## TI-84 Plus

 TI-84 Plus Silver Edition
## 目

© 2004 Texas Instruments Incorporated
Windows and Macintosh are trademarks of their respective owners.

## Important Information

Texas Instruments makes no warranty, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this product. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

## USA FCC Information Concerning Radio Frequency Interference

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference with radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, you can try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/television technician for help.

Caution: Any changes or modifications to this equipment not expressly approved by Texas Instruments may void your authority to operate the equipment.

## About the TI-84 Plus and TI-84 Plus Silver Edition

The TI-84 Plus Silver Edition is the same as the TI-84 Plus except:

- it has more memory, and thus more spaces for graphing handheld software applications (Apps).
- it has interchangeable faceplates that let you customize the appearance of your TI-84 Plus Silver Edition.
Since all the functions of the TI-84 Plus Silver Edition and the TI-84 Plus are the same, this guidebook can be used for either the TI-84 Plus or the TI-84 Plus Silver Edition.

The CD included with your TI-84 Plus / TI-84 Plus Silver Edition package also includes an electronic guidebook, which is a complete reference manual for the TI-84 Plus / TI-84 Plus Silver Edition. If the CD is not available, you can download a copy of the electronic guidebook from the Texas Instruments web page at:
education.ti.com/guides
The TI-84 Plus / TI-84 Plus Silver Edition has some graphing handheld software applications (Apps) preinstalled. For information about these Apps, see the electronic documentation files on the Texas Instrument web page at:
education.ti.com/guides

## About this book

This guidebook gives a quick overview of each topic, along with keystroke instructions for easy examples. All examples assume that the TI-84 Plus is using default settings. For complete information on any topic, see the electronic guidebook on the CD that came with your graphing handheld.

## Table of Contents

1 Getting Started ..... 1
TI-84 Plus keys ..... 1
Turning the TI-84 Plus on and off ..... 2
Home screen ..... 2
2nd and ALPHA keys ..... 3
CLEAR and 2nd [QUIT] ..... 4
Entering an expression ..... 4
Interchangeable Faceplates ..... 5
Using the Clock ..... 6
TI-84 Plus menus ..... 8
Editing and deleting ..... 11
Using $\square$ and $(-)$ ..... 13
Using parentheses ..... 14
Storing a value ..... 15
Graphing a function ..... 17
Changing mode settings ..... 18
Setting the graphing window ..... 21
Using ZOOM ..... 23
Building a table ..... 23
Using the CATALOG ..... 25
Performing simple calculations ..... 26
Using the equation solver ..... 28
Entering data into lists ..... 30
Plotting data ..... 32
Calculating a linear regression ..... 35
Calculating statistical variables ..... 36
Using the MATRIX Editor ..... 37
Grouping ..... 39
Ungrouping ..... 41
Error messages ..... 42
Resetting defaults ..... 43
Installing applications ..... 44
Running applications ..... 45
Quick reference ..... 46
Battery precautions ..... 46
2 Activities ..... 47
The Quadratic Formula ..... 47
Box with Lid ..... 50
Comparing Test Results Using Box Plots ..... 57
Graphing Piecewise Functions ..... 59
Graphing Inequalities ..... 60
Solving a System of Nonlinear Equations ..... 62
Using a Program to Create the Sierpinski Triangle ..... 63
Graphing Cobweb Attractors ..... 64
Using a Program to Guess the Coefficients ..... 65
Graphing the Unit Circle and Trigonometric Curves ..... 66
Finding the Area between Curves ..... 67
Using Parametric Equations: Ferris Wheel Problem ..... 68
Demonstrating the Fundamental Theorem of Calculus ..... 71
Computing Areas of Regular N-Sided Polygons ..... 73
Computing and Graphing Mortgage Payments ..... 75
3 Memory and Variable Management ..... 79
Checking Available Memory ..... 79
Deleting Items from Memory ..... 81
Clearing Entries and List Elements ..... 82
Archiving and UnArchiving Variables ..... 83
Resetting the $\mathrm{TI}-84$ Plus ..... 87
Grouping and Ungrouping Variables ..... 90
Garbage Collection ..... 93
ERR:ARCHIVE FULL Message ..... 97
4 Communication Link ..... 99
Getting Started: Sending Variables ..... 99
TI-84 Plus LINK ..... 100
Selecting Items to Send ..... 102
Receiving Items ..... 106
Backing Up RAM Memory ..... 107
Error Conditions ..... 108
A Appendix A: Tables and Reference Information ..... 111
Table of Functions and Instructions ..... 111
Variables ..... 154
Statistics Formulas ..... 155
Financial Formulas ..... 159
B Appendix B: General Information. ..... 163
Battery Information ..... 163
Important Things You Need to Know About Your TI-84 Plus ..... 165
In Case of Difficulty ..... 167
Error Conditions ..... 169
Accuracy Information ..... 176
Texas Instruments (TI) Support and Service ..... 179
Texas Instruments (TI) Warranty Information ..... 180

## Getting Started

## TI-84 Plus keys

2nd Provides access to the function or character shown above each key.

ALPHA Provides access to the characters shown above each key.

APPS Displays a menu that lists Applications installed on the TI-84 Plus.

ON Turns on the TI-84 Plus.


## Turning the T1-84 Plus on and off

To turn on the TI-84 Plus, press [0N. The 0 N key is located at the lower left corner of the TI-84 Plus.

To turn off the TI-84 Plus, press the 2nd key followed by the $0 \mathbb{N}$ key. OFF is the second function of 0 N .

When you turn off the TI-84 Plus, all settings and memory contents are retained. The next time you turn on the TI-84 Plus, the home screen displays as it was when you last used it.

## Automatic Power Down ${ }^{\text {TM }}$

To prolong the life of the batteries, Automatic Power Down ${ }^{\text {TM }}$ (APD ${ }^{\text {TM }}$ ) turns off the TI-84 Plus automatically after about five minutes without any activity. The next time you turn o?n the TI-84 Plus, it is exactly as you left it.

## Home screen

When you turn on your TI-84 Plus the first time, you should see this screen:

```
TI-E4Plus silver Edition
    2.20
RAM cleared
```

To clear this text from your screen, press CLEAR twice. You should now see the home screen, a blank screen with a flashing cursor. The home screen is where you enter problems and see results.
$\square$
If you pressed CLEAR above and you still do not see a blank home screen, press the 2nd key followed by the MODE key (to select QUIT).

Example: Add $2+3$ on the home screen.

| Press | Result |
| :---: | :---: |
| 2 ¢ 3 | $2+3 \Pi$ |
| ENTER |  |

Note: Results are displayed on the next line (the answer line), not on the entry line.
Example: Multiply $5 \times 4$.

| Press | Result |
| :---: | :---: |
|  | $5 * 4$ |

## 2nd and ALPHA keys

Most keys on the TI-84 Plus can perform two or more functions. To use a function printed on a key, press the key. To use a function printed above a key, you must first press the [nd key or the ALPHA key.

## 2nd key

Second functions are printed above the keys (the same color as the 2nd key). Some secondary functions enter a function or a symbol on the home screen ( $\sin ^{-1}$ or $\sqrt{ }$, for example). Others display menus or editors.

To view the ANGLE menu, for example, look for ANGLE above the APPS key near the top of the TI-84 Plus keyboard. Press the 2nd key (and then release it) and then press APPS. In this guidebook the key combination is indicated by [nd [ANGLE], not [nd APPS.

Note: The flashing cursor changes to $\boldsymbol{f}$ when you press the 2nd key.

## ALPHA key

The ALPHA key lets you enter the alphabetic characters and some special symbols. To enter T, for example, press ALPHA (and then release it) and then press [4. In the guidebook this key combination is indicated by ALPHA [T].

If you have several alphabetic characters to enter, press [2nd [A-LOCK] to avoid having to press the ALPHA key multiple times. This locks the alpha key in the On position until you press (ALPHA a second time to unlock it.

Note: The flashing cursor changes to 1 ll when you press the ALPHA key.

## CLEAR and 2nd [QUIT]

## CLEAR key

The CLEAR key erases the home screen. This key is located just below the four arrow keys at the upper right corner of the TI-84 Plus keyboard. If you press CLEAR during an entry, it clears the entry line. If you press CLEAR when the cursor is on a blank line, it clears everything on the home screen.

Although it does not affect the calculation, it is frequently helpful to clear the previous work from the home screen before you begin a new problem. As you work through this guide, we recommend that you press CLEAR each time you begin a new Example. This removes the previous example from the home screen and ensures that the screen you see matches the one shown in the example.

## 2nd [QuIT]

If you accidentally press a menu key, pressing CLEAR will usually return you to the home screen, but in most cases pressing [2nd [QuIT] to leave the menu and return to the home screen.

## Entering an expression

An expression consists of numbers, variables, operators, functions, and their arguments that evaluate to a single answer. $2 \mathrm{X}+2$ is an expression.

Type the expression, and then press ENTER to evaluate it. To enter a function or instruction on the entry line, you can:

- Press its key, if available. For example, press LOG.
— or —
- Select it from the CATALOG, if the function appears on the CATALOG. For example, press 2nd [CATALOG], press $\nabla$ to move down to $\log ($, and press ENTER to select log(.
— or -
- Select it from a menu, if available. For example, to find the round function, press MATH, press $\square$ to select NUM, then select 2:round(.

Example: Enter and evaluate the expression $\pi \times 2$.

| Press | Result |
| :--- | :--- |
| 2nd $[\pi] \boxed{2}$ | $\pi * 2$ |
| ENTER |  |
|  |  |

## Interchangeable Faceplates

The TI-84 Plus Silver Edition has interchangeable faceplates that let you customize the appearance of your unit. To purchase additional faceplates, refer to the TI Online Store at education.ti.com.

## Removing a Faceplate

1. Lift the tab at the bottom edge of the faceplate away from the TI-84 Plus Silver Edition case.
2. Carefully lift the faceplate away from the unit until it releases. Be careful not to damage the faceplate or the
 keypad.

## Installing New Faceplates

1. Align the top of the faceplate in the corresponding grooves of the TI-84 Plus Silver Edition case.
2. Gently click the faceplate into place. Do not force.

3. Make sure you gently press each of the grooves to ensure the faceplate is installed properly. See the diagram for proper groove placement.


## Using the Clock

Use the Clock to set the time and date, select the clock display format, and turn the clock on and off. The clock is turned on by default and is accessed from the mode screen.

## Displaying the Clock Settings

1. Press MODE
2. Press the to move the cursor to SET CLOCK.
3. Press ENTER.

| TITAMAL SCI EnG |
| :---: |
| FLDAT 01234567日9 |
| RADOİ́ll DEGREE |
| FUICG PAR PGL SED |
| GOMNECTED DIT |
| SEDUENTIAL SIMUL |
|  |
| FULL HORI2 G-T |
| SETCLDCH0371日 042004 FH |

## Changing the Clock settings

1. Press the $\square$ or $\square$ to highlight the date format you want, example: M/D/Y. Press ENTER.
2. Press $\square$ to highlight YEAR. Press CLEAR and type the year, example: 2004.
3. Press to highlight MONTH. Press CLEAR and type the number of the month (a number from 1-12).
4. Press to highlight DAY. Press CLEAR and type the date.
5. Press to highlight TIME. Press $\square$ or to highlight the time format you want. Press ENTER.
6. Press to highlight HOUR. Press CLEAR and type the hour. A number from 1-12 or 0-23.
7. Press to highlight MINUTE. Press CLEAR and type the minutes. A number from 059.
8. Press $\square$ to highlight AM/PM. Press $\square$ or $\square$ to highlight the format. Press ENTER.
9. To Save changes, press $\square$ to select SAVE. Press ENTER.

## Error Messages

If you type the wrong date for the month, for example: June 31, June does not have 31 days, you will receive an error message with two choices:

- To Quit the Clock application and return to the Home screen, select 1: Quit. Press

ERE: CIATE FGQuit 2:Goto

Inual id day for month selected. ENTER.
—or -

- To return to the clock application and correct the error, select 2: Goto. Press ENTER.

```
FDRHAT: WKD/TV D/N/Y Y/H/D
YEAR: 2004
MDNTH: 3
DAY: 18
TIME: ERHDUS 24HDUR
HaUR: 2
MINUTE: 37
AM/PM: AH PN
SAvE
```

```
FIRMAT: [ROSW D/H/' Y'H/D
```

FIRMAT: [ROSW D/H/' Y'H/D
YEAR: 2004
YEAR: 2004
HONTH: 3
HONTH: 3
DAY: 1, 18
DAY: 1, 18
TIME: ERHDUS 24HDUK
TIME: ERHDUS 24HDUK
HOUR: 2
HOUR: 2
HINUTE: 37
HINUTE: 37
AH/PH: AH PR
AH/PH: AH PR
SAVE
SAVE
37

```
37
```

$\square$

## Turning the Clock On

There are two options to turn the clock on. One option is through the MODE screen, the other is through the Catalog.

## Using the Mode Screen to turn the clock on

1. If the Clock is turned off, Press $\square$ to highlight TURN CLOCK ON.
2. Press ENTER.


## Using the Catalog to turn the clock on

1. If the Clock is turned off, Press [2nd [catalog]
2. Press or $\square$ to scroll the CATALOG until the selection cursor points to ClockOn.
3. Press ENTER.


## Turning the Clock Off

1. Press 2nd [catalog].
2. Press $\square$ or to scroll the CATALOG until the selection cursor points to ClockOff.
3. Press ENTER.

ClockOff will turn off the Clock display.


## TI-84 Plus menus

Many functions and instructions are entered on the home screen by selecting from a menu.

To select an item from the displayed menu:

- Press the number or letter shown at the left of that item.
—or -
- Use the cursor arrow keys, $\square$ or $\triangle$, to highlight the item, and then press ENTER.

Some menus close automatically when you make a selection, but if the menu remains open, press [2nd [QuIT] to exit. Do not press [CLEAR to exit, since this will sometimes delete your selection.
Example: Enter $\sqrt[3]{27}$ on the home screen entry line.

| Press | Result |  |
| :---: | :---: | :---: |
| MATH |  | Menus containing an arrow next to the final item continue on a second page. |
| 4 <br> - or - <br> $\rightarrow$ ENTER | $3 \cdot \sqrt{6}$ |  |
| \| ENTER | $3 \cdot \sqrt{3} 3$ |  |

Example: Change the FORMAT menu setting to display grid points on the graph.

| Press | Result |
| :---: | :---: |
| 2nd [FORMAT] |  |


| Press | Result |
| :---: | :---: |
| ENTER |  |
| GRAPH |  |

Example: Turn off the display of grid points.

| Press | Result |
| :---: | :---: |
| 2nd [FORMAT] $\square$ <br> ENTER |  |

Note: Press [2nd [QUIT] or CLEAR to close the FORMAT menu and return to the home screen.

## Summary of menus on the TI-84 Plus

| Press | To display |
| :--- | :--- |
| APPS | APPLICATIONS menu - to see a list of TI-84 Plus <br> graphing handheld software applications (APPS). |
| 2nd [LINK] | LINK menu - to communicate with another graphing <br> handheld. |
| 2nd [MEM] | MEMORY menu - to check available memory and <br> manage existing memory. |
| MATH | MATH menu - to select a math operation. |
| VARS | VARS menu - to select variable names to paste to the <br> home screen. |
| 2nd [STAT PLOT] | STAT PLOTS menu - to define statistical plots. |


| Press | To display |
| :--- | :--- |
| [2nd [CATALOG] | CATALOG menu - to select from a complete, <br> alphabetic list of all TI-84 Plus built-in functions and <br> instructions. |
| [थnd [FORMAT] | FORMAT menu - to define a graph's appearance. |
| [थd [MATRIX] | MATRIX menu - to define, view, and edit matrices. |
| [थd [DRAW] | DRAW menu - to select tools for drawing on graphs. |
| [nd [DISTR] | DISTRIBUTIONS menu - to select distribution <br> functions to paste to the home screen or editor <br> screens. |
| [2nd [TEST] | TEST menu - to select relational operators ( $=, \neq, \leq, \geq$, <br> etc.) and Boolean operators (and, or, xor, not) to paste <br> to the home screen. |

## Editing and deleting

You can change any expression or entry using the backspace $\square$ key, the delete [ELL key, or the insert [2nd [iNS] key. You can make a change before or after you press ENTER.
Example: Enter the expression $5^{2}+1$, and then change the expression to $5^{2}+5$.

| Press | Result |
| :---: | :---: |
| $5 \times 1$ | 52+1】 |
| U 5 | $52+5$ |

Example: Enter the expression $5^{2}+1$, and then change the expression to $5^{2}-5$.

| Press | Result |
| :---: | :---: |
|  | $\sqrt{52+1}$ |
| - ${ }_{\text {DEL DEL }}$ | 5: |
| $\square 5$ <br> ENTER | 5z-5 20 |

Example: Change the example above to $5^{2}+2-5$ using [nd [ENTRY] to recall the expression and [2nd [ins] to insert +2 into the expression.

| Press | Result |
| :---: | :---: |
| 2nd [ENTRY] | 53-5] |
| Ta [2nd [iNS] <br> + 2 <br> ENTER | 52 |

## Using $\square$ and

Many graphing handhelds (including the TI-84 Plus) make a distinction between the symbols for subtraction and negation.

Use $\square$ to enter subtraction operations. Use $(-)$ to enter a negative number in an operation, in an expression, or on a setup screen.

Example: Subtract 10 from 25.

| Press | Result |  |
| :--- | :--- | :--- |
| $25 \square 10$ | $25-10$ |  |
| ENTER |  |  |
|  |  |  |
|  |  |  |

Example: Add 10 to -25.

| Press | Result |
| :---: | :---: |
| (-) 25 ( 10 <br> ENTER | $-25+16$ |

Example: Subtract-10 from 25.

| Press | Result |
| :--- | :--- |
| $25 \square(-) 10$ | $25--10$ |
| ENTER |  |
|  |  |
|  |  |

Note: Notice that the TI-84 Plus displays a slightly different symbol for negation and subtraction to make it easier for you to distinguish between the two. The negative symbol is raised and slightly shorter.

## Using parentheses

Since all calculations inside parentheses are completed first，it is sometimes important to place a portion of an expression inside parentheses．

Example：Multiply 4＊1＋2；then multiply $4 *(1+2)$ ．

| Press | Result |
| :---: | :---: |
| $\begin{aligned} & \hline 4 \boxtimes 1 \text { 凹 } 2 \\ & \text { EENTER } \end{aligned}$ | $\sqrt{4 * 1+2}$ |
| $\begin{aligned} & \text { 4囚 } 1 \text { 1母 } 2 \square \\ & \text { ENTER } \end{aligned}$ | $4 * 1+2$ 6 <br> $4 *(1+2)$ 12 |

Note：The closing parenthesis $\square$ is optional．The operation will be completed if you omit it．The exception to this rule occurs when there is another operation following the parenthetical operation．In this case， you must include the closing parenthesis．
Example：Divide $1 / 2$ by $2 / 3$ ．

| Press | Result |
| :---: | :---: |
| $\square 1 母 2 \square \square$ $\square 2 \square$ ENTER | $\begin{array}{\|cc\|} \hline(1 / 2) /(2 / 3) & .75 \\ & \end{array}$ |

Example: Calculate $16 \wedge \frac{1}{2}$.

| Press | Result |
| :--- | :--- |
| $\mathbf{1 6 \Omega \square 1 母 2 \square}$ | $\boxed{16^{*}(1 / 2)}$ |
| ENTER |  |
|  |  |
|  |  |

Example: Calculate $(-3)^{2}$.

| Press | Result |
| :---: | :---: |
| $\begin{aligned} & \square(-) \mathbf{3} \square x^{2} \\ & \text { ENTER } \end{aligned}$ |  |

Note: Try each of these examples without the parentheses and see what happens!

## Storing a value

Values are stored to and recalled from memory using variable names.
Example: Store 25 to variable A and multiply A by 2.

| Press | Result |
| :--- | :--- |
| 25 STO ALPHA [A] | $25 \div \mathrm{A}$ |
|  |  |
|  |  |


| Press | Result |
| :---: | :---: |
| ENTER | $25 \div \mathrm{A} \quad 25$ |
| 2 区 ALPHA [A] <br> ENTER | $25+\mathrm{H}$ 25 <br> $2 * \mathrm{~F}$ 50 |
| - or - <br> ALPHA [A] ख 2 <br> ENTER | $25 \div+\mathrm{A}$ 25 <br> $2 * \mathrm{~A}$ 56 <br> $\mathrm{~A} * 2$ 56 <br>   |

Example: Find the value of $2 \mathrm{X}^{3}-5 \mathrm{X}^{2}-7 \mathrm{X}+10$ when $\mathrm{X}=-0.5$.

| Press | Result |
| :---: | :---: |
| 5 STO $\bar{X}, \mathrm{~T}, \Theta, n$ ENTER (stores -. 5 to X ) | $-.5 \div \mathrm{K} \quad-.5$ |
|  | $\left\|\begin{array}{lr} -.5+\mathrm{K} & -5 \\ 2 x^{\circ} 3-5 x^{2}-7 X+10^{2} \\ 12 \end{array}\right\|$ |

You can remove a value stored to a variable using the DELVAR function or by storing 0 to the variable.

Example: Delete the value (-.5) stored to X above by storing 0.

| Press | Result |
| :---: | :---: |
| 0 STO X,T, $\Theta, n$ <br> ENTER |  |
| $\begin{aligned} & \hline X, \mathrm{~T}, \mathrm{Q}, \mathrm{n} \\ & \text { ENTER } \end{aligned}$ | $0+\mathrm{X}$ 0 <br> $X$ 0 |

## Graphing a function

Displays the $Y=$ Editor, where you can enter one or more functions or expressions to graph.


To graph a function, you must:

1. Display the $Y=$ Editor.
2. Enter the function.
3. Display the graph.

Note: If you previously changed graph type in the mode settings, you must change the type back to Func (the default setting) before you graph.
Example: Graph the function $\mathrm{Y}=\mathrm{X}^{2}+1$.

| Press | Result |
| :---: | :---: |
| $Y$ | Flot Flotz Flot <br> $W_{1}=\square$ <br> $W_{2}=$ <br> $W_{4}=$ <br> $W_{5}=$ <br> $W_{6}=$ |
| $X, T, \Theta, n, x^{2} \square 1$ |  |
| GRAPH |  |

Note: If Y1 is not empty, press CLEAR. If there are additional entries in the $\mathrm{Y}=$ Editor, press $\square$ CLEAR until all are clear.

## Changing mode settings

The mode settings determine how entries are interpreted and how answers are displayed on the $\mathrm{TI}-84$ Plus.

Example: Change the mode setting for decimals from Float to 3 decimal places.

| Press | Result |
| :---: | :---: |
| MODE |  |
| $\begin{aligned} & \hline \square \square \square \square \square \\ & \text { ENTER } \end{aligned}$ |  |
| 2nd [QUIT] <br> 1. $\square$ 23456 <br> ENTER | $\begin{array}{\|cc\|} \hline 1.23456 & 1.235 \\ & \\ & \\ \hline \end{array}$ |

Note: You must press ENTER to change a mode setting. If you highlight the setting and then exit the mode menu without pressing ENTER, the setting will not be changed.
The mode menu includes the following settings:

| Setting | Choices |
| :---: | :---: |
| Numeric notation | - Normal: for example, 12345.67 <br> - $\quad S c i$ (scientific): for example, $1.234567 E 4$ <br> - Eng (engineering): for example, 12.34567E3 |
| Decimal | - Float: lets the number of decimal places change based on the result (up to 10 digits) <br> - 0-9: sets the number of decimal places to a value (0-9) that you specify |
| Angle measure | - Radian: interprets angle values as radians <br> - Degree: interprets angle values as degrees |


| Setting | Choices |
| :---: | :---: |
| Type of graph | - Func (functional): plots functions, where Y is a function of $X$ <br> - Par (parametric): plots relations, where X and Y are functions of $T$ <br> - $\operatorname{Pol}$ (polar): plots functions, where $r$ is a function of $[n] \theta$ <br> - $\quad$ Seq (sequence): plots sequences |
| Plot type | - Connected: draws a line connecting each point calculated for the selected functions <br> - Dot: plots only the calculated points of the selected functions |
| Sequential or simultaneous graphing | - Sequential: draws graphs one at a time <br> - Simul (simultaneous): draws several graphs at the same time |
| Real or complex mode | - Real: displays real numbers, such as $1,1 / 2, \sqrt{3}$ <br> - $a+b i$ (rectangular complex): displays as $3+2 i$ <br> - $\quad r e^{\wedge} \theta \mathrm{i}$ (polar complex): displays as re^ ${ }^{\wedge} \mathrm{i}$ |
| Screen display | - Full: displays full screen <br> - Horiz: displays a horizontal split screen <br> - G-T: displays a vertical split screen (graph \& table) |

## The importance of mode settings

Example: Multiply $2 / 3 \times 2$.

| Press | Result |
| :---: | :---: |
| MODED $\square^{\text {a }}$ [NTER |  |


| Press | Result |
| :---: | :---: |
| 2 ¢ 3 (ENTER | $2 / 3 * 2$ |

Your first reaction to this example is that the graphing handheld has produced a wrong answer. But you have set it to round to 0 decimal places (the nearest whole number), so for this setting the answer is correct. If you set rounding (decimals displayed) to 0 and then forget to reset it for later calculations, you may be surprised by some of your answers! With mode set to the default setting of Float, the result will be:

| Press | Result |
| :---: | :---: |
| $\begin{aligned} & \mathbf{2 母} \mathbf{3} \mathbf{2} \\ & \text { ENTER } \end{aligned}$ | $2 / 3 * 2 \text { 1. डssssssss }$ |

## Setting the graphing window

To obtain the best view of the graph, you may need to change the boundaries of the window.

To display the WINDOW Editor, press WINDOW.


Window variables (shown in WINDOW Editor)


Corresponding viewing window (shown on Graph window)

The Xmin, Xmax, Ymin, and Ymax variables represent the boundaries of the viewing window.

Xmin：the minimum value of $X$ to be displayed．
Xmax：the maximum value of $X$ to be displayed．
Ymin：the minimum value of $Y$ to be displayed．
Ymax：the maximum value of Y to be displayed．
Xcsl（ X scale）：the distance between the tick marks on the X axis．
Yscl（ Y scale）：the distance between the tick marks on the Y axis．
Xres：pixel resolution－not usually changed except by advanced users．
To change the values：
1．Move the cursor to highlight the value you want to change．
2．Do one of the following：
－Type a value or an expression．The old value is erased when you begin typing．
—or－
－Press CLEAR to clear the old value；then type the new one．
3．Press ENTER，$\square$ ，or $\square$ ．
Note：Values are stored as you type them；you do not need to press ENTER．Pressing ENTER simply moves the cursor to the next window variable．

4．After you have made all changes，press［nd［Quit］to close the WINDOW Editor（or GRAPH to display the graph）．

Example：Change the window settings to display a maximum $X$ value of 25 ，a minimum $X$ value of -25 ，a maximum $Y$ value of 50 ，and a minimum $Y$ value of -50 ．

| Press | Result |
| :---: | :---: |
| WINDOW |  |
| （－） 25 － 25 回 <br> （－1） $50-50$ |  |


| Press | Result |
| :--- | :--- |
| 2nd [QUIT] | $\square$ |
|  |  |
|  |  |

## Using ZOOM

The TI-84 Plus has ten predefined window settings that let you quickly adjust the graph window to a predetermined level of magnification. To display this menu, press ZOOM.

| Selection | Result |
| :--- | :--- |
| 1: ZBox | Lets you draw a box (using the cursor pad) to <br> define the viewing window. |
| 2: Zoom In | After you position the cursor and press ENTER, <br> magnifies the graph around the cursor. |
| 3: Zoom Out | After you position the cursor and press ENTER, <br> displays more of the graph. |
| 4: ZDecimal | Sets the change in X and Y to increments of .1 <br> when you use [RACE. |
| 5: ZSquare | Adjusts the viewing window so that X and Y <br> dimensions are equal. |
| 6: ZStandard | Sets the standard (default) window variables. |
| 7: ZTrig | Sets the built-in trigonometry window variables. |
| 8: ZInteger | After you position the cursor and press ENTER, sets <br> the change in X and Y to whole number <br> increments. |
| 9: ZoomStat | Sets the values for currently defined statistical lists. |
| 0: ZoomFit | Fits Ymin and Ymax between Xmin and Xmax. |

## Building a table

Tables are useful tools for comparing values for a function at multiple points.

Example: Build a table to evaluate the function $Y=X^{3}-2 X$ at each integer between -10 and 10.

| Press | Result |
| :---: | :---: |
|  |  |
| $Y$ |  |
| $\begin{aligned} & \mathrm{X}, \mathrm{~T}, \Theta, \Pi \text { MATH } \mathbf{3} \\ & -\mathbf{X}, \mathrm{T}, \Theta, n \end{aligned}$ |  |
| 2nd [TBLSET] |  |
| (-)) 10 ENTER <br> (sets TbIStart; default settings shown for the other fields are appropriate) |  |
| 2nd [TABLE] |  |

Note: Press repeatedly to see the changes in X and Y .

## Clearing the $\mathbf{Y}=$ Editor

Before proceeding with the remaining examples in this guidebook, clear the $Y=$ Editor.

| Press | Result |
| :---: | :---: |
| Y |  |
| CLEAR |  |

## Using the CATALOG

The CATALOG is an alphabetic list of all functions and instructions on the TI-84 Plus. Some of these items are also available on keys and menus.

To select from the CATALOG:

1. Position the cursor where you want to insert the item.
2. Press 2nd [catalog].
3. Press $\square$ or $\square$ to move the indicator to the function or instruction. (You can move quickly down the list by typing the first letter of the item you need.)
4. Press [ENTER. Your selection is pasted on the home screen.

## Notes:

- Items are listed in alphabetical order. Those that do not start with a letter ( $+, \geq, \sqrt{ }, \pi$, and so on) are at the end of the list.
- You can also paste from the CATALOG to an editor, such as the $Y=$ Editor.

Example: Enter the rand function on the home screen.

| Press | Result |  |
| :---: | :---: | :---: |
| 2nd [CATALOG] [R] $\square$ |  | -The 目 indicates that Alpha-lock is on. |
| ENTER | remad |  |

## Performing simple calculations

## Changing a decimal to a fraction

Example: Add 1/2 + 1/4 and change your answer to a fraction.

| Press | Result |
| :---: | :---: |
| $\mathbf{1} \div \mathbf{2}+1 \doteqdot \mathbf{4}$ ENTER | $1 / 2+1 / 4 \quad .75$ |
| MATH 1 ENTER | $1 / 2+1 / 4$ .75 <br> Ars. Froac $3 / 4$ <br>   |

Finding the least common multiple
Example: Find the least common multiple of 15 and 24.

| Press | Result |
| :---: | :---: |
| MATH $\square$ ロー <br> ENTER <br> 15 $\square$ 24 $\qquad$ ENTER | $10 \mathrm{~m}(15,24) \quad 120$ |

## Finding the square root

Example: Find the square root of 256 .

| Press | Result |
| :--- | :--- |
| [2nd [r] 256 |  |
| ENTER | F(256) |
|  |  |
|  |  |
|  |  |

Finding the factorial of numbers
Example: Compute the factorial of 5 and 30.


## Solving trigonometric functions

Example: Find the sine of an angle of $72^{\circ}$.

| Press | Result |
| :--- | :--- |
| SIN 72 | Eirc720. |
| 2nd [ANGLE] ENTER] |  |
| ENTER |  |
|  |  |

If you are solving multiple problems using angles, be sure that mode is set to Degree. If you are in Radian mode and do not wish to change the mode, you can use 2nd [ANGLE] ENTER (as you did in this example) to add the degree symbol to the calculation and override the Radian mode setting.

## Adding Complex Numbers

Example: Add (3+5i) + (2-3i).

| Press | Result |
| :--- | :--- |
| $\square \mathbf{3}+\mathbf{5}$ [2nd $[i] \square$ | $\boxed{\square}+5 i\rangle+(2-3 i\rangle+2 i$ |
| $\square \square \mathbf{2} \square \mathbf{3}$ 2nd $[i] \square$ |  |
| ENTER |  |
|  |  |

Note: The i character is the second function of $\square$ (the decimal key).

## Using the equation solver

You can use the TI-84 Plus equation solver to solve for a variable in an equation.

Example: Find the roots for the equation $X^{2}-13 X-48=0$.

| Press | Result |
| :---: | :---: |
| MATH $\triangle$ |  |
| ENTER | EDUATIOH SOLVER |

If you do not see eqn: $0=$ as shown above, press $\Delta$ (the up arrow), and then press CLEAR to erase the existing equation.

| Press | Result |
| :---: | :---: |
| $\begin{aligned} & \hline X, T, \Theta, \eta, x^{2} \square \\ & \mathbf{1 3} \overline{X X, T, \Theta, \eta} \square \mathbf{4} \end{aligned}$ | EDUATIOH SOLVER ㄹnํ: $6=22-13 \times-48$ |
| ENTER | $\left\lvert\, \begin{aligned} & X 2-13 X-48=0 \\ & x=0 \\ & B=1 n d=6-1 E 99,1 \ldots \end{aligned}\right.$ |
| ALPHA [SOLVE] | $\left\{\begin{array}{l} x=-13 x-48=0 \\ x=-3 \\ \text { Gound=6-1 } \mathrm{E} 99,1 \ldots \end{array}\right.$ |


| Press | Result |
| :---: | :---: |
| 100 |  |
| ALPHA [SOLVE] |  |

The two roots are -3 and 16. Since you did not enter a guess, the TI-84 Plus used 0 (the default guess) and first returned the answer nearest 0 . To find other roots, you must enter another guess. In this example, you entered 100.

## Entering data into lists

You can enter data into lists using either of two methods:

- Using braces and STO on the home screen
—or -
- Using the statistical list editor.

Using STO
Example: Store 1, 2, 3, and 4 to list 1 (L1).

| Press | Result |
| :--- | :--- |
| 2nd $[] \mathbf{1} \square \mathbf{2} \square$ | $\boxed{\square}, 2,3,47$ |
| $\mathbf{3} \square \mathbf{4}$ 2nd [r] |  |
|  |  |


| Press | Result |
| :---: | :---: |
| STO* | 61,2,3,43+■ |
| $\begin{array}{\|l\|} \hline \text { 2nd }[\text { [L1] } \\ \text { ENTER } \end{array}$ | $61,2,3,4\} * L^{1} 343$ |

## Using the statistical list editor

Example: Store 5, 6, 7, and 8 to list 2 (L2).

| Press | Result |
| :---: | :---: |
| STAT ENTER |  |
| $\square \triangle$ CLEAR ENTER <br> (if L2 already contains data) |  |
| $\begin{aligned} & \mathbf{5} \text { ENTER } \mathbf{6} \text { ENTER } \\ & \mathbf{7} \text { ENTER } \mathbf{8} \text { ENTER } \end{aligned}$ |  |

$\left.\begin{array}{|l|lll|}\hline \text { Press } & \text { Result } \\ \hline \text { [nd [QuIT] [2nd [L2] } & \text { Lz } & \\ \hline \text { [ENTER } & & 6 & 7 \\ \text { (displays the contents of the } \\ \text { list on the home screen) }\end{array}\right)$

## Plotting data

When you have statistical data stored in lists, you can display the data you have collected in a scatter plot, xyLine, histogram, box plot, or normal probability plot.

You will need to:

1. Determine which lists contain your data.
2. Tell the TI-84 Plus which lists of data you want to plot and define the plot.
3. Display the plot.

Determine which lists contain your data

| Press | Result |
| :---: | :---: |
| STAT | ```EDIU CHLE TESTS figdit 2: Sort. 3: Sortoc 4:ClrList 5: Setilleditor``` |
| ENTER | $L 1$ $L 2$ $L Z$ <br> 1 $\mathbf{Z}$  |
|  |  |
|  | $\underline{2 c t u}=5$ |

Note: In some cases, you may have several lists stored and you may have to press several times to find the correct lists.

Tell the TI-84 Plus which lists you want to plot

| Press | Result |
| :---: | :---: |
| 2nd [STAT PLOT] |  |
| ENTER <br> (turns plots off if any plots are on) | Ploteloff [ione |
| 2nd [STAT PLOT] |  |
| ENTER |  |
| ENTER <br> (turns Plot1 on) |  |
| 2nd [LIST] <br> ENTER <br> (enters L1 as the Xlist) |  |


| Press | Result |
| :---: | :---: |
| 2nd [LIST] <br> ENTER <br> (enters L2 as the Ylist) |  |
| (selects + as the plotting mark) |  |
| $Y$ CLEAR | Fioti Fiotz Fiots $Y_{1}=\square$ $Y_{z}=$ $Y_{4}=$ $Y_{5}=$ $Y_{6}=$ $y_{7}=$ |

Note: This step is optional and is not necessary unless there is a previous entry in the $Y=$ Editor. If there are additional entries in the $Y=$ Editor, press CLEAR until all are clear.

## Display the plot

| Press | Result |
| :---: | :---: |
| GRAPH |  |
| ZOOM $\triangle \triangle$ ENTER (selects ZoomStat) |  |

Note: If you would like to add the regression line to a scatter plot, adding Y1 to the end of the instruction: LinReg(ax+b) L1, L2, Y1. (Press VARS [ENTER ENTER to add Y1.) Press GRAPH to see the regression line.

## Calculating a linear regression

If you wish to calculate the linear regression for data, you can do so using the LinReg instruction from the STAT CALC menu.

Example: Calculate the linear regression for the data entered in L1 and L2.

| Press | Result |
| :---: | :---: |
|  |  |
| ENTER | LinReg (ax+b) |
| 2nd [L1] [- [nd [L2] | Lirikeg (ax+b) Li? |
| ENTER | LinReg $y=0 \times+b$ $b=1$ $b=4$ |

Note: The information on the last screen means that the points in L1 and L2 $[(1,5)(2,6)(3,7)(4,8)]$ all lie on the line $Y=X+4$.

## Calculating statistical variables

The TI-84 Plus lets you easily calculate one-variable or two-variable statistics for data that you have entered into lists.

Example: Using the data that you entered into L1 from the previous section "Using STO", calculate one-variable statistics.

| Press | Result |
| :---: | :---: |
| STAT ${ }^{\text {a }}$ |  |
| ENTER | 1-War Stats |
| 2nd [L1] | 1-Wョr* St.ets Li |
| ENTER |  |

## Using the MATRIX Editor

Creating a new matrix

| Press | Result |
| :---: | :---: |
| 2nd [MATRIX] ${ }^{\text {d }}$ |  |
| ENTER | HATRIX[A] $1 \times 1$, |
| 2 ENTER 2 ENTER |  |
| $\begin{aligned} & \mathbf{1} \text { ENTER } \mathbf{5} \text { ENTER } \\ & \mathbf{2} \text { ENTER } \mathbf{8} \text { ENTER } \end{aligned}$ |  |

Note: When you press ENTER, the cursor automatically highlights the next cell so that you can continue entering or editing values. To enter a new value, you can start typing without pressing ENTER, but you must press ENTER to edit an existing value.

## Using matrices to solve systems of equations

You can solve several equations simultaneously by entering their coefficients into a matrix and then using the rref (reduced row-echelon form) function. For example, in the equations below, enter 3, 3, and 24 (for $3 \mathrm{X}, 3 \mathrm{Y}$, and 24) in the first row, and 2, 1, 13 (for $2 \mathrm{X}, 1 \mathrm{Y}$, and 13) in the second row.

Example: Solve $3 X+3 Y=24$ and $2 X+Y=13$

| Press | Result |
| :---: | :---: |
| 2nd [MATRIX] $\square^{\text {a }}$ - |  |
| ENTER | $\left\lvert\, \begin{array}{llll} \hline \text { MFTRIX[E] } & 1 & \times 1 & \\ {[0} \end{array}\right.$ |
| 2 ENTER 3 ENTER | HATRIX[B] 2 5 0 0 |
| 3 ENTER 3 ENTER 24 ENTER <br> 2 ENTER 1 ENTER 13 ENTER |  |
| 2nd [QUIT] |  |
| 2nd [MATRIX] $\square$ | ```WHPES FIFITH EDIT 1日det \(2{ }^{1}\) 3: dim 4:Fillc 5: idertituc 6: rend```  |


| Press | Result |
| :---: | :---: |
|  |  |
| ENTER | roef |
| 2nd [MATRIX] [ENTER | rref ( $\mathrm{B}^{\text {P] }}$ |
| ENTER |  |

You can interpret the resulting matrix as:
[1 105 5] represents $1 X+0 Y=5$ or $X=5$
[0 103 ] represents $0 X+1 Y=3$ or $Y=3$
The solution to this system of equations is $\mathrm{X}=5, \mathrm{Y}=3$.

## Grouping

Grouping lets you make a copy of two or more variables and store them in the Flash memory of the TI-84 Plus. This function is similar to "zipping" a computer file and storing it. For example, suppose that you want to save data you collected for time, temperature, humidity, and barometric pressure because you may need to use the data for another assignment.

Grouping lets you keep these lists together for future use. Instead of trying to locate the correct lists and remember which ones were collected together, you can simply recall the group. Grouping also saves space on your graphing handheld by copying variables from RAM to Flash memory.

Example: Group lists L1, L2, and L3 and name them GROUPA.

| Press | Result |
| :---: | :---: |
| 2nd [MEM] | ```GE\|[0]=? 2+1Wem Mamt/ Clel.. G:Clear Entries 4:ElrAllLists 5:Archive G: LlmArchive 7:Reset... 8:GrouF...``` |
| 8 | GROIIF UPGROUF <br> 18Create New |
| ENTER | $\begin{aligned} & \text { Caution: You are in } \\ & \text { alpha mode. } \end{aligned}$ |
| [G] [R] [O] [U] [P] [A] | WROUP |
| ENTER |  |


| Press | Result |
| :---: | :---: |
| 4 |  |
| $\begin{aligned} & \text { ENTER } \square \text { ENTER } \\ & \square \text { ENTER } \end{aligned}$ |  |
| $\square$ | SELECT LTDIAE 180one |
| ENTER |  |

## Ungrouping

To use variables that have been grouped, you must ungroup.
Example: Ungroup GROUPA.

| Press | Result |
| :---: | :---: |
| 2nd [MEM] |  |


| Press | Result |
| :---: | :---: |
| 8 |  |
| $\square$ |  |
| ENTER |  |
| 3 <br> (to overwrite all three lists) |  |

## Error messages

Occasionally, when you enter a function or instruction or attempt to display a graph, the TI-84 Plus will return an error message.

For more details, see Appendix B

Example: Enter the least common multiple function Icm( followed by only one number.

| Press | Result |
| :---: | :---: |
| $\begin{aligned} & \hline \text { MATH } \triangle \triangle \triangle \text { ENTER } \\ & \mathbf{2 7} \end{aligned}$ | 16ल<27, |
| ENTER | $\begin{aligned} & \text { ERE:SYMTAK } \\ & \text { igout } \\ & 2: 60 t- \end{aligned}$ |

If you select 1:Quit, you return to the home screen with the cursor on a new entry line. If you select 2:Goto, you return to the original entry line; the cursor is flashing at the location of the error. You can now correct the error and continue.

You can find a complete list of error conditions with explanations in Appendix B: General Information.

## Resetting defaults

If you are getting unexpected results, or if another person has used your TI-84 Plus and may have changed the settings, you should consider resetting defaults on the TI-84 Plus.

| Press | Result |
| :---: | :---: |
| 2nd [MEM] |  |


| Press | Result |
| :---: | :---: |
| 7 |  |
| 2 |  |
| 2 |  |
|  |  2.20 <br> Defaults set |

WARNING: If you reset All RAM in step 3 above, you will delete stored variables, lists, applications, and programs. Be sure you have backed up any essential data before you select this option.

## Installing applications

Graphing handheld software applications (Apps) let you update the functionality of your TI-84 Plus by installing Apps. This is similar to the way that you add new features to your computer by installing new software applications.

You can find applications for the TI-84 Plus at the TI Online Store at education.ti.com. Once you have downloaded an application to your computer, you must use TI Connect ${ }^{\text {TM }}$ or TI-GRAPH LINK ${ }^{\text {TM }}$ software and the USB computer cable or TI Connectivity Cable USB to install the application on your TI-84 Plus.

## Instructions for Windows®

1. Connect the USB computer cable between your computer and TI-84 Plus. Make sure the TI-84 Plus is on the home screen.
2. Using Windows (or NT) Explorer, locate the application file you want to transfer to the connected device.
3. Reduce the size of the Explorer window so you can see the TI Connect desktop icon.
4. Click the application file you want to transfer.
5. Drag the application file out of Explorer and drop it on the TI Connect desktop icon.

## Instructions for Macintosh®

1. Connect the TI Connectivity Cable USB for Macintosh/Windows between your computer and TI-84 Plus, and make sure the TI-84 Plus is on the home screen.
2. Launch the TI-GRAPH LINK 2 software and establish a connection to your TI-84 Plus.
3. Drag the application to the TI-84 Plus window in TI-GRAPH LINK. Follow any on-screen instructions that are given.

## Running applications

Once you have installed an application on your TI-84 Plus, you must start the application to use its features.

Example: Start the Catalog Help (CtlgHelp) app on the TI-84 Plus.

| Press | Result |
| :---: | :---: |
| APPS |  |
| - ENTER |  |

## Quick reference

| Press | To |
| :---: | :---: |
| 2nd ${ }^{\text {a }}$ | Darken the screen |
| 2nd ${ }^{\text {a }}$ | Lighten the screen |
| 2nd $\square^{\text {a }}$ | Move the cursor to the end of an expression |
| 2nd ${ }^{\text {a }}$ | Move the cursor to the beginning of an expression |
| ALPHA ${ }^{\text {a }}$ | Page down to the next screen (on menus) |
| ALPHA ${ }^{\text {a }}$ | Page up to the next screen (on menus) |
| [2nd [ENTRY] | Place your last entry on the current entry line on the home screen |
| 2nd [ANS] | Place Ans (a reference to your last answer) on the current entry line on the home screen, allowing you to use the answer in the next calculation |
| DEL | Delete the character under the cursor |
| 2nd [INS] | Insert additional characters at the cursor |
| $\square \square$ | Move the cursor from line to line |
| D | Move the cursor from character to character within a line |
| CLEAR | Clear the current line. (If the cursor is on a blank line, clears everything on the home screen.) |

## Battery precautions

Take these precautions when replacing batteries.

- Do not leave batteries within the reach of children.
- Do not mix new and used batteries. Do not mix brands (or types within brands) of batteries.
- Do not mix rechargeable and non-rechargeable batteries.
- Install batteries according to polarity (+ and - ) diagrams.
- Do not place non-rechargeable batteries in a battery recharger.
- Properly dispose of used batteries immediately.
- Do not incinerate or dismantle batteries.


## Activities

## The Quadratic Formula

## Entering a Calculation

Use the quadratic formula to solve the quadratic equations $3 x^{2}+5 x+2=0$ and $2 x^{2}-x+3=0$. Begin with the equation $3 x^{2}+5 x+2=0$

1. Press 3 STO ALPHA [A] (above MATH) to store the coefficient of the $x^{2}$ term.
2. Press ALPHA [:] (above $\square$ ). The colon allows you to enter more than one instruction on a line.
3. Press 5 STO ALPHA [B] (above APPS) to store the coefficient of the $X$ term. Press ALPHA [:] to enter a new instruction on the same line. Press 2 STO ALPHA [C] (above PRGM) to store the constant.
4. Press ENTER to store the values to the variables $A, B$, and $C$.

The last value you stored is shown on the right side of the display. The cursor moves to the next line, ready for your next entry.

5. Press $\square$ ALPHA $[B] \oplus$ 2nd $[\checkmark]$ ALPHA $[B] x^{2}$ $\square 4$ ALPHA [A] ALPHA [C] $1 \square \square 2$ ALPHA

6. Press ENTER to find one solution for the equation $3 x^{2}+5 x+2=0$.
The answer is shown on the right side of the display. The cursor moves to the next line, ready for you to enter the next expression.


## Converting to a Fraction

You can show the solution as a fraction.

1. Press MATH to display the MATH menu.

2. Press $\mathbf{1}$ to select $\mathbf{1}:$ PFrac from the MATH menu.

When you press 1, Ans)Frac is displayed on the home screen. Ans is a variable that contains the last calculated answer.
3. Press ENTER to convert the result to a fraction.


To save keystrokes, you can recall the last expression you entered, and then edit it for a new calculation.
4. Press 2nd [ENTRY] (above ENTER) to recall the fraction conversion entry, and then press 2nd [ENTRY] again to recall the quadraticformula expression,
$\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$


5．Press $\square$ to move the cursor onto the + sign in the formula．Press $\square$ to edit the quadratic－formula expression to become：
$\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$


6．Press ENTER to find the other solution for the quadratic equation $3 x^{2}+5 x+2=0$ ．

## Displaying Complex Results

Now solve the equation $2 x^{2}-x+3=0$ ．When you set $\mathbf{a}+\mathbf{b} i$ complex number mode，the TI－84 Plus displays complex results．

1．Press MODEQロロロロ（6 times），and then press $\square$ to position the cursor over $\mathbf{a}+\mathbf{b} i$ ．Press ENTER to select $\mathbf{a}+\mathbf{b} i$ complex－ number mode．

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

2．Press［2nd［QUIT］（above MODEE）to return to the home screen，and then press CLEAR to clear it．

3．Press $\mathbf{2}$ STO© ALPHA［A］ALPHA［：］© 1 STO＊ ALPHA［B］ALPHA［：］ 3 STO ALPHA［C］ENTER． The coefficient of the $x^{2}$ term，the coefficient of the $X$ term，and the constant for the new equation are stored to $A, B$ ， and C ，respectively．

4．Press［2nd［ENTRY］to recall the store instruction，and then press［2nd［ENTRY］again to recall the quadratic－formula expression，
$\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$
5．Press ENTER to find one solution for the equation $2 x^{2}-x+3=0$ ．

6. Press [2nd [ENTRY] repeatedly until this quadratic-formula expression is displayed:
$\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$
7. Press ENTER to find the other solution for
 the quadratic equation: $2 x^{2}-x+3=0$.

Note: An alternative for solving equations for real numbers is to use the built-in Equation Solver.

## Box with Lid

## Defining a Function

Take a $20 \mathrm{~cm} \times 25 \mathrm{~cm}$. sheet of paper and cut $X \times X$ squares from two corners. Cut $X \times 12.5 \mathrm{~cm}$ rectangles from the other two corners as shown in the diagram below. Fold the paper into a box with a lid. What value of X would give your box the maximum volume V ? Use the table and graphs to determine the solution.

Begin by defining a function that describes the volume of the box.

From the diagram:
$2 \mathrm{X}+\mathrm{A}=20$
$2 X+2 B=25$
$V=A * B * X$
Substituting:

$V=(20-2 X)(25 / 2-X) X$

1. Press $Y$ to display the $\mathbf{Y}=$ editor, which is where you define functions for tables and graphing.

2. Press $\square \mathbf{2 0} \square \mathbf{2 0 ~ X , ~ T , \Theta , n} \square \square \mathbf{2 5} \square \mathbf{2} \square$
$X, T, \Theta, \Pi$ D $X, T, \Theta, \Pi$ ENTER to define the volume function as $\mathbf{Y 1}$ in terms of $\mathbf{X}$.
$X, T, \Theta, \eta$ lets you enter $\mathbf{X}$ quickly, without having to press ALPHA. The highlighted = sign indicates that $\mathbf{Y 1}$ is selected.


## Defining a Table of Values

The table feature of the Tl-84 Plus displays numeric information about a function. You can use a table of values from the function you just defined to estimate an answer to the problem.

1. Press 2 nd [tblSET] (above WINDOW) to display the TABLE SETUP menu.
2. Press ENTER to accept TblStart=0.
3. Press 1 ENTER to define the table increment $\Delta$ Tbl=1. Leave Indpnt: Auto and Depend: Auto so that the table will be generated automatically.
4. Press [nd [TABLE] (above GRAPH) to display the table.

Notice that the maximum value for $\mathbf{Y 1}$ (box's volume) occurs when $\mathbf{X}$ is about $\mathbf{4}$, between $\mathbf{3}$ and $\mathbf{5}$.

5. Press and hold $\square$ to scroll the table until a negative result for $\mathbf{Y 1}$ is displayed.

Notice that the maximum length of $\mathbf{X}$ for this problem occurs where the sign of $\mathbf{Y} \mathbf{1}$ (box's volume) changes from positive to negative, between 10 and 11.

6. Press [2nd [TBLSET].

Notice that TblStart has changed to 6 to reflect the first line of the table as it was last displayed. (In step 5, the first value of $\mathbf{X}$ displayed in the table is 6 .)


## Zooming In on the Table

You can adjust the way a table is displayed to get more information about a defined function. With smaller values for $\Delta \mathbf{T b I}$, you can zoom in on the table.

1. Press $\mathbf{3}$ ENTER to set TblStart. Press $\square 1$ ENTER to set $\Delta$ Tbl.
This adjusts the table setup to get a more accurate estimate of $\mathbf{X}$ for maximum volume Y1.
2. Press 2nd [TABLE].
3. Press $\square$ and $\Delta$ to scroll the table.

Notice that the maximum value for Y1 is 410.26, which occurs at $X=3.7$. Therefore, the maximum occurs where $3.6<X<3.8$.

| X | Y' |  |
| :---: | :---: | :---: |
| 3.6 | 410.11 |  |
| 3 | 410.94 |  |
| $\frac{3}{4}$ | 469.19 |  |
| 4.1 | 408.29 |  |
| 4.20 | 404.36 |  |
| $8=4$. |  |  |

4. Press 2nd [TBLSET]. Press 3.6 ENTER to set TbIStart. Press 01 ENTER to set $\Delta$ Tbl.

5. Press $2 n d$ [TABLE], and then press $\square$ and $\Delta$ to scroll the table.

Four equivalent maximum values are shown, 410.26 at $X=3.67,3.68,3.69$, and 3.70.

6. Press $\square$ or $\Delta$ to move the cursor to $\mathbf{3 . 6 7}$. Press $\square$ to move the cursor into the Y1 column.

The value of $\mathbf{Y 1}$ at $\mathbf{X = 3 . 6 7}$ is displayed on the bottom line in full precision as
410.261226.

| X | $Y 1$ |  |
| :---: | :---: | :---: |
| 3.6 | 41025 |  |
| 3.6 | 410.80 |  |
| 39 | 410.26 |  |
| 3.7 | 410.26 |  |
| 3.72 | 410.25 |  |
| サ1=416.261226 |  |  |

7. Press to display the other maximum.

The value of $\mathbf{Y 1}$ at $\mathbf{X = 3 . 6 8}$ in full precision is $\mathbf{4 1 0 . 2 6 4 0 6 4}$, at $X=\mathbf{3 . 6 9}$ is $\mathbf{4 1 0 . 2 6 2 3 1 8}$ and at $\mathrm{X}=3.7$ is $\mathbf{4 1 0 . 2 5 6}$.

The maximum volume of the box would

| X | Y1 |  |
| :---: | :---: | :---: |
| 3.69 | 410.25 |  |
| $\stackrel{1}{619}$ | 4tmen |  |
| $\geqslant$ | 416.85 |  |
| 3.71 | 410.25 |  |
| $\mathrm{Y}_{1}=410.264664$ |  |  | occur at 3.68 if you could measure and cut the paper at .01-centimeter increments.

## Setting the Viewing Window

You also can use the graphing features of the TI-84 Plus to find the maximum value of a previously defined function. When the graph is activated, the viewing window defines the displayed portion of the coordinate plane. The values of the window variables determine the size of the viewing window.

1. Press WINDOW to display the window editor, where you can view and edit the values of the window variables.

| WIF[ITW |
| :---: |
| Xmin=-16 |
| xmax $=16$ |
| 人 $\mathrm{Sc}=1$ |
| YMin=-10 |
| Ym. $\times 10$ |
| YE1=1 |
| Mres=1 |

The standard window variables define the viewing window as shown. Xmin, Xmax, Ymin, and Ymax define the boundaries of the display. Xscl and Yscl define the distance between tick marks on the $\mathbf{X}$ and Y axes. Xres controls resolution.

2. Press $\mathbf{0}$ ENTER to define Xmin.
3. Press $\mathbf{2 0} \div \mathbf{2}$ to define Xmax using an expression.

4. Press ENTER. The expression is evaluated, and 10 is stored in Xmax. Press ENTER to accept Xscl as 1.
5. Press $\mathbf{0}$ ENTER $\mathbf{5 0 0}$ ENTER 100 ENTER 1 ENTER to define the remaining window variables.


## Displaying and Tracing the Graph

Now that you have defined the function to be graphed and the window in which to graph it, you can display and explore the graph. You can trace along a function using the TRACE feature.

1. Press GRAPH to graph the selected function in the viewing window.
The graph of $\mathbf{Y 1}=(\mathbf{2 0}-\mathbf{2 X})(\mathbf{2 5} / \mathbf{2}-\mathbf{X}) \mathbf{X}$ is displayed.

2. Press $\square$ to activate the free-moving graph cursor.
The $\mathbf{X}$ and $\mathbf{Y}$ coordinate values for the position of the graph cursor are displayed on the bottom line.

3. Press $\square, \square, \square$, and $\square$ to move the freemoving cursor to the apparent maximum of the function.
As you move the cursor, the $\mathbf{X}$ and $\mathbf{Y}$ coordinate values are updated continually.
4. Press TRACE. The trace cursor is displayed on the $\mathbf{Y 1}$ function.
The function that you are tracing is displayed in the top-left corner.
5. Press $\square$ and to trace along $\mathbf{Y} \mathbf{1}$, one $\mathbf{X}$ dot at a time, evaluating $\mathbf{Y 1}$ at each $\mathbf{X}$.
You also can enter your estimate for the maximum value of $\mathbf{X}$.
6. Press $\mathbf{3} \square$ 8. When you press a number key while in TRACE, the $\mathbf{X}=$ prompt is displayed in the bottom-left corner.

7. Press ENTER.

The trace cursor jumps to the point on the $\mathbf{Y 1}$ function evaluated at $\mathbf{X = 3 . 8}$.

8. Press $\square$ and $\square$ until you are on the maximum $Y$ value.

This is the maximum of $\mathbf{Y 1 ( X )}$ for the $\mathbf{X}$ pixel values. The actual, precise maximum may lie between pixel values.


## Zooming In on the Graph

To help identify maximums, minimums, roots, and intersections of functions, you can magnify the viewing window at a specific location using the ZOOM instructions.

1. Press ZOOM to display the ZOOM menu.

This menu is a typical Tl-84 Plus menu. To select an item, you can either press the number or letter next to the item, or you can press $\square$ until the item number or letter is highlighted, and then press ENTER.

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

2. Press $\mathbf{2}$ to select $\mathbf{2 : Z o o m}$ In.

The graph is displayed again. The cursor has changed to indicate that you are using a ZOOM instruction.

3. With the cursor near the maximum value of the function, press ENTER.

The new viewing window is displayed.
Both Xmax-Xmin and Ymax-Ymin have been adjusted by factors of 4 , the default values for the zoom factors.

4. Press WINDOW to display the new window settings.


## Finding the Calculated Maximum

You can use a CALCULATE menu operation to calculate a local maximum of a function.

1. Press 2nd [CALC] (above TRACE) to display the

CALCULATE menu. Press 4 to select 4:maximum.

The graph is displayed again with a Left Bound? prompt.

2. Press $\square$ to trace along the curve to a point to the left of the maximum, and then press ENTER.
$A>$ at the top of the screen indicates the selected bound.


A Right Bound? prompt is displayed.
3. Press $\square$ to trace along the curve to a point to the right of the maximum, and then press ENTER.

A $\leqslant$ at the top of the screen indicates the selected bound.


A Guess? prompt is displayed.
4. Press to trace to a point near the maximum, and then press ENTER.

Or, press $\mathbf{3}$ 8, and then press ENTER to enter a guess for the maximum.
When you press a number key in TRACE, the $\mathbf{X}=$ prompt is displayed in the bottomleft corner.

Notice how the values for the calculated maximum compare with the maximums found with the free-moving cursor, the trace cursor, and the table.

Note: In steps 2 and 3 above, you can enter values directly for Left Bound and Right Bound, in the same way as described
 in step 4.

## Comparing Test Results Using Box Plots

## Problem

An experiment found a significant difference between boys and girls pertaining to their ability to identify objects held in their left hands, which are controlled by the right side of their brains, versus their right hands, which are controlled by the left side of their brains. The TI Graphics team conducted a similar test for adult men and women.

The test involved 30 small objects, which participants were not allowed to see. First, they held 15 of the objects one by one in their left hands and guessed what they were. Then they held the other 15 objects one by one in their right hands and guessed what they were. Use box plots to compare visually the correct-guess data from this table.

| Correct Guesses |  |  |  |
| :---: | :---: | :---: | :---: |
| Women <br> Left | Women <br> Right | Men <br> Left | Men <br> Right |
| 8 | 4 | 7 | 12 |
| 9 | 1 | 8 | 6 |
| 12 | 8 | 7 | 12 |
| 11 | 12 | 5 | 12 |
| 10 | 11 | 7 | 7 |
| 8 | 11 | 8 | 11 |
| 12 | 13 | 11 | 12 |


| Correct Guesses |  |  |  |
| :---: | :---: | :---: | :---: |
| Women <br> Left | Women <br> Right | Men <br> Left | Men <br> Right |
| 7 | 12 | 4 | 8 |
| 9 | 11 | 10 | 12 |
| 11 | 12 | 14 | 11 |
|  |  | 13 | 9 |

## Procedure

1. Press STAT $\mathbf{5}$ to select $\mathbf{5 : S e t U p E d i t o r . ~ E n t e r ~ l i s t ~ n a m e s ~ W L E F T , ~ W R G H T , ~}$ MLEFT, and MRGHT, separated by commas. Press ENTER. The stat list editor now contains only these four lists.
2. Press STAT 1 to select 1:Edit.
3. Enter into WLEFT the number of correct guesses each woman made using her left hand (Women Left). Press $\square$ to move to WRGHT and enter the number of correct guesses each woman made using her right hand (Women Right).
4. Likewise, enter each man's correct guesses in MLEFT (Men Left) and MRGHT (Men Right).
5. Press 2nd [STAT PLOT]. Select 1:Plot1. Turn on plot 1; define it as a modified box plot $\left[\begin{array}{l}-\cdots \\ \text { that uses WLEFT. Move the cursor to the top line }\end{array}\right.$ and select Plot2. Turn on plot 2; define it as a modified box plot that uses WRGHT.
6. Press $Y=$. Turn off all functions.
7. Press WINDOW. Set Xscl=1 and Yscl=0. Press ZOOM $\mathbf{9}$ to select 9:ZoomStat. This adjusts the viewing window and displays the box plots for the women's results.
8. Press TRACE.


Use $\square$ and $\square$ to examine $\operatorname{minX}$ Q1, Med, Q3, and $\operatorname{maxX}$ for each plot. Notice the outlier to the women's right-hand data. What is the median for the left hand? For the right hand? With which hand were the women more accurate guessers, according to the box plots?
9. Examine the men's results. Redefine plot 1 to use MLEFT, redefine plot 2 to use MRGHT. Press TRACE.


Press $\square$ and to examine $\min \mathbf{X}, \mathbf{Q 1}$, Med, Q3, and maxX for each plot. What difference do you see between the plots?
10. Compare the left-hand results. Redefine plot 1 to use WLEFT, redefine plot 2 to use MLEFT, and then press TRACE to examine minX, Q1, Med, Q3, and maxX for each plot. Who were the better lefthand guessers, men or women?
11. Compare the right-hand results. Define plot 1 to use WRGHT, define plot 2 to use MRGHT, and then press TRACE to examine $\mathbf{m i n X}, \mathbf{Q 1}$, Med, Q3, and $\operatorname{maxX}$ for each plot. Who were the better right-hand guessers?

In the original experiment boys did not guess as well with right hands, while girls guessed equally well with either hand. This is not what our box plots show for adults. Do you think that this is because adults have learned to adapt or because our sample was not large enough?

## Graphing Piecewise Functions

## Problem

The fine for speeding on a road with a speed limit of 45 kilometers per hour (kph) is 50; plus 5 for each kph from 46 to 55 kph ; plus 10 for each kph from 56 to 65 kph; plus 20 for each kph from 66 kph and above. Graph the piecewise function that describes the cost of the ticket.

The fine $(Y)$ as a function of kilometers per hour $(X)$ is:

```
Y = 0
0<X\leq45
Y=50+5(X-45)
Y = 50 + 5* 10 + 10 (X - 55)
Y = 50 + 5* 10 + 10* 10 + 20(X - 65)
45<X\leq55
55<X\leq65
65<X
```


## Procedure

1. Press MODE. Select Func and the default settings.
2. Press $Y=$. Turn off all functions and stat plots. Enter the $\mathbf{Y}=$ function to describe the fine. Use the TEST menu operations to define the piecewise function. Set the graph style for Y1 to ${ }^{\circ}$. (dot).

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

3. Press WINDOW and set $\mathbf{X m i n = - 2 , X s c l = 1 0 , ~ Y m i n = - 5 , ~ a n d ~ Y s c l = 1 0 . ~}$ Ignore $\mathbf{X m a x}$ and $\mathbf{Y m a x}$; they are set by $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ in step 4.
4. Press 2nd [QUIT] to return to the home screen. Store $\mathbf{1}$ to $\Delta \mathbf{X}$, and then store 5 to $\Delta \mathbf{Y} . \Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ are on the VARS Window X/Y secondary menu. $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ specify the horizontal and vertical distance between the centers of adjacent pixels. Integer values for $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ produce nice values for tracing.
5. Press TRACE to plot the function. At what speed does the ticket exceed 250?


## Graphing Inequalities

## Problem

Graph the inequality $0.4 x^{3}-3 x+5<0.2 x+4$. Use the TEST menu operations to explore the values of $X$ where the inequality is true and where it is false.

## Procedure

1. Press MODE. Select Dot, Simul, and the default settings. Setting Dot mode changes all graph style icons to ${ }^{\prime}$. (dot) in the $\mathbf{Y}=$ editor.
2. Press $Y=$. Turn off all functions and stat plots. Enter the left side of the inequality as Y4 and the right side as Y5.
```
\(\because\) Y目. \(4 \times 3-3 \times+5\)
\(\because\) Ys. \(2 x+4\)
\(\because Y_{6}=\)
\(\because Y_{7}=\)
```

3．Enter the statement of the inequality as Y6．This function evaluates to $\mathbf{1}$ if true or $\mathbf{0}$ if false．

```
\(\because 4 \mathrm{H} .4 \times 3-3 \%+5\)
\(\because, 45 \mathrm{~B}, 2 \mathrm{~K}+4\)
Y6日寸4<Y巨
\(\mathrm{H}_{7}=\)
```

4．Press ZOOM 6 to graph the inequality in the standard window．
5．Press TRACE $\square$ to move to Y6．Then press $\square$ and $\square$ to trace the inequality，observing the value of $\mathbf{Y}$ ．


6．Press $Y$ ．Turn off Y4，Y5，and Y6．Enter equations to graph only the inequality．


7．Press TRACE．Notice that the values of $\mathbf{Y 7}$ and $\mathbf{Y 8}$ are zero where the inequality is false．


## Solving a System of Nonlinear Equations

## Problem

Using a graph, solve the equation $\mathrm{x}^{3}-2 \mathrm{x}=2 \cos (\mathrm{x})$. Stated another way, solve the system of two equations and two unknowns: $y=x^{3}-2 x$ and $y=$ $2 \cos (\mathrm{x})$. Use ZOOM factors to control the decimal places displayed on the graph.

## Procedure

1. Press MODED. Select the default mode settings. Press $⿴ 囗=$. Turn off all functions and stat plots. Enter the functions.

2. Press ZOOM $\mathbf{4}$ to select 4:ZDecimal. The display shows that two solutions may exist (points where the two functions appear to intersect).

3. Press ZOOM $\square \mathbf{4}$ to select $\mathbf{4}$ :SetFactors from the ZOOM MEMORY menu. Set XFact=10 and YFact=10.
4. Press $Z 00 \mathrm{M} \mathbf{2}$ to select $\mathbf{2}: \mathbf{Z o o m}$ In. Use $\square, \square, \boxtimes$, and $\square$ to move the free-moving cursor onto the apparent intersection of the functions on the right side of the display. As you move the cursor, notice that the $\mathbf{X}$ and $\mathbf{Y}$ values have one decimal place.
5. Press ENTER to zoom in. Move the cursor over the intersection. As you move the cursor, notice that now the $\mathbf{X}$ and $\mathbf{Y}$ values have two decimal places.
6. Press ENTER to zoom in again. Move the free-moving cursor onto a point exactly on the intersection. Notice the number of decimal places.
7. Press ¿nd [CALC] $\mathbf{5}$ to select $\mathbf{5}$ :intersect. Press ENTER to select the first curve and ENTER to select the second curve. To guess, move the trace cursor near the intersection. Press EENTER. What are the coordinates of the intersection point?
8. Press ZOOM 4 to select 4:ZDecimal to redisplay the original graph.
9. Press ZOOM. Select 2:Zoom In and repeat steps 4 through 8 to explore the apparent function intersection on the left side of the display.

## Using a Program to Create the Sierpinski Triangle

## Setting up the Program

This program creates a drawing of a famous fractal, the Sierpinski
Triangle, and stores the drawing to a picture. To begin, press PRGM $\square \square$

1. Name the program SIERPINS, and then press ENTER. The program editor is displayed.

## Program

PROGRAM:SIERPINS
:FnOff :ClrDraw
:PlotsOff
:AxesOff
$: 0 \rightarrow$ Xmin $: 1 \rightarrow$ Xmax
: $0 \rightarrow$ Ymin $: 1 \rightarrow$ Ymax
. Set viewing window.
:rand $\rightarrow X:$ rand $\rightarrow Y$
: $\operatorname{For}(\mathrm{K}, 1,3000)$
: rand $\rightarrow \mathrm{N}$
: If $\mathrm{N} \leq 1 / 3$
:Then
: . $5 \mathrm{X} \rightarrow \mathrm{X}$
$: .5 Y \rightarrow Y$
: End
J- Beginning of For group.
:If $1 / 3<\mathrm{N}$ and $\mathrm{N} \leq 2 / 3$
:Then
:. $5(.5+X) \rightarrow X$
: . $5(1+Y) \rightarrow Y$
: End
:If $2 / 3<\mathrm{N}$
:Then
: . $5(1+X) \rightarrow X$
: . $5 \mathrm{Y} \rightarrow \mathrm{Y}$
: End

If/Then group

If/Then group.

If/Then group.
: Pt-On (X, Y)
: End
:StorePic 6

Draw point.
End of For group.
Store picture.

After you execute the program above, you can recall and display the picture with the instruction RecallPic 6.


## Graphing Cobweb Attractors

## Problem

Using Web format, you can identify points with attracting and repelling behavior in sequence graphing.

## Procedure

1. Press MODE. Select Seq and the default mode settings. Press 2nd [FORMAT]. Select Web format and the default format settings.
2. Press $Y$. Clear all functions and turn off all stat plots. Enter the sequence that corresponds to the expression $Y=K X(1-X)$.
$\mathbf{u}(n)=K \mathbf{u}(n-1)(1-\mathbf{u}(n-1))$
$\mathbf{u}(n \mathbf{M i n})=.01$
3. Press 2nd [QUIT] to return to the home screen, and then store $\mathbf{2 . 9}$ to $\mathbf{K}$.
4. Press WINDOW. Set the window variables.

| $n$ Min=0 | Xmin=0 | Ymin=-.26 |
| :--- | :--- | :--- |
| $n$ Max=10 | Xmax=1 | Ymax=1.1 |
| PlotStart=1 | Xscl=1 | Yscl=1 |
| PlotStep=1 |  |  |

5. Press TRACE to display the graph, and then press to trace the cobweb. This is a cobweb with one attractor.

6. Change $\mathbf{K}$ to $\mathbf{3 . 4 4}$ and trace the graph to show a cobweb with two attractors.
7. Change $\mathbf{K}$ to $\mathbf{3 . 5 4}$ and trace the graph to show a cobweb with four attractors.


## Using a Program to Guess the Coefficients

## Setting Up the Program

This program graphs the function $A \sin (B X)$ with random integer coefficients between 1 and 10. Try to guess the coefficients and graph your guess as $C \sin (D X)$. The program continues until your guess is correct.

## Program

PROGRAM: GUESS
:PlotsOff :Func
:FnOff :Radian
: ClrHome
: "Asin(BX)" $\rightarrow$ Y1
:"Csin(DX)" ${ }^{\prime}$ Y2
: GraphStyle (1, 1)
: GraphStyle $(2,5)$
_- Define equations.
:FnOff 2
$:$ randInt $(1,10) \rightarrow A$
$:$ randInt $(1,10) \rightarrow B$
$: 0 \rightarrow C: 0 \rightarrow D$
$:-2 \pi \rightarrow \mathrm{Xmin}$
: $2 \pi \rightarrow \mathrm{Xmax}$
$: \pi / 2 \rightarrow \mathrm{Xscl}$
$:-10 \rightarrow Y m i n$
$: 10 \rightarrow$ Ymax
$: 1 \rightarrow$ Yscl
: DispGraph
: Pause
: FnOn 2
:Lbl Z
: Prompt C, D
: DispGraph
: Pause
: If $\mathrm{C}=\mathrm{A}$
:Text (1,1,"C IS OK")
: If $C \neq A$
: Text (1,1,"C IS
WRONG")
: If $\mathrm{D}=\mathrm{B}$
:Text(1,50,"D IS OK") ل
: If $D \neq B$
:Text (1,50,"D IS
WRONG")
: DispGraph
: Pause
: If $C=A$ and $D=B$
: Stop
: Goto Z

Set viewing window.

Display graph.

Prompt for guess.

Display graph.

Display results.

Display graph.

Quit if guesses are correct.

## Graphing the Unit Circle and Trigonometric Curves

## Problem

Using parametric graphing mode, graph the unit circle and the sine curve to show the relationship between them.

Any function that can be plotted in Func mode can be plotted in Par mode by defining the $\mathbf{X}$ component as $\mathbf{T}$ and the $\mathbf{Y}$ component as $\mathbf{F}(\mathbf{T})$.

## Procedure

1．Press MODEE．Select Par，Simul，and the default settings．
2．Press WINDOW．Set the viewing window．

| Tmin $=0$ | Xmin＝－2 | Ymin＝－3 |
| :--- | :--- | :--- |
| Tmax $=2 \pi$ | Xmax $\pi .4$ | Ymax $=3$ |
| Tstep $=.1$ | Xscl＝$\pi / 2$ | Yscl＝1 |

3．Press $Y$ ．Turn off all functions and stat plots．Enter the expressions to define the unit circle centered on $(0,0)$ ．

| Floti flote fots |
| :---: |
|  |  |
|  |  |
|  |  |

4．Enter the expressions to define the sine curve．

| F10ti Flote Flots <br> X17日OGT <br>  <br> Xzt白 <br>  |
| :---: |
|  |  |
|  |  |
|  |  |

5．Press TRACE．As the graph is plotting，you may press ENTER to pause and ENTER again to resume graphing as you watch the sine function ＂unwrap＂from the unit circle．


Note：You can generalize the unwrapping．Replace $\boldsymbol{\operatorname { s i n }}(\mathbf{T})$ in Y2T with any other trig function to unwrap that function．

## Finding the Area between Curves

## Problem

Find the area of the region bounded by：
$f(x)=300 x /\left(x^{2}+625\right)$
$g(x)=3 \cos (.1 x)$
$x=75$

## Procedure

1. Press MODE. Select the default mode settings.
2. Press WINDOW. Set the viewing window.

| Xmin=0 | Ymin=-5 | Xres=1 |
| :--- | :--- | :--- |
| Xmax=100 | Ymax $=10$ |  |
| Xscl=10 | Yscl=1 |  |

3. Press $⿴ 囗=$. Turn off all functions and stat plots. Enter the upper and lower functions.
$\mathrm{Y} 1=300 \mathrm{X} /\left(\mathrm{X}^{2}+625\right)$
Y2=3 $\cos (.1 \mathrm{X})$
4. Press [2nd [caLC] $\mathbf{5}$ to select $\mathbf{5}$ :Intersect. The graph is displayed. Select a first curve, second curve, and guess for the intersection toward the left side of the display. The solution is displayed, and the value of $\mathbf{x}$ at the intersection, which is the lower limit of the integral, is stored in Ans and $\mathbf{X}$.
5. Press [2nd [Quit] to go to the home screen. Press [2nd [DRAW] $\mathbf{7}$ and use Shade( to see the area graphically.

Shade(Y2,Y1,Ans,75)

6. Press [nd [QuIT] to return to the home screen. Enter the expression to evaluate the integral for the shaded region.

```
fnInt(Y1-Y2,X,Ans,75)
```

The area is $\mathbf{3 2 5 . 8 3 9 9 6 2}$.

## Using Parametric Equations: Ferris Wheel Problem

## Problem

Using two pairs of parametric equations, determine when two objects in motion are closest to each other in the same plane.

A ferris wheel has a diameter (d) of 20 meters and is rotating counterclockwise at a rate (s) of one revolution every 12 seconds. The parametric equations below describe the location of a ferris wheel passenger at time T , where $\alpha$ is the angle of rotation, $(0,0)$ is the bottom center of the ferris wheel, and $(10,10)$ is the passenger's location at the rightmost point, when $\mathrm{T}=0$.
$\begin{array}{ll}X(T)=r \cos \alpha & \text { where } \alpha=2 \pi T s \text { and } r=d / 2 \\ Y(T)=r+r \sin \alpha & \end{array}$
A person standing on the ground throws a ball to the ferris wheel passenger. The thrower's arm is at the same height as the bottom of the ferris wheel, but 25 meters (b) to the right of the ferris wheel's lowest point $(25,0)$. The person throws the ball with velocity $\left(v_{0}\right)$ of 22 meters per second at an angle $(\theta)$ of $66^{\circ}$ from the horizontal. The parametric equations below describe the location of the ball at time T.
$X(T)=b-T v_{0} \cos \theta$
$Y(T)=T v_{0} \sin \theta-(\mathrm{g} / 2) \mathrm{T}^{2} \quad$ where $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$

## Procedure

1. Press MODE. Select Par, Simul, and the default settings. Simul (simultaneous) mode simulates the two objects in motion over time.
2. Press WINDOW. Set the viewing window.

| Tmin=0 | Xmin=-13 | Ymin=0 |
| :--- | :--- | :--- |
| Tmax $=12$ | Xmax=34 | Ymax=31 |
| Tstep $=.1$ | Xscl=10 | Yscl=10 |

3. Press $⿴ 囗 \forall$. Turn off all functions and stat plots. Enter the expressions to define the path of the ferris wheel and the path of the ball. Set the graph style for X2T to 4 (path).

|  |
| :---: |
| $1+\theta 10+10 \sin \pi T$ |
|  |
|  |

-(9.8)2)T2
Note: Try setting the graph styles to X1T and X2T, which simulates a chair on the ferris wheel and the ball flying through the air when you press GRAPH.
4. Press GRAPH to graph the equations. Watch closely as they are plotted. Notice that the ball and the ferris wheel passenger appear to be closest where the paths cross in the top-right quadrant of the ferris wheel.

5. Press WINDOW. Change the viewing window to concentrate on this portion of the graph.

| Tmin=1 | Xmin=0 | Ymin=10 |
| :--- | :--- | :--- |
| Tmax=3 | Xmax=23.5 | Ymax=25.5 |
| Tstep $=.03$ | Xscl=10 | Yscl=10 |

6. Press TRACE. After the graph is plotted, press $\square$ to move near the point on the ferris wheel where the paths cross. Notice the values of $\mathbf{X}, \mathbf{Y}$, and $\mathbf{T}$.

7. Press $\square$ to move to the path of the ball. Notice the values of $\mathbf{X}$ and $\mathbf{Y}$ ( $\mathbf{T}$ is unchanged). Notice where the cursor is located. This is the position of the ball when the ferris wheel passenger passes the intersection. Did the ball or the passenger reach the intersection first?


You can use TRACE to, in effect, take snapshots in time and explore the relative behavior of two objects in motion.

## Demonstrating the Fundamental Theorem of Calculus

## Problem 1

Using the functions fnInt( and nDeriv( from the MATH menu to graph functions defined by integrals and derivatives demonstrates graphically that:

$$
\begin{aligned}
& F(x)=\int_{1}^{x} d t=\ln (x), x>0 \text { and that } \\
& D x\left[\int_{1}^{x} \frac{1}{t} d t\right]=\frac{1}{x}
\end{aligned}
$$

## Procedure 1

1. Press MODE. Select the default settings.
2. Press WINDOW. Set the viewing window.

| Xmin=.01 | Ymin=-1.5 | Xres=3 |
| :--- | :--- | :--- |
| Xmax=10 | Ymax=2.5 |  |
| Xscl=1 | Yscl=1 |  |

3. Press $Y=$. Turn off all functions and stat plots. Enter the numerical integral of $1 / T$ from 1 to $X$ and the function $\ln (X)$. Set the graph style for Y1 to : (line) and Y2 to 4 (path).

4. Press TRACE. Press $\square, \Delta, \square$, and $\square$ to compare the values of $\mathbf{Y} 1$ and Y2.
5. Press $Y=$. Turn off $\mathbf{Y} \mathbf{1}$ and $\mathbf{Y 2}$, and then enter the numerical derivative of the integral of $1 / \mathrm{X}$ and the function $1 / \mathrm{X}$. Set the graph style for Y3 to : (line) and Y4 to "w (thick).
```
Flot1 Flote Flots
Y1=fnInt<1/T,T,
1,N)
-4z=lnc\
```



```
x
*Y4目1/X
```

6．Press TRACE．Again，use the cursor keys to compare the values of the two graphed functions，Y3 and Y4．


## Problem 2

Explore the functions defined by

$$
y=\int_{2}^{x} t^{2} d t, \int_{0}^{x} t^{2} d t, \text { and } \int_{2}^{x} t^{2} d t
$$

## Procedure 2

1．Press $Y=$ ．Turn off all functions and stat plots．Use a list to define these three functions simultaneously．Store the function in Y5．


2．Press ZOOM 6 to select 6：ZStandard．
3．Press TRACE．Notice that the functions appear identical，only shifted vertically by a constant．
4．Press $Y=$ ．Enter the numerical derivative of $\mathbf{Y} 5$ in $\mathbf{Y} 6$ ．

```
Floti Flotz F10ts
```



```
< 
4
*s日ffrIrotcTz,T,4
-2, 是,2%, 人
```



```
8)
```

5．Press TRACE．Notice that although the three graphs defined by Y5 are different，they share the same derivative．


## Computing Areas of Regular N-Sided Polygons

## Problem

Use the equation solver to store a formula for the area of a regular N -sided polygon, and then solve for each variable, given the other variables. Explore the fact that the limiting case is the area of a circle, $\pi \mathrm{r}^{2}$. Consider the formula $A=\mathrm{NB}^{2} \sin (\pi / \mathrm{N}) \cos (\pi / \mathrm{N})$ for the area of a regular polygon with N sides of equal length and B distance from the center to a vertex.

$\mathrm{N}=4$ sides

$\mathrm{N}=8$ sides

$\mathrm{N}=12$ sides

## Procedure

1. Press MATH $\mathbf{0}$ to select $\mathbf{0}$ :Solver from the MATH menu. Either the equation editor or the interactive solver editor is displayed. If the interactive solver editor is displayed, press $\Delta$ to display the equation editor.
2. Enter the formula as $\mathbf{0}=\mathbf{A}-\mathbf{N B}^{\mathbf{2}} \boldsymbol{\operatorname { s i n }}(\pi / \mathbf{N}) \boldsymbol{\operatorname { c o s }}(\pi / \mathbf{N})$, and then press ENTER. The interactive solver editor is displayed.

|  |
| :---: |
|  |

3. Enter $\mathbf{N}=\mathbf{4}$ and $\mathbf{B}=\mathbf{6}$ to find the area (A) of a square with a distance (B) from center to vertex of 6 centimeters.
4. Press $\triangle \square$ to move the cursor onto $\mathbf{A}$, and then press ALPHA [SOLVE]. The solution for $\mathbf{A}$ is displayed on the interactive solver editor.
```
\(\mathrm{A}-\mathrm{HE} \mathrm{z}^{2} \sin (\pi / 4)=0\)
```



```
    \(\mathrm{H}=4\)
    \(\mathrm{E}=6\)
    bound=4-1 E99, \(1 .\).
- left-rot=0
```

5. Now solve for $\mathbf{B}$ for a given area with various number of sides. Enter $\mathbf{A}=\mathbf{2 0 0}$ and $\mathbf{N}=\mathbf{6}$. To find the distance $\mathbf{B}$, move the cursor onto $\mathbf{B}$, and then press ALPHA [SOLVE].
6. Enter $\mathbf{N}=\mathbf{8}$. To find the distance $\mathbf{B}$, move the cursor onto $\mathbf{B}$, and then press $\operatorname{ALPHA}$ [SOLVE]. Find $\mathbf{B}$ for $\mathbf{N}=\mathbf{9}$, and then for $\mathbf{N}=\mathbf{1 0}$.

Find the area given $\mathbf{B}=\mathbf{6}$, and $\mathbf{N}=\mathbf{1 0}, \mathbf{1 0 0}, \mathbf{1 5 0}, \mathbf{1 0 0 0}$, and 10000. Compare your results with $\pi 6^{2}$ (the area of a circle with radius 6 ), which is approximately 113.097 .
7. Enter $\mathbf{B}=6$. To find the area $\mathbf{A}$, move the cursor onto $\mathbf{A}$, and then press (ALPHA [SOLVE]. Find $\mathbf{A}$ for $\mathbf{N}=10$, then $\mathbf{N}=\mathbf{1 0 0}$, then $\mathbf{N}=\mathbf{1 5 0}$, then $\mathbf{N}=1 \mathbf{1 0 0 0}$, and finally $\mathbf{N}=\mathbf{1 0 0 0 0}$. Notice that as $\mathbf{N}$ gets large, the area $\mathbf{A}$ approaches $\pi \mathbf{B}^{2}$.
Now graph the equation to see visually how the area changes as the number of sides gets large.
8. Press MODE. Select the default mode settings.
9. Press WINDOW. Set the viewing window.

| Xmin=0 | Ymin=0 | Xres=1 |
| :--- | :--- | :--- |
| Xmax=200 | Ymax=150 |  |
| Xscl=10 | Yscl=10 |  |

10. Press $⿴ 囗=$. Turn off all functions and stat plots. Enter the equation for the area. Use $\mathbf{X}$ in place of $\mathbf{N}$. Set the graph styles as shown.

|  |
| :---: |

11. Press TRACE. After the graph is plotted, press 100 ENTER to trace to $\mathbf{X}=100$. Press 150 ENTER. Press 188 ENTER. Notice that as $\mathbf{X}$ increases, the value of $\mathbf{Y}$ converges to $\pi 6^{2}$, which is approximately 113.097.
$\mathbf{Y} \mathbf{2}=\pi \mathbf{B}^{2}$ (the area of the circle) is a horizontal asymptote to $\mathbf{Y} \mathbf{1}$. The area of an N -sided regular polygon, with r as the distance from the center to a vertex, approaches the area of a circle with radius $r\left(\pi r^{2}\right)$ as N gets large.


## Computing and Graphing Mortgage Payments

## Problem

You are a loan officer at a mortgage company, and you recently closed on a 30 -year home mortgage at 8 percent interest with monthly payments of 800 . The new home owners want to know how much will be applied to the interest and how much will be applied to the principal when they make the 240th payment 20 years from now.

## Procedure

1. Press $\mathbb{M O D E D}$ and set the fixed-decimal mode to $\mathbf{2}$ decimal places. Set the other mode settings to the defaults.
2. Press APPS ENTER ENTER to display the TVM Solver. Enter these values.


Note: Enter a positive number (800) to show PMT as a cash inflow. Payment values will be displayed as positive numbers on the graph. Enter $\mathbf{0}$ for $\mathbf{F V}$, since the future value of a loan is 0 once it is paid in full. Enter PMT: END, since payment is due at the end of a period.
3. Move the cursor onto the $\mathbf{P V}=$ prompt, and then press ALPHA [sOLVE]. The present value, or mortgage amount, of the house is displayed at the $\mathbf{P V}=$ prompt.

```
\(\mathrm{N}=36 \mathrm{G}, \mathrm{GIG}\)
\(I 2=8\), 86
\(\mathrm{FW}=-169626.86\)
```



```
\(\mathrm{F} V=0.6\)
\(\mathrm{F}, \mathrm{Y}=12 . \mathrm{E} 0\)
\(\mathrm{E}, \mathrm{Y}=12, \mathrm{G} \mathrm{E}\)
FHT:EHICEGIF
```

Now compare the graph of the amount of interest with the graph of the amount of principal for each payment.
4. Press MODE. Set Par and Simul.
5. Press $Y$. Turn off all functions and stat plots. Enter these equations and set the graph styles as shown.


Note: $\Sigma$ Prn( and $\Sigma \operatorname{Int}($ are located on the FINANCE menu (APPS 1:FINANCE).
6. Press WINDOW. Set these window variables.

```
Tmin=1
Tmax=360
Tstep=12
```

Xmin=0
Xmax=360
Xscl=10

Ymin=0<br>Ymax=1000<br>Yscl=100

Note: To increase the graph speed, change Tstep to 24.
7. Press TRACE. After the graph is drawn, press 240 ENTER to move the trace cursor to $\mathbf{T}=\mathbf{2 4 0}$, which is equivalent to 20 years of payments.


The graph shows that for the 240th payment ( $\mathbf{X}=\mathbf{2 4 0}$ ), 358.03 of the 800 payment is applied to principal ( $\mathbf{Y}=\mathbf{3 5 8 . 0 3}$ ).

Note: The sum of the payments (Y3T=Y1T+Y2T) is always 800.
8. Press to move the cursor onto the function for interest defined by X2T and Y2T. Enter 240.


The graph shows that for the 240th payment ( $\mathbf{X}=\mathbf{2 4 0}$ ), 441.97 of the 800 payment is interest ( $\mathbf{Y}=441.97$ ).
9. Press 2nd [QUIT] APPS ENTER 9 to paste 9:bal( to the home screen. Check the figures from the graph.


At which monthly payment will the principal allocation surpass the interest allocation?

## 3

## Memory and Variable Management

## Checking Available Memory

## MEMORY Menu

At any time you can check available memory or manage existing memory by selecting items from the MEMORY menu. To access this menu, press 2nd [MEM].

## MEMORY

1: About... Displays information about the graphing handheld.
2: Mem Mgmt/Del... Reports memory availability and variable usage.
3: Clear Entries Clears ENTRY (last-entry storage).
4: ClrAllLists Clears all lists in memory.
5: Archive... Archives a selected variable.
6: UnArchive... UnArchives a selected variable.
7 : Reset... Displays the RAM, ARCHIVE, and ALL menus
8: Group... Displays GROUP and UNGROUP menus.
To check memory usage, first press [2nd [MEM] and then select
2:Mem Mgmt/Del.


## Available RAM, Archive, and App Slots

The TI-84 Plus / TI-84 Plus Silver Edition has Archive, RAM, and Application (App) slot memory for you to use and manage. The available RAM stores computations, lists, variables, and data. The available Archive lets you store programs, Apps, and groups. The App slots are actually individual sectors of Flash ROM where Apps are stored.

| Graphing <br> Handheld | Available RAM | Available <br> Archive | App <br> Slots |
| :--- | :--- | :--- | :--- |
| TI-84 Plus | 24 Kilobytes | 491 Kilobytes | 30 |
| TI-84 Plus Silver <br> Edition | 24 Kilobytes | 1.5 Megabytes | 94 |

## Displaying the About Screen

About displays information about the TI-84 Plus Operating System (OS) Version, Product Number, Product Identification (ID), and Flash Application (App) Certificate Revision Number. To display the About screen, press 2nd [MEM] and then select 1:About.

Displays the type of graphing handheld.

Displays the OS version. As new software upgrades become available, you can electronically upgrade your unit.

Displays the Product ID. Each Flash-based graphing handheld has a unique product ID, which you may need if you contact technical support. You can also use this 14 digit ID to register your handheld at education.ti.com, or identify your handheld in the event that it is lost or stolen.

## Displaying the MEMORY MANAGEMENT/DELETE Menu

Mem Mgmt/Del displays the MEMORY MANAGEMENT/DELETE menu.
The two lines at the top report the total amount of available RAM (RAM FREE) and Archive (ARC FREE) memory. By selecting menu items on this screen, you can see the amount of memory each variable type is using. This information can help you determine if you need to delete variables from memory to make room for new data, such as programs or applications.

To check memory usage, follow these steps.

1. Press [2nd [MEM] to display the MEMORY menu.

|  |  |
| :---: | :---: |
|  |  |
| SBClear Eritries |  |
| 4:ClrHllLists |  |
| frori |  |
| G: DnArchive |  |
|  |  |

Note: The $\uparrow$ and $\downarrow$ in the top or bottom of the left column indicate that you can scroll up or down to view more variable types.
2. Select 2:Mem Mgmt/Del to display the MEMORY MANAGEMENT/ DELETE menu. The TI-84 Plus expresses memory quantities in bytes.

3. Select variable types from the list to display memory usage.

Notes: Real, List, Y-Vars, and Prgm variable types never reset to zero, even after memory is cleared.

Apps are independent applications which are stored in Flash ROM. AppVars is a variable holder used to store variables created by independent applications. You cannot edit or change variables in AppVars unless you do so through the application which created them.

To leave the MEMORY MANAGEMENT/DELETE menu, press either 2nd [QUIT] or CLEAR. Both options display the home screen.

## Deleting Items from Memory

## Deleting an Item

To increase available memory by deleting the contents of any variable (real or complex number, list, matrix, $\mathbf{Y}=$ variable, program, Apps, AppVars, picture, graph database, or string), follow these steps.

1. Press 2nd [MEM] to display the MEMORY menu.
2. Select 2:Mem Mgmt/Del to display the MEMORY MANAGEMENT/ DELETE menu.
3. Select the type of data you want to delete, or select 1:All for a list of all variables of all types. A screen is displayed listing each variable of the type you selected and the number of bytes each variable is using.
For example, if you select 4:List, the LIST editor screen is displayed.

4. Press $\square$ and $\square$ to move the selection cursor ( $(\stackrel{)}{ }$ next to the item you want to delete, and then press (DEL. The variable is deleted from memory. You can delete individual variables one by one from this screen.

Note: If you are deleting programs or Apps, you will receive a message asking you to confirm this delete action. Select 2:Yes to continue.

To leave any variable screen without deleting anything, press [2nd [Quit], which displays the home screen.
You cannot delete some system variables, such as the last-answer variable Ans and the statistical variable RegEQ.

## Clearing Entries and List Elements

## Clear Entries

Clear Entries clears the contents of the ENTRY (last entry) storage area. To clear the ENTRY storage area, follow these steps.

1. Press [nd [MEM] to display the MEMORY menu.
2. Select 3:Clear Entries to paste the instruction to the home screen.
3. Press ENTER to clear the ENTRY storage area.
Clear Entries

To cancel Clear Entries, press CLEAR.
Note: If you select 3:Clear Entries from within a program, the Clear Entries instruction is pasted to the program editor, and the Entry (last entry) is cleared when the program is executed.

## CIrAllLists

ClrAllLists sets the dimension of each list in RAM to $\mathbf{0}$.
To clear all elements from all lists, follow these steps.

1. Press $2 n d$ [MEM] to display the MEMORY menu.
2. Select 4:ClrAllLists to paste the instruction to the home screen.
3. Press ENTER to set the dimension of each list in memory to $\mathbf{0}$.

ClrAllLists Clone
To cancel ClrAllLists, press CLEAR.
ClrAllLists does not delete list names from memory, from the LIST NAMES menu, or from the stat list editor.

Note: If you select 4:CIrAllLists from within a program, the CIrAllLists instruction is pasted to the program editor. The lists are cleared when the program is executed.

## Archiving and UnArchiving Variables

## Archiving and UnArchiving Variables

Archiving lets you store data, programs, or other variables to the user data archive where they cannot be edited or deleted inadvertently. Archiving also allows you to free up RAM for variables that may require additional memory.

Archived variables cannot be edited or executed. They can only be seen and unarchived. For example, if you archive list L1, you will see that L1 exists in memory but if you select it and paste the name $\mathbf{L 1}$ to the home screen, you won't be able to see its contents or edit it.

Note: Not all variables may be archived. Not all archived variables may be unarchived. For example, system variables including $r, t, x, y$, and $\theta$ cannot be archived. Apps and Groups always exist in Flash ROM so there is no need to archive them. Groups cannot be unarchived. However, you can ungroup or delete them.

| Variable Type | Names | Archive? <br> (yes/no) | UnArchive? <br> (yes/no) |
| :--- | :--- | :--- | :--- |
| Real numbers | A, B, .., Z | yes | yes |
| Complex <br> numbers | A, B, .., Z | yes | yes |
| Matrices | [A], [B], [C], ... , [J] | yes | yes |


| Variable Type | Names | Archive? (yes/no) | UnArchive? (yes/no) |
| :---: | :---: | :---: | :---: |
| Lists | L1, L2, L3, L4, L5, L6, and user-defined names | yes | yes |
| Programs |  | yes | yes |
| Functions | Y1, Y2, . . , Y9, Y0 | no | not applicable |
| Parametric equations | X1T and Y1T, ... , X6T and Y6T | no | not applicable |
| Polar functions | r1, r2, r3, r4, r5, r6 | no | not applicable |
| Sequence functions | $\mathbf{u}, \mathrm{v}, \mathrm{w}$ | no | not applicable |
| Stat plots | Plot1, Plot2, Plot3 | no | not applicable |
| Graph databases | GDB1, GDB2,... | yes | yes |
| Graph pictures | Pic1, Pic2, ... , Pic9, PicO | yes | yes |
| Strings | $\begin{aligned} & \text { Str1, Str2, . . . Str9, } \\ & \text { Str0 } \end{aligned}$ | yes | yes |
| Tables | TbIStart, Tb1, TblInput | no | not applicable |
| Apps | Applications | see Note above | no |
| AppVars | Application variables | yes | yes |
| Groups |  | see Note above | no |
| Variables with reserved names | $\min X, \max X$, RegEQ, and others | no | not applicable |
| System variables | Xmin, Xmax, and others | no | not applicable |

Archiving and unarchiving can be done in two ways:

- Use the 5:Archive or 6:UnArchive commands from the MEMORY menu or CATALOG.
- Use a Memory Management editor screen.

Before archiving or unarchiving variables, particularly those with a large byte size (such as large programs) use the MEMORY menu to:

- Find the size of the variable.
- See if there is enough free space.

| For: | Sizes must be such that: |
| :--- | :--- |
| Archive | Archive free size > variable size |
| UnArchive | RAM free size > variable size |

Note: If there is not enough space, unarchive or delete variables as necessary. Be aware that when you unarchive a variable, not all the memory associated with that variable in user data archive will be released since the system keeps track of where the variable has been and where it is now in RAM.

Even if there appears to be enough free space, you may see a Garbage Collection message when you attempt to archive a variable. Depending on the usability of empty blocks in the user data archive, you may need to unarchive existing variables to create more free space.

To archive or unarchive a list variable (L1) using the Archive/UnArchive options from the MEMORY menu:

1. Press [2nd [MEM] to display the MEMORY menu.

2. Select 5:Archive or 6:UnArchive to place the command in the edit screen.
3. Press $2 n d[\mathbf{L 1}]$ to place the $\mathbf{L 1}$ variable in the edit screen.
Frohive Lr
4. Press ENTER to complete the archive process.
Frohive Li Done

Note: An asterisk will be displayed to the left of the Archived variable name to indicate it is archived.

To archive or unarchive a list variable (L1) using a Memory Management editor:

1. Press [nd [MEM] to display the MEMORY menu.

2. Select 2:Mem Mgmt/Del to display the MEMORY MANAGEMENT/ DELETE menu.

| $\begin{aligned} & \text { RHN FREE } \\ & \text { PRE, FREE } \\ & \text { B6896 } \end{aligned}$ |  |
| :---: | :---: |
| \%H11... |  |
|  |  |
|  |  |
| 4:Li三t... |  |
| 5: Matix.. |  |
|  |  |

3. Select 4:List to display the LIST menu.

4. Press ENTER to archive L1. An asterisk will appear to the left of $\mathbf{L 1}$ to indicate it is an archived variable. To unarchive a variable in this screen, put the cursor next to the archived variable and press ENTER. The asterisk will disappear.

5. Press [2nd [QuIT] to leave the LIST menu.

Note: You can access an archived variable for the purpose of linking, deleting, or unarchiving it, but you cannot edit it.

## Resetting the TI-84 Plus

## RAM ARCHIVE ALL Menu

Reset displays the RAM ARCHIVE ALL menu. This menu gives you the option of resetting all memory (including default settings) or resetting selected portions of memory while preserving other data stored in memory, such as programs and $\mathbf{Y}=$ functions. For instance, you can choose to reset all of RAM or just restore the default settings. Be aware that if you choose to reset RAM, all data and programs in RAM will be erased. For archive memory, you can reset variables (Vars), applications (Apps), or both of these. Be aware that if you choose to reset Vars, all data and programs in archive memory will be erased. If you choose to reset Apps, all applications in archive memory will be erased.

When you reset defaults on the TI-84 Plus, all defaults in RAM are restored to the factory settings. Stored data and programs are not changed.

These are some examples of TI-84 Plus defaults that are restored by resetting the defaults.

- Mode settings such as Normal (notation); Func (graphing); Real (numbers); and Full (screen)
- $\mathbf{Y}=$ functions off
- Window variable values such as $\mathbf{X m i n}=\mathbf{- 1 0}, \mathbf{X m a x}=\mathbf{1 0}, \mathbf{X s c l}=\mathbf{1}, \mathbf{Y s c l}=1$, and Xres=1
- Stat plots off
- Format settings such as CoordOn (graphing coordinates on);

AxesOn; and ExprOn (expression on)

- rand seed value to 0


## Displaying the RAM ARCHIVE ALL Menu

To display the RAM ARCHIVE ALL menu on the TI-84 Plus, follow these steps.

1. Press [2nd [MEM] to display the MEMORY menu.
2. Select 7:Reset to display the RAM ARCHIVE ALL menu.

## Resetting RAM Memory

Resetting all RAM restores RAM system variables to factory settings and deletes all nonsystem variables and all programs. Resetting RAM defaults restores all system variables to default settings without deleting variables and programs in RAM. Resetting all RAM or resetting defaults does not affect variables and applications in user data archive.

Note: Before you reset all RAM memory, consider restoring sufficient available memory by deleting only selected data.
To reset all RAM memory or RAM defaults on the TI-84 Plus, follow these steps.

1. From the RAM ARCHIVE ALL menu, select 1:All RAM to display the RESET RAM menu or 2:Defaults to display the RESET DEFAULTS menu.

```
10
2:Reset.
Reset.ting RMM
erases all data
and frograme
from RHM.
```



2. If you are resetting RAM, read the message below the RESET RAM menu.

- To cancel the reset and return to the home screen, press ENTER.
- To erase RAM memory or reset defaults, select 2:Reset. Depending on your choice, the message RAM cleared or Defaults set is displayed on the home screen.


## Resetting Archive Memory

When resetting archive memory on the TI-84 Plus, you can choose to delete from user data archive all variables, all applications, or both variables and applications.

To reset all or part of user data archive memory, follow these steps.

1. From the RAM ARCHIVE ALL menu, press $\square$ to display the ARCHIVE menu.
2. Select one of the following:

1:Vars to display the RESET ARC VARS menu.

|  |
| :---: |
| Resetting Vars erases all data Fict progrems from hronive. |

2:Apps to display the RESET ARC APPS menu.

```
KESGI FIEC: HFIFS
1FHO
2!Reset
Resetting Afres
grases all AfFs
from Arohive.
```

3:Both to display the RESET ARC BOTH menu.

| SEIG FIETC ETITH <br>  ZREest. |
| :---: |
| Reset.ting Both erases all data. Frogrems \& AFFs from Archive. |

3. Read the message below the menu.

- To cancel the reset and return to the home screen, press ENTER.
- To continue with the reset, select 2:Reset. A message indicating the type of archive memory cleared will be displayed on the home screen.


## Resetting All Memory

When resetting all memory on the TI-84 Plus, RAM and user data archive memory is restored to factory settings. All nonsystem variables, applications, and programs are deleted. All system variables are reset to default settings.

Before you reset all memory, consider restoring sufficient available memory by deleting only selected data.
To reset all memory on the TI-84 Plus, follow these steps.

1. From the RAM ARCHIVE ALL menu, press $\square$ to display the ALL menu.

|  |
| :---: |
|  |  |

2. Select 1:All Memory to display the RESET MEMORY menu.

3. Read the message below the RESET MEMORY menu.

- To cancel the reset and return to the home screen, press ENTER.
- To continue with the reset, select 2:Reset. The message MEM cleared is displayed on the home screen.

When you clear memory, the contrast sometimes changes. If the screen is faded or blank, adjust the contrast by pressing 2nd $\Delta$ or $\square$.

## Grouping and Ungrouping Variables

## Grouping Variables

Grouping allows you to make a copy of two or more variables residing in RAM and then store them as a group in user data archive. The variables in RAM are not erased. The variables must exist in RAM before they can be grouped. In other words, archived data cannot be included in a group.

To create a group of variables:

1. Press [2nd [MEM] to display the MEMORY menu.

```
2+Nem MGmt/Del...
S:Cilar'Entries
4:ElrHllLists
5:Arohive
G:UnArchive
7:Reset...
##GroldF...
```

2. Select 8:Group to display GROUP UNGROUP menu.

## GETDIF UFGREDIP <br> 1HFE日te Hew

3. Press ENTER to display the GROUP menu.

GROIIF

4. Enter a name for the new group and press ENTER.

Note: A group name can be one to eight characters long. The first character must be a letter from $A$ to $Z$ or $\theta$. The second through eighth characters can be letters, numbers, or $\theta$.

## BREIUF

N. Me=GROUFA
5. Select the type of data you want to group. You can select 1:All+ which shows all variables of all types available and selected. You can also select 1:All- which shows all variables of all types available but not selected. A screen is displayed listing each variable of the type you selected.


For example, suppose some variables have been created in RAM, and selecting 1:All- displays the following screen.

6. Press $\triangle$ and $\square$ to move the selection cursor ( $(\boldsymbol{)}$ next to the first item you want to copy into a group, and then press ENTER. A small square will remain to the left of all variables selected for grouping.


Repeat the selection process until all variables for the new group are selected and then press $\square$ to display the DONE menu.
ABELECT LTOTE
7. Press ENTER to complete the grouping process.

| Gopingles to Group: GROUPA |
| :---: |
| Cone |

Note: You can only group variables in RAM. You cannot group some system variables, such as the last-answer variable Ans and the statistical variable RegEQ.

## Ungrouping Variables

Ungrouping allows you to make a copy of variables in a group stored in user data archive and place them ungrouped in RAM.

## DuplicateName Menu

During the ungrouping action, if a duplicate variable name is detected in RAM, the DUPLICATE NAME menu is displayed.

## DuplicateName

1: Rename
2: Overwrite
3: Overwrite All

4: Omit
5: Quit

Prompts to rename receiving variable.
Overwrites data in receiving duplicate variable.
Overwrites data in all receiving duplicate variables.

Skips transmission of sending variable.
Stops transmission at duplicate variable.

## Notes about Menu Items:

- When you select 1:Rename, the Name= prompt is displayed, and alpha-lock is on. Enter a new variable name, and then press ENTER. Ungrouping resumes.
- When you select 2:Overwrite, the unit overwrites the data of the duplicate variable name found in RAM. Ungrouping resumes.
- When you select 3: Overwrite All, the unit overwrites the data of all duplicate variable names found in RAM. Ungrouping resumes.
- When you select 4:Omit, the unit does not ungroup the variable in conflict with the duplicated variable name found in RAM. Ungrouping resumes with the next item.
- When you select 5:Quit, ungrouping stops, and no further changes are made.

To ungroup a group of variables:

1. Press [2nd [MEM] to display the MEMORY menu.

2. Select 8:Group to display the GROUP UNGROUP menu.
3. Press $\square$ to display the UNGROUP menu.

4. Press $\Delta$ and $\nabla$ to move the selection cursor ( $)$ next to the group variable you want to ungroup, and then press ENTER.

| Drabobring: |  |
| :--- | :--- |
| Done |  |

The ungroup action is completed.
Note: Ungrouping does not remove the group from user data archive. You must delete the group in user data archive to remove it.

## Garbage Collection

## Garbage Collection Message

If you use the user data archive extensively, you may see a Garbage Collect? message. This occurs if you try to archive a variable when there is not enough free contiguous archive memory.

The Garbage Collect? message lets you know an archive will take longer than usual. It also alerts you that the archive will fail if there is not enough memory. The message can also alert you when a program is caught in a loop that repetitively fills the user data archive. Select No to cancel the garbage collection process, and then find and correct the errors in your program.

The TI-84 Plus will attempt to rearrange the archived variables to make additional room.

## Responding to the Garbage Collection Message

- To cancel, select 1:No.
- If you choose 1:No, the message

ERR:ARCHIVE FULL will be displayed.

- To continue archiving, select 2:Yes.


If you select 2:Yes, the process message Garbage Collecting... or Defragmenting... will be displayed.

Note: The process message Defragmenting... is displayed whenever an application marked for deletion is encountered. Garbage collection may take up to 20 minutes, depending on how much of archive memory has been used to store variables.

After garbage collection, depending on how much additional space is freed, the variable may or may not be archived. If not, you can unarchive some variables and try again.

## Why Is Garbage Collection Necessary?

The user data archive is divided into sectors. When you first begin archiving, variables are stored consecutively in sector 1 . This continues to the end of the sector.

An archived variable is stored in a continuous block within a single sector. Unlike an application stored in user data archive, an archived variable cannot cross a sector boundary. If there is not enough space left in the sector, the next variable is stored at the beginning of the next sector. Typically, this leaves an empty block at the end of the previous sector.


Each variable that you archive is stored in the first empty block large enough to hold it.

This process continues to the end of the last sector. Depending on the size of individual variables, the empty blocks may account for a significant amount of space. Garbage collection occurs when the variable you are archiving is larger than any empty block.

## How Unarchiving a Variable Affects the Process

When you unarchive a variable, it is copied to RAM but it is not actually deleted from user data archive memory. Unarchived variables are "marked for deletion," meaning they will be deleted during the next garbage collection.

After you unarchive variables B and C, they continue to take up space.


## If the MEMORY Screen Shows Enough Free Space

Even if the MEMORY screen shows enough free space to archive a variable or store an application, you may still get a Garbage Collect? message or an ERR: ARCHIVE FULL message.

When you unarchive a variable, the Archive free amount increases immediately, but the space is not actually available until after the next garbage collection.

If the Archive free amount shows enough available space for your variable, there probably will be enough space to archive it after garbage collection (depending on the usability of any empty blocks).

## The Garbage Collection Process

The garbage collection process:

- Deletes unarchived variables from the user data archive.
- Rearranges the remaining variables into consecutive blocks.


Note: Power loss during garbage collection may cause all memory (RAM and Archive) to be deleted.

## Using the GarbageCollect Command

You can reduce the number of automatic garbage collections by periodically optimizing memory. This is done by using the GarbageCollect command.

To use the GarbageCollect command, follow these steps.

1. Press [2nd [catalog] to display the CATALOG.

|  | [ |
| :---: | :---: |

2. Press $\square$ or to scroll the CATALOG until the selection cursor points to the GarbageCollect command.
3. Press ENTER to paste the command to the current screen.
4. Press ENTER to display the Garbage Collect? message.
5. Select 2:Yes to begin garbage collection.

## ERR:ARCHIVE FULL Message

Even if the MEMORY screen shows enough free space to archive a variable or store an application, you may still get an ERR: ARCHIVE FULL message.

```
ERR: ARCHIWE FIILL
##@uit
L.ar`9est sirigle
    Marigble= 9662
```

An ERR:ARCHIVE FULL message may be displayed:

- When there is insufficient space to archive a variable within a continuous block and within a single sector.
- When there is insufficient space to store an application within a continuous block of memory.

When the message is displayed, it will indicate the largest single space of memory available for storing a variable and an application.

To resolve the problem, use the GarbageCollect command to optimize memory. If memory is still insufficient, you must delete variables or applications to increase space.

## 4

## Communication Link

## Getting Started: Sending Variables

Getting Started is a fast-paced introduction. Read the chapter for details.
Create and store a variable and a matrix, and then transfer them to another TI-84 Plus.

1. On the home screen of the sending unit, press $5 .-5$ STO ALPHA Q. Press ENTER to store 5.5 to $\mathbf{Q}$.
2. Press 2nd [[] 2nd [[] 1 , $\mathbf{2}$ 2nd [ []] 2nd [ [] $\mathbf{3} \square$ 4 2nd []] 2nd [1] STO 2nd [MATRIX] 1. Press ENTER to store the matrix to [A].
3. On the sending unit, press 2nd [MEM] to display the MEMORY menu.

4. On the sending unit, press $\mathbf{2}$ to select

2:Mem Mgmt/Del. The MEMORY MANAGEMENT menu is displayed.

5. On the sending unit, press 5 to select 5:Matrix. The MATRIX editor screen is displayed.

6. On the sending unit, press ENTER to archive [A]. An asterisk (*) will appear, signifying that [A] is now archived.

7. Connect the graphing handhelds with the USB unit-to-unit cable. Push both ends in firmly.
8. On the receiving unit, press [2nd [LINK] $\square$ to display the RECEIVE menu. Press $\mathbf{1}$ to select 1:Receive. The message Waiting... is displayed and the busy indicator is on.
9. On the sending unit, press [2nd [LINK] to display the SEND menu.
10. Press $\mathbf{2}$ to select 2:AlI-. The AlI- SELECT screen is displayed.

SEND EECEINE threceive

```
EEELLC'RECEIVE
i#H1l+..
2:A11-..
3: Pram.
4:Li三t...
5:Li=t.E to TI82...
G:GDE...
7+Pic...
```

11. Press $\square$ until the selection cursor ( $\boldsymbol{\bullet}$ ) is next to [A] MATRX. Press ENTER.
12. Press $\square$ until the selection cursor is next to Q REAL. Press ENTER. A square dot next to [A] and $\mathbf{Q}$ indicates that each is selected to send.
13. On the sending unit, press $\square$ to display the TRANSMIT menu.
14. On the sending unit, press $\mathbf{1}$ to select

1:Transmit and begin transmission. The receiving unit displays the message Receiving....When the items are transmitted, both units display the name and type of each transmitted variable.




## TI-84 Plus LINK

This chapter describes how to communicate with compatible TI units. The TI-84 Plus has a USB port to connect and communicate with another TI-84 Plus or TI-84 Plus Silver Edition. A USB unit-to-unit cable is included with the TI-84 Plus.

The TI-84 Plus also has an I/O port using a I/O unit-to-unit cable to communicate with:

- TI-83 Plus Silver Edition - TI-82
- TI-83 Plus
- TI-73
- TI-83
- CBL $2^{\text {TM }}$ or a CBR ${ }^{\text {TM }}$


## Connecting Two Graphing Handhelds with a USB Unit-toUnit Cable or an I/O Unit-to-Unit Cable

## USB Unit-to-Unit Cable

The TI-84 Plus USB link port is located at the top right edge of the graphing handheld.

1. Firmly insert either end of the USB unit-to-unit cable into the USB port.
2. Insert the other end of the cable into the other graphing handheld's USB port.


## I/O Unit-to-Unit Cable

The TI-84 Plus I/O link port is located at the top left edge of the graphing handheld.

1. Firmly insert either end of the I/O unit-to-unit cable into the port.
2. Insert the other end of the cable into the other graphing handheld's I/O port.


## TI-84 Plus to a TI-83 Plus using I/O Unit-to-Unit Cable

The TI-84 Plus I/O link port is located at the top left edge of the graphing handheld. The TI-83 Plus I/O link port is located at the bottom edge of the graphing handheld.

1. Firmly insert either end of the I/O unit-to-unit cable into the port.
2. Insert the other end of the cable into the other graphing handheld's I/O port.


## Linking to the CBL/CBR System

The CBL $2^{\text {TM }}$ and the CBR ${ }^{\text {TM }}$ are optional accessories that also connect to a TI-84 Plus with the I/O unit-to-unit cable. With a CBL 2 or CBR and a TI-84 Plus, you can collect and analyze real-world data.

## Linking to a Computer

With TI Connect ${ }^{\text {TM }}$ software and the USB computer cable that is included with your TI-84 Plus, you can link the graphing handheld to a personal computer.

## Selecting Items to Send

## LINK SEND Menu

To display the LINK SEND menu, press 2nd [LINK].

| SEND RECEIVE |  |
| :---: | :---: |
| 1:All+... | Displays all items as selected, including RAM and Flash applications. |
| 2:All-... | Displays all items as deselected. |
| 3:Prgm... | Displays all program names. |
| 4:List... | Displays all list names. |
| 5:Lists to TI84... | Displays list names $\mathbf{L 1}$ through $\mathbf{L 6}$. |
| 6:GDB... | Displays all graph databases. |
| 7:Pic... | Displays all picture data types. |
| 8:Matrix... | Displays all matrix data types. |
| 9:Real... | Displays all real variables. |
| 0:Complex... | Displays all complex variables. |
| A:Y-Vars... | Displays all $\mathbf{Y}=$ variables. |
| B:String... | Displays all string variables. |
| C:Apps... | Displays all software applications. |
| D:AppVars... | Displays all software application variables. |
| E:Group... | Displays all grouped variables. |
| F: SendId | Sends the Calculator ID number immediately. (You do not need to select SEND.) |
| G : Sendos | Sends operating system updates to another TI-84 Plus Silver Edition or TI-84 Plus. You can not send the operating system to the TI-83 Plus product family. |
| H:Back Up... | Selects all RAM and mode settings (no Flash applications or archived items) for backup to another TI-84 Plus, TI-84 Plus Silver Edition, TI-83 Plus Silver Edition, or to a TI-83 Plus. |

When you select an item on the LINK SEND menu, the corresponding SELECT screen is displayed.

Note: Each SELECT screen, except All+..., is initially displayed with nothing pre-selected. All+... is displayed with everything pre-selected.

To select items to send:

1. Press 2nd [LINK] on the sending unit to display the LINK SEND menu.
2. Select the menu item that describes the data type to send. The corresponding SELECT screen is displayed.
3. Press $\triangle$ and $\square$ to move the selection cursor ( $>$ ) to an item you want to select or deselect.
4. Press ENTER to select or deselect the item. Selected names are marked with a $\quad$.


Note: An asterisk (*) to the left of an item indicates the item is archived.
5. Repeat steps 3 and 4 to select or deselect additional items.

## Sending the Selected Items

After you have selected items to send on the sending unit and set the receiving unit to receive, follow these steps to transmit the items. To set the receiving unit, see Receiving Items.

1. Press $\square$ on the sending unit to display the TRANSMIT menu.

## GELECT TETERETIT <br> 

2. Confirm that Waiting... is displayed on the receiving unit, which indicates it is set to receive.
3. Press ENTER to select 1:Transmit. The name and type of each item are displayed line-by-line on the sending unit as the item is queued for transmission, and then on the receiving unit as each item is accepted.


Note: Items sent from the RAM of the sending unit are transmitted to the RAM of the receiving unit. Items sent from user data archive (flash) of the sending unit are transmitted to user data archive (flash) of the receiving unit.

After all selected items have been transmitted, the message Done is displayed on both calculators. Press $\Delta$ and $\nabla$ to scroll through the names.

## Sending to a Tl-84 Plus Silver Edition or TI-84 Plus

You can transfer variables (all types), programs, and Flash applications to another TI-84 Plus Silver Edition or TI-84 Plus. You can also backup the RAM memory of one unit to another.

Note: Keep in mind that the TI-84 Plus has less Flash memory than the TI-84 Plus Silver Edition.

- Variables stored in RAM on the sending TI-84 Plus Silver Edition will be sent to the RAM of the receiving TI-84 Plus Silver Edition or TI-84 Plus.
- Variables and applications stored in the user data archive of the sending TI-84 Plus Silver Edition will be sent to the user data archive of the receiving TI-84 Plus Silver Edition or TI-84 Plus.

After sending or receiving data, you can repeat the same transmission to additional TI-84 Plus Silver Edition or TI-84 Plus units-from either the sending unit or the receiving unit-without having to reselect data to send. The current items remain selected. However, you cannot repeat transmission if you selected All+ or All-.

To send data to an additional TI-84 Plus Silver Edition or a TI-84 Plus:

1. Use a USB unit-to-unit cable to link two units together.
2. On the sending unit press 2nd [LINK] and select a data type and items to SEND.
3. Press $\square$ on the sending unit to display the TRANSMIT menu.
4. On the other unit, press [2nd [LINK] $\square$ to display the RECEIVE menu.
5. Press ENTER on the receiving unit.
6. Press ENTER on the sending unit. A copy of the selected item(s) is sent to the receiving unit.
7. Disconnect the link cable only from the receiving unit and connect it to another unit.
8. Press [2nd [LINK] on the sending unit.
9. Select only the data type. For example, if the unit just sent a list, select 4:LIST.

Note: The item(s) you want to send are pre-selected from the last transmission. Do not select or deselect any items. If you select or deselect an item, all selections or deselections from the last transmission are cleared.
10. Press $\square$ on the sending unit to display the TRANSMIT menu.
11. On the new receiving unit, press [nd [LINK] $\square$ to display the RECEIVE menu.
12. Press ENTER on the receiving unit.
13. Press ENTER on the sending unit. A copy of the selected item(s) is sent to the receiving unit.
14. Repeat steps 7 through 13 until the items are sent to all additional units.

## Sending to a TI-83 Plus or TI-83 Plus Silver Edition

You can send all variables from a TI-84 Plus to a TI-83 Plus or TI-83 Plus Silver Edition except Flash applications with new features, or programs with new features in them.

If archived variables on the TI-84 Plus are variable types recognized and used on the TI-83 Plus or TI-83 Plus Silver Edition, you can send these variables to the TI-83 Plus or TI-83 Plus Silver Edition. They will be automatically sent to the RAM of the TI-83 Plus or TI-83 Plus Silver Edition during the transfer process. It will send to archive if the item is from archive.

To send data to a TI-83 Plus or TI-83 Plus Silver Edition:

1. Use an I/O unit-to-unit cable to link the two units together.
2. Set the TI-83 Plus or TI-83 Plus Silver Edition to receive.
3. Press [2nd [LINK] on the sending TI-84 Plus to display the LINK SEND menu.
4. Select the menu of the items you want to transmit.
5. Press $\square$ on the sending TI-84 Plus to display the LINK TRANSMIT menu.
6. Confirm that the receiving unit is set to receive.
7. Press ENTER on the sending TI-84 Plus to select 1:Transmit and begin transmitting.

## Receiving Items

## LINK RECEIVE Menu

To display the LINK RECEIVE menu, press [2nd [LINK] $\square$.

## SEND RECEIVE

1: Receive Sets unit to receive data transmission.

## Receiving Unit

When you select 1:Receive from the LINK RECEIVE menu on the receiving unit, the message Waiting... and the busy indicator are displayed. The receiving unit is ready to receive transmitted items. To exit the receive mode without receiving items, press 0 N , and then select 1:Quit from the Error in Xmit menu.

When transmission is complete, the unit exits the receive mode. You can select 1:Receive again to receive more items. The receiving unit then displays a list of items received. Press [2nd [QUIT] to exit the receive mode.

## DuplicateName Menu

During transmission, if a variable name is duplicated, the DuplicateName menu is displayed on the receiving unit.

DuplicateName

1: Rename Prompts to rename receiving variable.
2: Overwrite Overwrites data in receiving variable.
3: Omit Skips transmission of sending variable.
4: Quit Stops transmission at duplicate variable.
When you select 1:Rename, the Name= prompt is displayed, and alphalock is on. Enter a new variable name, and then press ENTER. Transmission resumes.

When you select 2:Overwrite, the sending unit's data overwrites the existing data stored on the receiving unit. Transmission resumes.

When you select 3:Omit, the sending unit does not send the data in the duplicated variable name. Transmission resumes with the next item.

When you select 4:Quit, transmission stops, and the receiving unit exits receive mode.

## Receiving from a TI-84 Plus Silver Edition or TI-84 Plus

The TI-84 Plus Silver Edition and the TI-84 Plus are totally compatible. Keep in mind, however that the TI-84 Plus has less Flash memory than a TI-84 Plus Silver Edition.

## Receiving from a TI-83 Plus Silver Edition or TI-83 Plus

The TI-84 Plus product family and the TI-83 Plus product family are totally compatible.

## Receiving from a TI-83

You can transfer all variables and programs from a TI-83 to a TI-84 Plus if they fit in the RAM of the TI-84 Plus. The RAM of the TI-84 Plus is slightly less than the RAM of the TI-83.

## Backing Up RAM Memory

Warning: H:Back Up overwrites the RAM memory and mode settings in the receiving unit. All information in the RAM memory of the receiving unit is lost.

Note: Archived items on the receiving unit are not overwritten.
You can backup the contents of RAM memory and mode settings (no Flash applications or archived items) to another TI-84 Plus Silver Edition. You can also backup RAM memory and mode settings to a TI-84 Plus.

To perform a RAM memory backup:

1. Use a USB unit-to-unit cable to link two TI-84 Plus units, or a TI-84 Plus and a TI-84 Plus Silver Edition together.
2. On the sending unit press [2nd [LINK] and select H:Back Up. The MEMORYBACKUP screen displays.

```
1gTran:Mit
2:Quit.
```

3. On the receiving unit, press [2nd [LINK] $\square$ to display the RECEIVE menu.
4. Press ENTER on the receiving unit.
5. Press ENTER on the sending unit. A WARNING - Backup message displays on the receiving unit.
6. Press ENTER on the receiving unit to continue the backup.
—or -
Press 2:Quit on the receiving unit to cancel the backup and return to the LINK SEND menu

Note: If a transmission error is returned during a backup, the receiving unit is reset.

## Memory Backup Complete

When the backup is complete, both the sending graphing handheld and receiving graphing handheld display a confirmation screen.
MEFORY EFCKUF

## Error Conditions

A transmission error occurs after one or two seconds if:

- A cable is not attached to the sending unit.
- A cable is not attached to the receiving unit.

Note: If the cable is attached, push it in firmly and try again.

- The receiving unit is not set to receive transmission.
- You attempt a backup between a TI-73, TI-82, TI-83, TI-83 Plus, TI-83 Plus Silver Edition
- You attempt a data transfer from a TI-84 Plus to a TI-83 Plus, TI-83 Plus Silver Edition, TI-83, $\mathrm{TI}-82$, or $\mathrm{TI}-73$ with variables or features not recognized by the TI-83 Plus, TI-83 Plus Silver Edition, TI-83, TI-82, or TI-73.

New variable types and features not recognized by the TI-83, TI-83 Plus, TI-82, or TI-73 include applications, application variables, grouped variables, new variable types, or programs with new features in them such as Archive, UnArchive, SendID, SendOS, Asm(, AsmComp(, AsmPrgm, checkTmr(, ClockOff, ClockOn, dayOfWk(, getDate, getDtFmt, getDtStr(, getTime, getTmFmt, getTmStr, isClockOn, setDate(, setDtFmt(, setTime(, setTmFmt(, startTmr, and timeCnv.

- You attempt a data transfer from a TI-84 Plus to a TI-82 with data other than real lists L1 through L6 or without using menu item 5:Lists to TI82.
- You attempt a data transfer from a TI-84 Plus to a TI-73 with data other than real numbers, pics, real lists $\mathbf{L 1}$ through L6 or named lists with $\theta$ as part of the name.
- Although a transmission error does not occur, these two conditions may prevent successful transmission.
- You try to use Get( with a graphing handheld instead of a CBL $2^{\text {TM }}$ or CBR ${ }^{\text {TM }}$.
- You try to use GetCaIc( with a TI-83 instead of a TI-84 Plus or TI-84 Plus Silver Edition.


## Insufficient Memory in Receiving Unit

- During transmission, if the receiving unit does not have sufficient memory to receive an item, the Memory Full menu is displayed on the receiving unit.
- To skip this item for the current transmission, select 1:Omit. Transmission resumes with the next item.
- To cancel the transmission and exit receive mode, select 2:Quit.


## Appendix A: <br> Tables and Reference Information

## Table of Functions and Instructions

Functions return a value, list, or matrix. You can use functions in an expression. Instructions initiate an action. Some functions and instructions have arguments. Optional arguments and accompanying commas are enclosed in brackets ( [ ] ). For details about an item, including argument descriptions and restrictions, turn to the page listed on the right side of the table.

From the CATALOG, you can paste any function or instruction to the home screen or to a command line in the program editor. However, some functions and instructions are not valid on the home screen. The items in this table appear in the same order as they appear in the CATALOG.
$\dagger$ indicates either keystrokes that are valid in the program editor only or ones that paste certain instructions when you are in the program editor. Some keystrokes display menus that are available only in the program editor. Others paste mode, format, or table-set instructions only when you are in the program editor.

| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| abs(value) | Returns the absolute value of a real number, expression, list, or matrix. | MATH <br> NUM <br> 1:abs( |
| abs(complex value) | Returns the magnitude of a complex number or list. | MATH CPX <br> 5:abs( |
| value $A$ and value B | Returns 1 if both value $A$ and value $B$ are $\neq 0$. value $A$ and valueB can be real numbers, expressions, or lists. | 2nd [TEST] <br> LOGIC <br> 1:and |
| angle(value) | Returns the polar angle of a complex number or list of complex numbers. | MATH <br> CPX <br> 4:angle( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| ANOVA(list1,list2 <br> [,list3,...list20]) | Performs a one-way analysis of variance for comparing the means of two to 20 populations. | STAT <br> TESTS <br> F:ANOVA( |
| Ans | Returns the last answer. | 2nd [ANS] |
| Archive | Moves the specified variables from RAM to the user data archive memory. | 2nd [MEM] 5:Archive |
| Asm(assemblyprgmname) | Executes an assembly language program. | 2nd [CATALOG] Asm( |
| AsmComp(prgmASM1, prgmASM2) | Compiles an assembly language program written in ASCII and stores the hex version. | 2nd [CATALOG] AsmComp( |
| AsmPrgm | Must be used as the first line of an assembly language program. | 2nd [CATALOG] AsmPrgm |
| augment(matrixA, matrix $B$ ) | Returns a matrix, which is matrix $B$ appended to matrix $A$ as new columns. | 2nd [MATRIX] <br> MATH 7:augment( |
| augment(listA,listB) | Returns a list, which is list $B$ concatenated to the end of listA. | 2nd [LIST] <br> OPS 9:augment( |
| AxesOff | Turns off the graph axes. | $\dagger \text { 2nd [FORMAT] }$ <br> AxesOff |
| AxesOn | Turns on the graph axes. | $\dagger$ 2nd [FORMAT] AxesOn |
| $\mathbf{a}+\mathbf{b} \boldsymbol{i}$ | Sets the mode to rectangular complex number mode ( $a+b i$ ). | $\begin{aligned} & \dagger \text { MODE } \\ & \mathbf{a + b} i \end{aligned}$ |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| bal(npmt[roundvalue]) | Computes the balance at npmt for an amortization schedule using stored values for PV, I\%, and PMT and rounds the computation to roundvalue. | APPS 1:Finance <br> CALC <br> 9:bal( |
| binomcdf(numtrialsıp [, $x]$ ) | Computes a cumulative probability at $x$ for the discrete binomial distribution with the specified numtrials and probability $p$ of success on each trial. | 2nd [DISTR] <br> DISTR <br> A:binomcdf( |
| binompdf(numtrials, $p$ $[, x])$ | Computes a probability at $x$ for the discrete binomial distribution with the specified numtrials and probability $p$ of success on each trial. | 2nd [DISTR] <br> DISTR <br> 0:binompdf( |
| $\chi^{\mathbf{2}} \mathbf{c d f}$ (lowerbound, upperbound, $d$ ) | Computes the $\chi^{2}$ distribution probability between lowerbound and upperbound for the specified degrees of freedom $d f$. | 2nd [DISTR] <br> DISTR $7: \chi^{2} \operatorname{cdf}($ |
| $\chi^{\mathbf{2}} \mathbf{p d f}(x, d f)$ | Computes the probability density function (pdf) for the $\chi^{2}$ distribution at a specified $x$ value for the specified degrees of freedom $d f$. | DISTR <br> 6: $\chi^{2}$ pdf( |
| $\chi^{\mathbf{2}}$-Test(observedmatrix, expectedmatrix [,drawflag]) | Performs a chi-square test. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger \text { STAT }$ <br> TESTS <br> C: $\chi^{2}$-Test( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| checkTmr(starttime) | Returns the number of seconds since you used startTmr to start the timer. The starttime is the value displayed by startTmr. | 2nd [CATALOG] checkTmr( |
| Circle( $X$, Y, radius) | Draws a circle with center ( $X, Y$ ) and radius. | 2nd [DRAW] <br> DRAW <br> 9:Circle( |
| Clear Entries | Clears the contents of the Last Entry storage area. | 2nd [MEM] <br> MEMORY <br> 3:Clear Entries |
| ClockOff | Turns off the clock display in the mode screen. | 2nd [CATALOG] ClockOff |
| ClockOn | Turns on the clock display in the mode screen. | 2nd [CATALOG] ClockOn |
| ClrAllLists | Sets to $\mathbf{0}$ the dimension of all lists in memory. | 2nd [MEM] MEMORY 4:CIrAllLists |
| ClrDraw | Clears all drawn elements from a graph or drawing. | 2nd [DRAW] <br> DRAW <br> 1:CIrDraw |
| ClrHome | Clears the home screen. | $\dagger$ PRGM <br> I/O <br> 8:CIrHome |
| CIrList listname1 [,listname2, ..., listname $n$ ] | Sets to $\mathbf{0}$ the dimension of one or more listnames. | STAT <br> EDIT <br> 4:CIrList |
| ClrTable | Clears all values from the table. | $\dagger$ PRGM <br> I/O <br> 9:CIrTable |
| conj(value) | Returns the complex conjugate of a complex number or list of complex numbers. | MATH <br> CPX <br> 1:conj( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Connected | Sets connected plotting mode; resets all $\mathbf{Y}=$ editor graph-style settings to : . | † MODE Connected |
| CoordOff | Turns off cursor coordinate value display. | $\dagger$ 2nd [FORMAT] CoordOff |
| CoordOn | Turns on cursor coordinate value display. | † 2nd [FORMAT] CoordOn |
| cos(value) | Returns cosine of a real number, expression, or list. | COS |
| $\cos ^{-1}$ (value) | Returns arccosine of a real number, expression, or list. | 2nd [ $\mathrm{COS}^{-1}$ ] |
| cosh(value) | Returns hyperbolic cosine of a real number, expression, or list. | 2nd [CATALOG] cosh( |
| $\cosh ^{-1}$ (value) | Returns hyperbolic arccosine of a real number, expression, or list. | 2nd [CATALOG] $\cosh ^{-1}$ ( |
| CubicReg [Xlistname, Ylistname,freqlist, regequ] | Fits a cubic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC <br> 6:CubicReg |
| cumSum(list) | Returns a list of the cumulative sums of the elements in list, starting with the first element. | 2nd [LIST] <br> OPS <br> 6:cumSum( |
| cumSum(matrix) | Returns a matrix of the cumulative sums of matrix elements. Each element in the returned matrix is a cumulative sum of a matrix column from top to bottom. | 2nd [MATRIX] <br> MATH <br> 0:cumSum( |


| Function or Instruction/ <br> Arguments | Result | Key or Keys/Menu <br> or Screen/Item |
| :--- | :--- | :--- |
| dayOfWk(year,month, day) | Returns an integer from 1 <br> to 7, with each integer | 2nd [CATALOG] <br> dayOfWk( <br> representing a day of the <br> week. Use dayOfWk( to <br> determine on which day <br> of the week a particular <br> date would occur. The |
|  | 1:Sunday <br> 2:Monday <br> 3:Tuesday... |  |
|  | mear must be 4 digits; <br> month and day can be 1 or |  |
| 2 digit. |  |  |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| DiagnosticOn | Sets diagnostics-on mode; $\mathbf{r}, \mathbf{r}^{\mathbf{2}}$, and $\mathbf{R}^{\mathbf{2}}$ are displayed as regression model results. | 2nd [CATALOG] DiagnosticOn |
| dim(listname) | Returns the dimension of listname. | 2nd [LIST] <br> OPS <br> 3:dim( |
| $\overline{\operatorname{dim}(\text { matrixname) }}$ | Returns the dimension of matrixname as a list. | 2nd [MATRIX] <br> MATH <br> 3:dim( |
| length $\rightarrow \mathbf{\operatorname { d i m }}$ (listname) | Assigns a new dimension (length) to a new or existing listname. | 2nd [LIST] <br> OPS <br> 3:dim( |
| $\{$ rows,columns $\}$ dim(matrixname) | Assigns new dimensions to a new or existing matrixname. | 2nd [MATRIX] <br> MATH <br> 3:dim( |
| Disp | Displays the home screen. | $\dagger$ PRGM <br> I/O <br> 3:Disp |
| Disp [valueA, valueB, valueC,...,value $n$ ] | Displays each value. | $\dagger$ PRGM <br> I/O <br> 3:Disp |
| DispGraph | Displays the graph. | $\dagger$ PRGM <br> I/O 4:DispGraph |
| DispTable | Displays the table. | $\dagger$ PRGM <br> I/O <br> 5:DispTable |
| value ${ }^{\text {DMS }}$ | Displays value in DMS format. | 2nd [ANGLE] ANGLE 4:УDMS |
| Dot | Sets dot plotting mode; resets all $\mathbf{Y}=$ editor graphstyle settings to ${ }^{\circ} \cdot$. | $\dagger$ MODE <br> Dot |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| DrawF expression | Draws expression (in terms of $\mathbf{X}$ ) on the graph. | 2nd [DRAW] DRAW 6:DrawF |
| Drawlnv expression | Draws the inverse of expression by plotting $\mathbf{X}$ values on the $y$-axis and $\mathbf{Y}$ values on the x-axis. | 2nd [DRAW] <br> DRAW <br> 8:DrawInv |
| :DS<(variable,value) <br> :commandA <br> :commands | Decrements variable by 1 ; skips commandA if variable < value. | $\dagger$ PRGM <br> CTL <br> B:DS< |
| $\mathbf{e}^{\wedge}$ (power) | Returns e raised to power. | 2nd [ $\mathrm{e}^{x}$ ] |
| $\mathbf{e}^{\wedge}($ list $)$ | Returns a list of e raised to a list of powers. | 2nd [ $\mathrm{e}^{x}$ ] |
| Exponent: valueEexponent | Returns value times 10 to the exponent. | 2nd [EE] |
| Exponent: <br> listEexponent | Returns list elements times 10 to the exponent. | 2nd [EE] |
| Exponent: matrixEexponent | Returns matrix elements times 10 to the exponent. | 2nd [EE] |
| - Eff(nominal rate, compounding periods) | Computes the effective interest rate. | APPS 1:Finance CALC C:)Eff( |
| Else <br> See If:Then:EIse |  |  |
| End | Identifies end of For(, If-Then-Else, Repeat, or While loop. | $\dagger$ PRGM <br> CTL <br> 7:End |
| Eng | Sets engineering display mode. | $\dagger$ MODE <br> Eng |
| Equ\String(Y= $\operatorname{var}^{\text {, }} \mathbf{S t r} n$ ) | Converts the contents of a $\mathbf{Y}=$ var to a string and stores it in Str $n$. | 2nd [CATALOG] Equistring( |
| expr(string) | Converts string to an expression and executes it. | 2nd [CATALOG] expr( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| ExpReg [Xlistname, Ylistname, freqlist,regequ] | Fits an exponential regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC <br> 0:ExpReg |
| ExprOff | Turns off the expression display during TRACE. | $\dagger$ 2nd [FORMAT] ExprOff |
| ExprOn | Turns on the expression display during TRACE. | $\dagger$ 2nd [FORMAT] ExprOn |
| Fcdf(lowerbound, upperbound, numerator $d f$, denominator $d f)$ | Computes the F distribution probability between lowerbound and upperbound for the specified numerator $d f$ (degrees of freedom) and denominator $d f$. | 2nd [DISTR] DISTR 9:Fcdf( |
| $\overline{\text { Fill(value,matrixname) }}$ | Stores value to each element in matrixname. | 2nd [MATRIX] <br> MATH <br> 4:Fill( |
| Fill(value,listname) | Stores value to each element in listname. | 2nd [LIST] OPS 4:Fill( |
| Fix \# | Sets fixed-decimal mode for \# of decimal places. | $\begin{aligned} & \hline \dagger \text { MODE } \\ & \mathbf{0 1 2 3 4 5 6 7 8 9} \\ & \text { (select one) } \end{aligned}$ |
| Float | Sets floating decimal mode. | † MODE <br> Float |
| fMax(expression,variable, lower,upper[,tolerance]) | Returns the value of variable where the local maximum of expression occurs, between lower and upper, with specified tolerance. | MATH <br> MATH <br> 7:fMax( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| fMin(expression,variable, lower,upper[,tolerance]) | Returns the value of variable where the local minimum of expression occurs, between lower and upper, with specified tolerance. | MATH <br> MATH <br> 6:fMin( |
| fnInt(expression, variable, lower,upper[,tolerance]) | Returns the function integral of expression with respect to variable, between lower and upper, with specified tolerance. | MATH <br> MATH <br> 9:fnInt( |
| FnOff [function\#, function\#,...function $n$ ] | Deselects all $\mathbf{Y}=$ functions or specified $\mathbf{Y}=$ functions. | VARS <br> Y-VARS <br> 4:On/Off <br> 2:FnOff |
| FnOn [function\#, function\#,...,function n] | Selects all $\mathbf{Y}=$ functions or specified $\mathbf{Y}=$ functions. | VARS <br> Y-VARS <br> 4:On/Off <br> 1:FnOn |
| :For(variable,begin,end [,increment]) <br> :commands <br> :End <br> :commands | Executes commands through End, incrementing variable from begin by increment until variable>end. | $\dagger$ PRGM CTL 4:For( |
| fPart(value) | Returns the fractional part or parts of a real or complex number, expression, list, or matrix. | MATH <br> NUM <br> 4:fPart( |
| Fpdf( $x$, numerator $d f$, denominator $d f)$ | Computes the F distribution probability between lowerbound and upperbound for the specified numerator $d f$ (degrees of freedom) and denominator $d f$. | 2nd [DISTR] <br> DISTR <br> 8:Fpdf( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| value Frac $^{\text {c }}$ | Displays a real or complex number, expression, list, or matrix as a fraction simplified to its simplest terms. | MATH <br> MATH <br> 1:УFrac |
| Full | Sets full screen mode. | † MODE <br> Full |
| Func | Sets function graphing mode. | $\dagger$ MODE <br> Func |
| GarbageCollect | Displays the garbage collection menu to allow cleanup of unused archive memory. | 2nd [CATALOG] <br> GarbageCollect |
| $\mathbf{g c d}($ value, , valueB) | Returns the greatest common divisor of valueA and valueB, which can be real numbers or lists. | MATH <br> NUM <br> 9:gcd( |
| geometcdf( $p, x$ ) | Computes a cumulative probability at $x$, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success $p$. | 2nd [DISTR] <br> DISTR <br> E:geometcdf( |
| geometpdf( $p, x$ ) | Computes a probability at $x$, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success $p$. | 2nd [DISTR] <br> DISTR <br> D:geometpdf( |
| Get(variable) | Gets data from the CBL $2^{\text {TM }}$ or CBR ${ }^{\text {TM }}$ System and stores it in variable. | $\dagger$ PRGM <br> I/O <br> A:Get( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| GetCaIc(variable [,portflag]) | Gets contents of variable on another TI-84 Plus and stores it to variable on the receiving TI-84 Plus. By default, the TI-84 Plus uses the USB port if it is connected. If the USB cable is not connected, it uses the I/O port. portflag=0 use USB port if connected; portflag=1 use USB port; portflag=2 use I/O port. | $\dagger$ PRGM <br> I/O <br> 0:GetCaIc( |
| getDate | Returns a list giving the date according to the current value of the clock. The list is in \{year,month,day\} format. | 2nd [CATALOG] getDate |
| getDtFmt | Returns an integer representing the date format that is currently set on the device. $\begin{aligned} & 1=\mathrm{M} / \mathrm{D} / \mathrm{Y} \\ & 2=\mathrm{D} / \mathrm{M} / \mathrm{Y} \\ & 3=\mathrm{Y} / \mathrm{M} / \mathrm{D} \end{aligned}$ | 2nd [CATALOG] getDtFmt |
| getDtStr(integer) | Returns a string of the current date in the format specified by integer, where: $\begin{aligned} & 1=\mathrm{M} / \mathrm{D} / \mathrm{Y} \\ & 2=\mathrm{D} / \mathrm{M} / \mathrm{Y} \\ & 3=\mathrm{Y} / \mathrm{M} / \mathrm{D} \end{aligned}$ | 2nd [CATALOG] getDtStr( |
| getKey | Returns the key code for the current keystroke, or $\mathbf{0}$, if no key is pressed. | $\dagger$ PRGM <br> I/O <br> 7:getKey |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| getTime | Returns a list giving the time according to the current value of the clock. The list is in \{hour,minute,second\} format. The time is returned in the 24 hour format. | 2nd [CATALOG] getTime |
| getTmFmt | Returns an integer representing the clock time format that is currently set on the device. <br> $12=12$ hour format <br> $24=24$ hour format | 2nd [CATALOG] getTmFmt |
| getTmStr(integer) | Returns a string of the current clock time in the format specified by integer, where: <br> $12=12$ hour format $24=24$ hour format | 2nd [CATALOG] getTmStr( |
| Goto label | Transfers control to label. | $\dagger$ PRGM CTL 0:Goto |
| GraphStyle(function\#, graphstyle\#) | Sets a graphstyle for function\#. | $\dagger \text { PRGM }$ <br> CTL H:GraphStyle( |
| GridOff | Turns off grid format. | $\dagger \text { 2nd [FORMAT] }$ <br> GridOff |
| GridOn | Turns on grid format. | $\dagger \text { 2nd [FORMAT] }$ <br> GridOn |
| G-T | Sets graph-table vertical split-screen mode. | $\begin{aligned} & \dagger \text { MODE } \\ & \text { G-T } \end{aligned}$ |
| Horiz | Sets horizontal splitscreen mode. | $\dagger$ MODE <br> Horiz |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Horizontal $y$ | Draws a horizontal line at $y$. | 2nd [DRAW] <br> DRAW <br> 3:Horizontal |
| identity(dimension) | Returns the identity matrix of dimension rows x dimension columns. | 2nd [MATRIX] <br> MATH <br> 5:identity( |
| :If condition :commandA :commands | If condition $=0$ (false), skips commandA. | $\dagger$ PRGM <br> CTL <br> 1:If |
| :If condition <br> :Then <br> :commands <br> :End <br> :commands | Executes commands from Then to End if condition $=1$ (true). |  |
| :If condition <br> :Then <br> :commands <br> :Else <br> :commands <br> :End <br> :commands | Executes commands from Then to Else if condition = 1 (true); from Else to End if condition $=0$ (false). | $\dagger$ PRGM CTL <br> 3:Else |
| imag(value) | Returns the imaginary (nonreal) part of a complex number or list of complex numbers. | MATH <br> CPX <br> 3:imag( |
| IndpntAsk | Sets table to ask for independent-variable values. | $\dagger$ 2nd [TBLSET] Indpnt: Ask |
| IndpntAuto | Sets table to generate independent-variable values automatically. | † 2nd [TBLSET] Indpnt: Auto |
| Input | Displays graph. | $\dagger$ PRGM <br> I/O <br> 1:Input |
| Input [variable] <br> Input ["text",variable] | Prompts for value to store to variable. | $\dagger \text { PRGM }$ <br> I/O <br> 1:Input |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Input [Strn,variable] | Displays Str $n$ and stores entered value to variable. | $\dagger$ PRGM <br> I/O <br> 1:Input |
| inString(string,substring [,start]) | Returns the character position in string of the first character of substring beginning at start. | 2nd [CATALOG] inString( |
| int(value) | Returns the largest integer $\leq$ a real or complex number, expression, list, or matrix. | MATH <br> NUM <br> 5:int( |
| $\Sigma \operatorname{Int}(p m t 1, p m t 2$ <br> [,roundvalue]) | Computes the sum, rounded to roundvalue, of the interest amount between pmt 1 and $p m t 2$ for an amortization schedule. | APPS 1:Finance <br> CALC <br> A: $\operatorname{Innt}($ |
| invNorm(area $[, \mu, \sigma]$ ) | Computes the inverse cumulative normal distribution function for a given area under the normal distribution curve specified by $\mu$ and $\sigma$. | 2nd [DISTR] DISTR <br> 3:invNorm( |
| iPart(value) | Returns the integer part of a real or complex number, expression, list, or matrix. | MATH <br> NUM <br> 3:iPart( |
| $\mathbf{i r r ( C F 0 , C F L i s t [ , C F F r e q ] ) ~}$ | Returns the interest rate at which the net present value of the cash flow is equal to zero. | APPS 1:Finance CALC 8:irr( |
| :IS>(variable,value) <br> :commandA <br> :commands | Increments variable by 1; skips commandA if variable>value. | $\begin{aligned} & + \text { PRGM } \\ & \text { CTL } \\ & \text { A:IS>( } \end{aligned}$ |
| isClockOn | Identifies if clock is ON or OFF. Returns 1 if the clock is ON. Returns 0 if the clock is OFF. | 2nd [CATALOG] isClockOn |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Llistname | Identifies the next one to five characters as a usercreated list name. | 2nd [LIST] <br> OPS <br> B:L |
| LabelOff | Turns off axes labels. | $\dagger$ 2nd [FORMAT] <br> LabelOff |
| LabelOn | Turns on axes labels. | $\dagger$ 2nd [FORMAT] LabelOn |
| Lbl label | Creates a label of one or two characters. | $\begin{aligned} & \dagger \text { PRGM } \\ & \text { CTL } \\ & \text { 9:LbI } \end{aligned}$ |
| $\mathbf{I c m ( v a l u e ~} A$, valueB) | Returns the least common multiple of valueA and valueB, which can be real numbers or lists. | MATH <br> NUM <br> 8:Icm( |
| length(string) | Returns the number of characters in string. | 2nd [CATALOG] length( |
| Line( $X 1, Y 1, X 2, Y 2$ ) | Draws a line from (X1,Y1) to $(X 2, Y 2)$. |  |
| Line( $X 1, Y 1, X 2, Y 2,0)$ | $\begin{aligned} & \text { Erases a line from }(X 1, Y 1) \\ & \text { to }(X 2, Y 2) . \end{aligned}$ | 2nd [DRAW] <br> DRAW <br> 2:Line( |
| LinReg(a+bx) [Xlistname, <br> Ylistname,freqlist, regequ] | Fits a linear regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC <br> 8:LinReg(a+bx) |
| LinReg(ax+b) [Xlistname, <br> Ylistname,freqlist, <br> regequ] | Fits a linear regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | $\begin{aligned} & \text { STAT } \\ & \text { CALC } \\ & \text { 4:LinReg(ax+b) } \end{aligned}$ |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| LinRegTTest [Xlistname, <br> Ylistname,freqlist, alternative,regequ] | Performs a linear regression and a $t$-test. alternative $=-1$ is <; alternative $=\mathbf{0}$ is $\neq$; alternative $=\mathbf{1}$ is $>$. | $\dagger$ STAT <br> TESTS <br> E:LinRegTTest |
| $\overline{\Delta L i s t(l i s t)}$ | Returns a list containing the differences between consecutive elements in list. | 2nd [LIST] OPS 7: $\Delta$ List( |
| List $\boldsymbol{P}$ matr(listname $1, \ldots$, <br> listname n,matrixname) | Fills matrixname column by column with the elements from each specified listname. | 2nd [LIST] OPS <br> 0:List • matr( |
| In(value) | Returns the natural logarithm of a real or complex number, expression, or list. | LN |
| LnReg [Xlistname, Ylistname, freqlist, regequ] | Fits a logarithmic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC 9:LnReg |
| $\boldsymbol{\operatorname { l o g } ( \text { value) }}$ | Returns logarithm of a real or complex number, expression, or list. | LOG |
| Logistic [Xlistname, Ylistname, freqlist, regequ] | Fits a logistic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC <br> B:Logistic |
| Matrylist(matrix, listnameA,...,listname $n$ ) | Fills each listname with elements from each column in matrix. | 2nd [LIST] <br> OPS <br> A:Matr>list( |
| Matrllist(matrix, column\#, listname) | Fills a listname with elements from a specified column\# in matrix. | 2nd [LIST] <br> OPS <br> A:Matrrlist( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| $\boldsymbol{\operatorname { m a x }}$ (value , $^{\text {, value }}$ ) | Returns the larger of value $A$ and valueB. | MATH <br> NUM <br> 7:max( |
| $\boldsymbol{\operatorname { m a x }}$ (list) | Returns largest real or complex element in list. | 2nd [LIST] <br> MATH <br> 2:max( |
| $\boldsymbol{\operatorname { m a x }}($ list $A, \mathrm{list}$ B) | Returns a real or complex list of the larger of each pair of elements in listA and listB. | 2nd [LIST] <br> MATH <br> 2:max( |
| $\boldsymbol{\operatorname { m a x } ( v a l u e , l i s t )}$ | Returns a real or complex list of the larger of value or each list element. | 2nd [LIST] <br> MATH <br> 2:max( |
| mean(list[_freqlist $]$ ) | Returns the mean of list with frequency freqlist. | 2nd [LIST] <br> MATH <br> 3:mean( |
| median(list[_freqlist]) | Returns the median of list with frequency freqlist. | 2nd [LIST] <br> MATH <br> 4:median( |
| Med-Med [Xlistname, Ylistname, freqlist, regequ] | Fits a median-median model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC <br> 3:Med-Med |
| $\begin{aligned} & \hline \text { Menu("title","text1", } \\ & \text { label1[,..,"text7",label7]) } \end{aligned}$ | Generates a menu of up to seven items during program execution. | $\dagger$ PRGM <br> CTL <br> C:Menu( |
| $\boldsymbol{\operatorname { m i n }}$ (valueA, valueB) | Returns smaller of value $A$ and valueB. | MATH <br> NUM <br> 6:min |
| $\mathbf{m i n}($ list $)$ | Returns smallest real or complex element in list. | 2nd [LIST] <br> MATH <br> 1:min( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| $\mathbf{m i n}($ listA,list ) | Returns real or complex list of the smaller of each pair of elements in listA and listB. | 2nd [LIST] <br> MATH <br> 1:min( |
| $\overline{\min (\text { value,list) }}$ | Returns a real or complex list of the smaller of value or each list element. | 2nd [LIST] <br> MATH <br> 1:min( |
| value $A \mathbf{n C r}$ valueB | Returns the number of combinations of valueA taken valueB at a time. | MATH <br> PRB <br> 3:nCr |
| value $\mathbf{n C r}$ list | Returns a list of the combinations of value taken each element in list at a time. | MATH PRB 3:nCr |
| list $\mathbf{n C r}$ value | Returns a list of the combinations of each element in list taken value at a time. | MATH <br> PRB <br> 3:nCr |
| listA $\mathbf{n C r}$ list $B$ | Returns a list of the combinations of each element in listA taken each element in list $B$ at a time. | MATH PRB 3:nCr |
| nDeriv(expression, variable, value $[, \varepsilon]$ ) | Returns approximate numerical derivative of expression with respect to variable at value, with specified $\varepsilon$. | MATH <br> MATH <br> 8:nDeriv( |
| Nom(effective rate, compounding periods) | Computes the nominal interest rate. | APPS 1:Finance CALC <br> B:>Nom( |
| Normal | Sets normal display mode. | $\dagger$ MODE <br> Normal |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| normalcdf(lowerbound, upperbound $[, \mu, \sigma]$ ) | Computes the normal distribution probability between lowerbound and upperbound for the specified $\mu$ and $\sigma$. | 2nd [DISTR] <br> DISTR <br> 2:normalcdf( |
| normalpdf( $x[, \mu, \sigma]$ ) | Computes the probability density function for the normal distribution at a specified $x$ value for the specified $\mu$ and $\sigma$. | 2nd [DISTR] <br> DISTR <br> 1:normalpdf( |
| not(value) | Returns $\mathbf{0}$ if value is $\neq 0$. value can be a real number, expression, or list. | 2nd [TEST] <br> LOGIC 4:not( |
| value $A \mathbf{n P r}$ valueB | Returns the number of permutations of value $A$ taken valueB at a time. | MATH <br> PRB <br> 2:nPr |
| value $\mathbf{n P r}$ list | Returns a list of the permutations of value taken each element in list at a time. | MATH <br> PRB <br> 2:nPr |
| list $\mathbf{n P r}$ value | Returns a list of the permutations of each element in list taken value at a time. | MATH PRB 2:nPr |
| list $A \mathbf{n P r}$ list $B$ | Returns a list of the permutations of each element in listA taken each element in list $B$ at a time. | $\begin{aligned} & \hline \text { MATH } \\ & \text { PRB } \\ & \text { 2:nPr } \end{aligned}$ |
| npv(interest rate, CFO, CFList[,CFFreq]) | Computes the sum of the present values for cash inflows and outflows. | APPS 1:Finance CALC <br> 7:npv( |
| value $A$ or valueB | Returns 1 if valueA or value $B$ is $\neq 0$. value $A$ and value $B$ can be real numbers, expressions, or lists. | 2nd [TEST] <br> LOGIC <br> 2:or |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Output(row, column, "text") | Displays text beginning at specified row and column. | $\dagger$ PRGM <br> I/O <br> 6:Output( |
| Output(row, column, value) | Displays value beginning at specified row and column. | $\dagger$ PRGM <br> I/O <br> 6:Output( |
| Param | Sets parametric graphing mode. | $\dagger \text { MODE }$ <br> Par |
| Pause | Suspends program execution until you press ENTER. | $\dagger$ PRGM <br> CTL <br> 8:Pause |
| Pause [value] | Displays value; suspends program execution until you press ENTER. | $\dagger$ PRGM <br> CTL <br> 8:Pause |
| Plot\#ttype,Xlistname, Ylistname,mark) | Defines Plot\# (1, 2, or 3) of type Scatter or xyLine for Xlistname and Ylistname using mark. | $\dagger$ 2nd [STAT PLOT] <br> STAT PLOTS <br> 1:Plot1- <br> 2:Plot2- <br> 3:Plot3- |
| Plot\#(type,Xlistname, freqlist) | Defines Plot\# (1, 2, or 3) of type Histogram or Boxplot for Xlistname with frequency freqlist. | $\dagger$ 2nd [STAT PLOT] <br> STAT PLOTS <br> 1:Plot1- <br> 2:Plot2- <br> 3:Plot3- |
| Plot\#(type,Xlistname, freqlist,mark) | Defines Plot\# (1, 2, or 3) of type ModBoxplot for Xlistname with frequency freqlist using mark. | $\dagger$ 2nd [STAT PLOT] <br> STAT PLOTS <br> 1:Plot1- <br> 2:Plot2- <br> 3:Plot3- |
| Plot\#ttype,datalistname, data axis,mark) | Defines Plot\# (1, 2, or 3) of type NormProbPlot for datalistname on data axis using mark. data axis can be $\mathbf{X}$ or $\mathbf{Y}$. | $\dagger$ [2nd [STAT PLOT] <br> STAT PLOTS <br> 1:Plot1- <br> 2:Plot2- <br> 3:Plot3- |
| PlotsOff [1,2,3] | Deselects all stat plots or one or more specified stat plots (1, 2, or 3). | 2nd [STAT PLOT] <br> STAT PLOTS 4:PlotsOff |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| PlotsOn [1,2,3] | Selects all stat plots or one or more specified stat plots (1, 2, or 3). | 2nd [STAT PLOT] <br> STAT PLOTS 5:PlotsOn |
| Pmt_Bgn | Specifies an annuity due, where payments occur at the beginning of each payment period. | APPS 1:Finance <br> CALC <br> F:Pmt_Bgn |
| Pmt_End | Specifies an ordinary annuity, where payments occur at the end of each payment period. | APPS 1:Finance CALC E:Pmt_End |
| poissoncdf( $\mu, x$ ) | Computes a cumulative probability at $x$ for the discrete Poisson distribution with specified mean $\mu$. | 2nd [DISTR] <br> DISTR <br> C:poissoncdf( |
| poissonpdf( $\mu, x$ ) | Computes a probability at $x$ for the discrete Poisson distribution with the specified mean $\mu$. | 2nd [DISTR] <br> DISTR <br> B:poissonpdf( |
| Polar | Sets polar graphing mode. | $\dagger$ MODE <br> Pol |
| complex value Polar | Displays complex value in polar format. | MATH <br> CPX <br> 7:>Polar |
| PolarGC | Sets polar graphing coordinates format. | $\dagger$ 2nd [FORMAT] PolarGC |
| prgmname | Executes the program name. | $\dagger \text { PRGM }$ <br> CTRL D:prgm |
| $\overline{\operatorname{Prn}(p m t 1}$, pmt 2 [,roundvalue]) | Computes the sum, rounded to roundvalue, of the principal amount between pmtl and pmt2 for an amortization schedule. | APPS 1:Finance CALC <br> 0: $\mathbf{E P r n}($ |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| prod(list[,start,end]) | Returns product of list elements between start and end. | 2nd [LIST] <br> MATH <br> 6:prod( |
| Prompt variableA <br> [,variableB,...,variable n] | Prompts for value for variableA, then variableB, and so on. | $\dagger$ PRGM <br> I/O <br> 2:Prompt |
| 1-PropZInt( $x, n$ <br> [,confidence level]) | Computes a oneproportion $z$ confidence interval. | $\dagger$ STAT <br> TESTS <br> A:1-PropZInt( |
| 2-PropZInt( $x 1, n 1, x 2, n 2$ [,confidence level]) | Computes a twoproportion $z$ confidence interval. | $\dagger$ STAT <br> TESTS <br> B:2-PropZInt( |
| 1-PropZTest $(p 0, x, n$ <br> [,alternative,drawflag]) | Computes a oneproportion $z$ test. alternative $=-1$ is <; alternative $=\mathbf{0}$ is $\neq$; alternative $=1$ is $>$. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> 5:1-PropZTest( |
| 2-PropZTest( $x 1, n 1, x 2, n 2$ [,alternative,drawflag]) | Computes a twoproportion $z$ test. alternative $=-1$ is <; alternative $=\mathbf{0}$ is $\neq$; alternative $=1$ is $>$. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> 6:2-PropZTest( |
| Pt-Change ( $x, y$ ) | Reverses a point at $(x, y)$. |  |
| Pt-Off( $x, y$ [,mark]) | Erases a point at ( $x, y$ ) using mark. | POINTS 2:Pt-Off( |
| Pt-On( $x, y[$ mark]) | Draws a point at ( $x, y$ ) using mark. | 2nd [DRAW] POINTS 1:Pt-On( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| PwrReg [Xlistname, Ylistname, freqlist, regequ] | Fits a power regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC <br> A:PwrReg |
| PxI-Change(row, column) | Reverses pixel at (row, column); $0 \leq$ row $\leq 62$ and $0 \leq$ column $\leq 94$. | 2nd [DRAW] POINTS <br> 6:PxI-Change( |
| PxI-Off(row, column) | Erases pixel at (row, column); $0 \leq$ row $\leq 62$ and $0 \leq$ column $\leq 94$. | 2nd [DRAW] POINTS 5:PxI-Off( |
| PxI-On( ow, column) | Draws pixel at (row, column); $0 \leq$ row $\leq 62$ and $0 \leq$ column $\leq 94$. | 2nd [DRAW] POINTS 4:PxI-On( |
| pxI-Test(row, column) | Returns 1 if pixel (row, column) is on, 0 if it is off; $0 \leq$ row $\leq 62$ and $0 \leq$ column $\leq 94$. | 2nd [DRAW] POINTS 7:pxI-Test( |
| $\mathbf{P > R X}(r, \theta)$ | Returns X, given polar coordinates $r$ and $\theta$ or a list of polar coordinates. | 2nd [ANGLE] <br> ANGLE <br> 7:P)Rx( |
| $\mathbf{P > R y}(r, \theta)$ | Returns Y, given polar coordinates $r$ and $\theta$ or a list of polar coordinates. | 2nd [ANGLE] <br> ANGLE <br> 8:P>Ry( |
| QuadReg [Xlistname, Ylistname, freqlist, regequ] | Fits a quadratic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC <br> 5:QuadReg |
| QuartReg [Xlistname, Ylistname,freqlist, regequ] | Fits a quartic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT <br> CALC <br> 7:QuartReg |


| Function or Instruction/ <br> Arguments | Result | Key or Keys/Menu <br> or Screen/Item |
| :--- | :--- | :--- |
| Radian | Sets radian angle mode. | † MODE <br> Radian |
| rand[(numtrials)] | Returns a random <br> number between 0 and 1 | PRBTH <br>  <br>  <br>  <br>  <br>  <br>  <br> for a specified number of <br> trials numtrials. |
| 1:rand |  |  |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| RecallGDB $n$ | Restores all settings stored in the graph database variable GDB $n$. | 2nd [DRAW] <br> STO <br> 4:RecallGDB |
| RecallPic $n$ | Displays the graph and adds the picture stored in Picn. | 2nd [DRAW] <br> STO <br> 2:RecallPic |
| complex value $\mathbf{R e c t}$ | Displays complex value or list in rectangular format. | MATH <br> CPX <br> 6:>Rect |
| RectGC | Sets rectangular graphing coordinates format. | † 2nd [FORMAT] RectGC |
| $\boldsymbol{\operatorname { r e f }}$ (matrix) | Returns the row-echelon form of a matrix. | 2nd [MATRIX] <br> MATH <br> A:ref( |
| :Repeat condition :commands <br> :End <br> :commands | Executes commands until condition is true. | $\dagger$ PRGM <br> CTL <br> 6:Repeat |
| Return | Returns to the calling program. | $\dagger$ PRGM <br> CTL E:Return |
| round(value[,\#decimals]) | Returns a number, expression, list, or matrix rounded to \#decimals ( $\leq 9$ ). | MATH <br> NUM <br> 2:round( |
| *row(value,matrix,row) | Returns a matrix with row of matrix multiplied by value and stored in row. | 2nd [MATRIX] <br> MATH <br> E:*row( |
| row+(matrix, row , row $B$ ) | Returns a matrix with rowA of matrix added to row $B$ and stored in row $B$. | 2nd [MATRIX] <br> MATH <br> D:row+( |
| *row+(value,matrix, row $A, r o w B$ ) | Returns a matrix with rowA of matrix multiplied by value, added to row $B$, and stored in row $B$. | 2nd [MATRIX] <br> MATH <br> F:*row+( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| rowSwap(matrix,rowA, row $B$ ) | Returns a matrix with rowA of matrix swapped with row $B$. | 2nd [MATRIX] <br> MATH <br> C:rowSwap( |
| rref(matrix) | Returns the reduced rowechelon form of a matrix. | 2nd [MATRIX] <br> MATH <br> B:rref( |
| $\overline{\mathbf{R}} \boldsymbol{\operatorname { P r }}(x, y)$ | Returns R, given rectangular coordinates $x$ and $y$ or a list of rectangular coordinates. | 2nd [ANGLE] <br> ANGLE 5:R)Pr( |
| $\mathbf{R} \backslash \mathbf{P} \theta(x, y)$ | Returns $\theta$, given rectangular coordinates $x$ and $y$ or a list of rectangular coordinates. | 2nd [ANGLE] <br> ANGLE <br> 6:R)P $\boldsymbol{P}$ ( |
| 2-SampFTest [listname1, listname 2,freqlist1, freqlist2, alternative, drawflag] <br> (Data list input) | Performs a two-sample $F$ test. alternative $=-\mathbf{1}$ is <; alternative $=\mathbf{0}$ is $\neq$; alternative $=1$ is $>$. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> D:2-SampFTest |
| 2-SampFTest $S x 1, n 1$, <br> Sx2,n2[,alternative, drawflag] <br> (Summary stats input) | Performs a two-sample F test. alternative=-1 is <; alternative $=\mathbf{0}$ is $\neq$; alternative $=\mathbf{1}$ is $>$. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> D:2-SampFTest |
| 2-SampTInt [listname1, <br> listname2, freqlist1, freqlist2, confidence level,pooled] (Data list input) | Computes a two-sample $t$ confidence interval. pooled=1 pools variances; pooled=0 does not pool variances. | $\dagger$ STAT <br> TESTS <br> 0:2-SampTInt |
| $\begin{aligned} & \text { 2-SampTInt } \overline{\mathrm{x}} 1, \text { Sx1,n1, } \\ & \overline{\mathrm{x}} 2, \text { Sx } 2, n 2 \\ & {[, \text { confidence level, pooled }]} \\ & \text { (Summary stats input) } \end{aligned}$ | Computes a two-sample $t$ confidence interval. pooled=1 pools variances; pooled=0 does not pool variances. | $\dagger$ STAT <br> TESTS <br> 0:2-SampTInt |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| 2-SampTTest [listname1, listname2,freqlist1, freqlist2,alternative, pooled,drawflag] (Data list input) | Computes a two-sample $t$ test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is $\neq$; alternative $=\mathbf{1}$ is $>$. pooled $=\mathbf{1}$ pools variances; pooled=0 does not pool variances. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> 4:2-SampTTest |
| $\begin{aligned} & \text { 2-SampTTest } \overline{\mathrm{x}} 1, \text { Sx } 1, n 1 \text {, } \\ & \mathrm{v2,Sx2,n2[ } \mathrm{,alternative,} \\ & \text { pooled,drawflag] } \\ & \text { (Summary stats input) } \end{aligned}$ | Computes a two-sample $t$ test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is $\neq$; alternative $=1$ is $>$. pooled $=1$ pools variances; pooled=0 does not pool variances. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> 4:2-SampTTest |
| 2-SampZInt ( $\sigma_{1}, \sigma_{2}$ <br> [,listname1,listname2, freqlist1,freqlist2, confidence level]) (Data list input) | Computes a two-sample $z$ confidence interval. | $\dagger$ STAT <br> TESTS <br> 9:2-SampZInt( |
| $\begin{aligned} & \text { 2-SampZInt }\left(\sigma_{1}, \sigma_{2},\right. \\ & \overline{\mathrm{x}} 1, n 1, \overline{\mathrm{x}} 2, n 2 \\ & {[, \text { confidence level }] \text { ) }} \\ & \text { (Summary stats input) } \end{aligned}$ | Computes a two-sample $z$ confidence interval. | $\dagger$ STAT <br> TESTS <br> 9:2-SampZInt( |
| 2-SampZTest $\left(\sigma_{1}, \sigma_{2}\right.$ <br> [,listname1,listname2, freqlist1,freqlist2, alternative,drawflag]) (Data list input) | Computes a two-sample $z$ test. alternative $=\mathbf{- 1}$ is $<$; alternative $=\mathbf{0}$ is $\neq$; alternative $=1$ is $>$. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> 3:2-SampZTest( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { 2-SampZTest }\left(\sigma_{1}, \sigma_{2},\right. \\ & \overline{\mathrm{x}} 1, n 1, \overline{\mathrm{x}} 2, n 2 \\ & {[, \text { alternative,drawflag]) }} \\ & \text { (Summary stats input) } \end{aligned}$ | Computes a two-sample $z$ test. alternative $=\mathbf{- 1}$ is $<$; alternative $=\mathbf{0}$ is $\neq$; alternative $=\mathbf{1}$ is $>$. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger \text { STAT }$ <br> TESTS <br> 3:2-SampZTest( |
| Sci | Sets scientific notation display mode. | $\dagger \text { MODE }$ <br> Sci |
| Select(Xlistname, Ylistname) | Selects one or more specific data points from a scatter plot or xyLine plot (only), and then store•s the selected data points to two new lists, Xlistname and Ylistname. | 2nd [LIST] OPS 8:Select( |
| Send(variable) | Sends contents of variable to the CBL $2^{\text {TM }}$ or CBR ${ }^{\text {TM }}$ System. | + PRGM <br> I/O <br> B:Send( |
| seq(expression,variable, begin,end[,increment]) | Returns list created by evaluating expression with regard to variable, from begin to end by increment. | 2nd [LIST] <br> OPS 5:seq( |
| Seq | Sets sequence graphing mode. | † MODE Seq |
| Sequential | Sets mode to graph functions sequentially. | $\dagger$ MODE <br> Sequential |
| setDate(year,month, day) | Sets the date using a year, month, day format. The year must be 4 digits; month and day can be 1 or 2 digit. | 2nd [CATALOG] setDate( |
| setDtFmt(integer) | Sets the date format. $\begin{aligned} & 1=\mathrm{M} / \mathrm{D} / \mathrm{Y} \\ & 2=\mathrm{D} / \mathrm{M} / \mathrm{Y} \\ & 3=\mathrm{Y} / \mathrm{M} / \mathrm{D} \end{aligned}$ | 2nd [CATALOG] setDtFmt( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| setTime(hour,minute, second) | Sets the time using an hour, minute, second format. The hour must be in 24 hour format, in which 13 = 1 p.m. | 2nd [CATALOG] setTime( |
| setTmFmt(integer) | Sets the time format. <br> $12=12$ hour format <br> $24=24$ hour format | 2nd [CATALOG] setTmFmt( |
| SetUpEditor | Removes all list names from the stat list editor, and then restores list names L1 through L6 to columns 1 through 6. | STAT <br> EDIT <br> 5:SetUpEditor |
| SetUpEditor listnamel <br> [,listname2,..., <br> listname20] | Removes all list names from the stat list editor, then sets it up to display one or more listnames in the specified order, starting with column 1. |  |
| Shade(lowerfunc, upperfunc [,Xleft,Xright, pattern,patres]) | Draws lowerfunc and upperfunc in terms of $\mathbf{X}$ on the current graph and uses pattern and patres to shade the area bounded by lowerfunc, upperfunc, Xleft, and Xright. | 2nd [DRAW] <br> DRAW <br> 7:Shade( |
| Shade $\chi^{\mathbf{2}}$ (lowerbound, upperbound, $d f)$ | Draws the density function for the $\chi^{2}$ distribution specified by degrees of freedom $d f$ and shades the area between lowerbound and upperbound. | 2nd [DISTR] <br> DRAW <br> 3:Shade $\chi^{2}$ ( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| ShadeF (lowerbound, <br> upperbound, <br> numerator $d f$, <br> denominator $d f)$ | Draws the density function for the $F$ distribution specified by numerator of $f$ and denominator off and shades the area between lowerbound and upperbound. | 2nd [DISTR] DRAW 4:ShadeF( |
| ShadeNorm(lowerbound, upperbound $[, \mu, \sigma]$ ) | Draws the normal density function specified by $\mu$ and $\sigma$ and shades the area between lowerbound and upperbound. | 2nd [DISTR] <br> DRAW <br> 1:ShadeNorm( |
| Shade_t (lowerbound, upperbound, $d f$ ) | Draws the density function for the Student-t distribution specified by degrees of freedom df, and shades the area between lowerbound and upperbound. | 2nd [DISTR] <br> DRAW <br> 2:Shade_t( |
| Simul | Sets mode to graph functions simultaneously. | $\dagger \text { MODE }$ <br> Simul |
| $\boldsymbol{\operatorname { s i n }}$ (value) | Returns the sine of a real number, expression, or list. | SIN |
| $\sin ^{-1}($ value $)$ | Returns the arcsine of a real number, expression, or list. | 2nd [SIN-1] |
| $\boldsymbol{\operatorname { s i n h }}$ (value) | Returns the hyperbolic sine of a real number, expression, or list. | 2nd [CATALOG] $\boldsymbol{\operatorname { s i n h }}($ |
| $\sinh ^{-1}$ (value) | Returns the hyperbolic arcsine of a real number, expression, or list. | $\begin{aligned} & \text { 2nd [CATALOG] } \\ & \boldsymbol{\operatorname { s i n h }}^{-\mathbf{1}} \mathbf{(} \end{aligned}$ |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| SinReg [iterations, Xlistname, Ylistname, period,regequ] | Attempts iterations times to fit a sinusoidal regression model to Xlistname and Ylistname using a period guess, and stores the regression equation to regequ. | STAT <br> CALC <br> C:SinReg |
| solve(expression,variable, guess,\{lower,upper\}) | Solves expression for variable, given an initial guess and lower and upper bounds within which the solution is sought. | $\dagger$ MATH MATH 0:solve( |
| SortA(listname) | Sorts elements of listname in ascending order. | 2nd [LIST] OPS 1:SortA( |
| SortA(keylistname, dependlist $1[$ dependlist 2, ...,dependlist $n$ ]) | Sorts elements of keylistname in ascending order, then sorts each dependlist as a dependent list. | 2nd [LIST] <br> OPS <br> 1:SortA( |
| SortD(listname) | Sorts elements of listname in descending order. | 2nd [LIST] <br> OPS <br> 2:SortD( |
| SortD(keylistname,dependl ist 1 [,dependlist 2 , ..., dependlist $n$ ]) | Sorts elements of keylistname in descending order, then sorts each dependlist as a dependent list. | 2nd [LIST] OPS 2:SortD( |
| startTmr | Starts the clock timer. Store or note the displayed value, and use it as the argument for checkTmr() to check the elapsed time. | 2nd [CATALOG] startTmr |
| $\mathbf{s t d D e v}($ list $[$,freqlist] $)$ | Returns the standard deviation of the elements in list with frequency freqlist. | 2nd [LIST] <br> MATH <br> 7:stdDev( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Stop | Ends program execution; returns to home screen. | + PRGM CTL F:Stop |
| Store: value $\rightarrow$ variable | Stores value in variable. | STO* |
| StoreGDB $n$ | Stores current graph in database GDB $n$. | 2nd [DRAW] <br> STO <br> 3:StoreGDB |
| StorePic $n$ | Stores current picture in picture Picn. | 2nd [DRAW] <br> STO <br> 1:StorePic |
| String)Equ(string, $\mathbf{Y}=$ var) | Converts string into an equation and stores it in $\mathbf{Y}=$ var. | 2nd [CATALOG] <br> String)Equ( |
| sub(string,begin,length) | Returns a string that is a subset of another string, from begin to length. | 2nd [CATALOG] sub( |
| sum(list[,start,end]) | Returns the sum of elements of list from start to end. | 2nd [LIST] <br> MATH <br> 5:sum( |
| $\boldsymbol{\operatorname { t a n }}$ (value) | Returns the tangent of a real number, expression, or list. | TAN |
| $\boldsymbol{\operatorname { t a n }}^{-1}$ (value) | Returns the arctangent of a real number, expression, or list. | 2nd [TAN-1] |
| Tangent(expression, value) | Draws a line tangent to expression at $\mathbf{X}=$ value. | 2nd [DRAW] <br> DRAW <br> 5:Tangent( |
| $\boldsymbol{\operatorname { t a n h } ( \text { value) }}$ | Returns hyperbolic tangent of a real number, expression, or list. | 2nd [CATALOG] tanh( |
| $\tanh ^{-1}($ value $)$ | Returns the hyperbolic arctangent of a real number, expression, or list. | 2nd [CATALOG] $\boldsymbol{\operatorname { t a n h }}^{-1}$ ( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| tcdf(lowerbound, upperbound, $d$ ) | Computes the Student- $t$ distribution probability between lowerbound and upperbound for the specified degrees of freedom $d f$. | 2nd [DISTR] <br> DISTR <br> 5:tcdf( |
| Text(row, column,textl, text $2, \ldots$, text $n$ ) | Writes text on graph beginning at pixel (row, column), where $0 \leq$ row $\leq 57$ and $0 \leq$ column $\leq 94$. | 2nd [DRAW] <br> DRAW <br> 0:Text( |
| Then <br> See If:Then |  |  |
| Time | Sets sequence graphs to plot with respect to time. | † 2nd [FORMAT] <br> Time |
| timeCnv(seconds) | Converts seconds to units of time that can be more easily understood for evaluation. The list is in \{days,hours,minutes,seconds\} format. | 2nd [CATALOG] timeCnv |
| TInterval [listname, freqlist, confidence level] (Data list input) | Computes a $t$ confidence interval. | $\dagger$ STAT <br> TESTS <br> 8:TInterval |
| TInterval $\bar{x}, S x, n$ [,confidence level] (Summary stats input) | Computes a $t$ confidence interval. | $\dagger$ STAT <br> TESTS <br> 8:TInterval |
| tpdf( $x, d f$ ) | Computes the probability density function (pdf) for the Student- $t$ distribution at a specified $x$ value with specified degrees of freedom $d f$. | 2nd [DISTR] <br> DISTR <br> 4:tpdf( |
| Trace | Displays the graph and enters TRACE mode. | TRACE |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| T-Test $\mu 0$ [, listname, freqlist,alternative, drawflag] (Data list input) | Performs a $t$ test with frequency freqlist. alternative $=-1$ is <; alternative $=\mathbf{0}$ is $\neq$; alternative $=\mathbf{1}$ is $>$. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> 2:T-Test |
| T-Test $\mu 0, \bar{x}_{,} S x, n$ <br> [,alternative,drawflag] <br> (Summary stats input) | Performs a $t$ test with frequency freqlist. <br> alternative $=-1$ is $<$; <br> alternative $=\mathbf{0}$ is $\neq$; <br> alternative $=\mathbf{1}$ is $>$. <br> drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> 2:T-Test |
| $\begin{aligned} & \text { tvm_FV[(N,I\%,PV,PMT, } \\ & P / Y, C / Y)] \end{aligned}$ | Computes the future value. | APPS 1:Finance CALC 6:tvm_FV |
| $\begin{aligned} & \text { tvm } \mathrm{I} \%\left[\left(\mathbf{N}, P V_{1} P M T, F V,\right.\right. \\ & P / Y, C / Y)] \end{aligned}$ | Computes the annual interest rate. | APPS 1:Finance <br> CALC <br> 3:tvm_I\% |
| $\begin{aligned} & \text { tvm_N }\left[\left(\mathbf{I} \%, P V, P M T_{s} F V_{1}\right.\right. \\ & P / Y, C / Y)] \end{aligned}$ | Computes the number of payment periods. | APPS 1:Finance <br> CALC <br> 5:tvm_N |
| $\begin{aligned} & \text { tvm_Pmt[(N,I\%,PV,FV, } \\ & P / Y, C / Y)] \end{aligned}$ | Computes the amount of each payment. | APPS 1:Finance CALC 2:tvm_Pmt |
| $\begin{aligned} & \overline{\text { tvm_PV[(N,I\%, } P M T, F V,} \\ & P / Y, C / Y)] \end{aligned}$ | Computes the present value. | APPS 1:Finance <br> CALC <br> 4:tvm_PV |
| UnArchive | Moves the specified variables from the user data archive memory to RAM. <br> To archive variables, use Archive. | 2nd [MEM] 6:UnArchive |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| uvAxes | Sets sequence graphs to plot $\mathbf{u}(n)$ on the $x$-axis and $\mathbf{v}(n)$ on the $y$-axis. | † 2nd [FORMAT] uv |
| uwAxes | Sets sequence graphs to plot $\mathbf{u}(n)$ on the $x$-axis and $\mathbf{w}(n)$ on the $y$-axis. | $\dagger$ 2nd [FORMAT] uw |
| 1-Var Stats [Xlistname, freqlist] | Performs one-variable analysis on the data in Xlistname with frequency freqlist. | STAT <br> CALC <br> 1:1-Var Stats |
| 2-Var Stats [Xlistname, <br> Ylistname, freqlist] | Performs two-variable analysis on the data in Xlistname and Ylistname with frequency freqlist. | STAT <br> CALC <br> 2:2-Var Stats |
| variance(list[ıfreqlist]) | Returns the variance of the elements in list with frequency freqlist. | 2nd [LIST] <br> MATH 8:variance( |
| Vertical $x$ | Draws a vertical line at $x$. | 2nd [DRAW] <br> DRAW 4:Vertical |
| vwAxes | Sets sequence graphs to plot $\mathbf{v}(n)$ on the x-axis and $\mathbf{w}(n)$ on the y -axis. | $\dagger$ 2nd [FORMAT] vw |
| Web | Sets sequence graphs to trace as webs. | $\dagger \text { 2nd [FORMAT] }$ <br> Web |
| :While condition :commands <br> :End <br> :command | Executes commands while condition is true. | $\dagger \text { PRGM }$ <br> CTL <br> 5:While |
| value $A$ xor valueB | Returns 1 if only valueA or value $B=0$. value $A$ and valueB can be real numbers, expressions, or lists. | 2nd [TEST] <br> LOGIC <br> 3:xor |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| ZBox | Displays a graph, lets you draw a box that defines a new viewing window, and updates the window. |  |
| ZDecimal | Adjusts the viewing window so that $\Delta X=0.1$ and $\Delta \mathbf{Y}=\mathbf{0 . 1}$, and displays the graph screen with the origin centered on the screen. | $\dagger$ ZOOM ZOOM 4:ZDecimal |
| ZInteger | Redefines the viewing window using these dimensions: $\begin{array}{ll} \Delta X=1 & \text { Xscl }=10 \\ \Delta Y=1 & Y s c l=10 \end{array}$ | $\begin{aligned} & \hline \dagger \text { ZOOM } \\ & \text { ZOOM } \\ & \text { 8:ZInteger } \end{aligned}$ |
| ZInterval $\sigma[$, listname, freqlist,confidence level] (Data list input) | Computes a z confidence interval. | $\dagger$ STAT <br> TESTS <br> 7:ZInterval |
| ZInterval $\sigma, \overline{\mathrm{x}}, n$ <br> [,confidence level] (Summary stats input) | Computes a $z$ confidence interval. | $\begin{aligned} & \hline \dagger \text { STAT } \\ & \text { TESTS } \\ & \text { 7:ZInterval } \end{aligned}$ |
| Zoom In | Magnifies the part of the graph that surrounds the cursor location. | † ZOOM ZOOM 2:Zoom In |
| Zoom Out | Displays a greater portion of the graph, centered on the cursor location. | † ZOOM <br> ZOOM <br> 3:Zoom Out |
| ZoomFit | Recalculates Ymin and Ymax to include the minimum and maximum $\mathbf{Y}$ values, between $\mathbf{X m i n}$ and Xmax, of the selected functions and replots the functions. | $\begin{aligned} & \text { † ZOOM } \\ & \text { ZOOM } \\ & \text { 0:ZoomFit } \end{aligned}$ |
| ZoomRcl | Graphs the selected functions in a userdefined viewing window. | $\dagger$ ZOOM <br> MEMORY <br> 3:ZoomRcl |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| ZoomStat | Redefines the viewing window so that all statistical data points are displayed. | † ZOOM ZOOM <br> 9:ZoomStat |
| ZoomSto | Immediately stores the current viewing window. | † ZOOM MEMORY 2:ZoomSto |
| ZPrevious | Replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction. | † ZOOM MEMORY 1:ZPrevious |
| ZSquare | Adjusts the $\mathbf{X}$ or $\mathbf{Y}$ window settings so that each pixel represents an equal width and height in the coordinate system, and updates the viewing window. | $\begin{aligned} & \mathrm{\dagger} \text { ZOOM } \\ & \text { ZOOM } \\ & \text { 5:ZSquare } \end{aligned}$ |
| ZStandard | Replots the functions immediately, updating the window variables to the default values. | $\begin{aligned} & \text { † ZOOM } \\ & \text { ZOOM } \\ & \text { 6:ZStandard } \end{aligned}$ |
| Z-Test( $\mu 0, \sigma[$, listname, freqlist,alternative, drawflag]) (Data list input) | Performs a $z$ test with frequency freqlist. alternative $=-1$ is $<$; alternative $=\mathbf{0}$ is $\neq$; alternative $=1$ is $>$. drawflag=1 draws results; drawflag=0 calculates results. | $\dagger$ STAT <br> TESTS <br> 1:Z-Test( |
| Z-Test( $\mu 0, \sigma, \overline{\mathrm{x}}, n$ <br> [,alternative,drawflag]) <br> (Summary stats input) | Performs a $z$ test. <br> alternative $=-1$ is <; <br> alternative $=\mathbf{0}$ is $\neq$; <br> alternative $=\mathbf{1}$ is $>$. <br> drawflag=1 draws results; <br> drawflag=0 calculates <br> results. | $\dagger \text { STAT }$ <br> TESTS <br> 1:Z-Test( |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| ZTrig | Replots the functions immediately, updating the window variables to preset values for plotting trig functions. | † ZOOM <br> ZOOM <br> 7:ZTrig |
| Factorial: value! | Returns factorial of value. | $\begin{aligned} & \text { MATH } \\ & \text { PRB } \\ & \mathbf{4 : !} \end{aligned}$ |
| Factorial: list! | Returns factorial of list elements. | $\begin{aligned} & \text { MATH } \\ & \text { PRB } \\ & 4:! \end{aligned}$ |
| Degrees notation: value ${ }^{\circ}$ | Interprets value as degrees; designates degrees in DMS format. | 2nd [ANGLE] <br> ANGLE <br> 1: ${ }^{\circ}$ |
| Radian: angle ${ }^{\mathbf{r}}$ | Interprets angle as radians. | $3:^{r}$ |
| Transpose: matrix ${ }^{\mathbf{T}}$ | Returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of matrix. | 2nd [MATRIX] <br> MATH $2:^{T}$ |
| xthroot $^{\mathbf{x}^{\text {value }}}$ | Returns xthroot of value. | MATH <br> MATH $5::_{\sqrt{2}}$ |
| $\chi^{\text {th }}$ root ${ }^{\mathbf{x}} \sqrt{\text { list }}$ | Returns xthroot of list elements. | MATH <br> MATH $5::_{\sqrt{ }}$ |
| list $\mathbf{x}_{\sqrt{\text { value }}}$ | Returns list roots of value. | MATH <br> MATH $5::_{\sqrt{ }}$ |
| list ${ }^{\mathbf{x} \sqrt{l i s t B}}$ | Returns listA roots of listB. | MATH <br> MATH $\text { 5: } x_{\sqrt{ }}$ |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Cube: value ${ }^{3}$ | Returns the cube of a real or complex number, expression, list, or square matrix. | MATH <br> MATH 3:3 |
| Cube root: $\sqrt[3]{ }$ (value) | Returns the cube root of a real or complex number, expression, or list. | MATH <br> MATH $4: \sqrt[3]{ }$ |
| Equal: value $A=$ value $B$ | Returns 1 if value $A=$ valueB. Returns 0 if value $\neq$ valueB. value $A$ and valueB can be real or complex numbers, expressions, lists, or matrices. | 2nd [TEST] <br> TEST <br> 1:= |
| Not equal: value $A \neq$ value $B$ | Returns 1 if value $A \neq v a l u e B$. Returns 0 if valueA $=$ valueB. value $A$ and valueB can be real or complex numbers, expressions, lists, or matrices. | $\begin{aligned} & \hline \text { 2nd [TEST] } \\ & \text { TEST } \\ & \mathbf{2 : \neq} \end{aligned}$ |
| Less than: valueA<valueB | Returns 1 if valueA < valueB. Returns 0 if value $A \geq$ valueB. valueA and value $B$ can be real or complex numbers, expressions, or lists. | 2nd [TEST] <br> TEST <br> 5:< |
| Greater than: valueA>valueB | Returns 1 if value $A>v a l u e B$. Returns 0 if value $A \leq$ valueB. value $A$ and valueB can be real or complex numbers, expressions, or lists. | $\begin{aligned} & \hline \text { 2nd [TEST] } \\ & \text { TEST } \\ & \text { 3:> } \end{aligned}$ |
| Less than or equal: value $A \leq$ value $B$ | Returns 1 if value $\leq$ valueB. Returns 0 if valueA > valueB. valueA and value $B$ can be real or complex numbers, expressions, or lists. | $\begin{aligned} & \hline \text { 2nd [TEST] } \\ & \text { TEST } \\ & \mathbf{6 : \leq} \end{aligned}$ |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Greater than or equal: value $A \geq$ value $B$ | Returns 1 if value $A \geq$ valueB. Returns 0 if value $A<$ value $B$. value $A$ and value $B$ can be real or complex numbers, expressions, or lists. | $\begin{aligned} & \hline \text { 2nd [TEST] } \\ & \text { TEST } \\ & \mathbf{4 : \geq} \end{aligned}$ |
| Inverse: value ${ }^{-1}$ | Returns 1 divided by a real or complex number or expression. | x-1 |
| Inverse: list $^{\mathbf{1}}$ | Returns 1 divided by list elements. | x-1 |
| Inverse: matrix ${ }^{-1}$ | Returns matrix inverted. | $x^{-1}$ |
| Square: value ${ }^{\mathbf{2}}$ | Returns value multiplied by itself. value can be a real or complex number or expression. | $x^{2}$ |
| Square: list $^{\mathbf{2}}$ | Returns list elements squared. | $x^{2}$ |
| Square: matrix ${ }^{\mathbf{2}}$ | Returns matrix multiplied by itself. | $x^{2}$ |
| Powers: value^power | Returns value raised to power. value can be a real or complex number or expression. | $\triangle$ |
| Powers: list^ power | Returns list elements raised to power. | $\triangle$ |
| Powers: value^list | Returns value raised to list elements. | $\triangle$ |
| Powers: matrix^power | Returns matrix elements raised to power. | $\triangle$ |
| Negation: -value | Returns the negative of a real or complex number, expression, list, or matrix. | (-) |


| Function or Instruction／ Arguments | Result | Key or Keys／Menu or Screen／Item |
| :---: | :---: | :---: |
| Power of ten：10＾（value） | Returns 10 raised to the value power．value can be a real or complex number or expression． | 2nd［10 ${ }^{\text {x }}$ ］ |
| Power of ten：10＾（list） | Returns a list of 10 raised to the list power． | 2nd［10 ${ }^{x}$ ］ |
| Square root：$\sqrt{ }($ value） | Returns square root of a real or complex number， expression，or list． | 2nd［ $v^{-}$］ |
| Multiplication： value $A *$ value B | Returns valueA times valueB． | 区 |
| Multiplication： value＊list | Returns value times each list element． | 区 |
| Multiplication： list＊value | Returns each list element times value． | 区 |
| Multiplication： $\text { list } A * \text { listB }$ | Returns listA elements times list $B$ elements． | 区 |
| Multiplication： value＊matrix | Returns value times matrix elements． | 区 |
| Multiplication： matrix $A *$ matrix $B$ | Returns matrixa times matrixB． | 区 |
| Division：valueA／valueB | Returns valuea divided by valueB． | $\div$ |
| Division：list／value | Returns list elements divided by value． | $\div$ |
| Division：value／list | Returns value divided by list elements． | $\div$ |
| Division：listA／listB | Returns listA elements divided by list $B$ elements． | $\div$ |
| Addition：value $A+$ value B | Returns value $A$ plus valueB． | $\pm$ |
| Addition：list＋value | Returns list in which value is added to each list element． | $\pm$ |


| Function or Instruction/ Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Addition: listA+listB | Returns listA elements plus list $B$ elements. | $\pm$ |
| Addition: <br> matrixA+matrixB | Returns matrixA elements plus matrixB elements. | $\pm$ |
| Concatenation: string1+string2 | Concatenates two or more strings. | $\pm$ |
| Subtraction: valueA-valueB | Subtracts valueB from valuea. | $\square$ |
| Subtraction: value-list | Subtracts list elements from value. | $\square$ |
| Subtraction: <br> list-value | Subtracts value from list elements. | $\square$ |
| Subtraction: <br> list $A$-listB | Subtracts list $B$ elements from listA elements. | $\square$ |
| Subtraction: <br> matrixA-matrixB | Subtracts matrix $B$ elements from matrixA elements. | $\square$ |
| Minutes notation:degrees ${ }^{\circ}$ minutes ${ }^{\prime}$ seconds" | Interprets minutes angle measurement as minutes. | 2nd [ANGLE] ANGLE 2:' |
| Seconds notation: degrees ${ }^{\circ}$ minutes'seconds" | Interprets seconds angle measurement as seconds. | ALPHA ['] |

## Variables

## User Variables

The TI-84 Plus uses the variables listed below in various ways. Some variables are restricted to specific data types.

The variables $\mathbf{A}$ through $\mathbf{Z}$ and $\theta$ are defined as real or complex numbers. You may store to them. The TI-84 Plus can update $\mathbf{X}, \mathbf{Y}, \mathbf{R}, \theta$, and $\mathbf{T}$ during graphing, so you may want to avoid using these variables to store nongraphing data.

The variables (list names) L1 through $\mathbf{L 6}$ are restricted to lists; you cannot store another type of data to them.

The variables (matrix names) [A] through [J] are restricted to matrices; you cannot store another type of data to them.

The variables Pic1 through Pic9 and Pic0 are restricted to pictures; you cannot store another type of data to them.

The variables GDB1 through GDB9 and GDB0 are restricted to graph databases; you cannot store another type of data to them.

The variables Str1 through Str9 and Str0 are restricted to strings; you cannot store another type of data to them.

Except for system variables, you can store any string of characters, functions, instructions, or variables to the functions $\mathbf{Y} n$, ( $\mathbf{1}$ through $\mathbf{9}$, and $\mathbf{0}), \mathbf{X} n \mathbf{T} / \mathbf{Y} n \mathbf{T}(\mathbf{1}$ through $\mathbf{6}), \mathbf{r} n(\mathbf{1}$ through $\mathbf{6}), \mathbf{u}(n), \mathbf{v}(n)$, and $\mathbf{w}(n)$ directly or through the $\mathbf{Y}=$ editor. The validity of the string is determined when the function is evaluated.

## Archive Variables

You can store data, programs or any variable from RAM to user data archive memory where they cannot be edited or deleted inadvertantly. Archiving also allows you to free up RAM for variables that may require additional memory. The names of archived variables are preceded by an asterisk $\boldsymbol{\|} \boldsymbol{*} \boldsymbol{\prime \prime}$ indicating they are in user data archive.

## System Variables

The variables below must be real numbers. You may store to them. Since the TI-84 Plus can update some of them, as the result of a ZOOM, for example, you may want to avoid using these variables to store nongraphing data.

- Xmin, Xmax, Xscl, $\Delta \mathbf{X}$, XFact, Tstep, PlotStart, $n \mathbf{M i n}$, and other window variables.
- ZXmin, ZXmax, ZXscl, ZTstep, ZPIotStart, Zu( $n \mathbf{M i n}$ ), and other ZOOM variables.

The variables below are reserved for use by the TI-84 Plus. You cannot store to them.
$\mathrm{n}, \overline{\mathrm{x}}, \mathrm{Sx}, \sigma \mathrm{x}, \operatorname{minX}, \max \mathrm{X}, \mathrm{Gy}, \Sigma \mathbf{y}^{\mathbf{2}}, \Sigma x y, a, b, c, \operatorname{Reg} E Q, x 1, x 2, y 1, z, t, F$, $\chi^{\mathbf{2}}, \hat{p}, \overline{\mathrm{x}} 1, \mathbf{S x 1}, \mathbf{n 1}$, lower, upper, $\mathbf{r}^{\mathbf{2}}, \mathbf{R}^{\mathbf{2}}$ and other statistical variables.

## Statistics Formulas

This section contains statistics formulas for the Logistic and SinReg regressions, ANOVA, 2-SampFTest, and 2-SampTTest.

## Logistic

The logistic regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:

$$
J=\sum_{i=1}^{N}\left(\frac{c}{1+a e^{-b x_{i}}}-y_{i}\right)^{2}
$$

which is the sum of the squares of the residual errors,
where: $x=$ the independent variable list
$y=$ the dependent variable list
$N=$ the dimension of the lists
This technique attempts to estimate the constants $a, b$, and $c$ recursively to make $J$ as small as possible.

## SinReg

The sine regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:

$$
J=\sum_{i=1}^{N}\left[a \sin \left(b x_{i}+c\right)+d-y_{i}\right]^{2}
$$

which is the sum of the squares of the residual errors,
where: $x=$ the independent variable list $y=$ the dependent variable list $N=$ the dimension of the lists

This technique attempts to recursively estimate the constants $a, b, c$, and $d$ to make $J$ as small as possible.

## ANOVA(

The ANOVA F statistic is:

$$
\mathbf{F}=\frac{\text { Factor } M S}{\text { ErrorMS }}
$$

The mean squares ( $M S$ ) that make up $\mathbf{F}$ are:

$$
\begin{aligned}
& \text { Factor } M S=\frac{\text { Factor } S S}{\text { Factordf }} \\
& \text { ErrorMS }=\frac{\text { ErrorSS }}{\text { Errordf }}
\end{aligned}
$$

The sum of squares (SS) that make up the mean squares are:

$$
\begin{aligned}
& \text { Factor } S S=\sum_{i=1}^{I} n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2} \\
& \text { Error } S S=\sum_{i=1}^{I}\left(n_{i}-1\right) S x_{i}^{2}
\end{aligned}
$$

The degrees of freedom $d f$ that make up the mean squares are:

$$
\begin{aligned}
& \text { Factordf }=I-1=\text { numerator } d f \text { for } \mathbf{F} \\
& \text { Errordf }=\sum_{i=1}^{I}\left(n_{i}-1\right)=\text { denominator } d f \text { for } \mathbf{F}
\end{aligned}
$$

where: $I=$ number of populations
$\bar{x}_{i}=$ the mean of each list
$\bar{x}_{i}=$ the standard deviation of each list
Sxi $=$ the length of each list
$n i=$ the mean of all lists
$\bar{x}$

## 2-SampFTest

Below is the definition for the 2-SampFTest.

$$
\begin{aligned}
& S x 1, S x 2= \begin{array}{l}
\text { Sample standard deviations having } n_{1}-1 \\
\\
\\
\text { and } n_{2}-1 \text { degrees of freedom } d f,
\end{array} \\
& \text { respectively. }
\end{aligned}
$$

$$
\begin{array}{cl}
\mathbf{F} & =\text { F-statistic }=\left(\frac{S x 1}{S x 2}\right)^{2} \\
d f\left(x, n_{1}-1, n_{2}-1\right) & =\begin{array}{l}
\text { Fpdff }) \text { with degrees of freedom } d f, n_{1}-1, ~ \\
\text { and } n_{2}-1
\end{array} \\
p & =\begin{aligned}
\text { reported } p \text { value }
\end{aligned}
\end{array}
$$

2-SampFTest for the alternative hypothesis $\sigma_{1}>\sigma_{2}$.

$$
p=\int_{F}^{\alpha} f\left(x, n_{1}-1, n_{2}-1\right) d x
$$

2-SampFTest for the alternative hypothesis $\sigma_{1}<\sigma_{2}$.

$$
p=\int_{0}^{F} f\left(x, n_{1}-1, n_{2}-1\right) d x
$$

2-SampFTest for the alternative hypothesis $\sigma_{1} \neq \sigma_{2}$. Limits must satisfy the following:

$$
\frac{p}{2}=\int_{0}^{L b n d} f\left(x, n_{1}-1, n_{2}-1\right) d x=\int_{U_{b n d}}^{\infty} f\left(x, n_{1}-1, n_{2}-1\right) d x
$$

where: $\quad[$ Lbnd,Ubnd] $=$ lower and upper limits
The $\mathbf{F}$-statistic is used as the bound producing the smallest integral. The remaining bound is selected to achieve the preceding integral's equality relationship.

## 2-SampTTest

The following is the definition for the 2-SampTTest. The two-sample $t$ statistic with degrees of freedom $d f$ is:

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S}
$$

where the computation of $S$ and $d f$ are dependent on whether the variances are pooled. If the variances are not pooled:

$$
\begin{aligned}
& S=\sqrt{\frac{S x_{1}^{2}}{n_{1}}+\frac{S x_{2}^{2}}{n_{2}}} \\
& d f=\frac{\left(\frac{S x_{1}^{2}}{n_{1}}+\frac{S x_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{S x_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{S x_{2}^{2}}{n_{2}}\right)^{2}}
\end{aligned}
$$

otherwise:

$$
\begin{aligned}
& S x_{p}=\frac{\left(n_{1}-1\right) S x_{1}^{2}+\left(n_{2}-1\right) S x_{2}^{2}}{d f} \\
& S=\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}} S x_{p}} \\
& d f=n_{1}+n_{2}-2
\end{aligned}
$$

and $S x p$ is the pooled variance.

## Financial Formulas

This section contains financial formulas for computing time value of money, amortization, cash flow, interest-rate conversions, and days between dates.

## Time Value of Money

$$
i=\left[e^{(y \times \ln (x+1))}\right]-1
$$

where: $P M T \neq 0$
$y=C / Y \div P / Y$
$x=(.01 \times I \%) \div C / Y$
$C / Y=$ compounding periods per year
$P / Y=$ payment periods per year
$I \%=$ interest rate per year

$$
i=(-F V \div P V)^{(1 \div N)}-1
$$

where: $P M T=0$
The iteration used to compute $i$ :

$$
\begin{aligned}
& 0=P V+P M T \times G_{i}\left[\frac{1-(1+i)^{-N}}{i}\right]+F V \times(1+i)^{-N} \\
& I \%=100 \times C / Y \times\left[e^{(y \times \ln (x+1))}-1\right]
\end{aligned}
$$

where: $x=i$

$$
\begin{aligned}
& y=P / Y \div C / Y \\
& G_{i}=1+i \times k
\end{aligned}
$$

where: $k=0$ for end-of-period payments
$k=1$ for beginning-of-period payments

$$
N=\frac{\ln \left(\frac{P M T \times G_{i}-F V \times i}{P M T \times G_{i}+P V \times i}\right)}{\ln (1+i)}
$$

where: $\quad i \neq 0$

$$
N=-(P V+F V) \div P M T
$$

where: $\quad i=0$

$$
P M T=\frac{-i}{G_{i}} \times\left[P V+\frac{P V+F V}{(1+i)^{N}-1}\right]
$$

where: $\quad i \neq 0$

$$
P M T=-(P V+F V) \div N
$$

where: $i=0$

$$
P V=\left[\frac{P M T \times G_{i}}{i}-F V\right] \times \frac{1}{(1+i)^{N}}-\frac{P M T \times G_{i}}{i}
$$

where: $i \neq 0$

$$
P V=-(F V+P M T \times N)
$$

where: $i=0$

$$
F V=\frac{P M T \times G_{i}}{i}-(1+i)^{N} \times\left(P V+\frac{P M T \times G_{i}}{i}\right)
$$

where: $\quad i \neq 0$

$$
F V=-(P V+P M T \times N)
$$

where: $\quad i=0$

## Amortization

If computing $\operatorname{bal}(), p m t 2=n p m t$
Let $\operatorname{bal}(0)=R N D(P V)$
Iterate from $m=1$ to $p m t 2$

$$
\left\{\begin{array}{c}
\mathrm{I}_{m}=R N D[R N D 12(-i \times \operatorname{bal}(m-1))] \\
\operatorname{bal}(m)=\operatorname{bal}(m-1)-\mathrm{I}_{m}+R N D(P M T)
\end{array}\right.
$$

then:

$$
\begin{aligned}
& \operatorname{bal}()=\operatorname{bal}(p m t 2) \\
& \Xi \operatorname{Pr} n()=\operatorname{bal}(p m t 2)-\operatorname{bal}(p m t 1 \\
& \Sigma \operatorname{Int}()=(p m t 2-p m t 1+1) \times R N D(P M T)-\Sigma \operatorname{Pr} n()
\end{aligned}
$$

where: $R N D=$ round the display to the number of decimal places selected

$$
\text { RND12 = round to } 12 \text { decimal places }
$$

Balance, principal, and interest are dependent on the values of PMT, PV, I\%, and pmt1 and pmt2.

## Cash Flow

$$
n p v()=C F_{0}+\sum_{j=1}^{N} C F_{j}(1+i)^{-S_{j}-1} \frac{\left(1-(1+i)^{-n_{j}}\right)}{i}
$$

where: $S_{j}=\left\{\begin{array}{cc}\sum_{i=1}^{j} n_{i} & j \geq 1 \\ 0 & j=0\end{array}\right.$
Net present value is dependent on the values of the initial cash flow $\left(C F_{0}\right)$, subsequent cash flows ( $C F j$ ), frequency of each cash flow ( $n j$ ), and the specified interest rate ( $i$ ).

$$
\operatorname{irr}()=100 \times i \text {, where } i \text { satisfies } n p v()=0
$$

Internal rate of return is dependent on the values of the initial cash flow (CFO) and subsequent cash flows (CFj).

$$
i=I \% \div 100
$$

## Interest Rate Conversions

$$
\text { Eff }=100 \times\left(e^{C P \times \ln (x+1)}-1\right)
$$

where: $x=.01 \times \mathrm{Nom} \div C P$

$$
\text { Nom }=100 \times C P \times\left[e^{1 \div C P \times \ln (x+1)}-1\right]
$$

where: $x=.01 \times$ Eff

Eff $=$ effective rate
$C P=$ compounding periods
Nom $=$ nominal rate

## Days between Dates

With the dbd( function, you can enter or compute a date within the range Jan. 1, 1950, through Dec. 31, 2049.

Actual/actual day-count method (assumes actual number of days per month and actual number of days per year):
$d b d$ ( days between dates) $=$ Number of Days II - Number of Days I

```
Number of Days I \(=(Y 1-Y B) \times 365\)
    \(+\quad\) (number of days \(M B\) to \(M 1\) )
    + DT1
    \(+\frac{(Y 1-Y B)}{4}\)
        4
Number of Days II \(=(Y 2-Y B) \times 365\)
    + (number of days \(M B\) to \(M 2\) )
    \(+\quad D T 2\)
    \(+\underline{(Y 2-Y B)}\)
    4
```

where: $M 1=$ month of first date
$D T 1=$ day of first date
Y1 $=$ year of first date
$M 2=$ month of second date
$D T 2=$ day of second date
$Y 2=$ year of second date
$M B=$ base month (January)
$D B=$ base day (1)
$Y B \quad=$ base year (first year after leap year)

## Appendix B: General Information

## Battery Information

## When to Replace the Batteries

The TI-84 Plus uses five batteries: four AAA alkaline batteries and one SR44SW or 303 silver oxide backup battery. The silver oxide battery provides auxiliary power to retain memory while you replace the AAA batteries.

When the battery voltage level drops below a usable level, the TI-84 Plus:

Displays this message when you turn on the unit.


Message A

Displays this message when you attempt to download an application.


Message B

After Message A is first displayed, you can expect the batteries to function for about one or two weeks, depending on usage. (This oneweek to two-week period is based on tests with alkaline batteries; the performance of other types of batteries may vary.)

If Message B is displayed, you must replace the batteries immediately to successfully download an application.

Replace the silver oxide battery every three or four years.

## Effects of Replacing the Batteries

Do not remove both types of batteries (AAA and silver oxide) at the same time. Do not allow the batteries to lose power completely. If you follow these guidelines and the steps for replacing batteries, you can replace either type of battery without losing any information in memory.

## Battery Precautions

Take these precautions when replacing batteries.

- Do not leave batteries within reach of children
- Do not mix new and used batteries. Do not mix brands (or types within brands) of batteries.
- Do not mix rechargeable and nonrechargeable batteries.
- Install batteries according to polarity (+ and -) diagrams.
- Do not place nonrechargeable batteries in a battery recharger.
- Properly dispose of used batteries immediately. Do not leave them within the reach of children.
- Do not incinerate or dismantle batteries.


## Replacing the Batteries

To replace the batteries, follow these steps.

1. Turn off the graphing handheld. Replace the slide cover over the keyboard to avoid inadvertently turning on the graphing handheld. Turn the back of the unit toward you.
2. Hold the graphing handheld upright, push downward on the latch on the top of the battery cover, and then pull the cover toward you.

Note: To avoid loss of information stored in memory, you must turn off the graphing handheld. Do not remove the AAA batteries and the silver oxide battery simultaneously.
3. Replace all four AAA alkaline batteries simultaneously. Or, replace the silver oxide battery.

- To replace the AAA alkaline batteries, remove all four discharged AAA batteries and install new ones according to the polarity (+ and -) diagram in the battery compartment.

- To replace the silver oxide battery, remove the screw from the silver oxide battery cover, and then remove the cover. Install the
new battery, + side up. Replace the cover and secure it with the screw. Use a SR44SW or 303 (or equivalent) silver oxide battery.

4. Replace the battery compartment cover. Turn the graphing handheld on and adjust the display contrast, if necessary, by pressing 2nd $\Delta$ or $\square$.

## Important Things You Need to Know About Your TI-84 Plus

## TI-84 Plus Results

There may be a number of reasons that your TI-84 Plus is not displaying the expected results; however, the most common solutions involve order of operations or mode settings. Your handheld uses an Equation Operating System (EOS) which evaluates the functions in an expression in the following order:

1. Functions that precede the argument, such as square root, $\sin ($, or log(
2. Functions that are entered after the argument, such as exponents, factorial, $r$, ${ }^{\circ}$, and conversions
3. Powers and roots, such as $2^{\wedge} 5$, or $5^{*}$ square root(32)
4. Permutations ( nPr ) and combinations ( nCr )
5. Multiplication, implied multiplication, and division
6. Addition and subtraction
7. Relational functions, such as $>$ or <
8. Logic operator and
9. Logic operators or and xor

Remember that EOS evaluates from left to right and calculations within parentheses are evaluated first. You should use parentheses where the rules of algebra may not be clear.

If you are using trigonometric functions or performing polar and rectangular conversions, the unexpected results may be caused by an angle mode setting. The Radian and Degree angle mode settings control how the TI-84 Plus interprets angle values.

To change the angle mode settings, follow these steps:

1. Press MODE to display the Mode settings.
2. Select Degree or Radian.
3. Press ENTER to save the angle mode setting.

## ERR:DIM MISMATCH Error

Your TI-84 Plus displays the ERR:DIM MISMATCH error if you are trying to perform an operation that references one or more lists or matrices whose dimensions do not match. For example, multiplying L1*L2, where $\mathrm{L} 1=\{1,2,3,4,5\}$ and $\mathrm{L} 2=\{1,2\}$ produces an ERR:DIM MISMATCH error because the number of elements in L1 and L2 do not match.

## ERR:INVALID DIM Error

The ERR:INVALID DIM error message may occur if you are trying to graph a function that does not involve the stat plot features. The error can be corrected by turning off the stat plots. To turn the stat plots off, press 2nd [STAT PLOT] and then select 4:PlotsOff.

## Contrast Feature

If the contrast setting is too dark (set to 9 ) or too dim (set to 0 ) the unit may appear as if it is malfunctioning or turned off. To adjust the contrast, press and release 2nd, and then press and hold $\Delta$ or $\square$.

## TI-84 Plus Identification Code

Your graphing handheld has a unique identification (ID) code that you should record and keep. You can use this 14 digit ID to register your handheld at education.ti.com or identify your handheld in the event that it is lost or stolen. A valid ID includes numbers 0 through 9 and the letters A through $F$.

You can view the handheld's Operating System, Product Number, ID, and Certificate Revision Number from the About screen. To display the About screen, press 2nd [MEM] and then select 1:About.

```
TI-B4Plus silver Edition
    2.20
PRDO #: 0H-2-02-14
ID: 0A3C3-790F1-E362
Help: education.ti.com
```

Your unique product ID code: $\qquad$

## Backups

Your TI-84 Plus is similar to a computer, in that it stores files and Apps that are important to you. It is always a good idea to back up your graphing handheld device files and Apps using the TI Connect ${ }^{\text {M }}$ software and a USB computer cable. You can find the specific procedures for backing up your handheld's device files and Apps in the TI Connect ${ }^{\text {TM }}$ Help file.

## Apps

TI-84 Plus Software Applications (Apps) is software that you can add to your handheld in the same way you would add software to your computer. Apps let you customize your handheld for peak performance in specific areas of study. You can find apps for the TI-84 Plus at the TI Online Store at education.ti.com.

## TI-Cares KnowledgeBase

The TI-Cares KnowledgeBase provides 24-hour access through the Web to find answers to frequently asked questions. The TI-Cares KnowledgeBase searches its repository of known solutions and presents you with the solutions that are most likely to solve your problem. You can search the TI-Cares KnowledgeBase at education.ti.com/support.

## In Case of Difficulty

## Handling a Difficulty

To handle a difficulty, follow these steps.

1. If you cannot see anything on the screen, you may need to adjust the graphing handheld contrast.

To darken the screen, press and release 2nd, and then press and hold $\Delta$ until the display is sufficiently dark.

To lighten the screen, press and release 2nd, and then press and hold $\square$ until the display is sufficiently light.
2. If an error menu is displayed, follow these steps:

- Note the error type (ERR:error type).
- Select 2:GOTO, if it is available. The previous screen is displayed with the cursor at or near the error location.
- Deteremine the error.
- Correct the expression.

Refer to the Error Conditions table for details about specific errors, if necessary.
3. If the busy indicator (dotted line) is displayed, a graph or program has been paused; the TI-84 Plus is waiting for input. Press ENTER to continue or press 0 ON to break.
4. If a checkerboard cursor ( entered the maximum number of characters in a prompt, or memory is full. If memory is full:

- Press [2nd [mem] $\mathbf{2}$ to display the MEMORY MANAGEMENT / DELETE menu.
- Select the type of data you want to delete, or select 1:All for a list of all variables of all types. A screen is displayed listing each variable of the type you selected and the number of bytes each variable is using.
- Press $\triangle$ and $\square$ to move the selection cursor ( $(\stackrel{)}{ }$ next to the item you want to delete, and then press DEL.

5. If the graphing handheld does not seem to work at all, be sure the alkaline batteries are fresh and that they are installed properly.
6. If the TI-84 Plus does not function even though you are sure that the batteries are fresh, you can try manually resetting it.

- Remove all of the AAA batteries from the graphing handheld.
- Press and hold the $0 \mathbb{O N}$ key for ten seconds.
- Replace the batteries.
- Turn on the unit.

When you reset your graphing handheld, the contrast sometimes changes. If the screen is faded or blank, adjust the contrast by pressing 2nd and releasing $\boxed{0}$ or $\square$.
7. If the above solutions do not work you can reset all of the memory. The RAM, user data archive memory, and system variables are restored to factory settings when you reset all memory. All nonsystem variables, applications (Apps), and programs are deleted.

- Press [2nd [MEM] to display the MEMORY menu.
- Select 7:Reset to display the RAM ARCHIVE ALL menu.
- Press $\square$ to display the ALL menu.
- Select 1:All Memory to display the RESET MEMORY menu.
- To continue with the reset, select 2:Reset. The message Mem cleared is displayed on the home screen.


## Error Conditions

When the TI-84 Plus detects an error, it returns an error message as a menu title, such as ERR:SYNTAX or ERR:DOMAIN. This table contains each error type, possible causes, and suggestions for correction. The error types listed in this table are each preceded by ERR: on your graphing handheld display. For example, you will see ERR:ARCHIVED as a menu title when your graphing handheld detects an ARCHIVED error type.

| Error Type | Possible Causes and Suggested Remedies |
| :--- | :--- |
| ARCHIVED | You have attempted to use, edit, or delete an <br> archived variable. For example, the expression <br> dim(L1) produces an error if L1 is archived. |
| ARCHIVE FULL | You have attempted to archive a variable and there <br> is not enough space in archive to receive it. |
| ARGUMENT | A function or instruction does not have the correct <br> number of arguments. See Appendix A for function <br> and instruction syntax. |
|  | Appendix A displays the arguments and punctuation <br> needed to execute the function or instruction. For <br> example, stdDev(list |
|  | TI-84 Preqlist]) is a function of the <br> arguments in brackets are optional and you need |
| not type them. You must also be sure to separate |  |
| multiple arguments with a comma (,). For example, |  |
| stdDev(list[,freqlist $]$ ) might be entered as stdDev(L1) |  |
| or stdDev(L1,L2) since the frequency list or freqlist is |  |
| optional. |  |


| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| BOUND | - In a CALC operation or with Select(, you defined Left Bound > Right Bound. <br> - In fMin(, fMax(, solve(, or the equation solver, you entered lower $\geq$ upper. |
| BREAK | You pressed the $O \mathbb{O N}$ key to break execution of a program, to halt a DRAW instruction, or to stop evaluation of an expression. |
| DATA TYPE | You entered a value or variable that is the wrong data type. <br> - For a function (including implied multiplication) or an instruction, you entered an argument that is an invalid data type, such as a complex number where a real number is required. See Appendix A and the appropriate chapter. <br> - In an editor, you entered a type that is not allowed, such as a matrix entered as an element in the stat list editor. See the appropriate chapter. <br> - You attempted to store an incorrect data type, such as a matrix, to a list. |
| DIM MISMATCH | Your handheld displays the ERR:DIM MISMATCH error if you are trying to perform an operation that references one or more lists or matrices whose dimensions do not match. For example, multiplying $L 1 * L 2$, where $L 1=\{1,2,3,4,5\}$ and $L 2=\{1,2\}$ produces an ERR:DIM MISMATCH error because the number of elements in L1 and L2 do not match. |
| DIVIDE BY 0 | - You attempted to divide by zero. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. <br> - You attempted a linear regression with a vertical line. |


| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| DOMAIN | - You specified an argument to a function or instruction outside the valid range. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. See Appendix A. <br> - You attempted a logarithmic or power regression with a-X or an exponential or power regression with a - $\mathbf{Y}$. <br> - You attempted to compute $\Sigma \operatorname{Prn}($ or $\Sigma \operatorname{Int}($ with pmt $2<p m t 1$. |
| DUPLICATE | You attempted to create a duplicate group name. |
| Duplicate Name | A variable you attempted to transmit cannot be transmitted because a variable with that name already exists in the receiving unit. |
| EXPIRED | You have attempted to run an application with a limited trial period which has expired. |
| Error in Xmit | - The TI-84 Plus was unable to transmit an item. Check to see that the cable is firmly connected to both units and that the receiving unit is in receive mode. <br> - You pressed $0 N$ to break during transmission. <br> - You attempted to perform a backup from a TI-82 to a TI-84 Plus. <br> - You attempted to transfer data (other than L1 through L6) from a TI-84 Plus to a TI-82. <br> - You attempted to transfer $\mathbf{L 1}$ through $\mathbf{L 6}$ from a TI-84 Plus to a TI-82 without using 5:Lists to TI82 on the LINK SEND menu. |
| ID NOT FOUND | This error occurs when the SendID command is executed but the proper graphing handheld ID cannot be found. |
| ILLEGAL NEST | - You attempted to use an invalid function in an argument to a function, such as seq( within expression for seq(. |


| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| INCREMENT | - The increment in seq( is 0 or has the wrong sign. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. <br> - The increment in a For(loop is 0 . |
| INVALID | - You attempted to reference a variable or use a function where it is not valid. For example, $\mathbf{Y} n$ cannot reference $\mathbf{Y}, \mathbf{X m i n}, \Delta \mathbf{X}$, or TbIStart. <br> - You attempted to reference a variable or function that was transferred from the TI-82 and is not valid for the TI-84 Plus For example, you may have transferred $\mathbf{U n - 1}$ to the TI-84 Plus from the $\mathrm{Tl}-82$ and then tried to reference it. <br> - In Seq mode, you attempted to graph a phase plot without defining both equations of the phase plot. |

- In Seq mode, you attempted to graph a recursive sequence without having input the correct number of initial conditions.
- In Seq mode, you attempted to reference terms other than ( $n-1$ ) or ( $n-2$ ).
- You attempted to designate a graph style that is invalid within the current graph mode.
- You attempted to use Select( without having selected (turned on) at least one xyLine or scatter plot.

INVALID DIM • The ERR:INVALID DIM error message may occur if you are trying to graph a function that does not involve the stat plot features. The error can be corrected by turning off the stat plots. To turn the stat plots off, press 2nd [STAT PLOT] and then select 4:PlotsOff.

- You specified a list dimension as something other than an integer between 1 and 999.
- You specified a matrix dimension as something other than an integer between 1 and 99.
- You attempted to invert a matrix that is not square.

| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| ITERATIONS | - The solve( function or the equation solver has exceeded the maximum number of permitted iterations. Examine a graph of the function. If the equation has a solution, change the bounds, or the initial guess, or both. <br> - $\quad \mathbf{i r r}$ ( has exceeded the maximum number of permitted iterations. <br> - When computing I\%, the maximum number of iterations was exceeded. |
| LABEL | The label in the Goto instruction is not defined with a Lbl instruction in the program. |
| MEMORY | Memory is insufficient to perform the instruction or function. You must delete items from memory before executing the instruction or function. <br> Recursive problems return this error; for example, graphing the equation $\mathbf{Y 1}=\mathbf{Y 1}$. <br> Branching out of an If/Then, For(, While, or Repeat loop with a Goto also can return this error because the End statement that terminates the loop is never reached. |
| MemoryFull | - You are unable to transmit an item because the receiving unit's available memory is insufficient. You may skip the item or exit receive mode. <br> - During a memory backup, the receiving unit's available memory is insufficient to receive all items in the sending unit's memory. A message indicates the number of bytes the sending unit must delete to do the memory backup. Delete items and try again. |
| MODE | You attempted to store to a window variable in another graphing mode or to perform an instruction while in the wrong mode; for example, Drawlnv in a graphing mode other than Func. |


| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| NO SIGN CHNG | - The solve( function or the equation solver did not detect a sign change. <br> - You attempted to compute I\% when FV, ( $\mathbf{N} * \mathbf{P M T}$ ), and $\mathbf{P V}$ are all $\geq 0$, or when $\mathbf{F V}$, $(\mathbf{N} * \mathbf{P M T})$, and $\mathbf{P V}$ are all $\leq 0$. <br> - You attempted to compute irr( when neither CFList nor CFO is ò 0 , or when neither CFList nor $C F O$ is ò 0 . |
| NONREAL ANS | In Real mode, the result of a calculation yielded a complex result. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. |
| OVERFLOW | You attempted to enter, or you have calculated, a number that is beyond the range of the graphing handheld. This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. |
| RESERVED | You attempted to use a system variable inappropriately. See Appendix A. |
| SINGULAR MAT | - A singular matrix (determinant $=0$ ) is not valid as the argument for $\mathbf{- 1}$. <br> - The SinReg instruction or a polynomial regression generated a singular matrix (determinant $=0$ ) because it could not find a solution, or a solution does not exist. |
|  | This error is not returned during graphing. The TI-84 Plus allows for undefined values on a graph. |
| SINGULARITY | expression in the solve( function or the equation solver contains a singularity (a point at which the function is not defined). Examine a graph of the function. If the equation has a solution, change the bounds or the initial guess or both. |


| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| STAT | You attempted a stat calculation with lists that are not appropriate. <br> - Statistical analyses must have at least two data points. <br> - Med-Med must have at least three points in each partition. <br> - When you use a frequency list, its elements must be $\geq 0$. <br> - (Xmax - Xmin) / Xscl must be $\leq 47$ for a histogram. |
| STAT PLOT | You attempted to display a graph when a stat plot that uses an undefined list is turned on. |
| SYNTAX | The command contains a syntax error. Look for misplaced functions, arguments, parentheses, or commas. Appendix A displays the arguments and punctuation needed to execute the function or instruction. <br> For example, stdDev(list $[$ freqlist $]$ ) is a function of the $\mathrm{Tl}-84$ Plus. The arguments are shown in italics. The arguments in brackets are optional and you need not type them. You must also be sure to separate multiple arguments with a comma (,). For example stdDev(list $[$, freqlist $]$ ) might be entered as stdDev(L1) or $\operatorname{std} \operatorname{Dev}(\mathrm{L} 1, \mathrm{~L} 2)$ since the frequency list or freqlist is optional. |
| TOL NOT MET | You requested a tolerance to which the algorithm cannot return an accurate result. |
| UNDEFINED | You referenced a variable that is not currently defined. For example, you referenced a stat variable when there is no current calculation because a list has been edited, or you referenced a variable when the variable is not valid for the current calculation, such as a after Med-Med. |
| VALIDATION | Electrical interference caused a link to fail or this graphing handheld is not authorized to run the application. |


| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| VARIABLE | You have tried to archive a variable that cannot be archived or you have tried to unarchive an application or group. <br> Examples of variables that cannot be archived include: <br> - Real numbers LRESID, R, T, X, Y, Theta, Statistic variables under Vars, STATISTICS menu, Yvars, and the AppIdList. |
| VERSION | You have attempted to receive an incompatible variable version from another graphing handheld. |
| WINDOW RANGE | A problem exists with the window variables. <br> - You defined $\mathbf{X m a x} \leq \mathbf{X m i n}$ or $\mathbf{Y m a x} \leq \mathbf{Y m i n}$. <br> - You defined $\theta \mathbf{m a x} \leq \theta \min$ and $\theta$ step $>\mathbf{0}$ (or vice versa). <br> - You attempted to define Tstep=0. <br> - You defined Tmax $\leq$ Tmin and Tstep $>\mathbf{0}$ (or vice versa). <br> - Window variables are too small or too large to graph correctly. You may have attempted to zoom in or zoom out to a point that exceeds the TI-84 Plus's numerical range. |
| ZOOM | - A point or a line, instead of a box, is defined in ZBox. <br> - A ZOOM operation returned a math error. |

## Accuracy Information

## Computational Accuracy

To maximize accuracy, the TI-84 Plus carries more digits internally than it displays. Values are stored in memory using up to 14 digits with a twodigit exponent.

- You can store a value in the window variables using up to 10 digits ( 12 for Xscl, Yscl, Tstep, and $\theta$ step).
- Displayed values are rounded as specified by the mode setting with a maximum of 10 digits and a two-digit exponent.
- RegEQ displays up to 14 digits in Float mode. Using a fixed-decimal setting other than Float causes RegEQ results to be rounded and stored with the specified number of decimal places.

Xmin is the center of the leftmost pixel, Xmax is the center of the next-to-the-rightmost pixel. (The rightmost pixel is reserved for the busy indicator.) $\Delta \mathbf{X}$ is the distance between the centers of two adjacent pixels.

- In Full screen mode, $\Delta \mathbf{X}$ is calculated as ( $\mathbf{X m a x}-\mathbf{X m i n}$ ) / 94. In G-T split-screen mode, $\Delta \mathbf{X}$ is calculated as (Xmax - Xmin) / 46.
- If you enter a value for $\Delta \mathbf{X}$ from the home screen or a program in Full screen mode, $\mathbf{X m a x}$ is calculated as $\mathbf{X m i n}+\Delta \mathbf{X} * \mathbf{9 4}$. In G-T splitscreen mode, $\mathbf{X m a x}$ is calculated as $\mathbf{X m i n}+\Delta X * 46$.

Ymin is the center of the next-to-the-bottom pixel; $Y_{\text {max }}$ is the center of the top pixel. $\Delta \mathbf{Y}$ is the distance between the centers of two adjacent pixels.

- In Full screen mode, $\Delta \mathbf{Y}$ is calculated as (Ymax - Ymin) / 62. In Horiz split-screen mode, $\Delta \mathbf{Y}$ is calculated as (Ymax - Ymin) / 30. In G-T split-screen mode, $\Delta \mathbf{Y}$ is calculated as (Ymax - Ymin) / 50.
- If you enter a value for $\Delta \mathbf{Y}$ from the home screen or a program in Full screen mode, $\mathbf{Y m a x}$ is calculated as $\mathbf{Y m i n}+\Delta \mathbf{Y} * 62$. In Horiz split-screen mode, $\mathbf{Y} \max$ is calculated as $\mathbf{Y m i n}+\Delta \mathbf{Y} * 30$. In G-T splitscreen mode, $\mathbf{Y m a x}$ is calculated as $\mathbf{Y m i n}+\Delta \mathbf{Y} * 50$.

Cursor coordinates are displayed as eight-character numbers (which may include a negative sign, decimal point, and exponent) when Float mode is selected. $\mathbf{X}$ and $\mathbf{Y}$ are updated with a maximum accuracy of eight digits.
minimum and maximum on the CALCULATE menu are calculated with a tolerance of $1 \mathrm{E}-5 ; \int \mathbf{f}(\mathbf{x}) \mathbf{d x}$ is calculated at $1 \mathrm{E}-3$. Therefore, the result displayed may not be accurate to all eight displayed digits. For most functions, at least five accurate digits exist. For fMin(, fMax(, and fnInt( on the MATH menu and solve( in the CATALOG, the tolerance can be specified.

## Function Limits

| Function | Range of Input Values |
| :---: | :---: |
| $\boldsymbol{\operatorname { s i n }} x, \boldsymbol{\operatorname { c o s }} x, \boldsymbol{\operatorname { t a n }} x$ | $0 \leq\|x\|<10^{12}$ (radian or degree) |
| $\boldsymbol{\operatorname { s i n }}^{-1} x, \boldsymbol{\operatorname { c o s }}^{-1} x$ | $-1 \leq x \leq 1$ |
| In $x, \log x$ | $10^{-100}<x<10^{100}$ |
| e $x$ | $-10^{100}<x \leq 230.25850929940$ |
| 10x | $-10^{100}<x<100$ |
| $\boldsymbol{\operatorname { s i n h }} x, \cosh x$ | $\|x\| \leq 230.25850929940$ |
| $\boldsymbol{\operatorname { t a n h }} x$ | $\|x\|<10^{100}$ |
| $\boldsymbol{\operatorname { s i n h }}^{-1} x$ | $\|x\|<5 \times 10^{99}$ |
| $\cosh ^{-1} x$ | $1 \leq x<5 \times 10^{99}$ |
| $\boldsymbol{\operatorname { t a n h }}^{-1} x$ | $-1<x<1$ |
| $\sqrt{x}$ (real mode) | $0 \leq x<10^{100}$ |
| $\sqrt{x}$ (complex mode) | $\|x\|<10^{100}$ |
| $x!$ | -. $5 \leq x \leq 69$, where $x$ is a multiple of . 5 |

## Function Results

| Function | Range of Result |  |
| :--- | :--- | :--- |
| $\boldsymbol{\operatorname { s i n }}^{-1} x, \boldsymbol{\operatorname { t a n }}^{-1} x$ | $-90^{\circ}$ to $90^{\circ}$ | or $-\pi / 2$ to $\pi / 2$ (radians) |
| $\boldsymbol{\operatorname { c o s }}^{-1} x$ | $0^{\circ}$ to $180^{\circ}$ | or 0 to $\pi$ (radians) |

## Texas Instruments Support and Service

## For general information

Home Page:
KnowledgeBase and e-mail inquires:

Phone:

International
information:

## For technical support

KnowledgeBase and
support by e-mail:
Phone
(not toll-free):
(972) 917-8324

## For product (hardware) service

Customers in the U.S., Canada, Mexico, Puerto Rico and Virgin Islands: Always contact Texas Instruments Customer Support before returning a product for service.

All other customers: Refer to the leaflet enclosed with this product (hardware) or contact your local Texas Instruments retailer/ distributor.

## Texas Instruments (TI) Warranty Information

## Customers in the U.S. and Canada Only

## One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments ("TI") electronic product warranty extends only to the original purchaser and user of the product.
Warranty Duration. This TI electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.
Warranty Coverage. This TI electronic product is warranted against defective materials and construction. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.

Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality (at Tl's option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."

Copyright. The software and any documentation supplied with this product are protected by copyright.

## One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.
Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.
Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. This warranty is void if the product has been damaged by accident or unreasonable use, neglect, improper service, or other causes not arising out of defects in materials or construction.
Warranty Disclaimers. Any implied warranties arising out of this sale, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, are limited in duration to the above one-year period. Texas Instruments shall not be liable for loss of use of the product or other incidental or consequential costs, expenses, or damages incurred by the consumer or any other user.
Except as expressly provided in the One-Year Limited Warranty for this product, Texas Instruments does not promise that facilities for the repair of this product or parts for the repair of this product will be available.
Some jurisdictions do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from jurisdiction to jurisdiction.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a new or reconditioned model of an equivalent quality (at Tl's option) when the product is returned to the original point of purchase. The repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than your cost to return the product, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value if you mail it.
Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."
Copyright. The software and any documentation supplied with this product are protected by copyright.

## All Other Customers

For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

## Index

## Symbols

- (degrees notation) 149
- (negation) 151
- (subtraction) 153
! (factorial) 149
$\rightarrow$ Store 143
$\rightarrow \operatorname{dim}($ (assign dimension) 117
$\neq$ (not equal to) 150
$\sqrt{ }$ ( (square root) 152
' (minutes notation) 153
$\Sigma \operatorname{lnt}($ (sum of interest) 125
$\operatorname{Prn}$ ( (sum of principal) 132
* (multiplication) 152
*row( 136
*row+( 136
+ (addition) 152
+ (concatenation) 153
/ (division) 152
${ }^{-1}$ (inverse) 151
< (less than) 150
= (equal-to relational test) 150
> (greater than) 150
$\wedge$ (power) 151
$\leq$ (less than or equal to) 150
$\geq$ (greater than or equal to) 151
${ }^{2}$ (square) 151
${ }^{3}$ (cube) 150
$\sqrt[3]{ }$ ( (cube root) 150
Dec (to decimal conversion) 116
DMS (to degrees/minutes/seconds) 117
- Frac (to fraction) 121

Nom( (to nominal interest rate) 129
Polar (to polar) 132
Rect (to rectangular) 136
$\square$ (subtraction key) 13
(-)) (negation key) 13
ZOOM (Zoom key) 23
ALPHA (alphabetic key) 3, 4
CLEAR (Clear key) 4
STO (Store key) 30
2nd (second modifier key) 3
2nd [QUIT] key command 4

## Numerics

10^( (power of ten) 152
1-PropZInt (one-proportion $z$ confidence interval) 133
1-PropZTest (one-proportion $z$ test) 133
1-Var Stats (one-variable statistics) 146
2-PropZInt (two-proportion $z$ confidence interval) 133
2-PropZTest (two-proportion $z$ test) 133
2-SampFTest (two-sample F-Test) 137
2-SampTInt (two-sample $t$ confidence interval) 137
2-SampTTest (two-sample $t$ test) 138
2-SampZInt (two-sample $z$ confidence interval) 138
2-SampZTest (two-sample $z$ test) 138
2-Var Stats (two-variable statistics) 146

## A

$\mathrm{a}+\mathrm{b} i$ (rectangular complex mode) 112
about 79
abs( (absolute value) 111
accuracy information
computational and graphing 176
function limits and results 178
adding complex numbers 28
addition (+) 152
alphabetic characters, entering 4
amortization
$\Sigma \operatorname{lnt}($ (sum of interest) 125
$\operatorname{PPrn}$ ( (sum of principal) 132
bal( (amortization balance) 113
formula 160
and (Boolean operator) 111
angle measure modes 19
angle( 111
ANOVA( (one-way variance analysis) 112, 156

Ans (last answer) 81, 112
applications
installing 44
running 45
Apps 81
AppVars 81
Archive 83, 112
archive full error 97, 169
garbage collection 94
memory error 94
archived variables 154
Asm( 112
AsmComp( 112
AsmPrgm( 112
augment( 112
Automatic Power Down ${ }^{\text {TM }} 2$
axes, displaying (AxesOn, AxesOff) 112
AxesOff 112
AxesOn 112

## B

backing up calculator memory 104, 107
bal( (amortization balance) 113
batteries 163
battery precautions 46
binomcdf( 113
binompdf( 113
block 94
building tables 23

## C

$\chi^{2} \mathrm{cdf}($ (chi-square cdf) 113
$\chi^{2}$ pdf( (chi-square pdf) 113
$\chi^{2}$-Test (chi-square test) 113
calculating
linear regressions 35
statistical variables 36
cash flow
formula 161
irr( (internal rate of return) 125
npv( (net present value) 130
CATALOG, clearing 25
CBL $2^{\text {TM }} 101,121$
CBR ${ }^{\text {TM }} 101,121$
changing mode settings 18
check memory 79
checkTmr( (check timer) 114
chi-square cdf ( $\chi^{2}$ cdf() 113
chi-square pdf ( $\chi^{2}$ pdf() 113
chi-square test ( $\chi^{2}$ (Test) 113
Circle( (draw circle) 114
Clear Entries 79, 114
clearing
all lists (ClrAllLists) 79, 114
drawing (ClrDraw) 114
entries (Clear Entries) 79, 114
Home screen 4
home screen (ClrHome) 114
list (ClrList) 114
table (ClrTable) 114
$Y=$ Editor 25
Clock 6
Clock Off 8
Clock On 8
ClockOff, turn clock off 114
ClockOn, turn clock on 114
ClrAllLists (clear all lists) 79, 114
ClrDraw (clear drawing) 114
ClrHome (clear home screen) 114
ClrList (clear list) 114
ClrTable (clear table) 114
combinations (nCr) 129
compiling an assembly program 112
complex
modes ( $\mathrm{a}+\mathrm{b} i, \mathrm{re}^{\wedge} \theta i$ ) 20, 112, 135
numbers 135
numbers, adding 28
concatenation (+) 153
conj( (conjugate) 114
Connected (plotting mode) 115
connecting two calculators 101, 105
contact information 179
conversions
Dec (to decimal) 116
DDMS (to degrees/minutes/
seconds) 117
-Frac (to fraction conversion) 121
-Nom (to nominal interest rate conversion) 129
Polar (to polar conversion) 132
Rect (to rectangular conversion) 136
decimals to fractions 26

Equ String( (equation-to-string conversion) 118
List)matr( (list-to-matrix conversion) 127
Matrlist( (matrix-to-list conversion) 127
P>Rx(, P>Ry( (polar-torectangular conversion) 134
R>Pr(, R>P日( (rectangular-to-polar conversion) 137
String)Equ( (string-to-equation conversion) 143
convert time, timeCnv( ) 144
CoordOff 115
CoordOn 115
$\cos ($ (cosine) 115
$\cos ^{-1}($ (arccosine) 115
cosh( (hyperbolic cosine) 115
$\cosh ^{-1}($ (hyperbolic arccosine) 115
cosine ( $\cos ($ ) 115
creating new matrices 37
cube (3) 150
cube root $(\sqrt[3]{ }() 150$
cubic regression (CubicReg) 115
CubicReg (cubic regression) 115
cumSum( (cumulative sum) 115
cumulative sum (cumSum() 115
customer support and service 179

## D

dayOfWk( (day of week) 116
days between dates (dbd() 116, 162
dbd( (days between dates) 116, 162
decimal modes 19
decimals to fractions, changing 26
decrement and skip (DS<( ) 118
defragmenting 94
Degree angle mode 19, 116
degrees notation ( ${ }^{\circ}$ ) 149
delete variable contents (DelVar) 116
deleting expressions 11
deleting items from memory 81
DependAsk 116
DependAuto 116
$\operatorname{det}($ (determinant) 116
determinant ( $\operatorname{det}() 116$
determining data in lists 32
DiagnosticOff 116
DiagnosticOn 117
dim( (dimension) 117
dimensioning a list or matrix 117
Disp (display) 117
DispGraph (display graph) 117
displaying graphing plots 34
Displaying the Clock Settings 6
DispTable (display table) 117
distribution functions
binomcdf( 113
binompdf( 113
$\chi^{2} \mathrm{cdf}(113$
$\chi^{2} \mathrm{pdf}(113$
Fcdf( 144
Fpdf( 144
geometcdf( 121
geometpdf( 121
invNorm( 125
normalcdf( 130
normalpdf( 130
poissoncdf( 132
poissonpdf( 132
distribution shading instructions
Shade_t( 141
Shade $\chi^{2}$ ( 140
ShadeF( 141
ShadeNorm( 141
division (/) 152
division, example 14
$\Delta$ List( 127
DMS (degrees/minutes/seconds entry notation) 153
Dot (plotting mode) 117
DrawF (draw a function) 118
Drawlnv (draw inverse) 118
DS<( (decrement and skip) 118
DuplicateName menu 106

## E

E (exponent) 118
$\mathrm{e}^{\wedge}$ ( (exponential) 118
editing expressions 11
End 118
Eng (engineering notation mode) 118
entering
alphabetic characters 4
data into lists 30
expressions 4
lists to plot 33
Equ-String( (equation-to-string
conversion) 118
equal-to relational test (=) 150
equation solver 28
error messages 42
errors
messages 169
examples-applications
area between curves 67
areas of regular n -sided polygons 73
box plots 57
box with lid 50
defining a 50
defining a table of values 51
setting the viewing window 53
tracing the graph 54
zooming in on the graph 55
zooming in on the table 52
cobweb attractors 64
fundamental theorem of calculus 71
guess the coefficients 65
inequalities 60
mortgage payments 75
parametric equations, ferris wheel problem 68
piecewise functions 59
quadratic formula converting to a fraction 48 displaying complex results 49 entering a calculation 47
Sierpinski triangle 63
solving a system of nonlinear equations 62
unit circle and trig curves 66
examples-Getting Started
adding complex numbers 28
building tables 24
calculating linear regressions 35
calculating statistical variables 36
changing FORMAT menu 9
changing mode settings 19
decimals to fractions 26
editing and deleting 11, 12
entering data into lists 30
equation solving 29
error messages 43
finding factorials (!) 27
finding square roots 27
graphing functions 18
grouping lists 40
least common multiples 27
matrix equation solving 38
mode settings 20
rand function 26
running applications 45
sending variables 99
setting graphing window 22
solving trigonometric functions 28
statistical list editor 31
storing values $15,16,17$
subtraction and negation 13
turning off grid points 10
ungrouping variables 41
using parentheses 14
exponential regression (ExpReg) 119
expr( (string-to-expression
conversion) 118
ExpReg (exponential regression) 119
expression
converting from string (expr() 118
turning on and off (ExprOn 119
expressions
deleting 11
editing 11
entering 4
ExprOff (expression off) 119
ExprOn (expression on) 119

## F

Faceplates 5
factorial (!) 27, 149
Fill( 119
finding
factorials (!) 27
least common multiples 27

Fix (fixed-decimal mode) 119
fixed-decimal mode (Fix) 119
Float (floating-decimal mode) 119
floating-decimal mode (Float) 119
fMax( (function maximum) 119
fMin( (function minimum) 120
fnInt( (function integral) 120
FnOff (function off) 120
FnOn (function on) 120
For( 120
formulas
amortization 160
ANOVA 156
cash flow 161
days between dates 162
interest rate conversions 161
logistic regression 155
sine regression 155
time value of money 159
two-sample F-Test 156
two-sample t test 157
fPart( (fractional part) 120
Full (full-screen mode) 121
full-screen mode (Full) 121
Func (function graphing mode) 121
function graphing
maximum of (fMax() 119
minimum of (fMin() 120
modes 121
selecting 120
function integral (fnlnt() 120
functions and instructions table 111

## G

garbage collecting 93
GarbageCollect 95, 121
gcd( (greatest common divisor) 121
geometcdf( 121
geometpdf( 121
Get( (get data from CBL 2/CBL or CBR) 121
GetCalc( (get data from a TI-84 Plus) 122
getDate, get current date 122
getDtFmt, get date format 122
getDtStr( (get date string) 122
getKey 122
getTime, get current time 123
getTmFmt, get time format 123
getTmStr( (get time string) 123
Goto 123
graphing
modes 20
graphing functions 17, 18
graphing window, setting 21
GraphStyle( 123
graph-table split-screen mode (G-T) 123
greater than (>) 150
greater than or equal to $(\geq) 151$
greatest common divisor $(\operatorname{gcd}() 121$
greatest integer (int() 125
GridOff 123
GridOn 123
grouping 39, 90
G-T (graph-table split-screen mode) 123

## H

Home screen 2
Horiz (horizontal split-screen mode) 123
Horizontal (draw line) 124

## I

identity( 124
If instructions
If 124
If-Then 124
If-Then-Else 124
imag( (imaginary part) 124
imaginary part (imag( ) 124
increment and skip (IS>( ) 125
independent variable 124
IndpntAsk 124
IndpntAuto 124
Input 124
installation instructions
Macintosh® 45
Windows® 44
installing applications 44
Installing New Faceplates 6
Installing new faceplates 6
inString( (in string) 125
int( (greatest integer) 125
integer part (iPart() 125
interest rate conversions
formula 161
internal rate of return (irr() 125
inverse $\left(^{-1}\right) 151$
inverse cumulative normal distribution (invNorm() 125
invNorm( (inverse cumulative normal distribution) 125
iPart( (integer part) 125
irr( (internal rate of return) 125
IS>( (increment and skip) 125
isClockOn, is clock on 125

## K

key commands, quick reference 46

## L

LabelOff 126
LabeIOn 126
labels
graph 126
program 126
Lbl (label) 126
lcm ( (least common multiple) 126
least common multiple (lcm( ) 126
least common multiples, finding 27
length( of string 126
less than (<) 150
less than or equal to ( $\leq$ ) 150
Line( (draw line) 126
linear regressions, calculating 35
LINK RECEIVE menu 106
LINK SEND menu 102
linking
receiving items 106
to a CBL $2^{\text {TM }}$ or CBR $^{\text {TM }} 101$
to a PC or Macintosh 102
to a TI-84 Plus Silver Edition or TI-
84 Plus 107
transmitting items 99
two TI-84 Plus units 104
LinReg(a+bx) (linear regression) 126
LinReg(ax+b) (linear regression) 126
LinRegTTest (linear regression $t$ test)
127

Listrmatr( (lists-to-matrix conversion) 127
lists
deleting from memory 81
$\ln (127$
LnReg (logarithmic regression) 127
log( 127
Logistic (regression) 127
logistic regression formula 155

## M

marked for deletion 94
Matrlist( (matrix-to-list conversion)
127
MATRIX Editor 37
max( (maximum) 128
maximum of a function (fMax() 119
mean( 128
median( 128
Med-Med (median-median) 128
Mem Mgmt/Del menu 80
memory
backing up 107
checking available 79
clearing all list elements from 83
clearing entries from 82
deleting items from 81
error 95
insufficient during transmission 109
resetting defaults 88
resetting memory 88
MEMORY menu 79
Menu( (define menu) 128
menus
defining (Menu() 128
TI-84 Plus 10
$\min ($ (minimum) 128
minimum of a function (fMin() 120
minutes notation (') 153
mode menu 19
changing settings 18
mode settings
a+bi (complex rectangular) 112
Connected (plotting) 115
Degree (angle) 116
Dot (plotting) 117

Eng (notation) 118
Fix (decimal) 119
Float (decimal) 119
Full (screen) 121
Func (graphing) 121
G-T (screen) 123
Horiz (screen) 123
importance 20
Normal (notation) 129
Par/Param (graphing) 131
Pol/Polar (graphing) 132
Radian (angle) 135
$\mathrm{re}^{\wedge} \theta i$ (complex polar) 135
Real 135
Sci (notation) 139
Seq (graphing) 139
Sequential (graphing order) 139
Simul (graphing order) 141
multiplication (*) 152
multiplication, example 14

## N

nCr (number of combinations) 129
nDeriv( (numerical derivative) 129
negation (-) 151
negation key ( ( -1$) 13$
normal distribution probability (normalcdf() 130
Normal notation mode 129
normalpdf( (probability density function) 130
not equal to ( $\neq$ ) 150
not( (Boolean operator) 130
$n \operatorname{Pr}$ (permutations) 130
npv( (net present value) 130
numeric notation modes 19

## 0

Omit 92, 107
one-proportion $z$ confidence interval (1-PropZInt) 133
one-proportion $z$ test (1-PropZTest) 133
one-sample $t$ confidence interval (TInterval) 144
one-variable statistics (1-Var Stats) 146
or (Boolean) operator 130
Output( 131
Overwrite 92, 106
Overwrite All 92

## P

P>Rx(, P>Ry( (polar-to-rectangular conversions) 134
Par/Param (parametric graphing mode) 131
Pause 131
performing simple calculations 26
permutations (nPr) 130
plot types modes 20
Plot1( 131
Plot2( 131
Plot3( 131
PlotsOff 131
PlotsOn 132
plotting data 32 lists 33
Pmt_Bgn (payment beginning variable) 132
Pmt_End (payment end variable) 132
poissoncdf( 132
poissonpdf( 132
Pol/Polar (polar graphing mode) 132
polar graphing mode (Pol/Polar) 132
PolarGC (polar graphing coordinates) 132
power (^) 151
power of ten (10^() 152
precautions, battery 46
prgm (program name) 132
probability density function (normalpdf( ) 130
prod( (product) 133
programming name (prgm) 132
Prompt 133
Pt-Change( 133
Pt-Off( 133
Pt-On( 133
PwrReg (power regression) 134
Pxl-Change( 134

Pxl-Off( 134
PxI-On( 134
pxl-Test( 134

## Q

QuadReg (quadratic regression) 134
QuartReg (quartic regression) 134
quick reference key commands 46
Quit 92, 107

## R

r (radian notation) 149
R $>\operatorname{Pr}($, R $>P(($ (rectangular-to-polar conversions) 137
Radian angle mode 19, 135
radian notation (r) 149
RAM ARCHIVE ALL menu 87
rand (random number) 135
randBin( (random binomial) 135
randInt( (random integer) 135
randM( (random matrix) 135
randNorm( (random Normal) 135
$\mathrm{re}^{\wedge} \theta i$ (polar complex mode) 135
Real mode 20, 135
real( (real part) 135
RecalIGDB 136
RecallPic 136
RectGC (rectangular graphing coordinates) 136
ref( (row-echelon form) 136
RegEQ (regression equation variable) 81
Removing a Faceplate 5
Repeat 136
RESET MEMORY menu 89
resetting
all memory 89
archive memory 88
defaults 43, 88
memory 88
RAM memory 88
Return 136
$\operatorname{root}(\sqrt{ } \sqrt{ }) 149$
round( 136
row+( 136
rowSwap( 137
rref( (reduced-row-echelon form) 137
running applications 45

## S

Sci (scientific notation mode) 139
screen display modes 20
second functions 3
second modifier key ( (2nd) 3
sector 94
Select( 139
Send( (send to CBL 2/CBL or CBR) 139
SendID 102
SendSW 102
Seq (sequence graphing mode) 139
seq( (sequence) 139
Sequential (graphing order mode) 139
sequential graphing mode 20
setDate( (set date) 139
setDtFmt ( set date format) 139
setTime( (set time) 140
setting graphing windows 21
setTmFmt( (set time format) 140
SetUpEditor 140
Shade( 140
Shade_t( 141
Shade $\chi^{2}$ ( 140
ShadeF( 141
ShadeNorm( 141
Simul (simultaneous graphing order mode) 141
simultaneous graphing mode 20
$\sin ($ (sine) 141
$\sin ^{-1}($ (arcsine) 141
sine ( $\sin ($ ) 141
$\sinh ($ (hyperbolic sine) 141
$\sinh ^{-1}$ ( hyperbolic arcsine) 141
SinReg (sinusoidal regression) 142
solve( 142
solving
equations 28
trigonometric functions 28
SortA ( (sort ascending) 142
SortD( (sort descending) 142
square (2) 151
square root $(\sqrt{ }() 152$
startTmr, start timer 142
statistical list editor 31
statistical variables, calculating 36
stdDev( (standard deviation) 142
Stop 143
Store ( $\rightarrow$ ) 143
Store key (STO) 30
StoreGDB 143
StorePic 143
storing values 15, 16, 17
String)Equ( (string-to-equation conversions) 143
strings
concatenation (+) 153
length (length() 126
student- $t$ distribution probability (tcdf( ) 144
student- $t$ distribution probability density function (tpdf() 144
sub( (substring) 143
subtraction (-) 153
subtraction and negation, examples 13
subtraction key ( - ) 13
sum( (summation) 143
support and service 179
system variables 154

## T

${ }^{\text {T }}$ (transpose matrix) 149
tables, building 23
tan( (tangent) 143
$\tan ^{-1}($ (arctangent) 143
tangent (tan( ) 143
Tangent( (draw line) 143
tanh( (hyperbolic tangent) 143
tanh ${ }^{-1}$ ( (hyperbolic arctangent) 143
tcdf( (student- $t$ distribution
probability) 144
Text(
instruction 144
Then 124
TI Connect ${ }^{\text {TM }} 102$
Time axes format 144
time value of money (TVM)
formulas 159
tvm_FV (future value) 145
tvm_I\% (interest rate) 145
tvm_N (\# payment periods) 145
tvm_Pmt (payment amount) 145
tvm_PV (present value) 145
timeCnv( ), convert time 144
TInterval (one-sample $t$ confidence interval) 144
tpdf( (student- $t$ distribution
probability density function) 144
TRACE
Trace instruction in a program 144
transmitting
error conditions 108
from a TI-83 107
from a TI-83 Plus Silver Edition or TI-83 Plus 107
from a TI-84 Plus Silver Edition or TI-84 Plus 107
stopping 104
to a TI-84 Plus Silver Edition or TI84 Plus 104
transpose matrix ( ${ }^{\top}$ ) 149
trigonometric functions, solving 28
T-Test (one-sample $t$ test) 145
turn clock off, ClockOff 114
turn clock on, ClockOn 114
turning TI-84 Plus on and off 2
tvm_FV (future value) 145
tvm_l\% (interest rate) 145
tvm_N (\# payment periods) 145
tvm_Pmt (payment amount) 145
tvm_PV (present value) 145
two-proportion $z$ confidence
interval (2-PropZInt) 133
two-proportion $z$ test (2-PropZTest) 133
two-sample F-Test formula 156
two-sample $t$ test formula 157
two-variable statistics (2-Var Stats)
146

## U

UnArchive 83, 145
ungrouping 90
ungrouping variables 41
user variables 154
uv/uvAxes (axes format) 146
uw/uwAxes (axes format) 146

## V

variables
user and system 154
variance of a list (variance() 146
variance( (variance of a list) 146
Vertical (draw line) 146
vw/uvAxes (axes format) 146

## W

Web (axes format) 146
While 146

## X

$\sqrt[x]{ }$ (root) 149
xor (Boolean) exclusive or operator 146

## Y

$Y=$ Editor, clearing 25

## Z

ZBox 23, 147
ZDecimal 23, 147
ZInteger 23, 147
ZInterval (one-sample z confidence interval) 147
Zoom In (zoom in) 23, 147
Zoom Out (zoom out) 23, 147
ZoomFit (zoom to fit function) 23, 147
ZoomRcl (recall stored window) 147
ZoomStat (statistics zoom) 23, 148
ZoomSto (store zoom window) 148
ZPrevious (use previous window) 148
ZSquare (set square pixels) 23, 148
ZStandard (use standard window) 23, 148
Z-Test (one-sample $z$ test) 148
ZTrig (trigonometric window) 23, 149
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

