Features

Trimble

How to Use the Instrument

Setting Up the Instrument

1. Set up the tripod at a height appropriate for your use. Note: Make sure the tripod is stable and the tripod head is relatively level.
2. Attach the instrument to the tripod.
3. Level the instrument using the circular level as a reference
4. Level the instrument using the circular level as a refere'
5. Focus the telescope crosshairs by turning the crosshairs' 4. Focus the telescop
focusing ring.

Aligning the Instrument

1. Align the telescope to the grade rod using the sighting guides
2. Turn the focusing knob to bring the grade rod into sharp focus. Precisely sight the center of the grade rod in the telescope crosshairs using the horizontal tangent knob.
3. Check for parallax shift.

Note: No parallax exists if the crosshairs and the grade rod graduations remain in coincidence even when you change your viewing angle (move your eye up/down and left/right in front of the eyepiece).
Note: After the bubble in the circular level has been centered, the compensator corrects residual line-of-sight inclinations. The compensator does not, however, eliminate any tilts resulting from inadequate adjustment of the circular level or line of sight. These must be checked regularly (see Adjusting the Instrument for more information).

Taking Measurements

Determining the Difference in Elevation

1. Set up the instrument half way between two points (A and B).
2. Take a reading at point $\mathrm{A}\left(\mathrm{a}_{1}=1.726 \mathrm{~m}\right)$ and another one at point $B\left(b_{1}=1.259 \mathrm{~m}\right)$.
Note: A slight deviation of the line of sight from horizontal will not cause any measuring error as long as the instrument is set up approximately half way between the two points.
3. Subtract b_{1} from a_{1} to get the difference between the points $(\mathrm{d}=0.467 \mathrm{~m})$.
Note: Point B is 0.467 higher than point A because the difference is a positive number. If point B were lower than point A, the number would be negative.
4. Focusing knob
5. Sighting guide
6. Crosshair' adjustment screws (under cover)
7. Crosshairs' focusing ring
8. Eyepiece
9. Horizontal rotation ring and angle index
10. Leveling screws
11. Base plate
12. Circular level adjustment screws
13. Horizontal tangent knob
14. Circular level
15. Mirror for reading circular level
16. Objective

Maintenance and Care

- As with all precision instruments, the auto level should be transported and stored in its carrying case.
When carrying the instrument mounted to a tripod, be sure to carry it vertically rather than over your shoulder
- Whenever possible, store the instrument in a dry, shady area
- Wipe the instrument clean with a cloth. Clean the objective and eyepieces with special care using a damp tissue or soft, clean, lint-free cotton cloth.
- When working in wet weather, wipe off the instrument and carrying case in the field and let them dry completely indoors with the case open.

Safety Information

Included in this manual are Cautions and Notes. Each of these words represents a level of danger or concern. A Caution these words represents a level of danger or concern. A Cau
indicates a hazard or unsafe practice that could result in indicates a hazard or unsafe practice that could result in
minor injury or property damage. A Note indicates important information unrelated to safety.

Adjusting the Instrument

Taking an Angle Measuremen

1. Set up the tripod so that it is over a hub

Note: Make sure the tripod is stable and the tripod head is relatively level.
2. Hang a plumb-bob from the plumb-bob hook on the tripod Note: Make sure the plumb-bob is over the hub.
3. Attach the instrument to the tripod.
4. Center the plumb-bob over the pin in the hub by varying the length of the tripod legs or by shifting the instrument on the tripod.
5. Accurately align the telescope to the first target using the sighting guides and a horizontal tangent knob.
Note: The first target is a known point.
6. Set the horizontal rotation ring to 0 .
7. Accurately align the telescope to the second target and read the angle.

lar Level

1. Set up the instrument.
2. Center the bubble of the circular level using the leveling screws.
3. Turn the telescope 180° (200 gon).

4 Check to see whether the bubble is still centered in the circle. If it isn't, eliminate one half of the error with the leveling screws and the other half with the two adjustment screws fo the circular level.
5. Repeat the process until the bubble remains centered when the instrument is turned

Line of Sight

1. Set up the instrument half way between two points (A and B) that are 30 to 40 m apart.
2. Take a reading at point $\mathrm{A}\left(\mathrm{a}_{1}=2.423 \mathrm{~m}\right)$ and another one at point $B\left(b_{1}=0.936 \mathrm{~m}\right)$.
3. Subtract b_{1} from a_{1} to get the difference between the points $(d=+1.487 \mathrm{~m})$. Make sure you note whether value d is a positive or negative number.
Note: Because the distance from the instrument to each of the points is equal, the difference in elevation is correct even if the line of sight is out of adjustment.
4. Move the instrument and reset it up so that it is about 2 m behind point B .
5. Take another reading at point $B\left(b_{2}=1.462 \mathrm{~m}\right)$
6. Add b_{2} to d to get value $c(1.462+1.487=2.949 \mathrm{~m})$
7. Take another reading at point $\mathrm{A}\left(\mathrm{a}_{2}\right)$.
8. Compare value $c(2.949)$ to a_{2}. If the line of sight is correct both numbers should be the same. If they differ by more than 4 mm , reset the grade rod on point A and turn the crosshairs value $c(2949)$ is centered in the crosshairs
value $\mathrm{c}(2.949)$ is centered in the crosshairs.
Caution: The upper and lower adjustment screws are counter-screws and must not be set too tightly.
9. Repeat the process until the line of sight is correct (c and a_{2} are the same).

Service Request

To locate your local dealer or authorized Trimble Service Center outside the U.S.A for service, accessories, or spare parts, contact one of our offices listed below.

North-Latin America	Asia-Pacific
Trimble / Spectra Precision Division 8261 State Route 235	Trimble Navigation Singapore PTE Ltd 80 Marine Parade Road, \#22-06
Dayton, Ohio 45424-6383	Parkway Parade
U.S.A.	Singapore, 449269
(888) 527-3771	+65 63482212 Phone
(Toll Free in U.S.A.)	+65 63482232 Fax
+1-937-203-4419 Phone	China
+1-937-482-0030 Fax	Trimble Beijing
www.trimble.com/spectra	Room 2805-07, Tengda Plaza,
Europe	No. 168 Xiwai Street
Trimble Kaiserslautern GmbH	Haidian District
Am Sportplatz 5	Beijing, China 100044
67661 Kaiserslautern	+86108857 7575 Phone
GERMANY	+86 1088577161 Fax
Tel +49-(0)6301-71 1414	www.trimble.com.cn
Fax +49-06301-32213	
Africa \& Middle East	
Trimble Export Middle-East	
p.O. Box 17760	
JAFZ View, Dubai	
UAE	
+971-4-881-3005 Phone	
+971-4-881-3007 Fax	

- 12

```
Notice to Our European Union Customers
For product recycling instructions and more information,
please go to: www.timble.com/environmentsummary.
MRyyling in Europe
associat,O or 
MTMmbe Europe BV Lovitics
M Meerheide 45 (, mL
```


Trimble

Trimble / Spectra Precision Divisio 8261 State Route 235
Dayton, Ohio $45424-6383$
Dayton,
www.trimble.com/spectra
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

