$M Z-3500$
 SHARP SERVICE MANUAL

PERSONAL COMPUTER

моdel MZ-3500

CONTENTS

1. Specifications 1
2. Software (Memory) Configuration 7
3. CPU and memory 12
4. CRT display 25
5. MFD interface 52
6. R232C interface 72
7. Printer interface 78
8. Other interface 81
9. Power circuit discription 87
10. Keyboard controller circuit discription 90
11. Self check functions 94
12. IPL flow char 103
13. Circuit diagram \& P.W.B
Parts list \& Guide
SHARP CORPORATION

1. SPECIFICATIONS

1-1. Specification of the main unit (Model 35XX)

1-2. MZ-1K01 (Keyboard) specification

Outline	MZ1K02 U.S. keyboard (ASCII) MZIKO4 German keyboard				MZ1K03: U.K. keyboard (ISO). MZ1K05: French keyboard						
Specification	LSI, IC	Keyboard controller			$80 C 49$ or 8749						
		CMOSIC			4049×2.4514						
	Keys (98)	Sculpture key			Mechanical contact key, with life of 10,000,000 operations.						
		Alphanumeric keys		61	Ten key	15	Function keys		6	Definable keys	10
		Mode switch		1							
	Interfacing cables	For data transfer with the CPU (serial) and power supply (transmission under 15,000 baud)									
		Use of coiled cable with 8-pin DIN plug									
	Other	Repeat function		Automatic repeat occurs 0.64 seconds after continuous depression of the same key.					2	Two-key rollover	
		Indicators (4 LED's)		POWER, Alphanumeric keys							
	Cabinet	Molded	Color		Office gray						
		Size ($W \times H \times L$)			$467 \times 35 \times$		Weight		1.	(3.3 lb)	

Keyboard layout

Refer to the page 7 IN "CIRCUIT DIAGRAM"

1-3. MZ-1U02

Outline	Expansion unit for the MZ-3500 series CPU, which can be attached to the rear side of the main unit. Optional boards are plugged in to the expansion box. The expansion box will accomodate up to four option boards.					
Specifications	Number of slots: 4 slots					
	Slot connector. 60-pin edge connector $\times 4$					
	Area of the slot inserting option board: 140.5×140					
	Slot for option and slot number					
			Slot 1	Slot 2	Slot 3	Slot 4
		$\begin{gathered} \text { MZ-1RO6 } \\ \text { (expansion RAM) } \end{gathered}$	0		0	
		SFD I/F		0		0
		Expansion RS232C	\bigcirc	0	\bigcirc	\bigcirc
		GPIO	\bigcirc	0	\bigcirc	0
		GPIB (IEEE I/F)	O	O	\bigcirc	\bigcirc

1-4. MZ-IR03

1-6. MZ-1R06

Outline	Optional board for memory expantion of the MZ-3500 sries CPU. with this option the main memory (RAM) can be expanded up to a maximum of 256 KB . This option plug into the expantion box in slot 1 or 3 .					
Specifications	LSI	Basic	64KDRAM $\times 8(64 \mathrm{~KB})$			
		Expansion	64KDRAM	$\times 8(128 K B)$		
	Memory and user area			Main CPU only	Use of MZ-1R06	Using eight 64K RAM's on the MZ-1R06
		Total cap the main	apacity of CPU RAM	128 KB	192 KB	256 KB
	-	BASIC	SYSTEM AREA	- 57 KB	\leftarrow	\leftarrow
		(RAM BASE)	USER AREA	80 KB	128 KB	208 KB

1.7. MZ-1007

Outline	High resolution MZ 3500 series 12 green monitor					
Specifications	Video tube	Type	Nong	re green	Size	$12^{\prime \prime} .90^{\circ}$ deflection
		Fluorescent color P39 (green, long PERSISTANCE)				
	Display capacity	Total number of display characters		2,000 characters (80 characters $\times 25$ lines)	Display capacity	640 horizontal dots, 400 vertical lines
	Display size	220×145				
	Input signals	Method	Separate input, TTL level			
		Horizontal	2086 kHz		Vertical	478 Hz
	Power supply	29W power consumption				
	Cabinet	Molded	Color	Office gray		
		Size ($\mathrm{W} \times \mathrm{H} \times \mathrm{L}$)		$324 \times 310 \times 356$	Weight	7.2 kg
	Adjusting knobs	3	Vertical synchronization, contrast, brightness			
	Accessories	CPU connection cable and power cord and Tilt stand				

1-8. System configuration of Model 3500

2. SOFTWARE (MEMORY) CONFIGURATION

Memory will be operated under four states of SD0 ~ SD3, depending on the hardware and software configurations. In the paragraphs to follow, description will be made for those four states.

2-1. SDO (INITIALIZE STATE)
SDO can only exist immediately after power on, and the system executes IPL under this condition and that the system thus loaded will automatically assign memory area for SD1. SD2, and SD3

MAIN CPU
SUB CPU

Operational description

(1) Upon reset after power on, the main CPU loads the contents of the initial program loader (IPL) into RAM starting at address 4000 H , during which time reset is applied to the sub-CPU.

TIMING OF RESET SIGNAL

Memory Map Data:

1. ROM-B is tested to determine if ROM's are present.
2. The ROM-IPL functions under control of the main CPU at first, but later it functions under the sub-CPU after the IPL program has been loaded in RAM.
3. RAM-COM is shared by both the main CPU and the subCPU.

INITIALIZE FLOW

ROM-IPL

1. An 8 KB ROM (2764 or mask ROM equivalent) is used for the ROM-IPL
2. When the system reset signal turns from low to high state after power on, the main CPU starts to operate At this stage, the ROM-IPL is addressed.
3. The CPU starts from address 0000 (ROM address 10000)
4. The main CPU sets the sub-CPU reset signal from low to high state as it goes out of its initial state via the memory mapper and the sub-CPU starts to operate. At this point, the ROM-IPL is addressed by the sub-CPU.
5. Address 0000 of the sub-CPU is ROM address (0000) The memory area above ROM address (1000) cannot be used by the sub-CPU because the main CPU initial program has been loaded there.

Main CPU logical address (during IPL operation)

2-2. SD1 (SYSTEM LOADING \& CP/M)

SD1 determines which operating system is in use. The system is loaded in the CP/M (Control Program for Microprocessors) mode.
$M S_{1}=0(L)$
$M S O=1(\mathrm{H})$

MAIN GPU
SUB CPU

MZ3500

Operational description
(1) As soon as the sub-CPU is started, it initializes the $1 / 0$ port and waits for program transfer (IOCS) from the main CPU. This IOCS (Input Output Control System) is the program resident at address $4000 \mathrm{H} \cdot 5 \mathrm{FFFH}$.
(2) As the main CPU loads the information from sector

Communication between Main and SUB CPU

" 1 " of track " 0 " of the floppy disk, it loads the IOCS and bootstrap routine to the sub-CPU.
(3) The bootstrap program is loaded next.
(4) The bootstrap program determines memory allocation.

1 (ISOLATIGN OF COM RAM)

2:3. SD2 (ROM based BASIC)
SD2 is active when "SHARP BASIC" is executed via ROM.

[^0]2.4. SD3 (RAM based BASIC)

SD3 is active when "SHARP BASIC" is ececuted via RAM.
"SHARP BASIC" is loaded in RAM from the floppy disk.

Operational description

The state of the system is determined by the bootstrap program before the load of the system program.

3. CPU AND MEMORY

3-1. Block diagram

1) Relation between MMR (Main Memory Mapper) and main memory.

3-2. Main CPU and I/O port

3-3. Sub-CPU and I/O port

Shown at the left is the carcuit used by the CPU to select the $1 / O$ ports The out put address from the sub CPU is decoded by the 74LS138 to create the select signal. Shown below is the address map and select signals.

3-4. Memory mapper (MMR) SP6102R-001

1) Block diagram

2) Memory mapper (MMR) SP6102R-001 signal description

Pin No.	\qquad Signal Name	IN/OUT	Function
1	ST	IN	Main CPU DRAM output buffer (LS244) switching strap.
2 \sim 9	DO D7	IN/OUT	Bidirectional main CPU data bus. (Data bus 0~7)
$\begin{gathered} 10 \\ \sim \\ 12 \end{gathered}$	A 15 A13	IN	Main CPU address bus. Used in the memory mapping logic of the MMR for address output for the DRAM, ROM, and shared RAM. (Address bus $13 \sim 15$)
13	A1	IN	Main CPU address bus. Used in the I/O port select logic of the MMR to assign device number.
14	$\overline{\text { SRES }}$	OUT	Sub-CPU bus request signal. - After power on: Halts the sub-CPU. - After write command (LDA.80H: OUT\#FD) by the main CPU• Starts the sub-CPU. This signal is issued after transfer of the main CPU program contaned in the ROM-IPL. (Sub CPU Reset)
15	$\overline{\text { SRO }}$	OUT	Sub-CPU bus request signal. - After power on: Resets bus request to sub-CPU. - After write command (LDA-02H: OUT\#FC) by the main CPU: Place bus request to the sub-CPU This signal is issued to bus of the sub-CPU, after the main CPU writes to the shared RAM a command parameter to the sub-CPU or reads the message status from the sub-CPU. (Sub CPU Request)
$\begin{gathered} 16 \\ \sim \\ 18 \end{gathered}$	AR13 AR15	OUT	Address signal to the main CPU dynamic RAM. The main CPU address signals,A13-A15, merged in the memory mapping logic circuit to produce AR13-AR15. This is means by which the 4 basic and CP/M memory maps are made, along with MS 1 and MSO.
19	$\overline{\mathbf{R 3 2}}$	OUT	BASIC interpreter 32 KB mask ROM chip select signat. Valid when SD2 is active (Sharp ROM based BASIC). Command (LDA O2H OUT 3FD) (ROM 32K select)
20	$\overline{10 A B}$	IN	Internal MMR I/O port select logic signsl. Goes low by the command IN/OUT \#FC-\#FF. (Input/Output Address)
21	SRDY	IN	Input of ready signal from the sub-CPU. (Sub CPU Ready)
22	$\overline{\text { ROPB }}$	OUT	Chip select signal issued from the main CPU to the 8 KB mask ROM. Valid with SDO active (initialize state). (ROM ipl)
$\begin{gathered} 23 \\ \sim \\ 26 \end{gathered}$	$\begin{aligned} & \overline{R O A B} \\ & \sim \\ & \overline{R O D B} \end{aligned}$	OUT	Chip select signal for four chip BASIC interpreter 8 KB EPROM (A, B, C, D). Valid with SD2 active (Sharp ROM based BASIC). * $\overline{\mathrm{R} 32 \mathrm{~B}}$ (alternate choice with the 32 KB mask ROM chip select signal). (ROM A~D Buffer)
$\begin{aligned} & 27 \\ & \sim \\ & 30 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{RSAB}} \\ & \stackrel{\sim}{\mathrm{RSDB}} \end{aligned}$	OUT	Row address select signal for the main CPU dynamic RAM (block A-block D). RAS (ROW ADDRESS SELECT; LINE ADDRESS SELECT) SIGNAL (Row address Select)
31	$\overline{\text { SACK }}$	IN	Input of bus acknowledge signal from the sub-CPU. $\left(\begin{array}{l} \text { When the main CPU must write a command in the shared RAM a bus request is issued first, then the } \\ \text { command is written in the shared RAM after acknowledgement from the sub-CPU } \\ \text { At the end of the command cycle bus request is released and the sub CPU executes the command } \end{array}\right)$

Pin No.	Polarity	IN/OUT	Function
	Signal Name		
32	$\overline{\text { RF18 }}$	OUT	Main CPU 128 KB dynamic RAM output buffer (LS244) output enable signal. (RAM buffer 1)
33	$\overline{\text { RF28 }}$	OUT	Signal identical to $\overline{\mathrm{AF}} \overline{\mathrm{BB}}$ For option RAM (RAM buffer 2)
34	WATB	OUT	Wart signal to the main CPU (One watt cycle is applied during the memory fetch cycle of the main CPU. It consists of one clock period) (WAIT)
35	$\overline{\mathrm{RCMB}}$	OUT	Chip select signal issued from the main CPU to select the RAM shared by the main CPU and the sub-CPU (RAM Common)
36	$\overline{\text { ITFB }}$	IN	Interrupt input from the UPD765 FDC (Floppy Disk Controller). (Interrupt from Floppy)
37	$\overline{T T O B}$	IN	Interrupt input from the sub-CPU. (Interrupt from No. 0)
$\begin{gathered} 38 \\ \sim \\ 39 \end{gathered}$	$\begin{gathered} \overline{T T 1 B} \\ \sim \\ \overline{T T 2 B} \end{gathered}$	IN	Interrupt input from slot 1 or 2. (Interrupt from No. 1, 2)
40	$\overline{M R Q B}$	IN	Memory request signal from the main CPU.
41	$\overline{\text { WRB }}$	IN	Write signal from the man CPU. (Write)
42 43	$\begin{gathered} \overline{1 T 3 B} \\ \sim \\ \sim \end{gathered}$	IN	Interrupt input from slot 3 or 4. (Interrupt from No. 3, 4)
44	SEC	IN	Input from the FDD (Floppy Disk Drive) assignment dip switch (A), Vo. 1. *See the dip switch description, provided separately. (Section)
45	GND	IN	Ground
46	Vcc	IN	5 V supply
47 48	SW1 SW2	IN	Input from the system assignment dip switch. "See the dip switch description, provided separately.
49	AO	IN	Main CPU address bus Used in the I/O port select logic in the MMR to designate device number.
50	$\overline{\text { RFSH }}$	IN	Refresh signal from the main CPU. (Refresh)
51 52	SW3 SW4	IN	Input from the system assignment dip switch. -See the dip switch description, provided separately.
53	GND	IN	Ground
54	FD1	IN	Input from the system assignment dip switch. *See the dip switch description, provided separately.
55	Vcc	IN	5 V supply.
56	FD2	IN	Input from the FDD assignment dip switch (A), No. 2. -See the dip swi*ch description, provided separately.

Pin No	Polarity Signal Name	IN/OUT	Function
57	SYSR	IN	System reset signal. Used to reset I/O port in the MMR. (System Rese 1)
58	FO3	IN	Input from the sytem assignment dip switch. *See the dip switch description, provided separately.
59	$\overline{C O A B}$	IN	Shared RAM select signal. Address of the shared RAM is $\ddagger F 800-\# F F F F$ for the main CPU (Common RAM Address)
60	$\overline{\text { R01B }}$	OUT	Select signal for 8 KB area allocated to slot 1. Valid when SD2 is active (ROM based BASIC) and SD3 (RAM based BASIC) (ROM 1)
61	GND	IN	Ground
62	Vcc	IN	5 V supply
$\begin{aligned} & 63 \\ & 64 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{RO} 2 \mathrm{~B}} \\ & \overline{\mathrm{RO} 3 \mathrm{~B}} \end{aligned}$	OUT	Select signal for $8 K B$ area allocated to slot 2 or 3. Valid when SD2 is active (ROM based BASIC) and SD3 (RAM based BASIC). (ROM2, 3)
65	$\overline{\mathrm{RDB}}$	IN	Read signal from the main CPU. (Read)
66	CLK		EAIT signal generation clock. (Clock)
67	$\overline{\mathrm{RO4B}}$	OUT	Select signal for 8 KB area allocated to slot 4. Valid when SD2 or SD3 (RAM based BASIC) are active. (ROM 4)
68	MPX	OUT	RAS/CAS address switching signal for the main CPU DRAM. High: Row acidress Low: Column address (Multiplex)
69	GND	IN	Ground
70	$\overline{\text { CASE }}$	OUT	$\overline{\text { CAS }}$ (Column Address) signal for the main CPU 64 K DRAM. "Refresh for the RAM only. (Column Address Select Buffer)
71	GND	IN	Ground
72	$\overline{\text { INTB }}$	OUT	Interrupt signal to the main CPU.
73			Not used

MAIN CPU

I/O PORT IN MEMORY MAPPER

$\overline{S R O}$ Bus request from the main CPU to the sub-CPU

Sub-CPU reset signa:
Memory system define

Bank select signal to memory area of COOO-FFFF.

Bank select signat to memory area of 2000-3FFF.

1. All output signals are reset to low level upon power on, except for SRBQ that goes high.
2. Noted with a star mark "r" are input/output signals, and rest of others are processed in the LSI.
\#1 1/O port output of ME1 and ME2 uses the memory at the addresses.
$\left\{\begin{array}{l}\text { ME2 } \rightarrow 8000 \sim \text { BFFF } \\ \text { ME1 } \rightarrow 4000 \sim \text { 7FFF }\end{array}\right.$
When ME1 and ME2 are in high state, RSAB $(\overline{\operatorname{RASA}})$ is inhibited during memory addresses in RAM-A that correspond to overlayed addresses for ME1 and ME2 This is not true during SD1 mode.

Wait timing generator
WAIT is issued once per main CPU fetch cycle.
Its outut is tri state

3-5. Memory (ROMIPL, RAMCOM, S-RAM) select circuit

1) ROM-IPL select by the main CPU

As $\overline{\mathrm{ROM}}$ IPL turns to low level after power on address bus buffers (LS244, LS367) and data bus buffer (LS245) are enabled. S of the data selector IC (LS157) is set to a low level to enable input 1A-4A. The 3 Y and 2 Y outputs of the LS157 then go low so that $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ of the ROM-IPL are from main CPU. The contents of the IPL-ROM are then read by the main CPU. Because the input pin ($\# 16$) of the address buffer (LS367) is connected to Vcc, IPL for the main CPU will be at address 1000 of the IPL-ROM. Switch SW2BA is the operation test dip switch which should be $O N$ at all times.
2) RAM-COM select by the main CPU

When RAM COM is low, $\overline{\text { SRES }}$ high, and SACK low, the select input S of the selector IC (LS157) is in low state so that input 1A-4A becomes effective. That is, the output 4 Y is low and either 1 Y (WE) or 2 Y (OE) becomes low level, so as to enable to read or write RAM-COM.
3) ROM-IPL select by sub-CPU

Normally, the select signal S of the selector is pulled up to Vcc level that inputs 1B-4B are enabled by sub CPU. If A13 thru A15 were to be at low level, the output Yo of the LS139 becomes low level so that the output 3 Y of the LSI47 or $\overline{C E}$ of the ROM-IPL should be at low level. Should $\overline{\text { SRD, SMRO be at low lebel as well, the }}$ output 2 Y of the LS 157 or $\overline{\mathrm{OE}}$ of the ROM-IPL turnde to low lebel to read the ROM-IPL. Though the sub-CPU can access an address range of 0000 to 1 FFF theoretically, it would be from 0000 to OFFF, actually.
4) RAM-COM select by sub-CPU

Y1 of the LS139 changes to low level when AS13 is high and AS14 and AS15 are low. In other words, the input 4B of the LS157 is at low level which brings the output Y4 to low level, so that CS of the RAM-COM chip select signal should become effective.
If $\overline{\text { SMRO, SRD }}$ or $\overline{S M R O}$, SWR is in low level at this point, it enables read ($\overline{\mathrm{OE}}$) or write ($\overline{\mathrm{WE}}$). Address range. however, is 2000 to 3FFF
5) RAM (SA, SB, SC, SD) select by sub-CPU
$\overline{\text { SMRO, SRD }}(\overline{O E})$ or $\overline{\text { SMRO, SWR }}(\overline{W E})$ is at low level to select the sub-CPU dedicated RAM, SA-SD. Tne following chip select signal, then becomes valid under these conditions:
RAMSA .. $\overline{\mathrm{AS} 11}, \overline{\mathrm{AS} 12}, \overline{\mathrm{AS} 13}, \mathrm{AS} 14, \overline{\mathrm{AS} 15}$ (address $4000-47 \mathrm{FF}$)
RAMSB . . AS11, $\overline{\mathrm{AS} 12}, \overline{\mathrm{AS} 13}, \mathrm{AS} 14, \overline{\mathrm{AS} 15}$
(address 4800-4FFF)
RAMSC .. $\overline{\text { AS11 }}, \mathrm{AS} 12, \overline{\mathrm{AS} 13}, \mathrm{AS} 14, \overline{\mathrm{AS} 15}$ (address $5000-57 \mathrm{FF}$)
RAMSD . . AS11, AS12, $\overline{A S 13}, \mathrm{AS} 14, \overline{\mathrm{AS} 15}$ (address 5800-5 FFF)

4. CRT DISPLAY

4-1. Specification

		Use of thigh resolution CRT	Use of medium resolution , RT
Display memory		3KB (characiers) 96KB. max (graphic) Option	4
Character display	Screen structure	80 chrs $\times 25$ lines. 80 chrs $\times 20$ lines 40 chrs $\times 25$ lines, 40 chrs $\times 20$ lines	4
	Programmable	$8 \times 16 \text { dots }$ With lower case descenders	8×8 dots
	Character structure	255 characters Alphanumerics and 69 symbols 26 small characters 97 graphic patterns	-
	Attributes	Revers, vertical line, blink, horizontal line Programmable for each character	Blink, revers Programmable for each character.
	Colors	8 colors, programmable for each charactes	
Graphic display (option)	32K8 type	640×400 dots, B / W (one frame) Color designation for each character	640×200 dots, B/W (Two frames) Color designation possible for each character
	96 KB type	640×400 dots. B/W (shree frames) Color designation possible for each character Color (one frame)	640×200 dots, B / W (six frames) Color designation possible for each character Color (Two frame)
	Screen merge	Merge any graphic screen 11 to 3 frames)	
Merge of chracters and graphics		Merge a character screen with a graphic screen	
Background color		Chate of 8 colors	
Control of iwo independent screens		Possible to d splay on sepdrate two screens origind graphic screen and character screen Separate graphic screens can be merged into one Possible to affix attributes (CRT2 only) Selection of character/non-character screen display	
Control channel number		Incorporation of two independent video outut channels	
Light pen input (option)		Scans coordinates and character code	

		High resolution CRT (640 $\times 400$ dots mode)				Medium resolution CRT (640×200 dots mode)			
		Green monitor		Color monitor		Green monitor		Color monitor	
		Characters	Graphics (option)	Characters	Graphics (option)	Characters	Graphics (option)	Characters	Graphics loption)
		ASCII	B/W	ASCII	Color	ASCII	B/W	ASCli	Color
Elements		$\begin{aligned} & 8 \times 16 \\ & 8 \times 20 \end{aligned}$		$\begin{aligned} & 8 \times 16 \\ & 8 \times 20 \end{aligned}$		$\begin{aligned} & 8 \times 8 \\ & 8 \times 10 \end{aligned}$		$\begin{aligned} & 8 \times 8 \\ & 8 \times 10 \end{aligned}$	
Character structure		5×14		5×14		5×7		5×7	
Screen structure (Characters \times tines)		$\begin{aligned} & 80 \times 25 \text { mode } \\ & 80 \times 20 \text { mode } \\ & 40 \times 25 \text { mode } \\ & 40 \times 20 \text { mode } \end{aligned}$	640×400 dot	$\begin{aligned} & 80 \times 25 \\ & 80 \times 20 \\ & 40 \times 25 \\ & 40 \times 20 \end{aligned}$	640×400	$\begin{aligned} & 80 \times 25 \\ & 80 \times 20 \\ & 40 \times 25 \\ & 40 \times 20 \end{aligned}$	640×200	$\begin{aligned} & 80 \times 25 \\ & 80 \times 20 \\ & 40 \times 25 \\ & 40 \times 20 \end{aligned}$	640×200
Color designation	Basic			By character				8 y character	
	Option 1 (48KB)			\dagger	By character			\dagger	By dot
	Option 11 (96KB)			\uparrow	By dot			1	\dagger
Small letter descenders		\bigcirc		0		x		x	
Line creation		\bigcirc		X		X		x	
Display memory		3 KB	32 KB	3 KB	$32 \mathrm{~KB} \mathrm{(1)}, \mathrm{96KB(11)}$	3 KB	16 KB	3 KB	48 KB
Frames	Basic	1 frame	No frame	1 frame	No frame	1 frame (1 page)	No frame	1 frame (1 Dage)	No frame
	Option 1 (48KB)	\dagger	1 frame	\dagger	1 frame	\uparrow	3 frames	\dagger	1 frame
	Option 11 (96KB)	\dagger	3 frames	\dagger	1 frame	\dagger	6 frames	\dagger	2 frames
Screen overlay	Basic	Not possible		\leftarrow		\leftarrow		- -	
	Option $1(48 \mathrm{~KB}$)	One characrer screen agarnst one graシhic screen		One character screen against one graphic screen		One character screen against three graphic screens		One 8/W character screen against three graphic screens One color character screen against one graphic screer.	
	Option 11 (96 KB)	One character screen sgainıt three graphic screens		One B / W character screen against three graphic screens One color character screen against one graphic screen		,			

1) Character display
1.1. Screen structure

CRT used Character	$\begin{gathered} \text { High resolution CRT } \\ (640 \times 400 \mathrm{dot}) \\ \text { fH }=209 \mathrm{KHz} \\ \text { (New)fV }=473 \mathrm{~Hz} \end{gathered}$	Medium resolution CRT $\begin{gathered} (640 \times 200 \mathrm{dot}) \\ \mathrm{fH}=157 \mathrm{KHz} \\ \mathrm{fV}=60 \mathrm{~Hz} \end{gathered}$
ASCIL	$\begin{aligned} & 80 \times 25 \text { lines } \\ & 80 \times 25 \text { lines } \\ & 40 \times 25 \text { lines } \\ & 40 \times 20 \text { lines } \end{aligned}$	\leftarrow

Dip switch in the main unit is used to select assignment of high resolution/medium resolution CRT.
Display mode must be chosen by programming.

1-2. Character structure and picture elements

	640×400		640×200	
	Elements	Siructure	Elements	Structure
ASCII	8×16 8×20	5×14	8×8 8×10	5×7
Graphic symbol	1	8×16	1	8×8
	Small letter descenders and line creating funclions are avaitable.	Small letter descenders and line creating functions are not avalable.		

NOTE: In the case of 8×8 and 8×16 picture elements, vertically adjoining graphic symbols will joint together in the 25 -line mode.
As for character structure of $6 \times 14,7 \times 14,6 \times 7$, or 7×7, decision must be given on an actual dot pattern.

2) Graphic display (option)

(High resolution CRT)
(Medium resolution CRT)

Dot pitch
Horizontal vertical $=1 \quad 1$

Dot pitch Horizontal vertical $\fallingdotseq 1: 2$

Three basic colors

4) Attribute

	B / W	Color
AT1	Vertical line	B
AT2	Horizontal line	R
AT3	Reverse	G
AT4	Blink	Blink

Designated for each chatacter.

Line and character ras: exist in the same element lline may also be dis played on the 80 charac ters $\times 25$ lines screen.)

5) Screen overlay

It will be possible to have an overlaid screen that consists of one character (screen and a maximum of three graphic screens. (For detail of overlay screen, refer to Table 1.)
In the color mode, if there are two colors in the same screen and other designated for a dot on the graphic screen element - the one designated for a character on the character - both colors will be merged altogether to produce image.

(Red)
ODot color designated by character attribute (Blue)
O Dot color designted by graphic dot.
(Violet)

- Dot composed of more than two color $\sqrt{2}$ anmation:

3) Color designation

Eight colors are usable (white, yellow, cyan, green, violet, red, blue, black)
Color designation

ASCII		$640 \times 400 \mathrm{dot}$	$640 \times 200 \mathrm{dot}$
		By character	By character
Graphics	48 K byte 96 K byte	By character By dot	By dot By dot

Background color
8 colors for designation
6) Screen overlay and displaying on two independent CRT's
As there are two video output channels it will be pos sible to display two independent screens on separate video display unit Overlay is possible on either of
screens (See preceding item 5)) The following bit selection is needed for screen overlay

NOTE Both CRT1 and CRT2 must be high resolution CRT's (640×400) or medium resolution CRT's (fan \times 9nol Output to each CRT may be possible in the following combination.

Output to each CRT may be possible in the following

$\mathrm{CH} \quad \mathrm{ASCl}!$
GF Graphic screen, including overlay of two graphics screens
(AT) Attached with attribute

7) $\mathrm{ASCII} C G$

Uses an $8 K B$ MROM contains two patterns.
640×400 dots $(8 \times 16$ dots $)$ and 640×200 dots $(8 \times 8$
dots)

\leftrightarrow Address and pattern in picture element
ent structure, character structure, and line

[^1]

9) Cursor

Sharp of the cursor: Same as seen in Model 3200 Reverse and blink)
10) Light pen input

Incorporates the light pen input connector and its inter-
face. The light pen, however, is an option.
Accuracy: By each character
Function: Coordinates/character code
11) Difference in specification with that of Model 3200
(1) There are two modes for the Model 3200; normal mode (6×9 elements) and graphic mode (6×8 elements). In the normal mode of 25 -line displaying of the PC-3200, vertically adjacent graphic symbols do not joint. But, they will joint with the Model 3500.

(2) No line will be displayed for the medium resolution CRT (640×200 dot) .
it is possible to display line on the high resolution CRT, compatible to line the uthizing program of the Model 3200

4-2. Video RAM

1) Structure of VRAM

Solid line 48 KB option
Broken line. To be added to comprise the 96 KB option.

VRAM capacity
Basic 3KB (including attibutes)

Graphic option 1: 48KB Graphic option 296 KB Bit structure of VRAM

CRT		$640 \times 400 \mathrm{dot}$	$640 \times 200 \mathrm{dc}$
Character VRAM		8 bit/word	8 bit/word
Graphic \checkmark RAM	48 KB	16 bir / word	8 bil/word
	96×8	16 bit/word	$16 \mathrm{bil} / \mathrm{wo}$-d

2) Read/write from $Z 80$ to VRAM
(1) Timing period for display and V-RAM Read/write.

(2) Timing that the $Z-80$ can read/write VRAM

The $Z .80$ can read/write VRAM when GDC FIFO buffer is either empty or Full, and can be accessed by
refreshing during the display period. Number of characters that can be read/write within one raster in any mode.

3) Structure of character VRAM

(1) When read/write from GDC

(2) During display

4) Graphic VRAM memory (MZ|R03)

- Block Diagram

1. read/write Mode

The select signal RASA, RASB and RASC are generate from RAS, A14 and A15 which is signal of GDC-2.
The address is allocated to each area selected by above signal.

Read/write by $\mathrm{Z}-80$ via the GDC
(1) 640×200 dots display mode

B/W: 3 frames
Color: 1 frame

B/W: 6 frames
Color: 2 frames

$-32-$
(2) 640×400 dots display mode

5) Synchronize signal timing
(1) For 640×200 dots display mode

$$
\left\{\begin{array}{l}
\mathrm{fH}=15.87 \mathrm{kHz} \\
\mathrm{fV}=60 \mathrm{~Hz}
\end{array}\right.
$$

Total rasters: 261 rasters Display raster: 200 rasters

(2) 640×400 bits display mode

$$
\begin{aligned}
& \mathrm{fH}=20.92 \mathrm{kHz} \\
& \mathrm{fV}=47.3 \mathrm{~Hz}
\end{aligned}
$$

$X: Y: 1: 1$

	GDC-1 (80 digits)	8 bits G (g-2 (graphic) 16 bis	
	Character display (40 digits)	8 bits	16 bits
Do1 clock (0D)	$\begin{aligned} & (1966 \mathrm{MHz}) \\ & (983 \mathrm{MHz}) \end{aligned}$	19.66 MHz (50.86 ns)	9.83 MHz (101 92ns)
$2 \times C C L K$	$\begin{aligned} & (4.9152 \mathrm{MHz}) \\ & \{2.4575 \mathrm{MHz}\rangle \end{aligned}$	4.9152 MHz (203.45ns)	24575 MHz (406 9ns)
Horizontat display tume	$3255 \mu \mathrm{~s} 80 \mathrm{Chr} . / 40 \mathrm{Chr}$.	\leftarrow	+
HFP	$4.88 \mu \mathrm{~s}$	\sim	\leftarrow
HS	$4 \mu \mathrm{~s}$	$\checkmark \quad$ (tREF $=0.6 \mathrm{~ms}$)	$\begin{gathered} 5 \mathrm{Chr} . \\ (\mathrm{tREF}=1.23 \mathrm{~ms}) \end{gathered}$
HBP	$65 \mu \mathrm{~s}$	\leftarrow	\leftarrow
Vertical display ume	19.16 ms	\leftarrow	\leftarrow
VFP	0.527 ms	\leftarrow	\leftarrow
$V P$	0.24 ms	\leftarrow	+
VBP	1.198 ms	\leftarrow	+

Total rasters: 441 rasters
Display rasters 400 rasters
(3) CRT synchronizing signal specification (400 raster CRT)

1. Horizontal synchronization frequency $(\mathrm{fH}): 20.92 \mathrm{kHz}$
2. Vercial synchronization frequency (fV): 47.3 Hz
3. Total rasters: 441 rasters
4. Rasters used: 400 rasters
5. Display dots: 640×400 dots
6. Dot clock: $(19.66 \mathrm{MHz})$
7. Timing

$$
\left\{\begin{array}{l}
V F P: 11 \text { rasters }(0.5 \mathrm{~ms}) \\
V S \cdot 5 \text { rasters }(0.24 \mathrm{~ms}) \\
V B P \cdot 25 \text { rasters }(1.2 \mathrm{~ms})
\end{array}\right.
$$

8. Output method HS, VS, and VIDEO are indpendent outputs.
9. HS, VS, and VIDEO signals are supplied from the LS type TTL IC (totem pole)
6) Setup of GCD master/slave
(1) Master/slave setup by combination

| | Character
 GDC
 GDC | 40 digits |
| :---: | :---: | :---: | 80 digits

* Master should be setup in the above faramer.

(2) $1 / 0$ signal switching

CRTC block diagram

4.5. Master slice LSI (CSP-1) SP6 102C-002 signal description

Pin No.	Priorty	IN/OUT	Function
	Signal Name		
1	HSY,	IN	Horizontal synchronizing signal from the GDC1 Also, it becomes the refresh timing signal in the dynamic RAM mode.
2	$\overline{\text { NABC }}$	IN	Input from the UPD7220 GOC1. When the GDC1 is in the character display mode, the almbute. blinking timing and line counter clear signals are multiplexed.
3	CSR	IN	Input from the GDC1 which is the cursor display input when the GDC1 is in the character display mode.
4~6	ASO ~ AS2	IN	Address bus input from the sub-CPU. $A B 0=A S O, A B 1=A S 1, A B 2=A S 2$
$7 \sim 9$	DSO ~ DS2	IN	Data bus input from the sub-CPU. $D B 0=D B 0 . D B 1=D B 1, D B 2=D B 2$
10	G2	OUT	Green image output to the CRT2.
11	NWRO	IN	CSP1 I/O port select signal (OUT \# $5 \times$)
12	$\overline{\text { NVB }}$	IN	Input of the blue image from the graphic RAM (A) and (B).
13	$\overline{N V R}$	IN	Input of the red image from the graphic RAM (B), (C), and (D).
14	$\overline{\text { NVB }}$	IN	Input of the green image from the graphic RAM (E) and (F).
15	FYD2	IN	Input of the graphic RAM parallet/serial conversion IC 74LS166 shift out clock. (Used to latch the image data in CSP1.)
16~18	$A T 2 \sim A T 4$	IN	Attribuite data input from the 2114A-1 attribute RAM. $\left[\begin{array}{l} \text { AT-2-Horizontal line/R } \\ \text { AT-3-Reverse/G } \\ \text { AT-4-Blink } \end{array}\right]$
19	CH	IN	Input of character display data signal.
20, 21	GND	IN	OV supply
22	DSP2	IN	Input of display timing signal supplied from the CSP-2. \{BLINK signal from the GDC2 is delayed by two flipflop intervals in the CSP-2 to creat this signal.)
23	$\overline{\mathrm{VID2}}$	OUT	VIDEO output to CRT2.
24	LCO	OUT	Character CG line counter output. (Becomes address input to the CG when LCO = CG address AO.)
25	AT1	IN	Attribute data input (vertical line/B) from the 2114A-1 attribute RAM.
26~28	LC1 ~ LC3	OUT	Character CG line counter output. $(\mathrm{LC} 1=\mathrm{A} 1, \mathrm{LC} 2=\mathrm{A} 2, \mathrm{LC} 3=\mathrm{A} 3 \mathrm{C} G=\mathrm{A} 3)$
29	$\overline{\mathrm{NCL4}}$	OUT	Character CG output data latch tuming.
30	HSYO	OUT	CRT1, 2 horizontal synchronizing signal
31	RA40	OUT	The signal that turns high level when the 400-raster CRT is in connection. LDA, 01H OUT\#56
32	$\overline{\text { VIDI }}$	OUT	VIDEO output to the CRT1.
33	B1	OUT	Blue image output to the CRT1.
34	R1	OUT	Red image output to the CRT1.
35	$\overline{\mathrm{G1}}$	OUT	Green image output to the CRT1.
36	SL1	IN	Character CG output parallel/serial converter IC 74LS166 shift load signal, and character CG address latch signal input. (Used for the image data latch signal in the CSP-1 and horizontal synchronizing signal delay flipflop clock.)
37	B2	OUT	Blue image output to CRT2.
38	R2	OUT	Redimage output to CRT2.
39	BLNK	IN	Erase signal from the GDC 1 which becomes input at the following times. 1. Horizontal flyback period 2. Vertical flyback period 3. Period from the execution of the SYNC SET command to the execution of the DISP START command. 4. Line drawing period
40	Vcc	IN	+5V supply.

CSP-1 Block Diagram

4-6. LSI (CSP-2) SP6012C-003 Signal Description

Pin No	Polarity	IN/OUT	Function
	Signal Name		
1	HSY2	IN	Horizontal synchronizing signal from GDC2 which also becomes the refresh tirnitiy ifnel is the dynamic RAM mode.
2	$\overline{B L K 2}$	IN	Erase signal input from the GDC2 which is supplied 4T the following times: 1. Horizotal flyback period. 2. Vertical flyback period. 3. Period from the execution of the SYNC SET command to the execution of the DISP START command. 4. Line drawing period.
3	DWE	OUT	WRITE ENABLE output for the graphic dynamic RAM.
$4 \sim 5$	AD14~AD15	IN	Input of the display output signals (AD14, AD15) from GDC2. (Used to create DBIA-DBIC in the CSP-2.)
6	DBi2	IN	Input from the GDC2 by which the image memory output is sent on the data bus. (Used to create RASA-RASC, CAS, PS, DWE in the CSP-2.)
7	$\overline{\mathrm{OBl1}}$	IN	Input from the GDC1 by which the image memory output is sent on the data bus. (Used to create BUSG. SOE. SWE in the CSP-2.)
8	$\overline{\text { BuSG }}$	OUT	Gate signal of the bidirection bus buffer (LS245) which is used to read/write attribute, and character, data from the static RAM (2114A-1, 6116P-3).
9	SOE	OUT	OUTPUT ENABLE for character static RAM (6116P-3).
10	SWE	OUT	WRITE ENABLE for attribute, character static RAM.
11	0816	OUT	8 -bit/word and 16 -bit/word select signal. (8-bit/word chosen with LDA, 00 H OUT \# 5D, and 16 -bit/word is chosen with LDA, $01 \mathrm{HOUT}=5 \mathrm{D}$.)
12	$\overline{\text { RAS1 }}$	IN	Memory control signal $\overline{\text { RAS }}$ from GDC1. (Used to create CGOE, $\overline{S L T}$ in CSP-2.)
13	$\overline{\text { RAS2 }}$	IN	Memory control signal $\overline{\text { RAS }}$ from CDC3. (Used to create SL2, $\overline{L O A D}, \overline{R A S A}-\mathrm{RASC}, \overline{\mathrm{CAS}}, F 5, \overline{D B I A} \cdot \overline{\mathrm{DBIC}}, \mathrm{DSP} 2$ in CSP-2.)
14	AS3	IN	Address bus input from the sub-CPU ($A S 3=A B 3$)
15	$\overline{\text { NWRO }}$	IN	Chip select (OUT\#5X) of the I/O port in CSP-2.
16~17	DSO~DS1	IN	Data bus input from the sub-CPU (DS0 $=$ D80, DS1 $=$ DB1) .
18	RA40	IN	The signal that goes to high level (input from CSP-1) when the 400 -raster CRT is connected. (Used for clock frequency selection in CSP-2.)
19	M40	IN	Clock input from the clock generator (39.32 MHz , for 400 -raster mode.)
20	GND	IN	OV supply
21	SL2	OUT	Graphic DRAM output parallel/serial converter IC 74LS166 shift load signal.
22	$\overline{\text { RASA }}$	OUT	Graphic DRAM (A), (B) RAS signal.
23	2CM2	OUT	Double character clock output. In the character display mode, a single phase clock of the half the one character wide frequency is supplied. In the graphic display mode, a smgle phase clock of $8 / 16$ dot frequency is supplied to GDC2.
24	LOAD	OUT	Graphic DRAM output parallel/serial converter IC 74LS166 load timing clock.
25	Vcc	IN	+5V supply.
26	FYD2	OUT	Graphic DRAM output parallel/serial converter IC 74LS166 shift out clock.
27	2CK1	OUT	Double character clock output same as 2CK2. In the character display mode, a single phase clock of one half the one character wide frequency is supplied to GDC1.
28	SL1	OUT	Character CG output parallel/serial converter IC 74LS166 shift out clock.
29	SL1	OUT	Character CG output parallel/serial converter IC LS166 shift load signal. Character CG address.
30	CGOE	OUT	Character CG output enable signal.
31~33	$\overline{\mathrm{DB1}} \sim \overline{\mathrm{DB1A}}$	OUT	Timing signal by which the graphic DRAM output is sent on the data bus.
34~35	$\overline{\overline{R A S \cdot C}} \overline{\operatorname{RAS} \cdot B}$	OUT	Graphic DRAM RAS (ROW ADDRESS SELECT) signal. $\overline{\text { RAS-B }}$: RAM $(C),(D)$ RAS-C: RAM $(E),(F)$

Pin No	Priority Signal Name	IN/OUT	Function
36	M32	in	Clock input $32 \mathrm{MHz}, 200$ raster
37	FS	OUT	Graphic ORAM address multiplexer signal (High order 8 bits (AD8 AD15)/low jrder 9 pim [ADO AD7] select signal)
38	DSP2	OUT	Display timing signal fin the CSP 2, the signal BLINK from GDC2 is delayed by 2 collor intervals to create this signal)
39	$\overline{C A S} 2$	OUT	Graphic D RAM CAS (COLUMN ADDRESS SELECT) signal (Line address selection)
40	Vcc	IN	+5V supply

CSP 2 Block Diagram

- 42 -
4.7. GDC (Graphic display controller) (UPD7220) signal description

Pin No.	Polarity	IN/OUT	Function					
	Signal Name							
1	2XCCLK	IN	Double character clock supplied from the external dot timing generator which has the followin, two modes: 1. Character display mode Single phase clock at one half of the one character wide cycle 2. Graphic display mode: Single phase clock of eight dots that cycles					
2	$\overline{\text { DBIN }}$	OUT	Memory conte signal supp'ed to the image memory from the GDC, which causes the image memory output data to be sent on the data bus.					
3	HSYNC-REF	out	Mernory contre signal sent to the image memory from the GDC, which is the horizontal synchronizing signat. - Since the image drawing process is automatically interrupted in the dynamic RAM mode the refresh address is output during the HSYNC period. It can also be used as the refresh timing signal. - Refresh is accomplished by suppressing the CAS signal derived from the $\overline{R A S}$ signal in the external circuit when the HSYC is at high lebel (Horizontal Synchronous - Refresh timing)					
4	$\begin{gathered} \text { VSYNC } \\ \text { EX.SY } \\ \text { NC } \end{gathered}$	IN/OUT	Establishes one of following two modes. depending on whether the GDC is operated by the master or the slave. 1. When the master is operationat: sends out the vertical synchronizing signal. 2. When the slave is operational: The synchronizing signal generation counter is initialized by a high level input.					
5	BLNK	OUT	Erase signal output is issued at the following times (blanking signall: 1. Horizontal flyback period. 2. Vertical flyback period 3. Period from the execution of the SYNC SET command to the execution of the DISP START command.					
6	$\overline{\text { RAS }}$	OUT	Memory control signal sent to the image memory from the GDC. - In the dynamic RAM mode, it is used as the reference sign as the timing signal by which the address signal is latched. \qquad (Row Address Strobe)					
7	$\begin{aligned} & \text { ORQ } \\ & \text { (NO USE) } \end{aligned}$	OUT	DMA request output which is connected with the DRQ input of the DMA controlter is output by the following two commands. 1. DREOE (DMA request write): CPU memory to image memory. 2. DREQR (DMA request read). Image memory to CPU memory. It will be continuously output until the DMA transfer word/byte number set by the VECTW ivector writel command becomes zero. (DMA Request)					
8	$\begin{aligned} & \overline{\text { DACK }} \\ & \text { (NO USE) } \end{aligned}$	IN	Signal supplied from the DMA controller that is subsequently decoded by the GDC as the read or write signal during DMA. (DMA Acknowledge)					
9	$\overline{\mathrm{RD}}$	IN	In the external circuit $\overline{\mathrm{RD}}$ is combined with the chip select signal (CS). And is used when the CPU reads from the GDC ether data or status flag and the signal DACK. (Read strobe)					
10	$\overline{W R}$	IN	In the external circuit $\overline{W R}$ is combined with the chip select signal. And is used when the CPU writes to the GDC either a command or parameter and the signal DACK. (Write strobe)					
11	AD	IN	Normally, connected with the address line and is used to designate data type.					
			AO	$\overline{\mathrm{RD}}$	WR	Function	Device n the Mod	$\begin{aligned} & \text { mber of } \\ & \hline 13500 \end{aligned}$
			0 1 0 1	0 0 1 1	1 1 0 0	READ STATUS FLAG READ DATA WRITE PARAMETER WRITE COMMAND	$\begin{array}{ll}\text { IN } & \# 70 \\ \text { IN } & \# 71 \\ \text { OUT } & \# 70 \\ \text { OUT } & \# 71\end{array}$	$\begin{array}{ll}\text { IN } & \# 60 \\ \text { IN } & \# 61 \\ \text { OUT } & \# 60 \\ \text { OUT } & \# 61\end{array}$
							GDC1	GDC2
			(Address Bus 0)					
12~19	DB0~DE7	IN/OUT	Bidirectional data bus connected to the system bus. (Data Bus $0 \sim 71$					
20	GND	IN	OV supply.					
21	LPEN	IN	Light pen strobe input. When a input light is sensed by the light pen, it outputs a high level signal. The CPU can then read the display address via the LPENR (Light Pen Read) command.					
22~34	ADO~AD12	IN/OUT	Bidiectional address/data bus connected between the amage memory and the GDC on which address and data are sent on the bus b, means of multplexer ALE (Address Latch Enable) is drived from the RAS output in the external circuit. (Address/Dara bus 0~121					

Pin No	Polarity Signal Name	IN/OUT	Function
35~37	$\begin{gathered} \text { AD13(LCO)~ } \\ \text { AD15(LC2) } \end{gathered}$	IN/OUT	Provides the following functions based on the operational mode of the GDC Igraphic display mode, character display mode 0 , character display mode 11. 1. In the graphic display mode and character display mode 0 : Bidirectional address/dara bus 2. In the character display mode 1: Line counter output in connected to the character generator ROM or graphic RAM address. - In the graphic and character display mode 0: AD13~AD15. - In the character display mode 1: LCO~LC1. (Address Data bus 13 ~ 15) (Line Count $0 \sim 2$)
38	$\begin{aligned} & \text { A16(LC3) } \\ & \frac{(A T B L]}{N K-C L C)} \end{aligned}$	OUT	Provides the following functions based on the operational mode of the GDC figaphic display mode. 0 . character display mode 11: 1. Graphic display mode: Image memory address output. 2. Character display mode 1 : Line counter output. 3. Character display mode 0 : Attribute/blinking/timing signal and external line counter clear signat (Address 16) (Line Count 3) (Atribute Blink - Clear Lire Counter)
39	$\begin{gathered} \text { A17 (CSR) } \\ (C S R \cdot \mid M A G E) \end{gathered}$	OUT	Provides the following functions based on the operational mode of the GDC (graphic display mode, character display mode 0 , character display mode 1): 1. Graphic display mode: Image memory address output. 2. Character display mode 1 : Cursor display output. 3. Character display mode 0: Cursor display output, character display area (graphic) display area select timing signal. (Address) (Cursor) (Cursor-image)
40	Vcc	IN	+5V supply.

48 CG Address Select Circuit

ASCII C.G. Structure

ASCII character structure of the 200 raster CRT

ASCII character siructure of the 400 raster CRT
[Circuit description]
(Purpose)
The character genrerator (CG) incorporates all character code used by the 200 raster video display unit of the $Y \times 3500$ and by the 400 raster video display unit of the $Y \times 3500$ The CG address select cirruit is therefore used to select those modes

[Operational description]

1 When the 400 raster CRT is in use, RA40 is set to high level which sets A12 of the CG to high level at all tımes, so that the CG address above 1000 is selected Also, gate (1) opened so that LC3 is input to A3 of the CG At the same tıme, gate (3) is opened so that the gate of the LS240 is closed every 16 bytes
2 When the 200 raster CRT is in use, RA40 is set turned to low level which sets A12 of the CG to low level contunuously, so that the CG address 0000 OFFF is selected Also, gate (2) is opened so that the CPU

4-9. VSYNC

[Circuit description]

When more than two UPD7220 GDC's are to be operated in parallel, one must be assigned to the master and the other to the slave in order to mantain synchronous display timing. The master and the slave are determined according to the table below. The above circuit shoud be used to compare with the table description.

GDC-1 (character) GDC-2 (graph.ic)	$\mathrm{CH} 48=040 \mathrm{digit}$	$\mathrm{CH} 48=180 \mathrm{digrt}$
Without VRAM PWB	GDC1 (character) is the master.	GDC 1
8-bit structure [0816=0] (48KB, 200 raster)	GDC 1	GDC 1
16-bit structure [0816=1] ($48.96 \mathrm{~KB}, 400$ rasters)	GDC 1	GDC2 (Graphic)

The master GDC must be set as indicated above.

[Oprational example]

If it was set to 80 digit, $16 \mathrm{bit} / \mathrm{word}$ mode SRES will be 0 when $\mathrm{CH} 48=1,0816=1$ when not in the reset condition. These signals are supplied to terminal A (weight 1). B (weight 2), and G (gate), and set terminal Y3 of the decoder IC LS139 to " 0 ", so that the YSYNC output of the GDC2 is input to terminal EX SYNC of the GDC2.

4-10. Character VRAM select circuit

[Circuit description]
With respect to GCD1, the assignment during read/write of the character VIDEO-ROM is per the table below. The character VRAM select circuit is provided, io decomplish this function.

4-12. Read/write from the $\mathbf{Z - 8 0}$ to V-RAM
Read/write of the Model 3500 V-RAM is done via the UPD7220GDC. There are two methods used to read/write data. The method (1) is used for the model 3500.
(1) Read/write via the 16 byte FIFO.
(2) Read/write of V-RAM in the DMA mode without. intervention of the FIFO.
(Outline of the read/write data via the FIFC)

(Subroutune to send command and parameter to the GDC
via the FIFO

Example of graphic drawing by GDC

1) Dot display

Example to display a dot on the fourth bit of the address

CSRW C 49 H - COMMAND CODE
P1 01H - Low order one byte of the ab. solute address
P2 00 H - High order one byte of the ab solute address
P3 30H - Dot address (dAD)
WRITE C 23 H - COMMAND CODE
VECTE C 6CH - COMMAND CODE

[Explanation]

$$
\left.\begin{array}{l}
C-\text { COMMAND CODE } \\
P \text {-PARAMETER }
\end{array}\right\} \text { To A }
$$

Display dot, specify the display address of the VRAM and the dot address. Set the command code of the SET mode (set mode plus CLEAR, REPLACE, and COMPLEMENT modes using "WRITE", and specify to start with "VECTE". Dot address is structured on the screen in the
 following manner.
[Dot display program example-1]

2) Straight line drawing

Example to draw a straight line from $(X, Y)=(3,1)$ to $(X$, $Y)=(635,1)$.

Coordinates must be changed to absolute addresses.
$(3,1)-$ absolute address $=0028 \mathrm{H}$
Dot address $=2 \mathrm{H}$
Displacement between two points when the line draw direction is $0 A$ (to the right): $X=635 \cdot 3=632(=278 \mathrm{H})$, $Y=0$ Whereas,

CSRW	C	49 H	
	P1	28 H	
	P2	00 H	\} EAD 1
	P3	20 H	d AD)
TEXTU	C	78 H	
	P1	FF	
	P 2	FF	\} Kind of line (solid line)
VECTW	C	4 CH	
	P1	0 AH) Drawing direction
	P2	78 H	$\}\|\triangle X\|$
	P3	02 H	$\}\|\triangle x\|$
	P4	88H	
	P 5	FIHH	\} $2\|\triangle Y\|-\|\wedge X\|$
	P6	10 H	
	P7	FBH	\} $2\|\triangle Y\|-2\|\Delta X\|$
	P8	00 H	
	P9	00 H	$21 \triangle Y \mid$
WR ITE	C	23 H	
VECTE	C	6 CH	

[Explanation]

Specify the kind of line by TEXTW, using C for command code and P for parameter, and specify the line drawing direction using VECTW and above four values using X and Y. The rest will be same the dot display it is also possible to display a dot using the line drawing method for any line drawing direction using $X=Y=0$.

5．MFD INTERFACE

5－1．Outline

Floppy disk is a disk which is made of a mylar sheet whose surface is coated with magnetic particles and set on the device to write and read data on the surface of the disk It will be necessary to know operating priciple of the floppy disk unit and operational description，including recording method and format．

5－2．Floppy disk

As various recording methods and formats are used for floppy disk（F．D．）systems we will discuss some of them

1）Floppy disk nomenclature
Floppy disks called by different names depending on the manufacturer
\｛Floppy media（or simply as media）
\｛）Diskette
Floppy disk
2）Types of media
Four types are used at present depending on their storage capacity．
$\{$ Single sided，double density（floppy disk－1）
（1）Double－sided，double density（floppy disk－2D）

3）Components of FD＇s：

4）Write protect notch

Different write protects are adopted depending on the drive unit used．
Example－1：In the case of the CE331 the presence of light reflection is sensed by the photo coupler and decoded as write protect

Write enabled

Example 2: CE330S (light passing through the notch is sensed and decoded as write protect)
(Double side, Double density)

Two types of write protection are used and attention must bepaid to the presience of the label because it may cause a wrong result if the label is used improperly.
5) Media recording methods

Two recording methode are used:
or double frequency (DF). Clock and data are written

- FM method (Single density) on the media which requires that a clock bit that This method is called the freqency modulation (FM) precede the data.

(C: clock, D: data)
Waveforms of data written or read in the FM mode are shown below.

Read waveform: The peak of the waveform is detected at a change of magnetic flux. The waveform is than shaped to obtain read data identichl \because the write data. Data cycle will be $4 \mu \mathrm{~s}$.
() MFM method (double density)

The MFM method writes data on the basis of the condi tion metntioned below, and it yields a data density two
times the data density of the MFM mode (The unneces sary clock pulse is eliminated using this method)
(Condition) Clock is written only when there is no data

The clock pulse (C) will be eliminated in above illustra tion as there is no data preceding or following the clock Because the data rate is $2 \mu \mathrm{~s}$ for this method, it is possible to obtain twice the density of the FM method $(4 \mu \mathrm{~s})$.

NOTE Three types of write data cyclon $\left.12{ }_{2} \quad \overline{y s}^{* 3} \quad 3 \mu s\right)$ are used The read/write waveform is identical to FM method
6) Media recording format

Media is formatted according to the IBM format
For Double side media, data is written on the front side (head-1) and the reverse side (head-00)

Tracks. consists of 40 tracks, 00-39. (May also be called
cylinders)
Sector. 01-16
Recording density: 256 bytes/sector

Shown below is an enlarged view of data format sequence Writing starts as soon as the index hole comes through the index detect hole

7) Formatting

To write the above format (ID section, data section, gap) on an entire surface of a new floppy disk is called formatting
Note 1 Formatting may also be called initialization. The word "initialize" is also used as a software term to clear the data section or to partition data area. Keep the difference between formatting and initializing in mind.
Note 2 Unless formatting has been done on a properly adjusted floppy disk drive unit, an erroe may occur on another floppy disk drive unit

8) Data write procedure

Described next is the procedure to write data on the FD.
(1) The head is moved over the track to be written.
(2) The head is loaded
(3) ID section is read and repeated until the desired section is reached
(4) When the desired ID section is found, data is written on that area (DATA AM is also written)
(5) The data thus written is now checked if it was written correctly (read after write) The respective ID section is read while the media makes a full turn
(6) The sector of the identical ID is read and verified with the write data Because of thr ead dite Arite capability the possibility of an error in the written data is quite low
9) Data read procedure

Described next is the procedure to read data from the FD.
(1) The head is moved over the track tu wiwad
(2) The head is loaded
(3) The ID section is read and repeated until the desired sector is reached
(4) When the identical IDsection is foind, the dat? in that data section is then read

5-3. MFD interface block diagram

5-4. FDC (UPD765)

UPD765 pin configuration (top view)

RESET : Reset
RD : Read
WR : Write
CS : Chip Select
AO : AO
DBO. 7 : Data Bus
DRO : DMA Request
DACK : DMA Acknowledge
TC : Terminal Count
INDEX : Index
INT : Interrupt Request
0 : Clock
GND : Ground
WCLK : Write Clock
WINDOW : Data Window
RDATA : Read Data
SYNC : VFO Synchronize WE : Write Enable

UPD765 block diagram

MFM : MFM Mode
SIDE : Side Select
USO, 1 : Unit Select
WDATA : Write Data
PSO, 1 : Pre Shift
FLT : Fault
TRKO : Track 0
WPRT : Write Protected
2 SIDE : Two Side
READY : Ready
HDLD : Head Load
FLTR : Fault Reset
STEP : Step
LCT : Low Current
DIR : Direction
RW/SEEK : Read Write/Seek

UPD765 signal description

Pin No.	Signal name	1/0	Function
40	Vcc	-	+5V
20	GND	-	OV
19	0	1	Single phase, TTL level clock
1	RESET	1	Set the FDC into an idle state, and all drive unit interface outpurs, except PSO, 1, and WDATA (don't care), are set to low level In addition. INT and DRW outputs are set to low level DB goes into an input state.
4	CS	1	Valıdates RD and WR signals
$13 \sim 6$	DB7 ~ DB0	1/0	Bidirectional, tri-state data bus
3	WR	1	Control signal to write data to the FDC via the data bus
2	RD	1	Control signal to read data from the FDC via the data bus
18	INT	0	The signal used to indicate a service request from the FDC it is issued at every byte in the nonDMA mode, or upon completion execution of a command in the DMA mode
5	AO	1	The signal used to select the status register or data register of the FOC for access via the data bus. When 0 , it selects the status register When 1 , it selects the data register.
14	DRO	0	FDC to memory data transfer request signal in the DMA mode
15	DACK	1	The signal that indicates use of the DMA cycle During the DMA cycle, it functions identically to CS.
29. 28	USO, 1	0	Drive unit select signal, with which up to four drive units can be selected.
26	MFM	0	The signal used to designate the operation mode of the VFO circuit When 0 , the MFM mode is assigned. When 1, the FM mode is assigned
24	SYNC	0	The signal used to designate the operation mode of the VFO circuit When i, it permits reading operation. When 0 , it prohibits reading operation
39	RW/SEEK	0	Signal used to discriminate the read/write signal from the seek signal that used for drive unit interfacing signal. When $\mathbf{0}$, it indicates RW When $\mathbf{1 ,}$ it indicates
36	HDLD	0	Signal used to load the read/write head
27	SIDE	0	Signal used to select head \#0 and head $\# 1$ for the double-sided floppy disk drive unit. When 0 , it selects head 0 . When 1 , it selects head 1 .
38	LCT/DIR	0	When the RW/seek signal is operating as RW, the signal works as LCT which indicates that the read/write head is selecting the cylinder above 43. When the RW/SEEK is operating as SEEK, it works as DIR which indicate seek direction When 0 , seek is made towards outer side When 1 , seek is made towards inner side
37	FLTR/STEP	0	When the RW/SEEK signal functions as RW, it works as FLTR which resets any fault condition as the seek step signal.
35	READY	1	Signal used to indicate that the drive unit is ready for operation
34	WPRT/2 SIDE	1	When the RW/SEEK signal is operating as RW, it function as WPRT which indicates that the drive unit or the floppy disk is write protected. When the RW/SEEK is function as the SEEK signal produces 2 SIDE which indicates that a double sided media is in use.
17	INDEX	1	Signal to indicate the physical start point of the track.
33	FLT/TRKO	1	When the RW/SEEK signal is operating as RW, it works as FLT which indicates that the drive unit is in a fault condition. When the RW/SEEK is operating as SEEK, it works as TRKO which indicates that the read/write head is on cylinder 0 .
16	TC	1	Signal used to indicate the termination of a read or write operation
30	WDATA	0	Data written on the floppy disk consists of clock birs and data bits
25	WE	0	Signal to indicate write enable to the drive unit
21	WCLK	1	Data write timing signal which is 250 kHz in the FM mode or 500 kHz in the MFM mode

Pin No	Signal name	1/0	Function				
32.31	PSO. 1	0	Signal used to either advance or delay the write data in writing under the MFM mode to obtain timing adjustment for reading. The WDATA signal is controlled as shown in the table below				
			PSO	PS1	FM	MFM	
			0	0	Not changed	Not changed	
			0	1	-	LATE $225 \sim 250 \mathrm{~ns}$	
			1	0	-	EARLY $225 \sim 250 \mathrm{~ns}$	
			1	1	-	-	
23	RDATA	1	Read data from the drive unit consists of clock bits and data bits.				
22	WINDOW	1	Signal created in the VFO circuit which is used to sample RDATA. Phase syncroniz? carried out in the FDC for RDATA data bits and WINDOW.				

5-5. Data recording method

There are two ways of recording data; FM recording method and MFM recording method.

1) MF recording method
(1) Clock bit indicates a bit cell.
(2) Data bit is placed in a middle of a bit cell. (See Fig. 1.)
2) MFM recording method
(1) Data bit is placed in a middle of a bit cell.
(2) When the data bit is " 0 ", a clock bit is placed before the current bit cell. (See Fig. 1)

As seen from the above illustration, bit density of the MFM recording method is twice the FM recording method. In other words, data density of the MFM recording method doubles that of the FM recording method. For the

Model 3500 , only side 0 of track 0 (128 bytes/sector) is written in the $F M$ mode and rest of other tracks are recorded in the MFM mode.

5-6. I/O port in the MFD interface

I/O port used in the MFD interface is as follows.

	D-BUS	I/O	
10MF\#F9.A0		OUT	$\overline{\mathrm{DACK}}$
$10 \mathrm{MF} \# \mathrm{FB} \cdot \overline{\mathrm{A} 0}$	D7	OUT	ME
	D6		SCTRL
	D5		TC
	D4		TRIG
	D3		SEL3
	122		SEL?
	D1		SEL1
	I) 0		SELO
	U2	IN	M . ON
	D) 1		I NDEX
	I) 0		IRQ

Used for data transfer between the CPU and the FDC.
INT from the FDC is output enabled on INTFD.
FDD select signal output is enabled.
TC to FDC.
Trigger (motor on) of the timer (555)
Selects FDD 3
Selects FDD 2
Selects FDD 1
Selects FDD 0
ON/OFF state of the motor
INDEX signal from the motor
DRO from the FDC

5-7. Precompensate Circuit

(Fig. 2)

PS0	PS1	FM	MFM	Value of LS163
0	0	Not changed	Not changed	1101
0	1	-	LATE $(125 \mu \mathrm{~s})$	1100
1	0	-	EARLY $(125 \mu \mathrm{~s})$	1110
1	1	-	-	-

(Table 1)

(Fig. 3)

The precompensate circuit is used to compensate the peak shift before writing.
The FDC sends out the compensation rate to PSO and PS1 and the data bit location is shifted according to this signal. With issuance of WDATA, the value dependent on PSO and PS1 is set in the LS163. (See Table 1.) For instance, when both PSO and PSi are low, it will set " 1101 (D)" to the LS163, counted up by the 8 MHz clock, and QB is sent out When it becomes " 1110,1111 ". When in EARLY (PSO= "H", PS1=" L "), the value "1110(E)" will be set to the LS163 so that the output is issued 125 ns earier than "not changed". The OB output, however, will be supplied for a period of two clock cycles.

5 -8. Media detection

Insertion of a media on the MFD is detected via the signal INDEX from the MFD. Since it takes 200 ms for the media to make a full turn, "NO MEDIA" is detected signal INDEX does not appear within 200 ms .

5-9. Controls during read, write, seek, and recalibrate
Above operations are all controlled via the FDC.

1) Control during read and write

2) Control during seek and recalibration

In the case of the MFM method, need to trace cycle fluctuation is further increased, as a peak shift is apt to occur because there are three write data cycles.
(Peak shift). Data read cycles fluctuate as the flux change point is moved forwards or backwards.

(VFO circuit): Variable frequency oscillator

When the output vaveform is observed after writing a single pluse on the floppy disk, the waveform show in (a) appears. Shown in (b) is two pluses of 4μ s interval.

(b)

Deviation in the peak point is called peak shift. Since pluse intervals of the MFD in actual operation are $4 \mu \mathrm{~s}, 6 \mu \mathrm{~s}$, and $8 \mu \mathrm{~s}$, the largest shift takes place when a pluse appears $8 \mu \mathrm{~s}$ before or after $4 \mu \mathrm{~s}$, as shown in (c).

5-10. VFO circuit

1) Purpose

Data from the clock or data portion must be differentiated when read from the FDD. For this purpose a window pulse is used. In order to increase read tolerance, the VFO circuit carses the window to trace phase changes in the read data that take place during a floppy disk drive motor speed change.
2) VFO circuit configuration

The VFO circuit has the following capabilities.
(1) Two modes: MFM and FM.
(2) The VFO circuit operation is suspended during the SYNC field located before the ID field and data field.
(3) After suspention, the VFO circuit will synchronize with the read data (timing is affected by a speed change in the FDD). Fluctuations in an individual bit that may be seen (peak shift are ignored.

VFO circuit

MFM Mode

FM mode timing chart

[^2]

Track 0, sector 1 information \{SBACIS) (Fig 1)

$N= \begin{cases}0 . & \text { Single density, other than front side, track } 0 .\end{cases}$
$N=\{1$. Double density, other than front side, track 0.
SIDE $= \begin{cases}0 & \text { Side } 0 \text { (front side) } \\ 1 & \text { Side } 1 \text { (reverse side) }\end{cases}$
No of data transfers $\operatorname{INT}=[$ IOCS capacity $/ 1 \mathrm{k}]+1$

0 track 8 sector

B 250
o Map information

Starting block number (directory)

- Block number allocation

The program and data areas are located after Track 2
1 block $=2 \mathrm{~K}$ bytes (8 sector)

track	Block No			
	Front		Reverse	
2	B0	B 1	B2	B3
3	B4	B5	B6	B7
$($				
38	B144	B 145	B146	B147
39	B 148	B149	B150	B151

$(2 \mathrm{~K} \times 152=304 \mathrm{~K})$

(Single sided)	
track	Block No
	Front
2	B0
3	B2
B3	
38	B72
39	B74

$(2 \mathrm{~K} \times 76=152 \mathrm{~K})$

Each track is blocked in the following manner:

1 sector)		2 sector	
3		4	
5		6	
)	¢ 1 block)	\} 1 block
((
13		14	
15 sector)		16 sector	

- Track 1, Sector 1 information (CP/M)

20 - 50 51												
$\begin{aligned} & \text { SECTO } \\ & \text { RNUM } \\ & \text { BER } \end{aligned}$	TRACK	SIDE	SECTOR	N	SECTO R NUM BER	-------------	TRACK	SIDE	SECTOR	N	$\left\lvert\, \begin{aligned} & \text { SECTUU } \\ & \text { R NURA } \\ & \text { BER } \end{aligned}\right.$ BER	FFM

Indicates the end
$N=0 \quad$ Single density (front, Track 0)
Double density (other than front, Track 0)
SIDE $=\begin{array}{ll}0 & \text { Side } 0 \text { (front) } \\ 1 & \text { Side } 1 \text { (reverse) }\end{array}$
Nos of data transfers = INT [IOCS capacity/1K] +1

- Sub IOCS can be divided into either blocks If divided to
less than eight blocks, the block that follows

6. R232C INTERFACE

6-1. General specification

Input/output format	RS-232C bit serial input/output
No of channels	1 channel
Code used	JIS 7 -channel/JIS 8 channel
Baud rate	110 to $9600 \mathrm{bits} / \mathrm{sec}$
Transmission system	Half-duplex
Synchronization method	Start-stop
Communication control procedure	Non-procedure
Data format	Stop bit $1 / 1.5 / 2$, with or without even or odd parity.
LSI used	8251 AC or 8253C-5 (Programmable interval Timer)

6-2. Data transmission format

Example: 7-bits, even parity, 1 stop bit

6-3. Block diagram of the interface

6-4. System switch functions

	ON	OFF
SW5	Causes an error when the ER signal is low or open during data output.	ER signal is disabled.
SW6	Always high when power is on to the main unit.	The CD signal is set high while data output, but would not be set high when the echo-back function is selected for the host computer.
SW7	Causes on error when the PO signal is high during data output.	Polarity is inverted.

6-5. 8251AC controls

There are two control words for the 8251 AC .
(1) Mode instruction: Defining general operational parameters, such as unit, stop bit, etc.
(2) Command instruction: Defining status words used for actual operation, such as send/receive enable, etc.

1) Definition of generation operational parameters

- Baud rate
- Character size
- Even/odd/off parity assignment
- Stop bit size
* Corresponds to channel command of BASIC.

START

8251AC internal reset

8251 AC mode instruction

2) Data output control

M/ 3500

3) Data input control

6-6. 8253 Controls

Baud rate of this interface will be determıned by the clock output of the 8253 . The 8251 is configured such that its baud rate is $1 / 16$ of the input clock and has the following relation between the 8253 output clock and the baud rate:

8253 input frequency: 2457.6 kHz
8253 Mode set: Mode 3(rectangle waveform rate generator)

Baud rate	8253 Output frequency	8253 Parameter
$110 t-$	1760 Hz	1396.36
300	4800	512
600	9600	256
1200	19200	128
2400	38400	64
4800	76800	32
9600	153600	16

Control signals

Signal name	Symbol	IN/OUT	Function
Transmission enabled	CS	\rightarrow Peripheral	When high, data input from a peripheral is enabled. When low, data input from a peripheral is disabled.
Data set ready	DR	\rightarrow Peripheral	Goes high when power is on to the interface unit.
Carrier detect	CD	\rightarrow Perıpheral	(SW6-ON) High at all times when power is on to the interface unit. (SW6-OFF) Goes high only when data is on output.
Ready	READY	- Peripheral	Data output from the interface is enabled. (ON) Data is output from the interface. (OFF) Waits for data output. NOTE: A maximum of two bytes are output after the signal goes from high to low state.
Equipment ready	ER	- Peripheral	Indicates that the peripheral is ready. It results in an error if low or open when data is sent from the interface. This signal will be invalidated when the SW5 is surned off.
Paper out	PO	- Peripheral	(SW7-ON) Causes an error if set high during data output. (SW7-OFF) Causes an error if set low during data output.

6-7. Description of LSI's

1) UPD8251AC (Programmable Communication Interface)

The UPD8251A is a USART (Universal Synchronous/ Asynchronous Receiver/Transmitter that was specifically designed for data communication.
The USART receives parallel data from the CPU and converts it into serial data before transmitting. Also, serial data is received from an external circuit and transferred to the CPU after converting it into parallel. The CPU can monitor the current state of the USART at any time (data transfer error, and control signal of SYNDET and TXEMPTY.

- eatures

- 8080A/8085A compatible
- Synchronous/asychronous operation
- Synchronous operation
$5-8$ bits character
Clock rate: baud rate $\times 1, \times 16, \times 64$
BREAK character generation
Stop bit: 1, 1.5, 2 bits
Error start bit detection
Automatic break detection and operation.
- Baud rate: DC - 64 K baud
- Fuil-duplex

Double buffer type transmitter/receiver

- Error detect Parity, overrun, framing
- Input/output TTL compatible
- N-channel MOS
- Single +5 V supply
- Single phase TTL level clock
- 28-pin, plastic DIP
- Intel 8251A compatible

Pin configuration (Top View)

DO~D7	Data Bas
RXD	Receive Data (IN/OUT)
WR	Write (IN)
RD	Read (IN)
C/D	Control/Data (IN/OUT)
CS	Chip Select (IN)
DSR	Data Set Ready (IN)
DTR	Data Terminal Ready (OUT)
RTS	Request to Send (OUT)
CTS	Clear to Send (IN)
TXRDY	. Transmitter Ready (OUT)
TXC	Transmitter Clock (IN)
TXE	. Transmitter Empty (OUT)
RXC	. Receiver Clock (IN)
SYNET/BD	: SYNC Detect/Break Detect (IN/OUT)

2) UPD8253C-5 (Programmable Interval Timer)

The UPD8253-5 is a programmable counter/timer specifically designed for the 8 -bit microcomputer system. It consists of three sets of 16 -bit counters that operate under a maxımum counter rate of 4 MHz . Timer and six operational modes are programmed to be used for a wide range of microcomputer system timing control.

Features

- Z. 80 compatible
- Three sets of 16 -bit counters
- DC-4MHz of count rate
- Programmable six operational modes and timer duration
- Choice of binary counter/BCD counter
- N-channel MOS, input/output TTL compatible
- Single +5 V supply, 24-pin DIP
- Intel $8253-5$ compatıble

Pin configuration (Top View)

$\begin{aligned} & 8251 \\ & \text { chip address }[0001 / \times x \times x] \end{aligned}$	CLK	IN
	$\overline{\text { DSK }}$	1 N
	ITR	OUT
	CTS	IN
	R15	(UT
IN OUT (\#1X	TXI)	OUT
	TXRDY	N.C.
	TXE	N.C.
	$\overline{\text { TXC }}$	IN
	RXD	IN
	RXRDY	OUT
	$\overline{\mathrm{RXC}}$	IN
	SYN/BD	N.C.

2.45MHz clock

DATA SET READY ... READY
DATA TERMINAL READY ... CS
CLEAR TO SEND
... PO (MPER SUT), ER
REQUEST TO SEND
... CD
TRANSMITTER DATA ... RD

TRANSMITTER CLOCK
... OUT 0 of 8253
RECEIVE DATA
. . . SD
RECEIVER READY
... Yo sith-CPU of NM.
RECEIVE Clock
... 8253 OUT

8253

$\begin{aligned} & 8253 \\ & \text { chip address[0010/x××x] } \end{aligned}$	CLK0	IN
	GATE0	IN
	OUT0	OUT
	CLK1	IN
IN \# $\left.\begin{array}{c}\text { OUT \# }\end{array}\right\} 2 \mathrm{XH}$	GATE1	IN
	OUT 1	OUT
	CLK2	IN
	GATE2	IN
	OUT2	OUT

2.45 MHz

Vcc
To $\overline{T X C}, \overline{R X C}$ of the 8251
2.45 MHz

From OUT2
MUSIC
2.45MHz

Vcc
To GATE 1
$\overline{\text { INTO }}$ TO MAIN FROM SUB

	$\overline{\text { INT0 }}$
POWER ON RESET	H
SOO \cdot SIW $(\overline{\mathrm{TORQ}} \cdot \overline{\mathrm{WR}}$ of SUB $)$	L
$\overline{\mathrm{INTR}}=\mathrm{L}(\mathrm{FROM}$ MAIN $)$	H

$\overline{\text { INT }}$ TO SUB FROM KEY
$\mathrm{STK}=(\mathrm{L})$

7. PRINTER INTERFACE

7.1. Printer interfacing circuit

* $2,4,6, \ldots 28$ are GND.

Above pin numbers are of the model-3500 main unit

Pin No.	Signal name	IN/OUT	Function
1	STROB	\rightarrow PRINTER	Data is transfered to printer when $\overline{S T R O B}$ is high.
3	DATA 1		
5	DATA 2		
7	DATA 3		
9	DATA 4	\rightarrow PAINTER	Data output to the printer
11	DATA 5		
13	DATA 6		
15	DATA 7		
17	DATA 8		
19	$\overline{A C K}$	\rightarrow PRINTER	Indicates the end of character input or function input
21	BUSY	- PRINTER	When high, it enables to receive data
23	PE	*- PRINTER	When high, it indicates paper empty
25	PDTR	- PRINTER	When high, it indicates the SELECT mode (receive enabled).
27	SYSAES	- PRINTER	Reset signal, normally high

7-3. General description of the parallel interface
The 8255 is used for the LSI to control the parallel interface. The 8255 can be set in the following mode.

$$
\left(\begin{array}{l}
\text { PORT A: MODE } 0 \\
\text { PORT B: MODE } 1 \\
\text { PORT C: Output }
\end{array}\right.
$$

7.4. Data transfer timing

PRINTER: MZ-1P02, MZ-1P03 CE-
330P, 331P, 332P
*Broken line in the above figure represents timing for the CE-330P and 331P.
*For detail of timing, refer to Manual provided with printer.

7-5. General description of control software

Set the 20 second counter.

7－6．1／O port map
8255 ON SUB CPU BUS

INPUT PORT［74LS244］

$74 \text { LS } 244$ port address［0100／xxxx］	［DS7］
	［DS6〕
	［DS5〕
$\left.\begin{array}{r}\text { IN } \\ \text { OUT }\end{array}\right\} \# 4 \mathrm{X}$	［DS4］
	［DS3］
	［DS2］
	［DS1］
	［DS0〕

HLT KEY
$\begin{aligned} & \text { STK } \\ & \text { DK } \\ & \text { PDTR } \\ & \text { PE } \\ & \text { BUSY } \\ & \text { Reads the } 8255 \text { OBF（PC7）} \\ & \text { Output or timer Output．}\end{aligned} \quad$ Printer
$\mathrm{M} \sim 3500$

8. OTHER INTERFACES

8-1. Clock circuit

1) Schematic

2) Clock timing

3) μ PD 1990 AC

Block diagram

Command specification

C2	C1	CO	Command	Description	DOUT	Data Shift	Nore
0	0	0	Register hold	Holds 40-bit S/R	1 Hz	Not possible	Data retention
0	0	1	Register shift	Data input/output	[LSB] Output of LSB	Possible	Shifis in synchronization with the clock
0	1	0	Time set	Data of the 40 -bit S/R is preset to the time counter.	[LSB] Output	Not possible	
0	1	1	Time read	Data in the time counter is read to the 40-bit S/R.	[LSB] Output	Not possible	

Input/output format
Example: In the case of 10 o'clock, 25 minutes, 49 seconds, July 30 th.

8-2. Voice input/output circuit

Music output waveform

8-3. Expansion and interrupt (See 3-(2)-4 for interrupt)

1) Options and expansion units

Options not requiring expansion unit				
MZ 1K01	JIS keyboard	MZ-1E01	RS232C 1/F	(1)
1001	$14^{\prime \prime}$ medium resolution color CRT	. 1 E02	GP1/0	(P)
1002	$12^{\prime \prime}$ high resolution green CRT	-1E03	SFD 1/F	
. 1003	12^{*} high resolution color CRT	-1F05	SFD unit	
-1501	14** CRT tilt stand	-1R06	RAM	
-1502	12" CRT tilt stand			
-1×02	Light pen			
-1P02	80-character printe			
-1P03				
-1P04	Color injket printer			
CE-330P	80-character printer			
-333P	136-character printer			
-331M	Optional MFD drive unit			
-330X	Plotter			
MZ-1F02	Optional MFD drive unit			
-1F03	Optional MFD drive unit (single deck)			
-1R03	Graphic board			
-1R05				

2) Expansion unit

Signal assignment by slot

84 System SW1 (DIP SW) (User operative through the cabinet bottom)

No	Signal name	Function	Position	Polarity			ription	
1	SW1	Printer select	ON	1	SW2	SW1		\# 47 pin of MMR
			OFF	H	ON	ON	CE332P	
					OFF	ON	MZ1P02	
2	SW2		ON	L	ON	OFF	102824	\# 48 pin of MMR
			OFF	H	OFF	OFF	-	
3	SW3	CRT select	ON	L	High resolution CAT (MZ1D02, MZ1D03)			\#51 pin of MMR
			OFF	H	Medium resolution CRT (MZ1D01, MZ1006)			
4	SW4	Choice of decimal point output format	ON	1	A period is output for a decimal point			\#52 pin of MMR
			OFF	H	A comma is outputted for a decimal point			
	SW5	RS232C assıgn	ON	L	Low state or open ER signal during data output will result in an error			To $\overline{C T S}, \overline{\mathrm{DSR}}$ of the 8251
5			OFF	H	The sign	R beco	invalid	
6	SW6		ON	L	$C D$ is high as long as power is on to the main unit			
			OFF	H	CD goes high only during data output However, it would not go high if the echo back function is on the host side			
7	SW7		ON	L	An error is cause when the PO signal is high during data output			To $\overline{C T S}$ of the 8251
			OFF	H	Polarity is inverted for the above			
8	FD1 (SW8)	Key shifi mode setup	ON	L	Normally in capital letter, but in small letter when shifted			\#54 pin of MMR (FD1)
			OFF	H	Normally small leter and in capital letter when shifted			
9	$\begin{gathered} P / M \\ \text { (SW9) } \end{gathered}$	Choice of CG for display	ON	L	3500 CG will be assigned when the 200 raster CRT is in use			P/M stgnal (To A3 CG)
			OFF	H	$\begin{aligned} & 2000 \mathrm{C} \\ & \text { CRT is } \end{aligned}$	ill be e	ned when the 200 raster	
10								NC

Dip switches (A) and (B) located on the PWB are used for servicing the MFD or for other machine service and there fore the user is not supposed to use these switches in addition, these switch must be used when either the CE 330 M or 331 M is used as the expansion MFD

DIP SW (A)

DIP SW (B)

No	Signal name	
1	SRES $($ SW1B)	SUB CPU reset signal
2	SW2B	SUB CPU BUS select signal

* 1 Test program is loaded and executed
*2 Provided for the test of the MFD interface The $\mathrm{read} / \mathrm{write}$ test is carried out for the expansion unit

Used for an individual test of the CPU PWB When these three switches are turned off altogether, it makes the sub CPU operated independently To be used in th ON condition under a normal situation

DIP SW(A)				DIP SW(B)		.
1	2	3	4	1	2	
OFF	OFF	OFF	ON	ON	ON	Switches are set in this manner before shipment of machones thus us the single-sided minifloppy disk drive.
ON	OFF	OFF	ON	ON	ON	Switches are set in this manner before shipment of machines that use the double-sided minifloppy disk drıve. $\left(\begin{array}{l} M Z 3530, ~ P C 3541 \\ M Z 3540, ~ Y ソ ?-41 \end{array}\right.$
OFF	OFF	ON	ON	ON	ON	Switches are set in this manner when the SH is used for the optuial MFD
ON	OFF	ON	ON	ON	ON	Switches are set in this manner when the DH is used for the optional MFD
OFF	ON	ON	ON	ON	ON	Test mode *
ON	ON	ON	ON	ON	ON	Test mode * 2
		$>$	OFF	OFF	OFF	Individual CPU PWB test

Can be in either state

9. POWER CIRCUIT DESCRIPTION

1. BLOCK DIAGRAM

A. +5 V and +12 V supplies

1. Functions

a. Supply voltage is first rectified in the rectifier circuit and sent out to the switching regulator via the overcurrent detector provided in the overcurrent protect circuit.
b. Next, the voltage is converted to the $+5 /+12 \mathrm{~V}$ output in the switching regulator and sent out to the noise ifilter.
ᄂ. Change in the switching regulator output voltage is sensed by the control circuit and is fed back to the switching regulator after being amplified in the amplifier located in the control circuit, for maintaining the output voltage to a constant level.
d. The signal from the oscillator is supplied to the switching regulator through the control circuit for driving the switching regulator.
e. For prevention of overcurrent, the protect circuit is used for stopping the oscillator when an overcurrent is met, and it makes the switching regulator to halt in order to shut off $+12 \mathrm{~V} /+5 \mathrm{~V}$ supply.

2. Description of each block

a. Overcurrent protect (control/protect) circuit

When an overcurrent is met in the $+5 \mathrm{~V} /+12 \mathrm{~V}$ circuit, it causes to increase the voltage at both ends of the overcurren: detector resistor R1, which in turn causes to increase the 03 collector current, for, there arises larger voltage difference between the emitter and base of the
transistor Q3. This makes the gate voltage of the thyristor increased owing to activation of SR. With, activation of SR it makes the oscillator voltage dropped to the GND level at the point " a " to stop oscillation, which also makes the switching regulator stopped by the deactivation of the transistor Q5 oscillation. This causes the transistor Q 5 inactive, and it shuts off the $+5 \mathrm{~V} /$ +12 V supply.
b. Oscillation circuit

As the O 1 emitter voltage is at almost GND level whethe transistor Q 1 is active, the Q 2 base voltage temporarily drops close to the GND level by means of C 6 , which in turn makes Q 2 inactive and the Q 2 emitte: voltage increases.
Then, the O 2 base voltage comes to rise as C 6 begins to be charged through R6, and the transistor O 2 starts to activate again. With activation of the transisior Q2, the Q2 emitter voltage starts to drop and the Q1 base voltage is temporarily dropped by means of C5, to shut off the transistor Q1, which causes to increase the transistor Q1 emitter voltage.
Next, as C5 is charged by R5, it makes the Q1 base voltage increased which puts the transistor $Q 1$ into activation. In this manner, transistors D 1 and O 2 are alternately turned on and off to keep oscillating.
C5 and C6 are charged through R5 and R6 by on/off action of the Q1 and Q2, and discharged through Q1 and Q2.

- $V R$ is the $+5 V$ or +12 V adjusting $V R$.
- D_{3} is provided to discharge current from C_{1} after power off.
c. Power switching circuit

As the signal from the oscillator is amplified through Q7 to Q6 to change current to the transformer T2, it causes voltage to appear on the base of Q5 (one of components is cut by D1), so that the transistor Q5 begins to perform switching operation in synchronization with the oscillation frequency. As Q2 is switched, current is supplied to the emitter side of the transistor Q5, which produces smoothed voltage through the capacitor C1 and the coil L2. The circuit composed of D4 and VR1 is the reference voltage for the +5 or +12 V supply, which is used to control the emitter current flowing to the transistor Q9. The current supplied from O9 is used to create $\operatorname{Tr} 3$ inactive by the delayed C 1 and C 2 voltages which supplied from $\operatorname{Tr} 1-R 2-V R 1-D 3$. It goes high with deactivation of Tr3.

3. Alarm circuit

(Alarm generation circuit)

When power turns off, the voltage accumulated in C1 and C 2 are supplied to the base of $\operatorname{Tr} 2$ via $\operatorname{Tr} 1 \ldots$ and D3, so that $\operatorname{Tr} 2$ is kept active and $\operatorname{Tr} 3$ inactive for sometimes after power off.

Timing chart
(

10. MZ1K01 KEYBOARD CONTROLLER CIRCUIT DESCRIPTION

10-1. Specification of keyboard control

1) Input Buffer

Capacity: 64 bytes

- Key-in data is written to the input buffer first, and is supplied to the CPU, byte by byte.
- When an overflow is detected, the overflow code is affired to the key-in data already sent, before being sent to the CPU.

2) Rollover

- 2 key rollover (exemption in the CTRL mode)
(Entry of the second key depression can be accepted even if more than one key is pressed at same time.)
- Simultaneous depression of more than three keys is ingnored.

3) Key bounce

15 msec (Key spec is $5-10 \mathrm{msec}$)
(Indicates unstable state as shown in Fig. 3-2 that key signal does not turn off immediately after releasing of finger from the key.)
4) Key

5 msec (norma), 20 msec (max),
15 msec (allows for key bounce)
5) DEF Key

Twenty definable keys are available in combination with the CTRL key.
$\left[\begin{array}{l}\text { DFK1~DFK10 ——— (DEF1A~DEF10A) } \\ \text { DEF1-DFK10 in conjunction with the CTRL key } \\ \cdots(D E F I B-D E F 10 B) \text { - (DEF1B~DBF10B) }\end{array}\right.$
6) Handling of functional symbols and graphic symbols See the code table.
7) Use of the CTRL key to discriminate RUN and CONT of the DEB key.
Push the DEB in conjunction with the CTRL key to start running.
8) Handling of special codes COPY

ESCape - CTRL CMD
BRK ——CTRL CONT

9) PRO/OP

Sent to the CPU after power on and when PRO/OP is changed.
10) HOME key

CTRL
Returns home after clearing the display screen.
HOME Only the cursor returns home.
11) One-step commands

12) Mode indication on LED

ASCII \longrightarrow LOCK
13) REP

Key repetition will take place when a key depressed for more than 0.64 second. Entry of other keys is permirted during key repetition. When two keys are depressed at the same time, an alternate key entry will not be accepted. This rule does not apply to simultaneous depression of more than three keys.

10-2. Key search timing

Single key entry

Two key entry

10-3. Key serial transmission procedure

1) Data format

- Command flag: " 0 " when succeedeing 8 bits are a key data. " γ " when it is a command or a graphic control data.
- Data: Positive logic (negative logic on the cable)
- Parity: Odd parity up to 27 bit from the correction flag.

2) Interfacing signals

- $D(K)$: Output data from the keyboard.
- ST(K): $D(K)$ strobe signal. Also use for interrupt to the CPU.
- ACK(C): Acknowledge signal form the CPU. Also use for the data transfer interrupt disable signal.
- $D(C)$: Output data from the CPU. Positive logic
- ST(C): $D(C)$ strobe signal. Also use for Active L interrupt to the keyboard side.

3) Protocol

Key to sub CPU

- Keyboard to the sub-CPU data transfer tapes place with interrupt applied at every signal word (STK).
- As the sub-CPU detects a next strobe (STK) after going into the interrupt routine, it read data (K) as far as the final parity bit, and the ACK (C) signal is sent back to the keyboard side when the check-sum is correct.
- If the ACK (C) signal returns with normal timing, the keyboard controller accepts it. Unless the ACK signal was detected, the same data is sent again assuming a transmission error.
- Case when the error data link (sub-CPU not enable to receive data properly) is established.

1) When parity error is found after the check-sum test.
2) When the sub-CPU is in execution of the NMI routine or when NMI is applied during data trant,. .s.
3) When an error is detected in the couting of strobe (STK (K)) due to noise.
When one of above conditions is detected, data will be sent again until received correctly. Key entries during this periode are strobe in the key buffer. Should the key buffer overflow, key entry will not be stored in the key buffer.

- When a key buffer overflow is detected a KBOF error code is inserted in the area vacant immeniately after transmission of one key-in data, without cleari.'." key buffer contents.

SUB-CPU TO KEYBOARD

- Basically the same as the above cases.
- Data is 3 bits plus parity bit.
- Return acknowledge pluse: Parity OK ... STK + DK Parity NO . . . STK only
- KEY TO CPU (80C49, Z-80) CPU level

- CPU \rightarrow KEY

10-4. Keyboard controller basic flow

10-5. keyboard controller signal description

$\begin{aligned} & \text { PIN } \\ & \text { No } \end{aligned}$	Porality signal name	IN/OUT	Function
1	T0	IN	Output data signal from the sub CPU (D(C))
2	XTA -1	IN	Internat clock oscillator crystal input
3	XTAL2	IN	Internal clock oscillator crystal input
4	RESET	IN	Processor initalize
5	SS	IN	+5V
6	INT	IN	Strove of D(C) that also is used for interrupt to the keyboard side (ST(C))
7	EA	IN	GND
8	RD	-	NC
9	PSEN	-	NC
10	WR	-	NC
11	ALE	-	NC
$\begin{aligned} & 12 \\ & \underset{19}{2} \end{aligned}$	$\begin{aligned} & \text { DBO } \\ & \tilde{\mathrm{DB} 7} \end{aligned}$	IN	RETURN signal from the keyboard is input when a key is pushed during key search
20	GND	IN	OV supply
21	P20	OUT	Output data signal from key (D(K))
22	P21	OUT	Strobe of $D(K)$ which also is used for interrupt to the CPU side (ST(K))
$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { P22 } \\ & \text { P23 } \end{aligned}$	IN	Not used
25	PROG	-	NC
26	VDo	IN	+5V
$\begin{gathered} 27 \\ \tilde{30} \end{gathered}$	$\begin{aligned} & \text { P10 } \\ & \sim 13 \\ & P 13 \end{aligned}$	OUT	Strobe to the keyboard unit by which a hexadecimal code is sent out for generation shift pulses to terminals $\times 0 \times 15$ of the 4515 decorder during key search
31	P14	-	NC
$\begin{aligned} & 32 \\ & \tilde{34} \end{aligned}$	$\begin{gathered} \mathrm{P} 15 \\ \sim \\ \mathrm{P} 17 \end{gathered}$	OUT	Pins used to activate the keytop embeded LED \#32 pin Alphabets and symbols (LOCK) \#33 and \#34 are not used
35	P24	IN	Not used
$\begin{array}{r} 36 \\ 28 \\ \hline \end{array}$	$\begin{aligned} & \hline 925 \\ & \text { P2? } \end{aligned}$	IN	Keyboard type identifier pin Keyboard type is identified by mears of KSO, KS1, KS2 of KUC1 an KUS2, whether it is GND or NC
39	T1	IN	Acknowledge input from the CPU (ACK (C)) Sent only when the CPU receives a correct data
40	$\mathrm{V}_{\text {cc }}$	IN	+5V supply

11. SELF CHECK FUNCTIONS

The $\mathbf{- 3 5 0 0}$ performs self-check test during initial program loading of the ROM. 11-1.

Test regarding the main CPU

1) MFD I/F, 128 KB RAM, 16KB ROM (for ROM based machine) checks

[Procedure]

1. Turn on all dip switches of the 4 bit switch (located in the middle of the front side of the board) and turn on all dip switches of the 2 bit unit on the front side of the board.
2. Insert a floppy disk into drive unit No 2 (the third drive unit)
3. Turn the power on
4. The LED flickers for a moment then the test program starts During execution of the test program, the LED stays unlit About four seconds later the result is indicsted

(DISPLAY)
(1) LED comes activated after normal ending of the test
(2) LED fickers after abnormal ending of the test

The kind of error can be known by how the LED is activat ed and flickered

Type of error
(1) MDF 1/F error
$\underbrace{\text { OFF }}_{\substack{\text { ON } \\ 1 \mathrm{sec} .}} 4 \mathrm{sec}$.
(2) SDO read/write error
(3) SDO bank alternation error
(4) AD2 bank alternation error

- - - -

(5) AD3 bank alternation error
(6) ROM sum-check error
(7) Option RAM read/write error
(Indicated even when the option RAM is not in use)
(8) Option RAM bank alternation error

NOTES:

1. The MFD I/F will not be tested, if there is no MFD I/F connected or when the diskette was not inserted in the slot of the drive unit No. 2 .
2. ROM test will not be performed, unless it is a ROM based machine.
2) Loacing check program

The test program is loaded from the specified track and sector to start executing the test.
[Procedure]
(1) Set dip switches on of the 4 bit unit located in middle of the front side of the board as illustrated at the right.

No.	1	2	3	4
POSITION	OFF	ON	ON	ON

.2) Set dip switches on of the 2 bit unit located on the front side of the board.
(3) Insert the media into a slot of any diskette drive unit.
(4) Turn the power on
(5) Load the program from the specified track and sector, to start execution of the test program.
[Conditions required for the drive unit and media]
(1) Use the FD-55B for the diskette drive unit.
(2) Program may exist in any sector of any track, provided that it is written in continuous sector within a same track.
(Max. 256 bytes $\times 16$ sectors $=4 K$ bytes)
(3) Data descrived next should have been written on Sector 1 of Track 0.
(4) Program loading address must be 4800 H and higher

- Sector 1 . Track 0 information

$\begin{aligned} N & = \begin{cases}0 & \text { Single dencity (Track } 0) \\ 1 & \text { Double density (other than Track } 0 \text {) }\end{cases} \\ \text { SIDE } & = \begin{cases}0 & \text { SIDE } 0 \text { (front side) } \\ 1 & \text { SIDE } 1 \text { (reverse side) }\end{cases} \end{aligned}$
No of data transfers = INT [IOCS capacity/1K] +1
- Sub-IOCS can be divided into eight blocks. If divided to less than eight blocks, the block following to the final block mut be traced by "FFH".

11-2. Sub-CPU side

[Test items]
Memory, VRAM, GDC peripheral, clock, speaker, printer interface, light pen, and RS232C interface.
GO/NO GO of the test must be confimed on the video screen. Moving from test to test is done by depressing the HALT key.

[Procedure]

(1) Turn OFF all dip switch of the 4 bits unit located in the middle of the front side of the board and turn OFF all dip switches of the 2 bits unit.
(2) Set the system dip switch levers (10 bits) located on the reverse side of the board to the following positions.

No.	1	2	3	4	5	6	7	8	9	10
POSITION	OFF	ON	ON	ON	ON	OFF	OFF	ON	ON	$O N$

(3) Turn power on while pushing the HALT siwtch to start the test program. Then, push the HALT switch to step to each test phase.
Result of GO/NO GO will appears on the video screen, except for the CRT interface and speaker tests.

1) Memory test

Sub-10CS RAM (4000H-5FFF)
Shared RAM (2003H-23FFH)
Shared RAM (2440H-27FFH)
Above are tested.
[Display]
(1) Normal test ending

RA OK: SUB-IOCS RAM
RA OK Shared RAM
RA OK
Above information are displayed on three display lines.
(2) Abnormal test ending
RA ER

3) CRT inter face test

Performance of the CRT is tested. To move into each test phase, push the HALT switch. Test No.1-No. 8 test the 400-raster CRT, and test No.9-No. 16 test the 200 rasters CRT.
. 'Procedure and display]
(Test No.1)
Confirm all patterns on the display screen of 40 digits and 20 lines.

(Test No.2)

Confirm all patterns on the display screen of 80 digits and 25 lines.

(Test No.3)

(1) Confirm that an entire screen is Filled with " H ".
(2) Confirm that attributes are shown as illustrated.

2) VRAM check

Proceed to test for ASCII and atribute VRAM
[Display]
During test periode, display shows under following.
(1) Display reviced "U" for entire screeri irom top side.
(2) Display blinking " 1 " with underl re for entire screen.
(3) Display entire screen by space.

Test end

1. Normal

VR OK
2. Abnormal

VR ER

(Check No. 4)

(Check No. 5)

(Check No. 6) (Check No. 7)

4) Speaker test

Performance of the speaker and the volume control are tested. Listen carefully to detect any abnormal sound or mulfunction. Adjust the volume control to a suitable listening level.

5) Printer interface test

Performance of the printer interface signal lines and action of the 8255 are tested.
[Dispaly]
(1) Normal test ending PR OK
(2) Abnormal test ending PR ER
6) Light pen interface test

Performance of light pen interface signal lines and the action of the GDC are tested.
[Display]
On the upper left corner of the screen is displayed character and line.
(1) Normal test ending

LP OK
(2) Abnormal test ending LP ER
7) RS232C interface test

Performance of RS232C interface signal lines and the action of the 8251 are tested.
[Display]
(1) Normal test ending

RS OK
(2) Abnormal test ending RS ER

It will need wiring connection as illustrated in the figure in order to test the RS232C interface. Pins of the RS232C interface edge connector must be wired in the following manner:

8) ROM.IPL

MAIN CPU CHECKER FLOW CHART $1 / 2$

11-3. Keyboard unit test functions

1) Keyboard controller ROM test
(1) After power on in a normal condition, it starts to carry out the ROM self-test.
If the alpha/symbol (LOCK) LED were to turn on, it indicates a failure in KBC. If not, KBC is satisfactory., Key self check functional specification (simplified check)
2) Keyboard test
(1) As the power is turned on with the "DEB" in depression, it goes into the keyboard self-test mode.
(2) Depress key in a given sequence. If key is depressed in a correct sequence, it makes the alpha/symbol (LOCK) LED activated each time a key is pushed. If the key was pushed in a wrong sequence or when a failure is met in the key, it makes the LED blinked.
(3) It returns to the normal mode upon completion of testing all keys. With this, the LED goes out.
(4) Observe the following key-in sequence to test.
i) Turn the OP/PRO siwtch to the OP side.
ii) Turn on power while pushing the "DEB" key.
iii) Turn the PO/PRO which to the PRO side.
iv) Push a key one at a time in accordance with the given sequence.

12. IPL FLOW CHART

12.1. MAIN CPU IPL FLOW CHART $1 / 2$

12 2. SUB CPU IPL FLOW CHART

13-18. PIN CONFIGURATION OF IC \& LSI

742574

241566

TC40498P

7406

75189

TA7313

L hoobo

${ }^{\text {All }}$	1 2		$\square 10$
${ }^{\text {A } 12}$	2	39	ค9
A13	3	38]A8
A14	4	37	$\square^{\text {A }}$
A15	5	36	口А6
Clk	$6 \mathrm{z}-80$	35]A5
${ }^{2} 4$	7	34	DA
D3	8	33	$\square \mathrm{A} 3$
${ }^{5} 5$	9	32	$\square_{\text {A2 }}$
D6 \square^{10}	10 CPU	31	DA1
+5v	11 CPU	30	\square^{10}
D2 H_{1}	12	29	$\square \mathrm{CND}$
D7 ${ }^{13}$	13	28] KFSH
D0 1	14	27	प1
D1 ${ }^{15}$	15	26] $\overline{\mathrm{PESFTT}}$
INT ${ }^{\text {d }}$	16	25	$\square \mathrm{BUSRQ}$
तला \square^{17}	17	24	$\overline{\overline{4} \overline{A I T}}$
HALT ${ }^{\text {a }}$	18	23	
MRE: ${ }^{1}$	19	22	$]^{\text {WR }}$
उलक्-		21	$\bar{\square}$

4PD8255

－PB6：02R－001

PIN N	SIGNAI	PIN ${ }^{\text {a }}$	SIG，${ }^{\text {al }}$	リハN	SIC，NAI	Pi No	\16， 41	PIA it	cicen 41
1	$\checkmark \mathrm{T}$	11	Al 4	21	¢RDT	31		41	WरB
2	D0	12	413	22	प（178	32		42	TT3畐
3	D1	13	A 1	23	$\overline{\mathrm{hons}}$	33	$\overline{\mathrm{RF} 2 \mathrm{~B}}$	43	T148
4	D2	14	दRF⿳亠⿻口一口阝	24	\％）${ }^{\text {¢ }}$	34	WATB	44	¢f 6
5	D3	15	$\overline{\mathrm{TRQ}}$	25	$\overline{\mathrm{KOCR}}$	35	$\overline{\mathrm{R} C M B}$	45	GD
6	D4	16	ARI 3	26	RODB	36	TTFB	46	C，${ }^{\text {c }}$
7	D5	17	AR14	27		37	1 170］	47	SM1
8	176	18	1R！ 5	28	$\overline{k-B / B}$	38	TT18	48	－ 2
4	${ }^{-}$	14	r－ 1	－	［T	，	IIE1．	${ }^{1} 4$	＇11
10	115	20	TII	30	हुगB	40	YKOR	50	KFSH1

51	4ヵ3	61	（，${ }^{\text {d }}$ ）	71	（．1）
52	¢ 4	62	6， 0	72	TVP
53	（．）${ }^{\text {c }}$	63		73	\cdots
54	F01	64	$\overline{\mathrm{K} 031}$		
55	（．）${ }^{\text {（1）}}$	65	$\overline{\mathrm{krim}}$		
56	FH2	66	（1） h		
57	¢YヶR	67	$\overline{\mathrm{R04B}}$		
58	F H 3	68	mi＇x		
59	$\overline{\overline{O A B B}}$	69	（ $\cdot \backslash 1$ ）		
60	$\overline{\text { R01B }}$	70	$\overline{C A C B}$		

MZ-3500

PARTS GUIDE LIST

1 Exteriors

NO	PARTS CODE	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK	DESCRIPTION
1	CCABC 1007 ACZ	A Y		D	Front Cabinet assembly
2	GFTAF1001ACZZ	$A E$	N	D	Lid for Graphic slot
3	HBDGB3004GESA	AE		D	Badge "SHARP.
4	TLABZ1003ACZZ	AB	N	D	Label 'POWER'
5	TLABZ1008ACZZ	A A	N	D	Drive Na label
6	QCNCW1008AC01	$A C$		C	Connector 2pin
7	QPWBF1005ACZZ	A A	N	C	LED PWB
8	VHPGL9PR2//-1	A C		B	Photo transistor
9	GCABA1003ACZZ	BM	N	D	Bottom cabinet
10	GFTAU1005ACZZ	AL	N	D	Lid for ROM LSI
11	PSPAG1004ACZZ	$A C$		C	Rubber spacer
12	TLABZ1017ACZZ	AC		C	Label for 1/0 port
16	XBPSF30P06K00	A A		C	Screw
	DUNT-1018ACZZ	**	N	E	Power supply unit for 200 V series
17	DUNT-1035ACZZ	* *		E	Power supply unit for 100 V series
18	GCABB1004ACZZ	BG	N	D	Top cabinet
19	GCOVH1001ACZZ	AM	N	D	Slot cover
20	LANGT1003ACZZ	A X	N	C	Fixing angle for MFD
21	LANGT1010ACZZ	AE		C	Fixing angle for fan
22	LCHSM1008ACZZ	A Y		C	Chassis.
23	LX-LZ6023RCZZ	A A		C	Rivet
24	NFANP1001ACZZ	BM	N	B	Fan motor
25	RMEMR1002ACZZ	* *	N	E	MFD unit
26	GLEGP0010UCZZ	AB		C	Rubber foot
27	XBPSD30P08KS0	A A		C	Screw
28	XBPSD40P06KS0	A A		C	Screw
29	$L X-8 Z 1001 A C Z Z$	$A C$		C	Screw
30	XBPSD40P06K00	A A		C	Screw
31	\times CTSC40P06000	A A		C	Screw
32	XBTSF40P08000	AA		C	Screw
33	XCPSD40P12000	A A		C	Screw
34	PHOG-1001ACZZ	AC	N	C	Rubber cushion
35	GFTAF1002ACZZ	AE		D	Cover
36	LHLDW6655RCZZ	A B		C	Wire holder
37	QLUGLO006UCZZ	A B		C	Lug terminal
38	XBPSD30P30KS0	A A		C	Screw
39	VRS-PT3LB330J	AC		C	Resistor ($30 \mathrm{~W} 33 \Omega \pm 5 \%$)
40	LHLDW6655RCZZ	$A B$		C	Cord holder .
	PSLDM1003ACZZ	$A P$		C	Shield for MFD
41	TLABZ1400CCZZ	A A		C	Label
					-- --- - ---
					-
					---------- ---

[2] PWB \& Fixing angles

NO	PARTS CODE	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	PART RANK		DESCRIPTION
1	JKNBMOOO4PAZZ	AC	N	C	Knob for VR	
2	LANGS1006ACZZ	AF	N	C	Fixing angle for speaker	
3	IANGK1007ACZZ	A B	N	C	Fixing angle for speaker	
4	QCNCW1008AC02	A F		C	Connector	
5	Q SW-K $1007 \mathrm{ACz2}$	AE	N	B	HALT switch	
6	RVR-A5452QCZZ	A F		B	Variable resistor	
7	V SP0080P-608N	AN		C	Speaker	
8	XBPSD30P06K00	A A		C	Screw	
9	DUNTK1082ACZZ	**		E	CPU PWB unit (Model 3541)	
	DUNTK1083ACZZ	**		E	CPU PWB unit (Model 3530)	
	DUNTK1064ACZZ	**		E	CPU PWB unit (Model 3540)	
11	DUNTK1060ACZZ	* *	N	E	MFD 1/F PWB unit	
12	GFTAR1003ACZZ	AD	N	D	Cover for RS232C I/0 slot	
13	GFTAR1004ACZZ	A C	N	D	Cover for 1/O slot	
15	LHLDZ1001ACZZ	A D	N	C	Guide for PWB	
16	QCNW-1003ACZZ	AK	N	C	Connector for light pen	
17	QCNW-1004ACZZ	AM	N	C	Connector for key board	
18	QCNW-1047ACZZ	AM	N	C	Connector for CRT-1	
19	QCNW-1044ACZZ	AM	N	C	Connector for CRT-2	
20	XBBSC26P04000	A A		C	Screw	
21	XBBSC30P06000	A A		C	Screw	
22	XBPSD30P06KS0	A A		C	Screw	
23	XUPSD26P06000	A A		C	Screw	
24	LANGQ1004ACZZ	AH	N	C	Connector " A " angle	
25	LANGQ1005ACZZ	AF	N	C	Connector " 8 " angle	
26	PCUSG1001ACZZ	A A	N	C	Cushion for PWB	
27	PZETY1001ACZZ	AE	N	C	Insulator for MFD	
28	QCNCM1002ACZZ	A Q		C	Connector	
29	QCNW-1007ACZZ	A X	N	C	Connector (18pin)	
30	XBPSD30P10000	A A		C	Screw	
	XBPSD40P08KSO	A A		C	Screw	
31	XNESD30-24000	A A		C	Nut	
32	PHOG-1002ACZZ	$A C$	N	C	Rubber custion	
33	XNESD30-24000	A A		C	Nut	
34	LHIDF6648RCZZ	AB		C	Holder	
35	PCUSG1001ACZZ	A A	N	C	Rubber cushion for PWB	

- 4 -

3. Connector

NO	PARTS CODE	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK	DESCRIPTION
1	QCNCP6041QCZZ	AW		C	Connector
2	QCNCP4841QCZZ	AT		C	Connector
$3!$	QCNCW1001ACZZ	A Z		C	Connector
4	QCNCM1004ACZZ	A Q		C	Connector
6.	QCNW-1007ACZZ	AX	N	C	Connector
9	QCNCW0207HCZZ	AK		C	Connector
10.	QCNCM1009ACZH	AC		C	Connector
11	QCNCM1009ACZ1	AC		C	Connector
12	QCNCM1009ACZB	A A		C	Connector
13	QCNCM1009ACZG	AC		C	Connector
14.	QCNCM1009ACZE	AB		C	Connector
16	QCNCW1008ACOI	AC		C	Connector
17.	QCNCW1008ACO2	AF		C	Connector
18	QCNW-1047ACZZ	AM	N	C	Connector for CRT-2
19	QCNW-1044ACZZ	AM	N	C	Connector for CRT-1
20	QCNW-1004ACZZ	AM	N	C	Connector for key board
21	QCNW-1003ACZZ	AK	N	C	Connector for light pen
26	LHLDF6648RCZZ	A B		C	Holder

[4] Others

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION
1	RMEMR1004AC07	BA		D	Master media
9	UBNDA1008CCZZ	A A		D	AC Cord band
10	SPAKA1003ACZZ	$A Z$	N	D	Packing custion
13	SSAKH3002KCZZ	AD		D	Plastic bag

5 CPU PWB

NO.	PARTS CODE	PRICE RANK	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$	DESCRIPTION
1	LANGQ1004ACZZ	AH	N	C	Connector " A " angle
2	LHLDF6648RCZZ	AB		C	tiolder
3	QCNCWO207HCZZ	AK		C	Connector
4	QCNCW1001ACZZ	$A Z$		C	Connector
5	QCNCM1009ACZB	A A		C	Connector.
6	QCNCM1009ACZE	A B		C	Connector
7	QCNCM1009ACZG	AC		C	Connector
8	QCNCM1009ACZH	AC		C	Connector
9	QCNCM1009ACZ1	AC		C	Connector
10	QCNCP4841QCZZ	AT		C	Connector
11	QCNCP6041QCZZ	AW		C	Connector
12	QSOCZ6414ACZZ	AD		C	IC socket (14pin)
13	QSOCZ6416ACZZ	AD		C	IC socket (16pin)
14	QSOCZ6424ACZZ	AE		C	IC socket (24pin)
15	QSOCZ6428ACZZ	AE		C	IC socket (28pin)
16	QSOCZ6440ACZZ	AG		C	ic socket (40pin)
17	QSW-Z1002Sczz	A 2		B	Dip SW
18	QSW-Z2005SCZZ	AK		B	Dip SW
19	QSW-Z9660KCZZ	AR		B	Dip SW
20	RC-KZ1018CCZZ	AE		C	Capacitor
21	RCRS-1001ACZZ	AU	N	B	X -Tal (3932 MHz)
22	RCRS-1002ACZZ	AU	N	B	$X-\mathrm{Tal}(32 \mathrm{MHz})$
23	RCRS-1003ACZZ	AU	N	B	x-Tal (245 MHz)
24	RCRSP1003CCZZ	A T		B	$\mathrm{X}-\mathrm{Tal}(32 \mathrm{KHz})$
25	RMPTC4333QCKB	AC		C	Block resistor ($1 / 8 \mathrm{~W} 33 \mathrm{~K} \Omega \times 4$)
26	RMPTC4682QCKB	AC		C	Block resistor ($1 / 8 \mathrm{~W} 68 \mathrm{~K} \Omega \times 4$)
27	RMPTC8333QCKB	AD		B	Block resistor ($33 \mathrm{~K} \Omega \times 81 / 8 \mathrm{~W} \pm 10 \%$)
28	UBATN1001ACZZ	A S	N	A	Battery
29	VCCSPUIHLIOOD	A A		C	Capacitor (50V 10PF)
30	VCCSPU1HL330J	A A		C	Capacitor (50WV 33PF)
31	VCCSPUIHL470J	A A		C	Capacitor (50 V 47 PF)
32	VCEAAA1CW106Q	$A B$		C	Capacitor ($16 \mathrm{WV} 10 \mu \mathrm{~F}$)
33	VCEAAA1CW107M	AB		C	Capacitor (16 WV V $100 \mu \mathrm{~F}$)
34	VCEAAA1CW3 36 M	AB		C	Capacitor (16 WV 33 3 F)
35	VCEAAAIEW 106 M	$A B$		C	Capacitor ($25 \mathrm{WVV} 10 \mu^{\text {F }}$)
36	VCEAAA1EW 107 M	AC		C	Capacitor (25 WV V $100 \mu \mathrm{~F}$)
37	VCEAAA1EW227M	$A C$		C	Capacitor (25 WV 220رF)
38	VCEAAA1HW105M	AB		C	Capacitor (50 WV 1 $10 \mu \mathrm{~F}$)
39	VCEAAA1HW3 35 M	AB		C	Capacitor ($50 \mathrm{WV} 33 \mu \mathrm{~F}$)
40	VCEAAA1HW475M	AB		C	Capacitor ($50 \mathrm{WV} 4 \mathrm{~T}^{\prime} \mathrm{F}$)
41	VCKYPAIHB681K	A A		C	Capactor (50 WV 680PF)
42	VCKYPA1HB681K	A A		C	Capactor (50 WV 680PF)
43	VCKYPU1HB221K	$A B$		C	Capacitor (50WV 220PF)
44	VCKYPU1HB561K	A A		C	Capacitor (50WV 560PF)
45	VCTYPA1NX104M	AB		C	Capacitor ($12 \mathrm{WV} 010 \mu \mathrm{~F}$)
46	VCTYPA1NX104M	AB		C	Capacitor ($12 \mathrm{WV} 010 \mu \mathrm{~F}$)
47	VCTYPU1EX 103 M	AB		C	Capacitor ($25 \mathrm{WV} 0010 \mu \mathrm{~F}$)
48	VHDDS $1588 \mathrm{~L}-1$	$A D$		B	Diode (151588L1)
49	VH, HM472114-1	$A U$		B	IC
50	VHIHM6116P3-1	BN		B	1 C
51	VHILH0080A/-1	AX		B	IC
52	VHIM58725P-15	A Z		B	1 C
53	VH:M74LS00/-1	AE		8	IC
54	VHIM74LS02/-1	A E		B	IC
55	VH,M74LS03/-1	AE		B	1 C
56	VH,M74LS04/-1	$A E$		B	1 C
57	VH:M74LS08/-1	$A E$		8	IC
58	VH1M74LS $10 /$ - 1	AE		B	IC
59	VH1M74LS125-1	A H		B	IC
60	VH, M74LS138-1	AK		B	IC
61	VH:M74LS139-1	$A L$		B	1 C
62	VH1M $74 \mathrm{LS14/-1}$	$\overline{A M}$		B	1 C
63	VH:M74LS157-1	$A K$		B	1 C
64	VH:M74LS $166-1$	A L		8	${ }^{1} \mathrm{C}$
65	VH1M74LS244-1	AM		B	IC
66	VH1M74LS245-1	A R		8	1 C
67	VH1M74LS273-1	$A P$		8	1 C
68	$V \mathrm{H}$:M74LS32/-1	AF		B	IC

5) CPU PWB

NO	PARTS CODE	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK	DESCRIPTION
69	VH,M74L5367-1	AH		B	IC
70	VH:M 74 L S $373-1$	$A Q$		B	IC
71		AG		B	IC
72	VH, M 7 4 $1575 /-1$	AE		B	IC
73	$V H, M / 4 L S 86 \%-1$	AF		B	IC
74	VHIMI 4 L S 9 / -1	A K		B	IC
75	V	$A F$		B	IC
76	VH S $\mathrm{N} 7406 \mathrm{~N} /-1$	A G		B	IC
77	$\mathrm{VH}, \mathrm{SN} 74157 \mathrm{~N}-1$	AM		8	IC
78	$V \mathrm{H}, \mathrm{SN} 75188 \mathrm{~N}-1$	AM		B	IC
79	VH:SN75189A-1	AP		B	IC
80	$V H 1 S P 6102 C 002$	BG		8	IC
81	$V \mathrm{~V}_{1}$ SP6102C003	BG		B	IC
82	VH:SP6102R001	B P		B	IC
83	VH,TA7313AP-1	A 1		B	IC
84	VHITC4049P/-1	AN		B	IC
85	VH,UPDI990ACC	A T		8	IC
86	VH1UPD7220D-1	BS		B	IC
87	VHIUPD8255/-1	AY		8	IC
88	VH $12764 / /$ AC01	LM		B	LSI PROM - IPL
	VH12764//ACO2	LM		B	LSI PROM-CG (English)
	VH $2764 / / 4 \mathrm{ACO} 3$	LM		8	LSI PROM-CG (Germany)
	$V \mathrm{H}_{1} 2764 / / \mathrm{ACO4}$	LM		B	LSI PROM-CG (French)
89	$\mathrm{VH} 14164-150-\mathrm{H}$	A 2		B	IC
90	$V H / 8251 A C / /-1$	A Y		8	IC
91	VH: $8253 / / / / /-1$	BA		B	1 C
92	VHPGL3PR2 $/$ / - 1	AE		8	Photo transistor GL3PR2
93	VRD-ST2EY331J	A A		C	Resistor (1/4W 330 ${ }^{\text {J J) }}$
94	VRD-ST2EY470J	AA		C	Resistor (EX 110V, 220 V only) (1/4W 47 $\pm 5 \%$)
95	VRD-RV2EYOOOJ	A A		C	Resistor ($1 / 4 \mathrm{~W} \pm 5 \%$)
96	VRD-ST2EY101J	A A		C	Resistor ($1 / 4 \mathrm{~W} 100 \Omega \pm 5 \%$)
97	VRD-ST2EY102J	AA		C	Resistor ($1 / 4 \mathrm{~W} 1 \mathrm{~K} \Omega$)
98	VRD-ST2EY103J	A A		C	Resistor (1/4W 10K8)
99	VRD-ST2EY104J	A A		C	Resistor ($1 / 4 \mathrm{~W} 100 \mathrm{~K} \Omega \pm 5 \%$)
100	VRD-ST2EY222J	A A		C	Resistor (Japan only) (1/4W $22 \mathrm{Kn} \pm 5 \%$)
101	VRD-ST2EY331J	A A		C	Resistor ($1 / 4 \mathrm{~W} 330 \Omega \mathrm{~J}$)
102	VRD-ST2EY332J	A A		C	Resistor ($1 / 4 \mathrm{~W} 3 \mathrm{3KN} \pm 5 \%$)
103	VRD-ST2EY333J	A A		C	Resistor ($1 / 4 \mathrm{~W}$ 33KN)
104	VRD-ST2EY561J	A A		C	Resistor (1/4W 560 ${ }^{\text {J }}$)
105	VRD-RV2EY682J	AA		C	Resistor ($1 / 4 \mathrm{~W} 68 \mathrm{~K} \cap \pm 5 \%$)
106	VRO-SU2EY152J	A A		C	Resistor (1/4W $15 \mathrm{~K} \Omega \mathrm{~J})$
107	VRD-SU2EY470J	A A		C	Resistor (47ח)
108	VRD-SU2EY681J	$A A$		C	Resistor ($1 / 4 \mathrm{~W} 680 \mathrm{n} \mathrm{J}$)
109	VRD-SU2EY821J	A A		C	Resistor ($1 / 4 \mathrm{~W} 820 \Omega \pm 5 \%$)
110	VRD-SU2EY822J	A A		C	Resistor ($1 / 4 \mathrm{~W} 82 \mathrm{~K} \cap \pm 5 \%$)
111	\checkmark S2SC458KC/-1	$A D$		B	Transistor
112	XBPSD30P06KS0	A A		C	Screw
113	XBPSD30P08000	A A		C	Screw

6) Power supply unit

Power supply unit

NO．	PARTS CODE	PRICE RANK	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	PART RANK	DESCRIPTION	
25	OAE30121921／／	A C	N	B	Diode（1S2076A－FEC）	［005］
26	OAE30121921／／	AC	N	B	Diode（1S2076A－FEC）	D006］
27	OAE30379029／／	AD	N	B	Zener diode（H271－82）	D00？${ }^{\text {］}}$
28	OAE30121921／／	A C	N	8	Diode（1S2076A－FEC）	D008
29	OAE 30121921／／	A C	N	8	Diode（1S2076A－FEC）	Du09］
30	OAE30200774／／	AG	N	B	Diode（30DF－1）	D010］
31	OAE $30200774 / \%$	A G	N	B	Diode（30DF－1）	D011］
32	OAE30379029／／	AD	N	B	Zener diode（ $\mathrm{HZ} 7 \mathrm{~L}-32$ ）	D012］
33	OAE30250326／\％	AG	N	B	Diode（10DF－1）	D013］
34	OAE30121921／／	$A C$	N	B	Diode（1S2076A－FEC）	0014］
35	OAE30159870／／	A Y	N	B	Diode（S10VB10）	RCOO1］
36	OAE30121866／／	AN	N	8	Diode（18481）	RC002］
37	OAE30165262／／	$A \mathrm{~A}$	N	B	Thyristor（03P05M）	TH001］
	OAE $30511353 / /$	$A P$	N	C	Capacitor（022 $\mathrm{F}^{\text {F 250V }}$ ）	［C001］
38	OAE30272391／／	$A P$	N	C	Capacitor（ $0.1 \mu \mathrm{~F} 125 \mathrm{~V}$ ）	C001］
39	OAE30509721／／	AG	N	C	Capacitor（DE1107E222M250VAC）	COO21
40	OAE30509721／／	AG	N	C	Capacitor（DE1107E222M250VAC）	［COO3］
41	OAE30523370／／	$A P$	N	C	Capacitor（KM50VRSN10000HR）	C004 ${ }^{\text {d }}$
42	OAE30143572／／	A C	N	C	Capacitor（50F2S102K）	C005］
43	OAE30143572／／	A C	N	C	Capacitor（50F2S102K）	C006］
44	OAE30120650／l	A G	N	C	Capacitor（50F2S154K）	C007］
45	OAE $30169653 / /$	AC	N	C	Capacitor（50ULB10－M）	C008］
46	OAE30227236／／	AD	N	C	Capacitor（ 10 ULB220－M）	C009］
47	OAE30120524／／	AC	N	C	Capacitor（50F2S223K）	C011］
48	OAE30129460／／	AC	N	C	Capacitor（50F2S103K）	C0123
49	OAE30129460／／	A C	N	C	Capacitor（50F2S103K）	C013］
50	OAE30129460／／	A C	N	C	Capacitor（50F2S103K）	C014］
51	OAE30280671／／	AE	N	C	Capacitor（ $35 \mathrm{ULB33-M}$ ）	CO15］
52	OAE30165576／／	AG	N	C	Capacitor（ 10 ULB1000－M）	C016］
53	OAE 30165576／／	A G	N	C	Capacitor（ 10 ULB1000－M）	C017］
54	OAE30169653／／	AD	N	C	Capacitor（ 50 ULB10－M）	C018］
55	OAE30169653／／	AD	N	C	Capacitor（ 50 ULB10－M）	C019］
56	OAE30120524／\％	AC	N	C	Capacitor（ 50 F 2 S 223 K ）	C020］
57	OAE $30164409 / /$	AC	N	C	Capacitor（50F2S332K）	C021］
58	OAE30120456／／	AC	N	C	Capacitor（50F2S472K）	［CO22］
59	OAE30129460／\％	A C	N	C	Capacitor（50F2S103K）	［C023］
60	OAE30120456／／	A C	N	C	Capacitor（ 50 F 2 S 472 K ）	［C024］
61	OAE30170008／7	AG	N	C	Capacitor（ 25 UL L $330-\mathrm{M}$ ）	［C025］
62.	OAE30170008／／	A G	N	C	Capacitor（ $25 \mathrm{ULB330}$－M）	［C026］
63	OAE30213525／／	AG	N	C	Capacitor（35ULB220－M）	［C027］
64	OAE30195258／／	AG	N	C	Capacitor（25ULB220－M）	［CO28］
65	OAE30120524／／	AC	N	C	Capacitor（50F2S223K）	［CO29］
66	OAE30120524／／	A C	N	C	Capacitor（50F2S223K）	［C030］
67	DAE30164409／／	AC	N	C	Capacitor（ 50 F 2 S 332 K ）	［CO31］
68	OAE30116729／／	AK	N	C	Resistorr（TM1OK（PVB）B 2K 2 ）	［RV001］
69	OAE30116729／／	AK	N	C	Resistorr（TM10K（PVB）B 2Kn）	［RV002］
70	VRS－PT3AB102J	$A C$	N	C	Resistorr（RS1FB 1K 2 J）	［R001］
71	VRS－PT3DB152K	A B	N	C	Resistorr（RS2FB 1．5KRJ）	［R002］
72	VRD－ST2EY152J	A A	N	C	Resistorr（CR25 1．5K J J）	R003］
73	VRD－ST2EY333J	A A	N	C	Resistorr（CR25 33KnJ）	R004］
74	VRD－ST2EY333J	A A	N	C	Resistorr（CR25 33KRJ）	R005］
75	VRD－ST2EY152J	A A	N	C	Resistorr（CR25 $1.5 \mathrm{~K} \Omega \mathrm{~J}$ ）	R006］
76	OAE30491169／7	A E	N	C	Wire resistor	R007］
77	VRD－ST2EY100J	A A	N	C	Resistor（CR25 100」 F）	R008］
78	VRD－ST2EY102J	A A	N	C	Resistor（CR25 1 K 2 J ）	R009］
79	OAE30508049／／	AG	N	C	Resistor（MDS 05N 5．6n）	R010］
80	VRD－ST2EY4RTJ	AB	N	C	Resistor（CR37 4．7nJ）	R012］
81	OAE30501868／／	$A C$	N	C	Resistor（RSIFB 630］）	R013］
82	OAE30143284／／	A C	N	C	Resistor（MR25 47＠G）	R014］
83	VRD－ST2EY331J	A A	N	C	Resistor（CR25 330nJ F）	R015］
84	VRS－PT3AB100」	AB	N	C	Resistor（RS1FB 10＾J）	R016］
85	VRD－ST2EY272J	A A	N	C	Resistor（CR25 2．7k ${ }^{\text {JJ F }}$ ）	R017］
86	VRD－ST2EY102J	A A	N	C	Resistor（CR25 1K 2 J F）	R018］
87	VRD－ST2EY391J	A A	N	C	Resistor（CR25 390 ${ }^{\text {J J F）}}$	R019］
88	VRD－ST2EY471J	A A	N	C	Resistor（CR25 470nJ）	R020］
89	VRD－ST2EY331J	AA	N	C	Resistor（CR25 330 ${ }^{\text {J }}$ F）	R021］
90	VRD－ST2EY182J	A A	N	C	Resistor（CR25 1．8K 2 JF ）	R022］
91	VRD－ST2EY152J	A A	N	C	Resistor（CR25 1．5kRJF）	［R023］
92	VRD－ST2EY222J	A A	N	C	Resistor（CR25 2．2k ${ }^{\text {J J F }}$ ）	［R024］
93	VRD－ST2EY102J	A A	N	C	Resistor（CR25 1K＠JF）	［R025］
94	VRD－ST2EY222J	A A	N	C	Resistor（CR25 2．2K $\mathrm{J}^{\text {J F）}}$	［R026］
95	VRD－ST2EY681J	A A	N	C	Resistor（CR25 680nJ）	［R027］
96	VRD－ST2EY220J	$A A$	N	C	Resistor（CR25 22，${ }^{\text {a }}$ ）	R028］
97	VRD－ST2EY102J	A A	N	C	Resistor（CR25 1K ${ }^{\text {J F }}$ ）	［R029］
98	VRD－ST2EY102 J	A A	N	C	Resistor（CR25 1 K Ω J）	［R030］
99	VRD－ST2EY331J	A A	N	C	Resistor（CR25 330』J）	［R031］
100	VRD－ST2EY331J	A A	N	C	Resistor（CR25 330nJ）	［R032］
101	OAE $30490940 / 1$	AE			Wire resistor	［R033］
102	VRD－ST2EY390J	A A	N	C	Resistor（CR25 390JF）	［R034］
103	VRD－ST2EY151J	A A	N	C	Resistor（CR25 150 1 J F）	［R035］

19. MZ1K02,1K03,1K04,1K05 (Key unit)

11 MZ1R06 (RAM board)

NO.	PARTS CODE	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$	DESCRIPTION		
1	LBNDJ0009FCZZ	A C		D	Clamp band		
2	SPAKA1016ACZZ	A F	N	D	Packing custion		
3	SPAKC1082ACZZ	A H	N	D	Packing case		
4	TINSJ1009ACZZ	AE	N	D	Instruction book		
5	TINSM1017ACZZ	A G	N	D	Instruction book		
6	QSOCZ6416ACZZ	A D		C	IC socket		
7	VCEAAA1CW476M	AB		C	Capacitor ($16 \mathrm{~V} 47 \mu \mathrm{~F}$)		
8	VCTYPA1NX 104 M	A B		C	Capacitor ($12 \mathrm{~V} 01 \mu \mathrm{~F}$)		
9	VHIM74LS $367-1$	A H		B	1 C		
10	VHISN74157/-1	AH		B	1 C		
11	VH14164-150-H	$A Z$		8	LSI DRAM		
12	VRD-RV2EY101J	A A		C	Resistor		
13	DUNTK1028ACZZ	**			PWB Unit		
		-	---				
		\cdots					
	----------				- -		
-		- -	-		-		

Index

PARTS CODE	NO	PRICE RANK	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$	
SPAKA1004ACZZ	9-109	AG		D	
SPAKA1009ACZZ	9-110	$A B$		D	
SPAKA1013ACZ	102	AH	N	C	
SPAKA1016ACZZ	11. 2	AF	N	D	
SPAKA1045ACZZ	9-111	$A P$	N	D	
SPAKA1127ACZ2	9112	AD	N	D	
SPAKC 1033 ACZZ	9113	$A P$	N	D	
SPAKC1035ACZZ	9-113	AP	N	D	
SPAKC1037ACZZ	9-113	AP	N	D	
SPAKC1039ACZZ	9-113	$A P$	N	D	
SPAKC1078ACZZ	$10-3$	AK	N	C	
SPAKC1082ACZZ	11-3	AH	N	D	
SPAKF1104ACZZ	9-114	A D		0	
SSAKH3002KCZZ	4- 13	AD		D	
1T1					
TINSJ1009ACZZ	11^{-4}	$A E$	N	D	
T,NSM1017ACZZ	115	AG	N	D	
TLABJ1769CCZZ	9-115	A A		0	
TLABZ1002ACZZ	9- 2	A A	N	0	
TLABZ1003ACZZ	1-4	A B	N	D	
TLABZ1008ACZZ	1-5	A A	N	0	
TLABZ1017ACZZ	1-12	$A C$		C	
TLABZ1400CCZZ	1-41	A A		C	
TSELF0003PAZZ	$10-5$	A A		D	
TSPC-1010ACZZ	9-20	AC	N	D	
TSPC-1011ACZZ	9-20	AC	N	D	
TSPC-1012ACZZ	9. 20	AC	N	D	
TSPC-1013ACZZ	9-20	$A C$	N	D	
(U)					
UBATN1001ACZZ	5-28	A S	N	A	
UBNDA1008CCZZ	4- 9	A A		D	
(V)					
VCCCPUIHH2OIJ	8-12	$A B$		C	
VCCCPUIHH680J	8-13	A B		C	
VCCSPUIHL100D	5-29	A A		C	
"	9-116	A A		C	
VCCSPU1HL330J	5- 30	A A		C	
"	8- 14	A A		C	
VCCSPU1HL470J	5-31	A A		C	
"	8-15	A A		C	
"	9-117	A A		C	
VCEAAA1CW106Q	5-32	AB		C	
VCEAAAICW107M	5-33	$A B$		C	
"	8-16	AB		C	
VCEAAAICW3 36 M	5-34	AB		C	
VCEAAA1CW476M	11-7	AB		C	
VCEAAAIEWIO6M	5-35	AB		C	
VCEAAAIEW107M	5-36	AC		C	
VCEAAAIEW 2 27 M	5-37	AC		C	
VCEAAAIHW 105 M	5-38	$A B$		C	
VCEAAA1HW225M	8-17	AB		C	
VCEAAAIHW3 35 M	5-39	AB		C	
VCEAAAIHW475M	5-40	AB		C	
VCEAAUICW107M	10-11	A B		C	
VCEAAUICW 336 M	9-118	AB		C	
"	10-12	A B		C	
VCEAAUICW475M	9-119	AB		C	
VCEAAUIEW107M	10-13	A B		C	
VCKYPAIHB331K	10-14	A A		C	
VCKYPA1HB681K	5-41	AA		C	
"	5-42	A A		C	
VCKYPUIHBIO2K	8-18	A A		C	
"	8-19	A A		C	
VCKYPU1HB221K	5-43	A B		C	
VCKYPU1HB56iK	5-44	A A		C	
VCSATUIVEIO4M	8-20	AC		C	
VCTYPAINX104M	5-45	AB		C	
"	5-46	AB		C	
"	8-21	$A B$		C	
"	8-22	AB		C	
"	$10-15$	$A B$		C	
"	11.8	$A B$		C	
VCTYPUIEX103M	5-47	A B		C	
"	8-23	AB		C	
"	9-120	$A B$		C	
VHDOS $158811-1$	5-48	AD		B	
II	824	AB		8	
"	9121	$A D$		B	
VHERDS 6E5/-1	$10 \quad 16$	AC		B	
VHID8749HACOS	9125	B ${ }^{\text {a }}$	N	B	

PARTS CODE	NO	PRICE RANK	NEW MARK	PART RANK	
VH/HM472114-1	5. 49	AU		8	
VHIHM6116P3-1	5-50	8 N		B	
VHILH0080A/-1	5-51	A X		B	
VH:M5K4116P-2	10-17	AP		B	
VHIM58725P-15	5-52	A 2		B	
VHIM74LS00/-1	5- 53	AE		B	
"	10-18	AE		B	
VH,M74LS02/-1	5. 54	AE		B	
"	8-25	AE		8	
VH:M74LSO3/-1	5-55	AE		B	
VH/M74LSO4/-1	5-56	AE		B	
VH:M74LS08/-1	5-57	AE		8	
"	8-26	AE		B	
VH:M74LS10/-1	5-58	AE		8	
"	8-27	AE		B	
VH1M74LS125-1	5-59	AH		B	
VHIM74LS 126-1	8-28	AH		B	
VH:M74LS 138-1	5-60	AK		B	
VHIM74LS139-1	5-61	AL		B	
VHIM74LS14/-1	5-62	AM		8	
VHIM74LS157-1	5-63	AK		B	
"	8-29	AK		B	
"	10-19	AK		B	
VH:M74LS161-1	8- 30	AH		B	
VHIM74LS163-1	8-31	A H		B	
VH,M74LS166-1	5-64	A L		B	
"	10-20	AL		B	
VHIM74LS21/-1	8- 32	A D		B	
VHIM74LS221-1	8-33	AH		B	
VHIM74LS244-1	5-65	AM		B	
"	10-21	AM		B	
VHIM74LS245-1	5-66	AR		B	
VHIM74LS27/-1	8-34	$A F$		B	
VHIM74LS273-1	5-67	$A P$		B	
"	8-35	$A P$		B	
"	10-22	$A P$		B	
VHIM74LS293-1	8-36	AG		B	
VHIM74LS32/-1	5-68	AF		B	
"	8-37	AF		B	
VHIM74LS367-1	5-69	A H		B	
/	10-23	AH		B	
"	11-9	AH		8	
VH1M74LS373-1	5-70	A Q		B	
"	10-24	AQ		B	
VH:M74LS74/-1	5-71	A G		B	
$1 /$	8-38	A G		B	
VHIM74LS75/-1	5-72	AE		B	
VHIM74LS86/-1	5-73	AF		B	
VH:M74LS93/-1	5-74	AK		B	
VHIM7438////-1	8-39	$A E$		B	
VHINE $55 / / / /-1$	8-40	A G		B	
VHISN7404//-1	10-25	A E		B	
VHISN7404N/-1	5-75	AF		B	
"	8-41	AF		B	
VHISN7406N/-1	5-76	AG		B	
VHISN7414N/-1	8-42	AM		B	
VHISN74157/-1	11-10	$A \mathrm{H}$		B	
VHISN74157N-1	5-77	AM		B	
VHISN75188N-1	5-78	AM		B	
VHISN75189A-1	5-79	AP		8	
VH:SP6102C002	5-80	B G		B	
VHISP6102C003	5-81	BG		B	
VHISP6102R001	5-82	BP		B	
VHITA7313AP-1	5-83	AL		B	
VH:TC4049P/-1	5-84	AN		B	
"	9-122	AN		8	
VHITC4514P/-1	9-123	AW		B	
VHITL4558//-1	8-43	$A F$		B	
VHIUPD1990ACC	5-85	A T		8	
VH,UPD72200-1	5-86	B S		B	
11	10-26	B S		B	
VHIUPD $765 / /-1$	8-44	BR		B	
VH,UPD8255/-1	5-87	A Y		B	
VH, $2764 / / \mathrm{ACO}$	5-88	LM		B	
VH12764//ACO2	5-88	LM		B	
"	9-124	BM	N	B	
VH:2764//AC03	5-88	LM		B	
II	9-124	BM	N	8	
VHI2764//AC04	5-88	LM		B	
"	9-124	BM	N	B	I

PARTS CODE	NO	PRICE RANK	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PARTI } \\ \text { RANK } \end{array}$	
VH/4164-150-H	5. 89	AZ		B	
"	11-11	AZ		8	
VH/8251AC//-1	5. 90	AY		8	
VH18253////-1	5-9i	BA		8	
VHPGL3PR2//-1	5. 92	AE		8	
VHPGL9PR2//-1	1. 8	$A C$		B	
"	9. 6	$A C$		B	
VRD-RV2EY000J	5. 95	A A		c	
VRD-RV2EY101J	11-12	A A		C	
VRD-RV2EY682J	5-105	A A		c	
VRD-ST2EY100J	6-71	A A	N	C	
-	6-105	A A	N	C	
VRD-ST2EY101J	5. 96	A A		c	
"	8. 45	A A		c	
"	9-126	$A A$		c	
"	10-27	AA		c	
VRD-ST2EY102J	5-97	AA		c	
"	6-78	$A A$	N	c	
"	6-86	AA	N	c	
"	6-93	$A A$	N	c	
"	6-97	A A	N	C	
"	6-98	A A	N	C	
VRD-ST2EY103J	5-98	AA		c	
"	9-127	$A A$		c	
\%	10-28	A A		c	
VRD-ST2EY104J	5-99	$A A$		C	
-	9-128	A A		c	
VRD-ST2EY151J	6-103	A A	N	c	
VRD-ST2EY152J	6-72	A A	N	C	
"	6-75	AA	N	c	
"	6-91	AA	N	c	
VRD-ST2EY182J	6-90	AA	N	c	
VRD-ST2EY220J	6-96	A A	N	c	
-	6-114	AA	N	c	
VRD-ST2EY222J	5-100	AA		c	
"	6-92	A A	N	C	
/	6-94	A A	N	c	
"	9.129	$A A$		c	
VRD-ST2EY272J	6-85	AA	N	c	
VRD-ST2EY331J	5-93	AA		C	
"	5-101	AA		C	
"	6-83	$A A$	N	C	
"	6-89	A A	N	c	
"	6. 99	AA	N	c	
"	6-100	$A A$	N	c	
"	6-106	AA	N	c	
"	8-46	$A A$		C	
"	10-29	$A A$		c	
VRD-ST2EY332J	5-102	$A A$		c	
-	8-47	$A A$		c	
"	9-130	$A A$		c	
"	10-30	$A A$		c	
VRD-ST2EY333J	5-103	$A A$		c	
"	6-73	$A A$	N	C	
"	6-74	$A A$	N	c	
"	9-131	$A A$		C	
VRD-ST2EY390J	6-102	$A A$	N	c	
"	6-113	$A A$	N	c	
VRD-ST2EY391J	6-87	$A A$	N	c	
VRD-ST2EY392J	6-115	$A A$	N	c	
VRD-ST2EY4R7J	6-80	$A B$	N	c	
VRD-ST2EY470J	5-94	$A A$		c	
VRD-ST2EY471J	6-88	AA	N	c	
"	9-132	$A A$		c	
VRD-ST2EY472J	6-107	$A A$	N	\bar{c}	
"	8-48	AA		c	
VRD-ST2EY561J	5-104	$A A$		c	
VRD-ST2EY6811	6-95	A A	N	c	
"	6-109	AA	N	c	
	6-110	A A	N	c	
- "	9-133	A A		C	
VRD-SU2EY101J	8- 49	$A \bar{A}$		c	
VRD-SU2EY152J	5-106	$A A$		c	
VRD-SU2EY391J	8. 50	AA		c	
VRD-SU2EY470J	5-107	A A		c	
"	10-31	A A		c	
VRD-SU2EY681]	5-108	$A A$		C	
VRD-SU2EY821J	5-109	A A		c	
VRD-SU2EY822J	5-110	A A		C	
	8-51	A A			

PARTS CODE	NO	PRICE RANK	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { RANK } \\ & \hline \end{aligned}$	
VRD-SU2EY824J	8-52	A A		C	
VRN-RT2EK102F	6-111	$A B$	N	C	
VRN-RT2EK105F	8.53	A A		C	
VRN-RT2EK123F	8- 54	AB		C	
VRN-RT2EK222F	6-112	A B	N	C	
VRN-RT2EK472F	8- 55	AB		C	
VRN-RT2EK912F	8-56	AC		C	
VRS-PT3AB100J	6-84	AB	N	C	
"	6-108	$A B$	N	C	
VRS-PT3AB102J	6-70	AC	N	C	
VRS-PT3DB102J	6-104	$A B$	N	C	
VRS-PT3DB152K	6-71	$A B$	N	C	
VRS-PT3DB680K	10-32	$A B$		C	
VRS-PT3L8330J	1. 39	AC		C	
\checkmark SP0080P-608N	2-7	AN		C	
VS2SA673-C/-1	8- 57	AE		B	
VS2SA673-D1-1	10-33	AC		B	
VS2SC458kC $/-1$	5-111	AD		B	
XBBSC26P04000	2-20	A A		C	
XBESC30P06000	2-21	A A		C	
XBPSD30P06KSO	2-22	A A		C	
"	5-112	AA		C	
"	9-12	AA		C	
XBPSD30P06K00	2-8	AA.		C	
"	9-134	$A A$		C	
X SPSD30P08KS0	1-27	AA		C	
XBPSD30P08000	5-113	AA		C	
XBPSD30P10000	2-30	A A		C	
"	8- 58	AA		C	
XBPSD30P30KS0	1-38	AA		C	
XBPSD40P06KSO	1-28	A A		C	
XBPSDAOPO6KOO	1-30	AA		C	
XBPSD40P06000	$10^{-} 4$	AA	N	C	
XBPSD40P08KSO	2-30	$A A$		C	
XBPSF30P06K00	1-16	A A		C	
XBTSC40P06000	1-31	A A		C	
XBTSD30P04000	10-34	AA		C	
XBTSF40P08000	1-32	AA		C	
XCPSD40P12000	1-33	A A		C	
XNESD30-24000	2-31	A A		C	
"	2-33	A A		C	
"	8- 59	$A A$		C	
XUPSC26P06000	9-21	AA		C	
XUPSC30P08000	9-22	A A		C	
XUPSD26P06000	2-23	A A		C	
101					
OAE10447100//	6-125	$A F$	N	C	
OAE10447113//	6-126	$A D$	N	C	
OAE10480387//	6-127	AF	N	C	
OAE10500623//	6-129	AM	N	C	
OAE10504917//	6-138	AR	N	C	
OAE10504933//	6-139	AW	N	C	
OAE10507778//	6-130	BQ	N	C	
OAE10507781/7	6-131	AQ	N	C	
OAE10518482//	6-128	A V	N	C	
OAE10526940//	6-133	BM	N	C	
OAE10527981//	6-132	AX	N	C	
OAE10531087/7	6-140	AQ	N	C	
OAE10538909//	6-147	AW	N	C	
OAE10538912/7	6-148	AW	N	C	
OAE10543486/7	6-134	AY	N	C	
OAE20490445//	6-142	AC	N	C	
OAE20510574//	6-137	AC	N	C	
OAE20512336//	6-145	AM	N	C	
OAE20521194//	6-141	A A	N	C	
0 AE20527978/7	6-144	AG	N	C	
OAE22830579//	6-136	A C	N	C	
0 AE22831688//	6-143	AR	N	C	
OAE23594924//	6-146	AC	N	C	
OAE30109066//	6 - 4	AE	N	B	
	6-5	AE	N	B	
"	6-14	AE	N	B	
"	6-15	AE	N	B	
OAE30116729/1	6-68	AK	N	C	
"	6-69	AK	N	C	
OAE30120456//	6-58	AC	N	C	
"	6-60	AC	N	C	
OAE30120524/1	6. 47	AC	N	C	
"	6-56	AC	N	C	

SHARP

Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

[^0]: 1. Bank select, $\mathrm{MAO} \sim \mathrm{MA} 3$, is effective for memory area COOOH -FFFFH.
 2. Bank select, MOO~MA2, is effective for memory area 2000 H -3F FFH
[^1]: - 29 -

[^2]: Does not trace $\pm 1 \mu 5$.

