As noted
previously, the only supported value for rc6Params.rounds is 20.

In this example, you can use AI_AES_CBCPad for PKCS V#5 padding for simplicity.
This AI automatically pads the message to be a multiple of the block size, so that you
don't have to worry about the length of the data to encrypt.

Note: There is another AI, AI_AES_CBC, which can be used to perform raw AES
encryption. However, as is the case when doing raw encryption with any
block cipher, the length of the data to encrypt must be a multiple of the block
size. In the case of AI_AES_CBC, the length of the data to encrypt must be a
multiple of 16 bytes. These AIs for performing raw encryption are useful if
you want to use your own padding scheme, instead of PKCS V#5.

Step 3: Init
The next step is to make a call to B_EncryptInit. To do this, you need a key object.
You will first create a key object, and then set the key data.

unsigned char *aesParams

 #define BLOCK_SIZE 16
 unsigned char initVector[BLOCK_SIZE];

 aesParams = (unsigned char *)initVector;

 if ((status = B_SetAlgorithmInfo
 (AESEncrypter, AI_AES_CBCPad, (POINTER)&aesParams)) != 0)
 break;
2 0 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 3a: Creating a Key Object

Step 3b: Setting the Key Data
Now you need to set the key size and pass the bytes of key data. According to the
Reference Manual entry for AI_AES_CBCPad, the compatible KI type is KI_Item. A key
anywhere from 1-255 bytes is supported. Here, you can use a random 24-byte key. For
most applications, a 128-bit key should be sufficient.]

At this point, you can write the key data to aesKeyItem.data. In the sample code, we
fill aesKeyItem.data with random bytes:

Once you have passed in the key data, dispose of aesKeyItem, because it is no longer
necessary. Crypto-C has already initialized the key object with the necessary data.

 /* Create a key object */
 if ((status = B_CreateKeyObject (&aesKey)) != 0)
 break;

 #define KEY_SIZE 24 /* number of bytes in the key */

 ITEM aesKeyItem = {NULL, 0};

 /* Step 3b: Set the key object with a random AES key */
 aesKeyItem.len = KEY_SIZE;
 aesKeyItem.data = T_malloc (rc6KeyItem.len);
 if ((status = (aesKeyItem.data == NULL_PTR)) != 0)
 break;

 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, aesKeyItem.data, aesKeyItem.len,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_SetKeyInfo (aesKey, KI_Item, (POINTER)&aesKeyItem)) != 0)
 break;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 2 0 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
To call B_EncryptInit, we also need an algorithm chooser. The Reference Manual
entry for AI_AES_CBCPad gives us the AMs necessary. Because you will use this
chooser for decryption also, you should also include those AMs:

Once you have passed in the key data and created the chooser, you are ready to make
the call to B_EncryptInit:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Reference Manual
Chapter 2 entry on AI_AES_CBCPad you learn that you may pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have
some input, call B_EncryptUpdate.

Remember that the AES cipher is a block cipher. The current version requires input
that is a multiple of sixteen bytes. Because you are using AI_AES_CBCPad, Crypto-C
will pad to make the input a multiple of sixteen bytes. That means that the output
buffer should be at least sixteen bytes larger than the input length.

The AES cipher is a fast algorithm, so it is reasonable to pass a properly cast NULL_PTR
for the surrender context:

 if (aesKeyItem.data != NULL_PTR) {
 T_memset (aesKeyItem.data, 0, aesKeyItem.len);
 T_free (aesKeyItem.data);
 aesKeyItem.data = NULL_PTR;
 aesKeyItem.len = 0;
 }

 B_ALGORITHM_METHOD *AES_CHOOSER[] = {
 &AM_AES_CBC_ENCRYPT,
 &AM_AES_CBC_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_EncryptInit (aesEncrypter, aesKey, AES_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 0 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy any objects that you created and to free up any memory that has
been allocated:

 unsigned char *dataToEncrypt = (unsigned char *)"Encrypt this sentence.";
 unsigned int dataToEncryptLen;

 unsigned char *encryptedData = NULL_PTR;
 unsigned int outputLenUpdate, outputLenFinal, outputLenTotal;
 unsigned int encryptedDataLen;

 dataToEncryptLen = T_strlen ((char *)dataToEncrypt) + 1;
 RSA_PrintBuf ("Data To Encrypt", dataToEncrypt, dataToEncryptLen);

 encryptedDataLen = dataToEncryptLen + BLOCK_SIZE;
 encryptedData = T_malloc (encryptedDataLen);
 if ((status = (encryptedData == NULL_PTR)) != 0) {
 status = RSA_DEMO_E_ALLOC;
 break;
 }

 if ((status = B_EncryptUpdate
 (aesEncrypter, encryptedData, &outputLenUpdate,
 encryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_EncryptFinal
 (aesEncrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, encryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 outputLenTotal = outputLenUpdate + outputLenFinal;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 2 0 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Password-Based Encryption
In previous encryption methods, you used a random number generator to produce a
key. In password-based encryption (PBE), you will use a message digest algorithm to
derive a key from a password. See “Message Digests” on page 47 for information on
that topic.

For encryption, enter a password, append a salt to the password (see Step 2), and
digest that quantity. Extract the required number of bytes from the digest and you
have a key. Use that key to encrypt data using DES or the RC2 algorithm.

For decryption, enter a password, append the same salt, and then digest. Extract the
required number of bytes from the digest and use them as a key to decrypt. If you
entered the same password that you used to encrypt, you will obtain the same digest
and hence the same key, and the encrypted data will decrypt to the original data.

Crypto-C will automatically append the salt, digest the data, and extract the key.

The example in this section corresponds to the file pbe.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

 B_DestroyAlgorithmObject (&rc6Encrypter);

 if (aesKeyItem.data != NULL_PTR) {
 T_memset (aesKeyItem.data, 0, aesKeyItem.len);
 T_free (aesKeyItem.data);
 aesKeyItem.data = NULL_PTR;
 aesKeyItem.len = 0;
 }

B_ALGORITHM_OBJ pbEncrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&pbEncrypter)) != 0)
 break;
2 0 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 2: Setting The Algorithm Object
There are a number of PBE AIs from which to choose (see “Summary of AIs” on
page 103 for a more detailed description). For now, choose AI_MD5WithRC2_CBCPad. In
Chapter 2 of the Reference Manual, the description of this AI indicates the format of
info supplied to B_SetAlgorithmInfo is:

The section “RC2” on page 38 contains an explanation of effective key bits. The salt is
a value that provides security against dictionary attacks or precomputation. An
attacker could precompute the digests of thousands of possible passwords, creating a
“dictionary” of likely keys. But recall that when you digest, changing input data even
a little changes the resulting digest. By digesting the password with a “salt”, the
attacker’s dictionary is rendered useless. The attacker would have to create a
dictionary of the keys that were generated from each password; then each password
would have to have a dictionary of each possible salt. The salt is not secret; knowing
the salt will not help anyone without the password to decrypt the data.

To produce the salt, create an eight-byte buffer and then employ a random number
generator to generate eight bytes. The iteration count is the number of times Crypto-C
will digest. If that value is one, digest the password and salt once; if it is two, digest
the password and salt, then digest the digest, and so on. Each iteration will increase
an attacker’s task greatly. Five is generally sufficient for most applications:

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
 unsigned char *salt; /* pointer to 8 byte salt value */
 unsigned int iterationCount; /* iteration count */
} B_RC2_PBE_PARAMS;

#define SALT_LEN 8

B_RC2_PBE_PARAMS rc2PBEParams;
unsigned char saltData[SALT_LEN];

/* Complete steps 1 - 4 of Generating Random Numbers,
 then call B_GenerateRandomBytes.*/
if ((status = B_GenerateRandomBytes
 (randomAlgorithm, saltData, SALT_LEN,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 2 0 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 3: Init
You need a key before you can initialize the algorithm object for encryption. In PBE,
the password is the key. Simply enter the password data as the key data; Crypto-C
will generate the symmetric key from the password and salt.

Step 3a: Creating A Key Object

Step 3b: Setting The Key Object
In the Reference Manual Chapter 2 entry for AI_MD5WithRC2_CBCPad, you see you have
only one choice for a KI: KI_Item. Looking up KI_Item in Chapter 3 of the Reference
Manual, you find that the info you supply to B_SetKeyInfo is a pointer to an ITEM
structure, which is:

The data portion of the struct is the password. For this example, we will use the
following method to enter the password. This method for entering a password is not

rc2PBEParams.effectiveKeyBits = 64;
rc2PBEParams.salt = saltData;
rc2PBEParams.iterationCount = 5;

if ((status = B_SetAlgorithmInfo
 (pbEncrypter, AI_MD5WithRC2_CBCPad,
 (POINTER)&rc2PBEParams)) != 0)
 break;

#define MAX_PW_LEN 20

B_KEY_OBJ pbeKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&pbeKey)) != 0)
 break;

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
2 0 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
secure; it is used for illustrative purposes only. It is not for duplication:

You should zeroize any sensitive data after leaving the do-while. In fact, you might
want to zeroize the memory immediately after you set the key:

Now that you have a key, you need an algorithm chooser and a surrender context.
This is a speedy function, so it is reasonable to use a properly cast NULL_PTR for the
surrender context. You do want to build a chooser:

unsigned char enteredPassword[MAX_PW_LEN];
ITEM pbeKeyItem;

puts ("Enter the password, then press Return or Enter");
gets ((char *)enteredPassword);

pbeKeyItem.data = enteredPassword;
pbeKeyItem.len = strlen (enteredPassword);

if ((status = B_SetKeyInfo
 (pbeKey, KI_Item, (POINTER)&pbeKeyItem)) != 0)
 break;

T_memset (pbeKeyItem.data, 0, MAX_PW_LEN);

B_ALGORITHM_METHOD *PBE_CHOOSER[] = {
 &AM_MD5,
 &AM_RC2_CBC_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
 (pbEncrypter, pbeKey, PBE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 2 0 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. The Reference Manual Chapter 2
entry on AI_MD5WithRC2_CBCPad states that you can pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments. Assuming you have some input data, call
B_EncryptUpdate. Remember that the RC2 cipher is a block cipher and requires the
input to be a multiple of eight bytes. But because you are using
AI_MD5WithRC2_CBCPad, Crypto-C will pad to make the input a multiple of eight
bytes. That means, though, that the output buffer should be at least eight bytes larger
than the input length.

PBE with MD5 and the RC2 cipher is a fast algorithm, so for small amounts of data,
you can pass a properly cast NULL_PTR for the surrender context. If you want to pass a
surrender context, you can:

/* Assume dataToEncrypt points to already set data and
 dataToEncryptLen has been set to the number of bytes
 in dataToEncrypt. */

#define BLOCK_LEN 8
unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;

encryptedDataLen = dataToEncryptLen + BLOCK_LEN;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

if ((status = B_EncryptUpdate
 (pbEncrypter, encryptedData, &outputLenUpdate,
 encryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 1 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory:

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use
the same AI, password, and salt. Use the proper decrypting AM and call
B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal.

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
 (pbEncrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, encryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyKeyObject (&pbeKey);
B_DestroyAlgorithmObject (&pbEncrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);

 if (pbeKeyItem.data, 0, MAX_PW_LEN) {
 T_memset (pbeKeyItem.data, 0, MAX_PW_LEN);
 T_free (pbekeyItem.data);
 pbeKeyItem.data = NULL_PTR;
 }

 if (encryptedData != NULL_PTR) {
 T_memset (encryptedData, 0, encryptedDataLen);
 T_free (encryptedData);
 encryptedData = NULL_PTR;
 }
C h a p t e r 6 S y m m e t r i c - K e y O p e r a t i o n s 2 1 1

Download from Www.Somanuals.com. All Manuals Search And Download.

2 1 2

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 7

Public-Key Operations
In public-key cryptography, two associated keys are necessary: one to encrypt, and
the other to decrypt. The sender encrypts a message using the recipient’s public key.
Once a message is encrypted, it can be decrypted only with the recipient’s private key.
This is in contrast to algorithms like DES and the RC2, RC4, and RC5 algorithms,
which are called symmetric-key encryption algorithms because the key used to
encrypt is the same key needed to decrypt.

In public-key cryptography, it is also possible to encrypt using a private key. In this
case, the sender takes the plaintext input and the private key and follows the same
steps needed to decrypt an encrypted file. This creates a ciphertext that can be read
using the public key. To read it, the recipient follows the same steps needed to encrypt
with the public key and restores it to the plaintext. Private-key encryption with
public-key decryption is used for digital signatures and verification. See “RSA Digital
Signatures” on page 233 and “DSA Signatures” on page 243 for more information.

Crypto-C supplies a number of public-key algorithms. These include:

• RSA encryption and decryption
• DSA signatures
• Diffie-Hellman key agreement
• Elliptic curve public-key operations
2 1 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing RSA Operations
Performing RSA Operations
The RSA algorithm is a public-key algorithm that relies on the difficulty of factoring a
number that is the product of two large primes. If you are not familiar with the RSA
algorithm and terminology, you may want to read “The RSA Algorithm” on page 51
before you continue.

The algorithm chooser used throughout the sections concerning executing the RSA
algorithm can be found in “Algorithm Choosers” on page 116.

The example in this section corresponds to the file rsapkcs.c.

Note: For an example of how to perform RSA operations in conformance with the
ANSI X9.31 standard, see Chapter 9, “Putting It All Together: An X9.31
Example” on page 313. The example in Chapter 9 is similar to this one;
however, due to the additional constraints required by X9.31, some of the
operations are more time-consuming.

Generating a Key Pair
Before you can encrypt and decrypt, you need a key pair. The key pair consists of a
private key and its associated public key. Generating a key pair is not trivial. The RSA
algorithm relies on very large prime numbers, which are produced during key pair
generation. This could be fairly time-consuming, so we recommend you use a
surrender context. The surrender context used below is the one in “The Surrender
Context” on page 118.

Most Crypto-C operations follow the six-step procedure outlined in the “Introductory
Example” on page 9. Generating a key pair needs only five of the steps; there is no
Update call.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ keypairGenerator = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&keypairGenerator)) != 0)
 break;
2 1 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing RSA Operations
Step 2: Setting the Algorithm Object
For this example, use AI_RSAKeyGen to generate an RSA key pair. The Reference Manual
Chapter 2 entry for AI_RSAKeyGen states that the info for B_SetAlgorithmInfo is a
pointer to an A_RSA_KEY_GEN_PARAMS structure, defined as:

where ITEM is:

The size of the modulus in bits can be any number from 256 to 2048; the larger the
modulus, the greater the security. Unfortunately, the larger the modulus, the longer it
takes to generate key pairs and to encrypt and decrypt. RSA Security recommends 768
bits or more for applications. In testing and learning, though, it is safe to choose a
smaller modulus to save time. For this exercise, choose 512.

The public exponent is usually one of two values: F0 = 3 or F4 = 65537. Recall that the
algorithm requires a public exponent that has no common divisor with (p–1)(q–1).
With F0 or F4, it is easier to find primes p and q that meet that requirement. F4 is also a
good choice for a public exponent because it is large, prime, and of low weight.
Weight here refers to the number of 1’s in the binary representation: in hex, F4 is
01 00 01. The F in F0 and F4 stands for Pierre de Fermat, the 17th-century
mathematician who first described the special properties of these and other numbers.
For more information on F4 (and other Fermat numbers), see ITU-T X.509, Annex D.

For this example, choose F4:

typedef struct {
 unsigned int modulusBits; /* size of modulus in bits */
 ITEM publicExponent; /* fixed public exponent */
} A_RSA_KEY_GEN_PARAMS;

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;

A_RSA_KEY_GEN_PARAMS keygenParams;
static unsigned char f4Data[3] = {0x01, 0x00, 0x01};
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 1 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing RSA Operations
Step 3: Init
Look up the description and prototype for B_GenerateInit in Chapter 4 of the
Reference Manual. For this example, you can use the following:

Here, you use NULL_PTR for the surrender context because B_GenerateInit is a speedy
function. B_GenerateKeypair in Step 5 is the time-consuming function.

Step 4: Update
There is no Step 4 in generating a key pair.

Step 5: Generate
Find the description and prototype for B_GenerateKeypair in Chapter 4 of the
Reference Manual. This function takes five arguments. The first is the algorithm object:
for this example, it is keypairGenerator. The second and third are key objects. For this
call, all you have to do is create the key objects; they will be set by
B_GenerateKeypair. The fourth argument is a random algorithm. For this, complete
Steps 1 through 4 of “Generating Random Numbers” on page 165. You do not need
random bytes, only an algorithm that can generate them. The algorithm chooser you
are using (defined in “Algorithm Choosers” on page 116) contains the AM for SHA1
random number generation.

The last argument is the surrender context. This function call can take a while,
although the amount of time is not uniform. On slower machines, it may take over
two or three minutes to generate a 512-bit key pair, or it may take only 17 seconds.

Crypto-C needs to find two primes of the proper size. To find a prime, Crypto-C

keygenParams.modulusBits = 512;
keygenParams.publicExponent.data = f4Data;
keygenParams.publicExponent.len = 3;
if ((status = B_SetAlgorithmInfo
 (keypairGenerator, AI_RSAKeyGen,
 (POINTER)&keygenParams)) != 0)
 break;

if ((status = B_GenerateInit
 (keypairGenerator, RSA_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 1 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing RSA Operations
generates a candidate and tests to see if it is prime. If the candidate passes the test,
Crypto-C has one of the primes; if not, Crypto-C builds a new number. If you are
lucky, two early numbers Crypto-C creates will pass the test. Sometimes, though,
Crypto-C has to try many numbers before it finds a pair.

Note: The numbers Crypto-C produces are not provably prime. They are numbers
for which the probability is very low that they are not prime. This does not
affect the accuracy of the algorithm and will not appreciably decrease
security.

When you generate a key pair, it can look as if your program has stopped or as if the
machine has frozen up. To help allay fears of disaster, use the surrender function
outlined in “The Surrender Context” on page 118. It will print out a dot every second
to let you know the program is running properly. If the dots do not appear, then you
know something is wrong:

Step 6: Destroy
When you are done with your objects, remember to destroy them:

B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&publicKey)) != 0)
 break;

if ((status = B_CreateKeyObject (&privateKey)) != 0)
 break;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_GenerateKeypair
 (keypairGenerator, publicKey, privateKey,
 randomAlgorithm, &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&keypairGenerator);
B_DestroyKeyObject (&publicKey);
B_DestroyKeyObject (&privateKey);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 1 7

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
MultiPrime
This section provides an overview of the MulitPrime enhancement to Crypto-C
including information on how to generate an RSA MultiPrime key.

What is MultiPrime?
In classic RSA, you create a modulus (called "n") by multiplying two large primes
together. The public and private exponents are then "e" (generally a Fermat number
such as 3, 17, or 65,537) and

where

is the Euler "phi-function".

One problem with RSA has always been performance of private-key operations. One
advance in performance was to use an algorithm based on the "Chinese Remainder
Theorem" (or "CRT") to perform the private key operations. This required performing
modular exponentiation with the primes as moduli instead of "n". It is faster to do two
modular exponentiations with smaller moduli (and exponents) than one modular
exponentiation with a large modulus (and exponent).

Recently, Compaq acquired a patent on MultiPrime RSA. Under this scheme, a
modulus is the product of three (or more) primes. The public and private keys are
computed as before.

Now when performing private key operations, it is possible to use the Chinese
Remainder Theorem to make three modular exponentiations using the three primes.
Since each of the primes is smaller than each of the two primes of classic RSA, the
overall time is reduced.

For example, using 1024-bit RSA key pairs on a 450 MHz Pentium processor, the
following table illustrates the performance gains of CRT over non-CRT and
MultiPrime (using three primes) over 2-prime.

(milliseconds) Private non-CRT CRT public (expo = 3)

d e
1–
mod ϕ n()()=

ϕ

2 1 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
This means 3-prime private operations can be about 38% faster than 2-prime
operations. Or with 2-prime RSA, you can perform about 57 signatures per second,
but with 3-prime RSA, you can perform about 91 signatures per second.

How Many Primes?
Using three primes is faster than using two primes. Is 4-prime RSA faster than 3-
prime? Yes, but there is a security tradeoff. One way to break RSA is to factor the
modulus. Current technology (machinery and factoring algorithms) are such that a
1024-bit modulus is safe from attack and will be safe for many years to come.
However, the more primes that make up a number, the easier it is to factor using what
is known as the Elliptic Curve Method (ECM).

Currently, no one trying to factor a 2-prime RSA modulus would use the ECM, since
there is another method, known as Number Field Sieve (NFS), that is faster. With
NFS, the number of primes does not matter; factoring will always take the same
amount of time.

What this means is that the attacker will decide which method to use, NFS or ECM,
based on the number of primes that make up the modulus. With fewer primes, NFS
will be used; with more primes, ECM will be used.

However, there is one more issue to think about: key size. The longer the modulus,
the harder it is to factor. The difficulty of ECM increases more than the difficulty of
NFS with modulus size. That means the longer the key, the safer it is to use more
primes. For instance, with two primes at 768 bits, NFS is faster than ECM. But with
three primes at 768 bits, ECM is faster. Using three primes to build a 768-bit RSA key
pair means you have less security than two primes. It does not necessarily mean you
do not have enough security; it just means you have less.

On the other hand, with two primes or three primes at 1024 bits, NFS is faster than
ECM. With four primes at 1024 bits, ECM is faster. So if your 1024-bit RSA key pair is
made up of three primes, you have the same level of security as with two primes.
Since with three primes private key operations are faster, you might as well use three
primes. At 1024 bits, you don't start sacrificing security until you use four primes. At
what point is it safe to use four primes? Some researchers say 4096 bits; others say
1536 bits.

Starting with Crypto-C 5.1, we have taken a more conservative approach. The toolkit

Two-Prime RSA 48.8 17.5 0.8

Three-Prime RSA 48.8 10.9 0.8
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 1 9

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
does not allow you to generate an RSA key pair if the number of primes is more than
three. Furthermore, the toolkit will not allow you to generate 3-prime RSA key pairs
of less than 1024 bits. In the future, as more research is published, we may adjust these
limits and allow you to generate key pairs of more than three primes at more key
lengths.

Sample
MultiPrime RSA differs from classic 2-prime RSA in only two areas: key pair
generation and the makeup of the private key. Once you generate your key pair,
signing and verification is exactly the same as before. It's just that the private key
looks different.

In the following example, key pair generation is similar to regular key-pair
generation, except you use a different AI and the info passed in is a different struct.
Notice that the chooser contains the same AM you used when generating two-prime
RSA key pairs.

Once you have the key objects, signing, verifying, encrypting, and decrypting is the
same. If you want to save the private key, you can get the key data out of the object
using the existing BER KI. If you decoded the BER encoding, you would find three
primes instead of two, three prime exponents instead of two, and two CRT
coefficients instead of one.

If you set a key object using the BER KI, Crypto-C will recognize whether it is made
up of two primes or three, and will build the object appropriately.

There is a new KI that separates the components: KI_PKCS_RSAMultiPrimePrivate.
Using this KI, you can see the individual primes without having to bother with the
BER encoding.
2 2 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
B_ALGORITHM_METHOD *RSA_GEN_CHOOSER[] = {
 &AM_RSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

A_RSA_MULTI_PRIME_KEY_GEN_PARAMS genParams;
ITEM *privateKeyBER = (ITEM *)NULL_PTR;
unsigned char expo[1] = {
 3
};

do {
 if ((status = B_CreateKeyObject (&pubKey)) != 0)
 break;

 if ((status = B_CreateKeyObject (&priKey)) != 0)
 break;

 if ((status = B_CreateAlgorithmObject (&rsaGen)) != 0)
 break;

 genParams.modulusBits = 1024;
 genParams.numberOfPrimes = 3;
 genParams.publicExponent.data = expo;
 genParams.publicExponent.len = sizef (expo);
 if ((status = B_SetAlgorithmInfo
 (rsaGen, AI_RSAMultiPrimeKeyGen,
 (POINTER)&genParams)) != 0)
 break;

 if ((status = B_GenerateInit
 (rsaGen, RSA_GEN_CHOOSER, NULL_SURR)) != 0)
 break;

 if ((status = B_GenerateKeypair
 (rsaGen, pubKey, priKey, rand, NULL_SURR)) != 0)
 break;

 if ((status = B_GetKeyInfo
 ((POINTER *)&privateKeyBER, priKey,
 KI_PKCS_RSAPrivateBER)) != 0)
 break;
} while (0);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 2 1

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
Generating an RSA MultiPrime Key
Refer to the RSA_CreateMultiPrimeRSAKeypair routine defined in the samples/pkalg/
rsa/rsautil.c file for an example that shows the use of AI_RSAMultiPrimeKeyGen to
generate an RSA public/private key pair. This routine is called by the rsamultp.c
sample.

RSA MultiPrime key generation follows the same steps as standard RSA key pair
generation with a couple of exceptions. The differences are that
AI_RSAMultiPrimeKeyGen must be used instead of AI_RSAKeyGen. Also, as indicated
in the Reference Manual entry for the appropriate AI, the algorithm chooser passed in
during the B_GenerateInit call must include AM_RSA_MULTI_PRIME_KEY_GEN.

Step 1: Prepare A_RSA_MULTI_PRIME_KEY_GEN_PARAMS
Structure
To use AI_RSAMultiPrimeKeyGen in the call to B_SetAlgorithmInfo, we must first
prepare an A_RSA_MULTI_PRIME_KEY_GEN_PARAMS structure, which is defined
as follows:

The numberOfPrimes field must be set to a value of 2 or more. If it is set to 2, it is
equivalent to generating a standard RSA key pair as is the case with AI_RSAKeyGen. If
numberOfPrimes is set to 3 or more, the modulusBits field must be at least 1024.

Step 2: Set the Algorithm Object
If we have an algorithm object, keypairGenerator, which has already been created
with a call to B_CreateAlgorithmObject, we can then set the algorithm object's info as
follows:

typedef struct {
 unsigned int modulusBits;
 unsigned int numberOfPrimes;
 ITEM publicExponent;
} A_RSA_MULTI_PRIME_KEY_GEN_PARAMS;
2 2 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
Step 3: Init
Now, make the appropriate adjustments to the algorithm chooser so that the
algorithm methods correspond to the AI chosen:

Following this step, you will call B_GenerateKeypair in the same manner as was done
for standard RSA key pair generation. The public and private B_KEY_OBJs will then be
suitable for signing/verifying or encrypting/decrypting in exactly the same way as
the standard RSA key objects are used. This includes using KI_PKCS_RSAPrivateBER
to obtain the BER-encoded RSA MultiPrime key. KI_PKCSMultiPrimeRSAPrivate can
also be used with B_GetKeyInfo or B_SetKeyInfo to view or manipulate the data in a
private key object. See the samples/pkalg/rsa/rsamultp.c sample for further
details.

Distributing an RSA Public Key
After generating a key pair, you need to make the public key available to the public.

unsigned char f4Data[] = {0x01, 0x00, 0x01};
A_RSA_MULTI_PRIME_KEY_GEN_PARAMS keygenParams;

keygenParams.modulusBits = keyBits;
keygenParams.numberOfPrimes = numPrimes;
keygenParams.publicExponent.data = f4Data;
keygenParams.publicExponent.len = sizeof(f4Data);

if ((status = B_SetAlgorithmInfo (keypairGenerator,
 AI_RSAMultiPrimeKeyGen,
 (POINTER)&keygenParams)) != 0)
 break;

B_ALGORITHM_METHOD *RSA_KEYGEN_CHOOSER[] = {
 &AM_RSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_GenerateInit (keypairGenerator,
 RSA_KEYGEN_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 2 3

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
Crypto-C Format
publicKey is a key object that was set by the Crypto-C function B_GenerateKeypair. Its
key info type (KI) is KI_RSAPublic. In the Reference Manual Chapter 3 entry on
KI_RSAPublic, the section titled “Format of info returned by B_GetKeyInfo” tells you
that the function returns a pointer to an A_RSA_KEY struct:

So you need to declare a variable to be a pointer to such a struct and pass this
variable’s address as the argument.

Using the prototype in Chapter 4 of the Reference Manual for B_GetKeyInfo as a guide,
write the following:

If you looked at the elements of the struct:

getPublicKey->modulus.data
getPublicKey->modulus.len
getPublicKey->exponent.data
getPublicKey->exponent.len

You could see the public key that Crypto-C generated. This is the information you
would make public.

Note: If you want to e-mail the information, you will not be able to send the
information over most e-mail systems because the data is in binary form, not
ASCII. Crypto-C offers encoding and decoding functions to convert between
binary and ASCII. See “Converting Data Between Binary and ASCII” on
page 172 for more information.

BER/DER Encoding
There is a problem with distributing the key in the above struct: it is not standard; it

typedef struct {
 ITEM modulus; /* modulus */
 ITEM exponent; /* exponent */
} A_RSA_KEY;

A_RSA_KEY *getPublicKey = (A_RSA_KEY *)NULL_PTR;

if ((status = B_GetKeyInfo
 ((POINTER *)&getPublicKey, publicKey, KI_RSAPublic)) != 0)
 break;
2 2 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
is unique to Crypto-C. If the recipient is not using Crypto-C, how do you give that
recipient the information? Suppose your application mails this key to a certification
authority. What information do you send? The BER-encoding standard defines what
the public key consists of and how that information should be formatted. It is defined
in ASN.1, which defines the Basic Encoding Rules (BER) and Distinguished Encoding
Rules (DER). See “BER/DER Encoding” on page 123 for more information.

You must put the key into DER format, encode it into ASCII, and e-mail the encoding.
The recipient will decode the DER string and convert the key information into the
format of their choice.

This sounds difficult, but Crypto-C offers a means of doing it simply. In the previous
example, in order to obtain the key, you used B_GetKeyInfo with KI_RSAPublic.
Chapter 3 of the Reference Manual also lists KI_RSAPublicBER, which states:

Crypto-C returns a pointer to where that information resides, not the information.
Another call to Crypto-C might alter or destroy it. Therefore, once you get the pointer
to the information, copy it into your own buffer:

So, to distribute a key, you generate the key pair, get the key info in BER format with
B_GetKeyInfo and KI_RSAPublicBER, encode the BER data into ASCII format, and

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure which gives the address and length of the DER-
encoding. Note that B_GetKeyInfo returns an encoding which contains the object
identifier for rsaEncryption (defined in PKCS V1) as opposed to rsa.

ITEM *cryptocPublicKeyBER;
ITEM myPublicKeyBER;

myPublicKeyBER.data = NULL_PTR;

if ((status = B_GetKeyInfo
 ((POINTER *)&cryptocPublicKeyBER, publicKey,
 KI_RSAPublicBER)) != 0)
 break;

myPublicKeyBER.len = cryptocPublicKeyBER->len;
myPublicKeyBER.data = T_malloc (myPublicKeyBER.len);
if ((status = (myPublicKeyBER.data == NULL_PTR)) != 0)
 break;
T_memcpy (myPublicKeyBER.data, cryptocPublicKeyBER->data,
 myPublicKeyBER.len);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 2 5

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
send it off.

Remember to free any memory you allocated:

Note: The conversion into BER or DER is known as BER-encoding or DER-
encoding; the conversion between binary to ASCII is known as encoding and
decoding. In general, the word “encoding” without “BER” in front of it means
binary to ASCII. If the encoding is BER- or DER-encoding, the BER or DER
should be explicitly stated.

RSA Public-Key Encryption
Follow Steps 1 through 6 to encrypt the following using an RSA public key:

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are a number of RSA AIs, described in Table 4-7 on page 107. For this example,
use AI_PKCS_RSAPublic. This AI encrypts and decrypts data according to the Public-
Key Cryptography Standard #1 (PKCS#1 v1.5). See the PKCS document [1] for more
information.

The Chapter2 entry in the Reference Manual states that AI_PKCS_RSAPublic supplies

T_free (myPublicKeyBER.data);

static unsigned char dataToEncryptWithRSA[8] = {
 0x4a, 0x72, 0x55, 0x36, 0xda, 0x2f, 0xb9, 0x51
};

B_ALGORITHM_OBJ rsaEncryptor = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rsaEncryptor)) != 0)
 break;
2 2 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
info to B_SetAlgorithmInfo as NULL_PTR:

Step 3: Init
You will encrypt using the recipient’s RSA public key. Normally, you would obtain
the public key from the recipient or a certificate service. For this exercise, though, you
will simply use the public key you generated in “Generating a Key Pair” on page 214.
B_EncryptInit is quick, so you are safe in passing NULL_PTR as the surrender context:

Block 02 padding will be used because we are peforming a public key encryption
operation, as specified in PKCS#1 v1.5.

Step 4: Update
The Reference Manual Chapter 2 entry on AI_PKCS_RSAPublic states:

For this example, the key’s size in bits is 512, which is 64 bytes. So you cannot pass
more than 53 bytes. If you were encrypting more than 53 bytes, you could not use
AI_PKCS_RSAPublic. If you had more than 53 bytes to encrypt and tried to break it up
into smaller units, calling B_EncryptUpdate for each unit, it would not work. That is
because PKCS RSA encryption adds padding, and the padding scheme needs at least
11 spare bytes to work. It is intended for digital envelopes and digital signatures, and
in those situations, the number of bytes to encrypt is usually eight, 16, or (for BER-
encoded digests) 34 or 35. If you want to encrypt larger amounts of data using the
RSA algorithm, you must use AI_RSAPublic, also known as raw RSA encryption and
decryption. See “Raw RSA Encryption and Decryption” on page 231 for more
information.

if ((status = B_SetAlgorithmInfo
 (rsaEncryptor, AI_PKCS_RSAPublic, NULL_PTR)) != 0)
 break;

if ((status = B_EncryptInit
 (rsaEncryptor, publicKey, RSA_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the
key’s modulus size in bytes.
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 2 7

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
You are encrypting 8 bytes, so you do not need to worry about that constraint.
However, the output of RSA encryption is the same size as the modulus, as described
in “The RSA Algorithm” on page 51. That means you must set the output buffer,
which will hold the encrypted data, to be the same size as the modulus. Your
modulus is 512 bits, or 64 bytes.

Note: The input to the RSA algorithm must also be the same size as the modulus,
but AI_PKCS_RSAPublic will automatically pad.

The description of AI_PKCS_RSAPublic notes that “B_EncryptUpdate and
B_EncryptFinal require a random algorithm.” The random number generator is for
the padding. You do not need random bytes, only an algorithm that can generate
them. Although RSA encryption is not as slow as key pair generation, you will not see
an immediate response. Use a surrender context so that you know the program is
running and has not frozen:

Step 5: Final

#define BLOCK_SIZE 64

unsigned char encryptedData[BLOCK_SIZE];
unsigned int outputLenUpdate;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_EncryptUpdate
 (rsaEncryptor, encryptedData, &outputLenUpdate,
 BLOCK_SIZE, (unsigned char *)dataToEncryptWithRSA, 8,
 randomAlgorithm, (A_SURRENDER_CTX*)NULL_PTR)) != 0)
 break;

unsigned int outputLenFinal;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_EncryptFinal
 (rsaEncryptor, encryptedData + outputLenUpdate,
 &outputLenFinal, BLOCK_SIZE - outputLenUpdate,
 randomAlgorithm, (A_SURRENDER_CTX*)NULL_PTR)) != 0)
 break;
2 2 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
Step 6: Destroy
When you are done with all your objects, remember to destroy them.

RSA Private-Key Decryption
This example shows how to decrypt using an RSA private key. Remember that with
Crypto-C, you have the choice of doing your private-key operations normally or
utilizing the blinding technique (see “Timing Attacks and Blinding” on page 95). You
make this choice in the algorithm chooser. For normal decryption operations, use
AM_RSA_CRT_DECRYPT; to execute blinding, use AM_RSA_CRT_DECRYPT_BLIND.

Step 1: Creating an Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
Because you used AI_PKCS_RSAPublic to encrypt, it is easiest to use
AI_PKCS_RSAPrivate to decrypt. Crypto-C padded the data before encrypting; when
you use the “matching” AI to decrypt, Crypto-C will automatically strip the padding.
The Reference Manual Chapter 2 entry on this AI indicates the info supplied to
B_SetAlgorithmInfo is NULL_PTR:

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&rsaEncryptor);
B_DestroyKeyObject (&publicKey);

B_ALGORITHM_OBJ rsaDecryptor = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rsaDecryptor)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (rsaDecryptor, AI_PKCS_RSAPrivate, NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 2 9

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
Step 3: Init
To decrypt, you must use the RSA private key that is associated with the public key
that was used to encrypt, which would be the key you generated in “Generating a Key
Pair” on page 214. B_DecryptInit is quick, so you are safe in passing NULL_PTR as the
surrender context.

Step 4: Update
When you encrypted, there were certain constraints on the size of the input data to
B_EncryptUpdate. The only constraint on the data passed to B_DecryptUpdate is that it
be numerically less than the modulus. If the data you are decrypting was encrypted
using RSA encryption, the data will be numerically less than the modulus.

The encryption process padded the original data, so, while the encrypted data is 64
bytes, the decrypted data will be less than 64 bytes, however, you do not know how
much less. For simplicity, make the decrypted data buffer 64 bytes large. Presumably,
the encrypter added outputLenUpdate and outputLenFinal from the encryption to
get the total number of bytes of encrypted data. The Reference Manual Chapter 2 entry
on AI_PKCS_RSAPrivate indicates you may pass a properly cast NULL_PTR for
randomAlgorithm arguments.

Although RSA decryption is not as slow as key pair generation, you will not see an
immediate response. Use the surrender context shown in Step 3: Init, above, so you
know the program is running and has not frozen:

if ((status = B_DecryptInit
 (rsaDecryptor, privateKey, RSA_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define BLOCK_SIZE 64

unsigned char decryptedData[BLOCK_SIZE];
unsigned int outputLenTotal;
unsigned int outputLenUpdate;
 /* where outputLenTotal is the sum of the encryption’s
 outputLenUpdate and outputLenFinal. The encrypter should
 send this information along with the encrypted data. */
2 3 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
Step 5: Final

Step 6: Destroy
When you are done with all objects, remember to destroy them:

Optimal Asymetric Encryption Padding (OAEP)
See the rsaplccs2.c code sample for an example of RSA encryption with OAEP as
defined in PKCS V1.2. See the Setoaep.c code sample for an example showing RSA
encryption with OAEP as defined in the SET spec.

Raw RSA Encryption and Decryption
When you used AI_PKCS_RSAPublic, you could not encrypt more than k – 11 bytes,
where k was the size of the modulus in bytes. That is because PKCS RSA encryption
pads, and the padding scheme needs 11 spare bytes to work. This is intended for
digital envelopes and digital signatures; in these situations, the number of bytes to

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_DecryptUpdate
 (rsaDecryptor, decryptedData, &outputLenUpdate, BLOCK_SIZE,
 encryptedData, outputLenTotal, NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

unsigned int outputLenFinal;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_DecryptFinal
 (rsaDecryptor, decryptedData + outputLenUpdate,
 &outputLenFinal, BLOCK_SIZE - outputLenUpdate, NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&rsaDecryptor);
B_DestroyKeyObject (&privateKey);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 3 1

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
encrypt is usually 8, 16, or (for BER-encoded digests) 34 or 35. If you want to encrypt
and decrypt more than k – 11 bytes, use raw RSA encryption and decryption.

Note: In general, there should be no need for raw RSA encryption or decryption.
For most applications, if you have a longer message, it is faster and simpler to
encrypt the message with a symmetric algorithm and then use the RSA
algorithm to encrypt the key. (See “Digital Envelopes” on page 55.)
If you do use raw RSA encryption and decryption, your application must be
responsible for adding and removing the necessary padding. We do not
recommend using raw RSA encryption and decryption, unless you are
familiar with the issues involved.

To encrypt more bytes than the PKCS AIs allow, use AI_RSAPublic for encryption and
and AI_RSAPrivate for decryption. Note that this is different from the recommended
use for these AIs, as described in the Reference Manual. There are two important
constraints to consider when using these AIs:

• The total length of the data must be a multiple of the modulus size.
If your data’s length is not a multiple of the modulus size, your application must
do the padding. When decrypting with raw RSA encryption and decryption,
Crypto-C will not strip the padding; the application must do that.

• The data must be numerically less than the modulus.
To do this, divide your data into blocks that are one byte smaller than the
modulus. Prepend one byte of 0 to each block. If the leading byte of the data is 0,
your data will meet this second constraint.
For example, suppose you wanted to encrypt 100 bytes with the RSA algorithm
using a 512-bit modulus. You break the data into two blocks, the first one 63 bytes,
the second 37. Next, prepend a 0 byte to the first block and it is now 64 bytes (512
bits). Then, prepend a 0 byte and append 26 pad bytes to the second block and it,
too is now 64 bytes. Finally, call B_EncryptUpdate for each of the two blocks, then
B_EncryptFinal. This will produce 128 bytes of encrypted data.
When decrypting, first call B_DecryptUpdate once for all 128 bytes; then
B_DecryptFinal. The application will have to then strip the prepended zeroes and
the padding. You could also break the encrypted data into 64-byte blocks and call
B_DecryptUpdate for each block and strip the padding then.

Some padding procedures are recommended; others are discouraged. For a
description of one particular trusted padding system, see PKCS V1 [1].
2 3 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
RSA Digital Signatures
The section “Authentication and Digital Signatures” on page 57 discusses what a
digital signature is. This section describes how to write Crypto-C code that computes
or verifies digital signatures. For signing, Crypto-C offers B_SignInit, B_SignUpdate,
and B_SignFinal, which will digest the data and encrypt the digest using RSA
encryption with a private key. For verification, Crypto-C offers B_VerifyInit,
B_VerifyUpdate, and B_VerifyFinal, which will digest the data again, decrypt the
signature with the RSA public key, and compare the digest to the decrypted
signature.

Note that you cannot use the Sign and Verify functions if you do not want to digest
the data. Some applications may not call for a digest; they may demand that the
signature be the actual data encrypted with a private key. This is the case with some
forms of authentication, for instance. In other cases, the data passed to the application
has already been digested. In such an application, encrypt using AI_PKCS_RSAPrivate
or AI_RSAPrivate; do not follow the model outlined here.

A digital signature is actually not the private-key encrypted digest of the data, but the
private-key encrypted BER-encoding of the digest. (Remember that when you
“encrypt” using the private key, you are actually following the same steps you use for
decryption, even though you apply them to a plaintext file.) When you are using
SHA1, this means the input data will be 35 bytes, not 20. The “encryption” follows the
PKCS standards, so the data must be at least 11 bytes shorter than the modulus.
Hence, the modulus must be at least 46 bytes (368 bits) for computing digital
signatures using SHA1 as the digesting algorithm.

The example in this section corresponds to the file rsasign.c.

Computing a Digital Signature
Remember that with Crypto-C, you have the choice of doing your private-key
operations normally or of using the blinding technique (see “Timing Attacks and
Blinding” on page 95). You make this choice in the algorithm chooser. For normal
signature operations, use AM_RSA_CRT_ENCRYPT. To use blinding, use
AM_RSA_CRT_ENCRYPT_BLIND.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 3 3

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Crypto-C provides three methods for computing RSA digital signatures: MD2 with
RSA encryption, MD5 with RSA encryption, and SHA1 with RSA encryption.

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal
compression function, and there is some chance that the attack on MD2 may
be extended to the full hash function. The same attack applies to MD. Another
attack has been applied to the compression function on MD5, though this has
yet to be extended to the full MD5. RSA Security recommends that before you
use MD, MD2, or MD5, you should consult the RSA Laboratories Web site to
be sure that their use is consistent with the latest information.

For this example, choose AI_SHA1WithRSAEncryption. The Reference Manual Chapter 2
entry on this AI states that the format of info supplied to B_SetAlgorithmInfo is
NULL_PTR:

Step 3: Init
Associate a key and algorithm method with the algorithm object through B_SignInit.
The Reference Manual Chapter 4 entry for this function shows that it takes four
arguments: the algorithm object, a key object, an algorithm chooser, and a surrender
context. The algorithm object in this example is digitalSigner. Remember, if the
algorithm object was not set to AI_MD5WithRSAEncryption,
AI_MD2WithRSAEncryption, AI_SHA1WithRSAEncryption, or their BER counterparts,
you cannot use B_SignInit. For a key object, use an RSA private key. Follow Steps 1
through 5 of “Generating a Key Pair” on page 214 to produce a key pair. Remember,
the modulus must be at least 368 bits.

Build an algorithm chooser with the AMs listed in the Reference Manual Chapter 2

B_ALGORITHM_OBJ digitalSigner = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&digitalSigner)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (digitalSigner, AI_SHA1WithRSAEncryption, NULL_PTR)) != 0)
 break;
2 3 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
entry for the AI in use:

Note: If you want to sign using the blinding technique to thwart timing attacks (see
“Timing Attacks and Blinding” on page 95), use AM_RSA_CRT_ENCRYPT_BLIND
in the algorithm chooser.

B_SignInit is fast, so it is reasonable to pass a properly cast NULL_PTR for the
surrender context:

Step 4: Update
Digest the data to sign with B_SignUpdate, which is described in Chapter 4 of the
Reference Manual. Unless there is an extraordinarily large amount of data (for example,
one megabyte), this function is quick and a NULL_PTR for the surrender context should
be no problem. Assuming you have your input data and you know its length, your
call would be the following:

Step 5: Final
B_SignUpdate digested the data. Encrypt the digest and output the result to a
signature buffer with B_SignFinal. The signature will be the same size as the public
modulus, so make sure the output buffer is big enough. The chapter 2 entry of the
Reference Manual on AI_SHAWithRSAEncryption states that “You may pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.” This function does
not return immediately, so a surrender context can be helpful; for this example use the

B_ALGORITHM_METHOD *SIGN_SAMPLE_CHOOSER[] = {
 &AM_SHA,
 &AM_RSA_CRT_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_SignInit
 (digitalSigner, privateKey, SIGN_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SignUpdate
 (digitalSigner, inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 3 5

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
surrender context outlined in “The Surrender Context” on page 118:

Step 6: Destroy
When you are done with all objects, remember to destroy them.

Verifying a Digital Signature
The Crypto-C sequence B_VerifyInit, B_VerifyUpdate, and B_VerifyFinal will
digest the original data, decrypt the signature with the provided RSA public key, and
compare the digest to the decrypted signature. If the values are the same,
B_VerifyFinal returns a 0; if they are different, it returns an error code.

Note: If a signing application did not digest the data before encrypting to produce a
signature, you cannot use the Verify functions. Instead, decrypt the signature
using AI_PKCS_RSAPublic or AI_RSAPublic.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for

#define BLOCK_SIZE 64;

/* Assuming we are using a 512-bit key */
unsigned char signature[BLOCK_SIZE];
unsigned int signatureLen;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_SignFinal
 (digitalSigner, signature, &signatureLen, 64,
 (B_ALGORITHM_OBJ)NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&digitalSigner);
B_DestroyKeyObject (&privateKey);
2 3 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
The signer should tell you which message digest and decryption algorithms you need
to use to verify the signature. To verify the signature created here, you would use the
same AI:

Step 3: Init
Associate a key and algorithm method with the algorithm object through
B_VerifyInit. The entry for this function in Chapter 4 of the Reference Manual shows
that it takes four arguments: the algorithm object, a key object, an algorithm chooser,
and a surrender context. The algorithm object in this example is digitalVerifier. For
a key object, use an RSA public key, presumably the partner to the RSA private key
that was used for the signature. Build an algorithm chooser which incorporates the
AMs listed in the Chapter 2 entry for the AI in use the Reference Manual. B_VerifyInit
is fast, so it is reasonable to pass a properly cast NULL_PTR for the surrender context:

B_ALGORITHM_OBJ digitalVerifier = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&digitalVerifier)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (digitalVerifier, AI_SHA1WithRSAEncryption, NULL_PTR)) != 0)
 break;

B_ALGORITHM_METHOD *VERIFY_SAMPLE_CHOOSER[] = {
 &AM_SHA,
 &AM_RSA_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_VerifyInit
 (digitalVerifier, publicKey, VERIFY_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 3 7

Download from Www.Somanuals.com. All Manuals Search And Download.

MultiPrime
Note: If the algorithm object was not set to AI_MD5WithRSAEncryption,
AI_MD2WithRSAEncryption, AI_SHA1WithRSAEncryption, or their BER
counterparts, you cannot use B_VerifyInit.

Step 4: Update
Use B_VerifyUpdate to digest the data that was signed. Its prototype is in Chapter 4 of
the Reference Manual. Unless there is an extraordinarily large amount of data (for
example, a megabyte), B_VerifyUpdate is quick and a NULL_PTR for the surrender
context should be no problem. Assuming that you have the same input data and you
know its length, your call is the following:

Step 5: Final
B_VerifyUpdate digested the data. Decrypt the signature and compare the result to
the digest with B_VerifyFinal. The Reference Manual Chapter 2 entry on
AI_SHA1WithRSAEncryption states that “You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.” This function does not return immediately, so use
a surrender context:

The return value will be 0 if the signature verifies, nonzero if it does not. Of course, a
nonzero return value may indicate some other error, so check any error return against
the Crypto-C Error Types, in Appendix A of the Reference Manual.

if ((status = B_VerifyUpdate
 (digitalVerifier, inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_VerifyFinal
 (digitalVerifier, signature, signatureLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;
2 3 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
Step 6: Destroy
When you are done with all objects, remember to destroy them:

Performing DSA Operations
The Digital Signature Algorithm (DSA) is part of the Digital Signature Standard
(DSS), published by the National Institute of Standards and Technology (NIST, a
division of the US Department of Commerce); it is the digital authentication standard
of the US government. The section “Digital Signature Algorithm (DSA)” on page 60
gives a more detailed description of the actual algorithm.

Generating a DSA key pair is a two-step process. First, you must generate the DSA
parameters; then you can generate the actual key pair.

The example in this section corresponds to the file dsasign.c.

Generating DSA Parameters
In this section, you generate the DSA parameters: a prime, a subprime, and a base.
There is no Step 4, Update, in generating DSA parameters.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one AI that will generate DSA parameters, AI_DSAParamGen. The format

B_DestroyAlgorithmObject (&digitalVerifier);
B_DestroyKeyObject (&publicKey);

B_ALGORITHM_OBJ dsaParamGenerator = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaParamGenerator)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 3 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
of info supplied to B_SetAlgorithmInfo is a pointer to the following:

Crypto-C will generate the prime, but you must decide how big that prime will be.
The number of prime bits can be anywhere from 512 to 2048. Larger numbers provide
greater security, but are also much slower. As with the RSA algorithm, RSA Security
recommends using 768 bits. To save time, because this is for illustrative purposes
only, this example will use 512. The subprime is always 160 bits long:

Step 3: Init
Initialize the generation process with B_GenerateInit. Build an algorithm chooser.
Because this function is quick, it is reasonable to pass NULL_PTR as the surrender
context. Generating the parameters in Step 5 is time-consuming, though, so you will
use a surrender context there:

Step 4: Update
There is no Step 4 in generating DSA parameters.

typedef struct {
 unsigned int primeBits; /* size of prime in bits */
} B_DSA_PARAM_GEN_PARAMS;

B_DSA_PARAM_GEN_PARAMS dsaParams;

dsaParams.primeBits = 512;
if ((status = B_SetAlgorithmInfo
 (dsaParamGenerator, AI_DSAParamGen,
 (POINTER)&dsaParams)) != 0)
 break;

B_ALGORITHM_METHOD *DSA_PARAM_GEN_CHOOSER[] = {
 &AM_SHA_RANDOM,
 &AM_DSA_PARAM_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_GenerateInit
 (dsaParamGenerator, DSA_PARAM_GEN_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 4 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
Step 5: Generate
To generate DSA parameters, call the Crypto-C function B_GenerateParameters. The
Reference Manual Chapter 4 entry for this call indicates there are four arguments. The
first is the algorithm object that generates the parameters; in this example, that is
dsaParamGenerator.

The second is a result algorithm object. Crypto-C will generate some values and will
need to place them somewhere. This information will be used in later Crypto-C calls,
so you might as well place these values in an algorithm object now. Create an
algorithm object, but do not set it; B_GenerateParameters will do that. (This is similar
to generating an RSA key pair, where the results were placed into key objects.)

The third argument is a random algorithm. Complete Steps 1 through 4 of
“Generating Random Numbers” on page 165. You do not need random bytes, only an
algorithm that can generate them. The algorithm chooser you are using contains the
AM for SHA1 random number generation.

The last argument is a surrender context. Generating DSA parameters can be time-
consuming, sometimes taking two or three minutes. On slower machines, generating
parameters over 800 bits can take more than an hour. Use the surrender context
described previously. It will print out a dot every second to let you know that Crypto-
C is computing and the machine has not crashed:

Step 6: Destroy
Remember to destroy your objects. Do not destroy the dsaKeyGenObj object until you
have used it to generate the actual DSA key pair:

B_ALGORITHM_OBJ dsaKeyGenObj = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaKeyGenObj)) != 0)
 break;

/* generalFlag is for this tutorial’s surrender function. */
generalFlag = 0;
if ((status = B_GenerateParameters
 (dsaParamGenerator, dsaKeyGenObj, randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dsaParamGenerator);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 4 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
Generating a DSA Key Pair
The previous code generated the DSA parameters and set an algorithm object. With
that algorithm object, you can generate the key pair. Remember, the algorithm object
has already been created and set, so you can jump directly to Step 3.

Step 3: Init
When it generated the parameters, Crypto-C set the algorithm object dsaKeyGenObj to
AI_DSAKeyGen. That means that when you build an algorithm chooser for the Init call,
you need to include AM_DSA_KEY_GEN. Look up the description and prototype for
B_GenerateInit in Chapter 4 of the Reference Manual. For this example, you can use
the following:

This example uses NULL_PTR for the surrender context because B_GenerateInit is a
speedy function. B_GenerateKeypair in Step 5 is the time-consuming function.

Step 4: Update
There is no Step 4 in generating a key pair.

Step 5: Generate
The description and prototype for B_GenerateKeypair in Chapter 4 of the Reference
Manual shows that this function takes five arguments. The first is the algorithm object;
for this example, it is dsaKeyGenObj. The second and third are key objects. For this call,
all you have to do is create the key objects; they will be set by B_GenerateKeypair. The
fourth argument is a random algorithm. For this, complete Steps 1 through 4 of
“Generating Random Numbers” on page 165. You do not need random bytes, only an
algorithm that can generate them. The algorithm chooser you are using (from Step 3)

B_ALGORITHM_METHOD *DSA_KEY_GEN_CHOOSER[] = {
 &AM_SHA_RANDOM,
 &AM_DSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_GenerateInit
 (dsaKeyGenObj, DSA_KEY_GEN_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 4 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
contains the AM for SHA1 random number generation. The last argument is the
surrender context. This function call is quick; the lengthy portion was generating the
parameters:

Step 6: Destroy
When you are done with all objects, remember to destroy them:

DSA Signatures
In this section, we describe how to write Crypto-C code that computes or verifies DSA
digital signatures. See “Authentication and Digital Signatures” on page 57 for
information on what a digital signature is. For signing, Crypto-C offers B_SignInit,
B_SignUpdate, and B_SignFinal, which will digest the data and create a signature
using DSA with a private key. For verification, Crypto-C offers B_VerifyInit,
B_VerifyUpdate, and B_VerifyFinal to digest the data again and check the signature
using its DSA public key.

B_KEY_OBJ dsaPublicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ dsaPrivateKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&dsaPublicKey)) != 0)
 break;

if ((status = B_CreateKeyObject (&dsaPrivateKey)) != 0)
 break;

if ((status = B_GenerateKeypair
 (dsaKeyGenObj, dsaPublicKey, dsaPrivateKey,
 randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dsaKeyGenObj);
B_DestroyKeyObject (&dsaPublicKey);
B_DestroyKeyObject (&dsaPrivateKey);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 4 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
Computing a Digital Signature

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one Crypto-C choice for computing DSA digital signatures,
AI_DSAWithSHA1 (or its BER counterpart). The Reference Manual Chapter 2 entry for
this AI states that the format of info supplied to B_SetAlgorithmInfo is NULL_PTR.

Step 3: Init
Associate a key and algorithm method with the algorithm object through B_SignInit.
The Chapter 4 Reference Manual entry on this function shows that it takes four
arguments: the algorithm object, a key object, an algorithm chooser and a surrender
context. The algorithm object in this example is dsaSigner. For a key object you want
to use a DSA private key. See the previous section on generating a DSA key pair.

Build an algorithm chooser, the elements being the AMs listed in the Reference Manual
Chapter 2 entry for the AI in use. B_SignInit is fast, so it is reasonable to pass a

B_ALGORITHM_OBJ dsaSigner = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaSigner)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (dsaSigner, AI_DSAWithSHA1, NULL_PTR)) != 0)
 break;
2 4 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
properly cast NULL_PTR for the surrender context:

Step 4: Update
Digest the data to sign with B_SignUpdate, the prototype of which is in Chapter 4 of
the Reference Manual. Unless there is an extraordinarily large amount of data (for
example, a megabyte or more), this function is quick and a NULL_PTR for the surrender
context should be no problem. Assuming you have some input data and you know its
length, your call is the following:

Step 5: Final
B_SignUpdate digested the data. Create the signature and send the result to a
signature buffer with B_SignFinal. The signature will be as many as 48 bytes long, so
make sure the output buffer is big enough. The Reference Manual Chapter 2 entry on
AI_DSAWithSHA1 states:

This function does not return immediately, so a surrender context can be helpful. For
this example, use the surrender context described in “The Surrender Context” on

B_ALGORITHM_METHOD *DSA_SIGN_CHOOSER[] = {
 &AM_SHA,
 &AM_DSA_SIGN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
if ((status = B_SignInit
 (dsaSigner, dsaPrivateKey, DSA_SIGN_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SignUpdate
 (dsaSigner, inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 You must pass a random algorithm in B_SignFinal, but may pass
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 4 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
page 118:

Step 6: Destroy
When you are done with all objects, remember to destroy them:

Verifying a Digital Signature
The Crypto-C sequence B_VerifyInit, B_VerifyUpdate, and B_VerifyFinal digests
the original data and checks the signature. If the signature is valid, B_VerifyFinal
returns a zero; if the signature is not valid, it returns an error code.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

#define MAX_SIG_LEN 48

unsigned char signature[MAX_SIG_LEN];
unsigned int signatureLen;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_SignFinal
 (dsaSigner, signature, &signatureLen, MAX_SIG_LEN,
 randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&dsaSigner);
B_DestroyKeyObject (&dsaPrivateKey);

B_ALGORITHM_OBJ dsaVerifier = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaVerifier)) != 0)
 break;
2 4 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
Step 2: Setting The Algorithm Object
To verify the signature created here, use the same AI:

Step 3: Init
Associate a key and algorithm method with the algorithm object through
B_VerifyInit. The Chapter 4 Reference Manual entry on this function shows that it
takes four arguments: the algorithm object, a key object, an algorithm chooser, and a
surrender context. The algorithm object in this example is dsaVerifier. For a key
object, you want to use a DSA public key, presumably the partner to the DSA private
key used to sign. Build an algorithm chooser; the elements are the AMs listed in the
Reference Manual Chapter 2 entry for the AI in use. B_VerifyInit is fast, so it is
reasonable to pass a properly cast NULL_PTR for the surrender context:

Step 4: Update
Digest the data that was signed with B_VerifyUpdate; the prototype of this is in
Chapter 4 of the Reference Manual. Unless there is an extraordinarily large amount of
data (for example, a megabyte or more), this function is quick and a NULL_PTR for the
surrender context will probably be no problem. Assuming you have the same input

if ((status = B_SetAlgorithmInfo
 (dsaVerifier, AI_DSAWithSHA1, NULL_PTR)) != 0)
 break;

B_ALGORITHM_METHOD *DSA_VERIFY_CHOOSER[] = {
 &AM_SHA1,
 &AM_DSA_VERIFY,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_VerifyInit
 (dsaVerifier, dsaPublicKey, DSA_VERIFY_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 4 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing DSA Operations
data and you know its length, your call is the following:

Step 5: Final
B_VerifyUpdate digested the data. Check the signature with B_VerifyFinal. The
Reference Manual Chapter 2 entry on AI_DSAWithSHA1 states:

This function does not return immediately, so use a surrender context:

The return value will be zero if the signature verifies, nonzero if it does not. Of course,
a nonzero return value may indicate some other error, so check any error return
against the Crypto-C Error Types, Appendix A of the Reference Manual.

Step 6: Destroy
When you are done with all objects, remember to destroy them:

if ((status = B_VerifyUpdate
 (dsaVerifier, inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 You must pass a random algorithm in B_SignFinal, but may pass
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_VerifyFinal
 (dsaVerifier, signature, signatureLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&dsaVerifier);
B_DestroyKeyObject (&dsaPublicKey);
2 4 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
Performing Diffie-Hellman Key Agreement
Diffie-Hellman Key Agreement is a method for two parties to obtain the same
symmetric key. In this procedure, a central authority generates parameters and gives
them to the two individuals seeking to generate a secret key. In Phase 1, each
individual uses these parameters to produce a public value and a private value. In
Phase 2, they trade public values and each uses the other’s public value with their
own private value to generate the same secret value.

Note: One of the individuals could act as the central authority and generate the
parameters. Security does not depend on a third party’s independently
producing the parameters.

The section “Diffie-Hellman Public Key Agreement” on page 62 gives a detailed
description of the Diffie-Hellman algorithm.

Generating Diffie-Hellman Parameters
The parameters are a prime, a base, and, optionally, the length in bits of the private
value. The parties will generate their own private values in Phase 1, although the
central authority has the option of declaring how long these values will be.

Note: You may have noticed that the Diffie-Hellman algorithm is very similar to the
RSA algorithm. The Diffie-Hellman prime is analogous to the RSA modulus,
and the Diffie-Hellman base is analogous to the RSA data to encrypt. The
Diffie-Hellman private value is analogous to the RSA private exponent
(private key) in private-key encryption.

The example in this section corresponds to the file dhparam.c. There is no Step 4,
Update, in generating Diffie-Hellman parameters.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ dhParamGenerator = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dhParamGenerator)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 4 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
Step 2: Setting The Algorithm Object
There is only one AI for generating Diffie-Hellman parameters: AI_DHParamGen. The
format of info supplied to B_SetAlgorithmInfo is a pointer to the following struct:

Crypto-C will generate the prime, but you must decide how big that prime will be. As
with the RSA modulus, the number of prime bits can be anywhere from 256 to 2048.
Larger numbers provide greater security, but operations with larger numbers are
much slower. RSA Security recommends 768. To save time, because this is for
illustrative purposes only, this example will use 512.

The exponent is the private value, generated randomly by each party during Phase 1.
The value exponentBits is the length of that private value. The Diffie-Hellman
algorithm allows the parameter generator (the central authority) to optionally
determine the length of the private value. Crypto-C exercises that option and requires
the length.

The exponent length should be at least twice the general security level of the system.
For instance, if 80-bit security against brute-force attack is desired, the exponent
should be 160 bits long. (This is how DSS does it.) The prime length should be chosen
to have a comparable level of difficulty against the best discrete logarithm algorithms.
The relationship between the sizes changes from time to time; a 1024-bit prime would
not be too far off from the 80-bit level.

The closer the exponent length is to the prime length, the longer it takes to generate
the Diffie-Hellman parameters, because Crypto-C generates a prime p and a prime q
where p-1 is a multiple of q, and the length of q is the same as the desired length of the
exponent. If the lengths are very close it will take a long time to find an appropriately
related pair of primes, because for a given q there won't be all that many possible p’s.
For example: for a one-bit difference between the prime and exponent lengths, p must
equal 2q+1, and it's unlikely that q and 2q+1 are simultaneously prime.

The Chapter 2 entry for AI_DHParamGen notes that the “exponentBits must be less than
primeBits.” For this example, choose 512 prime bits and 504 exponent bits:

typedef struct {
 unsigned int primeBits; /* size of prime modulus in bits */
 unsigned int exponentBits; /* size of random exponent in bits */
} A_DH_PARAM_GEN_PARAMS;
2 5 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
Step 3: Init
Initialize the generation process with B_GenerateInit. Build an algorithm chooser.
Because this function is quick, it is reasonable to pass NULL_PTR as the surrender
context. Generating the parameters in Step 5 is time-consuming, though, so you will
use a surrender context there:

Step 4: Update
There is no Step 4 in generating Diffie-Hellman parameters.

Step 5: Generate
To generate Diffie-Hellman parameters, call the Crypto-C function
B_GenerateParameters. The Reference Manual Chapter 4 entry for this call indicates
there are four arguments.

The first is the algorithm object that generates the parameters; in this example, that is
dhParamGenerator.

A_DH_PARAM_GEN_PARAMS dhParams;

dhParams.primeBits = 512;
dhParams.exponentBits = 504;
if ((status = B_SetAlgorithmInfo
 (dhParamGenerator, AI_DHParamGen,
 (POINTER)&dhParams)) != 0)
 break;

B_ALGORITHM_METHOD *DH_SAMPLE_CHOOSER[] = {
 &AM_SHA_RANDOM,
 &AM_DH_PARAM_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_GenerateInit
 (dhParamGenerator, DH_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 5 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
The second is a result algorithm object. Crypto-C will generate some values and will
need to place them somewhere. So you might as well place them into an algorithm
object now. (This is similar to generating an RSA key pair, where the results were
placed into key objects.) Create an algorithm object, but do not set it;
B_GenerateParameters will do that.

The third argument is a random algorithm. Complete Steps 1 through 4 of
“Generating Random Numbers” on page 165. You do not need random bytes, only an
algorithm that can generate them. The algorithm chooser you are using contains the
AM for SHA random number generation.

The last argument is a surrender context. Generating Diffie-Hellman parameters is
time-consuming; it can take up to two minutes. On slower machines, generating
parameters over 800-bits can take more than an hour. Use the surrender context
mentioned previously. It will print out a dot every second to let you know that
Crypto-C is computing and the machine has not crashed:

Step 6: Destroy
Remember to destroy your objects. Do not destroy the dhParametersObj object until
you have passed it on to the parties executing the agreement. The next section
discusses that point:

B_ALGORITHM_OBJ dhParametersObj = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dhParametersObj)) != 0)
 break;

/* generalFlag is for this tutorial’s surrender function. */
generalFlag = 0;
if ((status = B_GenerateParameters
 (dhParamGenerator, dhParametersObj, randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dhParamGenerator);
2 5 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
Distributing Diffie-Hellman Parameters
The central authority, after computing the parameters, must send this information to
the parties seeking agreement on a secret key. This can be done using Crypto-C
format or BER-encoded format.

Note: It is not necessary to generate parameters each time two parties wish to agree
on a secret key. Any number of key agreements can use the same parameters.
Of course, for greater security, it is a good idea to generate new parameters
every so often.

Crypto-C Format
To send the information in Crypto-C format, you can send a copy of the algorithm
object to the participants. Actually, you do not send the object itself, but rather the
“info supplied to B_SetAlgorithmInfo.”

Recall that you did not set the algorithm object dhParametersObj; the Crypto-C
function B_GenerateParameters did. It is set to the AI AI_DHKeyAgree. In the Reference
Manual Chapter 2 entry on AI_DHKeyAgree, the topic “Format of info returned by
B_GetAlgorithmInfo” states that it returns a pointer to an A_DH_KEY_AGREE_PARAMS
structure:

where ITEM is:

Declare a variable to be a pointer to such a structure and pass its address as the
argument.

Using the Reference Manual Chapter 4 prototype for B_GetAlgorithmInfo as a guide,
you can write the following:

typedef struct {
 ITEM prime; /* prime modulus */
 ITEM base; /* base generator */
 unsigned int exponentBits; /* size of random exponent in bits */
} A_DH_KEY_AGREE_PARAMS;

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 5 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
If you look at the elements of the struct:

dhKeyAgreeParams->prime.data
dhKeyAgreeParams->prime.len
dhKeyAgreeParams->base.data
dhKeyAgreeParams->base.len
dhKeyAgreeParams->exponentBits

you will see the parameters Crypto-C generated. This is the information the central
authority sends to the participants in the key agreement. Copy this information to a
file or diskette, for instance, and pass it on.

If you want to email the information, you will not be able to send the information over
most e-mail systems because the data is in binary form, not ASCII. Crypto-C offers
encoding and decoding functions to convert between binary and ASCII. See
“Converting Data Between Binary and ASCII” on page 172 for more information.

BER Format
There is a problem with distributing the parameters in the previous structure. The
struct is not standard; it is unique to Crypto-C. If one or both of the parties are not
using Crypto-C, how do you give them the information? The standard is ASN.1,
which defines Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER).
See “BER/DER Encoding” on page 123 for a description of this topic.

The central authority puts the parameters into DER format, encodes them, and emails
the encoding. The parties decode the DER string and convert that information into the
parameters in the format of their choice.

This sounds difficult, but Crypto-C offers a means of doing it simply. Here, to obtain
the parameters, you used B_GetAlgorithmInfo with AI_DHKeyAgree. Chapter 2 of the
Reference Manual lists AI_DHKeyAgreeBER, which states:

A_DH_KEY_AGREE_PARAMS *dhKeyAgreeParams =
 (A_DH_KEY_AGREE_PARAMS *)NULL_PTR;

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&dhKeyAgreeParams, dhParametersObj,
 AI_DHKeyAgree)) != 0)
 break;
2 5 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
Crypto-C returns a pointer to where that information resides, not the information. As
soon as the object that contains that information is destroyed, the information will no
longer be accessible. Therefore, once you get the pointer to that information, copy it
into your own buffer:

In summary, generate the parameters, get the algorithm info in BER format with
B_GetAlgorithmInfo and AI_DHKeyAgreeBER, encode the BER data into ASCII format
and send it to the Diffie-Hellman key agreement participants.

Note: The conversion into BER or DER is known as BER-encoding or DER-
encoding, and the conversion between binary to ASCII is known as encoding
and decoding. This may get confusing, but the word encoding without a BER
in front of it generally means binary to ASCII. If the encoding is BER- or DER-
encoding, the BER or DER should be explicitly stated.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure which gives the address and length of the DER-encoded
algorithm identifier.

ITEM *cryptocDHParametersBER;
ITEM myDHParametersBER;

myDHParametersBER.data = NULL_PTR;

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&cryptocDHParametersBER, myDHParametersObj,
 AI_DHKeyAgreeBER)) != 0)
 break;

myDHParametersBER.len = cryptocDHParametersBER->len;
myDHParametersBER.data = T_malloc (myDHParametersBER.len);
if ((status = (myDHParametersBER.data == NULL_PTR)) != 0)
 break;
T_memcpy (myDHParametersBER.data, cryptocDHParametersBER->data,
 myDHParametersBER.len);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 5 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
Diffie-Hellman Key Agreement
If you are one of the parties involved in the key agreement, perform the following
steps. Note that instead of Update and Final, you use B_KeyAgreePhase1 and
B_KeyAgreePhase2. Also, if you are writing an application that executes the Diffie-
Hellman key agreement, the application must be interactive.

This process will produce an agreed-upon secret value. That value may be larger than
necessary. For instance, the agreement may produce a 64-byte agreed upon secret
value, yet the parties may need only 8 bytes. The application must determine which
bytes from the agreed upon secret value to use.

The example in this section corresponds to the file dhagree.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are two possible AIs to use in setting a Diffie-Hellman key agreement algorithm
object: AI_DHKeyAgree and AI_DHKeyAgreeBER. Recall that in generating the Diffie-
Hellman parameters, the central authority set an algorithm object and then retrieved
its info using B_GetAlgorithmInfo. The central authority then distributed that info to
you, telling you which AI to use. For this example, use AI_DHKeyAgreeBER to match
the usage in “Distributing Diffie-Hellman Parameters” on page 253:

B_ALGORITHM_OBJ dhKeyAgreeAlg = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dhKeyAgreeAlg)) != 0)
 break;

/* Assume you received the BER-encoded DH parameters from the
 central authority in the ITEM dhParametersBER. */
ITEM dhParametersBER;
2 5 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
Step 3: Init
Initialize the algorithm object with B_KeyAgreeInit. The Reference Manual Chapter 4
entry on this function indicates it takes four arguments. The first is the algorithm
object, dhKeyAgreeAlg. The second is a key object. The Diffie-Hellman key agreement
algorithm does not require a key, so use a properly cast NULL_PTR for this argument.
The third argument is an algorithm chooser, and the last is a surrender context. This
function is fast, so it is reasonable to pass a properly cast NULL_PTR for the surrender
context.

Step 4: Phase 1
In Phase 1, you generate a random private value and compute a public value from
that private value and the parameters. The Reference Manual Chapter 4 entry on
B_KeyAgreePhase1 describes the format of its six arguments.

The first is the algorithm object.

The second is output. This output is the public value, which will be the same size as
the prime. You are responsible for allocating the memory for the buffer to contain the
public value. In this example, you do not know how big the prime is; just set the
algorithm with the BER-encoded info. That info does contain the size of the prime,
but you would have to know exactly where to look. An easier way to find the prime
size is by getting the algorithm info as AI_DHKeyAgree.

The third argument for the Phase 1 call is the address of an unsigned int. Crypto-C
will place the length in bytes of the public value at that address.

if ((status = B_SetAlgorithmInfo
 (dhKeyAgreeAlg, AI_DHKeyAgreeBER,
 (POINTER)&dhParametersBER)) != 0)
 break;

B_ALGORITHM_METHOD *DH_AGREE_SAMPLE_CHOOSER[] = {
 &AM_DH_KEY_AGREE,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_KeyAgreeInit
 (dhKeyAgreeAlg, (B_KEY_OBJ)NULL_PTR, DH_AGREE_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 5 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
The fourth is the size of the buffer you allocated; if the buffer is not big enough to hold
the output, Crypto-C will generate an error.

The fifth argument is a random algorithm object. For this, complete Steps 1 through 4
of “Generating Random Numbers” on page 165. You do not need random bytes, only
an algorithm that can generate them.

The last argument is a surrender context. This function does not return immediately,
so a surrender context is helpful. Use the one outlined in “The Surrender Context” on
page 118:

Step 5: Phase 2
After you have computed your public value, you must send it off to the other party
and receive their public value. You need the same algorithm object from Phase 1 to
complete Phase 2. See “Saving the Object State” on page 259 for information on how
to do this.

The input of B_KeyAgreePhase2 is the other party’s public value; the output is the
agreed-upon secret value. The output will be the same size as the prime; you must
allocate the space to hold this output. Although the output will be at least 32 bytes, the

unsigned char *myPublicValue = NULL_PTR;
unsigned int myPublicValueLen;
A_DH_KEY_AGREE_PARAMS *getParams;

/* Find out how big the prime is so we know how many bytes to
 allocate for the public value buffer. */

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&getParams, dhKeyAgreeAlg, AI_DHKeyAgree)) != 0)
 break;

myPublicValue = T_malloc (getParams->prime.len);
if ((status = (myPublicValue == NULL_PTR)) != 0)
 break;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_KeyAgreePhase1
 (dhKeyAgreeAlg, myPublicValue, &myPublicValueLen,
 getParams->prime.len, randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;
2 5 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Diffie-Hellman Key Agreement
parties might only need eight bytes for a session key. If that is the case, it is the
application’s responsibility to specify which bytes of the agreed-upon secret value
will be used. This function does not return immediately, so a surrender context is
useful:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory:

Saving the Object State
Refer to “Saving State” on page 120 for information on how to receive a buffer that
contains all of the data necessary to reconstruct the object, using the call
B_SetAlgorithmState, to the state it was in at the time of calling the Get routine. You
may call B_GetAlgorithmState after calling B_KeyAgreePhase1. When the application
is ready to resume the key agreement operation, create an algorithm object and
restore the state using B_SetAlgorithmState. See the dhagrsv.c sample for details.

/* The other party should send their public value and its length. */

unsigned char *otherPublicValue;
unsigned int otherPublicValueLen;
unsigned char *agreedUponSecretValue = NULL_PTR;
unsigned int agreedUponSecretValueLen;

agreedUponSecretValue = T_malloc (getParams->prime.len);
if ((status = (agreedUponSecretValue == NULL_PTR)) != 0)
 break;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_KeyAgreePhase2
 (dhKeyAgreeAlg, agreedUponSecretValue,
 &agreedUponSecretValueLen, getParams->prime.len,
 otherPublicValue, otherPublicValueLen,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&dhKeyAgreeAlg);
B_DestroyAlgorithmObject (&randomAlgorithm);
T_free (myPublicValue);
T_free (agreedUponSecretValue);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 5 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Performing Elliptic Curve Operations
Elliptic curve cryptosystems can be used for a number of public-key operations.
Crypto-C supports the following elliptic curve features:

• Generation of elliptic curve parameters
• Elliptic curve key pair generation
• Elliptic Curve Signature Schemes (ECDSA)
• Elliptic Curve Authenticated Encryption Scheme (ECAES)
• Elliptic Curve Diffie-Hellman key agreement (ECDH)

Crypto-C also allows you to generate precomputed acceleration tables to speed up
certain elliptic curve operations.

For a description of elliptic curve parameters and algorithms, see “Elliptic Curve
Cryptography” on page 65.

Generating Elliptic Curve Parameters
Before you can perform any elliptic curve operations, you must create the parameters
for the curve that you will be using. Once you have generated elliptic curve
parameters, you can use the parameters to: generate a key pair, to create an
acceleration table, or to perform Elliptic Curve Diffie-Hellman (ECDH) key
agreement. The same elliptic curve parameters can be used for multiple operations.
See “Elliptic Curve Parameters” on page 66 for more information.

You need to make some choices about the kind of elliptic curve you want to use. You
need to choose what to use for a base field: an odd prime finite field or a field of even
characteristic. If you choose a field of even characteristic, you also have to choose
what type of basis you want to use. You also have to choose the number of bits that
you want for the length of an element in the field.

For this example, you will use an odd prime field for the base field. The example in
this section corresponds to the file ecparam.c.

Step 1: Creating an Algorithm Object
You need to create two algorithm objects. The first, paramGenObj, is initialized by the
programmer prior to the parameter generation operation; it is used to hold
information necessary to generate parameters.
2 6 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
The second, ecParamsObj, is set and initialized by B_GenerateParameters; it will hold
the newly-generated elliptic curve parameters.

Step 2: Setting the Algorithm Object
You need to set the algorithm object that will be used to generate the elliptic curve
parameters. The only AI that can be used to generate elliptic curve parameters is
AI_ECParamGen. Chapter 2 in the Reference Manual gives the following:

To supply the necessary information, pass a pointer to a B_EC_PARAM_GEN_PARAMS
structure as the third argument to B_SetAlgorithmInfo. The B_EC_PARAM_GEN_PARAMS
structure is defined in the Chapter 2 entry in the Reference Manual for AI_ECParamGen:

You must choose the field type and the length of the field element. The field type can
be either: a prime field of odd characteristic, that is, Fp; or a field of even characteristic,
F2m.

For this example, set the arguments as shown here. The first argument specifies the

B_ALGORITHM_OBJ paramGenObj = (B_ALGORITHM_OBJ)NULL_PTR;
B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject(¶mGenObj)) != 0)
 break;
if ((status = B_CreateAlgorithmObject(&ecParamsObj)) != 0)
 break;

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAM_GEN_PARAMS structure.

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* base field for the elliptic curve */
 unsigned int fieldElementBits; /* length of field element in bits */
 unsigned int pointRepresentation;/*controls field element representation */
 unsigned int minOrderBits; /* minimum size of group generated by base */
 /* input of 0 defaults to fieldElementBits - 7 */
 unsigned int trialDivBound; /* maximum size of second largest prime */
 /* subgroup of group generated by base */
 /* input of 0 defaults to 255 */
 unsigned int tableLookup; /* characteristic 2 only. Set if the */
 /* use of precomputed params is desired */
} B_EC_PARAM_GEN_PARAMS;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 6 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
version number; in Crypto-C, the only version available is 0.

The second argument specifies that you want your base field to be of the form Fp (p is
an odd prime).

The third argument sets the length of a field element in bits; in this example, set it to
be 160. For the prime field case, the size of a field element can be anywhere from 64 to
384 bits. The length of a field element, along with minOrderBits, strongly affects the
security of the system; the greater the length, the greater the security. However, the
greater the length, the longer it takes to generate key pairs and encrypt and decrypt.
Currently, RSA Security recommends a size of 160 to 170 bits for minOrderBits for
prototyping and evaluation; because minOrderBits defaults to 7 bits smaller than
fieldElementBits, fieldElementBits should be set to 167–177 bits.

For the legal values for fieldElementBits in the even characteristic case, see the entry
for AI_ECParamGen in Chapter 2 of the Reference Manual.

Note: Generating an elliptic curve for even characteristic without table lookup
(fieldtype = FT_F2_ONB or FT_F2_POLYNOMIAL and tableLookup = 0) can be
extremely time-consuming, taking several hours in some cases. In general,
larger values for minOrderBits means longer times for curve generation.
Therefore, if you wish to generate curves for even characteristic, but do not
want to use table lookup, you can speed curve generation by setting a smaller
value for minOrderBits. Remember, however, that the size of minOrderBits is
directly tied to the security of your elliptic curve cryptosystem. Setting
minOrderBits allows you to make a trade-off between the time it takes to
generate curves and the security of your system.

For the fourth argument, you should always specify CI_NO_COMPRESS. Regardless of
the value placed here, Crypto-C will represent the base and public key points as non-
compressed. If elliptic curve point compression ever becomes of such practical value
that it is implemented in a future release of Crypto-C, using CI_NO_COMPRESS will
protect your application from unforeseen behavior when you rebuild your
application.

For the fifth and six arguments, pass 0; this tells Crypto-C to use its internal
algorithms to generate its own values:
2 6 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 3: Init
You can pass a NULL_PTR for the surrender context, because B_GenerateInit is a
speedy function. For AI_ECParamGen, Chapter 2 of the Reference Manual indicates
which algorithm methods you need to include in your chooser, paramGenChooser:

Because you are using an odd prime, use AM_ECFP_PARAM_GEN:

Step 4: Update
No Update step is necessary for parameter generation.

 B_EC_PARAM_GEN_PARAMS paramGenInfo;
 paramGenInfo.version = 0;
 paramGenInfo.fieldType = FT_FP;
 paramGenInfo.fieldElementBits = 160;
 paramGenInfo.pointRepresentation = CI_NO_COMPRESS;
 paramGenInfo.minOrderBits = 0;
 paramGenInfo.trialDivBound = 0;

if ((status = B_SetAlgorithmInfo(paramGenObj, AI_ECParamGen,
 (POINTER)¶mGenInfo)) != 0)
 break;

Algorithm methods to include in application’s algorithm chooser:
AM_ECFP_PARAM_GEN for odd prime fields and AM_ECF2POLY_PARAM_GEN for even
characteristic.

B_ALGORITHM_METHOD *paramGenChooser[] = {
 &AM_ECFP_PARAM_GEN,
 &AM_ECF2POLY_PARAM_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_GenerateInit(paramGenObj, paramGenChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 6 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 5: Generate
This function may take a while, so you should use a surrender function. See “The
Surrender Context” on page 118. B_GenerateParameters places the newly-generated
elliptic curve parameters in ecParamsObj:

Step 6: Destroy
Destroy all algorithm objects that are no longer necessary. However, do not destroy
ecParamsObj until you have retrieved and stored the parameters. See “Retrieving
Elliptic Curve Parameters” on page 264 for more information. Destroy ecParamsObj
when it is no longer needed:

Retrieving Elliptic Curve Parameters
Once you have your elliptic curve parameters in an algorithm object, you need to be
able to retrieve those parameters in an accessible form. Once you have retrieved your
parameters, you can store the information or print it out. You also need to retrieve the
elliptic curve parameters from the algorithm object when you generate acceleration
tables.

This section outlines two application-specific procedures, AllocAndCopyECParamInfo
and FreeECParamInfo, that are used to retrieve and store information. These
procedures are referred to in subsequent sections.

To retrieve information from an algorithm object, call B_GetAlgorithmInfo with an
appropriate AI. The only AI listed in the Reference Manual that allows you to set or
retrieve the parameters is AI_ECParameters:

 generalSurrenderContext.Surrender = GeneralSurrenderFunction;
 generalSurrenderContext.handle = (POINTER)&generalFlag;
 generalSurrenderContext.reserved = NULL_PTR;
 generalFlag = 0;

if ((status = B_GenerateParameters(paramGenObj, ecParamsObj,
 randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (¶mGenObj);
B_DestroyAlgorithmObject (&randomAlgorithm);
2 6 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
The Reference Manual Chapter 2 entry for AI_ECParameters also states that the format
of the information returned by B_GetAlgorithmInfo is a pointer to an A_EC_PARAMS
structure:

Assume that the elliptic curve parameters are placed in the algorithm object
ecParamsObj (see “Generating Elliptic Curve Parameters” on page 260). Make the
appropriate call to B_GetAlgorithmInfo:

Note that cryptocECParamInfo is a pointer to the information, not the information itself.
The memory that cryptocECParamInfo points to belongs to Crypto-C; another call to
Crypto-C may alter or destroy it. Therefore, once you get the pointer to the
information, you must copy it to your own buffer.

Type of information this allows you to use:
the parameters generated by executing AI_ECParamGen for either generating keys or
executing key agreements.

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* indicates type of base field */
 ITEM fieldInfo; /* It is the prime number */
 /* in case that fieldType = FT_FP; */
 /* the basis polynomial if fieldType = FT_F2_POLYNOMIAL; */
 /* and the degree of the field if fieldType = FT_F2_ONB */
 ITEM coeffA; /* elliptic curve coefficient */
 ITEM coeffB; /* elliptic curve coefficient */
 ITEM base; /* elliptic curve group generator */
 ITEM order; /* order of subgroup’s generating element */
 ITEM cofactor; /* the cofactor of the subgroup */
 unsigned int pointRepresentation; /* not used. */
 /* set to CI_NO_COMPRESS as a default */
 unsigned int fieldElementBits; /* field element size in bits */
} A_EC_PARAMS;

 A_EC_PARAMS *cryptocECParamInfo;

 if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParamInfo,
 ecParamsObj, AI_ECParameters)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 6 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
The following procedure, AllocAndCopyECParamInfo, is an example of an application-
specific procedure that allocates space to store the parameters. You can also write
your own procedure to satisfy the needs of your application:

int AllocAndCopyECParamInfo(output, input)
A_EC_PARAMS *output;
A_EC_PARAMS *input;
{
 int status;

 do {
 output->version = input->version;

 output->fieldType = input->fieldType;

 output->fieldInfo.len = input->fieldInfo.len;
 output->fieldInfo.data = T_malloc(output->fieldInfo.len);
 if ((status = (output->fieldInfo.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->fieldInfo.data, input->fieldInfo.data,
 output->fieldInfo.len);

 output->coeffA.len = input->coeffA.len;
 output->coeffA.data = T_malloc(output->coeffA.len);
 if ((status = (output->coeffA.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->coeffA.data, input->coeffA.data,
 output->coeffA.len);

 output->coeffB.len = input->coeffB.len;
 output->coeffB.data = T_malloc(output->coeffB.len);
 if ((status = (output->coeffB.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->coeffB.data, input->coeffB.data,
 output->coeffB.len);

 output->base.len = input->base.len;
 output->base.data = T_malloc(output->base.len);
 if ((status = (output->base.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->base.data, input->base.data,
 output->base.len);
2 6 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
For this example application, use AllocAndCopyECParamInfo() to make a copy of the
information that cryptocECParamInfo points to and place that in your own buffer,
ecParamInfo:

When the information in ecParamInfo is no longer needed, you must remember to free
any memory that you allocated:

where FreeECParamInfo is a procedure that performs this operation.

 output->order.len = input->order.len;
 output->order.data = T_malloc(output->order.len);
 if ((status = (output->order.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->order.data, input->order.data,
 output->order.len);

 output->cofactor.len = input->cofactor.len;
 output->cofactor.data = T_malloc(output->cofactor.len);
 if ((status = (output->cofactor.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->cofactor.data, input->cofactor.data,
 output->cofactor.len);

 output->pointRepresentation = input->pointRepresentation;

 output->fieldElementBits = input->fieldElementBits;
 } while(0);

 if (status != 0)
 printf("AllocAndCopyECParamInfo failed with status %i\n", status);

 return status;
}

 A_EC_PARAMS ecParamInfo;

 if ((status = AllocAndCopyECParamInfo(&ecParamInfo,
 cryptocECParamInfo)) != 0)
 break;

 FreeECParamInfo(&ecParamInfo);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 6 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
In the sample code, FreeECParamInfo is implemented as follows:

Generating an Elliptic Curve Key Pair
In this section, you will generate a key pair suitable for use with Elliptic Curve DSA
(ECDSA) and the Elliptic Curve Authenticated Encryption Scheme (ECAES).

You can optionally use an acceleration table to speed up the key generation operation.
This is useful if you will be doing key generation with the same elliptic curve several
times. If you will be using an acceleration table with this example, assume that you
have gone through the steps of generating an acceleration table and that you have the
table in the ITEM structure accelTableItem.

Step 1: Create
Create the algorithm object that you will use to generate the key pair:

Also create the key objects to hold the keys after they have been generated:

void FreeECParamInfo(ecParams)
A_EC_PARAMS *ecParams;
{
 T_free(ecParams->fieldInfo.data);
 T_free(ecParams->coeffA.data);
 T_free(ecParams->coeffB.data);
 T_free(ecParams->base.data);
 T_free(ecParams->order.data);
 T_free(ecParams->cofactor.data);
}

 B_ALGORITHM_OBJ ecKeyGen = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecKeyGen)) != 0)
 break;

 B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
 B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
2 6 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 2: Set
The Reference Manual indicates that the appropriate AI to use for generating an elliptic
curve key pair is AI_ECKeyGen. You must set the algorithm object with the parameter
information for the elliptic curve that you are using to generate the key. You do this
by providing B_SetAlgorithmInfo with a pointer to a B_EC_PARAMS structure.

Place the elliptic curve parameters in the A_EC_PARAMS structure ecParamInfo. You can
do this either by setting ecParamInfo with the appropriate values, or by following the
steps outlined in “Retrieving Elliptic Curve Parameters” on page 264 to retrieve the
parameters from an algorithm object and place them into an A_EC_PARAMS structure.

The AI that describes data in this format is AI_ECParameters:

You can also optionally use the acceleration table to speed up key generation. See
“Generating Acceleration Tables” on page 273 for more information. Assume that you
have the acceleration table corresponding to your elliptic curve in the ITEM structure
accelTableItem. The appropriate AI to use with B_SetAlgorithmInfo in this case is
AI_ECAcceleratorTable. Pass in a pointer to the ITEM structure holding the
acceleration table as the third argument to B_SetAlgorithmInfo. Now set your key-
generation algorithm object with the acceleration table information:

 if ((status = B_CreateKeyObject (&publicKey)) != 0)
 break;
 if ((status = B_CreateKeyObject (&privateKey)) != 0)
 break;

typedef struct {
 B_INFO_TYPE parameterInfoType;
 POINTER parameterInfoValue;
} B_EC_PARAMS;

 B_EC_PARAMS paramInfo;

 paramInfo.parameterInfoType = AI_ECParameters;
 paramInfo.parameterInfoValue = (POINTER)&ecParamInfo;

 if ((status = B_SetAlgorithmInfo (ecKeyGen, AI_ECKeyGen,
 (POINTER)¶mInfo)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 6 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 3: Initialize
Here, you can pass a NULL_PTR for the surrender context, because B_GenerateInit is a
speedy function. The Reference Manual entry on AI_ECKeyGen indicates which
algorithm methods you need to include in your chooser, keyGenChooser:

Step 4: Update
There is no Update step for key generation.

Step 5: Generate
Now you can complete the key-generation operation. Note that you must pass in a
properly-initialized random algorithm as the fourth argument:

Step 6: Destroy
Remember to destroy all key objects and algorithm objects once they are no longer
needed:

 if ((status = B_SetAlgorithmInfo (ecKeyGen, AI_ECAcceleratorTable,
 (POINTER)&accelTableItem)) != 0)
 break;

 B_ALGORITHM_METHOD *keyGenChooser[] = {
 &AM_ECFP_KEY_GEN,
 &AM_ECF2POLY_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_GenerateInit (ecKeyGen, keyGenChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_GenerateKeypair
 (ecKeyGen, publicKey, privateKey, randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 7 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Retrieving an Elliptic Curve Key
If you need to store or transport information about your elliptic curve keys, you need
to be able to retrieve the key information from an algorithm object. This section
outlines the steps needed to retrieve information for a public key. The steps for
retrieving a private key are similar.

You need to call B_GetKeyInfo with the appropriate KI. The Reference Manual
describes two KIs for use with elliptic curve public keys: KI_ECPublic and
KI_ECPublicComponent. However, KI_ECPublicComponent does not supply the elliptic
curve parameters, which must be associated with any elliptic curve key. Therefore,
you can only use KI_ECPublicComponent if you only need the public component, for
example, if you have already retrieved the appropriate EC parameters. Therefore, for
this example, you’ll use KI_ECPublic.

KI_ECPublic gives a pointer to an A_EC_PUBLIC_KEY structure:

After you have your public key information in the key object publicKey, make a call to
B_GetKeyInfo. See “Generating an Elliptic Curve Key Pair” on page 268 for more
information:

 B_DestroyAlgorithmObject(&ecKeyGen);
 B_DestroyAlgorithmObject(&randomAlgorithm);
 B_DestroyKeyObject(&publicKey);
 B_DestroyKeyObject(&privateKey);

typedef struct {
 ITEM publicKey; /* public component */
 A_EC_PARAMS curveParams; /* the underlying elliptic curve parameters */
} A_EC_PUBLIC_KEY;

 A_EC_PUBLIC_KEY *cryptocPublicKeyInfo;

 if ((status = B_GetKeyInfo((POINTER *)&cryptocPublicKeyInfo,
 *publicKey, KI_ECPublic)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 7 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
B_GetKeyInfo gives a pointer to memory, but this memory is owned by Crypto-C. If
you want to store this information, you need to make your own copy of the
information because another call to Crypto-C may modify the memory owned by
Crypto-C. The routines AllocAndCopyECPubKeyInfo and FreeECPubKeyInfo given here
retrieve and store the key information. These routines are used in the sample code for
building public-key acceleration tables.

AllocAndCopyECPubKeyInfo takes as input a pointer to an A_EC_PUBLIC_KEY structure
containing memory belonging to Crypto-C. It copies the information from the
structure owned by Crypto-C to an A_EC_PUBLIC_KEY structure created by the
application and outputs a pointer to the structure just created. The memory allocated
with AllocAndCopyECPubKeyInfo should be freed using FreeECPubKeyInfo when
appropriate:

FreeECPubKeyInfo takes a pointer to an A_EC_PUBLIC_KEY structure that contains space
that was allocated by AllocAndCopyECPubKeyInfo and calls T_malloc to free all allocated
data:

int AllocAndCopyECPubKeyInfo(output, input)
A_EC_PUBLIC_KEY *output;
A_EC_PUBLIC_KEY *input;

{
 int status;

 do {
 output->publicKey.len = input->publicKey.len;
 output->publicKey.data = T_malloc(output->publicKey.len);
 if ((status = (output->publicKey.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->publicKey.data, input->publicKey.data,
 output->publicKey.len);

 if ((status = AllocAndCopyECParamInfo(&(output->curveParams),
 &(input->curveParams))) != 0)
 break;
 } while(0);

 if (status != 0)
 printf("AllocAndCopyECPubKeyInfo failed with status %i\n", status);

 return status;
} /* end AllocAndCopyECPubKeyInfo */
2 7 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Generating Acceleration Tables
An acceleration table stores precomputed versions of certain values that are
frequently used during some elliptic curve operations. Acceleration tables can speed
up certain elliptic curve operations. However, this increase in speed comes at the cost
of space, as these tables tend to be very large.

There are two types of acceleration tables in Crypto-C:

• Generic acceleration table: stores values that are commonly used in many elliptic-
curve operations, including key-pair generation, Elliptic Curve Diffie-Hellman
key agreement, and ECDSA signing and verifying.

• Public-key acceleration table: stores all the values stored by the generic acceleration
table, as well as additional values commonly used only in ECDSA verification.

The examples in this section are in the file eparam.c.

Generating a Generic Acceleration Table
This acceleration table can be used to speed up key-pair generation, public-key
encryption, Elliptic Curve Diffie-Hellman key agreement, and ECDSA signing and
verifying. This table is most useful if these operations are performed repeatedly with
the same elliptic curve. The function BuildAccelTable, used in the sample code and
defined in the file ecparam.c, demonstrates the following steps in creating the
acceleration table.

/* This procedure takes a pointer to an A_EC_PUBLIC_KEY structure containing
 * space allocated by AllocAndCopyECPubKeyInfo and frees all data allocated
 * with T_malloc. */

void FreeECPubKeyInfo(pubKey)
A_EC_PUBLIC_KEY *pubKey;
{
 T_free(pubKey->publicKey.data);
 FreeECParamInfo(&(pubKey->curveParams));
} /* end FreeECPubKeyInfo */
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 7 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set

Step 2a: Retrieve the elliptic curve parameters
Because you are generating an acceleration table corresponding to a particular elliptic
curve, you need to retrieve the elliptic curve parameters and place them in the
algorithm object. Assume that you have gone through the steps to generate an elliptic
curve and you have stored the parameters in the algorithm object ecParamsObj. See
“Retrieving Elliptic Curve Parameters” on page 264 for more details:

Step 2b: Format the information
You must put the information you retrieved into the proper format. The Reference
Manual Chapter 2 entry for AI_ECBuildAcceleratorTable says that you must supply
a pointer to a B_EC_PARAMS structure to B_SetAlgorithmInfo:

 B_ALGORITHM_OBJ buildTable = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject(&buildTable)) != 0)
 break;

 A_EC_PARAMS *cryptocECParamInfo;
 A_EC_PARAMS ecParamInfo;

 if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParamInfo,
 ecParamsObj, AI_ECParameters)) != 0)
 break;

 if ((status = AllocAndCopyECParamInfo(&ecParamInfo,
 cryptocECParamInfo)) != 0)
 break;

typedef struct {
 B_INFO_TYPE parameterInfoType;
 POINTER parameterInfoValue;
} B_EC_PARAMS;
2 7 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
The first field in this structure, parameterInfoType, is used to interpret the elliptic
curve parameter information you supply in the second field, parameterInfoValue. The
EC parameter information you have is an A_EC_PARAMS structure containing the data
that describes the EC parameters. The B_INFO_TYPE that is used to properly interpret
that information is AI_ECParameters.

Set the parameterInfoType field to AI_ECParameters and give the parameterInfoValue
field a pointer to the location of the A_EC_PARAMS structure:

Step 3: Init
In this step, you must supply the appropriate algorithm methods through the
algorithm chooser. The Reference Manual Chapter 2 entry for
AI_ECBuildAcceleratorTable indicates which AMs you must include in your
chooser. This step doesn’t take much time to complete, so you can pass in a NULL_PTR
for your surrender context:

Step 4: Update
There is no Update step for building acceleration tables.

 B_EC_PARAMS paramInfo;
 paramInfo.parameterInfoType = AI_ECParameters;
 paramInfo.parameterInfoValue = (POINTER)&ecParamInfo;

 if ((status = B_SetAlgorithmInfo
 (buildTable, AI_ECBuildAcceleratorTable,(POINTER)¶mInfo)) != 0)
 break;

 B_ALGORITHM_METHOD *ecAccelChooser[] = {
 &AM_ECFP_BLD_ACCEL_TABLE, /* for odd prime field */
 &AM_ECF2POLY_BLD_ACCEL_TABLE, /* for characteristic 2 field */
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_BuildTableInit(buildTable, ecAccelChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 7 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 5: Final

Step 5a: Allocate memory
You must allocate sufficient memory to hold the acceleration table. According to the
Reference Manual, you can use B_BuildTableGetBufSize to tell how much space will
be required to store the acceleration table:

Step 5b: Build the acceleration table
Finally, build the acceleration table and store it in an ITEM structure. You store it this
way for convenience—when you actually use the acceleration table, you will have to
provide it in an ITEM structure to B_SetAlgorithmInfo. Building an acceleration table
can take a lot of time, so use a surrender context. See “The Surrender Context” on
page 118 for more information:

 ITEM accelTableItem;
 unsigned int maxTableLen;

 if ((status = B_BuildTableGetBufSize(buildTable, &maxTableLen)) != 0)
 break;

 accelTableItem.data = T_malloc(maxTableLen);

 if ((status = (accelTableItem.data == NULL_PTR)) != 0)
 break;

 ITEM accelTableItem;

 generalSurrenderContext.Surrender = GeneralSurrenderFunction;
 generalSurrenderContext.handle = (POINTER)&generalFlag;
 generalSurrenderContext.reserved = NULL_PTR;
 generalFlag = 0;

 if ((status = B_BuildTableFinal(buildTable, accelTableItem.data,
 &(accelTableItem.len), maxTableLen,
 &generalSurrenderContext)) != 0)
 break;
2 7 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 6: Destroy
You must free all allocated memory and destroy all objects when they are no longer
needed so that all sensitive information is zeroized and freed:

Generating a Public-Key Acceleration Table
This special-purpose acceleration table can be used to speed up ECDSA verification.
Again, the cost in time to generate the table and space to store it must be weighed
against the speedup in verification that it will provide. This table is most useful if
ECDSA verification will be performed repeatedly with the same public key. The
function BuildPubKeyAccelTable, used in the sample code and defined in the file
ecparam.c, demonstrates the steps in creating the public-key acceleration table.

Step 1: Create
Create the algorithm object that will be used in building the public-key acceleration
table. Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype
in Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set
Retrieve the public-key information and place it in the algorithm object used to build
the acceleration table for that public key.

Step 2a: Retrieve the public key information
Because B_GetKeyInfo returns a pointer to memory that belongs to Crypto-C, you
must make a copy of this information. See “Retrieving an Elliptic Curve Key” on
page 271 for the definitions of AllocAndCopyECPubKeyInfo and FreeECPubKeyInfo.

 T_memset(accelTableItem.data, 0, accelTableItem.len);
 T_free(accelTableItem.data);
 B_DestroyAlgorithmObject(&buildTable);

 B_ALGORITHM_OBJ buildTable = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject(&buildTable)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 7 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Of course, you can write your own versions of these procedures to satisfy the needs of
your application:

When the information is no longer needed, don’t forget to free the allocated memory:

Step 2b: Put the information retrieved in the proper format
To build the public-key acceleration table, use AI_ECBuildPubKeyAccelTable. The
Reference Chapter 2 entry for AI_ECBuildPubKeyAccelTable states that you must
supply a pointer to a B_EC_PARAMS structure. The procedure you use to fill this
structure in is the same as the one you used to build the generic acceleration table.
However, because you are building an acceleration table based on the public key, you
must also pass in information about the public key.

You have an A_EC_PUBLIC_KEY struct containing the public key information, so the
appropriate B_INFO_TYPE to use is AI_ECPubKey. According to the Reference Manual
entry on AI_ECPubKey, you should pass B_SetAlgorithmInfo a pointer to
A_EC_PUBLIC_KEY structure. Set the parameterInfoType to AI_ECPubKey and give
parameterInfoValue the pointer to your A_EC_PUBLIC_KEY structure publicKeyInfo.

 A_EC_PUBLIC_KEY *cryptocPublicKeyInfo;
 A_EC_PUBLIC_KEY publicKeyInfo;

 if ((status = B_GetKeyInfo((POINTER *)&cryptocPublicKeyInfo,
 *publicKey, KI_ECPublic)) != 0)
 break;

 if ((status = AllocAndCopyECPubKeyInfo(&publicKeyInfo,
 cryptocPublicKeyInfo)) != 0)
 break;

 FreeECPubKeyInfo(&publicKeyInfo);

 B_EC_PARAMS paramInfo;

 paramInfo.parameterInfoType = AI_ECPubKey;
 paramInfo.parameterInfoValue = (POINTER)&publicKeyInfo;

 if ((status = B_SetAlgorithmInfo(buildTable, AI_ECBuildPubKeyAccelTable,
 (POINTER)¶mInfo)) != 0)
 break;
2 7 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 3: Init
To initialize the proper algorithms, you must supply an algorithm chooser with the
appropriate algorithm methods. See the Reference Manual Chapter 2 entry for
AI_ECBuildPubKeyAccelTable for a list of the appropriate AMs to include in the
chooser:

Step 4: Update
There is no Update step for building acceleration tables.

Step 5: Final

Step 5a: Allocate memory
You must allocate sufficient memory to hold the acceleration table. Use
B_BuildTableGetBufSize to obtain the maximum size of the public key acceleration
table. Then allocate enough space to hold the table:

 B_ALGORITHM_METHOD *ecAccelChooser[] = {
 &AM_ECFP_BLD_PUB_KEY_ACC_TAB,
 &AM_ECF2POLY_BLD_PUB_KEY_ACC_TAB,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_BuildTableInit(buildTable, ecAccelChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 ITEM pubKeyAccelTableItem;
 unsigned int maxTableLen;

 if ((status = B_BuildTableGetBufSize(buildTable, &maxTableLen)) != 0)
 break;

 pubKeyAccelTableItem.data = T_malloc(maxTableLen);

 if ((status = (pubKeyAccelTableItem.data == NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 7 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 5b: Build the public-key acceleration table
It can take a while to generate the table, so use a surrender function. See “The
Surrender Context” on page 118 for more information:

Step 6: Destroy
Zeroize and free all sensitive information when it is no longer needed:

Performing EC Diffie-Hellman Key Agreement
Performing elliptic curve key agreement is similar to the ordinary Diffie-Hellman key
agreement scheme, which allows two parties to obtain the same symmetric key. First,
the two parties seeking to generate a secret key need to agree on the elliptic curve
parameters. The parameters can be generated by a central authority or by the parties
themselves.

The example in this section corresponds to the file ecdh.c.

In this example, the two parties who wish to derive the same secret key are Alice and
Bob. Both parties need to be provided with the same parameters:

 ITEM pubKeyAccelTableItem;

 generalSurrenderContext.Surrender = GeneralSurrenderFunction;
 generalSurrenderContext.handle = (POINTER)&generalFlag;
 generalSurrenderContext.reserved = NULL_PTR;
 generalFlag = 0;

 if ((status = B_BuildTableFinal
 (buildTable, pubKeyAccelTableItem.data,
 &(pubKeyAccelTableItem.len), maxTableLen,
 &generalSurrenderContext)) != 0)
 break;

 T_memset(pubKeyAccelTableItem.data, 0, pubKeyAccelTableItem.len);
 T_free(pubKeyAccelTableItem.data);
 B_DestroyAlgorithmObject(&buildTable);

 B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;
2 8 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
To initialize ecParamsObj with a set of parameters describing an elliptic curve, follow
the steps in the section “Generating Elliptic Curve Parameters” on page 260. Assume
that these steps have been successfully completed and ecParamsObj contains the
common parameters for Alice and Bob. Put the elliptic curve parameters in the
A_EC_PARAMS structure, ecParams. For an implementation of an application-specific
procedure, AllocAndCopyECParamInfo, which retrieves and stores the parameters, see
“Retrieving Elliptic Curve Parameters” on page 264:

You will walk through the steps that Alice goes through, keeping in mind that Bob,
perhaps in another application, is performing the same steps.

Note: If this key agreement operation is performed several times with the same
parameters, you may wish to use the acceleration table. See “Generating
Acceleration Tables” on page 273 for more information.

Step 1: Create
Create the algorithm object which you will use to perform the key agreement:

Step 2: Set
Set the algorithm object with the information necessary to perform the operation.
AI_EC_DHKeyAgree, when used as the second argument to B_SetAlgorithmInfo, takes
as the third argument a pointer to a B_EC_PARAMS structure:

 A_EC_PARAMS ecParams;
 A_EC_PARAMS *cryptocECParams;

 if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParams, alice,
 AI_ECParameters)) != 0)
 break;

 if ((status = AllocAndCopyECParamInfo(&ecParams, cryptocECParams)) != 0)
 break;

 B_ALGORITHM_OBJ alice = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject(&alice)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 8 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Because you have the EC parameters in the A_EC_PARAMS structure ecParams, the
appropriate AI that describes the data is AI_ECParameters:

Step 2b (optional): Set Acceleration Table Info
If you are using an acceleration table, you need to set the algorithm object with the
appropriate acceleration table. Once you have gone through the steps in “Generating
Acceleration Tables” on page 273 and have an ITEM structure containing the
acceleration table, you can pass a pointer to the ITEM structure as the third argument
to B_SetAlgorithmInfo:

Step 3: Initialize
Initialize the algorithm object to perform the key agreement protocol. The Reference
Manual Chapter 2 entry for AI_EC_DHKeyAgree states which algorithm methods to
include in your chooser:

typedef struct {
 B_INFO_TYPE parameterInfoType;
 POINTER parameterInfoValue;
} B_EC_PARAMS;

 B_EC_PARAMS commonECParams;
 commonECParams.parameterInfoType = AI_ECParameters;
 commonECParams.parameterInfoValue = (POINTER)&ecParams;

 if ((status = B_SetAlgorithmInfo(alice, AI_EC_DHKeyAgree,
 (POINTER)&commonECParams)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo (alice, AI_ECAcceleratorTable,
 (POINTER)&aTableItem)) != 0)
 break;

 B_ALGORITHM_METHOD *EC_DH_CHOOSER[] = {
 &AM_ECFP_DH_KEY_AGREE,
 &AM_ECF2POLY_DH_KEY_AGREE,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };
2 8 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
You must allocate space to hold the results of Phase 1 and Phase 2. The largest size of
Phase 1 output you can get is one byte larger than twice the field element size. For
Phase 2, the size of the output should be the same as the field element size. (See the
Reference Manual Chapter 2 entry for AI_EC_DHKeyAgree for details.)

You can get the field element size using Alice’s elliptic curve parameters. Since you
have the parameters in the A_EC_PARAMS structure ecParams, look at the
fieldElementBits field, which gives you the required information. A simple
manipulation gives you the field element length in bytes:

Step 4: Phase 1
During this phase, each party computes a private value and a public value. The
private value is secret and currently cannot be accessed though the Crypto-C API. The
public value should be transported to the other party. Note that you will have to
supply a properly initialized random algorithm as the fifth argument to
B_KeyAgreePhase1:

 if ((status = B_KeyAgreeInit(alice, (B_KEY_OBJ)NULL_PTR, EC_DH_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned int fieldElementLen, maxPhase1Len, maxPhase2Len;

 fieldElementLen = (ecParams->fieldElementBits + 7) / 8;
 maxPhase1Len = (fieldElementLen * 2);
 maxPhase2Len = fieldElementLen;

 unsigned char *alicePublicValue = NULL_PTR;
 unsigned int alicePublicValueLen;
 alicePublicValue = T_malloc(maxPhase1Len);

 if ((status = (alicePublicValue == NULL_PTR)) != 0)
 break;

 if ((status = B_KeyAgreePhase1(alice, alicePublicValue,
 &alicePublicValueLen, maxPhase1Len,
 randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 8 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 5: Phase 2
By the time you have reached this step, Alice and Bob have exchanged public values.
Assume that the pointer bobPublicValue points to Bob’s public value and
bobPublicValueLen gives the length of Bob's public value:

Using Bob’s public value, Alice can compute the secret key that she and Bob will use
to communicate with each other:

Step 6: Destroy
Always destroy key objects and algorithm objects once they are no longer needed:

Performing ECDSA in Compliance with ANSI X9.62
The Elliptic Curve Digital Signature Agreement (ECDSA) is an elliptic curve analogue
of DSA. This section shows how to perform ECDSA in compliance with the ANSI
X9.62 Standard, which specifies an implementation of ECDSA.

 unsigned char *bobPublicValue;
 unsigned int bobPublicValueLen;

 unsigned char *aliceSecretValue = NULL_PTR;
 unsigned int aliceSecretValueLen;
 aliceSecretValue = T_malloc(maxPhase2Len);

 if ((status = (aliceSecretValue == NULL_PTR)) != 0)
 break;

 if ((status = B_KeyAgreePhase2(alice, aliceSecretValue,
 &aliceSecretValueLen, maxPhase2Len,
 bobPublicValue, bobPublicValueLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 T_free (alicePublicValue);
 T_free (aliceSecretValue);
 B_DestroyAlgorithmObject(&randomAlgorithm);
 B_DestroyAlgorithmObject(&alice);
2 8 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
To sign an arbitrarily long message with the elliptic curve version of DSA, you can
use AI_EC_DSAWithDigest. First, you need to generate parameters for an elliptic curve
and a key pair from that curve. Then, you will specify a digest algorithm for use with
ECDSA in signing the message. Currently, the only digest algorithm supported for
this operation is SHA1.

The example in this section corresponds to the file ecdsadig.c.

Generating EC Parameters
See the section “Generating Elliptic Curve Parameters” on page 260 for the steps you
must complete to generate a new curve. You will need a properly initialized pseudo-
random number generator. Assume that the function InitializeRandomAlgorithm goes
through Steps 1-4 in “Generating Random Numbers” on page 165. Also, assume that
the function InitializeECParamsObj goes through the steps in “Generating Elliptic
Curve Parameters” on page 260 to generate new parameters and place them in
ecParamsObj:

Now you have a properly initialized random algorithm object, randomAlgorithm, and
an algorithm object, ecParamsObj, containing the parameters that describe the elliptic
curve that you are going to use.

Generating an EC Key Pair
You also need to generate a public and private key. See “Generating an Elliptic Curve
Key Pair” on page 268 for the required steps. To complete those steps, you will need a
properly initialized random algorithm, the parameters describing an elliptic curve,
and optionally the acceleration table corresponding to that curve:

 B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = InitializeRandomAlgorithm (&randomAlgorithm)) != 0)
 break;

 if ((status = InitializeECParamsObj (&ecParamsObj,
 &randomAlgorithm)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 8 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Assume that the steps in “Generating an Elliptic Curve Key Pair” on page 268 have
been completed and that publicKey and privateKey are ready to be used.

Computing a Digital Signature

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set
The appropriate AI to use is AI_EC_DSAWithDigest. According to the entry in the
Reference Manual, you have to provide a pointer to a B_DIGEST_SPECIFIER structure to
B_SetAlgorithmInfo:

Currently, the only digest algorithm supported is SHA1. This does not require any
parameters, so specify NULL_PTR for digestInfoParams:

 B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
 B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

 if ((status = GenerateECKeys (&publicKey, &privateKey,
 &ecParamsObj, &randomAlgorithm) != 0)

 B_ALGORITHM_OBJ ecDSASign = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecDSASign)) != 0)
 break;

typedef struct {
 B_INFO_TYPE digestInfoType;
 POINTER digestInfoParams;
} B_DIGEST_SPECIFIER;
2 8 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 2b (optional): Set Acceleration Table Info

Go through the steps in the section “Generating Acceleration Tables” on page 273 to
create an acceleration table, placing the table information in aTableItem:

Step 3: Init
Build an algorithm chooser with the appropriate AMs:

Now you can associate your private key and your algorithm chooser with the
algorithm object:

 B_DIGEST_SPECIFIER digestInfo;
 digestInfo.digestInfoType = AI_SHA1;
 digestInfo.digestInfoParams = NULL_PTR;

 if ((status = B_SetAlgorithmInfo (ecDSASign, AI_EC_DSAWithDigest,
 (POINTER)&digestInfo)) != 0)
 break;

 ITEM aTableItem;

 if ((status = B_SetAlgorithmInfo (ecDSASign, AI_ECAcceleratorTable,
 (POINTER)&aTableItem)) != 0)
 break;

 B_ALGORITHM_METHOD *EC_DSA_CHOOSER[] = {
 &AM_SHA,
 &AM_ECFP_DSA_SIGN,
 &AM_ECF2POLY_DSA_SIGN,
 &AM_ECFP_DSA_VERIFY,
 &AM_ECF2POLY_DSA_VERIFY,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 8 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 4: Update
Now, using B_SignUpdate, pass in the data to be signed:

Step 5: Final
First you must allocate space to store the signature. The output of the ECDSA
signature is the BER encoding of a sequence of two integers, (r,s). At most, the size of
the output will be six bytes more than twice the length of the order. Retrieve the field
element length from ecParamsObj and do a simple manipulation to find the field
element length in bytes.

Now, finalize the process and retrieve the signature. Note that the Reference Manual
entry for AI_EC_DSAWithDigest indicates that you will have to pass in a properly

 if ((status = B_SignInit (ecDSASign, privateKey, EC_DSA_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned char *dataToSign = "Some arbitrarily long piece of data to
sign...";
 unsigned int dataToSignLen = strlen(dataToSign) + 1;
 if ((status = B_SignUpdate (ecDSASign, dataToSign, dataToSignLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 A_EC_PARAMS *ecParamInfo;
 unsigned int order, maxSignatureLen;
 unsigned char *signature;

 if ((status = B_GetAlgorithmInfo ((POINTER *)&ecParamInfo, ecParamsObj,
 AI_ECParameters)) != 0)
 break;

 order = (ecParamInfo->order.len + 7) / 8;
 maxSignatureLen = (2 * order) + 6;
 signature = T_malloc(maxSignatureLen);
 if ((status = (signature == NULL_PTR)) != 0)
 break;
2 8 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
initialized random algorithm in B_SignFinal:

Step 6: Destroy
Destroy all objects that are no longer needed:

Verifying a Digital Signature
To verify the signature, you must go through a similar procedure. At the end, if the
signature is valid, B_VerifyFinal returns 0. If it is not valid, B_VerifyFinal will
return an error.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set
Use the same AI and digestInfo as you did for signing:

 unsigned int signatureLen;

 if ((status = B_SignFinal (ecDSASign, signature, &signatureLen,
 maxSignatureLen, randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 B_DestroyAlgorithmObject(&ecDSASign);
 B_DestroyKeyObject(&privateKey);

 B_ALGORITHM_OBJ ecDSAVerify = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecDSAVerify)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_EC_DSAWithDigest,
 (POINTER)&digestInfo)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 8 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 2b (Optional): Set Public Key Acceleration Table Info
You can use either the public key acceleration table or the generic acceleration table to
accelerate ECDSA verification. Verification using the public key acceleration table is
faster than verification using only the generic acceleration table.

Go through the steps in the section “Generating Acceleration Tables” to create a
generic acceleration table, placing the table information in aTableItem:

Step 3: Init
Associate a key with the algorithm object and provide a chooser that contains the
necessary algorithm methods:

Step 4: Update
Pass in the original message. It will be internally digested to make a new signature
that can be compared with the signature received by B_VerifyFinal:

Step 5: Final
Pass in the signature that was received with the message. B_VerifyFinal returns 0 if
the signature verifies, or an error if it is an invalid signature:

 ITEM pubKeyAccelTableItem;

 if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_ECAcceleratorTable,
 (POINTER)&pubKeyAccelTableItem)) != 0)
 break;

 if ((status = B_VerifyInit (ecDSAVerify, publicKey, EC_DSA_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_VerifyUpdate (ecDSAVerify, dataToSign, dataToSignLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 9 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 6: Destroy
Destroy all objects that are no longer needed:

Performing ECDSA with X9.62-Compliant BER
Like the previous section, this section shows how to use Crypto-C to perform ECDSA
in compliance with the ANSI X9.62 Standard. In the previous example, the parameters
were already initialized; in this example, X9.62 compliant BER encodings are used to
initialize the parameters.

The example in this section corresponds to the file x962.c. on the CD-ROM.

Generating EC Parameters
In the section “Generating Elliptic Curve Parameters” on page 260, we illustrated how
to generate elliptic curve parameters by using AI_ECParamGen. In this example, we
will use the BER encoding of an ANSI X9.62 algorithm identifier, which specifies an
elliptic curve, to set our algorithm object, ecParamsObj. These parameters will
subsequently be used to generate a key pair.

Step 1: Creating an Algorithm Object
You need to create an algorithm object, ecParamsObj, to hold the generated parameter
information.

 if ((status = B_VerifyFinal (ecDSAVerify, signature, signatureLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 T_free(signature);
 B_DestroyAlgorithmObject(&ecParamsObj);
 B_DestroyAlgorithmObject(&ecDSAVerify);
 B_DestroyKeyObject(&publicKey);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 9 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 2: Setting the Algorithm Object
You need to set the algorithm object that will then be used to generate the key pair.

To supply the necessary information, pass a pointer to an ITEM structure that contains
the ANSI X9.62-compliant BER encoding of an elliptic curve’s parameters. In
compliance with X9.62, you can specify the CHOICE of either a full EC CURVE
definition or a NAMED CURVE definition. Both ANSI X9.62 uncompressed and
hybrid base points are decoded.

B_ALGORITHM_OBJ *ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;
if((status = B_CreateAlgorithmObject (ecParamsObj)) != 0)
 break;

 ITEM stockECParamsBER;

 unsigned char ECParamsBER[154] = {
 0x30, 0x81, 0x97, 0x02, 0x01, 0x01, 0x30, 0x20,
 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01,
 0x01, 0x02, 0x15, 0x00, 0xda, 0xe2, 0x12, 0xcc,
 0xec, 0x6d, 0xfa, 0x73, 0x17, 0x44, 0x1c, 0xee,
 0x28, 0xf0, 0x42, 0xa3, 0xde, 0xd0, 0x4d, 0x7f,
 0x30, 0x2c, 0x04, 0x14, 0xda, 0xe2, 0x12, 0xcc,
 0xec, 0x6d, 0xfa, 0x73, 0x17, 0x44, 0x1c, 0xee,
 0x28, 0xf0, 0x42, 0xa3, 0xde, 0xd0, 0x4d, 0x7c,
 0x04, 0x14, 0xbf, 0x63, 0x40, 0xb3, 0xf8, 0xef,
 0x6a, 0xbc, 0xd1, 0x9b, 0x56, 0x37, 0x69, 0x85,
 0x5b, 0xa0, 0xa2, 0xae, 0x84, 0x92, 0x04, 0x29,
 0x04, 0x77, 0x79, 0xdc, 0x0b, 0xf7, 0xfa, 0x7e,
 0x52, 0xd1, 0x4c, 0x14, 0x3a, 0x60, 0x7a, 0x46,
 0xe3, 0x6c, 0x7b, 0x7a, 0x7e, 0xd1, 0xa0, 0xc5,
 0x30, 0xa6, 0x2b, 0xf5, 0x4f, 0xa8, 0xe7, 0x6f,
 0x58, 0x64, 0xcc, 0x5a, 0xf3, 0xab, 0x06, 0x76,
 0x6a, 0x02, 0x14, 0x06, 0x14, 0x80, 0x85, 0xb1,
 0x3b, 0xf1, 0x9f, 0xa4, 0x33, 0xa9, 0x32, 0x42,
 0x85, 0x00, 0xff, 0x30, 0x43, 0x2e, 0x75, 0x02,
 0x01, 0x24
 };
2 9 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Generating an EC Key Pair
See “Generating an Elliptic Curve Key Pair” on page 268 for the required steps. To
complete those steps, you will need a properly initialized random algorithm, the
parameters describing an elliptic curve (see the x962.c sample to use BER-encoded
EC parameters), and optionally the acceleration table corresponding to that curve.
Assume that the steps in “Generating an Elliptic Curve Key Pair” on page 268 have
been completed and that publicKey and privateKey are ready to be used.

Computing a Digital Signature

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set
You can set the algorithm to AI_EC_DSA or to AI_EC_DSAWithDigest. We are
demonstrating raw DSA signature generation and verification; thus, we will use
AI_EC_DSA. According to the entry in the Reference Manual, you must supply a
NULL_PTR to B_SetAlgorithmInfo.

 stockECParamsBER.data = ECParamsBER;
 stockECParamsBER.len = 154;

 if ((status = B_SetAlgorithmInfo (*ecParamsObj, AI_ECParametersBER,
 (POINTER)&stockECParamsBER)) != 0)
 break;

 B_ALGORITHM_OBJ ecDSASign = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecDSASign)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 9 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 3: Init
Build an algorithm chooser with the appropriate AMs:

Now associate your private key and your algorithm chooser with the algorithm
object:

Step 4: Update
Now, using B_SignUpdate, pass the data to be signed. Note, the data to be signed
must be between 16 and 32 bytes inclusive.

 if ((status = B_SetAlgorithmInfo (ecDSASign, AI_EC_DSA,
 (POINTER)NULL_PTR)) != 0)
 break;

B_ALGORITHM_METHOD *EC_DSA_CHOOSER[] = {
 &AM_ECFP_DSA_SIGN,
 &AM_ECF2POLY_SA_SIGN,
 &AM_ECFP_DSA_VERIFY,
 &AM_ECF2POLY_DSA_VERFIY,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_SignInit (ecDSASign, privateKey, EC_DSA_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned char dataToSign[] = {
 0x53, 0x69, 0x67, 0x6E, 0x20, 0x74, 0x68, 0x69,
 0x73, 0x20, 0x33, 0x32, 0x20, 0x62, 0x79, 0x74,
 0x65, 0x20, 0x74, 0x65, 0x73, 0x74, 0x20, 0x6D,
 0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x3F, 0x21
 };
 unsigned int dataToSignLen = sizeof(dataToSign);

 if ((status = B_SignUpdate (ecDSASign, dataToSign, dataToSignLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 9 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 5: Final
First you must allocate space to store the signature. The output of the ECDSA
signature is the BER encoding of a sequence of two integers, (r,s). At most, the size of
the output will be six bytes more than twice the length of the order. Retrieve the field
element length from ecParamsObj and do a simple manipulation to find the field
element length in bytes.

Now, finalize the process and retrieve the signature. Note that the Reference Manual
entry for AI_EC_DSA requires that you pass in a properly initialized random algorithm
in B_SignFinal:

Step 6: Destroy
Destroy all objects that are no longer needed:

 A_EC_PARAMS *ecParamsInfo;
 unsigned int order, maxSignatureLen;
 unsigned char *signature;

 if((status = B_GetAlgorithmInfo((POINTER *)&ecParamsInfo, ecParamsObj,
 AI_ECParameters)) != 0)
 break;

 orderLen = ecParamInfo->order.len;
 maxSignatureLen = 2 * orderLen;
 signature = T_malloc(maxSignatureLen);
 if ((status = (signature == NULL_PTR)) != 0)
 break;

 unsigned int signatureLen;

 if ((status = B_SignFinal (ecDSASign, signature, &signatureLen,
 maxSignatureLen, randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyAlgorithmObject (&ecParamsObj);
B_DestroyAlgorihmObject (&ecParamsSign);
B_DestroyKeyObject (&publicKey);
B_DestroyKeyObject (&privateKey);
T_free (signature);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 9 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Verifying a Digital Signature
To verify the signature, you must go through a similar procedure. At the end, if the
signature is valid, B_VerifyFinal returns 0. If it is not valid, B_VerifyFinal will
return an error.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set
Use the same AI as you did for signing:

Step 3: Init
Associate a key with the algorithm object and provide a chooser that contains the
necessary algorithm methods. (See “Computing a Digital Signature” on page 293.)

Step 4: Update
Pass the original message. It will be internally digested to make a new signature that
can be compared with the signature received by B_VerifyFinal.

 B_ALGORITHM_OBJ ecDSAVerify = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecDSAVerify)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_EC_DSA,
 (POINTER)NULL_PTR)) != 0)
 break;

 if ((status = B_VerifyInit (ecDSAVerify, publicKey, EC_DSA_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 9 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 5: Final
Pass in the signature that was received with the message. B_VerifyFinal returns 0 if
the signature verifies, or an error if it is an invalid signature:

Step 6: Destroy
Destroy all objects that are no longer needed:

Using ECAES
You can use the Elliptic Curve Authenticated Encryption System (ECAES) to perform
public-key encryption. The example in this section corresponds to the file eces.c.

You will encrypt the following:

 if ((status = B_VerifyUpdate (ecDSAVerify, dataToSign, dataToSignLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_VerifyFinal (ecDSAVerify, signature, signatureLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

T_free(signature);
B_DestoryAlgorithmObject (&ecDSAVerify);

 unsigned char *dataToEncrypt = “Encrypt this arbitrarily long sentence
using ECAES!”;

 unsigned int dataToEncryptLen = sizeof(dataToEncrypt) + 1;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 9 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Using Elliptic Curve Parameters
See the section “Generating Elliptic Curve Parameters” on page 260 for the steps you
must complete to generate a new curve. You need a properly initialized pseudo-
random number generator. Assume that the function InitializeRandomAlgorithm goes
through Steps 1 through 4 in the section “Generating Random Numbers” on page 165.
Also assume that the function InitializeECParamsObj generates new parameters and
places them in ecParamsObj, following the steps in “Using Elliptic Curve Parameters”
on page 298:

You now have a properly initialized random algorithm object, randomAlgorithm, and
an algorithm object, ecParamsObj, containing the parameters that describe the elliptic
curve that you will use.

Using an EC Key Pair
Before you can encrypt, you need to generate a public/private key pair. As described
in “Using an EC Key Pair” on page 298, key generation requires a properly initialized
random algorithm and the parameters describing an elliptic curve, both of which you
have created in the previous step:

Assume that the steps in “Using an EC Key Pair” have been completed and that
publicKey and privateKey are ready to be used.

ECAES Public-Key Encryption
Once you have gone through the preliminary steps of generating your elliptic curve
parameters and creating your public/private key pair, you are ready to encrypt your
message.

 B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = InitializeRandomAlgorithm (&randomAlgorithm)) != 0)
 break;
 if ((status = InitializeECParamsObj (&ecParamsObj,
 &randomAlgorithm)) != 0)
 break;

 B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
 B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
2 9 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 1: Create
First, create the algorithm object that will hold the information necessary to perform
the encryption operation:

Step 2: Set
Associate the elliptic curve encryption AI, AI_EC_ES, with the algorithm object.
According to the Reference Manual Chapter 2 entry for AI_EC_ES, you should pass
NULL_PTR as the third argument to B_SetAlgorithmInfo:

Step 2b (optional) Acceleration Table
You can use an acceleration table containing precomputed values to speed up
encryption. Because users frequently perform encryption, it is worthwhile to use the
acceleration table whenever the required memory is available.

To use the acceleration table, assume you have gone through the steps in “Generating
a Generic Acceleration Table” on page 273 and placed the information in
accelerationTableItem:

Now, pass this information into your algorithm object:

 B_ALGORITHM_OBJ ecESEncrypt = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecESEncrypt)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo
 (ecESEncrypt, AI_EC_ES, NULL_PTR)) != 0)
 break;

 ITEM accelerationTableItem;

 if ((status = B_SetAlgorithmInfo
 (ecESEncrypt, AI_ECAcceleratorTable,
 (POINTER)&accelerationTableItem)) != 0)
 break;
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 2 9 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
Step 3: Init
You must initialize the algorithm object to perform encryption. You also need to
provide the key that will be used for encryption. The algorithm chooser should
contain the encryption algorithm methods listed in the Reference Manual for AI_EC_ES:

Step 4: Update
To update, first find the field element length in bytes. Remember that, earlier in
“Using Elliptic Curve Parameters” on page 298, you placed the elliptic curve
parameters in your algorithm object, ecParamsObj. You can use this object to retrieve
the field element length:

Next, you must allocate space to hold the encrypted data. According to the Reference
Manual Chapter 2 entry for AI_EC_ES, the length of the encrypted data will be as much
as (21 + 2 · (the size of a field element in bytes) + (length of input in bytes)) bytes.

 B_ALGORITHM_METHOD *EC_CHOOSER[] = {
 &AM_ECFP_ENCRYPT,
 &AM_ECF2POLY_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_EncryptInit (ecESEncrypt, publicKey, EC_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 A_EC_PARAMS *ecParamInfo;
 unsigned int fieldElementLen;

 if ((status = B_GetAlgorithmInfo ((POINTER *)&ecParamInfo, ecParamsObj,
 AI_ECParameters)) != 0)
 break;

 fieldElementLen = (ecParamInfo->fieldElementBits + 7) / 8;
3 0 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations

Step 5: Final

Step 6: Destroy
Destroy all objects that are no longer needed. Also, be sure to zeroize and free any
allocated memory when it is no longer needed.

 unsigned int maxEncryptedDataLen;
 unsigned int outputLenUpdate;

 maxEncryptedDataLen = 21 + (2 * fieldElementLen) + dataToEncryptLen;
 encryptedData = T_malloc(maxEncryptedDataLen);
 if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

 if ((status = B_EncryptUpdate
 (ecESEncrypt, encryptedData, &outputLenUpdate,
 maxEncryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned int outputLenFinal, outputLenTotal;

 if ((status = B_EncryptFinal
 (ecESEncrypt, encryptedData + outputLenUpdate,
 &outputLenFinal, maxEncryptedDataLen - outputLenUpdate,
 randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 outputLenTotal = outputLenUpdate + outputLenFinal;

 B_DestroyAlgorithmObject (&ecESEncrypt);
 B_DestroyKeyObject (&publicKey);
 T_free (encryptedData);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 3 0 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations
ECAES Private-Key Decryption
The steps for decryption are similar to those for encryption.

Step 1: Create
Create an algorithm object:

Step 2: Set
Associate the algorithm object with AI_EC_ES and pass NULL_PTR as the third
argument:

Step 3: Init
At this point, commit your algorithm object to perform decryption with a particular
private key. Be sure that EC_CHOOSER contains the appropriate algorithm methods:

Step 4: Update
Since you know that the length of the plaintext can’t be larger than the length of the
ciphertext, you’ll use this approximation to allocate space for the decrypted data:

 B_ALGORITHM_OBJ ecESDecrypt = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecESDecrypt)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo
 (ecESDecrypt, AI_EC_ES, NULL_PTR)) != 0)
 break;

 B_ALGORITHM_METHOD *EC_CHOOSER[] = {
 &AM_ECFP_DECRYPT,
 &AM_ECF2POLY_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_DecryptInit (ecESDecrypt, privateKey, EC_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
3 0 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Performing Elliptic Curve Operations

Step 5: Final

Step 6: Destroy
Destroy any objects that are no longer needed. Also, be sure to zeroize and free any
allocated memory when it is no longer needed.

 unsigned char *decryptedData;
 unsigned int maxDecryptedDataLen;
 unsigned int outputLenUpdate;

 maxDecryptedDataLen = outputLenTotal; /* Use the outputLenTotal from */
 /* Step 5 of ECAES encryption */
 decryptedData = T_malloc(maxDecryptedDataLen);
 if ((status = (decryptedData == NULL_PTR)) != 0)
 break;

 if ((status = B_DecryptUpdate
 (ecESDecrypt, decryptedData, &outputLenUpdate,
 maxDecryptedDataLen, encryptedData, outputLenTotal,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned int outputLenFinal, outputLenTotal;

 if ((status = B_DecryptFinal
 (ecESDecrypt, decryptedData + outputLenUpdate,
 &outputLenFinal, maxDecryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 outputLenTotal = outputLenUpdate + outputLenFinal;

 B_DestroyAlgorithmObject (&ecESDecrypt);
 B_DestroyKeyObject (&privateKey);
 T_free (decryptedData);
C h a p t e r 7 P u b l i c - K e y O p e r a t i o n s 3 0 3

Download from Www.Somanuals.com. All Manuals Search And Download.

3 0 4

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 8

Secret Sharing Operations
Secret Sharing
Secret sharing allows a system to require a certain number of “shares” to retrieve a
secret. The process encrypts information and then creates a number of shares of the
encrypted information. The information can be recovered by collecting a declared
number (called the threshold) of shares. Note that the threshold must be less than or
equal to the total number of shares.

Typically, the secret is a key used for encrypting sensitive data. For example, you
might protect an RC2 key with a secret-sharing algorithm, creating four shares, and
set the threshold to two. Then any two of the four shares can reconstruct the RC2 key.

Generating Shares
Crypto-C offers the Bloom-Shamir secret sharing method. For this implementation,
the minimum total number of shares is two and the maximum is 255; the threshold
must be less than or equal to the total number of shares. The 255 limit is not part of the
Bloom-Shamir algorithm, but a constraint of the Crypto-C implementation. See Step 4
for details.

The following example will encrypt 16 bytes (for example, an RC2 key), splitting the
secret into four shares, and set the threshold to two.
3 0 5

Download from Www.Somanuals.com. All Manuals Search And Download.

Secret Sharing
The example in this section corresponds to the file scrtshar.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one AI that implements the Bloom-Shamir secret sharing algorithm:
AI_BSSecretSharing. The Reference Manual Chapter 2 entry on this AI reports that the
format of info supplied to B_SetAlgorithmInfo is the following struct:

Because you want to set the threshold to two, set your algorithm object as follows:

Step 3: Init
Initialize the algorithm with B_EncryptInit. No key is necessary, so pass a properly
cast NULL_PTR for the key object. This algorithm object does not need an algorithm
chooser, so pass a properly cast NULL_PTR for that argument as well. This function is
very quick, so it is reasonable to pass a NULL_PTR for the surrender context:

B_ALGORITHM_OBJ secretSplitter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&secretSplitter)) != 0)
 break;

typedef struct {
 unsigned int threshold; /* share threshold */
} B_SECRET_SHARING_PARAMS;

B_SECRET_SHARING_PARAMS secretSharingParams;

secretSharingParams.threshold = 2;

if ((status = B_SetAlgorithmInfo
 (secretSplitter, AI_BSSecretSharing,
 (POINTER)&secretSharingParams)) != 0)
 break;
3 0 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Secret Sharing
Step 4: Update
Call B_EncryptUpdate once for each of the total number of shares. Each call to
B_EncryptUpdate produces a share. For each share, you must allocate a space that is
one byte larger than the secret. A share is actually the same size as the secret, but
Crypto-C also appends one byte containing the number of the share. (This is why
Crypto-C limits the shares to 255; it is the largest integer one byte can represent.)
Make sure you do not overwrite a previous share.

The input for each call to B_EncryptUpdate is the secret itself. You also need a random
algorithm for the first call to B_EncryptUpdate. You can pass a random algorithm each
time, however; Crypto-C simply ignores it on each successive call. Complete Steps 1
through 4 of “Generating Random Numbers” on page 165. You do not need random
bytes, only an algorithm that can generate them. This function is not too time-
consuming, so it is reasonable to pass a properly cast NULL_PTR for the surrender
context.

To create four shares, you could use the following:

if ((status = B_EncryptInit
 (secretSplitter, (B_KEY_OBJ)NULL_PTR,
 (B_ALGORITHM_CHOOSER)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define SECRET_SIZE 16
#define TOTAL_SHARES 4

static unsigned char secretKey[SECRET_SIZE] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10
};
unsigned char *secretShare[TOTAL_SHARES];
unsigned int secretShareLen[TOTAL_SHARES];
int count;

for (count = 0; count < TOTAL_SHARES; ++count)
 secretShare[count] = NULL_PTR;
C h a p t e r 8 S e c r e t S h a r i n g O p e r a t i o n s 3 0 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Secret Sharing
Step 5: Final
Finalize the process with B_EncryptFinal. This function does not need a random
algorithm, so pass a NULL_PTR. It is a quick call, so it is reasonable to pass a NULL_PTR
for the surrender context:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory when you are
done. Save the shares to files or disks before freeing the memory:

for (count = 0; count < TOTAL_SHARES; ++count) {
 secretShare[count] = T_malloc (SECRET_SIZE + 1);
 if ((status = (secretShare[count] == NULL_PTR)) != 0)
 break;

 if ((status = B_EncryptUpdate
 (secretSplitter, secretShare[count],
 &(secretShareLen[count]), SECRET_SIZE + 1,
 secretKey, SECRET_SIZE, randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
}
if (status != 0)
 break;

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
 (secretSplitter, NULL_PTR, &outputLenFinal, 0,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)

B_DestroyAlgorithmObject (&secretSplitter);
B_DestroyAlgorithmObject (&randomAlgorithm);
for (count = 0; count < TOTAL_SHARES; ++count)
 T_free (secretShare[count]);
3 0 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Secret Sharing
Reconstructing the Secret
To reconstruct the secret, call B_DecryptUpdate for each share you are entering. You
need at least threshold number of shares; if you enter fewer, B_DecryptFinal will
return an error. Any combination of threshold shares will work.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Use the same AI, AI_BSSecretSharing:

Step 3: Init
Initialize the algorithm with B_DecryptInit. Once again no key or algorithm chooser
is necessary. This function is very quick, so it is reasonable to pass a NULL_PTR for the
surrender context:

B_ALGORITHM_OBJ secretReconstructer = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject
 (&secretReconstructer)) != 0)
 break;

B_SECRET_SHARING_PARAMS secretSharingParams;

secretSharingParams.threshold = 2;

if ((status = B_SetAlgorithmInfo
 (secretReconstructer, AI_BSSecretSharing,
 (POINTER)&secretSharingParams)) != 0)
 break;
C h a p t e r 8 S e c r e t S h a r i n g O p e r a t i o n s 3 0 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Secret Sharing
Step 4: Update
Call B_DecryptUpdate once for each of the shares you are using to reconstruct the
secret. You can use any number of shares from the threshold number to the total
number of shares.

Each call to B_DecryptUpdate produces no output, so pass NULL_PTRs. The input is a
share. This call does not need a random algorithm, so pass a NULL_PTR. It is also quick,
so it is reasonable to pass a properly cast NULL_PTR for the surrender context:

Step 5: Final
Finalize the process with B_DecryptFinal. There will be output now. This function
does not need a random algorithm, so pass a NULL_PTR there. It is a quick call, so it is
reasonable to pass a NULL_PTR for the surrender context:

if ((status = B_DecryptInit
 (secretReconstructer, (B_KEY_OBJ)NULL_PTR,
 (B_ALGORITHM_CHOOSER)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

unsigned int outputLenUpdate;

for (count = 0; count < (int)secretSharingParams.threshold; ++count) {
 if ((status = B_DecryptUpdate
 (secretReconstructer, NULL_PTR, &outputLenUpdate,
 0, secretShare[count], secretShareLen[count],
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
}
if (status != 0)
 break;
3 1 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Secret Sharing
Step 6: Destroy
Remember to destroy all objects and free up any allocated memory when you are
done:

unsigned char getSecret[SECRET_SIZE]
unsigned int getSecretLen;

if ((status = B_DecryptFinal
 (secretReconstructer, getSecret, &getSecretLen, SECRET_SIZE,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)

B_DestroyAlgorithmObject (&secretReconstructer);
C h a p t e r 8 S e c r e t S h a r i n g O p e r a t i o n s 3 1 1

Download from Www.Somanuals.com. All Manuals Search And Download.

3 1 2

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 9

Putting It All Together:
An X9.31 Example
The example in this chapter shows how to perform RSA digital signing and verifying
according to the ANSI X9.31 standard. This example, available on the CD-ROM as
x931.c, includes the following separate operations:

• Generate random input using AI_X931Random. AI_X931Random is a special-purpose
AI that generates the six separate streams of randomness required by the X9.31
standard.

• Generate an RSA key pair using AI_RSAStrongKeyGen. AI_RSAStrongKeyGen
generates RSA moduli that are in conformance with the strength criteria of ANSI
X9.31.

• Sign a message using AI_SignVerify. AI_SignVerify is an AI for performing RSA
signing and verification in conformance with the ANSI X9.31 standard.

• Verify a message using AI_SignVerify.

If you wish to create an application in accordance with the ANSI X9.31 standard, you
should use the AIs shown in this example. Although there are other AIs that appear to
give the same functionality (for example, other AIs for RSA signing and verification),
only the AIs listed above give you ANSI X9.31 standards compliance for RSA digital
signatures and verification. Compliance with this standard may be required for
contracts with certain United States Federal Government departments.
3 1 3

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
The X9.31 Sample Program
#include <stdio.h>
#include <string.h>
#include <time.h>
#include "aglobal.h"
#include "bsafe.h"

B_ALGORITHM_METHOD *X931_SAMPLE_CHOOSER[] = {
 &AM_X931_RANDOM,
 &AM_SHA,
 &AM_FORMAT_X931,
 &AM_RSA_CRT_X931_ENCRYPT,
 &AM_EXTRACT_X931,
 &AM_RSA_X931_DECRYPT,
 &AM_RSA_STRONG_KEY_GEN,
 &AM_SHA_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

#define NUMBER_OF_RANDOM_BYTES 128
#define RSA_MODULUS_BITS 512

int GeneralSurrenderFunction PROTO_LIST ((POINTER handle));

void PrintBuf PROTO_LIST ((unsigned char *, unsigned int));

void main()
{
 B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ keypairGenerator = (B_ALGORITHM_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ digitalSigner = (B_ALGORITHM_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ digitalVerifier = (B_ALGORITHM_OBJ)NULL_PTR;
 B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
 B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

 ITEM randomSeed;
 unsigned char *randomByteBuffer = NULL_PTR;
 A_X931_RANDOM_PARAMS x931Params;

 A_RSA_KEY_GEN_PARAMS keygenParams;
 A_X931_PARAMS x931params;
 B_SIGN_VERIFY_PARAMS signVerifyParams;
3 1 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
Generating Random Bytes

The first thing the application must do is to generate the random bytes. The Crypto-C
implementation of the X9.31 random algorithm is somewhat different from the
implementation of other PRNGs in Crypto-C. The main difference appears in Step 2,
which sets the algorithm object. Unlike other PRNGs, AI_X931Random requires you to
pass in a structure describing the number of independent streams of randomness and
a seed which will be divided between the streams.

The structure, A_X931_RANDOM_PARAMS, is defined as follows:

Where numberOfStreams is the number of independent streams and seed is additional
seeding to be equally divided among the streams. For X9.31, the number of streams
must be six.

 static unsigned char f4Data[] = {0x01, 0x00, 0x01};

 A_SURRENDER_CTX generalSurrenderContext;
 int generalFlag;

 char *inputData = "Sign this sentence.";
 unsigned int inputDataLen;

 unsigned char signature[64];
 unsigned int signatureLen;

 unsigned int status;

 generalSurrenderContext.Surrender = GeneralSurrenderFunction;
 generalSurrenderContext.handle = (POINTER)&generalFlag;
 generalSurrenderContext.reserved = NULL_PTR;

 do {
 printf ("Digital Signature Generation and Verification in\n");
 printf ("compliance with the X9.31 Standard.\n");
 printf ("==\n");

typedef struct {
 unsigned int numberOfStreams;
 ITEM seed;
 } A_X931_RANDOM_PARAMS;
C h a p t e r 9 P u t t i n g I t A l l To g e t h e r : A n X 9 . 3 1 E x a m p l e 3 1 5

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
To create a random algorithm object and set the parameters:

 /* == */
 /* Generate random bytes using AI_X931Random. AI_X931Random
 is a SHA-1 based pseudo-random number generator that allows
 you to generate multiple streams of randomness. AI_X931Random
 satisfies the requirements of independent generation of large
 and private prime factors, as specified by the ANSI X.931
 standard. */

 printf ("Generating random bytes \n");
 printf ("======================= \n");

 /* Step 1: Create a random algorithm object */

 if ((status = B_CreateAlgorithmObject (&randomAlgorithm)) != 0)
 break;

 /* Step 2: Set the random algorithm object to use AI_X931Random.
 Before we can call B_SetAlgorithmInfo, we need to prepare the
 X9.31 parameters. The A_X931_RANDOM_PARAMS structure
 contains two parameters: the number of independent streams
 of randomness and an ITEM containing random seed data to be
 divided up among the streams.*/

 /* Set the number of streams in the A_X931_RANDOM_PARAMS
 structure. For this example, you will specify six streams
 of randomness. */

 x931Params.numberOfStreams = 6;

 /* In order to obtain a seed, we need to allocate space for it,
 and then request it from the user. Note that the following
 method of seed gathering is insecure. A real application would
 use a more secure method of seed gathering to ensure the
 security of the application. */

 randomSeed.data = T_malloc (384);
 if (randomSeed.data == NULL_PTR)
 break;
3 1 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
Providing the Seed

In this example, the seed is provided by keyboard input and stored in an ITEM
structure, randomSeed. The amount of seed data passed in the A_X931_RANDOM_PARAMS
structure must be greater than or equal to 20 * (number of streams) bytes and less than
or equal to 64 * (number of streams) bytes. With 6 streams, this means the seed size
must be between 120 bytes and 384 bytes.

If the amount of seed data is outside this range, Crypto-C will return a
BE_ALGORITHM_INFO error. If the amount of seed data is below 128 bytes, you will be
prompted to enter seed data again. In addition, Crypto-C does a limited check on the
seed value for the amount of entropy. For example, a constant seed (all zeros or all
ones) will return a BE_BAD_SEEDING error.

Note: Crypto-C may not return an error even if the seed entropy is poor, or if the
application provides insufficient random streams. The proper
implementation of sufficient entropy sources is the responsibility of the
application and not of Crypto-C.

A different method for acquiring random input for the seed would be to use a
hardware random number generator, where available. For information on one such
generator, the Intel Random Number Generator, see the Intel Security Hardware User’s
Guide, available on the Crypto-C CD-ROM.

 do {
 puts ("Enter a random seed (120 bytes minimum, 384 bytes maximum):");
 gets ((char *)randomSeed.data);

 randomSeed.len = strlen (randomSeed.data);
 } while (randomSeed.len < 20 * x931Params.numberOfStreams);

 x931Params.seed.data = randomSeed.data;
 x931Params.seed.len = randomSeed.len;

 /* Pass the parameters to the algorithm object in a call to
 B_SetAlgorithmInfo. */

 if ((status = B_SetAlgorithmInfo
 (randomAlgorithm, AI_X931Random, (POINTER)&x931Params)) != 0)
 break;
C h a p t e r 9 P u t t i n g I t A l l To g e t h e r : A n X 9 . 3 1 E x a m p l e 3 1 7

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
Generating a Key Pair

Once you have the random bytes, you can use them to generate an RSA key pair.
Generating a key pair for X9.31 RSA signatures is similar to the general procedure for
RSA key pair generation, except that in X9.31, a special AI, AI_StrongKeyGen, must be
used. Using AI_StrongKeyGen guarantees that the moduli generated are in
conformance with the strength criteria of the ANSI X9.31 standard.

For more information about key pair generation, see steps 1-5 for generating an RSA
key pair in the sample program rsapkcs.c. A description of general key pair
generation is given in “Generating a Key Pair” on page 214 of this manual.

 /* Step 3: Initialize the random algorithm. The only difference
 in this example is that X931_SAMPLE_CHOOSER includes
 AM_X931_RANDOM. */

 if ((status = B_RandomInit
 (randomAlgorithm, X931_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Step 4: Since the random seed has already been passed in via
 the x931Params structure, we do not have to call
 B_RandomUpdate(). */

 /* Step 5: Generate. First, prepare a buffer for receiving the
 random bytes before calling B_GenerateRandomBytes.
 */
 randomByteBuffer = T_malloc (NUMBER_OF_RANDOM_BYTES);
 if ((status = (randomByteBuffer == NULL_PTR)) != 0)
 break;

 T_memset (randomByteBuffer, 0, NUMBER_OF_RANDOM_BYTES);

 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, randomByteBuffer, NUMBER_OF_RANDOM_BYTES,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 printf ("%i bytes of random-generated values: \n",
 NUMBER_OF_RANDOM_BYTES);
 PrintBuf (randomByteBuffer, NUMBER_OF_RANDOM_BYTES);
3 1 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
 /* == */
 printf ("\n Generating a Keypair \n");
 printf (" ==================== \n");

 if ((status = B_CreateAlgorithmObject (&keypairGenerator)) != 0)
 break;

 keygenParams.modulusBits = RSA_MODULUS_BITS;
 keygenParams.publicExponent.data = f4Data;
 keygenParams.publicExponent.len = 3;

 /* For this example, AI_RSAStrongKeyGen is used, rather than
 AI_RSAKeyGen. AI_RSAStrongKeyGen allows you to
 specify the parameters for generating an RSA public/private
 key pair as defined in PKCS#1. The moduli generated
 are in conformance with the strength criteria of the ANSI
 X9.31 standard.*/

 if ((status = B_SetAlgorithmInfo (keypairGenerator, AI_RSAStrongKeyGen,
 (POINTER)&keygenParams)) != 0)
 break;

 if ((status = B_GenerateInit
 (keypairGenerator, X931_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_CreateKeyObject (&publicKey)) != 0)
 break;
 if ((status = B_CreateKeyObject (&privateKey)) != 0)
 break;

 /* generalFlag is for the surrender function */
 generalFlag = 0;
 if ((status = B_GenerateKeypair
 (keypairGenerator, publicKey, privateKey,
 randomAlgorithm, &generalSurrenderContext)) != 0)
 break;
C h a p t e r 9 P u t t i n g I t A l l To g e t h e r : A n X 9 . 3 1 E x a m p l e 3 1 9

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
Computing a Digital Signature

Now you can use the key pair to compute a digital signature. For X9.31, this is done
using AI_SignVerify. AI_SignVerify provides ANSI X9.31-compliant digital signing
and verification. The procedure to sign and verify using AI_SignVerify is similar to
the steps outlined in “RSA Digital Signatures” on page 233. However, AI_SignVerify
is a little different because it is more general purpose than the other signing and
verifying AIs. Therefore, you have to set a parameter that determines the exact
algorithm and action you wish to use.

Assume that RSA_MODULUS_BITS gives the modulus size of the RSA key pair. The
proper AI to use for following the ANSI X9.31 standard for digital signatures is
AI_SignVerify. You must pass a pointer to a B_SIGN_VERIFY_PARAMS structure to
B_SetAlgorithmInfo. The structure, B_SIGN_VERIFY_PARAMS, is defined as follows:

For this application, set the parameters as follows:

• The possible values for encryptionMethodName are "rsaSignX931" or
"rsaVerifyX931". For signing, use "rsaSignX931".

• For encryptionParams and digestParams, pass a NULL_PTR.

 /* == */
 printf ("\nComputing a Digital Signature \n");
 printf ("============================= \n");

 printf ("Input data: %s \n", inputData);
 inputDataLen = (unsigned int)strlen (inputData);
 printf ("Input data in hex: \n");
 PrintBuf ((unsigned char *)inputData, inputDataLen);

 /* Step 1: Create an algorithm object */
 if ((status = B_CreateAlgorithmObject (&digitalSigner)) != 0)
 break;

typedef struct {
 unsigned char *encryptionMethodName;
 POINTER encryptionParams;
 unsigned char *digestMethodName;
 POINTER digestParams;
 unsigned char *formatMethodName;
 POINTER formatParams;
} B_SIGN_VERIFY_PARAMS;
3 2 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
• For digestMethodName, use "sha1"; currently this is the only digest supported.
• For formatMethodName, use "formatX931"; currently this is the only format method

supported.
• formatParams requires a pointer to an A_X931_PARAMS structure, which is defined as

follows:

The parameters are:

- blockLen: the smallest number of bytes you can use for your block.
Note that AI_SignVerify encodes the input data in blocks. Because of the
requirements of the underlying RSA algorithm, the number of bits of data
must be the same as the number of bits of the RSA modulus. However, the
input block size is measured in bytes. Because the modulus size, which is
stored in RSA_MODULUS_BITS, may not be an even number of bytes, you need
to calculate the smallest number of bytes you can use for your block. This
number is the integer part of (RSA_MODULUS_BITS + 7) / 8. For example, if your
modulus is 514 bits long, the smallest block size you can use is the integer
part of (514 + 7) / 8, or 65 bytes.

- OIDNum: the object identifier for the SHA1 hash algorithm. Currently this
always equals 3 (SHA) for X9.31.

- OID: the object identifier to use for BER encoding. The OID is only used when
“formatX932PKCS5” is specified in the formatMethodName of the
B_SIGN_VERIFY_PARAMS structure.
In this example, the formatMethodName is “formatX931”, so the BER encoding
of the OID is unnecessary and will be left undefined.

typedef struct {
 unsigned int blockLen;
 unsigned int oidNum;
 ITEM OID;
} A_X931_PARAMS;

 /* Step 2: Set the algorithm object to AI_SignVerify */

 x931params.blockLen = ((RSA_MODULUS_BITS + 7) / 8);
 x931params.oidNum = 3;
C h a p t e r 9 P u t t i n g I t A l l To g e t h e r : A n X 9 . 3 1 E x a m p l e 3 2 1

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
 signVerifyParams.encryptionMethodName = (unsigned char *)"rsaSignX931";
 signVerifyParams.encryptionParams = NULL_PTR;
 signVerifyParams.digestMethodName = (unsigned char *)"sha1";
 signVerifyParams.digestParams = NULL_PTR;
 signVerifyParams.formatMethodName = (unsigned char *)"formatX931";
 signVerifyParams.formatParams = (POINTER)&x931params;

 if ((status = B_SetAlgorithmInfo (digitalSigner, AI_SignVerify,
 (POINTER)&signVerifyParams)) != 0)
 break;

 /* Step 3: Init */

 /* You must include the appropriate algorithm methods as
 specified by the Reference Manual in the
 chooser. See the RM entry for AI_SignVerify for that
 list. */

 if ((status = B_SignInit
 (digitalSigner, privateKey, X931_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Step 4: Update -- digest the data to sign */

 printf (".......Digesting the input data\n");
 if ((status = B_SignUpdate
 (digitalSigner, (unsigned char *)inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Step 5: Final -- Encrypt the digest and output the result to a
 signature buffer */

 printf (".......Encrypting the digest (digital signature)\n");
 if ((status = B_SignFinal
 (digitalSigner, signature, &signatureLen, 64,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 printf ("\nThe digital signature (%u bytes): \n", signatureLen);
 PrintBuf (signature, signatureLen);
3 2 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
Verifying the Signature
Verifying an X9.31 RSA signature is almost identical to signing, except that you pass
"rsaVerifyX931" for encryptionMethodName in Ai_SignVerify.

 /* == */
 printf ("Verifying the Digital Signature \n");
 printf ("=============================== \n");

 /* Step 1: Create an algorithm object */

 if ((status = B_CreateAlgorithmObject (&digitalVerifier)) != 0)
 break;

 /* Step 2: Set the algorithm object to the same AI */

 /* To verify the signature created above, you need to use the
 same AI you used for signing. Again, you must set up the
 appropriate structures containing the information for the
 algorithm you wish to use. The x931params structure is
 the same as the one used for signing, but you need to use
 "rsaVerifyX931" for the encryptionMethodName. */

 signVerifyParams.encryptionMethodName = (unsigned char *)"rsaVerifyX931";
 signVerifyParams.encryptionParams = NULL_PTR;
 signVerifyParams.digestMethodName = (unsigned char *)"sha1";
 signVerifyParams.digestParams = NULL_PTR;
 signVerifyParams.formatMethodName = (unsigned char *)"formatX931";
 signVerifyParams.formatParams = (POINTER)&x931params;

 if ((status = B_SetAlgorithmInfo (digitalVerifier, AI_SignVerify,
 (POINTER)&signVerifyParams)) != 0)
 break;

 /* Step 3: Init */

 /* Again, the only change required in the Init step is to
 include the appropriate algorithm methods in the chooser.
 These are the same methods included in the X931_SAMPLE_CHOOSER
 above. */

 if ((status = B_VerifyInit
 (digitalVerifier, publicKey, X931_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 9 P u t t i n g I t A l l To g e t h e r : A n X 9 . 3 1 E x a m p l e 3 2 3

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
 /* Step 4: Update */

 if ((status = B_VerifyUpdate
 (digitalVerifier, (unsigned char *)inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Step 5: Final */

 generalFlag = 0;
 if ((status = B_VerifyFinal
 (digitalVerifier, signature, signatureLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

 } while (0);

 if (status != 0) {
 printf ("Status = %i \n", status);
 printf ("Digital Signature failed");
 }
 else {
 printf ("\nDigital Signature verified.");
 }

 /* Step 6: Destroy */

 B_DestroyAlgorithmObject (&randomAlgorithm);
 B_DestroyAlgorithmObject (&keypairGenerator);
 B_DestroyAlgorithmObject (&digitalSigner);
 B_DestroyAlgorithmObject (&digitalVerifier);
 B_DestroyKeyObject (&privateKey);
 B_DestroyKeyObject (&publicKey);

 /* Free up any memory allocated */
 T_memset (randomSeed.data, 0, randomSeed.len);
 T_free (randomSeed.data);
 T_free (randomByteBuffer);

} /* end main */
3 2 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
Surrendering Control
The following function, included as part of x931.c, can be used whenever an action
may take a long time, and you need a mechanism for surrendering control.

/* General Surrender Function */
/* ========================== */
int GeneralSurrenderFunction (handle)
POINTER handle;
{
 char s[100];
 static time_t currentTime;
 time_t getTime;

 if ((int)*handle == 0) {
 getTime = time(NULL);
 strftime (s, 100, "%H:%M:%S on %A, %d %B %Y", localtime(&getTime));
 printf ("\n%s\n", s);
 printf ("Surrender function ...\n");
 *handle = 1;
 time (¤tTime);
 }
 else {
 time (&getTime);
 if (currentTime != getTime) {
 printf (" .");
 currentTime = getTime;
 }
 }
 return (0);
} /* end GeneralSurrenderFunction */
C h a p t e r 9 P u t t i n g I t A l l To g e t h e r : A n X 9 . 3 1 E x a m p l e 3 2 5

Download from Www.Somanuals.com. All Manuals Search And Download.

The X9.31 Sample Program
Printing the Buffer Contents
The following procedure prints the current contents of the buffer.

/* This procedure will print out what’s in the buffer.
 */
void PrintBuf (buffer, bufferLen)
unsigned char *buffer;
unsigned int bufferLen;
{
 unsigned int i;

 for (i = 0; i < bufferLen; ++i) {
 if (((i & 7) == 7) || (i == (bufferLen - 1)))
 printf (" %02x\n", buffer[i]);
 else
 printf (" %02x", buffer[i]);
 }

 printf ("\n");
} /* end PrintBuf */
3 2 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix A

Command-Line Demos
Overview of the Demos
In addition to the sample programs included on the CD, there are three Crypto-C
command-line demo applications: BDEMO, BDEMODSA, and BDEMOEC. These are
actual applications that demonstrate some of the aspects of building cryptographic
applications using Crypto-C. They use the Crypto-C library routines and are
provided to all Crypto-C customers in source form.

The BDEMO application is found in bdemo.c with supporting files fileio.c,
filebsl.c, tstdlib.c, a chooser, choosc.c, and include files fileio.h, filebsl.h
and demochos.h. Because BDEMO utilizes BSLite, bslite.c must be linked in and the
bslite.h file must be included. See “BSLite” on page 336 for more information about
BSLite.

The command-line demos provide the following functionality:

• BDEMO can create and verify an RSA digital signature for a DES-encrypted file. It
can also seal and open an RSA digital envelope, placing the encrypted output in
another file. The signature and envelope methods used by Crypto-C are
compatible with the Public-Key Cryptography Standards (PKCS).

• BDEMODSA demonstrates the use of DSA to digitally sign and verify the
integrity of data files.
3 2 7

Download from Www.Somanuals.com. All Manuals Search And Download.

Command-Line Demo User’s Guide
• BDEMOEC can use ECDSA to create and verify digital signatures for a file, and it
can use the Elliptic Curve Authenticated Encryption Scheme (ECAES) to seal and
open a digital envelope, placing the output in another file. These demo programs
support input files of arbitrary length. As with BDEMO, the file to be sealed with
the digital envelope is encrypted using the DES algorithm; however, in
BDEMOEC, the DES key is encrypted using ECAES instead of RSA encryption.

This appendix has three sections. “Command-Line Demo User’s Guide” on page 328
shows how to use the BDEMO, BDEMODSA, and BDEMOEC Command-Line
Demos. “File Reference” on page 335 explains the files used in these applications.
“BSLite” on page 336 describes the BSLite routines.

Command-Line Demo User’s Guide
The three command-line demos are menu-driven applications that demonstrate basic
cryptographic operations. Each demo prompts you for commands; you type the
responses. The various commands and expected responses are explained in the
sections for the individual demos.

BDEMO
Use BDEMO to create and verify an RSA digital signature for a DES-encrypted file.
Use it also to seal and open an RSA digital envelope, placing the encrypted output in
another file. The signature and envelope methods used by Crypto-C are compatible
with the Public-Key Cryptography Standards (PKCS).

Starting BDEMO

Command Line mode
To start BDEMO, enter the following after the system prompt:

> bdemo

Input Redirection mode
You may also run BDEMO in input redirection mode where your responses to the
menu prompts are read from a file. For example, to read commands from a file named
testin, enter the following after the system prompt:
3 2 8 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Command-Line Demo User’s Guide
> bdemo -s < testin

Notice that this uses ‘<’ to redirect testin as the input to BDEMO. The -s option to
BDEMO eliminates the menu prompts when BDEMO is taking input from a file.

Any line that is blank or begins with ’#’ is ignored. This means that the file used in
response file mode may contain blank lines and comment lines that begin with ’#’.

Specifying User Keys
BDEMO comes pre-loaded with RSA key pairs for two test users: User 1 and User 2.
You can also use BDEMO to generate a new RSA key pair; if you do so, this becomes
the key pair for User 3. See “Generate a Key Pair” on page 331 for key pair generation.

Note: Key pair generation in BDEMO is for demonstration purposes only and is not
cryptographically secure.

When you sign, verify, seal, or open a file, BDEMO asks which user’s key to use. You
can specify either 1 or 2. If you have generated a new RSA key, you can specify 3.

Using BDEMO
When you type “bdemo” at the system prompt, the following top-level menu is
displayed:

S - Sign a file
E - Envelope a file
V - Verify a signed file
O - Open an enveloped file
G - Generate a keypair (may take a long time)
Q - Quit
 Enter choice:

Commands may be entered in either upper or lower case, and all but the initial letter
of a command is ignored. So, for example, to sign a file you may either type “s” or
“sign”.

Each of the commands on this top-level menu is described below.

Sign a File
To sign a file:

1. Enter “s” at the top-level menu.
2. You will be prompted in succession for:
A p p e n d i x A C o m m a n d - L i n e D e m o s 3 2 9

Download from Www.Somanuals.com. All Manuals Search And Download.

Command-Line Demo User’s Guide
• the name and location of the file to be signed

• the name of the file you want to create to hold the signature

• the private key used for signing

3. Once this information is supplied, BDEMO uses the private key to create a
signature.

Create a File Envelope
To create an envelope for a file:

1. Enter “e” at the top-level menu.
2. You will be prompted in succession for:

• the name and location of the file to be signed and enveloped

• the names of the files for storing the encrypted DES key, the initialization
vector (IV), and the encrypted data

• a seed for generating the random DES key and the IV

3. Once this information is supplied, BDEMO encrypts the DES key using the
recipient’s public key, saving the IV, encrypted DES key, and the encrypted
content in the previously specified files.

Verify a Signed File
To verify the signature for a file:

1. Enter “v” at the top-level menu.
2. You will be prompted in succession for:

• the name and location of the file to be verified

• the digital signature file

• the signer’s user number (1 or 2; you may also choose 3 if you have
generated a key pair)

3. BDEMO uses the signer’s public key to verify the signature. If the signature is
valid, BDEMO prints “Signature verified.”; otherwise, BDEMO prints
“ERROR: Invalid signature while verifying file.”

Open a File Envelope
To open an enveloped file:

1. Enter “o” at the top-level menu.
2. You will be prompted in succession for:
3 3 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Command-Line Demo User’s Guide
• the name and location of the file that contains the encrypted data

• the name and location of the of the file that contains the encrypted DES key

• the name and location of the of the file that contains the IV

• the name of the file where the decrypted content should be stored. To print
the content to the screen instead, use a hyphen (-) as the file name.

• the recipient’s user number

3. BDEMO uses the recipient’s private key to recover the DES key. It then uses the
DES key to decrypt the data and saves it to the specified file. If a hyphen was
entered as the output file name, it prints the decrypted data to the screen instead
of saving it to a file.

Generate a Key Pair
Use BDEMO to generate a new RSA key pair. However, this is only for demonstration
purposes, and does not generate cryptographically secure RSA keys. BDEMO will generate
an RSA public/private key pair, but the keys are lost when you exit BDEMO.

To generate a key pair:

1. Enter “g” at the top-level menu.
2. You will be prompted in succession for:

• the key size in bits

• some seed information

3. BDEMO generates the key pair and keeps it as the key pair for User 3. Once a
keypair has been generated, you may not generate another during the same
BDEMO session.

Depending on the key size and the speed of the computer, key pair generation may
take from a few seconds to several minutes.
A p p e n d i x A C o m m a n d - L i n e D e m o s 3 3 1

Download from Www.Somanuals.com. All Manuals Search And Download.

Command-Line Demo User’s Guide
BDEMODSA
BDEMODSA demonstrates the use of DSA to digitally sign and verify the integrity of
data files.

Running BDEMODSA

Command Line mode
To start BDEMODSA, enter the following after the system prompt:

> bdemodsa

Input Redirection mode
You may also run BDEMODSA in input redirection mode where your responses to
the menu prompts are read from a file. For example, to read commands from a file
named testsgn, enter the following after the system prompt:

> bdemodsa -s < testsgn

Notice that this uses ’<’ to redirect testsgn as the input to BDEMODSA.
BDEMODSA’s -s option is used to omit the menu prompts when input is taken from
a file.

Any line that is blank or begins with ’#’ is ignored. This means that the file used in
response file mode may contain blank lines and comment lines that begin with ’#’.

Using BDEMODSA
When you use BDEMODSA in command-line mode, you will be prompted to
generate a DSA key pair for your BDEMODSA session. To do this:

1. Start BDEMODSA by typing bdemodsa at the system prompt
The request “Enter seed to generate DSA keypair (blank to
cancel):” is displayed.

2. Enter any arbitrary string of printable characters.
The message “Generating DSA Keypair, please wait...” is displayed.
Depending on the computer and level of code optimization, key generation will
take from several seconds to several minutes.
When the key pair has been generated, the message “DSA public key and
private key are now ready to use” is displayed.
3 3 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Command-Line Demo User’s Guide
Once a key pair has been generated, the following top-level menu is displayed:

S - Sign a file using DSA/SHA
V - Verify a DSA signed file
Q - Quit
 Enter choice:

Commands may be entered in either upper or lower case, and all but the initial letter
of a command is ignored. So, for example, to sign a file you may either type “s” or
“sign”.

The commands on this top-level menu are described below.

Sign a File
To sign a file:

1. Enter s.
2. You will be prompted in succession for:

• the name and location of the file to be signed

• the name of the file that will hold the signature

3. BDEMODSA uses the private key generated at the beginning of the session to
create a signature and places the result in the specified file.

Verify a Signed File
To verify the signature for a file:

1. Enter v.
2. You will be prompted in succession for:

• the name and location of the file that was signed

• the name and location of the file containing the digital signature

3. BDEMODSA uses the public key generated at the beginning of the session to
verify the signature. If the signature is valid, BDEMODSA prints “Signature
verified.”; otherwise, BDEMODSA prints “ERROR: Invalid signature
while verifying file.”

Note: If the signature was generated during a previous execution of BDEMODSA, it
is necessary to re-use the seed from signature signing, otherwise verification
will fail.
A p p e n d i x A C o m m a n d - L i n e D e m o s 3 3 3

Download from Www.Somanuals.com. All Manuals Search And Download.

Command-Line Demo User’s Guide
BDEMOEC
BDEMOEC provides the same functionality as BDEMO, but uses elliptic curve for its
algorithms. The algorithm used for sealing and opening digital envelopes is ECAES to
encrypt the DES symmetric key. Digital signatures are created and verified using
ECDSA with SHA1.

A set of elliptic curve parameters are hard-coded in the demo along with two key
pairs generated with that curve. A new key pair can be generated, but since the size of
the key pair is dependent on the elliptic curve parameters used, the user cannot
specify the desired key size.

Running BDEMOEC

Command Line mode
To start BDEMOEC, enter the following after the system prompt:

> bdemoec

Input Redirection mode
You may also run BDEMOEC in input redirection mode where your responses to the
menu prompts are read from a file. For example, to read commands from a file named
testin, enter the following after the system prompt:

> bdemoec -s < testec

Notice that this uses < to redirect testin as the input to BDEMOEC. The -s option to
BDEMOEC eliminates the menu prompts when BDEMOEC is taking input from a file.

Any line that is blank or begins with ’#’ is ignored. This means that the file used in
response file mode may contain blank lines and comment lines that begin with ’#’.

Using BDEMOEC
The menu options and procedures for BDEMOEC are identical for those for BDEMO.
See “Using BDEMO” on page 329 for a description of the menu commands.
3 3 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

File Reference
File Reference
The C source code files for the demo programs provide a convenient means to learn
Crypto-C by example and are a good starting point for your own Crypto-C
applications.

The source files for the demo programs are described in Table A-1.

Table A-1 Demo Program Source Files

File(s) Description

bdemo.c This file contains BDEMO’s main function, menu interpreter, and drivers for
each of the menu commands. This file uses the standard C library functions
such as printf and fopen, etc.

bdemodss.c This file contains BDEMODSA’s main function. It is entirely analogous to
bdemo.c.

bdemoec.c This file contains BDEMOEC’s main function. It is entirely analogous to
bdemo.c. The elliptic curve parameters used for this demonstration, along with
two key pairs, are hard-coded in the beginning of this file.

bslite.c and
bslite.h

bslite.c contains a collection of routines that enable BDEMO to interface to
the Crypto-C cryptographic library. The routines are written in straightforward,
easy-to-read portable C code. These routines also illustrate the coding of
interfaces to a number of common Crypto-C library functions. A developer may
wish use this module as a starting point for developing an application. Refer to
“blreadme” (in the demosrc directory) for extended descriptions of routines
contained in bslite.c.

bsliteds.c and
bsliteds.h

bsliteds.c contains routines used by BDEMODSA to interface to the Crypto-
C library. These routines illustrate how to code portable interfaces to Crypto-C’s
implementation of the Digital Signature Algorithm.

bslec.c and
bslec.h

bslec.c contains routines used by BDEMOEC to interface to the Crypto-C
library. These routines are analogous to bslite.c and bslite.h. However,
not all functions in bslite.c have a counterpart in bslec.c.

choosc.c and
demochos.h

These files define the DEMO_ALGORITHM_CHOOSER which may be used as a
default for the algorithmChooser argument to Crypto-C routines.
DEMO_ALGORITHM_CHOOSER is externally declared in demochos.h for
inclusion by applications that need access to the
DEMO_ALGORITHM_CHOOSER.

filebsl.c,
filebsl.h,
fileio.c and
fileio.h

These files call on the BSLite routines in bslite.c and handle the file I/O for
each operation. These files use the standard C library functions such as
printf and fopen.
A p p e n d i x A C o m m a n d - L i n e D e m o s 3 3 5

Download from Www.Somanuals.com. All Manuals Search And Download.

BSLite
BSLite
BSLite is a collection of routines that interface with the Crypto-C library. BSLite
demonstrates how to call Crypto-C to execute various cryptographic procedures. The
routines are written in straightforward, easy-to-read portable C and is provided to all
Crypto-C customers in source form. BSLite includes a number of the most popular
functions supported by the Crypto-C library:

• Symmetric key generation
• Symmetric block and stream encryption
• Diffie-Hellman parameter generation
• Diffie-Hellman key agreement
• Message digest computation
• RSA key generation
• RSA digital signature creation and verification
• RSA digital envelope sealing and opening
• Password-based private key protection/encryption

fbslec.c,
fbslec.h,
fileio.c and
fileio.h

These files are used by BDEMOEC. These files call on the routines in bslec.c
and handle the file I/O for each operation. These files use the standard C library
functions such as printf and fopen. The files fbslec.c and fbslec.h
are analogous to filebsl.c and filebsl.h used by BDEMO.

tstdlib.c This file contains memory, I/O, and buffer manipulation routines needed by
Crypto-C, such as T_malloc and T_memcmp. This file illustrates how these
routines can be implemented on most platforms. However, some of these
routines may need alteration for different platforms. For example, Crypto-C
requires that T_free perform no function if it is passed NULL_PTR, but some
library implementations of free may not satisfy this convention. Therefore, an
explicit check for NULL_PTR may be needed in T_free.

tstdlib.c uses the constant MEMMOVE_PRESENT. If the platform’s C library
provides memmove, MEMMOVE_PRESENT should be defined as 1; otherwise, it
should be defined as 0. In tstdlib.c, default values are given for these
constants, but they may be overridden by a compiler flag. For example:

-DMEMMOVE_PRESENT=0

Table A-1 Demo Program Source Files

File(s) Description
3 3 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

BSLite
A single C source file, bslite.c, with a single header file, bslite.h, contains the
entire BSLite Code. For more information on BSLite, see the file blreadme.
A p p e n d i x A C o m m a n d - L i n e D e m o s 3 3 7

Download from Www.Somanuals.com. All Manuals Search And Download.

3 3 8

Download from Www.Somanuals.com. All Manuals Search And Download.

Glossary
This section lists security and cryptographic terms and abbreviations, along with their
definitions, that are used throughout the RSA BSAFE Crypto-C documentation set.
3 3 9

Download from Www.Somanuals.com. All Manuals Search And Download.

AES

Advanced Encryption Standard.

algorithm

A series of steps used to complete a task.

Alice

The name traditionally used for the first
user of cryptography in a system; Bob's
friend.

ANSI

American National Standards Institute.

API

Application Programming Interface.

attack

Either a successful or unsuccessful
attempt at breaking part or all of a
cryptosystem. See algebraic attack,
birthday attack, brute force attack,
chosen ciphertext attack, chosen
plaintext attack, differential
cryptanalysis, known plaintext attack,
linear cryptanalysis, and middleperson
attack.

authentication

The action of verifying information such
as identity, ownership, or authorization.

BER

Basic Encoding Rules. A set of rules for
representing ASN.1 objects as strings of
ones and zeros. DER is a subset of BER.

bit

A binary digit, either 1 or 0.

block cipher

A symmetric cipher which encrypts a
message by breaking it down into fixed
size blocks and encrypting each block.

Bob

The name traditionally used for the
second user of cryptography in a system;
Alice's friend.

CA

See certifying authority.

CAPI

Cryptographic Application
Programming Interface.

certificate

In cryptography, an electronic document
binding some pieces of information
together, such as a user's identity and
public key. Certifying Authorities (CA's)
provide certificates.

Certifying Authority (CA)

A person or organization that creates
certificates.

checksum

Used in error detection, a checksum is a
computation done on the message and
transmitted with the message; similar to
using parity bits.

cipher

An encryption-decryption algorithm.

ciphertext

Encrypted data.
3 4 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Data Encryption Standard

See DES.

decryption

The inverse (reverse) of encryption. The
process by which the ciphertext is
converted into plaintext.

DER

Distinguished Encoding Rules. A subset
of BER which gives a unique encoding to
each ASN.1 value.

DES

Data Encryption Standard. A block
cipher developed by IBM and the U.S.
government in the 1970's as an official
standard. See also block cipher.

dictionary attack

A brute force attack that tries passwords
and/or keys from a precompiled list of
values. This is often done as a pre-
computation attack.

Diffie-Hellman key exchange

A key exchange protocol allowing the
participants to agree on a key over an
insecure channel.

digest

Commonly used to refer to the output of
a hash function. For example, a message
digest refers to the hash of a message.

digital signature

The encryption of a message digest with
a private key.

distributed key

A key that is split up into many parts
and shared (distributed) among
different participants. See also secret
sharing.

DMS

Defense Messaging Service.

DOD

Department of Defense.

DSA

Digital Signature Algorithm. DSA is a
public-key method based on the discrete
logarithm problem.

DSS
Digital Signature Standard. DSA is the
Digital Signature Standard.

EAR

Export Administration Regulations.

ECAES

Elliptic Curve Authenticated Encryption
Scheme.

ECC

Elliptic Curve Cryptosystem. A public-
key cryptosystem based on the
properties of elliptic curves.

ECDH

Elliptic Curve Diffie-Hellman key
agreement.

ECDL

See elliptic curve discrete logarithm.
G l o s s a r y 3 4 1

Download from Www.Somanuals.com. All Manuals Search And Download.

ECDSA

Elliptic Curve DSA (Digital Signature
Algorithm). An elliptic curve analogue
of DSA.

EDI

Electronic (business) Data Interchange.

elliptic curve

The set of points (x, y) satisfying an
equation of the form for variables x, y
and constants a, b Î F, where F is a field.

elliptic curve cryptosystem

See ECC.

elliptic curve discrete logarithm

Also known as ECDL: the problem of
finding m such that m ·P = Q, where P
and Q are two points on an elliptic
curve.

elliptic curve (factoring) method

A special-purpose factoring algorithm
that attempts to find a prime factor p of
an integer n by finding an elliptic curve
whose number of points modulo p is
divisible by only small primes.

encryption

The transformation of plaintext into an
apparently less readable form (called
ciphertext) through a mathematical
process. The ciphertext may be read by
anyone who has the key that decrypts
(undoes the encryption) the ciphertext.

exclusive-OR

See XOR.

factor

Given an integer n, any number that
divides it is called a factor of n. For
example, 7 is a factor of 91, because 91/7
is an integer.

factoring

The breaking down of an integer into its
prime factors. This is a hard problem.

factoring methods

See elliptic curve method, multiple
polynomial quadratic sieve, number
field sieve, Pollard p-1 and Pollard p+1
method, Pollard rho method, quadratic
sieve.

FIPS

Federal Information Processing
Standards. See NIST.

GSS-API

generic security service application
program interface.

hacker

A person who tries and/or succeeds at
defeating computer security measures.

IEEE

Institute of Electrical and Electronics
Engineers. A body that creates some
cryptography standards.

IETF

Internet Engineering Task Force.
3 4 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

identification

A process through which one ascertains
the identity of another person or entity.

key

A string of bits used widely in
cryptography, allowing people to
encrypt and decrypt data; a key can be
used to perform other mathematical
operations as well. Given a cipher, a
key determines the mapping of the
plaintext to the ciphertext. See also
distributed key, private key, public
key, secret key, session key, shared
key, sub key, symmetric key, weak key.

key agreement

A process used by two or more parties to
agree upon a secret symmetric key.

key escrow

The process of having a third party hold
onto encryption keys.

key exchange

A process used by two more parties to
exchange keys in cryptosystems.

key expansion

A process that creates a larger key from
the original key.

key generation

The act of creating a key.

key management

The various processes that deal with the
creation, distribution, authentication,
and storage of keys.

key pair

The full key information in a public-key
cryptosystem, consisting of the public
key and private key.

key recovery

A special feature of a key management
scheme that allows messages to be
decrypted even if the original key is lost.

key schedule

An algorithm that generates the subkeys
in a block cipher.

key space

The collection of all possible keys for a
given cryptosystem. See also flat key
space, linear key space, nonlinear key
space, and reduced key space.

Message Authentication Code (MAC)

A MAC is a function that takes a
variable length input and a key to
produce a fixed-length output. See also
hash-based MAC, stream-cipher based
MAC, and block-cipher based MAC.

message digest

The result of applying a hash function to
a message.

MIME

Multipurpose Internet Mail Extensions.

MIPS

Millions of Instructions Per Second. A
measurement of computing speed.
G l o s s a r y 3 4 3

Download from Www.Somanuals.com. All Manuals Search And Download.

NIST

National Institute of Standards and
Technology. A United States agency that
produces security and cryptography
related standards (as well as others);
these standards are published as FIPS
documents.

NSA

National Security Agency. A security-
conscious U. S. government agency
whose mission is to decipher and
monitor foreign communications.

one-time pad

A secret-key cipher in which the key is a
truly random sequence of bits that is as
long as the message itself, and
encryption is performed by XORing the
message with the key. This is
theoretically unbreakable.

one-way function

A function that is easy to compute in one
direction but quite difficult to reverse
compute (compute in the opposite
direction).

one-way hash function

A one-way function that takes a variable
sized input and creates a fixed size
output.

PBE

Password Based Encryption. Using a
message digest algorithm to derive a key
from a password.

PKI

Public-key Infrastructure. PKIs are
designed to solve the key management
problem. See also key management.

padding

Extra bits concatenated with a key,
password, or plaintext.

password

A character string used as a key to
control access to files or encrypt them.

PKCS

Public-key Cryptography Standards. A
series of cryptographic standards
dealing with public-key issues; these are
published by RSA Laboratories.

plaintext

The data to be encrypted.

prime factor

A prime number that is a factor of
another number is called a prime factor
of that number.

prime number

Any integer greater than 1 that is
divisible only by 1 and itself. The first
twelve primes are 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, and 37.

privacy

The state or quality of being secluded
from the view and or presence of others.

private exponent

The private key in the RSA public-key
cryptosystem.
3 4 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

private key

In public-key cryptography, this key is
the secret key. It is primarily used for
decryption but is also used for
encryption with digital signatures.

pseudo-random number

A number extracted from a pseudo-
random sequence.

pseudo-random sequence

A deterministic function that produces a
sequence of bits with qualities similar to
that of a truly random sequence.

public key

In public-key cryptography this key is
made public to all; it is primarily used
for encryption but can be used for
verifying signatures.

public-key cryptography

Cryptography based on methods
involving a public key and a private key.

RSA algorithm

A public-key cryptosystem based on the
factoring problem. RSA stands for
Rivest, Shamir and, Adleman, the
developers of the RSA public-key
cryptosystem and the founders of RSA
Data Security (now RSA Security).

random number

As opposed to a pseudo-random
number, a truly random number is a
number produced independently of its
generating criteria. For cryptographic
purposes, numbers based on physical
measurements, such as a Geiger

counter, are considered random.

relatively prime

Two integers are relatively prime if they
have no common factors. For example,
14 and 25 are relatively prime, while 14
and 91 are not; 7 is a common factor.

S-HTTP

Secure HyperText Transfer Protocol. A
secure way of transferring information
over the World Wide Web.

S/MIME

Secure Multipurpose Internet Mail
Extensions.

SSL

Secure Socket Layer. A protocol used for
secure Internet communications.

SWIFT

Society for Worldwide Interbank
Financial Telecommunications.

salt

A string of random (or pseudo-random)
bits concatenated with a key or
password to foil precomputation
attacks.

satisfiability problem

Given a Boolean expression, determine if
there is an assignment of 1's and 0's such
that the expression evaluates to 1. This is
a hard problem.

secret key

In secret-key cryptography, this is the
key used both for encryption and
decryption.
G l o s s a r y 3 4 5

Download from Www.Somanuals.com. All Manuals Search And Download.

secret sharing

Splitting a secret (for examle, a private
key) into many pieces such that any
specified subset of k pieces may be
combined to form the secret, but k-1
pieces are not enough.

seed

A typically random bit sequence used to
generate another, usually longer
pseudo-random bit sequence.

session key

A key for symmetric-key cryptosystems
which is used for the duration of one
message or communication session.

SET

Secure Electronic Transaction.
MasterCard and Visa developed (with
some help from industry) this standard
jointly to insure secure electronic
transactions.

shared key

The secret key two (or more) users share
in a symmetric-key cryptosystem.

SMTP

Simple Mail Transfer Protocol.

smart card

A card, not much bigger than a credit
card, that contains a computer chip and
is used to store or process information.

stream cipher

A secret-key encryption algorithm that
processes data in a stream of arbitary
length one a bit at a time.

stream cipher based MAC

MAC that uses linear feedback shift
registers (LFSRs) to reduce the size of
the data it processes.

strong prime

A prime number with certain properties
chosen to defend against specific
factoring techniques.

S/WAN

Secure Wide Area Network.

symmetric cipher

An encryption algorithm that uses the
same key is used for encryption as
decryption.

symmetric key

See secret key.

synchronous

A property of a stream cipher, stating
that the keystream is generated
independently of the plaintext and
ciphertext.

tamper resistant

In cryptographic terms, this usually
refers to a hardware device that is either
impossible or extremely difficult to
reverse engineer or extract information
from.

TCSEC

Trusted Computer System Evaluation
Criteria.

timestamp

See digital timestamp.
3 4 6 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

verification

The act of recognizing that a person or
entity is who or what it claims to be.

XOR

A binary bitwise operator yielding the
result one if the two values are different
and zero otherwise. XOR is an
abbreviation for exclusive-OR.
G l o s s a r y 3 4 7

Download from Www.Somanuals.com. All Manuals Search And Download.

3 4 8

Download from Www.Somanuals.com. All Manuals Search And Download.

Index
A
acceleration table 273
Adelman, Leonard 52
Advanced Encryption Standard xvii

See AES
Advanced PKCS #11 147
AES xvii, 40, 41
AI See algorithm info type
algorithm chooser 15, 116�??

hardware chooser 132
RC4 sample chooser 117
RSA algorithm chooser 117

Algorithm Choosers 116
algorithm info type 11, 101

ASCII-encoding types 104
BHAPI 111, 133
message authentication types 104
message digest types 103
public-key types 107�111
random number types 104
secret-sharing types 111
symmetric-key types 104�107

algorithm method 15, 116
listing in chooser 15

algorithm object 9, 10, 11, 101
defined 9
hardware and 132

ANSI standards 6
applications of cryptography 83�86
ASCII encoding 83, 125

algorithm info types 104
example 172�176
output considerations 173, 175

asymmetric key cryptography See public-key
cryptography

attacks 207
dictionary 50
man-in-the-middle 85
timing 95

authentication 57, 83

B
base

Diffie-Hellman key agreement 63

Digital Signature Algorithm 60
elliptic curve 71

basis See elliptic curve cryptography
BER encoding 123�125

algorithm info types 102
examples

Diffie-Hellman key agreement 254�
255

RC4 124�125
RSA key pair 224�226
SHA1 155�156

BHAPI 132�149
algorithm info types 111
key token 132

binary data
encoding to ASCII 172�176
memory management and 123
output considerations 175
printing 25

blinding 95, 229
block cipher 37

algorithm info types 105�107
examples 178�201
initialization vector 41
input constraints 126
key info types 113
key management 87
modes of operation 41
output considerations 37, 126
padding 37
selecting 88
See also AES, DES, DESX, RC2, RC5, Triple

DES
block size 39, 40

RC6 40
Bloom-Shamir secret sharing See secret

sharing
BSAFE 2.x 9
BSAFE Hardware API See BHAPI, hardware
BSLite 336

C
CBC See modes of operation
certificate authority 62
3 4 9

Download from Www.Somanuals.com. All Manuals Search And Download.

certificate See digital certificate
CFB See modes of operation
characteristic See elliptic curve cryptography
chooser See algorithm chooser
Cipher Block Chaining See modes of

operation
Cipher Feedback See modes of operation
collision 48
collision-free 48
communicating with other packages See BER

encoding
compatibility

BSAFE 2.x 9

D
database applications 85
decoding

BER vs. ASCII 125
DEMO_ALGORITHM_CHOOSER 15, 116
DER See BER encoding
DES 37, 88

communication with other algorithms 87
example 178�183
key 97, 129
parity bits 129
weak and semi-weak keys 94

DESX 38, 88
dictionary attack 50
Diffie, Whitfield 62
Diffie-Hellman Key Agreement

performing 280
Diffie-Hellman key agreement 65, 97

algorithm info types 110
applications 84, 86
base 63
discrete logarithm problem and 65
examples

key agreement 256�259
parameter distribution 253�255
parameter generation 249�252

key 99
parameters 63, 250
private value 63, 256
public value 63
timing attacks and blinding 96

digest See message digest
digital certificate 61, 85, 86
Digital Encryption Standard See DES
digital envelope 55, 86, 227

key agreement vs. 88
Digital Signature

verification 289
digital signature 57�59, 73, 213, 227

applications 86

examples
Digital Signature Algorithm 239�248
RSA algorithm 233�239

signing 57
verifying 58
See also Digital Signature Algorithm,

ECDSA
Digital Signature Algorithm 57, 60�61

algorithm info types 109
base 60
examples

key pair generation 242�243
parameter generation 239�241
signing 243�246
verifying 246�248

key 97, 99, 240
generating 60

key info types 114
parameters 60, 239
subprime 60
timing attacks and blinding 96

Digital Signature Standard (DSS) 60
discrete logarithm problem 65
DSA Key Pair Generation

PKCS #11 Support 144
DSA See Digital Signature Algorithm
DSS See Digital Signature Standard

E
EC Diffie-Hellman Key Agreement 280
EC Key Pair

generating 293
ECAES

private-key decryption 302
using 297

ECAES See Elliptic Curve Authenticated
Encryption Scheme

ECB See modes of operation
ECDSA 73�75

example 284�291
output considerations 288
signing 73
verfiying 74
verifying 74
X9.62 284
X9.62 with BER 291

EDE 38
effective key 39, 185, 186
Electronic Codebook (ECB) See modes of

operation
Elliptic Curve Authenticated Encryption

Scheme 75�77
example 297�303
output considerations 300
3 5 0 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

elliptic curve cryptography 65�79
algorithm info types 110
curve generation 262
examples

acceleration table 273�280
key pair generation 268�270
key retrieval 271�272
parameter generation 260�264
parameter retrieval 264�267

interoperability 90
key 72, 100, 262
key info types 115
output considerations 276
recommendations 90
RSA algorithm vs. 90
scalar multiplication 70
See also ECDSA, Elliptic Curve

Authenticated Encryption Scheme,
Elliptic Curve Diffie-Hellman key
agreement, elliptic curve parameters

Elliptic Curve Diffie-Hellman key
agreement 77�80

example 280�284
output considerations 283
private value 78, 283
public value 78

elliptic curve discrete logarithm problem 65
elliptic curve parameters 66�71

base point 71
characteristic 67, 68, 90
coefficients 68�69
cofactor 71
even characteristic 67�68

optimal normal basis 72
polynomial basis 72
representation 72

example 260�264
field 66, 67
odd prime 66
order 70, 100
point 69
point at infinity 69, 70
summary 71

emergency access See key escrow, secret
sharing 89

encoding
BER vs. ASCII 125

entropy 93
envelope See digital envelope
error code 10, 128
examples

ASCII encoding 172�176
BER encoding 124�125
DES with CBC 178�183
Diffie-Hellman key agreement 249�259

Digital Signature Algorithm 239�248
ECDSA 284�291
Elliptic Curve Authenticated Encryption

Scheme 297�303
Elliptic Curve Diffie-Hellman 280�284
HMAC 161�164
message digest (SHA1) 152�156
password-based encryption 206�211
random numbers 165�171
RC2 with CBC 184�190
RC4 9
RC5 with CBC 190�196
RC6 with CBC 196�201
RSA algorithm 214�232
secret sharing 305�311
surrender function 119

F
factoring 54, 98
feedback mode 41
Fermat 4 129
FIPS compliance 4

G
Generating an EC Key Pair 293

H
hardware 111

See also BHAPI
hardware accelerator

perform DES encryption 148
hash function See message digest
hash-based message authentication code

(HMAC) 49
example 161�164

Hellman, Martin 62
HMAC 2
HMAC See hash-based message

authentication code

I
include files

choos_c.c 116
tstdlib.c 18, 336

initialization vector 41, 179
uniqueness 94

input constraints 126

K
key 97

DES 97
DSA 60
elliptic curve 72, 100
I n d e x 3 5 1

Download from Www.Somanuals.com. All Manuals Search And Download.

key (continued)
RC2 39, 99
RC4 87, 99
RC5 99, 190
recovery 89
registering 61
RSA 53, 54, 97, 98
size 97, 98, 129
token (hardware) 111, 132
Triple DES 99
weak and semi-weak DES keys 94
See also public-key cryptography,

symmetric-key cryptography
key agreement 77

applications 86
digital envelopes vs. 88
See also Diffie-Hellman key agreement,

Elliptic Curve Diffie-Hellman Key
Agreement

key derivation function (KDF) 76
key escrow 82

secret sharing vs. 89
key info type 14, 113

block cipher types 113
DSA types 114
elliptic curve types 115
generic key types 113
RSA algorithm types 114

key management 82, 87
key object 13, 113
key size 40
KI See key info type
Koblitz, Neal 65

L
local file encryption 83

M
MAC See message authentication code
man-in-the-middle 85
MD 48
MD2 48
MD5 48
memory management 121, 122

security considerations 92
T_free 21
T_malloc 18
tstdlib.c and 122

message authentication code 47
algorithm info types 104
HMAC 49, 161
password-based encryption 49
RC4 and 47

message digest 47�48
algorithm info types 103
BER encoding 155
collision 48
digital signature 57, 233
example 152�156
See also MD, MD2, MD5, SHA1

Message digests
uses 48

Miller, Victor 65
modes of operation 41

Cipher Block Chaining (CBC) 43
examples 178�183, 184�190

Cipher Feedback (CFB) 43
Electronic Codebook 42
Output Feedback (OFB) 45

modular math 52
modulus See RSA algorithm
MultiPrime

defined 218
Generating an RSA MultiPrime Key 222
how many primes to use 219
Sample 220

N
NIST certification 4

O
OAEP 231
OAEP Protocol

Optimal Asymmetric Encryption Padding
(OAEP) 55

OFB (Output Feedback mode) See modes of
operation

one-way hash function See message digest
Optimal Asymetric Encryption Padding

(OAEP) 231
optimal normal basis (ONB) See elliptic curve

parameters
output considerations 126

ASCII to binary 173, 175
block cipher 37
ECDSA 288
elliptic curve 276
Elliptic Curve Authenticated Encryption

Scheme 300
Elliptic Curve Diffie-Hellman key

agreement 283
output feedback mode 45
Output Feedback mode (OFB) See modes of

operation
3 5 2 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

P
padding 37, 126, 180

RSA algorithm 227
parameters

Diffie-Hellman key agreement 63, 99, 249
Digital Signature Algorithm 60, 239
surrender context and 118
See also elliptic curve parameters

parity bits 129
password 93
password-based encryption 49

algorithm info types 106
dictionary attack 50
example 206�211
key 208
salt 207

PBE See password-based encryption
PEM encoding 103
Performing EC Diffie-Hellman Key

Agreement 280
PKCS #11

Advanced 147
DSA Support 144
random number generator 148

PKCS standards 4
point See elliptic curve parameters
point-to-point applications 84, 85
polynomial basis See elliptic curve

parameters
prime 52, 60
privacy 83
Privacy Enhanced Mail See PEM encoding
public exponent 52
public-key cryptography 50�80

algorithm info types 107�111
digital certificate 61
digital signature 57
security 91
signing 213
symmetric-key vs. 51, 87
See also Diffie-Hellman key agreement,

Digital Signature Algorithm, elliptic
curve cryptography, RSA algorithm

R
random number

algorithm info types 104
entropy 93
example 165�171
generating 48
hardware 111

random numbers
multiple streams of randomness 170

random seed 48, 92, 167
generating 93

RC2 38, 88
effective key 39, 99, 185, 186
examples 184�190, 207�211

RC4 46
algorithm chooser 117
applications 84
BER example 124
example 9
key 95
key size 99
MAC with 47

RC5 39, 88
block size 39, 190
example 190�196
key 99, 190
key size 40
rounds 39, 99, 190
version number 191
word size 39, 190

RC6 40, 88
block size 40
example 196�201
rounds 40
word size 40

Rivest, Ronald 38, 39, 46, 52
rounds 39, 99, 190

RC6 40
RSA algorithm 51�55

algorithm info types 107�109
applications 85
digital envelope 227
digital signature 57, 59, 227, 233
elliptic curve cryptography vs. 90
examples

ANSI X9.31 313
decryption 229�231
digital signature 233�239
distributing a key pair 223�226
encryption 226�229
generating a key pair 214�217
raw RSA 231�232

factoring and 54, 98
input constraints 127, 227, 231�232, 233
key 53, 54, 97, 98, 129, 130, 215
key escrow 82
key info types 114
modulus 52, 98, 130, 215
output considerations 228, 230
raw RSA 227
sample algorithm chooser 117
security 54
timing attacks and blinding 96, 229
See also public-key cryptography
I n d e x 3 5 3

Download from Www.Somanuals.com. All Manuals Search And Download.

RSA Security Inc.
FAQ 55
Web site 48

S
salt 49, 94

iterations 207
sample program files

berder.c 124
descbc.c 178
dhagree.c 256
dhparam.c 249
dintorex.c 26
dsasign.c 239
ecdh.c 280
ecdsadig.c 285
eces.c 297
ecparam.c 260, 273
encdec.c 172
hmac.c 161
introex.c 9
mdber.c 155
mdigest.c 152
pbe.c 206
rc2.c 184
rc5.c 190
rc6.c 196
rc6fb.c 196
rsapkcs.c 214
rsasign.c 233
scrtshar.c 305

secret key
See symmetric-key cryptography

secret sharing 80, 305
algorithm info types 111
example 305�311
key escrow vs. 89

Secure Hash Algorithm
See SHA1

security 91�100
DES weak keys 94
key size 97
passwords and 93
random seed and 92

seed 48, 92, 93, 167
entropy 93
zeroizing 170

sensitive data 123
zeroizing 20, 31, 91, 170, 209

SHA1 48
DSA and 60
ECAES and 76
examples 152�156

random numbers 165�171

hash-based message authentication
and 49, 161

Shamir, Adi 52
signature See digital signature 57
six-step sequence 8, 32
standards

ANSI 6
FIPS 4
NIST 4
PKCS 4

stream cipher 46�47
algorithm info types 104
attacks 95
key 87
See also RC4

subprime 60
surrender context 16, 118�120

example 119
parameter generation 118

symmetric-key cryptography 36�47
algorithm info types 104�107
examples 177�201
password-based encryption 49
public-key vs. 87
See also block cipher, stream cipher

T
T_free 122
T_malloc 122
TDES See Triple DES
threshold scheme 80, 305
timing attack 95, 229
token key See BHAPI
Triple DES 38

key 38, 99

V
Verification

digital signature 289
verifying See digital signature

W
word size 39, 190

RC6 40

X
X9.31 313
X9.62 284, 291

Z
zeroizing sensitive data 20, 31, 91, 209

random seed 170
3 5 4 R S A B S A F E C r y p t o - C D e v e l o p e r ’s G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.

Free Manuals Download Website
h�p://myh66.com

h�p://usermanuals.us
h�p://www.somanuals.com

h�p://www.4manuals.cc
h�p://www.manual-lib.com
h�p://www.404manual.com
h�p://www.luxmanual.com

h�p://aubethermostatmanual.com
Golf course search by state

h�p://golfingnear.com
Email search by domain

h�p://emailbydomain.com
Auto manuals search

h�p://auto.somanuals.com
TV manuals search

h�p://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	RSA BSAFE® Crypto-C 5.2.2 Developer's Guide
	Contents
	Preface
	What’s New in Version 5.2.2?
	Improved performance
	Hardware support
	MultiPrime RSA
	Serialization for algorithm objects performing RC4, Diffie Hellman key exchange
	Advanced Encryption Standard (AES)

	Organization of This Manual
	Conventions Used in This Manual
	Terms and Abbreviations
	Related Documents
	How to Contact RSA Security
	RSA Security Web Site
	Getting Support and Service
	SecurCare® Online
	Technical Support Telephone Numbers
	Call Handling and Escalation Process

	Introduction
	The Crypto-C Toolkit
	Algorithms
	Symmetric Ciphers
	Message Digests
	Message Authentication
	Random-Number Generation
	Public-Key Algorithms
	Digital Signatures
	Elliptic Curve Public-Key Algorithms
	Secret Sharing

	Hardware Support

	Cryptographic Standards and Crypto-C
	PKCS Standards and Crypto-C
	NIST Standards and Crypto-C
	PKCS Compared with NIST
	ANSI X9 Standards and Crypto-C

	Quick Start
	The Six-Step Sequence
	Introductory Example
	Saving the Object State (optional)
	Putting It All Together

	Decrypting the Introductory Example
	Multiple Updates
	Summary of the Six Steps

	Cryptography
	Cryptography Overview
	Symmetric-Key Cryptography
	Ciphers
	Block Ciphers
	Padding
	Ciphers in Crypto-C
	DES
	Triple DES
	DESX
	RC2
	RC5
	RC6
	AES
	Modes of Operation
	Stream Ciphers

	Message Digests
	Message Digests and Pseudo-Random Numbers
	Hash-Based Message Authentication Codes (HMAC)

	Password-Based Encryption
	Public-Key Cryptography
	The RSA Algorithm
	Digital Envelopes
	Optimal Asymmetric Encryption Padding (OAEP)
	Authentication and Digital Signatures
	Digital Signature Algorithm (DSA)
	Digital Certificates
	Diffie-Hellman Public Key Agreement

	Elliptic Curve Cryptography
	Elliptic Curve Parameters
	The Finite Field
	The Point P and its Order
	Summary of Elliptic Curve Terminology
	Representing Fields of Even Characteristic

	Elliptic Curve Key Pair Generation
	Creating the Key Pair

	ECDSA Signature Scheme
	Signing a Message
	Verifying a Signature
	The Math

	Elliptic Curve Authenticated Encryption Scheme (ECAES)
	Encrypting a Message Using the Public Key
	Decrypting a Message Using the Private Key

	Elliptic Curve Diffie-Hellman Key Agreement
	Phase 1
	Phase 2
	The Math

	Secret Sharing
	Working with Keys
	Key Generation
	Key Management
	Key Escrow

	ASCII Encoding and Decoding

	Applications of Cryptography
	Local Applications
	Point-to-Point Applications
	Client/Server Applications
	Peer-to-Peer Applications

	Choosing Algorithms
	Public-Key vs. Symmetric-Key Cryptography
	Stream vs. Block Symmetric-Key Algorithms
	Block Symmetric-Key Algorithms
	Key Agreement vs. Digital Envelopes
	Secret Sharing and Key Escrow
	Elliptic Curve Algorithms
	Interoperability
	Elliptic Curve Standards

	Security Considerations
	Handling Private Keys
	Temporary Buffers
	Pseudo-Random Numbers and Seed Generation
	Choosing Passwords
	Initialization Vectors and Salts
	DES Weak Keys
	Stream Ciphers
	Timing Attacks and Blinding
	Choosing Key Sizes
	RSA Keys
	Diffie-Hellman Parameters and DSA Keys
	RC2 Effective Key Bits
	RC4 Key Bits
	RC5 Key Bits and Rounds
	Triple DES Keys
	Elliptic Curve Keys

	Using Crypto-C
	Algorithms in Crypto-C
	Information Formats Provided by Crypto-C
	Basic Algorithm Info Types
	BER-Based Algorithm Info Types
	PEM-Based Algorithm Info Types
	BSAFE1 Algorithm Info Types

	Summary of AIs

	Keys In Crypto-C
	Summary of KIs

	System Considerations In Crypto-C
	Algorithm Choosers
	An Encryption Algorithm Chooser
	An RSA Algorithm Chooser

	The Surrender Context
	A Sample Surrender Function
	Saving State

	When to Allocate Memory
	Memory-Management Routines
	Memory-Management Routines and Standard C Libraries
	Memory Allocation
	Binary Data

	BER/DER Encoding
	Input and Output
	Symmetric Block Algorithms
	The RSA Algorithm
	General Considerations

	Key Size
	DES Keys
	RSA Keys

	Using Cryptographic Hardware
	Interfacing with a BHAPI Implementation
	PKCS #11 Support
	Using a PKCS #11 Device with Crypto-C
	PKCS #11 Support for DSA Key Pair Generation
	Advanced PKCS #11
	Random Numbers

	Hardware Issues

	Non-Cryptographic Operations
	Message Digests
	Creating a Digest
	BER-Encoding the Digest
	Saving the State of a Digest Algorithm Object
	Saved State

	Hash-Based Message Authentication Code (HMAC)
	Generating Random Numbers
	Generating Random Numbers with SHA1
	Generating Independent Streams of Randomness

	Converting Data Between Binary and ASCII
	Encoding Binary Data To ASCII
	Decoding ASCII-Encoded Data

	Symmetric-Key Operations
	Block Ciphers
	DES with CBC
	Decrypting

	The RC2 Cipher
	Decrypting

	The RC5 Cipher
	Decrypting

	The RC6 Cipher
	Decrypting

	The AES Cipher
	Password-Based Encryption
	Decrypting

	Public-Key Operations
	Performing RSA Operations
	Generating a Key Pair

	MultiPrime
	What is MultiPrime?
	How Many Primes?
	Sample
	Generating an RSA MultiPrime Key
	Distributing an RSA Public Key
	Crypto-C Format
	BER/DER Encoding

	RSA Public-Key Encryption
	RSA Private-Key Decryption
	Optimal Asymetric Encryption Padding (OAEP)
	Raw RSA Encryption and Decryption
	RSA Digital Signatures
	Computing a Digital Signature
	Verifying a Digital Signature

	Performing DSA Operations
	Generating DSA Parameters
	Generating a DSA Key Pair
	DSA Signatures
	Computing a Digital Signature
	Verifying a Digital Signature

	Performing Diffie-Hellman Key Agreement
	Generating Diffie-Hellman Parameters
	Distributing Diffie-Hellman Parameters
	Crypto-C Format
	BER Format

	Diffie-Hellman Key Agreement
	Saving the Object State

	Performing Elliptic Curve Operations
	Generating Elliptic Curve Parameters
	Retrieving Elliptic Curve Parameters
	Generating an Elliptic Curve Key Pair
	Retrieving an Elliptic Curve Key
	Generating Acceleration Tables
	Generating a Generic Acceleration Table
	Generating a Public-Key Acceleration Table

	Performing EC Diffie-Hellman Key Agreement
	Performing ECDSA in Compliance with ANSI X9.62
	Generating EC Parameters
	Generating an EC Key Pair
	Computing a Digital Signature
	Verifying a Digital Signature

	Performing ECDSA with X9.62-Compliant BER
	Generating EC Parameters
	Generating an EC Key Pair
	Computing a Digital Signature
	Verifying a Digital Signature

	Using ECAES
	Using Elliptic Curve Parameters
	Using an EC Key Pair
	ECAES Public-Key Encryption
	ECAES Private-Key Decryption

	Secret Sharing Operations
	Secret Sharing
	Generating Shares
	Reconstructing the Secret

	Putting It All Together: An X9.31 Example
	The X9.31 Sample Program

	Command-Line Demos
	Overview of the Demos
	Command-Line Demo User’s Guide
	BDEMO
	Starting BDEMO
	Specifying User Keys
	Using BDEMO

	BDEMODSA
	Running BDEMODSA
	Using BDEMODSA

	BDEMOEC
	Running BDEMOEC
	Using BDEMOEC

	File Reference
	BSLite

	Glossary
	Index

