Scienilic CAlCULATOR Operation Gude

<V/R Series>

CONTENTS

HOW TO OPERATE
Read Before Using
Key layout/Reset switch 2
Display pattern 3
Display format 3
Exponent display 4
Angular unit 5
Function and Key Operation
ON/OFF, entry correction keys ONC OFF CA $\triangle \triangle \triangle$ DEL 6
Data entry keys $\cdot \bullet$ Exp 7
Random key 8
Modify key MDF 9
Basic arithmetic keys, parentheses $+\quad+x \div=1$ 10
Percent $\%$ 11
Inverse, square, x th power of y, square root, cube root, x th root of y 12
10 to the power of x, common logarithm 13
e to the power of x , natural logarithm $\ln e^{x}$ 14
Factorials 15
Permutations, combinations 16
Time calculation 17
Fractional calculations 18
Memory calculations 19
Last answer memory 20
Trigonometric functions 21
Arc trigonometric functions 22
Hyperbolic functions 23
Coordinate conversion 24
STATISTICS FUNCTION
Data input and erase 25
"ANS" keys for 1-variable statistics 26
"ANS" keys for 2-variable statistics 28

How to Operate

\approx Read Before Using \approx

This operation guide has been written based on the EL-531V, EL-509V, EL-531VH, and EL-509VH models. Some functions described here are not featured on other models. In addition, key operations and symbols on the display may differ according to the model.

1. K E Y LAYOUT

2. RESET SWITCH © \quad meser

If the calculator fails to operate normally, press the reset switch on the back to reinitialise the unit.The display format and calculation mode will return to their initial settings.

NOTE:
Pressing the reset switch will erase any data stored in memory.

3. DISPLAY PATTERN

The actual display does not appear like this.
This illustration is for explanatory purposes only.

4. DISPLAY FORMAT AND
 DECIMAL SETTING FUNCTION

For convenient and easy operation, this model can be used in one of four display modes. The selected display status is shown in the upper part of the display (Format Indicator). N ote: If more 0's (zeros) than needed are displayed when the O N/C key is pressed, check whether or not the calculator is set to a Special Display Format.

- Floating decimal point format (no symbol is displayed)

Valid values beyond the maximum range are displayed in the form of a [10-digit (mantissa) + 2-digit (exponent)]

- Fixed decimal point format (FIX is displayed)

Displays the fractional part of the calculation result according to the specified number of decimal places.

- Scientific notation (SCI is displayed)

Frequently used in science to handle extremely small or large numbers.

- Engineering scientific notation (ENG is displayed)

Convenient for converting between different units.

$$
\begin{array}{ll}
\text { <Example> } & \text { Let's compare the display result of } \\
& {[10000 \div 8.1=] \text { in each display format. }}
\end{array}
$$

5．EXPONENT DISPLAY

The distance from the earth to the sun is approx．150，000，000（ 1.5×10^{8} ）km．Values such as this with many zeros are often used in scientific calculations，but entering the zeros one by one is a great deal of work and it＇s easy to make mistakes． In such a case，the numerical values are divided into mantissa and exponent portions， displayed and calculated．
＜Example＞W hat is the number of electronics flowing in a conductor when the electrical charge across a given cross－section is 0.32 cou－ lombs．（ T he charge on a single electron $=1.6 \times 10^{-19}$ coulombs）．

$$
0.32 \div
$$

DEG
0.
1.6 Exp 19
$0.32 \div-$
$1 . \mathrm{E}^{\times 10^{19}}$

0．32：1．6E19＝
［7．$\times 10^{-20}$

6. ANGULAR UNIT

Angular values are converted from DEG to RAD to GRAD with each push of the DRG key. This function is used when doing calculations related to trigonometric functions or coordinate geometry conversions.

Degrees (DEG is shown at the top of the display)
A commonly used unit of measure for angles. The angular measure of a circle is expressed as 360°.

Radians (RAD is shown at the top of the display) Radians are different than degrees and express angles based on the circumference of a circle. 180° is equivalent to π radians. Therefore, the angular measure of a circle is 2π radians.

Grads (GRAD is shown at the top of the display)
Grads are a unit of angular measure used in Europe, particularly in France. An angle of 90 degrees is equivalent to 100 grads.

The relationships between the three types of angular units can be expressed as right:
$90^{\circ}($ DEG $)=$
$\pi / 2$ (RAD) $=$
100 (GRAD)

<Example> C heck to confirm 90 degrees equaling $\pi / 2$ radians equaling 100 grads. ($\pi=3.14159 \ldots$...)

\approx Function and Key Operation \approx

ON/OFF, Entry Correction Keys

 Turns the calculator on or clears the data. It also clears the contents of the calculator display and voids any calculator command; however, coefficients in 3-variable linear equations and statistics, as well as values stored in the independent memory in normal mode, are not erased.

OFF

Turns the calculator off.

CA Clears all internal values, including coefficients in 3-variable linear equations and statistics.Values stored in memory in normal mode are not erased.

These arrow keys are useful for Multi-Line playback, which lets you scroll through calculation steps one by one. (refer to page 8)

These keys are useful for editing equations. The
key moves the cursor to the left, and the key moves the cursor to the right. The DEL key deletes the symbol/number at the cursor. (refer to page 8)

Data Entry Keys

0 to 9 Numeric keys for entering data values.
$-$
Decimal point key. Enters a decimal point.

Enters minus symbol or sign change key. C hanges positive numbers to negative and negative numbers to positive.
$\pi \quad$ Pressing π automatically enters the value for π (3.14159...). The constant π, used frequently in function calculations, is the ratio of the circumference of a circle to its diameter.

Exp Pressing this key switches to scientific notation data entry.
<Example> Provided the earth is moving around the sun in a circular orbit, how many kilometers will it travel in a year?
*The average distance between the earth and the sun being $1.496 \times 10^{8} \mathrm{~km}$.

Circumference equals diameter $\mathrm{x} \pi$; therefore, $1.496 \times 10^{8} \times 2 \times \pi$

Operation

Display

Random

RANDOM Generates random numbers.
Random numbers are three-decimal-place values between 0.000 and 0.999 . Using this function enables the user to obtain unbiased sampling data derived from random values generated by the calculator.

<Example>

| APPLICATIONS:I
I Building sample sets for statistics or research. I
L-

MDF Function to round calculation results.
Even after setting the number of decimal places on the display, the calculator performs calculations using a larger number of decimal places than that which appears on the display. By using this function, internal calculations will be performed using only the displayed value.
<Example> FIX mode TAB = 1 (normal calculation)
$5 \quad 9 \quad=0.6$ (internally, $0.5555 \ldots$...
$x 9=5.0$

Rounded calculation (MDF)

$\times 9=5.4$

Basic Arithmetic Keys, Parentheses

The four basic operators. Each is used in the same way as a standard calculator:

+ (addition), - (subtraction), x (multiplication), and \div (division).

Finds the result in the same way as a standard calculator.

Used to specify calculations in which certain operations have precedence. You can make addition and subtraction operations have precedence over multiplication and division by enclosing them in parentheses.

Percent $\%$

\% For calculating percentages. Four methods of calculating percentages are presented as follows.

1) $\$ 125$ increased by $10 \% . . .137 .5$
125

$125+10 \%$ 137.5
2) $\$ 125$ reduced by $20 \% . .100$

125-20\% 100.
3) 15% of $\$ 125 \ldots 18.75$
125 \square 15 2ndF
$\stackrel{\square}{\square}$
4) W hen $\$ 125$ equals 5% of X, X equals... 2500

$125 \div 5 \%$ 2500.

Inverse，Square，xth Power of y ，

Square Root，Cube Root，
 xth Root of y
$\boldsymbol{x}^{\boldsymbol{- 1}}$ Calculates the inverse of the value on the display．
\boldsymbol{x}^{2} Squares the value on the display．
$\boldsymbol{y} \boldsymbol{x} \quad$ Calculates exponential values．
$\sqrt{ }$ C alculates the square root of the value on the display．
（The EL－506R／520R need to press 2ndF key first）
$3 \sqrt{-}$ Calculates the cube root of the value on the display．

＜Example＞

Operation
Display
2

2 \square
\square 2 \square 2xス×ス×ス＝
15.

4

$$
4 \times \sqrt{16}=
$$

2.

10 to the Power of x , Common Logarithm

10^{x} Calculates the value of 10 raised to the $x^{\text {th }}$ power.
\log
Calculates logarithm, the exponent of the power to which 10 must be raised to equal the given value.
<Example>

Operation
$2 \mathrm{ndF} \stackrel{10^{x}}{ } 3=$

Display

10^3= 1000.

 3.
e to the Power of x, Natural Logarithm

$\boldsymbol{e}^{\boldsymbol{x}} \quad$ Calculates powers based on the constant e (2.718281828).

In
Computes the value natural logarithm, the exponent of the power to which e must be raised to equal the given value.
<Example>

Factorials n

$\boldsymbol{n}!\quad$ The product of a given positive integer n multiplied by all the lesser positive integers from 1 to $\mathrm{n}-1$ is indicated by n ! and called the factorial of n .
<Example>

| APPLICATIONS:
I Used in statistics and mathematics. In statistics, this function is used | in calculations involving combinations and permutations.

Permutations, Combinations ner ncr

$\boldsymbol{n P r} \quad$ This function finds the number of different possible orderings in selecting r objects from a set of n objects. For example, there are six different ways of ordering the letters $A B C$ in groups of three letters- $A B C, A C B$, $B A C, B C A, C A B$, and CBA.
The calculation equation is ${ }_{3} P_{3}=3 \times 2 \times 1=6$ (ways).
This function finds the number of ways of selecting r objects from a set of n objects. For example, from the three letters $A B C$, there are three ways we can extract groups of two different letters- $A B, A C$, and $C B$. The calculation equation is ${ }_{3} C_{2}$.
<Example>

Display

6P4 =

360.

$654=$
15

Converts a sexagesimal value displayed in degrees, minutes, seconds to decimal notation. Also, converts a decimal value to sexagesimal notataion (degrees, minutes, seconds).

Inputs values in sexagesimal notation (degrees, minutes, seconds).

<Example> Convert $24^{\circ} 28^{\prime} 35^{\prime \prime}$ (24 degrees, 28 minutes, 35 seconds) to decimal notation. Then convert 24.476° to sexagesimal notation.

Operation
24 DoM's 28 DoM's 35
2ndF
$\stackrel{\text { DEG }}{ }$

Display

Convert to decimal notation
$24^{\circ} 28^{\circ} 355^{\circ \circ} 00^{\circ}$
24.47538989

$24^{\circ} 28^{\circ} 3^{\circ \mathrm{oc}} \mathrm{OD}^{\circ}$
$2428 ; 35.00$

Repeat last key operation to return to the previous display.

Fractional Calculations abec d/c

Inputs fractions and converts mutually between fractions and decimals.
d/c Converts between mixed numbers and improper fractions.
<Example> Add $3 \frac{1}{2}$ and $\frac{5}{7}$, and convert to decimal notation.

Operation

$a b / c$
Convert to decimal notation

$$
3\ulcorner 1\ulcorner 2+5\ulcorner 7=
$$ 4.214205714

Press once to return to the previous display
 $59 r 14$.
Convert to an improper fraction Press once to return to the previous display

$2+5 r 7=$

I APPLICATIONS:
There is a wide variety of applications for this function because fractions are such a basic part of mathematics. This function is useful for calculations involving electrical circuit resistance.

STO Stores displayed values in memories A~D, X,Y, M.
RCL Recalls values stored in $A \sim D, X, Y, M$.
M+ Adds the displayed value to the value in the independent memory M .

Last Answer Memory ans

ANS Automatically recalls the last answer calculated by pressing $=$
<Example> Solve for x first and then solve for y using x.

$$
x=\sqrt{2}+3 \quad \text { and } \quad y=4 \div x
$$

Trigonometric Functions

Trigonometric functions determine the ratio of three sides of a right triangle. Combination of three sides are sin, cos, and tan. Their relations are;

sin Calculates the sine of an angle. $\quad \sin \theta=\frac{b}{a}$
\cos Calculates the cosine of an angle. $\cos \theta=\frac{c}{a}$
tan Calculates the tangent of an angle. $\tan \theta=\frac{b}{c}$

<Example>

The angle from a point 15 meters from a building to the highest floor of the building is 45°. How tall is the building?

[DEG mode]

APPLICATIONS:

Trigonometric functions are useful in mathematics and various engineering calculations. They are often used in astronomical obser vations, civil engineering and in calculations involving electrical circuits, as well as in calculations for physics such as parabolic motion and wave motion.

Arc trigonometric functions, the inverse of trigonometric functions, are used to determine an angle from ratios of a right triangle. The combinations of the three sides are $\sin ^{-1}, \cos ^{-1}$, and $\tan ^{-1}$. Their relations are;

$\begin{array}{ll}\boldsymbol{\operatorname { s i n }}^{-1} & \begin{array}{l}\text { (arc sine) Determines an angle based on the ratio } \\ \mathrm{b} / \mathrm{a} \text { of two sides of a right triangle. }\end{array}\end{array} \theta=\sin ^{-1} \frac{\mathrm{~b}}{\mathrm{a}}$
cos $^{-1}$ (arc cosine) Determines an angle based on the ratio
$\theta=\cos ^{-1} \frac{c}{a}$ c/a for two sides of a right triangle.
$\tan ^{-1}$
(arc tangent) Determines an angle based on the ratio a/b for two sides of a right triangle.

$$
\theta=\tan ^{-1} \frac{\mathrm{~b}}{\mathrm{c}}
$$

<Example>
At what angle should an airplane climb in order to climb 80 meters in 100 meters?

Display
$\tan ^{-1}[8 \mathrm{~B} \div 10 \mathrm{DE}]$
38.65980825

Hyperbolic Functions hyp aim

For the EL-506R, select sinh, $\sin ^{-1}, \cosh , \cosh ^{-1}, \tanh ^{2} \tanh ^{-1}$ from the MATH key
hyp The hyperbolic function is defined by using natural exponents in trigonometric functions.
arc Arc hyperbolic functions are defined by using natural logarithms in trigonohyp metric functions.

I APPLICATIONS:

I Hyperbolic and arc hyperbolic functions are very useful in electrical I engineering and physics.

For the EL-506R, select $\rightarrow r, \theta$ and $\rightarrow x, y$ from the MATH key
\rightarrow Co \quad Converts rectangular coordinates to polar coordinates $(x, y \rightarrow r, \theta)$
$\rightarrow \boldsymbol{x y}$ Converts polar coordinates to rectangular coordinates $(\mathrm{r}, \theta \rightarrow \mathrm{x}, \mathrm{y})$
5 Splits data used for dual-variable data input.
$\stackrel{\rightarrow}{\square}$
Displays r, θ and x, y. $(C x \rightleftarrows y$ or $r \rightleftarrows \theta)$

<Example> Determine the polar coordinates (r, θ) when the rectangular coordinates of Point P are $(x=7, y=3)$.
[DEG mode]
O peration example using the EL-531VH/
2.993958513

```
!=
!= EL-509V
```

| APPLICATIONS:
I C oordinate conversion is often used in mathematics and engineering espeI cially for impedance calculations in electronics and electrical engineering.

```

\section*{Statistics Function}

The statistics function is excellent for analyzing qualities of an event. Though primarily used for engineering and mathematics, the function is also applied to nearly all other fields including economics and medicine.

\section*{DATA INPUT ANDERASE}

\section*{\(\underset{\text { DATA }}{ }\) Enters data for statistical calculations.}

\section*{\(\square\) C lears last data input.}

Splits data used for dual-variable data input.
\((\boldsymbol{x}, \boldsymbol{y})\)
<Example 1> Here is a table of examination results. Input this data for analysis (along with data correction).

Data table 1
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Score & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline N o. of pupils & 2 & 4 & 5 & 7 & 12 & 10 & 8 & 2 \\
\hline
\end{tabular}
[Select single-variable statistics mode]

Operation

\section*{MODE 1} \(\square\)
Select single-variable statistics mode


In this case, the last data entry has been incorrectly input for the number of pupils.


Display

\section*{Stat \(x\)}


\section*{"ANS" KEYS FOR 1-VARIABLE STATISTICS}


\section*{\(\sum x\)}
\(\Sigma x^{2}\)

Calculates the average for input data (sample data x).
Calculates the standard deviation of samples from input data (sample data x ).
Calculates the standard deviation for a population from input data (sample data x).

Displays the number of input data (sample data x).
Calculates the total for input data (sample data x ).
Calculates the total to the second power for input data (sample data x ).

\section*{NOTE:}
1. Sample data refers to data selected randomly from the population.
2. Standard deviation of samples is determined by the sample data shift from an average value.
3. Standard deviation for the population is standard deviation when the sample data is deemed a population (full data).
<Let's check the results based on the previous data.>
RCL \(\overline{\boldsymbol{x}} 69\) (aver age value)
RCL \(\quad\) SX 17.75686128 (standard deviation)
RCL \(\quad \sigma x \quad 17.57839583\) (standard deviation of the population)
RCL \(\quad 50\) (total count of data)
RCL \(\sum \boldsymbol{x} 3450\) (total)

<Example 2> The table below summarizes the dates in April when cherry blossoms bloom, and the average temperature for March in that same area. Determine basic statistical quantities for data X and data Y based on the data table.
<Data table 2>
\begin{tabular}{c|l|c|c|c|c|c|c|c|c|}
\cline { 2 - 10 } & Year & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 \\
\cline { 2 - 10 } & A verage tem perature & 6.2 & 7.0 & 6.8 & 8.7 & 7.9 & 6.5 & 6.1 & 8.2 \\
\hline \multirow{2}{*}{y} & Date blossoms bloom & 13 & 9 & 11 & 5 & 7 & 12 & 15 & 7 \\
\cline { 2 - 9 } & & & &
\end{tabular}


\section*{Stat x}

DEG STAT 0.

Select dual-variable statistics mode
6 2 \(\stackrel{(x, y)}{ } 13\) DATA

6
 1


\section*{"ANS" KEYS FOR 2-VARIABLE STATISTICS}

In addition to the 1-variable statistic keys, the following keys have been added for calculating 2 -variable statistics.
Calculates the sum of the product for sample data X and sample data Y .
Calculates the sum of the data (sample dataY).
Calculates the sum of the data (sample dataY) raised to the second power.
Catculates the standard deviation of a data population (sample dataY).
The codes for basic statistical quantities of sample data X and their meanings
are the same as those for single-variable statistical calculations.
<Let's check the results based on the previous data.>

Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com```

