SHARP

Graphing Calculator EL-9900 Handbook Vol. 1

Algebra

For Advanced Levels

For Basic Levels

Contents

1. Fractions
1-1 Fractions and Decimals
2. Pie Charts
2-1 Pie Charts and Proportions
3. Linear Equations
3-1 Slope and Intercept of Linear Equations
3-2 Parallel and Perpendicular Lines
4. Quadratic Equations
4-1 Slope and Intercept of Quadratic Equations
5. Literal Equations
5-1 Solving a Literal Equation Using the Equation Method (Amortization)
5-2 Solving a Literal Equation Using the Graphic Method (Volume of a Cylinder)
5-3 Solving a Literal Equation Using Newton's Method (Area of a Trapezoid)
6. Polynomials
6-1 Graphing Polynomials and Tracing to Find the Roots
6-2 Graphing Polynomials and Jumping to Find the Roots
7. A System of Equations
7-1 Solving a System of Equations by Graphing or Tool Feature
8. Matrix Solutions
8-1 Entering and Multiplying Matrices
8-2 Solving a System of Linear Equations Using Matrices
9. Inequalities
9-1 Solving Inequalities
9-2 Solving Double Inequalities
9-3 System of Two-Variable Inequalities
9-4 Graphing Solution Region of Inequalities
10. Absolute Value Functions, Equations, Inequalities
10-1 Slope and Intercept of Absolute Value Functions
10-2 Solving Absolute Value Equations
10-3 Solving Absolute Value Inequalities
10-4 Evaluating Absolute Value Functions
11. Rational Functions
11-1 Graphing Rational Functions
11-2 Solving Rational Function Inequalities
12. Conic Sections
12-1 Graphing Parabolas
12-2 Graphing Circles
12-3 Graphing Ellipses
12-4 Graphing Hyperbolas
SHARP

Read this first

1. Always read "Before Starting"

The key operations of the set up conndition are written in "Before Starting" in each section. It is essential to follow the instructions in order to display the screens as they appear in the handbook.

2. Set Up Condition

As key operations for this handbook are conducted from the initial condition, reset all memories to the initial condition beforehand.

2nd F Option \mathbf{E}, CL

Note: Since all memories will be deleted, it is advised to use the CE-LK2 PC link kit (sold separately) to back up any programmes not to be erased, or to return the settings to the initial condition (cf. 3. Initial Settings below) and to erase the data of the function to be used.

- To delete a single data, press $\mathbf{2 n d} \mathbf{F}$ oprow \mathbf{C} and select data to be deleted from the menu.
- Other keys to delete data:

CL : to erase equations and remove error displays
2nd F QUIT : to cancel previous function

3. Initial settings

Initial settings are as follows:
ASet up (2ndF SEtup): Advanced keyboard: Rad, FloatPt, 9, Rect, Decimal(Real), Equation, Auto Basic keyboard: Deg, FloatPt, 9, Rect, Mixed, Equation, Auto
\star Format (2ndF Format): Advanced keyboard: OFF, OFF, ON, OFF, RectCoord Basic keyboard: 0FF, OFF, ON, OFF
Stat Plot ($\underset{\text { STATOT }}{\text { Prot }} \mathbf{E}$): 2. PlotOFF
Shade (2 nd \mathbf{F} draw \mathbf{G}): 2. INITIAL
Zoom (Z00M A): 5. Default
Period (2nd F Fivance \mathbf{C}): 1. PmtEnd (Advanced keyboard only)

Note: \approx returns to the default setting in the following operation.
(2ndF orion E 1 ENTER)

4. Using the keys

Press $2 \mathrm{nd} \mathbf{F}$ to use secondary functions (in yellow).
To select "X ${ }^{-1}$ ": \quad 2nd $\boldsymbol{F} \quad X^{2} \rightarrow$ Displayed as follows: 2 2nd $\boldsymbol{F} \quad X^{-1}$
Press ALPHA to use the alphabet keys (in violet).
To select F: \quad ALPHA $\triangle \mathbf{X}^{2} \rightarrow$ Displayed as follows: $\overline{\text { ALPHA }} \mathbf{F}$

5. Notes

- Some features are provided only on the Advanced keyboard and not on the Basic keyboard. (Solver, Matrix, Tool etc.)
- As this handbook is only an example of how to use the EL-9900, please refer to the manual for further details.

Using this H andbook

This handbook was produced for practical application of the SHARP EL-9900 Graphing Calculator based on exercise examples received from teachers actively engaged in teaching. It can be used with minimal preparation in a variety of situations such as classroom presentations, and also as a self-study reference book.

We would like to express our deepest gratitude to all the teachers whose cooperation we received in editing this book. We aim to produce a handbook which is more replete and useful to everyone, so any comments or ideas on exercises will be welcomed.
(Use the attached blank sheet to create and contribute your own mathematical problems.)

Fractions and D ecimals

To convert a decimal into a fraction, form the numerator by multiplying the decimal by 10^{n}, where n is the number of digits after the decimal point. The denominator is simply 10^{n}. Then, reduce the fraction to its lowest terms.

Example

Convert 0.75 into a fraction.

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.
We recommend using the Basic keyboard to calculate fractions.

Step \& Key Operation

1 Choose the manual mode for reducing fractions.

2nd F SETUP H 2

2 Convert 0.75 into a fraction.

$\mathbf{C L}$	0	-	7	5	$\rightarrow \mathrm{~b} / \mathrm{C}$	ENTER

3 Reduce the fraction.
Simp ENTER

The fraction can be reduced by a factor of 5 .

The fraction cannot be reduced by a factor of 3 , even though the numerator can be. ($15=3 \times 5$)

5 Enter 5 to reduce the fraction.

Simp 5	ENTER

$0.75=3 / 4$

The EL-9900 can easily convert a decimal into a fraction. It also helps students learn the steps involved in reducing fractions.

Pie C harts and Proportions

Pie charts enable a quick and clear overview of how portions of data relate to the whole.

Example

A questionnaire asking students about their favourite colour elicited the following results:
Red: 20 students
Blue: 12 students
Green: 25 students
Pink: 10 students
Yellow: 6 students

1. Make a pie chart based on this data.
2. Find the percentage for each colour.

Before
Starting

There may be differences in the results of calculations and graph plotting depending on the setting. Return all settings to the default value and delete all data.

Step \& Key Operation
1-1 Enter the data.

STAT	A	ENTER	2	0	ENTER	1
2	ENTER	2	5	ENTER	1	0
ENTER 6 ENTER						

Display

Choose the setting for making a pie chart.

1-3 Make a pie chart.
GRAPH

2-1 Choose the setting for displaying by percentages.

STAT		
PLOT	P	$\mathbf{2}$

2-2 Make another pie chart.
GRAPH

Red: 27.39\%
Blue: 16.43\%
Green: 34.24\%
Pink: 13.69\%
Yellow: 8.21\%

Pie charts can be made easily with the EL-9900.

Slope and Intercept of Linear Equations

A linear equation of y in terms of x can be expressed by the slope-intercept form $y=m x+b$, where m is the slope and b is the y-intercept. We call this equation a linear equation since its graph is a straight line. Equations where the exponents on the x and y are 1 (implied) are considered linear equations. In graphing linear equations on the calculator, we will let the x variable be represented by the horizontal axis and let y be represented by the vertical axis.

Example

Draw graphs of two equations by changing the slope or the y - intercept.

1. Graph the equations $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=2 \mathrm{x}$.
2. Graph the equations $y=x$ and $y=\frac{1}{2} x$.
3. Graph the equations $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=-\mathrm{x}$.
4. Graph the equations $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}+2$.

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation

1-1 Enter the equation $\mathrm{y}=\mathrm{x}$ for Y 1 and $\mathrm{y}=2 \mathrm{x}$ for Y 2 .

$$
\begin{array}{|l|l|l|}
\hline \mathbf{Y}=\mathrm{X} / \theta / \mathrm{T} / n & \text { ENTER } \mathrm{X} / \theta / \mathrm{T} / n \\
\hline
\end{array}
$$

The equation $\mathrm{Y} 1=\mathrm{x}$ is displayed first, followed by the equation Y2 $=2 \mathrm{x}$. Notice how Y2 becomes steeper or climbs faster. Increase the size of the slope ($m>1$) to make the line steeper.

Display

1.2 View both graphs.

GRAPH

Notes

2-1 Enter the equation $\mathrm{y}=\frac{1}{2} \mathrm{x}$ for Y 2 .

2.2 View both graphs.

GRAPH

Step \& Key Operation

Display

Notes

3-1 Enter the equation $\mathrm{y}=-\mathrm{x}$ for Y 2 .

3-2 View both graphs.
GRAPH

Notice how Y2 decreases (going down from left to right) instead of increasing (going up from left to right). Negative slopes ($\mathrm{m}<0$) make the line decrease or go down from left to right.

4-1 Enter the equation $\mathrm{y}=\mathrm{x}+2$ for Y2.
$Y=\nabla \boldsymbol{C L} \times \theta / T / \square 2$

Y1EX
$42 日 x+2$
$Y 5=$
$Y 4=$
$45=$
$46=$

4.2

View both graphs.
GRAPH

Adding 2 will shift the $\mathrm{y}=\mathrm{x}$ graph upwards.

Making a graph is easy, and quick comparison of several graphs will help students understand the characteristics of linear equations.

Parallel and Perpendicular Lines

Parallel and perpendicular lines can be drawn by changing the slope of the linear equation and the y intercept. A linear equation of y in terms of x can be expressed by the slopeintercept form $y=m x+b$, where m is the slope and b is the y-intercept.
Parallel lines have an equal slope with different y-intercepts. Perpendicular lines have slopes that are negative reciprocals of each other $\left(m=-\frac{1}{m}\right)$. These characteristics can be verified by graphing these lines.

Example

Graph parallel lines and perpendicular lines.

1. Graph the equations $\mathrm{y}=3 \mathrm{x}+1$ and $\mathrm{y}=3 \mathrm{x}+2$.
2. Graph the equations $\mathrm{y}=3 \mathrm{x}-1$ and $\mathrm{y}=-\frac{1}{3} \mathrm{x}+1$.

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation

Display

1.2 View the graphs.

GRAPH

These lines have an equal slope but different y-intercepts. They are called parallel, and will not intersect.

2-1 Enter the equations $y=3 x-1$ for Y 1 and $\mathrm{y}=-\frac{1}{3} \mathrm{x}+1$ for Y 2 .

Step \& Key Operation

2-2 View the graphs. GRAPH

Display

Notes

These lines have slopes that are negative reciprocals of each other $\left(\mathrm{m}=-\frac{1}{\mathrm{~m}}\right)$. They are called perpendicular. Note that these intersecting lines form four equal angles.

The Graphing Calculator can be used to draw parallel or perpendicular lines while learning the slope or y-intercept of linear equations.

Slope and Intercept of Quadratic Equations

A quadratic equation of y in terms of x can be expressed by the standard form $y=a(x-h)^{2}+k$, where a is the coefficient of the second degree term $\left(y=a x^{2}+b x+c\right)$ and (h, k) is the vertex of the parabola formed by the quadratic equation. An equation where the largest exponent on the independent variable x is 2 is considered a quadratic equation. In graphing quadratic equations on the calculator, let the x -variable be represented by the horizontal axis and let y be represented by the vertical axis. The graph can be adjusted by varying the coefficients a, h, and k .

Example

Graph various quadratic equations and check the relation between the graphs and the values of coefficients of the equations.

1. Graph $y=x^{2}$ and $y=(x-2)^{2}$.
2. Graph $y=x^{2}$ and $y=x^{2}+2$.
3. Graph $y=x^{2}$ and $y=2 x^{2}$.
4. Graph $y=x^{2}$ and $y=-2 x^{2}$.

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.

Step \& Key Operation
Display
Notes

1-1 Enter the equation $\mathrm{y}=\mathrm{x}^{2}$ for Y 1 .
$Y=$ XөT/M $\quad \mathbf{X}^{2}$

1-2 Enter the equation $y=(x-2)^{2}$ for Y2 using Sub feature.
 (0 ENTER)
1.3 View both graphs.

GRAPH

Notice that the addition of -2 within the quadratic operation moves the basic $y=x^{2}$ graph right two units (adding 2 moves it left two units) on the x-axis. This shows that placing an $h(>0)$ within the standard form $\mathrm{y}=\mathrm{a}(\mathrm{x}-h)^{2}+\mathrm{k}$ will move the basic graph right h units and placing an $h(<0)$ will move it left h units on the x -axis.

Step \& Key Operation

Display
Notes
2-1 Change the equation in Y 2 to $\mathrm{y}=\mathrm{x}^{2}+2$.

2.2 View both graphs.

GRAPH

Notice that the addition of 2 moves the basic $y=x^{2}$ graph up two units and the addition of -2 moves the basic graph down two units on the y -axis. This demonstrates the fact that adding $\mathrm{k}(>0)$ within the standard form $\mathrm{y}=\mathrm{a}(\mathrm{x}-$ $h)^{2}+\mathrm{k}$ will move the basic graph up k units and placing k (<0) will move the basic graph down k units on the y -axis.

3.2

Notice that the multiplication of 2 pinches or closes the basic $y=x^{2}$ graph. This demonstrates the fact that multiplying an a (>1) in the standard form $y=a$ $(\mathrm{x}-h)^{2}+\mathrm{k}$ will pinch or close the basic graph.

4-1 Change the equation in Y2 to $y=-2 x^{2}$.

ENTER

3-2 View both graphs.
GRAPH

View both graphs.

GRAPH

Notice that the multiplication of -2 pinches or closes the basic $\mathrm{y}=\mathrm{x}^{2}$ graph and flips it (reflects it) across the x -axis. This demonstrates the fact that multiplying an $\mathrm{a}(<-1)$ in the standard form $\mathrm{y}=\mathrm{a}(\mathrm{x}-h)^{2}+\mathrm{k}$ will pinch or close the basic graph and flip it (reflect it) across the x-axis.

The EL-9900 allows various quadratic equations to be graphed easily. Also the characteristics of quadratic equations can be visually shown through the relationship between the changes of coefficient values and their graphs, using the Substitution feature.

Solvinga Litaral Eqpation Using the Equation Method Annotidion

The Solver mode is used to solve one unknown variable by inputting known variables, by three methods: Equation, Newton's, and Graphic. The Equation method is used when an exact solution can be found by simple substitution.

Example

Solve an amortization formula. The solution from various values for known variables can be easily found by giving values to the known variables using the Equation method in the Solver mode.

$$
\text { The formula : } \mathrm{P}=\mathrm{L}\left[\frac{1-\left(1+\frac{\mathrm{I}}{12}\right)^{-\mathrm{M}}}{\frac{\mathrm{I}}{12}}\right]^{-1} \quad \begin{aligned}
& \mathrm{P}=\text { monthly payment } \\
& \mathrm{L}=\text { loan amount }
\end{aligned} \quad \begin{aligned}
& \mathrm{I}=\text { interest rate } \\
& \mathrm{N}=\text { number of months }
\end{aligned}
$$

1. Find the monthly payment on a $\$ 15,000$ car loan, made at 9% interest over four years (48 months) using the Equation method.
2. Save the formula as "AMORT".
3. Find amount of loan possible at 7% interest over 60 months with a $\$ 300$ payment, using the saved formula.

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

As the Solver feature is only available on the Advanced keyboard, this section does not apply to the Basic keyboard.

Step \& Key Operation

1-1 Access the Solver feature.

2nd F SOLVER
1.2 Select the Equation method for solving.

2nd F SOLVER A
1
1.3 Enter the amortization formula.

| $\mathbf{)}$ | $\mathbf{a}^{\mathbf{b}}$ | $(-)$ |
| :--- | :--- | :--- | :--- |

Display

This screen will appear a few seconds after "SOLVER" is displayed.

Step \& Key Operation

Display
Notes
1.4

Enter the values L=15,000, $\mathrm{I}=0.09, \mathrm{~N}=48$.

$$
8 \text { ENTER }
$$

1-5 Solve for the payment(P).
 (CL)

2-1 Save this formula.
2nd F SOLVER C ENTER

2-2 Give the formula the name AMORT.

$$
\text { A M O } \quad \text { R T ENTER }
$$

3-1 Recall the amortization formula.

$$
\begin{array}{|l|l|}
\hline 0 & 1 \\
\hline
\end{array}
$$

The monthly payment (P) is \$373.28.

3.2 Enter the values: $\mathrm{P}=300$, $\mathrm{I}=0.01, \mathrm{~N}=60$

$$
\begin{array}{l|l|l|l|l|l|l|}
\hline \text { ENTER } & 3 & 0 & 0 & \text { ENTER } & 0 & \text { ENTER } \\
\hline-0 & 0 & 1 & \text { ENTER } & 6 & 0 & \text { ENTER } \\
\hline
\end{array}
$$

3-3 Solve for the loan (L).

With the Equation Editor, the EL-9900 displays equations, even complicated ones, as they appear in the textbook in easy to understand format. Also it is easy to find the solution for unknown variables by recalling a stored equation and giving values to the known variables in the Solver mode when using the Advanced keyboard.

The Solver mode is used to solve one unknown variable by inputting known variables. There are three methods: Equation, Newton's, and Graphic. The Equation method is used when an exact solution can be found by simple substitution. Newton's method implements an iterative approach to find the solution once a starting point is given. When a starting point is unavailable or multiple solutions are expected, use the Graphic method. This method plots the left and right sides of the equation and then locates the intersection(s).

Example

Use the Graphic method to find the radius of a cylinder giving the range of the unknown variable.
The formula : $\mathrm{V}=\pi \mathrm{r}^{2} h \quad(\mathrm{~V}=$ volume $\quad \mathrm{r}=$ radius $\quad h=$ height $)$

1. Find the radius of a cylinder with a volume of $30 \mathrm{in}^{3}$ and a height of 10 in , using the Graphic method.
2. Save the formula as "V CYL".
3. Find the radius of a cylinder with a volume of $200 \mathrm{in}^{3}$ and a height of 15 in , using the saved formula.

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data. As the Solver feature is only available on the Advanced keyboard, this section does not apply to the Basic keyboard.

Step \& Key Operation
1-1 Access the Solver feature.
2nd F SOLVER

1-2 Select the Graphic method for solving.

2nd F SOLVER A

Display

3
1.3 Enter the formula $V=\pi r^{2} h$.

ALPHA	V ALPHA	$=1$	2nd F

| \mathbf{R} | \mathbf{X}^{2} | ALPHA | \mathbf{H} |
| :--- | :--- | :--- | :--- | :--- |

1-4 Enter the values: $\mathrm{V}=30, \mathrm{H}=10$. Solve for the radius (R).

Notes

This screen will appear a few seconds after "SOLVER" is displayed.

Step \& Key Operation

Display

Notes

1-5 Set the variable range from 0 to 2 .

0	ENTER	2
		ENTER

1.6 Solve.

2ndF EXE (CL)

The graphic solver will prompt with a variable range for solving.
$\mathrm{r}^{2}=\frac{30}{10 \pi}=\frac{3}{\pi}<3$
$\mathrm{r}=1 \rightarrow \mathrm{r}^{2}=1^{2}=1<3$
$r=2 \rightarrow r^{2}=2^{2}=4>3$
Use the larger of the values to be safe.

The solver feature will graph the left side of the equation (volume, $\mathrm{y}=30$), then the right side of the equation $\left(y=10 r^{2}\right)$, and finally will calculate the intersection of the two graphs to find the solution. The radius is 0.98 in .

2 Save this formula.
Give the formula the name "V CYL".

2nd F SOLVER C ENTER
\mathbf{v} SPACE $\mathbf{C} \boldsymbol{Y}$ ENTER
3.1 Recall the formula.

Enter the values: V $=200, \mathrm{H}=15$.
2ndF SOUVR B 0 1

ENTER	2	0	0	ENTER	0

15 ENTER
3-2 Solve the radius setting the variable range from 0 to 4 .

ENTER 2nd F EXE

The Solver mode is used to solve one unknown variable by inputting known variables. There are three methods: Equation, Newton's, and Graphic. The Newton's method can be used for more complicated equations. This method implements an iterative approach to find the solution once a starting point is given.

Example

Find the height of a trapezoid from the formula for calculating the area of a trapezoid using Newton's method.
The formula : $\mathrm{A}=\frac{1}{2} h(\mathrm{~b}+\mathrm{c})(\mathrm{A}=$ area $\quad h=$ height $\mathrm{b}=$ top face $\quad \mathrm{c}=$ bottom face $)$

1. Find the height of a trapezoid with an area of $25 \mathrm{in}^{2}$ and bases of length 5in and 7in using Newton's method. (Set the starting point to 1.)
2. Save the formula as "A TRAP".
3. Find the height of a trapezoid with an area of $50 \mathrm{in}^{2}$ with bases of 8 in and 10 in using the saved formula. (Set the starting point to 1.)

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

As the Solver feature is only available on the Advanced keyboard, this section does not apply to the Basic keyboard.

Step \& Key Operation
1-1 Access the Solver feature.
2nd F SOLVER
1.2 Select Newton's method for solving.

2nd F solver A

Display

2
1-3 Enter the formula $\mathrm{A}=\frac{1}{2} h(\mathrm{~b}+\mathrm{c})$.

ALPHA $\mathbf{H} \square \mathbf{I}$ ALPHA \boldsymbol{B} + ALLPA
C 1
1.4 Enter the values: $A=25, B=5, C=7$

ENTER	$\mathbf{2}$	$\mathbf{5}$	ENTER

\boldsymbol{V}	5	ENTER	7

Step \& Key Operation

Display

Notes

1-5 Solve for the height and enter a starting point of 1 .

1.6 Solve.

2 Save this formula. Give the formula the name "A TRAP".

Equation title
[A TRAF]
2nd F SOUVER CNTER

Newton's method will prompt with a guess or a starting point.

The answer is : $h=4.17$
(A) SPACE $\mathbf{T} \boldsymbol{A}$ P ENTER

3-1 Recall the formula for calculating the area of a trapezoid.

2nd F solver B

$$
\begin{array}{|l|l|}
\hline 0 & 1 \\
\hline
\end{array}
$$

3.2 Enter the values:
$A=50, B=8, C=10$.

ENTER	1	0	ENTER

3.3 Solve.

The answer is : $h=5.56$

One very useful feature of the calculator is its ability to store and recall equations. The solution from various values for known variables can be easily obtained by recalling an equation which has been stored and giving values to the known variables in the Solver mode. If a starting point is known, Newton's method is useful for quick solution of a complicated equation.

Graphing Polymomials and Traxingto Find the Roots

A polynomial $y=f(x)$ is an expression of the sums of several terms that contain different powers of the same originals. The roots are found at the intersection of the x -axis and the graph, i. e. when $y=0$.

Example

Draw a graph of a polynomial and approximate the roots by using the Zoom-in and Trace features.

1. Graph the polynomial $y=x^{3}-3 x^{2}+x+1$.
2. Approximate the left-hand root.
3. Approximate the middle root.
4. Approximate the right-hand root.

Step \& Key Operation

Display

Notes

1.1

Enter the polynomial
$y=x^{3}-3 x^{2}+x+1$.

1.2 View the graph.

GRAPH

2.1 Move the tracer near the left-hand root.

TRACE \langle (repeatedly)
2-2 Zoom in on the left-hand root.

ZOOM	A	$\mathbf{3}$

Note that the tracer is flashing on the curve and the x and y coordinates are shown at the bottom of the screen.

2-3 Move the tracer to approximate the root.

TRACE or
 (repeatedly)

The root is : $\mathrm{x} \fallingdotseq-0.42$

3-2 Move the tracer to approximate the middle root.

TRACE
 (repeatedly)

The root is exactly $\mathrm{x}=1$. (Zooming is not needed to find a better approximate.)

4 Move the tracer near the righthand root.
Zoom in and move the tracer to find a better approximate.
 (repeatedly)
ZOOM A 3
TRACE

The calculator allows the roots to be found (or approximated) visually by graphing a polynomial and using the Zoom-in and Trace features.

Grophing Polynomidas and Jumpingto Find theRoots

A polynomial $y=f(x)$ is an expression of the sums of several terms that contain different powers of the same originals. The roots are found at the intersection of the x-axis and the graph, i. e. when y $=0$.

Example

Draw a graph of a polynomial and find the roots by using the Calculate feature.

1. Graph the polynomial $y=x^{4}+x^{3}-5 x^{2}-3 x+1$.
2. Find the four roots one by one.

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.

Step \& Key Operation
Display
Notes
1.1

Enter the polynomial
$y=x^{4}+x^{3}-5 x^{2}-3 x+1$
$\mathbf{Y}=\begin{array}{llllll}\mathrm{X}|\theta| T / n & \mathbf{a}^{\mathrm{b}} & \mathbf{4} & \square & \mathbf{x} & \mathrm{X} \theta / \mathrm{T} / \mu\end{array}$

| \mathbf{a}^{b} | $\mathbf{3}$ | \square | - | 5 | $\mathrm{X} \theta \mid / / / n$ | X^{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| $-3 ~$ | $\mathrm{X} \mid \theta / T / n$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

1.2 View the graph.

GRAPH

2-1 Find the first root.
2nd F CALC
5

$x \fallingdotseq-2.47$
Y is almost but not exactly zero. Notice that the root found here is an approximate value.

2-2 Find the next root.
2nd F CALC 5

$\mathrm{x} \doteqdot-0.82$

Notes

2-3 Find the next root.

2-4 Find the next root.

$\mathrm{x} \fallingdotseq 2.05$

The calculator allows jumping to find the roots by graphing a polynomial and using the Calculate feature, without tracing the graph.

Solving asystan of Equdionsby Graphingor Tool Feture

A system of equations is made up of two or more equations. The calculator provides the Calculate feature and Tool feature to solve a system of equations. The Calculate feature finds the solution by calculating the intersections of the graphs of equations and is useful for solving a system when there are two variables, while the Tool feature can solve a linear system with up to six variables and six equations.

Example

Solve a system of equations using the Calculate or Tool feature. First, use the Calculate feature. Enter the equations, draw the graph, and find the intersections. Then, use the Tool feature to solve a system of equations.

1. Solve the system using the Calculate feature.
$\left\{\begin{array}{l}y=x^{2}-1 \\ y=2 x\end{array}\right.$
2. Solve the system using the Tool feature.
$\left\{\begin{array}{l}5 x+y=1 \\ 3 x+y=-5\end{array}\right.$

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.
Set viewing window to " $-5<\mathrm{X}<5$ ", "-10 $<\mathrm{Y}<10$ ".
WINDOW (-) 5 ENTER 5 ENTER
As the Tool feature is only available on the Advanced keyboard, example 2 does not apply to the Basic keyboard.

Step \& Key Operation

Display

Notes

1-1 Enter the system of equations $\mathrm{y}=\mathrm{x}^{2}-1$ for Y 1 and $\mathrm{y}=2 \mathrm{x}$ for Y 2 .

$2 \mathrm{x} \theta$ 环/
1.2 View the graphs.

GRAPH

1-3 Find the left-hand intersection using the Calculate feature.

2nd F CALC 2

Note that the x and y coordinates are shown at the bottom of the screen. The answer is: $x=-0.41 y=-0.83$

1-4 Find the right-hand intersection by accessing the Calculate feature again.

The answer is: $\mathrm{x}=2.41$
$y=4.83$

Step \& Key Operation

Display

Notes

2-1 Access the Tool menu. Select the number of variables.

2nd F TOOL B 2

Using the system function, it is possible to solve simultaneous linear equations. Systems up to six variables and six equations can be solved.

2-2 Enter the system of equations.

| 5 | ENTER | 1 | ENTER | 1 | ENTER |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

ENTER

2-3 Solve the system.

$\mathrm{x}=0.75$
$y=-2.75$

A system of equations can be solved easily by using the Calculate feature or Tool feature.

Entering and Multiplying M atrices

A matrix is a rectangular array of elements in rows and columns that is treated as a single element. A matrix is often used for expressing multiple linear equations with multiple variables.

Example

Enter two matrices and execute multiplication of the two. 1. Enter a 3×3 matrix A
2. Enter a 3×3 matrix B
3. Multiply the matrices A and B
$\left.\begin{array}{ccc}\mathrm{A} & \\ {\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & -2\end{array}\right]}\end{array} \begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data. As the Matrix feature is only available on the Advanced keyboard, this section does not apply to the Basic keyboard.

Step \& Key Operation

Display

Notes

1.1

Access the matrix menu.
2nd F MATRXX B
1

1.2 Set the dimension of the matrix at three rows by three columns.

3	ENTER	3

1-3 Enter the elements of the first row, the elements of the second row, and the elements of the third row.

Display

Notes

2 Enter a 3×3 matrix B.
2nd F Matix 1 B 2 O 3 ENTER 3 ENTER
1 ENTER 2 ENTER 3 ENTER

3-1 Multiply the matrices A and B together at the home screen.

2nd F marak
A 1

2nd F
marax
A 2 ENTER

3-2 Delete the input matrices for future use.

2nd F OpTion C

Matrix multiplication can be performed easily by the calculator.

Solvinga Systen of Linere Equadions UingMadices

Each system of three linear equations consists of three variables. Equations in more than three variables cannot be graphed on the graphing calculator. The solution of the system of equations can be found numerically using the Matrix feature or the System solver in the Tool feature.
A system of linear equations can be expressed as $\mathrm{AX}=\mathrm{B}$ (A, X and B are matrices). The solution matrix X is found by multiplying $\mathrm{A}^{-1} \mathrm{~B}$. Note that the multiplication is "order sensitive" and the correct answer will be obtained by multiplying BA^{-1}. An inverse matrix A^{-1} is a matrix that when multiplied by A results in the identity matrix $I\left(A^{-1} x A=I\right)$. The identity matrix I is defined to be a square matrix ($n \times n$) where each position on the diagonal is 1 and all others are 0 .

Example

Use matrix multiplication to solve a system of linear equations.

1. Enter the 3×3 identity matrix in matrix A.

2. Find the inverse matrix of the solve the equation system.
$\left\{\begin{array}{l}x+2 y+z=8 \\ 2 x+y-z=1 \\ x+y-2 z=-3\end{array}\right.$

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.
As the Matrix feature is only available on the Advanced keyboard, this section does not apply to the Basic keyboard.

Step \& Key Operation
1-1 Set up 3×3 identity matrix at the home screen.

2nd F Matrix $\mathbf{C} 0505$ ENTER

Display

Notes

1-2 Save the identity matrix in matrix A.
STO 2ndF Matix A 1 ENTER

1.3 Confirm that the identity matrix is stored in matrix A.

2nd F MATRXX B 1

Step \& Key Operation

Display
2-1 Enter a 3×3 matrix B .

2-2 Exit the matrix editor and find the inverse of the square matrix B.

2ndF QUIT CL

2ndF Markix A 2 2ndF X-1 ENTER

(repeatedly)

Some square matrices have no inverse and will generate error statements when calculating the inverse.

3-1 Enter the constants on the right side of the equal sign into matrix $\mathrm{C}(3 \times 1)$.
2nd F Matik B 3 B ENTER 1 ENTER

The system of equations can be expressed as
$\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & -2\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]=\left[\begin{array}{c}8 \\ 1 \\ -3\end{array}\right]$
Let each matrix B, X, C :
$\mathrm{BX}=\mathrm{C}$
$\mathrm{B}^{-1} \mathrm{BX}=\mathrm{B}^{-1} \mathrm{C}$ (multiply both sides by B^{-1})
$\mathrm{I}=\mathrm{B}^{-1}\left(\mathrm{~B}^{-1} \mathrm{~B}=\mathrm{I}\right.$, identity matrix $)$
$\mathrm{X}=\mathrm{B}^{-1} \mathrm{C}$
3.2 Calculate $\mathrm{B}^{1} \mathrm{C}$.

The 1 is the x coordinate, the 2 the y coordinate, and the 3 the z coordinate of the solution point.
$(x, y, z)=(1,2,3)$
3-3 Delete the input matrices for future use.

2nd F Opion C

2 ENTER
2nd F Quit

The calculator can execute calculation of inverse matrix and matrix multiplication. A system of linear equations can be solved easily using the Matrix feature.

To solve an inequality, expressed by the form of $f(x) \leq 0, f(x) \geq 0$, or form of $f(x) \leq g(x)$, $f(x) \geq g(x)$, means to find all values that make the inequality true.
There are two methods of finding these values for one-variable inequalities, using graphical techniques. The first method involves rewriting the inequality so that the right-hand side of the inequality is 0 and the left-hand side is a function of x. For example, to find the solution to $f(x)<0$, determine where the graph of $f(x)$ is below the x-axis. The second method involves graphing each side of the inequality as an individual function. For example, to find the solution to $f(x)<g(x)$, determine where the graph of $f(x)$ is below the graph of $g(x)$.

Example

Solve an inequality in two methods.

1. Solve $3(4-2 x) \geq 5-x$, by rewriting the right-hand side of the inequality as 0 .
2. Solve $3(4-2 x) \geq 5-x$, by shading the solution region that makes the inequality true.

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation
1.1

Display

Notes

$3(4-2 x) \geq 5-x$ $\rightarrow 3(4-2 x)-5+x \geq 0$
1.2 View the graph.

GRAPH

1-3 Find the location of the x-intercept and solve the inequality.

2nd F CALC
5

The x-intercept is located at the point $(1.4,0)$.
Since the graph is above the x-axis to the left of the x-intercept, the solution to the inequality $3(4-2 x)-5+x \geq 0$ is all values of x such that $\mathrm{x} \leq 1.4$.

Step \& Key Operation

2-1 Enter $\mathrm{y}=3(4-2 \mathrm{x})$ for Y 1 and $\mathrm{y}=5-\mathrm{x}$ for Y 2 .

ENTER	5	-	$\mathrm{X} \theta \mid \mathrm{T} / \mathrm{m}$

2-2 View the graph.
GRAPH

2-3 Access the Set Shade screen.

2-4 Set up the shading.

2nd F VARS ENTER 1
2-5 View the shaded region.
GRAPH

2-6 Find where the graphs intersect and solve the inequality.

2 ndF CALC 2

The point of intersection is (1.4, 3.6). Since the shaded region is to the left of $\mathrm{x}=1.4$, the solution to the inequality $3(4-2 x) \geq 5-x$ is all values of x such that $x \leq 1.4$.

Graphical solution methods not only offer instructive visualization of the solution process, but they can be applied to inequalities that are often difficult to solve algebraically. The EL-9900 allows the solution region to be indicated visually using the Shade feature. Also, the points of intersection can be obtained easily.

Solving D ouble Inequalities

The solution to a system of two inequalities in one variable consists of all values of the variable that make each inequality in the system true. A system $f(x) \geq a, f(x) \leq b$, where the same expression appears on both inequalities, is commonly referred to as a "double" inequality and is often written in the form $\mathrm{a} \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{b}$. Be certain that both inequality signs are pointing in the same direction and that the double inequality is only used to indicate an expression in x "trapped" in between two values. Also a must be less than or equal to b in the inequality $\mathrm{a} \leq \mathrm{f}(\mathrm{x}) \leq \mathrm{b}$ or $\mathrm{b} \geq \mathrm{f}(\mathrm{x}) \geq \mathrm{a}$.

Example

Solve a double inequality, using graphical techniques.

$$
\begin{aligned}
& 2 x-5 \geq-1 \\
& 2 x-5 \leq 7
\end{aligned}
$$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation

2 View the lines.

GRAPH

Enter $\mathrm{y}=-1$ for $\mathrm{Y} 1, \mathrm{y}=2 \mathrm{x}-5$ for Y 2 , and $\mathrm{y}=7$ for Y 3 .

$\mathbf{Y}=$	$(-)$	1	ENTER

| 2 | | | |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{X} \mid \theta / \mathrm{T} / \mathrm{m}$ | - | 5 | ENTER 7 |

3 Find the point of intersection.

2nd F CALC 2

Display

The "double" inequality given can also be written to $-1 \leq 2 x-5 \leq 7$.

Notes

$y=2 x-5$ and

$\mathrm{y}=-1$ intersect at $(2,-1)$.

Notes

4 Move the tracer and find another intersection.
(4 2nd F CALC 2

$$
y=2 x-5 \text { and } y=7
$$

intersect at $(6,7)$.

5 Solve the inequalities.
The solution to the "double" inequality $-1 \leq 2 \mathrm{x}-5 \leq 7$ consists of all values of x in between, and including, 2 and 6 (i.e., $x \geq 2$ and $x \leq 6$). The solution is $2 \leq \mathrm{x} \leq 6$.

Graphical solution methods not only offer instructive visualization of the solution process, but they can be applied to inequalities that are often difficult to solve algebraically. The EL-9900 allows the solution region to be indicated visually using the Shade feature. Also, the points of intersection can be obtained easily.

System of Two-Variable Inequalities

The solution region of a system of two-variable inequalities consists of all points (a, b) such that when $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$, all inequalities in the system are true. To solve two-variable inequalities, the inequalities must be manipulated to isolate the y variable and enter the other side of the inequality as a function. The calculator will only accept functions of the form $\mathrm{y}=$ \qquad . (where y is defined explicitly in terms of x).

Example

Solve a system of two-variable inequalities by shading the solution region.

$$
\begin{aligned}
& 2 x+y \geq 1 \\
& x^{2}+y \leq 1
\end{aligned}
$$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation

1 Rewrite each inequality in the system so that the left-hand side is y :

Display

3 Access the set shade screen

2ndF DRAW G

1

4 Shade the points of y -value so that $\mathrm{Y} 1 \leq \mathrm{y} \leq \mathrm{Y} 2$.

5 Graph the system and find the intersections.
GRAPH
2nd F CALC 2 2nd F CALC 2
6 Solve the system.

The intersections are (0,1) and ($2,-3$)

Graphical solution methods not only offer instructive visualization of the solution process, but they can be applied to inequalities that are often difficult to solve algebraically. The EL-9900 allows the solution region to be indicated visually using the Shade feature. Also, the points of intersection can be obtained easily.

Graphing Solution Region of Inequalities

The solution region of an inequality consists of all points (a, b) such that when $x=a$, and $y=b$, all inequalities are true.

Example

Check to see if given points are in the solution region of a system of inequalities.

1. Graph the solution region of a system of inequalities:
$x+2 y \leq 1$
$x^{2}+y \geq 4$
2. Which of the following points are within the solution region?
$(-1.6,1.8),(-2,-5),(2.8,-1.4),(-8,4)$

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.

Step \& Key Operation

1-1 Rewrite the inequalities so that the left-hand side is y.

Display
Notes
$x+2 y \leq 1 \rightarrow y \leq \frac{1-x}{2}$
$x^{2}+y \geq 4 \rightarrow y \geq 4-x^{2}$

1-2 Enter $\mathrm{y}=\frac{1-\mathrm{x}}{2}$ for Y 1 and $y=4-x^{2}$ for $Y 2$.

1-3 Set the shade and view the solution region.

GRAPH

2-1 Set the display area (window) to : $-9<x<3,-6<y<5$.

$$
\begin{array}{|l|l|l|l|l|}
\hline \text { WNNDOW } & (-) & 9 & \text { ENTER } & 3 \\
& \text { ENTER } \\
\hline
\end{array}
$$

ENTER	$(-)$	6	ENTER	5

Notes

2-2 Use the cursor to check the position of each point. (Zoom in as necessary).

2.3 Substitute points and confirm whether they are in the solution region.

| 2 | \mathbf{x} | $\mathbf{1}$ | $\boldsymbol{8} \cdot \cdots$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

(Continuing key operations omitted.)

Points in the solution region are ($2.8,-1.4$) and ($-8,4$). Points outside the solution region are $(-1.6,1.8)$ and $(-2,-5)$.
$\cdot(-1.6,1.8):-1.6+2 \times 1.8=2$
\rightarrow This does not materialize.
$\cdot(-2,-5):-2+2 \times(-5)=-12$ $(-2)^{2}+(-5)=-1$
\rightarrow This does not materialize.

- $(2.8,-1.4): 2.8+2 \times(-1.4)=0$
$(2.8)^{2}+(-1.4)=6.44$
\rightarrow This materializes.
$\bullet(-8,4): \quad-8+2 \times 4=0$
$(-8)^{2}+4=68$
\rightarrow This materializes.

Graphical solution methods not only offer instructive visualization of the solution process, but they can be applied to inequalities that are often very difficult to solve algebraically. The EL-9900 allows the solution region to be indicated visually using the Shading feature. Also, the free-moving tracer or Zoom-in feature will allow the details to be checked visually.

Slope and Intercept of AbsoluteValue Functions

The absolute value of a real number x is defined by the following:

$$
\begin{array}{ll}
|x|= & x \text { if } x \geq 0 \\
& -x \text { if } x \leq 0
\end{array}
$$

If n is a positive number, there are two solutions to the equation $|\mathrm{f}(\mathrm{x})|=\mathrm{n}$ because there are exactly two numbers with the absolute value equal to n : n and -n . The existence of two distinct solutions is clear when the equation is solved graphically.
An absolute value function can be presented as $y=a|x-h|+k$. The graph moves as the changes of slope a, x-intercept h, and y-intercept k.

Example

Consider various absolute value functions and check the relation between the graphs and the values of coefficients.

1. Graph $y=|x|$
2. Graph $y=|x-1|$ and $y=|x|-1$ using Rapid Graph feature.

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.
Set the zoom to the decimal window: $\mathbf{Z 0 0 M} \mathbf{A}\left(\begin{array}{|l|l|l|}\text { ENTER } & \text { 2nd } \mathbf{F} \\ \boldsymbol{V}\end{array}\right) \mathbf{7}$

Step \& Key Operation

Display

Notes

1-1 Enter the function $\mathrm{y}=|\mathrm{x}|$ for Y 1 .

1.2 View the graph.

GRAPH

Notice that the domain of $f(x)$ $=|x|$ is the set of all real numbers and the range is the set of non-negative real numbers. Notice also that the slope of the graph is 1 in the range of $X>0$ and -1 in the range of $X \leq 0$.

2-1 Enter the standard form of an absolute value function for Y 2 using the Rapid Graph feature.

2-2 Substitute the coefficients to graph $\mathrm{y}=|\mathrm{x}-1|$.

2ndF SUB 1 ENTER 1 ENTER

Notes

2-3 View the graph.
GRAPH

Notice that placing an $h(>0)$ within the standard form $\mathrm{y}=\mathrm{a}|\mathrm{x}-h|+\mathrm{k}$ will move the graph right h units on the x axis.
2.4 Change the coefficients to graph $y=|x|-1$.

| $\mathbf{Y}=$ | $\boldsymbol{\nabla}$ | 2nd \mathbf{F} | SUB | ENTER | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2-5 View the graph.
GRAPH

Notice that adding a $\mathrm{k}(>0)$ within the standard form $\mathrm{y}=\mathrm{a}|\mathrm{x}-h|+\mathrm{k}$ will move the graph up k units on the y-axis.

The EL-9900 shows absolute values with \| \|, just as written on paper, by using the Equation editor. Use of the calculator allows various absolute value functions to be graphed quickly and shows their characteristics in an easy-to-understand manner.

Solving Absolute Value Equations

The absolute value of a real number x is defined by the following:

$$
\begin{array}{ll}
|x|= & x \text { if } x \geq 0 \\
& -x \text { if } x \leq 0
\end{array}
$$

If n is a positive number, there are two solutions to the equation $|f(x)|=n$ because there are exactly two numbers with the absolute value equal to n : n and -n . The existence of two distinct solutions is clear when the equation is solved graphically.

Example

Solve an absolute value equation $|5-4 x|=6$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation
Display

Notes

1 Enter $\mathrm{y}=|5-4 \mathrm{x}|$ for Y 1 .
Enter $\mathrm{y}=6$ for Y 2 .

$\mathbf{Y}=$	MATH	\mathbf{B}	1	5	-	-

$\mathrm{X} \mid \theta / \mathrm{T} / n$	ENTER	6

2 View the graph.
GRAPH

There are two points of intersection of the absolute value graph and the horizontal line $y=6$.

3 Find the points of intersection of the two graphs and solve.

2ndF Cald 2
2nd F CALC 2
The solution to the equation $|5-4 \mathrm{x}|=6$ consists of the two values -0.25 and 2.75 . Note that although it is not as intuitively obvious, the solution could also be obtained by finding the x -intercepts of the function $y=|5 x-4|-6$.

The EL-9900 shows absolute values with \| \|, just as written on paper, by using the Equation editor. The graphing feature of the calculator shows the solution of the absolute value function visually.

Solving Absolute Value Inequalities

To solve an inequality means to find all values that make the inequality true. Absolute value inequalities are of the form $|f(x)|<k,|f(x)| \leq k,|f(x)|>k$, or $|f(x)| \geq k$. The graphical solution to an absolute value inequality is found using the same methods as for normal inequalities. The first method involves rewriting the inequality so that the right-hand side of the inequality is 0 and the left-hand side is a function of x . The second method involves graphing each side of the inequality as an individual function.

Example

Solve absolute value inequalities in two methods.

1. Solve $\left|20-\frac{6 x}{5}\right|<8$ by rewriting the inequality so that the right-hand side of the inequality is zero.
2. Solve $|3.5 x+4|>10$ by shading the solution region.

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.
Set viewing window to "-5<x <50," and "-10<y <10".

WINDOW	$(-)$	5	ENTER	5	0

Step \& Key Operation

1-1 Rewrite the equation.

Display

Notes
$\left|20-\frac{6 x}{5}\right|<8$
$\rightarrow\left|20-\frac{6 x}{5}\right|-8<0$.
1.2

Enter $\mathrm{y}=\left|20-\frac{6 \mathrm{x}}{5}\right|-8$ for Y 1 .

-8

1.3

View the graph, and find the x -intercepts.

GRAPH
2nd F CALC $5 \rightarrow \mathrm{x}=10, \mathrm{y}=0$
2nd F CALC $5 \rightarrow \mathrm{x}=23.33333334$

$$
\mathrm{y}=0.00000006(* \text { Note })
$$

Solve the inequality.

The intersections with the xaxis are (10,0) and $(23.3,0)$ ($*$ Note: The value of y in the x-intercepts may not appear exactly as 0 as shown in the example, due to an error caused by approximate calculation.)

Since the graph is below the x -axis for x in between the two x-intercepts, the solution is $10<\mathrm{x}<23.3$.

Notes

2-1 Enter the function
$y=|3.5 x+4|$ for $Y 1$.
Enter $y=10$ for Y 2 .

| 3 | \bullet | 5 | $X \mid \theta / T / n$ | + | 4 | ENTER |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1	0

2-2 Set up shading.

2nd F DRAW \mathbf{G}

2nd F VARS \mathbf{A} ENTER $\mathbf{A}, \mathbf{2} \square$
2nd F VARS ENTER 1
2.3 Set viewing window to "-10<x<10" and " $-5<y<50$ ", and view the graph.

WINDOW	$\mathbf{(-)}$	$\mathbf{1}$	$\mathbf{0}$	ENTER	$\mathbf{1}$

ENTER	ENTER	$(-)$	5	ENTER	5	0

ENTER	5

2-4 Find the points of intersection. Solve the inequality.

2nd F CALC $2 \rightarrow \mathrm{x}=-4, \mathrm{y}=10$

2nd F CALC $2 \rightarrow \mathrm{x}=1.714285714$
$y=9.999999999(*$ Note $)$

Since the inequality you are solving is Y1 $>\mathrm{Y} 2$, the solution is where the graph of Y2 is "on the bottom" and Y1 in "on the top."

Evaluating Absolute Value Functions

The absolute value of a real number x is defined by the following:

$$
\begin{array}{ll}
|x|= & x \text { if } x \geq 0 \\
& -x \text { if } x \leq 0
\end{array}
$$

Note that the effect of taking the absolute value of a number is to strip away the minus sign if the number is negative and to leave the number unchanged if it is nonnegative.
Thus, $|x| \geq 0$ for all values of x.

Example

Evaluate various absolute value functions.

1. Evaluate $|-2(5-1)|$
2. Is $|-2+7|=|-2|+|7|$?

Evaluate each side of the equation to check your answer.
Is $|x+y|=|x|+|y|$ for all real numbers x and y ?
If not, when will $|x+y|=|x|+|y|$?
3. Is $\left|\frac{6-9}{1+3}\right|=\left|\frac{6-9}{1+3}\right|$?

Evaluate each side of the equation to check your answer. Investigate with more examples, and decide if you think $|x / y|=|x| /|y|$

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.

Step \& Key Operation

Display

Notes

1-1 Access the home or computation screen.

\section*{| 田舃 |
| :--- |}

\square

1-2 Enter $y=|-2(5-1)|$ and evaluate.

The solution is ± 8.

2-1 Evaluate| $-2+7 \mid$. Evaluate| $-2|+|7|$

1	7	ENTER

Step \& Key Operation

2-2 Is $|x+y|=|x|+|y|$? Think about this problem according to the cases when x or y are positive or negative.

If $x \geq 0$ and $y \geq 0$
[e.g.; $(x, y)=(2,7)]$
If $x \leq 0$ and $y \geq 0$
[e.g.; $(x, y)=(-2,7)]$
If $x \geq 0$ and $y \leq 0$
[e.g.; $(x, y)=(2,-7)]$
If $x \leq 0$ and $y \leq 0$
[e.g.; $(x, y)=(-2,-7)]$

Display

Notes

$$
\rightarrow|x+y|=|x|+|y| .
$$

Therefore $|x+y|=|x|+|y|$ when $x \geq 0$ and $y \geq 0$, and when $\mathrm{x} \leq 0$ and $\mathrm{y} \leq 0$.

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\mathrm{x}+\mathrm{y}|=|2+7|=9 \\
\mathrm{x}|+|\mathrm{y}|=|2|+|7|=9
\end{array}\right. \\
& \rightarrow|x+y|=|x|+|y| . \\
& |x+y|=|-2+7|=5 \\
& |x|+|y|=|-2|+|7|=9 \\
& \rightarrow|x+y| \neq|x|+|y| . \\
& |x+y|=|2-7|=5 \\
& |x|+|y|=|2|+|-7|=9 \\
& \rightarrow|x+y| \neq|x|+|y| . \\
& |x+y|=|-2-7|=9 \\
& |x|+|y|=|-2|+|-7|=9
\end{aligned}
$$

3-1 Evaluate $\left|\frac{6-9}{1+3}\right|$. Evaluate $\frac{|6-9|}{|1+3|}$.

3-2 Is $|x / y|=|x| /|y|$?
Think about this problem according to the cases when x or y are positive or negative.

If $x \geq 0$ and $y \geq 0$
[e.g.; $(x, y)=(2,7)]$
If $x \leq 0$ and $y \geq 0$
[e.g.; $(x, y)=(-2,7)]$
If $x \geq 0$ and $y \leq 0$
[e.g.; (x, y) = (2, -7)]
If $x \leq 0$ and $y \leq 0$
[e.g.; $(\mathrm{x}, \mathrm{y})=(-2,-7)$]
$|x / y|=|2 / 7|=2 / 7$
$|x| /|y|=|2| /|7|=2 / 7$

$$
|x / y|=|(-2) / 7|=2 / 7
$$

$$
\rightarrow|x / y|=|x| /|y|
$$

$$
|\mathrm{x}| /|\mathrm{y}|=|-2| /|7|=2 / 7
$$

$$
|x / y|=|2 /(-7)|=2 / 7
$$

$$
\rightarrow|x / y|=|x| /|y|
$$

$$
|\mathrm{x}| /|\mathrm{y}|=|2| /|-7|=2 / 7
$$

$$
|x / y|=|(-2) /-7|=2 / 7
$$

$$
\rightarrow|x / y|=|x| /|y|
$$

$$
|\mathrm{x}| /|\mathrm{y}|=|-2| /|-7|=2 / 7
$$

$$
\rightarrow|x / y|=|x| /|y|
$$

The statement is true for all $\mathrm{y} \neq 0$.

The EL-9900 shows absolute values with | \| , just as written on paper, by using the Equation editor. The nature of arithmetic of the absolute value can be learned through arithmetical operations of absolute value functions.

Graphing Rational Functions

A rational function $f(x)$ is defined as the quotient $\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are two polynomial functions such that $q(x) \neq 0$. The domain of any rational function consists of all values of x such that the denominator $q(x)$ is not zero.
A rational function consists of branches separated by vertical asymptotes, and the values of x that make the denominator $\mathrm{q}(\mathrm{x})=0$ but do not make the numerator $\mathrm{p}(\mathrm{x})=0$ are where the vertical asymptotes occur. It also has horizontal asymptotes, lines of the form $\mathrm{y}=\mathrm{k}(\mathrm{k}$, a constant) such that the function gets arbitrarily close to, but does not cross, the horizontal asymptote when $|\mathrm{x}|$ is large.

The x intercepts of a rational function $f(x)$, if there are any, occur at the x-values that make the numerator $p(x)$, but not the denominator $q(x)$, zero. The y-intercept occurs at $f(0)$.

Example

Graph the rational function and check several points as indicated below.

1. Graph $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}-1}{\mathrm{x}^{2}-1}$.
2. Find the domain of $f(x)$, and the vertical asymptote of $f(x)$.
3. Find the x - and y-intercepts of $f(x)$.
4. Estimate the horizontal asymptote of $\mathrm{f}(\mathrm{x})$.

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.
Set the zoom to the decimal window: $\overline{\text { ZOOM }} \mathbf{A}$ (ENTER ALPHA $\boldsymbol{\nabla}), \mathbf{7}$

Step \& Key Operation

Display
Notes
1-1 Enter $\mathrm{y}=\frac{\mathrm{x}-1}{\mathrm{x}^{2}-1}$ for Y 1 .
$\mathbf{Y}=$

$$
\begin{array}{|l|l|}
\hline-1 \\
\hline
\end{array}
$$

1.2 View the graph.

GRAPH

The function consists of two branches separated by the vertical asymptote.

Step \& Key Operation

Display

Notes

2 Find the domain and the vertical asymptote of $f(x)$, tracing the graph to find the hole at $\mathrm{x}=1$.

Since $\mathrm{f}(\mathrm{x})$ can be written as $\frac{\mathrm{x}-1}{(\mathrm{x}+1)(\mathrm{x}-1)}$, the domain consists of all real numbers x such that $x \neq 1$ and $x \neq-1$. There is no vertical asymptote where $x=1$ since this value of x also makes the numerator zero. Next to the coordinates $\mathrm{x}=0.9, \mathrm{y}=0.52$, see that the calculator does not display a value for y at $\mathrm{x}=1$ since 1 is not in the domain of this rational function.

3 Find the x - and y-intercepts of $f(x)$.

The y-intercept is at $(0,1)$. Notice that there are no x-intercepts for the graph of $f(x)$.

The graphing feature of the EL-9900 can create the branches of a rational function separated by a vertical asymptote. The calculator allows the points of intersection to be obtained easily.

Solving Rational Function Inequalities

A rational function $\mathrm{f}(\mathrm{x})$ is defined as the quotient $\frac{\mathrm{p}(\mathrm{x})}{\mathrm{q}(\mathrm{x})}$ where $\mathrm{p}(\mathrm{x})$ and $\mathrm{q}(\mathrm{x})$ are two polynomial functions such that $\mathrm{q}(\mathrm{x}) \neq 0$. The solutions to a rational function inequality can be obtained graphically using the same method as for normal inequalities. You can find the solutions by graphing each side of the inequalities as an individual function.

Example

Solve a rational inequality.
Solve $\left|\frac{\mathrm{x}}{1-\mathrm{X}^{2}}\right| \leq 2$ by graphing each side of the inequality as an individual function.

Before There may be differences in the results of calculations and graph plotting depending on the setting.
Starting Return all settings to the default value and delete all data.
Set the zoom to the decimal window: $\left.\begin{array}{l|l|l|l|l|}\text { ZOOM } & \text { A (ENTER ALPHA } & \boldsymbol{\nabla}\end{array}\right) \mathbf{7}$

Step \& Key Operation

Display

2 Set up the shading.

3 View the graph.

GRAPH

4 Find the intersections, and solve the inequality.

2nd F CALC 2 Do this four times

Since Y1 is the value "on the bottom" (the smaller of the two) and Y2 is the function "on the top" (the larger of the two), Y1 < Y < Y2.

The intersections are when $\mathrm{x}=-1.3,-0.8,0.8$, and 1.3. The solution is all values of x such that $\mathrm{x} \leq-1.3$ or $-0.8 \leq x \leq 0.8$ or $x \geq 1.3$.

The EL-9900 allows the solution region of inequalities to be indicated visually using the Shade feature. Also, the points of intersections can be obtained easily.

Graphing Parabolas

The graphs of quadratic equations ($y=a x^{2}+b x+c$) are called parabolas. Sometimes the quadratic equation takes on the form of $x=a y^{2}+b y+c$.
There is a problem entering this equation in the calculator graphing list for two reasons:
a) it is not a function, and only functions can be entered in the $Y=$ list locations,
b) the functions entered in the $Y=$ list must be in terms of x, not y.

There are, however, two methods you can use to draw the graph of a parabola.
Method 1: Consider the "top" and "bottom" halves of the parabola as two different parts of the graph because each individually is a function. Solve the equation of the parabola for y and enter the two parts (that individually are functions) in two locations of the $\mathrm{Y}=$ list.

Method 2: Choose the parametric graphing mode of the calculator and enter the parametric equations of the parabola. It is not necessary to algebraically solve the equation for y. Parametric representations are equation pairs $\mathrm{x}=\mathrm{F}(\mathrm{t}), \mathrm{y}=\mathrm{F}(\mathrm{t})$ that have x and y each expressed in terms of a third parameter, t .

Example

Graph a parabola using two methods.

1. Graph the parabola $x=y^{2}-2$ in rectangular mode.
2. Graph the parabola $x=y^{2}-2$ in parametric mode.

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation

Display
Notes

1-1 Solve the equation for y.
$\mathrm{x}=\mathrm{y}^{2}-2$
$\mathrm{x}+2=\mathrm{y}^{2}$
$y= \pm \sqrt{x+2}$
1-2 Enter $\mathrm{y}=\sqrt{\mathrm{x}+2}$ for Y 1 and enter $\mathrm{y}=-\mathrm{Y} 1$ for Y 2 .

| ENTER | $(-)$ |
| :--- | :--- | :--- |
| 2ndF Vars | ENTER 1 |

1-3 View the graph.

GRAPH

$Y 1 日 \sqrt{X+2}$
$Y 2 日-Y 1$
$Y \xi=$
$Y 4=$
$Y 5=$
$Y 6=$

Notes

2-1 Change to parametric mode.

2.2

Rewrite $x=y^{2}-2$ in parametric fo
Enter X1T $=T^{2}-2$ and $Y 1 T=T$.

хөөT/|
2-3 View the graph. Consider why only half of the parabola is drawn. (To understand this, use Trace feature.)

2-4 Set Tmin to -6.

WINDOW	$(-)$	6

2-5 View the complete parabola.
GRAPH

The graph starts at $\mathrm{T}=0$ and increases. Since the window setting is $T \geq 0$, the region T <0 is not drawn in the graph.
Let $\mathrm{y}=\mathrm{T}$ and substitute in x $=\mathrm{y}^{2}-2$, to obtain $\mathrm{x}=\mathrm{T}^{2}-2$.

The calculator provides two methods for graphing parabolas, both of which are easy to perform.

Graphing Circles

The standard equation of a circle of radius r that is centered at a point (h, k) is $(\mathrm{x}-h)^{2}+$ $(y-k)^{2}=r^{2}$. In order to put an equation in standard form so that you can graph in rectangular mode, it is necessary to solve the equation for y. You therefore need to use the process of completing the square.

Example

Graph the circles in rectangular mode. Solve the equation for y to put it in the standard form.

$$
\begin{aligned}
& \text { 1. } \text { Graph } x^{2}+y^{2}=4 \\
& \text { 2. } \text { Graph } x^{2}-2 x+y^{2}+4 y=2
\end{aligned}
$$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

$$
\text { Set the zoom to the decimal window: } \left.\begin{array}{l|l|l|l|}
\mathrm{ZOOM} & \text { A (} & \text { ENTER ALPHA } & \boldsymbol{\nabla}
\end{array}\right) \mathbf{7}
$$

Step \& Key Operation

Display

Notes

1-1 Solve the equation for y.
Enter $\mathrm{y}=\sqrt{4-\mathrm{x}^{2}}$ for Y 1 (the top half). Enter $y=-\sqrt{4-x^{2}}$ for Y2.

$\begin{aligned} & Y 1 日 \sqrt{4-x^{2}} \\ & Y 2 日-Y^{\prime} 1 \\ & Y 3= \end{aligned}$	$\begin{aligned} & y^{2}=4-x^{2} \\ & y= \pm \sqrt{4-x^{2}} \end{aligned}$

ENTER	$(-)$	2nd F VARS	A

1-2 View the graph.

GRAPH

This is a circle of radius r, centered at the origin.
2.1

Solve the equation for y, completing the square.
$x^{2}-2 x+y^{2}+4 y=2$

Place all variable terms on the left and the constant term on the right-hand side of the equation.
$x^{2}-2 x+y^{2}+4 y+4=2+4$ Complete the square on the y-term.
$x^{2}-2 x+(y+2)^{2}=6 \quad$ Express the terms in y as a perfect square.
$(y+2)^{2}=6-x^{2}+2 x \quad$ Leave only the term involving y on the left hand side.
$y+2= \pm \sqrt{6-x^{2}+2 x} \quad$ Take the square root of both sides.
$y= \pm \sqrt{6-x^{2}+2 x}-2 \quad$ Solve for y.

Notes

2-2 Enter $\mathrm{y}=\sqrt{6-\mathrm{x}^{2}+2 \mathrm{x}}$ for Y 1 , $\mathrm{y}=\mathrm{Y} 1-2$ for Y 2 , and $\mathrm{y}=-\mathrm{Y} 1-2$ for Y3.

X^{2} + 2 XAOTM ENTER CL

| 2nd F Vars A ENTER | 1 | - |
| :--- | :--- | :--- | :--- | :--- |

2 ENTER

2-3 "Turn off" Y1 so that it will not graph.

Notice that if you enter $\mathrm{y}=\sqrt{6-\mathrm{x}^{2}+2 \mathrm{x}}-2$ for Y 1 and $\mathrm{y}=-\mathrm{Y} 1$ for Y 2 , you will not get the graph of a circle because the " \pm " does not go with the " -2 ".

2-4 Adjust the screen so that the whole graph is shown. Shift 2 units downwards.

-2 ENTER GRAPH

$-1.3<\mathrm{Y}<3.1$
$-5.1<\stackrel{\rightharpoonup}{\mathrm{Y}}<1.1$

Graphing circles can be performed easily on the calculator display.

Graphing Ellipses

The standard equation for an ellipse whose center is at the point (h, k) with major and minor axes of length a and b is $\frac{(\mathrm{x}-h)^{2}}{\mathrm{a}^{2}}+{\frac{(\mathrm{y}-\mathrm{k})}{\mathrm{b}^{2}}}^{2}=1$.

There is a problem entering this equation in the calculator graphing list for two reasons:
a) it is not a function, and only functions can be entered in the $\mathrm{Y}=$ list locations.
b) the functions entered in the $Y=$ list locations must be in terms of x, not y.

To draw a graph of an ellipse, consider the "top" and "bottom" halves of the ellipse as two different parts of the graph because each individual is a function. Solve the equation of the ellipse for y and enter the two parts in two locations of the $\mathrm{Y}=$ list.

Example

Graph an ellipse in rectangular mode. Solve the equation fory to put it in the standard form.

Graph the ellipse $3(x-3)^{2}+(y+2)^{2}=3$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Notes

1 Solve the equation for y , completing the square.

Enter

$$
\begin{aligned}
& \mathrm{Y} 1=\sqrt{3-3(\mathrm{x}-3)^{2}} \\
& \mathrm{Y} 2=\mathrm{Y} 1-2 \\
& \mathrm{Y} 3=-\mathrm{Y} 1-2
\end{aligned}
$$

2 Turn off Y1 so that it will not graph. $\sqrt{11=\sqrt{3-3(x-3) 2}}$

Notes

3 View the graph.
GRAPH

4 Adjust the screen so that the whole graph is shown. Shift 2 units downwards.

Wnoow

(3 times)

2 ENTER

| - | 2 | ENTER GRAPH |
| :--- | :--- | :--- | :--- |

Graphing an ellipse can be performed easily on the calculator display.

Graphing H yperbolas

The standard equation for a hyperbola can take one of two forms:
$\frac{(\mathrm{x}-h)^{2}}{\mathrm{a}^{2}}-\frac{(\mathrm{y}-\mathrm{k})^{2}}{\mathrm{~b}^{2}}=1$ with vertices at $(h \pm \mathrm{a}, \mathrm{k})$ or
$\frac{(\mathrm{x}-\mathrm{k})^{2}}{\mathrm{~b}^{2}}-\frac{(\mathrm{y}-h)^{2}}{\mathrm{a}^{2}}=1$ with vertices at ($h, \mathrm{k} \pm \mathrm{b}$).
There is a problem entering this equation in the calculator graphing list for two reasons:
a) it is not a function, and only functions can be entered in the $\mathrm{Y}=$ list locations.
b) the functions entered in the $\mathrm{Y}=$ list locations must be in terms of x , not y .

To draw a graph of a hyperbola, consider the "top" and "bottom" halves of the hyperbola as two different parts of the graph because each individual is a function. Solve the equation of the hyperbola for y and enter the two parts in two locations of the $\mathrm{Y}=$ list.

Example

Graph a hyperbola in rectangular mode. Solve the equation for y to put it in the standard form.

Graph the hyperbola $x^{2}+2 x-y^{2}-6 y+3=0$

Before There may be differences in the results of calculations and graph plotting depending on the setting. Starting Return all settings to the default value and delete all data.

Step \& Key Operation

Display

Notes

1 Solve the equation for y completing the square.
Enter
$Y 1=\sqrt{x^{2}+2 x+12}$
$\mathrm{Y} 2=\mathrm{Y} 1-3$
$\mathrm{Y} 3=-\mathrm{Y} 1-3$

XATTM +122 ENTER
2nd F VARS A ENTER $11-3,3$ ENTER

2 Turn off Y1 so that it will not graph. $\sqrt{x=\sqrt{x_{2}+2 \times+12}}$

[^0]
Notes

3 View the graph.
GRAPH

4 Zoom out the screen.

ZOOM	A

Graphing hyperbolas can be performed easily on the calculator display.

Key pad for the SH ARP EL-9900 Calculator

Advanced Keyboard

1	Graphing keys
2	Cursor movement keys
(3) Secondary function specification key	8 Variable enter key
4) Alphabet specification key	(9) Calculation execute key
(5) Display screen	(10) Communication port for peripheral devices

Key pad for the SH ARP EL-9900 Calculator

Basic Keyboard

10

1	Graphing keys
2	Cursor movement keys
(3) Secondary function specification key	8 Variable enter key
4) Alphabet specification key	(9) Calculation execute key
(5) Display screen	(10) Communication port for peripheral devices

SHARP

Use this form to send us your contribution

Dear Sir/ Madam

We would like to take this opportunity to invite you to create a mathematical problem which can be solved with the SHARP graphing calculator EL-9900. For this purpose, we would be grateful if you would complete the form below and return it to us by fax or mail.

If your contribution is chosen, your name will be included in the next edition of The EL-9900 Graphing Calculator Handbook. We regret that we are unable to return contributions.

We thank you for your cooperation in this project.

| Name: (\square Mr. \square Ms. $)$ | |
| :--- | :--- | :--- |
| School/College/Univ.: | |
| Address: | |
| | |
| Phone: | |
| E-mail: | |

SUBJECT : Write a title or the subject you are writing about.

INTRODUCTION : Write an explanation about the subject.

EXAMPLE : Write example problems.

BEFORE STARTING : Write any conditions to be set up before solving the problems.

STEP

NOTES

SHARP CORPORATION OSAKA, JAPAN
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

[^0]:
 $46=$

