

VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP

User's Guide

Part Number 82-0068-000

Printed in U.S.A Print Date: July 30, 2004

© VXI Technology, Inc., 2004. All rights reserved. 2031 Main Street, Irvine, CA 92614-6509 U.S.A.

NOTICE

The information contained in this document is subject to change without notice.

VXI TECHNOLOGY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. VXI Technology shall not be liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your VXI Technology product and replacement parts can be obtained from your local Sales and Service Office.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another language without the prior written consent of VXI Technology, Inc. This information contained in this document is subject to change without notice.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs can be made for security and back-up purposes only.

- © Copyright 2003 VXI Technology, Inc.
- © Copyright 1979 The Regents of the University of Colorado, a body corporate.
- © Copyright 1979, 1980, 1983 The Regents of the University of California.
- © Copyright 1980, 1984 AT&T Technologies. All Rights Reserved.
- © Copyright 1986, 1987 Sun Microsystems, Inc.
- © Copyright 1984, 1985 Productivity Products Intl.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013.

VXI Technology, Inc. 2031 Main Street Irvine, CA 92614-6509

Rights for non-DOD U.S. Government Departments and Agencies are set forth in FAR 52.227-19 (c) (1,2)

Copyright (c) 2004 VXI Technology, Inc. All rights reserved

In This Book

The VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP is a C-size VXI module. "196 kSamples/s" refers to the maximum sample rate of 196608 samples per second. The VT1433B may contain either one or two 4-channel input assemblies so that the module may have a total of up to eight inputs. The module plugs into a single, C-size slot in a VXI mainframe.

This book documents the VT1433B module, including information on how to use it. It provides:
☐ Installation information.
☐ Examples to expedite getting started, with information on how to use the VXIplug&play Host Interface Library functions. There is also a chapter about the C-Language version of the Host Interface Library. There are instructions for printing the Function Reference for the Host Interface Library if desired. The Function Reference can be accessed by way of online manual pages and online help.
☐ Information on how to use the VT1433B.
☐ A descriptions of the module.
☐ Descriptions of the Arbitrary Source and Tachometer options.
☐ Descriptions of the Break Out Boxes which can be used with the module.
☐ Service information (troubleshooting and replacing assemblies).
☐ Details about the module's VXI registers (as an appendix for those who may want this additional information).

VT1433B User's Guide

Table of Contents

	In This Book	
Cha	pter 1. Installing the VT1433B	
	Installing the VT1433B. To inspect the VT1433B. To install the VT1433B Install the host interface libraries To store the module To transport the module	. 1-2 . 1-3 . 1-6 . 1-6
Cha	pter 2. Getting Started With the VT1433B	
,	Introduction. To install the VXIplug&play libraries System Requirements (Microsoft Windows). System Requirements (HP-UX 10.20). VT1432A Software Distribution To install the Windows VXIplug&play drivers for the VT1433B (for Windows 95 and Windows NT) To install the HP-UX VXIplug&play drivers for the VT1433B (for HP-UX systems). The Resource Manager The VXIplug&play Soft Front Panel (SFP) Using the soft front panel. VEE example programs scope.vee minimum.vee Other Agilent VEE example programs C-Language Host Interface Library example programs Demo Programs Running a demo program: semascope.c Visual Basic example programs	. 2-3 . 2-3 . 2-3 . 2-5 . 2-5 . 2-6 . 2-7 . 2-7 2-10 2-14 2-16 . 2-17 2-17 2-18
Cha	opter 3. Using the VT1432A	
	Introduction. What is VXIplug&play? Overview VXIplug&play drivers Manufacturer and model codes The Soft Front Panel (SFP) Header and Library Files Channels and groups Channel Groups Initialization Creating a Channel Group Input, Source and Tach Channels Multiple-module/mainframe Measurements Grouping of Channels/Modules Multiple-module Measurements Possible Trigger Line Conflict Managing Multiple-mainframe Measurements	. 3-3 . 3-3 . 3-4 . 3-5 . 3-6 . 3-7 . 3-7 . 3-8 . 3-9 . 3-9 . 3-9

Synchronization in Multiple-mainframe Measurements	. 3-14
Module Features	. 3-15
Data Flow Diagram and FIFO Architecture	. 3-15
Base Sample Rates	. 3-17
Measurement Process	. 3-25
Measurement Setup and Control	. 3-25
Parameter Settings	
Measurement Initiation	
Measurement Loop	
Register-based VXI Devices	
Arm and Trigger	
VT1433B Triggering	
Trigger Level	
Data Transfer Modes	
VT1433B Interrupt Behavior	
Data Gating	
VT1433B Parameters.	
New features of the VT1433B software	
Span and center frequency	
Zoom mode	
Where to get more information	
The Function Reference for VXIplug&play	. 3-39
The Function Reference for the Host Interface Library	2 20
(C-language version)	. 3-39
Chapter 4. The Host Interface Library	
Introduction	4-2
Header and Library Files	
Parameter Information	
Description of VT1433B Parameters.	
Parameter Lists	
Channel and Group IDs	
Multiple-module/Mainframe Measurements.	4_12
Grouping of Channels/Modules	
Multiple-module Measurements	. 1 -12
Possible Trigger Line Conflict.	. 1 -12
Managing Multiple-mainframe Measurements	
Synchronization in Multiple-mainframe Measurements	. 4- 14
Measurement Process	
Measurement Setup and Control	
Parameter Settings	
Measurement initialization.	. 4-19
Measurement Loop	. 4-20
Register-based VXI Devices	
Arm and Trigger	. 4-22
VT1433B Triggering	
Data Transfer Modes	
VT1433B Interrupt Behavior	
Data Gating	
VT1433B Parameters	
For More Information	. 4-29
Chapter 5. Module Description	
Module Features	5-2
General Features	
Arbitrary Source Features (Option VT1433B-1D4)	5-2
Tachometer Features (VT1433B-AYF)	
Other Options.	
Block Diagram	
= = 0	

VT1433B Front Panel Description	
Front panels for four or eight channels	
Standard Front Panel	
VXI Backplane Connections.	
Power Supplies and Ground	
Data Transfer Bus	
DTB Arbitration Bus	
Priority Interrupt Bus	
Utility Bus	
The Local Bus (VT1433B-UGV) The VT1433B VXI Device	
Address Space	
Shared Memory	
Memory Map	
List of A16 Registers	
Trigger Lines (TTLTRG).	
Providing an External Clock	
Calibration Description.	
Canoration Description	5-12
Chapter 6. The Arbitrary Source Option (VT1433B-1D4)	
Arbitrary Source Description	
Trigger	
Arbitrary Output	
Source Output Modes	
COLA (and Summer)	
External Shutdown	
Block Diagram	
The Arbitrary Source Option Front Panel	
Updating the arbitrary source firmware	
opusing the arbitrary source infinware	0-2
Chapter 7. The Tachometer Option (VT1433B-AYF)	
Tachometer Description	
Tachometer Inputs	
External Trigger Input	
Trigger Level	
Tachometer Monitoring	
Exact RPM Triggering	
Holdoff Time	
Block Diagram	
The Tachometer Option Front Panel.	
LEDs and Connectors for the Tachometer Option	
ELD's and Connectors for the Tachometer Option	/
Chapter 8. Break Out Boxes	
•	
Introduction	
Service	
The VT3240A and VT3241A Break Out Boxes	
VT3240AVoltage-type Break Out Box	8-4
VT3241A ICP®-type Break Out Box	8-4
Break Out Box Grounding	
Break Out Box Cables	
Making a Custom Break Out Box Cable	8-3
Recommendations on wiring for the VT1432A/33B 4-Channel Input Connector.	Q T
Confiction	0-/
Chapter 9. Troubleshooting the VT1433B	
Diagnostics	9_2

Chapter 10. Replacing Assemblies

Replaceable Parts	
Ordering Information	
Direct Mail Order System	10-2
CAGE Code Numbers	10-3
Assemblies: without VT1433B-AYF or VT1433B-1D4	10-4
Assemblies: with VT1433B-AYF	10-6
Assemblies: with VT1433B-1D4	10-8
Cables: without VT1433B-AYF or VT1433B-1D4	10-10
Cables: with VT1433B-AYF	10-11
Cables: with VT1433B-1D4	
Front Panel	
To remove the top cover	
To remove the front panel	
To remove the input assemblies	
To remove the VT1433B-AYF assembly	
To remove the VT1433B-1D4 assembly	
To remove the A22 assembly	
To remove the A10/A11 assembly	
·	
Chapter 11. Backdating	
Backdating	11-2
Dackdating	11-2
Appendix A. Register Definitions	
The VT1433B VXI Registers	A-2
The A16 Registers.	
The A24 Registers.	
32-bit Registers	
Command/Response Protocol.	
DSP Protocol.	
DSP Bus Registers	
Doi Dus Registers	11-11-
Glossarv	
J	

Index

Support Resources

Support resources for this product are available on the Internet and at VXI Technology customer support centers.

VXI Technology World Headquarters

VXI Technology, Inc. 2031 Main Street Irvine, CA 92614-6509

Phone: (949) 955-1894 Fax: (949) 955-3041

VXI Technology Cleveland Instrument Division

VXI Technology, Inc. 7525 Granger Road, Unit 7 Valley View, OH 44125

Phone: (216) 447-8950 Fax: (216) 447-8951

VXI Technology Lake Stevens Instrument Division

VXI Technology, Inc. 1924 - 203 Bickford Snohomish, WA 98290

Phone: (425) 212-2285 Fax: (425) 212-2289

Technical Support

Phone: (949) 955-1894 Fax: (949) 955-3041

E-mail: support@vxitech.com

Visit http://www.vxitech.com for worldwide support sites and service plan information.

1

Installing the VT1433B

Installing the VT1433B

This chapter contains instructions for installing the VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP Module and its drivers. This chapter also includes instructions for transporting and storing the module.

To inspect the VT1433B

The VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP Module was carefully inspected both mechanically and electrically before shipment. It should be free of marks or scratches and it should meet its published specifications upon receipt.

If	the	module	was	damaged	in	transit,	do	the	following	•

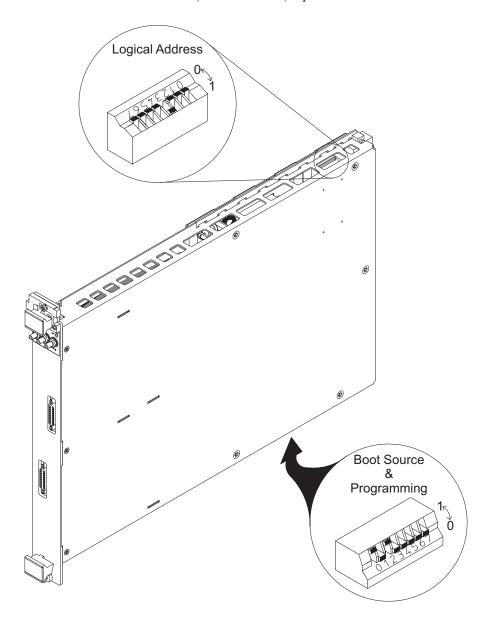
- ☐ Save all packing materials.
- ☐ File a claim with the carrier.
- ☐ Call a VXI Technology sales and service office.

To install the VT1433B

Caution

To protect circuits from static discharge, observe anti-static techniques whenever handling the VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP Module.

- 1 Set up the VXI mainframe. See the mainframe's installation guide for assistance.
- 2 Select a slot in the VXI mainframe for the VT1433B module.

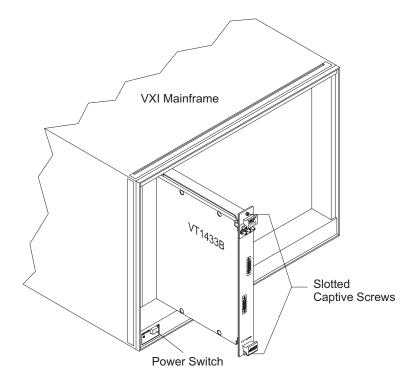

The VT1433B module's local bus receives ECL-level data from the module immediately to its left and outputs ECL-level data to the module immediately to its right. Every module using the local bus is keyed to prevent two modules from fitting next to each other unless they are compatible. If using the local bus, select adjacent slots immediately to the left of the data-receiving module. The local bus can support up to four VT1433B modules at full span at real time data rates. If the VXI Bus is used, maximum data rates will be reduced but the module can be placed in any available slot.

3 Using a small screwdriver or similar tool, set the logical address configuration switch on the VT1433B.

(See the illustration on the next page.) Each module in the system must have a unique logical address. The factory default setting is 0000 1000 (8). If an GPIB command module will be controlling the VT1433B module, select an address that is a multiple of 8. If the VXI system dynamically configures logical addresses, set the switch to 255.

4 Check the settings of the Boot Source and ROM Programming switches on the bottom of the module.

Set switches 1 and 3 (BS1 and BS3) up and all the other switches down.



5 Set the mainframe's power switch to standby (\Diamond).

Caution

Installing or removing the module with power on may damage components in the module.

- 6 Place the module's card edges (top and bottom) into the module guides in the slot.
- 7 Slide the module into the mainframe until the module connects firmly with the backplane connectors. Make sure the module slides in straight.
- **8** Attach the module's front panel to the mainframe chassis using the module's captive mounting screws.

Install the host interface libraries

After the hardware has been assembled, the next step in installing the VT1433B is to install the host interface libraries. Refer to the chapter titled "Getting Started With the VT1433B" to continue the installation process.

To store the module

Store the module in a clean, dry and static free environment.

For other requirements, see storage and transport restrictions in the chapter titled: "Specifications."

To transport the module

	 Package the module using the original factory packaging or packaging identical to the factory packaging. Containers and materials identical to those used in factory packaging are available through VXI Technology.
	 If returning the module to VXI Technology for service, attach a tag describing the following: Type of service required Return address Model number
	☐ Full serial number
	In any correspondence, refer to the module by model number and full serial number.
	• Mark the container FRAGILE to ensure careful handling.
	 If necessary to package the module in a container other than original packaging, observe the following (use of other packaging is not recommended):
	☐ Wrap the module in heavy paper or anti-static plastic.
	☐ Protect the front panel with cardboard.
	☐ Use a double-wall carton made of at least 350-pound test material.
	☐ Cushion the module to prevent damage.
Caution	Do not use styrene pellets in any shape as packing material for the module. The pellets do not adequately cushion the module and do not prevent the module from shifting in the carton. In addition, the pellets create static electricity which can damage electronic components.

VT1433B User's Guide Installing the VT1433B

2

Getting Started With the VT1433B

Introduction

This chapter provides assistance in getting the VT1433B running and making simple measurements. It shows how to install the software libraries and how to run some of the example programs that are included.

For more information see the other chapters in this book and the on-line function reference. (See "Where to get more information" in the chapter titled "Using the VT1433B)."

Two versions of the Host Interface Library are available. One is HP-UX C-Language Host Interface Library which uses SICL (the Standard Instrument Interface Library) to communicate to the VT1433B hardware. The other is the HP-UX, Windows 95 or later and Windows NT VXIplug&play Library which communicates with the hardware using VISA (*Virtual Instrument Software Architecture*). VISA is the input/output standard upon which all the VXIplug&play software components are based.

This chapter mainly covers the VXI*plug&play* version and it also includes some examples using the C-Language version. If using the C-Language version, refer to the chapter titled "The Host Interface Library" as well.

NOTE

The C-Language Host Interface Library has been provided for the purpose of backward compatibility and is no longer supported. New users should use the VXI*plug&play* Library while older users are encouraged to migrate their applications to the VXI*plug&play* library.

To install the VXIplug&play libraries

System Requirements (Microsoft Windows)

- An IBM compatible personal computer with either Microsoft Windows 95 or later or Microsoft Windows NT. (With either Windows OS, use the VXI*plug&play* library)
- Additional hardware and software to connect the IBM compatible computer to a VXI mainframe.
- Software is supplied on CD-ROM.

System Requirements (HP-UX 10.20)

- One of the following workstations:
 - ☐ An HP V743 VXI-embedded workstation.
 - □ A stand-alone HP Series 700 workstation with an Agilent/HP E1489I EISA-to-MXIbus card and an Agilent/HP E1482B VXI-MXI Bus Extender.
- Software is supplied on CD-ROM, so a CD-ROM drive is needed
- HP-UX Version 10.20. This version of HP-UX can use either the C-language library or the VXI*plug&play* library.
- SICL/VISA (product number E2091E, version E.01.01 or later).

VT1432A Software Distribution

The VT1432A distribution (software) is shipped on CD-ROM with the VT1433B module. This software works with the VT1432A, VT1433B and VT1434A modules. This distribution includes the the VT1432A C-Language Host Interface Library for HP-UX, the VT1432A VXI*plug&play* Host Interface library for HP-UX, Windows 95 or later and Windows NT with associated examples and manual pages.

Getting Updates (Windows)

The latest version of the VT1433B instrument drivers can be found on-line at www.vxitech.com.

Getting Updates (HP-UX)

For the latest HP-UX instrument drivers, please contact VXI Technology Customer Support Services. Contact information can be found in the *Support* section of the manual on page ix.

To install the Windows VXI*plug&play* drivers for the VT1433B (for Windows 95 and Windows NT)

- 1 Insert the VXI*plug&play* Drivers and Product Manuals CD into the CD-ROM drive.
- 2 Run the program: d:\drivers\DAQ Drivers\driver_vxipnp_e1432_a_06_13.exe. (If the disc is in a driver other than "drive d:," replace "d:\" with the letter of the drive containing the driver disc.) Note that the driver for the VT1433B are the same as the driver used by the VT1432A. Also note that the "a_06_13" references the software revision and will vary. Follow the on-screen instructions to continue.
- 3 The VISA Installation Information dialogue box will appear. This indicates window will indicate whether or not the VISA library has been correctly installed previously. If not installed, an error message will appear as a reminder to install the library. Click Next to continue.
- **4** The *Choose Program Folder Items* dialogue box provides options that can be included in the Start Menu Program Folder for the VT1432A. Click Next when finished with selections to continue.
- **5** The *Select Program Folder* dialogue box appears providing the opportunity to change the name of the program folder that will be created in the Start Menu. The default name is "VXIPNP." Click Next to continue.
- **6** Setup creates a program group called "Hpe1432" (typically in c:\VXIPNP\WINNT). It includes:

An icon to run the Soft Front Panel
An icon for HELP text
An icon for UNISTALL the README text can be included optionally.

These icons can also appear in the Startup Menu Program Files (see step 6).

7 After the program files load, the *Setup Complete* dialogue box will appear. It provides the opportunity to view the Readme file and to run the Soft Front Panel upon completion of set up. Click Next after the desired selections are made.

To install the HP-UX VXI*plug&play* drivers for the VT1433B (for HP-UX systems)

- 1 Log in as root.
- 2 Insert the VT1432A CD-ROM into the CD-ROM drive or obtain the latest VT1432A distribution.
- 3 Type swinstall.

See the HP-UX Reference manual for information on the swinstall command.

The VT1432A distribution is normally installed in the /opt/vxipnp/hpe1432/ directory. The files have extensions such as .h, .fp, .sl and .hlp.

The Resource Manager

The Resource Manager is a program from the hardware interface manufacturer. It looks at the VXI mainframe to determine what modules are installed. It is necessary to run it every time the mainframe is powered up. If the "No VT1433B can be found in this system" is found, then run the Resource Manager.

Before running the VT1432A/33B software make sure that the hardware is configured correctly and that the Resource Manager runs successfully. Before using the measurement system, all of its devices must be set up, including setting their addresses and local bus locations. No two devices can have the same address. Usually addresses 0 and 1 are taken by the Resource Manager and are not available.

For more information about the Resource Manager, see the hardware interface's documentation.

The VXIplug&play Soft Front Panel (SFP)

Using the soft front panel

If running the VT1432A/33B software in Microsoft Windows 95 or Windows NT, the Soft Front Panel (SFP) program can be used to interface with the VT1433B.

The Soft Front Panel can be useful for checking the system to make sure that it is installed correctly and that all of its parts are working. However, it is not very useful for making measurements. It cannot be controlled from a program and it does not access all of the VT1433B's functionality.

Note

The software examples provided in this manual contain "E" references (e.g. "E1432") used by the previous manufacturer. The VXI Technology equivalent can be derived at by exchanging the "E" references with "VT" references (e.g. "VT1432").

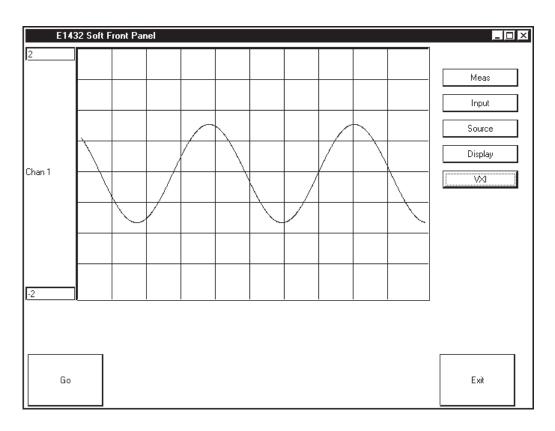


Figure 2-1: The Soft Front Panel Interface

The buttons on the right side of the SFP display are defined as follows:

Meas This button opens the Measurement Control dialog box. It can set:
 □ Measurement single/repeat □ Mode block/continuous □ Trigger auto/manual/input/source □ Frequency span □ Blocksize
Input This button opens a dialog box where the VT1433B's inputs can be setup. It can set:
 □ Channel number □ Range □ AC or DC coupling □ Grounding method □ Digital anti-alias filter □ Analog anti-alias filter □ Trigger on/off □ Trigger mode level/bound □ Trigger level □ Hysteresis □ Trigger Slope There is a checkbox to make all channels identical.
Source This opens a dialog box for controlling the source output of the VT1433B's source. This is only available for VT1433B's that have the Arbitrary Source VT1433B-1D4. It can set:
 □ Channel number □ Active on/off □ Mode sine/burst sine/random/burst random □ Ramp rate □ Sine frequency □ Sine phase □ Output normal/grounded/open/cal/multi □ Trigger on/off □ Cola (Constant Output Level Amplifier) off/on □ Duty Cycle □ Sum off/on □ Seed □ Range

Display

This button opens a dialog box which specifies how the data will be displayed. For each trace, an input channel (or OFF) and an output file can be specified.

VXI

This button opens a dialog box showing the modules installed in the VXI mainframe and indicating which are active and inactive. The "resource name" for each module is the interface card name that has been assigned to it.

Go

Use the Go button to start the measurement.

Exit

Use the Exit button to exit the Soft Front Panel.

VEE example programs

scope.vee

This program displays four channels with time record and FFT for each channel. For the examples provided below, Agilent[©] VEE is used.

The scope.vee program is located at VXIPNP\Hpe1432\examples\vee\ on a Microsoft Windows system or at /usr/e1432/vee-examples on an HP-UX system.

To run scope.vee, first type:

veetest

To begin using Agilent VEE.

In Agilent VEE click on File, then Open. In the Open File dialog box select scope.vee from the list of files. Then click Ok.

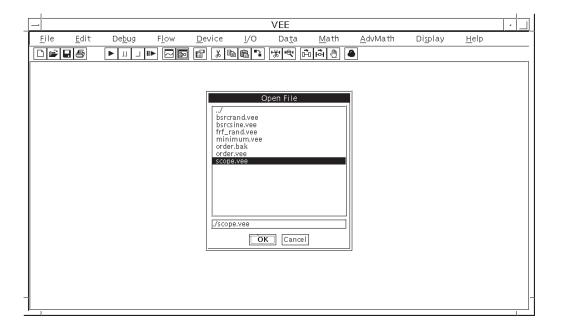


Figure 2-2: Agilent VEE - Open Dialogue Box

The program scope.vee starts, showing four channels, with time record and FFT for each channel.

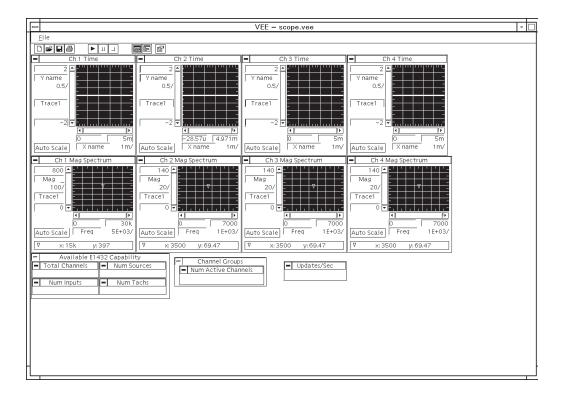


Figure 2-3: scope.vee - Panel View

To start a measurement, click the Run button on the toolbar (triangle symbol). To pause, click on the Pause button (two vertical bars, next to the Run button). To stop the measurement, click the Stop button (square symbol).

This screen is VEE's panel view, where interaction with the system can be performed much as one would with the front panel of a standalone instrument. The VEE detail view screen allows for configuration of the system and a view panel which can be used to make measurements.

To look at the scope.vee program "behind the scenes," click on the View Detail button on the toolbar (chart symbol). To return to the original (panel) view, click on the View Panel button (sine wave symbol).

Click on the View Detail button again to look at the detail view screen.

To use and modify scope.vee, it is necessary to be familiar with using the Agilent VEE program. Refer to Agilent VEE documentation if necessary. In View Detail mode, click on Help on the menu bar for assistance in using Agilent VEE.

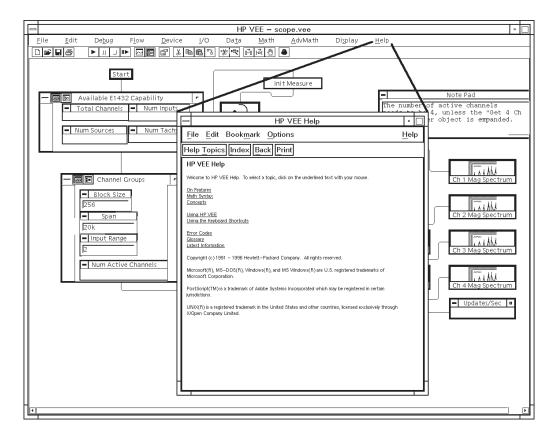


Figure2-4: Agilent VEE Help Text

In detail view there are boxes representing parts of the scope.vee program. For programs that are too large to be viewed all at one time, use the scroll bars at the bottom and left side of the screen to scroll the display. To see more detail, double-click on a box or click on the View Detail (chart symbol) button on the top bar of the box. Some of the boxes contain a function. Clicking on a function displays the parameters associated with it.

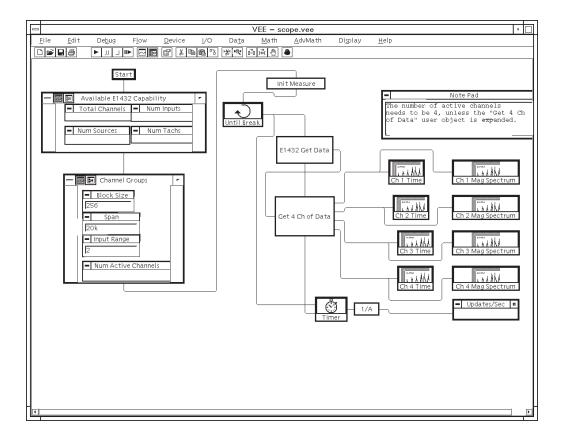


Figure 2-5: scope.vee - Detail View

To specify a new function, click on the blank space in the box where the function is to be. A dialog box appears with a list of functions. After selecting a function, choose Panel to "hard code" constants that the function will use or choose Parameters to allow a parameter to be input from elsewhere (from the user or another function). The input appears as a "pin" on the chart diagram. In the scope.vee program the user can select the blocksize, span and range.

Clicking Add To Panel in the Edit menu makes a box in the detail view visible on the panel view. This gives the user access to enter parameters or view results.

VT1433B User's Guide Getting Started With the VT1433B

Clicking on Alphnumeric in the Display menu sets up a box that specifies how to display the output of a function.

Use Agilent VEE to look at the functions that make up the simple "scope.vee" program. This is an example of how the VT1433B can be programmed using Agilent VEE.

Click on the Panel View button (sine wave symbol) to go to panel view. Set up the system to provide input signals to some of the input connectors of the VT1433B. Then use the scope.vee interface to view the time records and FFTs of the input signals.

When Agilent VEE is exited, the program will ask if any changes made to scope.vee are to be made. Click No or, if desired, click Cancel and then use File/Save As to save the changes with a different filename.

minimum.vee

This program provides a simple example to assist in the learning to use the VT1432A library, although it is not intended to be a finished "user-friendly" program. It contains the minimum number of functions needed (nine functions) to get data from the VT1433B module. It does not even include a "panel" user interface, so the first screen seen is the VEE View Detail screen. Use the scroll bar at the bottom of the screen to scroll the display and see all of the detail view.

The minimum.vee program simply takes data for one channel and then stops. It may be useful to examine this program and use it as a starting point for learning to write VEE programs for the VT1433B.

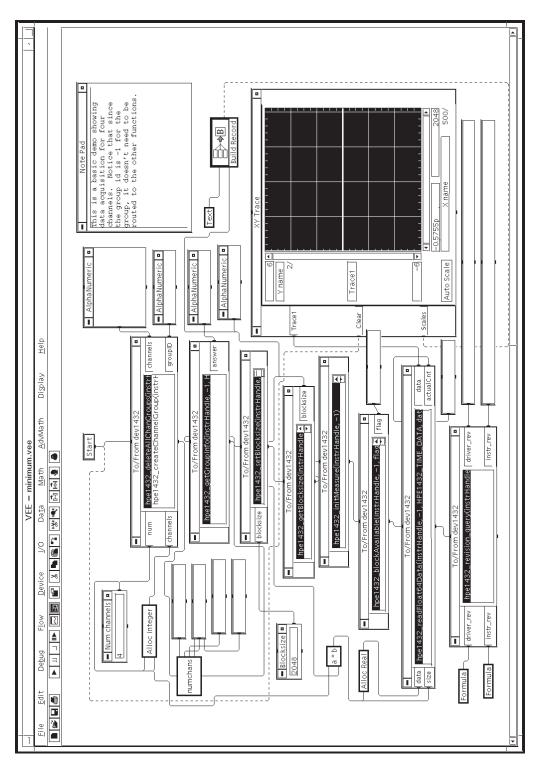


Figure 2-6: minimum.vee (scroll to see entire display)

Other Agilent VEE example programs

There are several other example programs that can be examined in the same way as scope.vee. These programs are in the path VXIPNP\Hpe1432\examples\vee\ on a Microsoft Windows system or /usr/e1432/vee-examples on an HP-UX system.

bsrcsine.vee (Burst SouRCe SINE)

This program is similar to scope.vee. It displays eight (rather than four) channels, with time record and FFT for each channel. It also turns on the source in burst sine mode and ramps up the source output. The user can specify the duty cycle, ramp rate, level of the source and frequency of the source. This program works with VT1433B's which are equipped with the source VT1433B-1D4.

bsrcrand.vee (Burst SouRCe RANDom)

This program is like bsrcsine.vee except the source is turned on in burst random mode.

frf rand.vee. (Frequency Response Function RANDom)

This program displays the frequency response of four channels. One way to set up this example is to connect a cable between the channel 1 and channel 2 inputs. Then connect channel 3 to channel 1 through a "black box" containing the circuit to be tested (using a "T" on channel 1). Channel 4 remains unconnected. On the display, a response for channel 2 over channel 1 (a flat response for the bare cable) will be seen and a response for channel 3 over channel 1 (representing the frequency response of the "unknown" circuit). Channel 4 will show a random signal since it has no input.

order.vee

This program can be used only with a VT1432A with the tachometer option. It takes four channels of data and displays two channels. It shows raw time domain data and resampled data for each rpm value. The raw data can then be processed with a program such as Matlab to make order ratio maps.

C-Language Host Interface Library example programs

The VT1432A C-Language Host Interface Library comes with several example programs, which help demonstrate how to use the library. These example programs are found in the the VXIPNP\Hpe1432\examples\ directory. The programs in this directory are all very small, so that they will be easily understood and easy to copy into a real application.

The files in the examples directory are:

Makefile A UNIX Makefile which can be used to compile all of the programs in the

examples directory.

README A file containing the information given here.

detect.c Shows how to use SICL calls to find the logical addresses of the VT1433B

modules in a system.

example.c Shows the basics of setting up a VT1433B, starting a measurement and

reading a block of data.

intr.c Shows how to set up SICL and a VT1433B to use interrupts for data collection.

src_intr.c Shows how to set up SICL and a VT1433B to use interrupts with a

VT1433B-1D4 Source board, for overload shutdown and overread.

tachmon.c Shows how to monitor a tach channel signal using the other inputs in the

VT1433B module.

throughput A directory containing example programs for throughput to and post-processing

from a VT2216A disk module.

Demo Programs

In addition to example programs, the VT1432A Host Interface library also comes with demo programs. These programs are found in the VXIPNP\Hpe1432\examples\ directory.

One of these demo programs, called "semascope", demonstrates that the VT1433B hardware and software are working properly. When run, it identifies the VT1433B modules in the VXI system, runs a measurement using the VT1433B modules that it finds and plots the results in X11 windows. This program is not meant to be an example of how to use the VT1432A library, although the source code is not provided.

Other demo programs include "rpmtrig" and "rpmtrig2" and "semascope3."

Running a demo program: semascope.c

To run this program, type:/opt/e1432/demo/semascope. This program displays the time records for 32 channels (when hooked up to two VT1433B modules with 16 channels each). The channel that is active for changing the display is highlighted. To exit, double-click the horizontal bar symbol in the upper left corner of the window.

To see a list of parameters for semascope, type:

semascope -u

To specify a parameter, type its letter code after "semascope" on the command line

The source code for this program is at:

/opt/e1432/demo/semascope.c

Use a text viewer or editor (such as the "more" utility in UNIX) to list the source code for semaphore.c. Examine the code to learn more about how this example program works.

Visual Basic example programs

VEE programs and the VXI*plug&play* Library can be used on both UNIX and PC systems. In addition, the PC can use Visual Basic. Visual Basic example programs are at \Hpe1432\examples\vb\ on a Microsoft Windows system.

3

Using the VT1432A

Introduction

This chapter shows how to use the VT1433B using the VXI*plug&play* Host Interface Library.

The Host Interface Library for the VT1433B is a set of functions that allow the user to program the register-based VT1433B at a higher level than register reads and writes. The library allows groups of VT1433Bs to be set up and programmed as if they were one entity

Two versions of the Host Interface Library are included. One is the HP-UX C-Language Host Interface Library which uses SICL (the Standard Instrument Interface Library) to communicate to the VT1433B hardware. It works for HP-UX 10.20. The other is the VXI*plug&play* Library for Windows 95 or later, Windows NT and HP-UX 10.20 which communicates with the hardware using VISA (Virtual Instrument Software Architecture). VISA is the input/output standard upon which all the VXI*plug&play* software components are based.

This chapter covers the VXI*plug&play* version, but it will also be useful to users of the C-Language version. If using the C-Language version, refer to the chapter titled "The Host Interface Library" was well.

The library includes routines to set up and query parameters, start and stop measurements, read and write data and control interrupts. Routines to aid debugging and perform low-level I/O are also included.

For information on diagnostics see the chapter titled "Troubleshooting the VT1433B."

What is VXI*plug&play*?

Agilent uses VXI*plug&play* technology in the VT1433B. This section outlines some of the details of VXI*plug&play* technology.

Overview

The fundamental idea behind VXI*plug&play* is to provide VXI users with a level of standardization across different vendors well beyond what the VXI standard specifications spell out. The VXI*plug&play* Alliance specifies a set of core technologies centering on a standard instrument driver technology.

Agilent offers VXI*plug&play* drivers for VEE-Windows. The VXI*plug&play* instrument drivers exist relative to so-called "frameworks". A framework defines the environment in which a VXI*plug&play* driver can operate. The VT1433B has VXI*plug&play* drivers for the following frameworks: Windows 95 or later, Windows NT and HP-UX.

VXIplug&play drivers

The VT1433B VXI*plug&play* driver is based on the following architecture:

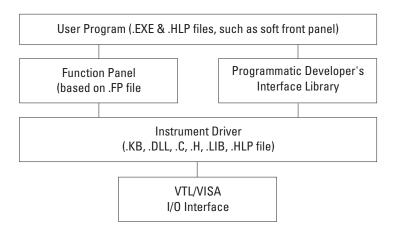


Figure 3-1: VXI Plug&Play driver architecture

It is most useful to discuss this architecture from the bottom up.

The VISA/VTL I/O interface allows interoperability of the VXI*plug&play* driver technology across interfaces.

VT1433B User's Guide Using the VT1433B

The actual instrument driver itself is a DLL (Dynamic Linked Library) created from:

- ☐ A set of source (.C) files.
- ☐ A set of header (.H) files, used for compiling the file as well as to describe the driver's calls to any program using the driver.
- ☐ A standard driver library (.LIB) file, to provide the standard functionality all the drivers would require.

This DLL is a set of calls to perform instrument actions — at heart, that's all a VXIplug&play driver is — a library of instrument calls.

This driver is accessed by Windows applications programs written in languages such as Visual C++ or Visual BASIC, using programming environments such as VEE or NI LabView.

A Windows Help (.HLP) file is included which provides descriptive information and code samples for the functions in the VXI*plug&play* DLL. This help file can be viewed in the standard Windows Help viewer. A viewer for HP-UX is provided in /opt/hyperhelp - see the READ.ME file.

Manufacturer and model codes

If desired, the manufacturer code, model code and name of the VXI instruments can be read from the file:\hpe1432\lib\vximodel.cf (on PC systems) or /opt/e1432/lib/vximodel.cf (on UNIX systems).

The following list identifies the VXI models in this file:

Manufacturer Code	Model Code	Model Name
0xFFF	0x200	Agilent/HP E143xA Non-booted Substrate Board
0xFFF	0x201	VT1432A 16 Channel 51.2 kSamples/s Digitizer + DSP
0xFFF	0x202	VT1433B 8 Channel 196 kSamples/s Digitizer + DSP
0xFFF	0x203	VT1434A 4 Channel 65 kSamples/s Arbitrary Source
0xFFF	0x210	VT2216A VXI/SCSI Interface Module

The Soft Front Panel (SFP)

The Soft Front Panel is a stand-alone Windows application, built on top of the VXI*plug&play* driver DLL; it is used for instrument evaluation and debugging and as a demo. It is not a programmable interface to the instrument, nor can it be used to generate code.

The soft front panel also accesses the same Windows Help file as provided with the DLL.

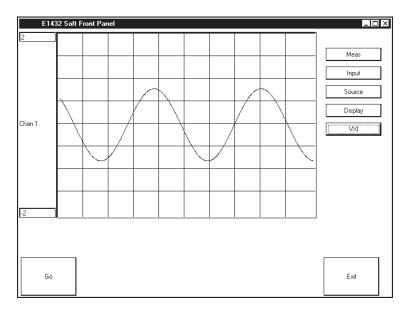


Figure 3-2: An example of a soft front panel (SFP)

Header and Library Files

In the Windows environment, the following files are in the directory $\Vxipnp\WinXX\Hpe1432$

hpe1432.fp The "FP" file used by VEE and CVI

hpe1432.hlp Windows help file
hpe1432.kb Knowledge base file
hpe1432.bas header for Visual Basic
hpe1432.exe Soft front panel program
Bin\hpe1432_32.dll The VXIplug&play driver

Include\hpe1432.h Header for linking to the VXI*plug&play* driver

Lib\Msc\

hpe1432_32.lib Lib for linking C programs to VXI*plug&play*

The following files are in the directory \Hpe1432

Read.me The latest information for the product lib\sema.bin Firmware program for the VT1433B

source* Source files for hpe1432_32.dll examples\vb* Visual Basic example programs

examples\c* C example programs

examples\hpvee* Agilent VEE example programs

In the HP-UX environment, the following files are in the directory /opt/vxipnp/hpux/hpe1432:

hpe1432.fp The "FP" file used by VEE

.h Header file

.hlp Hyperhelp file (see /opt/hyperhelp/README for information on how to

view hpe1432.hpl In the HP-UX environment.)

.sl (lower-case "SL") The VXIplug&play shared library

Channels and groups

This section gives some information about using channels and groups. For more detailed information see the VT1433B help text.

Channel Groups

In the VT1433B VXI*plug&play* driver, a channel group is the basic unit of hardware control. To control any channel, it must first be assigned to a group with the hpe1432_createChannelGroup function. In addition to creating the group, this function returns a "handle" that uniquely identifies the group. This handle can then be used to direct functions to all channels in the group.

When a channel group is created, all input and tach channels in the group are automatically activated and all source channels are inactivated. But when deleted, input and tach channels are not automatically inactivated. Any input or tach channel that remains active after its group is deleted will continue to supply data to its module's FIFO buffer during a measurement — consuming module resources. For this reason, the channels in group should always be explicitly inactivated before deleting them. Channels can be inactivated with hpe1432_setActive. Channel groups can be deleted with hpe1432_deleteChannelGroup and hpe1432_deleteAllChanGroups.

Also when creating a channel group, channels which are not mentioned in the new group are not turned off. Any channels that are not to be active must be explicitly inactivated. (An exception is a power-up when only the channels in the initial channel group are active.)

Initialization

The command used to initialize the system is hpe1432_init. This function initializes the VXI*plug&play* library and registers all VT1433B modules. It also checks the existence of a VT1432A module at each of the logical addresses given in the resource list and allocates logical channel identifiers for each channel in all of the VT1432As. Input channels, source channels and tach/trigger channels are kept logically separated.

Most other functions cannot be used until after hpe1432_init, but there are two functions which can be used before initialization to get information needed by hpe1432_init. These are hpe1432_find and hpe1432_getHWConfig. hpe1432_find searches the VXI mainframe and returns the VXI Logical Address for every VT1433B found. hpe1432_getHWConfig returns additional information about the hardware.

After hpe1432_init is run, use hpe1432_getNumChans to get the total count of inputs, sources and tachometers for all VT1433B modules named in the hpe1432_init call.

Creating a Channel Group

The function hpe1432_createChannelGroup creates and initializes a channel group. A channel group allows commands to be issued to several VT1433B channels at once, simplifying system setup. Channel groups can be overlapped. The state of an individual VT1433B channel that is in more than one channel group is determined by the most recent operation performed on any group to which this channel belongs.

As a side effect, this function makes all input and tach channels in the channel group active and all source channels in the channel group inactive. This function does not inactivate other channels within the modules that the channels are in and does not preset the channels in the new group.

After a channel group has been created, use hpe1432_getGroupInfo to get selected information about the group. It is possible for hpe1432_getGroupInfo to be set up to return the number of modules, channels, inputs, sources or tachs in the group. It can also return a list of the modules, channels, inputs, sources or tachs.

Input, Source and Tach Channels

Channel numbers must fall in particular ranges for different types of channels. Input channel numbers range from 1 to 4095. Source channel numbers range from 4097 to 8191. Tach channel numbers range from 8193 to 12287.

A mixture of input, source and tach channels can be present in one group. However it is also important for many functions to be sent only to the appropriate type of channel. For example, asking for a blocksize from a tach channel can cause an error. It may be useful to set up several channel groups at the beginning of the program: one for input channels, one for source channels, one for tach channels and one that combines all three channel types. The input handle can then be used for input-only functions, the source for source-only functions and the tach handle for tach-only functions. The "all-channels" handle would be used for all other functions.

Multiple-module/mainframe Measurements

Grouping of Channels/Modules

The interface library for the VT1433B is designed to allow programming of several channels from one or several distinct modules, as if they were one entity. Each VT1433B module has up to eight channels. The library may control up to a maximum of 255 VT1433B modules (8160 channels).

The function hpe1432_createChannelGroup can be used to declare any number of groups of channels, possibly overlapping. Each group can be uniquely identified by a group ID.

The 'target' of a library function is either a channel, a group or (rarely) a module, depending on the nature of the call. When the same library function may be called with either a channel or a group identifier, its 'target' is shown by a parameter named ID.

Multiple-module Measurements

A channel group that spans more than one module will need to be configured to use the TTL trigger lines on the VXI Bus for inter-module communications. This configuration is automatically performed in the hpe1432_initMeasure call unless defeated using hpe1432_setAutoGroupMeas.

The following discussion outlines what hpe1432_initMeasure does automatically. This must be done by the user if hpe1432_setAutoGroupMeas has been used to defeat auto configuration.

There are eight VXI TTL trigger lines that can be used for multi-module synchronization. Often, these lines are used in pairs, one for sample clock and one for Sync/Trigger. The hpe1432_setTtltrgLines function selects which TTL trigger lines to use; this function always uses the TTL trigger lines in pairs. Calling hpe1432_setClockSource with the group ID will set all modules to the same pair.

All modules need to be set to use the shared sync line rather than the default setting of internal sync. This can be done with the hpe1432_setMultiSync function, using the group ID.

One module of the set of modules needs to be set to output the sync pulse. The module with the lowest VXI logical address is called the "system module" and is assigned this duty. This can be set with the hpe1432_setMultiSync function call, using the lowest channel ID in the group (NOT the group ID).

VT1433B User's Guide Using the VT1433B

All modules except the "system module" need to be set to use the VXI TTL trigger lines as the clock source. Use hpe1432_setClockSource for this.

Set the "system module" to output the clock. Use hpe1432_setClockMaster for this. After this is done, all system sync pulses come from the "system module" and drive the measurement state machines on all boards in the group.

Possible Trigger Line Conflict

The following describes a scenario where VT1433B modules might conflict and prevent a proper measurement. The conditions allowing the conflict are complex but must be understood by the user.

After a measurement has completed, the modules are left set up. If a module (call it module 'A') is driving the TTL trigger lines and a different group is started which also drives the TTL trigger lines (and that different group does not include module 'A'), then module 'A' will conflict and prevent the other group from functioning. In this case make a call to hpe1432_finishMeasure (using the old group ID which includes 'A') to turn off module 'A' and allow the new group to function.

Note that if the new group includes all modules of the old group, the conflict will not occur since hpe1432_initMeasure will reset all modules as needed. Also note that single-module groups do not drive the TTL trigger lines, so single-module groups are immune from causing or receiving this conflict.

Managing Multiple-mainframe Measurements

In a single-mainframe measurement, the VT1433B communicates with other VT1433Bs through the TTLTRG lines. However, when using the VXI-MXI bus extender modules, the TTLTRG lines, which carry the group synchronization pulse and sample clock, are extended only in one direction. This unidirectional signal connection restricts the types of measurements that can be made in a multiple mainframe environment.

The following types of multiple mainframe measurements cannot be performed:

- ☐ Unequal pre-trigger delay settings between mainframes
- ☐ Channel triggering by channels in Mainframe B
- ☐ Lower spans or longer blocksizes in Mainframe B
- ☐ Different digital filter settling times between VT1433B modules

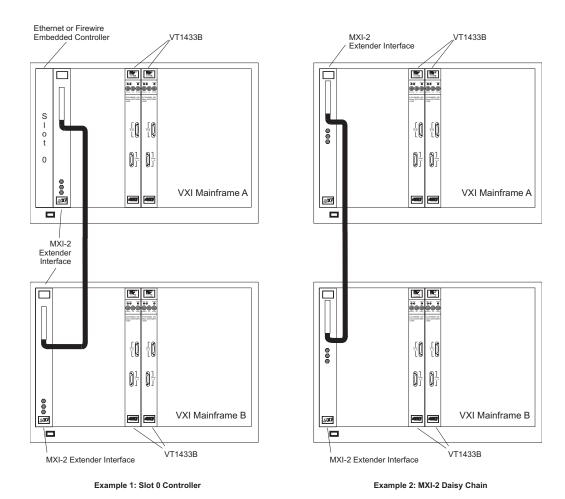


Figure 3-3: Multiple mainframes - two mainframes

In the example above, Mainframe A contains the Slot 0 Controller for a multiple mainframe system. Mainframe A is connected to Mainframe B with a VXI-MXI interface, Agilent/HP E1482B. To successfully manage this multiple mainframe environment, use the following guidelines.

Locate modules with logical addresses less than 128 in Mainframe A.
Locate modules with logical addresses greater than 127 in Mainframe B.
Locate the highest-numbered channels in Mainframe A.
Locate the last module in the module list specified in the call to hpe1432_init in Mainframe A.
Locate the module that generates the group synchronization pulse in Mainframe A
Locate the channels performing channel triggering in Mainframe A.
Locate the module with the shared sample clock in Mainframe A.
If a groupID is not used with the call hpe1432_readRawData or hpe1432_readFloat64Data, empty the VT1433Bs' FIFOs in Mainframe B before Mainframe A. In other words, do not empty the FIFOs in Mainframe A unless the FIFOs in Mainframe B have been emptied. For more information about groupID see "Grouping of Channels/Modules" in this chapter.
If more than two mainframes are needed, daisy-chain them together. Treat each mainframe after the first as a Mainframe B. See the example on the next page.

Phase Performance in Multiple Mainframe Measurements

Phase specifications are degraded by the delay that the inter-mainframe interface gives the sample clock. This delay is insignificant for many low-frequency applications because the phase error is proportional to frequency. A system with two VXI-MXI modules and a one-meter cable, typically has a 76 nanosecond (ns) sample clock delay in Mainframe B. This corresponds to an additional 0.007 degree phase error at 256 Hz and an additional 0.55 degree phase error at 20 kHz.

Using a four-meter cable (which adds approximately 18 ns of delay) causes a total of 94 ns clock delay in Mainframe B. This corresponds to an additional 0.0087 degree phase error at 256 Hz and an additional 0.68 degree phase error at 20 kHz.

The cable adds approximately 6 ns per meter of cable.

Each daisy-chained mainframe adds another increment of delay, but only for the additional cabling length.

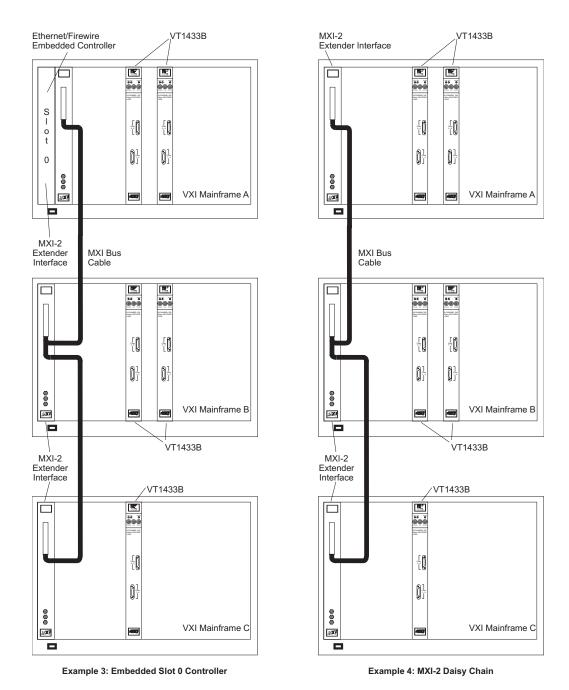


Figure 3-4: Multiple mainframes - three mainframes

Synchronization in Multiple-mainframe Measurements

A TTL Trigger line between VT1433Bs making group measurements keeps all modules synchronized. This is an open-collector line where each module holds the one designated as the SYNC line low until the module is ready to advance to the next measurement state. Another TTL Trigger line is designated to carry the sample clock to all modules. This shared sample clock may come from any VT1433B module in Mainframe A or from an external signal routed through the Slot 0 Commander in Mainframe A.

One module is responsible for pulling the SYNC line low to start each group's state transition. Then, each module holds the line low until it is ready. When all modules are ready, the SYNC line drifts high. The unidirectional line prevents modules in Mainframe B from holding-off modules in Mainframe A.

The lowest logical address must be in Mainframe A because of VXI-MXI and Resource Manager (RM) constraints. Group constraints with the VXI*plug&play* Library force modules in Mainframe A to have their FIFOs emptied last. The VXI*plug&play* reads data in channel order, so the highest channel is read last. To get this to work automatically, the call to hpe1432_init must list the logical addresses in descending order.

Channel triggering must be done only by modules in Mainframe A. A trigger in any other mainframe would not be communicated back on the SYNC line to Mainframe A. The VXI*plug&play* Library itself selects the VT1432A with the highest channel number for synchronization.

VXI-MXI Module Setup and System Configuration

The VXI-MXI Module setup in Mainframe A needs to be changed from those set by the factory. The VXI-MXI module is not the Slot 0 Controller for Mainframe A. See Table 2-1: Configuration Settings in the Agilent/HP E1482B VXI-MXI Bus Extender User's Manual. This requires changing several switch settings.

Set the module as not being the Slot 0 Controller.
Set the VME timeout to 200 μ s.
Set the VME BTO chain position to 1 extender, non-slot0.
Do not source CLK10.
Set the proper logical address.

Module Features

Data Flow Diagram and FIFO Architecture

The illustration on the next page shows data flow in the VT1433B. In this example there are four 4-channel input assemblies for a total of sixteen input channels. The data for all channels is sent to the FIFO. The FIFO is divided into sections, one for each channel. The data moves through a circular buffer (first-in-first-out) until a trigger causes it to be sent on to the VME Bus. The data can also be sent to the Local Bus if option UGH is present.

The size of the sections in the FIFO is flexible. The amount of DRAM memory for each channel is the total DRAM memory divided by the number of channels. The standard DRAM size is 4 MB; an optional 32 MB DRAM is available.

The trigger can be programmed to trigger on the input or on information from the software. The following are examples of ways a trigger can be generated.

	input level or bound
	source
	external trigger
	RPM level (with tachometer option VT1433B-AYE)
	ttl_trigger (VXI backplane)
П	freerun (automatic)

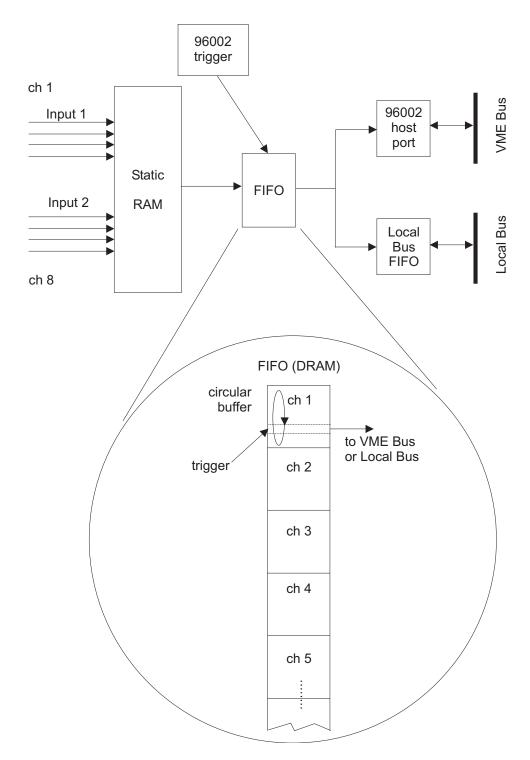


Figure 3-5: Data flow and FIFO architecture

Base Sample Rates

Baseband Measurement Spans

The table on the following page shows the measurement spans available for base sample rates, for baseband measurements.

"Fs" is the sample frequency or sample rate. The value for zero divide-by-two steps and no divide-by-five step is the top measurement span corresponding to the sample rate. This is with no decimation and using 400 lines to avoid alias. The other values on the table are for this top span decimated by five and/or two.

For a VT1433B which has option 1D4, the Arbitrary Source, the sample rate for the source is automatically set to be the same as the sample rate selected for the inputs. When the source is active the sample rate cannot be greater than 65.536 kHz.

Decimation Filter Diagram

The drawing below illustrates the way the spans in the table are generated. In the case of baseband spans (lower limit of span fixed at zero), the frequency can (optionally) be divided by five and then (optionally) divided by two up to eight times.

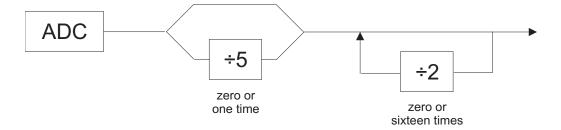


Figure 3-6: Decimation filter diagram - baseband

Table of Baseband Measurement Spans (part 1 of 6) All values are in Hertz (Hz).

sample frequency (Fs) —>	48000		50000		51200	
number of ÷2 steps	with ÷5	without ÷5	with ÷5	without ÷5	with ÷5	without ÷5
0	3750.000000	18750.000000*	3906.250000	19531.250000*	4000.000000	20000.000000*
1	1875.000000	9375.000000	1953.125000	9765.625000	2000.000000	10000.000000
2	937.500000	4687.500000	976.562500	4882.812500	1000.000000	5000.000000
3	468.750000	2343.750000	488.281250	2441.406250	500.000000	2500.000000
4	234.375000	1171.875000	244.140625	1220.703125	250.000000	1250.000000
5	117.187500	585.937500	122.070312	610.351562	125.000000	625.000000
6	58.593750	292.968750	61.035156	305.175781	62.500000	312.500000
7	29.296875	146.484375	30.517578	152.587891	31.250000	156.250000
8	14.648438	73.242188	15.258789	76.293945	15.625000	78.125000
9	7.324219	36.621094	7.629395	38.146973	7.812500	39.062500
10	3.662109	18.310547	3.814697	19.073486	3.906250	19.531250
11	1.831055	9.155273	1.907349	9.536743	1.953125	9.765625
12	0.915527	4.577637	0.953674	4.768372	0.976562	4.882812
13	0.457764	2.288818	0.476837	2.384186	0.488281	2.441406
14	0.28882	1.144409	0.238419	1.192093	0.244141	1.220703
15	0.114441	0.572205	0.119209	0.596046	0.11207	0.610352
16	0.057220	0.286102	0.059605	0.298023	0.061035	0.305176

Notes:

^{*} For the top span, the 3 dB bandwidth is 1.15 times span shown.

Table of Baseband Measurement Spans (part 2 of 6) All values are in Hertz (Hz).

sample frequency (Fs) —>	64000		65536		51200	
number of ÷2 steps	with ÷5	without ÷5	with ÷5	without ÷5	with ÷5	without ÷5
0	5000.000000	25000.000000*	5120.000000	25600.000000*	6000.000000	30000.000000*
1	25000.000000	12500.000000	2560.000000	12800.000000	3000.000000	15000.000000
2	1250.000000	6250.000000	1280.000000	6400.000000	1500.000000	7500.000000
3	625.000000	3125.000000	640.000000	6200.000000	750.000000	3750.000000
4	312.5000000	1562.500000	320.000000	1600.000000	375.000000	1875.000000
5	156.250000	781.250000	160.000000	800.000000	187.500000	937.500000
6	78.125000	390.625000	80.000000	400.000000	93.750000	468.750000
7	39.062500	195.312500	40.000000	200.000000	46.875000	234.375000
8	19.531250	97.656250	20.000000	100.000000	23.437500	117.187500
9	9.765625	48.828125	10.000000	50.000000	11.718750	58.593750
10	4.882812	24.414062	5.000000	25.000000	5.859375	29.296875
11	2.441406	12.207031	2.500000	12.500000	2.929688	14.648438
12	1.220703	6.103516	1.250000	6.250000	1.464844	7.324219
13	0.610352	3.051758	0.625000	3.125000	0.732422	3.662109
14	0.305176	1.525879	0.312500	1.562500	0.366211	1.831055
15	0.152588	0.762939	0.156250	0.781250	0.183105	0.915527
16	0.076294	0.381470	0.078125	0.390625	0.091553	0.457764

Notes:

^{*} For the top span, the 3 dB bandwidth is 1.15 times span shown.

Table of Baseband Measurement Spans (part 3 of 6) All values are in Hertz (Hz).

sample frequency (Fs) —>	80000		81920		96000	
number of ÷2 steps	with ÷5	without ÷5	with ÷5	without ÷5	with ÷5	without ÷5
0	6250.000000	31250.000000*	6400.000000	32000.000000*	7500.000000	37500.000000*
1	3125.000000	15625.000000	3200.000000	16000.000000	3750.000000	18750.000000
2	1562.500000	7812.500000	1600.000000	8000.00000	1875.000000	9375.000000
3	781.250000	3906.250000	800.000000	4000.000000	937.500000	4687.500000
4	390.625000	1953.125000	200.000000	2000.000000	468.750000	2343.750000
5	195.312500	976.562500	200.000000	1000.000000	234.375000	1171.87500
6	97.656250	488.281250	100.000000	500.000000	117.187500	585.937500
7	48.828125	244.140625	50.000000	250.000000	58.593750	292.968750
8	24.414062	122.070312	25.000000	125.000000	29.296875	146.484375
9	12.207031	61.035156	12.500000	65.500000	14.648438	73.242188
10	6.103516	30.517578	6.250000	31.250000	7.324219	36.621094
11	3.051758	15.258789	3.125000	15.625000	3.662109	18.310547
12	1.525879	7.629395	1.562500	7.812500	1.831055	9.155273
13	0.762939	3.814697	0.781250	3.906250	0.915527	4.577637
14	0.381470	1.907349	0.390625	1.953125	0.457764	2.288818
15	0.190735	0.953674	0.195312	0.976562	0.228882	1.144409
16	0.095367	0.476837	0.097656	0.488281	0.114441	0.572205

Notes:

^{*} For the top span, the 3 dB bandwidth is 1.15 times span shown.

Table of Baseband Measurement Spans (part 4 of 6) All values are in Hertz (Hz).

sample frequency (Fs) —>	10000		102400		128000	
number of ÷2 steps	with ÷5	without ÷5	with ÷5	without ÷5	with ÷5	without ÷5
0	7812.500000	39062.500000*	8000.000000	40000.000000*	10000.000000	50000.000000*
1	3906.250000	19531.250000	2000.000000	20000.000000	5000.000000	25000.000000
2	1953.125000	9765.625000	2000.000000	10000.000000	2500.000000	12500.000000
3	976.562500	4882.812500	1000.000000	5000.000000	1250.000000	6250.000000
4	488.281250	2441.406250	500.000000	2500.000000	625.000000	3120.500000
5	244.140625	1220.703125	250.000000	1250.000000	312.500000	1562.500000
6	122.070312	610.351562	125.000000	655.000000	156.250000	781.250000
7	61.035156	305.175781	60.250000	312.500000	78.125000	390.625000
8	30.517578	152.587891	30.125000	156.250000	39.062500	195.312500
9	15.258789	76.293945	15.625000	78.125000	19.531250	97.656250
10	7.629395	38.146973	7.812500	39.062500	9.765625	48.828125
11	3.814697	19.073486	3.906250	19.531250	4.882812	24.414062
12	1.907349	9.536743	1.953125	9.765625	2.441406	12.207031
13	0.953674	4.768372	0.976562	4.882812	1.220703	6.103516
14	0.476837	2.384186	0.488281	2.441406	0.610352	3.051758
15	0.238419	1.192093	0.244141	1.220703	0.305176	1.525879
16	0.119209	0.596046	0.122070	0.610352	0.152588	0.762939

Notes:

^{*} For the top span, the 3 dB bandwidth is 1.15 times span shown.

Table of Baseband Measurement Spans (part 5 of 6) All values are in Hertz (Hz).

sample frequency (Fs) —>	133333		153600		156250	
number of ÷2 steps	with ÷5	without ÷5	with ÷5	without ÷5	with ÷5	without ÷5
0	10416.666667	52083.333333*	12000.000000	60000.000000*	12207.031250	61035.156250*
1	5208.333333	26041.666667	6000.000000	30000.000000	6103.515625	30517.578125
2	2604.166667	13020.833333	3000.000000	15000.000000	3051.757813	15258.789063
3	1302.083333	6510.416667	1500.000000	7500.000000	1525.878906	7629.394531
4	651.041667	3255.208333	750.000000	3750.000000	762.939453	3814.697266
5	325.520833	1627.604167	375.000000	1875.000000	381.469727	1907.348633
6	162.760417	813.802083	187.500000	937.5000000	190.734863	953.674316
7	81.380208	406.901042	93.750000	468.750000	95.367432	476.837158
8	40.690104	203.450521	46.875000	234.375000	47.683716	238.418579
9	20.345052	101.725260	23.437500	117.187500	23.841858	119.209290
10	10.172526	50.862630	11.718750	58.593750	11.920929	59.604645
11	5.086263	25.431315	5.859375	29.296875	5.960464	29.802322
12	2.543132	12.715658	2.929688	14.648438	2.980232	14.901161
13	1.271566	6.357829	1.464844	7.324219	1.490166	7.450581
14	0.635783	3.178914	0.732422	3.662109	0.745058	3.725290
15	0.317891	1.58947	0.366211	1.831055	0.372529	1.862645
16	0.158946	0.79729	0.183105	0.915527	0.186265	0.931323

Notes:

^{*} For the top span, the 3 dB bandwidth is 1.15 times span shown.

Table of Baseband Measurement Spans (part 6 of 6) All values are in Hertz (Hz).

sample frequency (Fs) —>	163840		192000		196608	
number of ÷2 steps	with ÷5	without ÷5	with ÷5	without ÷5	with ÷5	without ÷5
0	12800.000000	64000.000000*	15000.000000	75000.000000*	15360.000000	76800.000000*
1	6400.000000	32000.000000*	7500.000000	37500.000000	7680.000000	38400.000000
2	3200.000000	16000.000000	3750.000000	18750.000000	3840.000000	19200.000000
3	1600.000000	8000.000000	1875.000000	9375.000000	1920.000000	9600.000000
4	800.000000	4000.000000	937.500000	4687.500000	960.000000	4800.000000
5	200.000000	2000.000000	468.750000	2343.750000	480.000000	2400.000000
6	200.000000	1000.000000	234.375000	1171.875000	240.000000	1200.000000
7	100.000000	500.000000	117.187500	585.937500	120.000000	600.000000
8	50.000000	250.000000	58.593750	292.968750	60.000000	300.000000
9	25.000000	125.000000	29.296875	146.484375	30.000000	150.000000
10	12.500000	65.500000	14.648438	73.242188	15.000000	75.000000
11	6.250000	31.250000	7.324219	36.621094	7.500000	37.500000
12	3.125000	15.625000	3.662109	18.310547	3.750000	18.750000
13	1.562500	7.812500	1.831055	9.155273	1.875000	9.375000
14	0.781250	3.906250	0.915527	4.577637	0.937500	4.687500
15	0.390625	1.953125	0.457764	2.88818	0.468750	2.343750
16	0.195312	0.976562	0.228882	1.144409	0.234375	1.171875

Notes:

^{*} For the top span, the 3 dB bandwidth is 1.15 times span shown.

VT1433B sample frequencies

The following is a list of all sample frequencies (in Hz) available on the VT1433B, including those not listed in the preceding table.

48000.0 49152.0 50000.0 51200.0 52400.852878 61440.0 62500.0 64000.0 65536.0 66666.666667 76800.0 78125.0 80000.0 81920.0 69000.0 98304.0 10000.0 102400.0 123880.0 125000.0 128000.0 133333.333333 153600.0 156250.0 163840.0 19.200.0 196608.0

Measurement Process

Measurement Setup and Control

When the VT1433B makes a measurement, the measurement itself consists of two phases: the measurement initialization and the measurement loop. Each of these phases consists of several states, through which the measurement progresses.

The transition from one state to the next is tied to a transition in the Sync/Trigger line (one of the TTL trigger lines on the VXI back plane). A state (such as Idle) begins when the Sync/Trigger line goes low. The Sync/Trigger line then remains low as long as the state is in effect. When the Sync/Trigger line goes high it signals the transition to the next state. See the sections "Measurement Initialization" and "Measurement Loop" below for more details about these transitions. During all the transitions of the Sync/Trigger line, the clock line continues with a constant pulse.

The Sync/Trigger line is "wire-OR'd" such that all modules in a multiple-module system (within one mainframe) must release it for it to go high. Only one VT1433B is required to pull the Sync/Trigger line low. In a system with only one VT1433B, the Sync/Trigger line is local to the module and not is routed to a TTL TRIGGER line on the VXI back plane.

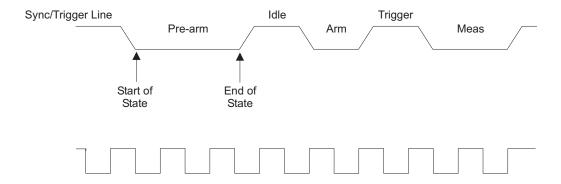


Figure 3-7: Transitions between states

Parameter Settings

Many parameters are channel-dependent, meaning that each channel can be set independently of the others in the module. Other parameters are module-dependent; changing a module-dependent parameter for a channel will change it for all channels on that module. For example, changing blocksize, a module-dependent parameter, for input channel 3 will also change the block size for all other channels in the same VT1433B module as channel 3.

When possible, parameters are written to the hardware as soon as they are received. Sometimes, the parameter can't be written to the hardware until the start of a measurement; in this case the value of the parameter is saved in RAM in the VT1433B module until the measurement is started with hpe1432_initMeasure. Some parameters can be changed while a measurement is running, but many do not take effect until the next start of a measurement.

Measurement Initiation

This section describes the measurement initiation process in the VT1433B.

The measurement initialization states and the corresponding Sync/Trigger line transitions (with 'H' for high, 'L' for Low) are:

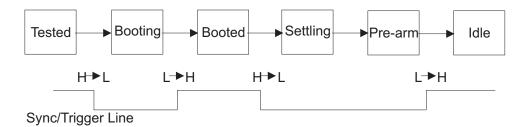


Figure 3-8: Measurement initialization

The module enters the TESTED state after a reset. In this state, all of the module parameters may be set. The VT1433B stays in the TESTED state until it sees a high-to-low transition of the Sync/Trigger line.

In the BOOTING state, the digital processors of the module load their parameters and their program. Once done, the module releases the Sync/Trigger line and moves to the BOOTED state. The VT1433B stays in the BOOTED state until it sees a high-to-low transition of the Sync/Trigger line (that is, all the VT1433Bs in the system have booted).

In the SETTLING state, the digital filters are synchronized and the digital filter output is 'settled' (it waits N samples before outputting any data). Once the module is settled, it advances to the PRE ARM state.

In the PRE_ARM state, the module waits for a pre-arm condition to take place. The default is to auto-arm, so the module would not wait at all in this case. When the pre-arm condition is met, the module releases the Sync/Trigger line and advances to the IDLE state.

This complete measurement sequence initialization, from TESTED through BOOTING, BOOTED, SETTLING, PRE-ARM and IDLE, can be performed with a call to the function hpe1432_initMeasure.

Measurement Loop

This section describes the measurement loop in the VT1433B.

The progression of measurement states and the corresponding Sync/Trigger line transitions are:

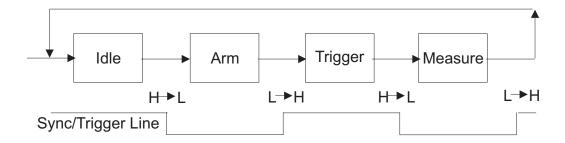


Figure 3-9: Measurement loop

In the IDLE state the VT1433B writes no data into the FIFO. The VT1433B remains in the IDLE state until it sees a high-to-low transition of the Sync/Trigger line or an RPM arm/trigger point is calculated. If any of the VT1433Bs in the system is programmed for auto arming (with hpe1432_setArmMode), the Sync/Trigger line is immediately pulled low by that VT1433B. The VT1433B may also be moved to the ARM state by an explicit call to the function hpe1432 armMeasure.

Upon entering the ARM state the VT1433B starts saving new data in its FIFO. It remains in the ARM state until the Sync/Trigger line goes high. If the VT1433B is programmed with a pre-trigger delay, it collects enough data samples to satisfy this pre-trigger delay and then releases the Sync/Trigger line. If no pre-trigger delay has been programmed, it releases the Sync/Trigger line immediately. When all modules in a system have released the Sync/Trigger line (allowing it to go high), a transition to the TRIGGER state occurs.

Upon entering the TRIGGER state the VT1433B continues to collect data into the FIFO, discarding any data prior to the pre-trigger delay. The VT1433B remains in the TRIGGER state until it sees a high-to-low transition of the Sync/Trigger line. The Sync/Trigger line is pulled low by any VT1433B which encounters a trigger condition and is programmed to pull the Sync/Trigger line. If any VT1433B is programmed for auto triggering (with hpe1432_setAutoTrigger), the Sync/Trigger line is pulled low immediately. The Sync/Trigger line may also be pulled low by an explicit call to the function hpe1432 triggerMeasure.

Upon entering the MEASURE state the VT1433B continues to collect data. The VT1433B also presents the first data from the FIFO to the selected output port, making it available to the controller to read. The VT1433B holds the Sync/Trigger line low as long as it is actively collecting data. In overlap block mode the VT1433B stops taking data as soon as a block of data has been collected, including any programmed pre- or post-trigger delays. (It starts again when another trigger occurs). In continuous mode, the VT1433B stops taking data only when the FIFO overflows. When data collection stops, the VT1433B releases the Sync/Trigger line. When all VT1433Bs are finished and the Sync/Trigger line goes high, the VT1433B goes into the IDLE state again.

The measurement initialization and loop may be interrupted at any time with a call to hpe1432 resetMeasure, which puts the module in the TESTED state.

Register-based VXI Devices

The VT1433B is a register-based VXI device. Unlike message-based devices which use higher-level programming using ASCII characters, register-based devices are programmed at a very low level using binary information. The greatest advantage of this is speed. Register-based devices communicate at the level of direct hardware manipulation and this can lead to much greater system throughput.

Users do not need to access the registers in order to use the VT1433B. The VT1433B's functions can be more easily accessed using the VT1433B Host Interface Library software. However, if more information about the registers are provided in Appendix A: Register Definitions for reference.

Arm and Trigger

This section explains some terminology relating the the "Arm" and "Trigger" steps in the measurement loop. As an example a measurement might be set up to arm at a certain RPM level and then subsequently trigger at an external event corresponding to top dead center (TDC). The settings would be:							
□ Arm:	RPM Step Arm						
☐ Trigger:	External Trigger						
external trigger at	ghput session at this same RPM/TDC event, then the first fter a specified RPM would start a continuous mode ow (using overlap block mode) the settings would be:						
☐ Pre-Arm:	RPM Step Arm						
☐ Arm:	Auto						
☐ Trigger:	Auto						
of triggers that oc	ent loop, an arm must take place before a trigger. The number occur before waiting for another arm condition can be e default is one trigger for each arm. For each trigger, a sent to the host.						
	a measurement is the pre-arm. By default, the pre-arm condition e regular arm conditions.						
Valid Arm (and I	Pre-Arm) conditions are:						
☐ Auto Arm							
Manual Arm							
□ RPM Step Arm	RPM Step Arm						
Valid trigger cond	ditions are:						
☐ Auto Trigger							
☐ Input Trigger							
☐ Source Trigger	1 Source Trigger						
☐ External Trigge	er						
☐ Manual Trigger	r						
☐ Tachometer Ed	ge Trigger						

VT1433B Triggering

The following is a short discussion of triggering for the VT1433B.

Triggering is defined as the transition from the armed state to the triggered state. This transition is caused by a low going edge on a TTL trigger line. The function hpe1432_getTtltrgLines selects which of the eight TTL trigger lines is to be used.

The low-going transition of the TTL trig line can be caused by any of the following items:

trigger type	enabling function
the AUTO TRIGGER circuitry	hpe1432_setAutoTrigger
the hpe1432_triggerMeasure function	hpe1432_triggerMeasure
a source trigger	hpe1432_setTriggerChannel
a tach trigger	hpe1432_setTriggerChannel
an external trigger	hpe1432_setTriggerExt
an input level or bound trigger event	hpe1432_setTriggerChannel and hpe1432_setTriggerMode

Each of these trigger sources can be enabled or disabled independently, so quite complex trigger setups are possible. In all cases, however, the first trigger event kicks off the measurement and the following trigger events become superfluous.

Note that for hpe1432_setAutoTrigger the setting HPE1432_MANUAL_TRIGGER really means "don't auto trigger" not "expect a manual trigger".

For single-VT1433B systems, the TTL trigger signal is not connected to the VXI backplane. For multiple VT1433B systems, the hpe1432_initMeasure function connects the VT1433B trigger lines to the VXI backplane and at that point, the selection of which TTL trigger lines through hpe1432_getTtltrgLines is relevant. Multiple mainframe systems will need to account for the unidirectional nature of the inter-mainframe MXI extenders which will prevent all but the "upstream" mainframe from triggering the system.

Trigger Level

To set the trigger level, use hpe1432_setTriggerMode to select "level" or "bound" mode; and use hpe1432_setTriggerLevel twice to set both the upper and lower trigger levels. The difference between the upper and lower trigger levels must be at least 10% of full scale (and 10% is usually the best amount).

Also use hpe1432setTriggerSlope to specify a positive or negative trigger slope.

Level mode

If the mode is set to "level" and the trigger slope is positive, then the module triggers when the signal crosses both the upper and lower trigger levels in the positive direction. If the trigger slope is negative, the module triggers when the signal crosses both levels in the negative direction. Setting two trigger levels prevents the module from triggering repeatedly when a noisy signal crosses the trigger level.

Bound mode

If the mode is set to "bound" and the trigger slope is positive, then the module triggers when the signal exits the zone between the upper and lower trigger levels in either direction. If the trigger slope is negative, the module triggers when the signal enters the zone between the upper and lower trigger levels.

Data Transfer Modes

The VT1433B can be programmed to use either of two data transfer modes: overlap block mode and continuous mode. Block mode will be discussed first.

Block Mode (Agilent/HP E1431A)

The VT1433B's overlap block mode is similar the block mode which is used in some Agilent instruments such as the Agilent/HP E1431A. In block mode, the input hardware acquires one block after getting an arm and trigger. It does not allow the system to trigger until it is ready to process the trigger and it acquires pre-trigger data if necessary. The hardware does not accept a new arm and trigger until the acquired block is sent to the host. There is no provision for overlap or queuing up more than one block when in block mode. There is also no way for a FIFO overflow to occur.

The VT1433B's overlap block mode can be configured to act exactly like traditional block mode. It also has additional capabilities as described below.

Continuous Mode

Both the VT1433B and the Agilent/HP E1431A use continuous mode. In this mode, the input hardware waits for an arm and trigger and then starts acquiring data continuously. If the host is slow, several blocks can be queued up in the input hardware. If the host gets far enough behind, a FIFO overflow occurs and the input stops acquiring data.

The VT1433B's overlap block mode can be configured to act similarly to continuous mode, but not identically. The VT1433B can also use the traditional continuous mode.

Overlap Block Mode

Overlap block mode combines features of both block mode and continuous mode. The main difference between overlap block mode and traditional block mode is that overlap block mode allows additional arms and triggers to occur before an already-acquired block is sent to the host. A trigger can occur before the end of the previous block, so overlapping blocks are possible (hence the name "overlap block mode"). As in continuous mode, there is an overlap parameter which controls how much overlap is allowed between consecutive blocks.

Limit on Queuing of Data

In overlap block mode, a number of trigger events may be queued up before the host reads the data for those triggers. The host may get further and further behind the data acquisition.

However, if the host gets far enough behind that the FIFO fills up, data acquisition must momentarily stop and wait for data to get transferred to the host. This places a limit on how far in time the host can be behind the data acquisition. By setting the size of the FIFO, one can control how far behind the host can get.

Making Overlap Block Mode Act Like Traditional Block Mode

If the FIFO size is set the same as the block size or if the number of pending triggers is limited to zero, then overlap block mode becomes identical to traditional block mode.

Making Overlap Block Act Like Continuous Mode

If the module is in auto-arm and auto-trigger mode, then overlap block mode becomes nearly the same as continuous mode.

One difference is that traditional continuous mode has a single arm and trigger, while overlap block mode may have multiple arms and triggers. Another is that continuous mode can be configured to start at any type of trigger event, while overlap block mode must be in auto-trigger mode to act like continuous mode. Finally, continuous mode always stops when a FIFO overflow occurs, but overlap block mode does not.

VT1433B Interrupt Behavior

Interrupt Setup

For an example of interrupt handling see the program event.c in the examples directory.

The VT1433B VXI module can be programmed to interrupt a host computer using the VME interrupt lines. VME provides seven such lines. Using hpe1432_setInterruptPriority, the VT1433B module can be set up to use any one of them.

The VT1432A can interrupt the host computer in response to different events. Use hpe1432_setInterruptMask to specify a mask of events on which to interrupt. This mask is created by OR'ing together the various conditions for an interrupt. The following table shows the conditions that can cause an interrupt:

Interrupt Mask Bit Definitions

Define (in e1432.h)	Description
HPE1432_IRQ_BLOCK_READY	Scan of data ready in FIFO
HPE1432_IRQ_MEAS_ERROR	FIFO overflow
HPE1432_IRQ_MEAS_STATE_CHANGE	Measurement state machine changed state
HPE1432_IRQ_MEAS_WARNING	Measurement warning
HPE1432_IRQ_OVERLOAD_CHANGE	Overload status changed
HPE1432_IRQ_SRC_STATUS	Source channel interrupt
HPE1432_IRQ_TACHS_AVAIL	Raw tach times ready for transfer to other modules
HPE1432_IRQ_TRIGGER	Trigger ready for transfer to other modules

VT1433B Interrupt Handling

To make the VT1433B module do the interrupt, both a mask and a VME Interrupt line must be specified, by calling hpe1432_setInterruptMask and hpe1432_setInterruptPriority respectively. Once the mask and line have been set and an interrupt occurs, the cause of the interrupt can be obtained by reading the HPE1432_IRQ_STATUS_REG register (using hpe1432_getInterruptReason). The bit positions of the interrupt mask and status registers match so the defines can be used to set and check IRQ bits.

Once it has done this interrupt, the module will not do any more VME interrupts until re-enabled with hpe1432_reenableInterrupt. Normally, the last thing a host computer's interrupt handler should do is call hpe1432_reenableInterrupt.

Events that would have caused an interrupt, but which are blocked because hpe1432_reenableInterrupt has not yet been called, will be saved. After hpe1432_reenableInterrupt is called, these saved events will cause an interrupt, so that there is no way for the host to "miss" an interrupt. However, the module will only do one VME interrupt for all of the saved events, so that the host computer will not get flooded with too many interrupts.

For things like "HPE1432_IRQ_BLOCK_READY", which are not events but are actually states, the module will do an interrupt after hpe1432_reenableInterrupt only if the state is still present. This allows the host computer's interrupt handler to potentially read multiple scans from a VT1433B module and not get flooded with block ready interrupts after the fact.

Host Interrupt Setup

This is a summary of how to set up a VT1433B interrupt:

Look at the Resource Manager to find out which VME interrupt lines are available
Tell the VT1433B module to use the a VME interrupt line found in step one, using
hpe1432_setInterruptPriority.
Set up an interrupt handler routine, using hpe1432_callBackInstall. The interrupt handler routine will get called when the interrupt occurs.
nander routine will get carred when the interrupt occurs.
Set up interrupt mask in the VT1433B module, using hpe1432_setInterruptMask.

Host Interrupt Handling

When the VT1433B asserts the VME interrupt line, the program will cause the specified interrupt handler to get called. Typically the interrupt handler routine will read data from the module and then re-enable VT1433B interrupts with hpe1432_reenableInterrupt. The call to hpe1432_reenableInterrupt must be done unless the host is not interested in any more interrupts.

Inside the interrupt handler, almost any VT1433B Host Interface library function can be called. This works because the Host Interface library disables interrupts around critical sections of code, ensuring that communication with the VT1433B module stays consistent. Things that are not valid in the handler are:

Ш	Calling hpe1432 createChannelGroup to delete a group that is simultaneously
	being used by non-interrupt-handler code.

- □ Calling one of the read data functions (hpe1432_readRawData or hpe1432_readFloat64Data), if the non-interrupt-handler code is also calling one of these functions.
- □ Calling hpe1432_init to reset the list of channels that are available to the VT1433B library.

As is always the case with interrupt handlers, it is easy to introduce bugs into a program and generally difficult to track them down. Be careful when writing this function.

Data Gating

Sometimes it is desirable to to monitor data from some input channels and not others. The function hpe1432_setEnable enables or disables data from an input channel (or group of channels). If data is enabled, then the data can be read using hpe1432_blockAvailable and hpe1432_readRawData or hpe1432_readFloat64Data. If data is disabled, data from the specified channel is not made available to the host computer.

This parameter can be changed while a measurement is running, to allow the host computer to look at only some of the data being collected by the VT1433B module. While data from a channel is disabled the input module continues to collect data but it is not made available to the host computer. The host can then switch from looking at some channels to looking at others during the measurement. In contrast, the function hpe1432_setActive completely enables or disables a channel and can't be changed while a measurement is running.

For order tracking measurements this function can be used to switch between receiving order tracking data ordinary time data or both.

VT1433B Parameters

Some parameters, such as range or coupling, apply to specific channels. When a channel ID is given to a function that sets a channel-specific parameter, only that channel is set to the new value.

Some parameters, such as clock frequency or data transfer mode, apply globally to a module. When a channel ID is used to change a parameter that applies to a whole module, the channel ID is used to determine which module. The parameter is then changed for that module.

Starting and stopping a measurement is somewhat like setting a global parameter. Starting a measurement starts each active channel in each module that has a channel in the group.

After firmware is installed and after a call to hpe1432_preset, all of the parameters (both channel-specific and global) in a VT1433B module are set to their default values. For channel-specific parameters, the default value may depend on the type of channel. Some channel-specific parameters apply only to a specific type of channel. For example, tach holdoff applies only to tach channels. Setting such a parameter for a channel that doesn't make sense will result in an error.

At the start of a measurement, the VT1433B firmware sets up all hardware parameters and ensures that the input hardware is settled before starting to take data. The firmware also ensures that any digital filters have time to settle. This ensures that all data read from the module will be valid.

However, after a measurement starts, VT1432A parameters can still be changed. The effect of this change varies, depending on the parameter. For some parameters, changing the value aborts the measurement immediately. For other parameters, the measurement is not aborted, but the changed parameter value is saved and not used until a new measurement is started. For still other parameters, the parameter change takes place immediately and the data coming from the module may contain glitches or other effects from changing the parameter. For more information, please see the "Programming Information" chapter of the VT1433B VXIplug&play Library online help.

The module cannot be told to wait for settling when changing a parameter in the middle of a measurement. The only way to wait for settling is to stop and re-start the measurement. The settling that takes place at the start of a measurement also cannot be disabled.

Refer to the (on-line) VT1433B Function Reference for the parameters needed for each function. (See "Where to get more information" in this chapter.)

New features of the VT1433B software

Span and center frequency

Decimation spans are now allowed for all legal sample rates with the VT1433B.

Zoom mode

Zoom mode is available for all legal sample rates with the VT1433B. The zoom span will be allowed to go as high as ctock-freq/2.56 (the maximum non-zoom span). In addition, the maximum center frequency for both the VT1433B has been moved up from clock-freq/2.56 to clock-freq/2.

Where to get more information

There is more information available about the VT1432A. This section shows how to access it and print it, if desired.

The Function Reference for VXIplug&play

On a PC, the VT1432A Function Reference is in Microsoft Help text. Select the Help icon in the "VXIPNP" folder. Refer to Microsoft Windows documentation (including Help text) for information on using and printing Help.

On a UNIX system, look at the README file at /opt/hyperhelp. It includes instructions on how to install and use the VXIplug&play help.

The Function Reference for the Host Interface Library (C-language version)

The VT1432A distribution includes manual pages for the VT1432A HostInterface library. These manual pages can be examined on-line, using the "ptman" command that is shipped in "/opt/e1432/bin." For example, the manual page for the "e1432 init measure" function can be read by typing:

ptman e1432 init measure

The distribution also includes a nicely formatted set of these manual pages, that can be printed on any postscript printer. This manual in postscript form is in file "/opt/e1432/man/man.ps." Typically, this manual can be printed by typing:

lp -opostscript /opt/e1432/man/man.ps

Alternatively, if there is no postscript printer available, a plain text version of the manual is in file "/opt/e1432/man/man.txt." This can be printed on any line printer.

Users of the C-language library will also find useful information about the VT1432A in the VT1432A help text (see above).

VT1433B User's Guide Using the VT1433B

4

The Host Interface Library

Introduction

The Host Interface Library for the VT1433B is a set of functions that allows the register-based VT1433B to be programed at a higher level than register reads and writes. The library allows groups of VT1433Bs to be set up and programmed as if they were one entity.

The VT1433B uses the same software as the VT1432A 16 Channel 51.2 kSamples/s Digitizer plus DSP.

Two version of the Host Interface Library are available. One is the HP-UX C-Language Host Interface Library which uses SICL (the Standard Instrument Interface Library) to communicate to the VT1433B hardware. The other is the VXI*plug&play* Library which communicates with the hardware using the VXI*plug&play* standard. This chapter covers the C-Language version. If using the VXI*plug&play* version, this chapter will not be needed. Instead, see the chapters titled "Getting Started With the VT1433B" and "Using the VT1433B".

NOTE

The C-Language Host Interface Library has been provided for the purpose of backward compatibility and is no longer supported. New users should use the VXI*plug&play* Library while older users are encouraged to migrate their applications to the VXI*plug&play* library.

The library includes routines to set up and query parameters, start and stop measurements, read and write data and control interrupts. Routines to aid debugging and perform low-level I/O are also included.

For information on diagnostics see the chapter titled "Troubleshooting the VT1433B."

Almost all functions in this library return 0 if they complete successfully and a negative error number if there is a problem. The return value of the function should always be checked and appropriate action taken for non-zero values. See the on-line man pages for more information on error messages.

Header and Library Files

The /opt/e1432/lib directory contains several versions of the VT1432A Host Interface library:

lib1432.a	A normal HP-UX archive library, used by host programs wanting to talk to VT1433B hardware.
lib1432.sl	An HP-UX shared library, used by host programs wanting to talk to VT1433B hardware. This and the above archive library do exactly the same things. Usually, host programs would use the shared library, because it makes the host program smaller.
llib-l1432.ln	A lint library for the VT1432A C-Language Host Interface Library. If lint (a UNIX tool for checking source code for problems) is not used, this file is superfluous.

An application using the VT1432A C-Language Host Interface Library must link in one of these libraries, typically lib1432.sl. The HP-UX versions of the VT1432A library use SICL to communicate with the VT1433B hardware, so an application using the VT1432A library must also link in the SICL library. Normally, this is found in /usr/lib/libsicl.sl.

Any application source code which uses any of the VT1432A C-Language Host Interface Library functions must include the e1432.h include file, found in /opt/e1432/include. Internally, this file includes machType.h, which is also found in /opt/e1432/include. If the application refers to specific VT1433B error numbers, it must also include err1432.h.

Parameter Information

Description of VT1433B Parameters

Some parameters, such as range or coupling, apply to specific channels. When a channel ID is given to a function that sets a channel-specific parameter, only that channel is set to the new value.

Some parameters, such as clock frequency or data transfer mode, apply globally to a module. When a channel ID is used to change a parameter that applies to a whole module, the channel ID is used to determine which module. The parameter is then changed for that module.

Starting and stopping a measurement is somewhat like setting a global parameter. Starting a measurement starts each active channel in each module that has a channel in the group.

After firmware is installed and after a call to e1432_preset, all of the parameters (both channel-specific and global) in a VT1433B module are set to their default values. For channel-specific parameters, the default value may depend on the type of channel. Some channel-specific parameters apply only to a specific type of channel. For example, tach holdoff applies only to tach channels. Setting such a parameter for a channel that doesn't make sense will result in an error.

At the start of a measurement, the VT1433B firmware sets up all hardware parameters and ensures that the input hardware is settled before starting to take data. The firmware also ensures that any digital filters have time to settle. This ensures that all data read from the module will be valid.

However, after a measurement starts, VT1433B parameters can still be changed. The effect of this change varies, depending on the parameter. For some parameters, changing the value aborts the measurement immediately. For other parameters, the measurement is not aborted, but the changed parameter value is saved and not used until a new measurement is started. For still other parameters, the parameter change takes place immediately and the data coming from the module may contain glitches or other effects from changing the parameter.

The module cannot be told to wait for settling when changing a parameter in the middle of a measurement. The only way to wait for settling is to stop and re-start the measurement. The settling that takes place at the start of a measurement cannot be disabled as well.

Parameter Lists

This section shows which parameters are global parameters, which are channel-specific and what types of channels the channel-specific parameters apply to. Default values are shown for all of these parameters. In addition, each parameter is categorized as "abort", "wait", "immediate" or "glitch" depending on the behavior when this parameter is changed during a running measurement. Those with "abort" cause the measurement to abort. Those with "wait" don't take effect until the start of the next measurement. Those with "immediate" take effect immediately. Those with "glitch" take effect immediately and may cause glitches in the data that is read back or on the source output if the parameter is applied to a source channel.

Global Parameters

Parameter	Default Value	Changes
append_status	Off	Immediate
arm_channel	None	Immediate
arm_mode	Auto Arm	Immediate
arm_time_interval	1 s	Immediate
auto_group_meas	On	Wait
avg_mode	None	Wait
avg_number	10	Wait
auto_trigger	Auto Trigger	Abort
avg_update	10	Wait
avg_weight	1	Immediate
blocksize	1024	Abort
cal_dac	0	Immediate
cal_voltage	0 V	Immediate
calin	Grounded	Immediate
center_freq	2 kHz	Immediate
clock_freq	51.2 kHz	Abort
clock_master	Off	Abort
clock_source	Internal	Abort
data_mode	Block Mode	Abort
data_port	VME	Abort
data_size	16 Bit Integer	Abort

Parameter	Default Value	Changes
decimation_output	Single Pass	Wait
decimation_oversample	Off	Wait
decimation_undersamp	1	Wait
delta_order	0.1	Wait
fifo_size	0 (Use All DRAM)	Wait
filter_settling_time	64 samples	Wait
internal_debug	0x100	Immediate
interrupt_mask	0	Immediate
interrupt_priority	None	Immediate
lbus_mode	Pipe	Immediate
lbus_reset	Off (Not Reset)	Immediate
max_order	10	Wait
meas_time_lengh	0 (run forever)	Immediate
mmf_delay	0	Immediate
multi_sync	Off	Abort
overlap	0	Wait
pre_arm_mode	Auto Arm	Immediate
ramp	Off	Immediate
span	20000 Hz	Wait
sumbus	Off	Immediate
trigger_delay	0	Wait
trigger_ext	Off	Immediate
trigger_master	Off	Immediate
triggers_per_arm	1	Immediate
ttltrg_clock	TTLTRG1	Abort
ttltrg_gclock	TTLTRG1	Abort
ttltrg_satrg	TTLTRG0	Abort
ttltrg_trigger	TTLTRG0	Abort
window	Uniform	Glitch
xfer_size	0 (Use Blocksize)	Wait
zoom	Off	Wait

196.608 kHz 4-channel Input Parameters

Parameter	Default Value	Changes
active	Off	Abort
anti_alias_digital(*)	On	Abort
auto_range_mode	Up/Down	Immediate
calc_data	Time	Wait
coupling	DC	Glitch
enable	On	Immediate
filter_freq	200 kHz	Immediate
input_high	Normal	Glitch
input_low	Floating	Glitch
input_mode(*)	Volt	Glitch
range	10 V	Glitch
range_charge	50,000 pC	Glitch
range_mike	10 V	Glitch
trigger_channel	Off	Immediate
trigger_level_lower	-10%	Immediate
trigger_level_upper	0%	Immediate
trigger_mode	Level	Immediate
trigger_slope	Positive	Immediate

^(*) Input mode is listed as channel-specific, but it actually applies to all channels within an SCA (such as a 4-channel input assembly).

Option 1D4 Single-channel Source Parameters

Parameter	Default Value	Changes
active	Off	Abort
amp_scale	1.0	Immediate
anti_alias_digital	On	Wait
duty_cycle	0.5	Immediate
filter_freq	25.6 kHz	Wait
ramp_rate	1 s	Wait
range	0.041567 volt	Immediate
sine_freq	1000 Hz	Immediate
sine_phase	0 Degrees	Immediate
source_blocksize	0 (Use Input Blocksize)	Wait
source_centerfreq	0 Hz	Wait
source_cola	Off	Wait
source_mode	Sine	Abort
source_output	Normal	Abort
source_speed	3	Wait
source_span	0 (Use Input Span)	Wait
source_sum	Off	Wait
srcbuffer_init	Empty	Wait
srcbuffer_mode	Periodic_A	Wait
srcbuffer_size	1024	Wait
srcparm_mode	Immediate	Immediate
trigger_channel	Off	Wait

Option AYF Tachometer Parameters

Parameter	Default Value	Changes
active	Off	Abort
input_high	Normal	Immediate
pre_arm_rpm	600 RPM	Immediate
rpm_high	6000 RPM	Immediate
rpm_interval	25 RPM	Immediate
rpm_low	600 RPM	Immediate
rpm_smoothing	0	Immediate
tach_decimate	0	Immediate
tach_holdoff	10 <i>µ</i> s	Immediate
tach_max_time	30 s	Immediate
tach_ppr	1	Immediate
trigger_channel	Off	Wait
trigger_level_lower	-0.05 volts	Immediate
trigger_level_upper	0 volts	Immediate
trigger_slope	Positive	Immediate

Channel and Group IDs

Most functions in the VT1432A C-Language Host Interface Library take an ID parameter which specifies what channel or group of channels the function should apply to. The ID can either be a channel ID or a group ID. If a group ID is used, then the function is applied to each channel contained in the group.

Channel IDs

Channel IDs are logical IDs which are created by a call to e1432_assign_channel_numbers. The e1432_assign_channel_numbers function must be called exactly once, following the call to e1432_init_io_driver, in order to declare to the library the logical addresses of the VT1433B modules that will be used.

This function checks the existence of a VT1433B module at each of the logical addresses given in a list of logical addresses and allocates logical channel identifiers for each channel in all of the VT1433Bs. Input channels, source channels and tach/trigger channels are kept logically separated. Channel numbers for each type of channel are numbered starting from one, so there will be input channels 1 through M, source channels 1 through N and tach/trigger channels 1 through P, where M is the number of input channels, N is the number of source channels and P is the number of tach/trigger channels.

As an example, suppose two logical addresses 100 and 101 are passed to the function and the logical address 100 has two 4-channel input SCAs and a 2-channel tach/trigger board, while logical address 101 has three 4-channel input SCAs and a 1-channel source board. In this case, input channel IDs 1 through 8 are assigned to the eight input channels at logical address 100, while input channel IDs 9 through 20 are assigned to the twelve input channels at logical address 101. Tach/trigger channel IDs number 1 and 2 are assigned to the two tach/trigger channels at logical address 100 and Source channel ID number 1 is assigned to the source channel at logical address 101.

To use the ID of an input channel, the input channel number is given as an argument to the E1432_INPUT_CHAN() macro. (For backwards compatibility with the Agilent/HP E1431A, the macro does nothing.) To use the ID of a source channel, the source channel number is given as an argument to the E1432_SOURCE_CHAN() macro. To use the ID of a tach/trigger channel, the tach/trigger channel number is given as an argument to the E1432_TACH_CHAN() macro. A channel ID is always positive.

For example, to set the range of the third input channel to 10 volts, the source code would look something like:

status = e1432 set range(hwid, E1432 INPUT CHAN(3), 10.0);

Group IDs

Group IDs are logical IDs which are created by a call to e1432_create_channel_group. This function can be called multiple times to create multiple groups and each group can contain any combination of channels, including mixtures of different types of channels. The channel groups can overlap as well.

This function creates and initializes a channel group. A channel group allows commands to be issued to several VT1433B channels at once, simplifying system setup. The state of an individual VT1433B channel that is in more than one channel group, is determined by the most recent operation performed on any group to which this channel belongs.

If successful, this function returns the ID of the group that was created, which is then used to reference the channel group in most other functions in this library. A group ID is always negative.

As a side effect, this function makes all input channels in the channel group active and all source and tach channels in the channel group inactive. Unlike the Agilent/HP E1431A library, this function does not inactivate other channels within the modules that the channels are in. Also unlike the Agilent/HP E1431A library, this function does not preset the channels in the new group.

As an example, to create a group consisting of the first three input channels and the eighth and ninth input channels, the code would like something like this:

```
SHORTSIZ16 chan_list[5];

SHORTSIZ16 input_group;

chan_list[0] = E1432_INPUT_CHAN(1);

chan_list[1] = E1432_INPUT_CHAN(2);

chan_list[2] = E1432_INPUT_CHAN(3);

chan_list[3] = E1432_INPUT_CHAN(8);

chan_list[4] = E1432_INPUT_CHAN(9);

input_group = e1432_create_channel_group(hw, 5, chan_list);
```

To create a group consisting of the first two source channels, the code would look something like this:

```
SHORTSIZ16 chan_list[2];

SHORTSIZ16 source_group;

chan_list[0] = E1432_SOURCE_CHAN(1);

chan_list[1] = E1432_SOURCE_CHAN(2);

source group = e1432_create channel group(hw, 2, chan list);
```

Multiple-module/Mainframe Measurements

Grouping of Channels/Modules

The interface library for the VT1433B is designed to allow programming of several channels from one or several distinct modules, as if they were one entity. Each VT1433B module has up to 16 channels. The library may control up to a maximum of 255 VT1433B modules (8160 channels).

When initializing the interface library, all module logical addresses are passed in the call to e1432_assign_channel_numbers. This function associates a logical channel ID with each channel. From then on, library functions use these logical IDs rather than the logical address.

The function e1432_create_channel_group can be used to declare any number of groups of channels, possibly overlapping. Each group can be uniquely identified by a group ID.

The 'target' of a library function is either a channel, a group or (rarely) a module, depending on the nature of the call. When the same library function may be called with either a channel or a group identifier, its 'target' is shown by a parameter named ID.

Multiple-module Measurements

A channel group that spans more than one module will need to be configured to use the TTL trigger lines on the VXI Bus for inter-module communications. This configuration automatically performed in the e1432_init_measure call unless defeated using e1432 set auto group meas.

The following discussion outlines what e1432_init_measure does automatically. This must be done by the user if e1432_set_auto_group_meas has been used to defeat auto configuration.

There are eight VXI TTL trigger lines that can be used for multi-module synchronization. Often, these lines are used in pairs, one for sample clock and one for Sync/Trigger. The e1432_set_ttltrg_lines function selects which TTL trigger lines to use; this function always uses the TTL trigger lines in pairs. Calling e1432_set_clock_source with the group ID will set all modules to the same pair.

All modules need to be set to use the shared sync line rather than the default setting of internal sync. This can be done with the e1432_set_multi_sync function, using the group ID.

One module of the set of modules needs to be set to output the sync pulse. The module with the lowest VXI logical address is called the "system module" and assigned this duty. This can be set with the e1432_set_multi_sync function call, using the lowest channel ID in the group (NOT the group ID).

All modules except the "system module" need to be set to use the VXI TTL trigger lines as the clock source. Use e1432 set clock source for this.

Set the "system module" to output the clock. Use e1432_set_clock_master for this. After this is done, all system sync pulses come from the "system module" and drive the measurement state machines on all boards in the group.

Possible Trigger Line Conflict

The following describes a scenario where VT1433B modules might conflict and prevent a proper measurement. The conditions allowing the conflict are complex but must be understood by the user.

After a measurement has completed, the modules are left set up. If a module (call it module 'A') is driving the TTL trigger lines and a different group is started which also drives the TTL trigger lines (and that different group does not include module 'A'), then module 'A' will conflict and prevent the other group from functioning. In this case make a call to e1432_finish_measure (using the old group ID which includes 'A') to turn off module 'A' and allow the new group to function.

Note that if the new group includes all modules of the old group, the conflict will not occur since e1432_init_measure will reset all modules as needed. Also note that single module groups do not drive the TTL trigger lines, so single modules groups are immune from causing or receiving this conflict.

Managing Multiple-mainframe Measurements

In a single mainframe measurement, the VT1433B communicates with other VT1433Bs through the TTLTRG lines. However, when using the VXI-MXI bus extender modules, the TTLTRG lines, which carry the group synchronization pulse and sample clock, are extended only in one direction. This unidirectional signal connection restricts the types of measurements that can be made in a multiple mainframe environment.

The following types of multiple mainframe measurements cannot be performed:

- ☐ Unequal pre-trigger delay settings between mainframes
- ☐ Channel triggering by channels in Mainframe B
- ☐ Lower spans or longer blocksizes in Mainframe B
- ☐ Different digital filter settling times between VT1433B modules

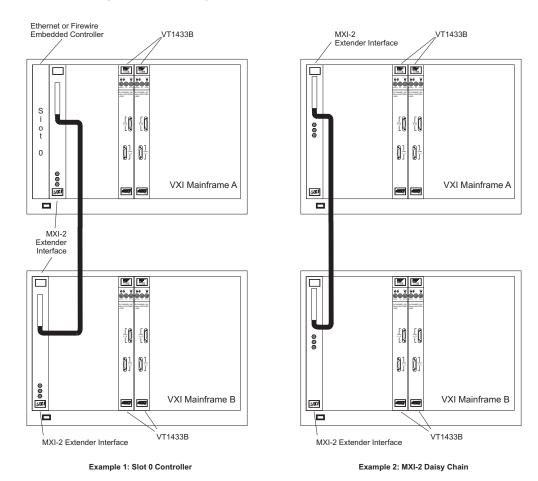


Figure 4-1: Multiple mainframes - two mainframes

In the example above, Mainframe A contains the Slot 0 Controller for a multiple mainframe system. Mainframe A is connected to Mainframe B with a VXI-MXI interface, Agilent/HP E1482B. To successfully manage this multiple mainframe environment, use the following guidelines.

Locate modules with logical addresses less than 128 in Mainframe A.
Locate modules with logical addresses greater than 127 in Mainframe B.
Locate the highest-numbered channels in Mainframe A.
Locate the last module in the module list specified in the call to e1432_assign_channels() in Mainframe A.
Locate the module that generates the group synchronization pulse in Mainframe A.
Locate the channels performing channel triggering in Mainframe A.
Locate the module with the shared sample clock in Mainframe A.
If a groupID is not used with the call e1432_read_data(), empty the VT1433Bs' FIFOs in Mainframe B before Mainframe A. In other words, do not empty the FIFOs in Mainframe A unless the FIFOs in Mainframe B have been emptied. For more information about groupID see "Grouping of Channels/Modules."
If more than two mainframes are needed, daisy-chain them together. Treat each mainframe after the first as a Mainframe B. See the example on the next page.

Phase Performance in Multiple Mainframe Measurements

Phase specifications are degraded by the delay that the inter-mainframe interface gives the sample clock. This delay is insignificant for many low-frequency applications because the phase error is proportional to frequency. A system with two VXI-MXI modules and a 1 meter cable, typically has a 76 nanosecond (ns) sample clock delay in Mainframe B. This corresponds to an additional 0.007 degree phase error at 256 Hz and an additional 0.55 degree phase error at 20 kHz.

A 4-meter cable adds approximately 18 ns of delay for a total of 94 ns clock delay in Mainframe B. This corresponds to an additional 0.0087 degree phase error at 256 Hz and an additional 0.68 degree phase error at 20 kHz.

The cable adds approximately 6 ns per meter of cable.

Each daisy-chained mainframe adds another increment of delay, but only for the additional cabling length.

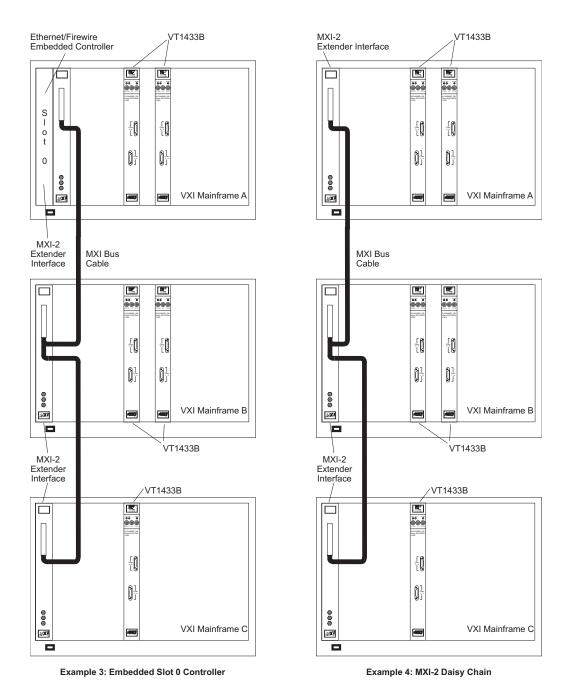


Figure 4-2: Multiple mainframes - three mainframes

Synchronization in Multiple-mainframe Measurements

A TTL Trigger line between VT1433Bs making group measurements keeps all modules synchronized. This is an open-collector line where each module holds the one designated as the SYNC line low until the module is ready to advance to the next measurement state. Another TTL Trigger line is designated to carry the sample clock to all modules. This shared sample clock may come from any VT1433B module in Mainframe A or from an external signal routed through the Slot 0 Commander in Mainframe A.

One module is responsible for pulling the SYNC line low to start each group's state transition. Then, each module holds the line low until it is ready. When all modules are ready, the SYNC line drifts high. The unidirectional line prevents modules in Mainframe B from holding-off modules in Mainframe A.

The lowest logical address must be in Mainframe A because of VXI-MXI and Resource Manager (RM) constraints. Group constraints with the C-Library force modules in Mainframe A to have their FIFOs emptied last. The C-Library reads data in channel order, so the highest channel is read last. To get this to work automatically, the call to e1432_assign_channels() must list the logical addresses in descending order.

Channel triggering must be done only by modules in Mainframe A. A trigger in any other mainframe would not be communicated back on the SYNC line to Mainframe A. The C-Library itself selects the VT1433B with the highest channel number for synchronization.

VXI-MXI Module Setup and System Configuration

To set up a multiple mainframe system, follow the "Hardware Installation Rules" which appear in Chapter 2 of the Agilent/HP E1482B VXI-MXI Bus Extender User's Manual. This allows the Resource Manager to configure the system.

The VXI-MXI Module setup in Mainframe A needs to be changed from those set by the factory. The VXI-MXI module is not the Slot 0 Controller for Mainframe A. See Table 2-1. Configuration Settings in the Agilent/HP E1482B VXI-MXI Bus Extender User's Manual. This requires changing several switch settings.

-
Set the module as not being the Slot 0 Controller.
Set the VME timeout to 200 μ s.
Set the VME BTO chain position to 1 extender, non-slot0.
Do not source CLK10.
Set the proper logical address.

Measurement Process

Measurement Setup and Control

When the VT1433B makes a measurement, the measurement itself consists of two phases: the measurement initialization and the measurement loop. Each of these phases consists of several states, through which the measurement progresses.

The transition from one state to the next is tied to a transition in the Sync/Trigger line (one of the TTL trigger lines on the VXI back plane). A state (such as Idle) begins when the Sync/Trigger line goes low. The Sync/Trigger line then remains low as long as the state is in effect. When the Sync/Trigger line goes high it signals the transition to the next state. See the sections "Measurement Initialization" and "Measurement Loop" below for more details about these transitions. During all the transitions of the Sync/Trigger line, the clock line continues with a constant pulse.

The Sync/Trigger line is "wire-OR'd" such that all modules in a multiple-module system (within one mainframe) must release it for it to go high. Only one VT1433B is required to pull the Sync/Trigger line low. In a system with only one VT1432A, the Sync/Trigger line is local to the module and not is routed to a TTL TRIGGER line on the VXI back plane.

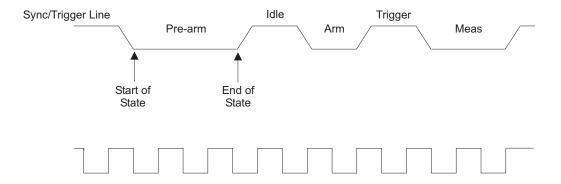


Figure 4-3: Transitions between states

Parameter Settings

Many parameters are channel-dependent, meaning that each channel can be set independently of the others in the module. Other parameters are module-dependent; changing a module-dependent parameter for a channel will change it for all channels on that module. For example, changing blocksize, a module-dependent parameter, for input channel 3 will also change the block size for all other channels in the same VT1433B module as channel 3.

When possible, parameters are written to the hardware as soon as they are received. Sometimes, the parameter can't be written to the hardware until the start of a measurement; in this case the value of the parameter is saved in RAM in the VT1433B module until the measurement is started with e1432_init_measure. Some parameters can be changed while a measurement is running, but many do not take effect until the next start of a measurement.

Measurement initialization

This section describes the measurement initialization process in the VT1433B.

The measurement initialization states and the corresponding Sync/Trigger line transitions (with 'H' for high, 'L' for Low) are:

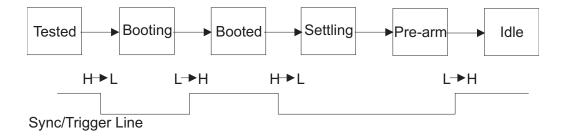


Figure 4-4: Measurement initialization

The module enters the TESTED state after a reset. In this state, all of the module parameters may be set. The VT1433B stays in the TESTED state until it sees a high-to-low transition of the Sync/Trigger line.

In the BOOTING state, the digital processors of the module load their parameters and their program. Once done, the module releases the Sync/Trigger line and moves to the BOOTED state. The VT1433B stays in the BOOTED state until it sees a high-to-low transition of the Sync/Trigger line (that is, all the VT1433Bs in the system have booted).

In the SETTLING state, the digital filters are synchronized and the digital filter output is 'settled' (it waits N samples before outputting any data). Once the module is settled, it advances to the PRE ARM state.

In the PRE_ARM state, the module waits for a pre-arm condition to take place. The default is to auto-arm, so the module would not wait at all in this case. When the pre-arm condition is met, the module releases the Sync/Trigger line and advances to the IDLE state.

This complete measurement sequence initialization, from TESTED through BOOTING, BOOTED, SETTLING, PRE-ARM and IDLE, can be performed with a call to the function e1432_init_measure.

Measurement Loop

This section describes the measurement loop in the VT1433B.

The progression of measurement states and the corresponding Sync/Trigger line transitions are:



Figure 4-5: Measurement loop

In the IDLE state the VT1433B writes no data into the FIFO. The VT1433B remains in the IDLE state until it sees a high-to-low transition of the Sync/Trigger line or an RPM arm/trigger point is calculated. If any of the VT1433Bs in the system is programmed for auto arming (with e1432_set_auto_arm), the Sync/Trigger line is immediately pulled low by that VT1433B. The VT1433B may also be moved to the ARM state by an explicit call to the function e1432 arm measure.

Upon entering the ARM state the VT1433B starts saving new data in its FIFO. It remains in the ARM state until the Sync/Trigger line goes high. If the VT1433B is programmed with a pre-trigger delay, it collects enough data samples to satisfy this pre-trigger delay and then releases the Sync/Trigger line. If no pre-trigger delay has been programmed, it releases the Sync/Trigger line immediately. When all modules in a system have released the Sync/Trigger line (allowing it to go high), a transition to the TRIGGER state occurs.

Upon entering the TRIGGER state the VT1433B continues to collect data into the FIFO, discarding any data prior to the pre-trigger delay. The VT1433B remains in the TRIGGER state until it sees a high-to-low transition of the Sync/Trigger line. The Sync/Trigger line is pulled low by any VT1433B which encounters a trigger condition and is programmed to pull the Sync/Trigger line. If any VT1433B is programmed for auto triggering (with e1432_set_auto_trigger), the Sync/Trigger line is pulled low immediately. The Sync/Trigger line may also be pulled low by an explicit call to the function e1432 trigger measure.

Upon entering the MEASURE state the VT1433B continues to collect data. The VT1433B also presents the first data from the FIFO to the selected output port, making it available to the controller to read. The VT1433B holds the Sync/Trigger line low as long as it is actively collecting data. In overlap block mode the VT1433B stops taking data as soon as a block of data has been collected, including any programmed pre- or post-trigger delays. (It starts again when another trigger occurs). In continuous mode, the VT1433B stops taking data only when the FIFO overflows. When data collection stops, the VT1433B releases the Sync/Trigger line. When all VT1433Bs are finished and the Sync/Trigger line goes high, the VT1433B goes into the IDLE state again.

The measurement initialization and loop may be interrupted at any time with a call to e1432 reset measure, which puts the module in the TESTED state.

Register-based VXI Devices

The VT1433B is a register-based VXI device. Unlike message-based devices which use higher-level programming using ASCII characters, register-based devices are programmed at a very low level using binary information. The greatest advantage of this is speed. Register-based devices communicate at the level of direct hardware manipulation and this can lead to much greater system throughput.

It is not necessary to access the registers to use the VT1433B. The VT1433B's functions can be more easily accessed using the VT1432A Host Interface Library software. However, if information about the registers is provided see Appendix A: Register Definitions for reference.

VT1433B User's Guide The Host Interface Library

Arm and Trigger

This section explains some terminology relating the the "Arm" and "Trigger" steps in the measurement loop. As an example a measurement might be set up to arm at a certain RPM level and then subsequently trigger at an external event corresponding to top dead center (TDC). The settings would be:			
□ Arm: □ Trigger:	RPM Step Arm External Trigger		
trigger after a specific	at session at the same RPM/TDC event, the first external ed RPM would then start a continuous mode measurement. block mode) the settings would be:		
☐ Pre-Arm:	RPM Step Arm		
☐ Arm:	Auto		
☐ Trigger:	Auto		
In the measurement loop, an arm must take place before a trigger. The number of triggers that occur before waiting for another arm condition can be specified. The default is one trigger for each arm. For each trigger, a block of data is sent to the host. The first arm in a measurement is the pre-arm. By default, the pre-arm condition is the same as the regular arm conditions. Valid Arm (and Pre-Arm) conditions are: Auto Arm Manual Arm RPM Step Arm			
Valid trigger conditions are:			
☐ Auto Trigger			
☐ Input Trigger			
□ Source Trigger			
□ External Trigger			
☐ Manual Trigger			
☐ Tachometer Edge Trigger			

VT1433B Triggering

The following is a short discussion of triggering for the VT1433B.

Triggering is defined as the transition from the armed state to the triggered state. This transition is caused by a low going edge on a TTL trigger line. Which one of the eight TTL trigger line is chosen by e1432 get ttltrg lines().

The low-going transition of the TTL trig line can be caused by any of the following items:

trigger type	enabling function
the AUTO TRIGGER circuitry	e1432_set_auto_trigger()
the e1432_trigger_measure() function	e1432_trigger_measure()
a source trigger	e1432_set_trigger_channel()
a tach trigger	e1432_set_trigger_channel()
an external trigger	e1432_set_trigger_ext()
an input level or bound trigger event	e1432_set_trigger_channel() and e1432_set_trigger_mode()

Each of these trigger sources can be enabled or disabled independently, so quite complex trigger setups are possible. In all cases, however, the first trigger event kicks off the measurement and the following trigger events become superfluous.

Note that for e1432_set_auto_trigger() the setting E1432_MANUAL_ARM really means "don't auto trigger" not "expect a manual trigger".

For single VT1433B systems, the TTL trigger signal is not connected to the VXI backplane. For multiple VT1433B systems, the e1432_init_measure() function connects the VT1433B trigger lines to the VXI backplane and at that point, the selection of which TTL trigger lines through e1432_get_ttltrg_lines() is relevant. Multiple mainframe systems will need to account for the unidirectional nature of the inter-mainframe MXI extenders which will prevent all but the "upstream" mainframe from triggering the system.

Data Transfer Modes

The VT1433B can be programmed to use either of two data transfer modes: overlap block mode and continuous mode. Block mode will be discussed first.

Block Mode (Agilent/HP E1431A)

In block mode, the input hardware acquires one block after getting an arm and trigger. It does not allow the system to trigger until it is ready to process the trigger and it acquires pre-trigger data if necessary. The hardware does not accept a new arm and trigger until the acquired block is sent to the host. There is no provision for overlap or queuing up more than one block when in block mode. There is also no way for a FIFO overflow to occur.

The VT1433B's overlap block mode can be configured to act exactly like traditional block mode. It also has additional capabilities as described below.

Continuous Mode

In this mode, the input hardware waits for an arm and trigger and then starts acquiring data continuously. If the host is slow, several blocks can be queued up in the input hardware. If the host gets far enough behind, a FIFO overflow occurs and the input stops acquiring data.

The VT1433B's overlap block mode can be configured to act similarly to continuous mode, but not identically. The VT1433B can also use the traditional continuous mode.

Overlap Block Mode

Overlap block mode combines features of both block mode and continuous mode. The main difference between overlap block mode and traditional block mode is that overlap block mode allows additional arms and triggers to occur before an already-acquired block is sent to the host. A trigger can occur before the end of the previous block, so overlapping blocks are possible (hence the name "overlap block mode"). As in continuous mode, there is an overlap parameter which controls how much overlap is allowed between consecutive blocks.

Limit on Queuing of Data

In overlap block mode, a number of trigger events may be queued up before the host reads the data for those triggers. The host may get further and further behind the data acquisition.

However, if the host gets far enough behind that the FIFO fills up, data acquisition must momentarily stop and wait for data to get transferred to the host. This places a limit on how far in time the host can be behind the data acquisition. By setting the size of the FIFO, it is possible to control how far behind the host can get.

Making Overlap Block Mode Act Like Traditional Block Mode

If the FIFO size is set the same as the block size or if the number of pending triggers is limited to zero, then overlap block mode becomes identical to traditional block mode.

Making Overlap Block Act Like Continuous Mode

If the module is in auto-arm and auto-trigger mode, then overlap block mode becomes nearly the same as continuous mode.

One difference is that traditional continuous mode has a single arm and trigger, while overlap block mode may have multiple arms and triggers. Another is that continuous mode can be configured to start at any type of trigger event, while overlap block mode must be in auto-trigger mode to act like continuous mode. Finally, continuous mode always stops when a FIFO overflow occurs, but overlap block mode does not.

VT1433B Interrupt Behavior

Interrupt Setup

The VT1433B VXI module can be programmed to interrupt a host computer using the VME interrupt lines. VME provides seven such lines and the VT1433B module can be told to use any one of them (see e1432 set interrupt priority).

The VT1432A can interrupt the host computer in response to different events. A mask of events can be specified on which to interrupt. This mask is created by OR'ing together the various conditions that are desired. The following table, copied from the e1432_set_interrupt_mask manual page, shows the conditions that can cause an interrupt:

Interrupt Mask Bit Definitions

Define (in e1432.h)	Description
E1432_IRQ_MEAS_WARNING	Non-fatal measurement warning
E1432_IRQ_BLOCK_READY	Block of data ready in FIFO
E1432_IRQ_MEAS_STATE_CHANGE	Measurement state machine changed state
E1432_IRQ_TRIGGER	Trigger ready for transfer to other modules
E1432_IRQ_OVERLOAD_CHANGE	Overload status changed
E1432_IRQ_MEAS_ERROR	FIFO overflow
E1432_IRQ_TACHS_AVAIL	Raw tach-times available
E1432_IRQ_SRC_STATUS	Source status change

VT1433B Interrupt Handling

To make the VT1433B module do the interrupt, both a mask and a VME Interrupt line must be specified, by calling e1432_set_interrupt_mask and e1432_set_interrupt_priority respectively. Once the mask and line have been set and an interrupt occurs, the cause of the interrupt can be obtained by reading the E1432_IRQ_STATUS_REG register (using e1432_read_register). The bit positions of the interrupt mask and status registers match so the defines can be used to set and check IRQ bits.

Once it has done this interrupt, the module will not do any more VME interrupts until re-enabled with e1432_reenable_interrupt. Normally, the last thing a host computer's interrupt handler should do is call e1432 reenable interrupt.

Events that would have caused an interrupt, but which are blocked because e1432_reenable_interrupt has not yet been called, will be saved. After e1432_reenable_interrupt is called, these saved events will cause an interrupt, so that there is no way for the host to "miss" an interrupt. However, the module will only do one VME interrupt for all of the saved events, so that the host computer will not get flooded with too many interrupts.

For things like "E1432_IRQ_BLOCK_READY", which are not events but are actually states, the module will do an interrupt after e1432_reenable_interrupt only if the state is still present. This allows the host computer's interrupt handler to potentially read multiple scans from a VT1433B module and not get flooded with block ready interrupts after the fact.

Host Interrupt Setup

The VT1432A Host Interface library normally uses the SICL I/O library to communicate with the VT1432A hardware. To receive VME interrupts, a variety of SICL setup calls must be made. The "examples" directory of the VT1433B distribution contains an example of setting up SICL to receive interrupts from a VT1433B module.

This is a summary of how to set up SICL to receive a VT1433B interrupt:

Query SICL for which VME interrupt lines are available, using ivxibusstatus and ivxirminfo.
 Tell the VT1433B module to use the VME interrupt line found in step one, using e1432_set_interrupt_priority.
 Set up an interrupt handler routine, using ionintr and isetintr. The interrupt handler routine will get called when the interrupt occurs.

☐ Set up interrupt mask in the VT1433B module, using e1432 set interrupt mask.

Host Interrupt Handling

When the VT1433B asserts the VME interrupt line, SICL will cause the specified interrupt handler to get called. Typically the interrupt handler routine will read data from the module and then re-enable VT1433B interrupts with e1432_reenable_interrupt. The call to e1432_reenable_interrupt must be done unless the host is not interested in any more interrupts.

Inside the interrupt handler, almost any VT1432A Host Interface library function can be called. This works because the Host Interface library disables interrupts around critical sections of code, ensuring that communication with the VT1433B module stays consistent. Things that are not valid in the handler are:

Calling e1432_delete_channel_group to delete a group that is simultaneously being used by non-interrupt-handler code.
Calling one of the read data functions (e1432_read_raw_data, e1432_read_float32_data or e1432_read_float64_data), if the non-interrupt-handler code is also calling one of these functions.
Calling e1432_assign_channel_numbers to reset the list of channels that are available to the VT1432A library.

As is always the case with interrupt handlers, it is easy to introduce bugs into a program and generally difficult to track them down. Be careful when writing this function.

Data Gating

Sometimes monitoring data from some input channels and not others is desirable. The function e1432_set_enable enables or disables data from an input channel (or group of channels). If data is enabled, then the data can be read using e1432_block_available and e1432_read_xxx_data. If data is disabled, data from the specified channel is not made available to the host computer.

This parameter can be changed while a measurement is running, to allow the host computer to look at only some of the data being collected by the VT1433B module. While data from a channel is disabled the input module continues to collect data but it is not made available to the host computer. The host can then switch from looking at some channels to looking at others during the measurement. In contrast, the function e1432_set_active completely enables or disables a channel and can't be changed while a measurement is running.

For order tracking measurements this function can be used to switch between receiving order tracking data ordinary time data or both.

VT1433B Parameters

Some parameters, such as range or coupling, apply to specific channels. When a channel ID is given to a function that sets a channel-specific parameter, only that channel is set to the new value.

Some parameters, such as clock frequency or data transfer mode, apply globally to a module. When a channel ID is used to change a parameter that applies to a whole module, the channel ID is used to determine which module. The parameter is then changed for that module.

Starting and stopping a measurement is somewhat like setting a global parameter. Starting a measurement starts each active channel in each module that has a channel in the group.

After firmware is installed and after a call to e1432_preset, all of the parameters (both channel-specific and global) in an VT1432A module are set to their default values. For channel-specific parameters, the default value may depend on the type of channel. Some channel-specific parameters apply only to a specific type of channel. For example, tach holdoff applies only to tach channels. Setting such a parameter for a channel that doesn't make sense will result in an error.

At the start of a measurement, the VT1433B firmware sets up all hardware parameters and ensures that the input hardware is settled before starting to take data. The firmware also ensures that any digital filters have time to settle. This ensures that all data read from the module will be valid.

However, after a measurement starts, VT1433B parameters can still be changed. The effect of this change varies, depending on the parameter. For some parameters, changing the value aborts the measurement immediately. For other parameters, the measurement is not aborted, but the changed parameter value is saved and not used until a new measurement is started. For still other parameters, the parameter change takes place immediately and the data coming from the module may contain glitches or other effects from changing the parameter.

There is no way to tell the module to wait for settling when changing a parameter in the middle of a measurement. The only way to wait for settling is to stop and re-start the measurement. Also, there is no way to disable the settling that takes place at the start of a measurement.

For More Information

Refer to the (on-line) VT1432A Function Reference for a list of all functions and the parameters needed for each function. (See "Where to get more information" in the chapter titled "Using the VT1433B").

VT1433B User's Guide The Host Interface Library 5

Module Description

Module Features

The VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP is a VXI C-sized, scalable input module. The VT1433B may contain one or two 4-channel input assemblies so that the module may have a total of up to eight inputs.

The following is a list of some of the features of the VT1433B. See "Specifications" for more detailed information.

The standard VT1433B is described in this chapter. The Arbitrary Source and Tachometer options are described in other chapters.

General Features
☐ Fundamental sample rate selectable within the range of 32768 Hz to 196,608 Hz
☐ Digital sample rate decimation in a 1, 2, 5 sequence.
☐ Variable Block Size (binary)
☐ Optional Large Data Buffer (2 MSamples, expandable to 16 MSamples)
☐ Data from FIFO available with overlap
□ VXI Shared Memory
☐ Flexible triggering, including pre- and post-triggering
☐ AC/DC coupling
☐ ICP [®] power supplies, with the optional ICP [®] 8-Channel Input (breakout box)
☐ Overload detection
☐ Synchronous sampling over multiple channels and VT1433B modules
☐ Large FIFO for long pre-trigger delays
☐ D32 VME Bus data transfer
☐ VXI Local Bus data transfer (with Local Bus option)
Arbitrary Source Features (Option VT1433B-1D4)
☐ Sine output
☐ Random noise output
☐ Arbitrary output
Γachometer Features (VT1433B-AYF)
☐ Current RPM value measurements
☐ Up/Down RPM triggered measurements
Other Options
•
□ Local Bus, VT1433B-UGV

 $^{{\}it ICP}^{\circledR}$ is a registered trademark of PCB Piezotronics, Inc. All rights reserved.

Block Diagram

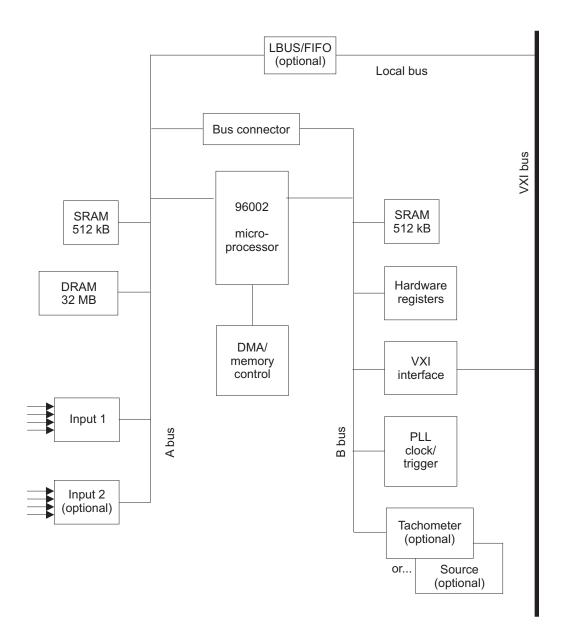


Figure 5-1: VT1433B block diagram

For block diagrams of the Arbitrary Source and the Tachometer, see the chapters on the Arbitrary Source option and the Tachometer option.

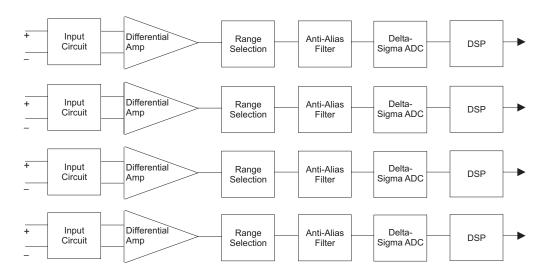


Figure 5-2: Input section diagram

VT1433B Front Panel Description

Front panels for four or eight channels

The VT1433B may have any of several front panels depending on options and number of input channels. The following illustration shows front panels for four or eight channels.

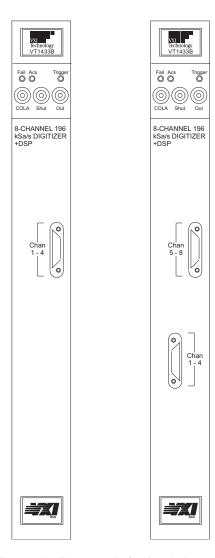


Figure 5-3: Front panels for 4 or 8 channels

Standard Front Panel

This is the front panel for a standard VT1433B (this example has eight inputs). The LEDs and connectors are described on the next page.

If the VT1433B has an Arbitrary Source (VT1433B-1D4) or a Tachometer (VT1433B-AYF) its front panel will be different. See the chapter on the Arbitrary Source or the chapter on the Tachometer for a description of its front panel.

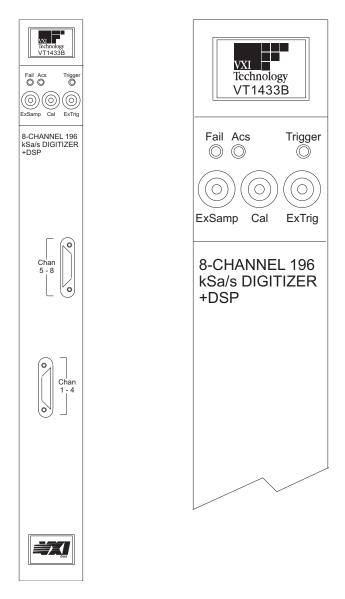


Figure 5-4: VT1433B standard front panel

Status LEDs

	Fail: This is the standard VXI "Failed" indicator. It lights briefly when powering up and normally goes out after a few seconds. If it stays on it indicates a hardware failure in the module.
	Acs: This is the standard VXI "Access" indicator. When it is on, it indicates that another device on the bus is contacting the module, for example to transfer data or read registers.
	Trigger: This LED flashes on each time the measurement triggers, so when it is blinking it indicates that the measurement is triggering.
	If the VT1433B has the Tachometer option, this LED is defined differently. See the chapter: The Tachometer Option (VT1433B-AYF).
SN	1B Connectors
	FExSamp: This is an input connector for an external sample clock. The sample clock must be TTL level and have a frequency between 40.96 kHz and 100 kHz. Internally this frequency can be decimated.
	Cal: This connector is used for calibration. It can be configured to output a calibration signal or to accept an input calibration signal. See the calibration section in this chapter.
	ExTrig: This allows for an external trigger input to the VT1433B. The input signal must be TTL, other characteristics can be defined in software. ExTrig can be enabled or disabled in software.

Input Connectors (One or Two)

These connectors are attached to the cables from an 8-Channel Input (breakout box). They connect the input signal to the VT1433B. Each connector carries four channels. Depending on options, there can be one or two input connectors (four or eight channels).

VXI Backplane Connections

Power Supplies and Ground

The VT1433B conforms to the VME and VXI specifications for pin assignment. The current drawn from each supply is given in the specifications chapter.

Data Transfer Bus

The VT1433B conforms to the VME and VXI specifications for pin assignment and protocol. A16, A24, D16 and D32 data transfers are supported.

DTB Arbitration Bus

The VT1433B module is not capable of requesting bus control. Thus it does not use the Arbitration bus. To conform to the VME and VXI specifications, it passes the bus lines through.

Priority Interrupt Bus

The VT1433B generates interrupts by applying a programmable mask to its status bits. The priority of the interrupt is determined by the interrupt priority setting in the control register.

Utility Bus

The VME specification provides a set of lines collectively called the utility bus. Of these lines, the VT1433B only uses the SYSRESET* line.

Pulling the SYSRESET* line low (a hardware reset) has the same effect as setting the reset bit in the Control Register (a software reset), except that pulling the SYSRESET* line low also resets the Control Register itself, while a software reset does not.

The Local Bus (VT1433B-UGV)

The VXI specification includes a 12-wire Local Bus between adjacent module slots. Using the Local Bus, VXI Technology has defined a standard byte-wide ECL protocol which can transfer data from left to right at up to 15.7 Mbytes/s using VT1433B. If equipped with VT1433B-UGV, the VT1433B can be programmed to output its data using this high speed port instead of the VME data output register. The Data Port Control register determines which output port is used.

Local Bus vs VME Transfers

With this option, data can be transferred from the VT1433B two different ways; via the VME Bus or via the Local Bus.

The VME Bus is the universal data bus for VXI architecture. It provides flexibility and versatility in transferring data. Transfers over the VME Bus can be 16 or 32 bits wide.

The Local Bus supports faster transfer rates than the VME Bus. For example, if data is being transferred from the VT1433B to the VT2216A VXI/SCSI Interface Module, the Local Bus provides a direct pipeline to the VT2216A.

Using the Local Bus, data can be transferred in the background while processing data in a signal-processing module.

All Local Bus data-transfers originate in an input module and move towards a signal processing or disk throughput module to the right of the input module. If other modules generate data to the left of the input module, the input module will pass the data to its right and append its own data to the data blocks from previous modules.

The VT1433B VXI Device

Address Space

The VXI system architecture defines two types of address space. A16 space consists of 64 kBytes and A24 consists of 16 MBytes.

The VT1433B has a 32-bit port through which it has access to the A16 and A24 space. It can also use D32 to send and receive data though the port. Or it can use the port for 16-bit data transfers by using only 16 of the 32 bits available. The VT1433B performs a different type of VME cycle depending on the number of bits transferred per cycle (two cycles for 16-bit transfers and one cycle for 32-bit).

Shared Memory

Shared memory provides a way for the VT1433B to transfer data to a controller. The shared memory in the VT1433B is mapped to the A24 VXI address space. The controller can then access that same address space to receive or write data. A function can be called to retrieve the data. See the chapter on "The Host Interface Library."

Memory Map

The following discussion of memory mapping is included as supplemental information. It is not needed to operate the VT1433B because this functionality is hidden when using the VT1432A Host Interface Library software.

Refer to the VT1433B block diagram (Figure 5-1). The VXI interface maps some of the VT1433B's B-bus internal memory space so that it is visible to the VXI Bus. The port connecting the A and B busses also allows the VXI Bus access to the SRAM, DRAM and inputs which are on the A bus. (SRAM stands for Static RAM; DRAM is Dynamic RAM.)

The VXI interface has two "windows" on the B bus memory space. Each is 512 kbytes, which is 128 32-bit words. One of the windows is fixed and the other is movable. The movable window allows the VXI Bus access to many different parts of the memory space. The fixed window contains:

The A16 registers
The B-bus SRAM
The hardware registers
The FIFO (which is in DRAM)

The mapping of the fixed and movable windows is illustrated as follows:

Address		
FFFF ₁₆ 8000 0 ₁₆	Movable DSP Bus Window	Movable
7FFFF16 3000 016	Fixed DSP Bus Window	
2FFFF ₁₆ 2000 0 ₁₆	Send/Receive Data Registers	Final
1FFFF ₁₆ 0004 F ₁₆	Fixed DSP Bus Window	Fixed
0003 F ₁₆ 0000 0 ₁₆	VXI Bus A16 Registers	

For more information, see "The A24 Registers" in the chapter titled Register Definitions.

List of A16 Registers

The following lists the A16 registers. For more information see "The A16 Registers" in the chapter titled Register Definitions.

Address	Read	Write		
3E ₁₆	Parameter 7 Register			
3C ₁₆	Parameter / Register			
3A ₁₆	Parameter	Parameter 6 Register		
38 ₁₆	i didilietei	o Negistei		
3616	Parameter	5 Register		
3416	Tarameter	o register		
3216	Parameter	4 Register		
30 ₁₆	i didilietei	+ Negistei		
2E ₁₆	Parameter	3 Register		
2C ₁₆	i didilietei	o Negistei		
2A ₁₆	Parameter	2 Pagistor		
28 ₁₆	raiametei	2 Negistei		
2616	Parameter	1 Pagistor		
2416	raiametei	i Negisiei		
2216	Query Response Register	Command Register		
20 ₁₆	Quely Nesponse Negister	Command Negister		
1E ₁₆	FIFO Count			
1C ₁₆				
1A ₁₆	Send Data	Receive Data		
1816	Seria Data			
1616	RAI	M 1		
1416	IVA	VI I		
12 ₁₆	RAI	M O		
10 ₁₆	IVA	vi o		
0E ₁₆	IRQ Status Register	IRQ Reset Register		
0C ₁₆	IRQ Confi	g Register		
0A ₁₆	Page Mar	Register		
0816	Port Contro	ol Register		
0616	Offset F	Register		
0416	Status Register	Control Register		
02 ₁₆	Device Type			
00 ₁₆	ID Register	Logical Address Register		

Trigger Lines (TTLTRG)

TTLTRG consist of eight TTL lines on the VXI backplane on connector P2. They are available to provide synchronization between devices. VXI devices can use the TTLTRG lines for simple communication with other devices. For example, a device can wait for a line to go high before taking an action or it can assert a line as a signal to another device.

The VT1433B uses two trigger lines. These can be placed on any two of the eight TTLTRG lines available on the VXI backplane. The lines are:

- ☐ Sync/Trigger line
- ☐ Free-running clock line

When programmed in a multiple-module configuration, only one of the VT1433B modules can provide the clock signal but any of them can trigger.

Figure 5-5: Clock/sync diagram

Providing an External Clock

The VT1433B can be programed to accept an external word rate clock from the Sample 0 line on the VXI Bus. The digital filters are still functional, providing a range of effective word rates. All sampling is done simultaneously and is not multiplexed.

To connect an External Sample Clock, use the External Sample SMB connector on front panel of the VT1433B. External Sample at word rate and External Trigger are available on the front panel of VT1433B's which do not have an arbitrary source or tachometer option.

The external clock must be a fixed frequency. Its maximum frequency must not be higher than 100 kHz. Its minimum frequency must be at least 40.96 kHz.

Calibration Description

The Cal connector on the front panel of the standard VT1433B can be configured (in software) as either an input or an output. It can be set to any of four settings:

- □ DC The VT1433B outputs a DC calibration signal from the millivolt range up to 15 volts.
- □ AC The VT1433B outputs a signal from an Arbitrary Source option (in the same module or a different VT1433B module in the system.)
- ☐ Ground The connector is shunted to ground for a zero-volt reference.
- Open Circuit In this mode the connector becomes an input which can receive a calibration signal up to ± 15 volts.

The VT1433B is calibrated at the factory and the calibration placed in EPROM memory for use at each power-up. In addition an auto-zero function is provided.

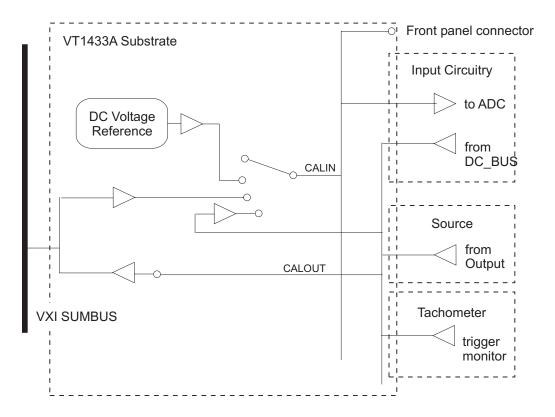


Figure 5-6: Calibration block diagram

VT1433B User's Guide Module Description		

6

The Arbitrary Source Option (VT1433B-1D4)

Arbitrary Source Description

An arbitrary source can be included with the VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP as VT1433B-1D4. (It cannot be installed with a Tachometer Option, VT1433B-AYF.) The Arbitrary Source Option can supply arbitrary or sine signals under control of measurement software.

Trigger

The Arbitrary Source can be used to trigger the measurement and to trigger other modules in the measurement system.

Arbitrary Output

The Arbitrary Source can be programmed to output any signal that is described by data downloaded by the software.

Source Output Modes

Th	e Arbitrary	Source	has	several	output	modes	including	the	following:
	arbitrary								
	sine								
	noise								
	random								
	burst								

COLA (and Summer)

The COLA (Constant Output Level Amplifier) output supplies a signal similar to the Source "Out" output except that it is at a constant output level of about one volt peak.

The same connector (labeled "COLA") can also be programmed as a summer input. A signal connected to this input is summed with the internal source output to create the final output.

External Shutdown

Shorting the center pin of the shutdown connector to its shield causes the source to ramp down and shut off.

Block Diagram

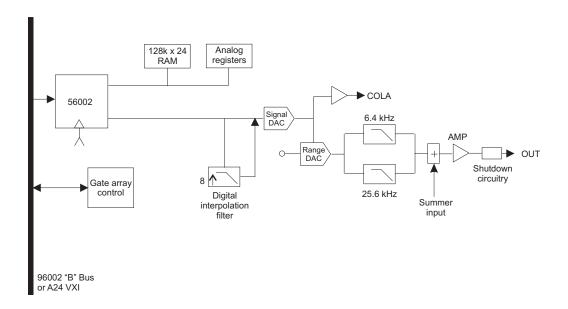


Figure 6-1: Arbitrary source option block diagram

The Arbitrary Source Option Front Panel

The VT1433B with the Arbitrary Source Option may have four or eight input channels. The following illustration shows a front panel for eight channels. The LEDs and connectors are described on the next page.

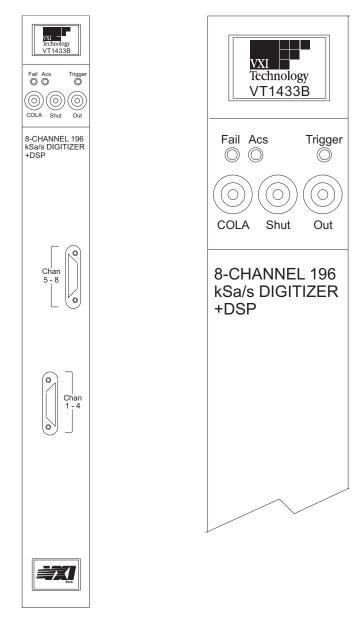


Figure 6-2: VT1433B with source option - front panel

LEDs and Connectors for the Arbitrary Source Option

Status LEDs

_	and normally goes out after a few seconds. If it stays on it indicates a hardware failure in the module.
	Acs: This is the standard VXI "Access" indicator. When it is on, it indicates that another device on the bus is contacting the module, for example to transfer data or read registers.
	Source: If this LED is lighted it indicates that the source is on and producing output.
SN	AB Connectors
	COLA: This is the output connector for the COLA (Constant Output Level Amplifier output. This connector can also be configured as a Summer input. A signal connected to this input is summed with the internal source output to create the final output.
	Shut (Shutdown): Shorting the center pin of this connector to its shield causes the source to ramp down and shut off.

Input Connectors (One or Two)

These connectors are attached to the cables from an 8-Channel Input (breakout box.) There are two input connectors for each 8-Channel Input. They connect the input signal to the VT1433B. Each connector carries four channels. Depending on options, there can be one or two input connectors (four or eight channels).

Out: This is the main output of the Arbitrary Source. The Out connector can also be configured to output a calibration signal. This is not quite the same as the calibration signal described in Chapter 5 because it comes directly from the internal source

without going through the other circuitry of the calibration section.

Updating the arbitrary source firmware

When updated firmware for the arbitrary source is available, the ROM in the module can be updated by using the procedure documented in /usr/e1432/arbsrc/README.

VT1433B User's Guide The Arbitrary Source Option 7

The Tachometer Option (VT1433B-AYF)

Tachometer Description

A tachometer input can be included with the VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP as VT1433B-AYF. (It cannot be installed with an Arbitrary Source Option, VT1433B-1D4.) The Tachometer Option is a two channel tachometer input used to capture the contents of a freerun counter whenever an external input crosses a programmable threshold.

Tachometer Inputs

The tachometer has two inputs which connect to analog conditioning, holdoff and FIFO circuitry. See the block diagram in this chapter. The inputs can be configured so that one input connector (Tach 2) becomes an external trigger input and the other (Tach 1) remains a tachometer input. (The Tach 1 connector cannot be a trigger input.) The switch that determines this configuration is controlled by software.

External Trigger Input

A VT1433B without a tachometer option can accept a TTL external trigger signal (see "Trigger Lines" in the chapter titled "Module Description"). With the tachometer option the VT1433B still has that capability and is also able to accept an analog external trigger signal at the Tach 2 input.

Trigger Level

The trigger level of the tachometer can be set by software.

Tachometer Monitoring

The tachometer is capable of sending its analog input signal onto the VT1433B module's internal calibration line. The calibration line can be connected to the 196 kHz 4-channel input assembly, so that the signal on the tachometer's connector can be monitored via an input channel. This can be useful when deciding where to set the trigger level of the tachometer. An example program is supplied with the VT1433B Host Interface library, which shows how to perform this tachometer monitoring.

Exact RPM Triggering

The tachometer can be used to create exact RPM triggering, controlled by software. The RPM of the tach channel is calculated from tach transition times. Then the sample numbers in the data FIFO are determined for exact RPM triggering.

Input Count Division

The tachometer can be programmed to divide the input signal. For example if a signal is coming in at 100 counts per second, the tachometer can be set to look at only every 10th count for a result of 10 counts per second.

Holdoff Time

The tachometer can be programmed to wait for a specified period of time between counts that it will detect. After a count is detected, subsequent counts will be ignored until the holdoff time has passed.

Block Diagram

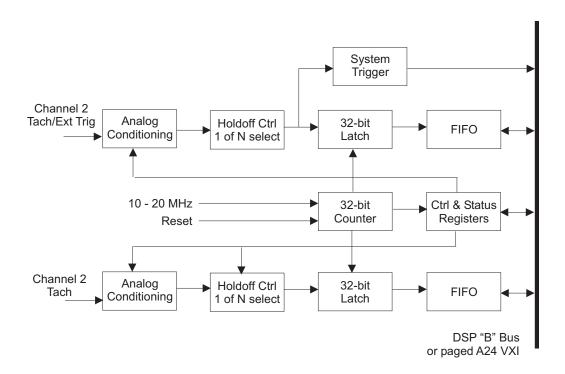


Figure 7-1: Tachometer option block diagram

The Tachometer Option Front Panel

The VT1433B with the Tachometer Option may have four or eight input channels. The following illustration shows a front panel for eight channels. The LEDs and connectors are described on the next page.

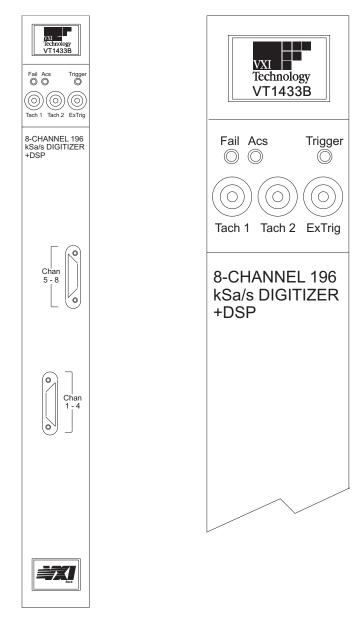


Figure 7-2: VT1433B with tachometer - front panel

LEDs and Connectors for the Tachometer Option

Status LEDs

_	and normally goes out after a few seconds. If it stays on it indicates a hardware failure in the module.
	Acs: This is the standard VXI "Access" indicator. When it is on, it indicates that another device on the bus is contacting the module, for example to transfer data or read registers.
	Trigger: This LED flashes on each time an edge is detected on the tachometer signal, so when it is blinking it indicates that the tachometer signal is on. (For a VT1433B that does not have the Tachometer option, this LED is defined differently.)

SMB Connectors

Tach1:	This is one	of the two ta	chometer	inputs.	Tach1	cannot l	be conf	igured	as an
externa	l trigger.			_					

- ☐ Tach2: This is the second of the two tachometer inputs. Tach2 can also be configured (via software) to be an external trigger input
- □ ExTrig: This allows for an external trigger input to the VT1433B. The input signal must be TTL, other characteristics can be defined in software. ExTrig can be enabled or disabled in software.

Input Connectors (One or Two)

These connectors are attached to the cables from an 8-Channel Input (breakout box) — two input connectors for each 8-Channel Input). They connect the input signal to the VT1433B. Each connector carries four channels. Depending on options, there can be one or two input connectors (four or eight channels).

VT1433B User's Guide The Tachometer Option 8

Break Out Boxes

Introduction

A Break Out Box connects the VT1432A or VT1433B to a set of connectors to receive input signals.

Several types of Break Out Boxes are available. This chapter covers:

- □ VT3240A Voltage Break Out Box
- □ VT3241A ICP[®] Break Out Box

Other Break Out Boxes include the VT3242A Charge Break Out Box and the VT3243A Microphone Break Out Box. See the documentation supplied with those products for more information.

Service

For service on the Break Out Boxes contact the nearest VXI Technology Customer Support center listed at the end of this manual.

The VT3240A and VT3241A Break Out Boxes

Each of the Break Out Boxes described in this section has eight BNC connectors for input. They each have two cables which connect to the sub-miniature "D" connectors on the front panel of the VT1432A/33B. Each of the two cables carries four channels.

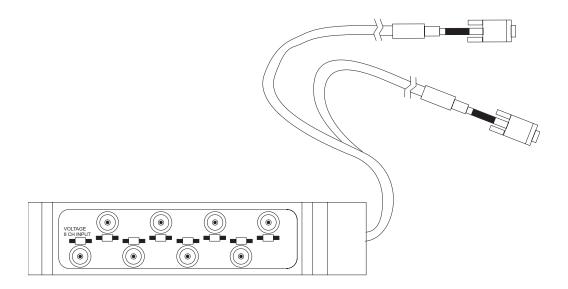


Figure 8-1: VT3240A Break Out Box

VT3240AVoltage-type Break Out Box

In this type of Break Out Box the signal is sent straight through to the sub-miniature "D" connectors on the VT1432A/33B.

VT3241A ICP®-type Break Out Box

Each of the eight connectors in this type of Break Out Box is connected to an independent, floating current source. These are intended to power integrated-circuit piezo-electric (ICP®) transducers. They supply 4.5 mA (nominal) at up to 28 volts. The current sources are controllable by software in groups of four. That is, the current sources for connectors 1-4 can be turned on or off as a group, as can the current sources for connectors 5-8.

Break Out Box Grounding

Each connector on the VT3240A and VT3241A Break Out Box has a small manual switch next to it. When this switch is in the "GND" position the outer shell of the connector is grounded to the chassis ground of the VXI mainframe. When it is in the "DIFF" position it is not grounded to the mainframe and will float if not grounded elsewhere in the system (such as at the sensor). The connector shell should not be allowed to float: if the switch is in the "DIFF" position the shell should be grounded elsewhere in the system.

Break Out Box Cables

Making a Custom Break Out Box Cable

A cable to connect the Break Out Box with the VT1432A/33B is supplied with the each of the Break Out Boxes described in this chapter. However, this section is included for those users who may want to make their own connecting cable. The drawing on this page shows the AMP part numbers for the parts needed to make the plug end of the cable. This illustration shows a VT3240A Voltage Break Out Box, a VT3242A Break Out Box requires a single cable with connectors at both ends.

The next page shows the pinout for the connector.

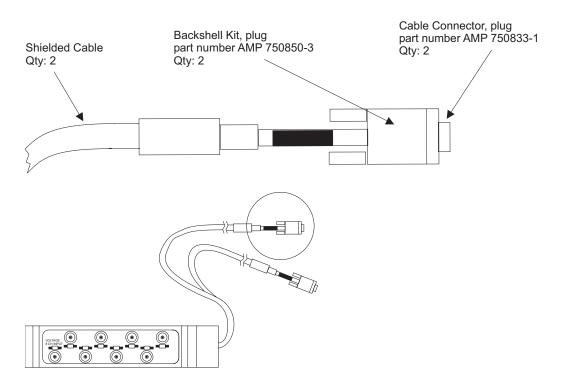
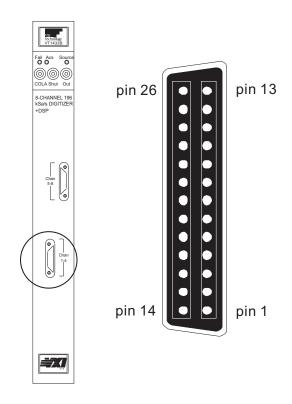



Figure 8-2: Break Out Box cable and part numbers

Pin definitions for input connector

definition	pin#	pin#	definition
RFI GND/Cable Shield	26	13	- Diff 1
+24V Power	25	12	+Diff 1
GND Return for ± 24V	24	11	RFI GND/Drain Shield 1
-24 Power	23	10	RFI GND/Drain Shield 2
RFI GND	22	9	- Diff 2
I2C SCL	21	8	+ Diff 2
CAL HIGH	20	7	CAL LOW
BoB_EN	19	6	- Diff 3
RFI GND	18	5	+ Diff 3
I2C SDA	17	4	RFI GND/Drain Shield 3
RFI GND	16	3	RFI GND/Drain Shield 4
I2C_EN	15	2	- Diff 4
RFI GND/Cable Shield	14	1	+ Diff 4

$Recommendations \ on \ wiring \ for \ the \ VT1432A/33B \ 4-Channel \ Input \ Connector$

Allowed Connections

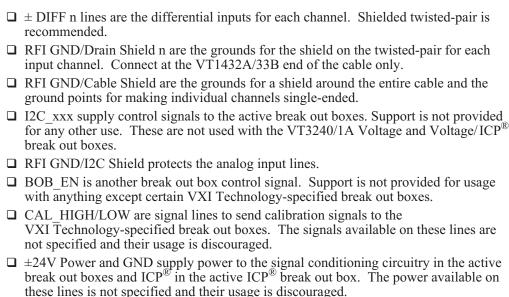
Differential Input Channels Connect at VT1432A/33B end of cabling and at DUT Recommended: shielded twisted pair

1	+ Diff 4
2	- Diff 4
5	+ Diff 3
6	- Diff 3
8	+ Diff 2
9	- Diff 2
12	+ Diff 1
13	- Diff 1

Input Channel Shielding Connect at VT1432A/33B end of cabling ONLY

3	RFI GND/Drain Shield 4
4	RFI GND/Drain Shield 3
10	RFI GND/Drain shield 2
11	RFI GND/Drain Shield 1

Additional shielding of entire cable GND for grounded measurements if required


14 RFI GND/Cable Shield26 RFI GND/Cable Shield

Dis-allowed Connections

Do NOT connect these pins on VT1432A/33B end of cabling. These signals and supplies are provided for VXI Technology specified break out boxes and are unspecified for other usage

Do not use:	
15	I2C_EN
17	I2C_SDA
21	I2C_SCL
16	RFI GND/I2C Shield
18	RFI GND/I2C Shield
22	RFI GND/I2C Shield
19	BOB_EN
7	CAL_LOW
20	CAL_HIGH
23	-24 V Power
24	±24 V GND Return
25	+24 V Power

In general:

9

Troubleshooting the VT1433B

Diagnostics

The following describes a limited diagnostic program for the VT1432A, VT1433B and VT1434A. It is to be run from an HP-UX host. The program is called "hostdiag." It can be found with the VT1432A Host Interface Software Library at location /usr/e1432/bin.

location: /usr/e1432/bin

Usage: hostdiag [-hPsuvV] [-f file] [-L laddr] [-S slot] [-O list]

-h

Does a quick, partial test by bypassing the tests which involve downloading code to the module.

-f file

Uses "file" as the source of code to download to the module instead of the default sema.bin.

-L logical_addr

Specifies the logical address of the module to be tested. The default value is 8.

-O option_list

Tests the module against a list model/options. For example -O "E1432,1DE,AYF" tests the module as an 8-channel VT1432A with the tachometer option. Without this option, hostdiag only tests what it finds present. Hardware which has failed in such a way that it appears to be absent will not be detected without this option.

-P

Prints only a pass/fail message - no diagnostic printouts.

-S

Additionally runs the "standard input/output" tests. Sources finish testing with 1 V_{PK} , 1 kHz sine on each output for manual verification of output functionality. Input testing (both VT1432A and VT1433B inputs and the Tachometer input) assumes 1 V_{PK} , 1 kHz sine input on each channel. This allows testing of additional portions of the signal path which inaccessible from the internal tests.

-S vxi slot

Test the module in the vxi slot, vxi_slot. Default is to test the module at logical address 8.

-u Display usage message.
-v Specifies the verbose printing. Normally, hostdiag does not print anything unless an error is found. With this option, hostdiag prints status messages as it operates. This option also enables additional diagnostic information which is not generally useful.
-V Print version info.
Hostdiag returns 0 upon success or returns non-zero if an error is detected.
Coverage:
☐ Main board ☐ DRAM SIMMs
☐ Input SCAs (Signal Conditioning Assemblies)
□ Source SCAs (VT1434A)
□ Optional source
☐ Optional tachometer (VT1432A and VT1433B)
Notes:
 □ Tests are somewhat limited but will catch many hardware errors □ No errors printed means that all tests passed

VT1433B User's Guide Troubleshooting the VT1433B 10

Replacing Assemblies

Replaceable Parts

For information on upgrading the module or replacing parts, contact a VXI Technology sales and service office. See the inside back cover of this guide for a list of office locations and address.

Replacement parts are listed in the following tables:

Assemblies: without VT1433B-AYF or VT1433B-1D4

Assemblies: with VT1433B-AYF

Assemblies: with VT1433B-1D4

Cables: without VT1433B-AYF or VT1433B-1D4

Cables: with VT1433B-AYF

Cables: with VT1433B-1D4

Front Panel

Ordering Information

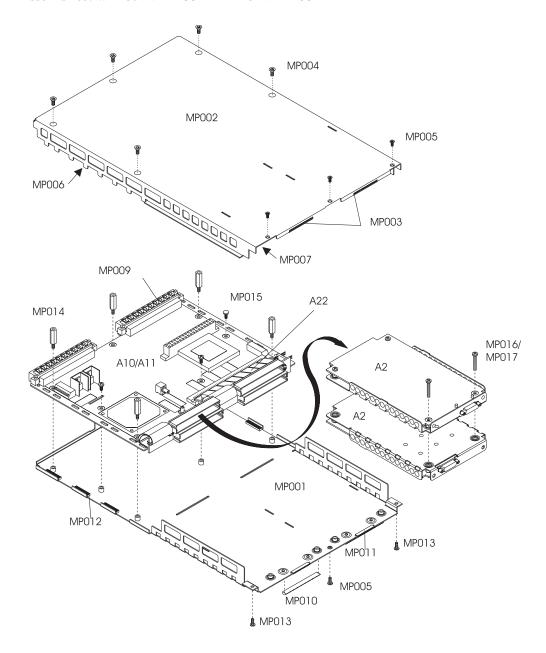
To order a part listed in one of the tables, quote the VXI Technology part number (VTI Part Number), indicate the quantity required and address the order to VXI Technology (see the *Need Assistance?* section at the end of the manual). The first time a part is listed in the table, the quantity column (Qty) lists the total quantity of the part used in the module. For the corresponding name and address of the manufacturer's codes shown in the tables, see "CAGE Code Numbers."

Caution

The module is static sensitive. Use the appropriate precautions when removing, handling and installing to avoid unnecessary damage.

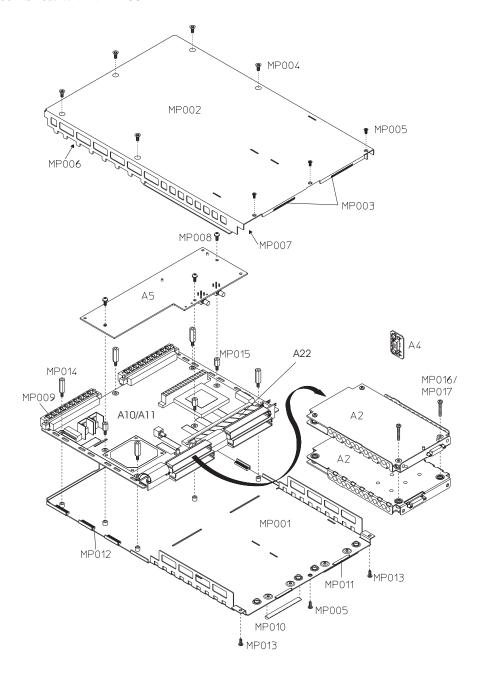
Direct Mail Order System

Within the U.S.A., VXI Technology can supply parts through a direct mail order system. Advantages of the Direct Mail Order System are:


- ☐ Direct ordering and shipment from the VXI Technology Parts Center.
- □ No maximum or minimum on any mail order. There is a minimum order for parts ordered through a local VXI Technology sales and service office when the orders require billing and invoicing.
- ☐ Transportation charges are prepaid. A small handling charge is added to each order.
- ☐ No invoicing. A check or money order must accompany each order.
- ☐ Mail order forms and specific ordering information are available through a local VXI Technology sales and service office. See the inside back cover of this guide for a list of VXI Technology Division locations and addresses.

CAGE Code Numbers

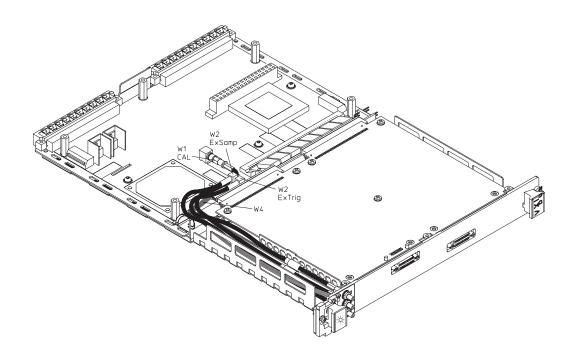
The following table provides the name and address for the manufacturers' CAGE code numbers (Mfr Code) listed in the replaceable parts tables.


Mfr Code	Mfr Name	Address
03LB1	VXI Technology, Inc.	Irvine, CA 92614 U.S.A.
30817	Laird Technologies	Delaware Water Gap, PA 18327 U.S.A.
83486	Elco Industries Inc.	Rockford, IL 61101 U.S.A.

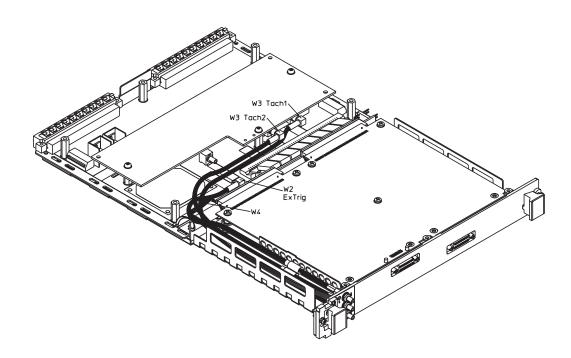
Assemblies: without VT1433B-AYF or VT1433B-1D4


Ref Des	VXI Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2	E1433-66534	2	PC ASSY-INPUT	03LB1	E1433-66534
A4	E1432-66504	1	PC ASSY-LED	03LB1	E1432-66504
A10	E1433-66510	1	PC ASSY-MAIN OPT UGV	03LB1	E1433-66510
A11	E1433-66511	1	PC ASSY-MAIN	03LB1	E1433-66511
A22	1818-5622	1	ICM DRAM, SIMM, 8x32	03LB1	1818-5622
MP001	E1433-00615	1	SHTF CVR-BTTM ALSK	03LB1	E1433-00615
MP002	E1432-00613	1	SHTF CVR-TOP	03LB1	E1432-00613
MP003	8160-0862	0	GSKT RFI STRIP FNGRS	30817	0097-553-17-020
MP004	0515-2033	5	SCR-MCH M3.0 10MMLG	03LB1	0515-2033
MP005	0515-2028	4	SCR-MCH M2.5 6MMLG	03LB1	0515-2028
MP006	E1432-44101	1	GSKT THERMAL CONDUCTOR	03LB1	E14320-44101
MP007	E1485-40601	1	GSKT-RFT, TOP CVR ADH SHT	03LB1	E1485-40601
MP008	0515-0372	3	SCR-MCH M3.0 8MMLG	03LB1	0515-0372
MP009	E1450-01202	4	STMP SHLD-RFI GRND	03LB1	E1450-01202
MP010	8160-0686		STMP FNGRS-RFI STRP BECU	30817	786-185
MP011	8160-0683	1	STMP STRP-SPNG FLTR GRD	30817	0097-551-17-X
MP012	8160-0869	6	GSKT RFI, 2MM X 4MM	03LB1	8160-0869
MP013	0515-0368	2	SCR-MCH M2.5 X 0.45	03LB1	0515-0368
MP014	0380-4042	5	STDF-HXMF M3.0 16.7MMLG	03LB1	0515-4042
MP016	0515-2383	4	SCR-MCH M3. X .50	03LB1	0515-2383
MP017	0515-0664	4	SCR-MCH M3.0 12MMLG	03LB1	0515-0664

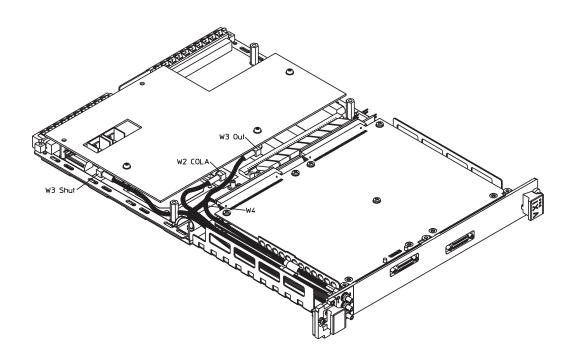
Assemblies: with VT1433B-AYF


Ref Des	VTI Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2	E1433-66534	2	PC ASSY-INPUT	03LB1	E1433-66534
A4	E1432-66504	1	PC ASSY-LED	03LB1	E1432-66504
A5	E1432-66505	1	PC ASSY-OPT AYF	03LB1	E1432-66505
A10	E1433-66510	1	PC ASSY—MAIN OPT UGV	03LB1	E1433-66510
A11	E1433-66511	1	PC ASSY-MAIN	03LB1	E1433-66511
A22	1818-5622	1	ICM DRAM, SIMM, 8x32	03LB1	1818-5622
MP001	E1433-00615	1	SHTF CVR-BTTM ALSK	03LB1	E1432-00615
MP002	E1432-00613	1	SHTF CVR-TOP	03LB1	E1432-00613
MP003	8160-0862	0	GSKT RFI STRIP FNGRS	30817	0097-553-17-020
MP004	0515-2033	5	SCR-MCH M3.0 10MMLG	03LB1	0515-2033
MP005	0515-2028	4	SCR-MCH M2.5 6MMLG	03LB1	0515-2028
MP006	E1432-44101	1	GSKT THERMAL CONDUCTOR	03LB1	E14320-44101
MP007	E1485-40601	1	GSKT-RFT, TOP CVR ADH SHT	03LB1	E1485-40601
MP008	0515-0372	3	SCR-MCH M3.0 8MMLG	03LB1	0515-0372
MP009	E1450-01202	4	STMP SHLD-RFI GRND	03LB1	E1450-01202
MP010	8160-0686		STMP FNGRS-RFI STRP BECU	30817	786-185
MP011	8160-0683	1	STMP STRP-SPNG FLTR GRD	30817	0097-551-17-X
MP012	8160-0869	6	GSKT RFI, 2MM X 4MM	03LB1	8160-0869
MP013	0515-0368	2	SCR-MCH M2.5 X 0.45	03LB1	0515-0368
MP014	0380-4042	5	STDF-HXMF M3.0 16.7MMLG	03LB1	0515-4042
MP015	0380-4041	3	STDF-HXMF M3.0	03LB1	0515-4041
MP016	0515-2383	4	SCR-MCH M3. X .50	03LB1	0515-2383
MP017	0515-0664	4	SCR-MCH M3.0 12MMLG	03LB1	0515-0664

Assemblies: with VT1433B-1D4


Ref Des	VTI Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2	E1433-66534	2	PC ASSY	03LB1	E1433-66534
A4	E1432-66504	1	PC ASSY-LED	03LB1	E1432-66504
A10	E1433-66510	1	PC ASSY-MAIN OPT UGV	03LB1	E1433-66510
A11	E1433-66511	1	PC ASSY-MAIN	03LB1	E1432-66511
A22	1818-5622	1	ICM DRAM, SIMM, 8x32	03LB1	1818-5622
A41	E1432-66541	1	PC ASSY-OPT 1D4	03LB1	E1432-66541
MP001	E1433-00615	1	SHTF CVR-BTTM ALSK	03LB1	E1433-00615
MP002	E1432-00613	1	SHTF CVR-TOP	03LB1	E1432-00613
MP003	8160-0862	0	GSKT RFI STRIP FNGRS	30817	0097-553-17-020
MP004	0515-2033	5	SCR-MCH M3.0 10MMLG	03LB1	0515-2033
MP005	0515-2028	4	SCR-MCH M2.5 6MMLG	03LB1	0515-2028
MP006	E1432-44101	1	GSKT THERMAL CONDUCTOR	03LB1	E14320-44101
MP007	E1485-40601	1	GSKT-RFT, TOP CVR ADH SHT	03LB1	E1485-40601
MP008	0515-0372	3	SCR-MCH M3.0 8MMLG	03LB1	0515-0372
MP009	E1450-01202	4	STMP SHLD-RFI GRND	03LB1	E1450-01202
MP010	8160-0686		STMP FNGRS-RFI STRP BECU	30817	786-185
MP011	8160-0683	1	STMP STRP-SPNG FLTR GRD	30817	0097-551-17-X
MP012	8160-0869	6	GSKT RFI, 2MM X 4MM	03LB1	8160-0869
MP013	0515-0368	2	SCR-MCH M2.5 X 0.45	03LB1	0515-0368
MP014	0380-4042	3	STDF-HXMF M3.0 16.7MMLG	03LB1	0515-4042
MP015	0380-4041	5	STDF-HXME M3.0	03LB1	0515-4041
MP016	0515-2383	4	SCR-MCH M3. X .50	03LB1	0515-2383
MP017	0515-0664	4	SCR-MCH M3.0 12MMLG	03LB1	0515-0664
MP018	0340-0677	1	PLASTIC SHIELD	03LB1	0340-0677

Cables: without VT1433B-AYF or VT1433B-1D4

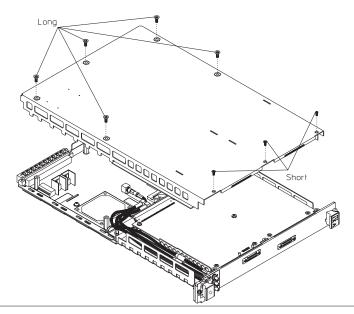

Ref Des	VTI Part Number	Qty	Description	Mfr Code	Mfr Part Number
W1	8120-6767	1	CBL-ASM CXL, 290MM	03LB1	8120-6767
W2	8120-6765	2	CBL-ASM CXL, 255 MM	03LB1	8120-6765
W4	8120-6762	1	CBL-FLEX, 5-COND, 225 MML	03LB1	8120-6762

Cables: with VT1433B-AYF

Ref Des	VTI Part Number	Qty	Description	Mfr Code	Mfr Part Number
W2	8120-6765	1	CBL-ASM CXL, 255MM	03LB1	8120-6765
W3	8120-6766	2	CBL-ASM CXL,	03LB1	8120-6766
W4	8120-6762	1	CBL-FLEX, 5-COND, 225MML	03LB1	8120-6762

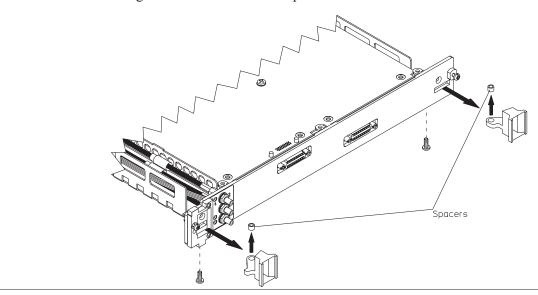
Cables: with VT1433B-1D4

Ref Des	VTI Part Number	Qty	Description	Mfr Code	Mfr Part Number
W2	8120-6765	1	CBL-ASM CXL, 255MM	03LB1	8120-6765
W3	8120-6766	2	CBL-ASM CXL,	03LB1	8120-6766
W4	8120-6762	1	CBL-FLEX, 5-COND, 225MML	03LB1	8120-6762

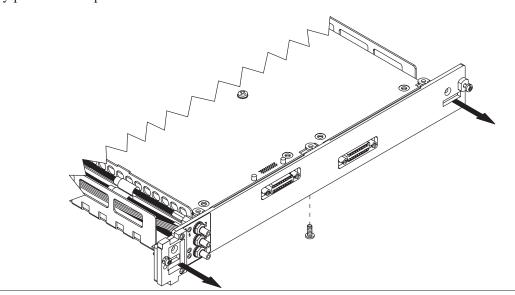

Front Panel

-

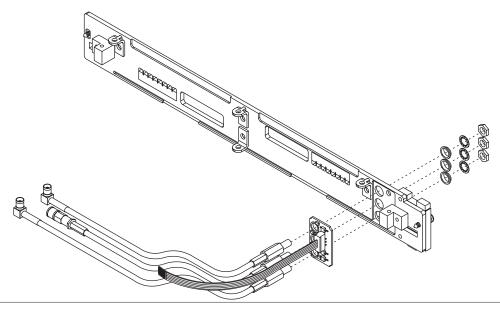
Ref Des	VTI Part Number	Qty	Description	Mfr Code	Mfr Part Number
MP200	E1433-00207	1	PNL-FRT, STANDARD	03LB1	E1433-00207
MP201	E1433-00208	1	PNL-FRT, OPT 1DL	03LB1	E1433-00208
MP203	E1432-44301	1	LBL-FRT PNL SMB'S, STD	03LB1	E1432-44301
MP204	E1432-44302	1	LBL-FRT PNL SMB'S, OPT 1D4	03LB1	E1432-44302
MP205	E1432-44303	1	LBL-FRT PNL SMB'S, OPT AYF	03LB1	E1432-44303
MP206	E1400-84106	1	MOLD KIT-TOP EXTR HNDL	03LB1	E1400-84106
MP207	E1400-84105	1	MOLD KIT-BTTM EXTR HNDL'	03LB1	E1400-84105
MP208	0515-1968	2	SCR-MCH M2.5 6MMLG	03LB1	0515-1968
MP209	0515-1375	2	SCR-MCH M2.5 6MMLG	03LB1	0515-1375
MP210	43-0016-003	1	LABEL, VXI EXT, VXI TECH, NEW LOGO	03LB1	43-0016-003
MP211	43-0016-002	1	LABEL, VXI EXT, VXIBUS	03LB1	43-0016-002

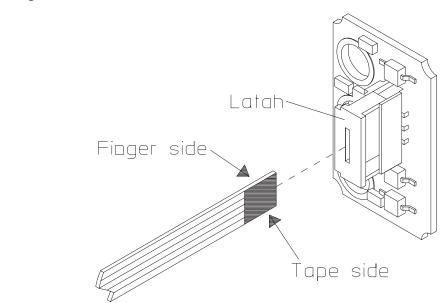

To remove the top cover

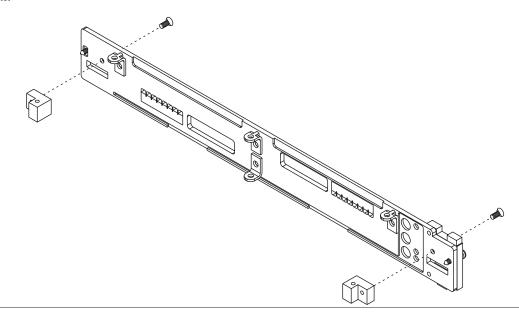
Remove the five long screws using a T-10 Torx driver and remove the three short screws using a T-8 Torx driver. Lift cover off.

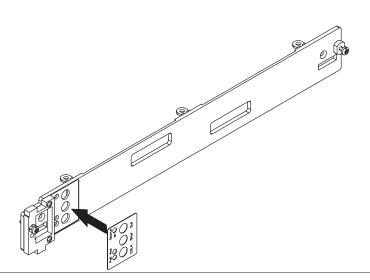


To remove the front panel

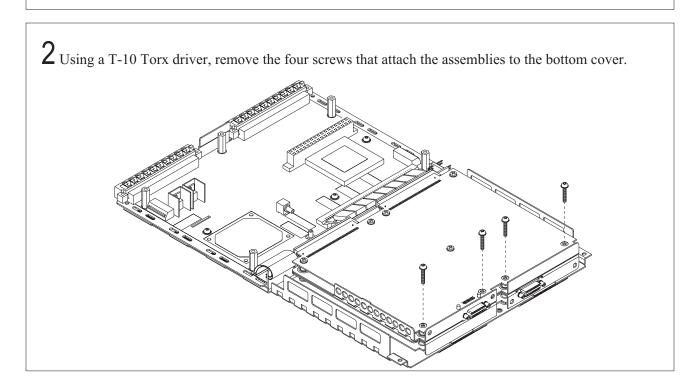

Remove top cover, see "To remove the top cover." Gently disconnect cables from the printed circuit assemblies. Using a T-8 Torx driver, remove the two screws that attach the handles to the assembly. Pull out the handles making sure not to lose the two spacers.

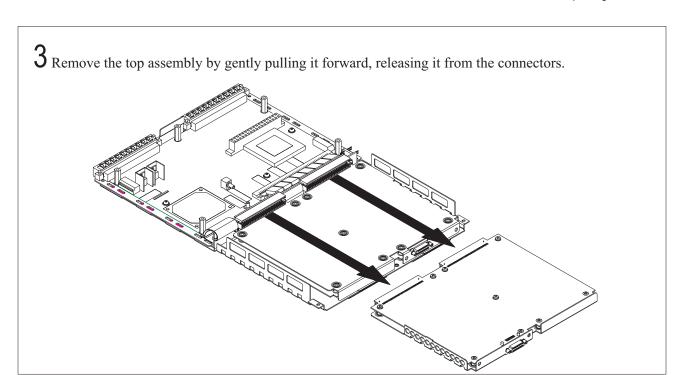

2 Using a T-8 Torx driver, remove the screw that attaches the front panel to the bottom cover. Gently pull the front panel off.

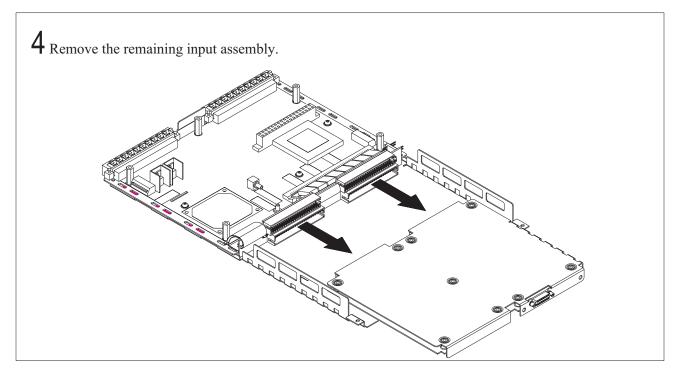

3 Remove the nuts that fasten the cables and assembly to the front panel. Using a 1/4-inch nut driver.


4 Remove ribbon cable from the A4 assembly, by pulling back the latch on the connector and and removing cable. Be sure to note the orientation of the cable.

5 To replace the front panel with another that does not have its own side brackets, remove the brackets from the old front panel using a T-8 Torx driver. Be sure to note the positioning of the brackets, alignment is critical.

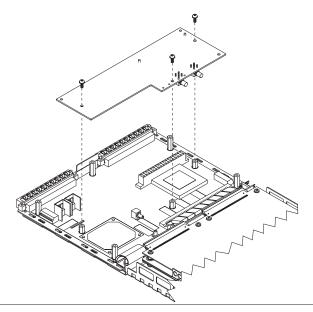



6 To replace the front panel with another that does not have the label already attached, remove the tape backing and place it on the front panel as shown.



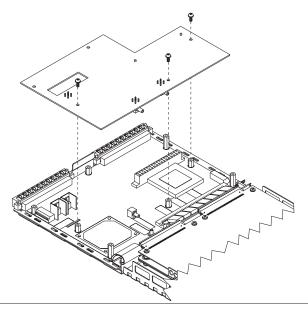
To remove the input assemblies

Remove top cover, see "To remove the top cover." Remove the front panel, see steps 1 and 2 in "To remove the front panel." Note that the following steps are showing illustrations of an VT1433B with a standard configuration (two input assemblies). If the VT1433B has option 1DL (one input assembly), the following steps will be the same except the length of the screws and the number of input assemblies to be removed.

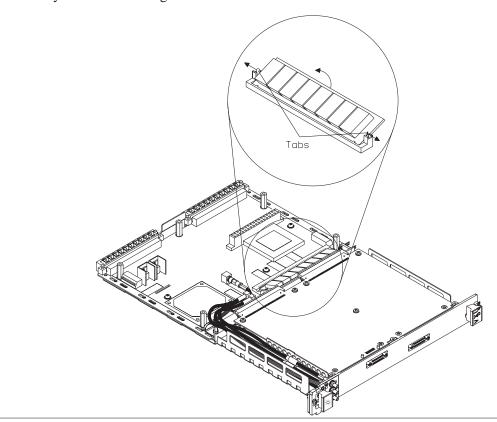


To remove the VT1433B-AYF assembly

1 Remove the top cover, see "To remove the top cover." Disconnect the two cables leading to the A5 assembly and move cables aside.

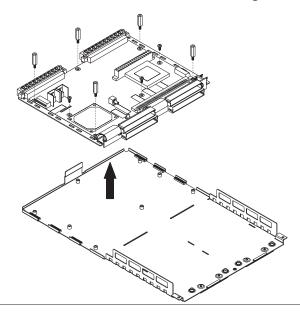

2 Using a T-10 Torx driver, remove the three screws that attach the assembly to the VT1433B and lift the assembly off.

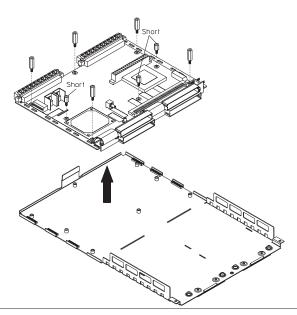
To remove the VT1433B-1D4 assembly


1 Remove the top cover, see "To remove the top cover." Disconnect the three cables leading to the A41 assembly and move cables aside.

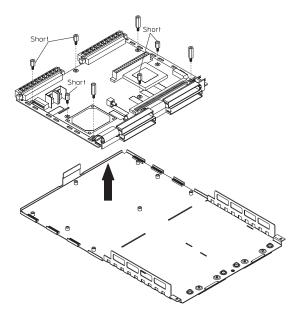
2 Using a T-10 Torx driver, remove the three screws that attach the assembly to the VT1433B and lift the assembly off.

To remove the A22 assembly


Remove the top cover, see "To remove the top cover." Gently push the silver tabs outward and tilt the A22 assembly forward releasing it from the connector.


To remove the A10/A11 assembly

1 Remove top cover and input assemblies. See "To remove the top cover," and "To remove the input assemblies."


2A If the module does NOT have VT1433B-AYF or VT1433B-1D4 do the following: Remove the five standoffs using a 1/4-inch nut driver and remove the three screws using a T-8 Torx driver.

2B *If the module has VT1433B-AYF do the following:* Remove the VT1433B-AYF assembly, see "To remove the VT1433B-AYF assembly." Remove the five long and the three short standoffs using a 1/4-inch nut driver.

2C *If the module has VT1433B-1D4 do the following:* Remove the 1D4 option assembly, see "To remove the VT1433B-1D4 assembly." Remove the three long and the five short standoffs using a 1/4-inch nut driver.

11

Backdating

Backdating

This chapter documents modules that differ from those currently being produced. With the information provided in this chapter, this guide can be modified so that it applies to any earlier version or configuration of the module.

Appendix A

Register Definitions

The VT1433B VXI Registers

The VT1433B 8-Channel 196 kSamples/s Digitizer plus DSP is a register-based VXI device. Unlike message-based devices which use higher-level programming using ASCII characters, register-based devices are programmed at a very low level using binary information. The greatest advantage of this is speed. Register-based devices communicate at the level of direct hardware manipulation and this can lead to much greater system throughput.

Users do not need to access the registers in order to use the VT1433B. The VT1433B's functions can be more easily accessed using the VT1432A Host Interface Library software (which is used for both the VT1433B and the VT1432A 16 Channel 51.2 kSamples/s Digitizer plus DSP). However this chapter describing the registers is provided as supplemental information.

The A16 Registers

The following A16 registers are accessible at the base address defined by the device's logical address. The register at offsets 00_{16} to E_{16} are not accessible using longword (D32) accesses. The registers at offsets 10_{16} to $3E_{16}$ may be accessed by any of the D08(EO), D16 or D32 modes. All of these registers are also accessible at the device A24 base address.

Address	Read	Write					
3E16	Darameter	7 Degister					
3C16	Farameter	7 Register					
3A16	Daramotor	Parameter 6 Register					
3816	raidilletei	o Negistei					
3616	Parameter	5 Pagistar					
3416	raiametei	3 Negistei					
3216	Parameter	/ Register					
3016	raiametei	4 Negistei					
2E16	Parameter	3 Register					
2C16	1 drameter	o register					
2A16	Parameter	2 Register					
2816	i diameter	2 Nogistor					
2616	Parameter 1 Register						
2416	1 drameter	Trogistor					
2216	Query Response Register	Command Register					
2016	Query Nesponse Negister	Communa regioter					
1E16	FIFO Count						
1C16							
1A16	Send Data	Receive Data					
1816	Cond Bala	Neocive Bala					
1616	RA	M 1					
1416	100						
1216	RA	M 0					
1016		0					
0E16	IRQ Status Register	IRQ Reset Register					
0C16	IRQ Confi	g Register					
0A16		Register					
0816	Port Contr	ol Register					
0616	Offset F	Register					
0416	Status Register	Control Register					
0216	Device Type						
0016	ID Register	Logical Address Register					

The A24 Registers

The following A24 registers are accessible at the base address defined by the device's offset Register. The registers at offsets 0 to E_{16} are not accessible using longword (D32) accesses. The registers at offsets 10_{16} to FFFFF $_{16}$ may be accessed by any of the of the D08(EO), D16 or D32 modes.

FFFFF16	Movable DSP
8000 016	Bus Window
7FFF ₁₆	Fixed DSP
3000 0 ₁₆	Bus Window
2FFFF ₁₆	Send/Receive
2000 0 ₁₆	Data Registers
1FFFF ₁₆	Fixed DSP
0004 F ₁₆	Bus Window
0003 F ₁₆ 0000 0 ₁₆	VXI Bus A16 Registers

The A24 registers are defined as follows:

- □ VXI Bus A16 Registers: These are the same registers accessed at the device's A16 base address.
- ☐ Fixed DSP Bus Window: Accesses to this region are mapped to the corresponding locations at the base of the internal DSP's memory map, also accessible through Page 0 of the moveable DSP bus window.
- □ Send/Receive Data Registers: Accesses to any address in this region will read/write the Send and Receive Data registers defined in the A16 register set. VME Bus D32 Block Transfers are supported for these addresses only.
- ☐ Movable DSP Bus Window: Accesses to this region are mapped (by the Page Map register) to different 512 kB regions of the internal DSP bus.

The VXI Bus Registers are defined as follows:

☐ Id Register: A read of this 16 bit register provides information about the device's configuration. Its value is always CFFF16 as defined in the following table.

Bit	15-14	13-12	11-0
Contents	11 (Register Based Device)	00 (A16/A24)	11111111111 (Agilent's ID)

☐ Logical Address Register: A write to this register changes the device's logical address according to the VXI Bus Dynamic Configuration protocol. Its format is defined in the following table.

Bit	15-8	7-0	
Contents	No effect	Logical Address	

☐ Device Type Register: A read of this register provides information about the device's configuration. Its format is defined in the following table.

Bit	15-12	11-0		
Contents	0011 (1MB of A24)	Model Code (20216 for VT1433B)		

☐ Status Register: A read of this register provides information about the device's status as defined in the following table.

Bit	15	14	13-12	11	10	9	8
Contents	A24 Active	MODID*	Unused	Block Ready	Data Ready	ST Done	Loaded

Bit	7	6	5	4	3	2	1	0
Contents	Done	Err*	Unused	HW OK	Ready	Passed	Q Resp Ready	Cmd Ready

A24 Active: A one (1) in this field indicates that the A24 registers can be accessed. It reflects the state of the Control register's A24 Enable bit.

MODID*: A one (1) in this field indicates that the device is not selected via the P2 MODID line. A zero (0) indicates that the device is selected by a high state on the P2 MODID line.

Unused: A read of these bits will always return zero (0).

Block Ready: A one (1) indicates that there is a block of data available to be read from the Send Data registers. A zero (0) indicates that less than a full block is available.

Data Ready: A one (1) indicates that there is at least one word (32 bits) of data available in the Send Data register. A zero (0) indicates that there is not valid data in the Send Data register.

ST Done: A one (1) indicates that the internal DSP has competed and passed its self test.

Loaded: A one (1) indicates that the internal DSP has successfully booted and has loaded a valid model code.

Done: A zero (0) indicates that the on-card microprocessor has not finished processing the last command and the Err* bit is not valid. This bit is set and cleared by the DSP.

Err*: A zero (0) indicates that an error has occurred in communicating with the DSP (for example: invalid parameters). This bit is set and cleared by the DSP.

Ready: The meaning of this depends on the state of the Passed bit. While Passed is false, a one(1) indicates that the device is in the Config Reg Init state and the Model Code bits of the Device Type register are not valid, while a zero (0) indicates that the device is in either the self test or failed state. When Passed is true, a one (1) indicates that the DSP has finished its initialization and is ready for normal operation, while a zero (0) indicates that the device is in the passed state.

Passed: A zero (0) indicates that the device is in either the Hard Reset, Soft Reset, Config Reg Init, Failed or Init Failed state. A one (1) indicates that the device is in the passed state.

HW OK: A one (1) indicates that all the on-card FPGAs have successfully be initialized.

Q Resp Ready (Query Response Ready): A one (1) indicates that the Query Response Register is loaded and ready to be read. It is set by the DSP and cleared in hardware by a write to the Command Register.

Cmd Ready: A one (1) indicates that the command register and parameter register are available for writing. It is set by the DSP microprocessor and cleared in hardware by a write to the Command Register. This bit, when zero (0) additionally indicates that the Done bit is not valid.

☐ Control Register: A write to this register causes specific actions to be executed by the device. The actions are described in the following table.

Bit	15	14-2	1	0
Contents	A24/A32 Enable	Unused	Sysfail Inhibit	Reset

A24/A32 Enable: A one (1) in this field enables access to the device's A24 VME Bus registers. A zero (0) disables such access.

Sysfail Inhibit: A one (1) disables the device from driving the SYSFAIL* line.

Reset: A one (1) forces the device into a reset state.

- □ Offset Register: This read/write register defines the base address of the device's A24 registers. The four most significant bits of the Offset register are the values of the four most significant bits of the device's A24 register addresses. The 12 least significant bits of the Offset register are always zero (0). Thus, the Offset register bits 15-12 map the VME Bus address lines A23-A20 for A24 register accesses. A read of the Offset register always returns the address offset most recently written to the Offset register.
- □ Port Control Register: This register is used to override the Local Bus control of the device. (This applies to VT1433B modules that are equipped to use Local Bus). It has the following format:

Bit	15-2	1	0
Contents	Unused	LBus Pipe	LBus Enable

LBus Pipe: Writing a one (1) puts the Local Bus into pipeline mode, if the LBus Enable bit is also set. Writing a zero (0) allows the Local Bus to operate in some other mode.

LBus Enable: Writing a one (1) enables the Local Bus interface. Writing a zero (0) disables the local bus interface. RESET VALUE: 0

□ Page Map Register: This read/write register defines the internal location of the movable window into the device's DSP bus. (This 512 kB window begins at 512 kB into the device's A24 registers.) The eight least significant bits of the Page Map register are the page number. These bits are mapped to the internal DSP bus address lines as follows:

Bit 0: DSP A(17)

Bit 1: DSP A(18)

Bit 2: DSP A(19)

Bit 3: DSP A(20)

Bit 4: DSP A(21)

Bit 5: DSP A(22)

Bit 6: DSP A(30) and A(24)

Bit 7: DSP A(31)

The eight most significant bits of the Page Map Register are always zero (0).

☐ IRQ Config Register: This register configures the first VME Bus interrupt source. It provides for selection of the VME Bus IRQ level used and a bit mask. It has the following format:

Bit		15-8	7-4	3	2-0
Conter	nts	Mask	Unused	IRQ Enabled	IRQ Line

Mask: This is a bit mask used to enable up to eight interrupt causes. A bit value of zero (0) disables the corresponding interrupt source. RESET VALUE: 0

IRQ Enable: A one (1) in this bit enables the generation of IRQ's. A zero (0) resets each of the eight interrupt causes and status bits. RESET VALUE: 0

IRQ Line: This field select which VME Bus IRQ line is driven by this device. A value of zero (0) disconnect the interrupt source. RESET VALUE: 0

□ IRQ Status Register: This read-only register indicates the reason for asserting the VME Bus interrupt. The format of the data is identical to that of the Status/ID word returned by an interrupt acknowledge (IACK) cycle. It differs from the IACK cycle in that the IACK cycle will clear the status bits and cause the de-assertion of the IRQ line. The register has the following format:

Bit	15-8	7-0
Contents	Status	Logical Address

Status: Each of these bits indicates the status of a cause of interrupt. A one (1) in a bit position indicates that the corresponding source is actively requesting and interrupt.

Logical Address: This is the device's current logical address.

☐ IRQ Reset Register: This register is used to resent the interrupt function. It has the following format:

Bit	15-8	7-0
Contents	Reset Bits	Unused

Reset Bits: Writing a one (1) to any of these bits will clear the corresponding bit in the IRQ status register. This will not disable subsequent interrupt generation. Clearing all of the IRQ status bits will cause the de-assertion of the IRQ line. Writing a zero (0) has no effect.

- □ Ram 0-1: These are 32-bit general purpose RAM locations which are also accessible to the on-board DSP. See the following section regarding D16/D08 access of 32-bit registers.
- □ Send Data Register: Reading this register gets the next available word from the measurement data FIFO. The measurement data FIFO is a 32-bit device. See the following section regarding D16/D08 access of 32-bit registers.
- □ Receive Data Register: Writing to this register puts a word into the source data FIFO. The source data FIFO is a 32-bit device. See the following section regarding D16/D08 access of 32-bit registers.
- □ Count Register: The Count register contains an unsigned 16-bit integer which is the number of 16-bit words of data which are currently available from the Send Data register or which the Receive Data register is currently ready to accept. While a device is generating or accepting data, the Count register may indicate fewer than the actual number of words available.
- □ Query Response/Command Register: This register is used to send commands to and receive responses from the device. It is implemented as a 32-bit RAM location. Writing the least significant byte (highest address) clears the Command/Parameter Ready and Query Response Ready bits in the status register and interrupts the on-board DSP. See the following section regarding D16/D08 access of 32-bit registers and the communication protocol.

Parameter 1-7 Registers: These are 32-bit RAM locations used to pass parameters
along with commands to the device or query responses from the device. See the
following section regarding D16/D08 access of 32-bit registers and the communication
protocol.

32-bit Registers

Several of the A16 registers (and all other 24-bit registers) are implemented as 32-bit-only resources. These are accessible using VME Bus D16 and D08(EO) accesses. However certain restrictions apply. The affected A16 registers are:

RAM 0-1
Send Data
Receive Data
Query Response Command
Parameter 1-7

Reading 32-bit Registers

When reading a 32-bit register using 8- or 16-bit modes, a simple caching mechanism is used. On any read including the most significant byte (lowest address), the 32-bit register is read and all 32-bits are latched into the read cache. A read not including the most significant byte fetches data from the read cache, without re-reading the register. This insures that the data will be unchanged by any intervening write by the DSP (which would result in garbled data).

This mechanism also introduces a hazard. Reads of less significant bytes get data from the 32-bit register last read by a most-significant-byte read. In other words, the least significant byte can't be read first or by itself. Thus there are two important rules:

- 1 Always read all 32 bits of a 32-bit register.
- 2 Always read the most significant part first.

Writing 32-bit Registers

When writing to a 32-bit register using 8- or 16-bit modes, a simple caching scheme is also employed. On any write not including the least significant byte (highest address), the data is latched into the write cache. A write to the least significant byte causes the cached data to be written to the 32-bit register (in parallel with the current data for the least significant bytes(s).

This mechanism has its own hazards. Writes to the least significant byte will always include the most recently cashed data, whether intended for that register or not. Lone writes to the most significant part of a 32-bit register will be lost if not followed by a write to the least significant part of the same register. Thus there are two important rules:

- 3 Always write all 32 bits of a 32-bit register.
- 4 Always write the least significant part last.

Command/Response Protocol

Tł	ne Command/Response protocol uses the following resources:
	Command/Query Response register implemented as a general purpose RAM
	Three parameter registers implemented as a general purpose RAM
	Additional A24 accessible RAM contiguous with the parameter registers
	The Command Ready, Query Response Ready, Err* and Done bits of the Status
	register.

The RAM registers are the communications media, while the Status register bits provide synchronization. In general, a controller sends a command to the DSP by first writing any parameters to the parameter registers and the following RAM location. It then writes the command to the command register, which clears the Command/Parameter Ready bit and interrupts the DSP. At this point, the DSP has exclusive access to the RAM registers. The controller may not access that RAM again until the Command/Parameter Ready bit is true.

When interrupted, the DSP reads the command and its parameters, writes any response data back to the Query Response Register and any other data to the parameter registers and the following RAM and set the Command/Parameter Ready bit true.

The Query Response Ready bit is used to indicate that the DSP has written query data to the RAM registers. It is set by the software and cleared by a write of the Command Register.

The Done bit is set by DSP software when it finishes execution of a command or a command sequence. This may by long after it has set the Command/Parameter Ready bit. The DSP software clears the Done bit immediately on receipt of a new command, before it sets the Command/Parameter Ready bit.

The Err* bit is asserted (to 0) by the DSP software to indicate an error in the decoding or execution of a command. It is asserted (to 1) if the command was executed with no error. This bit must be valid before Done is set at the end of a command.

In order to avoid contention and/or invalid data reads, there are certain rules that must be observed:

- **5** A controller must not write to any of the RAM registers when Command/Parameter Ready is false.
- **6** The DSP must not write to any of the RAM registers when either Command/Parameter Ready or Query Response Ready is true.
- 7 A controller must not read any of the RAM registers when Query Response Ready is false.
- **8** The DSP must not read any of the RAM registers when Command/Parameter Ready is true.
- **9** When writing a command together with parameter, a controller must always write to the Command Register last.
- 10 When executing a command that requires it to return response data, the DSP must set the Query Response Ready bit no later than the Command/Parameter Ready bit.
- 11 The DSP must not clear the Done bit while Command/Parameter Ready is true.
- 12 The DSP must not change the Err* bit while Done is true.
- 13 A controller must not regard the done bits a valid while Command/Parameter Ready is false.
- 14 A controller must not regard the Err* bit as valid while Done is false.

Controller Protocol Examples

There are three basic procedures used by a controller, Write Command, Read Response and Wait for Done. These can be combined for more complex sequences.

Write Command

This is the procedure to send a command to the DSP.

- 15 Wait for Command/Parameter Ready true.
- 16 Write any parameters to the Parameter registers and RAM.
- 17 Write the command to the Command register.

Read Response

This is the procedure for reading a response to query command.

- 18 Wait for Query Response Ready true.
- 19 Read the data from the Query Response register and any additional data from the Parameter registers and RAM.

Wait for Done

This is the procedure to wait for command completion and check for error.

- 20 Wait for Command/Parameter Ready true.
- **21** Wait for Done true.
- 22 If $Err^* = 0$, handle error.

Complex Sequences

A robust procedure for sending a query and reading the response would look like this:

- 23 Send Command.
- 24 Wait for Done.
- **25** If no error then Read Response.

Multiple commands may be sent with a test for errors at the end of the sequence. This example sends three commands before checking for errors.

- 26 Send Command.
- 27 Send Command.
- 28 Send Command.
- 29 Wait for Done.

DSP Protocol

When a controller writes to the Command register, a DSP interrupt is generated. When responding to this interrupt, the DSP will follow this procedure.

- **30** Clear the Done bit.
- 31 Read and decode the command from the Command register.
- 32 Read any parameters from the Parameter registers and RAM.
- 33 If a response data is required:
- 34 Set Command/Parameter Ready true.
- 35 Finish command execution.
- 36 If any errors are pending set $Err^* = 0$, else set $Err^* = 1$.
- 37 Set Done true.

There are two additional requirement for the DSP:

- **38** Once it begins processing a command interrupt, the DSP must defer processing subsequent commands until it has finished.
- **39** The DSP software maintains an error(s) pending flag (and possibly and error queue) that is set by any command decoding or execution error and cleared by some other method such as an error query.

DSP Bus Registers

There are two 32-bit registers in the DSP bus address space. The VXI FPGA does not assert TA* when these registers are accessed.

200A ₁₆	DSP Command Register
200B ₁₆	Boot Register

Note that these registers appear multiple times in the memory map, since only the address lines A31-30, A17-13, A9-8 and A3-0 are used for decoding.

The A24 registers are defined as follows:

☐ Boot Register: This read/write register is used to configure the device after a device reset. It has the following format:

Bit	31-16	15	14	13	12	11-0
Contents	Unused	Spare	ST Done	Loaded	Ready	Model Code

Spare: This read/write bit has no pre-defined function.

ST Done: This bit should be written to a one (1) when the DSP successfully competes its self-test, within five seconds after SYSRESET* is de-asserted. Its initial value is zero (0).

Loaded: This bit should be written to a one (1) when (or immediately after) the DSP loads the model code, before competing its self-test. Its initial value is zero (0).

Ready: This bit is written to a one (1) to indicate that the device is ready for normal operation. Its initial value is zero (0).

Model Code: As soon as possible and within 25 ms after coming out of reset, when the DSP has valid code loaded, it should write the VXI model code to these bits. Their initial value is 0x0200.

□ DSP Command Register: This register is used to assert VXI interrupts and toggle various status register bits. Many of the bits in this register are grouped into related Clock and Value pairs. This allow the bits to be modified independently with single register writes. In order to change an output value, the Clock bit must be written as a one (1), while the Value is written as the desired output value. Writing the Clock bit as a zero (0) will not change the output state. The current state is read from the Value bit.

The DSP Command register has the following format:

Bit	31-24	23	22	21	20	19	18	17	16
Contents	Unused	FIFO Enable Clock	FIFO Enable Value	FIFO In Clock	FIFO In Value	DONE Clock	DONE Value	ERRn Clock	ERRn Value

Bit	15	14	13	12	11	10	9-8	7-0
Contents	Q Resp Ready Clock	Q Resp Ready Value	Cmd Ready Clock	Cmd Ready Value	IRQ Enable Clock	IRQ Enable Value	Unused	IRQ7-0

VT1433B User's Guide Register Definitions	

Glossary

A16 registers

Address space using 16 address lines. The VXI definition gives each VXI module 64 bytes of A16 registers.

A24 registers

Address space using 24 address lines. VXI modules can configure how much A24 address space they use.

Agilent VEE

An Agilent program for graphical programming. See VEE.

arbitrary source

A signal source capable of producing an arbitrary waveform according to the way it is programmed.

arbitration bus

See DTB arbitration bus.

ASCII

American Standard Code for Information Interchange, a standard format for data or commands.

backplane

A set of lines that connects all the modules in a VXI system.

baseband

A band in the frequency spectrum that begins at zero. In contrast a zoomed band is centered on a specified center frequency.

block mode

A mode of data-collecting used in instruments such as the Agilent/HP E1431A. The instrument stops taking data as soon as a block of data has been collected. Overlap block mode in the VT1432A and VT1433B can be configured to act exactly like block mode.

block size

The number of sample points in a block of data.

breakout box

Another name for the 8-channel input connector.

C-Library (interface library)

A library of functions, written in C language, which can be used to operate the VT1432A and VT1433B.

C-size

One of several possible sizes for VXI modules. The VT1432A and VT1433B are C-size modules.

channel-dependent commands

Commands that are channel-dependent change a parameter for each channel independently.

COLA

Constant Output Level Amplifier.

continuous mode

A mode of data-collecting used in the VT1432A, the VT1433B and in other instruments such as the Agilent/HP E1431A. The instrument collects data continuously and stops only if the FIFO overflows.

D32, D16 and D08 (EO)

The VXI Bus provides 32 data lines. Modules can use all 32 lines or 16 lines or 8 lines. For example, "D16 access" refers to data read across 16 lines.

daisy-chain

A set of instruments or modules connected together in a line. Data and instructions enter each one before being buffered and passed out to the next module in line.

decimation filter

A digital filter that simultaneously decreases the bandwidth of the signal and decreases the sample rate. The digital filter provides alias protection and increases frequency resolution. For more information, see *Spectrum & Network Measurements* available through VXI Technology.

delta sigma

A method for converting an analog input to digital data. It involves using a difference of two voltages (delta) and a summation of signals (sigma) to improve accuracy.

digitizer

An instrument which converts analog signals into digital data suitable for digital signal processing.

DRAM

Dynamic Random Access Memory.

DSP

Digital Signal Processing.

DTB arbitration bus

The VT1432A does not use the arbitration bus. The arbitration bus is part of the VXI specification and is used by some modules to request bus control.

ECL

Emitter-Collector Logic, a standard for electrical signals.

Engineering Unit (EU)

A scale factor used to convert the output of a transducer (in volts) into another unit (for example: g's).

FFT

Fast Fourier Transform.

FIFO

First-In First-Out. A buffer and controller used to transmit data. The FIFO in the VT1432A/33B input is implemented using DRAM.

freerun counter

A counter in which the bits always increment. When the freerun counter reaches all ones it resets to all zeros and continues counting.

Fs

Sample Frequency or sample rate.

group ID

Any number of channels may be declared and uniquely identified by a groupID. A channel can be a member of more than one group.

holdoff time

A circuit that detects a trigger signal will not respond to another trigger until the holdoff time has passed. This prevents a ringing signal from be detected as multiple triggers.

IACK

Interrupt ACKnowledge.

$ICP^{\mathbb{R}}$

Integrated-Circuit Piezo-electric transducer.

IRQ

Interrupt ReQuest.

VT1433B User's Guide Glossary

kSamples/s

Kilosamples per second.

LED

Light Emitting Diode.

Local Bus

A high-speed port that is defined as a standard byte-wide ECL protocol which can transfer measurement data at up to 2.62 MSamples per second from left to right on the VXI backplane.

logical address

The VXI logical address identifies where each module is located in the memory map of the VXI system.

message-based VXI device

Message-based devices communicate with the VXI Bus using high-level ASCII commands. Programming is easier and more sophisticated, but communication is slower than with register-based devices. Message-based devices can also be programmed at the register level. The VT1432A and VT1433B are register-based VXI devices.

module-dependent commands

Commands that are module-dependent change a parameter for all channels of the module; even when only one channel has been specified in the channel list.

MXI bus

A bus standard which can be used to connected multiple VXI mainframes.

overlap block mode

A mode of data-collecting in used in the VT1432A and VT1433B. It is similar to block mode except that it allows additional arms and triggers to occur before an already-acquired block is sent to the host.

pipeline mode

A Local Bus mode in which data is sent through a module and on to the next one.

Plug&Play

See VXIplug&play

RAM

Random Access Memory.

register-based VXI device

Register-based devices communicate with the VXI Bus by way of registers. They must be programmed with low-level binary commands but they can communicate faster than message-based devices. The VT1432A and VT1433B are register-based VXI devices.

registers

Memory locations in the hardware of a VXI module which can be used to program the module at a low level.

RPM

Revolutions Per Minute.

ROM

Read-Only Memory

SCA

Signal Conditioning Assembly. An example is the 4-channel input assemblies used in the VT1432A (also called Vibrato).

sample rate

The rate at which the measurement data is sampled. For the VT1432A, the sample rate is 2.56 times the frequency span. Sample rate is abbreviated "Fs" (for "sample Frequency").

settling

When settling, the digital filter waits a designated number samples before outputting any data.

SFP

see Soft Front Panel

shared memory

Memory locations in both a VXI module and in a host or controller which are shared and can be used to transmit data between the host and module.

slot 0 commander

The module which occupies the left-most slot in a VXI mainframe. It supplies important signals for the rest of the system.

SMB

Sub-Miniature "B"; a type of connector.

Soft Front Panel (SFP)

A VXI*plug&play* program which provides and easy-to-use interface for the VT1432A. It can be used in Microsoft Windows 95 or later or Windows NT.

SRAM

Static Random Access Memory.

summer

A circuit that outputs the sum of two input signals.

sync/trigger line

A TTL line on the VXI back plane, used for synchronization or triggering signals.

SYSRESET*

SYStem RESET line, part of the VXI Bus.

system module

The module with the lowest VXI logical address. It needs to be set to output the synchronization pulse for a multiple module group. All system sync pulses come from the system module.

tachometer

The tachometer produces a signal which is proportional to the rotation of a device. It can be programmed to produce one or more signals per revolution.

target

The 'target' of a library function is either a channel, a group or (rarely) a module, depending on the nature of the call. When the same library function may be called with either a channel or a group identifier, its 'target' is shown by a parameter named ID.

TTL

Transistor-Transistor Logic, a standard for electrical signals.

TTLTRG

TTL TRiGger lines, part of the VXI Bus.

VEE

Virtual Engineering Environment, a program which facilitates the setup and programming of instruments by employing a graphic user interface.

VME Bus

An industry-standard bus on the VXI backplane for module control, setup and measurement data transfers. For measurement data transfers, the Local Bus offers higher transfer rates.

VXI

VME Extensions for Instrumentation, a standard specification for instrument systems.

VXIplug&play

A set of standards which provides VXI users with a level of standardization across different vendors beyond what the VXI standard specifications spell out.

zoom

In instruments that support zoom, a frequency span can be selected around a specified center frequency so that a specific frequency band can be focused on.

VT1433B User's Guide Glossary

Index

Numerics	block diagram, 5-10
32 hit registers A 10	arbitrary source, 6-3
32-bit registers, A-10 writing, A-10	decimation filter, 3-17
4-channel input, 4-7, 4-10, 7-2	tachometer, 7-3 VT1433A, 5-3
8-channel input, 5-7, 6-5, 7-5	block mode, 3-32, 3-33, 4-24, 4-25
8-channel input (break out box), 8-3	block size, 5-2
	BOOTED state, 3-26, 3-27, 4-19, 4-20
A	BOOTING state, 3-26, 3-27, 4-19, 4-20
A16 address areas 5 10	bound mode, 3-31
A16 registers 5 12 A 2	break out box, 8-3
A16 registers, 5-12, A-2 A24 address space, 5-10	grounding, 8-4 ICP, 8-3, 8-4
A24 registers, 5-11, A-4	voltage, 8-3, 8-4
A32 address space, 5-10	break out box cable, 8-5
A-bus, 5-10	breakout box, 5-7, 6-5, 7-5
AC/DC coupling, 5-2	bsrcrand.vee (example program), 2-16
access LED, 5-7, 6-5, 7-5	bsrcsine.vee (example program), 2-16
acs LED, 5-7, 6-5, 7-5	burst mode, 6-2
address space, 5-10	burst source random, 2-16
Agilent VEE	burst source sine, 2-16
example programs, 2-10 help, 2-11	bus A, 5-10
amplifier, constant output level, 6-2	B, 5-10
arbitrary mode, 6-2	data transfer, 5-8
arbitrary output, 5-2, 6-2	DTB, 5-8
arbitrary source	local, 5-9
block diagram, 6-3	priority interrupt, 5-8
connectors, 6-5	utility, 5-8
front panel, 6-4 LEDs, 6-5	VME, 5-9 Bus
arbitrary source firmware, 6-5	VXI, 3-9, 4-12, 5-10, 5-14
arbitrary source option, 6-2	711, 5 5, 1 12, 5 10, 5 11
arm, 3-29, 4-22	C
ARM state, 3-27, 3-28, 4-20, 4-21	Č
assembly	cable part numbers, 10-10, 10-11, 10-12
removing A1/A11, 10-23	cable, break out box, 8-5
removing A2, 10-18 removing A22/A24, 10-22	Cal, 5-7
removing A22/A24, 10-22 removing A41, 10-21	cal connector, 5-15
removing A5, 10-20	calibration, 5-15 channel group, 3-7
replaceable parts, 10-5, 10-7, 10-9	channel ID, 3-36, 4-4, 4-10, 4-29
auto arm, 3-29, 4-22	clock, 3-25, 4-18
auto trigger, 3-29, 4-22	external sample, 5-14
auto-zero, 5-15	COLA, 6-2, 6-5
D.	command/response protocol, A-11
В	complex sequences, A-13
backdating, 11-2	configuration, hardware, 3-7 connectors
backplane connections, 5-8	Cal, 5-7
base sample rate, 3-17	COLA, 6-5
baseband, 3-17	ExSamp, 5-7
baseband decimation filter, 3-17	ExTrig, 5-7, 7-5
B-bus, 5-10	input, 5-7, 6-5, 7-5

Shut, 6-5 Tach1, 7-5 Tach2, 7-5 connectors SMB, 5-7, 6-5, 7-5 constant output level amplifier, 6-2, 6-5 continuous mode, 3-32, 3-33, 4-24, 4-25 control measurement, 3-25, 4-18 control register, A-7 controller protocol examples, A-12 count division, 7-3 count register, A-9 coupling, 5-2	exact RPM triggering, 7-2 example programs Agilent VEE, 2-10 Visual Basic, 2-19 exit button (SFP), 2-9 ExSamp, 5-7 external access, 5-10 external sample clock, 5-14 external shutdown, 6-2 external trigger, 3-29, 4-22, 5-13, 5-14, 7-2 external trigger input, 7-2 ExTrig, 5-7, 7-5
covers	F
part numbers, 10-5, 10-7, 10-9 removing, 10-14	foiled LED 5.7.6.5.7.5
create group, 3-7, 3-8, 4-11	failed LED, 5-7, 6-5, 7-5 features, 5-2
current RPM value, 5-2	FIFO architecture, 3-15
D	files
D	header, 3-6, 4-3 library, 3-6, 4-3
D32, 5-2	find module, 3-7
data	firmware, source, 6-5
transfer bus, 5-8	FP file, 3-6
transferring, 5-9	free-running clock line, 5-13
data buffer, 5-2 data flow diagram, 3-15	frequency response function random, 2-16 frequency, external clock, 5-14
data transfer modes, 3-32, 4-24	frf_rand.vee (example program), 2-16
decimation, 5-2	front panel, 5-5, 5-6, 5-7, 6-5, 7-5
decimation filter	arbitrary source, 6-4
baseband, 3-17 default logical address, 1-4	part numbers, 10-13
default values, parameters, 4-5	removing, 10-15
delete group, 3-7	G
device	3
message-based, A-2	general features, 5-2
register-based, A-2 device type register, A-5	getting started, 2-2
diagnostics, 9-2	global parameters, 4-5 glossary (rear of manual), 2-1
disassembly, 10-14	go button (SFP), 2-9
display button (SFP), 2-9	ground, 5-8
division	group
input count, 7-3 dll file, 3-6	channels, 3-7, 3-9
done, wait for, A-13	create, 3-7, 3-8, 4-11 delete, 3-7
DRAM, 3-15, 5-10	get info, 3-8
driver	input channels, 3-8
VXIplug&play, 2-5, 2-6, 3-3, 3-6	modules, 3-9
DSP bus registers, A-14 DSP command register, A-15	source channels, 3-8 tach channels, 3-8
DSP protocol, A-13	group ID, 4-10, 4-11
DTB arbitration bus, 5-8	grouping of channels, 4-12
dynamic configuration protocol, A-5	grouping of modules, 4-12
Dynamic RAM, 5-10	TT
E	Н
L	hardware configuration, 3-7
eight-channel input	header files, 3-6, 4-3
See 8-channel input	help
error messages, 4-2 errornumbers, 4-2	Agilent VEE, 2-11
onomamoon, 12	SFP, 2-5

VXIplug&play, 3-39 Windows, 3-5 holdoff time, 7-3 host interface libraries installing, 2-3, 2-5, 2-6 host interface Library, 4-2 Host Interface Library, 5-10, A-2 hpe1432_32.dll, 3-6 HP-UX 10.2, 2-3 HP-UX 9.05, 2-3 I icon, 3-6 ICP, 5-2, 8-4 IDLE state, 3-26, 3-27, 3-28, 4-19, 4-20, 4-21 incoming inspection, 1-2 initialization, 3-7 initiation, 3-26, 4-19 input, 5-2, 5-7, 6-5, 7-5 external trigger, 7-2 ICP, 8-4 tachometer, 7-2 trigger, 3-29, 4-22 voltage, 8-4 input button (SFP), 2-8 input count division, 7-3 input, 4-channel, 4-7, 4-10, 7-2 interface libraries installing, 2-3, 2-5, 2-6 interrupts handling, 3-34, 4-27 host handling, 3-36, 4-28 host setup, 4-27 mask, 3-34, 4-26 IRQ config register, A-8 IRQ reset register, A-9	manual arm, 3-29, 4-22 manual trigger, 3-29, 4-22 meas button (SFP), 2-8 MEASURE state, 3-27, 3-28, 4-20, 4-21 measurement control, 3-25, 4-18 measurement control (SFP), 2-8 measurement initiation, 3-26, 4-19 measurement loop, 3-27, 4-20 measurement process, 3-25, 4-18 measurement setup, 3-25, 4-18 memory map, 5-10 memory, shared, 5-10 message-based device, A-2 message-based device, A-2 messages, error, 4-2 minimum.vee (example program), 2-14 mode block, 3-32, 3-33, 4-24, 4-25 continuous, 3-32, 3-33, 4-24, 4-25 data transfer, 3-32, 4-24 overlap block, 3-32, 3-33, 4-24, 4-25 module features, 5-2 module, find, 3-7 modules, more than one, 3-9, 4-12 monitoring, tachometer, 7-2 multiple mainframes, 3-11, 4-14 limitations, 3-11, 4-14 limitations, 3-11, 4-14 phase performance, 3-12, 4-15 setup, 3-14, 4-17 multiple modules, 5-2 multiple-mainframe measurements, 3-9, 4-12 N noise mode, 6-2 numbers, error, 4-2
IRQ status register, A-9	offset register, A-7
L LEDs, 5-7, 6-5, 7-5 level mode, 3-31 level, trigger, 7-2 libraries installing, 2-3, 2-5, 2-6 library files, 3-6, 4-3 library, host interface, 4-2 local bus, 5-9 Local Bus, 5-2 logic level, 1-3 logical address register, A-5 logical address setting, 1-4 loop, measurement, 3-27, 4-20 M mainframes, more than one, 3-9, 3-11, 3-12, 3-14, 4-12, 4-14, 4-15, 4-17	order.vee (example program), 2-16 Out (source output), 6-5 output level amplifier, constant, 6-2 overlap, 5-2 overlap block mode, 3-32, 3-33, 4-24, 4-25 overload detection, 5-2 P page map register, A-8 parameter 1-7 registers, A-10 parameters changes, 4-5 channel-specific, 3-36, 4-4, 4-5, 4-29 default values, 4-5 global, 3-36, 4-4, 4-5, 4-29 list, 4-5 settings, 3-26, 4-19 settling, 4-5 source, 4-8

tachometer, 4-9	A5 assembly, 10-20
types, 3-36, 4-4, 4-29	replaceable parts
part numbers	assemblies, 10-5, 10-7, 10-9
assemblies, 10-5, 10-7, 10-9	cables, 10-10, 10-11, 10-12
cables, 10-10, 10-11, 10-12	front panel, 10-13
front panel, 10-13	reset
port control register, A-7	hardware, 5-8
power supplies, 5-8	software, 5-8
pre-arm, 3-29, 4-22	response, read, A-12
pre-trigger delay, 5-2	RPM, 5-2
priority interrupt bus, 5-8	RPM step arm, 3-29, 4-22 RPM triggering, 7-2
programs example, 2-10	Ki wi uiggeiiig, 7-2
Visual Basic, 2-19	S
protocol	3
command/response, A-11	sample clock
controller, A-12	external, 5-14
DSP, A-13	sample rate, 3-17, 5-2
VXI Bus dynamic configuration, A-5	source, 3-17, 3-24
•	scenarios (examples)
Q	Agilent VEE, 2-10
¥	Visual Basic, 2-19
query response/command register, A-9	scope.vee (example program), 2-10
	send data register, A-9
R	sequences
	complex, A-13
RAM, 5-10	SETTLING state, 3-26, 3-27, 4-19, 4-20
RAM locations (registers), A-9	settling, parameters, 4-5
random mode, 6-2	setup, measurement, 3-25, 4-18
random noise, 5-2	SFP (Soft Front Panel), 2-7
read response, A-12	help, 2-5
receive data register, A-9	shared memory, 5-2, 5-10
register	Shut, 6-5
32-bit, A-10	shutdown, 6-2
A16, 5-12, A-2	SICL, 2-3, 4-2 sine mode, 6-2
A24, 5-11, A-4	sine output, 5-2
control, A-7	SMB connectors, 6-5, 7-5
count, A-9 definitions, A-2	SMB Connectors, 5-7
device type, A-5	source
DSP bus, A-14	See arbitrary source
DSP command, A-15	button (SFP), 2-8
IRQ config, A-8	features, 5-2
IRQ reset, A-9	parameters, 4-8
IRQ status, A-9	sample rate, 3-17
logical address, A-5	trigger, 3-29, 4-22
offset, A-7	source firmware, 6-5
page map, A-8	Source LED, 6-5
parameter 1-7 registers, A-10	source option, 6-2
port control, A-7	span, 3-17
query response/command, A-9	Splug&play
RAM locations, A-9	VXIplug&play, 3-3
send data, A-9	SRAM, 5-10
status, A-5	starting, 2-2 state
VXI Bus, A-5	ARM, 3-27, 3-28, 4-20, 4-21
register-based devices, 3-28, 4-21, A-2	BOOTED, 3-27, 4-20
removing A1/A11 assembly, 10-23	BOOTED, 3-26, 4-19
A2 assembly, 10-18	BOOTING, 3-26, 3-27, 4-19, 4-20
A22/A24 assembly, 10-22	IDLE, 3-26, 3-27, 3-28, 4-19, 4-20, 4-21
A41 assembly, 10-21	MEASURE, 3-27, 3-28, 4-20, 4-21

SETTLING, 3-26, 3-27, 4-19, 4-20 TESTED, 3-26, 3-27, 3-28, 4-19, 4-20,	V
TRIGGER, 3-27, 3-28, 4-20, 4-21 static RAM, 5-10 status LEDs, 5-7, 6-5, 7-5 status register, A-5 summer, 6-2 Support, ix Support Resources, ix sync/trigger line, 3-25, 3-26, 3-27, 3-28, 4-18, 4-19, 4-20, 4-21, 5-13 synchronization multiple-mainframe, 3-14, 4-17 TTLTRG, 5-13 synchronous sampling, 5-2 SYSRESET*, 5-8 system requirements, 2-3	veetest, 2-10 Vibrato See 4-channel input view detail button (Agilent VEE), 2-11 view panel button (Agilent VEE), 2-11 VISA, 2-3 Visual Basic example programs, 2-19 VME Bus, 5-2, 5-9 VXI backplane connections, 5-8 button (SFP), 2-9 Local Bus, 5-2 VXI Bus, 3-9, 4-12, 5-10, 5-14 dynamic configuration protocol, A-5 registers, A-5 VXIplug&play driver, 2-5, 2-6, 3-3, 3-6 help, 3-39 overview, 3-3 VXIplug&play library, 2-3
Tach1, 7-5 Tach2, 7-5	VXIplug&play library, 2-3
tachometer block diagram, 7-3	\mathbf{W}
edge trigger, 3-29, 4-22 features, 5-2 parameters, 4-9 tachometer input, 7-2 tachometer monitoring, 7-2 tachometer option, 7-2 Technical Support, ix TESTED state, 3-26, 3-27, 3-28, 4-19, 4-20, 4-21 transferring data, 5-9 trigger, 3-15, 3-29, 4-22, 5-2 analog, 7-2	wait for done, A-13 Windows Help, 3-5 write command, A-12
arbitrary source, 6-2 auto, 3-29, 4-22 external, 3-29, 4-22, 5-13, 5-14, 7-2 input, 3-29, 4-22 LED, 5-7 lines, 5-13 manual, 3-29, 4-22 source, 3-29, 4-22 tachometer edge, 3-29, 4-22 TTL, 5-13, 7-2 Trigger LED, 7-5 trigger LED, 7-5 trigger level, 3-31, 7-2 TRIGGER state, 3-27, 3-28, 4-20, 4-21 triggering exact RPM, 7-2 troubleshooting, 9-2 TTLTRG lines, 5-13	
U	
up/down RPM, 5-2 update source firmware, 6-5 utility bus, 5-8	

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com