• PORT/AFM

RS-232 to I²C Host Adapter with ASCII Fast Mode Interface with iPort Utility Pack for Windows

www.mcc-us.com

Download from Www.Somanuals.com. All Manuals Search And Download.

Introduction

The MCC iPort/AFM (#MIIC-203) RS-232 to I²C Host Adapter with ASCII Fast Mode Interface allows any PC, Host Computer, or Data Terminal with an RS-232 port to become an I²C Master or Slave device, transmitting or receiving I²C messages to one or more I²C devices across an I²C Bus.

This user's guide describes the installation and operation of the iPort/AFM (#MIIC-203) RS-232 to I²C Host Adapter with ASCII Fast Mode Interface and iPort Utility Pack Software for Windows.

MCC products are licensed to use the I²C Bus.

Purchase of Philips I²C components conveys a license under the Philips I²C patent to use the components of the I²C system, provided the system conforms to the I²C specifications defined by Philips.

I²C is a trademark of Philips Corporation.

Copyright© 2002 by Micro Computer Control Corporation. All rights reserved. No part of this publication may be reproduced by any means without the prior written permission of Micro Computer Control Corporation, PO Box 275, Hopewell, New Jersey 08525 USA.

DISCLAIMER: Micro Computer Control Corporation makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Micro Computer Control Corporation reserves the right to revise the product described in this publication and to make changes from time to time in the content hereof without the obligation to notify any person of such revisions or changes.

Life Support Applications

MCC Products are not designed for use in life support appliances, devices, or systems where the malfunction of a MCC Product can reasonably be expected to result in a personal injury.

WARNING: This equipment can radiate levels of radio frequency energy that may cause interference to communications equipment. Operation of this equipment may cause interference with radio, television, or other communications equipment. The user is responsible for correcting such interference at the expense of the user.

Printed in the United States of America

Table of Contents:

Part 1

RS-232 to I²C Host Adapter w/ASCII Fast Mode Interface

Overview
iPort/AFM Adapter
iPort Utility Pack Software
Programmer's Reference
Packing Slip
System Requirements
Interconnects
DB-25 Serial Port Pinout 10
DB-9 Serial Port Pinout 10
+5VDC Power Jack
I ² C Interface Connector
INT, iNterrupt Signal Control 11
Hardware Configuration
Pull-up Resistors
Connecting to a 3.3v System
Connecting to an SMBus System 12
Hardware Set-Up

Part 2

iPort Utility Pack For Windows

Introduction to Utility Pack
iPort Message Center
iPort Message Manager
System Requirements
Software Installation
Introduction to Message Center
I ² C Message Operations
Introduction to Message Manager
I ² C Message Operations
Basic Set-up
Advanced Set-up
Diagnostic Set-up
Sending Messages

Master Operations	26
To Master Transmit Data	26
To Master Receive Data	27
Slave Operations	28
To Slave Transmit a message	28
To Slave Receive a message	28
Uninstalling iPort Utility Pack	28

Part 3

Programmer's Reference ASCII Command Interface Definitions

Quick Start	30
ASCII Command Interface Definitions	31
Synchronous Interface Events	32
iPort/AFM Reset	32
Status Display	33
RS-232 Baud Rate	33
Close I ² C Connection	\$4
Set Destination I ² C Slave Address	\$4
Echo/Prompt Control 3	\$4
Flow Control	\$4
I ² C General Call Control 3	35
Hex Only Display Control 3	35
Set iPort/AFM's Own I ² C Slave Address	\$6
I ² C Bus Clock Rate Control 3	\$6
Command Menu Display 3	\$6
iNterrupt Signal Control/Status 3	37
Open I ² C Connection	37
Master Read Message 3	38
Slave Transmit Message 3	39
Master Transmit Message 4	0
Set I ² C Bus time oUt in msec	1
Display Firmware Version 4	1
eXtended Commands 4	1
Display Tx bYte Count 4	4
Asynchronous Interface Events 4	15
Slave Transmit Request 4	15
Slave Receive Complete 4	5
General Call Receive Complete 4	5
I ² C Bus Time-out Detected	-6

iNterrupt Signal Assert 46
iNterrupt Signal Release 46
iPort/AFM Prompts
iPort/AFM Ready 47
Slave Not Acknowledging 47
iPort/AFM Busy 47
I ² C Bus Arbitration Loss
I^2C Bus Error Detected
I ² C Bus Time-out Detected
iPort/AFM Connection Closed
Invalid Command Argument
Slave Transmit Request Not Active
Invalid iPort/AFM Command
iPort/AFM RS-232 Receive Buffer Overflow
Example Code
iPort/AFM Reset
iPort/AFM Initialization
Master Transmit Message 49
Master Receive Message
Communication Event Processing
iPort/AFM Revision Report
Additional Information 53
Software License Agreement
Appendix A

Part 1

Model MIIC-203

RS-232 to I²C Host Adapter w/ASCII Fast Mode Interface

Model MIIC-203

RS-232 to I²C Host Adapter

w/ASCII Fast Mode Interface

Overview

The MCC iPort/AFM (#MIIC-203) RS-232 to I²C Host Adapter with ASCII Fast Mode Interface allows any PC, Host Computer, or Data Terminal with an RS-232 port to become an I²C Master or Slave device, transmitting or receiving I²C messages to one or more I²C devices across an I²C Bus.

PRODUCT FEATURES

- Turn ANY Computer's Serial Port into an I²C Port.
- Supports Standard (100) and Fast (400) I²C Bus Activity.
- High Performance Bus Co-Processor
- Maximum Bus Throughput with Low Overhead.
- 19.2, 57.6, and 115.2 k selectable Baud Rates.
- Supports Bus Master and Slave, Transmit and Receive, and INT Signaling .
- Compatible with 3v to 5v I²C at up to 400kbit/s.
- Compatible with iPort/AI applications.

The iPort/AFM system consists of the following components:

1) iPort/AFM Adapter

This adapter plugs into an RS-232 Port on a host computer and generates I²C Bus signals.

2) iPort Utility Pack Software

This software package, included with each iPort, includes the iPort Message Manager and Message Center applications to easily send and receive I²C Bus messages.

3) Programmer's Reference

This section includes ASCII command interface definitions and example code to assist in developing a custom application for the iPort/AFM adapter.

Packing Slip

This package includes the following items:

- iPort/AFM (#MIIC-203) RS-232 to I²C Host Adapter with ASCII Fast Mode Interface.
- 4 Foot I²C Interface Cable. (#CAB4)
- 1Ft. /INT-Trigger Cable (#AXM-12G)
- Serial Port Cable, 9F/25M, 1 Foot Long. (#C9F25M1)
- 1Ft. /INT-Trigger Cable (#AXM-12G)
- iPort/AFM User's Guide.
- iPort Utility Pack for Windows Software.
- Power Supply Standard 120VAC, 60Hz, USA Plug (#MWT-5VA) European 220VAC, 50Hz, European Plug (#MWT-5VAE) International 120/220/240VAC, 50-60Hz, Int.Plug selection (#MWT-5VAI)

System Requirements

- a. Host computer
- b. 1 free RS-232 Serial Port

Interconnects

The I²C Bus Host Adapter includes four interconnections:

1. RS-232 Serial Port Connector

+5VDC Power Jack INT Line I²C Interface Connector

This connector provides connection to the serial port on the PC. Use the #C9F25M1 cable to adapt the iPort to 9-pin serial ports.

DB-25 Serial Port Pinout

DB-25 Pin 2, Transmit Data from the Host Computer to the iPort DB-25 Pin 3, Receive Data from the iPort to the Host Computer. DB-25 Pin 4, Request to Send from the Host Computer to iPort. DB-25 Pin 5, Clear to Send from the iPort to the Host Computer. DB-25 Pin 7, Ground between Host Computer and iPort

DB-9 Serial Port Pinout

DB-9 Pin 3, Transmit Data from the Host Computer to the iPort DB-9 Pin 2, Receive Data from the iPort to the Host Computer. DB-9 Pin 7, Request to Send from the Host Computer to iPort. DB-9 Pin 8, Clear to Send from the iPort to the Host Computer. DB-9 Pin 5, Ground between Host Computer and iPort

Transmit Data, Receive Data, and Ground are required in all cases. Request to Send and Clear to Send are required if RTS/CTS communication handshaking protocol is selected. See the iPort/AFM Flow Control command.

Communication Handshaking Protocol

iPort/AFM implements either XON/XOFF (by default) or RTS/CTS flow control protocols. Either protocol can be selected with the iPort/AFM Flow Control command. Flow control is used by the iPort/AFM to limit character flow to and from the Host computer to avoid overflowing internal communication buffers and lost data.

Communication Parameters

19,200, 57.6k, or 115.2k Baud, No Parity, 8 Data Bits, 1 Stop Bit

The default baud rate is 19,200 until the iPort/AFM receives a Baud Change command from the host computer.

2. +5VDC Power Jack

The iPort/AFM Host Adapter can be powered in one of two ways, from the power jack, or from the I^2C interface connector. If the unit is powered from the provided +5VDC Wall Transformer, approximately 250ma of regulated +5VDC is available at the I^2C interface connector to power external devices. If the iPort/AFM is powered from the I^2C connector, the unit requires 50ma of regulated +5VDC.

3. I²C Interface Connector

The iPort/AFM Host Adapter includes a four wire, positive locking, modular connector (see Appendix A for more info on these parts) for interfacing to an external I²C Bus. Lines provided include I²C Clock (SCL), Data (SDA), Ground, and +5VDC.

An I²C Interface Cable (White=SCL, Red=+5VDC, Green=SDA, Black=Ground) is provided to connect to a external I²C Bus. Since there is no standard I²C Bus connector, you may want to cut off one end of the cable and add a connector compatible with your target system.

Additional I²C Interface Cables (4 ft., 8ft., or 16 ft.) and above mentioned modular connectors are available from MCC. Clip Lead cables are also available. (see Appendix A)

4. INT, Interrupt Signal Control

The iPort/AFM provides an open drain input/output (INT) which can be connected to a corresponding pin on a master or slave. The INT Signal allows the iPort/AFM to participate in INT master and/or slave communications.

An interrupt output (INT=low) is generated upon receiving an iNterrupt assert command from the host computer. Resetting and reactivating the interrupt signal is achieved when a release command is received from the host computer or data is read from or written to the iPort/AFM when addressed as an I²C Bus slave.

Interrupt monitoring is enabled upon receiving an enable command from the host computer. Interrupt monitoring causes the iPort/AFM to send notification to the host computer when the INT signal changes state.

Hardware Configuration

Pull-up Resistors

The iPort/AFM Host Adapter includes a slide switch used to enable or disable internal 1.8K ohm Pull-Up resistors on the SCL, SDA, and INT lines. Every I²C Bus system must have at least one Pull-Up on each line. Use this switch to configure the iPort/AFM appropriately for your system.

Connecting to a 3.3v System

1. Shut off iPort internal pull-ups. (See Pull-up Resistor section)

2. Use external pull-ups to 3.3 volts.

The iPort uses a 5 volt device. 3.3v is high enough for the iPort to see a Logical 1.

Connecting to an SMBus System

- 1. Shut off iPort internal pull-ups. (See Pull-up Resistor section)
- 2. Use external SMBus rated (approx. 15k ohm) pull-up resistors.

Hardware Set-Up

- Attach your iPort/AFM (#MIIC-203) to an open ComPort on your computer. If your ComPort has a DB9 connector, use DB-9F to DB-25M Serial Port Adapter Cable included with your iPort/AFM to connect.
- 2. Connect the power supply provided or see Interconnect Section +5VDC Power Jack.
- Connect I²C Interface Cable to iPort/AFM and your I²C device. If your device does not have the matching connector (#15830064) you can cut the end of the cable and attach the individual wires to your device or you can purchase our clip-lead cable(#CABCL).
- 4. Connect INT line if used.

Part 2

iPort Utility Pack for Windows V5

iPort Utility Pack for Windows

1. Introduction to Utility Pack

This product includes two (2) Windows applications (Message Manager and Message Center) that help a user get started sending and receiving I²C Bus messages quickly.

iPort Message Center

The iPort Message Center operates with all versions of the iPort I²C Bus Host Adapter. With this program you can create, save, and execute scripts of the following modes of I²C Bus message activity:

- Master Transmit
- Master Receive

(m) Mic	ro Comput	er Con	trol Corp iPort Message Center - [SCROLL.IML]			- 🗆 🗵
<u>File</u>	ptions He	lp				
			Quick Start			
	CO.					
	ICC		iPort/AFM Message Cen	ter		VEEV
	One	n Link	Send	Class	Link	
	Oper			01000		
			🗹 Auto Repeat 🛛 Send On /INT			
Msg	# Address	RAV	Message Data Bytes	S	top Del	lay (msec)
1	4E	W	7F.	Y	0	
2	4E	W	BF.	Y	0	
3	4E	W	DF.	Υ	0	
4	4E	W	EF,	Y	0	
5	4E	W	F7.	Y	0	
6	4E	W	FB,	Y	0	
7	4E	W	FD,	Y	0	
8	4E	W	FE,	Y	0	
9	4E	W	FD,	Y	0	
10	4E	W	FB,	Y	0	
11	4E	W	F7.	Y	0	
12	4E	W	EF,	Y	0	
13	4E	W	DF.	Y	0	
14	4E	W	BF.	Y	0	
15	4E	W	7F.	Y	0	
16						
17						-
		_				_
	Status:	<≺Lin	< Closed>>			
		· .	-Davias Salast	on On	loon Or	
			C iDext	Buen E	Eep Or	
	1	<u>-</u>	GiBert Enable Monitor	ousy Ante Lease	Eusy Tank I	
Using	Com: 💾		O IPort/Al	Arb. Loss	Arb. L	LOSS
	12.	<u> </u>	• IPort/AFM	Slave Nak	Slave	Nak
				[7INT A	Assert

iPort Message Manager

The Message Manager operates with all versions of the iPort I²C Bus Host Adapter. Using this program you can perform all four (4) modes of I²C Bus messages activity, including:

- Master Transmit
- Master Receive
- Slave Transmit
- Slave Receive

🙀 Micro Computer Control Corp iPort Message Manager	_ _ X
Ele Options Help Quick Start Quick Start iPort/AFM Message Manager	
Communication Events: Master Tx bytes to write (3) Master Rx bytes to read (1) Master Rx bytes received (1) ** Master TxRx Transfer Complete **	
I2C Destination Address: Master Tx Message Data (ASCII Text or Hex ~00~FF): 4C -00~01~02 4E -00~01~02 50 I doStop 52 I doStop	Master Tx
Received Messages: IF Hex Displaγ ~02 ~02 ~02 ~02 ~02 ~02	
DeviceSelect Bytes to Master Rx: 1 ✓ doStop C iPort c iPort/Al ✓ iPort/AFM Slave Tx Message Data (ASCII Text or Hex ~00~FF): ~00~01~02 Open Close Assert /INT	Master Rx

2. System Requirements

- a. One of the following:
 - 1. iPort (#MIIC-201) Windows to I²C Bus Host Adapter.
 - 2. iPort/AI (#MIIC-202) RS-232 to I²C Bus Host Adapter with ASCII Interface
 - 3. iPort/AFM (#MIIC-203) RS-232 to I²C Bus Host Adapter with ASCII Fast Mode Interface.
- b. Windows 95 or higher
- c. 1 free RS-232 Serial Port.

3. Software Installation

Windows 95 and Above:

- 1. Insert software distribution diskette into floppy drive.
- 2. Select Start | Run. Type "A:SETUP.EXE".
- 3. Follow instructions on screen.

iPort Message Center for Windows

Introduction to Message Center

The iPort Message Center supports I²C Master Transmit and Receive activities for all versions of the iPort I²C Bus Host Adapter. With this program you can create, save, and execute scripts of I²C Master messages.

The MCC iPort Message Center Software, when used with an MCC iPort allows a PC to become an I²C Master transmitter or receiving device, sending I²C messages between the PC and one or more I²C devices across an I²C Bus.

The iPort Message Center is designed to be a simple application for experimenting with I²C messages. It provides methods to:

- 1. Edit a list of I²C Master Transmit or Receive Messages.
- 2. Save and/or Load a list of I²C Master messages to/from disk.
- 3. Transmit the current list of I²C Master messages, with the option to auto repeat upon completion, or send on INT assert (low). (iPort/AFM only)

Each iPort Message Center I²C message can include up to 32 bytes of 8-bit data, with an optional time delay at the completion of each message.

I²C Message Operations

In order to communicate with another I²C device, a user must take the following steps:

1. Start | Programs | iPort Utility Pack | iPort Message Center

2. Select which device you are operating with by choosing the corresponding image (Opening Screen), or the correct checkbox on the main application.

Main Application

The Main Application screen is opened by selecting an image on the Opening Screen.

- 3. Select the PC ComPort where the iPort is connected to your computer.
- 4. Use the Options menu to override default Baud Rate and I²C Bus Clock rate settings.
- 5. Establish a link to the iPort with the Open button. The iPort Message Center software sets the iPort's own I²C Slave address to 0xFE.
- 6. To open an existing message list, click File|Open List on the menu bar. To enter or edit a message List, open the "I²C Message Editor" screen, by double clicking on a message row in the spreadsheet.

			пск эц				
12C Addres 02 • 04 •	\$\$	Msg Dired C Read C Write	ction	do Sto © Yes © No	p :	Delay (r 0 100	nsec) • •
Write Para	meters						
Enter	0 or more	bytes of l	Hex (0()FF) Data	to Send	to Slave	
1_2_	3 4 5	6 7	8 9	10 11 12	13 14 1	5 16 17]
						Þ	1
		пк		X Cancel			

Now you can:

- a. Set the I²C address (i.e. 4C, 4E, etc.)
- b. Set Msg Direction (Read or Write)
- c. Do stop (yes or no, Repeated starts)
- d. Set time delay (delay in msec, controls speed of activity).
- e. Write message data (from 00 to FF) or read count.
- f. Click OK.

Repeat above steps for additional messages.

You can insert a new message between existing messages by clicking once on message below where you want to insert, press the "Insert" button on your keyboard, this will bring up the I²C Message Editor screen, set all information and click OK.

7. On the main screen, click on Send to transmit the current list of I^2C Master messages, with the option to auto repeat upon completion, or send on INT assert (low).

Once the link has opened successfully, you are now an active I²C node. Messages are entered into the message spreadsheet and are transmitted upon clicking the Send button. Data received as part of a Master Receive message replaces the 0xFF placeholders in the message spreadsheet control.

If you get a "Slave Not Acknowledging" message in the Communications Events window, this could mean you have the wrong address in the I²C Destination Address, or the device is not answering to its address.

iPort Message Manager Software for Windows

Introduction to Message Manager

The MCC iPort Message Manager Software, when used in conjunction with an MCC iPort allows a PC to become an I²C Master or Slave device, transmitting or receiving I²C messages between the PC and one or more I²C devices across an I²C Bus.

The iPort Message Manager is designed to be a simple application for experimenting with I²C messages. It provides methods to:

- 1. Set the device's I²C Slave address, General Call Enable, and other operating parameters.
- 2. Master Transmit ASCII text or Hex [~00...~FF] data to a specified I²C Slave Receiver device.
- 3. Master Receive data from a specified I²C Slave Transmitter device.
- 4. Perform Master Read after Write operation.
- 5. Slave Transmit data to a requesting I²C Master Receive device.
- 6. Display Slave Receiver data.
- 7. Assert or release the INT signal (iPort/AFM only).

Each iPort Message Manager I²C message can include up to 23 bytes of 8-bit ASCII binary data, although the iPort itself is capable of sending or receiving I²C messages up to 64K bytes in length.

I²C Message Operations

In order to communicate with another I²C device, a user must take the following steps:

1. Starting the program:

Start | Programs | iPort Utility Pack | iPort Message Manager

2. Select iPort Device

Select which device you are operating with by choosing the corresponding image (Opening Screen), or the correct checkbox on the main application.

Main Application

_ 🗆 🗙

The Main Application screen is opened by selecting an image on the Opening Screen.

3. Establish iPort Link

On the Message Manager main screen, click the Open button to view the Set Up Screen. You now have three options of set-up for the Message Manager, Basic Set-up, Advanced Set-up, and Diagnostic Set-up.

iPort Message Manager Setup	×
Quick Start	
RS-232 Port Settings	
PC Comport	
Baud Rate	
C 19,200	
C 57,600	
✓ ОК	
X Cancel	
Serial Port Settings (Advanced Setup (Diagnostic Setup /	

Basic Set Up Screen

Basic Set-up

Select the PC ComPort attached to your iPort and the baud rate, then click OK. The Communications Events window on the Main Screen should report "I²C Open Successful". If this message does not appear, check the iPort connections and power.

iPort Message Manager So	etup	<
	Quick Start	
RS-232 Port Settings	Advanced Setup	
PC Comport	iPort's Own I2C Slave Address	
1		
3	6E A.b Default	
14 11	General Call	
Baud Rate		
C 19,200	-I2C Bus Master Bit Rate	
• 115,200	C 12.5 KHz C 100 KHz	
	C 86 KHz	
VK UK	I2C Bus Time-Out (msec): [1000	
🗙 Cancel	Enable /INT Monitor	
Serial Port Settings	ed Setup (Diagnostic Setup /	_

Advanced Set Up Screen

Advanced Set-up

On the Advanced Set-up screen you can set the following parameters:

1. iPort I2C Slave Address

Select iPort's I²C slave address. iPort will acknowledge messages sent to this address.

2 .iPort General Call

Enabled allows iPort to respond to the I²C general call address (00). General call is used to broadcast an I²C message to multiple devices.

- I²C Bus Master Bit Rate (iPort, iPort/AFM) The speed of the Bus will run. 100KHz is standard mode, 400kHz is fast mode. Use other rates if you are having trouble talking to a very slow slave device.
- I²C Bus TimeOut (Msec) (iPort, iPort/AFM) Control how long iPort will wait before reporting an I²C Bus intra-message timeout. (0=None, 1...32767 msec)
- 5. Enable INT monitor (iPort/AFM only) Enables monitoring of the INT signal state. INT state changes are reported in the main screen Communications Events window.

iPort Message Manager Se	etup		\mathbf{X}
	Quick Start	L	
RS-232 Port Settings PC Comport	Advanced Setup iPort's Own I2C Slave Address 6A 6C 6E A.b Default 70	Diagnostic Setup iPort Log File Level ⓒ Off ⓒ 1 ⓒ 2 ⓒ 3 ⓒ 4	
Baud Rate © 19,200 © 57,600 © 115,200	General Call C Enabled C Disabled I2C Bus Master Bit Rate C 12.5 KHz C 100 KHz C 23 KHz C 400 KHz C 86 KHz	Log File Name LOG_COM1.TXT	
Cancel	I2C Bus Time-Out (msec): 1000		
Serial Port Settings (Advance	ed Setup) Diagnostic Setup/		

Diagnostic Set Up Screen

Diagnostic Set-up (iPort Only)

On the Diagnostic Set-up screen you can set the following parameters:

1. iPort Log File Level

Select iPort logging level.1 gives minimal info, 4 is verbose. Use the log file to troubleshoot communication problems.

- 2. Log File Name iPort log file name if enabled.
- 3. Log File Size (Lines) iPort log file length if enabled.
- 4. Set the Destination Slave Address

On the main screen, use the I²C Destination Address list control to set the slave address of the device you want to communicate with.

Additional operating information is available by viewing the Status and Log File. (Option available only for the iPort).

Master Operations

1. To Master Transmit Data

On the main screen, set the Master Tx Message Bytes edit box to the data you want to send by single clicking on the box. For example: To send a 0x05(hexadecimal) to the device, enter ~05 in the edit box. Click Ok and then the Master TX button to send the message. The Communications Events window on the main screen should report "Master TX Complete". If this message does not appear, check the slave device address, connections, and power.

Example: to send message 0x01, 0x02, 0x03, type in ~01~02~03.

You have the option to Auto Repeat a transmitted message upon completion by checking the Auto Repeat box. Also you may do a DoStop which will perform repeated starts automatically.

2. To Master Receive Data

On the main screen, use the I²C Destination Address list control to set the slave address of the device you want to communicate with.

🛤 Micro Computer Control	Corp iPort Message Manager	
Eile Options Help	Quick Start	
Communication Events: Master Tx bytes to write Master Rx bytes to read Master Rx bytes receive ** Master TxRx Transfer	(3) (1) (1) (1) Complete **	4
I2C Destination Address: 4C	Master Tx Message Data (ASCII Text or Hex ~00~FF)):
4E 50 52	」 ⊂ doStop	Master Tx Master TxRx
Received Messages: ~02 ~02 ~02 ~02 ~02 ~02	⁴ Hex Displaγ	
DeviceSelect C iPort C iPort/Al C iPort/AFM	Bytes to Master Rx: 1 I I doStop	Master Rx
Open Close		

Main Application Screen

On the lower part of the main screen, set the Bytes to MasterRx edit box to the number of bytes you want to read. For example: Set this to 1 to read a single byte. Click on the Master RX button to receive the message. Data received from the slave is displayed in the Received Messages text box on the main screen. The Communications Events window should report "Master RX Transfer Complete". If this message does not appear, check the slave device address, connections, and power.

If you get a "Slave Not Acknowledging" message in the Communications Events window, this could mean you have the wrong address in the I²C Destination Address, or the device is not answering to its address.

You have the option to Auto Repeat a transmitted message upon completion by checking the Auto Repeat box. Also you may do a DoStop which will perform repeated starts automatically. Another option you have is to do "DoNak", which allows you to Ack or Nak the last byte coming from a Slave Transmitter. Some Slave Transmitter Devices require a Nak on the final byte going across the bus. (Option only available for the windows iPort).

Slave Operations

To Slave Transmit a message:

Enter data to be transmitted in the Slave Tx Message Bytes control by single clicking. Binary data bytes are entered using a three character Hex-Equivalent format (~00 ... ~FF), you may also type in ASCII text. These bytes are automatically transmitted when a Slave Transmit Request is received from a Master device.

To Slave Receive a message:

Data bytes received from a Master Transmitter are automatically displayed in the Received Message window. Received binary data is displayed using a three character Hex-Equivalent format (~00 ... ~FF). By selecting the Hex-Display checkbox, the data is displayed as Hexadecimal data .

Uninstalling iPort Utility Pack

Click, Start | Programs | iPort Utility Pack | uninstall.

Follow the on screen instructions.

Part 3

Programmer's Reference ASCII Command Interface Definitions V2

Download from Www.Somanuals.com. All Manuals Search And Download.

iPort/AFM Quick Start

Follow these steps to start sending and receiving I²C messages:

- 1. Install iPort/AFM as directed in the "Installation Instructions" section of this User's Guide.
- Use a terminal emulator program (like the Windows Terminal Program or Windows Hyperterminal) to get started. Remember to select the correct Com Port (COM1, COM2,...) and set the terminal emulator to 19200 Baud, 8 Data Bits, No Parity, and 1 Stop Bit.
- 3. Enter // to get an iPort/AFM Status Report. Note: All iPort/AFM commands are terminated with a Carriage Return character. On most terminal emulators press the Enter key.
- 4. Enter **/E1** to Enable the Echo/Prompt feature. This makes it easier for a person to interact with the iPort/AFM from a terminal.
- 5. Enter **/F0** or **/F1** to set iPort/AFM's communications Flow Control to match your terminal.
- 6. Enter /Ixx (xx = 02...FE even) to set iPort/AFM's Own I²C Slave Address.
- Enter /O to Open the iPort/AFM Connection. The iPort/AFM does not need to be connected to an I²C Bus to open a connection.
- 8. Enter /**D**xx (xx = 00...FE even) to select a Destination I²C Slave Address.
- 9. Enter /**Ttext** (text = ASCII or Hex-Equivalent ~00...~FF) to Master Transmit a message to the current Destination I²C Slave device.
- 10. Enter /**Rn** (n = 0...32767) to Master Read a message from the current Destination I^2C Slave device.

Syntax: [CR] = Carriage Return

The following sections provide detailed information on all **iPort/AFM** ASCII Commands and Prompts.

For the latest product information and application note visit our web site at:

http://www.mcc-us.com

iPort/AFM ASCII Text Interface Commands	
Note: [CR] = Carriage Return Code or Enter Key. Syntax: [Select], (Optional), xx = [00FE], n = [032767]	
Command	Description
Ctrl/R,Ctrl/R,Ctrl/R	iPort/AFM Reset This command resets the iPort/AFM to its default state.
//[CR]	Status Display Display iPort/AFM status information.
/B[0 1 2][CR]	RS-232 Baud Rate Control Set the RS-232 Baud rate (0 = 19.2, 1 = 57.6, 2 = 115.2 Baud)
/C[CR]	Close I²C Connection Disconnect from the I ² C Bus.
/Dxx[CR]	Set Destination I²C Slave Address Set the destination I ² C Slave Address for subsequent Master Transmit or Receive operations.
/E[0 1][CR]	Echo/Prompt Control [0 = Disable, 1 = Enable] Enable/Disable data entry echo and prompts.
/F[0 1][CR]	Flow Control [0 = XON/XOFF, 1 = RTS/CTS] Select serial communication handshaking protocol.
/G[0 1][CR]	I²C General Call Control [0 = Disable, 1 = Enable] Enables/Disables iPort/AFM response to I ² C Bus General Call (00) messages.
/H[0 1][CR]	Hex Only Display Control [0 = Disable, 1 = Enable] Controls display format of received message data.
/Ixx[CR]	Set iPort/AFM's Own I²C Slave Address Sets iPort/AFM's own I ² C Slave Address. iPort/AFM will respond to I ² C Bus messages sent to this address.
/K[0 1 2 3][CR]	I ² C Bus Clock Rate Control Set I ² C Bus Clock Rate Control (0=23, 1=86, 2=100, 3=400 KHz)
/M[CR]	Command Menu Display Display iPort/AFM's Command Menu

/N([0 1 A R])[CR]	iNterrupt Signal Monitor/Control/Status Sets Monitor/Control/Status of INT line. [0 = Disable, 1 = Enable, A = Assert, R = Release/CR=Status]
/O[CR]	Open I²C Connection Activates iPort/AFM as an I ² C device attached to the bus.
/(*)Rn[CR]	Master Read Message Read the specified number of data bytes from the current Destination I^2C Slave device. * = No Stop for Repeated Start
/S(text)[CR]	Slave Transmit Message Write the specified data bytes to a requesting I ² C Master Receiver device.
/(*)T(text)[CR]	Master Transmit Message Master Transmit the specified data bytes to the current Destination I^2C Slave device. * = No Stop for Repeated Start
/Un[CR]	I ² C Bus Time-oUt Set I ² C Bus Time-oUt in msec (0=Disable)
/V[CR]	Display Firmware Version (Major XX.XX Minor) (Requires Version 2.0 or later)
/X[CR]	eXtended Commands (See Prompt or User's Guide) (Requires Version 2.0 or later)
/Y[CR]	Display Tx bYte Count (Requires Version 2.0 or later)

Note: An online version of this programmer's reference is available at: http://www.mcc-us.com/203ug.htm

Synchronous Interface Events

Synchronous Events are those iPort/AFM interface activities initiated by the Host computer.

iPort/AFM Reset

This command resets iPort/AFM to its default state.

This command consists of three (3) sequential Ctr/R characters.

Ctr/R is the character code Decimal 18 and Hexadecimal 12, and can also be generated by holding down the Ctrl Key and pressing R.

Note: It is recommended that the Host computer turn off all serial port flow control before sending this command. Flow control should be enabled once the response is received.

Command: Ctrl/R,Ctrl/R,Ctrl/R	'iPort Reset
Response. *	'iPort/AFM Ready
Default Setting:	None

Status Display

This command displays current iPort/AFM status.

Command: //[CR] 'Status Display

Response:

iPort/AFM I²C Host Adapter w/ASCII Fast Mode Interface Vxx.xx Copyright © xxxx, Micro Computer Control Corp. Visit our Web Site at: http://www.mcc-us.com

RS-232 Baud Rate (19.2KHz) Destination I²C Slave Address (4EH) Echo/Prompt (Disabled) Flow Control (XON/XOFF) Hex Only Display (Enabled) I²C Connection (Closed) General Call (Enabled) iPort's own Slave Address (6EH) I2C Bus Clock Rate (100 KHz) iNterrupt Signal (Released) I2C Bus Time-oUt (10000 msec)

RS-232 Baud Rate

This command sets the RS-232 Baud Rate. (0=19.2k, 1=57.6k, 2=115.2k)

Command: /B[0|1|2][CR] Response 1: /BC0[CR] Response 2: /BC1[CR] Response 3: /BC2[CR] Response 3: /I89[CR] 'Set RS-232 Baud Rate 'Baud Change Complete 'Baud Change Complete 'Baud Change Complete 'Invalid Command Argument

Default Setting: /B0[CR]

Close I²C Connection

This command disconnects iPort/AFM from the I²C Bus.

Command: /C[CR] Response: /CCC[CR] Default Setting: 'Close I²C Connection 'Close Connection Complete 'Closed

Set Destination I²C Slave Address

This command sets the destination I²C Slave Address (Hex 0,2...FE) for all subsequent Master Transmit or Receive operation.

Command: /Dxx[CR]	'Set Destination I ² C Slave Address
Response 1: *	'iPort/AFM Ready
Response 2: /I89[CR]	'Invalid Command Argument
Default Setting: 00	

Echo/Prompt Control

This command enables or disables data entry echo and prompts used as feedback to manual operations from a computer terminal.

Command: /E[0|1][CR] Response: * Default Setting: 'Echo/Prompt Control [0 = Off, 1 = On] 'iPort/AFM Ready Off

Flow Control

This command selects the serial communication handshaking protocol to be use in communicating with the Host computer.

iPort/AFM implements either XON/XOFF (by default) or RTS/CTS flow control protocols. Flow control is used by the iPort/AFM to limit character flow to and from the Host computer to avoid overflowing internal communication buffers and lost data.

The XON/XOFF protocol inserts characters directly into the ASCII data stream. XON (Hexadecimal 11) is used to enable the flow of data. XOFF (Hexadecimal 13) is used to stop the flow of data. The RTS/CTS protocol uses two additional wires in the cable connecting communicating devices. The RTS wire is an output signal. It indicates that the device generating the signal has buffer space available, and can receive. The CTS wire is an input signal. It indicates that the other device has buffer space available, and can receive.

In general, XON/XOFF requires a minimal three-wire connection, Ground, Transmit Data, and Receive Data. This protocol does insert control characters into the stream of data, and may not be appropriate for all Host systems. If supported, these control characters are normally automatically stripped out of the data stream by Host communication driver software, and are not visible at the application program level.

The RTS/CTS protocol requires a serial port, cabling, and Host communication driver software that supports the additional control signals.

Command: /F[0 1][CR]	Flow Control $[0 = XON/XOFF, 1 = RTS/CTS]$
Response: *	'iPort/AFM Ready
Default Setting:	XON/XOFF

I²C General Call Control

This command enables or disables iPort/AFM response to I²C Bus General Call (Address 00) messages.

Command: /G[0 1][CR]	' I^2C General Call [0 = Disabled, 1 = Enabled]
Response: *	'iPort/AFM Ready
Default Setting:	Enabled

Hex Only Display Control

This command controls Hex Only (~00...~FF) output of Master or Slave received data.

When enabled, all received I^2C message data bytes are displayed in Hex (~00...~FF) form.

When disabled, received I²C message data bytes representing ASCII printable characters are displayed as their ASCII printable character. Non-ASCII printable data bytes are always displayed in Hex (~00...~FF) form.

Command: /H[0|1][CR] Response: * Default Setting: 'Hex Only Display [0 = Disabled, 1 = Enabled] 'iPort/AFM Ready Enabled

Set iPort/AFM's Own I²C Slave Address

This command sets iPort/AFM's own I²C Slave Address (Hex 2...FE). Subsequent I²C messages to this address will cause iPort/AFM to become an active Slave device on the bus.

Command: /Ixx[CR] Response 1: * Response 2: /I89[CR] Default Setting: 6E 'Set iPort/AFM's Own I²C Slave Address 'iPort/AFM Ready 'Invalid Command Argument

I²C Bus Clock Rate Control

Set the I²C Bus master clock rate. (0=23, 1=86, 2=100, 3=400 KHz)

Command: /K[0|1|2|3][CR] 'Set iPort/AFM's Clock Rate Response 1: * Default Setting: /K2[CR]

The iPort/AFM clock rate for standard commands is controlled by the oscillator crystal we use on our microcontroller. This crystal has been selected to give accurate RS-232 baud rates, as the RS-232 baud rate must exactly match the rate used by the host computer. Master I2C clock rates are the fastest possible given the required crystal frequency. Slave I2C clock rates are driven by the external master device, with possible clock-stretching as required to store or retrieve message data.

Command Menu Display

This command displays iPort/AFM's command menu.

Command: /M[CR] 'Command Menu Display Response: iPort/AFM Command Menu Syntax: [Select], (Optional), xx=[00..FE], n=[1..32767]

//	Status Display
/B[0 1 2]	RS-232 Baud Rate Control (0=19.2, 1=57.6, 2=115.2KHz)
/C	Close I2C Connection
/Dxx	Set Destination I2C Slave Address
/E[0 1]	Echo/Prompt Control (0=Disable, 1=Enable)
/F[0 1]	Flow Control (0=XON/XOFF, 1=RTS/CTS)
/G[0 1]	General Call Control (0=Disable, 1=Enable)
/H[0 1]	Hex Only Display Control (0=Disable, 1=Enable)
/Ixx Set	iPort/AFM's Own I2C Slave Address
/K[0 1 2 3]	I2C Bus Clock Rate Control (0=23, 1=86, 2=100, 3=400 KHz)
/M	Menu Display
/N([0 1 A R])	iNterrupt Signal Monitor/Control/Status
	(0=Disable, 1=Enable / A=Assert, R=Release / <cr>=Status</cr>
/O	Open I2C Connection
/(*)Rn	Master Rx Message *=No Stop
/S(text)	Slave Tx Message
/(*)T(text)	Master Tx Message *=No Stop
/Un	Set I2C Bus Time-oUt in msec 0=Disable)
/V	Display Firmware Version (Major XX.XX Minor)
/X[]	Extended Cmds (See Prompt or User's Guide)
/Y	Display Tx bYte Count

Interrupt Signal Control/Status

The INT signal allows the iPort/AFM to participate in INT master and/or slave communications.

Command: /N0[CR]	Disable Monitor
/N1[CR]	Enable Monitor
/NA[CR]	Assert INT Signal
/NR[CR]	Release INT Signal
Response: *	

Response: * Default Setting: /N0, /NR

Open I²C Connection

This command activates iPort/AFM as an active device on the I²C Bus.

Command: /O[CR]	'Open I ² C Connection
Response: /OCC[CR]	'Open Connection Complete
Default Setting:	Closed

Master Read Message

This command causes iPort/AFM to read the specified number of data bytes from the currently selected Destination I^2C Slave Address with or without generating an I^2C Stop condition after the last byte is received.

Enter Byte Count (Decimal 0...32767) then Press Enter, or ESCape to Cancel.

A Byte Count of Zero (0) represents a Variable Length message, where the first byte read from the I²C Slave device indicates the number of additional trailing bytes are available to read. iPort/AFM automatically reads the first byte, then the additional bytes as specified by the first byte. All message bytes including the Length byte are returned to the Host computer.

The received text is a representation of the data bytes within the Master Receive message. The format of this data is controlled by the current setting of the Hex Only Display Control.

If the device acknowledges its I^2C Slave Address, the specified number of bytes are read from the current Destination I^2C Slave Address. iPort/AFM acknowledges all bytes read except the last. If not disabled, the message is then terminated with an I^2C Stop condition.

Sending Master Receive messages with No Stop allows the Master to retain exclusive control of the I²C Bus until it finally sends a Stop. During this time, the Master can send additional (Repeated Start) Master Transmit or Master Receive messages to the same or other I²C Slave devices.

Command: /(*)Rnnnn[CR]

Response 1: /MRCtext[CR] Response 2: /SNA[CR] Response 3: /I81[CR] Response 4: /I83[CR] Response 5: /I88[CR] Response 6: /I89[CR] Default Setting: 'Master Read Message
(* = No Stop)
'Master Read Complete
'Slave Not Acknowledging
'iPort/AFM is Busy, Command Ignored
' I²C Arbitration Loss Detected
'iPort Connection Not Open
'Invalid Command Argument
None

Slave Transmit Message

This command should be issued to iPort/AFM in response to a Slave Transmit Request (/STR). This command causes iPort/AFM to write the specified data bytes to the requesting I²C Master Receiver device.

Enter Message Bytes (1 or more Printable ASCII or Hex-equivalent ~00..~FF), then Press Enter, or ESCape to Cancel.

Note 1: Upon receiving a Slave Transmit request from a Master Receiver device on the I²C Bus, iPort/AFM outputs a Slave Transmit Request to its Host device, and initiates an I²C Clock Stretch (SCL Low) until a Slave Transmit Text command is received from the Host computer. While clock stretching, no other messages can be transmitted on the I²C Bus.

Note 2: The tilde (~) character and the Carriage Return (CR) character are used as special marker characters within all iPort/AFM transmit text messages. These characters may not be used within the text of a message, but must be replaced by the following "Hex equivalent" characters:

Tilde replaced by "~7E" Carriage Return replaced by "~0D"

iPort/AFM automatically translates "Hex equivalent" characters to their single-byte value for transmission across the I²C Bus.

All entered data bytes are transmitted to the requesting Master Receiver device. Slave Transmit stops upon receiving the first negative acknowledgment (Nack) from the Master Receiver.

Command: /Stext[CR]	'Slave Transmit Message
Response 1: /STC[CR]	'Slave Transmit Complete
Response 2: /I88[CR]	'iPort Connection Not Open
Response 3: /I8A[CR]	'Slave Transmit Request Not Active, Cmd Ignored
Default Setting:	None

Examples:

/Sabcd1234[CR] /S~00~01~02[CR] 'ASCII Printable characters "abcd1234"'Binary data bytes 00, 01,02

/Sab~7Ecd[CR] /S12~0D24[CR]

Master Transmit Message

This command causes iPort/AFM to write the specified data bytes to the currently selected Destination I²C Slave Address with or without generating an I²C Stop condition after the last byte is transmitted.

Enter Message Bytes (0 or more Printable ASCII or Hex-equivalent ~00..~FF), then Press Enter, ESCape to Cancel.

Note: The tilde (~) character and the Carriage Return (CR) character are used as special marker characters within all iPort/AFM transmit text messages. These characters may not be used within the text of a message, but must be replaced by the following "Hex-equivalent" characters:

Tilde replaced by "~7E" Carriage Return replaced by "~0D"

iPort/AFM automatically translates "Hex equivalent" characters to their single-byte value for transmission across the I^2C Bus.

All entered data bytes are transmitted to the Destination I^2C Slave Receiver device. Master Transmit stops upon receiving the first negative acknowledgment (Nack) from the Slave Receiver. If not disabled, the message is then terminated with an I^2C Stop condition.

Sending Master Transmit messages with No Stop allows the Master to retain exclusive control of the I²C Bus until it finally sends a Stop. During this time, the Master can send additional (Repeated Start) Master Transmit or Master Receive messages to the same or other I²C Slave devices.

Command: /(*)Ttext[CR]	'Master Transmit Message (* = No Stop)
Response 1: /MTC[CR]	'Master Transmit Complete
Response 2: /SNA[CR]	'Slave Not Acknowledging
Response 3: /I81[CR]	'iPort/AFM is Busy, Command Ignored
Response 4: /I83[CR]	' I ² C Arbitration Loss Detected
Response 5: /I88[CR]	'iPort Connection Not Open

None

Examples:

/Tabcd1234[CR]	'ASCII Printable characters "abcd1234"
/T~00~01~02[CR]	'Binary data bytes 00, 01,02
/*T~00~01~02[CR]	'Binary data bytes 00, 01,02 with No Stop
/Tab~7Ecd[CR]	'Tilde embedded in ASCII Printable characters
/T12~0D24[CR]	'Carriage Return embedded in ASCII Printable characters

Set I²C Bus Time-oUt in msec

Set bus time-out in msec (0=disable)

The iPort/AFM reports a bus time-out if no bus activity for the specified time occurs within an I²C Bus message.

Command: /Unnnn[CR] 'I2C Bus time-oUt Response: *

Display Firmware Version (requires V2.00+)

Display firmware version

Command: /V[CR]	'Firmware Version
Response: /VCCXX.XX[CR]	'(Major XX.XX Minor)

eXtended Commands (requires V2.00+)

The eXtended commands are used to generate "out-of-spec" signaling. eXtended commands cannot use the I2C hardware to control the SCL and SDA lines, as the I2C hardware only generates I2C compatible signals. The eXtended commands use firmware to "bit-bang" the SCL and SDA lines. This firmware cannot operate as fast as the hardware, and it can be interrupted at any time by internal interrupts. The eXtended commands run directly off the command characters as they are received on the RS-232 link. Speed of execution of eXtended commands is controlled by the RS-232 baud rate, the execution speed of the firmware, delays caused by execution interruptions that may occur while a command is executing, and I2C Bus clock-stretching by external slave devices.

The following commands manipulate the I²C Clock (SCL) and data (SDA) lines.

Command: /X[S|~xx|R|r|P|0|1|?|D|d|C|c|L|A| |"]..., then Press Enter or ESCape Enter /X followed by zero or more sub-commands, the [CR]

Response: /XCC(see commands below)[CR]

High Level Sub-Commands:

S = Send Start $\sim xx =$ Send Byte (xx = 00...FF)(response = A or N) R = Read Byte with Ack (response = $\sim xx$) r = Read Byte with Nak (response = $\sim xx$) P = Send Stop

Mid Level Sub-Commands:

0 = Send 0 Bit 1 = Send 1 Bit ? = Read Bit (response = 0 or 1)

Low Level Sub-Commands:

D = Set SDA High d = Set SDA Low C = Set SCL High c = Set SCL Low L = Read SCL (response = 0 or 1)A = Read SDA (response = 0 or 1)

Misc Sub-Commands:

space = no action
"comment" = no action

Examples:

Master transmit three bytes to slave address 0x4e using high level, mid level, and low level sub-commands.

High Level Command:/X S ~4e ~01 ~02 ~03 P [CR] High Level Response: /XCCAAAA[CR]

Mid Level Command:/X S 01001110 ? 00000001 ? 00000010 ? 00000011 ? P [CR]

Mid Level Response: /XCC0000[CR]

Master read three bytes from slave address 0x4F. First two bytes are acknowledged by master.

Command: /X S ~4f Rrr P [CR] Response: /XCCA~xx~xx[CR] (xx = 00...FF)

Master transmit a Write WCR command to a Xicor X9241 at slave address 0x50. WCR data is 0x00.

Command: /X S ~50 ~a0 ~00 P [CR] Response: /XCCAAA[CR]

Master transmit a Write WCR command to a Xicor X9241 at slave address 0x50. WCR data is 0x3f.

Command: /X S ~50 ~a0 ~3f P [CR] Response: /XCCAAA[CR]

Issue a Read WCR command to a Xicor X9241 at slave address 0x50.

Command: $/X S \sim 50 \sim 90 \sim R P [CR]$ Response: $/XCCAA \sim xx[CR]$ '(xx = 00...FF)

Issue an Increment Wiper command to a Xicor X9241 at slave address 0x50.

Command: /X S ~50 ~20 1 P [CR] Response: /XCCAA[CR]

Issue an Decrement Wiper command to a Xicor X9241 at slave address 0x50.

Command: /X S ~50 ~20 0 P [CR] Response: /XCCAA[CR] **Display Tx bYte Count** (requires V2.00+)

Returns the number of bytes received by the slave device in the last master transmit message.

Command: /Y[CR]	'Tx bYte Count
Response: /TBCn[CR]	'n =0000032767

Asynchronous Interface Events

Asynchronous Events are those iPort/AFM interface activities initiated by the iPort/AFM I²C Host Adapter in response to activities on the I²C Bus.

Slave Transmit Request

This event is caused by the reception of an I^2C Bus Slave Transmit message directed at the current iPort/AFM's own Slave address.

Prompt: /STR[CR]	'Slave Transmit Request
Command: /Stext[CR]	'Slave Transmit Text

The normal Host computer response is to send a Slave Transmit Text (/Stext[CR]) command.

Note: Upon receiving a Slave Transmit request from a Master Receiver device on the I²C Bus, iPort/AFM outputs a Slave Transmit Request to its Host device, and initiates an I²C Clock Stretch (SCL Low) until a Slave Transmit Text command is received from the Host computer. While clock stretching, no other messages can be transmitted on the I²C Bus.

Slave Receive Complete

This event is caused by the reception of an I²C Bus Slave Receive message directed at the current iPort/AFM's own Slave address.

The received text is a representation of the data bytes within the Slave Receive message. The format of this data is controlled by the current setting of the Hex Only Display Control.

Prompt: /SRCtext[CR]	'Slave Receive Complete
Command:	None Required

General Call Receive Complete

This event is caused by the reception of an I^2C Bus Slave Receive message directed at the I^2C General Call Address (00), when iPort/AFM's General Call recognition is enabled.

The received text is a representation of the data bytes within the Slave Receive message. The format of this data is controlled by the current setting of the Hex Only Display Control.

Prompt: /GRCtext[CR]	'General Call Receive Complete
Command:	None Required

I²C Bus Time-out Detected

Prompt: /I85[CR]	I ² C Bus Time-out Detected
------------------	--

Cause: iPort/AFM issues this response when an I^2C Bus message lasts for more than 1 second. No corrective action is taken by iPort/AFM. No Host response is required, but this event can be used to detect bus problems.

iNterrupt Signal Assert

Prompt: /NSA[CR]	iNterrupt Signal Assert (low) Detected
iNterrupt Signal Release	
Prompt: /NSR[CR]	iNterrupt Signal Release (high) Detected

iPort/AFM Prompts

iPort/AFM Prompts are messages generated by iPort/AFM in response to Host computer commands.

iPort/AFM Ready

Prompt: *

'iPort/AFM Ready

Cause: iPort/AFM is ready for the next Host command.

Slave Not Acknowledging

Prompt: /SNA[CR] 'Slave Not Acknowledging

Cause: There is no response (I²C Slave Address Acknowledgment) during a Master Transmit or Receive operation from an I²C Slave device at the current Destination I²C Address.

iPort/AFM Busy

Prompt: /I81[CR] 'iPort/AFM Busy

Cause: Host attempted a Master operation while iPort/AFM was busy. Host should repeat the last command.

I²C Bus Arbitration Loss

Prompt: /I83[CR] 'I²C Arbitration Loss Detected

Cause: iPort/AFM lost I²C Bus Arbitration while Master Transmitting or Master Receiving an I²C message. Host should repeat the last command.

I²C Bus Error Detected

Prompt: /I84[CR] 'I²C Bus Error Detected

Cause: iPort/AFM has detected a error condition on the I²C Bus. Host should repeat the last command or issue an iPort/AFM Reset command.

I²C Bus Time-out Detected

Prompt: /I85[CR] 'I²C Bus Time-out Detected

Cause: iPort/AFM issues this command when an I²C Bus message lasts for more than 1 second. No corrective action is taken by iPort/AFM. No Host response is required, but this event can be used to detect bus problems.

iPort/AFM Connection Closed

Prompt: /I88[CR] 'iPort/AFM Connection is Closed.

Cause: Host is attempting to perform an I²C Bus message operation while the iPort/AFM Connection is Closed. The Host should issue an Open I²C Connection command before attempting to perform I²C Bus message operations.

Invalid Command Argument

Prompt: /I89[CR] 'Invalid Command Argument Detected

Cause: This event normally indicates the value of a Host command argument was out of range. The Host should reissue command with correct arguments.

Slave Transmit Request Not Active

Prompt: /I8A[CR] 'Slave Transmit Request Not Active

Cause: This event indicates the Host attempted to issue a Slave Transmit Text command when no Slave Transmit Request was present.

Invalid iPort/AFM Command

Prompt: /I8F[CR] 'Invalid iPort/AFM Command

Cause: This event normally indicates that an invalid command was issued by the Host. The Host should reissue the correct command.

iPort/AFM RS-232 Receive Buffer Overflow

Prompt: /I90[CR] 'iPort/AFM RS-232 Receive Buffer Overflow

Cause: This event normally indicates that data sent to the iPort/AFM via the RS-232 serial port has been lost. Check your Host Computer Serial Port Flow Control (XON/XOFF, or Hardware) to make sure it matches current iPort/AFM Flow Control. Also check if Host Computer FIFO buffers in the 16550 UART are enabled. If so, reduce Transmit Buffer level.

Example Code

The following examples are written in MS Visual Basic V3 for Windows using the serial communications control (MSCOMM.VBX). It can be used as a guide in implementing iPort/AFM interface programs in other programming languages and operating environments.

Note: This example code is available online at: http://www.mcc-us.com/202ug.htm#ExampleCode.

iPort/AFM Reset	
Comm1.Output = Chr\$(18)	'Ctrl/R
Comm1.Output = Chr(18)	'Ctrl/R
Comm1.Output = Chr\$(18)	'Ctrl/R
iPort/AFM Initialization	
Comm1.Output = "/f0"	'Set iPort/AFM XON/XOFF Flow Control
Comm1.Output = Chr\$(13)	
Comm1.Output = "/i/0"	'Set 1Port/AFM's Own Slave Address
Comm1.Output = Chr\$(13)	
Comm1 Output = "/d4e"	'Set Destination Slave Address
Comm1.Output = Chr(13)	
Comm1.Output = "/o"	'Open I ² C Connection
Comm1.Output = Chr\$(13)	
Master Transmit Message	
Comm1.Output = "/T~00~01"	'Send Master Tx Command
Comm1.Output = Chr\$(13)	'Terminate Command
Master Receive Message	
Comm1.Output = "/R10"	Send Master Rx Command
Comm1.Output = Chr\$(13)	'Terminate Command
Communication Event Process	ing
Static Sub Comm1 OnComm ()	8
Static LineBuf\$	
2	
While Comm1.InBufferCount	
Msg\$ = Comm1.Input 'Ge	t Comm input character
CharIn\$ = Msg\$	

If Msg\$ = Chr\$(13) Then Msg\$ = ""'Remove CR If Msg\$ = Chr\$(10) Then Msg\$ = ""'Remove LF If Msg\$ = "*" Then ' if iPort/AFM Ready Msg\$ = "****" ' Substitute Token CharIn\$ = Chr\$(13)' Terminate Line End If LineBuf\$ = LineBuf\$ + Msg\$ 'Add new text to line buffer If CharIn\$ = Chr\$(13) Then ' if Carriage Return detected iPortResp\$ = Left\$(LineBuf\$, 4) 'Isolate Response Code 'Test for iPort/AFM Synchronous Interface Events If (StrComp(iPortResp\$, "/OCC") = 0) Then 'Open Connection Complete Processing TextBox.Text = "/OCC Open Connection Complete" ElseIf (StrComp(iPortResp\$, "/MTC") = 0) Then 'Master Transmit Complete Processing TextBox.Text = "/MTC Master Tx Complete" ElseIf (StrComp(iPortResp\$, "/MRC") = 0) Then 'Master Rx Complete Processing TextBox.Text = LineBuf\$ 'Update Display ElseIf (StrComp(iPortResp\$, "/STC") = 0) Then 'Slave Tx Complete Processing TextBox.Text = "/STC Slave Tx Complete" ElseIf (StrComp(iPortResp\$, "/CCC") = 0) Then ' Close Connection Complete Processing TextBox.Text = "/CCC Close Connection Complete " ElseIf (StrComp(iPortResp, "/BC0") = 0) Then ' iPort/AFM Baud Change 0 {19.2K} TextBox.Text = "iPort/AFM Baud Change 0 {19.2K} " ElseIf (StrComp(iPortResp\$, "/BC1") = 0) Then 'iPort/AFM Baud Change 1 {57.6K} TextBox.Text = "iPort/AFM Baud Change 1 {57.6K} "

ElseIf (StrComp(iPortResp\$, "/BC2") = 0) Then ' iPort/AFM Baud Change 2 {115.2K} TextBox.Text = "iPort/AFM Baud Change 0 {115.2K} "		
' Test for iPort/AFM Asynchronous In	terface Events	
ElseIf (StrComp(iPortResp\$, "/SRC") 'Slave Rx Complete Processing	= 0) Then	
TextBox.Text = LineBuf\$	'Update Display	
ElseIf (StrComp(iPortResp\$, "/GRC") ' General Call Rx Complete Proc TextBox.Text = LineBuf\$	= 0) Then cessing 'Update Display	
ElseIf (StrComp(iPortResp\$, "/STR")	= 0) Then	
Comm1.Output = $"/S~00~01"$ Comm1.Output = Chr\$(13) TextBox.Text = LineBuf\$	'Send Slave Tx Msg 'Terminate Command 'Update Display	
ElseIf (StrComp(iPortResp\$, "/NSA") = 0) Then ' iNterrupt Signal Assert Detected TextBox.Text = iNterrupt Signal Assert Detected 'Update Display		
ElseIf (StrComp(iPortResp\$, "/NSR") = 0) Then ' iNterrupt Signal Release Detected TextBox.Text = iNterrupt Signal Release Detected 'Update Display		
' Test for iPort/AFM Response Messag	ges	
ElseIf (StrComp(iPortResp\$, "****") = 0) Then TextBox.Text = "* iPort/AFM Ready" 'Update Display		
ElseIf (StrComp(iPortResp\$, "/SNA") TextBox.Text = "/SNA Slave No	= 0) Then ot Acknowledging"	
ElseIf (StrComp(iPortResp\$, "/I81") = TextBox.Text = "/I81 iPort/AFM	= 0) Then I Busy" 'Update Display	
ElseIf (StrComp(iPortResp\$, "/I83") = 0) Then		

TextBox.Text = "/I83 Arbitration Loss" 'Update Display

ElseIf (StrComp(iPortResp\$, "/I84") = 0) Then TextBox.Text = "/I84 I2C Bus Error Detected"

ElseIf (StrComp(iPortResp\$, "/I85") = 0) Then TextBox.Text = "/I85 I2C Bus Time-out Detected"

ElseIf (StrComp(iPortResp\$, "/I88") = 0) Then TextBox.Text = "/I88 iPort/AFM Connection Closed"

ElseIf (StrComp(iPortResp\$, "/I89") = 0) Then TextBox.Text = "/I89 Invalid Command Argument"

ElseIf (StrComp(iPortResp\$, "/I8A") = 0) Then TextBox.Text = "/I8A Slave Tx Request Not Active"

ElseIf (StrComp(iPortResp\$, "/I8F") = 0) Then TextBox.Text = "/I8F Invalid iPort/AFM Command"

ElseIf (StrComp(iPortResp\$, "/I90 = 0) Then TextBox.Text = "/I90 iPort/AFM Rx Buffer Overflow"

Else

TextBox.Text = LineBuf\$ 'Other Update Display End If

LineBuf\$ = "" End If Wend End Sub

iPort/AFM Revision Report

This section defines revisions and changes made to the iPort/AFM interface:

Revision: 1.02

1. Initial Release

Revision: 2.00

- 1. Add Firmware Version Command.
- 2. Add eXtended Commands.
- 3. Add Tx bYte Count Command.

Additional Information

For additional information on the I²C Bus, please refer to the following:

"The I²C and How to Use It" http://www.mcc-us.com/i2chowto.htm

"80C51-Based 8-Bit Microcontroller" Data Handbook. Philips Semiconductors, Tel. (800)227-1817

" I²C Peripherals for Microcontrollers" Data Handbook. Philips Semiconductors, Tel. (800)227-1817

Micro Computer Control Corporation

PO Box 275, 17 Model Avenue Hopewell, New Jersey 08525 USA Tel: (609)466-1751 Fax: (609)466-4116 WWW: www.mcc-us.com

7/30/2

203.wpd

Software License Agreement

BY INSTALLING THIS SOFTWARE, YOU ARE AGREEING TO BECOME BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, PROMPTLY RETURN THE ENTIRE PRODUCT WITHIN 7 DAYS WITH ALL ITS CONTENTS TO THE PLACE OF PURCHASE, WITH A NOTE THAT YOU RETAIN NO COPIES OF THE SOFTWARE OR PRINTED MATERIALS, FOR A FULL REFUND.

The computer files and materials supplied in this package are non-exclusively licensed to Purchasers of the MCC iPort I²C Host Adapter.

Distribution of the MCC iPort Utility Pack software (IMSGCTR.EXE) and any other computer files supplied as part of the MCC iPort Utility Pack, is strictly limited to employees of the Purchasing Company.

Violation of any of the above provisions automatically terminates the Purchaser's license.

Life Support Applications

MCC Products are not designed for use in life support appliances, devices, or systems where the malfunction of a MCC Product can reasonably be expected to result in a personal injury.

Limited Warranty

MCC warrants, as the sole warranty, that the disks on which the Software is furnished will be free of defects in materials and workmanship under normal use and conditions for a period of thirty (30) days from the date of purchase. No distributor, dealer, or any other entity or person is authorized to expand or alter this Agreement.

MCC does not warrant that the functions contained in the Software will be uninterrupted or error-free. Except as stated above in this paragraph, the Software is provided as is without warranty of any kind either expressed or implied, included but not limited to the implied warranties of merchantability and fitness for a particular purpose. The Purchaser assumes entire risk as it applies to the quality and performance of the Software. Should the Software prove defective, the Purchaser (and not MCC, authorized MCC distributors, or dealers) assume the entire cost of all necessary servicing, repair or correction.

Limitation of Remedies and Damages

MCC's entire liability and remedy will be the replacement of any disks not meeting MCC "Limited Warranty" explained above.

In no event will MCC be liable for any damages direct, indirect, incidental, or consequential, including damages for lost profits, lost savings, or other incidental or consequential damage arising out of the use or inability to use such Software, even if MCC has been advised of the possibility of such damages or for any claim by any other party. In no event will MCC's liability of damages to the Purchaser or any other person ever exceed the amount of the license fee paid by the Purchaser to use the Software regardless of the form of the claim.

This Agreement is governed by the laws of the State of New Jersey USA (except federal law governs copyrights and registered trademarks.) If a provision of this Agreement is deemed invalid by any court having jurisdiction, that particular provision will be deemed deleted and will not affect the validity of any other provision of this Agreement.

TEL(609)466-1751 FAX (609)466-4116 EMAIL info@mcc-us.com

For the latest product information, application notes, and *free* software updates visit our Web Site at:

http://www.mcc-us.com

Appendix A

Interface Connector and Plug Information

MCC uses two (2) different connectors and plug assemblies. These parts are all compatible with one another and are interchangeable.

Connectors

Molex SEMCONN ACCESS.bus Receptacle Connector

Molex Part # 15-83-0064

AMP SDL (Shielded Data Link) Connectors for ACCESS.bus

AMP Part # 4-943197-1

Plugs

Molex SEMCONN ACCESS.bus Plug

Molex Part # 15-83-1564

AMP SDL (Shielded Data Link) Plug for ACCESS.bus

Amp Part # 520851-1
Amp Part # 520433-1
Amp Part # 520461-1
Amp Part # 520460-1
Amp Part # 4-520424-1

Additional Cables Available

MCC Part #	CAB4	I ² C Interface Cable, 48inches (4ft)
MCC Part #	CAB8	I ² C Interface Cable, 96 inches (8ft)
MCC Part #	CAB16	I ² C Interface Cable, 192 inches (16ft)
MCC Part #	CABCL	I ² C and SMBus Clip Lead Cable
MCC Part #	AXM-12G	1 Ft. INT-Trigger Cable

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com