


# SUPERSERVER 6015B-T+ SUPERSERVER 6015B-8+



# **USER'S MANUAL**

1.0a

The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

SUPER MICRO COMPUTER reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software, if any, and documentation may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced to any medium or machine without prior written consent.

IN NO EVENT WILL SUPER MICRO COMPUTER BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPER MICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.

Manual Revision 1.0a

Release Date: July 25, 2007

Unless you request and receive written permission from SUPER MICRO COMPUTER, you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2007 by SUPER MICRO COMPUTER INC. All rights reserved.

Printed in the United States of America

# **Preface**

### **About This Manual**

This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the SuperServer 6015B-T+/6015B-8+. Installation and maintenance should be performed by experienced technicians only.

The SuperServer 6015B-T+/6015B-8+ is a high-end 1U rackmount server based on the SC815TQ-700/SC815S-700 1U rackmount server chassis and the X7DBR-i+/X7DBR-8+ serverboard, which supports single or dual Intel® Xeon 5100/5000 series processors at a Front Side (system) Bus speed of 1333 MHz and up to 64 GB of ECC DDR2-667/533 FBD SDRAM memory.

# **Manual Organization**

### **Chapter 1: Introduction**

The first chapter provides a checklist of the main components included with the server system and describes the main features of the SUPER X7DBR-i+/X7DBR-8+ serverboard and the SC815TQ-700/SC815S-700 chassis, which make up the SuperServer 6015B-T+/6015B-8+.

#### **Chapter 2: Server Installation**

This chapter describes the steps necessary to install the SuperServer 6015B-T+/6015B-8+ into a rack and check out the server configuration prior to powering up the system. If your server was ordered without processor and memory components, this chapter will refer you to the appropriate sections of the manual for their installation.

#### Chapter 3: System Interface

Refer here for details on the system interface, which includes the functions and information provided by the control panel on the chassis as well as other LEDs located throughout the system.

### **Chapter 4: System Safety**

You should thoroughly familiarize yourself with this chapter for a general overview of safety precautions that should be followed when installing and servicing the SuperServer 6015B-T+/6015B-8+.

#### **Chapter 5: Advanced Serverboard Setup**

Chapter 5 provides detailed information on the X7DBR-i+/X7DBR-8+ serverboard, including the locations and functions of connectors, headers and jumpers. Refer to this chapter when adding or removing processors or main memory and when reconfiguring the serverboard.

### **Chapter 6: Advanced Chassis Setup**

Refer to Chapter 6 for detailed information on the 1U SC815TQ-700/SC815S-700 rackmount server chassis. You should follow the procedures given in this chapter when installing, removing or reconfiguring SATA/SCSI or peripheral drives and when replacing the system power supply unit and cooling fans.

### Chapter 7: BIOS

The BIOS chapter includes an introduction to BIOS and provides detailed information on running the CMOS Setup Utility.

Appendix A: BIOS POST Messages

Appendix B: BIOS POST Codes

**Appendix C: Software Installation** 

Appendix D: System Specifications

# Notes

# **Table of Contents**

| Pre  | face                                    |     |
|------|-----------------------------------------|-----|
| Abou | ıt This Manual                          | iii |
| Man  | ual Organization                        | iii |
| Cha  | pter 1: Introduction                    |     |
| 1-1  | Overview                                | 1-1 |
| 1-2  | Serverboard Features                    | 1-2 |
| 1-3  | Server Chassis Features                 | 1-4 |
| 1-4  | Contacting Super Micro                  | 1-6 |
| Cha  | apter 2: Server Installation            |     |
| 2-1  | Overview                                | 2-1 |
| 2-2  | Unpacking the System                    | 2-1 |
| 2-3  | Preparing for Setup                     | 2-1 |
|      | Choosing a Setup Location               | 2-2 |
|      | Rack Precautions                        | 2-2 |
|      | Server Precautions                      | 2-2 |
|      | Rack Mounting Considerations            | 2-3 |
| 2-4  | Installing the System into a Rack       | 2-4 |
|      | Identifying the Sections of the Rails   | 2-4 |
|      | Installing the Rack Rails               | 2-4 |
|      | Installing the Chassis Rails            | 2-5 |
|      | Installing the Server into the Rack     | 2-6 |
|      | Installing the Server into a Telco Rack | 2-7 |
| 2-5  | Checking the Serverboard Setup          | 2-8 |
| 2-6  | Checking the Drive Bay Setup            | 2-9 |
| Cha  | apter 3: System Interface               |     |
| 3-1  | Overview                                | 3-1 |
| 3-2  | Control Panel Buttons                   | 3-1 |
|      | Reset                                   | 3-1 |
|      | Power                                   | 3-1 |
| 3-3  | Control Panel LEDs                      | 3-2 |
|      | Overheat/Fan Fail                       | 3-2 |
|      | NIC2                                    | 3-2 |
|      | NIC1                                    | 3-2 |
|      | HDD                                     | 3-2 |

|                          | Power                               | . 3-3 |  |  |  |  |
|--------------------------|-------------------------------------|-------|--|--|--|--|
| 3-4                      | Drive Carrier LEDs                  | . 3-3 |  |  |  |  |
| Chapter 4: System Safety |                                     |       |  |  |  |  |
| 4-1                      | Electrical Safety Precautions       | . 4-1 |  |  |  |  |
| 4-2                      | General Safety Precautions          | . 4-2 |  |  |  |  |
| 4-3                      | ESD Precautions                     | . 4-3 |  |  |  |  |
| 4-4                      | Operating Precautions               | . 4-4 |  |  |  |  |
| Cha                      | pter 5: Advanced Serverboard Setup  |       |  |  |  |  |
| 5-1                      | Handling the Serverboard            | . 5-1 |  |  |  |  |
| 5-2                      | Processor and Heatsink Installation | . 5-2 |  |  |  |  |
| 5-3                      | Connecting Cables                   | . 5-5 |  |  |  |  |
|                          | Connecting Data Cables              | . 5-5 |  |  |  |  |
|                          | Connecting Power Cables             | . 5-5 |  |  |  |  |
|                          | Connecting the Control Panel        | . 5-6 |  |  |  |  |
| 5-4                      | I/O Ports                           | . 5-7 |  |  |  |  |
| 5-5                      | Installing Memory                   | . 5-7 |  |  |  |  |
| 5-6                      | Adding PCI Cards                    | . 5-9 |  |  |  |  |
| 5-7                      | Serverboard Details                 | 5-10  |  |  |  |  |
|                          | X7DBR-i+/X7DBR-8+ Layout            | 5-10  |  |  |  |  |
|                          | X7DBR-i+/X7DBR-8+ Quick Reference   | 5-11  |  |  |  |  |
| 5-8                      | Connector Definitions               | 5-12  |  |  |  |  |
|                          | Primary ATX Power Connector         | 5-12  |  |  |  |  |
|                          | Auxiliary Power Connector           | 5-12  |  |  |  |  |
|                          | Processor Power Connector           | 5-12  |  |  |  |  |
|                          | NMI Button                          | 5-12  |  |  |  |  |
|                          | Power LED                           | 5-12  |  |  |  |  |
|                          | HDD LED                             | 5-13  |  |  |  |  |
|                          | NIC1 LED                            | 5-13  |  |  |  |  |
|                          | NIC2 LED                            | 5-13  |  |  |  |  |
|                          | Overheat/Fan Fail LED               | 5-13  |  |  |  |  |
|                          | Power Fail LED                      | 5-13  |  |  |  |  |
|                          | Reset Button                        | 5-14  |  |  |  |  |
|                          | Power Button                        | 5-14  |  |  |  |  |
|                          | Universal Serial Bus                | 5-14  |  |  |  |  |
|                          | Chassis Intrusion                   | 5-14  |  |  |  |  |
|                          | Serial Ports                        | 5-15  |  |  |  |  |
|                          | Power Fail Header                   | 5-15  |  |  |  |  |
|                          | Fan Headers                         | 5-15  |  |  |  |  |

|      | Extra USB Headers                            | 5-16  |
|------|----------------------------------------------|-------|
|      | Power LED/Speaker                            | 5-16  |
|      | ATX PS/2 Keyboard & Mouse Ports              | 5-16  |
|      | Overheat LED                                 | 5-16  |
|      | Wake-On-LAN                                  | 5-17  |
|      | Wake-On-Ring                                 | 5-17  |
|      | SMB                                          | 5-17  |
|      | SMBUS_PS Power                               | 5-17  |
|      | Alarm Reset                                  | 5-18  |
|      | Unit Identification Headers                  | 5-18  |
|      | Compact Flash Card Power Connector           | 5-18  |
|      | SGPIO                                        | 5-18  |
| 5-9  | Jumper Settings                              | 5-19  |
|      | Explanation of Jumpers                       | 5-19  |
|      | CMOS Clear                                   | 5-19  |
|      | JLAN Enable/Disable                          | 5-20  |
|      | Watch Dog Enable/Disable                     | 5-20  |
|      | 3rd Power Supply Fail Detect Enable/Disable  | 5-20  |
|      | VGA Enable/Disable                           | 5-21  |
|      | SCSI Controller Enable/Disable               | 5-21  |
|      | SCSI Termination Enable/Disable              | 5-21  |
|      | Compact Flash Master/Slave Select            | 5-22  |
|      | SMBUS to PCI Enable/Disable                  | 5-22  |
| 5-10 | Onboard Indicators                           | 5-23  |
|      | JLAN1/JLAN2 LEDs                             | 5-23  |
|      | SCSI Activity LED Indicators                 | 5-23  |
| 5-11 | Floppy, IDE. SATA and SCSI Drive Connections | 5-24  |
|      | Floppy Drive Connector                       | 5-24  |
|      | IDE Drive Connectors                         | 5-25  |
|      | SATA Ports                                   | 5-26  |
|      | Ultra320 SCSI Ports                          | 5-27  |
| Cha  | pter 6: Advanced Chassis Setup               |       |
| 6-1  | Static-Sensitive Devices                     | . 6-1 |
| 6-2  | Control Panel                                | . 6-2 |
| 6-3  | System Fans                                  | . 6-3 |
|      | System Fan Failure                           |       |
|      | Replacing System Cooling Fans                |       |
| 6-4  | Drive Bay Installation/Removal               | 6-4   |

|     | Removing the Front Bezel              | 6-4  |
|-----|---------------------------------------|------|
|     | Accessing the Drive Bays              | 6-5  |
|     | SATA/SCSI Drive Installation          | 6-6  |
|     | DVD-ROM and Floppy Drive Installation | 6-8  |
| 6-5 | Power Supply                          | 6-9  |
|     | Power Supply Failure                  | 6-9  |
|     | Removing/Replacing the Power Supply   | 6-9  |
| Cha | apter 7: BIOS                         |      |
| 7-1 | Introduction                          | 7-1  |
| 7-2 | Running Setup                         | 7-2  |
| 7-3 | Main BIOS Setup                       | 7-2  |
| 7-4 | Advanced Setup                        | 7-7  |
| 7-5 | Security                              | 7-24 |
| 7-6 | Boot                                  | 7-25 |
| 7-7 | Exit                                  | 7-26 |

# Appendices:

Appendix A: BIOS POST Messages
Appendix B: BIOS POST Codes
Appendix C: Software Installation
Appendix D: System Specifications

# Notes

# **Chapter 1**

## Introduction

#### 1-1 Overview

The SuperServer 6015B-T+/6015B-8+ is a high-end dual processor, 1U rack-mount server featuring some of the most advanced technology currently available. The 6015B-T+/6015B-8+ is comprised of two main subsystems: the SC815TQ-700/SC815S-700 chassis and the X7DBR-i+/X7DBR-8+ Xeon dual processor serverboard. Please refer to our web site for information on operating systems that have been certified for use with the 6015B-T+/6015B-8+. (www.supermicro.com)

In addition to the mainboard and chassis, various hardware components may have been included with your SuperServer 6015B-T+/6015B-8+, as listed below:

- One (1) slim DVD-ROM drive [DVM-PNSC-824(B)]
- Two (2) riser cards (CSE-RR1U-X and CSE-RR1U-EL)
- Four (4) 40-mm heavy-duty counter-rotating fans (FAN-0086L)
- One (1) air shroud (MCP-310-00002-01)
- SATA Accessories (6015B-T+ only)
  - One (1) SATA backplane (CSE-SAS-813TQ)
  - Four (4) SATA data cables (CBL-0061L)
  - One (1) SATA LED cable (CBL-0157L)
  - Four (4) SATA drive carriers [MCP-220-00001-03(01)]
- SCSI Accessories (6015B-8+ only)
  - One (1) SCSI SAF-TE backplane (CSE-SCA-813S)
  - One (1) U320 SCSI data cable (CBL-0037L-U320)
  - Four (4) SCSI drive carriers [MCP-220-00001-03(01)]
- Rackmount hardware with screws (CSE-PT51L)
- One (1) CD containing drivers and utilities

- Two (2) passive 1U CPU heatsinks (SNK-P0017)
- SuperServer 6015B-T+/6015B-8+ User's Manual

Note: the 6015B-T+/6015B-8+ comes in silver and black (no beige). A "B" at the end of a part number indicates the item is available in black, a "V" indicates silver.

#### 1-2 Serverboard Features

At the heart of the SuperServer 6015B-T+/6015B-8+ lies the X7DBR-i+/X7DBR-8+ a dual Xeon processor serverboard based on the Intel 5000P chipset and designed to provide maximum performance. Below are the main features of the X7DBR-i+/X7DBR-8+. See Figure 1-1 for a system block diagram of the chipset.

#### **Processors**

The X7DBR-i+/X7DBR-8+ supports single or dual dual-core Intel Xeon 5000/5100 Sequence processors at a 1333 MHz FSB in LGA 771-pin sockets. Please refer to our web site for a complete listing of supported processors.

### Memory

The X7DBR-i+/X7DBR-8+ has sixteen 240-pin DIMM slots that can support up to 64 GB of ECC DDR2-667/533 FBD (Fully Buffered Data) SDRAM. The dual-channel memory bus requires memory modules to be installed two at a time.

#### Serial ATA

An on-chip (ESB2) SATA controller is integrated into the X7DBR-i+/X7DBR-8+ to provide a six-port, 3 Gb/sec Serial ATA subsystem, which is RAID 0, 1 and 10 supported. The SATA drives are hot-swappable units.

**Note:** The operating system you use must have RAID support to enable the hotswap capability and RAID function of the Serial ATA drives.

### Onboard SCSI (6015B-8+ only)

An onboard Adaptec AIC-7902 dual-channel SCSI controller in integrated into the X7DBR-8+, which supports 80-pin SCA Ultra320 SCSI hard drives. The SCSI drives are connected to an SCA backplane that provides power, bus termination and configuration settings. The SCSI drives are hot-swappable units.

**Note:** The operating system you use must have RAID support to enable the hotswap capability and RAID function of the SCSI drives.

### **PCI Expansion Slots**

Two riser cards have been included with the server to support server PCI expansion. The CSE-RR1U-X riser fits into the 133 MHz PCI-X slot to support a standard size (full-height, full-length) PCI-X add-on card (any speed). The CSE-RR1U-EL fits into the PCI-E slot to support one standard size PCI-E add-on card. You may only use one riser card at a time.

### **ATI Graphics Controller**

The X7DBR-i+/X7DBR-8+ features an integrated ATI video controller based on the ES1000 graphics chip. The ES1000 was designed specifically for servers, featuring low power consumption, high reliability and superior longevity.

#### **Onboard Controllers/Ports**

The X7DBR-i+/X7DBR-8+ provides one floppy drive controller and two onboard IDE controllers, which support up to four hard drives or ATAPI devices. Backpanel I/O ports include one COM port, two USB ports, PS/2 mouse and keyboard ports and a video (monitor) port. An Intel 82563EB Ethernet controller is also included to support two Gb LAN ports.

#### Other Features

Other onboard features are included to promote system health. These include various voltage monitors, two CPU temperature sensors, four fan speed sensors, a chassis intrusion header, auto-switching voltage regulators, chassis and CPU overheat sensors, virus protection and BIOS rescue.

#### 1-3 Server Chassis Features

The SC815TQ-700/SC815S-700 is one of Supermicro's third-generation 1U chassis and features four hot-swap drive bays for SATA/SCSI drives, a slim DVD-ROM drive, a slim 3.5" floppy drive and a revolutionary cooling design that can keep today's most powerful processors running well below their temperature thresholds. The following is a general outline of the main features of the SC815TQ-700/SC815S-700 chassis.

### **System Power**

The SC815TQ-700/SC815S-700 chassis includes a single 700W cold-swap power supply.

### Serial ATA Subsystem (6015B-T+)

For the 6015B-T+, the SC815TQ-700 chassis was designed to support four Serial ATA hard drives, which are hot-swappable units.

**Note:** The operating system you use must have RAID support to enable the hotswap capability of the Serial ATA drives.

# SCSI Subsystem (6015B-8+)

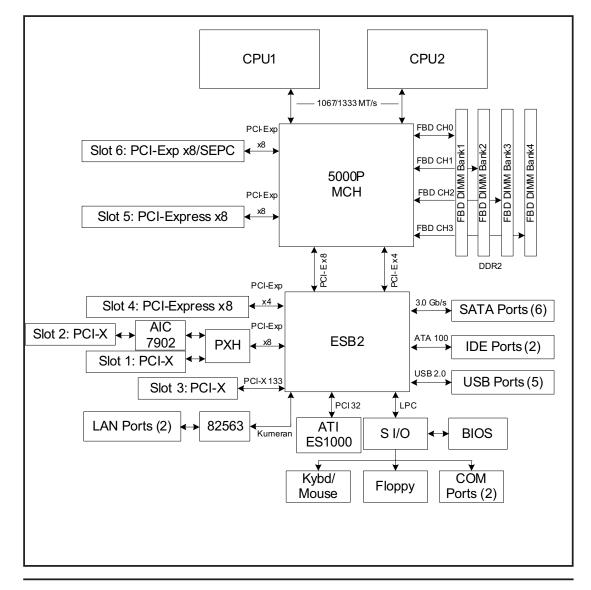
For the 6015B-8+, the SC815S-700 chassis was designed to support four SCSI hard drives, which are hot-swappable units.

**Note:** The operating system you use must have RAID support to enable the hotswap capability of the SCSI drives.

#### **Control Panel**

The SC815TQ-700/SC815S-700 control panel provides important system monitoring and control information. LEDs indicate power on, network activity, hard disk drive activity and system overheat conditions. Also present are a main power button and a system reset button.

### I/O Backplane


The SC815TQ-700/SC815S-700 is a 1U rackmount chassis. Its I/O backplane provides one full-height full-length and one low profile slot for PCI add-on cards, one COM port (the other is internal), one VGA port, two USB ports, PS/2 mouse and keyboard ports and two Ethernet (LAN) ports.

# **Cooling System**

The SC815TQ-700/SC815S-700 chassis' revolutionary cooling design has been optimized to provide sufficient cooling for dual Xeon configurations. The SC815TQ-700/SC815S-700 includes four heavy duty 40-mm counter-rotating blower fans located in the middle of the chassis. In the event of a fan failure, the ambient air temperature inside the chassis will rise and activate an overheat LED (fan speed is controlled by the system temperature).

Figure 1-1. Intel 5000P/ESB2 Chipset:
System Block Diagram

Note: This is a general block diagram. Please see Chapter 5 for details.



# 1-4 Contacting Super Micro

## Headquarters

Address: Super Micro Computer, Inc.

980 Rock Ave.

San Jose, CA 95131 U.S.A.

Tel: +1 (408) 503-8000 Fax: +1 (408) 503-8008

Email: marketing@supermicro.com (General Information)

support@supermicro.com (Technical Support)

Web Site: www.supermicro.com

**Europe** 

Address: Super Micro Computer B.V.

Het Sterrenbeeld 28, 5215 ML

's-Hertogenbosch, The Netherlands

Tel: +31 (0) 73-6400390 Fax: +31 (0) 73-6416525

Email: sales@supermicro.nl (General Information)

support@supermicro.nl (Technical Support) rma@supermicro.nl (Customer Support)

### Asia-Pacific

Address: Super Micro, Taiwan

4F, No. 232-1, Liancheng Rd.

Chung-Ho 235, Taipei, Taiwan, R.O.C.

Tel: +886-(2) 8226-3990 Fax: +886-(2) 8226-3991 Web Site: www.supermicro.com.tw

**Technical Support**:

Email: support@supermicro.com.tw
Tel: 886-2-8228-1366, ext.132 or 139

# **Chapter 2**

### Server Installation

## 2-1 Overview

This chapter provides a quick setup checklist to get your SuperServer 6015B-T+/6015B-8+ up and running. Following these steps in the order given should enable you to have the system operational within a minimum amount of time. This quick setup assumes that your SuperServer 6015B-T+/6015B-8+ system has come to you with the processors and memory preinstalled. If your system is not already fully integrated with a serverboard, processors, system memory etc., please turn to the chapter or section noted in each step for details on installing specific components.

# 2-2 Unpacking the System

You should inspect the box the SuperServer 6015B-T+/6015B-8+ was shipped in and note if it was damaged in any way. If the server itself shows damage you should file a damage claim with the carrier who delivered it.

Decide on a suitable location for the rack unit that will hold the SuperServer 6015B-T+/6015B-8+. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. You will also need it placed near a grounded power outlet. Read the Rack and Server Precautions in the next section.

# 2-3 Preparing for Setup

The box the SuperServer 6015B-T+/6015B-8+ was shipped in should include two sets of rail assemblies, two rail mounting brackets and the mounting screws you will need to install the system into the rack. Follow the steps in the order given to complete the installation process in a minimum amount of time. Please read this section in its entirety before you begin the installation procedure outlined in the sections that follow.

# **Choosing a Setup Location**

- Leave enough clearance in front of the rack to enable you to open the front door completely (~25 inches).
- Leave approximately 30 inches of clearance in the back of the rack to allow for sufficient airflow and ease in servicing.
- This product is for installation only in a Restricted Access Location (dedicated equipment rooms, service closets and the like).
- This product is not suitable for use with visual display work place devices according to §2 of the the German Ordinance for Work with Visual Display Units.



# **Warnings and Precautions!**



#### **Rack Precautions**

- Ensure that the leveling jacks on the bottom of the rack are fully extended to the floor with the full weight of the rack resting on them.
- In single rack installation, stabilizers should be attached to the rack.
- In multiple rack installations, the racks should be coupled together.
- Always make sure the rack is stable before extending a component from the rack.
- You should extend only one component at a time extending two or more simultaneously may cause the rack to become unstable.

#### **Server Precautions**

- Review the electrical and general safety precautions in Chapter 4.
- Determine the placement of each component in the rack *before* you install the rails.
- Install the heaviest server components on the bottom of the rack first, and then work up.
- Use a regulating uninterruptible power supply (UPS) to protect the server from power surges, voltage spikes and to keep your system operating in case of a power failure.
- Allow the hot plug SATA/SCSI drives and power supply units to cool before touching them.
- Always keep the rack's front door and all panels and components on the servers closed when not servicing to maintain proper cooling.

# **Rack Mounting Considerations**

### **Ambient Operating Temperature**

If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the ambient temperature of the room. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (Tmra).

#### **Reduced Airflow**

Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised.

### **Mechanical Loading**

Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading.

### **Circuit Overloading**

Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

#### **Reliable Ground**

A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.).

# 2-4 Installing the System into a Rack

This section provides information on installing the SuperServer 6015B-T+/6015B-8+ into a rack unit with the rack rails provided. If the 6015B-T+/6015B-8+ has already been mounted into a rack, you can skip ahead to Sections 2-5 and 2-6. There are a variety of rack units on the market, which may mean the assembly procedure will differ slightly. You should also refer to the installation instructions that came with the rack unit you are using.

# Identifying the Sections of the Rails

You should have received a rack mounting kit with the SuperServer 6015B-T+/6015B-8+. The kit includes two sets of chassis rails (four pieces total, two of which are already installed on the chassis) and two sets of rack rails (four pieces total). Figure 2-1 displays the two right-side chassis rails and the two right-side rack rails. Note that two of the four chassis rails (Chassis Rail 1) are already attached to the chassis.

# Installing the Rack Rails

Begin by joining one set of rack rails corresponding to either the left or the right side of the rack. Do this by aligning the studs of one rail with the holes of the other rail. Push the studs into the grooved holes and then push the rail to slide the studs to the end of the groove. Repeat this with the rack rails used for the other side. Next, determine where you want to place the SuperServer 6015B-T+/6015B-8+ in the rack. (See Rack and Server Precautions in Section 2-3.) Position the assembled rack rails at the desired location in the rack. Screw the assembly securely to the rack using the brackets provided. Attach the other assembly to the other side of the rack, making sure both are at the exact same height and with the rail guides facing inward.

Locking Tabs: Both of the two chassis rails on each side have a locking tab (four total), which serves two functions. The first is to lock the server into place when installed and pushed fully into the rack, which is its normal operating position. Secondly, these tabs also lock the server in place when extended from the rack. This prevents the server from coming completely out of the rack when you pull it out for servicing. The two sets of locking tabs mean there are two locked positions when the chassis is extended from the rack, allowing easy access when servicing the system. Note that on one side, you push the locking tab up to release it and on the other side you push it down to release.

# **Installing the Chassis Rails**

Two of the chassis rails (Chassis Rail 1) should have already been preattached - one to each side of the chassis. Attach the second set of chassis rails (Chassis Rail 2) directly to the chassis with the screws provided. Chassis Rail 2 should be positioned just behind Chassis Rail 1 (see Figure 2-2). Do this for both sides of the chassis.

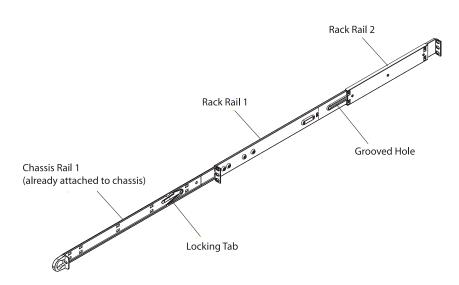
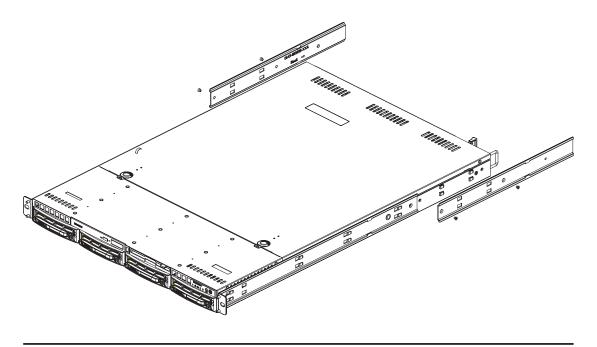




Figure 2-1. Identifying the Sections of the Rails





# Installing the Server into the Rack

You should now have rails attached to both the chassis and the rack unit. The next step is to install the server into the rack. Do this by lining up the rear of the chassis rails with the front of the rack rails. Slide the chassis rails into the rack rails, keeping the pressure even on both sides (you may have to depress the locking tabs when inserting). See Figure 2-3.

When the server has been pushed completely into the rack, you should hear the locking tabs "click".

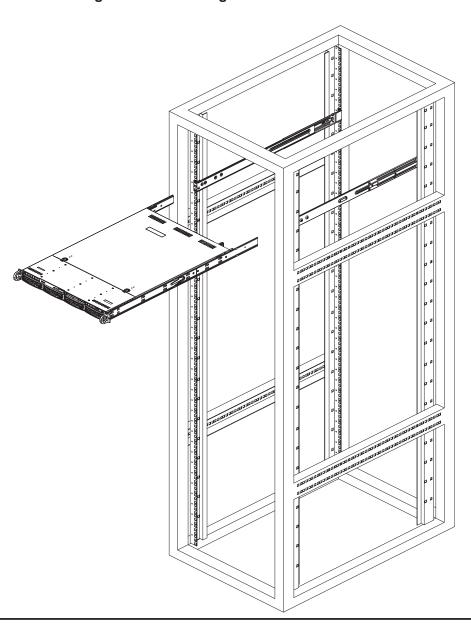



Figure 2-3. Installing the Server into a Rack

# Installing the Server into a Telco Rack

To install the 6015B-T+/6015B-8+ into a Telco type rack, use two L-shaped brackets on either side of the chassis (four total). First, determine how far the server will extend out the front of the rack. Larger chassis should be positioned to balance the weight between front and back. If a bezel is included on your server, remove it. Then attach the two front brackets to each side of the chassis, then the two rear brackets positioned with just enough space to accommodate the width of the rack. Finish by sliding the chassis into the rack and tightening the brackets to the rack.

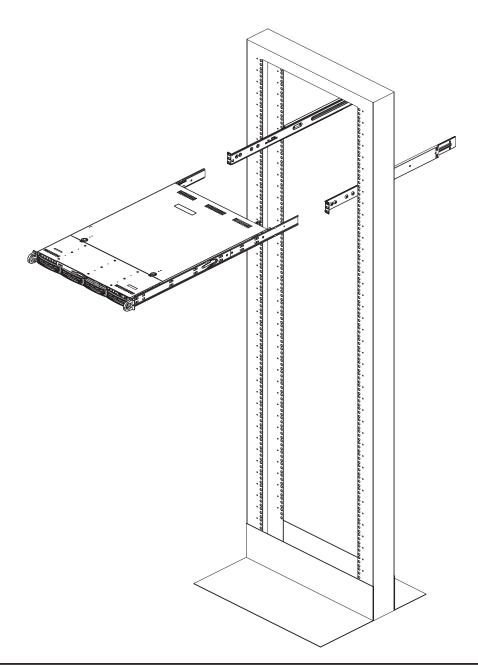



Figure 2-4. Installing the Server into a Telco Rack

# 2-5 Checking the Serverboard Setup

After you install the 6015B-T+/6015B-8+ in the rack, you will need to open the unit to make sure the serverboard is properly installed and all the connections have been made.

#### 1. Accessing the inside of the 6015B-T+/6015B-8+ (see Figure 2-5)

First, grasp the two handles on either side and pull the unit straight out until it locks (you will hear a "click"). Next, depress the two buttons on the top of the chassis to release the top cover. There is a large rectangular recess in the middle front of the top cover to help you push the cover away from you until it stops. You can then lift the top cover from the chassis to gain full access to the inside of the server.

#### 2. Check the CPUs (processors)

You should have one or two processors already installed into the serverboard. Each processor needs its own heatsink. See Chapter 5 for instructions on processor and heatsink installation.

#### 3. CPU Speed

The CPU speed should automatically be detected so you will not need to change any jumpers or settings in the BIOS Setup utility.

#### 4. Check the system memory

Your 6015B-T+/6015B-8+ server system may have come with system memory already installed. Make sure all DIMMs are fully seated in their slots. For details on adding system memory, refer to Chapter 5.

#### 5. Installing add-on cards

If desired, you can install add-on cards to the system. See Chapter 5 for details on installing PCI add-on cards.

#### 6. Check all cable connections and airflow

Make sure all power and data cables are properly connected and not blocking the chassis airflow. See Chapter 5 for details on cable connections.

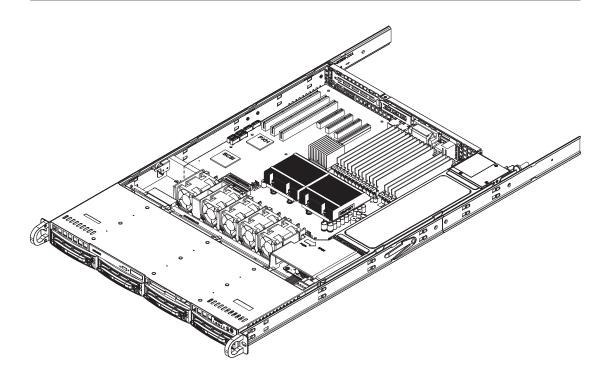



Figure 2-5. Accessing the Inside of the Syatem (with optional front bezel shown)

# 2-6 Checking the Drive Bay Setup

Next, you should check to make sure the peripheral drives and the SATA/SCSI drives have been properly installed and all connections have been made.

#### 1. Accessing the drive bays

All drives are accessable from the front of the server. For servicing the DVD-ROM and floppy drives, you will need to remove the top chassis cover. The SATA/SCSI drives can be installed and removed from the front of the chassis without removing the top chassis cover or powering down the system.

#### 2. DVD-ROM and floppy disk drives

A slim DVD-ROM and a floppy drive should be preinstalled in your server. Refer to Chapter 6 if you need to reinstall a DVD-ROM and/or floppy disk drive to the system.

#### 3. Check the SATA/SCSI disk drives

Depending upon your system's configuration, your system may have one or more drives already installed. If you need to install SATA/SCSI drives, please refer to Chapter 6.

#### 4. Check the airflow

Airflow is provided by four heavy duty 40-mm blower fans. The system component layout was carefully designed to direct the airflow to the components that generate the most heat. Note that all power and data cables have been routed in such a way that they do not block the airflow generated by the fans.

### 5. Supplying power to the system

The last thing you must do is to provide power to the system. Plug the power cord from the power supply module into a high-quality power strip that offers protection from electrical noise and power surges. It is recommended that you use an uninterruptible power supply (UPS). Finish by depressing the power button on the front of the chassis to start the system.

# **Chapter 3**

# **System Interface**

# 3-1 Overview

There are several LEDs on the control panel as well as others on the SATA/SCSI drive carriers to keep you constantly informed of the overall status of the system as well as the activity and health of specific components. There are also two buttons on the chassis control panel and an on/off switch on the power supply. This chapter explains the meanings of all LED indicators and the appropriate response you may need to take.

## 3-2 Control Panel Buttons

There are two push-buttons located on the front of the chassis. These are (in order from left to right) a reset button and a power on/off button.



Reset: Use the reset button to reboot the system.



• **Power:** The main power button is used to apply or remove power from the power supply to the server system. Turning off system power with this button removes the main power but keeps standby power supplied to the system.

### 3-3 Control Panel LEDs

The control panel located on the front of the SC815TQ-700/SC815S-700 chassis has five LEDs. These LEDs provide you with critical information related to different parts of the system. This section explains what each LED indicates when illuminated and any corrective action you may need to take.



• Overheat/Fan Fail: When this LED flashes it indicates a fan failure. When on continuously (on and not flashing) it indicates an overheat condition, which may be caused by cables obstructing the airflow in the system or the ambient room temperature being too warm. Check the routing of the cables and make sure all fans are present and operating normally. You should also check to make sure that the chassis covers are installed. Finally, verify that the heatsinks are installed properly (see Chapter 5). This LED will remain flashing or on as long as the overheat condition exists.



NIC2: Indicates network activity on GLAN2 when flashing .



NIC1: Indicates network activity on GLAN1 when flashing.



HDD: Indicates IDE channel activity. On the SuperServer 6015B-T+/6015B-8+ this light indicates SATA/SCSI and/or DVD-ROM drive activity when flashing.



• **Power:** Indicates power is being supplied to the system's power supply units. This LED should normally be illuminated when the system is operating.

### 3-4 Drive Carrier LEDs

### SATA Drives (6015B-T+)

- **Green:** Each Serial ATA drive carrier has a green LED. When illuminated, this green LED (on the front of the SATA drive carrier) indicates drive activity. A connection to the SATA backplane enables this LED to blink on and off when that particular drive is being accessed. Please refer to Chapter 6 for instructions on replacing failed SATA drives.
- Red: The red LED to indicate an SATA drive failure. If one of the SATA drives fail, you should be notified by your system management software. Please refer to Chapter 6 for instructions on replacing failed SATA drives.

### **SCSI Drives (6015B-8+)**

Each SCSI drive carrier has two LEDs.

- **Green:** When illuminated, the green LED on the front of the SCSI drive carrier indicates drive activity. A connection to the SCSI SCA backplane enables this LED to blink on and off when that particular drive is being accessed.
- Red: The SAF-TE compliant backplane activates the red LED to indicate a
  drive failure. If one of the SCSI drives fail, you should be notified by your system
  management software. Please refer to Chapter 6 for instructions on replacing failed
  SCSI drives.

# Notes

# **Chapter 4**

# **System Safety**

# 4-1 Electrical Safety Precautions



Basic electrical safety precautions should be followed to protect yourself from harm and the SuperServer 6015B-T+/6015B-8+ from damage:

- Be aware of the locations of the power on/off switch on the chassis as well as the room's emergency power-off switch, disconnection switch or electrical outlet. If an electrical accident occurs, you can then quickly remove power from the system.
- Do not work alone when working with high voltage components.
- Power should always be disconnected from the system when removing or installing main system components, such as the serverboard, memory modules and the DVD-ROM and floppy drives (not necessary for SATA/SCSI drives). When disconnecting power, you should first power down the system with the operating system and then unplug the power cords from all the power supply modules in the system.
- When working around exposed electrical circuits, another person who is familiar with the power-off controls should be nearby to switch off the power if necessary.
- Use only one hand when working with powered-on electrical equipment. This
  is to avoid making a complete circuit, which will cause electrical shock.
  Use extreme caution when using metal tools, which can easily damage any
  electrical components or circuit boards they come into contact with.
- Do not use mats designed to decrease electrostatic discharge as protection from electrical shock. Instead, use rubber mats that have been specifically designed as electrical insulators.
- The power supply power cord must include a grounding plug and must be plugged into grounded electrical outlets.

- Serverboard Battery: CAUTION There is a danger of explosion if the onboard battery is installed upside down, which will reverse its polarities (see Figure 4-1). This battery must be replaced only with the same or an equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.
- DVD-ROM Laser: CAUTION this server may have come equipped with a DVD-ROM drive. To prevent direct exposure to the laser beam and hazardous radiation exposure, do not open the enclosure or use the unit in any unconventional way.
- Mainboard replaceable soldered-in fuses: Self-resetting PTC (Positive Temperature Coefficient) fuses on the mainboard must be replaced by trained service technicians only. The new fuse must be the same or equivalent as the one replaced. Contact technical support for details and support.

# 4-2 General Safety Precautions



Follow these rules to ensure general safety:

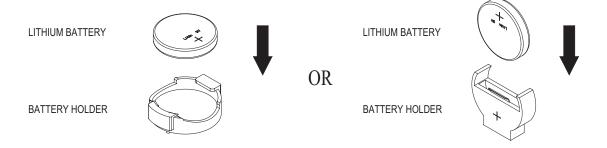
- Keep the area around the SuperServer 6015B-T+/6015B-8+ clean and free of clutter.
- The SuperServer 6015B-T+/6015B-8+ weighs approximately 40 lbs (18.2 kg) when fully loaded. When lifting the system, two people at either end should lift slowly with their feet spread out to distribute the weight. Always keep your back straight and lift with your legs.
- Place the chassis top cover and any system components that have been removed away from the system or on a table so that they won't accidentally be stepped on.
- While working on the system, do not wear loose clothing such as neckties and unbuttoned shirt sleeves, which can come into contact with electrical circuits or be pulled into a cooling fan.
- Remove any jewelry or metal objects from your body, which are excellent metal conductors that can create short circuits and harm you if they come into contact with printed circuit boards or areas where power is present.

After accessing the inside of the system, close the system back up and secure
it to the rack unit with the retention screws after ensuring that all connections
have been made.

#### 4-3 ESD Precautions



Electrostatic discharge (ESD) is generated by two objects with different electrical charges coming into contact with each other. An electrical discharge is created to neutralize this difference, which can damage electronic components and printed circuit boards. The following measures are generally sufficient to neutralize this difference <u>before</u> contact is made to protect your equipment from ESD:


- Use a grounded wrist strap designed to prevent static discharge.
- Keep all components and printed circuit boards (PCBs) in their antistatic bags until ready for use.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Do not let components or PCBs come into contact with your clothing, which may retain a charge even if you are wearing a wrist strap.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

# 4-4 Operating Precautions



Care must be taken to assure that the chassis cover is in place when the 6015B-T+/6015B-8+ is operating to ensure proper cooling. Out of warranty damage to the 6015B-T+/6015B-8+ system can occur if this practice is not strictly followed.

Figure 4-1. Installing the Onboard Battery



# **Chapter 5**

# **Advanced Serverboard Setup**

This chapter covers the steps required to install processors and heatsinks to the X7DBR-i+/X7DBR-8+ serverboard, connect the data and power cables and install add-on cards. All serverboard jumpers and connections are described and a layout and quick reference chart are included in this chapter. Remember to close the chassis completely when you have finished working on the serverboard to protect and cool the system sufficiently.

# 5-1 Handling the Serverboard

Static electrical discharge can damage electronic components. To prevent damage to printed circuit boards, it is important to handle them very carefully (see Chapter 4). Also note that the size and weight of the serverboard can cause it to bend if handled improperly, which may result in damage. To prevent the serverboard from bending, keep one hand under the center of the board to support it when handling. The following measures are generally sufficient to protect your equipment from static discharge.

#### **Precautions**

- Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.

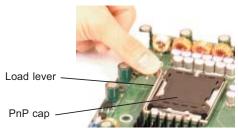
#### Unpacking

The serverboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure the person handling it is static protected.

#### Processor and Heatsink Installation



When handling the processor, avoid placing direct pressure on the label area of the fan. Also, do not place the serverboard on a conductive surface, which can damage the BIOS battery and prevent the system from booting up.


IMPORTANT: Always connect the power cord last and remove it first before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the heatsink and fan. The X7DBR-i+/X7DBR-8+ can support either one or two Xeon 5100/5000 series LGA 771 processors. If installing one processor only, install it into CPU socket #1.

#### Notes:

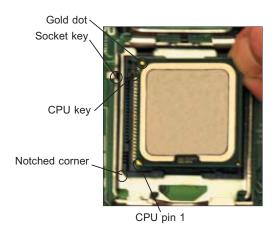
- 1. Intel's boxed Xeon CPU package contains a CPU fan and heatsink assembly. If you buy a CPU separately, make sure that you use only Intel-certified multi-directional heatsinks and fans.
- 2. When purchasing an LGA 771 CPU or when receiving a serverboard with an LGA 771 CPU pre-installed, make sure that the CPU plastic cap is in place and none of the CPU pins are bent; otherwise, contact the retailer immediately.

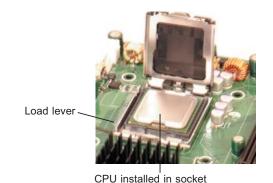
### **Installing the Processor**

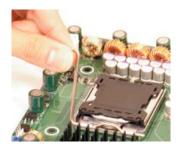
1. A black PnP cap is attached to the load plate to protect the CPU socket. Press the load lever down and away from the retention clasp to release the load plate from its locked position.

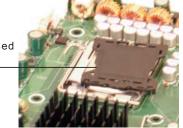


2. Gently lift the load lever to open the load plate.



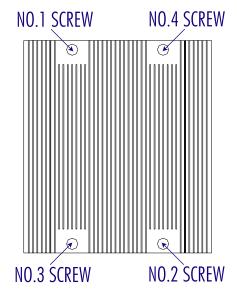





- 3. Use your thumb and your index finger to hold the CPU at opposite sides.
- 4. Align pin1 of the CPU (the corner marked with a triangle) with the notched corner of the CPU socket.
- 5. Find the corner of the CPU that has a semi-circle cutout below a gold dot (CPU key). This corner should be aligned with the cutout on the socket (socket key).
- 6. Once aligned, carefully lower the CPU straight down into the socket. Do not drop the CPU on the socket, do not move the CPU horizontally or vertically and do not rub the CPU against any surface or any of the contacts, which may damage the CPU and/or contacts.
- 7. With the CPU in the socket, inspect the four corners of the CPU to make sure that it is properly installed.
- 8. Use your thumb to gently push the load lever down until it snaps into the retention clasp.
- 9. If the CPU is properly installed into the socket, the PnP cap will be automatically released from the load plate when the lever locks. Remove the cap. Repeat steps to install a second CPU if desired.


**Warning!** Keep the plastic PnP cap. The serverboard must be shipped with the PnP cap properly installed to protect the CPU socket. Shipment without the PnP cap properly installed will void the warranty.












## Installing the Heatsink

- 1. Do not apply any thermal grease to the heatsink or the CPU die; the required amount has already been applied.
- 2. Place the heatsink on top of the CPU so that the four mounting holes are aligned with those on the (preinstalled) heatsink retention mechanism.
- 3. Screw in two diagonal screws (i.e. the number 1 and 2 screws, as shown on right) until just snug. Do not fully tighten the screws or you may damage the CPU.
- 4. Add the two remaining screws then finish the installation by fully tightening all four screws.



## Removing the Heatsink



**Warning!** We do not recommend removal of the heatsink. However, if you do need to uninstall the heatsink, please follow the instructions below to prevent damage to the CPU or the CPU socket.

- 1. Unscrew and remove the heatsink screws from the serverboard in the sequence as shown above.
- 2. Hold the heatsink and gently wriggle the heatsink to loosen it from the CPU. (Do not use excessive force when wriggling the heatsink!!)
- 3. Once the CPU is loose, remove the heatsink from the CPU socket.
- 4. Clean the surface of the CPU and the heatsink to get rid of the old thermal grease. Reapply the proper amount of thermal grease on the surface before you re-install the CPU and the heatsink.

# 5-3 Connecting Cables

Now that the processors are installed, the next step is to connect the cables to the serverboard. These include the data (ribbon) cables for the peripherals and control panel and the power cables.

# **Connecting Data Cables**

The ribbon cables used to transfer data from the peripheral devices have been carefully routed in preconfigured systems to prevent them from blocking the flow of cooling air that moves through the system from front to back. If you need to disconnect any of these cables, you should take care to reroute them as they were originally after reconnecting them (make sure the red wires connect to the pin 1 locations). If you are configuring the system, keep the airflow in mind when routing the cables. The following data cables (with their serverboard connector locations noted) should be connected. See the serverboard layout diagram in this chapter for connector locations.

- DVD-ROM drive cable (IDE#1)
- 6015B-T+: SATA cables (I-SATA1 ~ I-SATA4)
- 6015B-T+: SATA status monitoring cable (SGPIO1)
- 6015B-8+: SCSI cable (JA1)
- Control Panel cable (JF1, see next page)

# **Connecting Power Cables**

The X7DBR-i+/X7DBR-8+ has a 24-pin primary power supply connector designated "JPW1" for connection to the ATX power supply. Connect the appropriate connector from the power supply to the JPW1 connector to supply power to the serverboard. See the Connector Definitions section in this chapter for power connector pin definitions.

In addition, your power supply must be connected to the 4-pin Secondary ATX Power connection at JPW2 and the 8-pin processor power connector at JPW3.

# **Connecting the Control Panel**

JF1 contains header pins for various front control panel connectors. See Figure 5-3 for the pin locations of the various front control panel buttons and LED indicators. Please note that even and odd numbered pins are on opposite sides of each header.

All JF1 wires have been bundled into single keyed ribbon cable to simplify their connection. The red wire in the ribbon cable plugs into pin 1 of JF1. Connect the other end of the cable to the Control Panel printed circuit board, located just behind the system status LEDs in the chassis.

See the Connector Definitions section in this chapter for details and pin descriptions of JF1.

20 19 NMI Ground 0 x (key) x (key) Power LED Vcc HDD LED Vcc NIC1 Vcc NIC2 0 Vcc OH/Fan Fail LED Vcc Power Fail LED Vcc Ground Reset Power Ground

Figure 5-3. Front Control Panel Header Pins (JF1)

## 5-4 I/O Ports

The I/O ports are color coded in conformance with the PC 99 specification. See Figure 5-4 below for the colors and locations of the various I/O ports.

Figure 5-4. Rear Panel I/O Ports



Note: the external SCSI port is not included on the 6015B-T+.

# 5-5 Installing Memory

Note: Check the Supermicro web site for recommended memory modules.

### **CAUTION!**

Exercise extreme care when installing or removing DIMM modules to prevent any possible damage. Also note that the memory is interleaved to improve performance (see step 1).

# **DIMM Installation (See Figure 5-5)**

- 1. Insert the desired number of DIMMs into the memory slots, starting with Bank
- 1. The memory scheme is interleaved so <u>you must install four modules at a time</u>, beginning with DIMM 1A, DIMM 2A, DIMM 3A and DIMM 4A and so on. (See the Memory Installation Table below.) Insert each DIMM module vertically into its slot. Pay attention to the notch along the bottom of the module to prevent inserting the DIMM module incorrectly.
- 2. Gently press down on the DIMM module until it snaps into place in the slot. Repeat for all modules (see step 1 above).

#### **Memory Support**

The X7DBR-i+/X7DBR-8+ supports up to 64 GB of FBD (Fully Buffered DIMM) ECC DDR2-667/533. Populating with pairs of memory modules that are of the same size and same type will result in interleaved memory (minimum four DIMMs needed).

**Note:** Due to OS limitations, some operating systems may not show more than 4 GB of memory. To optimize memory support, follow the table below for memory installation:

| Optimized DIMM Configurations |             |    |    |             |     |             |    |             |    |    |    |    |    |    |    |    |
|-------------------------------|-------------|----|----|-------------|-----|-------------|----|-------------|----|----|----|----|----|----|----|----|
|                               | Branch 0    |    |    |             | Bra | nch 1       | 1  |             |    |    |    |    |    |    |    |    |
| Number of                     | Bank 1      |    |    | Bank 2      |     | Bank 3      |    | Bank 4      |    |    |    |    |    |    |    |    |
| DIMMs                         | (Channel 0) |    |    | (Channel 1) |     | (Channel 2) |    | (Channel 3) |    |    |    |    |    |    |    |    |
| 2 DIMMs                       | 1A          |    |    |             | 2A  |             |    |             |    |    |    |    |    |    |    |    |
| 4 DIMMs                       | 1A          |    |    |             | 2A  |             |    |             | 3A |    |    |    | 4A |    |    |    |
| 6 DIMMs                       | 1A          | 1B |    |             | 2A  | 2B          |    |             | 3A |    |    |    | 4A |    |    |    |
| 8 DIMMs                       | 1A          | 1B |    |             | 2A  | 2B          |    |             | 3A | 3B |    |    | 4A | 4B |    |    |
| 10 DIMMs                      | 1A          | 1B | 1C |             | 2A  | 2B          | 2C |             | 3A | 3B |    |    | 4A | 4B |    |    |
| 12 DIMMs                      | 1A          | 1B | 1C |             | 2A  | 2B          | 2C |             | 3A | 3B | 3C |    | 4A | 4B | 4C |    |
| 14 DIMMs                      | 1A          | 1B | 1C | 1D          | 2A  | 2B          | 2C | 2D          | 3A | 3B | 3C |    | 4A | 4B | 4C |    |
| 16 DIMMs                      | 1A          | 1B | 1C | 1D          | 2A  | 2B          | 2C | 2D          | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D |

Notes: i. a DIMM slot# specified means that slot should be populated, whereas "---" means that DIMM slot should not be populated. ii. Both FBD 533 MHz and 667MHz DIMMs are supported, however all memory modules must be of the same speed and type. iii. Interleaved memory is supported when pairs of DIMM modules are installed in <a href="both Branch 0">both Branch 0</a> and Branch 1. Interleaved memory is not supported with only two DIMMs installed. iv. For memory to work properly, you need to follow the restrictions listed above.

Top View of DDR2 Slot

Release Tab

Release Tab

Release Tab

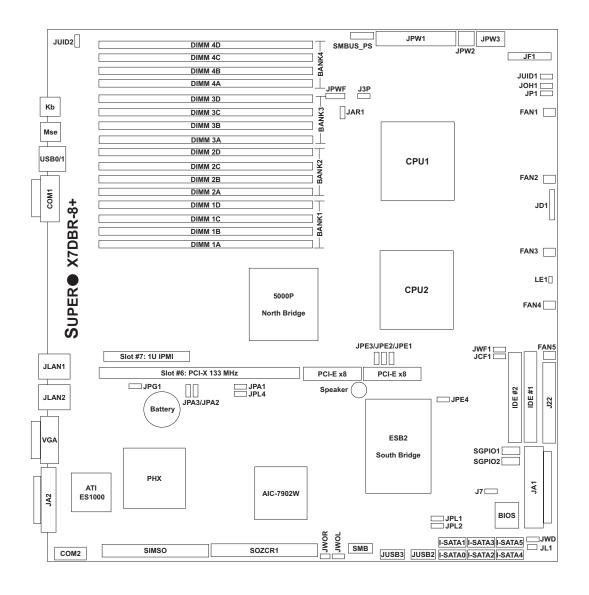
Figure 5-5. Installing DIMM into Slot

To Install: Insert module vertically and press down until it snaps into place. Pay attention to the bottom notch.

To Remove: Use your thumbs to gently push each release tab outward to free the DIMM from the slot.

# 5-6 Adding PCI Cards

#### 1. PCI slots


The X7DBR-i+/X7DBR-8+ has two PCI expansion slots, which includes one PCI-Express x16 slot and one universal 64-bit, 133 MHz PCI-X slot. Two riser cards are included with the server: the CSE-RR1U-X riser fits into the 133 MHz PCI-X slot to support a standard size (full-height, full-length) PCI-X add-on card (any speed) and the CSE-RR1U-EL fits into the PCI-Express slot to support one standard size PCI-Express add-on card. Only one riser card may be used at a time.

#### 2. PCI card installation

Before installing a PCI add-on card, see step 1, above. Begin by swinging the release tab on the I/O backpanel shield out to the left for the PCI slot. Insert the PCI card into the correct riser card (depending on whether it is a standard or low-profile card), pushing down with your thumbs evenly on both sides of the card. Finish by pushing the release tab back to its original (locked) position. Follow this procedure when adding a card to either slot.

## 5-7 Serverboard Details

Figure 5-6. SUPER X7DBR-8+ Layout (not drawn to scale)



#### Notes:

Jumpers not noted are for test purposes only.

The X7DBR-i+ shares the same layout but without SCSI connectors, jumpers or components.

IDE#2 is for Compact Flash card use only. To use, close (enable) jumper JCF1 and connect the compact flash power to JWF1.

# X7DBR8+ Quick Reference

| <u>Jumper</u>                         | <u>Description</u>                  | <b>Default Setting</b> |
|---------------------------------------|-------------------------------------|------------------------|
| J3P                                   | 3rd Power Fail Detect               | Open (Disabled)        |
| JBT1                                  | CMOS Clear                          | (See Section 5-9)      |
| JCF1                                  | Compact Flash Master/Slave Select   | Closed (Master)        |
| JI <sup>2</sup> C1/JI <sup>2</sup> C2 | SMBus to PCI-E Slots Enable/Disable | Open (Disabled)        |
| JPA1*                                 | SCSI Controller Enable/Disable      | Pins 1-2 (Enabled)     |
| JPA2/JPA3*                            | SCSI ChA/ChB Termination En/Dis     | Open (Enabled)         |
| JPG1                                  | VGA Enable/Disable                  | Pins 1-2 (Enabled)     |
| JPL1/JPL2                             | JLAN1/JLAN2 Enable/Disable          | Pins 1-2 (Enabled)     |
| JWD                                   | Watch Dog                           | Pins 1-2 (Reset)       |

<u>Connector</u> <u>Description</u>

COM1/COM2 COM1/COM2 Serial Port/Header

FAN 1-5 Fan 1-5 Headers

J22 Floppy Disk Drive Connector

IDE#1/IDE#2 IDE Hard Drive/Compact Flash Card Connectors

JA1/JA2\* SCSI Channel A & B Ports

JAR1 Alarm Reset Header

JD1 Power LED (pins1-3)/Speaker Header (pins 4-7)

JF1 Front Control Panel Connector
JL1 Chassis Intrusion Header
JLAN1/2 G-bit Ethernet Ports

JOH1 Overheat LED
JP3 Power Fail Header

JPW1 24-pin Primary ATX Power Connector

JPW2 4-pin Auxiliary Power Connector JPW3 8-pin Processor Power Connector

JUID1 UID LED Header JUID2 UID Switch Header

JWF1 Compact Flash Card Power Connector

JWOL Wake-on-LAN Header
JWOR Wake-on-Ring Header
LE1 PWR LED Indicator
I-SATA0 - I-SATA5 Intel Serial ATA Ports
SGPIO1/SGPIO2 SGPIO Headers

SMB System Management Bus Header

SMBUS PS Power System Management (I<sup>2</sup>C) Header

USB0/1, JUSB2, JUSB3 USB0/1 Ports, USB2/3 Headers, USB4/5 Headers

<sup>\*</sup>X7DBR8+ only

## 5-8 Connector Definitions

# Primary ATX Power Connector

The primary power supply connector meets the SSI (Superset ATX) 24-pin specification. Make sure that the orientation of the connector is correct. See the table on the right for pin definitions.

## **Auxiliary Power Connector**

In addition to the Primary ATX power connector (above), the Secondary 12v 4-pin connector (JPW2) must also be connected to your power supply. See the table on the right for pin definitions.

#### **Processor Power Connector**

The JPW3 header must also be connected to the power supply to provide power for the processor(s). See the table on the right for pin definitions.

#### **NMI** Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1. Refer to the table on the right for pin definitions.

#### **Power LED**

The Power LED connection is located on pins 15 and 16 of JF1. Refer to the table on the right for pin definitions.

| ATX Power 24-pin Connector<br>Pin Definitions (JPW1) |            |      |            |  |  |
|------------------------------------------------------|------------|------|------------|--|--|
| Pin#                                                 | Definition | Pin# | Definition |  |  |
| 13                                                   | +3.3V      | 1    | +3.3V      |  |  |
| 14                                                   | -12V       | 2    | +3.3V      |  |  |
| 15                                                   | COM        | 3    | COM        |  |  |
| 16                                                   | PS_ON      | 4    | +5V        |  |  |
| 17                                                   | COM        | 5    | COM        |  |  |
| 18                                                   | COM        | 6    | +5V        |  |  |
| 19                                                   | COM        | 7    | COM        |  |  |
| 20                                                   | Res (NC)   | 8    | PWR_OK     |  |  |
| 21                                                   | +5V        | 9    | 5VSB       |  |  |
| 22                                                   | +5V        | 10   | +12V       |  |  |
| 23                                                   | +5V        | 11   | +12V       |  |  |
| 24                                                   | COM        | 12   | +3.3V      |  |  |

| +12V 4-pin Power<br>Pin Definitions (JPW2) |        |  |  |  |
|--------------------------------------------|--------|--|--|--|
| Pins Definition                            |        |  |  |  |
| 1 & 2                                      | Ground |  |  |  |
| 3 & 4                                      | +12V   |  |  |  |

| Processor Power<br>Pin Definitions (JPW3) |            |  |  |  |
|-------------------------------------------|------------|--|--|--|
| Pins                                      | Definition |  |  |  |
| 1 through 4                               | Ground     |  |  |  |
| 5 through 8                               | +12V       |  |  |  |

| NMI Button<br>Pin Definitions (JF1) |         |  |  |  |
|-------------------------------------|---------|--|--|--|
| Pin# Definition                     |         |  |  |  |
| 19                                  | Control |  |  |  |
| 20                                  | Ground  |  |  |  |

| Power LED<br>Pin Definitions (JF1) |            |  |  |  |
|------------------------------------|------------|--|--|--|
| Pin#                               | Definition |  |  |  |
| 15                                 | Vcc        |  |  |  |
| 16                                 | Control    |  |  |  |

#### **HDD LED**

The HDD (IDE Hard Disk Drive) LED connection is located on pins 13 and 14 of JF1. Attach the IDE hard drive LED cable to display disk activity. Refer to the table on the right for pin definitions.

| HDD LED<br>Pin Definitions (JF1) |           |  |  |  |
|----------------------------------|-----------|--|--|--|
| Pin# Definition                  |           |  |  |  |
| 13                               | Vcc       |  |  |  |
| 14                               | HD Active |  |  |  |

#### NIC1 LED

The NIC1 (Network Interface Controller) LED connection is located on pins 11 and 12 of JF1. Attach the NIC1 LED cable to display network activity. Refer to the table on the right for pin definitions.

| NIC1 LED<br>Pin Definitions (JF1) |        |  |  |  |
|-----------------------------------|--------|--|--|--|
| Pin# Definition                   |        |  |  |  |
| 11                                | Vcc    |  |  |  |
| 12                                | Ground |  |  |  |

#### NIC2 LED

The NIC2 (Network Interface Controller) LED connection is located on pins 9 and 10 of JF1. Attach the NIC2 LED cable to display network activity. Refer to the table on the right for pin definitions.

| NIC2 LED<br>Pin Definitions (JF1) |            |  |  |
|-----------------------------------|------------|--|--|
| Pin#                              | Definition |  |  |
| 9                                 | Vcc        |  |  |
| 10                                | Ground     |  |  |

## Overheat/Fan Fail LED (OH)

Connect an LED to the OH connection on pins 7 and 8 of JF1 to provide advanced warning of chassis overheating. Refer to the table on the right for pin definitions.

| OH/Fan Fail LED<br>Pin Definitions (JF1) |            |  |  |  |
|------------------------------------------|------------|--|--|--|
| Pin#                                     | Definition |  |  |  |
| 7                                        | Vcc        |  |  |  |
| 8                                        | Ground     |  |  |  |

#### **Power Fail LED**

The Power Fail LED connection is located on pins 5 and 6 of JF1. Refer to the table on the right for pin definitions.

| Power Fail LED<br>Pin Definitions (JF1) |            |  |  |  |
|-----------------------------------------|------------|--|--|--|
| Pin#                                    | Definition |  |  |  |
| 5                                       | Vcc        |  |  |  |
| 6                                       | Ground     |  |  |  |

#### **Reset Button**

The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to the hardware reset switch on the computer case. Refer to the table on the right for pin definitions.

| Reset Button<br>Pin Definitions (JF1) |            |
|---------------------------------------|------------|
| Pin#                                  | Definition |
| 3                                     | Reset      |
| 4                                     | Ground     |

#### **Power Button**

The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (see the Power Button Mode setting in BIOS). To turn off the power when set to suspend mode, depress the button for at least 4 seconds. Refer to the table on the right for pin definitions.

| Power Button<br>Pin Definitions (JF1) |            |  |
|---------------------------------------|------------|--|
| Pin#                                  | Definition |  |
| 1                                     | PW_ON      |  |
| 2                                     | Ground     |  |

# Universal Serial Bus (USB0/1) Ports

Two Universal Serial Bus ports are located beside the COM1 port. USB0 is the bottom connector and USB1 is the top connector. See the table on the right for pin definitions.

| Universal Serial Bus<br>Pin Definitions (USB0/1) |                   |   |                   |
|--------------------------------------------------|-------------------|---|-------------------|
|                                                  | SB0<br>Definition | _ | SB1<br>Definition |
| 1                                                | +5V               | 1 | +5V               |
| 2                                                | PO-               | 2 | PO-               |
| 3                                                | PO+               | 3 | PO+               |
| 4                                                | Ground            | 4 | Ground            |
| 5                                                | N/A               | 5 | Key               |

### **Chassis Intrusion**

The Chassis Intrusion header is designated at JL1. Attach the appropriate cable to inform you of a chassis intrusion.

| Chassis Intrusion Pin Definitions (JL1) |                 |  |
|-----------------------------------------|-----------------|--|
| Pin#                                    | Definition      |  |
| 1                                       | Intrusion Input |  |
| 2                                       | Ground          |  |

## **Serial Ports**

The COM1 serial port is located beside the USB0/1 ports. COM2 is a header on the serverboard (see serverboard layout for location). See the table on the right for pin definitions.

| Serial Port Pin Definitions<br>(COM1/COM2) |            |      |            |
|--------------------------------------------|------------|------|------------|
| Pin#                                       | Definition | Pin# | Definition |
| 1                                          | DCD        | 6    | DSR        |
| 2                                          | RXD        | 7    | RTS        |
| 3                                          | TXD        | 8    | CTS        |
| 4                                          | DTR        | 9    | RI         |
| 5                                          | Ground     | 10   | NC         |

**Note:** Pin 10 is included on the header but not on the port. NC indicates no connection.

## **Power Fail Header**

Connect a cable from your power supply to the Power Fail header to provide you with warning of a power supply failure. The warning signal is passed through the PWR\_LED pin to indicate a power failure. See the table on the right for pin definitions.

| Power Fail Header<br>Pin Definitions (JP3) |                   |
|--------------------------------------------|-------------------|
| Pin#                                       | Definition        |
| 1                                          | P/S 1 Fail Signal |
| 2                                          | P/S 2 Fail Signal |
| 3                                          | P/S 3 Fail Signal |
| 4                                          | Reset Signal      |

**Note:** This feature is only available when using redundant Supermicro power supplies.

#### **Fan Headers**

The X7DBR-i+/X7DBR-8+ has five fan headers, designated Fan1 through Fan5. Fan speed is controlled via Thermal Management with a BIOS setting. See the table on the right for pin definitions.

| Fan Header<br>Pin Definitions<br>(Fan1-5) |                |
|-------------------------------------------|----------------|
| Pin#                                      | Definition     |
| 1                                         | Ground (Black) |
| 2                                         | +12V (Red)     |
| 3                                         | Tachometer     |
| 4                                         | PWM Control    |

# Extra Universal Serial Bus Headers

Four USB headers are located near the SATA ports on the serverboard. JUSB2 includes USB2/3 and JUSB3 is for USB4/5. A USB cable (not included) is needed for the connection. See the table on the right for pin definitions.

| Front Panel Universal Serial Bus<br>Pin Definitions (JUSB2/3) |        |   |        |
|---------------------------------------------------------------|--------|---|--------|
| USB2/4 USB3/5 Pin # Definition Pin # Definition               |        |   |        |
| 1                                                             | +5V    | 1 | +5V    |
| 2                                                             | PO-    | 2 | PO-    |
| 3                                                             | PO+    | 3 | PO+    |
| 4                                                             | Ground | 4 | Ground |
| 5                                                             | N/A    | 5 | N/A    |

## Power LED/Speaker

On the JDI header, pins 1-3 are for a power LED, pins 4-7 are for the speaker. See the table on the right for speaker pin definitions.

**Note:** The speaker connector pins are for use with an external speaker. If you wish to use the onboard speaker, you should close pins 6-7 with a jumper.

| Speaker Connector<br>Pin Definitions (JD1) |          |                         |
|--------------------------------------------|----------|-------------------------|
| Pin#                                       | Function | Definition              |
| 4                                          | +        | Speaker data (red wire) |
| 5                                          | Key      | No connection           |
| 6                                          |          | Key                     |
| 7                                          |          | Speaker data            |

# ATX PS/2 Keyboard and PS/2 Mouse Ports

The ATX PS/2 keyboard and the PS/2 mouse ports are located on the I/O back plane. See the table on the right for pin definitions.

| PS/2 Keyboard and<br>Mouse Port Pin<br>Definitions (Kb, Mouse) |        |  |
|----------------------------------------------------------------|--------|--|
| Pin# Definition                                                |        |  |
| 1                                                              | Data   |  |
| 2                                                              | NC     |  |
| 3                                                              | Ground |  |
| 4                                                              | vcc    |  |
| 5                                                              | Clock  |  |
| 6                                                              | NC     |  |

#### Overheat LED

Connect an LED to the JOH1 header to provide warning of a chassis overheating condition. See the table on the right for pin definitions.

| Overheat LED<br>Pin Definitions (JOH1) |            |  |
|----------------------------------------|------------|--|
| Pin#                                   | Definition |  |
| 1                                      | +5V        |  |
| 2 OH Active                            |            |  |

#### Wake-On-LAN

The Wake-On-LAN header is designated WOL. See the table on the right for pin definitions. You must enable the LAN Wake-Up setting in BIOS to use this feature. You must also have a LAN card with a Wake-on-LAN connector and cable.

| Wake-On-LAN<br>Pin Definitions (WOL) |             |
|--------------------------------------|-------------|
| Pin#                                 | Definition  |
| 1                                    | +5V Standby |
| 2                                    | Ground      |
| 3                                    | Wake-up     |

## Wake-On-Ring

The Wake-On-Ring header is designated JWOR. This function allows your computer to receive and "wake-up" by an incoming call to the modem when in suspend state. See the table on the right for pin definitions. You must have a WOR card and cable to use this feature.

| Wake-On-Ring<br>Pin Definitions<br>(JWOR) |                |
|-------------------------------------------|----------------|
| Pin#                                      | Definition     |
| 1                                         | Ground (Black) |
| 2                                         | Wake-up        |

#### **SMB**

The System Management Bus header (for the PCI bus) designated SMB is located near the SATA ports. Connect the appropriate cable here to utilize SMB on your system. See the table on the right for pin definitions.

| SMB Header<br>Pin Definitions (SMB) |               |  |
|-------------------------------------|---------------|--|
| Pin#                                | Definition    |  |
| 1                                   | Data          |  |
| 2                                   | Ground        |  |
| 3                                   | Clock         |  |
| 4                                   | No Connection |  |

# SMBUS\_PS

The SMBUS\_PS header is for I<sup>2</sup>C, which may be used to monitor the status of the power supply, fan and system temperature. See the table on the right for pin definitions.

| SMB Power (I <sup>2</sup> C)<br>Pin Definitions<br>(SMBUS_PS) |            |  |
|---------------------------------------------------------------|------------|--|
| Pin#                                                          | Definition |  |
| 1                                                             | Clock      |  |
| 2                                                             | Data       |  |
| 3                                                             | Power Fail |  |
| 4                                                             | Ground     |  |
| 5                                                             | +3.3V      |  |

## Alarm Reset (JAR)

The system will notify you in the event of a power supply failure. This feature assumes that Supermicro redundant power supply units are installed in the chassis. If you only have a single power supply installed, you should not connect anything to this jumper to prevent false alarms. See the table on the right for jumper settings.

| Alarm Reset<br>Jumper Settings (JAR) |            |
|--------------------------------------|------------|
| Pin#                                 | Definition |
| 2                                    | +5V        |
| 1                                    | Ground     |

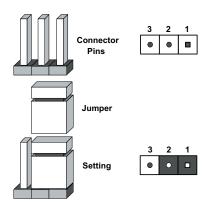
### **Unit Identification Headers**

There are two Unit Identification (UID) headers on the serverboard. JUID1 should be connected to an LED and JUID2 to a UID button. When you push the UID button, the UID indicators will illuminate. Push the UID button again to turn the LED off. The UID LED provides easy identification of a system from other systems in the same rack.

# Compact Flash Card PWR Connector

A Compact Flash Card Power Connector is located at JWF1. For the Compact Flash Card to work properly, you will first need to connect a power cable to JWF1 and correctly set the Compact Flash Jumper (JCF1).

#### **SGPIO**


The two headers labeled SGPIO1 and SGPIO2 are for SGPIO (Serial General Purpose Input/Output). SGPIO is a bus between the SATA controller and the SATA drive backplane that can provide SATA closure management functions. Connect the appropriate cable from the backplane to the SGPIO headers to utilize it on your system.

# 5-9 Jumper Settings

# **Explanation of Jumpers**

To modify the operation of the serverboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the diagram at right for an example of jumping pins 1 and 2. Refer to the serverboard layout page for jumper locations.

**Note:** On two-pin jumpers, "Closed" means the jumper is on and "Open" means the jumper is off the pins.



#### **CMOS Clear**

JBT1 is used to clear CMOS and will also clear any passwords. Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS.

To clear CMOS,

- 1) First power down the system and unplug the power cord(s)
- 2) With the power disconnected, short the CMOS pads with a metal object such as a small screwdriver
- 3) Remove the screwdriver (or shorting device)
- 4) Reconnect the power cord(s) and power on the system.

Note: Do not use the PW ON connector to clear CMOS.

#### JLAN Enable/Disable

Change the setting of jumper JPL1 and JPL2 to enable or disable the onboard LAN ports JLAN1 and JLAN2, respectively. See the table on the right for jumper settings. The default setting is enabled

| JLAN Enable/Disable<br>Jumper Settings (JPL1/JPL2) |            |
|----------------------------------------------------|------------|
| Jumper Setting                                     | Definition |
| Pins 1-2                                           | Enabled    |
| Pins 2-3                                           | Disabled   |

## Watch Dog Enable/Disable

JWD controls the Watch Dog function. Watch Dog is a system monitor that can reboot the system when a software application hangs. Pins 1-2 will cause WD to reset the system if an application hangs. Pins 2-3 will generate a non-maskable interrupt signal for the application that is hung up. See the table on the right for jumper settings. Watch Dog must also be enabled in BIOS.

**Note:** When enabled, the user needs to write their own application software to disable the Watch Dog Timer.

| Watch Dog<br>Jumper Settings (JWD) |            |
|------------------------------------|------------|
| Jumper Setting                     | Definition |
| Pins 1-2                           | Reset      |
| Pins 2-3                           | NMI        |
| Open                               | Disabled   |

# 3rd Power Supply Fail Detect Enable/Disable

The system can notify you in the event of a power supply failure. This feature assumes that three power supply units are installed in the chassis with one acting as a backup. If you only have one or two power supply units installed, you should disable this (the default setting) with J3P to prevent false alarms. See the table on the right for jumper settings.

| 3rd Power Supply Fail<br>Detect Enable/Disable<br>Jumper Settings (J3P) |            |
|-------------------------------------------------------------------------|------------|
| Jumper Setting                                                          | Definition |
| Open                                                                    | Disabled   |
| Closed                                                                  | Enabled    |

#### VGA Enable/Disable

JPG1 allows you to enable or disable the VGA port. The default position is on pins 1 and 2 to enable VGA. See the table on the right for jumper settings.

| VGA Enable/Disable<br>Jumper Settings (JPG1) |            |
|----------------------------------------------|------------|
| Jumper Setting                               | Definition |
| Pins 1-2                                     | Enabled    |
| Pins 2-3                                     | Disabled   |

# SCSI Controller Enable/ Disable (6015B-8+ only)

Jumper JPA1 is used to enable or disable the onboard SCSI controller. The default setting is on pins 1-2 to enable SCSI. See the table on the right for jumper settings.

| SCSI Enable/Disable<br>Jumper Settings (JPA1) |            |
|-----------------------------------------------|------------|
| Both Jumpers                                  | Definition |
| Pins 1-2                                      | Enabled    |
| Pins 2-3                                      | Disabled   |

# SCSI Termination Enable/ Disable (6015B-8+ only)

Jumpers JPA2/JPA3 are used to enable or disable termination for the SCSI Channel A (JPA2) and Channel B (JPA3) connectors. The default setting is open to enable termination. See the table on the right for jumper settings.

**Note:** In order for the SCSI drives to function properly, please do not change the default setting (enabled) set by the manufacturer.

| SCSI Term. Enable/Disable<br>Jumper Settings (JPA2/JPA3) |            |
|----------------------------------------------------------|------------|
| Jumper Setting                                           | Definition |
| Open                                                     | Enabled    |
| Closed                                                   | Disabled   |

# Compact Flash Master/Slave Select

A Compact Flash Master (Primary)/Slave (Secondary) Select jumper is located at JCF1. Close this jumper to enable the use of a compact flash card. For the compact flash card and JCF1 to work properly, you will first need to connect the compact flash card's power cable to JWF1. See the table on the right for jumper settings.

| Compact Flash Card Master/<br>Slave Select (JCF1) |                   |
|---------------------------------------------------|-------------------|
| Jumper Definition                                 |                   |
| Open                                              | Slave (Secondary) |
| Closed                                            | Master (Primary)  |

# SMBUS to PCI Enable/ Disable

The JI<sup>2</sup>C1 and JI<sup>2</sup>C2 pair of jumpers allows you to connect the System Management Bus to the PCI expansion slots. The default setting is closed (on) for both jumpers to enable the connection. Both connectors must be set the same (JI<sup>2</sup>C1 is for data and JI<sup>2</sup>C2 is for the clock). See the table on right for jumper settings.

|   | SMBUS to PCI<br>Enable/Disable<br>(JI <sup>2</sup> C1/JI <sup>2</sup> C2) |            |
|---|---------------------------------------------------------------------------|------------|
| ſ | Jumper Setting                                                            | Definition |
|   | Closed                                                                    | Enabled    |
|   | Open                                                                      | Disabled   |

# 5-10 Onboard Indicators

### JLAN1/JLAN2 LEDs

The Ethernet ports (located beside the VGA port) have two LEDs. On each port, one LED indicates activity while the other LED may be green, amber or off to indicate the speed of the connection. See the table on the right for the functions associated with the connection speed LED.

| JLAN LED<br>(Connection Speed Indicator) |            |  |  |
|------------------------------------------|------------|--|--|
| LED Color                                | Definition |  |  |
| Off                                      | 10 MHz     |  |  |
| Green                                    | 100 MHz    |  |  |
| Amber                                    | 1 GHz      |  |  |

### **SCSI Activity LED Indicators**

There are two SCSI Activity LED indicators on the X7DBR-8+. DA1 indicates the activity status of SCSI Channel A and DA2 indicates the activity status of SCSI Channel B.

# 5-11 Floppy, IDE, SATA and SCSI Drive Connections

Note the following when connecting the floppy and hard disk drive cables:

- · The floppy disk drive cable has seven twisted wires.
- · A red mark on a wire typically designates the location of pin 1.
- A single floppy disk drive ribbon cable has 34 wires and two connectors to provide for two floppy disk drives. The connector with twisted wires always connects to drive A, and the connector that does not have twisted wires always connects to drive B.

## Floppy Drive Connector

The floppy connector is located near the IDE connectors. See the table below for pin definitions.

| Floppy Drive Connector<br>Pin Definitions (J22) |            |      |                |  |
|-------------------------------------------------|------------|------|----------------|--|
| Pin#                                            | Definition | Pin# | Definition     |  |
| 1                                               | Ground     | 2    | FDHDIN         |  |
| 3                                               | Ground     | 4    | Reserved       |  |
| 5                                               | Key        | 6    | FDEDIN         |  |
| 7                                               | Ground     | 8    | Index          |  |
| 9                                               | Ground     | 10   | Motor Enable   |  |
| 11                                              | Ground     | 12   | Drive Select B |  |
| 13                                              | Ground     | 14   | Drive Select B |  |
| 15                                              | Ground     | 16   | Motor Enable   |  |
| 17                                              | Ground     | 18   | DIR            |  |
| 19                                              | Ground     | 20   | STEP           |  |
| 21                                              | Ground     | 22   | Write Data     |  |
| 23                                              | Ground     | 24   | Write Gate     |  |
| 25                                              | Ground     | 26   | Track 00       |  |
| 27                                              | Ground     | 28   | Write Protect  |  |
| 29                                              | Ground     | 30   | Read Data      |  |
| 31                                              | Ground     | 32   | Side 1 Select  |  |
| 33                                              | Ground     | 34   | Diskette       |  |

### **IDE Drive Connectors**

There are two IDE connectors: IDE#1 (blue) and IDE#2 (white). IDE#1 is designated as the primary IDE drive. IDE#2 is designated as the secondary IDE drive and is reserved for Compact Flash card use only. See the table below for pin definitions.

**Note:** IDE#2 is reserved for Compact Flash card use only. Do not use it for other devices. If IDE#2 is populated with a Compact Flash card, IDE#1 will only support one device. For the Compact Flash card to work properly, you will first need to connect a power cable to JWF1.

| IDE Drive Connectors Pin Definitions (IDE#1, IDE#2) |               |      |               |  |
|-----------------------------------------------------|---------------|------|---------------|--|
| Pin#                                                | Definition    | Pin# | Definition    |  |
| 1                                                   | Reset IDE     | 2    | Ground        |  |
| 3                                                   | Host Data 7   | 4    | Host Data 8   |  |
| 5                                                   | Host Data 6   | 6    | Host Data 9   |  |
| 7                                                   | Host Data 5   | 8    | Host Data 10  |  |
| 9                                                   | Host Data 4   | 10   | Host Data 11  |  |
| 11                                                  | Host Data 3   | 12   | Host Data 12  |  |
| 13                                                  | Host Data 2   | 14   | Host Data 13  |  |
| 15                                                  | Host Data 1   | 16   | Host Data 14  |  |
| 17                                                  | Host Data 0   | 18   | Host Data 15  |  |
| 19                                                  | Ground        | 20   | Key           |  |
| 21                                                  | DRQ3          | 22   | Ground        |  |
| 23                                                  | I/O Write     | 24   | Ground        |  |
| 25                                                  | I/O Read      | 26   | Ground        |  |
| 27                                                  | IOCHRDY       | 28   | BALE          |  |
| 29                                                  | DACK3         | 30   | Ground        |  |
| 31                                                  | IRQ14         | 32   | IOCS16        |  |
| 33                                                  | Addr1         | 34   | Ground        |  |
| 35                                                  | Addr0         | 36   | Addr2         |  |
| 37                                                  | Chip Select 0 | 38   | Chip Select 1 |  |
| 39                                                  | Activity      | 40   | Ground        |  |

# **SATA Ports**

There are no jumpers to configure the onboard SATA connectors. See the table on the right for pin definitions.

| SATA Connector Pin Definitions<br>(SATA0 - SATA5) |            |  |  |
|---------------------------------------------------|------------|--|--|
| Pin #                                             | Definition |  |  |
| 1                                                 | Ground     |  |  |
| 2                                                 | TXP        |  |  |
| 3                                                 | TXN        |  |  |
| 4                                                 | Ground     |  |  |
| 5                                                 | RXN        |  |  |
| 6                                                 | RXP        |  |  |
| 7                                                 | Ground     |  |  |

# Ultra320 SCSI Ports (6015B-8+ only)

There are two SCSI connectors on the serverboard. SCSI Channel Ais located at JA1 and SCSI Channel B is located at JA2. Refer to the table at right for the pin definitions.

|      | Ultra320 SCSI Drive Port<br>Pin Definitions (JA1/JA2) |      |            |  |  |
|------|-------------------------------------------------------|------|------------|--|--|
| Pin# | Definition                                            | Pin# | Definition |  |  |
| 1    | +DB (12)                                              | 35   | -DB (12)   |  |  |
| 2    | +DB (13)                                              | 36   | -DB (13)   |  |  |
| 3    | +DB (14)                                              | 37   | -DB (14)   |  |  |
| 4    | +DB (15)                                              | 38   | -DB (15)   |  |  |
| 5    | +DB (P1)                                              | 39   | -DB (P1)   |  |  |
| 6    | +DB (0)                                               | 40   | -DB (0)    |  |  |
| 7    | +DB (1)                                               | 41   | -DB (1)    |  |  |
| 8    | +DB (2)                                               | 42   | -DB (2)    |  |  |
| 9    | +DB (3)                                               | 43   | -DB (3)    |  |  |
| 10   | +DB (4)                                               | 44   | -DB (4)    |  |  |
| 11   | +DB (5)                                               | 45   | -DB (5)    |  |  |
| 12   | +DB (6)                                               | 46   | -DB (6)    |  |  |
| 13   | +DB (7)                                               | 47   | -DB (7)    |  |  |
| 14   | +DB (P)                                               | 48   | -DB (P)    |  |  |
| 15   | Ground                                                | 49   | Ground     |  |  |
| 16   | DIFFSENS                                              | 50   | Ground     |  |  |
| 17   | TERMPWR                                               | 51   | TERMPWR    |  |  |
| 18   | TERMPWR                                               | 52   | TERMPWR    |  |  |
| 19   | Reserved                                              | 53   | Reserved   |  |  |
| 20   | Ground                                                | 54   | Ground     |  |  |
| 21   | +ATN                                                  | 55   | -ATN       |  |  |
| 22   | Ground                                                | 56   | Ground     |  |  |
| 23   | +BSY                                                  | 57   | -BSY       |  |  |
| 24   | +ACK                                                  | 58   | -ACK       |  |  |
| 25   | +RST                                                  | 59   | -RST       |  |  |
| 26   | +MSG                                                  | 60   | -MSG       |  |  |
| 27   | +SEL                                                  | 61   | -SEL       |  |  |
| 28   | +C/D                                                  | 62   | -C/D       |  |  |
| 29   | +REQ                                                  | 63   | -REQ       |  |  |
| 30   | +I/O                                                  | 64   | -I/O       |  |  |
| 31   | +DB (8)                                               | 65   | -DB (8)    |  |  |
| 32   | +DB (9)                                               | 66   | -DB (9)    |  |  |
| 33   | +DB (10)                                              | 67   | -DB (10)   |  |  |
| 34   | +DB (11)                                              | 68   | -DB (11)   |  |  |

# Notes

# **Chapter 6**

# **Advanced Chassis Setup**

This chapter covers the steps required to install components and perform maintenance on the SC815TQ-700/SC815S-700 chassis. For component installation, follow the steps in the order given to eliminate the most common problems encountered. If some steps are unnecessary, skip ahead to the next step.

## **Tools Required**

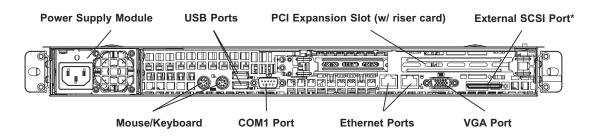
The only tool you will need to install components and perform maintenance is a Philips screwdriver.

## 6-1 Static-Sensitive Devices

Electrostatic discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully. The following measures are generally sufficient to protect your equipment from ESD damage.

#### **Precautions**

- Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.


Slim DVD-ROM Drive Slim Floppy Drive (optional) System LEDs Control Panel

SATA/SCSI Drive Bays

System Reset

Main Power

Figure 6-1. Chassis: Front and Rear Views



\*External SCSI port on 6015B-8+ only.

### 6-2 Control Panel

The control panel (located on the front of the chassis) must be connected to the JF1 connector on the serverboard to provide you with system status indications. These wires have been bundled together as a ribbon cable to simplify the connection. Connect the cable from JF1 on the serverboard to the appropriate header on the Control Panel PCB (printed circuit board). Make sure the red wire plugs into pin 1 on both connectors. Pull all excess cabling out of the airflow path.

The control panel LEDs inform you of system status. See "Chapter 3: System Interface" for details on the LEDs and the control panel buttons. Details on JF1 can be found in "Chapter 5: Advanced Serverboard Setup."

# 6-3 System Fans

Four 40-mm heavy duty counter-rotating fans provide the cooling for the SuperServer 6015B-T+/6015B-8+. Each fan unit is actually made up of two fans joined back-to-back, which rotate in opposite directions. This counter-rotating action generates exceptional airflow and works to dampen vibration levels. It is very important that the chassis top cover is properly installed and making a good seal in order for the cooling air to circulate properly through the chassis and cool the components. See Figure 6-2.

# **System Fan Failure**

Fan speed is controlled by system temperature via a BIOS setting. If a fan fails, the remaining fan will ramp up to full speed and the overheat/fan fail LED on the control panel will turn on. Replace any failed fan at your earliest convenience with the same type and model (the system can continue to run with a failed fan). Remove the top chassis cover while the system is still running to determine which of the fans has failed. Then power down the system before replacing a fan. Removing the power cord(s) is also recommended as a safety precaution.

# **Replacing System Cooling Fans**

#### 1. Removing a fan

After turning off the power to the system, first remove the chassis cover and unplug the fan cable from the motherboard. Unscrew the failed fan from the chassis and pull it completely out from the serverboard.

#### 2. Installing a new fan

Replace the failed fan with an identical 40-mm, 12 volt fan (available from Supermicro: p/n FAN-0086). Push the new fan into the vacant space in the housing while making sure the arrows on the top of the fan (indicating air direction) point in the same direction as the arrows on the other fans. Reposition the fan housing back over the two mounting posts in the chassis, then reconnect the fan wires to the same chassis fan headers you removed them from. Power up the system and check that the fan is working properly and that the LED on the control panel has turned off. Finish by replacing the chassis cover.

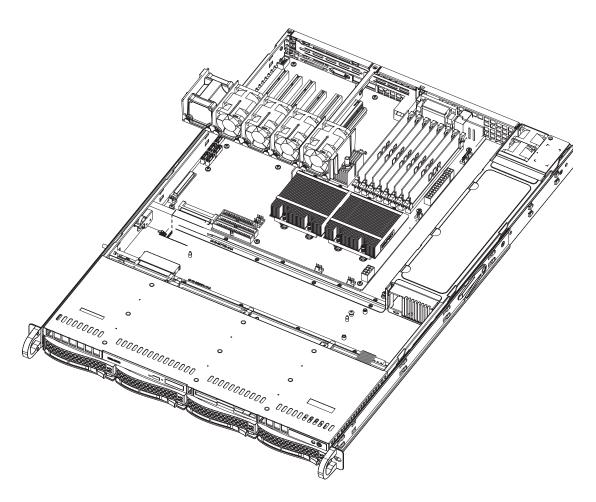



Figure 6-2. System Cooling Fans

# 6-4 Drive Bay Installation/Removal

# Removing the Front Bezel

If your system has a front bezel (optional) attached to the chassis, you must first remove it to gain access to the drive bays. To remove the bezel, first unlock the front of the chassis then press the release knob (see Figure 6-3). Carefully remove the bezel with both hands. A filter located within the bezel can be removed for replacement/cleaning. It is recommended that you keep a maintenance log of filter cleaning/replacement, since its condition will affect the airflow throughout the whole system.

1. Unlock
2. Press release knob
3. Remove bezel assembly

Figure 6-3. Removing the Front Bezel

# **Accessing the Drive Bays**

<u>SATA/SCSI Drives</u>: Because of their hotswap capability, you do not need to access the inside of the chassis or power down the system to install or replace SATA or SCSI drives. Proceed to the next sextion for instructions.

<u>DVD-ROM/Floppy Disk Drives</u>: For installing/removing a DVD-ROM or floppy disk drive, you will need to gain access to the inside of the 6015B-T+/6015B-8+ by removing the top cover of the chassis. Proceed to the "DVD-ROM and Floppy Drive Installation" section later in this chapter for instructions.

**Note:** Only "slim" DVD-ROM and floppy drives will fit into the 6015B-T+/6015B-8+.

#### **SATA/SCSI** Drive Installation

## 1. Mounting a SATA/SCSI drive in a drive carrier

The SATA and SCSI drives are mounted in drive carriers to simplify their installation and removal from the chassis. These carriers also help promote proper airflow for the drive bays. For this reason, even empty carriers without SATA/SCSI drives installed must remain in the chassis. To add a new SATA/SCSI drive, install a drive into the carrier with the printed circuit board side facing down so that the mounting holes align with those in the carrier. Secure the drive to the carrier with six screws, as shown in Figure 6-4.

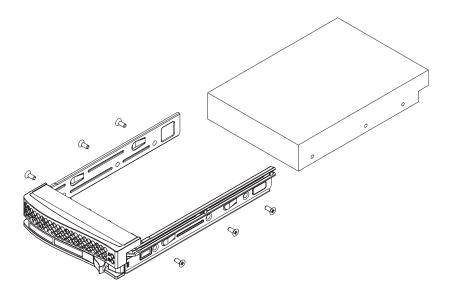



Figure 6-4. Mounting a SATA/SCSI Drive in a Carrier



Use caution when working around the SATA/SCSI backplane. Do not touch the backplane with any metal objects and make sure no ribbon cables touch the backplane or obstruct the holes, which aid in proper airflow.



<u>Important:</u> Regardless of how many SATA/SCSI hard drives are installed, all drive carriers must remain in the drive bays to maintain proper airflow.

## 2. Installing/removing hot-swap SATA/SCSI drives

The SATA/SCSI drive carriers are all easily accessible at the front of the chassis. These hard drives are hot-pluggable, meaning they can be removed and installed without powering down the system. To remove a carrier, push the release button located beside the drive LEDs. Then swing the colored handle fully out and use it to pull the unit straight out (see Figure 6-5).

**Note:** Your operating system must have RAID support to enable the hot-plug capability of the SATA/SCSI drives.

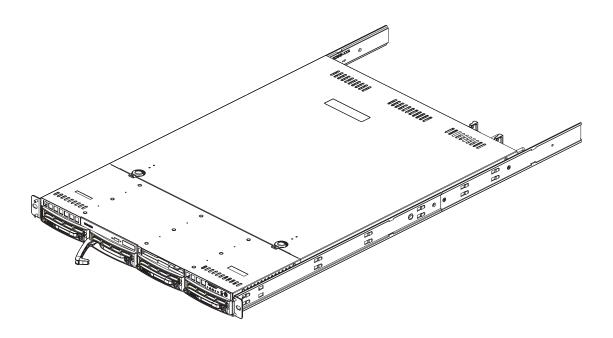



Figure 6-5. Removing a SATA/SCSI Drive from the Server

### SATA/SCSI Backplane

The SATA/SCSI drives plug into a backplane that provides power, drive ID and bus termination. A RAID controller can be used with the backplane to provide data security. The operating system you use must have RAID support to enable the hot-swap capability of the drives. The backplane is already preconfigured, so there are no jumpers or switches present on it.

## **DVD-ROM** and Floppy Drive Installation

The top cover of the chassis must be opened to gain full access to the DVD-ROM and floppy drive bays. The 6015B-T+/6015B-8+ accommodates only slim-line DVD-ROM drives. Side mounting brackets are needed to mount a slim-line DVD-ROM drive in the 6015B-T+/6015B-8+ server.

You must power down the system before installing or removing a floppy or DVD-ROM drive. First, release the retention screws that secure the server unit to the rack. Grasp the two handles on either side and pull the unit straight out until it locks (you will hear a "click"). Next, depress the two buttons on the top of the chassis to release the top cover and at the same time, push the cover away from you until it stops. You can then lift the top cover from the chassis to gain full access to the inside of the server.

With the chassis cover removed, unplug the power and data cables from the drive you want to remove. Then locate the locking tab at the rear of the drive. It will be on the left side of the drive when viewed from the front of the chassis. Pull the tab away from the drive and push the drive unit out the front of the chassis. Add a new drive by following this procedure in reverse order. You may hear a faint \*click\* of the locking tab when the drive is fully inserted. Remember to reconnect the data and power cables to the drive before replacing the chassis cover and restoring power to the system. Please be aware of the following:

- The floppy disk drive cable has seven twisted wires.
- A color mark on a cable typically designates the location of pin 1.
- A single floppy disk drive ribbon cable has 34 wires and two connectors to provide for two floppy disk drives. The connector with twisted wires always connects to drive A, and the connector that does not have twisted wires always connects to drive B.

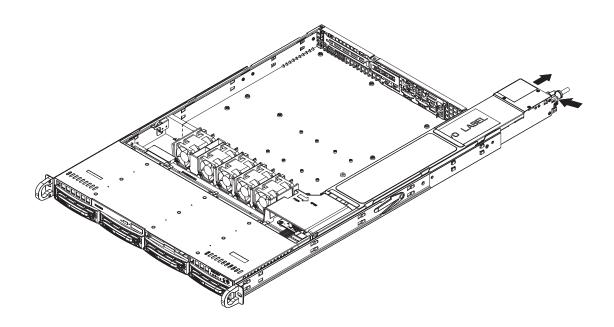
# 6-5 Power Supply

The SuperServer 6015B-T+/6015B-8+ has a single 700 watt power supply, which is auto-switching capable. This enables it to automatically sense and operate at a 100v to 240v input voltage. An amber light will be illuminated on the power supply when the power is off. An illuminated green light indicates that the power supply is operating.

# **Power Supply Failure**

If the power supply unit fails, the system will shut down and you will need to replace the unit. Replacement units can be ordered directly from Supermicro (see contact information in the Preface). As there is only one power supply unit in the 6015B-T+/6015B-8+, power must be completely removed from the server before removing and replacing the power supply unit for whatever reason.

# Removing/Replacing the Power Supply


#### 1. Removing the power supply

First unplug the power cord from the failed power supply module. To remove the failed power module, first locate the colored release tab on the back of the module. Push the tab to the right and then pull the module straight out with the handle provided (see Figure 6-6). The power supply wiring was designed to detach automatically when the module is pulled from the chassis.

#### 2. Installing a new power supply

Replace the failed power module with another PWS-0065 power supply module. Simply push the new power supply module into the power bay until you hear a click. Finish by plugging the AC power cord back into the module.

Figure 6-6. Removing/Replacing the Power Supply



# **Chapter 7**

# **BIOS**

# 7-1 Introduction

This chapter describes the Phoenix BIOS™ Setup utility for the X7DBR-8+/X7DBR-i+. The Phoenix ROM BIOS is stored in a flash chip and can be easily upgraded using a floppy disk-based program.

**Note:** Due to periodic changes to the BIOS, some settings may have been added or deleted and might not yet be recorded in this manual. Please refer to the Manual Download area of the Supermicro web site <a href="http://www.supermicro.com">http://www.supermicro.com</a> for any changes to the BIOS that may not be reflected in this manual.

# System BIOS

The BIOS is the Basic Input Output System used in all IBM® PC, XT™, AT®, and PS/2® compatible computers. The Phoenix BIOS stores the system parameters, types of disk drives, video displays, etc. in the CMOS. The CMOS memory requires very little electrical power. When the computer is turned off, a backup battery provides power to the CMOS Logic, enabling it to retain system parameters. Each time the computer is powered on the computer is configured with the values stored in the CMOS Logic by the system BIOS, which gains control at boot up.

### **How To Change the Configuration Data**

The CMOS information that determines the system parameters may be changed by entering the BIOS Setup utility. This Setup utility can be accessed by pressing the <Delete> key at the appropriate time during system boot. (See below.)

# Starting the Setup Utility

Normally, the only visible POST (Power On Self Test) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the BIOS Setup utility. From the main menu, you can access the other setup screens, such as the Security and Power menus. Beginning with Section 7-3, detailed descriptions are given for each parameter setting in the Setup utility.



**Warning:** Do not shut down or reset the system while updating BIOS to prevent possible boot failure.

# 7-2 Running Setup

\*Default settings are in bold text unless otherwise noted.

The BIOS setup options described in this section are selected by choosing the appropriate text from the main BIOS Setup screen. All displayed text is described in this section, although the screen display is often all you need to understand how to set the options (see next page).

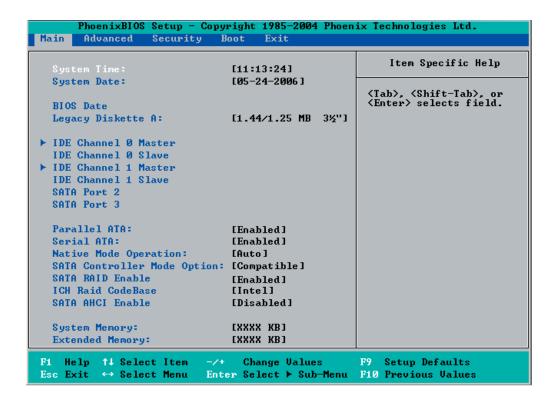
When you first power on the computer, the Phoenix BIOS™ is immediately activated.

While the BIOS is in control, the Setup program can be activated in one of two ways:

- 1. By pressing <Delete> immediately after turning the system on, or
- 2. When the message shown below appears briefly at the bottom of the screen during the POST (Power On Self-Test), press the <Delete> key to activate the main Setup menu:

### Press the <Delete> key to enter Setup

# 7-3 Main BIOS Setup


All main Setup options are described in this section. The main BIOS Setup screen is displayed below.

Use the Up/Down arrow keys to move among the different settings in each menu. Use the Left/Right arrow keys to change the options for each setting.

Press the <Esc> key to exit the CMOS Setup Menu. The next section describes in detail how to navigate through the menus.

Items that use submenus are indicated with the ▶ icon. With the item highlighted, press the <Enter> key to access the submenu.

# Main BIOS Setup Menu



# **Main Setup Features**

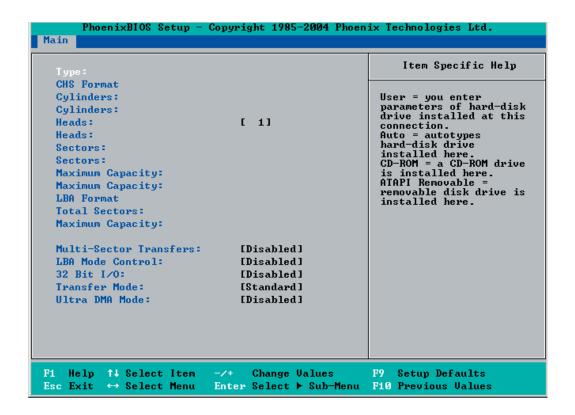
# **System Time**

To set the system date and time, key in the correct information in the appropriate fields. Then press the <Enter> key to save the data.

# **System Date**

Using the arrow keys, highlight the month, day and year fields, and enter the correct data. Press the <Enter> key to save the data.

# **BIOS Date**


This field displays the date when this version of BIOS was built.

# Legacy Diskette A

This setting allows the user to set the type of floppy disk drive installed as diskette A. The options are Disabled, 360Kb 5.25 in, 1.2MB 5.25 in, 720Kb 3.5 in, **1.44/1.25MB**, 3.5 in and 2.88MB 3.5 in.

# ►IDE Channel 0 Master/Slave, IDE Channel 1 Master/Slave, SATA Port2 and SATA Port3

These settings allow the user to set the parameters of IDE Channel 0 Master/ Slave, IDE Channel 1 Master/Slave, IDE Channel 2 Master, IDE Channel 3 Master slots. Hit <Enter> to activate the following sub-menu screen for detailed options of these items. Set the correct configurations accordingly. The items included in the sub-menu are:



# **Type**

Selects the type of IDE hard drive. The options are **Auto**, (which allows the BIOS to automatically determine the hard drive's capacity, number of heads, etc.), a number from 1-39 to select a predetermined type of hard drive, CDROM and ATAPI Removable. The option "User" will allow the user to enter the parameters of the HDD installed at this connection. The option "Auto" will allow the BIOS to automatically configure the parameters of the HDD installed at the connection. Choose the option 1-39 to select a predetermined HDD type. Select CDROM if a CDROM drive is installed. Select ATAPI if a removable disk drive is installed.

### **CHS Format**

The following items will be displayed by the BIOS:

**TYPE:** This item displays the type of IDE or SATA Device.

**Cylinders:** This item indicates the status of Cylinders.

**Headers:** This item indicates the number of headers.

**Sectors:** This item displays the number of sectors.

**Maximum Capacity:** This item displays the maximum storage capacity of the system.

### **LBA Format**

The following items will be displayed by the BIOS:

**Total Sectors:** This item displays the number of total sectors available in the LBA Format.

**Maximum Capacity:** This item displays the maximum capacity in the LBA Format.

### **Multi-Sector Transfers**

This item allows the user to specify the number of sectors per block to be used in multi-sector transfer. The options are **Disabled**, 4 Sectors, 8 Sectors, and 16 Sectors.

#### LBA Mode Control

This item determines whether the Phoenix BIOS will access the IDE Channel 0 Master Device via the LBA mode. The options are Enabled and **Disabled**.

### 32 Bit I/O

This option allows the user to enable or disable the function of 32-bit data transfer. The options are Enabled and **Disabled**.

#### Transfer Mode

This option allows the user to set the transfer mode. The options are **Standard**, Fast PIO1, Fast PIO2, Fast PIO3, Fast PIO4, FPIO3/DMA1 and FPIO4/DMA2.

### **Ultra DMA Mode**

This option allows the user to select Ultra DMA Mode. The options are **Disabled**, Mode 0, Mode 1, Mode 2, Mode 3, Mode 4, and Mode 5.

### Parallel ATA

This setting allows the user to enable or disable the function of Parallel ATA. The options are Disabled and **Enabled**.

### **Serial ATA**

This setting allows the user to enable or disable the function of Serial ATA. The options are Disabled and **Enabled**.

# **Native Mode Operation**

Select the native mode for ATA. The options are: Serial ATA, Both, and **Auto**.

### **SATA Controller Mode**

Select **Compatible** to allow the SATA and PATA drives to be automatically-detected and be placed in the Legacy Mode by the BIOS. Select Enhanced to allow the SATA and PATA drives to be to be automatically-detected and be placed in the Native IDE Mode. (\*Note: The Enhanced mode is supported by the Windows 2000 OS or a later version.)

When the SATA Controller Mode is set to "Enhanced", the following items will display:

# Serial ATA (SATA) RAID Enable

Select Enable to enable Serial ATA RAID Functions. (\*For the Windows OS environment, use the RAID driver if this feature is set to Enabled. When this item is set to Enabled, the item: "ICH RAID Code Base" will be available for you to select either Intel or Adaptec Host RAID firmware. If this item is set to **Disabled**, the item-SATA AHCI Enable will be available.) The options are Enabled and **Disabled**.

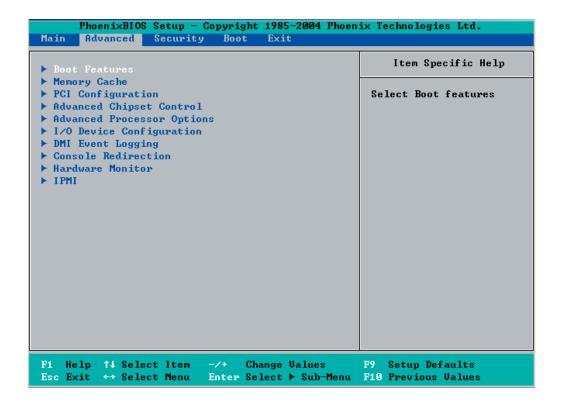
### ICH RAID Code Base

Select Intel to enable Intel's SATA RAID firmware. Select Adaptec to use Adaptec's HostRAID firmware. The options are **Intel** and Adaptec.

# **SATA AHCI**

Select Enable to enable the function of Serial ATA Advanced Host Interface. (\*Take caution when using this function. This feature is for advanced programmers only. The options are Enabled and **Disabled**.)

# **System Memory**


This display informs you how much system memory is recognized as being present in the system.

# **Extended Memory**

This display informs you how much extended memory is recognized as being present in the system.

# 7-4 Advanced Setup

Choose Advanced from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. The items with a triangle beside them have sub menus that can be accessed by highlighting the item and pressing <Enter>.



#### **▶**Boot Features

Access the submenu to make changes to the following settings.

### **QuickBoot Mode**

If enabled, this feature will speed up the POST (Power On Self Test) routine by skipping certain tests after the computer is turned on. The settings are **Enabled** and Disabled. If Disabled, the POST routine will run at normal speed.

#### QuietBoot Mode

This setting allows you to **Enable** or Disable the graphic logo screen during boot-up.

## **POST Errors**

Set to **Enabled** to display POST Error Messages if an error occurs during bootup. If set to Disabled, the system will continue to boot without displaying any error messages even when a boot error occurs.

### ACPI Mode

Use the setting to determine if you want to employ ACPI (Advanced Configuration and Power Interface) power management on your system. The options are **Yes** and No.

### **Power Button Behavior**

If set to **Instant-Off**, the system will power off immediately as soon as the user hits the power button. If set to 4-sec., the system will power off when the user presses the power button for 4 seconds or longer. The options are instant-off and 4-sec override.

### Resume On Modem Ring

Select On to "wake your system up" when an incoming call is received by your modem. The options are On and **Off**.

### **Power Loss Control**

This setting allows you to choose how the system will react when power returns after an unexpected loss of power. The options are Stay Off, Power On, and Last State.

### Watch Dog

If enabled, this option will automatically reset the system if the system is not active for more than 5 minutes. The options are Enabled and **Disabled**.

## **Summary Screen**

This setting allows you to **Enable** or Disable the summary screen which displays the system configuration during bootup.

# ► Memory Cache

# Cache System BIOS Area

This setting allows you to designate a reserve area in the system memory to be used as a System BIOS buffer to allow the BIOS write (cache) its data into this reserved memory area. Select "Write Protect" to enable this function, and this area will be reserved for BIOS ROM access only. Select "Uncached" to disable this function and make this area available for other devices.

### Cache Video BIOS Area

This setting allows you to designate a reserve area in the system memory to be used as a Video BIOS buffer to allow the BIOS write (cache) its data into this reserved memory area. Select "Write Protect" to enable the function and this area will be reserved for Video BIOS ROM access only. Select "Uncached" to disable this function and make this area available for other devices.

### Cache Base 0-512K

If enabled, this feature will allow the data stored in the base memory area (block 0-512K) to be cached (written) into a buffer, a storage area in the Static DROM (SDROM) or to be written into CPU's L1/L2 cache to speed up CPU operations. Select "Uncached" to disable this function. Select "Write Through" to allow data to be cached into the buffer and written into system memory at the same time. Select "Write Protect" to prevent data from being written into the base memory area of block 0-512K. Select "Write Back" to allow the CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are Uncached, Write Through, Write Protect and **Write Back**.

### Cache Base 512K-640K

If enabled, this feature will allow the data stored in the memory area 512K-640K to be cached (written) into a buffer, a storage area in the Static DROM (SDROM) or written into the CPU's L1, L2, L3 cache to speed up CPU operations. Select "Uncached" to disable this function. Select "Write Through" to allow data to be cached into the buffer and written into the system memory at the same time. Select "Write Protect" to prevent data from being written into the base memory area of Block 512-640K. Select "Write Back" to allow CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are Uncached, Write Through, Write Protect and **Write Back**.

# **Cache Extended Memory**

If enabled, this feature will allow the data stored in the extended memory area to be cached (written) into a buffer, a storage area in the Static DROM (SDROM) or written into L1, L2, L3 cache inside the CPU to speed up CPU operations.

Select "Uncached" to disable this function. Select "Write Through" to allow data to be cached into the buffer and written into the system memory at the same time. Select "Write Protect" to prevent data from being written into the base memory area of Block 0-512K. Select "Write Back" to allow CPU to write data back directly from the buffer without writing data to the System Memory for fast CPU data processing and operation. The options are Uncached, Write Through, Write Protect, and **Write Back**.

### **Discrete MTRR Allocation**

If enabled, MTRRs (-Memory Type Range Registers) are configured as distinct, separate units and cannot be overlapped. If enabled, the user can achieve better graphic effects when using a Linux graphic driver that requires the write-combining configuration with 4GB or more memory. The options are Enabled and **Disabled**.

# ► PCI Configuration

Access the submenu to make changes to the following settings for PCI devices.

# Onboard GLAN1/Onboard GLAN2 (Gigabit- LAN) OPROM Configure

Enabling this option provides the capability to boot from GLAN. The options are **Disabled** and Enabled.

# **Onboard SCSI OPROM Configure**

Enabling this option provides the capitally to boot from SCSI HDD. The options are Disabled and **Enabled**.

# **PCI Parity Error Forwarding**

The feature allows SERR and PERR errors detected in PCI slots to be sent (forwarded) to the BIOS DMI Event Log for the user to review. The options are Enabled and **Disabled**.

# **Reset Configuration Data**

If set to Yes, this setting clears the Extended System Configuration Data- (ESCD) area. The options are Yes and **No**.

# Frequency for PCI-X#1, MASS (-Mass Data Storage)/ZCR (-Zero Channel RAID)

This option allows the user to change the bus frequency for the devices installed in the slot indicated. The options are **Auto**, PCI 33 MHz, PCI 66 MHz, PCI-X 66 MHz, PCI-X 100 MHz, and PCI-X 133 MHz. (\*Note: PCI-X 133MHz is not supported by ZCR.)

# ► Slot1 PCI-X 133MHz, Slot2 PCI-Exp x8/x4, Slot3 PCI-Exp x4, Slot4 PCI-Exp x8 and Slot5 PCI-Exp x8

Access the submenu for each of the settings above to make changes to the following:

# **Option ROM Scan**

When enabled, this setting will initialize the device expansion ROM. The options are **Enabled** and Disabled.

#### **Enable Master**

This setting allows you to enable the selected device as the PCI bus master. The options are **Enabled** and Disabled.

# **Latency Timer**

This setting allows you to set the clock rate for Bus Master. A high-priority, high-throughout device may benefit from a greater clock rate. The options are **Default**, 0020h, 0040h, 0060h, 0080h, 00A0h, 00C0h, and 00E0h. For Unix, Novell and other Operating Systems, please select the option: other. If a drive fails after the installation of a new software, you might want to change this setting and try again. A different OS requires a different Bus Master clock rate.

# Large Disk Access Mode

This setting determines how large hard drives are to be accessed. The options are **DOS** or Other (for Unix, Novelle NetWare and other operating systems).

# ► Advanced Chipset Control

Access the submenu to make changes to the following settings.



**Warning**: Exercise caution when changing the Advanced settings. Incorrect values entered may cause system malfunction. Also, a very high DRAM frequency or incorrect DRAM timing may cause system instability. When this occurs, revert to the default setting.

# **SERR Signal Condition**

This setting specifies the ECC Error conditions that an SERR# is to be asserted. The options are None, **Single Bit**, Multiple Bit, and Both.

# 4GB PCI Hole Granularity

This feature allows you to select the granularity of PCI hole for PCI slots. If MTRRs are not enough, this option may be used to reduce MTRR occupation. The options are: **256 MB**, 512 MB, 1GB and 2GB.

# **Memory Branch Mode**

This option determines how the two memory branches operate. System address space can either be interleaved between the two branches or Sequential from one branch to another. Mirror mode allows data correction by maintaining two copies of data in two branches. Single Channel 0 allows a single DIMM population during system manufacturing. The options are **Interleave**, Sequential, Mirroring, and Single Channel 0.

# **Branch 0 Rank Sparing**

Select enable to enable the sparing feature for Branch 0 Rank. The options are Enabled and **Disabled**.

# **Branch 1 Rank Sparing**

Select enable to enable the sparing feature for Branch 0 Rank. The options are Enabled and **Disabled**.

### Enhanced x8 Detection

Select **Enabled** to enable Enhanced x8 DRAM UC Error Detection. The options are Disabled and **Enabled**.

# **Crystal Beach Features**

This feature cooperates with Intel I/O AT (Acceleration Technology) to accelerate the performance of TOE devices. (\*Note: A TOE device is a specialized, dedicated processor that is installed on an add-on card or a network card to handle some or all packet processing of this add-on card. For this motherboard, the TOE device is built inside the ESB 2 South Bridge chip.) The options are **Enabled** and Disabled.

# Route Port 80h Cycles to

This feature allows the user to decide which bus to send debug information to. The options are PCI and **LPC**.

### **Clock Spectrum Feature**

If Enabled, the BIOS will monitor the level of Electromagnetic Interference caused by the components and will attempt to decrease the interference whenever needed. The options are Enabled and **Disabled**.

### **Enabling Multi-Media Timer**

Select Yes to activate a set of timers that are alternative to the traditional 8254 timers for the OS use. The options are Yes and **No**.

### **USB** Function

Select Enabled to enable the function of USB devices specified. The settings are **Enabled** and Disabled.

# **Legacy USB Support**

This setting allows you to enable support for Legacy USB devices. The settings are **Enabled** and Disabled.

# ► Advanced Processor Options

Access the submenu to make changes to the following settings.

# **CPU Speed**

This is a display that indicates the speed of the installed processor.

### Frequency Ratio (Available when supported by the CPU.)

The feature allows the user to set the internal frequency multiplier for the CPU. The options are: **Default**, x12, x13, x14, x15, x16, x17 and x18.

### Hyperthreading (Available when supported by the CPU.)

Set to Enabled to use the Hyperthreading Technology, which will result in increased CPU performance. The options are Disabled and **Enabled**.

# Core-Multi-Processing (Available when supported by the CPU.)

Set to Enabled to use a processor's Second Core and beyond. (Please refer to Intel's web site for more information.) The options are Disabled and **Enabled**.

# Machine Checking (Available when supported by the CPU.)

Set to Enabled to activate the function of Machine Checking and allow the CPU to detect and report hardware (machine) errors via a set of model-specific registers (MSRs). The options are Disabled and **Enabled**.

# Thermal Management 2 (Available when supported by the CPU.)

Set to **Enabled** to use Thermal Management 2 (TM2) which will lower CPU voltage and frequency when the CPU temperature reaches a predefined overheat threshold. Set to Disabled to use Thermal Manager 1 (TM1), allowing CPU clocking to be regulated via CPU Internal Clock modulation when the CPU temperature reaches the overheat threshold.

### C1 Enhanced Mode (Available when supported by the CPU.)

Set to Enabled to enable Enhanced Halt State to lower CPU voltage/frequency to prevent overheat. The options are Enabled and **Disabled**. (\*Note: please refer to Intel's web site for detailed information.)

### Execute Disable Bit (Available when supported by the CPU.)

Set to Enabled to enable Execute Disable Bit and allow the processor to classify areas in memory where an application code can execute and where it cannot, and thus preventing a worm or a virus from inserting and creating a flood of codes to overwhelm the processor or damage the system during an attack.

**Note:** this feature is available when your OS and your CPU support the function of Execute Disable Bit.) The options are **Disabled** and Enabled. (For more information regarding hardware/software support for this function, please refer to Intel's and Microsoft's web sites.)

# Adjacent Cache Line Prefetch (Available when supported by the CPU.)

The CPU fetches the cache line for 64 bytes if this option is set to Disabled. The CPU fetches both cache lines for 128 bytes as comprised if Enabled. The options are **Disabled** and Enabled.

### Hardware Prefetcher (Available when supported by the CPU.)

Set to this option to **enabled** to enable the hardware components that are used in conjunction with software programs to prefetch data in order to shorten execution cycles and maximize data processing efficiency. The options are Disabled and **Enabled**.

# PECI Absent Alarm (Available when supported by the CPU.)

If set to **Enabled**, the PECI Absent Alarm will be activated if the function of PECI (Platform Environment Control Interface) is not available for the onboard process(s) or for the motherboard. The options are Disabled and **Enabled**.

# Intel <R> Virtualization Technology (Available when supported by the CPU.)

Select Enabled to use the feature of Virtualization Technology to allow one platform to run multiple operating systems and applications in independent partitions, creating multiple "virtual" systems in one physical computer. The options are Enabled and **Disabled**. (\*Note: If there is any change to this setting, you will need to power off and restart the system for the change to take effect.) Please refer to Intel's web site for detailed information.

# Intel EIST Support (Available when supported by the CPU.)

Select Enabled to use the Enhanced Intel SpeedStep Technology and allows the system to automatically adjust processor voltage and core frequency in an effort to reduce power consumption and heat dissipation. The options are Enabled and Disabled. Please refer to Intel's web site for detailed information.

# ►I/O Device Configuration

Access the submenu to make changes to the following settings.

### **KBC Clock Input**

This setting allows you to select clock frequency for KBC. The options are 6MHz, 8MHz, **12MHz**, and 16MHz.

### Serial Port A

This setting allows you to assign control of serial port A. The options are **Enabled** (user defined), Disabled, and Auto (BIOS- or OS- controlled).

### Base I/O Address

This setting allows you to select the base I/O address for serial port A. The options are **3F8**, 2F8, 3E8, and 2E8.

# Interrupt

This setting allows you to select the IRQ (interrupt request) for serial port A. The options are IRQ3 and IRQ4.

### Serial Port B

This setting allows you to assign control of serial port B. The options are **Enabled** (user defined), Disabled, Auto (BIOS controlled) and OS Controlled.

#### Mode

This setting allows you to set the type of device that will be connected to serial port B. The options are **Normal** and IR (for an infrared device).

### Base I/O Address

This setting allows you to select the base I/O address for serial port B. The options are 3F8, **2F8**, 3E8 and 2E8.

## Interrupt

This setting allows you to select the IRQ (interrupt request) for serial port B. The options are **IRQ3** and IRQ4.

# **Floppy Disk Controller**

This setting allows you to assign control of the floppy disk controller. The options are **Enabled** (user defined), Disabled, and Auto (BIOS and OS controlled).

### Base I/O Address

This setting allows you to select the base I/O address for the Floppy port. The options are **Primary** and Secondary.

# **▶**DMI Event Logging

Access the submenu to make changes to the following settings.

# **Event Log Validity**

This is a display to inform you of the event log validity. It is not a setting.

# **Event Log Capacity**

This is a display to inform you of the event log capacity. It is not a setting.

# **View DMI Event Log**

Highlight this item and press <Enter> to view the contents of the event log.

# **Event Logging**

This setting allows you to **Enable** or Disable event logging.

# **ECC Event Logging**

This setting allows you to **Enable** or Disable ECC event logging.

### Mark DMI Events as Read

Highlight this item and press <Enter> to mark the DMI events as read.

# Clear All DMI Event Logs

Select Yes and press <Enter> to clear all DMI event logs. The options are Yes and **No**.

### ► Console Redirection

Access the submenu to make changes to the following settings.

### **COM Port Address**

This item allows you to specify to redirect the console to Onboard COM A or Onboard COM B. This setting can also be **Disabled**.

### **BAUD Rate**

This item allows you to select the BAUD rate for console redirection. The options are 300, 1200, 2400, 9600, **19.2K**, 38.4K, 57.6K, and 115.2K.

# **Console Type**

This item allows you to choose from the available options to select the console type for console redirection. The options are VT100, VT100,8bit, PC-ANSI, 7bit, PC ANSI, VT100+, VT-UTF8 and ASCII.

#### Flow Control

This item allows you to choose from the available options to select the flow control for console redirection. The options are: None, XON/XOFF, and **CTS/RTS**.

### **Console Connection**

This item allows you to choose select the console connection: either **Direct** or Via Modem.

## **Continue CR after POST**

Choose whether to continue with console redirection after the POST routine. The options are On and **Off**.

# ► Hardware Monitor Logic

Note: The Phoenix BIOS will automatically detect the type of CPU(s) and hardware monitoring chip used on the motherboard and will display the Hardware Monitoring Screen accordingly. Your Hardware Monitoring Screen may look like the one shown on this page, on p. 7-19, or on p. 7-20, depending on the type of CPU(s) and HW Monitoring chip you are using.

# **CPU Temperature Threshold**

This option allows the user to set a CPU temperature threshold that will activate the alarm system when the CPU temperature reaches this pre-set temperature threshold. The options are 70°C, 75°C, **80°C** and 85°C.

Highlight this and hit <Enter> to see monitor data for the following items:

**CPU1 Temperature** 

**CPU1 Second Core Temperature** 

**CPU2 Temperature** 

**CPU2 Second Core Temperature** 

**System Temperature** 

**Fan1-Fan5 Speeds**: If the feature of Auto Fan Control is enabled, the BIOS will automatically display the status of the fans indicated in this item.

### **Fan Speed Control Modes**

This feature allows the user to decide how the system controls the speeds of the onboard fans. The CPU temperature and the fan speed are correlative. When the CPU on-die temperature increases, the fan speed will also increase, and vise versa. This option is to "3-pin fan" to allow the fan speed to be controlled by voltage. Select "Disable" to disable the fan speed control function to allow the onboard fans to run at the full speed (12V) at all the time. The Options are: **1. Disable**, 2. 3-pin (Server), 3. 3-pin (Workstation).

# **Voltage Monitoring**

The following items will be monitored and displayed:

P12V VR0

P12V VR1

**FSB VTT** 

PXHV Vcore

ES2B Vcore

CPU1Vcore

CPU2Vcore

P3V3

# ► Hardware Monitor Logic

# **CPU Temperature Threshold (See note on page 7-18.)**

This option allows the user to set a CPU temperature threshold that will activate the alarm system when the CPU temperature reaches this pre-set temperature threshold. The options are 70°C, 75°C, **80°C** and 85°C.

Highlight this and hit <Enter> to see monitor data for the following items:

**CPU1 Temperature** 

**CPU1 Second Core** 

**CPU2 Temperature** 

**CPU2 Second Core** 

**System Temperature** 

**Fan1-Fan5 Speeds**: If the feature of Auto Fan Control is enabled, the BIOS will automatically display the status of the fans indicated in this item.

# **Fan Speed Control Modes**

This feature allows the user to decide how the system controls the speeds of the onboard fans. The CPU temperature and the fan speed are correlative. When the CPU on-die temperature increases, the fan speed will also increase, and vise versa. This option is to "3-pin fan" to allow the fan speed to be controlled by voltage. Select "Disable" to disable the fan speed control function to allow the onboard fans to run at the full speed (12V) at all the time. The Options are: **1. Disable**, 2. 3-pin (Server), 3. 3-pin (Workstation).

# **Voltage Monitoring**

The following items will be monitored and displayed:

Vcore A

Vcore B

-12V

P1V5

+3.3V

+12V

5Vsb

5VDD

P\_VTT

Vbat

## ► Hardware Monitor Logic (See note on page 7-18.)

# **CPU Temperature Threshold**

This option allows the user to set a CPU temperature threshold that will activate the alarm system when the CPU temperature reaches this pre-set temperature threshold. The hardcode default setting is **75°C**.

**CPU1 Temperature/CPU1 Second Core** 

CPU2 Temperature/CPU2 Second Core

Temperature Monitoring (Available if supported by the CPU)

Highlight this and hit <Enter> to see monitor data for the following PECI (Platform Environment Control Interface) items:

**PECI Agent 1 Temperature** 

**PECI Agent 2 Temperature** 

**PECI Agent 3 Temperature** 

**PECI Agent 4 Temperature** 

**System Temperature** 

**Fan1-Fan5 Speeds**: If the feature of Auto Fan Control is enabled, the BIOS will automatically display the status of the fans indicated in this item.

# **Fan Speed Control Modes**

This feature allows the user to decide how the system controls the speeds of the onboard fans. The CPU temperature and the fan speed are correlative. When the CPU on-die temperature increases, the fan speed will also increase, and vise versa. This option is to "3-pin fan" to allow the fan speed to be controlled by voltage. Select "Disable" to disable the fan speed control function to allow the onboard fans to run at the full speed (12V) at all the time. The Options are: **1. Disable**, 2. 3-pin (Server), 3. 3-pin (Workstation).

# **Voltage Monitoring**

The following items will be monitored and displayed:

Vcore A:

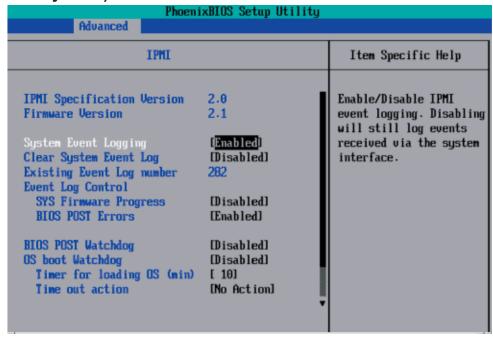
Vcore B:

-12V

P1V2\_NIC\_SEN

+3.3V

+12V


5Vsb

5VDD

P\_VTT

Vbat

# ▶IPMI (The option is available only when an IPMI card is installed in the system.)



**IPMI Specification Version:** This item displays the current IPMI Version.

**Firmware Version:** This item displays the current Firmware Version.

# System Event Logging

Select Enabled to enable IPMI Event Logging. When this function is set to Disabled, the system will continue to log events received via system interface. The options are **Enabled** and Disabled.

# **Clear System Event Logging**

Enabling this function to force the BIOS to clear the system event logs during the next cold boot. The options are Enabled and **Disabled**.

# **Existing Event Log Number**

This item displays the number of the existing event log.

### **Event Log Control**

### **System Firmware Progress**

Enabling this function to log POST progress. The options are Enabled and **Disabled**.

### **BIOS POST Errors**

Enabling this function to log POST errors. The options are Enabled and **Disabled**.

### **BIOS POST Watch Dog**

Set to Enabled to enable POST Watch Dog. The options are Enabled and **Disabled**.

# **OS Boot Watch Dog**

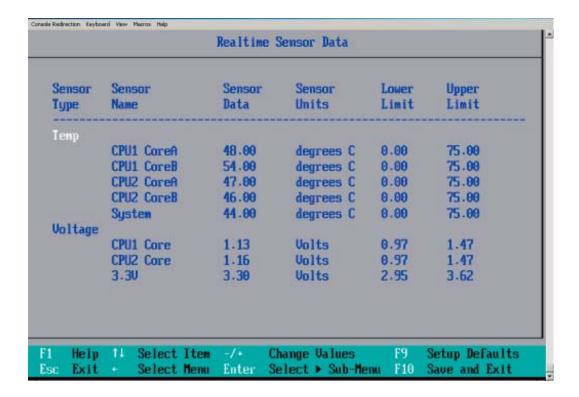
Set to Enabled to enable OS Boot Watch Dog. The options are Enabled and **Disabled**.

# Timer for Loading OS (Minutes)

This feature allows the user to set the time value (in minutes) for the previous item: OS Boot Watch Dog by keying-in a desired number in the blank. The default setting is 10 (minutes.) (Please ignore this option when OS Boot Watch Dog is set to "Disabled".)

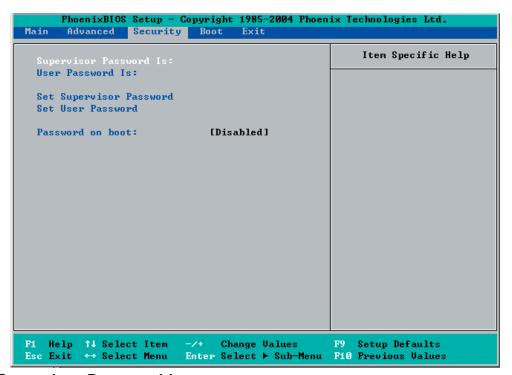
# **Time Out Option**

This feature allows the user to determine what action to take in an event of a system boot failure. The options are **No Action**, **Reset**, **Power Off and Power Cycles**.


# ► System Event Log/System Event Log (List Mode)

These options display the System Event (SEL) Log and System Event (SEL) Log in List Mode. Items include: SEL (System Event Log) Entry Number, SEL Record ID, SEL Record Type, Time Stamp, Generator ID, SEL Message Revision, Sensor Type, Sensor Number, SEL Event Type, Event Description, and SEL Event Data.

```
System Event Log
SEL Entry Number
SEL Record ID =
                     0001
SEL Record Type =
                     02 - System Event Record
                     02.10.2006 17:11:23
Timestamp =
Generator Id =
                     20 00
SEL Message Rev =
                     84
Sensor Type =
                     02 - Voltage
                     0A - -12U
Sensor Number =
SEL Event Type =
                     01 - Threshold
Event Description =
                    Lower Non-critical Going Low, Assertion
SEL Event Data =
                     50 06 0E
              Select Item
                                  Change Values
                                                          Setup Defaults
   Help
              Select Menu
                           Enter
                                  Select ▶ Sub-Menu
                                                     F10
                                                          Save and Exit
   Exit
```


## ▶ Realtime Sensor Data

This feature display information from motherboard sensors, such as temperatures, fan speeds and voltages of various components.



# 7-5 Security

Choose Security from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. Security setting options are displayed by highlighting the setting using the arrow keys and pressing <Enter>. All Security BIOS settings are described in this section.



# Supervisor Password Is:

This displays whether a supervisor password has been entered for the system. Clear means such a password has not been used and Set means a supervisor password has been entered for the system.

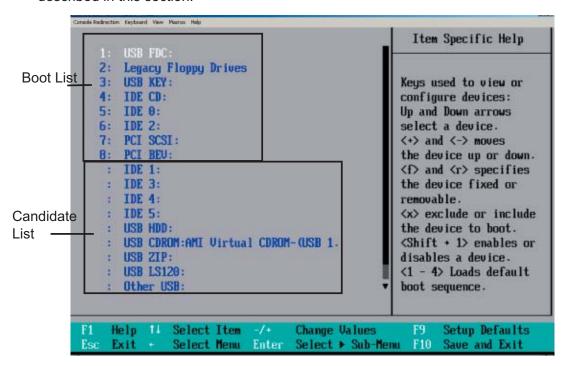
### **User Password Is:**

This displays whether a user password has been entered for the system. Clear means such a password has not been used and Set means a user password has been entered for the system.

### **Set Supervisor Password**

When the item "Set Supervisor Password" is highlighted, hit the <Enter> key. When prompted, type the Supervisor's password in the dialogue box to set or to change supervisor's password, which allows access to the BIOS.

### Set User Password

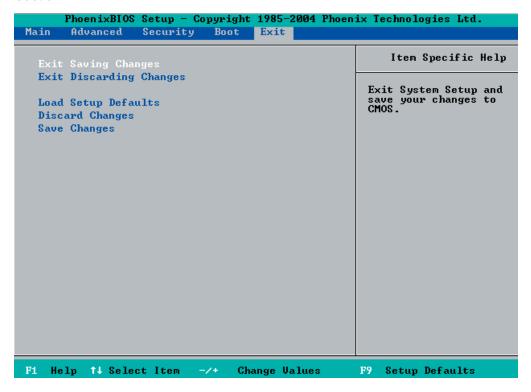

When the item "Set User Password" is highlighted, hit the <Enter> key. When prompted, type the user's password in the dialogue box to set or to change the user's password, which allows access to the system at boot-up.

### **Password on Boot**

This setting allows you to require a password to be entered when the system boots up. The options are **Enabled** (password required) and Disabled (password not required).

## **7-6** Boot

Choose Boot from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. See details on how to change the order and specs of boot devices in the Item Specific Help window. All Boot BIOS settings are described in this section.




# **Boot Priority Order/Excluded from Boot Orders**

The devices included in the boot list section (above) are bootable devices listed in the sequence of boot order as specified. The boot functions for the devices included in the candidate list (above) are currently disabled. Use a <+> key or a <-> key to move the device up or down. Use the <f> key or the <r> key to specify the type of an USB device, either fixed or removable. You can select one item from the boot list and hit the <x> key to remove it from the list of bootable devices (to make its resource available for other bootable devices). Subsequently, you can select an item from the candidate list and hit the <x> key to remove it from the candidate list and put it in the boot list. This item will then become a bootable device. See details on how to change the priority of boot order of devices in the "Item Specific Help" window.

### **7-7** Exit

Choose Exit from the Phoenix BIOS Setup Utility main menu with the arrow keys. You should see the following display. All Exit BIOS settings are described in this section.



# **Exit Saving Changes**

Highlight this item and hit <Enter> to save any changes you made and to exit the BIOS Setup utility.

# **Exit Discarding Changes**

Highlight this item and hit <Enter> to exit the BIOS Setup utility without saving any changes you may have made.

### **Load Setup Defaults**

Highlight this item and hit <Enter> to load the default settings for all items in the BIOS Setup. These are the safest settings to use.

# **Discard Changes**

Highlight this item and hit <Enter> to discard (cancel) any changes you made. You will remain in the Setup utility.

# **Save Changes**

Highlight this item and hit <Enter> to save any changes you made. You will remain in the Setup utility.

# **Appendix A**

# **BIOS POST Messages**

During the Power-On Self-Test (POST), the BIOS will check for problems. If a problem is found, the BIOS will activate an alarm or display a message. The following is a list of such BIOS messages.

#### **Failure Fixed Disk**

Fixed disk is not working or not configured properly. Check to see if fixed disk is attached properly. Run Setup. Find out if the fixed-disk type is correctly identified.

### Stuck key

Stuck key on keyboard.

# **Keyboard error**

Keyboard not working.

### **Keyboard Controller Failed**

Keyboard controller failed test. May require replacing keyboard controller.

# Keyboard locked - Unlock key switch

Unlock the system to proceed.

### Monitor type does not match CMOS - Run SETUP

Monitor type not correctly identified in Setup

#### Shadow Ram Failed at offset: nnnn

Shadow RAM failed at offset **nnnn** of the 64k block at which the error was detected.

### System RAM Failed at offset: nnnn

System RAM failed at offset **nnnn** of in the 64k block at which the error was detected.

**Extended RAM Failed at offset: nnnn** Extended memory not working or not configured properly at offset **nnnn**.

### System battery is dead - Replace and run SETUP

The CMOS clock battery indicator shows the battery is dead. Replace the battery and run Setup to reconfigure the system.

### System CMOS checksum bad - Default configuration used

System CMOS has been corrupted or modified incorrectly, perhaps by an application program that changes data stored in CMOS. The BIOS installed Default Setup Values. If you do not want these values, enter Setup and enter your own values. If the error persists, check the system battery or contact your dealer.

### System timer error

The timer test failed. Requires repair of system board.

#### Real time clock error

Real-Time Clock fails BIOS hardware test. May require board repair.

### Check date and time settings

BIOS found date or time out of range and reset the Real-Time Clock. May require setting legal date (1991-2099).

### Previous boot incomplete - Default configuration used

Previous POST did not complete successfully. POST loads default values and offers to run Setup. If the failure was caused by incorrect values and they are not corrected, the next boot will likely fail. On systems with control of **wait states**, improper Setup settings can also terminate POST and cause this error on the next boot. Run Setup and verify that the waitstate configuration is correct. This error is cleared the next time the system is booted.

### Memory Size found by POST differed from CMOS

Memory size found by POST differed from CMOS.

### Diskette drive A error

### Diskette drive B error

Drive A: or B: is present but fails the BIOS POST diskette tests. Check to see that the drive is defined with the proper diskette type in Setup and that the diskette drive is attached correctly.

### Incorrect Drive A type - run SETUP

Type of floppy drive A: not correctly identified in Setup.

### Incorrect Drive B type - run SETUP

Type of floppy drive B: not correctly identified in Setup.

### System cache error - Cache disabled

RAM cache failed and BIOS disabled the cache. On older boards, check the cache jumpers. You may have to replace the cache. See your dealer. A disabled cache slows system performance considerably.

### **CPU ID:**

CPU socket number for Multi-Processor error.

#### **EISA CMOS** not writeable

ServerBIOS2 test error: Cannot write to EISA CMOS.

#### **DMA Test Failed**

ServerBIOS2 test error: Cannot write to extended **DMA** (Direct Memory Access) registers.

#### **Software NMI Failed**

ServerBIOS2 test error: Cannot generate software NMI (Non-Maskable Interrupt).

### Fail-Safe Timer NMI Failed

ServerBIOS2 test error: Fail-Safe Timer takes too long.

### device Address Conflict

Address conflict for specified device.

### Allocation Error for: device

Run ISA or EISA Configuration Utility to resolve resource conflict for the specified **device**.

### **CD ROM Drive**

CD ROM Drive identified.

# **Entering SETUP ...**

Starting Setup program

### Failing Bits: nnnn

The hex number **nnnn** is a map of the bits at the RAM address which failed the memory test. Each 1 (one) in the map indicates a failed bit. See errors 230, 231, or 232 above for offset address of the failure in System, Extended, or Shadow memory.

#### Fixed Disk n

Fixed disk n (0-3) identified.

# **Invalid System Configuration Data**

Problem with NVRAM (CMOS) data.

#### I/O device IRQ conflict

I/O device IRQ conflict error.

### **PS/2 Mouse Boot Summary Screen:**

PS/2 Mouse installed.

### nnnn kB Extended RAM Passed

Where **nnnn** is the amount of RAM in kilobytes successfully tested.

#### nnnn Cache SRAM Passed

Where **nnnn** is the amount of system cache in kilobytes successfully tested.

### nnnn kB Shadow RAM Passed

Where **nnnn** is the amount of shadow RAM in kilobytes successfully tested.

### nnnn kB System RAM Passed

Where **nnnn** is the amount of system RAM in kilobytes successfully tested.

# One or more I2O Block Storage Devices were excluded from the Setup Boot Menu

There was not enough room in the IPL table to display all installed I2O block-storage devices.

### Operating system not found

Operating system cannot be located on either drive A: or drive C:. Enter Setup and see if fixed disk and drive A: are properly identified.

### Parity Check 1 nnnn

Parity error found in the system bus. BIOS attempts to locate the address and display it on the screen. If it cannot locate the address, it displays ????. Parity is a method for checking errors in binary data. A parity error indicates that some data has been corrupted.

# Parity Check 2 nnnn

Parity error found in the I/O bus. BIOS attempts to locate the address and display it on the screen. If it cannot locate the address, it displays ????.

### Press <F1> to resume, <F2> to Setup, <F3> for previous

Displayed after any recoverable error message. Press <F1> to start the boot process or <F2> to enter Setup and change the settings. Press <F3> to display the previous screen (usually an initialization error of an **Option ROM**, i.e., an add-on card). Write down and follow the information shown on the screen.

### Press <F2> to enter Setup

Optional message displayed during POST. Can be turned off in Setup.

### PS/2 Mouse:

PS/2 mouse identified.

# Run the I2O Configuration Utility

One or more unclaimed block storage devices have the Configuration Request bit set in the LCT. Run an I2O Configuration Utility (e.g. the SAC utility).

### System BIOS shadowed

System BIOS copied to shadow RAM.

### **UMB** upper limit segment address: *nnnn*

Displays the address *nnnn* of the upper limit of **Upper Memory Blocks**, indicating released segments of the BIOS which can be reclaimed by a virtual memory manager.

### Video BIOS shadowed

Video BIOS successfully copied to shadow RAM.

# Notes

# **Appendix B**

# **BIOS POST Codes**

This section lists the POST (Power On Self Test) codes for the PhoenixBIOS. POST codes are divided into two categories: recoverable and terminal.

# **Recoverable POST Errors**

When a recoverable type of error occurs during POST, the BIOS will display an POST code that describes the problem. BIOS may also issue one of the following beep codes:

- 1 long and two short beeps video configuration error
- 1 continuous long beep no memory detected

# **Terminal POST Errors**

If a terminal type of error occurs, BIOS will shut down the system. Before doing so, BIOS will write the error to port 80h, attempt to initialize video and write the error in the top left corner of the screen.

The following is a list of codes that may be written to port 80h.

| POST Code | Description                                       |
|-----------|---------------------------------------------------|
| 02h       | Verify Real Mode                                  |
| 03h       | Disable Non-Maskable Interrupt (NMI)              |
| 04h       | Get CPU type                                      |
| 06h       | Initialize system hardware                        |
| 07h       | Disable shadow and execute code from the ROM.     |
| 08h       | Initialize chipset with initial POST values       |
| 09h       | Set IN POST flag                                  |
| 0Ah       | Initialize CPU registers                          |
| 0Bh       | Enable CPU cache                                  |
| 0Ch       | Initialize caches to initial POST values          |
| 0Eh       | Initialize I/O component                          |
| 0Fh       | Initialize the local bus IDE                      |
| 10h       | Initialize Power Management                       |
| 11h       | Load alternate registers with initial POST values |
| 12h       | Restore CPU control word during warm boot         |
| 13h       | Initialize PCI Bus Mastering devices              |
| 14h       | Initialize keyboard controller                    |
| 16h       | 1-2-2-3 BIOS ROM checksum                         |
| 17h       | Initialize cache before memory Auto size          |

| POST Code | Description                                                   |
|-----------|---------------------------------------------------------------|
| 18h       | 8254 timer initialization                                     |
| 1Ah       | 8237 DMA controller initialization                            |
| 1Ch       | Reset Programmable Interrupt Controller                       |
| 20h       | 1-3-1-1 Test DRAM refresh                                     |
| 22h       | 1-3-1-3 Test 8742 Keyboard Controller                         |
| 24h       | Set ES segment register to 4 GB                               |
| 28h       | Auto size DRAM                                                |
| 29h       | Initialize POST Memory Manager                                |
| 2Ah       | Clear 512 kB base RAM                                         |
| 2Ch       | 1-3-4-1 RAM failure on address line <b>xxxx</b> *             |
| 2Eh       | 1-3-4-3 RAM failure on data bits <b>xxxx</b> * of low byte of |
|           | memory bus                                                    |
| 2Fh       | Enable cache before system BIOS shadow                        |
| 32h       | Test CPU bus-clock frequency                                  |
| 33h       | Initialize Phoenix Dispatch Manager                           |
| 36h       | Warm start shut down                                          |
| 38h       | Shadow system BIOS ROM                                        |
| 3Ah       | Auto size cache                                               |
| 3Ch       | Advanced configuration of chipset registers                   |
| 3Dh       | Load alternate registers with CMOS values                     |
| 41h       | Initialize extended memory for RomPilot                       |
| 42h       | Initialize interrupt vectors                                  |
| 45h       | POST device initialization                                    |
| 46h       | 2-1-2-3 Check ROM copyright notice                            |
| 47h       | Initialize I20 support                                        |
| 48h       | Check video configuration against CMOS                        |
| 49h       | Initialize PCI bus and devices                                |
| 4Ah       | Initialize all video adapters in system                       |
| 4Bh       | QuietBoot start (optional)                                    |
| 4Ch       | Shadow video BIOS ROM                                         |
| 4Eh       | Display BIOS copyright notice                                 |
| 4Fh       | Initialize MultiBoot                                          |
| 50h       | Display CPU type and speed                                    |
| 51h       | Initialize EISA board                                         |
| 52h       | Test keyboard                                                 |
| 54h       | Set key click if enabled                                      |
| 55h       | Enable USB devices                                            |
| 58h       | 2-2-3-1 Test for unexpected interrupts                        |
| 59h       | Initialize POST display service                               |
| 5Ah       | Display prompt "Press F2 to enter SETUP"                      |
| 5Bh       | Disable CPU cache                                             |

| POST Code | Description                                           |
|-----------|-------------------------------------------------------|
| 5Ch       | Test RAM between 512 and 640 kB                       |
| 60h       | Test extended memory                                  |
| 62h       | Test extended memory address lines                    |
| 64h       | Jump to UserPatch1                                    |
| 66h       | Configure advanced cache registers                    |
| 67h       | Initialize Multi Processor APIC                       |
| 68h       | Enable external and CPU caches                        |
| 69h       | Setup System Management Mode (SMM) area               |
| 6Ah       | Display external L2 cache size                        |
| 6Bh       | Load custom defaults (optional)                       |
| 6Ch       | Display shadow-area message                           |
| 6Eh       | Display possible high address for UMB recovery        |
| 70h       | Display error messages                                |
| 72h       | Check for configuration errors                        |
| 76h       | Check for keyboard errors                             |
| 7Ch       | Set up hardware interrupt vectors                     |
| 7Dh       | Initialize Intelligent System Monitoring              |
| 7Eh       | Initialize coprocessor if present                     |
| 80h       | Disable onboard Super I/O ports and IRQs              |
| 81h       | Late POST device initialization                       |
| 82h       | Detect and install external RS232 ports               |
| 83h       | Configure non-MCD IDE controllers                     |
| 84h       | Detect and install external parallel ports            |
| 85h       | Initialize PC-compatible PnP ISA devices              |
| 86h       | Re-initialize onboard I/O ports.                      |
| 87h       | Configure Motherboard Configurable Devices (optional) |
| 88h       | Initialize BIOS Data Area                             |
| 89h       | Enable Non-Maskable Interrupts (NMIs)                 |
| 8Ah       | Initialize Extended BIOS Data Area                    |
| 8Bh       | Test and initialize PS/2 mouse                        |
| 8Ch       | Initialize floppy controller                          |
| 8Fh       | Determine number of ATA drives (optional)             |
| 90h       | Initialize hard-disk controllers                      |
| 91h       | Initialize local-bus hard-disk controllers            |
| 92h       | Jump to UserPatch2                                    |
| 93h       | Build MPTABLE for multi-processor boards              |
| 95h       | Install CD ROM for boot                               |
| 96h       | Clear huge ES segment register                        |
| 97h       | Fix up Multi Processor table                          |
| 98h       | 1-2 Search for option ROMs. One long, two short       |
|           | beeps on checksum failure                             |

| DOST Code        | Description                                         |
|------------------|-----------------------------------------------------|
| POST Code<br>99h | Description Chack for SMART Drive (entianal)        |
| 99n<br>9Ah       | Check for SMART Drive (optional) Shadow option ROMs |
| 9Ch              | Set up Power Management                             |
| 9Dh              | Initialize security engine (optional)               |
| 9Eh              | Enable hardware interrupts                          |
| 9Fh              | Determine number of ATA and SCSI drives             |
| A0h              | Set time of day                                     |
| A2h              | Check key lock                                      |
| A4h              | Initialize typematic rate                           |
| A8h              | Erase F2 prompt                                     |
| AAh              | Scan for F2 key stroke                              |
| ACh              | Enter SETUP                                         |
| AEh              | Clear Boot flag                                     |
| B0h              | Check for errors                                    |
| B1h              | Inform RomPilot about the end of POST.              |
| B2h              | POST done - prepare to boot operating system        |
| B4h              | 1 One short beep before boot                        |
| B5h              | Terminate QuietBoot (optional)                      |
| B6h              | Check password (optional)                           |
| B7h              | Initialize ACPI BIOS                                |
| B9h              | Prepare Boot                                        |
| BAh              | Initialize SMBIOS                                   |
| BBh              | Initialize PnP Option ROMs                          |
| BCh              | Clear parity checkers                               |
| BDh              | Display MultiBoot menu                              |
| BEh              | Clear screen (optional)                             |
| BFh              | Check virus and backup reminders                    |
| C0h              | Try to boot with INT 19                             |
| C1h              | Initialize POST Error Manager (PEM)                 |
| C2h              | Initialize error logging                            |
| C3h              | Initialize error display function                   |
| C4h              | Initialize system error handler                     |
| C5h              | PnPnd dual CMOS (optional)                          |
| C6h              | Initialize note dock (optional)                     |
| C7h              | Initialize note dock late                           |
| C8h              | Force check (optional)                              |
| C9h              | Extended checksum (optional)                        |
| CAh              | Redirect Int 15h to enable remote keyboard          |
| CBh              | Redirect Int 13h to Memory Technologies             |
|                  | Devices such as ROM, RAM, PCMCIA, and serial disk   |
| CCh              | Redirect Int 10h to enable remote serial video      |

## **POST Code** Description

CDh Re-map I/O and memory for PCMCIA
CEh Initialize digitizer and display message

D2h Unknown interrupt

## The following are for boot block in Flash ROM

| POST Code | Description                          |
|-----------|--------------------------------------|
| E0h       | Initialize the chipset               |
| E1h       | Initialize the bridge                |
| E2h       | Initialize the CPU                   |
| E3h       | Initialize system timer              |
| E4h       | Initialize system I/O                |
| E5h       | Check force recovery boot            |
| E6h       | Checksum BIOS ROM                    |
| E7h       | Go to BIOS                           |
| E8h       | Set Huge Segment                     |
| E9h       | Initialize Multi Processor           |
| EAh       | Initialize OEM special code          |
| EBh       | Initialize PIC and DMA               |
| ECh       | Initialize Memory type               |
| EDh       | Initialize Memory size               |
| EEh       | Shadow Boot Block                    |
| EFh       | System memory test                   |
| F0h       | Initialize interrupt vectors         |
| F1h       | Initialize Run Time Clock            |
| F2h       | Initialize video                     |
| F3h       | Initialize System Management Manager |
| F4h       | Output one beep                      |
| F5h       | Clear Huge Segment                   |
| F6h       | Boot to Mini DOS                     |
| F7h       | Boot to Full DOS                     |
|           |                                      |

If the BIOS detects error 2C, 2E, or 30 (base 512K RAM error), it displays an additional word-bitmap (xxxx) indicating the address line or bits that failed. For example, "2C 0002" means address line 1 (bit one set) has failed. "2E 1020" means data bits 12 and 5 (bits 12 and 5 set) have failed in the lower 16 bits. The BIOS also sends the bitmap to the port-80 LED display. It first displays the checkpoint code, followed by a delay, the high-order byte, another delay, and then the lowerder byte of the error. It repeats this sequence continuously.

# Notes

# **Appendix C**

## **Software Installation**

After all the hardware has been installed, you must first configure Intel's ESB2 SATA RAID\* before you install the Windows Operating System and other software drivers.

## **Important Notes to the User:**

\*Note 1: If you do not wish to configure onboard SATA RAID functions, please go directly to Section C-3 for Operating System & Other Software Installation.

\*Note 2: This chapter describes RAID Configuration Instructions for the Intel ESB2 RAID Controller designed for the Windows OS.

## C-1 Introduction to Serial ATA and Parallel ATA

To configure the SATA RAID functions, you must first use the Intel ESB2 SATA RAID Utility program to configure the RAID Level that you desire before installing the Windows XP/2000/2003 operating system and other software drivers. (The necessary drivers are all included on the Supermicro CD that came packaged with your motherboard.) Note that the current version of the ESB2 SATA RAID Utility can only support Windows XP/2000/2003 Operating Systems.

#### Serial ATA (SATA)

Serial ATA (SATA) is a physical storage interface that uses a single cable with a minimum of four wires to create a point-to-point connection between devices. It is a serial link, which supports transfer rates up to 3.0 Gbps. Because the serial cables used in SATA are thinner than the traditional cables used in Parallel ATA (PATA), SATA systems have better airflow and can be installed in smaller chassis than Parallel ATA. In addition, the cables used in PATA are limited to a length of 40cm, while Serial ATA cables can be up to one meter in length. Overall, SATA provides better functionality than PATA.

## Introduction to the Intel ESB2 Serial RAID Controller Hub

Located in the South Bridge of the 5000P chipset, the I/O Controller Hub (ESB2) provides the I/O subsystem with access to the rest of the system. It supports an 1-channel UltraATA/100 Bus Master IDE controller (PATA) and six Serial ATA (SATA) ports. The ESB2 supports the following PATA and SATA device configurations: Legacy mode and Native mode.

## The Intel HostRAID Configurations

The following types of Intel's HostRAID configurations are supported:

RAID 0 (Data Striping): this writes data in parallel, interleaved ("striped") sections of two hard drives. Data transfer rate is doubled over using a single disk.

<u>RAID1 (Data Mirroring)</u>: an identical data image from one drive is copied to another drive. The second drive must be the same size or larger than the first drive.

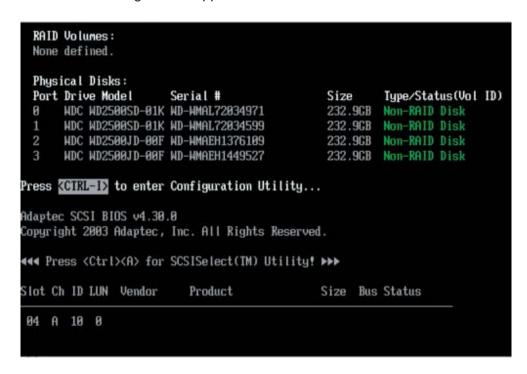
RAID 10 (Striping & Mirroring): RAID 0 and 1 schemes are combined (without parity information) to get the benefits of both.

<u>RAID 5</u>: both data and parity information are striped and mirrored across three or more hard drives.

## The Intel Matrix Storage

The Intel Matrix Storage, supported by the ESB2, allows the user to create RAID 0, RAID 1, RAID 10 and RAID 5 sets by using only six identical hard disk drives. The Intel Matrix Storage Technology creates two partitions on each hard disk drive and generate a virtual RAID 0, RAID 1, RAID 10 and RAID 5 sets. It also allows you the change the HDD partition size without any data.

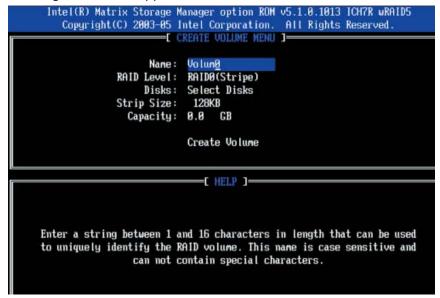
## **Configuring BIOS settings for SATA RAID Functions (Native Mode)**


1. Press the <Del> key during system bootup to enter the BIOS Setup Utility.

Note: If it is the first time powering on the system, we recommend you load the Optimized Default Settings. If you have already done so, please skip to Step 3.

- 2. Use the arrow keys to select the "Exit" Settings. Once in the "Exit" settings, Scroll down to select "Load Optimized Default Settings" and press the <Enter> key. Select "OK" to confirm the selection. Press the <Enter> key to load the default settings for the BIOS.
- 3. Use the arrow keys to select the "Main" section in BIOS.
- 4. Scroll down to "SATA Controller Mode" and press the <Enter> key to select "Enhanced"
- 5. Scroll down to "SATA RAID Enabled" and press <Enter>. Then, select "Enabled."
- 6. Scroll down to "Exit". Select "Save and Exit" from the "Exit" menu. Press the <Enter> key to save the changes and exit the BIOS.
- 7. Once you've exited the BIOS Utility, the system will re-boot.
- 8. During the system boot-up, press the <Ctrl> and <l> keys simultaneously to run the Intel RAID Configuration Utility when prompted by the following message: *Press* <*Ctrl> <l> for the* Intel *RAID Configuration Utility*.

## Using the Intel ESB2 SATA RAID Utility Program

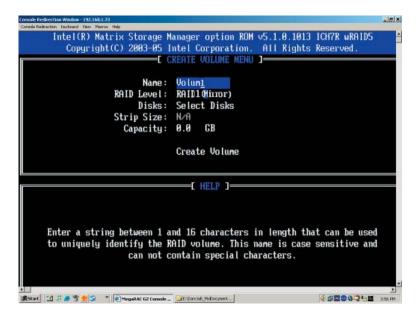

- 1. Creating, Deleting and Resetting RAID Volumes:
- a. After the system exits from the BIOS Setup Utility, the system will automatically reboot. The following screen appears after Power-On Self Test.



b. When you see the above screen, press the <Ctrl> and the <I> keys simultaneously to have the main menu of the SATA RAID Utility appear:

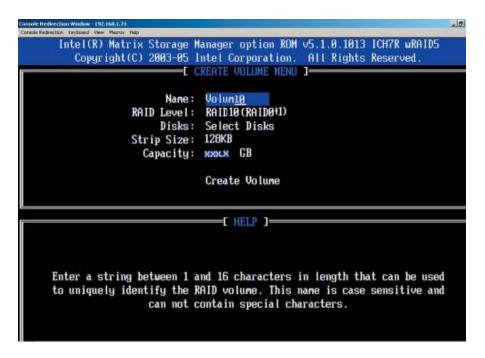
Note: All graphics and screen shots shown in the manual are for reference only. The screen shots shown in the manual do not imply Supernicro's endorsement or non-endorsement on any 3rd party's product. Your screens may or many not look exactly the same as the graphics shown in this manual.)

#### Creating a RAID 0 Volume:




- b. Specify a name for the **RAID 0** set and press the <Tab> key or the <Enter> key to go to the next field. (You can use the <Esc> key to select the previous menu.)
- c. When RAID Level item is highlighted, press the <Up Arrow>, <Down Arrow> keys to select RAID 0 (Stripe) and hit <Enter>.
- d. When the Disks item is highlighted, press <Enter> to select the HDD to configure as RAID. The following pop-up screen (\*See Note on Page C-3) displays:




- e. Use the <Up Arrow>, <Down Arrow> keys to highlight a drive and press <Space> to select it. A triangle appears to confirm the selection of the drive.
- f. Use the <Up Arrow>, <Down Arrow> keys to select the stripe size, ranged from 4 KB to 128 KB for the RAID 0 array, and hit <Enter>. (\*Note: For a server, please use a lower stripe size, and for a multimedia system, use a higher stripe size. The default stripe size is 128 KB.)
- g. Press <Enter> when the Create Volume item is highlighted. A warning message displays.
- h. When asked "Are you sure you want to create this volume (Y/N), press "Y" to create the RAID volume, or type "N" to go back to the Create Volume menu.

## **Creating a RAID 1 Volume:**



- b. Specify a name for the **RAID 1** set and press the <Tab> key or the <Enter> key to go to the next field. (You can use the <Esc> key to select the previous menu.)
- c. When RAID Level item is highlighted, press the <Up Arrow>, <Down Arrow> keys to select RAID 1 (Mirror) and hit <Enter>.
- d. When the Capacity item is highlighted, enter your RAID volume capacity and hit <Enter>. The default setting is the maximum capacity allowed.
- e. Press <Enter> when the Create Volume item is highlighted. A warning message displays.
- f. When asked "Are you sure you want to create this volume (Y/N), press "Y" to create the RAID volume, or type "N" to go back to the Create Volume menu.

## Creating a RAID 10 (RAID 1+ RAID 0):



- b. Specify a name for the RAID 10 set and press <Enter>.
- c. When RAID Level item is highlighted, use the <Up Arrow>, <Down Arrow> keys to select RAID 10 (RAID1 + RAID0) and hit <Enter>.
- d. When the Stripe Size is highlighted, use the <Up Arrow>, <Down Arrow> keys to select the stripe size from 4 KB to 128 KB for your RAID 10 and hit <Enter>. The default setting is 64 KB. (\*Note: For a server, please use a lower stripe size, and for a multimedia system, use a higher stripe size.)
- e. When the RAID Volume Capacity item is highlighted, enter your RAID volume capacity and hit <Enter>. The default setting is the maximum capacity allowed.
- f. Press <Enter> when the Create Volume item is highlighted. A warning message displays.
- g. When asked "Are you sure you want to create this volume (Y/N), press "Y" to create the RAID volume, or type "N" to go back to the Create Volume menu.

## **Creating a RAID 5 Set (Parity):**



- b. Specify a name for the RAID 5 set and press <Enter>.
- c. When the Raid Level is highlighted, use the <Up Arrow>, <Down Arrow> keys to select RAID 5 (Parity) and hit <Enter>.
- d. When the Disk item is highlighted, press <Enter> to select the HDD to configure as RAID. The following pop-up screen (\*See Note on Page C-3) displays:

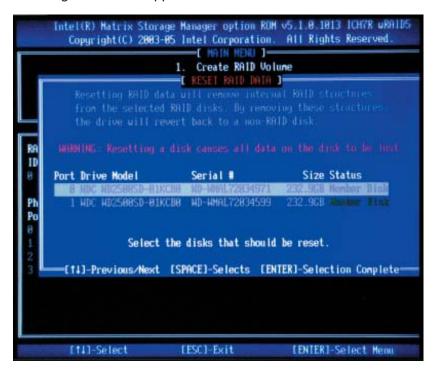


- e. Use the <Up Arrow>, <Down Arrow> keys to highlight a drive and press <Space> to select it. A triangle appears to confirm the selection of the drive.
- f. Use the <Up Arrow>, <Down Arrow> keys to select the stripe size, ranged from 4 KB to 128 KB for the RAID 5 array, and hit <Enter>. (\*Note: For a server, please use a lower stripe size, and for a multimedia system, use a higher stripe size. The default stripe size is 128 KB.)
- g. Enter your desired RAID volume capacity and press <Enter> when the capacity item is highlighted. The default setting is the maximum capacity allowed.
- h Press Enter when the Create Volume item is highlighted. A warning message displays.
- i. When asked "Are you sure you want to create this volume (Y/N), press "Y" to create the RAID volume, or type "N" to go back to the Create Volume menu.

## **Deleting RAID Volume:**



(Warning: Be sure to back up your data before deleting a RAID set. You will lose all data on the disk drives when deleting a RAID set.)


- a. From the main menu, select item2-Delete RAID Volume, and press <Enter>.
- b. Use the <Up Arrow>, <Down Arrow> keys to select the RAID set you want to delete and press <Del>. A Warning message displays.
- c. When asked "Are you sure you want to delete this volume (Y/N), press "Y" to delete the RAID volume, or type "N" to go back to the Delete Volume menu.

## Resetting to Non-RAID and Resetting a RAID HDD



(<u>Warning:</u> Be cautious when you reset a RAID volume HDD to non-RAID or Resetting a RAID HDD. Resetting a RAID volume HDD or Resetting a RAID HDD will reformat the HDD and delete the internal RAID structure on the drive.)

a. From the main menu, select item3-Reset Disks to Non- RAID, and press <Enter>. The following screen will appear:



- b. Use the <Up Arrow>, <Down Arrow> keys to highlight the RAID set drive to reset and press <Space> to select.
- c. Press <Enter> to reset the RAID set drive. A Warning message displays.
- d. Press "Y" to reset the drive, or type "N" to go back to the main menu.

#### Exiting the Intel Matrix Storage Manager Utility:

- a. From the main menu, select item4-Exit, and press <Enter>. A warning message will appear.
- b. Press "Y" to reset the drive, or type "N" to go back to the main menu.

# C-2 Installing the Windows XP/2000/2003 for systems with RAID Functions

## New Operating System-Windows XP/2000/2003 Installation

- a. Insert Microsoft Windows XP/2000/2003 Setup CD in the CD Driver, and the system will start booting up from CD.
- b. Press the <F6> key when the message-" Press F6 if you need to install a third party SCSI or RAID driver" displays.
- c. When the Windows XP/2000/2003 Setup screen appears, press "S" to specify additional device(s).
- d. Insert the driver diskette-"Intel AA RAID XP/2000/2003 Driver for ESB2 into Drive A: and press the <Enter> key.
- e. Choose the Intel(R) ESB2 SATA RAID Controller from the list indicated in the XP/2000/2003 Setup Screen, and press the <Enter> key.
- f. Press the <Enter> key to continue the installation process. (If you need to specify any additional devices to be installed, do it at this time.) Once all devices are specified, press the <Enter> key to continue with the installation.
- g. From the Windows XP/2000/2003 Setup screen, press the <Enter> key. The XP/2000/2003 Setup will automatically load all device files and then, continue the Windows XP/2000/2003 installation.
- h. After Windows XP/2000/2003 Installation is completed, the system will automatically reboot.

Note: the current version of the ESB2 SATA RAID Utility can only support Windows XP/2000/2003 Operating System.

# **Appendix D**

## **System Specifications**

#### **Processors**

Single or dual Intel® Xeon™ 5100/5000 Sequence processors at a front side (system) bus speed of 1333/1066/667 MHz.

Note: Please refer to our web site for a complete listing of supported processors.

## Chipset

Intel 5000P chipset

#### **BIOS**

8 Mb Phoenix® Flash ROM

## **Memory Capacity**

Sixteen 240-pin DIMM sockets supporting up to 64 GB of FBD DDR2-667/533 SDRAM.

Note: Dual channel memory - requires memory to be installed two modules at a time. See the memory section in Chapter 5 for details.

#### **SATA Controller**

Intel ESB2 on-chip controller for a 4-port, 3 Gb/s Serial ATA subsystem (RAID 0,1 and JBOD supported)

## SCSI Controller (6015B-8+)

AIC-7902 for dual channel Ultra320 SCSI

## **SATA/SCSI Drive Bays**

Four (4) hot-swap drive bays to house four (4) standard SATA or SCSI drives

## **Peripheral Drive Bays**

One (1) slim floppy drive (optional)

One (1) slim DVD-ROM drive

#### **Expansion Slots** (provided with included riser cards)

One (1) 64-bit, 133 MHz PCI-X slot for a standard size card or one (1) PCI-Express slot for a standard size card (with the use of the CSE-RR1U-X or the CSE-RR1U-EL riser card, respectively)

#### Motherboard

Model: X7DBR-i+/X7DBR-8+ (Extended ATX form factor)

Dimensions: 13.68 x 13 in (347 x 330 mm)

#### **Chassis**

Model: SC815TQ-700/SC815S-700 Form Factor: 1U rackmount Dimensions: (WxHxD) 19 x 1.7 x 25.6 in. (483 x 43 x 650 mm)

## Weight

Gross (Bare Bone): 40 lbs. (18.2 kg.)

## System Cooling

Four (4) 40-mm heavy-duty counter-rotating fans

## **System Input Requirements**

AC Input Voltage: 100-240V AC auto-range Rated Input Current: 10A (115V) to 5A (230V)

Rated Input Frequency: 50 to 60 Hz

## **Power Supply**

Rated Output Power: 700W (Model# SP700-1R, Part# PWS-065)

Rated Output Voltages: +12V (58A), +5Vsb (4A)

## **BTU Rating**

3695 BTUs/hr (for rated output power of 700W)

#### **Operating Environment**

Operating Temperature: 10° to 35° C (50° to 95° F)

Non-operating Temperature: -40° to 70° C (-40° to 158° F) Operating Relative Humidity: 8% to 90% (non-condensing) Non-operating Relative Humidity: 5 to 95% (non-condensing)

## **Regulatory Compliance**

Electromagnetic Emissions:

FCC Class A, EN 55022 Class A, EN 61000-3-2/-3-3, CISPR 22 Class A

Electromagnetic Immunity:

EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11)

#### Safety:

EN 60950/IEC 60950-Compliant, UL Listed (USA), CUL Listed (Canada), TUV Certified (Germany), CE Marking (Europe)

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

# Notes

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com