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Preface
Dear Crypto-C Developer:

Congratulations on your purchase of RSA BSAFE® Crypto-C (Crypto-C), the state-of-
the-art in cryptographic software toolkits. Crypto-C provides developers with the 
most important privacy, authentication, and data integrity routines. Crypto-C 
contains a full palette of popular cryptographic algorithms. This software 
development kit enables you to develop applications for a wide range of purposes, 
including electronic commerce, home banking, Webcasting, and enterprise security. 

RSA BSAFE® Crypto-C 5.2.2 is the latest version of RSA Security’s cryptographic 
software for enabling applications to share encrypted information, verify the 
correspondent’s authenticity, and confirm data integrity. RSA Security’s general-
purpose cryptography software has the flexibility to suit a wide variety of security 
applications or services. This robust, fully supported product is from the most trusted 
name in e-security: RSA Security.

Crypto-C is written in C and is intended to be completely portable. It is available on a 
number of platforms and can be ported to most platforms with a minimum of effort. 
Crypto-C is a toolkit, not an application; it is intended to be integrated into operating 
systems, communications systems, and other applications. Therefore, you have a 
modest amount of work ahead of you. We have tried to make this task as clear as 
possible without limiting your options. This User’s Manual, with its code samples and 
tutorials, is the best place to start.

Thanks, and welcome to the RSA Security family.

Sincerely,

The Crypto-C Development Team
RSA Security
xv
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What’s New in Version 5.2.2?
What’s New in Version 5.2.2?
Following is a list of RSA BSAFE Crypto-C features that are new in version 5.2.2:

Improved performance
With the new performance improvements, you’ll be able to use RSA BSAFE Crypto-
C’s algorithms at unprecedented levels of speed and throughput across a wide range 
of hardware platforms. RSA BSAFE Crypto-C’s support for the Intel Itanium™ and 
Pentium™4 processors will allow developers the ability to take advantage of benefits 
of these powerful processors. Also, RSA Security’s implementation of Compaq’s 
patented MultiPrime technology is designed to process encryption/decryption tasks 
more than two times faster than previous methods. Typical tasks where customers 
will experience these performance enhancements are for SSL transactions (signing on 
the server or client side) and non-repudiation operations (verifying on the client side).  

Hardware support
RSA BSAFE Crypto-C products include PKCS #11 hardware support to allow 
communication with hardware like smart cards (for secure key storage) and 
cryptographic accelerator cards (for performance improvements). PKCS #11 support 
is in addition to the BHAPI hardware support offered in previous versions of Crypto-
C.

MultiPrime RSA
MultiPrime RSA functionality has been added to Crypto-C v5.2. Use this new 
function to generate RSA public/private key pairs. RSA MultiPrime key generation 
follows the same steps as standard RSA key generation with two exceptions: the use 
of a different AI, AI_RSAMultiPrimeKeyGen, and a different AM must be passed in 
during the B_GenerateInit call: AM_RSA_MULTI_PRIME_KEY_GEN.

Serialization for algorithm objects performing RC4, 
Diffie Hellman key exchange
A new algorithm information type, AI_RC4Serialize, has been added to Crypto-C 
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Organization of This Manual
V5.2. Use this AI to save the internal state of an RC4 encryption or decryption object, 
or to create a new object from the saved state of a previous RC4 object.

Advanced Encryption Standard (AES)
Crypto-C includes basic AES support for the cutting edge in processor technology: 
Intel Itanium and Pentium 4.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, “Introduction,” introduces the Crypto-C toolkit. It lists the algorithms, 
cryptographic standards, NIST standards, and ANSI X9 standards used in 
Crypto-C.

• Chapter 2, “Quick Start,” uses a code example to describe the basic encryption 
and decryption operations in Crypto-C.

• Chapter 3, “Cryptography,” presents a brief outline of the basic cryptographic 
principles and terminology that are used in this manual.

• Chapter 4, “Using Crypto-C,” presents a brief description of the Crypto-C 
algorithm info types and key info types by functionality. It also covers system 
considerations when using Crypto-C. 

• Chapters 5-8 present sample code for the major Crypto-C operations.

• Chapter 9, “Putting it all Together: An X9.31 Example,” presents sample code for 
the steps involved in creating and verifying RSA digital signatures in accordance 
with the X9.31 standard.

• Appendix A, “Command-Line Demos,” describes the three Crypto-C command 
line demo applications: BDEMO, BDEMODSA, and BDEMOEC.

• Glossary

• Index
P r e f a c e   x v i i
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Conventions Used in This Manual
Conventions Used in This Manual
The following typographical conventions are used in this manual.

Italic is used for:

• new terms where they are introduced

• the names of manuals and books

Lucida Typewriter Sans is used for:

• anything that appears literally in a C program, such as the names of structures 
and functions supplied by Crypto-C: for example, B_DecodeInit

Lucida Typewriter Sans Italic is used for:

• function parameters and placeholders that indicate that an item is replaced by 
some actual value in your own program: for example, randomAlgorithm

Lucida Typewriter Bold is used for:

• text the user types in command line demos and text that is printed to the screen 
by the demos (Appendix A only) 

Structures and routines defined by Crypto-C are boxed. Direct quotes from the RSA 
BSAFE Crypto-C Reference Manual are also boxed:

Application code and samples are displayed in a box with a shaded outline:

Some Crypto-C functions are only available when used with a hardware 
application that has a BSAFE Hardware API interface (BHAPI). These 
functions are marked with the icon of a hammer.

/* Structures defined by Crypto-C */

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal;

/* Application code and samples */
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Terms and Abbreviations
Terms and Abbreviations
The following table lists terms and abbreviations used in this document. Refer to the 
Glossary for a list of security and cryptographic terms and abbreviations, along with 
their definitions, that are used throughout the RSA BSAFE Crypto-C documentation 
set.  

Term or Abbreviation Definition

Crypto-C RSA BSAFE Crypto-C: Cryptographic software development kit developers 
use to develop secure applications.

.doc (file) Word for Windows, version 6.x or version 7.x files.

.htm (file) Hypertext Markup Language formatted files used for releasing documents on 
the RSA Security internet site.

.pdf (file) Portable Document Format created by Adobe Acrobat Distiller and read by 
using Adobe Acrobat Reader.

.rtf (file) Rich Text Format files that are compatable with Microsoft Word for Windows.

.txt (file) Unformatted, cross-platform text files.

PKI The Public Key Infrastructure that combines private key, trust, and certificate 
databases for the reserve of needed private keys and certificates for signing 
or encrypting messages.

Public Client API The default application programming interface between PKI services and the 
developer's application.

SPI Service provider interfaces that enable customized implementation to 
augment or replace the default Cert-J functionality.

User Interface Any interface that the end user sees or accesses. This includes any HTML 
browser-based interfaces
P r e f a c e   x i x
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Related Documents
Related Documents
Following is a list of documents referenced in this book and suggested material for 
further reading.

1. The Public-Key Cryptography Standards (PKCS), RSA Laboratories. 
(http://www.rsasecurity.com/rsalabs/PKCS/)

2. Frequently Asked Questions (FAQ) About Today’s Cryptography, RSA Laboratories. 
(http://www.rsasecurity.com/rsalabs/faq/)

3. The following Internet Standard documents:
• RFCs 1421, 1422, 1423, 1424 on Privacy Enhancement for Internet 

Electronic Mail.

• RFCs 1319 (MD2), 1321 (MD5).

4. The following CCITT Recommendation documents:
• X.690: Specifications for the Basic Encoding Rules (BER) for Abstract 

Notation One (ASN.1).

• X.509: The Directory — Authentication Framework. 

5. Rivest, Shamir, and Adleman, A method for obtaining digital signatures and 
public-key cryptosystems. Communications of the ACM, 21(2):120-126, February 
1978.

6. A. Shamir, How to share a secret. Communications of the ACM, 22(11):
612-613, November 1979.

7. W. Diffie and M. E. Hellman, New directions in cryptography. IEEE Transactions 
on Information Theory, IT-22:644-654, 1976.

8. Data Encryption Standard, FIPS Pub 46-2, National Institute of Standards and 
Technology. Available from http://www.nist.gov.itl/div897/pubs/index.htm.

9. DES Modes of Operations, FIPS Pub 81, National Institute of Standards and 
Technology, 1980. 

10. Digital Signature Standard and Secure Hashing Algorithm (DSS and SHA):
• FIPS Pub 180-1

• X9.30 Part III

11. The following reports from RSA Laboratories (http://www.rsasecurity.com/
rsalabs/technotes and http://www.rsasecurity.com/rsalabs/bulletins):

• Stream Ciphers

• MD2, MD4, MD5, SHA and Other Hash Functions

• On Pseudo-collisions in MD5
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Related Documents
• Results from the RSA Factoring Challenge

• Recommendations on Elliptic Curve Cryptosystems

• Recent Results for MD2, MD4, and MD5

12. The following OAEP specifications:
• SET Secure Electronic Transaction Specification. Book 3: Formal Protocol 

Definition, version 1.0. SETCo, 1997. (http://www.setco.org/)

• PKCS#1: RSA Cryptography Specifications. Version 2.0. RSA Security, 1998. 
(http://www.rsasecurity.com/rsalabs/pkcs/)

13. The following ANSI Financial Services Industry documents:
• X9.31 (RSA signatures, reversible DSA)

• X9.52 Draft (Triple DES)

• X9.62 and X9.63 (Elliptic Curves)

14. IEEE Standard Specifications for Public-Key Cryptography on 
http://stdsbbs.ieee.org/groups/1363/index.html.

15. B. Schneier, Applied Cryptography, John Wiley & Sons, Inc., New York, 1994.
16. G. Simmons, Contemporary Cryptography, IEEE Press.
17. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of 

Applied Cryptography. CRC Press, 1996. Chapter 2 of this book, which covers all 
aspects of modern cryptography, provides mathematical background on finite 
fields.

18. A. Menezes, I. Blake, X. Gao, R. Mullin, S. Vanstone, and T. Yaghoobian. 
Applications of Finite Fields. Kluwer Academic Publishers, 1993. Provides further 
reference material on finite fields, including techniques for representing elements.

19. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 
1993.

20. Joseph H. Silverman and John Tate, Rational Points on Elliptic Curves, Springer-
Verlag New York, Inc., 1992.
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How to Contact RSA Security
How to Contact RSA Security

RSA Security Web Site
You can visit the RSA Security Web site at http://www.rsasecurity.com. It contains 
the latest RSA Security news, security bulletins, and information about coming 
events. 

RSA BSAFE product information is available at http://www.rsasecurity.com/
products/bsafe. RSA Laboratories’ Cryptography FAQ can also be found at 
http://www.rsasecurity.com/rsalabs/faq.

Getting Support and Service
You can get technical support as follows:

SecurCare® Online
www.rsasecurity.com/securcare/index.html

Technical Support Telephone Numbers
www.rsasecurity.com/support/news/tollfree.html

Call Handling and Escalation Process
www.rsasecurity.com/support/news/escproc.html
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Chapter 1

Introduction
This chapter introduces the Crypto-C toolkit. It lists the algorithms, cryptographic 
standards, NIST standards, and ANSI X9 standards used in Crypto-C. This chapter is 
organized as follows:

• The Crypto-C Toolkit
- Algorithms
- Hardware Support

• Cryptographic Standards and Crypto-C
- PKCS Standards and Crypto-C
- NIST Standards and Crypto-C
- PKCS Compared with NIST
- ANSI X9 Standards and Crypto-C
1
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The Crypto-C Toolkit
The Crypto-C Toolkit
Crypto-C provides developers with a state-of-the-art implementation of the most 
important privacy, authentication, and data integrity routines. 

Algorithms
The following algorithms are implemented in Crypto-C:

Symmetric Ciphers
• AES
• DES
• Triple DES
• DESX
• RC2® block cipher
• RC4® stream cipher
• RC5™ block cipher
• RC6™ block cipher

Message Digests 
• MD
• MD2
• MD5
• SHA1

Message Authentication
• HMAC

Random-Number Generation
• MD2
• MD5
• SHA1
• X931
2 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e
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The Crypto-C Toolkit
Public-Key Algorithms
• RSA Public Key Cryptosystem
• Diffie-Hellman Key Agreement

Digital Signatures
• DSA
• RSA Digital Signatures

Elliptic Curve Public-Key Algorithms
• Elliptic Curve Digital Signature Algorithm (ECDSA)
• Elliptic Curve Diffie-Hellman Key Agreement
• Elliptic Curve Authenticated Encryption Scheme (ECAES)

Secret Sharing
• Bloom-Shamir Secret Sharing

Hardware Support
In addition to the cryptographic algorithms listed here, Crypto-C offers a hardware 
interface that allows vendors of cryptographic hardware to support the Crypto-C 
API. One such vendor is Intel®, whose Intel hardware security primitives include the 
Intel Random Number Generator. 

For information on using the Intel hardware (when present) with Crypto-C, see the 
Intel Security Hardware User’s Guide, included on the Crypto-C CD-ROM. For 
information about using Crypto-C with other cryptographic hardware, contact the 
specific hardware vendor.

RSA BSAFE Crypto-C products include PKCS #11 hardware support to allow 
communication with hardware like smart cards (for secure key storage) and 
cryptographic accelerator cards (for performance improvements). PKCS #11 support 
is in addition to the BHAPI hardware support offered in previous versions of Crypto-
C.
C h a p t e r  1   I n t r o d u c t i o n 3
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Cryptographic Standards and Crypto-C
Cryptographic Standards and Crypto-C

PKCS Standards and Crypto-C
Crypto-C is a general-purpose programming tool that developers can use to write a 
wide variety of applications. Crypto-C was built to help developers implement the 
Public-Key Cryptography Standards (PKCS), a series of documents that specify a 
standard way of performing basic cryptographic operations. Several higher-level 
standards, such as S/MIME, SET, IPSec, and SSL, require implementation of various 
PKCS standards. Since Crypto-C complies with PKCS standards, developers should 
find it fairly easy to integrate Crypto-C into software that implements the PKCS 
standards. 

For copies of the PKCS documents, see the PKCS section of RSA Security’s Web site at 
http://www.rsasecurity.com/rsalabs/pkcs, or contact our sales department for a 
PKCS diskette. 

NIST Standards and Crypto-C
Certain Crypto-C releases may be used to produce applications that are compliant 
with the Federal Information Processing Standards. Compliance with the FIPS 
standards is often required by government agencies and contractors. The National 
Institute of Standards and Technologies (NIST) establishes the FIPS standards, and 
certifies FIPS-compliant applications. 

As changes are made in a new release, RSA Security may need to reapply for NIST 
certification. If you need to verify whether or not a specific release is compliant with 
FIPS, contact your sales representative.

NIST Approval and Windows 32-bit Platforms 
If you require NIST approval for your Windows 32-bit applications, you may benefit 
from using the FIPS-compliant Crypto-C algorithms listed following this paragraph. 
NIST may approve the use of these algorithms in your application without requiring 
further algorithm-level testing of your application, based on the algorithm certificates 
issued to Crypto-C. For more information, see the algorithm compliance Web site 
provided by NIST. 

Crypto-C includes the following FIPS-compliant algorithms:
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Cryptographic Standards and Crypto-C
• Secure Hash Algorithm (SHA1), as specified in FIPS PUB 180-1, Secure Hash 
Standard (SHS)

• RSA Digital Signatures (rDSA), as specified in FIPS PUB 186-2
• Digital Signature Algorithm (DSA), as specified in FIPS PUB 186, Digital 

Signature Standard (DSS)
• Data Encryption Standard (DES), as specified in FIPS PUB 46-2

• DES Modes of Operation, as specified in FIPS PUB 81

NIST Approval and Windows NT Platforms 
If you require NIST approval for your Windows NT applications, you may benefit 
from using the “Crypto-C Cryptographic Services Module,” a DLL that is compliant 
with the FIPS 140-1 standard. NIST may approve the use of this module in your 
application without requiring further testing of your application, based on the NIST 
certification issued to the Crypto-C module. For more information, see the \FIPS140 
folder on the Crypto-C CD-ROM for Windows NT.

PKCS Compared with NIST
In some cases, such as the RSA algorithm, the PKCS standards differ from the NIST 
standards. In such cases, the standard you choose depends primarily on the scope of 
your application and how it will be deployed.

As mentioned previously, the PKCS standards, many of which have been in place for 
a long time, have widespread acceptance and are used as the base for many other 
higher-level standards (for example, S/MIME, SET, IPSec, and SSL). Therefore, if you 
are implementing one of these higher-level standards, or if you want compatibility 
with other applications that use the PKCS standards, you should use the PKCS-based 
implementation.

However, the United States government may have specific standards requirements 
for certain government agencies and for government contractors. These are usually 
the standards as defined by NIST. If you are creating applications for U.S. 
government use, you should ensure that you are in compliance with any required 
protocols.
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Cryptographic Standards and Crypto-C
ANSI X9 Standards and Crypto-C
Crypto-C also complies with a number of standards established by the X9 Financial 
Services Industry committee of the American National Standards Institute (ANSI). If 
you are writing a financial or government application that must comply with one of 
the X9 standards, you may benefit by using Crypto-C. This release is fully compliant 
with the following ANSI X9 standards:

• The ANSI X9.31 Standard, which specifies an implementation of RSA Digital 
Signatures (rDSA). (Note that this implementation also complies with the NIST 
standard for rDSA, specified in FIPS PUB 186-2, as mentioned previously.) 

• The ANSI X9.62 Standard, which specifies an implementation of the Elliptic 
Curve Digital Signature Algorithm (ECDSA). 

For more information, see the X9 Web site at http://www.x9.org.
6 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e
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Chapter 2

Quick Start
This chapter provides an introduction to using Crypto-C. You are first presented with 
the Crypto-C model and then you are presented an introductory example. This 
chapter is organized as follows:

• The Six-Step Sequence
• Introductory Example
• Decrypting the Introductory Example
• Multiple Updates
• Summary of the Six Steps
7
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The Six-Step Sequence
The Six-Step Sequence
The Crypto-C model generally follows a six-step sequence:

1. Create
2. Set
3. Init
4. Update
5. Final
6. Destroy

In addition, for every application, you must include the necessary header files; we 
will call this Step 0. 

The six-step sequence makes it easier to maintain your code. For example, if you have 
implemented a message digest routine using MD2 and wish to use SHA1 instead, you 
simply need to make changes in Steps 2 and 3, Set and Init. The rest of your code can 
be reused. Similarly, if you originally programmed a routine under the assumption 
that it would get all the data from a single buffer, and you want to modify it to take 
data from multiple buffers, you can simply change Step 4, Update.

Note: In some cases, an algorithm may not require an Update step.

The sections in this chapter show the following:

• A six-step encryption example
• A six-step decryption example
• An example using multiple Updates
• A summary of the six-step process
8 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e
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Introductory Example
Introductory Example
The CD containing the Crypto-C library distribution also includes sample source code 
to accompany this Developer’s Guide. One of the files on that CD, introex.c, is an 
example of converting the Introductory Example into a program. Later in this manual 
are instructions on writing code for many Crypto-C operations. There are sample 
programs on the CD to accompany all the topics covered.

With the RSA BSAFE Crypto-C Reference Manual handy, we will encrypt the sentence, 
“Encrypt this sentence.” To do this, we will use what is called a stream cipher, that is, 
an encryption method that encrypts data one character at a time, in a single stream. 
The cipher we will use is called the RC4 cipher. This cipher can take a key size from 1 
to 256 bytes. The RC4 cipher creates a “key stream” based on the key and XORs the 
stream of data with the key stream to create ciphertext.

The example in this section corresponds to the file introex.c. 

Step 0: Include Files
You must include the following header file and the Crypto-C library in every 
application you write using Crypto-C:

When writing a Crypto-C application, include bsafe.h. If you want to use the 
DEMO_ALGORITHM_CHOOSER, see Selecting an Algorithm Chooser on page 
15. In addition, you must compile and link in tstdlib.c, which contains the memory 
management functions called by the Crypto-C library.

Note: For backward compatibility, the BSAFE 2.x include file names, global.h and 
bsafe2.h, are still valid. If your source code contains the older names, you 
should not have any problems.

Step 1: Creating an Algorithm Object
Whatever operation Crypto-C performs, it does so from an algorithm object. An 
algorithm object is used to hold information about an algorithm’s parameters and to 
keep a context during a cryptographic operation such as encryption or decryption. 
For our example, we will build an algorithm object that performs encryption. 

You build an algorithm object in Steps 1 to 3. As you go through these steps, you 

#include “bsafe.h”
C h a p t e r  2   Q u i c k  S t a r t 9
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Introductory Example
specify the type of algorithm that is being used, supply any special information or 
parameters that the algorithm requires, and generate or supply a key for algorithms 
that need one.

In Step 1, we simply create the object. We do this by declaring a variable to be an 
algorithm object and calling B_CreateAlgorithmObject.

In this case, we name our algorithm object rc4Encrypter and declare it as follows:

The data type B_ALGORITHM_OBJ is defined in bsafe.h:

typedef POINTER B_ALGORITHM_OBJ;

where POINTER is defined in aglobal.h:

typedef unsigned char *POINTER;

and NULL_PTR is also defined in aglobal.h:

#define NULL_PTR ((POINTER)0)

So our variable, rc4Encrypter, is a pointer. To prevent problems when the algorithm 
object is destroyed, it is a good idea to initialize it to NULL_PTR. See Step 6 for details.

To create an algorithm object, we call B_CreateAlgorithmObject. Chapter 4 of the 
Reference Manual gives the function prototypes and descriptions of all the Crypto-C 
calls. For B_CreateAlgorithmObject, we find:

Because B_CreateAlgorithmObject takes a pointer to a B_ALGORITHM_OBJ as its 
argument, we have to pass the address of rc4Encrypter. The return value is an int. 
Most Crypto-C calls return either a 0 (zero), which indicates success, or a non-zero 
error code. After the call, look at the return value: if it is 0, continue; if not, stop. At 
RSA Security, the tradition is to name the return value status:

B_ALGORITHM_OBJ rc4Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

int B_CreateAlgorithmObject (
  B_ALGORITHM_OBJ *algorithmObject                 /* new algorithm object */
);
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Standard RSA Security coding practices use the above do-while construct to make it 
easy to break out of a sequence when encountering an error. If a Crypto-C function 
returns a non-zero value, break will exit the do-while, and further code dependent on 
the offending call will not be executed. However, any clean-up code, such as 
overwriting sensitive memory with zeroes (see Step 6), can follow the do-while and 
will always execute, whether or not there was an error.

Step 2: Setting the Algorithm Object
The variable rc4Encrypter is now an algorithm object, but we have not yet determined 
what type of operations it can perform. In Step 2, we associate the algorithm object 
with an algorithm and supply any special information or parameters the algorithm 
requires. We do this with B_SetAlgorithmInfo. Chapter 4 of the Reference Manual 
gives this function’s prototype and description:

The first argument is rc4Encrypter. The second argument is an algorithm info type, or 
AI. In Crypto-C, you specify the type of operation an algorithm object performs by 
setting the object to a particular AI. Chapter 2 of the Reference Manual describes the 
available AIs. Each AI description also lists the information that must accompany that 
AI when setting an algorithm object. That accompanying information is the third 
argument of B_SetAlgorithmInfo. 

For our example, we want to choose a stream cipher AI. A stream cipher processes 
data in a stream of arbitrary length. This is in contrast to another common type of 
cipher, the block cipher, which processes data in blocks of a fixed size. In Crypto-C, 

int status;
do {
  if ((status = B_CreateAlgorithmObject (&rc4Encrypter)) != 0)
    break;

.

.

.
} while (0);

int B_SetAlgorithmInfo (
  B_ALGORITHM_OBJ algorithmObject,                     /* algorithm object */
  B_INFO_TYPE     infoType,               /* type of algorithm information */
  POINTER         info                            /* algorithm information */
);
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there is a single stream cipher, the RC4 cipher, and a number of AIs that can be used 
to implement it. For this example we will use AI_RC4; we pass this as the second 
argument to B_SetAlgorithmInfo. 

The third argument is information that is specific to the AI we chose. For complex 
algorithms, this is input that is required by the algorithm, including parameters for 
algorithms that require them, “salt” and the desired number of iterations for 
password-based encryption, or an “initialization vector” for block ciphers. In our 
example, AI_RC4 is a simple algorithm that does not require any parameters; its entry 
in Chapter 2 of the Reference Manual states that the format of the info supplied to 
B_SetAlgorithmInfo is NULL_PTR.

Thus, we can make the call to B_SetAlgorithmInfo:

Note: Once you have set an algorithm object, do not set it again. If you need an 
algorithm object to perform another type of operation, create a new one.

Step 3: Init
Now that we have created and set our algorithm object, rc4Encrypter, it is ready to 
encrypt. Actually, since we haven’t called B_EncryptInit, it is ready to decrypt as 
well. In Step 3, we choose the operations our algorithm object can perform by 
supplying the desired function pointers to the Crypto-C library; we also create and set 
a key object that will supply the key data the algorithm needs.

Note: An algorithm object can be used for either encryption or decryption, but not 
for both. You should create separate algorithm objects to handle each case.

Look at the entry for AI_RC4 in Chapter 2 of the Reference Manual:

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal; 
and B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal. 
You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.

From this, you can see that AI_RC4 can be used with encryption or decryption 
procedures; that is, it can be used to encrypt or to decrypt. We want to encrypt, so in 
Step 3, we will call B_EncryptInit to initialize our algorithm object to perform 
encryption. This call will also associate a key with the algorithm object. 

if ((status = B_SetAlgorithmInfo
      (rc4Encrypter, AI_RC4, NULL_PTR)) != 0)
  break;
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See the description and prototype in Chapter 4 of the Reference Manual for 
B_EncryptInit:

As in Step 2, the first argument is the algorithm object; once again, we use 
rc4Encrypter. The next three arguments are new. 

Step 3a: Creating a Key Object
The second argument is a key object, which is used to hold any key-related 
information, such as the RC4 key, and to supply this information to functions that 
require it. Before we can pass a key object as an argument, we must create and set it. 
Creating a key object is similar to creating an algorithm object. We name our key 
object rc4Key and declare it as follows:

where B_KEY_OBJ is defined in bsafe.h:

typedef POINTER B_KEY_OBJ;

Chapter 4 of the Reference Manual gives the description and prototype of 
B_CreateKeyObject:

For our example, we use:

Step 3b: Setting a Key Object
We have a key object, but it is not yet distinguished as an RC4 key. To distinguish the 

int B_EncryptInit (
  B_ALGORITHM_OBJ     algorithmObject,                 /* algorithm object */
  B_KEY_OBJ           keyObject,                             /* key object */
  B_ALGORITHM_CHOOSER algorithmChooser,               /* algorithm chooser */
  A_SURRENDER_CTX    *surrenderContext                /* surrender context */
);

B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;

int B_CreateKeyObject (
  B_KEY_OBJ *keyObject                                  /* new key object */
);

if ((status = B_CreateKeyObject (&rc4Key)) != 0)
  break;
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object as an RC4 key, we need to use B_SetKeyInfo. See Chapter 4 of the Reference 
Manual for this function’s description and prototype:

This function is similar to B_SetAlgorithmInfo. The first argument is the key object 
just created, rc4Key. The second argument is a key info type (KI), and the third 
argument is information that must accompany the given KI. We want to use a KI 
compatible with RC4 encryption, so we return to the entry for our AI, AI_RC4, in 
Chapter 2 of the Reference Manual:

Key info types are described in Chapter 3 of the Reference Manual. Under the entry for 
KI_ITEM we find that the format of info supplied to B_SetKeyInfo is a pointer to an 
ITEM structure: 

len is the length of the key in bytes. The RC4 cipher takes key sizes of 1 to 256 bytes. A 
10-byte key is generally sufficient for most applications. data is the key data. A real 
application would use a random number generator to produce 10 bytes for the key 
(see “Generating Random Numbers” on page 165). For this example, we can simply 
use:

int B_SetKeyInfo (
  B_KEY_OBJ   keyObject,                                     /* key object */
  B_INFO_TYPE infoType,                         /* type of key information */
  POINTER     info                                      /* key information */
);

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
KI_Item that gives the address and length of the RC4 key.

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;
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Now we can complete the call to B_SetKeyInfo:

As with algorithm objects, once you have set a key object, you should not set it again. 
If you need another key object, you should create a new one.

Note: In a real application, for security reasons, you might want to zeroize and free 
your key data immediately after setting the key.

Now that we have created and set our key object, rc4Key, we can pass it as the second 
argument to B_EncryptInit.

Selecting an Algorithm Chooser
The third argument to B_EncryptInit is an algorithm chooser; this is a structure that 
specifies which algorithm methods to link in. An algorithm method (AM) is the 
underlying code that actually performs the cryptographic operation. Because many 
AIs can perform more than one cryptographic function (for example, AI_RC4 can 
perform encryption and decryption), an application often has a choice of which 
underlying algorithm methods need to be linked in. 

An algorithm chooser lists all the AMs the application will use; only these AMs will 
be linked in. Crypto-C comes with a demonstration application containing the 
algorithm chooser DEMO_ALGORITHM_CHOOSER. You can use this algorithm chooser in 
any Crypto-C application as long as the module which defines it (choosc.c) is 
compiled and linked in. However, DEMO_ALGORITHM_CHOOSER will link in all the 
algorithm methods available, even though an application might use only two or three. 

A developer can write an algorithm chooser for the specific application to make the 
executable image smaller. See “Algorithm Choosers” on page 116 in this manual for 

static unsigned char rc4KeyData[] = {
  0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
};

ITEM rc4KeyItem;
rc4KeyItem.data = rc4KeyData;
rc4KeyItem.len = sizeof(rc4keyData);

if ((status = B_SetKeyInfo
      (rc4Key, KI_Item, (POINTER)&rc4KeyItem)) != 0)
  break;
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instructions on writing an algorithm chooser. For the purposes of our example, we see 
that the Reference Manual entry for AI_RC4 states that we should use 
AM_RC4_ENCRYPT in our chooser. Include the following algorithm methods in 
your chooser:

Surrender Context
The fourth argument of B_EncryptInit is a surrender context, which controls when 
and how the application surrenders control during time-consuming operations. The 
application developer can put together an A_SURRENDER_CTX structure containing a 
surrender function and other information. Crypto-C applications call this surrender 
function at regular intervals. 

The surrender function can simply print out information to the user that indicates that 
the Crypto-C operation is currently executing, or it can provide the user with a means 
of halting the operation if it is taking too much time. A surrender context is not 
required; if none is desired, simply pass a properly cast NULL_PTR. See “The Surrender 
Context” on page 118 for a more detailed description of the A_SURRENDER_CTX 
structure. For this example, we will use (A_SURRENDER_CTX *)NULL_PTR.

We can now complete our call to B_EncryptInit:

Saving the Object State (optional)
This step is optional. Refer to “Saving State” on page 120 for information on how to 
receive a buffer that contains all of the data necessary to reconstruct the object, using 
the call B_SetAlgorithmState, to the state it was in at the time of calling the Get 
routine. This can be done after B_EncryptInit and B_EncryptUpdate, or B_DecryptInit 
and B_DecryptUpdate.

Step 4: Update
In Steps 1 through 3, we created our algorithm object and initialized it with the 

AM_RC4_ENCRYPT for encryption
B_ALGORITHM_METHOD*rc4EncryptChooser[]={
& AM_RC4_ENCRYPT, NULL};

if ((status = B_EncryptInit
      (rc4Encrypter, rc4Key, rc4EncryptChooser,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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information that it needs to perform RC4 encryption. In Step 4, we can enter the data 
to encrypt with the B_EncryptUpdate function. Chapter 4 of the Reference Manual 
provides the following description and prototype:

The first argument is our algorithm object, rc4Encrypter. 

The other arguments call for the plaintext input and encrypted output. Because the 
output depends on the input, we start with the fifth and sixth arguments, which 
describe the input.

We name our input dataToEncrypt and declare it as follows:

Crypto-C needs to know how many bytes our input is, so we use strlen:

If your data is not a string — that is, if it does not end with a NULL-terminating 
character — do not use strlen to determine its length.

The output is described by the second, third, and fourth arguments. 

The second argument is described in the prototype as unsigned char *partOut. This 
does not mean you simply declare a variable to be unsigned char * and pass it as the 
argument. The output argument that you pass is a pointer to a buffer of allocated 
memory. This is an important point; see “Algorithm Choosers” on page 116 for a 
detailed discussion of this topic. 

int B_EncryptUpdate (
  B_ALGORITHM_OBJ  algorithmObject,                    /* algorithm object */
  unsigned char   *partOut,                          /* output data buffer */
  unsigned int    *partOutLen,                    /* length of output data */
  unsigned int     maxPartOutLen,            /* size of output data buffer */
  unsigned char   *partIn,                                   /* input data */
  unsigned int     partInLen,                      /* length of input data */
  B_ALGORITHM_OBJ  randomAlgorithm,                  /* random byte source */
  A_SURRENDER_CTX *surrenderContext                   /* surrender context */
);

static char dataToEncrypt[] = “Encrypt this sentence.”;

unsigned int dataToEncryptLen;
dataToEncryptLen = (unsigned int)strlen (dataToEncrypt) + 1;
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For now, we declare:

For a stream cipher, the length of the encrypted (output) data is equal to the length of 
the input data. So we allocate dataToEncryptLen bytes with T_malloc:

The previous code sample uses the Crypto-C routine T_malloc. Crypto-C supplies its 
own memory management routines to increase code portability and to meet the 
special requirements of handling encrypted data. The Crypto-C memory 
management routines reside in the file tstdlib.c; make sure this file is compiled and 
linked in. These routines are described in Chapter 4 of the Reference Manual and in 
“Memory-Management Routines” on page 122 of this manual.

In our example, the T_malloc routine from tstdlib.c returns a pointer to the 
allocated memory. If, for some reason, it cannot allocate memory (for example, when 
there is not enough memory available), T_malloc will return NULL_PTR. It is 
imperative to always check the return value of T_malloc, even if you are allocating 
only a small number of bytes. T_malloc also sets an unsigned char * variable; it is a 
good idea to initialize this variable to NULL_PTR. See “Step 6: Destroy” on page 20 for 
more information.

The third argument to B_EncryptUpdate is a pointer to an unsigned int. 
B_EncryptUpdate returns a value indicating how many bytes it placed into the output 
buffer. It will place this value at the address specified by the pointer to the unsigned 
int. Make the proper declaration:

Crypto-C might not encrypt all the input data during a call to B_EncryptUpdate. Any 
unprocessed data will be saved in a buffer inside the algorithm object created by 
Crypto-C and encrypted during a subsequent call to Update (see “Multiple Updates” 
on page 29) or during the call to B_EncryptFinal (see “Step 5: Final” on page 19). This 
is why it is important to keep track of how many bytes Crypto-C wrote to the output 
buffer.

The fourth argument to B_EncryptUpdate is the size of the output buffer. The Update 

unsigned char *encryptedData = NULL_PTR;

encryptedData = T_malloc (dataToEncryptLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
  break;

unsigned int outputLenUpdate;
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function must know the size of the buffer. The Update function will not attempt to 
place data into unallocated memory; instead, it returns an error if it needs to place 
more bytes into the buffer than are allocated. In our example, we will use 
dataToEncryptLen as our output data size.

The seventh argument is a random algorithm. Recall that in Chapter 2 of the Reference 
Manual, the description of AI_RC4 states:

That is exactly what we will supply in our example. 

For the eighth argument, once again we pass a properly cast NULL_PTR as the 
surrender context. When we put this all together, our Update call is:

Note the warning in the Reference Manual Chapter 2 entry for AI_RC4:

This simply means that you should not use the same key for two different encryption 
sessions.

Step 5: Final
B_EncryptFinal finalizes the encryption process by encrypting any data that 
B_EncryptUpdate could not. See Chapter 4 of the Reference Manual for the function’s 
description and prototype:

You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.

if ((status = B_EncryptUpdate
      (rc4Encrypter, encryptedData, &outputLenUpdate,
      dataToEncryptLen, dataToEncrypt, dataToEncryptLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

encryptedDataLen = outputLenUpdate + outputLenFinal

Due to the nature of the RC4 algorithm, security is compromised if multiple data 
blocks are encrypted with the same RC4 key. Therefore, B_EncryptUpdate cannot be 
called after B_EncryptFinal. This is because after a call to B_EncryptFinal and 
B_DecryptFinal, the state of the algorithm object is reset to the state in which it was 
following the call to B_EncryptInit and B_DecryptInit. To begin an encryption 
operation for a new data block, you must call B_EncryptInit and supply a new key.
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For our example, the first argument is rc4Encrypter. 

The second argument is a pointer to the output buffer that we created for 
B_EncryptUpdate. However, B_EncryptUpdate has already placed some data into that 
buffer, so we must pass the address of the next byte that is available after the already 
filled bytes to B_EncryptFinal. That is the address of the beginning of the buffer plus 
the number of bytes that B_EncryptUpdate filled, or encryptedData + outputLenUpdate. 

The third argument is a pointer to an unsigned int; B_EncryptFinal will set that 
unsigned int to the number of bytes it encrypted. 

The fourth argument is the size of the buffer available to B_EncryptFinal. Because 
B_EncryptUpdate has already written to part of the buffer, this value will be the total 
size of the buffer minus the number of bytes B_EncryptUpdate has used, or 
dataToEncryptLen - outputLenUpdate. 

Once again, we can pass properly cast null pointers for the fifth and sixth arguments, 
which are the random algorithm and surrender context. 

Then, for our example, we have:

Step 6: Destroy
When you are done with an algorithm or key object, you must destroy it. The Destroy 
function frees up any memory that was allocated by Crypto-C and zeroizes any 
sensitive memory. Because you will always want to destroy the objects, place these 

int B_EncryptFinal (
  B_ALGORITHM_OBJ  algorithmObject,                    /* algorithm object */
  unsigned char   *partOut,                          /* output data buffer */
  unsigned int    *partOutLen,                    /* length of output data */
  unsigned int     maxPartOutLen,            /* size of output data buffer */
  B_ALGORITHM_OBJ  randomAlgorithm,                  /* random byte source */
  A_SURRENDER_CTX *surrenderContext                   /* surrender context */
);

if ((status = B_EncryptFinal
      (rc4Encrypter, encryptedData + outputLenUpdate,
      &outputLenFinal, dataToEncryptLen - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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function calls after the do-while construct. That way, even if there is an error 
somewhere and the program breaks out of the do-while before executing all the calls 
within the do-while, the Destroy functions will execute. In case the error occurs 
before an object has been created, it is a good idea to initialize objects to NULL_PTR. If 
an object is NULL_PTR, the Destroy function does nothing.

Chapter 4 of the Reference Manual gives the description and prototype of the Destroy 
functions:

For our example, we use the following:

Note: Following these calls, rc4Key and rc4Encrypter will be set to NULL if the 
objects were disposed of properly.

In addition to destroying any objects that you created, any memory you allocated 
must be freed when you are done with it. This means that each T_malloc must have a 
corresponding T_free. Placing the T_free after the do-while guarantees that it will be 
called even if there is an error somewhere. However, there is a concern that if there is 
an error before the T_malloc and the program breaks out of the do-while before 
memory is allocated, then T_free will be called without a corresponding T_malloc. 
That is why it is important to initialize the pointer to NULL_PTR. If the argument to 
T_free is NULL_PTR, the extra call to T_free does nothing. 

See Chapter 4 of the Reference Manual for the T_free prototype:

void B_DestroyKeyObject (
  B_KEY_OBJ       *keyObject                      /* pointer to key object */
);
void B_DestroyAlgorithmObject (
  B_ALGORITHM_OBJ *algorithmObject          /* pointer to algorithm object */
);

B_DestroyKeyObject (&rc4Key);
B_DestroyAlgorithmObject (&rc4Encrypter);

void T_free (
  POINTER block                                           /* block address */
);
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For this example, call T_free as follows:

Note: Using T_free means you can no longer access the data at that address. Do not 
free a buffer until you no longer need the data it contains. If you will need the 
data later, you might want to save it to a file first.

You may want to zeroize any sensitive data before you free it. To do this, duplicate 
the following sequence after the do-while. If there is an error inside the do-while 
before you zeroize and free, these important tasks will still be performed:

Putting It All Together
Now we can put Steps 0 through 6 into a program. This program can be found in the 
file introex.c:

T_free (encryptedData);

if (rc4KeyItem.data != NULL_PTR) {
  T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
  T_free (rc4KeyItem.data);
  rc4KeyItem.data = NULL_PTR;
  rc4KeyItem.len = 0;
}

#include "bsafe.h"

void PrintBuf PROTO_LIST ((unsigned char *, unsigned int));

void main()
{
  B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;
  B_ALGORITHM_OBJ rc4Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

  /*  The RC4 key is hard-coded in this example. In a real application, 
      use a random number generator to produce the key.  */
  unsigned char rc4KeyData[10] = {
      0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
  };
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  static char dataToEncrypt[] = "Encrypt this sentence.";
  unsigned char *encryptedData = NULL_PTR;
  unsigned int dataToEncryptLen, encryptedDataLen;
  unsigned int outputLenUpdate, outputLenFinal;
  int status;

  do {
    dataToEncryptLen = strlen (dataToEncrypt) + 1;

    /*  Step 1:  Create an algorithm object.  */
    if ((status = B_CreateAlgorithmObject (&rc4Encrypter)) != 0)
      break;

    /*  Step 2:  Set the algorithm to a type that does rc4 encryption.
                 AI_RC4 will do.  */
    if ((status = B_SetAlgorithmInfo
         (rc4Encrypter, AI_RC4, NULL_PTR)) != 0)
      break;

    /*  Step 3a:  Create a key object.  */
    if ((status = B_CreateKeyObject (&rc4Key)) != 0)
      break;

    /*  Step 3b:  Set the key object with the 10-byte key.  */
    rc4KeyItem.data = rc4KeyData;
    rc4KeyItem.len = rc4KeyDataLen;

    if ((status = B_SetKeyInfo
          (rc4Key, KI_Item, (POINTER)&rc4KeyItem)) != 0)
      break;

    if (rc4KeyItem.data != NULL_PTR) {
      T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
      T_free (rc4KeyItem.data);
      rc4KeyItem.data = NULL_PTR;
      rc4KeyItem.len = 0;
    }

    /*  Step 3:  Init  */
    if ((status = B_EncryptInit
          (rc4Encrypter, rc4Key, DEMO_ALGORITHM_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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    /*  Step 4:  Update  */
    encryptedData = T_malloc (dataToEncryptLen);
    if ((status = (encryptedData == NULL_PTR)) != 0)
      break;

    if ((status = B_EncryptUpdate
          (rc4Encrypter, encryptedData, &outputLenUpdate,
          dataToEncryptLen, (unsigned char *)dataToEncrypt,
          dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    /*  Step 5:  Final  */
    if ((status = B_EncryptFinal
          (rc4Encrypter, encryptedData + outputLenUpdate,
          &outputLenFinal, dataToEncryptLen - outputLenUpdate,
          (B_ALGORITHM_OBJ)NULL_PTR,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    encryptedDataLen = outputLenUpdate + outputLenFinal;
    printf ("Encrypted data (%u bytes):\n", encryptedDataLen);    
    PrintBuf (encryptedData, encryptedDataLen);

  } while (0);

  /*  Done with the key and algorithm objects, so destroy them.  */
  B_DestroyKeyObject (&rc4Key);
  B_DestroyAlgorithmObject (&rc4Encrypter);

  /*  Free up any memory allocated, save it to a file or print it out first
      if you need to save it.  */
  if (rc4KeyItem.data != NULL_PTR) {
    T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
    T_free (rc4KeyItem.data);
    rc4KeyItem.data = NULL_PTR;
    rc4KeyItem.len = 0;
  }
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You may find it a useful exercise to compile and link this program. Also, it could also 
be instructive to add some print statements. For instance, what are the values of 
outputLenUpdate and outputLenFinal? 

While it is possible to print the encryptedData, it will not be an ASCII string — it is not 
any kind of string, because there is no NULL-terminating character. The encrypted data 
is binary data, so it may be more useful to print out the result byte-by-byte in hex-
ASCII strings. For an example of a function that does this, see the RSA_PrintBuf() 
routine in samples/common/source/demoutil.c. In addition, note that when writing 
Crypto-C output to (and reading it from) files, it is usually more useful (in some cases, 
even necessary) to open the files in binary mode.

To run this exercise, first compile introex.c and tstdlib.c. You can find makefiles in 
the samples/make directory. Then link the object files with bsafe.lib or the 
equivalent platform-specific library.

  if (encryptedData != NULL_PTR){
    T_memset (encryptedData, 0, dataToEncryptLen);
    T_free (encryptedData);
    encryptedData = NULL_PTR;
  }

} /*  end main  */
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Decrypting the Introductory Example
Decrypting data is similar to encrypting. The RC4 cipher uses symmetric-key 
encryption, which means the key that was used to encrypt will be the key needed for 
decryption.

The example in this section corresponds to the file dintroex.c.

Step 1: Creating an Algorithm Object
First create the algorithm object.

Step 2: Setting the Algorithm Object
Use the same AI and parameters as for encryption:

Step 3: Init
Use the same key data as for encryption. Once again, we must create and set the key 
object.

Step 3a: Creating the Key Object
As before, we name our key object rc4Key and declare it as follows:

Then we allocate space for the key object using B_CreateKeyObject:

B_ALGORITHM_OBJ rc4Decrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc4Decrypter)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
      (rc4Decrypter, AI_RC4, NULL_PTR)) != 0)
  break;

B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc4Key)) != 0)
  break;
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Step 3b: Setting the Key Object
We need to fill our key with the same 10 bytes of data we used for encryption. We 
must make sure that we use the same key as we used to encrypt. For our sample 
application, we can simply re-create the key data we had before:

Now we can complete the call to B_SetKeyInfo:

Step 4: Update
Here, we must set the buffer that will store the decrypted data; for the RC4 cipher, it 
should be the same size as the encrypted data’s buffer:

static unsigned char rc4KeyData[] = {
  0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
};

if ((status = B_SetKeyInfo
    (rc4Key, KI_Item, (POINTER)&rc4KeyData)) != 0)
  break;

unsigned char *decryptedData = NULL_PTR;

decryptedData = T_malloc (encryptedDataLen);
if ((status = (decryptedData == NULL_PTR)) != 0)
  break;

if ((status = B_DecryptUpdate
      (rc4Decrypter, decryptedData, &decryptedLenUpdate,
      encryptedDataLenTotal, encryptedData, outputLenTotal,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 5: Final

In the “Introductory Example” on page 9, the plaintext was a string. Therefore, we can 
compute the sum of decryptedLenUpdate and decryptedLenFinal to determine how 
many characters make up the decryption. 

Note: For some algorithms, the decrypted data may not be a string — for example, 
when the NULL-terminating character was not encrypted. In these cases, if you 
want to print the decrypted data, you will not be able to because the data is in 
binary form, not ASCII. You could print the binary data using 
RSA_PrintBuf(), or you can convert the decrypted data. Crypto-C offers 
encoding and decoding functions to convert between binary and ASCII. See 
“Converting Data Between Binary and ASCII” on page 172 for more 
information.

Step 6: Destroy
Always destroy objects when you no longer need them:

if ((status = B_DecryptFinal
      (rc4Decrypter, decryptedData + decryptedLenUpdate,
       &decryptedLenFinal, encryptedDataLen - decryptedLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyAlgorithmObject (&rc4Decrypter);

if (decryptedData != NULL_PTR) {
  T_memset (decryptedData, 0, encryptedDataLen);
  T_free (decryptedData);
  decryptedData = NULL_PTR;
}
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Multiple Updates
An application can do multiple updates before the Final call. For example, suppose 
you have data from three different files that you want to encrypt into a single buffer. 
You could do this in three steps: read the contents of the first file into a buffer; read 
the next file, appending the contents to the end of the existing buffer; then append the 
contents of the third. But that would be clumsy if the contents of the three files are 
already in three buffers.

You do not have to put data together into a single buffer to encrypt it. Instead, call 
B_EncryptUpdate with the first buffer, call it a second time with the second buffer, and 
one last time with the third buffer. Then call B_EncryptFinal once, after you have 
finished all Updates. Similarly, you can call B_DecryptUpdate more than once with 
blocks of encrypted data.

Multiple updates can also be useful for encrypting or decrypting large amounts of 
data. If you need to process a one-megabyte file, you could allocate a megabyte of 
memory, put the entire file into that memory buffer, and call Update once. But using 
such a large amount of memory is impractical or even impossible in some situations. 
An application is more robust if it allocates a smaller buffer — say, 64, 128 or 1024 
bytes — transfers data from the file in increments, and processes each unit with a 
separate call to Update. Then it can call Final once for all Updates.

Crypto-C does not always encrypt or decrypt an entire block during an Update call. 
One reason it might not handle the whole block is because of padding. Padding is 
used with block ciphers to ensure the data satisfies input restrictions and may add 
bytes to the original data. See “Padding” on page 37 for more information. Padding 
and pad operations (encrypting or decrypting the padding, or stripping the pad) take 
place in Final, so Crypto-C may keep the last few bytes of any input to an Update call 
in a buffer. If there is another call to Update, then the bytes in that buffer were not the 
last bytes of input, and Crypto-C continues to encrypt or decrypt. If the next call is to 
Final, the bytes in the buffer are the last bytes of input, so Crypto-C adds the pad and 
encrypts it, or decrypts the final bytes and strips the pad.

Note: The output of a particular update may be larger than the input, because 
Crypto-C may be processing the current input plus some data in the buffer. 
Hence, an output buffer of an Update call should always be larger than the 
input length. For block ciphers, for example, the size of the output buffer may 
be as large as the length of the input plus the block size.

The following example demonstrates multiple updates. It corresponds to the file 
multencr.c; a similar example for decryption is in the file multdecr.c. Assume that 
the subroutine GetDataFromFile gets, at most, a specified number of bytes from a file, 
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places them into the given buffer, and sets a flag indicating whether the bytes 
returned are the last ones in the file or not. Assume also that the subroutine 
AppendDataToFile appends output data to a file. Finally, assume we have already 
called B_CreateAlgorithmObject, B_SetAlgorithmInfo, and B_EncryptInit:

#define UPDATE_SIZE         64
#define UPDATE_OUTPUT_SIZE  (UPDATE_SIZE + 16)

  FILE *inputFile = (FILE *)NULL_PTR;
  FILE *outputFile = (FILE *)NULL_PTR;

  unsigned char dataToEncrypt[UPDATE_SIZE];
  unsigned char blockOfEncryptedData[UPDATE_OUTPUT_SIZE];
  unsigned int dataToEncryptLen, totalBytesSoFar;
  unsigned int outputLenUpdate, outputLenFinal;
  unsigned int sizeToUpdate = UPDATE_SIZE;
  int endFlag, status;

  do {

    totalBytesSoFar = 0;

    while ((status = GetDataFromFile
            (inputFile, sizeToUpdate, dataToEncrypt,
             &dataToEncryptLen, &endFlag)) == 0) {
      printf ("dataToEncryptLen = %i \n", dataToEncryptLen);
      PrintBuf (dataToEncrypt, dataToEncryptLen);
      if ((status = B_EncryptUpdate
           (encryptionObject, blockOfEncryptedData,
            &outputLenUpdate, UPDATE_OUTPUT_SIZE, dataToEncrypt,
            dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
            (A_SURRENDER_CTX *)NULL_PTR)) != 0)
        break;

      /*  Save the encrypted data.  */
      if ((status = AppendDataToFile
           (outputFile, blockOfEncryptedData,
            outputLenUpdate)) != 0)
        break;

      totalBytesSoFar += outputLenUpdate;
      if (endFlag == 1)
        break;
    } /*  end while  */
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In the preceeding code example, we took dataToEncryptLen bytes of data to encrypt 
and passed them to B_EncryptUpdate. The number of bytes of output may or may not 
be dataToEncryptLen; check outputLenUpdate to see. If fewer than dataToEncryptLen 
bytes were output, the as-yet-unencrypted input waits in a buffer.

Notice that we did not allocate memory but used the stack; we did this by declaring 
our buffers to be arrays of unsigned char. This means that the operating system will 
do the allocating and freeing. 

Also notice the call to T_memset, another memory management routine from 
tstdlib.c. The T_memset routine sets all the bytes of a buffer to a particular value; in 
this case, it wrote a 0 to every byte in dataToEncrypt. T_memset is described in Chapter 
4 of the Reference Manual. When memory is freed, whether by a call to T_free or 
automatically by the operating system, the data still exists at that location; the 
operating system has simply marked that area as available for use. For security, 
overwrite any memory that held sensitive data when you are done with it. This 
prevents attackers from reconstructing secrets by examining your computer’s 
memory.

    /*  If there was an error in the above while loop, break out of the
          do-while construct.  */
    if (status != 0)
      break;
    
    /*  Call B_EncryptFinal once after all Updates.  */           
    if ((status = B_EncryptFinal
         (encryptionObject, blockOfEncryptedData, &outputLenFinal,
          UPDATE_OUTPUT_SIZE, (B_ALGORITHM_OBJ)NULL_PTR,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    /*  Save the encrypted data.  */
    if ((status = AppendDataToFile
         (outputFile, blockOfEncryptedData,
          outputLenFinal)) != 0)
      break;

    totalBytesSoFar += outputLenFinal;
    
  } while (0);

  /*  Free up any memory allocated, save it to a file or print it out first
      if you need to save it.  */
  T_memset (dataToEncrypt, 0, sizeof (dataToEncrypt));
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Summary of the Six Steps
A typical implementation uses the six steps as follows:

Step 0: Include
Include the necessary header files. In addition, make sure that:

• Your compiler can locate the Crypto-C header files.
• Your compiler can locate and link in the Crypto-C library.
• You compile and link in the file containing the definitions for the T_ functions; an 

example is provided in tstdlib.c.

Step 1: Create
Create an algorithm object by declaring a variable to be an algorithm object and 
calling B_CreateAlgorithmObject.

Step 2: Set
Use B_SetAlgorithmInfo to associate the algorithm object with an algorithm and to 
supply any special information or parameters the algorithm requires. 

Step 3: Init
Choose the operations the algorithm object can perform by supplying the desired 
algorithm methods from the Crypto-C library. If the algorithm requires a key, create 
and set a key object that will supply the key data that the algorithm needs.

Step 4: Update
Initiate an action. The action depends on the algorithm. Update is the only step that 
can be performed more than once on the same object. For example:

• For an encryption or decryption algorithm, an Update step encrypts or decrypts 
all or part of the data. You can use multiple Update steps to encrypt or decrypt 
data. 

• For a message digest, the Update step is used to enter the data to digest.
• For a random number generator, the Update step is used to seed the random 

number generation. 
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• For some algorithms, such as generating a public/private key pair, there is no 
Update step. 

Step 5: Final
Finalize the action initiated in Step 4. Again, the finalization depends on the 
algorithm; for some algorithms, Final is replaced by Generate. For example:

• For an encryption or decryption algorithm, the Final step encrypts or decrypts the 
final portion of the data. For some algorithms, this data may need special 
handling, such as padding, that is different from the Update step.

• For a message digest, the digest action takes place during Final.
• For a random number generator, the Final (or Generate) step generates the 

random bytes.
• For generating a public/private key pair, the key pair generation takes place in 

the Generate step.

Step 6: Destroy
Free any memory allocated in the previous steps and overwrite any sensitive memory 
with zeroes. The Destroy step is crucial to the security of an application.
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Chapter 3

Cryptography 
This chapter contains a brief outline of the basic cryptographic principles and 
terminology used throughout this manual and documentation set. Refer to Terms and 
Abbreviations on page xix of the Preface for a list of terms and abbreviations used in 
this documentation set. The publications listed in “Related Documents” on page xx 
provide more comprehensive discussions of cryptographic functions and operations. 
This chapter is organized as follows:

• Cryptography Overview
• Applications of Cryptography
• Choosing Algorithms
• Security Considerations
35
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Cryptography Overview

Symmetric-Key Cryptography
In symmetric-key cryptography, as Figure 3-1 shows, the encrypting key is the same as 
the decrypting key. Using any other key to decrypt will produce incorrect results. 
Symmetric-key cryptography is also sometimes called secret-key cryptography, 
because the key used to both encrypt and decrypt must be kept secret.

Ciphers
There are two categories of symmetric encryption algorithms, block ciphers and stream 
ciphers. As the name implies, a block cipher processes data in blocks. A stream cipher, 
on the other hand, processes a unit of data at a time, where a unit is generally a bit or 
byte. This allows a stream cipher to take in a variable length stream of data, encrypt it, 
and output a stream of ciphertext the same length as the input. Crypto-C offers the 
following block ciphers: DES, Triple DES, DESX, the RC2 cipher, the RC5, the RC6 
cipher, and theAES cipher. Crypto-C offers the following stream cipher: the RC4 
cipher.

Figure 3-1 Symmetric-Key Encryption and Decryption
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Block Ciphers
Block ciphers encrypt data block-by-block. They can encrypt each block separately as 
in ECB mode, or they can use other modes to make the cipher less vulnerable to 
attacks based on regular patterns. A mode of operation usually combines the 
underlying cipher with feedback and other simple operations. The security remains a 
function of the cipher and not of the mode. See “Modes of Operation” on page 41 for 
more information.

Padding
When you encrypt a message using a block cipher, usually your message length will 
not be a multiple of the block size. Some modes can deal with variable size blocks, but 
others require the message be a multiple of the block size. For these modes, padding 
provides a solution to this problem. To pad, you add a regular pattern of bytes to the 
end of the last block to make it a complete block. With padding, the actual number of 
bytes encrypted can be as much as one block more than the original data.

Ciphers in Crypto-C
Crypto-C implements the following block ciphers: 

• DES
• Triple DES
• DESX
• RC2
• RC5
• RC6
• AES

DES
The Digital Encryption Standard, DES, is a commercial encryption US standard that 
has been available for over 15 years. The federal standard document FIPS PUB 46-2 
describes the algorithm. 

For DES, the block size is eight bytes. Therefore, the input must be a multiple of eight 
bytes, or else it must be padded to be a multiple of eight bytes for DES to operate in 
CBC or ECB modes properly. The key consists of 56 random bits and 8 parity bits, 
forming a 64-bit, or 8-byte, key.
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Triple DES
Triple DES executes DES three times, which triples the number of bits in an 
encryption key. A number of different methods achieve this function. The technique 
that Crypto-C uses is depicted in Figure 3-2 on page 38.

This technique is known as EDE, or “Encrypt-Decrypt-Encrypt.” The decryption 
process in the middle stage of Triple DES encryption provides compatibility with 
DES. If the three keys are the same, the Triple DES operation is equivalent to a single 
DES encryption. That way, an application that has only DES capabilities can still 
communicate with applications that use Triple DES. If the three keys are different, the 
decryption in the middle will scramble the message further; it will not decrypt the 
first stage. Triple DES decryption is the inverse operation of the previous sequence, 
that is, DES decryption followed by DES encryption and then another DES 
decryption. 

Figure 3-2 Triple DES Encryption as Implemented in Crypto-C
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increases the effective number of key bits from 56 to 120 bits. Crypto-C includes DESX 
for backward compatibility with BSAFE 1.x versions, or as a faster alternative to 
Triple DES.

RC2 
The RC2 cipher was developed by Ronald Rivest as an alternative to DES encryption; 

DES
encryption

DES
decryption

DES
encryption

8 byte
message

block

8 byte
message

block

First 8 bytes
of the key

Middle 8 bytes
of the key

Last 8 bytes
of the key

24 byte Triple DES key (including parity bits)
3 8 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.



Cryptography Overview
it is proprietary to RSA Security. The RC2 cipher has an eight-byte block size. 
Therefore, the input must be a multiple of eight bytes, or be padded to be a multiple 
of eight bytes, for the RC2 cipher to operate properly in CBC or ECB modes. 

The RC2 input key can be of any length from 1 to 128 bytes. The algorithm uses the 
input key to generate an effective key that is actually used for encryption purposes. 
Internally, the algorithm builds a key table based on the bits of the key data; the 
chosen number of effective key bits limits the number of possible key tables. The 
effective key size is variable and takes values from one bit up to 1024 bits.

Note: Control over your effective key size benefits you, because you can generate 
up to 128 bytes of key data and set the algorithm to use a smaller number of 
effective bits, such as 80. Then, in the future, if you want to increase the 
number of effective key bits, you do not have to change the code that 
generates the key data, only the effective key bit parameter.

RC5
The RC5 cipher was developed by Ronald Rivest as an alternative to DES encryption; 
it is proprietary to RSA Security. It is a block cipher with the block being either 4 
bytes, 8 bytes, or 16 bytes, depending on the word size. The input must be a multiple 
of the block size, or it must be padded to a multiple of the block size for the RC5 
cipher to operate properly. The RC5 cipher’s speed and security are dependent on 
input parameters determined by the user. These parameters are:

• word size
• rounds
• key size (in bytes)

Word size generally refers to the size of a hardware register. For hardware 
implementations of the RC5 cipher, developers can take advantage of larger registers 
to increase speed. On chips with smaller registers, the word size can be emulated in 
software. Version 1.0 of the RC5 cipher accepts word sizes of 16, 32, or 64 bits. Crypto-
C accepts a word size of 32 or 64 bits. The block size is twice the word size. For a word 
size of 32 bits, the block size is 64 bits, or 8 bytes, the same as for DES and the RC2 
cipher. For a word size of 64 bits, the block size is 128 bits, or 16 bytes.

The number of rounds is the number of times the operation employs the inner 
encryption function. Varying the number of rounds allows developers to make a 
tradeoff between speed and security. The greater the number of rounds, the greater 
the security, but the slower the execution. The number of rounds can be anywhere 
from 0 (zero) to 255. For the RC5 cipher with a 32-bit word size, RSA Security 
recommends at least 16 rounds for applications; while no practical attacks are known 
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for 12-round RC5-32, recent cryptanalytic work suggests 16 rounds is now a more 
conservative choice. For the RC5 cipher with a 64-bit word size, RSA Security 
recommends at least 20 rounds.

The key size can be as little as 0 (zero) and as many as 255 bytes. The RC5 cipher uses 
the secret key bytes to generate an expanded key table during the Init phase. The key 
table is then used during encryption or decryption. Therefore, key length will have no 
appreciable effect on algorithm speed.

The RC5 cipher is more formally described as RC5 w/r/b. For instance, the RC5 
cipher with a 32-bit word, 16 rounds, and a 10 byte key would be described as RC5 
32/16/10.

RC6
The RC6 cipher was developed by Ronald Rivest and Matthew Robshaw, Ray Sidney, 
and Lisa Yin of RSA Laboratories West as a candidate for the Advanced Encryption 
Standard (AES)

The guidelines for the RC6 cipher were aimed at creating a cipher which could take 
advantage of modern computing power and architecture. These guidelines specify 
that a submitted algorithm must accept 16-byte blocks (8-byte word). This is in 
contrast to many previous block ciphers, such as DES and Triple DES, which operate 
only on 8-byte blocks.

In accordance with these guidelines, RC6 allows a 16-byte block size, which has the 
following implications:

• When you use RC6 with a feedback mode in Crypto-C, your initialization vector 
must be 16 bytes. 

• If you use RC6 with padding, the resulting output might be as many as 16 bytes 
more than the input.

The full RC6 algorithm also allows you to specify different levels of security by setting 
the number of rounds. However, the version submitted for the AES specifies 20 
rounds. At 20 rounds, RC6 provides an optimal balance between security and speed. 
The current implementation of Crypto-C only accepts 20 rounds. 

Note: At 20 rounds, the fastest known attack on the cipher is a brute-force attack on 
the key, and encryption and decryption operations are faster than with a 
higher number of rounds. While fewer rounds would still offer good security, 
there are attacks that would be faster than a brute-force attack on the key. 
More than 20 rounds might offer more security, but the fastest attack would 
still be a brute-force attack on the key, and the increased rounds number 
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would slow down the encryption and decryption operations. In addition, if 
the 20-round version of RC6 is accepted as submitted to the AES, a round 
count other than 20 rounds might not be AES. 

AES
The National Institute of Standards and Technology  (NIST) selected an alogorithm 
(Rijndael) as the replacement for the Data Encryption Standard (DES) in its Advanced 
Encryption Standard project. Crypto-C includes basic AES support.

Modes of Operation
When you use a block cipher to encrypt a message of arbitrary length, you can also 
choose a mode of operation. 

Modes of operation can use techniques such as feedback or chaining to make identical 
plaintext blocks encrypt to different ciphertext blocks. Modes are designed so that 
they do not weaken the security of the underlying cipher, but they may have 
properties in addition to those inherent in the basic cipher. 

Most of the modes of operation in Crypto-C are feedback modes. Feedback modes use 
the previous block of output to alter the current block of input before encrypting. In 
this way, encrypting the same block of plaintext twice will virtually never produce the 
same ciphertext. 

A feedback algorithm requires an initialization vector, or IV, to alter the first block. The 
IV has no cryptographic significance. It is used to alter the first block of data before 
any encryption takes place; therefore, it does not need to be secret. It should be 
random, though, so that the first block of encrypted data is not predictable. In order to 
start the decryption process, it is necessary to use the IV that was employed in the 
encryption process. 

Four Modes

Crypto-C offers the following four block cipher modes:

• Electronic Codebook (ECB) mode
• Cipher Block Chaining (CBC) mode
• Cipher Feedback (CFB) mode
• Output Feedback (OFB) mode

A brief description of these modes follows. Most cryptography texts, such as Bruce 
Schneier’s Applied Cryptography [15], provide full descriptions of the various modes.
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Electronic Codebook (ECB) Mode
ECB is not a feedback mode; it encrypts each block of input independently of all other 
blocks. Plaintext patterns are not concealed; instead each identical block of plaintext 
yields an identical block of ciphertext. This could help an eavesdropper break the 
code. In addition, the plaintext can be easily manipulated by removing, repeating, or 
interchanging blocks. The speed of each encryption operation is identical to that of the 
block cipher. ECB mode is as secure as the underlying block cipher.
 

Figure 3-3 Electronic Codebook (ECB) Mode
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Cipher Block Chaining (CBC) Mode
With CBC mode, each plaintext block is XORed with the previous ciphertext block, 
then encrypted. CBC mode is as secure as the underlying block cipher against 
standard attacks. In addition, any patterns in the plaintext are concealed by the 
XORing of the previous ciphertext block with the plaintext block.

The decryptor follows the same sequence of steps to decrypt, using the same (secret) 
key and initialization vector (IV).
 

Figure 3-4 Cipher-Block Chaining (CBC) Mode
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mode is as secure as the underlying cipher against standard attacks. In addition, any 
patterns in the plaintext are concealed by XORing the previous ciphertext block with 
the plaintext block.
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Figure 3-5 Cipher Feedback (CFB) Mode

To encrypt plaintext using CFB mode:

1. Generate your key and your IV.
2. Encrypt the IV with the key to get a block of output, B1.

3. XOR B1 with the first block of your plaintext, P1, to get the first block of 
ciphertext, C1. 

4. Encrypt C1 with the key to get the second block of output, B2.

5. XOR B2 with the second block of your plaintext message, P2, to get the second 
block of ciphertext, C2. 

6. Repeat Steps 4 and 5 until the entire text is encrypted.

To decrypt the ciphertext, the decryptor uses the same (secret) key and initialization 
vector and follows the same sequence of steps. 

CFB mode does not require padding. If your data length is not a multiple of the block 
size, simply truncate the final block of output to be the same size as the final segment 
of the data, and then XOR it. You can use CFB mode to encrypt a stream of data.
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Output Feedback (OFB) Mode
Output feedback mode is similar to CFB mode, except that the quantity XORed with 
each plaintext block is generated independently of both the plaintext and the 
ciphertext.

To encrypt a plaintext using OFB, first generate the “output” used for encryption. 
This is intermediate data that is used in the encryption process. In OFB, the output 
depends only on the key and the initialization vector.

1. Generate your key and your IV.
2. Encrypt the IV with the key to get a block of output, B1.

3. Encrypt B1 with the key to get the second block of output, B2.

4. Continue encrypting recursively: encrypt Bi to get Bi+1.

This process gives you an arbitrarily long sequence of pseudo-random blocks that you 
can use to encrypt the data. To use the output to encrypt:

5. XOR your plaintext with the output, block by block. The result of the XOR is the 
ciphertext.

OFB does not require padding. If your data length is not a multiple of the block size, 
simply truncate the final block of the output to be the same size as the final segment of 
the data, and then XOR it.

The decryptor can use the same (secret) key and IV to generate the same sequence of 
output blocks and XOR the sequence with the ciphertext to recover the plaintext.
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Figure 3-6 Output Feedback Mode (OFB)

Stream Ciphers
A stream cipher processes the input data one unit at a time. A unit of data is generally a 
byte, or sometimes even a bit. In this way, encryption or decryption can execute on a 
variable length of input. The algorithm does not have to wait for a specified amount 
of data to be input before processing, nor does it have to append and encrypt extra 
bytes.

RC4
The RC4 cipher is a symmetric stream-encryption algorithm developed by Ronald 
Rivest and proprietary to RSA Security. It is actually a keyed pseudo-random 
sequence. It uses the provided key to produce a pseudo-random number sequence 
which is then XORed with the input data. This means that the encryption and 
decryption operations are identical.

The number of key bits is variable and ranges from eight to 2048 bits. Using the RC4 
cipher with a key size of less than 40 bits is not recommended.

Because RC4 encryption is an XOR between the message bytes and the pseudo-
random byte stream generated from the key, the same key should not be used more 
than once. Otherwise, if some of the bytes of one input message are known (or easy to 
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guess), an attacker would be able to determine some of the original message bytes by 
XORing two sets of cipher bytes.

Figure 3-7 RC4 Encryption or Decryption

The RC4 algorithm with MAC
The RC4-with-MAC algorithm is an extension of the RC4 cipher. It provides data 
integrity by using a Message Authentication Code (MAC) with the RC4 encryption 
algorithm. The authentication code does not provide cryptographic authentication; 
rather, it provides the equivalent of a checksum that can be used to determine if any 
errors were introduced within the cipher bytes. The MAC guards against 
transmission or retrieval errors, but it may not detect deliberate tampering with the 
data.

Message Digests
A message digest (also sometimes referred to as a one-way hash function) is a fixed-
length computationally unique identifier corresponding to a set of data. That is, each 
unit of data (for example, a file, a string, or a buffer) will map to a particular short 
block, called a message digest. It is not random: digesting the same unit of data with 
the same message digest algorithm will always produce the same short block.

A good message digest algorithm possesses the following qualities:

• The algorithm accepts any input data length.
• The algorithm produces a fixed length output for any input data.
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• It is computationally infeasible to produce data that has a specific digest. In other 
words, given a particular block of the proper size, it will be virtually impossible to 
determine a unit of data that will digest to that particular block.

• It is computationally infeasible to produce two different units of data that 
produce the same digest. In other words, given some data, it is virtually 
impossible to create different data that will digest to the same block as the first. 
This quality is also called collision-free.

Message digests have many uses. They can authenticate data, for instance. To create a 
digest for authentication, digest the data and save the digest. Later, if you need to see 
if the data has been altered, digest it again and compare the new digest to the old. If 
the digests are different, the data is different. Although there will exist other sets of 
data that will digest to the original value, it is virtually impossible to find them. Minor 
changes in data will produce very different digests.

Crypto-C includes the MD, MD2, MD5, and SHA1 message digest algorithms. MD is 
included for backward compatibility with BSAFE 1.x. MD, MD2, and MD5 produce a 
16-byte digest for any input message; SHA1 produces a 20-byte digest. MD5 is the 
fastest message digest algorithm implemented in Crypto-C. 

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal 
compression function, and there is some chance that the attack on MD2 may 
be extended to the full hash function. The same attack applies to MD. Another 
attack has been applied to the compression function on MD5, though this has 
yet to be extended to the full MD5. RSA Security recommends that before you 
use MD, MD2, or MD5, you should consult the RSA Laboratories Web site at 
http://www.rsasecurity.com/rsalabs to be sure that their use is consistent 
with the latest information. One bulletin that discusses this issue is Recent 
Results for MD2, MD4, and MD5; it can be found at 
http://www.rsasecurity.com/rsalabs/bulletins/.

Message Digests and Pseudo-Random Numbers
Random number generation (for software implementation, usually pseudo-random 
number generation) is a key component of cryptographic operations. Random 
numbers are usually used as cryptographic keys or as a basis for generating keys. 
Crypto-C uses message digest algorithms with a random seed for generating random 
numbers. See “Pseudo-Random Numbers and Seed Generation” on page 92 for a 
discussion of the security considerations of random number generation.
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Hash-Based Message Authentication Codes (HMAC)
A hash-based message authentication code (HMAC) combines a secret key with a 
message digest to create a message authentication code. This method of creating a 
MAC makes it possible to update the underlying message digest if a new attack 
makes the original message digest unsecure. Crypto-C provides an HMAC 
implementation based on SHA1. 

Recall that SHA1 produces a 20-byte digest; in addition, we need to know that SHA1 
takes input in 64-byte blocks. 

Given a message M and a key k, the HMAC of M is computed as follows:

1. Create two different fixed strings that are used in the calculation:
ipad = the byte 0x36 repeated 64 times
opad = the byte 0x5C repeated 64 times 

2. Extend k to 64 bytes in length by appending zeros to the end of k. For example, if k 
is 25 bytes, append 39 copies of the zero byte 0x00. We will call the extended key 
k’.

3. Compute the following:

SHA1(k’ XOR opad || SHA1((k’ XOR ipad) || M))

where || denotes concatenation.

The same key can be used for multiple authentications, but the key should be replaced 
periodically. For security considerations, the key should be at least as long as the 
message digest output. For SHA1, this means an HMAC key should be at least 20 
bytes. If the key is “weakly random”—that is, if knowing some of the key bits might 
help an attacker generate other key bits, then a longer key should be used.

Password-Based Encryption
Password-based encryption (PBE) generates a symmetric key from a password, and 
encrypts data using that generated key. Usually, though, a password will not have 
enough effective random bits to qualify as a candidate for a key or even a random 
seed to generate a key. For example, each character of an 8-byte alphanumeric 
password that also allows case-sensitive letters has the equivalent of slightly less than 
six bits of randomness. For eight-character passwords, this is far less than the required 
key size of a block cipher such as DES.

Therefore, a good PBE implementation not only uses the password, but mixes in a 
random number, known as a salt, to create the key (see Figure 3-8 on page 50). 
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Normally, the mixing is a message digest. This makes the task of getting from 
password to key very time-consuming for an attacker. Digesting a password with a 
salt helps thwart dictionary attacks. An attacker could put together a “dictionary” of 
keys generated from likely passwords, and try out each key on encrypted data. This 
would greatly reduce the amount of work necessary to find the key and may make it 
feasible to recover encrypted material. With a salt, the attacker would have to create a 
dictionary of keys generated from each password, but each password would then 
have to have a dictionary of each possible salt.

Crypto-C uses the methods described in PKCS v1.5 to implement password-based 
encryption. The methods use a message digest algorithm with a specific means of 
padding to increase the search space for dictionary attacks against the key. The 
applicable Algorithm Information Types (AIs) are: AI_MD2WithDES_*, 
AI_MD2WithRC2_*, AI_MD5WithDES_*, AI_MD5WithRC2_*, and 
AI_SHA1WithDES_*.

Figure 3-8 DES Key and IV Generation for Password Based Encryption

Public-Key Cryptography
In 1976, Stanford graduate student Whitfield Diffie and Stanford professor Martin 
Hellman invented public-key cryptography. In this system, each person owns a pair of 
keys, called the public key and the private key. The owner of each key pair publishes 
the public key and keeps the private key secret.

Suppose Alice wants to send a message to Bob. She finds his public key and encrypts 
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her message using that public key. Unlike symmetric-key cryptography, the key used 
for encryption will not decrypt the message. That is, knowledge of Bob’s public key 
will not help an attacker. To decrypt a message, Bob uses his private key. If Bob wants 
to respond to Alice, he can encrypt his message using her public key. 

To understand this idea, think of taking a number to a power. For instance, given 
values x and y, compute z = xy. To recover x, you would not compute zy, but rather 
z1/y. You end up with the original x, because z1/y = (xy)1/y = xy·1/y = x1 = x. You need 
two values to perform this exercise: a “public key,” y, to compute the encrypted value, 
and the inverse of the public key, or a “private key,” 1/y, to recover the original value.

This example, of course, is not practical because if you made y public, anyone could 
easily compute 1/y and know your private key. Therefore, a good public-key 
cryptosystem relies on a key pair for which it is impossible (or at least intractable) to 
derive the private key from the public key.

Figure 3-9 Public-Key Cryptography

In practice, public-key algorithms are slow compared to symmetric-key algorithms. 
Therefore, they are more often used for shorter messages, such as encrypting the 
symmetric key for a message encrypted with a symmetric cipher, or for encrypting a 
digest.

The RSA Algorithm
The RSA algorithm is a public-key cryptosystem for both encryption and 
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authentication that MIT professors Ronald L. Rivest, Adi Shamir, and Leonard M. 
Adleman invented in 1977. It is actually similar to the example in the previous section 
that takes numbers to a power, except that it works in modular math. 

Modular Math
Modular math uses a positive integer as a modulus; the only numbers under 
consideration are the integers from 0 to one less than the modulus. So for mod n, only 
the integers from 0 to (n–1) are valid operands, and the results of operations will 
always be numbers from 0 to (n–1). When an operation such as addition or 
multiplication would give a result that is greater than the modulus, the remainder of 
the result after division by n is used instead. Therefore, two numbers are equal mod n 
if and only if their difference is an even multiple of n.

For example, think of military time where the modulus is 2400. For instance, 2200 
hours (10:00 P.M.) plus 4 hours is not 2600, but 0200 hours, or 2:00 in the morning. 
Likewise, if we start at 0, or midnight, 6 times 5 hours (say six 5-hour shifts) is not 
3000, but 0600, or 6:00 A.M. the following day. 

Another aspect of modular math is the concept of an inverse. Two numbers are the 
inverse of each other if their product equals 1. For instance, 7·343 = 2401, but if our 
modulus is 2400, the result is (7·343) mod 2400 ≡ 2401 – 2400 = 1 mod 2400.

Prime Numbers
The RSA algorithm also employs prime numbers, or primes. A prime number is a 
number that is evenly divisible by only 1 and itself. For example, 10 is not prime 
because it is evenly divisible by 1, 2, 5, and 10. But 11 is prime, because its only factors 
are 1 and 11.

MultiPrime Numbers
MultiPrime RSA functionality was added to Crypto-C V5.1. This new function allows 
you to generate RSA public/private key pairs. RSA MultiPrime key generation 
follows the same steps as standard RSA key generation with only a couple of 
exceptions: the use of a different AI, AI_RSAMultiPrimeKeyGen, and a different AM, 
AM_RSA_MULTI_PRIME_KEY_GEN, must be passed in during the B_GenerateInit 
call.

The RSA Algorithm
The RSA algorithm works as follows: take two large primes, p and q, and find their 
product n = pq; n will be the modulus. Choose a public value, e (also known as the 
public exponent), that is less than n. There are other constraints on e that are described 
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below. To compute ciphertext c from a plaintext message m, find c = me mod n. To 
decrypt, determine the private key d, the inverse of e, and compute m = cd mod n. The 
relationship between e and d ensures that the algorithm correctly recovers the original 
message m, because cd = (me)d = med ≡ m1 = m mod n. Only the entity that knows d can 
decrypt.

The security of the system relies on the fact that if you know p, q and e, it is easy to 
compute d; but if you know only n and e, it is more difficult to determine d. This is due 
to the following property of the math: the value d is actually not the inverse of e mod 
n, but rather the inverse of e mod (p–1)(q–1). The value you pick for e must be 
relatively prime to (p–1)(q–1), which means e and (p–1)(q–1) share no common factors, 
so that there exists d such that ed ≡ 1 mod (p–1)(q–1). Therefore, you find the private 
value using a modulus of (p–1)(q–1), but when you apply the RSA algorithm to 
encryption or decryption, you use a modulus of n = p·q.

Why, if d is the inverse of e mod (p–1)(q–1), does cd = (me)d = med = m1 = m mod n? 
Aren’t we mixing moduli? That is the quirk of the math; it may seem counterintuitive, 
but this mixing of moduli is what makes the algorithm work. A complete proof of this 
fact is beyond the scope of this chapter, so if you want to learn more about the 
underlying mathematical principle, find a math book that discusses Euler’s phi-
function.

Incidentally, in practice, you would generally pick e, the public exponent first, then 
find the primes p and q, which satisfy the requirement that e be relatively prime to (p–
1)(q–1).

Consider the following example with small numbers. Choose public exponent e = 3. 
Then, let p = 5 and q = 11, which means n = 55 and (p–1)(q–1) = 40. This is a valid p and 
q combination because 3 is relatively prime to 40. The inverse of 3 mod 40 is 27.

(3·27) = 81
81 – (2·40) = 81 – 80 = 1
3·27 = 1 mod 40

Apply the RSA algorithm with these parameters to the “plaintext message” m = 2.

c = me = 23 = 8 mod 55

This yields an encrypted message of 8.

To decrypt, raise the message to the power of the inverse of 3, which is 27.

cd = 827 mod 55

Rather than computing 827 directly, a shortcut would be to compute:

816+8+2+1 = 816·88·82·81 = 2 mod 55
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The calculation is shown in Table 3-1:

Summary
Take two large primes, p and q, and find their product n = p · q. Set n to be the 
modulus. Choose a public exponent, e, less than n and relatively prime to (p–1)(q–1). 
Find d, the inverse of e mod (p–1)(q–1), that is, ed ≡ 1 mod (p–1)(q–1). The pair (n,e) is 
the public key; d is the private key (or the private exponent). The primes p and q must 
be kept secret or destroyed.

To compute ciphertext c from a plaintext message m, find c = me mod n. To recover the 
original message, compute m = cd mod n. Only the entity that knows d can decrypt.

Note: In public-key cryptography, it is also possible to encrypt using a private key. 
In this case, the sender takes the plaintext input and the private key and 
follows the same steps need to decrypt an encrypted file. This creates a 
ciphertext that can be read using the public key; to read it, the recipient 
follows the same steps needed to encrypt with the public key and restores it 
to the plaintext. This is used in authentication and digital signatures.

Security
The security of the RSA algorithm relies on the difficulty of factoring large numbers. 
In theory, it is possible to obtain the private key d from the public key (n,e) by 
factoring n into p and q. To find d, one must know the product (p–1)(q–1). But to find 
that value, one must know p and q. For example, in the earlier example, an attacker 
would know that p · q = 55, but what is (p–1)(q–1)? Factoring 55 into its component 
primes is easy: the answer is 5 and 11. 

Table 3-1 Calculation of 827 mod 55

80 1 mod 55
81 8 mod 55
82 81 · 81 = 8 · 8 = 64 64 � 55 = 9 9 mod 55

84 82 · 82 = 9 · 9 = 81 81 � 55 = 26 26 mod 55

88 84 · 84 = 26 · 26 = 676 676 � (12 · 55) = 16 16 mod 55

816 88 · 88 = 16 · 16 = 256 256 � (4 · 55) = 36 36 mod 55

81 · 82 8 · 9 = 72 72 � 55 = 17

(81 · 82) · 88 17 · 16 = 272 272 � (4 · 55) = 52 52 mod 55

(81 · 82 · 88) · 816 52 · 36 = 1872 1872 � (34 · 55) = 2 2 mod 55
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However, for very large numbers, factoring is very difficult. The RSA Laboratories 
publication, Frequently Asked Questions About Today’s Cryptography (the FAQ), describes 
the state of the art in factoring. Factoring numbers takes a certain number of steps, 
and the number of steps increases exponentially as the size of the number increases. 
Even on supercomputers, the time to execute all the steps is so great that for large 
numbers it could take years to compute. Within a short period of time, the current 
threshold of general numbers that can be factored will probably rise to 155 digits, 
approximately the size of a 512-bit RSA modulus. Currently, the limit to the size of an 
RSA modulus in Crypto-C is 2048 bits.

Digital Envelopes
A digital envelope is a way of combining the advantages of symmetric-key and public-
key cryptography. In general, public-key algorithms are slower than symmetric-key 
ciphers, and for some applications may be too slow to be of practical use, while for 
symmetric-key ciphers, there is the problem of transmitting the key. A digital 
envelope provides a solution to this dilemma. The sender encrypts the message using 
a symmetric-key encryption algorithm, then encrypts the symmetric key using the 
recipient’s public key. The recipient then decrypts the symmetric key using the 
appropriate private key and decrypts the message with the symmetric key. In this 
way, a fast encryption method processes large amounts of data, yet secret information 
is never transmitted unencrypted.

Optimal Asymmetric Encryption Padding (OAEP)
Optimal Asymmetric Encryption Padding (OAEP) is a general class of methods for 
constructing digital envelopes from public-key encryption algorithms. OAEP 
methods have been proposed for the RSA algorithm. OAEP thwarts the 
Bleichenbacher attack on PKCS #1 digital envelopes.

Recent research by cryptographer Daniel Bleichenbacher of Bell Labs, the research 
and development arm of Lucent Technologies, indicates that the combination of 
PKCS #1 and SSL is potentially vulnerable to a class of attacks known as Adaptive 
Chosen Ciphertext Attacks. Such a potential attack relies on sending a million 
carefully constructed messages to a target server and observing the variations in the 
server’s response. The potential attack is detectable by network administrators 
because of the large number of needed messages. The threat is only against digital 
envelopes; it does not affect digital signatures.

OAEP is a pre-processing step that is applied to data before it is encrypted and after it 
is decrypted. OAEP prevents a wide range of attacks on the envelope format and 
ensures that the attacker must break the underlying cryptographic algorithm in order 
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to reveal the contents of a digital envelope. 

The main features of OAEP are redundancy and randomization. The redundancy feature 
makes it difficult for an attacker to create a new derived message from an existing 
ciphertext message. The recipient of a derived message checks the redundancy after 
decrypting the message and rejects redundant messages. The PKCS #1 format has 
only about 16 bits of redundancy, whereas OAEP formats have 64 to 160 bits of 
redundancy.

The randomization feature makes each bit of the input to the public key operation 
dependent on each bit of the message and on 64 to 160 bits of randomness. This makes 
it difficult for chosen input attacks to work, and it causes ciphertext tampering to 
change many bits in the decrypted message. 

Together, redundancy and randomization create verifiable properties for securing 
digital envelopes.

Figure 3-10 Digital Envelope
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Authentication and Digital Signatures
Suppose Alice and Bob are disputing a contract. Alice says that Bob must uphold 
certain obligations because he agreed to them in a contract. Bob says that this is not 
the contract he signed. He offers as evidence his copy of the contract and sure enough, 
it differs from Alice’s. One of them has altered their copy of the contract, but who? Or 
maybe the dispute centers on Bob’s assertion that he never signed a contract, that the 
signature at the bottom is not his. In that case, either Bob is not telling the truth or 
Alice forged his signature.

If the contract was signed physically, there are ways to determine the truth. Contracts 
are often filed with government agencies, so comparing Bob’s and Alice’s copies with 
the third party’s copy reveals who made alterations. Witnesses may also sign the 
contract and later testify that both parties did sign it, and the signatures are not 
forgeries. For electronic documents, there is also a method to determine if a document 
has been altered or if someone truly did sign it. This method is the digital signature.

There are two types of signature algorithms. The first is a public-key cryptosystem 
that can perform block encryption, while the second is only capable of digital 
signatures. The RSA algorithm is an example of the first type. The Digital Signature 
Algorithm, DSA, is an example of an algorithm of the second type. Crypto-C includes 
the RSA and DSA signature methods.

A digital signature uses a public/private key pair to sign a document. First the signer 
digests the document, as described in “Message Digests” on page 47, then encrypts it 
with their private key. A good digital signature algorithm possesses the following 
properties:

• Only the owner of a private/public key pair can generate a signature. Knowledge 
of the public key does not enable anyone else to forge a signature.

• Knowledge of the public key enables anyone to verify the signature.
• The digital signature guarantees the authenticity of the message and its author.

The digital signature is computationally unique for each message and signer. 
While a normal signature can be imitated, a digital signature is immune to 
imitation.

• Any altering of the message renders the signature invalid.

Note: If a digital signature is invalid, you cannot be sure it was a deliberate forgery. 
Transmission errors will also produce errors in a digital signature.

For example, to create a digital signature on a contract:
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1. Alice and Bob compose a contract in digital format. The file can be in any form, 
such as a word processing file or an ASCII file. 

2. Each party digests the file and encrypts the digest with their private key. 
3. That encrypted digest is their digital signature.
4. The contract now consists of the file and the two copies of the encrypted digest, 

one using Alice’s private key, the other using Bob’s private key. Everyone gets 
copies of this contract. 

The digital signature can be used to verify the data at a later time. Suppose that Bob 
produces a file that is different from Alice’s. To discover which copy has been altered:

1. Digest the new copy.
2. Decrypt each party’s encrypted digest with the corresponding public key. 
3. Compare the new digest to the old one. 
4. If one of the new digests does not match the old one, that is the altered file. 

If a file has been altered, it will produce a different digest, because it is virtually 
impossible to produce data that will digest to a given value. Even if someone 
could manipulate the digest, it would be extremely difficult to produce data that 
has value to anyone.

The digital signature can also be used to verify that a message came from a given 
person. What if Bob claims Alice forged his digital signature on the original 
document? He might say her copy of his encrypted digest is not the true version. 
However, the digest was encrypted using Bob’s private key, to which only Bob has 
access. Therefore, it is unlikely that Alice forged Bob’s signature.

The following example shows how to verify a message and its signature. Suppose you 
have the following information:

• A message
• An entity who claims to have sent the message
• A block of data 96 bytes long that purports to be the encrypted digest

To verify the message and the sender:

1. Request the possible sender’s 768-bit (96-byte) RSA public key from a certification 
authority. 

2. Use that public key to decrypt the 96-byte block of data. 
3. If the decryption process results in a 16-byte output, you can say it is a message 

digest. There is a message that will digest to those 16 bytes, but you do not yet 
know what it is. 
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4. Digest the message file.
5. If the digest matches the 16 bytes you obtained from decrypting the original 96-

byte block, the message is verified. That is, you can assume the 96-byte block is 
the file’s digest encrypted with the RSA private key associated with the public 
key you used. It would have been computationally infeasible to produce that 96-
byte block any other way.

There are other uses for a digital signature. Suppose that Bob wishes to buy 
something from Alice over the Internet. He e-mails her a credit card number. Alice 
can easily find out from the credit card issuer that the number she received is valid 
and indeed belongs to Bob. But how does she know that it was Bob who sent the 
number and not someone posing as Bob? She sends the purchaser a randomly 
generated message and asks him to digitally sign it with his private key. She then 
retrieves his public key from a certification authority and verifies the signature. Only 
the person with access to Bob’s private key will be able to generate a digital signature 
from the message she generated in such a way that Bob’s public key will verify it 
properly. In this way, Alice authenticates Bob’s identity.

Figure 3-11 RSA Digital Signature
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Digital Signature Algorithm (DSA)
The Digital Signature Algorithm (DSA) is part of the Digital Signature Standard 
(DSS), published by the National Institute of Standards and Technology (NIST), a 
division of the US Department of Commerce. It is the digital authentication standard 
of the US government. The DSS specifies the Secure Hash Algorithm (SHA1) as the 
message digest to use with DSA when generating a digital signature.

To generate a DSA key pair:

1. Find a prime, p, at least 512 bits long.
2. Find a second prime, q, exactly 160 bits long that satisfies the property q|(p–1). q is 

called the subprime.
3. Generate a random value, h, the same length as p but less than p. 

4. Compute g = h(p-1)/q mod p. g is called the base.
5. Generate another random value, x, 160 bits long. x is the private value. 

6. Compute the public value: y ≡ gx mod p.

Note: The three values p, q, and g (the prime, subprime, and base, respectively) are 
called the DSA parameters. The parameters are public and must be generated 
before you can sign a message.

To sign a message using DSA:

1. Digest the message using SHA1. This yields a 20-byte (160-bit) digest. 
2. Generate a random value, k, 160 bits long and less than q. 
3. Find the following values:

kinv = k–1 mod q
r = (gk mod p) mod q
xr = (x · r) mod q
s = [kinv · (digest + xr)] mod q

4. Output the signature (r,s).

To verify a message:

1. Digest the message using SHA1. 
2. From the signature (r,s), compute:

sinv = s–1 mod q
u1 = (digest · sinv) mod q
u2 = (r · sinv) mod q
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a = gu1 mod p

b = yu2 mod p
v = (a · b mod p) mod q

3. If v = r, the signature is verified. If v ≠ r, the signature is invalid.

The Math
To see that this is indeed the signature, consider the following. We have the values:

y = gx mod p

and

u2 = r · sinv mod q

Make the following algebraic substitutions:

a · b mod p = gu1 · gx·u2 mod p

= gu1 + x·u2 mod p

= gdigest·sinv + x·r·sinv mod p

= gsinv(digest + x·r) mod p

= gk mod p

Recall that:

r = (gk mod p) mod q

This means that:

v = (a · b mod p) mod q

   = (gk mod p) mod q
   = r

Digital Certificates
Suppose you own an RSA public/private key pair. You must make your public key 
public so that others can use it to verify your digital signature or to encrypt session 
keys when creating an RSA envelope. How do you publicize your key?

Probably the best way is to register public keys with a trusted authority. Then, this 
trusted authority can certify that a particular public key belongs to a particular entity. 
Currently, such a public key registration infrastructure exists in the form of digital 
certificates.
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A certificate connects an entity to a public key. For instance, it can list an individual’s 
name, address, and public key. When people want to use a person’s public key, they 
look up the certificate associated with that person’s name and address. A certificate 
can contain a wide variety of information on its owner, such as the person’s 
organization or job title. This helps differentiate between people who have the same 
name. The certificate can also contain information on when it was issued or when the 
public key expires.

For a certificate system to work, there need to be individuals or organizations that 
issue and maintain the certificates. These are known as a certificate authorities, or CAs. 
An individual can request a certificate by presenting a CA with a public key and a 
name and any other identifying information. It is then the CA’s responsibility to 
verify that the entity making the request is indeed the person identified by the 
information or is authorized to be associated with that key. The level of trust users 
place in a CA will depend on the level of verification it performs.

When you ask for an individual’s public key, the CA sends the certificate and signs it 
with the digest of the certificate encrypted with the CA’s private key. To verify that 
the certificate is genuine, you must digest the certificate and decrypt the signature 
using the CA’s public key. Compare the two results: if they are the same, you have a 
proper certificate.

If the CA you deal with does not have a certificate for the individual in question, that 
CA can communicate with another CA that might have the right certificate. In fact, to 
find a particular certificate, a CA may have to go through a chain of CAs until it finds 
one that possesses the desired certificate.

Names that uniquely distinguish users are necessary for digital certificates to be of 
real use. The CCITT X.500 series of documents offer more discussion regarding 
naming conventions and related topics.

Diffie-Hellman Public Key Agreement
The Diffie-Hellman Public Key Agreement, invented by Whitfield Diffie and Martin 
Hellman in 1976, was the first true public-key algorithm. It provides a method for key 
agreement; that is, it allows two parties to each compute the same secret key without 
exchanging secret information. Diffie-Hellman key agreement does not provide 
encryption or authentication.

The Algorithm
The Diffie-Hellman algorithm is made up of three parts (see Figure 3-12 on page 63):

• Parameter Generation
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• Phase 1
• Phase 2

Figure 3-12 The Diffie-Hellman Key Agreement Protocol

Parameter Generation
A central authority selects a prime number p of length k bytes, and an integer g greater 
than 0 but less than p, called the base. The central authority may optionally select an 
integer l, the private-value length in bits, that satisfies 2l–1 ≤ p.

Phase 1
Each of the two parties executing the Diffie-Hellman protocol does the following:

1. Each party, i, i = 1 or 2, randomly generates a private value, which is a number, xi, 
greater than 0 but less than the prime. If the central authority has specified the 
length l, the private value shall satisfy 2l–1 ≤ xi < 2l.

2. Each party computes a public value yi = gx
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3. The two parties exchange the public values.

These private and public values correspond to the private and public key components 
of a key pair. The public value is generated in such a way that computing the private 
value from the public number is computationally infeasible.

Phase 2
Each participant computes the agreed-upon secret key, z, using the other participant’s 
public value, y', their own private value, x, and the prime, p.

z = (y')x mod p

Even with knowledge of the parameters and both public keys, an outside individual 
will not be able to determine the secret key. You must have one of the private values 
to determine the secret key. This means secret information is never sent over unsecure 
lines.

The Math
Even though the two parties involved are making computations using different 
private values, they will both end up with the same secret key, as illustrated by the 
following.

p: prime
g: base
x1: 1st party’s private value
x2: 2nd party’s private value
y1: 1st party’s public value
y2: 2nd party’s public value
z: secret key

In Phase 1, each party computes a private value, xn, and a public value, yn:

y1 = gx1 mod p

y2 = gx2 mod p

In Phase 2, the parties trade public values and compute the same secret key:

z = y2
x

1 mod p

z = y1
x

2 mod p

They both compute the same z, because:

y2
x

1 = (gx
2)x1 = (gx

1)x2 = y1
x

2 mod p
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Security
The security of Diffie-Hellman key agreement relies on the difficulty of computing 
nth roots modulo a prime number. It takes very little time to exponentiate a number 
modulo a prime, but it takes a great deal of time to compute its roots. This problem in 
modular arithmetic is called the discrete logarithm problem. (Recall that, in the real 
numbers, if you can compute the logarithm of a number, you can easily compute all of 
its roots.) The RSA Laboratories publication, Frequently Asked Questions About Today’s 
Cryptography, states, “The best discrete log problems have expected running times 
similar to that of the best factoring algorithms.” That is, the time it takes to compute 
discrete logs modulo a prime of a certain length is approximately equivalent to the 
time it takes to factor a number of that same length. See “The RSA Algorithm” on 
page 51 for a discussion of factoring.

Multiple-Party Key Agreement
The previous protocol can be extended to more than two parties. For a multiple-party 
agreement, each individual chooses a private value, then uses the collection of public 
values from other parties to generate a common secret key.

Elliptic Curve Cryptography
Elliptic curves are mathematical constructs that have been studied by mathematicians 
for over 100 years. The application of elliptic curves to cryptosystems is more recent; 
in 1985, Neal Koblitz and Victor Miller independently devised a public-key system 
using a group of points on an elliptic curve.

The core of elliptic curve cryptosystems rests on the difficulty of a particular type of 
calculation. For some public-key algorithms, such as Diffie-Hellman key agreement, 
the security is based in part on the fact that given a modulus n, a number g, and gk 
mod n, it is difficult to determine k. This is called the discrete logarithm problem. 
Elliptic curve cryptosystems rest on a similar problem: given an elliptic curve E and 
two points on the curve, P and Q, such that Q = k · P for some number k, it is difficult 
to determine k. This is called the elliptic curve discrete logarithm problem. (See the next 
subsection, Elliptic Curve Parameters, for a discussion of these terms.) Many 
algorithms that are based on the discrete logarithm problem can be translated to 
analogous algorithms based on the elliptic curve discrete log problem.

Elliptic curves can be used for a variety of public-key cryptosystems. Crypto-C 
supports the following elliptic curve features:

• Generation of elliptic curve parameters
• Elliptic curve key pair generation
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• Elliptic Curve Signature Schemes (ECDSA)
• Elliptic Curve Authenticated Encryption Scheme (ECAES)
• Elliptic Curve Diffie-Hellman key agreement (ECDH)

Crypto-C also allows you to generate precomputed acceleration tables to speed up 
certain elliptic curve operations. For more information, see the example “Generating a 
Public-Key Acceleration Table” on page 277.

Elliptic Curve Parameters
A number of parameters are necessary for elliptic curve cryptosystems. These 
parameters must be generated before you generate a key pair, create an acceleration 
table, initiate encryption, or perform key agreement with these systems. You can use 
the same parameters to generate more than one key. These parameters include: 

• The finite field, Fq, over which the elliptic curve is defined.
• Two elements of Fq, a and b, which define the elliptic curve; a and b are also called 

the coefficients of the curve.
• A point P of prime order on the elliptic curve E .
• The order, n, of P .
• The cofactor h = #E(Fq)/n. Here, E(Fq) means the set of points on the elliptic curve 

and #E(Fq) means the number of points in that set. See “The Order of an Elliptic 
Curve” on page 70 for more information.

Note: In all discussions of elliptic curves, the upper case letters P and Q are used to 
denote points on an elliptic curve. The lower case letter p is used to denote a 
prime. 

The next section discusses these terms in detail. We will try to give enough of the 
math to give you a feel for what the underlying concepts are without going too deeply 
into the details. A full discussion of elliptic curve cryptography is far beyond the 
scope of this manual. For background on elliptic curves, see the book by J. Silverman 
and J. Tate, Rational Points on Elliptic Curves [20]. For more information on elliptic 
curves in cryptography, see the ANSI X9.62 and X9.63 standards [13], the IEEE 
Standard Specifications for Public-Key Cryptography [14], and A. Menezes’s book, Elliptic 
Curve Public Key Cryptosystems [19].

The Finite Field
The elliptic curves used in cryptography are always defined over a finite field, denoted 
Fq. There are two choices for this field:
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• An odd prime field, Fp, where p is an odd prime.
• A field of even characteristic, F2m.

For more information about finite fields, see the book by A. Menezes, I. Blake, X. Gao, 
R. Mullin, S. Vanstone, and T. Yaghoobian, Applications of Finite Fields [18] and also 
Chapter 2 of Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone’ s book, 
Handbook of Applied Cryptography [17].

Odd Prime Fields
The odd prime field Fp is simply Zp, the integers mod p. Modular math is described in 
the section “The RSA Algorithm” on page 51. Recall that in modular math, we have 
addition and multiplication, with the additional twist that the numbers loop around, 
so that, for example, p+1 = 1 mod p.

Although you don’t need it to use the cryptosystem, a little background may help. 
Because p is prime, Fp has an interesting property that not all modular math systems 
have: except for 0, every number in Fp has a multiplicative inverse. That is, given any 
number c between 1 and p–1, there is another number d in the same range such that 
cd = 1 mod p. This is the crucial property that distinguishes Fp from other modular 
math systems and makes it a field.

Not all moduli will give you a field. For instance, our earlier example, arithmetic mod 
55, is not a field. You can see this by looking at the number 5 in this system. The first 
ten multiples of 5 are: 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. When we multiply 5 by 11, 
we get 55, which is just 0 mod 55. Now, when we multiply 5 by 12, we just fall back 
down to 60 = 60–55 = 5 mod 55. In fact, no matter by what we multiply 5, we will just 
get a multiple of 5, which will reduce back down to the ten numbers listed above. 
There is no way we can get to 1 as a multiple of 5 in this particular modular system.

In fact, the only numbers that will give a field in modular arithmetic are the primes. 
So you can see that fields are fairly special. The crucial thing to remember is:

An odd prime field, Fp, is just modular arithmetic, where the modulus p is prime. 

Fields of Even Characteristic
The fields of even characteristic, also known as characteristic 2, are more complicated. If 
you were looking for a field of that size, you might start with the integers mod 2m. 
However, it turns out that integers mod 2m cannot be a field for any m>1.

Why is this? Remember, we said every element in a field, except 0, has a 
multiplicative inverse. But, for example, 2m�1 cannot be invertible in the integers mod 
2m (except for m = 1). To see this, consider the product 2·2m�1 = 2m ≡ 0 mod 2m. If 2m�1 
did have an inverse, I, then we would have:
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0 = 0·I

≡ (2·2m�1)·I mod2m

= 2·(2m�1·I)

≡ 2·1 mod 2m

= 2

Instead, we create the field F2m in a completely abstract manner. We start by letting 
the elements of the finite field F2m be the bit strings of bit-length m. Mathematicians 
have shown that it is possible to create an addition and a multiplication that make 
these strings, called m-tuples, into a field. 

Addition is easy to define: to add two strings, just XOR them. This is the same as 
adding them bit by bit, with no carry. Notice that with this field addition rule, for 
every x in F2m, we have that x + x = 0. That is already very different from addition in 
the integers mod 2m. 

Note: If you look closely, you will see that we are trying to create a system where 2 
can equal 0. In fact, it is because of this property — that the number 1 added 
to itself two times gives us 0 — that we say this is a field of “characteristic 2” 
or “even characteristic.”

Multiplication is even more difficult to define. When you multiply two m-tuples, you 
can’t just multiply them bit-by-bit, or else you would never be able to invert any 
string that had a 0 in it somewhere. Instead, multiplication in F2m is a complicated 
operation involving ordinary multiplication and addition of cross terms.

The mathematics underlying the construction of F2m is deep, but it is very well-
understood by mathematicians. For an in-depth discussion of this field, refer to 
“Related Documents” on page xx.

An elliptic curve, E, can be thought of as a particular type of equation. Elliptic curves 
look slightly different in the two different cases.

Coefficients Over an Odd Prime Field
An elliptic curve E over an odd prime field Fp is all the pairs of points (x,y) that satisfy 
the equation:

y2 = x3 + ax +b

In this equation, x and y are elements of Fp, and so are a and b. The whole equation is 
evaluated over Fp. For computational reasons, there is also a “point at infinity”, Ο, 
that is included as well. 

The numbers a and b are called the coefficients of the elliptic curve; they are part of the 
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elliptic curve parameters.

Coefficients Over a Field of Even Characteristic
An elliptic curve E over a field of even characteristic F2m is all the pairs of points (x,y) 
that satisfy the equation:

y2 + xy = x3 + ax2 +b

In this equation, x and y are elements of F2m, and so are a and b. The whole equation is 
evaluated over F2m. For computational reasons, there is also a “point at infinity”, Ο, 
that is included as well.

The numbers a and b are called the coefficients of the elliptic curve; they are part of the 
elliptic curve parameters.

Note: Note that the equation over F2m is different from the equation over Fp. Over 
F2m there is a quadratic term, ax2, instead of the linear term ax in the odd 
prime case, as well as a new cross-term, xy. The differences in the equation 
arise because of the differences in arithmetic between the two types of fields.

The Point P and its Order
Obviously, you can’t create a cryptosystem out of just any equation. The elliptic curve 
equation is important because it has special properties. One of these properties is that 
it is possible to set up an addition system that lets you add one point on the elliptic 
curve to another. The addition is complex and non-obvious, but it is possible to set up 
a system of equations that determine the sum of two points. Adding two points on an 
elliptic curve involves several operations in the underlying field, Fq, including 
multiplications, additions, and the computation of inverses. The complexity of the 
addition is what makes elliptic curve cryptosystems work — if you add a point P to 
itself k times to get kP, there is no known fast way to get k. 

To implement an elliptic curve cryptosystem, we need to specify a point P on our 
curve that has some special properties. To understand these properties, we need some 
more concepts: the points on a curve, the order of a curve, and the order of a point on 
the curve.

The Points of an Elliptic Curve
For our field, Fq, and our elliptic curve E, determined by a and b, we can consider all 
the pairs (x,y) in Fq that satisfy the elliptic curve equation. Each such pair is called a 
point of the elliptic curve. The collection of all the points that satisfy the equation, 
along with the special point Ο mentioned earlier, is called the points of E over Fq; this 
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is written E(Fq).

The Order of an Elliptic Curve
The addition system that makes the points on the elliptic curve into what is called a 
group has a number of properties. First, there can only be a finite number of points on 
the curve. If every possible pair (x,y) were on the curve, there would be only p2 or 
(2m)2 = 22m possibilities of pairs. The total number of points, including the point Ο, is 
called the order of the elliptic curve. The order is written as #E(Fq).

The special point Ο  plays the role of the additive identity, zero, in the group of the 
elliptic curve.

The Order of a Point
Given any point on the curve, P, the addition rule lets you add that point to itself. 
Then you can add your new point to the old point, and so on. When you add a point 
to itself a number of times, it is called scalar multiplication. Although this is not 
multiplication in the usual sense — it is an iteration of point addition k times — it still 
has the usual math properties like commutativity and associativity over addition. 
Adding a point P to itself k times gives another point denoted kP.

No matter what P is, there is always some n such that nP = Ο. The smallest n that 
works for a given P is called the order of P. Not only does n exist, but it is always true 
that n evenly divides the order of the elliptic curve, #E(Fq).

The order n of P is important because it means that when we use P as the starting 
point of our calculations, we can apply the rules of arithmetic modulo n. That is, we 
have the following important fact:

r = r’ mod n if and only if rP = r’P

A Point of Prime Order
Now that we have those concepts, we can go on to the next parameter. Given our 
elliptic curve, E, defined over our finite field, Fq, we want to fix a special point that 
will be used to mask the private key in a public/private key pair. The properties of P 
are important to the security of our system. Not just any point will do: we need a 
point P whose order n is prime; the larger the prime, the more secure the 
cryptosystem.

Remember, P is of the form P = (x,y) where x and y satisfy the elliptic curve equation. 
To show that x and y are specific to P, we usually write them as xP and yP. Therefore, 
the special point P gives us two parameters:

• A point P = (xP,yP) of prime order
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• The order n of P 

P is sometimes called the base point.

The Cofactor
We mentioned previously that the prime number n that is the order of P must evenly 
divide the order of the elliptic curve. That is, we know that the number h = #E(Fq)/n is 
an integer. We call h the cofactor, and set it as our last parameter:

• The cofactor h = #E(Fq)/n

Summary of Elliptic Curve Terminology
Table 3-2 lists the elliptic curve parameters and gives a short description of each 
parameter. For a brief description,refer to the previous sections in this chapter; for a 
detailed discussion, see [13], [14], and [19] in “Related Documents” on page xx.

Table 3-2 Elliptic Curve Parameters

Notation Name Description

Fq base field Either:

Fp : {0,1,...,p–1} with arithmetic mod p
or
F2m : strings of m bits. Addition is bitwise XOR, 
multiplication exists, but has no quick description 

a, b coefficients of the curve a and b are elements of Fq. They determine an 
equation, which depends on the base field:

For Fp:y2 = x3 + ax +b

For F2m:y2 + xy = x3 + ax2 +b

P point of prime order
or
base point

(xP,yP)

The pair xP, yP satisfies the curve equation.

n order of P The smallest nonzero number such that P added 
to itself n times is the zero point, Ο, on the curve.

n is prime.

h cofactor The order of the curve divided by the order of P:

#E(Fq)/n
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Representing Fields of Even Characteristic
For fields of even characteristic (fields of the form F2m), Crypto-C allows you to choose 
how you want the field to be represented. The representation you choose is internal to 
Crypto-C and affects how field arithmetic is performed. The choice of representation 
is also one of the formal elliptic curve parameters that must be transmitted along with 
the public key. Some representations lead to more efficient implementations in 
hardware or software.

When we talk about representations of F2m, we use the term basis to reflect the original 
mathematics underlying the construction of F2m. From our point of view, it is most 
important to know that a different basis corresponds to a different representation in 
Crypto-C. Crypto-C offers two types of representation for fields of even characteristic:

• Polynomial basis: this representation closely reflects how the field was originally 
constructed by mathematicians. Every field of even characteristic has a 
polynomial basis representation.

• Optimal normal basis (ONB): this representation is constructed to optimize certain 
multiplicative operations. Not all fields have an ONB representation; it can be 
constructed only for certain values of m. 

The difference in the choice of basis shows up most clearly in how multiplication is 
defined. For example, for any polynomial basis representation, the multiplicative 
identity is represented as (000…01). For any optimal normal basis, the multiplicative 
identity is (111…11). 

Note: Although arithmetic looks different when you choose a different 
representation, the field is still the same. Just as you can represent 
“normal”arithmetic using a hexadecimal or a decimal system, you can 
represent F2m inmore than one way. 

Elliptic Curve Key Pair Generation
Elliptic curve parameters can be used to generate a public/private key pair. Elliptic 
curve parameters can either be common to several key pairs or specific to one key 
pair. The elliptic curve parameters can be public; the security of the system does not 
rely on these parameters being secret. 
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Creating the Key Pair
To compute a public/private key pair:

1. Generate a random value, d, between 1 and n–1. 
2. Compute the elliptic curve point dP, that is, P added to itself d times. Call this 

point Q; it is a pair of field elements (xQ,yQ). 

The key pair is (Q,d): Q is the public key, d is the private key. As previously 
mentioned, even if you know P and Q, you cannot easily calculate d.

ECDSA Signature Scheme
Once you have generated elliptic curve parameters and created a public/private key 
pair, you can use this information to create an elliptic curve analogue of the Digital 
Signature Algorithm (DSA). 

Signing a Message
The holder of the private key can sign a message as follows:

1. Digest the outgoing message using SHA1. This yields a 20-byte (160-bit) digest, e.
2. Compute a random value, k, between 1 and n–1.
3. Compute the elliptic curve point kP = (x1,y1).

4. Currently, the first coordinate, x1, is an element of the finite field. To perform 
further calculations, we must convert x1 to an integer, called . We do this as 
follows:
For Fp, x1 is an integer α in the range 0 to p–1. Let = α. (Essentially, no 
conversion is required.)
For F2m, x1 is a bit string of length m bits: s1s2...sm. Because F2m has a very strange 
arithmetic, we need a way to think of its elements as integers. To do this, let the 
integer  be a weighted sum of the bits of x1:

In either case, once you have calculated  , set r =  . If r is zero, go back to step 2.

Note: Although this lets you take a member of the field F2m and represent it as an 
integer, it has some limitations. If you perform any arithmetic operations on 

x1

x1

x1

x1 2 m i–( ) si⋅
i 1=

m

∑=

x1 x1
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, you will be using regular arithmetic. This is so different from arithmetic in 
F2m that, for example, . However, if you convert two field 
elements and perform operations on them that show they are equal after 
conversion, then they were equal before conversion.

5. Compute s = k�1(e+dr) mod n. Again, you must check that s is nonzero.

The signature for this message is the pair r and s. Notice that, as with DSA, the 
signature depends on both the message and the private key. This means no one can 
substitute a different message for the same signature.

Note: The previous equation is merely an outline. For cryptographic purposes, it is 
necessary to verify that certain numbers are nonzero, or that they satisfy other 
conditions. Crypto-C makes the appropriate verifications when it generates 
your key pair.

Verifying a Signature
When a message is received, the recipient can verify the signature using the received 
signature values and the signer’s public key, Q. Because the pair (r,s) that has been 
received may not actually be a valid signature pair, it is customary to call the received 
pair (r’,s’) instead.

To verify a signature:

1. First verify that r’ and s’ are between 1 and n-1. If they are not, the output is 
invalid.

2. Digest the received message using SHA1. This yields a 20-byte (160-bit) digest, e.

3. Compute c = (s’)-1. Remember, s’ is an integer mod n, so its inverse is also an 
integer mod n.

4. Compute u1 = ec mod n and u2 = r’c mod n.

5. Compute the elliptic curve point (x1,y1) = u1P +u2Q.

6. Convert x1 to an integer, . See Step 5 on page 74 for details.

7. Compute v =  mod n

If v = r’, the signature is verified. If they are different, the signature is invalid.

The Math
The ECDSA algorithm depends in part on the fact that if r = r’ mod n, then rP = r’P. 
(See “The Point P and its Order” on page 69.)

x1
x1 x2+ x1 x2+≠

x1

x1
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The following calculations are really just a series of substitutions that can be made by 
looking back at the definition. You may find it more convincing to go through the 
substitution steps yourself, by glancing back at the preceding sections Creating the 
Key Pair, Signing a Message, and Verifying a Signature. 

If the message has been signed correctly, then s = s’. Expanding the elliptic curve 
point (x1,y1) = u1P +u2Q calculated by the recipient, we see that:

u1P +u2Q = es�1P + rs-1Q 

=s�1(eP + rQ)

Recall that Q = dP, so:

u1P +u2Q = s�1(eP + rQ)

= s�1(eP + rdP)

= s�1(e + rd)P

= s�1(e + dr)P

Now recall that s = k�1(e+dr) mod n, so:

u1P +u2Q = s�1(e + dr)P

= [k�1(e+dr)]-1(e + dr)P

= (k�1)�1(e+dr)�1(e+dr)P
= kP

This is the point calculated by the recipient. But this is also the point generated by the 
sender. The recipient then checks that the x-coordinate of the calculated point is in fact 
the x-coordinate that was received.

Elliptic Curve Authenticated Encryption Scheme 
(ECAES)
You can use elliptic curves to create an authenticated encryption scheme with a 
public/private key pair. 

As always with elliptic curves, we assume that the elliptic curve parameters have 
been defined in advance. Suppose Bob has a key pair based on these parameters. The 
pair is (Q,k2), where Q = k2P, where P is the base point of prime order specified in the 
elliptic curve parameters. The point Q is the public value and the number k2 is the 
private value.
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Encrypting a Message Using the Public Key
Anyone who wishes to send Bob an encrypted message can do so using the elliptic 
curve parameters and Q. To encrypt a message M, where the length (in bytes) of the 
message is f, another party follows these steps:

1. Compute a random value, k1, between 1 and n – 1.

2. Compute the elliptic curve point Q1 = k1P. This will be transmitted along with the 
encrypted message.

3. Compute the elliptic curve point S1 = k1Q. S1 is a pair (x1,y1). This is the secret 
information the sender uses to encode the message.

4. Compute a one time pad, otp, of length f, from x1 using a key derivation function 
(KDF). otp is a concatenation of a series of hashes; it is constructed using f, x1, and 
SHA1. otp is described below. The description uses the following notation: (1) || 
denotes the concatenation of two numbers, (2) for a number a, [a] denotes the 
integer part of a. In particular, [f/160] denotes the integer part of f/160.
a. Initiate a 32-bit, big-endian bit string counter. In hex, counter is initialized to 

0000000116.

b. For i = 1 to [f/160], create a series of hashes, as follows:

Compute Hashi = SHA1(x1 ||  counter), that is, the SHA1 hash of the 
concatenation of x1 and counter. 

Increment counter.
Increment i.

c. We want the length of the pad to be exactly the same as the length, f, of the 
message M. If f/160 is not an integer, we need to truncate the last hash to 
make the lengths equal. Therefore, we define Hash’[f/160] as follows:

d. Set otp to be the concatenation of the series of hashes:

otp = Hash1 || Hash2 ||…|| Hash[f/160]-1 || Hash’[f/160]

5. Compute M’ = otp XOR M. 

Hash’[f/160] = { Hash[f/160] if f/160 is an integer

the [f/160] – (160 × [f/160]) 
leftmost bits of Hash[f/160]

if f/160 is not an integer
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6. Compute an authentication tag, tag = SHA1 (x1 || M’). That is, tag is the SHA1 
hash of concatenation of the x-coordinate of the secret point k1Q and the message 
M’. Since tag is an SHA1 hash, tag is 20 bytes long.

7. Transmit the ciphertext c = (Q1,M’,tag). The total length of c in bytes is: 21+2 · (the 
length of a field element in bytes) + f.

Decrypting a Message Using the Private Key
A message that had been encrypted in the previous example can be decrypted using 
the private key as follows:

1. Parse the received ciphertext c = (Q1,M’,tag) into its components, Q1, M’, and tag.

2. Use the private key k2 to compute the elliptic curve point S2 = k2Q1. S2 is a pair 
(x2,y2). If the message was transmitted correctly and encoded with the correct 
public key, S2 is equal to S1.

3. To verify that S2 is equal to S1, compute tag' = SHA1 (x2 || M'). If tag'  is different 
from tag, output an error and stop.

4. Compute a one time pad, otp’, of length f, from x2 using the key derivation 
function outlined in Step 4 on page 76. Use x2 instead of x1. Since x1 = x2, 
otp’ = otp.

5. Compute M = otp XOR M’.

Elliptic Curve Diffie-Hellman Key Agreement
It is possible to construct a version of the Diffie-Hellman key agreement that uses 
elliptic curves. (For more information on Diffie-Hellman key agreement, see “Diffie-
Hellman Public Key Agreement” on page 62.) Like Diffie-Hellman, EC Diffie-
Hellman provides for key agreement, but not encryption or authentication.

The elliptic curve Diffie-Hellman key agreement algorithm provides a method for two 
parties to each compute the same secret key without exchanging secret information. 
The algorithm is made up of two parts: Phase 1 and Phase 2. Before they begin, the 
two parties must agree on the elliptic curve parameters: a base field, an elliptic curve 
over the base field, and point P of prime order, along with its order n. See the section 
“Elliptic Curve Parameters” on page 66 for details. See Figure 3-13 on page 79 for an 
illustration of Elliptic Curve Diffie-Hellman key agreement.
C h a p t e r  3   C r y p t o g r a p h y 77

Download from Www.Somanuals.com. All Manuals Search And Download.



Cryptography Overview
Phase 1
The first party randomly generates a private value, a number k1, greater than 0 but 
less than n. Similarly, the second party generates a random private value, k2.

Each party then computes a public value. To do this, they each compute Ri = kiP. For 
each party, this is an elliptic curve point. The two parties exchange their public values.

These private and public values correspond to the private and public key components 
of a key pair. The public value is generated in such a way that computing the private 
value from the public value is computationally infeasible.

Phase 2
Each participant computes the agreed-upon secret key, z, from the other’s public 
value, Rj, and their own private value, ki. The parties compute kiRj to get the elliptic 
curve point S. This is a pair, (xS,yS). They then use the first coordinate of S, xS, as their 
secret value.

Even with knowledge of the parameters and both public keys, an outside individual 
will not be able to determine the secret key. One must have one of the private values 
to determine the secret key. This means secret information is never sent over unsecure 
lines.
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Figure 3-13 Elliptic Curve Diffie-Hellman Key Agreement

The Math
Even though the two parties involved are making computations using different 
private values, they will both end up with the same secret key, as illustrated by the 
following.

P: point on the elliptic curve
k1: 1st party’s private value
k2: 2nd party’s private value
R1: 1st party’s public value

Parameters

Bob

Private value

Public value

Bob

Alice

Private value
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Alice

Phase 1

Phase 2

Agreed upon
key

Agreed upon
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R2: 2nd party’s public value
xS: secret key

In phase 1, each party computes a private value, ki, and then a public value, Ri:

R1 = k1P

R2 = k2P

In phase 2, the parties trade public values and compute the same elliptic curve point 
S:

S = k1R2 = k1k2P

S = k2R1 = k2k1P

The first coordinate of S, xS, is their agreed-upon secret key. 

Secret Sharing
Secret sharing, also known as a threshold scheme, takes a message or other data and 
divides it up into pieces in such a way that while each piece means nothing 
individually, some or all of the pieces can be assembled to retrieve the secret. 
Typically, the secret is a key used for encrypting sensitive data.

A good secret-sharing algorithm allows an application to share the secret among a 
variable number of shares. It should also be possible to set how many of the shares are 
needed to recover the secret. That is, if the total number of shares is N, you should be 
able to decide in advance that any K of them can recover the secret. The number K, the 
required number of shares, is known as the threshold. 

With secret sharing, access can be split among several individuals, with 
reconstruction requiring a threshold number of shares. In this way, if one or more of 
the individuals are not available, it is still possible to recover the data. In addition, 
secret sharing contains some level of checks and balances: no one can recover data 
without at least one other individual knowing about it.

The algorithm used in Crypto-C is Bloom-Shamir secret sharing.

Figure 3-14 and Figure 3-15 show the schema for secret sharing and recovery.
8 0 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.



Cryptography Overview
Figure 3-14 Secret Sharing — Key Share Assignment

Figure 3-15 Secret Sharing — Full Key Generation From Shares

Working with Keys

Key Generation
The techniques for generating public/private key pairs and symmetric keys are quite 
different. Symmetric-key algorithms generally require an arbitrary random-byte 
sequence, while a public/private key pair must satisfy a mathematical formula. Key 
generation depends on the availability of a good random number generator, and the 
security of a random number generator depends on the seed. See “Pseudo-Random 
Numbers and Seed Generation” on page 92 for more information.
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Key Management
The term key management refers to the collection of processes and methods for 
assigning the right keys to communication sessions, providing the right keys to the 
right persons, and making sure unauthorized personnel cannot gain access to keys. 
Key management is the most difficult security problem. To manage keys properly, an 
application must address the following issues:

• Generating keys
• Choosing appropriate values for the keys
• Guarding the privacy of keys transmitted between nodes
• Verifying the authenticity of keys transmitted between nodes
• Using keys in a software environment in an open system
• Keeping backup keys
• Dealing with compromised keys
• Destroying old keys
• Changing keys

Often, the bulk of a security application’s focus will be on key management. Crypto-C 
provides a rich suite of cryptographically secure algorithms, but it is up to the 
application designer to carefully consider how to manage the keys.

Key Escrow
Key escrow allows a designated authority or authorities to recover keys belonging to 
someone else. This can be a desirable feature when users lose access to their keys 
because they leave an organization or simply forget a password. Key escrow can be 
implemented through secret sharing or by encrypting keys with a security officer’s 
RSA public key and storing the encrypted copy. To recover the escrowed key, you 
must either assemble the necessary shares or have the security officer decrypt the 
encrypted key using the appropriate RSA private key.

Key escrow is never automatic with Crypto-C. There is no Crypto-C encryption 
method that offers key escrow as part of the algorithm; the developer must make key 
escrow part of the application. Crypto-C offers the techniques to implement key 
escrow, but it is the developer’s responsibility to decide whether it will be part of the 
application, and if so, how it will be executed.
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ASCII Encoding and Decoding
ASCII encoding and decoding is required when you need to send encrypted or signed 
data using communication protocols that allow transmission of printable characters 
only. In this case, the application must convert the encrypted 8-bit values to a string of 
printable characters. Crypto-C uses the Internet RFC1113 method for implementing 
ASCII-encoding. The Internet Draft RFC1113 is a publication that describes this 
system.

Applications of Cryptography
Crypto-C offers application developers the tools to add privacy and authentication 
features to software and hardware systems. This section discusses a number of areas 
where such features are useful.

Historically, privacy has been the main use of cryptographic techniques. In these 
applications, cryptography is used to hide critical information from attackers or 
unauthorized personnel. Crypto-C provides algorithms and methods for encrypting 
data in a variety of applications.

Authentication is a cornerstone of the forever-pursued paperless office. Authentication 
enables users to prove authenticity and authorship of messages and non-tampering of 
data.

Cryptography can be useful in any of the following situations:

• Local applications, to control access and prevent tampering
• Point-to-point applications, to protect the privacy of communications
• Client/server applications, to control access and provide authentication
• Peer-to-peer applications, to protect privacy between nodes

Local Applications
One of the most basic applications of cryptography is local file encryption. There are 
many reasons why one would find it useful to encrypt files even if they are not being 
transmitted. For example, you can use cryptographic techniques to:

• Save files in encrypted form to protect against unauthorized access.
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• Ensure file integrity and protect against tampering. Cryptographic techniques can 
be used to guarantee that only authorized personnel can modify or install certain 
files.

• Archive important data so that it can be accessed only by authorized personnel.
• Protect intellectual property.

Point-to-Point Applications
Applications that require establishing a secure link between two nodes are very 
common and may have different topologies. However, their similarities allow them to 
be treated in a comparable manner. Secure point-to-point communication is needed if: 

• Communication takes place between exactly two nodes.
• The primary security consideration is to allow the two nodes to communicate 

privately and to prevent others from eavesdropping on the traffic.

Here are some applications that require secure point-to-point data communication:

• Computer hardware links connecting two nodes
• Satellite or cellular communications
• A single transaction between two nodes in a larger network

Here is a typical scenario for implementing applications in this class, using key 
agreement with stream-cipher encryption.

1. Compute the Diffie-Hellman parameters for both nodes. This must be done before 
a communication session is established. When a link is requested, the parameters 
should be waiting for the nodes. 
A new Diffie-Hellman parameter set is not necessary each time you generate a 
session key; it is safe to use one set of Diffie-Hellman parameters for many key-
agreement sessions. In addition, either of the nodes can generate the parameters 
and transmit the values over any channel.

2. Establish an agreed-upon secret value using Phase 1 and Phase 2 of the Diffie-
Hellman key-agreement protocol. See “Diffie-Hellman Public Key Agreement” on 
page 62 for an overview of this process.

3. Compute an RC4 key for the session using the agreed-upon secret value. The RC4 
key may be shorter than a Diffie-Hellman secret value. The application must 
determine the procedure for extracting the required bits. A single Diffie-Hellman 
agreement may also be used to generate multiple RC4 keys.
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4. Perform the encryption and decryption using the RC4 cipher with the established 
key. If the application requires multiple session keys, use a message digest on the 
agreed-upon secret value and a counter to generate a new key.

There is an attack against this kind of protocol known as “man-in-the-middle.” 
Someone could intercept all messages between the two parties and pose as each 
individual’s other participant. For example, if Alice wants to communicate with Bob, 
she sends a message to initiate a session. The man-in-the-middle intercepts Alice’s 
message, builds a secure session with Alice, and initiates his own session with Bob. 
Now, all messages Alice sends to Bob go through the attacker. The man-in-the-middle 
decrypts Alice’s messages based on the session he created with Alice and saves the 
results to examine later. He then re-encrypts the message based on the session he 
created with Bob. If a particular application is vulnerable to such an attack, it is 
advisable to use a peer-to-peer protocol (see page 86) instead.

Client/Server Applications
A client/server application is distinguished by one central server node that provides 
services to several client nodes. Many client/server applications have a need for 
cryptographic tools. For example:

• Network applications: Any network that connects several computer nodes to one 
central server, such as a local or wide area network, can use cryptography to 
establish secure communications between the clients and the server. The network 
can also employ authentication to guarantee that intruders do not have access to 
the network.

• Database applications: Multiple clients — in this case, database queries — need 
access to a server — the database. To ensure that not all fields in the database are 
accessible to all clients, restricted fields can be encrypted or signed. In addition, 
by distributing secret shares among authorized personnel, you can ensure that 
very sensitive data can be accessed only according to the security rules.

• Cryptographic smart cards: Here, you must authenticate users to service providers 
such as banks. A smart card holds the individual private keys and includes a 
processor that runs the cryptographic algorithms needed to achieve the 
appropriate authentication level.

In all these applications, the server generates a public/private key pair for use with all 
clients requiring secure communications. The server uses the private key to sign 
digital certificates for all nodes that require access to the server and its resources.

It also starts a public key table to register client RSA public keys. Each client computes 
an RSA public/private key pair when it is first established as a secure client. The 
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public key is communicated to the server and an entry is made in the table maintained 
by the server for the public keys. 

As an alternative, the server can certify the public keys of the client nodes by 
generating a digital certificate to be signed by the server’s private key. In this case, the 
server only trusts messages from previously-certified keys. There is no table to 
maintain because the digital certificate can be used to verify the identity of a node 
each time a connection or request is needed.

There are two approaches to establishing a link between a client and the server.

In the first approach, the server and a client determine a session key using a Diffie-
Hellman key agreement protocol. The Diffie-Hellman parameters are established 
once at the initial setup of the server, and communicated publicly to each client when 
a secure connection is requested. The session key is used for bulk-data encryption; the 
established client RSA key pair is used for authentication or for envelope 
communications. Any block or stream cipher can be used for encryption with the 
session key. For stream ciphers, a new key should be computed for each session; this 
prevents attacks that compare blocks of data encrypted with the same key.

In the second approach, the server uses the client’s RSA public key (contained in the 
digital certificate) to generate a digital envelope for the encrypted data sent from the 
server to the client. Likewise, the client uses the server’s public key (known to all 
nodes) to create a digital envelope. In addition, each message contains digital 
signatures to authenticate the originator.

Peer-to-Peer Applications
Unlike a client/server application, a peer-to-peer network application provides each 
node with access to any other node in the network. For example, users may wish to 
communicate privately with other known or unknown users through secure email. In 
a peer-to-peer situation, no single node is capable of authenticating other client nodes.

Digital signatures can be used to provide proof of authorship to any recipient. Each 
node must generate its public/private key pair and obtain a digital certificate from 
some approved central authority. VeriSign can provide details about how to obtain a 
digital certificate.

Each message between any two or more nodes can be authenticated by attaching the 
originator’s digital certificate to the message. The recipient can verify the authenticity 
of the message and the originator by verifying the validity of the certificate.

Nodes on peer-to-peer applications can encrypt using digital envelopes. To do so, the 
sender obtains the digital certificate of each recipient and extracts the public key.
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Choosing Algorithms
In some cases, an application’s constraints determine the algorithm. In other cases, the 
developer can choose among a number of algorithm options and still produce a viable 
PKI solution. This section presents suggestions to help you determine the best choice.

Public-Key vs. Symmetric-Key Cryptography
Because symmetric-key encryption algorithms are much faster than public-key 
algorithms, they are most suited for bulk data encryption.

Public-key encryption should not be used for encrypting large amounts of data. It is 
best used to encrypt keys for either a digital envelope method or for key escrow 
applications.

Stream vs. Block Symmetric-Key Algorithms
Crypto-C has only one stream encryption algorithm, the RC4 cipher. The RC4 cipher 
produces an encrypted output the same size as the original input message and is 
significantly faster than block-encryption algorithms. However, once a key has been 
used to encrypt a particular message, it should not be used again. Hence, employing 
the RC4 cipher requires using many keys. If managing many keys is difficult, the RC4 
cipher may not provide the easiest solution.

Some applications do not save keys outside of the session. For these applications, the 
RC4 cipher will generally be a good choice. For instance, in encrypted phone 
conversations, the symmetric key is a session key. It encrypts for one call; once the 
session is over, the key is discarded. Another example would be an email application 
where the session key is encrypted with an RSA public key and is a part of the data 
package. 

The RC4 cipher has a variable length key. If you set the key to be long enough, the 
RC4 cipher offers greater security than DES.

Block-encryption algorithms are best used for applications that require repeated 
encryptions without changing the value of the key. In addition, DES is a standard 
used by many applications. If an application must be able to communicate with other 
applications, DES is a safe choice for universal support.
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Block Symmetric-Key Algorithms
The following considerations may help when choosing between DES, DESX, Triple 
DES, and the RC2, RC5, and RC6 algorithms.

DES is a standard algorithm in use by many applications. Using DES ensures 
widespread connectivity. However, DES is limited to an effective key size of 56 bits. 
The cryptography community expects that, because of the continued increase in 
computing power, within a few years, DES will not be strong enough to withstand 
attacks. Triple DES is gaining in acceptance as a substitute for DES to counter this 
problem. 

DESX is viewed as a fast and secure alternative to Triple DES.

The RC2 algorithm is faster in software than DES and Triple DES and has gained 
momentum in the marketplace, although it is not as widely implemented as DES. In 
addition, the RC2 algorithm employs a variable key size, which allows you to increase 
the security beyond that supplied by DES or Triple DES.

The RC5 algorithm is even faster than the RC2 algorithm; its speed and security can 
be increased or decreased through the word size, rounds, and key length parameters. 
In the years since it was developed, RC5 has received a lot of attention from the 
cryptographic community. No serious weaknesses have been discovered during this 
time, and RC5 is considered secure.

The RC6 algorithm is faster than the RC2 algorithm, and is also faster than the RC5 
algorithm on most hardware. Like the RC5 algorithm, the RC6 algorithm has a 
variable number of rounds, which has the potential to allow tradeoffs between speed 
and security. Although the RC6 algorithm is fairly new, as a submission to the 
Advanced Encryption System process, the algorithm has been made public and has 
been subjected to intense scrutiny by the cryptographic community.

Unless communication with other applications that do not support the RC algorithms 
is an issue, the RC2 and RC5 algorithms offer greater security and are much faster in 
software than DES. 

Key Agreement vs. Digital Envelopes
Both key agreement and digital envelopes allow two nodes communicating over an 
unsecure medium to establish a secret symmetric-encryption key. Key agreement is 
easier and faster when the two nodes are in current contact, such as in a phone 
conversation. Crypto-C employs the Diffie-Hellman key agreement algorithm and the 
implementation requires an interactive session.
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Digital envelopes are more convenient when the contact between nodes is not 
interactive, such as email. One node can send a message to another without waiting 
for the other node to respond. 

To thwart man-in-the-middle attacks, authentication by digital signatures should be 
built into any communication system.

Secret Sharing and Key Escrow
Also known as emergency access, secret sharing and key escrow both allow for 
recovery of keys by parties other than the owner. Without some form of emergency 
access, data that is encrypted using a session key that is itself protected by password-
based encryption is inaccessible or even lost if the owner forgets the password or is 
unavailable.

To enable recovery using key escrow, you can encrypt all session keys with a security 
officer’s RSA public key. Any time access is required, the officer can decrypt the 
session key with the appropriate RSA private key. This method is the easiest to 
implement and execute. However, it requires trust in the security officer not to abuse 
this power, and it requires that a single individual be available.

With secret sharing, access can be split among several individuals, with 
reconstruction requiring a threshold number of shares. In this way, if one or more of 
the individuals are not available, it is still possible to recover the data. In addition, 
secret sharing contains some level of checks and balances: no one can recover data 
without at least one other individual knowing about it.

Elliptic Curve Algorithms
Elliptic curve cryptosystems have recently come into strong consideration, 
particularly by standards developers, as alternatives to established standard 
cryptosystems such as the RSA cryptosystem, Diffie-Hellman, and DSS. Elliptic curve 
cryptosystems have a number of interesting properties, which may make them 
appropriate tools for meeting security requirements in some cases, and not in others. 

From a cryptographic perspective, the primary motivation for development of elliptic 
curve cryptosystems is that they are based on a different hard mathematical problem 
than established systems, and appear to have a reasonable expectation of security, 
without significant additional cost. In particular, in certain applications, elliptic curve 
cryptosystems can provide security where other systems currently do not fit. 
However, the range of applications where they make a significant difference is 
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limited. In typical applications of cryptography, public-key operations are employed 
in combination with other techniques. In particular, public-key operations often 
represent only a minor overhead in the total processing, whether in storage or in 
computation time. A “faster” or “smaller” public-key technique thus may have little 
overall impact in many applications. 

Elliptic curve cryptosystems have, at this point, relatively fewer cryptanalytic results 
than established systems. It could be that the systems are stronger, or it could be that 
they are just not that well understood. In either case, this is an observation that calls 
for further study.

In conclusion, RSA Security is currently recommending that elliptic curve 
cryptosystems continue to be studied as additional tools in the public-key repertoire, 
and that they be considered as near-term solutions in the particular cases where the 
alternative would be to have no security at all. 

For more information about elliptic curve cryptosystems, see the RSA Laboratories 
technical note, Recommendations on Elliptic Curve Cryptosystems, at 
http://www.rsasecurity.com/rsalabs/technotes/.

Interoperability
Elliptic curve public-key methods can be constructed in a number of ways. 
Parameters can be chosen over odd prime fields or fields of even characteristic. The 
underlying mathematics of these implementations is different enough that a 
successful implementation of only one of these approaches could not handle another 
implementation. In essence, this means that one could build two different 
cryptosystems, both using elliptic curve cryptography, but unable to interoperate 
with each other.

The two main interoperability issues for elliptic curve cryptosystems are the choice of 
finite field over which the elliptic curve is defined and the representation of elements 
in the finite field.

There are two types of finite fields: finite fields with p elements, where p is an odd 
prime, denoted Fp, and called “odd prime fields”, and a finite field with 2m elements 
for some integer m, denoted Fm, and called “even characteristic.” It is not possible to 
convert between the two types of finite field, so the choice of finite field is critical to 
interoperability.

The even characteristic implementations offer greater gains in hardware 
implementation. However, the odd prime implementations can use the same special-
purpose circuitry that is available for implementations such as RSA encryption. This 
can make the odd characteristic a better choice for situations where RSA hardware is 
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already in place, or where a hardware developer wants to be able to provide a 
platform that supports both RSA and elliptic curve encryption.

For the even characteristic finite field, F2m, there is also a choice of representation. For 
these fields, elements can be represented using a polynomial basis, a normal basis, or 
some other basis. For some values of m, elements can also be represented in an 
optimal normal basis, which is generally more efficient than an ordinary normal basis. 
In order for systems that use different bases to communicate, they need to convert 
from one representation to another. Each representation has advantages and 
disadvantages, including efficiency and potential patent coverage, so in current 
elliptic curve standards the choice is typically left to the implementation.

Elliptic Curve Standards
The elliptic curve algorithms in Crypto-C are compliant with the ANSI X9.62 
standard. The elliptic curve implementation is also based on the IEEE P1363 draft 
standard. 

Security Considerations
This section discusses security considerations when using public-key cryptography. 
The following issues are discussed: handling private keys, temporary buffers, 
pseudo-random numbers and seed generation, choosing passwords, initialization 
vectors and salts, DES weak keys, stream ciphers, timing attacks and blinding, and 
choosing key sizes.

Handling Private Keys
In public-key cryptography, only the owner of a private key can create a digital 
signature or open digital envelopes. However, if someone other than the owner is able 
to obtain the private key, the security fails. To ensure that no one other than the owner 
has access to a private key, it should be stored encrypted, generally with a password-
based encryption method. An application will decrypt the private key when it is 
needed. Always overwrite the memory that held a private key with zeroes or random 
bytes immediately after the key has performed its function.

Operating systems will frequently use the hard disk space as virtual memory, so an 
unencrypted private key may, through no intention of a user, end up on a hard disk. 
Hence, for key buffers, an application should use the operating system’s mechanisms 
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that ensure allocation of core memory, and not of virtual memory.

It is a good idea to generate new public/private key pairs every so often to thwart 
long-term factoring attacks. Material encrypted using the old key pair should be re-
encrypted with the new. However, an application may not have access to all material 
protected by an old key pair, so it may be necessary to retain old key pairs in a secure 
environment.

Temporary Buffers
Even though a temporary buffer may not contain a private key, it still may hold 
sensitive data, such as a message to be encrypted or a symmetric key. Such temporary 
buffers require the same security as private-key buffers. After using the data, 
overwrite the buffer with zeroes or random bytes. Make sure the operating system 
uses core memory and not hard disk virtual memory.

Pseudo-Random Numbers and Seed Generation
Crypto-C uses pseudo-random number algorithms for generating both symmetric 
keys and public/private key pairs. The random number generation algorithms are the 
same as the message digest algorithms, and are verified to have very high degree of 
randomness.

Any method that is employed to generate random values begins with a random seed. 
The security issue then becomes one of making sure that an attacker cannot determine 
the seed. Generally, any random number generator will produce pseudo-random 
numbers, given any seed. Therefore, to generate a random number, you do not need 
to start with a seed that is itself random. However, the seed should be “unrepeatable.” 
That is, no one should be able to apply some sort of algorithm that can “guess” the 
seed in a reasonable amount of time.

For instance, suppose that a message was encrypted using the RC2 cipher with 80 
effective key bits from 10 bytes of key data, but that the key data was generated using 
an MD5 random byte-generating algorithm with a 4-byte seed. An attacker could try 
every possible 10-byte key combination to crack the message, or could try every 4-
byte seed combination to generate 10 bytes of key data. Further, suppose that 4-byte 
seed was the time of day. Now the attacker has an even smaller range of possible 
seeds to test before finding the right one.

The seed should contain at least as many unrepeatable bits as the key. If the seed is 
based on a user’s typing a series of letters and characters on the keyboard, then an 
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attacker can predict two or three of the bits in each seed byte. Bit 7, for instance, will 
always be 0. Furthermore, many of the keystrokes can be predicted: they will 
probably be lowercase letters that alternate between the left and right hand. Analysis 
of this issue has determined that there is only one bit of entropy from each keystroke 
(think of the term “entropy” as “unrepeatability”). When using keystrokes, use at 
least one for each bit of key size.

There are other schemes for finding seed bytes, including tracking mouse movements, 
timing keystrokes, “listening” to hardware noise, or capturing machine state 
information. Many schemes will provide more than one bit of entropy per byte of 
seed; however, it is an easy-to-remember rule of thumb to use as many bytes of seed 
data as bits of key.

Whatever the scheme, it may seem unusual to expend more effort to produce a seed 
than it will take to produce the random key data itself. Why not simply use the seed 
data in the key? The strength of cryptography relies on key data that is random or 
pseudo-random. If an attacker knows that the key data is not random, cracking the 
cipher becomes easier. The seed will almost certainly not be random. The attacker 
may not be able to repeat the seed gathering process exactly, but non-random key 
data leaves a cipher algorithm as a whole open to various attacks. Hence, use a large 
unrepeatable seed to generate pseudo-random data.

Choosing Passwords
In almost any security application, users are required to have passwords that indicate 
authorized access to the system. Often, when given a choice, users choose the same 
password for various applications. For instance, they may use their login password to 
encrypt a private key. Many times, users will choose passwords an attacker can easily 
deduce. Therefore, it is a good idea for developers to build good password protocols 
into their applications. Following is a list of possible guidelines for choosing 
passwords.

• Enforce a minimum password length, generally eight characters.
• Inform users to avoid easy to guess passwords, such as common names or 

birthday dates.
• Check an entered password against a dictionary.
• Require a combination of numeric, special, and upper- and lower-case alphabetic 

characters.
• Include support for password expiration dates to limit the available searching 

time an attacker has to break into the system.
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Initialization Vectors and Salts
Although IVs and salts are not secret information, it is still a good idea to use random 
values. If a salt is not random, an attacker will have much fewer precomputations to 
make in generating keys from possible password/salt combinations.

An IV should also be used for only one message. Using the same IV with the same key 
on two separate messages may provide an attacker with useful information. 

DES Weak Keys
Researchers over the years have found that some DES keys are more susceptible to 
attack than others. Some of these keys are known as “weak”; others, when used in 
pairs, are  called “semi-weak.” Using a weak key or a semi-weak pair may not 
necessarily pose a security risk; it could depend on the mode of DES. However, it is 
simply easier to avoid these keys (listed in Table 3-3) altogether.

Table 3-3 DES Weak and Semi-Weak Keys

0101010101010101

FEFEFEFEFEFEFEFE

1F1F1F1F1F1F1F1F

E0E0E0E0E0E0E0E0

01FE01FE01FE01FE

1FE01FE00EF10EF1

01E001E001F101F1

1FFE1FFE0EFE0EFE

011F011F010E010E

E0FEE0FEF1FEF1FE

FE01FE01FE01FE01

E01FE01FF10EF10E

E001E001F101F101

FE1FFE1FFE0EFE0E

1F011F010E010E01

FEE0FEE0FEF1FEF1
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Stream Ciphers
A stream cipher (such as the RC4 cipher) will create a stream of pseudo-random bytes 
based on the secret key; this is known as the key stream. To encrypt, you XOR the 
plaintext with the key stream, byte by byte. The XOR operation has the property that 
the ciphertext XORed with the same key stream decrypts, restoring the plaintext. This 
also means that an XOR operation between the plaintext and the ciphertext will 
reproduce the key stream. Hence, knowing or guessing part of the plaintext allows an 
attacker to determine the corresponding part of the key stream. This still will not 
enable the attacker to deduce the entire key or any more of the key stream, but this 
does pose a threat if the same key is used in two different messages. 

The same key always produces the same key stream. Therefore, if two messages use 
the same key, knowing part of the key stream in one message means knowing the 
same part of the key stream in the second message. An attacker can thus determine 
some of the plaintext in the second message. That is why you should never use the 
same stream cipher key twice.

Incidentally, this attack does not work on block ciphers. Knowledge of part of the 
plaintext does not automatically grant to the attacker knowledge of the key.

Another stream cipher attack involves a dictionary of key streams. Suppose you had 
kept the key size to 40 bits. An attacker could create a dictionary of the first eight 
bytes of the key stream from every possible 40-bit (5-byte) key. Then, the attacker 
“decrypts” the first eight bytes of an intercepted message with each possible key 
stream, until one produces a reasonable result. The key that generated the stream that 
worked is the right one.

To thwart this attack, you can implement salting. Design the application to use an 80-
bit (10-byte) key, but send 40 bits in the clear. That 40 bits in the clear is known as a 
salt. For example, in an email application, encrypt the message using the RC4 cipher 
with a 10-byte key. Then encrypt the first five bytes of the key using the recipient’s 
RSA public key. Now the RSA digital envelope consists of the public-key-encrypted 
five secret bytes, five salt bytes sent in the clear and the RC4-encrypted message. In 
this way, the attacker’s dictionary is rendered useless. That dictionary is valid for 40-
bit keys, but the message used an 80-bit key. Still, only 40 bits are kept secret. A 
dictionary of 80-bit key streams is not feasible — it would require 280 entries. That is 
about 1.2 · 1024, or 1.2 times one trillion times one trillion.

Timing Attacks and Blinding
If the time it takes to execute a cryptographic operation varies based on the input 
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parameters, then in theory, an attacker with access to accurate timings can determine 
unknown values. This is the case for RSA, Diffie-Hellman, and DSA operations. For 
instance, in an RSA signing operation, purportedly an attacker who knows the 
message being signed and exactly how long it takes to create the digital signature can 
determine the signer’s RSA private key.

Currently, there is no known successful implementation of such a procedure. 
Proposed algorithms under scrutiny either require several absolutely exact timings or 
thousands of inexact (but still accurate to the millisecond) timings to succeed. 
However, there are two simple ways to guard against this attack. One is to equalize 
private key operations, by padding shorter transactions with a few extra milliseconds 
to make sure that all times are the same. The second method is known as blinding.

For a timing attack to succeed, the eavesdropper must know that the input being 
processed is only altered before the operation is performed and that the true answer is 
recovered after the operation by reversing the alteration procedure.

For example, in an RSA signature operation, the input is the BER-encoding of the 
digest of the data to sign and some pad bytes. To blind the attacker, that input is 
modular multiplied by a secret random number. Then the product, not the input, is 
modular exponentiated. To produce the actual signature, the result is modular 
multiplied by the inverse of the random number.

In mathematical terms, instead of performing the usual RSA encryption process:

sig = md mod n

pick a random value r and compute:

m' = mre mod n

where e is the public exponent. Now find:

s = (m')d mod n

Then to compute the actual signature, find:

sig = (r-1) · s mod n

In this way, the timing attack fails because the attacker does not know what value was 
exponentiated.

To see that the signature is the same in both cases, note that:

r(mre)d mod n = (r�1)(m)d(re)d 

                         = (r)(red)(md) 
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                         = (r-1)(r)(md) 

                            = (1)(md) mod n

Crypto-C offers both blinding and non-blinding RSA private operations through 
separate algorithm methods. It currently offers no blinding technique in Diffie-
Hellman or DSA operations.

Crypto-C uses MD5 random number generation to produce the random value r. The 
seed is the following digest:

MD5(p || padP || MD5(q || padQ || m))

where p and q are the two primes, padP and padQ are paddings of zeros to make sure 
the length is a multiple of 64 bytes, and the symbol || means concatenation. An 
attacker will not know what r is without knowing what the seed is, and will not know 
what the seed is without knowing what p and q are. An attacker who knows p and q is 
not going to implement a timing attack to determine the private key, because 
knowledge of p and q is equivalent to knowledge of the private key already.

Choosing Key Sizes
In cryptography, security is measured in key size: the bigger the key, the greater the 
security. Key size, in turn, is measured in bits. However, that bit number might not 
describe the entire key. 

For instance, a DES key is 56 bits. However, that size refers to its cryptographic size, 
not its “physical” size. To build a DES key, you need 64 bits, but because eight of 
those bits are “parity bits,” that is, bits that are known, out of the 64, you really only 
get 56 secret bits. Hence, a DES key, while consisting of 64 bits of data, is only 56 
cryptographic bits large.

An RSA key pair measurement describes the modulus length. When cryptographers 
talk about a “768-bit RSA key pair,” what they really mean is that the modulus is 768 
bits long. The security of an RSA key pair is tied up in how big the modulus is; hence, 
the measurement used is the bit size of the modulus. The actual keys themselves will 
contain more information than the modulus, so the “physical” size will be much 
larger.

In choosing a key size, if larger keys offer greater security, why not simply always 
choose the largest possible key? Larger RSA, Diffie-Hellman, DSA, and elliptic curve 
keys can slow down cryptographic operations. 

For the RC2, RC4, and RC5 ciphers, larger keys generally do not significantly degrade 
performance. However, larger keys do require more management.
C h a p t e r  3   C r y p t o g r a p h y 97

Download from Www.Somanuals.com. All Manuals Search And Download.



Security Considerations
Table 3-4 gives a summary of the recommended key sizes for the algorithms 
supported in Crypto-C. These recommendations were current at the time this manual 
went to press. Please note, however, that such recommendations are always 
provisional and can be affected by changes in the cryptographic state of the art. 

RSA Keys
The security of the RSA algorithm is based on the difficulty of factoring large integers. 
Therefore, the choice for the key size depends on the efficiency of integer-factoring 
algorithms. Because users will probably want a key pair to last a few years, it is 
advisable to choose a size that will not only remain secure against current state of the 
art factoring, but will probably defeat improved factoring attempts of the future. The 
RSA Laboratories publication, “Frequently Asked Questions About Today’s 
Cryptography,” describes current factoring capabilities.

For normal user data, RSA Security recommends a modulus size of 768 bits. For 
organization keys or for long-term applications, a 1024-bit modulus is advisable. For 
root keys, RSA Security recommends a 2048-bit modulus. This safeguards against 

Table 3-4 Summary of Recommended Key Sizes

Algorithm User Key
Organizational or 
Long-Term Key Root Key

AES 128 (192 or 256 is also 
acceptable)

Diffie-Hellman 768-bit prime 1024-bit prime 2048-bit prime

DSA 768-bit prime 1024-bit prime 2048-bit prime

ECAES 160-170-bit modulus Not recommended
at this time

EC Diffie-Hellman 160-170-bit modulus Not recommended
at this time

ECDSA 160-170-bit modulus Not recommended
at this time

RC2 –––––––––––––––––––––––80-128 effective key bits   ––––––––––––––––––––––

RC4 –––––––––––––––––––––––––– 80-128 key bits   –––––––––––––––––––––––––

RC5 –––––––––––––––––––––––– 80-128 key bits with
–––––––––––– 16 rounds for 32-bit word or 20 rounds for 64-bit word –––––––––––

RC6 –––––––––––––––––––– 80-128 key bits with 20 rounds  –––––––––––––––––––

RSA 768-bit modulus 1024-bit modulus 2048-bit modulus
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progress in factoring algorithms and improvements in computing power.

Diffie-Hellman Parameters and DSA Keys
The security of the Diffie-Hellman algorithm and DSA are both dependent on the 
complexity of computing logarithms modulo a prime number. Generally, this is 
equivalent to the complexity of the factoring problem, because modern factoring 
algorithms generally apply to the discrete logarithm problem. Therefore, the designer 
is advised to use similar sizes for the Diffie-Hellman parameters and DSA keys as for 
RSA operations: a 768-bit prime for user keys, 1024-bit prime for organizational keys 
and a 2048-bit prime for root keys. 

Note: The Digital Signature Standard lists a maximum of 1024 bits for DSA, but the 
algorithm does not have an inherent limit. Crypto-C’s implementation allows 
up to 2048-bit DSA keys.

RC2 Effective Key Bits
A key with 80 to 128 effective key bits is sufficient for most applications using the RC2 
algorithm. 

RC4 Key Bits
An 80- to 128-bit key is sufficient for most applications using the RC4 cipher.  

RC5 Key Bits and Rounds
An 80- to 128-bit key is sufficient for most applications using the RC5 cipher. Note 
also that the security of the RC5 cipher is dependent on the number of rounds. For the 
RC5 cipher with a 32-bit word size, RSA Security recommends at least 16 rounds for 
applications; while no practical attacks are known for 12-round RC5-32, recent 
cryptanalytic work suggests 16 rounds is now a more conservative choice. For the 
RC5 cipher with a 64-bit word size, RSA Security recommends at least 20 rounds. 

Triple DES Keys
It is possible to implement Triple DES with one, two, or three keys. One key in EDE 
mode (encrypt-decrypt-encrypt) is equivalent to DES, and is used to provide 
compatibility with applications that only understand DES. There are known attacks 
against Triple DES using two keys, so RSA Security recommends using three keys.
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Elliptic Curve Keys
For prototyping and evaluation, RSA Security recommends setting the order of the 
base point to be between 160 and 170 bits. Currently, RSA Security does not 
recommend using elliptic curve cryptography for long-term applications. 
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Chapter 4

Using Crypto-C
Algorithms in Crypto-C
Whatever algorithm Crypto-C performs, it does so from an algorithm object. An 
algorithm object is used to hold information about an algorithm’s parameters and to 
keep a context during cryptographic operations.

To build an algorithm object, create an empty object with B_CreateAlgorithmObject. 
Then, use B_SetAlgorithmInfo to fill the object with the information necessary to 
distinguish it as an object performing the desired operation. The information for 
B_SetAlgorithmInfo consists of two elements: an Algorithm Info Type, or AI, and its 
specific accompanying info. This chapter gives a brief summary of the AIs 
categorized by function.

Chapter 2 of the Reference Manual gives a complete listing of AIs in alphabetical order. 
Each entry in the Reference Manual contains a description of information that must 
accompany the AI, including keys and algorithm methods. 
1 0 1
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Information Formats Provided by Crypto-C
There are four types of AIs in Crypto-C. These AIs differ in the format in which they 
provide information:

• Basic algorithm info types provide information in Crypto-C’s internal format.
• BER-based algorithm info types provide information in a format that complies 

with Open Systems Interconnection’s Basic Encoding Rules.
• PEM-based algorithm info types provide information in a format that complies 

with the Privacy Enhanced Mail draft standard.
• BSAFE1 algorithm info types provide information in a format that is backward-

compatible with BSAFE 1.x.

Basic Algorithm Info Types
The basic algorithm is used to start a new process because its info (the accompanying 
information specific to the AI) is the simplest to format.

BER-Based Algorithm Info Types
BER-based algorithms are algorithms that comply with Basic Encoding Rules, as 
defined in ANSI X.690. BER-based algorithms are necessary because the format of the 
info in a basic AI is not standard. Much of the data in cryptography is passed between 
two or more individuals. Not every cryptographic application uses Crypto-C, and 
other packages may not organize the necessary information the same way. When one 
person needs to tell another person which algorithm was used to encrypt, for 
instance, there needs to be a standard way to present the information. The standard 
description of information is known as Basic Encoding Rules, or BER, which is a 
product of Open Systems Interconnection and is defined in ANSI X.690. 

BER-based algorithms end with the letters BER. Such AIs will read in or output 
information according to the BER.

Unfortunately, BER is often complicated, and it is difficult to determine the proper 
BER encoding without a translator. Therefore, it is simpler to use 
B_SetAlgorithmInfo to define algorithm objects with the basic algorithm AI, get the 
information in BER format using B_GetAlgorithmInfo, and send the BER-encoding to 
those who need the information. The recipient will translate the BER information into 
something they can understand. 

When a Crypto-C application receives information in BER format, it can set using the 
BER AI and build an algorithm object to match that information.
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PEM-Based Algorithm Info Types
The Privacy Enhanced Mail (PEM) draft standard is a product of the Internet 
Activities Board, Network Working Group (see RFC 1421-1424). It defines the proper 
formatting of information passed between entities in electronic mail. Formatting 
information to follow this standard is fairly simple.

BSAFE1 Algorithm Info Types
The fourth kind of AI ends with BSAFE1. These algorithm info types are only for 
backward compatibility with applications using the BSAFE 1.x formats.

Summary of AIs
This section lists all of the algorithm info types offered in RSA BSAFE Crypto-C. A 
typical application supplies an algorithm information type as the infoType argument 
to B_SetAlgorithmInfo. Algorithm info types are grouped by function into the 
following tables.

Table 4-1 Message Digests

Algorithm Info Type Description Standards BER PEM

AI_MD2 MD2 message digest RFC 1319

AI_MD2_BER MD2 message digest; BER-encoded 
algorithm identifier

RFC 1319 a

AI_MD2_PEM MD2 message digest with PEM RFC 1423 a

AI_MD5 MD5 message digest RFC 1321

AI_MD5_BER MD5 message digest; BER-encoded 
algorithm identifier

RFC 1321 a

AI_MD5_PEM MD5 message digest, PEM-encoded 
algorithm identifier

RFC 1423 a

AI_MD Supplied for backward compatibility 
with the BSAFE 1.x message digest 
algorithm

none

AI_SHA1 SHA1 message digest FIPS PUB 180-1

AI_SHA1_BER SHA1 message digest; BER-
encoded algorithm identifier

FIPS PUB 180-1
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Note: Not all message digests are recommended. See “Message Digests” on page 47 for details.

Table 4-2 Message Authentication

Algorithm Info Type Description Standards

AI_MAC BSAFE 1.x message authentication code; supplied for 
backward compatibility with BSAFE 1.x

AI_HMAC Hash-Based Message Authentication Code SET Draft

Table 4-3 ASCII Encoding

Algorithm Info Type Description Standards

AI_RFC1113Recode ASCII/binary conversion RFC1113/RFC1421; RFC1521; MIME Base64

Table 4-4 Pseudo-Random Number Generation

Algorithm Info Type Description

AI_MD2Random MD2 pseudo-random number generator

AI_MD5Random MD5 pseudo-random number generator

AI_SHA1Random Identical to AI_X962Random_V0. For forward compatibility, 
we recommend that you use AI_X962Random_V0.

AI_X931_Random Generates pseudo-random numbers for RSA key generation in 
conformance with ANSI X9.31 standard. This AI is intended for 
use with AI_RSAStrongKeyGen only. 

AI_X962Random_V0 SHA1 pseudo-random number generator based on X9.62 

Table 4-5 Symmetric Stream Ciphers
Some stream ciphers include message authentication codes to detect tampering with the data stream.

Algorithm Info Type Description BER MAC

AI_RC4 RC4 

AI_RC4_BER RC4 a
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AI_RC4WithMAC RC4 with message authentication code a

AI_RC4WithMAC_BER RC4 with message authentication code; 
BER-encoded algorithm identifier

a a

Table 4-6 Symmetric Block Ciphers

Algorithm Info Type Description Padding   BER  PEM

General Purpose

AI_FeedbackCipher DES, Triple DES, DESX, RC2, or RC5 in 
ECB, CBC, CFB, or OFB feedback modes

DES

AI_DES_CBC_IV8 DES-CBC, 8-byte IV none

AI_DES_CBCPadIV8 DES-CBC, 8-byte IV PKCS #5

AI_DES_CBCPadBER DES-CBC, 8-byte IV, BER-encoded 
algorithm identifier

PKCS #5 a

AI_DES_CBCPadPEM DES-CBC, 8-byte IV, PEM-encoded 
algorithm identifier

RFC 1423 a

AI_DES_CBC_BSAFE1 DES-CBC, 8-byte IV, padding optional; 
backward compatibility with BSAFE 1.x

Triple DES

All 3DES algorithms in Crypto-C use the encrypt-decrypt-encrypt (EDE) sequence.

AI_DES_EDE3_CBC_IV8 3DES-CBC

AI_DES_EDE3_CBCPadIV8 3DES-CBC, 8-byte IV PKCS #5

AI_DES_EDE3_CBCPadBER 3DES-CBC, 8-byte IV, BER-encoded 
algorithm identifier

PKCS #5 a

DESX

AI_DESX_CBC_IV8 DESX-CBC, 8-byte IV

AI_DESX_CBCPadIV8 DESX-CBC, 8-byte IV PKCS #5

Table 4-5 Symmetric Stream Ciphers
Some stream ciphers include message authentication codes to detect tampering with the data stream.

Algorithm Info Type Description BER MAC
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AI_DESX_CBCPadBER DESX-CBC, 8-byte IV, BER-encoded 
algorithm identifier

PKCS #5 a

AI_DESX_CBC_BSAFE1 DESX-CBC, 8-byte IV, padding optional; 
backward compatibility with BSAFE 1.x

RC2

AI_RC2_CBC RC2-CBC, 8-byte IV

AI_RC2_CBCPad RC2-CBC, 8-byte IV PKCS #5

AI_RC2_CBCPadBER RC2-CBC, 8-byte IV, BER-encoded 
algorithm identifier

PKCS #5 a

AI_RC2_CBCPadPEM RC2-CBC, 8-byte IV, PEM-encoded 
algorithm identifier

RFC 1423 a

AI_RC2_CBC_BSAFE1 RC2-CBC, 8-byte IV, padding optional; 
backward compatibility with BSAFE 1.x

RC5

AI_RC5_CBC RC5-CBC, 8-byte IV

AI_RC5_CBCPad RC5-CBC, 8-byte IV PKCS #5

Initialization Vector

AI_CBC_IV8 Resets the IV in a CBC algorithm during 
an Update or a Final for all CBC AIs 
except AI_FeedbackCipher

AI_RESET_IV Resets the IV in a CBC algorithm during 
an Update or a Final for all CBC 
implementations of AI_FeedbackCipher

Password-Based Encryption

These composite algorithms generate a symmetric key by digesting a password with a salt, then using 
the key for block cipher encryption.

Not all message digests are recommended. See “Message Digests” on page 47 for details.

AI_MD2WithDES_CBCPad MD2 digest followed by DES-CBC PKCS #5

AI_MD2WithDES_CBCPadBER MD2 digest followed by DES-CBC, 
BER-encoded algorithm identifier

PKCS #5 a

AI_MD2WithRC2_CBCPad MD2 digest followed by RC2-CBC PKCS #5

Table 4-6 Symmetric Block Ciphers (Continued)

Algorithm Info Type Description Padding   BER  PEM
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AI_MD2WithRC2_CBCPadBER MD2 digest followed by RC2-CBC, 
BER-encoded algorithm identifier

PKCS #5 a

AI_MD5WithDES_CBCPad MD5 digest followed by DES-CBC PKCS #5

AI_MD5WithDES_CBCPadBER MD5 digest followed by DES-CBC, 
BER-encoded algorithm identifier

PKCS #5 a

AI_MD5WithRC2_CBCPad MD5 digest followed by RC2-CBC PKCS #5

AI_MD5WithRC2_CBCPadBER MD5 digest followed by RC2-CBC, 
BER-encoded algorithm identifier

PKCS #5 a

AI_MD5WithXOR MD5 digest followed by XOR for 
encryption

not 
needed

AI_MD5WithXOR_BER MD5 digest followed by XOR for 
encryption, BER-encoded algorithm 
identifier

not 
needed

a

AI_SHA1WithDES_CBCPad SHA1 digest followed by DES-CBC PKCS #5

AI_SHA1WithDES_CBCPadBER SHA1 digest followed by DES-CBC, 
BER-encoded algorithm identifier

PKCS #5 a

Table 4-7 RSA Public-Key Cryptography

Algorithm Info Type Description Pad BER PEM

Key Generation

AI_RSAKeyGen Key generation for RSA key pair

AI_RSAStrongKeyGen Key generation for RSA key pair; the 
generated moduli are in accordance with 
the strength criteria of the FIPS X9.31 
standard

AI_RSAMultiPrimeKeyGen Key generation for a MultiPrime RSA 
public/private key pair in accordance with 
PKCS #1

Encryption and Decryption

AI_PKCS_OAEP_RSAPrivate RSA private-key encryption/decryption 
with OAEP in accordance with PKCS #1

PKCS #1  
v2 OAEP 

Table 4-6 Symmetric Block Ciphers (Continued)

Algorithm Info Type Description Padding   BER  PEM
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AI_PKCS_OAEP_RSAPrivateBER RSA private-key encryption/decryption 
with OAEP in accordance with PKCS #1, 
BER-encoded algorithm identifier

PKCS #1  
v2 OAEP 

a

AI_PKCS_OAEP_RSAPublic RSA public-key encryption/decryption with 
OAEP in accordance with PKCS #1

PKCS #1  
v2 OAEP 

AI_PKCS_OAEP_RSAPublicBER RSA public-key encryption/decryption with 
OAEP in accordance with PKCS #1, 
BER-encoded algorithm identifier

PKCS #1  
v2 OAEP 

a

AI_SET_OAEP_RSAPrivate RSA private-key encryption with OAEP in 
accordance with the SET v1 protocol

SET v1 
OAEP

AI_SET_OAEP_RSAPublic RSA public-key encryption with OAEP in 
accordance with the SET v1 protocol

SET v1 
OAEP

AI_PKCS_RSAPrivate RSA private-key encryption/decryption 
according to PKCS #1

PKCS #1 
v1.5

AI_PKCS_RSAPrivateBER RSA private-key encryption/decryption 
according to PKCS #1, BER-encoded 
algorithm identifier

PKCS #1 
v1.5

a

AI_PKCS_RSAPrivatePEM RSA private-key encryption/decryption 
according to PKCS #1, PEM-encoded 
algorithm identifier

PKCS #1 
v1.5

a

AI_PKCS_RSAPublic RSA public-key encryption/decryption 
according to PKCS #1

PKCS #1 
v1.5

AI_PKCS_RSAPublicBER RSA public-key encryption/decryption 
according to PKCS #1, BER-encoded 
algorithm identifier

PKCS #1 
v1.5

a

AI_PKCS_RSAPublicPEM RSA public-key encryption/decryption 
according to PKCS #1, PEM-encoded 
algorithm identifier

PKCS #1 
v1.5

a

AI_RSAPrivate Raw RSA private-key encryption; 
input must be a multiple of word size

none

AI_RSAPublic Raw RSA public-key encryption; 
input must be a multiple of word size

none

AI_RSAPrivateBSAFE1 BSAFE 1.x RSA private-key encryption, 
padding optional

AI_RSAPublicBSAFE1 BSAFE 1.x RSA public-key encryption

Table 4-7 RSA Public-Key Cryptography (Continued)

Algorithm Info Type Description Pad BER PEM
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Digital Signatures 

Composite operations for signing data: digest the data, then encrypt the BER encoding of the digest with 
RSA.

BER-encoded digest is 34 bytes for 16-bit digests (MD2, MD5); min. RSA modulus is 45 bytes long.
BER-encoded digest is 35 bytes for 20-byte digests (SHA1); min. RSA modulus is 46 bytes long.

AI_MD2WithRSAEncryption MD2 digest with RSA encryption PKCS #1

AI_MD2WithRSAEncryptionBER MD2 digest with RSA encryption, 
BER-encoded algorithm identifier

PKCS #1 a

AI_MD5WithRSAEncryption MD5 digest with RSA encryption PKCS #1

AI_MD5WithRSAEncryptionBER MD5 digest with RSA encryption, 
BER-encoded algorithm identifier

PKCS #1 a

AI_SHA1WithRSAEncryption SHA1 digest with RSA encryption PKCS #1

AI_SHA1WithRSAEncryptionBER SHA1 digest with RSA encryption, 
BER-encoded algorithm identifier

PKCS #1 a

Table 4-8 DSA Public-Key Cryptography

Algorithm Info Type Description BER

Parameter Generation

AI_DSAParamGen DSA parameter generation

Key Generation

AI_DSAKeyGen DSA key generation

Digital Signatures

AI_DSA DSA sign/verify a 20-byte input

AI_DSAWithSHA1 SHA1 digest with DSA sign/verify

AI_DSAWithSHA1_BER SHA1 digest with DSA sign/verify, 
BER-encoded algorithm identifier

a

Table 4-7 RSA Public-Key Cryptography (Continued)

Algorithm Info Type Description Pad BER PEM
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Table 4-9 Diffie-Hellman Key Agreement

Algorithm Info Type Description BER

Parameter Generation

AI_DHParamGen Diffie-Hellman parameter generation

Key Agreement

AI_DHKeyAgree Diffie-Hellman key agreement

AI_DHKeyAgreeBER Diffie-Hellman key agreement, BER-encoded 
algorithm identifier

a

Table 4-10 Elliptic Curve Public-Key Cryptography

Algorithm Info Type Description

Parameter Generation

AI_ECParamGen EC parameter generation

AI_ECParameters EC parameter use and access

AI_ECParametersBER EC BER parameter use and access

Acceleration Tables

AI_ECAcceleratorTable Acceleration table use and access

AI_ECBuildAcceleratorTable Generates auxiliary data to speed EC operations

AI_ECBuildPubKeyAccelTable Generates auxiliary data to speed EC operations, including 
ECDH-specific operations

AI_ECPubKey Generates auxiliary data to speed EC operations for a 
specific public-key

AI_ECPubKeyBER Specifies public key and underlying EC parameters to build an 
acceleration table

Key Generation

AI_ECKeyGen EC key pair generation

Elliptic Curve Diffie-Hellman

AI_EC_DHKeyAgree Two-phase EC Diffie-Hellman key agreement
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Elliptic Curve DSA

AI_EC_DSA Raw ECDSA signature/verification

AI_EC_DSAWithDigest SHA1 digest followed by ECDSA signature/verification

Elliptic Curve Authenticated Encryption System

AI_EC_ES EC Authenticated Encryption System

Table 4-11 Bloom-Shamir Secret Sharing

Algorithm Info Type Description

AI_BSSecretSharing Bloom-Shamir secret sharing

Table 4-12 Hardware Interface
For use with hardware devices, when present. For information on the Intel hardware 
security primitives, see the Intel Security Hardware User’s Guide, available on the Crypto-C 
CD. For information on other hardware devices, see the documentation from your hardware manufacturer.

Algorithm Info Type Description

AI_HW_Random Provides access to random bytes generated by a hardware 
device

AI_KeypairTokenGen Generates the token form of an RSA or DSA public/private 
key pair

AI_SymKeyTokenGen Generates the token form of a DES, RC2, RC4, RC5, or TDES 
symmetric key

AI_PKCS_OAEPRecode RSA raw or hardware encryption/decryption with OAEP 
according to PKCS #1

AI_PKCS_OAEPRecodeBER RSA raw or hardware encryption/decryption with OAEP 
according to PKCS #1 
BER-encoded algorithm identifier

Table 4-10 Elliptic Curve Public-Key Cryptography (Continued)

Algorithm Info Type Description
C h a p t e r  4   U s i n g  C r y p t o - C 1 1 1

Download from Www.Somanuals.com. All Manuals Search And Download.



Algorithms in Crypto-C
Table 4-13 Advanced Encryption Standard (AES)

Algorithm Info Type Description

AI_AES_CBC AES encryption or decryption in CBC mode. No padding.

AI_AES128_CBC AES encryption or decryption in CBC mode. No padding.

AI_AES192_CBC AES encryption or decryption in CBC mode. No padding.

AI_AES256_CBC AES encryption or decryption in CBC mode. No padding.

AI_AES_CBCPad AES encryption or decryption in CBC mode. PKCS #5 padding.

AI_AES128_CBCPad AES encryption or decryption in CBC mode. PKCS #5 padding.

AI_AES192_CBCPad AES encryption or decryption in CBC mode. PKCS #5 padding.

AI_AES256_CBCPad AES encryption or decryption in CBC mode. PKCS #5 padding.

AI_AES_ECB AES encryption or decryption in EBC mode.

AI_AES128_ECB AES encryption or decryption in EBC mode.

AI_AES192_ECB AES encryption or decryption in EBC mode.

AI_AES256_ECB AES encryption or decryption in EBC mode.

AI_AES_CFB AES encryption or decryption in CFB mode.

AI_AES128_CFB AES encryption or decryption in CFB mode.

AI_AES192_CFB AES encryption or decryption in CFB mode.

AI_AES256_CFB AES encryption or decryption in CFB mode.

AI_AES128_CBCPadBER Similar to AI_AES128_CBCPad but uses ASN.1 BER format.

AI_AES192_CBCPadBER Similar to AI_AES192_CBCPad but uses ASN.1 BER format

AI_AES256_CBCPadBER Similar to AI_AES256_CBCPad but uses ASN.1 BER format

AI_AES128_ECB_BER Similar to AI_AES128_ECB but uses ASN.1 BER format

AI_AES192_ECB_BER Similar to AI_AES192_ECB but uses ASN.1 BER format

AI_AES256_ECB_BER Similar to AI_AES256_ECB but uses ASN.1 BER format

AI_AES128_CFB_BER Similar to AI_AES128_CFB but uses ASN.1 BER format

AI_AES192_CFB_BER Similar to AI_AES192_ CFB but uses ASN.1 BER format

AI_AES256_CFB_BER Similar to AI_AES256_CFB but uses ASN.1 BER format
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Keys In Crypto-C
The key object is used to hold any key-related information and to supply this 
information to functions that require it. To build a key, create an empty key object 
with B_CreateKeyObject. Then, use B_SetKeyInfo to fill it with the information 
necessary to distinguish it as the desired key. That information for B_SetKeyInfo is 
made up of two items, a Key Info Type (KI) and its specific accompanying info.

Chapter 3 of the Crypto-C Reference Manual (RM) gives a complete listing of KIs in 
alphabetical order. Each entry in the Reference Manual contains a description of the 
information that must accompany the KI. 

Summary of KIs
Refer to the following tables, organized by function, for a list of Crypto-C KIs.

Table 4-14 Generic Keys

Key Information Type Description

KI_8Byte Generic 8-byte key

KI_16Byte Generic 16-byte key

KI_24Byte Generic 24-byte key

KI_32Byte Generic 32-byte key

KI_Item Generic variable-length key

Table 4-15 Block Cipher Keys

Key Information Type Description

KI_DES8 8-byte DES key satisfying DES parity requirement

KI_DES8Strong 8-byte DES key satisfying DES parity requirement; 
checks for weak DES keys

KI_24Byte 24-byte 3DES key

KI_DES24Strong 24-byte 3DES key; checks for weak 3DES keys

KI_DES_BSAFE1 8-byte DES in BSAFE1.x format

KI_DESX DESX key

KI_DESX_BSAFE1 DESX key in BSAFE 1.x format
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KI_RC2_BSAFE1 RC2 key in BSAFE 1.x format

KI_RC2WithBSAFE1Params RC2 key with additional parameters in BSAFE 1.x 
format

Table 4-16 RSA Public and Private Keys

Key Information Type Description BER

KI_PKCS_RSAMultiPrimePrivate PKCS #1-compatible RSA private key

KI_PKCS_RSA_Private PKCS #1-compatible RSA private key

KI_PKCS_RSA_PrivateBER BER encoding of an RSA private key of type PKCS #8 
PrivateKeyInfo

a

KI_RSAPrivate RSA private key

KI_RSAPrivateBSAFE1 RSA private key in BSAFE 1.x format

KI_RSA_CRT RSA key with Chinese Remainder Theorem (CRT) 
parameters

KI_RSAPublic RSA public key

KI_RSAPublicBER BER encoding of an RSA public key of type X.509 
SubjectPublicKeyInfo

a

KI_RSAPublicBSAFE1 RSA public key in BSAFE 1.x format

Table 4-17 DSA Public and Private Keys

Key Information Type Description BER

KI_DSA_Private DSA private key 

KI_DSA_PrivateBER BER-encoding of a DSA private key of type PKCS #8 a

KI_DSA_Public DSA public key

KI_DSA_PublicBER BER-encoding of a DSA private key of type X.509 
SubjectPublicKeyInfo

a

KI_DSAPrivateX957BER BER encoding of a DSA private key of type ANSI 
X9.57 PrivateKeyInfo that contains an RSA Security 
DSAPrivateKey type

a

KI_DSAPublicX957BER the encoding of a DSA public key that is encoded as 
ANSI X9.57 SubjectPublicKeyInfo type.

a

Table 4-15 Block Cipher Keys

Key Information Type Description
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Table 4-18 Elliptic Curve Keys

Key Information Type Description

KI_ECPrivate EC private key and underlying EC parameters

KI_ECPrivateBER BER-encoded EC private key and underlying EC parameters

KI_ECPrivateComponent Private component of an EC private key

KI_ECPrivateComponentBER Private component of a BER-encoded EC private key

KI_ECPublic EC public key and underlying EC parameters

KI_ECPublicBER BER-encoded EC public key and underlying EC parameters

KI_ECPublicComponent Public component of an EC public key

KI_ECPublicComponentBER Public component of a BER-encoded EC public key

Table 4-19 Token Keys
For use with hardware devices, when present.

Key Information Type Description

KI_ExtendedToken Software-based token form of symmetric keys

KI_KeypairToken Software-based token forms of RSA or DSA public and private 
keys

KI_Token Hardware-based token forms of symmetric and public/private 
keys
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System Considerations In Crypto-C

Algorithm Choosers
When you use an AI, it in turn calls one or more algorithm methods. An algorithm 
method (or AM) is the underlying code that will actually perform the cryptography. 
Because many AIs can perform more than one cryptographic function (for instance, 
both encryption and decryption, as with AI_FeedbackCipher), an application will 
often have a choice of which underlying cryptographic code to link in. An algorithm 
chooser lists all the AMs the application can use. That is, it chooses in advance which 
AMs to link in. 

Crypto-C comes with a demonstration application containing the algorithm chooser 
DEMO_ALGORITHM_CHOOSER. You can use this algorithm chooser in any Crypto-C 
application as long as the module that defines it (choosc.c) is compiled and linked in. 
However, DEMO_ALGORITHM_CHOOSER will link in all the algorithm methods available, 
even though an application may use only two or three. A developer can write an 
algorithm chooser tailored for the specific application to make the executable image 
smaller. 

The section “Defining an Algorithm Chooser” in the Reference Manual says: “An 
algorithm chooser is an array of pointers to B_ALGORITHM_METHOD values. The last 
element of the array must be (B_ALGORITHM_METHOD *)NULL_PTR.”

From this we see that an algorithm chooser is a pointer to an array. This array 
contains pointers to algorithm methods, which are the AMs the application will use.

To determine which AMs to include in your algorithm chooser, you need to know 
which AIs you will use in your application. Next, for each AI, find the Chapter 2 entry 
in the Reference Manual and look at the AMs listed under the heading “Algorithm 
methods to include in application’s algorithm chooser.” Finally, based on how your 
application uses the given AI, decide which of those AMs you need to include in your 
algorithm chooser.

An Encryption Algorithm Chooser
The section “Introductory Example” on page 9 describes a program that encrypted 
data and did nothing else. It did not decrypt data, generate random numbers, execute 
the Diffie-Hellman key agreement protocols, or use elliptic curve cryptography. 
Therefore, the only cryptographic tools the program needed was encryption code. 
And the only kind of encryption code it needed was RC4 encryption, not DES, RC2, 
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RC5, or RSA encryption. So we could have built an algorithm chooser that included 
only one AM, the one we used for RC4 encryption.

To find the AM we need, look at the Reference Manual, Chapter 2, for the entry on the 
AI in use. We used AI_RC4. The Reference Manual states that for this AI, the possible 
AMs are AM_RC4_ENCRYPT for encrypting and AM_RC4_DECRYPT for decrypting. Because 
we did not decrypt, our algorithm chooser only needs to include AM_RC4_ENCRYPT:

The last entry of an algorithm chooser must be (B_ALGORITHM_METHOD *)NULL_PTR.

As an argument in a Crypto-C function call, it would look like this.

An RSA Algorithm Chooser
In this example, we will build an algorithm chooser for the example in “Performing 
RSA Operations” on page 214. We want to include all the AMs for generating an RSA 
key pair, encrypting, and decrypting. We need the following: a random number 
generator, a key pair generator, an RSA public encryption algorithm, and an RSA 
private decryption algorithm. (Although the example doesn’t directly include a 
random-number generator, it calls on the one from “Generating Random Numbers” 
on page 165.)

The AIs used in the example are: AI_X962Random_V0 (also known as AI_SHA1Random), 
AI_RSAKeyGen, AI_PKCS_RSAPublic, and AI_PKCS_RSAPrivate. 

Note: AI_SHA1Random is identical to AI_X962Random_V0. The name AI_SHA1Random is 
used in the demo applications; however, AI_SHA1Random may change in future 
versions of Crypto-C. For forward compatibility, we recommend that you do 
not use the name AI_SHA1Random in your applications; use AI_X962Random_V0 
instead.

From the corresponding entries in Chapter 2 of the Reference Manual, you can 
construct the following algorithm chooser. Note that you should reference the 

B_ALGORITHM_METHOD *INTRODUCTORY_CHOOSER[] = {
  &AM_RC4_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_<function> (
     <arguments>, INTRODUCTORY_CHOOSER,
     <other arguments>)) != 0)
  break;
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description of AI_X962Random_V0 instead of AI_SHA1Random:

Note: The previous algorithm chooser lists AM_RSA_CRT_DECRYPT. This AM will 
not perform blinding (see “Timing Attacks and Blinding” on page 95). If you 
want your application to perform blinding, use 
AM_RSA_CRT_ENCRYPT_BLIND or AM_RSA_CRT_DECRYPT_BLIND.

The Surrender Context
Some Crypto-C functions are time-consuming. When an application calls one of these 
functions, it can appear as if the computer has crashed or frozen. A lengthy Crypto-C 
function can tie up the computer, forcing other applications or programs to wait until 
the Crypto-C function is finished to continue their execution. The surrender context is 
a way for an application to allow Crypto-C to surrender control.

In general, it is a good idea to include a surrender context whenever a function takes 
several seconds to execute. The following functions are extremely time-consuming: 

• Functions for parameter generation
• Functions for key generation
• Functions for creating acceleration tables

Other functions are less time-consuming and might not need a surrender context in 
your application. These include many of the block-cipher and stream-cipher 
symmetric-key operations as well as message digests.

Note: Using a surrender context with private-key operations (such as signing or 
opening a digital envelope) makes your key more susceptible to a timing 
attack. You may want to pass in a NULL surrender context for private key 
operations for security reasons.

The surrender context information is contained in an A_SURRENDER_CTX structure. The 
file aglobal.h gives the definition; this is described in Chapter 1 of the Reference 
Manual:

B_ALGORITHM_METHOD *RSA_SAMPLE_CHOOSER[] = {
  &AM_SHA_RANDOM,
  &AM_RSA_KEY_GEN,
  &AM_RSA_ENCRYPT,
  &AM_RSA_CRT_DECRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
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Chapter 1 also gives the form that a surrender function must have:

If you define a surrender function within the surrender context, Crypto-C functions 
will call it at regular intervals during execution. Depending on the application, the 
surrender function can perform one of a number of operations.

For example, a surrender function can:

• Notify the user of the current status of execution, either once at the beginning or 
once every second, for instance.

• Allow the user to cancel the operation.
• Suspend the Crypto-C function to allow other operations to execute.

Even when you do not need a surrender function to manage lengthy function calls, 
you can create one to perform other tasks. For example, you could use a surrender 
function to allow other applications to cut into a Crypto-C routine, no matter how 
quickly the routine executes. A surrender context is a potent debugging tool as well.

A Sample Surrender Function
As an example, we will construct a surrender function that announces the start of a 
Crypto-C function, and prints out a dot on the screen every second.

typedef struct {
  int (*Surrender) (POINTER);               /* surrender function callback */
  POINTER handle;                      /* application-specific information */
  POINTER reserved;                             /* reserved for future use */
} A_SURRENDER_CTX;

int (*Surrender) (
  POINTER handle                       /* application-specific information */
);

#include <time.h>

int GeneralSurrenderFunction (handle)
POINTER handle;
{
  static time_t currentTime;
  time_t getTime;
C h a p t e r  4   U s i n g  C r y p t o - C 1 1 9

Download from Www.Somanuals.com. All Manuals Search And Download.



System Considerations In Crypto-C
A routine that calls Crypto-C functions would use the above surrender function as 
follows:

For this surrender function, the handle contains a flag passed from the user. If handle 
is 0, this is the first time the surrender function has been called by the particular 
Crypto-C routine currently executing. Then the surrender function will reset the flag 
and the next time it is called, it will skip the if clause and execute the else clause.

The coding examples in this manual use the example in this section as their surrender 
context. The examples also note when a routine is lengthy enough to warrant use of a 
surrender context. When a surrender context is not necessary, you can pass a properly 
cast NULL_PTR.

Saving State
Crypto-C v5.1 offers two new functions: B_GetAlgorithmState and 
B_SetAlgorithmState. Use these functions to “serialize” (create and use) an algorithm 

  if ((int)*handle == 0) {
    printf (“\nSurrender function ...\n”);
    *handle = 1;
    time (&currentTime);
  }
  else {
    time (&getTime);
    if (currentTime != getTime) {
      printf “ .");
      currentTime = getTime;
    }
  }
  return (0);
}

A_SURRENDER_CTX generalSurrenderContext;
int generalFlag;
generalSurrenderContext.Surrender = GeneralSurrenderFunction;
generalSurrenderContext.handle = (POINTER)&generalFlag;
generalSurrenderContext.reserved = NULL_PTR;
generalFlag = 0;

if ((status = B_<function>
     (<other arguments>, &generalSurrenderContext)) != 0)
  break;
1 2 0 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.



System Considerations In Crypto-C
object. When you call B_GetAlgorithmState, you receive a buffer that contains all of 
the data necessary to reconstruct the object, using the call B_SetAlgorithmState, to 
the state it was in at the time of calling the Get routine (B_GetAlogorithmState).

This is useful in SSL, for example. The SSL protocol at one point requires the user to 
finish digesting data (B_DigestFinal), yet retain the digest state so that it is possible to 
continue as if the final digesting had never taken place. With these two new function 
calls, you can get the state, call the Final routine, and then create a new object with 
the saved value and continue on as if the Final routine never took place. You can use 
this feature when performing message digests, RC4, or in Diffie-Hellman key 
agreement.

The state value for Diffie-Hellman is actually the BER encoding following this ASN.1 
definition.

When to Allocate Memory
Whenever you use Crypto-C, you will produce output. The output might be 
encrypted or decrypted data, or information you are retrieving concerning keys or 
algorithms. This output must go somewhere; there must be memory that is allocated 
to hold it. If memory is not allocated for a particular output, the computer will still try 
to put the output somewhere, possibly in a location that already contains other data 
or programs. When is it the application’s responsibility to allocate memory and when 
will Crypto-C do the allocating?

The application must allocate memory whenever a Crypto-C function produces 
output and the prototype indicates that the output argument is a pointer (for instance, 
POINTER or unsigned char *). In this situation, Crypto-C asks for a pointer and places 
the output at the address indicated by the pointer. It is the application’s responsibility 
to make sure that the pointer points to allocated memory. 

Crypto-C allocates memory whenever a function produces output and the prototype 
indicates the output argument is a pointer to a pointer (for instance, POINTER *). Here, 
Crypto-C asks for the address of a pointer. Crypto-C goes to that address and deposits 
a pointer there. If the application goes to where the pointer points, it will find the 

SEQUENCE {
 OBJECT IDENTIFIER  dhOID,
  INTEGER  prime,
  INTEGER  base,
  INTEGER  maxExponentBits,
  INTEGER  publicValue,
  INTEGER  privateValue }
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information it is looking for. This information, though, belongs to Crypto-C; 
subsequent Crypto-C calls can alter or erase it. If an application needs to save the 
information, it should copy it into its own buffer or allocated space. See “Distributing 
Diffie-Hellman Parameters” on page 253 for an example.

Note: Crypto-C will sometimes call for an unsigned int argument and other times 
an unsigned int *. For unsigned int, Crypto-C is expecting a number; for 
unsigned int *, Crypto-C will supply the number, so you just supply the 
address of an int variable.

Memory-Management Routines
Crypto-C uses the following memory-management routines:

• T_malloc

• T_realloc

• T_free

• T_memset

• T_memcpy

• T_memmove

• T_memcmp

Sample implementations of these routines reside in the memory management file, 
tstdlib.c, supplied with Crypto-C. See the final section of Chapter 4 in the Reference 
Manual for descriptions and prototypes of these routines. You can also write your 
own versions of these routines to satisfy the needs of your operating system or 
application. It is a good idea to examine tstdlib.c before writing your own code.

Supplying memory management routines with Crypto-C provides several 
advantages:

• Reduced dependency on standard C libraries
• Increased control over memory allocation
• Increased ability to handle binary data

Memory-Management Routines and Standard C Libraries
The memory-management routines in tstdlib.c organize the arguments to the 
standard call to best suit Crypto-C’s purposes. They do type checking and verify that 
the arguments follow the Crypto-C conventions. This helps you to keep your code 
portable, because any call to these routines will behave uniformly, regardless of 
platform. This uniform behavior best suits the needs of Crypto-C.
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Some applications may need to be completely autonomous; that is, they should have 
no need to link in any external libraries. As far as possible, the Crypto-C library is 
autonomous, but Crypto-C does need the functionality of certain standard C library 
routines, such as malloc. For Crypto-C to remain autonomous, the user must supply 
these routines. 

The routines in tstdlib.c do call the standard C library routines, so to use tstdlib.c 
you must still link in the standard C library. If your application does not need to be 
autonomous, you can use these supplied versions of the T_ routines. If, however, your 
application will eventually require autonomy, you can supply versions of the T_ 
routines that do not call the standard C library.

If a particular platform and compiler offers an optimized version or simply a 
platform-specific version of one or more of the memory management routines, 
Crypto-C can call that routine without requiring a change in the source code. You 
only have to modify the module containing the memory management routines.

Memory Allocation
For security reasons, it is often important that space be allocated from core memory, 
not a hard disk virtual memory. If an application makes a call to the standard malloc 
or alloc, the operating system may decide to use virtual memory. The T_malloc call 
can be made to guarantee core memory allocation and never virtual memory.

Binary Data
Remember that the C calls beginning with str, such as strlen and strcpy, operate on 
strings. Length is not a necessary input argument; instead, the function acts on 
everything from the beginning of the string to the NULL-terminating character. 
However, the output from a Crypto-C call is a block of memory, not a string. Even if 
the data to encrypt is a string, the encrypted data is not. Similarly, data that has been 
decrypted will not be a properly terminated string unless the NULL-terminating 
character was encrypted as well.

The mem routines supplied with Crypto-C, such as T_memcpy and T_memset, address 
this problem. They operate on blocks of memory and need to know how many bytes 
to act on. Whether or not there is a NULL-terminating character in the block of memory 
does not matter.

BER/DER Encoding
Much of the data in cryptographic applications needs to be passed between two or 
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more individuals. For example, users may need to transmit a public key, elliptic curve 
parameters, or an algorithm name. Not everyone uses Crypto-C, and how 
information is processed in Crypto-C may be different from another company’s 
package. There needs to be a standard for describing certain information. BER/DER is 
such a standard.

Open Systems Interconnection (OSI, described in ANSI’s X.200) is an internationally 
standardized architecture that governs the interconnection of computers from the 
physical layer up to the user-application layer. OSI’s method of specifying abstract 
objects is called ASN.1 (Abstract Syntax Notation One, defined in X.680), and one set 
of rules for representing such objects as strings of ones and zeros is called BER (Basic 
Encoding Rules, defined in X.680). There is generally more than one way to BER-
encode a given value, so another set of rules, called the Distinguished Encoding Rules 
(DER), which is a subset of BER, gives a unique encoding to each ASN.1 value. The 
PKCS document includes “A Layman’s Guide to a Subset of ASN.1, BER and DER,” 
which is more accessible than the actual standard.

If your application must transfer information to another computer or software 
package, you may need to convert the data into BER-encoded format before you send 
it. Crypto-C offers a way to get information into DER format, using 
B_GetAlgorithmInfo or B_GetKeyInfo with the BER version of the AI or KI used to set 
the algorithm or key object.

The following example corresponds to the file berder.c.

In the “Introductory Example” on page 9, we set the algorithm object to AI_RC4. The 
Reference Manual Chapter 2 entry on this AI reports that a compatible representation is 
AI_RC4BER. That AI provides the BER-encoded algorithm identifier for the RC4 
algorithm. Look up the Reference Manual Chapter 4 entry for B_GetAlgorithmInfo. 
This function takes three arguments: an address for Crypto-C to deposit a pointer to 
the info, the algorithm object from which we are getting the info and the info type.

The Reference Manual Chapter 2 entry on AI_RC4BER tells us that the info returned by 
B_GetAlgorithmInfo is a pointer to an ITEM. The type ITEM is defined in aglobal.h as:

We will declare a variable to be a pointer to an ITEM and use its address as the info 
argument. The prototype calls for the address of a POINTER, not the address of a 
pointer to an ITEM, so type casting is necessary.

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;
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Crypto-C returns a pointer to the location where we can find the info, not the info 
itself. When we destroy the object, that info will disappear. If we want to save it, we 
have to copy it over into our own buffer, the memory for which we must allocate.

Remember to use T_free to free any memory you allocated with T_malloc when you 
are done with it.

Now, if we need to let anyone know what algorithm we used to encrypt, we can send 
the BER-encoded algorithm identifier.

For additional examples that use BER, see “Distributing an RSA Public Key” on 
page 223 and “Distributing Diffie-Hellman Parameters” on page 253.

Note: BER-encoding does not put data into an ASCII string; it is simply a standard 
way of describing certain universal objects. To convert binary data to and 
from an ASCII string (to e-mail it, for example) see “Converting Data Between 
Binary and ASCII” on page 172.

Note: Conversion into BER or DER is known as BER-encoding or DER-encoding; 
the conversion between binary and ASCII is known as encoding and 
decoding. This may get confusing, but the word encoding, without a BER in 
front of it, generally means binary to ASCII. If the encoding is BER- or DER-
encoding, the BER or DER should be explicitly stated.

ITEM *getInfoBER;
ITEM infoBER;
 
infoBER.data = NULL_PTR;
 
if ((status = B_GetAlgorithmInfo
     ((POINTER *)&getInfoBER, encryptionObject,
      AI_RC4_BER)) != 0)
  break;
 
infoBER.len = getInfoBER–>len;
infoBER.data = T_malloc (infoBER.len);
if ((status = (infoBER.data == NULL_PTR)) != 0)
  break;

T_memcpy (infoBER.data, getInfoBER->data, infoBER.len);
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Input and Output
Some of the AI entries in the Reference Manual include the categories “Input 
Constraints” and “Output Considerations”:

• Input constraints generally describe the input requirements of the algorithm 
specified by the AI. 

• Output considerations warn you that there may be more (or fewer) output bytes 
than input bytes.

Two algorithm types that typically have input constraints or output considerations 
are symmetric block algorithms and the RSA algorithm.

Symmetric Block Algorithms
Symmetric block algorithms may have both input constraints and output 
considerations.

Input constraints
• In symmetric block-encryption algorithms, the total number of input bytes must 

be a multiple of the block size. That does not mean the input to each call to an 
Update function must be a multiple of the block size, just the total. 
For instance, with the RC2 algorithm, the block size is eight bytes. You can pass 23 
bytes in the first call to Update, then 18, then 7, for a total of 48.

Output considerations
• For a symmetric block-encryption algorithm, the output from each Update call 

may be different from the input size. 
In the previous example, the RC2 algorithm was able to process 16 of the first 23 
bytes but saved 7 in a buffer. The input was 23, but the output was 16. During the 
second call to Update, Crypto-C had the 18 new input bytes plus the old 7, or 25 
bytes to work with. It could process 24 (and save 1). Hence, the input was 18, but 
the output was 24 bytes long. The last 7 input bytes combined with the saved 1 
byte make up the final 8-byte block. It is important to allow for this difference in 
length between output and input in your application.

• In addition to the difference in size during Updates, the overall data size can 
differ between input and output. 
1 2 6 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.



System Considerations In Crypto-C
Crypto-C offers padding for the symmetric block-encryption algorithms, which 
have no restrictions on the total input length. Padding means that the total length 
of the encrypted data can be as many as eight bytes more than the total length of 
the input. 

Note: For algorithm info types that supply padding, Crypto-C will pad even if the 
input is a multiple of the block size. This way, when decrypting, Crypto-C 
knows that the last byte is guaranteed to be a pad byte. For AIs that use PKCS 
#5 padding, the last byte, when decrypted, will be a number: the number of 
pad bytes Crypto-C should strip.

The RSA Algorithm
The second common input constraint is the RSA algorithm. Recall that this algorithm 
uses modular math. 

Input constraints
The following input restrictions apply:

• Whenever modular math is used a calculation, the values passed must be less 
than the RSA modulus n. For example, if the modulus is 55, the input must be 
from zero to 54; the number 57 is invalid.

• For RSA encryption that is PKCS v1.5-compatible, the input to encryption or 
decryption must be no more than k – 11 bytes long, where k is the modulus length 
in bytes. For example, with a 768-bit modulus, the input can be no more than 85, 
or 96 – 11, bytes. This is because the padding scheme needs at least an 11-byte area 
to work. The output will be the same size as the modulus.
For the most common key sizes, Table 4-20, which follows, shows the maximum 
number of bytes you can encrypt using the RSA algorithm with PKCS padding.

Table 4-20 Input Limits for RSA PKCS Encryption

Key Size in Bits
Modulus Length (k) in 
Bytes

Maximum Number of Bytes 
That Can Be Encrypted (k-11)

512 64 53

768 96 85

1024 128 117

2048 256 245
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This applies to PKCS #1 v1.5 block 02 padding. Set OAEP or PKCS #12 OAEP 
have different requirements. Refer to the RSA BSAFE Crypto-C Reference Manual 
for the corresponding algorithm information type (AI) to obtain more 
information.

• For raw RSA encryption and decryption, the application must divide the 
encryption or decryption input into blocks. Each block must have the same 
number of bits as the RSA modulus and, when interpreted as an integer with the 
most significant byte first, must be numerically less than the modulus. In 
addition, the size of the total input must be a multiple of the size of the modulus. 
That is, if the modulus is k bits long, each block of input must be k bits long, and 
the total input must be a multiple of k bits.
For example, if the modulus is 768 bits (96 bytes) long, the input must be divided 
into blocks of 96 bytes, and the total input must be a multiple of 96 bytes. See 
“Raw RSA Encryption and Decryption” on page 231 for more information on how 
to pass data properly. 
The output of raw RSA encryption and decryption is the same size as the input.
In general, there should be no need for raw RSA encryption or decryption. We do 
not recommend using raw RSA encryption and decryption unless you are 
familiar with the issues involved.

General Considerations
In general, Crypto-C has mechanisms to keep you aware of input constraints and 
output considerations. If your input does not meet these constraints, Crypto-C will 
return an error message.

For output, Crypto-C requires that you pass the size of the output buffer. In this way, 
Crypto-C will determine whether there is enough space available before trying to 
store output. If your buffer is not big enough, Crypto-C will return an error.

Most important of all, when it comes to output, Crypto-C tells you how many bytes it 
placed into the output buffer. That argument is unsigned int *partOutLen in the 
Update and Final function prototypes. Pass an address to an unsigned int and 
Crypto-C will go to that address and drop a value there. That value is the number of 
bytes Crypto-C placed into the output buffer. After the call to Crypto-C, you can look 
at that value to determine how many bytes were processed. It may not be the same 
number as the input length. It might be more; it might be less. It may even be zero.
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Key Size
In cryptography, security is measured in key size: the bigger the key, the greater the 
security. Key size, in turn, is measured in bits. However, a bit number does not 
necessarily describe the entire key.

DES Keys
A DES key is 56 bits. However, that size refers to its cryptographic size, not its 
physical size. To build a DES key, you need 64 bits, but because eight of those bits are 
“parity bits,” which are known, you really only get 56 secret bits. Therefore, a DES 
key, while consisting of 64 bits of data, is only 56 cryptographic bits in length.

RSA Keys
An RSA key-pair measurement describes the modulus length. When cryptographers 
talk about a “768-bit RSA key pair,” what they really mean is that the modulus is 768 
bits long. Because the security of an RSA key pair depends on how big the modulus is, 
the measurement used is the bit-size of the modulus. However, the actual keys 
themselves contain more information than the modulus, so the physical size is much 
larger.

Public Key Size
A public key consists of a modulus and a public exponent. To store that public key 
requires space for both of those components; so for a 768-bit public key, you need 
more than 768 bits of storage space. 

Many people who use the RSA algorithm use F4 as the public exponent. F4 is one of a 
sequence of prime numbers with a special binary representation, which is 10.....01. 
F4 is short for Fermat 4, first described by the 17th-century mathematician Pierre de 
Fermat. Fermat believed that there are infinite prime numbers of the form 
2^(2^n) + 1. Now it is believed that n = 4 is the last prime number in the sequence.

Because of their special representation, using these numbers speeds up the public key 
operations of RSA encryption and RSA signature verification. F4 has been analyzed 
by RSA Labs and others, and has been found to be secure.

F4 = 01 00 01 in hexadecimal notation (65,537 in decimal), and it is 17 bits long. If you 
use F4, you need 785 bits of space to store a 768-bit public key and its public exponent. 
Of course, storage space comes only in bytes, so you actually need 99 bytes of space.

In addition, when you access the public key, you need to know where the modulus 
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ends and the public exponent begins. It would be a good idea to put identifying 
marks on the data to make it easier to parse. BER/DER encoding standardizes such 
identifying marks as an industry standard so that people using different software 
packages can still trade information. Hence, with Crypto-C, the user has the option of 
storing a 768-bit public key simply as a modulus and public exponent (99 bytes), or in 
its DER-encoded format, which requires 126 bytes.

Private Key Size
At its most basic form, the private key consists of a modulus and a private exponent. 
The modulus for the private key is the same as the modulus for the public key. The 
private exponent is the truly private part of the private key. The private value is 
usually the same size as the modulus, or 1 bit smaller. Therefore, to store a 768-bit 
private key, one needs at least 1536 bits (192 bytes) of storage space.

To perform private key operations, you require only the modulus and private 
exponent. However, the computations can be much faster if you have access to more 
information. 

Recall that, in RSA encryption, the modulus is actually the product of two prime 
numbers. The private exponent is derived from the two primes and the public 
exponent. Given only the modulus and the public exponent, an attacker cannot 
deduce the private exponent.

When computing the key pair, you can find two suitable primes, multiply them 
together to get the modulus, use the primes to determine the private exponent, and 
then throw the primes away. Or you can use the primes to compute two prime 
exponents and a Chinese Remainder Theorem (CRT) coefficient, and save all this 
information. Then, when executing private key operations with the extra information, 
you can use the Chinese Remainder Theorem to make the appropriate computations 
much more quickly.

So when saving a 768-bit private key, you actually need to save the following:

• The modulus: 96 bytes
• The public exponent — it is small and there are advantages to having it saved 

with the private key: 3 bytes
• The private exponent: 96 bytes
• Two primes: 2 × 48 bytes
• Two prime exponents: 2 × 48 bytes
• A CRT coefficient: 48 bytes
• The identifying marks for DER encoding
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• Total: 484 bytes

In addition, when the most significant bit of the most significant byte of a value is set, 
DER calls for a prepended 0 byte, so that it is not interpreted as a negative 2’s 
complement number.

For example, converting the decimal number 3,260,571,825 into hex yields 
0xC25860B1. As a byte string, it would be:

C2 58 60 B1

which is four bytes long. But is that a negative or positive number? Is the sign bit set, 
or is this an unsigned value? To avoid confusion, we prepend a 0 byte, as follows:

00 C2 58 60 B1

Our string is now five bytes long.

For a 768-bit key pair, the most significant bit of the most significant byte of the 
modulus and both primes should always be set. So three of the private key’s values 
will have a prepended 0 byte. This increases the total key size to 487 bytes. Sometimes 
the most significant bit of the most significant byte of the private exponent, prime 
exponents and CRT coefficient will be set, sometimes not. So the total bytes could be 
as many as 491. 

Note: If the public exponent is F4 (01 00 01), do not prepend a 0 byte to that value.

All of this means that when you generate your RSA key pair, you do not know in 
advance how big it is going to be when you store it in DER format. You know the 
approximate size, but not the exact length.

Crypto-C has the tools to let you know the exact length of your encoded key. When 
you call B_GetKeyInfo with a KI_* that specifies that DER-encoded data should be 
output, you pass the address of a pointer nto an ITEM structure. Crypto-C drops off a 
pointer at that address. If you go to the address indicated by the pointer, you will find 
the key information, which includes the key’s length in the len field of the ITEM. Use 
that value to find the exact length of your key.
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Using Cryptographic Hardware
Crypto-C lets you enhance the security and speed of cryptographic 
operations by exploiting cryptographic hardware that supplies an interface to Crypto-
C via the BSAFE Hardware Application Programming Interface (BHAPI). Capabilities 
include a hardware algorithm method for random number generation and key token 
types that encapsulate RSA, DSA, and symmetric keys inside of hardware.

For an example of a hardware implementation using Crypto-C, see the Intel Security 
Hardware User’s Guide, available on the Crypto-C CD.

Interfacing with a BHAPI Implementation
When you Create, Set, and Init an algorithm object in a Crypto-C software 
application, you set an algorithm info type (AI) and the parameters required by that 
AI. You also choose which algorithm methods to use via the software chooser. The AI 
itself doesn’t perform any cryptographic operations; rather, it is used to store 
information, allocate space, and to create the necessary points of contact with the 
underlying Crypto-C functions. Figure 4-1 shows the relation between the algorithm 
object and the Crypto-C software library.

Figure 4-1 Algorithm Object in a Software Implementation

A hardware manufacturer can associate a hardware function with a Crypto-C AM 
(algorithm method) and provide these methods to the software developer. You then 
access the hardware by using B_CreateSessionChooser to create a hardware-based 
chooser, for example, FIXED_HARDWARE_CHOOSER, that lists the available required 
hardware methods. This substitution is made at link time, and does not change once 
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the application has been compiled. 

If more than one hardware method is present for the same AM — for example, if the 
application includes hardware methods implementing RSA encryption from two 
different manufacturers — B_CreateSessionChooser includes all available hardware 
methods. When an object’s methods are instantiated at initialization, Crypto-C loads 
the object with the first compatible method from the session chooser. Figure 4-2 
shows how an algorithm object operates with a hardware interface.
 

Figure 4-2 Algorithm Object in a Hardware Implementation

During the call to B_CreateSessionChooser, Crypto-C tests for the presence of the 
hardware; if hardware is present, the hardware method is included in the session 
chooser. If no hardware is present, then the application defaults to the Crypto-C 
software AM or to a software emulation if one is included in the chooser. 

To extend the functionality of the BHAPI interface to include key-token operations, 
Crypto-C supplies some AIs that are only available when B_CreateSessionchooser is 
used. These AIs have software-emulated versions, but can only be accessed via 
inclusion in the hardware chooser.
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PKCS #11 Support
PKCS #11 support has been added to Crypto-C v5.1. The routine will allow you to 
create a new algorithm chooser from an existing chooser. It uses the hwInfoType to 
determine which of the AM's in the currentChooser are to be supplemented with 
hardware functionality. Then it uses this information to create a new AM. The routine 
then creates a new chooser that contains all the AM's in currentChooser plus any new 
AM's created. If the user passes in swReplacements, and the function is unable to create 
the hardware versions of the methods, the software versions will be used instead. The 
new chooser is deposited at the address specified by newChooser.

The call to the B_CreateHardwareChooser routine will create a brand new chooser. It 
will contain all the AM's in the original chooser, plus the new ones created. If the 
function cannot create a hardware version of the desired AM, it will find a software 
version in RSA_GEN_SW_CHOOSER. If the software chooser is NULL_PTR or does not 
contain an AM that can be used as a replacement for the desired hardware AM, the 
function will return an error. To see what was actually used (hardware or software), 
check the device field of the input info structure.

B_ALGORITHM_METHOD *RSA_GEN_HW_CHOOSER[] = {
  &AM_PKCS11_RSA_KEY_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_METHOD *RSA_GEN_SW_CHOOSER[] = {
  &AM_RSA_KEY_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_CHOOSER *hwChooser =
             (B_ALGORITHM_CHOOSER)NULL_PTR;

if ((status = B_CreateHardwareChooser
     (RSA_GEN_HW_CHOOSER, &hwChooser, RSA_GEN_SW_CHOOSER,
      HI_PKCS11Session, (POINTER)&p11Session)) != 0)
  break;

if ((status = B_GenerateInit (rsaGen, hwChooser, (A_SURRENDER_CTX*)NULL_PTR))
  break;
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Using a PKCS #11 Device with Crypto-C
If you want to have Crypto-C use a PKCS #11 device to perform the crypto, you must 
first build a hardware chooser. To do that, call, B_CreateHardwareChooser.

The call to the B_CreateHardwareChooser routine will create a brand new chooser. It 
will contain all the AMs in the original chooser, plus new ones created "on-the-fly" 
that will call down to the desired PKCS #11 token. If the function cannot create a 
hardware version of the desired AM, it will find a software version in 
RSA_GEN_SW_CHOOSER. If the software chooser is NULL_PTR or does not contain an AM 
that can be used as a replacement for the desired hardware AM, the function will 
return an error.

B_ALGORITHM_METHOD *RSA_GEN_HW_CHOOSER[] = {
  (B_ALGORITHM_METHOD *)&AM_PKCS11_RSA_KEY_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_METHOD *RSA_GEN_SW_CHOOSER[] = {
  &AM_RSA_KEY_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_CHOOSER *hwChooserGen =
             (B_ALGORITHM_CHOOSER)NULL_PTR;

B_PKCS11_SESSION p11Session;
unsigned char passPhrase[8] = {
  'p', 'a', 's', 's', 'w', 'o', 'r', 'd'
};

p11Session.sessionHandle = 0;
p11Session.passPhrase.data = passPhrase;
p11Session.passPhrase.len = 8;
p11Session.cryptokiFunctions = NULL_PTR;
p11Session.libraryName = (char *)"p11DLLName";
p11Session.tokenLabel.data = (unsigned char *)"myToken";
p11Session.tokenLabel.len =
  T_strlen ((char *) p11Session.tokenLabel.data);
p11Session.surrenderContext = (A_SURRENDER_CTX *)NULL_PTR;
if ((status = B_CreateHardwareChooser
     (RSA_GEN_HW_CHOOSER, &hwChooserGen,
      RSA_GEN_SW_CHOOSER, HI_PKCS11Session,
      (POINTER)&p11Info)) != 0)
  break;
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In this example, we passed 0 for sessionHandle and NULL_PTR for cryptokiFunctions. 
This means we want Crypto-C to load up the library (whose shared library name, 
p11DLLName, is given in the libraryName field), do the necessary initializations, find the 
appropriate token (if installed) using the given tokenLabel, then log on using the given 
passPhrase and create a session. After the call to B_CreateHardwareChooser, if we 
examined p11Session.sessionHandle, it would have a non-zero number there. 
Likewise, p11Session.cryptokiFunctions would have an address there. Crypto-C 
created a session and collected the function list. If you want to examine them now, 
you can, if not, ignore them.

The token label is defined by the manufacturer, the user, or both. A manufacturer 
would probably give each token a unique label. Most likely, there will also be tools 
that accompany the token that allow you to find the label and possibly change it. If 
you can label your token, the label can be up to 32 characters in length. Use unique 
names for all your tokens. Incidentally, Cryptoki says a label is 32 characters, no more 
no less. If the name is not 32 characters, then the rest of the label is blank spaces. 
NULL-terminating characters (such as 0) are not allowed. If you pass to Crypto-C a 
label that is not 32 characters or contains zeroes (as in the example above), the Crypto-
C code will strip the zeroes and pad with the blank spaces.

Crypto-C will try to find the token with the same label you pass in. If you pass 
NULL_PTR for tokenLabel.data, Crypto-C will use the first token it finds. Upon return, 
the tokenLabel.data field will point to the label of the token Crypto-C found. The len 
field will be its length. If you have only one token, this could save you a tremendous 
amount of time normally spent typing the token label.

The function list, by the way, is a way to isolate hardware dependencies. Different 
operating systems have different ways of accessing functions in a shared library. For 
instance, with Windows, you must call the routine GetProcAddress to get the address 
of the routine, then "invoke that address." Every time you want to call a PKCS #11 
function then, it would seem, you have to write platform-specific code. This makes 
porting a little more difficult.

But with PKCS #11, you can make one platform-specific call to get the address of the 
routine C_GetFunctionList, then use that routine to get the list of function addresses. 
Now all future PKCS #11 calls are made from this list, so you have no more platform-
specific calls to make.

The last field in the data struct is the surrender context. If you want your operations 
later on to use a surrender context, you must pass it in at this time. PKCS #11 
associates a surrender context with a session (Crypto-C alternatively associates a 
surrender context with an individual function call). So we must register the surrender 
context right at the beginning. If you do not want the operation later on to use a 
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surrender context (private key operations are more susceptible to a timing attack 
when you use a surrender context, for instance), you must pass in NULL_PTR. If you 
want one operation to use a surrender context and another not to, you must create 
two choosers.

When, later on, you call the Crypto-C function that will actually call down to the 
token (such as B_GenerateKeypair or B_SignFinal), Crypto-C will ignore any 
surrenderContext argument you pass at that time. PKCS #11 does not allow you to 
have a surrender context associated with an individual function.

Suppose we were going to sign with the private key created.

We are passing in the same B_PKCS11_SESSION struct. This time, though, it has a 
sessionHandle and a pointer to the cryptokiFunctions (set by Crypto-C during the last 
call to B_CreateHardwareChooser) Now, Crypto-C will not load the library, initialize 
or create a session. We could have reset the sessionHandle field to 0 but leave the 
cryptokiFunctions field to the address given. In that case, Crypto-C would have 
used the same token, but created a new session.

Both the generating chooser (hwChooserGen) and the signing chooser (hwChooserSign) 
must be destroyed later. You should destroy choosers in the reverse order that they 
were created. It will not be necessary in every situation, but there can be cases when it 
is required. So it is simply a good idea always to destroy them in reverse order.

In both choosers, we have software backups. That is, if Crypto-C cannot create the 
hardware chooser (for example, if the token is not in its slot), it will examine the 
software replacement argument and see if there is a suitable AM in that array. If you 

B_ALGORITHM_METHOD *RSA_SIGN_HW_CHOOSER[] = {
  &AM_MD5,
  (B_ALGORITHM_METHOD *)&AM_PKCS11_RSA_PRIVATE_SIGN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_METHOD *RSA_SIGN_SW_CHOOSER[] = {
  &AM_RSA_CRT_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
B_ALGORITHM_CHOOSER *hwChooserSign =
             (B_ALGORITHM_CHOOSER)NULL_PTR;

if ((status = B_CreateHardwareChooser
     (RSA_SIGN_HW_CHOOSER, &hwChooserSign,
      RSA_SIGN_SW_CHOOSER, HI_PKCS11Session,
      (POINTER)&p11Session)) != 0)
  break;
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want to create a hardware chooser only, and if you want to do the task in hardware, 
or if you can't you don't want to do it at all, then pass in a 
(B_ALGORITHM_CHOOSER)NULL_PTR as the swReplacement argument.

Note that often a software backup is not necessarily possible. A token may possess the 
signing key and does not allow it to leave the device. If you can not do the task in 
hardware, you can not do it in software, since you do not have the key. On the other 
hand, if the token is simply an accelerator, maybe it is possible to have a software 
backup. If you have the key data and you can give it to the token or the Crypto-C 
software, either "device" will be able to do the job. If the hardware is there, you get the 
accelerator. If the hardware is not there, you still get the job done.

Now that we have our choosers our code does not need to change.

The code looks just the same as non-PKCS #11 code. This will work with the PKCS #11 
hardware. However, there is a new key generating AI that allows you to include key 
attributes. PKCS #11 (and other hardware interfaces) defines key attributes that 
specify more about the key than just the key data. For instance, you may want your 
private key to be a token key (the data resides on the token) and private (it is not 
allowed to leave the token). You may want to define the key as signing only (it is not 
allowed to be used to open a digital envelope). In this case, use AI_KeypairGen.

A_RSA_KEY_GEN_PARAMS keyGenParams;

if ((status = B_CreateKeyObject (&pubKey)) != 0)
  break;

if ((status = B_CreateKeyObject (&priKey)) != 0)
  break;

if ((status = B_CreateAlgorithmObject (&rsaGen)) != 0)
  break;

keyGenParams.modulusBits = 1024;
keyGenParams.publicExponent.data = expo;
keyGenParams.publicExponent.len = sizeof (expo);
if ((status = B_SetAlgorithmInfo
     (rsaGen, AI_RSAKeyGen, (POINTER)&keyGenParams)) != 0)
  break;
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This AI has an associated info data struct that allows you to set attributes. See the 
Reference Manual for complete lists of valid flags. To set more than one attribute, OR 
them together.

Notice the start and end attributes. Those are for when you want to have a validity 
period on your key. If you want to require the user to generate a new key every so 
often, set the start and end dates. If not, pass in 0. The value to pass in is the number of 
seconds since 12:00 AM GMT, January 1, 1970. This is generally the result of the 
system call T_Time (or some such name). It is generally a 32-bit integer. We define it as 
RSA_TIME_T which is typedef'd to a 32-bit unsigned int. In the future, some platforms 
may decide to use a 64-bit integer for time. For those platforms, RSA_TIME_T will be 
typedef'd to a 64-bit integer.

If you do not use this AI to generate your key pair, Crypto-C will allow the token to 
decide what the attributes will be. That is, PKCS #11 defines some default attributes 
and defines what is the default for each token attribute that PKCS #11 does not define. 
However, some tokens still may not allow such a scheme. For instance, PKCS #11 
defines an attribute CKA_TOKEN as false by default. If you set the token flag to TF-
RESIDE_ON_TOKEN, you are overriding the default value. But if you do not specify any 
attributes, the token must create a non-token key pair. Some manufacturers may not 
allow this, so a token may not be able to perform the default behavior. Therefore, you 

B_KEYPAIR_GEN_PARAMS keypairGenParams;

keypairGenParams.privateKeyAttributes.keyUsage =
                                    CF_DIGITAL_SIGNATURE;
keypairGenParams.privateKeyAttributes.tokenFlag =
                                              TF_PRIVATE;
keypairGenParams.privateKeyAttributes.start = 0;
keypairGenParams.privateKeyAttributes.end = 0;
keypairGenParams.publicKeyAttributes.keyUsage =
                                    CF_DIGITAL_SIGNATURE;
keypairGenParams.publicKeyAttributes.tokenFlag =
                                      TF_RESIDE_ON_TOKEN;
keypairGenParams.publicKeyAttributes.start = 0;
keypairGenParams.publicKeyAttributes.end = 0;
keypairGenParams.keypairGenInfoType = AI_RSAKeyGen;
keypairGenParams.keypairGenInfo = (POINTER)&keyGenParams;
if ((status = B_SetAlgorithmInfo
     (rsaGen, AI_KeypairGen,
      (POINTER)&keypairGenParams)) != 0)
  break;
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may need to set the attributes manually for the token to work.

You can use this AI for any key pair generation, not just RSA. If you use this AI for 
software key pair generation, the attributes will be ignored.

After setting the algorithm object to generate a key pair, initialize.

Notice the new subroutine call, B_GetDevice, which you call to see if key pair 
generation will be performed by hardware or software. Pass in an ITEM (a pointer to 
an ITEM that you create) and Crypto-C will set the data and len fields with a pointer 
and length of a description of the device. The name will be a NULL-terminated string. 
If software is used, the result will be the word "software." The memory is owned by 
Crypto-C, so do not overwrite it or free it.

Now generate.

In this example, we pass in a random object, because we have specified a software 
backup. If the generation will be done in hardware, the random object will be ignored. 
If you know the generation will be done in hardware, in fact, you could pass in  
NULL_PTR for the random object.

We have passed in a NULL surrender context as well. If you pass in a valid surrender 
context, Crypto-C will ignore it, because PKCS #11 demanded the surrender context 
when we created the session.

Crypto-C sets the key objects to some value. If a key is a token key (the key resides on 
the token), it was set with KI_Token. If a key does not reside on a token or is not 
private (a public key can reside on a token but can never be private), it was set with 
KI_PKCS_RSAMultiPrimePrivate or KI_RSAPublic. It may have been set with both key 

 ITEM deviceName;

if ((status = B_GenerateInit
     (rsaGen, hwChooserGen, NULL_SURR)) != 0)
      break;

if ((status = B_GetDevice (&deviceName, rsaGen)) != 0)
   break;

if ((status = B_GenerateKeypair
     (rsaGen, pubKey, priKey, random, NULL_SURR)) != 0)
  break;
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info types if it is a key that resides on the token and is not private.

Now you can send the public key to whomever you want. You can also save the 
private key token info. If you give that token info (which consists of a manufacturer's 
ID and a key handle) to Crypto-C again, you can use the key on the token. 
Incidentally, the key handle is the internalKey field of the KI_TOKEN_INFO and for the 
PKCS #11 interface, Crypto-C uses the key class, key type and digest of the modulus 
as the handle. Crypto-C sets the CKA_ID attribute of the token key with the digest of 
the modulus. See the "Advanced PKCS 11” section for more information.

Now that we have a key pair, we can sign.

KI_TOKEN_INFO *priKeyToken = (KI_TOKEN_INFO *)NULL_PTR; 
ITEM *pubKeyInfo = (ITEM *)NULL_PTR;

if ((status = B_GetKeyInfo
     ((POINTER *)&priKeyToken, priKey, KI_Token)) != 0)
  break;

if ((status = B_GetKeyInfo
     ((POINTER *)&pubKeyInfo, pubKey,
      KI_RSAPublicBER)) != 0)
  break;

if ((status = B_CreateAlgorithmObject (&signer)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (signer, AI_MD5WithRSAEncryption, NULL_PTR)) != 0)
  break;

if ((status = B_SignInit
     (signer, priKey, hwChooserSign, NULL_SURR)) != 0)
  break;

if ((status = B_SignUpdate
     (signer, dataToSign, dataToSignLen, NULL_SURR)) != 0)
  break;

if ((status = B_SignFinal
     (signer, signature, &sigLen, sizeof (signature),
      NULL_RAND, NULL_SURR)) != 0)
  break;
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This code looks just like regular code. Whether you are signing with software or 
hardware, it looks the same. See the sample files in the sample\pkcs11 directory.

We are using the hardware chooser we created. To perform RSA signatures (with 
MD5) we need to include AM_MD5 in our chooser. Our original chooser contained 
AM_MD5 and AM_PKCS11_RSA_PRIVATE_SIGN. The new hardware chooser contains all the 
AMs from the original chooser, plus, because of the PKCS 11 AM and HI (arguments 
to the call B_CreateHardwareChooser), it can perform the signing using hardware.

Remember, there is the original chooser, containing all the AMs you will need plus an 
inactive hardware AM. There is the software replacement chooser, containing only 
those AMs that can be used as substitutes for hardware. And finally, there is the 
hardware chooser Crypto-C created. It contains everything the original chooser did, 
plus it will have a new AM (created "on-the-fly") that looks a lot like the inactive AM, 
except it is connected to the hardware. We do not make the "inactive" AM active, 
because a regular chooser is static: it is created when you link the application. You do 
not link in the token at link time. You connect to the hardware token at run time, so 
that is the only time possible to create an AM.

You must destroy what you create. Remember, we created two choosers, we 
recommend that you destroy them in the reverse order that they were created.

When Crypto-C destroys hwChooserSign, it will not close the session or log off of the 
token. Remember, when we created that hardware chooser, we had a session already 
established. Crypto-C will not close a session or log off unless it opened the session or 
logged on. When Crypto-C destroys hwChooserGen, it will close the session and log off.

Incidentally, the following is code similar to how Crypto-C initalizes, creates a 
session, and logs in to a Cryptoki device in a Windows environment. (It is not the 
actual code, but you can get a sense of how it works.)

B_DestroyHardwareChooser (&hwChooserSign);
B_DestroyHardwareChooser (&hwChooserGen);
B_DestroyAlgorithmObject (&rsaGen);
B_DestroyAlgorithmObject (&signer);
B_DestroyKeyObject (&pubKey);
B_DestroyKeyObject (&priKey);
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  CK_RV rv;
  CK_SESSION_HANDLE sessionHandle;
  HINSTANCE libHandle;
  GetFunctionList GetList;
  CK_FUNCTION_LIST_PTR fnctList;

  /* Load the library if possible.   */
  libHandle = LoadLibrary (p11Info->session.libraryName);
  if (libHandle == (HINSTANCE)NULL_PTR)
    return (BE_HARDWARE);

  /* Get the PKCS 11 function C_GetFunctionList. With this
       function, we can get the function list (pointers to
       all PKCS 11 functions) with one call.
   */
  GetList = (GetFunctionList)GetProcAddress
                        (libHandle, "C_GetFunctionList");
  if (GetList == (GetFunctionList)0)
    return (BE_HARDWARE);

  if ((rv = GetList (&fnctList)) != 0)
    return (BE_HARDWARE);

  /* We have to initialize PKCS 11.
   */
  if ((rv = fnctList->C_Initialize
       ((CK_VOID_PTR)NULL_PTR)) != 0)
    return (BE_HARDWARE);
  /* Now we need to open a session and log in.   */
  if ((rv = fnctList->C_OpenSession
       ((CK_SLOT_ID)(session->slotID),
        CKF_RW_SESSION | CKF_SERIAL_SESSION,
        (CK_VOID_PTR)&(p11Info->surrenderCtx),
        (CK_NOTIFY)HI_PKCS11Notify, &sessionHandle)) != 0)
    return (BE_HARDWARE);

if ((rv = fnctList->C_Login
       (sessionHandle, CKU_USER,
        (CK_CHAR_PTR)(session->passPhrase.data),
        (CK_ULONG)(session->passPhrase.len))) != 0)
    return (BE_HARDWARE);
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PKCS #11 Support for DSA Key Pair Generation
This section describes how to generate a DSA key pair using a PKCS #11 device. You 
will need some DSA parameters, since  PKCS #11 does not specify a way to generate 
parameters. If you do not already have them, use Crypto-C to generate some DSA 
parameters.

At this point, you will call B_GenerateParameters. The resulting parameters need to 
be stored somewhere. They will be stored in an algorithm object. A limitation in 
Crypto-C is that you cannot store them in an object from which you simply extract the 
parameters. You must store them in an object that will be used to generate a key pair. 
Then you must generate a key pair to extract the parameters.

B_ALGORITHM_METHOD *DSA_PARAM_GEN_CHOOSER[] = {
  &AM_DSA_PARAM_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR;
};

B_ALGORITHM_OBJ dsaParamGen = (B_ALGORITHM_OBJ)NULL_PTR;
B_DSA_PARAM_GEN_PARAM dsaParamGenParams;

dsaParamGenParams.primeBits = 1024;

if ((status = B_CreateAlgorithmObject (&dsaParamGen)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (dsaParamGen, AI_DSAParamGen,
      (POINTER)&dsaParamGenParams)) != 0)
  break;

if ((status = B_GenerateInit
     (dsaParamGen, DSA_PARAM_GEN_CHOOSER, NULL_SURR)) != 0)
  break;
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Now that you have a key pair, extract the public key, part of the public key is a struct 
containing the parameters.

Remember, the data in the A_DSA_PUBLIC_KEY struct belongs to the key object, 
once you destroy that object, the data disappears. So either use the data before 

B_ALGORITHM_METHOD *DSA_KEY_GEN_CHOOSER[] = {
  &AM_DSA_KEY_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR;
};

B_ALGORITHM_OBJ dsaKeyGen = (B_ALGORITHM_OBJ)NULL_PTR;
B_KEY_OBJ pubKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ priKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaKeyGen)) != 0)
  break;

if ((status = B_CreateKeyObject (&pubKey)) != 0)
  break;

if ((status = B_CreateKeyObject (&priKey)) != 0)
  break;

if ((status = B_GenerateParameters
     (dsaParamGen, dsaKeyGen, randomObject,
      NULL_SURR)) != 0)
  break;

if ((status = B_GenerateInit
     (dsaKeyGen, DSA_KEY_GEN_CHOOSER, NULL_SURR)) != 0)
  break;

if ((status = B_GenerateKeypair
     (dsaKeyGen, pubKey, priKey, random, NULL_SURR)) != 0)
  break;

A_DSA_PUBLIC_KEY *pubKeyData;

if ((status = B_GetKeyInfo
     ((POINTER *)&pubKeyData, pubKey, KI_DSAPublic)) != 0)
  break;
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destroying, or copy it into your own buffer. Since you generated the key pair only to 
be able to extract the parameters, you will almost certainly want to simply throw 
away the generated keys.

Once you have the parameters, you can generate a key pair using PKCS #11. This will 
look just like RSA key pair generation, except instead of using 
AM_PKCS11_RSA_KEY_GEN, you will use AM_PKCS11_DSA_KEY_GEN. Also, when you use 
AI_KeypairGen, you will fill the keypairGenInfoType field of the 
B_KEYPAIR_GEN_PARAMS input data struct with AI_DSAKeyGen.

B_ALGORITHM_OBJ p11DSAKeyGen = (B_ALGORITHM_OBJ)NULL_PTR;
B_KEYPAIR_GEN_PARAMS p11KeyGenParams;

p11KeyGenParams.privateKeyAttributes.tokenFlag =
                                            TF_PRIVATE;
p11KeyGenParams.privateKeyAttributes.keyUsage =
                                  CF_DIGITAL_SIGNATURE;
p11KeyGenParams.privateKeyAttributes.start = 0;
p11KeyGenParams.privateKeyAttributes.end = 0;
p11KeyGenParams.publicKeyAttributes.tokenFlag = 0;
p11KeyGenParams.publicKeyAttributes.keyUsage =
                                  CF_DIGITAL_SIGNATURE;
p11KeyGenParams.privateKeyAttributes.start = 0;
p11KeyGenParams.privateKeyAttributes.end = 0;
p11KeyGenParams.keypairGenInfoType = AI_DSAKeyGen;
p11KeyGenParams.keypairGenInfo =
                        (POINTER)&(pubKeyData->params);

if ((status = B_CreateAlgorithmObject
     (&p11DSAKeyGen)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (p11DSAKeyGen, AI_KeypairGen,
      (POINTER)&p11KeyGenParams)) != 0)
  break;
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Advanced PKCS #11
This chapter earlier described internalKey as the collection of three items: CKA_CLASS, 
CKA_TYPE and the digest of the modulus. A more rigorous description would be 
CKA_CLASS, CKA_TYPE and CKA_ID. When Crypto-C generates a key pair, it uses the 
SHA-1 digest of the modulus as the CKA_ID.

For an RSA private key, it would be this.

Suppose you have a generated key pair already, it has a CKA_ID already set, and you 
want Crypto-C to be able to use it. Just create a buffer that looks like the previous 
example, making sure you use the right value for the class and type. Then the next 
part of the buffer will be your CKA_ID. Now create a KI_TOKEN_INFO struct with the 
manufacturer's ID and the new buffer you created as the internal key. Crypto-C will 
find it.

When Crypto-C asks for the key with the appropriate attributes, it receives in return a 
key handle. This handle is valid only during the active session. If you get a key handle 
for a particular key one day, the next day the handle for that very same key may be 
different. Suppose you have that handle for the active session. You could give Crypto-
C the previously defined internalKey and Crypto-C would ask the token to return a 
handle for that key. In other words, you searched for the key once, got a handle, and 
now Crypto-C will search again. And it will probably get a new handle.

You could also pass in CKO_VENDOR_DEFINED | CKO_PRIVATE_KEY for the class, 
CKK_RSA for the type, and then the rest would be the handle. It might look like this.

In this case, Crypto-C will recognize the most significant bit of the class set (the 8 in 
the 80000003) and know that the value which would normally be the CKA_ID is 
actually the key handle. It would then use that key handle. That is what 
VENDOR_DEFINED means, the class is vendor-defined. We are the vendor, so we are 
defining it to mean "private key class key handle," not just "private key."

CKA_CLASS          CKA_TYPE          CKA_ID

CKO_PRIVATE_KEY          CKK_RSA          <digest>

00 00 00 03   00 00 00 00   66 a9 47 2d 80 5a. . .

80 00 00 03   00 00 00 00   00 00 00 02
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In real life, you may never have to use this feature. Mostly you will retrieve the 
internalKey from your database, use it, close out the session and be done. But if there 
is some odd case where you have the key handle and want to pass it to Crypto-C, this 
is the way to do it.

Random Numbers
In our sample, we say the random object you create will not be used. If random 
numbers are needed, the token will use its own random number generator. But you 
do have the option of seeding that generator. For some tokens, seeding may do 
nothing. But for others, if you want to add your own seed, you can. You do this 
through the PKCS #11 API.

This is not a Crypto-C API. You called on Crypto-C to create a session. In return, you 
received a session handle and a pointer to an array of functions. One of those 
functions is a seeding routine. This is the most basic information you need to know 
about PKCS #11 seeding. There is certainly more to learn about seeding, and the other 
Cryptoki functions, in the PKCS #11 specification.

Hardware Issues
Working with hardware devices introduces new issues that must be addressed. A 
cryptographic key on a hardware device might never leave the device; this is part of 
the security. For instance, suppose you want to produce a digital envelope. You might 
use a hardware accelerator to perform DES encryption of the bulk data, then want to 
encrypt the DES key with the recipient’s public key. However, when you make the 
call to retrieve the key, the hardware might return a handle to the key, rather than the 
key itself. This enhances security, because the key never appears “in public.”

CK_RV rv;

rv =

 ((CK_FUNCTION_LIST_PT)(p11Session.cryptokiFunctions))->

   C_SeedRandom

    ((CK_SESSION_HANDLE)(p11Session.sessionHandle),

     (CK_BYTE_PTR)seedBuffer,

     (CK_ULONG)seedLen);
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To implement this, the hardware accelerator might require you to call its key-
wrapping routines to build a digital envelope. When you request the key in order to 
store it for later use, the hardware could return a handle to the key. But if you give 
that data to another cryptographic package, the key will mean nothing. 

So, once you build a key (symmetric or private) on a hardware device, it is possible 
that only that hardware device will be able to use that key. Therefore, you should use 
hardware accelerators only if you thoroughly understand their use.
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Chapter 5

Non-Cryptographic Operations
Crypto-C supplies a number of non-cryptographic algorithms that are necessary for 
cryptographic applications. These include:

• Message Digests
• Random-number generators
• ASCII-to-binary and binary-to-ASCII encoding
1 5 1
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Message Digests
A message digest is a fixed-length, statistically-unique identifier that corresponds to a 
set of data. That is, each unit of data — such as a file, string, or buffer — maps to a 
particular byte sequence (usually 16 or 20 bytes long). A digest is not random: 
digesting the same unit of data with the same message-digest algorithm will always 
produce the same byte sequence.

Digests are used in random-number generation, password-based encryption, and 
digital signatures.

Creating a Digest
The example in this section corresponds to the file mdigest.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Crypto-C offers four message digest algorithms: MD, MD2, MD5, and SHA1. 

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal 
compression function, and there is some chance that the attack on MD2 may 
be extended to the full hash function. The same attack applies to MD. Another 
attack has been applied to the compression function on MD5, though this has 
yet to be extended to the full MD5. RSA Security recommends that before you 
use MD, MD2, or MD5, you should consult the RSA Laboratories Web site to 
be sure that their use is consistent with the latest information. 

The AI for SHA1 is AI_SHA1; the Reference Manual Chapter 2 entry for this AI states 
that the format of info supplied to B_SetAlgorithmInfo is NULL_PTR:

B_ALGORITHM_OBJ digester = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&digester)) != 0)
  break;
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Step 3: Init
To initialize a message digest, call B_DigestInit. The Reference Manual Chapter 4 
entry on B_DigestInit shows that it requires four arguments. The first argument is 
the algorithm object. The second is a key object. All Crypto-C message digest AIs call 
for a properly cast NULL_PTR as the key object; Crypto-C provides this argument for 
algorithms, like HMAC, that require keys. The third argument is an algorithm 
chooser. The fourth is a surrender context; this is a fast function, so it is reasonable to 
pass a properly cast NULL_PTR:

Refer to “Saving State” on page 120 for a discussion of how to save the state of the 
algorithm object for future use.

Step 4: Update
Use B_DigestUpdate to enter the data to digest. If you have separate units of data (for 
example, two or more files or several strings), make a call to B_DigestUpdate for each 
unit. Message digesting is quick, so unless you are digesting an extremely large 
amount of data (a megabyte or more), it is reasonable to pass a properly cast NULL_PTR 
for the surrender context. 

if ((status = B_SetAlgorithmInfo
     (digester, AI_SHA1, NULL_PTR)) != 0)
  break;

B_ALGORITHM_METHOD *DIGEST_CHOOSER[] = {
  &AM_SHA,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_DigestInit
     (digester, (B_KEY_OBJ)NULL_PTR, DIGEST_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Your call will be the following:

Step 5: Final
An MD2 or MD5 digest is always 16 bytes; an SHA1 digest is always 20 bytes. Because 
you are using SHA1, create a 20-byte buffer to hold the output and call 
B_DigestFinal. The Reference Manual gives the prototype for this function in Chapter 
4. 

The first argument is the algorithm object. The second is the buffer where Crypto-C 
will deposit the digest. The third is an address for Crypto-C to return the number of 
bytes in the digest. Because this value should always be 20, you can use this as a check 
on the algorithm if you like. The fourth argument is the size of the output buffer. If 
Crypto-C needs a bigger buffer, this function will return an error. The fifth argument 
is the surrender context; this is a fast function, so there should be no problem with 
using a properly cast NULL_PTR:

/* The variable dataToDigest should already point to allocated
   memory and contain the data, dataToDigestLen should 
   already be set to the number of bytes to digest. */

unsigned char *dataToDigest;
unsigned int dataToDigestLen;

if ((status = B_DigestUpdate
     (digester, dataToDigest, dataToDigestLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define DIGEST_LEN 20

unsigned char digestedData[DIGEST_LEN];
unsigned int digestedDataLen;

if ((status = B_DigestFinal
     (digester, digestedData, &digestedDataLen, DIGEST_LEN,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 6: Destroy
Remember to destroy all objects when you are done with them:

BER-Encoding the Digest
If you want to send your digest to someone, you should BER-encode the algorithm 
identifier and the digest. The Crypto-C function B_EncodeDigestInfo offers a way to 
put together a string containing your information in BER format.

The example in this section corresponds to the file mdber.c.

The Reference Manual Chapter 4 entry for B_EncodeDigestInfo shows that this 
function takes six arguments:

The first argument is an address where Crypto-C can drop the BER-encoded digest 
information. You will have to allocate the space for this buffer. This buffer will 
contain the algorithm identifier and the 16- or 20-byte digest, the total for MD2 and 
MD5 digests is 34; for a SHA1 digest, it is 35 bytes. If you want to be safe, you can 
make the buffer larger. 

The second argument is the address of an unsigned int; Crypto-C will place the final 
length of the BER encoding at that address. The third argument is the buffer size. The 
fourth is a pointer to an ITEM containing the DER encoding of the message digest 
algorithm; you obtain the DER encoding by calling B_GetAlgorithmInfo with the 
appropriate AI with BER encoding. The fifth argument is the digest itself; the sixth is 
the length of the digest.

B_DestroyAlgorithmObject (&digester);

int B_EncodeDigestInfo (
  unsigned char *digestInfo,                      /* encoded output buffer */
  unsigned int  *digestInfoLen,                /* length of encoded output */
  unsigned int   maxDigestInfoLen,            /* size of digestInfo buffer */
  ITEM          *algorithmID,       /* message digest algorithm identifier */
  unsigned char *digest,                           /* message digest value */
  unsigned int   digestLen                             /* length of digest */
);
C h a p t e r  5   N o n - C r y p t o g r a p h i c  O p e r a t i o n s 1 5 5

Download from Www.Somanuals.com. All Manuals Search And Download.



Message Digests
The following example BER-encodes the preceeding sample digest:

To decode BER-encoded information, call B_DecodeDigestInfo. Simply pass the 
addresses you need; Crypto-C will fill the ITEMs for you:

Note: When you create an RSA digital signature as specified in PKCS #1, the 
digestInfo is the data which is encrypted with the RSA private key.

Saving the State of a Digest Algorithm Object

Saved State
The sample program in samples/hashalg/mdigsv.c demonstrates various ways to go 
about digesting data.  As shown in “Creating a Digest” on page 152,  one could collect 
the data to digest in one buffer and present it with one call to B_DigestUpdate() and a 
call to B_DigestFinal() to retrieve the digest.  The DigestDataAll helper function in 
mdigsv.c shows this scenario.  Alternatively, multiple calls could be made to 

#define DIGEST_LEN 20
#define ALG_ID_LEN DIGEST_LEN + 18

ITEM *sha1AlgInfoBER;
unsigned char digestInfoBER[ALG_ID_LEN];
unsigned int digestInfoBERLen;

if ((status = B_GetAlgorithmInfo
     ((POINTER *)&sha1AlgInfoBER, digester, AI_SHA1_BER)) != 0)
  break;

if ((status = B_EncodeDigestInfo
     (digestInfoBER, &digestInfoBERLen, ALG_ID_LEN, sha1AlgInfoBER,
      digestedData, digestedDataLen)) != 0)
  break;

ITEM retrievedAlgorithmID;
ITEM retrievedDigest;

if ((status = B_DecodeDigestInfo
     (&retrievedAlgorithmID, &retrievedDigest, digestInfoBER,
      digestInfoBERLen)) != 0)
  break;
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B_DigestUpdate before calling B_DigestFinal().  This is useful when an application 
is called upon to digest large amounts of data. It will feed "bite-sized" pieces of data to 
the algorithm object instead of having to fit the entire input data into memory at one 
time.  The DigestDataMultipleUpdates helper function in mdigsv.c shows this 
scenario.  Another possibility, if an application needs to be able to save and restore an 
algorithm object, is to take advantage of B_GetAlgorithmState and 
B_SetAlgorithmState.  Remember that a B_ALGORITHM_OBJ is an opaque pointer to 
buffers controlled by the Crypto-C library; you cannot just save a B_ALGORITHM_OBJ 
value to a file and expect to use it later.

In mdigsv.c, we demonstrate the serialization of an algorithm object by digesting a 
file 100 bytes at a time, saving and restoring the algorithm object before each call to 
B_DigestUpdate.  Note that we begin by obtaining the initial state of the digest 
algorithm object after calling B_DigestInit.

Since the buffer in initialState belongs to Crypto-C, we need to make our own local 
copy, since subsequent calls to Crypto-C can change the data pointed to by 
initialState.

The DigestDataSavedState() function takes in the given state info in order to restore 
the algorithm object and continue with a call to B_DigestUpdate.  We make a call to 
this helper function for each block of data that we read from the file.  Note that 
stateInfo is both an input and output argument; on input, it contains the algorithm 
object state that will be used to restore the object and is later updated to contain the 

ITEM initialState = {NULL, 0};

    if ((status = B_GetAlgorithmState (&initialState, digestObj)) != 0)
      break;

ITEM stateInfo = {NULL, 0};

    stateInfo.len = initialState.len;
    stateInfo.data = T_malloc (stateInfo.len);
    if (stateInfo.data == NULL) {
      status = RSA_DEMO_E_ALLOC;
      break;
    }

    T_memcpy (stateInfo.data, initialState.data, stateInfo.len);
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state of the algorithm object following the call to B_DigestUpdate.  The digestAI 
argument is simply the AI_* that we used in the original B_SetAlgorithmInfo call.  
This is required because each AI_* has a routine associated with it internally, which it 
uses to interpret the data in the given state info.  The dataToDigest argument contains 
the block to digest.
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Table 5-1 Code Sample: DigestDataSavedState() 

int DigestDataSavedState (ITEM *stateInfo, B_INFO_TYPE digestAI,
                          ITEM *dataToDigest)
{
  int status = 0;
  B_ALGORITHM_OBJ digestObj = NULL;
  ITEM newStateInfo = {NULL, 0}, bsfStateInfo = {NULL, 0};
  do {

    if ((status = B_CreateAlgorithmObject (&digestObj)) != 0)
      break;

    if ((status = B_SetAlgorithmState (digestObj, digestAI, stateInfo,
                                       DIGEST_CHOOSER)) != 0)
      break;

    if ((status = B_DigestUpdate (digestObj, dataToDigest->data, 
                                  dataToDigest->len, NULL)) != 0)
      break;

    if ((status = B_GetAlgorithmState (&bsfStateInfo, digestObj)) != 0)
      break;

    /* Make a copy of the information pointed to by bsfStateInfo for local
       use, since the info pointed to by bsfStateInfo could be changed or
       reclaimed by the Crypto-C library during subsequent calls. */
    newStateInfo.len = bsfStateInfo.len;
    newStateInfo.data = T_malloc (newStateInfo.len);
    if (newStateInfo.data == NULL) {
      status = RSA_DEMO_E_ALLOC;
      break;
    }
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This routine can be called until all of the data blocks have been digested.  We can then 
restore the algorithm object and call B_DigestFinal() to obtain the message digest.  
Note that following a call to B_*Final, the algorithm object is restored to the state it 
was in following the previous B_*Init call.

The mdigsv.c program shows that digesting a file using all three methods produce the 
same result.

    T_memcpy (newStateInfo.data, bsfStateInfo.data, newStateInfo.len);
  } while (0);

  if (status != 0)
    RSA_PrintError ("DigestDataSavedState", status);
  else {
    /* update stateInfo so the caller can have an updated algorithm object */
    T_memset (stateInfo->data, 0, stateInfo->len);
    T_free (stateInfo->data);
    stateInfo->data = newStateInfo.data;
    stateInfo->len = newStateInfo.len;
  }

  B_DestroyAlgorithmObject (&digestObj);

  return status;
}  /* end DigestDataSavedState */
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Hash-Based Message Authentication 
Code (HMAC)
A hash-based message authentication code (HMAC) combines a secret key with a 
message digest to create a message authentication code. See “Hash-Based Message 
Authentication Codes (HMAC)” on page 49 for a description of the algorithm.

Crypto-C provides an HMAC implementation based on SHA1. Recall that SHA1 
produces a 20-byte digest and takes input in 64-byte blocks. 

The example in this section corresponds to the file hmac.c.

Step 1: Creating an Algorithm Object
Declare a variable of type B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
There is only one AI for hash-based message authentication codes, AI_HMAC. The 
Reference Manual Chapter 2 entry for AI_HMAC states that the format of info supplied to 
B_SetAlgorithmInfo is a pointer to a B_DIGEST_SPECIFIER structure:

The only choice for digestInfoType in Crypto-C is AI_SHA1. In the case of AI_SHA1, 
digestInfoParams should be set to NULL_PTR:

  B_ALGORITHM_OBJ HMACDigester = (B_ALGORITHM_OBJ)NULL_PTR;
 
  if ((status = B_CreateAlgorithmObject (&HMACDigester)) != 0)
    break;

typedef struct {
  B_INFO_TYPE digestInfoType;
  POINTER     digestInfoParams;
} B_DIGEST_SPECIFIER;
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Step 3: Init
For hash-based message authentication, you need a key before you can initialize the 
object.

Step 3a: Creating the Key Object
Create the key object:

Step 3b: Setting the Key Object
Generate a random 24-byte key using KI_24Byte:

  B_DIGEST_SPECIFIER hmacInfo;
 
  hmacInfo.digestInfoType = AI_SHA1;
  hmacInfo.digestInfoParams = NULL_PTR;
 
  if ((status = B_SetAlgorithmInfo 
       (HMACDigester, AI_HMAC, (POINTER)&hmacInfo)) != 0)
    break;

#define KEY_SIZE 24

  B_KEY_OBJ HMACKey = (B_KEY_OBJ)NULL_PTR;
  unsigned char *keyData;

  /* Create a key object */
  if ((status = B_CreateKeyObject (&HMACKey)) != 0)
    break;

  ITEM keyDataItem = {NULL,0};
  keyData = T_malloc (KEY_SIZE);
  if ((status = (keyData == NULL_PTR)) != 0)
    break;
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Once you have properly initialized the key object, you can call B_DigestInit. The 
Reference Manual Chapter 4 entry on B_DigestInit shows that it requires four 
arguments. The first argument is the algorithm object; the second is the key object. 
The third is an algorithm chooser. The fourth is a surrender context; this is a fast 
function, so it is reasonable to pass a properly cast NULL_PTR:

Step 4: Update
Once you have set the algorithm object, you can create the message authentication 
code by calling B_DigestUpdate for all of the data to digest:

  /* Complete Steps 1-4 of Generating Random Numbers  */
  /* Generate KEY_SIZE bytes of random data for the key. */
  if ((status = B_GenerateRandomBytes
       (randomAlgorithm, keyData, KEY_SIZE,
       (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

keyDataItem.data = keyData;
keyDataItem.len = key_Size;
/* Set the key object */
if ((status = B_SetKeyInfo (HMACKey, KI_Item, (pointer) & keyDataItem)) != 0)
  break;

  B_ALGORITHM_METHOD *HMAC_CHOOSER[] = {
    &AM_SHA,
    &AM_SHA_RANDOM,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };

  if ((status = B_DigestInit 
       (HMACDigester, HMACKey, HMAC_CHOOSER, 
       (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned char dataToDigest[] = "Digest this sentence.";
  unsigned int dataToDigestLen = strlen (dataToDigest);

  if ((status = B_DigestUpdate
       (HMACDigester, dataToDigest, dataToDigestLen,
       (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Step 5: Final
After the data to digest has been processed by calls to B_DigestUpdate, call 
B_DigestFinal. You need to pass a pointer to the location where B_DigestFinal can 
store the output. In the case of AI_HMAC using SHA1, you need 20 bytes to store the 
result.

Step 6: Destroy
Once you have generated the message authentication code, destroy any objects you 
used, and free up any memory you allocated:

  unsigned char *digestedData;
  unsigned int digestedDataLen;

  digestedData = T_malloc (20);
  if ((status = (digestedData == NULL_PTR)) != 0)
    break;

  if ((status = B_DigestFinal
       (HMACDigester, digestedData, &digestedDataLen,
           20, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  B_DestroyKeyObject (&HMACKey);
  B_DestroyAlgorithmObject (&randomAlgorithm);
  B_DestroyAlgorithmObject (&HMACDigester);

  if (digestedData != NULL_PTR) {
    T_memset (digestedData, 0, 20);
    T_free (digestedData);
    digestedData = NULL_PTR;
    digestedDataLen = 0;
  }
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Generating Random Numbers
In the “Introductory Example” on page 9, we hard-coded the DES key. In an actual 
application, you would use randomly-generated values. Crypto-C allows you to 
generate a pseudo-random sequence of bytes using a pseudo-random number 
generator (PRNG). These PRNGs are based on the message digests MD2, MD5, and 
SHA1. This section shows how to use AI_X962Random_V0, a SHA1-based pseudo-
random number generator. Its implementation can also be used as a model for the 
MD2 and MD5 random number generators. This model should be used for most 
random-number generation methods.

Note: There is also AI_X931Random, which is a SHA1-based pseudo-random number 
generator that allows multiple streams of randomness. It is intended 
primarily for use with AI_RSAStrongKeyGen, and should not be used for 
general-purpose random-number generation. For an example of how to use 
AI_X931Random, see “Putting It All Together: An X9.31 Example” on page 313.

Generating Random Numbers with SHA1
The example in this section corresponds to the file genbytes.c. This example, which 
uses AI_X962Random_V0, can easily be modified to use the PRNGs based on MD2 and 
MD5, AI_MD2Random and AI_MD5Random, respectively.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&randomAlgorithm)) != 0)
  break;
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Step 2: Setting The Algorithm Object
You need to supply an appropriate algorithm info type (AI) and the proper associated 
info to B_SetAlgorithmInfo. For random-number generation, you have a choice 
between AI_MD2Random, AI_MD5Random, AI_X962Random_V0 (also known as 
AI_SHA1Random), and AI_X931Random, based on the message digest algorithms MD2, 
MD5, and SHA1 described earlier. For this example, choose AI_X962Random_V0. 

Note: AI_SHA1Random is identical to AI_X962Random_V0; the name AI_SHA1Random is 
used in the demo applications. However, AI_SHA1Random may change in 
future versions of Crypto-C. For forward compatibility, we recommend that 
you do not use the name AI_SHA1Random in your applications; use 
AI_X962Random_V0 instead.
Recent cryptanalytic work has discovered a collision in MD2’s internal 
compression function, and there is some chance that the attack on MD2 may 
be extended to the full hash function. The same attack applies to MD. Another 
attack has been applied to the compression function on MD5, though this has 
yet to be extended to the full MD5. RSA Security recommends that before you 
use MD, MD2, or MD5, you should consult the RSA Laboratories Web site to 
be sure that their use is consistent with the latest information. 

The entry for AI_SHA1Random in Chapter 2 of the Reference Manual refers you to 
AI_X962Random_V0; the entry for this second AI states that the info supplied to 
B_SetAlgorithmInfo is NULL_PTR. So the proper way to set your random algorithm 
object is:

Step 3: Init
Initialize randomAlgorithm with B_RandomInit. The prototype of this function in 
Chapter 4 of the Reference Manual indicates that it takes three arguments: the 
algorithm object, the algorithm chooser, and the surrender context. The first argument 
is randomAlgorithm. For the second argument, build an algorithm chooser that 
contains the AMs listed in the Reference Manual Chapter 2 entry for AI_X962Random_V0. 
B_RandomInit is a fast function, so it is reasonable to use a properly cast NULL_PTR for 
the surrender context as the third argument.

if ((status = B_SetAlgorithmInfo
     (randomAlgorithm, AI_SHA1Random, NULL_PTR)) != 0)
  break;
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Refer to “Saving State” on page 120 for a discussion of how to save the state of the 
algorithm object for future use.

Step 4: Update
The B_RandomUpdate function mixes in a random seed to the algorithm object. The 
function prototype in Chapter 4 of the Reference Manual shows that B_RandomUpdate 
takes four arguments: an algorithm object, a random seed, the length of the random 
seed, and a surrender context. So before you can call B_RandomUpdate, you need to 
procure a random seed.

Step 4a: The Random Seed
The purpose of random number generation is to produce an unpredictable and 
unrepeatable sequence of bytes. If you do not update a random algorithm object with 
a random seed, you will generate a default sequence of pseudo-random bytes. In 
addition, if someone else updates their random algorithm object with the same seed 
that you used, they will generate the same sequence you did. Because unrepeatability 
depends on the random seed, you want an unrepeatable seed. 

Generating a seed that cannot be predicted or repeated is especially important in 
cryptography. There are a number of sources for unrepeatable seeds. The best source 
may be a hardware noise generator. The BSAFE Hardware API (BHAPI) offers a way 
to interface with a hardware random number generator. One such implementation 
interfaces with Intel’s Random Number Generator; see the RSA BSAFE Crypto-C Intel 
Security Hardware User’s Manual for more information. Other seed-gathering methods 
involve tracking mouse movement or timing keystrokes, system time, or processor-
elapsed time. There may be other schemes you can devise that do not depend on 
someone entering a value from the keyboard.

The seed does not necessarily have to be random, but its value must be difficult to 

B_ALGORITHM_METHOD *RANDOM_CHOOSER[] = {
  &AM_SHA_RANDOM,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_RandomInit
     (randomAlgorithm, RANDOM_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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predict or reproduce. Once you have seeded the random algorithm, the algorithm can 
produce a sequence of random bytes; these bytes are “more random” and are 
generated more quickly than the seed. See “Pseudo-Random Numbers and Seed 
Generation” on page 92 for more information.

Before you get your seed, you need to set aside memory to hold it. In this example, 
you will allocate 256 bytes for your seed:

Now get the random seed. The exact method you use to get the seed will depend on 
your application and how the seed is generated. Here is a quick method for getting 
keyboard input. This method is not recommended for an actual application; it is 
supplied for illustrative purposes only:

Note: Another method for acquiring a seed would be to use a hardware random 
number generator, if available, such as the Intel Random Number Generator 
described in the Crypto-C Intel Security Hardware User’s Guide. However, even 
if you have access to random numbers from hardware, you will still want to 
have a fallback method of seed collection, in case the hardware random 
number generator is not available or fails for some reason.

Here you are using a 256-byte buffer. When the space was allocated, the contents of 
the buffer were simply whatever happened to be in that memory location at the time. 
In this case, when you enter a seed at the keyboard (the gets function), you overwrite 
the first few bytes in the buffer, one byte for each keystroke. Now, the first bytes in the 
buffer are the input from the keyboard; the rest of the 256 bytes are untouched.

Note: If you want to guarantee a repeatable seed (for example, if you are testing and 
want to be able to reproduce your data), set the buffer with T_memset. 

POINTER randomSeed = NULL_PTR;
unsigned int randomSeedLen;

randomSeedLen = 256;
randomSeed = T_malloc (randomSeedLen);
if ((status = (randomSeed == NULL_PTR)) != 0)
  break;

puts (“Enter a random seed”);
if ((status = 
    (NULL_PTR ==
     (unsigned char *)gets ((char *)randomSeed))) != 0)
  break;
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Now that you have a random seed, you can call B_RandomUpdate. The length 
argument tells Crypto-C how many bytes from the random seed buffer to use. See 
“Pseudo-Random Numbers and Seed Generation” on page 92 for a discussion on how 
many seed bytes to use. In this example, you will use all 256 bytes from the buffer, 
even though you probably entered fewer than 256 characters at the keyboard. Once 
again, it is reasonable to pass a NULL_PTR for the surrender context, because 
B_RandomUpdate is a fast function:

Call B_RandomUpdate as many times as you wish with different seeds each time to 
increase the unrepeatability of your random number generator. After each Update, 
you may want to overwrite and free your seed immediately.

Step 5: Generate
When generating random bytes, you call B_GenerateRandomBytes instead of a Final 
function. The function prototype in Chapter 4 of the Reference Manual calls for the 
following arguments: a random algorithm object, an output buffer, the number of 
bytes to generate, and a surrender context. You need to prepare a buffer before calling 
B_GenerateRandomBytes:

Now you can generate some random bytes. Generating 64 bytes is quick, so you are 
still safe in using a NULL_PTR for the surrender context.

if ((status = B_RandomUpdate
     (randomAlgorithm, randomSeed, randomSeedLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define NUMBER_OF_RANDOM_BYTES 64

unsigned char *randomByteBuffer = NULL_PTR;

randomByteBuffer = T_malloc (NUMBER_OF_RANDOM_BYTES);
if ((status = (randomByteBuffer == NULL_PTR)) != 0)
  break;

if ((status = B_GenerateRandomBytes
     (randomAlgorithm, randomByteBuffer, NUMBER_OF_RANDOM_BYTES,
     (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 6: Destroy
Remember to destroy all objects when done with them. You must also call T_free 
once for each call to T_malloc. For security reasons, overwrite the seed buffer with 
zeros as well:

Generating Independent Streams of Randomness
AI_X931Random is a SHA1-based pseudo-random number generator that allows you to 
generate multiple streams of randomness. This means that the Crypto-C 
implementation of the X9.31 random algorithm is somewhat different from the 
implementation of the other PRNGs in Crypto-C. This section describes the 
modifications you would have to make to the previous example to use 
AI_X931Random. These modifications take place at Step 2, Set and Step 3, Init.

The example in this section corresponds to the file x931rand.c.

Step 1: Create
This step is identical to the previous example.

Step 2: Set
Setting the X9.31 random algorithm object is the main difference working with the 
other random algorithms. AI_X931Random requires you to pass in a structure 
describing the number of independent streams of randomness and a seed which will 
be divided between the streams.

B_DestroyAlgorithmObject (&randomAlgorithm);
T_memset (randomSeed, 0, randomSeedLen);
T_free (randomSeed);
T_free (randomByteBuffer);

typedef struct 
{
     unsigned int numberOfStreams;        /* number of independent streams */
     ITEM         seed;                              /* additional seeding */
                                /* to be equally divided among the streams */
} A_X931_RANDOM_PARAMS;
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For this example, you will specify six streams of randomness, and provide a seed 
stored in an ITEM structure, randomSeed. The amount of seed data passed in the 
A_X931_RANDOM_PARAMS structure must greater than or equal to 20 * (number of 
streams) bytes and less than or equal to 64 * (number of streams) bytes. With six 
streams, this means the seed size must be between 120 bytes and 384 bytes. If the 
amount of seed data is outside this range, Crypto-C will return a BE_ALGORITHM_INFO 
error.

In addition, Crypto-C checks the seed value for the amount of entropy. For example, a 
constant seed (all zeros or all ones) will return an error.

Step 3: Init
Once the structure has been passed in, the Init is essentially the same as in the 
previous example. The only difference is that AM_X931_RANDOM appears in the chooser.

Steps 4, 5, 6
These steps are identical to the previous example.

    ITEM randomSeed;
    A_X931_RANDOM_PARAMS x931Params;

    x931Params.numberOfStreams = 6;
    x931Params.seed.data = randomSeed.data;
    x931Params.seed.len = randomSeed.len;

    if ((status = B_SetAlgorithmInfo
         (randomAlgorithm, AI_X931Random, (POINTER)&x931Params)) != 0)
       break;

    B_ALGORITHM_METHOD *RANDOM_CHOOSER[] = {
      &AM_X931_RANDOM,
      (B_ALGORITHM_METHOD *)NULL_PTR
    };

    if ((status = B_RandomInit
         (randomAlgorithm, RANDOM_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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Converting Data Between Binary and 
ASCII
If you have data in binary format, yet need it in ASCII, or vice versa, Crypto-C offers 
functions to encode and decode according to the RFC1113 standard.

The example in this section corresponds to the file encdec.c.

Encoding Binary Data To ASCII

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one ASCII encoding or decoding AI, AI_RFC1113Recode. The Reference 
Manual Chapter 2 entry for this AI states that the format of info supplied to 
B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
To initialize ASCII encoding, call B_EncodeInit. This function takes only one 
argument, the algorithm object:

B_ALGORITHM_OBJ asciiEncoder = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&asciiEncoder)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (asciiEncoder, AI_RFC1113Recode, NULL_PTR)) != 0)
  break;
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Step 4: Update
Enter the data to encode through B_EncodeUpdate. The application is responsible for 
allocating the space for the output of this routine. When encoding, for each three bytes 
of input there are four bytes of output. So when allocating space, multiply the input 
size by 4/3 and round up. If memory is not an issue, you can make the output buffer 
twice the size of the input length.

Given pre-existing binary input, your calls to the Update functions would be as 
follows:

if ((status = B_EncodeInit (asciiEncoder)) != 0)
  break;

/* We are assuming binaryData already points to allocated
     space and contains the data to encode into ASCII.
 */
unsigned char *binaryData;
unsigned int binaryDataLen;
unsigned char *asciiEncoding = NULL_PTR;
unsigned int asciiEncodingLenUpdate;
 
/* Allocate a buffer twice the size of the binary data */
asciiEncoding = T_malloc (binaryDataLen * 2);
if ((status = (asciiEncoding == NULL_PTR)) != 0)
  break;
 
if ((status = B_EncodeUpdate
     (asciiEncoder, asciiEncoding, &asciiEncodingLenUpdate,
      (binaryDataLen * 2), binaryData, binaryDataLen)) != 0)
  break;
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Step 5: Final
Finalize the encoding process, writing out any remaining bytes:

Step 6: Destroy
Remember to destroy all objects and free up any memory allocated when done:

Decoding ASCII-Encoded Data

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one ASCII-encoding or decoding AI, AI_RFC1113Recode. The Reference 
Manual Chapter 2 entry on this AI states that the format of info supplied to 
B_SetAlgorithmInfo is NULL_PTR:

unsigned int asciiEncodingLenFinal;
 
if ((status = B_EncodeFinal
     (asciiEncoder, asciiEncoding + asciiEncodingLenUpdate,
      &asciiEncodingLenFinal,
      (binaryDataLen * 2) - asciiEncodingLenUpdate)) != 0)
  break;

B_DestroyAlgorithmObject (&asciiEncoder);
T_free (asciiEncoding);

B_ALGORITHM_OBJ asciiDecoder = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&asciiDecoder)) != 0)
  break;
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Step 3: Init
To initialize decoding, call B_DecodeInit. This function takes only one argument, the 
algorithm object:

Step 4: Update
Enter the data to decode through B_DecodeUpdate. The application is responsible for 
allocating the space for the output of this routine. When decoding, there will be three 
bytes of output for every four bytes of input. If memory is a concern, you may want to 
determine the exact number of bytes you will need. If memory is not a concern, make 
the output size equal to the input length.

Given your pre-existing ASCII input, your call to the Update function would be as 
follows:

if ((status = B_SetAlgorithmInfo
     (asciiDecoder, AI_RFC1113Recode, NULL_PTR)) != 0)
  break;

if ((status = B_DecodeInit (asciiDecoder)) != 0)
  break;

/* We are assuming asciiEncoding already points to allocated
     space and contains the data to decode into binary. Also,
     asciiEncodingLenTotal is already set with the length of 
     the asciiEncoding.
 */
unsigned char *asciiEncoding;
unsigned int asciiEncodingLenTotal;
unsigned char *binaryDecoding = NULL_PTR;
unsigned int binaryDecodingLenUpdate;

/* Allocate a buffer the same size as the ascii data. */
binaryDecoding = T_malloc (asciiEncodingLenTotal);
if ((status = (binaryDecoding == NULL_PTR)) != 0)
  break;
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Step 5: Final
Finalize the decoding process, writing out any bytes remaining:

Step 6: Destroy
When you are done, remember to destroy all objects and free up any memory that has 
been allocated:

if ((status = B_DecodeUpdate
     (asciiDecoder, binaryDecoding, &binaryDecodingLenUpdate,
      asciiEncodingLenTotal, asciiEncoding,
      asciiEncodingLenTotal)) != 0)
  break;

unsigned int binaryDecodingLenFinal;
 
if ((status = B_DecodeFinal
     (asciiDecoder, binaryDecoding + binaryDecodingLenUpdate,
      &binaryDecodingLenFinal,
      asciiEncodingLenTotal - binaryDecodingLenUpdate)) != 0)
  break;

B_DestroyAlgorithmObject (&asciiDecoder);
T_free (binaryDecoding);
1 7 6 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.



Chapter 6

Symmetric-Key Operations
Recall that the RC4 algorithm of the “Introductory Example” on page 9 is called 
symmetric-key encryption because the encryption key used is the same the 
decryption key. Crypto-C offers two types of symmetric-key encryption operations: 
stream ciphers and block ciphers. The RC4 cipher, the only stream cipher in Crypto-C, 
was used in the “Introductory Example” on page 9. This chapter gives examples of 
the RC2, RC5, RC6 and DES block ciphers.

For an example of public-key encryption, see “Performing RSA Operations” on 
page 214.
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Block Ciphers

DES with CBC
The example in this section corresponds to the file descbc.c.

Step 1: Creating an Algorithm Object
Declare a variable to be a B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
There are a number of DES AIs from which to choose. See Table 4-6 on page 105 for a 
summary. For this example, choose AI_FeedbackCipher. AI_FeedbackCipher is a 
general-purpose AI that allows you to choose different block cipher methods, such as 
DES, the RC2 cipher, and the RC5 cipher. It also allows you to choose different 
feedback methods for your cipher. This makes updating your program to use a 
different block cipher or feedback method easy: you simply have to replace the 
arguments.

See “Block Ciphers” on page 37 of this manual for an overview of block cipher 
algorithms and feedback methods. We will implement DES in CBC mode using the 
padding scheme defined in PKCS V#5. 

The description of AI_FeedbackCipher in Chapter 2 of the Reference Manual says that 
the format of the info supplied to B_SetAlgorithmInfo is a pointer to a 
B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

  B_ALGORITHM_OBJ encryptionObject = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&encryptionObject)) != 0)
    break;
1 7 8 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.



Block Ciphers
encryptionMethodName is the block cipher that you will use; for this example, use “des”. 
The information in the Reference Manual indicates that you do not need to supply any 
parameters for the DES encryption algorithm, so set encryptionParams to NULL_PTR. 

Use Cipher Block Chaining (CBC) for your feedback method. For this method, the 
Reference Manual says that feedbackParams is an ITEM structure containing the 
initialization vector:

See “Block Ciphers” on page 37 for an explanation of initialization vectors. Use a 
random number generator to produce an IV. Remember, the IV is not secret and will 
not assist anyone in breaking the encryption, but you should use a different IV for 
different messages. The size of the IV is eight bytes, because DES encrypts blocks of 
eight bytes. The size of the IV is always related to the size of the block, not the key:

typedef struct {
  unsigned char *encryptionMethodName;    /* examples include “des”, “rc5” */
  POINTER        encryptionParams;                 /* e.g., RC5 parameters */
  unsigned char *feedbackMethodName;
  POINTER        feedbackParams;             /* Points at init vector ITEM */
                                      /* for all feedback modes except cfb */
  unsigned char *paddingMethodName;
  POINTER        paddingParams;        /* Ignored for now, but may be used */
                                                /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;

  typedef struct {
    unsigned char *data;
    unsigned int   len;
  } ITEM;

 unsigned char *ivBytes[BLOCK_SIZE];
 B_BLK_CIPHER_W_FEEDBACK_PARAMS fbParams;

 ITEM ivItem;
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You must also indicate that you want to use the standard CBC padding which is 
defined in PKCS#5; do this by setting fbParams.paddingMethodName to "pad". You do 
not need to pass in any padding parameters for this padding scheme. Again, “Block 
Ciphers” on page 37 explains padding.

Now set up the B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

Step 3: Init
You need a key before you can initialize the object for encryption. You will need to 
first create the key object, and then set the key object.

Step 3a: Creating the Key Object

  /* Complete steps 1 - 4 of Generating Random Numbers, then */
  /* call B_GenerateRandomBytes.                             */

  if ((status = B_GenerateRandomBytes 
       (randomAlgorithm, ivBytes, 8,
        (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  ivItem.data = ivBytes;
  ivItem.len = 8;

  fbParams.encryptionMethodName = (unsigned char *)"des";
  fbParams.encryptionParams = NULL_PTR;
  fbParams.feedbackMethodName = (unsigned char *)"cbc";
  fbParams.feedbackParams = (POINTER)&ivItem;
  fbParams.paddingMethodName = (unsigned char *)"pad";
  fbParams.paddingParams = NULL_PTR;

  if ((status = B_SetAlgorithmInfo
       (encryptionObject, AI_FeedbackCipher,(POINTER)&fbParams)) != 0)
    break;

B_KEY_OBJ desKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&desKey)) != 0)
  break;
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Step 3b: Setting the Key Object
You want to use a KI compatible with DES encryption, so return to the entry for 
AI_FeedbackCipher in Chapter 2 of the Reference Manual:

See “Summary of KIs” on page 113 of this manual for a discussion of the KIs. For this 
example, you will use KI_DES8Strong. Its entry in the Reference Manual states:

Use a random number generator to produce eight bytes for the key:

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
Depends on cipher type, as follows:

Cipher KIs

DES KI_Item, KI_DES8, KI_DES8Strong, KI_8Byte

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array which holds the 8-byte DES key. 
The key is DES parity-adjusted when it is copied to the key object.

    unsigned char keyData[8];

   /* Complete steps 1 - 4 of Generating Random Numbers, */
   /* then call B_GenerateRandomBytes. */
   if ((status = B_GenerateRandomBytes 
         (randomAlgorithm, keyData, 8,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

if ((status = B_SetKeyInfo
     (desKey, KI_DES8Strong, (POINTER)keyData)) != 0)
  break;
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Now that you have a key, you need an algorithm chooser and a surrender context. 
This is a speedy function, so you can use a properly cast NULL_PTR for the surrender 
context; but you do want to build a chooser:

Step 4: Update
Enter the data to encrypt with B_EncryptUpdate. The Reference Manual Chapter 2 entry 
for AI_FeedbackCipher states that you may pass (B_ALGORITHM_OBJ)NULL_PTR for all 
randomAlgorithm arguments. Once you have your input, call B_EncryptUpdate.

Remember that DES is a block cipher and requires input that is a multiple of eight 
bytes. Because you set fbParams.paddingMethodName to "pad" (see page 180), Crypto-
C will pad to make the input a multiple of eight bytes. That means that the output 
buffer should be at least eight bytes longer than the input length. DES is a fast 
algorithm, so for small amounts of data it is reasonable to pass a properly cast 
NULL_PTR for the surrender context. If you want to pass a surrender context, refer to 
the following code sample:

B_ALGORITHM_METHOD *DES_CBC_CHOOSER[] = {
  &AM_CBC_ENCRYPT,
  &AM_DES_ENCRYPT,
  &AM_SHA_RANDOM,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
     (encryptionObject, desKey, DES_CBC_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

static char *dataToEncrypt = "Encrypt this sentence.";
unsigned char *encryptedData = NULL_PTR;
unsigned int outputBufferSize;
unsigned int outputLenUpdate, outputLenFinal;
unsigned int encryptedDataLen;

encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
  break;
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Step 5: Final

Step 6: Destroy
Remember to destroy all objects that you created and free up any memory that you 
allocated:

Note: Using T_free means you can no longer access the data at that address. Do not 
free a buffer until you no longer need the data it contains. If you will need the 
data later, you might want to save it to a file first.

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use 
the same AI, IV, and key data. Use the proper decryption AM and call B_DecryptInit, 
B_DecryptUpdate, and B_DecryptFinal.

if ((status = B_EncryptUpdate
     (encryptionObject, encryptedData, &outputLenUpdate,
      encryptedDataLen, (unsigned char *)dataToEncrypt,
      dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

if ((status = B_EncryptFinal
     (encryptionObject, encryptedData + outputLenUpdate,
      &outputLenFinal, encryptedDataLen - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyKeyObject (&desKey);
B_DestroyAlgorithmObject (&encryptionObject);
B_DestroyAlgorithmObject (&randomAlgorithm);
T_free (encryptedData);
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The RC2 Cipher
The RC2 cipher is a variable-key-size block cipher. Whereas a DES key requires eight 
bytes — no more, no less — an RC2 key can be anywhere between one and 128 bytes. 
The larger the key, the greater the security. The RC2 cipher is called a block cipher 
because it encrypts 8-byte blocks. Recall that DES also is a block cipher that encrypts 
8-byte blocks. That means the RC2 cipher can serve as a drop-in replacement for DES. 
The steps for using AI_FeedbackCipher with the RC2 cipher are almost identical to 
those for DES.

The example in this section corresponds to the file rc2.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are a number of RC2 AIs from which to choose. Table 4-6 on page 105 gives a 
summary of AIs. Choose AI_FeedbackCipher; as in the previous example, the format 
of the info supplied to B_SetAlgorithmInfo is a pointer to a 
B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

B_ALGORITHM_OBJ rc2Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc2Encrypter)) != 0)
  break;

typedef struct {
  unsigned char *encryptionMethodName;    /* examples include “des”, “rc5” */
  POINTER        encryptionParams;                 /* e.g., RC5 parameters */
  unsigned char *feedbackMethodName;
  POINTER        feedbackParams;             /* Points at init vector ITEM */
                                      /* for all feedback modes except cfb */
  unsigned char *paddingMethodName;
  POINTER        paddingParams;        /* Ignored for now, but may be used */
                                                /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;
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Once again, encryptionMethodName is the block cipher that you will use; in this 
example, use “rc2”. All the other parameters are the same as for DES, except 
encryptionParams. For the RC2 cipher, the Reference Manual indicates that you need to 
supply an A_RC2_PARAMS structure for the RC2 encryption algorithm:

There is a distinction between key size and effective key bits. The RC2 algorithm 
begins by building a 128-byte table based on the key. The total number of possible 
tables is limited by the number of effective key bits. Using 80 effective key bits is 
generally sufficient for most applications.

Use Cipher Block Chaining (CBC) for your feedback method. Once again, for this 
method, you need an initialization vector; use a random number generator to produce 
one. Remember, the IV is not secret and will not assist anyone in breaking the 
encryption. Its size will be eight bytes, because the RC2 cipher encrypts blocks of eight 
bytes. The Reference Manual says that feedbackParams is an ITEM structure containing 
the initialization vector:

Now you can set your algorithm object as follows:

typedef struct {
  unsigned int effectiveKeyBits;             /* effective key size in bits */
} A_RC2_PARAMS;

  typedef struct {
    unsigned char *data;
    unsigned int   len;
  } ITEM;

ITEM ivItem;
unsigned char initVector[BLOCK_SIZE];
A_RC2_PARAMS rc2Params;
B_BLK_CIPHER_W_FEEDBACK_PARAMS fbParams;

/* Complete steps 1 - 4 of Generating Random Numbers, 
   then call B_GenerateRandomBytes. */
if ((status = B_GenerateRandomBytes
     (randomAlgorithm, (unsigned char *)initVector, 8,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 3: Init
You need a key before you can initialize the algorithm object for encryption.

Step 3a: Creating a Key Object

Step 3b: Setting the Key Object
You are using 80 effective key bits. That does not mean you need exactly ten bytes of 
key data, although for security reasons, it is important to use at least ten bytes. You 
can generate 24 bytes (192 bits) of key data and the algorithm will still work at 80 
effective bits. Thus, in the future, if you want to increase the effective key bits, you do 
not have to change the code that generates key data, only the effective key bit 
parameter. 

Key generation is almost the same as with DES, but you will use a different KI. In the 
Reference Manual Chapter 2 entry for AI_FeedbackCipher, you see you have a choice of 
KIs. Because your key is going to be 24 bytes, you cannot use KI_8Byte, so choose 
KI_Item. Looking up KI_Item in Chapter 3 of the Reference Manual, you find that the 
info you supply to B_SetKeyInfo is a pointer to an ITEM struct, which is:

rc2Params.effectiveKeyBits = 80;
ivItem.data = initVector;
ivItem.len = BLOCK_SIZE;

fbParams.encryptionMethodName = (unsigned char *)"rc2";
fbParams.encryptionParams = NULL_PTR;
fbParams.feedbackMethodName = (unsigned char *)"cbc";
fbParams.feedbackParams = (POINTER)&ivItem;
fbParams.paddingMethodName = (unsigned char *)"pad";
fbParams.paddingParams = NULL_PTR;

if ((status = B_SetAlgorithmInfo
     (rc2Encrypter, AI_FeedbackCipher, (POINTER)&fbParams)) != 0)
  break;

B_KEY_OBJ rc2Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc2Key)) != 0)
  break
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Use a random number generator to come up with 24 bytes.

It is a good idea to zeroize any sensitive data after leaving the do-while. In fact, you 
may want to zeroize the memory and free it up immediately after setting the key. To 
do so, first free the memory using T_free, then reset rc2KeyItem.data to NULL_PTR, 
duplicating the following sequence after the do-while. If there is an error inside the 
do-while, you will still zeroize and free sensitive data; if there is no error, you have 
reset to NULL_PTR, and the code after the do-while will not create havoc.

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;

ITEM rc2KeyItem;

rc2KeyItem.len = 24;
rc2KeyItem.data = T_malloc (rc2KeyItem.len);
if ((status = (rc2KeyItem.data == NULL_PTR)) != 0)
  break;

/* Complete steps 1 - 4 of Generating Random Numbers, then
     call B_GenerateRandomBytes. */
if ((status = B_GenerateRandomBytes
     (randomAlgorithm, rc2KeyItem.data, rc2KeyItem.len,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

if ((status = B_SetKeyInfo
     (rc2Key, KI_Item, (POINTER)&rc2KeyItem)) != 0)
  break;

if (rc2KeyItem.data != NULL_PTR) {
  T_memset (rc2KeyItem.data, 0, rc2KeyItem.len);
  T_free (rc2KeyItem.data);
  rc2KeyItem.data = NULL_PTR;
  rc2KeyItem.len = 0;
}
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You need an algorithm chooser and a surrender context. This is a speedy function, so 
it is reasonable to use a properly cast NULL_PTR for the surrender context. However, 
you do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Reference Manual 
Chapter 2 entry on AI_FeedbackCipher, you see that you can pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Once you have your 
input, call B_EncryptUpdate. 

Remember that the RC2 cipher is a block cipher and requires that the input be a 
multiple of eight bytes. Because you set fbParams.paddingMethodName to "pad" (see 
page 184), Crypto-C will pad to make the input a multiple of eight bytes. That means 
that the output buffer should be at least eight bytes larger than the input length. 

The RC2 cipher is a fast algorithm, so for small amounts of data it is reasonable to pass 
a properly cast NULL_PTR for the surrender context. If you want to pass a surrender 
context, you can:

B_ALGORITHM_METHOD *RC2_CHOOSER[] = {
  &AM_CBC_ENCRYPT,
  &AM_RC2_ENCRYPT,
  &AM_SHA_RANDOM,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
     (rc2Encrypter, rc2Key, RC2_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

/* Assume dataToEncrypt points to already set data and
     dataToEncryptLen has been set to the number of bytes
     in dataToEncrypt. */

unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;
encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
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Step 5: Final

Step 6: Destroy
Remember to destroy all objects created and free up any memory allocated:

if ((status = (encryptedData == NULL_PTR)) != 0)
  break;

if ((status = B_EncryptUpdate
     (rc2Encrypter, encryptedData, &outputLenUpdate,
      encryptedDataLen, dataToEncrypt, dataToEncryptLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

unsigned int outputLenFinal;
if ((status = B_EncryptFinal
     (rc2Encrypter, encryptedData + outputLenUpdate,
      &outputLenFinal, encryptedDataLen - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyKeyObject (&rc2Key);
B_DestroyAlgorithmObject (&rc2Encrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);

if (encryptedData != NULL_PTR) {
  T_memset (encryptedData, 0, encryptedDataLen);
  T_free (encryptedData);
  encryptedData = NULL_PTR;
}

if (rc2KeyItem.data != NULL_PTR) {
  T_memset (rc2KeyItem.data, 0, rc2KeyItem.len);
  T_free (rc2KeyItem.data);
  rc2KeyItem.data = NULL_PTR;
  rc2KeyItem.len = 0;
}
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Decrypting
As with the “Introductory Example” on page 9, decrypting is similar to encrypting. 
Use the same AI, IV, and key. Use the proper decrypting AM and call B_DecryptInit, 
B_DecryptUpdate, and B_DecryptFinal.

The RC5 Cipher
The RC5 cipher is more properly known as RC5 w/r/b, where w stands for word-size, 
r stands for rounds, and b stands for key size in bytes.

The word size parameter is designed to take advantage of variable hardware word 
sizes. A hardware implementation can choose a 16-, 32-, or 64-bit word size, 
depending on how many bits make up a register, or word. Software implementations 
of the RC5 cipher can emulate any word size, regardless of the size of the machine’s 
register size. Crypto-C implements word sizes of 32 or 64 bits; the 64-bit 
implementation has not been optimized.

The next feature of the RC5 cipher is the rounds parameter. Increasing the number of 
rounds increases security, but slows down the operation. This allows the application 
developer to establish a desired trade-off between security and speed. The RC5 cipher 
allows round counts from 0 to 255 rounds. RSA Security recommends using at least 16 
rounds for the 32-bit word implementation. Analysis indicates that, in theory, the RC5 
cipher may be susceptible to various attacks for values less than 16.

The last feature is the variable key size. Whereas a DES key requires eight bytes, an 
RC5 key can be anywhere between zero and 255 bytes. The larger the key, the greater 
the security. Key size has no appreciable effect on speed.

The RC5 cipher is a block cipher; the size of the blocks is twice the word size. For RC5 
32/r/b, the block size is 64 bits or 8 bytes; for RC5 64/r/b, the block size is 128 bits or 16 
bytes.

The example in this section corresponds to the file rc5.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ and as defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject.
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Step 2: Setting The Algorithm Object
There are a number of RC5 AIs from which to choose. Table 4-6 on page 105 describes 
the AIs. For this example, you will use a different cipher from AI_FeedbackCipher. 
Choose AI_RC5_CBCPad. The Reference Manual Chapter 2 entry for this AI indicates that 
the format of info supplied to B_SetAlgorithmInfo is:

As a provision for future revisions of the RC5 algorithm, Crypto-C includes a version 
number. So that the version number can be one byte, it is two hex digits. Version 1.0 is 
therefore 0x10. Version 3.8, if there ever is one, would be 0x38. The hex number 0x10 
is the decimal number 16. Both are valid, but it is probably better to use 0x10 because 
it is easier to see as a version number.

For this example, you will use 12 rounds with a word size of 32.

Because you have chosen an AI that uses Cipher Block Chaining (CBC), you need an 
initialization vector. Use a random number generator to produce an IV. Because the 
word size is 32, the block size is 64 bits or eight bytes, and your IV must be eight bytes 
long. Remember, the IV is not secret and will not assist anyone in breaking the 
encryption. Its size will be eight bytes, because the RC5 cipher encrypts blocks of eight 
bytes. Remember, the IV is related to the block, not the key:

B_ALGORITHM_OBJ rc5Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc5Encrypter)) != 0)
  break;

typedef struct {
  unsigned int  version;                     /* currently 1.0 defined 0x10 */
  unsigned int  rounds;                      /* number of rounds (0 - 255) */
  unsigned int  wordSizeInBits;              /* AI_RC5_CBCPad requires 32 */
  unsigned char *iv;                              /* initialization vector */
} A_RC5_CBC_PARAMS;
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Step 3: Init
You need a key before you can initialize the algorithm object for encryption. You will 
first create a key object, then set the key object.

Step 3a: Creating A Key Object

Step 3b: Setting The Key Object
For this example, you will use 10 key bytes (80 bits). In the Reference Manual Chapter 2 
entry for AI_RC5_CBCPad, you see you must use KI_Item. Looking up KI_Item in 
Chapter 3 of the Reference Manual, you find that the info you supply to B_SetKeyInfo 
is a pointer to an ITEM struct, defined in algobal.h:

unsigned char initVector[8];
A_RC5_CBC_PARAMS rc5Params;
 
/* Complete steps 1 - 4 of Generating Random Numbers, 
   then call B_GenerateRandomBytes. */

if ((status = B_GenerateRandomBytes
     (randomAlgorithm, (unsigned char *)initVector, 8,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

rc5Params.version = 0x10;
rc5Params.rounds = 12;
rc5Params.wordSizeInBits = 32;
rc5Params.iv = (unsigned char *)initVector;

if ((status = B_SetAlgorithmInfo
     (rc5Encrypter, AI_RC5_CBCPad, (POINTER)&rc5Params)) != 0)
  break;

B_KEY_OBJ rc5Key = (B_KEY_OBJ)NULL_PTR;
 
if ((status = B_CreateKeyObject (&rc5Key)) != 0)
  break;
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Use a random number generator to create 10 bytes:

It is a good idea to zeroize any sensitive data after leaving the do-while. In fact, you 
may want to zeroize the memory and free it up immediately after you set the key. To 
do so, first free the memory using T_free, then reset rc5KeyItem.data to NULL_PTR 
and duplicate the following sequence after the do-while. If there is an error inside the 
do-while before you zeroize and free, you will still perform this important task; if 
there is no error, by resetting to NULL_PTR, you ensure that the code after the do-while 
will not create havoc:

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;

ITEM rc5KeyItem;
 
rc5KeyItem.data = NULL_PTR;
rc5KeyItem.len = 10;
rc5KeyItem.data = T_malloc (rc5KeyItem.len);
if ((status = (rc5KeyItem.data == NULL_PTR)) != 0)
  break;

if ((status = B_GenerateRandomBytes
     (randomAlgorithm, rc5KeyItem.data, rc5KeyItem.len,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
 
if ((status = B_SetKeyInfo
     (rc5Key, KI_Item, (POINTER)&rc5KeyItem)) != 0)
  break;

if (rc5KeyItem.data != NULL_PTR) {
  T_memset (rc5KeyItem.data, 0, rc5KeyItem.len);
  T_free (rc5KeyItem.data);
  rc5KeyItem.data = NULL_PTR;
  rc5KeyItem.len = 0;
};
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Now that you have a key, you need an algorithm chooser and a surrender context. 
This is a speedy function, so you can use a properly cast NULL_PTR for the surrender 
context; but you do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Reference Manual 
Chapter 2 entry on AI_RC5_CBCPad, you learn that you may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have 
some input, call B_EncryptUpdate. 

Remember that the RC5 cipher is a block cipher and requires input that is a multiple 
of eight bytes. Because you are using AI_RC5_CBCPad, Crypto-C will pad to make the 
input a multiple of eight bytes. That means that the output buffer should be at least 
eight bytes larger than the input length.

The RC5 cipher is a fast algorithm, so for small amounts of data it is reasonable to pass 
a properly cast NULL_PTR for the surrender context. If you want to pass a surrender 
context, you can:

B_ALGORITHM_METHOD *RC5_CHOOSER[] = {
  &AM_RC5_CBC_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_EncryptInit
     (rc5Encrypter, rc5Key, RC5_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

/* Assume dataToEncrypt points to already set data and
     dataToEncryptLen has been set to the number of bytes
     in dataToEncrypt. */

unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;
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Step 5: Final

Step 6: Destroy
Remember to destroy all objects that you created and free up any memory that you 
allocated.

encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
  break;
 
if ((status = B_EncryptUpdate
     (rc5Encrypter, encryptedData, &outputLenUpdate,
      encryptedDataLen, dataToEncrypt, dataToEncryptLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
     (rc5Encrypter, encryptedData + outputLenUpdate,
      &outputLenFinal, dataToEncryptLen + 8 - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyKeyObject (&rc5Key);
B_DestroyAlgorithmObject (&rc5Encrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);
if (rc5KeyItem.data != NULL_PTR) {
  T_memset (rc5KeyItem.data, 0, rc5KeyItem.len);
  T_free (rc5KeyItem.data);
  rc5KeyItem.data = NULL_PTR;
  rc5KeyItem.len = 0;
}
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Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use 
the same AI, IV, and key data. Use the proper decrypting AM and call B_DecryptInit, 
B_DecryptUpdate, and B_DecryptFinal.

The RC6 Cipher
The RC6 cipher was developed by Ronald Rivest and Matthew Robshaw, Ray Sidney, 
and Lisa Yin of RSA Laboratories West as a candidate for the Advanced Encryption 
Standard (AES). RC6 allows for a variable number of rounds; however, the 
implementation in this version of Crypto-C fixes the number of rounds at 20. Later 
versions of Crypto-C may extend this value.

The example in this section corresponds to the file rc6.c, which uses AI_RC6_CBCPad. 
AI_FeedbackCipher also supports the RC6 symmetric block cipher. 
AI_FeedbackCipher is useful if your application has a need to support block cipher 
modes other than CBC. See the rc6fb.c sample program for more information. 

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ and as defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject.

Step 2:  Set
For this example, you will perform an RC6 operation in CBC mode using PKCS V#5 
padding. To do this, use AI_RC6_CBCPad in the call to B_SetAlgorithmInfo.  Notice 

if (encryptedData != NULL_PTR) {
  T_memset (encryptedData, 0, encryptedDataLen);
  T_free (encryptedData);
  encryptedData = NULL_PTR;
}

    B_ALGORITHM_OBJ rc6Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;
    
    if ((status = B_CreateAlgorithmObject (&rc6Encrypter)) != 0)
      break;
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that, as specified in the Reference Manual entry for AI_RC6_CBCPad, this AI requires an 
initialized A_RC6_CBC_PARAMS structure, which is defined as follows:

As mentioned previously, the number of rounds must be 20.

CBC mode requires an initialization vector, so assume that you have the following 
buffer containing arbitrary bytes to use as the IV. Note that this information must be 
made available to the entity which decrypts the message. The IV is not secret 
information and may be sent in the clear with the ciphertext.

Now fill in an A_RC6_CBC_PARAMS structure and call B_SetAlgorithmInfo.  As noted 
previously, the only supported value for rc6Params.rounds is 20.

In this example, you can use AI_RC6_CBCPad for PKCS V#5 padding for simplicity. 
This AI automatically pads the message to be a multiple of the block size, so that you 
don't have to worry about the length of the data to encrypt.  

Note: There is another AI, AI_RC6_CBC, which can be used to perform raw RC6 
encryption. However, as is the case when doing raw encryption with any 
block cipher, the length of the data to encrypt must be a multiple of the block 
size.  In the case of AI_RC6_CBC, the length of the data to encrypt must be a 
multiple of 16 bytes.  These AIs for performing raw encryption are useful if 
you want to use your own padding scheme, instead of PKCS V#5.

  typedef struct {
    unsigned int rounds;
    unsigned char *iv;
  } A_RC6_CBC_PARAMS;

    #define BLOCK_SIZE 16   
    unsigned char initVector[BLOCK_SIZE];

    A_RC6_CBC_PARAMS rc6Params;
   
    rc6Params.rounds = 20;
    rc6Params.iv = (unsigned char *)initVector;
    
    if ((status = B_SetAlgorithmInfo
                    (rc6Encrypter, AI_RC6_CBCPad, (POINTER)&rc6Params)) != 0)
      break;
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Step 3: Init
The next step is to make a call to B_EncryptInit.  To do this, you need a key object. 
You will first create a key object, and then set the key data.

Step 3a: Creating a Key Object

Step 3b: Setting the Key Data
Now you need to set the key size and pass the bytes of key data.  According to the 
Reference Manual entry for AI_RC6_CBCPad, the compatible KI type is KI_Item.  A key 
anywhere from 1-255 bytes is supported. Here, you can use a random 24-byte key. For 
most applications, a 128-bit key should be sufficient.]

At this point, you can write the key data to rc6KeyItem.data.  In the sample code, we 
fill rc6KeyItem.data with random bytes:

Once you have passed in the key data, dispose of rc6KeyItem, because it is no longer 
necessary. Crypto-C has already initialized the key object with the necessary data.

      B_KEY_OBJ rc6Key = (B_KEY_OBJ)NULL_PTR;   

      if ((status = B_CreateKeyObject (&rc6Key)) != 0)
        break;

     #define KEY_SIZE 24    /* number of bytes in the key */
       
     ITEM rc6KeyItem = {NULL, 0};

    /*  Step 3b:  Set the key object with a random RC6 key  */
    rc6KeyItem.len = KEY_SIZE;
    rc6KeyItem.data = T_malloc (rc6KeyItem.len);
    if ((status = (rc6KeyItem.data == NULL_PTR)) != 0)
      break;

    if ((status = B_GenerateRandomBytes
                    (randomAlgorithm, rc6KeyItem.data, rc6KeyItem.len,
                     (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    if ((status = B_SetKeyInfo (rc6Key, KI_Item, (POINTER)&rc6KeyItem)) != 0)
      break;
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To call B_EncryptInit, we also need an algorithm chooser.  The Reference Manual 
entry for AI_RC6_CBCPad gives us the AMs necessary.  Because you will use this 
chooser for decryption also, you should also include those AMs:

Once you have passed in the key data and created the chooser, you are ready to make  
the call to B_EncryptInit:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Reference Manual 
Chapter 2 entry on AI_RC6_CBCPad you learn that you may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have 
some input, call B_EncryptUpdate. 

Remember that the RC6 cipher is a block cipher. The current version requires input 
that is a multiple of sixteen bytes. Because you are using AI_RC5_CBCPad, Crypto-C 
will pad to make the input a multiple of sixteen bytes. That means that the output 
buffer should be at least sixteen bytes larger than the input length.

The RC6 cipher is a fast algorithm, so it is reasonable to pass a properly cast NULL_PTR 

    if (rc6KeyItem.data != NULL_PTR) {
      T_memset (rc6KeyItem.data, 0, rc6KeyItem.len);
      T_free (rc6KeyItem.data);
      rc6KeyItem.data = NULL_PTR;
      rc6KeyItem.len = 0;
    } 

    B_ALGORITHM_METHOD *RC6_CHOOSER[] = {
      &AM_RC6_CBC_ENCRYPT,
      &AM_RC6_CBC_DECRYPT,
      (B_ALGORITHM_METHOD *)NULL_PTR
    };

    if ((status = B_EncryptInit (rc6Encrypter, rc6Key, RC6_CHOOSER,
                                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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for the surrender context:

Step 5: Final

Step 6: Destroy
Remember to destroy any objects that you created and to free up any memory that has 

    unsigned char *dataToEncrypt = (unsigned char *)"Encrypt this sentence.";
    unsigned int dataToEncryptLen;

    unsigned char *encryptedData = NULL_PTR;
    unsigned int outputLenUpdate, outputLenFinal, outputLenTotal;
    unsigned int encryptedDataLen;
   
    dataToEncryptLen = T_strlen ((char *)dataToEncrypt) + 1;
    RSA_PrintBuf ("Data To Encrypt", dataToEncrypt, dataToEncryptLen);

    encryptedDataLen = dataToEncryptLen + BLOCK_SIZE;
    encryptedData = T_malloc (encryptedDataLen);
    if ((status = (encryptedData == NULL_PTR)) != 0) {
      status = RSA_DEMO_E_ALLOC;
      break;
    }

    if ((status = B_EncryptUpdate
                    (rc6Encrypter, encryptedData, &outputLenUpdate,
                     encryptedDataLen, dataToEncrypt, dataToEncryptLen,
                     (B_ALGORITHM_OBJ)NULL_PTR,
                     (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    if ((status = B_EncryptFinal
                    (rc6Encrypter, encryptedData + outputLenUpdate,
                     &outputLenFinal, encryptedDataLen - outputLenUpdate,
                     (B_ALGORITHM_OBJ)NULL_PTR,
                     (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    outputLenTotal = outputLenUpdate + outputLenFinal;
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been allocated:

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use 
the same AI, IV, and key data. Use the proper decrypting AM and call B_DecryptInit, 
B_DecryptUpdate, and B_DecryptFinal.

The AES Cipher
The AES Cipher, Rijndael, is the replacement for the Data Encryption Standard (DES). 
The example in this section corresponds to the file aes.c.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ and as defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject.

Step 2:  Set
For this example, you will perform an AES operation in CBC mode using PKCS V#5 
padding. To do this, use AI_AES_CBCPad in the call to B_SetAlgorithmInfo.  Notice 
that, as specified in the Reference Manual entry for AI_AES_CBCPad, this AI requires 
an initialization vector. This is due to using CBC. This AI requires an unsigned char 
*iv as its parameters.

    B_DestroyAlgorithmObject (&rc6Encrypter);

    if (rc6KeyItem.data != NULL_PTR) {
      T_memset (rc6KeyItem.data, 0, rc6KeyItem.len);
      T_free (rc6KeyItem.data);
      rc6KeyItem.data = NULL_PTR;
      rc6KeyItem.len = 0;
    }

    /*  Create an algorithm object. */
    if ((status = B_CreateAlgorithmObject (&aesEncrypter)) != 0)
      break;
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CBC mode requires an initialization vector, so assume that you have the following 
buffer containing arbitrary bytes to use as the IV. Note that this information must be 
made available to the entity which decrypts the message. The IV is not secret 
information and may be sent in the clear with the ciphertext.

Now fill in an A_AES_CBC_PARAMS structure and call B_SetAlgorithmInfo.  As noted 
previously, the only supported value for rc6Params.rounds is 20.

In this example, you can use AI_AES_CBCPad for PKCS V#5 padding for simplicity. 
This AI automatically pads the message to be a multiple of the block size, so that you 
don't have to worry about the length of the data to encrypt.  

Note: There is another AI, AI_AES_CBC, which can be used to perform raw AES 
encryption. However, as is the case when doing raw encryption with any 
block cipher, the length of the data to encrypt must be a multiple of the block 
size.  In the case of AI_AES_CBC, the length of the data to encrypt must be a 
multiple of 16 bytes.  These AIs for performing raw encryption are useful if 
you want to use your own padding scheme, instead of PKCS V#5.

Step 3: Init
The next step is to make a call to B_EncryptInit.  To do this, you need a key object. 
You will first create a key object, and then set the key data.

unsigned char *aesParams

    #define BLOCK_SIZE 16   
    unsigned char initVector[BLOCK_SIZE];

    aesParams = (unsigned char *)initVector;
    
    if ((status = B_SetAlgorithmInfo
                    (AESEncrypter, AI_AES_CBCPad, (POINTER)&aesParams)) != 0)
      break;
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Step 3a: Creating a Key Object

Step 3b: Setting the Key Data
Now you need to set the key size and pass the bytes of key data.  According to the 
Reference Manual entry for AI_AES_CBCPad, the compatible KI type is KI_Item.  A key 
anywhere from 1-255 bytes is supported. Here, you can use a random 24-byte key. For 
most applications, a 128-bit key should be sufficient.]

At this point, you can write the key data to aesKeyItem.data.  In the sample code, we 
fill aesKeyItem.data with random bytes:

Once you have passed in the key data, dispose of aesKeyItem, because it is no longer 
necessary. Crypto-C has already initialized the key object with the necessary data.

    /*  Create a key object  */
    if ((status = B_CreateKeyObject (&aesKey)) != 0)
      break;

     #define KEY_SIZE 24    /* number of bytes in the key */
       
     ITEM aesKeyItem = {NULL, 0};

    /*  Step 3b:  Set the key object with a random AES key  */
    aesKeyItem.len = KEY_SIZE;
    aesKeyItem.data = T_malloc (rc6KeyItem.len);
    if ((status = (aesKeyItem.data == NULL_PTR)) != 0)
      break;

    if ((status = B_GenerateRandomBytes
                    (randomAlgorithm, aesKeyItem.data, aesKeyItem.len,
                     (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    if ((status = B_SetKeyInfo (aesKey, KI_Item, (POINTER)&aesKeyItem)) != 0)
      break;
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To call B_EncryptInit, we also need an algorithm chooser.  The Reference Manual 
entry for AI_AES_CBCPad gives us the AMs necessary.  Because you will use this 
chooser for decryption also, you should also include those AMs:

Once you have passed in the key data and created the chooser, you are ready to make  
the call to B_EncryptInit:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Reference Manual 
Chapter 2 entry on AI_AES_CBCPad you learn that you may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have 
some input, call B_EncryptUpdate. 

Remember that the AES cipher is a block cipher. The current version requires input 
that is a multiple of sixteen bytes. Because you are using AI_AES_CBCPad, Crypto-C 
will pad to make the input a multiple of sixteen bytes. That means that the output 
buffer should be at least sixteen bytes larger than the input length.

The AES cipher is a fast algorithm, so it is reasonable to pass a properly cast NULL_PTR 
for the surrender context:

    if (aesKeyItem.data != NULL_PTR) {
      T_memset (aesKeyItem.data, 0, aesKeyItem.len);
      T_free (aesKeyItem.data);
      aesKeyItem.data = NULL_PTR;
      aesKeyItem.len = 0;
    } 

    B_ALGORITHM_METHOD *AES_CHOOSER[] = {
      &AM_AES_CBC_ENCRYPT,
      &AM_AES_CBC_DECRYPT,
      (B_ALGORITHM_METHOD *)NULL_PTR
    };

    if ((status = B_EncryptInit (aesEncrypter, aesKey, AES_CHOOSER,
                                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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Step 5: Final

Step 6: Destroy
Remember to destroy any objects that you created and to free up any memory that has 
been allocated:

    unsigned char *dataToEncrypt = (unsigned char *)"Encrypt this sentence.";
    unsigned int dataToEncryptLen;

    unsigned char *encryptedData = NULL_PTR;
    unsigned int outputLenUpdate, outputLenFinal, outputLenTotal;
    unsigned int encryptedDataLen;
   
    dataToEncryptLen = T_strlen ((char *)dataToEncrypt) + 1;
    RSA_PrintBuf ("Data To Encrypt", dataToEncrypt, dataToEncryptLen);

    encryptedDataLen = dataToEncryptLen + BLOCK_SIZE;
    encryptedData = T_malloc (encryptedDataLen);
    if ((status = (encryptedData == NULL_PTR)) != 0) {
      status = RSA_DEMO_E_ALLOC;
      break;
    }

    if ((status = B_EncryptUpdate
                    (aesEncrypter, encryptedData, &outputLenUpdate,
                     encryptedDataLen, dataToEncrypt, dataToEncryptLen,
                     (B_ALGORITHM_OBJ)NULL_PTR,
                     (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    if ((status = B_EncryptFinal
                    (aesEncrypter, encryptedData + outputLenUpdate,
                     &outputLenFinal, encryptedDataLen - outputLenUpdate,
                     (B_ALGORITHM_OBJ)NULL_PTR,
                     (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    outputLenTotal = outputLenUpdate + outputLenFinal;
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Password-Based Encryption
In previous encryption methods, you used a random number generator to produce a 
key. In password-based encryption (PBE), you will use a message digest algorithm to 
derive a key from a password. See “Message Digests” on page 47 for information on 
that topic.

For encryption, enter a password, append a salt to the password (see Step 2), and 
digest that quantity. Extract the required number of bytes from the digest and you 
have a key. Use that key to encrypt data using DES or the RC2 algorithm.

For decryption, enter a password, append the same salt, and then digest. Extract the 
required number of bytes from the digest and use them as a key to decrypt. If you 
entered the same password that you used to encrypt, you will obtain the same digest 
and hence the same key, and the encrypted data will decrypt to the original data.

Crypto-C will automatically append the salt, digest the data, and extract the key.

The example in this section corresponds to the file pbe.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

    B_DestroyAlgorithmObject (&rc6Encrypter);

    if (aesKeyItem.data != NULL_PTR) {
      T_memset (aesKeyItem.data, 0, aesKeyItem.len);
      T_free (aesKeyItem.data);
      aesKeyItem.data = NULL_PTR;
      aesKeyItem.len = 0;
    }

B_ALGORITHM_OBJ pbEncrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&pbEncrypter)) != 0)
  break;
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Step 2: Setting The Algorithm Object
There are a number of PBE AIs from which to choose (see “Summary of AIs” on 
page 103 for a more detailed description). For now, choose AI_MD5WithRC2_CBCPad. In 
Chapter 2 of the Reference Manual, the description of this AI indicates the format of 
info supplied to B_SetAlgorithmInfo is:

The section “RC2” on page 38 contains an explanation of effective key bits. The salt is 
a value that provides security against dictionary attacks or precomputation. An 
attacker could precompute the digests of thousands of possible passwords, creating a 
“dictionary” of likely keys. But recall that when you digest, changing input data even 
a little changes the resulting digest. By digesting the password with a “salt”, the 
attacker’s dictionary is rendered useless. The attacker would have to create a 
dictionary of the keys that were generated from each password; then each password 
would have to have a dictionary of each possible salt. The salt is not secret; knowing 
the salt will not help anyone without the password to decrypt the data. 

To produce the salt, create an eight-byte buffer and then employ a random number 
generator to generate eight bytes. The iteration count is the number of times Crypto-C 
will digest. If that value is one, digest the password and salt once; if it is two, digest 
the password and salt, then digest the digest, and so on. Each iteration will increase 
an attacker’s task greatly. Five is generally sufficient for most applications:

typedef struct {
  unsigned int   effectiveKeyBits;           /* effective key size in bits */
  unsigned char *salt;                     /* pointer to 8 byte salt value */
  unsigned int   iterationCount;                        /* iteration count */
} B_RC2_PBE_PARAMS;

#define SALT_LEN 8

B_RC2_PBE_PARAMS rc2PBEParams;
unsigned char saltData[SALT_LEN];

/* Complete steps 1 - 4 of Generating Random Numbers, 
   then call B_GenerateRandomBytes.*/
if ((status = B_GenerateRandomBytes
     (randomAlgorithm, saltData, SALT_LEN,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 3: Init
You need a key before you can initialize the algorithm object for encryption. In PBE, 
the password is the key. Simply enter the password data as the key data; Crypto-C 
will generate the symmetric key from the password and salt.

Step 3a: Creating A Key Object

Step 3b: Setting The Key Object
In the Reference Manual Chapter 2 entry for AI_MD5WithRC2_CBCPad, you see you have 
only one choice for a KI: KI_Item. Looking up KI_Item in Chapter 3 of the Reference 
Manual, you find that the info you supply to B_SetKeyInfo is a pointer to an ITEM 
structure, which is:

The data portion of the struct is the password. For this example, we will use the 
following method to enter the password. This method for entering a password is not 

rc2PBEParams.effectiveKeyBits = 64;
rc2PBEParams.salt = saltData;
rc2PBEParams.iterationCount = 5;

if ((status = B_SetAlgorithmInfo
     (pbEncrypter, AI_MD5WithRC2_CBCPad,
      (POINTER)&rc2PBEParams)) != 0)
  break;

#define MAX_PW_LEN 20

B_KEY_OBJ pbeKey = (B_KEY_OBJ)NULL_PTR;
 
if ((status = B_CreateKeyObject (&pbeKey)) != 0)
  break;

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;
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secure; it is used for illustrative purposes only. It is not for duplication:

You should zeroize any sensitive data after leaving the do-while. In fact, you might 
want to zeroize the memory immediately after you set the key:

Now that you have a key, you need an algorithm chooser and a surrender context. 
This is a speedy function, so it is reasonable to use a properly cast NULL_PTR for the 
surrender context. You do want to build a chooser:

unsigned char enteredPassword[MAX_PW_LEN];
ITEM pbeKeyItem;
 
puts ("Enter the password, then press Return or Enter");
gets ((char *)enteredPassword);

pbeKeyItem.data = enteredPassword;
pbeKeyItem.len = strlen (enteredPassword);
 
if ((status = B_SetKeyInfo
      (pbeKey, KI_Item, (POINTER)&pbeKeyItem)) != 0)
  break;

T_memset (pbeKeyItem.data, 0, MAX_PW_LEN);

B_ALGORITHM_METHOD *PBE_CHOOSER[] = {
  &AM_MD5,
  &AM_RC2_CBC_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
     (pbEncrypter, pbeKey, PBE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. The Reference Manual Chapter 2 
entry on AI_MD5WithRC2_CBCPad states that you can pass (B_ALGORITHM_OBJ)NULL_PTR 
for all randomAlgorithm arguments. Assuming you have some input data, call 
B_EncryptUpdate. Remember that the RC2 cipher is a block cipher and requires the 
input to be a multiple of eight bytes. But because you are using 
AI_MD5WithRC2_CBCPad, Crypto-C will pad to make the input a multiple of eight 
bytes. That means, though, that the output buffer should be at least eight bytes larger 
than the input length.

PBE with MD5 and the RC2 cipher is a fast algorithm, so for small amounts of data, 
you can pass a properly cast NULL_PTR for the surrender context. If you want to pass a 
surrender context, you can:

/* Assume dataToEncrypt points to already set data and
     dataToEncryptLen has been set to the number of bytes
     in dataToEncrypt. */

#define BLOCK_LEN 8
unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;

encryptedDataLen = dataToEncryptLen + BLOCK_LEN;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
  break;

if ((status = B_EncryptUpdate
     (pbEncrypter, encryptedData, &outputLenUpdate,
      encryptedDataLen, dataToEncrypt, dataToEncryptLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 5: Final

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory:

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use 
the same AI, password, and salt. Use the proper decrypting AM and call 
B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal.

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
     (pbEncrypter, encryptedData + outputLenUpdate,
      &outputLenFinal, encryptedDataLen - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyKeyObject (&pbeKey);
B_DestroyAlgorithmObject (&pbEncrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);

  if (pbeKeyItem.data, 0, MAX_PW_LEN) {
    T_memset (pbeKeyItem.data, 0, MAX_PW_LEN);
    T_free (pbekeyItem.data);
     pbeKeyItem.data = NULL_PTR;
  }

  if (encryptedData != NULL_PTR) {
    T_memset (encryptedData, 0, encryptedDataLen);
    T_free (encryptedData);
    encryptedData = NULL_PTR;
  }
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Chapter 7

Public-Key Operations
In public-key cryptography, two associated keys are necessary: one to encrypt, and 
the other to decrypt. The sender encrypts a message using the recipient’s public key. 
Once a message is encrypted, it can be decrypted only with the recipient’s private key. 
This is in contrast to algorithms like DES and the RC2, RC4, and RC5 algorithms, 
which are called symmetric-key encryption algorithms because the key used to 
encrypt is the same key needed to decrypt. 

In public-key cryptography, it is also possible to encrypt using a private key. In this 
case, the sender takes the plaintext input and the private key and follows the same 
steps needed to decrypt an encrypted file. This creates a ciphertext that can be read 
using the public key. To read it, the recipient follows the same steps needed to encrypt 
with the public key and restores it to the plaintext. Private-key encryption with 
public-key decryption is used for digital signatures and verification. See “RSA Digital 
Signatures” on page 233 and “DSA Signatures” on page 243 for more information.

Crypto-C supplies a number of public-key algorithms. These include:

• RSA encryption and decryption
• DSA signatures
• Diffie-Hellman key agreement
• Elliptic curve public-key operations
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Performing RSA Operations
The RSA algorithm is a public-key algorithm that relies on the difficulty of factoring a 
number that is the product of two large primes. If you are not familiar with the RSA 
algorithm and terminology, you may want to read “The RSA Algorithm” on page 51 
before you continue.

The algorithm chooser used throughout the sections concerning executing the RSA 
algorithm can be found in “Algorithm Choosers” on page 116.

The example in this section corresponds to the file rsapkcs.c.

Note: For an example of how to perform RSA operations in conformance with the 
ANSI X9.31 standard, see Chapter 9, “Putting It All Together: An X9.31 
Example” on page 313. The example in Chapter 9 is similar to this one; 
however, due to the additional constraints required by X9.31, some of the 
operations are more time-consuming.

Generating a Key Pair
Before you can encrypt and decrypt, you need a key pair. The key pair consists of a 
private key and its associated public key. Generating a key pair is not trivial. The RSA 
algorithm relies on very large prime numbers, which are produced during key pair 
generation. This could be fairly time-consuming, so we recommend you use a 
surrender context. The surrender context used below is the one in “The Surrender 
Context” on page 118.

Most Crypto-C operations follow the six-step procedure outlined in the “Introductory 
Example” on page 9. Generating a key pair needs only five of the steps; there is no 
Update call.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ keypairGenerator = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&keypairGenerator)) != 0)
  break;
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Step 2: Setting the Algorithm Object
For this example, use AI_RSAKeyGen to generate an RSA key pair. The Reference Manual 
Chapter 2 entry for AI_RSAKeyGen states that the info for B_SetAlgorithmInfo is a 
pointer to an A_RSA_KEY_GEN_PARAMS structure, defined as:

where ITEM is:

The size of the modulus in bits can be any number from 256 to 2048; the larger the 
modulus, the greater the security. Unfortunately, the larger the modulus, the longer it 
takes to generate key pairs and to encrypt and decrypt. RSA Security recommends 768 
bits or more for applications. In testing and learning, though, it is safe to choose a 
smaller modulus to save time. For this exercise, choose 512.

The public exponent is usually one of two values: F0 = 3 or F4 = 65537. Recall that the 
algorithm requires a public exponent that has no common divisor with (p–1)(q–1). 
With F0 or F4, it is easier to find primes p and q that meet that requirement. F4 is also a 
good choice for a public exponent because it is large, prime, and of low weight. 
Weight here refers to the number of 1’s in the binary representation: in hex, F4 is 
01 00 01. The F in F0 and F4 stands for Pierre de Fermat, the 17th-century 
mathematician who first described the special properties of these and other numbers. 
For more information on F4 (and other Fermat numbers), see ITU-T X.509, Annex D.

For this example, choose F4:

typedef struct {
  unsigned int modulusBits;                     /* size of modulus in bits */
  ITEM         publicExponent;                    /* fixed public exponent */
} A_RSA_KEY_GEN_PARAMS;

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;

A_RSA_KEY_GEN_PARAMS keygenParams;
static unsigned char f4Data[3] = {0x01, 0x00, 0x01};
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Step 3: Init
Look up the description and prototype for B_GenerateInit in Chapter 4 of the 
Reference Manual. For this example, you can use the following:

Here, you use NULL_PTR for the surrender context because B_GenerateInit is a speedy 
function. B_GenerateKeypair in Step 5 is the time-consuming function.

Step 4: Update
There is no Step 4 in generating a key pair.

Step 5: Generate
Find the description and prototype for B_GenerateKeypair in Chapter 4 of the 
Reference Manual. This function takes five arguments. The first is the algorithm object: 
for this example, it is keypairGenerator. The second and third are key objects. For this 
call, all you have to do is create the key objects; they will be set by 
B_GenerateKeypair. The fourth argument is a random algorithm. For this, complete 
Steps 1 through 4 of “Generating Random Numbers” on page 165. You do not need 
random bytes, only an algorithm that can generate them. The algorithm chooser you 
are using (defined in “Algorithm Choosers” on page 116) contains the AM for SHA1 
random number generation. 

The last argument is the surrender context. This function call can take a while, 
although the amount of time is not uniform. On slower machines, it may take over 
two or three minutes to generate a 512-bit key pair, or it may take only 17 seconds. 

Crypto-C needs to find two primes of the proper size. To find a prime, Crypto-C 

keygenParams.modulusBits = 512;
keygenParams.publicExponent.data = f4Data;
keygenParams.publicExponent.len = 3;
if ((status = B_SetAlgorithmInfo
     (keypairGenerator, AI_RSAKeyGen,
      (POINTER)&keygenParams)) != 0)
  break;

if ((status = B_GenerateInit
     (keypairGenerator, RSA_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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generates a candidate and tests to see if it is prime. If the candidate passes the test, 
Crypto-C has one of the primes; if not, Crypto-C builds a new number. If you are 
lucky, two early numbers Crypto-C creates will pass the test. Sometimes, though, 
Crypto-C has to try many numbers before it finds a pair. 

Note: The numbers Crypto-C produces are not provably prime. They are numbers 
for which the probability is very low that they are not prime. This does not 
affect the accuracy of the algorithm and will not appreciably decrease 
security.

When you generate a key pair, it can look as if your program has stopped or as if the 
machine has frozen up. To help allay fears of disaster, use the surrender function 
outlined in “The Surrender Context” on page 118. It will print out a dot every second 
to let you know the program is running properly. If the dots do not appear, then you 
know something is wrong:

Step 6: Destroy
When you are done with your objects, remember to destroy them:

B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
 
if ((status = B_CreateKeyObject (&publicKey)) != 0)
  break;
 
if ((status = B_CreateKeyObject (&privateKey)) != 0)
  break;
 
/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_GenerateKeypair
     (keypairGenerator, publicKey, privateKey,
      randomAlgorithm, &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&keypairGenerator);
B_DestroyKeyObject (&publicKey);
B_DestroyKeyObject (&privateKey);
C h a p t e r  7   P u b l i c - K e y  O p e r a t i o n s 2 1 7

Download from Www.Somanuals.com. All Manuals Search And Download.



MultiPrime
MultiPrime
This section provides an overview of the MulitPrime enhancement to Crypto-C 
including information on how to generate an RSA MultiPrime key.

What is MultiPrime?
In classic RSA, you create a modulus (called "n") by multiplying two large primes 
together. The public and private exponents are then "e" (generally a Fermat number 
such as 3, 17, or 65,537) and

where   

is the Euler "phi-function".

One problem with RSA has always been performance of private-key operations. One 
advance in performance was to use an algorithm based on the "Chinese Remainder 
Theorem" (or "CRT") to perform the private key operations. This required performing 
modular exponentiation with the primes as moduli instead of "n". It is faster to do two 
modular exponentiations with smaller moduli (and exponents) than one modular 
exponentiation with a large modulus (and exponent).

Recently, Compaq acquired a patent on MultiPrime RSA. Under this scheme, a 
modulus is the product of three (or more) primes. The public and private keys are 
computed as before.

Now when performing private key operations, it is possible to use the Chinese 
Remainder Theorem to make three modular exponentiations using the three primes. 
Since each of the primes is smaller than each of the two primes of classic RSA, the 
overall time is reduced.

For example, using 1024-bit RSA key pairs on a 450 MHz Pentium processor, the 
following table illustrates the performance gains of CRT over non-CRT and 
MultiPrime (using three primes) over 2-prime.

(milliseconds) Private non-CRT CRT public (expo = 3)

d e
1–
mod ϕ n( )( )=

ϕ
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This means 3-prime private operations can be about 38% faster than 2-prime 
operations. Or with 2-prime RSA, you can perform about 57 signatures per second, 
but with 3-prime RSA, you can perform about 91 signatures per second.

How Many Primes?
Using three primes is faster than using two primes. Is 4-prime RSA faster than 3-
prime? Yes, but there is a security tradeoff. One way to break RSA is to factor the 
modulus. Current technology (machinery and factoring algorithms) are such that a 
1024-bit modulus is safe from attack and will be safe for many years to come. 
However, the more primes that make up a number, the easier it is to factor using what 
is known as the Elliptic Curve Method (ECM).

Currently, no one trying to factor a 2-prime RSA modulus would use the ECM, since 
there is another method, known as Number Field Sieve (NFS), that is faster. With 
NFS, the number of primes does not matter; factoring will always take the same 
amount of time.

What this means is that the attacker will decide which method to use, NFS or ECM, 
based on the number of primes that make up the modulus. With fewer primes, NFS 
will be used; with more primes, ECM will be used.

However, there is one more issue to think about: key size. The longer the modulus, 
the harder it is to factor. The difficulty of ECM increases more than the difficulty of 
NFS with modulus size. That means the longer the key, the safer it is to use more 
primes. For instance, with two primes at 768 bits, NFS is faster than ECM. But with 
three primes at 768 bits, ECM is faster. Using three primes to build a 768-bit RSA key 
pair means you have less security than two primes. It does not necessarily mean you 
do not have enough security; it just means you have less.

On the other hand, with two primes or three primes at 1024 bits, NFS is faster than 
ECM. With four primes at 1024 bits, ECM is faster. So if your 1024-bit RSA key pair is 
made up of three primes, you have the same level of security as with two primes. 
Since with three primes private key operations are faster, you might as well use three 
primes. At 1024 bits, you don't start sacrificing security until you use four primes. At 
what point is it safe to use four primes? Some researchers say 4096 bits; others say 
1536 bits.

Starting with Crypto-C 5.1, we have taken a more conservative approach. The toolkit 

Two-Prime RSA 48.8 17.5 0.8

Three-Prime RSA 48.8 10.9 0.8
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does not allow you to generate an RSA key pair if the number of primes is more than 
three. Furthermore, the toolkit will not allow you to generate 3-prime RSA key pairs 
of less than 1024 bits. In the future, as more research is published, we may adjust these 
limits and allow you to generate key pairs of more than three primes at more key 
lengths.

Sample
MultiPrime RSA differs from classic 2-prime RSA in only two areas: key pair 
generation and the makeup of the private key. Once you generate your key pair, 
signing and verification is exactly the same as before. It's just that the private key 
looks different.

In the following example, key pair generation is similar to regular key-pair 
generation, except you use a different AI and the info passed in is a different struct. 
Notice that the chooser contains the same AM you used when generating two-prime 
RSA key pairs.

Once you have the key objects, signing, verifying, encrypting, and decrypting is the 
same. If you want to save the private key, you can get the key data out of the object 
using the existing BER KI. If you decoded the BER encoding, you would find three 
primes instead of two, three prime exponents instead of two, and two CRT 
coefficients instead of one.

If you set a key object using the BER KI, Crypto-C will recognize whether it is made 
up of two primes or three, and will build the object appropriately.

There is a new KI that separates the components: KI_PKCS_RSAMultiPrimePrivate. 
Using this KI, you can see the individual primes without having to bother with the 
BER encoding.
2 2 0 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.



MultiPrime
B_ALGORITHM_METHOD *RSA_GEN_CHOOSER[] = {
  &AM_RSA_KEY_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

A_RSA_MULTI_PRIME_KEY_GEN_PARAMS genParams;
ITEM *privateKeyBER = (ITEM *)NULL_PTR;
unsigned char expo[1] = {
  3
};

do {
  if ((status = B_CreateKeyObject (&pubKey)) != 0)
      break;

  if ((status = B_CreateKeyObject (&priKey)) != 0)
    break;

  if ((status = B_CreateAlgorithmObject (&rsaGen)) != 0)
    break;

  genParams.modulusBits = 1024;
  genParams.numberOfPrimes = 3;
  genParams.publicExponent.data = expo;
  genParams.publicExponent.len = sizef (expo);
  if ((status = B_SetAlgorithmInfo
       (rsaGen, AI_RSAMultiPrimeKeyGen,
        (POINTER)&genParams)) != 0)
    break;

  if ((status = B_GenerateInit
       (rsaGen, RSA_GEN_CHOOSER, NULL_SURR)) != 0)
    break;

  if ((status = B_GenerateKeypair
       (rsaGen, pubKey, priKey, rand, NULL_SURR)) != 0)
    break;

  if ((status = B_GetKeyInfo
       ((POINTER *)&privateKeyBER, priKey,
        KI_PKCS_RSAPrivateBER)) != 0)
  break;
} while (0);
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Generating an RSA MultiPrime Key
Refer to the RSA_CreateMultiPrimeRSAKeypair routine defined in the samples/pkalg/
rsa/rsautil.c file for an example that shows the use of AI_RSAMultiPrimeKeyGen to 
generate an RSA public/private key pair. This routine is called by the rsamultp.c 
sample.

RSA MultiPrime key generation follows the same steps as standard RSA key pair 
generation with a couple of exceptions.  The differences are that 
AI_RSAMultiPrimeKeyGen must be used instead of AI_RSAKeyGen.  Also, as indicated 
in the Reference Manual entry for the appropriate AI, the algorithm chooser passed in 
during the B_GenerateInit call must include AM_RSA_MULTI_PRIME_KEY_GEN.

Step 1: Prepare A_RSA_MULTI_PRIME_KEY_GEN_PARAMS 
Structure
To use AI_RSAMultiPrimeKeyGen in the call to B_SetAlgorithmInfo, we must first 
prepare an A_RSA_MULTI_PRIME_KEY_GEN_PARAMS structure, which is defined 
as follows:

The numberOfPrimes field must be set to a value of 2 or more.  If it is set to 2, it is 
equivalent to generating a standard RSA key pair as is the case with AI_RSAKeyGen.  If 
numberOfPrimes is set to 3 or more, the modulusBits field must be at least 1024.

Step 2: Set the Algorithm Object
If we have an algorithm object, keypairGenerator, which has already been created 
with a call to B_CreateAlgorithmObject, we can then set the algorithm object's info as 
follows:

typedef struct {
  unsigned int modulusBits;
  unsigned int numberOfPrimes;
  ITEM publicExponent;
} A_RSA_MULTI_PRIME_KEY_GEN_PARAMS;
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Step 3: Init
Now, make the appropriate adjustments to the algorithm chooser so that the 
algorithm methods correspond to the AI chosen:

Following this step, you will call B_GenerateKeypair in the same manner as was done 
for standard RSA key pair generation.  The public and private B_KEY_OBJs will then be 
suitable for signing/verifying or encrypting/decrypting in exactly the same way as 
the standard RSA key objects are used.  This includes using KI_PKCS_RSAPrivateBER 
to obtain the BER-encoded RSA MultiPrime key.  KI_PKCSMultiPrimeRSAPrivate can 
also be used with B_GetKeyInfo or B_SetKeyInfo to view or manipulate the data in a 
private key object.  See the samples/pkalg/rsa/rsamultp.c sample for further 
details.

Distributing an RSA Public Key
After generating a key pair, you need to make the public key available to the public.

unsigned char f4Data[] = {0x01, 0x00, 0x01};
A_RSA_MULTI_PRIME_KEY_GEN_PARAMS keygenParams;

keygenParams.modulusBits = keyBits;
keygenParams.numberOfPrimes = numPrimes;
keygenParams.publicExponent.data = f4Data;
keygenParams.publicExponent.len = sizeof(f4Data);

if ((status = B_SetAlgorithmInfo (keypairGenerator,
                                  AI_RSAMultiPrimeKeyGen,
                                  (POINTER)&keygenParams)) != 0)
  break;

B_ALGORITHM_METHOD *RSA_KEYGEN_CHOOSER[] = {
    &AM_RSA_KEY_GEN,
    (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_GenerateInit (keypairGenerator,
                                RSA_KEYGEN_CHOOSER,
                                (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
C h a p t e r  7   P u b l i c - K e y  O p e r a t i o n s 2 2 3

Download from Www.Somanuals.com. All Manuals Search And Download.



MultiPrime
Crypto-C Format
publicKey is a key object that was set by the Crypto-C function B_GenerateKeypair. Its 
key info type (KI) is KI_RSAPublic. In the Reference Manual Chapter 3 entry on 
KI_RSAPublic, the section titled “Format of info returned by B_GetKeyInfo” tells you 
that the function returns a pointer to an A_RSA_KEY struct:

So you need to declare a variable to be a pointer to such a struct and pass this 
variable’s address as the argument.

Using the prototype in Chapter 4 of the Reference Manual for B_GetKeyInfo as a guide, 
write the following:

If you looked at the elements of the struct:

getPublicKey->modulus.data
getPublicKey->modulus.len
getPublicKey->exponent.data
getPublicKey->exponent.len

You could see the public key that Crypto-C generated. This is the information you 
would make public.

Note: If you want to e-mail the information, you will not be able to send the 
information over most e-mail systems because the data is in binary form, not 
ASCII. Crypto-C offers encoding and decoding functions to convert between 
binary and ASCII. See “Converting Data Between Binary and ASCII” on 
page 172 for more information.

BER/DER Encoding
There is a problem with distributing the key in the above struct: it is not standard; it 

typedef struct {
  ITEM modulus;                                                 /* modulus */
  ITEM exponent;                                               /* exponent */
} A_RSA_KEY;

A_RSA_KEY *getPublicKey = (A_RSA_KEY *)NULL_PTR;
 
if ((status = B_GetKeyInfo
     ((POINTER *)&getPublicKey, publicKey, KI_RSAPublic)) != 0)
  break;
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is unique to Crypto-C. If the recipient is not using Crypto-C, how do you give that 
recipient the information? Suppose your application mails this key to a certification 
authority. What information do you send? The BER-encoding standard defines what 
the public key consists of and how that information should be formatted. It is defined 
in ASN.1, which defines the Basic Encoding Rules (BER) and Distinguished Encoding 
Rules (DER). See “BER/DER Encoding” on page 123 for more information.

You must put the key into DER format, encode it into ASCII, and e-mail the encoding. 
The recipient will decode the DER string and convert the key information into the 
format of their choice.

This sounds difficult, but Crypto-C offers a means of doing it simply. In the previous 
example, in order to obtain the key, you used B_GetKeyInfo with KI_RSAPublic. 
Chapter 3 of the Reference Manual also lists KI_RSAPublicBER, which states:

Crypto-C returns a pointer to where that information resides, not the information. 
Another call to Crypto-C might alter or destroy it. Therefore, once you get the pointer 
to the information, copy it into your own buffer:

So, to distribute a key, you generate the key pair, get the key info in BER format with 
B_GetKeyInfo and KI_RSAPublicBER, encode the BER data into ASCII format, and 

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure which gives the address and length of the DER-
encoding. Note that B_GetKeyInfo returns an encoding which contains the object 
identifier for rsaEncryption (defined in PKCS V1) as opposed to rsa.

ITEM *cryptocPublicKeyBER;
ITEM myPublicKeyBER;
 
myPublicKeyBER.data = NULL_PTR;
 
if ((status = B_GetKeyInfo
     ((POINTER *)&cryptocPublicKeyBER, publicKey,
      KI_RSAPublicBER)) != 0)
  break;

myPublicKeyBER.len = cryptocPublicKeyBER->len;
myPublicKeyBER.data = T_malloc (myPublicKeyBER.len);
if ((status = (myPublicKeyBER.data == NULL_PTR)) != 0)
  break;
T_memcpy (myPublicKeyBER.data, cryptocPublicKeyBER->data,
          myPublicKeyBER.len);
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send it off. 

Remember to free any memory you allocated:

Note: The conversion into BER or DER is known as BER-encoding or DER-
encoding; the conversion between binary to ASCII is known as encoding and 
decoding. In general, the word “encoding” without “BER” in front of it means 
binary to ASCII. If the encoding is BER- or DER-encoding, the BER or DER 
should be explicitly stated.

RSA Public-Key Encryption
Follow Steps 1 through 6 to encrypt the following using an RSA public key:

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are a number of RSA AIs, described in Table 4-7 on page 107. For this example, 
use AI_PKCS_RSAPublic. This AI encrypts and decrypts data according to the Public-
Key Cryptography Standard #1 (PKCS#1 v1.5). See the PKCS document [1] for more 
information. 

The Chapter2 entry in the Reference Manual states that  AI_PKCS_RSAPublic supplies 

T_free (myPublicKeyBER.data);

static unsigned char dataToEncryptWithRSA[8] = {
  0x4a, 0x72, 0x55, 0x36, 0xda, 0x2f, 0xb9, 0x51
};

B_ALGORITHM_OBJ rsaEncryptor = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&rsaEncryptor)) != 0)
  break;
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info to B_SetAlgorithmInfo as NULL_PTR:

Step 3: Init
You will encrypt using the recipient’s RSA public key. Normally, you would obtain 
the public key from the recipient or a certificate service. For this exercise, though, you 
will simply use the public key you generated in “Generating a Key Pair” on page 214. 
B_EncryptInit is quick, so you are safe in passing NULL_PTR as the surrender context:

Block 02 padding will be used because we are peforming a public key encryption 
operation, as specified in PKCS#1 v1.5.

Step 4: Update
The Reference Manual Chapter 2 entry on AI_PKCS_RSAPublic states:

For this example, the key’s size in bits is 512, which is 64 bytes. So you cannot pass 
more than 53 bytes. If you were encrypting more than 53 bytes, you could not use 
AI_PKCS_RSAPublic. If you had more than 53 bytes to encrypt and tried to break it up 
into smaller units, calling B_EncryptUpdate for each unit, it would not work. That is 
because PKCS RSA encryption adds padding, and the padding scheme needs at least 
11 spare bytes to work. It is intended for digital envelopes and digital signatures, and 
in those situations, the number of bytes to encrypt is usually eight, 16, or (for BER-
encoded digests) 34 or 35. If you want to encrypt larger amounts of data using the 
RSA algorithm, you must use AI_RSAPublic, also known as raw RSA encryption and 
decryption. See “Raw RSA Encryption and Decryption” on page 231 for more 
information.

if ((status = B_SetAlgorithmInfo
     (rsaEncryptor, AI_PKCS_RSAPublic, NULL_PTR)) != 0)
  break;

if ((status = B_EncryptInit
     (rsaEncryptor, publicKey, RSA_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the 
key’s modulus size in bytes.
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You are encrypting 8 bytes, so you do not need to worry about that constraint. 
However, the output of RSA encryption is the same size as the modulus, as described 
in “The RSA Algorithm” on page 51. That means you must set the output buffer, 
which will hold the encrypted data, to be the same size as the modulus. Your 
modulus is 512 bits, or 64 bytes.

Note: The input to the RSA algorithm must also be the same size as the modulus, 
but AI_PKCS_RSAPublic will automatically pad.

The description of AI_PKCS_RSAPublic notes that “B_EncryptUpdate and 
B_EncryptFinal require a random algorithm.” The random number generator is for 
the padding. You do not need random bytes, only an algorithm that can generate 
them. Although RSA encryption is not as slow as key pair generation, you will not see 
an immediate response. Use a surrender context so that you know the program is 
running and has not frozen:

Step 5: Final

#define BLOCK_SIZE 64

unsigned char encryptedData[BLOCK_SIZE];
unsigned int outputLenUpdate;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_EncryptUpdate
     (rsaEncryptor, encryptedData, &outputLenUpdate,
      BLOCK_SIZE, (unsigned char *)dataToEncryptWithRSA, 8,
      randomAlgorithm, (A_SURRENDER_CTX*)NULL_PTR)) != 0)
  break;

unsigned int outputLenFinal;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_EncryptFinal
     (rsaEncryptor, encryptedData + outputLenUpdate, 
      &outputLenFinal, BLOCK_SIZE - outputLenUpdate, 
      randomAlgorithm, (A_SURRENDER_CTX*)NULL_PTR)) != 0)
  break;
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Step 6: Destroy
When you are done with all your objects, remember to destroy them.

RSA Private-Key Decryption
This example shows how to decrypt using an RSA private key. Remember that with 
Crypto-C, you have the choice of doing your private-key operations normally or 
utilizing the blinding technique (see “Timing Attacks and Blinding” on page 95). You 
make this choice in the algorithm chooser. For normal decryption operations, use 
AM_RSA_CRT_DECRYPT; to execute blinding, use AM_RSA_CRT_DECRYPT_BLIND.

Step 1: Creating an Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
Because you used AI_PKCS_RSAPublic to encrypt, it is easiest to use 
AI_PKCS_RSAPrivate to decrypt. Crypto-C padded the data before encrypting; when 
you use the “matching” AI to decrypt, Crypto-C will automatically strip the padding. 
The Reference Manual Chapter 2 entry on this AI indicates the info supplied to 
B_SetAlgorithmInfo is NULL_PTR:

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&rsaEncryptor);
B_DestroyKeyObject (&publicKey);

B_ALGORITHM_OBJ rsaDecryptor = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&rsaDecryptor)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (rsaDecryptor, AI_PKCS_RSAPrivate, NULL_PTR)) != 0)
  break;
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Step 3: Init
To decrypt, you must use the RSA private key that is associated with the public key 
that was used to encrypt, which would be the key you generated in “Generating a Key 
Pair” on page 214. B_DecryptInit is quick, so you are safe in passing NULL_PTR as the 
surrender context.

Step 4: Update
When you encrypted, there were certain constraints on the size of the input data to 
B_EncryptUpdate. The only constraint on the data passed to B_DecryptUpdate is that it 
be numerically less than the modulus. If the data you are decrypting was encrypted 
using RSA encryption, the data will be numerically less than the modulus.

The encryption process padded the original data, so, while the encrypted data is 64 
bytes, the decrypted data will be less than 64 bytes, however, you do not know how 
much less. For simplicity, make the decrypted data buffer 64 bytes large. Presumably, 
the encrypter added outputLenUpdate and outputLenFinal from the encryption to 
get the total number of bytes of encrypted data. The Reference Manual Chapter 2 entry 
on AI_PKCS_RSAPrivate indicates you may pass a properly cast NULL_PTR for 
randomAlgorithm arguments.

Although RSA decryption is not as slow as key pair generation, you will not see an 
immediate response. Use the surrender context shown in Step 3: Init,  above, so you 
know the program is running and has not frozen:

if ((status = B_DecryptInit
     (rsaDecryptor, privateKey, RSA_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define BLOCK_SIZE 64

unsigned char decryptedData[BLOCK_SIZE];
unsigned int outputLenTotal;
unsigned int outputLenUpdate;
  /* where outputLenTotal is the sum of the encryption’s
       outputLenUpdate and outputLenFinal. The encrypter should 
       send this information along with the encrypted data. */
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Step 5: Final

Step 6: Destroy
When you are done with all objects, remember to destroy them:

Optimal Asymetric Encryption Padding (OAEP)
See the rsaplccs2.c code sample for an example of RSA encryption with OAEP as 
defined in PKCS V1.2. See the Setoaep.c code sample for an example showing RSA 
encryption with OAEP as defined in the SET spec.

Raw RSA Encryption and Decryption
When you used AI_PKCS_RSAPublic, you could not encrypt more than k – 11 bytes, 
where k was the size of the modulus in bytes. That is because PKCS RSA encryption 
pads, and the padding scheme needs 11 spare bytes to work. This is intended for 
digital envelopes and digital signatures; in these situations, the number of bytes to 

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_DecryptUpdate
     (rsaDecryptor, decryptedData, &outputLenUpdate, BLOCK_SIZE,
      encryptedData, outputLenTotal, NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

unsigned int outputLenFinal;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_DecryptFinal
     (rsaDecryptor, decryptedData + outputLenUpdate,
      &outputLenFinal, BLOCK_SIZE - outputLenUpdate, NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&rsaDecryptor);
B_DestroyKeyObject (&privateKey);
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encrypt is usually 8, 16, or (for BER-encoded digests) 34 or 35. If you want to encrypt 
and decrypt more than k – 11 bytes, use raw RSA encryption and decryption.

Note: In general, there should be no need for raw RSA encryption or decryption. 
For most applications, if you have a longer message, it is faster and simpler to 
encrypt the message with a symmetric algorithm and then use the RSA 
algorithm to encrypt the key. (See “Digital Envelopes” on page 55.) 
If you do use raw RSA encryption and decryption, your application must be 
responsible for adding and removing the necessary padding. We do not 
recommend using raw RSA encryption and decryption, unless you are 
familiar with the issues involved.

To encrypt more bytes than the PKCS AIs allow, use AI_RSAPublic for encryption and 
and AI_RSAPrivate for decryption. Note that this is different from the recommended 
use for these AIs, as described in the Reference Manual. There are two important 
constraints to consider when using these AIs:

• The total length of the data must be a multiple of the modulus size. 
If your data’s length is not a multiple of the modulus size, your application must 
do the padding. When decrypting with raw RSA encryption and decryption, 
Crypto-C will not strip the padding; the application must do that.

• The data must be numerically less than the modulus. 
To do this, divide your data into blocks that are one byte smaller than the 
modulus. Prepend one byte of 0 to each block. If the leading byte of the data is 0, 
your data will meet this second constraint.
For example, suppose you wanted to encrypt 100 bytes with the RSA algorithm 
using a 512-bit modulus. You break the data into two blocks, the first one 63 bytes, 
the second 37. Next, prepend a 0 byte to the first block and it is now 64 bytes (512 
bits). Then, prepend a 0 byte and append 26 pad bytes to the second block and it, 
too is now 64 bytes. Finally, call B_EncryptUpdate for each of the two blocks, then 
B_EncryptFinal. This will produce 128 bytes of encrypted data.
When decrypting, first call B_DecryptUpdate once for all 128 bytes; then 
B_DecryptFinal. The application will have to then strip the prepended zeroes and 
the padding. You could also break the encrypted data into 64-byte blocks and call 
B_DecryptUpdate for each block and strip the padding then.

Some padding procedures are recommended; others are discouraged. For a 
description of one particular trusted padding system, see PKCS V1 [1].
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RSA Digital Signatures
The section “Authentication and Digital Signatures” on page 57 discusses what a 
digital signature is. This section describes how to write Crypto-C code that computes 
or verifies digital signatures. For signing, Crypto-C offers B_SignInit, B_SignUpdate, 
and B_SignFinal, which will digest the data and encrypt the digest using RSA 
encryption with a private key. For verification, Crypto-C offers B_VerifyInit, 
B_VerifyUpdate, and B_VerifyFinal, which will digest the data again, decrypt the 
signature with the RSA public key, and compare the digest to the decrypted 
signature.

Note that you cannot use the Sign and Verify functions if you do not want to digest 
the data. Some applications may not call for a digest; they may demand that the 
signature be the actual data encrypted with a private key. This is the case with some 
forms of authentication, for instance. In other cases, the data passed to the application 
has already been digested. In such an application, encrypt using AI_PKCS_RSAPrivate 
or AI_RSAPrivate; do not follow the model outlined here.

A digital signature is actually not the private-key encrypted digest of the data, but the 
private-key encrypted BER-encoding of the digest. (Remember that when you 
“encrypt” using the private key, you are actually following the same steps you use for 
decryption, even though you apply them to a plaintext file.) When you are using 
SHA1, this means the input data will be 35 bytes, not 20. The “encryption” follows the 
PKCS standards, so the data must be at least 11 bytes shorter than the modulus. 
Hence, the modulus must be at least 46 bytes (368 bits) for computing digital 
signatures using SHA1 as the digesting algorithm.

The example in this section corresponds to the file rsasign.c.

Computing a Digital Signature
Remember that with Crypto-C, you have the choice of doing your private-key 
operations normally or of using the blinding technique (see “Timing Attacks and 
Blinding” on page 95). You make this choice in the algorithm chooser. For normal 
signature operations, use AM_RSA_CRT_ENCRYPT. To use blinding, use 
AM_RSA_CRT_ENCRYPT_BLIND.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
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B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Crypto-C provides three methods for computing RSA digital signatures: MD2 with 
RSA encryption, MD5 with RSA encryption, and SHA1 with RSA encryption. 

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal 
compression function, and there is some chance that the attack on MD2 may 
be extended to the full hash function. The same attack applies to MD. Another 
attack has been applied to the compression function on MD5, though this has 
yet to be extended to the full MD5. RSA Security recommends that before you 
use MD, MD2, or MD5, you should consult the RSA Laboratories Web site to 
be sure that their use is consistent with the latest information. 

For this example, choose AI_SHA1WithRSAEncryption. The Reference Manual Chapter 2 
entry on this AI states that the format of info supplied to B_SetAlgorithmInfo is 
NULL_PTR:

Step 3: Init
Associate a key and algorithm method with the algorithm object through B_SignInit. 
The Reference Manual Chapter 4 entry for this function shows that it takes four 
arguments: the algorithm object, a key object, an algorithm chooser, and a surrender 
context. The algorithm object in this example is digitalSigner. Remember, if the 
algorithm object was not set to AI_MD5WithRSAEncryption, 
AI_MD2WithRSAEncryption, AI_SHA1WithRSAEncryption, or their BER counterparts, 
you cannot use B_SignInit. For a key object, use an RSA private key. Follow Steps 1 
through 5 of “Generating a Key Pair” on page 214 to produce a key pair. Remember, 
the modulus must be at least 368 bits. 

Build an algorithm chooser with the AMs listed in the Reference Manual Chapter 2 

B_ALGORITHM_OBJ digitalSigner = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&digitalSigner)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (digitalSigner, AI_SHA1WithRSAEncryption, NULL_PTR)) != 0)
  break;
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entry for the AI in use:

Note: If you want to sign using the blinding technique to thwart timing attacks (see 
“Timing Attacks and Blinding” on page 95), use AM_RSA_CRT_ENCRYPT_BLIND 
in the algorithm chooser. 

B_SignInit is fast, so it is reasonable to pass a properly cast NULL_PTR for the 
surrender context:

Step 4: Update
Digest the data to sign with B_SignUpdate, which is described in Chapter 4 of the 
Reference Manual. Unless there is an extraordinarily large amount of data (for example, 
one megabyte), this function is quick and a NULL_PTR for the surrender context should 
be no problem. Assuming you have your input data and you know its length, your 
call would be the following:

Step 5: Final
B_SignUpdate digested the data. Encrypt the digest and output the result to a 
signature buffer with B_SignFinal. The signature will be the same size as the public 
modulus, so make sure the output buffer is big enough. The chapter 2 entry of the 
Reference Manual on AI_SHAWithRSAEncryption states that “You may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.” This function does 
not return immediately, so a surrender context can be helpful; for this example use the 

B_ALGORITHM_METHOD *SIGN_SAMPLE_CHOOSER[] = {
  &AM_SHA,
  &AM_RSA_CRT_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_SignInit
     (digitalSigner, privateKey, SIGN_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

if ((status = B_SignUpdate
     (digitalSigner, inputData, inputDataLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
C h a p t e r  7   P u b l i c - K e y  O p e r a t i o n s 2 3 5

Download from Www.Somanuals.com. All Manuals Search And Download.



MultiPrime
surrender context outlined in “The Surrender Context” on page 118:

Step 6: Destroy
When you are done with all objects, remember to destroy them.

Verifying a Digital Signature
The Crypto-C sequence B_VerifyInit, B_VerifyUpdate, and B_VerifyFinal will 
digest the original data, decrypt the signature with the provided RSA public key, and 
compare the digest to the decrypted signature. If the values are the same, 
B_VerifyFinal returns a 0; if they are different, it returns an error code.

Note: If a signing application did not digest the data before encrypting to produce a 
signature, you cannot use the Verify functions. Instead, decrypt the signature 
using AI_PKCS_RSAPublic or AI_RSAPublic.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 

#define BLOCK_SIZE 64;

/* Assuming we are using a 512-bit key */
unsigned char signature[BLOCK_SIZE];
unsigned int signatureLen;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_SignFinal
     (digitalSigner, signature, &signatureLen, 64,
      (B_ALGORITHM_OBJ)NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&digitalSigner);
B_DestroyKeyObject (&privateKey);
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B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
The signer should tell you which message digest and decryption algorithms you need 
to use to verify the signature. To verify the signature created here, you would use the 
same AI:

Step 3: Init
Associate a key and algorithm method with the algorithm object through 
B_VerifyInit. The entry for this function in Chapter 4 of the Reference Manual  shows 
that it takes four arguments: the algorithm object, a key object, an algorithm chooser, 
and a surrender context. The algorithm object in this example is digitalVerifier. For 
a key object, use an RSA public key, presumably the partner to the RSA private key 
that was used for the signature. Build an algorithm chooser which incorporates the 
AMs listed in the Chapter 2 entry for the AI in use the Reference Manual. B_VerifyInit 
is fast, so it is reasonable to pass a properly cast NULL_PTR for the surrender context:

B_ALGORITHM_OBJ digitalVerifier = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&digitalVerifier)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (digitalVerifier, AI_SHA1WithRSAEncryption, NULL_PTR)) != 0)
  break;

B_ALGORITHM_METHOD *VERIFY_SAMPLE_CHOOSER[] = {
  &AM_SHA,
  &AM_RSA_DECRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_VerifyInit
     (digitalVerifier, publicKey, VERIFY_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Note: If the algorithm object was not set to AI_MD5WithRSAEncryption, 
AI_MD2WithRSAEncryption, AI_SHA1WithRSAEncryption, or their BER 
counterparts, you cannot use B_VerifyInit.

Step 4: Update
Use B_VerifyUpdate to digest the data that was signed. Its prototype is in Chapter 4 of 
the Reference Manual. Unless there is an extraordinarily large amount of data (for 
example, a megabyte), B_VerifyUpdate is quick and a NULL_PTR for the surrender 
context should be no problem. Assuming that you have the same input data and you 
know its length, your call is the following:

Step 5: Final
B_VerifyUpdate digested the data. Decrypt the signature and compare the result to 
the digest with B_VerifyFinal. The Reference Manual Chapter 2 entry on 
AI_SHA1WithRSAEncryption states that “You may pass (B_ALGORITHM_OBJ)NULL_PTR 
for all randomAlgorithm arguments.” This function does not return immediately, so use 
a surrender context:

The return value will be 0 if the signature verifies, nonzero if it does not. Of course, a 
nonzero return value may indicate some other error, so check any error return against 
the Crypto-C Error Types, in Appendix A of the Reference Manual.

if ((status = B_VerifyUpdate
     (digitalVerifier, inputData, inputDataLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_VerifyFinal
     (digitalVerifier, signature, signatureLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;
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Step 6: Destroy
When you are done with all objects, remember to destroy them:

Performing DSA Operations
The Digital Signature Algorithm (DSA) is part of the Digital Signature Standard 
(DSS), published by the National Institute of Standards and Technology (NIST, a 
division of the US Department of Commerce); it is the digital authentication standard 
of the US government. The section “Digital Signature Algorithm (DSA)” on page 60 
gives a more detailed description of the actual algorithm.

Generating a DSA key pair is a two-step process. First, you must generate the DSA 
parameters; then you can generate the actual key pair.

The example in this section corresponds to the file dsasign.c.

Generating DSA Parameters
In this section, you generate the DSA parameters: a prime, a subprime, and a base. 
There is no Step 4, Update, in generating DSA parameters.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one AI that will generate DSA parameters, AI_DSAParamGen. The format 

B_DestroyAlgorithmObject (&digitalVerifier);
B_DestroyKeyObject (&publicKey);

B_ALGORITHM_OBJ dsaParamGenerator = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dsaParamGenerator)) != 0)
  break;
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of info supplied to B_SetAlgorithmInfo is a pointer to the following:

Crypto-C will generate the prime, but you must decide how big that prime will be. 
The number of prime bits can be anywhere from 512 to 2048. Larger numbers provide 
greater security, but are also much slower. As with the RSA algorithm, RSA Security 
recommends using 768 bits. To save time, because this is for illustrative purposes 
only, this example will use 512. The subprime is always 160 bits long:

Step 3: Init
Initialize the generation process with B_GenerateInit. Build an algorithm chooser. 
Because this function is quick, it is reasonable to pass NULL_PTR as the surrender 
context. Generating the parameters in Step 5 is time-consuming, though, so you will 
use a surrender context there:

Step 4: Update
There is no Step 4 in generating DSA parameters.

typedef struct { 
  unsigned int primeBits;                         /* size of prime in bits */
} B_DSA_PARAM_GEN_PARAMS;

B_DSA_PARAM_GEN_PARAMS dsaParams;
 
dsaParams.primeBits = 512;
if ((status = B_SetAlgorithmInfo
     (dsaParamGenerator, AI_DSAParamGen,
      (POINTER)&dsaParams)) != 0)
  break;

B_ALGORITHM_METHOD *DSA_PARAM_GEN_CHOOSER[] = {
  &AM_SHA_RANDOM,
  &AM_DSA_PARAM_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_GenerateInit
     (dsaParamGenerator, DSA_PARAM_GEN_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 5: Generate
To generate DSA parameters, call the Crypto-C function B_GenerateParameters. The 
Reference Manual Chapter 4 entry for this call indicates there are four arguments. The 
first is the algorithm object that generates the parameters; in this example, that is 
dsaParamGenerator. 

The second is a result algorithm object. Crypto-C will generate some values and will 
need to place them somewhere. This information will be used in later Crypto-C calls, 
so you might as well place these values in an algorithm object now. Create an 
algorithm object, but do not set it; B_GenerateParameters will do that. (This is similar 
to generating an RSA key pair, where the results were placed into key objects.)

The third argument is a random algorithm. Complete Steps 1 through 4 of 
“Generating Random Numbers” on page 165. You do not need random bytes, only an 
algorithm that can generate them. The algorithm chooser you are using contains the 
AM for SHA1 random number generation.

The last argument is a surrender context. Generating DSA parameters can be time-
consuming, sometimes taking two or three minutes. On slower machines, generating 
parameters over 800 bits can take more than an hour. Use the surrender context 
described previously. It will print out a dot every second to let you know that Crypto-
C is computing and the machine has not crashed:

Step 6: Destroy
Remember to destroy your objects. Do not destroy the dsaKeyGenObj object until you 
have used it to generate the actual DSA key pair:

B_ALGORITHM_OBJ dsaKeyGenObj = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dsaKeyGenObj)) != 0)
  break;
 
/* generalFlag is for this tutorial’s surrender function. */
generalFlag = 0;
if ((status = B_GenerateParameters
     (dsaParamGenerator, dsaKeyGenObj, randomAlgorithm,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dsaParamGenerator);
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Generating a DSA Key Pair
The previous code generated the DSA parameters and set an algorithm object. With 
that algorithm object, you can generate the key pair. Remember, the algorithm object 
has already been created and set, so you can jump directly to Step 3.

Step 3: Init
When it generated the parameters, Crypto-C set the algorithm object dsaKeyGenObj to 
AI_DSAKeyGen. That means that when you build an algorithm chooser for the Init call, 
you need to include AM_DSA_KEY_GEN. Look up the description and prototype for 
B_GenerateInit in Chapter 4 of the Reference Manual. For this example, you can use 
the following:

This example uses NULL_PTR for the surrender context because B_GenerateInit is a 
speedy function. B_GenerateKeypair in Step 5 is the time-consuming function.

Step 4: Update
There is no Step 4 in generating a key pair.

Step 5: Generate
The description and prototype for B_GenerateKeypair in Chapter 4 of the Reference 
Manual shows that this function takes five arguments. The first is the algorithm object; 
for this example, it is dsaKeyGenObj. The second and third are key objects. For this call, 
all you have to do is create the key objects; they will be set by B_GenerateKeypair. The 
fourth argument is a random algorithm. For this, complete Steps 1 through 4 of 
“Generating Random Numbers” on page 165. You do not need random bytes, only an 
algorithm that can generate them. The algorithm chooser you are using (from Step 3) 

B_ALGORITHM_METHOD *DSA_KEY_GEN_CHOOSER[] = {
  &AM_SHA_RANDOM,
  &AM_DSA_KEY_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_GenerateInit
     (dsaKeyGenObj, DSA_KEY_GEN_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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contains the AM for SHA1 random number generation. The last argument is the 
surrender context. This function call is quick; the lengthy portion was generating the 
parameters:

Step 6: Destroy
When you are done with all objects, remember to destroy them:

DSA Signatures
In this section, we describe how to write Crypto-C code that computes or verifies DSA 
digital signatures. See “Authentication and Digital Signatures” on page 57 for 
information on what a digital signature is. For signing, Crypto-C offers B_SignInit, 
B_SignUpdate, and B_SignFinal, which will digest the data and create a signature 
using DSA with a private key. For verification, Crypto-C offers B_VerifyInit, 
B_VerifyUpdate, and B_VerifyFinal to digest the data again and check the signature 
using its DSA public key.

B_KEY_OBJ dsaPublicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ dsaPrivateKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&dsaPublicKey)) != 0)
  break;
 
if ((status = B_CreateKeyObject (&dsaPrivateKey)) != 0)
  break;
 
if ((status = B_GenerateKeypair
     (dsaKeyGenObj, dsaPublicKey, dsaPrivateKey,
      randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dsaKeyGenObj);
B_DestroyKeyObject (&dsaPublicKey);
B_DestroyKeyObject (&dsaPrivateKey);
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Computing a Digital Signature

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one Crypto-C choice for computing DSA digital signatures, 
AI_DSAWithSHA1 (or its BER counterpart). The Reference Manual Chapter 2 entry for 
this AI states that the format of info supplied to B_SetAlgorithmInfo is NULL_PTR.

Step 3: Init
Associate a key and algorithm method with the algorithm object through B_SignInit. 
The Chapter 4 Reference Manual entry on this function shows that it takes four 
arguments: the algorithm object, a key object, an algorithm chooser and a surrender 
context. The algorithm object in this example is dsaSigner. For a key object you want 
to use a DSA private key. See the previous section on generating a DSA key pair.

Build an algorithm chooser, the elements being the AMs listed in the Reference Manual 
Chapter 2 entry for the AI in use. B_SignInit is fast, so it is reasonable to pass a 

B_ALGORITHM_OBJ dsaSigner = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dsaSigner)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (dsaSigner, AI_DSAWithSHA1, NULL_PTR)) != 0)
  break;
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properly cast NULL_PTR for the surrender context:

Step 4: Update
Digest the data to sign with B_SignUpdate, the prototype of which is in Chapter 4 of 
the Reference Manual. Unless there is an extraordinarily large amount of data (for 
example, a megabyte or more), this function is quick and a NULL_PTR for the surrender 
context should be no problem. Assuming you have some input data and you know its 
length, your call is the following:

Step 5: Final
B_SignUpdate digested the data. Create the signature and send the result to a 
signature buffer with B_SignFinal. The signature will be as many as 48 bytes long, so 
make sure the output buffer is big enough. The Reference Manual Chapter 2 entry on 
AI_DSAWithSHA1 states:

This function does not return immediately, so a surrender context can be helpful. For 
this example, use the surrender context described in “The Surrender Context” on 

B_ALGORITHM_METHOD *DSA_SIGN_CHOOSER[] = {
  &AM_SHA,
  &AM_DSA_SIGN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
if ((status = B_SignInit
     (dsaSigner, dsaPrivateKey, DSA_SIGN_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

if ((status = B_SignUpdate
     (dsaSigner, inputData, inputDataLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

 You must pass a random algorithm in B_SignFinal, but may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.
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page 118:

Step 6: Destroy
When you are done with all objects, remember to destroy them:

Verifying a Digital Signature
The Crypto-C sequence B_VerifyInit, B_VerifyUpdate, and B_VerifyFinal digests 
the original data and checks the signature. If the signature is valid, B_VerifyFinal 
returns a zero; if the signature is not valid, it returns an error code.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject: 

#define MAX_SIG_LEN 48

unsigned char signature[MAX_SIG_LEN];
unsigned int signatureLen;
 
/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_SignFinal
     (dsaSigner, signature, &signatureLen, MAX_SIG_LEN,
      randomAlgorithm,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&dsaSigner);
B_DestroyKeyObject (&dsaPrivateKey);

B_ALGORITHM_OBJ dsaVerifier = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dsaVerifier)) != 0)
  break;
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Step 2: Setting The Algorithm Object
To verify the signature created here, use the same AI:

Step 3: Init
Associate a key and algorithm method with the algorithm object through 
B_VerifyInit. The Chapter 4 Reference Manual entry on this function shows that it 
takes four arguments: the algorithm object, a key object, an algorithm chooser, and a 
surrender context. The algorithm object in this example is dsaVerifier. For a key 
object, you want to use a DSA public key, presumably the partner to the DSA private 
key used to sign. Build an algorithm chooser; the elements are the AMs listed in the 
Reference Manual Chapter 2 entry for the AI in use. B_VerifyInit is fast, so it is 
reasonable to pass a properly cast NULL_PTR for the surrender context:

Step 4: Update
Digest the data that was signed with B_VerifyUpdate; the prototype of this is in 
Chapter 4 of the Reference Manual. Unless there is an extraordinarily large amount of 
data (for example, a megabyte or more), this function is quick and a NULL_PTR for the 
surrender context will probably be no problem. Assuming you have the same input 

if ((status = B_SetAlgorithmInfo
     (dsaVerifier, AI_DSAWithSHA1, NULL_PTR)) != 0)
  break;

B_ALGORITHM_METHOD *DSA_VERIFY_CHOOSER[] = {
  &AM_SHA1,
  &AM_DSA_VERIFY,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_VerifyInit
     (dsaVerifier, dsaPublicKey, DSA_VERIFY_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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data and you know its length, your call is the following:

Step 5: Final
B_VerifyUpdate digested the data. Check the signature with B_VerifyFinal. The 
Reference Manual Chapter 2 entry on AI_DSAWithSHA1 states:

This function does not return immediately, so use a surrender context:

The return value will be zero if the signature verifies, nonzero if it does not. Of course, 
a nonzero return value may indicate some other error, so check any error return 
against the Crypto-C Error Types, Appendix A of the Reference Manual.

Step 6: Destroy
When you are done with all objects, remember to destroy them:

if ((status = B_VerifyUpdate
     (dsaVerifier, inputData, inputDataLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

 You must pass a random algorithm in B_SignFinal, but may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_VerifyFinal
     (dsaVerifier, signature, signatureLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&dsaVerifier);
B_DestroyKeyObject (&dsaPublicKey);
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Performing Diffie-Hellman Key Agreement
Diffie-Hellman Key Agreement is a method for two parties to obtain the same 
symmetric key. In this procedure, a central authority generates parameters and gives 
them to the two individuals seeking to generate a secret key. In Phase 1, each 
individual uses these parameters to produce a public value and a private value. In 
Phase 2, they trade public values and each uses the other’s public value with their 
own private value to generate the same secret value.

Note: One of the individuals could act as the central authority and generate the 
parameters. Security does not depend on a third party’s independently 
producing the parameters.

The section “Diffie-Hellman Public Key Agreement” on page 62 gives a detailed 
description of the Diffie-Hellman algorithm.

Generating Diffie-Hellman Parameters
The parameters are a prime, a base, and, optionally, the length in bits of the private 
value. The parties will generate their own private values in Phase 1, although the 
central authority has the option of declaring how long these values will be.

Note: You may have noticed that the Diffie-Hellman algorithm is very similar to the 
RSA algorithm. The Diffie-Hellman prime is analogous to the RSA modulus, 
and the Diffie-Hellman base is analogous to the RSA data to encrypt. The 
Diffie-Hellman private value is analogous to the RSA private exponent 
(private key) in private-key encryption.

The example in this section corresponds to the file dhparam.c. There is no Step 4, 
Update, in generating Diffie-Hellman parameters.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ dhParamGenerator = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dhParamGenerator)) != 0)
  break;
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Step 2: Setting The Algorithm Object
There is only one AI for generating Diffie-Hellman parameters: AI_DHParamGen. The 
format of info supplied to B_SetAlgorithmInfo is a pointer to the following struct:

Crypto-C will generate the prime, but you must decide how big that prime will be. As 
with the RSA modulus, the number of prime bits can be anywhere from 256 to 2048. 
Larger numbers provide greater security, but operations with larger numbers are 
much slower. RSA Security recommends 768. To save time, because this is for 
illustrative purposes only, this example will use 512.

The exponent is the private value, generated randomly by each party during Phase 1. 
The value exponentBits is the length of that private value. The Diffie-Hellman 
algorithm allows the parameter generator (the central authority) to optionally 
determine the length of the private value. Crypto-C exercises that option and requires 
the length. 

The exponent length should be at least twice the general security level of the system. 
For instance, if 80-bit security against brute-force attack is desired, the exponent 
should be 160 bits long. (This is how DSS does it.) The prime length should be chosen 
to have a comparable level of difficulty against the best discrete logarithm algorithms. 
The relationship between the sizes changes from time to time; a 1024-bit prime would 
not be too far off from the 80-bit level.

The closer the exponent length is to the prime length, the longer it takes to generate 
the Diffie-Hellman parameters, because Crypto-C generates a prime p and a prime q 
where p-1 is a multiple of q, and the length of q is the same as the desired length of the 
exponent. If the lengths are very close it will take a long time to find an appropriately 
related pair of primes, because for a given q there won't be all that many possible p’s. 
For example: for a one-bit difference between the prime and exponent lengths, p must 
equal 2q+1, and it's unlikely that q and 2q+1 are simultaneously prime.

The Chapter 2 entry for AI_DHParamGen notes that the “exponentBits must be less than 
primeBits.” For this example, choose 512 prime bits and 504 exponent bits:

typedef struct {
  unsigned int primeBits;                 /* size of prime modulus in bits */
  unsigned int exponentBits;            /* size of random exponent in bits */
} A_DH_PARAM_GEN_PARAMS;
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Step 3: Init
Initialize the generation process with B_GenerateInit. Build an algorithm chooser. 
Because this function is quick, it is reasonable to pass NULL_PTR as the surrender 
context. Generating the parameters in Step 5 is time-consuming, though, so you will 
use a surrender context there:

Step 4: Update
There is no Step 4 in generating Diffie-Hellman parameters.

Step 5: Generate
To generate Diffie-Hellman parameters, call the Crypto-C function 
B_GenerateParameters. The Reference Manual Chapter 4 entry for this call indicates 
there are four arguments. 

The first is the algorithm object that generates the parameters; in this example, that is 
dhParamGenerator. 

A_DH_PARAM_GEN_PARAMS dhParams;
 
dhParams.primeBits = 512;
dhParams.exponentBits = 504;
if ((status = B_SetAlgorithmInfo
     (dhParamGenerator, AI_DHParamGen,
      (POINTER)&dhParams)) != 0)
  break;

B_ALGORITHM_METHOD *DH_SAMPLE_CHOOSER[] = {
  &AM_SHA_RANDOM,
  &AM_DH_PARAM_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_GenerateInit
     (dhParamGenerator, DH_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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The second is a result algorithm object. Crypto-C will generate some values and will 
need to place them somewhere. So you might as well place them into an algorithm 
object now. (This is similar to generating an RSA key pair, where the results were 
placed into key objects.) Create an algorithm object, but do not set it; 
B_GenerateParameters will do that.

The third argument is a random algorithm. Complete Steps 1 through 4 of 
“Generating Random Numbers” on page 165. You do not need random bytes, only an 
algorithm that can generate them. The algorithm chooser you are using contains the 
AM for SHA random number generation.

The last argument is a surrender context. Generating Diffie-Hellman parameters is 
time-consuming; it can take up to two minutes. On slower machines, generating 
parameters over 800-bits can take more than an hour. Use the surrender context 
mentioned previously. It will print out a dot every second to let you know that 
Crypto-C is computing and the machine has not crashed:

Step 6: Destroy
Remember to destroy your objects. Do not destroy the dhParametersObj object until 
you have passed it on to the parties executing the agreement. The next section 
discusses that point:

B_ALGORITHM_OBJ dhParametersObj = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dhParametersObj)) != 0)
  break;
 
/* generalFlag is for this tutorial’s surrender function. */
generalFlag = 0;
if ((status = B_GenerateParameters
     (dhParamGenerator, dhParametersObj, randomAlgorithm,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dhParamGenerator);
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Distributing Diffie-Hellman Parameters
The central authority, after computing the parameters, must send this information to 
the parties seeking agreement on a secret key. This can be done using Crypto-C 
format or BER-encoded format.

Note: It is not necessary to generate parameters each time two parties wish to agree 
on a secret key. Any number of key agreements can use the same parameters. 
Of course, for greater security, it is a good idea to generate new parameters 
every so often.

Crypto-C Format
To send the information in Crypto-C format, you can send a copy of the algorithm 
object to the participants. Actually, you do not send the object itself, but rather the 
“info supplied to B_SetAlgorithmInfo.”

Recall that you did not set the algorithm object dhParametersObj; the Crypto-C 
function B_GenerateParameters did. It is set to the AI AI_DHKeyAgree. In the Reference 
Manual Chapter 2 entry on AI_DHKeyAgree, the topic “Format of info returned by 
B_GetAlgorithmInfo” states that it returns a pointer to an A_DH_KEY_AGREE_PARAMS 
structure:

where ITEM is:

Declare a variable to be a pointer to such a structure and pass its address as the 
argument.

Using the Reference Manual Chapter 4 prototype for B_GetAlgorithmInfo as a guide, 
you can write the following:

typedef struct {
  ITEM         prime;                                     /* prime modulus */
  ITEM         base;                                     /* base generator */
  unsigned int exponentBits;            /* size of random exponent in bits */
} A_DH_KEY_AGREE_PARAMS;

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;
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If you look at the elements of the struct:

dhKeyAgreeParams->prime.data
dhKeyAgreeParams->prime.len
dhKeyAgreeParams->base.data
dhKeyAgreeParams->base.len
dhKeyAgreeParams->exponentBits

you will see the parameters Crypto-C generated. This is the information the central 
authority sends to the participants in the key agreement. Copy this information to a 
file or diskette, for instance, and pass it on.

If you want to email the information, you will not be able to send the information over 
most e-mail systems because the data is in binary form, not ASCII. Crypto-C offers 
encoding and decoding functions to convert between binary and ASCII. See 
“Converting Data Between Binary and ASCII” on page 172 for more information.

BER Format
There is a problem with distributing the parameters in the previous structure. The 
struct is not standard; it is unique to Crypto-C. If one or both of the parties are not 
using Crypto-C, how do you give them the information? The standard is ASN.1, 
which defines Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER). 
See “BER/DER Encoding” on page 123 for a description of this topic.

The central authority puts the parameters into DER format, encodes them, and emails 
the encoding. The parties decode the DER string and convert that information into the 
parameters in the format of their choice.

This sounds difficult, but Crypto-C offers a means of doing it simply. Here, to obtain 
the parameters, you used B_GetAlgorithmInfo with AI_DHKeyAgree. Chapter 2 of the 
Reference Manual lists AI_DHKeyAgreeBER, which states:

A_DH_KEY_AGREE_PARAMS *dhKeyAgreeParams =
     (A_DH_KEY_AGREE_PARAMS *)NULL_PTR;

if ((status = B_GetAlgorithmInfo
     ((POINTER *)&dhKeyAgreeParams, dhParametersObj,
      AI_DHKeyAgree)) != 0)
  break;
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Crypto-C returns a pointer to where that information resides, not the information. As 
soon as the object that contains that information is destroyed, the information will no 
longer be accessible. Therefore, once you get the pointer to that information, copy it 
into your own buffer:

In summary, generate the parameters, get the algorithm info in BER format with 
B_GetAlgorithmInfo and AI_DHKeyAgreeBER, encode the BER data into ASCII format 
and send it to the Diffie-Hellman key agreement participants.

Note: The conversion into BER or DER is known as BER-encoding or DER-
encoding, and the conversion between binary to ASCII is known as encoding 
and decoding. This may get confusing, but the word encoding without a BER 
in front of it generally means binary to ASCII. If the encoding is BER- or DER-
encoding, the BER or DER should be explicitly stated.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure which gives the address and length of the DER-encoded 
algorithm identifier.

ITEM *cryptocDHParametersBER;
ITEM myDHParametersBER;
 
myDHParametersBER.data = NULL_PTR;
 
if ((status = B_GetAlgorithmInfo
     ((POINTER *)&cryptocDHParametersBER, myDHParametersObj,
      AI_DHKeyAgreeBER)) != 0)
  break;
 
myDHParametersBER.len = cryptocDHParametersBER->len;
myDHParametersBER.data = T_malloc (myDHParametersBER.len);
if ((status = (myDHParametersBER.data == NULL_PTR)) != 0)
  break;
T_memcpy (myDHParametersBER.data, cryptocDHParametersBER->data,
          myDHParametersBER.len);
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Diffie-Hellman Key Agreement
If you are one of the parties involved in the key agreement, perform the following 
steps. Note that instead of Update and Final, you use B_KeyAgreePhase1 and 
B_KeyAgreePhase2. Also, if you are writing an application that executes the Diffie-
Hellman key agreement, the application must be interactive.

This process will produce an agreed-upon secret value. That value may be larger than 
necessary. For instance, the agreement may produce a 64-byte agreed upon secret 
value, yet the parties may need only 8 bytes. The application must determine which 
bytes from the agreed upon secret value to use.

The example in this section corresponds to the file dhagree.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are two possible AIs to use in setting a Diffie-Hellman key agreement algorithm 
object: AI_DHKeyAgree and AI_DHKeyAgreeBER. Recall that in generating the Diffie-
Hellman parameters, the central authority set an algorithm object and then retrieved 
its info using B_GetAlgorithmInfo. The central authority then distributed that info to 
you, telling you which AI to use. For this example, use AI_DHKeyAgreeBER to match 
the usage in “Distributing Diffie-Hellman Parameters” on page 253:

B_ALGORITHM_OBJ dhKeyAgreeAlg = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dhKeyAgreeAlg)) != 0)
  break;

/* Assume you received the BER-encoded DH parameters from the
     central authority in the ITEM dhParametersBER. */
ITEM dhParametersBER;
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Step 3: Init
Initialize the algorithm object with B_KeyAgreeInit. The Reference Manual Chapter 4 
entry on this function indicates it takes four arguments. The first is the algorithm 
object, dhKeyAgreeAlg. The second is a key object. The Diffie-Hellman key agreement 
algorithm does not require a key, so use a properly cast NULL_PTR for this argument. 
The third argument is an algorithm chooser, and the last is a surrender context. This 
function is fast, so it is reasonable to pass a properly cast NULL_PTR for the surrender 
context.

Step 4: Phase 1
In Phase 1, you generate a random private value and compute a public value from 
that private value and the parameters. The Reference Manual Chapter 4 entry on 
B_KeyAgreePhase1 describes the format of its six arguments.

The first is the algorithm object. 

The second is output. This output is the public value, which will be the same size as 
the prime. You are responsible for allocating the memory for the buffer to contain the 
public value. In this example, you do not know how big the prime is; just set the 
algorithm with the BER-encoded info. That info does contain the size of the prime, 
but you would have to know exactly where to look. An easier way to find the prime 
size is by getting the algorithm info as AI_DHKeyAgree.

The third argument for the Phase 1 call is the address of an unsigned int. Crypto-C 
will place the length in bytes of the public value at that address.

if ((status = B_SetAlgorithmInfo
     (dhKeyAgreeAlg, AI_DHKeyAgreeBER,
      (POINTER)&dhParametersBER)) != 0)
  break;

B_ALGORITHM_METHOD *DH_AGREE_SAMPLE_CHOOSER[] = {
  &AM_DH_KEY_AGREE,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_KeyAgreeInit
     (dhKeyAgreeAlg, (B_KEY_OBJ)NULL_PTR, DH_AGREE_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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The fourth is the size of the buffer you allocated; if the buffer is not big enough to hold 
the output, Crypto-C will generate an error. 

The fifth argument is a random algorithm object. For this, complete Steps 1 through 4 
of “Generating Random Numbers” on page 165. You do not need random bytes, only 
an algorithm that can generate them. 

The last argument is a surrender context. This function does not return immediately, 
so a surrender context is helpful. Use the one outlined in “The Surrender Context” on 
page 118:

Step 5: Phase 2
After you have computed your public value, you must send it off to the other party 
and receive their public value. You need the same algorithm object from Phase 1 to 
complete Phase 2. See “Saving the Object State” on page 259 for information on how 
to do this.

The input of B_KeyAgreePhase2 is the other party’s public value; the output is the 
agreed-upon secret value. The output will be the same size as the prime; you must 
allocate the space to hold this output. Although the output will be at least 32 bytes, the 

unsigned char *myPublicValue = NULL_PTR;
unsigned int myPublicValueLen;
A_DH_KEY_AGREE_PARAMS *getParams;

/* Find out how big the prime is so we know how many bytes to
   allocate for the public value buffer.  */ 

if ((status = B_GetAlgorithmInfo
     ((POINTER *)&getParams, dhKeyAgreeAlg, AI_DHKeyAgree)) != 0)
  break;

myPublicValue = T_malloc (getParams->prime.len);
if ((status = (myPublicValue == NULL_PTR)) != 0)
  break;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_KeyAgreePhase1
     (dhKeyAgreeAlg, myPublicValue, &myPublicValueLen,
      getParams->prime.len, randomAlgorithm,
      &generalSurrenderContext)) != 0)
  break;
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parties might only need eight bytes for a session key. If that is the case, it is the 
application’s responsibility to specify which bytes of the agreed-upon secret value 
will be used. This function does not return immediately, so a surrender context is 
useful:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory:

Saving the Object State
Refer to “Saving State” on page 120 for information on how to receive a buffer that 
contains all of the data necessary to reconstruct the object, using the call 
B_SetAlgorithmState, to the state it was in at the time of calling the Get routine. You 
may call B_GetAlgorithmState after calling B_KeyAgreePhase1. When the application 
is ready to resume the key agreement operation, create an algorithm object and 
restore the state using B_SetAlgorithmState. See the dhagrsv.c sample for details.

/* The other party should send their public value and its length.  */

unsigned char *otherPublicValue;
unsigned int otherPublicValueLen;
unsigned char *agreedUponSecretValue = NULL_PTR;
unsigned int agreedUponSecretValueLen;
 
agreedUponSecretValue = T_malloc (getParams->prime.len);
if ((status = (agreedUponSecretValue == NULL_PTR)) != 0)
  break;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_KeyAgreePhase2
     (dhKeyAgreeAlg, agreedUponSecretValue,
      &agreedUponSecretValueLen, getParams->prime.len,
      otherPublicValue, otherPublicValueLen,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&dhKeyAgreeAlg);
B_DestroyAlgorithmObject (&randomAlgorithm);
T_free (myPublicValue);
T_free (agreedUponSecretValue);
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Performing Elliptic Curve Operations
Elliptic curve cryptosystems can be used for a number of public-key operations. 
Crypto-C supports the following elliptic curve features:

• Generation of elliptic curve parameters
• Elliptic curve key pair generation
• Elliptic Curve Signature Schemes (ECDSA)
• Elliptic Curve Authenticated Encryption Scheme (ECAES)
• Elliptic Curve Diffie-Hellman key agreement (ECDH)

Crypto-C also allows you to generate precomputed acceleration tables to speed up 
certain elliptic curve operations.

For a description of elliptic curve parameters and algorithms, see “Elliptic Curve 
Cryptography” on page 65.

Generating Elliptic Curve Parameters
Before you can perform any elliptic curve operations, you must create the parameters 
for the curve that you will be using. Once you have generated elliptic curve 
parameters, you can use the parameters to: generate a key pair, to create an 
acceleration table, or to perform Elliptic Curve Diffie-Hellman (ECDH) key 
agreement. The same elliptic curve parameters can be used for multiple operations. 
See “Elliptic Curve Parameters” on page 66 for more information.

You need to make some choices about the kind of elliptic curve you want to use. You 
need to choose what to use for a base field: an odd prime finite field or a field of even 
characteristic. If you choose a field of even characteristic, you also have to choose 
what type of basis you want to use. You also have to choose the number of bits that 
you want for the length of an element in the field.

For this example, you will use an odd prime field for the base field. The example in 
this section corresponds to the file ecparam.c.

Step 1: Creating an Algorithm Object
You need to create two algorithm objects. The first, paramGenObj, is initialized by the 
programmer prior to the parameter generation operation; it is used to hold 
information necessary to generate parameters. 
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The second, ecParamsObj, is set and initialized by B_GenerateParameters; it will hold 
the newly-generated elliptic curve parameters.

Step 2: Setting the Algorithm Object
You need to set the algorithm object that will be used to generate the elliptic curve 
parameters. The only AI that can be used to generate elliptic curve parameters is 
AI_ECParamGen. Chapter 2 in the Reference Manual gives the following: 

To supply the necessary information, pass a pointer to a B_EC_PARAM_GEN_PARAMS 
structure as the third argument to B_SetAlgorithmInfo. The B_EC_PARAM_GEN_PARAMS 
structure is defined in the Chapter 2 entry in the Reference Manual for AI_ECParamGen:

You must choose the field type and the length of the field element. The field type can 
be either: a prime field of odd characteristic, that is, Fp; or a field of even characteristic, 
F2m. 

For this example, set the arguments as shown here. The first argument specifies the 

B_ALGORITHM_OBJ paramGenObj = (B_ALGORITHM_OBJ)NULL_PTR;
B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject(&paramGenObj)) != 0)
  break;
if ((status = B_CreateAlgorithmObject(&ecParamsObj)) != 0)
  break;

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAM_GEN_PARAMS structure.

typedef struct { 
  unsigned int version;                          /* implementation version */
  unsigned int fieldType;             /* base field for the elliptic curve */
  unsigned int fieldElementBits;        /* length of field element in bits */
  unsigned int pointRepresentation;/*controls field element representation */
  unsigned int minOrderBits;    /* minimum size of group generated by base */
                            /* input of 0 defaults to fieldElementBits - 7 */
  unsigned int trialDivBound;      /* maximum size of second largest prime */
                                  /*  subgroup of group generated by base  */
                                            /*  input of 0 defaults to 255 */
  unsigned int tableLookup;           /* characteristic 2 only. Set if the */
                                  /*  use of precomputed params is desired */
} B_EC_PARAM_GEN_PARAMS;
C h a p t e r  7   P u b l i c - K e y  O p e r a t i o n s 2 6 1

Download from Www.Somanuals.com. All Manuals Search And Download.



Performing Elliptic Curve Operations
version number; in Crypto-C, the only version available is 0. 

The second argument specifies that you want your base field to be of the form Fp (p is 
an odd prime).

The third argument sets the length of a field element in bits; in this example, set it to 
be 160. For the prime field case, the size of a field element can be anywhere from 64 to 
384 bits. The length of a field element, along with minOrderBits, strongly affects the 
security of the system; the greater the length, the greater the security. However, the 
greater the length, the longer it takes to generate key pairs and encrypt and decrypt. 
Currently, RSA Security recommends a size of 160 to 170 bits for minOrderBits for 
prototyping and evaluation; because minOrderBits defaults to 7 bits smaller than 
fieldElementBits, fieldElementBits should be set to 167–177 bits.

For the legal values for fieldElementBits in the even characteristic case, see the entry 
for AI_ECParamGen in Chapter 2 of the Reference Manual.

Note: Generating an elliptic curve for even characteristic without table lookup 
(fieldtype = FT_F2_ONB or FT_F2_POLYNOMIAL and tableLookup = 0) can be 
extremely time-consuming, taking several hours in some cases. In general, 
larger values for minOrderBits means longer times for curve generation. 
Therefore, if you wish to generate curves for even characteristic, but do not 
want to use table lookup, you can speed curve generation by setting a smaller 
value for minOrderBits. Remember, however, that the size of minOrderBits is 
directly tied to the security of your elliptic curve cryptosystem. Setting 
minOrderBits allows you to make a trade-off between the time it takes to 
generate curves and the security of your system.

For the fourth argument, you should always specify CI_NO_COMPRESS. Regardless of 
the value placed here, Crypto-C will represent the base and public key points as non-
compressed. If elliptic curve point compression ever becomes of such practical value 
that it is implemented in a future release of Crypto-C, using CI_NO_COMPRESS will 
protect your application from unforeseen behavior when you rebuild your 
application.  

For the fifth and six arguments, pass 0; this tells Crypto-C to use its internal 
algorithms to generate its own values:
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Step 3: Init
You can pass a NULL_PTR for the surrender context, because B_GenerateInit is a 
speedy function. For AI_ECParamGen, Chapter 2 of the Reference Manual indicates 
which algorithm methods you need to include in your chooser, paramGenChooser:

Because you are using an odd prime, use AM_ECFP_PARAM_GEN:

Step 4: Update
No Update step is necessary for parameter generation.

  B_EC_PARAM_GEN_PARAMS paramGenInfo;
  paramGenInfo.version = 0;
  paramGenInfo.fieldType = FT_FP;  
  paramGenInfo.fieldElementBits = 160; 
  paramGenInfo.pointRepresentation = CI_NO_COMPRESS;
  paramGenInfo.minOrderBits = 0;
  paramGenInfo.trialDivBound = 0;

if ((status = B_SetAlgorithmInfo(paramGenObj, AI_ECParamGen,
                                   (POINTER)&paramGenInfo)) != 0)
    break;

Algorithm methods to include in application’s algorithm chooser: 
AM_ECFP_PARAM_GEN for odd prime fields and AM_ECF2POLY_PARAM_GEN for even 
characteristic.

B_ALGORITHM_METHOD *paramGenChooser[] = {
    &AM_ECFP_PARAM_GEN,
    &AM_ECF2POLY_PARAM_GEN,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };  

  if ((status = B_GenerateInit(paramGenObj, paramGenChooser,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Step 5: Generate 
This function may take a while, so you should use a surrender function. See “The 
Surrender Context” on page 118. B_GenerateParameters places the newly-generated 
elliptic curve parameters in ecParamsObj:

Step 6: Destroy
Destroy all algorithm objects that are no longer necessary. However, do not destroy 
ecParamsObj until you have retrieved and stored the parameters. See “Retrieving 
Elliptic Curve Parameters” on page 264 for more information. Destroy ecParamsObj 
when it is no longer needed:

Retrieving Elliptic Curve Parameters
Once you have your elliptic curve parameters in an algorithm object, you need to be 
able to retrieve those parameters in an accessible form. Once you have retrieved your 
parameters, you can store the information or print it out. You also need to retrieve the 
elliptic curve parameters from the algorithm object when you generate acceleration 
tables.

This section outlines two application-specific procedures, AllocAndCopyECParamInfo 
and FreeECParamInfo, that are used to retrieve and store information. These 
procedures are referred to in subsequent sections.

To retrieve information from an algorithm object, call B_GetAlgorithmInfo with an 
appropriate AI. The only AI listed in the Reference Manual that allows you to set or 
retrieve the parameters is AI_ECParameters:

  generalSurrenderContext.Surrender = GeneralSurrenderFunction;
  generalSurrenderContext.handle = (POINTER)&generalFlag;
  generalSurrenderContext.reserved = NULL_PTR;
  generalFlag = 0;

if ((status = B_GenerateParameters(paramGenObj, ecParamsObj,
                                     randomAlgorithm,
                                     &generalSurrenderContext)) != 0)
    break;

B_DestroyAlgorithmObject (&paramGenObj);
B_DestroyAlgorithmObject (&randomAlgorithm);
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The Reference Manual Chapter 2 entry for AI_ECParameters also states that the format 
of the information returned by B_GetAlgorithmInfo is a pointer to an A_EC_PARAMS 
structure:

Assume that the elliptic curve parameters are placed in the algorithm object 
ecParamsObj (see “Generating Elliptic Curve Parameters” on page 260). Make the 
appropriate call to B_GetAlgorithmInfo:

Note that cryptocECParamInfo is a pointer to the information, not the information itself. 
The memory that cryptocECParamInfo points to belongs to Crypto-C; another call to 
Crypto-C may alter or destroy it. Therefore, once you get the pointer to the 
information, you must copy it to your own buffer.

Type of information this allows you to use:
the parameters generated by executing AI_ECParamGen for either generating keys or 
executing key agreements.

typedef struct {
  unsigned int version;                          /* implementation version */
  unsigned int fieldType;                  /* indicates type of base field */
  ITEM         fieldInfo;                       /*  It is the prime number */
                                        /* in case that fieldType = FT_FP; */
                  /* the basis polynomial if fieldType = FT_F2_POLYNOMIAL; */
                   /* and the degree of the field if fieldType = FT_F2_ONB */
  ITEM         coeffA;                       /* elliptic curve coefficient */
  ITEM         coeffB;                       /* elliptic curve coefficient */
  ITEM         base;                     /* elliptic curve group generator */
  ITEM         order;            /* order of subgroup’s generating element */
  ITEM         cofactor;                   /* the cofactor of the subgroup */
  unsigned int pointRepresentation;  /* not used. */
                                     /* set to CI_NO_COMPRESS as a default */
  unsigned int fieldElementBits;             /* field element size in bits */
} A_EC_PARAMS;

  A_EC_PARAMS *cryptocECParamInfo;

  if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParamInfo,
                                   ecParamsObj, AI_ECParameters)) != 0)
    break;
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The following procedure, AllocAndCopyECParamInfo, is an example of an application-
specific procedure that allocates space to store the parameters. You can also write 
your own procedure to satisfy the needs of your application:

int AllocAndCopyECParamInfo(output, input)
A_EC_PARAMS *output;
A_EC_PARAMS *input;
{
  int status;

  do {
    output->version = input->version;
    
    output->fieldType = input->fieldType;
 
    output->fieldInfo.len = input->fieldInfo.len;
    output->fieldInfo.data = T_malloc(output->fieldInfo.len);
    if ((status = (output->fieldInfo.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->fieldInfo.data, input->fieldInfo.data,
             output->fieldInfo.len);

    output->coeffA.len = input->coeffA.len;
    output->coeffA.data = T_malloc(output->coeffA.len);
    if ((status = (output->coeffA.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->coeffA.data, input->coeffA.data,
             output->coeffA.len);

    output->coeffB.len = input->coeffB.len;
    output->coeffB.data = T_malloc(output->coeffB.len);
    if ((status = (output->coeffB.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->coeffB.data, input->coeffB.data,
             output->coeffB.len);

    output->base.len = input->base.len;
    output->base.data = T_malloc(output->base.len);
    if ((status = (output->base.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->base.data, input->base.data,
             output->base.len);
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For this example application, use AllocAndCopyECParamInfo() to make a copy of the 
information that cryptocECParamInfo points to and place that in your own buffer, 
ecParamInfo:

When the information in ecParamInfo is no longer needed, you must remember to free 
any memory that you allocated:

where FreeECParamInfo is a procedure that performs this operation. 

    output->order.len = input->order.len;
    output->order.data = T_malloc(output->order.len);
    if ((status = (output->order.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->order.data, input->order.data,
             output->order.len);

    output->cofactor.len = input->cofactor.len;
    output->cofactor.data = T_malloc(output->cofactor.len);
    if ((status = (output->cofactor.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->cofactor.data, input->cofactor.data,
             output->cofactor.len);

    output->pointRepresentation = input->pointRepresentation;
    
    output->fieldElementBits = input->fieldElementBits;
  } while(0);

  if (status != 0)
    printf("AllocAndCopyECParamInfo failed with status %i\n", status);
  
  return status;
}

  A_EC_PARAMS ecParamInfo;
 
  if ((status = AllocAndCopyECParamInfo(&ecParamInfo,
                                        cryptocECParamInfo)) != 0)
    break;

  FreeECParamInfo(&ecParamInfo);
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In the sample code, FreeECParamInfo is implemented as follows:

Generating an Elliptic Curve Key Pair
In this section, you will generate a key pair suitable for use with Elliptic Curve DSA 
(ECDSA) and the Elliptic Curve Authenticated Encryption Scheme (ECAES). 

You can optionally use an acceleration table to speed up the key generation operation. 
This is useful if you will be doing key generation with the same elliptic curve several 
times. If you will be using an acceleration table with this example, assume that you 
have gone through the steps of generating an acceleration table and that you have the 
table in the ITEM structure accelTableItem.

Step 1: Create
Create the algorithm object that you will use to generate the key pair:

Also create the key objects to hold the keys after they have been generated:

void FreeECParamInfo(ecParams)
A_EC_PARAMS *ecParams;
{
  T_free(ecParams->fieldInfo.data);
  T_free(ecParams->coeffA.data);
  T_free(ecParams->coeffB.data);
  T_free(ecParams->base.data);
  T_free(ecParams->order.data);
  T_free(ecParams->cofactor.data);
}

  B_ALGORITHM_OBJ ecKeyGen = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&ecKeyGen)) != 0)
    break;

  B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
  B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
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Step 2: Set
The Reference Manual indicates that the appropriate AI to use for generating an elliptic 
curve key pair is AI_ECKeyGen. You must set the algorithm object with the parameter 
information for the elliptic curve that you are using to generate the key. You do this 
by providing B_SetAlgorithmInfo with a pointer to a B_EC_PARAMS structure. 

Place the elliptic curve parameters in the A_EC_PARAMS structure ecParamInfo. You can 
do this either by setting ecParamInfo with the appropriate values, or by following the 
steps outlined in “Retrieving Elliptic Curve Parameters” on page 264 to retrieve the 
parameters from an algorithm object and place them into an A_EC_PARAMS structure. 

The AI that describes data in this format is AI_ECParameters:

You can also optionally use the acceleration table to speed up key generation. See 
“Generating Acceleration Tables” on page 273 for more information. Assume that you 
have the acceleration table corresponding to your elliptic curve in the ITEM structure 
accelTableItem. The appropriate AI to use with B_SetAlgorithmInfo in this case is 
AI_ECAcceleratorTable. Pass in a pointer to the ITEM structure holding the 
acceleration table as the third argument to B_SetAlgorithmInfo. Now set your key-
generation algorithm object with the acceleration table information:

  if ((status = B_CreateKeyObject (&publicKey)) != 0)
    break;
  if ((status = B_CreateKeyObject (&privateKey)) != 0)
    break;

typedef struct {
  B_INFO_TYPE parameterInfoType;
  POINTER parameterInfoValue;
} B_EC_PARAMS;

  B_EC_PARAMS paramInfo;

  paramInfo.parameterInfoType = AI_ECParameters;
  paramInfo.parameterInfoValue = (POINTER)&ecParamInfo;

  if ((status = B_SetAlgorithmInfo (ecKeyGen, AI_ECKeyGen,
                                    (POINTER)&paramInfo)) != 0)
    break;
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Step 3: Initialize
Here, you can pass a NULL_PTR for the surrender context, because B_GenerateInit is a 
speedy function. The Reference Manual entry on AI_ECKeyGen indicates which 
algorithm methods you need to include in your chooser, keyGenChooser:

Step 4: Update
There is no Update step for key generation.

Step 5: Generate
Now you can complete the key-generation operation. Note that you must pass in a 
properly-initialized random algorithm as the fourth argument:

Step 6: Destroy
Remember to destroy all key objects and algorithm objects once they are no longer 
needed:

  if ((status = B_SetAlgorithmInfo (ecKeyGen, AI_ECAcceleratorTable,
                                    (POINTER)&accelTableItem)) != 0)
    break;

  B_ALGORITHM_METHOD *keyGenChooser[] = {
    &AM_ECFP_KEY_GEN,
    &AM_ECF2POLY_KEY_GEN,    
    (B_ALGORITHM_METHOD *)NULL_PTR
  };

  if ((status = B_GenerateInit (ecKeyGen, keyGenChooser,
                                (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  if ((status = B_GenerateKeypair
                (ecKeyGen, publicKey, privateKey, randomAlgorithm,
                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Retrieving an Elliptic Curve Key
If you need to store or transport information about your elliptic curve keys, you need 
to be able to retrieve the key information from an algorithm object. This section 
outlines the steps needed to retrieve information for a public key. The steps for 
retrieving a private key are similar.

You need to call B_GetKeyInfo with the appropriate KI. The Reference Manual 
describes two KIs for use with elliptic curve public keys: KI_ECPublic and 
KI_ECPublicComponent. However, KI_ECPublicComponent does not supply the elliptic 
curve parameters, which must be associated with any elliptic curve key. Therefore, 
you can only use KI_ECPublicComponent if you only need the public component, for 
example, if you have already retrieved the appropriate EC parameters. Therefore, for 
this example, you’ll use KI_ECPublic.

KI_ECPublic gives a pointer to an A_EC_PUBLIC_KEY structure:

After you have your public key information in the key object publicKey, make a call to 
B_GetKeyInfo. See “Generating an Elliptic Curve Key Pair” on page 268 for more 
information:

  B_DestroyAlgorithmObject(&ecKeyGen);
  B_DestroyAlgorithmObject(&randomAlgorithm);
  B_DestroyKeyObject(&publicKey);
  B_DestroyKeyObject(&privateKey);

typedef struct {
  ITEM        publicKey;                               /* public component */
  A_EC_PARAMS curveParams;     /* the underlying elliptic curve parameters */
} A_EC_PUBLIC_KEY;

  A_EC_PUBLIC_KEY *cryptocPublicKeyInfo;
 
  if ((status = B_GetKeyInfo((POINTER *)&cryptocPublicKeyInfo,
                             *publicKey, KI_ECPublic)) != 0)
    break;
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B_GetKeyInfo gives a pointer to memory, but this memory is owned by Crypto-C. If 
you want to store this information, you need to make your own copy of the 
information because another call to Crypto-C may modify the memory owned by 
Crypto-C. The routines AllocAndCopyECPubKeyInfo and FreeECPubKeyInfo given here 
retrieve and store the key information. These routines are used in the sample code for 
building public-key acceleration tables.

AllocAndCopyECPubKeyInfo takes as input a pointer to an A_EC_PUBLIC_KEY structure 
containing memory belonging to Crypto-C. It copies the information from the 
structure owned by Crypto-C to an A_EC_PUBLIC_KEY structure created by the 
application and outputs a pointer to the structure just created. The memory allocated 
with AllocAndCopyECPubKeyInfo should be freed using FreeECPubKeyInfo when 
appropriate:

FreeECPubKeyInfo takes a pointer to an A_EC_PUBLIC_KEY structure that contains space 
that was allocated by AllocAndCopyECPubKeyInfo and calls T_malloc to free all allocated 
data:

int AllocAndCopyECPubKeyInfo(output, input)
A_EC_PUBLIC_KEY *output;
A_EC_PUBLIC_KEY *input;

{
  int status;

  do {
    output->publicKey.len = input->publicKey.len;
    output->publicKey.data = T_malloc(output->publicKey.len);
    if ((status = (output->publicKey.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->publicKey.data, input->publicKey.data,
             output->publicKey.len);

    if ((status = AllocAndCopyECParamInfo(&(output->curveParams),
                                          &(input->curveParams))) != 0)
      break;
  } while(0);

  if (status != 0)
    printf("AllocAndCopyECPubKeyInfo failed with status %i\n", status);
 
  return status;
}    /*  end AllocAndCopyECPubKeyInfo  */
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Generating Acceleration Tables
An acceleration table stores precomputed versions of certain values that are 
frequently used during some elliptic curve operations. Acceleration tables can speed 
up certain elliptic curve operations. However, this increase in speed comes at the cost 
of space, as these tables tend to be very large. 

There are two types of acceleration tables in Crypto-C:

• Generic acceleration table: stores values that are commonly used in many elliptic-
curve operations, including key-pair generation, Elliptic Curve Diffie-Hellman 
key agreement, and ECDSA signing and verifying. 

• Public-key acceleration table: stores all the values stored by the generic acceleration 
table, as well as additional values commonly used only in ECDSA verification.

The examples in this section are in the file eparam.c.

Generating a Generic Acceleration Table
This acceleration table can be used to speed up key-pair generation, public-key 
encryption, Elliptic Curve Diffie-Hellman key agreement, and ECDSA signing and 
verifying. This table is most useful if these operations are performed repeatedly with 
the same elliptic curve. The function BuildAccelTable, used in the sample code and 
defined in the file ecparam.c, demonstrates the following steps in creating the 
acceleration table.

/*  This procedure takes a pointer to an A_EC_PUBLIC_KEY structure containing
 *  space allocated by AllocAndCopyECPubKeyInfo and frees all data allocated
 *  with T_malloc.  */

void FreeECPubKeyInfo(pubKey)
A_EC_PUBLIC_KEY *pubKey;
{
  T_free(pubKey->publicKey.data);
  FreeECParamInfo(&(pubKey->curveParams));
}    /*  end FreeECPubKeyInfo  */
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Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set 

Step 2a: Retrieve the elliptic curve parameters
Because you are generating an acceleration table corresponding to a particular elliptic 
curve, you need to retrieve the elliptic curve parameters and place them in the 
algorithm object. Assume that you have gone through the steps to generate an elliptic 
curve and you have stored the parameters in the algorithm object ecParamsObj. See 
“Retrieving Elliptic Curve Parameters” on page 264 for more details:

Step 2b: Format the information
You must put the information you retrieved into the proper format. The Reference 
Manual Chapter 2 entry for AI_ECBuildAcceleratorTable says that you must supply 
a pointer to a B_EC_PARAMS structure to B_SetAlgorithmInfo:

    B_ALGORITHM_OBJ buildTable = (B_ALGORITHM_OBJ)NULL_PTR;

    if ((status = B_CreateAlgorithmObject(&buildTable)) != 0)
      break;

  A_EC_PARAMS *cryptocECParamInfo;
  A_EC_PARAMS ecParamInfo;

  if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParamInfo,
                                     ecParamsObj, AI_ECParameters)) != 0)
    break;

   if ((status = AllocAndCopyECParamInfo(&ecParamInfo, 
                                        cryptocECParamInfo)) != 0)
     break;

typedef struct {
  B_INFO_TYPE parameterInfoType;
  POINTER     parameterInfoValue;
} B_EC_PARAMS;
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The first field in this structure, parameterInfoType, is used to interpret the elliptic 
curve parameter information you supply in the second field, parameterInfoValue. The 
EC parameter information you have is an A_EC_PARAMS structure containing the data 
that describes the EC parameters. The B_INFO_TYPE that is used to properly interpret 
that information is AI_ECParameters. 

Set the parameterInfoType field to AI_ECParameters and give the parameterInfoValue 
field a pointer to the location of the A_EC_PARAMS structure:

Step 3: Init
In this step, you must supply the appropriate algorithm methods through the 
algorithm chooser. The Reference Manual Chapter 2 entry for 
AI_ECBuildAcceleratorTable indicates which AMs you must include in your 
chooser. This step doesn’t take much time to complete, so you can pass in a NULL_PTR 
for your surrender context:

Step 4: Update
There is no Update step for building acceleration tables.

   B_EC_PARAMS paramInfo;
   paramInfo.parameterInfoType = AI_ECParameters;
   paramInfo.parameterInfoValue = (POINTER)&ecParamInfo;
    
    if ((status = B_SetAlgorithmInfo
      (buildTable, AI_ECBuildAcceleratorTable,(POINTER)&paramInfo)) != 0)
     break;

    B_ALGORITHM_METHOD *ecAccelChooser[] = {
      &AM_ECFP_BLD_ACCEL_TABLE,                     /* for odd prime field */
      &AM_ECF2POLY_BLD_ACCEL_TABLE,          /* for characteristic 2 field */
      (B_ALGORITHM_METHOD *)NULL_PTR
    };

    if ((status = B_BuildTableInit(buildTable, ecAccelChooser,
                                   (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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Step 5: Final

Step 5a: Allocate memory
You must allocate sufficient memory to hold the acceleration table. According to the 
Reference Manual, you can use B_BuildTableGetBufSize to tell how much space will 
be required to store the acceleration table:

Step 5b: Build the acceleration table
Finally, build the acceleration table and store it in an ITEM structure. You store it this 
way for convenience—when you actually use the acceleration table, you will have to 
provide it in an ITEM structure to B_SetAlgorithmInfo. Building an acceleration table 
can take a lot of time, so use a surrender context. See “The Surrender Context” on 
page 118 for more information:

    ITEM accelTableItem;
    unsigned int maxTableLen;

    if ((status = B_BuildTableGetBufSize(buildTable, &maxTableLen)) != 0)
      break;

    accelTableItem.data = T_malloc(maxTableLen);

    if ((status = (accelTableItem.data == NULL_PTR)) != 0)
      break;

    ITEM accelTableItem;

    generalSurrenderContext.Surrender = GeneralSurrenderFunction;
    generalSurrenderContext.handle = (POINTER)&generalFlag;
    generalSurrenderContext.reserved = NULL_PTR;
    generalFlag = 0;

    if ((status = B_BuildTableFinal(buildTable, accelTableItem.data,
                                    &(accelTableItem.len), maxTableLen,
                                    &generalSurrenderContext)) != 0)
      break;
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Step 6: Destroy
You must free all allocated memory and destroy all objects when they are no longer 
needed so that all sensitive information is zeroized and freed:

Generating a Public-Key Acceleration Table
This special-purpose acceleration table can be used to speed up ECDSA verification. 
Again, the cost in time to generate the table and space to store it must be weighed 
against the speedup in verification that it will provide. This table is most useful if 
ECDSA verification will be performed repeatedly with the same public key. The 
function BuildPubKeyAccelTable, used in the sample code and defined in the file 
ecparam.c, demonstrates the steps in creating the public-key acceleration table. 

Step 1: Create
Create the algorithm object that will be used in building the public-key acceleration 
table. Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype 
in Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set
Retrieve the public-key information and place it in the algorithm object used to build 
the acceleration table for that public key.

Step 2a: Retrieve the public key information
Because B_GetKeyInfo returns a pointer to memory that belongs to Crypto-C, you 
must make a copy of this information. See “Retrieving an Elliptic Curve Key” on 
page 271 for the definitions of  AllocAndCopyECPubKeyInfo and FreeECPubKeyInfo. 

  T_memset(accelTableItem.data, 0, accelTableItem.len);
  T_free(accelTableItem.data);
  B_DestroyAlgorithmObject(&buildTable);

    B_ALGORITHM_OBJ buildTable = (B_ALGORITHM_OBJ)NULL_PTR;

    if ((status = B_CreateAlgorithmObject(&buildTable)) != 0)
      break;
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Of course, you can write your own versions of these procedures to satisfy the needs of 
your application: 

When the information is no longer needed, don’t forget to free the allocated memory:

Step 2b: Put the information retrieved in the proper format
To build the public-key acceleration table, use AI_ECBuildPubKeyAccelTable. The 
Reference Chapter 2 entry for AI_ECBuildPubKeyAccelTable states that you must 
supply a pointer to a B_EC_PARAMS structure. The procedure you use to fill this 
structure in is the same as the one you used to build the generic acceleration table. 
However, because you are building an acceleration table based on the public key, you 
must also pass in information about the public key. 

You have an A_EC_PUBLIC_KEY struct containing the public key information, so the 
appropriate B_INFO_TYPE to use is AI_ECPubKey. According to the Reference Manual 
entry on AI_ECPubKey, you should pass B_SetAlgorithmInfo a pointer to 
A_EC_PUBLIC_KEY structure. Set the parameterInfoType to AI_ECPubKey and give 
parameterInfoValue the pointer to your A_EC_PUBLIC_KEY structure publicKeyInfo.

    A_EC_PUBLIC_KEY *cryptocPublicKeyInfo;
    A_EC_PUBLIC_KEY publicKeyInfo;

    if ((status = B_GetKeyInfo((POINTER *)&cryptocPublicKeyInfo,
                               *publicKey, KI_ECPublic)) != 0)
      break;

    if ((status = AllocAndCopyECPubKeyInfo(&publicKeyInfo,
                                         cryptocPublicKeyInfo)) != 0)
      break;

  FreeECPubKeyInfo(&publicKeyInfo);

    B_EC_PARAMS paramInfo;

    paramInfo.parameterInfoType = AI_ECPubKey;
    paramInfo.parameterInfoValue = (POINTER)&publicKeyInfo;
    
    if ((status = B_SetAlgorithmInfo(buildTable, AI_ECBuildPubKeyAccelTable,
                                     (POINTER)&paramInfo)) != 0)
      break;
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Step 3: Init
To initialize the proper algorithms, you must supply an algorithm chooser with the 
appropriate algorithm methods. See the Reference Manual Chapter 2 entry for 
AI_ECBuildPubKeyAccelTable for a list of the appropriate AMs to include in the 
chooser:

Step 4: Update
There is no Update step for building acceleration tables.

Step 5: Final

Step 5a: Allocate memory
You must allocate sufficient memory to hold the acceleration table. Use 
B_BuildTableGetBufSize to obtain the maximum size of the public key acceleration 
table. Then allocate enough space to hold the table:

    B_ALGORITHM_METHOD *ecAccelChooser[] = {
      &AM_ECFP_BLD_PUB_KEY_ACC_TAB,
      &AM_ECF2POLY_BLD_PUB_KEY_ACC_TAB,
      (B_ALGORITHM_METHOD *)NULL_PTR
    };

    if ((status = B_BuildTableInit(buildTable, ecAccelChooser,
                                   (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    ITEM pubKeyAccelTableItem;
    unsigned int maxTableLen;

    if ((status = B_BuildTableGetBufSize(buildTable, &maxTableLen)) != 0)
      break;

    pubKeyAccelTableItem.data = T_malloc(maxTableLen);

    if ((status = (pubKeyAccelTableItem.data == NULL_PTR)) != 0)
      break;
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Step 5b: Build the public-key acceleration table
It can take a while to generate the table, so use a surrender function. See “The 
Surrender Context” on page 118 for more information:

Step 6: Destroy
Zeroize and free all sensitive information when it is no longer needed:

Performing EC Diffie-Hellman Key Agreement
Performing elliptic curve key agreement is similar to the ordinary Diffie-Hellman key 
agreement scheme, which allows two parties to obtain the same symmetric key. First, 
the two parties seeking to generate a secret key need to agree on the elliptic curve 
parameters. The parameters can be generated by a central authority or by the parties 
themselves. 

The example in this section corresponds to the file ecdh.c. 

In this example, the two parties who wish to derive the same secret key are Alice and 
Bob. Both parties need to be provided with the same parameters:

    ITEM pubKeyAccelTableItem;

    generalSurrenderContext.Surrender = GeneralSurrenderFunction;
    generalSurrenderContext.handle = (POINTER)&generalFlag;
    generalSurrenderContext.reserved = NULL_PTR;
    generalFlag = 0;    

    if ((status = B_BuildTableFinal
                    (buildTable, pubKeyAccelTableItem.data,
                    &(pubKeyAccelTableItem.len), maxTableLen,
                    &generalSurrenderContext)) != 0)
      break;

  T_memset(pubKeyAccelTableItem.data, 0, pubKeyAccelTableItem.len);
  T_free(pubKeyAccelTableItem.data);
  B_DestroyAlgorithmObject(&buildTable);

  B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;
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To initialize ecParamsObj with a set of parameters describing an elliptic curve, follow 
the steps in the section “Generating Elliptic Curve Parameters” on page 260. Assume 
that these steps have been successfully completed and ecParamsObj contains the 
common parameters for Alice and Bob. Put the elliptic curve parameters in the 
A_EC_PARAMS structure, ecParams. For an implementation of an application-specific 
procedure, AllocAndCopyECParamInfo, which retrieves and stores the parameters, see 
“Retrieving Elliptic Curve Parameters” on page 264: 

You will walk through the steps that Alice goes through, keeping in mind that Bob, 
perhaps in another application, is performing the same steps. 

Note: If this key agreement operation is performed several times with the same 
parameters, you may wish to use the acceleration table. See “Generating 
Acceleration Tables” on page 273 for more information.

Step 1: Create
Create the algorithm object which you will use to perform the key agreement:

Step 2: Set
Set the algorithm object with the information necessary to perform the operation. 
AI_EC_DHKeyAgree, when used as the second argument to B_SetAlgorithmInfo, takes 
as the third argument a pointer to a B_EC_PARAMS structure:

  A_EC_PARAMS ecParams;  
  A_EC_PARAMS *cryptocECParams;

  if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParams, alice,
                                   AI_ECParameters)) != 0)
    break;

  if ((status = AllocAndCopyECParamInfo(&ecParams, cryptocECParams)) != 0)
    break;

  B_ALGORITHM_OBJ alice = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject(&alice)) != 0)
    break;
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Because you have the EC parameters in the A_EC_PARAMS structure ecParams, the 
appropriate AI that describes the data is AI_ECParameters:

Step 2b (optional): Set Acceleration Table Info
If you are using an acceleration table, you need to set the algorithm object with the 
appropriate acceleration table. Once you have gone through the steps in “Generating 
Acceleration Tables” on page 273 and have an ITEM structure containing the 
acceleration table, you can pass a pointer to the ITEM structure as the third argument 
to B_SetAlgorithmInfo:

Step 3: Initialize
Initialize the algorithm object to perform the key agreement protocol. The Reference 
Manual Chapter 2 entry for AI_EC_DHKeyAgree states which algorithm methods to 
include in your chooser:

typedef struct {
  B_INFO_TYPE parameterInfoType;
  POINTER     parameterInfoValue;
} B_EC_PARAMS;

  B_EC_PARAMS commonECParams;
  commonECParams.parameterInfoType = AI_ECParameters;
  commonECParams.parameterInfoValue = (POINTER)&ecParams;

  if ((status = B_SetAlgorithmInfo(alice, AI_EC_DHKeyAgree,
                                   (POINTER)&commonECParams)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo (alice, AI_ECAcceleratorTable,
                                    (POINTER)&aTableItem)) != 0)
    break;

  B_ALGORITHM_METHOD *EC_DH_CHOOSER[] = {
    &AM_ECFP_DH_KEY_AGREE,
    &AM_ECF2POLY_DH_KEY_AGREE,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };
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You must allocate space to hold the results of Phase 1 and Phase 2. The largest size of 
Phase 1 output you can get is one byte larger than twice the field element size. For 
Phase 2, the size of the output should be the same as the field element size. (See the 
Reference Manual Chapter 2 entry for AI_EC_DHKeyAgree for details.) 

You can get the field element size using Alice’s elliptic curve parameters. Since you 
have the parameters in the A_EC_PARAMS structure ecParams, look at the 
fieldElementBits field, which gives you the required information. A simple 
manipulation gives you the field element length in bytes:

Step 4: Phase 1
During this phase, each party computes a private value and a public value. The 
private value is secret and currently cannot be accessed though the Crypto-C API. The 
public value should be transported to the other party. Note that you will have to 
supply a properly initialized random algorithm as the fifth argument to 
B_KeyAgreePhase1:

  if ((status = B_KeyAgreeInit(alice, (B_KEY_OBJ)NULL_PTR, EC_DH_CHOOSER,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned int fieldElementLen, maxPhase1Len, maxPhase2Len;

  fieldElementLen = (ecParams->fieldElementBits + 7) / 8;
  maxPhase1Len = (fieldElementLen * 2);
  maxPhase2Len = fieldElementLen;

  unsigned char *alicePublicValue = NULL_PTR;
  unsigned int alicePublicValueLen;
  alicePublicValue = T_malloc(maxPhase1Len);

  if ((status = (alicePublicValue == NULL_PTR)) != 0)
    break;

  if ((status = B_KeyAgreePhase1(alice, alicePublicValue,
                                 &alicePublicValueLen, maxPhase1Len,
                                 randomAlgorithm,
                                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Step 5:  Phase 2
By the time you have reached this step, Alice and Bob have exchanged public values. 
Assume that the pointer bobPublicValue points to Bob’s public value and 
bobPublicValueLen gives the length of Bob's public value:

Using Bob’s public value, Alice can compute the secret key that she and Bob will use 
to communicate with each other:

Step 6: Destroy
Always destroy key objects and algorithm objects once they are no longer needed:

Performing ECDSA in Compliance with ANSI X9.62
The Elliptic Curve Digital Signature Agreement (ECDSA) is an elliptic curve analogue 
of DSA. This section shows how to perform ECDSA in compliance with the ANSI 
X9.62 Standard, which specifies an implementation of ECDSA. 

  unsigned char *bobPublicValue;
  unsigned int bobPublicValueLen;

  unsigned char *aliceSecretValue = NULL_PTR;
  unsigned int aliceSecretValueLen;
  aliceSecretValue = T_malloc(maxPhase2Len);

  if ((status = (aliceSecretValue == NULL_PTR)) != 0)
    break;

  if ((status = B_KeyAgreePhase2(alice, aliceSecretValue,
                                 &aliceSecretValueLen, maxPhase2Len,
                                 bobPublicValue, bobPublicValueLen,
                                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  T_free (alicePublicValue);
  T_free (aliceSecretValue);
  B_DestroyAlgorithmObject(&randomAlgorithm);
  B_DestroyAlgorithmObject(&alice);
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To sign an arbitrarily long message with the elliptic curve version of DSA, you can 
use AI_EC_DSAWithDigest. First, you need to generate parameters for an elliptic curve 
and a key pair from that curve. Then, you will specify a digest algorithm for use with 
ECDSA in signing the message. Currently, the only digest algorithm supported for 
this operation is SHA1. 

The example in this section corresponds to the file ecdsadig.c.

Generating EC Parameters
See the section “Generating Elliptic Curve Parameters” on page 260 for the steps you 
must complete to generate a new curve. You will need a properly initialized pseudo-
random number generator. Assume that the function InitializeRandomAlgorithm goes 
through Steps 1-4 in “Generating Random Numbers” on page 165. Also, assume that 
the function InitializeECParamsObj goes through the steps in “Generating Elliptic 
Curve Parameters” on page 260 to generate new parameters and place them in 
ecParamsObj:

Now you have a properly initialized random algorithm object, randomAlgorithm, and 
an algorithm object, ecParamsObj, containing the parameters that describe the elliptic 
curve that you are going to use. 

Generating an EC Key Pair
You also need to generate a public and private key. See “Generating an Elliptic Curve 
Key Pair” on page 268 for the required steps. To complete those steps, you will need a 
properly initialized random algorithm, the parameters describing an elliptic curve, 
and optionally the acceleration table corresponding to that curve:

  B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
  B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = InitializeRandomAlgorithm (&randomAlgorithm)) != 0)
    break;

  if ((status = InitializeECParamsObj (&ecParamsObj,
                                       &randomAlgorithm)) != 0)
    break;
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Assume that the steps in “Generating an Elliptic Curve Key Pair” on page 268 have 
been completed and that publicKey and privateKey are ready to be used.

Computing a Digital Signature

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set
The appropriate AI to use is AI_EC_DSAWithDigest. According to the entry in the 
Reference Manual, you have to provide a pointer to a B_DIGEST_SPECIFIER structure to 
B_SetAlgorithmInfo:

Currently, the only digest algorithm supported is SHA1. This does not require any 
parameters, so specify NULL_PTR for digestInfoParams:

  B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
  B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

  if ((status = GenerateECKeys (&publicKey, &privateKey,
                               &ecParamsObj, &randomAlgorithm) != 0)

  B_ALGORITHM_OBJ ecDSASign = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&ecDSASign)) != 0)
    break;

typedef struct {
  B_INFO_TYPE digestInfoType;
  POINTER     digestInfoParams;
} B_DIGEST_SPECIFIER;
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Step 2b (optional): Set Acceleration Table Info

Go through the steps in the section “Generating Acceleration Tables” on page 273 to 
create an acceleration table, placing the table information in aTableItem:

Step 3: Init
Build an algorithm chooser with the appropriate AMs:

Now you can associate your private key and your algorithm chooser with the 
algorithm object:

  B_DIGEST_SPECIFIER digestInfo;
  digestInfo.digestInfoType = AI_SHA1;
  digestInfo.digestInfoParams = NULL_PTR;

  if ((status = B_SetAlgorithmInfo (ecDSASign, AI_EC_DSAWithDigest,
                                    (POINTER)&digestInfo)) != 0)
    break;

  ITEM aTableItem;

  if ((status = B_SetAlgorithmInfo (ecDSASign, AI_ECAcceleratorTable,
                                    (POINTER)&aTableItem)) != 0)
    break;

  B_ALGORITHM_METHOD *EC_DSA_CHOOSER[] = {
    &AM_SHA,
    &AM_ECFP_DSA_SIGN,
    &AM_ECF2POLY_DSA_SIGN,
    &AM_ECFP_DSA_VERIFY,
    &AM_ECF2POLY_DSA_VERIFY,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };
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Step 4: Update
Now, using B_SignUpdate, pass in the data to be signed:

Step 5: Final
First you must allocate space to store the signature. The output of the ECDSA 
signature is the BER encoding of a sequence of two integers, (r,s). At most, the size of 
the output will be six bytes more than twice the length of the order. Retrieve the field 
element length from ecParamsObj and do a simple manipulation to find the field 
element length in bytes.

Now, finalize the process and retrieve the signature. Note that the Reference Manual 
entry for AI_EC_DSAWithDigest indicates that you will have to pass in a properly 

  if ((status = B_SignInit (ecDSASign, privateKey, EC_DSA_CHOOSER,
                            (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned char *dataToSign = "Some arbitrarily long piece of data to 
sign...";
  unsigned int dataToSignLen = strlen(dataToSign) + 1; 
  if ((status = B_SignUpdate (ecDSASign, dataToSign, dataToSignLen,
                              (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  A_EC_PARAMS *ecParamInfo;
  unsigned int order, maxSignatureLen;  
  unsigned char *signature;

  if ((status = B_GetAlgorithmInfo ((POINTER *)&ecParamInfo, ecParamsObj,
                                    AI_ECParameters)) != 0)
    break;

  order = (ecParamInfo->order.len + 7) / 8;
  maxSignatureLen = (2 * order) + 6;
  signature = T_malloc(maxSignatureLen);
  if ((status = (signature == NULL_PTR)) != 0)
    break;
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initialized random algorithm in B_SignFinal:

Step 6: Destroy
Destroy all objects that are no longer needed:

Verifying a Digital Signature
To verify the signature, you must go through a similar procedure. At the end, if the 
signature is valid, B_VerifyFinal returns 0. If it is not valid, B_VerifyFinal will 
return an error.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set
Use the same AI and digestInfo as you did for signing:

  unsigned int signatureLen;

  if ((status = B_SignFinal (ecDSASign, signature, &signatureLen,
                             maxSignatureLen, randomAlgorithm,
                             (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  B_DestroyAlgorithmObject(&ecDSASign);
  B_DestroyKeyObject(&privateKey);

  B_ALGORITHM_OBJ ecDSAVerify = (B_ALGORITHM_OBJ)NULL_PTR;
 
  if ((status = B_CreateAlgorithmObject (&ecDSAVerify)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_EC_DSAWithDigest,
                                    (POINTER)&digestInfo)) != 0)
    break;
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Step 2b (Optional): Set Public Key Acceleration Table Info
You can use either the public key acceleration table or the generic acceleration table to 
accelerate ECDSA verification. Verification using the public key acceleration table is 
faster than verification using only the generic acceleration table. 

Go through the steps in the section “Generating Acceleration Tables” to create a 
generic acceleration table, placing the table information in aTableItem:

Step 3:  Init
Associate a key with the algorithm object and provide a chooser that contains the 
necessary algorithm methods:

Step 4: Update
Pass in the original message. It will be internally digested to make a new signature 
that can be compared with the signature received by B_VerifyFinal:

Step 5: Final
Pass in the signature that was received with the message. B_VerifyFinal returns 0 if 
the signature verifies, or an error if it is an invalid signature:

  ITEM pubKeyAccelTableItem;    

  if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_ECAcceleratorTable,
                                    (POINTER)&pubKeyAccelTableItem)) != 0)
    break;

  if ((status = B_VerifyInit (ecDSAVerify, publicKey, EC_DSA_CHOOSER,
                              (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  if ((status = B_VerifyUpdate (ecDSAVerify, dataToSign, dataToSignLen,
                                (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Step 6: Destroy
Destroy all objects that are no longer needed:

Performing ECDSA with X9.62-Compliant BER
Like the previous section, this section shows how to use Crypto-C to perform ECDSA 
in compliance with the ANSI X9.62 Standard. In the previous example, the parameters 
were already initialized; in this example, X9.62 compliant BER encodings are used to 
initialize the parameters. 

The example in this section corresponds to the file x962.c. on the CD-ROM.

Generating EC Parameters
In the section “Generating Elliptic Curve Parameters” on page 260, we illustrated how 
to generate elliptic curve parameters by using AI_ECParamGen.  In this example, we 
will use the BER encoding of an ANSI X9.62 algorithm identifier, which specifies an 
elliptic curve, to set our algorithm object, ecParamsObj.  These parameters will 
subsequently be used to generate a key pair.

Step 1: Creating an Algorithm Object
You need to create an algorithm object, ecParamsObj, to hold the generated parameter 
information.

  if ((status = B_VerifyFinal (ecDSAVerify, signature, signatureLen,
                               (B_ALGORITHM_OBJ)NULL_PTR,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  T_free(signature);
  B_DestroyAlgorithmObject(&ecParamsObj);
  B_DestroyAlgorithmObject(&ecDSAVerify);
  B_DestroyKeyObject(&publicKey);
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Step 2: Setting the Algorithm Object
You need to set the algorithm object that will then be used to generate the key pair.

To supply the necessary information, pass a pointer to an ITEM structure that contains 
the ANSI X9.62-compliant BER encoding of an elliptic curve’s parameters.  In 
compliance with X9.62, you can specify the CHOICE of either a full EC CURVE 
definition or a NAMED CURVE definition.  Both ANSI X9.62 uncompressed and 
hybrid base points are decoded.

B_ALGORITHM_OBJ *ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;
if((status = B_CreateAlgorithmObject (ecParamsObj)) != 0)
  break;

  ITEM stockECParamsBER;

  unsigned char ECParamsBER[154] = {
    0x30, 0x81, 0x97, 0x02, 0x01, 0x01, 0x30, 0x20,
    0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01,
    0x01, 0x02, 0x15, 0x00, 0xda, 0xe2, 0x12, 0xcc,
    0xec, 0x6d, 0xfa, 0x73, 0x17, 0x44, 0x1c, 0xee,
    0x28, 0xf0, 0x42, 0xa3, 0xde, 0xd0, 0x4d, 0x7f,
    0x30, 0x2c, 0x04, 0x14, 0xda, 0xe2, 0x12, 0xcc,
    0xec, 0x6d, 0xfa, 0x73, 0x17, 0x44, 0x1c, 0xee,
    0x28, 0xf0, 0x42, 0xa3, 0xde, 0xd0, 0x4d, 0x7c,
    0x04, 0x14, 0xbf, 0x63, 0x40, 0xb3, 0xf8, 0xef,
    0x6a, 0xbc, 0xd1, 0x9b, 0x56, 0x37, 0x69, 0x85,
    0x5b, 0xa0, 0xa2, 0xae, 0x84, 0x92, 0x04, 0x29,
    0x04, 0x77, 0x79, 0xdc, 0x0b, 0xf7, 0xfa, 0x7e,
    0x52, 0xd1, 0x4c, 0x14, 0x3a, 0x60, 0x7a, 0x46,
    0xe3, 0x6c, 0x7b, 0x7a, 0x7e, 0xd1, 0xa0, 0xc5,
    0x30, 0xa6, 0x2b, 0xf5, 0x4f, 0xa8, 0xe7, 0x6f,
    0x58, 0x64, 0xcc, 0x5a, 0xf3, 0xab, 0x06, 0x76,
    0x6a, 0x02, 0x14, 0x06, 0x14, 0x80, 0x85, 0xb1,
    0x3b, 0xf1, 0x9f, 0xa4, 0x33, 0xa9, 0x32, 0x42,
    0x85, 0x00, 0xff, 0x30, 0x43, 0x2e, 0x75, 0x02,
    0x01, 0x24
  }; 
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Performing Elliptic Curve Operations
Generating an EC Key Pair
See “Generating an Elliptic Curve Key Pair” on page 268 for the required steps.  To 
complete those steps, you will need a properly initialized random algorithm, the 
parameters describing an elliptic curve (see the x962.c sample to use BER-encoded 
EC parameters), and optionally the acceleration table corresponding to that curve. 
Assume that the steps in “Generating an Elliptic Curve Key Pair” on page 268 have 
been completed and that publicKey and privateKey are ready to be used.

Computing a Digital Signature

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ.  As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set
You can set the algorithm to AI_EC_DSA or to AI_EC_DSAWithDigest.  We are 
demonstrating raw DSA signature generation and verification; thus, we will use 
AI_EC_DSA.  According to the entry in the Reference Manual, you must supply a 
NULL_PTR to B_SetAlgorithmInfo.

  stockECParamsBER.data = ECParamsBER;
  stockECParamsBER.len = 154;

  if ((status = B_SetAlgorithmInfo (*ecParamsObj, AI_ECParametersBER,
     (POINTER)&stockECParamsBER)) != 0)
                break;

  B_ALGORITHM_OBJ ecDSASign = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&ecDSASign)) != 0)
      break;
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Performing Elliptic Curve Operations
Step 3: Init
Build an algorithm chooser with the appropriate AMs:

Now associate your private key and your algorithm chooser with the algorithm 
object:

Step 4: Update
Now, using B_SignUpdate, pass the data to be signed.  Note, the data to be signed 
must be between 16 and 32 bytes inclusive.

  if ((status = B_SetAlgorithmInfo (ecDSASign, AI_EC_DSA,
                             (POINTER)NULL_PTR)) != 0)
      break;

B_ALGORITHM_METHOD *EC_DSA_CHOOSER[] = {
  &AM_ECFP_DSA_SIGN,
  &AM_ECF2POLY_SA_SIGN,
  &AM_ECFP_DSA_VERIFY,
  &AM_ECF2POLY_DSA_VERFIY,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_SignInit (ecDSASign, privateKey, EC_DSA_CHOOSER,    
   (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

  unsigned char dataToSign[] = {
    0x53, 0x69, 0x67, 0x6E, 0x20, 0x74, 0x68, 0x69,
    0x73, 0x20, 0x33, 0x32, 0x20, 0x62, 0x79, 0x74,
    0x65, 0x20, 0x74, 0x65, 0x73, 0x74, 0x20, 0x6D,
    0x65, 0x73, 0x73, 0x61, 0x67, 0x65, 0x3F, 0x21
  };
  unsigned int dataToSignLen = sizeof(dataToSign);

  if ((status = B_SignUpdate (ecDSASign, dataToSign, dataToSignLen,
                                (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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Performing Elliptic Curve Operations
Step 5: Final
First you must allocate space to store the signature.  The output of the ECDSA 
signature is the BER encoding of a sequence of two integers, (r,s).  At most, the size of 
the output will be six bytes more than twice the length of the order.  Retrieve the field 
element length from ecParamsObj and do a simple manipulation to find the field 
element length in bytes.

Now, finalize the process and retrieve the signature.  Note that the Reference Manual 
entry for AI_EC_DSA requires that you pass in a properly initialized random algorithm 
in B_SignFinal:

Step 6: Destroy
Destroy all objects that are no longer needed:

  A_EC_PARAMS *ecParamsInfo;
  unsigned int order, maxSignatureLen;
  unsigned char *signature;
  
  if((status = B_GetAlgorithmInfo((POINTER *)&ecParamsInfo, ecParamsObj,
                  AI_ECParameters)) != 0)
  break;

  orderLen = ecParamInfo->order.len;
  maxSignatureLen = 2 * orderLen;
  signature = T_malloc(maxSignatureLen);
  if ((status = (signature == NULL_PTR)) != 0)
      break;

  unsigned int signatureLen;

  if ((status = B_SignFinal (ecDSASign, signature, &signatureLen,
                               maxSignatureLen, randomAlgorithm,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyAlgorithmObject (&ecParamsObj);
B_DestroyAlgorihmObject (&ecParamsSign);
B_DestroyKeyObject (&publicKey);
B_DestroyKeyObject (&privateKey);
T_free (signature);
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Verifying a Digital Signature
To verify the signature, you must go through a similar procedure.  At the end, if the 
signature is valid, B_VerifyFinal returns 0. If it is not valid, B_VerifyFinal will 
return an error.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ.  As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set
Use the same AI as you did for signing:

Step 3:  Init
Associate a key with the algorithm object and provide a chooser that contains the 
necessary algorithm methods. (See “Computing a Digital Signature” on page 293.)

Step 4: Update
Pass the original message. It will be internally digested to make a new signature that 
can be compared with the signature received by B_VerifyFinal.

  B_ALGORITHM_OBJ ecDSAVerify = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&ecDSAVerify)) != 0)
      break;

  if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_EC_DSA,
                                      (POINTER)NULL_PTR)) != 0)
      break;

  if ((status = B_VerifyInit (ecDSAVerify, publicKey, EC_DSA_CHOOSER,
                                (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Step 5: Final
Pass in the signature that was received with the message.  B_VerifyFinal returns 0 if 
the signature verifies, or an error if it is an invalid signature:

Step 6: Destroy
Destroy all objects that are no longer needed:

Using ECAES
You can use the Elliptic Curve Authenticated Encryption System (ECAES) to perform 
public-key encryption. The example in this section corresponds to the file eces.c.

You will encrypt the following: 

  if ((status = B_VerifyUpdate (ecDSAVerify, dataToSign, dataToSignLen,
                                  (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  if ((status = B_VerifyFinal (ecDSAVerify, signature, signatureLen,
                                 (B_ALGORITHM_OBJ)NULL_PTR,
                                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

T_free(signature);
B_DestoryAlgorithmObject (&ecDSAVerify);

  unsigned char *dataToEncrypt = “Encrypt this arbitrarily long sentence 
using ECAES!”;

  unsigned int dataToEncryptLen = sizeof(dataToEncrypt) + 1;
C h a p t e r  7   P u b l i c - K e y  O p e r a t i o n s 2 9 7

Download from Www.Somanuals.com. All Manuals Search And Download.



Performing Elliptic Curve Operations
Using Elliptic Curve Parameters
See the section “Generating Elliptic Curve Parameters” on page 260 for the steps you 
must complete to generate a new curve. You need a properly initialized pseudo-
random number generator. Assume that the function InitializeRandomAlgorithm goes 
through Steps 1 through 4 in the section “Generating Random Numbers” on page 165. 
Also assume that the function InitializeECParamsObj generates new parameters and 
places them in ecParamsObj, following the steps in “Using Elliptic Curve Parameters” 
on page 298:

You now have a properly initialized random algorithm object, randomAlgorithm, and 
an algorithm object, ecParamsObj, containing the parameters that describe the elliptic 
curve that you will use. 

Using an EC Key Pair
Before you can encrypt, you need to generate a public/private key pair. As described 
in “Using an EC Key Pair” on page 298, key generation requires a properly initialized 
random algorithm and the parameters describing an elliptic curve, both of which you 
have created in the previous step:

Assume that the steps in “Using an EC Key Pair” have been completed and that 
publicKey and privateKey are ready to be used.

ECAES Public-Key Encryption
Once you have gone through the preliminary steps of generating your elliptic curve 
parameters and creating your public/private key pair, you are ready to encrypt your 
message.

  B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
  B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = InitializeRandomAlgorithm (&randomAlgorithm)) != 0)
    break;
  if ((status = InitializeECParamsObj (&ecParamsObj,
                                       &randomAlgorithm)) != 0)
    break;

  B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
  B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
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Performing Elliptic Curve Operations
Step 1: Create
First, create the algorithm object that will hold the information necessary to perform 
the encryption operation:

Step 2: Set
Associate the elliptic curve encryption AI, AI_EC_ES, with the algorithm object. 
According to the Reference Manual Chapter 2 entry for AI_EC_ES, you should pass 
NULL_PTR as the third argument to B_SetAlgorithmInfo:

Step 2b (optional)  Acceleration Table
You can use an acceleration table containing precomputed values to speed up 
encryption. Because users frequently perform encryption, it is worthwhile to use the 
acceleration table whenever the required memory is available.

To use the acceleration table, assume you have gone through the steps in “Generating 
a Generic Acceleration Table” on page 273 and placed the information in 
accelerationTableItem:

Now, pass this information into your algorithm object:

  B_ALGORITHM_OBJ ecESEncrypt = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&ecESEncrypt)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo
                (ecESEncrypt, AI_EC_ES, NULL_PTR)) != 0)
    break;

  ITEM accelerationTableItem;

  if ((status = B_SetAlgorithmInfo
                (ecESEncrypt, AI_ECAcceleratorTable,
                 (POINTER)&accelerationTableItem)) != 0)
    break;
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Performing Elliptic Curve Operations
Step 3:  Init
You must initialize the algorithm object to perform encryption. You also need to 
provide the key that will be used for encryption. The algorithm chooser should 
contain the encryption algorithm methods listed in the Reference Manual for AI_EC_ES:

Step 4: Update
To update, first find the field element length in bytes. Remember that, earlier in 
“Using Elliptic Curve Parameters” on page 298, you placed the elliptic curve 
parameters in your algorithm object, ecParamsObj. You can use this object to retrieve 
the field element length:

Next, you must allocate space to hold the encrypted data. According to the Reference 
Manual Chapter 2 entry for AI_EC_ES, the length of the encrypted data will be as much 
as (21 + 2 · (the size of a field element in bytes) + (length of input in bytes)) bytes.

  B_ALGORITHM_METHOD *EC_CHOOSER[] = {
    &AM_ECFP_ENCRYPT,
    &AM_ECF2POLY_ENCRYPT,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };  

  if ((status = B_EncryptInit (ecESEncrypt, publicKey, EC_CHOOSER,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  A_EC_PARAMS *ecParamInfo;
  unsigned int fieldElementLen;
 
  if ((status = B_GetAlgorithmInfo ((POINTER *)&ecParamInfo, ecParamsObj,
                                    AI_ECParameters)) != 0)
    break;

  fieldElementLen = (ecParamInfo->fieldElementBits + 7) / 8;
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Performing Elliptic Curve Operations
 

Step 5: Final

Step 6: Destroy
Destroy all objects that are no longer needed. Also, be sure to zeroize and free any 
allocated memory when it is no longer needed. 

  unsigned int maxEncryptedDataLen;
  unsigned int outputLenUpdate;
 
  maxEncryptedDataLen = 21 + (2 * fieldElementLen) + dataToEncryptLen;
  encryptedData = T_malloc(maxEncryptedDataLen);
  if ((status = (encryptedData == NULL_PTR)) != 0)
    break;

  if ((status = B_EncryptUpdate
                (ecESEncrypt, encryptedData, &outputLenUpdate,
                 maxEncryptedDataLen, dataToEncrypt, dataToEncryptLen,
                 (B_ALGORITHM_OBJ)NULL_PTR, 
                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned int outputLenFinal, outputLenTotal;
 
  if ((status = B_EncryptFinal
                (ecESEncrypt, encryptedData + outputLenUpdate,
                 &outputLenFinal, maxEncryptedDataLen - outputLenUpdate,
                 randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
 
  outputLenTotal = outputLenUpdate + outputLenFinal;

  B_DestroyAlgorithmObject (&ecESEncrypt);
  B_DestroyKeyObject (&publicKey);
  T_free (encryptedData);
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ECAES Private-Key Decryption
The steps for decryption are similar to those for encryption.

Step 1: Create
Create an algorithm object:

Step 2: Set
Associate the algorithm object with AI_EC_ES and pass NULL_PTR as the third 
argument:

Step 3: Init
At this point, commit your algorithm object to perform decryption with a particular 
private key. Be sure that EC_CHOOSER contains the appropriate algorithm methods:

Step 4:  Update
Since you know that the length of the plaintext can’t be larger than the length of the 
ciphertext, you’ll use this approximation to allocate space for the decrypted data:

  B_ALGORITHM_OBJ ecESDecrypt = (B_ALGORITHM_OBJ)NULL_PTR;
 
  if ((status = B_CreateAlgorithmObject (&ecESDecrypt)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo
                (ecESDecrypt, AI_EC_ES, NULL_PTR)) != 0)
    break;

  B_ALGORITHM_METHOD *EC_CHOOSER[] = {
    &AM_ECFP_DECRYPT,
    &AM_ECF2POLY_DECRYPT,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };  

   if ((status = B_DecryptInit (ecESDecrypt, privateKey, EC_CHOOSER,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Performing Elliptic Curve Operations
 

Step 5: Final

Step 6: Destroy
Destroy any objects that are no longer needed. Also, be sure to zeroize and free any 
allocated memory when it is no longer needed. 

  unsigned char *decryptedData;
  unsigned int maxDecryptedDataLen;
  unsigned int outputLenUpdate;

  maxDecryptedDataLen = outputLenTotal;     /* Use the outputLenTotal from */
                                             /* Step 5 of ECAES encryption */
  decryptedData = T_malloc(maxDecryptedDataLen);
  if ((status = (decryptedData == NULL_PTR)) != 0)
    break;

  if ((status = B_DecryptUpdate
                (ecESDecrypt, decryptedData, &outputLenUpdate,
                 maxDecryptedDataLen, encryptedData, outputLenTotal,
                 (B_ALGORITHM_OBJ)NULL_PTR,
                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned int outputLenFinal, outputLenTotal;
 
  if ((status = B_DecryptFinal
                (ecESDecrypt, decryptedData + outputLenUpdate,
                 &outputLenFinal, maxDecryptedDataLen - outputLenUpdate,
                 (B_ALGORITHM_OBJ)NULL_PTR,
                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
 
  outputLenTotal = outputLenUpdate + outputLenFinal;

  B_DestroyAlgorithmObject (&ecESDecrypt);
  B_DestroyKeyObject (&privateKey);
  T_free (decryptedData);
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Chapter 8

Secret Sharing Operations
Secret Sharing
Secret sharing allows a system to require a certain number of “shares” to retrieve a 
secret. The process encrypts information and then creates a number of shares of the 
encrypted information. The information can be recovered by collecting a declared 
number (called the threshold) of shares. Note that the threshold must be less than or 
equal to the total number of shares.

Typically, the secret is a key used for encrypting sensitive data. For example, you 
might protect an RC2 key with a secret-sharing algorithm, creating four shares, and 
set the threshold to two. Then any two of the four shares can reconstruct the RC2 key. 

Generating Shares
Crypto-C offers the Bloom-Shamir secret sharing method. For this implementation, 
the minimum total number of shares is two and the maximum is 255; the threshold 
must be less than or equal to the total number of shares. The 255 limit is not part of the 
Bloom-Shamir algorithm, but a constraint of the Crypto-C implementation. See Step 4 
for details. 

The following example will encrypt 16 bytes (for example, an RC2 key), splitting the 
secret into four shares, and set the threshold to two. 
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Secret Sharing
The example in this section corresponds to the file scrtshar.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one AI that implements the Bloom-Shamir secret sharing algorithm: 
AI_BSSecretSharing. The Reference Manual Chapter 2 entry on this AI reports that the 
format of info supplied to B_SetAlgorithmInfo is the following struct:

Because you want to set the threshold to two, set your algorithm object as follows:

Step 3: Init
Initialize the algorithm with B_EncryptInit. No key is necessary, so pass a properly 
cast NULL_PTR for the key object. This algorithm object does not need an algorithm 
chooser, so pass a properly cast NULL_PTR for that argument as well. This function is 
very quick, so it is reasonable to pass a NULL_PTR for the surrender context:

B_ALGORITHM_OBJ secretSplitter = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&secretSplitter)) != 0)
  break;

typedef struct {
  unsigned int threshold;                               /* share threshold */
} B_SECRET_SHARING_PARAMS;

B_SECRET_SHARING_PARAMS secretSharingParams;
 
secretSharingParams.threshold = 2;
 
if ((status = B_SetAlgorithmInfo
     (secretSplitter, AI_BSSecretSharing,
      (POINTER)&secretSharingParams)) != 0)
  break;
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Secret Sharing
Step 4: Update
Call B_EncryptUpdate once for each of the total number of shares. Each call to 
B_EncryptUpdate produces a share. For each share, you must allocate a space that is 
one byte larger than the secret. A share is actually the same size as the secret, but 
Crypto-C also appends one byte containing the number of the share. (This is why 
Crypto-C limits the shares to 255; it is the largest integer one byte can represent.) 
Make sure you do not overwrite a previous share.

The input for each call to B_EncryptUpdate is the secret itself. You also need a random 
algorithm for the first call to B_EncryptUpdate. You can pass a random algorithm each 
time, however; Crypto-C simply ignores it on each successive call. Complete Steps 1 
through 4 of “Generating Random Numbers” on page 165. You do not need random 
bytes, only an algorithm that can generate them. This function is not too time-
consuming, so it is reasonable to pass a properly cast NULL_PTR for the surrender 
context.

To create four shares, you could use the following:

if ((status = B_EncryptInit
     (secretSplitter, (B_KEY_OBJ)NULL_PTR,
      (B_ALGORITHM_CHOOSER)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define SECRET_SIZE   16
#define TOTAL_SHARES   4
 
static unsigned char secretKey[SECRET_SIZE] = {
  0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
  0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10
};
unsigned char *secretShare[TOTAL_SHARES];
unsigned int secretShareLen[TOTAL_SHARES];
int count;

for (count = 0; count < TOTAL_SHARES; ++count)
  secretShare[count] = NULL_PTR;
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Secret Sharing
Step 5: Final
Finalize the process with B_EncryptFinal. This function does not need a random 
algorithm, so pass a NULL_PTR. It is a quick call, so it is reasonable to pass a NULL_PTR 
for the surrender context:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory when you are 
done. Save the shares to files or disks before freeing the memory:

for (count = 0; count < TOTAL_SHARES; ++count) {
  secretShare[count] = T_malloc (SECRET_SIZE + 1);
  if ((status = (secretShare[count] == NULL_PTR)) != 0)
    break;

  if ((status = B_EncryptUpdate
       (secretSplitter, secretShare[count],
        &(secretShareLen[count]), SECRET_SIZE + 1,
        secretKey, SECRET_SIZE, randomAlgorithm,
        (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
}
if (status != 0)
  break;

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
     (secretSplitter, NULL_PTR, &outputLenFinal, 0,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)

B_DestroyAlgorithmObject (&secretSplitter);
B_DestroyAlgorithmObject (&randomAlgorithm);
for (count = 0; count < TOTAL_SHARES; ++count)
  T_free (secretShare[count]);
3 0 8 R S A  B S A F E  C r y p t o - C  D e v e l o p e r ’s  G u i d e

Download from Www.Somanuals.com. All Manuals Search And Download.



Secret Sharing
Reconstructing the Secret
To reconstruct the secret, call B_DecryptUpdate for each share you are entering. You 
need at least threshold number of shares; if you enter fewer, B_DecryptFinal will 
return an error. Any combination of threshold shares will work.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Use the same AI, AI_BSSecretSharing:

Step 3: Init
Initialize the algorithm with B_DecryptInit. Once again no key or algorithm chooser 
is necessary. This function is very quick, so it is reasonable to pass a NULL_PTR for the 
surrender context:

B_ALGORITHM_OBJ secretReconstructer = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject
     (&secretReconstructer)) != 0)
  break;

B_SECRET_SHARING_PARAMS secretSharingParams;
 
secretSharingParams.threshold = 2;
 
if ((status = B_SetAlgorithmInfo
     (secretReconstructer, AI_BSSecretSharing,
      (POINTER)&secretSharingParams)) != 0)
  break;
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Secret Sharing
Step 4: Update
Call B_DecryptUpdate once for each of the shares you are using to reconstruct the 
secret. You can use any number of shares from the threshold number to the total 
number of shares.

Each call to B_DecryptUpdate produces no output, so pass NULL_PTRs. The input is a 
share. This call does not need a random algorithm, so pass a NULL_PTR. It is also quick, 
so it is reasonable to pass a properly cast NULL_PTR for the surrender context:

Step 5: Final
Finalize the process with B_DecryptFinal. There will be output now. This function 
does not need a random algorithm, so pass a NULL_PTR there. It is a quick call, so it is 
reasonable to pass a NULL_PTR for the surrender context:

if ((status = B_DecryptInit
     (secretReconstructer, (B_KEY_OBJ)NULL_PTR,
      (B_ALGORITHM_CHOOSER)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

unsigned int outputLenUpdate;

for (count = 0; count < (int)secretSharingParams.threshold; ++count) {
  if ((status = B_DecryptUpdate
       (secretReconstructer, NULL_PTR, &outputLenUpdate,
        0, secretShare[count], secretShareLen[count],
        (B_ALGORITHM_OBJ)NULL_PTR,
        (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
}
if (status != 0)
  break;
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Secret Sharing
Step 6: Destroy
Remember to destroy all objects and free up any allocated memory when you are 
done:

unsigned char getSecret[SECRET_SIZE]
unsigned int getSecretLen;
 
if ((status = B_DecryptFinal
     (secretReconstructer, getSecret, &getSecretLen, SECRET_SIZE,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)

B_DestroyAlgorithmObject (&secretReconstructer);
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Chapter 9

Putting It All Together: 
An X9.31 Example
The example in this chapter shows how to perform RSA digital signing and verifying 
according to the ANSI X9.31 standard. This example, available on the CD-ROM as 
x931.c, includes the following separate operations:

• Generate random input using AI_X931Random. AI_X931Random is a special-purpose 
AI that generates the six separate streams of randomness required by the X9.31 
standard.

• Generate an RSA key pair using AI_RSAStrongKeyGen. AI_RSAStrongKeyGen 
generates RSA moduli that are in conformance with the strength criteria of ANSI 
X9.31. 

• Sign a message using AI_SignVerify. AI_SignVerify is an AI for performing RSA 
signing and verification in conformance with the ANSI X9.31 standard.

• Verify a message using AI_SignVerify.

If you wish to create an application in accordance with the ANSI X9.31 standard, you 
should use the AIs shown in this example. Although there are other AIs that appear to 
give the same functionality (for example, other AIs for RSA signing and verification), 
only the AIs listed above give you ANSI X9.31 standards compliance for RSA digital 
signatures and verification. Compliance with this standard may be required for 
contracts with certain United States Federal Government departments.
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The X9.31 Sample Program
#include <stdio.h>
#include <string.h>   
#include <time.h>
#include "aglobal.h"
#include "bsafe.h"

B_ALGORITHM_METHOD *X931_SAMPLE_CHOOSER[] = {
  &AM_X931_RANDOM,
  &AM_SHA,
  &AM_FORMAT_X931,
  &AM_RSA_CRT_X931_ENCRYPT,
  &AM_EXTRACT_X931,
  &AM_RSA_X931_DECRYPT,
  &AM_RSA_STRONG_KEY_GEN,
  &AM_SHA_RANDOM,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

#define NUMBER_OF_RANDOM_BYTES 128
#define RSA_MODULUS_BITS 512

int GeneralSurrenderFunction PROTO_LIST ((POINTER handle));

void PrintBuf PROTO_LIST ((unsigned char *, unsigned int));

void main()
{
  B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
  B_ALGORITHM_OBJ keypairGenerator = (B_ALGORITHM_OBJ)NULL_PTR;
  B_ALGORITHM_OBJ digitalSigner = (B_ALGORITHM_OBJ)NULL_PTR;  
  B_ALGORITHM_OBJ digitalVerifier = (B_ALGORITHM_OBJ)NULL_PTR;
  B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
  B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

  ITEM randomSeed;
  unsigned char *randomByteBuffer = NULL_PTR;
  A_X931_RANDOM_PARAMS x931Params;

  A_RSA_KEY_GEN_PARAMS keygenParams;
  A_X931_PARAMS x931params;
  B_SIGN_VERIFY_PARAMS signVerifyParams;
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The X9.31 Sample Program
Generating Random Bytes

The first thing the application must do is to generate the random bytes. The Crypto-C 
implementation of the X9.31 random algorithm is somewhat different from the 
implementation of other PRNGs in Crypto-C. The main difference appears in Step 2, 
which sets the algorithm object. Unlike other PRNGs, AI_X931Random requires you to 
pass in a structure describing the number of independent streams of randomness and 
a seed which will be divided between the streams. 

The structure, A_X931_RANDOM_PARAMS, is defined as follows:

Where numberOfStreams is the number of independent streams and seed is additional 
seeding to be equally divided among the streams. For X9.31, the number of streams 
must be six.

  static unsigned char f4Data[] = {0x01, 0x00, 0x01};
  
  A_SURRENDER_CTX generalSurrenderContext;
  int generalFlag;

  char *inputData = "Sign this sentence.";
  unsigned int inputDataLen;

  unsigned char signature[64];
  unsigned int signatureLen;

  unsigned int status;

  generalSurrenderContext.Surrender = GeneralSurrenderFunction;
  generalSurrenderContext.handle = (POINTER)&generalFlag;
  generalSurrenderContext.reserved = NULL_PTR;

  do {
    printf ("Digital Signature Generation and Verification in\n");
    printf ("compliance with the X9.31 Standard.\n");
    printf ("================================================\n");

typedef struct {
            unsigned int numberOfStreams; 
            ITEM seed;
 } A_X931_RANDOM_PARAMS;
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To create a random algorithm object and set the parameters:

    /*  ========================================================  */
    /*  Generate random bytes using AI_X931Random. AI_X931Random 
        is a SHA-1 based pseudo-random number generator that allows
        you to generate multiple streams of randomness. AI_X931Random
        satisfies the requirements of independent generation of large 
        and private prime factors, as specified by the ANSI X.931 
        standard. */

    printf ("Generating random bytes \n");
    printf ("======================= \n");

    /*  Step 1:  Create a random algorithm object */

    if ((status = B_CreateAlgorithmObject (&randomAlgorithm)) != 0)
      break;

    /* Step 2:  Set the random algorithm object to use AI_X931Random.
       Before we can call B_SetAlgorithmInfo, we need to prepare the
       X9.31 parameters. The A_X931_RANDOM_PARAMS structure
       contains two parameters: the number of independent streams
       of randomness and an ITEM containing random seed data to be
       divided up among the streams.*/

    /* Set the number of streams in the A_X931_RANDOM_PARAMS
       structure. For this example, you will specify six streams
       of randomness. */

    x931Params.numberOfStreams = 6;

    /* In order to obtain a seed, we need to allocate space for it,
       and then request it from the user. Note that the following
       method of seed gathering is insecure. A real application would
       use a more secure method of seed gathering to ensure the
       security of the application.  */

    randomSeed.data = T_malloc (384);
    if (randomSeed.data == NULL_PTR)
      break;
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Providing the Seed

In this example, the seed is provided by keyboard input and stored in an ITEM 
structure, randomSeed. The amount of seed data passed in the A_X931_RANDOM_PARAMS 
structure must be greater than or equal to 20 * (number of streams) bytes and less than 
or equal to 64 * (number of streams) bytes. With 6 streams, this means the seed size 
must be between 120 bytes and 384 bytes. 

If the amount of seed data is outside this range, Crypto-C will return a 
BE_ALGORITHM_INFO error. If the amount of seed data is below 128 bytes, you will be 
prompted to enter seed data again. In addition, Crypto-C does a limited check on the 
seed value for the amount of entropy. For example, a constant seed (all zeros or all 
ones) will return a BE_BAD_SEEDING error. 

Note: Crypto-C may not return an error even if the seed entropy is poor, or if the 
application provides insufficient random streams. The proper 
implementation of sufficient entropy sources is the responsibility of the 
application and not of Crypto-C. 

A different method for acquiring random input for the seed would be to use a 
hardware random number generator, where available. For information on one such 
generator, the Intel Random Number Generator, see the Intel Security Hardware User’s 
Guide, available on the Crypto-C CD-ROM. 

    do {
      puts ("Enter a random seed (120 bytes minimum, 384 bytes maximum):");
      gets ((char *)randomSeed.data);
      
      randomSeed.len = strlen (randomSeed.data);
    } while (randomSeed.len < 20 * x931Params.numberOfStreams);

    x931Params.seed.data = randomSeed.data;
    x931Params.seed.len = randomSeed.len;

    /* Pass the parameters to the algorithm object in a call to
       B_SetAlgorithmInfo. */

    if ((status = B_SetAlgorithmInfo
         (randomAlgorithm, AI_X931Random, (POINTER)&x931Params)) != 0)
      break;
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The X9.31 Sample Program
Generating a Key Pair

Once you have the random bytes, you can use them to generate an RSA key pair. 
Generating a key pair for X9.31 RSA signatures is similar to the general procedure for 
RSA key pair generation, except that in X9.31, a special AI, AI_StrongKeyGen, must be 
used. Using AI_StrongKeyGen guarantees that the moduli generated are in 
conformance with the strength criteria of the ANSI X9.31 standard.

For more information about key pair generation, see steps 1-5 for generating an RSA 
key pair in the sample program rsapkcs.c. A description of general key pair 
generation is given in “Generating a Key Pair” on page 214 of this manual.

    /*  Step 3:  Initialize the random algorithm. The only difference
        in this example is that X931_SAMPLE_CHOOSER includes
        AM_X931_RANDOM.  */

    if ((status = B_RandomInit
         (randomAlgorithm, X931_SAMPLE_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    /*  Step 4:  Since the random seed has already been passed in via
                 the x931Params structure, we do not have to call
                 B_RandomUpdate(). */

    /*  Step 5:  Generate.  First, prepare a buffer for receiving the
                 random bytes before calling B_GenerateRandomBytes.
     */
    randomByteBuffer = T_malloc (NUMBER_OF_RANDOM_BYTES);
    if ((status = (randomByteBuffer == NULL_PTR)) != 0)
          break;

    T_memset (randomByteBuffer, 0, NUMBER_OF_RANDOM_BYTES);

    if ((status = B_GenerateRandomBytes
         (randomAlgorithm, randomByteBuffer, NUMBER_OF_RANDOM_BYTES,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    printf ("%i bytes of random-generated values: \n",
              NUMBER_OF_RANDOM_BYTES);
    PrintBuf (randomByteBuffer, NUMBER_OF_RANDOM_BYTES);
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    /*  ========================================================  */
    printf ("\n   Generating a Keypair \n");
    printf ("   ==================== \n");

    if ((status = B_CreateAlgorithmObject (&keypairGenerator)) != 0)
      break;

    keygenParams.modulusBits = RSA_MODULUS_BITS;
    keygenParams.publicExponent.data = f4Data;
    keygenParams.publicExponent.len = 3;

    /*  For this example, AI_RSAStrongKeyGen is used, rather than
        AI_RSAKeyGen. AI_RSAStrongKeyGen allows you to 
        specify the parameters for generating an RSA public/private
        key pair as defined in PKCS#1. The moduli generated
        are in conformance with the strength criteria of the ANSI
        X9.31 standard.*/

    if ((status = B_SetAlgorithmInfo (keypairGenerator, AI_RSAStrongKeyGen,
                                      (POINTER)&keygenParams)) != 0)
      break;

    if ((status = B_GenerateInit
         (keypairGenerator, X931_SAMPLE_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    if ((status = B_CreateKeyObject (&publicKey)) != 0)
      break;
    if ((status = B_CreateKeyObject (&privateKey)) != 0)
      break;

    /*  generalFlag is for the surrender function */
    generalFlag = 0;
    if ((status = B_GenerateKeypair
         (keypairGenerator, publicKey, privateKey,
          randomAlgorithm, &generalSurrenderContext)) != 0)
      break;
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Computing a Digital Signature

Now you can use the key pair to compute a digital signature. For X9.31, this is done 
using AI_SignVerify. AI_SignVerify provides ANSI X9.31-compliant digital signing 
and verification. The procedure to sign and verify using AI_SignVerify is similar to 
the steps outlined in “RSA Digital Signatures” on page 233. However, AI_SignVerify 
is a little different because it is more general purpose than the other signing and 
verifying AIs. Therefore, you have to set a parameter that determines the exact 
algorithm and action you wish to use.

Assume that RSA_MODULUS_BITS gives the modulus size of the RSA key pair. The 
proper AI to use for following the ANSI X9.31 standard for digital signatures is 
AI_SignVerify. You must pass a pointer to a B_SIGN_VERIFY_PARAMS structure to 
B_SetAlgorithmInfo. The structure, B_SIGN_VERIFY_PARAMS, is defined as follows:

For this application, set the parameters as follows:

• The possible values for encryptionMethodName are "rsaSignX931" or 
"rsaVerifyX931". For signing, use "rsaSignX931". 

• For encryptionParams and digestParams, pass a NULL_PTR. 

    /*  ========================================================  */
    printf ("\nComputing a Digital Signature \n");
    printf ("============================= \n");

    printf ("Input data: %s \n", inputData);
    inputDataLen = (unsigned int)strlen (inputData);
    printf ("Input data in hex: \n");
    PrintBuf ((unsigned char *)inputData, inputDataLen);

    /*  Step 1:  Create an algorithm object */
    if ((status = B_CreateAlgorithmObject (&digitalSigner)) != 0)
      break;

typedef struct {
    unsigned char *encryptionMethodName;
    POINTER        encryptionParams;
    unsigned char *digestMethodName;
    POINTER        digestParams;
    unsigned char *formatMethodName;
    POINTER        formatParams;
} B_SIGN_VERIFY_PARAMS;
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• For digestMethodName, use "sha1"; currently this is the only digest supported. 
• For formatMethodName, use "formatX931"; currently this is the only format method 

supported.
• formatParams requires a pointer to an A_X931_PARAMS structure, which is defined as 

follows:

The parameters are:

- blockLen: the smallest number of bytes you can use for your block.
Note that AI_SignVerify encodes the input data in blocks. Because of the 
requirements of the underlying RSA algorithm, the number of bits of data 
must be the same as the number of bits of the RSA modulus. However, the 
input block size is measured in bytes. Because the modulus size, which is 
stored in RSA_MODULUS_BITS, may not be an even number of bytes, you need 
to calculate the smallest number of bytes you can use for your block. This 
number is the integer part of (RSA_MODULUS_BITS + 7) / 8. For example, if your 
modulus is 514 bits long, the smallest block size you can use is the integer 
part of (514 + 7) / 8, or 65 bytes.

- OIDNum: the object identifier for the SHA1 hash algorithm. Currently this 
always equals 3 (SHA) for X9.31.

- OID: the object identifier to use for BER encoding. The OID is only used when 
“formatX932PKCS5” is specified in the formatMethodName of the 
B_SIGN_VERIFY_PARAMS structure. 
In this example, the formatMethodName is “formatX931”, so the BER encoding 
of the OID is unnecessary and will be left undefined.  

typedef struct {
    unsigned int blockLen;
    unsigned int oidNum;
    ITEM OID;
} A_X931_PARAMS;

    /*  Step 2:  Set the algorithm object to AI_SignVerify */

    x931params.blockLen = ((RSA_MODULUS_BITS + 7) / 8);
    x931params.oidNum = 3;
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    signVerifyParams.encryptionMethodName = (unsigned char *)"rsaSignX931";
    signVerifyParams.encryptionParams = NULL_PTR;
    signVerifyParams.digestMethodName = (unsigned char *)"sha1";
    signVerifyParams.digestParams = NULL_PTR;
    signVerifyParams.formatMethodName = (unsigned char *)"formatX931";
    signVerifyParams.formatParams = (POINTER)&x931params;

    if ((status = B_SetAlgorithmInfo (digitalSigner, AI_SignVerify,
                                      (POINTER)&signVerifyParams)) != 0)
      break;

    /*  Step 3:  Init */

    /*  You must include the appropriate algorithm methods as 
        specified by the Reference Manual in the 
        chooser. See the RM entry for AI_SignVerify for that 
        list.  */

    if ((status = B_SignInit
         (digitalSigner, privateKey, X931_SAMPLE_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    /*  Step 4:  Update  -- digest the data to sign */

    printf (".......Digesting the input data\n");
    if ((status = B_SignUpdate
         (digitalSigner, (unsigned char *)inputData, inputDataLen,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    /*  Step 5:  Final --  Encrypt the digest and output the result to a
                           signature buffer */

    printf (".......Encrypting the digest (digital signature)\n");
    if ((status = B_SignFinal
         (digitalSigner, signature, &signatureLen, 64,
          (B_ALGORITHM_OBJ)NULL_PTR,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    printf ("\nThe digital signature (%u bytes): \n", signatureLen);
    PrintBuf (signature, signatureLen);
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Verifying the Signature
Verifying an X9.31 RSA signature is almost identical to signing, except that you pass 
"rsaVerifyX931" for encryptionMethodName in Ai_SignVerify.  

    /*  ========================================================  */
    printf ("Verifying the Digital Signature \n");
    printf ("=============================== \n");

    /*  Step 1:  Create an algorithm object */

    if ((status = B_CreateAlgorithmObject (&digitalVerifier)) != 0)
      break;

    /*  Step 2:  Set the algorithm object to the same AI */

    /*  To verify the signature created above, you need to use the
        same AI you used for signing.  Again, you must set up the
        appropriate structures containing the information for the 
        algorithm you wish to use.  The x931params structure is
        the same as the one used for signing, but you need to use
        "rsaVerifyX931" for the encryptionMethodName. */

    signVerifyParams.encryptionMethodName = (unsigned char *)"rsaVerifyX931";
    signVerifyParams.encryptionParams = NULL_PTR;
    signVerifyParams.digestMethodName = (unsigned char *)"sha1";
    signVerifyParams.digestParams = NULL_PTR;
    signVerifyParams.formatMethodName = (unsigned char *)"formatX931";
    signVerifyParams.formatParams = (POINTER)&x931params;

    if ((status = B_SetAlgorithmInfo (digitalVerifier, AI_SignVerify,
                                      (POINTER)&signVerifyParams)) != 0)
      break;

    /*  Step 3:  Init */

    /*  Again, the only change required in the Init step is to 
        include the appropriate algorithm methods in the chooser.
        These are the same methods included in the X931_SAMPLE_CHOOSER
        above.  */

    if ((status = B_VerifyInit
         (digitalVerifier, publicKey, X931_SAMPLE_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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    /*  Step 4:  Update */

    if ((status = B_VerifyUpdate
         (digitalVerifier, (unsigned char *)inputData, inputDataLen,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

     /*  Step 5:  Final */

    generalFlag = 0;
    if ((status = B_VerifyFinal
         (digitalVerifier, signature, signatureLen,
          (B_ALGORITHM_OBJ)NULL_PTR,
          &generalSurrenderContext)) != 0)
      break;

  } while (0);
    
  if (status != 0) {
    printf ("Status = %i \n", status);
    printf ("Digital Signature failed");
  }
  else {
    printf ("\nDigital Signature verified.");
  }  

  /*  Step 6:  Destroy */

  B_DestroyAlgorithmObject (&randomAlgorithm);
  B_DestroyAlgorithmObject (&keypairGenerator);
  B_DestroyAlgorithmObject (&digitalSigner);
  B_DestroyAlgorithmObject (&digitalVerifier);
  B_DestroyKeyObject (&privateKey);
  B_DestroyKeyObject (&publicKey);

  /*  Free up any memory allocated */
  T_memset (randomSeed.data, 0, randomSeed.len);
  T_free (randomSeed.data);
  T_free (randomByteBuffer);

} /*  end main  */
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Surrendering Control
The following function, included as part of x931.c, can be used whenever an action 
may take a long time, and you need a mechanism for surrendering control.

/*   General Surrender Function   */
/*   ==========================   */
int GeneralSurrenderFunction (handle)
POINTER handle;
{
  char s[100];
  static time_t currentTime;
  time_t getTime;

  if ((int)*handle == 0) {
    getTime = time(NULL);
    strftime (s, 100, "%H:%M:%S on %A, %d %B %Y", localtime(&getTime));
    printf ("\n%s\n", s);
    printf ("Surrender function ...\n");
    *handle = 1;
    time (&currentTime);
  }
  else {
    time (&getTime);
    if (currentTime != getTime) {
      printf (" .");
      currentTime = getTime;
    }
  }
  return (0);
} /*  end GeneralSurrenderFunction  */
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Printing the Buffer Contents
The following procedure prints the current contents of the buffer.

/*  This procedure will print out what’s in the buffer.
 */
void PrintBuf (buffer, bufferLen)
unsigned char *buffer;
unsigned int bufferLen;
{
  unsigned int i;

  for (i = 0; i < bufferLen; ++i) {
    if ( ((i & 7) == 7) || (i == (bufferLen - 1)) )
      printf ("  %02x\n", buffer[i]);
    else
      printf ("  %02x", buffer[i]);
  }

  printf ("\n");
} /*  end PrintBuf  */
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Appendix A

Command-Line Demos
Overview of the Demos
In addition to the sample programs included on the CD, there are three Crypto-C 
command-line demo applications: BDEMO, BDEMODSA, and BDEMOEC. These are 
actual applications that demonstrate some of the aspects of building cryptographic 
applications using Crypto-C. They use the Crypto-C library routines and are 
provided to all Crypto-C customers in source form.

The BDEMO application is found in bdemo.c with supporting files fileio.c, 
filebsl.c, tstdlib.c, a chooser, choosc.c, and include files fileio.h, filebsl.h 
and demochos.h. Because BDEMO utilizes BSLite, bslite.c must be linked in and the 
bslite.h file must be included. See “BSLite” on page 336 for more information about 
BSLite.

The command-line demos provide the following functionality:

• BDEMO can create and verify an RSA digital signature for a DES-encrypted file. It 
can also seal and open an RSA digital envelope, placing the encrypted output in 
another file. The signature and envelope methods used by Crypto-C are 
compatible with the Public-Key Cryptography Standards (PKCS).

• BDEMODSA demonstrates the use of DSA to digitally sign and verify the 
integrity of data files. 
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• BDEMOEC can use ECDSA to create and verify digital signatures for a file, and it 
can use the Elliptic Curve Authenticated Encryption Scheme (ECAES) to seal and 
open a digital envelope, placing the output in another file. These demo programs 
support input files of arbitrary length. As with BDEMO, the file to be sealed with 
the digital envelope is encrypted using the DES algorithm; however, in 
BDEMOEC, the DES key is encrypted using ECAES instead of RSA encryption.

This appendix has three sections. “Command-Line Demo User’s Guide” on page 328 
shows how to use the BDEMO, BDEMODSA, and BDEMOEC Command-Line 
Demos. “File Reference” on page 335 explains the files used in these applications. 
“BSLite” on page 336 describes the BSLite routines.

Command-Line Demo User’s Guide
The three command-line demos are menu-driven applications that demonstrate basic 
cryptographic operations. Each demo prompts you for commands; you type the 
responses. The various commands and expected responses are explained in the 
sections for the individual demos.

BDEMO
Use BDEMO to create and verify an RSA digital signature for a DES-encrypted file. 
Use it also to seal and open an RSA digital envelope, placing the encrypted output in 
another file. The signature and envelope methods used by Crypto-C are compatible 
with the Public-Key Cryptography Standards (PKCS).

Starting BDEMO

Command Line mode
To start BDEMO, enter the following after the system prompt:

> bdemo

Input Redirection mode
You may also run BDEMO in input redirection mode where your responses to the 
menu prompts are read from a file. For example, to read commands from a file named 
testin, enter the following after the system prompt:
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Command-Line Demo User’s Guide
> bdemo -s < testin

Notice that this uses ‘<’ to redirect testin as the input to BDEMO. The -s option to 
BDEMO eliminates the menu prompts when BDEMO is taking input from a file.

Any line that is blank or begins with  ’#’ is ignored. This means that the file used in 
response file mode may contain blank lines and comment lines that begin with  ’#’.

Specifying User Keys
BDEMO comes pre-loaded with RSA key pairs for two test users: User 1 and User 2. 
You can also use BDEMO to generate a new RSA key pair; if you do so, this becomes 
the key pair for User 3. See “Generate a Key Pair” on page 331 for key pair generation.

Note: Key pair generation in BDEMO is for demonstration purposes only and is not 
cryptographically secure.

When you sign, verify, seal, or open a file, BDEMO asks which user’s key to use. You 
can specify either 1 or 2. If you have generated a new RSA key, you can specify 3.

Using BDEMO
When you type “bdemo” at the system prompt, the following top-level menu is 
displayed:

S - Sign a file
E - Envelope a file
V - Verify a signed file
O - Open an enveloped file
G - Generate a keypair (may take a long time)
Q - Quit
  Enter choice:

Commands may be entered in either upper or lower case, and all but the initial letter 
of a command is ignored. So, for example, to sign a file you may either type “s” or 
“sign”. 

Each of the commands on this top-level menu is described below.

Sign a File
To sign a file:

1. Enter “s” at the top-level menu. 
2. You will be prompted in succession for:
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• the name and location of the file to be signed

• the name of the file you want to create to hold the signature

• the private key used for signing

3. Once this information is supplied, BDEMO uses the private key to create a 
signature.

Create a File Envelope
To create an envelope for a file: 

1. Enter “e” at the top-level menu. 
2. You will be prompted in succession for: 

• the name and location of the file to be signed and enveloped

• the names of the files for storing the encrypted DES key, the initialization 
vector (IV), and the encrypted data

• a seed for generating the random DES key and the IV

3. Once this information is supplied, BDEMO encrypts the DES key using the 
recipient’s public key, saving the IV, encrypted DES key, and the encrypted 
content in the previously specified files.

Verify a Signed File
To verify the signature for a file:

1. Enter “v” at the top-level menu. 
2. You will be prompted in succession for:

• the name and location of the file to be verified

• the digital signature file

• the signer’s user number (1 or 2; you may also choose 3 if you have 
generated a key pair)

3.  BDEMO uses the signer’s public key to verify the signature. If the signature is 
valid, BDEMO prints “Signature verified.”; otherwise, BDEMO prints 
“ERROR: Invalid signature while verifying file.”

Open a File Envelope
To open an enveloped file:

1. Enter “o” at the top-level menu. 
2. You will be prompted in succession for:
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• the name and location of the file that contains the encrypted data 

• the name and location of the of the file that contains the encrypted DES key

• the name and location of the of the file that contains the IV

• the name of the file where the decrypted content should be stored. To print 
the content to the screen instead, use a hyphen (-) as the file name.

• the recipient’s user number

3. BDEMO uses the recipient’s private key to recover the DES key. It then uses the 
DES key to decrypt the data and saves it to the specified file. If a hyphen was 
entered as the output file name, it prints the decrypted data to the screen instead 
of saving it to a file.

Generate a Key Pair
Use BDEMO to generate a new RSA key pair. However, this is only for demonstration 
purposes, and does not generate cryptographically secure RSA keys. BDEMO will generate 
an RSA public/private key pair, but the keys are lost when you exit BDEMO. 

To generate a key pair:

1. Enter “g” at the top-level menu. 
2. You will be prompted in succession for:

• the key size in bits

• some seed information

3. BDEMO generates the key pair and keeps it as the key pair for User 3. Once a 
keypair has been generated, you may not generate another during the same 
BDEMO session. 

Depending on the key size and the speed of the computer, key pair generation may 
take from a few seconds to several minutes.
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BDEMODSA
BDEMODSA demonstrates the use of DSA to digitally sign and verify the integrity of 
data files.

Running BDEMODSA 

Command Line mode
To start BDEMODSA, enter the following after the system prompt:

> bdemodsa

Input Redirection mode
You may also run BDEMODSA in input redirection mode where your responses to 
the menu prompts are read from a file. For example, to read commands from a file 
named testsgn, enter the following after the system prompt:

> bdemodsa -s < testsgn

Notice that this uses ’<’ to redirect testsgn as the input to BDEMODSA. 
BDEMODSA’s -s  option is used to omit the menu prompts when input is taken from 
a file.

Any line that is blank or begins with  ’#’ is ignored. This means that the file used in 
response file mode may contain blank lines and comment lines that begin with  ’#’.

Using BDEMODSA
When you use BDEMODSA in command-line mode, you will be prompted to 
generate a DSA key pair for your BDEMODSA session. To do this:

1. Start BDEMODSA by typing bdemodsa at the system prompt
The request “Enter seed to generate DSA keypair (blank to 
cancel):” is displayed. 

2. Enter any arbitrary string of printable characters. 
The message “Generating DSA Keypair,  please wait...” is displayed. 
Depending on the computer and level of code optimization, key generation will 
take from several seconds to several minutes. 
When the key pair has been generated, the message “DSA public key and 
private key are now ready to use” is displayed.
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Once a key pair has been generated, the following top-level menu is displayed:

S - Sign a file using DSA/SHA
V - Verify a DSA signed file
Q - Quit
  Enter choice:

Commands may be entered in either upper or lower case, and all but the initial letter 
of a command is ignored. So, for example, to sign a file you may either type “s” or 
“sign”.

The commands on this top-level menu are described below.

Sign a File
To sign a file:

1. Enter s.
2. You will be prompted in succession for:

• the name and location of the file to be signed

• the name of the file that will hold the signature

3. BDEMODSA uses the private key generated at the beginning of the session to 
create a signature and places the result in the specified file. 

Verify a Signed File
To verify the signature for a file:

1. Enter v.
2. You will be prompted in succession for:

• the name and location of the file that was signed

• the name and location of the file containing the digital signature

3. BDEMODSA uses the public key generated at the beginning of the session to 
verify the signature. If the signature is valid, BDEMODSA prints “Signature 
verified.”; otherwise, BDEMODSA prints “ERROR: Invalid signature 
while verifying file.” 

Note: If the signature was generated during a previous execution of BDEMODSA, it 
is necessary to re-use the seed from signature signing, otherwise verification 
will fail.
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BDEMOEC
BDEMOEC provides the same functionality as BDEMO, but uses elliptic curve for its 
algorithms. The algorithm used for sealing and opening digital envelopes is ECAES to 
encrypt the DES symmetric key. Digital signatures are created and verified using 
ECDSA with SHA1. 

A set of elliptic curve parameters are hard-coded in the demo along with two key 
pairs generated with that curve. A new key pair can be generated, but since the size of 
the key pair is dependent on the elliptic curve parameters used, the user cannot 
specify the desired key size. 

Running BDEMOEC

Command Line mode
To start BDEMOEC, enter the following after the system prompt:

> bdemoec

Input Redirection mode
You may also run BDEMOEC in input redirection mode where your responses to the 
menu prompts are read from a file. For example, to read commands from a file named 
testin, enter the following after the system prompt:

> bdemoec -s < testec

Notice that this uses < to redirect testin as the input to BDEMOEC.  The -s option to 
BDEMOEC eliminates the menu prompts when BDEMOEC is taking input from a file.

Any line that is blank or begins with  ’#’ is ignored. This means that the file used in 
response file mode may contain blank lines and comment lines that begin with  ’#’.

Using BDEMOEC
The menu options and procedures for BDEMOEC are identical for those for BDEMO. 
See “Using BDEMO” on page 329 for a description of the menu commands.
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File Reference
The C source code files for the demo programs provide a convenient means to learn 
Crypto-C by example and are a good starting point for your own Crypto-C 
applications. 

The source files for the demo programs are described in Table A-1.

Table A-1 Demo Program Source Files

File(s) Description

bdemo.c This file contains BDEMO’s main function, menu interpreter, and drivers for 
each of the menu commands. This file uses the standard C library functions 
such as printf and  fopen, etc.

bdemodss.c This file contains BDEMODSA’s main function. It is entirely analogous to 
bdemo.c.

bdemoec.c This file contains BDEMOEC’s main function. It is entirely analogous to 
bdemo.c. The elliptic curve parameters used for this demonstration, along with 
two key pairs, are hard-coded in the beginning of this file.

bslite.c and 
bslite.h

bslite.c contains a collection of routines that enable BDEMO to interface to 
the Crypto-C cryptographic library. The routines are written in straightforward, 
easy-to-read portable C code. These routines also illustrate the coding of 
interfaces to a number of common Crypto-C library functions. A developer may 
wish use this module as a starting point for developing an application. Refer to 
“blreadme” (in the demosrc directory) for extended descriptions of routines 
contained in bslite.c. 

bsliteds.c and 
bsliteds.h

bsliteds.c contains routines used by BDEMODSA to interface to the Crypto-
C library. These routines illustrate how to code portable interfaces to Crypto-C’s 
implementation of the Digital Signature Algorithm.

bslec.c and 
bslec.h

bslec.c contains routines used by BDEMOEC to interface to the Crypto-C 
library. These routines are analogous to bslite.c and bslite.h. However, 
not all functions in bslite.c have a counterpart in bslec.c. 

choosc.c and 
demochos.h

These files define the DEMO_ALGORITHM_CHOOSER which may be used as a 
default for the algorithmChooser argument to Crypto-C routines. 
DEMO_ALGORITHM_CHOOSER is externally declared in demochos.h for 
inclusion by applications that need access to the 
DEMO_ALGORITHM_CHOOSER.

filebsl.c, 
filebsl.h, 
fileio.c and 
fileio.h

These files call on the BSLite routines in bslite.c and handle the file I/O for 
each operation. These files use the standard C library functions such as 
printf and fopen.
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BSLite
BSLite is a collection of routines that interface with the Crypto-C library. BSLite 
demonstrates how to call Crypto-C to execute various cryptographic procedures. The 
routines are written in straightforward, easy-to-read portable C and is provided to all 
Crypto-C customers in source form. BSLite includes a number of the most popular 
functions supported by the Crypto-C library:

• Symmetric key generation
• Symmetric block and stream encryption
• Diffie-Hellman parameter generation
• Diffie-Hellman key agreement
• Message digest computation
• RSA key generation
• RSA digital signature creation and verification
• RSA digital envelope sealing and opening
• Password-based private key protection/encryption

fbslec.c, 
fbslec.h, 
fileio.c and 
fileio.h

These files are used by BDEMOEC. These files call on the routines in bslec.c 
and handle the file I/O for each operation. These files use the standard C library 
functions such as printf and fopen. The files fbslec.c and fbslec.h 
are analogous to filebsl.c and filebsl.h used by BDEMO.

tstdlib.c This file contains memory, I/O, and buffer manipulation routines needed by 
Crypto-C, such as T_malloc and T_memcmp. This file illustrates how these 
routines can be implemented on most platforms.   However, some of these 
routines may need alteration for different platforms. For example, Crypto-C 
requires that T_free perform no function if it is passed NULL_PTR, but some 
library implementations of free may not satisfy this convention. Therefore, an 
explicit check for NULL_PTR may be needed in T_free.

tstdlib.c uses the constant MEMMOVE_PRESENT. If the platform’s C library 
provides memmove, MEMMOVE_PRESENT should be defined as 1; otherwise, it 
should be defined as 0. In tstdlib.c, default values are given for these 
constants, but they may be overridden by a compiler flag. For example:

-DMEMMOVE_PRESENT=0

Table A-1 Demo Program Source Files

File(s) Description
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BSLite
A single C source file, bslite.c, with a single header file, bslite.h, contains the 
entire BSLite Code. For more information on BSLite, see the file blreadme.
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Glossary
This section lists security and cryptographic terms and abbreviations, along with their 
definitions, that are used throughout the RSA BSAFE Crypto-C documentation set.
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AES

Advanced Encryption Standard.

algorithm

A series of steps used to complete a task.

Alice

The name traditionally used for the first 
user of cryptography in a system; Bob's 
friend.

ANSI

American National Standards Institute.

API

Application Programming Interface.

attack

Either a successful or unsuccessful 
attempt at breaking part or all of a 
cryptosystem. See algebraic attack, 
birthday attack, brute force attack, 
chosen ciphertext attack, chosen 
plaintext attack, differential 
cryptanalysis, known plaintext attack, 
linear cryptanalysis, and middleperson 
attack.

authentication

The action of verifying information such 
as identity, ownership, or authorization.

BER

Basic Encoding Rules. A set of rules for 
representing ASN.1 objects as strings of 
ones and zeros. DER is a subset of BER.

bit

A binary digit, either 1 or 0.

block cipher

A symmetric cipher which encrypts a 
message by breaking it down into fixed 
size blocks and encrypting each block.

Bob

The name traditionally used for the 
second user of cryptography in a system; 
Alice's friend.

CA

See certifying authority.

CAPI

Cryptographic Application 
Programming Interface.

certificate

In cryptography, an electronic document 
binding some pieces of information 
together, such as a user's identity and 
public key. Certifying Authorities (CA's) 
provide certificates.

Certifying Authority (CA)

A person or organization that creates 
certificates.

checksum

Used in error detection, a checksum is a 
computation done on the message and 
transmitted with the message; similar to 
using parity bits.

cipher

An encryption-decryption algorithm.

ciphertext

Encrypted data.
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Data Encryption Standard

See DES.

decryption

The inverse (reverse) of encryption. The 
process by which the ciphertext is 
converted into plaintext.

DER

Distinguished Encoding Rules. A subset 
of BER which gives a unique encoding to 
each ASN.1 value.

DES

Data Encryption Standard. A block 
cipher developed by IBM and the U.S. 
government in the 1970's as an official 
standard. See also block cipher.

dictionary attack

A brute force attack that tries passwords 
and/or keys from a precompiled list of 
values. This is often done as a pre-
computation attack.

Diffie-Hellman key exchange

A key exchange protocol allowing the 
participants to agree on a key over an 
insecure channel.

digest

Commonly used to refer to the output of 
a hash function. For example, a message 
digest refers to the hash of a message.

digital signature

The encryption of a message digest with 
a private key.

distributed key

A key that is split up into many parts 
and shared (distributed) among 
different participants. See also secret 
sharing.

DMS

Defense Messaging Service.

DOD

Department of Defense.

DSA

Digital Signature Algorithm. DSA is a 
public-key method based on the discrete 
logarithm problem.

DSS
Digital Signature Standard. DSA is the 
Digital Signature Standard.

EAR 

Export Administration Regulations.

ECAES

Elliptic Curve Authenticated Encryption 
Scheme.

ECC

Elliptic Curve Cryptosystem. A public-
key cryptosystem based on the 
properties of elliptic curves.

ECDH

Elliptic Curve Diffie-Hellman key 
agreement.

ECDL

See elliptic curve discrete logarithm.
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ECDSA

Elliptic Curve DSA (Digital Signature 
Algorithm). An elliptic curve analogue 
of DSA.

EDI

Electronic (business) Data Interchange.

elliptic curve

The set of points (x, y) satisfying an 
equation of the form for variables x, y 
and constants a, b Î F, where F is a field.

elliptic curve cryptosystem

See ECC.

elliptic curve discrete logarithm

Also known as ECDL: the problem of 
finding m such that m ·P = Q, where P 
and Q are two points on an elliptic 
curve.

elliptic curve (factoring) method

A special-purpose factoring algorithm 
that attempts to find a prime factor p of 
an integer n by finding an elliptic curve 
whose number of points modulo p is 
divisible by only small primes.

encryption

The transformation of plaintext into an 
apparently less readable form (called 
ciphertext) through a mathematical 
process. The ciphertext may be read by 
anyone who has the key that decrypts 
(undoes the encryption) the ciphertext.

exclusive-OR

See XOR.

factor

Given an integer n, any number that 
divides it is called a factor of n. For 
example, 7 is a factor of 91, because 91/7 
is an integer.

factoring

The breaking down of an integer into its 
prime factors. This is a hard problem.

factoring methods

See elliptic curve method, multiple 
polynomial quadratic sieve, number 
field sieve, Pollard p-1 and Pollard p+1 
method, Pollard rho method, quadratic 
sieve.

FIPS

Federal Information Processing 
Standards. See NIST.

GSS-API

generic security service application 
program interface.

hacker

A person who tries and/or succeeds at 
defeating computer security measures.

IEEE

Institute of Electrical and Electronics 
Engineers. A body that creates some 
cryptography standards.

IETF

Internet Engineering Task Force.
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identification

A process through which one ascertains 
the identity of another person or entity.

key

A string of bits used widely in 
cryptography, allowing people to 
encrypt and decrypt data; a key can be 
used to perform other mathematical 
operations as well. Given a cipher, a 
key determines the mapping of the 
plaintext to the ciphertext. See also 
distributed key, private key, public 
key, secret key, session key, shared 
key, sub key, symmetric key, weak key.

key agreement

A process used by two or more parties to 
agree upon a secret symmetric key.

key escrow

The process of having a third party hold 
onto encryption keys.

key exchange

A process used by two more parties to 
exchange keys in cryptosystems.

key expansion

A process that creates a larger key from 
the original key.

key generation

The act of creating a key.

key management

The various processes that deal with the 
creation, distribution, authentication, 
and storage of keys.

key pair

The full key information in a public-key 
cryptosystem, consisting of the public 
key and private key.

key recovery

A special feature of a key management 
scheme that allows messages to be 
decrypted even if the original key is lost.

key schedule

An algorithm that generates the subkeys 
in a block cipher.

key space

The collection of all possible keys for a 
given cryptosystem. See also flat key 
space, linear key space, nonlinear key 
space, and reduced key space.

Message Authentication Code (MAC)

A MAC is a function that takes a 
variable length input and a key to 
produce a fixed-length output. See also 
hash-based MAC, stream-cipher based 
MAC, and block-cipher based MAC.

message digest

The result of applying a hash function to 
a message.

MIME

Multipurpose Internet Mail Extensions.

MIPS

Millions of Instructions Per Second. A 
measurement of computing speed.
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NIST

National Institute of Standards and 
Technology. A United States agency that 
produces security and cryptography 
related standards (as well as others); 
these standards are published as FIPS 
documents.

NSA

National Security Agency. A security-
conscious U. S. government agency 
whose mission is to decipher and 
monitor foreign communications.

one-time pad

A secret-key cipher in which the key is a 
truly random sequence of bits that is as 
long as the message itself, and 
encryption is performed by XORing the 
message with the key. This is 
theoretically unbreakable.

one-way function

A function that is easy to compute in one 
direction but quite difficult to reverse 
compute (compute in the opposite 
direction).

one-way hash function

A one-way function that takes a variable 
sized input and creates a fixed size 
output.

PBE

Password Based Encryption. Using a 
message digest algorithm to derive a key 
from a password.

PKI

Public-key Infrastructure. PKIs are 
designed to solve the key management 
problem. See also key management.

padding

Extra bits concatenated with a key, 
password, or plaintext.

password

A character string used as a key to 
control access to files or encrypt them.

PKCS

Public-key Cryptography Standards. A 
series of cryptographic standards 
dealing with public-key issues; these are 
published by RSA Laboratories.

plaintext

The data to be encrypted.

prime factor

A prime number that is a factor of 
another number is called a prime factor 
of that number.

prime number

Any integer greater than 1 that is 
divisible only by 1 and itself. The first 
twelve primes are 2, 3, 5, 7, 11, 13, 17, 19, 
23, 29, 31, and 37.

privacy

The state or quality of being secluded 
from the view and or presence of others.

private exponent

The private key in the RSA public-key 
cryptosystem.
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private key

In public-key cryptography, this key is 
the secret key. It is primarily used for 
decryption but is also used for 
encryption with digital signatures.

pseudo-random number

A number extracted from a pseudo-
random sequence.

pseudo-random sequence

A deterministic function that produces a 
sequence of bits with qualities similar to 
that of a truly random sequence.

public key

In public-key cryptography this key is 
made public to all; it is primarily used 
for encryption but can be used for 
verifying signatures.

public-key cryptography

Cryptography based on methods 
involving a public key and a private key.

RSA algorithm

A public-key cryptosystem based on the 
factoring problem. RSA stands for 
Rivest, Shamir and, Adleman, the 
developers of the RSA public-key 
cryptosystem and the founders of RSA 
Data Security (now RSA Security).

random number

As opposed to a pseudo-random 
number, a truly random number is a 
number produced independently of its 
generating criteria. For cryptographic 
purposes, numbers based on physical 
measurements, such as a Geiger 

counter, are considered random.

relatively prime

Two integers are relatively prime if they 
have no common factors. For example, 
14 and 25 are relatively prime, while 14 
and 91 are not; 7 is a common factor.

S-HTTP

Secure HyperText Transfer Protocol. A 
secure way of transferring information 
over the World Wide Web.

S/MIME

Secure Multipurpose Internet Mail 
Extensions.

SSL

Secure Socket Layer. A protocol used for 
secure Internet communications.

SWIFT

Society for Worldwide Interbank 
Financial Telecommunications.

salt

A string of random (or pseudo-random) 
bits concatenated with a key or 
password to foil precomputation 
attacks.

satisfiability problem

Given a Boolean expression, determine if 
there is an assignment of 1's and 0's such 
that the expression evaluates to 1. This is 
a hard problem.

secret key

In secret-key cryptography, this is the 
key used both for encryption and 
decryption.
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secret sharing

Splitting a secret (for examle, a private 
key) into many pieces such that any 
specified subset of k pieces may be 
combined to form the secret, but k-1 
pieces are not enough.

seed

A typically random bit sequence used to 
generate another, usually longer 
pseudo-random bit sequence.

session key

A key for symmetric-key cryptosystems 
which is used for the duration of one 
message or communication session.

SET

Secure Electronic Transaction. 
MasterCard and Visa developed (with 
some help from industry) this standard 
jointly to insure secure electronic 
transactions.

shared key

The secret key two (or more) users share 
in a symmetric-key cryptosystem.

SMTP

Simple Mail Transfer Protocol.

smart card

A card, not much bigger than a credit 
card, that contains a computer chip and 
is used to store or process information.

stream cipher

A secret-key encryption algorithm that 
processes data in a stream of arbitary 
length one a bit at a time.

stream cipher based MAC

MAC that uses linear feedback shift 
registers (LFSRs) to reduce the size of 
the data it processes.

strong prime

A prime number with certain properties 
chosen to defend against specific 
factoring techniques.

S/WAN

Secure Wide Area Network.

symmetric cipher

An encryption algorithm that uses the 
same key is used for encryption as 
decryption.

symmetric key

See secret key.

synchronous

A property of a stream cipher, stating 
that the keystream is generated 
independently of the plaintext and 
ciphertext.

tamper resistant

In cryptographic terms, this usually 
refers to a hardware device that is either 
impossible or extremely difficult to 
reverse engineer or extract information 
from.

TCSEC

Trusted Computer System Evaluation 
Criteria.

timestamp

See digital timestamp.
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verification

The act of recognizing that a person or 
entity is who or what it claims to be.

XOR

A binary bitwise operator yielding the 
result one if the two values are  different 
and zero otherwise. XOR is an 
abbreviation for exclusive-OR.
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A
acceleration table 273
Adelman, Leonard 52
Advanced Encryption Standard xvii

See AES
Advanced PKCS #11 147
AES xvii, 40, 41
AI See algorithm info type
algorithm chooser 15, 116�??

hardware chooser 132
RC4 sample chooser 117
RSA algorithm chooser 117

Algorithm Choosers 116
algorithm info type 11, 101

ASCII-encoding types 104
BHAPI 111, 133
message authentication types 104
message digest types 103
public-key types 107�111
random number types 104
secret-sharing types 111
symmetric-key types 104�107

algorithm method 15, 116
listing in chooser 15

algorithm object 9, 10, 11, 101
defined 9
hardware and 132

ANSI standards 6
applications of cryptography 83�86
ASCII encoding 83, 125

algorithm info types 104
example 172�176
output considerations 173, 175

asymmetric key cryptography See public-key 
cryptography

attacks 207
dictionary 50
man-in-the-middle 85
timing 95

authentication 57, 83

B
base

Diffie-Hellman key agreement 63

Digital Signature Algorithm 60
elliptic curve 71

basis See elliptic curve cryptography
BER encoding 123�125

algorithm info types 102
examples

Diffie-Hellman key agreement 254�
255

RC4 124�125
RSA key pair 224�226
SHA1 155�156

BHAPI 132�149
algorithm info types 111
key token 132

binary data
encoding to ASCII 172�176
memory management and 123
output considerations 175
printing 25

blinding 95, 229
block cipher 37

algorithm info types 105�107
examples 178�201
initialization vector 41
input constraints 126
key info types 113
key management 87
modes of operation 41
output considerations 37, 126
padding 37
selecting 88
See also AES, DES, DESX, RC2, RC5, Triple 

DES
block size 39, 40

RC6 40
Bloom-Shamir secret sharing See secret 

sharing
BSAFE 2.x 9
BSAFE Hardware API See BHAPI, hardware
BSLite 336

C
CBC See modes of operation
certificate authority 62
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certificate See digital certificate
CFB See modes of operation
characteristic See elliptic curve cryptography
chooser See algorithm chooser
Cipher Block Chaining See modes of 

operation
Cipher Feedback See modes of operation
collision 48
collision-free 48
communicating with other packages See BER 

encoding
compatibility

BSAFE 2.x 9

D
database applications 85
decoding

BER vs. ASCII 125
DEMO_ALGORITHM_CHOOSER 15, 116
DER See BER encoding
DES 37, 88

communication with other algorithms 87
example 178�183
key 97, 129
parity bits 129
weak and semi-weak keys 94

DESX 38, 88
dictionary attack 50
Diffie, Whitfield 62
Diffie-Hellman Key Agreement

performing 280
Diffie-Hellman key agreement 65, 97

algorithm info types 110
applications 84, 86
base 63
discrete logarithm problem and 65
examples

key agreement 256�259
parameter distribution 253�255
parameter generation 249�252

key 99
parameters 63, 250
private value 63, 256
public value 63
timing attacks and blinding 96

digest See message digest
digital certificate 61, 85, 86
Digital Encryption Standard See DES
digital envelope 55, 86, 227

key agreement vs. 88
Digital Signature

verification 289
digital signature 57�59, 73, 213, 227

applications 86

examples
Digital Signature Algorithm 239�248
RSA algorithm 233�239

signing 57
verifying 58
See also Digital Signature Algorithm, 

ECDSA
Digital Signature Algorithm 57, 60�61

algorithm info types 109
base 60
examples

key pair generation 242�243
parameter generation 239�241
signing 243�246
verifying 246�248

key 97, 99, 240
generating 60

key info types 114
parameters 60, 239
subprime 60
timing attacks and blinding 96

Digital Signature Standard (DSS) 60
discrete logarithm problem 65
DSA Key Pair Generation

PKCS #11 Support 144
DSA See Digital Signature Algorithm
DSS See Digital Signature Standard

E
EC Diffie-Hellman Key Agreement 280
EC Key Pair

generating 293
ECAES

private-key decryption 302
using 297

ECAES See Elliptic Curve Authenticated 
Encryption Scheme

ECB See modes of operation
ECDSA 73�75

example 284�291
output considerations 288
signing 73
verfiying 74
verifying 74
X9.62 284
X9.62 with BER 291

EDE 38
effective key 39, 185, 186
Electronic Codebook (ECB) See modes of 

operation
Elliptic Curve Authenticated Encryption 

Scheme 75�77
example 297�303
output considerations 300
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elliptic curve cryptography 65�79
algorithm info types 110
curve generation 262
examples

acceleration table 273�280
key pair generation 268�270
key retrieval 271�272
parameter generation 260�264
parameter retrieval 264�267

interoperability 90
key 72, 100, 262
key info types 115
output considerations 276
recommendations 90
RSA algorithm vs. 90
scalar multiplication 70
See also ECDSA, Elliptic Curve 

Authenticated Encryption Scheme, 
Elliptic Curve Diffie-Hellman key 
agreement, elliptic curve parameters

Elliptic Curve Diffie-Hellman key 
agreement 77�80

example 280�284
output considerations 283
private value 78, 283
public value 78

elliptic curve discrete logarithm problem 65
elliptic curve parameters 66�71

base point 71
characteristic 67, 68, 90
coefficients 68�69
cofactor 71
even characteristic 67�68

optimal normal basis 72
polynomial basis 72
representation 72

example 260�264
field 66, 67
odd prime 66
order 70, 100
point 69
point at infinity 69, 70
summary 71

emergency access See key escrow, secret 
sharing 89

encoding
BER vs. ASCII 125

entropy 93
envelope See digital envelope
error code 10, 128
examples

ASCII encoding 172�176
BER encoding 124�125
DES with CBC 178�183
Diffie-Hellman key agreement 249�259

Digital Signature Algorithm 239�248
ECDSA 284�291
Elliptic Curve Authenticated Encryption 

Scheme 297�303
Elliptic Curve Diffie-Hellman 280�284
HMAC 161�164
message digest (SHA1) 152�156
password-based encryption 206�211
random numbers 165�171
RC2 with CBC 184�190
RC4 9
RC5 with CBC 190�196
RC6 with CBC 196�201
RSA algorithm 214�232
secret sharing 305�311
surrender function 119

F
factoring 54, 98
feedback mode 41
Fermat 4 129
FIPS compliance 4

G
Generating an EC Key Pair 293

H
hardware 111

See also BHAPI
hardware accelerator

perform DES encryption 148
hash function See message digest
hash-based message authentication code 

(HMAC) 49
example 161�164

Hellman, Martin 62
HMAC 2
HMAC See hash-based message 

authentication code

I
include files

choos_c.c 116
tstdlib.c 18, 336

initialization vector 41, 179
uniqueness 94

input constraints 126

K
key 97

DES 97
DSA 60
elliptic curve 72, 100
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key (continued)
RC2 39, 99
RC4 87, 99
RC5 99, 190
recovery 89
registering 61
RSA 53, 54, 97, 98
size 97, 98, 129
token (hardware) 111, 132
Triple DES 99
weak and semi-weak DES keys 94
See also public-key cryptography, 

symmetric-key cryptography
key agreement 77

applications 86
digital envelopes vs. 88
See also Diffie-Hellman key agreement, 

Elliptic Curve Diffie-Hellman Key 
Agreement

key derivation function (KDF) 76
key escrow 82

secret sharing vs. 89
key info type 14, 113

block cipher types 113
DSA types 114
elliptic curve types 115
generic key types 113
RSA algorithm types 114

key management 82, 87
key object 13, 113
key size 40
KI See key info type
Koblitz, Neal 65

L
local file encryption 83

M
MAC See message authentication code
man-in-the-middle 85
MD 48
MD2 48
MD5 48
memory management 121, 122

security considerations 92
T_free 21
T_malloc 18
tstdlib.c and 122

message authentication code 47
algorithm info types 104
HMAC 49, 161
password-based encryption 49
RC4 and 47

message digest 47�48
algorithm info types 103
BER encoding 155
collision 48
digital signature 57, 233
example 152�156
See also MD, MD2, MD5, SHA1

Message digests
uses 48

Miller, Victor 65
modes of operation 41

Cipher Block Chaining (CBC) 43
examples 178�183, 184�190

Cipher Feedback (CFB) 43
Electronic Codebook 42
Output Feedback (OFB) 45

modular math 52
modulus See RSA algorithm
MultiPrime

defined 218
Generating an RSA MultiPrime Key 222
how many primes to use 219
Sample 220

N
NIST certification 4

O
OAEP 231
OAEP Protocol

Optimal Asymmetric Encryption Padding 
(OAEP) 55

OFB (Output Feedback mode) See modes of 
operation

one-way hash function See message digest
Optimal Asymetric Encryption Padding 

(OAEP) 231
optimal normal basis (ONB) See elliptic curve 

parameters
output considerations 126

ASCII to binary 173, 175
block cipher 37
ECDSA 288
elliptic curve 276
Elliptic Curve Authenticated Encryption 

Scheme 300
Elliptic Curve Diffie-Hellman key 

agreement 283
output feedback mode 45
Output Feedback mode (OFB) See modes of 

operation
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P
padding 37, 126, 180

RSA algorithm 227
parameters

Diffie-Hellman key agreement 63, 99, 249
Digital Signature Algorithm 60, 239
surrender context and 118
See also elliptic curve parameters

parity bits 129
password 93
password-based encryption 49

algorithm info types 106
dictionary attack 50
example 206�211
key 208
salt 207

PBE See password-based encryption
PEM encoding 103
Performing EC Diffie-Hellman Key 

Agreement 280
PKCS #11

Advanced 147
DSA Support 144
random number generator 148

PKCS standards 4
point See elliptic curve parameters
point-to-point applications 84, 85
polynomial basis See elliptic curve 

parameters
prime 52, 60
privacy 83
Privacy Enhanced Mail See PEM encoding
public exponent 52
public-key cryptography 50�80

algorithm info types 107�111
digital certificate 61
digital signature 57
security 91
signing 213
symmetric-key vs. 51, 87
See also Diffie-Hellman key agreement, 

Digital Signature Algorithm, elliptic 
curve cryptography, RSA algorithm

R
random number

algorithm info types 104
entropy 93
example 165�171
generating 48
hardware 111

random numbers
multiple streams of randomness 170

random seed 48, 92, 167
generating 93

RC2 38, 88
effective key 39, 99, 185, 186
examples 184�190, 207�211

RC4 46
algorithm chooser 117
applications 84
BER example 124
example 9
key 95
key size 99
MAC with 47

RC5 39, 88
block size 39, 190
example 190�196
key 99, 190
key size 40
rounds 39, 99, 190
version number 191
word size 39, 190

RC6 40, 88
block size 40
example 196�201
rounds 40
word size 40

Rivest, Ronald 38, 39, 46, 52
rounds 39, 99, 190

RC6 40
RSA algorithm 51�55

algorithm info types 107�109
applications 85
digital envelope 227
digital signature 57, 59, 227, 233
elliptic curve cryptography vs. 90
examples

ANSI X9.31 313
decryption 229�231
digital signature 233�239
distributing a key pair 223�226
encryption 226�229
generating a key pair 214�217
raw RSA 231�232

factoring and 54, 98
input constraints 127, 227, 231�232, 233
key 53, 54, 97, 98, 129, 130, 215
key escrow 82
key info types 114
modulus 52, 98, 130, 215
output considerations 228, 230
raw RSA 227
sample algorithm chooser 117
security 54
timing attacks and blinding 96, 229
See also public-key cryptography
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RSA Security Inc.
FAQ 55
Web site 48

S
salt 49, 94

iterations 207
sample program files

berder.c 124
descbc.c 178
dhagree.c 256
dhparam.c 249
dintorex.c 26
dsasign.c 239
ecdh.c 280
ecdsadig.c 285
eces.c 297
ecparam.c 260, 273
encdec.c 172
hmac.c 161
introex.c 9
mdber.c 155
mdigest.c 152
pbe.c 206
rc2.c 184
rc5.c 190
rc6.c 196
rc6fb.c 196
rsapkcs.c 214
rsasign.c 233
scrtshar.c 305

secret key
See symmetric-key cryptography

secret sharing 80, 305
algorithm info types 111
example 305�311
key escrow vs. 89

Secure Hash Algorithm
See SHA1

security 91�100
DES weak keys 94
key size 97
passwords and 93
random seed and 92

seed 48, 92, 93, 167
entropy 93
zeroizing 170

sensitive data 123
zeroizing 20, 31, 91, 170, 209

SHA1 48
DSA and 60
ECAES and 76
examples 152�156

random numbers 165�171

hash-based message authentication 
and 49, 161

Shamir, Adi 52
signature See digital signature 57
six-step sequence 8, 32
standards

ANSI 6
FIPS 4
NIST 4
PKCS 4

stream cipher 46�47
algorithm info types 104
attacks 95
key 87
See also RC4

subprime 60
surrender context 16, 118�120

example 119
parameter generation 118

symmetric-key cryptography 36�47
algorithm info types 104�107
examples 177�201
password-based encryption 49
public-key vs. 87
See also block cipher, stream cipher

T
T_free 122
T_malloc 122
TDES See Triple DES
threshold scheme 80, 305
timing attack 95, 229
token key See BHAPI
Triple DES 38

key 38, 99

V
Verification

digital signature 289
verifying See digital signature

W
word size 39, 190

RC6 40

X
X9.31 313
X9.62 284, 291

Z
zeroizing sensitive data 20, 31, 91, 209

random seed 170
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