TI-89

TI-92 Plus

Guidebook

for Advanced Mathematics Software Version 2.0

US FCC Information Concerning Radio Frequency Interference

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this calculator. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference with radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, you can try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/television technician for help.

Caution: Any changes or modifications to this equipment not expressly approved by Texas Instruments may void your authority to operate the equipment.

The keyboard map displays shortcuts that are not marked on the keyboard. As shown below, press and then the applicable key.
\neq
Access Greek letters
(see next column)

Alpha Rules

3D Graphing

$\odot, \odot,(\uparrow,(1)$
†, -
X, Y, Z
0
\square
囚

Animate graph
Change animation speed
View along axis
Return to original view
Change graph format style
Expanded/normal view

Greek Letters

If you press a key combination that does not access a Greek letter, you get the normal letter for that key.

General	
－APPS	List of Flash applications
2nd［ ［］	Toggle between last two chosen applications or split screens
－D	Copy graph coordinates to sysdata
－ F	Display FORMATS dialog box
$\square \mathrm{H}$	Copy graph coordinates to Home screen history
$\square \mathrm{N}$	Create new variable
－0	Open existing variable
－ S	Save copy as
－日，－	Lighten or darken contrast
－ENTER	Calculate approximate answer
－ 00	Turn off unit so that it returns to current application the next time you turn it on
－1－-9	Run programs kbdprgm1（） through kbdprgm9（）
On－screen Keyboard Map（ \square［KEY］）	
Press ESC to exit the map．	

See the table below for shortcuts that are not marked on the TI－92 Plus keyboard．See the next column for accent marks and Greek letters．

2nd Q	$?$
2nd W	！（factorial）
2nd R	＠
2nd T	\＃（indirection）
2nd H	\＆（append）
2nd X	C（comment）
$\square=$	\neq
$\square 0$（zero）	\leq
$\square \square$	\geq

Editing

－（1）	Move cursor to top
－1）	Move cursor to bottom
2nd \bigcirc	Move cursor to far left
2nd ${ }^{\text {（）}}$	Move cursor to far right
－20， 0 ， 0_{0}	Scroll tall objects in history
2nd \bigcirc ，2nd \bigcirc	Page up and page down
$\square \mathrm{x}$	Cut
$\square \mathrm{C}$	Copy
$\bullet \mathrm{V}$	Paste
3D Graphing	
$\bigcirc, \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Animate graph
円，\square	Change animation speed
X, Y, Z	View along axis
0 （zero）	Return to original view
F	Change graph format style
囚	Expanded／normal view

Accent Marks

2nd A＋letter	à，è，ì，ò，ù，À，Ė，ì，Ò，Ù
2nd C＋letter	ç，Ç
2nd E＋letter	á，é，í，ó，ú，ý，Á，É，İ，Ó，Ú，
2nd $\mathrm{N}+$ letter	ã，ñ，õ， $\mathrm{A}, ~ \tilde{N}, ~ O ̃$
2nd O＋lette	â，ê，î，ô，û，A，Ê，î，Ô，Û
2nd U＋lette	ä，ë，ï，ö，ü，ỳ，Ä，Ë，ï，Ö，Ü

Greek Letters

2nd G
2nd G＋letter
To access the Greek character set
To access lowercase Greek letters．Example：2nd G W displays ω
2nd G \quad＋letter To access uppercase Greek letters．Example：2nd G \square W displays Ω
If you press a key combination that does not access a Greek letter，you get the normal letter for that key．

Table of Contents

This guidebook describes how to use the TI-89 / TI-92 Plus. The table of contents can help you locate "getting started" information as well as detailed information about the TI-89 / TI-92 Plus features. Appendix A provides one convenient location to find details about every TI-89 / TI-92 Plus function and instruction.

Chapter 1: Getting Started

Chapter 2:
 Operating the Calculator

Flash Applications

Flash Applications x x
Keystroke Differences
Keystroke Differences xii xii
What's New? xiv
Getting the TI-89 Ready to Use 2
Getting the TI-92 Plus Ready to Use 3
Setting the Contrast and Selecting a Language 4
Performing Computations 8
Graphing a Function 11
Turning the TI-89 / TI-92 Plus On and Off 14
Setting the Display Contrast 15
The TI-89 Keyboard 16
The TI-92 Plus Keyboard 17
Modifier Keys 18
Entering Alphabetic Characters 21
Home Screen 23
Entering Numbers 25
Entering Expressions and Instructions 26
Formats of Displayed Results 29
Editing an Expression in the Entry Line 32
Menus 34
Using the Custom Menu 37
Selecting an Application 38
Setting Modes 40
Using the Clean Up Menu to Start a New Problem. 43
Using the Catalog Dialog Box 44
Storing and Recalling Variable Values 47
Reusing a Previous Entry or the Last Answer 49
Auto-Pasting an Entry or Answer from the History Area 52
Status Line Indicators in the Display 53
Finding the Software Version and ID Number 55
Chapter 3:
Symbolic ManipulationPreview of Symbolic Manipulation58
Using Undefined or Defined Variables 59
Using Exact, Approximate, and Auto Modes 61
Automatic Simplification. 64
Delayed Simplification for Certain Built-In Functions 66
Substituting Values and Setting Constraints 67
Overview of the Algebra Menu 70
Common Algebraic Operations 72
Overview of the Calc Menu 75
Common Calculus Operations 76
User-Defined Functions and Symbolic Manipulation 77
If You Get an Out-of-Memory Error. 79
Special Constants Used in Symbolic Manipulation 80
Chapter 4:
Constants and Measurement Units
Chapter 5:
Additional Home Screen Topics
Chapter 6: Basic Function Graphing
Chapter 7:
Parametric Graphing
Preview of Constants and Measurement Units 82
Entering Constants or Units 83
Converting from One Unit to Another 85
Setting the Default Units for Displayed Results 87
Creating Your Own User-Defined Units 88
List of Pre-Defined Constants and Units 89
Saving the Home Screen Entries as a Text Editor Script 94
Cutting, Copying, and Pasting Information 95
Creating and Evaluating User-Defined Functions 97
Using Folders to Store Independent Sets of Variables 100
If an Entry or Answer Is "Too Big" 103
Preview of Basic Function Graphing 106
Overview of Steps in Graphing Functions 107
Setting the Graph Mode 108
Defining Functions for Graphing 109
Selecting Functions to Graph 111
Setting the Display Style for a Function. 112
Defining the Viewing Window 113
Changing the Graph Format 114
Graphing the Selected Functions 115
Displaying Coordinates with the Free-Moving Cursor 116
Tracing a Function 117
Using Zooms to Explore a Graph 119
Using Math Tools to Analyze Functions 122
Preview of Parametric Graphing 128
Overview of Steps in Graphing Parametric Equations 129
Differences in Parametric and Function Graphing 130
Chapter 8: Polar Graphing
Preview of Polar Graphing 134
Overview of Steps in Graphing Polar Equations. 135
Differences in Polar and Function Graphing 136
Chapter 9:
Sequence Graphing
Preview of Sequence Graphing 140
Overview of Steps in Graphing Sequences 141
Differences in Sequence and Function Graphing 142
Setting Axes for Time, Web, or Custom Plots 146
Using Web Plots 147
Using Custom Plots 150
Using a Sequence to Generate a Table. 151
Chapter 10: 3D Graphing
Preview of 3D Graphing 154
Overview of Steps in Graphing 3D Equations 156
Differences in 3D and Function Graphing 157
Moving the Cursor in 3D 160
Rotating and/or Elevating the Viewing Angle 162
Animating a 3D Graph Interactively 164
Changing the Axes and Style Formats 165
Contour Plots 167
Example: Contours of a Complex Modulus Surface 170
Implicit Plots 171
Example: Implicit Plot of a More Complicated Equation 173
Chapter 11:
Differential
Equation Graphing
Preview of Differential Equation Graphing 176
Overview of Steps in Graphing Differential Equations 178
Differences in Diff Equations and Function Graphing 179
Setting the Initial Conditions 184
Defining a System for Higher-Order Equations 186
Example of a 2nd-Order Equation 187
Example of a 3rd-Order Equation 189
Setting Axes for Time or Custom Plots 190
Example of Time and Custom Axes 191
Example Comparison of RK and Euler 193
Example of the deSolve() Function 196
Troubleshooting with the Fields Graph Format 197
Chapter 12: Additional Graphing Topics
Preview of Additional Graphing Topics 202
Collecting Data Points from a Graph 203
Graphing a Function Defined on the Home Screen 204
Graphing a Piecewise Defined Function 206
Graphing a Family of Curves 208
Using the Two-Graph Mode 209
Drawing a Function or Inverse on a Graph 212
Drawing a Line, Circle, or Text Label on a Graph 213
Saving and Opening a Picture of a Graph 217
Animating a Series of Graph Pictures 219
Saving and Opening a Graph Database 220
Chapter 13: Tables
Preview of Tables 222
Overview of Steps in Generating a Table 223
Setting Up the Table Parameters 224
Displaying an Automatic Table 226
Building a Manual (Ask) Table 229
Chapter 14:
Split Screens
Preview of Split Screens 232
Setting and Exiting the Split Screen Mode 233
Selecting the Active Application 235
Chapter 15: Data/Matrix Editor
Preview of the Data/Matrix Editor. 238
Overview of List, Data, and Matrix Variables 239
Starting a Data/Matrix Editor Session 241
Entering and Viewing Cell Values 243
Inserting and Deleting a Row, Column, or Cell 246
Defining a Column Header with an Expression 248
Using Shift and CumSum Functions in a Column Header 250
Sorting Columns 251
Saving a Copy of a List, Data, or Matrix Variable 252
Chapter 16:
Statistics and Data Plots
Preview of Statistics and Data Plots 254
Overview of Steps in Statistical Analysis 258
Performing a Statistical Calculation 259
Statistical Calculation Types 261
Statistical Variables 263
Defining a Statistical Plot 264
Statistical Plot Types 266
Using the Y= Editor with Stat Plots 268
Graphing and Tracing a Defined Stat Plot 269
Using Frequencies and Categories 270
If You Have a CBL 2/CBL or CBR. 272
Chapter 17: Preview of Programming 276Programming
Running an Existing Program 278
Starting a Program Editor Session 280
Overview of Entering a Program 282
Overview of Entering a Function 285
Calling One Program from Another 287
Using Variables in a Program 288
Using Local Variables in Functions or Programs 290
String Operations 292
Conditional Tests 294
Using If, Lbl, and Goto to Control Program Flow 295
Using Loops to Repeat a Group of Commands 297
Configuring the TI-89 / TI-92 Plus 300
Getting Input from the User and Displaying Output 301
Creating a Custom Menu 303
Creating a Table or Graph 305
Drawing on the Graph Screen 307
Accessing Another TI-89 / TI-92 Plus, a CBL 2/CBL, or a CBR 309
Debugging Programs and Handling Errors 310
Example: Using Alternative Approaches 311
Assembly-Language Programs 313
Chapter 18:Preview of Text Operations316
Text Editor
Starting a Text Editor Session 317
Entering and Editing Text 319
Entering Special Characters 324
Entering and Executing a Command Script 328
Creating a Lab Report 330
Chapter 19: Numeric Solver
Preview of the Numeric Solver 334
Displaying the Solver and Entering an Equation 335
Defining the Known Variables 337
Solving for the Unknown Variable 339
Graphing the Solution 340
Chapter 20: Number Bases
Preview of Number Bases 344
Entering and Converting Number Bases 345
Performing Math Operations with Hex or Bin Numbers 346
Comparing or Manipulating Bits 347

```
Chapter 21:
Memory and
Variable
Management
```

Chapter 22: Linking and Upgrading
Chapter 23: Activities
Appendix A:Functions andInstructions
Preview of Memory and Variable Management 350
Checking and Resetting Memory 353
Displaying the VAR-LINK Screen 355
Manipulating Variables and Folders with VAR-LINK 357
Pasting a Variable Name to an Application 359
Archiving and Unarchiving a Variable 360
If a Garbage Collection Message Is Displayed 362
Memory Error When Accessing an Archived Variable 364
Linking Two Units 366
Transmitting Variables, Flash Applications, and Folders 367
Transmitting Variables under Program Control 371
Upgrading Product Software (Base Code) 373
Collecting and Transmitting ID Lists 378
Compatibility between a TI-89, TI-92 Plus, and TI-92 380
Analyzing the Pole-Corner Problem 384
Deriving the Quadratic Formula 386
Exploring a Matrix 388
Exploring $\cos (\mathrm{x})=\sin (\mathrm{x})$ 389
Finding Minimum Surface Area of a Parallelepiped 390
Running a Tutorial Script Using the Text Editor 392
Decomposing a Rational Function 394
Studying Statistics: Filtering Data by Categories 396
CBL 2/CBL Program for the TI-89 / TI-92 Plus 399
Studying the Flight of a Hit Baseball 400
Visualizing Complex Zeros of a Cubic Polynomial 402
Solving a Standard Annuity Problem 404
Computing the Time-Value-of-Money 405
Finding Rational, Real, and Complex Factors 406
Simulation of Sampling without Replacement 407
Quick-Find Locator 410
Alphabetical Listing of Operations 414

Appendix B:
 Reference
 Information

Appendix C: Service and
Warranty Information

Appendix D: Programmer's Guide

TI-89 / TI-92 Plus Error Messages 542
Modes 550
TI-89 / TI-92 Plus Character Codes 555
TI-89 Key Codes 556
TI-92 Plus Key Codes 559
Entering Complex Numbers 563
Accuracy Information 566
System Variables and Reserved Names 567
EOS (Equation Operating System) Hierarchy 568
Regression Formulas 570
Contour Levels and Implicit Plot Algorithm 572
Runge-Kutta Method 573
Battery Information 576
In Case of Difficulty 579
Support and Service Information 580
Warranty Information 581
setMode() and getMode() 584
setGraph() 587
setTable() 589
Index 591
TI-89 Shortcut Keys
TI-92 Plus Shortcut Keys

Flash Applications

Applications

Hardware/Software Requirements

Hardware Setup for the Computer

Installing a Flash Application from the CD-ROM

Note: For further information about transmitting applications to and from your computer using TI Connect, refer to the TI Connect online help.

Running a Flash Application

Flash functionality enables the ability to download different applications to a TI-89 / TI-92 Plus calculator from the enclosed CD-ROM, the TI web site, or from another calculator.

Before downloading new applications to a TI-89 / TI-92 Plus, please read and accept the license agreement on the TI-89 / TI-92 Plus Applications CD-ROM.

Before installing Flash applications, you will need:

- A computer with a CD-ROM drive and a serial port.
- $\mathrm{TI}^{\text {TM }}$ Connect or TI-GRAPH LINK ${ }^{\text {TM }}$ software and a TI-GRAPH LINK cable. If you need the TI Connect/ TI-GRAPH LINK software or a TI-GRAPH LINK cable, check the TI web site at education.ti.com.

To set up:

1. Insert the small end of the TI-GRAPH LINK cable into the port at the bottom of the TI-89 or the top of the TI-92 Plus.
2. Connect the other end to the computer's serial port using a 25 -to- 9 pin adapter if necessary.

To install an application:

1. Insert the TI-89 / TI-92 Plus Applications CD-ROM into the computer's CD-ROM drive.
2. From the computer, start the TI-GRAPH LINK software.
3. From the Link menu, click Send Flash Software - Applications and Certificates.
4. Locate the Flash application on the CD-ROM and double-click. The Flash application is copied to the calculator.

To run an application:

1. On the TI-89 / TI-92 Plus, press \rightarrow APPS to display the FLASH APPLICATIONS menu.
2. Use the cursor keys $\Theta \odot$ to highlight the application and press ENTER.

Transferring a Flash Application from another TI-89 / TI-92 Plus

Note: This guidebook uses TI-89 screen shots.

Do not attempt to transfer an application if a low-battery message appears on either the receiving or sending calculator.

1. Connect the calculators with the calculator-to-calculator cable that came with the TI-89 / TI-92 Plus.
2. On the sending calculator:
a. Press 2nd [VAR-LINK]
b. Press:

TI-89: 2nd [F7]
TI-92 Plus: 7
c. Highlight the Flash application and press F4 (a \checkmark is displayed to the left of the selected item)
3. On the receiving calculator:
a. Press 2nd [VAR-LINK]
b. Press F3
c. Select: 2:Receive
d. Press ENTER
4. On the sending calculator:
a. Press F3
b. Select: 1:Send to TI-89/92 Plus
c. Press ENTER

Backing up a Flash Application

Note: For further information about transmitting applications to and from your computer using TI Connect, refer to the TI Connect online help.

Deleting a Flash Application

Note: To select all Flash applications, use the F5 All menu.

To back up an application to the computer:

1. On the calculator, press:

TI-89: HOME
TI-92 Plus: - [HOME]
2. From the computer, start the TI-GRAPH LINK software
3. From the Link menu, click Receive Flash Software
4. Select one or more Flash applications and click add
5. Click ok
6. Save the application to the computer and record this information for future reference.

To delete a Flash application from the calculator:

1. Press [2nd [VAR-LINK] to display the VAR-LINK screen
2. Press:

TI-89: 2nd [F7]
TI-92 Plus: ${ }^{\text {F7 }}$
3. Highlight the Flash application and press F4 (a $\sqrt{ }$ is displayed to the left of the selected item)
4. Press F1 and choose 1:Delete

- or -

Press \square (a confirmation message appears)
5. Press ENTER to confirm the deletion.

Keystroke Differences

There are certain differences in keystrokes using the TI-89 / TI-92 Plus for various operations. The following table shows the keystrokes for major commands for the two calculators.

FUNCTION	$\begin{gathered} \text { 园 } \\ \text { TI-89 } \end{gathered}$	$\begin{gathered} \text { TI-92 Plus } \\ \text { Tint } \end{gathered}$
LETTERS		
One lowercase letter (a-s, u, v, w)	alpha A-S, U-W	A-S, U-W
One lowercase letter (t, x, y, z)	T, X, Y, Z	T, X, Y, Z
Several lowercase letters	2nd [a-lock]	
End several lowercase letters	alpha	
Several uppercase letters	(${ }_{\text {a-lock] }}$	2nd [CAPS]
End several uppercase letters	alpha	2nd [CAPS]
FUNCTION KEYS		
F6	2nd [F6]	F6
F7	2nd [$\mathrm{F7} 7$	F7
F8	2nd [F8]	F8
NAVIGATION		
Scroll tall objects up or down in history	$\dagger \bigcirc$, $\uparrow \odot$	
Move cursor far left or far right on entry line	2nd (1), 2nd (1)	2nd \odot, 2nd \bigcirc
Diagonal movement	\odot and (1) \odot and (1) \odot and (1) \odot and (1)	$\bigcirc \bigcirc \bigcirc$
FUNCTIONS		
Display Home screen	HOME	- [HOME]
Cut	\checkmark [CUT]	- $\mathrm{X}^{\text {r }}$
Copy	- [COPY]	- \square°
Paste	\checkmark [PASTE]	- V
Catalog	CATALOG	2nd [CATALOG]
Display Units dialog box	2nd [UNITS]	- [UNITS]
Sin	2nd [SIN]	SIN
Cos	[2nd [COS]	COS
Tan	2nd [TAN]	TAN
LN	2nd [LN]	LN
e^{x}	$\bullet\left[\mathrm{e}^{x}\right]$	2nd [e^{x}]
EE	劻	2nd [EE]

FUNCTION	$\begin{gathered} \text { 园 } \\ \text { TI-89 } \end{gathered}$	TI－92 Plus
SYMBOLS		
－（Conversion triangle）	2nd［－］	2nd［－］
＿（Underscore）	－［－］	2nd［－］
θ（Theta）	－［ θ ］	θ
I（＂With＂）	1	2nd［1］
＇（Prime）	2nd［ ${ }^{\text {］}}$	2nd［＇］
${ }^{\circ}$（Degree）	2nd［ ${ }^{\circ}$ ］	2nd［ ${ }^{\circ}$ ］
\angle（Angle）	2nd［ \angle ］	2nd［ \angle ］
Σ（Sigma）	CATALOG $\Sigma($	2nd［ Σ ］
x^{-1}（Reciprocal）	CATALOG＾－1	2nd［ $x-1]$
Space	alphan［－］	Space bar
HIDDEN SHORTCUTS		
Place data in sysdata variable	－0	－D
Greek characters	\bullet Talpha or \square^{\square}	\bullet G or \bullet G \dagger
Keyboard map	－画	－［KEY］
Place data in Home screen history	－-	－H
Grave（à，è，ì，ò，ù）	［2nd［CHAR］ 5	2nd A a，e，i，o，u
Cedilla（ç）	2nd［CHAR］ 56	2nd C c
Acute（á，é，í，ó，ú，ý）	2nd［CHAR］ 5	2nd E a，e，i，o，u，y
Tilde（ã，ñ，õ）	2nd［CHAR］ 56	2nd N a， n, o
Caret（ $\hat{\mathrm{a}}, \hat{\mathrm{e}}, \mathrm{i}, \mathrm{o}, \mathrm{u}$ ）	2nd［CHAR］ 5	2nd O a，e，i，o，u
Umlaut（ä，ë， $\mathrm{i}, \mathrm{o}, \mathrm{u}, \ddot{\mathrm{y}}$ ）	2nd［CHAR］ 5	2nd U a，e，i，o，u，y
？（Question mark）	2nd［CHAR］ 3	2nd Q
β（Beta）	2nd［CHAR］ 56	2nd S
\＃（Indirection）	2nd［CHAR］ 3	2nd T
\＆（Append）	－区（times）	2nd H
＠（Arbitrary）	－STOD	2nd R
\＃（Not equal to symbol）	$\square \square$	2nd V
！（Factorial）	－	2nd W
Comment（Circle－C）	－10	2nd X －
New	F13	－N
Open	F1 1	$\square 0$
Save copy as	F1 2	－S
Format dialog box	－	－F

Introducing
Advanced
Mathematics
Software
Version 2.0

Language
Localization

Improved User Interface

TI developed the Advanced Mathematics Software Version 2.0 to enable downloadable calculator software applications for the TI-89 and TI-92 Plus.

Advanced Mathematics Software Version 2.0 is an infrastructure enhancement of the current Advanced Mathematics Software Version 1.xx. It has all the features of Version 1.xx. The improved infrastructure enables multiple downloadable calculator software applications, language localization. This enhancement also provides your new TI-89 / TI-92 Plus with maximum reapportionment of the over 702-KB Flash memory between user data archive and calculator software applications.

All previous TI-89 and TI-92 Plus Modules can be upgraded to Version 2.0. However, on some TI-89 and all TI-92 Plus Module units, the user data archive can only occupy a maximum of $384-\mathrm{KB}$ of the over 702KB Flash memory shared with calculator software applications.

You can download Advanced Mathematics Software Version 2.0 to your computer from the TI web site at education.ti.com, then transfer it to your TI-89 / TI-92 Plus using the TITM $^{\text {TM }}$ Connect or TI GRAPH LINK ${ }^{\text {TM }}$ software and a TI-GRAPH LINK cable. The Advanced Mathematics Software is free from the TI web site at education.ti.com.

The TI-89 / TI-92 Plus can be localized into other languages. These free applications translate prompts, error messages, and

For details, refer to:
Chapter 1 most functions into one of several languages.

The improved user interface allows folder collapse/expand and expands the CATALOG menu to include application functions and user-defined functions.

Upgradability with Flash ROM

The TI-89 / TI-92 Plus uses Flash technology, which lets you upgrade future software versions without buying a new calculator.

For details, refer to: Chapter 22

As new functionality becomes available, you can electronically upgrade your TI-89 / TI-92 Plus. Future software versions include maintenance upgrades that will be released free of charge, as well as new applications and major future upgrades that will be available for purchase from the TI web site.

To download upgrades from the TI web site, you must have an Internet-connected computer, TITM Connect or TI-GRAPH LINKTM software, and a TI-GRAPH LINK cable. You can also transfer the product software (operating system) and Flash applications from one TI-89 / TI-92 Plus to another using a unit-to-unit cable, provided that the receiving calculator is also licensed to run that software.

Custom Menu

New to the TI-92 Plus is the custom menu feature that lets you create your own toolbar menu. A custom menu can contain any available function, instruction, or set of characters. The TI-92 Plus has a default custom menu that you can modify or redefine.

Getting Started

Getting the TI-89 Ready to Use ... 2
Getting the TI-92 Plus Ready to Use.. 3
Setting the Contrast and Selecting a Language..................................... 4
Performing Computations... 8
Graphing a Function ... 11

This chapter helps you to get started using the TI-89 / TI-92 Plus quickly. This chapter takes you through several examples to introduce you to some of the principal operating and graphing functions of the TI-89 / TI-92 Plus.

After setting up your TI-89 / TI-92 Plus and completing these examples, please read Chapter 2: Operating the Calculator. You then will be prepared to advance to the detailed information provided in the remaining chapters in this guidebook.

Getting the TI-89 Ready to Use

Installing the AAA

 BatteriesImportant: When replacing batteries in the future, ensure that the TI-89 is turned off by pressing 2nd [OFF].

The TI-89 comes with four AAA batteries. This chapter describes how to install these batteries. It also describes how to turn the unit on for the first time, set the display contrast, select a language, and view the Home screen for both the TI-89 and the TI-92 Plus.

To install the four AAA batteries:

1. Place the TI-89 face down on a soft cloth to prevent scratching the display face.
2. On the back of the calculator, depress the battery cover latch. Lift and remove the battery cover.
3. Remove the batteries from the package and install them in the battery compartment. Arrange the batteries according to the polarity (+ and -) diagram in the battery compartment.
4. Replace the battery cover by inserting the two prongs into the two slots at the bottom of the battery compartment, and then push the cover until the latch snaps closed.
To replace the batteries without losing any information stored in memory, follow the directions in Appendix C.

Getting the TI-92 Plus Ready to Use

Installing the AA Batteries

Important: When replacing batteries in the future, ensure that the TI-92 Plus is turned off by pressing 2nd [ofF].

The TI-92 Plus comes with four AA batteries. This chapter describes how to install these batteries. It also describes how to turn the unit on for the first time, set the display contrast, select a language, and view the Home screen for both the TI-92 Plus and the TI-89.

To install the four AA alkaline batteries:

1. Holding the TI-92 Plus unit upright, slide the latch on the top of the unit to the left unlocked position; slide the rear cover down about one-eighth inch and remove it from the main unit.

2. Place the TI-92 Plus face down on a soft cloth to prevent scratching the display face.
3. Install the four AA batteries. Be sure to position the batteries according to the diagram inside the unit. The positive (+) terminal of each battery should point toward the top of the unit.

4. Replace the rear cover and slide the latch on the top of the unit to the right locked position to lock the cover back in place.

Setting the Contrast and Selecting a Language

Turning the Unit on and Adjusting the Display Contrast

Important Information About the Language Process

Note: English cannot be deleted and remains available in the product software (base code).

After you install the batteries in your TI-89 / TI-92 Plus, press 0 N . It is possible that the display contrast may be too dark or too dim to see anything.

To adjust the display to your satisfaction, hold down \square (diamond symbol inside a green border) and momentarily press \square (minus key) to lighten the display. Hold down \square and momentarily press \dagger (plus key) to darken the display.

You will see a screen that lists several languages. The list of languages on your calculator may vary from this example.

Languages other than English are available as Flash applications. English is part of the product software (base code). You may keep as many or as few alternate languages on your calculator as you want (subject to memory limitation) and switch between them easily. During the process, you will be given an opportunity to choose additional languages to keep or delete. You may also add or delete language applications through the VAR-LINK screen.

The TI-89 / TI-92 Plus can be localized into one of several languages. Localizing means that all menu names, dialog boxes, error messages, etc., will display in the language of your choice.

The TI-89 / TI-92 Plus can be localized into only one language at a time; however, you can keep additional languages on the unit and switch the language at any time.

The initial localization of the TI-89 / TI-92 Plus occurs in three phases:

- Phase I - Select the language in which you would like to localize the TI-89 / TI-92 Plus. Future online instructions will appear in the selected language.
- Phase II - Read the instructional message that appears in the language you selected in Phase I.
- Phase III - The TI-89 / TI-92 Plus is localized into the language you selected in Phase I. You can now select one or more language applications that you would like to keep on the calculator (in case you want to switch to another language later). You can always reload one or more language applications later, if necessary. The calculator will then automatically delete the unselected languages.

Localizing the TI-89 / TI-92 Plus

Note: Until you complete the localization process, the Select a Language dialog box will reappear when you turn the unit on.

1. Press the cursor keys $(\Theta$ or $\Theta)$ to move the pointer to the language in which you would like to set your TI-89 / TI-92 Plus. (The list of languages on your calculator may vary from this example.)

2. Press ENTER to set the TI-89 / TI-92 Plus into the selected language. (Pressing ESC halts the localization process and displays the Home screen.)
3. Read the message that appears and then press ENTER.

The message displays in the language you previously selected.

4. Press the cursor keys $(\odot$ or $\Theta)$ to move the pointer and then press E1 to select each additional language that you would like to keep.

- or -

Press F2 to select and keep all of the language applications.

5. Press ENTER to complete the localization process. Additional selected languages, if any, are retained in memory and unselected languages are deleted to free up Flash memory. (Pressing ESC halts the localization process and displays the Home screen.)

If additional language applications remain on your TI-89 / TI-92 Plus, you can change the localization language via Page 3 ([F3) of the Mode dialog box. See "Setting Modes" in Chapter 2 for information on how to use the Mode dialog box. You can add or delete language and other Flash applications via the VAR-LINK screen. See "Transmitting Variables, Flash Applications, and Folders" in Chapter 22.

Language applications are available on the enclosed CD and from the Texas Instruments web site. For up-to-date information about Flash applications, including additional language applications, check the Texas Instruments web site at:
education.ti.com

About the Home Screen

After you select a language, a blank Home screen is displayed.
The Home screen lets you execute instructions, evaluate expressions, and view results.

The following example contains previously entered data and describes the main parts of the Home screen. Entry/answer pairs in the history area are displayed in "pretty print." Pretty print displays expressions in the same form in which they are written on the board or in textbooks.

Status Line
Shows the current state of the calculator.

The following example shows an answer that is not on the same line as the expression. Note that the answer is longer than the screen width. An arrow (\downarrow) indicates the answer is continued. The entry line contains ellipsis (...). Ellipsis indicates the entry is longer than the screen width.

Last Entry
"Pretty print" is ON.
Exponents, roots, fractions, etc., are displayed in the same form in which they are traditionally written.

[^0]
Performing Computations

This section provides several examples for you to perform that demonstrate some of the computational features of the TI-89 / TI-92 Plus. The history area in each screen was cleared by pressing F1 and selecting 8:Clear Home, before performing each example, to illustrate only the results of the example's keystrokes.

Graphing a Function

The example in this section demonstrates some of the graphing capabilities of the TI-89 / TI-92 Plus. It illustrates how to graph a function using the $\mathrm{Y}=$ Editor. You will learn how to enter a function, produce a graph of the function, trace a curve, find a minimum point, and transfer the minimum coordinates to the Home screen.

Explore the graphing capabilities of the TI-89 / TI-92 Plus by graphing the function $y=\left(\left|x^{2}-3\right|-10\right) / 2$.

Operating the Calculator

Turning the TI-89 / TI-92 Plus On and Off 14
Setting the Display Contrast 15
The TI-89 Keyboard 16
The TI-92 Plus Keyboard 17
Modifier Keys 18
Entering Alphabetic Characters 21
Home Screen 23
Entering Numbers 25
Entering Expressions and Instructions 26
Formats of Displayed Results 29
Editing an Expression in the Entry Line 32
Menus 34
Using the Custom Menu 37
Selecting an Application 38
Setting Modes 40
Using the Clean Up Menu to Start a New Problem 43
Using the Catalog Dialog Box 44
Storing and Recalling Variable Values 47
Reusing a Previous Entry or the Last Answer 49
Auto-Pasting an Entry or Answer from the History Area 52
Status Line Indicators in the Display 53
Finding the Software Version and ID Number 55

This chapter gives a general overview of the TI-89 / TI-92 Plus and describes its basic operations. By becoming familiar with the information in this chapter, you can use the TI-89 / TI-92 Plus to solve problems more effectively.

The Home screen is the most commonly used application on the TI-89 / TI-92 Plus. You can use the Home screen to perform a wide variety of mathematical operations.

Turning the Tl-89 / TI-92 Plus On and Off

You can turn the TI-89 / TI-92 Plus on and off manually by using the ON and 2 2nd [OFF] (or \square [OFF]) keys. To prolong battery life, the APD ${ }^{\text {TM }}$ (Automatic Power Down ${ }^{\text {TM }}$) feature lets the TI-89 / TI-92 Plus turn itself off automatically.

Turning the TI-89 / TI-92 Plus On

Turning the

 TI-89 / TI-92 Plus OffNote:[0FF] is the second function of the 00 Ney .

APD (Automatic Power Down)

Batteries

Press ON.

- If you turned the unit off by pressing [2nd [0FF], the TI-89 / TI-92 Plus returns to the Home screen.
- If you turned the unit off by pressing \square [OFF] or if the unit turned itself off through APD, the TI-89 / TI-92 Plus returns to whichever application you used last.

You can use either of the following keys to turn off the TI-89 / TI-92 Plus.

Press:	Description
2nd [0FF] (press 2nd and then press [0FF])	Settings and memory contents are retained by the Constant Memory ${ }^{\text {TM }}$ feature. However: - You cannot use 2nd [0FF] if an error message is displayed. - When you turn the TI-89 / TI-92 Plus on again, it always displays the Home screen (regardless of the last application you used).
\rightarrow [OFF] (press \square and then press [OFF])	Similar to 2nd [off] except: - You can use \square [OFF] if an error message is displayed. - When you turn the TI-89 / TI-92 Plus on again, it will be exactly as you left it.

After several minutes without any activity, the TI-89 / TI-92 Plus turns itself off automatically. This feature is called APD.

When you press [0N, the TI-89 / TI-92 Plus will be exactly as you left it.

- The display, cursor, and any error conditions are exactly as you left them.
- All settings and memory contents are retained.

APD does not occur if a calculation or program is in progress, unless the program is paused.

The TI-89 uses four AAA alkaline batteries and a back-up lithium battery. The TI-92 Plus uses four AA alkaline batteries and also has a back-up lithium battery. To replace the batteries in either calculator without losing any information stored in memory, follow the directions in Appendix C.

Adjusting the Display Contrast

When to Replace Batteries

Tip: The display may be very dark after you change batteries. Use \rightarrow to lighten the display.

Using the TI-92 Plus Cover as a Stand

Note: Slide the tabs at the top-sides of the TI-92 Plus into the slots in the cover.

When using the TI-92 Plus on a desk or table top, you can use the snap-on cover to prop up the unit at one of three angles. This may make it easier to view the display under various lighting conditions.

Overview of Some Important Keys

F1 through 2nd [F8] function keys let you select toolbar menus. Used with - , you can also select applications (page 39).

2nd, \rightarrow, and alpha
modify the action of
other keys (page 18).

HOME displays the Home
screen, where you
perform most calculations.
X, Y, and Z are often used in symbolic calculations.

MODE lets you view and change mode settings that determine how numbers and graphs are interpreted, calculated, and displayed (page 40).

Use this section to familiarize yourself with the various keys on the TI-89 keyboard. Most keys can perform two or more functions, depending on whether you first press a modifier key.

Moving the Cursor

To move the cursor in a particular direction, press the appropriate cursor key $(\oplus,(1), \odot$, or $\Theta)$.

Some TI-89 applications also let you press:

- 2nd (1) or 2nd (1) to move to the beginning or end of a line.
- 2nd Θ or 2nd \odot to move up or down one screen at a time.
- $\Theta \odot$ or $\Theta \odot$ to move to the top or bottom of a page.
- \odot and \odot, \odot and $(\odot, \odot$ and \odot, or \odot and (\uparrow) to move diagonally. (Press the indicated cursor keys simultaneously.)

With the TI-92 Plus's easy-to-hold shape and keyboard layout, you can quickly access any area of the keyboard even when you are holding the unit with two hands.

Keyboard Areas The keyboard is divided into several areas of related keys.

Cursor Pad

To move the cursor, press the applicable edge of the cursor pad. This guidebook uses key symbols such as \odot and \odot to indicate which side of the cursor pad to press.
For example, press \bigcirc to move the cursor to the right.

Note: The diagonal directions (\bigcirc, etc.) are used only for geometry and graphing applications.

\bigcirc

Modifier Keys

Note：For information about using 1 and alpha，refer to ＂Entering Alphabetic Characters＂on page 21.

Examples of 2nd and \oplus Modifiers

Modifier	Description
2nd （second）	Accesses the second function of the next key you press．On the keyboard，these are printed in the same color as the 2nd key．
（diamond）	Activates keys that select certain applications （page 39），menu items，and other operations from the keyboard．On the keyboard，these are printed in the same color as the key．
$\begin{aligned} & t_{\text {(shift) }} \end{aligned}$	Types an uppercase character for the next letter key you press．$⿴ 囗+$ is also used with（1）and（1）to highlight characters in the entry line for editing purposes．
alpha （TI－89 only）	Used to type alphabetic letters，including a space character．On the keyboard，these are printed in the same color as the alpha key．
©（hand） （TI－92 Plus only）	Used with the cursor pad to manipulate geometric objects．包 is also used for drawing on a graph．

The ESC key is one of several keys that can perform three operations，depending on whether you first press 2nd or \rightarrow ．
The following TI－89 example shows using the 2nd or modifier key with the ESC key．

The following TI－92 Plus example shows using the 2nd or modifier key with the Y alphabetic key．

Other Important Keys You Need to Be Familiar With

Note: Some keystrokes differ between the TI-89 and the TI-92 Plus. See the Keystroke Differences table in the front of this guidebook for a complete list.

Some keys perform only one additional operation, which may require either 2nd or \rightarrow, depending on the color in which the operation is printed on the keyboard and where it is positioned above the key.

When you press a modifier such as 2nd or \bullet, a 2ND or \bullet indicator appears in the status line at the bottom of the display. If you press a modifier by accident, press it again (or press ESC) to cancel its effect.

Key	Description
- [$\mathrm{Y}=$]	Displays the Y= Editor (Chapter 6).
- [window]	Displays the Window Editor (Chapter 6).
- [GRAPH]	Displays the Graph screen (Chapter 6).
\checkmark [TblSet]	Sets parameters for the Table screen (Chapter 13).
\checkmark [TABLE]	Displays the Table screen (Chapter 13).
TI-89: - [CUT] © [COPY] - [PASTE]	These keys let you edit entered information by performing a cut, copy, or paste operation.
TI-92 Plus: - X (cut) - C (copy) - V (paste)	
2nd [\boxplus]	Switches the active side in a split screen (Chapter 14).
2nd [Custom]	Toggles the custom menu on and off (page 37).
2nd [-]	Converts measurement units (Chapter 4).
TI-89: - [-]	Designates a measurement unit (Chapter 4).
TI-92 Plus: 2nd [-]	
\square	Deletes the character to the left of the cursor (backspaces).
2nd [iNS]	Toggles between insert and overtype mode for entering information (page 33).
- [DEL]	Deletes the character to the right of the cursor.

Important Keys (continued)

Key	Description
TI-89: (1)	Enters the "with" operator, which is used in symbolic calculations (Chapter 3).
TI-92 Plus: 2nd [I]	
$\begin{aligned} & \text { 2nd }[5], \\ & \text { 2nd }[d] \end{aligned}$	Performs integrations and derivatives (Chapter 3).
2nd [\angle]	Designates an angle in polar, cylindrical, and spherical coordinates.
2nd [MATH]	Displays the MATH menu.
2nd [MEM]	Displays the MEMORY screen (Chapter 21).
2nd [VAR-LINK]	Displays the VAR-LINK screen for managing variables and Flash applications (Chapter 21).
2nd [RCL]	Recalls the contents of a variable (page 48).
TI-89: 2nd [UNITS]	Displays the UNITS dialog box (Chapter 4).
TI-92 Plus: \rightarrow [UNITS]	
2nd [CHAR]	Displays the CHAR menu, which lets you select Greek letters, international accented characters, etc. (Chapter 18).
2nd [ANS], 2nd [ENTRY]	Recalls the previous entry and the last answer, respectively (page 49).

Entering a Letter Character on the Tl-89

Alphabetic characters are used in expressions such as $x^{2}+y^{2}$, to enter variable names (page 47), and in the Text Editor (Chapter 18).

The letters $\mathrm{x}, \mathrm{y}, \mathrm{z}$, and t are commonly used in algebraic expressions. So that you can type them quickly, these letters are primary keys on the TI-89 keyboard.

Other letters are available as the alpha function of another key, similar to the 2nd and \square modifiers described in the previous section. For example:

To:	On the TI-89, press:
Type a single	
lowercase	
alpha	
character.	

Typing Alphabetic Characters ... (continued)

Automatic AlphaLock in TI-89 Dialog Boxes

Note: To type a number, press alpha to turn alphalock off. Press alpha or 2nd [a-lock] to resume typing letters.

On the TI-89, while either type of alpha-lock is on:

- To type a period, comma, or other character that is the primary function of a key, you must turn alpha-lock off.
- To type a second function character such as 2nd [i], you do not need to turn alpha-lock off. After you type the character, alphalock remains on.

There are certain times when you do not need to press alpha or [2nd [a-lock] to type alphabetic characters on the TI-89. Automatic alpha-lock is turned on whenever a dialog box is first displayed. The automatic alpha-lock feature applies to these dialog boxes:

Dialog box	Alpha-lock
Catalog dialog box	All commands are listed in alphabetical order. Press a letter to go to the first command that begins with that letter. See page 44 for more information.
Units dialog box	In each unit category, type the first letter of a unit or constant. See Chapter 4 for more information.
Dialog boxes with entry	
fields	These include, but are not limited to: Create New Folder, Rename, and Save Copy As. See page 35 for more information about dialog boxes.

Alpha-lock is not turned on in dialog boxes that require numericonly entries. The dialog boxes that accept only numeric entries are: Resize Matrix, Zoom Factors, and Table Setup.

Use the 2nd [CHAR] menu to select from a variety of special characters. For more information, refer to "Entering Special Characters" in Chapter 18.

Displaying the Home Screen

When you first turn on your TI-89 / TI-92 Plus, the Home screen is displayed. The Home screen lets you execute instructions, evaluate expressions, and view results.

When you turn on the TI-89 / TI-92 Plus after it has been turned off with 2nd [0FF], the display always shows the Home screen. (If the TI-89 / TI-92 Plus turned itself off through APD ${ }^{\text {TM }}$, the display shows the previous screen, which may or may not have been the Home screen.)

To display the Home screen at any time:

- Press:

TI-89: HOME
TI-92 Plus: [HOME]

- or -
- Press 2nd [Quit]
- or -
- Press:

TI-89: APPS alpha A
TI-92 Plus: APPS A
The following example gives a brief description of the main parts of the Home screen.

Parts of the Home Screen

History Area

The history area shows up to eight previous entry/answer pairs (depending on the complexity and height of the displayed expressions). When the display is filled, information scrolls off the top of the screen. You can use the history area to:

- Review previous entries and answers. You can use the cursor to view entries and answers that have scrolled off the screen.
- Recall or auto-paste a previous entry or answer onto the entry line so that you can re-use or edit it. Refer to pages 50 and 52.

Scrolling through the History Area

Note: For an example of viewing a long answer, refer to page 28.

Normally, the cursor is in the entry line. However, you can move the cursor into the history area.

To:

Do this:

View entries or answers that have scrolled off the screen

1. From the entry line, press Θ to highlight the last answer.
2. Continue using © to move the cursor from answer to entry, up through the history area.

Go to the oldest or newest If the cursor is in the history area, press history pair $\quad \bullet \Theta$ or $\Theta \Theta$, respectively.

View an entry or answer Move the cursor to the entry or answer. that is too long for one line (is at end of line)

Return the cursor to the Press ESC, or press Θ until the cursor is entry line back on the entry line.

Use the history indicator on the status line for information about the entry/answer pairs. For example:

If the cursor is on the	Total number of pairs that are currently saved.
entry line:	Maximum number of pairs that can be saved.
If the cursor	Pair number of the highlighted is in the
history area:	Total number of or answer.

By default, the last 30 entry/answer pairs are saved. If the history area is full when you make a new entry (indicated by 30/30), the new entry/answer pair is saved and the oldest pair is deleted. The history indicator does not change.

Modifying the History Area

History Information on the Status Line

The keypad lets you enter positive and negative numbers for your calculations．You can also enter numbers in scientific notation．

Entering a Negative Number

Important：Use for subtraction and use （－）for negation．

Entering a Number in Scientific Notation

1．Press the negation key $(-)$ ．（Do not use the subtraction key \square ．）
2．Type the number．
To see how the TI－89／TI－92 Plus evaluates a negation in relation to other functions，refer to the Equation Operating System（EOS ${ }^{\text {TM }}$ ） hierarchy in Appendix B．For example，it is important to know that functions such as x^{2} are evaluated before negation．
Use \square and \square to include parentheses if you have any doubt about how a negation will be evaluated．

If you useinstead of $(-)$（or vice versa），you may get an error message or you may get unexpected results．For example：
－ 9 区 $(-) 7=-63$
－but－
9 ® $\checkmark 7$ displays an error message．
－ $6 \square 2=4$
－but－
$6-2=-12$ since it is interpreted as $6(-2)$ ，implied multiplication．
－$-(-1+4=2$
－but－
$\square 2 母 4$ subtracts 2 from the previous answer and then adds 4 ．

1．Type the part of the number that precedes the exponent．This value can be an expression．

2．Press：
TI－89：国
TI－92 Plus：2nd［EE］
E appears in the display．
3．Type the exponent as an integer with up to 3 digits．You can use a negative exponent．

Entering a number in scientific notation does not cause the answers to be displayed in scientific or engineering notation．

The display format is determined by the mode settings（pages 29 through 31）and the magnitude of the number．

Entering Expressions and Instructions

Definitions

Note: Appendix A describes all of the TI-89 / TI-92 Plus built-in functions and instructions.

Note: This guidebook uses the word command as a generic reference to both functions and instructions.

Implied Multiplication

Expression Consists of numbers, variables, operators, functions, and their arguments that evaluate to a single answer.
For example: $\pi r^{2}+3$.

- Enter an expression in the same order that it normally is written.
- In most places where you are required to enter a value, you can enter an expression.

Operator Performs an operation such as $+,-, *, \wedge$.

- Operators require an argument before and after the operator. For example: $4+5$ and $5^{\wedge} 2$.

Returns a value.

- Functions require one or more arguments (enclosed in parentheses) after the function. For example: $\sqrt{ }(5)$ and $\boldsymbol{\operatorname { m i n }}(5,8)$.

Instruction Initiates an action.

- Instructions cannot be used in expressions.
- Some instructions do not require an argument. For example: CIrHome.
- Some require one or more arguments. For example: Circle 0,0,5.

For instructions, do not put the arguments in parentheses.

The TI-89 / TI-92 Plus recognizes implied multiplication, provided it does not conflict with a reserved notation.

Valid	If you enter:	The TI-89 / TI-92 Plus interprets it as:
	2π	$2 * \pi$
	$4 \sin (46)$	$4 * \sin (46)$
	$5(1+2)$ or $(1+2) 5$	$5 *(1+2)$ or $(1+2) * 5$
	$[1,2] \mathrm{a}$	$[\mathrm{a} 2 \mathrm{a}]$
Invalid	$2(\mathrm{a})$	$2 * \mathrm{a}$
	xy	Single variable named xy
	$\mathrm{a}(2)$	Function call
	$\mathrm{a}[1,2]$	Matrix index to element $\mathrm{a}[1,2]$

Parentheses

Entering an
 Expression

Example

Note：You can also select
log by using
TI－89：CATALOG
Tl－92 Plus：2nd［CATALOG］ （page 44）．

Entering Multiple Expressions on a Line

Expressions are evaluated according to the Equation Operating System（EOS ${ }^{\text {TM }}$ ）hierarchy described in Appendix B．To change the order of evaluation or just to ensure that an expression is evaluated in the order you require，use parentheses．

Calculations inside a pair of parentheses are completed first．For example，in 4（ $1+2$ ），EOS first evaluates（ $1+2$ ）and then multiplies the answer by 4 ．

Type the expression，and then press ENTER to evaluate it．To enter a function or instruction name on the entry line，you can：
－Press its key，if available．For example，press TI－89：2nd［SIN］or Tl－92 Plus：SIN．
－or－
－Select it from a menu，if available．For example，select 2：abs from the Number submenu of the MATH menu．
－or－
－Type the name letter－by－letter from the keyboard．（On the TI－89， use alpha and 2nd［a－lock］to type letters．）You can use any mixture of uppercase or lowercase letters．For example，type $\boldsymbol{\operatorname { s i n }}$（ or Sin（．

Type the function name in this
Calculate $3.76 \div(-7.9+\sqrt{5})+2 \log 45$ ． example．

On the TI－89：	On the Tl－92 Plus：	Display
$3.76 \div$	3.76%	$3.76 /(-7.9+\sqrt{ }$（
（T－） 7.9	回 7.9	2nd $[r]$ inserts $\sqrt{ }$（because its
\pm 2nd $[v]$	［2nd［ $\sqrt{ }$ ］	2nd［ v ］inserts $\sqrt{ }$（because its argument must be in parentheses．
$5 \square$	5010	$3.76 /(-7.9+\sqrt{(5))}$
		Use \square once to close $\sqrt{ }(5)$ and again to close（ $-7.9+\sqrt{5}$ ）．
± 2	田2	$3.76 /(-7.9+\sqrt{ }(5))+2 \log (45)$
2nd［a－lock］L 0 G alpha	LOG	log requires（）around its
（145	四451	argument．
ENTER	ENTER	3.76
		$\frac{2.64258}{3.764(-7.9+5(5)+2109(45)}$

To enter more than one expression or instruction at a time，separate them with a colon by pressing 2nd［：］．

If an Entry or Answer Is Too Long for One Line

Note：When you scroll to the right， $\boldsymbol{\text { is displayed at }}$ the beginning of the line．

Continuing a Calculation

In the history area，if both the entry and its answer cannot be displayed on one line，the answer is displayed on the next line．

If an entry or answer is too long to fit on one line，is displayed at the end of the line．

To view the entire entry or answer：
1．Press Θ to move the cursor from the entry line up into the history area．This highlights the last answer．

2．As necessary，use Θ and Θ to highlight the entry or answer you want to view．For example，Θ moves from answer to entry，up through the history area．

3．Use（1）and（1）or 2nd（1）and 2nd（1）to scroll right and left．

4．To return to the entry line， press ESC．

When you press ENTER to evaluate an expression，the TI－89／TI－92 Plus leaves the expression on the entry line and highlights it．You can continue to use the last answer or enter a new expression．

If you press：	The TI－89／TI－92 Plus：
	Replaces the entry line with the variable ans（1）， which lets you use the last answer as the beginning of another expression．
Any other key	Erases the entry line and begins a new entry．

Calculate $3.76 \div(-7.9+\sqrt{5})$ ．Then add $2 \log 45$ to the result．

On the TI－89：	On the Tl－92 Plus：	Display
3.76%（－）7．9 +		－ 3.76
2nd［ r ］5 1 D ENTER	2nd［ v ］50］ENTER	－$-7.9+\sqrt{5}$
		$\begin{array}{r} -.66384977522033+2 \cdot \log \cdot * \\ 2.64258 \\ \hline \end{array}$
＋ 2 2nd［a－lock］L O G alpha	－LOG	－
（145）	四45回	
ENTER	EENTER	line is replaced with the
，	－	variable ans（1），which contains the last answer．

When a calculation is in progress，BUSY appears on the right end of the status line．To stop the calculation，press ON ．

There may be a delay before the＂break＂ message is displayed．

Press ESC to return to the current application．

Formats of Displayed Results

Pretty Print Mode

Exact/Approx Mode

Note: By retaining fractional and symbolic forms, EXACT reduces rounding errors that could be introduced by intermediate results in chained calculations.

A result may be calculated and displayed in any of several formats. This section describes the TI-89 / TI-92 Plus modes and their settings that affect the display formats. To check or change your current mode settings, refer to page 40.

By default, Pretty Print = ON. Exponents, roots, fractions, etc., are displayed in the same form in which they are traditionally written. You can use MODE to turn pretty print off and on.

ON Pretty Print OFF
$\pi^{2}, \frac{\pi}{2}, \sqrt{\frac{x-3}{2}} \quad \pi^{\wedge} 2, \pi / 2, \sqrt{ }((x-3) / 2)$

The entry line does not show an expression in pretty print. If pretty print is turned on, the history area will show both the entry and its result in pretty print after you press ENTER.

By default, Exact/Approx = AUTO. You can use MODE to select from three settings.

Because AUTO is a combination of the other two settings, you should be
 familiar with all three settings.

EXACT - Any result that is not a whole number is displayed in a fractional or symbolic form ($1 / 2, \pi, \sqrt{2}$, etc.).

Exact/Approx (continued)

Note: Results are rounded to the precision of the Tl-89 / TI-92 Plus and displayed according to current mode settings.

Tip: To retain an EXACT form, use fractions instead of decimals. For example, use $3 / 2$ instead of 1.5 .

Tip: To evaluate an entry in APPROXIMATE form, regardless of the current setting, press ENTER.

APPROXIMATE - All numeric results, where possible, are displayed in floating-point (decimal) form.

- $2.5 \cdot 2$	5.	Fractional results are evaluated numerically.
-2.5.3	7.5	
- $6 \cdot 3$	2.	
- $6 / 4$	1.5	
6/4		
M-Milk		

- $2 \cdot \pi$	6.28319			Symbolic forms, where
$\sqrt{2}$. 707107			possible, are evaluated numerically.
- $\frac{\sqrt{2}}{2}$				
- $\sqrt{4 / 7}$			5929	
「(4/7)				
Mill	Rifl mpridi	FUNTC	$3 / 30$	

Because undefined variables cannot be evaluated, they are treated algebraically. For example, if the variable r is undefined, $\pi r^{2}=3.14159 \cdot r^{2}$.

AUTO - Uses the EXACT form where possible, but uses the APPROXIMATE form when your entry contains a decimal point. Also, certain functions may display APPROXIMATE results even if your entry does not contain a decimal point.

The following chart compares the three settings.

Entry	Exact Result	Approximate Result	Auto Result
$8 / 4$	2	2.	2
$8 / 6$	$4 / 3$	1.33333	$4 / 3$
$8.5 * 3$	$51 / 2$	25.5	$25.5-$A decimal in the entry forces a floating-point result in AUTO.
$\sqrt{(2) / 2}$	$\frac{\sqrt{2}}{2}$.707107	$\frac{\sqrt{2}}{2}$
$\pi * 2$	$2 \cdot \pi$	6.28319	$2 \cdot \pi$
$\pi * 2$.	$2 \cdot \pi$	6.28319	6.28319

Display Digits Mode

Note: Regardless of the Display Digits setting, the full value is used for internal floating-point calculations to ensure maximum accuracy.

Note: A result is automatically shown in scientific notation if its magnitude cannot be displayed in the selected number of digits.

Exponential Format Mode

Note: In the history area, a number in an entry is displayed in SCIENTIFIC if its absolute value is less than . 001.

By default, Display Digits = FLOAT 6, which means that results are rounded to a maximum of six digits. You can use MODE to select different settings. The settings apply to all exponential formats.

Internally, the TI-89 / TI-92 Plus calculates and retains all decimal results with up to 14 significant digits (although a maximum of 12 are displayed).

Setting	Example		Description
FIX	123.	(FIX 0)	Results are rounded to the selected number of decimal places.
(0-12)	123.5	(FIX 1)	
	123.46	(FIX 2)	
	123.457	(FIX 3)	
FLOAT	123.456789012		Number of decimal places varies, depending on the result.
$\begin{aligned} & \text { FLOAT } \\ & (1-12) \end{aligned}$	1.E2	(FLOAT 1)	Results are rounded to the total number of selected digits.
	1.2E 2	(FLOAT 2)	
	123.	(FLOAT 3)	
	123.5	(FLOAT 4)	
	123.46	(FLOAT 5)	
	123.457	(FLOAT 6)	

By default, Exponential Format = NORMAL. You can use MODE to select from three settings.

Setting	Example	Description
NORMAL	12345.6	If a result cannot be displayed in the number of digits specified by the Display Digits mode, the TI-89 / TI-92 Plus switches from NORMAL to SCIENTIFIC for that result only.
SCIENTIFIC	$1.23456 \mathrm{E} 4$	1.23456×10^{4} - Exponent (power of 10). - Always 1 digit to the left of the decimal point.
ENGINEERING	${ }^{12.3456 \mathrm{E}} 3$	12.3456×10^{3} - Exponent is a multiple of 3 . - May have 1, 2, or 3 digits to the left of the decimal point.

Removing the Highlight from the Previous Entry

Note: If you accidentally press Θ instead of (1) or (1), the cursor moves up into the history area. Press ESC or press Θ until the cursor returns to the entry line.

Deleting a Character

Clearing the Entry Line

Knowing how to edit an entry can be a real time-saver. If you make an error while typing an expression, it's often easier to correct the mistake than to retype the entire expression.

After you press ENTER to evaluate an expression, the TI-89 / TI-92 Plus leaves that expression on the entry line and highlights it. To edit the expression, you must first remove the highlight; otherwise, you may clear the expression accidentally by typing over it.

To remove the highlight, move the cursor toward the side of the expression you want to edit.

After removing the highlight, move the cursor to the applicable position within the expression.

To move the cursor:	Press:	
Left or right within an expression.	(1) or (1)	Hold the pad to repeat the movement.
To the beginning of the expression.	2nd (1)	
To the end of the expression.	2nd (1)	

To delete:	Press:	
The character to the left of the cursor.	\square	Hold \square to delete multiple characters.
The character to the right of the cursor.	\square	
All characters to the right of the cursor.	CLEAR (once only)	If there are no characters to the right of the cursor, CLEAR erases the entire entry line.

To clear the entry line, press:

- CLEAR if the cursor is at the beginning or end of the entry line. - or -
- CLEAR CLEAR if the cursor is not at the beginning or end of the entry line. The first press deletes all characters to the right of the cursor, and the second clears the entry line.

Inserting or Overtyping a Character

Tip: Look at the cursor to see if you're in insert or overtype mode.

Replacing or Deleting Multiple Characters

Tip: When you highlight characters to replace, remember that some function keys automatically add an open parenthesis.

The TI-89 / TI-92 Plus has both an insert and an overtype mode. By default, the TI-89 / TI-92 Plus is in the insert mode. To toggle between the insert and overtype modes, press [2nd [iNS].

If the Tl-89 / Tl-92 Plus is in:	The next character you type:
InEerf mode Thin cursor between characters	Will be inserted at the cursor.
Duertupe mode \square Cursor highlights a character	Will replace the highlighted character.

First, highlight the applicable characters. Then, replace or delete all the highlighted characters.
To: Do this:

Highlight multiple characters

Do this:

1. Move the cursor to either side of the characters you want to highlight.

To replace $\boldsymbol{\operatorname { s i n }}$ (with $\boldsymbol{\operatorname { c o s }}$ (, place the cursor beside sin.
2. Hold $\mathbb{4}$ and press (1) or (1) to highlight characters left or right of the cursor.

Replace the highlighted characters

- or -

Type the new characters.

Delete the
Press \square.
highlighted
characters

To leave the keyboard uncluttered, the TI-89 / TI-92 Plus uses menus to access many operations. This section gives an overview of how to select an item from any menu. Specific menus are described in the appropriate chapters of this guidebook.

Displaying a Menu

Selecting an Item from a Menu

Press:	To display:
F1, F2, etc.	A toolbar menu - Drops down from the toolbar at the top of most application screens. Lets you select operations useful for that application.
APPS	APPLICATIONS menu - Lets you select from a list of applications. Refer to page 38.
2nd [CHAR]	CHAR menu - Lets you select from categories of special characters (Greek, math, etc.).
2nd [MATH]	MATH menu - Lets you select from categories of math operations.
TI-89: CATALOG	CATALOG menu - Lets you select from a complete, alphabetic list of the TI-89 / TI-92 Plus's built-in
TI-92 Plus: 2nd [CATALOG]	functions and instructions. Also lets you select userdefined functions or Flash application functions (if any have been defined or loaded).
2nd [CUSTOM]	CUSTOM menu - Lets you access a menu that you can customize to list any available function, instruction, or character. The TI-89 / TI-92 Plus includes a default custom menu, which you can modify or redefine. Refer to page 37 and to Chapter 17.

To select an item from the displayed menu, either:

- Press the number or letter shown to the left of that item. For a letter on the TI-89, press alpha and then a letter key.
- or -
- Use the cursor pad Θ and Θ to highlight the item, and then press ENTER. (Note that pressing \odot from the first item moves the highlight to the last item, and vice versa.)

Items Ending with -(Submenus)

Note: Because of limited screen size, the TI-89 overlaps these menus as:

If you select a menu item ending with $>$, a submenu is displayed. You then select an item from the submenu.

For items that have a submenu, you can use the cursor pad as described below.

- To display the submenu for the highlighted item, press (1). (This is the same as selecting that item.)
- To cancel the submenu without making a selection, press © (1). (This is the same as pressing ESC.)
- To wrap to the last menu item directly from the first menu item, press Θ. To wrap to the first menu item directly from the last menu item, press \odot.

Items Containing ". . ." (Dialog Boxes)

If you select a menu item containing ". . ." (ellipsis marks), a dialog box is displayed for you to enter additional information.

To cancel the current menu without making a selection, press ESC. Depending on whether any submenus are displayed, you may need to press [ESC several times to cancel all displayed menus.

Moving from One Toolbar Menu to Another

To move from one toolbar menu to another without making a selection, either:

- Press the key (F1, F2 , etc.) for the other toolbar menu.
- or -
- Use the cursor pad to move to the next (press (1)) or previous (press (1)) toolbar menu. Pressing (1) from the last menu moves to the first menu, and vice versa.

When using ($($), be sure that an item with a submenu is not highlighted. If so, (1) displays that item's submenu instead of moving to the next toolbar menu.

Example: Selecting
a Menu Item

Round the value of π to three decimal places. Starting from a clear entry line on the Home screen:

1. Press [2nd [MATH] to display the MATH menu.
2. Press 1 to display the Number submenu. (Or press ENTER since the first item is automatically highlighted.)
3. Press 3 to select round. (Or press $\Theta \ominus$ and ENTER.)
4. Press $2 n d][\pi] \square \square$ and then ENTER to evaluate the expression.

Using the Custom Menu

Turning the Custom Menu On and Off

Note: You can also turn the custom menu on and off by entering CustmOn or CustmOff in the entry line and pressing ENTER.

Tip: A custom menu can give you quick access to commonly used items. Chapter 17 shows you how to create custom menus for the items you use most often.

Restoring the Default Custom Menu

Note: The previous custom menu is erased. If that menu was created with a program (Chapter 17), it can be recreated later by running the program again.

The TI-89 / TI-92 Plus has a custom menu that you can turn on and off at any time. You can use the default custom menu or create your own as described in Chapter 17: Programming.

When you turn on the custom menu, it replaces the normal toolbar menu. When you turn it off, the normal menu returns. For example, from the Home screen's normal toolbar menu, press [nd [CUSTOM] to toggle the custom menu on and off.

Unless the menu has been modified, the default custom menu appears.

Menu	Function
F1 Var	Common variable names.
F2 $\mathrm{f}(\mathrm{x}$)	Function names such as $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$, and $\mathrm{f}(\mathrm{x}, \mathrm{y})$.
F3] Solve	Items related to solving equations.
F4] Unit	Common units such as _m, _ft, and _l.
F5] Symbol	Symbols such as \#, ?, and ~.
$\begin{aligned} & \text { Internat'l } \\ & \text { TI-89: [2nd [F6] } \\ & \text { TI-92 Plus: }{ }^{\text {F6 }} \end{aligned}$	Commonly accented characters such as è, é,and ê.
$\begin{aligned} & \text { Tool } \\ & \text { TI-89: [2nd [F7] } \\ & \text { TI-92 Plus: }[77 \end{aligned}$	CIrHome, NewProb, and CustmOff.

If a custom menu other than the default is displayed and you want to restore the default:

1. From the Home screen, use [2nd [CUSTOM] to turn off the custom menu and display the Home screen's normal toolbar menu.
2. Display the Clean Up toolbar menu, and select 3 :Restore custom default. TI-89: 2nd [F6]

TI-92 Plus: F6
This pastes the commands used to create the default menu into the entry line.
3. Press ENTER to execute the commands and restore the default.

Selecting an Application

From the APPLICATIONS Menu

Note: To cancel the menu without making a selection, press ESC.

The TI-89 / TI-92 Plus has different applications that let you solve and explore a variety of problems. You can select an application from a menu, or you can access commonly used applications directly from the keyboard.

1. Press APPS to display a menu that lists the applications.
2. Select an application. Either:

- Use the cursor pad Θ or Θ to highlight the application and then press ENTER.
- or -
- Press the number or letter for
 that application.

Application:	Lets you:
FlashApps	Display a list of Flash applications, if any.
Y= Editor	Define, edit, and select functions or equations for graphing (Chapters 6 - 11).
Window Editor	Set window dimensions for viewing a graph (Chapter 6).
Graph	Display graphs (Chapter 6).
Table	Display a table of variable values that correspond to an entered function (Chapter 13).
Data/Matrix Editor	Enter and edit lists, data, and matrices. You can perform statistical calculations and graph statistical plots (Chapters 15 and 16).
Program Editor	Enter and edit programs and functions (Chapter 17).
Text Editor	Enter and edit a text session (Chapter 18).
Numeric Solver	Enter an expression or equation, define values for all but one variable, and then solve for the unknown variable (Chapter 19).
Home	Enter expressions and instructions, and perform calculations.

From the Keyboard
You can access commonly used applications from the keyboard. On the TI-89 for example, $\square[\mathrm{Y}=]$ is the same as pressing \square and then $\mathbb{F 1}$. This guidebook uses the notation $\square[Y=]$, similar to the notation used in second functions.

On the TI-92 Plus, applications are listed above the QWERTY keys.

Checking Mode Settings

Indicates you can scroll down to see additional modes.

Changing Mode Settings

Tip: To cancel a menu and return to the MODE dialog box without making a selection, press ESC.

Modes control how numbers and graphs are displayed and interpreted. Mode settings are retained by the Constant Memory ${ }^{\text {TM }}$ feature when the $\mathrm{TI}-89$ / $\mathrm{TI}-92$ Plus is turned off. All numbers, including elements of matrices and lists, are displayed according to the current mode settings.

Press MODE to display the MODE dialog box, which lists the modes and their current settings.

Note: Modes that are not currently valid are dimmed. For example, on Page 2, Split 2 App is not valid when Split Screen = FULL. When you scroll through the list, the cursor skips dimmed settings.

From the MODE dialog box:

1. Highlight the mode setting you want to change. Use Θ or Θ (with (F1, (F2), or (F3) to scroll through the list.
2. Press © (1) or (1) to display a menu that lists the valid settings. The current setting is highlighted.
3. Select the applicable setting. Either:

- Use \odot or Θ to highlight the setting and press ENTER.
- or -
- Press the number or letter for that setting.

4. Change other mode settings, if necessary.
5. When you finish all your changes, press ENTER to save the changes and exit the dialog box.

Important: If you press ESC instead of ENTER to exit the MODE dialog box, any mode changes you made will be canceled.

Overview of the Modes

Note: For detailed information about a particular mode, look in the applicable section of this guidebook.

Mode	Description
Graph	Type of graphs to plot: FUNCTION, PARAMETRIC, POLAR, SEQUENCE, 3D, or DE.
Current	Folder used to store and recall variables. Unless you have created additional folders, only the MAIN folder is available. Refer to "Using Folders to Store
	Independent Sets of Variables" in Chapter 5. Maximum number of digits (FLOAT) or fixed number of decimal places (FIX) displayed in a floating-point result. Regardless of the setting, the total number of displayed digits in a floating-point result cannot exceed 12. Refer to page 31.
Digits	Units in which angle values are interpreted and displayed: RADIAN or DEGREE.
	Notation used to display results: NORMAL,
SCIENTIFIC, or ENGINEERING. Refer to page 31.	

Mode	Description
Base	Lets you perform calculations by entering numbers in decimal (DEC), hexadecimal (HEX), or binary (BIN) form.
Unit System	Lets you enter a unit for values in an expression, such as $6 _\mathrm{m}^{*} 4 _\mathrm{m}$ or $23 _\mathrm{m} / _\mathrm{s}^{*} 10 _\mathrm{s}$, convert values from one unit to another within the same category, and create your own user-defined units.
Custom Units	Lets you select custom defaults. The mode is dimmed until you select Unit System, 3:CUSTOM.
Language	Lets you localize the TI-89 / TI-92 Plus into one of several languages, depending on which language Flash applications are installed.

Using the Clean Up Menu to Start a New Problem

Clean Up Toolbar Menu

Tip: When defining a variable that you want to retain, use more than one character in the name. This prevents it from being deleted inadvertently by 1:Clear a-z.

Note: For information about checking and resetting memory or other system defaults, refer to Chapter 21.

On the Home screen, the Clean Up toolbar menu lets you start a new calculation from a cleared state without resetting the TI-89 / TI-92 Plus's memory.

From the Home screen, display the Clean Up menu by pressing:
TI-89: 2nd [F6]
Tl-92 Plus: F6

Menu Item	Description
Clear a-z	Clears (deletes) all single-character variable names

in the current folder, unless the variables are locked or archived. You will be prompted to press ENTER to confirm the action.

Single-character variable names are often used in symbolic calculations such as:
solve $\left(a \cdot x^{2}+b \cdot x+c=0, x\right)$
If any of the variables have already been assigned a value, your calculation may produce misleading results. To prevent this, you can select 1:Clear a-z before beginning the calculation.

NewProb Places NewProb in the entry line. You must then press ENTER to execute the command.

NewProb performs a variety of operations that let you begin a new problem from a cleared state without resetting the memory:

- Clears all single-character variable names in the current folder (same as 1:Clear a-z), unless the variables are locked or archived.
- Turns off all functions and stat plots (FnOff and PlotsOff) in the current graphing mode.
- Performs ClrDraw, CIrErr, CIrGraph, ClrHome, CIrIO, and CIrTable.

Restore	If a custom menu other than the default is in effect,
custom	
default	

Using the Catalog Dialog Box

The CATALOG provides a way to access any built-in TI-89 / TI-92 Plus command (functions and instructions) from one convenient list. In addition, the CATALOG dialog box lets you select functions used in Flash applications or user-defined functions (if any have been loaded or defined).

Displaying the CATALOG

Selecting a Built-in Command from the CATALOG

Note: The first time you display the Built-in list, it starts at the top of the list. The next time you display the list, it starts at the same place you left it.

To display the CATALOG dialog box, press:
TI-89: CATALOG
TI-92 Plus: 2nd [CATALOG]
The CATALOG defaults to F2 Built-in, which displays an alphabetic list of all pre-installed TI-89 / TI-92 Plus commands (functions and instructions).

F33 and F4 allow access to Flash application functions

Note: Options that are not currently valid are dimmed. For example, F1 Help is reserved for a future online help Flash application. F3 Flash Apps is dimmed if you have not installed a Flash application. F4 User-Defined is dimmed if you have not created a function or a program.

When you select a command, its name is inserted in the entry line at the cursor location. Therefore, you should position the cursor as necessary before selecting the command.

1. Press:

TI-89: CATALOG
TI-92 Plus: [2nd [CATALOG]
2. Press F2 Built-in.

- Commands are listed in alphabetical order. Commands that do not start with a letter $(+, \%, \sqrt{ }, \Sigma$, etc.) are at the end of the list.
- To exit the CATALOG without selecting a command, press ESC.

Tip: From the top of the list, press \odot to move to the bottom. From the bottom, press \odot to move to the top.

Information about Parameters

Note: For details about the parameters, refer to that command's description in Appendix A.

Selecting a Flash Application Function

3. Move the indicator to the command, and press ENTER.

To move the indicator:	Press or type:
One command at a time	Θ or Θ
One page at a time	2nd Θ or 2nd Θ
To the first command that begins with a specified letter	The letter key. (On the TI-89, do not press alpha first. If you do, you need to press alpha or
	2nd [a-lock] again before you can type a letter.)

For the command indicated by \downarrow, the status line shows the required and optional parameters, if any, and their type.

From the example above, the syntax for factor is:

factor(expression)	required
$-\mathrm{or}-$ factor $($ expression,variable $)$	optional

A Flash application may contain one or more functions. When you select a function, its name is inserted in the entry line at the cursor location. Therefore, you should position the cursor as necessary before selecting the function.

1. Press:

TI-89: CATALOG
TI-92 Plus: [2nd [CATALOG]
2. Press F3 Flash Apps. (This option is dimmed if no Flash applications are installed in the TI-89 / TI-92 Plus.)

- The list is alphabetized by function name. The left column lists functions. The right column lists the Flash application that contains the function.
- Information about a function is displayed in the status line.
- To exit without selecting a function, press ESC.

3. Move the indicator to the function, and press ENTER.

To move the indicator:	Press or type:
One function at a time	Θ or Θ
One page at a time	2nd Θ or 2nd Θ
To the first function that begins with a specified letter	The letter key. (On the TI-89, do not press alpha first. If you do, you need to press alpha or
	2nd [a-lock] again before you can type a letter.)

Selecting a User-Defined Function or Program

Note: Use the VAR-LINK screen to manage variables, folders, and Flash applications. See Chapter 21.

You can create your own functions or programs and then use F54 User-Defined to access them. For instructions on how to create functions, see "Creating and Evaluating User-Defined Functions" in Chapter 5, and "Overview of Entering a Function" in Chapter 17. See Chapter 17 for instructions on how to create and run a program.

When you select a function or program, its name is inserted in the entry line at the cursor location. Therefore, you should position the cursor as necessary before selecting the function or program.

1. Press:

TI-89: CATALOG
TI-92 Plus: [2nd [CATALOG]
2. Press F4 User-Defined. (This option is dimmed if you have not defined a function or created a program.)

- The list is alphabetized by function / program name. The left column lists functions and programs. The right column lists the folder that contains the function or program.
- If the function or program's first line is a comment, the comment text is displayed in the status line.
- To exit without selecting a function or program, press ESC.

3. Move the indicator to the function or program, and press ENTER.
To move the - indicator: Press or type:

One function or program at a Θ or Θ time

One page at a time
To the first function or program that begins with a specified letter

2nd \odot or 2nd \odot
The letter key. (On the TI-89, do not press alpha first. If you do, you need to press alpha or 2nd [a-lock] again before you can type a letter.)

Storing and Recalling Variable Values

When you store a value, you store it as a named variable. You can then use the name instead of the value in expressions. When the TI-89 / TI-92 Plus encounters the name in an expression, it substitutes the variable's stored value.

Rules for Variable Names

Examples

Data Types
A variable name:

- Can use 1 to 8 characters consisting of letters and digits. This includes Greek letters (but not π), accented letters, and international letters. Do not include spaces.
- The first character cannot be a digit.
- Can use uppercase or lowercase letters. The names AB22, Ab22, aB22, and ab22 all refer to the same variable.
- Cannot be the same as a name that is preassigned by the TI-89 / TI-92 Plus. Preassigned names include:
- Built-in functions (such as abs) and instructions (such as LineVert). Refer to Appendix A.
- System variables (such as xmin and xmax, which are used to store graph-related values). Refer to Appendix B for a list.

Variable	Description
myvar	OK
a	OK
Log	Not OK, name is preassigned to the log function.
Log1	OK
3rdTotal	Not OK, starts with a digit.
circumfer	Not OK, more than 8 characters.

You can save any TI-89 / TI-92 Plus data type as a variable. For a list of data types, refer to getType() in Appendix A. Some examples are:

Data Types	Examples
Expressions	$2.54,1.25 \mathrm{E} 6,2 \pi, \mathrm{xmin} / 10,2+3 i,(\mathrm{x}-2)^{2}, \sqrt{2} / 2$
Lists	$\{2468\},\{112\}$
Matrices	$\left[\begin{array}{lllll}1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 4 & 6\end{array}\right]$
Character strings	"Hello", "The answer is:", "xmin/10"
Pictures	
Functions	myfunc(arg), ellipse(x,y,r1,r2)

Storing a Value in a Variable

Note: TI-89 users should use alpha as necessary when typing variable names.

Displaying a
 Variable

Note: Refer to Chapter 3 for information about symbolic manipulation.

Using a Variable in an Expression

Tip: To view a list of existing variable names, use 2nd [VAR-LINK] as described in Chapter 21.

1. Enter the value you want to store, which can be an expression.
2. Press STOص. The store symbol (\rightarrow) is displayed.
3. Type the variable name.
4. Press ENTER.

- $5+8^{3}+$ numi		517
$5+8^{\star} 3 \rightarrow$ num 1		
Milve kind iuto	FUNC	1/30

To store to a variable temporarily, you can use the "with" operator. Refer to "Substituting Values and Setting Constraints" in Chapter 3.

1. Type the variable name.
2. Press ENTER.

- クum1			517	
ำ-1m1				
-1\%\|l		Fifl illa	FINIC	1/30

If the variable is undefined, the variable name is shown in the result.
In this example, the variable a is undefined. Therefore, it is used as a symbolic variable.

1. Type the variable name into the expression.
2. Press ENTER to evaluate the expression.

If you want the result to replace the variable's previous value, you must store the result.

In some cases, you may want to use a variable's actual value in an expression instead of the variable name.

1. Press [nd [RCL] to display a dialog box.
2. Type the variable name.
3. Press ENTER twice.

In this example, the value stored in num1 will be inserted at the cursor position in the entry line.

Reusing a Previous Entry or the Last Answer

Reusing the Expression on the Entry Line

Tip: Reexecuting an entry "as is" is useful for iterative calculations that involve variables.

You can reuse a previous entry by reexecuting the entry "as is" or by editing the entry and then reexecuting it. You can also reuse the last calculated answer by inserting it into a new expression.

When you press ENTER to evaluate an expression, the TI-89 / TI-92 Plus leaves that expression on the entry line and highlights it. You can type over the entry, or you can reuse it as necessary.

For example, using a variable, find the square of $1,2,3$, etc.
As shown below, set the initial variable value and then enter the variable expression. Next, reenter to increment the variable and calculate the square.

On the TI-89:	On the Tl-92 Plus:	Display	
0 STO 2nd [a-lock] N U M ENTER	NOSTO		0
	ENTER		1,301
N U M alphat $\dagger 1$ STO*	$\begin{aligned} & \text { BiN U M } 1 \text { STO• } \\ & \text { İN U M } \end{aligned}$	- $\square_{\text {- }} \rightarrow$ num	0
2nd [:] N U M ${ }^{\text {a }} 2$	-2nd [:] N U M ${ }^{\text {a }} 2$		1
ENTER	ENTER		$2 / 30$
	,		
ENTER ENTER	ENTER ENTER	- ¢ \rightarrow num	
			0
		- num $+1 \rightarrow$ num : num ${ }^{2}$	1
		- num +1 - num : num ${ }^{2}$	4
		- num $+1 \rightarrow$ num $: ~$ num ${ }^{2}$	9
			4/30
	E		

Tip: Editing an entry lets you make minor changes without retyping the entire entry.

Note: When the entry contains a decimal point, the result is automatically displayed in floating-point.

Using the equation $\mathrm{A}=\pi \mathrm{r}^{2}$, use trial and error to find the radius of a circle that covers 200 square centimeters.

The example below uses 8 as the first guess and then displays the answer in its approximate floating-point form. You can edit and reexecute using 7.95 and continue until the answer is as accurate as you want.

You can recall any previous entry that is stored in the history area, even if the entry has scrolled off the top of the screen. The recalled entry replaces whatever is currently shown on the entry line. You can then reexecute or edit the recalled entry.

To recall:	Press:	Effect:
The last entry (if you've changed the entry line)	2nd [ENTRY] once	If the last entry is still shown on the entry line, this recalls the entry prior to that.
Previous entries	2nd [ENTRY] repeatedly	Each press recalls the entry prior to the one shown on the entry line.

For example:

Recalling the Last Answer

Note: Refer to ans() in Appendix A.

Each time you evaluate an expression, the TI-89 / TI-92 Plus stores the answer to the variable ans(1). To insert this variable in the entry line, press 2nd [ANS].

For example, calculate the area of a garden plot that is 1.7 meters by 4.2 meters. Then calculate the yield per square meter if the plot produces a total of 147 tomatoes.

1. Find the area.
1.7 ® 4.2 ENTER
2. Find the yield.
$147 \div$ 2nd [ANS] ENTER

Just as ans(1) always contains the last answer, ans(2), ans(3), etc., also contain previous answers. For example, ans(2) contains the next-to-last answer.

Auto-Pasting an Entry or Answer from the History Area

Why Use Auto-Paste

Note: You can also paste information by using the F1 toolbar menu. Refer to "Cutting, Copying, and Pasting Information" in Chapter 5.

Auto-Pasting an Entry or Answer

Tip: To cancel auto-paste and return to the entry line, press ESC.

Tip: To view an entry or answer too long for one line (indicated by at the end of the line), use (1) and (1) or 2nd (1) and 2nd (1).

You can select any entry or answer from the history area and "auto-paste" a duplicate of it on the entry line. This lets you insert a previous entry or answer into a new expression without having to retype the previous information.

The effect of using auto-paste is similar to 2nd [ENTRY] and 2nd [ANS] as described in the previous section, but there are differences.

For entries:

Pasting lets you:	[2nd [ENTRY] lets you:
Insert any previous entry into the entry line.	Replace the contents of the entry line with any previous entry.
	[nd [ANS] lets you:
Pasting lets you:	Insert the variable ans(1), which contains the last answer only. Each time you enter a calculation, ans(1) is the displayed updated to the latest answer.
previous answer into the entry line.	

1. On the entry line, place the cursor where you want to insert the entry or answer.
2. Press Θ to move the cursor up into the history area. This highlights the last answer.
3. Use Θ and Θ to highlight the entry or answer to auto-paste.

- Θ moves from answer to entry up through the history area.
- You can use Θ to highlight items that have scrolled off the screen.

4. Press ENTER.

The highlighted item is inserted in the entry line.

This pastes the entire entry or answer. If you need only a part of the entry or answer, edit the entry line to delete the unwanted parts.

Status Line Indicators in the Display

The status line is displayed at the bottom of all application screens. It shows information about the current state of the TI-89 / TI-92 Plus, including several important mode settings.

Status Line Indicators

Note: To cancel [2nd, \rightarrow, alpha, or ${ }^{\text {t }}$, press the same key again or press a different modifier key.

Note: If the next key you press does not have a diamond feature or an associated letter, the key performs its normal operation.

Indicator	Meaning
Current Folder	Shows the name of the current folder. Refer to "Using Folders to Store Independent Sets of Variables" in Chapter 5. MAIN is the default folder that is set up automatically when you use the TI-89 / TI-92 Plus.
Modifier Key	Shows which modifier key is in effect, as described below.
2nd	2nd - will use the second function of the next key you press.
*	\square - will use the diamond feature of the next key you press.
d (TI-89)	alpha - will type the lowercase letter for the next key you press.
Til (TI-89)	2nd [a-lock] — lowercase alpha-lock is on. Until you turn this off, will type the lowercase letter for each key you press. To cancel alpha-lock, press alpha.
-	T alpha - uppercase ALPHA-lock is on. Until you turn this off, will type the uppercase letter for each key you press. To cancel ALPHA-lock, press alpha.
-	(- will type the uppercase letter for the next key you press. On the TI-89, you can use \uparrow to type a letter without having to use alpha.
Angle	Shows the units in which angle values are
Mode	interpreted and displayed. To change the Angle mode, use the MODE key.
RAD	Radians
DEG	Degrees

Status Line (continued)

Indicator	Meaning
Exact/ Approx Mode	Shows how answers are calculated and displayed. Refer to page 29. To change the Exact/Approx mode, use the MODE key.
AUTO	Auto
EXACT	Exact
APPROX	Approximate
Graph Number	If the screen is split to show two independent graphs, this indicates which graph is active - GR1 or GR2. (Displays G\#1 or G\#2 on the TI-92 Plus.)
Graph Mode	Indicates the type of graphs that can be plotted. To change the Graph mode, use the MODE key.
FUNC	$y(x)$ functions
PAR	$x(t)$ and $y(t)$ parametric equations
POL	$r(\theta)$ polar equations
SEQ	$u(n)$ sequences
3D	$z(x, y) 3 D$ equations
DE	$y^{\prime}(t)$ differential equations
Battery	Displayed only when the batteries are getting low. If BATT is shown with a black background, change the batteries as soon as possible.
History Pairs, Busy/Pause, Archived	The information shown in this part of the status line depends on the application you are using.
23/30	Displayed on the Home screen to show the number of entry/answer pairs in the history area. Refer to page 24.
BUSY	A calculation or graph is in progress.
PAUSE	You paused a graph or program.
\square	The variable opened in the current editor (Data/Matrix Editor, Program Editor, or Text Editor) is locked or archived and cannot be modified.

In some situations, you may need to find out information about your TI-89 / TI-92 Plus, particularly the software version and the unit's ID number.

Displaying the
"About" Screen

From the Home screen, press F1 and then select A:About. than the one shown to the right.
Press ENTER or ESC to close the screen.

When Do You Need this Information?

The information on the About screen is intended for situations such as:

- If you obtain new or upgraded software for your TI-89 / TI-92 Plus, you may need to provide your current software version and/or the ID number of your unit.
- If you have difficulties with your TI-89 / TI-92 Plus and need to contact technical support, knowing the software version may make it easier to diagnose the problem.

Symbolic Manipulation

Preview of Symbolic Manipulation 58
Using Undefined or Defined Variables 59
Using Exact, Approximate, and Auto Modes 61
Automatic Simplification 64
Delayed Simplification for Certain Built-In Functions. 66
Substituting Values and Setting Constraints 67
Overview of the Algebra Menu 70
Common Algebraic Operations 72
Overview of the Calc Menu 75
Common Calculus Operations 76
User-Defined Functions and Symbolic Manipulation 77
If You Get an Out-of-Memory Error 79
Special Constants Used in Symbolic Manipulation 80

This chapter is an overview of the fundamentals of using symbolic manipulation to perform algebraic or calculus operations.

You can easily perform symbolic calculations from the Home screen.

Solve the system of equations $2 x-3 y=4$ and $-x+7 y=-12$. Solve the first equation so that x is expressed in terms of y . Substitute the expression for x into the second equation, and solve for the value of y. Then substitute the y value back into the first equation to solve for the value of x.

This example is a demonstration of symbolic manipulation. A one-step function is available for solving systems of equations. (See page 73.)

Using Undefined or Defined Variables

How Undefined and Defined Variables Are Treated

Tip: When defining a variable, it's a good practice to use more than one character in the name. Leave one-character names undefined for symbolic calculations.

When performing algebraic or calculus operations, it is important that you understand the effect of using undefined and defined variables. Otherwise, you may get a number for a result instead of the algebraic expression that you anticipated.

When you enter an expression that contains a variable, the TI-89 / TI-92 Plus treats the variable in one of two ways.

- If the variable is undefined, it is
 treated as an algebraic symbol.
- If the variable is defined (even if defined as 0), its value
 replaces the variable.

To see why this is important, suppose you want to find the first derivative of x^{3} with respect to x.

- If x is undefined, the result is in the form you probably

$-\frac{d}{d x}\left(x^{3}\right)$	$3 \cdot x^{2}$
a(xas, ${ }^{(1)}$	
	FUAN:

- If x is defined, the result may be in a form you did not expect.

Method: Example:

Enter the variable name.

$$
\text { Unless you knew that } 5 \text { had been }
$$ stored to x previously, the answer 75 could be misleading.

Use the getType
function.

Determining If a

Variable Is
Undefined

Note: Use 2nd [VAR-LINK] to view a list of defined variables, as described in Chapter 21.

Deleting a Defined Variable

Note: For information about folders, refer to Chapter 5.

Temporarily
Overriding a Variable

Note: For more information about the | operator, refer to page 67.

You can "undefine" a defined variable by deleting it.
To delete: Do this:
One or more specified Use the DelVar function. variables

You can also delete variables by using the VAR-LINK screen (2nd [VAR-LINK]) as described in Chapter 21.

All one-letter variables $(a-z)$ in the current folder

From the Home screen Clean Up menu, select 1:Clear a-z. You will be prompted to press ENTER to confirm the deletion.

By using the "with" operator (I), you can:

- Temporarily override a variable's defined value.
- Temporarily define a value for an undefined variable.

To type the "with" operator (1), press:
TI-89: $]^{1}$
TI-92 Plus: [2nd [1]

Using Exact, Approximate, and Auto Modes

The Exact/Approx mode settings, which are described briefly in Chapter 2, directly affect the precision and accuracy with which the TI-89 / TI-92 Plus calculates a result. This section describes these mode settings as they relate to symbolic manipulation.

When Exact/Approx = EXACT, the TI-89 / TI-92 Plus uses exact rational arithmetic with up to 614 digits in the numerator and 614 digits in the denominator. The EXACT setting:

- Transforms irrational numbers to standard forms as much as possible without approximating them. For example, $\sqrt{12}$ transforms to $2 \sqrt{3}$ and $\ln (1000)$ transforms to $3 \ln (10)$.
- Converts floating-point numbers to rational numbers. For example, 0.25 transforms to $1 / 4$.

The functions solve, cSolve, zeros, cZeros, factor, \int, $\mathbf{f M i n}$, and fMax use only exact symbolic algorithms. These functions do not compute approximate solutions in the EXACT setting.

- Some equations, such as $2^{-x}=x$, have solutions that cannot all be finitely represented in terms of the functions and operators on the TI-89 / TI-92 Plus.
- With this kind of equation, EXACT will not compute approximate solutions. For example, $2^{-x}=x$ has an approximate solution $x \approx 0.641186$, but it is not displayed in the EXACT setting.

Advantages	Disadvantages
Results are exact.	As you use more complicated rational numbers and irrational constants, calculations can:
	- Use more memory, which may exhaust the memory before a solution is completed.
	- Take more computing time.
	- Produce bulky results that are harder to comprehend than a floating-point number.

APPROXIMATE Setting

When Exact/Approx = APPROXIMATE, the TI-89 / TI-92 Plus converts rational numbers and irrational constants to floating-point. However, there are exceptions:

- Certain built-in functions that expect one of their arguments to be an integer will convert that number to an integer if possible. For example: $\boldsymbol{d}(\mathrm{y}(\mathrm{x}), \mathrm{x}, 2.0)$ transforms to $\boldsymbol{d}(\mathrm{y}(\mathrm{x}), \mathrm{x}, 2)$.
- Whole-number floating-point exponents are converted to integers. For example: $x^{2.0}$ transforms to x^{2} even in the APPROXIMATE setting.

Functions such as solve and \int (integrate) can use both exact symbolic and approximate numeric techniques. These functions skip all or some of their exact symbolic techniques in the APPROXIMATE setting.

AUTO Setting

When Exact/Approx = AUTO, the TI-89 / TI-92 Plus uses exact rational arithmetic wherever all of the operands are rational numbers. Otherwise, floating-point arithmetic is used after converting any rational operands to floating-point. In other words, floating-point is "infectious." For example:
$1 / 2-1 / 3$ transforms to $1 / 6$
but
$0.5-1 / 3$ transforms to .16666666666667
This floating-point infection does not leap over barriers such as undefined variables or between elements of lists or matrices. For example:
$(1 / 2-1 / 3) x+(0.5-1 / 3) y$ transforms to $x / 6+.16666666666667 y$ and
$\{1 / 2-1 / 3,0.5-1 / 3\}$ transforms to $\{1 / 6, .16666666666667\}$
In the AUTO setting, functions such as solve determine as many solutions as possible exactly, and then use approximate numerical methods if necessary to determine additional solutions. Similarly, \int (integrate) uses approximate numerical methods if appropriate where exact symbolic methods fail.

Advantages	Disadvantages
You see exact results	If you are interested only in exact
when practical, and	results, some time may be wasted
approximate numeric	seeking approximate results.
results when exact	If you are interested only in approximate
results are impractical.	results, some time may be wasted You can often control the format of a result by choosing to enter some
might exhact results. Moreover, you the memory seeking those coefficients as either rational or floating-point	
numbers.	

Default Simplification Rules

Note: For information about folders, refer to Chapter 5.

Note: Refer to "Delayed Simplification for Certain Built-In Functions" on page 66.

When you type an expression on the entry line and press ENTER, the TI-89 / TI-92 Plus automatically simplifies the expression according to its default simplification rules.

All of the following rules are applied automatically. You do not see intermediate results.

- If a variable has a defined value, that value replaces the variable.

If the variable is defined in terms of another variable, the variable is replaced with its "lowest level" value (called infinite lookup).

Default simplification does not modify variables that use path names to indicate a folder. For example, x+class $1 x$ does not simplify to 2 x .

- For functions:
- The arguments are simplified. (Some built-in functions delay simplification of some of their arguments.)
- If the function is a built-in or user-defined function, the function definition is applied to the simplified arguments. Then the functional form is replaced with this result.
- Numeric subexpressions are combined.
- Products and sums are sorted into order.

Products and sums involving undefined variables are sorted according to the first letter of the variable name.

- Undefined variables r through z are assumed to be true variables, and are placed in alphabetical order at the beginning of a sum.
- Undefined variables a through q are assumed to represent constants, and are placed in alphabetical order at the end of a sum (but before numbers).
- Similar factors and similar terms are collected.

- Identities involving zeros and ones are exploited.

This floating-point number causes numeric results to be shown as floating-point.

If a floating-point whole number is entered as an exponent, it is treated as an integer (and does not produce a floating-point result).

- Polynomial greatest common

How Long Is the Simplification Process?
divisors are canceled.

- Polynomials are expanded unless no key cancellation can occur.

- Common denominators are formed unless no key cancellation can occur.

- Functional identities are exploited. For example:

$$
\begin{aligned}
& \ln (2 x)=\ln (2)+\ln (x) \\
& \text { and } \\
& \sin (x)^{2}+\cos (x)^{2}=1
\end{aligned}
$$

Depending on the complexity of an entry, result, or intermediate expression, it can take a long time to expand an expression and cancel common divisors as necessary for simplification.

To interrupt a simplification process that is taking too long, press 0 N . You can then try simplifying only a portion of the expression. (Auto-paste the entire expression on the entry line, and then delete the unwanted parts.)

Delayed Simplification for Certain Built-In Functions

Functions that Use Delayed Simplification

Note: Not all functions that use a var argument use delayed simplification.

Note: You may or may not want to define a numeric value for var, depending on the situation.

Note: The example to the right finds the derivative of x^{3} at $x=5$. If x^{3} was initially simplified to 75 , you would find the derivative of 75 , which is not what you want.

Usually, variables are automatically simplified to their lowest possible level before they are passed to a function. For certain functions, however, complete simplification is delayed until after the function is performed.

Functions that use delayed simplification have a required var argument that performs the function with respect to a variable. These functions have at least two arguments with the general form:
function(expression, var $[, \ldots]$)
For example: solve $\left(x^{\wedge} 2-x-2=0, x\right)$
$\boldsymbol{d}\left(x^{\wedge} 2-x-2, x\right)$
$\int\left(x^{\wedge} 2-x-2, x\right)$
$\operatorname{limit}\left(x^{2}-x-2, x, 5\right)$
For a function that uses delayed simplification:

1. The var variable is simplified to the lowest level at which it remains a variable (even if it could be further simplified to a non-variable value).
2. The function is performed using the variable.
3. If var can be further simplified, that value is then substituted into the result.

For example:

Substituting Values and Setting Constraints

Typing the "With" Operator

Substituting for a Variable

Substituting for a Simple Expression

Note: $\operatorname{acos}(\mathrm{x})$ is different from $\mathrm{a}^{*} \cos (\mathrm{x})$.

Substituting Complex Values

Note: For an overview of complex numbers, refer to Appendix B.

Tip: To get the complex i, press 2nd [i]. Do not simply type the letter i on the keyboard.

The "with" operator (|) lets you temporarily substitute values into an expression or specify domain constraints.

To type the "with" operator (1), press:
TI-89: $]^{1}$
TI-92 Plus: 2nd [1]
For every occurrence of a specified variable, you can substitute a numeric value or an expression.

To substitute for multiple variables at the same time, use the Boolean and operator.

For every occurrence of a simple expression, you can substitute a variable, numeric value, or another expression.

Substituting s for $\sin (x)$ shows that the expression is a polynomial in terms of $\sin (x)$.

- \| $\|x\|$ \| $\times=a+b \cdot i$	$\sqrt{3^{2}}+$
- $\|x\|$ \| $\times=2+3 \cdot \mathbf{i}$	$\sqrt{13}$
S (\times) $\mid x=2+3 i$	
Mille kin iuto	

All undefined variables are treated as real numbers in symbolic calculations. To perform complex symbolic analysis, you must define a complex variable. For example:
$x+y i \rightarrow z$
Then you can use z as a complex variable. You can also use z_{-}. For more information see the _ (underscore) topic in Appendix A.

Be Aware of the Limitations of Substitutions

Tip: Use the solve function to help determine the singlevariable substitution.

- Substitution occurs only where there is an exact match for the substitution.

$$
\begin{aligned}
& \text { Only } x^{2} \text { was replaced, not } x^{4} \text {. } \\
& \cdot x^{4}+3 \cdot x^{2} \mid x^{2}=y \quad x^{4}+3 \cdot y \\
& \text { - } x^{4}+3 \cdot x^{2} \mid x=y y^{1 / 2}
\end{aligned}
$$

Define the substitution in simpler terms for a more complete substitution.

- Infinite recursions can occur when you define a substitution variable in terms of itself.

Substitutes $\sin (x+1), \sin (x+1+1), \sin (x+1+1+1)$, etc.
$\sin (x) \mid x=x+1$

When you enter a substitution that causes an infinite recursion:

- An error message is displayed.

- When you press ESC, an error is shown in the history area.

- Internally, an expression is sorted according to the automatic simplification rules. Therefore, products and sums may not match the order in which you entered them.
- As a general rule, you should substitute for a single variable.

$$
\begin{aligned}
& \text { - solve(} \left.m \cdot c^{2}=e, m\right) \quad m=\frac{e}{c^{2}} \\
& n \sin \left(2 \cdot m \cdot c^{2}\right) \left\lvert\, m=\frac{e}{c^{2}}\right.
\end{aligned}
$$

- Substituting for more general expressions (either $m \cdot c^{2}=e$ or $c^{2} \cdot m=e$) may not work as you anticipate.

Specifying Domain Constraints

Tip: Enter $\ln \left(\mathrm{x}^{*} \mathrm{y}\right)$ instead of $\ln (x y)$; otherwise, $x y$ is interpreted as a single variable named $x y$.

Tip: For \geq or \leq, press $\square[>]$ or $\oplus[<]$. You can also use 2nd [MATH] 8 or 2nd [CHAR] 2 to select them from a menu.

Using Substitutions vs. Defining a Variable

Caution: After x is defined, it can affect all calculations that involve x (until you delete x).

Many identities and transformations are valid for only a particular domain. For example:
$\ln (x * y)=\ln (x)+\ln (y) \quad$ only if x and/or y is not negative
$\sin ^{-1}(\sin (\theta))=\theta \quad$ only if $\theta \geq^{-} \pi / 2$ and $\theta \leq \pi / 2$ radians

Use the "with" operator to specify the domain constraint.

In many cases, you can achieve the same effect as a substitution by defining the variable.

- $(x+2)^{2} \mid x=1$	9
- $1 \rightarrow x$	1
- $(x+2)^{2}$	9
(x+2) 2	
MAİlN	

However, substitution is preferable for most cases because the variable is defined only for the current calculation and does not accidentally affect later calculations.

Overview of the Algebra Menu

You can use the F2 Algebra toolbar menu to select the most commonly used algebraic functions.

The Algebra Menu

Note: For a complete description of each function and its syntax, refer to Appendix A.

From the Home screen, press F2 to display:

Fissivo

This menu is also available from the MATH menu. Press 2nd [MATH] and then select 9:Algebra.

Menu Item	Description
solve	Solves an expression for a specified variable. This returns real solutions only, regardless of the Complex Format mode setting. Displays answers with "and" and "or" connecting solutions. (For complex solutions, select A:Complex from the Algebra menu.)
factor	Factors an expression with respect to all its variables or with respect to only a specified variable.
expand	Expands an expression with respect to all its variables or with respect to only a specified variable.
zeros	Determines the values of a specified variable that make an expression equal to zero. Displays in a list.
approx	Evaluates an expression using floating-point arithmetic, where possible. This is equivalent to using MODE to set Exact/Approx = APPROXIMATE (or using \square ENTER to evaluate an expression).
comDenom	Calculates a common denominator for all terms in an expression and transforms the expression into a reduced ratio of a numerator and denominator.
propFrac	Returns an expression as a proper fraction expression.
nSolve	Calculates a single solution for an equation as a floating-point number (as opposed to solve, which may display several solutions in a rational or symbolic form).

Note: The left and right functions are also used to return a specified number of elements or characters from the left or right side of a list or character string.

Menu Item	Description
Trig	Displays the submenu:
	Pitesperat
	tExpand Expands trig expressions with angle sums and multiple angles.
	tCollect Collects the products of integer powers of trig functions into angle sums and multiple angles. tCollect is the opposite of tExpand.
Complex	Displays the submenu:
	10cgoluec 2:0Factors :czeros

These are the same as solve, factor, and zeros; but they also compute complex results.

Extract Displays the submenu:

getNum Applies comDenom and then returns the resulting numerator.
getDenom Applies comDenom and then returns the resulting denominator.
left Returns the left-hand side of an equation or inequality.
right Returns the right-hand side of an equation or inequality.

This section gives examples for some of the functions available from the F2 Algebra toolbar menu. For complete information about any function, refer to Appendix A. Some algebraic operations do not require a special function.

Adding or Dividing Polynomials

Factoring and Expanding Polynomials

Finding Prime Factors of a Number

You can add or divide polynomials directly, without using a special function.

$\text { - } x$	$\frac{x+6}{2}$		$x+3$
($\left.x^{*} 2+5 x+6\right) /(x+2)$			
- M	kiflo illo	FUNAC	1,20

Use the factor (F2 2) and expand (F2 3) functions.

Factor $x^{5}-1$. Then expand the result.

Notice that factor and expand perform opposite operations.

The factor (F2 2) function lets you do more than simply factor an algebraic polynomial.

You can find prime factors of a rational number (either an integer or a ratio of integers).

With the expand (F2 3) function's optional var value, you can do a partial expansion that collects similar powers of a variable.

Do a full expansion of ($x^{2}-x$) ($y^{2}-y$) with respect to all variables.

Then do a partial expansion with respect to x.

- expand ($\left.\left.\mathrm{k}^{2}-x\right) \cdot\left(y^{2}-y\right)\right)$
$x^{2} \cdot y^{2}-x^{2} \cdot y-x \cdot y^{2}+x \cdot y$
- expand ($\left.\left(x^{2}-x\right) \cdot\left(y^{2}-y\right), x\right)$

Solving an Equation

Note: An operation such as $\square 2$ X subtracts $2 x$ from both sides.

Solving a System of Linear Equations

Note: The simult and rref matrix functions are not on the F2 Algebra menu. Use 2nd [MATH] 4 or the Catalog.

Use the solve (F2 1) function to solve an equation for a specified variable.
solve(equation, var)
Solve $x+y-5=2 x-5 y$ for x.

Notice that solve displays only the final result.
To see intermediate results, you can manually solve the equation step-by-step.

$$
\begin{array}{ll}
\text { Consider a set of two equations with } & 2 x-3 y=4 \\
\text { two unknowns: } & -x+7 y=-12
\end{array}
$$

To solve this system of equations, use any of the following methods.

Method	Example
Use the solve function for a one-step solution.	solve $(2 x-3 y=4$ and $-x+7 y=-12,\{x, y\})$

Use the solve function Refer to the preview at the beginning of with substitution (I) this chapter, which solved for $x=-8 / 11$ for step-by-step and $\mathrm{y}=-20 / 11$. manipulation.

Use the simult function Enter the coefficients as a matrix and the with a matrix. results as a constant column matrix.

Use the rref function with a matrix.

Enter the coefficients as an augmented matrix.

Finding the Zeros of an Expression

Tip: For \geq or \leq, type \square [$>$] or - [<]. You can also use 2nd [MATH] 8 or 2nd [CHAR] 2 to select them from a menu.

Finding Proper
Fractions and Common Denominators

Use the zeros (F2 4) function.
zeros(expression, var)
Use the expression $x * \sin (x)+\cos (x)$.

Find the zeros with respect to x in the interval $0 \leq x$ and $x \leq 3$.

- zeros $(x \cdot \sin (x)+\cos (x), x)$
(2.79839)

Use the "with" operator to specify the interval.

Use the propFrac (F2 7) and comDenom (F2 6) functions.

_ for common denominators that collect similar powers of this variable

Find a proper fraction for the expression

- propFrac $\left(\frac{x^{4}-2 \cdot x^{2}+x}{2 \cdot x^{2}+x+4}\right)$ comDenom with an expression, list, or matrix.
$\left(x^{4}-2 x^{2}+x\right) /\left(2 x^{2}+x+4\right)$.
Then transform the answer into a ratio of a fully expanded numerator and a fully expanded

$$
\text { comblnom }\left(\frac{31 \cdot x+60}{8 \cdot\left(2 \cdot x^{2}+x+4\right)}+1\right.
$$ denominator.

Notice that propFrac and

$$
\frac{\frac{x^{4}-2 \cdot x^{2}+x}{2 \cdot x^{2}+x+4}}{\frac{\ldots+x+4)\left(+\left(x^{\wedge} 2 / 2-x / 4\right)-15 / B\right)}{\text { Finlk }}}
$$ comDenom perform opposite operations.

$$
\frac{31 \cdot x+60}{8 \cdot\left(2 \cdot x^{2}+x+4\right)}+\frac{x^{2}}{2}-\frac{x}{4}-
$$

If you do this example on your TI-89 / TI-92 Plus, the propFrac function scrolls off the top of the screen.

In this example:

- $\frac{31 x+60}{8}$ is the remainder of $x^{4}-2 x^{2}+x$ divided by $2 x^{2}+x+4$.
- $\frac{x^{2}}{2}-\frac{x}{4}-15 / 8$ is the quotient.

Overview of the Calc Menu

You can use the F3 Calc toolbar menu to select commonly used calculus functions.

The Calc Menu

Note: For a complete description of each function and its syntax, refer to Appendix A.

Note: The d symbol for differentiate is a special symbol. It is not the same as typing the letter D on the keyboard. Use F3 1 or 2nd [d].
Note: For a complete
description of each function
and its syntax, refer to
Appendix A.
Note: The d symbol for
differentiate is a special
symbol. It is not the same as
typing the letter D on the
keyboard. Use F3 1 or
2nd $[d]$.

From the Home screen, press F3 to display:

E

5 : if murnduct. G: fining
B: five
This menu is also available from the MATH menu. Press 2nd [MATH] and then select A:Calculus.

Menu Item	Description
d differentiate	Differentiates an expression with respect to a specified variable.
\int integrate	Integrates an expression with respect to a specified variable.
limit	Calculates the limit of an expression with respect to a specified variable.
П pum	Evaluates an expression at discrete variable values within a range and then calculates the sum.
fMin	Evaluates an expression at discrete variable values within a range and then calculates the product.
fMax	Finds candidate values of a specified variable that minimize an expression.
arcLen	Finds candidate values of a specified variable that maximize an expression.
taylor	Returns the arc length of an expression with respect to a specified variable.
nDeriv	Calculates a Taylor polynomial approximation to an expression with respect to a specified variable.
	Calculates the numerical derivative of an expression with respect to a specified variable.
	Calculates an integral as a floating-point number using quadrature (an approximation using weighted sums of integrand values).
differential equations, with or without initial	
conditions.	

Common Calculus Operations

Integrating and Differentiating

Note: You can integrate an expression only; you can differentiate an expression, list, or matrix.

Finding a Limit

Note: You can find a limit for an expression, list, or matrix.

Finding a Taylor Polynomial

Important: Degree-mode scaling by $\pi / 180$ may cause calculus application results to appear in a different form.

This section gives examples for some of the functions available from the F3] Calc toolbar menu. For complete information about any calculus function, refer to Appendix A.

Use the \int integrate (F3 2) and \boldsymbol{d} differentiate (F 31 1) functions.

Integrate $x^{2} * \sin (x)$ with respect to x .

Use the limit (F3 3) function.
$\operatorname{limit}(\text { expression, var, point }[\text {,direction }])^{\star}$negative $=$ from left positive $=$ from right omitted or $0=$ both

Find the limit of $\sin (3 x) / x$ as x approaches 0 .

Use the taylor (F3 9) function.
taylor(expression, var, order [,point])

- if omitted, expansion point is 0

Find a 6th order Taylor polynomial for $\sin (\mathrm{x})$ with respect to x.

Store the answer as a userdefined function named $y 1(x)$.

Then graph $\sin (x)$ and the Taylor polynomial.

Differentiate the answer with respect to x.

User-Defined Functions and Symbolic Manipulation

For Information about Creating a User-Defined Function

Undefined Functions

Tip: To select d from the Calc toolbar menu, press [F3 1 (or press [2nd [d] on the keyboard).

Single-Statement Functions

Tip: To select limit from the Calc toolbar menu, press [F3 3.

Tip: To select f from the Calc toolbar menu, press F3 2 (or press [2nd [5] on the keyboard). To select taylor, press [F3 9.

You can use a user-defined function as an argument for the TI-89 / TI-92 Plus's built-in algebra and calculus functions.

Refer to:

- "Creating and Evaluating User-Defined Functions" in Chapter 5.
- "Graphing a Function Defined on the Home Screen" and "Graphing a Piecewise Defined Function" in Chapter 12.
- "Overview of Entering a Function" in Chapter 17.

You can use functions such as $f(x), g(t), r(\theta)$, etc., that have not been assigned a definition. These "undefined" functions yield symbolic results. For example:

Use DeIVar to ensure that $f(x)$ and $g(x)$ are not defined.

Then find the derivative of $f(x) * g(x)$ with respect to x.

You can use user-defined functions consisting of a single expression. For example:

- Use STO to create a user-defined secant function, where:

$$
\sec (x)=\frac{1}{\cos (x)}
$$

Then find the limit of $\sec (x)$ as \times approaches $\pi / 4$.

- Use Define to create a user-defined function $\mathrm{h}(\mathrm{x})$, where:

Multi-Statement vs. Single-Statement Functions

Tip: You can use your computer keyboard to type lengthy text and then use TI-GRAPH LINK to send it to the TI-89 / TI 92-Plus. See Chapter 18 for more information.

Tip: To select nint from the Calc toolbar menu, press [F3 B:nint.

Tip: To select \int from the Calc toolbar menu, press [F3 2 (or press [2nd [s] on the keyboard).

Multi-statement user-defined functions should be used as an argument for numeric functions (such as nDeriv and nint) only.

In some cases, you may be able to create an equivalent singlestatement function. For example, consider a piecewise function with two pieces.

When:	Use expression:
$x<0$	$-x$
$x \geq 0$	$5 \cos (x)$

- If you were to create a multi-statement user-defined function with the form:

Then numerically integrate $\mathrm{y} 1(\mathrm{x})$ with respect to x.

- Create an equivalent single-statement user-defined function.

Use the
TI-89 / TI-92 Plus's built-in when function.

Then integrate $\mathrm{y} 1(\mathrm{x})$ with respect to x.

If You Get an Out-of-Memory Error

The TI-89 / TI-92 Plus stores intermediate results in memory and then deletes them when the calculation is complete. Depending on the complexity of the calculation, the TI-89 / TI-92 Plus may run out of memory before a result can be calculated.

Freeing Up Memory

Simplifying Problems

- Delete unneeded variables and/or Flash applications, particularly large-sized ones.
- Use 2nd [VAR-LINK] as described in Chapter 21 to view and delete variables and/or Flash applications.
- On the Home screen:
- Clear the history area ($\mathbb{F 1} 8$) or delete unneeded history pairs.
- You can also use F1 9 to reduce the number of history pairs that will be saved.
- Use MODE to set Exact/Approx = APPROXIMATE. (For results that have a large number of digits, this uses less memory than AUTO or EXACT. For results that have only a few digits, this uses more memory.)
- Split the problem into parts.
- Split solve($\mathrm{a} * \mathrm{~b}=0, v a r$) into solve($\mathrm{a}=0, v a r$) and solve($\mathrm{b}=0, v a r$). Solve each part and combine the results.
- If several undefined variables occur only in a certain combination, replace that combination with a single variable.
- If m and c occur only as $m * c^{2}$, substitute e for $m * c^{2}$.
- In the expression $\frac{(a+b)^{2}+\sqrt{(a+b)^{2}}}{1-(a+b)^{2}}$, substitute c for $(a+b)$ and use $\frac{c^{2}+\sqrt{c^{2}}}{1-c^{2}}$. In the solution, replace c with $(a+b)$.
- For expressions combined over a common denominator, replace sums in denominators with unique new undefined variables.
- In the expression $\frac{x}{\sqrt{a^{2}+b^{2}}+c}+\frac{y}{\sqrt{a^{2}+b^{2}}+c}$, substitute d for $\sqrt{a^{2}+b^{2}}+c$ and use $\frac{x}{d}+\frac{y}{d}$. In the solution, replace d with $\sqrt{a^{2}+b^{2}}+c$.
- Substitute known numeric values for undefined variables at an earlier stage, particularly if they are simple integers or fractions.
- Reformulate a problem to avoid fractional powers.
- Omit relatively small terms to find an approximation.

Special Constants Used in Symbolic Manipulation

The result of a calculation may include one of the special constants described in this section. In some cases, you may also need to enter a constant as part of your entry.
true, false
@n1 ... @n255

For @, press:
TI-89: ©TO
TI-92 Plus: 2nd R

These indicate the result of an identity or a Boolean expression.

This notation indicates an "arbitrary integer" that represents any integer.

When an arbitrary integer occurs multiple times in the same session, each occurrence is numbered consecutively. After it reaches 255 , arbitrary integer consecutive numbering restarts at @n0. Use Clean Up 2:NewProb to reset to @n1.
∞ represents infinity, and e represents the constant 2.71828... (base of the natural logarithms).

These constants are often used in entries as well as results.

A solution is at every integer
multiple of π multiple of π.

Both @n1 and @n2 represent any arbitrary integer, but this notation identifies separate arbitrary integers.
∞, e

For ∞, press:
T1-89: ${ }^{[\infty}$ [$]$
Tl-92 Plus: [2nd [\propto]
For e, press:
T1-89: $\oplus[\mathrm{ex}]$
T1-92 Plus: [nd [e^{x}]
undef

This indicates that the result is undefined.

Constants and Measurement Units

Preview of Constants and Measurement Units 82
Entering Constants or Units 83
Converting from One Unit to Another 85
Setting the Default Units for Displayed Results 87
Creating Your Own User-Defined Units 88
List of Pre-Defined Constants and Units 89

Note: Constant and unit names always begin with an underscore _.

Note: You can also use getUnits() to get a list of the default units or setUnits() to set the default units. Refer to Appendix A.

The UNITS dialog box lets you select the available constants or units from different categories.

Page 3 (ㅌ3) of the MODE dialog box lets you select from three systems of measurement to specify the default units for displayed results.

By using the unit features, you can:

- Enter a unit for values in an expression, such as 6_m *4_m or $23 _\mathrm{m} / _\mathrm{s} * 10 _$s. The result is displayed in the selected default units.
- Convert values from one unit to another within the same category.
- Create your own user-defined units. These can be a combination of existing units or unique "standalone" units.

Preview of Constants and Measurement Units

Using the equation $f=m * a$ ，calculate the force when $m=5$ kilograms and $a=20$ meters $/$ second ${ }^{2}$ ．What is the force when $\mathrm{a}=9.8$ meters $/$ second ${ }^{2}$ ．（This is the acceleration due to gravity，which is a constant named＿g）．Convert the result from newtons to kilograms of force．

	Steps	圈 TI－89 Keystrokes	TI－92 Plus Keystrokes	Display
	Display the MODE dialog box， Page 3．For Unit System mode， select SI for the metric system of measurements．	$\begin{array}{ll} \text { MODE E3 (1) } 1 \\ \text { ENTER } \end{array}$	$\begin{aligned} & \text { MODE E3 } \bigcirc 1 \\ & \text { ENTER } \\ & \hline \end{aligned}$	
	Results are displayed according to these default units．			
2.	Create an acceleration unit for meters／second ${ }^{2}$ named＿ms2． The UNITS dialog box lets you select units from an alphabetical list of categories．You can use 2 2nd \odot and 2nd \odot to scroll one page at a time through the categories．	［nd［UNITS］\odot © 1 M ENTER ［ \rightarrow［nd［UNITS］ $\Theta \odot \odot(1) S$ ENTER 囚 2 STO	\square［unts］$\odot \odot$ M ENTER ©［unts］ $\bigcirc \bigcirc \bigcirc \bigcirc \mathrm{S}$ ENTER 囚 2 STOD	
	Now，instead of re－entering＿m／＿s ${ }^{2}$ each time you need it，you can use ＿ms2． Also，you can now use the UNITS dialog box to select＿ms2 from the Acceleration category．	［－］ ［2nd［a－lock］M S alpha 2 ENTER	$\begin{aligned} & \text { [2nd [-] } \\ & \text { M S } \\ & 2 \text { ENTER } \end{aligned}$	
				If you use the UNITS dialog box to select a unit，the is entered automatically．
	Calculate the force when $\mathrm{m}=5$ kilograms（＿kg）and $\mathrm{a}=20$ meters $/$ second ${ }^{2}$（＿ms2）．	5［－］ ［2nd［a－lock］K G alphan 20 ［－］［2nd［a－lock］	$\begin{aligned} & 5 \text { 2nd } \\ & \mathrm{KG} \\ & \mathrm{~B} \\ & \text { [} 20 \\ & \text { 2nd } \\ & \text { [-] } \end{aligned}$	
	If you know the abbreviation for a unit，you can type it from the keyboard．	MS alphal 2 ENTER	MS 2 ENTER	
	Using the same m，calculate the force for an acceleration due to gravity（the constant＿g）．	5［－］ ［nd［a－lock］K G alpha）区	$\begin{aligned} & 5 \text { [2nd [_] } \\ & \text { K G } \\ & \times \end{aligned}$	
	For＿g，you can use the pre－defined constant available from the UNITS dialog box or you can type＿g．	［2nd［UNITS］（1） alpha G ENTER ENTER	$\begin{aligned} & \square[\text { UnITS] } \\ & G \\ & \text { ENTER ENTER } \end{aligned}$	
	Convert to kilograms of force （＿kgf）． 2nd［『］displays the conversion operator．	2nd［a－lock］K G F alpha ENTER	$\begin{aligned} & \text { [2nd [r] [2nd [-] } \\ & \text { K G F } \\ & \text { ENTER } \end{aligned}$	

Entering Constants or Units

From a Menu

Tip: Use 2nd \odot and $2 n d \odot$ to scroll one page at a time through the categories.

Note: If you created a userdefined unit for an existing category (page 88), it is listed in the menu.

From the Keyboard

Note: You can type units in either uppercase or lowercase characters.

You can use a menu to select from a list of available constants and units, or you can type them directly from the keyboard.

The following shows how to select a unit, but you can use the same general procedure to select a constant.

From the Home screen:

1. Type the value or expression.

2. Display the UNITS dialog box.

Press:
TI-89: [2nd [UNITS]
TI-92 Plus: [UNITS]
3. Use \odot and Θ to move the cursor to the applicable category.
4. To select the highlighted (default) unit, press ENTER.

- or -

To select a different unit from the category, press (1). Then highlight the applicable unit, and press ENTER.

6.3_pF

The selected unit is placed in the entry line. Constant and unit names \qquad always begin with an underscore (_).

If you know the abbreviation that the TI-89 / TI-92 Plus uses for a particular constant or unit (refer to the list that begins on page 89), you can type it directly from the keyboard. For example:

256_m

The first character must be an underscore (_). For _, press:
TI-89: [-]
TI-92 Plus: [2nd [-]

- A space or a multiplication symbol (*) before the underscore is optional. For example, 256_m, 256 _m, and 256* _m are equivalent.
- However, if you are adding units to a variable, you must put a space or * before the underscore. For example, x_m is treated as a variable, not as x with a unit.

Combining Multiple Units

Tip: Create a user-defined unit (page 88) for frequently used combinations.

Using Parentheses with Units in a Calculation

Tip: If you have any doubt about how a value and its units will be evaluated, group them within parentheses ().

You may need to combine two or more units from different categories.

For example, suppose you want to enter a velocity in meters per second. In the UNITS dialog box, however, the Velocity category does not contain this unit.

You can enter meters per second by combining _m and _s from the Length and Time categories, respectively.

In a calculation, you may need to use parentheses () to group a value and its units so that they are evaluated properly. This is particularly true for division problems. For example:

To calculate:	Enter:	
$\frac{100 _\mathrm{m}}{2 _\mathrm{s}}$	$100 _\mathrm{m} /\left(2 _\mathrm{s}\right)$	$50 . \cdot \frac{-\mathrm{m}}{-\mathrm{s}}$
		You must use parentheses for (2_s). This is important for division.

If you omit the parentheses, you will get unexpected units. For example:

```
100_m/2_s 50.._m•_s
```

Here's why you get unexpected units if you do not use parentheses. In a calculation, a unit is treated similar to a variable. For example:

$$
\begin{aligned}
& 100 _\mathrm{m} \text { is treated as } 100 * _\mathrm{m} \\
& \text { and } \\
& 2 _ \text {s is treated as } 2 * _\mathrm{s}
\end{aligned}
$$

Without parentheses, the entry is calculated as:

$$
100 * _\mathrm{m} / 2 * _\mathrm{s}=\frac{100 * _\mathrm{m}}{2} * _\mathrm{s}=50 \cdot \cdot _\mathrm{m} \cdot _\mathrm{s}
$$

Converting from One Unit to Another

For All Units Except Temperature

Note: For a list of predefined units, see page 89.

Tip: From the UNITS dialog box, you can select available units from a menu.

You can convert from one unit to another in the same category, including any user-defined units (page 88).

If you use a unit in a calculation, it is converted and displayed automatically in the current default unit for that category, unless you use the conversion operator as described later. The following examples assume that your default units are set to the SI system of metric units (page 87).

To multiply 20 times 6 kilometers.

20*6_km

If you want to convert to a unit other than the default, use the - conversion operator.

To convert 4 light years to kilometers:
4_ltyr _km

To convert 186000 miles/second to kilometers/hour:

186000_mi/_s _km/_hr

- 4.-1t.um' $-\frac{\mathrm{km}}{3.78421 \mathrm{E13} \cdot \mathrm{~km}}$
- $186000 \cdot \frac{-\mathrm{mi}}{-\mathrm{s}} \cdot \frac{-\mathrm{km}}{-\mathrm{hr}}$

If an expression uses a combination of units, you can specify a conversion for some of the units only. Any units for which you do not specify a conversion will be displayed according to your defaults.

To convert 186000 miles/second from miles to kilometers:
186000_mi/_s _km

To convert 186000 miles/second from seconds to hours:
186000_mi/_s 1/_hr

To enter meters per second squared:

27_m/_s^2

To convert meters per second squared from seconds to hours:

27_m/_s^2 $1 /$ _hr^2

For Temperature Values

To convert a temperature value, you must use tmpCnv() instead of the operator.

> tmpCnv(expression_${ }^{\circ}$ tempUnit1, $_^{\circ}$ tempUnit2)
> For $^{\circ}$, press [2nd $\left[{ }^{\circ}\right]$.

For example, to convert
$100{ }^{\circ}{ }^{\circ} \mathrm{C}$ to _${ }^{\circ} \mathrm{F}$:
$\operatorname{tmpCnv}\left(100_{-}{ }^{\circ} \mathrm{C},{ }^{\circ}{ }^{\circ} \mathrm{f}\right)$

To convert a temperature range (the difference between two temperature values), use $\Delta \operatorname{tmpCnv}()$.

$$
\Delta \operatorname{tmpCnv}\left(\text { expression_}{ }^{\circ} \text { tempUnit1,_ _}{ }^{\circ}\right. \text { tempUnit2) }
$$

For example, to convert a $100{ }^{\circ} \mathrm{C}$ range to its equivalent range in ${ }^{\circ} \mathrm{F}$:

$$
\Delta \operatorname{tmpCnv}\left(100{ }^{\circ} \mathrm{c},{ }_{-}^{\circ} \mathrm{f}\right)
$$

Setting the Default Units for Displayed Results

If You're Using the SI or ENG/US System

Setting Custom Defaults

Note: You can also use setUnits() or getUnits() to set or return information about default units. Refer to Appendix A.

Tip: When the CUSTOM UNIT DEFAULTS dialog box first appears, it shows the current default units.

What is the NONE Default?

Note: NONE is not available for base categories such as Length and Mass that have no components.

All results involving units are displayed in the default unit for that category. For example, if the default unit for Length is _m, any length result is displayed in meters (even if you entered _km or _ft in the calculation).

The SI and ENG/US systems of measurement (set from Page 3 of the MODE screen) use builtin default units, which you cannot change.

To find the default units for these systems, refer to page 89 .
 Custom Units item is dimmed. You cannot set a default for individual categories.

To set custom defaults:

1. Press MODE F3 (1) 3 to set Unit System = CUSTOM.
2. Press \odot to highlight SET DEFAULTS.

3. Press (©) to display the CUSTOM UNIT DEFAULTS dialog box.
4. For each category, you can highlight its default, press (1), and select a unit from the list.
5. Press ENTER twice to save your changes and exit the MODE screen.

Many categories let you select NONE as the default unit.
This means that results in that category are displayed in the default units of its components.

For example, Area $=$ Length 2, so Length is the component of Area.

- If the defaults are Area = _acre and Length = _m (meters), area results are shown with _acre units.
- If you set Area $=$ NONE, area results are shown with _m ${ }^{2}$ units.

Why Use Your Own Units?

Note: If you create a userdefined unit for an existing category, you can select it from the UNITS dialog box menu. But you cannot use MODE to select the unit as a default for displayed results.

Rules for UserDefined Unit Names

Defining a Unit

Note: User-defined units are displayed in lowercase characters, regardless of the case you use to define them.

Note: User-defined units such as_dm are stored as variables. You can delete them the same as you would any variable.

In any category, you can expand the list of available units by defining a new unit in terms of one or more pre-defined units. You can also use "standalone" units.

Some example reasons to create a unit are:

- You want to enter length values in dekameters. Define $10 _m$ as a new unit named _dm.
- Instead of entering _m/_s ${ }^{2}$ as an acceleration unit, you define that combination of units as a single unit named _ms2.
- You want to calculate how many times someone blinks. You can use _blinks as a valid unit without defining it. This "standalone" unit is treated similar to a variable that is not defined. For instance, 3_blinks is treated the same as 3a.

The naming rules for units are similar to variables.

- Can have up to 8 characters.

First character must be an underscore. For _, press:
TI-89: [_]
TI-92 Plus: 2nd [_]

- Second character can be any valid variable name character except _ or a digit. For example, _9f is not valid.
- Remaining characters (up to 6) can be any valid variable name character except an underscore.

Define a unit the same way you store to a variable.
definition $\xrightarrow[\square]{\rightarrow}$ _newUnit \rightarrow, press STO.

For example, to define a dekameter unit:

$$
\text { 10_m } \rightarrow \text { _dm }
$$

To define an acceleration unit:

```
_m/_s^2 -> _ms2
```

To calculate 195 blinks in 5 minutes as _blinks/_min:

195_blinks/(5_min)

Assuming unit defaults for Length and Time are set to _m and _s.

List of Pre-Defined Constants and Units

Abstract

This section lists the pre-defined constants and units by category. You can select any of these from the UNITS dialog box. If you use MODE to set default units, note that categories with only one defined unit are not listed.

Defaults for SI and ENG/US

Constants

Note: The Tl-89 / Tl-92 Plus simplifies unit expressions and displays results according to your default units. Therefore, constant values displayed on your screen may appear different from the values in this table.

Tip: For Greek characters, refer to Shortcut Keys (inside front and back covers).

Length

The SI and ENG/US systems of measurement use built-in default units. In this section, the built-in defaults are indicated by (SI) and (ENG/US). In some categories, both systems use the same default.

For a description of the NONE default, refer to page 87. Notice that some categories do not have default units.

_g acceleration of gravity.......9.80665_m/_s ${ }^{2}$	
_Gcgravitational constant........6.67259E-11_m²/_kg/_s ${ }^{2}$	
_hPlanck's constant..............6.6260755E-34_J•_s	
kBoltzmann's constant........1.380658E-23_J/_ ${ }^{\text {T }}$ K	
_Me.........electron rest mass.............9.1093897E-31_kg	
Mn......... neutron rest mass1.6749286E-27_kg	
Mp.........proton rest mass1.6726231E-27_kg	
NaAvogadro's number............6.0221367E23 /_mol	
_qelectron charge..................1.60217733E-19_coul	
Rb Bohr radius5.29177249E¹1_m	
Rc..........molar gas constant.............8.31451_J/_mol/_ ${ }^{\circ} \mathrm{K}$	
RdbRydberg constant..............10973731.53413 /_m	
_Vm.........molar volume....................2.241409E-2_m³/_mol	
_ع0.......... permittivity of a vacuum......8.8541878176204E¹2_F/_m	
_ σ. Stefan-Boltzmann constant ..5.6705119E-8_W/_m²/_ ${ }^{\circ} \mathrm{K}^{4}$	
_ $\phi 0$.......... magnetic flux quantum.......2.0678346161E ${ }^{-15}$ _ Wb	
_ 40 permeability of a vacuum $1.2566370614359 \mathrm{E}^{-6}$ _N/_A ${ }^{2}$	
_ $\mu \mathrm{b}$. Bohr magneton.................9.2740154E-24_J•_m²/_Wb	
_Ang angstrom	_mi.........mile
au astronomical unit	_mil........1/1000 inch
_cm centimeter	_mm........millimeter
fathfathom	_Nminautical mile
fm..........fermi	_pcparsec
ft...........foot (ENG/US)	_rod.........rod
in..........inch	_yd yard
km......... kilometer	_ μ...........micron
ltyrlight year	_Aangstrom
_m..........meter (SI)	
_acre.......acre	NONE (SI) (ENG/US)
ha..........hectare	

Volume	_cup........cup _floz.......fluid ounce _flozUK.. British fluid ounce _gal........ gallon _galUK..... British gallon _1...........liter	_ml............milliliter _pt.............int _qt........ quart _tbsp......tablespoon _tspteaspoon NONE (SI) (ENG/US)
Time	_day day _hr..........hour _min........minute _msnillisecond _ns	_s.............second (SI) (ENG/US) _week.....week _yr...........year _ $\mu \mathrm{s}$. microsecond
Velocity	_knotknot _kph...... kilometers per hour	mph.......miles per hour NONE (SI) (ENG/US)
Acceleration	no pre-defined units	
Temperature	$__{-}^{\circ} \mathrm{C}$. ${ }^{\circ}$ Celsius \quad For ${ }^{\circ}$, press 2nd $\left[{ }^{\circ}\right]$.	${ }_{-}{ }^{\circ} \mathrm{K}{ }^{\circ}$ Kelvin ${ }_{-} \mathrm{R}{ }^{\circ}$ Rankine (no default)
Luminous Intensity	$\begin{aligned} & \text { _cdcandela } \\ & \text { (no default) } \end{aligned}$	
Amount of Substance	(no default)	
Mass	_amu......... atomic mass unit _gmgram _kg........ kilogram (SI) _lb........ pound (ENG/US) _mg....... milligram _mton..... metric ton	_oz............ounce _slugslug _ton........ton _tonnemetric ton _tonUK...long ton
Force	$\begin{aligned} & \text { _dyne...... dyne } \\ & \text { _-kgf...........ilogram force } \\ & \text { _lbf........pound force (ENG/US) } \end{aligned}$	_N.............newton (SI) _tonfton force
Energy	```_Btu British thermal unit (ENG/US) _cal.........``` \qquad ```calorie _erg..``` \qquad ```_eV.``` \qquad ```electron volt```	_ftlb...........foot-pound _J...........joule (SI) _kcal.......kilocalorie _kWh.......kilowatt-hour _latm.....liter-atmosphere
Power	$\begin{aligned} & \text { _hp............horsepower (ENG/US) } \\ & \text { _kW.......kilowatt } \end{aligned}$	_Wwatt (SI)

Pressure	```_atm........atmosphere _bar........bar inH2O ... inches of water inHg......inches of mercury _mmH2O..millimeters of water```	$\begin{aligned} & \text { _mmHg...millimeters of mecury } \\ & \text { _Pa.........pascal (SI) } \\ & \text { _psipounds per square } \\ & \quad \begin{array}{c} \text { inch (ENG/US) } \end{array} \\ & \text { _torr........millimeters of mecury } \end{aligned}$
Viscosity, Kinematic	_St..........stokes	
Viscosity, Dynamic	_P........... poise	
Frequency	$\begin{aligned} & \text { _GHz........ gigahertz } \\ & \text { _Hz.........hertz (SI) (ENG/US) } \end{aligned}$	_kHz.........kilohertz _MHz megahertz
Electric Current	$\begin{aligned} & \text { _A............. ampere (SI) (ENG/US) } \\ & \text { _kA kiloampere } \\ & \text { _mA milliampere } \end{aligned}$	${ }^{\prime} \mu \mathrm{A}$. microampere
Charge	_coul.......coulomb (SI) (ENG/US)	
Potential	_kV............ kilovolt _mV....... millivolt	$\begin{aligned} & \text { _V.............volt (SI) (ENG/US) } \\ & \text { _volt......volt } \end{aligned}$
Resistance	_k	$\begin{aligned} & \text { _M } \Omega \text {.........megaohm } \\ & \text { _ohm......ohm } \\ & _\Omega \text { ohm (SI) (ENG/US) } \end{aligned}$
Conductance	_mho....... mho (ENG/US) _mmho ...millimho	_siemens.. siemens (SI) _ $\mu \mathrm{mho}$....micromho
Capacitance	$\begin{aligned} & \text { _F.............farad (SI) (ENG/US) } \\ & \text { _nF.........nanofarad } \\ & \text { _pF......... picofarad } \end{aligned}$	_ $\mu \mathrm{F}$. microfarad
Mag Field Strength	_Oe oersted	NONE (SI) (ENG/US)
Mag Flux Density	_Gs.........gauss	_T...........tesla (SI) (ENG/US)
Magnetic Flux	_Wb......... weber (SI) (ENG/US)	
Inductance	$\begin{aligned} & \text { _henryhenry (SI) (ENG/US) } \\ & \text { _mH....... millihenry } \\ & \text { _nH nanohenry } \end{aligned}$	${ }_{\sim} \mu \mathrm{H}$.........microhenry

Additional Home Screen Topics

Saving the Home Screen Entries as a Text Editor Script 94
Cutting, Copying, and Pasting Information 95
Creating and Evaluating User-Defined Functions 97
Using Folders to Store Independent Sets of Variables 100
If an Entry or Answer Is "Too Big" 103

To help you get started using the TI-89 / TI-92 Plus as quickly as possible, Chapter 2 described the basic operations of the Home screen.

This chapter describes additional operations that can help you use the Home screen more effectively.

Because this chapter consists of various stand-alone topics, it does not start with a "preview" example.

Saving the Home Screen Entries as a Text Editor Script

Saving the Entries in the History Area

Note: Only the entries are saved, not the answers.

Note: For information about folders, refer to page 100.

From the Home screen:

1. Press F1 and select 2:Save Copy As.
2. Specify a folder and text variable that you want to use to store the entries.

Item	Description
Type	Automatically set as Text and cannot be changed.
Folder	Shows the folder in which the text variable will be stored. To use a different folder, press © to display a menu of existing folders. Then select a folder.
Variable	Type a valid, unused variable name.

3. Press ENTER (after typing in an input box such as Variable, press ENTER twice).

Restoring the Saved

 Entries
Note: For complete

 information on using the Text Editor and executing a command script, refer to Chapter 18.Variable Type a valid, unused variable name.

Because the entries are stored in a script format, you cannot restore them from the Home screen. (On the Home screen's F1 toolbar menu, 1:Open is not available.) Instead:

1. Use the Text Editor to open the variable containing the saved Home screen entries.

The saved entries are listed as a series of command lines that you can execute individually, in any order.

To save all the entries in the history area, you can save the Home screen to a text variable. When you want to reexecute those entries, use the Text Editor to open the variable as a command script.
2. Starting with the cursor on the first line of the script, press F4 repeatedly to execute the commands line by line.
3. Display the restored Home screen.

This split screen shows the Text Editor (with the command line script) and the restored Home screen.

Cutting, Copying, and Pasting Information

Cut, copy, and paste operations let you move or copy information within the same application or between different applications. These operations use the TI-89 / TI-92 Plus's clipboard, which is an area in memory that serves as a temporary storage location.

Auto-paste vs. Cut/Copy/Paste

Cutting or Copying Information to the Clipboard

Tip: You can cut, copy or paste without having to use the F1 toolbar menu. Press: TI-89: \rightarrow [CUT], \bullet [COPY], or \bullet [PASTE] TI-92 Plus:
$\bullet \mathrm{X}, \bullet \mathrm{C}$, or $\bullet \mathrm{V}$

Note: When you cut or copy information, it replaces the clipboard's previous contents, if any.

Auto-paste, described in Chapter 2, is a quick way to copy an entry or answer in the history area and paste it to the entry line.

1. Use Θ and Θ to highlight the item in the history area.
2. Press ENTER to auto-paste that item to the entry line.

To copy or move information in the entry line, you must use a cut, copy, or paste operation. (You can perform a copy operation in the history area, but not a cut or paste.)

When you cut or copy information, that information is placed in the clipboard. However, cutting deletes the information from its current location (used to move information) and copying leaves the information.

1. Highlight the characters that you want to cut or copy.

In the entry line, move the cursor to either side of the characters. Hold \uparrow and press (() or © ($)$ to highlight characters to the left or right of the cursor, respectively.
2. Press $\mathbb{F 1}$ and select 4:Cut or 5:Copy.

Clipboard = (empty or the previous contents)

Clipboard $=x^{\wedge} 4-3 x^{\wedge} 3-6 x^{\wedge} 2+8 x$
Clipboard $=x^{\wedge} 4-3 x^{\wedge} 3-6 x^{\wedge} 2+8 x$

Cutting is not the same as deleting. When you delete information, it is not placed in the clipboard and cannot be retrieved.

Pasting Information from the Clipboard

Example: Copying and Pasting

Tip: You can also reuse an expression by creating a user-defined function. Refer to page 97.

Tip: By copying and pasting, you can easily transfer information from one application to another.

A paste operation inserts the contents of the clipboard at the current cursor location on the entry line. This does not change the contents of the clipboard.

1. Position the cursor where you want to paste the information.
2. Press F1 and select 6:Paste, or use the key shortcut:

TI-89: [PASTE]
Tl-92 Plus: \downarrow

Suppose you want to reuse an expression without retyping it each time.

1. Copy the applicable information.
a. Use \uparrow (1) or $\uparrow(1)$ to highlight the expression.

b. Press:

TI-89: $\bullet[C O P Y]$
TI-92 Plus: C
c. For this example, press ENTER to evaluate the entry.
2. Paste the copied information into a new entry.
a. Press F3 1 to select the \boldsymbol{d} differentiate function.
b. Press:

TI-89: \bullet [PASTE]
Tl-92 Plus: $\bullet \vee$
to paste the copied expression.
c. Complete the new entry, and press ENTER.

- solve $\left(x^{4}-3 \cdot x^{3}-6 \cdot x^{2}+8 \cdot(\right.$ $x=4$ or $x=1$ or $x=0$ or p - $\frac{d}{d x}\left(x^{4}-3 \cdot x^{3}-6 \cdot x^{2}+8 \cdot x\right)$

3. Paste the copied information into a different application.
a. Press $\bullet[Y=]$ to display the $\mathrm{Y}=$ Editor.
b. Press ENTER to define $\mathrm{y} 1(\mathrm{x})$.
c. Press:

TI-89: [PASTE]
TI-92 Plus: $\quad \mathrm{V}$
to paste.
d. Press ENTER to save the new definition.

Creating and Evaluating User-Defined Functions

Format of a Function

Note: Function names follow the same rules as variable names. Refer to "Storing and Recalling Variable Values" in Chapter 2.

Creating a UserDefined Function

User-defined functions can be a great time-saver when you need to repeat the same expression (but with different values) multiple times. User-defined functions can also extend your TI-89 / TI-92 Plus's capabilities beyond the built-in functions.

The following examples show user-defined functions with one argument and two arguments. You can use as many arguments as necessary. In these examples, the definition consists of a single expression (or statement).

When defining functions and programs, use unique names for arguments that will not be used in the arguments for a subsequent function or program call.

In the argument list, be sure to use the same arguments that are used in the definition. For example, cube $(\mathrm{n})=\mathrm{x}^{3}$ gives unexpected results when you evaluate the function.

Arguments (x and y in these examples) are placeholders that represent whatever values you pass to the function. They do not represent the variables x and y unless you specifically pass x and y as the arguments when you evaluate the function.

Use one of the following methods.

Method	Description
STOD	Store an expression to a function name (including the argument list).

Creating a MultiStatement Function

Note: For information about similarities and differences between functions and programs, refer to Chapter 17.

You can also create a user-defined function whose definition consists of multiple statements. The definition can include many of the control and decision-making structures (If, Elself, Return, etc.) used in programming.

For example, suppose you want to create a function that sums a series of reciprocals based on an entered integer (n):

$$
\frac{1}{n}+\frac{1}{n-1}+\ldots+\frac{1}{1}
$$

When creating the definition of a multi-statement function, it may be helpful to visualize it first in a block form.

Func and EndFunc must begin and end the function.

For information about the individual statements, refer to Appendix A.

Use argument names that will never be used when calling the function or program.

- Use a colon to separate each statement.
Define sumrecip(nn)=Func:Local temp,i: ... : EndFunc

Tip: It's easier to create a complicated multi-statement function in the Program Editor than on the Home screen. Refer to Chapter 17.

On the Home screen:
 sure to include colons.

You can use a user-defined function just as you would any other function. Evaluate it by itself or include it in another expression.

Displaying and
 Editing a Function Definition

Note: You can view a userdefined function in the CATALOG dialog box, but you cannot use the CATALOG to view or edit its definition.

To:	Do this:
Display a list of all user-defined functions	Press 2nd [VAR-LINK] to display the VAR-LINK screen. You may need to use the F2 View toolbar menu to specify the Function variable type. (Refer to Chapter 21.) —or — Press: TI-89: CATALOG F4 TI-92 Plus: 2nd [CATALOG] F4

Display a list of Flash	Press:
application functions	TI-89: CATALOG F3
	TI-92 Plus: 2nd [CATALOG] F3

Display the definition of a user-defined function function and display the Contents menu. TI-89: 2nd [F6]
TI-92 Plus: F6

- or -

From the Home screen, press 2nd [RCL]. Type the function name but not the argument list (such as xroot), and press ENTER twice.

- or -

From the Program Editor, open the function. (Refer to Chapter 17.)

Edit the definition

From the Home screen, use 2nd [RCL] to display the definition. Edit the definition as necessary. Then use STOD or Define to save the new definition.

- or -

From the Program Editor, open the function, edit it, and save your changes. (Refer to Chapter 17.)

Using Folders to Store Independent Sets of Variables

Folders and Variables

Note: User-defined variables are stored in the "current folder" unless you specify otherwise. Refer to "Using Variables in Different Folders" on page 102.

The TI-89 / TI-92 Plus has one built-in folder named MAIN, and all variables are stored in that folder. By creating additional folders, you can store independent sets of user-defined variables (including user-defined functions).

Folders give you a convenient way to manage variables by organizing them into related groups. For example, you can create separate folders for different TI-89 / TI-92 Plus applications (Math, Text Editor, etc.) or classes.

- You can store a userdefined variable in any existing folder.
- A system variable or a variable with a reserved name, however, can be stored in the MAIN folder only.

$$
\begin{aligned}
& \hline \begin{array}{c}
\text { Example of variables that } \\
\text { can be stored in MAIN only }
\end{array} \\
& \hline \text { Window variables } \\
& \text { (xmin, xmax, etc.) } \\
& \text { Table setup variables } \\
& \text { (TbIStart, } \Delta \text { Tbl, etc.) } \\
& \text { Y= Editor functions } \\
& \text { (y1(x), etc.) }
\end{aligned}
$$

The user-defined variables in one folder are independent of the variables in any other folder.

Therefore, folders can store separate sets of variables with the same names but different values.

You cannot create a folder within another folder.

ALG102
User-defined
$b=5, c=100$
$f(x)=\sin (x)+\cos (x)$

DAVE
 User-defined $a=3, b=1, c=2$
 $f(x)=x^{2}+6$

$$
\longrightarrow \quad \begin{aligned}
& \frac{\text { MATH }}{\text { User-defined }} \begin{array}{l}
\text { a=42, } c=6 \\
f(x)=3 x^{2}+4 x+25
\end{array}
\end{aligned}
$$

The system variables in the MAIN folder are always directly accessible, regardless of the current folder.

Creating a Folder from the Home Screen

Creating a Folder from the VAR-LINK Screen

Setting the Current
Folder from the Home Screen

Setting the Current Folder from the MODE Dialog Box

Tip: To cancel the menu or exit the dialog box without saving any changes, press ESC].

Enter the NewFold command.
 automatically as the current folder.

The VAR-LINK screen, which is described in Chapter 21, lists the existing variables and folders.

1. Press [2nd [VAR-LINK].
2. Press F1 Manage and select 5:Create Folder.
3. Type a unique folder name up to

eight characters, and press ENTER twice.

After you create a new folder from VAR-LINK, that folder is not automatically set as the current folder.

Enter the setFold function.
setFold (folderName)
setFold is a function, which requires you to enclose the folder name in parentheses.

When you execute setFold, it returns the name of the folder that was previously set as the current folder.

To use the MODE dialog box:

1. Press MODE.
2. Highlight the Current Folder setting.
3. Press (1) to display a menu of existing folders.

4. Select the applicable folder. Either:

- Highlight the folder name and press ENTER.
- or -
- Press the corresponding number or letter for that folder.

5. Press ENTER to save your changes and close the dialog box.

Using Variables in Different Folders

Note: This example assumes that you have already created a folder named MATH.

Note: For information about the VAR-LINK screen, refer to Chapter 21.

Deleting a Folder from the Home Screen

Note: You cannot delete the MAIN folder.

Deleting a Folder from the VAR-LINK Screen

You can access a user-defined variable or function that is not in the current folder. Specify the complete pathname instead of only the variable name.

A pathname has the form:
folderName \backslash variableName

- or -
folderName \backslash functionName
For example:

If Current Folder $=$ MAIN	Folders
	MAIN $\begin{aligned} & a=1 \\ & f(x)=x^{3}+x^{2}+x \end{aligned}$
	MATH $\begin{aligned} & a=42 \\ & f(x)=3 x^{2}+4 x+25 \end{aligned}$

To see a list of existing folders and variables, press [2nd [VAR-LINK]. On the VAR-LINK screen, you can highlight a variable and press ENTER to paste that variable name to the Home screen's entry line. If you paste a variable name that is not in the current folder, the pathname (folderNamelvariableName) is pasted.

Before deleting a folder, you must delete all the variables stored in that folder.

- To delete a variable, enter the DelVar command.

DelVar var1 [, var2] [, var3] ...

- To delete an empty folder, enter the DelFold command.

DelFold folder1 [, folder2] [, folder3] ...

VAR-LINK lets you delete a folder and its variables at the same time. Refer to Chapter 21.

1. Press [2nd [VAR-LINK].
2. Select the item(s) to delete and press F1 1 or \square. (If you use F4 to select a folder, its variables are selected automatically.)
3. Press ENTER to confirm the deletion.

If an Entry or Answer Is "Too Big"

If an Entry or Answer Is "Too Long"

Note: This example uses the randMat function to generate a 25×25 matrix.

If There Is not Enough Memory

Note: This example uses the seq function to generate a sequential list of integers from 1 to 2500.

In some cases, an entry or answer may be "too long" and/or "too tall" to be displayed completely in the history area. In other cases, the TI-89 / TI-92 Plus may not be able to display an answer because there is not enough free memory.

Move the cursor into the history area, and highlight the entry or answer. Then use the cursor pad to scroll. For example:

- The following shows an answer that is too long for one line.

- The following shows an answer that is both too long and too tall to be displayed on the screen.

A <<...>> symbol is displayed when the TI-89 / TI-92 Plus does not have enough free memory to display the answer.

For example:

When you see the <<...>> symbol, the answer cannot be displayed even if you highlight it and try to scroll.

In general, you can try to:

- Free up additional memory by deleting unneeded variables and/or Flash applications. Use [2nd [VAR-LINK] as described in Chapter 21.
- If possible, break the problem into smaller parts that can be calculated and displayed with less memory.

Basic Function Graphing

Preview of Basic Function Graphing. 106
Overview of Steps in Graphing Functions 107
Setting the Graph Mode 108
Defining Functions for Graphing 109
Selecting Functions to Graph 111
Setting the Display Style for a Function. 112
Defining the Viewing Window 113
Changing the Graph Format 114
Graphing the Selected Functions 115
Displaying Coordinates with the Free-Moving Cursor 116
Tracing a Function 117
Using Zooms to Explore a Graph 119
Using Math Tools to Analyze Functions 122

This chapter describes the steps used to display and explore a graph. Before using this chapter, you should be familiar with Chapter 2.

$\mathrm{Y}=$ Editor shows
an algebraic
representation.
Graph screen shows a graphic representation.

Although this chapter describes how to graph $y(x)$ functions, the basic steps apply to all graphing modes. Later chapters give specific information about the other graphing modes.

Preview of Basic Function Graphing

Graph a circle of radius 5 , centered on the origin of the coordinate system. View the circle using the standard viewing window (ZoomStd). Then use ZoomSqr to adjust the viewing window.

Note: There is a gap between the top and bottom halves of the circle because each half is a separate function. The mathematical endpoints of each half are $(-5,0)$ and (5,0). Depending on the viewing window, however, the plotted endpoints for each half may be slightly different from their mathematical endpoints.

Overview of Steps in Graphing Functions

To graph one or more $\mathrm{y}(\mathrm{x})$ functions, use the general steps shown below. For a detailed description of each step, refer to the following pages. You may not need to do all the steps each time you graph a function.

Graphing Functions

Tip: To turn off any stat data plots (Chapter 16), press [F5 5 or use [F4 to deselect them.

Tip: This is optional. For multiple functions, this helps visually distinguish one from another.

Tip: F2 Zoom also changes the viewing window.

F97

Exploring the Graph From the Graph screen, you can:

- Display the coordinates of any pixel by using the free-moving cursor, or of a plotted point by tracing a function.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph.
- Use the F5 Math toolbar menu to find a zero, minimum, maximum, etc.

Setting the Graph Mode

Graph Mode

Note: For graphs that do not use complex numbers, set Complex Format $=$ REAL . Otherwise, it may affect graphs that use powers, such as $x^{1 / 3}$.

Note: Other Graph mode settings are described in later chapters.

Angle Mode

Before graphing $y(x)$ functions, you must select FUNCTION graphing. You may also need to set the Angle mode, which affects how the TI-89 / TI-92 Plus graphs trigonometric functions.

1. Press MODE to display the MODE dialog box, which shows the current mode settings.
2. Set the Graph mode to FUNCTION. Refer to "Setting Modes" in Chapter 2.

While this chapter specifically describes $y(x)$ function graphs, the TI-89 / TI-92 Plus lets you select from six Graph mode settings.

Graph Mode Setting	Description
FUNCTION	$\mathrm{y}(\mathrm{x})$ functions
PARAMETRIC	$\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ parametric equations
POLAR	$\mathrm{r}(\theta)$ polar equations
SEQUENCE	$\mathrm{u}(\mathrm{n})$ sequences
3D	$\mathrm{z}(\mathrm{x}, \mathrm{y})$ 3D equations
DIFFERENTIAL EQUATION	$\mathrm{y}^{\prime}(\mathrm{t})$ differential equations

When using trigonometric functions, set the Angle mode for the units (RADIAN or DEGREE) in which you want to enter and display angle values.

To see the current Graph mode and Angle mode, check the status line at the bottom of the screen.

Defining Functions for Graphing

Defining a New Function

Note: The function list shows abbreviated function names such as y1, but the entry line shows the full name $\mathrm{y} 1(\mathrm{x})$.

Tip: For an undefined function, you do not need to press ENTER or F3]. When you begin typing, the cursor moves to the entry line.

Tip: If you accidentally move the cursor to the entry line, press ESC to move it back to the function list.

Editing a Function

Tip: To cancel any editing changes, press ESC instead of ENTER.

In FUNCTION graphing mode, you can graph functions named $\mathrm{y} 1(\mathrm{x})$ through $\mathrm{y} 99(\mathrm{x})$. To define and edit these functions, use the $\mathrm{Y}=$ Editor. (The $\mathrm{Y}=$ Editor lists function names for the current graphing mode. For example, in POLAR graphing mode, function names are $\mathrm{r} 1(\theta)$, $\mathrm{r} 2(\theta)$, etc.)

1. Press $\square[Y=]$ or APPS 2 to display the $Y=$ Editor.

2. Press Θ and Θ to move the cursor to any undefined function. (Use $2 n d \odot$ and $2 n d \odot$ to scroll one page at a time.)
3. Press ENTER or F3 to move the cursor to the entry line.
4. Type the expression to define the function.

- The independent variable in function graphing is x .
- The expression can refer to other variables, including matrices, lists, and other functions. Only floats and lists of floats will produce a plot.

5. When you complete the expression, press ENTER.

The function list now shows the new function, which is automatically selected for graphing.

From the $\mathrm{Y}=$ Editor:

1. Press Θ and Θ to highlight the function.
2. Press ENTER or F3 to move the cursor to the entry line.
3. Do any of the following.

- Use (1) and © to move the cursor within the expression and edit it. Refer to "Editing an Expression in the Entry Line" in Chapter 2.
- or -
- Press CLEAR once or twice to clear the old expression, and then type the new one.

4. Press ENTER.

The function list now shows the edited function, which is automatically selected for graphing.

Clearing a Function

Note: F1 8 does not erase any stat plots (Chapter 16).

Shortcuts to Move the Cursor

From the Home Screen or a Program

Tip: User-defined functions can have almost any name. However, if you want them to appear in the $Y=$ Editor, use function names $y 1(x)$, $y 2(x)$, etc.

From the $\mathrm{Y}=$ Editor:

To erase:	Do this:
A function from the function list	Highlight the function and press \square or CLEAR.
A function from the entry line	Press CLEAR once or twice (depending on the cursor's location) and then press ENTER.
All functions	Press F1 and then select 8:Clear Functions. When prompted for confirmation, press ENTER.

You don't have to clear a function to prevent it from being graphed. As described on page 111, you can select the functions you want to graph.

From the Y=Editor:

Press:	To:
$\bigcirc \odot$ or	Go to function 1 or to the last defined function,
$\bullet \odot$	respectively. If the cursor is on or past the last

You can also define and evaluate a function from the Home screen or a program.

- Use the Define and Graph commands. Refer to:
- "Graphing a Function Defined on the Home Screen" and "Graphing a Piecewise Defined Function" in Chapter 12.
- "Overview of Entering a Function" in Chapter 17.
- Store an expression directly to a function variable. Refer to:
- "Storing and Recalling Variable Values" in Chapter 2.
- "Creating and Evaluating User-Defined Functions" in Chapter 5.

Selecting Functions to Graph

Regardless of how many functions are defined in the $\mathrm{Y}=$ Editor, you can select the ones you want to graph.

Selecting or Deselecting Functions

Press $\rightarrow[Y=]$ or APPS 2 to display the $Y=$ Editor.
A " \checkmark " indicates which functions will be graphed the next time you display the Graph screen.

To select or deselect: Do this:

A specified function	1. Move the cursor to highlight the function. 2. Press F4. This procedure selects a deselected function or deselects a selected function.
All functions	1. Press F5 to display the All toolbar menu. 2. Select the applicable item.

You can also select or deselect functions from the Home screen or a program.

- Use the FnOn and FnOff commands (available from the Home screen's F4] Other toolbar menu) for functions. Refer to Appendix A.
- Use the PlotsOn and PlotsOff commands for stat plots. Refer to Appendix A.

From the Home Screen or a Program

Setting the Display Style for a Function

For each defined function, you can set a style that specifies how that function will be graphed. This is useful when graphing multiple functions. For example, set one as a solid line, another as a dotted line, etc.

Tip: To set Line as the style for all functions, press F5 and select 4:Reset Styles.

If You Use Above or Below Shading

From the Y= Editor:

1. Move the cursor to highlight the applicable function.
2. Select the Style menu:

TI-89: Press 2nd [F6].
TI-92 Plus: Press F6.

- Although the Line item is initially highlighted, the function's current style is indicated by a \checkmark mark.
- To exit the menu without making a change, press ESC.

3. To make a change, select the applicable style.
\(\left.\left.\left.$$
\begin{array}{ll}\hline \text { Style } & \text { Description } \\
\hline \text { Line } & \begin{array}{l}\text { Connects plotted points with a line. This is the default. } \\
\text { Dot }\end{array} \\
\begin{array}{l}\text { Displays a dot at each plotted point. } \\
\text { Square }\end{array} & \begin{array}{l}\text { Displays a solid box at each plotted point. } \\
\text { Thick }\end{array} \\
\text { Connects plotted points with a thick line. }\end{array}
$$\right\} $$
\begin{array}{l}\text { A round cursor moves along the leading edge of the } \\
\text { graph but does not leave a path. }\end{array}
$$\right] \begin{array}{l}A round cursor moves along the leading edge of the

graph and does leave a path.\end{array}\right]\)| Shades the area above the graph. |
| :--- |
| Above |
| Below | | Shades the area below the graph. |
| :--- |

The TI-89 / TI-92 Plus has four shading patterns, used on a rotating basis. If you set one function as shaded, it uses the first pattern. The next shaded function uses the second pattern, etc. The fifth shaded function reuses the first pattern.

When shaded areas intersect, their patterns overlap.

You can also set a function's style from the Home screen or a program. Refer to the Style command in Appendix A.

From the Home
Screen or a Program

Defining the Viewing Window

The viewing window represents the portion of the coordinate plane displayed on the Graph screen. By setting Window variables, you can define the viewing window's boundaries and other attributes. Function graphs, parametric graphs, etc., have their own independent set of Window variables.

Displaying Window Variables in the Window Editor

Tip: To turn off tick marks, set $x s c l=0$ and/or $y s c l=0$.

Tip: Small values of xres improve the graph's resolution but may reduce the graphing speed.

Changing the Values

Note: If you type an expression, it is evaluated when you move the cursor to a different Window variable or leave the Window Editor.

Press \rightarrow [WINDOW] or APPS 3 to display the Window Editor.

Window Variables (shown in Window Editor)

Corresponding Viewing Window (shown on Graph screen)
Variable Description
xmin, xmax, Boundaries of the viewing window. $y m i n, y m a x$
xscl, yscl Distance between tick marks on the x and y axes.
Sets pixel resolution (1 through 10) for function graphs. The default is 2 .

- At 1 , functions are evaluated and graphed at each pixel along the x axis.
- At 10 , functions are evaluated and graphed at every 10th pixel along the x axis.

From the Window Editor:

1. Move the cursor to highlight the value you want to change.
2. Do any of the following:

- Type a value or an expression. The old value is erased when you begin typing.
- or -
- Press CLEAR to clear the old value; then type the new one.
- or -
- Press (1) or (1) to remove the highlighting; then edit the value.

Values are stored as you type them; you do not need to press ENTER. ENTER simply moves the cursor to the next Window variable.

You can also store values directly to the Window variables from the Home screen or a program. Refer to "Storing and Recalling Variable Values" in Chapter 2.

Displaying Graph Format Settings

Tip: You also can display the GRAPH FORMATS dialog box from the $Y=$ Editor, Window Editor, or Graph screen. Press:
TI-89: $\rightarrow 1$
TI-92 Plus: $\quad \mathrm{F}$

Tip: To turn off tick marks, define the viewing window so that $x s c l$ and/or $y s c l=0$.

Changing Settings

Tip: To cancel a menu or exit the dialog box without saving any changes, use ESC instead of ENTER.

You can set the graph format to show or hide reference elements such as the axes, a grid, and the cursor's coordinates. Function graphs, parametric graphs, etc., have their own independent set of graph formats.

From the Y= Editor, Window Editor, or Graph screen, press F1 and select 9:Format.

- The GRAPH FORMATS dialog box shows the current settings.
- To exit without making a change, press ESC.

Format	Description
Coordinates	Shows cursor coordinates in rectangular (RECT) or polar (POLAR) form, or hides (OFF) the coordinates.
Graph Order	Graphs functions one at a time (SEQ) or all at the same time (SIMUL).
Grid	Shows (ON) or hides (OFF) grid points that correspond to the tick marks on the axes.
Axes	Shows (ON) or hides (OFF) the x and y axes.
Leading Cursor	Shows (ON) or hides (OFF) a reference cursor that tracks the functions as they are graphed.
Labels	Shows (ON) or hides (OFF) labels for the x and y axes.

From the GRAPH FORMATS dialog box:

1. Move the cursor to highlight the format setting.
2. Press (1) to display a menu of valid settings for that format.
3. Select a setting. Either:

- Move the cursor to highlight the setting, and then press ENTER.
- or -
- Press the number for that setting.

4. After changing all applicable format settings, press ENTER to save your changes and close the GRAPH FORMATS dialog box.

Graphing the Selected Functions

Displaying the Graph Screen

Note: If you select an F2 Zoom operation from the $Y=$ Editor or Window Editor, the TI-89 / TI-92 Plus automatically displays the Graph screen.

Interrupting Graphing

When you are ready to graph the selected functions, display the Graph screen. This screen uses the display style and viewing window that you previously defined.

Press \square [GRAPH] or APPS 4. The TI-89 / TI-92 Plus automatically graphs the selected functions.

While graphing is in progress:

- To pause graphing temporarily, press ENTER. (The PAUSE indicator replaces BUSY.) To resume, press ENTER again.
- To cancel graphing, press 0 N . To start graphing again from the beginning, press F4 (ReGraph).

Depending on various settings, a function may be graphed such that it is too small, too large, or offset too far to one side of the screen. To correct this:

- Redefine the viewing window with different boundaries (page 113).
- Use a Zoom operation (page 119).

When you display the Graph screen, the Smart Graph feature displays the previous window contents immediately, provided nothing has changed that requires regraphing.

Smart Graph updates the window and regraphs only if you have:

- Changed a mode setting that affects graphing, a function's graphing attribute, a Window variable, or a graph format.
- Selected or deselected a function or stat plot. (If you only select a new function, Smart Graph adds that function to the Graph screen.)
- Changed the definition of a selected function or the value of a variable in a selected function.
- Cleared a drawn object (Chapter 12).
- Changed a stat plot definition (Chapter 16).

Displaying Coordinates with the Free-Moving Cursor

Free-Moving Cursor

Tip: If your screen does not show coordinates, set the graph format so that Coordinates $=$ RECT or POLAR. Press:
TI-89: -
TI-92 Plus: \oplus F

Tip: To hide the cursor and its coordinates temporarily, press CLEAR, ESC, or ENTER. The next time you move the cursor, it moves from its last position.

To display the coordinates of any location on the Graph screen, use the free-moving cursor. You can move the cursor to any pixel on the screen; the cursor is not confined to a graphed function.

When you first display the Graph screen, no cursor is visible. To display the cursor, press a cursor pad arrow. The cursor moves from the center of the screen, and its coordinates are displayed.

To move the free-moving cursor: Press:

To an adjoining pixel A cursor pad arrow for any direction.

In increments of 10 pixels
2nd and then a cursor pad arrow.

When you move the cursor to a pixel that appears to be "on" the function, it may be near the function but not on it.

To increase the accuracy:

- Use the Trace tool described on the next page to display coordinates that are on the function.
- Use a Zoom operation to zoom in on a portion of the graph.

Beginning a Trace

Note: If any stat plots are graphed (Chapter 16), the trace cursor appears on the lowest-numbered stat plot.

Moving along a Function

Note: If you enter an x value, it must be between x min and xmax.

Tip: If your screen does not show coordinates, set the graph format so that Coordinates $=$ RECT or POLAR. Press:
TI-89: ${ }^{(1)}$
Tl-92 Plus: \square

Tip: Use QuickCenter, described on the next page, to trace a function that goes above or below the window.

To display the exact coordinates of any plotted point on a graphed function, use the F3 Trace tool. Unlike the freemoving cursor, the trace cursor moves only along a function's plotted points.

From the Graph screen, press [F3.
The trace cursor appears on the function, at the middle x value on the screen. The cursor's coordinates are displayed at the bottom of the screen.

If multiple functions are graphed, the trace cursor appears on the lowest-numbered function selected in the $\mathrm{Y}=$ Editor. The function number is shown in the upper right part of the screen.

To move the trace cursor:	Do this:
To the previous or next plotted point	Press © or © (1).
Approximately 5 plotted points (it may be more or less than 5, depending on the xres Window variable)	Press 2nd © 1 or 2nd (1).
To a specified x value on the function	Type the x value and press ENTER.

The trace cursor moves only from plotted point to plotted point along the function, not from pixel to pixel.

Each displayed y value is calculated from the x value; that is, $\mathrm{y}=\mathrm{y} n(\mathrm{x})$. If the function is undefined at an x value, the y value is blank.

You can continue to trace a function that goes above or below the viewing window. You cannot see the cursor as it moves in that "off the screen" area, but the displayed coordinate values show its correct coordinates.

Moving from Function to Function

Automatic Panning

Note: Automatic panning does not work if stat plots are displayed or if a function uses a shaded display style.

Using QuickCenter

Tip: You can use QuickCenter at any time during a trace, even when the cursor is still on the screen.

Press Θ or Θ to move to the previous or next selected function at the same x value. The new function number is shown on the screen.

The "previous or next" function is based on the order of the selected functions in the $\mathrm{Y}=$ Editor, not the appearance of the functions as graphed on the screen.

If you trace a function off the left or right edge of the screen, the viewing window automatically pans to the left or right. There is a slight pause while the new portion of the graph is drawn.

After an automatic pan, the cursor continues tracing.

If you trace a function off the top or bottom of the viewing window, you can press ENTER to center the viewing window on the cursor location.

After QuickCenter, the cursor stops tracing. If you want to continue tracing, press F3.

To cancel a trace at any time, press ESC.
A trace is also canceled when you display another application screen such as the Y= Editor. When you return to the Graph screen and press F3 to begin tracing:

- If Smart Graph regraphed the screen, the cursor appears at the middle x value.
- If Smart Graph does not regraph the screen, the cursor appears at its previous location (before you displayed the other application).

Using Zooms to Explore a Graph

Overview of the Zoom Menu

Note: If you select a Zoom tool from the $Y=$ Editor or Window Editor, the TI-89 / TI-92 Plus automatically displays the Graph screen.

Note: Δx and Δy are the distances from the center of one pixel to the center of an adjoining pixel.

The F2 Zoom toolbar menu has several tools that let you adjust the viewing window. You can also save a viewing window for later use.

Press F2 from the Y= Editor, Window Editor, or Graph screen.

Procedures for using ZoomBox, ZoomIn, ZoomOut, ZoomStd, Memory, and SetFactors are given later in this section.

For more information about the other items, refer to Appendix A.

Zoom Tool	Description
ZoomBox	Lets you draw a box and zoom in on that box.
Zoomln, ZoomOut	Lets you select a point and zoom in or out by an amount defined by SetFactors.
ZoomDec	Sets Δx and Δy to .1, and centers the origin.
ZoomSqr	Adjusts Window variables so that a square or circle is shown in correct proportion (instead of a rectangle or ellipse).
ZoomStd	Sets Window variables to their default values. $\begin{array}{lll} \begin{array}{ll} x \min =-10 & y \min =-10 \\ x m a x=10 & y r e s=2 \\ & y \max =10 \end{array} \\ \text { xscl }=1 & y s c l=1 & \end{array}$
ZoomTrig	Sets Window variables to preset values that are often appropriate for graphing trig functions. Centers the origin and sets:
	$\Delta \mathrm{x}=\pi / 24$ (.130899 \ldots radians or 7.5 degrees) $\mathrm{ymin}=-4$ $\mathrm{xscl}=\pi / 2$ (1.570x96 $=4$ or 90 degrees $)$ $\mathrm{yscl}=0.5$
ZoomInt	Lets you select a new center point, and then sets Δx and Δy to 1 and sets xscl and yscl to 10 .
ZoomData	Adjusts Window variables so that all selected stat plots are in view. Refer to Chapter 16.
ZoomFit	Adjusts the viewing window to display the full range of dependent variable values for the selected functions. In function graphing, this maintains the current xmin and xmax and adjusts ymin and ymax.
Memory	Lets you store and recall Window variable settings so that you can recreate a custom viewing window.
SetFactors	Lets you set Zoom factors for ZoomIn and ZoomOut.

Zooming In with a Zoom Box

Tip: To move the cursor in larger increments, use 2nd (1), 2nd \odot, etc.

Tip: You can cancel ZoomBox by pressing ESC before you press ENTER.

1. From the F2 Zoom menu, select 1 :ZoomBox.

The screen prompts for 1st Corner?
2. Move the cursor to any corner of the box you want to define, and then press ENTER.

The cursor changes to a small square, and the screen prompts for 2nd Corner?
3. Move the cursor to the opposite corner of the zoom box.

As you move the cursor, the box stretches.

4. When you have outlined the area you want to zoom in on, press ENTER.

The Graph screen shows the zoomed area.

Zooming In and Out on a Point

1. From the F2 Zoom menu, select 2:ZoomIn or 3:ZoomOut.

A cursor appears, and the screen prompts for New Center?

2. Move the cursor to the point where you want to zoom in or out, and then press ENTER.

The TI-89 / TI-92 Plus adjusts the Window variables by the Zoom factors defined in SetFactors.

- For a ZoomIn, the x variables are divided by $x F a c t$, and the y variables are divided by yFact . new $x \min =\frac{x \min }{x \text { Fact }}$, etc.
- For a ZoomOut, the x variables are multiplied by x Fact, and the y variables are multiplied by yFact.

Changing Zoom Factors

Tip: To exit without saving any changes, press ESC.

Saving or Recalling a Viewing Window

Note: You can store only one set of Window variable values at a time. Storing a new set overwrites the old set.

Restoring the Standard Viewing Window

The Zoom factors define the magnification and reduction used by ZoomIn and ZoomOut.

1. From the F2 Zoom menu, select C:SetFactors to display the ZOOM FACTORS dialog box.

Zoom factors must be ≥ 1, but they do not have to be integers. The default setting is 4 .
2. Use Θ and Θ to highlight the value you want to change. Then:

- Type the new value. The old value is cleared automatically when you begin typing.
- or -
- Press (1) or ©(1) to remove the highlighting, and then edit the old value.

3. Press ENTER (after typing in an input box, you must press ENTER twice) to save any changes and exit the dialog box.

After using various Zoom tools, you may want to return to a previous viewing window or save the current one.

1. From the F2 Zoom menu, select

B:Memory to display its
 submenu.
2. Select the applicable item.

Select:	To:
1:ZoomPrev	Return to the viewing window displayed before the previous zoom.
2:ZoomSto	Save the current viewing window. (The current Window variable values are stored to the system variables zxmin, zxmax, etc.)
3:ZoomRcl	Recall the viewing window last stored with ZoomSto.

You can restore the Window variables to their default values at any time.

From the F2 Zoom menu, select 6:ZoomStd.

Using Math Tools to Analyze Functions

On the Graph screen, the F5 Math toolbar menu has several tools that help you analyze graphed functions.

Overview of the
 Math Menu

Note: For Math results, cursor coordinates are stored in system variables $x c$ and $y c$ (rc and θc if you use polar coordinates). Derivatives, integrals, distances, etc., are stored in the system variable sysMath.

Press $F 5$ from the Graph screen.

Math Tool	Description
Value	Evaluates a selected $\mathrm{y}(\mathrm{x})$ function at a specified x value.
Zero, Minimum, Maximum	Finds a zero (x-intercept), minimum, or maximum point within an interval.
Intersection	Finds the intersection of two functions.
Derivatives	Finds the derivative (slope) at a point.
ff(x)dx	Finds the approximate numerical integral over an interval.
Inflection	Finds the inflection point of a curve, where its second derivative changes sign (where the curve changes concavity).
Distance	Draws and measures a line between two points on the same function or on two different functions.
Tangent	Draws a tangent line at a point and displays its equation.
Arc	Finds the arc length between two points along a curve.
Shade	Depends on the number of functions graphed. - If only one function is graphed, this shades the function's area above or below the x axis.
	If two or more functions are graphed, this shades the area between any two functions within an interval.

Finding $y(x)$ at a Specified Point

Tip: You can also display function coordinates by tracing the function ([F3), typing an x value, and pressing ENTER.

Finding a Zero, Minimum, or Maximum within an Interval

Tip: Typing x values is a quick way to set bounds.

Finding the Intersection of Two Functions within an Interval

1. From the Graph screen, press F5 and select 1:Value.
2. Type the x value, which must be a real value between x min and xmax. The value can be an expression.
3. Press ENTER.

The cursor moves to that x value on the first function selected in the $\mathrm{Y}=$ Editor, and its coordinates are displayed.

4. Press Θ or Θ to move the cursor between functions at the entered x value. The corresponding y value is displayed.

Note: If you press © $(\mathbb{}$ or $(\mathfrak{C}$, the free-moving cursor appears. You may not be able to move it back to the entered x value.

1. From the Graph screen, press F5 and select 2:Zero, 3:Minimum, or 4:Maximum.
2. As necessary, use Θ and Θ to select the applicable function.
3. Set the lower bound for x. Either use (1) and (1) to move the cursor to the lower bound or type its x value.
4. Press ENTER. A at the top of the screen marks the lower bound.
5. Set the upper bound, and press ENTER.

The cursor moves to the solution, and its coordinates are displayed.

1. From the Graph screen, press $\operatorname{F5}$ and select 5 :Intersection.
2. Select the first function, using \odot or Θ as necessary, and press EENTER. The cursor moves to the next graphed function.
3. Select the second function, and press ENTER.
4. Set the lower bound for x. Either use (1) and (1) to move the cursor to the lower bound or type its x value.
5. Press ENTER. A at the top of the screen marks the lower bound.
6. Set the upper bound, and press ENTER.

The cursor moves to the intersection, and its coordinates are displayed.

Finding the Derivative (Slope) at a Point

Finding an Inflection Point within an Interval

1. From the Graph screen, press F5 and select 6:Derivatives. Then select 1:dy/dx from the submenu.
2. As necessary, use Θ and Θ to select the applicable function.
3. Set the derivative point. Either move the cursor to the point or type its x value.
4. Press ENTER.

The derivative at that point is displayed.

Tip: Typing x values is a quick way to set the limits.

Tip: To erase the shaded area, press [F4 (ReGraph).
Finding the
Numerical Integral
over an Interval

1. From the Graph screen, press F5 and select 7: $f(\mathrm{f}(\mathrm{x}) \mathrm{dx}$.
2. As necessary, use Θ and Θ to select the applicable function.
3. Set the lower limit for x. Either use (1) and (1) to move the cursor to the lower limit or type its x value.
4. Press ENTER. A at the top of the screen marks the lower limit.
5. Set the upper limit, and press ENTER.

The interval is shaded, and its approximate numerical integral is displayed.

1. From the Graph screen, press $F 5$ and select $8:$ Inflection.
2. As necessary, use \odot and Θ to select the applicable function.
3. Set the lower bound for x. Either use (1) and (1) to move the cursor to the lower bound or type its x value.
4. Press ENTER. A at the top of the screen marks the lower bound.
5. Set the upper bound, and press ENTER.

The cursor moves to the inflection point (if any) within the interval, and its
 coordinates are displayed.

Finding the Distance between Two Points

1. From the Graph screen, press F5 and select 9:Distance.
2. As necessary, use \odot and Θ to select the function for the first point.
3. Set the first point. Either use (1) or (1) to move the cursor to the point or type its x value.
4. Press ENTER. A + marks the point.
5. If the second point is on a different function, use Θ and Θ to select the function.
6. Set the second point. (If you use the cursor to set the point, a line is drawn as you move the cursor.)
7. Press ENTER.

The distance between the two points is displayed, along with the connecting line.

1. From the Graph screen, press F5 and select A:Tangent.
2. As necessary, use \odot and Θ to select the applicable function.
3. Set the tangent point. Either move the cursor to the point or type its x value.
4. Press ENTER.

The tangent line is drawn, and its equation is displayed.

1. From the Graph screen, press F5 and select B:Arc.
2. As necessary, use Θ and Θ to select the applicable function.
3. Set the first point of the arc. Either use (1) or (1) to move the cursor or type the x value.
4. Press ENTER. A + marks the first point.
5. Set the second point, and press ENTER.

A + marks the second point, and the arc length is displayed.

Shading the Area between a Function and the X Axis

Note: If you do not press (1) or (1), or type an x value when setting the lower and upper bound, xmin and xmax will be used as the lower and upper bound, respectively.

Tip: To erase the shaded area, press F4 (ReGraph).

Shading the Area between Two Functions within an Interval

Note: If you do not press (1) or (1), or type an x value when setting the lower and upper bound, xmin and xmax will be used as the lower and upper bound, respectively.

Tip: To erase the shaded area, press F4 (ReGraph).

You must have only one function graphed. If you graph two or more functions, the Shade tool shades the area between two functions.

1. From the Graph screen, press F5 and select C :Shade. The screen prompts for Above X axis?
2. Select one of the following. To shade the function's area:

- Above the x axis, press ENTER.
- Below the x axis, press:

TI-89: alpha [N]
TI-92 Plus: N
3. Set the lower bound for x. Either use (1) and (1) to move the cursor to the lower bound or type its x value.
4. Press ENTER. A $>$ at the top of the screen marks the lower bound.
5. Set the upper bound, and press ENTER.

The bounded area is shaded.

You must have at least two functions graphed. If you graph only one function, the Shade tool shades the area between the function and the x axis.

1. From the Graph screen, press F5 and select C:Shade. The screen prompts for Above?
2. As necessary, use Θ or Θ to select a function. (Shading will be above this function.)
3. Press ENTER. The cursor moves to the next graphed function, and the screen prompts for Below?
4. As necessary, use \ominus or Θ to select another function. (Shading will be below this function.)
5. Press ENTER.
6. Set the lower bound for x. Either use (1) and (()) to move the cursor to the lower bound or type its x value.
7. Press ENTER. A \downarrow at the top of the screen marks the lower bound.
8. Set the upper bound, and press ENTER.

The bounded area is shaded.

Parametric Graphing

Preview of Parametric Graphing 128
Overview of Steps in Graphing Parametric Equations 129
Differences in Parametric and Function Graphing 130

This chapter describes how to graph parametric equations on the TI-89 / TI-92 Plus. Before using this chapter, you should be familiar with Chapter 6: Basic Function Graphing.

Parametric equations consist of both an x and y component, each expressed as a function of the same independent variable t.

You can use parametric equations to model projectile motion. The position of a moving projectile has a horizontal (x) and vertical (y) component expressed as a function of time (t). For example:

The graph shows the path of the projectile over time, assuming that only uniform gravity (no drag forces, etc.) is acting on the projectile.

Preview of Parametric Graphing

Graph the parametric equations describing the path of a ball kicked at an angle（ θ ）of 60° with an initial velocity（ v_{0} ）of 15 meters $/ \mathrm{sec}$ ．The gravity constant $\mathrm{g}=9.8$ meters $/ \mathrm{sec}^{2}$ ． Ignoring air resistance and other drag forces，what is the maximum height of the ball and when does it hit the ground？

	Steps	TI-89 Keystrokes	TI－92 Plus Keystrokes	Display
1.	Display the MODE dialog box．	MODE	OMODE	
	For Graph mode，select	（1）2	¢ 2	
	PARAMETRIC．	ENTER	ENTER	
	Display and clear the Y＝Editor． Then define the horizontal component xt1 $(\mathrm{t})=\mathrm{v}_{0} \mathrm{t} \cos \theta$ ．	－$\left.\square^{[}=\right]$	－ Y^{Y} ］	$x t 1(t)=15 t * \cos \left(60^{\circ}\right)$
		FF1 8ENTER	［目8 8 ENTER	
			EENTER	
	Enter values for v_{0} and θ ． Tl－89：Type T 冈 2 nd［cos］，not	－15 T区	15 T区	
		［2nd［cos］ 60	COS 60	
	T ［2nd［cos］．	［2nd［0］DEENTER	［2nd［ 0 ］［ ENTER	
	TI－92 Plus：Type T 区 coss，not T cos．			
	Enter a ${ }^{\circ}$ symbol by typing either ［2nd［ [] or［2nd［Math］ 2 1．This ensures a number is interpreted as degrees， regardless of the angle mode．			
3.	Define the vertical component $\mathrm{yt} 1(\mathrm{t})=\mathrm{v}_{0} \mathrm{t} \sin \theta-(\mathrm{g} / 2) \mathrm{t}^{2}$ ．			
		ENTER	ENTER	既
		15 T区	15 T区	PLDTIS $=15 \cdot t \cdot \cos \left(60^{\circ}\right)$
	Enter values for v_{0}, θ ，and g ．	［2nd［SIN］ 60	SSIN 60	
		［2nd［ 0° ］ 0 O	［2nd［ 0 ］$\square^{\text {a }}$	
		9．8円2口	9．8®2口	
			T⿴囗 2 ENTER	
	Display the Window Editor． Enter Window variables appropriate for this example．	［ ${ }^{\text {［window］}}$	－［window］	
		$0 \odot 3 \odot$	$\bigcirc \bigcirc$	
		1．02 $\odot 2 \odot$	－ $02 \bigcirc \bigcirc \bigcirc$	tstep＝ 02
	You can press either Θ or ENTER to enter a value and move to the next variable．	－ $2 ¢ 5 \odot$	25 $5 \bigcirc$	$\times \mathrm{xmin}=-2$
		$\cdots 2 \odot 10 \odot$	－ $2 \bigcirc 10 \bigcirc$	$\mathrm{x}=\mathrm{Cl} 1=5$
5.	Graph the parametric equations to model the path of the ball．	［GRAPH］	［GRAPH］	
6.	Select Trace．Then move the cursor along the path to find the： －y value at maximum height． －t value where the ball hits the ground．	F3	F3	
				＋
		（1）or（1）	\bigcirc or \bigcirc	
		as necessary	as necessary	

Overview of Steps in Graphing Parametric Equations

To graph parametric equations, use the same general steps used for $\mathrm{y}(\mathrm{x})$ functions as described in Chapter 6: Basic Function Graphing. Any differences that apply to parametric equations are described on the following pages.

Graphing Parametric Equations

Tip: To turn off any stat data plots (Chapter 16), press [F5 5 or use [F4 to deselect them.

Tip: This is optional. For multiple equations, this helps visually distinguish one from another.

Tip: F2 Zoom also changes the viewing window.

Fir

- 1: Lir
$3:$ 연․․․․․
4 Thick
5: Arimeste
E:Path
\&
tmir=0.
tmax=
tster= 02
xmin=-2.
$\times \mathrm{M} \times \times 25$
$\times 5 \mathrm{C}=$

Exploring the Graph From the Graph screen, you can:

- Display the coordinates of any pixel by using the free-moving cursor, or of a plotted point by tracing a parametric equation.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph.
- Use the F5 Math toolbar menu to find derivatives, tangents, etc. Some menu items are not available for parametric graphs.

Differences in Parametric and Function Graphing

号

This chapter assumes that you already know how to graph $\mathrm{y}(\mathrm{x})$ functions as described in Chapter 6: Basic Function Graphing. This section describes the differences that apply to parametric equations.

Setting the Graph Mode

Defining Parametric Equations on the $Y=$ Editor

Note: When using t, be sure implied multiplication is valid for your situation.

Tip: You can use the Define command from the Home screen (see Appendix A) to define functions and equations for any graphing mode, regardless of the current mode.

Use MODE to set Graph = PARAMETRIC before you define equations or set Window variables. The Y= Editor and the Window Editor let you enter information for the current Graph mode setting only.

To graph a parametric equation, you must define both its x and y components. If you define only one component, the equation cannot be graphed. (However, you can use single components to generate an automatic table as described in Chapter 13.)

Be careful when using implied multiplication with t. For example:

Enter:	Instead of:	Because:
$\mathrm{t} * \cos (60)$	$\mathrm{tcos}(60)$	tcos is interpreted as a user-defined function called tcos, not as implication. returns the function

The $\mathrm{Y}=$ Editor maintains an independent function list for each Graph mode setting. For example, suppose:

- In FUNCTION graphing mode, you define a set of $y(x)$ functions. You change to PARAMETRIC graphing mode and define a set of x and y components.
- When you return to FUNCTION graphing mode, your $y(x)$ functions are still defined in the $Y=$ Editor. When you return to PARAMETRIC graphing mode, your x and y components are still defined.

Selecting Parametric Equations

Selecting the Display Style

Tip: Use the Animate and Path styles for interesting projectile-motion effects.

Window Variables

Note: You can use a negative tstep. If so, tmin must be greater than tmax.

To graph a parametric equation, select either its x or y component or both. When you enter or edit a component, it is selected automatically.

Selecting x and y components separately can be useful for tables as described in Chapter 13. With multiple parametric equations, you can select and compare all the \times components or all the y components.

You can set the style for either the x or y component. For example, if you set the x component to Dot, the TI-89 / TI-92 Plus automatically sets the y component to Dot.

The Above and Below styles are not available for parametric equations and are dimmed on the $\mathrm{Y}=$ Editor's Style toolbar menu.

The Window Editor maintains an independent set of Window variables for each Graph mode setting (just as the Y= Editor maintains independent function lists). Parametric graphs use the following Window variables.

Variable	Description
tmin, tmax	Smallest and largest t values to evaluate.
tstep	Increment for the t value. Parametric equations are evaluated at:
	$x($ tmin $) \quad y(t m i n)$
	$x($ tmin+tstep $) \quad y$ (tmin+tstep)
	$x($ tmin $+2($ tstep $)) \quad y($ min $+2($ tstep $))$
	... not to exceed ... \quad... not to exceed ... x (tmax)
xmin, xmax, ymin, ymax	Boundaries of the viewing window.
xscl, yscl	Distance between tick marks on the x and y axes.

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:

```
tmin = 0. xmin =-10. ymin =-10.
tmax = 2\pi (6.2831853\ldots radians }\quadx\operatorname{max}=10.\quadymax=10
    or 360 degrees)
tstep =\pi/24 (.1308996 ... radians xscl = 1. yscl = 1.
    or 7.5 degrees)
```

You may need to change the standard values for the t variables (tmin, tmax, tstep) to ensure that enough points are plotted.

Exploring a Graph

Tip: During a trace, you can also evaluate $x(t)$ and $y(t)$ by typing the t value and pressing ENTER.

Tip: You can use QuickCenter at any time during a trace, even if the cursor is still on the screen.

As in function graphing, you can explore a graph by using the following tools.

Tool For Parametric Graphs:

Free-Moving Works just as it does for function graphs.
Cursor
F2 Zoom Works just as it does for function graphs, with the following exceptions:

- Only x (xmin, xmax, xscl) and y (ymin, ymax, yscl) Window variables are affected.
- The t Window variables (tmin, tmax, tstep) are not affected unless you select 6:ZoomStd (which sets $\operatorname{tmin}=0, \operatorname{tmax}=2 \pi$, and tstep $=\pi / 24)$.

F3 Trace
Lets you move the cursor along a graph one tstep at a time.

- When you begin a trace, the cursor is on the first selected parametric equation at tmin.
- QuickCenter applies to all directions. If you move the cursor off the screen (top or bottom, left or right), press ENTER to center the viewing window on the cursor location.
- Automatic panning is not available. If you move the cursor off the left or right side of the screen, the TI-89 / TI-92 Plus will not automatically pan the viewing window. However, you can use QuickCenter.

F5 Math Only 1:Value, 6:Derivatives, 9:Distance, A:Tangent, and B :Arc are available for parametric graphs. These tools are based on t values. For example:

- 1:Value displays x and y values for a specified t value.
- 6:Derivatives finds $d y / d x, d y / d t$, or $d x / d t$ at a point defined for a specified t value.

Polar Graphing

Preview of Polar Graphing 134
Overview of Steps in Graphing Polar Equations 135
Differences in Polar and Function Graphing 136

This chapter describes how to graph polar equations on the TI-89 / TI-92 Plus. Before using this chapter, you should be familiar with Chapter 6: Basic Function Graphing.

Consider a point (x, y) as shown below. In a polar equation, the point's distance (r) from the origin is a function of its angle (θ) from the positive x axis. Polar equations are expressed as $\mathrm{r}=\mathrm{f}(\theta)$.

To convert between rectangular (x, y) and polar coordinates (r, θ) :
$x=r \cos \theta \quad r^{2}=x^{2}+y^{2}$
$y=r \sin \theta \quad \theta=-\tan ^{-1} \frac{x}{y}+\frac{\operatorname{sign}(y) \cdot \pi}{2}$
Note: To find θ, use the
TI-89 / TI-92 Plus function angle $(x+i y)$, which automatically performs the calculation shown above.

You can view the coordinates of any point in either polar (r, θ) or rectangular (x, y) form.

The graph of the polar equation $A \sin B \theta$ forms the shape of a rose. Graph the rose for $A=8$ and $B=2.5$. Then explore the appearance of the rose for other values of A and B.

Overview of Steps in Graphing Polar Equations

To graph polar equations，use the same general steps used for $y(x)$ functions as described in Chapter 6：Basic Function Graphing．Any differences that apply to polar equations are described on the following pages．

Graphing Polar Equations

Tip：To turn off any stat data plots（Chapter 16）， press［F5 5 or use［F4 to deselect them．

Tip：This is optional．For multiple equations，this helps visually distinguish one from another．

Tip：F2 Zoom also changes the viewing window．

Tip：To display r and θ ，set Coordinates $=$ POLAR．

FGT
1： 2 ir
2：Dot
4：Thire

日min＝0，
$\theta \mathrm{m} \times=12,566706144$
6ster＝ 138996389957
人mir＝－10．
$\times m a x=10$.
$x \operatorname{x}=\mathrm{x}=1$
$x=1=10$

M百

From the Graph screen，you can：
－Display the coordinates of any pixel by using the free－moving cursor，or of a plotted point by tracing a polar equation．
－Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph．
－Use the F5 Math toolbar menu to find derivatives，tangents，etc． Some menu items are not available for polar graphs．

Differences in Polar and Function Graphing

Setting the Graph Mode

Defining Polar Equations on the $Y=$ Editor

Tip: You can use the Define command from the Home screen (see Appendix A) to define functions and equations for any graphing mode, regardless of the current mode.

This chapter assumes that you already know how to graph $y(x)$ functions as described in Chapter 6: Basic Function Graphing. This section describes the differences that apply to polar equations.

Use MODE to set Graph = POLAR before you define equations or set Window variables. The Y= Editor and the Window Editor let you enter information for the current Graph mode setting only.

You should also set the Angle mode to the units (RADIAN or DEGREE) you want to use for θ.

The $\mathrm{Y}=$ Editor maintains an independent function list for each Graph mode setting. For example, suppose:

- In FUNCTION graphing mode, you define a set of $y(x)$ functions. You change to POLAR graphing mode and define a set of $r(\theta)$ equations.
- When you return to FUNCTION graphing mode, your $y(x)$ functions are still defined in the $Y=$ Editor. When you return to POLAR graphing mode, your $r(\theta)$ equations are still defined.

The Above and Below styles are not available for polar equations and are dimmed on the $\mathrm{Y}=$ Editor's Style toolbar menu.

Selecting the Display Style

Window Variables

Note: You can use a negative θ step. If so, $\theta \mathrm{min}$ must be greater than θ max.

Setting the Graph

 FormatThe Window Editor maintains an independent set of Window variables for each Graph mode setting (just as the Y= Editor maintains independent function lists). Polar graphs use the following Window variables.

Variable	Description
θ min, θ max	Smallest and largest θ values to evaluate.
өstep	Increment for the θ value. Polar equations are evaluated at:
	$\mathrm{r}(\theta \mathrm{min})$
	$\mathrm{r}(\theta \mathrm{min}+\theta$ step $)$
	$\mathrm{r}(\theta \mathrm{min}+2(\theta \mathrm{step})$)
	... not to exceed ... r (日max)
xmin, xmax, ymin, ymax	Boundaries of the viewing window.
xscl, yscl	Distance between tick marks on the x and y axes.

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:

$$
\begin{array}{llll}
\theta \min =0 . & & x \min =-10 . & y \min =-10 . \\
\theta \max =2 \pi & (6.2831853 \ldots \text { radians } & x \max =10 . & y \max =10 . \\
& \text { or } 360 \text { degrees }) \\
\theta \text { step }=\pi / 24 & & \\
\begin{array}{c}
(.1308996 \ldots \text { radians } \\
\text { or } 7.5 \text { degrees })
\end{array} & \mathrm{xscl}=1 . & \mathrm{yscl}=1 .
\end{array}
$$

You may need to change the standard values for the θ variables (θ min, θ max, θ step) to ensure that enough points are plotted.

To display coordinates as r and θ values, use:
F1 9

- or -

TI-89: \square
TI-92 Plus: \rightarrow
to set Coordinates $=$ POLAR. If Coordinates $=$ RECT, the polar equations will be graphed properly, but coordinates will be displayed as x and y.

When you trace a polar equation, the θ coordinate is shown even if Coordinates $=$ RECT .

Exploring a Graph

Tip: During a trace, you can also evaluate $r(\theta)$ by typing the θ value and pressing ENTER.

Tip: You can use QuickCenter at any time during a trace, even if the cursor is still on the screen.

As in function graphing, you can explore a graph by using the following tools. Any displayed coordinates are shown in polar or rectangular form as set in the graph format.

Tool For Polar Graphs:

Free-Moving Works just as it does for function graphs. Cursor

F2 Zoom Works just as it does for function graphs.

- Only x (xmin, xmax, xscl) and y (ymin, ymax, yscl) Window variables are affected.
- The θ Window variables (θ min, θ max, θ step) are not affected unless you select 6:ZoomStd (which sets $\theta \min =0, \theta \max =2 \pi$, and θ step $=\pi / 24)$.

F3 Trace
Lets you move the cursor along a graph one θ step at a time.

- When you begin a trace, the cursor is on the first selected equation at θ min.
- QuickCenter applies to all directions. If you move the cursor off the screen (top or bottom, left or right), press ENTER to center the viewing window on the cursor location.
- Automatic panning is not available. If you move the cursor off the left or right side of the screen, the TI-89 / TI-92 Plus will not automatically pan the viewing window. However, you can use QuickCenter.

F5 Math Only 1:Value, 6:Derivatives, 9:Distance, A:Tangent, and B:Arc are available for polar graphs. These tools are based on θ values. For example:

- 1:Value displays an r value (or x and y, depending on the graph format) for a specified θ value.
- 6:Derivatives finds $\mathrm{dy} / \mathrm{dx}$ or $\mathrm{dr} / \mathrm{d} \theta$ at a point defined for a specified θ value.

Sequence Graphing

Note: A recursive sequence can reference another sequence. For example, $u 2(n)=n^{2}+u 1(n-1)$.
Preview of Sequence Graphing 140
Overview of Steps in Graphing Sequences 141
Differences in Sequence and Function Graphing 142
Setting Axes for Time, Web, or Custom Plots 146
Using Web Plots 147
Using Custom Plots 150
Using a Sequence to Generate a Table 151

This chapter describes how to graph sequences on the TI-89 / TI-92 Plus. Before using this chapter, you should be familiar with Chapter 6: Basic Function Graphing.

Sequences are evaluated only at consecutive integer values. The two general types of sequences are:

- Nonrecursive - The nth term in the sequence is a function of the independent variable n.

Each term is independent of any other terms. In the following example sequence, you can calculate $u(5)$ directly, without first calculating $u(1)$ or any other previous term.
n is always a series of
$u(n)=2 * n$ for $n=1,2,3, \ldots$ consecutive integers, starting at any positive integer or zero.
$u(n)=2 * n$ gives the sequence $2,4,6,8,10, \ldots$

- Recursive - The nth term is defined in relation to one or more previous terms, represented by $u(n-1), u(n-2)$, etc. In addition to previous terms, a recursive sequence may also be defined in relation to n (such as $u(n)=u(n-1)+n)$.

In the following example sequence, you cannot calculate $u(5)$ without first calculating $u(1), u(2), u(3)$, and $u(4)$.

> The first term is undefined since it has no previous term. So you must specify an initial value to use for the first term.

Using an initial value of 1 :

$$
u(n)=2 * u(n-1) \text { gives the sequence } 1,2,4,8,16, \ldots
$$

The number of initial values you need to specify depends on how deep the recursion goes. For example, if each term is defined in relation to the previous two terms, you must specify initial values for the first two terms.

A small forest contains 4000 trees. Each year, 20\% of the trees will be harvested (with 80% remaining) and 1000 new trees will be planted. Using a sequence, calculate the number of trees in the forest at the end of each year. Does it stabilize at a certain number?

Initially	After 1 Year	After 2 Years	After 3 Years	\ldots
4000	$.8 \times 4000$	$.8 \times(.8 \times 4000+1000)$	$.8 \times(.8 \times(.8 \times 4000+1000)+1000)$	\ldots
	+1000	+1000	+1000	

	Steps	$\begin{gathered} \text { :II-89 } \\ \text { Keystrokes } \end{gathered}$	TI-92 Plus Keystrokes	Display
	Display the MODE dialog box.	MODE	MODE	
	For Graph mode, select	(1)4	(1) 4	
	SEQUENCE.	ENTER	ENTER	
	Display and clear the Y= Editor.	[$\mathrm{Y}=\mathrm{]}$	- $\left.{ }^{[\mathrm{Y}}=\right]$	(ritic
	Then define the sequence as	EFIENTER	F 8 ENTER	
	$\mathrm{u} 1(\mathrm{n})=\operatorname{iPart}(.8 * u 1(\mathrm{n}-1)+1000)$.	ENTER	ENTER	
	Use iPart to take the integer part of	[2nd [MATH] 14	-2nd [MATH] 14	${ }^{4} 12 \times$
	the result. No fractional trees are	. 8 alpha U 10	\% 8U10	
	harvested.	alpha N-1DT	NG1回	
	To access iPart(, you can use 2nd [MATH], simply type it, or select it from the CATALOG.	1000 DENTER	11000 DENTER	Rift iutio see
3.	Define ui1 as the initial value	EETER	ENTER	
	that will be used as the first term.	4000 ENTER	4000 [ENTER	
				nmin=0.
	the n and plot Window variables.	[WINDOW]	- [WINDOW]	
		$\bigcirc \bigcirc$		$\times \mathrm{min}=$
	nmin=0 and nmax=50 evaluate the size of the forest over 50 years.	$1 \odot 1 \odot$	$1 \bigcirc 1 \bigcirc$	$x=c 1=10$. ynim=0
5.	Set the x and y Window variables	$0 \odot 50 \odot$	$0 \bigcirc 50 \bigcirc$	
	to appropriate values for this	$10 \odot 0 \odot$	$10 \bigcirc 0 \bigcirc$	
	example.	60009	6000	
		1000	1000	
	Display the Graph screen.	[GRAPH]	[GRAPH]	
7.	Select Trace. Move the cursor to	F3	F3	
	trace year by year. How many years (nc) does it take the number of trees (yc) to stabilize?	(1) and (1) as necessary	\odot and \odot as necessary	By default, sequences use the Square display style. ne:27. x. 27: 4c:4996.
	Trace begins at $n c=0$. $n c$ is the number of years. $x c=n c$ since n is plotted on the x axis. $y c=u 1(n)$, the number of trees at year n.			

Overview of Steps in Graphing Sequences

To graph sequences, use the same general steps used for $y(x)$ functions as described in Chapter 6: Basic Function Graphing.
Any differences are described on the following pages.

Graphing Sequences

Tip: To turn off any stat data plots (Chapter 16), press [F5 5 or use [F4 to deselect them.

Note: For sequences, the default style is Square.

Tip: F2 Zoom also changes the viewing window.

Exploring the Graph

Tip: You can also evaluate a sequence while tracing. Simply enter the n value directly from the keyboard.

From the Graph screen, you can:

- Display the coordinates of any pixel by using the free-moving cursor, or of a plotted point by tracing a sequence.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph.
- Use the F5 Math toolbar menu to evaluate a sequence. Only $1:$ Value is available for sequences.
- Plot sequences on Time (the default), Web, or Custom axes.

This chapter assumes that you already know how to graph $y(x)$ functions as described in Chapter 6: Basic Function Graphing.
This section describes the differences that apply to sequences.

Setting the Graph Mode

Defining Sequences on the $\mathrm{Y}=$ Editor

Note: You must use a list to enter two or more initial values.

Note: Optionally, for sequences only, you can select different axes for the graph. TIME is the default.

Use MODE to set Graph = SEQUENCE before you define sequences or set Window variables. The Y= Editor and the Window Editor let you enter information for the current Graph mode setting only.

If a sequence requires more than one initial value, enter them as a list enclosed in braces $\}$ and separated by commas.

If a sequence requires an initial value but you do not enter one, you will get an error when graphing.

On the Y= Editor, Axes lets you select the axes that are used to graph the sequences. For more detailed information, refer to page 146.

Axes	Description
TIME	Plots n on the x axis and $u(n)$ on the y axis.
WEB	Plots $u(n-1)$ on the x axis and $u(n)$ on the y axis.
CUSTOM	Lets you select the x and y axes.

The $\mathrm{Y}=$ Editor maintains an independent function list for each Graph mode setting. For example, suppose:

- In FUNCTION graphing mode, you define a set of $y(x)$ functions. You change to SEQUENCE graphing mode and define a set of $u(n)$ sequences.
- When you return to FUNCTION graphing mode, your $y(x)$ functions are still defined in the $\mathrm{Y}=$ Editor. When you return to SEQUENCE graphing mode, your $u(n)$ sequences are still defined.

Selecting Sequences

Note: With TIME and CUSTOM axes, all defined sequences are evaluated even if they are not plotted.

Selecting the Display Style

Window Variables

Note: Both nmin and nmax must be positive integers, although nmin can be zero.

Note: nmin, nmax, plotstrt and plotstep must be integers ≥ 1. If you do not enter integers, they will be rounded to integers.

With TIME and WEB axes, the TI-89 / TI-92 Plus graphs only the selected sequences. If you entered any sequences that require an initial value, you must enter the corresponding ui value.

	F17
You can sel	
You cannot select its initial value.	
	Milild bifl flld sel

With CUSTOM axes, when you specify a sequence in the custom settings, it is graphed regardless of whether it is selected.

Only the Line, Dot, Square, and Thick styles are available for sequence graphs. Dot and Square mark only those discrete integer values (in plotstep increments) at which a sequence is plotted.

The Window Editor maintains an independent set of Window variables for each Graph mode setting (just as the Y= Editor maintains independent function lists). Sequence graphs use the following Window variables.

Variable	Description
nmin, nmax	Smallest and largest n values to evaluate. Sequences are evaluated at:
	$u(n m i n)$
	$u(n m i n+1)$
	$u(n m i n+2)$
	u(nmax)
plotStrt	The term number that will be the first one plotted (depending on plotstep). For example, to begin plotting with the 2nd term in the sequence, set plotstrt = 2 . The first term will be evaluated at nmin but not plotted.
plotStep	Incremental n value for graphing only. This does not affect how the sequence is evaluated, only which points are plotted. For example, suppose plotstep $=2$. The sequence is evaluated at each consecutive integer but is plotted at only every other integer.
xmin, xmax, ymin, ymax	Boundaries of the viewing window.
xscl, yscl	Distance between tick marks on the x and y axes.

Window Variables (Continued)

Note: Both of these graphs use the same Window variables, except for plotstrt.

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:

```
nmin =1. }\quad\textrm{xmin}=-10.\quadymin=-10
nmax =10. xmax =10. ymax =10.
plotStrt = 1. xscl = 1. yscl = 1.
plotStep = 1.
```

You may need to change the standard values for the n and plot variables to ensure that sufficient points are plotted.

To see how plotstrt affects a graph, look at the following examples of a recursive sequence.

This graph is plotted beginning with the 1st term.

This graph is plotted beginning with the 9th term.

With TIME axes (from Axes on the $\mathrm{Y}=$ Editor), you can set plotstrt $=1$ and still graph only a selected part of the sequence. Simply define a viewing window that shows only the area of the coordinate plane you want to view.

You could set:

- $x \min =$ first n value to graph
- $\quad \mathrm{xmax}=\mathrm{nmax}$ (although you can use other values)
- ymin and ymax = expected values for the sequence

Changing the Graph Format

The Graph Order format is not available.

- With TIME or CUSTOM axes, multiple sequences are always plotted simultaneously.
- With WEB axes, multiple sequences are always plotted sequentially.

Exploring a Graph

Tip: During a trace, you can evaluate a sequence by typing a value for n and pressing ENTER.

Tip: You can use QuickCenter at any time during a trace, even if the cursor is still on the screen.

As in function graphing, you can explore a graph by using the following tools. Any displayed coordinates are shown in rectangular or polar form as set in the graph format.

Tool For Sequence Graphs:

Free-Moving Works just as it does for function graphs. Cursor

F2 Zoom Works just as it does for function graphs.

- Only x (xmin, xmax, xscl) and y (ymin, ymax, yscl) Window variables are affected.
- The n and plot Window variables (nmin, nmax, plotStrt, plotStep) are not affected unless you select 6:ZoomStd (which sets all Window variables to their standard values).

F3 Trace Depending on whether you use TIME, CUSTOM, or WEB axes, Trace operates very differently.

- With TIME or CUSTOM axes, you move the cursor along the sequence one plotstep at a time. To move approximately ten plotted points at a time, press 2nd (1) or 2nd (1).
- When you begin a trace, the cursor is on the first selected sequence at the term number specified by plotstrt, even if it is outside the viewing window.
- QuickCenter applies to all directions. If you move the cursor off the screen (top or bottom, left or right), press ENTER to center the viewing window on the cursor location.
- With WEB axes, the trace cursor follows the web, not the sequence. Refer to page 147.

F5 Math Only 1:Value is available for sequence graphs.

- With TIME and WEB axes, the $u(n)$ value (represented by yc) is displayed for a specified n value.
- With CUSTOM axes, the values that correspond to x and y depend on the axes you choose.

Setting Axes for Time, Web, or Custom Plots

Displaying the AXES Dialog Box

For sequences only, you can select different types of axes for the graph. Examples of the different types are given later in this chapter.

From the Y= Editor, Axes:

- Depending on the current Axes setting, some items may be dimmed.
- To exit without making any changes, press ESC.

Item	Description
Axes	TIME — Plots $u(n)$ on the y axis and n on the x axis. WEB — Plots $u(n)$ on the y axis and $u(n-1)$ on the x axis.
Build Web	CUSTOM — Lets you select the x and y axes. Active only when Axes = WEB, this specifies whether a web is drawn manually (TRACE) or automatically (AUTO).
	Refer to page 147 for more information.
X Axis and	Active only when Axes = CUSTOM, these let you select the value or sequence to plot on the x and y axes.
	Refer to page 150 for more information.

To change any of these settings, use the same procedure that you use to change other types of dialog boxes, such as the MODE dialog box.

Valid Functions for Web Plots

When You Display the Graph Screen

Drawing the Web

Note: The web starts at plotstrt. The value of n is incremented by 1 each time the web moves to the sequence (plotStep is ignored).

A web plot graphs $u(n)$ vs. $u(n-1)$, which lets you study the long-term behavior of a recursive sequence. The examples in this section also show how the initial value can affect a sequence's behavior.

A sequence must meet the following criteria; otherwise, it will not be graphed properly on WEB axes. The sequence:

- Must be recursive with only one recursion level; $u(n-1)$ but not $u(n-2)$.
- Cannot reference n directly.
- Cannot reference any other defined sequence except itself.

After you select WEB axes and display the Graph screen, the TI-89 / TI-92 Plus:

- Draws a $y=x$ reference line.
- Plots the selected sequence definitions as functions, with $u(n-1)$ as the independent variable. This effectively converts a recursive sequence into a nonrecursive form for graphing.

For example, consider the sequence $u 1(n)=\sqrt{5-u 1(n-1)}$ and an initial value of ui $1=1$. The TI-89 / TI-92 Plus draws the $y=x$ reference line and then plots $y=\sqrt{5-x}$.

After the sequence is plotted, the web may be displayed manually or automatically, depending on how you set Build Web on the AXES dialog box.

If Build Web $=$	The web is:
TRACE	Not drawn until you press FF3. The web is then drawn step-by-step as you move the trace cursor (you must have an initial value before using Trace).
AUTO	Note: With WEB axes, you cannot trace along the sequence itself as you do in other graphing modes.
	Drawn automatically. You can then press F3 to trace the web and display its coordinates.

The web:

1. Starts on the x axis at the initial value ui (when plotstrt $=1$).
2. Moves vertically (either up or down) to the sequence.
3. Moves horizontally to the $y=x$ reference line.
4. Repeats this vertical and horizontal movement until $n=n \max$.

Example: Convergence

Tip: During a trace, you can move the cursor to a specified n value by typing the value and pressing ENTER.

Tip: When the nc value changes, the cursor is on the sequence. The next time you press (1), nc stays the same but the cursor is now on the $y=x$ reference line.

Example: Divergence

1. On the $Y=$ Editor $(\oplus[Y=])$, define $u 1(n)={ }^{-} .8 u 1(n-1)+3.6$. Set initial value ui1 $=-4$.
2. Set Axes $=$ TIME.
3. On the Window Editor (\bullet [WINDOW]), set the Window variables.

$$
\begin{array}{lll}
\text { nmin }=1 . & \text { xmin }=0 . & y \min =-10 . \\
\text { nmax }=25 . & x \max =25 . & y \max =10 . \\
\text { plotstrt }=1 . & \text { xscl=1. } & \text { yscl=1. } \\
\text { plotstep }=1 . & &
\end{array}
$$

4. Graph the sequence (\bullet [GRAPH]).

By default, a sequence uses the Square display style.

5. On the $\mathrm{Y}=$ Editor, set $\mathrm{Axes}=\mathrm{WEB}$ and Build $\mathrm{Web}=\mathrm{AUTO}$.
6. On the Window Editor, change $n \min =1 . \quad x \min =-10 . y \min =-10$. the Window variables.
$n \max =25 . \quad \mathrm{xmax}=10$. $y \max =10$. plotStrt=1. $\quad \mathrm{xscl}=1 . \quad \mathrm{yscl}=1$. plotStep=1.
7. Regraph the sequence.

Web plots are always shown as lines, regardless of the selected display style.

8. Press F3. As you press (1), the trace cursor follows the web. The screen displays the cursor coordinates nc, xc, and yc (where xc and yc represent $u(n-1)$ and $u(n)$, respectively).

As you trace to larger values of nc, you can see xc and yc approach the convergence point.

1. On the $Y=$ Editor $(\square[Y=])$, define $u 1(n)=3.2 u 1(n-1)-.8(u 1(n-1))^{2}$. Set initial value ui $1=4.45$.
2. Set Axes $=$ TIME.
3. On the Window Editor (\bullet [WINDOW]), set the Window variables.
4. Graph the sequence (\bullet [GRAPH]).

$$
\begin{array}{lll}
\mathrm{nmin}=0 . & \mathrm{xmin}=0 . & \text { ymin }=-75 \\
\mathrm{nmax}=10 . & \mathrm{xmax}=10 . & \text { ymax }=10 . \\
\text { plotStrt=1. } & \text { xscl=1. } & \text { yscl=1. } \\
\text { plotStep=1. } & &
\end{array}
$$

u(n)

Because the sequence quickly diverges to large negative values, only a few points are plotted.

Example:
 Oscillation

Note: Compare this graph with the divergence example. This is the same sequence with a different initial value.

Note: The web moves to an orbit oscillating between two stable points.

Note: By starting the web plot at a later term, the stable oscillation orbit is shown more clearly.
5. On the $\mathrm{Y}=$ Editor, set $\mathrm{Axes}=\mathrm{WEB}$ and Build $\mathrm{Web}=\mathrm{AUTO}$.
6. On the Window Editor, change $n \min =0$. $\quad x \min =-10 . y \min =-10$. the Window variables. $n \max =10$. $\quad x \max =10$. $y \max =10$. plotStrt=1. $\quad x s c l=1 . \quad y s c l=1$. plotStep $=1$.
7. Regraph the sequence.

The web plot shows how quickly the sequence diverges to large negative values.

This example shows how the initial value can affect a sequence.

1. On the $Y=$ Editor $(\bullet[Y=])$, use the same sequence defined in the divergence example: $u 1(n)=3.2 u 1(n-1)-.8(u 1(n-1))^{2}$. Set initial value ui1 $=0.5$.
2. Set Axes $=$ TIME.
3. On the Window Editor (\bullet [WINDOW]), set the Window variables.
4. Graph the sequence (\bullet [GRAPH]).

$$
\begin{array}{lll}
\operatorname{nmin}=1 . & x \min =0 . & y \min =0 . \\
\text { nmax }=100 . & x \max =100 . & y \max =5 . \\
\text { plotStrt=1. } & x s c l=10 . & y s c l=1 . \\
\text { plotStep=1. } & &
\end{array}
$$

$u(n)$

5. On the $\mathrm{Y}=$ Editor, set $\mathrm{Axes}=\mathrm{WEB}$ and Build $\mathrm{Web}=\mathrm{AUTO}$.
 plotStep=1.
7. Regraph the sequence.

8. Press F3. Then use () to trace the web.

As you trace to larger values of nc, notice that xc and yc oscillate between 2.05218 and 3.19782.
9. On the Window Editor, set plotstrt=50. Then regraph the sequence.

Using Custom Plots

Example: PredatorPrey Model

Note: Assume there are initially 200 rabbits and 50 foxes.

Note: Use F3 to individually trace the number of rabbits u1(n) and foxes u2(n) over time (n).

Note: Use F3 to trace both the number of rabbits (x c) and foxes (yc) over the cycle of 400 generations.

CUSTOM axes give you great flexibility in graphing sequences. As shown in the following example, CUSTOM axes are particularly effective for showing relationships between one sequence and another.

Using the predator-prey model in biology, determine the numbers of rabbits and foxes that maintain population equilibrium in a certain region.
$R=$ Number of rabbits
$M=$ Growth rate of rabbits if there are no foxes (use .05)
$\mathrm{K}=$ Rate at which foxes can kill rabbits (use .001)
$W=$ Number of foxes
$\mathrm{G}=$ Growth rate of foxes if there are rabbits (use .0002)
$D=$ Death rate of foxes if there are no rabbits (use .03)
$R_{n}=R_{n-1}\left(1+M-K W_{n-1}\right)$
$W_{n}=W_{n-1}\left(1+G R_{n-1}-D\right)$

1. On the $\mathrm{Y}=$ Editor $(\bullet[\mathrm{Y}=])$, define the sequences and initial values for R_{n} and W_{n}.
$u 1(n)=u 1(n-1) *(1+.05-.001 * u 2(n-1))$
ui1 $=200$
$\mathrm{u} 2(\mathrm{n})=\mathrm{u} 2(\mathrm{n}-1) *(1+.0002 * u 1(\mathrm{n}-1)-.03)$
ui $2=50$
2. Set Axes $=$ TIME.
3. On the Window Editor (\bullet [WINDOW]), set the Window variables.
$n \min =0 . \quad x \min =0 . \quad y \min =0$. $n \max =400$. $\mathrm{xmax}=400$. $\mathrm{ymax}=300$. plotStrt=1. $\quad \mathrm{xscl}=100 . \quad \mathrm{yscl}=100$. plotStep $=1$.
4. Graph the sequence (\bullet [GRAPH]).

5. On the $Y=$ Editor, set $A x e s=C U S T O M, X$ Axis $=u 1$, and Y Axis $=u 2$.
6. In the Window Editor, change the Window variables.
7. Regraph the sequence.
$n \min =0 . \quad x \min =84 . \quad y \min =25$. $n m a x=400$. $\quad x \max =237$. $y \max =75$. plotStrt=1. \quad xscl=50. \quad yscl=10. plotStep $=1$.

Using a Sequence to Generate a Table

Previous sections described how to graph a sequence. You can also use a sequence to generate a table. Refer to Chapter 13 for detailed information about tables.

Example: Fibonacci Sequence

In a Fibonacci sequence, the first two terms are 1 and 1. Each succeeding term is the sum of the two immediately preceding terms.

1. On the $\mathrm{Y}=$ Editor ($\sim \mathrm{r}=]$), define the sequence and set the initial values as shown.

2. Set table parameters
(\rightarrow ThlSet]) to: tblStart = 1
$\Delta \mathrm{tbl}=1$
Independent = AUTO

$\frac{\text { Enteresive }}{\text { This item is dimmed if you are not }}$ using TIME axes.
3. Set Window variables
(\rightarrow [WINDOW]) so that nmin has the same value as tblStart.

4. Display the table
($\square_{\text {[TABLE] }] \text {). }}$

5. Scroll down the table (\odot or 2nd Θ) to see more of the sequence.

3D Graphing

Tip: To view the graph along the x, y, or z axis, you can press X, Y, or Z , respectively.

Tip: To switch from one format style to the next (skipping IMPLICIT PLOT), press:
TI-89: alpha [F] TI-92 Plus: F .

This retains the current view (either expanded or normal).

Note: To switch to IMPLICIT PLOT (via the GRAPH FORMATS dialog box), press:
TI-89: \square
TI-92 Plus: $\quad \mathrm{F}$.
Preview of 3D Graphing 154
Overview of Steps in Graphing 3D Equations 156
Differences in 3D and Function Graphing 157
Moving the Cursor in 3D 160
Rotating and/or Elevating the Viewing Angle 162
Animating a 3D Graph Interactively 164
Changing the Axes and Style Formats. 165
Contour Plots 167
Example: Contours of a Complex Modulus Surface 170
Implicit Plots 171
Example: Implicit Plot of a More Complicated Equation 173

This chapter describes how to graph 3D equations on the TI-89 / TI-92 Plus. Before using this chapter, you should be familiar with Chapter 6: Basic Function Graphing.

In a 3D graph of an equation for $z(x, y)$, a point's location is defined as shown here.

The expanded view feature lets
 you examine any 3D graph in more detail. For example:

To switch between normal and expanded views, press	(multiplication key, not the letter X).

When you display a 3D graph, the expanded view is used automatically if:

- You set or change the graph format style to CONTOUR LEVELS or IMPLICIT PLOT.
- The previous graph used the expanded view.

If you press a cursor key to animate the graph, the screen switches to the normal view automatically. You cannot animate a graph in the expanded view.

Graph the 3D equation $z(x, y)=\left(x^{3} y-y^{3} x\right) / 390$. Animate the graph by using the cursor to interactively change the eye Window variable values that control your viewing angle.
Then view the graph in different graph format styles.

Note: You can also display the graph as an implicit plot by using the GRAPH FORMATS dialog box (F1 9 or TI-89: \square TI-92 Plus: \square F). If you press TI-89: \square TI-92 Plus: F to switch between styles, the implicit plot is not displayed.

Overview of Steps in Graphing 3D Equations

To graph 3D equations, use the same general steps used for $y(x)$ functions as described in Chapter 6: Basic Function Graphing. Any differences that apply to 3D equations are described on the following pages.

Graphing 3D Equations

Tip: To turn off any stat data plots (Chapter 16), press [F5 5 or use F4 to deselect them.

Note: For 3D graphs, the viewing window is called the viewing cube. F2] Zoom also changes the viewing cube.

Tip: To help you see the orientation of 3D graphs, turn on Axes and Labels.

Note: Before displaying the graph, the screen shows the "percent evaluated."

Exploring the Graph

Tip: You can also evaluate $z(x, y)$ while tracing. Type the x value and press ENTER; then type the y value and press ENTER.

$\times m \cdot x=10$
$\times a r \cdot i d=1$
$x a r i d=14$.
$m i n=10$.

$\geq m \exists x=10$

From the Graph screen, you can:

- Trace the equation.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph. Some of the menu items are dimmed because they are not available for 3D graphs.
- Use the F5 Math toolbar menu to evaluate the equation at a specified point. Only 1:Value is available for 3D graphs.

Differences in 3D and Function Graphing

Setting the Graph Mode

Defining 3D
 Equations on the $Y=$ Editor

Tip: You can use the Define command from the Home screen (see Appendix A) to define functions and equations for any graphing mode, regardless of the current mode.

This chapter assumes that you already know how to graph $\mathrm{y}(\mathrm{x})$ functions as described in Chapter 6: Basic Function Graphing. This section describes the differences that apply to 3D equations.

Use MODE to set Graph = 3D before you define equations or set Window variables. The Y= Editor and the Window Editor let you enter information for the current Graph mode setting only.

The Y= Editor maintains an independent function list for each Graph mode setting. For example, suppose:

- In FUNCTION graphing mode, you define a set of $y(x)$ functions. You change to 3D graphing mode and define a set of $z(x, y)$ equations.
- When you return to FUNCTION graphing mode, your $y(x)$ functions are still defined in the $Y=$ Editor. When you return to 3D graphing mode, your $z(x, y)$ equations are still defined.

Because you can graph only one 3D equation at a time, display styles are not available. On the $\mathrm{Y}=$ Editor, Style toolbar menu is dimmed.

For 3D equations, however, you can use:
F19

- or -

TI-89: \square
TI-92 Plus: $\square \mathrm{F}$
to set the Style format to WIRE FRAME or HIDDEN SURFACE. Refer to "Changing the Axes and Style Formats" on page 165.

Window Variables

Note: If you enter a fractional number for xgrid or ygrid, it is rounded to the nearest whole number ≥ 1.

Note: The 3D mode does not have scl Window variables, so you cannot set tick marks on the axes.

Note: Increasing the grid variables decreases the graphing speed.

The Window Editor maintains an independent set of Window variables for each Graph mode setting (just as the Y= Editor maintains independent function lists). 3D graphs use the following Window variables.

Variable Description

eye θ, eyed, Angles (always in degrees) used to view the graph. еуе ψ Refer to "Rotating and/or Elevating the Viewing Angle" on page 162.
xmin, xmax, Boundaries of the viewing cube.
ymin, ymax,
zmin, zmax
xgrid, ygrid The distance between x min and x max and between ymin and ymax is divided into the specified number of grids. The $z(x, y)$ equation is evaluated at each grid point where the grid lines (or grid wires) intersect.

The incremental value along x and y is calculated as:
x increment $=\frac{x \max -x \min }{x \text { grid }} \quad y$ increment $=\frac{y m a x-y \min }{y g r i d}$
The number of grid wires is x grid +1 and ygrid +1 . For example, when xgrid $=14$ and ygrid $=14$, the xy grid consists of $225(15 \times 15)$ grid points.

ncontour The number of contours evenly distributed along the displayed range of z values. Refer to page 168.

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:

eye $\theta=20$.	$x \min =-10$.	$y m i n=-10$.	$z m i n=-10$.
eye $\phi=70$.	$x \max =10$.	$y \max =10$.	$z m a x=10$.
eye $\psi=0$.	xgrid $=14$.	ygrid $=14$.	ncontour $=5$.

You may need to increase the standard values for the grid variables (xgrid, ygrid) to ensure that enough points are plotted.

Setting the Graph Format

Exploring a Graph

Tip: Refer to "Moving the Cursor in 3D" on page 160.

Tip: During a trace, you can also evaluate $z(x, y)$. Type the x value and press ENTER; then type the y value and press ENTER.

The Axes and Style formats are specific to the 3D graphing mode. Refer to "Changing the Axes and Style Formats" on page 165.

As in function graphing, you can explore a graph by using the following tools. Any displayed coordinates are shown in rectangular or cylindrical form as set in the graph format. In 3D graphing, cylindrical coordinates are shown when you use use:
F19

- or -

TI-89: \square
TI-92 Plus: $\square \mathrm{F}$
to set Coordinates $=$ POLAR:

Tool For 3D Graphs:

Free-Moving The free-moving cursor is not available. Cursor

F2 Zoom Works essentially the same as it does for function graphs, but remember that you are now using three dimensions instead of two.

- Only the following zooms are available:

2:Zoomln	5:ZoomSqr	A:ZoomFit
3:ZoomOut	6:ZoomStd	B:Memory
		C:SetFactors

- Only x (x min, $x m a x$), y (ymin, ymax), and z (zmin, zmax) Window variables are affected.
- The grid (xgrid, ygrid) and eye (eye日, eyeф, eye ψ) Window variables are not affected unless you select 6:ZoomStd (which resets these variables to their standard values).

F3 Trace
Lets you move the cursor along a grid wire from one grid point to the next on the 3D surface.

- When you begin a trace, the cursor appears at the midpoint of the xy grid.
- QuickCenter is available. At any time during a trace, regardless of the cursor's location, you can press ENTER to center the viewing cube on the cursor.
- Cursor movement is restricted in the x and y directions. You cannot move the cursor beyond the viewing cube boundaries set by xmin , xmax , ymin, and ymax.

Only 1:Value is available for 3D graphs. This tool displays the z value for a specified x and y value.

After selecting 1:Value, type the x value and press ENTER. Then type the y value and press ENTER.

Moving the Cursor in 3D

How to Move the Cursor

Note: You can move the cursor only within the x and y boundaries set by Window variables xmin, xmax, ymin, and ymax.

Tip: To show the axes and their labels from the
$Y=$ Editor, Window Editor, or Graph screen, use:
TI-89: - 1
TI-92 Plus: $\rightarrow \mathrm{F}$

Simple Example of Moving the Cursor

Tip: By displaying and labeling the axes, you can more easily see the pattern in the cursor movement.

When you move the cursor along a 3D surface, it may not be obvious why the cursor moves as it does. 3D graphs have two independent variables (x, y) instead of one, and the x and y axes have a different orientation than other graphing modes.

On a 3D surface, the cursor always follows along a grid wire.

Cursor Key	Moves the cursor to the next grid point in the:
(1)	Positive x direction
(1)	Negative x direction
\ominus	Positive y direction
\odot	Negative y direction

Although the rules are straightforward, the actual cursor movement can be confusing unless you know the orientation of the axes.

In 2D graphing, the x and y axes always have the same orientation relative to the Graph screen.

In 3D graphing, x and y have a different orientation relative to the Graph screen. Also, you can rotate and/or elevate the viewing angle.

еуе $\phi=70$
еуе $\psi=0$
The following graph shows a sloped plane that has the equation $z 1(x, y)=-(x+y) / 2$. Suppose you want to trace around the displayed boundary.

When you press [F3, the trace cursor appears at the midpoint of the xy grid. Use the cursor pad to move the cursor to any edge.
(1) moves in a positive x direction up to xmax.
\odot moves in a positive y direction, up to ymax.

When the trace cursor is on an interior point in the displayed plane, the cursor moves from one grid point to the next along one of the grid wires. You cannot move diagonally across the grid.

Notice that the grid wires may not appear parallel to the axes.

Example of the Cursor on a Hidden Surface

Tip: To cut away the front of the saddle in this example, set xmax=0 to show only negative x values.

Example of an "Off the Curve" Cursor

Tip: QuickCenter lets you center the viewing cube on the cursor's location. Simply press ENTER.

On more complex shapes, the cursor may appear as if it is not on a grid point. This is an optical illusion caused when the cursor is on a hidden surface.

For example, consider a saddle shape $z 1(x, y)=\left(x^{2}-y^{2}\right) / 3$. The following graph shows the view looking down the y axis.

Now look at the same shape at 10° from the x axis $($ eye $\theta=10)$.

You can move the cursor so that it does not appear to be on a grid point.

If you cut away the front side, you can see the cursor is actually on a grid point on the hidden back side.

Although the cursor can move only along a grid wire, you will see many cases where the cursor does not appear to be on the 3D surface at all. This occurs when the z axis is too short to show $z(x, y)$ for the corresponding x and y values.
For example, suppose you trace the paraboloid $z(x, y)=x^{2}+.5 y^{2}$ graphed with the indicated Window variables. You can easily move the cursor to a position such as:

Although the cursor is actually tracing the paraboloid, it appears off the curve because the trace coordinates:

- xc and yc are within the viewing cube.
—but -
- zc is outside the viewing cube.

When zc is outside the z boundary of the viewing cube, the cursor is physically displayed at zmin or zmax (although the screen shows the correct trace coordinates).

Rotating and/or Elevating the Viewing Angle

How the Viewing Angle Is Measured

Note: When eye $\psi=0$, the z axis is vertical on the screen. When eye $\psi=90$, the z axis is rotated 90° counterclockwise and is horizontal.

Effect of Changing eye θ

Note: This example increments eye θ by 30 .

In 3D graphing mode, the eye日 and eye ϕ Window variables let you set viewing angles that determine your line of sight. The eye ψ Window variable lets you rotate the graph around that line of sight.

The viewing angle has three components:

- eye θ - angle in degrees from the positive x axis.
- eye ϕ - angle in degrees from the positive z axis.
- eye ψ - angle in degrees by which the graph is rotated counterclockwise around the line of sight set by eye θ and eyeф.

In the Window Editor (\square [wINDOW]), always enter eye θ, eyeф, and eye ψ in degrees, regardless of the current angle mode.

Do not enter a ${ }^{\circ}$ symbol. For example,

 type 20,70 , and 0 , not $20^{\circ}, 70^{\circ}$, and 0°.

The view on the Graph screen is always oriented along the viewing angle. From this point of view, you can change eye θ to rotate the viewing angle around the z axis.

Effect of Changing eye ϕ

Note: This example starts on the xy plane (eye $\phi=90$) and decrements eye by 20 to elevate the viewing angle.

Effect of Changing еуе ψ

Note: During rotation, the axes expand or contract to fit the screen's width and height. This causes some distortion as shown in the example.

When eye $\psi=0$, the z axis runs the height of the screen.

When eye $\psi=90$, the z axis runs the width of the screen.

As the z axis rotates 90°, its range (-10 to 10 in this example) expands to almost twice its original length. Likewise, the x and y axes expand or contract.

From the Home Screen or a Program

By changing eye ϕ, you can elevate your viewing angle above the xy plane. If $90<$ eye $\phi<270$, the viewing angle is below the xy plane.

The view on the Graph screen is always oriented along the viewing angles set by eye θ and eyed. You can change eye ψ to rotate the graph around that line of sight.

The eye values are stored in the system variables eye θ, eyed, and eye ψ. You can access or store to these variables as necessary.

TI-89: To type ϕ or ψ, press \rightarrow alpha [F] or $\square \square$, respectively. You can also press 2nd [CHAR] and use the Greek menu.
TI-92 Plus: To type ϕ or ψ, press 2nd G F or 2nd G Y respectively. You can also press 2nd [CHAR] and use the Greek menu.

Animating a 3D Graph Interactively

After plotting any 3D graph, you can change the viewing angle interactively by using the cursor. Refer to the preview example on page 154.

The Viewing Orbit

Note: The viewing orbit affects the eye Window variables in differing amounts.

Animating the Graph

Note: If the graph is shown in expanded view, it returns to normal view automatically when you press a cursor key.
Tip: After animating the graph, you can stop and then re-start the animation in the same direction by pressing:
TI-89: ENTER or alpha [[-] TI-92 Plus: ENTER or space bar

Tip: During an animation, you can switch to the next graph format style by pressing:
TI-89: 1
TI-92 Plus: F

Tip: To see a graphic that shows the eye angles, refer to page 162.

Animating a Series of Graph Pictures

When using (1) and (1) to animate a graph, think of it as moving the viewing angle along its "viewing orbit" around the graph.

Moving along this orbit can cause the z axis to wobble slightly during the animation (as you can see in the preview example on page 154).

To:	Do this:
Animate the graph incrementally	Press and release the cursor quickly.
Move along the viewing orbit: Change the viewing orbit's: elevation (primarily increases or decreases eyeф)	$\begin{aligned} & \oplus \text { or } \oplus \\ & \oplus \\ & \oplus \\ & \text { or } \\ & \ominus \end{aligned}$
Animate the graph continuously	Press and hold the cursor for about 1 second, and then release it.
	TI-89: To stop, press ESC, ENTER, 0 N , or \square [\llcorner] (space).
	TI-92 Plus: To stop, press ESC ENTER, ON, or the space bar.

Change between 4 animation	Press \boxplus or \square.
speeds (increase or decrease the	
incremental changes in the eye	
Window variables)	

Change the viewing angle of a non- Press X, Y or Z, respectively. animated graph to look along the x , y , or z axis

Return to the initial eye angle values	Press 0 (zero, not the letter O).

You can also animate a graph by saving a series of graph pictures and then flipping (or cycling) through those pictures. Refer to "Animating a Series of Graph Pictures" in Chapter 12: Additional Graphing Topics. This method gives you more control over the Window variable values, particularly eye ψ (page 162), which rotates the graph.

Changing the Axes and Style Formats

Displaying the GRAPH FORMATS Dialog Box

Examples of Axes Settings

Tip: Setting Labels = ON is helpful when you display either type of 3D axes.

With its default settings, the TI-89 / TI-92 Plus displays hidden surfaces on a 3D graph but does not display the axes.
However, you can change the graph format at any time.

From the Y= Editor, Window Editor, or Graph screen, press:
F19

- or -

TI-89: \square
TI-92 Plus: $\square \mathrm{F}$

- The dialog box shows the current graph format settings.
- To exit without making a change, press ESC.

To change any of these settings, use the same procedure that you use to change other types of dialog boxes, such as the MODE dialog box.

To display the valid Axes settings, highlight the current setting and press (1).

- AXES - Shows standard xyz axes.
- BOX - Shows 3-dimensional box axes.

The edges of the box are determined by the Window variables xmin, xmax, etc.

In many cases, the origin $(0,0,0)$ is inside the box, not at a corner.
For example, if $x \min =y \min =z \min =-10$ and $x \max =y \max =z \max =10$, the origin is at the center of the box.

Examples of Style Settings

Tip: WIRE FRAME is faster to graph and may be more convenient when you're experimenting with different shapes.

Be Aware of Possible Optical Illusions

Note: These examples show the graphs as displayed on the screen.

Note: These examples use artificial shading (which is not displayed on the screen) to show the front of the box.

To display the valid Style settings, highlight the current setting and press (1).

- WIRE FRAME - Shows the 3D shape as a transparent wire frame.
- HIDDEN SURFACES - Uses shading to differentiate the two sides of the 3D shape.

Later sections in this chapter describe CONTOUR LEVELS, WIRE AND CONTOUR (page 167) and IMPLICIT PLOT (page 171).

The eye angles used to view a graph (eye日, eyed, and eye ψ Window variables) can result in optical illusions that cause you to lose perspective on a graph.

Typically, most optical illusions occur when the eye angles are in a negative quadrant of the coordinate system.

Optical illusions may be more noticeable with box axes. For example, it may not be immediately obvious which is the "front" of the box.

To minimize the effect of optical illusions, use the GRAPH FORMATS dialog box to set Style $=$ HIDDEN SURFACE.

In a contour plot, a line is drawn to connect adjacent points on the 3D graph that have the same z value. This section discusses the CONTOUR LEVELS and WIRE AND CONTOUR graph format styles.

Selecting the Graph Format Style

Tip: From the Graph screen, you can switch from one graph format style to the next (skipping IMPLICIT PLOT) by pressing:
TI-89: 1
TI-92 Plus: F

Note: Pressing:

TI-89:
TI-92 Plus: F
to select CONTOUR LEVELS does not affect the viewing angle, view, or Labels format as it does if you use: TI-89: \square TI-92 Plus: $\quad \mathrm{F}$

Note: These examples use the same x, y, and z Window variable values as a ZoomStd viewing cube. If you use ZoomStd, press Z to look down the z axis.

In 3D graphing mode, define an equation and graph it as you would any 3D equation, with the following exception. Display the GRAPH FORMATS dialog box by pressing F 19 from the $\mathrm{Y}=$ Editor, Window editor, or Graph screen. Then set:

Style = CONTOUR LEVELS

- or -

Style $=$ WIRE AND CONTOUR

- For CONTOUR LEVELS, only the contours are shown.
- The viewing angle is set initially so that you are viewing the contours by looking down the z axis. You can change the viewing angle as necessary.
- The graph is shown in expanded view. To switch between expanded and normal view, press \boxtimes.
- The Labels format is set to OFF automatically.
- For WIRE AND CONTOUR, the contours are drawn on a wire frame view. The viewing angle, view (expanded or normal), and Labels format retain their previous settings.

Note: Do not confuse the contours with the grid lines. The contours are darker.

How Are Z Values Determined?

Drawing a Contour for the Z Value of a Selected Point Interactively

Tip: Any existing contours remain on the graph. To remove the default contours, display the Window editor (- [WINDOW]) and set ncontour=0.

You can set the ncontour Window variable (\square [window]) to specify the number of contours that will be evenly distributed along the displayed range of z values, where:

$$
\text { increment }=\frac{z \max -\mathrm{zmin}}{\text { ncontour }+1}
$$

The z values for the contours are:

```
zmin + increment
zmin + 2(increment)
zmin + 3(increment)
zmin + ncontour(increment)
```

If ncontour $=5$ and you use the standard viewing window ($\mathrm{zmin}=-10$ and $z \max =10$) , the increment is 3.333 . Five contours are drawn for $\mathrm{z}=-6.666,-3.333,0,3.333$, and 6.666.

Note, however, that a contour is not drawn for a z value if the 3D graph is not defined at that z value.

If a contour graph is currently displayed, you can specify a point on the graph and draw a contour for the corresponding z value.

1. To display the Draw menu, press:

TI-89: 2nd [F6]
Tl-92 Plus: F6
2. Select 7:Draw Contour.
3. Either:

Fiv

- Type the point's x value and press

ENTER, and then type the y value and press ENTER.

- or -
- Move the cursor to the applicable point. (The cursor moves along the grid lines.) Then press ENTER.

For example, suppose the current graph is $z 1(x, y)=x^{2}+.5 y^{2}-5$. If you specify $\mathrm{x}=2$ and $\mathrm{y}=3$, a contour is drawn for $\mathrm{z}=3.5$.

Drawing Contours for Specified Z Values

Tip: To remove the default contours, use $\rightarrow[$ WINDOW $]$ and set ncontour $=0$.

From the Graph screen, display the Draw menu and then select 8:DrwCtour. The Home screen is displayed automatically with DrwCtour in the entry line. You can then specify one or more z values individually or generate a sequence of z values.

Some examples are:
DrwCtour 5 Draws a contour for $z=5$.
DrwCtour $\{1,2,3\} —$ Draws contours for $z=1,2$, and 3.
DrwCtour seq($\mathrm{n}, \mathrm{n},-10,10,2) —$ Draws contours for a sequence of z
values from -10 through 10 in
steps of $2(-10,-8,-6$, etc.).
The specified contours are drawn on the current 3D graph. (A contour is not drawn if the specified z value is outside the viewing cube or if the 3D graph is not defined at that z value.)

For a contour plot:

- You can use the cursor keys (page 164) to animate the contour plot.
- You cannot trace (F3) the contours themselves. However, you can trace the wire frame as seen when Style=WIRE AND CONTOUR.
- It may take awhile to evaluate the equation initially.
- Because of possible long evaluation times, you first may want to experiment with your 3D equation by using Style=WIRE FRAME. The evaluation time is much shorter. Then, after you're sure you have the correct Window variable values, display the Graph Formats dialog box and set Style=CONTOUR LEVELS or WIRE AND CONTOUR.
TI-89: - ${ }^{1}$
TI-92 Plus: $\square \mathrm{F}$

Example: Contours of a Complex Modulus Surface

Example

Note: For more accurate estimates, increase the xgrid and ygrid Window variables. However, this increases the graph evaluation time.

Tip: When you animate the graph, the screen changes to normal view. Use \boxtimes to toggle between normal and expanded views.

The complex modulus surface given by $z(a, b)=a b s(f(a+b i))$ shows all the complex zeros of any polynomial $\mathrm{y}=\mathrm{f}(\mathrm{x})$.

In this example, let $f(x)=x^{3}+1$. By substituting the general complex form $\mathrm{x}+\mathrm{y} i$ for x , you can express the complex surface equation as $\mathrm{z}(\mathrm{x}, \mathrm{y})=\operatorname{abs}\left(\left(\mathrm{x}+\mathrm{y}^{*} \boldsymbol{i}\right)^{3}+1\right)$.

1. Use MODE to set Graph=3D.
2. Press $\bullet[Y=]$, and define the equation:
$\mathrm{z} 1(\mathrm{x}, \mathrm{y})=\mathrm{abs}\left((\mathrm{x}+\mathrm{y} * \boldsymbol{i})^{\wedge} 3+1\right)$
3. Press $\bullet[$ WINDOW $]$, and set the Window variables as shown.
4. Display the Graph Formats dialog box:
TI-89: $\quad 1$
TI-92 Plus: $\rightarrow \mathrm{F}$
Turn on the axes, set

롤 $=-90$. 릴. $\ddagger=0$
人min=-i.
$x M 1 F=-1$
x
$\times m a x=1$
$\times 9 r i d=14$

붑id=14
zMir $=-1$
zmax=2.

Style = CONTOUR LEVELS, and return to the Window editor.
5. Press [GRAPH] to graph the equation.

It will take awhile to evaluate the graph; so be patient. When the graph is displayed, the complex modulus surface touches the xy plane at exactly the complex zeros of the polynomial:
$-1, \frac{1}{2}+\frac{\sqrt{3}}{2} \boldsymbol{i}$, and $\frac{1}{2}-\frac{\sqrt{3}}{2} \boldsymbol{i}$
6. Press F3, and move the trace cursor to the zero in the fourth quadrant.

The coordinates let you estimate .428-.857i as the zero.
7. Press ESC. Then use the cursor keys to animate the graph and view it from different eye angles.

This example shows eye $\theta=70$, eye $\phi=70$, and eye $\psi=0$.

Explicit and Implicit Forms

Tip: You can also graph many implicit forms if you either:

- Express them as parametric equations. Refer to Chapter 7.
- Break them into separate, explicit functions. Refer to the preview example in Chapter 6.

An implicit plot is used primarily as a way to graph 2D implicit forms that cannot be graphed in function graphing mode.
Technically, an implicit plot is a 3D contour plot with a single contour drawn for $\mathrm{z}=0$ only.

In 2D function graphing mode, equations have an explicit form $y=f(x)$, where y is unique for each value of x.

Many equations, however, have an implicit form $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{g}(\mathrm{x}, \mathrm{y})$, where you cannot explicitly

y is not unique for each x, so you cannot graph this in function graphing mode.
solve for y in terms of x or for x in terms of y.

By using implicit plots in 3D graphing mode, you can graph these implicit forms without solving for y or x .

Rearrange the implicit form as

$$
f(x, y)-g(x, y)=0
$$ an equation set to zero.

In the $\mathrm{Y}=$ Editor, enter the non-

$$
z 1(x, y)=f(x, y)-g(x, y)
$$ zero side of the equation. This is valid because an implicit plot automatically sets the equation equal to zero.

For example, given the ellipse equation shown to the right, enter the implicit form in the $\mathrm{Y}=$ Editor.

If $x^{2}+.5 y^{2}=30$,
then $z 1(x, y)=x^{2}+.5 y^{2}-30$.

Selecting the Graph Format Style

Note: From the Graph screen, you can switch to the other graph format styles by pressing:
TI-89: प
T1-92 Plus: F
However, to return to IMPLICIT PLOT press:
TI-89: ${ }^{(1)}$
Tl-92 Plus: ${ }^{-1} \mathrm{~F}$

In 3D graphing mode, define an appropriate equation and graph it as you would any 3D equation, with the following exception. Display the GRAPH FORMATS dialog box from the Y= Editor, Window editor, or Graph screen.
TI-89: \rightarrow (1)
TI-92 Plus: $\quad \mathrm{F}$
Then set:
Style $=$ IMPLICIT PLOT

Note: These examples use the same x, y, and z Window variable values as a ZoomStd viewing cube. If you use ZoomStd, press Z to look down the z axis.

- The viewing angle is set initially so that you are viewing the plot by looking down the z axis. You can change the viewing angle as necessary.
- The plot is shown in expanded view. To switch between expanded and normal view, press .
- The Labels format is set to OFF automatically.

For an implicit plot:

- The ncontour Window variable (page 168) has no affect. Only the $\mathrm{z}=0$ contour is drawn, regardless of the value of ncontour. The displayed plot shows where the implicit form intersects the xy plane.
- You can use the cursor keys (page 164) to animate the plot.
- You cannot trace (F3) the implicit plot itself. However, you can trace the unseen wire frame graph of the 3D equation.
- It may take awhile to evaluate the equation initially.
- Because of possible long evaluation times, you first may want to experiment with your 3D equation by using Style=WIRE FRAME. The evaluation time is much shorter. Then, after you're sure you have the correct Window variable values, set Style=IMPLICIT PLOT.
TI-89: ${ }^{-1}$ TI-92 Plus: $\square F$

Example：Implicit Plot of a More Complicated Equation

You can use the IMPLICIT PLOT graph format style to plot and animate a complicated equation that cannot be graphed otherwise．Although it may take a long time to evaluate such a graph，the visual results can justify the time required．

Example

Note：For more detail， increase the xgrid and ygrid Window variables．However， this increases the graph evaluation time．

Tip：When you animate the graph，the screen changes to normal view．Press \boxtimes to switch between normal and expanded views．

Graph the equation $\sin \left(x^{4}+y-x^{3} y\right)=.1$ ．
1．Use MODE to set Graph＝3D．
2．Press $\bullet[\gamma=]$ ，and define the equation：
$z 1(x, y)=\sin \left(x^{\wedge} 4+y-x^{\wedge} 3 y\right)-.1$

3．Press［window］，and set the Window variables as shown．

4．Press：
TI－89：\square
TI－92 Plus：$\quad \mathrm{F}$
Turn on the axes，set Style＝IMPLICIT PLOT，and return to the Window editor．

5．Press［GRAPH］to graph the equation．

It will take awhile to evaluate the graph；so be patient．

6．Use the cursor keys to animate the graph and view it from different eye angles．

르륭․
毕电 $\ddagger=0$.
$\times \mathrm{min}=-10$.
$x \max =10$,
xarid＝14．
$\square m=10$,
品idid．

noontour＝5

In expanded view，this example shows eye $\theta=-127.85$ ，eye $\phi=52.86$ ， and eye $\psi=-18.26$ ．

Differential Equation Graphing

Note: A differential equation is:

- 1st-order when only 1st-order derivatives appear.
- Ordinary when all the derivatives are with respect to the same independent variable.
Preview of Differential Equation Graphing 176
Overview of Steps in Graphing Differential Equations 178
Differences in Diff Equations and Function Graphing 179
Setting the Initial Conditions 184
Defining a System for Higher-Order Equations 186
Example of a 2nd-Order Equation 187
Example of a 3rd-Order Equation 189
Setting Axes for Time or Custom Plots 190
Example of Time and Custom Axes 191
Example Comparison of RK and Euler 193
Example of the deSolve() Function 196
Troubleshooting with the Fields Graph Format 197

This chapter describes how to solve differential equations graphically on the TI-89 / TI-92 Plus. Before using this chapter, you should be familiar with Chapter 6: Basic Function Graphing.

The TI-89 / TI-92 Plus solves 1st-order systems of ordinary differential equations. For example:
$y^{\prime}=.001 \mathrm{y} *(100-\mathrm{y})$
or coupled 1st-order differential equations such as:
$y 1^{\prime}=-\mathrm{y} 1+0.1 * y 1 * y 2$
$y 2^{\prime}=3 * y 2-y 1 * y 2$
You can solve higher-order equations by defining them as a system of 1st-order equations. For example:
$y^{\prime \prime}+y=\sin (t) \quad$ can be defined as $\quad y 1^{\prime}=y 2$

$$
y 2^{\prime}=-y 1+\sin (t)
$$

By setting appropriate initial conditions, you can graph a particular solution curve of a differential equation.

You can also graph a slope or direction field that helps you visualize the behavior of the entire family of solution curves.

For graphing, the TI-89 / TI-92 Plus uses numerical methods that approximate the true solutions. The deSolve() function lets you solve some differential equations symbolically. This chapter introduces deSolve(). Refer to Appendix A for more details.

Graph the solution to the logistic 1 st-order differential equation $y^{\prime}=.001 y^{*}(100-y)$. Start by drawing only the slope field. Then enter initial conditions in the $\mathrm{Y}=$ Editor and interactively from the Graph screen.

Steps	TI-89 TI- Keystrokes	TI-92 Plus Keystrokes	Display
6. Return to the $\mathrm{Y}=$ Editor and enter an initial condition: yi $1=10$	田 $\mathrm{Y}=]$ ENTER 10 ENTER	[$\mathrm{Y}=]$ EENTER 10 ENTER	
7. Return to the Graph screen. Initial conditions entered in the $Y=$ Editor always occur at to. The graph begins at the initial condition and plots to the right. Then it plots to the left.	- [GRAPH]	\bullet [GRAPH]	
8. Return to the $Y=$ Editor and change yi1 to enter two initial conditions as a list: $\text { yi1=\{10,20\} }$		$\begin{aligned} & \text { [}[\mathrm{Y}=] \odot \\ & \text { E ENTER [2nd [i] } \\ & 10 \square 20 \text { [2nd [1] } \\ & \text { ENTER] } \end{aligned}$	
9. Return to the Graph screen.	[GRAPH]	${ }^{\circ}$ [GRAPH]	
10. To select an initial condition interactively, press: TI-89: 2nd [F8] TI-92 Plus: F8 When prompted, enter $t=40$ and $\mathrm{y} 1=45$.	$\begin{aligned} & \text { [2nd [F8] } \\ & 40 \text { [ENTER } \\ & 45 \text { ENTER } \end{aligned}$	$\begin{aligned} & \text { F8 } \\ & 40 \text { ENTER } \\ & 45 \text { ENTER } \\ & \hline 1 \end{aligned}$	
When selecting an initial condition interactively, you can specify a value for t other than the to value entered in the $Y=$ Editor or Window Editor.			
Instead of entering t and y1 after pressing TI-89: [2nd [F8] TI-92 Plus: F8, you can move the cursor to a point on the screen and then press ENTER.			
You can use [53 to trace curves for initial conditions specified in the $Y=$ Editor. However, you cannot trace the curve for an initial condition selected interactively.			

Overview of Steps in Graphing Differential Equations

To graph differential equations, use the same general steps used for $y(x)$ functions as described in Chapter 6: Basic Function Graphing. Any differences are described on the following pages.

Graphing Differential Equations

Tip: To turn off any stat data plots, press F5 5 or use F4 to deselect them. Refer to Chapter 16.

Note: The Fields format is critical, depending on the order of the equation (page 197).

Note: Valid Axes settings depend on the Fields format (pages 190 and 197).

Note: Depending on the Solution Method and Fields formats, different Window variables are displayed.

Tip: F2 Zoom also changes the viewing window.

F678

$t 0=0$.
tox $=10$
$t 5 \mathrm{ep}=1$
$\times \mathrm{min}=10$
M品
$\times \operatorname{Mic}=1=10$.
$x=61=10$

- $\mathrm{max}=120$.
$\mathrm{OEO}=10$.

diftol= 001
fldres=20.

Differences in Diff Equations and Function Graphing

This chapter assumes that you already know how to graph $y(x)$ functions as described in Chapter 6: Basic Function Graphing. This section describes the differences.

Setting the Graph Mode

Defining Differential
Equations on the Y= Editor

Tip: You can use the Define command from the Home screen to define functions and equations.

Selecting
Differential Equations

Use MODE to set Graph = DIFF EQUATIONS before you define differential equations or set Window variables. The Y=Editor and the Window Editor let you enter information for the current Graph mode setting only.

When entering equations in the Y= Editor, do not use $y(t)$ formats to refer to results. For example:

	Do not use implied multiplication	
Enter:	$\mathrm{y} 1^{\prime}=.001 \mathrm{y} 1^{*}(100-\mathrm{y} 1)$	between a variable and parenthetical expression. If you do, it is treated as a function call.
Not:	$\mathrm{y} 1^{\prime}=.001 \mathrm{y} 1(\mathrm{t}) *(100-\mathrm{y} 1(\mathrm{t}))$	den

Only 1st-order equations can be entered in the Y= Editor. To graph 2 nd- or higher-order equations, you must enter them as a system of 1st-order equations. For information, refer to page 186.

For detailed information about setting initial conditions, refer to page 184.

You can use F4 to select a differential equation, but not its initial condition.

Important: Selecting y1' will graph the $y 1$ solution curve, not the derivative $y 1$ ', depending on the axis
 setting.

With the Style menu, only the Line, Dot, Square, Thick, Animate, and Path styles are available. Dot and Square mark only those discrete values (in tstep increments) at which a differential equation is plotted.
TI-89: [2nd [F6]
TI-92 Plus: F6

Setting Graph Formats

Important: The Fields graph format is critical in successfully graphing differential equations. Refer to "Troubleshooting with the Fields Graph Format" on page 197.

Tip: If you press ENTER while a slope or direction field is being drawn, the graph pauses after the field is drawn but before the solutions are plotted. Press ENTER again to continue.

Tip: To cancel graphing, press ON .

From the $\mathrm{Y}=$ Editor, Window
Editor, or Graph screen, press:
F1 9

- or -

TI-89: \square
TI-92 Plus: \quad F

The formats affected by differential equations are:

Graph format	Description
Graph Order	Not available.
Solution	Specifies the method used to solve the differential Method
equations.	

- RK - Runge-Kutta method. For information about the algorithm used for this method, refer to Appendix B.
- EULER - Euler method.

The method lets you choose either greater accuracy or speed. Typically, RK is more accurate than EULER but takes longer to find the solution.

Fields
Specifies whether to draw a field for the differential equation.

- SLPFLD - Draws a slope field for only one 1storder equation, with t on the x axis and the solution on the y axis. To see how a slope field is used, refer to the example starting on page 176 .
- DIRFLD - Draws a direction field for only one 2nd-order equation (or system of two 1st-order equations), with axes determined by the custom axes settings. To see how a direction field is used, refer to the example starting on page 187.
- FLDOFF - Does not display a field. This is valid for equations of any order, but you must use it for 3rd- or higher-order. You must enter the same number of initial conditions for all equations in the $\mathrm{Y}=$ Editor (page 184). For an example, refer to page 189.

Setting Axes

Window Variables

Note: If tmax < t0, tstep must be negative.

Note: If Fields=SLPFLD, tplot is ignored and is assumed to be the same as t0.

In the $\mathrm{Y}=$ Editor, Axes may or may not be available, depending on the current graph format.

If it is available, you can select the axes that are used to graph the differential equations. For more information, refer to page 190.
TI-89: 2nd [F7]
TI-92 Plus: ${ }^{\text {F7 }}$

Axes Description

TIME
Plots t on the x axis and y (the solutions to the selected differential equations) on the y axis.

CUSTOM Lets you select the x and y axes.

Differential equation graphs use the following Window variables. Depending on the Solution Method and Fields graph formats, not all of these variables are listed in the Window Editor $(\square[$ WINDOW $])$ at the same time.

Variable	Description
to	Time at which the initial conditions entered in the $\mathrm{Y}=$ Editor occur. You can set to in the Window Editor and $\mathrm{Y}=$ Editor. (If you set t0 in the $\mathrm{Y}=$ Editor, tplot is set to the same value automatically.)
tmax, tstep	Used to determine the t values where the equations are plotted:
	$\mathrm{y}^{\prime}(\mathrm{t} 0)$
	$\mathrm{y}^{\prime}(\mathrm{t} 0+$ tstep $)$
	$\mathrm{y}^{\prime}(\mathrm{t} 0+2 *$ tstep $)$
	... not to exceed ...
	$\mathrm{y}^{\prime}($ tmax $)$

If Fields = SLPFLD, tmax is ignored. Equations are plotted from to to both edges of the screen in tstep increments.
tplot
First t value plotted. If this is not a tstep increment, plotting begins at the next tstep increment. In some situations, the first points evaluated and plotted starting at t0 may not be interesting visually. By setting tplot greater than t 0 , you can start the plot at the interesting area, which speeds up the graphing time and avoids unnecessary clutter on the Graph screen.

Window Variables (Continued)

Note: For information about how the Fields graph format affects whether ncurves is used, refer to page 184.
$x m i n$, xmax, Boundaries of the viewing window.
ymin, ymax
xscl, yscl Distance between tick marks on the x and y axes.
ncurves \quad Number of solution curves (0 through 10) that will be drawn automatically if you do not specify an initial condition. By default, ncurves $=0$.

When ncurves is used, to is set temporarily at the middle of the screen and initial conditions are distributed evenly along the y axis, where:
increment $=\frac{y \text { max }-\mathrm{ymin}}{\text { ncurves }+1}$
The y values for the initial conditions are:
ymin + increment
ymin $+2 *$ (increment)
ymin + ncurves* (increment)
diftol (Solution Method = RK only) Tolerance used by the RK method to help select a step size for solving the equation; must be $\geq 1 \mathrm{E}^{-} 14$.
fldres (Fields = SLPFLD or DIRFLD only) Number of columns (1 through 80) used to draw a slope or direction field across the full width of the screen.

Estep (Solution Method = EULER only) Euler iterations between tstep values; must be an integer >0. For more accuracy, you can increase Estep without plotting additional points.
dtime (Fields = DIRFLD only) Point in time at which a direction field is drawn.

Standard values (set when you select 6:ZoomStd from the F2 Zoom toolbar menu) are:

t0 $=0$.	$\mathrm{xmin}=-1$.	$\mathrm{ymin}=-10$.	ncurves $=0$.
tmax $=10$.	$\mathrm{xmax}=10$.	$\mathrm{ymax}=10$.	diftol $=.001$
tstep $=.1$	$\mathrm{xscl}=1$.	$\mathrm{yscl}=1$.	Estep $=1$.
tplot $=0$.			fldres $=14$.
			dtime $=0$.

You may need to change the standard values for the t variables to ensure that sufficient points are plotted.

The fldpic System Variable

Tip: During a trace, you can move the cursor to a particular point by typing a value for t and pressing ENTER.

Tip: You can use QuickCenter at any time during a trace, even if the cursor is still on the screen.

When a slope or direction field is drawn, a picture of the field is stored automatically to a system variable named fldpic. If you perform an operation that regraphs the plotted equations but does not affect the field, the TI-89 / TI-92 Plus reuses the picture in fldpic instead of having to redraw the field. This can speed up the regraphing time significantly.
fldpic is deleted automatically when you exit the differential equation graphing mode or when you display a graph with Fields = FLDOFF.

As in function graphing, you can explore a graph by using the following tools. Any displayed coordinates are shown in rectangular or polar form as set in the graph format.

Tool For Differential Equation Graphs:

Free-Moving Works just as it does for function graphs. Cursor
[22 Zoom Works just as it does for function graphs.

- Only x (xmin, xmax, xscl) and y (ymin, ymax, yscl) Window variables are affected.
- The t Window variables (t 0 , tmax, tstep, tplot) are not affected unless you select 6:ZoomStd (which sets all Window variables to their standard values).

F3 Trace
Lets you move the cursor along the curve one tstep at a time. To move approximately ten plotted points at a time, press 2nd (1) or 2nd (1).
If you enter initial conditions in the $\mathrm{Y}=$ Editor or let the ncurves Window variable plot curves automatically, you can trace the curves. If you use:
TI-89: [2nd [F8]
TI-92 Plus: F8
IC from the Graph screen to select initial conditions interactively, you cannot trace the curves.

QuickCenter applies to all directions. If you move the cursor off the screen (top or bottom, left or right), press ENTER to center the viewing window on the cursor location. Use Θ or Θ to view results on all plotted curves.

F5 Math Only 1:Value is available.

- With TIME axes, the $y(t)$ solution value (represented by $y c$) is displayed for a specified t value.
- With CUSTOM axes, the values that correspond to x and y depend on the axes you choose.

Setting the Initial Conditions

Entering Initial Conditions in the $Y=$ Editor

Note: For information about defining a system for higherorder equations, refer to page 186.

You can enter initial conditions in the $Y=$ Editor, let the TI-89 / TI-92 Plus calculate initial conditions automatically, or select them interactively from the Graph screen.

You can specify one or more initial conditions in the Y= Editor. To specify more than one, enter them as a list enclosed in braces \{ \} and separated by commas.

To enter initial conditions for the y1' equation, use the yi1 line, etc.

For a 2nd- or higher-order differential equation, you must define a system of 1st-order equations in the $Y=$ Editor.

If you enter initial conditions, you must enter the same number of initial conditions for each equation in the system. Otherwise, a Dimension error occurs.

If you do not enter initial conditions, the ncurves Window variable (\square [winDOW]) specifies the number of solution curves graphed automatically. By default, ncurves $=0$. You can enter a value from 0 through 10. However, the Fields graph format and the Axes setting determine whether ncurves is used.

If Fields $\mathbf{~}$	Then:
SLPFLD	Uses ncurves, if not set to 0, to graph curves.
DIRFLD	Ignores ncurves. Does not graph any curves.
FLDOFF	Uses ncurves if Axes = TIME (or if Axes = Custom and the x axis is t). Otherwise, a Diff Eq setup error occurs.

When ncurves is used, t0 is set temporarily at the middle of the Graph screen. However, the value of t 0 as set in the $\mathrm{Y}=$ Editor or Window Editor is not changed.

Tip: Without entering initial conditions, use SLPFLD (with ncurves=0) or DIRFLD to display a slope or direction field only.

Note: SLPFLD is for a single 1st-order equation only. DIRFLD is for a 2nd-order equation (or system of two 1st-order equations) only.

If You Do Not Enter an Initial Condition in the $\mathrm{Y}=$ Editor

Selecting an Initial Condition Interactively from the Graph Screen

Note: With SLPFLD or DIRFLD, you can select initial conditions interactively regardless of whether you enter initial conditions in the $Y=$ Editor.

Note: With FLDOFF, you can select initial conditions interactively. However, if three or more equations are entered, you must enter a single value (not a list) as the initial condition for each equation in the $Y=$ Editor. Otherwise, a Dimension error occurs when graphing.

When a differential equation is graphed (regardless of whether a solution curve is displayed), you can select a point on the Graph screen and use it as an initial condition.

If Fields $=$	Do this:
SLPFLD	1. Press:
- or -	TI-89: 2nd [F8]
DIRFLD	TI-92 Plus: F8

2. Specify an initial condition. Either:

- Move the cursor to the applicable point and press ENTER.
- or -
- For each of the two coordinates, type a value and press ENTER.
- For SLPFLD (1st-order only), enter values for t0 and $\mathrm{y}(\mathrm{t} 0)$.
- For DIRFLD (2nd-order or system of two 1storder equations only), enter values for both $y(t 0)$ initial conditions, where to is the value set in the Y= Editor or Window Editor.

A circle marks the initial condition and the solution curve is drawn.

```
FLDOFF 1. Press:
TI-89: 2nd [F8]
Tl-92 Plus: F8
You are prompted to select the axes for which you want to enter initial conditions.
```


Your selections will be used as the axes for the graph.
2. You can accept the defaults or change them. Then press ENTER.
3. Specify an initial condition as described for SLPFLD or DIRFLD.

Note about Tracing a Solution Curve

When you enter initial conditions in the $\mathrm{Y}=$ Editor or let ncurves graph solution curves automatically, you can use F3 to trace the curves.

However, you cannot trace a curve drawn by selecting an initial condition interactively. These curves are drawn, not plotted.

Defining a System for Higher-Order Equations

Transforming an Equation into a 1stOrder System

Note: To produce a 1storder equation, the right side must contain nonderivative variables only.

Note: Based on the above substitutions, the y^{\prime} lines in the $Y=$ Editor represent:

$$
y 1^{\prime}=y^{\prime}
$$

$y 2^{\prime}=y^{\prime \prime}$
etc.
So, this example's 2ndorder equation is entered on the $y 2$ ' line.

In the $\mathrm{Y}=$ Editor, you must enter all differential equations as 1 st-order equations. If you have an $n^{\text {th }}$-order equation, you must transform it into a system of $n 1$ st-order equations.

A system of equations can be defined in various ways, but the following is a general method.

1. Rewrite the original differential equation as necessary.
a. Solve for the highest-ordered derivative.
b. Express it in terms of y and t.
c. On the right side of the equation only, substitute to eliminate any references to derivative values.

In place of:	Substitute:
y^{\prime}	$y 1$
y^{\prime}	$y 2$
$y^{\prime \prime}$	$y 3$
$y^{\prime \prime \prime}$	$y 4$
$y^{(4)}$	y5
\vdots	\vdots

d. On the left side of the equation, substitute for the derivative value as shown below.

2. On the applicable lines in the $\mathrm{Y}=$ Editor, define the system of equations as:
$y 1^{\prime}=y 2$
$y 2^{\prime}=y 3$
$y 3 '=y 4$

- up to -
$y n^{\prime}=$ your $n^{\text {th }}$-order equation

In a system such as this, the solution to the $y 1$ ' equation is the solution to the $n^{\text {th }}$-order equation. You may want to deselect any other equations in the system.

Example of a 2nd-Order Equation

Example

Note: t0 is the time at which the initial conditions occur. It is also the first t evaluated for the graph. By default, $t 0=0$.

Important: For 2nd-order equations, you must set Fields=DIRFLD or FLDOFF.

Important: Fields=DIRFLD cannot plot a time axis. An Invalid Axes error occurs if Axes=TIME or if t is set as a CUSTOM axis.

The 2nd-order differential equation y " $+\mathrm{y}=0$ represents a simple harmonic oscillator. Transform this into a system of equations for the $Y=$ Editor. Then, graph the solution for initial conditions $\mathrm{y}(0)=0$ and $\mathrm{y}^{\prime}(0)=1$.

1. Press MODE and set Graph=DIFF EQUATIONS.
2. Define a system of equations for the 2 nd-order equation as described on page 186.
Rewrite the equation and make the necessary substitutions.
3. In the $Y=$ Editor $(\square[Y=])$, enter the system of equations.
4. Enter the initial conditions:
yi1 $=0$ and yi2 $=1$

5. Press:

F1 9

- or -

TI-89: - (1)
TI-92 Plus: -
and set Axes = ON, Labels = OFF, Solution Method = RK, and Fields = DIRFLD.
6. In the Y= Editor, press:

TI-89: 2nd [F7]
TI-92 Plus: ${ }^{\text {F }}$
and make sure Axes = CUSTOM with y 1 and y 2 as the axes.
7. In the Window Editor (\square [window]), set the Window variables.

$\mathrm{t} 0=0$. $\quad \mathrm{xmin}=-2$. ncurves $=0$. $\operatorname{tmax}=10$. $\quad x \max =2$. diftol $=.001$ tstep $=1 \quad$ xscl=1. fldres $=14$. tplot $=0 . \quad$ ymin $=-2$. dtime $=0$. $y \max =2$. yscl=1.
8. Display the Graph screen (\rightarrow [GRAPH]).

If you select ZoomSqr (F2 5), you can see that the phase-plane orbit is actually a circle. However, ZoomSqr will change your Window variables.

Note: To display different graphs in both parts of a split screen, you must use the 2-graph mode.

Important: Because

Fields=DIRFLD cannot plot a time axis, you must change the Fields setting. FLDOFF turns off all fields.

Note: When you enter 2 graph mode, Window variables for the right side are set to their defaults.
9. Press MODE and change the mode settings on Page 2 as shown. Then close the MODE dialog box, which redraws the graph.
10. Press 2nd [\boxplus] to switch to the right side of the split screen.
11. Use F4 to select y 1 ' and y 2 '.

The right side uses the same equations as the left side. However, no equations are selected initially in the right side.
12. Press:

F1 9

- or 一

TI-89: - $]^{\square}$
TI-92 Plus: $\quad \mathrm{F}$
Set Fields = FLDOFF.
13. In the $\mathrm{Y}=$ Editor, press:

TI-89: 2nd [F7]
TI-92 Plus: 7
and make sure Axes = TIME.
14. In the Window Editor, change ymin and ymax as shown to the right.
15. Press [GRAPH] to display the Graph screen for graph \#2.

The left side shows the phaseplane orbit. The right side shows the solution curve and its derivative.
16. To return to a full screen of the original graph, press 2nd [\boxplus] to switch to the left side. Then press MODE and change the Split Screen setting.

$y \min =-2$.
$y \max =2$.

Split Screen $=$ FULL

Example of a 3rd-Order Equation

Example

Note: t0 is the time at which the initial conditions occur. By default, $t 0=0$.

Important: For 3rd- or higher-order equations, you must set Fields=FLDOFF. Otherwise, an Undefined variable error occurs when graphing.

Note: With Axes=TIME, the solution to the selected equation is plotted against time (t).

Tip: To find the solution at a particular time, use F3 to trace the graph.

For the 3rd-order differential equation $y^{\prime \prime \prime}+2 y^{\prime \prime}+2 y^{\prime}+y=\sin (x)$, write a system of equations to enter in the $\mathrm{Y}=$ Editor. Then graph the solution as a function of time. Use initial conditions $y(0)=0, y^{\prime}(0)=1$, and $y^{\prime \prime}(0)=1$.

1. Press MODE and set Graph=DIFF EQUATIONS.
2. Define a system of equations for the 3rd-order equation as described on page 186.
Rewrite the equation and make the necessary substitutions.
3. In the $Y=$ Editor $(\square[Y=])$, enter the system of equations.
4. Enter the initial conditions:
yi1 $=0$, yi2 $=1$, and yi3=1
5. Be sure that only y 1 ' is selected. Use F4 to deselect any other equations.
6. Press:

F1 9

- or -

TI-89: \rightarrow (1)
TI-92 Plus: $\quad \mathrm{F}$
Set Axes $=$ ON, Labels $=$ ON,
Solution Method = RK, and
Fields $=$ FLDOFF.
7. In the $\mathrm{Y}=$ Editor, press:

TI-89: 2nd [F7]
TI-92 Plus: ${ }^{\text {F }}$
Set Axes = TIME. equation is the solution to the 3rdorder equation.

8. In the Window Editor (\square [window]), set the Window variables.

$$
\mathrm{t} 0=0 . \quad \mathrm{xmin}=-1 . \quad \text { ncurves }=0 .
$$ $\operatorname{tmax}=10$. $\quad x \max =10$. diftol $=.001$ tstep $=1 \quad \mathrm{xscl}=1$. tplot $=0 . \quad y \mathrm{~min}=-3$. $y \max =3$. $y s c l=1$.

9. Display the Graph screen (\square [GRAPH]).

Setting Axes for Time or Custom Plots

Displaying the AXES Dialog Box

Note: t is not valid for either Axis when Fields=DIRFLD. If you select t, an Invalid axes error occurs when graphing.

Setting the axes can give you great flexibility in graphing differential equations. Custom axes are particularly effective for showing different kinds of relationships.

From the Y= Editor, press:
TI-89: [2nd [F7]
TI-92 Plus: ${ }^{\text {F7 }}$

If Fields = SLPFLD, Axes is unavailable.
TI-89: 2nd [F7]
TI-92 Plus: F7

Item	Description
Axes	TIME - Plots t on the x axis and y (solutions to all selected differential equations) on the y axis.

CUSTOM - Lets you select the x and y axes.
X Axis, Active only when Axes = CUSTOM, these let you select Y Axis what you want to plot on the x and y axes.

t - time
y - solutions ($\mathrm{y} 1, \mathrm{y} 2$, etc.) of all selected differential equations
y^{\prime} - values of all selected differential equations (y 1 ', y2', etc.)
$\mathrm{y} 1, \mathrm{y} 2$, etc. - the solution to the corresponding differential equation, regardless of whether that equation is selected
$y 1$ ', $y 2$ ', etc. - the value of the right-hand side of the corresponding differential equation, regardless of whether that equation is selected

Example of Time and Custom Axes

Predator-Prey Model

Tip: To speed up graphing times, clear any other equations in the $Y=$ Editor. With FLDOFF, all equations are evaluated even if they are not selected.

Tip: Use Θ and Θ to move the trace cursor between the curves for y1 and y2.

Using the predator-prey model from biology, determine the numbers of rabbits and foxes that maintain population equilibrium in a certain region. Graph the solution using both time and custom axes.

Use the two coupled 1st-order differential equations:
$y 1^{\prime}=-\mathrm{y} 1+0.1 \mathrm{y} 1 * \mathrm{y} 2$ and $\mathrm{y} 2 \mathbf{2}^{\prime}=3 \mathrm{y} 2-\mathrm{y} 1 * \mathrm{y} 2$
where:
y1 = Population of foxes
yi1 $=$ Initial population of foxes (2)
y2 $=$ Population of rabbits
yi2 $=$ Initial population of rabbits (5)

1. Use MODE to set Graph = DIFF EQUATIONS.
2. In the $Y=$ Editor $(\square[Y=])$, define the differential equations and enter the initial conditions.
3. Press:
(F1) 9

- or -

TI-89: ©
TI-92 Plus: -F
Set Axes $=$ ON, Labels $=$ ON,
Solution Method $=$ RK, and
Fields $=$ FLDOFF .
4. In the Y= Editor, press:

TI-89: 2nd [F7]
TI-92 Plus: 7
Set Axes = TIME.

5. In the Window Editor (\square [Window]), set the Window variables.

$$
\begin{array}{lll}
\mathrm{t} 0=0 . & \mathrm{xmin}=-1 . & \text { ncurves }=0 . \\
\mathrm{tmax}=10 . & \mathrm{xmax}=10 . & \text { diftol }=.001 \\
\mathrm{tstep}=\pi / 24 & \mathrm{xscl}=5 . \\
\text { tplot }=0 . & \mathrm{ymin}=-10 . \\
& \text { ymax }=40 . \\
& \text { yscl=5. } .
\end{array}
$$

6. Graph the differential equations (\triangle [GRAPH]).
7. Press F3 to trace. Then press 3 ENTER to see the number of foxes (yc for y 1) and rabbits (yc for y 2) at $\mathrm{t}=3$.

Note: In this example, DIRFLD is used for two related differential equations that do not represent a 2ndorder equation.

Tip: Use a list to specify more than one initial condition.

Tip: Use \odot and \odot to move the trace cursor from one initial condition curve to another.
8. Return to the $Y=$ Editor. Press:

F1 9

- or -

TI-89: \rightarrow ■
TI-92 Plus: -F
Set Fields = DIRFLD.
9. Press:

TI-89: 2nd [F7]
TI-92 Plus: F7
Confirm that the axes are set as shown.
10. In the Y= Editor, clear the initial conditions for yi1 and yi2.
11. Return to the Graph screen, which displays only the direction field.
12. To graph a family of solutions, return to the $\mathrm{Y}=$ Editor and enter the initial conditions shown below.
yi1 $=\{2,6,7\}$ and $\mathrm{yi} 2=\{5,12,18\}$
13. Return to the Graph screen, which displays a curve for each pair of initial conditions.
14. Press F3 to trace. Then press 3 ENTER to see the number of foxes (xc) and rabbits (yc) at $\mathrm{t}=3$.

Because t0=0 and tmax=10,
 you can trace in the range $0 \leq t \leq 10$.

Example Comparison of RK and Euler

Example

Tip: To speed up graphing times, clear any other equations in the $Y=$ Editor. With FLDOFF, all equations are evaluated even if they are not selected.

Note: You do not need to graph the equation before using BIdData. For more information about BIdData, refer to Appendix A.

Consider a logistic growth model dP/dt = .001*P*(100-P), with the initial condition $P(0)=10$. Use the BIdData instruction to compare the graphing points calculated by the RK and Euler solution methods. Then plot those points along with a graph of the equation's exact solution.

1. Press MODE and set Graph=DIFF EQUATIONS.
2. Express the 1 st-order equation

$$
y 1 '=.001 y 1 *(100-y 1)
$$ in terms of y 1 ' and y 1 .

Do not use implied multiplication between the variable and parentheses. If you do, it is treated as a function call.
3. Enter the equation in the
$Y=$ Editor ($\square[Y=]$).
4. Enter the initial condition:
yi1 $=10$
5. Press:

F1 9

- or -

TI-89: - \square^{\square}
TI-92 Plus: F
Set Solution Method = RK and Fields = FLDOFF.
6. In the Window Editor (\rightarrow [WINDOW]), set the

$$
\text { tstep }=1 . \quad \text { xscl}=1
$$ Window variables.

7. In the Home screen

TI-89: HOME

$$
\mathrm{t} 0=0 . \quad \mathrm{xmin}=-1 . \quad \text { ncurves }=0 .
$$

$$
\operatorname{tmax}=100 . \quad x \max =100 . \quad \text { diftol }=.001
$$

tplot $=0 . \quad y \min =-10$.
$y \max =10$.
yscl=1.
Important: Change tstep from . 1 (its default) to 1. Otherwise, BIdData calculates too many rows for the data variable and a Dimension error occurs.
BldData rklog

Tl-92 Plus: [Hоме] use BIdData to create a data variable containing the RK graphing points.
8. Return to the $\mathrm{Y}=$ Editor, press:
(F1) 9

- or

TI-89: ${ }^{-1}$
TI-92 Plus: \quad F
Set Solution Method = EULER.

Note: errorlog lets you combine the data in rklog and eulerlog so that you can view the two sets of data side by side.

Note: rklog[1] and rklog[2] refer to column 1 and 2 in rklog, respectively. Likewise with eulerlog[2].

Tip: Scroll through the data variable to see how the RK and Euler values differ for the same time value.

Note: To see how to use deSolve() to find this exact, general solution, refer to page 196.
9. Return to the Home screen, and use BIdData to create a data variable containing the Euler graphing points.
10. Use the Data/Matrix Editor (APPS 63) to create a new data variable named errorlog.
11. In this new data variable, define the c1, c2, and c3 column headers to refer to data in rklog and eulerlog. Also, enter column titles as shown.

To define a column header, move the cursor to that column, press F4, type the reference expression (such as rklog[1] for c1), and press ENTER.
12. In the Data/Matrix Editor, press F2). Then press F1 and define Plot 1 for the RK data, as shown to the right.
13. Define Plot 2 for the Euler data. Use the values shown to the right.
14. Return to the $\mathrm{Y}=$ Editor, press MODE, and set Graph = FUNCTION.

15 . The exact solution to the differential equation is given below. Enter it as y1.
$y 1=\left(100 * e^{\wedge}(x / 10)\right) /\left(e^{\wedge}(x / 10)+9\right)$

Plot Type=xyline
Mark=Cross
$\mathrm{x}=\mathrm{c} 1$ $y=c 3$

You can use Θ to scroll up to see Plot 1 and Plot 2.

Note: The fuzzy line on the graph indicates differences between the RK and Euler values.
16. In the Window Editor, set the Window variables.
17. Display the Graph screen (\bullet [GRAPH]).

```
xmin=-10. ymin=-10. xres=2.
xmax=100. ymax=120.
xscl=10. yscl=10.
```


18. In the Window Editor, set the Window variables to zoom in so that you can examine the differences in more detail.
19. Return to the Graph screen.
20. Press F3 to trace, and then press Θ or \odot until y 1 is selected. (1 shows in upper right corner.) Then enter 40.

$$
\begin{array}{ll}
\operatorname{xmin}=39.7 & \text { ymin=85.5 } \quad \text { xres=2. } \\
x \max =40.3 & \text { ymax }=86 . \\
x s c l=.1 & \text { yscl=.1 }
\end{array}
$$

$y 1$ is selected when 1 shows here. -

By moving the trace cursor to trace each solution to $\mathrm{xc}=40$, you can find that:

- The exact solution (y 1) is 85.8486 , rounded to six digits.
- The RK solution (Plot 1) is 85.8952 .
- The Euler solution (Plot 2) is 85.6527.

You can also use the Data/Matrix Editor to open the errorlog data variable and scroll to time $=40$.

Example of the deSolve() Function

Example

Tip: For maximum accuracy, use 1/1000 instead of .001. A floatingpoint number can introduce round-off errors.

Note: This example does not involve graphing, so you can use any Graph mode.

Tip: Press 2nd (1) to move to the beginning of the entry line.

Note: If you got a different constant (@2, etc.), solve for that constant.

The deSolve() function lets you solve many 1st- and 2ndorder ordinary differential equations exactly.

For a general solution, use the following syntax. For a particular solution, refer to Appendix A.
deSolve(1stOr2ndOrderODE, independentVar, dependentVar)
Using the logistic 1st-order differential equation from the example on page 176 , find the general solution for y with respect to t.
deSolve($\left.y^{\prime}=1 / 1000 y^{*}(100-y), t, y\right)$
L Do not use implied multiplication between the variable and parentheses. If you do, it will be treated as a function call.
—For ', type [2nd ['].
Before using deSolve(), clear any existing t and y variables. Otherwise, an error occurs.

1. In the Home screen

TI-89: HOME
Tl-92 Plus: [Hоме] use deSolve() to find the general solution.

2. Use the solution to define a function.
a. Press \odot to highlight the solution in the history area. Then press ENTER to autopaste it into the entry line.
b. Insert the Define instruction at the beginning of the line. Then press ENTER.
3. For an initial condition $y=10$ with $t=0$, use solve() to find the @1 constant.

You can also use deSolve() to solve this problem directly. Enter:
deSolve $\left(y^{\prime}=1 / 1000 y^{*}(100-y)\right.$ and $\left.y(0)=10, t, y\right)$

Troubleshooting with the Fields Graph Format

If you have difficulties graphing a differential equation, this section can help you correct the problem. Many problems may be related to your Fields graph format setting.

Setting the Fields Graph Format

What Order Equation Are You Graphing?

From the Y= Editor, Window Editor, or Graph screen, press:
F1 9

- or -

TI-89: \rightarrow
TI-92 Plus: \quad F

If the equation is:	Valid Fields settings are:
1st-order	SLPFLD or FLDOFF
2nd-order	DIRFLD or FLDOFF
(system of two 1st-order equations)	
3rd- or higher-order	FLDOFF
(system of three or more 1st-order	
equations)	

Because Fields = SLPFLD is the default setting, a common error message is shown to the right.

When you see this or any other error message:

- For your order of equation, use the previous table to find the valid Fields settings. Change to the applicable setting.
- For a particular Fields setting, check the following for information that applies to that setting.

Fields=SLPFLD

In the $\mathrm{Y}=$ Editor	Use F4 to select one and only one 1st-order equation. You can enter multiple equations, but only one at a time can be selected.
	The selected equation must not refer to any other
equation in the Y= Editor. For example:	

In the	Enter a valid system of two 1st-order equations. For
$\mathrm{Y}=$ Editor	information about defining a valid system for a 2nd- order equation, refer to page 186.
	Set Axes = CUSTOM:
	TI-89: [2nd [F7]
	TI-92 Plus: $\mathrm{F7}$
	If Axes = TIME, an Invalid
axes error occurs when	
	you graph.
	If you enter initial conditions in the Y= Editor, the
equations referenced by the custom axes must have	
the same number of initial conditions.	

Fields=FLDOFF

If You Use the Table Screen to View Differential Equations

In the Y= Editor	If you enter a 2nd- or higher-order equation, enter it as a valid system of equations as described on page 186.
	All equations (selected or not) must have the same number of initial conditions. Otherwise, a Dimension error occurs when you graph.
	To set Axes = TIME or CUSTOM, press: TI-89: 2nd [F7] TI-92 Plus: 77
With custom axes	If X Axis is not t, you must enter at least one initial condition for each equation in the $\mathrm{Y}=$ Editor (whether the equation is selected or not).
	Otherwise, a Diff Eq setup error occurs when you graph.
In the Graph screen	If no curve is graphed, set an initial condition as described on page 184. If you did enter initial conditions in the Y= Editor, select ZoomFit: TI-89: F2 alpha A TI-92 Plus: F2 A
	A 1st-order equation may look different with FLDOFF than with SLPFLD. This is because FLDOFF uses the tplot and tmax Window variables (page 181), which are ignored with SLPFLD.
Notes	For 1st-order equations, use FLDOFF and Axes $=$ Custom to plot axes that are not possible with SLPFLD. For example, you can plot t vs. y1' (where SLPFLD plots t vs. y1). If you enter multiple 1st-order equations, you can plot one equation or its solution vs. another by specifying them as the axes.

You can use the Table screen to view the points for a differential equation graph. However, the table may show different equations than those graphed. The table shows only the selected equations, regardless of whether those equations will be plotted with your current Fields and Axes settings.

Additional Graphing Topics

Preview of Additional Graphing Topics 202
Collecting Data Points from a Graph 203
Graphing a Function Defined on the Home Screen. 204
Graphing a Piecewise Defined Function. 206
Graphing a Family of Curves 208
Using the Two-Graph Mode 209
Drawing a Function or Inverse on a Graph 212
Drawing a Line, Circle, or Text Label on a Graph 213
Saving and Opening a Picture of a Graph 217
Animating a Series of Graph Pictures 219
Saving and Opening a Graph Database 220

This chapter describes additional features that you can use to create graphs on the TI-89 / TI-92 Plus. This information generally applies to all Graph mode settings.

This chapter assumes that you already know the fundamental procedures for defining and selecting functions, setting Window variables, and displaying graphs as described in Chapter 6: Basic Function Graphing.

From the Home screen, graph the piecewise defined function: $y=-x$ when $x<0$ and $y=5 \cos (x)$ when $x \geq 0$. Draw a horizontal line across the top of the cosine curve. Then save a picture of the displayed graph.

Collecting Data Points from a Graph

Collecting the Points

Tip: To display coordinates or math results, trace a function with F3] or perform an F5 Math operation (such as Minimum or Maximum). You can also use the freemoving cursor.

Tip: Use a split screen to show a graph and the Home screen or Data/Matrix Editor at the same time.

Notes about SysData Variable

From the Graph screen, you can store sets of coordinate values and/or math results for later analysis. You can store the information as a single-row matrix (vector) on the Home screen or as data points in a system data variable that can be opened in the Data/Matrix Editor.

1. Display the graph. (This example shows $\mathrm{y} 1(\mathrm{x})=5 * \cos (\mathrm{x})$.)
2. Display the coordinates or math results you want to collect.
3. Save the information to the Home screen or the sysData variable.

TI-89: $-(-)$ (Home screen) or $\square \square$ (sysData variable)
TI-92 Plus: \rightarrow (Home screen) or \rightarrow (sysData variable)
4. Repeat the process as necessary.

- The sysData variable can be cleared, deleted, etc., just as any other data variable. However, it cannot be locked.
- If the Graph screen contains a function or stat plot that references the current contents of sysData, this command will not operate.

Graphing a Function Defined on the Home Screen

In many cases, you may create a function or expression on the Home screen and then decide to graph it. You can copy an expression to the $Y=$ Editor, or graph it directly from the Home screen without using the $Y=$ Editor.

What Is the "Native" Independent Variable?

Copying from the Home Screen to the $Y=$ Editor

Tip: Instead of using F1 5 or F1 6 to copy and paste, use:

TI-89: \bullet [COPY] or \bullet [PASTE]. TI-92 Plus: -C (copy) or -V (paste)

Tip: To copy an expression from the Home screen's history area to the entry line, use the auto-paste feature or copy and paste.

Tip: Define is available from the Home screen's [54 toolbar menu.

Tip: 2nd [RCL] is useful if an expression is stored to a variable or function that does not correspond to the $Y=$ Editor, such as a1 or f1(x).

On the Y= Editor, all functions must be defined in terms of the current graph mode's "native" independent variable.

Graph Mode	Native Independent Variable
Function	x
Parametric	t
Polar	θ
Sequence	n
3D	x, y
Differential Equation	t

If you have an expression on the Home screen, you can use any of the following methods to copy it to the Y= Editor.

Method	Description
Copy and paste	1. Highlight the expression on the Home screen. Press F1 and select 5:Copy.
	2. Display the $Y=$ Editor, highlight the desired function, and press ENTER.
	3. Press F1 and select 6:Paste. Then press ENTER.
STO	Store the expression to a $\mathrm{Y}=$ function name.
	$2 x^{\wedge} 3+3 x^{\wedge} 2-4 x+12 \rightarrow y 1(x)$
	Use the complete function \qquad name: $\mathrm{y} 1(\mathrm{x})$, not just y 1 .
Define command	Define the expression as a user-defined $\mathrm{Y}=$ function
	Define $\mathrm{y} 1(\mathrm{x})=2 \mathrm{x}^{\wedge} 3+3 \mathrm{x}^{\wedge} 2-4 \mathrm{x}+12$

2nd[RCL] If the expression is already stored to a variable:

1. Display the $\mathrm{Y}=$ Editor, highlight the desired function, and press ENTER.
2. Press 2nd [RCL]. Type the variable name that contains the expression, and press ENTER twice.

Important: To recall a function variable such as $\mathrm{f1}(\mathrm{x})$, type only $\mathrm{f1}$, not the full function name.
3. Press ENTER to save the recalled expression in the $\mathrm{Y}=$ Editor's function list.

Graphing Directly from the Home Screen

Tip: Graph is available from the Home screen's [F4 toolbar menu.

Note: Graph uses the current Window variable settings.

Tip: To create a table from the Home screen, use the Table command. It is similar to Graph. Both share the same expressions.

Clearing the Graph Screen

The Graph command lets you graph an expression from the Home screen without using the Y= Editor. Unlike the Y= Editor, Graph lets you specify an expression in terms of any independent variable, regardless of the current graphing mode.

If the expression is in terms of:	Use the Graph command as shown in this example:

The native independent variable
graph $1.25 x * \cos (x)$
For function graphing, $\quad \perp$
x is the native variable.

A non-native independent variable
graph 1.25a*cos(a), a

Specify the independent variable; otherwise, you may get an error.

Graph does not work with sequence graphs or differential equations. For parametric, polar, and 3D graphs, use the following variations.

In PARAMETRIC graphing mode: Graph x Expr, y Expr,t
In POLAR graphing mode: Graph expr, θ In 3D graphing mode: Graph expr, x, y

Graph does not copy the expression to the Y= Editor. Instead, it temporarily suspends any functions selected on the Y= Editor. You can trace, zoom, or show and edit Graph expressions on the Table screen, just the same as $\mathrm{Y}=$ Editor functions.

Each time you execute Graph, the new expression is added to the existing ones. To clear the graphs:

- Execute the CIrGraph command (available from the Home screen's F64 Other toolbar menu).
- or -
- Display the Y= Editor. The next time you display the Graph screen, it will use the functions selected on the Y= Editor.

You can define a user-defined function in terms of any independent variable. For example:

Graphing a Piecewise Defined Function

Using the When Function

Tip: Graph math results may vary.

Tip: To enter when, type it or use the CATALOG.

To graph a piecewise function, you must first define the function by specifying boundaries and expressions for each piece. The when function is extremely useful for two-piece functions. For three or more pieces, it may be easier to create a multi-statement, user-defined function.

To define a two-piece function, use the syntax:
when(condition, trueExpression, falseExpression)
For example, suppose you want to graph a function with two pieces.

When:	Use expression:
$x<0$	$-x$
$x \geq 0$	$5 \cos (x)$

In the $\mathrm{Y}=$ Editor:
The function is pretty printed in this form.

Enter the function in this form.

For three or more pieces, you can use nested when functions.

When:	Use expression:
$x<-\pi$	$4 \sin (x)$
$x \geq-\pi$ and $x<0$	$2 x+6$
$x \geq 0$	$6-x^{2}$

In the $\mathrm{Y}=$ Editor:

$$
\rightrightarrows 1(x)=\text { when }\langle\times 0, \text { when }(x<-\pi, \ldots
$$

where:

Nested functions quickly become complex and difficult to visualize.

Using a MultiStatement, UserDefined Function

Note: For information about similarities and differences between functions and programs, refer to Chapter 17.

Tip: Graph math results may vary.

From the Home Screen or a Program

For three or more pieces, you may want to create a multi-statement, user-defined function.

For example, consider the previous three-piece function.

When:	Use expression:
$x<-\pi$	$4 \sin (x)$
$x \geq-\pi$ and $x<0$	$2 x+6$
$x \geq 0$	$6-x^{2}$

A multi-statement, user-defined function can have many of the control and decision-making structures (If, Elself, Return, etc.) used in programming. When creating the structure of a function, it may be helpful to visualize it first in a block form.

```
Func
    If x<-\pi Then
    Return 4*sin(x)
ElseIf x>=-\pi and x<0 Then
    Return 2x+6
Else
    Return 6-x^2
EndIf
EndFunc
                                    Func and EndFunc
```

When entering a multi-statement function on the $\mathrm{Y}=$ Editor or Home screen, you must enter the entire function on a single line.

$$
\lceil\text { Use a colon (:) to separate each statement. }
$$

```
Func:If x<-\pi Then:Return 4*sin(x): ... :EndIf:EndFunc
```

On the Y= Editor:
Only "Func" is shown for a multi-statement function.

Enter a multi-statement
 function on one line. Be sure to include colons.

From the Home screen, you can also use the Define command to create a multi-statement, user-defined function. Refer to page 204 for other information on copying a function from the Home screen to the Y= Editor.

From the Program Editor (Chapter 17), you can create a user-defined function. For example, use the Program Editor to create a function named $\mathrm{f} 1(\mathrm{xx})$. In the $\mathrm{Y}=$ Editor, set $\mathrm{y} 1(\mathrm{x})=\mathrm{f} 1(\mathrm{x})$.

Graphing a Family of Curves

Examples Using the $Y=$ Editor

Tip: Graph math results may vary.

Tip: Enclose list elements in braces (2nd [i] and 2nd [1]) and separate them with commas.

Note: The commas are shown in the entry line but not in the function list.

Example Using the Graph Command

Simultaneous Graphs with Lists

Tip: To set graph formats from the $Y=$ Editor, Window Editor, or Graph screen, press:
TI-89: \square
Tl-92 Plus: $\square \mathrm{F}$

By entering a list in an expression, you can plot a separate function for each value in the list. (You cannot graph a family of curves in SEQUENCE or 3D graphing mode.)

Enter the expression $\{2,4,6\} \sin (x)$ and graph the functions.

Enter the expression $\{2,4,6\} \sin (\{1,2,3\} x)$ and graph the functions.

Graphs three functions: $2 \sin (x), 4 \sin (2 x), 6 \sin (3 x)$

Similarly, you can use the Graph command from the Home screen or a program as described on page 205.

```
graph {2,4,6}sin(x)
graph {2,4,6}sin({1,2,3}x)
```

When the graph format is set for Graph Order = SIMUL, the functions are graphed in groups according to the element number in the list.

For these example functions, the TI-89 / TI-92 Plus graphs three groups.

- $2 \sin (x), x+4, \cos (x)$
- $4 \sin (x), 2 x+4$
- $6 \sin (x), 3 x+4$

The functions within each group are graphed simultaneously, but the groups are graphed sequentially.

Pressing Θ or Θ moves the trace cursor to the next or previous curve in the same family before moving to the next or previous selected function.

Using the Two-Graph Mode

In two-graph mode, the TI-89 / TI-92 Plus's graph-related features are duplicated, giving you two independent graphing calculators. The two-graph mode is only available in split screen mode. For more information about split screens, refer to Chapter 14.

Setting the Mode

The Two-Graph Screen

Several mode settings affect the two-graph mode, but only two settings are required. Both are on Page 2 of the MODE dialog box.

1. Press MODE. Then press F2 to display Page 2.
2. Set the following required modes.

- Split Screen = TOP-BOTTOM or LEFT-RIGHT

- Number of Graphs = 2

3. Optionally, you can set the following modes.

Page 1: - Graph = Graph mode for top or left side of the split
Page 2: - Split 1 App = application for top or left side

- Split 2 App = application for bottom or right side
- Graph 2 = Graph mode for bottom or right side
- Split Screen Ratio = relative sizes of the two sides (TI-92 Plus only)

4. Press ENTER to close the dialog box.

A two-graph screen is similar to a regular split screen.

Independent GraphRelated Features

Note: The $Y=$ Editor is completely independent only when the two sides use different graphing modes (as described below).

The $\mathrm{Y}=$ Editor in Two-Graph Mode

Note: If you make a change on the active $Y=$ Editor (redefine a function, change a style, etc.), that change is not reflected on the inactive side until you switch to it.

Both Graph 1 and Graph 2 have independent:

- Graph modes (FUNCTION, POLAR, etc.). Other modes such as Angle, Display Digits, etc., are shared and affect both graphs.
- Window Editor variables.
- Table setup parameters and Table screens.
- Graph formats such as Coordinates, Axes, etc.
- Graph screens.
- Y= Editors. However, both graphs share common function and stat plot definitions.

Independent graph-related applications (Y= Editor, Graph screen, etc.) can be displayed on both sides of the screen at the same time.

Non-graph-related applications (Home screen, Data/Matrix Editor, etc.) are shared and can be displayed on only one side at a time.

Even in two-graph mode, there is actually only one Y= Editor, which maintains a single function list for each Graph mode setting. However, if both sides use the same graphing mode, each side can select different functions from that single list.

- When both sides use different graphing modes, each side shows a different function list.

- When both sides use the same graphing mode, each side shows the same function list.
- You can use F4 to select different functions and stat plots (indicated by $\sqrt{ }$) for each side.
- If you set a display style for a function, that style is used by both sides.
(TI-89: 2nd [F6]
TI-92 Plus: F6)

Suppose Graph 1 and Graph 2 are set for function graphing. Although both sides show the same function list, you can select $(\boldsymbol{\checkmark})$ different functions for graphing.

Using a Split Screen

Note: You can display non-graph-related applications (such as the Home screen) on only one side at a time.

Remember that the Two Sides Are Independent

From the Home Screen or a Program

For more complete information about split screens, refer to Chapter 14.

- To switch from one graph side to the other, press 2nd [\boxplus] (second function of APPS).
- To display different applications:
- Switch to the applicable graph side and display the application as you normally would.
- or -
- Use MODE to change Split 1 App and/or Split 2 App.
- To exit two-graph mode:
- Use MODE to set Number of Graphs = 1, or exit the split screen by setting Split Screen = FULL.
- or -
- Press [2nd [QuIT] twice. This always exits a split screen and returns to a full-sized Home screen.

In two-graph mode, the two sides may appear to be related when, in fact, they are not. For example:

After the two-graph mode is set up, graph-related operations refer to the active graph side. For example:

$10 \rightarrow x$ max

affects either Graph 1 or Graph 2, depending on which is active when you execute the command.

To switch the active sides, press 2nd [\boxplus] or use the switch function, switch(1) or switch(2).

Drawing a Function or Inverse on a Graph

Drawing a Function, Parametric, or Polar Equation

To display the Home screen and put DrawFunc in the entry line, press:
TI-89: 2nd [F6] 2
TI-92 Plus: F6 2

Tip: To clear the drawn function, press F4

- or -

TI-89: 2nd [F6] and select 1:ClrDraw. TI-92 Plus: F6 and select 1:ClrDraw.

Drawing the Inverse of a Function

To display the Home screen and put Drawlnv in the entry line, press:
TI-89: 2nd [F6] 3
TI-92 Plus: F6 3

For comparison purposes, you may want to draw a function over your current graph. Typically, the drawn function is some variation of the graph. You can also draw the inverse of a function. (These operations are not available for 3D graphs.)

Execute DrawFunc, DrawParm, or DrawPol from the Home screen or a program. You cannot draw a function or equation interactively from the Graph screen.

DrawFunc expression
DrawParm expression1, expression2 $[$, tmin $][$,tmax $][, t s t e p]$ DrawPol expression $[, \theta \min][, \theta m a x][, \theta s t e p]$

For example:

1. Define $y 1(x)=.1 x^{3}-2 x+6$ on the $\mathrm{Y}=$ Editor, and graph the function.
2. On the Graph screen, press:

TI-89: [2nd [F6]
TI-92 Plus: F6
and select 2:DrawFunc.

DrawFunc y1(x)-6

You cannot trace, zoom, or
3. On the Home screen, specify the function to draw.
4. Press ENTER to draw the function on the Graph screen. perform a math operation on a drawn function.

Execute Drawlnv from the Home screen or a program. You cannot draw an inverse function interactively from the Graph screen.

Drawlnv expression
For example, use the graph of $\mathrm{y} 1(\mathrm{x})=.1 \mathrm{x}^{3}-2 \mathrm{x}+6$ as shown above.

1. On the Graph screen, press:

TI-89: [2nd [F6]
TI-92 Plus: F6
and select 3:DrawInv.
2. On the Home screen, specify the inverse function.

DrawInv y1(x)
. Press ENTER.
The inverse is plotted as (y, x) instead of (x, y).

Drawing a Line, Circle, or Text Label on a Graph

Clearing All Drawings

Tip: You can also enter CIrDraw on the Home screen's entry line.

Drawing a Point or a Freehand Line

Tip: When drawing a freehand line, you can move the cursor diagonally.

Note: If you start drawing on a white pixel, the pencil draws a black point or line. If you start on a black pixel, the pencil draws a white point or line (which can act as an eraser).

You can draw one or more objects on the Graph screen, usually for comparisons. For example, draw a horizontal line to show that two parts of a graph have the same y value. (Some objects are not available for 3D graphs.)

A drawn object is not part of the graph itself. It is drawn "on top of" the graph and remains on the screen until you clear it.

From the Graph screen:

- TI-89: 2nd [F6]

TI-92 Plus: ${ }^{66}$ and select 1:CIrDraw. - or -

- Press F4 to regraph.

You can also do anything that causes the Smart Graph feature to redraw the graph (such as change the Window variables or deselect a function on the $\mathrm{Y}=$ Editor).

From the Graph screen:

1. TI-89: 2nd [F7]

TI-92 Plus: 7 and select 1:Pencil.

共

$\frac{19 \text { Pencil }}{2 \text { Er }}$

3:Lire
4: Gircle
6: forticel
g: Sext Picture
2. Move the cursor to the applicable location.

To draw a: Do this:

Point (pixel-sized) Press ENTER.
Freehand line TI-89: Press and hold 1 , and move the cursor to draw the line.
TI-92 Plus: Press and hold ©, and move the cursor to draw the line.

To quit drawing the line, release \uparrow or 圂.

After drawing the point or line, you are still in "pencil" mode.

- To continue drawing, move the cursor to another point.

- To quit, press ESC.

Erasing Individual Parts of a Drawing Object

Note: These techniques also erase parts of graphed functions.

Drawing a Line Between Two Points

Tip: Use 2nd to move the cursor in larger increments; 2nd (1), etc.

Drawing a Circle

Tip: Use 2nd to move the cursor in larger increments; 2nd (1), etc.

From the Graph screen:

1. TI-89: 2nd [F7]

TI-92 Plus: F7
and select 2:Eraser. The cursor is shown as a small box.
2. Move the cursor to the applicable location.
To erase: Do this:

Area under the box Press ENTER.
Along a freehand line TI-89: Press and hold \uparrow, and move the cursor to erase the line.
TI-92 Plus: Press and hold ©, and move the cursor to erase the line.

To quit, release t or $_{0}$.

After erasing, you are still in "eraser" mode.

- To continue erasing, move the box cursor to another location.

- To quit, press ESC.

From the Graph screen:

1. TI-89: 2nd [F7]

TI-92 Plus: F7 and select 3:Line.
2. Move the cursor to the 1st point, and press ENTER.
3. Move to the 2 nd point, and press ENTER. (As you move, a line extends from the 1st point to the cursor.)
After drawing the line, you are still in "line" mode.

- To continue drawing another line, move the cursor to a
 new 1st point.
- To quit, press ESC.

From the Graph screen:

1. TI-89: 2nd [F7]

TI-92 Plus: 7 and select 4:Circle.
2. Move the cursor to the center of the circle, and press ENTER.
3. Move the cursor to set the radius, and press ENTER.

Drawing a

Horizontal or Vertical Line

Tip: Use 2nd to move the cursor in larger increments; 2nd (1), etc.

Drawing a Tangent Line

Tip: To set the tangent point, you can also type its x value and press ENTER.

Drawing a Line Based on a Point and a Slope

From the Graph screen:

1. TI-89: 2nd [F7]

TI-92 Plus: F7 and select 5:Horizontal or 6:Vertical. A horizontal or vertical line and a flashing cursor are displayed on the screen.

If the line is initially displayed on an axis, it may be difficult to see. However, you can easily see the flashing cursor.
2. Use the cursor pad to move the line to the appropriate position. Then press ENTER.

After drawing the line, you are still in "line" mode.

- To continue, move the cursor to another location.

- To quit, press ESC.

To draw a tangent line, use the F5 Math toolbar menu. From the Graph screen:

1. Press F5 and select A:Tangent.
2. As necessary, use \odot and Θ to select the applicable function.
3. Move the cursor to the tangent point, and press ENTER.

The tangent line is drawn, and its equation is displayed.

To draw a line through a specified point with a specified slope, execute the DrawSIp command from the Home screen or a program. Use the syntax:

DrawSIp x, y, slope
You can also access DrawSIp from the Graph screen.

1. TI-89: 2nd [F6]

TI-92 Plus: ${ }^{66}$
and select 6:DrawSIp. This switches to the Home screen and puts DrawSIp in the entry line.
2. Complete the command, and press ENTER.

The TI-89 / TI-92 Plus automatically switches to the Graph screen and draws the line.

DrawS1p 4,0,6.37

Typing Text Labels

Tip: The text cursor indicates the upper-left corner of the next character you type.

From the Graph screen:

1. TI-89: 2nd [F7]

TI-92 Plus: F7 and select 7:Text.
2. Move the text cursor to the location where you want to begin typing.
3. Type the text label.

After typing the text, you are still in "text" mode.

- To continue, move the cursor to another location.

- To quit, press ENTER or ESC.

Commands are available for drawing any of the objects described in this section. There are also commands (such as PxIOn, PxILine, etc.) that let you draw objects by specifying exact pixel locations on the screen.

For a list of the available drawing commands, refer to "Drawing on the Graph Screen" in Chapter 17.

Saving and Opening a Picture of a Graph

Saving a Picture of the Whole Graph Screen

Saving a Portion of the Graph Screen

Note: You cannot save a portion of a 3D graph.

Tip: Use \odot and \odot to move the top or bottom, and use (1) and (1) to move the sides.

You can save an image of the current Graph screen in a PICTURE (or PIC) variable. Then, at a later time, you can open that variable and display the image. This saves the image only, not the graph settings used to produce it.

A picture includes any plotted functions, axes, tick marks, and drawn objects. The picture does not include lower and upper bound indicators, prompts, or cursor coordinates.

Display the Graph screen as you want to save it. Then:

1. Press $\mathbb{F 1}$ and select 2:Save Copy As.
2. Specify the type (Picture), folder, and a unique variable name.
3. Press ENTER. After typing in an input box such as Variable, you must press ENTER twice.

Important: By default, Type = GDB (for graph database). You must set Type = Picture.

You can define a rectangular box that encloses only the portion of the Graph screen that you want to save.

1. TI-89: 2nd [F7]

TI-92 Plus: 7
and select 8:Save Picture.
A box is shown around the outer edge of the screen.

2. Set the 1 st corner of the box by moving its top and left sides. Then press ENTER.
3. Set the 2 nd corner by moving the bottom and right sides. Then press ENTER.
4. Specify the folder and a unique variable name.
5. Press ENTER. After typing in an input box such as Variable, you must press ENTER twice.
 graph, Type is automatically fixed as Picture.

Opening a Graph Picture

Note: If a variable name is not shown on the dialog box, there are no graph pictures in the folder.

For Pictures Saved from a Portion of the Graph Screen

Deleting a Graph Picture

From a Program or the Home Screen

When you open a graph picture, it is superimposed over the current Graph screen. To display only the picture, use the $\mathrm{Y}=$ Editor to deselect any other functions before opening the graph picture.

From the Graph screen:

1. Press F1 and select 1:Open.
2. Select the type (Picture), folder, and variable that contain the graph picture you want to open.
3. Press ENTER. Important: By default, Type = GDB (for graph database). Be sure to set Type $=$ Picture.

A graph picture is a drawing object. You cannot trace any curve on a picture.

When you press F1 and select 1:Open, the picture is superimposed starting at the upper-left corner of the Graph screen. If the picture was saved from a portion of the Graph screen (page 217), it may appear shifted from the underlying graph.

To specify which screen pixel to use as the upper-left corner, you can use the commands listed in "From a Program or the Home Screen" below.

Unwanted Picture variables take up calculator memory. To delete a variable, use the VAR-LINK screen (2nd [VAR-LINK]) as described in Chapter 21.

To save (store) and open (recall) a graph picture, use the StoPic, RclPic, AndPic, XorPic, and RplcPic commands as described in Appendix A.

To display a series of graph pictures as an animation, use the CyclePic command. For an example, refer to page 219.

As described earlier in this chapter, you can save a picture of a graph. By using the CyclePic command, you can flip through a series of graph pictures to create an animation.

CyclePic Command

For ϕ, press:
TI-89: 0 alpha F
TI-92 Plus: GF

Example

Comments start with ©.
Press:
TI-89: ©
TI-92 Plus: 2nd X

Before using CyclePic, you must have a series of graph pictures that have the same base name and are sequentially numbered starting with 1 (such as pic1, pic2, pic3, ...).

To cycle the pictures, use the syntax:
CyclePic picNameString, $n[$, wait $][$,cycles $][$,direction $]$

This example program (named cyc) generates 10 views of a 3D graph, with each view rotated 10° further around the Z axis. For information about each command, refer to Appendix A. For information about using the Program Editor, refer to Chapter 17.

Saving and Opening a Graph Database

Abstract

A graph database is the set of all elements that define a particular graph. By saving a graph database as a GDB variable, you can recreate that graph at a later time by opening its stored database variable.

Elements in a Graph Database

Note: In two-graph mode, the elements for both graphs are saved in a single database.

Saving the Current Graph Database

Opening a Graph Database

Deleting a Graph Database

From a Program or the Home Screen

A graph database consists of:

- Mode settings (MODE) for Graph, Angle, Complex Format, and Split Screen (only if you are using the two-graph mode).
- All functions in the $Y=$ Editor ($\square[Y=]$), including display styles and which functions are selected.
- Table parameters (\square [tblset]), Window variables (\square [window]), and graph formats (F $^{1} 9$ - or - TI-89: $\square \square$ TI-92 Plus: \square F.)

A graph database does not include drawn objects or stat plots.

From the Y= Editor, Window Editor, Table screen, or Graph screen:

1. Press $F 1$ and select 2:Save Copy As.
2. Specify the folder and a unique variable name.
3. Press ENTER. After typing in an

Note: If you start from the Graph screen, be sure to use Type=GDB. input box such as Variable, you must press ENTER twice.

Caution: When you open a graph database, all information in the current database is replaced. You may want to store the current graph database before opening a stored database.

From the Y= Editor, Window Editor, Table screen, or Graph screen:

1. Press $\mathbb{F 1}$ and select 1:Open.
2. Select the folder and variable that contain the graph database you want to open.
3. Press ENTER.

Note: If you start from the Graph screen, be sure to use Type=GDB.

Unused GDB variables take up calculator memory. To delete them, use the VAR-LINK screen (2nd [VAR-LINK]) described in Chapter 21.

You can save (store) and open (recall) a graph database by using the StoGDB and RcIGDB commands as described in Appendix A.
Preview of Tables 222
Overview of Steps in Generating a Table 223
Setting Up the Table Parameters 224
Displaying an Automatic Table 226
Building a Manual (Ask) Table 229

Previously, in Chapter 6: Basic Function Graphing, you learned how to define and graph a function.

By using a table, you can display a defined function in a tabular form.

Table screen shows a numeric representation.

Graph screen shows a graphic representation.

The table lists a series of values for the independent variable and shows the corresponding value of the dependent variable.

Evaluate the function $y=x^{3}-2 x$ at each integer between -10 and 10 . How many sign changes are there, and where do they occur?

Overview of Steps in Generating a Table

To generate a table of values for one or more functions, use the general steps shown below. For specific information about setting table parameters and displaying the table, refer to the following pages.

Generating a Table
Note: Tables are not available in 3D Graph mode.

Tip: For information on defining and selecting functions with the $Y=$ Editor, refer to Chapter 6.

Tip: You can specify:

- An automatic table
- Based on initial values.
- That matches a graph.
- A manual (ask) table.

Exploring the Table From the Table screen, you can:

- Scroll through the table to see values on other pages.
- Highlight a cell to see its full value.
- Change the table's setup parameters. By changing the starting or incremental value used for the independent variable, you can zoom in or out on the table to see different levels of detail.
- Change the cell width.
- Edit selected functions.
- Build or edit a manual table to show only specified values of the independent variable.

Setting Up the Table Parameters

Displaying the TABLE SETUP Dialog Box

Note: The table initially starts at tblStart, but you can use \odot to scroll to prior values.

To set up the initial parameters for a table, use the TABLE SETUP dialog box. After the table is displayed, you can also use this dialog box to change the parameters.

To display the TABLE SETUP dialog box, press \rightarrow [thlset]. From the Table screen, you can also press [F2.

TAELE SETUF	
tustart:	
$\Delta \mathrm{tb}$	
Enter =SANE	(ESECRANCEL
Setup Parameter	Description
tblStart	If Independent = AUTO and Graph $<->$ Table = OFF, this specifies the starting value for the independent variable.
$\Delta \mathrm{tbl}$	If Independent $=$ AUTO and Graph $<->$ Table $=$ OFF, this specifies the incremental value for the independent variable. Δ tbl can be positive or negative, but not zero.
Graph $<->$ Table	If Independent = AUTO:
	OFF - The table is based on the values you enter for tblStart and Δ tbl.
	ON — The table is based on the same independent variable values that are used to graph the functions on the Graph screen. These values depend on the Window variables set in the Window Editor (Chapter 6) and the split screen size (Chapter 14).
Independent	AUTO — The TI-89 / TI-92 Plus automatically generates a series of values for the independent variable based on tblStart, $\Delta \mathrm{tbl}$, and Graph <$>$ Table.

ASK - Lets you build a table manually by entering specific values for the independent variable.

Which Setup Parameters to Use

Changing the Setup Parameters

Tip: To cancel a menu or exit the dialog box without saving any changes, press ESC instead of ENTER.

To generate:	tbIStart	Δ tbl	Graph $<->$ Table	Independent
An automatic table				
- Based on initial values	value	value	OFF	AUTO
- That matches Graph screen	-	-	ON	AUTO
A manual table	-	-	-	ASK

"-" means that any value entered for this parameter is ignored for the indicated type of table.

In SEQUENCE graphing mode (Chapter 9), use integers for tblStart and $\Delta \mathrm{tbl}$.

From the TABLE SETUP dialog box:

1. Use Θ and Θ to highlight the value or setting to change.
2. Specify the new value or setting.

To change:	Do this:
tblStart or $\Delta t b l$	Type the new value. The existing value is erased when you start to type. - or - Press (1) or (1) to remove the highlighting. Then edit the existing value.
Graph <-> Table or Independent	Press (1) or (1) to display a menu of valid settings. Then either: - Move the cursor to highlight the setting and press ENTER. - or - - Press the number for that setting.

3. After changing all applicable values or settings, press ENTER to save your changes and close the dialog box.

You can set up a table's parameters from the Home screen or a program. You can:

- Store values directly to the system variables tblStart and $\Delta \mathrm{tbl}$. Refer to "Storing and Recalling Variable Values" in Chapter 2.
- Set Graph <-> Table and Independent by using the setTable function. Refer to Appendix A.

Displaying an Automatic Table

Before You Begin

Displaying the Table Screen

Tip: You can scroll back from the starting value by pressing Θ or 2nd Θ.

If Independent $=$ AUTO on the TABLE SETUP dialog box, a table is generated automatically when you display the Table screen. If Graph $<->$ Table $=\mathbf{O N}$, the table matches the trace values from the Graph screen. If Graph $<->$ Table $=$ OFF, the table is based on the values you entered for tbIStart and $\Delta \mathbf{t b l}$.

Define and select the applicable functions on the $\mathrm{Y}=$ Editor $(\square[\mathrm{T}=])$. This example uses $y 1(x)=x^{3}-x / 3$.

Then enter the initial table parameters (\oplus [Tbliet]).

To display the Table screen, press \square [TABLE] or APPS 5.
The cursor initially highlights the cell that contains the starting value of the independent variable. You can move the cursor to any cell that contains a value.

To move the cursor:	Press:
One cell at a time	$\oplus, \oplus,(1)$, or \oplus
One page at a time	2nd and then Θ, \odot, \oplus, or (1)

The header row and the first column are fixed so that they cannot scroll off the screen.

- When you scroll down or up, the variable and function names are always visible across the top of the screen.
- When you scroll right or left, the values of the independent variable are always visible along the left side of the screen.

Changing the

 Cell WidthNote: By default, the cell width is 6 .

How Numbers Are Displayed in a Cell

Note: If a function is undefined at a particular value, undef is displayed in the cell.

Tip: Use MODE to set the display modes.

Tip: To see a number in full precision, highlight the cell and look at the entry line.

Cell width determines the maximum number of digits and symbols (decimal point, minus sign, and " E " for scientific notation) that can be displayed in a cell. All cells in the table have the same width.

To change the cell width from the
Table screen:

1. Press F1 9

— or -
TI-89: \square
TI-92 Plus: -F .
2. Press ($)$ or (1) to display a menu of valid widths $(3-12)$.
3. Move the cursor to highlight a number and press ENTER. (For single-digit numbers, you can type the number and press ENTER.)
4. Press ENTER to close the dialog box and update the table.

Whenever possible, a number is shown according to the currently selected display modes (Display Digits, Exponential Format, etc.). The number may be rounded as necessary. However:

- If a number's magnitude is too large for the current cell width, the number is rounded and shown in scientific notation.
- If the cell width is too narrow even for scientific notation, "..." is shown.

By default, Display Digits = FLOAT 6. With this mode setting, a number is shown with up to six digits, even if the cell is wide enough to show more. Other settings similarly affect a displayed number.

	If cell width is:			
Full Precision	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{1 2}$
1.2345678901	1.2	1.2346	1.23457	$1.23457-123457$.
-123456.78	\ldots	-1.2 E 5	-123457.	-000005
.000005	\ldots	$5 . \mathrm{E}-6$.000005	.0005
1.2345678 E 19	\ldots	1.2 E 19	1.2346 E 19	1.23457 E 19
$-1.23456789012 \mathrm{E}-200$	\ldots	\ldots	$-1.2 \mathrm{E}-200$	$-1.2346 \mathrm{E}-200$

Note: Depending on display mode settings, some values are not shown in full precision even when the cell is wide enough.

If Results are Complex Numbers

A cell shows as much as possible of a complex number (according to the current display modes) and then shows "..." at the end of the displayed portion.

When you highlight a cell containing a complex number, the entry line shows the real and imaginary parts with a maximum of four digits each (FLOAT 4).

Editing a Selected Function

Tip: You can use this feature to view a function without leaving the table.

Tip: To cancel any changes and return the cursor to the table, press ESC instead of ENTER.

From a table, you can change a selected function without having to use the $\mathrm{Y}=$ Editor.

1. Move the cursor to any cell in the column for that function. The table's header row shows the function names (y 1, etc.).
2. Press [F4 to move the cursor to the entry line, where the function is displayed and highlighted.
3. Make any changes, as necessary.

- Type the new function. The old function is erased when you begin typing.
- or -
- Press CLEAR to clear the old function. Then type the new one. - or -
- Press (1) or (1) to remove the highlighting. Then edit the function.

4. Press ENTER to save the edited function and update the table. The edited function is also saved in the $\mathrm{Y}=$ Editor.

After generating an automatic table, you can change its setup parameters as necessary.

Press F2] or $⿴$ [TbSet] to display the TABLE SETUP dialog box. Then make your changes as described on pages 224 and 225 .

Displaying the

 Table Screen
Entering or Editing an Independent Variable Value

Tip: To enter a new value in a cell, you do not need to press F3. Simply begin typing.

Note: In this example, you can move the cursor to column 2, but you can enter values in column 1 only.

If Independent $=$ ASK on the TABLE SETUP dialog box, the TI-89 / TI-92 Plus lets you build a table manually by entering specific values for the independent variable.

To display the Table screen, press \bullet [TABLE] or APPS 5.
If you set Independent = ASK (with \bullet [TblSet]) before displaying a table for the first time, a blank table is displayed. The cursor highlights the first cell in the independent variable column.

If you first display an automatic table and then change it to Independent = ASK, the table continues to show the same values. However, you can no longer see additional values by scrolling up or down off the screen.

You can enter a value in column 1 (independent variable) only.

1. Move the cursor to highlight the cell you want to enter or edit.

- If you start with a blank table, you can enter a value in consecutive cells only (row 1, row 2, etc.). You cannot skip cells (row 1, row 3).
- If a cell in column 1 contains a value, you can edit that value.

2. Press F3 to move the cursor to the entry line.
3. Type a new value or expression, or edit the existing value.
4. Press ENTER to move the value to the table and update the corresponding function values.

The cursor returns to the entered cell. You can use \odot to move to the next row.

Entering a List in the Independent Variable Column

Note: If the independent variable column contains existing values, they are shown as a list (which you can edit).

1. Move the cursor to highlight any cell in the independent variable column.
2. Press F4 to move the cursor to the entry line.
3. Type a series of values, enclosed in braces \{ \} and separated by commas. For example:

$$
x=\{1,1.5,1.75,2\}
$$

You can also enter a list variable or an expression that evaluates to a list.
4. Press ENTER to move the values into the independent variable column. The table is updated to show the corresponding function values.

To:	Do this:
Insert a new row above a specified row	Highlight a cell in the specified row and press:
	TI-89: [2nd [F6]
	TI-92 Plus: F6
	The new row is undefined (undef) until you enter a value for the independent variable.
Delete a row	Highlight a cell in the row and press F5. If you highlight a cell in the independent variable column, you can also press \square.
Clear the entire table (but not the selected $\mathrm{Y}=$ functions)	Press F1 8. When prompted for confirmation, press ENTER.

Cell Width and Display Formats

From the Home Screen or a Program

Adding, Deleting,

 or ClearingSeveral factors affect how numbers are displayed in a table. Refer to "Changing the Cell Width" and "How Numbers Are Displayed in a Cell" on page 227.

System variable tblinput contains a list of all independent variable values entered in the table, even those not currently displayed. tblInput is also used for an automatic table, but it contains only the independent variable values that are currently displayed.

Before displaying a table, you can store a list of values directly to the tblInput system variable.

Split Screens

Preview of Split Screens
232

Setting and Exiting the Split Screen Mode 233
Selecting the Active Application 235

On the TI-89 / TI-92 Plus, you can split the screen to show two applications at the same time.

For example, it may be helpful to show both the $\mathrm{Y}=$ Editor and the Graph screen so that you can see the list of functions and how they are graphed.

Split the screen to show the $\mathrm{Y}=$ Editor and the Graph screen. Then explore the behavior of a polynomial as its coefficients change.

To set up a split screen, use the MODE dialog box to specify the applicable mode settings. After you set up the split screen, it remains in effect until you change it.

Setting the Split Screen Mode

Setting the Initial Applications

Note: In two-graph mode, described in Chapter 12, the same application can be in both parts of a split screen.

1. Press MODE to display the MODE dialog box.
2. Because the modes related to split screens are listed on the second page of the MODE dialog box, either:

- Use \ominus to scroll down.
- or -
- Press F2 to display Page 2.

3. Set the Split Screen mode to either of the following settings. For the procedure used to change a mode setting, refer to Chapter 2.

Split Screen Settings	
TOP-BOTTOM	
LEFT-RIGHT	
M100E	When you set Split Screen = TOP-BOTTOM or LEFT-RIGHT, previously dimmed modes such as Split 2 App become active.

Before pressing ENTER to close the MODE dialog box, you can use the Split 1 App and Split 2 App modes to select the applications you want to
 use.

Mode	Specifies the application in the:
Split 1 App	Top or left part of the split screen.
Split 2 App	Bottom or right part of the split screen.

If you set Split 1 App and Split 2 App to the same application, the TI-89 / TI-92 Plus exits the split screen mode and displays the application full screen.

You can open different applications after the split screen is displayed, as described on page 235.

Other Modes that Affect a Split Screen

Split Screens and Pixel Coordinates

Tip: For a list of drawing commands, refer to "Drawing on the Graph Screen" in Chapter 17.

Note: Due to the border that indicates the active application, split screens have a smaller displayable area than a full screen.
Mode Description

Number of Graphs Lets you set up and display two independent sets of graphs.

This is an advanced graphing feature as described in "Using the Two-Graph Mode" in Chapter 12.

Note: Leave this set to 1 unless you have read the applicable section in Chapter 12.

Description

The TI-89 / TI-92 Plus has commands that use pixel coordinates to draw lines, circles, etc., on the Graph screen. The following charts show how the Split Screen and Split Screen Ratio mode settings affect the number of pixels available on the Graph screen.

TI-89:

		Split 1 App		Split 2 App	
Split	Ratio	\mathbf{x}	\mathbf{y}	\mathbf{x}	\mathbf{y}
FULL	N/A	$0-158$	$0-76$	N/A	N/A
TOP-BOTTOM	$1: 1$	$0-154$	$0-34$	$0-154$	$0-34$
LEFT-RIGHT	$1: 1$	$0-76$	$0-72$	$0-76$	$0-72$

TI-92 Plus:

		Split 1 App		Split 2 App	
Split	Ratio	\mathbf{x}	\mathbf{y}	\mathbf{x}	\mathbf{y}
FULL	N/A	$0-238$	$0-102$	N/A	N/A
TOP-BOTTOM	$1: 1$	$0-234$	$0-46$	$0-234$	$0-46$
	$1: 2$	$0-234$	$0-26$	$0-234$	$0-68$
	$2: 1$	$0-234$	$0-68$	$0-234$	$0-26$
LEFT-RIGHT	$1: 1$	$0-116$	$0-98$	$0-116$	$0-98$
	$1: 2$	$0-76$	$0-98$	$0-156$	$0-98$
	$2: 1$	$0-156$	$0-98$	$0-76$	$0-98$

Method 1: Press MODE to display the MODE dialog box. Then set Split Screen = FULL. When you press ENTER to close the dialog box, the full-sized screen shows the application specified in Split 1 App.

Method 2: Press 2nd [QUIT] twice to display a full-sized Home screen.

Turning the TI-89 / TI-92 Plus off does not exit the split screen mode.

If the calculator is turned off:	When you turn the calculator on again:
When you press 2nd [0FF]	The split screen is still in effect, but the Home screen is always displayed in place of the application that was active when you pressed 2nd [0FF].
By the Automatic Power Down ${ }^{\text {TM }}\left(\mathrm{APD}^{T M}\right)$ feature, or when you press The split screen is just as you left it.	

With a split screen, only one of the two applications can be active at a time. You can easily switch between existing applications, or you can open a different application.

The Active Application

Switching between Applications

Opening a Different Application

Note: Also refer to "Using 2nd [QuIT] to Display the Home Screen" on page 236.

Note: In two-graph mode, described in Chapter 12, the same application can be in both parts of a split screen.

- The active application is indicated by a thick border.
- The toolbar and status line, which are always the full width of the display, are associated with the active application.
- For applications that have an entry line (such as the Home screen and $\mathrm{Y}=$ Editor), the entry line is the full width of the display only when that application is active.

Press [2nd [\boxplus] (second function of APPS) to switch from one application to the other.

Method 1: 1. Use 2nd [\boxplus] to switch to the application you want to replace.
2. Use APPS or \square (such as [WINDOW]) to select the new application.

If you select an application that is already displayed, the TI-89 / TI-92 Plus switches to that application.
Method 2: 1. Press MODE and then F2.
2. Change Split 1 App and/or Split 2 App.

If you set Split 1 App and Split 2 App to the same application, the TI-89 / TI-92 Plus exits the split screen mode and displays the application full screen.

Using [2nd [QuIT] to Display the Home Screen

Tip: Pressing 2nd [QuIT] twice always exits the split screen mode.

When Using a

 Top-Bottom SplitIf the Home screen: Pressing [2nd [Quit]:
Is not already displayed Opens the Home screen in place of the active application.

Is displayed, but is not the active application

Is the active application
Switches to the Home screen and makes it the active application.

Exits the split screen mode and displays
a full-sized Home screen.

When you select a TOP-BOTTOM split, remember that the entry line and the toolbar are always associated with the active application. For example:

Data/Matrix Editor

Preview of the Data/Matrix Editor. 238
Overview of List, Data, and Matrix Variables 239
Starting a Data/Matrix Editor Session 241
Entering and Viewing Cell Values 243
Inserting and Deleting a Row, Column, or Cell 246
Defining a Column Header with an Expression 248
Using Shift and CumSum Functions in a Column Header 250
Sorting Columns 251
Saving a Copy of a List, Data, or Matrix Variable 252

The Data/Matrix Editor serves two main purposes.

- This chapter describes how to use the Data/Matrix Editor to create and maintain a list, matrix, or data variable.

- Chapter 16 describes how to use the Data/Matrix Editor to perform statistical calculations and graph statistical plots.

Use the Data/Matrix Editor to create a one-column list variable. Then add a second column of information. Notice that the list variable (which can have only one column) is automatically converted into a data variable (which can have multiple columns).

Tip: If you don't need to save the current variable, use it as a scratchpad. The next time you need a variable for temporary data, clear the current variable and re-use it. This lets you enter temporary data without creating a new variable each time, which uses up memory.

Overview of List, Data, and Matrix Variables

List Variable

Note: If you enter more than one column of elements in a list variable, it is converted automatically into a data variable.

Tip: After creating a list in the Data/Matrix Editor, you can use the list in any application (such as the Home screen).

Data Variable

Note: For stat calculations, columns must have the same length.

To use the Data/Matrix Editor effectively, you must understand list, data, and matrix variables.

A list is a series of items (numbers, expressions, or character strings) that may or may not be related. Each item is called an element. In the Data/Matrix Editor, a list variable:

- Is shown as a single column of elements, each in a separate cell.
- Must be continuous; blank or empty cells are not allowed

7 Column title and header cells are not saved as part of the list. within the list.

- Can have up to 999 elements.

On the Home screen (or anywhere else you can use a list), you can enter a list as a series of elements enclosed in braces \{ \} and separated by commas.

Although you must use commas to separate elements on the entry line, spaces separate the elements in the history
 area.

To refer to a specified element in a list, use the format shown to the right.

A data variable is essentially a collection of lists that may or may not be related. In the Data/Matrix Editor, a data variable:

- Can have up to 99 columns.
- Can have up to 999 elements in each column. Depending on
 the kind of data, all columns may not have to be the same length.
- Must have continuous columns; blank or empty cells are not allowed within a column.

Data Variable (Continued)

Matrix Variable

Tip: After creating a matrix in the Data/Matrix Editor, you can use the matrix in any application (such as the Home screen).

Note: Use brackets to refer to a specific element in a matrix. For example, enter mat1[2,1] to access the 1st element in the 2nd row.

From the Home screen or a program, you can use the NewData command to create a data variable that consists of existing lists.

Although you cannot directly display a data variable on the Home screen, you can display a specified column or element.

For example:

A matrix is a rectangular array of elements. When you create a matrix in the Data/Matrix Editor, you must specify the number of rows and columns (although you can add or delete rows and columns later). In the Data/Matrix Editor, a matrix variable:

- Looks similar to a data variable, but all columns must have the same length.
- Is initially created with 0 in each cell. You can then enter the applicable value in place of 0 .

From the Home screen or a program, you can use STO. to store a matrix with either of the equivalent methods shown to the right.
row $1 \longrightarrow$ row 2

Although you enter the matrix as shown above, it is pretty printed in the history area in traditional matrix form.

Starting a Data/Matrix Editor Session

Creating a New Data, Matrix, or List Variable

Note: If you do not type a variable name, the Tl-89 / TI-92 Plus will display the Home screen.

Each time you start the Data/Matrix Editor, you can create a new variable, resume using the current variable (the variable that was displayed the last time you used the Data/Matrix Editor), or open an existing variable.

1. Press APPS and then select 6:Data/Matrix Editor.
2. Select 3:New.
3. Specify the applicable information for the new variable.

Item	Lets you:	
Type	Select the type of variable to create. Press (1) to display a	

Folder \quad Select the folder in which the new variable will be stored. Press (1) to display a menu of existing folders. For information about folders, refer to Chapter 5.

Variable Type a new variable name.
If you specify a variable that already exists, an error message will be displayed when you press ENTER. When you press ESC or ENTER to acknowledge the error, the NEW dialog box is redisplayed.

Row dimension and
Col dimension
If Type = Matrix, type the number of rows and columns in the matrix.

4. Press ENTER (after typing in an input box such as Variable, press ENTER twice) to create and display an empty variable in the Data/Matrix Editor.

Using the Current Variable

Creating a New
Variable from the
Data/Matrix Editor

Opening Another Variable

Note: Variable shows the first existing variable in alphabetic order. If there are no existing variables, nothing is displayed.

Note about Deleting a Variable

You can leave the Data/Matrix Editor and go to another application at any time. To return to the variable that was displayed when you left the Data/Matrix Editor, press APPS 6 and select 1:Current.

From the Data/Matrix Editor:

1. Press F1 and select 3:New.
2. Specify the type, folder, and variable name. For a matrix, also specify the number of rows and columns.

You can open another variable at any time.

1. From the Data/Matrix Editor, press F1 and select 1:Open.

- or -

From any application, press APPS 6 and select 2:Open.
2. Select the type, folder, and variable to open.
3. Press ENTER.

Because all Data/Matrix Editor variables are saved automatically, you can accumulate quite a few variables, which take up memory.

To delete a variable, use the VAR-LINK screen (2nd [VAR-LINK]). For information about VAR-LINK, refer to Chapter 21.

Entering and Viewing Cell Values

The Data/Matrix Editor Screen

Tip: Use the title cell at the very top of each column to identify the information in that column.

Entering or Editing a Value in a Cell

Tip: To enter a new value, you can start typing without pressing [ENTER or [F3 first. However, you must use ENTER or F3 to edit an existing value.

Note: To enter a value from the entry line, you can also use \odot or Θ.

If you create a new variable, the Data/Matrix Editor is initially blank (for a list or data variable) or filled with zeros (for a matrix). If you open an existing variable, the values in that variable are displayed. You can then enter additional values or edit the existing ones.

A blank Data/Matrix Editor screen is shown below. When the screen is displayed initially, the cursor highlights the cell at row 1 , column 1 .

When values are entered, the entry line shows the full value of the highlighted cell.

You can enter any type of expression in a cell (number, variable, function, string, etc.).

1. Move the cursor to highlight the cell you want to enter or edit.
2. Press ENTER or F3 to move the cursor to the entry line.
3. Type a new value or edit the existing one.
4. Press ENTER to enter the value into the highlighted cell.

When you press ENTER, the cursor automatically moves to highlight the next cell so that you can continue entering or editing values. However, the variable type affects the direction that the cursor moves.

Variable Type	After ENTER, the cursor moves:
List or data	Down to the cell in the next row.
Matrix	Right to the cell in the next column. From the last cell in a row, the cursor automatically moves to the first cell in the next row. This lets you enter values for row1, row2, etc.

Scrolling through

 the Editor
How Rows and Columns Are Filled Automatically

Note: If you enter more than one column of elements in a list variable, it is converted automatically into a data variable.

To move the cursor:	Press:
One cell at a time	$\bigcirc, \odot,(1)$ or (1)
One page at a time	2nd and then Θ, \odot, (1), or (1)
Go to row 1 in the current column or to the last row	$\begin{aligned} & \bullet \Theta \text { or } \\ & \oplus \Theta \end{aligned}$

Θ goes to row 999.
Go to column 1 or to the (1) or
last column that contains (i) data, respectively. If the cursor is in or past that last column, © (1) goes to column 99.

When you scroll down/up, the header row remains at the top of the screen so that the column numbers are always visible. When you scroll right/left, the row numbers remain on the left side of the screen so that they are always visible.

When you enter a value in a cell, the cursor moves to the next cell. However, you can move the cursor to any cell and enter a value. If you leave gaps between cells, the TI-89 / TI-92 Plus handles the gaps automatically.

- In a list variable, a cell in the gap is undefined until you enter a value for the cell.

\rightarrow

- In a data variable, gaps in a column are handled the same as a list. However, if you leave a gap between columns, that column is blank.

Note: Although you specify the size of a matrix when you create it, you can easily add additional rows and/or columns.

Changing the Cell Width

Tip: Remember, to see a number in full precision, you can always highlight the cell and look at the entry line.

Clearing a Column or all Columns

Note: For a list or data variable, a clear column is empty. For a matrix, a clear column contains zeros.

- In a matrix variable, when you enter a value in a cell outside the current boundaries, additional rows and/or columns are added automatically to the matrix to include the new cell. Other cells in the new rows and/or columns are filled with zeros.

The cell width affects how many characters are displayed in any cell. To change the cell width in the Data/Matrix Editor:

1. To display the FORMATS dialog box, press F1 9

- or -

TI-89: \rightarrow (1)
TI-92 Plus: $\quad \mathrm{F}$

Cell width is the maximum number of characters that can be displayed in a cell.

All cells have the same cell width.
2. With the current Cell Width setting highlighted, press © or © to display a menu of digits (3 through 12).
3. Move the cursor to highlight a number and press ENTER. (For single-digit numbers, you can type the number and press ENTER.)
4. Press ENTER to close the dialog box.

This procedure erases the contents of a column. It does not delete the column.

To clear: Do this:

A column

1. Move the cursor to any cell in the column.
2. TI-89: 2nd [F6]

TI-92 Plus: F6 and select 5:Clear Column. (This item is not available for a matrix.)
All columns Press F1 and select 8:Clear Editor. When prompted for confirmation, press ENTER (or ESC to cancel).

The general procedures for inserting and deleting a cell, row, or column are simple and straightforward. You can have up to 99 columns with up to 999 elements in each column.

Note About Column Titles and Headers

Inserting a Row or Column

Note: For a list variable, inserting a row is the same as inserting a cell.

Note: For a list variable, you cannot insert a column because a list has only one column.

You cannot delete the rows or cells that contain column titles or headers. Also, you cannot insert a row or cell before a column title or header.

The new row or column is inserted before the row or column that contains the highlighted cell. In the Data/Matrix Editor:

1. Move the cursor to any cell in the applicable row or column.
2. TI-89: 2nd [F6]

TI-92 Plus: F6 and select 1:Insert.

3. Select either 2:row or 3:column.

When you insert a row:

- In a list or data variable, the row is undefined.
- In a matrix variable,
 the row is filled with zeros.

When you insert a column:

- In a data variable, the column is blank.
- In a matrix
 variable, the column is filled with zeros.

You can then enter values in the undefined or blank cells.

Inserting a Cell

Note: For a matrix variable, you cannot insert a cell because the matrix must retain a rectangular shape.

Deleting a Row or Column

Deleting a Cell

Note: For a matrix variable, you cannot delete a cell because the matrix must retain a rectangular shape.

If You Need to Add a New "Last" Row, Column, or Cell

The new cell is inserted before the highlighted cell in the same column. (You cannot insert a cell into a locked column, which is defined by a function in the column header. Refer to page 248.) In the Data/Matrix Editor:

1. Move the cursor to the applicable cell.
2. TI-89: 2nd [F6]

TI-92 Plus: F6
 and select 1:Insert.
3. Select 1:cell.

The inserted cell is undefined. You can then enter a value in the cell.

In the Data/Matrix Editor:

1. Move the cursor to any cell in the row or column you want to delete.
2. TI-89: 2nd [F6]

TI-92 Plus: ${ }^{66}$ and select 2:Delete.

3. Select either 2:row or 3:column.

If you delete a row, any rows below the deleted row are shifted up. If you delete a column, any columns to the right of the deleted column are shifted left.

In the Data/Matrix Editor:

1. Move the cursor to the cell you want to delete. (You cannot delete a cell in a locked column, which is defined by a function in the column header. Refer to page 248.)
2. TI-89: 2nd [F6]

TI-92 Plus: F6
and select 2:Delete.
3. Select 1 :cell.

Any cells below the deleted cell are shifted up.
You do not need to use the Util toolbar menu to:

- Add a new row or cell at the bottom of a column.
- or -
- Add a new column to the right of the last column.

Simply move the cursor to the applicable cell and enter a value.

Defining a Column Header with an Expression

Entering a Header Definition

Tip: To view an existing definition, press [F4 or move the cursor to the header cell and look at the entry line.

Tip: To cancel any changes, press ESC before pressing ENTER.

Note: The seq function is described in Appendix A.

Note: If you refer to an empty column, you will get an error message (unless Auto-calculate $=$ OFF as described on page 249).

Note: For a data variable, header definitions are saved when you leave the Data/ Matrix Editor. For a list variable, the definitions are not saved (only their resulting cell values).

Clearing a Header Definition

For a list variable or a column in a data variable, you can enter a function in the column header that automatically generates a list of elements. In a data variable, you can also define one column in terms of another.

In the Data/Matrix Editor:

1. Move the cursor to any cell in the column and press F4.

- or -

Move the cursor to the header cell (c1, c2, etc.) and press ENTER.
Note: ENTER is not required if you want to type a new definition or replace the existing one. However, if you want to edit the existing definition, you must press ENTER.
2. Type the new expression, which replaces any existing definition.

If you used F4 or ENTER in Step 1, the cursor moved to the entry line and highlighted the existing definition, if any. You can also:

- Press CLEAR to clear the highlighted expression. Then type the new expression.
- or -
- Press © (1) or (1) to remove the highlighting. Then edit the old expression.

You can use an expression that:	For example:
Generates a series of numbers.	$\mathrm{c} 1=\operatorname{seq}\left(x^{\wedge} 2, x, 1,5\right)$
	$\mathrm{c} 1=\{1,2,3,4,5\}$
Refers to another column.	$\mathrm{c} 2=2 * \mathrm{c} 1$
	$\mathrm{c} 4=\mathrm{c} 1 * \mathrm{c} 2-\sin (\mathrm{c} 3)$

3. Press ENTER, \odot, or Θ to save the definition and update the columns.

You cannot directly change a locked cell (E) since it is defined
 by the column header.

1. Move the cursor to any cell in the column and press (F4).
-or-
Move the cursor to the header cell (c1, c2, etc.) and press ENTER.
2. Press CLEAR to clear the highlighted expression.
3. Press ENTER, \odot, or Θ.

Using an Existing List as a Column

Note: If you have a CBL $2^{\text {TM }} /$ CBL $^{\text {TM }}$ or $C B R^{T M}$, use these techniques for your collected lists.

Tip: Use [2nd [var-LINK] to see existing list variables.

To Fill a Matrix with a List

The Auto-calculate Feature

Tip: You may want to set Auto-calculate $=$ OFF to:

- Make multiple changes without recalculating each time.
- Enter a definition such as c1=c2+c3 before you enter columns 2 and 3.
- Override any errors in a definition until you can debug the error.

Suppose you have one or more existing lists, and you want to use those existing lists as columns in a data variable.

From the:	Do this:
Data/Matrix Editor	In the applicable column, use F4 to define the column header. Refer to the existing list variable. For example: c1=list1
Home screen or a program	Use the NewData command as described in Appendix A. For example: NewData datavar, list1 [, list2] [, list3] ... Existing list variables to copy to columns in the data variable. Data variable. If this data variable already exists, it will be redefined based on the specified lists.

You cannot use the Data/Matrix Editor to fill a matrix with a list. However, you can use the list> mat command from the Home screen or a program. For information, refer to Appendix A.

For list and data variables, the Data/Matrix Editor has an Auto-calculate feature. By default, Auto-calculate = ON. Therefore, if you make a change that affects a header definition (or any column referenced in a header definition), all header definitions are recalculated automatically. For example:

- If you change a header definition, the new definition is applied automatically.
- If column 2's header is defined as $\mathrm{c} 2=2 * \mathrm{c} 1$, any change you make in column 1 is automatically reflected in column 2 .

To turn Auto-calculate off and on from the Data/Matrix Editor:

1. Press F1 9
-or-
TI-89: $\bullet \square$

TI-92 Plus: $\square \mathrm{F}$
2. Change Auto-Calculate to OFF or ON.
3. Press ENTER to close the dialog box.

If Auto-calculate = OFF and you make changes as described above, the header definitions are not recalculated until you set
Auto-calculate $=\mathrm{ON}$.

Using Shift and CumSum Functions in a Column Header

Using the Shift Function

Note: To enter "shift", type it from the keyboard or select it fromthe CATALOG.

When defining a column header, you can use the shift and cumSum functions as described below. These descriptions differ slightly from Appendix A. This section describes how to use the functions in the Data/Matrix Editor. Appendix A gives a more general description for the Home screen or a program.

The shift function copies a base column and shifts it up or down by a specified number of elements. Use F4 to define a column header with the syntax:
shift (column [,integer])
_ Number of elements to shift (positive shifts up; negative shifts down). Default is -1 .
Column used as the base for the shift.
For example, for a two-element shift up and down:

The cumSum function returns a cumulative sum of the elements in a base column. Use F4 to define a column header with the syntax:

cumSum (column)

Column used as the base for the cumulative sum
For example:

Sorting a Single Column

Sorting All Columns Based on a "Key" Column

Note: For a list variable, this is the same as sorting a single column.

Note: This menu item is not available if any column is locked.

After entering information in a data, list, or matrix variable, you can easily sort a specified column in numeric or alphabetical order. You can also sort all columns as a whole, based on a "key" column.

In the Data/Matrix Editor:

1. Move the cursor to any cell in the column.

2. TI-89: [2nd [F6]

Tl-92 Plus: F6
and select 3:Sort Column.

Numbers are sorted in ascending order.

Character strings are sorted in alphabetical order.

Consider a database structure in which each column along the same row contains related information (such as a student's first name, last name, and test scores). In such a case, sorting only a single column would destroy the relationship between the columns.

In the Data/Matrix Editor:

1. Move the cursor to any cell in the "key" column.
In this example, move the cursor to the second column (c2) to sort by last name.
2. TI-89: 2nd [F6]

TI-92 Plus: ${ }^{\text {F6 }}$
and select 4:Sort Col, adjust all.

When using this procedure for a data variable:

- All columns must have the same length.
- None of the columns can be locked (defined by a function in the column header). When the cursor is in a locked column, $\boldsymbol{\Pi}$ is shown at the beginning of the entry line.

Saving a Copy of a List, Data, or Matrix Variable

Valid Copy Types

Note: A list is automatically converted to a data variable if you enter more than one column of information.

Procedure

Note: If you type the name of an existing variable, its contents will be replaced.

To Copy a Data Column to a List

You can save a copy of a list, data, or matrix variable. You can also copy a list to a data variable, or you can select a column from a data variable and copy that column to a list.

You can copy a:	To a:
List	List or data
Data	Data
Data column	List
Matrix	Matrix

From the Data/Matrix Editor:

1. Display the variable that you want to copy.
2. Press F1 and select 2:Save Copy As.
3. In the dialog box:

- Select the Type and Folder for the copy.
- Type a variable name for the copy.
- When available, select the column to copy from.

-Column is dimmed unless you copy a data column to a list. The column information is not used for other types of copies.

4. Press ENTER (after typing in an input box such as Variable, you must press ENTER twice).

A data variable can have multiple columns, but a list variable can have only one column. Therefore, when copying from a data variable to a list, you must select the column that you want to copy.

Statistics and Data Plots

Preview of Statistics and Data Plots 254
Overview of Steps in Statistical Analysis 258
Performing a Statistical Calculation 259
Statistical Calculation Types 261
Statistical Variables. 263
Defining a Statistical Plot 264
Statistical Plot Types 266
Using the Y= Editor with Stat Plots 268
Graphing and Tracing a Defined Stat Plot 269
Using Frequencies and Categories 270
If You Have a CBL 2/CBL or CBR. 272

The Data/Matrix Editor serves two main purposes.

- As described previously in Chapter 15, the Data/Matrix Editor lets you create and maintain a list, matrix, or data variable.
- This chapter describes how to use the Data/Matrix Editor to perform statistical calculations and graph statistical plots.

Based on a sample of seven cities, enter data that relates population to the number of buildings with more than 12 stories. Using Median-Median and linear regression calculations, find and plot equations to fit the data. For each regression equation, predict how many buildings of more than 12 stories you would expect in a city of 300,000 people.

Steps	$\begin{gathered} \text { 瞱 } \\ \text { TI-89 } \\ \text { Keystrokes } \end{gathered}$	TI-92 Plus Keystrokes	Display
6. Display the Calculate dialog box. Set: Calculation Type $=$ MedMed $\begin{aligned} & x=C 1 \\ & y=C 2 \end{aligned}$ Store RegEQ to $=\mathrm{y} 1(\mathrm{x})$	FF5	FF5	maintbuild cateulate
	-18)	$\bigcirc 7 \bigcirc$	
	C alphat $1 \odot$	C1 \bigcirc	
	falphas $\mathrm{C} 2 \odot$	C2 \bigcirc	Tramons
	(1) © ENTER	\bigcirc © ENTER	\%-\%\%;
7. Perform the calculation to	ENTER	ENTER	STAT NAES
display the MedMed regression equation.			
As specified on the Calculate dialog box, this equation is stored in $y 1(x)$.			Sntar $=$ ak
8. Close the STAT VARS screen.	ENTER	ENTER	
The Data/Matrix Editor displays.			
9. Display the Calculate dialog box.	F5	F5	Msin ${ }^{\text {build }}$ Calculote
Set:	(1)5 ${ }^{-}$	$\bigcirc \bigcirc \bigcirc$	
Calculation Type $=$ LinReg	\bigcirc	\bigcirc	
$\mathrm{x}=\mathrm{C} 1$	\bigcirc	(1)	
$y=C 2$	(1) © ENTER	\bigcirc © ENTER	m\%\%
Store RegEQ to = y2(x)			Smeresine S
10. Perform the calculation to display the LinReg regression equation.	ENTER	ENTER	STAT NAES
			(ex ${ }^{\text {a }}$
This equation is stored in $\mathrm{y} 2(x)$.			
			$\xrightarrow{\text { Gnts }=\text { IK }}$
11. Close the STAT VARS screen. The Data/Matrix Editor displays.	ENTER	ENTER	
12. Display the Plot Setup screen.	F2	F2	minimbuid
Plot 1 is highlighted by default. E3 lets you clear highlighted Plot settings.			
			Fot,
13. Define Plot 1 as:	国	F1	main build flot 1
Plot Type = Scatter	(1) $1 \bigcirc$	$\bigcirc 1 \bigcirc$	
Mark = Box	(1) $1 \bigcirc$	$\bigcirc 1 \bigcirc$	\bigcirc
$\mathrm{x}=\mathrm{C} 1$	Calpha $1 \odot$	C1®	Fres mon Cotesories:
$\mathrm{y}=\mathrm{C} 2$	alphal 2	C2	"×.\%......
Notice the similaritios between this			
and the Calculate dialog box.			
14. Save the plot definition and return to the Plot Setup screen. Notice the shorthand notation for Plot 1 's definition.	ENTER ENTER	ENTER ENTER	minitubuld
			Pa
			, frome

Steps		TI－92 Plus Keystrokes	Display
22．Enter a title for column 6 ．Define column 6＇s header as the residuals for LinReg．	（1）©［2nd［a－lock］	\bigcirc	㑑
	R E S I D alpha	RESID	
	EENTER	ENTER	
	F4］alpha C $2 \square$	FF4 C 2－	
	alpha C 5 ENTER	C5 ENTER	$4{ }^{4} 4$
			$\frac{c 6=c 2-c 5}{}$
23．Display the Plot Setup screen and deselect Plot 1.	［F2 F4	F2］F4	
24．Highlight Plot 2 and define it as：	¢F	○F｜	main build flote
Plot Type $=$ Scatter	\bigcirc	（1）	
Mark＝Box	\bigcirc	（1）	\％ख冈
$\mathrm{x}=\mathrm{C} 1$	C alpha $1 \odot$	C1 \bigcirc	Fresin catestriss：
$y=C 4$（MedMed residuals）	Ealpha C 4 ENTER	C 4 ENTER	м母＂．＂．＂
	ENTER	ENTER	
25．Highlight Plot 3 and define it as：Plot Type＝Scatter	\bigcirc F1	\bigcirc © ${ }_{\text {¢ }}$	maintavilu flot3
	\bigcirc	（1）	
Mark＝Plus	（1）3 ${ }^{-1}$	$\bigcirc 3 \bigcirc$	\％
$\mathrm{x}=\mathrm{C} 1$	Calpha $1 \odot$	$\bigcirc 1 \bigcirc$	Fresond Colesprist：
$y=C 6$（LinReg residuals）	Calpha C 6 ENTER	C6 ENTER	－\％ल\％＂；
	ENTER	ENTER	
26．Display the $Y=$ Editor and turn all the $\mathrm{y}(\mathrm{x})$ functions off．	［ ${ }^{\text {l }}=$ ］	［ $\left.{ }^{[} \mathrm{Y}=\right]$	
	F5 3	F5 3	
From［F5，select 3：Functions Off，not 1：All Off．			
Plots 2 and 3 are still selected．			
			Milv Rind huti func
27．Use ZoomData to graph the residuals．	臣9	［医9	
\square marks the MedMed residuals； ＋marks the LinReg residuals．			－
			\pm
28．Display the Home screen．	HOME	［［home］	
29．Use the MedMed（ $\mathrm{y} 1(\mathrm{x})$ ）and	［2nd［MATH］ 13	［2nd［MATH］ 13	\％
LinReg（y2（x））regression	Y1可300	Y1团300	
equations to calculate values for $x=300$（ 300,000 population）．	ODENTER	OODENTER	
	（1）	\bigcirc	
The round function（［2nd［Math］13） ensures that results show an integer number of buildings．	（1）（1）（1）（1）	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	
	$\begin{aligned} & \text { (1)(1) (1) } \square 2 \\ & \text { BENTER } \end{aligned}$	$\begin{aligned} & \bigcirc \bigcirc \bigcirc \backsim 2 \\ & \text { ENTER } \end{aligned}$	
After calculating the first result，edit the entry line to change y1 to y 2 ．			

Overview of Steps in Statistical Analysis

This section gives an overview of the steps used to perform a statistical calculation or graph a statistical plot. For detailed descriptions, refer to the following pages.

Calculating and Plotting Stat Data

Note: Refer to Chapter 15 for details on entering data in the Data/Matrix Editor.

Tip: You can also use the $Y=$ Editor to define and select stat plots and $y(x)$ functions.

Tip: Use ZoomData to optimize the viewing window for stat plots. F22 Zoom is available on the $Y=$ Editor, Window Editor, and Graph screen.

From the Graph screen, you can:

- Display the coordinates of any pixel by using the free-moving cursor, or of a plotted point by tracing a plot.
- Use the F2 Zoom toolbar menu to zoom in or out on a portion of the graph.
- Use the F5 Math toolbar menu to analyze any function (but not plots) that may be graphed.

Performing a Statistical Calculation

The Calculate Dialog Box

Note: If an item is not valid for the current settings, it will appear dimmed. You cannot move the cursor to a dimmed item.

Tip: To use an existing list variable for x, y, Freq, or Category, type the list name instead of a column number.

From the Data/Matrix Editor, use the F5 Calc toolbar menu to perform statistical calculations. You can analyze one-variable or two-variable statistics, or perform several types of regression analyses.

You must have a data variable opened. The Data/Matrix Editor will not perform statistical calculations with a list or matrix variable.

From the Data/Matrix Editor:

1. Press F5 to display the Calculate dialog box.

This example shows all items as active. On your calculator, items are active only if they are valid for the current settings of Calculation Type and Use Freq and Categories.
2. Specify applicable settings for the active items.

Item	Description
Calculation Type	Select the type of calculation. For descriptions, refer to page 261.
x	Type the column number in the Data/Matrix Editor (C1, C2, etc.) used for x values, the independent variable.
y	Type the column number used for y values, the dependent variable. This is required for all Calculation Types except OneVar.
Store RegEQ to	If Calculation Type is a regression analysis, you can select a function name (y1 (x$),$ y2 (x), etc.).
Use Freq and	This lets you store the regression equation so that it will be displayed in the Y= Editor.
Categories?	Select NO or YES. Note that Freq, Category, and Include Categories are active only when
Use Freq and Categories? = YES.	

The Calculate Dialog Box

(Continued)

Note: For an example of using Freq, Category, and Include Categories, refer to page 270.

Note: Any undefined data points (shown as undef) are ignored in a stat calculation.

Redisplaying the STAT VARS Screen

Item	Description
Freq	Type the column number that contains a "weight" value for each data point. If you do not enter a column number, all data points are assumed to have the same weight (1).
Category	Type the column number that contains a category value for each data point.
Include	If you specify a Category column, you can use Categories
	category values. For example, if you specify chis to limit the calculation to specified
	a category value of 1 or 4.

3. Press ENTER (after typing in an input box, press ENTER twice).

The results are displayed on the STAT VARS screen. The format depends on the Calculation Type. For example:

For Calculation Type $=$ OneVar

4. To close the STAT VARS screen, press ENTER.

The Data/Matrix Editor's Stat toolbar menu redisplays the previous calculation results (until they are cleared from memory).
TI-89: [2nd [F7]
TI-92 Plus: F7
Previous results are cleared when you:

- Edit the data points or change the Calculation Type.
- Open another data variable or reopen the same data variable (if the calculation referred to a column in a data variable). Results are also cleared if you leave and then reopen the Data/Matrix Editor with a data variable.
- Change the current folder (if the calculation referred to a list variable in the previous folder).

Statistical Calculation Types

As described in the previous section, the Calculate dialog box lets you specify the statistical calculation you want to perform. This section gives more information about the calculation types.

Selecting the Calculation Type

Note: For TwoVar and all regression calculations, the columns that you specify for x and y (and optionally, Freq or Category) must have the same length.

From the Calculate dialog box (ㅍ5), highlight the current setting for the Calculation Type and press (1).

You can then select from a menu of available types.

Calc Type Description
OneVar One-variable statistics - Calculates the statistical variables described on page 263.

TwoVar Two-variable statistics - Calculates the statistical variables described on page 263.

CubicReg Cubic regression - Fits the data to the third-order polynomial $y=a x^{3}+b x^{2}+c x+d$. You must have at least four data points.

- For four points, the equation is a polynomial fit.
- For five or more points, it is a polynomial regression.

ExpReg Exponential regression - Fits the data to the model equation $y=a b \times$ (where a is the y-intercept) using a leastsquares fit and transformed values x and $\ln (y)$.

LinReg Linear regression - Fits the data to the model $y=a x+b$ (where a is the slope, and b is the y-intercept) using a least-squares fit and x and y.

LnReg Logarithmic regression - Fits the data to the model equation $y=a+b \ln (x)$ using a least-squares fit and transformed values $\ln (x)$ and y.

Logistic Logistic regression - Fits the data to the model $\mathrm{y}=\mathrm{a} /\left(1+\mathrm{b} * e^{\wedge}(\mathrm{c} * \mathrm{x})\right)+\mathrm{d}$ and updates all the system statistics variables.

Selecting the Calculation Type (Continued)

Calc Type Description
MedMed Median-Median - Fits the data to the model $y=a x+b$ (where a is the slope, and b is the y-intercept) using the median-median line, which is part of the resistant line technique.

Summary points medx1, medy1, medx2, medy2, medx3, and medy 3 are calculated and stored to variables, but they are not displayed on the STAT VARS screen.

PowerReg Power regression - Fits the data to the model equation $y=a x^{b}$ using a least-squares fit and transformed values $\ln (x)$ and $\ln (y)$.

QuadReg Quadratic regression - Fits the data to the secondorder polynomial $y=a x^{2}+b x+c$. You must have at least three data points.

- For three points, the equation is a polynomial fit.
- For four or more points, it is a polynomial regression.

QuartReg Quartic regression - Fits the data to the fourth-order polynomial $y=a x^{4}+b x^{3}+c x^{2}+d x+e$. You must have at least five data points.

- For five points, the equation is a polynomial fit.
- For six or more points, it is a polynomial regression.

SinReg Sinusoidal regression - Calculates the sinusoidal regression and updates all the system statistics variables. The output is always in radians, regardless of the angle mode setting.

Use the applicable command for the calculation that you want to perform. The commands have the same name as the corresponding Calculation Type. Refer to Appendix A for information about each command.

Important: These commands perform a statistical calculation but do not automatically display the results. Use the ShowStat command to show the calculation results.

Statistical Variables

Statistical calculation results are stored to variables. To access these variables, type the variable name or use the VAR-LINK screen as described in Chapter 21. All statistical variables are cleared when you edit the data or change the calculation type. Other conditions that clear the variables are listed on page 260.

Calculated Variables

To type the character Σ, press:

TI-89: \square T [S] TI-92 Plus: 2nd G \quad S
To type the character σ, press:
TI-89: ${ }^{\circ}$ T alpha [S]
Tl-92 Plus: 2nd G S

Tip: To type a power (such as 2 in Σx^{2}), \bar{x}, or \bar{y}, press [2nd [CHAR] and select it from the Math menu.

Note: 1st quartile is the median of points between $\min X$ and medStat, and 3rd quartile is the median of points between medStat and maxX.

Tip: If regeq is $4 x+7$, then regCoef is $\{47\}$. To access the "a" coefficient (the 1st element in the list), use an index such as regCoef[1].

Statistical variables are stored as system variables. However, regCoef and regeq are treated as a list and a function variable, respectively.

	One Var	$\begin{aligned} & \hline \text { Two } \\ & \text { Var } \end{aligned}$	Regressions
mean of x values	$\overline{\mathrm{x}}$	$\overline{\mathrm{x}}$	
sum of x values	$\Sigma \mathrm{x}$	$\Sigma \mathrm{x}$	
sum of x^{2} values	Σx^{2}	Σx^{2}	
sample std. deviation of x	Sx	Sx	
population std. deviation of $x \dagger$	σx	$\sigma \times$	
number of data points	nStat	nStat	
mean of y values		$\overline{\mathrm{y}}$	
sum of y values		Σy	
sum of y^{2} values		Σy^{2}	
sample standard deviation of y		Sy	
population std. deviation of $\mathrm{y} \dagger$		бy	
sum of $x * y$ values		Exy	
minimum of x values	min X	minX	
maximum of x values	$\max \mathrm{X}$	$\max \times$	
minimum of y values		minY	
maximum of y values		maxY	
1st quartile	q1		
median	medStat		
3 rd quartile	q3		
regression equation			regeq
regression coefficients (a, b, c, d, e)			regCoef
correlation coefficient $\dagger \dagger$			corr
coefficient of determination $\dagger \dagger$			R ${ }^{2}$
summary points (MedMed only) \dagger			medx1, medy1, medx2, medy2, medx3, medy3

\dagger The indicated variables are calculated but are not shown on the STAT VARS screen.
$\dagger \dagger$ corr is defined for a linear regression only; R^{2} is defined for all polynomial regressions.

Defining a Statistical Plot

Procedure

Note: This dialog box is similar to the Calculate dialog box.

Note: If an item is not valid for the current settings, it will appear dimmed. You cannot move the cursor to a dimmed item.

Note: Plots defined with column numbers always use the last data variable in the Data/Matrix Editor, even if that variable was not used to create the definition.

Tip: To use an existing list variable for x, y, Freq, or Category, type the list name instead of the column number.

From the Data/Matrix Editor:

1. Press F2 to display the Plot Setup screen.

Initially, none of the plots are defined.
2. Move the cursor to highlight the plot number that you want to define.
3. Press F1 to define the plot.

This example shows all items as active. On your calculator, items are active only if they are valid for the current setting of Plot Type and Use Freq and Categories?
4. Specify applicable settings for the active items.

Item	Description
Plot Type	Select the type of plot. For descriptions, refer to page 266.
Mark	Select the symbol used to plot the data points: Box (\square), Cross (x), Plus (+), Square ($\mathbf{\bullet}$), or Dot (\cdot).
x	Type the column number in the Data/Matrix Editor (C1, C2, etc.) used for x values, the independent variable.
y	Type the column number used for y values, the dependent variable. This is active only for Plot Type = Scatter or xyline.
Hist. Bucket Width	Specifies the width of each bar in a histogram. For more information, refer to page 267.
Use Freq and Categories?	Select NO or YES. Note that Freq, Category, and Include Categories are active only when Use Freq and Categories? = YES. (Freq is active only for Plot Type = Box Plot or Histogram.)

Note: For an example of using Freq, Category, and Include Categories, refer to page 270.

Note: Any undefined data points (shown as undef) are ignored in a stat plot.

Selecting or Deselecting a Plot

Copying a Plot Definition

Note: If the original plot was selected (\checkmark), the copy is also selected.

Item	Description
Freq	Type the column number that contains a "weight" value for each data point. If you do not enter a column number, all data points are assumed to have the same weight (1).
Category	Type the column number that contains a category value for each data point.
Include	If you specify a Category, you can use this to limit Categories example, if you specify $\{1,4\}$, the plot uses only data points with a category value of 1 or 4.

5. Press ENTER (after typing in an input box, press ENTER twice).

The Plot Setup screen is redisplayed.

The plot you just defined is automatically selected for graphing.

Notice the shorthand definition for the plot.

From Plot Setup, highlight the plot and press F4 to toggle it on or off. If a stat plot is selected, it remains selected when you:

- Change the graph mode. (Stat plots are not graphed in 3D mode.)
- Execute a Graph command.
- Open a different variable in the Data/Matrix Editor.

From Plot Setup:

1. Highlight the plot and press F2.
2. Press (©) and select the plot number that you want to copy to.

3. Press ENTER.

From Plot Setup, highlight the plot and press ©3. To redefine an existing plot, you do not necessarily need to clear it first; you can make changes to the existing definition. To prevent a plot from graphing, you can deselect it.

Clearing a Plot

 DefinitionWhen you define a plot as described in the previous section, the Plot Setup screen lets you select the plot type. This section gives more information about the available plot types.

Scatter

Data points from x and y are plotted as coordinate pairs. Therefore, the columns or lists that you specify for x and y must be the same length.

- Plotted points are shown
with the symbol that you

ㅁ select as the Mark. ㅁ

- If necessary, you can specify the same column or list for both x and y.
xyline

Box Plot
This is a scatter plot in which data points are plotted and connected in the order in which they appear in x and y.

You may want to sort all the columns in the Data/Matrix Editor before plotting.
TI-89: 2nd [F6] 3 or [2nd [F6] 4 TI-92 Plus: F6 3 or F6 4

This plots one-variable data with respect to the minimum and maximum data points ($\min X$ and $\max X$) in the set.

- A box is defined by its first quartile (Q1), median (Med), and third quartile (Q3).
- Whiskers extend from minX to Q1 and from Q3 to maxX.

- When you select multiple box plots, they are plotted one above the other in the same order as their plot numbers.
- Use NewPlot to show statistical data as a modified box plot.
- Select Mod Box Plot as the Plot Type when you define a plot in the Data/Matrix Editor.

A modified box plot excludes points outside the interval [Q1-X, Q3+X], where X is defined as 1.5 (Q3- Q1). These points, called outliers, are plotted individually beyond the box plot's whiskers, using the mark that you select.

This plots one-variable data as a histogram. The x axis is divided into equal widths called buckets or bars. The height of each bar (its y value) indicates how many data points fall within the bar's range.

- When defining the plot, you can specify the Hist. Bucket Width (default is 1) to set the width of each bar.
- A data point at the edge of a bar is counted in the bar to the right.
- ZoomData (F2 9 from the Graph screen, Y= Editor, or Window Editor) adjusts x min and xmax to include all data points, but it does not adjust the y axis.
- Use \rightarrow [window] to set $y \min =0$ and $y m a x=$ the number of data points expected in the tallest bar.
- When you trace ([F3) a histogram, the screen shows information about the traced bar.

Using the Y= Editor with Stat Plots

Showing the List of Stat Plots

Note: Plots defined with column numbers always use the last data variable in the Data/Matrix Editor, even if that variable was not used to create the definition.

Note: You can not use
TI-89: 2nd [F6]
TI-92 Plus: F6 to set a plot's display style. However, the plot definition lets you select the mark used for the plot.

To Graph Plots and $Y=$ Functions

The previous sections described how to define and select stat plots from the Data/Matrix Editor. You can also define and select stat plots from the $Y=$ Editor.

Press $\square[\mathrm{Y}=]$ to display the $\mathrm{Y}=$ Editor. Initially, the nine stat plots are located "off the top" of the screen, above the $y(x)$ functions. However, the PLOTS indicator provides some information.

For example, PLOTS 23

To see the list of stat plots, use Θ to scroll above the $\mathrm{y}(\mathrm{x})$ functions.
 screen.

From the $\mathrm{Y}=$ Editor, you can perform most of the same operations on a stat plot as you can on any other $y(x)$ function.

To:	Do this:
Edit a plot definition	Highlight the plot and press F3. You will see the same definition screen that is displayed in the Data/Matrix Editor.
Select or deselect a plot	Highlight the plot and press F4.
Turn all plots and/or functions off	Press F5 and select the applicable item. You can also use this menu to turn all functions on.

As necessary, you can select and graph stat plots and $y(x)$ functions at the same time. The preview example at the beginning of this chapter graphs data points and their regression equations.

Graphing and Tracing a Defined Stat Plot

Defining the Viewing Window

Tip: F2 Zoom is available on the $Y=$ Editor, Window Editor, and Graph screen.
Changing the Graph
Format

Tracing a Stat Plot

Note: When a stat plot is displayed, the Graph screen does not automatically pan if you trace off the left or right side of the screen. However, you can still press ENTER to center the screen on the trace cursor.

Stat plots are displayed on the current graph, and they use the Window variables that are defined in the Window Editor.

Use \square [window to display the Window Editor. You can either:

- Enter appropriate values.
- or -
- Select 9:ZoomData from the F2 Zoom toolbar menu. (Although you can use any zoom, ZoomData is optimized for stat plots.)

ZoomData sets the viewing window to display all statistical data points.

For histograms and box plots, only xmin and xmax are adjusted. If the top of a histogram is not shown, trace the histogram to find the value for ymax.

After entering the data points and defining the stat plots, you can graph the selected plots by using the same methods you used to graph a function from the $Y=$ Editor (as described in Chapter 6).
Press:
F1 9
-or -
TI-89:
TI-92 Plus:
from the Y = Editor, Window
or Graph screen.
Then change the settings as
necessary.

From the Graph screen, press F3 to trace a plot. The movement of the trace cursor depends on the Plot Type.

Plot Type	Description
Scatter or xyline	Tracing begins at the first data point.
Box plot	Tracing begins at the median. Press © \oplus to trace to Q1 and minX. Press © to trace to Q3 and maxX.
Histogram	The cursor moves from the top center of each bar, starting from the leftmost bar.

When you press Θ or Θ to move to another plot or $y(x)$ function, tracing moves to the current or beginning point on that plot (not to the nearest pixel).

Using Frequencies and Categories

Example of a Frequency Column

Tip: A frequency value of 0 effectively removes the data point from analysis.

Note: You can also use frequency values from a list variable instead of a column.

Example of a Category Column

To manipulate the way in which data points are analyzed, you can use frequency values and/or category values. Frequency values let you "weight" particular data points. Category values let you analyze a subset of the data points.

In a data variable, you can use any column in the Data/Matrix Editor to specify a frequency value (or weight) for the data points on each row. A frequency value must be an integer ≥ 0 if Calculation Type $=$ OneVar or MedMed or if Plot Type = Box Plot. For other statistical calculations or plots, the frequency value can be any number ≥ 0.

For example, suppose you enter a student's test scores, where:

- The mid-semester exam is weighted twice as much as other tests.
- The final exam is weighted three times as much.

In the Data/Matrix Editor, you can enter the test scores and frequency values in two columns.

To use frequency values, specify the frequency column when you perform a statistical calculation or define a stat plot. For example:
 name) that contains the frequency values.

In a data variable, you can use any column to specify a category (or subset) value for the data points on each row. A category value can be any number.

Note: You do not need a category value for the whole class. Also, you do not need category values for all 10th graders or all 11th graders since they are combinations of other categories.

Note: You can also use category values from a list variable instead of a column.

Note: To analyze the whole class, leave the Category input box blank. Any category values are ignored.

Suppose you enter the test scores from a class that has 10th and 11th grade students. You want to analyze the scores for the whole class, but you also want to analyze categories such as 10th grade girls, 10th grade boys, 10th grade girls and boys, etc.

First, determine the category values you want to use.

Category Value	Used to indicate:
1	10th grade girl
2	10th grade boy
3	11th grade girl
4	11th grade boy

In the Data/Matrix Editor, you can enter the scores and the category values in two columns.

To use category values, specify the category column and the category values to include in the analysis when you perform a statistical calculation or define a stat plot.

To analyze:	Include Categories:
10th grade girls	$\{1\}$
10th grade boys	$\{2\}$
10th grade girls and boys	$\{1,2\}$
11th grade girls	$\{3\}$
11th grade boys	$\{4\}$
11th grade girls and boys	$\{3,4\}$
all girls (10th and 11th)	$\{1,3\}$
all boys (10th and 11th)	$\{2,4\}$

If You Have a CBL 2/CBL or CBR

> The Calculator-Based Laboratory ${ }^{T M}$ System (CBL $\left.2^{T M} / C B L^{T M}\right)$ and Calculator-Based Ranger ${ }^{T M}$ System (CBR ${ }^{T M}$) are optional accessories, available separately, that let you collect data from a variety of real-world experiments. TI-89/ TI-92 Plus CBL 2/CBL and CBR programs are available from the TI web site at: http://www.ti.com/calc/cbl and http://www.ti.com/calc/cbr

How CBL 2/CBL Data Is Stored

Note: For specifics about using the CBL 2/CBL and retrieving data to the Tl-89 / TI-92 Plus, refer to the guidebook that comes with the CBL 2/CBL unit.

Referring to the CBL 2/CBL Lists

When you collect data with the CBL 2/CBL, that data is initially stored in the CBL 2/CBL unit itself. You must then retrieve the data (transfer it to the TI-89 / TI-92 Plus) by using the Get command, which is described in Appendix A.

Although each set of retrieved data can be stored in several variable types (list, real, matrix, pic), using list variables makes it easier to perform statistical calculations.

When you transfer the collected information to the TI-89 / TI-92 Plus, you can specify the list variable names that you want to use. For example, you can use the CBL 2/CBL to collect temperature data over a period of time. When you transfer the data, suppose you store:

- Temperature data in a list variable called temp.
- Time data in a list variable called time.

After you store the CBL 2/CBL information on the TI-89 / TI-92 Plus, there are two ways to use the CBL 2/CBL list variables.

When you perform a statistical calculation or define a plot, you can refer explicitly to the CBL 2/CBL list variables. For example:

Creating a Data Variable with the CBL 2/CBL Lists

Tip: To define or clear a column header, use F4. For more information, refer to Chapter 15.

You can create a new data variable that consists of the necessary CBL 2/CBL list variables.

- From the Home screen or a program, use the NewData command.

NewData dataVar, list1 [,list2] [,list3] ...
— CBL list variable names. In the new data variable, list1 will be copied to column 1, list 2 to column 2, etc.

Name of the new data variable that you want to create.

For example:
NewData temp1, time, temp
creates a data variable called temp1 in which time is in column 1 and temp is in column 2.

- From the Data/Matrix Editor, create a new, empty data variable with the applicable name. For each CBL 2/CBL list that you want to include, define a column header as that list name.

At this point, the columns are linked to the CBL 2/CBL lists. If the lists are changed, the columns will be updated automatically. However, if the lists are deleted, the data will be lost.

To make the data variable independent of the CBL 2/CBL lists, clear the column header for each column. The information remains in the column, but the column is no longer linked to the CBL 2/CBL list.

You can also use the Calculator-Based Ranger ${ }^{T M}\left(\mathrm{CBR}^{\mathrm{TM}}\right)$ to explore the mathematical and scientific relationships between distance, velocity, acceleration, and time using data collected from activities you perform.

Programming

Note: For details and examples of any Tl-89 / TI-92 Plus program command mentioned in this chapter, refer to Appendix A.
Preview of Programming 276
Running an Existing Program 278
Starting a Program Editor Session 280
Overview of Entering a Program 282
Overview of Entering a Function 285
Calling One Program from Another 287
Using Variables in a Program 288
Using Local Variables in Functions or Programs 290
String Operations 292
Conditional Tests 294
Using If, Lbl, and Goto to Control Program Flow 295
Using Loops to Repeat a Group of Commands 297
Configuring the TI-89 / TI-92 Plus 300
Getting Input from the User and Displaying Output 301
Creating a Custom Menu 303
Creating a Table or Graph 305
Drawing on the Graph Screen 307
Accessing Another TI-89 / TI-92 Plus, a CBL 2/CBL, or a CBR 309
Debugging Programs and Handling Errors 310
Example: Using Alternative Approaches 311
Assembly-Language Programs 313

This chapter describes how to use the TI-89 / TI-92 Plus's Program Editor to create your own programs or functions.

The chapter includes:

- Specific instructions on using the Program Editor itself and running an existing program.
- An overview of fundamental programming techniques such as If...Endlf structures and various kinds of loops.
- Reference information that categorizes the available program commands.
- Obtaining and running assembly-language programs.

Preview of Programming

Write a program that prompts the user to enter an integer, sums all integers from 1 to the entered integer, and displays the result.

Steps

1. Start a new program on the Program Editor.
2. Type PROG1 (with no spaces) as the name of the new program variable.
3. Display the "template" for a new program. The program name, Prgm, and EndPrgm are shown automatically.

After typing in an input box such as Variable, you must press ENTER twice.
4. Type the following program lines.

```
Request "Enter an
integer",n
    Displays a dialog box that
    prompts "Enter an integer", waits
    for the user to enter a value, and
    stores it (as a string) to variable n
expr(n)->n
    Converts the string to a numeric
    expression.
0}->\mathrm{ temp
```

 Creates a variable named temp
 and initializes it to 0 .
 For $\mathrm{i}, 1, \mathrm{n}, 1$
Starts a For loop based on
variable i. First time through the
loop, $i=1$. At end of loop, i is
incremented by 1. Loop continues
until $i>n$.
temp+i \rightarrow temp
Adds current value of i to temp.
EndFor
Marks the end of the For loop.
Disp temp

Displays the final value of temp.

瞱 TI-89 Keystrokes	TI-92 Plus Keystrokes	Display
APPPS 73	APPS 73	
$\Theta \odot$ PROG alpha 1	$\bigcirc \bigcirc$ PROG1	
ENTER ENTER	ENTER ENTER	Progi :EndPram
Type the program lines fas shown. Press ENTER at the end of each line.	Type the program lines tas shown. Press ENTER at the end of each line.	```Progio Reguest. "Enter an integer``` ```Betemp For \(i, 1, m, 1\) Endifor Disp temp EndPrem```

Running an Existing Program

Running a Program

Tip: Use 2nd [VAR-LINK] to list existing PRGM variables. Highlight a variable and press ENTER to paste its name to the entry line.

Note: Arguments specify initial values for a program. Refer to page 283.

Note: The TI-89 / TI-92 Plus also checks for run-time errors that are found within the program itself. Refer to page 310.

"Breaking" a Program

After a program is created (as described in the remaining sections of this chapter), you can run it from the Home screen. The program's output, if any, is displayed on the Program I/O screen, in a dialog box, or on the Graph screen.

On the Home screen:

1. Type the name of the program.
2. You must always type a set of parentheses after the name.

Some programs require you to pass an argument to the program.

3. Press ENTER.

When you run a program, the TI-89 / TI-92 Plus automatically checks for errors. For example, the following message is displayed if you:

- Do not enter () after the program name.

This error message appears if you:

- Do not enter enough arguments, if required.

To cancel program execution if an error occurs, press ESC. You can then correct any problems and run the program again.

When a program is running, the BUSY indicator is displayed in the status line.

Press 0 D to stop program execution. A message is then displayed.

- To display the program in the Program Editor, press ENTER. The cursor appears at the command
 where the break occurred.
- To cancel program execution, press ESC.

Where Is the Output Displayed?

The Program I/O Screen

Tip: To clear any previous output, enter the CIrIO command in your program. You can also execute CIrIO from the Home screen.

Tip: If Home screen calculations don't work after you run a program, you may be on the Program I/O screen.

Depending on the commands in the program, the TI-89 / TI-92 Plus automatically displays information on the applicable screen.

- Most output and input commands use the Program I/O screen. (Input commands prompt the user to enter information.)
- Graph-related commands typically use the Graph screen.

After the program stops, the TI-89 / TI-92 Plus shows the last screen that was displayed.

On the Program I/O screen, new output is displayed below any previous output (which may have been displayed earlier in the same program or a different program). After a full page of output, the previous output scrolls off the top of the screen.

On the Program I/O screen:

- F5 toolbar is available; all others are dimmed.
- There is no entry line.

When a program stops on the Program I/O screen, you need to recognize that it is not the Home screen (although the two screens are similar). The Program I/O screen is used only to display output or to prompt the user for input. You cannot perform calculations on this screen.

From the Program I/O screen:

- Press F5 to toggle between the Home screen and the Program I/O screen.
- or -
- Press ESC, 2nd [QuIT], or

TI-89: HOME
TI-92 Plus: [HOME]
to display the Home screen.

- or -
- Display any other application screen (with APPS, $\rightarrow[Y=]$, etc.).

Starting a Program Editor Session

Starting a New
 Program or
 Function

Note: A program (or function) is saved automatically as you type. You do not need to save it manually before leaving the Program Editor, starting a new program, or opening a previous one.

Each time you start the Program Editor, you can resume the current program or function (that was displayed the last time you used the Program Editor), open an existing program or function, or start a new program or function.

1. Press APPS and then select 7:Program Editor.
2. Select 3:New.
3. Specify the applicable information for the new program or function.

Item	Lets you:
Type	Select whether to create a new program or function.
Folder	Select the folder in which the new program or function will be stored. For information about folders, refer to Chapter 5.
	Type a variable name for the program or function. If you specify a variable that already exists, an error message will be displayed when you press ENTER. When you press ESC or ENTER to acknowledge the error, the NEW dialog box is redisplayed.

4. Press ENTER (after typing in an input box such as Variable, you must press ENTER twice) to display an empty "template."

You can now use the Program Editor as described in the remaining sections of this chapter.

Resuming the Current Program

Starting a New Program from the Program Editor

Opening a Previous Program

Note: By default, Variable shows the first existing program or function in alphabetical order.

Copying a Program

Note about
Deleting a Program

You can leave the Program Editor and go to another application at any time. To return to the program or function that was displayed when you left the Program Editor, press APPS 7 and select 1:Current.

To leave the current program or function and start a new one:

1. Press F1 and select 3:New.
2. Specify the type, folder, and variable for the new program or function.

3. Press ENTER twice.

You can open a previously created program or function at any time.

1. From within the Program Editor, press $\mathbb{F 1}$ and select 1:Open.

- or -

From another application, press APPS 7 and select 2:Open.
2. Select the applicable type, folder, and variable.
3. Press ENTER.

In some cases, you may want to copy a program or function so that you can edit the copy while retaining the original.

1. Display the program or function you want to copy.
2. Press F1 and select 2:Save Copy As.
3. Specify the folder and variable for the copy.
4. Press ENTER twice.

Because all Program Editor sessions are saved automatically, you can accumulate quite a few previous programs and functions, which take up memory storage space.

To delete programs and functions, use the VAR-LINK screen (2nd [VAR-LINK]). For information about VAR-LINK, refer to Chapter 21.

Overview of Entering a Program

Entering and Editing Program Lines

Note: Use the cursor pad to scroll through the program for entering or editing commands. Use $\Theta \odot$ or \bullet - to go to the top or bottom of a program, respectively.

Note: Entering a command does not execute that command. It is not executed until you run the program.

Entering MultiCommand Lines

Entering Comments

Tip: Use comments to enter information that is useful to someone reading the program code.

A program is a series of commands executed in sequential order (although some commands alter the program flow). In general, anything that can be executed from the Home screen can be included in a program. Program execution continues until it reaches the end of the program or a Stop command.

On a blank template, you can begin entering commands for your new program.
 with a colon.

You enter and edit program commands in the Program Editor by using the same techniques used to enter and edit text in the Text Editor. Refer to "Entering and Editing Text" in Chapter 18.

After typing each program line, press ENTER. This inserts a new blank line and lets you continue entering another line. A program line can be longer than one line on the screen; if so, it will wrap to the next screen line automatically.

To enter more than one command on the same line, separate them with a colon by pressing 2nd [:].

A comment symbol (©) lets you enter a remark in a program. When you run the program, all characters to the right of \mathcal{C} are ignored.

	:prog1()
	: Prgm
Description of the program.	:©Displays sum of 1 thru n :Request "Enter an integer",n
Description of expr	$: \operatorname{expr}(\mathrm{n}) \rightarrow \mathrm{n}:$ © Convert to numeric expression

To enter the comment symbol, press:

- TI-89: \square

TI-92 Plus: 2nd X

- or -
- Press F2 and select 9:C

Controlling the Flow of a Program

Tip: For information, refer to pages 295 and 297.

Using Indentation

Displaying Calculated Results

Tip: For a list of available output commands, refer to page 302.

Getting Values into a Program

Tip: For a list of available input commands, refer to page 301.

When you run a program, the program lines are executed in sequential order. However, some commands alter the program flow. For example:

- Control structures such as If...EndIf commands use a conditional test to decide which part of a program to execute.
- Loops commands such as For...EndFor repeat a group of commands.

For more complex programs that : If $x>5$ Then use If...Endlf and loop structures : Disp "x is > 5" such as For...EndFor, you can make :Else the programs easier to read and : Disp "x is < or = 5" understand by using indentation.
:EndIf

In a program, calculated results are not displayed unless you use an output command. This is an important difference between performing a calculation on the Home screen and in a program.

These calculations will not display :12*6 a result in a program (although they : $\cos (\pi / 4)$ will on the Home screen). : solve ($\left.x^{\wedge} 2-x-2=0, x\right)$

Output commands such as Disp will :Disp 12*6 display a result in a program.
:Disp $\cos (\pi / 4)$
:Disp solve(x^2-x-2=0,x)
Displaying a calculation result does not store that result. If you need to
$: \cos (\pi / 4) \rightarrow$ maximum
:Disp maximum refer to a result later, store it to a variable.

To input values into a program, you can:

- Require the users to store a value (with STO®) to the necessary variables before running the program. The program can then refer to these variables.
- Enter the values directly into :Disp $12 * 6$ the program itself. : $\cos (\pi / 4) \rightarrow$ maximum
- Include input commands that :Input "Enter a value", i prompt the users to enter the :Request "Enter an integer", n necessary values when they run the program.
- Require the users to pass one or more values to the program when they run it.

Example of Passing Values to a Program

Note: In this example, you cannot use circle as the program name because it conflicts with a command name.

Note: This example assumes that the user enters values that can be displayed by the viewing window set up by ZoomStd and ZoomSqr.

The following program draws a circle on the Graph screen and then draws a horizontal line across the top of the circle. Three values must be passed to the program: x and y coordinates for the circle's center and the radius r .

- When you write the program in the Program Editor:

In the () beside the program name, specify the variables that will be used to store the passed values.

Notice that the program also contains commands that set up the Graph screen.

```
:circ(x,y,r)
:Prgm L Only circ() is
:FnOff initially displayed
:ZoomStd on the blank
:ZoomSqr template; be sure
:Circle x,y,r
:LineHorz y+r
:EndPrgm
```

Before drawing the circle, the program turns off any selected Y= Editor functions, displays a standard viewing window, and "squares" the window.

- To run the program from the Home screen:

The user must specify the applicable values as arguments within the ().

The arguments, in order, are passed to the program.

Overview of Entering a Function

Why Create a UserDefined Function?

Note: You can create a function from the Home screen (see Chapter 5), but the Program Editor is more convenient for complex, multi-line functions.

Differences Between Functions and Programs

Tip: For information about local variables, refer to pages 288 and 290.

A function created in the Program Editor is very similar to the functions and instructions that you typically use from the Home screen.

Functions (as well as programs) are ideal for repetitive calculations or tasks. You only need to write the function once. Then you can reuse it as many times as necessary. Functions, however, have some advantages over programs.

- You can create functions that expand on the TI-89 / TI-92 Plus's built-in functions. You can then use the new functions the same as any other function.
- Functions return values that can be graphed or entered in a table; programs cannot.
- You can use a function (but not a program) within an expression. For example: 3^{*} func1(3) is valid, but not $3 * \operatorname{prog} 1(3)$.
- Because you pass arguments to a function, you can write generic functions that are not tied to specific variable names.

This guidebook sometimes uses the word command as a generic reference to instructions and functions. When writing a function, however, you must differentiate between instructions and functions.

A user-defined function:

- Can use the following instructions only. Any others are invalid.

Cycle	Define	Exit
For...EndFor	Goto	If...Endlf (all forms)
Lbl	Local	Loop...EndLoop
Return	While...EndWhile	\rightarrow (ST0. key)

- Can use all built-in TI-89 / TI-92 Plus functions except:

setFold	setGraph setTable	switch

- Can refer to any variable; however, it can store a value to a local variable only.
- The arguments used to pass values to a function are treated as local variables automatically. If you store to any other variables, you must declare them as local from within the function.
- Cannot call a program as a subroutine, but it can call another user-defined function.
- Cannot define a program.
- Cannot define a global function, but it can define a local function.

Entering a Function

Note: Use the cursor pad to scroll through the function for entering or editing commands.

How to Return a Value from a Function

Note: This example calculates the cube if $x \geq 0$; otherwise, it returns a 0.

Example of a Function

Note: Because x and y in the function are local, they are not affected by any existing x or y variable.

When you create a new function in the Program Editor, the TI-89 / TI-92 Plus displays a blank "template".

If the function requires input, one or more values must be passed to the function. (A user-defined function can store to local variables only, and it cannot use instructions that prompt the user for input.)

There are two ways to return a value from a function:

- As the last line in the function

```
:cube(x)
:Func
:x^3
:EndFunc
```

- Use Return. This is useful for :cube(x)
exiting a function and returning :Func a value at some point other than the end of the function.
: If $x<0$
: Return 0
: $x^{\wedge} 3$
:EndFunc

The argument x is automatically treated as a local variable. However, if the example needed another variable, the function would need to declare it as local by using the Local command (pages 288 and 290).
There is an implied Return at the end of the function. If the last line is not an expression, an error occurs.

The following function returns the x th root of a value $y(\sqrt[x]{y})$. Two values must be passed to the function: x and y.

Calling a Separate Program

Calling an Internal Subroutine

Tip: Use the Program Editor's F4 Var toolbar menu to enter the Define and Prgm...EndPrgm commands.

One program can call another program as a subroutine. The subroutine can be external (a separate program) or internal (included in the main program). Subroutines are useful when a program needs to repeat the same group of commands at several different places.

To call a separate program, use the same syntax used to run the program from the Home screen.

To define an internal subroutine, use the Define command with Prgm...EndPrgm. Because a subroutine must be defined before it can be called, it is a good practice to define subroutines at the beginning of the main program.

An internal subroutine is called and executed in the same way as a separate program.

At the end of a subroutine, execution returns to the calling program. To exit a subroutine at any other time, use the Return command.

A subroutine cannot access local variables declared in the calling program. Likewise, the calling program cannot access local variables declared in a subroutine.

Lbl commands are local to the programs in which they are located. Therefore, a Goto command in the calling program cannot branch to a label in a subroutine or vice versa.

Using Variables in a Program

Scope of Variables

Note: For information about folders, refer to Chapter 5.

Note: If a program has local variables, a graphed function cannot access them. For example:

Local a
$5 \rightarrow$ a
Graph a* $\cos (\mathrm{x})$ may display an error or an unexpected result (if a is an existing variable in the current folder).

Programs use variables in the same general way that you use them from the Home screen. However, the "scope" of the variables affects how they are stored and accessed.
Scope Description

System Variables with reserved names that are created (Global) automatically to store data about the state of the Variables TI-89 / TI-92 Plus. For example, Window variables (xmin, xmax, ymin, ymax, etc.) are globally available from any folder.

- You can always refer to these variables by using the variable name only, regardless of the current folder.
- A program cannot create system variables, but it can use the values and (in most cases) store new values.

Variables that are stored in a particular folder.

- If you store to a variable name only, it is stored in the current folder. For example:
$5 \rightarrow$ start
- If you refer to a variable name only, that variable must be in the current folder. Otherwise, it cannot be found (even if the variable exists in a different folder).
- To store or refer to a variable in another folder, you must specify a path name. For example:

After the program stops, any folder variables created by the program still exist and still take up memory.

Local
Variables

Temporary variables that exist only while a program is running. When the program stops, local variables are deleted automatically.

- To create a local variable in a program, use the Local command to declare the variable.
- A local variable is treated as unique even if there is an existing folder variable with the same name.
- Local variables are ideal for temporarily storing values that you do not want to save.

Circular Definition Errors

Variable-Related Commands

Note: The Define, DelVar, and Local commands are available from the Program Editor's F4] Var toolbar menu.

When evaluating a user-defined function or running a program, you can specify an argument that includes the same variable that was used to define the function or create the program. However, to avoid Circular definition errors, you must assign a value for x or i variables that are used in evaluating the function or running the program. For example:

Command	Description
STOص key	Stores a value to a variable. As on the Home screen,

Archive Moves specified variables from RAM to user data archive memory.

BldData	Lets you create a data variable based on the graph information entered in the Y=Editor, Window Editor, etc.
CopyVar	Copies the contents of a variable.
Define	Defines a program (subroutine) or function variable within a program.
DelFold	Deletes a folder. All variables in that folder must be

DelVar Deletes a variable.
getFold Returns the name of the current folder.
getType Returns a string that indicates the data type (EXPR, LIST, etc.) of a variable.
Local Declares one or more variables as local variables.
Lock Locks a variable so that it cannot be accidentally changed or deleted without first being unlocked.
MoveVar Moves a variable from one folder to another.
NewData Creates a data variable whose columns consist of a series of specified lists.
NewFold Creates a new folder.
NewPic
Creates a picture variable based on a matrix.
Rename Renames a variable.
Unarchiv Moves specified variables from user data archive memory to RAM.
Unlock Unlocks a locked variable.

Using Local Variables in Functions or Programs

Example of a Local Variable

Tip: As often as possible, use local variables for any variable that is used only within a program and does not need to be stored after the program stops.

What Causes an Undefined Variable Error Message?

You Must Initialize Local Variables

A local variable is a temporary variable that exists only while a user-defined function is being evaluated or a user-defined program is running.

To Perform

Symbolic Calculations

If you want a function or program to perform symbolic calculations, you must use a global variable instead of a local. However, you must be certain that the global variable does not already exist outside of the program. The following methods can help.

- Refer to a global variable name, typically with two or more characters, that is not likely to exist outside of the function or program.
- Include DeIVar within the function or program to delete the global variable, if it exists, before referring to it. (DelVar does not delete locked or archived variables.)

String Operations

Strings are used to enter and display text characters. You can type a string directly, or you can store a string to a variable.

How Strings Are Used

A string is a sequence of characters enclosed in "quotes". In programming, strings allow the program to display information or prompt the user to perform some action. For example:

```
Disp "The result is",answer
    - or-
Input "Enter the angle in degrees",ang1
    - or -
"Enter the angle in degrees">strl
Input str1,ang1
```

Some input commands (such as InputStr) automatically store user input as a string and do not require the user to enter quotation marks.

A string cannot be evaluated mathematically, even if it appears to be a numeric expression. For example, the string "61" represents the characters " 6 " and " 1 ", not the number 61.

Although you cannot use a string such as "61" or " $2 x+4$ " in a calculation, you can convert a string into a numeric expression by using the expr command.

String Commands

Note: See Appendix A for syntax for all Tl-89 / TI-92 Plus commands and functions.

Command	Description
\#	Converts a string into a variable name. This is called indirection.
char	Appends (concatenates) two strings into one string. Returns the character that corresponds to a specified character code. This is the opposite of the ord command.
dim	Returns the number of characters in a string.
expr	Converts a string into an expression and executes that expression. This is the opposite of the string command.
	Important: Some user input commands store the entered value as a string. Before you can perform a mathematical operation on that value, you must convert it to a numeric expression.
format	Returns an expression as a character string based on the format template (fixed, scientific, engineering, etc.)
inString	Searches a string to see if it contains a specified substring. If so, inString returns the character position where the first occurrence of the substring begins.
left	Returns a specified number of characters from the left side (beginning) of a string.
midring	Returns a specified number of characters from any position within a string.
the opposite of the expr command.	

Entering a Test Operator

Relational Tests

Tip: From the keyboard, you can type:
$>=$ for \geq
<= for \leq
/= for \neq
(To get the / character, press $\div \cdot$.)

Boolean Tests

The Not Function

Conditional tests let programs make decisions. For example, depending on whether a test is true or false, a program can decide which of two actions to perform. Conditional tests are used with control structures such as If...EndIf and loops such as While...EndWhile (described later in this chapter).

- Type the operator directly from the keyboard.
- or -
- Press 2nd [MATH] and select 8:Test. Then select the operator from the menu.
- or 一
- Display the built-in functions. Press:

TI-89: CATALOG
TI-92 Plus: [2nd [CATALOG]
The test operators are listed near the bottom of the
(F2) Built-in menu.

Relational operators let you define a conditional test that compares two values. The values can be numbers, expressions, lists, or matrices (but they must match in type and dimension).

Operator	True if:	Example
$>$	Greater than	$\mathrm{a}>8$
$<$	Less than	$\mathrm{a}<0$
\geq	Greater than or equal to	$\mathrm{a}+\mathrm{b} \geq 100$
\leq	Less than or equal to	$\mathrm{a}+6 \leq \mathrm{b}+1$
$=$	Equal	list1=list2
\neq	Not equal to	mat1 $\neq \mathrm{mat2}$

Boolean operators let you combine the results of two separate tests.

Operator	True if:	Example
and	Both tests are true	$a>0$ and $a \leq 10$
or	At least one test is true	$a \leq 0$ or $b+c>10$
xor	One test is true and the other is false	$a+6<b+1$ xor $c<d$

The not function changes the result of a test from true to false and vice versa. For example:

$$
\begin{array}{ll}
\text { not } x>2 \text { is } & \begin{array}{l}
\text { true if } x \leq 2 \\
\\
\text { false if } x>2
\end{array}
\end{array}
$$

Note: If you use not from the Home screen, it is shown as \sim in the history area. For example, not $x>2$ is shown as $\sim(x>2)$.

Using If, LbI, and Goto to Control Program Flow

F2 Control Toolbar Menu

If Command

Tip: Use indentation to make your programs easier to read and understand.

If...Then...Endlf Structures

Note: Endlf marks the end of the Then block that is executed if the condition is true.

An If...Endlf structure uses a conditional test to decide whether or not to execute one or more commands. Lbl (label) and Goto commands can also be used to branch (or jump) from one place to another in a program.

To enter If...Endlf structures, use the Program Editor's F2 Control toolbar menu.

To execute only one command if a conditional test is true, use the general form:

Executed only if $x>5 ;$ otherwise, skipped.	$:$ If $x>5$
Always displays the value of $x .-$	$:$ Disp " x is greater than 5"
	$: D i s p ~$

In this example, you must store a value to x before executing the If command.

To execute multiple commands if a conditional test is true, use the structure:

	: If $x>5$ Then
Executed only if $x>5$.	: Disp "x is greater than 5" $: \quad 2 * x \rightarrow x$: EndIf
Displays value of:	: Disp x

- $2 x$ if $x>5$.
- x if $x \leq 5$.

If...Then...Else...
Endlf Structures

If...Then...Elself... Endlf Structures

Lbl and Goto Commands

To execute one group of commands if a conditional test is true and a different group if the condition is false, use this structure:

A more complex form of the If command lets you test a series of conditions. Suppose your program prompts the user for a number that corresponds to one of four options. To test for each option (If Choice=1, If Choice $=2$, etc.), use the If...Then...Elself...Endlf structure.

Refer to Appendix A for more information and an example.

You can also control the flow of your program by using Lbl (label) and Goto commands.

Use the LbI command to label (assign a name to) a particular location in the program.

Lbl labelName
_ name to assign to this location (use the same naming convention as a variable name)

You can then use the Goto command at any point in the program to branch to the location that corresponds to the specified label.

Goto labelName

ـ_ specifies which Lbl command to branch to

Because a Goto command is unconditional (it always branches to the specified label), it is often used with an If command so that you can specify a conditional test. For example:

	: If $x>5$
If $x>5$, branches directly tolabel GT5.	: Goto GT5
	: Disp x
For this example, the program must include commands (such as Stop) that prevent Lbl GT5 from being executed if $x \leq 5$.	
	:Lb1 GT5
	:Disp "The number was > 5"

Using Loops to Repeat a Group of Commands

F2 Control Toolbar Menu

Note: A loop command marks the start of the loop. The corresponding End command marks the end of the loop.

For...EndFor Loops

Note: The ending value can be less than the beginning value, but the increment must be negative.

Note: The For command automatically increments the counter variable so that the program can exit the loop after a certain number of repetitions.

To repeat the same group of commands successively, use a loop. Several types of loops are available. Each type gives you a different way to exit the loop, based on a conditional test.

To enter most of the loop-related commands, use the Program Editor's F2 Control toolbar menu.

When you select a loop, the loop command and its corresponding End command are inserted at the cursor location.

You can then begin entering the commands that will be executed in the loop.

A For...EndFor loop uses a counter to control the number of times the loop is repeated. The syntax of the For command is:

For(variable, begin, end [, increment])

When For is executed, the variable value is compared to the end value. If variable does not exceed end, the loop is executed; otherwise, program control jumps to the command following EndFor.

At the end of the loop (EndFor), program control jumps back to the For command, where variable is incremented and compared to end.

Tip: You can declare the counter variable as local (pages 288 and 290) if it does not need to be saved after the program stops.

While...EndWhile Loops

Note: The While command does not automatically change the condition. You must include commands that allow the program to exit the loop.

For example:

	: For i, 0,5,1
Displays 0, 1, 2, 3, 4, and 5.	Disp i
	: EndFor
Displays 6. When variable increments to 6, the loop is not executed.	: Disp i

A While...EndWhile loop repeats a block of commands as long as a specified condition is true. The syntax of the While command is:
While condition
When While is executed, the condition is evaluated. If condition is true, the loop is executed; otherwise, program control jumps to the command following EndWhile.

At the end of the loop (EndWhile), program control jumps back to the While command, where condition is re-evaluated.

To execute the loop the first time, the condition must initially be true.

- Any variables referenced in the condition must be set before the While command. (You can build the values into the program or prompt the user to enter the values.)
- The loop must contain commands that change the values in the condition, eventually causing it to be false. Otherwise, the condition is always true and the program cannot exit the loop (called an infinite loop).

For example:

Initially sets x .	: $0 \rightarrow x$
	:While $x<5$
Displays 0, 1, 2, 3, and 4.	: Disp x
Increments x .	: $x+1 \rightarrow x$
	: EndWhile
Displays 5. When x	: Disp x

 not executed.

Loop...EndLoop Loops

Note: The Exit command exits from the current loop.

Repeating a Loop Immediately

Lbl and Goto Loops

A Loop...EndLoop creates an infinite loop, which is repeated endlessly. The Loop command does not have any arguments.

Typically, the loop contains commands that let the program exit from the loop. Commonly used commands are: If, Exit, Goto, and Lbl (label). For example:

	: $0 \rightarrow \mathrm{x}$
	: Loop
	: Disp x
	: $x+1 \rightarrow x$
An If command checks	: If $x>5$
the condition.	Exit
	: EndLoop
Exits the loop and jumps to here when x increments to 6 .	: Disp x

In this example, the If command can be anywhere in the loop.

When the If command is: The loop is:

At the beginning of the loop Executed only if the condition is true.
At the end of the loop Executed at least once and repeated only if the condition is true.

The If command could also use a Goto command to transfer program control to a specified Lbl (label) command.

The Cycle command immediately transfers program control to the next iteration of a loop (before the current iteration is complete). This command works with For...EndFor, While...EndWhile, and Loop...EndLoop.

Although the Lbl (label) and Goto commands are not strictly loop commands, they can be used to create an infinite loop. For example:

As with Loop...EndLoop, the loop should contain commands that let the program exit from the loop.

Configuring the TI-89 / TI-92 Plus

Configuration Commands

Note: The parameter/mode strings used in the setMode(), getMode(), setGraph(), and setTable() functions do not translate into other languages when used in a program. See Appendix D.

Entering the SetMode Command

Note: The Mode menu does not let you set the Current Folder mode. To set this mode, use the setFold command.

Programs can contain commands that change the configuration of the TI-89 / TI-92 Plus. Because mode changes are particularly useful, the Program Editor's Mode toolbar menu makes it easy to enter the correct syntax for the setMode command.

Command	Description
getConfg	Returns a list of calculator characteristics.
getFold	Returns the name of the current folder.
getMode	Returns the current setting for a specified mode.
getUnits	Returns a list of default units.
setFold	Sets the current folder.
setGraph	Sets a specified graph format (Coordinates, Graph Order, etc.).
setMode	Sets any mode except Current Folder. setTable
Sets a specified table setup parameter (tbIStart, Δ tbl, etc.)	
setUnits	Sets default units for displayed results.
switch	Sets the active window in a split screen, or returns the number of the active window.

In the Program Editor:

1. Position the cursor where you want to insert the setMode command.
2. Press:

TI-89: 2nd [F6]
TI-92 Plus: F6
to display a list of modes.

3. Select a mode to display a menu of its valid settings.
4. Select a setting.

The correct syntax is inserted into your program.

Getting Input from the User and Displaying Output

F3
 I/O Toolbar Menu

Input Commands

Tip: String input cannot be used in a calculation. To convert a string to a numeric expression, use the expr command.

Although values can be built into a program (or stored to variables in advance), a program can prompt the user to enter information while the program is running. Likewise, a program can display information such as the result of a calculation.

To enter most of the commonly used input/output commands, use the Program Editor's F3 I/O toolbar menu.

To see a submenu that lists additional commands, select 1:Dialog.

Command	Description
getKey	Returns the key code of the next key pressed. See Appendix B for a listing of key codes.
Input	Prompts the user to enter an expression. The expression is treated according to how it is entered.
	For example:

- A numeric expression is treated as an expression.
- An expression enclosed in "quotes" is treated as a string.

Input can also display the Graph screen and let the user update the variables xc and yc (rc and $\theta \mathrm{c}$ in polar mode) by positioning the graph cursor.

InputStr

PopUp

Request

Prompt Prompts the user to enter a series of expressions. As with Input, each expression is treated according to how it is entered.
Prompts the user to enter an expression. The expression is always treated as a string; the user does not need to enclose the expression in "quotes".

Displays a pop-up menu box and lets the user select an item.

Displays a dialog box that prompts the user to enter an expression. Request always treats the entered expression as a string.

Output Commands

Note: In a program, simply performing a calculation does not display the result. You must use an output command.

Tip: After Disp and Output, the program immediately continues. You may want to add a Pause command.

Graphical User Interface Commands

Tip: When you run a program that sets up a custom toolbar, that toolbar is still available even after the program has stopped.

Note: Request and Text are stand-alone commands that can also be used outside of a dialog box or toolbar program block.

Command	Description
CIrIO	Clears the Program I/O screen. Displays an expression or string on the Program I/O screen. Disp can also display the current contents of the Program I/O screen without displaying additional information.
DispG	Displays the current contents of the Graph screen.
DispHome	Displays the current contents of the Home screen. DispTbl
Oisplays the current contents of the Table screen.	
Format	Displays an expression or string starting at specified coordinates on the Program I/O screen.
Pause	Formats the way in which numeric information is displayed.
	Suspends program execution until the user presses EENTER. Optionally, you can display an expression during the pause. A pause lets users read your output and decide when they are ready to continue.
Text	Displays a dialog box that contains a specified character string.

Command	Description
Dialog... EndDlog	Defines a program block (consisting of Title, Request, etc., commands) that displays a dialog box
Toolbar... EndTbar	Defines a program block (consisting of Title, Item, etc., commands) that replaces the toolbar menus. The redefined toolbar is in effect only while the program is running and only until the user selects an item. Then the original toolbar is redisplayed.
CustmOn... CustmOff	Activates or removes a custom toolbar.
Custom... EndCustm	Defines a program block that displays a custom toolbar when the user presses 2nd [CUSTOM]. That toolbar remains in effect until the user presses 2nd [CUSTOM] again or changes applications.
DropDown	Displays a drop-down menu within a dialog box.
Item	Displays a menu item for a redefined toolbar.
Request	Creates an input box within a dialog box.
Text	Displays a character string within a dialog box.
Title	Displays the title of a dialog box or a menu title within a toolbar.

Creating a Custom Menu

Turning the Custom Menu On and Off

Note: When the custom menu is turned on, it replaces the normal toolbar menu. Unless a different custom menu has been created, the default custom menu is displayed.

Defining a Custom Menu

Note: When the user selects a menu item, the text defined by that Item command is pasted to the current cursor location.

The TI-89 / TI-92 Plus custom menu feature lets you create your own toolbar menu. A custom menu can contain any available function, instruction, or set of characters. The TI-89 / TI-92 Plus has a default custom menu that you can modify or redefine.

When you create a custom menu, you can let the user turn it on and off manually, or you can let a program turn it on and off automatically.
To: Do this:

Turn on the	From the Home screen or any other application:
custom menu	- Press 2nd [CUSTOM].
	From the Home screen or a program:
	- Execute the CustmOn command.

Turn off the	From any application:
custom menu	•
	Press 2nd [custom] again.
	- or -
	Go to a different application.

Using the default custom menu on the Home screen:

1. Select the Tools menu:

TI-89: 2nd [F7]
TI-92 Plus: F7

Then select 3:CustmOff.
Custm0ff
This pastes CustmOff in the entry line.
2. Press ENTER.

You can also use CustmOff in a program.

To create a custom menu, use the following general structure.

:Custom

: Title title of F1 menu

: Title title of F3 menu
:EndCustm

Note: The following may be slightly different than the default custom menu on your calculator.

Note: See how "_\o\C" and "_\o\F" display as ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ in the menu. Similarly, see the international accented characters.

Note: This inserts all the commands on a single line. You do not need to split them into separate lines.

For example:

```
```

:Custom

```
```

:Custom
:Title "Vars"
:Title "Vars"
:Item "L1":Item "M1":Item "Prgm1":Item "Func1":Item "Data1"
:Item "L1":Item "M1":Item "Prgm1":Item "Func1":Item "Data1"
:Item "Text1":Item "Pic1":Item "GDB1":Item "Str1"
:Item "Text1":Item "Pic1":Item "GDB1":Item "Str1"
:Title "f(x)"
:Title "f(x)"
:Item "f(x)":Item "g(x)":Item "f(x,y)":Item "g(x,y)"
:Item "f(x)":Item "g(x)":Item "f(x,y)":Item "g(x,y)"
:Item "f(x+h)":Item "Define f(x) ="
:Item "f(x+h)":Item "Define f(x) ="
:Title "Solve"
:Title "Solve"
:Item "Solve(":Item " and ":Item "{x,y}"
:Item "Solve(":Item " and ":Item "{x,y}"
:Item "Solve(and ,{x,y})"
:Item "Solve(and ,{x,y})"
:Title "Units"
:Title "Units"
:Item "_m/_s^2":Item "_ft/_s^2":Item "_m":Item "_ft":Item "_1"
:Item "_m/_s^2":Item "_ft/_s^2":Item "_m":Item "_ft":Item "_1"
:Item "_gal":Item "_\o\C":Item "_\o\F":Item "_kph":Item "_mph"
:Item "_gal":Item "_\o\C":Item "_\o\F":Item "_kph":Item "_mph"
:Title "Symbols"
:Title "Symbols"
:Item "非":Item "\beta\":Item "?":Item "~":Item "\&"
:Item "非":Item "\beta\":Item "?":Item "~":Item "\&"
:Title "Internat'l"
:Title "Internat'l"
:Item "\e`\":Item "\e'\":Item "\e^\":Item "\a`\"
:Item "\e`\":Item "\e'\":Item "\e^\":Item "\a`\"
:Item "\u`\":Item "\u^\":Item "\o^\":Item "\c,\":Item "\u..\" :Item "\u`\":Item "\u^\":Item "\o^\":Item "\c,\":Item "\u..\"
:Title "Tools"
:Title "Tools"
:Item "ClrHome":Item "NewProb":Item "CustmOff"
:Item "ClrHome":Item "NewProb":Item "CustmOff"
:EndCustm
:EndCustm
:Custm0n

```
```

:Custm0n

```
```

To modify the default custom menu, use 3 :Restore custom default (as described below) to get the commands for the default menu. Copy those commands, use the Program Editor to create a new program, and paste them into the blank program. Then modify the commands as necessary.
You can create and use only one custom menu at a time. If you need more, write a separate program for each custom menu. Then run the program for the menu you need.

Restoring the Default Custom Menu

To restore the default:

1. From the Home screen's normal menu (not the custom menu), select Clean Up:
TI-89: 2nd [F6]
TI-92 Plus: F6
2. Select 3:Restore custom default.

This pastes the commands used
 to create the default menu into the entry line.
3. Press ENTER to execute the commands and restore the default.

When you restore the default, any previous custom menu is erased. If the previous menu was created with a program, you can run the program again if you want to reuse the menu later.

Table Commands

Graphing Commands

Note: For more information about using setMode, refer to page 300.

To create a table or a graph based on one or more functions or equations, use the commands listed in this section.

Command	Description
DispTbl	Displays the current contents of the Table screen.
setTable	Sets the Graph <-> Table or Independent table parameters. (To set the other two table parameters, you can store the applicable values to the tbIStart and Δ tbl system variables.)
Table	Builds and displays a table based on one or more expressions or functions.

Command	Description
ClrGraph	Erases any functions or expressions that were graphed with the Graph command.
Define	Creates a user-defined function.
DispG	Displays the current contents of the Graph screen.
FnOff	Deselects all (or only specified) $\mathrm{Y}=$ functions.
FnOn	Selects all (or only specified) $\mathrm{Y}=$ functions.
Graph	Graphs one or more specified expressions, using the current graphing mode.
Input	Displays the Graph screen and lets the user update the variables xc and yc (rc and $\theta \mathrm{c}$ in polar mode) by positioning the graph cursor.
NewPlot	Creates a new stat plot definition.
PlotsOff	Deselects all (or only specified) stat data plots.
PlotsOn	Selects all (or only specified) stat data plots.
setGraph	Changes settings for the various graph formats (Coordinates, Graph Order, etc.).
setMode	Sets the Graph mode, as well as other modes.
Style	Sets the display style for a function.
Trace	Lets a program trace a graph.
ZoomBox - to - ZoomTrig	Perform all of the Zoom operations that are available from the F2 toolbar menu on the Y= Editor, Window Editor, and Graph screen.

Graph Picture and Database Commands

Note: For information about graph pictures and databases, also refer to Chapter 12.

Command	Description
AndPic	Displays the Graph screen and superimposes a stored graph picture by using AND logic.
CyclePic	Animates a series of stored graph pictures.
NewPic	Creates a graph picture variable based on a matrix.
RcIGDB	Restores all settings stored in a graph database.
RcIPic	Displays the Graph screen and superimposes a stored graph picture by using OR logic.
RplcPic	Clears the Graph screen and displays a stored graph picture.
StoGDB	Stores the current graph settings to a graph database variable.
StoPic	Copies the Graph screen (or a specified rectangular portion) to a graph picture variable.
XorPic	Displays the Graph screen and superimposes a stored graph picture by using XOR logic.

Drawing on the Graph Screen

Pixel vs. Point Coordinates

Tip: For information about pixel coordinates in split screens, refer to Chapter 14.

Note: Pixel commands start with Pxl, such as PxIChg.

Erasing Drawn Objects
 Drawing a Point or Pixel

To create a drawing object on the Graph screen, use the commands listed in this section.

When drawing an object, you can use either of two coordinate systems to specify a location on the screen.

- Pixel coordinates - Refer to the pixels that physically make up the screen. These are independent of the viewing window because the screen is always:
TI-89: 159 (0 to 158) pixels wide and 77 (0 to 76) pixels tall.
TI-92 Plus: 239 (0 to 238) pixels wide and 103 (0 to 102) pixels tall.
- Point coordinates - Refer to the coordinates in effect for the current viewing window (as defined in the Window Editor).

Pixel coordinates (independent of viewing window)

Point coordinates (for standard viewing window)

Many drawing commands have two forms: one for pixel coordinates and one for point coordinates.

Command	Description
CIrDraw	Erases all drawn objects from the Graph screen.
Command	Description
PtChg or	Toggles (inverts) a pixel at the specified coordinates. PtChg, which uses point coordinates, affects the pixel closest to the specified point. If the pixel is off, it is turned on. If the pixel is on, it is turned off.
PtOff or	Turns off (erases) a pixel at the specified coordinates. PtOff, which uses point coordinates, affects the pixel closest to the specified point.
PtOn or	Turns on (displays) a pixel at the specified coordinates. PtOn, which uses point coordinates, affects the pixel closest to the specified point.
PtTest or	Returns true or false to indicate if the specified coordinate is on or off, respectively.
PxITest	Displays a character string at the specified coordinates.
PtText or	

Drawing Lines and Circles

Command	Description
Circle or	Draws, erases, or inverts a circle with a specified center and radius.
PxICrcl	Draws a line with a specified slope through a specified point.
Line or	Draws, erases, or inverts a line between two sets of coordinates.
PxILine	Draws, erases, or inverts a horizontal line at a specified row coordinate.
LineHorz or	Draws a tangent line for a specified expression at a specified point. (This draws the tangent line only,
LineTan	not the expression.)
LineVert or	Draws, erases, or inverts a vertical line at a specified column coordinate.
PxIVert	

Command	Description
DrawFunc	Draws a specified expression.
DrawInv	Draws the inverse of a specified expression.
DrawParm	Draws a parametric equation using specified expressions as its x and y components.
DrawPol	Draws a specified polar expression.
DrwCtour	Draws contours in 3D graphing mode. Shade

Accessing Another TI-89/TI-92 Plus, a CBL 2/CBL, or a CBR

F3 I/O Toolbar Menu

Accessing Another TI-89 / TI-92 Plus

Note: For a sample program that synchronizes the receiving and sending units so that GetCalc and SendCalc are executed in the proper sequence, refer to "Transmitting Variables under Program Control" in Chapter 22.

Accessing a CBL 2/CBL or CBR

If you link two TI-89 / TI-92 Plus calculators (described in Chapter 22), programs on both units can transmit variables between them. If you link a TI-89 / TI-92 Plus to a CalculatorBased Laboratory ${ }^{\text {TM }}$ (CBL $2^{\text {TM }} /$ CBL $^{T M}$) or a Calculator-Based Ranger ${ }^{\text {TM }}$ ($\mathrm{CBR}^{\text {TM }}$), a program on the $\mathrm{TI}-89$ / TI-92 Plus can access the CBL 2/CBL or CBR.

Use the Program Editor's F3 I/O toolbar menu to enter the commands in this section.

1. Press F3 and select $8:$ Link.
2. Select a command.

When two TI-89 / TI-92 Plus calculators are linked, one acts as a receiving unit and the other as a sending unit.

Command	Description
GetCalc	Executed on the receiving unit. Sets up the unit to receive a variable via the I/O port.
	- \quad After the receiving unit executes GetCalc, the sending unit must execute SendCalc.
- \quadAfter the sending unit executes SendCalc, the sent variable is stored on the receiving unit (in the variable name specified by GetCalc).	
SendCalc	Executed on the sending unit. Sends a variable to the receiving unit via the I/O port.
- \quadBefore the sending unit executes SendCalc, the receiving unit must execute GetCalc.	
SendChat	Executed on the sending unit as a general alternative to SendCalc. Useful if the receiving unit is a TI-92 (or for a generic "chat" program that allows either a TI-92 or TI-92 Plus to be used).

For additional information, refer to the manual that comes with the CBL 2/CBL or CBR unit.

Command	Description
Get	Gets a variable from an attached CBL 2/CBL or CBR and stores it in the TI-89 / TI-92 Plus.
Send	Sends a list variable from the TI-89 / TI-92 Plus to the CBL 2/CBL or CBR.

After you write a program, you can use several techniques to find and correct errors. You can also build an error-handling command into the program itself.

Run-Time Errors

Debugging Techniques

Error-Handling Commands

The first step in debugging your program is to run it. The TI-89 / TI-92 Plus automatically checks each executed command for syntax errors. If there is an error, a message indicates the nature of the error.

- To display the program in the Program Editor, press ENTER. The cursor appears in the
 approximate area of the error.
- To cancel program execution and return to the Home screen, press ESC.

If your program allows the user to select from several options, be sure to run the program and test each option.

Run-time error messages can locate syntax errors but not errors in program logic. The following techniques may be useful.

- During testing, do not use local variables so that you can check the variable values after the program stops. When the program is debugged, declare the applicable variables as local.
- Within a program, temporarily insert Disp and Pause commands to display the values of critical variables.
- Disp and Pause cannot be used in a user-defined function. To temporarily change the function into a program, change Func and EndFunc to Prgm and EndPrgm. Use Disp and Pause to debug the program. Then remove Disp and Pause and change the program back into a function.
- To confirm that a loop is executed the correct number of times, display the counter variable or the values in the conditional test.
- To confirm that a subroutine is executed, display messages such as "Entering subroutine" and "Exiting subroutine" at the beginning and end of the subroutine.

Command	Description
Try...EndTry	Defines a program block that lets the program execute a command and, if necessary, recover from an error generated by that command.
CIrErr	Clears the error status and sets the error number in system variable Errornum to zero.
PassErr	Passes an error to the next level of the Try...EndTry block.

Example: Using Alternative Approaches

Example 1

Example 2

Tip: For \leq, type 0 (zero). For \& , press:
TI-89: \square (times)
Tl-92 Plus: 2nd H

Example 3

Note: Because Prompt returns n as a number, you do not need to use expr to convert n.

This example uses InputStr for input, a While...EndWhile loop to calculate the result, and Text to display the result.

This example uses Prompt for input, LbI and Goto to create a loop, and Disp to display the result.

Example 4

Example 5

Note: Because Input returns n as a number, you do not need to use expr to convert n.

This example uses Dialog...EndDlog to create dialog boxes for input and output. It uses Loop...EndLoop to calculate the result.

This example uses the TI-89 / TI-92 Plus built-in functions to calculate the result without using a loop.

Function Used in this example to:

seq Generate the sequence of integers from 1 to n.

Sum the integers in the list generated by seq.

You can run programs written for the TI-89 / TI-92 Plus in assembly language. Typically, assembly-language programs run much faster and provide greater control than the keystroke programs that you write with the built-in Program Editor.

Where to Get Assembly-Language Programs

Assembly-language programs, as well as keystroke programs, are available on the Texas Instruments web site at:

education.ti.com

The programs available from this site provide additional functions or features that are not built into the TI-89 / TI-92 Plus. Check the Texas Instruments web site for up-to-date information.

After downloading a program from the web to your computer, use a TI-GRAPH LINK $^{\text {TM }}$ computer-to-calculator cable to send the program to your TI-89 / TI-92 Plus. Refer to the manual that comes with the TI-GRAPH LINK
 cable.

Note about TI-GRAPH LINK

Running an
Assembly-Language Program

Tip: If the program is not in the current folder, be sure to specify the pathname.

If you have a TI-GRAPH LINK computer-to-calculator cable and software for the TI-92, be aware that the TI-92 TI-GRAPH LINK software is not compatible with the TI-89 / TI-92 Plus. The cable, however, works with both units. For information about obtaining TITM Connect or TI-GRAPH LINK software or a TI-GRAPH LINK cable, check the Texas Instruments web site at education.ti.com or contact Texas Instruments as described in Appendix C of this guidebook.

After a TI-89 / TI-92 Plus assembly-language program is stored on your unit, you can run the program from the Home screen just as you would any other program.

You can call an assembly-language program from another program as a subroutine, delete it, or use it the same as any other program.

Shortcuts to Run a Program

Note: The programs must be stored in the MAIN folder. Also, you cannot use a shortcut to run a program that requires an argument.

You Cannot Edit an Assembly-Language Program

Displaying a List of Assembly-Language Programs

Note: Assembly-language programs have an ASM data type.

For Information about Writing an Assembly-Language Program

Note: You must use a computer to write assemblylanguage programs. You cannot create assemblylanguage programs from the calculator keyboard.

On the Home screen, you can use keyboard shortcuts to run up to nine user-defined or assembly-language programs. However, the programs must have the following names.

On Home screen, press:	To run a program, if any, named:
$\square 1$	kbdprgm1()
\vdots	\vdots
	kbdprgm9()

If you have a program with a different name and you would like to run it with a keyboard shortcut, copy or rename the existing program to kbdprgm1(), etc.

You cannot use your TI-89 / TI-92 Plus to edit an assembly-language program. The built-in Program Editor will not open assemblylanguage programs.

To list the assembly-language programs stored in memory:

1. Display the VAR-LINK screen (2nd [VAR-LINK]).
2. Press F2 View.
3. Select the applicable folder (or All folders) and set Var Type = Assembly.

4. Press ENTER to display the list of assembly-language programs.

-

The information required to teach a novice programmer how to write an assembly-language program is beyond the scope of this book. However, if you have a working knowledge of assembly language, please check the Texas Instruments web site (education.ti.com) for specific information about how to access TI-89 / TI-92 Plus features.

The TI-89 / TI-92 Plus also includes an Exec command that executes a string consisting of a series of Motorola 68000 op-codes. These codes act as another form of an assembly-language program. Check the Texas Instruments web site for available information.

Warning: Exec gives you access to the full power of the microprocessor. Please be aware that you can easily make a mistake that locks up the calculator and causes you to lose your data. We suggest you make a backup of the calculator contents before attempting to use the Exec command.

Preview of Text Operations 316
Starting a Text Editor Session 317
Entering and Editing Text 319
Entering Special Characters 324
Entering and Executing a Command Script 328
Creating a Lab Report 330

This chapter shows you how to use the Text Editor to enter and edit text. Entering text is simple; just begin typing. To edit text, you can use the same techniques that you use to edit information on the Home screen.

Each time you start a new text session, you must specify the name of a text variable. After you begin a session, any text that you type is stored automatically in the associated text variable. You do not need to save a session manually before leaving the Text Editor.

Preview of Text Operations

Start a new Text Editor session. Then practice using the Text Editor by typing whatever text you want. As you type, practice moving the text cursor and correcting any typos you may enter.

Steps

[[im
TI-89	TI-92 Plus
Keystrokes	Keystrokes

1. Start a new session on the Text Editor.
2. Create a text variable called TEST, which will automatically store any text you enter in the new session.
Use the MAIN folder, shown as the default on the NEW dialog box.
After typing in an input box such as Variable, you must press ENTER twice.
3. Type some sample text.

- To type a single uppercase letter, press \dagger and then the letter.
TI-89 only:
- To type a space, press alpha [-] (alpha function of the (-1) key).
- To type a period, press alpha to turn alpha-lock off, press \square, and then press [2nd [a-lock] to turn alpha lock on again.
Practice editing your text by using:
- The cursor pad to move the text cursor.
- \square or $\boxplus[\mathrm{DEL}]$ to delete the character to the left or right of the cursor, respectively.

4. Leave the Text Editor and display the Home screen.
Your text session was stored automatically as you typed. Therefore, you do not need to save the session manually before exiting the Text Editor.
5. Return to the current session on the Text Editor.
6. Notice that the displayed session is exactly the same as you left it.

APPS 83	APPS 83	
\bigcirc	(1)	NEW
TEST	TEST	
ENTER ENTER	ENTER ENTER	Wriable Eset
type	anything	:Text entry is simple. Te
fanything	you	
you	want	㑑
want		
-	,	
	,	
	1	
	\%	
¢		
-	1	
HOME	[[${ }^{\text {[/OME] }}$,
- 81	- 1	
APPS 81	APPS 81	
	-	

Starting a Text Editor Session

Starting a New Session

Note: Your session is saved automatically as you type. You do not need to save a session manually before leaving the Text Editor, starting a new session, or opening a previous one.

Each time you start the Text Editor, you can start a new text session, resume the current session (the session that was displayed the last time you used the Text Editor), or open a previous session.

1. Press APPS and then select 8:Text Editor.
2. Select 3:New.

The NEW dialog box is displayed.
3. Specify a folder and text variable that you want to use to store the new session.

Item	Description
Type	Automatically set as Text and cannot be changed.
Folder	Shows the folder in which the text variable will be stored. For information about folders, refer to Chapter 5.
	To use a different folder, press (1) to display a menu of existing folders. Then select a folder.
Variable	Type a variable name.
	If you specify a variable that already exists, an error message will be displayed when you press ENTER. When you press ESC or ENTER to acknowledge the error, the NEW dialog box is redisplayed.

4. Press ENTER (after typing in an input box such as Variable, you must press ENTER twice) to display an empty Text Editor screen.

You can now use the Text Editor as described in the remaining sections of this chapter.

Resuming the Current Session

Starting a New Session from the Text Editor

Opening a Previous Session

Note: By default, Variable shows the first existing text variable in alphabetic order.

Copying a Session

Note about Deleting a Session

You can leave the Text Editor and go to another application at any time. To return to the session that was displayed when you left the Text Editor, press APPS 8 and select 1:Current.

To leave the current Text Editor session and start a new one:

1. Press F1 and select 3:New.
2. Specify a folder and text
 variable for the new session.
3. Press ENTER twice.

You can open a previous Text Editor session at any time.

1. From within the Text Editor, press F1 and select 1:Open.

- or -

From any application, press APPS 8 and select 2:Open.
2. Select the applicable folder and text variable.
3. Press ENTER.

In some cases, you may want to copy a session so that you can edit the copy while retaining the original.

1. Display the session you want to copy.
2. Press $\mathbb{F 1}$ and select 2:Save Copy As.
3. Specify the folder and text variable for the copied session.
4. Press ENTER twice.

Because all Text Editor sessions are saved automatically, you can accumulate quite a few previous sessions, which take up memory storage space.
To delete a session, use the VAR-LINK screen (2nd [VAR-LINK]) to delete that session's text variable. For information about VAR-LINK, refer to Chapter 21.

Entering and Editing Text

Typing Text

Note: Use the cursor pad to scroll through a session or position the text cursor.

Tip: Press 2nd Θ or 2nd Θ to scroll up or down one screen at a time, and $\odot \odot$ or $\odot \odot$ to go to the top or bottom of the text session.

Tip: If you have a TI-GRAPH LINK ${ }^{\text {TM }}$ cable, you can use a computer keyboard to type lengthy text and then send it to the calculator. Refer to page 322.

Typing Alphabetic Characters

Note: On the TI-89, you do not need alpha or alpha-lock to type x, y, z, or t. But you must use 1 or uppercase ALPHA-lock for X, Y, Z, or T.

Note: On the TI-89, alphalock is always turned off when you change applications, such as going from the Text Editor to the Home screen.

After beginning a Text Editor session, you can enter and edit text. In general, use the same techniques that you have already used to enter and edit information on the Home screen's entry line.

When you create a new Text Editor session, you see an empty screen. When you open a previous session or return to the current session, you see the existing text for that session.

You do not need to press EENTER at the end of each line. At the end of a line, the next character you type wraps to the next line. Press ENTER only when you want to start a new paragraph.

As you reach the bottom of the screen, previous lines scroll off the top of the screen.

To:	On the TI-89, press:	On the TI-92 Plus, press:
Type a single	alpha and then the letter key	the letter key
lowercase alpha character.	(status line shows d)	
Type a single uppercase alpha character.	(and then the letter key (status line shows $\boldsymbol{\text { ® }}$)	t and then the letter key (status line shows ©
Type a space.	alpha [_] (alpha function of the $(-)$ key)	spacebar
Turn on lowercase alpha-lock.	2nd [a-lock] (status line shows חi)	(no action needed)
Turn on uppercase ALPHA-lock.	($[$-lock] (status line shows Wil)	2nd [CAPS]
Turn off alphalock.	alpha (turns off upperand lowercase lock)	2nd [CAPS] (turns off uppercase lock)

Typing Alphabetic Characters (continued)

On the TI-89, while either type of alpha-lock is on:

- To type a period, comma, or other character that is the primary function of a key, you must turn alpha-lock off.
- To type a second function character such as 2nd [i], you do not need to turn alpha-lock off. After you type the character, alphalock remains on.

To delete:	Press:
The character to the left of the cursor	$\boxed{\text { or F1 7 }}$
The character to the right of the cursor	$\square[\mathrm{DEL}]$ (same as
All characters to the right of the cursor through the end of the paragraph CLEAR All characters in the paragraph (regardless of the cursor's position in that paragraph) 	

To:	Do this:
Highlight text	1.Move the cursor to the beginning or end of the text. 2. Hold 团 and press:.

- (1) or (1) to highlight characters to the left or right of the cursor, respectively.
- Θ or Θ to highlight all characters up to the cursor position on the next or previous line, respectively.

To:	Do this:
Replace highlighted text	Type the new text.
Delete highlighted text	Press \square.

Cutting, Copying, and Pasting Text

Tip: You can press:
TI-89:
\rightarrow [CUT], \rightarrow [COPY], $\oplus[P A S T E]$ TI-92 Plus:
$\bullet \mathrm{X}, \bullet \mathrm{C}, \bullet \mathrm{V}$ to cut, copy, and paste without having to use the F1 toolbar menu.

Finding Text

Tip: The FIND dialog box retains the last search text you entered. You can type over it or edit it.

Cutting and copying both place highlighted text into the clipboard of the TI-89 / TI-92 Plus. Cutting deletes the text from its current location (used to move text) and copying leaves the text.

1. Highlight the text you want to move or copy.
2. Press F1.
3. Select the applicable menu item.

- To move the text, select 4:Cut.
- or 一

- To copy the text, select 5:Copy.

4. Move the text cursor to the location where you want to insert the text.
5. Press $\mathbb{F 1}$ and then select 6 :Paste.

You can use this general procedure to cut, copy, and paste text:

- Within the same text session.
- From one text session to another. After cutting or copying text in one session, open the other session and then paste the text.
- From a text session to a different application. For example, you can paste the text into the Home screen's entry line.

From the Text Editor:

1. Place the text cursor at any location preceding the text you want to search for. All searches start at the current cursor location.
2. Press F5.
3. Type the search text.

The search is not case sensitive. For example: CASE, case, and Case have the same effect.
4. Press ENTER twice.

If the search text is: The cursor:
Found
Moves to beginning of the search text.
Not found Does not move.

Inserting or
 Overtyping a Character

Tip: Look at the shape of the cursor to see if you're in insert or overtype mode.

Clearing the Text Editor

Using a Computer and TI-GRAPH LINK to Enter Text

Note: On the calculator, the name of the text variable will be the name you enter in Step 1b, not the file name in Step 1 c.

By default, the TI-89 / TI-92 Plus is in insert mode. To toggle between insert and overtype mode, press 2nd [INS].

If the TI-89 / Tl-92 Plus is in:	The next character you type:
Inserf.	Will be inserted at the cursor.
Thin cursor between characters	
	Will replace the highlighted a character

To erase all existing paragraphs and display an empty text screen, press F1 and then select 8:Clear Editor.

If you have an optional TI-GRAPH LINK ${ }^{\text {TM }}$ computer-to-calculator cable and software for the TI-89 / TI-92 Plus, you can use the computer keyboard to type a text file and then send that file to the TI-89 / TI-92 Plus. This is useful if you need to create a lengthy text file.

For information about obtaining a TI-GRAPH LINK cable and software or upgrading your existing $\mathrm{TI}^{\mathrm{TM}}$ Connect or TI-GRAPH LINK software for use with the TI-89 / TI-92 Plus, check the TI web site at:

education.ti.com

or contact Texas Instruments as described in Appendix C.
For complete instructions on how to create a text file on a computer and send it to your calculator, refer to the manual that comes with the TI-GRAPH LINK. The general steps are:

1. Use the TI-GRAPH LINK software to create a new text file.
a. In the software, select New from the File menu. Then select either TI-89 Data File or TI-92 Plus Data File and click OK. An untitled edit window is displayed.
b. In the Name box at the top of the edit window, type the name you want to use for the text variable on the TI-89 / TI-92 Plus. Then type the applicable text.
c. From the File menu, select Save As. In the dialog box, type a File Name, select Text as the File Type, select a directory, and click OK.
2. Use the TI-GRAPH LINK ${ }^{T M}$ software to send the file from the computer to the TI-89 / TI-92 Plus.
a. Use the TI-GRAPH LINK cable to connect the computer and the calculator.
b. Be sure the TI-89 / TI-92 Plus is on the Home screen.
c. In the software, select Send from the Link menu. Select the text file and click Add to add it to the Files Selected list. Then click OK.
d. When notified that the sending process is complete, click OK.
3. On the TI-89 / TI-92 Plus, use the Text Editor to open the text variable.

You can use the CHAR menu to select any special character from a list. You can also type certain commonly used characters from the keyboard. To see which characters are available from the keyboard, you can display a map that shows the characters and their corresponding keys.

Selecting Characters from the CHAR Menu

Displaying the Keyboard Map

1. Press 2nd [Char].
2. Select the applicable category.

A menu lists the characters in that category.
3. Select a character. You may need to scroll through the menu.

For accented characters, select International. Commonly used international characters are also available from the default custom menu (2nd [CUSTOM]).

The keyboard map shows several shortcuts that let you enter certain special characters from the keyboard. It also shows some shortcuts for other calculator features.

The keyboard map does not display all available shortcuts. Refer to the inside front and the inside back covers of this guidebook for a complete list of shortcut keys.

On the Tl-89:	On the TI-92 Plus:
Press 画 to display the keyboard map.	Press [KEY] to display the keyboard map.
Press ESC to exit the map.	Press ESC to exit the map.
	TI-92 Plus Keyboard map
TI-89 Keyboard map	
To access the TI-89 shortcuts, first press the \square key.	To access the TI-92 Plus shortcuts, first press the 2nd key. Some special characters are marked on the keyboard, but most are not.

Calculator features accessed from the keyboard map are discussed on the next page.

Typing Special Symbols from the Keyboard

Note: To help you find the applicable keys, these maps show only the special symbols.

TI-89 keyboard map feature TI-92 Plus keyboard map feature

 shortcuts:GREEK ($\triangle \square)$ - Accesses the Greek character set (described later in this section).

SYSDATA ($\square \square$) - Copies the current graph coordinates to the system variable sysdata.

FMT (\square) - Displays the FORMATS dialog box.

KBDPRGM1 - 9 (${ }^{\circ}$ through $\rightarrow 9$ - If you have user-defined or assembly-language programs named kbdprgm1() through kbdprgm9(), these shortcuts run the corresponding program.

OFF (\square [0FF]) — Similar to 2nd [ofF] except:

- You can use [0FF] if an error message is displayed.
- When you turn the TI-89 on again, it will be exactly as you left it.

HOMEDATA $(-(-))$ - Copies the current graph coordinates to the Home screen's history area.
shortcuts:

GREEK (2 2nd G) - Accesses the Greek character set (described later in this section).

CAPS (2nd [CAPS])— Turns Caps Lock on and off.

Accent marks - (é, ü, ô, à, ç, and ~) are added to the next letter you press (described later in this section).

On the TI-89:

Press \square and then the key for the symbol.

For example: \bullet (times) displays \&

These special symbols are not affected by whether Alpha-Lock is on or off.

On the Tl-92 Plus:

Press 2nd and then the key for the symbol.

For example: 2nd H displays \&

These special symbols are not affected by whether Caps Lock is on or off.

Typing Accent Marks from the TI-92 Plus Keyboard

Typing Greek Letters from the Keyboard

Note: Neither calculator displays a map of Greek letters. The maps shown here are for reference only.

Pressing an accent mark key does not display an accented letter. The accent mark will be added to the next letter you press.

1. Press 2nd and then the key for the accent mark.

Note: To help you find the applicable keys, this map shows only the accent mark keys.
2. Press the key for the letter you want to accent.

- You can accent lowercase and uppercase letters.
- An accent mark can be added to only those letters that are valid for that mark.

Accent Mark	Valid Letters (lowercase or uppercase)	Examples
,	A, E, I, O, U, Y	é, E
\cdots	A, E, I, O, U, y (but not Y)	ü, Ü
\wedge	A, E, I, O, U	ô, Ö
,	A, E, I, O, U	à, À
Ç	C	ç, Ç
\sim	A, O, N	\tilde{n}, \tilde{N}

Press the key combination that accesses the Greek character set on your calculator. Then select the applicable alpha character on the keyboard to enter a Greek letter.

If you press a key combination that does not access a Greek letter, you get the normal letter for that key.

Several keys let you access lowercase and uppercase Greek letters.
For example:

On the TI-89:	On the TI-92 Plus:
1. Press $\square \square$ to access the Greek character set. 2. Press \square alpha + letter to access lowercase Greek letters. Example: \rightarrow alpha [W] displays ω	1. Press 2nd G to access the Greek character set. 2. Press 2nd G + letter to access lowercase Greek letters. Example: 2nd G w displays ω
3. Press \square + letter to access uppercase Greek letters. Example: $\rightarrow \square$ [W] displays Ω	3. Press 2nd G $\dagger+$ letter to access uppercase Greek letters. Example: 2nd G \quad W displays Ω

The exact keys that you press on the TI-89 depend on whether alphalock is on or off. For example:

On the TI-89, if:	Then:
Alpha-lock is off.	
	alpha W displays ω. T W displays Ω. \qquad tis used for uppercase letters.
Lowercase alpha-lock (2nd [a-lock]) is on.	- x^{x} displays ξ. \rightarrow W displays ω. - 0 W W displays Ω.
Uppercase ALPHA-LOCK (1 [a-lock]) is on.	囚 X displays ξ. - 1 W displays Ω. - 1 W W displays Ω.

For a list of all special characters, refer to Appendix B.
For a List of All
Special Characters

Important: If you press
alpha on the TI-89 to access a Greek letter while alphalock is on, it turns alpha-lock off.

Lowercase alpha-lock
(2nd [a-lock]) is on.

Uppercase ALPHA-LOCK
($₫\left[\begin{array}{l}\text { a-lock }]\end{array}\right)$ is on.

囚 ${ }^{\circ}$ displays ξ.
\square W displays ω.

- \square W displays Ω.
- $1 \times$ displays ξ.
\rightarrow W displays Ω.
- 0 W W displays Ω.

Entering and Executing a Command Script

Inserting a Command Mark

Note: This does not insert a new line for the command, it simply marks an existing line as a command line.

Tip: You can mark a line as a command either before or after typing the command on that line.

Deleting a Command Mark

Executing a Command

Tip: To examine the result on the Home screen, use a split screen or press:
TI-89: HOME
TI-92 Plus: - [HOME]

By using a command script, you can use the Text Editor to type a series of command lines that can be executed at any time on the Home screen. This lets you create interactive example scripts in which you predefine a series of commands and then execute them individually.

In the Text Editor:

1. Place the cursor on the line for the command.
2. Press F2 to display the

Command toolbar menu.
3. Select 1:Command.
"C" is displayed at the beginning of the text line (to the left of the colon).
4. Type a command just as you would on the Home screen.

The line can contain only the command,
 with no additional text.

You can type multiple commands on the same line if you type a colon to separate the commands.

This deletes only the " C " mark; it does not delete the command text itself.

1. Place the cursor anywhere on the marked line.
2. Press F2 and select 4:Clear command.

To execute a command, you must first mark the line with a " C ". If you execute a line that is not marked with " C ", it will be ignored.

1. Place the cursor anywhere on the command line.
2. Press F4.

The command is copied to the entry line on the Home screen and executed. The Home screen is displayed temporarily during execution, and then the Text Editor is redisplayed.

After execution, the cursor moves to the next line in the script so that you can continue to execute a series of commands.

Splitting the Text Editor/ Home Screen

Creating a Script from Your Home Screen Entries

Example

Note: Some commands take longer to execute. Wait until the Busy indicator disappears before pressing F4 again.

Note: In this example, the Graph command displays the Graph screen in place of the Home screen.

With a split screen, you can view your command script and see the result of an executed command at the same time.

To:	Press:	
Split the screen	[F3 and select	F*W
	1:Script view.	1:Script uiew
Return to a full screen Text Editor	[F3 and select 2:Clear split.	

You can also use MODE to set up a split screen manually. However, F3 sets up a Text Editor/Home screen split much easier than MODE.

- The active application is indicated by a thick border. (By default, the Text Editor is the active application.)
- To switch between the Text Editor and the Home screen, press 2nd [\boxplus] (second function of APPS).

From the Home screen, you can save all the entries in the history area to a text variable. The entries are automatically saved in a script format so that you can open the text variable in the Text Editor and execute the entries as commands.

For information, refer to "Saving the Home Screen Entries as a Text Editor Script" in Chapter 5.

1. Type your script. Press F2 and select 1:Command to mark the command lines.
2. Press F3 and select 1:Script view.
3. Move the cursor to the first command line. Then press FF4 to execute the command.
4. Continue using [F4 to execute each command, but stop just before executing the Graph command.
5. Execute the Graph command.
6. Press F3 and select

2:Clear split to return to a full screen Text Editor.

Print Objects

Inserting a Print Object Mark

Note: This does not insert a new line for the print object, it simply marks an existing line as a print object.

Tip: You can mark a line as a print object either before or after typing a variable name on that line.

Inserting a Page Break Mark

If you have a TI-GRAPH LINK ${ }^{\text {TM }}$ cable, an optional accessory that lets the TI-89 / TI-92 Plus communicate with a personal computer, you can create lab reports. Use the Text Editor to write a report, which can include print objects. Then use the TI-GRAPH LINK software to print the report on the printer attached to the computer.

In the Text Editor, you can specify a variable name as a print object. When you print the report by using TI-GRAPH LINK, the TI-89 / TI-92 Plus substitutes the contents of the variable (an expression, picture, list, etc.) in place of the variable name.

In the Text Editor:

1. Place the cursor on the line for the print object.
2. Press F2 to display the

Command toolbar menu.
3. Select 3:PrintObj.
" P " is displayed at the beginning of the
 text line (to the left of the colon).
4. Type the name of the variable that contains the print object.

The line can contain only the variable name, with no additional text.

When you print a lab report, page breaks occur automatically at the bottom of each printed page. However, you can manually force a page break at any line.

1. Place the cursor on the line that you want to print on the top of the next page. (The line can be blank or you can enter text on it.)
2. Press F2 and select 2:Page break.

A " $\overline{\text { " }}$ is displayed at the beginning of the line (to the left of the colon).

This deletes only the " P " or " " " mark; it does not delete any text that is on the line.

1. Place the cursor anywhere on the marked line.
2. Press F2 and select 4:Clear command.

Printing the Report

Example

Note: To store the derivative to variable der, enter: $\boldsymbol{d}(\mathrm{y} 1(\mathrm{x}), \mathrm{x}) \rightarrow$ der

Note: To store the derivative's critical points to variable sol, enter: solve(der=0,x) \rightarrow sol

General Steps For Detailed Information

1. Connect the

TI-89 / TI-92 Plus to your computer via the TI-GRAPH LINK cable.
2. Use the TI-GRAPH LINK software to get the lab report from the calculator, and then print the report.

Assume you have stored:

- A function as $\mathrm{y} 1(\mathrm{x})$ (specify y1, not $\mathrm{y} 1(\mathrm{x})$).
- A graph picture as pic1.
- Applicable information in variables der and sol.

When you print the lab report, the contents of the print objects are printed in place of their variable names.


```
My assignment was to study the function:
.1*x^3-.5*x+3
The three parts were:
1. Graph the function.
```



```
2. Find its derivative.
.3*x^2-. 5
3. Look for critical points.
x=1.29099 or x=-1.29099
```

In cases where a graph picture cannot fit on the current page, the entire picture is shifted to the top of the next page.

Numeric Solver

Note: To solve for the unknown variable from the Home screen or a program, use nSolve() as described in Appendix A.
Preview of the Numeric Solver 334
Displaying the Solver and Entering an Equation 335
Defining the Known Variables 337
Solving for the Unknown Variable 339
Graphing the Solution 340

The Numeric Solver lets you enter an expression or equation, define values for all but one unknown variable, and then solve for the unknown variable.

After entering an equation and its known values, place the cursor on the unknown variable and press (F2.

You can also graph the solution.

The x axis is the unknown variable. The y axis is the left-rt value, which gives the solution's accuracy.

The solution is precise where the curve crosses the x axis.

As in the example above, the Numeric Solver is often used to solve closed-form equations. But it also gives you a quick way to solve equations such as transcendental equations in which there is no closed form.

For example, you could rearrange the following equation manually to solve for any of the variables.
$\mathrm{a}=(\mathrm{m} 2-\mathrm{m} 1) /(\mathrm{m} 2+\mathrm{m} 1) * \mathrm{~g} \longrightarrow \mathrm{~m} 1=(\mathrm{g}-\mathrm{a}) /(\mathrm{g}+\mathrm{a}) * \mathrm{~m} 2$
With an equation such as the following, however, it may not be as easy to solve for x manually.
$y=x+e^{x}$
The Numeric Solver is particularly useful for such equations.

Consider the equation $\mathrm{a}=(\mathrm{m} 2-\mathrm{m} 1) /(\mathrm{m} 2+\mathrm{m} 1) * \mathrm{~g}$, where the known values are $\mathrm{m} 2=10$ and $g=9.8$. If you assume that $a=1 / 3 \mathrm{~g}$, find the value of m 1 .

Displaying the Solver and Entering an Equation

Displaying the

 Numeric Solver
Entering an
 Equation

Tips: In your equation:

- Do not use system function names (such as $\mathrm{y} 1(\mathrm{x})$ or $\mathrm{r} 1(\theta)$) as simple variables (y 1 or r1).
- Be careful with implied multiplication. For example, $a(m 2+m 1)$ is treated as a function reference, not as $a *(m 2+m 1)$.

Note: When you define the variables, you can either define exp or solve for it.

Note: After you press ENTER the current equation is stored automatically to the system variable eqn.

After you display the Numeric Solver, start by entering the equation that you want to solve.

To display the Numeric Solver, press APPS 9.

The Numeric Solver screen shows the

On the eqn: line, type in your equation.

You can:	For example:
Type an equation directly.	$\begin{aligned} & a=(m 2-m 1) /(m 2+m 1) * g \\ & a+b=c+\sin (d) \end{aligned}$
Refer to a function or equation defined elsewhere.	Suppose you defined $y 1(x)$ on either the: - Y= Editor: $\mathrm{y} 1(\mathrm{x})=1.25 \mathrm{x} * \cos (\mathrm{x})$ - or - - Home screen: Define $\mathrm{y} 1(\mathrm{x})=1.25 \mathrm{x} * \cos (\mathrm{x})$ In the Numeric Solver, you then would enter: $\mathrm{y} 1(\mathrm{x})=0$ or $\mathrm{y} 1(\mathrm{t})=0$, etc. The argument does not have to match the one used to define the function or equation.

Type an expression $\quad e+f-\ln (g)$ without an = sign.

After you press ENTER, the expression is set equal to a system variable called exp and entered as:
exp $=\mathrm{e}+\mathrm{f}-\ln (\mathrm{g})$
Recall a previously Refer to the applicable heading later in this entered equation or section.
open a saved equation.

Recalling Previously Entered Equations

Tip: You can specify how many equations are retained. From the Numeric Solver, press [F1 and select 9:Format (or use TI-89: \square TI-92 Plus: F). Then select a number from 1 through 11.

Saving Equations for Future Use

Note: An equation variable has an EXPR data type, as shown on the MEMORY and VAR-LINK screens.

Opening a Saved Equation

Your most recently entered equations (up to 11 with the default setting) are retained in memory. To recall one of these equations:

1. From the Numeric Solver screen, press F5.

A dialog box displays the most recently entered equation.

2. Select an equation.

- To select the displayed equation, press ENTER.
- To select a different equation, press (1) to display a list. Then select the one you want.

3. Press ENTER.

Because the number of equations that you can recall with F5 Eqns is limited, a particular equation may not be retained indefinitely.

To store the current equation for future use, save it to a variable.

1. From the Numeric Solver screen, press F1 and select 2:Save Copy As.
2. Specify a folder and a variable name for the equation.
3. Press ENTER twice.

To open a previously saved equation variable:

1. From the Numeric Solver screen, press $F 1$ and select 1:Open.
2. Select the applicable folder and equation variable.
3. Press ENTER.

equation; it always appears alphabetically in the list.

Defining the List of Variables

Note: If an existing variable is locked or archived, you cannot edit its value.

Notes and Common Errors

Note: When you assign a value to a variable in the Numeric Solver, that variable is defined globally. It still exists after you leave the solver.

After you type an equation in the Numeric Solver, enter the applicable values for all variables except the unknown variable.

After typing your equation on the eqn: line, press ENTER or \odot.

The screen lists the variables in the order they appear in the equation. If a variable is already defined, its value is shown. You can edit these variable values.
 the specified bounds, which you can edit.

Enter a number or expression for all variables except the one you want to solve for.

- If you define a variable:
- In terms of another variable in the equation, that variable must be defined first.
- In terms of another variable that is not in the equation, that variable must already have a value; it cannot be undefined.

Since a is defined in terms of g, you must define g before a. When you move the cursor to another line, $\mathrm{g} / 3$ is evaluated.

- As an expression, it is evaluated when you move the cursor off the line. The expression must evaluate to a real number.
- If the equation contains a variable already defined in terms of other variables, those other variables are listed.
- If you refer to a previously defined function, any variables used as arguments in the function call are listed, not the variables used to define the function.

If variable a was defined previously as $b+c \rightarrow a$, then b and c are listed instead of a.

Note: You cannot solve for a system variable other than exp. Also, if the equation contains a system variable, you cannot use F3 to graph.

Note: This error occurs if you use a reserved name incorrectly or refer to an undefined system function as a simple variable without parentheses.

- If the equation contains a system variable (xmin , xmax, etc.), that variable is not listed. The solver uses the system variable's existing value.

- Although you can use a system variable in the equation, an error occurs if you use F3 to graph the solution.
- If you see the error shown to the right, delete the entered variable value. Then edit the equation to use a different variable.

In the Numeric Solver, press Θ until the cursor is on the equation. The screen automatically changes to show only the eqn: line. Make your changes, and then press ENTER or Θ to return to the list of variables.

To find a solution more quickly or to find a particular solution (if multiple solutions exist), you can optionally:

- Enter an initial guess for the unknown variable. The guess must be within the specified bounds.
- Enter lower and upper bounds close to the solution.

For the bounds, you can also enter variables or expressions that evaluate to appropriate values (bound=\{lower,upper\}) or a valid list variable that contains a two-element list (bound=list). The bounds must be two floating point elements with the first one less than or equal to the second one.

Solving for the Unknown Variable

Finding the Solution

Note: To stop (break) a calculation, press 0 N . The unknown variable shows the value being tested when the break occurred.

Note: An iterative process is used to solve an equation. If the iterative process cannot converge on a solution, this error occurs.

After you type an equation in the Numeric Solver and enter values for the known variables, you are ready to solve for the unknown variable.

With all known variables defined:

1. Move the cursor to the unknown variable.
2. Press F2 Solve.

A • marks the solution and left-rt. The - disappears when you edit a value, move the cursor to the equation, or leave the solver.

Using the solution and your entered values, the left and right sides of the equation are evaluated separately. left-rt shows the difference, which indicates the solution's accuracy. The smaller the value, the more accurate the solution. If the solution is precise, left-rt=0.
If you: Do this:

Want to solve for other Edit the equation or variable values. values

Want to find a different Enter an initial guess and/or a new set of solution for an equation bounds close to the other solution. with multiple solutions

See the message: \quad Press ESC. The unknown variable shows

the value being tested when the error occurred.

- The left-rt value may be small enough for you to accept the result.
- If not, enter a different set of bounds.

You can graph an equation's solutions any time after defining the known variables, either before or after you solve for the unknown variable. By graphing the solutions, you can see how many solutions exist and use the cursor to select an accurate initial guess and bounds.

Displaying the Graph

Tips: With split screens:

- Use [2nd [\boxplus] to switch between sides.
- The active side has a thick border.
- The toolbar belongs to the active side.

For more information, refer to Chapter 14.

How the Graph Affects Various Settings

Note: If you were previously using different mode settings, you will need to reselect those settings manually.

In the Numeric Solver, leave the cursor on the unknown variable. Press F3 and select:

1:Graph View

- or -

3:ZoomStd

- or -

4:ZoomFit
The graph is shown in a split screen, where:

- The unknown variable is plotted on the x axis.
- left-rt is plotted on the y axis.

Solutions for the equation exist at left-rt=0, where the graph crosses the x axis.

For information about ZoomStd and ZoomFit, refer to Chapter 6.

You can explore the graph by using the free-moving cursor, tracing, zooming, etc., as described in Chapter 6.

When you use the Numeric Solver to display a graph:

- The following modes are changed automatically to these settings:

Mode	Setting	
Graph	FUNCTION	Any functions selected
Split Screen	LEFT-RIGHT	in the $Y=$ Editor will not
be graphed.		

- All stat plots are deselected.
- After you leave the Numeric Solver, the Graph screen may continue to display the equation's solution, ignoring any selected $\mathrm{Y}=$ functions. If so, display the $\mathrm{Y}=$ Editor and then return to the Graph screen. Also, the graph is reset when you change the Graph mode or use CIrGraph from the Home screen (F4 5) or a program.

Selecting a New Initial Guess from the Graph

Note: Cursor coordinate xc is the unknown variable value, and yc is the left-rt value.

Returning to a Full Screen

To use the graph cursor to select an initial guess:

1. Move the cursor (either free-moving or trace) to the point that you want to use as the new guess.
2. Use 2nd [\boxplus] to make the Numeric Solver screen active.
3. Make sure the cursor is on the unknown variable, and press F4.
4. Press F2 to re-solve the equation.

From the split screen:

- To display the Numeric Solver full screen, use [2nd [\boxplus] to make the solver screen active, press [F3, and then select 2:Clear Graph View.
- or -
- To display the Home screen, press 2nd [QuIT] twice.

When you solve an equation, its variables still exist after you leave the Numeric Solver. If the equation contains single-character variables, their values may inadvertently affect later symbolic calculations. Before leaving the Numeric Solver, you may want to:

1. Press:

TI-89: [2nd [F6]
Tl-92 Plus: F6
to clear all single-character variables in the current folder.
2. Press ENTER to confirm the action.

The screen returns to the solver's eqn: line.

Number Bases

20

Note: The MATH/Base menu lets you select from a list of operations related to number bases.
Preview of Number Bases 344
Entering and Converting Number Bases 345
Performing Math Operations with Hex or Bin Numbers 346
Comparing or Manipulating Bits 347

Wherever you enter an integer in a TI-89 / TI-92 Plus calculation, you can enter it in decimal, binary, or hexadecimal form. You can also set the Base mode to specify the form for displaying integer results. Fractional and floating-point results are always displayed in decimal form.

Binary numbers use 0 and 1 in the base 2 format:

100

$$
\begin{array}{r}
\square-2^{0} * 0=+0 \\
2^{1} * 0=+0 \\
2^{2} * 1=+4
\end{array}
$$

Hexadecimal numbers use $0-9$ and $\mathrm{A}-\mathrm{F}$ in the base 16 format:

A8F
L $16^{0} * \mathrm{~F}=+15$
$-16^{1} * 8=+128$
$16^{2} * \mathrm{~A}=+2560$

Dec Base 10	Bin Base 2	Hex Base 16
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	10000	10

You can use the TI-89 / TI-92 Plus to convert a number from one base to another. For example, 100 binary $=4$ decimal and A8F hex $=2703$ decimal.

Hexadecimal numbers are often used as a shorthand notation for longer, hard-to-remember binary numbers. For example:

AF37 hexadecimal is usually easier to work with than 1010111100110111 binary.

The TI-89 / TI-92 Plus also lets you compare or manipulate binary numbers bit-by-bit.

Calculate 10 binary (base 2) +F hexadecimal (base 16) +10 decimal (base 10). Then, use the operator to convert an integer from one base to another. Finally, see how changing the Base mode affects the displayed results.

Entering and Converting Number Bases

Entering a Binary or Hexadecimal Number

Note: You can type the b or h in the prefix, as well as hex characters $\mathrm{A}-\mathrm{F}$, in uppercase or lowercase.

Converting between Number Bases

Note: If your entry is not an integer, a Domain error is displayed.

Alternate Method for Conversions

Regardless of the Base mode, you must always use the appropriate prefix when entering a binary or hexadecimal number.

To enter a binary number, use the form:
Ob for example: 0b11100110)
\square
Binary number with up to 32 digits
Zero, not the letter O, and the letter b

To enter a hexadecimal number, use the form:
OhhexadecimalNumber (for example: 0h89F2C)
$\square \quad$ Hexadecimal number with up to 8 digits
If you enter a number without the $0 b$ or $0 h$ prefix, such as 11 , it is always treated as a decimal number. If you omit the Oh prefix on a hexadecimal number containing $A-F$, all or part of the entry is treated as a variable.

Use the conversion operator.

	For \downarrow, press [2nd [[ا]. Also, you
can select base conversions	

For example, to convert 256 from decimal to binary:

```
256 Bin
```

To convert 101110 from binary to hexadecimal:

Results use the 0b or Oh prefix to identify the base.
Ob101110 Hex

Instead of using \downarrow, you can:

1. Use MODE (page 346) to set the Base mode to the base that you want to convert to.
2. From the Home screen, type the number that you want to convert (using the correct prefix) and press ENTER.

If Base mode $=$ BIN:

If Base mode $=$ HEX:

- ¢b101110			Bh2E
吅101110			
P/ill\|	हind íluta	FUAN:	1,30

Performing Math Operations with Hex or Bin Numbers

For any operation that uses an integer number, you can enter a hexadecimal or binary number. Results are displayed according to the Base mode. However, results are restricted to certain size limits when Base $=$ HEX or BIN.

Setting the Base Mode for Displayed Results

Note: The Base mode affects output only. You must always use the 0h or Ob prefix to enter a hex or binary number.

1. Press MODE F2 to display Page 2 of the MODE screen.
2. Scroll to the Base mode, press ((1), and select the applicable setting.
3. Press ENTER to close the

MODE screen.
The Base mode controls the
displayed format of integer
The Base mode controls the
displayed format of integer results only.
Fractional and floating-point results are always shown in decimal form.

If Base mode $=\mathrm{HEX}$:	
	Gh28
- 2.54 + 1	GhFF
- $\mathrm{gh}^{\text {5 } 52 \mathrm{Cl} \cdot 6}$	9h21098
- GhREF + ¢b1901101191	
	GhCFC
	吹13420
Ohc.45a+0h6fd2	
Finily kifl iluta func	5\%\%
Oh prefix in result	
dentifies the base.	

Size Limitations
 When Base = HEX or BIN

If Base mode = HEX:

When Base=HEX or BIN, a division result is displayed in hexadecimal or binary form only if the result is an integer.

To ensure that division always produces an integer, use intDiv() instead of \dagger.
dentifies the base.

When Base=HEX or BIN, an integer result is stored internally as a signed, 32-bit binary number, which uses the range (shown in hexadecimal and decimal):

If a result's magnitude is too large to be stored in a signed, 32-bit binary form, a symmetric modulo operation brings the result into the range. Any number greater than 0h7FFFFFFFF is affected. For example, Oh80000000 through OhFFFFFFFF become negative numbers.

Comparing or Manipulating Bits

The following operators and functions let you compare or manipulate bits in a binary number. You can enter an integer in any number base. Your entries are converted to binary automatically for the bitwise operation, and results are displayed according to the Base mode.

Boolean Operations

Note: You can select these operators from the MATH/Base menu. For an example using each operator, refer to Appendix A in this book.

Note: If you enter an integer that is too large to be stored in a signed, 32-bit binary form, a symmetric modulo operation brings the value into the range (page 346).

Operator with syntax	Description
not integer	Returns the one's complement, where each bit is flipped.
(-) integer	Returns the two's complement, which is the one's complement + 1.
integer1 and integer2	In a bit-by-bit and comparison, the result is 1 if both bits are $1 ;$ otherwise, the result
	is 0. The returned value represents the bit
results.	
integer1 or integer2	In a bit-by-bit or comparison, the result is 1 if either bit is $1 ;$ the result is 0 only if
	both bits are 0. The returned value represents the bit results.
	In a bit-by-bit xor comparison, the result is 1 if either bit (but not both) is $1 ; ~ t h e ~$
integer1 xor integer2	result is 0 if both bits are 0 or both bits
	are 1. The returned value represents the
bit results.	

Suppose you enter:
Oh7AC36 and 0h3D5F
Internally, the hexadecimal integers are converted to a signed, 32 -bit binary number.

Then corresponding bits are compared.

```
0h7AC36 = 0b00000000000001111010110000110110
and and
\[
0 \mathrm{~h} 3 \mathrm{D} 5 \mathrm{~F}=\underline{0 \mathrm{~b} 00000000000000000011110101011111}
\]
\[
0 \mathrm{~b} 00000000000000000010110000010110=0 \mathrm{~h} 2 \mathrm{C} 16
\]
L_ Leading zeros are not shown in the result.
```

The result is displayed according to the Base mode.

Rotating and
 Shifting Bits

Note: You can select these functions from the MATH/Base menu. For an example using each function, refer to Appendix A in this book.

Note: If you enter an integer that is too large to be stored in a signed, 32-bit binary form, a symmetric modulo operation brings the value into the range (page 346).

Function with syntax	Description
```rotate(integer) - or - rotate(integer,#ofRotations)```	If \#ofRotations is:   - omitted - bits rotate once to the right (default is ${ }^{-1}$ ).   - negative - bits rotate the specified number of times to the right.   - positive - bits rotate the specified number of times to the left.   In a right rotation, the rightmost bit rotates to the leftmost bit; vice versa for a left rotation.
```shift(integer) - or - shift(integer,#ofShifts)```	If \#ofShifts is:   - omitted - bits shift once to the right (default is ${ }^{-1}$ ).   - negative - bits shift the specified number of times to the right.   - positive - bits shift the specified number of times to the left.   In a right shift, the rightmost bit is dropped and 0 or 1 is inserted to match the leftmost bit. In a left shift, the leftmost bit is dropped and 0 is inserted as the rightmost bit.

Suppose you enter:

shift(0h7AC36)

Internally, the hexadecimal integer is converted to a signed, 32-bit binary number.
Then the shift is applied to the binary number.

If Base mode = HEX:

	FUNC	

If Base mode $=$ BIN:

- shift(0h7ACS6)

Ob11110101100011011

三小ift(0h7aç6)	
MAl\|	FUNL $1 / 30$

The result is displayed according to the Base mode.

Memory and Variable Management

Note: Remember that variables can contain expressions, lists, functions, programs, graph figures, etc.

Note: You can also use VAR-LINK to transfer variables between two linked TI-89s, a TI-92, or a TI-92 Plus. Refer to Chapter 22.
Preview of Memory and Variable Management 350
Checking and Resetting Memory 353
Displaying the VAR-LINK Screen 355
Manipulating Variables and Folders with VAR-LINK 357
Pasting a Variable Name to an Application 359
Archiving and Unarchiving a Variable 360
If a Garbage Collection Message Is Displayed 362
Memory Error When Accessing an Archived Variable. 364

This chapter describes how to manage variables stored in the TI-89 / TI-92 Plus's memory.

The MEMORY screen shows how the memory is currently being used.

The VAR-LINK screen displays a list of defined variables and folders. For information about folders, refer to Chapter 5.

You can also store variables in the TI-89 / TI-92 Plus's user data archive, a protected area of memory separate from RAM (random access memory).

Archiving variables can be very useful (page 360). However, if you do not need the benefits of the user data archive, you do not need to use it.

Assign values to a variety of variable data types. Use the VAR-LINK screen to view a list of the defined variables. Then move a variable to the user data archive memory and explore the ways in which you can and cannot access an archived variable. (Archived variables are locked automatically.) Finally, unarchive the variable and delete the unused variables so that they will not take up memory.

	Steps	TI-89 Keystrokes	TI-92 Plus Keystrokes	Display	
5. Highlight the f function variable, and view its contents. Notice that the function was assigned using $f(x)$ but is listed as f on the screen.		[\bigcirc [[F6]	OF6	$\times^{\times 2+4}$	
6. Close the Contents window.		EESC	EESC		
	7. With the f variable still highlighted, close VAR-LINK and paste the variable name to the entry line.	ENTER	EENTER	5* f	
			+	$\begin{aligned} & L \text { Notice that " (" is } \\ & \text { pasted. } \end{aligned}$	
	. Complete the operation.	$2 \square$ [ENTER	2-IENTER	5*f(2)	
Archiving a variable:					
	Redisplay VAR-LINK, and	$\begin{aligned} & \text { [2nd [VAR-LINK] } \\ & \text { (use } \Theta \text { to } \\ & \text { ihighlight x1) } \end{aligned}$	$\begin{aligned} & \text { [2nd [VAR-LINK] } \\ & \text { (use } \bigcirc \text { to } \\ & \text { highlight x1) } \end{aligned}$		
	highlight the variable you want to archive.				
	The previous change in view is no longer in effect. The screen lists all defined variables.				
10. Use the F1 Manage toolbar menu to archive the variable.		国8	国8	Fits	
		-			
11. Return to the Home screen and use the archived variable in a calculation.				[[HOME]	
		$6 \times \times 1$ ENTER	$6 \times \times 1$ ENTER		
12. Attempt to store a different value to the archived variable.		10 STOM X 1			
		EENTER	ENTER	\%ariale is leked, frotecest or	
13. Cancel the error message.		CESC	ESC	SEECANCLL	

Steps	TI-89 Keystrokes	TI-92 Plus Keystrokes	Display	
14. Use VAR-LINK to unarchive the variable.	2nd [VAR-LINK]	2nd [VAR-LINK]		
	(use \odot to	(use \bigcirc to		
	ihighlight x1)	ihighlight x1)		
	F19	F19		
15. Return to the Home screen and store a different value to the unarchived variable.	HOME	[HOME]	-5.f(2) 40	
	ENTER	ENTER	$-6 \cdot x 1$	
			$\begin{aligned} & \text { Error: Variable is locker } \\ & \frac{10 \rightarrow a}{10 \rightarrow 3} \end{aligned}$	
Deleting variables:				
16. Display VAR-LINK, and use the F5 All toolbar menu to select all variables.	2nd [VAR-LINK]	[2nd [VAR-LINK]	Fin 1:Select. All	
	: F5 1		18Selert fil	
	A \checkmark mark indicates items that are			
selected. Notice that this also Mak-Llek [alli				
selected the MAIN folder.				
Note: Instead of using F5 (if you don't		\%	$\square \mathrm{Filildy}$	
want to delete all your variables), youcan select individual variables.		\%		
			$\times \quad \times 11$	
Highlight each variable to delete and		\%		
For information about deleting individual variables, refer to page 357.	\%			
17. Use F1 to delete.	F1 1	F1 1		
Note: You can press \square (instead of (F1 1) to delete the marked variables.		\%		
18. Confirm the deletion.	ENTER	ENTER	UAR-LINK	
		!	Entsr=TES	
19. Because F5 1 also selected the	ENTER	ENTER	Mai-LINE [illi	
MAIN folder, an error message				
states that you cannot delete the			Cifllt	
MAIN folder. Acknowledge the				
message.		,		
When VAR-LINK is redisplayed, the deleted variables are not listed.				
20. Close VAR-LINK and return to	ESC	ESC		
the current application (Home				
screen in this example).	¢	+		
	,	\%		
When you use ESC (instead of ENTER)	¢	\%		
to close VAR-LINK, the highlighted name is not pasted to the entry line.	-	\%		
	\%	\%		

Displaying the MEMORY Screen

Tip: To display the size of individual variables and determine if they are in the user data archive, use the VAR-LINK screen.

Resetting the Memory

Important: To delete

 individual (instead of all) variables, use VAR-LINK as described on page 357.Tip: To cancel the reset, press ESC instead of ENTER.

The MEMORY screen shows the amount of memory (in bytes) used by all variables in each data type, regardless of whether the variables are stored in RAM or the user data archive. You can also use this screen to reset the memory.

Press 2nd [MEM].

To close the screen, press ENTER. To reset the memory, use the following procedure.

From the MEMORY screen:

1. Press F1.
2. Select the applicable item.

Item	Description
RAM	1:All RAM: Resetting RAM erases all data and programs from RAM.
	2:Default: Resets all system variables and modes to their original factory settings. This does not affect any user-defined variables, functions, or folders.
Flash ROM	1:Archive: Resetting Archive erases all data and programs from Flash ROM.
	2:Flash Apps: Resetting Flash Apps erases all Flash applications from Flash ROM.
	3:Both: Resetting both erases all data, programs, and
All Memory	Resetting will delete all data, programs, and Flash applications from RAM and Flash ROM.

3. When prompted for confirmation, press ENTER.

The TI-89 / TI-92 Plus displays a message when the reset is complete.
4. Press ENTER to acknowledge the message.

Flash ROM free on the MEMORY

Screen

Note: For TI-92 Plus Modules and some TI-89 users, their maximum archive space is about 384-KB regardless of how much free Flash ROM is available.

The Flash ROM free displayed on the Memory screen 2nd [MEM] is shared by archive and Flash applications. This Flash ROM is divided into sectors of $64-\mathrm{KB}$ memory. Each individual sector can contain either archive or Flash applications, but not both. Therefore, the actual maximum available space for archive or Flash applications can be less than the total Flash ROM free shown on the memory screen.

Displaying the VAR-LINK Screen

Displaying the VAR-LINK Screen

Note: For information about using folders, refer to Chapter 5.

Tip: Type a letter repeatedly to cycle through the names that start with that letter.

Variable Types as Listed on VAR-LINK

The VAR-LINK screen lists the variables and folders that are currently defined. After displaying the screen, you can manipulate the variables and/or folders as described later in this chapter.

Press [2nd [VAR-LINK]. By default, the VAR-LINK screen lists all userdefined variables in all folders and with all data types.

This...	Indicates this...
F3 Link	Lets you transmit variables and Flash applications between units and update the product software in your TI-89 / TI-92 Plus. Refer to Chapter 22.
-	Collapsed folder view.
\checkmark	Expanded folder view (to right of folder name).
∇	You can scroll for more variables and/or folders.
\checkmark	If selected with F4].
$\bar{\square}$	Locked
a	Archived

To scroll through the list:

- Press Θ or Θ. (Use 2nd \odot or 2nd Θ to scroll one page at a time.) - or -
- Type a letter. If there are any variable names that start with that letter, the cursor moves to highlight the first of those variable names.

Type	Description
ASM	Assembly-language program
DATA	Data
EXPR	Expression (includes numeric values)
FUNC	Function
GDB	Graph database
LIST	List
MAT	Matrix
PIC	Picture of a graph
PRGM	Program
STR	String
TEXT	Text Editor session

Listing Only a Specified Folder and/or Variable Type, or Flash application

Tip: To cancel a menu, press ESC.

Tip: To list system variables (window variables, etc.), select 3:System.

Closing the VAR-LINK Screen

Tip: For more information on using the ENTER paste feature, refer to page 359.

If you have a lot of variables and/or folders, or Flash applications, it may be difficult to locate a particular variable. By changing VARLINK's view, you can specify the information you want to see.

From the VAR-LINK screen:

1. Press F2 View.
2. Highlight the setting you want to change, and press ©(1). This displays a menu of valid
 choices.

View - Allows you to choose variables, Flash applications, or system variables to view.

Folder - Always lists 1:All and 2:main, but lists other folders only if you have created them.

Var Type - Lists the valid variable types.

\downarrow indicates that you can scroll \qquad for additional variable types.
3. Select the new setting.
4. When you are back on the VAR-LINK VIEW screen, press ENTER.

The VAR-LINK screen is updated to show only the specified folder, and/or variable type, or Flash application.

To close the VAR-LINK screen and return to the current application, use ENTER or ESC as described below.

Press: To:

ENTER Paste the highlighted variable or folder name to the cursor location in the current application.

ESC Return to the current application without pasting the highlighted name.

Manipulating Variables and Folders with VAR-LINK

Showing the Contents of a Variable

Note: You cannot edit the contents from this screen.

Selecting Items from the List

Note: If you use F4 to \checkmark one or more items and then highlight a different item, the following operations affect only the ل'ed items.

Tip: Press either (1) (1) to toggle between expand or collapse view when you have a folder highlighted.

Deleting Variables or Folders

Tip: When you use F4 to select an expanded folder, its variables are selected automatically so that you can delete the folder and its variables at the same time.

On the VAR-LINK screen, you can show the contents of a variable. You can also select one or more listed items and manipulate them by using the operations in this section.

You can show all variable types except ASM, DATA, or GDB. For example, you must open a DATA variable in the Data/Matrix Editor.

1. On VAR-LINK, move the cursor to highlight the variable.
2. Press:

TI-89: 2nd [F6]
TI-92 Plus: F6
If you highlight a folder, the screen shows the number of
 variables in that folder.
3. To return to VAR-LINK, press any key.

For other operations, select one or more variables and/or folders.
To select: Do this:

A single variable Move the cursor to highlight the item. or folder

A group of variables or folders all variables

To delete a folder, you must delete all of the variables in that folder. However, you cannot delete the MAIN folder even if it is empty.

1. On VAR-LINK, select the variables and/or folders.
2. Press F1 Manage and select

1:Delete. (You can press
\square instead of $F 1$ 1.)
3. To confirm the deletion, press ENTER.
All folders and Expand the folder © (1) press F5 All and

		Selects the last set of Selecting 4: Expand All or 5:Collapse All will expand or collapse
your folders or Flash applications.	items transmitted to your	
unit during the current		

Highlight each item and press F4. A \checkmark is displayed to the left of each selected item. (If you select a folder, all variables in that folder are selected.) Use F4 to select or deselect an item.

Expand the folder (1), press ©5 All and select 1:Select All.
 applications.

Creating a New

 FolderFor information about using folders, refer to Chapter 5.

1. On VAR-LINK, press F1 Manage and select 5:Create Folder.
2. Type a unique name, and press ENTER twice.

You must have at least one folder other than MAIN. You cannot use VAR-LINK to copy variables within the same folder.

1. On VAR-LINK, select the variables.
2. Press F1 Manage and select 2:Copy or 4:Move.
3. Select the destination folder.
4. Press ENTER.

The copied or moved variables retain their original names.
 screen.

Renaming Variables or Folders

Remember, if you use [F4 to select a folder, the variables in that folder are selected automatically. As necessary, use F4 to deselect individual variables.

1. On VAR-LINK, select the variables and/or folders.
2. Press F1 Manage and select 3 :Rename.
3. Type a unique name, and press ENTER twice.

If you selected multiple items, you are prompted to enter a
 new name for each one.

When a variable is locked, you cannot delete, rename, or store to it. However, you can copy, move, or display its contents. When a folder is locked, you can manipulate the variables in the folder (assuming the variables are not locked), but you cannot delete the folder. When a Flash application is locked, you cannot delete it.

1. On VAR-LINK, select the variables and/or folders, or Flash application.
2. Press F1 Manage and select 6:Lock or 7:UnLock.

Pasting a Variable Name to an Application

Which Applications Can You Use?

Procedure

Note: You can also highlight and paste folder names.

Note: This pastes the variable's name, not its contents. Use [2nd [RCL], instead of [2nd [VAR-LINK], to recall a variable's contents.

Suppose you are typing an expression on the Home screen and can't remember which variable to use. You can display the VAR-LINK screen, select a variable from the list, and paste that variable name directly onto the Home screen's entry line.

From the following applications, you can paste a variable name to the current cursor location.

- Home screen, Y= Editor, Table Editor, or Data/Matrix Editor - The cursor must be on the entry line.
- Text Editor, Window Editor, Numeric Solver, or Program Editor - The cursor can be anywhere on the screen.

Starting from an application listed above:

1. Position the cursor where you want to insert the
 variable name.
2. Press [2nd [VAR-LINK].
3. Highlight the applicable variable.

4. Press ENTER to paste the variable name. expression.

$$
\sin (a 1)
$$

5. Finish typing the
```
sin(al
```

```
sin(al
```

sin(a1)

If you paste a variable name that is not in the current folder, the variable's pathname is pasted.

Why Would You Want to Archive a Variable?

Note: You cannot archive variables with reserved names or system variables.

Checking for Available Space

Note: If there is not enough space, unarchive or delete variables as necessary.

To archive or unarchive one or more variables interactively, use the VAR-LINK screen. You can also perform these operations from the Home screen or a program.

The user data archive lets you:

- Store data, programs, or any other variables to a safe location where they cannot be edited or deleted inadvertently.
- Create additional free RAM by archiving variables. For example:
- You can archive variables that you need to access but do not need to edit or change, or variables that you are not using currently but need to retain for future use.
- If you acquire additional programs for your TI-89 / TI-92 Plus, particularly if they are large, you may need to create additional free RAM before you can install those programs.

Additional free RAM can improve performance times for certain types of calculations.

Before archiving or unarchiving variables, particularly those with a large byte size (such as large programs):

1. Use the VAR-LINK screen to find the size of the variable.
2. Use the MEMORY screen to see if there is enough free space.

For an:	Sizes must be such that:
Archive	Archive free size $>$ variable size
Unarchive	RAM free size $>$ variable size

Even if there appears to be enough free space, you may see a Garbage Collection message (page 362) when you attempt to archive a variable. Depending on the usability of empty blocks in the user data archive, you may need to unarchive existing variables to create more free space.

From the VAR-LINK Screen

Tip: To select a single variable, highlight it. To select multiple variables, highlight each variable and press F4 \checkmark.

Note: If you get a Garbage Collection message, refer to page 362.

Note: An archived variable is locked automatically. You can access the variable, but you cannot edit or delete it. Refer to page 364.

From the Home Screen or a Program

To archive or unarchive:

1. Press 2 nd [VAR-LINK] to display the VAR-LINK screen.
2. Select one or more variables, which can be in different folders. (You can select an entire folder by selecting the folder name.)
3. Press F1 and select either:

8:Archive Variable - or -

9:Unarchive Variable

If you select 8:Archive Variable, the variables are moved to the user data archive.

You can access an archived variable just as you would any locked variable. For all purposes, an archived variable is still in its original folder; it is simply stored in the user data archive instead of RAM.

RAM	User Data Archive
CLASS	a2
MAIN	
MAIN	/
m1	
0	
prog1	
s1 text1	

Use the Archive and Unarchiv commands (Appendix A).
Archive variable1, variable2, ...
Unarchiv variable1, variable $2, \ldots$

If a Garbage Collection Message Is Displayed

If you use the user data archive extensively, you may see a Garbage Collection message. This occurs if you try to archive a variable when there is not enough free archive memory. However, the TI-89 / TI-92 Plus will attempt to rearrange the archived variables to make additional room.

Responding to the Garbage Collection Message

> Why not Perform Garbage Collection Automatically, without a Message?

Note: An archived variable is stored in a continuous block within a single sector; it cannot cross a sector boundary.

Note: Garbage collection occurs when the variable you are archiving is larger than any empty block.

When you see the message to the right:

- To continue archiving, press ENTER.

- or -
- To cancel, press ESC.

After garbage collection, depending on how much additional space is freed, the variable may or may not be archived. If not, you can unarchive some variables and try again.

The message:

- Lets you know why an archive will take longer than usual. It also alerts you that the archive may fail if there is not enough memory.
- Can alert you when a program is caught in a loop that repetitively fills the user data archive. Cancel the archive and investigate the reason.

The user data archive is divided into sectors. When you first begin archiving, variables are stored consecutively in sector 1 . This continues to the end of the sector. If there is not enough space left in the sector, the next variable is stored at the beginning of the next sector. Typically, this leaves an empty block at the end of the previous sector.

Each variable that you archive is stored in the first empty block large enough to hold it.

This process continues to the end of the last sector. Depending on the size of individual variables, the empty blocks may account for a significant amount of space.

How Unarchiving a Variable Affects the Process

If the MEMORY
Screen Shows Enough Free Space

When you unarchive a variable, it is copied to RAM but is not actually deleted from the user data archive memory.
 deleted during the next garbage collection.

Even if the MEMORY screen shows enough free space to archive a variable, you may still get a Garbage Collection message.

When you unarchive a variable, the Archive free amount increases immediately, but the space is not actually available until after the next garbage collection.

If the RAM free amount shows enough available space for your variable, however, there probably will be enough space to archive it after garbage collection (depending on the usability of any empty blocks).

The garbage collection process:

- Deletes unarchived variables from the user data archive.
- Rearranges the remaining variables into consecutive blocks.

Memory Error When Accessing an Archived Variable

What Causes the Memory Error?

Note: As described below, a temporary copy lets you open or execute an archived variable. However, you cannot save any changes to the variable.

Note: Except for programs and functions, referring to an archived variable does not copy it. If variable ab is archived, it is not copied if you perform 6* ab.

Correcting the Error

Note: Typically, the RAM free size must be larger than the archived variable.

An archived variable is treated the same as a locked variable. You can access the variable, but you cannot edit or delete it. In some cases, however, you may get a Memory Error when you try to access an archived variable.

The Memory Error message is displayed if there is not enough free RAM to access the archived variable. This may cause you to ask, "If the variable is in the user data archive, why does it matter how much RAM is available?" The answer is that the following operations can be performed only if a variable is in RAM.

- Opening a text variable in the Text Editor.
- Opening a data variable, list, or matrix in the Data/Matrix Editor.
- Opening a program or function in the Program Editor.
- Running a program or referring to a function.

So that you don't have to unarchive variables unnecessarily, the TI-89 / TI-92 Plus performs a "behind-the scenes" copy. For example, if you run a program that is in the user data archive, the TI-89 / TI-92 Plus:

1. Copies the program to RAM.
2. Runs the program.
3. Deletes the copy from RAM when the program is finished.

The error message is displayed if there is not enough free RAM for the temporary copy.

To free up enough RAM to access the variable:

1. Use the VAR-LINK screen (2nd [VAR-LINK]) to determine the size of the archived variable that you want to access.
2. Use the MEMORY screen (2nd [MEM]) to check the RAM free size.
3. Free up the needed amount of memory by:

- Deleting unnecessary variables from RAM.
- Archiving large variables or programs (moving them from RAM to the user data archive).

Linking and Upgrading

Linking Two Units 366
Transmitting Variables, Flash Applications, and Folders 367
Transmitting Variables under Program Control 371
Upgrading Product Software (Base Code) 373
Collecting and Transmitting ID Lists 378
Compatibility between a TI-89, TI-92 Plus, and TI-92 380

This chapter describes how to use the VAR-LINK screen to:

- Transmit variables, Flash applications, and folders between two units
- Upgrade the product software (base code)
- Collect ID Lists

It also includes information on transmitting variables under program control, and calculator compatibility.

Variables include programs, functions, graph figures, etc.

The VAR-LINK screen displays a list of defined variables, Flash applications, and folders. For information about using folders, refer to Chapter 5 .

Connecting before
 Sending or Receiving

Note: You can link a TI-89 or TI-92 Plus to another TI-89, a TI-92 Plus, or a TI-92, but not to a graphing calculator such as a TI-81, TI-82, TI-83, TI-83 Plus, TI-85, or TI-86.

The TI-89 and the TI-92 Plus each come with a cable that lets you link two units. Once connected, you can transmit information between two units.

Using firm pressure, insert one end of the cable into the I/O port of each unit. Either unit can send or receive, depending on how you set them up from the VAR-LINK screen.

This shows how to link two TI-89 units together:

This shows how to link two TI-92 Plus units together:

You can also use the unit-to-unit cable that came with your calculator to link a TI-89 and a TI-92 Plus together.

Transmitting Variables, Flash Applications, and Folders

Setting Up the Units

Note: Use F4 to select multiple variables, Flash applications, or folders. Use F4 again to deselect any that you do not want to transmit.

Transmitting variables is a convenient way to share any variable listed on the VAR-LINK screen - functions, programs, etc. You can also transmit Flash applications and folders.

Most Flash applications will transfer only from a TI-89 to a TI-89 or from a TI-92 Plus to a TI-92 Plus. You cannot send Flash applications to a TI-92 unless it contains a Plus module and Advanced Mathematics 2.x product software (base code). For more calculator compatibility information, refer to page 380.

1. Link two units as described on page 366 .
2. On the sending unit, press 2nd [VAR-LINK] to display the VAR-LINK screen.
3. On the sending unit, select the variables, folders, or Flash applications you want to send. Collapsed folders become expanded when selected.

- To select a single variable or Flash application, move the cursor to highlight it.
- To select a single folder, highlight it and press F4 to place a checkmark (\checkmark) beside it. This selects the folder and its contents.
- To select multiple variables, Flash applications, or folders highlight each one and press F4 to place a checkmark (\checkmark) beside it.
- To select all variables, Flash applications, or folders use F5 All 1:Select All.

4. On the receiving unit, press [nd [VAR-LINK] to display the VARLINK screen. (The sending unit remains on the VAR-LINK screen.)
5. On both the receiving and the sending unit, press F3 Link to display the menu options.
6. On the receiving unit, select 2:Receive.

The message VAR-LINK: WAITING TO RECEIVE and the BUSY indicator are displayed in the status line of the receiving unit.
7. On the sending unit, select either:

- 1:Send to TI-89/92 Plus
- or -
- 3:Send to TI-92

This starts the transmission.
During transmission, a progress bar is displayed in the status line of the receiving unit. When transmission is complete, the VAR-LINK screen is updated on the receiving unit.

Rules for Transmitting Variables, Flash Applications, or Folders

Note: You cannot send an archived variable to a TI-92. You must unarchive it first.

Note: You must expand a folder before transmitting it or its contents.

Canceling a Transmission

Unlocked and unarchived variables having the same name on both the sending and receiving units will be overwritten from the sending unit.

Locked and archived variables having the same name on both the sending and receiving units must be unlocked or unarchived on the receiving unit before they can be overwritten from the sending unit.

You can lock, but you cannot archive a Flash application or a folder.

If you select:	What happens:
Unlocked variable	The variable is transmitted to the current folder and it remains unlocked on the receiving unit.
Locked variable	The variable is transmitted to the current folder and it remains locked on the receiving unit.
Archived variable	The variable is transmitted to the current folder and it remains archived on the receiving unit.
Unlocked Flash	If the receiving unit has the correct certification, the Flash application is transmitted. It remains unlocked on the
replication	receiving unit. Lf the receiving unit has the correct certification, the Flash application is application
transmitted. It remains locked on the	
receiving unit.	

From either the sending or receiving unit:

1. Press 00 .

An error message is displayed.
2. Press ESC or ENTER.
ERFAFI

Common Error and Notification Messages

Note: The sending unit may not always display this message. Instead, it may remain BUSY until you cancel the transmission.

Shown on: Message and Description:

Sending	Ekfin
	Link transmission
	SECCAHCEL

This is displayed after several seconds if:

- A cable is not attached to the sending unit's I/O port. - or -
- A receiving unit is not attached to the other end of the cable.
- or -
- The receiving unit is not set up to receive.

Press ESC or ENTER to cancel the transmission.

The receiving unit does not have the correct certification for the product software (base code) or Flash application being sent.

The receiving unit has a variable with the same name as the specified variable being sent.

- To overwrite the existing variable, press ENTER. (By default, Overwrite = YES.)
- To store the variable to a different name, set Overwrite = NO. In the New Name input box, type a variable name that does not exist in the receiving unit. Then press ENTER twice.
- To skip this variable and continue with the next one, set Overwrite = SKIP and press ENTER.
- To cancel the transmission, press ESC.

Receiving unit

The receiving unit does not have enough memory for what is being sent. Press ESCO ENTER to cancel the transmission.

Deleting Variables, Flash Applications, or Folders

Note: You cannot delete the Main folder.

Note: Use [F4 to select multiple variables, Flash applications, or folders. Use F4] again to deselect any that you do not want to delete.

1. Press 2nd [VAR-LINK] to display the VAR-LINK screen.
2. Select the variables, folders, or Flash applications to delete.

- To select a single variable or Flash application, move the cursor to highlight it.
- To select a single folder, highlight it and press F4 to place a checkmark (\checkmark) beside it. This selects the folder and its contents.
- To select multiple variables, Flash applications, or folders highlight each one and press F4 to place a checkmark (\checkmark) beside it.
- To select all variables, Flash applications, or folders use F5 All 1:Select All.

3. Press F1 and choose 1:Delete.

- or -

Press \square. A confirmation message appears.
4. Press ENTER to confirm the deletion.

For up-to-date information about available Flash applications, check the Texas Instruments web site at:

education.ti.com

or contact Texas Instruments as described in Appendix C.

You can download a Flash application and/or certificate from the Texas Instruments web site to a computer, and use a TI-GRAPH LINK computer-to-calculator cable to install the application or certificate on your TI-89 / TI-92 Plus.

For installation instructions, refer to the Flash Applications instructions in the front of this guidebook, or to your TITM Connect online help or TI-GRAPH LINK guidebook.

You can use a program containing GetCalc and SendCalc or SendChat to transmit a variable from one calculator to another.

Overview of Commands

SendCalc sends a variable to the link port, where a linked calculator can receive the variable value. The linked calculator must be on the Home screen or must execute GetCalc from a program. If you send to a TI-92, however, an error occurs if the TI-92 executes GetCalc from a program. In this case, you must use SendChat instead.

SendChat, a general alternative to SendCalc, is useful if the receiving calculator is a TI-92 (or for a generic chat program that allows a TI-89, TI-92, or TI-92 Plus to be the receiving calculator). SendChat sends a variable only if that variable is compatible with the TI-92, which is typically true in chat programs. However, SendChat will not send an archived variable, a TI-89 or TI-92 Plus graph data base, etc.

The "Chat" Program The following program uses GetCalc and SendChat. The program sets up two loops that let the linked calculators take turns sending and receiving/displaying a variable named msg. InputStr lets each user enter a message in the msg variable.

To synchronize GetCalc and SendChat, the loops are arranged so that the receiving unit executes GetCalc while the sending unit is waiting for the user to enter a message.

Running the Program

Note: For information about using the Program Editor, refer to Chapter 17.

This procedure assumes that:

- The two calculators are linked with the connecting cable as described on page 366.
- The Chat program is loaded on both calculators. (A program loaded on a TI-92 must use SendCalc instead of SendChat.)
- Use each calculator's Program Editor to enter the program. - or -
- Enter the program on one calculator and then use VAR-LINK to transmit the program variable to the other calculator as described on page 367.

To run the program on both calculators:

1. On the Home screen of each calculator, enter:
```
chat()
```

2. When each calculator displays its initial prompt, respond as shown below.

On the:	Type:
Calculator that will send the first message.	1 and press ENTER.
Calculator that will receive the first message.	0 and press ENTER.

3. Take turns typing a message and pressing ENTER to send the variable msg to the other calculator.

Because the Chat program sets up an infinite loop on both calculators, press ON (on both calculators) to break the program. If you press ESC to acknowledge the error message, the program stops on the Program I/O screen. Press F5 or ESC to return to the Home screen.

Stopping the Program

Upgrading Product Software (Base Code)

You can upgrade the product software (base code) on your TI-89 / TI-92 Plus. You can also transfer product software (base code) from one TI-89 or TI-92 Plus to another, provided that the receiving unit has the correct certification that allows it to run that software.

Product Software (Base Code) Upgrades

The term product software includes these two types of base code upgrades:

- Maintenance upgrades (which are released free of charge).
- Feature upgrades (some of which are for purchase). Before downloading a purchased feature upgrade from the Texas Instruments web site, you must provide your calculator's electronic ID number. This information is used to create a customized electronic certificate that specifies which product software your unit is licensed to run.

Installing either a maintenance upgrade or a feature upgrade resets all calculator memory to the original factory settings. This means that all user-defined variables, programs, lists, and Flash applications will be deleted. See the important information concerning batteries (below) and "Backing Up Your Unit Before a Product Software (Base Code) Installation" on page 374 before performing a base code (maintenance or feature) upgrade.

New batteries should be installed before beginning a base code (maintenance or feature upgrade) download.
When in base code download mode, the Automatic Power Down ${ }^{\text {TM }}$ ($\mathrm{APD}^{\text {TM }}$) feature does not function. If you leave your calculator in download mode for an extended time before you actually start the downloading process, your batteries may become depleted. You will then need to replace the depleted batteries with new batteries before downloading.
You can also transfer base code from calculator-to-calculator using a unit-to-unit cable. If you accidentally interrupt the transfer before it is complete, you will need to reinstall the base code via a computer. Again, remember to install new batteries before downloading.

Please contact Texas Instruments as described in Appendix C if you experience a problem.

Backing Up Your Unit Before a Product Software (Base Code) Installation

Important: Before installation, install new batteries.

Note: The computer-tocalculator cable is not the same as the cable that came with your calculator.

Where to Get Product Software (Base Code)

When you install a product software (base code) upgrade, the installation process:

- Deletes all user-defined variables (in both RAM and the user data archive), functions, programs, and folders.
- Could delete all Flash applications.
- Resets all system variables and modes to their original factory settings. This is equivalent to using the MEMORY screen to reset all memory.

To retain any existing variables or Flash applications, do the following before installing the upgrade:

- Transmit the variables or Flash applications to another calculator as described on page 367 .
- or -
- Use a TI-GRAPH LINK ${ }^{\text {TM }}$ computer-to-calculator cable and TITM Connect or TI-GRAPH LINK software (available at no charge from the Texas Instruments web site) to send the variables and/or Flash applications to a computer.

If you have a TI-GRAPH LINK computer-to-calculator cable and software for the TI-92, be aware that the TI-92 TI-GRAPH LINK software is not compatible with either the TI-89 or the TI-92 Plus. The cable, however, works with all units. For information about obtaining a TI-GRAPH LINK computer-to-calculator cable for the TI-89 / TI-92 Plus, check the Texas Instruments web site at:
education.ti.com
or contact Texas Instruments as described in Appendix C.

For up-to-date information about available product software (base code) upgrades and installation instructions, check the Texas Instruments web site at:
education.ti.com
or contact Texas Instruments as described in Appendix C.

You can download product software and/or a certificate from the Texas Instruments web site to a computer, and use a TI-GRAPH LINK computer-to-calculator cable to install it on your TI-89 / TI-92 Plus.

For complete information, refer to the instructions on the web.

Transferring Product Software (Base Code)

Important: For each receiving unit, remember to back up information as necessary and install new batteries.

Important: Be sure both the sending and receiving units are in the VAR-LINK screen.

If the sending TI-89 or TI-92 Plus has its original product software (base code) or a free maintenance upgrade, the receiving TI-89 or TI-92 Plus does not need a new certificate. Its current certificate is valid, and the maintenance upgrade can be transferred.

If the sending TI-89 or TI-92 Plus has a purchased feature upgrade, the upgrade must be purchased for the receiving unit. A certificate can then be downloaded and installed on the receiving unit. After the certificate is installed, the feature upgrade can be transmitted.

You can see which version of product software is in your TI-89 / TI-92 Plus. From the Home screen, press F1 and select A:About.

Product software (base code) will transfer only from a TI-89 to a TI-89 or from a TI-92 Plus to a TI-92 Plus. You cannot send Advanced Mathematics 2.x product software (base code) to a TI-92 unless it contains a Plus module. For more calculator compatibility information, refer to page 380.

To transfer product software (base code) from unit to unit:

1. Link two units as described on page 366.
2. On the receiving and the sending unit, press 2nd [VAR-LINK] to display the VAR-LINK screen.
3. On the receiving and the sending unit, press F3 Link to display the menu options.
4. On the receiving unit, select 5:Receive Product SW.

A warning message displays. Press ESC to halt the process, or press ENTER to proceed. Pressing ENTER, displays VAR-LINK: WAITING TO RECEIVE and BUSY in the status line of the receiving unit.
5. On the sending unit, select 4:Send Product SW.

A warning message displays. Press ESC to halt the process, or press ENTER to start the transmission.

Transferring Product Software (continued)

Do Not Attempt to Cancel a Product Software (Base Code) Transfer

If You're Upgrading Product Software (Base Code) on Multiple Units

Note: Group certificates are also available. See page 378.

Tip: Generally, transmitting a base code upgrade from unit-to-unit is much quicker than installing it via a computer.

During the transfer, the receiving unit shows how the transfer is progressing. When the transfer is complete:

- The sending unit returns to the VAR-LINK screen.
- The receiving unit returns to the Home screen. You may need to use $\square \square$ (lighten) or $\square \square$ (darken) to adjust the contrast.

After the transfer starts, the receiving unit's existing base code is effectively deleted. If you interrupt the transfer before it is complete, the receiving unit will not operate properly. You will then need to reinstall the base code (maintenance or feature) upgrade via a computer.

To perform a maintenance upgrade on multiple units, you can transfer an upgrade from one unit to another instead of installing it on each unit via a computer. Maintenance upgrades are released free of charge and you do not need to obtain a certificate before you download or install them.

Before installing a purchased feature upgrade, each TI-89 or TI-92 Plus must have its own unique certificate. During download and installation, you can choose both the certificate and feature upgrade or only the certificate. The illustration below shows the most efficient way to prepare multiple units for a purchased feature upgrade.

From the computer, download and install the certificate and feature upgrade for one unit.

From the computer, download and install only the unique certificate for each of the other units.

Starting with the first unit, transfer the feature upgrade from one unit to another as described below.

Preparing multiple TI-92 Plus units for a purchased feature upgrade works the same as illustrated above.

Most error messages are displayed on the sending unit. Depending on when the error occurs during the transfer process, you may see an error message on the receiving unit.

Error Message	Description
Ekfar	The sending and receiving units are not connected properly, or the receiving unit is not set up to receive.
Link trammiscion ESC=GANCEL	
ERRDFi	The certificate on the receiving unit is not valid for the product software (base code) on the sending unit. You must obtain and install a valid certificate.
Ekfink	An error occurred during the transfer. The current product software in the receiving unit is corrupted. You must reinstall the product software from a computer.
$\begin{aligned} & \text { Sinuture error } \\ & \text { EECGANCEL } \end{aligned}$	
ERFini	Replace the batteries on the unit displaying this message.
Entrorics too 1on for ESCOMNCEL	

ID Lists and Group Certificates

The VAR-LINK screen F3 6:Send ID List menu option allows collection of electronic ID numbers from individual TI-89 / TI-92 Plus calculators.

The ID list feature provides a convenient way to collect calculator IDs for group purchase of commercial applications. After the IDs are collected, transmit them to Texas Instruments so a group certificate can be issued.

A group certificate allows distribution of purchased software to multiple TI-89 / TI-92 Plus units. The software can be loaded, deleted from, and reloaded to the calculators as often as needed for as long as the software remains listed in the group certificate. You may add new ID numbers and/or new commercial applications to a group certificate.

You can use one calculator to collect all of the IDs, or use several collection units and then consolidate their ID lists onto one calculator.

To send an ID number from one calculator to another, first connect two units by using the calculator-to-calculator cable that came with the TI-89 / TI-92 Plus. Refer to the illustrations on page 366.

Step: On the:

Do this:

1. Collecting unit Display the Home screen. Press:
(Receiving unit) TI-89: HOME
TI-92 Plus: - [HOME]
2. Sending unit
a. Press [2nd[VAR-LINK]to display the VAR-LINK screen.
b. Press [F3 Link and select 6:Send ID List.

The sending unit adds a copy of its unique ID number to the collection unit's ID list. The sending unit always retains its own ID number, which cannot be deleted from the calculator.
3. Additional units Repeat steps 1 and 2 until all the IDs are collected onto one calculator.

Depending on available memory in the collection calculator, it is possible to collect over 4,000 IDs.

Transmitting the ID List to a Computer

Clearing the ID List

After all the IDs are collected onto one calculator, use the TI-GRAPH LINK ${ }^{\text {TM }}$ software and a computer-to-calculator cable (available separately) to store the ID list on a computer. The ID list can then be sent as an e-mail attachment, or it can be printed and faxed or mailed to Texas Instruments.

For complete instructions on how to transmit an ID list from a TI-89 / TI-92 Plus to a computer, refer to the TI-GRAPH LINK guidebook. The general steps are:

1. Connect the cable to the computer and to the calculator that contains the ID list.
2. Start the TI-GRAPH LINK software on the computer.
3. Display the Home screen on the calculator. Press:

TI-89: HOME
TI-92 Plus: [HOME]
4. In the TI-GRAPH LINK software, select Get ID List from the Link menu.
5. Select a directory on the computer in which to store the ID list and record this location for future reference.
6. Click OK to store the ID list on the computer's hard drive.

The ID list remains on the collection calculator until you either clear it or send it to another TI-89 / TI-92 Plus.

The ID list remains on the collection calculator after it is uploaded to the computer. You can then use the collection calculator to upload the list to other computers.

To clear the ID list from the collection unit:

1. Press 2nd [VAR-LINK] to display the VAR-LINK screen.
2. Press F1 Manage and select A:Clear ID List.

Compatibility between a TI-89, TI-92 Plus, and TI-92

Main Types of Incompatibilities

Text versus Tokenized

Note: If you use the Program Editor to edit a function or program that is in tokenized form, it returns to text form until the next time you run it.

In general, TI-89 and TI-92 Plus data and programs are compatible, with some differences. However, both calculators have incompatibilities with the TI-92. Where possible, data transfer with a TI-92 is allowed.

All data is compatible between a TI-89 and TI-92 Plus, but some programs written for one may not run the same on the other because of differences in the calculators' screen sizes and keyboards.

Compared to a TI-92, the TI-89 and TI-92 Plus:

- Have functions, instructions, and system variables that do not exist on the TI-92.
- Can use the same variable to define and then evaluate a userdefined function or program. For example, you can define a function in terms of x and then evaluate that function using an expression containing x . This causes a Circular definition error on the TI-92. Refer to Chapter 17: Programming for more information.
- Manage local variables differently than the TI-92. Refer to Chapter 17: Programming for more information.

When you create a function or program in the Program Editor, it exists in text form until you run it. Then it is converted automatically to a tokenized form.

- Data in text form can always be shared between a TI-89, TI-92 Plus, and TI-92. However, the function or program may not give the same results when run on a different calculator.
- Data in tokenized form contains information that describes included functionality. The TI-89 and TI-92 Plus use the same tokenized forms, but the TI-92 is different.
- If you attempt to send a tokenized function, program, or other data type from a TI-89 or TI-92 Plus to a TI-92, the TI-89 or TI-92 Plus automatically checks to be sure the functionality is acceptable for the TI-92. If not, the data is not sent. This is for your protection because the tokenized data could cause the TI-92 to lock up if the data is sent with invalid functionality.
- Even if the tokenized data is sent, this does not guarantee that the data will give the same results on the other calculator.

TI-92 to TI-89 or TI-92 Plus

All user-defined variables, including functions and programs, can be sent from a TI-92 to a TI-89 or TI-92 Plus. However, they may behave differently. Examples are:

- Conflicts between TI-89 / TI-92 Plus system variable, function, and instruction names and TI-92 user-defined names.
- Programs or functions that use symbolic local variables. On a TI-89 and TI-92 Plus, a local variable must be initialized with a value before it can be referenced (meaning that a local variable cannot be used symbolically), or you must use a global variable instead. This includes programs that evaluate strings as local variables that are symbolic, such as expr().

TI-89 or TI-92 Plus to Tl-92

Any functionality that exists on a TI-89 or TI-92 Plus and NOT on a TI-92 will NOT run as expected on a TI-92. In some cases (text form),
the data will transfer but may give an error when run on the TI-92. In other cases (tokenized form), the data may not be sent to the TI-92.
If the data contains only functionality available on a TI-92, it can probably be sent to and run on a TI-92 with the same results. Exceptions include:

- Graph databases (GDBs) will not be sent because the TI-89 and TI-92 Plus use a GDB structure that has more information than the TI-92 GDB.
- A function or program defined in terms of a variable such as x and then evaluated using some expression containing that same variable will run on a TI-89 and TI-92 Plus, but will cause a Circular definition error on a TI-92.
- Some existing TI-92 functions and instructions have enhanced functionality on a TI-89 and TI-92 Plus (such as NewData, setMode(), and matrix functions that use the optional tolerance argument). These functions and instructions may not be sent at all or may cause an error on a TI-92.
- Archived variables will not be sent to a TI-92. Unarchive the variables first.
- Data variables that contain headers will not be sent. Those without headers will be sent only if the contents are TI-92 compatible.
- Product software (base code) upgrades.
- Flash applications.

You can upgrade a TI-92 to a TI-92 Plus by installing a TI-92 Plus Module. See the Texas Instruments web site education.ti.com for more information.

Activities

Analyzing the Pole-Corner Problem 384
Deriving the Quadratic Formula 386
Exploring a Matrix 388
Exploring $\cos (\mathrm{x})=\sin (\mathrm{x})$ 389
Finding Minimum Surface Area of a Parallelepiped 390
Running a Tutorial Script Using the Text Editor 392
Decomposing a Rational Function. 394
Studying Statistics: Filtering Data by Categories 396
CBL 2/CBL Program for the TI-89 / TI-92 Plus 399
Studying the Flight of a Hit Baseball 400
Visualizing Complex Zeros of a Cubic Polynomial 402
Solving a Standard Annuity Problem 404
Computing the Time-Value-of-Money 405
Finding Rational, Real, and Complex Factors 406
Simulation of Sampling without Replacement 407

This chapter contains activities that show how the

 TI-89 / TI-92 Plus can be used to solve, analyze, and visualize actual mathematical problems.

Maximum Length of Pole in Hallway

Tip: When you want to define a function, use multiple character names as you build the definition.

Note: The maximum length of the pole is the minimum value of $\mathrm{c}(\mathrm{w})$.

A ten-foot-wide hallway meets a five-foot-wide hallway in the corner of a building. Find the maximum length pole that can be moved around the corner without tilting the pole.

The maximum length of a pole c is the shortest line segment touching the interior corner and opposite sides of the two hallways as shown in the diagram below.

Hint: Use proportional sides and the Pythagorean theorem to find the length c with respect to w . Then find the zeros of the first derivative of $c(w)$. The minimum value of $c(w)$ is the maximum length of the pole.

1. Define the expression for side a in terms of w and store it in $a(w)$.
2. Define the expression for side b in terms of w and store it in $b(w)$.
3. Define the expression for side c in terms of w and store it in c(w)
Enter: Define $c(w)=$ $\sqrt{\left(a(w)^{\wedge} 2+b(w)^{\wedge} 2\right)}$
4. Use the zeros() function to compute the zeros of the first derivative of $c(w)$ to find the minimum value of $c(w)$.

Hint: Use the auto-paste feature to copy the result from step 4 to the entry line inside the parentheses of c() and press ENTER.
5. Compute the exact maximum length of the pole.

Enter: c (2nd [ANS])
6. Compute the approximate maximum length of the pole.

Result: Approximately 20.8097 feet.

Fit (5. $\left.2^{2 / 3}\right)$

- $d\left(65 \cdot 2^{2 / 3}\right)\left\{5 \cdot\left(2^{2 / 3}+1\right)^{3 / 2)}\right\}$
$4-\left(65 \cdot 2^{2 / 3}\right) \quad(20.8097)$
$0\left(65+2^{4}(2,3)\right)$

Deriving the Quadratic Formula

Performing
Computations to Derive the Quadratic Formula

Note: This example uses the result of the last answer to perform computations on the TI-89 / TI-92 Plus. This feature reduces keystroking and chances for error.

Tip: Continue to use the last answer ([2nd [ANS]) as in step 3 in steps 4 through 9.

This activity shows you how to derive the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Detailed information about using the functions in this example can be found in Chapter 3: Symbolic Manipulation.

Perform the following steps to derive the quadratic formula by completing the square of the generalized quadratic equation.

1. Clear all one-character variables in the current folder.
TI-89: 2nd [F6]
Tl-92 Plus: F6
Choose 1:Clear a-z and press

ENTER to confirm.
2. On the Home screen, enter the generalized quadratic equation: $a x^{2}+b x+c=0$.
3. Subtract c from both sides of the equation.
TI-89: 2nd [ANS] \square alpha C
TI-92 Plus: [2nd [ANS] $\square C$
4. Divide both sides of the equation by the leading coefficient a.
5. Use the expand() function to expand the result of the last answer.
6. Complete the square by adding ((b/a)/2) ${ }^{2}$ to both sides of the equation.

7. Factor the result using the factor() function.
8. Multiply both sides of the equation by $4 a^{2}$.
9. Take the square root of both sides of the equation with the constraint that $a>0$ and $b>0$ and $x>0$.

10 . Solve for x by subtracting b from both sides and then dividing by 2 a .

Note: This is only one of the two general quadratic solutions due to the constraint in step 9.

Exploring a Matrix

Exploring a 3x3 Matrix

Tip: Use the cursor in the history area to scroll the result.

Tip: Use the cursor in the history area to scroll the result.

This activity shows you how to perform several matrix operations.

Perform these steps to generate a random matrix, augment and find the identity matrix, and then solve to find an invalid value of the inverse.

1. On the Home screen, use RandSeed to set the random number generator seed to the factory default, and then use randMat() to create a random 3×3 matrix and store it in a.
2. Replace the $[2,3]$ element of the matrix with the variable x, and then use the augment() function, to augment the 3×3 identity to a and store the result in b .
3. Use rref() to "row reduce" matrix b :

The result will have the identity matrix in the first three columns and $\mathrm{a}^{\wedge-1}$ in the last three columns.
4. Solve for the value of x that will cause the inverse of the matrix to be invalid.

Enter: solve(getDenom(
2nd [ANS] $[1,4]$) $=0, x$)
Result: $x=-70 / 17$

Exploring $\boldsymbol{\operatorname { c o s }}(\mathrm{x})=\boldsymbol{\operatorname { s i n }}(\mathrm{x})$

Method 1:
 Graph Plot

Hint: Press 55 and select 5:Intersection. Respond to the screen prompts to select the two curves, and the lower and upper bounds for intersection A .

This activity uses two methods to find where $\cos (x)=\sin (x)$ for the values of x between 0 and 3π.

Perform the following steps to observe where the graphs of the functions $\mathrm{y} 1(\mathrm{x})=\cos (\mathrm{x})$ and $\mathrm{y} 2(\mathrm{x})=\sin (\mathrm{x})$ intersect.

1. In the $\mathrm{Y}=$ Editor, set $\mathrm{y} 1(\mathrm{x})=\cos (\mathrm{x})$ and $2(\mathrm{x})=\sin (\mathrm{x})$.
2. In the Window Editor, set $\mathrm{xmin}=0$ and $\mathrm{xmax}=3 \pi$.
3. Press F2 and select A:ZoomFit.

4. Find the intersection point of the two functions.
5. Note the x and y coordinates. (Repeat steps 4 and 5 to find the other intersections.)

Perform the following steps to solve the equation $\sin (\mathrm{x})=\cos (\mathrm{x})$ with respect to x.

1. On the Home screen, enter solve $(\sin (x)=\cos (x), x)$.

The solution for x is where @ $n 1$ is any integer.
2. Using the ceiling() and floor() functions, find the ceiling and floor values for the intersection points as shown.
3. Enter the general solution for x and apply the constraint for @ n 1 as shown.

Compare the result with Method 1.

$x=\left\{\begin{array}{lll}\frac{\pi}{4} & \frac{5 \cdot \pi}{4} & \frac{9 \cdot \pi}{4}\end{array}\right\}$

- $\left.x=\frac{(4 \cdot \text { 巨n } 1-3) \cdot \pi}{4} \right\rvert\,$ 巨n $1=<1$

$x=6.785398 \cdot 3.921$			
F-Milw	Efil illio	FINC	$4 r^{\prime} 30$

Finding Minimum Surface Area of a Parallelepiped

Exploring a 3D Graph of the Surface Area of a Parallelepiped

This activity shows you how to find the minimum surface area of a parallelepiped having a constant volume V. Detailed information about the steps used in this example can be found in Chapter 3: Symbolic Manipulation and Chapter 10:
3D Graphing.

Perform the following steps to define a function for the surface area of a parallelepiped, draw a 3D graph, and use the Trace tool to find a point close to the minimum surface area.

1. On the Home screen, define the function $s a(x, y, v)$ for the surface area of a parallelepiped.

Enter: define sa(x,y,v)=2*x*y+ $2 \mathrm{v} / \mathrm{x}+2 \mathrm{v} / \mathrm{y}$
2. Select the 3D Graph mode. Then enter the function for $\mathrm{z} 1(\mathrm{x}, \mathrm{y})$ as shown in this example with volume $v=300$.
3. Set the Window variables to:

eye $=$	$[60,90,0]$
$x=$	$[0,15,15]$
$y=$	$[0,15,15]$
$z=$	$[260,300]$
ncontour $=$	$[5]$

4. Graph the function and use Trace to go to the point close to the minimum value of the surface area function.

Finding the Minimum Surface Area Analytically

Hint: Press ENTER to obtain the exact result in symbolic form. Press \rightarrow ENTER to obtain the approximate result in decimal form.

Perform the following steps to solve the problem analytically on the Home screen.

1. Solve for x and y in terms of v.

Enter:
solve ($d(\mathrm{sa}(\mathrm{x}, \mathrm{y}, \mathrm{v}), \mathrm{x})=0$ and $d(\mathrm{sa}(\mathrm{x}, \mathrm{y}, \mathrm{v}), \mathrm{y})=0,\{\mathrm{x}, \mathrm{y}\})$
2. Find the minimum surface area when the value of v equals 300 .

Enter: 300 \rightarrow v
Enter: $s a\left(v^{\wedge}(1 / 3), v^{\wedge}(1 / 3), v\right)$

Running a Tutorial Script Using the Text Editor

Running a Tutorial Script

Note: The command symbol " C " is accessed from the (F2) 1:Command toolbar menu.

This activity shows you how to use the Text Editor to run a tutorial script. Detailed information about text operations can be found in Chapter 18: Text Editor.

Perform the following steps to write a script using the Text Editor, test each line, and observe the results in the history area on the Home screen.

1. Open the Text Editor, and create a new variable named demo1.

2. Type the following lines into the Text Editor.
: Compute the maximum value of f on the closed interval $[a, b]$
: assume that f is differentiable on $[a, b]$
C: define $f(x)=x^{\wedge} 3-2 x^{\wedge} 2+x-7$
C : $1 \rightarrow a: 3.22 \rightarrow b$
C : $d(f(x), x) \rightarrow d f(x)$
C : zeros($\operatorname{df}(x), x)$
C: $f(\operatorname{ans}(1))$
$\mathrm{C}: \mathrm{f}(\{\mathrm{a}, \mathrm{b}\})$
: The largest number from the previous two commands is the maximum value of the function. The smallest number is the minimum value.

3. Press F3 and select 1:Script view to show the Text Editor and the Home screen on a split-screen. Move the cursor to the first line in the Text Editor.

Note: Press F3 and select 2:Clear split to go back to a full-sized Text Editor screen.
4. Press F4 repeatedly to execute each line in the script one at a time.

5. To see the results of the script on a full-sized screen, go to the Home screen.

Decomposing a Rational Function

Decomposing a Rational Function

Note: Actual entries are displayed in reverse type in the example screens.

Hint: Move the cursor into the history area to highlight the last answer. Press ENTER to copy it to the entry line.

This activity examines what happens when a rational function is decomposed into a quotient and remainder. Detailed information about the steps used in this example can be found in Chapter 6: Basic Function Graphing and Chapter 3:
Symbolic Manipulation.

To examine the decomposition of the rational function $f(x)=\left(x^{3}-10 x^{2}-x+50\right) /(x-2)$ on a graph:

1. On the Home screen, enter the rational function as shown below and store it in a function $f(x)$.

Enter: ($\left.x^{\wedge} 3-10 x^{\wedge} 2-x+50\right) /$
$(\mathrm{x}-2) \rightarrow \mathrm{f}(\mathrm{x})$
2. Use the proper fraction function (propFrac) to split the function into a quotient and remainder.
3. Copy the last answer to the entry line.
-or-
Enter: $16 /(x-2)+x^{\wedge} 2-8 * x-17$
4. Edit the last answer in the entry line. Store the remainder to $\mathrm{y} 1(\mathrm{x})$ and the quotient to $\mathrm{y} 2(\mathrm{x})$ as shown.

Enter: $16 /(x-2) \rightarrow y 1(x)$:
$x^{\wedge} 2-8 * x-17 \rightarrow y 2(x)$
5. In the $Y=$ Editor, select the thick graphing style for $\mathrm{y} 2(\mathrm{x})$.

6. Add the original function $f(x)$ to $\mathrm{y} 3(\mathrm{x})$ and select the square graphing style.
7. In the Window Editor, set the window variables to:

$$
\begin{aligned}
& x=[-10,15,10] \\
& y=[-100,100,10]
\end{aligned}
$$

8. Draw the graph.

Observe that the global behavior of the $f(x)$ function is basically represented by the quadratic quotient $\mathrm{y} 2(\mathrm{x})$. The rational expression is basically a quadratic function as x gets very large in both the positive and negative directions.
The lower graph is $\mathrm{y} 3(\mathrm{x})=\mathrm{f}(\mathrm{x})$ graphed separately using the line style.

Studying Statistics: Filtering Data by Categories

This activity provides a statistical study of the weights of high school students using categories to filter the data. Detailed information about using the commands in this example can be found in Chapter 15: Data/Matrix Editor, and Chapter 16: Statistics and Data Plots.

Filtering Data by Categories

Each student is placed into one of eight categories depending on the student's sex and academic year (freshman, sophomore, junior, or senior). The data (weight in pounds) and respective categories are entered in the Data/Matrix Editor.

Table 1: Category vs. Description

Category (C2)	Academic Year and Sex
1	Freshman boys
2	Freshman girls
3	Sophomore boys
4	Sophomore girls
5	Junior boys
6	Junior girls
7	Senior boys
8	Senior girls

Table 2: C1 (weight of each student in pounds) vs. C2 (category)

C1	C2	C1	C2	C1	C2	C1	C2
110	1	115	3	130	5	145	7
125	1	135	3	145	5	160	7
105	1	110	3	140	5	165	7
120	1	130	3	145	5	170	7
140	1	150	3	165	5	190	7
85	2	90	4	100	6	110	8
80	2	95	4	105	6	115	8
90	2	85	4	115	6	125	8
80	2	100	4	110	6	120	8
95	2	95	4	120	6	125	8

Note: Set up several box plots to compare different subsets of the entire data set.

Perform the following steps to compare the weight of high school students to their year in school.

1. Start the Data/Matrix Editor, and create a new Data variable named students.
2. Enter the data and categories from Table 2 into columns c1 and c2, respectively.
3. Open the F2 Plot Setup toolbar menu.
4. Define the plot and filter parameters for Plot 1 as shown in this screen.
5. Copy Plot 1 to Plot 2.
6. Repeat step 5 and copy Plot 1 to Plot 3, Plot 4, and Plot 5.

Note: Only Plot 1 through Plot 5 should be selected.
7. Press F1, and modify the Include Categories item for Plot 2 through Plot 5 to the following:

Plot 2: $\{1,2\}$
(freshman boys, girls)
Plot 3: $\{7,8\}$
(senior boys, girls)
Plot 4: $\{1,3,5,7\}$
(all boys)
Plot 5: $\{2,4,6,8\}$
(all girls)
8. In the $\mathrm{Y}=$ Editor, deselect any functions that may be selected from a previous activity.
9. Display the plots by pressing F2 and selecting 9:Zoomdata.

10. Use the Trace tool to compare the median student weights for different subsets.

CBL 2/CBL Program for the TI-89 / TI-92 Plus

This activity provides a program that can be used when the TI-89 / TI-92 Plus is connected to a Calculator-Based Laboratory ${ }^{T M}$ (CBL $2^{T M} /$ CBL $^{T M}$) unit. This program works with the "Newton's Law of Cooling" experiment, and is similar to the "Coffee To Go" experiment in the CBL System Experiment Workbook. You can use your computer keyboard to type lengthy text and then use TI-GRAPH LINK to send it to the TI-89 / TI-92 Plus. More TI-89 / TI-92 Plus CBL 2/CBL programs are available from the TI web site at: education.ti.com/cbl

Program Instruction	Description
:cooltemp()	Program name
:Prgm	
:Local i	Declare local variable; exists only at run time.
:setMode("Graph","FUNCTION")	Set up the TI-89 / TI-92 Plus for function graphing.
:PlotsOff	Turn off any previous plots.
:FnOff	Turn off any previous functions.
:ClrDraw	Clear any items previously drawn on graph screens.
:CIrGraph	Clear any previous graphs.
:ClrıO	Clear the TI-89 / TI-92 Plus Program IO (input/output) screen.
:-10 \rightarrow xmin $99 \rightarrow$ xmax: $10 \rightarrow$ xscl	Set up the Window variables.
:-20 \rightarrow ymin:100 \rightarrow ymax: $10 \rightarrow$ yscl	
: 00$\} \rightarrow$ data	Create and/or clear a list named data.
: $\{0\} \rightarrow$ time	Create and/or clear a list named time.
:Send $\{1,0\}$	Send a command to clear the CBL 2/CBL unit.
:Send $1,2,1\}$	Set up Chan. 2 of the CBL 2/CBL to AutoID to record temp.
:Disp "Press ENTER to start" :Disp "graphingTemperature."	Prompt the user to press ENTER.
:Pause	
:PtText "TEMP(C)",2,99	Wait until the user is ready to start. Label the y axis of the graph. Label the x axis of the graph. Send the Trigger command to the CBL 2/CBL; collect data in real-time.
:PtText "T(S)",80,-5	
:Send $\{3,1,-1,0\}$	
-Fori199	
:For i, 1,99	Repeat next two instructions for 99 temperature readings. Get a temperature from the CBL 2/CBL and store it in a list. Plot the temperature data on a graph.
:Get data[l]	
:PndFor	
:seq(i, i, 1,99,1) $\boldsymbol{\text { time }}$	Create a list to represent time or data sample number. Plot time and data using NewPlot and the Trace tool. Display the graph. Re-label the axes.
:NewPlot 1,1,time, data,,,,4	
:DispG	
:PtText "TEMP(C)",2,99	
:PtText "T(S)",80,-5	
:EndPrgm	Stop the program.

You can also use the Calculator-Based Ranger ${ }^{\mathrm{TM}}\left(\mathrm{CBR}^{\mathrm{TM}}\right)$ to explore the mathematical and scientific relationships between distance, velocity, acceleration, and time using data collected from activities you perform.

Studying the Flight of a Hit Baseball

Setting Up a Parametric Graph and Table

This activity uses the split screen settings to show a parametric graph and a table at the same time to study the flight of a hit baseball.

Perform the following steps to study the flight of a hit baseball that has an initial velocity of 95 feet per second and an initial angle of 32 degrees.

1. Set the modes for Page 1 as shown in this screen.
2. Set the modes for Page 2 as shown in this screen.
3. In the $\mathrm{Y}=$ Editor on the left side, enter the equation for the distance of the ball at time t for $x t 1(t)$.
$x t 1(t)=95 * * * \cos \left(32^{\circ}\right)$
4. In the $Y=$ Editor, enter the equation for the height of the ball at time t for $\mathrm{yt} 1(\mathrm{t})$. yt1 $(\mathrm{t})=-16 * t^{\wedge} 2+95 * t^{*}$ $\sin \left(32^{\circ}\right)$

Hint: Press [2nd [\boxplus].

Hint: Press $\square_{\text {[TblSet]. }}$

Hint: Press $\square_{\text {[TABLE]. }}$

Note: As you move the trace cursor from tc=0.0 to tc=3.1, you will see the position of the ball at time tc.
5. Set the Window variables to:
$\begin{array}{ll}t \text { values }= & {[0,4, .1]} \\ x \text { values }= & {[0,300,50]} \\ y \text { values }= & {[0,100,10]}\end{array}$
6. Switch to the right side and display the graph.
7. Display the TABLE SETUP dialog box, and change tblStart to 0 and Δ tbl to 0.1.
8. Display the table in the left side and press \odot to highlight $\mathrm{t}=2$.
9. Switch to the right side. Press (F3), and trace the graph to show the values of xc and yc when $\mathrm{tc}=2$.

Assuming the same initial velocity of 95 feet per second, find the angle that the ball should be hit to achieve the greatest distance.

Visualizing Complex Zeros of a Cubic Polynomial

Visualizing Complex

 RootsHint: Move the cursor into the history area to highlight the last answer and press EENTER, to copy it to the entry line.
Note: The absolute value of a function forces any roots to visually just touch rather than cross the x axis.
Likewise, the absolute value of a function of two variables will force any roots to visually just touch the xy plane.
Note: The graph of $\mathrm{z} 1(\mathrm{x}, \mathrm{y})$ will be the modulus surface.

This activity describes graphing the complex zeros of a cubic polynomial. Detailed information about the steps used in this example can be found in Chapter 3: Symbolic Manipulation and Chapter 10: 3D Graphing.

Perform the following steps to expand the cubic polynomial $(x-1)(x-i)(x+i)$, find the absolute value of the function, graph the modulus surface, and use the Trace tool to explore the modulus surface.

1. On the Home screen, use the expand() function to expand the cubic expression $(x-1)(x-i)(x+i)$ and see the first polynomial.
2. Copy and paste the last answer to the entry line and store it in the function $f(x)$.
3. Use the abs() function to find the absolute value of $f(x+y i)$.
(This calculation may take about 2 minutes.)
4. Copy and paste the last answer to the entry line and store it in the function $z 1(x, y)$.
5. Set the unit to 3D graph mode, turn on the axes for graph format, and set the Window variables to:

eye $=$	$[20,70,0]$
$x=$	$[-2,2,20]$
$y=$	$[-2,2,20]$
$z=$	$[-1,2]$
ncontour $=$	$[5]$

Note: Calculating and drawing the graph takes about three minutes.
6. In the $\mathrm{Y}=$ Editor, press:

TI-89: \rightarrow (1)
TI-92 Plus: -F and set the Graph Format variables to:

Axes= ON
Labels= ON
Style= HIDDEN SURFACE
7. Graph the modulus surface.

The 3D graph is used to visually display a picture of the roots where the surface touches the xy plane.
8. Use the Trace tool to explore the function values at $x=1$ and $\mathrm{y}=0$.

9. Use the Trace tool to explore the function values at $\mathrm{x}=0$ and $\mathrm{y}=1$.

10. Use the Trace tool to explore the function values at $\mathrm{x}=0$ and $y=-1$.

Summary
Note that zc is zero for each of the function values in steps $7-9$. Thus, the complex zeros $1,-i, i$ of the polynomial $\mathrm{x}^{3}-\mathrm{x}^{2}+\mathrm{x}-1$ can be visualized with the three points where the graph of the modulus surface touches the xy plane.

Solving a Standard Annuity Problem

Finding the Interest Rate of an Annuity

Tip: To enter the "with" (|) operator:
TI-89: 1
TI-92 Plus: 2nd [']

Tip: Press [ENTER to obtain a floating-point result.

Finding the Future Value of an Annuity

This activity can be used to find the interest rate, starting principal, number of compounding periods, and future value of an annuity.

Perform the following steps to find the interest rate (i) of an annuity where the starting principal (p) is 1,000 , number of compounding periods (n) is 6 , and the future value (s) is 2,000 .

1. On the Home screen, enter the equation to solve for p.
2. Enter the equation to solve for n.
3. Enter the equation to solve for i using the "with" operator.
solve (s=p* $\left.(1+i)^{\wedge} n, i\right) \mid \mathrm{s}=2000$ and

$\mathrm{p}=1000$ and $\mathrm{n}=6$
Result: The interest rate is
12.246%.

Find the future value of an annuity using the values from the previous example where the interest rate is 14%.

Enter the equation to solve for s .
solve(s=p* (1+i)^n,s)|i=. 14 and $\mathrm{p}=1000$ and $\mathrm{n}=6$

Result: The future value at 14% interest is 2,194.97.

Computing the Time-Value-of-Money

Time-Value-ofMoney Function

Tip: You can use your computer keyboard to type lengthy text and then use TI-GRAPH LINK to send it to the TI-89 / TI-92 Plus.

This activity creates a function that can be used to find the cost of financing an item. Detailed information about the steps used in this example can be found in Chapter 17: Programming.

In the Program Editor, define the following Time-Value-of-Money (tvm) function where temp1 = number of payments, temp2 = annual interest rate, temp3 = present value, temp4 = monthly payment, temp5 = future value, and temp6 = begin- or end-of-payment period ($1=$ begining of month, $0=$ end of month).
:tvm(temp1,temp2,temp3,temp4,temp5,temp6)
:Func
:Local tempi,tempfunc,tempstr1
:- temp3+(1+temp2/1200* temp6)* temp4* ((1- (1+temp2/1200)^
(- temp1))/(temp2/1200))- temp5* (1+temp2/1200)^(- temp1) \rightarrow tempfunc
:For tempi,1,5,1
:"temp"\&exact(string(tempi)) \rightarrow tempstr1
:If when(\#tempstr1=0,false,false,true) Then
:If tempi=2
:Return approx(nsolve(tempfunc=0,\#tempstr1) | \#tempstr1>0 and \#tempstr1<100)
:Return approx(nsolve(tempfunc=0,\#tempstr1))
:Endlf
:EndFor
:Return "parameter error"
:EndFunc

Finding the Monthly Payment

Find the monthly payment on 10,000 if you make 48 payments at 10% interest per year.

On the Home screen, enter the tvm values to find pmt.

Result: The monthly payment is
 251.53.

Finding the Number of Payments

Find the number of payments it will take to pay off the loan if you could make a 300 payment each month.

On the Home screen, enter the tvm values to find n.

Result: The number of payments
 is 38.8308 .

Finding Rational, Real, and Complex Factors

Finding Factors

This activity shows how to find rational, real, or complex factors of expressions. Detailed information about the steps used in this example can be found in Chapter 3: Symbolic Manipulation.

Enter the expressions shown below on the Home screen.

1. factor $\left(x^{\wedge} 3-5 x\right)$ ENTER displays a rational result.
2. factor $\left(x^{\wedge} 3+5 x\right)$ ENTER displays a rational result.
3. factor $\left(x^{\wedge} 3-5 x, x\right)$ ENTER displays a real result.
4. cfactor $\left(x^{\wedge} 3+5 x, x\right)$ ENTER displays a complex result.

- factor $\left(x^{3}+5 \cdot x\right)$

$x \cdot\left(x^{2}+5\right)$			
factor ($\left.x^{*} 3+5 x\right)$			
F-Hilk	Fint illito	FINIS	$2 \% 0$

- factor $\left(x^{3}-5 \cdot x, x\right)$

Simulation of Sampling without Replacement

This activity simulates drawing different colored balls from an urn without replacing them. Detailed information about the steps used in this example can be found in Chapter 17: Programming.

Sampling-withoutReplacement Function

Sampling without Replacement

In the Program Editor, define drawball() as a function that can be called with two parameters. The first parameter is a list where each element is the number of balls of a certain color. The second parameter is the number of balls to select. This function returns a list where each element is the number of balls of each color that were selected.

```
:drawball(urnlist,drawnum)
:Func
:Local templist,drawlist,colordim,
    numballs,i,pick,urncum,j
:lf drawnum>sum(urnlist)
:Return "too few balls"
:dim(urnlist)>colordim
:urnlist-> templist
:newlist(colordim)}->\mathrm{ drawlist
:For i,1,drawnum,1
:sum(templist)-> numballs
:rand(numballs) }->\mathrm{ pick
:For j,1,colordim,1
:cumSum(templist)> urncum
(continued in next column)
```

:If pick \leq urncum[j] Then
:drawlist[j]+1 \rightarrow drawlist[j]
:templist[j]-1 $1 \rightarrow$ templist[j]
:Exit
:Endlf
:EndFor
:EndFor
:Return drawlist
:EndFunc

Suppose an urn contains $n 1$ balls of a color, $n 2$ balls of a second color, n3 balls of a third color, etc. Simulate drawing balls without replacing them.

1. Enter a random seed using the RandSeed command.
2. Assuming the urn contains 10 red balls and 25 white balls, simulate picking 5 balls at random from the urn without replacement. Enter drawball(\{10,25\},5).

Result: 2 red balls and 3 white balls.

Functions and Instructions

This appendix describes the syntax and the action of each TI-89 / TI-92 Plus function and instruction.

This section lists the TI-89 / TI-92 Plus functions and instructions in functional groups along with the page numbers where they are described in this appendix.

Algebra

Calculus

Graphics

\| ("with")	538	cFactor() cSolve()	425	419 cZeros	comDenom() expand()
factor()	4430				
nSolve()					

J() (integrate) arcLen() deSolve() limit() ' (prime)	532	П() (product) avgRC() fMax() nDeriv() seq()	533	$\Sigma($ ((sum) d() fMin() nint() taylor()	533
	416		417		432
	434		448		449
	460		470		472
	536		494		512

AndPic	415	BIdData	418	Circle	420
ClrDraw	420	ClrGraph	420	CyclePic	429
DrawFunc	439	Drawlnv	439	DrawParm	439
DrawPol	440	DrawSIp	440	DrwCtour	441
FnOff	449	FnOn	449	Graph	455
Line	461	LineHorz	461	LineTan	462
LineVert	462	NewPic	471	PtChg	482
PtOff	483	PtOn	483	ptTest()	483
PtText	483	PxiChg	483	PxiCrcl	483
Pxilorz	484	PxILine	484	PxiOff	484
PxiOn	484	pxITest()	484	PxiText	485
PxIVert	485	RcIGDB	488	RcIPic	489
RplcPic	493	Shade	498	StoGDB	507
StoPic	507	Style	508	Trace	515
XorPic	519	ZoomBox	521	ZoomData	522
ZoomDec	522	ZoomFit	523	ZoomIn	523
ZoomInt	523	ZoomOut	524	ZoomPrev	524
ZoomRcl	524	ZoomSqr	524	ZoomStd	525
ZoomSto	525	ZoomTrig	525		

Lists

+ (add)	526	- (subtract)	526	* (multiply)	527
/ (divide)	527	- (negate)	528	\wedge (power)	534
augment()	417	cross P()	425	cumSum()	428
dim()	437	$\operatorname{dotP}()$	439	exprlist()	444
left()	460	listrmat()	463	Δ list()	463
mat>list()	467	$\max ()$	467	mid()	468
$\min ()$	469	newList()	471	polyEval()	480
product()	482	right()	491	rotate()	491
shift()	499	SortA	506	SortD	506
sum()	508				

Math

+ (add)	526	- (subtract)	526	* (multiply)	527
/ (divide)	527	- (negate)	528	\% (percent)	528
! (factorial)	531	$\sqrt{ }()$ (sqr. root)	533	\wedge (power)	534
${ }^{\circ}$ (degree)	535	\angle (angle)	535	○, ', '	536
_ (underscore)	536	- (convert)	537	10^()	537
Ob, Oh	539	Pin	417	Cylind	429
DD	432	Dec	432	DMS	438
-Hex	456	Polar	480	Rect	489
Sphere	506	abs()	414	and	414
angle()	415	approx()	416	ceiling()	418
conj()	422	cos	423	$\cos ^{-1}()$	424
$\cosh ()$	424	$\cosh ^{-1}()$	424	E	441
$e^{\wedge}()$	441	exact()	443	floor()	448
fpart()	451	$\operatorname{gcd}()$	451	imag()	457
int()	458	intDiv()	458	iPart()	459
isPrime()	459	Icm()	460	$\ln ()$	463
$\log ()$	465	$\max ()$	467	$\min ()$	469
$\bmod ()$	469	nCr()	470	nPr()	474
P>Rx()	476	P>Ry()	476	\mathbf{r} (radian)	535
R>P $\boldsymbol{\theta}$ ()	487	R>Pr()	487	real()	489
remain()	490	rotate()	491	round()	492
shift()	499	sign()	500	$\boldsymbol{\operatorname { s i n }}()$	501
$\boldsymbol{s i n}^{-1}()$	501	$\boldsymbol{\operatorname { s i n h }}()$	502	$\boldsymbol{s i n h}^{-1}()$	502
$\boldsymbol{\operatorname { t a n }}()$	510	$\boldsymbol{t a n}^{-1}()$	511	$\boldsymbol{t a n h}()$	511
$\tanh ^{-1}()$	511	tmpCnv()	514	$\Delta \operatorname{tmpCnv}()$	514
\mathbf{x}^{-1}	538				

Matrices

+ (add)	526	- (subtract)	526	* (multiply)	527
/ (divide)	527	- (negate)	528	.+ (dot add)	530
.- (dot subt.)	531	. (dot mult.)	531	. / (dot divide)	531
.^(dot power)	531	\wedge (power)	534	augment()	417
colDim()	421	colNorm()	421	cross $\mathrm{P}($)	425
cumSum()	428	det()	436	diag()	436
dim()	437	$\operatorname{dot} P()$	439	eigVc()	442
eigVI()	442	Fill	448	identity()	456
listrmat()	463	LU	466	mat>list()	467
$\max ()$	467	mean()	467	median()	467
$\min ()$	469	mRow()	469	mRowAdd()	470
newMat()	471	norm()	473	product()	482
QR	485	randMat()	488	ref()	490
rowAdd()	492	rowDim()	492	rowNorm()	493
rowSwap()	493	rref()	493	simult()	500
stdDev()	506	subMat()	508	sum()	508
T	509	unitV()	516	variance()	517
\mathbf{x}^{-1}	538				

Programming

=	529	\#	529	<	529
\leq	530	$>$	530	\geq	530
\# (indirection)	534	\rightarrow (store)	539	\bigcirc (comment)	539
and	414	ans()	416	Archive	416
ClrErr	420	CIrGraph	420	ClrHome	421
ClrıO	421	CIrTable	421	CopyVar	422
CustmOff	428	CustmOn	428	Custom	429
Cycle	429	Define	433	DelFold	434
DelVar	434	Dialog	437	Disp	437
DispG	438	DispHome	438	DispTbl	438
DropDown	440	Else	442	Elself	442
EndCustm	443	EndDlog	443	EndFor	443
EndFunc	443	Endlf	443	EndLoop	443
EndPrgm	443	EndTBar	443	EndTry	443
EndWhile	443	entry()	443	Exec	444
Exit	444	For	450	format()	450
Func	451	Get	451	GetCalc	452
getConfg()	452	getFold()	453	getKey()	453
getMode()	453	getType()	454	getUnits()	454
Goto	455	If	456	Input	457
InputStr	458	Item	459	Lbl	459
left()	460	Local	464	Lock	464
Loop	466	MoveVar	469	NewFold	471
NewProb	472	not	473	or	475
Output	476	part()	477	PassErr	479
Pause	479	PopUp	481	Prgm	481
Prompt	482	Rename	490	Request	490
Return	491	right()	491	Send	494
SendCalc	494	SendChat	494	setFold()	495
setGraph()	495	setMode()	496	setTable()	497
setUnits()	497	Stop	507	Style	508
switch()	509	Table	510	Text	513
Then	513	Title	513	Toolbar	515
Try	515	Unarchiv	516	Unlock	516
when()	517	While	518	xor	518

Statistics

! (factorial)	531	BIdData	418	CubicReg	428
cumSum()	428	ExpReg	446	LinReg	462
LnReg	464	Logistic	465	mean()	467
median()	467	MedMed	468	nCr()	470
NewData	471	NewPlot	472	nPr()	474
OneVar	475	PlotsOff	480	PlotsOn	480
PowerReg	481	QuadReg	486	QuartReg	487
rand()	488	randNorm()	488	RandSeed	488
ShowStat	500	SinReg	503	SortA	506
SortD	506	stdDev()	506	TwoVar	516
variance()	517				

Strings

\& (append)	532	\# (indirection)	534	char()	419
dim()	437	expr()	446	format()	450
inString()	458	left()	460	mid()	468
ord()	476	right()	491	rotate()	491
shift()	499	string()	508		

Alphabetical Listing of Operations

Operations whose names are not alphabetic (such as + , !, and $>$) are listed at the end of this appendix, starting on page 526. Unless otherwise specified, all examples in this section were performed in the default reset mode, and all variables are assumed to be undefined. Additionally, due to formatting restraints, approximate results are truncated at three decimal places (3.14159265359 is shown as 3.141...).

abs()	MATH/Number menu	
	abs(expression 1$) \Rightarrow$ expression abs(list1) \Rightarrow list abs(matrix1) \Rightarrow matrix	$\operatorname{abs}(\{\pi / 2,-\pi / 3\})$ ENTER $\left\{\frac{\pi}{2} \frac{\pi}{3}\right\}$ abs(2-3i) ENTER
	Returns the absolute value of the argument.	abs (z) ENTER $\|z\|$
	If the argument is a complex number, returns the number's modulus.	$a b s(x+y i)$ ENTER $\sqrt{x^{2}+y^{2}}$
	Note: All undefined variables are treated as real variables.	
and	MATH/Test and MATH/Base menus	
	Boolean expression1 and expression2 \Rightarrow Boolean expression Boolean list1 and list2 \Rightarrow Boolean list Boolean matrix1 and matrix2 \Rightarrow Boolean matrix	$\begin{aligned} & x \geq 3 \text { and } x \geq 4 \text { ENTER } \\ & \{x \geq 3, x \leq 0\} \text { and }\{x \geq 4, x \leq-2\} \\ & \\ & \\ & \end{aligned}\left\{x \geq 4 \begin{array}{l} \text { ENTER } \\ \end{array}\right.$
	Returns true or false or a simplified form of the original entry.	
	integer 1 and integer2 \Rightarrow integer	In Hex base mode:
	Compares two real integers bit-by-bit using an and operation. Internally, both integers are converted to signed, 32 -bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1 ; otherwise, the result is 0 . The returned value represents the bit results, and is displayed according to the Base mode.	0h7AC36 and Oh3D5F ENTER 0h2C16 Important: Zero, not the letter O . In Bin base mode: Ob100101 and Ob100 ENTER Ob100
		In Dec base mode:
	You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0 b or 0 h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).	37 and 0b100 ENTER Note: A binary entry can have up to 32
	If you enter a decimal integer that is too large for a signed, 32-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range.	Note: A binary entry can have up to 32 digits (not counting the 0 b prefix). A hexadecimal entry can have up to 8 digits.

AndPic picVar[, row, column]
Displays the Graph screen and logically "ANDS" the picture stored in picVar and the current graph screen at pixel coordinates (row, column).
picVar must be a picture type.
Default coordinates are $(0,0)$, which is the upper left corner of the screen.

In function graphing mode and $Y=$ Editor:
$y 1(x)=\cos (x) \oplus$
TI-89: 2nd [F6] Style = 3:Square
TI-92 Plus: F6 Style = 3:Square
F2 Zoom $=7:$ ZoomTrig
F1 = 2:Save Copy As...
Type = Picture, Variable = PIC1

$y 2(x)=\sin (x)$
TI-89: 2nd [F6] Style $=3$: Square
TI-92 Plus: F6 Style $=3$:Square
y1 = no checkmark (F4 to deselect)
[F2] Zoom $=7:$ ZoomTrig

TI-89: HOME
TI-92 Plus: $\rightarrow[\mathrm{HOME}]$
AndPic PIC1 ENTER Done

angle() MATH/Complex menu

angle(expression1) \Rightarrow expression
Returns the angle of expression1, interpreting expression 1 as a complex number.

Note: All undefined variables are treated as real variables.

In Degree angle mode:
angle ($0+2 \boldsymbol{i}$) ENTER 90

In Radian angle mode:
angle ($1+\boldsymbol{i}$) ENTER
$\frac{\pi}{4}$
angle(z) ENTER
angle(x+iy) ENTER

- angle(z) $\frac{-\pi \cdot(\operatorname{sign}(z)-1)}{2}$
- angle ($\mathrm{x}+\mathbf{i} \cdot \mathrm{y})$ $\frac{\pi \cdot \operatorname{sign}(y)}{2}-\tan -1\left(\frac{x}{y}\right)$
angle(list1) \Rightarrow list
angle(matrix1) \Rightarrow matrix
Returns a list or matrix of angles of the elements in list1 or matrix1, interpreting each element as a complex number that represents a two-dimensional rectangular coordinate point.

In Radian angle mode:
angle($\{1+2 \boldsymbol{i}, 3+0 \boldsymbol{i}, 0-4 \boldsymbol{i}\})$ ENTER

ans()	[2nd [ANS] key
	$\Rightarrow \text { value }$ teger) \Rightarrow valu

Returns a previous answer from the Home screen history area.
integer, if included, specifies which previous answer to recall. Valid range for integer is from 1 to 99 and cannot be an expression. Default is 1 , the most recent answer.

To use ans() to generate the Fibonacci sequence on the Home screen, press:
1 ENTER 1
2nd [ANS] \dagger 2nd [ANS] © $\ddagger 2$ ENTER 2
ENTER 3
ENTER 5

1 ENTER	1
1 ENTER	1
2nd [ANS] \oplus 2nd [ANS] $\odot \backsim 2$ ENTER	2
ENTER	3
ENTER	5

approx() MATH/Algebra menu

approx(expression) \Rightarrow value
$\operatorname{approx}(\pi)$ ENTER
3.141...

Returns the evaluation of expression as a decimal value, when possible, regardless of the current Exact/Approx mode.

This is equivalent to entering expression and pressing ENTER on the Home screen.
$\operatorname{approx}($ list1) \Rightarrow list
approx (matrix1) \Rightarrow matrix
Returns a list or matrix where each element has been evaluated to a decimal value, when possible.

$\operatorname{approx}(\{\sin (\pi), \cos (\pi)\})$ ENTER
 \{0. -1. $\}$

approx $([\sqrt{ }(2), \sqrt{ }(3)])$ ENTER

$$
[1.414 \ldots \quad 1.732 \ldots]
$$

Archive CATALOG

Archive var1 [, var2] [, var3] ..
Moves the specified variables from RAM to the user data archive memory.

You can access an archived variable the same as you would a variable in RAM. However, you cannot delete, rename, or store to an archived variable because it is locked automatically.

To unarchive variables, use Unarchiv.
$10 \rightarrow$ arctest ENTER 10
Archive arctest ENTER Done
5*arctest ENTER 50
$15 \rightarrow$ arctest ENTER

ESC
Unarchiv arctest ENTER Done
$15 \rightarrow$ arctest ENTER 15

arcLen() MATH/Calculus menu

$\operatorname{arcLen}($ expression1,var,start,end $) \Rightarrow$ expression $\operatorname{arcLen}(\cos (x), x, 0, \pi)$ ENTER 3.820...
Returns the arc length of expression 1 from start to end with respect to variable var.

Regardless of the graphing mode, arc length is calculated as an integral assuming a function mode definition.
$\operatorname{arcLen}(f(x), x, a, b)$ ENTER
b
$\int_{a} \sqrt{\left(\frac{d}{d x}(\mathrm{f}(\mathrm{x}))\right)^{2}+1} d \mathrm{x}$
$\operatorname{arcLen}($ list1,var,start,end) \Rightarrow list
$\operatorname{arcLen}(\{\sin (x), \cos (x)\}, x, 0, \pi)$
$\{3.820 \ldots 3.820 \ldots\}$
Returns a list of the arc lengths of each element of list1 from start to end with respect to var.
augment(list1,list2) \Rightarrow list
Returns a new list that is list2 appended to the end of list1.

```
augment({1, -3, 2},{5,4}) ENTER
```

 \(\left\{\begin{array}{lllll}1 & -3 & 2 & 5 & 4\end{array}\right\}\)
 -

$[1,2 ; 3,4] \rightarrow$ M1 ENTER $\quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

$$
[5 ; 6] \rightarrow \text { M2 ENTER }
$$

```
augment(matrix1, matrix2) }=>\mathrm{ matrix
augment(matrix1; matrix2) }=>\mathrm{ matrix
\[
\text { augment } \text { (matrix } 1 ; \text { matrix } 2) \Rightarrow \text { matrix }
\]
```

Returns a new matrix that is matrix2 appended to matrix1. When the "," character is used, the matrices must have equal row dimensions, and matrix2 is appended to matrix1 as new columns. When the ";" character is used, the matrices must have equal column dimensions, and matrix2 is appended to matrix1 as new rows. Does not alter matrix1 or matrix2.

avgRC() CATALOG

$\operatorname{avgRC}($ expression $1, \operatorname{var}[, h]) \Rightarrow$ expression
Returns the forward-difference quotient (average rate of change).
expression1 can be a user-defined function name (see Func).
h is the step value. If h is omitted, it defaults to 0.001 .

Note that the similar function nDeriv() uses the central-difference quotient.

-Bin MATH/Base menu

integer 1 •Bin \Rightarrow integer

Converts integer 1 to a binary number. Binary or hexadecimal numbers always have a 0 b or 0 h prefix, respectively.

- Zero, not the letter O, followed by b or h.

Ob binaryNumber
Oh hexadecimalNumber
L A binary number can have up to 32 digits. A hexadecimal number can have up to 8 .
Without a prefix, integer 1 is treated as decimal (base 10). The result is displayed in binary, regardless of the Base mode.

If you enter a decimal integer that is too large for a signed, 32-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range.
$\operatorname{avgRC}(f(x), x, h)$ ENTER

$$
\frac{f(x+h)-f(x)}{h}
$$

$\operatorname{avgRC}(\sin (x), x, h) \mid x=2$ ENTER $\frac{\sin (h+2)-\sin (2)}{h}$
$\operatorname{avgRC}\left(x^{\wedge} 2-x+2, x\right)$ ENTER

$$
2 . \cdot(x-.4995)
$$

$\operatorname{avgRC}\left(x^{\wedge} 2-x+2, x, .1\right)$ ENTER 2. $\cdot(x-.45)$
$\operatorname{avgRC}\left(x^{\wedge} 2-x+2, x, 3\right)$ ENTER $2 \cdot(x+1)$

256 Bin ENTER
Ob100000000
0h1F Bin ENTER
0b11111

BldData [dataVar]

Creates data variable dataVar based on the information used to plot the current graph. BIdData is valid in all graphing modes.

If dataVar is omitted, the data is stored in the system variable sysData.

Note: The first time you start the Data/Matrix Editor after using BIdData, dataVar or sysData (depending on the argument you used with BIdData) is set as the current data variable.

The incremental values used for any independent variables (x in the example to the right) are calculated according to the Window variable values.

For information about the increments used to evaluate a graph, refer to the chapter that describes that graphing mode.

3D graphing mode has two independent variables. In the sample data to the right, notice that x remains constant as y increments through its range of values.

Then, x increments to its next value and y again increments through its range. This pattern continues until \times has incremented through its range.

ceiling() MATH/Number menu

ceiling(expression1) \Rightarrow integer

In function graphing mode and Radian angle mode:

$8 * \sin (x) \rightarrow y 1(x)$ ENTER	Done
$2 * \sin (x) \rightarrow y 2(x)$ ENTER	Done
ZoomStd ENTER	

TI-89: HOME
TI-92 Plus: [HOME]
BldData ENTER
Done
APPS 6 ENTER

Note: The following sample data is from a 3D graph.

Returns the nearest integer that is \geq the argument.

The argument can be a real or a complex number.

Note: See also floor().

Returns a list or matrix of the ceiling of each element.
ceiling([0,-3.2i;1.3,4]) ENTER
$\left[\begin{array}{cc}0 & -3 . \cdot \boldsymbol{i} \\ 2 . & 4\end{array}\right]$

cFactor() MATH/Algebra/Complex menu

cFactor(expression1[, var]) \Rightarrow expression
cFactor(list1[,var]) \Rightarrow list
cFactor (matrix $1[$,var $]$) \Rightarrow matrix
cFactor(expression1) returns expression1 factored with respect to all of its variables over a common denominator.
expression 1 is factored as much as possible toward linear rational factors even if this introduces new non-real numbers. This alternative is appropriate if you want factorization with respect to more than one variable.
cFactor $\left(a^{\wedge} 3 * x^{\wedge} 2+a * x^{\wedge} 2+a^{\wedge} 3+a\right)$
ENTER

$$
a \cdot(a+-\boldsymbol{i}) \cdot(a+\boldsymbol{i}) \cdot(x+-\boldsymbol{i}) \cdot(x+\boldsymbol{i})
$$

cFactor $\left(x^{\wedge} 2+4 / 9\right)$ ENTER

$$
\frac{(3 \cdot x+-2 \cdot \boldsymbol{i}) \cdot(3 \cdot x+2 \cdot \boldsymbol{i})}{9}
$$

cFactor $\left(x^{\wedge} 2+3\right)$ ENTER $x^{2}+3$
cFactor $\left(x^{\wedge} 2+a\right)$ ENTER $x^{2}+a$
cFactor(expression1,var) returns expression1 factored with respect to variable var.
expression 1 is factored as much as possible toward factors that are linear in var, with perhaps non-real constants, even if it introduces irrational constants or subexpressions that are irrational in other variables.

The factors and their terms are sorted with var as the main variable. Similar powers of var are collected in each factor. Include var if factorization is needed with respect to only that variable and you are willing to accept irrational expressions in any other variables to increase factorization with respect to var. There might be some incidental factoring with respect to other variables.

For the AUTO setting of the Exact/Approx mode, including var also permits approximation with floating-point coefficients where irrational coefficients cannot be explicitly expressed concisely in terms of the built-in functions. Even when there is only one variable, including var might yield more complete factorization.
cFactor ($\left.a^{\wedge} 3 * x^{\wedge} 2+a * x^{\wedge} 2+a^{\wedge} 3+a, x\right)$ ENTER

$$
\mathrm{a} \cdot\left(\mathrm{a}^{2}+1\right) \cdot(\mathrm{x}+-\boldsymbol{i}) \cdot(\mathrm{x}+\boldsymbol{i})
$$

cFactor $\left(x^{\wedge} 2+3, x\right)$ ENTER

$$
(x+\sqrt{3} \cdot \boldsymbol{i}) \cdot(x+-\sqrt{3} \cdot \boldsymbol{i})
$$

cFactor $\left(x^{\wedge} 2+a, x\right)$ ENTER

$$
(x+\sqrt{a} \cdot-\boldsymbol{i}) \cdot(x+\sqrt{a} \cdot \boldsymbol{i})
$$

cFactor ($x^{\wedge} 5+4 x^{\wedge} 4+5 x^{\wedge} 3-6 x-3$)
ENTER

$$
x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3
$$

cFactor(ans(1), x) ENTER
$(x-.965) \cdot(x+.612) \cdot(x+2.13) \cdot$ $(x+1.11-1.07 \cdot \boldsymbol{i}) \cdot$ $(x+1.11+1.07 \cdot i)$

Note: See also factor().
char() MATH/String menu
char(integer) \Rightarrow character
char(38) ENTER
" \& "
Returns a character string containing the character numbered integer from the TI-89 / TI-92 Plus character set. See Appendix B for a complete listing of character codes.

The valid range for integer is $0-255$.

Circle catalog

Circle $x, y, r[$, drawMode $]$
Draws a circle with its center at window coordinates (x, y) and with a radius of r. x, y, and r must be real values.

If drawMode $=1$, draws the circle (default). If drawMode $=0$, turns off the circle. If $d r a w M o d e=-1$, inverts pixels along the circle.

Note: Regraphing erases all drawn items. See also PxICrcl.

In a ZoomSqr viewing window:
ZoomSqr:Circle 1,2,3 ENTER

CATALOG

CIrDraw

Clears the Graph screen and resets the Smart Graph feature so that the next time the Graph screen is displayed, the graph will be redrawn.

While viewing the Graph screen, you can clear all drawn items (such as lines and points) by pressing F4 (ReGraph) or pressing:
TI-89: 2nd [F6]
TI-92 Plus: F6
and selecting 1:CIrDraw.

ClrErr CATALOG

ClrErr

Clears the error status. It sets errornum to zero and clears the internal error context variables.

The Else clause of the Try...EndTry in the program should use CIrErr or PassErr. If the error is to be processed or ignored, use ClrErr. If what to do with the error is not known, use PassErr to send it to the next error handler. If there are no more pending Try...EndTry error handlers, the error dialog box will be displayed as normal.

Note: See also PassErr and Try.

Program listing:
:clearerr()
: Prgm
:Plots0ff:Fn0ff:ZoomStd
: For i, 0,238
: $\Delta x *$ i $+x m i n \rightarrow x \operatorname{cord}$
: Try
: Pton xcord, $1 n(x c o r d)$
: Else
: If errornum=800 or
errornum=260 Then
: Clrerr oclear the error
: Else
: PassErr opass on any other
error
: EndIf
: EndTry
: EndFor
: EndPrgm

CIrGraph catalog

ClrGraph

Clears any functions or expressions that were graphed with the Graph command or were created with the Table command. (See Graph or Table.)

Any previously selected $\mathrm{Y}=$ functions will be graphed the next time that the graph is displayed.

ClrHome catalog

ClrHome

Clears all items stored in the entry() and ans() Home screen history area. Does not clear the current entry line.

While viewing the Home screen, you can clear the history area by pressing F1 and selecting 8:Clear Home.

For functions such as solve() that return arbitrary constants or integers (@1, @2, etc.), ClrHome resets the suffix to 1 .

CIrIO CATALOG

CIrIO
Clears the Program I/O screen.

CIrTable catalog

CIrTable

Clears all table values. Applies only to the ASK setting on the Table Setup dialog box.

While viewing the Table screen in Ask mode, you can clear the values by pressing F1 and selecting 8:Clear Table.

colDim() MATH/Matrix/Dimensions menu

colDim (matrix) \Rightarrow expression
colDim([0,1,2;3,4,5]) ENTER
Returns the number of columns contained in matrix.

Note: See also rowDim().

colNorm() MATH/Matrix/Norms menu

colNorm(matrix) \Rightarrow expression
Returns the maximum of the sums of the absolute values of the elements in the columns in matrix.
$[1,-2,3 ; 4,5,-6] \rightarrow$ mat ENTER

$$
\left[\begin{array}{ccc}
1 & -2 & 3 \\
4 & 5 & -6
\end{array}\right]
$$

colNorm(mat) ENTER

Note: Undefined matrix elements are not allowed. See also rowNorm().

comDenom() MATH/Algebra menu

$$
\begin{aligned}
& \text { comDenom(expression1[,var]) } \Rightarrow \text { expression } \\
& \text { comDenom(list1[,var]) } \Rightarrow \text { list } \\
& \text { comDenom(matrix } 1[, v a r]) \Rightarrow \text { matrix } \\
& \text { comDenom(expression1) returns a reduced ratio } \\
& \text { of a fully expanded numerator over a fully } \\
& \text { expanded denominator. } \\
& \text { comDenom (} \left.\left(y^{\wedge} 2+y\right) /(x+1)^{\wedge} 2+y^{\wedge} 2+y\right) \\
& \text { ENTER } \\
& \text { - combenom }\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y\right) \\
& \frac{x^{2} \cdot y^{2}+x^{2} \cdot y+2 \cdot x \cdot y^{2}+2}{x^{2}+2 \cdot x+1}
\end{aligned}
$$

comDenom(expression1,var) returns a reduced ratio of numerator and denominator expanded with respect to var. The terms and their factors are sorted with var as the main variable. Similar powers of var are collected. There might be some incidental factoring of the collected coefficients. Compared to omitting var, this often saves time, memory, and screen space, while making the expression more comprehensible. It also makes subsequent operations on the result faster and less likely to exhaust memory.

If var does not occur in expression1, comDenom(expression1,var) returns a reduced ratio of an unexpanded numerator over an unexpanded denominator. Such results usually save even more time, memory, and screen space. Such partially factored results also make subsequent operations on the result much faster and much less likely to exhaust memory.

Even when there is no denominator, the comden function is often a fast way to achieve partial factorization if factor() is too slow or if it exhausts memory.

Hint: Enter this comden() function definition and routinely try it as an alternative to comDenom() and factor().
comDenom ($\left(y^{\wedge} 2+y\right) /(x+1)$
^2+y^2+y, x) ENTER

- Combenom $\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y, y\right.$
$\left.\frac{x^{2} \cdot y \cdot(y+1)+2 \cdot x \cdot y \cdot(y+1)}{x^{2}+2 \cdot x+1}\right)$
comDenom (($\left.y^{\wedge} 2+y\right) /(x+1)$
$\left.\wedge 2+y^{\wedge} 2+y, y\right)$ ENTER
- comDenom $\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y, v\right.$
$\left.\frac{y^{2} \cdot\left(x^{2}+2 \cdot x+2\right)+y \cdot\left(x^{2}+\right.}{x^{2}+2 \cdot x+1}\right)$
comDenom(exprn, abc) \rightarrow comden
(exprn) ENTER Done
comden $\left(\left(y^{\wedge} 2+y\right) /(x+1)^{\wedge} 2+y^{\wedge} 2+y\right)$
ENTER
- comden $\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y\right)$
$\frac{\left(x^{2}+2 \cdot x+2\right) \cdot y \cdot(y+1)}{(x+1)^{2}}$
comden (1234 $x^{\wedge} 2 *\left(y^{\wedge} 3-y\right)+2468 x$
* $\left.\left(y^{\wedge} 2-1\right)\right)$ ENTER
$1234 \cdot x \cdot(x \cdot y+2) \cdot\left(y^{2}-1\right)$

conj() MATH/Complex menu

conj(expression1) \Rightarrow expression
$\operatorname{conj}(1+2 \boldsymbol{i})$ ENTER
$1-2 \cdot i$
conj(list1) \Rightarrow list
conj(matrix1) \Rightarrow matrix
Returns the complex conjugate of the argument.

Note: All undefined variables are treated as real variables.
$\operatorname{conj}\left(\left[2,1-3 \boldsymbol{i} ;{ }^{-} \boldsymbol{i},-7\right]\right)$ ENTER
$\left[\begin{array}{cc}2 & 1+3 \cdot i \\ i & -7\end{array}\right]$
conj(z)
Z
$\operatorname{conj}(x+i y) \quad x+{ }^{-i} \cdot y$

CopyVar catalog

CopyVar var1, var2

Copies the contents of variable var1 to var2. If var2 does not exist, CopyVar creates it.

Note: CopyVar is similar to the store instruction (\rightarrow) when you are copying an expression, list, matrix, or character string except that no simplification takes place when using CopyVar. You must use CopyVar with non-algebraic variable types such as Pic and GDB variables.
$\cos ($ expression 1) \Rightarrow expression $\boldsymbol{\operatorname { c o s } (\text { list1 })} \Rightarrow$ list
$\cos ($ expression 1) returns the cosine of the argument as an expression.
$\cos ($ list1) returns a list of the cosines of all elements in list1.

Note: The argument is interpreted as either a degree or radian angle, according to the current angle mode setting. You can use ${ }^{\circ}$ or ${ }^{r}$ to override the angle mode temporarily.

In Degree angle mode:
$\cos \left((\pi / 4)^{r}\right)$ ENTER $\frac{\sqrt{2}}{2}$
$\cos (45)$ ENTER
$\cos (\{0,60,90\})$ ENTER $\{11 / 20\}$
In Radian angle mode:
$\cos (\pi / 4)$ ENTER
$\cos \left(45^{\circ}\right)$ ENTER
$\cos ($ squareMatrix1) \Rightarrow squareMatrix
Returns the matrix cosine of squareMatrix1. This is not the same as calculating the cosine of each element.

When a scalar function $f(A)$ operates on squareMatrix1 (A), the result is calculated by the algorithm:

1. Compute the eigenvalues $\left(\lambda_{\mathrm{i}}\right)$ and eigenvectors $\left(V_{i}\right)$ of A.
squareMatrix1 must be diagonalizable. Also, it cannot have symbolic variables that have not been assigned a value.
2. Form the matrices:

$$
\mathrm{B}=\left[\begin{array}{llll}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & \lambda_{\mathrm{n}}
\end{array}\right] \text { and } \mathrm{X}=\left[\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}\right]
$$

3. Then $\mathrm{A}=\mathrm{X} \mathrm{B} \mathrm{X}^{-1}$ and $\mathrm{f}(\mathrm{A})=\mathrm{Xf}(\mathrm{B}) \mathrm{X}^{-1}$. For example, $\cos (A)=X \cos (B) X^{-1}$ where:
$\cos (\mathrm{B})=\left[\begin{array}{cccc}\cos \left(\lambda_{1}\right) & 0 & \ldots & 0 \\ 0 & \cos \left(\lambda_{2}\right) & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & \cos \left(\lambda_{n}\right)\end{array}\right]$
All computations are performed using floating-point arithmetic.

In Radian angle mode:
$\cos ([1,5,3 ; 4,2,1 ; 6,-2,1])$ ENTER
$\left[\begin{array}{lll}.212 \ldots . . & .205 \ldots & .121 \ldots \\ .160 \ldots . & .259 \ldots & .037 \ldots \\ .248 \ldots & -.090 \ldots & .218 \ldots\end{array}\right]$

$\cos ^{-1}()$	TI-89: $\square^{\left[\mathrm{COS}^{-1}\right]}$ key TI-92 Plus: 2nd [co	
	$\cos ^{-1}$ (expression 1$) \Rightarrow$ expression $\cos ^{-1}($ list 1$) \Rightarrow$ list $\cos ^{-1}$ (expression1) returns the angle whose cosine is expression1 as an expression. $\cos ^{-1}($ list1) returns a list of the inverse cosines of each element of list1. Note: The result is returned as either a degree or radian angle, according to the current angle mode setting.	In Degree angle mode: $\cos ^{-1}(1)$ ENTER In Radian angle mode: $\begin{aligned} & \cos ^{-1}(\{0, .2, .5\}) \text { ENTER } \\ & \qquad\left\{\frac{\pi}{2} \quad 1.369 \ldots \quad 1.047 \ldots\right\} \end{aligned}$
$\cos ^{-1}($ squareMatrix1) \Rightarrow squareMatrix Returns the matrix inverse cosine of squareMatrix1. This is not the same as calculating the inverse cosine of each element. For information about the calculation method, refer to $\boldsymbol{\operatorname { c o s } () .}$ squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.		In Radian angle mode and Rectangular complex format mode: $\cos ^{-1}([1,5,3 ; 4,2,1 ; 6,-2,1])$ ENTER $\left[\begin{array}{lll} 1.734 \ldots+.064 \ldots \cdot \boldsymbol{i} & -1.490 \ldots+2.105 \ldots \cdot . . . & \ldots \\ -.725 \ldots+1.515 \ldots \cdot \boldsymbol{i} & .623 \ldots+.778 \ldots \cdot \boldsymbol{i} & \ldots \\ -2.083 \ldots+2.632 \ldots \cdot \boldsymbol{i}^{\ldots} & 1.790 \ldots-. .-1.271 \ldots \cdot \end{array}\right]$
cosh()	MATH/Hyperbolic menu	
	$\cosh ($ expression 1$) \Rightarrow$ expression $\cosh ($ list1 $) \Rightarrow$ list cosh (expression1) returns the hyperbolic cosine of the argument as an expression. cosh (list1) returns a list of the hyperbolic cosines of each element of list1.	$\cosh (1.2)$ ENTER $1.810 \ldots$ $\cosh (\{0,1.2\})$ ENTER $\quad\left\{\begin{array}{ll}1.810 \ldots\end{array}\right\}$
	sh(squareMatrix1) \Rightarrow squareMatrix Returns the matrix hyperbolic cosine of squareMatrix1. This is not the same as calculating the hyperbolic cosine of each element. For information about the calculation method, refer to $\cos ()$. squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.	In Radian angle mode: $\cosh ([1,5,3 ; 4,2,1 ; 6,-2,1])$ ENTER $\left[\begin{array}{lll} 421.255 & 253.909 & 216.905 \\ 327.635 & 255.301 & 202.958 \\ 226.297 & 216.623 & 167.628 \end{array}\right]$
$\cosh ^{-1}($	() MATH/Hyperbolic menu	
	cosh $^{-1}$ (expression1) \Rightarrow expression $\cosh ^{-1}($ list1 $) \Rightarrow$ list $\cosh ^{-1}$ (expression1) returns the inverse hyperbolic cosine of the argument as an expression. $\cosh ^{-1}$ (list1) returns a list of the inverse hyperbolic cosines of each element of list1	$\begin{aligned} & \cosh ^{-1}(1) \text { ENTER } \\ & \cosh ^{-1}(\{1,2.1,3\}) \text { ENTER } \\ & \left\{\begin{array}{lll} 0 & 1.372 \ldots & \cosh ^{-1}(3) \end{array}\right\} \end{aligned}$

$\cosh ^{-1}($ squareMatrix1) \Rightarrow squareMatrix
Returns the matrix inverse hyperbolic cosine of squareMatrix1. This is not the same as calculating the inverse hyperbolic cosine of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

crossP() MATH/Matrix/Vector ops menu

cSolve() MATH/Algebra/Complex menu

cSolve(equation, var) \Rightarrow Boolean expression
Returns candidate complex solutions of an equation for var. The goal is to produce candidates for all real and non-real solutions. Even if equation is real, cSolve() allows nonreal results in real mode.

Although the TI-89 / TI-92 Plus processes all undefined variables as if they were real, cSolve() can solve polynomial equations for complex solutions.
cSolve() temporarily sets the domain to complex during the solution even if the current domain is real. In the complex domain, fractional powers having odd denominators use the principal rather than the real branch. Consequently, solutions from solve() to equations involving such fractional powers are not necessarily a subset of those from cSolve().

In Radian angle mode and Rectangular complex format mode:
$\cosh ^{-1}([1,5,3 ; 4,2,1 ; 6,-2,1])$
ENTER
$\left[\begin{array}{lll}2.525 \ldots+1.734 \ldots \cdot \boldsymbol{i} & -.009 \ldots-1.490 \ldots \cdot \boldsymbol{i} & \ldots \\ .486 \ldots-. . .725 \ldots \cdot \boldsymbol{i} & 1.662 \ldots+.623 \ldots \cdot \boldsymbol{i} & \ldots \\ -.322 \ldots-2.083 \ldots \cdot \boldsymbol{i} & 1.267 \ldots+1.790 \ldots \cdot \boldsymbol{i} & \ldots\end{array}\right]$

cross $\mathbf{P}($ list1, list2) \Rightarrow list
$\begin{array}{l}\text { Returns the cross product of } \text { list1 } \text { and } \text { list2 as } \\ \text { a list. } \\ \text { list1 and } \text { list2 must have equal dimension, and } \\ \text { the dimension must be either } 2 \text { or } 3 \text {. }\end{array}$

cross $\mathbf{P}($ list1, list2) \Rightarrow list
$\begin{array}{l}\text { Returns the cross product of } \text { list1 } \text { and } \text { list2 as } \\ \text { a list. } \\ \text { list1 and } \text { list2 must have equal dimension, and } \\ \text { the dimension must be either } 2 \text { or } 3 \text {. }\end{array}$

cross $\mathbf{P}($ list1, list2) \Rightarrow list
$\begin{array}{l}\text { Returns the cross product of } \text { list1 } \text { and } \text { list2 as } \\ \text { a list. } \\ \text { list1 and } \text { list2 must have equal dimension, and } \\ \text { the dimension must be either } 2 \text { or } 3 \text {. }\end{array}$

cross $\mathbf{P}($ list1, list2) \Rightarrow list
$\begin{array}{l}\text { Returns the cross product of } \text { list1 } \text { and } \text { list2 as } \\ \text { a list. } \\ \text { list1 and } \text { list2 must have equal dimension, and } \\ \text { the dimension must be either } 2 \text { or } 3 \text {. }\end{array}$

cross $\mathbf{P}($ list1, list2) \Rightarrow list
$\begin{array}{l}\text { Returns the cross product of } \text { list1 } \text { and } \text { list2 as } \\ \text { a list. } \\ \text { list1 and } \text { list2 must have equal dimension, and } \\ \text { the dimension must be either } 2 \text { or } 3 \text {. }\end{array}$

cross \mathbf{P} (vector1, vector2) \Rightarrow vector
Returns a row or column vector (depending on the arguments) that is the cross product of vector 1 and vector2.

Both vector1 and vector2 must be row vectors, or both must be column vectors. Both vectors must have equal dimension, and the dimension must be either 2 or 3 .
$\operatorname{crossP}(\{a 1, b 1\},\{a 2, b 2\})$ ENTER $\{0 \quad 0 \quad a 1 \cdot b 2-a 2 \cdot b 1\}$
$\operatorname{cross} P(\{0.1,2.2,-5\},\{1,-.5,0\})$
ENTER

$$
\{-2.5-5 .-2.25\}
$$

$\operatorname{crossP}([1,2],[3,4])$ ENTER

$$
\left[\begin{array}{lll}
0 & 0 & -2
\end{array}\right]
$$

$\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]$
\qquad

\qquad

$\operatorname{crossP}([1,2,3],[4,5,6])$ ENTER
$\left[\begin{array}{ll}-3 & 6\end{array}\right]$
$\left[\begin{array}{rrr}-3 & 6 & -3\end{array}\right]$
cSolve() starts with exact symbolic methods. Except in EXACT mode, cSolve() also uses iterative approximate complex polynomial factoring, if necessary.

Note: See also cZeros(), solve(), and zeros().
Note: If equation is non-polynomial with functions such as abs(), angle(), conj(), real(), or imag(), you should place an underscore (TI-89: [_] TI-92 Plus: 2nd [_]) at the end of var. By default, a variable is treated as a real value.
If you use $v a r_{-}$, the variable is treated as complex.

You should also use var_for any other variables in equation that might have unreal values. Otherwise, you may receive unexpected results.

Display Digits mode in Fix 2:

```
exact(cSolve(x^5+4x^4+5x
    ^3-6x-3=0,x)) ENTER
cSolve(ans(1),x) ENTER
```

$\left.\begin{array}{r}\text { - exact (csolve }\left(x^{5}+4 \cdot x^{4}+5 v\right. \\ \quad x \cdot\left(x^{4}+4 \cdot x^{3}+5 \cdot x^{2}-6\right)=3 \\ -\operatorname{csolve}\left(x \cdot\left(x^{4}+4 \cdot x^{3}+5 \cdot x^{2}\right.\right. \\ x=-1.1138+1.07314 \cdot i \text { or }\end{array} \right\rvert\,$
z is treated as real:

$$
\text { cSolve }(\operatorname{conj}(z)=1+\boldsymbol{i}, z) \text { ENTER }
$$

$$
z=1+\boldsymbol{i}
$$

z_{-}is treated as complex:
cSolve(conj($\left.\left.z_{-}\right)=1+\boldsymbol{i}, z_{-}\right)$ENTER $z_{-}=1-i$
cSolve(equation1 and equation2 [and ...],
\{varOrGuess1, varOrGuess2 [, ...]\})
\Rightarrow Boolean expression
Returns candidate complex solutions to the simultaneous algebraic equations, where each varOrGuess specifies a variable that you want to solve for.

Optionally, you can specify an initial guess for a variable. Each varOrGuess must have the form:
variable

- or -
variable $=$ real or non-real number
For example, x is valid and so is $\mathrm{x}=3+\boldsymbol{i}$.
If all of the equations are polynomials and if you do NOT specify any initial guesses, cSolve() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all complex solutions.

Complex solutions can include both real and non-real solutions, as in the example to the right.

Note: The following examples use an underscore _ (TI-89: \square [_]
TI-92 Plus: $2 n d][-]$) so that the variables will be treated as complex.

$$
\begin{aligned}
& \text { cSolve }\left(u_{-} * v_{-}-u_{-}=v_{-}\right. \text {and } \\
& \left.v_{-} \wedge 2=-u_{-},\left\{u_{-}, v_{-}\right\}\right) \text {ENTER] } \\
& \qquad u_{-}=1 / 2+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \text { and } v_{-}=1 / 2-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \\
& \text { or } u_{-}=1 / 2-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \text { and } v_{-}=1 / 2+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \\
& \quad \text { or } u_{-}=0 \text { and } v_{-}=0
\end{aligned}
$$

Simultaneous polynomial equations can have extra variables that have no values, but represent given numeric values that could be substituted later.

You can also include solution variables that do not appear in the equations. These solutions show how families of solutions might contain arbitrary constants of the form $@ k$, where k is an integer suffix from 1 through 255. The suffix resets to 1 when you use CIrHome or F1 8:Clear Home.

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list solution variables. If your initial choice exhausts memory or your patience, try rearranging the variables in the equations and/or varOrGuess list.

If you do not include any guesses and if any equation is non-polynomial in any variable but all equations are linear in all solution variables, cSolve() uses Gaussian elimination to attempt to determine all solutions.

If a system is neither polynomial in all of its variables nor linear in its solution variables, cSolve() determines at most one solution using an approximate iterative method. To do so, the number of solution variables must equal the number of equations, and all other variables in the equations must simplify to numbers.

A non-real guess is often necessary to determine a non-real solution. For convergence, a guess might have to be rather close to a solution.

$$
\begin{aligned}
& \text { cSolve(u_* v_-u_=c_* v_ and } \\
& \left.v_{-} \wedge 2=-u_{-},\left\{u_{-}, v_{-}\right\}\right) \text {ENTER } \\
& u_{-}=\frac{-\left(\sqrt{1-4 \cdot c_{-}}+1\right)^{2}}{4} \text { and } v_{-}=\frac{\sqrt{1-4 \cdot c_{-}}+1}{2} \\
& \text { or } \\
& u_{-}=\frac{-\left(\sqrt{1-4 \cdot c_{-}}-1\right)^{2}}{4} \text { and } v_{-}=\frac{-\left(\sqrt{1-4 \cdot c_{-}}-1\right)}{2}+u_{-}=0 \text { and } v_{-}=0 \\
& \text { cSolve(u_*v_-u_=v_ and } \\
& \left.v_{-} \wedge 2=-u_{-},\left\{u_{-}, v_{-}, w_{-}\right\}\right) \text {ENTER } \\
& \begin{array}{r}
u_{-}=1 / 2+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \text { and } \begin{array}{r}
v_{-}
\end{array}=1 / 2-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \\
\\
\text { and } w_{-}=@ 1
\end{array} \\
& \text { or } \\
& u_{-}=1 / 2-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \text { and } v_{-}=1 / 2+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \\
& \text { and } \mathrm{w}_{-}=\text {@1 } \\
& \text { or } u_{-}=0 \text { and } v_{-}=0 \text { and } w_{-}=@ 1
\end{aligned}
$$

cSolve($u_{-}+v_{-}=e^{\wedge}\left(w_{-}\right)$and $u_{-}-v_{-}=$ $\boldsymbol{i},\left\{u_{-}, v_{-}\right\}$) ENTER

$$
u_{-}=\frac{e^{w_{-}}}{2}+1 / 2 \cdot \boldsymbol{i} \text { and } v_{-}=\frac{e^{w_{-}-i}}{2}
$$

cSolve($e^{\wedge}\left(z_{-}\right)=w_{-}$and $w_{-}=z_{-}{ }^{\wedge} 2$,
$\left\{w_{-}, z_{-}\right\}$) ENTER

$$
w_{-}=.494 \ldots \text { and } z_{-}=-.703 \ldots
$$

cSolve $\left(e^{\wedge}\left(z_{-}\right)=\mathrm{w}_{-}\right.$and $\mathrm{w}_{-}=\mathrm{z}_{-}{ }^{\wedge} 2$,
$\begin{aligned}\left.\left\{\mathrm{w}_{-}, \mathrm{z}_{-}=1+\boldsymbol{i}\right\}\right) & \text { ENTER }\end{aligned}$
w_{-}
$=.149 \ldots+4.891 \ldots \cdot \boldsymbol{i}$ and
$\mathrm{z}_{-}=1.588 \ldots+1.540 \ldots \cdot \boldsymbol{i}$

CubicReg MATH/Statistics/Regressions menu

CubicReg list1, list2[, [list3] [, list4, list5]]
Calculates the cubic polynomial regression and updates all the statistics variables.

All the lists must have equal dimensions except for list 5 .
list1 represents xlist. list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.

Note: list 1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode
$\left.\begin{array}{lll}\{0,1,2,3\} \rightarrow L 1 \text { ENTER }\end{array} \quad \begin{array}{llll}\{0 & 1 & 2 & 3\end{array}\right\}$

ShowStat ENTER

ENTER
regeq $(x) \rightarrow y 1(x)$ ENTER Done
NewPlot 1,1, L1, L2 ENTER Done

- [GRAPH]

cumSum(\{1,2,3,4\}) ENTER
$\left\{\begin{array}{lll}1 & 6 & 10\end{array}\right\}$
Returns a list of the cumulative sums of the elements in list1, starting at element 1.
cumSum(matrix1) \Rightarrow matrix
Returns a matrix of the cumulative sums of the elements in matrix1. Each element is the cumulative sum of the column from top to bottom.
$[1,2 ; 3,4 ; 5,6] \rightarrow \mathrm{m} 1$ ENTER
cumSum(m1) ENTER
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$
$\left[\begin{array}{ll}1 & 2 \\ 4 & 6 \\ 9 & 12\end{array}\right]$

CustmOff catalog

CustmOff

Removes a custom toolbar.
CustmOn and CustmOff enable a program to control a custom toolbar. Manually, you can press [2nd [CUSTOM] to toggle a custom toolbar on and off. Also, a custom toolbar is removed automatically when you change applications.

CustmOn catalog

CustmOn

Activates a custom toolbar that has already been set up in a Custom...EndCustm block.

CustmOn and CustmOff enable a program to control a custom toolbar. Manually, you can press 2nd [CUSTOM] to toggle a custom toolbar on and off.

See Custom program listing example.

Custom [2no [custom] key

Custom
 block

EndCustm

Sets up a toolbar that is activated when you press 2nd [CUSTOM]. It is very similar to the ToolBar instruction except that Title and Item statements cannot have labels.
block can be either a single statement or a series of statements separated with the ":" character.

Note: 2nd [CUSTOM] acts as a toggle. The first instance invokes the menu, and the second instance removes the menu. The menu is removed also when you change applications.

Program listing:
:Test()
: Prgm
: Custom
:Title "Lists"
:Item "Listl"
:Item "Scores"
: Item "L3"
:Title "Fractions"
: Item "f(x)"
:Item "h(x)"
:Title "Graph"
: EndCustm
: EndPrgm

Cycle catalog

Cycle

Transfers program control immediately to the next iteration of the current loop (For, While, or Loop).

Cycle is not allowed outside the three looping structures (For, While, or Loop).

Program listing:
$:$ © Sum the integers from 1 to
$\quad 100$ skipping 50 .
$: 0 \rightarrow$ temp
$:$ For i, $1,100,1$
:If i=50
:Cycle
:temp+i temp
: EndFor
:Disp temp
Contents of temp after execution: 5000

CyclePic catalog

CyclePic picNameString, n [, [wait] , [cycles], [direction]]

Displays all the PIC variables specified and at the specified interval. The user has optional control over the time between pictures, the number of times to cycle through the pictures, and the direction to go, circular or forward and backwards.
direction is 1 for circular or ${ }^{-1} 1$ for forward and backwards. Default $=1$.

Cylind MATH/Matrix/Vector ops menu

vector Cylind
Displays the row or column vector in cylindrical form $[\mathrm{r} \angle \theta, \mathrm{z}]$.
vector must have exactly three elements. It can be either a row or a column.

1. Save three pics named pic1, pic2, and pic3.
2. Enter: CyclePic "pic" , 3, . 5, 4, -1
3. The three pictures (3) will be displayed automatically-one-half second (.5) between pictures, for four cycles (4), and forward and backwards (-1).
$[2,2,3] \rightarrow C y 1$ ind ENTER

$$
\left[\begin{array}{lll}
2 \cdot \sqrt{2} & <\frac{\pi}{4} & 3
\end{array}\right]
$$

cZeros() MATH/Algebra/Complex menu

cZeros(expression, var) \Rightarrow list
Returns a list of candidate real and non-real values of var that make expression $=0$. cZeros() does this by computing
exp $>$ list(cSolve(expression= $0, v a r$), var).
Otherwise, cZeros() is similar to zeros().

Display Digits mode in Fix 3:
cZeros $\left(x^{\wedge} 5+4 x^{\wedge} 4+5 x^{\wedge} 3-6 x-3, x\right)$ ENTER

$$
\{-2.125 \quad-.612 \quad .965
$$

Note: See also cSolve(), solve(), and zeros().
Note: If expression is non-polynomial with functions such as abs(), angle(), conj(), real(), or imag(), you should place an underscore (TI-89: [-] Tl-92 Plus: 2nd [_]) at the end of var. By default, a variable is treated as a real value. If you use $v a r_{-}$, the variable is treated as complex.
z is treated as real:
cZeros (conj(z)-1-i,z) ENTER
z_{-}is treated as complex:
cZeros (conj(z_)-1-i,z_) ENTER

You should also use var_for any other variables in expression that might have unreal values. Otherwise, you may receive unexpected results.
cZeros(\{expression1, expression2 [, ...]\}, $\{$ varOrGuess1,varOrGuess2 $[, \ldots]\}) \Rightarrow$ matrix

Returns candidate positions where the expressions are zero simultaneously. Each varOrGuess specifies an unknown whose value you seek.

Optionally, you can specify an initial guess for a variable. Each varOrGuess must have the form:
variable

- or -
variable $=$ real or non-real number
For example, x is valid and so is $\mathrm{x}=3+\boldsymbol{i}$.
If all of the expressions are polynomials and you do NOT specify any initial guesses, cZeros() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all complex zeros.

Complex zeros can include both real and non-real zeros, as in the example to the right.

Each row of the resulting matrix represents an alternate zero, with the components ordered the same as the varOrGuess list. To extract a row, index the matrix by [row].

Note: The following examples use an underscore _ (TI-89: \quad [_] TI-92 Plus: 2nd [-]) so that the variables will be treated as complex.

```
cZeros({u_* v_- u_- v_,v_^2+u_},
{u_,v_}) EENTER
```

$$
\left[\begin{array}{ll}
1 / 2-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} & 1 / 2+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \\
1 / 2+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} & 1 / 2-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \\
0 & 0
\end{array}\right]
$$

Extract row 2:

$$
\begin{aligned}
& \operatorname{ans}(1)[2] \text { ENTER } \\
& \qquad\left[1 / 2+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \quad 1 / 2-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i}\right]
\end{aligned}
$$

Simultaneous polynomials can have extra variables that have no values, but represent given numeric values that could be substituted later.

You can also include unknown variables that do not appear in the expressions. These zeros show how families of zeros might contain arbitrary constants of the form @k, where k is an integer suffix from 1 through 255 . The suffix resets to 1 when you use ClrHome or F1 8:Clear Home.

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list unknowns. If your initial choice exhausts memory or your patience, try rearranging the variables in the expressions and/or varOrGuess list.

If you do not include any guesses and if any expression is non-polynomial in any variable but all expressions are linear in all unknowns, cZeros() uses Gaussian elimination to attempt to determine all zeros.

If a system is neither polynomial in all of its variables nor linear in its unknowns, cZeros() determines at most one zero using an approximate iterative method. To do so, the number of unknowns must equal the number of expressions, and all other variables in the expressions must simplify to numbers.

A non-real guess is often necessary to determine a non-real zero. For convergence, a guess might have to be rather close to a zero.

$$
\begin{aligned}
& c Z \operatorname{eros}\left(\left\{u_{-} * v_{-}-u_{-}-\left(c_{-} * v_{-}\right),\right.\right. \\
& \left.\left.v_{-} \wedge 2+u_{-}\right\},\left\{u_{-}, v_{-}\right\}\right) \text {ENTER }
\end{aligned}
$$

$\operatorname{cZeros}\left(\left\{u_{-}+v_{-}-e^{\wedge}\left(w_{-}\right), u_{-}-v_{-}-\boldsymbol{i}\right\}\right.$, \{u_, v_\}) ENTER

$$
\left[\begin{array}{cc}
\frac{e^{w_{-}}}{2}+1 / 2 \cdot \boldsymbol{i} & \frac{e^{w_{-}-i}}{2}
\end{array}\right]
$$

cZeros($\left\{e^{\wedge}\left(z_{-}\right)-W_{-}, w_{-}-z_{-}{ }^{\wedge} 2\right\}$, \{ w_, z_\}) ENTER

$$
\left[\begin{array}{cc}
.494 \ldots & -.703 \ldots
\end{array}\right.
$$

$\operatorname{cZeros}\left(\left\{e^{\wedge}\left(z_{-}\right)-w_{-}, w_{-}-z_{-}{ }^{\wedge} 2\right\}\right.$, $\left.\left\{w_{-}, z_{-}=1+i\right\}\right)$ ENTER
$\left[\begin{array}{ll}.149 \ldots+4.89 \ldots \cdot \boldsymbol{i} & 1.588 \ldots+1.540 \ldots \cdot \boldsymbol{i}]\end{array}\right.$
$\boldsymbol{d}($ expression 1, var $[$,order $]) \Rightarrow$ expression
$\boldsymbol{d}($ list1,var $[$,order $]) \Rightarrow$ list
$\boldsymbol{d}($ matrix 1, var $[$, order $]) \Rightarrow$ matrix
Returns the first derivative of expression 1 with respect to variable var. expression 1 can be a list or a matrix.
order, if included, must be an integer. If the order is less than zero, the result will be an anti-derivative.
$\boldsymbol{d}()$ does not follow the normal evaluation mechanism of fully simplifying its arguments and then applying the function definition to these fully simplified arguments. Instead, $\boldsymbol{d}()$ performs the following steps:

1. Simplify the second argument only to the extent that it does not lead to a nonvariable.
2. Simplify the first argument only to the extent that it does recall any stored value for the variable determined by step 1 .
3. Determine the symbolic derivative of the result of step 2 with respect to the variable from step 1 .
4. If the variable from step 1 has a stored value or a value specified by a "with" (I) operator, substitute that value into the result from step 3.

$$
\begin{aligned}
& d\left(3 x^{\wedge} 3-x+7, x\right) \text { ENTER } 9 x^{2}-1 \\
& d\left(3 x^{\wedge} 3-x+7, x, 2\right) \text { ENTER } \\
& 18 \cdot x \\
& d(\mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}), \mathrm{x}) \text { ENTER } \\
& \frac{d}{d x}(f(x)) \cdot g(x)+\frac{d}{d x}(g(x)) \cdot f(x) \\
& d(\sin (\mathrm{f}(\mathrm{x})), \mathrm{x}) \text { ENTER } \\
& \cos (f(x)) \frac{d}{d x}(f(x)) \\
& d\left(x^{\wedge} 3, x\right) \mid x=5 \text { ENTER } 75 \\
& d\left(d\left(\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\wedge} 3, \mathrm{x}\right), \mathrm{y}\right) \text { ENTER } 6 \cdot \mathrm{y}^{2} \cdot \mathrm{x} \\
& d\left(x^{\wedge} 2, x,-1\right) \text { ENTE } \\
& \frac{x^{3}}{3} \\
& d\left(\left\{x^{\wedge} 2, x^{\wedge} 3, x^{\wedge} 4\right\}, x\right) \text { ENTER } \\
& \left\{2 \cdot x \quad 3 \cdot x^{2} \quad 4 \cdot x^{3}\right\}
\end{aligned}
$$

DD MATH/Angle menu
number DD \Rightarrow value
list1 DDD \Rightarrow list
matrix 1 DD \Rightarrow matrix
Returns the decimal equivalent of the argument. The argument is a number, list, or matrix that is interpreted by the Mode setting in radians or degrees.

Note: PDD can also accept input in radians.

MATH/Base menu

integer $1>$ Dec \Rightarrow integer
Converts integer1 to a decimal (base 10) number. A binary or hexadecimal entry must always have a 0 b or 0 h prefix, respectively.

In Degree angle mode:

$1.5^{\circ} \mathrm{DD} \mathrm{ENTER}$	1.5°
45*22'14.3" DD [ENTER	$45.370 \ldots{ }^{\circ}$
\{45*22'14.3", 60 ${ }^{\circ}{ }^{\prime} 0^{\prime \prime}$	DD ENTER
	$70 . . .60\}^{\circ}$

In Radian angle mode:
$1.5>D D$ ENTER
85.9°

Ob10011 Dec ENTER 19
Oh1F Dec ENTER
31

- Zero, not the letter O , followed by bor h .

Ob binaryNumber
Oh hexadecimalNumber
L A binary number can have up to 32 digits. A hexadecimal number can have up to 8 .

Without a prefix, integer 1 is treated as decimal. The result is displayed in decimal, regardless of the Base mode.

Define catalog

Define funcName $(\arg 1 N a m e, \arg 2 N a m e, \ldots)=$ expression

Creates funcName as a user-defined function. You then can use funcName(), just as you use built-in functions. The function evaluates expression using the supplied arguments and returns the result.
funcName cannot be the name of a system variable or built-in function.

The argument names are placeholders; you should not use those same names as arguments when you use the function.

Note: This form of Define is equivalent to executing the expression: expression \rightarrow funcName (arg1Name,arg2Name). This command also can be used to define simple variables; for example, Define $a=3$.

```
Define g(x,y)=2x-3y ENTER Done
g(1,2) ENTER -4
1->a:2->b:g(a,b) ENTER -4
Define h(x)=when(x<2,2x-3,
-2x+3) ENTER] Done
```

$\mathrm{h}(-3)$ ENTER -9
$h(4)$ ENTER -5
Define eigenvl(a)=
cZeros(det(identity(dim(a)
[1])-x*a),x) ENTER Done
eigenv1 ([-1,2;4,3]) [ENTER
$\left\{\frac{2 \cdot \sqrt{3}-1}{11} \frac{-(2 \cdot \sqrt{3}+1)}{11}\right\}$

Define funcName $(\arg 1 N a m e, \arg 2 N a m e, \ldots$) $=$ Func
block
EndFunc

Is identical to the previous form of Define, except that in this form, the user-defined function funcName() can execute a block of multiple statements.
block can be either a single statement or a series of statements separated with the ":" character. block also can include expressions and instructions (such as If, Then, Else, and For). This allows the function funcName() to use the Return instruction to return a specific result.

Note: It is usually easier to author and edit this form of Function in the program editor rather than on the entry line.
Define $g(x, y)=$ Func:If $x>y$ Then
:Return $x:$: Else: Return $y:$ EndIf
:EndFunc ENTER
$g(3,-7)$ Donter
Define progName $(\arg 1 N a m e$, arg2Name, \ldots) $=$ Prgm
\quad block
EndPrgm

Creates progName as a program or subprogram, but cannot return a result using Return. Can execute a block of multiple statements.
block can be either a single statement or a series of statements separated with the ":" character. block also can include expressions and instructions (such as If, Then, Else, and For) without restrictions.

Note: It is usually easier to author and edit a program block in the Program Editor rather than on the entry line.

Define listinpt()=prgm: Local
n,i,str1,num:InputStr "Enter
name of list",str1:Input "No.
of elements", n : For
i,1,n,1:Input "element
"\&string(i), num:
num \rightarrow 非str1[i]:EndFor:EndPrgm
ENTER
Done
listinpt() ENTEREnter name of list

DelFold catalog

DelFold folderName1[,folderName2] [, folderName3] ...
Deletes user-defined folders with the names folderName1, folderName2, etc. An error message is displayed if the folders contain any variables.

NewFold games ENTER Done (creates the folder games)

DelFold games ENTER Done
(deletes the folder games)

Note: You cannot delete the main folder.

DelVar CATALOG

DeIVar var1[, var2] [, var3] ...
Deletes the specified variables from memory.

$2 \rightarrow a$ ENTER	2
$(a+2)^{\wedge} 2$ [ENTER]	16
De1Var a [ENTER]	Done
$(a+2)^{\wedge} 2$ ENTER	$(a+2)^{2}$

deSolve() MATH/Calculus menu

deSolve(1stOr2ndOrderOde, independentVar, dependentVar) \Rightarrow a general solution

Returns an equation that explicitly or implicitly specifies a general solution to the 1st- or 2nd-order ordinary differential equation (ODE). In the ODE:

- Use a prime symbol (' , press 2nd [']) to denote the 1st derivative of the dependent variable with respect to the independent variable.
- Use two prime symbols to denote the corresponding second derivative.

The ' symbol is used for derivatives within deSolve() only. In other cases, use $\boldsymbol{d}($).

The general solution of a 1st-order equation contains an arbitrary constant of the form $@ k$, where k is an integer suffix from 1 through 255 . The suffix resets to 1 when you use CIrHome or F1 8: Clear Home. The solution of a 2 nd-order equation contains two such constants.

Note: To type a prime symbol ('), press 2nd ['].

Apply solve() to an implicit solution if you want to try to convert it to one or more equivalent explicit solutions.

When comparing your results with textbook or manual solutions, be aware that different methods introduce arbitrary constants at different points in the calculation, which may produce different general solutions.
deSolve(1stOrderOde and initialCondition, independentVar, dependentVar)
\Rightarrow a particular solution
Returns a particular solution that satisfies 1 stOrderOde and initialCondition. This is usually easier than determining a general solution, substituting initial values, solving for the arbitrary constant, and then substituting that value into the general solution.
initialCondition is an equation of the form:
dependentVar $($ initialIndependentValue $)=$ initialDependentValue

The initialIndependentValue and initialDependentValue can be variables such as $x 0$ and y0 that have no stored values. Implicit differentiation can help verify implicit solutions.
deSolve($\left.y^{\prime}=(\cos (y))^{\wedge} 2 * x, x, y\right)$
ENTER

$$
\tan (y)=\frac{x^{2}}{2}+@ 3
$$

solve(ans(1),y) ENTER

$$
y=\tan ^{-1}\left(\frac{x^{2}+2 \cdot @ 3}{2}\right)+@ n 1 \cdot \pi
$$

Note: To type an @ symbol, press:
TI-89: STOD
TI-92 Plus: 2nd R
ans(1)|@3=c-1 and @n1=0 ENTER

$$
y=\tan ^{-1}\left(\frac{x^{2}+2 \cdot(c-1)}{2}\right)
$$

$\sin (y)=\left(y * e^{\wedge}(x)+\cos (y)\right) y^{\prime} \rightarrow o d e$
ENTER

$$
\sin (y)=\left(e^{x} \cdot y+\cos (y)\right) \cdot y^{\prime}
$$

deSolve(ode and
$y(0)=0, x, y) \rightarrow \operatorname{soln}$ ENTER
$\frac{-\left(2 \cdot \sin (y)+y^{2}\right)}{2}=-\left(e^{x}-1\right) \cdot e^{-x} \cdot \sin (y)$
soln $\mid x=0$ and $y=0$ ENTER true
$\boldsymbol{d}($ right (eq) - left(eq), $x) /$
(d(left(eq)-right(eq),y))
\rightarrow impdif(eq, $x, y)$ ENTER
Done
ode|y'=impdif(soln,x,y) ENTER
true
DelVar ode,soln ENTER Done

$$
\begin{aligned}
& \text { deSolve }\left(y^{\prime} '=y^{\wedge}(-1 / 2)\right. \text { and } \\
& \left.y(0)=0 \text { and } y^{\prime}(0)=0, t, y\right) \frac{\text { ENTER }}{2 \cdot y^{3 / 4}} \\
& \text { solve(ans }(1), y) \text { ENTER } \\
& \qquad y=\frac{2^{2 / 3} \cdot(3 \cdot t)^{4 / 3}}{4} \text { and } t \geq 0
\end{aligned}
$$

For initialCondition1, use the form:
dependentVar $($ initialIndependentValue $)=$ initialDependentValue

For initialCondition2, use the form:
dependentVar' $($ initialIndependentValue $)=$ initial1stDerivativeValue
deSolve(2ndOrderOde and boundaryCondition1 and boundaryCondition2, independentVar, dependentVar) \Rightarrow a particular solution

Returns a particular solution that satisfies 2ndOrderOde and has specified values at two different points.
deSolve(w' $-2 w^{\prime} / x+\left(9+2 / x^{\wedge} 2\right) w=$
$\mathrm{x} * e^{\wedge}(\mathrm{x})$ and $\mathrm{W}(\pi / 6)=0$ and
$w(\pi / 3)=0, x, w)$ ENTER

$$
\begin{array}{r}
\mathrm{w}=\frac{e^{\frac{\pi}{3}} \cdot \mathrm{x} \cdot \cos (3 \cdot \mathrm{x})}{10} \\
-\frac{e^{\frac{\pi}{6}} \cdot \mathrm{x} \cdot \sin (3 \cdot \mathrm{x})}{10}+\frac{\mathrm{x} \cdot e^{\mathrm{x}}}{10}
\end{array}
$$

MATH/Matrix menu

$\operatorname{det}($ squareMatrix $[$, tol $]) \Rightarrow$ expression
Returns the determinant of squareMatrix.
Optionally, any matrix element is treated as zero if its absolute value is less than tol. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, tol is ignored.

- If you use ENTER or set the mode to Exact/Approx=APPROXIMATE, computations are done using floating-point arithmetic.
- If $t o l$ is omitted or not used, the default tolerance is calculated as:
5E-14* max(dim(squareMatrix))
* rowNorm(squareMatrix)

diag() MATH/Matrix menu

$\operatorname{diag}($ list $) \Rightarrow$ matrix
$\begin{aligned} & \operatorname{diag}(\text { rowMatrix }) \\ & \operatorname{diag}(\text { columnMatrix })\end{aligned} \Rightarrow$ matrix \quad diag $(\{2,4,6\})$ ENTER $\quad\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6\end{array}\right]$
Returns a matrix with the values in the argument list or matrix in its main diagonal.

squareMatrix must be square.

Dialog CATALOG

DispG CATALOG

DispG

Displays the current contents of the Graph screen.

In function graphing mode:
Program segment:

$$
\begin{aligned}
& \vdots \\
& : 5 * \cos (x) \rightarrow y 1(x) \\
& :-10 \rightarrow x m i n \\
& : 10 \rightarrow x \max \\
& :-5 \rightarrow y \min \\
& : 5 \rightarrow y \max \\
& : D i s p G
\end{aligned}
$$

DispHome catalog

DispHome

Displays the current contents of the Home screen.

Program segment:
Disp "The result is: ",xx
:Pause "Press Enter to quit"
:DispHome
: EndPrgm

DispTbl catalog

DispTbl
Displays the current contents of the Table screen.

Note: The cursor pad is active for scrolling. Press ESC or ENTER to resume execution if in a program

5* $\cos (x) \rightarrow y 1(x)$ ENTER
DispTbl [ENTER]

DMS MATH/Angle menu

expression DMS
list DMS
matrix $>$ DMS
Interprets the argument as an angle and displays the equivalent DMS $\left(D D D D D D^{\circ} M^{\prime} S S . s s^{\prime \prime}\right)$ number. See ${ }^{\circ},,^{\prime}, "$ on page 536 for DMS (degree, minutes, seconds) format.

Note: $>$ DMS will convert from radians to degrees when used in radian mode. If the input is followed by a degree symbol $\left({ }^{\circ}\right)$, no conversion will occur. You can use DDMS only at the end of an entry line.

In Degree angle mode:
$45.371 \rightarrow$ DMS ENTER $45^{\circ} 22^{\prime} 15.6^{\prime \prime}$
$\{45.371,60\} \rightarrow$ DMS ENTER $\left\{45^{\circ} 22^{\prime} 15.6^{\prime \prime} 60^{\circ}\right\}$

$\operatorname{dotP}() \quad$ MATH/Matrix/Vector ops menu

$\operatorname{dot} \mathbf{P}($ list1, list 2$) \Rightarrow$ expression
Returns the "dot" product of two lists.
$\operatorname{dot} \mathbf{P}($ vector 1, vector 2$) \Rightarrow$ expression
Returns the "dot" product of two vectors.
Both must be row vectors, or both must be column vectors.
$\operatorname{dot} P(\{a, b, c\},\{d, e, f\})$ ENTER

$$
a \cdot d+b \cdot e+c \cdot f
$$

$\operatorname{dot} P(\{1,2\},\{5,6\})$ ENTER
$\operatorname{dot} P([a, b, c],[d, e, f])$ ENTER

$$
a \cdot d+b \cdot e+c \cdot f
$$

$\operatorname{dot} P([1,2,3],[4,5,6])$ ENTER 32

CATALOG

DrawFunc expression

Draws expression as a function, using x as the independent variable.

Note: Regraphing erases all drawn items.
In function graphing mode and ZoomStd window:

DrawFunc 1.25x* $\cos (x)$ ENTER

Drawlnv CATALOG

Drawlnv expression

Draws the inverse of expression by plotting x values on the y axis and y values on the x axis.
x is the independent variable.
Note: Regraphing erases all drawn items.

In function graphing mode and ZoomStd window:

DrawInv 1.25x* cos (x) ENTER

DrawParm CATALOG

DrawParm expression1, expression2
[, tmin] [, tmax] [, tstep]
Draws the parametric equations expression1 and expression2, using t as the independent variable.

Defaults for tmin, tmax, and tstep are the current settings for the Window variables tmin, tmax, and tstep. Specifying values does not alter the window settings. If the current graphing mode is not parametric, these three arguments are required.

Note: Regraphing erases all drawn items.

Note: Regraphing erases all drawn items.

In function graphing mode and ZoomStd window:

DrawParm
$\mathrm{t} * \cos (\mathrm{t}), \mathrm{t} * \sin (\mathrm{t}), 0,10, .1$ ENTER

DrawPol expression [, θ min] [, $\theta \max][, \theta s t e p]$
Draws the polar graph of expression, using θ as the independent variable.

Defaults for $\theta_{\min }, \theta_{\max }$, and $\theta_{\text {step }}$ are the current settings for the Window variables $\theta \min , \theta \max$, and θ step. Specifying values does not alter the window settings. If the current graphing mode is not polar, these three arguments are required.

In function graphing mode and ZoomStd window:

DrawPol $5 * \cos (3 * \theta), 0,3.5, .1$ ENTER

Note: Regraphing erases all drawn items.

DrawSIp catalog

DrawSIp $x 1, y 1$, slope
Displays the graph and draws a line using the formula $y-y 1=$ slope $\cdot(x-x 1)$.

Note: Regraphing erases all drawn items.

In function graphing mode and ZoomStd window:

DrawS1p 2,3,-2 ENTER

DropDown catalog

DropDown titleString, \{item1String, item2String, ...\}, varName

Displays a drop-down menu with the name titleString and containing the items 1:item1String, 2:item2String, and so forth. DropDown must be within a Dialog...EndDlog block.

If varName already exists and has a value within the range of items, the referenced item is displayed as the default selection. Otherwise, the menu's first item is the default selection.

When you select an item from the menu, the corresponding number of the item is stored in the variable varName. (If necessary, DropDown creates varName.)

DrwCtour expression

DrwCtour list
Draws contours on the current 3D graph at the z values specified by expression or list. The 3D graphing mode must already be set. DrwCtour automatically sets the graph format style to CONTOUR LEVELS.

By default, the graph automatically contains the number of equally spaced contours specified by the ncontour Window variable. DrwCtour draws contours in addition to the defaults.

To turn off the default contours, set ncontour to zero, either by using the Window screen or by storing 0 to the ncontour system variable.

In 3D graphing mode:
$(1 / 5) x^{\wedge} 2+(1 / 5) y^{\wedge} 2-10 \rightarrow z 1(x, y)$ ENTER
Done
$-10 \rightarrow x m i n: 10 \rightarrow x m a x$ ENTER 10
$-10 \rightarrow$ ymin: $10 \rightarrow$ ymax ENTER 10
$-10 \rightarrow$ zmin: $10 \rightarrow$ zmax ENTER 10
$0 \rightarrow$ ncontour ENTER
DrwCtour $\{-9,-4.5,-3,0,4.5,9\}$
ENTER

- Use the cursor to change the viewing angle. Press 0 (zero) to return to the original view.
- To toggle between different graph format styles, press:
TI-89: TI-92 Plus: F
- Press X, Y, or Z to look down the corresponding axis.

E	TI-89: EEE key Tl-92 Plus: 2nd [EE] key		
	mantissaExponent	2.3 E 4 ENTER	23000.
	Enters a number in scientific notation. The number is interpreted as mantissa \times 10exponent.	$2.3 \mathrm{E} 9+4.1 \mathrm{E} 15$ ENTER	4.1 E 15
	Hint: If you want to enter a power of 10 without causing a decimal value result, use 10^{\wedge} integer.	$3 * 10 \wedge 4$ ENTER	30000
$e^{\wedge}()$	TI-89: [e^{x}] key TI-92 Plus: 2nd [$\left.\mathrm{e}^{x}\right]$ key		
	\boldsymbol{e}^{\wedge} (expression 1$) \Rightarrow$ expression	$e^{\wedge}(1)$ ENTER	e
	Returns e raised to the expression1 power.	$e^{\wedge}(1$.$) ENTER$	2.718...
	Note: On the TI-89, pressing $\bullet\left[\mathrm{e}^{x}\right]$ to display e^{\wedge} (is different from pressing alpha [E]. On the TI-92 Plus, pressing 2nd [e e^{x}] to display e^{\wedge} is different from accessing the character e from the QWERTY keyboard.	$e^{\wedge}(3) \wedge 2$ ENTER	e^{9}
	You can enter a complex number in re $e^{i \theta}$ polar form. However, use this form in Radian angle mode only; it causes a Domain error in Degree angle mode.		

Returns e raised to the power of each element in list1.
$\boldsymbol{e}^{\boldsymbol{\wedge}}($ squareMatrix1) \Rightarrow squareMatrix
Returns the matrix exponential of squareMatrix1. This is not the same as calculating e raised to the power of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

eigVc() MATH/Matrix menu

eigVc(squareMatrix) \Rightarrow matrix
Returns a matrix containing the eigenvectors for a real or complex squareMatrix, where each column in the result corresponds to an eigenvalue. Note that an eigenvector is not unique; it may be scaled by any constant factor. The eigenvectors are normalized, meaning that if $\mathrm{V}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$, then:
$\sqrt{\mathrm{X}_{1}{ }^{2}+\mathrm{X}_{2}{ }^{2}+\ldots+\mathrm{X}_{\mathrm{n}}{ }^{2}}=1$
squareMatrix is first balanced with similarity transformations until the row and column norms are as close to the same value as possible. The squareMatrix is then reduced to upper Hessenberg form and the eigenvectors are computed via a Schur factorization.
$\left[\begin{array}{lll}782.209 & 559.617 & 456.509 \\ 680.546 & 488.795 & 396.521 \\ 524.929 & 371.222 & 307.879\end{array}\right]$
MATH/Matrix menu

```
    eigVI(squareMatrix) }=>\mathrm{ list
```

Returns a list of the eigenvalues of a real or complex squareMatrix.
squareMatrix is first balanced with similarity transformations until the row and column norms are as close to the same value as possible. The squareMatrix is then reduced to upper Hessenberg form and the eigenvalues are computed from the upper Hessenberg matrix.

In Rectangular complex format mode:
$[-1,2,5 ; 3,-6,9 ; 2,-5,7] \rightarrow m 1$ ENTER $\left[\begin{array}{lll}-1 & 2 & 5 \\ 3 & -6 & 9 \\ 2 & -5 & 7\end{array}\right]$
eigV1(m1) ENTER

$$
\begin{array}{r}
\{-4.409 \ldots 2.204 \ldots+.763 \ldots \cdot \boldsymbol{i} \\
2.204 \ldots-.763 \ldots \cdot \boldsymbol{i}\}
\end{array}
$$

Else See If, page 456.

Elself CATALOG See also If, page 456.

If Boolean expression 1 Then block1
Elself Boolean expression2 Then block2

Elself Boolean expressionN Then blockN
Endlf

Elself can be used as a program instruction for program branching.

Program segment:

```
:If choice=1 Then
    :Goto option1
    : ElseIf choice=2 Then
    Goto option2
    ElseIf choice=3 Then
    Goto option3
    ElseIf choice=4 Then
    Disp "Exiting Program"
    Return
    : EndIf
```

$$
\begin{aligned}
& {[-1,2,5 ; 3,-6,9 ; 2,-5,7] \rightarrow m 1 \text { ENTER }} \\
& {\left[\begin{array}{lll}
-1 & 2 & 5 \\
3 & -6 & 9 \\
2 & -5 & 7
\end{array}\right]} \\
& \text { eigVc(m1) ENTER } \\
& {\left[\begin{array}{lll}
-.800 \ldots & .767 \ldots & .767 \ldots \\
.484 \ldots & \\
.352 \ldots+. . . & .262 \ldots+. . .096 \ldots \cdot \boldsymbol{i} & .573 \ldots-. . .052 \ldots \cdot \boldsymbol{i} \\
.262 \ldots-. . .096 \ldots \cdot i
\end{array}\right]}
\end{aligned}
$$

EndDlog See Dialog, page 437.
EndFor See For, page 450.
EndFunc See Func, page 451.
Endlf See If, page 456.
EndLoop See Loop, page 466.
EndPrgm See Prgm, page 481.
EndTBar See ToolBar, page 515.
EndTry See Try, page 515.

EndWhile See While, page 518.

Exec CATALOG

Exec string [, expression1] [, expression2] ...
Executes a string consisting of a series of Motorola 68000 op-codes. These codes act as a form of an assembly-language program. If needed, the optional expressions let you pass one or more arguments to the program.

For more information, check the TI Web site: education.ti.com

Warning: Exec gives you access to the full power of the microprocessor. Please be aware that you can easily make a mistake that locks up the calculator and causes you to lose your data. We suggest you make a backup of the calculator contents before attempting to use the Exec command.

Exit CATALOG

Exit

Exits the current For, While, or Loop block.
Exit is not allowed outside the three looping structures (For, While, or Loop).

Program listing:
: $0 \rightarrow$ temp
:For i,1,100,1
: temp+i \rightarrow temp
: If temp>20
: Exit
: EndFor
:Disp temp
Contents of temp after execution: 21

exp>list() CATALOG

expllist(expression,var) \Rightarrow list
Examines expression for equations that are separated by the word "or," and returns a list containing the right-hand sides of the equations of the form var=expression. This gives you an easy way to extract some solution values embedded in the results of the solve(), cSolve(), $\mathbf{f M i n}($), and $\mathbf{f M a x}()$ functions.

Note: exprlist() is not necessary with the zeros and cZeros() functions because they return a list of solution values directly.
solve $\left(x^{\wedge} 2-x-2=0, x\right)$ ENTER $x=2$ or $x=-1$
explist(solve(x^2-x-2=0,x),x) ENTER

expand() MATH/Algebra menu

expand(expression $1[, v a r]) \Rightarrow$ expression expand(list1 [,var]) \Rightarrow list
expand(matrix $1[, v a r]) \Rightarrow$ matrix
expand(expression1) returns expression1 expanded with respect to all its variables. The expansion is polynomial expansion for polynomials and partial fraction expansion for rational expressions.

The goal of expand() is to transform expression 1 into a sum and/or difference of simple terms. In contrast, the goal of factor() is to transform expression1 into a product and/or quotient of simple factors.
expand(expression 1,var) returns expression expanded with respect to var. Similar powers of var are collected. The terms and their factors are sorted with var as the main variable. There might be some incidental factoring or expansion of the collected coefficients. Compared to omitting var, this often saves time, memory, and screen space, while making the expression more comprehensible.

Even when there is only one variable, using var might make the denominator factorization used for partial fraction expansion more complete.

Hint: For rational expressions, propFrac() is a faster but less extreme alternative to expand().

Note: See also comDenom() for an expanded numerator over an expanded denominator.

$$
\begin{aligned}
& \text { expand }\left((x+y+1)^{\wedge} 2\right) \text { ENTER } \\
& \quad x^{2}+2 \cdot x \cdot y+2 \cdot x+y^{2}+2 \cdot y+1 \\
& \operatorname{expand}\left(\left(x^{\wedge} 2-x+y^{\wedge} 2-y\right) /\left(x^{\wedge} 2 * y^{\wedge} 2\right.\right. \\
& \left.\left.\quad-x^{\wedge} 2 * y-x^{*} y^{\wedge} 2+x * y\right)\right) \text { ENTER }
\end{aligned}
$$

$$
\text { - expand }\left(\frac{x^{2}-x+y^{2}-y}{x^{2} \cdot y^{2}-x^{2} \cdot y-x \cdot y}\right)
$$

$$
\begin{aligned}
& \text { expand }\left((x+y+1)^{\wedge} 2, y\right) \text { ENTER } \\
& \qquad y^{2}+2 \cdot y \cdot(x+1)+(x+1)^{2} \\
& \text { expand }\left((x+y+1)^{\wedge} 2, x\right) \text { ENTER } \\
& \quad x^{2}+2 \cdot x \cdot(y+1)+(y+1)^{2} \\
& \text { expand }\left(\left(x^{\wedge} 2-x+y^{\wedge} 2-y\right) /\left(x^{\wedge} 2 * y^{\wedge} 2\right.\right. \\
& \left.\left.\quad-x^{\wedge} 2 * y-x * y^{\wedge} 2+x^{*} *\right), y\right) \text { ENTER }
\end{aligned}
$$

$$
\begin{array}{r}
-\operatorname{expand}\left(\frac{x^{2}-x+y^{2}-y}{x^{2} \cdot y^{2}-x^{2} \cdot y-x \cdot y}\right. \\
\frac{1}{y-1}-\frac{1}{y}+\frac{1}{x \cdot(x-1)}
\end{array}
$$

expand(ans(1), x) ENTER

$\operatorname{expand}\left(\left(x^{\wedge} 3+x^{\wedge} 2-2\right) /\left(x^{\wedge} 2-2\right)\right)$ ENTER

$$
\frac{2 \cdot x}{x^{2}-2}+x+1
$$

expand(ans (1), x) ENTER

$$
\frac{1}{x-\sqrt{2}}+\frac{1}{x+\sqrt{2}}+x+1
$$

expand(expression1,[var]) also distributes logarithms and fractional powers regardless of var. For increased distribution of logarithms and fractional powers, inequality constraints might be necessary to guarantee that some factors are nonnegative.
expand(expression1, [var]) also distributes absolute values, sign(), and exponentials, regardless of var.

Note: See also tExpand() for trigonometric angle-sum and multiple-angle expansion.

expr() MATH/String menu
 expr(string) \Rightarrow expression

Returns the character string contained in string as an expression and immediately executes it.

```
ln(2x*y)+\sqrt{}{(2x*y) ENTER}
    ln}(2\cdotx\cdoty)+\sqrt{}{(2}2\cdotx\cdoty
expand(ans(1)) ENTER
    ln}(x\cdoty)+\sqrt{}{2}\cdot\sqrt{}{(}x\cdoty)+\operatorname{ln}(2
expand(ans(1))|y>=0 ENTER
    ln}(x)+\sqrt{}{2}\cdot\sqrt{}{x}\cdot\sqrt{}{y}+\operatorname{ln}(y)+\operatorname{ln}(2
    sign( }\textrm{x}*\textrm{y})+\textrm{abs}(\textrm{x}*\textrm{y})+\mp@subsup{e}{}{\wedge}(2\textrm{x}+\textrm{y}
    ENTER
            e}2\cdotx+y+\operatorname{sign}(x\cdoty)+|x\cdoty
expand(ans(1)) ENTER
sign(x)\cdotsign(y) + |x| | |y | ( (ex ( )}\cdot\mp@code{e}\mp@subsup{e}{}{y
```

```
```

expr("1+2+x^2+x") ENTER x}\mp@subsup{x}{}{2}+x+

```
```

expr("1+2+x^2+x") ENTER x}\mp@subsup{x}{}{2}+x+
expr("expand((1+x)^2)") ENTER
expr("expand((1+x)^2)") ENTER
x}2+2\cdotx+
x}2+2\cdotx+
"Define cube(x)=x^3" }->\mathrm{ funcstr
"Define cube(x)=x^3" }->\mathrm{ funcstr
ENTER
ENTER
"Define cube(x)=x^3"
"Define cube(x)=x^3"
expr(funcstr) ENTER Done
expr(funcstr) ENTER Done
cube(2) ENTER
cube(2) ENTER
8

```
```

 8
    ```
```

factor(expression $1[, v a r]) \Rightarrow$ expression
factor(list1[,var]) \Rightarrow list
factor(matrix $1[, v a r]) \Rightarrow$ matrix
factor(expression1) returns expression1 factored with respect to all of its variables over a common denominator.
expression 1 is factored as much as possible toward linear rational factors without introducing new non-real subexpressions. This alternative is appropriate if you want factorization with respect to more than one variable.
factor $\left(a^{\wedge} 3 * x^{\wedge} 2-a * x^{\wedge} 2-a^{\wedge} 3+a\right)$
ENTER

| $a \cdot(a-1) \cdot(a+1) \cdot(x-1) \cdot(x+1)$ | |
| :--- | :--- |
| factor $\left(x^{\wedge} 2+1\right)$ ENTER | $x^{2}+1$ |
| factor $\left(x^{\wedge} 2-4\right)$ ENTER $(x-2) \cdot(x+2)$ | |
| factor $\left(x^{\wedge} 2-3\right)$ ENTER | $x^{2}-3$ |
| factor $\left(x^{\wedge} 2-a\right)$ ENTER | |

factor(expression1,var) returns expression1 factored with respect to variable var.
expression 1 is factored as much as possible toward real factors that are linear in var, even if it introduces irrational constants or subexpressions that are irrational in other variables.

The factors and their terms are sorted with var as the main variable. Similar powers of $v a r$ are collected in each factor. Include var if factorization is needed with respect to only that variable and you are willing to accept irrational expressions in any other variables to increase factorization with respect to var. There might be some incidental factoring with respect to other variables.

For the AUTO setting of the Exact/Approx mode, including var permits approximation with floating-point coefficients where irrational coefficients cannot be explicitly expressed concisely in terms of the built-in functions. Even when there is only one variable, including var might yield more complete factorization.

Note: See also comDenom() for a fast way to achieve partial factoring when factor() is not fast enough or if it exhausts memory.

Note: See also cFactor() for factoring all the way to complex coefficients in pursuit of linear factors.
factor ($\left.a^{\wedge} 3 * x^{\wedge} 2-a * x^{\wedge} 2-a^{\wedge} 3+a, x\right)$ ENTER

$$
a \cdot\left(a^{2}-1\right) \cdot(x-1) \cdot(x+1)
$$

factor $\left(x^{\wedge} 2-3, x\right)$ ENTER

$$
(x+\sqrt{3}) \cdot(x-\sqrt{3})
$$

factor $\left(x^{\wedge} 2-a, x\right)$ ENTER

$$
(x+\sqrt{a}) \cdot(x-\sqrt{a})
$$

factor $\left(x^{\wedge} 5+4 x^{\wedge} 4+5 x^{\wedge} 3-6 x-3\right)$
ENTER

$$
x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3
$$

factor(ans(1), x) ENTER

$$
(x-.964 \ldots) \cdot(x+. .611 \ldots) \cdot
$$

$$
(x+2.125 \ldots) \cdot\left(x^{2}+2.227 \ldots\right.
$$

$$
x+2.392 \ldots)
$$

factor(rationalNumber) returns the rational number factored into primes. For composite numbers, the computing time grows exponentially with the number of digits in the second-largest factor. For example, factoring a 30-digit integer could take more than a day, and factoring a 100-digit number could take more than a century.

Note: To stop (break) a computation, press ON.

If you merely want to determine if a number is prime, use isPrime() instead. It is much faster, particularly if rationalNumber is not prime and if the second-largest factor has more than five digits.
factor(152417172689) ENTER
123457•1234577
isPrime(152417172689) ENTERfalse

Fill MATH/Matrix menu

Fill expression, matrixVar \Rightarrow matrix
Replaces each element in variable matrixVar with expression. matrixVar must already exist.

Fill expression, listVar \Rightarrow list
Replaces each element in variable listVar with expression.
listVar must already exist.
$[1,2 ; 3,4] \rightarrow$ amatrx ENTER
Fil1 1.01, amatrx[ENTER]
amatrx ENTER
$\{1,2,3,4,5\} \rightarrow$ alist ENTER
$\left\{\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right\}$
Fill 1.01, alist ENTER Done alist ENTER
$\left\{\begin{array}{lllll}1.01 & 1.01 & 1.01 & 1.01 & 1.01\end{array}\right\}$

floor() MATH/Number menu

floor(expression) \Rightarrow integer
floor (-2.14) ENTER - 3 .

Returns the greatest integer that is \leq the argument. This function is identical to int().

The argument can be a real or a complex number.
floor(list1) \Rightarrow list
floor(matrix1) \Rightarrow matrix
Returns a list or matrix of the floor of each element.

Note: See also ceiling() and int().

fMax() MATH/Calculus menu

$\mathbf{f M a x}($ expression, var $) \Rightarrow$ Boolean expression
fMax(1-(x-a)^2-(x-b)^2,x) ENTER
Returns a Boolean expression specifying candidate values of var that maximize expression or locate its least upper bound.
$\begin{aligned} & \mathrm{floor}([1.2,3.4 ; 2.5,4.8]) \text { ENTER } \\ & {\left[\begin{array}{ll}1.3 . \\ 2 . & 4 .\end{array}\right] }\end{aligned}$
floor ([1.2,3.4;2.5,4.8]) $\begin{aligned} & \text { ENTER } \\ & {\left[\begin{array}{ll}1.3 . \\ 2 . & 4 .\end{array}\right]}\end{aligned}$
floor(\{3/2,0,-5.3\}) ENTER
$\left\{\begin{array}{lll}1 & 0 & -6 .\end{array}\right\}$

Use the "।" operator to restrict the solution interval and/or specify the sign of other undefined variables.

For the APPROX setting of the Exact/Approx mode, $\mathbf{f M a x}()$ iteratively searches for one approximate local maximum. This is often faster, particularly if you use the "l" operator to constrain the search to a relatively small interval that contains exactly one local maximum.

Note: See also fMin() and $\max ()$.

fMin() MATH/Calculus menu

$\mathbf{f M i n}$ (expression, var) \Rightarrow Boolean expression
Returns a Boolean expression specifying candidate values of var that minimize expression or locate its greatest lower bound.

Use the "।" operator to restrict the solution interval and/or specify the sign of other undefined variables.

For the APPROX setting of the Exact/Approx mode, $\mathbf{f M i n}()$ iteratively searches for one approximate local minimum. This is often faster, particularly if you use the "l" operator to constrain the search to a relatively small interval that contains exactly one local minimum.

Note: See also $\mathbf{f M a x}()$ and $\min ()$.

FnOff catalog

FnOff
Deselects all $\mathrm{Y}=$ functions for the current graphing mode.

In split-screen, two-graph mode, FnOff only applies to the active graph.

FnOff [1] [, 2] ... [,99]
Deselects the specified $Y=$ functions for the current graphing mode.

In function graphing mode:
FnOff 1,3 ENTER deselects $y 1(x)$ and y3(x).

In parametric graphing mode:
FnOff 1,3 ENTER deselects $x t 1(t), y t 1(t)$, $x t 3(t)$, and $y t 3(t)$.

FnOn catalog

FnOn
Selects all $Y=$ functions that are defined for the current graphing mode.

In split-screen, two-graph mode, FnOn only applies to the active graph.

FnOn [1] [, 2] ... [,99]

Selects the specified $Y=$ functions for the current graphing mode.

Note: In 3D graphing mode, only one function at a time can be selected. FnOn 2 selects $z 2(x, y)$ and deselects any previously selected function. In the other graph modes, previously selected functions are not affected.

For CATALOG

For var, low, high [, step] block
EndFor
Executes the statements in block iteratively for each value of var, from low to high, in increments of step.
var must not be a system variable.
step can be positive or negative. The default value is 1 .
block can be either a single statement or a series of statements separated with the ":" character.

Program segment:

```
:0
    :For i,1,100,step
    : tempsum+i->tempsum
    :EndFor
    :Disp tempsum
```

Contents of tempsum after
execution:5050
Contents of tempsum when step is changed to 2 : 2500

format() MATH/String menu

format(expression [, formatString]) \Rightarrow string
Returns expression as a character string based on the format template.
expression must simplify to a number. formatString is a string and must be in the form: " $\mathrm{F}[n]$ ", " $\mathrm{S}[n]$ ", " $\mathrm{E}[n]$ ", " $\mathrm{G}[n][c]$ ", where [] indicate optional portions.
$\mathrm{F}[n]$: Fixed format. n is the number of digits to display after the decimal point.
$\mathrm{S}[n]$: Scientific format. n is the number of digits to display after the decimal point.
$\mathrm{E}[n]$: Engineering format. n is the number of digits after the first significant digit. The exponent is adjusted to a multiple of three, and the decimal point is moved to the right by zero, one, or two digits.
$\mathrm{G}[n][c]$: Same as fixed format but also separates digits to the left of the radix into groups of three. c specifies the group separator character and defaults to a comma. If c is a period, the radix will be shown as a comma.
[Rc]: Any of the above specifiers may be suffixed with the Rc radix flag, where c is a single character that specifies what to substitute for the radix point.
format(1.234567,"f3") ENTER
" 1.235 "
format(1.234567,"s2") ENTER
"1.23E 0 "
format(1.234567,"e3") ENTER
"1.235E0"
format(1.234567,"g3") ENTER
" 1.235 "
format(1234.567,"g3") ENTER
" $1,234.567$ "
format(1.234567,"g3,r:") ENTER
" $1: 235$ "

fpart() MATH/Number menu

fpart(expression 1$) \Rightarrow$ expression
fpart(list1) \Rightarrow list
fpart(matrix 1$) \Rightarrow$ matrix
Returns the fractional part of the argument.
For a list or matrix, returns the fractional parts of the elements.

The argument can be a real or a complex number.
fpart(-1.234) ENTER -. 234
fpart(\{1, -2.3, 7.003\}) ENTER
$\left\{\begin{array}{lll}0 & -. & .003\end{array}\right\}$

CATALOG

Func
 block

EndFunc

Required as the first statement in a multistatement function definition.
block can be either a single statement or a series of statements separated with the ":" character.

Note: when() also can be used to define and graph piecewise-defined functions.

In function graphing mode, define a piecewise function:

$$
\begin{aligned}
& \text { Define } g(x)=\text { Func:If } x<0 \text { Then } \\
& \text { :Return } 3 * \cos (x): \text { Else:Return } \\
& 3-x: \text { EndIf:EndFunc ENTER Done }
\end{aligned}
$$

Graph $g(x)$ ENTER

gcd() MATH/Number menu
 $\operatorname{gcd}($ number 1, number2) \Rightarrow expression

$\operatorname{gcd}(18,33)$ ENTER
3
Returns the greatest common divisor of the two arguments. The gcd of two fractions is the gcd of their numerators divided by the lcm of their denominators.

In Auto or Approximate mode, the gcd of fractional floating-point numbers is 1.0 .
$\operatorname{gcd}($ list1, list2) \Rightarrow list
$\operatorname{gcd}(\{12,14,16\},\{9,7,5\})$ ENTER
Returns the greatest common divisors of the corresponding elements in list1 and list2.
$\operatorname{gcd}($ matrix1, matrix2 $) \Rightarrow$ matrix $\operatorname{gcd}([2,4 ; 6,8],[4,8 ; 12,16])$ ENTER
Returns the greatest common divisors of the corresponding elements in matrix1 and matrix2.

Get var

Retrieves a CBL $2^{\text {TM }} /$ CBL $^{\text {TM }}$ (Calculator-Based Laboratory ${ }^{\text {TM }}$) or CBR ${ }^{\text {TM }}$ (Calculator-Based Ranger ${ }^{T M}$) value from the link port and stores it in variable var.

Program segment:
:Send $\{3,1,-1,0\}$
:For i,1,99
: Get data[i]
: Pt0n i,data[i]
: EndFor

GetCalc var

Retrieves a value from the link port and stores it in variable var．This is for unit－to－unit linking．

Note：To get a variable to the link port from another unit，use 2nd［VAR－LINK］on the other unit to select and send a variable，or do a SendCalc on the other unit．

getConfg（）CATALOG

getConfg（）\Rightarrow ListPairs

Returns a list of calculator attributes．The attribute name is listed first，followed by its value．

Program segment：

```
:Disp "Press Enter when ready"
: Pause
:GetCalc L1
:Disp "List L1 received"
```


TI－89：

getConfg（）ENTER \｛＂Product Name＂＂Advanced Mathematics Software＂ ＂Version＂＂2．00，09／25／1999＂ ＂Product ID＂＂03－1－4－68＂ ＂ID 非＂＂01012 34567 ABCD＂
＂Cert．Rev．非＂ 0 ＂Screen Width＂ 160 ＂Screen Height＂ 100 ＂Window Width＂ 160 ＂Window Height＂ 67 ＂RAM Size＂ 262132 ＂Free RAM＂ 197178
＂Archive Size＂ 655360
＂Free Archive＂655340\}
TI－92 Plus：
getConfg（）ENTER \｛＂Product Name＂＂Advanced Mathematics Software＂ ＂Version＂＂2．00，09／25／1999＂
＂Product ID＂＂01－1－4－80＂ ＂ID 非＂＂01012 34567 ABCD＂
＂Cert．Rev．非＂ 0
＂Screen Width＂ 240
＂Screen Height＂ 120
＂Window Width＂ 240
＂Window Height＂ 91
＂RAM Size＂ 262144
＂Free RAM＂ 192988
＂Archive Size＂ 720896
＂Free Archive＂720874\}
Note：Your screen may display different attribute values．The Cert．Rev．\＃attribute appears only if you have purchased and installed additional software into the calculator．

getDenom（）MATH／Algebra／Extract menu

getDenom（expression1）\Rightarrow expression

Transforms expression 1 into one having a reduced common denominator，and then returns its denominator．
getDenom $((x+2) /(y-3))$ ENTER $y-3$
getDenom（2／7）ENTER 7
getDenom（1／x＋（y＾2＋y）／y＾2）ENTER

getFold() CATALOG

getFold() \Rightarrow nameString
Returns the name of the current folder as a string.

```
getFold() ENTER "main"
```

getFold() \rightarrow oldfoldr ENTER "main"
oldfoldr ENTER "main"

getKey() CATALOG

getKey() \Rightarrow integer

Returns the key code of the key pressed. Returns 0 if no key is pressed.

The prefix keys (shift 1 , second function 2nd, option - alpha alpha, and drag (0)) are not recognized by themselves; however, they modify the keycodes of the key that follows them. For example: $\bullet \triangle \neq \square \neq 2 n d$.
For a listing of key codes, see Appendix B.

Program listing:
: Disp
: Loop
: getKey() \rightarrow key
: while key=0 getKey () \rightarrow key
: EndWhile
: Disp key
If key = ord("a")
: Stop
: EndLoop

getMode() Catalog

getMode(modeNameString) \Rightarrow string
 getMode("ALL") \Rightarrow ListStringPairs

If the argument is a specific mode name, returns a string containing the current setting for that mode.

If the argument is "ALL", returns a list of string pairs containing the settings of all the modes. If you want to restore the mode settings later, you must store the getMode("ALL") result in a variable, and then use setMode() to restore the modes.

For a listing of mode names and possible settings, see setMode().

Note: To set or return information about the Unit System mode, use setUnits() or getUnits() instead of setMode() or getMode().
getMode("angle") ENTER "RADIAN" getMode("graph") ENTER "FUNCTION" getMode("all") ENTER
\{ "Graph" "FUNCTION"
"Display Digits" "FLOAT 6"
"Angle" "RADIAN"
"Exponential Format" "NORMAL"
"Complex Format" "REAL"
"Vector Format" "RECTANGULAR"
"Pretty Print" "ON"
"Split Screen" "FULL"
"Split 1 App" "Home"
"Split 2 App" "Graph"
"Number of Graphs" "1"
"Graph 2" "FUNCTION"
"Split Screen Ratio" "1,1"
"Exact/Approx" "AUTO"
"Base" "DEC"

Note: Your screen may display different mode settings.
getNum $((x+2) /(y-3))$ ENTER $x+2$
getNum(2/7) ENTER 2
$\operatorname{get} \operatorname{Num}(1 / x+1 / y)$ ENTER $x+y$
getType(var) \Rightarrow string
Returns a string indicating the data type of variable var.

If var has not been defined, returns the string "NONE".

| $\{1,2,3\} \rightarrow$ temp ENTER $\left.\begin{array}{lll}1 & 2 & 3\end{array}\right\}$
 getType (temp) ENTER | "LIST" |
| :--- | ---: |
| $2+3 \boldsymbol{i} \rightarrow$ temp ENTER $2+3 \boldsymbol{i}$
 getType (temp) ENTER | "EXPR" |
| DelVar temp ENTER
 getType (temp) ENTER Done | "NONE" |

| Data Type | Variable Contents |
| :--- | :--- |
| "ASM" | Assembly-language program |
| "DATA" | Data type |
| "EXPR" | Expression (includes complex/arbitrary/undefined, $\infty, \quad-\infty$, TRUE,
 FALSE, pi, e) |
| "FUNC" | Function |
| "GDB" | Graph data base |
| "LIST" | List |
| "MAT" | Matrix |
| "NONE" | Variable does not exist |
| "NUM" | Real number |
| "OTHER" | Miscellaneous data type for future use by software applications |
| "PIC" | Picture |
| "PRGM" | Program |
| "STR" | String |
| "TEXT" | Text type |
| "VAR" | Name of another variable |

getUnits() CATALOG

getUnits() \Rightarrow list

Returns a list of strings that contain the current default units for all categories except constants, temperature, amount of substance, luminous intensity, and acceleration. list has the form:
\{"system" "cat1" "unit1" "cat2" "unit2" ...\}
The first string gives the system (SI, ENG/US, or CUSTOM). Subsequent pairs of strings give a category (such as Length) and its default unit (such as _m for meters).

To set the default units, use setUnits().

Goto labelName
Transfers program control to the label labelName.
labelName must be defined in the same program using a Lbl instruction.

Program segment:

```
\vdots
O-> temp
: 1 
:Lb1 TOP
: temp+i->temp
: If i<10 Then
        i+1> i
: Goto TOP
: EndIf
:Disp temp
```


Graph CATALOG

Graph expression1 [, expression2] [, var1] [, var2]
The Smart Graph feature graphs the requested expressions/ functions using the current graphing mode.

Expressions entered using the Graph or Table commands are assigned increasing function numbers starting with 1 . They can be modified or individually deleted using the edit functions available when the table is displayed by pressing F44 Header. The currently selected $\mathrm{Y}=$ functions are ignored.

If you omit an optional var argument, Graph uses the independent variable of the current graphing mode.

Note: Not all optional arguments are valid in all modes because you can never have all four arguments at the same time.

Some valid variations of this instruction are:
Function graphing
Parametric graphing
Polar graphing
Graph expr, x
Graph x Expr, yExpr, t

Sequence graphing
3D graphing
Diff Equations graphing Not allowed.
Note: Use CIrGraph to clear these functions, or go to the Y= Editor to re-enable the system $\mathrm{Y}=$ functions.

In function graphing mode and ZoomStd window:

Graph 1.25a* cos(a), a ENTER

In parametric graphing mode and ZoomStd window:

Graph time,2cos(time)/time,time ENTER

In 3D graphing mode:
Graph ($\left.\mathrm{v}^{\wedge} 2-\mathrm{w}^{\wedge} 2\right) / 4, \mathrm{v}, \mathrm{w}$ ENTER

If Boolean expression 1 Then block1
Elself Boolean expression2 Then block2
\vdots
self Boolean expressionN Then blockN

Endlf

Allows for program branching. If Boolean expression1 evaluates to true, executes block1. If Boolean expression 1 evaluates to false, evaluates Boolean expression2, etc.

Program segment:

```
:If}\mathrm{ choice=1 Then
    : Goto option1
        ElseIf choice=2 Then
        Goto option2
        ElseIf choice=3 Then
        Goto option3
        ElseIf choice=4 Then
                Disp "Exiting Program"
                Return
    : End If
    :
```

imag() MATH/Complex menu
imag(expression1) returns the imaginary part
of the argument.

Note: All undefined variables are treated as$i m a g(1+2 \boldsymbol{i})$ ENTER2
imag(z) ENTER 0
imag(x+iy) ENTER y real variables. See also real().
$\overline{\text { imag }(\text { list } 1) \Rightarrow \text { list } \quad \operatorname{imag}(\{-3,4-\boldsymbol{i}, \boldsymbol{i}\}) \text { ENTER } \quad\left\{\begin{array}{lll}0 & -1 & 1\end{array}\right\}}$

Returns a list of the imaginary parts of the elements.
$\overline{\text { imag(matrix1 })} \Rightarrow$ matrix $\quad i m a g([a, b ; i c, i d])$ ENTER $\quad\left[\begin{array}{ll}0 & 0 \\ c & d\end{array}\right]$

Returns a matrix of the imaginary parts of the elements.

Input CATALOG

Input
Program segment:
Pauses the program, displays the current Graph screen, and lets you update variables $x c$ and $y c$ (also $r c$ and θc for polar coordinate mode) by positioning the graph cursor.
When you press ENTER, the program resumes.

```
:OGet 10 points from the Graph
    Screen
:For i,1,10
: Input
: xc->XLIST[i]
: yc->YLIST[i]
:EndFor
    \vdots
```

Input [promptString,] var
Input [promptString], var pauses the program, displays promptString on the Program I/O screen, waits for you to enter an expression, and stores the expression in variable var.

If you omit promptString, "?" is displayed as a Program segment:

```
    :For i,1,9,1
    : For "Enter x" & string(i)->str1
    : Input str1,非(right(str1,2))
    :EndFor
```

 prompt.
 InputStr [promptString,] var
Pauses the program, displays promptString on the Program I/O screen, waits for you to enter a response, and stores your response as a string in variable var.

If you omit promptString, "?" is displayed as a prompt.

Note: The difference between Input and InputStr is that InputStr always stores the result as a string so that " " are not required.

Program segment:

```
:InputStr "Enter Your Name",str1
```


MATH/String menu

inString(srcString, subString [, start]) \Rightarrow integer
Returns the character position in string srcString at which the first occurrence of string subString begins.
start, if included, specifies the character position within srcString where the search begins. Default = 1 (the first character of srcString).

If srcString does not contain subString or start is $>$ the length of srcString, returns zero.

| int() CATALOG | |
| :---: | :---: |
| $\begin{aligned} & \operatorname{int}(\text { expression }) \Rightarrow \text { integer } \\ & \text { int }(\text { list1 }) \Rightarrow \text { list } \\ & \text { int } \text { (matrix1) } \Rightarrow \text { matrix } \end{aligned}$
 Returns the greatest integer that is less than or equal to the argument. This function is identical to floor().
 The argument can be a real or a complex number.
 For a list or matrix, returns the greatest integer of each of the elements. | int (-2.5) ENTER $\operatorname{int}([-1.234,0,0.37])$ ENTER $\left[\begin{array}{lll} -2 . & 0 & 0 . \end{array}\right]$ |
| intDiv() CATALOG | |
| $\begin{aligned} & \text { intDiv(number1, number2) } \Rightarrow \text { integer } \\ & \text { intDiv(list1, list2) } \Rightarrow \text { list } \\ & \text { intDiv(matrix1, } \text { matrix2) } \Rightarrow \text { matrix } \end{aligned}$ | intDiv(-7,2) ENTER intDiv(4,5) ENTER |
| Returns the signed integer part of argument 1 divided by argument 2 .
 For lists and matrices returns the signed integer part of argument 1 divided by argument 2 for each element pair. | $\begin{aligned} & \operatorname{intDiv}(\{12,-14,-16\},\{5,4,-3\}) \\ & \text { ENTER } \\ & \{2-35\} \end{aligned}$ |
| integrate See $\int()$, page 532. | |

| iPart(| MATH/Number menu | |
| :---: | :---: | :---: |
| | iPart(number) \Rightarrow integer
 iPart(list1) \Rightarrow list
 iPart(matrix1) \Rightarrow matrix
 Returns the integer part of the argument.
 For lists and matrices, returns the integer part of each element.
 The argument can be a real or a complex number. | $\begin{aligned} & \text { iPart }(-1.234) \text { ENTER }-1 . \\ & i \operatorname{Part}(\{3 / 2,-2.3,7.003\}) \text { ENTER } \\ & \{1-2.7 .\} \end{aligned}$ |
| isPrime() MATH/Test menu | | |
| | isPrime(number) \Rightarrow Boolean constant expression
 Returns true or false to indicate if number is a whole number ≥ 2 that is evenly divisible only by itself and 1 .
 If number exceeds about 306 digits and has no factors ≤ 1021, isPrime(number) displays an error message.
 If you merely want to determine if number is prime, use isPrime() instead of factor(). It is much faster, particularly if number is not prime and has a second-largest factor that exceeds about five digits. | IsPrime(5) ENTER true
 IsPrime(6) ENTER false
 Function to find the next prime after a specified number:
 Define nextPrim(n)=Func:Loop: $n+1 \rightarrow n: i f$ isPrime(n):return n :
 EndLoop:EndFunc
 ENTER
 Done
 nextPrim(7) ENTER |
| Item | CATALOG | |
| | Item itemNameString
 Item itemNameString, label
 Valid only within a Custom...EndCustm or ToolBar...EndTBar block. Sets up a drop-down menu element to let you paste text to the cursor position (Custom) or branch to a label (ToolBar).
 Note: Branching to a label is not allowed within a Custom block. | See Custom example. |
| Lbl | CATALOG | |
| | Lbl labelName | Program segment: |
| | Defines a label with the name labelName in the program.
 You can use a Goto labelName instruction to transfer program control to the instruction immediately following the label.
 labelName must meet the same naming requirements as a variable name. | ```:Lbl lbl1 :InputStr "Enter password", str1 :If strlfpassword Goto lbll :Disp "Welcome to ..."``` |

| Icm() | MATH/Number menu | |
| :---: | :---: | :---: |
| | Icm(number1, number2) \Rightarrow expression
 $\operatorname{lcm}($ list1, list2) \Rightarrow list
 Icm (matrix1, matrix2) \Rightarrow matrix
 Returns the least common multiple of the two arguments. The Icm of two fractions is the $\mathbf{l c m}$ of their numerators divided by the gcd of their denominators. The lcm of fractional floating-point numbers is their product.
 For two lists or matrices, returns the least common multiples of the corresponding elements. | ```1cm(6,9) ENTER lcm({1/3,-14,16},{2/15,7,5}) ENTER {2/3 14 80}``` |
| left() | MATH/String menu | |
| | left(sourceString[,num]) \Rightarrow string
 Returns the leftmost num characters contained in character string sourceString.
 If you omit num, returns all of sourceString. | left("Hello", 2) ENTER "He" |
| | $\operatorname{left}($ list $1[$, num $]) \Rightarrow$ list
 Returns the leftmost num elements contained in list1.
 If you omit num, returns all of list1. | left(\{1,3,-2,4\},3) ENTER $\left.\begin{array}{lll}1 & 3-2\end{array}\right\}$ |
| | $\operatorname{left}($ comparison $) \Rightarrow$ expression
 Returns the left-hand side of an equation or inequality. | left (x<3) ENTER x |
| limit() | MATH/Calculus menu | |
| | ```\(\operatorname{limit}(\) expression1, var, point[, direction]) \(\Rightarrow\) expression \(\operatorname{limit}(\) list1, var, point [, direction]) \(\Rightarrow\) list \(\operatorname{limit}(\) matrix1, var, point [, direction]) \(\Rightarrow\) matrix``` | limit $(2 x+3, x, 5)$ ENTER 13
 limit $(1 / x, x, 0,1)$ ENTER ∞
 limit $(\sin (x) / x, x, 0)$ ENTER 1 |
| | Returns the limit requested.
 direction: negative=from left, positive=from right, otherwise=both. (If omitted, direction defaults to both.) | 1imit((sin(x+h)-sin(x))/h,h,0)
 ENTER $\cos (x)$ |

Limits at positive ∞ and at negative ∞ are always converted to one-sided limits from the finite side.

Depending on the circumstances, limit() returns itself or undef when it cannot determine a unique limit. This does not necessarily mean that a unique limit does not exist. undef means that the result is either an unknown number with finite or infinite magnitude, or it is the entire set of such numbers.
limit() uses methods such as L'Hopital's rule, so there are unique limits that it cannot determine. If expression1 contains undefined variables other than var, you might have to constrain them to obtain a more concise result.

Limits can be very sensitive to rounding error. When possible, avoid the APPROX setting of the Exact/Approx mode and approximate numbers when computing limits. Otherwise, limits that should be zero or have infinite magnitude probably will not, and limits that should have finite non-zero magnitude might not.

Line catalog

Line x Start, y Start, $x E n d, y E n d[$, drawMode $]$
Displays the Graph screen and draws, erases, or inverts a line segment between the window coordinates (x Start, y Start) and ($x E n d, y E n d$), including both endpoints.

If drawMode $=1$, draws the line (default). If drawMode $=0$, turns off the line.
If drawMode $={ }^{-} 1$, turns a line that is on to off or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also PxILine.

| limit ($\mathrm{a}^{\wedge} \mathrm{x}, \mathrm{x}, \infty$) | ENTER | undef |
| :---: | :---: | :---: |
| 1 imit ($\mathrm{a}^{\wedge} \mathrm{x}, \mathrm{x}, \infty$) | $a>1$ ENTER | ∞ |
| limit($\left.a^{\wedge} x, x, \infty\right)$ ENTER | $a>0$ and | 0 |

In the ZoomStd window, draw a line and then erase it.

Line 0,0,6,9 ENTER

TI-89: HOME
TI-92 Plus: \dagger [HOME]
Line 0,0,6,9,0 ENTER

LineHorz catalog

LineHorz y [, drawMode]
Displays the Graph screen and draws, erases, or inverts a horizontal line at window position y.

If drawMode $=1$, draws the line (default).
If drawMode $=0$, turns off the line.
If drawMode $=-1$, turns a line that is on to off or off to on (inverts pixels along the line).

In a ZoomStd window:
LineHorz 2.5 ENTER

Note: Regraphing erases all drawn items. See also PxIHorz.

LineTan expression1, expression2
Displays the Graph screen and draws a line tangent to expression 1 at the point specified
expression 1 is an expression or the name of a function, where x is assumed to be the independent variable, and expression2 is the x value of the point that is tangent.

Note: In the example shown, expression 1 is graphed separately. LineTan does not graph expression1.

In function graphing mode and a ZoomTrig window:

Graph $\cos (x)$
TI-89: HOME
TI-92 Plus: - [HOME]
LineTan $\cos (x), \pi / 4$ ENTER

LineVert catalog

LineVert $x[$, drawMode]

Displays the Graph screen and draws, erases, or inverts a vertical line at window position x.

If drawMode $=1$, draws the line (default). If drawMode $=0$, turns off the line.
If drawMode $=-1$, turns a line that is on to off or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also PxIVert.

LinReg MATH/Statistics/Regressions menu

LinReg list1, list2[, [list3] [, list4, list5]]
Calculates the linear regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list 4 represents category codes.
list5 represents category include list.

Note: list1 through list'4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In a ZoomStd window:
LineVert - 2.5 ENTER

In function graphing mode:

$$
\{0,1,2,3,4,5,6\} \rightarrow \operatorname{L1} \underset{\{0 \text { ENTER }}{ } 12 \ldots\}
$$

$\{0,2,3,4,3,4,6\} \rightarrow$ L2 ENTER
$\left\{\begin{array}{llll}0 & 2 & 3\end{array}\right\}$
LinReg L1,L2 ENTER Done
ShowStat ENTER

ENTER
$\operatorname{Regeq}(x) \rightarrow y 1(x)$ ENTER Done
NewPlot 1,1,L1,L2 [ENTER] Done
\bullet [GRAPH]

list>mat() MATH/List menu

list>mat(list $[$, elementsPerRow $]) \Rightarrow$ matrix
Returns a matrix filled row-by-row with the elements from list.
elementsPerRow, if included, specifies the number of elements per row. Default is the number of elements in list (one row).

If list does not fill the resulting matrix, zeros are added.

| $\ln ()$ | TI-89: [2nd [LN] key | TI-92 Plus: LTN key | | |
| :---: | :---: | :---: | :---: | :---: |
| | ssion1) \Rightarrow expression | | $\ln (2.0)$ ENTER | . 693... |

$\ln ($ list 1$) \Rightarrow$ list
Returns the natural logarithm of the argument.

For a list, returns the natural logarithms of the elements.

1istrmat (\{1,2,3\}) ENTER
$\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
listrmat($\{1,2,3,4,5\}, 2$) ENTER $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 0\end{array}\right]$

MATH/List menu

Returns a list containing the differences between consecutive elements in list1. Each elent one element shorter than the original list1.

If complex format mode is REAL:

$$
\begin{aligned}
& \ln (\{-3,1.2,5\}) \text { ENTER } \\
& \quad \text { Error: Non-real result }
\end{aligned}
$$

If complex format mode is RECTANGULAR:

$$
\begin{aligned}
& \ln (\{-3,1.2,5\}) \text { ENTER } \\
& \quad\{\ln (3)+\pi \cdot \boldsymbol{i} \quad .182 \ldots \quad \ln (5)\}
\end{aligned}
$$

$\operatorname{In}($ squareMatrix1) \Rightarrow squareMatrix
Returns the matrix natural logarithm of squareMatrix1. This is not the same as calculating the natural logarithm of each element. For information about the calculation method, refer to $\boldsymbol{\operatorname { c o s } ()}$ on.
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode and Rectangular complex format mode:
$\ln ([1,5,3 ; 4,2,1 ; 6,-2,1])$ ENTER
$\left[\begin{array}{lll}1.831 \ldots+. .1 .734 \ldots \cdot \boldsymbol{i} & .009 \ldots-1.490 \ldots . . \boldsymbol{i} & \ldots \\ .448 . \ldots-725 \ldots \boldsymbol{i} & 1.064 \ldots+.623 \cdot \boldsymbol{i} & \ldots \\ -.266 \ldots-2.083 \ldots \cdot \boldsymbol{i} & 1.124 \ldots+1.790 \ldots \cdot \boldsymbol{i} & \ldots\end{array}\right]$

LnReg MATH/Statistics/Regressions menu

LnReg list1, list2[, [list3] [, list4, list5]]
Calculates the logarithmic regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist. list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.

Note: list1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:

ShowStat ENTER

ENTER

| Regeq $(x) \rightarrow y 1(x)$ ENTER | Done |
| :--- | :--- |
| NewPlot $1,1, L 1$, L2 ENTER] | Done |

- [GRAPH]

Program listing:

```
:prgmname()
: Prgm
:Local x,y
:Input "Enter x",x
:Input "Enter y",y
:Disp x*y
:EndPrgm
```

Note: x and y do not exist after the program executes.

Lock CATALOG

Lock var1[, var2] ...
Locks the specified variables. This prevents you from accidentally deleting or changing the variable without first using the unlock instruction on that variable.

In the example to the right, the variable L 1 is locked and cannot be deleted or modified.

Note: The variables can be unlocked using the Unlock command.
$\{1,2,3,4\} \rightarrow L 1$ ENTER $\quad\{1,2,3,4\}$
Lock L1 ENTER
Done
DelVar L1 ENTER
Error: Variable is locked or protected

$$
\log (\text { expression } 1) \Rightarrow \text { expression }
$$

$\log ($ list1 $) \Rightarrow$ list
Returns the base- 10 logarithm of the argument.

For a list, returns the base-10 logs of the elements.
$\log (2.0)$ ENTER
301...

If complex format mode is REAL:
$\log (\{-3,1.2,5\})$ ENTER
Error: Non-real result
If complex format mode is RECTANGULAR:
$\log (\{-3,1.2,5\})$ ENTER

$$
\left\{\frac{\ln (3)}{\ln (10)}+\frac{\pi}{\ln (10)} \cdot i \quad .079 \ldots \frac{\ln (5)}{\ln (10)}\right\}
$$

Returns the matrix base- 10 logarithm of squareMatrix1. This is not the same as calculating the base- 10 logarithm of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode and Rectangular complex format mode:
$\log ([1,5,3 ; 4,2,1 ; 6,-2,1])$ ENTER
$\left[\begin{array}{lll}.795 \ldots+.753 \ldots \cdot \boldsymbol{i} & .003 \ldots-. .647 \ldots \cdot \boldsymbol{i} & \ldots \\ .194 \ldots-.315 \ldots \cdot \boldsymbol{i} & .462 \ldots+270 \cdot \boldsymbol{i} & \ldots \\ -.115 \ldots-. . .904 \ldots \cdot \boldsymbol{i} & .488 \ldots+.777 \ldots \cdot \boldsymbol{i} & \ldots\end{array}\right]$

Logistic MATH/Statistics/Regressions menu

Logistic list1, list2 [, [iterations], [list3] [, list4, list5]]
Calculates the logistic regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list 5 .
list1 represents xlist. list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.
iterations specifies the maximum number of times a solution will be attempted. If omitted, 64 is used. Typically, larger values result in better accuracy but longer execution times, and vice versa.

Note: list1 through list'4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:
$\{1,2,3,4,5,6\} \rightarrow$ L1 ENTER $\left\{\begin{array}{llll}1 & 2 & 3 \ldots\end{array}\right\}$ $\{1,1.3,2.5,3.5,4.5,4.8\} \rightarrow L 2$
ENTER
$\left\{\begin{array}{lllll}1 & 1.3 & 2.5 & \ldots\end{array}\right\}$
Logistic L1, L2 ENTER Done
ShowStat ENTER

ENTER
regeq $(x) \rightarrow y 1(x)$ ENTER Done
NewPlot 1,1,L1,L2 ENTER Done
[GRAPH]
F2 9

| Loop | CATALOG | |
| :---: | :---: | :---: |
| | Loop block EndLoop | Program segment: $\begin{gathered} \vdots \\ : 1 \rightarrow i \end{gathered}$ |
| | Repeatedly executes the statements in block. Note that the loop will be executed endlessly, unless a Goto or Exit instruction is executed within block.
 block is a sequence of statements separated with the ":" character. | ```:Loop : Rand(6)->diel : Rand(6)->die2 : If diel=6 and die2=6 Goto End i+1-> i : EndLoop :Lb1 End :Disp "The number of rolls is", i``` |
| LU | MATH/Matrix menu | |
| | LU matrix, lMatName, uMatName, pMatName[, tol]
 Calculates the Doolittle LU (lower-upper) decomposition of a real or complex matrix. The lower triangular matrix is stored in lMatName, the upper triangular matrix in uMatName, and the permutation matrix (which describes the row swaps done during the calculation) in pMatName. | $[6,12,18 ; 5,14,31 ; 3,8,18] \rightarrow m 1$
 ENTER $\left[\begin{array}{lll} 6 & 12 & 18 \\ 5 & 14 & 31 \\ 3 & 8 & 18 \end{array}\right]$
 LU m1,lower, upper, perm ENTER Done |
| | lMatName $*$ uMatName $=$ pMatName $*$ matrix | 10wer ENTER [$\left[\begin{array}{lll}5 / 6 & 1 & 0 \\ 1 / 2 & 1 / 2 & 1\end{array}\right]$ |
| | Optionally, any matrix element is treated as zero if its absolute value is less than tol. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, tol is ignored. | $\begin{array}{ll} \text { upper ENTER } & {\left[\begin{array}{lll} 6 & 12 & 18 \\ 0 & 4 & 16 \\ 0 & 0 & 1 \end{array}\right]} \\ \text { perm ENTER } & {\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]} \end{array}$ |
| | - If you use ENTER or set the mode to Exact/Approx=APPROXIMATE, computations are done using floating-point arithmetic.
 - If $t o l$ is omitted or not used, the default tolerance is calculated as: | $[m, n ; 0, p] \rightarrow m 1$ ENTER $\left[\begin{array}{cc}m & n \\ 0 & p\end{array}\right]$
 LU m1,lower, upper, perm ENTER Done |
| | $\begin{aligned} & 5 \mathrm{E}-14 * \max (\operatorname{dim}(\text { matrix })) \\ & * \operatorname{rowNorm}(\text { matrix }) \end{aligned}$ | $10 w e r$ ENTER $\quad\left[\begin{array}{cc}1 & 0 \\ \frac{m}{0} & 1\end{array}\right]$ |
| | The LU factorization algorithm uses partial pivoting with row interchanges. | upper ENTER $\left[\begin{array}{ll}0 & p \\ 0 & n\end{array} \frac{m \cdot p}{0}\right]$ |
| | | perm [ENTER $\quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ |

matllist(matrix) \Rightarrow list
Returns a list filled with the elements in matrix. The elements are copied from matrix row by row.

```
matplist([1,2,3]) ENTER
```

$\left\{\begin{array}{lll}1 & 2 & 3\end{array}\right\}$
$[1,2,3 ; 4,5,6] \rightarrow M 1$ ENTER
matplist(M1) ENTER $\left.\begin{array}{llllll}1 & 2 & 3 & 4 & 4 & 5 \\ 4 & 5 & 6 & 6\end{array}\right]$

Returns the maximum of the two arguments.
If the arguments are two lists or matrices, returns a list or matrix containing the maximum value of each pair of corresponding elements.
$\overline{\max (\text { list }) \Rightarrow \text { expression } \quad \max (\{0,1,-7,1.3, .5\}) \text { ENTER } 1.3}$
Returns the maximum element in list.
$\boldsymbol{\operatorname { m a x } (\text { matrix } 1)} \Rightarrow$ matrix $\max ([1,-3,7 ;-4,0, .3])$ ENTER

Returns a row vector containing the maximum element of each column in matrix1.

Note: See also $\mathbf{f M a x}()$ and $\boldsymbol{\operatorname { m i n }}()$.
mean() MATH/Statistics menu
mean(list $[$, freqlist $]) \Rightarrow$ expression $\quad \operatorname{mean}(\{.2,0,1,-.3, .4\})$ ENTER 26

Returns the mean of the elements in list.
Each freqlist element counts the number of mean $(\{1,2,3\},\{3,2,1\})$ ENTER 5/3 consecutive occurrences of the corresponding element in list.
mean(matrix $1[$, freqmatrix]) \Rightarrow matrix
Returns a row vector of the means of all the columns in matrix1.

Each freqmatrix element counts the number of consecutive occurrences of the corresponding element in matrix1.

In vector format rectangular mode:
mean([.2,0;-1,3;.4,-.5]) ENTER
[-.133... .833...]
mean([1/5,0;-1,3;2/5,-1/2]) ENTER
$[-2 / 15 \quad 5 / 6]$
mean([1,2;3,4;5,6],[5,3;4,1;
6,2]) [ENTER [47/15, 11/3]

median() MATH/Statistics menu

median(list) \Rightarrow expression
median(\{.2,0,1,-. 3,.4\}) ENTER . 2
Returns the median of the elements in list1.

```
median(matrix1) = matrix
median([.2,0;1,-.3;.4,-.5])
ENTER
```

$\left[\begin{array}{ll}. & -.3\end{array}\right]$
Returns a row vector containing the medians of the columns in matrix1.

Note: All entries in the list or matrix must simplify to numbers.

MedMed list1, list2[, [list3] [, list4, list5]]
Calculates the median-median line and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist. list2 represents ylist. list3 represents frequency. list 4 represents category codes. list 5 represents category include list.

Note: list1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:
$\{0,1,2,3,4,5,6\} \rightarrow$ L1 ENTER $\left\{\begin{array}{lll}0 & 1 & 2 \ldots\end{array}\right\}$
$\{0,2,3,4,3,4,6\} \rightarrow L 2$ ENTER $\begin{cases}0 & 2 \\ 3 & \ldots\end{cases}$
MedMed L1, L2 ENTER \quad Done

ShowStat ENTER

| | |
| :---: | :---: |
| | |
| Ester $\overline{\text { ak }}$ | |
| ENTER | |
| $\operatorname{Regeq}(\mathrm{x}) \rightarrow \mathrm{y} 1(\mathrm{x})$ ENTER | Done |
| NewP1ot 1,1,L1,L2 ENTER | Done |

\rightarrow [GRAPH]

mid() MATH/String menu

$\operatorname{mid}($ sourceString, start $[$, count $]) \quad \Rightarrow$ string
Returns count characters from character string sourceString, beginning with character number start.

> mid("Hello there", 2$)$ ENTER "ello there"

If count is omitted or is greater than the dimension of sourceString, returns all characters from sourceString, beginning with character number start.

$$
\begin{array}{r}
\text { mid("Hello there", } 7,3) \text { ENTER } \\
\text { "the" }
\end{array}
$$

mid("Hello there", 1,5) ENTER
count must be ≥ 0. If count $=0$, returns an
mid("Hello there", 1,0) ENTER empty string.

| $\operatorname{mid}($ sourceList, start $[$, count $]) \Rightarrow$ list | $\operatorname{mid}(\{9,8,7,6\}, 3)$ ENTER | $\{76\}$ |
| :--- | :--- | ---: |
| Returns count elements from sourceList,
 beginning with element number start. | $\operatorname{mid}(\{9,8,7,6\}, 2,2)$ ENTER | $\{87\}$ |
| If count is omitted or is greater than the
 dimension of sourceList, returns all elements
 from sourceList, beginning with element | $\operatorname{mid}(\{9,8,7,6\}, 1,2)$ ENTER | $\{98\}(\{9,8,7,6\}, 1,0)$ ENTER | from sourceList, beginning with element number start.

count must be ≥ 0. If count $=0$, returns an empty list.

Returns count strings from the list of strings sourceStringList, beginning with element number start.

| $\min ()$ | MATH/List menu | |
| :---: | :---: | :---: |
| | $\min ($ expression 1 , expression2) \Rightarrow expression $\min ($ list1, list2) \Rightarrow list $\boldsymbol{\operatorname { m i n }}$ (matrix1, matrix2) \Rightarrow matrix
 Returns the minimum of the two arguments. If the arguments are two lists or matrices, returns a list or matrix containing the minimum value of each pair of corresponding elements. | $\min (2.3,1.4)$ ENTER 1.4
 $\min (\{1,2\},\{-4,3\})$ ENTER $\{-42\}$ |
| | $\boldsymbol{\operatorname { m i n }}(l i s t) \quad \Rightarrow$ expression | $\min (\{0,1,-7,1.3, .5\})$ ENTER $\quad-7$ |
| Returns the minimum element of l ist. | | |
| | $\overline{\min (\text { matrix } 1) ~} \Rightarrow$ matrix
 Returns a row vector containing the minimum element of each column in matrix1.
 Note: See also fMin() and $\boldsymbol{\operatorname { m a x }}($ (). | $\begin{array}{r} \min ([1,-3,7 ;-4,0, .3]) \text { ENTER } \\ {\left[\begin{array}{lll} -4 & -3 & .3] \end{array}\right.} \end{array}$ |
| $\bmod ()$ | MATH/Number menu | |
| | $\bmod ($ expression 1 , expression 2$) \Rightarrow$ expression $\bmod ($ list1, list2) \Rightarrow list $\bmod ($ matrix 1, matrix 2$) \Rightarrow$ matrix | $\begin{aligned} & \bmod (7,0) \text { ENTER } \\ & \bmod (7,3) \text { ENTER } \end{aligned}$ |
| | Returns the first argument modulo the second argument as defined by the identities: | $\bmod (-7,3)$ ENTER |
| | $\begin{aligned} \bmod (x, 0) & \equiv x \\ \bmod (x, y) & =x-y \operatorname{floor}(x / y) \end{aligned}$ | $\bmod (7,-3)$ ENTER -2
 $\bmod (-7,-3)$ ENTER -1 |
| | When the second argument is non-zero, the result is periodic in that argument. The result is either zero or has the same sign as the second argument. | $\begin{array}{r} \bmod (\{12,-14,16\},\{9,7,-5\}) \text { ENTER } \\ \{30-4\} \end{array}$ |
| | If the arguments are two lists or two matrices, returns a list or matrix containing the modulo of each pair of corresponding elements. | |
| | Note: See also remain(). | |
| MoveVar | Var CATALOG | |
| MoveVar var, oldFolder, newFolder | | $\{1,2,3,4\} \rightarrow$ L1 ENTER $\quad\left\{\begin{array}{llll}1 & 2 & 3\end{array}\right\}$ |
| | Moves variable var from oldFolder to newFolder. If newFolder does not exist, MoveVar creates it. | MoveVar L1, Main,Games ENTER Done |
| mRow() | () MATH/Matrix/Row ops menu | |
| mRow(expression, matrix1, index) \Rightarrow matrix | | mRow (-1/3, 11,$2 ; 3,4], 2)$ ENTER |
| | Returns a copy of matrix1 with each element in row index of matrix1 multiplied by expression. | $\left[\begin{array}{cc} 1 & 2 \\ -1 & -4 / 3 \end{array}\right]$ |

mRowAdd(expression, matrix1, index1, index2)

\Rightarrow matrix

Returns a copy of matrix1 with each element in row index2 of matrix1 replaced with:
expression \times row index $1+$ row index 2
mRowAdd (-3,[1,2;3,4],1,2) ENTER
mRowAdd ($n,[a, b ; c, d], 1,2$) ENTER

$$
\left[\begin{array}{ll}
a & b \\
a \cdot n+c & b \cdot n+d
\end{array}\right]
$$

nCr()$\quad \mathrm{MATH} /$ Probability menu
nCr (expression1, expression2) \Rightarrow expression
For integer expression1 and expression2 with expression $1 \geq$ expression $2 \geq 0, \mathrm{nCr}()$ is the number of combinations of expression 1 things taken expression2 at a time. (This is also known as a binomial coefficient.) Both arguments can be integers or symbolic expressions.

| $\operatorname{nCr}(z, 3)$ | $\frac{z \cdot(z-2) \cdot(z-1)}{6}$ |
| :--- | ---: |
| $\operatorname{ans}(1) \mid z=5$ | 10 |
| $n C r(z, c)$ | $\frac{z!}{c!(z-c)!}$ |
| $\operatorname{ans}(1) / n P r(z, c)$ | $\frac{1}{c!}$ |

nCr (expression, 0) $\Rightarrow 1$
nCr (expression, negInteger) $\Rightarrow 0$
$\mathrm{nCr}($ expression, posInteger $) \Rightarrow$
expression • (expression-1)...
(expression-posInteger +1)/ posInteger!
$\mathbf{n C r}($ expression, nonInteger $) \Rightarrow$ expression!/
((expression-nonInteger)! • nonInteger!)
$\mathrm{nCr}($ list 1, list2) \Rightarrow list
Returns a list of combinations based on the corresponding element pairs in the two lists. The arguments must be the same size list.

| $\mathrm{nCr}($ matrix1, matrix2 $) \Rightarrow$ matrix | $\mathrm{nCr}([6,5 ; 4,3],[2,2 ; 2,2])$ ENTER |
| :--- | :--- | :--- |
| Returns a matrix of combinations based on
 the corresponding element pairs in the two | $\left[\begin{array}{cc}15 & 10 \\ 6 & 3\end{array}\right]$ | the corresponding element pairs in the two matrices. The arguments must be the same size matrix.

```
nDeriv() MATH/Calculus menu
    nDeriv(expression1, var \([, h]) \Rightarrow\) expression
    nDeriv (expression1, var, list) \(\Rightarrow\) list
    nDeriv(list, var \([, h]) \Rightarrow\) list
    nDeriv(matrix, var \([, h]) \Rightarrow\) matrix
```

Returns the numerical derivative as an expression. Uses the central difference quotient formula.
h is the step value. If h is omitted, it defaults to 0.001 .

When using list or matrix, the operation gets mapped across the values in the list or across the matrix elements.

Note: See also avgRC() and $\boldsymbol{d}($).
nDeriv(cos $(x), x, h)$ ENTER
$\frac{-(\cos (x-h)-\cos (x+h))}{2 \cdot h}$
limit(nDeriv(cos(x), $x, h), h, 0)$
ENTER
$-\sin (x)$
nDeriv($x^{\wedge} 3, x, 0.01$) ENTER

$$
3 . \cdot\left(x^{2}+.000033\right)
$$

$n \operatorname{Deriv}(\cos (x), x) \mid x=\pi / 2$ ENTER - 1 .
nDeriv($\left.x^{\wedge} 2, x,\{.01, .1\}\right)$ ENTER $\{2 \cdot x 2 \cdot x\}$

NewData dataVar, list1[, list2] [, list3]...
Creates data variable dataVar, where the columns are the lists in order.

Must have at least one list.
list1, list2, ..., listn can be lists as shown, expressions that resolve to lists, or list variable names.

NewData makes the new variable current in the Data/Matrix Editor.

NewData mydata, $\{1,2,3\},\{4,5,6\}$ ENTER

Done
(Go to the Data/Matrix Editor and open the var mydata to display the data variable below.)

NewData dataVar, matrix
Creates data variable dataVar based on matrix.

NewData sysData, matrix
Loads the contents of matrix into the system data variable sysData.

NewFold catalog

NewFold folderName

Creates a user-defined folder with the name folderName, and then sets the current folder to that folder. After you execute this instruction, you are in the new folder.

newList() catalog

newList(numElements) \Rightarrow list
newList(4) ENTER
$\left\{\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right\}$
Returns a list with a dimension of numElements. Each element is zero.

newMat() CATALOG also Math/Matrix menu

newMat(numRows, numColumns) \Rightarrow matrix
newMat $(2,3)$ ENTER
Returns a matrix of zeros with the dimension numRows by numColumns.

NewPic CATALOG

NewPic matrix, picVar [, maxRow][, maxCol]
Creates a pic variable picVar based on matrix. matrix must be an $n \times 2$ matrix in which each row represents a pixel. Pixel coordinates start at 0,0 . If picVar already exists, NewPic replaces it.
The default for picVar is the minimum area required for the matrix values. The optional arguments, maxRow and maxCol, determine

NewPic $[1,1 ; 2,2 ; 3,3 ; 4,4 ; 5,5$;
$5,1 ; 4,2 ; 2,4 ; 1,5]$, xpic ENTER Done
RclPic xpic ENTER
 the maximum boundary limits for picVar.

NewPlot n, type, x List [,[yList], [frqList], [catList], [includeCatList], [mark] [, bucketSize]]

Creates a new plot definition for plot number n.
type specifies the type of the graph plot.
1 = scatter plot
2 = xyline plot
3 = box plot
4 = histogram
$5=$ modified box plot
mark specifies the display type of the mark.
$1=\square$ (box)
$2=\times$ (cross)
$3=+$ (plus)
$4=$ - (square)
$5=\cdot(\operatorname{dot})$
bucketSize is the width of each histogram "bucket" (type $=4$), and will vary based on the window variables x min and x max. bucketSize must be >0. Default $=1$.

Note: n can be 1-9. Lists must be variable names or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor), except for includeCatList, which does not have to be a variable name and cannot be c1-c99.

| Fn0ff ENTER | | Done |
| :---: | :---: | :---: |
| Plots 0 ff [ENTER | | Done |
| $\{1,2,3,4\} \rightarrow$ L1 [ENTER] | \{1 2 | $34\}$ |
| $\{2,3,4,5\} \rightarrow$ L2 [ENTER | \{2 3 | $45\}$ |
| NewPlot 1,1,L1,L2, | [ENTER] | Done |

Press [GRAPH] to display:

NewProb catalog

NewProb

NewProb ENTER
Done
Performs a variety of operations that let you begin a new problem from a cleared state without resetting the memory.

- Clears all single-character variable names (Clear a-z) in the current folder, unless the variables are locked or archived.
- Turns off all functions and stat plots (FnOff and PlotsOff) in the current graphing mode.
- Perfoms CIrDraw, CIrErr, CIrGraph, ClrHome, CIrIO, and CIrTable.

nint() MATH/Calculus menu

nInt(expression1, var, lower, upper) \Rightarrow expression $\operatorname{nInt}\left(e^{\wedge}\left(-x^{\wedge} 2\right), \mathrm{x},-1,1\right)$ ENTER
If the integrand expression 1 contains no 1.493... variable other than var, and if lower and upper are constants, positive ∞, or negative ∞, then nInt() returns an approximation of ((expression1, var, lower, upper). This approximation is a weighted average of some sample values of the integrand in the interval lower<var<upper.

The goal is six significant digits. The adaptive algorithm terminates when it seems likely that the goal has been achieved, or when it seems unlikely that additional samples will yield a worthwhile improvement.

A warning is displayed ("Questionable accuracy") when it seems that the goal has not been achieved.

Nest nint() to do multiple numeric integration. Integration limits can depend on integration variables outside them.
$n \operatorname{lnt}\left(\cos (x), x,^{-} \pi, \pi+1 \mathrm{E}^{-1} 12\right)$ ENTER

- $1.041 \ldots \mathrm{E}-12$
$\int\left(\cos (x), x,^{-} \pi, \pi+10^{\wedge}(-12)\right)$ ENTER $-\sin \left(\frac{1}{1000000000000}\right)$
ans (1) - ENTER - E - 12
$n \operatorname{Int}\left(n \operatorname{Int}\left(e^{\wedge}\left(-x^{*} y\right) / \sqrt{\left(x^{\wedge} 2-y^{\wedge}\right.} 2\right)\right.$, $y,-x, x), x, 0,1)$ ENTER 3.304...

Note: See also $\int_{(}()$.

norm() MATH/Matrix/Norms menu

norm(matrix) \Rightarrow expression
norm([a,b;c,d]) ENTER
Returns the Frobenius norm.
norm([1,2;3,4]) ENTER

not MATH/Test menu

not Boolean expression $1 \Rightarrow$ Boolean expression
Returns true, false, or a simplified Boolean expression1.
not $2>=3$ ENTER true
not $x<2$ ENTER
$x \geq 2$
not not innocent ENTER innocent

Returns the one's complement of a real integer. Internally, integer 1 is converted to a signed, 32 -bit binary number. The value of each bit is flipped (0 becomes 1 , and vice versa) for the one's complement. Results are displayed according to the Base mode.

You can enter the integer in any number base. For a binary or hexadecimal entry, you must use the 0 b or 0 h prefix, respectively. Without a prefix, the integer is treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 32-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range.

In Hex base mode:

Important: Zero, not the letter O .

In Bin base mode:
Ob100101 dec ENTER
not Ob100101 ENTER
Ob1111111111111111111111111111011010
ans (1) dec ENTER
Note: A binary entry can have up to 32 digits (not counting the 0b prefix). A hexadecimal entry can have up to 8 digits.

Note: To type the conversion operator, press 2nd [\downarrow]. You can also select base conversions from the MATH/Base menu.

For integer expression1 and expression2 with expression $1 \geq$ expression $2 \geq 0, \mathrm{nPr}()$ is the number of permutations of expression 1 things taken expression2 at a time. Both arguments can be integers or symbolic expressions.

```
nPr(expression, 0) = 1
```

$\mathrm{nPr}($ expression, negInteger $) \Rightarrow$
$1 /(($ expression +1$) \cdot($ expression +2$) \ldots$
(expression-negInteger))
$\mathrm{nPr}($ expression, posInteger $) \Rightarrow$
expression • (expression-1)...
(expression-posInteger +1)
$\mathrm{nPr}($ expression, nonInteger $) \Rightarrow$ expression!/
(expression-nonInteger)!
$\overline{\mathrm{nPr}(\text { list1, } \text { list2) })} \Rightarrow$ list

Returns a list of permutations based on the corresponding element pairs in the two lists. The arguments must be the same size list.
$\mathbf{n P r}$ (matrix1, matrix2) \Rightarrow matrix
Returns a matrix of permutations based on the corresponding element pairs in the two matrices. The arguments must be the same size matrix.

nSolve() MATH/AIgebra menu

nSolve(equation, varOrGuess) \Rightarrow number or error_string

Iteratively searches for one approximate real numeric solution to equation for its one variable. Specify varOrGuess as:
variable

- or -
variable $=$ real number
For example, x is valid and so is $\mathrm{x}=3$.
nSolve() is often much faster than solve() or zeros(), particularly if the "।" operator is used to constrain the search to a small interval containing exactly one simple solution.
nSolve() attempts to determine either one point where the residual is zero or two relatively close points where the residual has opposite signs and the magnitude of the residual is not excessive. If it cannot achieve this using a modest number of sample points, it returns the string "no solution found."
If you use nSolve() in a program, you can use getType() to check for a numeric result before using it in an algebraic expression.

Note: See also cSolve(), cZeros(), solve(), and zeros().
$\mathrm{nPr}($ list1, list2) \Rightarrow list
Returns a list of permutations based on the
corresponding element pairs in the two lists.
The arguments must be the same size list.
$\mathbf{n P r}$ (matrix1, matrix 2) \Rightarrow matrix
size matrix.
$n \operatorname{Pr}(\{5,4,3\},\{2,4,2\})$ ENTER
$\left\{\begin{array}{lll}20 & 24 & 6\end{array}\right\}$
$n \operatorname{Pr}(z, c) \frac{z!}{(z-c)!}$
$\operatorname{ans}(1) * n \operatorname{Pr}(z-c,-c)$ ENTER
1
$n \operatorname{Pr}(z,-3) \frac{1}{\operatorname{ENTER}} \frac{1}{(z+1) \cdot(z+2) \cdot(z+3)}$
$n \operatorname{Pr}([6,5 ; 4,3],[2,2 ; 2,2])$ ENTER
$\left[\begin{array}{rr}30 & 20 \\ 12 & 6\end{array}\right]$

OneVar MATH/Statistics menu

OneVar list1 [[, list2] [, list3] [, list4]]

Calculates 1-variable statistics and updates all the system statistics variables.

All the lists must have equal dimensions except for list 4 .
list1 represents xlist.
list2 represents frequency.
list3 represents category codes.
list 4 represents category include list.
Note: list1 through list3 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list 4 does not have to be a variable name and cannot be c1-c99.
$x \geq 3$ or $x \geq 4$ ENTER
$x \geq 3$
Boolean expression
Returns true or false or a simplified form of the original entry.

Returns true if either or both expressions simplify to true. Returns false only if both expressions evaluate to false.

Note: See xor.
Program segment:
\vdots
If $x<0$ or $x \geq 5$
Goto END
:
If choice=1 or choice=2
Disp "Wrong choice"
integer1 or integer2 \Rightarrow integer
Compares two real integers bit-by-bit using an or operation. Internally, both integers are converted to signed, 32-bit binary numbers. When corresponding bits are compared, the result is 1 if either bit is 1 ; the result is 0 only if both bits are 0 . The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0 b or 0 h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 32 -bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range.

Note: See xor.

In Hex base mode:
Oh7AC36 or 0h3D5F ENTER 0h7BD7F
_ Important: Zero, not the letter O.

In Bin base mode:
Ob100101 or Ob100 ENTER Ob100101
Note: A binary entry can have up to 32 digits (not counting the 0b prefix). A hexadecimal entry can have up to 8 digits.

ord() MATH/String menu

ord(string) \Rightarrow integer
$\operatorname{ord}($ list1) \Rightarrow list
Returns the numeric code of the first character in character string string, or a list of the first characters of each list element.

See Appendix B for a complete listing of character codes.
ord("hello") ENTER 104
char(104) ENTER "h"
ord(char(24)) ENTER 24
ord(\{"alpha", "beta"\}) ENTER
\{97 98\}

Output CATALOG

Output row, column, exprorString
Displays exprorString (an expression or character string) on the Program I/O screen at the text coordinates (row, column).

An expression can include conversion operations such as $\boldsymbol{D D D}$ and \bullet Rect. You can also use the operator to perform unit and number base conversions.

If Pretty Print = ON, exprOrString is "pretty printed."

From the Program I/O screen, you can press [55 to display the Home screen, or a program can use DispHome.

Program segment:
:RandSeed 1147
:Clrio
: For i,1,90,10
: Output i, rand(100),"Hello"
: EndFor
\vdots
Result after execution:

P>RX() MATH/Angle menu

P>Rx(rExpression, θ Expression $) \Rightarrow$ expression
$\mathbf{P > R X}(r$ List, QList $) \Rightarrow$ list
$\mathbf{P > R X}($ rMatrix, θ Matrix $) \Rightarrow$ matrix
Returns the equivalent x-coordinate of the (r, θ) pair.

Note: The θ argument is interpreted as either a degree or radian angle, according to the current angle mode. If the argument is an expression, you can use ${ }^{\circ}$ or ${ }^{r}$ to override the angle mode setting temporarily.

In Radian angle mode:

$$
\operatorname{PrRx}(r, \theta) \text { ENTER } \quad \cos (\theta) \cdot r
$$

Pr Rx $\left(4,60^{\circ}\right)$ ENTER
2
$\operatorname{PrRx}(\{-3,10,1.3\},\{\pi / 3,-\pi / 4,0\})$ ENTER

$$
\left\{\begin{array}{lll}
-3 / 2 & 5 \cdot \sqrt{2} & 1.3
\end{array}\right\}
$$

P)Ry() MATH/Angle menu

$\mathbf{P r R y}(r$ Expression, , Expression) \Rightarrow expression
$\mathbf{P r R y}(r$ List,, List $) \Rightarrow$ list
PrRy(rMatrix, θ Matrix) \Rightarrow matrix
Returns the equivalent y-coordinate of the (r, θ) pair.

Note: The θ argument is interpreted as either a degree or radian angle, according to the current angle mode. If the argument is an expression, you can use ${ }^{\circ}$ or ${ }^{r}$ to override the angle mode setting temporarily.

In Radian angle mode:

```
PrRy \((r, \theta)\) ENTER
        \(\sin (\theta) \cdot r\)
PrRy \(\left(4,60^{\circ}\right)\) ENTER
                            \(2 \cdot \sqrt{3}\)
\(\operatorname{Pr} \operatorname{Ry}(\{-3,10,1.3\},\{\pi / 3,-\pi / 4,0\})\)
ENTER
    \(\left\{\begin{array}{ccc}\frac{-3 \cdot \sqrt{3}}{2} & -5 \cdot \sqrt{2} & 0 .\end{array}\right\}\)
```

This advanced programming function lets you identify and extract all of the subexpressions in the simplified result of expression1.

For example, if expression1 simplifies to $\cos (\pi * x+3)$:

- The $\boldsymbol{\operatorname { c o s } ()}$ function has one argument: ($\pi * x+3$).
- The sum of $\left(\pi^{*} x+3\right)$ has two operands: $\pi^{*} \mathrm{x}$ and 3 .
- The number 3 has no arguments or operands.
- The product $\pi^{*} \mathrm{x}$ has two operands: π and x.
- The variable x and the symbolic constant π have no arguments or operands.

If x has a numeric value and you press EENTER, the numeric value of $\pi * x$ is calculated, the result is added to 3 , and then the cosine is calculated. $\cos ()$ is the top-level operator because it is applied last.
part(expression1) \Rightarrow number
Simplifies expression1 and returns the number of top-level arguments or operands. This returns 0 if expression 1 is a number, variable, or symbolic constant such as π, e, \boldsymbol{i}, or ∞.
part(expression1, $\mathbf{0}) \Rightarrow$ string
Simplifies expression1 and returns a string that contains the top-level function name or operator. This returns string(expression1) if expression 1 is a number, variable, or symbolic constant such as π, e, \boldsymbol{i}, or ∞.
part(expression1, $n) \quad \Rightarrow$ expression
Simplifies expression 1 and returns the $n^{\text {th }}$ argument or operand, where n is >0 and \leq the number of top-level arguments or operands returned by part(expression1). Otherwise, an error is returned.
$\operatorname{part}\left(\cos \left(\pi^{*} x+3\right)\right)$ ENTER 1
Note: $\cos (\pi * x+3)$ has one argument.
$\operatorname{part}\left(\cos \left(\pi^{*} x+3\right), 0\right)$ ENTER $\quad \cos "$

```
part(cos( }\pi*x+3),1) ENTER 3+\pi\cdot
```

Note: Simplification changed the order of the argument.

By combining the variations of part(), you can extract all of the sub-expressions in the simplified result of expression1. As shown in the example to the right, you can store an argument or operand and then use part() to extract further sub-expressions.

Note: When using part(), do not rely on any particular order in sums and products.

Expressions such as $(\mathrm{x}+\mathrm{y}+\mathrm{z})$ and $(\mathrm{x}-\mathrm{y}-\mathrm{z})$ are represented internally as $(x+y)+z$ and $(x-y)-z$. This affects the values returned for the first and second argument. There are technical reasons why part($x+y+z, 1$) returns $y+x$ instead of $x+y$.

Similarly, $\mathrm{x} * \mathrm{y}^{*} \mathrm{z}$ is represented internally as $(x * y) *$ z. Again, there are technical reasons why the first argument is returned as $\mathrm{y} \cdot \mathrm{x}$ instead of $x \cdot y$.

When you extract sub-expressions from a matrix, remember that matrices are stored as lists of lists, as illustrated in the example to the right.

| part $\left(\cos \left(\pi^{*} x+3\right)\right)$ ENTER | |
| :---: | :---: |
| $p a r t\left(\cos \left(\pi^{*} x+3\right), 0\right)$ ENTER | "cos" |
| part $\left(\cos \left(\pi^{*} x+3\right), 1\right) \rightarrow$ temp ENTER | |
| | $3+\pi \cdot \mathrm{x}$ |
| temp ENTER | $\pi \cdot x+3$ |
| part(temp,0) ENTER | " + " |
| part(temp) ENTER | 2 |
| part(temp,2) ENTER | 3 |
| part (temp,1) \rightarrow temp ENTER | x |
| part(temp,0) ENTER | "* |
| part(temp) ENTER | 2 |
| part(temp,1) ENTER | π |
| part(temp,2) ENTER | X |
| part $(x+y+z)$ ENTER | 2 |
| part($x+y+z, 2)$ ENTER | z |
| part $(x+y+z, 1)$ ENTER | $y+x$ |
| part(x*y*z) ENTER | 2 |
| part(x*y*z,2) ENTER | z |
| part(x*y*z,1) ENTER | $y \cdot x$ |
| part([a,b,c; $\mathrm{x}, \mathrm{y}, \mathrm{z}], 0$) ENTER | TER " ${ }^{\text {" }}$ |
| part([a,b,c; $\mathrm{x}, \mathrm{y}, \mathrm{z}])$ ENTER | 2 2 |
| $\operatorname{part}([a, b, c ; x, y, z], 2) \rightarrow$ temp | emp |
| ENTER | |
| | $\left.\begin{array}{lll}x & y & z\end{array}\right\}$ |
| part(temp,0) ENTER | " \{ " |
| part(temp) ENTER | 3 |
| part(temp,3) ENTER | z |
| delVar temp ENTER | Done |

part $\left(\cos \left(\pi^{*} x+3\right), 1\right) \rightarrow$ temp ENTER
$3+\pi \cdot x$
temp ENTER $\pi \cdot x+3$
"+"
2
3
part (temp,1) \rightarrow temp ENTER $\pi \cdot x$
part(temp,0) ENTER "*"
part(temp) ENTER 2
part(temp,1) ENTER π
part(temp,2) ENTER x
part $(x+y+z)$ ENTER 2
part $(x+y+z, 2)$ ENTER z
part $(x+y+z, 1)$ ENTER $y+x$
part(x*y*z) ENTER 2
part $(x * y * z, 2)$ ENTER z
part(x*y*z,1) ENTER] x
part([a,b,c;x,y,z],0) ENTER "\{"
part([a,b,c;x,y,z]) ENTER 2
part $([a, b, c ; x, y, z], 2) \rightarrow t e m p$
ENTER
part(temp,0) ENTER
3
delVar temp ENTER Done

The example Program Editor function to the right uses getType() and part() to partially implement symbolic differentiation. Studying and completing this function can help teach you how to differentiate manually. You could even include functions that the TI-89 / TI-92 Plus cannot differentiate, such as Bessel functions.
: d (y, x)
: Func
:Local f
: If getType (y)="VAR"
: Return when $(y=x, 1,0,0)$
: If part(y)=0
: Return 0 © $y=\pi, \infty, \boldsymbol{i}$, numbers
:part $(y, 0) \rightarrow f$
:If f="-" © if negate
: Return -d(part(y,1),x)
:If f="-" © if minus
: Return d(part $(y, 1), x)$ $-d(\operatorname{part}(y, 2), x)$
: If $f="+"$
: Return d(part $(y, 1), x)$ $+d(\operatorname{part}(y, 2), x)$
:If $\mathrm{f}=$ " * "
: Return
$\operatorname{part}(y, 1) * d(\operatorname{part}(y, 2), x)$ $+\operatorname{part}(y, 2) * d(\operatorname{part}(y, 1), x)$
: If f="\{"
: Return $\operatorname{seq}(d(\operatorname{part}(y, k), x)$, $k, 1, p a r t(y))$
: Return undef
: EndFunc

PassErr catalog

PassErr

See CIrErr program listing example.
Passes an error to the next level.
If "errornum" is zero, PassErr does not do anything.

The Else clause in the program should use CIrErr or PassErr. If the error is to be processed or ignored, use CIrErr. If what to do with the error is not known, use PassErr to send it to the next error handler. (See also CIrErr.)

Pause catalog

Pause [expression]

Suspends program execution. If you include expression, displays expression on the Program I/O screen.
expression can include conversion operations such as $\boldsymbol{D} D \mathrm{D}$ and \boldsymbol{R} Rect. You can also use the operator to perform unit and number base conversions.

If the result of expression is too big to fit on a single screen, you can use the cursor pad to scroll the display.
Program execution resumes when you press ENTER.

Program segment:

```
\vdots
:DelVar temp
:1->temp[1]
:1->temp[2]
:Disp temp[2]
:@Guess the Pattern
:For i,3,20
: temp[i-2]+temp[i-1]->temp[i]
: Disp temp[i]
: Disp temp,"Can you guess the
        next","number?"
: Pause
:EndFor
\vdots
```

PlotsOff [1] [, 2] [, 3] ... [, 9]
Turns off the specified plots for graphing. When in 2-graph mode, only affects the active graph.

If no parameters, then turns off all plots.

PlotsOn CATALOG

PlotsOn [1] [, 2] [, 3] ... [, 9]
Turns on the specified plots for graphing. Plots0n 2,4,5 ENTER Done

Plots0n ENTER Done

Done
Plots0ff ENTER Done When in 2-graph mode, only affects the active graph.

If you do not include any arguments, turns on all plots.

Polar MATH/Matrix/Vector ops menu

vector $>$ Polar
Displays vector in polar form [$\mathrm{r} \angle \theta$]. The vector must be of dimension 2 and can be a row or a column.

Note: PPolar is a display-format instruction, not a conversion function. You can use it only at the end of an entry line, and it does not update ans.

Note: See also Rect.

complexValue $>$ Polar

Displays complexVector in polar form.

- Degree angle mode returns (r $\angle \theta$).
- Radian angle mode returns re $e^{i \theta}$.
complexValue can have any complex form. However, an re ${ }^{i \theta}$ entry causes an error in Degree angle mode.

Note: You must use the parentheses for an (r $\angle \theta$) polar entry.
$[1,3]>.P o l a r$ ENTER
$[x, y]>P o l a r$ ENTER

- $\left.\begin{array}{ll}1 & 3 .\end{array}\right]$ Polar
$\left|\begin{array}{c}{[3.16228<1.24905]} \\ -[x \quad y] P \text { Pol.ar } \\ {\left[\sqrt{x^{2}+y^{2}}<\frac{\pi \cdot \operatorname{ign}(y)}{2}-t . a r b\right.}\end{array}\right|$

In Radian angle mode:
$3+4 i>P o l a r$ ENTER $\quad e^{i \cdot\left(\frac{\pi}{2}-\tan ^{-1}(3 / 4)\right)} \cdot 5$
$(4 \angle \pi / 3)>P o l a r$ ENTER $e^{\frac{i \cdot \pi}{3}} \cdot 4$

In Degree angle mode:
$3+4 i>P o l a r$ ENTER $\left(5 \angle 90-\tan ^{-1}(3 / 4)\right)$

polyEval() MATH/List menu

polyEval(list1, expression1) \Rightarrow expression polyEval(list1,list2) \Rightarrow expression

Interprets the first argument as the coefficient of a descending-degree polynomial, and returns the polynomial evaluated for the value of the second argument.

```
polyEval({a,b,c},x) ENTER
        a}\cdot\mp@subsup{x}{}{2}+b\cdotx+
polyEval({1,2,3,4},2) ENTER 26
polyEval({1,2,3,4},{2,-7})
ENTER {26 - 262}
```


PopUp catalog

PopUp itemList, var
Displays a pop-up menu containing the character strings from itemList, waits for you to select an item, and stores the number of your selection in var.

The elements of itemList must be character strings: \{item1String, item2String, item3String, ...\}

If var already exists and has a valid item number, that item is displayed as the default choice.
itemList must contain at least one choice.

PowerReg MATH/Statistics/Regressions menu

PowerReg list1, list2[, [list3] [, list4, list5]]
Calculates the power regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist. list2 represents ylist. list3 represents frequency. list 4 represents category codes. list 5 represents category include list.

Note: list 1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list 5 does not have to be a variable name and cannot be c1-c99.

PopUp
\{"1990", "1991", "1992"\}, var1
ENTER

In function graphing mode:
$\{1,2,3,4,5,6,7\} \rightarrow$ L1 ENTER
$\left\{\begin{array}{llll}1 & 2 & 3\end{array}\right\}$
$\{1,2,3,4,3,4,6\} \rightarrow$ L2 ENTER

PowerReg L1, L2 ENTER
$\left\{\begin{array}{llll}1 & 2 & \ldots\end{array}\right\}$

ShowStat ENTER

ENTER
$\operatorname{Regeq}(x) \rightarrow y 1(x)$ ENTER Done
NewPlot 1,1,L1,L2 [ENTER] Done
\rightarrow [GRAPH]

Program segment:
: Prgm
: EndPrgm

```
: prgmname()
:prgmname()
```

:

Required instruction that identifies the beginning of a program. Last line of program must be EndPrgm.

Prgm

EndPrgm

Prgm catalog

product() MATH/List menu

product $($ list $[$, start $[$, end $]]) \Rightarrow$ expression
product (\{1,2,3,4\}) ENTER
Returns the product of the elements contained in list. Start and end are optional. They specify a range of elements.
product $(\{2, x, y\})$ ENTER $2 \cdot x \cdot y$
product ($\{4,5,8,9\}, 2,3$) ENTER 40
$\operatorname{product}($ matrixi $[$, start $[$, end $]]) \Rightarrow$ matrix
Returns a row vector containing the products of the elements in the columns of matrix1. Start and end are optional. They specify a range of rows.

Prompt catalog

Prompt var1[, var2] [, var3] ...
Displays a prompt on the Program I/O screen for each variable in the argument list, using the prompt var1?. Stores the entered expression in the corresponding variable.
product([1,2,3;4,5,6;7,8,9]) ENTER
$\left[\begin{array}{lll}28 & 80 & 162\end{array}\right]$
product([1,2,3;4,5,6;7,8,9], 1,2) ENTER
$[4,10,18]$

Prompt must have at least one argument.

propFrac() MATH/Algebra menu

propFrac(expression1[, var]) \Rightarrow expression
propFrac(rational_number) returns rational_number as the sum of an integer and a fraction having the same sign and a greater denominator magnitude than numerator magnitude.
propFrac(rational_expression,var) returns the sum of proper ratios and a polynomial with respect to var. The degree of $v a r$ in the denominator exceeds the degree of $v a r$ in the numerator in each proper ratio. Similar powers of var are collected. The terms and their factors are sorted with var as the main variable.

If $v a r$ is omitted, a proper fraction expansion is done with respect to the most main variable. The coefficients of the polynomial part are then made proper with respect to their most main variable first and so on.
propFrac (4/3) ENTER $1+1 / 3$
propFrac $(-4 / 3)$ ENTER $-1-1 / 3$
propFrac $\left(\left(x^{\wedge} 2+x+1\right) /(x+1)+\right.$
$\left.\left(y^{\wedge} 2+y+1\right) /(y+1), x\right)$ ENTER

- Proprac $\left(\frac{x^{2}+x+1}{x+1}+\frac{y^{2}+}{y+}\right.$
$\frac{1}{x+1}+x+\frac{y^{2}+y+1}{y+1}$
propFrac(ans(1))
- PropFrac $\left(\frac{1}{x+1}+x+\frac{y^{2}+y}{y+}\left(\begin{array}{r}\frac{1}{y+1}+x+\frac{1}{y+1}+y\end{array}\right]\right.$

For rational expressions, propFrac() is a faster but less extreme alternative to expand().

PtChg catalog

PtChg x, y
PtChg x List, y List
Displays the Graph screen and reverses the screen pixel nearest to window coordinates (x, y).

Note: PtChg through PtText show continuing similar examples.
PtChg 2,4 ENTER

PtOff catalog

PtOff x, y
PtOff x List, y List
Displays the Graph screen and turns off the screen pixel nearest to window coordinates (x, y).

PtOn CATALOG

PtOn x, y
PtOn x List, y List
Displays the Graph screen and turns on the screen pixel nearest to window coordinates (x, y).

ptTest() CATALOG

ptTest $(x, y) \Rightarrow$ Boolean constant expression
ptTest (xList,yList) \Rightarrow Boolean constant expression
Returns true or false. Returns true only if the screen pixel nearest to window coordinates (x, y) is on.

PtText catalog

PtText string, x, y

Displays the Graph screen and places the character string string on the screen at the pixel nearest the specified (x, y) window coordinates.
string is positioned with the upper-left corner of its first character at the coordinates.

PtOn 3,5 ENTER

Pt0ff 2,4 ENTER

ptTest $(3,5)$ ENTER true
CATALOG

PxIChg row, col
PxIChg rowList, colList
Displays the Graph screen and reverses the pixel at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.

PxiCrcl CATALOG

PxICrcl row, col, r [, drawMode]
Displays the Graph screen and draws a circle centered at pixel coordinates (row, col) with a radius of r pixels.

If drawMode $=1$, draws the circle (default).
If $d r a w M o d e=0$, turns off the circle.
If drawMode $=-1$, inverts pixels along the circle.

Note: Regraphing erases all drawn items. See also Circle.

PxlChg 2,4 ENTER

TI-89: PxlCrcl 40,80,30,1 ENTER
TI-92 Plus: Px1Crc1 50,125,40,1 ENTER

PxilHorz catalog

PxiHorz row [, drawMode]
Displays the Graph screen and draws a horizontal line at pixel position row.

If drawMode $=1$, draws the line (default).
If drawMode $=0$, turns off the line. If drawMode $=-1$, turns a line that is on to off or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also LineHorz.

PxILine CATALOG

PxILine rowStart, colStart, rowEnd, colEnd [, drawMode]
Displays the Graph screen and draws a line between pixel coordinates (rowStart, colStart) and (rowEnd, colEnd), including both endpoints.

If drawMode $=1$, draws the line (default).
If drawMode $=0$, turns off the line.
If drawMode $=-1$, turns a line that is on to off or off to on (inverts pixels along the line).

PxiHorz 25,1 ENTER

Note: Regraphing erases all drawn items. See also Line.

PxiOff CATALOG

PxIOff row, col
PxIOff rowList, colList
Displays the Graph screen and turns off the pixel at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.
PxiHorz 25,1 ENTER
Pxl0ff 25,50 ENTER

25,50

PxiOn CATALOG

PxIOn row, col
Px10n 25,50 ENTER
PxIOn rowList, colList
Displays the Graph screen and turns on the pixel at pixel coordinates (row, col).

Note: Regraphing erases all drawn items.

pxITest() CATALOG

pxITest (row, col) \Rightarrow Boolean expression
pxITest (rowList, colList) \Rightarrow Boolean expression
Returns true if the pixel at pixel coordinates (row, col) is on. Returns false if the pixel is off.

Note: Regraphing erases all drawn items.

Px10n 25,50 ENTER
TI-89: HOME
TI-92 Plus: [HOME]
PxlTest 25,50) ENTER true
Px10ff 25,50 ENTER
TI-89: HOME
TI-92 Plus: - [HOME]
Pxilest $(25,50)$ ENTER false

Pxitext catalog

PxIText string, row, col
Displays the Graph screen and places character string string on the screen, starting at pixel coordinates (row, col).
string is positioned with the upper-left corner of its first character at the coordinates.

Note: Regraphing erases all drawn items.
TI-89: PxlText "sample
text",20,10 ENTER
Tl-92 Plus: Px1 Text " sample
text", 20,50 ENTER

PxiVert catalog

PxIVert col [, drawMode]

Draws a vertical line down the screen at pixel position col.

If drawMode $=1$, draws the line (default).
If drawMode $=0$, turns off the line.
If drawMode $=-1$, turns a line that is on to off or off to on (inverts pixels along the line).

Note: Regraphing erases all drawn items. See also LineVert.

QR

MATH/Matrix menu

QR matrix, qMatName, rMatName[, tol]
Calculates the Householder QR factorization of a real or complex matrix. The resulting Q and R matrices are stored to the specified MatNames. The Q matrix is unitary. The R matrix is upper triangular.

Optionally, any matrix element is treated as zero if its absolute value is less than $t o l$. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, tol is ignored.

- If you use ENTER or set the mode to Exact/Approx=APPROXIMATE, computations are done using floating-point arithmetic.
- If $t o l$ is omitted or not used, the default tolerance is calculated as:
5E-14* max(dim(matrix))
* rowNorm(matrix)

The floating-point number (9.) in m 1 causes results to be calculated in floatingpoint form.
$[1,2,3 ; 4,5,6 ; 7,8,9.] \rightarrow m 1$ ENTER
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 .\end{array}\right]$

QR m1,qm,rm ENTER
Done
qm ENTER $\left[\begin{array}{lll}.123 \ldots & .904 \ldots & .408 \ldots \ldots \\ .492 \ldots & .301 \ldots & -.816 \ldots \\ .861 \ldots & -.301 \ldots & .408 \ldots .\end{array}\right]$
$r m$ ENTER $\left[\begin{array}{lll}8.124 \ldots & 9.601 \ldots & 11.078 \ldots \\ 0 . & \dot{9} 04 \ldots & 1.809 \ldots \\ 0 . & 0 . & 0 .\end{array}\right]$
$[m, n ; 0, p] \rightarrow m 1$ ENTER $\left[\begin{array}{cc}m & n \\ 0 & p\end{array}\right]$

The QR factorization is computed numerically using Householder transformations. The symbolic solution is computed using Gram-Schmidt. The columns in qMatName are the orthonormal basis vectors that span the space defined by matrix.

QR m1,qm,rm ENTER
Done
qm ENTER

$$
\left[\begin{array}{ll}
\frac{m}{\sqrt{m^{2}+0^{2}}} & \frac{-\operatorname{sign}(m \cdot p-n \cdot 0) \cdot 0}{\sqrt{m^{2}+0^{2}}} \\
\frac{0}{\sqrt{m^{2}+0^{2}}} & \frac{m \cdot \operatorname{sign}(m \cdot p-n \cdot 0)}{\sqrt{m^{2}+0^{2}}}
\end{array}\right]
$$

rm ENTER

$$
\left[\begin{array}{ll}
\sqrt{m^{2}+o^{2}} & \frac{m \cdot n+o \cdot p}{\sqrt{m^{2}+o^{2}}} \\
0 & \frac{|m \cdot p-n \cdot o|}{\sqrt{m^{2}+0^{2}}}
\end{array}\right]
$$

QuadReg MATH/Statistics/Regressions menu

QuadReg list1, list2[, [list3] [, list4, list5]]
Calculates the quadratic polynomial regression and updates the system statistics variables.

All the lists must have equal dimensions except for list5.
list1 represents xlist.
list2 represents ylist.
list3 represents frequency.
list 4 represents category codes.
list5 represents category include list.

Note: list 1 through list 4 must be a variable name or c1-c99. (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:

ShowStat ENTER

ENTER
$\operatorname{Regeq}(x) \rightarrow y 1(x)$ ENTER Done
NewP1ot 1,1,L1,L2 ENTER Done
\rightarrow [GRAPH]

QuartReg MATH/Statistics/Regressions menu

QuartReg list1, list $2[$, [list3] [, list4, list 5$]$]
Calculates the quartic polynomial regression and updates the system statistics variables.

All the lists must have equal dimensions except for list 5 .
list1 represents xlist. list2 represents ylist. list3 represents frequency. list 4 represents category codes. list5 represents category include list.

Note: list 1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.

In function graphing mode:

ShowStat [ENTER

| | STAT YAFS |
| :---: | :---: |
| $y=d \cdot x^{*} 4+b \cdot x^{3}+6 \cdot x^{2}+d \cdot x^{2}+{ }^{\text {a }}$ | |
| \square | =.023019 |
| b | $=-.166472$ |
| c | $=.246795$ |
| 4 | =.24日64 |
| \& | =1.998日 3 |
| Fiz | $=.700042$ |

ENTER
Regeq $(x) \rightarrow y 1(x)$ ENTER Done
NewPlot 1,1,L1,L2 ENTER] Done
\rightarrow [GRAPH]

In Degree angle mode:
$R>P \theta(x, y)$ ENTER

- R Pref x, y) (x, y) pair arguments.

Note: The result is returned as either a degree or radian angle, according to the current angle mode.

$\operatorname{R>Pr}() \quad$ MATH/Angle menu

$\mathbf{R}>\operatorname{Pr}(x$ Expression, y Expression) \Rightarrow expression R>Pr $(x$ List, y List $) \quad \Rightarrow$ list
R>Pr $(x$ Matrix, y Matrix $) \Rightarrow$ matrix
Returns the equivalent r-coordinate of the (x, y) pair arguments.

In Radian angle mode:
$\operatorname{RP} \operatorname{Pr}(3,2)$ ENTER
$\operatorname{RP} \operatorname{Pr}(x, y)$ ENTER
$\operatorname{R} \operatorname{Pr}([3,-4,2],[0, \pi / 4,1.5])$ ENTER

rand() MATH/Probability menu
$\operatorname{rand}([n]) \Rightarrow$ expression
RandSeed 1147 ENTER Done
n is an integer \neq zero.
With no parameter, returns the next random number between 0 and 1 in the sequence.
When an argument is positive, returns a random integer in the interval $[1, n]$. When an argument is negative, returns a random integer in the interval $[-n,-1]$. \uparrow (Sets the random-number seed.)

| rand () ENTER | $.158 \ldots$ |
| :--- | ---: |
| $r a n d(6)$ ENTER | 5 |
| $r a n d(-100)$ ENTER | -49 |

MATH/Probability menu
randMat(numRows, numColumns) \Rightarrow matrix
Returns a matrix of integers between -9 and 9 of the specified dimension.

Both arguments must simplify to integers.

RandSeed 1147 ENTER Done
$\operatorname{randMat}(3,3)$ ENTER $\left[\begin{array}{rrr}8 & -3 & 6 \\ -2 & 3 & -6 \\ 0 & 4 & -6\end{array}\right]$
Note: The values in this matrix will change each time you press ENTER.

randNorm() MATH/Probability menu

randNorm $($ mean,$s d) \Rightarrow$ expression
Returns a decimal number from the specific normal distribution. It could be any real number but will be heavily concentrated in the interval $[$ mean $-3 * s d$, mean $+3 * s d]$.

RandSeed 1147 ENTER Done
randNorm $(0,1)$ ENTER .492...
randNorm(3,4.5) ENTER -3.543...

randPoly() MATH/Probability menu

```
randPoly(var,order) => expression
```

Returns a polynomial in var of the specified order. The coefficients are random integers in the range -9 through 9 . The leading coefficient will not be zero.
order must be 0-99.

RandSeed 1147 ENTER Done
randPoly $(x, 5)$ ENTER

$$
-2 \cdot x^{5+3} \cdot x^{4}-6 \cdot x^{3}+4 \cdot x-6
$$

RandSeed MATH/Probability menu

RandSeed number

If number $=0$, sets the seeds to the factory defaults for the random-number generator. If number $\neq 0$, it is used to generate two seeds, which are stored in system variables seed1 and seed2.

Restores all the settings stored in the Graph database variable GDBvar.

For a listing of the settings, see StoGDB.
Note: It is necessary to have something saved in GDBvar before you can restore it.

RcIPic CATALOG

RcIPic picVar [, row, column]
Displays the Graph screen and adds the picture stored in picVar at the upper left-hand corner pixel coordinates (row, column) using OR logic.
picVar must be a picture data type.
Default coordinates are $(0,0)$.

real() MATH/Complex menu
 real(expression1) \Rightarrow expression

real $(2+3 \boldsymbol{i})$ ENTER 2
Returns the real part of the argument.
real(z) ENTER
Z
Note: All undefined variables are treated as real variables. See also imag().
real $(x+i y)$ ENTER x
$\operatorname{real}($ list 1$) \Rightarrow$ list \quad real $(\{a+\boldsymbol{i} * \mathrm{~b}, 3, \boldsymbol{i}\})$ ENTER $\left\{\begin{array}{lll}\text { a } & 3 & 0\}\end{array}\right.$
Returns the real parts of all elements.
real(matrix1) \Rightarrow matrix
real $([a+i * b, 3 ; c, i])$ ENTER $\left[\begin{array}{cc}\mathrm{a} & 3 \\ \mathrm{c} & 0\end{array}\right]$
Returns the real parts of all elements.

Rect MATH/Matrix/Vector ops menu
vector $>$ Rect
Displays vector in rectangular form $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$. The vector must be of dimension 2 or 3 and can be a row or a column.

Note: $\boldsymbol{\text { Rect is }}$ i display-format instruction, not a conversion function. You can use it only at the end of an entry line, and it does not update ans.

Note: See also PPolar.
complexValue $\mathbf{R e c t}$
Displays complexValue in rectangular form $\mathrm{a}+\mathrm{b} \boldsymbol{i}$. The complexValue can have any complex form. However, an re $e^{i \theta}$ entry causes an error in Degree angle mode.

Note: You must use parentheses for an ($\mathrm{r} \angle \theta$) polar entry.
$[3, \angle \pi / 4, \angle \pi / 6]$ Rect ENTER

$$
\left[\begin{array}{ccc}
\frac{3 \cdot \sqrt{2}}{4} & \frac{3 \cdot \sqrt{2}}{4} & \frac{3 \cdot \sqrt{3}}{2}
\end{array}\right]
$$

$[\mathrm{a}, \angle \mathrm{b}, \angle \mathrm{c}]$ ENTER $[\mathrm{a} \cdot \cos (\mathrm{b}) \cdot \sin (\mathrm{c})$ $a \cdot \sin (b) \cdot \sin (c) \quad a \cdot \cos (c)]$

In Radian angle mode:

| $4 e^{\wedge}(\pi / 3)$ | $4 \cdot e^{\frac{\pi}{3}}$ |
| :--- | ---: |
| $(4 \angle \pi / 3)$ | $\vee \operatorname{Rect}$ ENTER ENTER |$\quad 2+2 \cdot \sqrt{3} \cdot \boldsymbol{i}$

In Degree angle mode:
$(4 \angle 60)$ Rect ENTER
$2+2 \cdot \sqrt{3} \cdot \boldsymbol{i}$

Note: To type $\stackrel{\text { Rect from the keyboard, }}{ }$ press 2 2nd $[\triangleright]$ for the operator. To type \angle, press 2 nd [$\angle \mathrm{L}$.

```
ref(matrix 1[,tol]) = matrix
```

Returns the row echelon form of matrix.
Optionally, any matrix element is treated as zero if its absolute value is less than tol. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, tol is ignored.

- If you use ENTER or set the mode to Exact/Approx=APPROXIMATE, computations are done using floating-point arithmetic.
- If $t o l$ is omitted or not used, the default tolerance is calculated as:
$\operatorname{ref}([-2,-2,0,-6 ; 1,-1,9,-9 ;-5$, 2,4,-4]) ENTER
$\left[\begin{array}{cccc}1 & -2 / 5 & -4 / 5 & 4 / 5 \\ 0 & 1 & 4 / 7 & 11 / 7 \\ 0 & 0 & 1 & -62 / 71\end{array}\right]$
$[a, b, c ; e, f, g] \rightarrow m 1$ ENTER $\left[\begin{array}{lll}a & b & c \\ e & f & g\end{array}\right]$

5E-14* $\max (\operatorname{dim}($ matrix 1$)$)

* rowNorm(matrix1)
$\left[\begin{array}{lll}1 & \frac{f}{e} & \frac{g}{e} \\ 0 & 1 & \frac{a \cdot g-c \cdot e}{a \cdot f-b \cdot e}\end{array}\right]$

Note: See also rref().

```
remain() MATH/Number menu
    remain(expression1, expression2) }=>\mathrm{ expression
    remain(list1,list2) }=>\mathrm{ list
    remain(matrix1, matrix2) }=>\mathrm{ matrix
Returns the remainder of the first argument with respect to the second argument as defined by the identities:
remain \((7,0)\) ENTER 7
remain(list1,list2) \(\Rightarrow\) list
remain(matrix1, matrix2) \(\Rightarrow\) matrix
```

```
remain(x,0) \equivx
```

remain(x,0) \equivx
remain(x,y) \equivx-y*iPart(x/y)
remain(x,y) \equivx-y*iPart(x/y)
remain(-7,-3) ENTER -1
remain({12,-14,16},{9,7,-5})
ENTER
{3}0011
As a consequence, note that remain(- x, y) \equiv - remain (x, y). The result is either zero or it has the same sign as the first argument.
Note: See also mod().

```
remain([9,-7;6,4],[4,3;4,-3])
ENTER

\section*{Rename catalog}

Rename oldVarName, newVarName
Renames the variable oldVarName as newVarName.
\(\{1,2,3,4\} \rightarrow L 1\) ENTER \(\quad\{1,2,3,4\}\)
Rename L1, list1 [ENTER] Done
list1 ENTER \(\{1,2,3,4\}\)

\section*{Request CATALOG}

\section*{Request promptString, var}

If Request is inside a Dialog...EndDlog construct, it creates an input box for the user to type in data. If it is a stand-alone instruction, it creates a dialog box for this input. In either case, if var contains a string, it is displayed and highlighted in the input box as a default choice. promptString must be \(\leq 20\) characters.

This instruction can be stand-alone or part of a dialog construct.

Request "Enter Your Name", str1 ENTER


\section*{Return CATALOG}

\section*{Return [expression]}
\[
\begin{aligned}
& \text { Define factoral }(n n)=\text { Func } \\
& \text { :local answer, count: } 1 \rightarrow \text { answer } \\
& \text { :For count, } 1, n n \\
& \text { :answer* count } \rightarrow \text { answer: EndFor } \\
& \text { : Return answer:EndFunc ENTER Done } \\
& \text { factoral (3) ENTER }
\end{aligned}
\] exit a program.

Note: Enter the text as one long line on the Home screen (without line breaks).

\section*{right() MATH/List menu}
\(\operatorname{right}(\) list \(1[\), num \(]) \Rightarrow\) list \(\quad\) right \((\{1,3,-2,4\}, 3)\) ENTER
Returns the rightmost num elements contained in list1.

If you omit num, returns all of list1.
\(\overline{\text { right(sourceString[, num }])} \Rightarrow\) string right("Hel10",2) ENTER "10"

Returns the rightmost num characters contained in character string sourceString.

If you omit num, returns all of sourceString.
right(comparison) \(\Rightarrow\) expression \(\quad\) ight \((x<3)\) ENTER 3
Returns the right side of an equation or inequality.

\section*{rotate() MATH/Base menu}
rotate(integer1[,\#ofRotations]) \(\Rightarrow\) integer
Rotates the bits in a binary integer. You can enter integer 1 in any number base; it is converted automatically to a signed, 32-bit binary form. If the magnitude of integer 1 is too large for this form, a symmetric modulo operation brings it within the range.

If \#of Rotations is positive, the rotation is to the left. If \#of Rotations is negative, the rotation is to the right. The default is -1 (rotate right one bit).

For example, in a right rotation:

Each bit rotates right.
0b00000000000001111010110000110101
Rightmost bit rotates to leftmost.
produces:
0b10000000000000111101011000011010
The result is displayed according to the Base mode.

In Bin base mode:
rotate(0b1111010110000110101)
ENTER
Ob10000000000000111101011000011010 rotate(256,1) ENTER Ob1000000000

In Hex base mode:
```

rotate(0h78E) ENTER Oh3C7
rotate(0h78E,-2) ENTEROh800001E3
rotate(0h78E,2) ENTER Oh1E38

```

Important: To enter a binary or hexadecimal number, always use the 0b or 0h prefix (zero, not the letter O).
\begin{tabular}{|c|c|}
\hline rotate(list1[,\#ofRotations]) \(\Rightarrow\) list & In Dec base mode: \\
\hline Returns a copy of list1 rotated right or left by \#of Rotations elements. Does not alter list1. & \begin{tabular}{l}
rotate( \(\{1,2,3,4\}\) ) ENTER \\
\(\left\{\begin{array}{llll}4 & 1 & 2 & 3\end{array}\right\}\)
\end{tabular} \\
\hline If \#of Rotations is positive, the rotation is to the left. If \#of Rotations is negative, the rotation is to the right. The default is \({ }^{-1}\) & rotate( \(\{1,2,3,4\},-2)\) ENTER
\[
\left\{\begin{array}{llll}
3 & 4 & 1 & 2
\end{array}\right\}
\] \\
\hline (rotate right one element). & \[
\left\{\begin{array}{llll}
2 & 3 & 4 & 1
\end{array}\right\}
\] \\
\hline rotate(string1[,\#ofRotations]) \(\Rightarrow\) string & rotate("abcd") ENTER "dabc" \\
\hline Returns a copy of string1 rotated right or left by \#of Rotations characters. Does not alter string1. & \[
\begin{array}{ll}
\text { rotate }(" a b c d ",-2) \text { ENTER } & " c d a b " \\
\text { rotate("abcd",1) ENTER } & " b c d a "
\end{array}
\] \\
\hline
\end{tabular}

If \#of Rotations is positive, the rotation is to the left. If \#of Rotations is negative, the rotation is to the right. The default is \({ }^{-1}\) (rotate right one character).

\section*{round() MATH/Number menu}
round(expression \(1[\), digits \(]) \Rightarrow\) expression
round (1.234567,3) ENTER
1.235

Returns the argument rounded to the specified number of digits after the decimal point.
digits must be an integer in the range \(0-12\). If digits is not included, returns the argument rounded to 12 significant digits.

Note: Display digits mode may affect how this is displayed.
round (list1[, digits \(]) \Rightarrow\) list \(\quad \operatorname{round}(\{\pi, \sqrt{ }(2), 1 n(2)\}, 4)\) ENTER

Returns a list of the elements rounded to the specified number of digits.
round(matrix1[, digits]) \(\Rightarrow\) matrix
Returns a matrix of the elements rounded to the specified number of digits.
\(\operatorname{round}\left(\left[\ln (5), \ln (3) ; \pi, e^{\wedge}(1)\right], 1\right)\)
ENTER
\(\left[\begin{array}{ll}1.6 & 1.1 \\ 3.1 & 2.7\end{array}\right]\)

\section*{rowAdd() MATH/Matrix/Row ops menu}
rowAdd(matrix1, rIndex1, rIndex2) \(\Rightarrow\) matrix \(\quad\) rowAdd ([3,4;-3,-2], 1, 2 ) ENTER
Returns a copy of matrix1 with row rIndex2 replaced by the sum of rows rIndex 1 and rIndex2.
\[
\left.\left.\operatorname{rowAdd}([a, b ; c, d], 1,2) \frac{\left[\begin{array}{ll}
3 & 4 \\
0 & 2
\end{array}\right]}{\left[\begin{array}{ll}
\text { ENTER }
\end{array}\right.} \begin{array}{ll}
a & b \\
a+c & b+d
\end{array}\right]\right)
\]

\section*{rowDim() MATH/Matrix/Dimensions menu}
rowDim(matrix) \(\Rightarrow\) expression
Returns the number of rows in matrix.
Note: See also colDim().

\section*{rowNorm() MATH/Matrix/Norms menu}
```

rowNorm(matrix) = expression rowNorm([-5,6,-7;3,4,9;9,-9,-7])

```

Returns the maximum of the sums of the absolute values of the elements in the rows in matrix.

Note: All matrix elements must simplify to numbers. See also colNorm().

\section*{rowSwap( ) MATH/Matrix/Row ops menu}
rowSwap(matrix1, rIndex1, rIndex2) \(\Rightarrow\) matrix \(\quad[1,2 ; 3,4 ; 5,6] \rightarrow\) Mat ENTER
Returns matrix1 with rows rIndex1 and rIndex2 exchanged.
rowSwap(Mat,1,3) [ENTER]

\section*{RplcPic catalog}

RplcPic picVar[, row][, column]
Clears the Graph screen and places picture picVar at pixel coordinates (row, column). If you do not want to clear the screen, use RcIPic.
picVar must be a picture data type variable. row and column, if included, specify the pixel coordinates of the upper left corner of the picture. Default coordinates are ( 0,0 ).

Note: For less than full-screen pictures, only the area affected by the new picture is cleared.

\section*{rref() MATH/Matrix menu}
\(\operatorname{rref}(\) matrix \(1[\), tol \(]) \Rightarrow\) matrix
Returns the reduced row echelon form of matrix1.
rref([-2,-2,0,-6;1,-1,9,-9;
\(-5,2,4,-4]\) ) ENTER
\[
\left[\begin{array}{rrrr}
1 & 0 & 0 & 66 / 71 \\
0 & 1 & 0 & \frac{147}{71} \\
0 & 0 & 1 & -62 / 71
\end{array}\right]
\]

Optionally, any matrix element is treated as zero if its absolute value is less than tol. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, tol is ignored.
- If you use ENTER or set the mode to Exact/Approx=APPROXIMATE, computations are done using floating-point arithmetic.
- If \(t o l\) is omitted or not used, the default tolerance is calculated as:
5E-14* max(dim(matrix1))
* rowNorm(matrix1)

Note: See also ref().

CBL \(2^{\text {TM }} / \mathrm{CBL}^{\text {TM }}\) (Calculator-Based Laboratory \({ }^{\top M}\) ) or CBR \(^{\text {TM }}\) (Calculator-Based Ranger \({ }^{\text {TM }}\) ) instruction. Sends list to the link port.

Program segment:
```

:Send {1,0}
:Send {1,0}

```
    !

\section*{SendCalc catalog}

\section*{SendCalc var}

Sends variable var to the link port, where another unit linked to that port can receive the variable value. The receiving unit must be on the Home screen or must execute GetCalc from a program.
If you send from a TI-89 or TI-92 Plus to a TI-92, an error occurs if the TI-92 executes GetCalc from a program. In this case, the sending unit must use SendChat instead.

\section*{SendChat catalog}

\section*{SendChat var}

A general alternative to SendCalc, this is useful if the receiving unit is a TI-92 (or for a generic "chat" program that allows either a TI-92 or TI-92 Plus to be used). Refer to SendCalc for more information.

SendChat sends a variable only if that variable is compatible with the TI-92, which is typically true in "chat" programs. However, SendChat will not send an archived variable, a TI-89 graph data base, etc.

\section*{seq() MATH/List menu}
\(\mathbf{s e q}(\) expression, var, low, high \([\), step \(]) \Rightarrow\) list
Increments var from low through high by an increment of step, evaluates expression, and returns the results as a list. The original contents of var are still there after seq() is completed.
\(\operatorname{seq}\left(n^{\wedge} 2, n, 1,6\right)\) ENTER
\(\left\{\begin{array}{llllll}1 & 4 & 9 & 16 & 25 & 36\end{array}\right\}\)
\(\operatorname{seq}(1 / n, n, 1,10,2)\) ENTER
\(\left\{\begin{array}{lllll}1 & 1 / 3 & 1 / 5 & 1 / 7 & 1 / 9\end{array}\right\}\)
sum(seq( \(\left.\left.1 / n^{\wedge} 2, n, 1,10,1\right)\right)\) ENTER
var cannot be a system variable. 196...

The default value for \(s t e p=1\).

\section*{setFold() CATALOG}
setFold(newfolderName) \(\Rightarrow\) oldfolderString
Returns the name of the current folder as a string and sets newfolderName as the current folder.

The folder newfolderName must exist.
newFold chris ENTER Done
setFold(main) ENTER "chris"
setFold(chris) \(\rightarrow\) oldfoldr ENTER "main"
\(1 \rightarrow a\) ENTER
1
setFold(非oldfoldr) ENTER "chris"
a ENTER a
chris \(\backslash\) ENTER 1

\section*{setGraph() CATALOG}
setGraph(modeNameString, settingString) \(\Rightarrow\) string
Sets the Graph mode modeNameString to settingString, and returns the previous setting of the mode. Storing the previous setting lets you restore it later.
modeNameString is a character string that specifies which mode you want to set. It must be one of the mode names from the table below.
settingString is a character string that specifies the new setting for the mode. It must be one of the settings listed below for the specific mode you are setting.
setGraph("Graph Order","Seq")
ENTER
setGraph("Coordinates", "Off")
ENTER "RECT
Note: Capitalization and blank spaces are optional when entering mode names.
\begin{tabular}{ll}
\hline Mode Name & Settings \\
\hline "Coordinates" & "Rect", "Polar", "Off" \\
\hline "Graph Order" & "Seq", "Simul" 1 \\
\hline "Grid" & "Off", "On" 2
\end{tabular}
\({ }^{1}\) Not available in Sequence, 3D, or Diff Equations graph mode.
\({ }^{2}\) Not available in 3D graph mode.
\({ }^{3}\) Applies only to 3D graph mode.
\({ }^{4}\) Applies only to Sequence graph mode.
\({ }^{5}\) Applies only to Diff Equations graph mode.
setMode(modeNameString, settingString) \(\Rightarrow\) string setMode(list) \(\Rightarrow\) stringList

Sets mode modeNameString to the new setting settingString, and returns the current setting of that mode.
modeNameString is a character string that specifies which mode you want to set. It must be one of the mode names from the table below.
settingString is a character string that specifies the new setting for the mode. It must be one of the settings listed below for the specific mode you are setting.
list contains pairs of keyword strings and will set them all at once. This is recommended for multiple-mode changes. The example shown may not work if each of the pairs is entered with a separate setMode() in the order shown.

Use setMode(var) to restore settings saved with getMode("ALL") \(\rightarrow\) var.

Note: To set or return information about the Unit System mode, use setUnits() or getUnits() instead of setMode() or getMode().
```

```
setMode("Angle","Degree")
```

```
setMode("Angle","Degree")
setMode("Angle","Degree")
```

```
setMode("Angle","Degree")
```

```
\(\sin (45)\) ENTER \(\frac{\sqrt{2}}{2}\)
setMode("Angle","Radian")
ENTER "DEGREE"
\(\sin (\pi / 4)\) ENTER \(\frac{\sqrt{2}}{2}\)
setMode("Display Digits",
"Fix 2") \(\operatorname{ENTER}\) [
\(\pi\) - ENTER
3.14
setMode ("Display Digits",
"Float") ENTER "FIX 2"
\(\pi\) - ENTER
3.141...
setMode (\{"Split Screen",
"Left-Right","Split 1 App",
"Graph","Split 2 App","Table"\})
ENTER

> \{"Split 2 App" "Graph"
> "Split 1 App" "Home"
> "Split Screen" "FULL"

Note: Capitalization and blank spaces are optional when entering mode names. Also, the results in these examples may be different on your unit.
\begin{tabular}{ll}
\hline Mode Name & Settings \\
\hline "Graph" & "Function", "Parametric", "Polar", "Sequence", "3D", "Diff Equations" \\
\hline "Display Digits" & "Fix 0", "Fix 1", ..., "Fix 12", "Float", "Float 1", .., "Float 12" \\
\hline "Angle" & "Radian", "Degree" \\
\hline "Exponential Format" & "Normal", "Scientific", "Engineering" \\
\hline "Complex Format" & "Real", "Rectangular", "Polar" \\
\hline "Vector Format" & "Rectangular", "Cylindrical", "Spherical" \\
\hline "Pretty Print" & "Off", "On" \\
\hline \hline "Split Screen" & "Full", "Top-Bottom", "Left-Right" \\
\hline "Split 1 App" & "Home", "Y= Editor", "Window Editor", "Graph", "Table", "Data/Matrix \\
\hline Editor", "Program Editor", "Text Editor", "Numeric Solver", "Flash App" \\
\hline "Split 2 App" & "Home", "Y= Editor", "Window Editor", "Graph", "Table", "Data/Matrix \\
\hline Editor", "Program Editor", "Text Editor", "Numeric Solver", "Flash App" \\
\hline "Number of Graphs" & "1", "2" \\
\hline "Graph2" & "Function", "Parametric", "Polar", "Sequence", "3D", "Diff Equations" \\
\hline "Split Screen Ratio" & "1:1", "1:2", "2:1" (TI-92 Plus only) \\
\hline "Exact/Approx" & "Auto", "Exact", "Approximate" \\
\hline "Base" & "Dec", "Hex", "Bin" \\
\hline "Language" & "English", "Alternate Language" \\
\hline
\end{tabular}

\section*{setTable() CATALOG}
setTable(modeNameString, settingString) \(\Rightarrow\) string
Sets the table parameter modeNameString to settingString, and returns the previous setting of the parameter. Storing the previous setting lets you restore it later.
modeNameString is a character string that specifies which parameter you want to set. It must be one of the parameters from the table below.
settingString is a character string that specifies the new setting for the parameter. It must be one of the settings listed below for the specific parameter you are setting.
```

setTable("Graph <->

```
Table","ON")
ENTER "OFF"
setTable("Independent", "AUTO")
ENTER "ASK"
- [TbISet]


Note: Capitalization and blank spaces are optional when entering parameters.
\begin{tabular}{ll}
\hline Parameter Name & Settings \\
\hline "Graph <-> Table" & "Off", "On" \\
\hline "Independent" & "Auto", "Ask" \\
\hline
\end{tabular}

\section*{setUnits() catalog}
```

setUnits(list1) \Rightarrow list

```

Sets the default units to the values specified in list1, and returns a list of the previous defaults.
- To specify the built-in SI (metric) or ENG/US system, list1 uses the form:
\{"SI"\} or \{"ENG/US"\}
- To specify a custom set of default units, list1 uses the form:
\{"CUSTOM", "cat1", "unit1" [, "cat2", "unit2", ...]\}
where each cat and unit pair specifies a category and its default unit. (You can specify built-in units only, not user-defined units.) Any category not specified will use its previous custom unit.
- To return to the previous custom default units, list1 uses the form:
\{"CUSTOM"\}
If you want different defaults depending on the situation, create separate lists and save them to unique list names. To use a set of defaults, specify that list name in setUnits().

You can use setUnits() to restore settings previously saved with setUnits() \(\rightarrow\) var or with getUnits() \(\rightarrow\) var.

All unit names must begin with an underscore

TI-89: - [_]
TI-92 Plus: 2nd [_]
You can also select units from a menu by pressing:

TI-89: 2nd [UNITS]
TI-92 Plus: \(\bullet\) [UNITS]
setUnits (\{"SI"\}) ENTER
\{"SI" "Area" "NONE"
Capacitance" "_F" ...\}
setUnits(\{"CUSTOM", "Length",
"_cm", "Mass","_gm"\}) [ENTER]
\{"SI" "Length" "_m"
Note: Your screen may display different units.

Shade expr1, expr2, [xlow], [xhigh], [pattern], [patRes]
Displays the Graph screen, graphs expr1 and expr2, and shades areas in which expr1 is less than expr2. (expr1 and expr2 must be expressions that use x as the independent variable.)
xlow and xhigh, if included, specify left and right boundaries for the shading. Valid inputs are between \(x \min\) and \(x m a x\). Defaults are \(x \min\) and xmax.
pattern specifies one of four shading patterns:
\(1=\) vertical (default)
2 = horizontal
\(3=\) negative-slope \(45^{\circ}\)
\(4=\) positive-slope \(45^{\circ}\)
patRes specifies the resolution of the shading patterns:
1 = solid shading
\(2=1\) pixel spacing (default)
\(3=2\) pixels spacing
\(10=9\) pixels spacing
Note: Interactive shading is available on the Graph screen through the Shade instruction. Automatic shading of a specific function is available through the Style instruction. Shade is not valid in 3D graphing mode.

In the ZoomTrig viewing window:
Shade \(\cos (x), \sin (x)\) ENTER


TI-89: HOME
TI-92 Plus: - [HOME]
ClrDraw ENTER Done
Shade \(\cos (x), \sin (x), 0,5\) ENTER


TI-89: HOME
TI-92 Plus: - [HOME]
ClrDraw ENTER Done
Shade \(\cos (x), \sin (x), 0,5,2\) ENTER


TI-89: HOME
TI-92 Plus: - [HOME]
ClrDraw ENTER Done
Shade \(\cos (x), \sin (x), 0,5,2,1\)
ENTER

shift(integer1[,\#ofShifts]) \(\Rightarrow\) integer
Shifts the bits in a binary integer. You can enter integer 1 in any number base; it is converted automatically to a signed, 32 -bit binary form. If the magnitude of integer 1 is too large for this form, a symmetric modulo operation brings it within the range.
If \#ofShifts is positive, the shift is to the left. If \#ofShifts is negative, the shift is to the right. The default is \({ }^{-1}\) (shift right one bit).

In a right shift, the rightmost bit is dropped and 0 or 1 is inserted to match the leftmost bit. In a left shift, the leftmost bit is dropped and 0 is inserted as the rightmost bit.

For example, in a right shift:


Ob00000000000000111101011000011010
The result is displayed according to the Base mode. Leading zeros are not shown.
shift(list1 [,\#ofShifts]) \(\Rightarrow\) list
Returns a copy of list1 shifted right or left by \#ofShifts elements. Does not alter list1.

If \#ofShifts is positive, the shift is to the left. I \#ofShifts is negative, the shift is to the right. The default is \({ }^{-1}\) (shift right one element).

Elements introduced at the beginning or end of list by the shift are set to the symbol "undef".

In Bin base mode:
shift(0b1111010110000110101)
ENTER
Ob111101011000011010
shift(256,1) ENTER
Ob1000000000
In Hex base mode:
\begin{tabular}{lr} 
shift(0h78E) ENTER & \(0 h 3 C 7\) \\
shift(0h78E, - 2) ENTER & \(0 h 1 E 3\) \\
shift(0h78E,2) ENTER & \(0 h 1 E 38\)
\end{tabular}

Important: To enter a binary or hexadecimal number, always use the \(0 b\) or 0h prefix (zero, not the letter O).

In Dec base mode: shift ( \(\{1,2,3,4\}\) ) ENTER \{undef 123\(\}\)
shift(\{1,2,3,4\},-2) ENTER
\{undef undef 12\(\}\)
shift( \(\{1,2,3,4\}, 1\) ) ENTER
\(\{234\) undef \(\}\)
shift(string1 [,\#ofShifts]) \(\Rightarrow\) string
Returns a copy of string1 shifted right or left by \#ofShifts characters. Does not alter string1.

If \#ofShifts is positive, the shift is to the left. If \#ofShifts is negative, the shift is to the right. The default is - 1 (shift right one character).

Characters introduced at the beginning or end of string by the shift are set to a space.
\begin{tabular}{ll} 
shift("abcd") ENTER & \("\) abc" \\
shift("abcd", - 2) ENTER & \(" a b "\) \\
shift("abcd", 1) ENTER "bcd"
\end{tabular}

\section*{ShowStat}

Displays a dialog box containing the last computed statistics results if they are still valid. Statistics results are cleared automatically if the data to compute them has changed.

Use this instruction after a statistics calculation, such as LinReg.
\(\{1,2,3,4,5\} \rightarrow\) L1 ENTER \(\left\{\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right\}\)
\(\{0,2,6,10,25\} \rightarrow L 2\) ENTER
\(\left\{\begin{array}{lllll}0 & 2 & 6 & 10 & 25\end{array}\right\}\)
TwoVar L1, L2 [ENTER
ShowStat ENTER

\(\operatorname{sign}(-3.2)\) ENTER -1.
\(\boldsymbol{\operatorname { s i g }}(\) expression 1\() \Rightarrow\) expression
\(\operatorname{sign}(\) list 1\() \Rightarrow\) list
\(\boldsymbol{\operatorname { s i g n }}\) (matrix1) \(\Rightarrow\) matrix
For real and complex expression1, returns expression \(1 / \mathbf{a b s}(\) expression 1) when expression \(1 \neq 0\).

Returns 1 if expression 1 is positive. Returns - 1 if expression 1 is negative. \(\boldsymbol{\operatorname { s i g n }}(0)\) returns \(\pm 1\) if the complex format mode is REAL; otherwise, it returns itself. \(\boldsymbol{\operatorname { s i g }}(0)\) represents the unit circle in the complex domain.

For a list or matrix, returns the signs of all the elements.

\section*{simult() MATH/Matrix menu}
simult(coeffMatrix, constVector \([\), tol \(]\) ) \(\Rightarrow\) matrix
Returns a column vector that contains the solutions to a system of linear equations.
coeffMatrix must be a square matrix that contains the coefficients of the equations.
constVector must have the same number of rows (same dimension) as coeffMatrix and contain the constants.

Optionally, any matrix element is treated as zero if its absolute value is less than \(t o l\). This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, tol is ignored.
- If you use ENTER or set the mode to Exact/Approx=APPROXIMATE, computations are done using floating-point arithmetic.
- If \(t o l\) is omitted or not used, the default tolerance is calculated as:
```

5E-14 * max(dim(coeffMatrix))

* rowNorm(coeffMatrix)

```
simult(coeffMatrix, constMatrix \([\), tol \(]\) ) \(\Rightarrow\) matrix
Solves multiple systems of linear equations, where each system has the same equation coefficients but different constants.

Each column in constMatrix must contain the constants for a system of equations. Each column in the resulting matrix contains the solution for the corresponding system.

Solve: \(\quad x+2 y=1 \quad x+2 y=2\)
\(3 x+4 y=-1 \quad 3 x+4 y=-3\)
simult([1,2;3,4],[1,2;-1,-3])
ENTER
\[
\left[\begin{array}{cc}
-3 & -7 \\
2 & 9 / 2
\end{array}\right]
\]

For the first system, \(x=-3\) and \(y=2\). For the second system, \(x=-7\) and \(y=9 / 2\).
\(\sin () \quad\) TI-89: \(2 n d[\) [SIN] key TI-92 Plus: \(\operatorname{STIN}\) key
\(\boldsymbol{\operatorname { s i n }}\) (expression1) \(\Rightarrow\) expression
\(\boldsymbol{\operatorname { s i n }}(\) list1 \() \Rightarrow\) list
\(\boldsymbol{\operatorname { s i n }}\) (expression1) returns the sine of the argument as an expression.
\(\boldsymbol{\operatorname { s i n }}\) (list1) returns a list of the sines of all elements in list1.

Note: The argument is interpreted as either a degree or radian angle, according to the current angle mode. You can use \({ }^{\circ}\) or \({ }^{r}\) to override the angle mode setting temporarily.

In Degree angle mode:
\(\begin{array}{lc}\sin \left((\pi / 4)^{r}\right) \text { ENTER } & \frac{\sqrt{2}}{2} \\ \sin (45) \text { ENTER } & \frac{\sqrt{2}}{2}\end{array}\)
\(\sin (\{0,60,90\})\) ENTER \(\left\{0 \quad \frac{\sqrt{3}}{2} \quad 1\right\}\)
In Radian angle mode:

\(\sin \left(45^{\circ}\right)\) ENTER
In Radian angle mode:
\[
\sin ([1,5,3 ; 4,2,1 ; 6,-2,1]) \text { ENTER }
\]
\[
\left[\begin{array}{lll}
.942 \ldots & -.045 \ldots & -.031 \ldots . \\
-.045 \ldots & .949 \ldots & -.020 \ldots \\
-.048 \ldots & -.005 \ldots & .961 \ldots
\end{array}\right]
\]
\(\boldsymbol{\operatorname { s i n }}\) (squareMatrix1) \(\Rightarrow\) squareMatrix
Returns the matrix sine of squareMatrix1. This is not the same as calculating the sine of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

TI-89: \(\bullet\left[\mathrm{SIN}^{-1}\right]\) key TI-92 Plus: 2 nd [ \(\left.\mathrm{SIN}^{-1}\right]\) key
\(\boldsymbol{\operatorname { s i n }}^{-1}\) (expression 1\() \Rightarrow\) expression \(\boldsymbol{\operatorname { s i n }}^{-1}\) (list1) \(\Rightarrow\) list
\(\boldsymbol{s i n}^{-1}\) (expression1) returns the angle whose sine is expression 1 as an expression.
\(\boldsymbol{\operatorname { s i n }}^{-1}\) (list1) returns a list of the inverse sines of each element of list1.

Note: The result is returned as either a degree or radian angle, according to the current angle mode setting.

In Degree angle mode:
\(\sin ^{-1}\) (1) ENTER
In Radian angle mode:
\(\sin ^{-1}(\{0, .2, .5\})\) ENTER
\[
\{0 \quad .201 \ldots .523 \ldots\}
\]

\(\mathbf{s i n}^{-1}\) (squareMatrix1) \(\Rightarrow\) squareMatrix
Returns the matrix inverse sine of squareMatrix1. This is not the same as calculating the inverse sine of each element. For information about the calculation method, refer to \(\boldsymbol{\operatorname { c o s } ( )}\).
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode and Rectangular complex format mode:
\(\sin ^{-1}([1,5,3 ; 4,2,1 ; 6,-2,1])\)
ENTER
\(\left[\begin{array}{lll}-.164 \ldots-. .064 \ldots \cdot \boldsymbol{i} & 1.490 \ldots-2.105 \ldots \cdot \boldsymbol{i} & \ldots \\ .725 \ldots-1.515 \ldots \cdot \boldsymbol{i} & .947 \ldots-.778 \ldots \cdot \boldsymbol{i} & \ldots \\ 2.083 \ldots-2.632 \ldots \cdot \boldsymbol{i} & -1.790 \ldots+1.271 \ldots \cdot \boldsymbol{i} & \ldots .\end{array}\right]\)

\section*{sinh() MATH/Hyperbolic menu}
\(\boldsymbol{\operatorname { s i n h }}(\) expression 1\() \Rightarrow\) expression \(\boldsymbol{\operatorname { s i n h }}(\) list1) \(\Rightarrow\) list
sinh (expression1) returns the hyperbolic sine of the argument as an expression.
sinh(1.2) ENTER
1.509...
sinh (list) returns a list of the hyperbolic sines of each element of list1.
\(\boldsymbol{\operatorname { s i n h }}(\) squareMatrix1) \(\Rightarrow\) squareMatrix
Returns the matrix hyperbolic sine of squareMatrix1. This is not the same as calculating the hyperbolic sine of each element. For information about the calculation method, refer to \(\boldsymbol{\operatorname { c o s } ( ) .}\)
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode:
\(\sinh ([1,5,3 ; 4,2,1 ; 6,-2,1])\) ENTER
\(\boldsymbol{s i n h}^{-1}\) (expression1) \(\Rightarrow\) expression
\(\boldsymbol{s i n h}^{-1}(\) list 1\() \Rightarrow\) list
\(\boldsymbol{s i n h}^{-1}\) (expression1) returns the inverse hyperbolic sine of the argument as an expression.
\(\boldsymbol{s i n h}^{-1}\) (list1) returns a list of the inverse hyperbolic sines of each element of list1.
\(\boldsymbol{\operatorname { s i n h }}^{-1}\) (squareMatrix1) \(\Rightarrow\) squareMatrix \(\quad\) In Radian angle mode:
Returns the matrix inverse hyperbolic sine of squareMatrix1. This is not the same as calculating the inverse hyperbolic sine of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

\section*{\(\boldsymbol{s i n h}^{-1}\) () MATH/Hyperbolic menu}
\(\sinh ^{-1}(0)\) ENTER 0
\(\sinh ^{-1}(\{0,2.1,3\})\) ENTER
\(\left\{0 \quad 1.487 \ldots \sinh ^{-1}(3)\right\}\)
\(\left[\begin{array}{lll}360.954 & 305.708 & 239.604 \\ 352.912 & 233.495 & 193.564 \\ 298.632 & 154.599 & 140.251\end{array}\right]\)
\(\left[\begin{array}{lll}360.954 & 305.708 & 239.604 \\ 352.912 & 233.495 & 193.564 \\ 298.632 & 154.599 & 140.251\end{array}\right]\)
\(\left[\begin{array}{lll}360.954 & 305.708 & 239.604 \\ 352.912 & 233.495 & 193.564 \\ 298.632 & 154.599 & 140.251\end{array}\right]\)
\[
\left\{\begin{array}{lll}
0 & 1.509 \ldots & 10.017 \ldots
\end{array}\right\}
\]
\(\sinh (\{0,1.2,3\}\).\() ENTER\)



\section*{SinReg MATH/Statistics/Regressions menu}

SinReg list1, list2 [, [iterations], [ period] [, list3, list4] ]
Calculates the sinusoidal regression and updates all the system statistics variables.

All the lists must have equal dimensions except for list 4 .
list1 represents xlist.
list2 represents ylist.
list3 represents category codes.
list 4 represents category include list.
iterations specifies the maximum number of times ( 1 through 16) a solution will be attempted. If omitted, 8 is used. Typically, larger values result in better accuracy but longer execution times, and vice versa.
period specifies an estimated period. If omitted, the difference between values in list1 should be equal and in sequential order. If you specify period, the differences between \(x\) values can be unequal.

Note: list1 through list3 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list'4 does not have to be a variable name and cannot be c1-c99.

The output of SinReg is always in radians, regardless of the angle mode setting.

\section*{solve() MATH/Algebra menu}
solve(equation, var) \(\Rightarrow\) Boolean expression solve(inequality, var) \(\Rightarrow\) Boolean expression

Returns candidate real solutions of an equation or an inequality for var. The goal is to return candidates for all solutions. However, there might be equations or inequalities for which the number of solutions is infinite.

Solution candidates might not be real finite solutions for some combinations of values for undefined variables.

For the AUTO setting of the Exact/Approx mode, the goal is to produce exact solutions when they are concise, and supplemented by iterative searches with approximate arithmetic when exact solutions are impractical.

Due to default cancellation of the greatest common divisor from the numerator and denominator of ratios, solutions might be solutions only in the limit from one or both sides.

For inequalities of types \(\geq, \leq,<\), or \(>\), explicit solutions are unlikely unless the inequality is linear and contains only var.

In function graphing mode:
\(\operatorname{seq}(x, x, 1,361,30) \rightarrow L 1\) ENTER
\(\{5.5,8,11,13.5,16.5,19,19.5,17\), \(14.5,12.5,8.5,6.5,5.5\} \rightarrow\) L2 ENTER
\(\left\{\begin{array}{llll}5.5 & 8 & 11\end{array}\right.\)... \(\}\)
SinReg L1, L2 ENTER
Done
ShowStat ENTER


ENTER
\(\operatorname{regeq}(x) \rightarrow y 1(x)\) ENTER Done
NewPlot 1,1,L1,L2 ENTER Done
- [GRAPH]

F2 9

\[
\begin{aligned}
& \text { solve(a* } \left.x^{\wedge} 2+b * x+c=0, x\right) \text { ENTER } \\
& x=\frac{\sqrt{b^{2}-4 \cdot a \cdot c}-b}{2 \cdot a} \\
& \text { or } x=\frac{-\left(\sqrt{b^{2}-4 \cdot a \cdot c}+b\right)}{2 \cdot a} \\
& \text { ans(1) } a=1 \text { and } b=1 \text { and } c=1 \\
& \text { ENTER } \\
& \text { Error: Non-real result } \\
& \text { solve( } \left.(\mathrm{x}-\mathrm{a}) e^{\wedge}(\mathrm{x})=-\mathrm{x} *(\mathrm{x}-\mathrm{a}), \mathrm{x}\right) \\
& \text { ENTER } \\
& x=a \text { or } x=-.567 \ldots \\
& (x+1)(x-1) /(x-1)+x-3 \text { ENTER } \\
& 2 \cdot x-2 \\
& \text { solve(entry (1)=0,x) ENTER } x=1 \\
& \text { entry(2)|ans(1) ENTER undef } \\
& \text { limit(entry(3),x,1) ENTER } 0 \\
& \text { solve( } 5 x-2 \geq 2 x, x) \text { ENTER } x \geq 2 / 3
\end{aligned}
\]

For the EXACT setting of the Exact/Approx mode, portions that cannot be solved are returned as an implicit equation or inequality.

Use the "l" operator to restrict the solution interval and/or other variables that occur in the equation or inequality. When you find a solution in one interval, you can use the inequality operators to exclude that interval from subsequent searches.
false is returned when no real solutions are found. true is returned if solve() can determine that any finite real value of var satisfies the equation or inequality.

Since solve() always returns a Boolean result, you can use "and," "or," and "not" to combine results from solve() with each other or with other Boolean expressions.

Solutions might contain a unique new undefined variable of the form @n \(j\) with \(j\) being an integer in the interval 1-255. Such variables designate an arbitrary integer.

In real mode, fractional powers having odd denominators denote only the real branch. Otherwise, multiple branched expressions such as fractional powers, logarithms, and inverse trigonometric functions denote only the principal branch. Consequently, solve() produces only solutions corresponding to that one real or principal branch.
Note: See also cSolve(), cZeros(), nSolve(), and zeros().
solve(equation1 and equation2 [and ... ], \{varOrGuess1, varOrGuess2 \([, \ldots]\}) \Rightarrow\) Boolean expression

Returns candidate real solutions to the simultaneous algebraic equations, where each varOrGuess specifies a variable that you want to solve for.

Optionally, you can specify an initial guess for a variable. Each varOrGuess must have the form:
variable
- or -
variable \(=\) real or non-real number
For example, x is valid and so is \(\mathrm{x}=3\).

If all of the equations are polynomials and if you do NOT specify any initial guesses, solve() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all real solutions.

For example, suppose you have a circle of radius \(r\) at the origin and another circle of radius \(r\) centered where the first circle crosses the positive x-axis. Use solve() to find the intersections.

As illustrated by \(r\) in the example to the right, simultaneous polynomial equations can have extra variables that have no values, but represent given numeric values that could be substituted later.

You can also (or instead) include solution variables that do not appear in the equations. For example, you can include z as a solution variable to extend the previous example to two parallel intersecting cylinders of radius \(r\).

The cylinder solutions illustrate how families of solutions might contain arbitrary constants of the form \(@ k\), where \(k\) is an integer suffix from 1 through 255 . The suffix resets to 1 when you use CIrHome or F1 8:Clear Home.

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list solution variables. If your initial choice exhausts memory or your patience, try rearranging the variables in the equations and/or varOrGuess list.

If you do not include any guesses and if any equation is non-polynomial in any variable but all equations are linear in the solution variables, solve() uses Gaussian elimination to attempt to determine all real solutions.

If a system is neither polynomial in all of its variables nor linear in its solution variables, solve() determines at most one solution using an approximate iterative method. To do so, the number of solution variables must equal the number of equations, and all other variables in the equations must simplify to numbers.

\[
\begin{aligned}
& \text { solve }\left(x^{\wedge} 2+y^{\wedge} 2=r^{\wedge} 2\right. \text { and } \\
& \left.(x-r)^{\wedge} 2+y^{\wedge} 2=r^{\wedge} 2,\{x, y\}\right) \text { ENTER } \\
& \qquad x=\frac{r}{2} \text { and } y=\frac{\sqrt{3} \cdot r}{2} \\
& \text { or } x=\frac{r}{2} \text { and } y=\frac{-\sqrt{3} \cdot r}{2} \\
& \text { solve }\left(x^{\wedge} 2+y^{\wedge} 2=r^{\wedge} 2\right. \text { and } \\
& \left.(x-r)^{\wedge} 2+y^{\wedge} 2=r^{\wedge} 2,\{x, y, z\}\right) \text { ENTER } \\
& x=\frac{r}{2} \text { and } y=\frac{\sqrt{3} \cdot r}{2} \text { and } z=@ 1 \\
& \text { or } x=\frac{r}{2} \text { and } y=\frac{-\sqrt{3} \cdot r}{2} \text { and } z=@ 1
\end{aligned}
\]
solve( \(x+e^{\wedge}(z) * y=1\) and
\(x-y=\sin (z),\{x, y\}\) ) ENTER
\(\mathrm{x}=\frac{e^{z} \cdot \sin (\mathrm{z})+1}{e^{z}+1}\) and \(\mathrm{y}=\frac{-(\sin (\mathrm{z})-1}{e^{z+1}}\)
solve( \(e^{\wedge}(z) * y=1\) and
\(-y=\sin (z),\{y, z\})\) ENTER
\[
y=.041 \ldots \text { and } z=3.183 \ldots
\]

Each solution variable starts at its guessed value if there is one; otherwise, it starts at 0.0 .

Use guesses to seek additional solutions one by one. For convergence, a guess may have to be rather close to a solution.
solve( \(e^{\wedge}(z) * y=1\) and
\(-y=\sin (z),\{y, z=2 \pi\})\) ENTER
\[
y=.001 \ldots \text { and } z=6.281 \ldots
\]

\section*{SortA MATH/List menu}

SortA listName1[, listName2] [, listName3] ...
SortA vectorName1[, vectorName2] [, vectorName3] ...
Sorts the elements of the first argument in ascending order.

If you include additional arguments, sorts the elements of each so that their new positions match the new positions of the elements in the first argument.
\begin{tabular}{lr}
\(\{2,1,4,3\} \rightarrow 1\) ist1 ENTER & \(\{2,1,4,3\}\) \\
SortA 1 ist1 ENTER & Done
\end{tabular}

1 ist1 ENTER
\(\left\{\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right\}\)
\(\{4,3,2,1\} \rightarrow 1\) ist2 ENTER \(\left\{\begin{array}{llll}4 & 3 & 2 & 1\end{array}\right\}\)
SortA list2,list1 [ENTER] Done
list2 ENTER \(\left\{\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right\}\)
1ist1 ENTER \(\left\{\begin{array}{llll}4 & 3 & 2 & 1\end{array}\right\}\)

All arguments must be names of lists or vectors. All arguments must have equal dimensions.

\section*{SortD MATH/List menu}

SortD listName1[, listName2] [, listName3] ...
SortD vectorName1[,vectorName 2] [,vectorName 3] ...
Identical to SortA, except SortD sorts the elements in descending order.
\begin{tabular}{l}
\(\{2,1,4,3\} \rightarrow 1\) ist1 ENTER
\end{tabular}
\(\left.\begin{array}{lllll}\{2 & 1 & 4 & 3\end{array}\right\}\)
\(\{1,2,3,4\} \rightarrow 1\) ist2 ENTER] \(\quad\left\{\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right\}\)

Sphere MATH/Matrix/Vector ops menu
vector Sphere
Displays the row or column vector in spherical form [ \(\rho \angle \theta \angle \phi\) ].
vector must be of dimension 3 and can be either a row or a column vector.

Note: \(\boldsymbol{D}\) Shere is a display-format instruction, not a conversion function. You can use it only at the end of an entry line.
[1,2,3]Sphere
[ENTER [3.741... \(\angle 1.107 \ldots \angle .640 \ldots\) ]
[2, \(\angle \pi / 4,3]\) Sphere
- ENTER [3.605... \(\angle .785 \ldots \angle .588 \ldots]\)

ENTER \(\left[\sqrt{ } 13 \quad \angle \frac{\pi}{4} \quad \angle \cos ^{-1}\left(\frac{3 \cdot \sqrt{ } 13}{13}\right)\right]\)


\section*{stdDev() MATH/Statistics menu}
\(\mathbf{s t d D e v}(\) list \([\), freqlist \(]) \Rightarrow\) expression
Returns the standard deviation of the elements in list.

Each freqlist element counts the number of consecutive occurrences of the corresponding element in list.

Note: list must have at least two elements.
\(\operatorname{stdDev}(\{a, b, c\})\) ENTER
\(\operatorname{stdDev}(\{1,2,5,-6,3,-2\})\) ENTER

\(\operatorname{stdDev}(\{1.3,2.5,-6.4\},\{3,2,5\})\)
4.33345
\(\overline{\operatorname{std} \operatorname{Dev}(\text { matrix } 1[, \text { freqmatrix }])} \Rightarrow\) matrix
Returns a row vector of the standard deviations of the columns in matrix1.

Each freqmatrix element counts the number of consecutive occurrences of the corresponding element in matrix1.

Note: matrix1 must have at least two rows.

\section*{StoGDB catalog}

\section*{StoGDB GDBvar}

Creates a Graph database (GDB) variable that contains the current:
* Graphing mode
* \(\mathrm{Y}=\) functions
* Window variables
* Graph format settings 1- or 2-Graph setting (split screen and ratio settings if 2-Graph mode) Angle mode Real/complex mode
* Initial conditions if Sequence or Diff Equations mode
* Table flags
* tblStart, \(\Delta\) tbl, tblInput

You can use RcIGDB GDBvar to restore the graph environment.
*Note: These items are saved for both graphs in 2-Graph mode.

\section*{Stop catalog}

\section*{Stop}

Used as a program instruction to stop program execution.

Program segment:
```

For i, i,10,1
If i=5
Stop
EndFor
\vdots

```

\section*{string() MATH/String menu}
string(expression) \(\Rightarrow\) string
Simplifies expression and returns the result as a character string.
string(1.2345) ENTER "1.2345"
string(1+2) ENTER
" 3 "
string \((\cos (x)+\sqrt{(3))}\) ENTER
\[
" \cos (x)+\sqrt{ }(3) "
\]

\section*{Style catalog}

Style equanum, stylePropertyString
Sets the system graphing function equanum in the current graph mode to use the graphing property stylePropertyString.
equanum must be an integer from 1-99 and the function must already exist.
stylePropertyString must be one of: "Line", "Dot", "Square", "Thick", "Animate", "Path", "Above", or "Below".

Note that in parametric graphing, only the \(x t\) half of the pair contains the style information.

Valid style names vs. graphing mode:
Function: all styles
Parametric/Polar: line, dot, square, thick, animate, path
Sequence: line, dot, square, thick 3D: none
Diff Equations: line, dot, square, thick, animate, path

Note: Capitalization and blank spaces are optional when entering stylePropertyString names.

Style 1,"thick" ENTER Done
Style 10,"path" ENTER Done
Note: In function graphing mode, these examples set the style of \(\mathrm{y} 1(\mathrm{x})\) to "Thick" and \(\mathrm{y} 10(\mathrm{x})\) to "Path".

\section*{subMat() CATALOG}
subMat(matrix \(1[\), startRow] \([\), startCol \(][\), endRow \(]\) \([\), endCol \(]) \quad \Rightarrow\) matrix

Returns the specified submatrix of matrix1.
\([1,2,3 ; 4,5,6 ; 7,8,9] \rightarrow \mathrm{m} 1\) ENTER
```

$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ row, endCol=last column.
subMat(m1,2,1,3,2) ENTER
subMat(m1,2,2) ENTER

sum() MATH/List menu

$\operatorname{sum}($ list $[$, start $[$, end $]]) \Rightarrow$ expression
Returns the sum of the elements in list.
Start and end are optional. They specify a range of elements.
$\operatorname{sum}(\{1,2,3,4,5\})$ ENTER 15
$\operatorname{sum}(\{a, 2 a, 3 a\})$ ENTER 6•a
$\operatorname{sum}(\operatorname{seq}(\mathrm{n}, \mathrm{n}, 1,10))$ ENTER 55
sum($\{1,3,5,7,9\}, 3$) ENTER 21

Returns a row vector containing the sums of the elements in the columns in matrix1.

Start and end are optional. They specify a
Start and end are
range of rows.
sum($[1,2,3 ; 4,5,6 ; 7,8,9])$ ENTER
$\left[\begin{array}{lll}12 & 15 & 18\end{array}\right]$
$\operatorname{sum}([1,2,3 ; 4,5,6 ; 7,8,9], 2,3)$
ENTER
[11,13,15]

switch() CATALOG

switch([integer1]) \Rightarrow integer
Returns the number of the active window. Also can set the active window.

Note: Window 1 is left or top; Window 2 is right or bottom.

If integer $1=0$, returns the active window number.

If integer $1=1$, activates window 1 and returns the previously active window number.

If integer $1=2$, activates window 2 and returns the previously active window number.

If integer 1 is omitted, switches windows and returns the previously active window number.
integer1 is ignored if the TI-89 / TI-92 Plus is not displaying a split screen.

T (transpose) MATH/Matrix menu

matrix $1^{\top} \Rightarrow$ matrix
Returns the complex conjugate transpose of matrix1.

switch() ENTER

$[1,2,3 ; 4,5,6 ; 7,8,9] \rightarrow$ mat 1 [ENTER

$$
\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]
$$

mat1' ENTER

$$
\left[\begin{array}{cc}
1+i & 2+i \\
3+i & 4+i
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1-i & 3-i \\
2-i & 4-i
\end{array}\right]
$$

Table expression1[, expression2] [, var1]
Builds a table of the specified expressions or functions.

The expressions in the table can also be graphed. Expressions entered using the Table or Graph commands are assigned increasing function numbers starting with 1 . The expressions can be modified or individually deleted using the edit functions available when the table is displayed by pressing FF4 Header. The currently selected functions in the $\mathrm{Y}=$ Editor are temporarily ignored.
To clear the functions created by Table or Graph, execute the CIrGraph command or display the $\mathrm{Y}=$ Editor.

If the var parameter is omitted, the current graph-mode independent variable is assumed. Some valid variations of this instruction are:

Function graphing: Table expr, x
Parametric graphing: Table x Expr, y Expr, t
Polar graphing: \quad Table expr, θ
Note: The Table command is not valid for 3D, sequence, or diff equations graphing. As an alternative, you may want to use BIdData.
$\boldsymbol{t a n}() \quad$ TI-89: [2nd [tan] key TI-92 Plus: TAN key
$\boldsymbol{\operatorname { t a n }}($ expression 1$) \Rightarrow$ expression $\boldsymbol{\operatorname { t a n }}($ list1 $) \Rightarrow$ list

In function graphing mode.
Table $1.25 x * \cos (x)$ ENTER

Table cos(time), time ENTER

$\boldsymbol{t a n}$ (expression1) returns the tangent of the argument as an expression.
$\boldsymbol{\operatorname { t a n }}($ list1) returns a list of the tangents of all elements in list1.

Note: The argument is interpreted as either a degree or radian angle, according to the current angle mode. You can use ${ }^{\circ}$ or ${ }^{r}$ to override the angle mode temporarily.

In Degree angle mode:
$\tan \left((\pi / 4)^{r}\right)$ ENTER
$\tan (45)$ ENTER
$\tan (\{0,60,90\})$ ENTER

In Radian angle mode:
$\tan (\pi / 4)$ ENTER 1
$\tan \left(45^{\circ}\right)$ ENTER
$\tan (\{\pi, \pi / 3,-\pi, \pi / 4\})$ ENTER
$\boldsymbol{\operatorname { t a n }}$ (squareMatrix1) \Rightarrow squareMatrix
Returns the matrix tangent of squareMatrix1. This is not the same as calculating the tangent of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode:
$\tan ([1,5,3 ; 4,2,1 ; 6,-2,1])$ ENTER
$\left[\begin{array}{lll}-28.291 \ldots . & 26.088 \ldots & 11.114 \ldots \\ 12.117 \ldots & -7.835 \ldots & -5.481 \ldots \\ 36.818 . . . & -32.806 . . & -10.459 \ldots\end{array}\right]$

| $\tan ^{-1}()$ | TI-89: \bullet [TAN ${ }^{-1}$ key TI-92 Plus: 2 | key |
| :---: | :---: | :---: |
| $\boldsymbol{\operatorname { t a n }}^{-1}$ (expression1) \Rightarrow expression
 $\boldsymbol{t a n}^{-1}$ (list1) \Rightarrow list
 $\boldsymbol{t a n}^{-1}$ (expression 1) returns the angle whose tangent is expression 1 as an expression.
 $\boldsymbol{t a n}^{-1}$ (list1) returns a list of the inverse tangents of each element of list1. | | In Degree angle mode:
 $\tan ^{-1}(1)$ ENTER
 In Radian angle mode:
 $\tan ^{-1}(\{0, .2, .5\})$ ENTER $\{0 \quad .197 \ldots \quad .463 \ldots\}$ |
| | $\boldsymbol{t a n}^{-1}$ (squareMatrix1) \Rightarrow squareMatrix
 Returns the matrix inverse tangent of squareMatrix1. This is not the same as calculating the inverse tangent of each element. For information about the calculation method, refer to $\cos ()$.
 squareMatrix1 must be diagonalizable. The result always contains floating-point numbers. | In Radian angle mode:
 $\tan ^{-1}([1,5,3 ; 4,2,1 ; 6,-2,1])$
 ENTER $\left[\begin{array}{lll} -.083 \ldots . . & 1.266 \ldots & .622 \ldots \\ .748 \ldots & .630 \ldots & -.070 \ldots \\ 1.686 \ldots & -1.182 \ldots & .455 \ldots \end{array}\right]$ |
| tanh(| MATH/Hyperbolic menu | |
| | $\boldsymbol{\operatorname { t a n h }}$ (expression1) \Rightarrow expression
 $\boldsymbol{\operatorname { t a n h }}($ list1 $) \Rightarrow$ list
 $\boldsymbol{t a n h}$ (expression1) returns the hyperbolic tangent of the argument as an expression.
 $\boldsymbol{\operatorname { t a n h }}($ list $)$ returns a list of the hyperbolic tangents of each element of list1. | $\tanh (1.2)$ ENTER $\quad 833 \ldots$ $\tanh (\{0,1\})$ ENTER $\quad\{0 \quad \tanh (1)\}$ |

$\boldsymbol{\operatorname { t a n h }}$ (squareMatrix1) \Rightarrow squareMatrix
Returns the matrix hyperbolic tangent of squareMatrix1. This is not the same as calculating the hyperbolic tangent of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode:
$\tanh ([1,5,3 ; 4,2,1 ; 6,-2,1])$
ENTER

$$
\left[\begin{array}{lll}
-.097 \ldots . . & .933 \ldots & .425 \ldots \\
.488 \ldots & .538 \ldots & -.129 \ldots \\
1.282 \ldots & -1.034 \ldots & .428 \ldots
\end{array}\right]
$$

$\tanh ^{-1}$ () MATH/Hyperbolic menu

$\boldsymbol{t a n h}^{-1}$ (expression 1$) \Rightarrow$ expression $\boldsymbol{t a n h}^{-1}$ (list1) \Rightarrow list
$\boldsymbol{t a n h}^{-1}$ (expression1) returns the inverse hyperbolic tangent of the argument as an expression.
$\boldsymbol{t a n h}^{-1}$ (list1) returns a list of the inverse hyperbolic tangents of each element of list1.

In rectangular complex format mode:
$\mathrm{tanh}^{-1}(0)$ ENTER 0
$\tanh ^{-1}(\{1,2.1,3\})$ ENTER
$\left\{\infty \quad .518 \ldots-1.570 \ldots \cdot i \frac{\ln (2)}{2}-\frac{\pi}{2} \cdot i\right\}$
$\boldsymbol{t a n h}^{-1}$ (squareMatrix 1$) \Rightarrow$ squareMatrix
Returns the matrix inverse hyperbolic tangent of squareMatrix1. This is not the same as calculating the inverse hyperbolic tangent of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode and Rectangular complex format mode:
$\tanh ^{-1}([1,5,3 ; 4,2,1 ; 6,-2,1])$
ENTER

$$
\left[\begin{array}{cll}
-.099 \ldots+. . .164 \ldots \cdot \boldsymbol{i} & .267 \ldots-1.490 \ldots \cdot \boldsymbol{i} & \ldots . \\
-.087 \ldots-. . .725 \ldots \cdot \boldsymbol{i} & .479 \ldots-. .947 \ldots \cdot \boldsymbol{i} & \ldots \\
.511 \ldots-2.083 \ldots \cdot \boldsymbol{i} & -.878 \ldots+1.790 \ldots \cdot \boldsymbol{i} & \ldots
\end{array}\right]
$$

taylor() MATH/Calculus menu

taylor(expression1, var, order[, point $]$) \Rightarrow expression
Returns the requested Taylor polynomial. The polynomial includes non-zero terms of integer degrees from zero through order in (var minus point). taylor() returns itself if there is no truncated power series of this order, or if it would require negative or fractional exponents. Use substitution and/or temporary multiplication by a power of (var minus point) to determine more general power series.
point defaults to zero and is the expansion point.
taylor $\left(e^{\wedge}(\sqrt{ }(x)), x, 2\right)$ ENTER
taylor $\left(e^{\wedge}(\mathrm{t}), \mathrm{t}, 4\right) \mid \mathrm{t}=\sqrt{ }(\mathrm{x})$ ENTER

- taylor $\left(e^{\sqrt{x}}, x, 2\right)$
$\operatorname{taylor}\left(e^{\sqrt{x}}, x, 2,0\right)$
- t.aylor ($\left.e^{t}, \mathrm{t}, 4\right) \mid \mathrm{t}=\sqrt{\mathrm{x}}$

$$
\frac{x^{2}}{24}+\frac{x^{3} / 2}{6}+\frac{x}{2}+\sqrt{x}+1
$$

taylor(1/(x* $(x-1)), x, 3)$ ENTER

- taylor $\left(\frac{1}{x \cdot(x-1)}, x, 3\right)$
taylor $\left(\frac{1}{x \cdot(x-1)}, x, 3,0\right)$
expand(taylor(x/(x*(x-1)), $x, 4) / x, x$) ENTER

tCollect() MATHAAIgebralTrig menu

tCollect(expression1) \Rightarrow expression
Returns an expression in which products and integer powers of sines and cosines are converted to a linear combination of sines and cosines of multiple angles, angle sums, and angle differences. The transformation converts trigonometric polynomials into a linear combination of their harmonics.

Sometimes tCollect() will accomplish your goals when the default trigonometric simplification does not. tCollect() tends to reverse transformations done by t Expand(). Sometimes applying tExpand() to a result from tCollect(), or vice versa, in two separate steps simplifies an expression.
tCollect $\left((\cos (\alpha))^{\wedge} 2\right)$ ENTER
$\frac{\cos (2 \cdot \alpha)+1}{2}$
tCollect(sin(α) $\cos (\beta))$ ENTER $\frac{\sin (\alpha-\beta)+\sin (\alpha+\beta)}{2}$

tExpand() MATHIAIgebralTrig menu

tExpand(expression1) \Rightarrow expression
Returns an expression in which sines and cosines of integer-multiple angles, angle sums, and angle differences are expanded. Because of the identity $(\sin (\mathrm{x}))^{2}+(\cos (\mathrm{x}))^{2}=1$, there are many possible equivalent results. Consequently, a result might differ from a result shown in other publications.
Sometimes tExpand() will accomplish your goals when the default trigonometric simplification does not. tExpand() tends to reverse transformations done by tCollect(). Sometimes applying tCollect() to a result from tExpand(), or vice versa, in two separate steps simplifies an expression.

Note: Degree-mode scaling by $\pi / 180$ interferes with the ability of tExpand() to recognize expandable forms. For best results, tExpand() should be used in Radian mode.
Text CATALOG

Displays the character string promptString

If used as part of a Dialog...EndDlog block, promptString is displayed inside that dialog box. If used as a standalone instruction, Text creates a dialog box to display the string.
dialog box.
Text promptString

See If, page 456.
tExpand $(\sin (3 \phi))$ ENTER

$$
4 \cdot \sin (\phi) \cdot(\cos (\phi))^{2}-\sin (\phi)
$$

tExpand $(\cos (\alpha-\beta))$ ENTER

$$
\cos (\alpha) \cdot \cos (\beta)+\sin (\alpha) \cdot \sin (\beta)
$$

Title CATALOG

Title titleString, [Lbl]

Creates the title of a pull-down menu or dialog box when used inside a Toolbar or Custom construct, or a Dialog...EndDlog block.

Note: $L b l$ is only valid in the Toolbar construct. When present, it allows the menu choice to branch to a specified label inside the program.

Program segment:
:Dialog
:Title "This is a dialog
box"
: Request "Your name", Strl
: Dropdown "Month you were
born",
seq(string(i),i,1,12),Var1
: EndDlog
This is o dialos bax
Mour name: \square
Menth you were born 17
Enter=aK

tmpCnv() CATALOG

tmpCnv(expression1_解mpUnit1, _otempUnit2)

Converts a temperature value specified by expression 1 from one unit to another. Valid temperature units are:

For example, $100{ }^{\circ}{ }^{\circ} \mathrm{C}$ converts to $212{ }^{\circ} \mathrm{F}$:

To convert a temperature range, use $\Delta t m p C n v()$ instead.

$\Delta t m p C n v()$ CATALOG

$\Delta \mathrm{tmpCnv}$ (expression1_${ }^{\circ}$ tempUnit1, ${ }^{\circ}$ tempUnit2)
\Rightarrow expression__tempUnit2
Converts a temperature range (the difference between two temperature values) specified by expression 1 from one unit to another. Valid temperature units are:

$1_{-}{ }^{\circ} \mathrm{C}$ and $1_{-}{ }^{\circ} \mathrm{K}$ have the same magnitude, as do $1_{-}{ }^{\circ} \mathrm{F}$ and $1_{-}{ }^{\circ} \mathrm{R}$. However, $1_{-}{ }^{\circ} \mathrm{C}$ is $9 / 5$ as large as $1_{-}^{\circ} \mathrm{F}$.
tmpCnv(100_ $\left.{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{f}\right)$ ENTER 212..$^{\circ} \mathrm{F}$
tmpCnv(32_ $\left.{ }^{\circ} \mathrm{f},{ }^{\circ} \mathrm{C}\right)$ ENTER $0 . \cdot-{ }^{\circ} \mathrm{C}$
tmpCnv($0{ }_{-}^{\circ}{ }^{\circ}$, $\left.{ }^{\circ}{ }^{\circ} \mathrm{K}\right)$ ENTER $273.15 \cdot{ }^{\circ} \mathrm{K}$
tmpCnv(0_o ${ }^{\circ},{ }^{\circ} r$) ENTER $459.67 \cdot{ }^{\circ} \mathrm{R}$

Note: To select temperature units from a menu, press:

TI-89: 2nd [UNITS]
TI-92 Plus: \quad [UNITS]

To get Δ, you can press $\rightarrow \square$ [D] (or 2nd [CHAR] 15).

Note: To select temperature units from a menu, press:

TI-89: 2nd [UNITS]
TI-92 Plus: \bullet [UNITS]

```
\DeltatmpCnv(100_' c,_o f) ENTER
```

\DeltatmpCnv(100_' c,_o f) ENTER
180.•_` 180.•_`
\DeltatmpCnv(180_}\mp@subsup{}{}{\circ}\textrm{f},\mp@subsup{_}{}{\circ}\textrm{C}) ENTER
\DeltatmpCnv(180_}\mp@subsup{}{}{\circ}\textrm{f},\mp@subsup{_}{}{\circ}\textrm{C}) ENTER
100. ._ ' C
100. ._ ' C
\DeltatmpCnv(100_o c,_-}\mp@subsup{}{}{\circ}\textrm{k}) ENTER
\DeltatmpCnv(100_o c,_-}\mp@subsup{}{}{\circ}\textrm{k}) ENTER
100. .- ' K
100. .- ' K
\DeltatmpCnv(100_o'f,_}\mp@subsup{}{}{\circ}r) ENTE
\DeltatmpCnv(100_o'f,_}\mp@subsup{}{}{\circ}r) ENTE
100. ._ * R
100. ._ * R
\DeltatmpCnv(1_- ' C,_}\mp@subsup{}{}{\circ}\textrm{f})\mathrm{ ENTER
1.8._- }\mp@subsup{}{}{\circ

```
I-92 Fius:
[0ivion

For example, a \(100{ }_{-}{ }^{\circ} \mathrm{C}\) range (from \(0{ }_{-}{ }^{\circ} \mathrm{C}\) to \(100{ }^{\circ} \mathrm{C}\) ) is equivalent to a \(180{ }^{\circ}{ }^{\circ} \mathrm{F}\) range:


To convert a particular temperature value instead of a range, use tmpCnv().

\section*{Toolbar CATALOG}

Toolbar block

\section*{EndTBar}

Creates a toolbar menu.
block can be either a single statement or a sequence of statements separated with the ":" character. The statements can be either Title or Item.

Items must have labels. A Title must also have a label if it does not have an item.

Program segment:
```

\vdots
:Toolbar
: Title "Examples"
: Item "Trig", t
Item "Calc", c
Item "Stop", Pexit
: EndTbar
\vdots

```

Note: When run in a program, this segment creates a menu with three choices that branch to three places in the program.

\section*{Trace CATALOG \\ Trace}

Draws a Smart Graph and places the trace cursor on the first defined \(Y=\) function at the previously defined cursor position, or at the reset position if regraphing was necessary.

Allows operation of the cursor and most keys when editing coordinate values. Several keys, such as the function keys, APPS, and MODE, are not activated during trace.

Note: Press ENTER to resume operation.
Try CATALOG

Try
block1
Else
block2
EndTry
Executes block1 unless an error occurs. Program execution transfers to block2 if an error occurs in block1. Variable errornum contains the error number to allow the program to perform error recovery.
block1 and block2 can be either a single statement or a series of statements separated with the ":" character.

Program segment:
\(\vdots\)
:Try
: NewFold(temp)
Else
: OAlready exists
: Clrerr
: EndTry
\(\vdots\)
Note: See CIrErr and PassErr.

TwoVar MATH/Statistics menu

TwoVar list1, list2[, [list3] [, list4, list5]]
Calculates the TwoVar statistics and updates all the system statistics variables.

All the lists must have equal dimensions except for list 5 .
list1 represents xlist. list2 represents ylist. list3 represents frequency. list 4 represents category codes. list 5 represents category include list.

Note: list1 through list 4 must be a variable name or c1-c99 (columns in the last data variable shown in the Data/Matrix Editor). list5 does not have to be a variable name and cannot be c1-c99.
\[
\{0,1,2,3,4,5,6\} \rightarrow \text { L1 ENTER }
\]
\(\left\{\begin{array}{llll}0 & 1 & 2\end{array}\right.\)... \(\{0,2,3,4,3,4,6\} \rightarrow\) L2 ENTER

TwoVar L1, L2 ENTER \(\left\{\begin{array}{llll}0 & 2 & 3\end{array}\right\}\)

ShowStat ENTER


\section*{Unarchiv catalog}

Unarchiv var1 [, var2] [, var3] ...
Moves the specified variables from the user data archive memory to RAM.

You can access an archived variable the same as you would a variable in RAM. However, you cannot delete, rename, or store to an archived variable because it is locked automatically.

To archive variables, use Archive.

\section*{unitV() MATH/Matrix/Vector ops menu}
unitV(vector1) \(\Rightarrow\) vector
Returns either a row- or column-unit vector, depending on the form of vector1.
vector1 must be either a single-row matrix or a single-column matrix.
\(10 \rightarrow\) arctest ENTER 10
Archive arctest [ENTER] Done
5* arctest ENTER] 50
\(15 \rightarrow\) arctest [ENTER


ESC
Unarchiv arctest ENTER Done
\(15 \rightarrow\) arctest ENTER 15
unitV ([a,b,c]) ENTER
\(\left[\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right]\)
unitV ([1,2,1]) ENTER
\[
\left[\begin{array}{lll}
\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6}
\end{array}\right]
\]
unitV \(([1 ; 2 ; 3])\) ENTER \(\left[\begin{array}{l}\frac{\sqrt{14}}{14} \\ \frac{\sqrt{14}}{7} \\ \frac{3 \cdot \sqrt{14}}{14}\end{array}\right]\)

\section*{Unlock catalog}

Unlock var1[, var2][, var3]...
Unlocks the specified variables.
Note: The variables can be locked using the Lock command.

\section*{variance() MATH/Statistics menu}
variance \((\) list \([\), freqlist \(]) \Rightarrow\) expression
Returns the variance of list.
Each freqlist element counts the number of consecutive occurrences of the corresponding element in list.
variance(\{a,b,c\}) ENTER
\[
\frac{a^{2}-a \cdot(b+c)+b^{2}-b \cdot c+c^{2}}{3}
\]
variance(\{1,2,5,-6,3,-2\}) ENTER
\(31 / 2\)

Note: list must contain at least two elements. variance (\{1,3,5\},\{4,6,2\}) ENTER
variance(matrix 1 [, freqmatrix]) \(\quad \Rightarrow \quad\) matrix
Returns a row vector containing the variance of each column in matrix1.

Each freqmatrix element counts the number of consecutive occurrences of the corresponding element in matrix1.

Note: matrix1 must contain at least two rows.
variance([1,2,5;-3,0,1;
.5,.7,3]) ENTER [4.75 1.03 4]
variance([-1.1,2.2;3.4,5.1;
-2.3,4.3],[6,3;2,4;5,1]) ENTER
[3.91731,2.08411]

\section*{when() CATALOG}
when(condition, trueResult [, falseResult]
[, unknownResult \(]) \Rightarrow\) expression
Returns trueResult, falseResult, or unknownResult, depending on whether condition is true, false, or unknown. Returns the input if there are too few arguments to specify the appropriate result.

Omit both falseResult and unknownResult to make an expression defined only in the region where condition is true.

Use an undef falseResult to define an expression that graphs only on an interval.
\[
\begin{aligned}
& \text { when }(x<0, x+3) \mid x=5 \text { ENTER } \\
& \qquad \text { when }(x<0,3+x)
\end{aligned}
\]

ClrGraph ENTER
Graph when ( \(x \geq^{-} \pi\) and \(x<0, x+3\), undef) ENTER


Omit only the unknownResult to define a twopiece expression.

Graph when \(\left(x<0, x+3,5-x^{\wedge} 2\right)\) ENTER


Nest when() to define expressions that have more than two pieces.
when() is helpful for defining recursive functions.

TI-89: HOME
TI-92 Plus: \(\quad\) [HOME]
ClrGraph ENTER Done
Graph when \((x<0\), when \((x<-\pi\),
4* \(\left.\sin (x), 2 x+3), 5-x^{\wedge} 2\right)\) ENTER

when ( \(n>0, n *\) factoral \((n-1), 1\) )
\(\rightarrow\) factoral ( \(n\) ) ENTER Done
factoral(3) ENTER 6
\(3!\) ENTER 6

\section*{While catalog}

While condition
block
EndWhile
Executes the statements in block as long as condition is true.
block can be either a single statement or a sequence of statements separated with the ":" character.

Program segment:
\[
\vdots
\]
\[
: 1 \rightarrow i
\]
\[
: 0 \rightarrow \text { temp }
\]
:While i<=20
\[
: \quad \text { temp }+1 / i \rightarrow \text { temp }
\]
\[
: \quad i+1 \rightarrow i
\]
: EndWhile
:Disp "sum of reciprocals up to
\[
20^{\prime \prime} \text {, temp }
\]
"With" See |, page 538.

\section*{XOr MATH/Test menu}

Boolean expression1 xor Boolean expression2 \(\Rightarrow\)
Boolean expression
Returns true if Boolean expression 1 is true and Boolean expression2 is false, or vice versa. Returns false if Boolean expression1 and Boolean expression2 are both true or both false. Returns a simplified Boolean expression if either of the original Boolean expressions cannot be resolved to true or false.

Note: See or.

\section*{integer1 xor integer2 \(\Rightarrow\) integer}

Compares two real integers bit-by-bit using an xor operation. Internally, both integers are converted to signed, 32-bit binary numbers. When corresponding bits are compared, the result is 1 if either bit (but not both) is 1 ; the result is 0 if both bits are 0 or both bits are 1 . The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0 b or 0 h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 32 -bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range.

Note: See or.

In Hex base mode:
Oh7AC36 xor Oh3D5F ENTER Oh79169
_ Important: Zero, not the letter O.

In Bin base mode:
Ob100101 xor Ob100 ENTER0b100001
Note: A binary entry can have up to 32 digits (not counting the 0b prefix). A hexadecimal entry can have up to 8 digits.

\section*{XorPic CATALOG}

\section*{XorPic picVar[, row] [, column]}

Displays the picture stored in picVar on the current Graph screen.

Uses xor logic for each pixel. Only those pixel positions that are exclusive to either the screen or the picture are turned on. This instruction turns off pixels that are turned on in both images.
picVar must contain a pic data type.
row and column, if included, specify the pixel coordinates for the upper left corner of the picture. Defaults are \((0,0)\).

\section*{zeros() MATH/Algebra menu}
zeros(expression, var) \(\Rightarrow\) list
Returns a list of candidate real values of var that make expression \(=0\). zeros() does this by computing
exp>list(solve(expression=0,var),var).

For some purposes, the result form for zeros() is more convenient than that of solve(). However, the result form of zeros() cannot express implicit solutions, solutions that require inequalities, or solutions that do not involve var.
zeros (a* \(\left.x^{\wedge} 2+b * x+c, x\right)\) ENTER
\(\left\{\frac{-\left(\sqrt{b^{2}-4 \cdot a \cdot c}+b\right)}{2 \cdot a} \frac{\sqrt{b^{2}-4 \cdot a \cdot c}-b}{2 \cdot a}\right\}\)
\(a * x^{\wedge} 2+b * x+c \mid x=a n s(1)[2]\) ENTER 0
exact(zeros(a* ( \(\left.e^{\wedge}(x)+x\right)\)
\((\operatorname{sign}(x)-1), x))\) ENTER
exact(solve(a* \(\left(e^{\wedge}(x)+x\right)\)
\((\operatorname{sign}(x)-1)=0, x))\) ENTER \(e^{x}+x=0\) or \(x>0\) or \(a=0\)

Note: See also cSolve(), cZeros(), and solve().
zeros(\{expression1, expression2\}, \{varOrGuess1, varOrGuess2 \([, \ldots]\}) \Rightarrow\) matrix

Returns candidate real zeros of the simultaneous algebraic expressions, where each varOrGuess specifies an unknown whose value you seek.

Optionally, you can specify an initial guess for a variable. Each varOrGuess must have the form:
variable
- or -
variable \(=\) real or non-real number
For example, x is valid and so is \(\mathrm{x}=3\).
If all of the expressions are polynomials and if you do NOT specify any initial guesses, zeros() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all real zeros.

For example, suppose you have a circle of radius \(r\) at the origin and another circle of radius \(r\) centered where the first circle crosses the positive x-axis. Use zeros() to find the intersections.

As illustrated by r in the example to the right, simultaneous polynomial expressions can have extra variables that have no values, but represent given numeric values that could be substituted later.

Each row of the resulting matrix represents an alternate zero, with the components ordered the same as the varOrGuess list. To extract a row, index the matrix by [row].

You can also (or instead) include unknowns that do not appear in the expressions. For example, you can include \(z\) as an unknown to extend the previous example to two parallel intersecting cylinders of radius \(r\). The cylinder zeros illustrate how families of zeros might contain arbitrary constants in the form \(@ k\), where \(k\) is an integer suffix from 1 through 255 . The suffix resets to 1 when you use CIrHome or F1 8:Clear Home.

\(z \cos \left(\left\{x^{\wedge} 2+y^{\wedge} 2-r^{\wedge} 2\right.\right.\),
\(\left.\left.(x-r)^{\wedge} 2+y^{\wedge} 2-r^{\wedge} 2\right\},\{x, y\}\right)\) ENTER
\[
\left[\begin{array}{cc}
\frac{r}{2} & \frac{\sqrt{3} \cdot r}{2} \\
\frac{r}{2} & \frac{-\sqrt{3} \cdot r}{2}
\end{array}\right]
\]

Extract row 2:
\(\operatorname{ans}(1)[2]\) ENTER
\[
\left[\begin{array}{cc}
\frac{r}{2} & \frac{-\sqrt{3} \cdot r}{2}
\end{array}\right]
\]
\[
\begin{aligned}
& \operatorname{zeros}\left(\left\{x^{\wedge} 2+y^{\wedge} 2-r^{\wedge} 2,\right.\right. \\
& \left.\left.(x-r)^{\wedge} 2+y^{\wedge} 2-r^{\wedge} 2\right\},\{x, y, z\}\right) \\
& \\
& \qquad\left[\begin{array}{ccc}
\frac{r}{2} & \frac{\sqrt{3} \cdot r}{2} & @ 1 \\
\frac{r}{2} & \frac{-\sqrt{3} \cdot r}{2} & @ 1
\end{array}\right]
\end{aligned}
\]

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list unknowns. If your initial choice exhausts memory or your patience, try rearranging the variables in the expressions and/or varOrGuess list.

If you do not include any guesses and if any expression is non-polynomial in any variable but all expressions are linear in the unknowns, zeros() uses Gaussian elimination to attempt to determine all real zeros.

If a system is neither polynomial in all of its variables nor linear in its unknowns, zeros() determines at most one zero using an approximate iterative method. To do so, the number of unknowns must equal the number of expressions, and all other variables in the expressions must simplify to numbers.

Each unknown starts at its guessed value if there is one; otherwise, it starts at 0.0 .

Use guesses to seek additional zeros one by one. For convergence, a guess may have to be rather close to a zero.
zeros (\{x+e^(z)*y-1,x-y-sin(z)\}
, \(\{x, y\}\) ) ENTER
\[
\left[\frac{e^{z} \cdot \sin (z)+1}{e^{z}+1} \frac{-(\sin (z)-1)}{e^{z}+1}\right]
\]
zeros( \(\left\{e^{\wedge}(z) * y-1,-y-\sin (z)\right\}\), \(\{y, z\}\) ) ENTER
\[
\left[\begin{array}{ll}
.041 \ldots . . & 3.183 \ldots . .
\end{array}\right]
\]
zeros(\{e^(z)*y-1,-y-sin(z)\}, \(\{y, z=2 \pi\}\) ) ENTER
\[
\left[\begin{array}{ll}
.001 \ldots & 6.281 \ldots . .
\end{array}\right.
\]

\section*{ZoomBox catalog}

\section*{ZoomBox}

Displays the Graph screen, lets you draw a box that defines a new viewing window, and updates the window.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done


The display after defining ZoomBox by pressing ENTER the second time.

\section*{ZoomData catalog}

\section*{ZoomData}

Adjusts the window settings based on the currently defined plots (and data) so that all statistical data points will be sampled, and displays the Graph screen.

Note: Does not adjust ymin and ymax for histograms.

In function graphing mode:
\(\left.\begin{array}{l}\left.\begin{array}{l}\{1,2,3,4\} \rightarrow L 1 \text { ENTER }\end{array} \quad \begin{array}{llll}\{1 & 2 & 3 & 4\end{array}\right\} \\ \{2,3,4,5\} \rightarrow L 2 \text { ENTER }\end{array} \quad \begin{array}{ll}2 & 3 \\ 4 & 4\end{array}\right\}\)

ZoomStd ENTER


TI-89: HOME
TI-92 Plus: \(\square\) [HOME]
ZoomData ENTER


\section*{ZoomDec catalog}

\section*{ZoomDec}

Adjusts the viewing window so that \(\Delta x\) and \(\Delta y=0.1\) and displays the Graph screen with the origin centered on the screen.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done ZoomStd ENTER


TI-89: HOME
TI-92 Plus: \(\square\) [HOME]
ZoomDec ENTER


Displays the Graph screen, and calculates the necessary window dimensions for the dependent variables to view all the picture for the current independent variable settings.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done ZoomStd ENTER


TI-89: HOME
TI-92 Plus: [HOME]
ZoomFit ENTER


In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done ZoomStd:ZoomIn ENTER


ENTER


\section*{Zoomint CATALOG}

\section*{ZoomInt}

Displays the Graph screen, lets you set a center point for the zoom, and adjusts the window settings so that each pixel is an integer in all directions.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done ZoomStd:ZoomInt ENTER


ENTER


\section*{ZoomOut}

Displays the Graph screen, lets you set a center point for a zoom out, and updates the viewing window.

The magnitude of the zoom is dependent on the Zoom factors xFact and yFact. In 3D Graph mode, the magnitude is dependent on \(x F a c t\), yFact, and zFact.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER
Done
ZoomStd:ZoomOut ENTER


ENTER


\section*{ZoomPrev catalog}

\section*{ZoomPrev}

Displays the Graph screen, and updates the viewing window with the settings in use before the last zoom.

\section*{ZoomRcl CATALOG}

\section*{ZoomRcl}

Displays the Graph screen, and updates the viewing window using the settings stored with the ZoomSto instruction.

\section*{ZoomSqr catalog}

\section*{ZoomSqr}

Displays the Graph screen, adjusts the x or y window settings so that each pixel represents an equal width and height in the coordinate system, and updates the viewing window.

In 3D Graph mode, ZoomSqr lengthens the shortest two axes to be the same as the longest axis.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done ZoomStd ENTER


HOME ZoomSqr ENTER


\section*{ZoomStd}

Sets the window variables to the following standard values, and then updates the viewing window.

Function graphing:
\(x:[-10,10,1], y:[-10,10,1]\) and \(x r e s=2\)
Parametric graphing:
\(\mathrm{t}:[0,2 \pi, \pi / 24], \mathrm{x}:[-10,10,1], \mathrm{y}:[-10,10,1]\)
Polar graphing:
\(\theta:[0,2 \pi, \pi / 24], x:[-10,10,1], y:[-10,10,1]\)
Sequence graphing:
nmin \(=1\), nmax \(=10\), plotStrt= 1 , plotStep \(=1\),
\(\mathrm{x}:[-10,10,1], \mathrm{y}:[-10,10,1]\)
3D graphing:
еуе \(\theta^{\circ}=20\), еуе \(\phi^{\circ}=70\), еуe \(\psi^{\circ}=0\)
\(\mathrm{x}:[-10,10,14], \mathrm{y}:[-10,10,14]\),
z: [-10, 10], ncontour \(=5\)
Differential equations graphing: \(\mathrm{t}:[0,10, .1,0], \mathrm{x}:[-1,10,1], \mathrm{y}:[-10,10,1]\), ncurves \(=0\), Estep \(=1\), diftol=. 001 , fldres \(=14\), dtime \(=0\)

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done ZoomStd ENTER


CATALOG
ZoomSto
Stores the current Window settings in the Zoom memory. You can use ZoomRcl to restore the settings.

\section*{ZoomTrig CATALOG}

\section*{ZoomTrig}

Displays the Graph screen, sets \(\Delta x\) to \(\pi / 24\), and xscl to \(\pi / 2\), centers the origin, sets the \(y\) settings to \([-4,4, .5]\), and updates the viewing window.

In function graphing mode:
\(1.25 x * \cos (x) \rightarrow y 1(x)\) ENTER Done ZoomStd [ENTER]


TI-89: HOME
TI-92 Plus: [HOME]
ZoomTrig ENTER


expression-matrix1 \(\Rightarrow\) matrix 20-[1,2;3,4] ENTER matrix 1 - expression \(\Rightarrow\) matrix \(\quad 19-2\) expression - matrix1 returns a matrix of expression times the identity matrix minus matrix1. matrix1 must be square.
matrix1 - expression returns a matrix of expression times the identity matrix subtracted from matrix1. matrix1 must be square.

Note: Use .- (dot minus) to subtract an expression from each element.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{* (multiply) 区 key} \\
\hline expression 1 * expression2 \(\Rightarrow\) expression & \(2 * 3.45\) ENTER 6.9 \\
\hline Returns the product of expression 1 and expression2. & \(x * y * x\) ENTER \(x^{2} \cdot y\) \\
\hline list1*list2 \(\quad \Rightarrow \quad\) list & \(\{1.0,2,3\} *\{4,5,6\}\) ENTER \(\{4.1018\}\) \\
\hline Returns a list containing the products of the corresponding elements in list1 and list2. & \(\{2 / \mathrm{a}, 3 / 2\} *\left\{\mathrm{a}^{2}, \mathrm{~b} / 3\right\}\) ENTER \(\left\{2 \cdot \mathrm{a} \frac{\mathrm{b}}{2}\right\}\) \\
\hline \multicolumn{2}{|l|}{Dimensions of the lists must be equal.} \\
\hline matrix \(1 *\) matrix \(2 \quad \Rightarrow\) matrix & \[
\begin{aligned}
& {[1,2,3 ; 4,5,6] *[a, d ; b, e ; c, f]} \\
& \text { ENTER }
\end{aligned}
\] \\
\hline Returns the matrix product of matrix 1 and matrix2. & - \(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\). \(\left.\begin{array}{ll}a & d \\ b & e \\ \hline\end{array}\right]\) \\
\hline The number of rows in matrix1 must equal the number of columns in matrix2. & \[
\begin{aligned}
& {\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right] \cdot\left[\begin{array}{ll}
b & e \\
c & f
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a+2 \cdot b+3 \cdot c & d+2 \cdot e+3 \\
4 \cdot a+5 \cdot b+6 \cdot c & 4 \cdot d+5 \cdot e \cdot
\end{array}\right.}
\end{aligned}
\] \\
\hline \[
\begin{array}{lll}
\text { expression } * \text { list } 1 & \Rightarrow & \text { list } \\
\text { list } 1 * \text { expression } & \Rightarrow & \text { list }
\end{array}
\] & \(\pi *\{4,5,6\}\) ENTER \(\quad\{4 \cdot \pi 5 \cdot \pi 6 \cdot \pi\}\) \\
\hline
\end{tabular}

Returns a list containing the products of expression and each element in list1.
\begin{tabular}{llll} 
expression \(*\) matrix & \(\Rightarrow\) matrix \\
matrix \(1 *\) expression
\end{tabular}\(\Rightarrow\) matrix \(\quad[1,2 ; 3,4] * .01\) ENTER \(\quad\left[\begin{array}{cc}.01 & .02 \\
.03 & .04\end{array}\right]\)

Returns a matrix containing the products of expression and each element in matrix1.

Note: Use .* (dot multiply) to multiply an expression by each element.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{/ (divide) \(\dagger\) key} \\
\hline expression \(1 /\) expression2 \(\Rightarrow\) expression & 2/3.45 ENTER & 57971 \\
\hline Returns the quotient of expression 1 divided by expression2. & \(x^{\wedge} 3 / x\) ENTER & \(\mathrm{x}^{2}\) \\
\hline list1 / list2 \(\quad \Rightarrow \quad\) list & \multicolumn{2}{|l|}{\(\{1.0,2,3\} /\{4,5,6\}\) ENTER} \\
\hline Returns a list containing the quotients of list1 divided by list2. & & ( \(51 / 2\}\) \\
\hline
\end{tabular}

Dimensions of the lists must be equal.
```

expression/list1 }=>\mathrm{ list a/{3,a, V (a)} ENTER

```
list1 / expression \(\Rightarrow\) list

Returns a list containing the quotients of expression divided by list1 or list1 divided by expression.
\(\{a, b, c\} /(a * b * c)\) ENTER
\(\left\{\begin{array}{lll}\frac{1}{b \cdot c} & \frac{1}{a \cdot c} & \frac{1}{a \cdot b}\end{array}\right\}\)
matrix1 / expression \(\Rightarrow\) matrix
Returns a matrix containing the quotients of matrix1/ expression.
[a,b,c]/(a*b*c) ENTER
\[
\left[\begin{array}{lll}
\frac{1}{b \cdot c} & \frac{1}{a \cdot c} & \frac{1}{a \cdot b}
\end{array}\right]
\]

Note: Use . / (dot divide) to divide an expression by each element.

\section*{- (negate) (-) key and MATH/Base menu}
-expression \(1 \Rightarrow\) expression
\({ }^{-}\)list1 \(\Rightarrow\) list
- matrix \(1 \Rightarrow\) matrix

Returns the negation of the argument.
For a list or matrix, returns all the elements negated.

If expression 1 is a binary or hexadecimal integer, the negation gives the two's complement.
-2.43 ENTER -2.43
- \(\{-1,0.4,1.2\) е 19\(\}\) ENTER
\(\{1\)-. 4 -1.2Е 19\(\}\)
- a*-b ENTER a b

In Bin base mode:
Ob100101 dec ENTER 37
L Important: Zero, not the letter O.
- Ob100101 ENTER

Ob111111111111111111111111111011011
ans(1) dec ENTER
Note: To type \(\downarrow\), press 2nd [ \(\downarrow\) ].
\% (percent) CHAR/Punctuation menu
expression \(1 \% \Rightarrow\) expression
\(13 \%\) ENTER

\section*{list1 \% \(\Rightarrow\) list}
matrix \(1 \% \Rightarrow\) matrix
\(\{1,10,100\} \%\) ENTER
Returns \(\frac{\text { argument }}{100}\).
For a list or matrix, returns a list or matrix with each element divided by 100 .
```

= (equal) छkey

```
expression1 \(=\) expression2 \(\Rightarrow\) Boolean expression \(\quad\) Example function listing using math test list1 \(=\) list2 \(\Rightarrow\) Boolean list matrix1 \(=\) matrix \(2 \Rightarrow\) Boolean matrix

Returns true if expression 1 is determined to be equal to expression2.

Returns false if expression 1 is determined to not be equal to expression2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
symbols: \(=, \neq,<, \leq,>, \geq\)
: \(g(x)\)
: Func
:If \(x \leq-5\) Then
: Return 5
: ElseIf \(x>-5\) and \(x<0\) Then
: Return - x
: ElseIf \(x \geq 0\) and \(x \neq 10\) Then
: Return x
: ElseIf \(x=10\) Then
: Return 3
: End If
: EndFunc
Graph \(g(x)\) ENTER


See "=" (equal) example.
expression \(1 \neq\) expression2 \(\Rightarrow\) Boolean expression list \(1 \neq\) list2 \(\Rightarrow\) Boolean list matrix \(1 \neq\) matrix \(2 \Rightarrow\) Boolean matrix

Returns true if expression 1 is determined to be not equal to expression2.

Returns false if expression1 is determined to be equal to expression2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
expression1 <expression2 \(\Rightarrow\) Boolean expression list1 < list2 \(\Rightarrow\) Boolean list
matrix \(1<\) matrix \(2 \Rightarrow\) Boolean matrix
Returns true if expression 1 is determined to be less than expression2.

Returns false if expression 1 is determined to be greater than or equal to expression2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
expression \(1 \leq\) expression2 \(\Rightarrow\) Boolean expression list \(1 \leq\) list2 \(\Rightarrow\) Boolean list matrix \(1 \leq\) matrix \(2 \Rightarrow\) Boolean matrix

Returns true if expression1 is determined to be less than or equal to expression2.

Returns false if expression1 is determined to be greater than expression2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
\begin{tabular}{|c|c|c|}
\hline \(>\) & 2nd [>] key & \\
\hline & \begin{tabular}{l}
expression \(1>\) expression2 \(\Rightarrow\) Boolean expression \\
list1 \(>\) list2 \(\Rightarrow\) Boolean list \\
matrix \(1>\) matrix2 \(\Rightarrow\) Boolean matrix
\end{tabular} & See "=" (equal) example. \\
\hline & Returns true if expression 1 is determined to be greater than expression2. & \\
\hline & Returns false if expression 1 is determined to be less than or equal to expression2. & \\
\hline & Anything else returns a simplified form of the equation. & \\
\hline & For lists and matrices, returns comparisons element by element. & \\
\hline \(\geq\) & - key & \\
\hline & ```
expression1 \geqexpression2 }=>\mathrm{ Boolean expression
list1 \geqlist2 }=>\mathrm{ Boolean list
matrix 1 \geqmatrix2 }=>\mathrm{ Boolean matrix
``` & See "=" (equal) example. \\
\hline & Returns true if expression 1 is determined to be greater than or equal to expression2. & \\
\hline & Returns false if expression1 is determined to be less than expression2. & \\
\hline & Anything else returns a simplified form of the equation. & \\
\hline & For lists and matrices, returns comparisons element by element. & \\
\hline \multicolumn{3}{|l|}{.+ (dot add) \(\square+\) keys} \\
\hline & matrix1 .+ matrix2 \(\Rightarrow\) matrix expression .+ matrix1 \(\Rightarrow\) matrix & \[
\begin{aligned}
& {[\mathrm{a}, 2 ; \mathrm{b}, 3] .+[\mathrm{c}, 4 ; 5, \mathrm{~d}] \text { ENTER }} \\
& \mathrm{x.+[c,4;5,d]} \mathrm{ENTER}
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
matrix1 .+ matrix2 returns a matrix that is the sum of each pair of corresponding elements in matrix1 and matrix2. \\
expression .+ matrix 1 returns a matrix that is
\end{tabular} & \[
\left.\left\lvert\, \begin{array}{ll}
{\left[\begin{array}{ll}
-\bar{b} & 3
\end{array}\right] \cdot+\left[\begin{array}{ll}
5 & d
\end{array}\right]} \\
\cdot & {\left[\begin{array}{ll}
a+c & 6 \\
b+5 & d+3
\end{array}\right]} \\
\cdot x & 4 \\
5 & d
\end{array}\right.\right] \left.\quad\left[\begin{array}{ll}
x+c & x+4 \\
x+5 & x+d
\end{array}\right] \right\rvert\,
\] \\
\hline
\end{tabular} the sum of expression and each element in matrix1.

See "=" (equal) example.

See "=" (equal) example.

See "=" (equal) example.
list \(1 \geq\) list2 \(\Rightarrow\) Boolean list

Returns true if expression 1 is determined to be greater than or equal to expression2.

Returns false if expression1 is determined to be less than expression2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
matrix1 + matrix2 \(\Rightarrow\) matrix
\([a, 2 ; b, 3] .+[c, 4 ; 5, d]\) ENTER
matrix1 .+ matrix2 returns a matrix that is the sum of each pair of corresponding elements in matrix1 and matrix2.
expression ++ matrix 1 returns a matrix that is
.- (dot subt.) \(\square \square\) keys
matrix1.- matrix2 \(\Rightarrow\) matrix
expression.-matrix1 \(\Rightarrow\) matrix
matrix1 .- matrix2 returns a matrix that is the difference between each pair of corresponding elements in matrix1 and matrix2.
expression .- matrix1 returns a matrix that is the difference of expression and each element in matrix1.
[a,2;b,3].-[c,4;d,5] ENTER
x.- [c,4; d,5] [ENTER

\section*{(dot mult.) \(\square\) 区 keys}
```

matrix1.*matrix2 }=>\mathrm{ matrix
expression .*matrix1 }=>\mathrm{ matrix
$[\mathrm{a}, 2 ; \mathrm{b}, 3] . *[\mathrm{c}, 4 ; 5, \mathrm{~d}]$ ENTER
$x . *[a, b ; c, d]$ ENTER

```
matrix1 .* matrix2 returns a matrix that is the product of each pair of corresponding elements in matrix1 and matrix2.
expression . * matrix1 returns a matrix containing the products of expression and each element in matrix1.

\section*{. / (dot divide) \(\square\) keys}
matrix1 ./matrix2 \(\Rightarrow\) matrix
\([a, 2 ; b, 3] . /[c, 4 ; 5, d]\) ENTER
expression.\(/\) matrix \(1 \Rightarrow\) matrix
x. / [c, 4; 5, d] ENTER]
matrix1 ./ matrix2 returns a matrix that is the quotient of each pair of corresponding elements in matrix1 and matrix2.
expression ./ matrix1 returns a matrix that is the quotient of expression and each element in
\(|\)\begin{tabular}{llll}
{\(\left[\begin{array}{lll}6 & 3\end{array}\right]\)} & {\(\left[\begin{array}{ll}5 & d\end{array}\right]\)} & {\(\left[\begin{array}{ll}\frac{b}{5} & \frac{3}{d}\end{array}\right]\)} \\
\(-x\) &. & {\(\left[\begin{array}{ll}6 & 4 \\
5 & d\end{array}\right]\)} & {\(\left[\begin{array}{cc}\frac{x}{c} & \frac{x}{4} \\
\frac{x}{5} & \frac{x}{d}\end{array}\right]\)}
\end{tabular} matrix1.

\& (append) TI-89: \(\triangle\) key TI-92 Plus: 2nd H key
string1 \& string2 \(\Rightarrow\) string
Returns a text string that is string2 appended
\[
\begin{array}{r}
\text { "Hello " \& "Nick" ENTER } \\
\text { "Hello Nick" }
\end{array}
\]
to string1.
\(\int()\) (integrate) [2nd [J] key
\(\int(\) expression 1, var \([\), lower \(]\) [,upper \(\left.]\right) \Rightarrow\) expression
\(\int(\) list1,var [,order]) \(\Rightarrow\) list
\(\int(\) matrix 1, var \([\),order \(]) \Rightarrow\) matrix
Returns the integral of expression 1 with respect to the variable var from lower to upper.

Returns an anti-derivative if lower and upper are omitted. A symbolic constant of integration such as C is omitted.

However, lower is added as a constant of integration if only upper is omitted.

Equally valid anti-derivatives might differ by a numeric constant. Such a constant might be disguised-particularly when an antiderivative contains logarithms or inverse trigonometric functions. Moreover, piecewise constant expressions are sometimes added to make an anti-derivative valid over a larger interval than the usual formula.
j() returns itself for pieces of expression1 that it cannot determine as an explicit finite combination of its built-in functions and operators.

When lower and upper are both present, an attempt is made to locate any discontinuities or discontinuous derivatives in the interval lower < var < upper and to subdivide the interval at those places.

For the AUTO setting of the Exact/Approx mode, numerical integration is used where applicable when an anti-derivative or a limit cannot be determined.

For the APPROX setting, numerical integration is tried first, if applicable. Antiderivatives are sought only where such numerical integration is inapplicable or fails.
\(\int()\) can be nested to do multiple integrals. Integration limits can depend on integration variables outside them.

Note: See also nInt().
\(\int\left(\int(\ln (x+y), y, 0, x), x, 0, a\right)\) ENTER
- \(\int_{0}^{a} \int_{0}^{x} \ln (x+y) d y d x\)
\(\frac{a^{2} \cdot \ln (3)}{2}+a^{2} \cdot(\ln (2)-3 / 4)\)
\(\sqrt{(})\) (square root) 2nd [\(\sqrt{ }]\) key
\(\sqrt{ }(\) expression1 \() \Rightarrow\) expression
\(\sqrt{ }(\) list 1\() \Rightarrow\) list

Returns the square root of the argument
For a list, returns the square roots of all the elements in list1.

\section*{\(\Pi()\) (product) MATH/Calculus menu}
\(\Pi\) (expression1, var, low, high) \(\Rightarrow\) expression
Evaluates expression1 for each value of var from low to high, and returns the product of the results.
\(\sqrt{ }(4)\) ENTER
\(\sqrt{ }(\{9, a, 4\})\) ENTER \(\{3 \sqrt{a} 2\}\)
\(\wedge\) (power) \(\boldsymbol{\wedge}\) key
expression \(1^{\wedge}\) expression2 \(\Rightarrow\) expression
list1 ^ list2 \(\Rightarrow\) list
Returns the first argument raised to the power of the second argument.

For a list, returns the elements in list1 raised to the power of the corresponding elements in list2.

In the real domain, fractional powers that have reduced exponents with odd denominators use the real branch versus the principal branch for complex mode.
expression \(\wedge\) list \(\Rightarrow\) list \(\quad p^{\wedge}\{a, 2,-3\}\) ENTER \(\quad\left\{p^{a} \quad p^{2} \frac{1}{p^{3}}\right\}\)

Returns expression raised to the power of the elements in list1.
list \(1 \wedge\) expression \(\Rightarrow\) list \(\{1,2,3,4\}^{\wedge-2} 2\) ENTER
Returns the elements in list1 raised to the power of expression.
squareMatrix1 ^ integer \(\Rightarrow\) matrix
Returns squareMatrix1 raised to the integer power.
squareMatrix1 must be a square matrix.
If integer \(=-1\), computes the inverse matrix. If integer \(<-1\), computes the inverse matrix to an appropriate positive power.

\section*{(indirection) CATALOG}

Refers to the variable whose name is varNameString. This lets you create and modify variables from a program using strings.

Program segment:
```

    \vdots
    :Request "Enter Your Name",str1
:NewFold 非str1
\vdots
:For i,1,5,1
ClrGraph
:Graph i*x
: StoPic 非("pic" \& string(i))
:EndFor

```
expression \(1^{r} \Rightarrow\) expression
list1 \({ }^{\mathrm{r}} \Rightarrow\) list
matrixi \({ }^{\mathrm{r}} \Rightarrow\) matrix
In Degree angle mode, multiplies expression1 by \(180 / \pi\). In Radian angle mode, returns expression 1 unchanged.

This function gives you a way to use a radian angle while in Degree mode. (In Degree angle mode, \(\boldsymbol{\operatorname { s i n }}(), \boldsymbol{\operatorname { c o s }}(), \boldsymbol{\operatorname { t a n }}()\), and polar-torectangular conversions expect the angle argument to be in degrees.)

Hint: Use \({ }^{r}\) if you want to force radians in a function or program definition regardless of the mode that prevails when the function or program is used.

\section*{\({ }^{\circ}\) (degree) \(2 n d\) [\({ }^{\circ}\)] key}
expression \({ }^{\circ} \Rightarrow\) value
list \(1^{\circ} \Rightarrow\) list
matrix \(1^{\circ} \Rightarrow\) matrix
In Radian angle mode, multiplies expression by \(\pi / 180\). In Degree angle mode, returns expression unchanged.

This function gives you a way to use a degree angle while in Radian mode. (In Radian angle mode, \(\boldsymbol{\operatorname { s i n }}(), \boldsymbol{\operatorname { c o s }}(), \boldsymbol{\operatorname { t a n }}()\), and polar-torectangular conversions expect the angle argument to be in radians.)
\(\angle\) (angle) 2nd [\(\angle\)] key
[radius, \(\angle \theta\) _angle \(] \Rightarrow\) vector (polar input)
[radius, \(\angle \theta\) _angle, \(Z_{-}\)coordinate \(] \Rightarrow\) vector (cylindrical input)
[radius, \(\angle \theta\) _angle, \(\angle \phi\) _angle \(] \Rightarrow\) vector (spherical input)

Returns coordinates as a vector depending on the Vector Format mode setting: rectangular, cylindrical, or spherical.
(magnitude \(\angle\) angle) \(\Rightarrow\) complexValue (polar input)
Enters a complex value in (\(\mathrm{r} \angle \theta\)) polar form. The angle is interpreted according to the current Angle mode setting.

In Degree or Radian angle mode:
\[
\cos \left((\pi / 4)^{r}\right) \text { ENTER } \frac{\sqrt{2}}{2}
\]
\(\cos \left(\left\{0^{r},(\pi / 12)^{r},-\pi^{r}\right\}\right)\) ENTER
\[
\left\{1 \frac{(\sqrt{3}+1) \cdot \sqrt{2}}{4}-1\right\}
\]

In Radian angle mode:
\[
\left.\left.\begin{array}{rl}
\cos \left(45^{\circ}\right) \text { ENTER } & \frac{\sqrt{2}}{2} \\
\cos \left(\left\{0, \pi / 4,90^{\circ}, 30.12^{\circ}\right\}\right) & \begin{array}{rlll}
& \text { ENTER }
\end{array} \\
& \{1.707 \ldots
\end{array} 0.864 \ldots\right\}\right) .
\]
[\(\left.5, \angle 60^{\circ}, \angle 45^{\circ}\right]\) ENTER
In Radian mode and vector format set to:

In Radian angle mode and Rectangular complex format mode:
```

5+3i-(10\angle\pi/4) ENTER
5-5 \cdot\sqrt{}{2}+(3-5\cdot\sqrt{}{2})\cdoti
*ENTER
-2.071...-4.071...•i

```


Converts an expression from one unit to another. The units must be in the same category.

The _ underscore character designates the units. For a list of valid pre-defined units, refer to the chapter about constants and measurement units in this book. You can press:
TI-89: 2nd [UNITS]
TI-92 Plus: [UNITS] to select units from a menu, or you can type the unit names directly.

To get the _ underscore when typing units directly, press:
TI-89: - [-]
Tl-92 Plus: 2nd [-]
Note: The conversion operator does not handle temperature units. Use tmpCnv() and \(\Delta t m p C n v()\) instead.

\section*{10^() CATALOG}
\(\mathbf{1 0}^{\wedge}\) (expression1) \(\Rightarrow\) expression
10^(1.5) ENTER
31.622...
\(10^{\wedge}\) (list1) \(\Rightarrow\) list
Returns 10 raised to the power of the argument.
\[
10^{\wedge}\{0,-2,2, a\} \text { ENTER }
\]

For a list, returns 10 raised to the power of the elements in list1.

10^(squareMatrix1) \(\Rightarrow\) squareMatrix
Returns 10 raised to the power of squareMatrix1. This is not the same as calculating 10 raised to the power of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

10^([1,5,3;4,2,1;6,-2,1]) ENTER
\[
\left[\begin{array}{lll}
1.143 \ldots \text { E7 } & 8.171 \ldots \text { E6 } & 6.675 \ldots \text {...E6 } \\
9.956 \ldots \text { E6 } & 7.115 \ldots \text { E6 } & 5.813 \ldots \text { E6 } \\
7.652 \ldots \text { E6 } & 5.469 \ldots \text { E6 } & 4.468 \ldots \text { E6 }
\end{array}\right]
\]
expression \(1 \mathbf{x}^{-1} \Rightarrow\) expression
list1 \(\mathbf{x}^{-1} \Rightarrow\) list
Returns the reciprocal of the argument.
For a list, returns the reciprocals of the elements in list1.
squareMatrix1 \(\mathbf{x}^{-1} \Rightarrow\) squareMatrix
Returns the inverse of squareMatrix1. squareMatrix1 must be a non-singular square matrix.
3.1^-1 ENTER . 322581
\[
\{a, 4,-.1, x-2\}^{\wedge-1} \text { ENTER }
\]
\[
\left\{\frac{1}{\mathrm{a}} \quad \frac{1}{4}-10 . \frac{1}{x-2}\right\}
\]
```

[1,2;3,4\mp@subsup{]}{}{\wedge-1 ENTER}
[1,2;a,4]^-1 ENTER

```
: \begin{tabular}{rl}
{\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right]^{-1}\)} & {\(\left[\begin{array}{ll}-2 & 1 \\
3 & 2 \\
3 & 4\end{array}\right]^{-1}\)} \\
& {\(\left[\begin{array}{ll}\frac{-2}{a-2} & \frac{1}{3-2} \\
\frac{a}{2 \cdot(a-2)} & \frac{-1}{2 \cdot(a-2)}\end{array}\right]\)}
\end{tabular}

\section*{("with") TI-89: \(\square\) key TI-92 Plus: [2nd [I] key}
expression | Boolean expression 1 [and Boolean expression2]...[and Boolean expressionN]

The "with" (I) symbol serves as a binary operator. The operand to the left of \(\mid\) is an expression. The operand to the right of I specifies one or more relations that are intended to affect the simplification of the expression. Multiple relations after I must be joined by a logical "and".

The "with" operator provides three basic types of functionality: substitutions, interval constraints, and exclusions.

Substitutions are in the form of an equality, such as \(x=3\) or \(y=\sin (x)\). To be most effective, the left side should be a simple variable. expression \(\mid\) variable \(=\) value will substitute value for every occurrence of variable in expression.
\[
\begin{array}{l|l}
x+1 & x=3 \text { ENTER } \\
x+y \mid & x=\sin (y) \text { ENTER } \\
x+y & \sin (y)=x \text { ENTER }
\end{array}
\]

Interval constraints take the form of one or more inequalities joined by logical "and" operators. Interval constraints also permit
\begin{tabular}{lr}
\(x^{\wedge} 3-2 x+7 \rightarrow f(x)\) ENTER & Done \\
\(f(x) \mid x=\sqrt{ }(3)\) ENTER & \(\sqrt{3}+7\) \\
\((\sin (x))^{\wedge} 2+2 \sin (x)-6 \mid\) & \(\sin (x)=d\) \\
ENTER & \(d^{2}+2 d-6\)
\end{tabular} simplification that otherwise might be invalid or not computable.

Exclusions use the "not equals" (/= or \(\neq\)) solve(\(\left.x^{\wedge} 2-1=0, x\right) \mid x>0\) and \(x<2\) ENTER
\[
x=1
\]
\(\sqrt{ }(x) * \sqrt{ }(1 / x) \mid x>0\) ENTER relational operator to exclude a specific value from consideration. They are used primarily to exclude an exact solution when using cSolve(), cZeros(), \(\mathbf{f M a x}()\), fMin(), solve(), zeros(), etc.

\section*{Reference Information}

TI-89 / TI-92 Plus Error Messages 542
Modes 550
TI-89 / TI-92 Plus Character Codes 555
TI-89 Key Codes 556
TI-92 Plus Key Codes 559
Entering Complex Numbers 563
Accuracy Information 566
System Variables and Reserved Names 567
EOS (Equation Operating System) Hierarchy 568
Regression Formulas 570
Contour Levels and Implicit Plot Algorithm 572
Runge-Kutta Method 573

This appendix contains a comprehensive list of TI-89 / TI-92 Plus error messages and character codes. It also includes information about how certain TI-89 / TI-92 Plus operations are calculated.

For additional information, refer to Appendix C. For example, if you have difficulty operating the TI-89 / TI-92 Plus, Appendix C contains an "In Case of Difficulty" section that gives suggestions that may help you correct the problem.

\section*{Tl-89 / TI-92 Plus Error Messages}

This section lists error messages that may be displayed when input or internal errors are encountered. The number to the left of each error message represents an internal error number that is not displayed. If the error occurs inside a Try...EndTry block, the error number is stored in system variable errornum. Many of the error messages are selfexplanatory and do not require descriptive information. However, additional information has been added for some error messages.

\section*{Error \\ Number Description}

10 A function did not return a value
20 A test did not resolve to TRUE or FALSE
Generally, undefined variables cannot be compared. For example, the test If \(a<b\) will cause this error if either \(a\) or \(b\) is undefined when the If statement is executed.

30 Argument cannot be a folder name
40 Argument error
50 Argument mismatch
Two or more arguments must be of the same type. For example, PtOn expression1,expression2 and PtOn list1,list2 are both valid, but PtOn expression,list is a mismatch.

\section*{60 Argument must be a Boolean expression or integer}

70 Argument must be a decimal number
80 Argument must be a label name
90 Argument must be a list
100 Argument must be a matrix
110 Argument must be a Pic
120 Argument must be a Pic or string
130 Argument must be a string
140 Argument must be a variable name
For example, DelVar 12 is invalid because a number cannot be a variable name.

150 Argument must be an empty folder name

\section*{Argument must be an expression}

For example, zeros \((2 x+3=0, x)\) is invalid because the first argument is an equation.

ASAP or Exec string too long
Attribute (8-digit number) of object (8-digit number) not found

\section*{Batteries too low for sending/receiving product code}

Install new batteries before sending or receiving product software (base code).

\section*{Bound}

For the interactive graph math functions like 2:Zero, the lower bound must be less than the upper bound to define the search interval.

\section*{Break}

The 0 N key was pressed during a long calculation or during program execution.

Checksum error

\section*{Circular definition}

This message is displayed to avoid running out of memory during infinite replacement of variable values during simplification. For example, \(a+1 \rightarrow a\), where \(a\) is an undefined variable, will cause this error.

\section*{Constraint expression invalid}

For example, solve \(\left(3 x^{\wedge} 2-4=0, x\right) \mid x<0\) or \(x>5\) would produce this error message because the constraint is separated by "or" and not "and."

\section*{Data type}

An argument is of the wrong data type.

\section*{Dependent limit}

A limit of integration is dependent on the integration variable. For example, \(\int\left(x^{\wedge} 2, x, 1, x\right)\) is not allowed.

\section*{Diff Eq setup}

\section*{Dimension}

A list or matrix index is not valid. For example, if the list \(\{1,2,3,4\}\) is stored in L1, then L1[5] is a dimension error because L1 only contains four elements.

\section*{Dimension mismatch}

Two or more arguments must be of the same dimension. For example, \([1,2]+[1,2,3]\) is a dimension mismatch because the matrices contain a different number of elements.

Divide by zero

\section*{Error}
Number Description

260 Domain error
An argument must be in a specified domain. For example, ans(100) is not valid because the argument for ans() must be in the range 1-99.

270 Duplicate variable name
Else and Elself invalid outside of If..Endlf block
EndTry is missing the matching Else statement
Excessive iteration

Folder
An attempt was made in the VAR-LINK menu to store a variable in a folder that does not exist.

Graph functions \(\mathbf{y 1}(\mathrm{x}) \ldots \mathrm{y} 99(\mathrm{x})\) not available in Diff Equations mode

Inconsistent units
Index out of range
Indirection string is not a valid variable name
Invalid ans()
Invalid assignment
Invalid assignment value

\section*{Error}
Number Description

Invalid axes

Invalid outside function or program
A number of commands are not valid outside a program or a function. For example, Local cannot be used unless it is in a program or function.

560 Invalid outside Loop..EndLoop, For..EndFor, or While..EndWhile blocks
For example, the Exit command is valid only inside these loop blocks.
Invalid pathname
For example, \lvar is invalid.
Invalid polar complex
Invalid program reference
Programs cannot be referenced within functions or expressions such as \(1+p(x)\) where \(p\) is a program.

Invalid syntax block
A Dialog..EndDlog block is empty or has more than one title. A Custom..EndCustm block cannot contain PIC variables, and items must be preceded by a title. A Toolbar..EndTBar block must have a second argument if no items follow; or items must have a second argument and must be preceded by a title.

600 Invalid table

605 Invalid use of units
610 Invalid variable name in a Local statement
620 Invalid variable or function name
630 Invalid variable reference
640 Invalid vector syntax

Missing (

\section*{Error}
Number Description

690 Missing)
700 Missing "
710 Missing]
720 Missing \}
Missing start or end of block syntax
Missing Then in the If..Endlf block

810 Not enough memory to save current variable. Please delete unneeded variables on the Var-Link screen and re-open editor as current OR re-open editor and use F1 8 to clear editor.

This error message is caused by very low memory conditions inside the Data/Matrix Editor.

830 Overflow
840 Plot setup
```

Error
Number Description
850 Program not found
A program reference inside another program could not be found in the
provided path during execution.
860 Recursion is limited to 255 calls deep
870 Reserved name or system variable
875 ROM-resident routine not available
880 Sequence setup
885 Signature error
890 Singular matrix
895 Slope fields need one selected function and are used for 1st-order equations only
900 Stat
910 Syntax
The structure of the entry is incorrect. For example, x+- y (x plus minus y)
is invalid; whereas, }\textrm{x}+\mp@subsup{}{}{-}\textrm{y}\mathrm{ ( }\textrm{x}\mathrm{ plus negative y) is correct.
930 Too few arguments
The expression or equation is missing one or more arguments. For example, $d(\mathrm{f}(\mathrm{x}))$ is invalid; whereas, $d(\mathrm{f}(\mathrm{x}), \mathrm{x})$ is the correct syntax.
940 Too many arguments
The expression or equation contains an excessive number of arguments and cannot be evaluated.
950 Too many subscripts
955 Too many undefined variables
960 Undefined variable
965 Unlicensed product software or Flash application
970 Variable in use so references or changes are not allowed
980 Variable is locked, protected, or archived
$990 \quad$ Variable name is limited to 8 characters
1000 Window variables domain
1010 Zoom

```

Error Number Description

Warning: \(\infty^{\wedge} 0\) or undef^0 replaced by 1
Warning: 0^0 replaced by 1
Warning: \(1^{\wedge} \infty\) or \(1^{\wedge}\) undef replaced by 1
Warning: cSolve may specify more zeros
Warning: May produce false equation
Warning: Expected finite real integrand
Warning: May not be fully simplified
Warning: More solutions may exist
Warning: May introduce false solutions
Warning: Operation may lose solutions
Warning: Requires \& returns 32 bit value
Warning: Overflow replaced by \(\infty\) or \(-\infty\)
Warning: Questionable accuracy
Warning: Questionable solution
Warning: Solve may specify more zeros
Warning: Trig argument too big to reduce

\section*{Modes}

This section describes the modes of the TI-89 / TI-92 Plus and lists the possible settings of each mode. These mode settings are displayed when you press MODE.

\section*{Graph}

\section*{Current Folder}

Note: For detailed information about using folders, see Chapter 5.

\section*{Display Digits}

Specifies the type of graphs you can plot.
\begin{tabular}{ll}
\hline 1:FUNCTION & \(\mathrm{y}(\mathrm{x})\) functions (Chapter 6) \\
\hline 2:PARAMETRIC & \(\mathrm{x}(\mathrm{t})\) and \(\mathrm{y}(\mathrm{t})\) parametric equations (Chapter 7) \\
\hline 3:POLAR & \(\mathrm{r}(\theta)\) polar equations (Chapter 8\()\) \\
\hline 4:SEQUENCE & \(\mathrm{u}(\mathrm{n})\) sequences (Chapter 9) \\
\hline 5:3D & \(\mathrm{z}(\mathrm{x}, \mathrm{y})\) 3D equations (Chapter 10) \\
\hline 6:DIFF EQUATIONS & \(\mathrm{y}^{\prime}(\mathrm{t})\) differential equations (Chapter 11) \\
\hline
\end{tabular}

Note: If you use a split screen with Number of Graphs \(=2\), Graph is for the top or left part of the screen and Graph 2 is for the bottom or right part.

Specifies the current folder. You can set up multiple folders with unique configurations of variables, graph databases, programs, etc.
\begin{tabular}{ll}
\hline 1:main & Default folder included with the TI-89 / TI-92 Plus. \\
\hline \(2:-\) & \begin{tabular}{l}
Other folders are available only if they have been \\
(custom folders) \\
created by a user.
\end{tabular} \\
\hline
\end{tabular}

Selects the number of digits. These decimal settings affect only how results are displayed-you can enter a number in any format.

Internally, the TI-89 / TI-92 Plus retains decimal numbers with 14 significant digits. For display purposes, such numbers are rounded to a maximum of 12 significant digits.
\begin{tabular}{ll}
\hline 1:FIX 0 & \begin{tabular}{l}
Results are always displayed with the selected \\
2:FIX 1 \\
\(\ldots\)
\end{tabular} \\
\hline n:FIX 12 & \\
\hline E:FLOAT & \begin{tabular}{l}
The number of decimal places. \\
on the result.
\end{tabular} \\
\hline F:FLOAT 1 & \begin{tabular}{l}
If the integer part has more than the selected \\
G:FLOAT 2
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l}
number of digits, the result is rounded and \\
displayed in scientific notation.
\end{tabular} \\
Q:FLOAT 12 & \begin{tabular}{l}
For example, in FLOAT 4: \\
12345. is shown as 1.235E4
\end{tabular} \\
\hline
\end{tabular}

Angle

\section*{Exponential Format}

Specifies the units in which angle values are interpreted and displayed in trig functions and polar/rectangular conversions.
\begin{tabular}{l}
1:RADIAN \\
\hline 2:DEGREE \\
\hline
\end{tabular}

Specifies which notation format should be used. These formats affect only how an answer is displayed; you can enter a number in any format. Numeric answers can be displayed with up to 12 digits and a 3 -digit exponent.
\begin{tabular}{ll}
\hline 1:NORMAL & \begin{tabular}{l}
Expresses numbers in standard format. For \\
example, 12345.67
\end{tabular} \\
\hline 2:SCIENTIFIC & \begin{tabular}{l}
Expresses numbers in two parts: \\
\\
\end{tabular}\(\quad\) The significant digits display with one digit to
\end{tabular} the left of the decimal.
- The power of 10 displays to the right of E .

For example, 1.234567E4 means \(1.234567 \times 10^{4}\)
3:ENGINEERING Similar to scientific notation. However:
- The number may have one, two, or three digits before the decimal.
- The power-of-10 exponent is a multiple of three.

For example, \(12.34567 E 3\) means \(12.34567 \times 10^{3}\)
Note: If you select NORMAL, but the answer cannot be displayed in the number of digits selected by Display Digits, the TI-89 / TI-92 Plus displays the answer in SCIENTIFIC notation. If Display Digits \(=\) FLOAT, scientific notation will be used for exponents of 12 or more and exponents of -4 or less.

Specifies whether complex results are displayed and, if so, their format.
\begin{tabular}{ll}
\hline 1:REAL & \begin{tabular}{l}
Does not display complex results. (If a result is a \\
complex number and the input does not contain \\
the complex unit \(\boldsymbol{i}\), an error message is \\
displayed.)
\end{tabular} \\
\hline 2:RECTANGULAR & Displays complex numbers in the form: \(\mathrm{a}+\mathrm{bi}\) \\
\hline 3:POLAR & Displays complex numbers in the form: \(\mathrm{re} e^{\boldsymbol{i} \theta}\) \\
\hline
\end{tabular}

\section*{Vector Format}

Pretty Print

Split Screen

Determines how 2-element and 3-element vectors are displayed. You can enter vectors in any of the coordinate systems.
\begin{tabular}{ll}
\hline 1:RECTANGULAR & \begin{tabular}{l}
Coordinates are in terms of \(x, y\), and \(z\). For \\
example, \([3,5,2]\) represents \(x=3, y=5\), and \(z=2\).
\end{tabular} \\
\hline 2:CYLINDRICAL & \begin{tabular}{l}
Coordinates are in terms of \(r, \theta\), and \(z\). For \\
example, \([3, \angle 45,2]\) represents \(r=3, \theta=45\), and \\
\\
\(z=2\).
\end{tabular} \\
\hline 3:SPHERICAL & \begin{tabular}{l}
Coordinates are in terms of \(r, \theta\), and \(\phi\). For \\
example, \([3, \angle 45, \angle 90]\) represents \(r=3, \theta=45\), and \\
\\
\(\phi=90\).
\end{tabular} \\
\hline
\end{tabular}

Determines how results are displayed on the Home screen.
\begin{tabular}{ll}
\hline 1:OFF & \begin{tabular}{l}
Results are displayed in a linear, one- \\
dimensional form.
\end{tabular} \\
\hline For example, \(\pi^{\wedge} 2, \pi / 2\), or \(\sqrt{ }((x-3) / x)\)
\end{tabular}

For example, \(\pi^{2}, \frac{\pi}{2}\), or \(\sqrt{\frac{x-3}{x}}\)
Note: For a complete description of these settings, refer to "Formats of Displayed Results" in Chapter 2.

Lets you split the screen into two parts. For example, you can display a graph and see the \(\mathrm{Y}=\) Editor at the same time (Chapter 14).
\begin{tabular}{ll}
\hline 1:FULL & The screen is not split. \\
\hline 2:TOP-BOTTOM & \begin{tabular}{l}
The applications are shown in two screens that \\
are above and below each other.
\end{tabular} \\
\hline 3:LEFT-RIGHT & \begin{tabular}{l}
The applications are shown in two screens that \\
are to the left and right of each other.
\end{tabular} \\
\hline
\end{tabular}

To determine what and how information is displayed on a split screen, use this mode in conjunction with other modes such as Split 1 App, Split 2 App, Number of Graphs, and Split Screen Ratio. (Split Screen Ratio is available on the TI-92 Plus only.)

\section*{Split 1 App \\ and \\ Split 2 App}

Number of Graphs

\section*{Graph 2}

Split Screen Ratio (TI-92 Plus only)

\section*{Exact/Approx}

Specifies which application is displayed on the screen.
- For a full screen, only Split 1 App is active.
- For a split screen, Split 1 App is the top or left part of the screen and Split 2 App is the bottom or right part.

The available application choices are those listed when you press (1) from the Page 2 mode screen or when you press APPS. You must have different applications in each screen unless you are in 2-graph mode.

Specifies whether both parts of a split screen can display graphs at the same time.
\begin{tabular}{ll}
\hline 1 & Only one part can display graphs. \\
\hline 2 & \begin{tabular}{l}
Both parts can display an independent graph \\
screen (Graph or Graph 2 setting) with \\
independent settings.
\end{tabular} \\
\hline
\end{tabular}

Specifies the type of graphs that you can plot for the second graph on a two-graph split screen. This is active only when Number of Graphs \(=2\). In this two-graph setting, Graph sets the type of graph for the top or left part of the split screen, and Graph 2 sets the bottom or right part. The available choices are the same as for Graph.

Specifies the proportional sizes of the two parts of a split screen.
\begin{tabular}{ll}
\hline \(1: 1\) & The screen is split evenly. \\
\hline \(1: 2\) & \begin{tabular}{l}
The bottom or right part is approximately twice \\
the size of the top or left part.
\end{tabular} \\
\hline \(2: 1\) & \begin{tabular}{l}
The top or left part is approximately twice the \\
size of the bottom or right part.
\end{tabular} \\
\hline
\end{tabular}

Specifies how fractional and symbolic expressions are calculated and displayed. By retaining rational and symbolic forms in the EXACT setting, the TI-89 / TI-92 Plus increases precision by eliminating most numeric rounding errors.
\begin{tabular}{ll}
\hline 1:AUTO & \begin{tabular}{l}
Uses EXACT setting in most cases. However, \\
uses APPROXIMATE if the entry contains a \\
decimal point.
\end{tabular} \\
\hline 2:EXACT & \begin{tabular}{l}
Displays non-whole-number results in their \\
rational or symbolic form.
\end{tabular} \\
\hline 3:APPROXIMATE & Displays numeric results in floating-point form. \\
\hline
\end{tabular}

Note: For a complete description of these settings, refer to "Formats of Displayed Results" in Chapter 2.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Base} & \multicolumn{2}{|l|}{Lets you perform calculations by entering numbers in decimal, binary, or hexadecimal form.} \\
\hline & 1:DEC & Decimal numbers use 0-9 in the base 10 format \\
\hline & 2:HEX & Hexadecimal numbers use \(0-9\) and A-F in the base 16 format. \\
\hline & 3:BIN & Binary numbers use 0 and 1 in the base 2 format. \\
\hline \multirow[t]{4}{*}{Unit System} & \multicolumn{2}{|l|}{Lets you enter a unit for values in an expression, such as 6_m * 4_m or \(23 _\mathrm{m} / \mathrm{s}\) * 10_s, convert values from one unit to another within the same category, and create your own user-defined units.} \\
\hline & 1:SI & Select SI for the metric system of measurements \\
\hline & 2:ENG/US & Select ENG/US for the non-metric system of measurements \\
\hline & 3:CUSTOM & Allows you to select custom defaults. \\
\hline Custom Units & \multicolumn{2}{|l|}{Lets you select custom defaults. This mode is dimmed until you select Unit System, 3:CUSTOM.} \\
\hline Language & \multicolumn{2}{|l|}{Lets you localize the TI-89 / TI-92 Plus into one of several languages, depending on which language Flash applications are installed.} \\
\hline & 1:English & Default language included with the TI-89 / TI-92 Plus base code. \\
\hline & 2: (language Flash applications) & Alternate languages are available only if the respective language Flash applications have been installed. \\
\hline
\end{tabular}

The char() function lets you refer to any character by its numeric character code. For example, to display on the Program I/O screen, use Disp char(127). You can use ord() to find the numeric code of a character. For example, ord ("A") returns 65.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1. SOH & 38. \& & 75. K & 112. p & 149. E & 186. ㅇ & 223. B \\
\hline 2. stx & 39. ' & 76. L & 113. q & 150. \(e\) & 187. » & 224. à \\
\hline 3. ETX & 40. (& 77. M & 114. r & 151. i & 188. \(d\) & 225. á \\
\hline 4. еот & 41.) & 78. N & 115. s & 152. \({ }^{\text {r }}\) & 189. J & 226. â \\
\hline 5. ENQ & 42. * & 79. O & 116. t & 153. T & 190. \(\infty\) & 227. ã \\
\hline 6. АСК & 43. + & 80. P & 117. u & 154. \(\overline{\mathrm{x}}\) & 191. < & 228. ä \\
\hline 7. beLL & 44. , & 81. Q & 118. v & 155. \(\bar{y}\) & 192. À & 229. å \\
\hline 8. BS & 45. - & 82. R & 119. w & 156. \(\leq\) & 193. Á & 230. æ \\
\hline 9. TAB & 46. . & 83. S & 120. x & 157. \(\neq\) & 194. Â & 231. ç \\
\hline 10. LF & 47. / & 84. T & 121. y & 158. \(\geq\) & 195. Ã & 232. è \\
\hline 11. 今) & 48. 0 & 85. U & 122. z & 159. \(\angle\) & 196. Ä & 233. é \\
\hline 12. FF & 49. 1 & 86. V & 123. \{ & 160. ... & 197. Å & 234. ê \\
\hline 13. CR & 50. 2 & 87. W & 124. । & 161. i & 198. Æ & 235. ë \\
\hline 14. \(\frac{1}{}\) & 51. 3 & 88. X & 125. \} & 162. \& & 199. Ç & 236. ì \\
\hline 15. \(\checkmark\) & 52. 4 & 89. Y & 126. ~ & 163. £ & 200. È & 237. í \\
\hline 16. & 53. 5 & 90. Z & 127. & 164. a & 201. É & 238. î \\
\hline 17. 4 & 54. 6 & 91. [& 128. \(\alpha\) & 165. \(¥\) & 202. Ê & 239. ї \\
\hline 18. & 55. 7 & 92. \} & 129. \(\beta\) & 166. & 203. Ë & 240. ठ \\
\hline 19. \(\boldsymbol{\triangle}\) & 56. 8 & 93.] & 130. \(\Gamma\) & 167. § & 204. İ & 241. \(\tilde{\sim}\) \\
\hline 20. V & 57. 9 & 94. ^ & 131. \(\gamma\) & 168. \(\sqrt{ }\) & 205. Í & 242. ò \\
\hline 21. \(\leftarrow\) & 58. & 95. & 132. \(\Delta\) & 169. © & 206. Î & 243. ó \\
\hline 22. \(\rightarrow\) & 59. ; & 96. & 133. \(\delta\) & 170. \({ }^{\text {a }}\) & 207. Ï & 244. ô \\
\hline 23. \(\uparrow\) & 60. < & 97. a & 134. \(\varepsilon\) & 171. « & 208. Đ & 245. õ \\
\hline 24. \(\downarrow\) & 61. = & 98. b & 135. \(\zeta\) & 172. \(ᄀ\) & 209. \(\tilde{N}\) & 246. \({ }^{\text {a }}\) \\
\hline 25. & 62. > & 99. c & 136. \(\theta\) & 173. - & 210. Ò & 247. \(\div\) \\
\hline 26. & 63. ? & 100. d & 137. \(\lambda\) & 174. \({ }^{\text {® }}\) & 211. Ó & 248. \(\varnothing\) \\
\hline 27. \(\uparrow\) & 64. @ & 101. e & 138. \(\xi\) & 175. & 212. Ô & 249. ù \\
\hline 28. \(\cup\) & 65. A & 102. f & 139. П & 176. \({ }^{\circ}\) & 213. Õ & 250. ú \\
\hline 29. \(\cap\) & 66. B & 103. g & 140. \(\pi\) & 177. \(\pm\) & 214. Ö & 251. û \\
\hline 30. \(\subset\) & 67. C & 104. h & 141. \(\rho\) & 178. \({ }^{2}\) & 215. \(\times\) & 252. ü \\
\hline 31. \(\in\) & 68. D & 105. i & 142. \(\Sigma\) & 179. \({ }^{3}\) & 216. \(\varnothing\) & 253. y \\
\hline 32. SPAC & 69. E & 106. j & 143. \(\sigma\) & 180. - \({ }^{-1}\) & 217. Ù & 254. p \\
\hline 33. ! & 70. F & 107. k & 144. \(\tau\) & 181. \(\mu\) & 218. Ú & 255. ÿ \\
\hline 34. " & 71. G & 108. 1 & 145. \(\phi\) & 182. ¢ & 219. Û & \\
\hline 35. \# & 72. H & 109. m & 146. \(\psi\) & 183. - & 220. Ü & \\
\hline 36. \$ & 73. I & 110. n & 147. \(\Omega\) & 184. + & 221. Y & \\
\hline 37. \% & 74. J & 111. 0 & 148. \(\omega\) & 185. \({ }^{1}\) & 222. P & \\
\hline
\end{tabular}

\section*{TI－89 Key Codes}

The getKey（）function returns a value that corresponds to the last key pressed，according to the tables shown in this section．For example，if your program contains a getKey（） function，pressing［2nd［F6］will return a value of 273 ．

Table 1：Key Codes for Primary Keys
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Key & \multicolumn{10}{|c|}{Modifier} \\
\hline & \multicolumn{2}{|c|}{None} & \multicolumn{2}{|c|}{（} & \multicolumn{2}{|l|}{2nd} & \multicolumn{2}{|c|}{\(\bullet\)} & \multicolumn{2}{|c|}{alpha} \\
\hline & Assoc． & Value & Assoc． & Value & Assoc． & Value & Assoc． & Value & Assoc． & Value \\
\hline F1 & F1 & 268 & F1 & 268 & F6 & 273 & \(Y=\) & 8460 & F1 & 268 \\
\hline F2］ & F2 & 269 & F2 & 269 & F7 & 274 & WINDOW & 8461 & F2 & 269 \\
\hline F3］ & F3 & 270 & F3 & 270 & F8 & 275 & GRAPH & 8462 & F3 & 270 \\
\hline F5］ & F4 & 271 & F4 & 271 & F4 & 271 & TbISet & 8463 & F4 & 271 \\
\hline F5 & F5 & 272 & F5 & 272 & F5 & 272 & TABLE & 8464 & F5 & 272 \\
\hline － & & & COPY & 24576 & CUT & 12288 & & & & \\
\hline alpha & & & & & a－lock & & & & & \\
\hline ESC］ & ESC & 264 & ESC & 264 & QUIT & 4360 & PASTE & 8456 & ESC & 264 \\
\hline APPS & APPS & 265 & APPS & 265 & SWITCH & 4361 & & 8457 & APPS & 265 \\
\hline HOME & HOME & 277 & HOME & 277 & CUST & 4373 & HOME & 277 & HOME & 277 \\
\hline MODE & MODE & 266 & MODE & 266 & ， & 18 & － & 95 & MODE & 266 \\
\hline CATALOG & CATLG & 278 & CATLG & 278 & \(i\) & 151 & \(\infty\) & 190 & CATLG & 278 \\
\hline \(\square\) & BS & 257 & BS & 257 & INS & 4353 & DEL & 8449 & BS & 257 \\
\hline CLEAR & CLEAR & 263 & CLEAR & 263 & CLEAR & 263 & & 8455 & CLEAR & 263 \\
\hline 区 & x & 120 & X & 88 & LN & 4184 & \(\mathrm{e}^{\mathrm{x}}\) & 8280 & x & 120 \\
\hline Y & y & 121 & Y & 89 & SIN & 4185 & \(\mathrm{SIN}^{-1}\) & 8281 & y & 121 \\
\hline ［ & z & 122 & Z & 90 & cos & 4186 & \(\mathrm{COS}^{-1}\) & 8282 & z & 122 \\
\hline T & t & 116 & T & 84 & TAN & 4180 & TAN \({ }^{-1}\) & 8276 & t & 116 \\
\hline ， & \(\wedge\) & 94 & \(\wedge\) & 94 & \(\pi\) & 140 & \(\theta\) & 136 & \(\wedge\) & 94 \\
\hline 1 & 1 & 124 & F & 70 & 。 & 176 & Format d／b & 8316 & f & 102 \\
\hline \(\square\) & \((\) & 40 & B & 66 & \｛ & 123 & & & b & 98 \\
\hline \(\square\) & ） & 41 & C & 67 & \} & 125 & \(\bigcirc\) & 169 & c & 99 \\
\hline \(\square\) & ， & 44 & D & 68 & ［ & 91 & & 8236 & d & 100 \\
\hline \(\bigcirc\) & 1 & 47 & E & 69 & 1 & 93 & ！ & 33 & e & 101 \\
\hline 区 & ＊ & 42 & J & 74 & \(\checkmark\) & 4138 & \＆ & 38 & j & 106 \\
\hline \(\square\) & － & 45 & 0 & 79 & VAR－LNK & 4141 & Contr．－ & & 0 & 111 \\
\hline ＋ & ＋ & 43 & U & 85 & CHAR & 4139 & Contr．＋ & & u & 117 \\
\hline
\end{tabular}

Table 1: Key Codes for Primary Keys (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Key & \multicolumn{10}{|c|}{Modifier} \\
\hline & \multicolumn{2}{|c|}{None} & \multicolumn{2}{|c|}{(} & \multicolumn{2}{|c|}{2nd} & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|c|}{alpha} \\
\hline & Assoc. & Value & Assoc. & Value & Assoc. & Value & Assoc. & Value & Assoc. & Value \\
\hline ENTER & CR & 13 & CR & 13 & ENTRY & 4109 & APPROX & 8205 & CR & 13 \\
\hline STO* & STO & 258 & P & 80 & RCL & 4354 & @ & 64 & p & 112 \\
\hline \(\square\) & = & 61 & A & 65 & , & 39 & \# & 157 & a & 97 \\
\hline EE & EE & 149 & K & 75 & \(\angle\) & 159 & SYMB & 8341 & k & 107 \\
\hline (-)] & - & 173 & SPACE & 32 & ANS & 4372 & & 8365 & SPACE & 32 \\
\hline \(\square\) & . & 46 & W & 87 & > & 62 & \(\geq\) & 158 & w & 119 \\
\hline 0 & 0 & 48 & V & 86 & < & 60 & \(\leq\) & 156 & v & 118 \\
\hline 1 & 1 & 49 & Q & 81 & " & 34 & & 8241 & q & 113 \\
\hline 2 & 2 & 50 & R & 82 & 1 & 92 & & 8242 & \(r\) & 114 \\
\hline 3 & 3 & 51 & S & 83 & UNITS & 4147 & & 8243 & s & 115 \\
\hline 4 & 4 & 52 & L & 76 & : & 58 & & 8244 & 1 & 108 \\
\hline 5 & 5 & 53 & M & 77 & MATH & 4149 & & 8245 & m & 109 \\
\hline 6 & 6 & 54 & N & 78 & MEM & 4150 & & 8246 & n & 110 \\
\hline 7 & 7 & 55 & G & 71 & J & 4151 & & 8247 & g & 103 \\
\hline 8 & 8 & 56 & H & 72 & d & 4152 & & 8248 & h & 104 \\
\hline 9 & 9 & 57 & I & 73 & ; & 59 & & 8249 & i & 105 \\
\hline
\end{tabular}

Table 2: Arrow Keys (including diagonal movement)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Key & Normal & + & 2 nd & - & alpha \\
\hline \(\bigcirc\) & 338 & 16722 & 4434 & 8530 & 33106 \\
\hline (1) & 340 & 16724 & 4436 & 8532 & 33108 \\
\hline \(\bigcirc\) & 344 & 16728 & 4440 & 8536 & 33112 \\
\hline (1) & 337 & 16721 & 4433 & 8529 & 33105 \\
\hline \(\bigcirc\) and (1) & 339 & 16723 & 4435 & 8531 & 33107 \\
\hline () and (1) & 342 & 16726 & 4438 & 8534 & 33110 \\
\hline \(\bigcirc\) and (1) & 345 & 16729 & 4441 & 8537 & 33113 \\
\hline \(\odot\) and (1) & 348 & 16732 & 4444 & 8540 & 33116 \\
\hline
\end{tabular}

Table 3：Greek Letters（prefixed by \(⿴ 囗 \square\) ）
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Keys} & \multicolumn{4}{|c|}{Second modifier} \\
\hline & \multicolumn{2}{|c|}{alpha} & \multicolumn{2}{|c|}{＋} \\
\hline & Assoc． & Value & Assoc． & Value \\
\hline \＃［A］ & \(\alpha\) & 128 & & \\
\hline \(\square\)［B］ & \(\beta\) & 129 & & \\
\hline \(\square\)［D］ & \(\delta\) & 133 & \(\Delta\) & 132 \\
\hline －［E］ & \(\varepsilon\) & 134 & & \\
\hline （1）［F］ & \(\phi\) & 145 & & \\
\hline ［7］［G］ & \(\gamma\) & 131 & \(\Gamma\) & 130 \\
\hline ［4］［L］ & \(\lambda\) & 137 & & \\
\hline 5 ［M］ & \(\mu\) & 181 & & \\
\hline STO®［P］ & \(\pi\) & 140 & \(\Pi\) & 139 \\
\hline 2］［R］ & \(\rho\) & 141 & & \\
\hline ［3］［S］ & \(\sigma\) & 143 & \(\Sigma\) & 142 \\
\hline ［T］［T］ & \(\tau\) & 144 & & \\
\hline \(\square\)［W］ & \(\omega\) & 148 & \(\Omega\) & 147 \\
\hline 区 & \(\xi\) & 138 & & \\
\hline Y & \(\psi\) & 146 & & \\
\hline Z & \(\zeta\) & 135 & & \\
\hline
\end{tabular}

\section*{TI-92 Plus Key Codes}

The getKey() function returns a value that corresponds to the last key pressed, according to the tables shown in this section. For example, if your program contains a getKey() function, pressing [2nd F1 will return a value of 268 .

Table 1: Key Codes for Primary Keys
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Key & \multicolumn{8}{|c|}{Modifier} \\
\hline & \multicolumn{2}{|c|}{None} & \multicolumn{2}{|c|}{t} & \multicolumn{2}{|c|}{2nd} & \multicolumn{2}{|c|}{\(\bullet\)} \\
\hline & Assoc. & Value & Assoc. & Value & Assoc. & Value & Assoc. & Value \\
\hline F1 & F1 & 268 & F1 & 268 & F1 & 268 & & 8460 \\
\hline F2 & F2 & 269 & F2 & 269 & F2 & 269 & & 8461 \\
\hline F3 & F3 & 270 & F3 & 270 & F3 & 270 & & 8462 \\
\hline F4 & F4 & 271 & F4 & 271 & F4 & 271 & & 8463 \\
\hline F5 & F5 & 272 & F5 & 272 & F5 & 272 & & 8464 \\
\hline F6 & F6 & 273 & F6 & 273 & F6 & 273 & & 8465 \\
\hline F7 & F7 & 274 & F7 & 274 & F7 & 274 & & 8466 \\
\hline F8 & F8 & 275 & F8 & 275 & F8 & 275 & & 8467 \\
\hline MODE & MODE & 266 & MODE & 266 & MODE & 266 & & 8458 \\
\hline CLEAR & CLEAR & 263 & CLEAR & 263 & CLEAR & 263 & & 8455 \\
\hline LN & LN & 262 & LN & 262 & \(e^{x}\) & 4358 & & 8454 \\
\hline ESC & ESC & 264 & ESC & 264 & QUIT & 4360 & & 8456 \\
\hline APPS & APPS & 265 & APPS & 265 & SWITCH & 4361 & & 8457 \\
\hline ENTER & CR & 13 & CR & 13 & ENTRY & 4109 & APPROX & 8205 \\
\hline SIN & SIN & 259 & SIN & 259 & \(\mathrm{SIN}^{-1}\) & 4355 & & 8451 \\
\hline COS & COS & 260 & COS & 260 & \(\mathrm{COS}^{-1}\) & 4356 & & 8452 \\
\hline TAN & TAN & 261 & TAN & 261 & TAN \({ }^{-1}\) & 4357 & & 8453 \\
\hline \(\triangle\) & \(\wedge\) & 94 & \(\wedge\) & 94 & \(\pi\) & 140 & & 8286 \\
\hline (1) & (& 40 & (& 40 & \{ & 123 & & 8232 \\
\hline \(\square\) &) & 41 &) & 41 & \} & 125 & & 8233 \\
\hline \(\square\) & , & 44 & , & 44 & [& 91 & & 8236 \\
\hline \(\div\) & 1 & 47 & 1 & 47 &] & 93 & & 8239 \\
\hline 区 & * & 42 & * & 42 & \(\checkmark\) & 4138 & & 8234 \\
\hline \(\square\) & - & 45 & - & 45 & VAR-LNK & 4141 & Contrast - & \\
\hline \(\pm\) & + & 43 & + & 43 & CHAR & 4139 & Contrast + & \\
\hline STO- & STO & 258 & STO & 258 & RCL & 4354 & & 8450 \\
\hline SPACE & & 32 & & 32 & & 32 & & 8224 \\
\hline \(\pm\) & = & 61 & = & 61 & 1 & 92 & & 8253 \\
\hline \(\square\) & BS & 257 & BS & 257 & INS & 4353 & DEL & 8449 \\
\hline \(\theta\) & \(\theta\) & 136 & \(\theta\) & 136 & : & 58 & & 8328 \\
\hline (-) & - & 173 & - & 173 & ANS & 4372 & & 8365 \\
\hline \(\square\) & & 46 & . & 46 & > & 62 & & 8238 \\
\hline
\end{tabular}

Table 1: Key Codes for Primary Keys (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Key & \multicolumn{8}{|c|}{Modifier} \\
\hline & \multicolumn{2}{|c|}{None} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{2nd} & \multicolumn{2}{|c|}{\(\square\)} \\
\hline & Assoc. & Value & Assoc. & Value & Assoc. & Value & Assoc. & Value \\
\hline 0 & 0 & 48 & 0 & 48 & < & 60 & & 8240 \\
\hline 1 & 1 & 49 & 1 & 49 & E & 149 & & 8241 \\
\hline 2 & 2 & 50 & 2 & 50 & CATLG & 4146 & & 8242 \\
\hline 3 & 3 & 51 & 3 & 51 & CUST & 4147 & & 8243 \\
\hline 4 & 4 & 52 & 4 & 52 & \(\Sigma\) & 4148 & & 8244 \\
\hline 5 & 5 & 53 & 5 & 53 & MATH & 4149 & & 8245 \\
\hline 6 & 6 & 54 & 6 & 54 & MEM & 4150 & & 8246 \\
\hline 7 & 7 & 55 & 7 & 55 & VAR-LNK & 4151 & & 8247 \\
\hline 8 & 8 & 56 & 8 & 56 & \(\int\) & 4152 & & 8248 \\
\hline 9 & 9 & 57 & 9 & 57 & \(\delta\) & 4153 & & 8249 \\
\hline A & a & 97 & A & 65 & Table 3 & & & 8257 \\
\hline B & b & 98 & B & 66 & ‘ & 39 & & 8258 \\
\hline C & c & 99 & C & 67 & Table 4 & & COPY & 8259 \\
\hline D & d & 100 & D & 68 & 。 & 176 & & 8260 \\
\hline E & e & 101 & E & 69 & Table 5 & & WINDOW & 8261 \\
\hline F & f & 102 & F & 70 & \(\angle\) & 159 & FORMAT & 8262 \\
\hline G & g & 103 & G & 71 & Table 6 & & & 8263 \\
\hline H & h & 104 & H & 72 & \& & 38 & & 8264 \\
\hline I & i & 105 & I & 73 & i & 151 & & 8265 \\
\hline J & & 106 & \(J\) & 74 & \(\infty\) & 190 & & 8266 \\
\hline K & k & 107 & K & 75 & 1 & 124 & KEY & 8267 \\
\hline L & 1 & 108 & L & 76 & " & 34 & & 8268 \\
\hline M & m & 109 & M & 77 & ; & 59 & & 8269 \\
\hline N & n & 110 & N & 78 & Table 7 & & NEW & 8270 \\
\hline 0 & 0 & 111 & 0 & 79 & Table 8 & & OPEN & 8271 \\
\hline P & p & 112 & P & 80 & - & 95 & UNITS & 8272 \\
\hline Q & q & 113 & Q & 81 & ? & 63 & HOME & 8273 \\
\hline R & \(r\) & 114 & R & 82 & @ & 64 & GRAPH & 8274 \\
\hline S & s & 115 & S & 83 & \(\beta\) & 223 & SAVE & 8275 \\
\hline T & t & 116 & T & 84 & \# & 35 & TblSet & 8276 \\
\hline U & \(u\) & 117 & U & 85 & Table 9 & & & 8277 \\
\hline V & v & 118 & V & 86 & \# & 157 & PASTE & 8278 \\
\hline W & w & 119 & W & 87 & \(!\) & 33 & \(Y=\) & 8279 \\
\hline X & x & 120 & X & 88 & \(\bigcirc\) & 169 & CUT & 8280 \\
\hline Y & y & 121 & Y & 89 & - & 18 & TABLE & 8281 \\
\hline Z & z & 122 & Z & 90 & Caps Lock & & & 8282 \\
\hline
\end{tabular}

Table 2: Arrow Keys
\begin{tabular}{|c|c|c|c|c|c|}
\hline Arrow Keys & Normal & \(\uparrow\) & 2nd & \(\square\) & \(\boxed{0}\) \\
\hline\(\odot\) & 338 & 16722 & 4434 & 8530 & 33106 \\
\hline\(\odot\) & 342 & 16726 & 4438 & 8534 & 33110 \\
\hline\(\odot\) & 340 & 16724 & 4436 & 8532 & 33108 \\
\hline\(\odot\) & 348 & 16732 & 4444 & 8540 & 33116 \\
\hline\(\odot\) & 344 & 16728 & 4440 & 8536 & 33112 \\
\hline\(\odot\) & 345 & 16729 & 4441 & 8537 & 33113 \\
\hline\(\odot\) & 337 & 16721 & 4433 & 8529 & 33105 \\
\hline\(\odot\) & 339 & 16723 & 4435 & 8531 & 33107 \\
\hline
\end{tabular}

Note: The Grab (®)modifier only affects the arrow keys.
Table 3: Grave Letters (prefixed by 2nd A)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\square\) \\
\hline A & à & 224 & 192 \\
\hline E & è & 232 & 200 \\
\hline I & ì & 236 & 204 \\
\hline O & ò & 242 & 210 \\
\hline U & ù & 249 & 217 \\
\hline
\end{tabular}

Table 4: Cedilla Letters (prefixed by 2nd C)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\pm\) \\
\hline C & ç & 231 & 199 \\
\hline
\end{tabular}

Table 5: Acute Accent Letters (prefixed by [2nd E)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boldsymbol{\dagger}\) \\
\hline A & á & 225 & 193 \\
\hline E & é & 233 & 201 \\
\hline I & í & 237 & 205 \\
\hline O & ó & 243 & 211 \\
\hline U & ú & 250 & 218 \\
\hline Y & ý & 253 & 221 \\
\hline
\end{tabular}

Table 6: Greek Letters (prefixed by 2nd G)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boxed{\text { I }}\) \\
\hline A & \(\alpha\) & 128 & \\
\hline B & \(\beta\) & 129 & \\
\hline D & \(\delta\) & 133 & 132 \\
\hline E & \(\varepsilon\) & 134 & \\
\hline F & \(\phi\) & 145 & \\
\hline G & \(\gamma\) & 131 & 130 \\
\hline L & \(\lambda\) & 137 & \\
\hline M & \(\mu\) & 181 & \\
\hline R & \(\pi\) & 140 & 139 \\
\hline S & \(\rho\) & 141 & \\
\hline T & \(\tau\) & 143 & \\
\hline X & \(\omega\) & 144 & \\
\hline Y & \(\xi\) & 148 & \\
\hline Z & \(\psi\) & 138 & \\
\hline
\end{tabular}

Table 7: Tilde Letters (prefixed by [2nd \(N\))
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boxed{\dagger}\) \\
\hline N & \(\tilde{n}\) & 241 & 209 \\
\hline O & \(\tilde{o}\) & 245 & \\
\hline
\end{tabular}

Table 8: Caret Letters (prefixed by 2nd O)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\boxed{\mid}\) \\
\hline A & \(\hat{a}\) & 226 & 194 \\
\hline E & \(\hat{e}\) & 234 & 202 \\
\hline I & \(\hat{\imath}\) & 238 & 206 \\
\hline O & \(\hat{o}\) & 244 & 212 \\
\hline U & \(\hat{u}\) & 251 & 219 \\
\hline
\end{tabular}

Table 9: Umlaut Letters (prefixed by 2nd U)
\begin{tabular}{|c|c|c|c|}
\hline Key & Assoc. & Normal & \(\square \boldsymbol{|}\) \\
\hline A & ä & 228 & 196 \\
\hline E & \(\ddot{\text { ë }}\) & 235 & 203 \\
\hline I & \(\ddot{\mathrm{I}}\) & 239 & 207 \\
\hline O & \(\ddot{0}\) & 246 & 214 \\
\hline U & \(\ddot{\mathrm{u}}\) & 252 & 220 \\
\hline Y & \(\ddot{\mathrm{y}}\) & 255 & \\
\hline
\end{tabular}

\section*{Entering Complex Numbers}

You can enter complex numbers in the polar form (\(\mathrm{r} \angle \theta\)), where \(r\) is the magnitude and \(\theta\) is the angle, or polar form re \({ }^{i \theta}\). You can also enter complex numbers in rectangular form a+bi

\section*{Overview of Complex Numbers}

Note: To get the i symbol, press [2nd [i], do not simply type an alphabetic \(i\).

A complex number has real and imaginary components that identify a point in the complex plane. These components are measured along the real and imaginary axes, which are similar to the x and y axes in the real plane.

The point can be expressed in rectangular form or in either of two polar forms.

The \(\boldsymbol{i}\) symbol represents the imaginary number \(\sqrt{-1}\).

As shown below, the form that you can enter depends on the current Angle mode.
\begin{tabular}{cl}
You can use the form: & When the Angle mode setting is: \\
\hline \(\mathrm{a}+\mathrm{b} \boldsymbol{i}\) & Radian or Degree \\
\(r e^{i \theta}\) & Radian only \\
& (In Degree angle mode, this form causes a \\
\((\mathrm{r} \angle \theta)\) & Domain error.) \\
& Radian or Degree
\end{tabular}

Use the following methods to enter a complex number.
To enter the: Do this:

Rectangular form \(a+b i\)

\section*{Do this:}

Substitute the applicable values or variable names for \(a\) and \(b\).
a (b [2nd [i]
For example:

Important: Do not use the re \({ }^{i \theta}\) polar form in Degree angle mode. It will cause a Domain error.

Note: To get the e symbol, press:
TI-89: \(-\left[\mathrm{e}^{x}\right]\).
Tl-92 Plus: 2nd [\(\mathrm{e}^{x}\)]
Do not simply type an alphabetic e.

Tip: To get the \(\angle\) symbol, press 2nd [\(\angle\)].

Tip: To enter \(\theta\) in degrees for (\(\mathrm{r} \angle \theta\)), you can type a \({ }^{\circ}\) symbol (such as \(45^{\circ}\)). To get the \({ }^{\circ}\) symbol, press 2nd [[॰]. You should not use degrees for re \({ }^{i \theta}\).

\section*{Complex Format Mode for Displaying Results}

Note: You can enter complex numbers in any form (or a mixture of all forms) depending on the Angle mode.
\begin{tabular}{|c|c|}
\hline To enter the: & Do this: \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Polar form \\
\(r e^{i \theta}\)
\end{tabular}} & Substitute the applicable values or variable names for \(r\) and \(\theta\), where \(\theta\) is interpreted according to the Angle mode setting. \\
\hline & ```
TI-89:
 alpha, [R] | [ex] 2nd [i] [[0]\square
 - or -
 \squarealpha [R] 2nd [L] © [0]\square
``` \\
\hline & \begin{tabular}{l}
TI-92 Plus: \\
R 2nd [ \(\mathrm{e}^{x}\) ] 2nd \([i]\) 日 \(\square\) - or - \\
(1) R [2nd [ \(\angle\) ] 日 (]
\end{tabular} \\
\hline
\end{tabular}

For example:


Results are shown in rectangular form, but you can select polar form.

Use MODE to set the
Complex Format mode to one of three settings.


You can enter a complex number at any time, regardless of the Complex Format mode setting. However, the mode setting determines how results are displayed.
If Complex Format is: The TI-89 / Tl-92 Plus:

REAL
Will not display complex results unless you:
- Enter a complex number.
- or -
- Use a complex function such as cFactor(), cSolve(), or cZeros().

If complex results are displayed, they will be shown in either a+bi or \(r e^{i \theta}\) form.
RECTANGULAR Displays complex results as \(\mathrm{a}+\mathrm{bi}\).
POLAR Displays complex results as:
- \(r e^{i \theta}\) if the Angle mode = Radian - or -
- \((r \angle \theta)\) if the Angle mode \(=\) Degree

\section*{Using Complex \\ Variables in \\ Symbolic \\ Calculations}

Note：For best results in calculations such as cSolve（）and cZeros（），use Method 1.

\section*{Complex Numbers and Degree Mode}

Note：If you use Degree angle mode，you must make polar entries in the form （ \(r \angle \theta\) ）．In Degree angle mode，an re \({ }^{i \theta}\) entry causes an error．

Regardless of the Complex Format mode setting，undefined variables are treated as real numbers．To perform complex symbolic analysis， you can use either of the following methods to set up a complex variable．

Method 1：Use an underscore＿（TI－89：\(\square_{\text {［＿］TI－92 Plus：［2nd［－］）as }}\) the last character in the variable name to designate a complex variable．For example：
\(\mathrm{z}_{-}\)is treated as a complex variable （unless z already exists，in which case
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{－imag} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{imgacz} \\
\hline  & Fíld illta & FIWIL & Er＇30 \\
\hline
\end{tabular} it retains its existing data type）．

Method 2：Define a complex variable．For example：
\(\mathrm{x}+\mathrm{y} \boldsymbol{i} \rightarrow \mathrm{z}\)
Then z is treated as a complex variable．
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{－imقg（z）－} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{} \\
\hline imbコく天 & & \\
\hline Hinld & FUNE： & \(3{ }^{2} 30\) \\
\hline
\end{tabular}

Radian angle mode is recommended for complex number calculations．Internally，the TI－89／TI－92 Plus converts all entered trig values to radians，but it does not convert values for exponential， logarithmic，or hyperbolic functions．

In Degree angle mode，complex identities such as \(e^{\wedge}(i \theta)=\cos (\theta)+\) \(\boldsymbol{i} \sin (\theta)\) are not generally true because the values for \(\cos\) and \(\sin\) are converted to radians，while those for \(e^{\wedge}\)（）are not．For example， \(e^{\wedge}(\boldsymbol{i} 45)=\cos (45)+\boldsymbol{i} \sin (45)\) is treated internally as \(e^{\wedge}(\boldsymbol{i 4 5})=\) \(\cos (\pi / 4)+\boldsymbol{i} \sin (\pi / 4)\) ．Complex identities are always true in Radian angle mode．

\section*{Computational Accuracy}

\section*{Graphing Accuracy}

Note: For a table that lists the number of pixels in a full screen or split screen, refer to "Setting and Exiting the Split Screen Mode" in Chapter 14.

To maximize accuracy, the TI-89 / TI-92 Plus carries more digits internally than it displays.

Floating-point (decimal) values in memory are stored using up to 14 digits with a 3 -digit exponent.
- For min and max Window variables (xmin, xmax, ymin, ymax, etc.), you can store values using up to 12 digits. Other Window variables use 14 digits.
- When a floating-point value is displayed, the displayed value is rounded as specified by the applicable mode settings (Display Digits, Exponential Format, etc.), with a maximum of 12 digits and a 3-digit exponent.
- RegEQ displays up to 14 -digit coefficients.

Integer values in memory are stored using up to 614 digits.

The Window variable xmin is the center of the leftmost pixel used, and \(x \max\) is the center of the rightmost pixel used. \(\Delta x\) is the distance between the centers of two horizontally adjacent pixels.
- \(\Delta x\) is calculated as ( \(\mathrm{xmax}-\mathrm{xmin}\) ) / (\# of x pixels -1 ).
- If \(\Delta x\) is entered from the Home screen or a program, \(x m a x\) is calculated as \(\mathrm{xmin}+\Delta x *\) (\# of x pixels -1 ).

The Window variable ymin is the center of the bottom pixel used, and ymax is the center of the top pixel used. \(\Delta \mathrm{y}\) is the distance between the centers of two vertically adjacent pixels.
- \(\Delta y\) is calculated as (ymax - ymin) / (\# of y pixels - 1 ).
- If \(\Delta y\) is entered from the Home screen or a program, ymax is calculated as ymin \(+\Delta y *\) (\# of y pixels -1 ).

Cursor coordinates are displayed as eight characters (which may include a negative sign, decimal point, and exponent). The coordinate values ( \(\mathrm{xc}, \mathrm{yc}, \mathrm{zc}\), etc.) are updated with a maximum of 12-digit accuracy.

\section*{System Variables and Reserved Names}

This section lists the names of system variables and reserved function names that are used by the TI-89 / TI-92 Plus. Only those system variables and reserved function names that are identified by an asterisk (*) can be deleted by using DelVar var on the entry line.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{14}{*}{Graph} & y1(x)-y99(x)* & y \(1^{\prime}(\mathrm{t})-\mathrm{y} 99^{\prime}(\mathrm{t})^{*}\) & yi1-yi99* & r1( \(\theta\) )-r99( \({ }^{\text {\% * }}\) \\
\hline & xt1(t)-xt99(t)* & yt1(t)- yt99(t)* & z1(x,y)-z99(x,y)* & u1(n)-u99(n)* \\
\hline & ui1-ui99* & xc & yc & zc \\
\hline & tc & rc & \(\theta \mathrm{c}\) & \\
\hline & xfact & yfact & zfact & xmin \\
\hline & xmax & xscl & xgrid & ymin \\
\hline & ymax & yscl & ygrid & xres \\
\hline & \(\Delta \mathrm{x}\) & \(\Delta \mathrm{y}\) & zmin & zmax \\
\hline & zscl & eye \(\theta\) & еуеф & eуe \(\psi\) \\
\hline & ncontour & \(\theta\) min & \(\theta\) max & Ostep \\
\hline & tmin & tmax & tstep & t0 \\
\hline & tplot & ncurves & diftol & dtime \\
\hline & Estep & fldpic & fldres & nmin \\
\hline & nmax & plotStrt & plotStep & sysMath \\
\hline \multirow[t]{8}{*}{Graph Zoom} & zxmin & zxmax & zxscl & zxgrid \\
\hline & zymin & zymax & zyscl & zygrid \\
\hline & zxres & \(\mathrm{z} 日\) min & z \(\max ^{\text {max }}\) & z \(\theta\) step \\
\hline & ztmin & ztmax & ztstep & zt0de \\
\hline & ztmaxde & ztstepde & ztplotde & zzmin \\
\hline & zzmax & \[
\mathrm{zzscl}
\] & \[
\text { zeye } \theta
\] & zeyed \\
\hline & zeye\% & znmin & znmax & zpltstrt \\
\hline & zpltstep & & & \\
\hline \multirow[t]{8}{*}{Statistics} & \(\overline{\mathrm{x}}\) & \(\overline{\mathrm{y}}\) & \(\Sigma \mathrm{x}\) & \(\sigma \mathrm{x}\) \\
\hline & \(\Sigma \mathrm{x}^{2}\) & \(\Sigma \mathrm{xy}\) & \(\Sigma \mathrm{y}\) & \(\sigma \mathrm{y}\) \\
\hline & \(\Sigma \mathrm{y}^{2}\) & corr & maxX & \(\operatorname{maxY}\) \\
\hline & medStat & medx 1 & medx 2 & medx 3 \\
\hline & medy1 & medy2 & medy3 & \(\min X\) \\
\hline & \(\operatorname{minY}\) & nStat & q1 & \\
\hline & regCoef* & regEq(x)* & seed1 & seed2 \\
\hline & Sx & Sy & \(\mathrm{R}^{2}\) & \\
\hline Table & tblStart & \(\Delta \mathrm{tbl}\) & tblInput & \\
\hline Data/Matrix & c1-c99 & sysData* & & \\
\hline Miscellaneous & main & ok & errornum & \\
\hline Solver & eqn* & exp* & & \\
\hline
\end{tabular}

\section*{EOS (Equation Operating System) Hierarchy}

This section describes the Equation Operating System (EOS \({ }^{\text {TM }}\) ) that is used by the TI-89 / TI-92 Plus. Numbers, variables, and functions are entered in a simple, straightforward sequence. EOS evaluates expressions and equations using parenthetical grouping and according to the priorities described below.

\section*{Order of Evaluation}
\begin{tabular}{|c|c|}
\hline Level & Operator \\
\hline 1 & Parentheses ( ), brackets [ ], braces \{ \} \\
\hline 2 & Indirection (\#) \\
\hline 3 & Function calls \\
\hline 4 & Post operators: degrees-minutes-seconds ( \(\left.{ }^{\circ}, ', "\right)\), factorial (!), percentage (\%), radian ( \({ }^{\mathrm{r}}\) ), subscript ([ ]), transpose ( \({ }^{\mathrm{T}}\) ) \\
\hline 5 & Exponentiation, power operator (^) \\
\hline 6 & Negation ( \({ }^{-}\)) \\
\hline 7 & String concatenation (\&) \\
\hline 8 & Multiplication (*), division (/) \\
\hline 9 & Addition (+), subtraction (-) \\
\hline 10 & Equality relations: equal ( \(=\) ), not equal ( \(\neq\) or \(/=\) ), less than ( \(<\) ), less than or equal ( \(\leq\) or \(<=\) ), greater than ( \(>\) ), greater than or equal ( \(\geq\) or \(>=\) ) \\
\hline 11 & Logical not \\
\hline 12 & Logical and \\
\hline 13 & Logical or, exclusive logical xor \\
\hline 14 & Constraint "with" operator (I) \\
\hline 15 & Store ( \(\rightarrow\) ) \\
\hline
\end{tabular}

Parentheses, Brackets, and Braces

All calculations inside a pair of parentheses, brackets, or braces are evaluated first. For example, in the expression 4(1+2), EOS first evaluates the portion of the expression inside the parentheses, \(1+2\), and then multiplies the result, 3 , by 4.

The number of opening and closing parentheses, brackets, and braces must be the same within an expression or equation. If not, an error message is displayed that indicates the missing element. For example, \((1+2) /(3+4\) will display the error message "Missing )."

Note: Because the TI-89 / TI-92 Plus allows you to define your own functions, a variable name followed by an expression in parentheses is considered a "function call" instead of implied multiplication. For example \(a(b+c)\) is the function a evaluated by \(b+c\). To multiply the expression \(b+c\) by the variable a, use explicit multiplication: \(a *(b+c)\).
\begin{tabular}{|c|c|}
\hline Indirection & The indirection operator (\#) converts a string to a variable or function name. For example, \#("x"\&"y"\&"z") creates the variable name xyz. Indirection also allows the creation and modification of variables from inside a program. For example, if \(10 \rightarrow r\) and " \(r\) " \(\rightarrow s 1\), then \#s1=10. \\
\hline Post Operators & Post operators are operators that come directly after an argument, such as \(5!, 25 \%\), or \(60^{\circ} 15^{\prime} 45^{\prime \prime}\). Arguments followed by a post operator are evaluated at the fourth priority level. For example, in the expression \(4 \wedge 3\) !, 3 ! is evaluated first. The result, 6 , then becomes the exponent of 4 to yield 4096. \\
\hline Exponentiation & Exponentiation \((\wedge)\) and element-by-element exponentiation \(\left(.^{\wedge}\right)\) are evaluated from right to left. For example, the expression \(2^{\wedge} 3^{\wedge} 2\) is evaluated the same as \(2^{\wedge}\left(3^{\wedge} 2\right)\) to produce 512 . This is different from \(\left(2^{\wedge} 3\right)^{\wedge} 2\), which is 64 . \\
\hline Negation & To enter a negative number, press \(\Theta-1\) followed by the number. Post operations and exponentiation are performed before negation. For example, the result of \(-x^{2}\) is a negative number, and \(-9^{2}=-81\). Use parentheses to square a negative number such as \((-9)^{2}\) to produce 81. Note also that negative \(5(-5)\) is different from minus \(5(-5)\), and -3 ! evaluates as -(3!). \\
\hline Constraint (|) & The argument following the "with" (I) operator provides a set of constraints that affect the evaluation of the argument preceding the "with" operator. \\
\hline
\end{tabular}

This section describes how the statistical regressions are calculated.

Least-Squares Algorithm

Most of the regressions use non-linear recursive least-squares techniques to optimize the following cost function, which is the sum of the squares of the residual errors:
\(J=\sum_{i=1}^{N}[\text { residualExpression }]^{2}\)
where: residualExpression is in terms of \(x_{i}\) and \(y_{i}\)
\(x_{i}\) is the independent variable list
\(y_{i}\) is the dependent variable list
\(N\) is the dimension of the lists
This technique attempts to recursively estimate the constants in the model expression to make \(J\) as small as possible.

For example, \(y=a \sin (b x+c)+d\) is the model equation for SinReg. So its residual expression is:
\(a \sin \left(b x_{i}+c\right)+d-y_{i}\)
For SinReg, therefore, the least-squares algorithm finds the constants \(a, b, c\), and \(d\) that minimize the function:
\(J=\sum_{i=1}^{N}\left[a \sin \left(b x_{i}+c\right)+d-y_{i}\right]^{2}\)
\begin{tabular}{ll}
\hline Regression & Description \\
\hline CubicReg & \begin{tabular}{l} 
Uses the least-squares algorithm to fit the third-order \\
polynomial: \\
\(y=a x^{3}+b x^{2}+c x+d\)
\end{tabular} \\
& \begin{tabular}{l} 
For four data points, the equation is a polynomial fit; \\
for five or more, it is a polynomial regression. At \\
least four data points are required.
\end{tabular} \\
\hline ExpReg & \begin{tabular}{l} 
Uses the least-squares algorithm and transformed \\
values \(x\) and \(\ln (y)\) to fit the model equation: \\
\(y=a b^{x}\)
\end{tabular} \\
\hline LinReg & \begin{tabular}{l} 
Uses the least-squares algorithm to fit the model \\
equation: \\
\(y=a x+b\) \\
where \(a\) is the slope and \(b\) is the y -intercept.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Regression & Description \\
\hline LnReg & Uses the least-squares algorithm and transformed values \(\ln (x)\) and \(y\) to fit the model equation:
\[
y=a+b \ln (x)
\] \\
\hline Logistic & Uses the least-squares algorithm to fit the model equation:
\[
y=a /\left(1+b * e^{\wedge}(c * x)\right)+d
\] \\
\hline MedMed & \begin{tabular}{l}
Uses the median-median line (resistant line) technique to calculate summary points \(\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2\), \(x 3\), and \(y 3\), and fits the model equation:
\[
y=a x+b
\] \\
where \(a\) is the slope and \(b\) is the y -intercept.
\end{tabular} \\
\hline PowerReg & Uses the least-squares algorithm and transformed values \(\ln (x)\) and \(\ln (y)\) to fit the model equation:
\[
y=a x^{b}
\] \\
\hline QuadReg & \begin{tabular}{l}
Uses the least-squares algorithm to fit the secondorder polynomial:
\[
y=a x^{2}+b x+c
\] \\
For three data points, the equation is a polynomial fit; for four or more, it is a polynomial regression. At least three data points are required.
\end{tabular} \\
\hline QuartReg & \begin{tabular}{l}
Uses the least-squares algorithm to fit the fourthorder polynomial:
\[
y=a x^{4}+b x^{3}+c x^{2}+d x+e
\] \\
For five data points, the equation is a polynomial fit; for six or more, it is a polynomial regression. At least five data points are required.
\end{tabular} \\
\hline SinReg & Uses the least-squares algorithm to fit the model equation:
\[
y=a \sin (b x+c)+d
\] \\
\hline
\end{tabular}

Contours are calculated and plotted by the following method. An implicit plot is the same as a contour, except that an implicit plot is for the \(z=0\) contour only.

\section*{Algorithm}

Based on your \(x\) and \(y\) Window variables, the distance between xmin and \(x \max\) and between ymin and ymax is divided into a number of grid lines specified by xgrid and ygrid. These grid lines intersect to form a series of rectangles.


For each rectangle, the equation is evaluated at each of the four corners (also called vertices or grid points) and an average value (E) is calculated:

\(\mathrm{E}=\frac{\mathrm{z}_{1}+\mathrm{z}_{2}+\mathrm{z}_{3}+\mathrm{z}_{4}}{4}\)
The \(E\) value is treated as the value of the equation at the center of the rectangle.

For each specified contour value ( \(\mathrm{C}_{\mathrm{i}}\) ):
- At each of the five points shown to the right, the difference between the point's \(z\) value and the contour value is calculated.

- A sign change between any two adjacent points implies that a contour crosses the line that joins those two points. Linear interpolation is used to approximate where the zero crosses the line.
- Within the rectangle, any zero crossings are connected with straight lines.
- This process is repeated for
 each contour value.

Each rectangle in the grid is treated similarly.

\section*{Runge-Kutta Method}

For Runge-Kutta integrations of ordinary differential equations, the TI-89 / TI-92 Plus uses the Bogacki-Shampine 3(2) formula as found in the journal Applied Math Letters, 2 (1989), pp. 1-9.

\section*{Bogacki-Shampine 3(2) Formula}

The Bogacki-Shampine 3(2) formula provides a result of 3rd-order accuracy and an error estimate based on an embedded 2nd-order formula. For a problem of the form:
\(y^{\prime}=f(x, y)\)
and a given step size \(h\), the Bogacki-Shampine formula can be written:
\(F_{1}=f\left(x_{\mathrm{n}}, y_{\mathrm{n}}\right)\)
\(F_{2}=f\left(x_{\mathrm{n}}+h \frac{1}{2}, y_{\mathrm{n}}+h \frac{1}{2} F_{1}\right)\)
\(F_{3}=f\left(x_{\mathrm{n}}+h \frac{3}{4}, y_{\mathrm{n}}+h \frac{3}{4} F_{2}\right)\)
\(y_{\mathrm{n}+1}=y_{\mathrm{n}}+h\left(\frac{2}{9} F_{1}+\frac{1}{3} F_{2}+\frac{4}{9} F_{3}\right)\)
\(x_{\mathrm{n}+1}=x_{\mathrm{n}}+h\)
\(F_{4}=f\left(x_{\mathrm{n}+1}, y_{\mathrm{n}+1}\right)\)
errest \(=h\left(\frac{5}{72} F_{1}-\frac{1}{12} F_{2}-\frac{1}{9} F_{3}+\frac{1}{8} F_{4}\right)\)
The error estimate errest is used to control the step size automatically. For a thorough discussion of how this can be done, refer to Numerical Solution of Ordinary Differential Equations by L. F. Shampine (New York: Chapman \& Hall, 1994).

The TI-89 / TI-92 Plus software does not adjust the step size to land on particular output points. Rather, it takes the biggest steps that it can (based on the error tolerance diftol) and obtains results for \(x_{\mathrm{n}} \leq x \leq x_{\mathrm{n}+1}\) using the cubic interpolating polynomial passing through the point \(\left(x_{\mathrm{n}}, y_{\mathrm{n}}\right)\) with slope \(F_{1}\) and through \(\left(x_{\mathrm{n}+1}, y_{\mathrm{n}+1}\right)\) with slope \(F_{4}\). The interpolant is efficient and provides results throughout the step that are just as accurate as the results at the ends of the step.

\section*{Service and Warranty Information}
Battery Information ..... 576
In Case of Difficulty ..... 579
Support and Service Information ..... 580
Warranty Information ..... 581

This appendix provides supplemental information that may be helpful as you use the TI-89 / TI-92 Plus. It includes procedures that may help you correct problems with the TI-89 / TI-92 Plus, and it describes the service and warranty provided by Texas Instruments.


When the BATT indicator appears in the status line, it is time to change the batteries.

\section*{When to Replace the Batteries}

Note: The TI-89 uses four AAA size alkaline batteries.

The TI-92 Plus uses four AA size alkaline batteries.

Note: To avoid loss of information stored in memory, the TI-89 / TI-92 Plus must be off. Do not remove the alkaline batteries and the lithium battery at the same time.

The TI-89 / TI-92 Plus uses two types of batteries: four alkaline batteries, and a lithium battery as a backup for retaining memory while you change the alkaline batteries.

As the alkaline batteries run down, the display will begin to dim (especially during calculations). To compensate for this, you will need to adjust the contrast to a higher setting. If you find it necessary to increase the contrast setting frequently, you will need to replace the alkaline batteries. To assist you, a BATT indicator (BATt ) will display in the status line area when the batteries have drained down to the point when you should replace them soon. When the BATT indicator is displayed in reverse text (匱TI), you must replace the alkaline batteries immediately.


To avoid loss of data, do not remove the lithium battery unless four fresh alkaline batteries are installed. Replace the lithium backup battery about every three or four years.

If you do not remove both types of batteries at the same time or allow them to run down completely, you can change either type of battery without losing anything in memory.

Take these precautions when replacing batteries:
- Do not leave batteries within the reach of children.
- Do not mix new and used batteries. Do not mix brands (or types within brands) of batteries.
- Do not mix rechargeable and non-rechargeable batteries.
- Install batteries according to polarity (+ and - ) diagrams.
- Do not place non-rechargeable batteries in a battery recharger.
- Properly dispose of used batteries immediately.
- Do not incinerate or dismantle batteries.

\section*{Replacing the Alkaline Batteries in} the TI-89
1. If the TI-89 is on, turn it off (press [2nd [0FF]) to avoid loss of information stored in memory.
2. Slide the protective cover over the keyboard.
3. Holding the calculator upright, push down on the battery cover latch, and then remove the cover.
4. Remove all four discharged AAA batteries.
5. Install four new AAA alkaline batteries, arranged according to the polarity (+ and -) diagram inside the battery compartment.

6. Replace the battery cover by inserting the two prongs into the two slots at the bottom of the battery compartment, and then push the cover until the latch snaps closed.

To replace the lithium backup battery, remove the battery cover and unscrew the tiny screw holding the BACK UP BATTERY cover in place.

Remove the old battery and install a new CR1616 or CR1620 battery, positive (+) side up. Replace the cover and the screw.

Replacing the Alkaline Batteries in the TI-92 Plus

\section*{Replacing the} Lithium Battery in the TI-92 Plus
1. If the TI-92 Plus is on, turn it off (press 2nd [0FF]) to avoid loss of information stored in memory.
2. Holding the TI-92 Plus unit upright, slide the latch on the top of the unit to the left unlocked position; slide the rear cover down about one-eighth inch and remove it from the main unit.

3. Remove all four discharged AA batteries.
4. Install four new AA batteries as shown on the polarity diagram located in the battery compartment.

5. Replace the rear cover, and slide the latch on the top of the TI-92 Plus to the locked position to lock the cover back in place.
6. Turn the TI-92 Plus on, and adjust the display contrast, if necessary.

To replace the lithium backup battery, remove the back cover from the unit and unscrew the tiny screw holding the lithium battery cover in place.

Remove the old battery and install a new CR2032, positive (+) side up. Replace the cover and the screw.

If you have difficulty operating the TI-89 / TI-92 Plus, the following suggestions may help you correct the problem.

\section*{Suggestions}

Note: Correcting a "lock up" will reset your TI-89 / TI-92 Plus and clear its memory.
\begin{tabular}{|c|c|}
\hline If: & Suggested action: \\
\hline You cannot see anything on the display. & Press \(\square\) to darken or \(\square \square\) to lighten the display contrast. \\
\hline The BATT indicator is displayed. & Replace the batteries. If BATT is displayed in reverse text (相而), replace the batteries as soon as possible. \\
\hline The BUSY indicator is displayed. & A calculation is in progress. If you want to stop the calculation, press 0 N . \\
\hline The PAUSE indicator is displayed. & A graph or program is paused and the TI-89 / TI-92 Plus is waiting for input; press ENTER. \\
\hline An error message is displayed. & Refer to Appendix B for a list of error messages. Press ESC to clear. \\
\hline The TI-89 / TI-92 Plus does not appear to be working properly. & \begin{tabular}{l}
Press ESC several times to exit any menu or dialog box and to return the cursor to the entry line.
\(\qquad\) \\
Be sure that the batteries are installed properly and that they are fresh.
\end{tabular} \\
\hline
\end{tabular}

The TI-89 appears to be "locked up" and will not respond to keyboard input.
1. Remove one of the four AAA batteries.
2. Press and hold \(-(\square)\) and \(\square\) as reinstall the battery.
3. Continue holding \((-)\) and \(\square\) for five seconds before releasing.

The TI-92 Plus appears to be "locked up" and will not respond to keyboard input.

Press and hold 2nd and ©. Then press and release 0 N .
- or -

If 2nd © and ON do not correct the problem:
1. Remove one of the four AA batteries.
2. Press and hold \(-\square\) and as you reinstall the battery.
3. Continue holding \((-)\) and \(\square\) for five seconds before releasing.

\section*{Support and Service Information}

For additional information about TI support, service, and products, please see below.

\section*{For General Information}

\section*{For Technical} Questions

For Product (hardware) Service
\begin{tabular}{ll} 
E-mail: & ti-cares@ti.com \\
Phone: & \(\mathbf{1 - 8 0 0 - T I - C A R E S ~ ( 1 - 8 0 0 - 8 4 2 - 2 7 3 7 ) ~}\) \\
& For U.S., Canada, Mexico, Puerto Rico, and \\
& Virgin Islands only \\
Home Page: & education.ti.com
\end{tabular}

Phone: 1-972-917-8324

Customers in the U.S., Canada, Mexico, Puerto Rico and Virgin Islands: Always contact Texas Instruments Customer Support before returning a product for service.

All other customers: Refer to the leaflet enclosed with this product (hardware) or contact your local Texas Instruments retailer/distributor.

See the information below concerning the warranty for your TI-89 / TI-92 Plus.

One-Year Limited Warranty for Commercial Electronic Product
This Texas Instruments ("TI") electronic product warranty extends only to the original purchaser and user of the product.
Warranty Duration. This TI electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This TI electronic product is warranted against defective materials and construction. THIS WARRANTY IS
VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.

Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.

Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality (at TI's option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."

Copyright. The software and any documentation supplied with this product are protected by copyright.

Australia \& New Zealand Customers only

\section*{One-Year Limited Warranty for Commercial Electronic Product}

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.

Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.

Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. This warranty is void if the product has been damaged by accident or unreasonable use, neglect, improper service, or other causes not arising out of defects in materials or construction.

Warranty Disclaimers. Any implied warranties arising out of this sale, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, are limited in duration to the above one-year period. Texas Instruments shall not be liable for loss of use of the product or other incidental or consequential costs, expenses, or damages incurred by the consumer or any other user.

Some jurisdictions do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.

Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from jurisdiction to jurisdiction.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a new or reconditioned model of an equivalent quality (at TI's option) when the product is returned to the original point of purchase. The repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than your cost to return the product, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value if you mail it.

Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."

Copyright. The software and any documentation supplied with this product are protected by copyright.

All Other Customers
For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

\section*{Programmer's Guide}

setMode( ) and getMode( ) ..... 584
setGraph( ) ..... 587
setTable() ..... 589

The parameter/mode strings used in the setMode( ), getMode( ), setGraph( ), and setTable( ) functions do not translate into other languages when used in a program. For example, when you write a program in the French Language mode then switch to the Italian Language mode, the program will produce an error. To avoid this error, you must substitute digits for the alpha characters. These digits operate in all languages. This appendix contains the digit substitutions for these strings.

The following examples show how to substitute digits in the setMode( ) function.

Example 1: A program using alpha parameter/mode strings:
setMode("Graph","Sequence")

Example 2: The same program, substituting digits for those strings:
setMode("1","4")
\begin{tabular}{|c|c|}
\hline Parameter/Mode Setting & Strings \\
\hline ALL & 0 \\
\hline Graph & 1 \\
\hline FUNCTION & 1 \\
\hline PARAMETRIC & 2 \\
\hline POLAR & 3 \\
\hline SEQUENCE & 4 \\
\hline 3D & 5 \\
\hline DIFF EQUATIONS & 6 \\
\hline DisplayDigits & 2 \\
\hline FIX 0 & 1 \\
\hline FIX 1 & 2 \\
\hline FIX 2 & 3 \\
\hline FIX 3 & 4 \\
\hline FIX 4 & 5 \\
\hline FIX 5 & 6 \\
\hline FIX 6 & 7 \\
\hline FIX 7 & 8 \\
\hline FIX 8 & 9 \\
\hline FIX 9 & 10 \\
\hline FIX 10 & 11 \\
\hline FIX 11 & 12 \\
\hline FIX 12 & 13 \\
\hline FLOAT & 14 \\
\hline FLOAT 1 & 15 \\
\hline FLOAT 2 & 16 \\
\hline FLOAT 3 & 17 \\
\hline FLOAT 4 & 18 \\
\hline FLOAT 5 & 19 \\
\hline FLOAT 6 & 20 \\
\hline FLOAT 7 & 21 \\
\hline FLOAT 8 & 22 \\
\hline FLOAT 9 & 23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter/Mode Setting & Strings \\
\hline FLOAT 10 & 24 \\
\hline FLOAT 11 & 25 \\
\hline FLOAT 12 & 26 \\
\hline Angle & 3 \\
\hline RADIAN & 1 \\
\hline DEGREE & 2 \\
\hline Exponential Format & 4 \\
\hline NORMAL & 1 \\
\hline SCIENTIFIC & 2 \\
\hline ENGINEERING & 3 \\
\hline Complex Format & 5 \\
\hline REAL & 1 \\
\hline RECTANGULAR & 2 \\
\hline POLAR & 3 \\
\hline Vector Format & 6 \\
\hline RECTANGULAR & 1 \\
\hline CYLINDRICAL & 2 \\
\hline SPHERICAL & 3 \\
\hline Pretty Print & 7 \\
\hline OFF & 1 \\
\hline ON & 2 \\
\hline SplitScreen & 8 \\
\hline FULL & 1 \\
\hline TOP-BOTTOM & 2 \\
\hline LEFT-RIGHT & 3 \\
\hline \begin{tabular}{l}
Split1App \\
(applications are not numbered)
\end{tabular} & 9 \\
\hline \begin{tabular}{l}
Split2App \\
(applications are not numbered)
\end{tabular} & 10 \\
\hline Number of Graphs & 11 \\
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline
\end{tabular}
\begin{tabular}{lc}
\hline Parameter/Mode Setting & Strings \\
\hline Graph 2 & 12 \\
FUNCTION & 1 \\
PARAMETRIC & 2 \\
POLAR & 3 \\
SEQUENCE & 4 \\
3D & 5 \\
DIFF_EQUATIONS & 6 \\
\hline Split Screen Ratio & 13 \\
1:1 & 1 \\
\(1: 2\) & 2 \\
\(2: 1\) & 3 \\
\hline Exact/Approx & 14 \\
AUTO & 1 \\
EXACT & 2 \\
APPROXIMATE & 3 \\
\hline Base & 15 \\
DEC & 1 \\
HEX & 2 \\
BIN & 3
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter/Mode Setting & Strings \\
\hline Coordinates & 1 \\
\hline RECT & 1 \\
\hline POLAR & 2 \\
\hline OFF & 3 \\
\hline Graph Order & 2 \\
\hline SEQ & 1 \\
\hline SIMUL & 2 \\
\hline Grid & 3 \\
\hline OFF & 1 \\
\hline ON & 2 \\
\hline Axes & 4 \\
\hline \multicolumn{2}{|l|}{In 3D Mode:} \\
\hline OFF & 1 \\
\hline AXES & 2 \\
\hline BOX & 3 \\
\hline \multicolumn{2}{|l|}{Not in 3D Mode:} \\
\hline OFF & 1 \\
\hline ON & 2 \\
\hline Leading Cursor & 5 \\
\hline OFF & 1 \\
\hline ON & 2 \\
\hline Labels & 6 \\
\hline OFF & 1 \\
\hline ON & 1 \\
\hline Seq Axes & 7 \\
\hline TIME & 1 \\
\hline WEB & 2 \\
\hline Custom & 3 \\
\hline Solution Method & 8 \\
\hline RK & 1 \\
\hline EULER & 2 \\
\hline
\end{tabular}
\begin{tabular}{lc}
\hline Parameter/Mode Setting & Strings \\
\hline Fields & 9 \\
SLPFLD & 1 \\
DIRFLD & 2 \\
FLDOFF & 3 \\
\hline DE Axes & 10 \\
TIME & 1 \\
Y1-VS-Y2 & 2 \\
T-VS-Y' & 3 \\
Y-VS-Y' & 4 \\
Y1-VS-Y2' & 5 \\
Y1'-VS-Y2' & 6 \\
\hline XR Style & 11 \\
WIRE FRAME & 1 \\
HIDDEN SRUFACE & 2 \\
CONTOUR LEVELS & 3 \\
WIRE AND CONTOUR & 4 \\
IMPLICIT PLOT & 5
\end{tabular}
\begin{tabular}{lc}
\hline Parameter/Mode Setting & Strings \\
\hline Graph <->Table & 1 \\
OFF & 1 \\
ON & 2 \\
\hline Independent & 2 \\
AUTO & 1 \\
ASK & 2 \\
\hline Axes & 4
\end{tabular}

Commands and functions are bold. Special symbols are presented at the beginning of the index.

\section*{Symbols}

E, exponent, 441
-Bin, display as binary, 345, 417
Cylind, display as cylindrical vector, 429
PDD, display as decimal angle, 432
DDec, display as decimal integer, 345 , 432
DDMS, display as degree/minute/second, 438
ff(x)dx (graph math tool), 122, 124
>Hex, display as hexadecimal, 345,456
\(\Delta\) list( ) , list difference, 463
emax window variable, 137
\(\theta\) min window variable, 137
PPolar, display as polar vector, 480
Rect, display as rectangular vector, 489
Sphere, display as spherical vector, 506
\(\theta\) step window variable, 137
\(\Delta t b l\), table increment, 224
\(\Delta t m p \operatorname{Cnv}()\), temperature-range conversion, 86,514
\(\Delta \mathrm{X}\) window variable, 119, 566
\(\Delta y\) window variable, 119, 566
!, factorial, 8 531. inside front cover, inside back cover
", second notation, 536

ח( ), product, 75, 533
\(\sqrt{ }()\), square root, 533
\(\Sigma(\) ) , sum, 75,533
\(\neq, /=\), not equal, 294, 529, 1
\(\leq,<=\), less than or equal, 294, 530. inside
front cover, inside back cover
\(\geq,>=\), greater than or equal, 294, 530. inside front cover, inside back cover
\(\angle\), angle, 535
๑, comment, 282, 539 inside front cover, inside back cover
- convert, 85,537
\({ }^{\circ}\), degree notation, 400, 535, 536
/, divide, 527
\#, indirection, 293, 534, 569. inside front cover, inside back cover
\(\infty\), infinity, 80
*, multiply, 527
-, negate, 25 528
\({ }^{r}\), radian, 535
\(\rightarrow\), store, 289539
-, subtract, 526
\({ }^{\top}\), transpose, 509
\%, percent, 528
\&, append, 293 532. inside front cover, inside back cover
', minute notation, 536
', prime, 536
+, add, 526
./, dot division, 531
.*, dot multiplication, 531
.-, dot subtraction, 531
.+, dot addition, 530
.^, dot power, 531
<, less than, 294: 529
<<...>>, insufficient display memory, 103
=, equal, 294, 529
>, greater than, 294, 530
@, arbitrary integer, 80 inside front cover, inside back cover
^, power, 534, 569
_, underscore, 536
І, with, 1058 60 67 538, 569
0b, binary indicator, 539
Oh, hexadecimal indicator, 539
10^( ), power of ten, 537
\(\mathbf{x}^{-1}\), reciprocal, 538

3D graphing, 153-173. inside front cover, inside back cover
animation, 154,164 inside front cover, inside back cover
CONTOUR LEVELS, 155, 166
HIDDEN SURFACE, 155: 166
WIRE AND CONTOUR, 155, 166
WIRE FRAME, 155, 166

\section*{A}
abs( ), absolute value, 402, 414
accented characters, \(21,324,325,326\). inside
back cover
accuracy, 566
activities. See examples, previews, activities
add,,+ 526
Algebra menu, 70,72
algebra operations, 410
and, Boolean and, \(67,294,347,414\)
AndPic, and picture, 306, 415
Angle mode, 41, 108, 551

\section*{A (continued)}
angle( ), angle, 415
angle, \(\angle, 535\)
angle, angle( ), 415
ans( ), last answer, 50, 416
APD (Automatic Power Down), 14
append, \&, 293, 532. inside front cover, inside back cover
APPLICATIONS menu, 34.38
approx ( ), approximate, 70,416
approximate answer. inside front cover, inside back cover
Approximate mode, 29, 41, 54, 62, 553
approximate, approx(), 70416
arbitrary integer, @, 80 inside front cover, inside back cover
Arc (graph math tool), 122, 125, 138
arc length, arcLen(), 75416
arccosine, \(\boldsymbol{\operatorname { c o s }}^{-1}(), 424\)
Archive, archive variables, 289, 361, 416
arcLen( ), arc length, 75, 416
arcsine, \(\boldsymbol{\operatorname { s i n }}^{-1}(), 501\)
arctangent, \(\boldsymbol{t a n}^{-1}(), 511\)
assembly language, \(313,314,444\)
augment( ), augment/concatenate, 388, 417
augment/concatenate, augment( ), 388, 417
Auto mode, 29, 41, 54, 63, 553
automatic simplification, 64
automatic tables, 226
auto-paste, 52, 95
\(\operatorname{avgRC}()\), average rate of change, 417
axes (sequence), CUSTOM, 146
Axes graph format, 114, 181, 190, 191
Axes settings, 162, 165

\section*{B}
base code, 379, 374, 375, 376
Base mode, 42, 554
BATT message, 54, 576, 579
batteries, \(2,3,14,15,54,576,577,578,579\)
binary
display, \Bin, 345, 417
indicator, 0b, 539
rotate, rotate( ), 348
shift, shift( ), 348
BIdData, build data, 193, 289, 418
Bogacki-Shampine formula, 573
Boolean
and, and, 67 294, 347, 414
exclusive or, xor, 294, 347, 518
not, not, 294. 473
or, or, 294. 347, 475
Box Plot, 266
build
data, BIdData, 193. 289, 418
table, Table, 305, 510
web, Build Web, 146
Build Web, build web, 146, 147
BUSY indicator, 54, 115, 278

\section*{C}

Calc menu, 75
Calculator-Based Laboratory. See CBL 2/CBL
Calculator-Based Ranger. See CBR
calculus operations, 410
CATALOG menu, 44
CBL 2/CBL
activity, 399
get/return, Get, 451
programs, 309, 399
send list variable, Send, 494
statistical data, 272, 273
CBR
get/return, Get, 451
programs, 309, 399
send list variable, Send, 494
statistical data, 272, 273
ceiling( ), ceiling, 389, 418
certificate, 369, 373, 374, 375, 376, 377, 378
cFactor( ), complex factor, \({ }^{7} 1,406,419,564\)
CHAR (character) menu, 34
char( ), character string, 293, 419, 555
characters
accented, 21, 324 325 326. inside back cover
codes, 555
Greek, 325, 326 327. inside front cover, inside back cover
menu, 34
numeric code, ord( ), 293: 476:555
special, 21, 324, 325
string, char( ), 293, 419, 555
symbols, 21,325
uppercase/lowercase, 21, 319. inside front cover
circle
drawing, 214
graphing, 106
Circle, draw circle, 308, 420
Circular definition error, 289
Clean Up menu, 43
clear
drawing, CIrDraw, 213 307, 420
error, CIrErr, 310.420
graph, CIrGraph, 205, 305, 340, 420
home, CIrHome, 421
I/O, CIrIO, 279. 302. 421
clipboard, 95, 96, 321
CIrDraw, clear drawing, 213, 307, 420
CIrErr, clear error, 310, 420
CIrGraph, clear graph, 205, 305, 340, 420
CIrHome, clear home, 421
CIrIO, clear I/O, 279, 302, 421
cobweb plot. See web plots

\section*{\(C\) (continued)}
coIDim( ), matrix column dimension, 421
colNorm( ), matrix column norm, 421
combinations, \(\mathrm{nCr}(\mathrm{)}, 470\)
comDenom( ), common denominator, 70,71 74421
command mark, 328
command scripts, \(94,328,329\)
activity, 392
commands, 409-540
comment, ©, 282, 539. inside front cover, inside back cover
common denominator, comDenom( ), \(70 \quad 71\) 74421
complex
conjugate, conj( ),422
factor, cFactor( ), 71 406, 419, 564
mode, Complex Format, 41551
modulus surface, 170
numbers, 8,563-565
solve, cSolve( ), 61 425,564
tables, 227
zeros, cZeros( ), 61 71 430,564
Complex Format mode, 41, 551
Complex menu, 71
conj( ), complex conjugate, 422
Constant Memory, 14
constants, 81 -92 83
predefined, 89, 90. 91
contour plots, 167, 168, 169
DrwCtour, draw contour, 168
contour-level graphing, 155, 166, 572
contrast, adjusting, 4 , 15 inside front cover, inside back cover
convert, 1, 85537
Coordinates graph format, 114, 137
copy, 95 96, 321. inside back cover
CopyVar, copy variable, 289, 358,422
\(\boldsymbol{\operatorname { c o s }}^{-1}()\), arccosine, 424
\(\cos ()\), cosine, 423
\(\cosh ^{-1}()\), hyperbolic arccosine, 424
\(\cosh ()\), hyperbolic cosine, 424
crossP( ), cross product, 425
cSolve( ), complex solve, 31, 425, 564
CubicReg, cubic regression, 261, 428,570
cumSum( ), cumulative sum, 250, 428
Current folder mode, 41, 550
cursor
3D graph, 160
free-moving, 116, !.32, |138, 145, 159,||183
hidden surface, 161
moving, 16, 17 32 inside front cover, inside
back cover
off the curve, 161
trace, 117
CustmOff, custom toolbar off, 37,428
CustmOn, custom toolbar on, 37, 428

CUSTOM axes (sequence), 146
CUSTOM custom plots, 142, 190, 191
CUSTOM menu, 34, 37
custom plots, CUSTOM, 142: 190: 191
custom toolbar. See toolbar
Custom Units mode, 42, 554
Custom, define toolbar, 302, 429
cut, 95 321. inside back cover
Cycle, cycle, 429
CyclePic, cycle picture, 219, 306, 429
cylindrical vector display, Cylind, 429
cZeros( ), complex zeros, 61, 71,430,564

\section*{D}
\(d\) ( ), first derivative, 1066
darker/lighter, 4,15 . inside front cover, inside back cover
data (new), NewData, 471
data filtering, 396
data plots, 254
Data/Matrix Editor, 203: 237-252. See also
matrices
Auto-calculate, 249
cell width, 245
column header, 248, 249, 250
copying, 252
creating, 241,242
data variable, 240,241, 242
deleting, 246, 247
filling, 244
inserting, 246, 247
list variable, 239, 241, 242
locking, 248
matrix variable, 239, 240, 241, 242
new, NewData, 240, 249, 289
scrolling, 244
shift, shift( ), 250, 499
sorting columns, 251
statistical plots, 264
values, 243
variables, 240, 241, 242
decimal
angle display, DD, 432
integer display, Dec, 345, 432
define toolbar, Toolbar, 302. 515
Define, define, 77, 97, 110, 130, 142, 157, 179 .
196, 204, 207, 287, 289, 305, 384, 433
degree notation, \({ }^{\circ}\), 400, 535,536
degree/minute/second display, DMS, 438
deleting
folder, DelFold, 102, 289, 434
variable, DelVar, 60 77| 102. 289, 291, 434
DelFold, delete folder, 102, 289, 434
DelVar, delete variable, 30, 77, 102, 289, 291,
434
denominator, 421

\section*{D (continued)}
derivatives, 10
first derivative, \(d\) ( ), \(10|66| 75|76| 432\)
numeric derivative, nDeriv( ), 75470
Derivatives (graph math tool), 122, 124, 132
138
deSolve( ), solution, 75, 196, 434
\(\operatorname{det}()\), matrix determinant, 436
diag( ), matrix diagonal, 436
dialog boxes, 35
Dialog, define dialog box, 302, 437
differential equations
DIRFLD, direction field, 180, 185, 198
first order, 186, 196
FLDOFF, field off, 180, 185, 199
graphing, 175-199
initial conditions, 184
second order, 187, 196
SLPFLD, slope field, \(180,185,197\)
solution methods, 180, 193, 573
third order, 189
troubleshooting, 197
diftol window variable, 182
\(\operatorname{dim}()\), dimension, 293, 437
DIRFLD, direction field, 180, 185, 198
Disp, display I/O screen, 277, 283, 302, 310, 437, 555
DispG, display graph, 302, 305, 438
DispHome, display Home screen, 302, 438
display
graph, DispG, 302 305:438
Home screen, DispHome, 302. 438
I/O screen, Disp, 277, 283, 302, 310, 437, 555
table, DispTbl, 302, 305, 438
display as
binary, PBin, 345.417
cylindrical vector, Cylind, 429
decimal angle, \(\boldsymbol{D D D}, 432\)
decimal integer, \(\mathbf{P D e c}, 345,432\)
degree/minute/second, „DMS, 438
hexadecimal, \(\boldsymbol{\bullet H e x}, 345.456\)
polar vector, \(\boldsymbol{P}\) Polar, 480
rectangular vector, \(\boldsymbol{R}\) Rect, 489
spherical vector, Sphere, 506
Display Digits mode, 31, 41, 550
DispTbI, display table, 302, 305, 438
Distance (graph math tool), 122, 125, 132, 138
divide, /, 527
domain constraints, 69
dot
addition, .+ 530
division, ./, 531
multiplication, .*, 531
power, .^, 531
product, \(\operatorname{dotP}(), 439\)
subtraction, --, 531
\(\operatorname{dotP}()\), dot product, 439

DrawFunc, draw function, 212,308,439
drawings and drawing
circle, Circle, 308, 420
circles, 214
clearing, CIrDraw, 307.420
contour, DrwCtour, 308, 441
erasing, 214
freehand, 213
function, DrawFunc, 212, 308. 439
horizontal line, LineHorz, 308. 461
inverse, DrawInv, 212, 308, 439
line, Line, 308. 461
lines, 214, 215
on a graph, 307
parametric, DrawParm, 212, 308,439
Pencil, 213
polar, DrawPol, 212, 308, 440
slope, DrawSIp, 215, 308, 440
tangent line, LineTan, 308. 462
vertical line, LineVert, 308, 462
DrawInv, draw inverse, 212, 308, 439
DrawParm, draw parametric, 212, 308, 439
DrawPol, draw polar, 212, 308, 440
DrawSIp, draw slope, 215, 308, 440
DropDown, drop-down menu, 302, 1440
DrwCtour, draw contour, 168, 308, 441
dtime window variable, 182

\section*{\(E\)}
\(e\), natural log base, 80
\(e^{\wedge}(), e\) to a power, 441
editing, 32
eigVc( ), eigenvector, 442
eigVI( ), eigenvalue, 442
Else, else, 296, 456
Elself, else if, 207, 296, 442
end
custom, EndCustm, 302. 429
dialog, EndDlog, 302, 437
for, EndFor, 283, 297, 450
function, EndFunc, 207, 286, 451
if, Endlf, 283, 295, 456
loop, EndLoop, 299, 466
program, EndPrgm, 276. 287. 481
toolbar, EndTBar, 302, 515
try, EndTry, 310, 515
while, EndWhile, 298 518
EndCustm, end custom, 302, 429
EndDlog, end dialog, 302, 437
EndFor, end for, 283, 297, 450
EndFunc, end function, 207, 286, 451
Endlf, end if, 283, 295, 456
EndLoop, end loop, 299, 466
EndPrgm, end program, 276, 287, 481
EndTBar, end toolbar, 302, 515
EndTry, end try, 310, 515
EndWhile, end while, 298, 518

\section*{\(E\) (continued)}
entry( ), entry, 50, 443
EOS (Equation Operating System), 568
equal, \(=\), 294. 529
Equation Operating System (EOS), 568
equations, solving, 333-341
errors and troubleshooting, 579, 580
Circular definition, 289
clear error, CIrErr, 310, 420
Memory error, 364
messages, 542-549
Out-of-memory, 79
pass error, PassErr, 310,479
programs, 310
transmission, 369, 377
warnings, 549
Estep window variable, 182
Euler method, 180, 193
evaluate polynomial, polyEval( ), 480
exact( ), exact, 443
Exact/Approx mode, 29, 41, 54, 61, 62, 63, 553
examples, previews, activities
3D graphing, 154, 390
baseball, 400
CBL 2/CBL program, 399
complex factors, 406
complex modulus surface, 170
complex numbers, 8
complex zeroes, 402
constants, 82
converging web plots, 148
\(\cos (\mathrm{x})=\sin (\mathrm{x})\) activity, 389
cubic polynomial, 402
data filtering, 396
data/matrix editor, 238
decomposing a rational function, 394
derivatives, 10
differential equations, 176
diverging web plots, 148
expanding expressions, 9
factorial, 8
factoring polynomials, 9.72
Fibonacci sequence, 151
function graphing, 106
graphing functions, 11
implicit plots, 173
integrals, 10
memory management, 350, 351,352
number bases, 344
numeric solver, 334
oscillating web plots, 149
parametric graphing, 128, 400
path of a ball, 128
piecewise functions, 202
polar rose, 134
pole-corner problem, 384
population, 254-257
preditor-prey model, 150,191
prime factors, 8
programming, 276, 277, 311, 312
Pythagorean theorem, 384
quadratic formula, 386
rational factors, 406
real factors, 406
reducing expressions, 9
sampling, 407
second-order differential equation, 187, 196
sequence graphing, 140
solving linear equations, \(9,10,73\)
split screen, 232, 400
standard annuity, 404
statistics, \(254-257\)
symbolic manipulation, 58
tables, 222
text operations, 316
third-order differential equation, 189
time value of money, 405
trees and forest, 140
tutorial script with the text editor, 392
units of measurement, 82
variable management, \(350,351,352\)
exclusive or (Boolean), xor, 294. 347. 518
exclusive or picture, XorPic, 306:519
Exec, execute assembly language, 314, 444
execute program, Prgm, 276, 287, 481
Exit, exit, 444
exprlist( ), expression to list, 444
expand( ), expand, 7, 70, 72, 386, 402,445
exponent, \(\mathrm{E}, 441\)
Exponential Format mode, 31, 41, 551
expr() , string to expression, 292, 293, 301, 381, 446
ExpReg, exponential regession, 261, 446, 570
expressions, 26, |27, 32
expanding, 9
expression to list, exprlist( ), 444
reducing, 9
string to expression, expr( ), 292, 293, 301,
\[
381,446
\]

Extract menu, 71
eye \(\psi\) rotation window variable, \(158,162,163\)
eye \(\theta\) x-axis window variable, 158, 162
eye \(\phi\) z-axis window variable, 158, 162, 163

\section*{F}
factor( ), factor, 3, 7, 61, 70, 72, 387, 406, 447
factorial, !, 8, 531. inside front cover, inside back cover
factoring, 9.72
activity, 406
false message, 80
family of curves, 208, 209
Fibonacci sequence, 151
Field graph format, 180

\section*{F (continued)}
field off, FLDOFF, 180, 185, 199
field picture, fldpic, 183
Fill, matrix fill, 448
Flash applications, 4, 384579 353, 356. inside
front cover, inside back cover deleting, 369
Flash, upgrading product code, 373,374
FLDOFF, field off, 180, 185, 199
fldpic, field picture, 183
fldres window variable, 182
floor( ), floor, 389, 448
fMax( ), function maximum, 61, 75, 448
fMin( ), function minimum, 31, 75, 449
FnOff, function off, 111, 305, 449
FnOn, function on, 111, 305, 449
folders, 41, 100, 550
delete, DelFold, 102, 289, 434
deleting, 357
get/return, getFold( ), 453
locking/unlocking, 358
new, NewFold, 101, 289, 471
pasting name, 359
renaming, 358
setting, setFold( ), 101,300:495
transmitting, 367, 368
VAR-LINK, 102, 356, 357, 358
For, for, 283, 297, 450
format( ), format string, 293, 302, 450
FORMATS dialog box, 114, 155, 165, 166, 167,
171, 176, 245, 325. inside front cover, inside back cover
fpart( ), function part, 451
fractions, 70, 74, 394, 482
free-moving cursor, 116, 32, |38, 145, 159, 183
Frobenius norm, norm( ), 473
Func, program function, 207, 286, 451
functions, \(26409-540\)
delayed simplification, 66
graphing, \(105-126\)
maximum, fMax( ), 6175448
minimum, \(\mathbf{f M i n}(), 6175449\)
multistatement, 207
off, FnOff, 111, 305, 449
on, FnOn, 111. 305. 449
part, fpart( ), 451
program function, Func, 207, 286, 451
user-defined, 46 77 78 97-99 157, 205,
207, 285, 286, 433

\section*{G}

Garbage collection message, 362, 363
\(\operatorname{gcd}()\), greatest common divisor, 451
Get, get/return CBL/CBR value, 272, 309, 451
get/return
calculator, GetCalc, 309, 371,452

CBL/CBR value, Get, 272, 309, 451
configuration, getConfg( ), 300.452
denominator, getDenom( ), 71452
folder, getFold( ), 289, 300, 453
key, getKey( ), 301. 453, 556, 559
mode, getMode( ), 300, 453
number, getNum( ), 71 453
type, getType( ), 59454
units, getUnits( ), 300,454
GetCalc, get/return calculator, 309, 371, 452
getConfg( ), get/return configuration, 300,452
getDenom( ), get/return denominator, 71,452
getFold( ), get/return folder, 289, 300
getKey( ), get/return key, 301, 453, 556, 559
getMode( ), get/return mode, 300, 453
getNum( ), get/return number, 71,453
getType( ), get/return type, 59,454
getUnits( ), get/return units, 300, 454
global variables, 291
Goto, go to, 287, 296, 299, 455
Graph 2 mode, 41,553
Graph mode, 41, 54, 108, 130, 136, 142, 157, 179:550
Graph Order graph format, 114,180
Graph, graph, 110, 202, 205, 208, 305, 455
Graph<->Table, table-graph, 224
graphical user interface, GUI, 302
graphs and graphing
\(\mathrm{ff}(\mathrm{x}) \mathrm{dx}, 122,124\)
3D, 153-173
animation, 219
Arc, 122, 125, 138
clearing, CIrGraph, 205, 305, 340, 420
contour plots, 167,168, 169
coordinates, 11, 116 inside front cover, inside back cover
custom axes, 146
custom plots, 142, 190, 191
Derivatives, 122, 124, 132. 138
differential equations, 175-199
Distance, 122, 125, 132, 138
drawing, 213-216, 307
family of curves, 208, 209
formats, \(114,137,144,180\)
functions, \(105-126\)
functions off, FnOff, 305.449
functions on, FnOn, 305, 449
graph databases, 220
graph, Graph, 205, 305, 455
Home screen, 204, 205
implicit plots, \(171,172,173\)
independent variable, 204
Inflection, 122, 124
Intersection, 122, 123
inverse functions, 212
line styles, 112, 131, 136, 143, 157, 179
math functions, 122

\section*{G (continued)}
matrix data, 203
Maximum, 122, 123
Minimum, 11 122, 123
modes, 4154 108, 130, 136, 142, 157, 179 . 550
native independent variable, 204
nested functions, 206
operations, 410
overview, 107: 129, 135, 141, 156, 178
panning, 118
parametric, 127-132
pausing, 115
pictures, 217, 218
piecewise functions, 206
pixels, 566
polar, 133-138
programs, 305
QuickCenter, 118
recall graph database, RcIGDB, 306,488
selecting functions, \(111,131,143,179\)
sequence, \(139-151\)
setting, setGraph( ), 300,305,495
Shade, 122, 126
shading, Shade, 308,498
simultaneous graphs, 208
split screen, 209, 211, 233
store graph database, StoGDB, 306,507
style, Style, 305, 508
Tangent, 122, 125, 132, 138
text, 216
time plots, \(142,146,190,191\)
trace, Trace, 117, 305, 390, 398, 399, 402,
515
tracing, 11, 117, 118, 132, 138, 145, 159, 183
two-graph mode, 209, 210,233
Value, 122, 123, 132, 138, 145. 159. 183
viewing window, 113, 131, 137, 143, 144, 158
web plots, 142, 146, 147
window variables, \(113,131,137,143,144\). 158
\(\mathrm{Y}=\) editor, \(106,109,130,136,142,157,179\). 204
Zero, 122. 123
zoom, 119, 132, 138, 145, 159, 305
zoom factors, 119, 121
zoom Memory, 119, 121
greater than or equal, \(\geq,>=, 294,530\). inside
front cover, inside back cover
greater than, >, 294,530
greatest common divisor, \(\mathbf{g c d}(), 451\)
Greek characters, 325, 326, 327. inside front
cover, inside back cover
Grid graph format, 114
GUI, graphical user interface, 302

\section*{H}
hexadecimal
display, Hex, 345, 456
indicator, Oh, 539
hidden surface, 155. 161, 166
highlighting text, 32 320. inside front cover, inside back cover
Histogram, 267
history area, 6.23 329
Home screen, 6,23
hyperbolic
arccosine, \(\cosh ^{-1}\) ( ), 424
arcsine, sinh \(^{-1}(), 502\)
arctangent, \(\boldsymbol{t a n h}^{-1}(), 511\)
cosine, \(\cosh (), 424\)
sine, \(\sinh (), 502\)
tangent, \(\boldsymbol{\operatorname { t a n h }}(\mathrm{)}, 511\)

\section*{I}

ID list, 378, 379
ID number, 55, \(373,378,379\)
identity( ), identity matrix, 456
If, if, 207, 283, 295, 296, 456
imag( ), imaginary part, 457
implicit plots, \(171,172,173,572\)
implied multiplication, 26, 130
independent auto/ask, Independent AUTO/ASK, 224. 226. 229
indirection, \#, 293, 534, 569. inside front cover, inside back cover
infinity, \(\infty, 80\)
Inflection (graph math tool), 122, 124
initial conditions, 184
Input, input, 301, 305, 457
InputSt, input string, 292, 301, 371, 458
inString( ), within string, 293, 458
instructions, 26
insufficient display memory, <<...>>, 103
int( ), integer, 458
intDiv( ), integer divide, 346, 458
integer part, iPart( ), 140,459
integer, int( ), 458
integrate, \(\mathrm{J}\left(\mathrm{)}, \left\lvert\, \begin{array}{|l|l|l|l|l|l|l|l|}\hline 10 & 61 & 62 & 63 & 66 & 75 & 76 & 532 \\ \hline\end{array}\right.\right.\)
Intersection (graph math tool), 122, 123
inverse, \(\mathbf{x}^{-1}, 538\)
iPart( ), integer part, 140, 459
isPrime( ), prime test, 459
Item, menu item, 302, 303, 459

\section*{\(K\)}
keyboard, 16, 17
alpha (alpha) key, 18
- (diamond) key, 18
[2] (hand) key, 18
2nd (second) key, 18
1 (shift) key, 18
key codes, 301, 556-562
map, 324 325, inside front cover, inside back cover
shortcuts, 325, inside front cover, inside back cover

\section*{\(L\)}
lab reports, 330,331
label, Lbl, 287, 296, 299, 459
Labels graph format, 114
language, 4
Language mode, 42, 554
last answer, \(20 \quad 28 \quad 4951\)
last entry, 204950
LbI, label, 287, 296, 299, 459
Icm, least common multiple, 460
Leading Cursor graph format, 114
least common multiple, Icm, 460
left( ), left, 71, 293, 460
less than or equal, \(\leq,<=, 294,530\). inside front cover, inside back cover
less than, <, 294.529
lighter/darker, '4, 15. inside front cover, inside back cover
limit( ), limit, 66, 75. 76. 460
Line, draw line, 308, 461
linear regression, LinReg, 261, 462. 570
LineHorz, draw horizontal line, 308, 461
LineTan, draw tangent line, 308, 462
LineVert, draw vertical line, 308, 462
linking and transmitting, \(365-381.494\)
calculator to calculator, \(309,366,367,371\) 372
cancelling, 368
compatibility, 380, 381
errors, 369, 376, 377
Flash applications, 367, 370
folders, 367, 368, 369
get/return CBL/CBR value, Get, 272, 309, 451
incompatibility, 380, 381
program, 309, 371
send chat, SendChat, 309, 371
send list variable, Send, 309, 494
send to calculator, SendCalc, 309,371
variables, 367,368
LinReg, linear regression, 261, 462,570
list difference, \(\Delta\) list ( ), 463
listımat( ), list to matrix, 249, 463
lists. See also data/matrix editor
augment/concatenate, augment( ), 417
Auto-calculate, 249
column header, 248, 249, 250
copying, 252
creating, 241,242
cross product, crossP( ), 425
cumulative sum, cumSum( ), 250,428
deleting, 246, 247
difference, \(\Delta\) list( ), 463
dimension, \(\operatorname{dim}(), 437\)
dot product, \(\operatorname{dotP}(), 439\)
expression to list, exp)list( ), 444
inserting, 246, 247
list to matrix, listrmat( ), 249:463
locking, 248
matrix to list, mat>list( ), 467
maximum, \(\max (), 467\)
mid-string, mid( ), 468
minimum, \(\min (), 469\)
new data, NewData, 240, 249, 289:471
new, newList( ), 471
operations, 410
product, product( ),482
sort ascending, SortA, 506
sort descending, SortD, 506
sorting columns, 251
summation, sum( ), 492, 508
table variables, 230
variables, 239, 241, 242
In( ), natural logarithm, 463
LnReg, logarithmic regression, 261, 464, 571
Local, local variable, 286, 288, 289, 290, 464
localization, 4
Lock, lock variable, 289, 464
\(\log (), \operatorname{logarithm}, 465\)
logarithms, 463, 465
Logistic, logistic regression, 261, 465,571
Loop, loop, 299, 466
LU, matrix lower-upper decomposition, 466

\section*{M}
matylist( ), matrix to list, 467
MATH menu, 34, 122
math operations, 411
matrices. See also data/matrix editor
augment/concatenate, augment( ), 388,417
Auto-calculate, 249
column dimension, colDim( ), 421
column header, 248, 249, 250
column norm, colNorm( ), 421
copying, 252
creating, 241,242
cumulative sum, cumSum( ), 250,428
data from a graph, 203
deleting, 246, 247
determinant, \(\operatorname{det}(), 436\)
diagonal, diag( ),436

\section*{M (continued)}
dimension, \(\operatorname{dim}(), 437\)
dot addition, .+, 530
dot division, ./,531
dot multiplication, .*,531
dot power, .^, 531
dot subtraction, .-, 531
eigenvalue, eigVI( ), 442
eigenvector, eigVc( ), 442
filling, Fill, 448
identity, identity( ) 456
inserting, 246, 247
list to matrix, list>mat( ),463
locking, 248
lower-upper decomposition, LU, 466
matrix to list, mat)list( ), 467
maximum, \(\max (), 467\)
minimum, \(\min (), 469\)
new data, NewData, 289, 471
new, newMat( ), 471
operations, 411
pretty print, 240
product, product( ), 482
QR factorization, QR, 485
random, randMat( ), 388. 488
reduced row echelon form, rref( ), 73388 , 493
row addition, rowAdd( ), 492
row dimension, rowDim( ), 492
row echelon form, ref( ), 490
row multiplication and addition,
mRowAdd( ), 470
row norm, rowNorm( ), 493
row operation, mRow( ), 469
row swap, rowSwap( ), 493
sorting columns, 251
submatrix, subMat( ), 508
summation, sum( ), 492,508
transpose, \({ }^{\top}, 509\)
variables, 239, 240, 241, 242
matrix to list, mat>list( ), 467
\(\max ()\), maximum, 467
Maximum (graph math tool), 122, 123
mean( ), mean, 467
median( ), median, 467
MedMed, medium-medium line regression, 262,
468,571
memory, 349-364
archiving, Archive, 289, 361, 416
checking, 353, 354
insufficient display memory, <<...>>, 103
resetting, 353, 354
unarchive, Unarchiv, 289, 361. 516
VAR-LINK screen, 355, 356, 357, 358, 361
Memory (zoom), 119, 121
Memory error, 364
menu item, Item, 302, 303, 459
menus, 34
Algebra, 7072
APPLICATIONS, 3438
Calc, 75
CATALOG, 44
CHAR (character), 34
Clean Up, 43
Complex, 71
CUSTOM, 3437303,304
Extract, 71
MATH, 34122
toolbar, 34,37
Trig, 71
using, 34
messages. See also errors and troubleshooting
BATT, 54576.579
false, 80
Garbage collection, 362,363
insufficient display memory, <<...>>, 103
true, 80
undef (undefined), 80
mid( ), mid-string, 293, 468
\(\min ()\), minimum, 469
Minimum (graph math tool), 11, 122, 123
minute notation, ', 536
\(\bmod ()\), modulo, 469
modes, 40 550-454
Angle, 41 108. 551
Approximate, 29 41 5462553
Auto, 29415463553
Base, 42554
Complex Format, 41551
Current folder, \(41 \mid 550\)
Custom Units, 42554
Display Digits, 31 41 550
Exact/Approx, 29 41 54 54 \(61.62 . \mid 63.553\)
Exponential Format, 31|41 551
get/return, getMode( ), 300, 453
Graph, 4154 108, 130, 136, 142, 157, 179, 550
Graph 2, 41553
Language, 42554
Number of Graphs, 41553
Pretty Print, 2941552
setting in programs, 300
setting, setMode( ), 300, 305,496
Split App, 41553
Split Screen, 41552
Unit System, 42 82 554
Vector Format, 41 552
modulo, mod( ), 469
MoveVar, move variable, 289, 469
mRow( ), matrix row operation, 469
mRowAdd( ), matrix row multiplication and addition, 470
multiply, *,527
multistatement functions, 207

\section*{\(N\)}
natural log base, \(e, 80\)
natural logarithm, \(\ln (), 463\)
ncontour window variable, 158
nCr() , combinations, 470
ncurves window variable, 182
nDeriv( ), numeric derivative, 75, 470
negate, -, 25528
new
data, NewData, 240, 249, 273, 289, 471
folder, NewFold, 101, 289, 471
list, newList( ), 471
matrix, newMat( ),471
picture, NewPic, 289, 306. 471
plot, NewPlot, 266, 305. 472
problem, NewProb, 43472
NewData, new data, 240, 249, 273, 289, 471
NewFold, new folder, 101, 289, 471
newList( ), new list, 471
newMat( ), new matrix, 471
NewPic, new picture, 289, 306, 471
NewPlot, new plot, 266, 305, 472
NewProb, new problem, 43,472
nint( ), numeric integral, 75, 472
nmax window variable, 143,144
nmin window variable, 143,144
norm( ), Frobenius norm, 473
not (Boolean), not, 294. 473
not equal, \(\neq\), /=, 294. 529. 1
not, Boolean not, 294, 473
\(n \operatorname{Pr}()\), permutations, 474
nSolve( ), numeric solution, 70, 474
number bases, \(343-348\)
Boolean operations, 347
conversions, 345
math operations, 346
Number of Graphs mode, 41, 553
numbers
complex, 563-565
irrational, 61, 62
negative, 25
rational, 61, 62, 63
numeric
derivative, nDeriv( ), 75470
integral, nInt( ), 75472
solution, nSolve( ), 70474
numeric solver, \(333-341\)
equations, 335, 336
graphing, 340
split screens, 340
variables, 336

\section*{0}
on/off, 4 7, 14 inside front cover, inside back cover
OneVar, one-variable statistics, 261, 475
operations, \(409-540\)
operators, 26
or, Boolean or, 294, 347, 475
ord( ), numeric character code, 293, 476,555
Out-of-memory error, 79
Output, output, 302, 476

\section*{\(P\)}
P)Rx( ), rectangular \(x\) coordinate, 476

P>Ry( ), rectangular y coordinate, 476
panning, 118
parallelepiped activity, 390
parametric graphing, 127-132
parentheses, brackets, and braces, 27, 568
part( ), part, 477
PassErr, pass error, 310,479
paste, 95 96, 321. inside back cover
PAUSE indicator, 54
Pause, pause, 302, 310, 479
percent, \%, 528
permutations, \(\operatorname{nPr}(), 474\)
pictures, 217, 218
and, AndPic, 306. 415
cycle, CyclePic,306,429
deleting, 218
exclusive or, XorPic, 306. 519
new, NewPic, 289, 306, 471
recall, RcIPic, 306. 489
replace, RplcPic, 306. 493
storing, StoPic, 306, 507
piecewise functions, 202,206
pixel
change, PxIChg, 307,483
circle, PxICrcl, 308, 483
horizontal line, PxIHorz, 308, 484
line, PxILine, 216, 308, 484
off, PxIOff, 307, 484
on, PxIOn, 216, 307, 484
test, pxITest( ), 307, 484
text, PxIText, 307, 485
vertical line, PxIVert, 308, 485
plots
clearing, 265
data, 254-257
new, NewPlot, 266. 305. 472
off, PlotsOff, 111, 305, 480
on, PlotsOn, 111, 305, 480
selecting, 265, 268
tracing, 269
viewing window, 269
Y= Editor, 268, 269
PlotsOff, plots off, 111, 305, 480
PlotsOn, plots on, 111, 305, 480
plotStep window variable, 143, 144
plotStrt window variable, 143, 144

\section*{\(P\) (continued)}
point
change, PtChg, 307,482
off, PtOff, 307, 483
on, PtOn, 307. 483
test, ptTest( ), 307, 483
text, PtText, 307:483
polar
coordinate, R>P日( ),487
coordinate, \(\mathrm{R}>\operatorname{Pr}(\) ), 487
graphing, \(133-138\)
vector display, Polar, 480
polyEval( ), evaluate polynomial, 480
polynomials, 9, 72, 76
activity, 402
evaluate, polyEval( ), 480
random, randPoly( ), 488
PopUp, popup menu, 301, 481
power of ten, \(\mathbf{1 0}^{\wedge}(), 537\)
power, ^,534,569
PowerReg, power regression, 262, 481,571
pretty print, 6, 11,23, 29
Pretty Print mode, 29, 41, 552
previews. See examples, previews, activities
Prgm, execute program, 276, 287, 481
prime number test, isPrime( ), 459
prime numbers, 8
prime, ',536
problems (new), NewProb, 43472
problems in operation. See errors and troubleshooting
product code, upgrading, 373, 374
product ID, 55
product( ), product, 482
product, П( ), 75533
programs and programming, \(275-314\)
arguments, 284
assembly language, 313, 314
branching, 283, 295, 296
calling another program, 287
CBL 2/CBL, 309, 399
CBR, 309, 399
clear error, CIrErr, 310, 420
clear graph, CIrGraph, 205, 305,420
clear home, ClrHome, 421
clear I/O, CIrIO, 279, 302, 421
clear table, CIrTable, 421
comment, ©, 282, 539
conditional tests, 294
copying, 281
custom toolbar off, CustmOff, 37 302, 428
custom toolbar on, CustmOn, 37 302, 428
debugging, 310
define dialog box Dialog, 302, 437
define toolbar, Custom, 302, 429
define toolbar, Toolbar, 302. 515
define, Define, 287, 305, 384, 433
deleting, 281
display graph, DispG, 302, 305, 438
display Home screen, DispHome, 302, 438
display I/O screen, Disp, 277: 283, 302, 310,
437, 555
display table, DispTbI, 302, 305, 438
drop-down menu, DropDown, 302, 440
else if, Elself, 207, 296,442
else, Else, 296, 456
end custom, EndCustm, 302, 429
end dialog, EndDlog, 302, 437
end for, EndFor, 283, 297, 450
end function, EndFunc, 207, 286, 451
end if, Endlf, 283, 295, 296, 456
end loop, EndLoop, 299. 466
end program, EndPrgm, 276, 287. 481
end toolbar, EndTBar, 302, 515
end try, EndTry, 310:515
end while, EndWhile, 298, 518
entering, 280, 281, 282, 283
execute assembly language, Exec, 314, 444
execute program, Prgm, 276, 287,481
exit, Exit, 444
for, For, 283, 297, 450
format string, format( ), 302. 450
function, Func, 207. 286. 451
functions, 280, 285, 286
get/return configuration, getConfg( ),300, 452
get/return folder, getFold( ), 300,453
get/return from calculator, GetCalc, 309, 371,
452
get/return key, getKey( ),301,453,556,559
get/return mode, getMode( ), 300,453
get/return units, getUnits( ), 300, 454
go to, Goto, 287, 296, 299, 455
graphical user interface, GUI, 302
graphs, 305
if, If, 207, 283, 295, 296, 456
input, 279, 283, 301
input, Input, 301, 305. 457
label, Lbl, 287, 296: 299, 459
local, Local, 286. 288, 289, 290, 464
loop, Loop, 299. 466
looping, 283, 297, 298
menu item, Item, 302: 303, 459
menus, 303, 304
multicommand lines, 282
operations, 412
output, 279, 283, 301, 302
output, Output, 302, 476
pass error, PassErr, 310, 479
passing values, 284
pause, Pause, 302, 310. 479
popup menu, PopUp, 301. 481
prompt, Prompt( ), 301. 482
request, Request, 301, 302, 490

\section*{P (continued)}
return, Return, 286, 287, 491
running, 278 inside front cover, inside back cover
stop, Stop, 282, 507
stopping, 278
subroutines, 287
tables, 305
text, Text, 302. 513
Then, Then, 295, 296, 456
title, Title, 302. 513
try, Try, 310. 515
variables, 288
while, While, 298, 518
Prompt( ), prompt, 301, 482
propFrac, proper fraction, 9, 70, 74, 394, 482
PtChg, point change, 307, 482
PtOff, point off, 307, 483
PtOn, point on, 307, 483
ptTest( ), point test, 307, 483
PtText, point text, 307, 483
PxIChg, pixel change, 307, 483
PxICrcl, pixel circle, 308, 483
PxIHorz, pixel horizontal line, 308, 484
PxILine, pixel line, 216, 308, 484
PxIOff, pixel off, 307, 484
PxIOn, pixel on, 216, 307, 484
pxITest( ), pixel test, 307, 484
PxIText, pixel text, 307, 485
PxIVert, pixel vertical line, 308, 485

\section*{\(Q\)}

QR, QR factorization, 485
QuadReg, quadratic regression, 262, 486,571
QuartReg, quartic regression, 262, 487,571
QuickCenter, 118
Quick-Find Locator, 410

\section*{R}

R>P \(\theta\) ( ), polar coordinate, 487
R>Pr( ), polar coordinate, 487
radian, \({ }^{\text {r }}, 535\)
rand( ), random number, 488
randMat( ), random matrix, 388, 488
randNorm( ), random norm, 488
random
matrix, randMat( ), 388.488
norm, randNorm( ), 488
number seed, RandSeed, 388,488
number, rand( ), 488
polynomial, randPoly( ), 488
randPoly( ), random polynomial, 488
RandSeed, random number seed, 388, 488
rational functions activity, 394
RcIGDB, recall graph database, 220, 306, 488
RcIPic, recall picture, 306, 489
real( ), real, 489
recall
graph database, RcIGDB, 220, 306: 488
picture, RcIPic, 306: 489
reciprocal, \(\mathbf{x}^{-1}, 538\)
rectangular x coordinate, \(\mathbf{P > R x}(), 476\)
rectangular y coordinate, P>Ry( ), 476
rectangular-vector display, Rect, 489
reduced row echelon form, rref( ), 73 388, 493
ref( ), row echelon form, 490
regressions, 462
cubic, CubicReg, 261, 428,570
exponential, ExpReg, 261, 446,570
formulas, 570,571
linear regression, LinReg, 261. 462, 570
logarithmic, LnReg, 261, 464, 571
logistic, Logistic, 261, 465, 571
medium-medium line, MedMed, 262, 468, 571
power regression, PowerReg, 262, 481, 571
quadratic formula activity, 386
quadratic, QuadReg, 262. 486.571
quartic, QuartReg, 262, 487,571
selecting, 261
sinusoidal, SinReg, 262, 503,571
remain( ), remainder, 490
remainder, remain( ), 490
Rename, rename, 289, 490
replace picture, RplcPic, 306, 493
Request, request, 301, 302, 490
reserved names, 567,568
return. See get/return
Return, return, 207, 286, 287, 491
right( ), right, 71, 293, 491
rotate( ), rotate, 293, 348, 491
round( ), round, 492
row echelon form, ref( ), 490
rowAdd( ), matrix row addition, 492
rowDim( ), matrix row dimension, 492
rowNorm( ), matrix row norm, 493
rowSwap( ), matrix row swap, 493
RplcPic, replace picture, 306, 493
rref( ), reduced row echelon form, \(73,388,493\)
Runge-Kutta method, 180, !191, 193, 573

\section*{\(S\)}
sampling activity, 407
Scatter plots, 266
scientific notation, 25
scripts, \(94,328,329\)
activity, 392
tutorial, 392
scrolling, 7, 103, 227 inside front cover, inside back cover
second notation, ", 536
Send, send list variable, 309, 494
SendCalc, send to calculator, 309, 371, 494
SendChat, send chat, 309, 371,494

\section*{\(S\) (continued)}
seq( ), sequence, 494
sequence graphing, 139-151
serial number, 55
service information, 580
set
folder, setFold( ), 101, 300, 495
graph, setGraph( ), 300. 305. 495
mode, setMode( ), 300, 305, 496
table, setTable( ), 225, 300, 305, 497
units, setUnits( ), 300. 497
Set factors (zoom), 119, 121
setFold( ), set folder, \(101,300,495\)
setGraph( ), set graph, 300, 305, 495
setMode( ), set mode, 300, 305, 496
setTable( ), set table, 225, 300, 305, 497
setUnits( ), set units, 300, 497
Shade (graph math tool), 122, 126
Shade, shade, 308, 498
shift( ), shift, 250, 293, 348, 499
ShowStat, show statistical results, 262,500
sign( ), sign, 500
simplification
delayed, 66
rules, 64
stopping, 65
simult( ), simultaneous equations, 73,500
\(\boldsymbol{\operatorname { s i n }}^{-1}()\), arcsine, 501
\(\sin ()\), sine, 501
\(\sinh ^{-1}()\), hyperbolic arcsine, 502
\(\sinh ()\), hyperbolic sine, 502
SinReg, sinusoidal regression, 262, 503, 571
SLPFLD, slope field, 180, 185, 197
Smart Graph, 115
software version, 55
Solution Method graph format, 180
solution, deSolve( ), 75 196, 434
solve( ), solve, \(9,58,61,62,63,66,68,7073\)
196, 503
solving linear equations, \(9,10,73\)
SortA, sort ascending, 506
SortD, sort descending, 506
sorting
ascending, SortA, 506
descending, SortD, 506
special characters, 21,324,325
spherical vector display, Sphere, 506
Split App mode, 41,553
split screen, 209, 211, 231-236, 329, 341
entry line, 235, 236
exiting, 234
pixel coordinates, 234
setting, 233
switch, switch( ), 300,509
switching, 235
Split Screen mode, 41, 552
square root, \(\sqrt{ }(), 533\)
standard annuity activity, 40.4
standard deviation, stdDev( ),506
statistics, 253-273. See also regressions
Box Plot, 266
Calculation Type, 259, 261
categories, 270,271
Category, 259, 260
combinations, nCr ( ) 470
factorial, !, 8, 531
Freq, 259, 260
frequency, 270, 271
Histogram plots, 267
mean, mean( ), 467
median, median( ), 467
new plot, NewPlot, 266, 472
one-variable statistics, OneVar, 261, 475
operations, 412
overview, 258
permutations, \(\operatorname{nPr} \operatorname{Pr}\) ) 474
plots, 264, 265, 266, 267, 268, 269
plots off, PlotsOff, 111, 305, 480
plots on, PlotsOn, 111, 305, 480
random norm, randNorm( ), 488
random number seed, RandSeed, 388,488
random number, rand( ), 488
Scatter plots, 266
show results, ShowStat, 262, 500
standard deviation, stdDev( ),506
two-variable results, TwoVar, 261,516
variables, 260, 263
variance, variance( ), 517
xyline plots, 266
status line, 53, 54, 108
stdDev( ), standard deviation, 506
StoGDB, store graph database, 220, 306,507
Stop, stop, 282, 507
StoPic, store picture, 306, 507
stopping a calculation, 28
storing
graph database, StoGDB, 220, 306,507
picture, StoPic, 306,507
symbol, \(\rightarrow\) 28s, 539
string( ), expression to string, 293, 508
strings
append, \& 293:532
character code, ord( ), 293. 476,555
character string, char( ), 293. 419,555
dimension, \(\operatorname{dim}(), 293,437\)
expression to string, string ( ), 293,508
format, format( ), 293. 302. 450
indirection, \#, 293, 534, 569
inputting, InputSt, 292, 301, 371
left, left( ), 293, 460
mid-string, mid( ), 293. 468
operations, 292, 293, 413
right, right( ), 293, 491
rotate, rotate( ), 293, 491

\section*{\(S\) (continued)}
shift, shift( ), 293, 499
string to expression, expr( ), 292, 293: 301, 381, 446
within, InString, 293. 458
Style, style, 112, 305, 508
subMat( ), submatrix, 508
submenus, 35
substitutions, \(67,68,69\)
subtract, -, 526
sum( ), summation, 492, 508
sum, \(\Sigma(\) ) , 75533
switch( ), switch, 300, 509
symbolic manipulation, \(57-80\)
sysdata, system data, 203
system variables, 567, 568

\section*{\(T\)}
t0 window variable, 181
TABLE SETUP, table setup, 224
Table, build table, 305, 510
table-graph, Graph<->Table, 224
tables, 221-230
stbl, 224
automatic, 226
build, Table, 305, 510
cell width, 227, 230
clearing, CIrTable, 421
complex numbers, 227
differential equations, 199
displaying, DispTbI, 302, 305, 438
functions, 228
generating with sequence, 151
graphing, Graph<->Table, 224
incrementing, stbl,224
Independent AUTO/ASK, 224: 226; 229
manual, 229
overview, 223
programs, 305
setTable( ), 225
setting, setTable( ), 300, 305,497
setup, 225
setup, TABLE SETUP, 224
starting, tblStart, 224
tblStart, 224
\(\boldsymbol{\operatorname { t a n }}^{-1}()\), arctangent, 511
\(\boldsymbol{\operatorname { t a n }}()\), tangent, 510
Tangent (graph math tool), 122, 125, 132, 138
tanh \(^{-1}()\), hyperbolic arctangent, 511
\(\boldsymbol{\operatorname { t a n h }}()\), hyperbolic tangent, 511
taylor( ), Taylor polynomial, \(75,76,512\)
tbIStart, table start, 224
tCollect( ), trigonometric collection, 71,512
temperature conversion, \(\operatorname{tmp} \operatorname{Cnv}(), 86514\)
temperature-range conversion, \(\Delta \boldsymbol{\operatorname { t m p }} \mathbf{C n v}(), 86\) 514
tExpand( ), trigonometric expansion, 71, 513
text editing, 315-331
computer, 322
cut, copy, paste, \(95,96,321\)
find, 321
highlighting, 320. inside front cover, inside back cover
Text, text, 302, 513
Then, Then, 295, 296, 456
three-dimensional graphing, 153 -173
animation, 154, 164
CONTOUR LEVELS, 155. 166
HIDDEN SURFACE, 155, 166
WIRE AND CONTOUR, 155,166
WIRE FRAME, 155,166
TI Connect/TI-GRAPH LINK, 322, 323, 374
time value of money activity, 405
TIME, time plots, 142, 146, 190, 191
Title, title, 513
tmax window variable, 131, 181
tmin window variable, 131
\(\operatorname{tmp} \operatorname{Cnv}()\), temperature conversion, 86,514
toolbar
define, Custom, 302, 429
off, CustmOff, 37428
on, CustmOn, \(37 \mid 428\)
Toolbar, toolbar, 302, 515
tplot window variable, 181
Trace, trace, 117, 305, 390, 398, 399, 402, 515
tracing, 11, 117, 118, 132, 138, 145, 159, 183
transmitting. See linking and transmitting
transpose, \({ }^{\top}, 509\)
Trig menu, 71
trigonometric collection, \(\mathbf{t}\) Collect( ), 71512
trigonometric expansion, tExpand( ), 71|513
troubleshooting. See errors and troubleshooting
true message, 80
Try, try, 310, 515
tstep window variable, 131,181
TwoVar, two-variable results, 261, 516

\section*{\(U\)}

Unarchiv, unarchive variables, 289, 361,516
undef (undefined) message, 80
underscore, _, 536
Unit System mode, 42, 82, 554
unit vector, unitV( ), 516
units, 83
converting, 85
defaults, 87.189
displaying, 87
get/return, getUnits( ), 454
measurement, 81 -92
modes, 42, 82,1554
setting, setUnits( ), 300. 497
user-defined, 88
unitV( ), unit vector, 516

\section*{U (continued)}

Unlock, unlock, 289, 516
upgrading product code, 373,374
user-defined functions, \(46|77,78,97-99| 157\).
205, 207, 285, 286, 433
user-defined units, 88
\(V\)
Value (graph math tool), 122, 123, 132, 138, 159, 183
variables, 47,48
archiving and unarchiving, 360
archiving, Archive, 289, 361,416
clearing, 341
copy, CopvVar, 289, 358, 422
copying, 358
data, 240, 241, 242
defined, 59, 397
delayed simplification, 66
delete, DelVar, 60 77 102, 289, 291, 434
deleting, 369
in applications, 359
list, 239, 241, 242
local, Local, 286. 288, 289, 290, 464
locking, Lock, 289
locking/unlocking, 54, 358
matrix, 239, 240, 241,242
moving, MoveVar, 289
overriding, 60
pasting name, 359
renaming, 358
reserved names, 567, 568
statistical, 260, 263
storing, 100
system, 567, 568
text, 94
transmitting, 366, 368
unarchive, Unarchiv, 289, 361,516
undefined, 59,337
unknown, solving for, 337, 339
unlocking, Unlock, 289
VAR-LINK, 102, 355, 356, 357, 358, 361
variance( ), variance, 517
Vector Format mode, 41,552
vectors
cross product, crossP( ), 425
cylindrical vector display, Cylind, 429
dot product, \(\operatorname{dotP(}), 439\)
unit, unitV( ), 516
Vector Format mode, 41, 552
viewing angle, 162
viewing orbit, 164

\section*{W}
warranty information, 581
web plots
convergence, 148
divergence, 148
oscillation, 149
WEB, 142, 146.147
WEB, web plots, \(142,146,147\)
when( ), when, 202, 206, 517
While, while, 298, 518
window variables
өmax, 137
өmin, 137
өstep, 137
\(\Delta \mathrm{x}, 566\)
\(\Delta \mathrm{y}, 566\)
diftol, 182
dtime, 182
Estep, 182
eye \(\psi\) (rotation), 158, 162, 163
eye日 (x axis), 158, 162
eyeф (z axis), 158, 162, 163
fldres, 182
ncontour, 158
ncurves, 182
nmax, 143, 144
nmin, 143, 144
plotStep, 143. 144
plotStrt, 143. 144
t0, 181
tmax, 131, 181
tmin, 131
tplot, 181
tstep, 131. 181
xgrid, 158
xmax, 113. 131. 137. 143. 144, 158, 182, 566
xmin, 113, 131, 137, 143, 144, 158, 182, 566
xres, 113, 131, 158
xscl, 113, 131, 137, 143, 144, 158, 182
ygrid, 158
ymax, 113, 131, 137: 143, 144, 158, 182, 566
ymin, 113, 131. 137. 143, 144, 158, 182, 566
yscl, 113, 131, 137, 143, 144, 158, 182
zmax, 158
zmin, 158
wire-and-contour graphing, 155,166
wire-frame graphing, 155, 166
with, I, 10 58 60 67 538,569
within string, inString ( ), 293, 458

\section*{\(X\)}
xgrid window variable, 158
xmax window variable, \(113,131,137,143,144\).
158, 182, 566
xmin window variable, \(113,131,137,143,144\). 158, 182, 566
xor, Boolean exclusive or, 294, 347, 518
XorPic, exclusive or picture, 306, 519
xres window variable, 113
xscl window variable, \(113,131,137,143,144\)
182, 566
xyline plots, 266

\section*{\(Y\)}
\(\mathrm{Y}=\) editor, 106, 109, 130, 136, 142, 157, 179, 204
ygrid window variable, 158
ymax window variable, \(113,131,137,143,144\).
158, 182, 566
ymin window variable, \(113,131,137,143,144\).
158, 182, 566
yscl window variable, 113, 131, 137, 143, 144. 182, 566

\section*{Z}

Zero (graph math tool), 122, 123
zeroes
activity, 402
zeroes( ), zeroes, 61, 70, 74, 384, 519
zmax window variable, 158
zmin window variable, 158
zoom
box, ZoomBox, 119, 120, 521
data, ZoomData, 119. 522
decimal, ZoomDec, 119, 522
factors, 119, 121
fit, ZoomFit, 119, 523
in, ZoomIn, 119, 120. 523
integer, ZoomInt, 119, 523
Memory, 119: 121
out, ZoomOut, 119, 120, 524
previous, ZoomPrev, 121,524
recall, ZoomRcl,121,524
square, ZoomSqr, 119, 524
standard, ZoomStd, 119.525
store, ZoomSto, 121,525
trig, ZoomTrig, 119, 525
Zoom menu, 119
ZoomBox, zoom box, 119, 120,521
ZoomData, zoom data, 119, 522
ZoomDec, zoom decimal, 119, 522
ZoomFit, zoom fit, 119, 523
ZoomIn, zoom in, 119, 120, 523
ZoomInt, zoom integer, 119, 523
ZoomOut, zoom out, 119, 120, 524
ZoomPrev, zoom previous, 121,524

ZoomRcl, zoom recall, 121,524
ZoomSqr, zoom square, 119, 524
ZoomStd, zoom standard, 119, 525
ZoomSto, zoom store, 121, 525
ZoomTrig, zoom trig, 119, 525
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com```


[^0]:    Turning the TI-89 / TI-92 Plus Off

