TECHNICAL MANUAL FOR GENESYS[™] 750W HALF RACK Programmable DC Power Supplies

Document: 83-507-5002 Rev B

TDK-Lambda Americas Inc.

405 Essex Road, Neptune, NJ 07753 Tel: (732) 922-9300 Fax: (732) 922-9334 Web: www.US.TDK-Lambda.com/HP

TDK-Lambda Americas Inc 405 Essex Road Neptune NJ 07753 USA Tel: +1 732 922 9300 Fax: +1 732 922 9334 www.us.tdk-lambda.com/hp

DECLARATION OF CONFORMITY

GEN 750W Series GENH 750W Series GEN 1500W Series

We, TDK-Lambda Americas Inc., of 405 Essex Road, Neptune, NJ 07753, USA declare under our sole responsibility that the GEN 750W, GENH 750W, and GEN 1500W series as detailed on the attached products covered sheet comply with the provisions of the following European Directives and are eligible to bear the CE mark:

Low Voltage Directive	2006/95/EC
EMC Directive	2004/108/EC

Assurance of conformance of the described product with the provisions of the stated EC Directive is given through compliance to the following standards:

Electrical Safety	IEC/EN60950-1:2001, First Edition UL60950-1:2003, First Edition
Electromagnetic Emissions:	EN 55022: 1998 + A1::2000 + A2:2003 EN 55024: 1998 + A1::2001 + A2:2003 EN 61000-3-3: 1995+ A1:2001

These products are high-power equipment, with input power >1 kW, for professional use and installation, and carry the CE mark accordingly. These products are for use in Class A, ITE environment only, as defined by EN 55022: 1998 + A1::2000 + A2:2003 and EN 61000-3-3: 1995 + A2:2005.

Our European Representative in the EU is TDK-Lambda UK Limited, located at Kingsley Avenue, Ilfracombe, Devon, EX34 8ES UK. Further, all products covered by this declaration are manufactured in accordance with ISO9001:2000 which ensure continued compliance of the products with the requirements of the Low Voltage Directive.

Name of Authorized Signatory	Adam Rawicz-Szczerbo
Signature of Authorized Signatory	An
Position of Authorized Signatory	Managing Director, TDK-Lambda EMEA
Date	10466
Place where signed	Ilfracombe, Devon, England

GEN 750W, GENH 750W and GEN 1500W Series

Page 1 of 2

PRODUCTS COVERED SHEET FOR THE GEN 750W, GENH 750W, AND GEN 1500W SERIES

Product Name: GEN 750W Series Switch Mode DC Power Supply GENH 750W Series Switch Mode DC Power Supply GEN 1500W Series Switch Mode DC Power Supply

Models: GEN 6-100ABCDE GEN 8-90 ABCDE GEN 12.5-60ABCDE GEN 20-38 ABCDE GEN 30-25 ABCDE GEN 40-19 ABCDE GEN 50-30ABCDE	GEN 60-12.5 ABCDE GEN 80-9.5 ABCDE GEN 100-7.5ABCDE GEN 150-5 ABCDE GEN 300-2.5 ABCDE GEN 600-1.3 ABCDE	GEN 6-200 ABCDE GEN 8-180 ABCDE GEN 12.5-120ABCDE GEN 20-76 ABCDE GEN 30-50 ABCDE GEN 40-38 ABCDE	GEN 60-25 ABCDE GEN 80-19 ABCDE GEN 100-15ABCDE GEN 150-10 ABCDE GEN 300-5 ABCDE GEN 600-2.6 ABCDE
GENH 6-100ABCDE GEN 12.5-60ABCDE GENH 30-25 ABCDE GENH 40-19 ABCDE	GENH 60-12.5 ABCDE GEN 100-7.5ABCDE GENH 300-2.5 ABCDE GENH 600-1.3 ABCDE	GENH 8-90 ABCDE GENH 20-38 ABCDE	GENH 80-9.5 ABCDE GENH 150-5 ABCDE

A= LAN, MD, IEEE, IEMD, or blank. B= IS420, IS510, or blank. C= USB or blank. D=U or blank. E= 1669 (GENH 60-12.5 only) 1670 (GENH 150-5 only) 1671(GENH 150-5 only) 1673, 1674, 1677, 1678, 1683, 1690, or blank.

GENESYS™ Manual Supplement

FOR UNITS EQUIPPED WITH "IEMD" OPTION. ALSO REFER TO MANUAL 83-030-200 IEMD.

	Pg. 1
SAFETY INSTRUCTIONS GERMAN SAFETY INSTRUCTIONS	Pg. 2 Pg. 4
CHAPTER 1 GENERAL INFORMATION	- Pg. 6
1.1 USER MANUAL CONTENT.	Pg. 6
1.2 INTRODUCTION.	Pg. 6
1.2.1 General description.	Pg. 6
1.2.2 Models covered	Pg. 6
1.2.3 Features and options	Pg. 6
1.2.4 Multiple output power system	Pg. 7
1.2.5 Control via the serial communication port	Pg. 7
1.2.6 Analog voltage programming and monitoring	Pg. 7
1.2.7 Parallel operation	Pg. 7
	0
1.2.8 Output connections.	Pg. 7
1.2.9 Cooling and mechanical construction.	Pg. 8
1.3 ACCESSORIES.	Pg. 8
1.3.1 Included Accessories	Pg. 8
1.3.2 Optional Communication Cables	Pg. 8
1.3.3 AC cables	Pg. 8
CHAPTER 2 SPECIFICATIONS	Pg. 9
2.1 OUTPUT RATING.	Pg. 9
2.2 INPUT CHARACTERISTICS	Pg. 9
2.3 CONSTANT VOLTAGE MODE	Pg. 9
2.4 CONSTANT CURRENT MODE	Pg. 9
2.5 ANALOG PROGRMAMING AND MONITORING	Pg. 9
2.6 PROGRAMMING AND READBACK	Pg. 10
2.7 PROTECTIVE FUNCTIONS	Pg. 10
2.8 FRONT PANEL	Pg. 10
2.9 ENVIRONMENTAL CONDITIONS	Pg. 10
2.10 MECHANICAL	Pg. 10
2.11 SAFETY/EMC	Pg. 10
2.12 SUPPLEMENTAL CHARACTERISTICS	Pg. 11
2.13 OUTLINE DRAWINGS	Pg. 12
CHAPTER 3 INSTALLATION	Pg. 13
3.1 GENERAL	Pg. 13
3.2 PREPARATION FOR USE	Pg. 13
3.3 INITIAL INSPECTION	Pg. 13
3.4 RACK MOUNTING	Pg. 14
3.4.1 Single-unit installation	Pg. 14
3.4.2 Dual unit installation	Pg. 14
3.4.3 GENH/RM Rack Mounting outline drawings	Pg. 15
3.5 LOCATION MOUNTING AND COOLING	Pg. 15
3.6 AC SOURCE REQUIREMENTS	Pg. 15
3.7 AC INPUT POWER CONNECTION	Pg. 15
3.7.1 AC input connector	Pg. 16
3.7.2 AC input cord	Pg. 16
3.8 TURN-ON CHECKOUT PROCEDURE	Pg. 16
3.8.1 General	Pg. 16
3.8.2 Prior to operation	Pg. 16
3.8.3 Constant voltage check	Pg. 17
3.8.4 Constant current check	Pg. 17
3.8.5 OVP check.	Pg. 17
3.8.6 UVL check	Pg. 17
3.8.7 Foldback check	Pg. 18
3.8.8 Address setting.	Pg. 18
3.8.9 Baud rate setting.	Pg. 18
c.o.e Bada fate country	· y. io

3.9 CONNECTING THE LOAD	Pg. 18
3.9.1 Load Wiring	Pg. 18
3.9.2 Current Carrying Capacity	Pg. 18
3.9.3 Wire termination	Pg. 19
3.9.4 Noise and Impedance Effects	Pg. 20
3.9.5 Inductive loads	Pg. 20
3.9.6 Making the load connections	Pg. 20
3.9.7 Connecting single loads, local sensing (default)	Pg. 23
3.9.8 Connecting single loads, remote sensing	Pg. 23
3.9.9 Connecting multiple loads, radial distribution method	Pg. 23
3.9.10 Multiple loads connection with distribution terminals	Pg. 24
3.9.11 Grounding outputs	Pg. 24
3.10 LOCAL AND REMOTE SENSING	Pg. 25
3.10.1 Sensing wiring	Pg. 25
3.10.2 Local sensing	Pg. 25
3.10.3 Remote sensing	Pg. 26
3.10.4 J2 sense connector technical information	Pg. 26
3.11 REPACKAGING FOR SHIPMENT	Pg. 26
	D. 07
CHAPTER 4 FRONT AND REAR PANEL CONTROLS AND CONNECTORS.	Pg. 27
4.1 INTRODUCTION 4.2 FRONT PANEL CONTROLS AND	Pg. 27
	Pg. 27
4.3 REAR PANEL CONNECTIONS AND CONTROLS	Pg. 29
4.4 REAR PANEL SW1 SETUP SWITCH	Pg. 30
4.4.1 SW1 positions functions	Pg. 30
4.4.2 Resetting the SW1 switch	Pg. 31
4.5 REAR PANEL J1 PROGRAMMING AND MONITORING CONNECTOR	Pg. 31
4.5.1 Making J1 connections	Pg. 31
CHAPTER 5 LOCAL OPERATION	Pg. 34
5.1 INTRODUCTION	Pg. 34
5.1 INTRODUCTION 5.2 STANDARD OPERATION	Pg. 34 Pg. 34
5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode.	Pg. 34 Pg. 34 Pg. 34
5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation.	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 34
5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover.	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 35
5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP).	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.3.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 5.4 UNDER VOLTAGE LIMIT (UVL). 	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 5.4 UNDER VOLTAGE LIMIT (UVL). 5.4.1 Setting the UVL level. 	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 5.4 UNDER VOLTAGE LIMIT (UVL). 5.4.1 Setting the UVL level. 5.5 FOLDBACK PROTECTION. 	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 5.4 UNDER VOLTAGE LIMIT (UVL). 5.4.1 Setting the UVL level. 5.5 FOLDBACK PROTECTION. 5.1 Setting the Foldback protection. 	Pg. 34 Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 5.4 UNDER VOLTAGE LIMIT (UVL). 5.4.1 Setting the UVL level. 5.5 FOLDBACK PROTECTION. 5.2 Resetting the Foldback protection. 	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 5.4 UNDER VOLTAGE LIMIT (UVL). 5.4.1 Setting the UVL level. 5.5 FOLDBACK PROTECTION. 5.2 Resetting the Foldback protection. 	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 5.4 UNDER VOLTAGE LIMIT (UVL). 5.4.1 Setting the UVL level. 5.5 FOLDBACK PROTECTION. 5.5.1 Setting the Foldback protection. 5.2 Resetting activated Foldback protection. 5.6 OUTPUT ON/OFF CONTROL. 5.7 OUTPUT SHUT-OFF (SO) CONTROL VIA REAR PANEL J1 CONNECTOR. 	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36
 5.1 INTRODUCTION	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 37
 5.1 INTRODUCTION. 5.2 STANDARD OPERATION. 5.2.1 Constant Voltage Mode. 5.2.2 Constant Current Operation. 5.2.3 Automatic Crossover. 5.3 OVER VOLTAGE PROTECTION (OVP). 5.3.1 Setting the OVP level. 5.3.2 Activated OVP protection indications. 5.3.3 Resetting the OVP circuit. 5.4 UNDER VOLTAGE LIMIT (UVL). 5.4.1 Setting the UVL level. 5.5 FOLDBACK PROTECTION. 5.5.1 Setting the Foldback protection. 5.5.2 Resetting activated Foldback protection. 5.5 OUTPUT ON/OFF CONTROL. 5.7 OUTPUT SHUT-OFF (SO) CONTROL VIA REAR PANEL J1 CONNECTOR. 5.8 ENABLE/DISABLE CONTROL VIA. 	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 37 Pg. 37 Pg. 37
 5.1 INTRODUCTION	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 37 Pg. 37 Pg. 38
 5.1 INTRODUCTION	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 37 Pg. 37 Pg. 38 Pg. 38
 5.1 INTRODUCTION	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 37 Pg. 37 Pg. 38 Pg. 38 Pg. 38 Pg. 38
 5.1 INTRODUCTION	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 37 Pg. 37 Pg. 38 Pg. 38 Pg. 38 Pg. 38 Pg. 38 Pg. 38
 5.1 INTRODUCTION	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 37 Pg. 37 Pg. 38 Pg. 38 Pg. 38 Pg. 38 Pg. 38 Pg. 38
 5.1 INTRODUCTION	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 37 Pg. 37 Pg. 38 Pg. 38
 5.1 INTRODUCTION	$\begin{array}{c} Pg. \ 34\\ Pg. \ 34\\ Pg. \ 34\\ Pg. \ 34\\ Pg. \ 35\\ Pg. \ 36\\ Pg. \ 38\\ Pg. \ 39\\ Pg. \ 39\\ Pg. \ 36\\ Pg. \ 38\\ Pg. \ 38\\ Pg. \ 38\\ Pg. \ 39\\ Pg. \ 38\\ Pg. \ 38\\$
 5.1 INTRODUCTION	Pg. 34 Pg. 34 Pg. 34 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 35 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 36 Pg. 37 Pg. 37 Pg. 38 Pg. 38

5.15 PARALLEL OPERATION	Pg. 41
5.15.1 Basic parallel operation	Pg. 41
5.15.2 Advanced parallel operation	Pg. 42
5.16 DAISY-CHAIN SHUT-OFF CONNECTION	Pg. 44
5.17 FRONT PANEL LOCKING.	Pg. 44
5.17.1 Unlocked front panel.	Pg. 45
5.17.2 Locked front panel.	Pg. 45
	т <u>g</u> . т о
CHAPTER 6 REMOTE ANALOG PROGRAMMING	Pg. 46
6.1 INTRODUCTION	Pg. 46
6.2 LOCAL/REMOTE ANALOG CONTROL	Pg. 46
6.3 LOCAL/REMOTE ANALOG INDICATION.	Pg. 46
6.4 REMOTE VOLTAGE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT LIMIT	Pg. 47
6.5 RESISTIVE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT	Pg. 48
6.6 REMOTE MONITORING OF OUTPUT VOLTAGE AND CURRENT	Pg. 49
	i y. 43
CHAPTER 7 RS232 & RS485 REMOTE CONTROL	Pg. 50
7.1 INTRODUCTION	Pg. 50
7.2 CONFIGURATION	Pg. 50
7.2.1 Default setting	Pg. 50
7.2.2 Address setting	Pg. 50
7.2.3 RS232 or RS485 selection.	Pg. 50
7.2.4 Baud rate setting.	Pg. 50
7.2.5 Setting the unit into Remote or Local mode	Pg. 50
7.2.6 RS232/458 port at Local mode	
	Pg. 51
7.2.7 Front panel in Remote mode	Pg. 51
7.3 REAR PANEL RS232/485 CONNECTOR.	Pg. 51
7.4 MD MODE OPTION (Factory Installed)	Pg. 52
7.4.1 MD Mode Description	Pg. 52
7.4.2 MD Mode enable - Serial communication mode	Pg. 52
7.4.3 MD Mode SRQ	Pg. 52
7.4.4 Communication Collisions	Pg. 52
7.4.5 MD Mode SRQ Retransmission	Pg. 52
7.5 CONNECTING POWER SUPPLIES TO RS232 OR RS485 BUS	Pg. 53
7.5.1 Single power supply	Pg. 53
7.5.2 Multi power supply connection to RS232 or RS485 BUS	Pg. 54
7.6 COMMUNICATION INTERFACE PROTOCOL	Pg. 54
7.6.1 Data format	Pg. 54
7.6.2 Addressing	Pg. 54
7.6.3 End of message	Pg. 54
7.6.4 Command repeat.	Pg. 54
7.6.5 Checksum	Pg. 54
7.6.6 Acknowledge	Pg. 54
7.6.7 Error message	Pg. 55
7.6.8 Backspace	Pg. 55
7.7 ERROR MESSAGES.	Pg. 55
7.8 COMMAND SET DESCRIPTION	Pg. 55
7.8.1 General guide	Pg. 55
7.8.2 Command set categories	Pg. 55
7.8.3 Initialization control commands	Pg. 56
7.8.4 ID control commands	Pg. 56
7.8.5 Output control commands	Pg. 56
7.9 GLOBAL OUTPUT COMMANDS	Pg. 58
7.9.1 General	Pg. 58
7.10 SINGLE BYTE COMMANDS.	Pg. 59
7.10.1 General.	Pg. 59
7.10.2 Global commands without response.	Pg. 59
7.10.2 Global commands with response	Pg. 60
1.10.5 Ciobal commanus with response	F 9. 00

Pg. 60 Pg. 61 Pg. 63 Pg. 63 Pg. 63 Pg. 64 Pg. 65
Pg. 68
Pg. 69 Pg. 69 Pg. 69 Pg. 69 Pg. 69 Pg. 70 Pg. 71 Pg. 71 Pg. 71
Pg. 72 Pg. 72 Pg. 72 Pg. 72 Pg. 72 Pg. 72 Pg. 72 Pg. 72 Pg. 74

WARRANTY

This TDK-Lambda Americas Inc. product is warranted against defects in materials and workmanship for a period of five years from date of shipment. During the warranty period, TDK-Lambda Americas Inc. will, at it's option, either repair or replace products which prove to be defective.

LIMITATION OF WARRANTY

The warranty shall not apply to defects resulting from improper or inadequate usage or maintenance by the buyer, buyer supplied products or interfacing. The warranty shall not apply to defects resulting from unauthorized modifications, or from operation exceeding the environmental specifications of the product, or if the QA seal has been removed or altered by anyone other than TDK-Lambda Americas Inc. authorized personnel. TDK-Lambda Americas Inc. does not warrant the buyer's circuitry or malfunctions of TDK-Lambda Americas Inc. products resulting from the buyer's circuitry. Furthermore, TDK-Lambda Americas Inc. does not warrant any damage occurring as a result of the buyer's circuitry or the buyer's - supplied products. THIS LIMITED WARRANTY IS IN LIEU OF, AND TDK-LAMBDA AMERICAS INC DISCLAIMS AND EXCLUDES, ALL OTHER WARRANTIES, STATUTORY, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR OF CONFORMITY TO MODELS OR SAMPLES.

WARRANTY SERVICE

This product must be returned to an authorized TDK-Lambda Americas Inc. service facility for repairs or other warranty service. For products returned to TDK-Lambda Americas Inc. for warranty service, the buyer shall prepay shipping charges to TDK-Lambda Americas Inc. If the unit is covered under the foregoing warranty then TDK-Lambda Americas Inc. shall pay the shipping charges to return the product to the buyer. Refer to Section 3.11 for repackaging for shipment.

DISCLAIMER

The information contained in this document is subject to change without notice. TDK-Lambda Americas Inc. shall not be liable for errors contained in this document or for incidental or consequential damages in connection with the furnishing, performance or use of this material. No part of this document may be photocopied, reproduced or translated into another language without the prior written consent of TDK-Lambda Americas Inc.

TRADEMARK INFORMATION

Genesys[™] power supply is a trademark of TDK-Lambda Americas Inc. Microsoft[™] and Windows[™] are trademarks of Microsoft Corporation.

THE FCC WANTS YOU TO KNOW

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

FCC WARNING

Modifications not expressly approved by manufacturer could void the user authority to operate the equipment under FCC Rules.

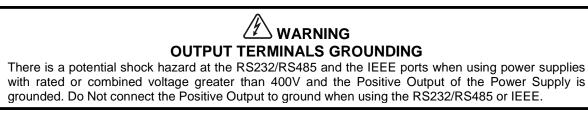
1

SAFETY INSTRUCTIONS

CAUTION

The following safety precautions must be observed during all phases of operation, service and repair of this equipment. Failure to comply with the safety precautions or warnings in this document violates safety standards of design, manufacture and intended use of this equipment and may impair the built-in protections within.

TDK-Lambda Americas Inc. shall not be liable for user's failure to comply with these requirements.


INSTALLATION CATEGORY

The Genesys[™] power supply series has been evaluated to INSTALLATION CATEGORY II. Installation category (over voltage category) II: local level, appliances, portable equipment etc. With smaller transient over voltage than Installation Category (over voltage category) III.

GROUNDING

This product is a Safety Class 1 instrument. To minimize shock hazard, the instrument chassis must be connected to an electrical ground. The instrument must be connected to the AC power supply mains through a three conductor power cable, with the ground wire firmly connected to an electrical ground (safety ground) at the power outlet.

For instruments designed to be hard-wired to the supply mains, the protective earth terminal must be connected to the safety electrical ground before another connection is made. Any interruption of the protective ground conductor or disconnection of the protective earth terminal will cause a potential shock hazard that might cause personal injury.

FUSES

Fuses must be changed by authorized TDK-Lambda Americas Inc. service personnel only. For continued protection against risk of fire, replace only with the same type and rating of fuse. Refer to Chapter 9 for fuse ratings.

INPUT RATINGS

Do not use AC supply, which exceeds the input voltage and frequency rating of this instrument. The input voltage and frequency rating of the GenesysTM power supply series is: $100-240V_{\sim}$, 50/60Hz. For safety reasons, the mains supply voltage fluctuations should not exceed +/-10% of nominal voltage.

LIVE CIRCUITS

Operating personnel must not remove the instrument cover. No internal adjustment or component replacement is allowed by non-TDK-Lambda Americas Inc. qualified personnel. Never replace components with power cable connected. To avoid injuries, always disconnect power, discharge circuits and remove external voltage source before touching components.

PARTS SUBSTITUTIONS & MODIFICATIONS

Parts substitutions and modifications are allowed by authorized TDK-Lambda Americas Inc. service personnel only. For repairs or modifications, the instrument must be returned to an authorized TDK-Lambda Americas Inc. service facility.

2

SAFETY INSTRUCTIONS

ENVIRONMENTAL CONDITIONS

The Genesys[™] power supply series safety approval applies to the following operating conditions:

*Indoor use *Maximum relative humidity: 90% (no condensation) *Pollution degree 2 *Ambient temperature: 0°C to 50°C *Altitude: up to 3000m

 Image: CAUTION Risk of Electrical Shock

 Instruction manual symbol. The instrument will be marked with this symbol when it is necessary for the user to refer to the instruction manual.

 Indicates hazardous voltage.

 Indicates ground terminal.

 Indicates ground terminal.

 Protective Ground Conductor Terminal

 O

 Off (Supply)

 Indicates in the WARNING sign denotes a hazard. An attention to a procedure is called. Not following procedure correctly could result in personal injury.

 A WARNING sign should not be skipped and all indicated conditions must be fully understood and met.

 The CAUTION sign denotes a hazard. An attention to a procedure is called. Not follow

The CAUTION sign denotes a hazard. An attention to a procedure is called. Not following procedure correctly could result in damage to the equipment. Do not proceed beyond a CAUTION sign until all indicated conditions are fully understood and met.

FCC COMPLIANCE NOTICE:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates electro-magnetic field, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

SICHERHEITS-INSTALLATIONS ANWEISUNGEN

Vorsicht

Vor Anschluss an das Netz ist die Aufstellanleitung wie nachstehend beschrieben zu beachten. Die nachstehenden Sicherheitsanweisugen mussen während aller Phasen des Betriebes, des Services und der Reparatur dieser Ausrustung beachtet werden. Alle notwendigen Bedingungen die sicherstellen, dass die Einrichtung zu keiner Gefahr im Sinne dieser Norm führen kann, sind in diesem Handbuch beschrieben.

TDK-Lambda Americas Inc. ist nich verantwortlich fur Fehler, die bei der Inbetriebnahme des Gerates auf Grundlage dieser Sicherheitsanweisungen durch den Betreiber entstehen können.

Betriebsbedingungen

Die GenesysTM Stromversorgungs-Reihe ist zur installation gemass Uberspannungs-Kategorie 2 entwickelt worden.

Installatios Kategorie (Uberspannungs-Kategories) 2 bedeutet: Kleinindustrie, Geräte, bewegliche Ausrustung etc.. mit Uberspannungen kleiner als Installation Kategorie 3.

Erdungskonzept

Dieses Produkt ist ein Gerat mit Schutzklasse1. Damit gefahrliche Energieinhalte und Spannungen vermieden werden, ist das Geratechassis an eine Schutzerde anzuschliessen. Das Gerat muss an die AC-Wechselspannungsversorgung mit 3 Leitern (L, N, PE) angeschlossen werden. Der PE-Anschluss ist an einen festen Erder anzuschliessen. Bei Festverdrahtung des Gerates ist sicherzustellen, dass der PE Anschluss als erstes durchgefuhrt wird.

Jede mogliche Unterbrechung des PE-Leiters oder Trennung der PE Masses kann einen moglichen elektrischen Schlag hervorrufen, der Personenschaden zur Folge hatte.

Vorsicht

Erdung des DC-Ausgangs

Es besteht Energiegefahr am RS232/RS485 und IEEE Anschluss, falls die Ausgangsspannung des Gerates grosser ist als 400V und der positive Ausgangsanschluss des Netzteiles geerdet wird. Dies gilt insbesondere auch bei Reihenschaltungen von unterschiedlichen Netzteilen. Wird die RS232/485 oder IEEE Schnittstelle verwendet, ist darauf zu achten, dass der Plus-Ausgangsanschluss nicht geerdet wird.

Absicherung

Sicherungen durfen nur durch autorisierte TDK-Lambda Americas Inc. Service Personen ausgetauscht werden. Um Brandgefahr vorzubeugen, sind nur Sicherungen zu verwenden mit gleicher Bauart und Auslosecharakteristik. Siehe hierzu Wartungsanweisungen in Kapitel 6 bezuglich Sicherungen.

Anschluss an Versorgungsstromkreis

Der Betrieb des Gerates ist nur fur den dafur spezifizierten Wechselspannungsbereich und der angegebenen Frequenz erlaubt.

Der Nominaleingangsspannungsbereich der Genesys[™] Serie liegt bei 100-240VAC mit 50/60Hz. Fur einen sicheren Betrieb des Gerates ist eine Abweichung von max. +/-10% der Nominalspannung erlaubt.

Spannungsfuhrende Teile

Die Gerateabdeckung darf nur im stromlosen Zustand geoffnet werden. Interne Modifikationen, sowie Bauteileaustausch ist nur durch TDK-Lambda Americas Inc. qualifiziertes Personal erlaubt. Vor Austausch von Bauteilen ist das Netzkabel bzw. Die Versorgungsspannung zu trennen.

Energieversorgungsanschlusse sind immer zu trennen um Personenverletzungen durch gefahrliche Energieinhalte und Spannungen auszuschliessen. Die Stromkreise sind zu entladen, extreme Spannunsquellen sind zu entfernen bevor Bauteile bzw. Komponenten getauscht werden.

4

Anderungen and Bauteileersatz

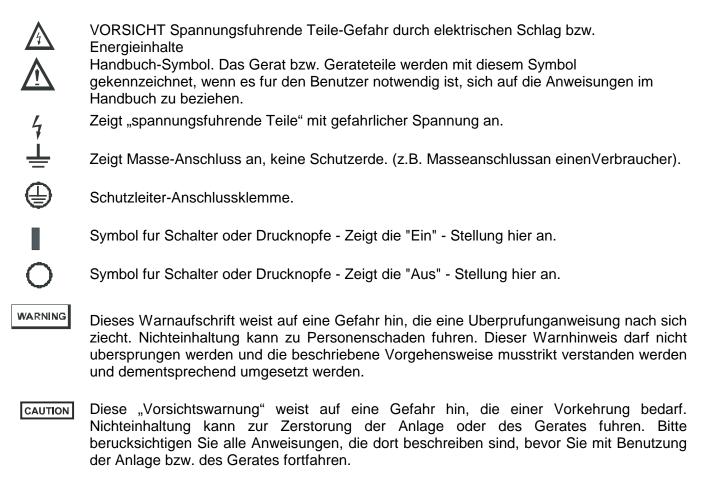
Ersatzteilaustausch – und Anderungen durfen nur von autorisiertem TDK-Lambda Americas Inc. SERVICE-PERSONEN durchgefuhrt werden. Fur Reparaturen oder Anderungen ist das Gerat zur TDK-Lambda Americas Inc. Service-Niederlassung zu retournieren.

SICHERHEITS-HINWEISE

Umweltbedingungen

Die Genesys[™] Stromversorgungs-Serie ist gemassden Sicherheitsabnahmen fur folgende Betriebsbedingungen zugelassen.

*Stationare Einrichtungen in Gebauden.


*Umgebungstemperaturebereich: 0-50°C.

*Maximale Relative Luftfeuchtigkeit: 90% (nicht kondensierend).

*Betriebshohe: bis zu 3000m.

*Verschmutzungsgrad 2.

Sicherheits-und Warnsymbole

CHAPTER 1 GENERAL INFORMATION

1.1 USER MANUAL CONTENT

This User's Manual contains the operating instructions, installation instructions and specifications of the Genesys[™] GENH 750W power supply series. The instructions refer to the standard power supplies, including the built-in RS232/RS485 serial communication. For information related to operation with the optional IEEE programming, refer to User's Manual for Power Supply IEEE Programming Interface. (TDK-Lambda Americas Inc. P/N 83-030-200).

1.2 INTRODUCTION

1.2.1 General Description

Genesys[™] power supplies are wide output range, high performance switching power supplies. The Genesys[™] series is power factor corrected and operates from worldwide AC voltage range continuously. Output Voltage and Current are continuously displayed and LED indicators show the complete operating status of the power supply. The Front panel controls allow the user to set the output parameters, the protections levels (Over-Voltage protection, Under-Voltage limit and Foldback) and preview the settings. The rear panel includes the necessary connectors to control and monitor the power supply operation by remote analog signals or by the built-in serial communication (RS232/RS485). GPIB programming and Isolated-Analog programming/monitoring are optional.

1.2.2 Models covered by this Manual

Model	Voltage range (V)	Current range (A)	Model	Voltage range (V)	Current range (A)
GENH 6 - 100	0 - 6	0 - 100	GENH 60 - 12.5	0 - 60	0 - 12.5
GENH 8 - 90	0 - 8	0 - 90	GENH 80 - 9.5	0 - 80	0 - 9.5
GENH 12.5 - 60	0 - 12.5	0 - 60	GENH 100 - 7.5	0 - 100	0 - 7.5
GENH 20 - 38	0 - 20	0 - 38	GENH 150 - 5	0 - 150	0 - 5
GENH 30 - 25	0 - 30	0 - 25	GENH 300 - 2.5	0 - 300	0 - 2.5
GENH 40 - 19	0 - 40	0 - 19	GENH 600 - 1.3	0 - 600	0 - 1.3

Table 1-1: Models covered by the Manual

1.2.3 Features and options

- * Constant Voltage / Constant Current with automatic crossover.
- * Active power factor correction.
- * Universal Input Voltage (85~265Vac), continuous operation.
- * Embedded Microprocessor Controller.
- * Built-in RS-232/RS-485 Interface.
- * Voltage & Current high resolution adjustment by digital encoders.
- * High accuracy programming/readback.
- * Software Calibration (no internal trimmers / potentiometers).
- * Last Setting Memory.
- * Independent Remote ON/OFF (opto-isolated) and remote Enable/Disable.

- * Parallel operation (Master/Slave) with Active current sharing.
- * Remote sensing to compensate for voltage drop of power leads.
- * External Analog Programming and Monitoring standard (0-5V or 0-10V, user selectable).
- * Cooling fan speed control for low noise and extended fan life.
- * Zero stacking-no ventilation holes at the top and bottom surface of the power supply.
- * Optional GPIB interface (SCPI compatible).
- * Optional Isolated Analog programming/monitoring (0-5V or 0-10V, user selectable and 4-20mA).

1.2.4 Multiple output power system

The Genesys[™] power supplies series can be configured into a programmable power system of up to 31 units using the built-in RS232/RS485 communication port and the RS485 linking cable provided with each power supply.

In a GPIB system, each power supply can be controlled using the optional GPIB controller (factory installed).

1.2.5 Control via the serial communication port

The following parameters can be programmed / monitored via the serial communication port:

- 1. Output Voltage setting.
- 2. Output Current setting.
- 3. Output Voltage measurement.
- 4. Output On/Off control.
- 5. Output Current measurement.
- 6. Foldback protection setting
- 7. Over-voltage protection setting and readback.
- 8. Under-Voltage limit setting and readback.
- 9. Power-supply start up mode (Auto-restart or Safe-start mode).

1.2.6 Analog voltage programming and monitoring

Analog inputs and outputs are provided at the rear panel for analog control of the power supply. The Output Voltage and the Current can be programmed by analog voltage or by resistor, and can be monitored by analog voltage. The power supply output can be remotely set to On or Off and analog signals monitor the proper operation of the power supply and the mode of operation (CV/CC).

1.2.7 Parallel operation

Genesys[™] power supplies of the same Output Voltage and Current rating can be paralleled in a master-slave configuration with automatic current sharing to increase power available.

1.2.8 Output connections

Output connections are made to rear panel bus-bars for models up to 60V and to a 4-terminal wire clamp connector for models above 60V rated output voltage. Either the positive or negative terminal may be grounded or the output may be floated. Models up to 60VDC Rated Output shall not float outputs more than +/- 60VDC above/below chassis ground. Models >60VDC Rated Output shall not float outputs more than +/-600VDC above/below chassis ground. Contact factory for assistance with higher float voltage applications.

Local or remote sense may be used. In remote sense, the voltage drop on the load wires should be minimized. Refer to the specifications for the maximum voltage drop value.

1.2.9 Cooling and mechanical construction

The GenesysTM series is cooled by internal fans. At the installation, care must be taken to allow free airflow into the power supply via the front panel and out of the power supply via the rear panel. The GenesysTM power supplies have a compact and lightweight package, which allows easy installation and space saving in the application equipment.

CAUTION

Observe all torque guidelines within this manual. Applying more torque may damage unit or accessories. Such damage is not covered under manufacturers warranty.

1.3 ACCESSORIES

1.3.1 Included Accessories

The following accessories are delivered with the power supply:

1.3.1.1 Serial Link Cable

Serial link cable for linking power supplies by RS-485 communication.GEN/RJ45. Cable description: 0.5m Length, shielded, RJ-45 type plugs, eight (8) contacts (P/N 15-507-201)

1.3.1.2 Hardware (delivered with power supply)

- Strain Relief for AC Cord
- Output terminal Shield
- DB25 Programming Plug kit (AMP 749809-9)
- Plastic legs for bench mounting.
- Power Cord See Para 1.3.3.

1.3.2 Optional Communication Cables (See Para. 7.5)

•	RS-232 Cables to connect GEN to Seria	al Port on PC	
	GEN to PC (DB9)	GEN 232/9	P/N 15-507-203
	GEN to PC (DB25)	GEN 232/25	P/N 15-507-204
•	RS-485 Cable to connect GEN to Serial	Port on PC	
	GEN to PC (DB9)	GEN/485-9	P/N 15-507-202)

1.3.3 AC cables

AC Cables are provided with 750W Model only, according to suffix in Model Number.

Part No.	Market	Description
NC301 (GEN/U)	USA	13A 125V, unshielded, 2m typical length, with IEC320 connector on one end and NEMA-5-15P connector on the other end.
NC302 (GEN/E)	Europe	10A 250V, unshielded, 2m typical length, with IEC320 connector on one end and INT'L 7 standard VII, dual earthing.
NC303 (GEN/O)	General	10A 250V, unshielded, 2m typical length, with IEC320 connector on one end and unterminated stripped wires on the other end. Use the cable only with plug approved by the national safety standards of the country of usage.
NC305 (GEN/J)	Japan	13A 125V,unshielded, 2m typical length, with IEC320 connector on one end and Japan type plug on the other end.
NC306 (GEN/GB)	UK	10A 250V unshielded, 2m typical length, with IEC320 connector on one end and UK type plug on the other end.

8

CHAPTER 2 SPECIFICATIONS

2.1 OUTPUT RATING														
MODEL	GEN	6-100	8-90	12.5-60	20-38	30-25	40-19	-	60-12.5	80-9.5	100-7.5	150-5	300-2.5	600-1.3
1.Rated output voltage (*1)	V	6	8	12.5	20	30	40	-	60	80	100	150	300	600
2.Rated output current 750W (*2)	A	100	90	60	38	25	19	-	12.5	8.5	7.5	5	2.5	1.3
3.Rated output power 750W	W	600	720	750	760	750	760	-	750	760	750	750	750	780
MODEL	GEN	6-200	8-180	12.5-120	20-76	30-50	40-38	50-30	60-25	80-19	100-15	150-10	300-5	600-2.6
1.Rated output voltage (*1)	V	6	8	12.5	20	30	40	50	60	80	100	150	300	600
2.Rated Output Current 1500W (*2)	A	200	180	120	76	50	38	30	25	19	15	10	5	2.6
3.Rated output power 1500W	W	1200	1440	1500	1520	1500	1520	1500	1500	1520	1500	1500	1500	1560
		•												
2.2 INPUT CHARACTERISTICS	V	6	8	12.5	20	30	40	50	60	80	100	150	300	600
1. Input voltage/freq. (*3)	-	85~265Va	c continuous	s, 47-63Hz, si	ngle phase									
2. Input current (at 100/200Vac)	A	10.5/5 for	750W mode	l, 21/11 for 15	00W mode	ls.								
3. Power Factor	-	0.99@100	/200Vac, rat	ed output pov	ver.									
4. 750W models Efficiency (*4)	%	76/78	77/80	81/84	82/85	82/85	83/87	83/87	83/87	83/87	83/87	83/87	83/87	83/87
5. 1500W models Efficiency (*4)	%	77/79	78/81	82/85	83/86	83/86	84/88	84/88	84/88	84/88	84/88	84/88	84/88	84/88
Inrush current at 100/200V	A	Less than	25A for 750	N models, 50	A for 1500	N models.								
2.3 CONSTANT VOLTAGE MODE	V	6	8	12.5	20	30	40	50	60	80	100	150	300	600
1. Max.Line regulation (*5)	-			voltage +2mV										
2. Max.Load regulation (*6)	-			voltage +2mV										
3. Ripple and noise (p-p,20MHz) (*10)	mV	60	60	60	60	60	60	60	60	80	80	100	150	300
4. Ripple r.m.s., 5Hz~1MHz (*10)	mV	8	8	8	8	8	8	8	8	8	8	10	25	60
5. Temperature coefficient	PPM/℃			tput voltage,										
6. Temperature drift	-	0.05% of r	ated Vout ov	er 8hrs interv	al following		s warm-up.	Constant	ine, load &	temp.				
7. Rem. Sense compensation/wire	V	1	1	1	1	1.5	2	2	3	4	5	5	5	5
Up-prog. Response time 0~Vomax (*9)	mS				80						15			250
9. Down-prog. Response time: Full load	mS	10												250
	1110	-		50				30			15	-		
No load		500	600	700	800	900	1000	1100	1100	1200	1500	2000	2500	4000
	mS	500 Time for th	e output vol				1000	1100			1500	-	2500	
No load		500 Time for th output curr	e output vol ent.	700 tage to recov			1000	1100			1500	-	2500	
No load		500 Time for th output curr Output set	e output vol ent. -point: 10~1	700 tage to recov 00%.	er within 0.	5% of its rai	1000 ted output	1100 for a load c	hange 10~9		1500	-	2500	
10. Transient response time	mS	500 Time for th output curr Output set Less than	e output vol ent. -point: 10~1 1mS for mo	700 tage to recov 00%. dels up to and	er within 0. I including	5% of its rai	1000 ted output	1100 for a load c	hange 10~9		1500	-	2500	
No load		500 Time for th output curr Output set Less than	e output vol ent. -point: 10~1 1mS for mo	700 tage to recov 00%.	er within 0. I including	5% of its rai	1000 ted output	1100 for a load c	hange 10~9		1500	-	2500	
10. Transient response time 11. Hold-up time	mS mS	500 Time for th output curr Output set Less than More than	e output vol rent. -point: 10~1 1mS for mo 20mS, 100\	700 tage to recov 00%. dels up to and /ac, rated out	er within 0. I including put power.	5% of its rai 100V; 2mS	1000 ted output	1100 for a load o	hange 10~9)V.	90% of rate	1500 d	2000		4000
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE	mS mS V	500 Time for th output curr Output set Less than More than 6	e output vol rent. -point: 10~1 1mS for moi 20mS, 100\ 8	700 tage to recov 00%. dels up to and /ac, rated out 12.5	er within 0. I including	5% of its rai	1000 ted output	1100 for a load c	hange 10~9		1500	-	2500	
	mS mS V -	500 Time for th output curr Output set Less than More than 6 0.01% of r	e output vol rent. -point: 10~1 1mS for moi 20mS, 100\ 8 ated output 1	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA	er within 0. I including put power.	5% of its rai 100V; 2mS	1000 ted output	1100 for a load o	hange 10~9)V.	90% of rate	1500 d	2000		4000
No load No lo	mS mS V -	500 Time for th output curr Output set Less than More than 6 0.01% of r 0.02% of r	e output vol rent. -point: 10~1 1mS for mor 20mS, 100 8 ated output t ated output	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA	er within 0. I including put power. 20	5% of its ra 100V; 2mS 30	1000 ted output f for models 40	1100 for a load c above 100 50	hange 10~5)V. 60	90% of rate	1500 ed	2000	300	4000 600
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz-1MHz.750W (*8)	mS mS V – mA	500 Time for th output curr Output set Less than More than 6 0.01% of r 0.02% of r 200	e output vol rent. -point: 10~1 1mS for mor 20mS, 100 8 ated output f ated output f 180	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120	er within 0. I including put power. 20 76	5% of its rai 100V; 2mS 30 63	1000 ted output t for models 40 48	1100 for a load d above 100 50	hange 10~5)V. 60 38	90% of rate 80 29	1500 ad 100 23	2000 150 18	300	4000
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8)	mS mS V - mA mA	500 Time for th output curn Output set Less than More than 6 0.01% of re 0.02% of rr 200 400	e output vol ent. -point: 10~1 1mS for mod 20mS, 100\ 8 ated output 180 360	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240	er within 0. I including put power. 20 76 152	5% of its rai 100V; 2mS 30 63 125	1000 ted output t for models 40 48 95	1100 for a load o above 100 50 - 75	hange 10~5)V. 60	90% of rate	1500 ed	2000	300	4000
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient	mS mS V – mA	500 Time for th output curr Output set Less than More than 6 0.01% of r 0.02% of r 200 400 100PPM/C	e output vol ent. -point: 10-1 1mS for mou 20mS, 100\ 8 ated output 180 360 C from rated	700 tage to recov 00%. Jels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer	er within 0.: I including put power. 20 76 152 t, following	5% of its ra 100V; 2mS 30 63 125 30 m inute:	1000 ied output i for models 40 48 95 s warm-up.	1100 for a load c above 100 50 - 75	hange 10~{)V. 60 38 75	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8)	mS mS V - mA mA	500 Time for th output curr Output set Less than More than 6 0.01% of r 0.02% of r 200 400 100PPM/C	e output vol ent. -point: 10-1 1mS for mou 20mS, 100\ 8 ated output 180 360 C from rated	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240	er within 0.: I including put power. 20 76 152 t, following	5% of its ra 100V; 2mS 30 63 125 30 m inute:	1000 ied output i for models 40 48 95 s warm-up.	1100 for a load c above 100 50 - 75	hange 10~{)V. 60 38 75	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift	mS mS V - mA mA	500 Time for th output curr Output set Less than More than 6 0.01% of r 0.02% of r 200 400 100PPM/C	e output vol ent. -point: 10-1 1mS for mou 20mS, 100\ 8 ated output 180 360 C from rated	700 tage to recov 00%. Jels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer	er within 0.: I including put power. 20 76 152 t, following	5% of its ra 100V; 2mS 30 63 125 30 m inute:	1000 ied output i for models 40 48 95 s warm-up.	1100 for a load c above 100 50 - 75	hange 10~{)V. 60 38 75	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature dift 2.5 ANALOG PROGRAMMING AND MONITORING	mS mS V − mA mA PPM/℃ −	500 Time for th output curn Output set Less than More than 0.01% of r 0.02% of r 200 400 100PPM/C 0.05% of r	e output vol rent. -point: 10-1 1mS for mor 20mS, 100\ 8 ated output ated output 180 360 C from rated lout over	700 tage to recov 00%. dels up to anc /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva	er within 0.: I including put power. 20 76 152 t, following al following	5% of its ra 100V; 2mS 30 63 125 30 m inutes 30 minutes	1000 ted output for models 40 48 95 s warm-up. warm-up.	1100 for a load c above 100 50 	hange 10~5 IV. 60 38 75 ne, load & t	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2. SANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming	mS mS V – mA mA PPM/°C –	500 Time for th output curn Output set Less than More than 6 0.01% of r. 200 400 100PPM/C 0.05% of r. 0.05% of r.	e output vol rent. -point: 10–1 1mS for mou 20mS, 100\ 20mS, 100\ 8 ated output 1 ated output 1 180 360 2 from rated ated lout over	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva	I including put power. 20 76 152 t, following al following	5% of its ra 100V; 2mS 30 63 125 30 m inute: 30 minutes 4 and linear	1000 ted output t for models 40 48 95 s warm-up. warm-up. ity; +/-0.5%	1100 for a load c above 100 50 	hange 10~5	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2.5 ANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming	mS mS V − mA mA PPM/℃ −	500 Time for th output curn Output set Less than More than 6 0.01% of r 200 400 100PPM/C 0.05% of r 0.05% of r	e output vol rent. -point: 10-1 1mS for mou 20mS, 100\ 20mS, 100\ 8 ated output ated output 180 360 C from rated ated lout ove >-5V or 0-1(5V or 0-10)	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva DV, user selec DV, user selec	I including put power. 20 76 152 t, following al following tt. Accurac tt. Accurac	5% of its rai 100V; 2mS 30 63 125 30 m inute 30 minutes / and linear / and linear	1000 ted output t for models 40 48 95 s warm-up. warm-up. tity; +/-0.5%	1100 for a load c above 100 50 	hange 105	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2.5 ANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming	mS mS V – mA mA PPM/°C –	500 Time for th output curn Output set Less than More than 6 0.01% of r 200 400 100PPM/C 0.05% of r 0.05% of r 0.05% of r 0.00%, C 0.00%, C 0.00%, C 0.00%, C	e output vol rent. -point: 10–1 1mS for mor 20mS, 100\ 8 ated output 180 360 2 from rated ated lout ove 1~5V or 0~1(1 ~5V or 0~1(1 ~5V or 0~1(1)	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva DV, user selec VU, user selec full scale, us	er within 0.: I including put power. 20 76 152 t, following al following it. Accurac; et. Accurac; er select. A	5% of its ra 100V; 2mS 30 63 125 30 m inutes 30 minutes / and linear / and linear / and linear	1000 ted output for models 40 48 95 s warm-up. warm-up. ity; +/-0.5% ity; +/-1% of d linearity:	1100 for a load c above 100 50 50 - Constant li 6 of rated V of rated lou +/-1% of ra	hange 105)V. 60 38 75 ne, load & tr /out. t. tted Vout.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2. SANALOG PROGRAMMING AND MONITORING 1. Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 4. lout resistor programming	mS mS V - mA mA PPM/℃ - - -	500 Time for th output curn Output set Less than More than 6 0.01% of r 0.02% of r 200 400 100PPM/C 0.05% of r 0.05% of r 0.	e output vol rent. -point: 10–1 1mS for moi 20mS, 100\ 20mS, 100\ 8 ated output: 180 360 C from rated ated lout over -55V or 0–1(-55V or 0–1(-5/10Kohm	700 tage to recov 00%. dels up to anc /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva VV, user select VV,	er within 0. I including put power. 20 76 152 t, following al following tt. Accuracy er select. A er select. A	5% of its ra 100V; 2mS 30 63 125 30 m inutes 7 and linear 7 and linear 63 125 30 m inutes 7 and linear 7 and linear	1000 ted output for models 40 48 95 s warm-up. warm-up. warm-up. tity; +/-0.5% tity; +/-1% of d linearity: d linearity:	1100 for a load c above 100 50 	hange 105)V. 60 38 75 ne, load & tr /out. t. tted Vout.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2. SANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 4. lout resistor programming 5. On/off control	mS mS V - mA mA PPM/℃ - - -	500 Time for th output curn Output set Less than More than 6 0.01% of r 0.02% of r 200 400 100PPM/7 0.05% of r 0.05% of r 0.05% of r 0.05% of r 0.05% of r 0.00%, C 0.00%, C 0.0%	e output vol rent. -point: 10–1 1mS for moi 20mS, 100\ 20mS, 100\ 8 ated output: 180 360 C from rated ated lout over -57V or 0–1(-57V or 0–1(-57/0Kohm -5/10Kohm al Voltage: C	700 tage to recov 00%. dels up to anc /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva 0V, user select 10,	er within 0. I including put power. 20 76 152 t, following al following tt. Accuracy er select. A er select. A or dry con	5% of its ra 100V; 2mS 30 63 125 30 m inutes 7 and linear 7 and linear 7 and linear 7 ccuracy an ccuracy an ccuracy an tact, user s	1000 ted output for models 40 48 95 s warm-up. warm-up. warm-up. tity; +/-0.5% tity; +/-1% of d linearity: d linearity:	1100 for a load c above 100 50 	hange 105)V. 60 38 75 ne, load & tr /out. t. tted Vout.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz-1MHz.750W (*8) 4. Temperature coefficient 5. Temperature coefficient 5. Temperature drift 2.5 ANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 4. lout resistor programming 5. On/off control 6. Output current monitor	mS mS V - mA mA PPM/℃ - - - - - - - - - - - - -	500 Time for th output curn Output set Less than More than 6 0.01% of r. 0.02% of r. 200 400 100PPM/C 0.05% of r. 0~100%, C 0~100%, C 0~10%, C 0	e output vol rent. -point: 10–1 1mS for moi 20mS, 100\ 20mS, 100\ 8 ated output ated output 180 360 C from rated ated lout over -57/ or 0–10 -57/ 0Kohm -5//10Kohm al Voltage: C -10V, user s	700 tage to recov 00%. dels up to anc /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer output currer or shrs interva DV, user selec full scale, us full scale, us full scale, us full scale, us voltal scale, us full scale, us	r within 0. i including put power. 20 76 152 t, following al following t. Accurac; t. Accurac; t. Accurac; tr select. A or dry con curacy: 1%	5% of its ra 100V; 2mS 30 63 125 30 m inutes 7 and linear 7 and linear 63 125 30 m inutes 7 and linear 63 125 30 m inutes 7 and linear 63 125 125 125 125 125 125 125 125	1000 ted output for models 40 48 95 s warm-up. warm-up. warm-up. tity; +/-0.5% tity; +/-1% of d linearity: d linearity:	1100 for a load c above 100 50 	hange 105)V. 60 38 75 ne, load & tr /out. t. tted Vout.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2.5 ANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 5. On/off control 6. Output current monitor 7. Output voltage monitor	mS mS V - mA mA PPM/℃ - - - - - - - - - - - - -	500 Time for th output curi Output set Less than More than 6 0.01% of r. 0.02% of r. 200 400 100PPM/C 0.05% of r. 0~100%, C 0~100%, C 0~5V or 0~00%, C 0~5V or 0~0%, C 0	e output vol rent. -point: 10–1 1mS for moi 20mS, 100\ 8 ated output ated output 180 360 2 from rated ated lout over 1-5V or 0–10 -5/10Kohm al Voltage: C -10V, user s -10V, user s	700 tage to recov 00%. dels up to anc dels up to anc 12.5 voltage +2mA current +5mA 120 240 output currer ar 8hrs interva DV, user selec full scale, us -0.6V/2-15V electable. Ac electable. Ac	er within 0. I including put power. 20 76 152 t, following al following it. Accuracy er select. A or dry con or dry con or dry con vuracy: 1% curacy: 1%	5% of its ra 100V; 2mS 30 63 125 30 m inutes 7 and linear 7 and linear 63 125 30 m inutes 7 and linear 63 125 30 m inutes 7 and linear 63 125 125 125 125 125 125 125 125	1000 ted output for models 40 48 95 s warm-up. warm-up. warm-up. tity; +/-0.5% tity; +/-1% of d linearity: d linearity:	1100 for a load c above 100 50 	hange 105)V. 60 38 75 ne, load & tr /out. t. tted Vout.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2. SANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 5. On/off control 6. Output current monitor 7. Output voltage monitor 8. Power supply OK signal	mS mS V mA mA PPM/C 	500 Time for th output curn Output set Less than More than 6 0.01% of r. 0.02% of r. 200 400 100PPM/C 0.05% of r. 0~100%, C 0~100%, C 0~5V or 0~5V, C 0~5V, C 0~5V	e output vol ent. -point: 10–1 1mS for moi 20mS, 100\ 20mS, 100\ 8 ated output 1 ated output 1 180 360 2 from rated ated lout over -57/0Kohm -57/10Kohm al Voltage: C -10V, user s 0V-Fail, 500	700 tage to recov ades up to and dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva VV, user select full scale, us >-0.6V/2-15V electable. Ac electable. Ac electable. Ac ohom series re	I including put power. 20 76 152 t, following al following et. Accuracy er select. A or dry con curacy: 1% usistance.	5% of its rational sector of the sector of t	1000 ted output t for models 40 48 95 s warm-up. warm-up. ity; +/-0.5% ity; +/-1% of d linearity: electable lo	1100 for a load c above 100 50 50 75 Constant li 6 of rated lou +/-1% of ra +/-1.5% of opgic.	hange 105 IV. 60 38 75 ne, load & tr fout. t. ted Vout. rated lout.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2. SANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 4. lour resistor programming 5. On/off control 6. Output current monitor 7. Output voltage monitor 8. Power supply OK signal 9. Parallel operation	mS mS V - mA mA PPM/℃ - - - - - - - - - - - - -	500 Time for th output curn Output set Less than More than 6 0.01% of r. 200 400 100PPM/C 0.05% of r. 0~100%, C 0~100%, C 0~5V or 0 0~5V or	e output vol ent. -point: 10–1 1mS for moi 20mS, 100\ 20mS, 100\ 8 ated output i ated output i 180 360 2 from rated ated lout over -5/10Kohm -5/10Kohm al Voltage: C -10V, user s 0V-Fail, 500 ip to 4 units	700 tage to recov ades up to encov 00%. dels up to and dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva DV, user select full scale, us vol.6V/2-15V electable. Ac electable. Ac ohm series re in master/sla	I including put power. 20 76 152 t, following al following et. Accuracy er select. A or dry con curacy: 1% curacy: 1% sistance. ve mode wi	5% of its rational sector of the sector of t	1000 ted output t for models 40 48 95 s warm-up. warm-up. ity; +/-0.5% ity; +/-1% of d linearity: electable lo	1100 for a load c above 100 50 50 75 Constant li 6 of rated lou +/-1% of ra +/-1.5% of opgic.	hange 105 IV. 60 38 75 ne, load & tr fout. t. ted Vout. rated lout.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2. SANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 5. On/off control 6. Output current monitor 7. Output voltage monitor 8. Power supply OK signal 9. Parallel operation 10. Series operation	mS mS V - mA mA PPM/C - - - - - - - - - - - - - - - - - - -	500 Time for th output curn Output set Less than More than 6 0.01% of r. 200 400 100PPM/C 0.05% of r. 0.05% of r. 0.05% of r. 0.00%, C 0.100%, C 0.10	e output vol rent. -point: 10–1 1mS for mon 20mS, 100\ 20mS, 100\ 8 ated output ated output 180 360 C from rated ated lout ove -5V or 0–10 -5/10Kohm -5/10Kohm -5/10Kohm 20V-Fail, 500 yoV-Fail, 500 yo 16 4 units vith external	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva 70V, user selec full scale, us full scale, us full scale, us full scale, us full scale, so full scale, so ful	I including put power. 20 76 152 t, following al following ct. Accurac; er select. A or dry con curacy: 1% curacy: 1% issistance. ve mode w o 2 units.	5% of its ra 100V; 2mS 30 63 125 30 m inutes 30 minutes 7 and linear 7 and lin	1000 ted output for models 40 48 95 s warm-up. warm-up. ity; +/-0.5% ity; +/-1% of d linearity: electable to re current	1100 for a load c for a load c above 100 50 50 	hange 105 IV. 60 38 75 ne, load & t fout. t. ted Vout. rated lout. nnection.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000 600 8
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2.5 ANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 5. On/off control 6. Output current monitor 7. Output voltage monitor 8. Power supply OK signal 9. Paralle operation 10. Series operation 11. CV/CC inicator	mS mS V - mA mA PPM/C - - - - - - - - - - - - - - - - - - -	500 Time for th output curn Output set Less than More than 6 0.01% of r. 200 400 100PPM/C 0.05% of r. 0.05% of r. 0.05% of r. 0.00%, C 0.100%, C 0.10	e output vol rent. -point: 10–1 1mS for mor 20mS, 100\ 20mS, 100\ 8 ated output 180 360 2 from rated ated lout ove >5V or 0–1(1 >5/10Kohm >5/10Kohm >5/10Kohm >5/10Kohm >5/10Kohm >5/10Kohm >5/10Kohm >5/10Kohm >5/10Kohm >10V, user s 0V-Fail, 500 yot 4 units, 500	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva 0V, user selec full scale, us full scale, us full scale, us full scale, us full scale. Ac electable. Ac ohm series re in master/sla diodes), up to source curren	I including put power. 20 76 152 t, following al following al following al following ct. Accurac; tr. Accurac	5% of its ra 100V; 2mS 30 63 125 30 m inutes 7 and linear 7 and l	1000 ted output for models 40 48 95 s warm-up. warm-up. ity; +/-0.5% ity; +/-1% of d linearity: electable to re current 1 (0-0.6V). S	1100 for a load c for a load c above 100 50 50 75 Constant li Constant li 6 of rated lou +/-1% of ra +/-1.5% of pogic. balance co	hange 105 IV. 60 38 75 ne, load & t fout. t. ted Vout. rated lout. nnection.	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz-1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2.5 ANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 4. lout resistor programming 5. On/off control 6. Output current monitor 7. Output voltage monitor 8. Power supply OK signal 9. Parallel operation 10. Series operation 11. CV/CC inicator 12. Enable/Disable	mS mS V - mA mA PPM/℃ - - - - - - - - - - - - -	500 Time for th output curn Output set Less than More than 6 0.01% of r 0.02% of r 200 400 100PPM/(0.05% of r 0.05% of r 0.	e output vol rent. -point: 10–1 1mS for moi 20mS, 100\ 20mS, 100\ 8 ated output: 180 360 2 from rated ated lout over -55V or 0–1(1 ->57V or 0–1(1 ->57V or 0–1(1 ->57V or 0–1(1 ->57V or 0–1(1 ->57V or 0–1(1) ->570 kohm ->570 kohm ->	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva 0V, user selec full scale, us full	I including put power. 20 76 152 t, following al following al following tt. Accuracy er select. A or dry con curacy: 1% uracy: 1% ve mode w o 2 units. t: 10mA, C ax. voltage	5% of its ra 100V; 2mS 30 63 125 30 m inutes 7 and linear 7 and linear 7 and linear 7 and linear 8 m inutes 7 and linear 8 m inutes 9 m inutes 100V; 2mS 100V; 2m	1000 ted output for models 40 48 95 s warm-up. warm-up. ity; +/-0.5% ity; +/-1% of d linearity: d linearity: electable lo re current l (0-0.6V). S Disable in:	1100 for a load c for a load c 50 50 - 75 Constant li 6 of rated lou +/-1% of ra +/-1.5% of pgic. balance co balance co iink current 6V.	hange 105 IV. 60 38 75 ne, load & tr /out. t. ted Vout. rated lout. nnection. : 10mA .	90% of rate 80 29 57	1500 ad 100 23	2000 150 18	300	4000
No load 10. Transient response time 11. Hold-up time 2.4 CONSTANT CURRENT MODE 1. Max.line regulation (*5) 2. Max.load regulation (*7) 3. Ripple r.m.s. 5Hz~1MHz.750W (*8) 1500W (*8) 4. Temperature coefficient 5. Temperature drift 2.5 ANALOG PROGRAMMING AND MONITORING 1.Vout voltage programming 2. lout voltage programming 3. Vout resistor programming 5. On/off control 6. Output current monitor 7. Output voltage monitor 8. Power supply OK signal 9. Paralle operation 10. Series operation 11. CV/CC inicator	mS mS V - mA mA PPM/C - - - - - - - - - - - - - - - - - - -	500 Time for th output curi Output set Less than More than 6 0.01% of r. 0.02% of r. 200 400 100PPM/C 0.05% of r. 0~100%, C 0~100%, C 0~10%	e output vol rent. -point: 10–1 1mS for mo 20mS, 100\ 20mS, 100\ 8 ated output: 180 360 C from rated ated lout over -5V or 0–1(-5V or 0–1(-5/10Kohm -5/10Kohm -5/10Kohm -5/10Kohm -5/10Kohm -5/10Kohm -5/10Kohm -5/10Kohm al Voltage: C -10V, user s 0V-Fail, 500 up to 4 units with external gp (4–5V), s t. Open: off, al signal or C	700 tage to recov 00%. dels up to and /ac, rated out 12.5 voltage +2mA current +5mA 120 240 output currer er 8hrs interva 0V, user selec full scale, us full scale, us full scale, us full scale, us full scale. Ac electable. Ac ohm series re in master/sla diodes), up to source curren	I including put power. 20 76 152 t, following al following al following al following tt. Accurac; er select. A or dry con curacy: 1% esistance. ve mode wi b: 2 units. t: 10mA, C or or sl curacy: 0% con curacy: 1% con	5% of its ra 100V; 2mS 30 63 125 30 minutes 7 and linear 7 and linear 7 and linear 7 and linear 63 125 30 minutes 7 and linear 7	1000 ted output t for models 40 48 95 s warm-up. warm-up. ity; +/-0.5% ity; +/-1% o d linearity: d linearity: d linearity: electable lo re current l (0-0.6V). S Disable in: e, 4~5V or	1100 for a load c above 100 50 50 50 Constant li 6 of rated V of rated lou +/-1% of ra +/-1.5% of ogic. balance co ink current 6V. open: Loc	hange 105 IV. 60 38 75 ne, load & tr 75 ne, load & tr 75 ne, load & tr 75 ne, load & tr 75 ne, load & tr 75 10-	29 80 29 57 emp.	1500 ad 100 23	2000 150 18	300	4000

2.6 PROGRAMMING AND READBACK (RS232/485, Optional IEEE Interface)

LIGT ROOMANNING AND READDAON NOLOEA	oo, optional iEEE intern	100															
 Vout programming accuracy 		0.05% + 0.0															
lout programming accuracy (*13)	-	0.1% of act	ual output o	current + 0.10	% of rated	output cur	rent (for lout	t >0.4% of	rated lout	to 100%	o of rat	ed lout).					
		0.1% of act	ual output o	current +0.4%	6 of rated of	output curr	ent (for lout	<0.4% of r	ated lout	to 0.4%	of rate	d lout).					
Vout programming resolution.	-	0.012% of f	ull scale.														
lout programming resolution	-	0.012% of f	ull scale.														
Vout readback accuracy	-	0.1% + 0.1%	% of rated of	output voltag	e												
lout readback accuracy (*13)	-	0.1% + 0.3%	% of rated of	output curren	t												
Vout readback resolution	-	0.012% of f	ull scale														
8. lout readback resolution	-	0.012% of f	ull scale														
2.7 PROTECTIVE FUNCTIONS	V	6	8	12.5	20	30	40	50	60	8	0	100	150	3	300	600	0
1. Foldback protection	Output shu	ut-down wher	n power sup	ply changes	from CV to	CC. Use	r presetable										
2. Over-voltage protection	Inverter sh	Inverter shut-down; manual reset by AC input recycle, OUT button.															

Over-voltage trip point	V	0.5-7.5	0.5-10	1-15	1-24	2-35	2-44.1	5-57	5-66	5-88	5-110	5-165	5-330	5-660
 Output under voltage limit 	Preset by front panel or communication port. Prevents adjusting Vout below limit. Raises the PS_OK signal in case													
	output voltage is below limit.													
5. Over temperature protection	User selectable, latched or non latched.													

2.8 FRONT PANEL

1. Control functions	-	Vout/lout manual adjust by separate encoders. (Coarse and fine adjustment)
	-	OVP/UVL manual adjust by Volt. Adjust encoder
	-	Address selection by Voltage adjust encoder. No of addresses: 31
	-	Go to local control
	-	Output on/off
		AC on/off
		Front panel lock
		Foldback control
		Serial or IEEE display at power-up
		Baud rate selection: 1200, 2400, 4800, 9600 and 19200
	-	Re-start modes (Auto Restart, Safe Start)
2. Display	-	Vout: 4 digits, accuracy: 0.5% of rated voltage + 1 count
	-	lout: 4 digits, accuracy: 0.5% of rated current + 1 count
3. Indications	-	VOLTAGE, CURRENT, ALARM FINE, PREVIEW, FOLDBACK, LOCAL, OUTPUT ON.

2.9 ENVIRONMENTAL CONDITIONS

1. Operating temperature	С	0~50 C, 100% load.
2. Storage temperature	С	-20 to + 70
3. Operating humidity	%	30-90% RH (no condensation).
4. Storage humidity	%	10-95% RH (no condensation).
5. Altitude	-	Maximum 3000m, Derate output current by 2%/100m above 2000m. Alternatively, derate maximum ambient
		temperature by 1 degC/100m above 2000m.

2.10 MECHANICAL

1. Cooling	-	Forced air cooled by internal fans.
2. Weight	Kg	Less than 4.5Kg
3. Dimensions (W x H x D)	mm	W: 214.0 H: 43.6 (57.0 Benchtop Version). D: 437.5 (Refer to Outline drawing).
4. Vibration	-	MIL-810E, method 514.5 test condition I-3.3
5. Shock	-	Less than 20G, half sine, 11mS. Units unpacked

2.11 SAFETY/EMC

1. Applicable standards	Safety	-	UL60950-1 listed, EN60950-1 Vout ≤ 40V: Output is SELV, IEEE/Isolated Analog are SELV.
			60 < Vout < 400V: Output is hazardous, IEEE/Isolated analog are SELV
			400 < Vout < 600V: Output is hazardous, IEEE/Isolated, Analog are not SELV
	EMC	-	EN55024
Withstand voltage		-	Vout < 60V models: Input-Outputs (SELV): 3.0KVrms 1 min, Input-Ground: 2.0KVrms 1 min.
			60 ≤ Vout ≤ 600V models: Input-Haz, output: 2.5KVrms 1 min, Input-SELV: 3KVrms 1 min, 1900VDC 1 min.
			Hazardous Output - SELV: 1.9KVrms 1 min, Hazardous Output-Ground: 1.9KVrms 1 min.
			Input-Ground: 2KVrms 1min
Insulation resistance		-	More than 100Mohm at 25°C, 70%RH
Conducted emission		-	EN55022B, FCC part 15-B, VCCI-B
Radiated emission		-	EN55022A, FCC part 15-A, VCCI-A

NOTES:

*1: Minimum voltage is guaranteed to maximum 0.2% of the rated output voltage.

*2: Minimum current is guaranteed to maximum 0.4% of the rated output current.

*3: For cases where conformance to various safety standards (UL, IEC etc.) is required, to be described as 100-240Vac (50/60Hz).

*4: At 100/200V input voltage and maximum output power.

*5: From 85~132Vac or 170~265Vac, constant load.

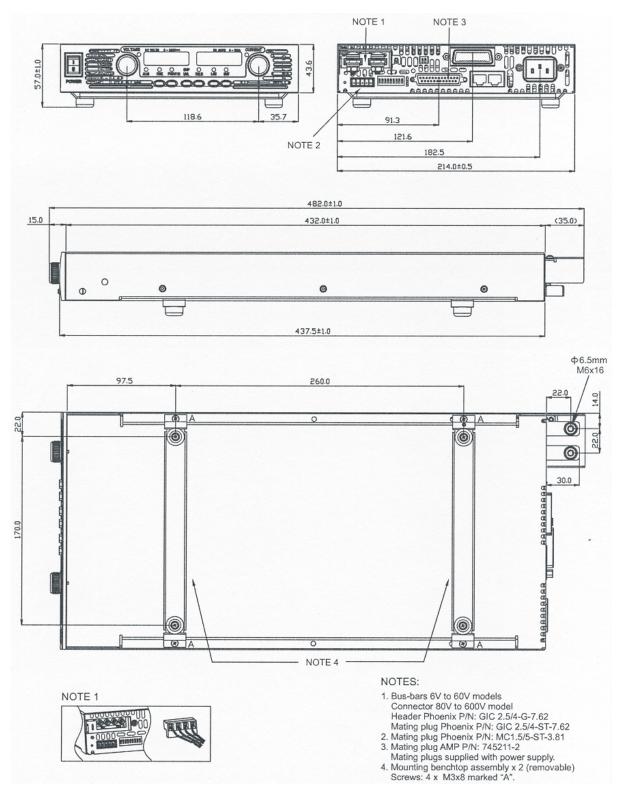
*6: From No-load to Full-load, constant input voltage. Measured at the sensing point in Remote Sense.

*7: For load voltage change, equal to the unit voltage rating, constant input voltage.

*8: For 6V models the ripple is measured at 2~6V output voltage and full output current. For other models, the ripple is measured at 10~100% output voltage and full output current.

*9: With rated, resistive load.

*10. For 6~300V models: Measured with JEITA RC-9131A (1:1) probe For 600V model: Measured with (10:1) probe.


2.12 SUPPLEMENTAL CHARACTERISTICS

The supplemental characteristics give typical but non-warranted performance characteristics. The supplemental characteristics are useful in assessing applications for the power supply. Several kinds of supplemental characteristics are listed below.

- 1. Evaluation Data: Typical performance of the power supply.
- 2. Reliability Data: Reliability Performance of the power supply.
- 3. IEC1000 Data: Performance of the power supply under IEC1000 test conditions.
- 4. EMI Data: Typical EMI (conducted and radiated) performance of the power supply.

The supplemental characteristics data is held in each TDK-Lambda Americas Inc. sales and service facility. For further details please contact the TDK-Lambda Americas Inc. office nearest you.

2.13 GENESYS[™] GENH 750W POWER SUPPLIES OUTLINE DRAWINGS

CHAPTER 3 INSTALLATION

3.1 GENERAL

This Chapter contains instructions for initial inspection, preparation for use and repackaging for shipment. Connection to PC, setting the communication port and linking Genesys[™] power supplies are described in Chapter 7.

NOTE

Genesys[™] power supplies generate magnetic fields, which might affect the operation of other instruments. If your equipment is susceptible to magnetic fields, do not position it adjacent to the power supply.

3.2 PREPARATION FOR USE

In order to be operational, the power supply must be connected to an appropriate AC source. The AC source voltage should be within the power supply specification. Do not apply power before reading Section 3.6 and 3.7.

Table 3-1 below, describes the basic setup procedure. Follow the instructions in Table 3-1 in the sequence given to prepare the power supply for use.

Step no.	Item	Description	Reference
1	Inspection	Initial physical inspection of the power supply	Section 3.3
2	Installation	Installing the power supply, Ensuring adequate ventilation.	Section 3.4 Section 3.5
3	AC source	AC source requirements Connecting the power supply to the AC source	Section 3.6 Section 3.7
4	Test	Turn-on checkout procedure.	Section 3.8
5	Load connection	Wire size selection. Local/Remote sensing. Single or multiple loads.	Section 3.9
6	Default setting	The power supply setting at shipment.	Section 7.2.1

Table 3-1: Basic setup procedure

3.3 INITIAL INSPECTIONS

Prior to shipment this power supply was inspected and found free of mechanical or electrical defects. Upon unpacking of the power supply, inspect for any damage, which may have occurred in transit.

The inspection should confirm that there is no exterior damage to the power supply such as broken knobs or connectors and that the front panel and meters face are not scratched or cracked. Keep all packing material until the inspection has been completed. If damage is detected, file a claim with carrier immediately and notify the TDK-Lambda Americas Inc. sales or authorized service facility nearest you.

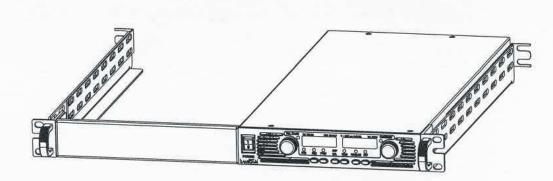
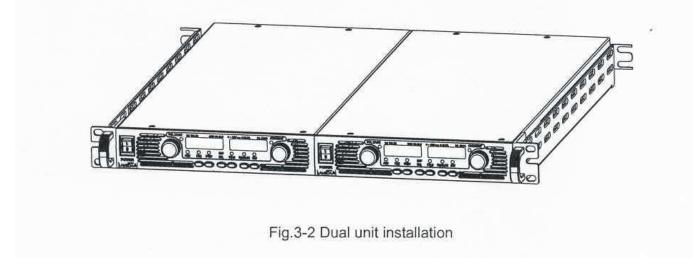
3.4 RACK MOUNTING

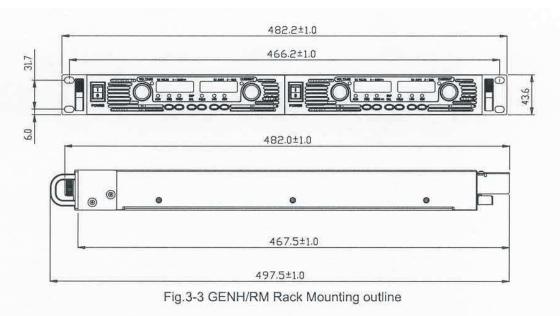
To install a GENH750W one unit or two units side-by-side in a standard 19" Rack in 1U (1.75") height, use option kit P/N: GENH/RM

The Rack Mount kit allows the units to be zero stacked for maximum system flexibility and power density without increasing the 1U height of the units.

3.4.1 Single unit installation

To install a GENH750W power supply in a standard 19" Rack in 1U (1.75") height, using a GENH Rack Mount kit P/N: GENH/RM.


Fig. 3-1 Single unit installation

3.4.2 Dual unit installation

To install two GENH750W power supplies side-by-side in a standard 19" Rack in 1U (1.75") height, using a GENH Rack Mount kit P/N: GENH/RM.

3.4.3 GENH/RM Rack Mounting outline drawings:

3.5 LOCATION, MOUNTING AND COOLING

This power supply is fan cooled. The air intake is at the front panel and the exhaust is at the rear panel. Upon installation allow cooling air to each the front panel ventilation inlets. Allow minimum 10cm (4-inch) of unrestricted air space at the front and the rear of the unit.

The power supply should be used in an area that the ambient temperature does not exceed +50 °C.

3.6 AC SOURCE REQUIREMENTS

The Genesys[™] series can be operated from a nominal 100V to 240V, single phase, 47~63 Hz. The input voltage range and current required for each model is specified in Chapter 2. Ensure that under heavy load, the AC voltage supplied to the power supply does not fall below the specifications described in Chapter 2.

3.7 AC INPUT POWER CONNECTION

CAUTION

Connection of this power supply to an AC power source should be made by an electrician or other qualified personnel

WARNING

There is a potential shock hazard if the power supply chassis (with cover in place) is not connected to an electrical safety ground via the safety ground in the AC input connector.

15

WARNING

Some components inside the power supply area are at AC voltage even when the On/Off switch is in the "Off" position. To avoid electric shock hazard, disconnect the line cord and load and wait two minutes before removing cover.

3.7.1 AC Input Connector

An IEC connector is provided on the rear panel for connecting the unit to the AC power source with an AC cord. The IEC connector also provides the safety ground connection while the AC cord is plugged into an appropriate AC receptacle.

3.7.2 AC Input Cord

Refer to Section 1.3.4 for details of the AC input cords recommended for the GENH750W models.

WARNING The AC input cord is the disconnect device of the power supply. The plug must be readily identifiable and accessible to the user. The AC input cord must be no longer than 3m.

3.8 TURN-ON CHECKOUT PROCEDURE

3.8.1 General

The following procedure ensures that the power supply is operational and may be used as a basic incoming inspection check. Refer to Fig.4-1 and Fig.4-2 for the location of the controls indicated in the procedure.

3.8.2 Prior to Operation

- 1. Ensure that the power supply is configured to the default setting:
 - AC On/Off switch at Off position.
 - Dip switch: All positions at Down ("Off") position.
 - Sense connector: Configured to Local Sense as shown in Fig.3-4:
 - 1 Remote (+) sense
 - 2 Local (+) sense
 - 3 Not connected
 - 4 Local (-) sense
 - 5 Remote (-) sense

Fig.3-4: Sense connector default connection

- For units equipped with IEEE option, ensure that the IEEE_En switch is in Up (default) position (Refer to Fig.4-2, Item 9 for location), if checkout is to be done in IEEE mode.
- 2. Connect the unit to an AC source as described in Section 3.7.
- 3. Connect a DVM with appropriate cables for the rated voltage to the output terminals.
- 4. Turn the front panel AC power switch to On.

16

3.8.3 Constant Voltage Check

- 1. Turn on the output by pressing the OUT pushbutton so the OUT LED illuminates.
- Observe the power supply VOLT display and rotate the Voltage encoder. Ensure that the Output Voltage varies while the VOLT encoder is rotated. The minimum control range is from zero to the maximum rated output for the power supply model. Compare the DVM reading with the front panel VOLT display to verify the accuracy of the
 - VOLT display. Ensure that the front panel VOLT LED is On.
- 3. Turn Off the front panel AC power switch.

3.8.4 Constant Current Check

- 1. Ensure that the front panel AC power switch is at the Off position and the DVM connected to the output terminals shows zero voltage.
- 2. Connect a DC shunt across the output terminals. Ensure that the shunt and the wire current ratings are higher than the power supply rating. Connect a DVM to the shunt.
- 3. Turn the front panel AC power switch to the On position,
- 4. Turn On the output by pressing OUT pushbutton so the OUT LED illuminates.
- 5. Observe the power supply CURRENT display and rotate the CURRENT encoder. Ensure that the Output Current varies while the CURRENT encoder is rotated. The minimum control range is from zero to the maximum rated output for the power supply model. Compare the DVM reading with the front panel CURRENT display to verify the accuracy of the CURRENT display. Ensure that the front panel CURRENT LED is On.
- 6. Turn Off the front panel AC power switch.
- 7. Remove the shunt from the power supply output terminals.

3.8.5 OVP Check

Refer to Section 5.3 for explanation of the OVP function prior to performing the procedure below.

- 1. Turn the front panel AC power switch to the On position and turn on the output by pressing OUT pushbutton.
- 2. Using the VOLT encoder, adjust the Output Voltage to approx. 10% of the unit voltage rating.
- 3. Momentarily press the OVP/UVL button so that the CURRENT display shows "OUP". The VOLTAGE display will show the last setting of the OVP level.
- 4. Rotate the VOLT encoder CCW to adjust the OVP setting to 50% of the unit voltage rating.
- 5. Wait a few seconds until the VOLT display returns to show the Output Voltage.
- 6. Adjust the Output Voltage toward its maximum and check that the Output Voltage cannot be increased more than the OVP setting.
- 7. Adjust OVP limit to the maximum by repeating Step 3 and rotating the VOLT encoder CW.

3.8.6 UVL Check

Refer to Section 5.4 for explanation of the UVL function prior to performing the procedure below.

- 1. Press the OVP/UVL button TWICE so that the CURRENT display shows "UUL". The VOLTAGE display will show the last setting of the UVL level.
- 2. Rotate the VOLT encoder to adjust the UVL level to approx. 10% of the unit voltage rating.
- 3. Wait a few seconds until the VOLT display returns to show the output voltage.
- 4. Adjust the output voltage toward its minimum and check that the output voltage cannot be decreased below the UVL setting.
- 5. Adjust the UVL limit to the minimum by repeating step 1 and rotating the VOLT encoder CCW.

17

3.8.7 Foldback Check

WARNING

Shorting the output may expose the user to hazardous voltages. Observe proper safety procedures.

Refer to Section 5.5 for explanation of the FOLD function prior to performing the procedure below.

- 1. Ensure that the Output Voltage is set to approx. 10% of the unit rating.
- 2. Adjust the CURRENT encoder to set the Output Current setting to approx. 10% of the unit rating.
- 3. Momentarily press the FOLD button. Ensure that the FOLD LED illuminates. The Output Voltage remains unchanged.
- 4. Short the output terminals momentarily (approx. 0.5 sec.). Ensure that the Output Voltage falls to zero, the VOLT display shows "Fb" and the ALARM LED blinks.
- 5. Press the FOLD button again to cancel the protection. The Output Voltage remains zero.
- 6. Press the OUT button. Ensure that the Output Voltage returns to its last setting.
- 7. Turn the output off by pressing the OUT button. Ensure that the VOLT display shows "OFF".

3.8.8 Address Setting

- 1. Press and hold the REM/LOC button for approx. 3 sec. The VOLT display will show the communication port address.
- 2. Using the VOLT adjust encoder, check that the address can be set within the range of 0 to 30.

3.8.9 Baud Rate Setting (RS-232 and RS-485 only)

- 1. Press and hold the REM/LOC button for approx. 3 sec. The CURRENT display will show the communication port Baud Rate.
- 2. Using The CURRENT adjust encoder, check that the Baud Rate can be set to 1200, 2400, 4800, 9600 and 19200.

3.9 CONNECTING THE LOAD

WARNING

Turn Off the AC input power before making or changing any rear panel connection. Ensure that all connections are securely tightened before applying power. There is a potential shock hazard when using a power supply with a rated output greater than 40V.

3.9.1 Load Wiring

The following considerations should be made to select wiring for connecting the load to the power supply:

- * Current carrying capacity of the wire (refer to Section 3.9.2)
- * Insulation rating of the wire should be at least equivalent to the maximum output voltage of the power supply.
- * Maximum wire length and voltage drop (refer to Section 3.9.2)
- * Noise and impedance effects of the load wiring (refer to Section 3.9.4).

3.9.2 Current Carrying Capacity

Two factors must be considered when selecting the wire size:

1. Wires should be at least heavy enough not to overheat while carrying the power supply load current at the rated load, or the current that would flow in the event the load wires were shorted, whichever is greater.

18

2. Wire size should be selected to enable voltage drop per lead to be less than 1.0V at the rated current. Although units will compensate for up to 5V in each load wire, it is recommended to minimize the voltage drop (1V typical maximum) to prevent excessive output power consumption from the power supply and poor dynamic response to load changes. Please refer to Tables 3-2 and 3-3 for minimum wire length (to limit voltage drop) in American and European dimensions respectively.

Wire size AWG	Resistivity OHM/1000ft	Maximum length in Feet to limit voltage drop to 1V or less							
AVG		5A	10A	20A	50A	150A			
14	2.526	80	40	20	8	2			
12	1.589	120	60	30	12	3.4			
10	0.9994	200	100	50	20	6			
8	0.6285	320	160	80	32	10			
6	0.3953	500	250	125	50	16			
4	0.2486	800	400	200	80	26			
2	0.1564	1200	600	300	125	40			
0	0.0983	2000	1000	500	200	68			

Table 3-2: Maximum wire length for 1V drop on lead (in feet)

Cross sect. area	Resistivity OHM/Km	Maximum length in meters to limit voltage drop to 1V or less							
(mm²)		5A	10A	20A	50A	150A			
2.5	8.21	24.0	12.0	6.0	2.4	0.8			
4	5.09	39.2	18.6	9.8	4.0	1.4			
6	3.39	59.0	29.4	14.8	5.8	2.0			
10	1.95	102.6	51.2	25.6	10.2	3.4			
16	1.24	160.0	80.0	40.0	16.0	5.4			
25	0.795	250.0	125.0	62.0	25.2	8.4			
35	0.565	354.0	177.0	88.0	35.4	11.8			

Table 3-3: Maximum wire length for 1 V drop on lead (in meters)

For currents not shown in Table 3-2 and 3-3, use the formula: Maximum length=1000/(current x resistivity)

Where current is expressed in Amperes and resistivity in ohms/km or ohms/1000ft.

3.9.3 Wire termination

The wires should be properly terminated with terminals securely attached. DO NOT use unterminated wires for load connection at the power supply.

CAUTION

When local sensing, a short from +LS or +S to -V or -S or -LS, will cause damage to the power supply. Reversing the sense wires might cause damage to the power supply in local and remote sensing. (Do not connect -S to +V or +S to -V).

19

3.9.4 Noise and Impedance Effects

To minimize the noise pickup or radiation, the load wires and remote sense wires should be twisted pairs to the shortest possible length. Shielding of sense leads may be necessary in high noise environments. Where shielding is used, connect the shield to the chassis via a rear panel Ground screw. Even if noise is not a concern, the load and remote sense wires should be twisted-pairs to reduce coupling, which might impact the stability of power supply. The sense leads should be separated from the power leads.

Twisting the load wires reduces the parasitic inductance of the cable, which could produce high frequency voltage spikes at the load and the output of the power supply, because of current variation in the load itself.

The impedance introduced between the power supply output and the load could make the ripple and noise at the load worse than the noise at the power supply rear panel output. Additional filtering with bypass capacitors at the load terminals may be required to bypass the high frequency load current.

3.9.5 Inductive loads

Inductive loads can produce voltage spikes that may be harmful to the power supply. A diode should be connected across the output. The diode voltage and current rating should be greater than the power supply maximum output voltage and current rating. Connect the cathode to the positive output and the anode to the negative output of the power supply.

Where positive load transients such as back EMF from a motor may occur, connect a surge suppressor across the output to protect the power supply. The breakdown voltage rating of the suppressor must be approximately 10% higher than the maximum output voltage of the power supply.

3.9.6 Making the load connections

Hazardous voltages may exist at the outputs and the load connections when using a power supply with a rated output greater than 40V. To protect personnel against accidental contact with hazardous voltages, ensure that the load and its connections have no accessible live parts. Ensure that the load wiring insulation rating is greater than or equal to the maximum output voltage of the power supply.

CAUTION

Ensure that the load wiring mounting hardware does not short the output terminals. Heavy connecting cables must have some form of strain relief to prevent loosening the connections or bending the bus-bars.

6V to 60V Models

Refer to Fig.3-5 for connection of the load wires to the power supply bus-bars and to Fig.3-6 for mounting the bus-bars shield to the chassis.

20

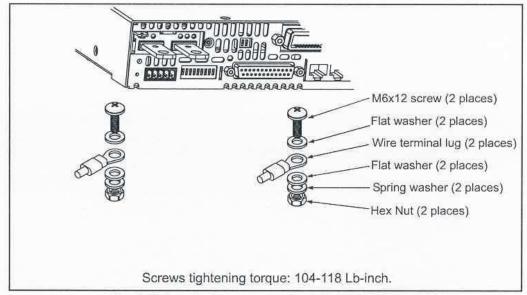


Fig. 3-5: Load wires connection , 6V to 60V models.

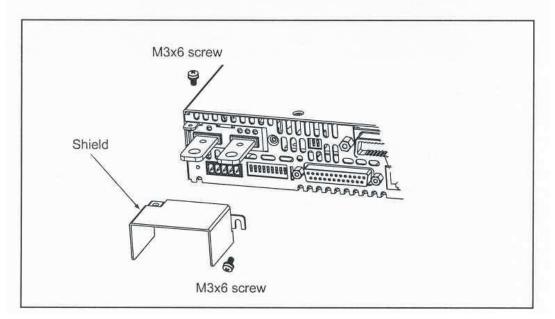
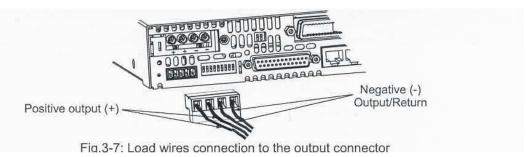
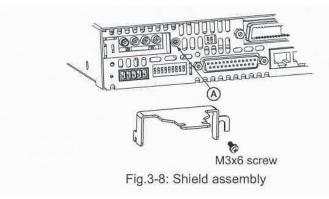


Fig. 3-6: bus-bars shield mounting

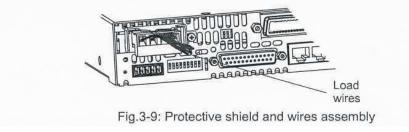
80V to 600V Models


21

The 80V to 600V models have a four terminal wire clamp output connector. The two left terminals are the positive outputs and the two right terminals are the negative outputs. The connector requirements are as follows:


- 1. Wires: AWG18 to AWG10.
- 2. Tightening torque: 6.5-7.0 Lb-inch.

Follow the instructions below for connection of the load wires to the power supply:


- 1. Strip approx. 10mm (0.39 inches) at the end of each of the wires.
- 2. Loosen the connector terminal screws.
- 3. Insert the stripped wires into the terminal and tighten the terminal screw securely (see Fig.3-7)

- 4. Loosen the two chassis screws marked "A" halfway as shown in Fig.3-8.
- 5. Assemble the protective shield to the chassis and tighten the two screws to fix the shield to the chassis (see Fig.3-8). Screws tightening torque: 4.8-5.3 Lb-inch.

6. Tighten the wires to one of the shield sides using ty-wrap or equivalent. Refer to Fig.3-9. Ensure that the wire length inside the shield is long enough to provide proper strain relief.

3.9.7 Connecting single loads, local sensing (default).

Fig.3-10 shows recommended load and sensing connections for a single load. The local sense lines shown are default connections at the rear panel J2 sense connector. Local sensing is suitable for applications where load regulation is less critical.

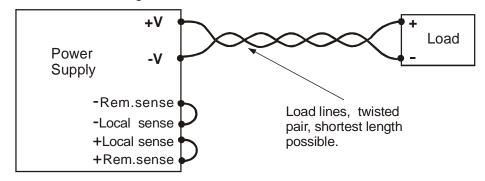


Fig.3-10: Single load connection, local sensing

3.9.8 Connecting single loads, remote sensing

Fig.3-11 shows recommended remote sensing connection for single loads. Remote sensing is used when, in Constant Voltage mode, the load regulation is important at the load terminals. Use twisted or shielded wires to minimize noise pick-up. If shielded wires are used, the shield should be connected to the ground at one point, either at the power supply chassis or the load ground. The optimal point for the shield ground should be determined by experimentation.

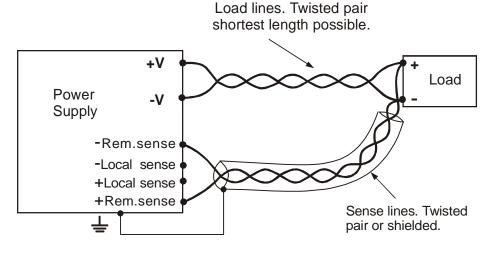


Fig.3-11: Remote sensing, single load

3.9.9 Connecting multiple loads, radial distribution method

Fig.3-12 shows multiple loads connected to one supply. Each load should be connected to the power supply's output terminals using separate airs of wires. It is recommended that each pair of wires will be as short as possible and twisted or shielded to minimize noise pick-up and radiation. The sense wires should be connected to the power supply output terminals or to the load with the most critical load regulation requirement.

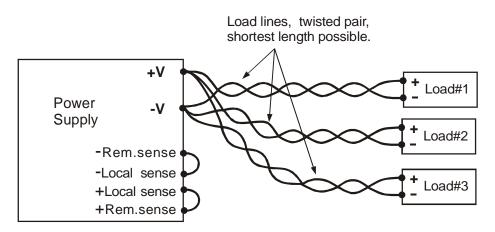


Fig.3-12: Multiple loads connection, radial distribution, local sense

3.9.10 Multiple load connection with distribution terminals

If remotely located output distribution terminals are used, the power supply output terminals should be connected to the distribution terminals by pair of twisted and/or shielded wires. Each load should be separately connected to the remote distribution terminals (see Fig.3-13). If remote sensing is required, the sensing wires should be connected to the distribution terminals or at the most critical load.

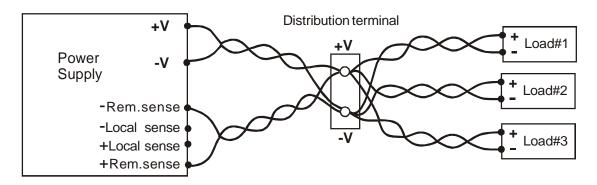


Fig.3-13: Multiple loads connection with distribution terminal

3.9.11 Grounding outputs

Either the positive or negative output terminals can be grounded. To avoid noise probems caused by common-mode current flowing from the load to ground, it is recommended to ground the output terminal as close as possible to the power supply chassis ground.

Always use two wires to connect the load to the power supply regardless of how the system is grounded.

WARNING

Models up to 60VDC Rated Output shall not float outputs more than +/-60VDC above/below chassis ground. Models > 60VDC Rated Output shall not float outputs more than +/-600VDC above/below chassis ground.

24

There is a potential shock hazard at the RS232/RS485 and the IEEE ports when using power supplies with rated or combined voltage greater than 400V with the Positive Output of the power supplies grounded. Do not connect the Positive output to ground when using the RS232/RS485 or IEEE under the above conditions.

3.10 LOCAL AND REMOTE SENSING

The rear panel J2 sense connector is used to configure the power supply for local or remote sensing of the Output Voltage. Refer to Fig.3-14 for sense connector location.

3.10.1 Sense wiring

WARNING

There is a potential shock hazard at the sense connector when using a power supply with a rated Output Voltage greater than 40V. Local sense and remote sense wires should have a minimum insulation rating equivalent or greater than the maximum Output Voltage of the power supply. Ensure that the connections at the load end are shielded to prevent accidental contact with hazardous voltages.

3.10.2 Local sensing

The power supply is shipped with the rear panel J2 sense connector wired for local sensing of the Output Voltage. See Table 3-4 for J2 terminals assignment. With local sensing, the Output Voltage regulation is made at the output terminals. This method does not compensate for voltage drop on the load wires, therefore it is recommended only for low load current applications or where the load regulation is less critical.

Fig.3-14: Sense connector location

Terminal	Function
J2-1	Remote positive sense (+S)
J2-2	Local positive sense. Connected internally to the positive output terminal (+LS).
J2-3	Not connected (NC)
J2-4	Local negative sense. Connected internally to the negative output terminal (-LS).
J2-5	Remote negative sense (-S).

25

WARNING

There is a potential shock hazard at the sense point when using a power supply with a rated Output Voltage greater than 40V. Ensure that the connections at the load end are shielded to prevent accidental contact with hazardous voltages.

CAUTION

When using shielded sense wires, ground the shield in one place only. The location can be the power supply chassis or one of the output terminals.

Use remote sense where the load regulation at the load end is critical. In remote sense, the power supply will compensate for voltage drop on the load wires. Refer to the power supply specifications for the maximum voltage drop on load wires. The voltage drop is subtracted from the total voltage available at the output. Follow the instructions below to configure the power supply for remote sensing:

- 1. Ensure that the AC On/Off is in the Off position.
- 2. Remove the local sense jumpers from J2.
- 3. Connect the negative sense lead to terminal J2-5 (S) and the positive sense lead to terminal J2-1(+S) of the J2 mating connector. Ensure that the J2 mating connector is plugged securely into the rear panel sense connector, J2.
- 4. Turn On the power supply.

Notes:

- 1. If the power supply is operating in remote sense and either the positive or negative load wire is not connected, an internal protection circuit will activate and shut down the power supply. To resume operation, turn the AC On/Off to the Off position, connect the open load wire, and turn On the power supply.
- 2. If the power supply is operated without the remote sense lines or local sense jumpers, it will continue to work, but the output voltage regulation will be degraded. Also, the OVP circuit may activate and shut down the power supply.

3.10.4 J2 sense connector technical information

- J2 connector type: MC 1.5/5-G-3.81, Phoenix.
- Plug type: MC 1.5/5-ST-3.81, Phoenix.
- Wire AWG; 28 up to 16.
- Stripping length: 7mm (0.28 inches).
- Tightening torque: 0.22-0.25Nm (1.95-2.21Lb-Inch.)

3.11 REPACKAGING FOR SHIPMENT

To ensure safe transportation of the instrument, contact the TDK-Lambda Americas Inc. sales or service facility near you for Return Authorization and shipping information. Please attach a tag to the power supply describing the problem and specifying the owner, model number and serial number of the power supply. Refer to Warranty Information for further instructions.

26

CHAPTER 4 FRONT AND REAR PANEL CONTROLS AND CONNECTORS

4.1 INTRODUCTION

The Genesys[™] Power Supply series has a full set of controls, indicators and connectors that allow the user to easily setup and operate the unit. Before starting to operate the unit, please read the following Sections for explanation of the functions of the controls and connectors terminals. -Section 4.2: Front Panel Controls and Indicators.

-Section 4.3: Rear Panel Connections and Controls.

4.2 FRONT PANEL CONTROLS AND INDICATORS

See Fig.4-1 to review the controls, indicators and meters located on the power supply front panel.

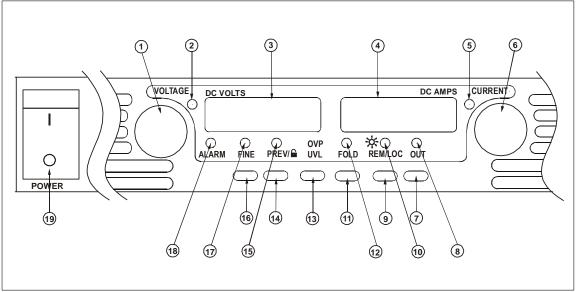


Fig.4-1: Front panel controls and indicators

Number	Control/Indicator	Description	Section
1	VOLTAGE control	High resolution rotary encoder for adjusting the Out- put Voltage. Also adjusts the OVP/UVL levels and selects the Address	5.2.1 5.3.1 5.4.1 7.2.2
2	VOLTAGE indicator	Green LED, lights for constant-Voltage mode opera- tion.	
3	VOLTAGE display	4 digit, 7-segment LED display. Normally displays the Output Voltage. When the PREV button is pressed, the display indicates the programmed set- ting of the Output Voltage. When the OVP/UVL but- ton is pressed, the Voltage display indicates the OVP/UVL setting.	

Table 4-1: Front Panel Controls and Indicators

Number	Control/Indicator	Description	Section
4	CURRENT display	4 digit, 7 segment LED display. Normally displays the Output Current. When the PREV button is pressed, the display indi- cates the programmed setting of Output Current.	
5	CURRENT indicator	Green LED, lights for Constant-Current mode operation	
6	CURRENT control	 High resolution rotary encoder for adjusting the Output Current. Auxiliary Function: Selects the Baud-Rate of communication port Set desired mode of the Master Power Supply in Advanced parallel operation. 	5.2.2 7.2.4 5.15.2
7	OUT button	Main function: Output ON/OFF control. Press OUT to set the output On or Off. Press to reset and turn On the output after OVP or FOLD alarm events have occurred. Auxiliary function: Selects between "Safe-Start" and "Auto-Restart" modes. Press and hold OUT button to toggle between "Safe-Start" and "Auto-Restart". The VOLT display will cycle between "SAF" and "AUT". Releasing the OUT button while one of the modes is displayed, selects that mode.	5.6 5.11
8	OUT indicator	Green LED, lights when the DC output is enabled.	
9	REM/LOC button	 Main function: Go to local. Press REM/LOC to put the unit into Local mode (REM/LOC button is disabled at Local Lockout mode). Auxiliary function: Address and Baud Rate setting. Press and hold REM/LOC for 3 sec. to set the Address with the VOLTAGE encoder and the Baud Rate with the CURRENT encoder. 	7.2.5 7.2.2 7.2.4
10	REM/LOC indicator	Green LED, lights when the unit is in Remote mode.	
11	FOLD button	Foldback protection control. -Press FOLD to set Foldback protection to On. -To release Foldback alarm even, press OUT to enable the out- put and re-arm the protection. -Press FOLD again to cancel the Foldback protection.	5.5
12	FOLD indicator	Green LED, lights when Foldback protection is On.	
13	OVP/UVL button	Over Voltage Protection and Under Voltage limit setting. -Press once to set OVP using VOLTAGE encoder (the current display shows "OUP") -Press again to set the UVL using VOLTAGE encoder (the cur- rent display shows "UUL").	5.3 5.4
14	PREV button	 Main function: Press PREV to display the Output Voltage and Current setting. For 5 sec. the display will show the setting and then it will return to show the actual Output Voltage and Current. Auxiliary function: Front Panel Lock. Press and hold PREV button to toggle between "Locked front panel" and "Unlocked front panel". The display will cycle between "LFP" and "UFP". Releasing the PREV button while one of the modes is displayed selects that mode. 	5.17

Table 4-1: Front Panel Controls and Indicators (continued)

Number	Control/Indicator	Description	Section
15	PREV indicator	Green LED, lights when PREV button is pressed	
16	FINE button	Voltage and Current Fine/Coarse adjustment control. Operates as a toggle switch. In Fine mode, the VOLTAGE and CURRENT encoders operate with high resolution and in Coarse mode with lower resolution (approx. 6 turns). Auxiliary function: Set units as Master or Slave in Advanced parallel operation.	5.15.2
17	FINE indicator	Green LED, lights when the unit is in Fine mode.	
18	ALARM indicator	Red LED, blinks in case of fault detection. OVP, OTP Foldback, Enable and AC fail detection will cause the ALARM LED to blink.	
19	AC Power switch	AC On/Off control.	

4.3 REAR PANEL CONNECTIONS AND CONTROLS

See Fig.4-2 to review the connections and controls located on the power supply rear panel. Refer to Table 4-2 for explanations about the rear panel connections and controls.

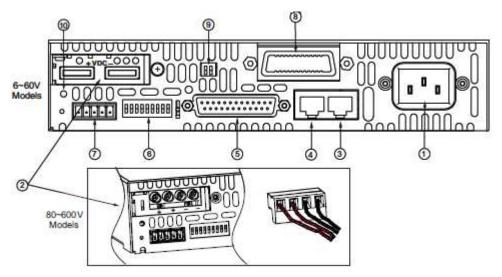


Fig.4-2: Rear panel connections and controls

Table 4-2: Rear panel connections and controls

Number	Item	Description	Section
1	AC input connector	Wire clamp connector for 1500W units. IEC connector for 750W units.	3.7.1 3.7.2
2	DC output	Bus-bars for 6V to 60V models. Wire clamp connector for 80V to 600V models.	3.9.6
3	Remote-In connector	RJ-45 type connector, used for connecting power supplies to RS232 or RS485 port of computer for remote control purposes. When using several power supplies in a power system, the first unit Remote-In is connected to the computer and the remaining units are daisy-chained, Remote-In to Remote-Out.	7.3 7.5

Table 4-2: Rear panel Connections and Controls (continued)

Number	Item	Description	Section
4	Remote Out connector	RJ-45 type connector, used for daisy-chaining power supplies to form a serial communication bus.	
5	J1 Analog Remote connector	Connector for remote analog interface. Includes Output Voltage and Current programming and monitoring signals, Shut-off control (electrical signal), Enable/Disable control (dry-contact), Power Sup- ply OK (PS_OK) signal and operation mode (CV/CC) signal.	
6	SW1 Setup switch	Nine position DIP-switch for selecting remote programming and monitoring modes for Output Voltage, Output Current and other control functions.	
7	J2 Remote sense connector	Connector for making remote sensing connections to the load for regulation of the load voltage and compensation of load wire drop.	
8	Blank Sub-plate	Blank sub-plate for standard units. Isolated Remote Analog pro- gramming connector for units equipped with Isolated Analog control option. IEEE connector for units equipped with IEEE programming option (shown).	
9	IEEE switch		
10	Ground screw	M4x0.7, 8mm long DBL-SEMS screw for chassis ground connection.	Fig. 4.2

4.4 REAR PANEL SW1 SETUP SWITCH

The SW1 Setup switch (see Fig.4-3) is a 9-position DIP-switch that allows the user to choose the following:

- Internal or remote programming for Output Voltage and Output Current.
- Remote voltage or resistive programming of Output Voltage and Output Current limit.
- Select range of remote voltage and resistive programming.
- Select range of output Voltage and Output Current monitoring.
- Select the Remote Shut-Off control logic.
- Select between RS232 and RS485 communication interface.
- Enable or disable the rear panel Enable/Disable control (dry contact).

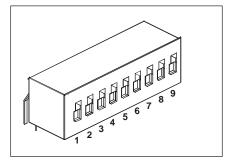


Fig.4-3: SW1 setup DIP-switch

4.4.1 SW1 position function

Refer to Table 4-3 for description of SW1 position functions. The factory default setting is Down for all positions.

30

Position	Function	DOWN (Factory default)	UP
SW1-1	Output Voltage remote analog programming	Output Voltage programmed by Front Panel	Output Voltage programmed by remote analog voltage
SW1-2	Output Current remote analog programming	Output Current programmed by Front Panel	Output Current programmed by remote analog voltage
SW1-3	Programming Range Select (Remote voltage/resistive)	0-5V/(0-5Kohm)	0-10V/(0-10Kohm)
SW1-4	Output Voltage and Current Monitoring Range	0-5V	0-10V
SW1-5	Shut-Off Logic select	Off: Low (0-0.6V) or Short On: High (2-15V) or Open	Off: Low (2-15V) or Open On: High (0-0.6V) or Short
SW1-6	RS232/485 select	RS232 interface	RS485 interface
SW1-7	Output Voltage Resistive Programming	Output Voltage programmed by Front Panel	Output Voltage programmed by external resistor
SW1-8	Output Current Resistive Programming	Output Current programmed by Front Panel	Output Current programmed by external resistor
SW1-9	Enable/Disable control	Rear panel Enable/Disable control is not Active	Rear panel Enable/Disable control is Active

Table 4-3: SW1 Positions Functions

4.4.2 Resetting the SW1 switch

Before making any changes to the SW1 switch setting, disable the power supply output by pressing the front panel OUT button. Ensure that the Output Voltage falls to zero and the OUT LED is Off. Then use any small flat-bladed screwdriver to change the SW1 switch setting.

4.5 REAR PANEL J1 PROGRAMMING AND MONITORING CONNECTOR

The J1 Programming and Monitoring connector is a DB25 subminiature connector located on the power supply rear panel. Refer to Table 4-4 for description of the connector functions. The power supply default configuration is Local operation, which does not require connections to J1. For remote operation using J1 signals, use the plug provided with power supply (or equivalent type). It is essential to use a plastic body plug to conform to Safety Agency requirements. If a shield is required for the J1 wires, connect the shield to a power supply chassis ground screw.

4.5.1 Making J1 connections

-J1 Connector type: AMP, P/N:747461-3

-J1 plug description: AMP, P/N:745211-2

-Wire dimension range: AWG26-22

-Manual Pistol grip tool:

Handle:AMP, P/N:58074-1 Head:AMP, P/N:58063-2

-Insertion/Extraction tool: AMP, 91232-1

Before making any connection, turn the AC On/Off switch to the Off position and wait until the front panel display has turned Off.

31

CAUTION

Terminals 12, 22 and 23 of J1 are connected internally to the negative sense (-S) potential of the power supply. Do not attempt to bias any of these terminals relative to the negative sense. Use the Isolated Programming interface option to allow control from a programming source at a different potential relative to the power supply negative.

CAUTION

To prevent ground loops and to maintain power supply isolation when programming from J1, use an ungrounded programming source.

There is a potential shock hazard at the output when using a power supply with rated output greater than 40V. Use wires with minimum insulation rating equivalent to the maximum output voltage of the power supply.

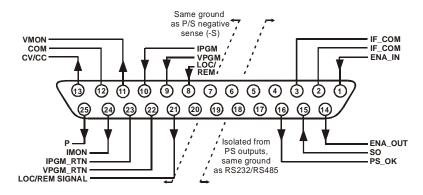


Fig. 4-4: J1 Connector terminals and functions

J1	Signal		
contact	name	Function	Reference
J1-1	ENA_IN	Enable/Disable the power supply output by dry-contact (short/open) with ENA_OUT.	Sec. 5.8
J1-2	IF_COM	Isolated Interface Common. Return for the SO control,	Sec.5.7,
J1-3		PS_OK signal and for the optional IEEE interface.	5.10
J1-4~7	N/C	No Connection	
J1-8	LOCAL/ REMOTE	Input for selecting between Local or Remote analog pro- gramming of Output Voltage and Output Current.	Sec. 6.2
J1-9	VPGM	Input for remote analog voltage/resistance programming of the Output Voltage.	Sec. 6.1~6.4
J1-10	IPGM	Input for remote analog voltage/resistance programming of the Output Current.	Sec. 6.1~6.4
J1-11	VMON	Output for monitoring the power supply Output Voltage.	Sec. 6.6
J1-12	СОМ	Control Common. Return for VMON, IMON, CV/CC, LOC/REM. Connected internally to the negative sense potential (-S).	
J1-13	CV/CC	Output for Constant-Voltage/Constant-Current mode indication.	Sec. 5.9
J1-14	ENA_OUT	Enable/Disable the power supply output by dry-contact (short/open) with ENA_IN.	Sec. 5.8
J1-15	SO	Input for Shut-Off control of the power supply output.	Sec. 5.7
J1-16	PS_OK	Output for indication of the power supply status.	Sec. 5.10
J1-17~20	N/C	No Connection.	
J1-21	LOC/REM SIGNAL	Output for indicating if the unit is in Local or Remote ana- log programming mode.	Sec. 6.3
J1-22	VPGM_RTN	Return for VPGM input. Connected internally to the "-S".	Sec. 6.1, 6.4, 6.5
J1-23	IPGM_RTN	Return for IPGM input. Connected internally to the "-S".	Sec. 6.1, 6.4, 6.5
J1-24	IMON	Output for monitoring the power supply Output Current.	Sec. 6.6
J1-25	Р	Output for current balance in parallel operation.	

CHAPTER 5 LOCAL OPERATION

5.1 INTRODUCTION

This Chapter describes the operating modes that are not involved in programming and monitoring the power supply via its serial communication port (RS232/RS485) or by remote analog signals. Ensure that the REM/LOC LED on the front panel is Off, indicating Local mode. If the REM/LOC LED is On, press the front panel REM/LOC button to change the operating mode to Local.

-For information regarding Remote Analog Programming, refer to Chapter 6.

-For information regarding usage of the Serial Communication Port, refer to Chapter 7.

5.2 STANDARD OPERATION

The power supply has two basic operating modes: Constant Voltage Mode and Constant Current Mode. The mode in which the power supply operates at any given time depends on the Output Voltage setting, Output Current setting and the load resistance.

5.2.1 Constant Voltage Mode

- 1. In constant voltage mode, the power supply regulates the Output Voltage at the selected value, while the load current varies as required by the load.
- 2. While the power supply operates in constant voltage mode, the VOLTAGE LED on the front panel illuminates.
- 3. Adjustment of the Output Voltage can be made when the power supply output is enabled (Output On) or disabled (Output Off). When the output is enabled, simply rotate the VOLTAGE encoder knob to program the output voltage. When the output is disabled, press the PREV button and then rotate the VOLTAGE encoder knob. The VOLTAGE meter will show the programmed Output Voltage for 5 seconds after the adjustment has been completed. Then the VOLTAGE meter will display "OFF".
- 4. Adjustment resolution can be set to coarse or fine resolution. Press FINE button to select between the lower and higher resolution. The FINE LED turns On when the resolution is set to FINE.

NOTE

If after completing the adjustment, the display shows a different value than the setting, the power supply may be at current limit. Check the load condition and the power supply Output Current setting.

NOTE

The maximum and minimum setting values of the output voltage are limited by the Over Voltage protection and Under Voltage limit setting. Refer to Sections 5.3 and 5.4 for more details.

5.2.2 Constant Current Mode

- 1. In constant current mode, the power supply regulates the Output Current at the selected value, while the voltage varies with the load requirement.
- 2. While the power supply is operating in constant current mode, the CURRENT LED on the front panel illuminates.
- 3. Adjustment of the Output Current setting can be made when the power supply output is enabled (Output On) or disabled (Output Off).

-Disabled output (Off): Press PREV button and then rotate the Current encoder knob. The CURRENT meter will show the programmed Output Current limit for 5 seconds after the adjustment has been completed. Then the VOLTAGE meter will display "OFF".

34

-Enabled output, power supply in Constant Voltage mode: Press the PREV button and then rotate the CURRENT encoder knob. The CURRENT meter will show the programmed Output Current for 5 seconds after the adjustment has been completed, and then will return to show the actual load current.

-Enabled output, power supply in Constant Current mode: Rotate the CURRENT encoder knob to adjust the Output Current.

 Adjustment resolution can be set to Coarse or Fine adjustment. Press the FINE button to select between the Coarse and Fine resolution. The FINE LED turns On when the resolution is set to FINE.

5.2.3 Automatic Crossover

If the power supply operates in Constant Voltage mode, while the load current is increased to greater than the current limit setting, the power supply will automatically switch to Constant Current mode. If the load is decreased to less than the current limit setting, the power supply will automatically switch back to Constant Voltage mode.

5.3 OVER VOLTAGE PROTECTION (OVP)

The OVP circuit protects the load in the event of a remote or local programming error or a power supply failure. The protection circuit monitors the voltage at the power supply sense points and thus provides the protection level at the load. Upon detection of an Over Voltage condition, the power supply output will shut down.

5.3.1 Setting the OVP level

The OVP can be set when the power supply output is Enabled (On) or Disabled (Off). To set the OVP level, press the OVP/UVL button, so that the CURRENT meter shows "OUP". The VOLTAGE meter shows the OVP setting level. Rotate the VOLTAGE encoder knob to adjust the OVP level. The display will show "OUP" and the setting value for 5 seconds after the adjustment

has been completed, and then will return to its previous state.

The minimum setting level is approximately 105% of the set Output Voltage, or the value in Table 7-6, whichever is higher. The maximum setting level is shown in Table 5-1.

To preview the OVP setting, press the OVP/UVL pushbutton so that the CURRENT display will show "OUP". At this time, the VOLTAGE display will show the OVP setting. After 5 seconds, the display will return to its previous state.

Model	Max.		Model	Max.
	OVP			OVP
6V	7.5V		60V	66.0V
8V	10.0V		80V	88.0V
12.5V	15.0V		100V	110.0V
20V	24.0V		150V	165.0V
30V	36.0V		300V	330.0V
40V	44.0V		600V	660.0V

Table 5-1: Maximum OVP setting levels

5.3.2 Activated OVP protection indications

When the OVP is activated the power supply output shuts down. The VOLTAGE display shows "OUP" and the ALARM LED blinks.

5.3.3 Resetting the OVP circuit

To reset the OVP circuit after it activates:

- 1. Reduce the power supply Output Voltage setting below the OVP set level.
- 2. Ensure that the load and the sense wiring are connected properly.
- 3. There are four methods to reset the OVP circuit.
 - a) Press the OUT button.

b) Turn the power supply Off using the AC On/Off switch, wait until the front panel display turns Off, then turn the power supply On using the AC On/Off switch.

c) Turn the power supply output Off and then On using the SO control (refer to Section 5.7).

In this method the power supply should be set to Auto-Restart mode.

d) Send an OUT 1 command via the RS232/RS485 communication port.

35

5.4 UNDER VOLTAGE LIMIT (UVL)

The UVL prevents adjustment of the Output Voltage below a certain limit. The combination of UVL and OVP functions, allow the user to create a protection window for sensitive load circuitry.

5.4.1 Setting the UVL level

Setting the UVL can be made when the power supply output is Enabled (On) or Disabled (Off). To set the UVL level, press the OVP/UVL button TWICE, so that the CURRENT meter shows "UUL". The VOLTAGE meter shows the UVL setting level. Rotate the VOLTAGE encoder knob to adjust the UVL level. The display will show 'UUL" and the setting value for 5 seconds after the adjustment has been completed and then will return to its previous state.

UVL setting values are limited at the maximum level to approximately 95% of the Output Voltage setting. Attempting to adjust the UVL above this limit will result in no response to the adjustment attempt. The minimum UVL setting is zero.

5.5 FOLDBACK PROTECTION

Foldback protection will shut down the power supply output if the load current exceeds the current limit setting level. This protection is useful when the load circuitry is sensitive to an overcurrent condition.

5.5.1 Setting the Foldback protection

To arm the Foldback protection, the FOLD button should be pressed so that the FOLD LED illuminates. In this condition, transition from Constant Voltage to Constant Current mode will activate the Foldback protection. Activation of the Foldback protection disables the power supply output, causes the ALARM LED to blink and displays "Fb" on the VOLTAGE meter.

5.5.2 Resetting activated Foldback protection

There are four methods to reset an activated Foldback protection.

- 1. Press the OUT button. The power supply output is enabled and the Output Voltage and Current will return to their last setting. In this method, the Foldback protection remains armed, therefore if the load current is higher than the current limit setting, the Foldback protection will be activated again.
- 2. Press the FOLD button to cancel the Foldback protection. The power supply output will be disabled and the VOLTAGE display will show "OFF". Press the OUT button to enable the power supply output.
- 3. Turn the power supply output Off and then On using the SO control (refer to Section 5.7). In this method the Foldback protection remains armed, therefore if the load current is higher than the output current setting, the Foldback protection will be activated.
- 4. Turn the power supply Off using the AC On/Off switch, wait until the front panel display turns Off, then turn the unit back ON again. The power supply output is enabled and the Output Voltage and Current will return to their last setting. In this method, the Foldback protection remains armed, therefore if the load current is higher than the output current setting, the Foldback protection will be activated again.

5.6 OUTPUT ON/OFF CONTROL

The Output On/Off Enables or Disables the power supply output. Use this function to make adjustments to either the power supply or the load without shutting off the AC power. The Output On/Off can be activated from the front panel using the OUT button or from the rear panel J1 connector. The OUT button can be pressed at any time to Enable or Disable the power supply output. When the output is disabled, the Output Voltage and Current fall to zero and the VOLTAGE display shows "OFF".

5.7 OUTPUT SHUT-OFF (SO) CONTROL VIA REAR PANEL J1 CONNECTOR

Contacts 2, 3 and 15 of J1 (Fig.4-2, Item 5) serve as Output Shut-Off (SO) terminals. The SO terminals accept a 2.5V to 15V signal or Open-Short contact to disable or enable the power supply output. The SO function will be activated only when a transition from On to Off is detected after applying AC power to the unit. (Thus, in Auto-Restart mode, the output will be Enabled after

36

applying AC power; even if SO is at an Off level). After an On to Off transition it is detected, the SO will Enable or Disable the power supply output according to the signal level or the short/open applied to J1. This function is useful for connecting power supplies in a "Daisy-chain" (refer to Section 5.16). The SO control can also be used to reset the OVP and Fold Protection (refer to Section 5.3 and 5.5 for details).

When the unit is shut-off by a J1 signal, the VOLTAGE display will show "SO" to indicate the unit state. J1 contact 15 is the SO signal input and contacts 2 and 3, IF_COM, are the signal return (connected internally). Contacts 2, 3 and 15 are optically isolated from the power supply output. The SO control logic can be selected by the rear panel SW1 Setup switch. Refer to Table 5-2 for SW1 setting and SO Control Logic.

SW1-5 setting	SO signal level J1-2(3), 15	Power supply output	Display
Down (default)	2-15V or Open	On	Voltage/Current
	0-0.6V or Short	Off	"SO"
Up	2-15V or Open	Off	"SO"
	0-0.6V or Short	On	Voltage/Current

Table 5-2: SO logic selection

5.8 ENABLE/DISABLE CONTROL VIA REAR PANEL J1 CONNECTOR

Contacts 1 and 14 of J1 (Fig.4-2, item 5) serve as Output Enable/Disable terminals by switch or relay. This function is Enabled or Disabled by the SW1 Setup switch position 9. Refer to Table 5-3 for Enable/Disable function and SW1 setting.

SW1-9 setting	Enable/Disable Inputs	Power supply output	Display	ALARM LED
Down (Default)	Open or Short	On	Voltage/Current	Off
Up	Open	Off	"ENA"	Blinking
Op	Short	On	Voltage/Current	Off

Table 5-3: Enable/Disable function and SW1 setting

CAUTION

To prevent possible damage to the unit, do not connect any of the Enable/Disable inputs to the positive or negative output potential.

NOTE

Safe Start mode-If the Enable/Disable fault condition clears when units in safe start mode recovery is by pressing OUT button or by sending an 'OUT 1' serial command. **Auto Restart mode**-The output will return back ON automatically when the Enable/Disable fault conditions clears.

5.9 CV/CC SIGNAL

CV/CC signal indicates the operating mode of the power supply, Constant Voltage or Constant Current. The CV/CC signal is an open collector output with a 30V parallel zener, at J1-13, referenced to the COM potential at J1-12 (connected internally to the negative sense potential). When the power supply operates in Constant Voltage mode, CV/CC output is open. When the power supply operates in Constant Current mode, the CV/CC signal output is low (0-0.6), with maximum 10mA sink current.

CAUTION

Do not connect the CV/CC signal to a voltage source higher than 30VDC. Always connect the CV/CC signal to voltage source with a series resistor to limit the sink current to less than 10mA.

37

5.10 PS_OK SIGNAL

The PS_OK signal indicates the fault condition of the power supply. PS_OK is a TTL signal output at J1-16, referenced to IF_COM at J1-2, 3 (Isolated Interface Common). When a fault condition occurs, the PS_OK level is low, with a maximum sink current of 1mA; when no fault condition occurs, the PS_OK level is high with a maximum source current of 2mA. The following faults will set the PS_OK to a Fault state:

*OTP *Enable/Disable open (Power supply is disabled)

*OVP *SO (Rear panel Shut-Off, Power Supply is shut off)

*Foldback *IEEE failure (With optional IEEE interface)

*AC fail *Output Off

5.11 SAFE-START AND AUTO-RESTART MODES

When turning On the power supply AC On/Off, it can start to its last setting of Output Voltage and Current with the output Enabled (Auto-restart mode) or start with the output Disabled (Safe-start mode). Press and hold the OUT button to select between Safe-start and Auto-restart modes. The VOLTAGE display will continuously cycle between "SAF" and "AU7" ("7" represents "T") every 3 seconds. Releasing the OUT pushbutton while one of the modes is displayed, selects that mode. The default setting at shipment is Safe-start mode.

5.11.1 Auto-restart mode

In this mode, the power supply restores its last operation setting. Upon start-up, the output is enabled or disabled according to its last setting.

5.11.2 Safe-start mode

In this mode, the power supply restores its last operation setting and sets the Output to an Off state. At start-up, the output is Disabled and the Output Voltage and Current are zero. To Enable the output and restore the last Output Voltage and Current values, momentarily press the OUT button.

5.12 OVER TEMPERATURE PROTECTON (OTP)

The OTP circuit shuts down the power supply before the internal components can exceed their safe internal operating temperature. When an OTP shutdown occurs, the display shows "O7P" and the ALARM LED blinks.

Resetting the OTP circuit can be automatic (non-latched) or manual (latched) depending on the Safe-start or Auto-restart mode.

- 1. **Safe-start mode:** In Safe-start mode, the power supply stays Off after the over temperature condition has been removed. The display continues to show "O7P" and the ALARM LED continues to blink. To reset the OTP circuit, press the OUT button (or send an OUT ON command via the serial port).
- 2. **Auto-restart mode:** In Auto-restart mode, the power supply recovers to its last setting automatically when the over temperature condition is removed.

5.13 LAST SETTING MEMORY

The power supply is equipped with Last Setting Memory, which stores several power supply parameters at each AC turn-off sequence.

STORED PARAMETERS:

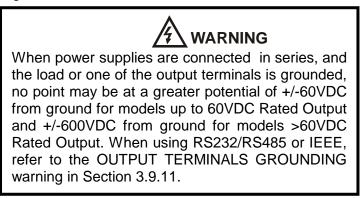
- 1. OUT On or Off
- 2. Output Voltage setting (PV setting)
- 3. Output Current setting (PC setting)
- 4. OVP level
- 5. UVL level
- 6. FOLD setting
- 7. Start-up mode (Safe-start or Auto-restart)

38

- 8. Remote/Local: If the last setting was Local Lockout, (latched mode), the supply will return to Remote mode (non-latched).
- 9. Address setting
- 10. Baud rate
- 11. Locked/Unlocked Front Panel (LFP/UFP)

(Items 8, 9, 10 are related to Remote Digital Control operation and are explained in Chapter 7) 12. Master/Slave setting.

5.14 SERIES OPERATION


Power supplies of the SAME MODEL can be connected in series to obtain increased output voltage. Split connection of the power supplies gives positive and negative output voltage.

CAUTION

Do not connected power supplies from different manufacturers in series or in parallel.

5.14.1 Series connection for increased output voltage

In this mode, two units are connected so that their outputs are summed. Set the Current of each power supply to the maximum that the load can handle without damage. It is recommended that diodes be connected in parallel with each unit output to prevent reverse voltage during start up sequence or in case one unit shuts down. Each diode should be rated to at least the power supply rated Output Voltage and Output Current. Refer to Fig.5-1 and 5-2 for series operation with local and remote sensing.

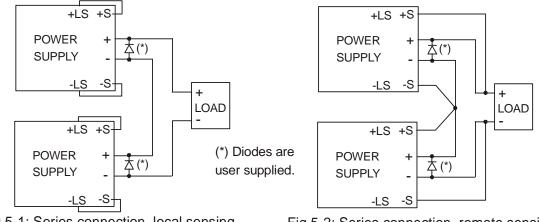


Fig.5-1: Series connection, local sensing

Fig.5-2: Series connection, remote sensing

Remote programming in series operation for increased output voltage:

1. Programming by external voltage:	The analog programming circuits of this power su- ply are referenced to the negative output potential. Therefore, the circuits used to control each series connected unit must be separated and floated from each other.
2.Using the SO function and PS_OK signal:	The Shut-Off and PS_OK circuits are referenced to the isolated interface common, IF_COM (J1-2,3). The IF_COM terminals of different units can be connected to obtain a single control circuit for the power supplies connected in series.
3. Programming by external resistor:	Programming by external resistor is possible. Refer to Section 6-5 for details.
4. Programming via the Serial	The communication port is referenced to the IF_COM which is isolated from the power supply output potential. Therefore power supplies connected in series can be daisy-chained using the Remote-In and Remote-Out connectors. Refer to Chapter 7 for details.

5.14.2 Series connection for positive and negative output voltage

In this mode, two units are configured as a positive and negative output. Set the Output Current limit of each power supply to the maximum that the load can handle without damage. It is recommended that diodes be connected in parallel with each unit output to prevent reverse voltage during start-up or in case one of the units shuts down. Each diode should be rated to at least the power supply rated output voltage and output current. Refer to Fig.5-3 for this operating mode.

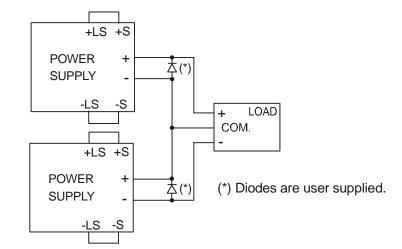


Fig.5-3: Series connection for positive/negative output voltages

Remote programming in series operation for positive and negative output voltage

1. Programming by external voltage:	The analog programming circuits of this power supply are referenced to the negative output po- tential. Therefore, the circuits used to control each series connected unit must be separated and floated from each other.
2. Using the SO function and PS_OK signal:	The Shut-Off and PS_OK circuits are referenced to the isolated interface common, IF_COM (J1- 2,3). The IF_COM terminals of the units can be connected to obtain a single control circuit for the power supplies connected in series.
3. Programming by external resistor:	Programming by external resistor is possible. Re- fer to section 6.5 for details.
 Programming via the Serial Communication port (RS232/RS485): 	The communication port is referenced to the IF_COM which is isolated from the power supply output potential. Therefore power supplies connected in series can be chained using the Remote-In and Remote-Out connectors. Refer to chapter 7 for details.

5.15 PARALLEL OPERATION

Up to four units of the same VOLTAGE and CURRENT rating can be connected in parallel to provide up to four times the Output Current capability. One of the units operates as a Master and the remaining units are Slaves. The Slave units are analog programmed by the Master unit. In remote digital operation, only the Master unit can be programmed by the computer, while the Slave units may be connected to the computer for voltage, current and status readback only. Follow the following procedure to configure multiple supplies for parallel operation. Refer to Sec. 5.15.1 and to Sec. 5.15.2 for detailed explanation.

5.15.1 Basic parallel operation

In this method, setting the units as Master and Slaves is made by the rear panel J1 connections and the setup switch SW1. Each unit displays its own output current and voltage. To program the load current, the Master unit should be programmed to the total load current divided by the number of units in the system. Refer to the following procedure to configure multiple supplies for basic parallel operation.

1. Setting up the Master unit

Set the Master unit Output Voltage to the desired voltage. Program the Output Current to the desired load current divided by the number of parallel units. During operation, the Master unit operates in CV mode, regulating the load voltage at the programmed Output Voltage. Connect the sensing circuit to local or remote sensing as shown in Fig.5-4 or fig.5-5.

2. Setting up the Slave units

-1. The Output Voltage of the Slave units should be programmed 2-5% higher than the Output Voltage of the Master unit to prevent interference with the Master unit's control. The Output Current setting of each unit should be programmed to the desired load current divided by the number of parallel units.

- -2. Set the rear panel setup switch SW1 position 2 to the up position.
- -3. Connect a wire jumper between J1-8 and J1-12 (refer to Table 4-4).
- -4. Connect J1 terminal 10(IPGM) of the slave unit to J1 terminal 25(P) of the master unit.

41

During operation, the Slave units operate as a controlled current source following the Master Output Current. It is recommended that the power system be designed so that each unit supplies up to 95% of its current rating because of the imbalance which may be caused by cabling and connection voltage drop.

3. Setting Over Voltage protection

The Master unit OVP setting should be programmed to the desired OVP level. The OVP setting of the slave units should be programmed to a higher value than the Master OVP. When the Master unit shuts down, it programs the Slave unit to zero Output Voltage. If a Slave unit shuts down (when its OVP is set lower than the Master Output Voltage), only that Slave unit would shut down, and the remaining Slave units would supply all the load current.

4. Setting Foldback protection

Foldback protection, is desired, may only be used with the Master unit. When the Master unit shuts down, it programs the Slave units to zero Output Voltage.

5. Connection to the load

In parallel operation, power supplies can be connected in local or remote sensing. Refer to Fig. 5-4 and 5-5 for typical connections of parallel power supplies. The figures show connection of two units, however the same connection method applies for up to 4 units.

5.15.2 Advanced parallel operation

In this method, multiple supplies can be configured to parallel operation as a single power supply. The total load current and output voltage are displayed by the Master unit and can be readback from the Master unit. The Slave units display only their operating status (On, Off or Fault condition).

Refer to the following procedure to configure multiple supplies for Advanced parallel operation.

1. Advanced parallel configuration

- SW1 position 2 Down in the Master Supply and up in all Slave Supplies.
- Connect a short between J1-8 and J1-12 in all Slave Supplies.
- Connect J1-25 of the Master Supply to J1-10 of all Slave Supplies.
- Connect J1-16 of the Master Supply to J1-15 of the 'First' Slave Supply.
- Connect J1-16 of the 'First' Slave Supply to J1-15 of the 'Second' Slave Supply (if any)
- Connect J1-16 of the 'Second' Slave Supply to J1-15 of the 'Third' Slave Supply (if any)
- Connect J1-16 of the 'Last' Slave Supply to J1-15 of the Master Supply
- Connect J1-2 (or J1-3) common to all supplies
- Select Local or Remote sense Ref. Figures 5-4 and 5-5

2. Setting the units as Master or Slave

a) Depress and hold the FINE button for 3 seconds. The Master/Slave configuration will be displayed on the Current Display. Rotate the CURRENT encoder to obtain the desired mode. Refer to Table 5-4 for the CURRENT display and modes of operation.

CURRENT Display	Operating Mode		
H1	Single supply (default)		
H2	Master supply with 1 Slave supply		
H3	Master supply with 2 Slave supplies		
H4	Master supply with 3 Slave supplies		
S	Slave supply		

Table 5-4: Setting mode of operation

b) When the desired configuration is obtained, depress and release the FINE button or wait approx. 5 seconds.

42

3. Master and Slave units default operation

a) When a unit is programmed to Slave mode it enters the Remote mode with Local Lockout. In this mode, the front panel controls are disabled to prevent accidental setting change (refer to Sec. 7.2.7 for details).

b) The Slave units parameters will automatically set the following:

*Output voltage to approximately 102% of rated output voltage.

*Programmed Current to zero.

*UVL to zero volts

*OVP to its maximum value

*AST On

*OUT On

*Foldback protection Off

c) The Master and Slave modes are stored in the power supply EEPROM when the AC power is turned off. The system will return to the Master/Slave mode upon re-application of AC power.

4. CURRENT display accuracy

In the advanced parallel mode, the Master unit calculates the total current by multiplying the Master output current by the number of Slave units. In this method, the CURRENT display accuracy is 2% +/- 1 count. In cases that higher accuracy is required, it is recommended to use the basic parallel operation mode.

5. To release units from Slave mode

Slave units can be released using the following procedure:

a) Depress FINE button for 3 seconds. The Master/Slave configuration will be displayed on the CURRENT display.

b) Select H1 mode using the CURRENT encoder.

c) Depress FINE button again or wait 5 seconds.

d) Turn the AC power Off to store the new setting.

e) After exiting from Slave operation the unit's parameters will be set to:

*Programmed Voltage to zero

*Programmed Current to zero

*UVL to zero volts

*OVP to its maximum value

*AST OFF

*OUT OFF

*Foldback protection OFF

*Locked Front Panel

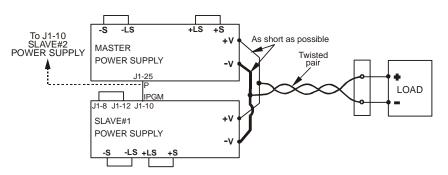


Fig.5-4: Parallel connection with local sensing

43

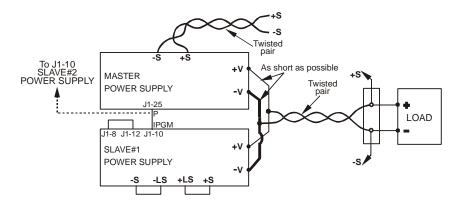


Fig.5-5: Parallel operation with Remote sensing

CAUTION Make sure that the connection between –V terminals is reliable to avoid disconnection during operation. Disconnection may cause damage to the power supply.

NOTE

With local sensing it is important to minimize the wire length and resistance. Also the positive and negative wire resistance should be close as possible to each other to achieve current balance between power supplies

5.16 DAISY-CHAIN CONNECTION

It is possible to configure a multiple power supply system to shut down all the units when a fault condition occurs in one of the units. When the fault is removed, the system recovers according to its setting to Safe-start or Auto-restart mode.

Setup switch SW1, position 5 should be set to its DOWN position to enable the Daisy-chain operation. Other SW1 positions can be set according to the application requirements.

If a fault occurs in one of the units, its PS_OK signal will be set to a low level and the display will indicate the fault. The other units will shut off and their display will indicate "SO". When the fault condition is removed, the units will recover to their last setting according to their Safe-start or Auto-restart setting.

Fig.5-6 shows connection of three units, however the same connection method applies to systems with a larger number of units.



Fig.5-6: Daisy-chain connection

5.17 FRONT PANEL LOCKING

The front panel controls can be locked to protect from accidental power supply parameter change. Press and hold the PREV button to toggle between "Locked front panel' and "Unlocked front panel". The display will cycle between "LFP" and "UFP". Releasing the PREV button while one of the modes is displayed, selects that mode.

44

5.17.1 Unlocked front panel

In this mode, the front panel controls are Enabled to program and monitor the power supply parameters.

5.17.2 Locked front panel

In this mode the following front panel controls are Disabled:

-VOLTAGE and CURRENT encoders.

-FOLD button.

-OUT button

The power supply will not respond to attempts to use these controls. The VOLT display will show "LFP" to indicate that the front panel is locked.

OVP/ UVL button is active to preview the OVP and UVL setting.

Use the PREV button to preview the Output Voltage and Current setting or to unlock the front panel.

CHAPTER 6 REMOTE ANALOG PROGRAMMING

6.1 INTRODUCTION

The rear panel connector J1 allows the user to program the power supply Output Voltage and Current with an analog device. J1 also provides monitoring signals for Output Voltage and Output Current. The programming range and monitoring signals range can be selected between 0-5V or 0-10V using the setup switch SW1. When the power supply is in Remote Analog programming mode, the serial communication port is active and can be used to query the power supply settings.

CAUTION

COM (J1-12), VPGM_RTN (J1-22) AND IPGM_RTN (J1-23) terminals of J1 connect internally to the -Sense potential (-S). Do not connect these terminals to any potential other than -Sense (-S), as it may damage the power supply.

6.2 LOCAL/REMOTE ANALOG INDICATION

Contact 8 of J1 (Fig.4-2, Item 5) accepts TTL signal or Open-Short contact (referenced to J1-12) to select between Local or Remote Analog programming of the Output Voltage and Current. In Local mode, the Output Voltage and Output Current can be programmed via the front panel VOLTAGE and CURRENT encoders or via the RS232/RS485 port. In Remote Analog mode, the Output Voltage and current can be programmed by analog voltage or by programming resistors via J1 contacts 9 and 10 (refer to Sections 6.4 and 6.5). Refer to Table 6-1 for Local/Remote Analog control (J1-8) function and Setup switch SW1-1, 2 setting.

SW1-1, 2 setting	J1-8 function	Output Voltage/ Current setting
Down (default)	No effect	Local
Lin	"0" or Short	Remote
Up	"1" or Open	Local

Table 6-1: Local/Remote Analog control function

6.3 LOCAL/REMOTE ANALOG INDICATION

Contact 21 of J1 (Fig. 4-2, Item 5) is an open collector output that indicates if the power supply is in Local mode or in Remote Analog mode. To use this output, connect a pull-up resistor to a volt-age source of 30Vdc maximum. Choose the pull-up resistor so that the sink current will be less than 5mA when the output is in a low state. Refer to table 6-2 for J1-21 function.

J1-8	SW1-1	SW1-2	J1-21 signal	Mode
TTL "0" or short	Down	Down	Open	Local (FP)
	Down	Up	0~0.6V	Remote Ana-
				log
	Up	Down	0~0.6V	Remote Ana-
				log
	Up	Up	0~0.6V	Remote Ana-
				log
TTL "1" or open	Down or Up	Down or Up	Open	Local (FP)

Table 6-2: Local/Remote Analog indication

46

6.4 REMOTE VOLTAGE PROGRAMMING OF OUTPUT VOLTAGE AND OUTPUT CURRENT LIMIT

CAUTION

To maintain the power supply isolation and to prevent ground loops, use an isolated programming source when operating the power supply via remote analog programming at the J1 connector.

Perform the following procedure to set the power supply to Remote Voltage programming:

- 1. Turn the power supply AC On/Off switch to Off.
- 2. Set setup switch SW1, positions 1 and 2 to their UP position.
- 3. Set SW1, position 3 to select the programming voltage range according to Table 6-3.
- 4. Ensure that SW1, positions 7 and 8 are at their DOWN (default) position.
- 5. Connect a wire jumper between J1-8 and J1-12 (refer to Table 4-4).
- 6. Connect the programming source to the mating plug of J1 as shown in Fig.6-1. Observe correct polarity for the voltage source.
- 7. Set the programming sources to the desired levels and turn the power supply ON. Adjust the programming sources to change the power supply output.

NOTES:

- 1. SW1, positions, 4, 5, 6 and 9 are not required for remote programming. Their settings can be determined according to the application.
- 2. The control circuits allow the user to set the Output Voltage and Output Current up to 5% over the model-rated maximum value. The power supply will operate within the extended range, however it is not recommended to operate the power supply over its voltage and current rating, and performance is not guaranteed.

SW1-3 setting	Output Voltage programming	Output Current programming
	VPGM (J1-9)	IPGM (J1-10)
UP	0-10V	0-10V
DOWN	0-5V	0-5V

Table 6-3: SW1-3 setting and programming range

J1 connector, rear panel view

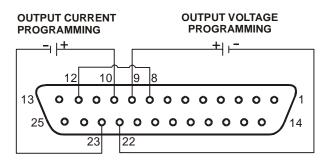


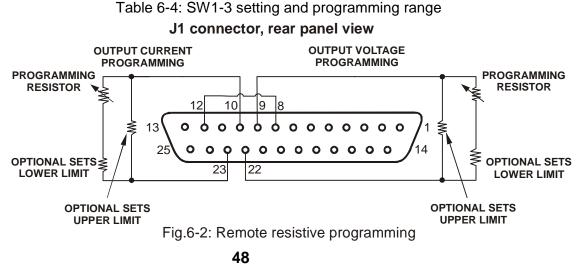
Fig.6-1: Remote voltage programming connection

47

6.5 RESISITIVE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT LIMIT

For resistive programming, internal current sources, for Output Voltage and/or Output Current control, supply 1mA current through external programming resistors connected between J1-9 & 22 and J1-10 & 23. The voltage across the programming resistors is used as a programming voltage for the power supply. Resistance of 0~5Kohm or 0~10Kohm can be selected to program the Output Voltage and Output Current from zero to full scale.

A variable resistor can control the output over its entire range, or a combination of variable resistor and series/parallel resistors can control the output over restricted portion of its range.


Perform the following procedure to set the power supply to Resistive programming:

- 1. Turn the AC On/Off switch to Off.
- 2. Set setup switch SW1, positions 1 and 2 to their UP position.
- 3. Set SW1, position 3 to select the programming resistor range according to Table 6-4.
- 4. Set SW1, positions 7 and 8 to their UP position, to enable resistive programming mode.
- 5. Connect a wire jumper between J1-8 and J1-12 (refer to Table 4-4).
- 6. Connect the programming resistors to the mating plug of J1 as shown in Fig.6-2.
- 7. Set the programming resistors to the desired resistance and turn the power supply ON. Adjust the resistors to change the power supply output.

NOTES:

- 1. SW1, positions 4, 5, 6 and 9 are not required for remote programming. Their settings can be determined according to the application requirements.
- 2. The control circuits allow the user to set the Output Voltage and Output Current up to 5% over the model-rated maximum value. The power supply will operate within the extended range, however it is not recommended to operate the power supply over its voltage and current rating and performance is not guaranteed.
- 3. To maintain the temperature stability specification of the power supply, the resistors used for programming should be stable and low noise resistors, with temperature coefficient of less than 50ppm.
- 4. When resistive programming is used, front panel and computer control (via serial communication port) of Output Voltage and Current are disabled.

SW1-3 setting	Output Voltage programming VPGM (J1-9)	Output Current programming IPGM (J1-10)
UP	0-10Kohm	0-10Kohm
DOWN	0-5Kohm	0-5Kohm

83-507-5002 Rev. B

6.6 REMOTE MONITORING OF OUTPUT VOLTAGE AND CURRENT

The J1 connector, located on the rear panel provides analog signals for monitoring the Output Voltage and Output Current. Selection of the voltage range between 0-5V or 0-10V is made by setup switch SW1-4. The monitoring signals represent 0 to 100% of the power supply Output Voltage and Output Current. The monitor outputs have 500 ohm series output resistance. Ensure that the sensing circuit has an input resistance of greater than 500 Kohm or accuracy will be reduced.

Refer to Table 6-5 for the required J1 connection, SW1-4 setting and monitoring voltage range.

Signal	Signal function	J1 connection		Range	SW1-4
name		Signal (+)	Return (-)		
VMON	Vout monitor	J1-11	J1-12	0-5V	Down
IMON	lout monitor	J1-24	J1-12	0-5 V	DOWI
VMON	Vout monitor	J1-11	J1-12	0-10V	Lln
IMON	lout monitor	J1-24	J1-12	0-100	Up

Table 6-5 Monitoring signals setting

Notes:

1. Radiated emissions, RCC requirements:	FCC requirements for radiated emissions; use a shielded cable for the analog control signals. If using unshielded cable, attach an EMI ferrite suppressor to the cable, as close as possible to the power supply.
2. Front panel encoders operation:	In Remote analog mode, the output voltage and cur- rent can't be set by the VOLTAGE and CURRENT encoders.
3. Front panel PREV button:	Use the PREV button to display the Output Voltage and Current setting, as defined by the encoders or digital communication.
4. Communication:	In Remote analog mode, all power supply parame- ters can be programmed and readback via the communication port, except the Output Voltage and Current setting.

CHAPTER 7 RS232 & RS485 REMOTE CONTROL

7.1 INTRODUCTION

This Chapter describes the operation of the Genesys[™] 3300W power supplies via the serial communication port. Details of the initial set-up, operation via RS232 or RS485, the command set and the communication protocol are described in this Chapter.

7.2 CONFIGURATION

7.2.1 Default setting

The power supply is shipped with the following settings:

-Address	6	-Output	Off
-Baud-rate	9600	-Start up mode	Safe-start
-RS232/485	RS232	-OVP	Maximum
-Vout setting	0	-UVL	0
-lout setting	Maximum	-Foldback	Off
-Master/Slave	H1 (Master)	-Front panel:	Unlocked (UFP)

7.2.2 Address setting

The power supply address can be set to any address between 0 and 30. Follow the instructions described below to set the unit address.

- 1. If the unit is in Remote mode (front panel REM/LOC LED illuminated), press the REM/LOC button to put the unit into Local mode.
- 2. Press and hold for the REM/LOC button for approximately 3 sec. The VOLTAGE display will indicate the unit address.
- 3. Using the VOLTAGE adjust encoder, select the unit address.

To preview the power supply address at any time, press and hold the REM/LOC button for approx. 3 sec. The VOLTAGE display will indicate the power supply address.

7.2.3 RS232 or RS485 selection

To select between RS232 or RS485 set the rear panel setup switch SW1-6 position to:

-DOWN for RS232

-UP for RS485

7.2.4 Baud Rate setting

Five optional Baud rates are possible: 1200, 2400, 4800, 9600 and 19200. To select the desired rate, the following steps should be taken:

- 1. If the unit is in Remote mode (front panel REM/LOC LED illuminates), press REM/LOC button to put the unit into Local mode.
- 2. Press and hold the REM/LOC button for approximately 3 sec. The CURRENT display will show the unit Baud Rate.
- 3. Using the CURRENT adjust encoder, select the desired Baud Rate.

7.2.5 Setting the unit into Remote or Local mode

1. The unit will be put into Remote mode only via serial communication command. Commands that will put the unit into Remote mode are:

RST PV n OUT n PC n RMT n (for n values see Tables 7-5 and 7-7)

50

- 2. There are two Remote modes:
 - 1. Remote: In this mode, return to local can be made by the front panel REM/LOC or via serial port command RMT 0. Set the unit into Remote mode via serial port RMT 1 command.
 - 2. Local Lockout: In this mode the unit can be returned to Remote mode via the serial port RMT 1 command or by turning off the AC power until the display turns off, and then turn it to on again. In local Lockout mode, the front panel REM/LOC button is not active. Set the unit into Local Lockout mode via serial port RMT 2 command.

7.2.6 RS232/RS485 port in Local mode

When the power supply is in Local mode, it can receive queries or commands. If a query is received, the power supply will reply and remain in Local mode. If a command that affects the output is received, the power supply will perform the command and change to Remote mode. Serial commands may be sent to set the status registers and read them while the unit is in Local mode. If the Enable registers are set (refer to Section 7.11) the power supply will transmit SRQ's while in Local.

7.2.7 Front panel in Remote mode

Front panel control in Remote mode is Disabled except for:

- 1. PREV: use to preview the Voltage and Current setting.
- 2. OVP/UVL: use to preview the OVP/UVL setting.
- 3. LOC/REM: use to set the unit into Local mode.

In Local Lockout mode, only the PREV and OVP/UVL pushbuttons are active.

7.3 REAR PANEL RS232/RS485 CONNECTOR

The RS232/RS485 interface is accessible through the rear panel RS232/RS485 IN and RS485 OUT connectors. The connectors are 8 contact RJ-45. The IN and OUT connectors are used to connect power supplies in a RS232 or RS485 chain to a controller. Refer to Fig. 7-1 for IN/OUT connectors.

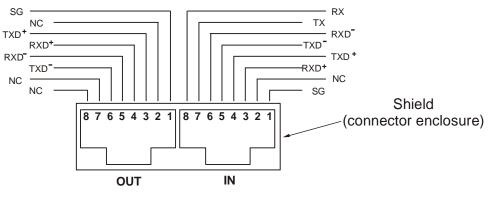


Fig.7-1: Rear panel J3 IN/OUT connectors pinout

NOTE

Tx and Rx are used for RS232 communication. Txd +/- and Rxd +/- are used for RS485 communication. Refer to RS-232 and RS-485 cabling and connection details.

51

7.4 MD MODE OPTION (Factory Installed)

7.4.1 MD Mode Description

The GEN supply is capable of operating in a multi drop environment - more than 1 supply conducting serial communications on a single serial bus. A maximum of 31 GEN supplies can operate in this single bus. Upon power up the Gen will enter the point-to-point mode in which it is assumed that only 1 supply will operate on a serial bus. MD Mode must be enabled - Ref. Section 7.10.2.2. The user must set all Slave supplies to a unique address. No two supplies may have the same address.

7.4.2 MD Mode enable – Serial communication mode

Refer to section 7.10.2.2. MD Mode is entered into via a Single byte command. In MD Mode the Master supply shall operate in one of the two serial modes, RS232 or RS485, depending upon the rear panel DIP switch setting and the Slave supplies shall operate in the RS485 serial mode.

7.4.3 MD Mode SRQ

In MD Mode the SRQ generated by the supply is replaced by a single byte SRQ sent two times in sequence. The SRQ byte, in binary, will contain the address of the supply in the least significant 5 bits with bits 5 and 6 set to logic zero and bit 7 set to logic 1. Ref. Table 7-4.

7.4.4 Communication Collisions

In MD Mode it is possible to have one supply issue an SRQ while another supply is transmitting data/response to a command. When this happens, the HOST PC will receive garbled data and assume that the data/response was corrupted and thus re-send the command - the SRQ will probably be lost. The method of recovery will be SRQ retransmission, Ref. Section 7.4.5, or polling all attached supplies to see who issued the SRQ - available by reading the SEVE? Register.

7.4.5 MD Mode SRQ Retransmission

The supply can be commanded to retransmit the SRQ at regular intervals until it is answered to by the HOST PC (Ref. Section 7.10.2.4). The retransmission interval is 10 ms plus the supply address multiplied by 20 ms.

7.5 CONNECTING POWER SUPPLIES TO RS232 OR RS485 BUS

7.5.1 Single power supply

1. Select the desired interface RS232 or RS485 using rear panel setup switch SW1-6 (Section 4-4).

- -RS232: DOWN position
- -RS485: UP position

2. Connect rear panel IN connector to the controller RS232 or RS485 port using a suitable shielded cable. Refer to Figures 7-2, 7-3 and 7-4 for available RS232 and RS485 cables.

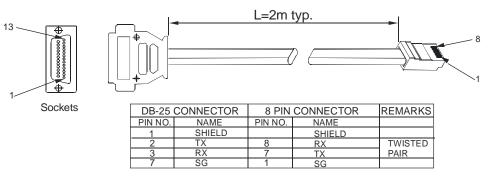


Fig.7-2: RS232 cable with DB25 connector (P/N: GEN/232-25)

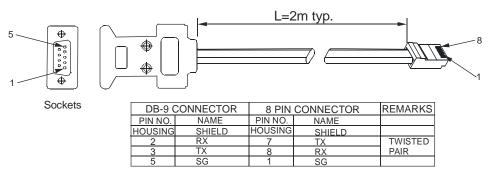


Fig.7-3: RS232 cable with DB9 connector (P/N: GEN/232-9)

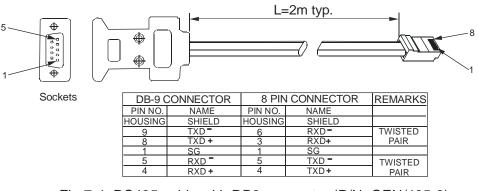


Fig.7-4: RS485 cable with DB9 connector (P/N: GEN/485-9)

7.5.2 Multi power supply connection to RS232 or RS485 bus

Up to 31 units can be connected (daisy chained) to the RS232 or RS485 bus. The first unit connects to the controller via RS232 or RS485 and the other units are connected via the RS485 bus.

- 1. First unit connection: Refer to Section 7.5.1 for connecting the first unit to the controller.
- 2. Other units connection: The other units on the bus are connected via their RS485 interface. Refer to Figure 7-5 for typical connection.
 - Set rear panel setup switch SW1-6 to its UP position.
 - Using the Linking cable supplied with each unit (refer to Fig. 7-6), connect each unit OUT connector to the next unit IN connector.

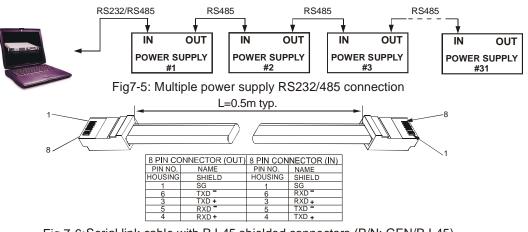


Fig.7-6: Serial link cable with RJ-45 shielded connectors (P/N: GEN/RJ-45)

7.6 COMMUNICATION INTERFACE PROTOCOL

NOTE The address (ADR n) command must return an "OK" response before any other commands are accepted.

7.6.1 Data format

Serial data format is 8 bit, one start bit and one stop bit. No parity bit.

7.6.2 Addressing

The Address is sent separately from the command. It is recommended to add 100msec delay between query or sent command to next unit addressing. Refer to Section 7.8.3 for details.

7.6.3 End of Message

The end of message is the Carriage Return character (ASCII 13). The power supply ignores the Line Feed (ASCII 10) character.

7.6.4 Command Repeat

The backslash character "\" will cause the last command to be repeated.

7.6.5 Checksum

The user may add a checksum (optional) to the end of the command. The checksum is "\$" followed by two hex characters. If a command or a query has a checksum, the response will also have one. There is no CR between the command string and the "\$" sign.

Example: STT?3A

STAT?\$7B

54

7.6.6 Acknowledge

The power supply acknowledges received commands by returning an "OK" message. If an error is detected the power supply will return an error message. The rules of checksum also apply to the acknowledge.

7.6.7 Error message

If an error is detected in command or query, the power supply will respond with an error message. Refer to Section 7.7 for details.

7.6.8 Backspace

The backspace character (ASCII 8) clears the last character sent to the power supply.

7.7 ERROR MESSAGES

The power supply will return error messages for illegal commands and illegal programming parameters. Refer to Table 7-1 for programming error messages and Table 7-2 for command error messages.

Table 7-1:	Programming	error	messages

Error Code	Description	
E01	Returned when program voltage (PV) is programmed above acceptable range.	
	Example: PV above '105% of supply rating' or PV above 95% of OVP setting'.	
E02	Returned when programming output voltage below UVL setting.	
E04	Returned when OVP is programmed below acceptable range.	
	Example: OVP less than "5% of supply voltage rating' plus 'voltage setting'.	
E06	Returned when UVL is programmed above the programmed output voltage.	
E07	Returned when programming the Output to ON during a fault shut down.	

Table 7-2: Commands error messages

Error Code	Description
C01	Illegal command or query
C02	Missing parameter
C03	Illegal parameter
C04	Checksum error
C05	Setting out of range

7.8 COMMAND SET DESCRIPTION

7.8.1 General guide

- 1. Any command or argument may be in capital letters or small letters.
- 2. In commands with an argument, a space must be between the command and the argument.
- 3. For any command that sets a numeric value, the value may be up to 12 characters long.
- 4. Carriage Return: If the CR character (ASCII 13) is received by itself, the power supply will respond with "OK" and CR.

7.8.2 Command set categories

- 1. Initialization control
- 2. ID control
- 3. Output control
- 4. Status control

55

7.8.3 Initialization Control Commands

#	Command	Description	
1	ADR n	ADR is followed by address, which can be 0 to 30 and is used to access the power supply.	
2	CLS	Clear status. Sets FEVE and SEVE registers to zero (refer to Section 7-11).	
3	RST	Reset command. Brings the power supply to a safe and known state:Output voltage: zero,Remote: non-lockout remote,Output current: zero,Auto-start: Off,Output: Off,OVP: maximum,FOLD: Off,UVL: zeroThe conditional registers (FLT and STAT) are updated, the other registers are not changed.	
4	RMT	 Sets the power supply to local or remote mode: RMT 0 or RMT LOC, sets the power supply into Local mode. RMT 1 or RMT REM, sets the unit into remote mode. RMT 2 or RMT LLO, sets the unit into Local Lockout mode (latched remote mode). 	
5	RMT?	 Returns to the Remote mode setting: 1. "LOC" - The unit is in Local mode. 2. "REM" - The unit is in Remote mode. 3. "LLO" - The unit is in Local Lockout (latched remote) mode. 	
6	MDAV?	Returns MD MODE OPTION Status. 1 indicates installed and 0 indicates not installed.	
7	\	Repeat last command. If \ <cr> is received, the power supply will repeat the last command.</cr>	

7.8.4 ID Control Commands

_			
	#	Command	Description
	1	IDN?	Returns the power supply model identification as an ASCII string:LAMBDA, GENX-Y
	2	REV?	Returns the software version as an ASCII string.
	3	SN?	Returns the unit serial number. Up to 12 characters.
	4	DATE?	Returns date of last test. Date format: yyyy/mm/dd

7.8.5 Output Control Commands

#	Command	Description
1	PV n	Sets the output voltage value in Volts. The range of voltage value is described in Table 7-5. The maximum number of characters is 12. See the following examples for PV n format: PV 12, PV 012, PV 12.0, PV 012.00, etc
2	PV?	Reads the output voltage setting. Returns the string "n" where "n" is the exact string sent in the PV n command. When in Local mode, returns the PREVIEW (front panel) settings in a 5 digit string.
3	MV?	Reads the actual output voltage. Returns a 5 digits string. Example: 60V supply sends 01.150, 15.012, 50.000, etc
4	PC n (See Note 1)	Set the Output Current value in Amperes. The range of current values is de- scribed in Table 7.6. The maximum number of characters is 12. See the fol- lowing examples for PC n format: PC n format: PC 10, PC 10.0, PC 010.00, etc
5	PC?	Reads the Output Current setting. Returns the string "n" where "n" is the ex- act string sent in the PC n command. When in Local mode, returns the PREVIEW (front panel) settings in a 5 digit string.

56

6 MC7 (See Reads the actual Output Current. Returns a 5 digit string. 7 DVC? Example: 200A supply sends 000.50, 110.12, 200.00, etc 7 DVC? are: Measured Voltage, Programmed Voltage, Measured Current, Programmed Current, Over Voltage Set Point and Under Voltage Set Point. 8 FILTER Set the low pass filter frequency of the A to D Converter for Voltage and Current, Programmed Current, Over Voltage Set Point and Under Voltage and Current Measurement where nn = 18, 23 or 46. 9 FILTER Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n Turns the output to ON or OFF. Recover from Safe-Start, OVP or FLD fault. 10 OUT n OUT of OI OUT OFF)-Turn Off 11 OUT 7 Returns the output On/Off status string. 12 FLD n Sets the Foldback protection tas been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nx 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in epromat ALC power down and recovered at AC power up. 15 FBDR ST Reset the add			
Display Voltage and Current data. Data will be returned as a string of ASCII characters. A comma will separate the different fields. The fields, in order, are: Measured Voltage, Programmed Voltage, Neasured Current, Programmed Current, Over Voltage Set Point and Under Voltage Set Point. Example: 5.9999.6.0000,010.02,010.00,7500.0.000 8 FILTER Returns the A to D Converter filter frequency: 18,23 or 46. Hz. 9 FILTER? Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n OUT OUT ON)-Turn On. 0UT 1 (or OUT OFF)-Turn Off OUT 0 (or OUT OFF)-Turn Off. 11 OUT? Returns the output On/Off status string. 0N - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. 13 FLD? Returns the Oidback protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 14 FBD nn Ret protection and re-arm it, while FLD 0 will cancel the protection. 15 FBD? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is approximatel	6	MC? (See	Reads the actual Output Current. Returns a 5 digit string.
7 DVC? are: Measured Voltage, Programmed Voltage, Measured Current, Programmed Current, Over Voltage Set Point and Under Voltage Set Point. Example: 5.9999.6.0000.010.02.010.00.7.500.000 8 FILTER Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 9 FILTER? Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n OUT 0(or OUT ON)-Tum On. 11 OUT? Returns the output to ON or OFF. Recover from Safe-Start, OVP or FLD fault. 12 FLD n Sets the Foldback protection to ON or OFF. 12 FLD n Sets the Foldback protection to Nas been activated, OUT 1 command will release the protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 14 FBD n Returns the VID exovered at AC power up. 15 FBD? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 7-7. whichever		Note 2)	
7 DVC? are: Measured Voltage, Programmed Voltage, Measured Current, Programmed Current, Over Voltage Set Point and Under Voltage Set Point. Example: 5.9999,6.000,010.02,010.02,7500,0.000 8 FILTER Set the low pass filter frequency of the A to D Converter for Voltage and Current Measurement where nn = 18, 23 or 46. 9 FILTER? Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n OUT 1 (or OUT ON)-Turn Off. 11 OUT? Returns the output to ON or OFF. 12 FLD n Sets the Foldback protection to ON or OFF. 12 FLD n Sets the Foldback protection to ON or OFF. 13 FLD? Returns the output On/OFF - output Off. 14 FBD n Returns the Foldback protection status string: "ON" - Foldback protection status string: "ON" - Foldback protection status string: "ON" - Foldback protection status string: 14 FBD nn Add (n x 0.1) seconds to the Fold Back Delay. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 5-1. Attempting to prog			
grammed Current, Over Voltage Set Point and Under Voltage Set Point. Example: 5.9999.6.0000,010.02.010.00.7500.0000 8 FILTER 9 FILTER? 9 FILTER? 0 OUT n Out the low pass filter frequency of the A to D Converter for Voltage and Current Measurement where nn = 18, 23 or 46. 9 FILTER? Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n OUT of COUT ON)-Turn On. OUT 0 (or OUT OFF)-Turn Off 11 OUT? Returns the output On/Off status string. ON - output On. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback protection atabe string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n <t< td=""><td>7</td><td></td><td></td></t<>	7		
Example: 5.9999.6.0000,010.02,010.00,7.500,0000 8 FILTER Set the low pass filter frequency of the A to D Converter for Voltage and Current Mether ner 18, 23 or 46. 9 FILTER? Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n OUT O (or OUT OFF)-Turn Off. 11 OUT? Returns the output ON/OT status string. ON - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON)- Arms the Foldback protection. FLD 0 (or FOLD OFF) - cancels the Foldback protection. When the Foldback protection bas been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Retandard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to 2. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 7-7. Attempting to program the OVP below this level will result in an execution erro	1	DVC?	
8 FILTER nn Set the low pass filter frequency of the A to D Converter for Voltage and Cur- rent Measurement where nn = 18, 23 or 46. 9 FILTER? Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n OUT 0 (or OUT ON)-Turn On. OUT 0 (or OUT OFF)-Turn Off 11 OUT? Returns the output On/Off status string. ON - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection. When the Foldback protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the Value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 5-1. Attempting to program the OVP below this level will result in an execu			
8 nn rent Measurement where nn = 18, 23 or 46. 9 FILTER? Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n OUT 1 (or OUT ON)-Turn On. 11 OUT? Returns the output ON. OFF. Recover from Safe-Start, OVP or FLD fault. 11 OUT? Returns the output ON/Off status string. 11 OUT? Returns the output ON/OFF. Num Off 12 FLD n Sets the Foldback protection to ON or OFF. 12 FLD 1 (or FOLD ON) - Arms the Foldback protection. When the Foldback protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the addee Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The mini			
9 FILTER? Returns the A to D Converter filter frequency: 18,23 or 46 Hz. 10 OUT n OUT 1 (or OUT ON) or OFF. Recover from Safe-Start, OVP or FLD fault. 11 OUT? OUT O(OT ON)-Turn Off. 11 OUT? Returns the output On/Off status string. ON - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection. When the Foldback protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The Maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("EO4"). The OVP setting stays unchanged. 18 OVP? Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, r	8		
10 OUT n Turns the output to ON or OFF. Recover from Safe-Start, OVP or FLD fault. OUT 1 (or OUT ON)-Turn On. OUT 0 (or OUT ON)-Turn On. 11 OUT? Returns the output On/Off status string. ON - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection. When the Foldback protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD R Reset the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting tays unchanged. 18 OVP? Returns the setting "n" where "n" is the exact string in the user's "OVP n". Whene in Local mode, retrurns the las	q		
10 OUT n OUT 1 (or OUT ON)-Turn On. OUT 0 (or OUT OFF)-Turn Off 11 OUT? Returns the output On/OFF status string. ON - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection. When the Foldback protection has been activated, OUT 1 command will re- lease the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7. Attempting to program the OVP below this level will result in an execution error response ("EO4"). The OVP setting stays unchanged. 18 OVP? Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string. 19 OVM Sets Under Voltage Limit. Valu	5		
OUT 0 (or OUT OFF)-Turn Off 11 OUT? Returns the output On/Off status string. ON - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection. When the Foldback protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection. When the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 13 FLD? Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD 7 Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7. whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged. 19 OVM Sets OVP level to the maximum level. Refer to Table 7-7. 20 UVL n Sets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programing range.	10	OUT n	
11 OUT? Returns the output On/Off status string. ON - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection. When the Foldback protection has been activated, OUT 1 command will re- lease the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7. Whichever is higher. The maximum OVP setting level is shown in Table 7-7. 18 OVP? Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string. 19 OVM Sets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range. 19 OVM S	10	00111	
ON - output On. OFF - output Off. 12 FLD n Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection FLD 0 (or FOLD OFF) - Cancels the Foldback protection. When the Foldback protection has been activated, OUT 1 command will re- lease the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("EO4"). The OVP setting stays unchanged. 18 OVP? When in Local mode, returns the last setting from the front panel in a 4 digit string. 19 OVM Sets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "EO6" if higher. Refer to Table 7-8 for UVL programming range. 21 UVL	11		
12 FLD n Sets the Foldback protection to ON or OFF. 12 FLD 1 (or FOLD ON) - Arms the Foldback protection FLD 0 (or FOLD OFF) - Cancels the Foldback protection. When the Foldback protection has been activated, OUT 1 command will re- lease the protection and re-arm it, while FLD 0 will cancel the protection. 13 FLD? Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled. 14 FBD nn Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up. 15 FBD ? Supply returns the value of the added Fold Back Delay. 16 FBDRST Reset the added Fold Back Delay to zero. 17 OVP n Sets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("EO4"). The OVP setting stays unchanged. 18 OVP? Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string. 19 OVM Sets UNP level to the maximum level. Refer to Table 7-7. 20 UVL n Sets the Auto-restart mode to ON or OFF. AST n AST 1 (or AST ON): Aut		001	
FLD 1 (or FOLD ON) - Arms the Foldback protection FLD 0 (or FOLD OFF) - Cancels the Foldback protection. When the Foldback protection has been activated, OUT 1 command will re- lease the protection and re-arm it, while FLD 0 will cancel the protection.13FLD?Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled.14FBD nnAdd (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up.15FBD ?Supply returns the value of the added Fold Back Delay.16FBDRSTReset the added Fold Back Delay to zero.17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("EO4"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.20UVL nSets UNDer Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-7.20UVL nSets the Auto-restart mode to ON or OFF. AST n AST 1 (or AST ON): Auto restart On. AST 1 (or AST ON): Auto restart On. AST 1 (or AST ON): Auto restart Off.23AST?Returns the string auto-restart Mode status. Saves present setting	12	FIDn	
FLD 0 (or FOLD OFF) - Cancels the Foldback protection. When the Foldback protection has been activated, OUT 1 command will re- lease the protection and re-arm it, while FLD 0 will cancel the protection.13FLD?Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled.14FBD nnAdd (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up.15FBD ?Supply returns the value of the added Fold Back Delay.16FBDRSTReset the added Fold Back Delay to zero.17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.23AST nAST 0 (or AST ON): Auto restart On. AST 1 (or AST ON): Auto restart On. AST 0 (or			
Image: 10 lease the protection and re-arm it, while FLD 0 will cancel the protection.13FLD?Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled.14FBD nnAdd (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up.15FBD ?Supply returns the value of the added Fold Back Delay.16FBDRSTReset the added Fold Back Delay to zero.17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Sets the Auto-restart mode to ON or OFF. AST n AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF) auto restart On. AST 0 (or AST OFF) auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings			
13FLD?Returns the Foldback protection status string: "ON" - Foldback is armed. "OFF" - Foldback is cancelled.14FBD nnAdd (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up.15FBD ?Supply returns the value of the added Fold Back Delay.16FBDRSTReset the added Fold Back Delay to zero.17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Sets the Auto-restart mode to ON or OFF.22AST nAST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart On. AST 0 (or AST OFF): Auto restart Mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			When the Foldback protection has been activated, OUT 1 command will re-
13FLD?"ON" - Foldback is armed. "OFF" - Foldback is cancelled.14FBD nnAdd (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up.15FBD ?Supply returns the value of the added Fold Back Delay.16FBDRSTReset the added Fold Back Delay to zero.17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting from the front panel in a 4 digit string.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Sets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart On. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			lease the protection and re-arm it, while FLD 0 will cancel the protection.
14FBD nn"ON" - Foldback is armed."OFF" - Foldback is cancelled.14FBD nnAdd (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up.15FBD ?Supply returns the value of the added Fold Back Delay.16FBDRSTReset the added Fold Back Delay to zero.17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The num- ber of characters after OVP is up to 12. The minimum setting level is ap- proximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level will result in an execution error response ("EO4"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "EO6" if higher. Refer to Table 7-8 for UVL programming range.21UVL nReturns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nAST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart On. AST 0 (or AST OFF): Auto restart Mode status.24SAVSave present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and	13	FLD2	
14FBD nnthe standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up.15FBD ?Supply returns the value of the added Fold Back Delay.16FBDRSTReset the added Fold Back Delay to zero.17PovP nSets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but returns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nAST 1 (or AST ON): Auto restart On. AST 0 (or AST OF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last setting. These settings are erased when the supply power is switched Off and	15		"ON" - Foldback is armed. "OFF" - Foldback is cancelled.
at AC power down and recovered at AC power up.15FBD ?16FBDRST17POVP n17OVP n18OVP n19OVP ?19OVP ?19OVP ?19OVP ?19OVP ?10Sets Under Voltage Limit. Value of "n" may be equal to PV setting in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVM20UVL n21VUL?22AST n23AST?24SAV24SAV			Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to
15FBD ?Supply returns the value of the added Fold Back Delay.16FBDRSTReset the added Fold Back Delay to zero.17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but returns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF.23AST?Returns the setting auto-restart Off.23AST?Returns the string auto-restart off.24SAVSaves present settings. The settings are the same as power-down last setting. These settings are erased when the supply power is switched Off and	14	FBD nn	
16FBDRSTReset the added Fold Back Delay to zero.17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but returns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF.23AST?Returns the string auto-restart Off.24SAVSaves present settings. The settings are the same as power-down last setting. These settings are erased when the supply power is switched Off and			at AC power down and recovered at AC power up.
17OVP nSets the OVP level. The OVP setting range is given in Table 7-7. The number of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but returns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF.23AST?Returns the string auto-restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last setting.	15	FBD ?	Supply returns the value of the added Fold Back Delay.
17OVP nber of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but returns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF.23AST?Returns the string auto-restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last setting. These settings are erased when the supply power is switched Off and	16	FBDRST	Reset the added Fold Back Delay to zero.
17OVP nber of characters after OVP is up to 12. The minimum setting level is approximately 105% of the Output Voltage setting, or the value in Table 7-7, whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but returns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF.23AST?Returns the string auto-restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last setting. These settings are erased when the supply power is switched Off and			Sets the OVP level. The OVP setting range is given in Table 7-7. The num-
17OVP IIwhichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("EO4"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "EO6" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			
Whichever is higher. The maximum OVP setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in an execution error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- 	17		proximately 105% of the Output Voltage setting, or the value in Table 7-7,
error response ("E04"). The OVP setting stays unchanged.18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			
18OVP?Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			
18OVP?When in Local mode, returns the last setting from the front panel in a 4 digit string.19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL ?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			
19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			
19OVMSets OVP level to the maximum level. Refer to Table 7-7.20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and	18	OVP?	
20UVL nSets Under Voltage Limit. Value of "n" may be equal to PV setting, but re- turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			string.
20UVL 11turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.21UVL?Sets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and	19	OVM	Sets OVP level to the maximum level. Refer to Table 7-7.
20UVL 11turns "E06" if higher. Refer to Table 7-8 for UVL programming range.21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.21UVL?Sets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and	20		Sets Under Voltage Limit. Value of "n" may be equal to PV setting, but re-
21UVL?Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and	20		
21UVL?When in Local mode, returns the last setting from the front panel in a 4 digit string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			
string.22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and	21	UVL?	
22AST nSets the Auto-restart mode to ON or OFF. AST 1 (or AST ON): Auto restart On. AST 0 (or AST OFF): Auto restart Off.23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			
AST 0 (or AST OFF): Auto restart Off. 23 AST? Returns the string auto-restart mode status. SAV Saves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and			
23AST?Returns the string auto-restart mode status.24SAVSaves present settings. The settings are the same as power-down last set- ting. These settings are erased when the supply power is switched Off and	22	AST n	AST 1 (or AST ON): Auto restart On.
24 SAV SAV SAV Saves present settings are erased when the supply power is switched Off and			AST 0 (or AST OFF): Auto restart Off.
24 SAV ting. These settings are erased when the supply power is switched Off and	23	AST?	Returns the string auto-restart mode status.
			Saves present settings. The settings are the same as power-down last set-
the new "last settings" are saved.	24	SAV	
	1	1	the new "last settings" are saved.

57

25	RCL	Recalls last settings. Settings are from the last power-down or from the last "SAV" command.
26	MODE?	Returns the power supply operation mode. When the power supply is On (OUT 1) it will return "CV" or "CC". When the power supply is OFF (OUT 0 or fault shutdown) it will return "OFF".
27	MS?	Returns the Master/Slave setting. Master: n= 1, 2, 3, or 4 Slave: n=0

NOTES:

1. In Advanced parallel mode (refer to Sec. 5.15.2), "n" is the total system current.

2. In Advanced parallel mode, "MC?" returns the Master unit current multiplied by the number of slave units +1.

7.9 GLOBAL OUTPUT COMMANDS

7.9.1 GENERAL

All supplies, even if not the currently addressed supply, receiving a global command will execute the command. No response to the PC issuing the command will be returned to the PC. The PC issuing the command will be responsible to delay and any other communications until the command is execute. 200 Ms minimum is the suggested delay.

If the command contains an error, out of range values for example, no error report will be sent to the issuing PC.

Table 7-3

	5				
GRST	Reset. Brings the power supply to a safe and known state: Output voltage: 0V, output current: 0A, OUT: Off, Remote: RMT 1,				
	AST: Off OVP: Max, UVL: 0.				
	The conditional register (FLT and STAT) are updated. Other registers are <i>not</i> changed.				
	Non-Latching faults (FB, OVP, SO) are cleared, OUT fault stays				
GPV n	Sets the output voltage value in volts. The range of voltage values is shown in Table 7-5. 'n' may be up to 12 char plus dec. pt				
GPC n	Program the output current value in amperes. The range of current values is shown in Table 7-6. 'n' may be up to 12 char plus dec. pt				
GOUT	Turns the output to ON or OFF: "OUT 1/ON" = turn on "OUT 0/OFF" = turnoff, clears CV and CC bits in the Status Condition (STAT). OUT ON will respond with "E07' if the output cannot be turned on because of a latching fault (OTP< AC, ENA, SO) shutdown.				
GSAV	Save present settings. Same settings as power-down last settings listed in Er- ror! Reference source not found. Except the address and Baud rate are not saved Saves to the RAM. These settings are erased when the supply power is switched off and the new 'last settings' are saved.				
GRCL	Recall last settings. Settings are from last power-down or from last 'SAV' or 'GSAV' command. Address and Baud rate are not recalled so communication is not interrupted.				

7.10 SINGLE BYTE COMMANDS

7.10.1 General

Single byte commands are commands in which all the necessary data for the supply to act upon is contained in a single byte. Single byte commands will be executed immediately by the supply. If the command requires data to be sent to the HOST PC or IEEE Board (see sections 7.10.4 and 7.10.3.1) that response will be transmitted immediately with no delay due to any software overhead. With the exception of the Disconnect from communications command, section 7.10.3.1, commands must be sent by the HOST PC or IEEE Board 2 times in sequence for verification. All have the most significant bit, D7, set to a logic 1. A CR, carriage return, character is not included in a single byte command. The RST command will not change any setting made by a single byte command.

All Single Byte commands will be executed in 1 ms or less. This does not include any response sent to the HOST/IEEE Board, which is dependent upon the response length and the serial transmission speed (Baud rate).

7.10.2 Global commands without response

7.10.2.1 Disable MD Mode (MD MODE OPTION REQUIRED)

Disable is the default condition upon power up. The Hex value of the command is 0xA0. Send it two times in sequence. All supplies, both the currently addressed supply and all non-addressed supplies, will disable MD Mode as a result of this command.

7.10.2.2 Enable MD Mode (MD MODE OPTION REQUIRED)

Send to enable Multi Drop Mode. The Hex value of the command is 0xA1. Sent it two times in sequence. When this command is sent, the supply will set SRQ retransmission to the disable state; if you wish it to be enabled you must send the enable command. All supplies, both the currently addressed supply and all non-addressed supplies, will enable MD Mode as a result of this command.

7.10.2.3 Disable SRQ retransmission (MD MODE OPTION REQUIRED)

Disable is the default condition upon power up. The Hex value of the command is 0xA2. Sent it two times in sequence. If the supply sends an SRQ it will only sent it 1 time. All supplies, both the currently addressed supply and all non-addressed supplies, will disable SRQ retransmission as a result of this command. All status registers will retain their data when this command is sent.

7.10.2.4 Enable SRQ retransmission (MD MODE OPTION REQUIRED)

Enable retransmission of SRQs. This is only available when the Multi Drop Mode is enabled in the supply. The Hex value of the command is 0xA3. Send it two times in sequence. If the supply sends an SRQ it will be repeated on a timely basis, 10 ms plus 20 ms times the supply address, until answered. All supplies, both the currently addressed supply and all non-addressed supplies, will enable SRQ retransmission as a result of this command.

7.10.2.5 Enable FLT Bit in the SENA Register

The Hex value of the command is 0xA4. Send it two times in sequence.

7.10.3 Global commands with response

7.10.3.1 Disconnect from communications

Command the supply to end all data transmissions to the HOST PC/IEEE Board and cease its role as the active addressed supply. The HOST PC/IEEE Board will be required to re-send the 'ADR nn' command to reestablish communications with the supply. After receiving the first command the supply will respond with an OK<CR>. The Hex value of the command is 0xBF. All supplies, both the currently addressed supply and all non-addressed supplies, will respond to this command; but only the currently addressed supply (if any) will respond with the 'OK'.

7.10.4 Addressed commands with response

7.10.4.1 Read registers

Send (0x80 + Address) (1 byte binary - send 2 times sequentially). The supply will return the contents of the Status Condition Register, the Status Enable Register, the Status Event Register (SEVE?), the Fault Condition Register, the Fault Enable Register and the Fault Event Register IFEVE/). All registers will be represented in two Hex bytes. Following the register data, a single dollar sign, \$, will be added to signal the end of data and the start of a checksum. The checksum will be the sum of all register data and will be represented in two Hex bytes. The transmission will end with the CR character. If repetitive sending of SRQs was active and the supply was sending them, the supply will stop sending repetitive SRQs but leave the function active. The contents of the registers will not be destroyed. Note that the supply does snot have to be the active addressed supply.

Note that this command will not execute if another command is being processed.

7.10.4.2 Print Power On Time

Print the total time the supply has operated under AC power. Send 2 bytes in sequence, A6 Hex and the address of the supply in binary. A 32 bit integer will be returned in 8 Hex bytes. The data will be the number of minutes that power has been 'ON' in the supply in binary. A '\$' sign and 2 byte Hex checksum will be appended to the data. There is no method provided to reset this number.

Retransmit last message.

Send (0xC0 + Address) (1 byte binary - send 2 times sequentially). The supply will return the last message sent. Note that the supply does not have to be the active addressed supply. This command will not execute if another command is being processed.

Note that Single byte commands do not load data into the supply's data output buffer. Thus this command will not cause the supply to retransmit data obtained from any previous Single Byte Command.

7.10.4.3 Retransmit Last Message

Send (0xC0 + Address) (1 byte binary - send 2 times sequentially). The supply will return the last message sent. Note that the supply does not have to be the active addressed supply. This command will not execute if another command is being processed.

Note that Single byte commands do not load data into the supply's data output buffer. Thus this command will not cause the supply to retransmit data obtained from any previous Single Byte Command.

60

7.10.4.4 Test if MD Mode is Installed

Send AA Hex followed by the address of the supply in binary. If not installed, the supply will return a '1'. If installed, the supply will return a '0'.

7.10.5 Addressed commands without response

7.10.5.1 Acknowledge SRQ

Send (0xE0 + Address) (1 byte binary - send 2 times sequentially). The supply will stop resending SRQ. If Enable SRQ retransmission is active, it will remain active.

7.10.5.2 Re-enable SRQ with out reading/clearing the SEVE Register

Send A5 Hex followed by the address of the supply in binary and new SRQ's generated by new events in the Fault Event will be enabled without reading and clearing the Status Event Register. All events previously recorded in the Fault Event Register must have been serviced by the user's software prior to this command to take effect.

Name	Bit Positions	Response	Description
Global Commands			
Disable MD Mode	1010 0000	None	Set supplies out of MD Mode (de- fault)
Enable MD Mode	1010 0001	None	Set supplies into MD Mode
Disable SRQ retransmission	1010 0010	None	Disable retransmission of SRQs by supplies (default)
Enable SRQ retransmission	1010 0011	None	Enable retransmission of SRQs by supplies
Enable FLT Bit	1010 0100	None	Enable the FLT bit in the SENA Register
Disconnect serial communications	1011 1111	ОК	All supplies will halt transmission and enter the non-addressed state.
Addressed Commands			
Read Registers	100x xxxx	Register data	Non destructive read of all regis- ter. x xxxx is the address of the supply in binary.
Re-enable SRQ	Byte 1 1010 0101 Byte 2 xxxx xxxx	None	Re-enable SRQ without reading or clearing the SEVE Register. xxxx xxxx is the address of the supply in binary. Works only in MD Mode.

Print Power On Time	Byte 1 1010 0110 Byte 2 xxxx xxxx	Power On time in min- utes	Read the time the supply is active under AC Power. xxxx xxxx is the address of the supply in binary. Returns a 32 Bit integer as 8 Hex bytes. A '\$' sign is appended to the data followed by a 2 byte check-sum. A total of 11 bytes are returned.
Retransmit last message	110x xxxx	Last message	Retransmit last response from a command. x xxxx is the address of the supply in binary.
Acknowledge SRQ	111x xxxx	None	Acknowledge SRQ. If retransmis- sion of SRQ is enabled, it will re- main enabled for the next SRQ. X xxxx is the address of the supply in binary.
Test if MD Mode is Installed	Byte 1 1010 1010 Byte 2 xxxx xxxx	0 or 1	Returns a 0 if not installed or a 1 if installed. A '\$' sign followed by a 2 bytes checksum and Carriage Re- turn is appended to the data. xxxx xxxx is the address of the supply in binary.
Supply Initiated Communications			
SRQ	100x xxxx	N/A	SRQ from supply when in MD Mode. X xxxx is the address of the supply in binary.

Table 7-4. SINGLE BYTE COMMUNICATIONS

GEN750W models

able 7-5. Current programming range				
Minimum (A)	Maximum (A)			
000.00	100.00			
00.00	90.00			
00.000	60.000			
00.000	38.000			
00.000	25.000			
00.000	19.000			
00.000	12.500			
0.000	9.500			
0.000	7.500			
0.000	5.000			
0.000	2.500			
0.000	1.300			
	Minimum (A) 000.00 00.00 00.00 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 0.000 0.000 0.000 0.000			

Table 7-5: Current programming range

NOTE:

The power supply can accept values 5% higher than the table values, however it is not recommended to program the power supply over the rated values.

62

Model Rated Output Vo (V)	Ditage (V)	Maximum (V)
6	0.5	7.50
8	0.5	10.0
12.5	1.0	15.0
20	1.0	24.0
30	2.0	36.0
40	2.0	44.0
60	5.0	66.0
80	5.0	88.0
100	5.0	110.0
150	5.0	165.0
300	5.0	330.0
600	5.0	660.0

Table 7-7: UVL programming range

	egranni	Jiango
Model Rated Output Voltage (V)	Minimum (V)	Maximum (V)
6	0	5.70
8	0	7.60
12.5	0	11.9
20	0	19.0
30	0	28.5
40	0	38.0
60	0	57.0
80	0	76.0
100	0	95.0
150	0	142
300	0	285
600	0	570

7.10.6 Status Control Commands

Table 7-6: OVP programming range

Refer to Section 7-8 for definition of the registers.

#	Command	Description		
1	STT?	Reads the complete power supply status. Returns ASCII characters representing the following data, separated by commas:		
		MV <actual (measured)="" voltage="">PC<programmed (set)="" current="">PV<programmed (set)="" voltage="">SR<status 2-digit="" hex="" register,="">MC<actual (measured)="" current="">FR<fault 2-digit="" hex="" register,=""></fault></actual></status></programmed></programmed></actual>		
		Example response: MV(45.201),PV(45), MC(4.3257), PC(10), SR(30), FR(00)		
2	FLT?	Reads Fault Conditional Register. Returns 2-digit hex.		
3	FENA	Set Fault Enable Register using 2-digit hex.		
4	FENA?	Reads Fault Enable Register. Returns 2-digit hex.		
5	FEVE?	Reads Fault Event Register. Returns 2-digit hex. Clears bits of Fault Event Register.		
6	STAT?	Reads Status Conditional Register. Returns 2-digit hex.		
7	SENA	Sets Status Enable Register using 2-digit hex.		
8	SENA?	Reads Status Enable Register. Returns 2-digit hex.		
9	SEVE?	Reads Status Event register. Returns 2-digit hex. Clears bits of Status Event register.		

7.11 STATUS, ERROR AND SRQ REGISTERS

7.11.1 General Description

This Section describes the various status error and SRQ registers structure. The registers can be read or set via the RS232/RS485 commands. When using the IEEE option, refer to the User's Manual for Genesys[™] Power Supply IEEE Programming Interface.

Refer to Fig. 7-7 for the Status and Error Registers Diagram.

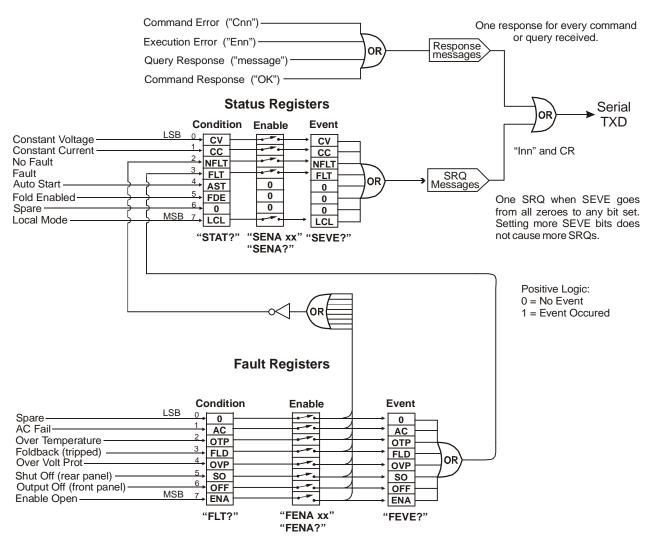


Fig.7-7: Status and Error Registers Diagram

7.11.2 Conditional Registers

The fault Condition Register and the Status Condition Register are read only registers that the user may read to see the condition of the Power supply. Refer to Table 7-8 for description of the Fault Condition Register bits and Table 7-9 for the Status Condition register bits.

7.11.2 Conditional Registers (continued)

Table 7-8: Fault Condition Register

BIT	Fault name	Fault symbol	Bit Set condition	Bit Reset condition
0 (LSB)	Spare bit	SPARE	Fixed to zero	Fixed to zero
1	AC Fail	AC	AC fail has occurred.	The AC input returns to normal.
2	Over temperature	OTP	OTP shutdown has occurred.	The power supply cools down.
3	Foldback	FOLD	Foldback shutdown has occurred	The supply output is turned On by front panel button or OUT 1 command.
4	Over volt- age	OVP	OVP shutdown has occurred.	The supply output is turned ON by front panel button or OUT 1 command.
5	Shut Off	SO	Rear panel J1 "Shut Off" condition has oc- curred.	Rear panel J1 "Shut Off" condition has been removed.
6	Output Off	OFF	Front panel OUT but- ton pressed to Off.	The supply output is turned On by front panel button or OUT 1 command.
7(MSB)	Enable	ENA	Rear panel J1 Enable terminal (J1-1&J1-14) opened.	Rear panel J1 Enable terminals closed.

Table 7-9: Status Condition Register

BIT	Fault name	Fault symbol	Bit Set condition	Bit Reset condition
0 (LSB)	Constant Voltage	CV	Output is On and the supply in CV.	Output is ON and the supply is not in CV.
1	Constant Current	СС	Output is ON and the supply in CC.	Output is ON and the supply is not in CC.
2	No Fault	NFLT	The power supply is operating normally or fault reporting is not enabled. See "OUT n" com- mand in Section 7.7.5.	One or more faults are active and fault reporting is enabled (using "FENAxx").
3	Fault active	FLT	One or more faults are enabled and oc- cur.	Fault Event Register cleared (FEVE?).
4	Auto-Restart Enabled	AST	Supply is in Auto- Restart mode (from Front Panel or serial command).	Supply is in Safe-Start mode (from Front Panel or serial command).
5	Fold Enabled	FDE	Fold protection is enabled (from Front Panel or serial command).	Fold protection disabled (from Front Panel or serial command).
6	Spare bit	SPARE	Fixed to zero.	Fixed to zero.
7(MSB)	Local Mode	LCL	Supply in Local mode.	Supply in Remote mode or Local- Lockout mode.

7.11.3 Service Request: Enable and Event Registers

The conditional Registers are continuously monitored. When a change is detected in a register bit which is enabled, the power supply will generate an SRQ message.

65

The SRQ message is: "Inn" terminated by CR, where the nn is the power supply address. The SRQ will be generated either in Local or Remote mode.

Refer to Tables 7-10 to 7-13 for details of the Enable and Event registers.

1. Fault Enable Register

The Fault Enable Register is set to the enable faults SRQs.

BIT	Enable bit name	Fault symbol	Bit Set condition	Bit reset condition
0 (LSB)	Spare bit	SPARE		
1	AC Fail	AC		User command: "FENA nn"
2	Over Temperature	OTP	User command: "FENA nn" where	where nn is hexadecimal (if nn="00", no fault SRQs will
3	Foldback	FOLD	nn is hexadecimal	be generated).
4	Over Voltage	OVP		
5	Shut Off	SO		
6	Output Off	OFF		
7(MSB)	Enable	ENA		

Table 7-10: Fault Enable Register

2. Fault Event Register

The Fault Event will set a bit if a condition occurs and it is Enabled. The register is cleared when FEVE?, CLS or RST commands are received.

Table 7-11: Fault Event Register

BIT	Enable bit name	Fault symbol	Bit Set condition	Bit reset condition		
0 (LSB)	Spare bit	SPARE				
1	AC Fail	AC	Fault condition	Entire Event Register is		
2	Over Temperature	OTP	occurs and it is enabled.	cleared when user sends "FEVE?" command to read		
3	Foldback	FOLD	The fault can set a bit, but when the fault clears the bit remains set.	the register. "CLS" and power-up also		
4	Over Voltage	OVP		clear the Fault Event Reg-		
5	Shut Off	SO		ister. (The Fault Event Register is not cleared by		
6	Output Off	OFF		RST)		
7(MSB)	Enable	ENA				

3. Status Enable Register

The Status Enable Register is set by the user to Enable SRQs for changes in power supply status.

BIT	Status name	Status symbol	Bit Set condition	Bit reset condition	
0 (LSB)	Constant Voltage	CV	User command:	User command: "SENA nn" is received, where nn is hexadecimal bits.	
1	Constant Current	CC	"SENA nn" is received, where		
2	No Fault	NFLT	nn is hexadeci-	If "nn"=00, no SRQ is sent when there is a change in	
3	Fault active	FLT	mal bits.	Status Condition Register.	
4	Auto-Restart enabled	AST	Always zero	Always zero	
5	Fold enabled	FDE	Always zero	Always zero	
6	Spare	Spare	Always zero	Always zero	
7 (MSB)	Local Mode	LCL	"SENA nn" command	"SENA nn" command	

Table 7-12: Status Enable Register

4. Status Event Register

The Status Event Register will set a bit if a change in the power supply status occurs and it is enabled. The register is cleared when the "SEVE?" or "CLS" commands are received. A change in this register will generate SRQ.

BIT	Status name	Status sym- bol	Bit Set condition	Bit reset condition
0 (LSB)	Constant Voltage	CV	Changes in status occur and it is Enabled.	
1	Constant Current	CC	The change can	
2	No Fault	NFLT	set a bit, but when the change	Entire Event Register is
3	Fault active	FLT	clears the bit re- mains set.	cleared when user sends "SEVE?" command to
4	Auto-Restart en- abled	0	Always zero	read the register. "CLS" and power-up also
5	Fold enabled	0	Always zero	clear the Status Event
6	Spare	0	Always zero	Register.
7 (MSB)	Local Mode	LCL	Unit is set to Lo- cal by pressing front panel REM/LOC button.	

7.12 SERIAL COMMUNICATION TEST SET-UP

Use the following instructions as basic set-up to test the serial communication operation.

1.Equipment: PC with Windows Hyper Terminal, software installed, Genesys[™] Power supply, RS232 cable.

- **2. PC set-up**: 2.1 Open Hyper Terminal.....New Connection.
 - 2.2 Enter a name
 - 2.3 Connect to Direct to Com 1 or Com 2
 - 2.4 Configure port properties:

Bits per second.....9600 Data bits.......8 Parity.....None Stop bits......1 Flow control.....None File.....Properties

- 2.5 Open Properties in the program
- 2.6 Setting: ASCII Set Up

Select Echo characters locally, select send line ends with line feed. On some PC systems, pressing the number keypad "Enter" will distort displayed messages. Use the alphabetic "Enter" instead.

3. Power supply set-up:

- 3.1 Connect the power supply to the PC using the RS232 cable.
- 3.2 Set via the front panel: Baud Rate: 9600, Address: 06 (default).
- 3.3 Set via the rear panel: RS232/RS485 to RS232 (refer to Section 4-4).

4. Communication Test:

- 4.1 Model identification: PC:write: ADR 06 Power supply response: "OK"
- 4.2 Command test: PC write: OUT1 Power supply response: "OK" PC write: PVn Power supply response: "OK" PC write: PCn (for values of n see Tables 7-4, 7-5 and 7-6) Power supply response: "OK"

The power supply should turn on and the display will indicate the actual Output Voltage and the actual Output Current.

CHAPTER 8 ISOLATED ANALOG PROGRAMMING OPTION

8.1 INTRODUCTION

Isolated Analog Programming is an internal Option Card for analog programming of the Genesys[™] power supply series. The option is factory installed and cannot be obtained with a GPIB (IEEE-488) Interface. Output Voltage and Output Current can be programmed and readback through optically isolated signals which are isolated from all other ground references in the power supply.

There are two types of Isolated Analog programming cards:

- 1. 0-5V/0-10V option (PN: IS510): Using 0-5V or 0-10V signals for programming and readback.
- 2. 4-20mA option (PN: IS420): Using current signals for programming and readback.

8.2 SPECIFICATIONS

8.2.1 0-5V/0-10V OPTION (PN: IS510)

Programming	Output Voltage programming accuracy	%	+/-1
Inputs	Output Current programming accuracy	%	+/-1
	Output Voltage programming temperature coefficient	PPM/℃	+/-100
	Output Current programming temperature coefficient	PPM/℃	+/-100
	Input impedance	Ohm	1M
	Absolute maximum voltage	Vdc	0-15
	Max. voltage between program inputs and supply outputs	Vdc	600
Monitoring	Output Voltage monitoring accuracy	%	+/-1.5
Outputs	Output Current monitoring accuracy	%	+/-1.5
	Output Impedance (see Note)	Ohm	100
	Max. voltage between monitoring outputs and supply	Vdc	600

NOTE:

Use 100Kohm minimum input impedance for the monitoring circuits to minimize the readback error.

8.2.2 4-20mA option (PN: IS420)

Programming	Output Voltage programming accuracy	%	+/-1
Inputs	Output Current programming accuracy	%	+/-1
	Output Voltage programming temperature coefficient	PPM/℃	+/-200
	Output Current programming temperature coefficient	PPM/℃	+/-200
	Input impedance	Ohm	50
	Absolute maximum input current	Vdc	0-30
	Max. voltage between program inputs and supply outputs	Vdc	600
Monitoring	Output Voltage monitoring accuracy	%	+/-1.5
Outputs	Output Current monitoring accuracy	%	+/-1.5
	Maximum load impedance	Ohm	500
	Max. voltage between monitoring outputs and supply	Vdc	600

69

8.3 ISOLATED PROGRAMMING & MONITORING CONNECTOR

Refer to Table 8-1 for detailed description of the rear panel Isolated Programming & Monitoring connector. To provide the lowest noise performance, it is recommended to use shielded-twisted pair wiring.

Refer to Fig.8-1 for description of the Isolated Analog Programming & Monitoring connector. Isolated programming plug P/N: MC1.5/8-ST-3.81, Phoenix.

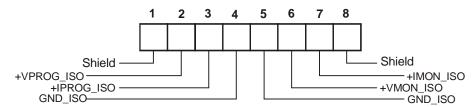


Fig.8-1: Isolated Programming & Monitoring connector

Terminal	Signal name	Function	Range 0-5/0- 10V IS510 option	Range 4- 20mA IS420 option
1	SHLD	Shield, connected internally to chassis of the power supply.	Chassis ground	
2	+VPROG_ISO	Output Voltage programming input	0-5V/0-10V	4-20mA
3	+IPROG_ISO	Output Current programming input	0-5V/0-10V	4-20mA
4	GND	Ground for programming sig- nals.	Ground	Ground
5	GND	Ground for programming sig- nals.	Ground	Ground
6	+VMON_ISO	Output voltage monitoring out- put	0-5V/0-10V	4-20mA
7	+IMON_ISO	Output current monitoring out- put	0-5V/0-10V	4-20mA
8	SHLD	Shield, connected internally to chassis of the supply.	Chassis	ground

CAUTION

When the Isolated Analog Option is installed, do not apply any signals to the non-isolated VPGM and IPGM (J1-9 and J1-10) pins. All other J1 features may be used normally. Refer to Section 4.5 for a description of J1 features.

8.4 SETUP AND OPERATING INSTRUCTIONS

CAUTION

To prevent damage to the unit, do not program the output voltage and current to higher than the power supply rating.

8.4.1 Setting up the power supply for 0-5V/0-10V Isolated Programming and Monitoring

Perform the following procedure to configure the power supply:

- 1. Turn the power supply AC power switch to Off.
- 2. Connect a wire jumper between J1-8 and J1-12 (refer to Table 4-4).
- 3. Set the Setup switch SW1, positions 1 and 2 to the UP position.
- 4. Set SW1, position 3 to select the Programming Voltage Range: Down=0-5V, Up=0-10V.
- 5. Set SW1, position 4 to select the Monitoring Range: Down=0-5V, Up=0-10V.
- 6. Ensure that SW1, positions 7 and 8 are in the Down position.
- 7. Connect the programming sources to the mating plug of the Isolated Programming connector. Observe for correct polarity of the voltage source.

NOTE J1-8 and J1-12 must be shorted together with a wire jumper.

8. Set the programming sources to the desired levels and turn the power supply ON.

8.4.2 Setting up the power supply for 4-20mA Isolated Programming and Monitoring

Perform the following procedure to configure the power supply:

- 1. Turn the power supply AC power switch to Off.
- 2. Connect a wire jumper between J1-8 and J1-12 (refer to Table 4-4).
- 3. Set the Setup switch SW1, positions 1 and 2 to the Up position.
- 4. Set SW1, position 3 to the Up position.
- 5. Set SW1, position 4 to the Up position.
- 6. Ensure that SW1 positions 1 and 2 to their Up position.
- 7. Connect the programming source to the mating plug of the Isolated Programming connector. Observe for correct polarity of the voltage source.

NOTE J1-8 and J1-12 must be shorted together with a wire jumper.

8. Set the programming sources to the desired levels and turn the power supply ON.

NOTE SW1 position 3 and 4 must be in the Up position for operation with 4-20mA Isolated Programming and Monitoring.

71

CHAPTER 9 MAINTENANCE

9.1 INTRODUCTION

This Chapter provides information about maintenance, calibration and troubleshooting.

9.2 UNITS UNDER WARRANTY

Units requiring repair during the warranty period should be returned to a TDK-Lambda Americas Inc. authorized service facility. Refer to the addresses listing on the back cover of this User's Manual. Unauthorized repairs performed by other than the authorized service facilities may void the warranty.

9.3 PERIODIC MAINTENANCE

No routine maintenance of the power supply is required except for periodic cleaning. To clean, disconnect the unit from the AC supply and allow 30sec. For discharging internal voltages. The front panel and the metal surfaces should be cleaned using a mild solution of detergent and water. The solution should be applied onto a soft cloth, and not directly to the surface of the unit. Do not use aromatic hydocarbons or chlorinated solvents for cleaning. Use low pressure compressed air to blow dust from the unit.

9.4 ADJUSTMENTS AND CALIBRATION

No internal adjustment or calibration is required. There is NO REASON to open the power supply cover.

9.5 PARTS REPLACEMENT AND REPAIRS

As repairs are made only by the manufacturer or by authorized service facilities, no parts replacement information is provided in the manual. In case of failure, unusual or erratic operation of the unit, contact a TDK-Lambda Americas Inc. sales or service facility nearest you. Please refer to the TDK-Lambda Americas Inc. sales offices addresses listing on the back cover of this User's Manual.

9.6 TROUBLESHOOTING

If the power supply appears to be operating improperly, use the Troubleshooting Guide (Table 9-1) to determine whether the power supply, load or external control circuit are the cause.

Configure the power supply for basic front panel operation and perform the tests of Section 3.8 to determine if the problem is with the supply.

Table 9-1 provides the basic checks that can be performed to diagnose problems, with references to Sections of this User's Manual for further information.

SYMPTOM	CHECK	ACTION	REF
	Is the AC power cord	Check continuity, replace if	3.7
No output. All displays and	defective?	necessary.	
indicators are blank.	Is the AC input voltage	Check AC input voltage.	3.6
	within range?	Connect to appropriate	3.7
		voltage source.	
Output is present	Does the AC source	Check AC input voltage.	3.6
momentarily but shuts Off	voltage sag when load is	Connect to appropriate	
quickly. The display	applied?	voltage source.	
indicates "AC".			

Table 9-1: Troubleshooting guide

SYMPTOM	CHECK	ACTION	REF
Output is present momentarily but shuts off quickly.The display indicates "OUP".	Is the power supply configured to Remote sense?	Check if the positive or negative load wire is loose.	3.9.6 3.9.8
Output Voltage will not adjust. Front panel CC LED is On.	Is the unit in constant current mode?	Check Output Current setting and load current.	5.2.1 5.2.2
Output Voltage will not adjust Front panel CV Led is On.	Check if output voltage is adjusted above OVP setting or below UVL setting.	Set OVP or UVL so they will not limit the output.	5.3 5.4
Output Current will not adjust. Front panel CV LED is on.	Is the unit in constant voltage mode?	Check Output Current and voltage setting	5.2
Large ripple present in output.	Is the power supply in remote sense? Is the voltage drop on the load wire high?	Check load and sense wires connection for noise and impedance effects. Minimize the drop on the load wires.	3.9.4 3.9.8
No output. Display indicates "OUP"	Overvoltage Protection circuit is tripped.	Turn off the AC power switch. Check load connections. If Analog Programming is used, check if the OVP is set lower than the output.	5.3
No output. Front panel ALARM LED is blinking.	Display indicates "ENA"	Check rear panel J1 ENABLE connection. Setup switch SW1 setting.	5.8 4.4
	Display indicates "SO"	Check rear panel J1 Output Shut-Off connection.	5.7
	Display indicates "OTP"	Check if air intake or exhaust are blocked. Check if the unit is installed adjacent to heat generating equipment.	
	Display indicates "Fb"	Check Foldback setting and load current.	5.5
Poor Load regulation. Front panel CV LED is on.	Are sensing wires connected properly?	Connect the sense wires according to User's Manual instructions.	3.9.8
The front panel controls are non-functional.	Is the power supply in Local-Lockout mode?	Turn Off the AC power and wait until the display turns off. Turn on the AC power and press front panel REM/LOC button.	7.2.5

9.7 FUSE RATING

There are no user replaceable fuses in the power supply. Internal fuses are sized for fault protection and if a fuse was opened, it would indicate that service is required. Fuse replacement should be made by qualified technical personnel. Refer to Table 9-2 for a listing of the fuses.

Fuse designation	750W model
F301	20A 250VAC, FAST
F302, F304	2A 400VDC, NORMAL
F31, F32	NOT USED

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com