TI-36X II

Scientific Calculator
USER'S GUIDE

Table of Contents

	Turning the Calculator On and Off........................ 1
	Alternate Functions... 1
	Display... 2
	Scrolling.. 2
	Menus.. 3
	Fix... 3
	Clearing, Correcting, and Resetting 4
	Display Indicators .. 5
	Order of Operations ... 6
	Basic Operations .. 7
	Last Answer... 7
	Percent ... 9
	Fractions... 10
	Exponents, Roots, and Reciprocals 11
	Notation ... 12
	Pi .. 13
	Memory... 14
	Stored Operations ... 16
	Logarithms... 18
	Trigonometric Functions 20
	Angle Modes.. 22
	Rectangular \leftrightarrow Polar ... 24
	Hyperbolic Functions .. 25
	Metric Conversions .. 26
	Physical Constants .. 28
	Integrals.. 30
	Probability.. 32
	Statistics ... 34
	Boolean Logic Operations 39
	Number-System Modes.................................... 40
	Complex Numbers.. 41
	Error Conditions... 43
	In Case of Difficulty.. 45
	Battery Replacement....................................... 45
	Service Information.. 46

Turning the Calculator On and Off

The TI-36X II is battery powered.

- To turn on the TI-36X II, press ON.
- To turn off the TI-36X II, press 2nd[0FF]. All data in memory is retained.
APD ${ }^{\text {TM }}$ (Automatic Power Down ${ }^{\text {TM }}$) turns off the TI-36X II automatically if no key is pressed for about five minutes. Press ON after APD to power up again; the display, pending operations, settings, and memory are retained.

Alternate Functions

Most keys can perform two functions. The first function is marked on the key, and the second function is marked above the key, as illustrated below.

2nd function	$\sqrt{ }$
Primary function	x^{2}

Press 2nd to activate the second function of a key. To cancel the second function before making an entry, press 2nd again. In this manual, second functions are shown in brackets ([]). For example, press x^{2} to find the square of a number. Press $2 n d[\sqrt{ }]$ to find the square root of a number.

1

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 1 of 48

Display

The TI-36X II has a two-line display. The first line (Entry Line) displays an entry of up to 88 digits or items (47 for Stat or Stored Operations). Entries begin on the left; those with more than 11 digits scroll to the left. You can have as many as 23 levels of parentheses and up to 8 mathematical operations pending.

The second line (Result Line) displays a result of up to 10 digits, plus a decimal point, a negative sign, a x10 indicator, and a 2-digit positive or negative exponent. Results that exceed the digit limit are displayed in scientific notation.

Note: In the text, numbers containing decimal fractions are shown in decimal format consistent with the calculator display.

Scrolling

Scroll with $(1),(1), \odot$, and \odot.

- Press (1) and (1) to scroll horizontally through the current or previous entries, or to move the underscore within a menu list. Press 2nd] (1) or 2nd (1) to move the cursor to the beginning or end of the entry.
- After an expression is evaluated, press Θ and Θ to scroll through previous entries, which are stored in the TI-36X II history. If you edit a previous entry and press ENTER, the calculator will evaluate the new expression and return the new result.

Menus

Some key presses access menus: STO*, MEMVAR, TRIG, LOGIC, STATVAR, DRG, ['m, Coñver, 2nd [RCL],
2nd [CLRVAR], 2nd [LOG], 2nd [R P], 2nd [HYP],
2nd [CONST], 2nd [PRB], 2nd [STAT], 2nd [EXIT STAT],
2nd [SCI/ENG], 2nd [FIX], 2nd [COMPX], and 2nd [RESET].
The menu choices are displayed on the screen. Press (1) or (1) to scroll through the menu and underline an item. To select an underlined item

- Press ENTEER while the item is underlined. Or,
- For menu items followed by an argument value, enter the argument value while the item is underlined. The item and the argument value are transferred to the current entry. However, if the argument is another function, you need to press ENTER to select the first function before proceeding to the next.

To return to the previous screen without selecting the menu item, press CLEAR.

Fix
2nd [FIX] displays a menu: F0123456789. To round displayed results, scroll with (1) or (4) to select the desired number of decimal places, or enter the numeral corresponding to the desired number of decimal places. The displayed value is padded with zeroes if needed. To restore standard notation (floating decimal), select \mathbf{F} (default) in the menu, or press $2 n d[$ FIX $]$.

You can specify rounding places before you begin your calculations, before you complete an operation with ENTER, or after the results are displayed.

Clearing, Correcting, and Resetting

You can overwrite entries. Move the cursor to the desired location and begin pressing keys. The new keypresses will overwrite the existing entry, character by character.

Before beginning a new set of examples or problems in this manual, reset the calculator to ensure that your displays will be the same as those shown.

4

Ti36eng1.doc TI-36X II Manual Linda Bower Revised:

 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 4 of 48
Display Indicators

Special indicators may appear in the display to provide additional information about functions or results.

Indicator	Meaning
2nd	2nd function is active.
FIX	Calculator is rounding results to specified number of places.
SCI or ENG	Scientific or engineering notation is active.
STAT	Calculator is in Statistics mode.
$\begin{aligned} & \text { DEG, RAD, } \\ & \text { or GRAD } \end{aligned}$	Specifies angle-unit setting (degrees, radians, or grads). The default is the degree setting.
HEX or OCT	Calculator is in hexadecimal or octal mode.
x10	Precedes the exponent in scientific or engineering notation.
$\uparrow \downarrow$	An entry is stored in memory before and/or after the active screen. Press Θ and \odot to scroll.
$\rightarrow \leftarrow$	An entry or menu list extends beyond the capacity of the screen. Press (1) and (1) to scroll.
rori	Complex number, real part, or complex number, imaginary part.
(1)	Calculator is busy.

5

Ti36eng1.doc TI-36X II Manual Linda Bower Revised:

 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 5 of 48
Order of Operations

The TI-36X II uses EOS ${ }^{\text {TM }}$ (Equation Operating System) to evaluate expressions.	
Order	Evaluation
1st	Expressions inside parentheses.
2nd	Functions which need a) and precede the argument, such as $\boldsymbol{\operatorname { s i n }}, \log$, and all $\mathbf{R} \leftrightarrow \mathbf{P}$ menu items; Boolean Logic NOT and 2's complement.
3rd	Fractions.
4th	Functions that are entered after the argument, such as x^{2} and angle unit modifiers (${ }^{\circ}{ }^{\prime \prime \prime}{ }^{\prime \prime}$); metric conversions.
5th	Exponentiation (\wedge) and roots ($\sqrt{ }$).
6th	Negation (-).
7th	Permutations (nPr) and combinations (nCr).
8th	Multiplication, implied multiplication, division.
9th	Addition and subtraction.
10th	Boolean logic AND.
11th	Boolean logic XOR and OR.
12th	
13th	ENTIER completes all operations and closes all open parentheses.

You can change the order of operations by enclosing expressions in parentheses.

6

Ti36eng1.doc TI-36X II Manual Linda Bower Revised:

 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 6 of 48
Basic Operations

As you press keys，numerals，operators，and results appear on the display．	
	Enters numerals 0 through 9 ．
円，\rightarrow ，区，团	Adds，subtracts，multiplies， divides．
（1），	Opens，closes a parenthetical expression．
\bigcirc	Inserts the decimal point．
－1	Enters a negative sign．
ENERER	Completes all operations．

Last Answer

2nd［ANS］recalls the value of the most recently calculated result and enters it into the current entry as Ans．

If you press an operator key immediately after completing an operation with ENTER，the most recently calculated result is recalled and entered as Ans．

7

Ti36eng1．doc TI－36X II Manual Linda Bower Revised： 01／10／03 10：47 AM Printed：01／10／03 10：47 AM Page 7 of 48

Examples	
5 －9田6■2 ENIER	5＊9＋6－2
	DEG
$\bigcirc 8 \square 7$ ENIERPR	Ans／8．7
	8.390804598 DEG
2nd $[\mathrm{FIX}]$（1）（1）（1）（1）	F0123456789
	deg
ENTER	$\begin{array}{cc} \text { Ans/8.7 } \\ & 8.391 \\ \text { FIX } & \\ \text { DEG } \end{array}$
5囚2田［2nd［ANS］［2nd［FIX］ 6	$5 * 2+\text { Ans }$
ENTER	18.390805
2nd［ FIX$]$ ¢	$\underset{\substack{5 * 29 \\ \text { 2+Ans } \\ 18.3908046 \\ \text { DEG }}}{ }$
$\odot \odot \odot$	$5 *(9+6)-2$＊
	deg
（1）（1）（1）［DEL［2nd［INS］ 8 ENETER	$5 *(8+6)-2{ }_{\text {DEG }}^{68 .}$
2nd［RESET］（1）EENTEER	MEM CLEARED
	deg
8	

Ti36eng1．doc TI－36X II Manual Linda Bower Revised： 01／10／03 10：47 AM Printed：01／10／03 10：47 AM Page 8 of 48

Percent

To calculate a percent，press［2nd［\％］after entering a value．	
Aroblem	
3 －percent concentration of metal， 7300 tons having a	
2．3－percent concentration，and 8400 tons having a	
3．1－percent concentration．How much metal does the company get in total from the three quantities of ore？	
If the metal is worth $\$ 280$ per ton，what is the value of the total amount of metal present in the three quantities of ore？	
5000 ® 3 2nd［\％］ENIER	
	5000＊3\％
	$150 .$
母7300囚2『3 2nd［\％］ ENITER	Ans＋7300＊2．${ }^{-1}$
	317.9
	deg
円 8400 区 3 － 1 ［ 2nd［\％］ ENERER	Ans＋8400＊3．${ }^{-1}$
	578.3
	DEG
区 280 ENTER	Ans＊280
	$161924 .$

The three quantities of ore together contain 578.3 tons of metal．The value of the metal is $\$ 161924$ ．

Fractions

Fractional calculations can display fractional or decimal results. Results are automatically simplified.	
Ab/c	Enters a fraction. Press Ab / C after entering whole number, and between numerator and denominator, both of which must be positive integers. To negate a fraction or a mixed number, press Θ before entering the first argument.
2nd [Ab / C ¢ d / d]	Converts from mixed number to simple fraction, and vice versa.
2nd [$\mathrm{F} \rightarrow \mathrm{D}$]	Converts from fraction to decimal format and vice versa. Note: Due to display size, not all decimal numbers can be converted to fractions.

If a problem contains both fractions and decimals, the results will be displayed in decimal format.

䁳	Examples
$4 \mathrm{Ab/c} 3 \mathrm{Ab} / \mathrm{C} 5$ + $2 \mathrm{Ab} / \mathrm{C} 1 \mathrm{Ab} / \mathrm{C}$	4 4 3 3 5 +2 2 1 د 5^{\uparrow}
5 ENTER	6ı4/5
	deg
2nd [Ab / C ¢ $\mathrm{d} / \mathrm{]}$] ENTER	Ans $\mathrm{A}^{\mathrm{b}} / \mathrm{c}$ \% ${ }^{\text {d }}$ \%
	34/5
	DEG
2nd [$\mathrm{F} \rightarrow \mathrm{D}$] ENTER	Ans>F»D
	6.8
	deg
区 (-) 3 Ab/C 10 ENTEER	Ans*-3 10
	-2.04
	DEG

10

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 10 of 48

Exponents, Roots, and Reciprocals

x^{2}	Calculates the square of a value.	
®	Raises a value to any power within the range of the calculator. If the number is negative, the power must be an integer. If you include an operation in the exponent, you must use parentheses.	
[2nd[[\checkmark]	Calculates the square root of a positive value.	
[2nd $\left[\frac{x}{x}\right]$	Calculates any root of any positive value (within the range of the calculator) and any odd-numbered integer root of a negative value.	
2nd [$x^{-1]}$	Yields the reciprocal of a value.	
-	Examples	
		$5^{2}+4^{\wedge}(2+1)$
2nd [$\sqrt{ }$] 490 ENTER		$\sqrt{(49)} \quad 7$.
6 [nd [$\left.\mathrm{x}_{\text {x }}\right] 64$ [ENTEER		$6^{x} \sqrt{64}$
		deg
25 [2nd [$x-1$] ENTER		$25^{-1} \underbrace{0.04}_{\substack{\text { che } \\ \text { DEG }}}$

Notation

2nd [SCI/ENG] displays the Numeric Notation mode menu.

- FLO (default): Displays results in floating notation, with digits to the left and right of the decimal point.
- SCI: Displays results in scientific notation. The format of scientific notation is $\mathbf{n} \times 10^{\wedge} \mathrm{p}$, where $1 \leq n<10$ and p is an integer.
- ENG: Engineering notation (exponent is a multiple of 3).

These modes affect only the display of results, and not the internally stored results.

EE lets you enter a value in scientific notation, regardless of the numeric notation mode. Press (-)) before entering a negative exponent

-	Examples
$1 \cdot 2$ [EE $5+4 \cdot 6$ EEE 7 ENTIER	$\begin{gathered} 1.2 \mathrm{E} 5+4.6 \mathrm{E} 7 \\ 46120000 . \\ \text { DEG } \end{gathered}$
2nd [SCI/ENG] (1) EETIER	$\begin{array}{r} 1.2 \mathrm{E} 5+4.6 \mathrm{E} 7 \\ 4.612_{\text {x10 }} \uparrow \\ \text { sCI } \quad \text { DEG } \end{array}$
2nd [SCI/ENG] (1) ENTER	

Pi

π enters the value of π. It is stored internally to 13 digits (3.141592653590) and displayed to 10 digits (3.141592654).		
When multiplying π by a number, you do not need to press \boldsymbol{x}; multiplication is implicit.		
[-0] Examples		
Find the circumference and the area of a circle having a radius of 5 centimeters. Find the surface area of a sphere having a radius of 5 centimeters. (Remember: circumference $=2 \pi r$; area $=\pi r^{2}$; surface area $=(4 \pi) r^{2}$.) Use the Fix function to display results rounded to the nearest whole number.		
$\begin{aligned} & \text { 2nd }[F I X] \odot \text { ENTER } 2 \pi \boxtimes 5 \\ & \text { [ENTER] } \end{aligned}$	$2 \pi * 5$	
		31.
	FIX	deg
(-) DEL (1) (1) (1) x^{2} ENTEER	$\pi * 5^{2}$	
		79.
	FIX	DEG
¢ 2nd [INS] 4 ENTER	$4 \pi * 5^{2}$	
	FIX	$314 .$

The circumference of the circle is 31 centimeters, and the area is 79 square centimeters. The surface area of the sphere is 314 square centimeters.

Memory

The TI-36X II has five memory variables. You can store a real number or an expression that results in a real number to a memory variable. For storing complex numbers to memory, see page 31.

STO	Lets you store values to variables.
2nd[RCL]	Recalls the values of variables.
MEMVAR	Recalls variables by letter designation.
2nd[CLRVAR]	Displays menu: CLR VAR: \mathbf{Y} N. Select \mathbf{Y} (yes) and press ENTER to clear all memory variables and re-initialize seed in \mathbf{E}.

When you press STO*, a menu of variables displays:
A, B, C, D, and E. Press (1) or (1) to select a variable.
Press ENTER, and the value of your last answer is stored into the variable you have selected. If that variable already contains a value, the new one will replace it.

If you enter an expression and press STO and then ENTER, the TI-36X II will simultaneously evaluate the expression and store the resulting value to the memory variable you select.

Press 2nd [RCL] to display the menu of memory variables. Press (1) or (4) to select the variable you wish to recall and press ENTERR. The value in this variable is inserted into your current entry at the cursor.

Pressing MEMVAR also displays the menu of memory variables, and you select the one you wish to recall. However, the variable name rather than the value itself is inserted into your current entry. Since the variable name contains the value, evaluation of the expression yields the same results.

In addition to serving as a memory variable，E stores a seed value to generate a random number when you are using the Probability function（see page 32）．
囲 Problem
A gravel quarry is opening two new pits：one is 350 meters by 560 meters，and the other is 340 meters by 610 meters．What volume of gravel would the company remove from each if they excavated to a depth of 150 meters？To a depth of 210 meters？Display results in engineering notation．

2nd［SCI／ENG］（1）（1）EETIER 350 区	$350 * 560 \rightarrow A$
560 STO ENTER	$\begin{gathered} \text { ENG } \\ { }^{196} ._{\cdot 10} 03 \\ \text { DEG } \end{gathered}$
340×610 STO＊（1）ENTER	$\begin{array}{r} 340 * 610 \rightarrow B \\ 207.4_{x 10} 03 \end{array}$
150 区 2nd［RCL］ENTER ENTEER	$\begin{gathered} 150 * 196000 \\ 29.4_{\text {x10 }} 0^{\uparrow} \\ \text { DNG } \end{gathered}$
210 2nd［RCL］ENTER ENTER	$\begin{gathered} 210 * 196000 \\ 41.16_{\text {r10 }} 06 \\ \text { ENG } \begin{array}{c} \text { DEG } \end{array} \end{gathered}$
150 ® MEMVAR（1）ENTER ENTER	$150 * \mathrm{~B}$
210 ® MEMVAR（1）ENTER ENTER	$\begin{gathered} 210 * B \\ 43.554_{\text {x10 }} 06 \\ \text { ENG } \\ \text { DEG } \end{gathered}$

From the first pit： 29.4 million cu．m．and 41.16 million cu．m．，respectively．From the second pit： 31.11 million cu．m．and 43.554 million cu．m．，respectively．

Stored Operations

The Tl-36X II stores two operations, Op1 and Op2. To store an operation to Op 1 or Op 2 and recall it:

1. Press $2 n d\left[>O P_{1}\right]$ or $2 n d\left[>O P_{2}\right]$.
2. Enter the operation, beginning with an operator (such as,,$+- \times, \div$ or \wedge). You can store any combination of numbers, operators, and menu items and their arguments, to a limit of 47 characters or items.
3. Press ENTER to save the operation to memory.
4. Each subsequent time you press $\triangle \mathrm{OP}_{1}$ or $[\mathrm{OP2} 2$, the TI-36X II recalls the stored operation and applies it to the last answer. The expression with the stored operation appears on the first line of the display, and the result appears on the second line. A counter on the left side of the result line displays the number of consecutive times you have pressed Op1 or Op2.
You can set the TI-36X II to display only the counter and the result, and not the expression on the entry line. Press 2nd [$>O P_{1}$] or 2nd [$>O P_{2}$], press (1) until the $=$ is highlighted (\boldsymbol{E}) and press ENTER. Repeat to toggle this setting off.

-		Examples
[2 d $[2 O P 1]$] 2 ENIER	OP1=*2	
		deg
3 OP1	3*2	${ }^{+}$
	deg	
OP1	6*2	
OP1	12*2	
	$3{ }_{\text {deg }}{ }^{\text {24. }}$	
2nd [$\left.20 P_{2}\right]$ [5 ENENER	OP2=+5	
	deg	
1000^{3}	10+5	
		${ }_{\text {deg }} 15 .$
OP2	15+5	+
	2	$20 .$
00^{2}	20+5	+
	$3 \quad 25$.	
OP1	$\begin{aligned} & 25 * 2 \\ & 1 \end{aligned}$	${ }_{\text {deg }} 50$.
00^{2}	$\begin{aligned} & 50+5 \\ & 1 \end{aligned}$	+
		55. DE

17

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 17 of 48

Logarithms	
[2nd[LOG] displays a menu of log functions.	
\log Yields the common logarithm of a number.	
10^ Raises 10 to the power you specify.	
Yields the logarithm of a number to the base e ($\mathrm{e}=2.718281828495$).	
$\mathrm{e}^{\wedge} \quad$ Raises e to the power you specify.	
Select the function on the menu, then enter the value and complete the expression with \square.	
-	Examples
2nd [LOG]	$\log 10^{\circ}$
	deg
100口ENTER	$\log (100)$
	${ }_{\text {deg }}{ }^{2}$
2nd [LOG] (1) 3@ 2 [$10^{\wedge}(3.2)$
	1584.893192 DEG
	$\ln (9.453)$
	$\underset{\text { DEG }}{2.24632151}$
2nd [LOG] © $4 \bigcirc 7$ [$\mathrm{e}^{\wedge}(4.7)$
	$\underset{\text { DEG }}{109.9471725}$

Problem
A radioactive substance decays exponentially. If y_{0} grams of certain radioactive substance are initially ${ }^{\circ}$ present, the number of grams $y(t)$ after t days is given by the formula:

$$
y(t)=y_{0} e^{-0.00015 t}
$$

After 340 days, how much of a 5-gram sample of this radioactive substance remains? After 475 days? Store the constant part of the exponent to memory so you need enter it only once. Round results to two decimal places.

(-) $0 \bigcirc 00015$ STO ENTER	$\begin{gathered} -0.00015 \rightarrow \mathrm{~A} \\ -0.00015 \\ \mathrm{DEG} \end{gathered}$
5 ® 2nd [LOG] (1) (1) (1) ENIER	$5 * \mathrm{e}^{\wedge}(\mathrm{A} * 340)$
MEMVAR 区 340 EENIER	$\begin{gathered} 4.751393353 \\ \text { DEG } \end{gathered}$
2nd [FIX] 2	$5 * \mathrm{e}^{\wedge}(\mathrm{A} * 340)$
	4.75
	FIX DEG
5 ® 2nd [LOG] (1) (1) (1) ENIER	$5 * \mathrm{e}^{\wedge}(\mathrm{A} * 475)$
MEMVAR 区 475 - ENIER	4.66
	FIX DEG

About 4.75 grams of this radioactive substance remain after 340 days, and 4.66 grams remain after 475 days.

19

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 19 of 48

Trigonometric Functions
TRIG displays a menu of the trigonometric functions $\left(\boldsymbol{\operatorname { s i n }}, \boldsymbol{\operatorname { s i n }}^{-1}, \boldsymbol{\operatorname { c o s }}, \boldsymbol{\operatorname { c o s }}^{-1}, \tan , \boldsymbol{t a n}^{-1}\right)$. Press © (1) or (1) to select the desired function, enter the value, and close the parentheses with \square.
Set the desired angle mode before starting trigonometric calculations. The problems below assume the default, which is degree mode. See the section on Angle Modes (page 22) for other angle modes.

[Examples
TRIG (1) (1)	$\underline{\cos } \cos ^{-1} \rightarrow$
	deg
$30 \square 2 \mathrm{nd}$ [FIX] 4 ENTER	$\begin{array}{cc} \cos (30) \\ & \begin{array}{c} 0.8660 \\ \text { FEG } \end{array} \\ \hline \end{array}$
TRIG (1)	$\boldsymbol{\operatorname { s i n }} \underline{\sin }^{-1}$
	FIX deg
$0 \square 73910$ ENTER	$\begin{array}{cc} \sin ^{-1}(0.7391 \\ & 47.6548 \\ \text { FIX } \\ \text { DEG } \end{array}$
TRIG (1) (1) ENTER TRIG (1) 1]	$\cos \left(\tan ^{-1}(1){ }^{\rightarrow \uparrow}\right.$
DENTER	$\begin{array}{ll} & 0.7071 \\ \text { FIX } & \text { DEG } \end{array}$

a
Problem
Find angle a in the right triangle below. Then find the length of the hypotenuse h and angle b. Measurements of length and height are in meters. Round off results to one decimal place.

Remember $3 / 7=\tan \mathrm{a}$, so $\mathrm{a}=\tan ^{-1}(3 / 7)$. Then $3 \mathrm{~h}=\sin \mathrm{a}$, so $\mathrm{h}=3 / \sin$ a. Then $7 / h=\sin b$, so $b=\sin ^{-1}(7 / h)$.

2nd [FIX] 1 TRIG (1) 3 ${ }^{\circ}$ 7	$\tan ^{-1}(3 / 7)$
ENIER	23.2
	FIX DEG
TRIG 2nd [ANS] [ENIER	$\boldsymbol{\operatorname { s i n }}$ (Ans)
	0.4
	FIX DEG
$3 \bigcirc$ 2nd [ANS] ENTER	3/Ans
	7.6
	FIX DEG
TRIG (1) 7 - 2nd [ANS] ENTER	$\boldsymbol{\operatorname { s i n }}^{-1}$ (7/Ans) ${ }^{\dagger}$
	66.8
	FIX DEG

Angle a is about 23.2 degrees. The hypotenuse h is about 7.6 meters. Angle b is about 66.8 degrees.

Angle Modes

${ }^{\circ}$ '10 displays a menu to specify the angle unit modifier for an entry: degrees $\left({ }^{\circ}\right)$, radians $\left({ }^{(}\right)$, grads $\left({ }^{9}\right)$, or DMS (${ }^{\circ}$ ' "). It also lets you convert an angle to DMS

 Notation (DMS)You can use a DMS value in calculations, but then the results will no longer be in DMS format; the calculator will automatically convert to decimal format.

围	Problem
Two adjacent angles measure $12^{\circ} 31^{\prime} 45^{\prime \prime}$ and $26^{\circ} 54^{\prime} 38^{\prime \prime}$, respectively. Sum the two angles and display the results in DMS format.	
120	$\stackrel{\circ}{\circ} \mathrm{rrg} \xrightarrow{\rightarrow}$
	DEG
31	$12^{\circ} 31$
	DEG
	$12^{\circ} 31^{\prime} 46^{\prime \prime}+$
	DEG
	$12^{\circ} 31^{\prime} 46^{\prime \prime}+2^{-4}$
ENTER ENTER	$\begin{gathered} 39.44 \\ \text { DEG } \end{gathered}$
O'1 (1) ENTER ENTER	$\begin{gathered} \text { Ans }>\text { DMS } \\ 39^{\circ} 26^{\prime} 24^{\prime \prime} \\ \text { DEG } \end{gathered}$

DRG displays a menu (DEG RAD GRD) to express angle measurements in degrees (default), radians, or grads, respectively.	
[0] Problem	
You probably know that $30^{\circ}=\pi / 6$ radians. In the default	
Degree Mode, find the sine of 30°. Then set thecalculator to Radian Mode and find the sine of $\pi / 6$	
TRIG 30 D ENTIER	$\sin (30)$
	0.5
	DEG
	$\boldsymbol{\operatorname { s i n }}(\pi / 6)$
[ENITER	0.5
	RAD
You can override the Angle Mode with the ${ }^{\text {a }}$ key.	
Keep the calculator in Radian Mode and find the sine of 30°. Then return the calculator to Degree Mode and find the sine of $\pi / 6$ radians.	
TRIG 30 閏回 ENIER	$\sin \left(30^{\circ}\right)$
	$\begin{gathered} 0.5 \\ \mathrm{RAD} \end{gathered}$
 	$\sin ((\pi / 6) \mathrm{r})$
	0.5

Rectangular \leftrightarrow Polar

$(r, \theta)=(5,30)$ converts to $(x, y)=(4.3,2.5) .(x, y)=(3,4)$ converts to $(r, \theta)=(5.0,53.1)$.

Hyperbolic Functions	
2nd[HYP] displays a menu of hyperbolic functions (sinh, sinh $^{-1}$, $\boldsymbol{\operatorname { c o s h }}, \cosh ^{-1}$, tanh, tanh $^{-1}$). Angle modes do not affect hyperbolic calculations.	
Given the hyperbolic function $y=3 \cosh (x-1)$	Problem
Find the value of y when $x=2$ and $x=5$. Round off results to one decimal place. Use the Stored Operations function for the repetitive computations.	
	$\mathrm{OP} 1=-1$
	deg
	OP2=*3
	deg
2nd [FIX] 2 [2 nd [HYP$]$ (1) (1) 2 [0 P1	$\cosh (2-1$
	FIX DEG
00^{2}	$1.543080634{ }^{\text {® }}$
	4.63
[2 dd [HYP] (1) (1) 5 [0 P1 0 OP2	27.30823283 ^
	81.92
	Fix deg

When $x=2, y=4.63$; when $x=5, y=81.92$.

25

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 25 of 48

Metric Conversions

Press Con̉ver to access a menu of 20 conversions from the metric system into the English system and vice versa. Scroll through the choices with (1) and (1) and select with ENTER. To reverse the direction of the conversion, press 2nd while the desired item is underlined. If you enter a negative value, enclose it in parentheses.

$\mathrm{cm} \leftrightarrow \mathrm{in}$	centimeters to inches inches to centimeters	$\begin{aligned} & \mathrm{cm} \div 2.54 \\ & \mathrm{in} \times 2.54 \end{aligned}$
$\mathrm{m} \leftrightarrow \mathrm{ft}$	meters to feet feet to meters	$\begin{aligned} & \mathrm{m} \div 0.3048 \\ & \mathrm{ft} \times 0.3048 \end{aligned}$
m $¢ \mathrm{yd}$	meters to yards yards to meters	$\begin{aligned} & \mathrm{m} \div 0.9144 \\ & \mathrm{yd} \times 0.9144 \end{aligned}$
$\mathbf{k m} \leftrightarrow$ mile	kilometers to miles miles to kilometers	$\begin{aligned} & \mathrm{km} \div 1.609344 \\ & \text { mile } \times 1.609344 \end{aligned}$
$\begin{aligned} & \hline \leftrightarrow \text { gal } \\ & \text { (US) } \\ & \hline \end{aligned}$	liters to U.S. liquid gallons U.S. liquid gallons to liters	$\begin{aligned} & 1 \div 3.785411784 \\ & \text { gal } \times 3.785411784 \end{aligned}$
$\begin{aligned} & \hline \leftrightarrow \text { gal } \\ & \text { (UK) } \end{aligned}$	liters to U.K. gallons U.K. gallons to liters	$\begin{aligned} & \hline 1 \div 4.54609 \\ & \text { gal } \times 4.54609 \end{aligned}$
$\mathrm{km} / \mathrm{h} \leftrightarrow$ m / s	kilometers per hour to meters per second meters per second to kilometers per hour	$\begin{aligned} & \mathrm{km} / \mathrm{h} \div 3.6 \\ & \mathrm{~m} / \mathrm{s} \times 3.6 \end{aligned}$
$\mathbf{g} \leftrightarrow 0 \mathrm{Z}$	grams to ounces avoirdupois	g $\div 28.349523125$
	ounces avoirdupois to grams	$\begin{aligned} & \text { OZ } \times \\ & 28.349523125 \end{aligned}$
$\mathbf{k g} \leftrightarrow \mathrm{lb}$	kilograms to pounds pounds to kilograms	$\begin{aligned} & \mathrm{kg} \div .45359237 \\ & \mathrm{lb} \times .45359237 \end{aligned}$
${ }^{\circ} \mathrm{C} \leftrightarrow{ }^{\circ} \mathrm{F}$	Celsius to Fahrenheit Fahrenheit to Celsius	$\begin{aligned} & { }^{\circ} \mathbf{C} \times 9 / 5+32 \\ & \left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9 \end{aligned}$

26

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 26 of 48

\begin{tabular}{|c|c|}
\hline [\& Problem

\hline \multicolumn{2}{|l|}{Convert 10 kilometers into miles. Then convert 50 miles into kilometers. Round results to two decimal places.}

\hline \multirow[t]{2}{*}{10 Coiviver (1) (1) (1)} \& $\mathrm{km} \leftrightarrow$ mile

\hline \& deg

\hline ENTER ENTIER [2nd [FIX] 2 \& $10 \mathrm{~km} \rightarrow$ mile
$$
6.21
$$

\hline \& 50 mile \rightarrow km

FIX
$\substack{80.47 \\ \text { DEG }}$

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Under a pressure of one atmosphere, ethyl alcohol freezes at $-117^{\circ} \mathrm{C}$ and boils at $78.5^{\circ} \mathrm{C}$. Convert these temperatures to the Fahrenheit scale.}}

\hline \&

\hline \multirow[t]{2}{*}{} \& ${ }^{-}{ }^{\mathbf{C}} \leftrightarrow^{\circ} \mathrm{F}$

\hline \& fix deg

\hline \multirow[t]{2}{*}{ENTITR ENSTER} \& $(-117){ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ}$

\hline \& $$
\begin{array}{cc}
& -178.60 \\
\text { FIX } & \mathrm{DEG}
\end{array}
$$

\hline \multirow[t]{2}{*}{$\bigcirc 78 \bigcirc 5$ DEL DEL ENIER} \& $78.5{ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F}$

\hline \& $$
\begin{gathered}
\text { FIX } \\
\text { PEG }
\end{gathered}
$$

\hline
\end{tabular}

Ethyl alcohol freezes at $-178.6^{\circ} \mathrm{F}$ and boils at $173.3^{\circ} \mathrm{F}$ at one atmosphere of pressure.

27

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 27 of 48

Physical Constants

Press 2nd [CONST] to a constants. Scroll throug	access a menu of 16 physical gh the choices with (1) and (1).
Constant	Value
c speed of light	299792458 meters per second
g gravitational acceleration	9.80665 meters per second ${ }^{2}$
h Planck's constant	$6.62606876 \times 10^{-34}$ Joule seconds
N_{A} Avogadro's number	$6.02214199 \times 10^{23}$ molecules per mole
R ideal gas constant	8.314472 Joules per mole ${ }^{\circ}$ Kelvin
m_{e} electron mass	$9.10938188 \times 10^{-31}$ kilograms
m_{p} proton mass	$1.67262158 \times 10^{-27}$ kilograms
m_{n} neutron mass	$1.67492716 \times 10^{-27}$ kilograms
$\mathrm{m} \mu$ muon mass	$1.88353109 \times 10^{-28}$ kilograms
G universal gravitation	6.673×10^{-11} Newton meters ${ }^{2}$ per kilogram ${ }^{2}$
F Faraday constant	96485.3415 coulombs per mole
a_{0} Bohr radius	$5.291772083 \times 10^{-11}$ meters
$r_{e} \quad$ classical electron radius	$2.817940285 \times 10^{-15}$ meters
k Boltzmann constant	$1.3806503 \times 10^{-23}$ Joules per ${ }^{\circ} \mathrm{K}$
e electron charge	$1.602176462 \times 10^{-19}$ coulombs
u atomic mass unit	$1.66053873 \times 10^{-27}$ kilograms

As you scroll through the menu, the value of the underlined constant appears in the result line. When you press ENTER, the name of the underlined constant is transferred to the entry line at the cursor.

28

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 28 of 48

瞱	Problem
A brick falls off the roof of a building and hits the	
sidewalk 3.5 seconds later．Find the height of the	
building in meters and then in feet，rounded off to the nearest whole number．	
The formula for distance fallen is	
$y=-\frac{1}{2} g t^{2}$	
where $\mathrm{t}=$ time in seconds，and $\mathrm{g}=$ gravitational	
acceleration（ 9.80665 meters per second－squared）．We	
measure the y coordinate from the position where the	
brick began its fall，and we specify that y is positive	
（－） 1 Ab／ 2 区	－1 د 2＊
	deg
2nd［CONST］（1）	c gh $\mathrm{N}_{\mathrm{A}} \mathrm{R}$
	9.80665
ENTIER ENTER	$-1\lrcorner 2 * g$
	－4．903325
	deg
冈3 5 x x^{2} ENTER	Ans＊3．5 ${ }^{2}$
	－60．06573125
	deg
2nd［FIX］ 0	Ans＊3．5 ${ }^{2}$
	－60．
	FIX DEG
Coinver（1）ENTER ENTER	Ans m \rightarrow ft
	－197
	FIX deg

The height of the building is 60 meters or 197 feet．

29

Ti36eng1．doc TI－36X II Manual Linda Bower Revised： 01／10／03 10：47 AM Printed：01／10／03 10：47 AM Page 29 of 48

Integrals

The TI-36X II performs numerical integration using Simpson's Rule. To prepare for an integral, store the lower limit in memory variable \mathbf{A}, the upper limit in memory B, and the number of intervals (from 1 to 99) in memory C. Press $J_{d x}$ and enter the expression, using memory variable \mathbf{A} as the independent variable. Then press ENTER. While the calculator is processing the data, (1) CALC displays. When the calculation is successfully completed, the TI-36X II will return the numerical value to the result line. In addition, the calculator will clear memory variable \mathbf{C}; \mathbf{A} and \mathbf{B} will be equal to the upper limit. If $\mathbf{A}>\mathbf{B}$, or if \mathbf{C} is not an integer $1-99$, or if \mathbf{A}, \mathbf{B}, or \mathbf{C} is undefined, Integrate Error will display, and \mathbf{A}, \mathbf{B}, and \mathbf{C} will be cleared.

If you want to solve a given problem again using a different number of intervals or different limits, enter values to store in memory variables \mathbf{A}, \mathbf{B}, and \mathbf{C}. Then scroll to the integration problem in history and press ENTER; the calculator will solve the same problem with the new data.

The time the calculator takes to solve the problem depends on the complexity of the problem and the number of intervals. You can abort the calculation by pressing and holding ON until Integrate Error is displayed.

With polynomials up to the third degree, Simpson's rule yields the exact answer, so increasing the number of intervals will not change the results. However, with polynomials of higher degree and equations containing more complicated functions (such as trigonometry), increasing the number of intervals will improve the precision of the results.

Note: When you perform integration with trigonometric functions, the calculator must be in radian mode.

31

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 31 of 48

Probability

$\overline{\mathrm{nPr}}$	Calculates the number of possible permutations of \boldsymbol{n} items taken \boldsymbol{r} at a time. The order of objects is important, as in a race.
$\overline{\mathrm{nCr}}$	Calculates the number of possible combinations of \boldsymbol{n} items taken \boldsymbol{r} at a time. The order of objects is not important, as in a hand of cards.
!	The factorial of n is the product of the positive integers from 1 to n. n must be a positive whole number ≤ 69.
RAND	Generates a random real number between 0 and 1. To control a sequence of random numbers, store an integer (seed value) ≥ 0 to STO E. The seed value changes randomly every time a random number is generated.
RANDI	Generates a random integer between two integers, A and B, where $A \leq$ RANDI $\leq B$. Separate the two integers with a comma.

For nPr and nCr , enter the first argument, press
2nd [PRB], select nPr or nCr , press ENTER, and enter the second argument.

You no doubt recognize the above formula to find the number of possible combinations of n objects taken r at a time without replacement. You can obtain this result more directly by using nCr on the Probability menu.	
葛	Problem
How many ways can you deal 5 cards from a deck of 52 cards?	
52 2nd [PRB] ©	$\mathrm{nPr} \underline{\mathrm{nCr}}$!
	DEG
5 ENTER	52 nCr 5
	$\underset{\text { DEG }}{2598960 .}$

There are 2598960 ways to deal 5 cards from a deck of 52 cards.

Statistics

2nd[STAT] displays a menu.	
1-VAR	Analyzes data from 1 set of data with 1 measured variable: x.
LIN	Analyzes paired data with 2 measured variables: x, the independent variable, and y, the dependent variable. Yields regression equation in the form $y=a+b x$.
LN	Analyzes paired data with 2 measured variables. Yields regression equation in the form y=a+b In x .
EXP	Analyzes paired data with 2 measured variables. Yields regression equation in the form $y=a b^{*}$.
PWR	Analyzes paired data with 2 measured variables. Yields regression equation in the form $y=a x$.
CLRDATA	Clears data values without exiting STAT mode.

You can enter up to 42 points or data pairs.
When using the LN regression, you do not need to find the natural logarithms of the numbers. Enter the data directly, and the TI-36X II makes the transformation. Similarly, when you want to make a prediction with the LN regression equation, you enter the value of x directly (and not $\ln x$), and the calculator returns the predicted value of y (and not $\ln y$).

To set up the problem and perform the analysis:

1. Press [nd[STAT]. Select the desired type of analysis from the menu and press ENEER. The STAT indicator displays.
2. Press [DATA.
3. Enter a value for \mathbf{X} and press \odot.
4. Then:

- In 1-VAR stat mode, enter the frequency of occurrence (FRQ) of the data point and press \bigcirc. $F R Q$ default $=1$. If $F R Q=0$, the data point is ignored. Or,
- In LIN, LN, EXP, OR PWR, enter the value of Y and press Θ.

5. Repeat steps 3 and 4 until all data points are entered. You can change or delete data points by scrolling to the desired point and editing or pressing DEL. If you are in 2-VAR mode, you must delete both the data point and the frequency. You can add new points by scrolling to the last point and pressing \odot; the calculator will prompt you for the new data. If you add or delete data points, the TI-36X II automatically reorders the list.
6. When all points and frequencies are entered:

- Press STATVAR to display the menu of variables (see table for definitions) and their current values. Or,
- Press (DATA to return to the blank STAT screen.

You can perform calculations with data variables ($\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$, etc.). After such calculations, you can return to the display of variables by pressing STATVAR again. You can return to the data entries again by pressing DATA.
7. When finished:

- Press 2nd[sTAT] and select CLRDATA to clear all data points without exiting STAT mode, or
- Press [nd [EXIT STAT] to access the following menu.

EXIT ST: $\underline{Y} \quad \mathbf{N}$
Press ENTER when \mathbf{Y} (yes) is underlined to clear all data values and exit STAT mode. STAT indicator turns off.
Press ENTIER when \mathbf{N} (no) is underlined to return to the previous screen without exiting STAT mode.

Variables	Definition
n	Number of \mathbf{X} or (\mathbf{X}, \mathbf{Y}) data points.
$\overline{\mathrm{x}}$ or $\overline{\mathrm{y}}$	Mean of all \mathbf{X} or \mathbf{Y} values.
Sx or Sy	Sample standard deviation of \mathbf{X} or \mathbf{Y}.
ox or y y	Population standard deviation of \mathbf{X} or \mathbf{Y}.
$\Sigma \mathrm{x}$ or $\mathrm{\Sigma y}$	Sum of all \mathbf{X} or \mathbf{Y} values.
$\overline{\Sigma x^{2}}$ or Σy^{2}	Sum of all \mathbf{X}^{2} or \mathbf{Y}^{2} values.
इxy	Sum of $\mathrm{X}^{*} \mathrm{Y}$ for all $\mathbf{X Y}$ pairs.
a	Linear regression \mathbf{Y}-intercept.
b	Linear regression slope.
r	Correlation coefficient.
X^{\prime} (2-VAR)	Calculates predicted \mathbf{X} value when you input a Y -value.
$\overline{Y^{\prime}(2-V A R)}$	Calculates predicted \mathbf{Y} value when you input an \mathbf{X} value.

Problem
The table below gives the Gross Domestic Product per
Tapita and the telephone density (main lines per 100
copulation) for several lountries in a recent year.
Country
Austria
GDP/Cap.
Israel
Argentina
Ael. Den.
Brazil
China

Using the LIN regression, find the equation representing the best fit, in the form $y=a+b x$, where $x=G D P /$ capita and $y=t e l e p h o n e ~ d e n s i t y . ~ F i n d ~ t h e ~ c o e f f i c i e n t ~ o f ~$ correlation. Use this equation to predict the telephone density of a country with a GDP per capita of \$10,695. If a country has a telephone density of 5.68, what GDP per capital would you expect this country to have?

2nd [FIX] 4 2nd [STAT] (1) ENTER	$X_{1}=25032$	$\hat{\imath}$
DATA 25032		
	FIX STAT DEG	
$\odot 46 \circlearrowleft 55$	$Y_{1}=46.55$	$\hat{\imath}$
	Fix stat deg	
$\begin{aligned} & \ominus 13596 \ominus 41 \cdot 77 \\ & \ominus 8182 \ominus 15 \odot 99 \end{aligned}$	$Y_{3}=15.99$	$\hat{\imath}$
	Fix stat deg	
$\begin{aligned} & \ominus 3496 \ominus 7 \odot 48 \ominus 424 \\ & \ominus 3 \odot 35 \end{aligned}$	$Y_{5=3.35}$	$\hat{\imath}$
	FIX Stat deg	

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 37 of 48

STATVAR (1) (1) (1) (1) (1)	
(1)	
(1)	$\begin{array}{cc} \text { Exy abl } \\ & 0.9374 \\ \text { FIX STAT } \end{array}$
(1) (1)	' $\mathrm{x}^{\prime} \mathrm{y}$ '
	hix stat deg
10695 [ENIER [2nd [FX] 2	$\begin{aligned} & \text { y'(10695) } \\ & \quad 24.08 \\ & \text { FIX STAT DEG } \end{aligned}$
STATVAR (1) (1) 5 ¢ 68 DENERER	$\mathrm{x}^{\prime}(5.68)$
[nd [$\mathrm{FX} \times 0$	$\begin{array}{lll} & & \\ \text { Fix } & \\ \text { Stat } \end{array}$

The equation is $\mathrm{y}=3.5143+0.0019 \mathrm{x}$. The coefficient of correlation is .9374. A country with a GDP per capita of $\$ 10695$ is predicted to have a telephone density of 24.08. If a country has a telephone density of 5.68, you would expect that country to have a GDP per capita of about \$1126.

Boolean Logic Operations

Press LOGIC to access a menu of Boolean Logic
operations.

Function	Effect on Each Bit of the Result		
AND	0 AND $0=0$	0 AND $1=0$	1 AND $1=1$
OR	0 OR $0=0$	0 OR $1=1$	1 OR $1=1$
XOR	0 XOR $0=0$	0 XOR $1=1$	1 XOR $1=0$
NOT	NOT $0=1$	NOT $1=0$	
2's	2's complement		

Except for NOT and 2's complement, these functions compare the corresponding bits of two values. The result is displayed in the current number base.

You can perform logical operations in the decimal, octal, and hexadecimal modes.
Examples
Perform the operations 9 AND 2, 9 OR 2, and 9 XOR 2.

Perform the operations 9 AND 2, 9 OR 2, and 9 XOR 2.

9 LOGIC	and or xor
	deg
2 ENTER	9 and 2
	deg 0.
9 LOGIC (1) 2 ENTEER	9 or 2
	${ }_{\text {DEG }} 11 .$
9 LOGIC (1) (1) 2 ENTER	9 xor 2
	${ }_{\text {DEG }} 11 .$

39

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 39 of 48

Number-System Modes

Number system modes are second functions of keys.	
2nd][DEC]	Selects decimal mode (default). When the calculator is in another number mode, press [2nd][DEC] to return the calculator to decimal mode. Note: Normally you should keep the calculator in the decimal mode, because some of the calculator's operating features are limited or nonexistent in the other modes.
2nd [OCT]	Selects octal mode. You can enter positive octal numbers as large as 377777777. Numbers beyond this are interpreted as negative.
2nd[HEX]	Selects hexadecimal mode. You can enter positive hexadecimal numbers as large as
7FFFFFFFFF. Numbers beyond this are interpreted as negative.	

To enter the hexadecimal digits A through F, press 2nd and then the appropriate key shown below.

40

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 40 of 48

园		Problem
Add $456+125$ in base 8 and in hexadecimal. Then return the calculator to decimal mode and do the same addition.		
2nd [OCT] 456 + 125 ENTEER	$456+125$	
		${ }_{\text {deg }}^{603}$
2nd [HEX] \odot ENTER	456+125	\uparrow
		${ }_{\text {DEG }}^{57 \mathrm{~b}}$
2nd [DEC] \odot ENTER	$456+125$	¢
		$581 .$

Complex Numbers

Enter a complex number as an ordered pair in parentheses, with the real part first. Operations with complex numbers are limited to $\boxplus, \square, \boxed{\square}, \dagger,(-)$, and the functions in the menu below. When you perform computations with complex numbers, the result line displays the real part of the answer, and r shows on the indicator line; press (1) to see the imaginary part, and \mathbf{i} shows on the indicator line.

If a computation with complex numbers yields a real number, the \mathbf{r} and \mathbf{i} will no longer be displayed.

When you store a complex number in memory, it takes up two memory locations. Store to memory variable A, and it occupies \mathbf{A} (for the real part) and \mathbf{B} (for the imaginary part); or store to \mathbf{C}, and it occupies \mathbf{C} and \mathbf{D}.

Ti36eng1.doc TI-36X II Manual Linda Bower Revised: 01/10/03 10:47 AM Printed: 01/10/03 10:47 AM Page 41 of 48

Press [2nd[[COMPX] to access a menu.	
conj Returns the conjugate of a complex number.	
real Returns the real part of a complex number.	
imag Returns the imaginary part of a complex number.	
abs Returns the absolute value of a number.	
Find the product of (4-2i) and (3+5i); display the imaginary part as well as the real part of the result. Then find the conjugate of the result, and display the imaginary part as well as the real part.	
(1)	$\begin{array}{r} (4,-2) *(3,5 \\ 14 . \\ \text { DEG } \end{array}$
2nd [COMPX]	conj re
	deg
22 [nd [,] 14] ENETER	$\begin{gathered} \operatorname{conj}(22,14) \\ \text { 22.r } \\ \text { DEG } \end{gathered}$
(1)	$\begin{gathered} \operatorname{conj}(22,14) \\ -14 . \mathrm{i} \\ \text { DEG } \end{gathered}$

Error Conditions

When Error appears in the display, the calculator will not accept a keyboard entry until you press CLEAR or 2nd [OFF]. Press CLEAR once to clear the error message and return to the entry that caused the error; then you can edit the entry or clear the display.

ARGUMENT - a function does not have the correct number of arguments.
DIVIDE BY 0 -

- You attempted to divide by 0 .
- In statistics, $\mathrm{n}=1$.

SYNTAX - The command contains a syntax error: entering more than 23 pending operations, 8 pending values, or having misplaced functions, arguments, parentheses, or commas.

EQU LENGTH - An entry exceeds the limit (88 characters or items for Entry Line and 47 for Stat or Stored Operation lines).

OP - Pressing OP1 or OP2 when constants not defined or while in STAT mode.

OVERFLOW - The result is outside the range of the calculator:

- In decimal, range $\geq-1 \times 10^{100}$ or $\leq 1 \times 10^{100}$.
- In Hex, range 0-7FFFFFFFFF, 8000000001FFFFFFFFFFF.
- In Oct, range 0-3777777777, 40000000017777777777

FRQ DOMAIN - FRQ value (in 1-VAR stats) < 0 or >99, or not an integer.

DOMAIN - You specified an argument to a function outside the valid range. For example:

- For $\sqrt[x]{ }$: $x=0 ; y<0$ and x not an odd integer.
- For $y^{x}: y$ and $x=0 ; y<0$ and x not an integer.
- For $\sqrt{x}, x<0$.
- For x ! x is not an integer between 0 and 69 .
- For Boolean and, or, xor: x or y in Hex out of range $\left(>2^{39}\right)$.
- For log or In: $x \leq 0$.
- For tan: $x=90^{\circ},-90^{\circ}, 270^{\circ},-270^{\circ}, 450^{\circ}$, etc.
- For $\boldsymbol{\operatorname { s i n }}^{-1}$ or $\boldsymbol{\operatorname { c o s }}^{-1}:|x|>1$.
- For $\tanh ^{-1}(\mathrm{x}):|\mathrm{x}|>1$.
- For $\cosh ^{-1}(0)$.
- For $\cosh ^{-1}(x): x<0$.
- For $n C r$ or n Pr: either n or r is not an integer ≥ 0.
- $|\theta| \geq 1 E 10$, where θ is an angle in a trig or P〉Rx(, P>Ry(function.

STAT -

- Pressing STATVAR with no defined data points.
- When not in STAT mode, pressing [ATA, [STATVAR, or 2nd [EXIT STAT].
COMPLEX - Using a complex number incorrectly in an operation or in memory.
BASE - Using a base incorrectly or in the wrong mode.
INTEGRATE - Error in setting up integration problem:
- A>B, or
- C not integer 1 -99, or
- A, B, or C undefined.

In Case of Difficulty

Review instructions to be certain calculations were performed properly.
Press ON and CLEAR simultaneously to reset. When released, memory and settings are cleared, and MEM CLEARED is displayed.

Check the battery to ensure that it is fresh and properly installed.

Change the battery when:

- ON does not turn the unit on, or
- The screen goes blank, or
- You get unexpected results.

Battery Replacement

Replace protective cover. Place the TI-36X II face down.

1. Remove screw case, using a small Phillips screwdriver.
2. Carefully separate front from back, starting from the bottom. Caution: Be careful not to damage any internal parts.
3. Remove battery, using a small Phillips screwdriver, if necessary; replace with new battery. Install batteries according to polarity (+ and -) diagrams. Caution: Avoid contact with other TI-36X II components while changing the battery.
4. If necessary, press $O N$ and CLEAR simultaneously to reset. When released, memory and settings are cleared, and MEM CLEARED is displayed
5. Properly dispose of used batteries immediately. Do not leave them within the reach of children

Service Information

TI Product and Services Information

For more information about TI products and services, contact TI by e-mail or visit the TI calculator home page on the world-wide web.

e-mail address:	ti-cares@ti.com
Internet address:	education.ti.com

Service and Warranty Information

For information about the length and terms of the warranty or about product service, refer to the warranty statement enclosed with this product or contact your local Texas Instruments retailer/distributor.
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

