TMS320C67x/C67x+ DSP CPU and Instruction Set Reference Guide

Literature Number: SPRU733 May 2005

Download from Www.Somanuals.com. All Manuals Search And Download.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from TI under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

Preface

Read This First

About This Manual

The TMS320C6000[™] digital signal processor (DSP) platform is part of the TMS320[™] DSP family. The TMS320C62x[™] DSP generation and the TMS320C64x[™] DSP generation comprise fixed-point devices in the C6000[™] DSP platform, and the TMS320C67x[™] DSP generation comprises floating-point devices in the C6000 DSP platform.

The TMS320C67x+TM DSP is an enhancement of the C67xTM DSP with added functionality and an expanded instruction set. This document describes the CPU architecture, pipeline, instruction set, and interrupts of the C67x and C67x+TM DSPs.

Notational Conventions

This document uses the following conventions.

- □ Any reference to the C67x DSP or C67x CPU also applies, unless otherwise noted, to the C67x+ DSP and C67x+ CPU, respectively.
- ☐ Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the C6000TM devices and related support tools. Copies of these documents are available on the Internet at www.ti.com. *Tip:* Enter the literature number in the search box provided at www.ti.com.

The current documentation that describes the C6000 devices, related peripherals, and other technical collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190) describes the peripherals available on the TMS320C6000 DSPs.

SPRU733

Read This First iii

- *TMS320C672x DSP Peripherals Overview Reference Guide* (literature number SPRU723) describes the peripherals available on the TMS320C672x DSPs.
- **TMS320C6000 Technical Brief** (literature number SPRU197) gives an introduction to the TMS320C62x and TMS320C67x DSPs, development tools, and third-party support.
- **TMS320C6000 Programmer's Guide** (literature number SPRU198) describes ways to optimize C and assembly code for the TMS320C6000 DSPs and includes application program examples.
- **TMS320C6000 Code Composer Studio Tutorial** (literature number SPRU301) introduces the Code Composer Studio integrated development environment and software tools.
- *Code Composer Studio Application Programming Interface Reference Guide* (literature number SPRU321) describes the Code Composer Studio application programming interface (API), which allows you to program custom plug-ins for Code Composer.
- **TMS320C6x Peripheral Support Library Programmer's Reference** (literature number SPRU273) describes the contents of the TMS320C6000 peripheral support library of functions and macros. It lists functions and macros both by header file and alphabetically, provides a complete description of each, and gives code examples to show how they are used.
- **TMS320C6000** Chip Support Library API Reference Guide (literature number SPRU401) describes a set of application programming interfaces (APIs) used to configure and control the on-chip peripherals.

Trademarks

Code Composer Studio, C6000, C64x, C67x, C67x+, TMS320C2000, TMS320C5000, TMS320C6000, TMS320C62x, TMS320C64x, TMS320C67x, TMS320C67x+, TMS320C672x, and VelociTI are trademarks of Texas Instruments.

Trademarks are the property of their respective owners.

Contents

1	Summ	narizes ti	he features of the TMS320 family of products and presents typical applications. TMS320C67x DSP and lists their key features.	
	1.1 1.2 1.3 1.4	TMS32 TMS32	0 DSP Family Overview	1-2 1-4 1-7 1-8 1-8
2	CPU I	Data Pat	ths and Control	2-1
			mation about the data paths and control registers. The two register files and the	
		•	hs are described.	~ ~
	2.1 2.2			
	2.2		Il-Purpose Register Files	
	2.3		Pr File Cross Paths	
	2.5	•	y, Load, and Store Paths	
	2.6		ddress Paths	
	2.7		Register File	
		2.7.1	Register Addresses for Accessing the Control Registers	
		2.7.2	Pipeline/Timing of Control Register Accesses	
		2.7.3	Addressing Mode Register (AMR)	
		2.7.4	Control Status Register (CSR)	2-13
		2.7.5	Interrupt Clear Register (ICR)	2-16
		2.7.6	Interrupt Enable Register (IER) 2	
		2.7.7	Interrupt Flag Register (IFR) 2	
		2.7.8	Interrupt Return Pointer Register (IRP)	
		2.7.9	Interrupt Set Register (ISR)	
		2.7.10	Interrupt Service Table Pointer Register (ISTP)	
		2.7.11	Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)	
	~ ~		E1 Phase Program Counter (PCE1)	
	2.8		Register File Extensions	
		2.8.1 2.8.2	Floating-Point Adder Configuration Register (FADCR)	
		2.8.2	Floating-Point Auxiliary Configuration Register (FAUCR)	
		2.0.3		2-31

Contents

v

3	Instru	uction S	et	3-1	
Describes the assembly language instructions of the TMS320C67x DSP. Also described					
	parallel operations, conditional operations, resource constraints, and addressing modes.				
	3.1	Instruc	tion Operation and Execution Notations	3-2	
	3.2		tion Syntax and Opcode Notations		
	3.3	Overvie	ew of IEEE Standard Single- and Double-Precision Formats	3-9	
	3.4	Delay S	Slots	3-14	
	3.5	Paralle	l Operations	3-16	
		3.5.1	Example Parallel Code	3-18	
		3.5.2	Branching Into the Middle of an Execute Packet	3-18	
	3.6	Conditi	ional Operations	3-19	
	3.7	Resou	rce Constraints	3-20	
		3.7.1	Constraints on Instructions Using the Same Functional Unit	3-20	
		3.7.2	Constraints on the Same Functional Unit Writing in the		
			Same Instruction Cycle		
		3.7.3	Constraints on Cross Paths (1X and 2X)		
		3.7.4	Constraints on Loads and Stores		
		3.7.5	Constraints on Long (40-Bit) Data		
		3.7.6	Constraints on Register Reads		
		3.7.7	Constraints on Register Writes		
	~ ~	3.7.8	Constraints on Floating-Point Instructions		
	3.8		sing Modes		
		3.8.1	Linear Addressing Mode		
		3.8.2	Circular Addressing Mode		
	0.0	3.8.3	Syntax for Load/Store Address Generation		
	3.9		tion Compatibility		
	3.10		tion Descriptions		
			Absolute Value With Saturation)		
			P (Absolute Value, Double-Precision Floating-Point)		
			P (Absolute Value, Single-Precision Floating-Point)		
		•	Add Two Signed Integers Without Saturation)		
			3 (Add Using Byte Addressing Mode)		
			H (Add Using Halfword Addressing Mode)		
			N (Add Using Word Addressing Mode)		
			P (Add Two Double-Precision Floating-Point Values)		
			(Add Signed 16-Bit Constant to Register)		
			P (Add Two Single-Precision Floating-Point Values)		
			(Add Two Unsigned Integers Without Saturation)		
			(Add Two 16-Bit Integers on Upper and Lower Register Halves)		
			Bitwise AND)		
			nch Using a Displacement)		
			nch Using a Register)		
			(Branch Using an Interrupt Return Pointer)		
			(Branch Using NMI Return Pointer)		
			· · · · · · · · · · · · · · · · · · ·		

vi Contents

CLR (Clear a Bit Field)	. 3-77
CMPEQ (Compare for Equality, Signed Integers)	
CMPEQDP (Compare for Equality, Double-Precision Floating-Point Values)	
CMPEQSP (Compare for Equality, Single-Precision Floating-Point Values)	
CMPGT (Compare for Greater Than, Signed Integers)	
CMPGTDP (Compare for Greater Than, Double-Precision Floating-Point Values) .	
CMPGTSP (Compare for Greater Than, Single-Precision Floating-Point Values)	
CMPGTU (Compare for Greater Than, Unsigned Integers)	
CMPLT (Compare for Less Than, Signed Integers)	
CMPLTDP (Compare for Less Than, Double-Precision Floating-Point Values)	
CMPLTSP (Compare for Less Than, Single-Precision Floating-Point Values)	
DPINT (Convert Double-Precision Floating-Point Value to Integer)	
DPSP (Convert Double-Precision Floating-Point Value to Integer)	0-104
Single-Precision Floating-Point Value)	3-106
DPTRUNC (Convert Double-Precision Floating-Point Value to	
Integer With Truncation)	3-108
EXT (Extract and Sign-Extend a Bit Field)	3-110
EXTU (Extract and Zero-Extend a Bit Field)	
IDLE (Multicycle NOP With No Termination Until Interrupt)	3-116
INTDP (Convert Signed Integer to Double-Precision Floating-Point Value)	3-117
INTDPU (Convert Unsigned Integer to Double-Precision Floating-Point Value)	3-119
INTSP (Convert Signed Integer to Single-Precision Floating-Point Value)	3-121
INTSPU (Convert Unsigned Integer to Single-Precision Floating-Point Value)	3-122
LDB(U) (Load Byte From Memory With a 5-Bit Unsigned Constant Offset or	0.400
0 /	
LDB(U) (Load Byte From Memory With a 15-Bit Unsigned Constant Offset)	3-126
LDDW (Load Doubleword From Memory With an Unsigned Constant Offset or Register Offset)	3-128
LDH(U) (Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or	0-120
Register Offset)	3-131
LDH(U) (Load Halfword From Memory With a 15-Bit Unsigned Constant Offset)	3-134
LDW (Load Word From Memory With a 5-Bit Unsigned Constant Offset or	
Register Offset)	3-136
LDW (Load Word From Memory With a 15-Bit Unsigned Constant Offset)	3-139
LMBD (Leftmost Bit Detection)	
MPY (Multiply Signed 16 LSB by Signed 16 LSB)	3-143
MPYDP (Multiply Two Double-Precision Floating-Point Values)	3-145
MPYH (Multiply Signed 16 MSB by Signed 16 MSB)	3-147
MPYHL (Multiply Signed 16 MSB by Signed 16 LSB)	3-149
MPYHLU (Multiply Unsigned 16 MSB by Unsigned 16 LSB)	3-151
MPYHSLU (Multiply Signed 16 MSB by Unsigned 16 LSB)	3-152
MPYHSU (Multiply Signed 16 MSB by Unsigned 16 MSB)	
MPYHU (Multiply Unsigned 16 MSB by Unsigned 16 MSB)	
MPYHULS (Multiply Unsigned 16 MSB by Signed 16 LSB)	
MPYHUS (Multiply Unsigned 16 MSB by Signed 16 MSB)	3-156

SPRU733

Contents

vii

MPYI (Multiply 32-Bit by 32-Bit Into 32-Bit Result)	3-157
MPYID (Multiply 32-Bit by 32-Bit Into 64-Bit Result)	
MPYLH (Multiply Signed 16 LSB by Signed 16 MSB)	
MPYLHU (Multiply Unsigned 16 LSB by Unsigned 16 MSB)	
MPYLSHU (Multiply Signed 16 LSB by Unsigned 16 MSB)	
MPYLUHS (Multiply Unsigned 16 LSB by Signed 16 MSB)	
MPYSP (Multiply Two Single-Precision Floating-Point Values)	
MPYSPDP (Multiply Single-Precision Floating-Point Value by	5-100
	3-168
MPYSP2DP (Multiply Two Single-Precision Floating-Point Values for	0 .00
Double-Precision Result)	3-170
MPYSU (Multiply Signed 16 LSB by Unsigned 16 LSB)	3-172
MPYU (Multiply Unsigned 16 LSB by Unsigned 16 LSB)	3-174
MPYUS (Multiply Unsigned 16 LSB by Signed 16 LSB)	
MV (Move From Register to Register)	
MVC (Move Between Control File and Register File)	
MVK (Move Signed Constant Into Register and Sign Extend)	
MVKH and MVKLH (Move 16-Bit Constant Into Upper Bits of Register)	
MVKL (Move Signed Constant Into Register and	
Sign Extend—Used with MVKH)	3-187
NEG (Negate)	
NOP (No Operation)	
NORM (Normalize Integer)	
NOT (Bitwise NOT)	
OR (Bitwise OR)	
RCPDP (Double-Precision Floating-Point Reciprocal Approximation)	
RSQRDP (Double-Precision Floating-Point Square-Root	
Reciprocal Approximation)	3-201
RSQRSP (Single-Precision Floating-Point Square-Root	
Reciprocal Approximation)	
SADD (Add Two Signed Integers With Saturation)	
SAT (Saturate a 40-Bit Integer to a 32-Bit Integer)	3-208
SET (Set a Bit Field)	3-210
SHL (Arithmetic Shift Left)	3-213
SHR (Arithmetic Shift Right)	3-215
SHRU (Logical Shift Right)	3-217
SMPY (Multiply Signed 16 LSB by Signed 16 LSB With Left Shift and Saturation)	3-210
SMPYH (Multiply Signed 16 MSB by Signed 16 MSB With	0-215
Left Shift and Saturation)	3-221
SMPYHL (Multiply Signed 16 MSB by Signed 16 LSB With Left Shift and Saturation)	3-222
SMPYLH (Multiply Signed 16 LSB by Signed 16 MSB With	
Left Shift and Saturation)	3-224
SPDP (Convert Single-Precision Floating-Point Value to	0 000
Double-Precision Floating-Point Value)	3-226

Contents

viii

	SPINT	(Convert Single-Precision Floating-Point Value to Integer)	3-228
	SPTRUNC (Convert Single-Precision Floating-Point Value to		
		Integer With Truncation)	
		Shift Left With Saturation)	
		(Subtract Two Signed Integers With Saturation)	3-234
	STB (S	tore Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset)	3-236
	STR (S	tore Byte to Memory With a 15-Bit Unsigned Constant Offset)	
	•	store Halfword to Memory With a 5-Bit Unsigned Constant Offset or	0-200
	0111(0	Register Offset)	3-240
	STH (S	store Halfword to Memory With a 15-Bit Unsigned Constant Offset)	
	STW (S	Store Word to Memory With a 5-Bit Unsigned Constant Offset or	
		Register Offset)	
	· ·	Store Word to Memory With a 15-Bit Unsigned Constant Offset)	
	•	Subtract Two Signed Integers Without Saturation)	
		3 (Subtract Using Byte Addressing Mode)	
		I (Subtract Using Halfword Addressing Mode)	
		V (Subtract Using Word Addressing Mode)	
	SUBC	(Subtract Conditionally and Shift—Used for Division)	3-258
	SUBDF	P (Subtract Two Double-Precision Floating-Point Values)	3-260
	SUBSF	P (Subtract Two Single-Precision Floating-Point Values)	3-263
		(Subtract Two Unsigned Integers Without Saturation)	
	SUB2 (Subtract Two 16-Bit Integers on Upper and Lower Register Halves)	3-268
	XOR (E	Bitwise Exclusive OR)	3-270
	ZERO	(Zero a Register)	3-272
Dinal	ino		4 4
•			4-1
	-	ases, operation, and discontinuities for the TMS320C67x CPU pipeline.	
4.1	•	e Operation Overview	
	4.1.1	Fetch	
	4.1.2	Decode	
	4.1.3	Execute	
	4.1.4	Pipeline Operation Summary	
4.2	•	e Execution of Instruction Types	
	4.2.1	Single-Cycle Instructions	
		16 y 16-Bit Multiply Instructions	
	4.2.3	Store Instructions	
	4.2.4	Load Instructions	
	4.2.5	Branch Instructions	
	4.2.6	Two-Cycle DP Instructions	
	4.2.7	Four-Cycle Instructions	
	4.2.8	INTDP Instruction	
	4.2.9	DP Compare Instructions	
	4.2.10	ADDDP/SUBDP Instructions	. 4-28

SPRU733

4

Contents ix

		4.2.11	MPYI Instruction
		4.2.12	MPYID Instruction
		4.2.13	MPYDP Instruction
		4.2.14	MPYSPDP Instruction
		4.2.15	MPYSP2DP Instruction
	4.3	Functio	nal Unit Constraints
		4.3.1	.S-Unit Constraints 4-34
		4.3.2	.M-Unit Constraints 4-40
		4.3.3	.L-Unit Constraints 4-48
		4.3.4	.D-Unit Instruction Constraints 4-52
	4.4	Perforn	nance Considerations 4-56
		4.4.1	Pipeline Operation With Multiple Execute Packets in a Fetch Packet 4-56
		4.4.2	Multicycle NOPs 4-58
		4.4.3	Memory Considerations 4-60
5	Intorr	unte	
5		-	TMS320C67x DSP interrupts, including reset and nonmaskable interrupts
			plains interrupt control, detection, and processing.
	5.1		∋
	5.1	5.1.1	Types of Interrupts and Signals Used
		5.1.2	Interrupt Service Table (IST)
		5.1.3	Summary of Interrupt Control Registers
	5.2		y Enabling and Disabling Interrupts
	5.3		ual Interrupt Control
	010	5.3.1	Enabling and Disabling Interrupts
		5.3.2	Status of Interrupts
		5.3.3	Setting and Clearing Interrupts
		5.3.4	Returning From Interrupt Servicing
	5.4	Interrup	ot Detection and Processing 5-16
		5.4.1	Setting the Nonreset Interrupt Flag 5-16
		5.4.2	Conditions for Processing a Nonreset Interrupt 5-16
		5.4.3	Actions Taken During Nonreset Interrupt Processing 5-18
		5.4.4	Setting the RESET Interrupt Flag
		5.4.5	Actions Taken During RESET Interrupt Processing 5-20
	5.5	Perforn	nance Considerations 5-21
		5.5.1	General Performance
		5.5.2	Pipeline Interaction
	5.6	Progra	mming Considerations 5-22
		5.6.1	Single Assignment Programming 5-22
		5.6.2	Nested Interrupts 5-23
		5.6.3	Manual Interrupt Processing 5-25
		5.6.4	Traps

х

Α		uction Compatibility	A-1	
В	Mapping Between Instruction and Functional Unit B-1 Lists the instructions that execute on each functional unit. B-1			
С	C .D Unit Instructions and Opcode Maps			
	C.1 C.2 C.3	Instructions Executing in the .D Functional Unit Opcode Map Symbols and Meanings	C-3	
D	Lists	it Instructions and Opcode Mapsthe instructions that execute in the .L functional unit and illustrates the opcode maps for instructions.		
	D.1 D.2 D.3	Instructions Executing in the .L Functional Unit	D-3	
		nit Instructions and Opcode Maps the instructions that execute in the .M functional unit and illustrates the opcode maps for instructions.	E-1	
	E.1 E.2 E.3	Instructions Executing in the .M Functional Unit Opcode Map Symbols and Meanings 32-Bit Opcode Maps	E-3	
F	Lists	it Instructions and Opcode Maps the instructions that execute in the .S functional unit and illustrates the opcode maps for instructions.		
	F.1 F.2 F.3	Instructions Executing in the .S Functional Unit Opcode Map Symbols and Meanings	F-3	
G	Lists	nit Specified Instructions and Opcode Maps	G-1	
	G.1 G.2 G.3	Instructions Executing With No Unit Specified Opcode Map Symbols and Meanings	G-2	

Contents xi

Figures

1–1	TMS320C67x DSP Block Diagram	1-7
2–1	TMS320C67x CPU Data Paths	
2–2	Storage Scheme for 40-Bit Data in a Register Pair	2-4
2–3	Addressing Mode Register (AMR)	2-10
2–4	Control Status Register (CSR)	
2–5	PWRD Field of Control Status Register (CSR)	2-13
2–6	Interrupt Clear Register (ICR)	
2–7	Interrupt Enable Register (IER)	
2–8	Interrupt Flag Register (IFR)	2-18
2–9	Interrupt Return Pointer Register (IRP)	2-19
2–10	Interrupt Set Register (ISR)	
2–11	Interrupt Service Table Pointer Register (ISTP)	2-21
2–12	NMI Return Pointer Register (NRP)	
2–13	E1 Phase Program Counter (PCE1)	2-22
2–14	Floating-Point Adder Configuration Register (FADCR)	2-24
2–15	Floating-Point Auxiliary Configuration Register (FAUCR)	2-27
2–16	Floating-Point Multiplier Configuration Register (FMCR)	
3–1	Single-Precision Floating-Point Fields	3-11
3–2	Double-Precision Floating-Point Fields	
3–3	Basic Format of a Fetch Packet	3-16
3–4	Examples of the Detectability of Write Conflicts by the Assembler	3-25
4–1	Pipeline Stages	4-2
4–2	Fetch Phases of the Pipeline	4-3
4–3	Decode Phases of the Pipeline	4-4
4–4	Execute Phases of the Pipeline	4-5
4–5	Pipeline Phases	4-6
4–6	Pipeline Operation: One Execute Packet per Fetch Packet	4-6
4–7	Pipeline Phases Block Diagram	
4–8	Single-Cycle Instruction Phases	
4–9	Single-Cycle Instruction Execution Block Diagram	4-16
4–10	Multiply Instruction Phases	4-17
4–11	Multiply Instruction Execution Block Diagram	4-17
4–12	Store Instruction Phases	4-18
4–13	Store Instruction Execution Block Diagram	4-19
4–14	Load Instruction Phases	4-20
4–15	Load Instruction Execution Block Diagram	
4–16	Branch Instruction Phases	
4–17	Branch Instruction Execution Block Diagram	4-23

xii *Figures*

4–18	Two-Cycle DP Instruction Phases	
4–19	Four-Cycle Instruction Phases	
4–20	INTDP Instruction Phases	
4–21	DP Compare Instruction Phases	
4–22	ADDDP/SUBDP Instruction Phases	
4–23	MPYI Instruction Phases	
4–24	MPYID Instruction Phases	
4–25	MPYDP Instruction Phases	
4–26	MPYSPDP Instruction Phases	
4–27	MPYSP2DP Instruction Phases	
4–28	Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets	
4–29	Multicycle NOP in an Execute Packet	
4–30	Branching and Multicycle NOPs	
4–31	Pipeline Phases Used During Memory Accesses	
4–32	Program and Data Memory Stalls	
4–33	8-Bank Interleaved Memory	
4–34	8-Bank Interleaved Memory With Two Memory Spaces	
5–1	Interrupt Service Table	
5–2	Interrupt Service Fetch Packet	. 5-7
5–3	Interrupt Service Table With Branch to Additional Interrupt Service Code Located Outside the IST	. 5-8
5–4	Nonreset Interrupt Detection and Processing: Pipeline Operation	5-17
5–5	RESET Interrupt Detection and Processing: Pipeline Operation	5-19
C-1	1 or 2 Sources Instruction Format	. C-5
C-2	Extended .D Unit 1 or 2 Sources Instruction Format	. C-5
C-3	Load/Store Basic Operations	. C-5
C-4	Load/Store Long-Immediate Operations	. C-5
D-1	1 or 2 Sources Instruction Format	. D-4
D-2	1 or 2 Sources, Nonconditional Instruction Format	. D-4
D-3	Unary Instruction Format	
E-1	Extended M-Unit with Compound Operations	
E-2	Extended .M Unit 1 or 2 Sources, Nonconditional Instruction Format	
E-3	Extended .M-Unit Unary Instruction Format	
F–1	1 or 2 Sources Instruction Format	
F–2	Extended .S Unit 1 or 2 Sources Instruction Format	. F-4
F–3	Extended .S Unit 1 or 2 Sources, Nonconditional Instruction Format	
F-4	Unary Instruction Format	
F–5	Extended .S Unit Branch Conditional, Immediate Instruction Format	
F-6	Call Unconditional, Immediate with Implied NOP 5 Instruction Format	. F-5
F–7	Branch with NOP Constant Instruction Format	. F-5
F-8	Branch with NOP Register Instruction Format	. F-5
F–9	Branch Instruction Format	
F–10	MVK Instruction Format	. F-5
F–11	Field Operations	. F-5
G-1	Loop Buffer Instruction Format	
G–2	NOP and IDLE Instruction Format	
G–3	Emulation/Control Instruction Format	. G-3

Figures xiii

Tables

1–1	Typical Applications for the TMS320 DSPs 1-3
2–1	40-Bit/64-Bit Register Pairs
2–2	Functional Units and Operations Performed 2-5
2–3	Control Registers
2–4	Register Addresses for Accessing the Control Registers 2-8
2–5	Addressing Mode Register (AMR) Field Descriptions 2-10
2–6	Block Size Calculations 2-12
2–7	Control Status Register (CSR) Field Descriptions 2-14
2–8	Interrupt Clear Register (ICR) Field Descriptions 2-16
2–9	Interrupt Enable Register (IER) Field Descriptions 2-17
2–10	Interrupt Flag Register (IFR) Field Descriptions 2-18
2–11	Interrupt Set Register (ISR) Field Descriptions 2-20
2–12	Interrupt Service Table Pointer Register (ISTP) Field Descriptions
2–13	Control Register File Extensions
2–14	Floating-Point Adder Configuration Register (FADCR) Field Descriptions 2-24
2–15	Floating-Point Auxiliary Configuration Register (FAUCR) Field Descriptions 2-27
2–16	Floating-Point Multiplier Configuration Register (FMCR) Field Descriptions 2-31
3–1	Instruction Operation and Execution Notations 3-2
3–2	Instruction Syntax and Opcode Notations
3–3	IEEE Floating-Point Notations
3–4	Special Single-Precision Values
3–5	Hexadecimal and Decimal Representation for Selected Single-Precision Values 3-12
3–6	Special Double-Precision Values
3–7	Hexadecimal and Decimal Representation for Selected Double-Precision Values 3-13
3–8	Delay Slot and Functional Unit Latency
3–9	Registers That Can Be Tested by Conditional Operations
3–10	Indirect Address Generation for Load/Store
3–11	Address Generator Options for Load/Store
3–12	Relationships Between Operands, Operand Size, Signed/Unsigned, Functional Units, and Opfields for Example Instruction (ADD)
3–13	Program Counter Values for Example Branch Using a Displacement
3–14	Program Counter Values for Example Branch Using a Register
3–15	Program Counter Values for B IRP Instruction
3–16	Program Counter Values for B NRP Instruction
3–17	Data Types Supported by LDB(U) Instruction
3–18	Data Types Supported by LDB(U) Instruction (15-Bit Offset)

3–19 Data Types Supported by LDH(U) Instruction	
3–20 Data Types Supported by LDH(U) Instruction (15-Bit Offset)	
3–21 Register Addresses for Accessing the Control Registers	
4–1 Operations Occurring During Pipeline Phases	
4–2 Execution Stage Length Description for Each Instruction Type	
4–3 Single-Cycle Instruction Execution	
4–4 16 × 16-Bit Multiply Instruction Execution	
4–5 Store Instruction Execution	
4–6 Load Instruction Execution	
4–7 Branch Instruction Execution	
4–8 Two-Cycle DP Instruction Execution	
4–9 Four-Cycle Instruction Execution	
4–10 INTDP Instruction Execution	4-26
4–11 DP Compare Instruction Execution	4-27
4–12 ADDDP/SUBDP Instruction Execution	4-28
4–13 MPYI Instruction Execution	4-29
4–14 MPYID Instruction Execution	4-30
4–15 MPYDP Instruction Execution	4-31
4–16 MPYSPDP Instruction Execution	4-32
4–17 MPYSP2DP Instruction Execution	4-33
4-18 Single-Cycle .S-Unit Instruction Constraints	4-34
4–19 DP Compare .S-Unit Instruction Constraints	4-35
4–20 2-Cycle DP .S-Unit Instruction Constraints	
4–21 ADDSP/SUBSP .S-Unit Instruction Constraints	4-37
4–22 ADDDP/SUBDP .S-Unit Instruction Constraints	4-38
4-23 Branch .S-Unit Instruction Constraints	4-39
4–24 16 × 16 Multiply .M-Unit Instruction Constraints	
4–25 4-Cycle .M-Unit Instruction Constraints	
4–26 MPYI.M-Unit Instruction Constraints	
4–27 MPYID .M-Unit Instruction Constraints	4-43
4–28 MPYDP .M-Unit Instruction Constraints	
4–29 MPYSP .M-Unit Instruction Constraints	
4–30 MPYSPDP .M-Unit Instruction Constraints	
4–31 MPYSP2DP .M-Unit Instruction Constraints	
4-32 Single-Cycle .L-Unit Instruction Constraints	
4–33 4-Cycle .L-Unit Instruction Constraints	
4–34 INTDP .L-Unit Instruction Constraints	
4–35 ADDDP/SUBDP .L-Unit Instruction Constraints	
4–36 Load .D-Unit Instruction Constraints	
4–37 Store .D-Unit Instruction Constraints	
4–38 Single-Cycle .D-Unit Instruction Constraints	
4–39 LDDW Instruction With Long Write Instruction Constraints	
4–40 Program Memory Accesses Versus Data Load Accesses	
4–41 Loads in Pipeline from Example 4–2	

SPRU733

Tables xv

Tables

5–1	Interrupt Priorities	5-3
5–2	Interrupt Control Registers	5-10
A-1	Instruction Compatibility Between C62x, C64x, C67x, and C67x+ DSPs	A-1
B-1	Functional Unit to Instruction Mapping	B-1
C-1	Instructions Executing in the .D Functional Unit	C-2
C-2	.D Unit Opcode Map Symbol Definitions	
C-3	Address Generator Options for Load/Store	C-4
D-1	Instructions Executing in the .L Functional Unit	
D-2	.L Unit Opcode Map Symbol Definitions	D-3
E-1	Instructions Executing in the .M Functional Unit	E-2
E-2	.M Unit Opcode Map Symbol Definitions	E-3
F–1	Instructions Executing in the .S Functional Unit	F-2
F–2	.S Unit Opcode Map Symbol Definitions	F-3
G–1	Instructions Executing With No Unit Specified	
G-2	No Unit Specified Instructions Opcode Map Symbol Definitions	G-2

Examples

3–1	Fully Serial p-Bit Pattern in a Fetch Packet	3-17
3–2	Fully Parallel p-Bit Pattern in a Fetch Packet	3-17
3–3	Partially Serial p-Bit Pattern in a Fetch Packet	3-18
3–4	LDW Instruction in Circular Mode	3-31
3–5	ADDAH Instruction in Circular Mode	3-32
4–1	Execute Packet in Figure 4-7	4-11
4–2	Load From Memory Banks	4-62
5–1	Relocation of Interrupt Service Table	. 5-9
5–2	Code Sequence to Disable Maskable Interrupts Globally	5-12
5–3	Code Sequence to Enable Maskable Interrupts Globally	5-12
5–4	Code Sequence to Enable an Individual Interrupt (INT9)	5-13
5–5	Code Sequence to Disable an Individual Interrupt (INT9)	5-13
5–6	Code to Set an Individual Interrupt (INT6) and Read the Flag Register	5-14
5–7	Code to Clear an Individual Interrupt (INT6) and Read the Flag Register	5-14
5–8	Code to Return From NMI	5-15
5–9	Code to Return from a Maskable Interrupt	5-15
5–10	Code Without Single Assignment: Multiple Assignment of A1	5-22
5–11	Code Using Single Assignment	5-23
5–12	Assembly Interrupt Service Routine That Allows Nested Interrupts	5-24
5–13	C Interrupt Service Routine That Allows Nested Interrupts	5-25
5–14	Manual Interrupt Processing	5-25
5–15	Code Sequence to Invoke a Trap	5-26
5–16	Code Sequence for Trap Return	5-26

SPRU733

Examples xvii

Chapter 1

Introduction

The TMS320C6000™ digital signal processor (DSP) platform is part of the TMS320™ DSP family. The TMS320C62x™ DSP generation and the TMS320C64x[™] DSP generation comprise fixed-point devices in the C6000[™] DSP platform, and the TMS320C67x[™] DSP generation comprises floatingpoint devices in the C6000 DSP platform. All three DSP generations use the VelociTI™ architecture, a high-performance, advanced very long instruction word (VLIW) architecture, making these DSPs excellent choices for multichannel and multifunction applications.

The TMS320C67x+ DSP is an enhancement of the C67x DSP with added functionality and an expanded instruction set.

Any reference to the C67x DSP or C67x CPU also applies, unless otherwise noted, to the C67x+ DSP and C67x+ CPU, respectively.

Page

	-
1.2	TMS320C6000 DSP Family Overview 1-2
1.3	TMS320C67x DSP Features and Options 1-4
1.4	TMS320C67x DSP Architecture 1-7

Topic

1.1 TMS320 DSP Family Overview

The TMS320[™] DSP family consists of fixed-point, floating-point, and multiprocessor digital signal processors (DSPs). TMS320[™] DSPs have an architecture designed specifically for real-time signal processing.

Table 1–1 lists some typical applications for the TMS320[™] family of DSPs. The TMS320[™] DSPs offer adaptable approaches to traditional signal-processing problems. They also support complex applications that often require multiple operations to be performed simultaneously.

1.2 TMS320C6000 DSP Family Overview

With a performance of up to 6000 million instructions per second (MIPS) and an efficient C compiler, the TMS320C6000 DSPs give system architects unlimited possibilities to differentiate their products. High performance, ease of use, and affordable pricing make the C6000 generation the ideal solution for multichannel, multifunction applications, such as:

- Pooled modems
- Wireless local loop base stations
- Remote access servers (RAS)
- Digital subscriber loop (DSL) systems
- Cable modems
- Multichannel telephony systems

The C6000 generation is also an ideal solution for exciting new applications; for example:

- Personalized home security with face and hand/fingerprint recognition
- Advanced cruise control with global positioning systems (GPS) navigation and accident avoidance
- Remote medical diagnostics
- Beam-forming base stations
- Virtual reality 3-D graphics
- Speech recognition
- 🗋 Audio
- 🗋 Radar
- Atmospheric modeling
- Finite element analysis
- Imaging (examples: fingerprint recognition, ultrasound, and MRI)

1-2 Introduction

Automotive	Consumer	Control			
Adaptive ride control Antiskid brakes Cellular telephones Digital radios Engine control Global positioning Navigation Vibration analysis Voice commands	Digital radios/TVs Educational toys Music synthesizers Pagers Power tools Radar detectors Solid-state answering machines	Disk drive control Engine control Laser printer control Motor control Robotics control Servo control			
General-Purpose	Graphics/Imaging	Industrial			
Adaptive filtering Convolution Correlation Digital filtering Fast Fourier transforms Hilbert transforms Waveform generation Windowing	3-D transformations Animation/digital maps Homomorphic processing Image compression/transmission Image enhancement Pattern recognition Robot vision Workstations	Numeric control Power-line monitoring Robotics Security access			
Instrumentation	Medical	Military			
Digital filtering Function generation Pattern matching Phase-locked loops Seismic processing Spectrum analysis Transient analysis	Diagnostic equipment Fetal monitoring Hearing aids Patient monitoring Prosthetics Ultrasound equipment	Image processing Missile guidance Navigation Radar processing Radio frequency modems Secure communications Sonar processing			
Telecom	nunications	Voice/Speech			
1200- to 56 600-bps modems Adaptive equalizers ADPCM transcoders Base stations Cellular telephones Channel multiplexing Data encryption Digital PBXs Digital speech interpolation (DSI) DTMF encoding/decoding Echo cancellation	Faxing Future terminals Line repeaters Personal communications systems (PCS) Personal digital assistants (PDA) Speaker phones Spread spectrum communications Digital subscriber loop (xDSL) Video conferencing X.25 packet switching	Speaker verification Speech enhancement Speech recognition Speech synthesis Speech vocoding Text-to-speech Voice mail			

Table 1–1. Typical Applications for the TMS320 DSPs

1.3 TMS320C67x DSP Features and Options

The C6000 devices execute up to eight 32-bit instructions per cycle. The C67x CPU consists of 32 general-purpose 32-bit registers and eight functional units. These eight functional units contain:

- Two multipliers
- Six ALUs

The C6000 generation has a complete set of optimized development tools, including an efficient C compiler, an assembly optimizer for simplified assembly-language programming and scheduling, and a Windows[™] based debugger interface for visibility into source code execution characteristics. A hardware emulation board, compatible with the TI XDS510[™] and XDS560[™] emulator interface, is also available. This tool complies with IEEE Standard 1149.1–1990, IEEE Standard Test Access Port and Boundary-Scan Architecture.

Features of the C6000 devices include:

- Advanced VLIW CPU with eight functional units, including two multipliers and six arithmetic units
 - Executes up to eight instructions per cycle for up to ten times the performance of typical DSPs
 - Allows designers to develop highly effective RISC-like code for fast development time
- Instruction packing
 - Gives code size equivalence for eight instructions executed serially or in parallel
 - Reduces code size, program fetches, and power consumption
- Conditional execution of all instructions
 - Reduces costly branching
 - Increases parallelism for higher sustained performance
- Efficient code execution on independent functional units
 - Industry's most efficient C compiler on DSP benchmark suite
 - Industry's first assembly optimizer for fast development and improved parallelization
- 8/16/32-bit data support, providing efficient memory support for a variety of applications

1-4 Introduction

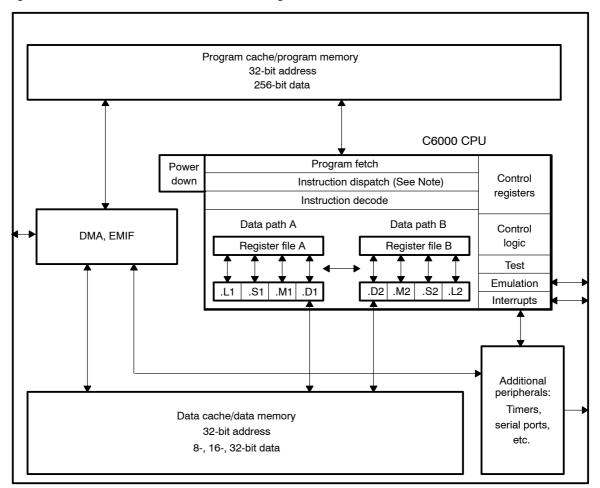
- □ 40-bit arithmetic options add extra precision for vocoders and other computationally intensive applications
- Saturation and normalization provide support for key arithmetic operations
- Field manipulation and instruction extract, set, clear, and bit counting support common operation found in control and data manipulation applications.

The C67x devices include these additional features:

- □ Hardware support for single-precision (32-bit) and double-precision (64-bit) IEEE floating-point operations.
- \Box 32 × 32-bit integer multiply with 32-bit or 64-bit result.

In addition to the features of the C67x device, the C67x+ device is enhanced for code size improvement and floating-point performance. These additional features include:

- Execute packets can span fetch packets.
- Register file size is increased to 64 registers (32 in each datapath).
- Floating-point addition and subtraction capability in the .S unit.
- Mixed-precision multiply instructions.
- 32-KByte instruction cache that supports execution from both on-chip RAM and ROM as well as from external memory through a VBUSP-based external memory interface (EMIF).
- Unified memory controller features support for flat on-chip data RAM and ROM organizations for zero wait-state accesses from both load store units of the CPU. The memory controller supports different banking organizations for RAM and ROM arrays. The memory controller also supports VBUSP interfaces (two master and one slave) for transfer of data from the system peripherals to and from the CPU and internal memory. A VBUSPbased DMA controller can interface to the CPU for programmable bulk transfers through the VBUSP slave port.


The VelociTI architecture of the C6000 platform of devices make them the first off-the-shelf DSPs to use advanced VLIW to achieve high performance through increased instruction-level parallelism. A traditional VLIW architecture consists of multiple execution units running in parallel, performing multiple instructions during a single clock cycle. Parallelism is the key to extremely high performance, taking these DSPs well beyond the performance capabilities of traditional superscalar designs. VelociTI is a highly deterministic architecture, having few restrictions on how or when instructions are fetched, executed, or stored. It is this architectural flexibility that is key to the breakthrough efficiency levels of the TMS320C6000 Optimizing C compiler. VelociTI's advanced features include:

- Instruction packing: reduced code size
- All instructions can operate conditionally: flexibility of code
- U Variable-width instructions: flexibility of data types
- **Fully pipelined branches: zero-overhead branching.**

1.4 TMS320C67x DSP Architecture

Figure 1–1 is the block diagram for the C67x DSP. The C6000 devices come with program memory, which, on some devices, can be used as a program cache. The devices also have varying sizes of data memory. Peripherals such as a direct memory access (DMA) controller, power-down logic, and external memory interface (EMIF) usually come with the CPU, while peripherals such as serial ports and host ports are on only certain devices. Check the data sheet for your device to determine the specific peripheral configurations you have.

Figure 1–1. TMS320C67x DSP Block Diagram

SPRU733

Introduction 1-7

1.4.1 Central Processing Unit (CPU)

The C67x CPU, in Figure 1–1, is common to all the C62x/C64x/C67x devices. The CPU contains:

- Program fetch unit
- Instruction dispatch unit
- Instruction decode unit
- Two data paths, each with four functional units
- 32 32-bit registers
- Control registers
- Control logic
- Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of the two data paths (A and B), each of which contains four functional units (.L, .S, .M, and .D) and 16 32-bit general-purpose registers. The data paths are described in more detail in Chapter 2. A control register file provides the means to configure and control various processor operations. To understand how instructions are fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

1.4.2 Internal Memory

The C67x DSP has a 32-bit, byte-addressable address space. Internal (on-chip) memory is organized in separate data and program spaces. When off-chip memory is used, these spaces are unified on most devices to a single memory space via the external memory interface (EMIF).

The C67x DSP has two 32-bit internal ports to access internal data memory. The C67x DSP has a single internal port to access internal program memory, with an instruction-fetch width of 256 bits.

1.4.3 Memory and Peripheral Options

A variety of memory and peripheral options are available for the C6000 platform:

- Large on-chip RAM, up to 7M bits
- Program cache
- □ 2-level caches
- 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other asynchronous memories for a broad range of external memory requirements and maximum system performance.

1-8 Introduction

- DMA Controller (C6701 DSP only) transfers data between address ranges in the memory map without intervention by the CPU. The DMA controller has four programmable channels and a fifth auxiliary channel.
- EDMA Controller performs the same functions as the DMA controller. The EDMA has 16 programmable channels, as well as a RAM space to hold multiple configurations for future transfers.
- HPI is a parallel port through which a host processor can directly access the CPU's memory space. The host device has ease of access because it is the master of the interface. The host and the CPU can exchange information via internal or external memory. In addition, the host has direct access to memory-mapped peripherals.
- Expansion bus is a replacement for the HPI, as well as an expansion of the EMIF. The expansion provides two distinct areas of functionality (host port and I/O port) which can co-exist in a system. The host port of the expansion bus can operate in either asynchronous slave mode, similar to the HPI, or in synchronous master/slave mode. This allows the device to interface to a variety of host bus protocols. Synchronous FIFOs and asynchronous peripheral I/O devices may interface to the expansion bus.
- McBSP (multichannel buffered serial port) is based on the standard serial port interface found on the TMS320C2000[™] and TMS320C5000[™] devices. In addition, the port can buffer serial samples in memory automatically with the aid of the DMA/EDNA controller. It also has multichannel capability compatible with the T1, E1, SCSA, and MVIP networking standards.
- Timers in the C6000 devices are two 32-bit general-purpose timers used for these functions:
 - Time events
 - Count events
 - Generate pulses
 - Interrupt the CPU
 - Send synchronization events to the DMA/EDMA controller.
- Power-down logic allows reduced clocking to reduce power consumption. Most of the operating power of CMOS logic dissipates during circuit switching from one logic state to another. By preventing some or all of the chip's logic from switching, you can realize significant power savings without losing any data or operational context.

For an overview of the peripherals available on the C6000 DSP, refer to the *TM320C6000 DSP Peripherals Overview Reference Guide* (SPRU190).

SPRU733

Introduction 1-9

Chapter 2

CPU Data Paths and Control

This chapter focuses on the CPU, providing information about the data paths and control registers. The two register files and the data cross paths are described.

Topic

Page

2.1	Introduction 2-2
2.2	General-Purpose Register Files 2-2
2.3	Functional Units 2-5
2.4	Register File Cross Paths 2-6
2.5	Memory, Load, and Store Paths 2-6
2.6	Data Address Paths 2-7
2.7	Control Register File 2-7
2.8	Control Register File Extensions 2-23

2.1 Introduction

The components of the data path for the TMS320C67x CPU are shown in Figure 2–1. These components consist of:

- Two general-purpose register files (A and B)
- □ Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
- Two load-from-memory data paths (LD1 and LD2)
- Two store-to-memory data paths (ST1 and ST2)
- Two data address paths (DA1 and DA2)
- Two register file data cross paths (1X and 2X)

2.2 General-Purpose Register Files

There are two general-purpose register files (A and B) in the C6000 data paths. For the C67x DSP, each of these files contains 16 32-bit registers (A0–A15 for file A and B0–B15 for file B), as shown in Table 2–1. For the C67x+DSP, the register file size is doubled to 32 32-bit registers (A0–A31 for file A and B0–B21 for file B), as shown in Table 2–1. The general-purpose registers can be used for data, data address pointers, or condition registers.

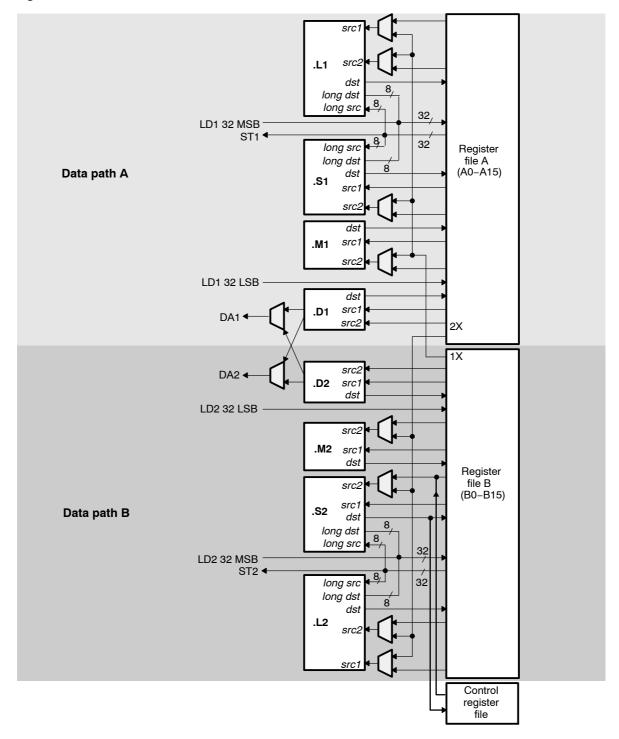
The C67x DSP general-purpose register files support data ranging in size from packed 16-bit data through 40-bit fixed-point and 64-bit floating point data. Values larger than 32 bits, such as 40-bit long and 64-bit float quantities, are stored in register pairs. In these the 32 LSBs of data are placed in an evennumbered register and the remaining 8 or 32 MSBs in the next upper register (that is always an odd-numbered register). Packed data types store either four 8-bit values or two 16-bit values in a single 32-bit register, or four 16-bit values in a 64-bit register pair.

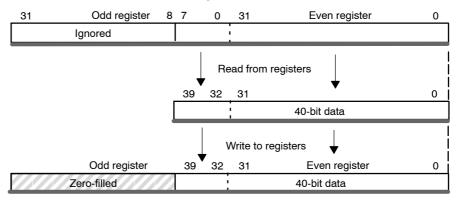
There are 16 valid register pairs for 40-bit and 64-bit data in the C67x DSP cores. In assembly language syntax, a colon between the register names denotes the register pairs, and the odd-numbered register is specified first.

The additional registers are addressed by using the previously unused fifth (msb) bit of the source and register specifiers. All 64-bit register writes and reads are performed over 2 cycles as per the current C67x devices.

Figure 2–2 shows the register storage scheme for 40-bit long data. Operations requiring a long input ignore the 24 MSBs of the odd-numbered register. Operations producing a long result zero-fill the 24 MSBs of the odd-numbered register. The even-numbered register is encoded in the opcode.

2-2 CPU Data Paths and Control




Figure 2-1. TMS320C67x CPU Data Paths

CPU Data Paths and Control 2-3

Regist		
А	В	Devices
A1:A0	B1:B0	C67x DSP
A3:A2	B3:B2	
A5:A4	B5:B4	
A7:A6	B7:B6	
A9:A8	B9:B8	
A11:A10	B11:B10	
A13:A12	B13:B12	
A15:A14	B15:B14	
A17:A16	B17:B16	C67x+ DSP only
A19:A18	B19:B18	
A21:A20	B21:B20	
A23:A22	B23:B22	
A25:A24	B25:B24	
A27:A26	B27:B26	
A29:A28	B29:B28	
A31:A30	B31:B30	

Table 2-1. 40-Bit/64-Bit Register Pairs

Figure 2–2. Storage Scheme for 40-Bit Data in a Register Pair

2-4 CPU Data Paths and Control

2.3 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of four; each functional unit in one data path is almost identical to the corresponding unit in the other data path. The functional units are described in Table 2–2.

Most data lines in the CPU support 32-bit operands, and some support long (40-bit) and double word (64-bit) operands. Each functional unit has its own 32-bit write port into a general-purpose register file (Refer to Figure 2–1). All units ending in 1 (for example, .L1) write to register file A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit read ports for source operands *src1* and *src2*. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because each unit has its own 32-bit write port, when performing 32-bit operations all eight units can be used in parallel every cycle.

See Appendix B for a list of the instructions that execute on each functional unit.

Functional Unit	Fixed-Point Operations	Floating-Point Operations				
.L unit (.L1, .L2)	32/40-bit arithmetic and compare operations	Arithmetic operations				
	32-bit logical operations	$DP \to SP, INT \to DP, INT \to SP$				
	Leftmost 1 or 0 counting for 32 bits	conversion operations				
	Normalization count for 32 and 40 bits					
.S unit (.S1, .S2)	32-bit arithmetic operations	Compare				
	32/40-bit shifts and 32-bit bit-field operations	Reciprocal and reciprocal square-root operations Absolute value operations				
	32-bit logical operations					
	Branches					
	Constant generation	$SP \rightarrow DP$ conversion operations				
	Register transfers to/from control register	SPand DP adds and subtracts				
	file (.S2 only)	SP and DP reverse subtracts (src2 - src1)				
.M unit (.M1, .M2)	16×16 -bit multiply operations	Floating-point multiply operations				
	32×32 -bit multiply operations	Mixed-precision multiply operations				
.D unit (.D1, .D2)	32-bit add, subtract, linear and circular address calculation	Load doubleword with 5-bit constant offset				
	Loads and stores with 5-bit constant offset					
	Loads and stores with 15-bit constant offset (.D2 only)					

Table 2-2. Functional Units and Operations Performed

SPRU733

CPU Data Paths and Control 2-5

2.4 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register file A and the .L2, .S2, .D2, and .M2 units write to register file B. The register files are connected to the opposite-side register file's functional units via the 1X and 2X cross paths. These cross paths allow functional units from one data path to access a 32-bit operand from the opposite side register file. The 1X cross path allows the functional units of data path A to read their source from register file B, and the 2X cross path allows the functional units of data path B to read their source from register file A.

On the C67x DSP, six of the eight functional units have access to the register file on the opposite side, via a cross path. The .M1, .M2, .S1, and .S2 units' *src2* units are selectable between the cross path and the same side register file. In the case of the .L1 and .L2, both *src1* and *src2* inputs are also selectable between the cross path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus, the limit is one source read from each data path's opposite register file per cycle, or a total of two cross path source reads per cycle. In the C67x DSP, only one functional unit per data path, per execute packet, can get an operand from the opposite register file.

2.5 Memory, Load, and Store Paths

The C67x DSP has two 32-bit paths for loading data from memory to the register file: LD1 for register file A, and LD2 for register file B. The C67x DSP also has a second 32-bit load path for both register files A and B. This allows the **LDDW** instruction to simultaneously load two 32-bit values into register file A and two 32-bit values into register file B. For side A, LD1a is the load path for the 32 LSBs and LD1b is the load path for the 32 MSBs. For side B, LD2a is the load path for the 32 LSBs and LD2b is the load path for the 32 MSBs. There are also two 32-bit paths, ST1 and ST2, for storing register values to memory from each register file.

On the C6000 architecture, some of the ports for long and doubleword operands are shared between functional units. This places a constraint on which long or doubleword operations can be scheduled on a data path in the same execute packet. See section 3.7.5.

2.6 Data Address Paths

The data address paths (DA1 and DA2) are each connected to the .D units in both data paths. This allows data addresses generated by any one path to access data to or from any register.

The DA1 and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1 consists of the DA1 address path and the LD1 and ST1 data paths. For the C67x DSP, LD1 is comprised of LD1a and LD1b to support 64-bit loads. Similarly, T2 consists of the DA2 address path and the LD2 and ST2 data paths. For the C67x DSP, LD2 is comprised of LD2a and LD2b to support 64-bit loads.

The T1 and T2 designations appear in the functional unit fields for load and store instructions. For example, the following load instruction uses the .D1 unit to generate the address but is using the LD2 path resource from DA2 to place the data in the B register file. The use of the DA2 resource is indicated with the T2 designation.

LDW .D1T2 *A0[3],B1

2.7 Control Register File

Table 2–3 lists the control registers contained in the control register file.

Acronym	Register Name	Section
AMR	Addressing mode register	2.7.3
CSR	Control status register	2.7.4
ICR	Interrupt clear register	2.7.5
IER	Interrupt enable register	2.7.6
IFR	Interrupt flag register	2.7.7
IRP	Interrupt return pointer register	2.7.8
ISR	Interrupt set register	2.7.9
ISTP	Interrupt service table pointer register	2.7.10
NRP	Nonmaskable interrupt return pointer register	2.7.11
PCE1	Program counter, E1 phase	2.7.12

Table 2–3. Control Registers

SPRU733

CPU Data Paths and Control 2-7

2.7.1 Register Addresses for Accessing the Control Registers

Table 2–4 lists the register addresses for accessing the control register file. One unit (.S2) can read from and write to the control register file. Each control register is accessed by the **MVC** instruction. See the **MVC** instruction description, page 3-180, for information on how to use this instruction.

Additionally, some of the control register bits are specially accessed in other ways. For example, arrival of a maskable interrupt on an external interrupt pin, INT*m*, triggers the setting of flag bit IFR*m*. Subsequently, when that interrupt is processed, this triggers the clearing of IFR*m* and the clearing of the global interrupt enable bit, GIE. Finally, when that interrupt processing is complete, the **B IRP** instruction in the interrupt service routine restores the pre-interrupt value of the GIE. Similarly, saturating instructions like **SADD** set the SAT (saturation) bit in the control status register (CSR).

Acronym	Register Name	Address	Read/ Write
AMR	Addressing mode register	00000	R, W
CSR	Control status register	00001	R, W
FADCR	Floating-point adder configuration	10010	R, W
FAUCR	Floating-point auxiliary configuration	10011	R, W
FMCR	Floating-point multiplier configuration	10100	R, W
ICR	Interrupt clear register	00011	W
IER	Interrupt enable register	00100	R, W
IFR	Interrupt flag register	00010	R
IRP	Interrupt return pointer	00110	R, W
ISR	Interrupt set register	00010	W
ISTP	Interrupt service table pointer	00101	R, W
NRP	Nonmaskable interrupt return pointer	00111	R, W
PCE1	Program counter, E1 phase	10000	R

Table 2–4. Register Addresses for Accessing the Control Registers

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction

2-8 CPU Data Paths and Control

2.7.2 Pipeline/Timing of Control Register Accesses

All **MVC** instructions are single-cycle instructions that complete their access of the explicitly named registers in the E1 pipeline phase. This is true whether **MVC** is moving a general register to a control register, or conversely. In all cases, the source register content is read, moved through the .S2 unit, and written to the destination register in the E1 pipeline phase.

Pipeline Stage	E1
Read	src2
Written	dst
Unit in use	.S2

Even though **MVC** modifies the particular target control register in a single cycle, it can take extra clocks to complete modification of the non-explicitly named register. For example, the **MVC** cannot modify bits in the IFR directly. Instead, **MVC** can only write 1's into the ISR or the ICR to specify setting or clearing, respectively, of the IFR bits. **MVC** completes this ISR/ICR write in a single (E1) cycle but the modification of the IFR bits occurs one clock later. For more information on the manipulation of ISR, ICR, and IFR, see section 2.7.9, section 2.7.5, and section 2.7.7.

Saturating instructions, such as **SADD**, set the saturation flag bit (SAT) in CSR indirectly. As a result, several of these instructions update the SAT bit one full clock cycle after their primary results are written to the register file. For example, the **SMPY** instruction writes its result at the end of pipeline stage E2; its primary result is available after one delay slot. In contrast, the SAT bit in CSR is updated one cycle later than the result is written; this update occurs after two delay slots. (For the specific behavior of an instruction, refer to the description of that individual instruction).

The **B IRP** and **B NRP** instructions directly update the GIE and NMIE, respectively. Because these branches directly modify CSR and IER, respectively, there are no delay slots between when the branch is issued and when the control register updates take effect.

2.7.3 Addressing Mode Register (AMR)

For each of the eight registers (A4–A7, B4–B7) that can perform linear or circular addressing, the addressing mode register (AMR) specifies the addressing mode. A 2-bit field for each register selects the address modification mode: linear (the default) or circular mode. With circular addressing, the field also specifies which BK (block size) field to use for a circular buffer. In addition, the buffer must be aligned on a byte boundary equal to the block size. The mode select fields and block size fields are shown in Figure 2–3 and described in Table 2–5.

Figure 2–3. Addressing Mode Register (AMR)

31					26	25				21	20				16
Reserved					BK1				BK0						
R-0				R/W-0			R/W-0								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
B7 MODE B6 MODE B5 MODE			B4 MODE A7 MODE A6 M			IODE A5 MODE			A4 N	NODE					
R/W-0		R/\	V-0	R/	W-0	F	R/W-0	R/V	V-0	R/	W-0	R	/W-0	R/	W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Bit	Field	Value	Description
31–26	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
25–21	BK1	0–1Fh	Block size field 1. A 5-bit value used in calculating block sizes for circular addressing. Table 2–6 shows block size calculations for all 32 possibilities. Block size (in bytes) = $2^{(N+1)}$, where N is the 5-bit value in BK1
20–16	BK0	0–1Fh	Block size field 0. A 5-bit value used in calculating block sizes for circular addressing. Table 2–6 shows block size calculations for all 32 possibilities. Block size (in bytes) = $2^{(N+1)}$, where N is the 5-bit value in BK0
15–14	B7 MODE	0–3h 0	Address mode selection for register file B7. Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		Зh	Reserved

2-10 CPU Data Paths and Control

Bit	Field	Value	Description
13–12	B6 MODE	0–3h	Address mode selection for register file B6.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
11–10	B5 MODE	0–3h	Address mode selection for register file B5.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
9–8	B4 MODE	0–3h	Address mode selection for register file B4.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
7–6	A7 MODE	0–3h	Address mode selection for register file A7.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
5–4	A6 MODE	0–3h	Address mode selection for register file A6.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved

Table 2–5. Addressing Mode Register (AMR) Field Descriptions (Continued)

SPRU733

Bit	Field	Value	Description
3–2	A5 MODE	0–3h	Address mode selection for register file a5.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
1–0	A4 MODE	0–3h	Address mode selection for register file A4.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved

Table 2–5. Addressing Mode Register (AMR) Field Descriptions (Continued)

Table 2–6. Block Size Calculations

BK <i>n</i> Value	Block Size	BK <i>n</i> Value	Block Size
00000	2	10000	131 072
00001	4	10001	262 144
00010	8	10010	524 288
00011	16	10011	1 048 576
00100	32	10100	2 097 152
00101	64	10101	4 194 304
00110	128	10110	8 388 608
00111	256	10111	16 777 216
01000	512	11000	33 554 432
01001	1 024	11001	67 108 864
01010	2 048	11010	134 217 728
01011	4 096	11011	268 435 456
01100	8 192	11100	536 870 912
01101	16 384	11101	1 073 741 824
01110	32 768	11110	2 147 483 648
01111	65 536	11111	4 294 967 296

Note: When *n* is 11111, the behavior is identical to linear addressing.

2-12 CPU Data Paths and Control

2.7.4 Control Status Register (CSR)

The control status register (CSR) contains control and status bits. The CSR is shown in Figure 2–4 and described in Table 2–7. For the PWRD, EN, PCC, and DCC fields, see the device-specific data manual to see if it supports the options that these fields control.

The power-down modes and their wake-up methods are programmed by the PWRD field (bits 15–10) of CSR. The PWRD field of CSR is shown in Figure 2–5. When writing to CSR, all bits of the PWRD field should be configured at the same time. A logic 0 should be used when writing to the reserved bit (bit 15) of the PWRD field.

Figure 2–4. Control Status Register (CSR)

31				24	23						16
	CPU	ID			REVISION ID						
	R-x [†]										
15		10	9	8	7		5	4	2	1	0
	PWRD		SAT	EN		PCC		DCC		PGIE	GIE
	R/W-0		R/WC-0	R-x		R/W-0		R/W-0		R/W-0	R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; WC = Bit is cleared on write; -n = value after reset; -x = value is indeterminate after reset

[†] See the device-specific data manual for the default value of this field.

Figure 2–5. PWRD Field of Control Status Register (CSR)

_	15	14	13	12	11	10
	Reserved	Enabled or nonenabled interrupt wake	Enabled interrupt wake	PD3	PD2	PD1
-	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Bit	Field	Value	Description
31–24	CPU ID	0–FFh	Identifies the CPU of the device. Not writable by the MVC instruction.
		0–1h	Reserved
		2h	C67x CPU
		3h	C67x+ CPU
		4h–FFh	Reserved
23–16	REVISION ID	0–FFh	Identifies silicon revision of the CPU. For the most current silicon revision information, see the device-specific data manual. Not writable by the MVC instruction.
15–10	PWRD	0–3Fh	Power-down mode field. See Figure 2–5. Writable by the MVC instruction.
		0	No power-down.
		1h–8h	Reserved
		9h	Power-down mode PD1; wake by an enabled interrupt.
		Ah-10h	Reserved
		11h	Power-down mode PD1; wake by an enabled or nonenabled interrupt.
		12h-19h	Reserved
		1Ah	Power-down mode PD2; wake by a device reset.
		1Bh	Reserved
		1Ch	Power-down mode PD3; wake by a device reset.
		1D–3Fh	Reserved
9	SAT		Saturate bit. Can be cleared only by the MVC instruction and can be set only by a functional unit. The set by a functional unit has priority over a clear (by the MVC instruction), if they occur on the same cycle. The SAT bit is set one full cycle (one delay slot) after a saturate occurs. The SAT bit will not be modified by a conditional instruction whose condition is false.
		0	Any unit does not perform a saturate.
		1	Any unit performs a saturate.
8	EN		Endian mode. Not writable by the MVC instruction.
		0	Big endian
		1	Little endian

Table 2-7. Control Status Register (CSR) Field Descriptions

2-14 CPU Data Paths and Control

Bit	Field	Value	Description
7–5	PCC	0–7h	Program cache control mode. Writable by the MVC instruction. See the <i>TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide</i> (SPRU609).
		0	Direct-mapped cache enabled
		1h	Reserved
		2h	Direct-mapped cache enabled
		3h–7h	Reserved
4–2	DCC	0–7h	Data cache control mode. Writable by the MVC instruction. See the <i>TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide</i> (SPRU609).
		0	2-way cache enabled
		1h	Reserved
		2h	2-way cache enabled
		3h–7h	Reserved
1	PGIE		Previous GIE (global interrupt enable). Copy of GIE bit at point when interrupt is taken. Physically the same bit as SGIE bit in the interrupt task state register (ITSR). Writeable by the MVC instruction.
		0	Disables saving GIE bit when an interrupt is taken.
		1	Enables saving GIE bit when an interrupt is taken.
0	GIE		Global interrupt enable. Physically the same bit as GIE bit in the task state register (TSR). Writable by the MVC instruction.
		0	Disables all interrupts, except the reset interrupt and NMI (nonmaskable interrupt).
		1	Enables all interrupts.

Table 2–7. Control Status Register (CSR) Field Descriptions (Continued)

2.7.5 Interrupt Clear Register (ICR)

The interrupt clear register (ICR) allows you to manually clear the maskable interrupts (INT15–INT4) in the interrupt flag register (IFR). Writing a 1 to any of the bits in ICR causes the corresponding interrupt flag (IF*n*) to be cleared in IFR. Writing a 0 to any bit in ICR has no effect. Incoming interrupts have priority and override any write to ICR. You cannot set any bit in ICR to affect NMI or reset. The ISR is shown in Figure 2–6 and described in Table 2–8.

Note:

Any write to ICR (by the **MVC** instruction) effectively has one delay slot because the results cannot be read (by the **MVC** instruction) in IFR until two cycles after the write to ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in the interrupt set register (ISR).

Figure 2–6. Interrupt Clear Register (ICR)

31														16
	Reserved													
R-0														
15	14	13	12	11	10	9	8	7	6	5	4	3		0
IC15	IC14	IC13	IC12	IC11	IC10	IC9	IC8	IC7	IC6	IC5	IC4		Reserved	
	W-0												R-0	

Legend: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2–8. I	Interrupt (Clear Register	(ICR)	Field Descriptions

Bit	Field	Value	Description
31–16	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15–4	ICn		Interrupt clear.
		0	Corresponding interrupt flag (IFn) in IFR is not cleared.
		1	Corresponding interrupt flag (IFn) in IFR is cleared.
3–0	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

2-16 CPU Data Paths and Control

2.7.6 Interrupt Enable Register (IER)

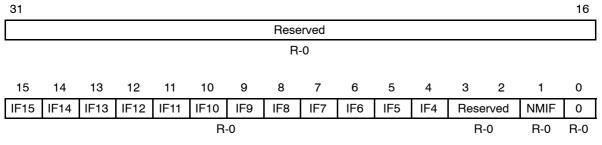
The interrupt enable register (IER) enables and disables individual interrupts. The IER is shown in Figure 2–7 and described in Table 2–9.

Fiaure 2–7.	Interrupt Enable	e Reaister	(IER)
			(

31															16
	Reserved														
	R-0														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IE15	IE14	IE13	IE12	IE11	IE10	IE9	IE8	IE7	IE6	IE5	IE4	Reserved		NMIE	1
	R/W-0											R-	0	R/W-0	R-1

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2–9.	Interrupt Enable	Register ((IER)	Field Descriptions
	1	0 1		1


Bit	Field	Value	Description
31–16	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15–4	IEn		Interrupt enable. An interrupt triggers interrupt processing only if the corresponding bit is set to 1.
		0	Interrupt is disabled.
		1	Interrupt is enabled.
3–2	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1	NMIE		Nonmaskable interrupt enable. An interrupt triggers interrupt processing only if the bit is set to 1.
			The NMIE bit is cleared at reset. After reset, you must set the NMIE bit to enable the NMI and to allow INT15–INT4 to be enabled by the GIE bit in CSR and the corresponding IER bit. You cannot manually clear the NMIE bit; a write of 0 has no effect. The NMIE bit is also cleared by the occurrence of an NMI.
		0	All nonreset interrupts are disabled.
		1	All nonreset interrupts are enabled. The NMIE bit is set only by completing a B NRP instruction or by a write of 1 to the NMIE bit.
0	1	1	Reset interrupt enable. You cannot disable the reset interrupt.

SPRU733

2.7.7 Interrupt Flag Register (IFR)

The interrupt flag register (IFR) contains the status of INT4–INT15 and NMI interrupt. Each corresponding bit in the IFR is set to 1 when that interrupt occurs; otherwise, the bits are cleared to 0. If you want to check the status of interrupts, use the **MVC** instruction to read the IFR. (See the **MVC** instruction description, page 3-180, for information on how to use this instruction.) The IFR is shown in Figure 2–8 and described in Table 2–10.

Figure 2–8. Interrupt Flag Register (IFR)

Legend: R = Readable by the MVC instruction; -n = value after reset

Table 2–10. Interrupt Flag Register (IFR) Field Descriptions

erved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. Interrupt flag. Indicates the status of the corresponding maskable interrupt. An interrupt flag may be manually set by setting the corresponding bit (IS <i>n</i>) in the interrupt set register (ISR) or manually cleared by setting the corresponding bit (IC <i>n</i>) in the interrupt clear register (ICR).
	0	interrupt flag may be manually set by setting the corresponding bit (IS <i>n</i>) in the interrupt set register (ISR) or manually cleared by setting the corresponding bit (IC <i>n</i>) in the interrupt clear register (ICR).
	0	Interrupt has not accurred
		Interrupt has not occurred.
	1	Interrupt has occurred.
erved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
F		Nonmaskable interrupt flag.
	0	Interrupt has not occurred.
	1	Interrupt has occurred.
	0	Reset interrupt flag.
		1

2-18 CPU Data Paths and Control

2.7.8 Interrupt Return Pointer Register (IRP)

The interrupt return pointer register (IRP) contains the return pointer that directs the CPU to the proper location to continue program execution after processing a maskable interrupt. A branch using the address in IRP (**B IRP**) in your interrupt service routine returns to the program flow when interrupt servicing is complete. The IRP is shown in Figure 2–9.

The IRP contains the 32-bit address of the first execute packet in the program flow that was not executed because of a maskable interrupt. Although you can write a value to IRP, any subsequent interrupt processing may overwrite that value.

Figure 2–9. Interrupt Return Pointer Register (IRP)

31		0
	IRP	
	R/W-x	

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

2.7.9 Interrupt Set Register (ISR)

The interrupt set register (ISR) allows you to manually set the maskable interrupts (INT15–INT4) in the interrupt flag register (IFR). Writing a 1 to any of the bits in ISR causes the corresponding interrupt flag (IF*n*) to be set in IFR. Writing a 0 to any bit in ISR has no effect. You cannot set any bit in ISR to affect NMI or reset. The ISR is shown in Figure 2–10 and described in Table 2–11.

Note:

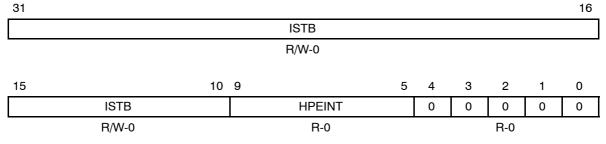
Any write to ISR (by the **MVC** instruction) effectively has one delay slot because the results cannot be read (by the **MVC** instruction) in IFR until two cycles after the write to ISR.

Any write to the interrupt clear register (ICR) is ignored by a simultaneous write to the same bit in ISR.

Figure 2–10. Interrupt Set Register (ISR)

Reserved R-0 15 14 13 12 11 10 9 8 7 6 5 4 3 0 IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4 Reserved W-0 R-0	31														16
15 14 13 12 11 10 9 8 7 6 5 4 3 0 IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4 Reserved		Reserved													
IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4 Reserved		R-0													
IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4 Reserved															
	15	14	13	12	11	10	9	8	7	6	5	4	3		0
W-0 R-0	IS15	IS14	IS13	IS12	IS11	IS10	IS9	IS8	IS7	IS6	IS5	IS4		Reserved	
		W-0												R-0	

Legend: R = Read only; W = Writeable by the MVC instruction; -n = value after reset


Table 2–11. Interrupt Set Register (ISR) Field Descriptions

Field	Value	Description
Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
ISn		Interrupt set.
	0	Corresponding interrupt flag (IFn) in IFR is not set.
	1	Corresponding interrupt flag (IFn) in IFR is set.
Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
	Reserved	Reserved 0 ISn 0 1

2-20 CPU Data Paths and Control

2.7.10 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer register (ISTP) is used to locate the interrupt service routine (ISR). The ISTB field identifies the base portion of the address of the interrupt service table (IST) and the HPEINT field identifies the specific interrupt and locates the specific fetch packet within the IST. The ISTP is shown in Figure 2–11 and described in Table 2–12. See section 5.1.2.2 on page 5-9 for a discussion of the use of the ISTP.

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2–12. Interrupt Service Table Pointer Register (ISTP) Field Descriptions

Bit	Field	Value	Description
31–10	ISTB	0–3F FFFFh	Interrupt service table base portion of the IST address. This field is cleared to 0 on reset; therefore, upon startup the IST must reside at address 0. After reset, you can relocate the IST by writing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never executed via interrupt processing, because reset clears the ISTB to 0. See Example 5–1.
9–5	HPEINT	0–1Fh	Highest priority enabled interrupt that is currently pending. This field indicates the number (related bit position in the IFR) of the highest priority interrupt (as defined in Table 5–1 on page 5-3) that is enabled by its bit in the IER. Thus, the ISTP can be used for manual branches to the highest priority enabled interrupt. If no interrupt is pending and enabled, HPEINT contains the value 0. The corresponding interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.
4–0	-	0	Cleared to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

2.7.11 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)

The NMI return pointer register (NRP) contains the return pointer that directs the CPU to the proper location to continue program execution after NMI processing. A branch using the address in NRP (**B NRP**) in your interrupt service routine returns to the program flow when NMI servicing is complete. The NRP is shown in Figure 2–12.

The NRP contains the 32-bit address of the first execute packet in the program flow that was not executed because of a nonmaskable interrupt. Although you can write a value to NRP, any subsequent interrupt processing may overwrite that value.

Figure 2–12. NMI Return Pointer Register (NRP)

31	0
NRP	
R/W-x	

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

2.7.12 E1 Phase Program Counter (PCE1)

The E1 phase program counter (PCE1), shown in Figure 2–13, contains the 32-bit address of the fetch packet in the E1 pipeline phase.

Figure 2–13. E1 Phase Program Counter (PCE1)

31		0
	PCE1	
	R-x	

Legend: R = Readable by the MVC instruction; -x = value is indeterminate after reset

2.8 Control Register File Extensions

The C67x DSP has three additional configuration registers to support floatingpoint operations. The registers specify the desired floating-point rounding mode for the .L and .M units. They also contain fields to warn if *src1* and *src2* are NaN or denormalized numbers, and if the result overflows, underflows, is inexact, infinite, or invalid. There are also fields to warn if a divide by 0 was performed, or if a compare was attempted with a NaN source. Table 2–13 lists the additional registers used. The OVER, UNDER, INEX, INVAL, DENn, NANn, INFO, UNORD and DIV0 bits within these registers will not be modified by a conditional instruction whose condition is false.

Table 2–13. Control Register File Extensions

Acronym	Register Name	Section
FADCR	Floating-point adder configuration register	2.8.1
FAUCR	Floating-point auxiliary configuration register	2.8.2
FMCR	Floating-point multiplier configuration register	2.8.3

2.8.1 Floating-Point Adder Configuration Register (FADCR)

The floating-point adder configuration register (FADCR) contains fields that specify underflow or overflow, the rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use the .L functional units. FADCR has a set of fields specific to each of the .L units: .L2 uses bits 31–16 and .L1 uses bits 15–0. FADCR is shown in Figure 2–14 and described in Table 2–14.

Note:

For the C67x+ DSP, the **ADDSP**, **ADDDP**, **SUBSP**, and **SUBDP** instructions executing in the .S functional unit use the rounding mode from and set the warning bits in FADCR. The warning bits in FADCR are the logical-OR of the warnings produced on the .L functional unit and the warnings produced by the ADDSP/ADDDP/SUBSP/SUBDP instructions on the .S functional unit (but not other instructions executing on the .S functional unit).

31		27	26	25	24	23	22	21	20	19	18	17	16
	Reserved		RMC	DDE	UNDER	INEX	OVER	INFO	INVAL	DEN2	DEN1	NAN2	NAN1
	R-0		R/V	V-0	R/W-0								
15		11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		RMC	DDE	UNDER	INEX	OVER	INFO	INVAL	DEN2	DEN1	NAN2	NAN1
	R-0		R/V	V-0	R/W-0								

Figure 2–14. Floating-Point Adder Configuration Register (FADCR)

Legend: R = Readable by the **MVC** instruction; W = Writeable by the **MVC** instruction; -n = value after reset

Table 2–14.Floating-Point Adder Configuration Register (FADCR)Field Descriptions

Bit	Field	Value	Description
31–27	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26–25	RMODE	0–3h	Rounding mode select for .L2.
		0	Round toward nearest representable floating-point number
		1h	Round toward 0 (truncate)
		2h	Round toward infinity (round up)
		Зh	Round toward negative infinity (round down)
24	UNDER		Result underflow status for .L2.
		0	Result does not underflow.
		1	Result underflows.
23	INEX		Inexact results status for .L2.
		0	
		1	Result differs from what would have been computed had the exponent range and precision been unbounded; never set with INVAL.
22	OVER		Result overflow status for .L2.
		0	Result does not overflow.
		1	Result overflows.
21	INFO		Signed infinity for .L2.
		0	Result is not signed infinity.
		1	Result is signed infinity.

2-24 CPU Data Paths and Control

Table 2–14.	Floating-Point Adder Configuration Register (FADCR)
	Field Descriptions (Continued)

Bit	Field	Value	Description
20	INVAL		
		0	A signed NaN (SNaN) is not a source.
		1	A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when infinity is subtracted from infinity.
19	DEN2		Denormalized number select for .L2 <i>src2</i> .
		0	<i>src2</i> is not a denormalized number.
		1	<i>src2</i> is a denormalized number.
18	DEN1		Denormalized number select for .L2 <i>src1</i> .
		0	src1 is not a denormalized number.
		1	<i>src1</i> is a denormalized number.
17	NAN2		NaN select for .L2 <i>src2</i> .
		0	<i>src2</i> is not NaN.
		1	<i>src2</i> is NaN.
16	NAN1		NaN select for .L2 src1.
		0	<i>src1</i> is not NaN.
		1	<i>src1</i> is NaN.
15–11	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
10–9	RMODE	0–3h	Rounding mode select for .L1.
		0	Round toward nearest representable floating-point number
		1h	Round toward 0 (truncate)
		2h	Round toward infinity (round up)
		3h	Round toward negative infinity (round down)
8	UNDER		Result underflow status for .L1.
		0	Result does not underflow.
		1	Result underflows.

SPRU733

Table 2–14.	Floating-Point Adder Configuration Register (FADCR)
	Field Descriptions (Continued)

Bit	Field	Value	Description
7	INEX		Inexact results status for .L1.
		0	
		1	Result differs from what would have been computed had the exponent range and precision been unbounded; never set with INVAL.
6	OVER		Result overflow status for .L1.
		0	Result does not overflow.
		1	Result overflows.
5	INFO		Signed infinity for .L1.
		0	Result is not signed infinity.
		1	Result is signed infinity.
4	INVAL		
		0	A signed NaN (SNaN) is not a source.
		1	A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when infinity is subtracted from infinity.
3	DEN2		Denormalized number select for .L1 src2.
		0	<i>src2</i> is not a denormalized number.
		1	<i>src2</i> is a denormalized number.
2	DEN1		Denormalized number select for .L1 src1.
		0	<i>src1</i> is not a denormalized number.
		1	<i>src1</i> is a denormalized number.
1	NAN2		NaN select for .L1 src2.
		0	<i>src2</i> is not NaN.
		1	src2 is NaN.
0	NAN1		NaN select for .L1 src1.
		0	<i>src1</i> is not NaN.
		1	<i>src1</i> is NaN.

2-26 CPU Data Paths and Control

2.8.2 Floating-Point Auxiliary Configuration Register (FAUCR)

The floating-point auxiliary register (FAUCR) contains fields that specify underflow or overflow, the rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use the .S functional units. FAUCR has a set of fields specific to each of the .S units: .S2 uses bits 31–16 and .S1 uses bits 15–0. FAUCR is shown in Figure 2–15 and described in Table 2–15.

Note:

For the C67x+ DSP, the **ADDSP**, **ADDDP**, **SUBSP**, and **SUBDP** instructions executing in the .S functional unit use the rounding mode from and set the warning bits in the floating-point adder configuration register (FADCR). The warning bits in FADCR are the logical-OR of the warnings produced on the .L functional unit and the warnings produced by the ADDSP/ADDDP/ SUBSP/SUBDP instructions on the .S functional unit (but not other instructions executing on the .S functional unit).

31	27	26	25	24	23	22	21	20	19	18	17	16
Reserve	əd	DIV0	UNORD	UND	INEX	OVER	INFO	INVAL	DEN2	DEN1	NAN2	NAN1
R-0		R/W-0										
15	11	10	9	8	7	6	5	4	3	2	1	0
Reserve	ed	DIV0	UNORD	UND	INEX	OVER	INFO	INVAL	DEN2	DEN1	NAN2	NAN1
R-0		R/W-0										

Figure 2–15. Floating-Point Auxiliary Configuration Register (FAUCR)

Legend: R = Readable by the **MVC** instruction; W = Writeable by the **MVC** instruction; -n = value after reset

Table 2–15. Floating-Point Auxiliary Configuration Register (FAUCR) Field Descriptions

Bit	Field	Value	Description
31–27	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26	DIV0		Source to reciprocal operation for .S2.
		0	0 is not source to reciprocal operation.
		1	0 is source to reciprocal operation.

SPRU733

Table 2–15.Floating-Point Auxiliary Configuration Register (FAUCR)Field Descriptions (Continued)

Bit	Field	Value	Description
25	UNORD		Source to a compare operation for .S2
		0	NaN is not a source to a compare operation.
		1	NaN is a source to a compare operation.
24	UND		Result underflow status for .S2.
		0	Result does not underflow.
		1	Result underflows.
23	INEX		Inexact results status for .S2.
		0	
		1	Result differs from what would have been computed had the exponent range and precision been unbounded; never set with INVAL.
22	OVER		Result overflow status for .S2.
		0	Result does not overflow.
		1	Result overflows.
21	INFO		Signed infinity for .S2.
		0	Result is not signed infinity.
		1	Result is signed infinity.
20	INVAL		
		0	A signed NaN (SNaN) is not a source.
		1	A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when infinity is subtracted from infinity.
19	DEN2		Denormalized number select for .S2 src2.
		0	<i>src2</i> is not a denormalized number.
		1	<i>src2</i> is a denormalized number.
18	DEN1		Denormalized number select for .S2 src1.
		0	<i>src1</i> is not a denormalized number.
		1	<i>src1</i> is a denormalized number.

2-28 CPU Data Paths and Control

Table 2–15.	Floating-Point Auxiliary Configuration Register (FAUCR)
	Field Descriptions (Continued)

Bit	Field	Value	Description
17	NAN2		NaN select for .S2 <i>src2</i> .
		0	<i>src2</i> is not NaN.
		1	<i>src2</i> is NaN.
16	NAN1		NaN select for .S2 src1.
		0	<i>src1</i> is not NaN.
		1	<i>src1</i> is NaN.
15–11	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
10	DIV0		Source to reciprocal operation for .S1.
		0	0 is not source to reciprocal operation.
		1	0 is source to reciprocal operation.
9	UNORD		Source to a compare operation for .S1
		0	NaN is not a source to a compare operation.
		1	NaN is a source to a compare operation.
8	UND		Result underflow status for .S1.
		0	Result does not underflow.
		1	Result underflows.
7	INEX		Inexact results status for .S1.
		0	
		1	Result differs from what would have been computed had the exponent range and precision been unbounded; never set with INVAL.
6	OVER		Result overflow status for .S1.
		0	Result does not overflow.
		1	Result overflows.

Table 2–15.	Floating-Point Auxiliary Configuration Register (FAUCR)
	Field Descriptions (Continued)

Bit	Field	Value	Description
5	INFO		Signed infinity for .S1.
		0	Result is not signed infinity.
		1	Result is signed infinity.
4	INVAL		
		0	A signed NaN (SNaN) is not a source.
		1	A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when infinity is subtracted from infinity.
3	DEN2		Denormalized number select for .S1 src2.
		0	<i>src2</i> is not a denormalized number.
		1	<i>src2</i> is a denormalized number.
2	DEN1		Denormalized number select for .S1 src1.
		0	src1 is not a denormalized number.
		1	src1 is a denormalized number.
1	NAN2		NaN select for .S1 <i>src2</i> .
		0	<i>src2</i> is not NaN.
		1	<i>src2</i> is NaN.
0	NAN1		NaN select for .S1 <i>src1</i> .
		0	<i>src1</i> is not NaN.
		1	<i>src1</i> is NaN.

2.8.3 Floating-Point Multiplier Configuration Register (FMCR)

The floating-point multiplier configuration register (FMCR) contains fields that specify underflow or overflow, the rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use the .M functional units. FMCR has a set of fields specific to each of the .M units: .M2 uses bits 31–16 and .M1 uses bits 15–0. FMCR is shown in Figure 2–16 and described in Table 2–16.

Figure 2–16. Floating-Point Multiplier Configuration Register (FMCR)

31		27	26	25	24	23	22	21	20	19	18	17	16
	Reserved		RMC	DDE	UNDER	INEX	OVER	INFO	INVAL	DEN2	DEN1	NAN2	NAN1
	R-0		R/V	V-0	R/W-0								
15		11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		RMC	DDE	UNDER	INEX	OVER	INFO	INVAL	DEN2	DEN1	NAN2	NAN1
	R-0		R/V	V-0	R/W-0								

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2–16.Floating-Point Multiplier Configuration Register (FMCR)Field Descriptions

Bit	Field	Value	Description
31–27	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26–25	RMODE	0–3h	Rounding mode select for .M2.
		0	Round toward nearest representable floating-point number
		1h	Round toward 0 (truncate)
		2h	Round toward infinity (round up)
		3h	Round toward negative infinity (round down)
24	UNDER		Result underflow status for .M2.
		0	Result does not underflow.
		1	Result underflows.

SPRU733

Table 2–16.	Floating-Point Multiplier Configuration Register (FMCR)
	Field Descriptions (Continued)

Bit	Field	Value	Description
23	INEX		Inexact results status for .M2.
		0	
		1	Result differs from what would have been computed had the exponent range and precision been unbounded; never set with INVAL.
22	OVER		Result overflow status for .M2.
		0	Result does not overflow.
		1	Result overflows.
21	INFO		Signed infinity for .M2.
		0	Result is not signed infinity.
		1	Result is signed infinity.
20	INVAL		
		0	A signed NaN (SNaN) is not a source.
		1	A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when infinity is subtracted from infinity.
19	DEN2		Denormalized number select for .M2 src2.
		0	src2 is not a denormalized number.
		1	<i>src2</i> is a denormalized number.
18	DEN1		Denormalized number select for .M2 src1.
		0	src1 is not a denormalized number.
		1	<i>src1</i> is a denormalized number.
17	NAN2		NaN select for .M2 src2.
		0	<i>src2</i> is not NaN.
		1	<i>src2</i> is NaN.
16	NAN1		NaN select for .M2 <i>src1</i> .
		0	<i>src1</i> is not NaN.
		1	src1 is NaN.

2-32 CPU Data Paths and Control

Table 2–16.	Floating-Point Multiplier Configuration Register (FMCR)
	Field Descriptions (Continued)

Bit	Field	Value	Description
15–11	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
10–9	RMODE	0–3h	Rounding mode select for .M1.
		0	Round toward nearest representable floating-point number
		1h	Round toward 0 (truncate)
		2h	Round toward infinity (round up)
		Зh	Round toward negative infinity (round down)
8	UNDER		Result underflow status for .M1.
		0	Result does not underflow.
		1	Result underflows.
7	INEX		Inexact results status for .M1.
		0	
		1	Result differs from what would have been computed had the exponent range and precision been unbounded; never set with INVAL.
6	OVER		Result overflow status for .M1.
		0	Result does not overflow.
		1	Result overflows.
5	INFO		Signed infinity for .M1.
		0	Result is not signed infinity.
		1	Result is signed infinity.
4	INVAL		
		0	A signed NaN (SNaN) is not a source.
		1	A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when infinity is subtracted from infinity.
3	DEN2		Denormalized number select for .M1 src2.
		0	<i>src2</i> is not a denormalized number.
		1	<i>src2</i> is a denormalized number.

SPRU733

Table 2–16.	Floating-Point Multiplier Configuration Register (FMCR)
	Field Descriptions (Continued)

Bit	Field	Value	Description	
2	DEN1		Denormalized number select for .M1 src1.	
		0	src1 is not a denormalized number.	
		1	<i>src1</i> is a denormalized number.	
1	NAN2		NaN select for .M1 src2.	
		0	<i>src2</i> is not NaN.	
		1	src2 is NaN.	
0	NAN1		NaN select for .M1 <i>src1</i> .	
		0	<i>src1</i> is not NaN.	
		1	src1 is NaN.	

Chapter 3

Instruction Set

This chapter describes the assembly language instructions of the TMS320C67x DSP. Also described are parallel operations, conditional operations, resource constraints, and addressing modes.

The C67x floating-point DSP uses all of the instructions available to the TMS320C62xTM DSP but it also uses other instructions that are specific to the C67x DSP. These specific instructions are for 32-bit integer multiply, double-word load, and floating-point operations, including addition, subtraction, and multiplication.

Topic

Page

3.1	Instruction Operation and Execution Notations
3.2	Instruction Syntax and Opcode Notations 3-7
3.3	Overview of IEEE Standard Single- and Double-Precision Formats 3-9
3.4	Delay Slots
3.5	Parallel Operations 3-16
3.6	Conditional Operations 3-19
3.7	Resource Constraints 3-20
3.8	Addressing Modes 3-30
3.9	Instruction Compatibility 3-34
3.10	Instruction Descriptions

3.1 Instruction Operation and Execution Notations

Table 3–1 explains the symbols used in the instruction descriptions.

Table 3–1. Instruction Operation and Execution Notations

Symbol	Meaning
abs(x)	Absolute value of x
and	Bitwise AND
-a	Perform 2s-complement subtraction using the addressing mode defined by the AMR
+a	Perform 2s-complement addition using the addressing mode defined by the AMR
b _i	Select bit i of source/destination b
bit_count	Count the number of bits that are 1 in a specified byte
bit_reverse	Reverse the order of bits in a 32-bit register
byte0	8-bit value in the least-significant byte position in 32-bit register (bits 0-7)
byte1	8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
byte2	8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
byte3	8-bit value in the most-significant byte position in 32-bit register (bits 24-31)
bv2	Bit vector of two flags for s2 or u2 data type
bv4	Bit vector of four flags for s4 or u4 data type
b _{yz}	Selection of bits y through z of bit string b
cond	Check for either creg equal to 0 or creg not equal to 0
creg	3-bit field specifying a conditional register, see section 3.6
cstn	n-bit constant field (for example, cst5)
dint	64-bit integer value (two registers)
dp	Double-precision floating-point register value
dp(x)	Convert x to dp
dst_h or dst_o	msb32 of dst (placed in odd-numbered register of 64-bit register pair)
dst_l or dst_e	lsb32 of dst (placed in even-numbered register of a 64-bit register pair)
dws4	Four packed signed 16-bit integers in a 64-bit register pair
dwu4	Four packed unsigned 16-bit integers in a 64-bit register pair

3-2 Instruction Set

Symbol	Meaning
gmpy	Galois Field Multiply
i2	Two packed 16-bit integers in a single 32-bit register
i4	Four packed 8-bit integers in a single 32-bit register
int	32-bit integer value
int(x)	Convert x to integer
lmb0(x)	Leftmost 0 bit search of x
lmb1(x)	Leftmost 1 bit search of x
long	40-bit integer value
lsbn or LSBn	n least-significant bits (for example, lsb16)
msbn or MSBn	n most-significant bits (for example, msb16)
nop	No operation
norm(x)	Leftmost nonredundant sign bit of x
not	Bitwise logical complement
ор	Opfields
or	Bitwise OR
R	Any general-purpose register
rcp(x)	Reciprocal approximation of x
ROTL	Rotate left
sat	Saturate
sbyte0	Signed 8-bit value in the least-significant byte position in 32-bit register (bits $0-7$)
sbyte1	Signed 8-bit value in the next to least-significant byte position in 32-bit register (bits 8–15)
sbyte2	Signed 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
sbyte3	Signed 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)
scstn	n-bit signed constant field
sdint	Signed 64-bit integer value (two registers)
se	Sign-extend

Table 3–1. Instruction Operation and Execution Notations (Continued)

SPRU733

Instruction Set 3-3

Symbol	Meaning
sint	Signed 32-bit integer value
slong	Signed 40-bit integer value
sllong	Signed 64-bit integer value
slsb16	Signed 16-bit integer value in lower half of 32-bit register
smsb16	Signed 16-bit integer value in upper half of 32-bit register
sp	Single-precision floating-point register value that can optionally use cross path
sp(x)	Convert x to sp
sqrcp(x)	Square root of reciprocal approximation of x
src1_h	msb32 of src1
src1_l	Isb32 of src1
src2_h	msb32 of src2
src2_I	Isb32 of src2
s2	Two packed signed 16-bit integers in a single 32-bit register
s4	Four packed signed 8-bit integers in a single 32-bit register
-S	Perform 2s-complement subtraction and saturate the result to the result size, if an overflow occurs
+S	Perform 2s-complement addition and saturate the result to the result size, if an overflow occurs
ubyte0	Unsigned 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)
ubyte1	Unsigned 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
ubyte2	Unsigned 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
ubyte3	Unsigned 8-bit value in the most-significant byte position in 32-bit register (bits 24–31)
ucstn	n-bit unsigned constant field (for example, ucst5)
uint	Unsigned 32-bit integer value
ulong	Unsigned 40-bit integer value
ullong	Unsigned 64-bit integer value
ulsb16	Unsigned 16-bit integer value in lower half of 32-bit register

Table 3–1. Instruction Operation and Execution Notations (Continued)

3-4 Instruction Set

Symbol	Meaning		
umsb16	Unsigned 16-bit integer value in upper half of 32-bit register		
u2	Two packed unsigned 16-bit integers in a single 32-bit register		
u4	Four packed unsigned 8-bit integers in a single 32-bit register		
x clear b,e	Clear a field in x, specified by b (beginning bit) and e (ending bit)		
x ext l,r	Extract and sign-extend a field in x, specified by I (shift left value) and r (shift right value)		
<i>x</i> extu <i>l,r</i>	Extract an unsigned field in x, specified by I (shift left value) and r (shift right value)		
x set b,e	Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)		
xint	32-bit integer value that can optionally use cross path		
xor	Bitwise exclusive-OR		
xsint	Signed 32-bit integer value that can optionally use cross path		
xslsb16	Signed 16 LSB of register that can optionally use cross path		
xsmsb16	Signed 16 MSB of register that can optionally use cross path		
xsp	Single-precision floating-point register value that can optionally use cross path		
xs2	Two packed signed 16-bit integers in a single 32-bit register that can optionally use cross path		
xs4	Four packed signed 8-bit integers in a single 32-bit register that can optionally use cross path		
xuint	Unsigned 32-bit integer value that can optionally use cross path		
xulsb16	Unsigned 16 LSB of register that can optionally use cross path		
xumsb16	Unsigned 16 MSB of register that can optionally use cross path		
xu2	Two packed unsigned 16-bit integers in a single 32-bit register that can optionally use cross path		
xu4	Four packed unsigned 8-bit integers in a single 32-bit register that can optionally use cross path		
\rightarrow	Assignment		
+	Addition		
++	Increment by 1		
×	Multiplication		
-	Subtraction		
==	Equal to		

Table 3–1. Instruction Operation and Execution Notations (Continued)

SPRU733

Instruction Set 3-5

Symbol	Meaning
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to
<<	Shift left
>>	Shift right
>>S	Shift right with sign extension
>>Z	Shift right with a zero fill
~	Logical inverse
&	Logical AND

Table 3–1. Instruction Operation and Execution Notations (Continued)

3.2 Instruction Syntax and Opcode Notations

Table 3–2 explains the syntaxes and opcode fields used in the instruction descriptions.

The C64x CPU 32-bit opcodes are mapped in Appendix C through Appendix G.

Symbol Meaning baseR base address register CC 3-bit field specifying a conditional register, see section 3.6 creg cst constant constant a csta cstb constant b cstn n-bit constant field dst destination dstms doubleword; 0 = word, 1 = doubleworddw İİn bit n of the constant ii ld/st load or store; 0 = store, 1 = load addressing mode, see section 3.8 mode register offset offsetR opfield; field within opcode that specifies a unique instruction ор bit n of the opfield opn parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is р executed in parallel LDDW instruction r rsv reserved side A or B for destination; 0 = side A, 1 = side B. s sc scaling mode; 0 = nonscaled, offsetR/ucst5 is not shifted; 1 = scaled, offsetR/ucst5 is shifted n-bit signed constant field scstn

Table 3–2. Instruction Syntax and Opcode Notations

SPRU733

Instruction Set 3-7

Symbol	Meaning
scst _n	bit n of the signed constant field
sn	sign
src	source
src1	source 1
src2	source 2
srcms	
stg _n	bit n of the constant <i>stg</i>
t	side of source/destination (<i>src/dst</i>) register; 0 = side A, 1 = side B
ucstn	n-bit unsigned constant field
ucst _n	bit n of the unsigned constant field
unit	unit decode
x	cross path for <i>src2</i> ; $0 = do$ not use cross path, $1 = use$ cross path
У	.D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit
Z	test for equality with zero or nonzero

Table 3–2. Instruction Syntax and Opcode Notations (Continued)

3.3 Overview of IEEE Standard Single- and Double-Precision Formats

Floating-point operands are classified as single-precision (SP) and doubleprecision (DP). Single-precision floating-point values are 32-bit values stored in a single register. Double-precision floating-point values are 64-bit values stored in a register pair. The register pair consists of consecutive even and odd registers from the same register file. The 32 least-significant-bits are loaded into the even register; the 32 most-significant-bits containing the sign bit and exponent are loaded into the next register (that is always the odd register). The register pair syntax places the odd register first, followed by a colon, then the even register (that is, A1:A0, B1:B0, A3:A2, B3:B2, etc.).

Instructions that use DP sources fall in two categories: instructions that read the upper and lower 32-bit words on separate cycles, and instructions that read both 32-bit words on the same cycle. All instructions that produce a double-precision result write the low 32-bit word one cycle before writing the high 32-bit word. If an instruction that writes a DP result is followed by an instruction that uses the result as its DP source and it reads the upper and lower words on separate cycles, then the second instruction can be scheduled on the same cycle that the high 32-bit word of the result is written. The lower result is written on the previous cycle. This is because the second instruction reads the low word of the DP source one cycle before the high word of the DP source.

IEEE floating-point numbers consist of normal numbers, denormalized numbers, NaNs (not a number), and infinity numbers. Denormalized numbers are nonzero numbers that are smaller than the smallest nonzero normal number. Infinity is a value that represents an infinite floating-point number. NaN values represent results for invalid operations, such as (+infinity + (-infinity)).

Normal single-precision values are always accurate to at least six decimal places, sometimes up to nine decimal places. Normal double-precision values are always accurate to at least 15 decimal places, sometimes up to 17 decimal places.

Table 3–3 shows notations used in discussing floating-point numbers.

Symbol	Meaning
S	Sign bit
е	Exponent field
f	Fraction (mantissa) field
х	Can have value of 0 or 1 (don't care)
NaN	Not-a-Number (SNaN or QNaN)
SNaN	Signal NaN
QNaN	Quiet NaN
NaN_out	QNaN with all bits in the f field = 1
Inf	Infinity
LFPN	Largest floating-point number
SFPN	Smallest floating-point number
LDFPN	Largest denormalized floating-point number
SDFPN	Smallest denormalized floating-point number
signed Inf	+infinity or -infinity
signed NaN_out	NaN_out with s = 0 or 1

Table 3–3. IEEE Floating-Point Notations

Figure 3–1 shows the fields of a single-precision floating-point number represented within a 32-bit register.

Figure 3–1. Single-Precision Floating-Point Fields

The floating-point fields represent floating-point numbers within two ranges: normalized (e is between 0 and 255) and denormalized (e is 0). The following formulas define how to translate the s, e, and f fields into a single-precision floating-point number.

Normalized:

 $-1^{s} \times 2^{(e-127)} \times 1.f$ 0 < e < 255

Denormalized (Subnormal):

 $-1^{s} \times 2^{-126} \times 0.f$ e = 0; f nonzero

Table 3–4 shows the s,e, and f values for special single-precision floating-point numbers.

Table 3-4. Special Single-Precision Values

Symbol	Sign (s)	Exponent (e)	Fraction (f)
+0	0	0	0
-0	1	0	0
+Inf	0	255	0
–Inf	1	255	0
NaN	х	255	nonzero
QNaN	х	255	1xxx
SNaN	х	255	0xxx and nonzero

SPRU733

Instruction Set 3-11

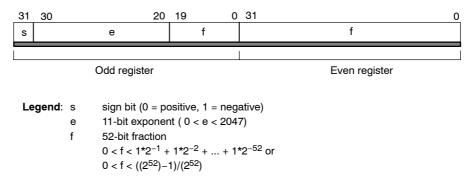

Table 3–5 shows hexadecimal and decimal values for some single-precision floating-point numbers.

Figure 3–2 shows the fields of a double-precision floating-point number represented within a pair of 32-bit registers.

Table 3–5. Hexadecimal and Decimal Representation for Selected Single-Precision Values

Symbol	Hex Value	Decimal Value
NaN_out	7FFF FFFF	QNaN
0	0000 0000	0.0
-0	8000 0000	-0.0
1	3F80 0000	1.0
2	4000 0000	2.0
LFPN	7F7F FFFF	3.40282347e+38
SFPN	0080 0000	1.17549435e-38
LDFPN	007F FFFF	1.17549421e-38
SDFPN	0000 0001	1.40129846e-45

Figure 3–2. Double-Precision Floating-Point Fields

The floating-point fields represent floating-point numbers within two ranges: normalized (e is between 0 and 2047) and denormalized (e is 0). The following formulas define how to translate the s, e, and f fields into a double-precision floating-point number.

3-12 Instruction Set

Normalized:

 $-1^{s} \times 2^{(e-1023)} \times 1.f$ 0 < e < 2047

Denormalized (Subnormal):

 $-1^{s} \times 2^{-1022} \times 0.f$ e = 0; f nonzero

Table 3–6 shows the s, e, and f values for special double-precision floating-point numbers.

Table 3–6.	Special	Double-Precision	Values

Symbol	Sign (s)	Exponent (e)	Fraction (f)
+0	0	0	0
-0	1	0	0
+Inf	0	2047	0
–Inf	1	2047	0
NaN	х	2047	nonzero
QNaN	х	2047	1xxx
SNaN	x	2047	0xxx and nonzero

Table 3–7 shows hexadecimal and decimal values for some double-precision floating-point numbers.

Table 3–7. Hexadecimal and Decimal Representation for Selected Double-Precision Values

Symbol	Hex Value	Decimal Value
NaN_out	7FFF FFFF FFFF FFFF	QNaN
0	0000 0000 0000 0000	0.0
-0	8000 0000 0000 0000	-0.0
1	3FF0 0000 0000 0000	1.0
2	4000 0000 0000 0000	2.0
LFPN	7FEF FFFF FFFF FFFF	1.7976931348623157e+308
SFPN	0010 0000 0000 0000	2.2250738585072014e-308
LDFPN	000F FFFF FFFF FFFF	2.2250738585072009e-308
SDFPN	0000 0000 0000 0001	4.9406564584124654e-324

SPRU733

Instruction Set 3-13

3.4 Delay Slots

The execution of floating-point instructions can be defined in terms of delay slots and functional unit latency. The number of delay slots is equivalent to the number of additional cycles required after the source operands are read for the result to be available for reading. For a single-cycle type instruction, operands are read on cycle *i* and produce a result that can be read on cycle i + 1. For a 4-cycle instruction, operands are read on cycle i + 4. Table 3–8 shows the number of delay slots associated with each type of instruction.

The double-precision floating-point addition, subtraction, multiplication, compare, and the 32-bit integer multiply instructions also have a functional unit latency that is greater than 1. The functional unit latency is equivalent to the number of cycles that the instruction uses the functional unit read ports. For example, the **ADDDP** instruction has a functional unit latency of 2. Operands are read on cycle *i* and cycle *i* + 1. Therefore, a new instruction cannot begin until cycle *i* + 2, rather than *i* + 1. **ADDDP** produces a result that can be read on cycle *i* + 7, because it has six delay slots.

Delay slots are equivalent to an execution or result latency. All of the instructions in the C67x DSP have a functional unit latency of 1. This means that a new instruction can be started on the functional unit each cycle. Single-cycle throughput is another term for single-cycle functional unit latency.

Instruction Type	Delay Slots	Functional Unit Latency	Read Cycles [†]	Write Cycles [†]
Single cycle	0	1	i	i
2-cycle DP	1	1	i	i, i + 1
DP compare	1	2	i, i + 1	1 + 1
4-cycle	3	1	i	i + 3
INTDP	4	1	i	i + 3, i + 4
Load	4	1	i	i, i + 4‡
MPYSP2DP	4	2	i	i + 3, i + 4
ADDDP/SUBDP	6	2	i, i + 1	i + 5, i + 6
MPYSPDP	6	3	i, i + 1	i + 5, i + 6
MPYI	8	4	i, i + 1, 1 + 2, i + 3	i + 8
MPYID	9	4	i, i + 1, 1 + 2, i + 3	i + 8, i + 9
MPYDP	9	4	i, i + 1, 1 + 2, i + 3	i + 8, i + 9

Table 3–8. Delay Slot and Functional Unit Latency

 † Cycle i is in the E1 pipeline phase. ‡ A write on cycle i + 4 uses a separate write port from other .D unit instructions.

3.5 Parallel Operations

Instructions are always fetched eight at a time. This constitutes a *fetch packet*. The basic format of a fetch packet is shown in Figure 3–3. Fetch packets are aligned on 256-bit (8-word) boundaries.

Figure 3–3. Basic Format of a Fetch Packet

-	31 0	31	0 3	1 0	31 0	31 0	31 0	31 0	31 0
	p		p	p	p	p	p	p	p
	Instruction A	Instructio B	'n	Instruction C	Instruction D	Instruction E	Instruction F	Instruction G	Instruction H
LSBs of the byte address	e 00000b	00100b		01000b	01100b	10000b	10100b	11000b	11100b

The execution of the individual instructions is partially controlled by a bit in each instruction, the *p*-bit. The *p*-bit (bit 0) determines whether the instruction executes in parallel with another instruction. The *p*-bits are scanned from left to right (lower to higher address). If the *p*-bit of instruction *i* is 1, then instruction i + 1 is to be executed in parallel with (in the the same cycle as) instruction *i*. If the *p*-bit of instruction *i* = 0, then instruction *i* = 1 is executed in the cycle after instruction *i*. All instructions executing in parallel constitute an *execute packet*. An execute packet can contain up to eight instructions. Each instruction in an execute packet must use a different functional unit.

On the C67x DSP, an execute packet cannot cross an 8-word boundary; therefore, the last p-bit in a fetch packet is always cleared to 0, and each fetch packet starts a new execute packet. On the C67x+ DSP, an execute packet can cross an 8-word boundary.

There are three types of p-bit patterns for fetch packets. These three p-bit patterns result in the following execution sequences for the eight instructions:

- Fully serial
- Fully parallel
- Partially serial

Example 3-1 through Example 3-3 show the conversion of a *p*-bit sequence into a cycle-by-cycle execution stream of instructions.

Instruction

Н

0

• 0

Example 3–1. Fully Serial p-Bit Pattern in a Fetch Packet

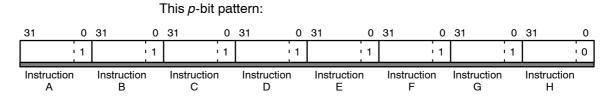
С

This *p*-bit pattern: 0 31 31 0 31 0 31 0 31 0 31 0 31 0 31 . 0 . 0 · 0 · 0 · 0 . 0 • 0 Instruction Instruction Instruction Instruction Instruction Instruction Instruction

results in this execution sequence:						
Cycle/Execute Packet	Instructions					
1	А					
2	В					
3	С					
4	D					
5	E					
6	F					
7	G					
8	н					

results in this execution sequence:

D


Е

F

G

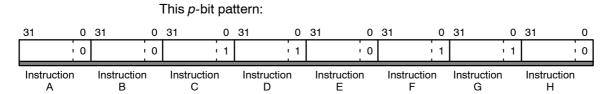
The eight instructions are executed sequentially.

Example 3-2. Fully Parallel p-Bit Pattern in a Fetch Packet

results in this execution sequence:

Cycle/Execute Packet				In	structions				
1	А	В	С	D	E	F	G	Н	

All eight instructions are executed in parallel.


SPRU733

А

В

Instruction Set 3-17

Example 3-3. Partially Serial p-Bit Pattern in a Fetch Packet

results in this execution sequence:

Cycle/Execute Packet		Instruction	S	
1	А			
2	В			
3	С	D	Е	
4	F	G	Н	

Note: Instructions C, D, and E do not use any of the same functional units, cross paths, or other data path resources. This is also true for instructions F, G, and H.

3.5.1 Example Parallel Code

The vertical bars || signify that an instruction is to execute in parallel with the previous instruction. The code for the fetch packet in Example 3–3 would be represented as this:

instruction A
instruction B
instruction C
instruction D
instruction E
instruction F
instruction G
instruction H

3.5.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower addresses are ignored. In Example 3–3, if a branch to the address containing instruction D occurs, then only D and E execute. Even though instruction C is in the same execute packet, it is ignored. Instructions A and B are also ignored because they are in earlier execute packets. If your result depends on executing A, B, or C, the branch to the middle of the execute packet will produce an erroneous result.

3-18 Instruction Set

SPRU733

3.6 Conditional Operations

Most instructions can be conditional. The condition is controlled by a 3-bit opcode field (*creg*) that specifies the condition register tested, and a 1-bit field (*z*) that specifies a test for zero or nonzero. The four MSBs of every opcode are *creg* and *z*. The specified condition register is tested at the beginning of the E1 pipeline stage for all instructions. For more information on the pipeline, see Chapter 4. If z = 1, the test is for equality with zero; if z = 0, the test is for nonzero. The case of *creg* = 0 and z = 0 is treated as always true to allow instructions to be executed unconditionally. The *creg* field is encoded in the instruction opcode as shown in Table 3–9.

Table 3–9. Registers That Can Be Tested by Conditional Operations

Specified		creg					
Conditional Register	Bit	31	30	29	28		
Unconditional		0	0	0	0		
Reserved [†]		0	0	0	1		
B0		0	0	1	z		
B1		0	1	0	z		
B2		0	1	1	z		
A1		1	0	0	z		
A2		1	0	1	z		
Reserved		1	1	x‡	x‡		

 † This value is reserved for software breakpoints that are used for emulation purposes. $^\ddagger x$ can be any value.

Conditional instructions are represented in code by using square brackets, [], surrounding the condition register name. The following execute packet contains two **ADD** instructions in parallel. The first **ADD** is conditional on B0 being nonzero. The second **ADD** is conditional on B0 being zero. The character ! indicates the inverse of the condition.

[B0]	ADD	.L1	A1,A2,A3
[! B0]	ADD	.L2	B1,B2,B3

The above instructions are mutually exclusive, only one will execute. If they are scheduled in parallel, mutually exclusive instructions are constrained as described in section 3.7. If mutually exclusive instructions share any resources as described in section 3.7, they cannot be scheduled in parallel (put in the same execute packet), even though only one will execute.

3.7 Resource Constraints

No two instructions within the same execute packet can use the same resources. Also, no two instructions can write to the same register during the same cycle. The following sections describe how an instruction can use each of the resources.

3.7.1 Constraints on Instructions Using the Same Functional Unit

Two instructions using the same functional unit cannot be issued in the same execute packet.

The following execute packet is invalid:

ADD .S1 A0, A1, A2 ;.S1 is used for || SHR .S1 A3, 15, A4 ;...both instructions

The following execute packet is valid:

ADD .L1 A0, A1, A2 ;Two different functional || SHR .S1 A3, 15, A4 ;...units are used

3.7.2 Constraints on the Same Functional Unit Writing in the Same Instruction Cycle

Two instructions using the same functional unit cannot write their results in the same instruction cycle.

3.7.3 Constraints on Cross Paths (1X and 2X)

One unit (either a .S, .L, or .M unit) per data path, per execute packet, can read a source operand from its opposite register file via the cross paths (1X and 2X).

For example, the .S1 unit can read both its operands from the A register file; or it can read an operand from the B register file using the 1X cross path and the other from the A register file. The use of a cross path is denoted by an X following the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being used for two different B register operands:

MV .SIX B0, A0 ; $\$ Invalid. Instructions are using the 1X cross path || MV .L1X B1, A1 ; / with different B registers

The following execute packet is valid because all uses of the 1X cross path are for the same B register operand, and all uses of the 2X cross path are for the same A register operand:

```
ADD .L1X A0,B1,A1 ; \ Instructions use the 1X with B1

|| SUB .S1X A2,B1,A2 ; / 1X cross paths using B1

|| AND .D1 A4,A1,A3 ;

|| MPY .M1 A6,A1,A4 ;

|| ADD .L2 B0,B4,B2 ;

|| SUB .S2X B4,A4,B3 ; / 2X cross paths using A4

|| AND .D2X B5,A4,B4 ; / 2X cross paths using A4

|| MPY .M2 B6,B4,B5 ;
```

The operand comes from a register file opposite of the destination, if the x bit in the instruction field is set.

3.7.4 Constraints on Loads and Stores

Load and store instructions can use an address pointer from one register file while loading to or storing from the other register file. Two load and store instructions using a destination/source from the same register file cannot be issued in the same execute packet. The address register must be on the same side as the .D unit used.

The following execute packet is invalid:

LDW.D1 *A0,A1 ; \ .D2 unit must use the address || LDW.D2 *A2,B2 ; / register from the B register file

The following execute packet is valid:

LDW.D1 *A0,A1 ; \ Address registers from correct || LDW.D2 *B0,B2 ; / register files

Two loads and/or stores loading to and/or storing from the same register file cannot be issued in the same execute packet.

The following execute packet is invalid:

LDW.D1 *A4,A5 ; \ Loading to and storing from the || STW.D2 A6,*B4 ; / same register file

The following execute packets are valid:

LDW.D1	*A4,B5 ; \ Loading to, and storing from
STW.D2	A6,*B4 ; / different register files
LDW.D1	*A0,B2 ; \ Loading to
LDW.D2	*B0,A1 ; / different register files

3.7.5 Constraints on Long (40-Bit) Data

Because the .S and .L units share a read register port for long source operands and a write register port for long results, only one long result may be issued per register file in an execute packet. All instructions with a long result on the .S and .L units have zero delay slots. See section 2.2 for the order for long pairs.

The following execute packet is invalid:

ADD.L1 A5:A4,A1,A3:A2 ; \ Two long writes || SHL.S1 A8,A9,A7:A6 ; / on A register file

The following execute packet is valid:

ADD.L1 A5:A4,A1,A3:A2 ; \ One long write for || SHL.S2 B8,B9,B7:B6 ; / each register file

Because the .L and .S units share their long read port with the store port, operations that read a long value cannot be issued on the .L and/or .S units in the same execute packet as a store.

The following execute packet is invalid:

ADD.L1	A5:A4,A1,A3:A2	;	\	Long	read	operation	and	а
STW.D1	A8,*A9	;	/	store	5			

The following execute packet is valid:

		; \ No long read with
STW.D1	A8,*A9	; / the store

On the C67x DSP, doubleword load instructions conflict with long results from the .S units. All stores conflict with a long source on the .S unit. The following execute packet is invalid, because the .D unit store on the T1 path conflicts with the long source on the .S1 unit:

ADD .S1 A1,A5:A4, A3:A2 ; \ Long source on .S unit and a store || STW .D1T1 A8,*A9 ; / on the T1 path of the .D unit

The following code sequence is invalid:

LDDW .D1T1 *A16,A11:A10 ; \ Double word load written to ; A11:A10 on .D1 NOP 3 ; conflicts after 3 cycles SHL .S1 A8,A9,A7:A6 ; / with write to A7:A6 on .S1

The following execute packets are valid:

ADD .L1 A1,A5:A4,A3:A2 ; \ One long write for || SHL .S2 B8,B9,B7:B6 ; / each register file

```
ADD .L1 A4, A1, A3:A2 ; \ No long read with
|| STW .D1T1 A8,*A9 ; / the store on T1 path of .D1
```

Instruction Set 3-23

3.7.6 Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle. Conditional registers are not included in this count.

The following execute packets are invalid:

	MPY	.M1	A1,	A1,	A4	;	five	reads	of	register	A1
	ADD	.L1	A1,	A1,	A5						
	SUB	.D1	A1,	A2,	A3						
	MPY	.M1	A1,	A1,	A4	;	five	reads	of	register	A1
	ADD	.L1	A1,	A1,	A5						
	SUB	.D2x	A1,	в2,	в3						

The following execute packet is valid:

	MPY	.M1	A1,	A1,	A4	;	only	four	reads	of	A1
[A1]	ADD	.L1	A0,	A1,	A5						
	SUB	.D1	A1,	A2,	A3						

3.7.7 Constraints on Register Writes

Two instructions cannot write to the same register on the same cycle. Two instructions with the same destination can be scheduled in parallel as long as they do not write to the destination register on the same cycle. For example, an **MPY** issued on cycle *i* followed by an **ADD** on cycle i + 1 cannot write to the same register because both instructions write a result on cycle i + 1. Therefore, the following code sequence is invalid unless a branch occurs after the **MPY**, causing the **ADD** not to be issued.

MPY .M1 A0, A1, A2 ADD .L1 A4, A5, A2

However, this code sequence is valid:

MPY .M1 A0, A1, A2

Figure 3–4 shows different multiple-write conflicts. For example, **ADD** and **SUB** in execute packet L1 write to the same register. This conflict is easily detectable.

MPY in packet L2 and **ADD** in packet L3 might both write to B2 simultaneously; however, if a branch instruction causes the execute packet after L2 to be something other than L3, a conflict would not occur. Thus, the potential conflict in L2 and L3 might not be detected by the assembler. The instructions in L4 do not constitute a write conflict because they are mutually exclusive. In contrast, because the instructions in L5 may or may not be mutually exclusive, the assembler cannot determine a conflict. If the pipeline does receive commands to perform multiple writes to the same register, the result is undefined.

Figure 3–4. Examples of the Detectability of Write Conflicts by the Assembler

T.1: ADD.12 B5, B6, B7 ; \ detectable, conflict SUB.S2 B8,B9,B7 ; / L2: MPY.M2 B0, B1, B2; \ not detectable B3, B4, B2 ; / L3: ADD.L2 L4:[!B0] ADD.L2 B5, B6, B7 ; \ detectable, no conflict B8, B9, B7 ; / [B0] SUB.S2 L5:[!B1] ADD.L2 B5, B6, B7 ; \ not detectable || [B0] SUB.S2 B8, B9, B7 ; /

SPRU733

Instruction Set 3-25

3.7.8 Constraints on Floating-Point Instructions

If an instruction has a multicycle functional unit latency, it locks the functional unit for the necessary number of cycles. Any new instruction dispatched to that functional unit during this locking period causes undefined results. If an instruction with a multicycle functional unit latency has a condition that is evaluated as false during E1, it still locks the functional unit for subsequent cycles.

An instruction of the following types scheduled on cycle i has the following constraints:

DP compare	No other instruction can use the functional unit on cycles i and i + 1.
ADDDP/SUBDP	No other instruction can use the functional unit on cycles i and i + 1.
MPYI	No other instruction can use the functional unit on cycles i, i + 1, i + 2, and i + 3.
MPYID	No other instruction can use the functional unit on cycles i, i + 1, i + 2, and i + 3.
MPYDP	No other instruction can use the functional unit on cycles i, i + 1, i + 2, and i + 3.
MPYSPDP	No other instruction can use the functional unit on cycles i and $i + 1$.
MPYSP2DP	No other instruction can use the functional unit on cycles i and $i + 1$.

If a cross path is used to read a source in an instruction with a multicycle functional unit latency, you must ensure that no other instructions executing on the same side uses the cross path.

An instruction of the following types scheduled on cycle i using a cross path to read a source, has the following constraints:

DP compare	No other instruction on the same side can used the cross path on cycles i and $i + 1$.
ADDDP/SUBDP	No other instruction on the same side can use the cross path on cycles i and $i + 1$.
MPYI	No other instruction on the same side can use the cross path on cycles i, $i + 1$, $i + 2$, and $i + 3$.
MPYID	No other instruction on the same side can use the cross path on cycles i, i + 1, i + 2, and i + 3.

3-26 Instruction Set

MPYDP	No other instruction on the same side can use the cross path on cycles i, $i + 1$, $i + 2$, and $i + 3$.
MPYSPDP	No other instruction on the same side can use the cross path on cycles i and $i + 1$.

Other hazards exist because instructions have varying numbers of delay slots, and need the functional unit read and write ports of varying numbers of cycles. A read or write hazard exists when two instructions on the same functional unit attempt to read or write, respectively, to the register file on the same cycle.

An instruction of the following types scheduled on cycle i has the following constraints:

2-cycle DP	A single-cycle instruction cannot be scheduled on that functional unit on cycle i + 1 due to a write hazard on cycle i + 1.
	Another 2-cycle DP instruction cannot be scheduled on that functional unit on cycle $i + 1$ due to a write hazard on cycle $i + 1$.
4-cycle	A single-cycle instruction cannot be scheduled on that functional unit on cycle i + 3 due to a write hazard on cycle i + 3.
	A multiply $(16 \times 16$ -bit) instruction cannot be scheduled on that functional unit on cycle i + 2 due to a write hazard on cycle i + 3.
ADDDP/SUBDP	A single-cycle instruction cannot be scheduled on that functional unit on cycle $i + 5$ or $i + 6$ due to a write hazard on cycle $i + 5$ or $i + 6$, respectively.
	A 4-cycle instruction cannot be scheduled on that func- tional unit on cycle $i + 2$ or $i + 3$ due to a write hazard on cycle $i + 5$ or $i + 6$, respectively.
	An INTDP instruction cannot be scheduled on that func- tional unit on cycle $i + 2$ or $i + 3$ due to a write hazard on cycle $i + 5$ or $i + 6$, respectively.
INTDP	A single-cycle instruction cannot be scheduled on that functional unit on cycle $i + 3$ or $i + 4$ due to a write hazard on cycle $i + 3$ or $i + 4$, respectively.
	An INTDP instruction cannot be scheduled on that func- tional unit on cycle i + 1 due to a write hazard on cycle i + 1.
	A 4-cycle instruction cannot be scheduled on that func- tional unit on cycle i + 1 due to a write hazard on cycle i + 1.

MPYI	A 4-cycle instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A MPYDP instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A MPYSPDP instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A MPYSP2DP instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A multiply (16 \times 16-bit) instruction cannot be scheduled on that functional unit on cycle i + 6 due to a write hazard on cycle i + 7.
MPYID	A 4-cycle instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A MPYDP instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A MPYSPDP instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A MPYSP2DP instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A multiply (16 \times 16-bit) instruction cannot be scheduled on that functional unit on cycle i + 7 or i + 8 due to a write hazard on cycle i + 8 or i + 9, respectively.
MPYDP	A 4-cycle instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A MPYI instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A MPYID instruction cannot be scheduled on that functional unit on cycle i + 4, i + 5, or i + 6.
	A multiply (16 \times 16-bit) instruction cannot be scheduled on that functional unit on cycle i + 7 or i + 8 due to a write hazard on cycle i + 8 or i + 9, respectively.

MPYSPDP	A 4-cycle instruction cannot be scheduled on that functional unit on cycle $i + 2$ or $i + 3$.			
	A MPYI instruction cannot be scheduled on that functional unit on cycle $i + 2$ or $i + 3$.			
	A MPYID instruction cannot be scheduled on that func- tional unit on cycle $i + 2$ or $i + 3$.			
	A MPYDP instruction cannot be scheduled on that func- tional unit on cycle $i + 2$ or $i + 3$.			
	A MPYSP2DP instruction cannot be scheduled on that functional unit on cycle $i + 2$ or $i + 3$.			
	A multiply $(16 \times 16$ -bit) instruction cannot be scheduled on that functional unit on cycle i + 4 or i + 5 due to a write hazard on cycle i + 5 or i + 6, respectively.			
MPYSP2DP	A multiply $(16 \times 16$ -bit) instruction cannot be scheduled on that functional unit on cycle i + 2 or i + 3 due to a write hazard on cycle i + 3 or i + 4, respectively.			

All of the above cases deal with double-precision floating-point instructions or the **MPYI** or **MPYID** instructions except for the 4-cycle case. A 4-cycle instruction consists of both single- and double-precision floating-point instructions. Therefore, the 4-cycle case is important for the following single-precision floating-point instructions:

- ADDSP
- SUBSP
- SPINT
- □ SPTRUNC
- INTSP
- □ MPYSP

The .S and .L units share their long write port with the load port for the 32 most significant bits of an **LDDW** load. Therefore, the **LDDW** instruction and the .S or .L unit writing a long result cannot write to the same register file on the same cycle. The **LDDW** writes to the register file on pipeline phase E5. Instructions that use a long result and use the .L and .S unit write to the register file on pipeline phase E1. Therefore, the instruction with the long result must be scheduled later than four cycles following the **LDDW** instruction if both instructions use the same side.

3.8 Addressing Modes

The addressing modes on the C67x DSP are linear, circular using BK0, and circular using BK1. The addressing mode is specified by the addressing mode register (AMR), described in section 2.7.3.

All registers can perform linear addressing. Only eight registers can perform circular addressing: A4–A7 are used by the .D1 unit and B4–B7 are used by the .D2 unit. No other units can perform circular addressing. LDB(U)/LDH(U)/LDW, STB/STH/STW, ADDAB/ADDAH/ADDAW/ADDAD, and SUBAB/SUBAH/SUBAW instructions all use AMR to determine what type of address calculations are performed for these registers.

3.8.1 Linear Addressing Mode

3.8.1.1 LD and ST Instructions

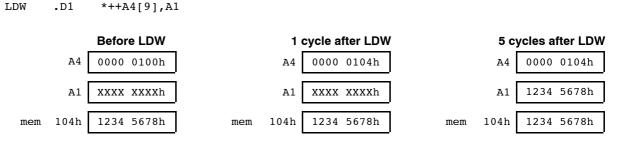
For load and store instructions, linear mode simply shifts the *offsetR/cst* operand to the left by 3, 2, 1, or 0 for doubleword, word, halfword, or byte access, respectively; and then performs an add or a subtract to *baseR* (depending on the operation specified).

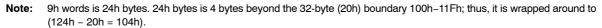
For the preincrement, predecrement, positive offset, and negative offset address generation options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of *baseR* before the addition or subtraction is the address to be accessed from memory.

3.8.1.2 ADDA and SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the *src1/cst* operand to the left by 3, 2, 1, or 0 for doubleword, word, halfword, or byte data sizes, respectively, and then performs the add or subtract specified.

3.8.2 Circular Addressing Mode


The BK0 and BK1 fields in AMR specify the block sizes for circular addressing, see section 2.7.3.


3.8.2.1 LD and ST Instructions

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0 according to the data size, and is then added to or subtracted from baseR to produce the final address. Circular addressing modifies this slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1 unchanged after address arithmetic. The resulting address is bounded to $2^{(N+1)}$ range, regardless of the size of the offset R/cst.

The circular buffer size in AMR is not scaled; for example, a block-size of 8 is 8 bytes, not 8 times the data size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should be specified, or N = 4. Example 3–4 shows an LDW performed with register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is 0004 0001h.

Example 3–4. LDW Instruction in Circular Mode

LDW

.D1

3.8.2.2 ADDA and SUBA Instructions

As with linear address arithmetic, *offsetR/cst* is shifted left by 3, 2, 1, or 0 according to the data size, and is then added to or subtracted from *baseR* to produce the final address. Circular addressing modifies this slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1 unchanged after address arithmetic. The resulting address is bounded to $2^{(N + 1)}$ range, regardless of the size of the *offsetR/cst*.

The circular buffer size in AMR is not scaled; for example, a block size of 8 is 8 bytes, not 8 times the data size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should be specified, or N = 4. Example 3–5 shows an **ADDAH** performed with register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is 0004 0001h.

Example 3–5. ADDAH Instruction in Circular Mode

ADDAH .D1 A4,A1,A4

Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary 100h–11Fh; thus, it is wrapped around to (126h – 20h = 106h).

3.8.3 Syntax for Load/Store Address Generation

The C64x DSP has a load/store architecture, which means that the only way to access data in memory is with a load or store instruction. Table 3–10 shows the syntax of an indirect address to a memory location. Sometimes a large offset is required for a load/store. In this case, you can use the B14 or B15 register as the base register, and use a 15-bit constant (*ucst15*) as the offset.

Table 3–11 describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

Addressing Type	No Modification of Address Register	Preincrement or Predecrement of Address Register	Postincrement or Postdecrement of Address Register
Register indirect	*R	*++R *– –R	*R++ *R
Register relative	*+R[<i>ucst5</i>] *–R[<i>ucst5</i>]	*++R[<i>ucst5</i>] *– –R[<i>ucst5</i>]	*R++[<i>ucst5</i>] *R[<i>ucst5</i>]
Register relative with 15-bit constant offset	*+B14/B15[ucst15]	not supported	not supported
Base + index	*+R[<i>offsetR</i>] *–R[<i>offsetR</i>]	*++R[<i>offsetR</i>] *R[<i>offsetR</i>]	*R++[<i>offsetR</i>] *R- <i>-[offsetR</i>]

Table 3–10. Indirect Address Generation for Load/Store

Table 3–11. Address Generator Options for Load/Store

Mode Field				Syntax	Modification Performed
0	0	0	0	*-R[<i>ucst5</i>]	Negative offset
0	0	0	1	*+R[<i>ucst5</i>]	Positive offset
0	1	0	0	*-R[offsetR]	Negative offset
0	1	0	1	*+R[<i>offsetR</i>]	Positive offset
1	0	0	0	*R[<i>ucst5</i>]	Predecrement
1	0	0	1	*++R[<i>ucst5</i>]	Preincrement
1	0	1	0	*R[<i>ucst5</i>]	Postdecrement
1	0	1	1	*R++[<i>ucst5</i>]	Postincrement
1	1	0	0	*R[<i>offsetR</i>]	Predecrement
1	1	0	1	*++R[<i>offsetR</i>]	Preincrement
1	1	1	0	*R[<i>offsetR</i>]	Postdecrement
1	1	1	1	*R++[<i>offsetR</i>]	Postincrement

Instruction Set 3-33

3.9 Instruction Compatibility

The C62x, C64x, and C67x DSPs share an instruction set. All of the instructions valid for the C62x DSP are also valid for the C67x DSP. See Appendix A for a list of the instructions that are common to the C62x, C64x, and C67x DSPs.

3.10 Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction may present the following information:

- Assembler syntax
- Functional units
- Compatibility
- Operands
- Opcode
- Description
- Execution
- D Pipeline
- Instruction type
- Delay slots
- Functional Unit Latency
- Examples

The **ADD** instruction is used as an example to familiarize you with the way each instruction is described. The example describes the kind of information you will find in each part of the individual instruction description and where to obtain more information.

Example	The way each instruction is described.				
Syntax	EXAMPLE (.unit) <i>src</i> , <i>dst</i> .unit = .L1, .L2, .S1, .S2, .D1, .D2				
	<i>src</i> and <i>dst</i> indicate source and destination, respectively. The (.unit) dictates which functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2, .D1, or .D2).				
	A table is provided for each instruction that gives the opcode map fields, units the instruction is mapped to, types of operands, and the opcode.				
	The opcode shows the various fields that make up each instruction. These fields are described in Table 3–2 on page 3-7.				
	There are instructions that can be executed on more than one functional unit. Table 3–12 shows how this is documented for the ADD instruction. This instruction has three opcode map fields: <i>src1</i> , <i>src2</i> , and <i>dst</i> . In the seventh group, the operands have the types <i>cst5</i> , <i>long</i> , and <i>long</i> for <i>src1</i> , <i>src2</i> , and <i>dst</i> , respectively. The ordering of these fields implies <i>cst5</i> + <i>long</i> \rightarrow <i>long</i> , where + represents the operation being performed by the ADD . This operation can be done on .L1 or .L2 (both are specified in the unit column). The s in front of each operand signifies that <i>src1</i> (<i>scst5</i>), <i>src2</i> (<i>slong</i>), and <i>dst</i> (<i>slong</i>) are all signed values.				
	In the third group, <i>src1</i> , <i>src2</i> , and <i>dst</i> are <i>int</i> , <i>int</i> , and <i>long</i> , respectively. The u in front of each operand signifies that all operands are unsigned. Any operand that begins with x can be read from a register file that is different from the destination register file. The operand comes from the register file opposite the destination, if the x bit in the instruction is set (shown in the opcode map).				

Opcode map field used	For operand type	Unit	Opfield
src1	sint	.L1, .L2	000 0011
src2	xsint		
dst	sint		
src1	sint	.L1, .L2	010 0011
src2	xsint		
dst	slong		
src1	xsint	.L1, .L2	010 0001
src2	slong		
dst	slong		
src1	scst5	.L1, .L2	000 0010
src2	xsint		
dst	sint		
src1	scst5	.L1, .L2	010 0000
src2	slong		
dst	slong		
src1	sint	.S1, .S2	00 0111
src2	xsint		
dst	sint		
src1	scst5	.S1, .S2	00 0110
src2	xsint		
dst	sint		
src2	sint	.D1, .D2	01 0000
src1	sint		
dst	sint		
src2	sint	.D1, .D2	01 0010
src1	ucst5		
dst	sint		

Table 3–12.Relationships Between Operands, Operand Size, Signed/Unsigned,
Functional Units, and Opfields for Example Instruction (ADD)

- **Compatibility** The C62x, C64x, and C67x DSPs share an instruction set. All of the instructions valid for the C62x DSP are also valid for the C67x DSP. This section identifies which DSP family the instruction is valid.
- **Description** Instruction execution and its effect on the rest of the processor or memory contents are described. Any constraints on the operands imposed by the processor or the assembler are discussed. The description parallels and supplements the information given by the execution block.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) $src1 + src2 \rightarrow dst$ else nop

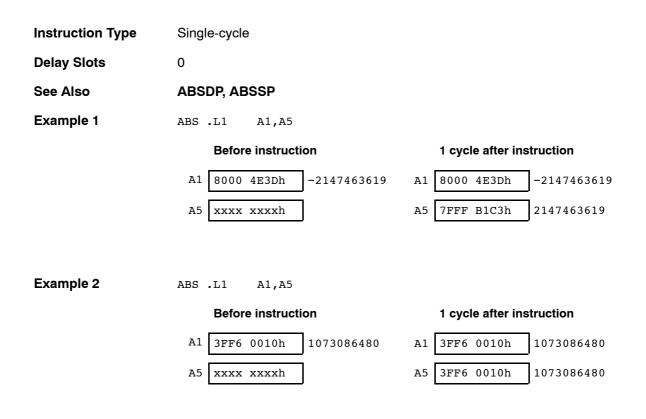
Execution for .D1, .D2 Opcodes

if (cond) $src2 + src1 \rightarrow dst$ else nop

The execution describes the processing that takes place when the instruction is executed. The symbols are defined in Table 3–1 (page 3-2).

- PipelineThis section contains a table that shows the sources read from, the destina-
tions written to, and the functional unit used during each execution cycle of the
instruction.
- **Instruction Type** This section gives the type of instruction. See section 4.2 (page 4-12) for information about the pipeline execution of this type of instruction.
- Delay SlotsThis section gives the number of delay slots the instruction takes to execute
See section 3.4 (page 3-14) for an explanation of delay slots.

Functional Unit Latency


This section gives the number of cycles that the functional unit is in use during the execution of the instruction.

Example Examples of instruction execution. If applicable, register and memory values are given before and after instruction execution.

ABS	Absolute Value With Saturation						
Syntax	ABS (.unit) src2, dst						
	.unit = .L1 or .L2						
Compatibility	C62x, C64x, C67x, and C67x+ CPU						
Opcode							
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0						
creg z	dst src2 0 0 0 0 0 x op 1 1 0 s p						
3 1	5 5 1 7 1 1						
	Opcode map field used For operand type Unit Opfield						
	src2 xsint .L1, .L2 001 1010 dst sint						
	src2 slong .L1, L2 011 1000 dst slong						
Description Execution	The absolute value of <i>src2</i> is placed in <i>dst</i> . if (cond) $abs(src2) \rightarrow dst$ else nop						
	The absolute value of <i>src2</i> when <i>src2</i> is an sint is determined as follows:						
	1) If $src2 \ge 0$, then $src2 \rightarrow dst$ 2) If $src2 < 0$ and $src2 \ne -2^{31}$, then $-src2 \rightarrow dst$ 3) If $src2 = -2^{31}$, then $2^{31} - 1 \rightarrow dst$						
	The absolute value of <i>src2</i> when <i>src2</i> is an slong is determined as follows:						
	1) If $src2 \ge 0$, then $src2 \rightarrow dst$ 2) If $src2 < 0$ and $src2 \ne -2^{39}$, then $-src2 \rightarrow dst$ 3) If $src2 = -2^{39}$, then $2^{39} - 1 \rightarrow dst$						
Pipeline	Pipeline Stage E1						
	Read src2						
	Written dst						
	Unit in use .L						

3-38 Instruction Set

SPRU733

Syntax	ABSDP (.unit) src2, dst	
	.unit = .S1 or .S2	
Compatibility	C67x and C67x+ CPU	
Opcode		
31 29 28 27 creg z	23 22 18 17 13 12 11 dst src2 reserved x 1 0 1 1 5 5 1 1 1 1 1 1 1	6 5 4 3 2 1 0 0 1 0 0 0 s /
0 1		·
	Opcode map field used For operand type	Unit
	<i>src2</i> dp	.S1, .S2
Description Execution	dstdpThe absolute value of $src2$ is placed in dst . The 6-operand is read in one cycle by using the $src2$ port for $src1$ port for the 32 LSBs.if (cond) $abs(src2) \rightarrow dst$ else non	•
	The absolute value of <i>src2</i> is placed in <i>dst</i> . The 6- operand is read in one cycle by using the <i>src2</i> port for <i>src1</i> port for the 32 LSBs. if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i>	•
	The absolute value of <i>src2</i> is placed in <i>dst</i> . The 6- operand is read in one cycle by using the <i>src2</i> port for <i>src1</i> port for the 32 LSBs. if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows:	•
	The absolute value of <i>src2</i> is placed in <i>dst</i> . The 6- operand is read in one cycle by using the <i>src2</i> port for <i>src1</i> port for the 32 LSBs. if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i>	•
	The absolute value of <i>src2</i> is placed in <i>dst</i> . The 6-operand is read in one cycle by using the <i>src2</i> port for <i>src1</i> port for the 32 LSBs. if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i> 2) If <i>src2</i> < 0, then <i>-src2</i> \rightarrow <i>dst</i>	the 32 MSBs and th
	The absolute value of <i>src2</i> is placed in <i>dst</i> . The 6-operand is read in one cycle by using the <i>src2</i> port for <i>src1</i> port for the 32 LSBs. if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i> 2) If <i>src2</i> < 0, then <i>-src2</i> \rightarrow <i>dst</i> Notes: 1) If <i>scr2</i> is SNaN, NaN_out is placed in <i>dst</i> and the I	NVAL and NAN2 bits
	The absolute value of <i>src2</i> is placed in <i>dst</i> . The 6- operand is read in one cycle by using the <i>src2</i> port for <i>src1</i> port for the 32 LSBs. if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i> 2) If <i>src2</i> < 0, then <i>src2</i> \rightarrow <i>dst</i> Notes: 1) If <i>scr2</i> is SNaN, NaN_out is placed in <i>dst</i> and the I are set.	NVAL and NAN2 bits

ABSDP Absolute Value, Double-Precision Floating-Point

Pipeline	Pipeline Stage	E1	E2
	Read	src2_l src2_h	
	Written	dst_l	dst_h
	Unit in use	.S	

If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

Instruction Type	2-cycle DP
------------------	------------

Delay Slots	1
-------------	---

Functional Unit Latency

See Also ABS.

A1:A0 C004 0000h

A3:A2 xxxx xxxxh

Example

ABS, ABSSP

ABSDP .S1 A1:A0,A3:A2

0000 0000h

xxxx xxxxh

-2.5

Before instruction

1

2 cycles after instruction

A1:A0	c004	0000h	0000	0000h	-2.5
A3:A2	4004	0000h	0000	0000h	2.5

ABSSP	Absolute Value, Single-Precision Floating-Point				
Syntax	ABSSP (.unit) src2, dst				
	.unit = . S1 or .S2				
Compatibility	C67x and C67x+ CPU				
Opcode					
31 29 28 27	23 22 18 17 13 12 11 6 5 4 3 2 1				
creg z	dst src2 0 0 0 0 0 x 1 1 1 1 0 0 1 0 0 s				
3 1	5 5 1 1				
	Opcode map field used For operand type Unit				
	<i>src2</i> xsp .S1, .S2				
Description	dst sp The absolute value in <i>src2</i> is placed in <i>dst</i> .				
Description Execution					
-	The absolute value in <i>src2</i> is placed in <i>dst</i> . if (cond) $abs(src2) \rightarrow dst$				
-	The absolute value in <i>src2</i> is placed in <i>dst</i> . if (cond) $abs(src2) \rightarrow dst$ else nop				
-	The absolute value in <i>src2</i> is placed in <i>dst</i> . if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i>				
-	The absolute value in <i>src2</i> is placed in <i>dst</i> . if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i> 2) If <i>src2</i> $<$ 0, then <i>-src2</i> \rightarrow <i>dst</i>				
-	The absolute value in <i>src2</i> is placed in <i>dst</i> . if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i> 2) If <i>src2</i> $<$ 0, then <i>-src2</i> \rightarrow <i>dst</i> Notes: 1) If <i>scr2</i> is SNaN, NaN_out is placed in <i>dst</i> and the INVAL and NAN2 bits				
-	The absolute value in <i>src2</i> is placed in <i>dst</i> . if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of <i>src2</i> is determined as follows: 1) If <i>src2</i> \geq 0, then <i>src2</i> \rightarrow <i>dst</i> 2) If <i>src2</i> $<$ 0, then <i>-src2</i> \rightarrow <i>dst</i> Notes: 1) If <i>scr2</i> is SNaN, NaN_out is placed in <i>dst</i> and the INVAL and NAN2 bits are set.				

ABSSP Absolute Value, Single-Precision Floating-Point

Pipeline	Pipeline	F 4	
	Stage	E1	
	Read	src2	
	Written	dst	
	Unit in use	.S	
Instruction Type	Single-cycle		
Delay Slots	0		
Functional Unit	1		
Latency			
See Also	ABS, ABSDP		
Example	ABSSP .S1X B	1,A5	
	Before in	struction	1 cycle after instruction
	B1 c020 00	00h -2.5	B1 c020 0000h -2.5
	A5 XXXX XX	xxh	A5 4020 0000h 2.5
		J	

SPRU733

ADD	Add Two Signed In	Add Two Signed Integers Without Saturation						
Syntax	ADD (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> or ADD (.D1 or .D2) <i>src2</i> , <i>src1</i> , <i>dst</i> .unit = .L1, .L2, .S1, .S2							
Compatibility	C62x, C64x, C67x, a	nd C67x+ CPU						
Opcode	.L unit							
31 29 28 27	23 22 1 dst src2		12 11 X OP	5 4 3 2 1 0 1 1 0 <i>s p</i>				
3 1	5 5		1 7	1 1				

Opcode map field used	For operand type	Unit	Opfield
src1 src2 dst	sint xsint sint	.L1, .L2	000 0011
src1 src2 dst	sint xsint slong	.L1, .L2	010 0011
src1 src2 dst	xsint slong slong	.L1, .L2	010 0001
src1 src2 dst	scst5 xsint sint	.L1, .L2	000 0010
src1 src2 dst	scst5 slong slong	.L1, .L2	010 0000

0	pcode				.S uni	t				
3.	29	28	27		23	22 18	17	13 12	11	6 5 4 3 2 1 0
	creg	z		dst		src2	src1	х	ор	1 0 0 0 <i>s p</i>
	3	1		5		5	5	1	6	1 1
					Орсо	de map field used	For ope	rand type	Unit	Opfield
					src1 src2 dst		sint xsint sint		.S1, .S2	00 0111
					src1 src2 dst		scst5 xsint sint		.S1, .S2	00 0110

Description for .L1, .L2 and .S1, .S2 Opcodes

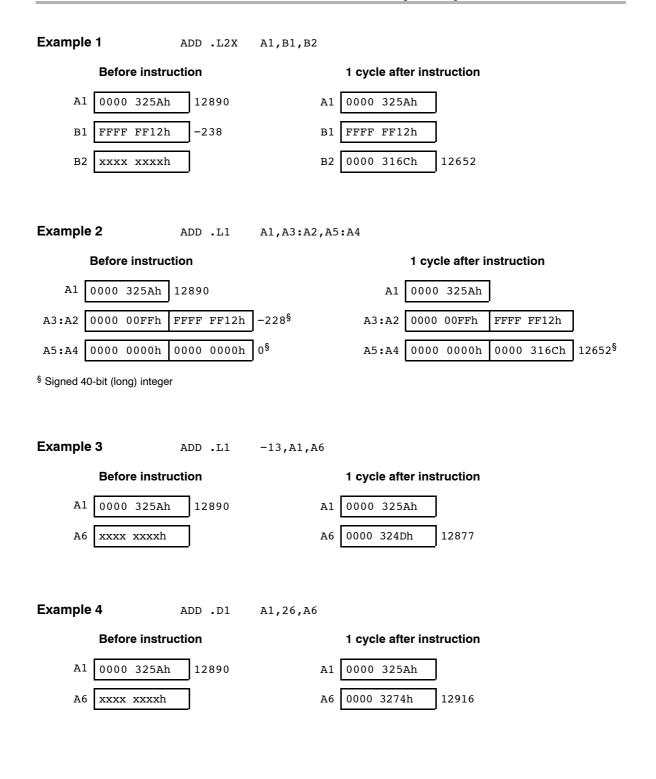
src2 is added to *src1*. The result is placed in *dst*.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) $src1 + src2 \rightarrow dst$ else nop

SPRU733

Opcode	.D unit			
31 29 28 27	23 22 18		7 6	5 4 3 2 1 0
creg z dst	src2	src1	ор 1	0 0 0 0 <i>s p</i>
3 1 5	5	5	6	1 1
	Opcode map field used	. For operand type	Unit	Opfield
	src2	sint	.D1, .D2	01 0000
	src1	sint		
	dst	sint		
	src2	sint	.D1, .D2	01 0010
	src1	ucst5		
	dst	sint		


Description for .D1, .D2 Opcodes

src1 is added to *src2*. The result is placed in *dst*.

Execution for .D1, .D2 Opcodes

if (cond) $src2 + src1 \rightarrow dst$ else nop

Pipeline	Pipeline Stage	E1	
	Read	src1, src2	
	Written	dst	
	Unit in use	.L, .S, or .D	
Instruction Type	Single-cycle		
Delay Slots	0		
See Also	ADDDP, ADDK, ADDSP, ADDU, ADD2, SADD, SU		

Instruction Set 3-47

ADDAB Add Using Byte Addressing Mode

ADDAB	Add Using Byte Addressing Mode			
Syntax	ADDAB (.unit) src2, src1, dst			
	.unit = .D1 or .D2			
Compatibility	C62x, C64x, C67x, and C67x+ CPU			

Opcode

3	1 2	29	28	27	23	22	18	17	13	3	12	7	6	5	4	3	2	1	0
	creg		Ζ		dst	sra	2		src1		ор		1	0	0	0	0	s	р
	3		1		5	5			5		6							1	1

Opcode map field used	For operand type	Unit	Opfield
src2 src1 dst	sint sint sint	.D1, .D2	11 0000
src2 src1 dst	sint ucst <i>5</i> sint	.D1, .D2	11 0010

Description *src1* is added to *src2* using the byte addressing mode specified for *src2*. The addition defaults to linear mode. However, if *src2* is one of A4–A7 or B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10). The result is placed in *dst*.

Execution if (cond) $src2 + a src1 \rightarrow dst$ else nop

Pipeline
stageFipeline
E1Readsrc1, src2WrittendstUnit in use.D

Instruction Type	Single-cycle
Delay Slots	0
See Also	ADD, ADDAD, ADDAH, ADDAW

3-48 Instruction Set

SPRU733

Example 1	ADDAB .D1 A4,A2,A4	
	Before instruction	1 cycle after instruction
	A2 0000 000Bh A2	2 0000 000Bh
	A4 0000 0100h A4	4 0000 0103h
	AMR 0002 0001h AMI	R 0002 0001h
	BKO = 2 \rightarrow size = 8 A4 in circular addressing mode using	ng BKO
Example 2	ADDAB .D1X B14,42h,A4	
	Before instruction	1 cycle after instruction
	B14 0020 1000h	A4 0020 1042h
Example 3	ADDAB .D2 B14,7FFFh,B4	
	Before instruction	1 cycle after instruction
	B14 0010 0000h	B4 0010 7FFFh

ADDAD		Add Using								
Syntax		ADDAD (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i>								
		.unit = . D1 or .D2								
Compatibi	ility	C67x and C6	67x+ CPU							
Opcode										
31 29	28 27	23 22	18	17 13 12	7	6543210				
creg	z	dst	src2	src1	ор	1000 <i>sp</i>				
3	1	5	5	5	6	1 1				
		Opcode ma	p field used	For operand type	. Unit	Opfield				
		src2 src1 dst		sint sint sint	.D1, .D2	11 1100				
				Sint						
		src2 src1 dst		sint ucst5 sint	.D1, .D2	11 1101				
Descriptio	'n	<i>src1</i> <i>dst</i> <i>src1</i> is adde <i>src2</i> . The ad or B4–B7, th ate value to	ldition defaults e mode can b the AMR (see	ucst5	addressing mo wever, if <i>src2</i> r mode by writ e 2-10). <i>src1</i> is	ode specified for is one of A4–A7 ting the appropri-				
Descriptio	'n	<i>src1</i> <i>dst</i> <i>src1</i> is adde <i>src2</i> . The ad or B4–B7, th ate value to	ldition defaults e mode can b the AMR (see	ucst5 sint ng the doubleword a s to linear mode. Ho e changed to circula e section 2.7.3, page	addressing mo wever, if <i>src2</i> r mode by writ e 2-10). <i>src1</i> is	ode specified for is one of A4–A7 ting the appropri-				
Descriptio	'n	<i>src1</i> <i>dst</i> <i>src1</i> is adde <i>src2</i> . The ad or B4–B7, th ate value to due to doubl	ldition defaults e mode can b the AMR (see	ucst5 sint ng the doubleword a s to linear mode. Ho e changed to circula e section 2.7.3, page zes. The result is pla	addressing mo wever, if <i>src2</i> r mode by writ e 2-10). <i>src1</i> is	ode specified for is one of A4–A7 ting the appropri-				
Descriptio		<i>src1</i> <i>dst</i> <i>src1</i> is adde <i>src2</i> . The ad or B4–B7, th ate value to due to doubl Note: There is no	ldition defaults e mode can b the AMR (see eword data si	ucst5 sint ng the doubleword a s to linear mode. Ho e changed to circula e section 2.7.3, page zes. The result is pla uction.	addressing mo wever, if <i>src2</i> r mode by writ e 2-10). <i>src1</i> is	ode specified for is one of A4–A7 ting the appropri-				
		<i>src1</i> <i>dst</i> <i>src1</i> is adde <i>src2</i> . The ad or B4–B7, th ate value to due to doubl Note: There is no	ldition defaults e mode can b the AMR (see eword data si SUBAD instru	ucst5 sint ng the doubleword a s to linear mode. Ho e changed to circula e section 2.7.3, page zes. The result is pla uction.	addressing mo wever, if <i>src2</i> r mode by writ e 2-10). <i>src1</i> is	ode specified for is one of A4–A7 ting the appropri-				
Execution		src1 dst src1 is adde src2. The ad or B4–B7, th ate value to due to doubl Note: There is no if (cond) else nop Pipeline	Idition defaults e mode can b the AMR (see eword data si SUBAD instru <i>src2</i> +(src1 <	ucst5 sint ng the doubleword a s to linear mode. Ho e changed to circula e section 2.7.3, page zes. The result is pla uction.	addressing mo wever, if <i>src2</i> r mode by writ e 2-10). <i>src1</i> is	ode specified for is one of A4–A7 ting the appropri-				
Execution		src1 dst src2 is adde src2. The ad or B4–B7, th ate value to due to doubl Note: There is no if (cond) else nop Pipeline stage	Idition defaults e mode can b the AMR (see eword data si SUBAD instru src2 +(src1 < E1	ucst5 sint ng the doubleword a s to linear mode. Ho e changed to circula e section 2.7.3, page zes. The result is pla uction.	addressing mo wever, if <i>src2</i> r mode by writ e 2-10). <i>src1</i> is	ode specified for is one of A4–A7 ting the appropri-				

3-50 Instruction Set

Instruction Type	Single-cycle	
Delay Slots	0	
Functional Unit Latency	1	
See Also	ADD, ADDAB, ADDAH, ADDAW	
Example	ADDAD .D1 A1,A2,A3	
	Before instruction	1 cycle after instruction
	A1 0000 1234h 4660	A1 0000 1234h 4660
	A2 0000 0002h 2	A2 0000 0002h 2
	A3 xxxx xxxxh	A3 0000 1244h 4676

ADDAH	Add Using Halfword Addressing Mode
Syntax	ADDAH (.unit) src2, src1, dst
	.unit = .D1 or .D2
Compatibility	C62x, C64x, C67x, and C67x+ CPU

Opcode

31	29	28	27		23	22 1	18	17	13	12		7	6	5	4	3	2	1	0
creg		Ζ		dst		src2		src1			ор		1	0	0	0	0	s	р
3		1		5		5		5			6							1	1

Opcode map field used	For operand type	Unit	Opfield
src2	sint	.D1, .D2	11 0100
src1	sint		
dst	sint		
src2	sint	.D1, .D2	11 0110
src1	ucst5		
dst	sint		

Description *src1* is added to *src2* using the halfword addressing mode specified for *src2*. The addition defaults to linear mode. However, if *src2* is one of A4–A7 or B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10). *src1* is left shifted by 1. The result is placed in *dst*.

Execution if (cond) $src2 + a src1 \rightarrow dst$ else nop

Pipeline	Pipeline stage	E1				
	Read	src1, src2				
	Written	dst				
	Unit in use	.D				
Instruction Type	Single-cycle					
Delay Slots	0					
See Also	ADD, ADDAB, ADDAD, ADDAW					

3-52 Instruction Set

Example 1	ADDAH .D1 A4,A2,A4	
	Before instruction	1 cycle after instruction
	A2 0000 000Bh A	2 0000 000Bh
	A4 0000 0100h A	4 0000 0106h
	AMR 0002 0001h AM	R 0002 0001h
	BKO = 2 \rightarrow size = 8 A4 in circular addressing mode usi	ng BKO
Example 2	ADDAH .D1X B14,42h,A4	
	Before instruction	1 cycle after instruction
	B14 0020 1000h	A4 0020 1084h
Example 3	ADDAH .D2 B14,7FFFh,B4	
	Before instruction	1 cycle after instruction
	B14 0010 0000h	B4 0010 FFFEh

ADDAW Add Using Word Addressing Mode

ADDAW	Add Using Word Addressing Mode					
Syntax	ADDAW (.unit) src2, src1, dst					
	.unit = .D1 or .D2					
Compatibility	C62x, C64x, C67x, and C67x+ CPU					

Opcode

31	29	28	27	23	22	18	17	13	12		7	6	5	4	3	2	1	0
	creg	z		dst	src2		src	1		ор		1	0	0	0	0	s	р
	3	1		5	5		5			6							1	1

Opcode map field used	For operand type	Unit	Opfield
src2	sint	.D1, .D2	11 1000
src1	sint		
dst	sint		
src2	sint	.D1, .D2	11 1010
src1	ucst5		
dst	sint		

Description *src1* is added to *src2* using the word addressing mode specified for *src2*. The addition defaults to linear mode. However, if *src2* is one of A4–A7 or B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10). *src1* is left shifted by 2. The result is placed in *dst*.

Execution if (cond) $src2 + a src1 \rightarrow dst$ else nop

Pipeline Pipeline E1 stage Read src1, src2 Written dst Unit in use .D Instruction Type Single-cycle **Delay Slots** 0 See Also ADD, ADDAB, ADDAD, ADDAH

3-54 Instruction Set

Example 1	ADDAW .D1 A4,2,A4	
	Before instruction	1 cycle after instruction
	A4 0002 0000h A4	0002 0000h
	AMR 0002 0001h AMR	0002 0001h
	BKO = 2 \rightarrow size = 8 A4 in circular addressing mode usin	ng BK0
Example 2	ADDAW .D1X B14,42h,A4	
	Before instruction	1 cycle after instruction
	B14 0020 1000h	A4 0020 1108h
Example 3	ADDAW .D2 B14,7FFFh,B4	
	Before instruction	1 cycle after instruction
	B14 0010 0000h	B4 0011 FFFCh

ADDDP	Add Two Double-Precision Floating-Point Values					
Syntax	ADDDP (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> .unit = .L1 or .L2 or	(C67x and C67x+ CPU)				
	ADDDP (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> .unit = .S1 or .S2	(C67x+ CPU only)				

Compatibility C67x and C67x+ CPU

Opcode

31 29	28	27 23	22 18	17 13	12	11	5	4	3	2	1	0
creg	Ζ	dst	src2	src1	х	ор		1	1	0	s	р
3	1	5	5	5	1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1 src2 dst	dp xdp dp	.L1, .L2	001 1000
src1 src2 dst	dp xdp dp	.S1, .S2	111 0010

Description *src2* is added to *src1*. The result is placed in *dst*.

Execution	if (cond)	$src1 + src2 \rightarrow dst$
	else	nop

Notes:

- 1) This instruction takes the rounding mode from and sets the warning bits in FADCR, not FAUCR as for other .S unit instructions.
- 2) If rounding is performed, the INEX bit is set.
- 3) If one source is SNaN or QNaN, the result is NaN_out. If either source is SNaN, the INVAL bit is set, also.
- If one source is +infinity and the other is -infinity, the result is NaN_out and the INVAL bit is set.
- If one source is signed infinity and the other source is anything except NaN or signed infinity of the opposite sign, the result is signed infinity and the INFO bit is set.
- If overflow occurs, the INEX and OVER bits are set and the results are rounded as follows (LFPN is the largest floating-point number):

	Overflow Output Rounding Mode								
Result Sign	Nearest Even	Zero	+Infinity	-Infinity					
+	+infinity	+LFPN	+infinity	+LFPN					
-	-infinity	-LFPN	-LFPN	-infinity					

7) If underflow occurs, the INEX and UNDER bits are set and the results are rounded as follows (SPFN is the smallest floating-point number):

	Underflow Output Rounding Mode									
Result Sign	Nearest Even	Zero	+Infinity	-Infinity						
+	+0	+0	+SFPN	+0						
-	-0	-0 -0		-SFPN						

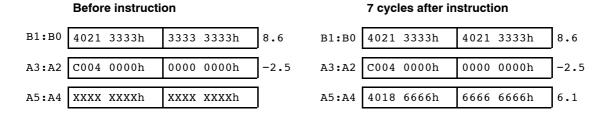
- 8) If the sources are equal numbers of opposite sign, the result is +0 unless the rounding mode is –infinity, in which case the result is –0.
- 9) If the sources are both 0 with the same sign or both are denormalized with the same sign, the sign of the result is negative for negative sources and positive for positive sources.
- 10) A signed denormalized source is treated as a signed 0 and the DENn bit is set. If the other source is not NaN or signed infinity, the INEX bit is set.

SPRU733

Pipeline Stage	E1	E2	E3	E4	E5	E6	E7
Read	src1_l src2_l	src1_h src2_h					
Written						dst_l	dst_ł
Unit in use	.L or .S	.L or .S					

For the C67x CPU, if *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

For the C67x+ CPU, the low half of the result is written out one cycle earlier than the high half. If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, **MPYSPDP**, **MPYSP2DP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.


0	
Functional Unit Latency	2
Delay Slots	6
Instruction Type	ADDDP/SUBDP

See Also ADD, ADDSP, ADDU, SUBDP

Example

Pipeline

ADDDP .L1X B1:B0,A3:A2,A5:A4

3-58 Instruction Set

ADDK	Add Signed 16-Bit Cor	nstant to Register	
Syntax	ADDK (.unit) cst, dst		
	.unit = .S1 or .S2		
Compatibility	C62x, C64x, C67x, and C	C67x+ CPU	
Opcode			
31 29 28 27	23 22		7 6 5 4 3 2 1 0
creg z c	dst	cst16	1 0 1 0 0 <i>s p</i>
3 1	5	16	1 1
	Opcode map field used	For operand type	Unit
	cst16	scst16	.S1, .S2
	dst	uint	
Description	-	, <i>cst16</i> , is added to the <i>ds</i>	t register specified. The
	result is placed in <i>dst</i> .		
Execution	if (cond) $cst + dst \rightarrow$ else nop	dst	
Pipeline	Pipeline Stage E1	_	
	Read cst16	_	
	Written dst		
	Unit in use .S	_	
Instruction Type	Single-cycle		
Delay Slots	0		
Example	ADDK .S1 15401,A1		
	Before instruction	1 cycle	after instruction
	A1 0021 37E1h 21	76993 A1 0021 7	40Ah 2192394

ADDSP	Add Two Single-Precision Floating-Point Values					
Syntax	ADDSP (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> .unit = .L1 or .L2	(C67x and C67x+ CPU)				
	or ADDSP (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>	(C67x+ CPU only)				
	.unit = .S1 or .S2					

Compatibility	C67x and C67x+ CPU
Compatibility	C67x and C67x+ CPL

Opcode

31	29	28	27	23	22 18	17	1:	3 1	12	11 5	4	1	3	2	1	0
	creg	z		dst	src2		src1		х	ор	·	1	1	0	s	р
	3	1		5	5		5		1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1	sp	.L1, .L2	001 0000
src2	xsp		
dst	sp		
src1	sp	.S1, .S2	111 0000
src2	xsp		
dst	sp		

Description	<i>src2</i> is add	ed to <i>src1</i> . The result is placed in <i>dst</i> .
Execution	if (cond)	$src1 + src2 \rightarrow dst$
	else	nop

3-60 Instruction Set

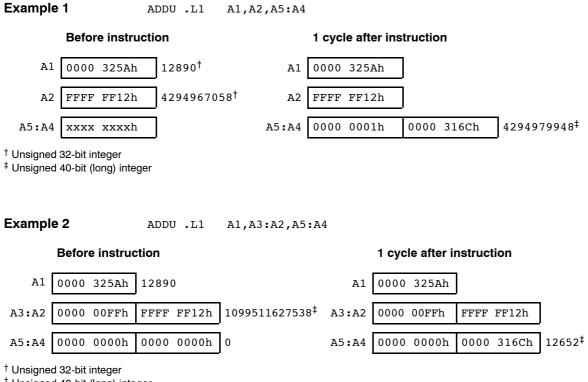
Notes:

- 1) This instruction takes the rounding mode from and sets the warning bits in FADCR, not FAUCR as for other .S unit instructions.
- 2) If rounding is performed, the INEX bit is set.
- If one source is SNaN or QNaN, the result is NaN_out. If either source is SNaN, the INVAL bit is set also.
- If one source is +infinity and the other is -infinity, the result is NaN_out and the INVAL bit is set.
- If one source is signed infinity and the other source is anything except NaN or signed infinity of the opposite sign, the result is signed infinity and the INFO bit is set.
- If overflow occurs, the INEX and OVER bits are set and the results are rounded as follows (LFPN is the largest floating-point number):

	Overflow Output Rounding Mode					
Result Sign	Nearest Even	Zero	+Infinity	-Infinity		
+	+infinity	+LFPN	+infinity	+LFPN		
_	-infinity	-LFPN	-LFPN	-infinity		

7) If underflow occurs, the INEX and UNDER bits are set and the results are rounded as follows (SPFN is the smallest floating-point number):

	Underflow Output Rounding Mode					
Result Sign	Nearest Even	Zero	+Infinity	-Infinity		
+	+0	+0	+SFPN	+0		
-	-0	-0	-0	-SFPN		


- 8) If the sources are equal numbers of opposite sign, the result is +0 unless the rounding mode is –infinity, in which case the result is –0.
- 9) If the sources are both 0 with the same sign or both are denormalized with the same sign, the sign of the result is negative for negative sources and positive for positive sources.
- 10) A signed denormalized source is treated as a signed 0 and the DENn bit is set. If the other source is not NaN or signed infinity, the INEX bit is also set.

SPRU733

Pipeline	Pipeline Stage	E1	E2	E3	E4
	Read	src1 src2			
	Written				dst
	Unit in use	.L or .S			
Instruction Type	4-cycle				
Delay Slots	3				
Functional Unit Latency	1				
See Also	ADD, ADDDP,	, ADDU, SUBSF	b		
Example	ADDSP .L1 A	A1,A2,A3			
	Before in	nstruction		4 cycles after i	nstruction
	A1 C020 00	000h -2.5	A1	C020 0000h	-2.5
	A2 4109 99	99Ah 8.6	A2	4109 999Ah	8.6
	A3 XXXX XX	vyh	A3	40C3 3334h	6.1

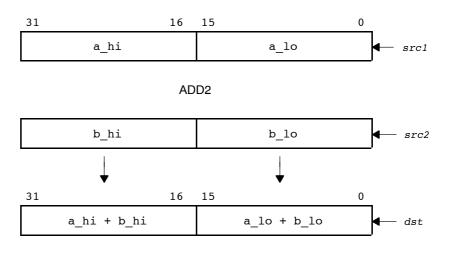
ADDU	Add Two U	nsigned Integ	gers Withou	ıt Sa	turation		
Syntax	ADDU (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> .unit = .L1 or .L2						
Compatibility	C62x, C64x,	C67x, and C6	87x+ CPU				
Opcode							
31 29 28 27	23 22	18 17	13	12	11	5	4 3 2 1 0
creg z d	lst	src2	src1	x	ор)	1 1 0 <i>s p</i>
3 1	5	5	5	1	7		1 1
	Opcode ma	p field used	For oper	rand	type	Unit	Opfield
	src1		uint			.L1, .L2	010 1011
	src2 dst		xuint ulong				
	src1		xuint			.L1, .L2	010 1001
	src2		ulong			,	
	dst		ulong				
Description Execution	if (cond)	d to <i>src1</i> . The $rc2 \rightarrow dst$	result is plac	ced i	n <i>dst</i> .		
	else nop						
Pipeline	Dinalina						
	Pipeline Stage	E1					
	Read	src1, src2					
	Written	dst					
	Unit in use	.L					

Instruction Type	Single-cycle
Delay Slots	0
See Also	ADD, SADD, SUBU

[‡] Unsigned 40-bit (long) integer

ADD2	Add Two 16-Bit Integers on Upper and Lower Register Halves						
Syntax	ADD2 (.unit) src1, src2, dst						
	.unit = .S1 or .S2						
Compatibility	C62x, C64x, C67x, and C67x+ CPU						
Opcode							
31 29 27	23 22 18 17 13 12 11 6 5 4 3 2 1 0						
creg z	dst src2 src1 x 0 0 0 0 0 1 1 0 0 s p						
3 1	5 5 5 1 1 1						
	Opcode map field used For operand type Unit						
	<i>src1</i> sint .S1, .S2						

Description The upper and lower halves of the *src1* operand are added to the upper and lower halves of the *src2* operand. The values in *src1* and *src2* are treated as signed, packed 16-bit data and the results are written in signed, packed 16-bit format into *dst*.


xsint

sint

src2

dst

For each pair of signed packed 16-bit values found in the *src1* and *src2*, the sum between the 16-bit value from *src1* and the 16-bit value from *src2* is calculated to produce a16-bit result. The result is placed in the corresponding positions in the *dst*. The carry from the lower half add does not affect the upper half add.

SPRU733

Execution	if (cond)	{ msb16(<i>src1</i>) + msb16(<i>src</i> lsb16(<i>src1</i>) + lsb16(<i>src2</i>)	
	else nop	}	
Pipeline	Pipeline Stage		
	Read	src1, src2	
	Written	dst	
	Unit in us	e.S	
Instruction Type	Single-cyc	le	
Delay Slots	0		
See Also	ADD, ADD	0U, SUB2	
Example	ADD2 .S1>	X A1,B1,A2	
	Befo	re instruction	1 cycle after instruction
	A1 0021	l 37E1h 33 14305	A1 0021 37E1h
	A2 XXXX	x xxxxh	A2 03BB 1C99h 955 7321
	B1 0397	A E4B8h 922 58552	B1 039A E4B8h

AND	Bitwise Al	Bitwise AND						
Syntax	AND (.unit	AND (.unit) src1, src2, dst						
	.unit = .L1,	.L2, .S1, .S2						
Compatibility	C62x, C64	x, C67x, and C	67x+ CPU					
Opcode	.L unit							
- 31 29 28 27	23 22	18	17	13 12 11		543210		
creg z	dst	src2	src1	х	ор	1 1 0 <i>s p</i>		
3 1	5	5	5	1	7	1 1		
	Opcode m	ap field used	For opera	nd type	Unit	Opfield		
	src1		uint		.L1, .L2	111 1011		
	src2 dst		xuint uint					
	src1		scst5		.L1, .L2	111 1010		
	src2 dst		xuint uint					
Opcode 31 29 28 27	.S unit	18	17	13 12 11	e	5 4 3 2 1 0		
creg z	dst	src2	src1	x	ор	1 1 0 0 <i>s p</i>		
3 1	5	5	5	1	6	1 1		
	Opcode m	ap field used	For opera	nd type	Unit	Opfield		
	src1 src2 dst		uint xuint uint		.S1, .S2	01 1111		
	src1 src2 dst		scst5 xuint uint		.S1, .S2	01 1110		
Description		a bitwise AND Ist. The scst5 o				?. The result is s.		
Execution	if (cond) <i>sr</i> else nop	c1 AND src2 -	→ dst					
SPRU733					Instruction	<i>Set</i> 3-67		

Pipeline	Pipeline Store			
	Stage			
	Read	src1, src2		
	Written	dst		
	Unit in use	.L or .S		
Instruction Type	Single-cycle			
Delay Slots	0			
See Also	OR, XOR			
Example 1	AND .L1X	A1,B1,A2		
	Before	instruction		1 cycle after instruction
	A1 F7A1 3	302Ah	A1	F7A1 302Ah
	A2 XXXX X	xxxh	A2	02A0 2020h
	B1 02B6 H	E724h	B1	02B6 E724h
Example 2	AND .L1	15,A1,A3		
	Before	instruction		1 cycle after instruction
	A1 32E4 6	5936h	A1	32E4 6936h
	A3 XXXX X	xxxh	A3	0000 0006h

3-68 Instruction Set

В	Branch Using a Displacement						
Syntax	B (.unit) label						
	.unit = .S1 or .S2						
Compatibility	C62x, C64x, C67x, and C67x+ CPU						
Opcode							
31 29 28 27			7 6 5 4 3 2 1 0				
creg z	cst21		0 0 1 0 0 <i>s p</i>				
3 1	21		1 1				
	Opcode map field used	For operand type	Unit				
	cst21	scst21	.S1, .S2				

Description A 21-bit signed constant, *cst21*, is shifted left by 2 bits and is added to the address of the first instruction of the fetch packet that contains the branch instruction. The result is placed in the program fetch counter (PFC). The assembler/linker automatically computes the correct value for *cst21* by the following formula:

cst21 = (label - PCE1) >> 2

If two branches are in the same execute packet and both are taken, behavior is undefined.

Two conditional branches can be in the same execute packet if one branch uses a displacement and the other uses a register, IRP, or NRP. As long as only one branch has a true condition, the code executes in a well-defined way.

Execution	if (cond)	cst21	$<<2+PCE1 \to PFC$
	else nop		

Notes:

- 1) PCE1 (program counter) represents the address of the first instruction in the fetch packet in the E1 stage of the pipeline. PFC is the program fetch counter.
- 2) The execute packets in the delay slots of a branch cannot be interrupted. This is true regardless of whether the branch is taken.
- 3) See section 3.5.2 on page 3-18 for information on branching into the middle of an execute packet.

B Branch Using a Displacement

D . II								
Pipeline				-	Farget In	structior	ı	
	Pipeline Stage	E1	PS	PW	PR	DP	DC	E1
	Read							
	Written							
	Branch Taken							~
	Unit in use	.S						
Instruction Type	Branch							
Delay Slots	5							
Example	Table 3–13 give code example.	es the p	rogram (counter val	ues and	actions	for the f	ollowing
	0000 0000 0000 0004 0000 0008 0000 000C 0000 0010 0000 0014 0000 0018 0000 001C 0000 0020	 LOOP: 	B ADD ADD MPY SUB MPY MPY SHR ADD	.S1 LOOP .L1 A1, .L2 B1, .M1X A3, .D1 A5, .M1 A3, .M1 A6, .S1 A4, .D1 A4,	A2, A3 B2, B3 B3, A4 A6, A6 A6, A5 A7, A8 15, A4	4		

Table 3–13. Program Counter Values for Example Branch Using a Displacement

Cycle	Program Counter Value	Action
Cycle 0	0000 0000h	Branch command executes (target code fetched)
Cycle 1	0000 0004h	
Cycle 2	0000 000Ch	
Cycle 3	0000 0014h	
Cycle 4	0000 0018h	
Cycle 5	0000 001Ch	
Cycle 6	0000 000Ch	Branch target code executes
Cycle 7	0000 0014h	

3-70 Instruction Set

В	Brai	nch Using	ı a Regi	ster								
Syntax	B (.u	unit) <i>src2</i>										
	.unit	t = .S2										
Compatibility	C62	62x, C64x, C67x, and C67x+ CPU										
Opcode												
31 29 28 27 creg z 0 0 0 3 1 1 1 1		^{3 22}) src 5		17 0 0	0	¹³ 0 0	12 X 1	11 0	0 1	1	6 0 1	· · · · · · · · ·
	Ор	code map f	ield used	J	Fo	r oper	anc	typ	e			Unit
	srcź	2			xui	nt						.S2
Description	lf tw is ur Two uses	ndefined. conditiona s a displace	s are in t al branch ement ar	he sar nes ca nd the r	me e in be other	xecute in the	e pa e sa a re	acke ame egist	et an exe	d are cute RP, c	pac or NR	h taken, behavior ket if one branch IP. As long as only ell-defined way.
Execution	•	ond) <i>sr</i> e nop	c2 → PF	€C								
	Not	tes:										1
	1)	This instru	uction ex	ecute	s on	.S2 o	nly.	PF	C is	prog	ram	fetch counter.
	2)	The exect This is tru	-			-						ot be interrupted.
	3) 	See secti middle of					or ii	nfori	nati	on o	n bra	anching into the

B Branch Using a Register

Pipeline				-	Target Ins	struction	1	
	Pipeline Stage	E1	PS	PW	PR	DP	DC	E1
	Read	src2						
	Written							
	Branch Taken							
	Unit in use	.S2						
Instruction Type	Branch							
Instruction Type Delay Slots	Branch 5							
		•	•					•
Delay Slots	5 Table 3–14 giv code example	. In this exa	•					•

Cycle	Program Counter Value	Action
Cycle 0	1000 0000h	Branch command executes (target code fetched)
Cycle 1	1000 0004h	
Cycle 2	1000 000Ch	
Cycle 3	1000 0014h	
Cycle 4	1000 0018h	
Cycle 5	1000 001Ch	
Cycle 6	1000 000Ch	Branch target code executes
Cycle 7	1000 0014h	

3-72 Instruction Set

B IRP	Branch Using an Interrupt Return Pointer									
Syntax	B (.unit) IRP									
	.unit = .S2									
Compatibility	C62x, C64x, C67x, and C67x+ CPU									
Opcode										
31 29 28 27	23 22 18 17 13 12 11 6 5 4 3 2 1 0									
creg z d	<i>ist</i> 0 0 1 1 0 0 0 0 0 0 x 0 0 0 0 1 1 1 0 0 0 <i>s p</i>									
3 1	5 1 1 1									
	Opcode map field used For operand type Unit									
	src2 xsint .S2									
Description	IRP is placed in the program fetch counter (PFC). This instruction also moves the PGIE bit value to the GIE bit. The PGIE bit is unchanged. If two branches are in the same execute packet and are both taken, behavior is undefined. Two conditional branches can be in the same execute packet if one branch uses a displacement and the other uses a register, IRP, or NRP. As long as only one branch has a true condition, the code executes in a well-defined way. if (cond) IRP \rightarrow PFC else nop									
	Notes:									
	 This instruction executes on .S2 only. PFC is the program fetch counter. Defer to the chapter on interrupts for more information on IRP, PCIE, and 									
	 Refer to the chapter on interrupts for more information on IRP, PGIE, and GIE. 									
	 The execute packets in the delay slots of a branch cannot be interrupted. This is true regardless of whether the branch is taken. 									
	4) See section 3.5.2 on page 3-18 for information on branching into the middle of an execute packet.									

B : II								
Pipeline					Target In	structior	ı	
	Pipeline Stage	E1	PS	PW	PR	DP	DC	E1
	Read	IRP						
	Written							
	Branch Taken							
	Unit in use	.S2						
Instruction Type	Branch							
Delay Slots	5							
Example	Table 3-15 giv code example	•	-			actions	for the f	ollowing
	PC = 0000	1000	IRP = 00	00 1000]			
	0000 0020 0000 0024 0000 0028 0000 002C 0000 0030 0000 0034 0000 0038	B ADD MPY NOP SHR ADD ADD	.S2 IRP .S1 A0, .M1 A1, .S1 A1, .L1 A1, .L2 B1,	A0, A1 15, A1 A2, A1				

Table 3–15. Program Counter Values for B IRP Instruction

Cycle	Program Counter Value	Action
Cycle 0	0000 0020	Branch command executes (target code fetched)
Cycle 1	0000 0024	
Cycle 2	0000 0028	
Cycle 3	0000 002C	
Cycle 4	0000 0030	
Cycle 5	0000 0034	
Cycle 6	0000 1000	Branch target code executes

B NRP	E	Brand	ch U	sing	g NN	11 F	Ret	urn	Po	inte	ər													_
Syntax			(.unit) NRP nit = .S2																					
Compatibility	(C62x, C64x, C67x, and C67x+ CPU																						
Opcode																								
31 29 28 27		23	22			18	17				13	12	11					6	5	4	3	2	1	0
creg z	dst		0) 1	1	1	0	0	0	0	0	х	0	0	0	0	1	1	1	0	0	0	s	р
3 1	5											1											1	1
	-	Opco src2	ode m	ap 1	field	use	d			or c sint	pei	ranc	d ty	oe						Jni .S2				_
	-																							_
Description		NRP is placed in the program fetch counter (PFC). This instruction also sets the NMIE bit. The PGIE bit is unchanged.							ts															

If two branches are in the same execute packet and are both taken, behavior is undefined.

Two conditional branches can be in the same execute packet if one branch uses a displacement and the other uses a register, IRP, or NRP. As long as only one branch has a true condition, the code executes in a well-defined way.

Notes:

- 1) This instruction executes on .S2 only. PFC is program fetch counter.
- 2) Refer to the chapter on interrupts for more information on NRP and NMIE.
- The execute packets in the delay slots of a branch cannot be interrupted. This is true regardless of whether the branch is taken.
- 4) See section 3.5.2 on page 3-18 for information on branching into the middle of an execute packet.

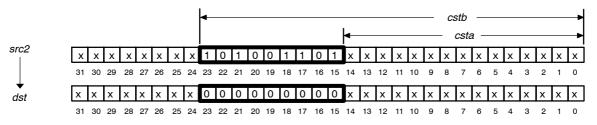
SPRU733

.								
Pipeline				-	Target In	structior	ו	
	Pipeline Stage	E1	PS	PW	PR	DP	DC	E1
	Read	NRP						
	Written							
	Branch Taken							
	Unit in use	.S2						
Instruction Type	Branch							
Delay Slots	5							
Example	Table 3–16 gi code example		-			actions	for the f	ollowing
	PC = 0000	1000 N	RP = 00	00 1000]			
	0000 0020 0000 0024 0000 0028 0000 002C 0000 0030 0000 0034 0000 0038	ADD MPY NOP SHR ADD	.S2 NRP .S1 A0, .M1 A1, .S1 A1, .L1 A1, .L2 B1,	A0, A1 15, A1 A2, A1				

Table 3–16. Program Counter Values for B NRP Instruction

Cycle	Program Counter Value	Action
Cycle 0	0000 0020	Branch command executes (target code fetched)
Cycle 1	0000 0024	
Cycle 2	0000 0028	
Cycle 3	0000 002C	
Cycle 4	0000 0030	
Cycle 5	0000 0034	
Cycle 6	0000 1000	Branch target code executes

CLR				Clear	a Bit Fie	əld												
Syntax				or CLR ((.unit) <i>src</i> (.unit) <i>src</i> : .S1 or .S	2, src1,		dst										
Compatib	ility	,		C62x,	C64x, C	67x, an	d C67	′x+ CF	U									
Opcode				Const	ant form													
31 29	28	27		23	22	18	17		13	12			8	76	5 4	43	2 1	0
creg	Ζ		dst		src	2		csta			cst	Ь		1 0	0	0 1	0 <i>s</i>	р
3	1		5		5			5			5						1	1
				0	de men fi	ممير امام	4	Ear			+				11	- i+		
					ode map f	ield use	d		oper	and	type					nit		
				src2	ode map f	ield use	d	uint		and	type					nit .S2		_
					ode map f	ield use	d	uint ucs	t5	and	type							
				src2 csta	ode map fi	ield use	d	uint	t5 t5	and	type							
Opcode				src2 csta cstb dst	ter form	ield use	d	uint ucs ucs	t5 t5	and	type							_
Opcode 31 29	28	27		src2 csta cstb dst		ield use	d 17	uint ucs ucs	t5 t5		1 1	·		6	.S1,		2 1	0
-	28 Z	27	dst	src2 csta cstb dst Regis	ter form	18	17	uint ucs ucs	t5 t5		11		0		.S1,	.S2	2 1 0 <i>s</i>	о Р
31 29	T	27		src2 csta cstb dst Regis	ter form	18	17	uint ucs ucs uint	t5 t5	12	11		0		.S1,	.S2	1	
31 29 creg	Ζ	27	dst	src2 csta cstb dst Regis	ter form	18	17	uint ucs uint src1	t5 t5	12 X 1	11 1 1	1	0		.S1,	.S2	0 <i>s</i>	p

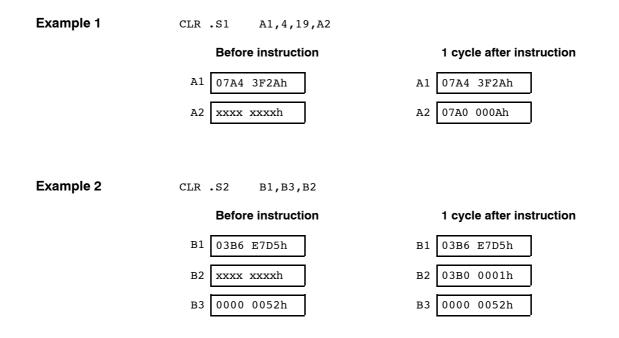

uint

uint

src1

dst

DescriptionThe field in *src2*, specified by *csta* and *cstb*, is cleared to zero. *csta* and *cstb*
may be specified as constants or as the ten LSBs of the *src1* registers, with
cstb being bits 0–4 and *csta* bits 5–9. *csta* signifies the bit location of the LSB
in the field and *cstb* signifies the bit location of the MSB in the field. In other
words, *csta* and *cstb* represent the beginning and ending bits, respectively, of
the field to be cleared. The LSB location of *src2* is 0 and the MSB location of
src2 is 31. In the example below, *csta* is 15 and *cstb* is 23. Only the ten LSBs
are valid for the register version of the instruction. If any of the 22 MSBs are
non-zero, the result is invalid.



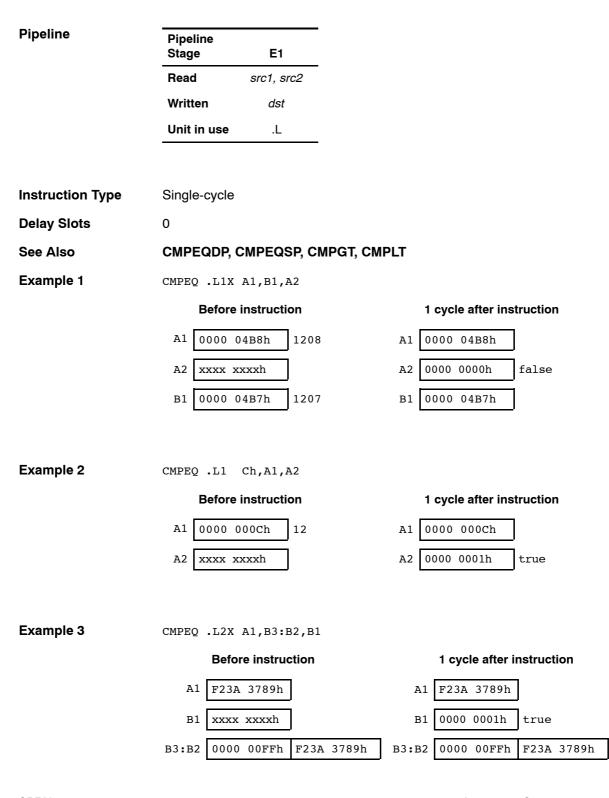
Execution	If the cons	tant form is used:
	if (cond) else nop	src2 clear csta, cstb \rightarrow dst
	If the regis	ter form is used:
	if (cond) else nop	src2 clear src1 ₉₅ , src1 ₄₀ \rightarrow dst
Pipeline	Dinolino	

peline	Pipeline Stage	E1
	Read	src1, src2
	Written	dst
	Unit in use	.S

Instruction Type	Single-cycle
Delay Slots	0
See Also	SET

3-78 Instruction Set

C	MPEQ				Сотр	are for Eq	uality, S	ligned l	Integ	ers			
Sy	ntax				СМРЕ	Q (.unit) <i>sr</i>	c1, src2,	dst					
					.unit =	.L1 or .L2							
Co	mpatik	oility	,		C62x,	C64x, C67	x, and C	67x+ Cl	۶U				
Ор	code												
31	29	28	27		23	22	18 17		13	12	11		5 4 3 2 1 0
	creg	z		dst		src2		src1		х		ор	1 1 0 <i>s p</i>
	3	1		5		5		5		1		7	1 1
					Орсо	de map field	d used	For o	peran	d ty	pe	Unit	Opfield
					src1			sint				.L1, .L2	101 0011
					src2 dst			xsint uint					
					usi			um					
					src1			scst5				.L1, .L2	101 0010
					src2			xsint					
					dst			uint					
					src1			xsint				.L1, .L2	101 0001
					src2			slong					
					dst			uint					
					src1			scst5				.L1, .L2	101 0000
					src2			slong					
					dst			uint					


Description Compares *src1* to *src2*. If *src1* equals *src2*, then 1 is written to *dst*; otherwise, 0 is written to *dst*.

Execution if (cond) { if (src1 ==

if $(src1 == src2) 1 \rightarrow dst$ else $0 \rightarrow dst$

else nop

3-80 Instruction Set

CMPEQ	DP			Compa												
Syntax				CMPEC	בסף (.uni	t) <i>src1</i>	1, src2, d	dst								
				.unit = .	S1 or .S2	2										
Compatik	bility	,		C67x a	nd C67x+	CPU	l									
Opcode																
31 29	9 28	27		23 2	2	18	17		13 12	11				65	4 3	2 1
creg	z		dst		src2		SI	rc1	x	1	0	1 0	0	0 1	0 0	005
3	1		5		5			5	1							1
				Opcod	e map fie	d use	d Fo	or oper	and t	ype.					Uni	t
				src1 src2 dst			dp xd sir	р							.S1, .:	S2
Descripti				<u> </u>						S 11.		• .	211.			
Executio				0 is writ if (cond else	if (<i>sı</i>	t. c1 == 0 → c	src2) 1 dst	-		?, th	en 1	is w	ritte	n to	dst; c	otherwis
Executio				0 is writ if (cond else	tten to <i>ds</i> if (<i>sı</i> else } nop cases of	t. c1 == 0 → c	src2) 1 dst	-		?, th	en 1	is w			dst; c	
Executio				0 is writ if (cond else Special	tten to <i>ds</i> if (<i>sı</i> else } nop cases of	t. c1 == $0 \rightarrow c$ input	src2) 1 dst	-		2, the				AUC	R Bit	
Executio				0 is writ if (cond else Special	tten to <i>ds</i>) { if (<i>sı</i> else } nop cases of In	t. c1 == $0 \rightarrow c$ input put	: <i>src2</i>) 1 dst s:	→ dst	Out				F	AUC	R Bit	s
Executio				0 is writ if (cond else Special <u>s</u>	tten to <i>ds</i> if (<i>sı</i> else } nop cases of In <i>rc1</i>	t. c1 == $0 \rightarrow c$ input put	src2) 1 dst s: src2	→ dst	Out	tput			F	AUC	R Bit	s NVAL
Executio				0 is writ if (cond else Special s N don	tten to <i>ds</i> if (<i>sı</i> else } nop cases of In rc1	t. c1 == $0 \rightarrow c$ input put	s: s:	→ dst	Out (t put			F IOR 1	AUC	R Bit	s NVAL 0
Executio				0 is writ if (cond else Special s M don	tten to <i>ds</i> if (<i>sı</i> else } nop cases of In rc1 JaN 't care	t. c1 == $0 \rightarrow c$ input put	s: <i>src2</i>) 1 s: <u>src2</u> lon't care NaN	→ dst	Out	t <mark>put</mark> D			F NOR 1 1	AUC	R Bit	s NVAL 0 0
Executio				0 is writ if (cond else Special <u>s</u> N don +/-den	tten to <i>ds</i> if (<i>sı</i> else } nop cases of In <i>rc1</i> JaN 't care	t. c1 == $0 \rightarrow c$ input put d	s: s: src2 lon't care NaN NaN	→ dst	Out ((2 put 0 0			F IOR 1 1	AUC	R Bit	s NVAL 0 0 0
Executio				0 is writ if (cond else Special Special M don +/-den +	tten to <i>ds</i> if (<i>sı</i> else } nop cases of <u>In</u> rc1 JaN 't care JaN	t. c1 == $0 \rightarrow c$ input put d	s: s: s: lon't care NaN NaN +/-0	→ dst	Out (t put)))) 1			F IOR 1 1 1 0	AUC	R Bit	s NVAL 0 0 0 0
Executio				0 is writ if (cond else Special s don +/-den + +	tten to <i>ds</i> if (<i>sı</i> else } nop cases of In rc1 laN 't care laN ormalized /-0	t. c1 == $0 \rightarrow c$ input put d +/-d	s: s: s: src2 lon't care NaN NaN +/-0 enormali	→ dst	Out ((,	t put))) 1 1			F NOR 1 1 1 0 0	AUC	R Bit	s NVAL 0 0 0 0 0
Executio				0 is writ if (cond else Special <u>s</u> N don +/-den + +/-den	tten to <i>ds</i> if (<i>si</i> else } nop cases of <i>In</i> <i>rc1</i> JaN 't care JaN ormalized -/-0 -/-0	t. c1 == $0 \rightarrow c$ input: put d +/-d +/-d	s: src2) 1 src2 lon't care NaN NaN +/-0 enormali +/-0	→ dst	Out ((,	t put D D D 1 1			F IOR 1 1 0 0 0	AUC	R Bit	s NVAL 0 0 0 0 0 0
Executio				0 is writ if (cond else Special <u>s</u> N don +/-den + +/-den +ir	tten to <i>ds</i> if (<i>sı</i> else } nop cases of In rc1 JaN 't care JaN 't care JaN ormalized -/-0 ormalized	t. c1 == $0 \rightarrow c$ input: put d +/-d +/-d	s: src2) 1 src2 lon't care NaN h/-0 enormali h/-0 enormali	→ dst	Out ((t put))) 1 1 1			F JOR 1 1 0 0 0 0	AUC	R Bit	s NVAL 0 0 0 0 0 0 0 0 0
Executio				0 is writ if (cond else Special s M don +/-den + +/-den +ir +ir	tten to <i>ds</i> if (<i>sı</i> else } nop cases of In rc1 laN 't care laN ormalized -/-0 -/-0 ormalized	t. c1 == $0 \rightarrow c$ input put d +/-d +/-d	s: src2) 1 src2 lon't care NaN +/-0 enormali +/-0 enormali +/-0	→ dst	Out ((() () () () () () () () (t put))) 1 1 1 1 1			F JOR 1 1 0 0 0 0 0	AUC	R Bit	s NVAL 0 0 0 0 0 0 0 0 0 0 0 0

CMPEQDP Compare for Equality, Double-Precision Floating-Point Values

3-82 Instruction Set

Notes:

- 1) In the case of NaN compared with itself, the result is false.
- 2) No configuration bits besides those in the preceding table are set, except the NaNn and DENn bits when appropriate.

A4 0000 0000h

false

Pipeline	Pipeline Stage	E1	E2
	Read	src1_l src2_l	src1_h src2_h
	Written		dst
	Unit in use	.S	.S

Instructi	ion Type	DP compare						
Delay SI	ots	1						
Function Latency		2						
See Also	D	CMPEQ, CM	IPEQSP, CN	IPGTDP	, CMP	LTDP		
Example)	CMPEQDP .SI	L A1:A0,A3	:A2,A4				
	Before instruc	tion			2 cycl	es after	instruc	tion
A1:A0	4021 3333h	3333 3333h	8.6	A1:A0	4021	3333h	3333	3333h
A3:A2	C004 0000h	0000 0000h	-2.5	A3:A2	C004	0000h	0000	0000h

SPRU733

A4

xxxx xxxxh

8.6

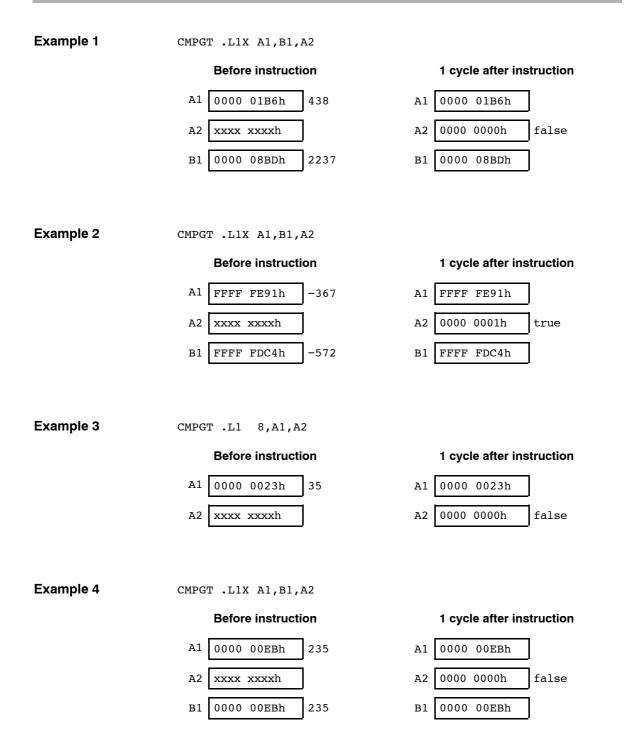
-2.5

CMPEQ																
Syntax				CMPE	QSP (.u	nit) <i>src</i>	1, src2, c	lst								
				.unit =	.S1 or .S	62										
Compatik	oility	/		C67x a	and C67	K+ CPL	J									
Opcode																
31 29	28	27		23	22	18	17		13 12	11				65	4 3	2 1
creg	z		dst		src	2	sr	c1	х	1	1	1 0	0	0 1	0 0	0 <i>s</i>
3	1		5		5			5	1							1
				Орсо	de map fi	eld use	ed Fo	r oper	and t	ype					Unit	
				src1 src2 dst			sp xs sir	С						.9	S1, .S	2
Execution	n			-	ritten to <i>c</i> d) { if (lst. src1 ==	= <i>src2</i>) 1	-		,			me	11 10 0	51, 01	
Execution	n			0 is wr if (con else	ritten to <i>c</i> d) { if (/st. src1 == e 0 → p	= src2) 1 dst	-		,					32, 01	
Execution	n			0 is wr if (con else	ritten to c d) { if (els } no al cases	/st. src1 == e 0 → p	= src2) 1 dst	-		,				AUCF		therwis
Execution	n			0 is wr if (con else Specia	ritten to c d) { if (els } no al cases	lst. src1 == $0 \rightarrow 0$ p of input	= src2) 1 dst	-						AUCF	R Bits	
Execution	n			0 is wr if (con else Specia	ritten to a d) { if (els } no al cases	<i>lst.</i> src1 == e 0 → p of input	= <i>src2</i>) 1 <i>dst</i> ts:	-		put			F	AUCF	R Bits	3
Execution	n			0 is wr if (con else Specia	ritten to <i>c</i> d) { if (els } no al cases	<i>lst.</i> src1 == e 0 → p of input	= <i>src2</i>) 1 dst ts: src2	-	Out	put_			F	AUCF	R Bits	s
Execution	n			0 is wr if (con else Specia do	ritten to c d) { if (els } no al cases src1 NaN n't care NaN	<i>lst.</i> src1 == e 0 → p of input	= <i>src2</i>) 1 dst ts: src2 don't care	-	Out	put_)			F NOR 1	AUCF	R Bits	3 IVAL 0
Execution	n			0 is wr if (con else Specia do +/-de	ritten to a d) { if (els } no al cases src1 NaN n't care NaN n't care NaN	<i>lst.</i> src1 == e 0 → p of input nput	= <i>src2</i>) 1 dst ts: don't care NaN NaN +/-0	→ dst	Out	put))			F IOR 1	AUCF	R Bits	5 IVAL 0 0
Execution	n			0 is wr if (con else Specia do +/-de	ritten to a d) { if (els } no al cases al cases src1 NaN n't care NaN	<i>lst.</i> src1 == e 0 → p of input nput	= <i>src2</i>) 1 dst ts: <u>src2</u> don't care NaN NaN	→ dst	Out	put))			F IOR 1 1	AUCF	R Bits	5 IVAL 0 0 0
Execution	n			0 is wr if (con else Specia do +/-de	ritten to a d) { if (els } no al cases src1 NaN n't care NaN n't care NaN	<i>lst.</i> src1 == e 0 → p of input nput	= <i>src2</i>) 1 <i>dst</i> ts: don't care NaN NaN +/-0	→ dst	Out (((1	put)			F IOR 1 1 1 0	AUCF	R Bits	5 IVAL 0 0 0 0
Execution	n			0 is wr if (con else Specia do +/-de	ritten to c d) { if (els } no al cases al cases src1 NaN n't care NaN n't care NaN normalize +/-0	<i>lst.</i> src1 == e 0 → p of input nput d +/-c	= <i>src2</i>) 1 <i>dst</i> ts: don't care NaN NaN +/-0 denormali:	→ dst	Out () () () () () () () () () () () () ()	put)			F NOR 1 1 1 0 0	AUCF	R Bits	5 IVAL 0 0 0 0 0
Execution	n			0 is wr if (con else Specia do +/-de +/-de	ritten to <i>c</i> d) { if (els } no al cases (<i>src1</i> NaN n't care NaN n't care NaN n't care +/-0 +/-0	<i>lst.</i> src1 == e 0 → p of input nput d +/-c	= <i>src2</i>) 1 <i>dst</i> ts: <u><i>src2</i> don't care NaN NaN +/-0 denormali: +/-0</u>	→ dst	Out 0 1 1	put))			F NOR 1 1 1 0 0 0	AUCF	R Bits	5 IVAL 0 0 0 0 0 0
Execution	n			0 is wr if (con else Specia do +/-de +/-de	ritten to <i>c</i> d) { if (els } no al cases (src1 NaN n't care NaN normalize +/-0 +/-0 normalize	<i>lst.</i> src1 == e 0 → p of input nput d +/-c	= <i>src2</i>) 1 dst ts: don't care NaN NaN +/-0 denormali: +/-0	→ dst	Out 0 1 1 1	put)			F JOR 1 1 0 0 0 0	AUCF	R Bits	5 IVAL 0 0 0 0 0 0 0
Execution	n			0 is wr if (con else Specia do +/-de +/-de +/-de	ritten to <i>c</i> d) { if (els } no al cases src1 NaN n't care NaN normalize +/-0 +/-0 normalize	<i>lst.</i> src1 == e 0 → p of input nput d +/-c	= $src2$) 1 dst ts: don't care NaN +/-0 denormali: +/-0 denormali: +/-0	→ dst	Out 0 1 1 1 1 1	put))			F JOR 1 1 0 0 0 0 0	AUCF	R Bits	3 IVAL 0 0 0 0 0 0 0 0 0 0

CMPEQSP Compare for Equality, Single-Precision Floating-Point Values

3-84 Instruction Set

Notes:


- 1) In the case of NaN compared with itself, the result is false.
- 2) No configuration bits besides those shown in the preceding table are set, except for the NaNn and DENn bits when appropriate.

B : 11					
Pipeline	Pipeline Stage	E1			
	Read	src1			
	Read	src2			
	Written	dst			
	Unit in use	.S			
Instruction Type	Single-cycle				
Dolov Sloto	0				
Delay Slots	0				
Functional Unit Latency	1				
See Also	CMPEQ, CMP	EQDP, CMF	PGTSP, CMPLTS	Р	
Example	CMPEQSP .S1	A1,A2,A3			
	Before in	struction		1 cycle after ins	struction
	A1 C020 00	00h -2.5	5 A1	C020 0000h	-2.5
	A2 4109 99	9Ah 8.6	A2	4109 999Ah	8.6
	A3 XXXX XX	xxh	А3	0000 0000h	false

CMPGT	Compare for Greate	r Than, Signed Ir	ntegers	
Syntax	CMPGT (.unit) src1, s	rc2, dst		
	.unit = .L1 or .L2			
Compatibility	C62x, C64x, C67x, an	d C67x+ CPU		
Opcode				
31 29 28 27	23 22 18	17 13 13	2 11	5 4 3 2 1 0
creg z d	st src2	src1 >	к ор	1 1 0 <i>s p</i>
3 1	5 5	5 1	1 7	1 1

Opcode map field used	For operand type	Unit	Opfield
src1 src2	sint xsint	.L1, .L2	100 0111
dst	uint		
src1	scst5	.L1, .L2	100 0110
src2	xsint		
dst	uint		
src1	xsint	.L1, .L2	100 0101
src2	slong		
dst	uint		
src1	scst5	.L1, .L2	100 0100
src2	slong		
dst	uint		

Description	Performs a signed comparison of <i>src1</i> to <i>src2</i> . If <i>src1</i> is greater than <i>src2</i> , then a 1 is written to <i>dst</i> ; otherwise, a 0 is written to <i>dst</i> .
	Note:
	The CMPGT instruction allows using a 5-bit constant as <i>src1</i> . If <i>src2</i> is a 5-bit constant, as in
	CMPGT .L1 A4, 5, A0
	Then to implement this operation, the assembler converts this instruction to
	CMPLT .L1 5, A4, A0
	These two instructions are equivalent, with the second instruction using the conventional operand types for <i>src1</i> and <i>src2</i> .
	Similarly, the CMPGT instruction allows a cross path operand to be used as <i>src2</i> . If <i>src1</i> is a cross path operand as in
	CMPGT .L1x B4, A5, A0
	Then to implement this operation the assembler converts this instruction to
	CMPLT .L1x A5, B4, A0
	In both of these operations the listing file (.lst) will have the first implementa- tion, and the second implementation will appear in the debugger.
Execution	if (cond) { if (src1 > src2) 1 \rightarrow dst else 0 \rightarrow dst
	} else nop
Pipeline	Pipeline Stage E1
	Read src1, src2
	Written dst
	Unit in use .L
Instruction Type	Single-cycle
Delay Slots	0
See Also	CMPEQ, CMPGTDP, CMPGTSP, CMPGTU, CMPLT
SPRU733	Instruction Set 3-87

3-88 Instruction Set

CMPGTDP	Compare for G	reater Than, Dou	ıble-Precisic	on Floating-Po	oint Values
Syntax	CMPGTDP (.unit	t) src1, src2, dst			
	.unit = .S1 or .S2	!			
Compatibility	C67x and C67x+	CPU			
Opcode					
31 29 28 27	23 22	18 17	13 12 11	6 5	4 3 2 1 0
creg z ds	t src2	src1	x 1 0	10011	0 0 0 <i>s p</i>
3 1 5	5	5	1		1 1
	Opcode map fiel	d used For ope	erand type		Unit
	src1 src2	dp			S1, .S2
	dst	xdp sint			
Description Execution	otherwise, 0 is w if (cond) {	to src2. If src1 is gritten to dst. $c1 > src2$, $1 \rightarrow dst$		<i>crc2</i> , then 1 is	written to <i>dst</i> ;
	•	$0 \rightarrow dst$			
	else } else nop Special cases of	$0 \rightarrow dst$		FAUC	R Bits
	else } else nop Special cases of	$0 \rightarrow dst$ inputs:	Output	FAUC	R Bits INVAL
	else } else nop Special cases of	$0 \rightarrow dst$ inputs:			
	else } else nop Special cases of Inj src1	$0 \rightarrow dst$ inputs: put src2	Output	UNORD	INVAL
	else } else nop Special cases of Ing src1 NaN	$0 \rightarrow dst$ inputs: put src2 don't care	Output 0	UNORD 1	INVAL 1
	else } else nop Special cases of Inp src1 NaN don't care	0 → dst inputs: put don't care NaN	Output 0 0	UNORD 1 1	INVAL 1 1
	else } else nop Special cases of <u>Inp</u> <u>src1</u> NaN don't care NaN	0 → dst inputs: put don't care NaN NaN	Output 0 0 0	UNORD 1 1 1	INVAL 1 1 1
	else } else nop Special cases of <u>Inp</u> <u>src1</u> NaN don't care NaN +/-denormalized	$0 \rightarrow dst$ inputs: put src2 don't care NaN NaN +/-0	Output 0 0 0 0	UNORD 1 1 1 0	INVAL 1 1 1 0
	else } else nop Special cases of Ing src1 NaN don't care NaN +/-denormalized +/-0	$0 \rightarrow dst$ inputs: $\frac{src2}{don't care}$ NaN NaN +/-0 +/-denormalized	Output 0 0 0 0 0	UNORD 1 1 1 0 0	INVAL 1 1 1 0 0
	else } else nop Special cases of <u>Ing</u> src1 NaN don't care NaN +/-denormalized +/-0 +/-0	$0 \rightarrow dst$ inputs: put don't care NaN NaN +/-0 +/-denormalized +/-0	Output 0 0 0 0 0 0 0 0	UNORD 1 1 1 0 0 0 0	INVAL 1 1 0 0 0 0
	else } else nop Special cases of <u>Inp</u> src1 NaN don't care NaN +/-denormalized +/-0 +/-0 +/-0	$0 \rightarrow dst$ inputs: put don't care NaN NaN +/-0 +/-denormalized +/-denormalized	Output 0 0 0 0 0 0 0 0 0 0	UNORD 1 1 1 0 0 0 0 0 0	INVAL 1 1 0 0 0 0 0
	else } else Special cases of Special cases of Ing src1 NaN don't care NaN +/-denormalized +/-0 +/-0 +/-0 +/-denormalized +infinity	$0 \rightarrow dst$ inputs: put don't care NaN +/-0 +/-denormalized +/-0 +/-denormalized +/infinity	Output 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UNORD 1 1 1 0 0 0 0 0 0 0 0 0 0	INVAL 1 1 0 0 0 0 0 0 0

Instruction Set 3-89

Note:

No configuration bits other than those shown above are set, except the NaNn and DENn bits when appropriate.

Pipeline	Pipeline Stage	E1	E2
	Read	src1_l src2_l	src1_h src2_h
	Written		dst
	Unit in use	.S	.S

Instruction Type	DP compare
Delay Slots	1
Functional Unit Latency	2

See Also CMPEQDP, CMPGT, CMPGTSP, CMPGTU, CMPLTDP

Example

CMPGTDP .S1 A1:A0,A3:A2,A4

Before instruction

2 cycles after instruction

A1:A0	4021 3333h	3333 3333h	8.6	A1:A0	4021 33331	h 333	3 3333h	8.6
A3:A2	c004 0000h	0000 0000h	-2.5	A3:A2	c004 00001	h 000	0 0000h	-2.5
A4	XXXX XXXXh]		A4	0000 00011	h tru	е	

CMPGTSP	Compare for G	reater Than, Sing	le-Precisio	n Floating-Po	int Values
Syntax	CMPGTSP (.unit) src1, src2, dst			
	.unit = .S1 or .S2				
Compatibility	C67x and C67x+	CPU			
Opcode					
31 29 28 27	23 22	18 17	13 12 11	6 5	4 3 2 1 0
creg z ds	t src2	src1	x 1 1	1 0 0 1 1	0 0 0 <i>s p</i>
3 1 5	5	5	1		1 1
	Opcode map fiel	d used For ope	erand type		Unit
	src1	sp			S1, .S2
	src2 dst	xsp sint			
Description Execution	otherwise, 0 is w if (cond) { if (<i>sr</i> d	c1 > src2) 1 $ ightarrow$ dst		<i>302</i> , men i is	
	else } else nop Special cases of	0 ightarrow dstinputs:			
	} else nop Special cases of			FAUCR	Fields
	} else nop Special cases of	inputs:	Output	FAUCR	Fields INVAL
	} else nop Special cases of Ing	inputs:	Output 0		
	} else nop Special cases of Inp src1	inputs: out src2	-	UNORD	INVAL
	} else nop Special cases of Inp src1 NaN	inputs: out src2 don't care	0	UNORD 1	INVAL 1
	} else nop Special cases of Ing src1 NaN don't care	inputs: out src2 don't care NaN	0 0	UNORD 1 1	INVAL 1 1
	} else nop Special cases of Ing src1 NaN don't care NaN +/-denormalized +/-0	inputs: out src2 don't care NaN NaN +/-0 +/-denormalized	0 0 0	UNORD 1 1 1	INVAL 1 1 1
	} else nop Special cases of <u>Inp</u> src1 NaN don't care NaN +/-denormalized	inputs: but don't care NaN NaN +/-0	0 0 0 0	UNORD 1 1 1 0	INVAL 1 1 1 0
	<pre>} else nop Special cases of Ing Src1 NaN don't care NaN +/-denormalized +/-0 +/-0 +/-0 +/-denormalized</pre>	inputs: Dut src2 don't care NaN NaN +/-0 +/-denormalized +/-denormalized	0 0 0 0 0	UNORD 1 1 1 0 0	INVAL 1 1 1 0 0
	<pre>} else nop Special cases of Ing Src1 NaN don't care NaN +/-denormalized +/-0 +/-0</pre>	inputs: Dut Src2 don't care NaN NaN +/-0 +/-denormalized +/-0 +/-denormalized +/-0	0 0 0 0 0 0	UNORD 1 1 1 0 0 0 0	INVAL 1 1 0 0 0 0
	<pre>} else nop Special cases of Ing Src1 NaN don't care NaN +/-denormalized +/-0 +/-0 +/-0 +/-denormalized</pre>	inputs: Dut src2 don't care NaN NaN +/-0 +/-denormalized +/-denormalized	0 0 0 0 0 0 0	UNORD 1 1 1 0 0 0 0 0 0 0	INVAL 1 1 0 0 0 0 0
	<pre>} else nop Special cases of Ing Src1 NaN don't care NaN +/-denormalized +/-0 +/-0 +/-denormalized +infinity</pre>	inputs: Dut Src2 don't care NaN NaN +/-0 +/-denormalized +/-0 +/-denormalized +/-0	0 0 0 0 0 0 0 0	UNORD 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	INVAL 1 1 0 0 0 0 0 0 0

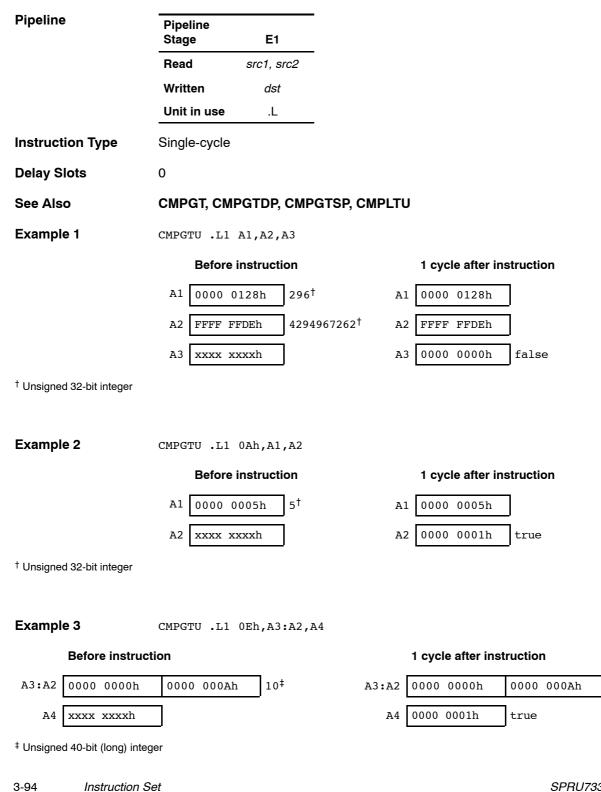
Instruction Set 3-91

Note:

No configuration bits other than those shown above are set, except for the NaNn and DENn bits when appropriate.

Pipeline	Pipeline		
	Stage	E1	
	Read	src1 src2	
	Written	dst	
	Unit in use	.S	
In structure Truce			
Instruction Type	Single-cycle		
Delay Slots	0		
Functional Unit Latency	1		
See Also	CMPEQSP, CM	MPGT, CMPGTDP, CM	PGTU, CMPLTSP
Example	CMPGTSP .S1X	A1,B2,A3	
	Before in	struction	1 cycle after instruction
	A1 C020 00	00h -2.5	A1 C020 0000h -2.5
	B2 4109 99	9Ah 8.6	B2 4109 999Ah 8.6
	A3 XXXX XX	XXh	A3 0000 0000h false

3-92 Instruction Set

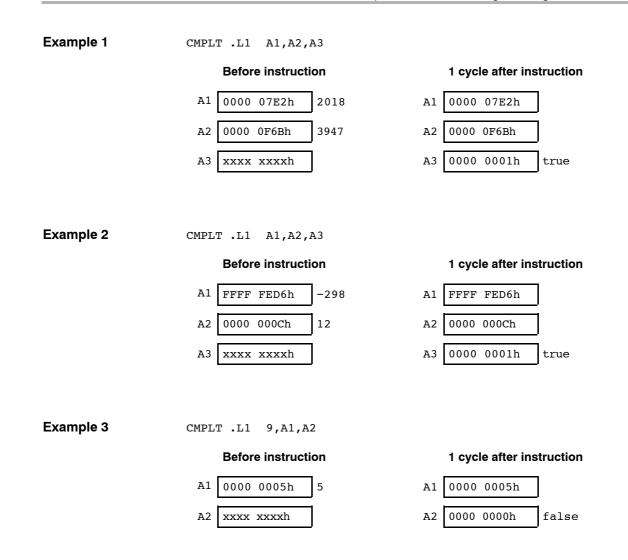

CMPGTU	Compare for Greate	er Than, Unsigned	d Integers	
Syntax	CMPGTU (.unit) src1,	src2, dst		
	.unit = .L1 or .L2			
Compatibility	C62x, C64x, C67x, ar	nd C67x+ CPU		
Opcode				
31 29 28 27	23 22 18	17 13 1	12 11	5 4 3 2 1 0
creg z	dst src2	src1 >	х ор	1 1 0 <i>s p</i>
3 1	5 5	5	1 7	1 1

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.L1, .L2	100 1111
src2	xuint		
dst	uint		
src1	ucst4	.L1, .L2	100 1110
src2	xuint		
dst	uint		
src1	xuint	.L1, .L2	100 1101
src2	ulong		
dst	uint		
src1	ucst4	.L1, .L2	100 1100
src2	ulong		
dst	uint		

DescriptionPerforms an unsigned comparison of *src1* to *src2*. If *src1* is greater than *src2*,
then a 1 is written to *dst*; otherwise, a 0 is written to *dst*. Only the four LSBs
are valid in the 5-bit *dst* field when the *ucst4* operand is used. If the MSB of the
dst field is nonzero, the result is invalid.

SPRU733

Instruction Set 3-93


CMPLT	Compare for Less Than, Signed Integers
Syntax	CMPLT (.unit) src1, src2, dst
	.unit = .L1 or .L2
Compatibility	C62x, C64x, C67x, and C67x+ CPU
0	

Opcode

31	29	28	27	23	22 18	3 17	1	13	12	11 5	5	4	3	2	1	0
creg		Ζ		dst	src2		src1		х	ор		1	1	0	s	р
3		1		5	5		5		1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1	sint	.L1, .L2	101 0111
src2	xsint		
dst	uint		
src1	scst5	.L1, .L2	101 0110
src2	xsint		
dst	uint		
src1	xsint	.L1, .L2	101 0101
src2	slong		
dst	uint		
src1	scst5	.L1, .L2	101 0100
src2	slong		
dst	uint		

Description Performs a signed comparison of src1 to src2. If src1 is less than src2, then 1 is written to *dst*; otherwise, 0 is written to *dst*. Note: The CMPLT instruction allows using a 5-bit constant as src1. If src2 is a 5-bit constant, as in CMPLT .L1 A4, 5, A0 Then to implement this operation, the assembler converts this instruction to CMPGT 5, A4, A0 .L1 These two instructions are equivalent, with the second instruction using the conventional operand types for src1 and src2. Similarly, the CMPLT instruction allows a cross path operand to be used as src2. If src1 is a cross path operand as in CMPLT .L1x B4, A5, A0 Then to implement this operation, the assembler converts this instruction to CMPGT .Llx A5, B4, A0 In both of these operations the listing file (.lst) will have the first implementation, and the second implementation will appear in the debugger. Execution if (cond) { if (src1 < src2) 1 \rightarrow dst else 0 \rightarrow dst } else nop **Pipeline** Pipeline E1 Stage Read src1, src2 Written dst Unit in use .L Instruction Type Single-cycle **Delay Slots** 0 See Also CMPEQ, CMPGT, CMPLTDP, CMPLTSP, CMPLTU 3-96 Instruction Set SPRU733

CMPLTDP	Compare for Less Than, Double-Pr	ecisior	n Floating-Poin	t Values
Syntax	CMPLTDP (.unit) src1, src2, dst			
	.unit = .S1 or .S2			
Compatibility	C67x and C67x+ CPU			
Opcode				
• 31 29 28 27	23 22 18 17 13	12 11	6 5	4 3 2 1 0
creg z	dst src2 src1	x 1	0 1 0 1 0 1	0005
3 1	5 5 5	1		1
	Opcode map field used For operan	d type	•	Unit
	src1dpsrc2xdpdstsint			S1, .S2
Description				
Execution	Compares <i>src1</i> to <i>src2</i> . If <i>src1</i> is less th wise, 0 is written to <i>dst</i> . if (cond) { if (<i>src1</i> < <i>src2</i>) $1 \rightarrow dst$ else $0 \rightarrow dst$ } else nop			
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs:			
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: Input		FAUC	R Bits
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: Input src1 src2 c	Dutput	FAUC UNORD	R Bits INVAL
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: Input <u>src1 src2 c</u>	Dutput 0	FAUC UNORD 1	R Bits INVAL
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: $\frac{Input}{src1} \frac{src2}{c}$ NaN don't care don't care NaN	Dutput 0 0	FAUC UNORD 1 1	R Bits INVAL 1 1
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: $\hline Input$ $\hline src1 \qquad src2 \qquad contracted and the second se$	Dutput 0 0 0	FAUC UNORD 1 1 1 1	R Bits INVAL 1 1 1
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: $\frac{Input}{src1} \frac{src2}{c}$ NaN don't care don't care NaN NaN NaN +/-denormalized +/-0	Dutput 0 0 0 0	FAUC UNORD 1 1 1 1 0	R Bits INVAL 1 1 1 1 0
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: $\frac{Input}{src1} \frac{src2}{c}$ NaN don't care don't care NaN NaN NaN +/-denormalized +/-0 +/-0 +/-denormalized	Dutput 0 0 0 0 0	FAUC UNORD 1 1 1 1 0 0	R Bits INVAL 1 1 1 0 0 0
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: Input <u>src1 src2 c</u> NaN don't care don't care NaN NaN NaN +/-denormalized +/-0 +/-0 +/-denormalized +/-0 +/-0	Dutput 0 0 0 0	FAUC UNORD 1 1 1 1 0	R Bits INVAL 1 1 1 1 0
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: $\frac{Input}{src1} \frac{src2}{c}$ NaN don't care don't care NaN NaN NaN +/-denormalized +/-0 +/-0 +/-denormalized +/-0 +/-denormalized	Dutput 0 0 0 0 0 0 0	FAUC UNORD 1 1 1 1 0 0 0 0	R Bits INVAL 1 1 1 0 0 0 0
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: Input <u>src1 src2 c</u> NaN don't care don't care NaN NaN NaN +/-denormalized +/-0 +/-0 +/-denormalized +/-0 +/-0	Dutput 0 0 0 0 0 0 0 0	FAUC UNORD 1 1 1 1 0 0 0 0 0	R Bits INVAL 1 1 1 0 0 0 0 0 0 0
Execution	wise, 0 is written to dst . if (cond) { if ($src1 < src2$) 1 $\rightarrow dst$ else 0 $\rightarrow dst$ } else nop Special cases of inputs: $\frac{Input}{Src1} Src2 (C)$ NaN don't care don't care NaN NaN NaN +/-denormalized +/-0 +/-0 +/-denormalized +/-0 +/-denormalized +/-0 +/-denormalized +/-0 +/-denormalized	Dutput 0 0 0 0 0 0 0 0 0 0 0	FAUC UNORD 1 1 1 1 0 0 0 0 0 0 0 0 0	R Bits

CMPLTDP Compare for Less Than, Double-Precision Floating-Point Values

SPRU733

3-98 Instruction Set

Note:

No configuration bits other than those above are set, except for the NaNn and DENn bits when appropriate.

Pipeline		Pipeline				-		
•		Stage	E1		E2			
		Read	src1_l src2_l		rc1_h rc2_h	-		
		Written			dst			
		Unit in use	.S		.S			
						-		
Instructi	on Type	DP compare						
Delay SI	ots	1						
Functior Latency		2						
See Also	D	CMPEQDP, C	MPGTDF	P, CMPL	T, CMPL	TSP, C	MPLTU	
Example)	CMPLTDP	.S1X	A1:	A0,B3:B	2,A4		
	Before instruc	tion			2 cycles	s after i	nstruction	
A1:A0	4021 3333h	3333 3333h	8.6	A1:A0	4021 3	333h	4021 3333h	8.6
B3:B2	c004 0000h	0000 0000h	-2.5	B3:B2	c004 0	000h	0000 0000h	-2.5
A4	xxxx xxxxh]		A4	0000 0	000h	false	

CMPLTSP	Compare for Le	ess Than, Single-	Precision F	loating-Point	Values				
Syntax	CMPLTSP (.unit)	src1, src2, dst							
	.unit = .S1 or .S2								
Compatibility	C67x and C67x+	CPU							
Opcode									
31 29 28 27	23 22	18 17	13 12 11	6 5	4 3 2 1 0				
creg z ds	st src2	src1	x 1 1	10101	0 0 0 <i>s p</i>				
3 1 5	5	5	1		1 1				
	Opcode map fiel	d used For ope	erand type		Unit				
	src1	sp			S1, .S2				
	src2 dst	xsp sint							
Description Execution	wise, 0 is written	o <i>src2.</i> If <i>src1</i> is les to <i>dst.</i>	s than <i>src2</i> , t	then 1 is writter	n to <i>dst</i> ; other-				
	if (cond) {								
	else }	$0 \rightarrow dst$	t						
	else } else nop Special cases of	$0 \rightarrow dst$	<i>t</i>	FAUC	R Bits				
	else } else nop Special cases of	$0 \rightarrow dst$ inputs:	t Output	FAUCI	R Bits INVAL				
	else } else nop Special cases of	$0 \rightarrow dst$ inputs:							
	else } else nop Special cases of Inp src1	$0 \rightarrow dst$ inputs: but src2	Output	UNORD	INVAL				
	else } else nop Special cases of <u>Inp</u> <u>src1</u> NaN	$0 \rightarrow dst$ inputs: but src2 don't care	Output 0	UNORD 1	INVAL				
	else } else nop Special cases of <u>Inp</u> <u>src1</u> NaN don't care	0 → <i>dst</i> inputs: but gon't care NaN	Output 0 0	UNORD 1 1	INVAL 1 1				
	else } else nop Special cases of <u>Inp</u> src1 NaN don't care NaN	0 → <i>dst</i> inputs: but don't care NaN NaN	Output 0 0 0	UNORD 1 1 1	INVAL 1 1 1				
	else } else nop Special cases of <u>Inp</u> <u>src1</u> NaN don't care NaN +/-denormalized	$0 \rightarrow dst$ inputs: but don't care NaN NaN +/-0	Output 0 0 0 0	UNORD 1 1 1 0	INVAL 1 1 1 0				
	else } else nop Special cases of <u>Inp</u> src1 NaN don't care NaN +/-denormalized +/-0	$0 \rightarrow dst$ inputs: but don't care NaN NaN +/-0 +/-denormalized	Output 0 0 0 0 0 0	UNORD 1 1 1 0 0	INVAL 1 1 1 0 0				
	else } else Special cases of <u>Inp</u> <u>src1</u> NaN don't care NaN +/-denormalized +/-0 +/-0	$0 \rightarrow dst$ inputs: but don't care NaN NaN +/-0 +/-denormalized +/-0	Output 0 0 0 0 0 0 0 0	UNORD 1 1 1 1 0 0 0 0	INVAL 1 1 0 0 0 0				
	else } else Special cases of Special cases of Ing src1 NaN don't care NaN +/-denormalized +/-0 +/-0 +/-0	$0 \rightarrow dst$ inputs: but don't care NaN NaN +/-0 +/-denormalized +/-denormalized	Output 0 0 0 0 0 0 0 0 0 0	UNORD 1 1 1 0 0 0 0 0 0 0	INVAL 1 1 1 0 0 0 0 0				
	else } else Special cases of Special cases of Ing src1 NaN don't care NaN +/-denormalized +/-0 +/-0 +/-0 +/-denormalized +infinity	$0 \rightarrow dst$ inputs: but src2 don't care NaN NaN +/-0 +/-denormalized +/-0 +/-denormalized +infinity	Output 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UNORD 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	INVAL 1 1 0 0 0 0 0 0 0				

CMPLTSP Compare for Less Than, Single-Precision Floating-Point Values

3-100 Instruction Set

Note:

No configuration bits other than those above are set, except for the NaNn and DENn bits when appropriate.

Pipeline	Pipeline	-		
	Stage	E1		
	Read	src1		
		src2		
	Written	dst		
	Unit in use	.S		
Instruction Type	Single-cycle			
Delay Slots	0			
Functional Unit	1			
Latency				
See Also	CMPEQSP, CM	IPGTSP, CMF	PLT, CMPLTDF	, CMPLTU
Example	CMPLTSP .S1	A1,A2,A3		
•				
	Before in	struction		1 cycle after instruction
	A1 C020 00	00h -2.5	A1	C020 0000h -2.5
	A2 4109 99	9Ah 8.6	A2	4109 999Ah 8.6

A3 xxxx xxxxh

A3 0000 0001h

SPRU733

Instruction Set 3-101

true

src2

CMPLTU	Compare for Less Than, Unsigned Integers							
Syntax								
Compatibility C62x, C64x, C67x, and C67x+ CPU								
Opcode								
31 29 28 27	23 22 18 17	13 12 11	5 4 3 2 1 0					
creg z	dst src2	src1 x	op 1 1 0 s p					
3 1	5 5	5 1	7 1 1					
	Opcode map field used	For operand type	Unit Opfield					
	src1	uint	.L1, .L2 101 1111					

dst	uint		
src1	ucst4	.L1, .L2	101 1110
src2	xuint		
dst	uint		
src1	xuint	.L1, .L2	101 1101
src2	ulong		
dst	uint		
src1	ucst4	.L1, .L2	101 1100
src2	ulong		
dst	uint		

xuint

DescriptionPerforms an unsigned comparison of *src1* to *src2*. If *src1* is less than *src2*, then1 is written to *dst*; otherwise, 0 is written to *dst*.

Execution

{ if (src1 < src2) 1 \rightarrow dst else 0 \rightarrow dst }

else nop

if (cond)

3-102 Instruction Set

Pipeline					
ripenne	Pipeline Stage	E1			
	Read s	rc1, src2			
	Written	dst			
	Unit in use	.L			
Instruction Type	Single-cycle				
Delay Slots	0				
See Also	CMPGTU, CMP	LT, CMPLTDP, C	MPLTSP		
Example 1	CMPLTU .L1 A1	,A2,A3			
	Before ins	truction		1 cycle after in	struction
	A1 0000 289	Ah 10394 [†]	A1	0000 289Ah	7
	A2 FFFF F35E	h 4294964062	2 [†] A2	PERFF F35Eh	
	A3 XXXX XXX	xh	A3	3 0000 0001h	true
	[†] Unsigned 32-bit in	ieger			J
	0g				
Example 2	CMPLTU .L1 14	,A1,A2			
	Before ins	truction		1 cycle after in	struction
	A1 0000 000	Fh 15 [†]	A1	0000 000Fh	7
	A2 XXXX XXXX	th	A2	2 0000 0001h	true
	[†] Unsigned 32-bit in	ieger			_
	g	3			
Example 3	CMPLTU .L1 A1	,A5:A4,A2			
	Before instruct	ion		1 cycle after ins	truction
Al	003B 8260h	3900000†	A1	003B 8260h]
A2	xxxx xxxxh	1	A2	0000 0000h	false
A5:A4 0000 0000h	003A 0002h	3801090‡	A5:A4	0000 0000h	003A 0002h
[†] Unsigned 32-bit integer [‡] Unsigned 40-bit (long) integ	er	_			

SPRU733

Instruction Set 3-103

DPINT	Convert Double-Precision Floating-Point Value to Integer
Syntax	DPINT (.unit) <i>src2</i> , <i>dst</i>
	.unit = .L1 or .L2
Compatibility	C67x and C67x+ CPU
Opcode	
• 31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1
r	dst src2 0 0 0 0 0 x 0 0 0 1 0 0 1 1 0 s
3 1	5 5 1 1
	Opcode map field used For operand type Unit
	<i>src2</i> dp .L1, .L2
Description	<i>dst</i> sint The 64-bit double-precision value in <i>src2</i> is converted to an integer and place
	The 64-bit double-precision value in <i>src2</i> is converted to an integer and place in <i>dst</i> . The operand is read in one cycle by using the <i>src2</i> port for the 32 MS and the <i>src1</i> port for the 32 LSBs.
Description Execution	The 64-bit double-precision value in <i>src2</i> is converted to an integer and place in <i>dst.</i> The operand is read in one cycle by using the <i>src2</i> port for the 32 MS
	The 64-bit double-precision value in <i>src2</i> is converted to an integer and place in <i>dst</i> . The operand is read in one cycle by using the <i>src2</i> port for the 32 MS and the <i>src1</i> port for the 32 LSBs. if (cond) $int(src2) \rightarrow dst$
	The 64-bit double-precision value in <i>src2</i> is converted to an integer and place in <i>dst</i> . The operand is read in one cycle by using the <i>src2</i> port for the 32 MS and the <i>src1</i> port for the 32 LSBs. if (cond) int(<i>src2</i>) \rightarrow <i>dst</i> else nop
	The 64-bit double-precision value in <i>src2</i> is converted to an integer and place in <i>dst</i> . The operand is read in one cycle by using the <i>src2</i> port for the 32 MS and the <i>src1</i> port for the 32 LSBs. if (cond) int(<i>src2</i>) \rightarrow <i>dst</i> else nop Notes: 1) If <i>src2</i> is NaN, the maximum signed integer (7FFF FFFFh
	 The 64-bit double-precision value in <i>src2</i> is converted to an integer and place in <i>dst</i>. The operand is read in one cycle by using the <i>src2</i> port for the 32 MS and the <i>src1</i> port for the 32 LSBs. if (cond) int(<i>src2</i>) → <i>dst</i> else nop Notes: If <i>src2</i> is NaN, the maximum signed integer (7FFF FFFFh 8000 0000h) is placed in <i>dst</i> and the INVAL bit is set. If <i>src2</i> is signed infinity or if overflow occurs, the maximum signed integer (7FFF FFFFh or 8000 0000h) is placed in <i>dst</i> and the INVAL bit is and OVER bit is set.

DPINT Convert Double-Precision Floating-Point Value to Integer

Pipeline	Dineline				
	Pipeline Stage	E1	E2	E3	E4
	Read	src2_l src2_h			
	Written				dst
	Unit in use	.L			
Instruction Type	4-cycle				
Delay Slots	3				
Functional Unit Latency	1				
See Also	DPSP, DPTRU	INC, INTDF	P, SPINT		
Example	DPINT .	L1	A1:A0,A4		
Before instru	uction		4 cycles	after instruction	
A1:A0 4021 3333h	3333 3333h	8.6	A1:A0 4021 33	333h 3333 33	33h 8.6
A4 xxxx xxxxh			A4 0000 00	009h	9

DDOD						
DPSP		onvert Double pating-Point	e-Precision Flo Value	ating-Point V	alue to Single	e-Precision
Syntax	DP	PSP (.unit) <i>src.</i>	2, dst			
	.un	nit = .L1 or .L2				
Compatibility	C6	7x and C67x+	⊦ CPU			
Opcode						
31 29 28 27		23 22	18 17	13 12 11	5	543210
creg z	dst	src2	0 0 0	0 0 x 0	0 0 1 0 0	1 1 1 0 <i>s p</i>
3 1	5	5		1		1 1
	O	pcode map fie	ld used For d	operand type		Unit
	sro ds		dp sp			.L1, .L2
Execution	if (0	oond) on/o				
	els	e nop	rc2) ightarrow dst			,
	els No	otes:		NFX hit is s	et	
	els	e nop otes: If rounding i	$(rc2) \rightarrow dst$ is performed, the IaN, NaN_out is			and NAN2 bits
	els No 1)	otes: If rounding i If <i>src2</i> is SN are set.	is performed, the	placed in <i>dst a</i>	and the INVAL a	
	els No 1) 2)	te nop otes: If rounding i If <i>src2</i> is SN are set. If <i>src2</i> is QN If <i>src2</i> is a s	is performed, the IaN, NaN_out is	placed in <i>dst a</i> placed in <i>dst</i> ized number,	and the INVAL a and the NAN2	bit is set.
	els N (1) 2) 3)	otes: If rounding i If <i>src2</i> is SN are set. If <i>src2</i> is QN If <i>src2</i> is a s the INEX ar	is performed, the laN, NaN_out is NaN, NaN_out is signed denormal	placed in <i>dst</i> a placed in <i>dst</i> ized number, e set.	and the INVAL a and the NAN2 signed 0 is pla	bit is set. ced in <i>dst</i> and
	els N (1) 2) 3) 4)	te nop notes: If rounding i If <i>src2</i> is SN are set. If <i>src2</i> is QN If <i>src2</i> is a sig the INEX ar If <i>src2</i> is sig If <i>overflow c</i>	is performed, the IaN, NaN_out is NaN, NaN_out is signed denormal nd DEN2 bits are	placed in <i>dst</i> a placed in <i>dst</i> ized number, e set. esult is signed and OVER bi	and the INVAL a and the NAN2 signed 0 is pla infinity and the its are set and t	bit is set. ced in <i>dst</i> and INFO bit is set. the results are
	els N (1) 2) 3) 4) 5)	te nop notes: If rounding i If <i>src2</i> is SN are set. If <i>src2</i> is QN If <i>src2</i> is a sig the INEX ar If <i>src2</i> is sig If <i>overflow c</i>	is performed, the laN, NaN_out is signed denormal nd DEN2 bits are ned infinity, the re occurs, the INEX vs (LFPN is the	placed in <i>dst</i> a placed in <i>dst</i> ized number, e set. esult is signed and OVER bi largest floating	and the INVAL a and the NAN2 signed 0 is pla infinity and the its are set and t	bit is set. ced in <i>dst</i> and INFO bit is set. the results are):
	els N (1) 2) 3) 4) 5)	te nop notes: If rounding i If <i>src2</i> is SN are set. If <i>src2</i> is QN If <i>src2</i> is a sig the INEX ar If <i>src2</i> is sig If <i>overflow c</i>	is performed, the IaN, NaN_out is NaN, NaN_out is signed denormal nd DEN2 bits are ned infinity, the re occurs, the INEX vs (LFPN is the	placed in <i>dst</i> a placed in <i>dst</i> ized number, e set. esult is signed and OVER bi largest floating	and the INVAL a and the NAN2 signed 0 is pla infinity and the its are set and f g-point number	bit is set. ced in <i>dst</i> and INFO bit is set. the results are):
	els N (1) 2) 3) 4) 5)	be nop otes: If rounding i If <i>src2</i> is SN are set. If <i>src2</i> is QN If <i>src2</i> is a sig the INEX ar If <i>src2</i> is sig If overflow of set as follow	is performed, the IaN, NaN_out is NaN, NaN_out is signed denormal nd DEN2 bits are ned infinity, the re occurs, the INEX vs (LFPN is the	placed in <i>dst</i> a placed in <i>dst</i> ized number, set. esult is signed and OVER bi argest floating	and the INVAL a and the NAN2 signed 0 is pla infinity and the its are set and g-point number t Rounding Mod	bit is set. ced in <i>dst</i> and INFO bit is set. the results are): de

3-106 Instruction Set

7) If underflow occurs, the INEX and UNDER bits are set and the results are set as follows (SPFN is the smallest floating-point number):

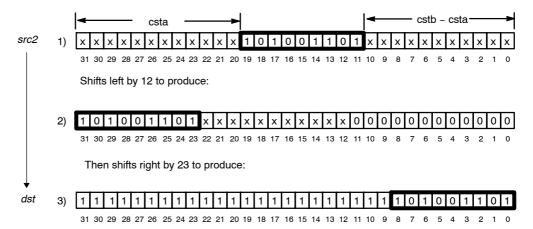
	Underflow Output Rounding Mode						
Result Sign	Nearest Even	Zero	+Infinity	-Infinity			
+	+0	+0	+SFPN	+0			
-	-0	-0	-0	-SFPN			

Pipeline	Pipeline Stage	E1	E2	E3	E4
	Read	src2_l src2_h			
	Written				dst
	Unit in use	.L			
Instruction Type	4-cycle				
Delay Slots	3				
Functional Unit Latency	1				
See Also	DPINT, DPTRI	JNC, INTS	SP, SPDP		
Example	DPSP .	L1	A1:A0,A4		
Before instru	uction		4 cycles aft	er instruction	
A1:A0 4021 3333h	1 3333 3333h	8.6	A1:A0 4021 3333	h 4021 33	33h 8.6

A4 xxxx xxxxh

Instruction Set 3-107

DPTRUNC	Convert Double-Precision Floating-Point Value to Integer With Truncation
0	
Syntax	DPTRUNC (.unit) <i>src2</i> , <i>dst</i>
	.unit = .L1 or .L2
Compatibility	C67x and C67x+ CPU
Opcode	
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0
creg z ds	st src2 0 0 0 0 0 x 0 0 0 0 0 1 1 1 0 s p
3 1 5	5 1 1 1
	Opcode map field used For operand type Unit
	<i>src2</i> dp .L1, .L2
	dst sint
Description	The 64-bit double-precision value in <i>src2</i> is converted to an integer and placed in <i>dst</i> . This instruction operates like DPINT except that the rounding modes in
	the FADCR are ignored; round toward zero (truncate) is always used. The
	64-bit operand is read in one cycle by using the <i>src2</i> port for the 32 MSBs and the src1 port for the 32 LSBs.
Execution	if (cond) $int(src2) \rightarrow dst$ else nop
	Notes:
	 If <i>src2</i> is NaN, the maximum signed integer (7FFF FFFFh or 8000 0000h) is placed in <i>dst</i> and the INVAL bit is set.
	 If <i>src2</i> is signed infinity or if overflow occurs, the maximum signed integer (7FFF FFFFh or 8000 0000h) is placed in <i>dst</i> and the INEX and OVER bits are set. Overflow occurs if <i>src2</i> is greater than 2³¹ – 1 or less than –2³¹.
	 If <i>src2</i> is denormalized, 0000 0000h is placed in <i>dst</i> and the INEX and DEN2 bits are set.
	4) If rounding is performed, the INEX bit is set.


_						
Pipeline	Pipeline Stage	E1	E2	E	3	E4
	Read	src2_l src2_h				
	Written					dst
	Unit in use	.L				
Instruction Type	4-cycle					
Delay Slots	3					
Functional Unit Latency	1					
See Also	DPINT, DPSP,	SPTRUNC				
Example	DPTRUNC .	L1	A1:A0,A4			
Before instru	iction		4 cy	cles after in	struction	
A1:A0 4021 3333h	3333 3333h	8.6	A1:A0 4021	1 3333h	3333 3333h	8.6
A4 xxxx xxxxh			A4 0000	0008h]	8

Convert Double-Precision Floating-Point Value to Integer With Truncation **DPTRUNC**

EXT	Extract and Sign-Extend a Bit Field
Syntax	EXT (.unit) <i>src2</i> , <i>csta</i> , <i>cstb</i> , <i>dst</i> or EXT (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i> .unit = .S1 or .S2
Compatibility	C62x, C64x, C67x, and C67x+ CPU
Opcode	Constant form
31 29 28 27	23 22 18 17 13 12 8 7 6 5 4 3 2 1 0
creg z ds	t src2 csta cstb 0 1 0 0 1 0 s p
3 1 5	5 5 5 1 1
5 1 5	5 5 5 1 1
	Opcode map field used For operand type Unit
5 1 5	
Opcode	Opcode map field usedFor operand typeUnitsrc2sint.S1, .S2cstaucst5ucst5cstbucst5
Opcode 31 29 28 27	Opcode map field used For operand type Unit src2 sint .S1, .S2 csta ucst5 .sint st sint .S1, .S2
Opcode	Opcode map field used For operand type Unit src2 sint .

Opcode map field used	For operand type	Unit			
src2	xsint	.S1, .S2			
src1	uint				
dst	sint				

Description The field in *src2*, specified by *csta* and *cstb*, is extracted and sign-extended to 32 bits. The extract is performed by a shift left followed by a signed shift right. *csta* and *cstb* are the shift left amount and shift right amount, respectively. This can be thought of in terms of the LSB and MSB of the field to be extracted. Then *csta* = 31 – MSB of the field and *cstb* = *csta* + LSB of the field. The shift left and shift right amounts may also be specified as the ten LSBs of the *src1* register with *cstb* being bits 0–4 and *csta* bits 5–9. In the example below, *csta* is 12 and *cstb* is 11 + 12 = 23. Only the ten LSBs are valid for the register version of the instruction. If any of the 22 MSBs are non-zero, the result is invalid.

ExecutionIf the constant form is used:if (cond)src2 ext csta, $cstb \rightarrow dst$ else nopIf the register form is used:

if (cond) src2 ext src1_{9..5}, src1_{4..0} \rightarrow dst else nop

Pipeline

Pipeline Stage	E1
Read	src1, src2
Written	dst
Unit in use	.S

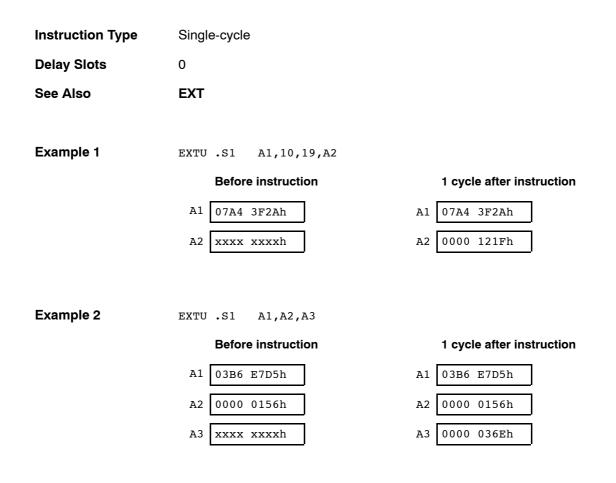
SPRU733

Instruction Set 3-111

Instruction Type	Single-cycle	
Delay Slots	0	
See Also	EXTU	
Example 1	EXT .S1 A1,10,19,A2	
	Before instruction	1 cycle after instruction
	A1 07A4 3F2Ah	A1 07A4 3F2Ah
	A2 xxxx xxxxh	A2 FFFF F21Fh
Example 2	EXT .S1 A1,A2,A3	
	Before instruction	1 cycle after instruction
	A1 03B6 E7D5h	A1 03B6 E7D5h
	A2 0000 0073h	A2 0000 0073h
	A3 xxxx xxxxh	A3 0000 03B6h

Extract and Zero-Exte	end a Bit Field		
or			
.unit = .S1 or .S2			
C62x, C64x, C67x, and	C67x+ CPU		
Constant width and offs	et form:		
23 22 18	17 13 12		8 7 6 5 4 3 2 1 0
src2	csta	cstb	0 0 0 0 1 0 <i>s p</i>
5	5	5	1 1
Opcode map field used	For operand t	ype	Unit
src2	uint ucst5		.S1, .S2
cstb	ucst5		
dst	uint		
	EXTU (.unit) $src2$, $csta$, or EXTU (.unit) $src2$, $src1$, .unit = .S1 or .S2 C62x, C64x, C67x, and Constant width and offs 23 22 18 src2 5 Opcode map field used src2 csta cstb	EXTU (.unit) $src2$, $src1$, dst .unit = .S1 or .S2 C62x, C64x, C67x, and C67x+ CPU Constant width and offset form: 23 22 18 17 13 12 src2 $csta$ $cstasrc2$ $csta$ $csta$ $csta$ $csta$ $csta$ $csta$ $cst5$ $csta$ $cst5$ $cstb$ $cst5$ $cstb$ $cst5$ $cstb$ cs $cstb$ $cstb$ cs $cstb$ $cstb$ cs $cstb$ $cstb$ cs $cstb$ cs $cstb$ cs $cstb$ cs $cstb$ cs cs cs cs cs cs cs cs	EXTU (.unit) $src2$, $csta$, $cstb$, dst or EXTU (.unit) $src2$, $src1$, dst .unit = .S1 or .S2C62x, C64x, C67x, and C67x+ CPUConstant width and offset form:232218171312555555Opcode map field usedFor operand typesrc2uint ucst5cstacstauint ucst5

Opcode

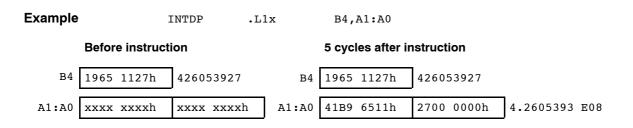

Register width and offset form:

31	29	28	27	23	22 18	17		13	12	11					6	5	4	3	2	1	0
	creg	z		dst	src2		src1		х	1	0	1	0	1	1	1	0	0	0	s	р
	3	1		5	5		5		1											1	1

Opcode map field used	For operand type	Unit
src2	xuint	.S1, .S2
src1	uint	
dst	uint	

Description	The field in <i>src2</i> , specified by <i>csta</i> and <i>cstb</i> , is extracted and zero extended to 32 bits. The extract is performed by a shift left followed by an unsigned shift right. <i>csta</i> and <i>cstb</i> are the amounts to shift left and shift right, respectively. This can be thought of in terms of the LSB and MSB of the field to be extracted. Then <i>csta</i> = 31 – MSB of the field and <i>cstb</i> = <i>csta</i> + LSB of the field. The shift left and shift right amounts may also be specified as the ten LSBs of the <i>src1</i> register with <i>cstb</i> being bits 0–4 and <i>csta</i> bits 5–9. In the example below, <i>csta</i> is 12 and <i>cstb</i> is 11 + 12 = 23. Only the ten LSBs are valid for the register version of the instruction. If any of the 22 MSBs are non-zero, the result is invalid.
<i>src2</i> 1)	csta cstb cstb
2)	1 0 1 1 0 1 1 0 1 x
↓ dst 3)	0 0
Execution	If the constant form is used:
	if (cond) src2 extu csta, cstb \rightarrow dst else nop
	If the register width and offset form is used:
	if (cond) src2 extu src1 ₉₅ , src1 ₄₀ \rightarrow dst else nop
Pipeline	Pipeline
	Stage E1
	Read src1, src2
	Written dst
	Unit in use .S

3-114 Instruction Set



IDLE	Multicycle NOP With No Termination Until Interrupt				
Syntax	IDLE				
	.unit = none				
Compatibility	C62x, C64x, C67x, and C67x+ CPU				
Opcode					
31	18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
R	eserved 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 <i>s p</i>				
	14 1 1				
Description	tion Performs an infinite multicycle NOP that terminates upon servicing an interrupt, or a branch occurs due to an IDLE instruction being in the delay slots of a branch.				

Instruction Type	NOP

Delay Slots 0

INTDP	Convert Signed Integer to Double-Precision Floating-Point Value					
Syntax	INTDP (.unit) <i>src2</i> , <i>dst</i>					
	.unit = .L1 or .L2					
Compatibility	C67x and C67x+ CPU					
Opcode						
- 31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0					
creg z	dst src2 0 0 0 0 0 x 0 1 1 1 0 0 1 1 0 s p					
3 1	5 5 1 1 1					
	Opcode map field used For operand type Unit					
	src2xsint.L1, .L2dstdp					
Description	scription The signed integer value in <i>src2</i> is converted to a double-precision value and placed in <i>dst</i> .					
Execution	if (cond)dp($src2$) $\rightarrow dst$ elsenop					
	You cannot set configuration bits with this instruction.					
Pipeline	Pipeline Stage E1 E2 E3 E4 E5					
	Read src2					
	Written dst_l dst_h					
	Unit in use .L					
	If <i>dst</i> is used as the source for the ADDDP , CMPEQDP , CMPLTDP , CMPGTDP , MPYDP , or SUBDP instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.					
Instruction Type	INTDP					
Delay Slots	4					
Functional Unit Latency	1					
See Also	DPINT, INTDPU, INTSP, INTSPU					
SPRU733	Instruction Set 3-117					

INTDPU	Convert Unsigned Integer to Double-Precision Floating-Point Value					
Syntax	INTDPU (.unit) <i>src2</i> , <i>dst</i>					
	.unit = .L1 or .L2					
Compatibility	C67x and C67x+ CPU					
Opcode						
• 31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0					
creg z a	st src2 0 0 0 0 0 x 0 1 1 1 0 1 1 1 0 s p					
3 1	5 5 1 1 1					
	Opcode map field used For operand type Unit					
	<i>src2</i> xuint .L1, .L2					
	dst dp					
Description	The unsigned integer value in <i>src2</i> is converted to a double-precision value and placed in <i>dst</i> .					
Execution	if (cond) $dp(src2) \rightarrow dst$ else nop					
	You cannot set configuration bits with this instruction.					
Pipeline	Pipeline Stage E1 E2 E3 E4 E5					
	Read src2					
	Written dst_l dst_h					
	Unit in use .L					
	If <i>dst</i> is used as the source for the ADDDP , CMPEQDP , CMPLTDP , CMPGTDP , MPYDP , or SUBDP instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.					
Instruction Type	INTDP					
Delay Slots						
Delay Olots	4					
Functional Unit Latency	4 1					
Functional Unit						

Example	:	INTDPU	.L1		A4,A	1:A0		
Before instruction			5 cycles after instruction					
A4	FFFF FFDEh	429496726	2	A4	FFFF	FFDEh	4294967262	
A1:A0	xxxx xxxxh	xxxx xxxx	h Ai	1:A0	41EF	FFFFh	FBC0 0000h	4.2949673 E09

INTSP	Convert Signed Integer to Single-Precision Floating-Point Value
Syntax	INTSP (.unit) <i>src2</i> , <i>dst</i>
-	.unit = .L1 or .L2
Compatibility	C67x and C67x+ CPU
Opcode	
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0
creg z d	st src2 0 0 0 0 0 x 1 0 0 1 0 1 0 1 0 s p
3 1 5	5 5 1 1 1
	Opcode map field used For operand type Unit
	src2xsint.L1, .L2dstsp
Description	The signed integer value in <i>src2</i> is converted to single-precision value and placed in <i>dst</i> .
Execution	if (cond) $sp(src2) \rightarrow dst$ else nop
	The only configuration bit that can be set is the INEX bit and only if the mantissa is rounded.
Pipeline	Pipeline Stage E1 E2 E3 E4
	Read src2
	Readsrc2Writtendst
Instruction Type	Written dst
Instruction Type Delay Slots	WrittendstUnit in use.L
	WrittendstUnit in use.L4-cycle
Delay Slots Functional Unit	WrittendstUnit in use.L4-cycle3
Delay Slots Functional Unit Latency	WrittendstUnit in use.L4-cycle
Delay Slots Functional Unit Latency See Also	Written dst Unit in use .L 4-cycle 3 1 INTDP, INTDPU, INTSPU
Delay Slots Functional Unit Latency See Also	Written dst Unit in use .L 4-cycle 3 1 INTSP .III A1,A2
Delay Slots Functional Unit Latency See Also	Written dst Unit in use .L 4-cycle 3 1 INTOP, INTOPU, INT

SPRU733

INTSPU	Convert Unsigned Integer to Single-Precision Floating-Point Value
Syntax	INTSPU (.unit) <i>src2</i> , <i>dst</i>
	.unit = .L1 or .L2
Compatibility	C67x and C67x+ CPU
Opcode	
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0
	dst src2 0 0 0 0 0 x 1 0 0 1 0 0 1 1 1 0 s p
3 1	5 5 1 1 1
	Opcode map field used For operand type Unit
	src2xuint.L1, .L2dstsp
Description	The unsigned integer value in <i>src2</i> is converted to single-precision value and placed in <i>dst</i> .
Execution	if (cond) $sp(src2) \rightarrow dst$ elsenop
	The only configuration bit that can be set is the INEX bit and only if the mantissa is rounded.
Pipeline	Pipeline Stage E1 E2 E3 E4
	Read src2
	Written dst
	Unit in use .L
Instruction Type	4-cycle
Delay Slots	3
Functional Unit Latency	1
See Also	INTDP, INTDPU, INTSP
Example	INTSPU .L1X B1,A2
	Before instruction 4 cycles after instruction
	B1 FFFF FFDEh 4294967262 B1 C020 0000h 4294967262
	A2 XXXX XXXXh A2 4F80 0000h 4.2949673 E09

INTSPU Convert Unsigned Integer to Single-Precision Floating-Point Value

3-122 Instruction Set

LDB(U)	Load Byte From Me Register Offset	mory With a 5-I	Bit Unsigned	l Cons	stant O	ffset or			
Syntax	Register Offset		Unsigned Constant Offset						
	or			or					
	.unit = .D1 or .D2								
Compatibility	C62x, C64x, C67x, an	d C67x+ CPU							
Opcode									
31 29 28 27	23 22 18	17 13	12 9	8 7	6 4	3 2 1 0			
creg z ds	t baseR	offsetR/ucst5	mode	0 y	ор	0 1 <i>s p</i>			
3 1 5	5	5	4	1	3	1 1			

Description Loads a byte from memory to a general-purpose register (*dst*). Table 3–17 summarizes the data types supported by loads. Table 3–11 (page 3-33) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*). If an offset is not given, the assembler assigns an offset of zero.

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is the address to be accessed in memory.

Table 3–17.	Data Types Supported by LDB(U) Instruction	

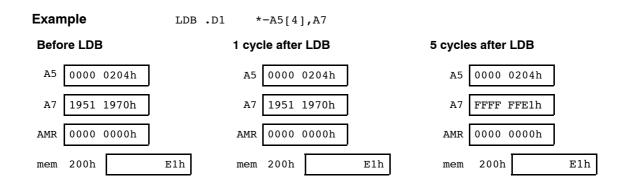
Mnemonic	<i>op</i> Field Load Data Type		Size	Left Shift of Offset		
LDB	0 1 0	Load byte	8	0 bits		
LDBU	0 0 1	Load byte unsigned	8	0 bits		

SPRU733

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **LDB(U)**, the values are loaded into the 8 LSBs of *dst*. For **LDB**, the upper 24 bits of *dst* values are sign-extended; for **LDBU**, the upper 24 bits of *dst* are zero-filled. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no bracketed register or constant is specified. Loads that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.


Execution	if (cond)	mem \rightarrow dst
	else nop	

Pipeline Stage	E1	E2	E3	E4	E5
Read	baseR offsetR				
Written	baseR				dst
Unit in use	.D				

Instruction Type	Load
Delay Slots	4 for loaded value 0 for address modification from pre/post increment/decrement For more information on delay slots for a load, see Chapter 4.
See Also	LDH, LDW

3-124 Instruction Set

Pipeline

SPRU733

LDB(U)	Load Byte From Memory With a 15-Bit Unsigned Constant Offset							
Syntax	LDB (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i> or LDBU (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i>							
	.unit = .D2							
Compatibility	C62x, C64x, C67x, and C67x+ CPU							
Opcode	Opcode							
31 29 28 27	23 22 18 17 13 12 9 8 7 6 4 3 2 1 0							
creg z d	ucst15 y op 1 1 s p							
3 1 5	15 1 3 1 1							

Description

Loads a byte from memory to a general-purpose register (*dst*). Table 3–18 summarizes the data types supported by loads. The memory address is formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (*ucst15*). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction operates only on the .D2 unit.

The offset, *ucst15*, is scaled by a left shift of 0 bits. After scaling, *ucst15* is added to *baseR*. Subtraction is not supported. The result of the calculation is the address sent to memory. The addressing arithmetic is always performed in linear mode.

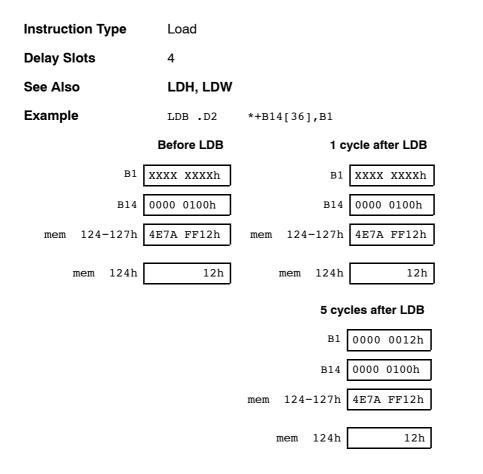
For **LDB(U)**, the values are loaded into the 8 LSBs of *dst*. For **LDB**, the upper 24 bits of *dst* values are sign-extended; for **LDBU**, the upper 24 bits of *dst* are zero-filled. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file.

Square brackets, [], indicate that the *ucst*15 offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Table 3–18. Data Types Supported by LDB(U) Instruction (15-Bit Offset)

Mnemonic	<i>op</i> Field	Load Data Type	Slze	Left Shift of Offset
LDB	010	Load byte	8	0 bits
LDBU	001	Load byte unsigned	8	0 bits

3-126 Instruction Set


Execution

if (cond) mem $\rightarrow dst$ else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline	Pipeline Stage				E4	E5
	Read	B14 / B15				
	Written					dst
	Unit in use	.D2				

Instruction Set 3-127

5

Load Doubleword From Memory V or Register Offset							/ith an Unsig	gne	ed i	Con	stai	nt (Off	set	
Syntax				Register Offset			Unsigned Constant Offset								
				LDDW (.unit) *+baseR[ucst5], dst											
				.unit =	.D1 or .D2										
Compatibility				C67x	and C67x+ CPU										
	Opcode														
	31 29	28	27	23	22 18	17 13	12 9	8	7	6	4	3	2	1	0
	creg	z	ds	t	baseR	offsetR/ucst5	mode	1	y	1 1	0	0	1	s	р

5

Description

3

1

5

Loads a doubleword from memory into a register pair *dst_o:dst_e*. Table 3–11 (page 3-33) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

4

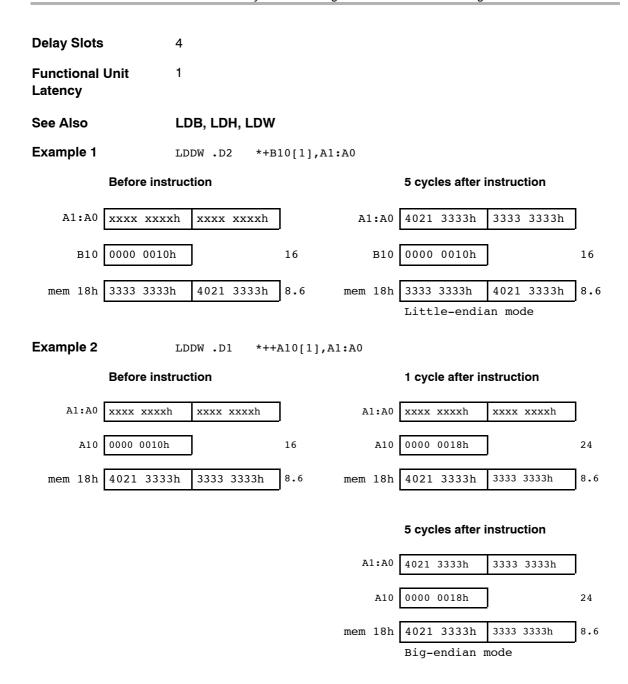
1

1 1

Both *offsetR* and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and the register file used: y = 0 selects the .D1 unit and the *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file. The *s* bit determines the register file into which the *dst* is loaded: s = 0 indicates that *dst* is in the A register file, and s = 1 indicates that *dst* is in the B register file. The *r* bit has a value of 1 for the **LDDW** instruction. The *dst* field must always be an even value because the **LDDW** instruction loads register pairs. Therefore, bit 23 is always zero.

The *offsetR/ucst5* is scaled by a left-shift of 3 to correctly represent doublewords. After scaling, *offsetR/ucst5* is added to or subtracted from *baseR*. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the shifted value of *baseR* before the addition or subtraction is the address to be accessed in memory.

3-128 Instruction Set


Increments and decrements default to 1 and offsets default to 0 when no bracketed register, bracketed constant, or constant enclosed in parentheses is specified. Square brackets, [], indicate that *ucst5* is left shifted by 3. Parentheses, (), indicate that *ucst5* is not left shifted. In other words, parentheses indicate a byte offset rather than a doubleword offset. You must type either brackets or parenthesis around the specified offset if you use the optional offset parameter.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

The destination register pair must consist of a consecutive even and odd register pair from the same register file. The instruction can be used to load a double-precision floating-point value (64 bits), a pair of single-precision floating-point words (32 bits), or a pair of 32-bit integers. The least-significant 32 bits are loaded into the even-numbered register and the most-significant 32 bits (containing the sign bit and exponent) are loaded into the next register (which is always odd-numbered register). The register pair syntax places the odd register first, followed by a colon, then the even register (that is, A1:A0, B1:B0, A3:A2, B3:B2, etc.).

All 64 bits of the double-precision floating point value are stored in big- or littleendian byte order, depending on the mode selected. When the **LDDW** instruction is used to load two 32-bit single-precision floating-point values or two 32-bit integer values, the order is dependent on the endian mode used. In littleendian mode, the first 32-bit word in memory is loaded into the even register. In big-endian mode, the first 32-bit word in memory is loaded into the odd register. Regardless of the endian mode, the doubleword address must be on a doubleword boundary (the three LSBs are zero).

Execution	if (cond) ı else nop	mem $ ightarrow dst$				
Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	baseR, offsetR				
	Written	baseR				dst
	Unit in use	.D				
Instruction Type	Load					
SPRU733					Instruction Set	3-129

LDDW Load Doubleword From Memory With an Unsigned Constant Offset or Register Offset

3-130 Instruction Set

LDH(U)	Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset						
Syntax	Register Offset		Unsigned Co	onsta	int Offs	set	
	LDH (.unit) *+ <i>baseR[</i> or LDHU (.unit) *+ <i>baseF</i>	LDH (.unit) *+ or LDHU (.unit)					
	.unit = .D1 or .D2						
Compatibility	C62x, C64x, C67x, and C67x+ CPU						
Opcode							
31 29 28 27	23 22 18	17 13	12 9	87	6 4	32	1 0
creg z d	st baseR	offsetR/ucst5	mode	0 <i>y</i>	ор	0 1	s p
3 1	5	5	4	1	3		1 1

Description Loads a halfword from memory to a general-purpose register (*dst*). Table 3–19 summarizes the data types supported by halfword loads. Table 3–11 (page 3-33) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*). If an offset is not given, the assembler assigns an offset of zero.

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is the address to be accessed in memory.

Table 3–19.	Data Types Supported by LDH(U) Instruction	on
-------------	--	----

Mnemonic	<i>op</i> Field	Load Data Type	Size	Left Shift of Offset
LDH	100	Load halfword	16	1 bit
LDHU	0 0 0	Load halfword unsigned	16	1 bit

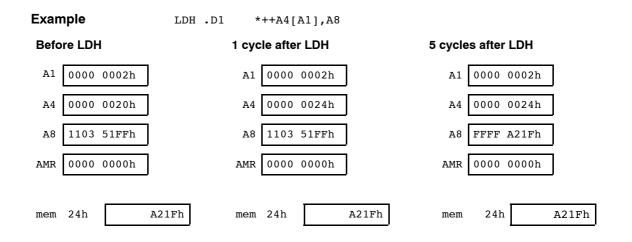
SPRU733

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **LDH(U)**, the values are loaded into the 16 LSBs of *dst*. For **LDH**, the upper 16 bits of *dst* are sign-extended; for **LDHU**, the upper 16 bits of *dst* are zero-filled. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no bracketed register or constant is specified. Loads that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 1. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.


Execution if (cond) mem $\rightarrow dst$ else nop

3-132

Instruction Set

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	baseR offsetR				
	Written	baseR				dst
	Unit in use	.D				

Instruction Type	Load
Delay Slots	4 for loaded value 0 for address modification from pre/post increment/decrement For more information on delay slots for a load, see Chapter 4.
See Also	LDB, LDW

SPRU733

LDH(U)	Load Halfword From Memory With a 15-Bit Unsigned Constant Offset				
Syntax	LDH (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i> or LDHU (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i>				
	.unit = .D2				
Compatibility	C62x, C64x, C67x, and C67x+ CPU				
Opcode					
31 29 28 27	23 22 18 17 13 12 9 8 7 6 4 3 2 1 0				
creg z de	st ucst15 y op 1 1 s p				

Description Loads a halfword from memory to a general-purpose register (*dst*). Table 3–20 summarizes the data types supported by loads. The memory address is formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (*ucst15*). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction operates only on the .D2 unit.

15

The offset, *ucst15*, is scaled by a left shift of 1 bit. After scaling, *ucst15* is added to *baseR*. Subtraction is not supported. The result of the calculation is the address sent to memory. The addressing arithmetic is always performed in linear mode.

1

з

1 1

For **LDH(U)**, the values are loaded into the 16 LSBs of *dst*. For **LDH**, the upper 16 bits of *dst* are sign-extended; for **LDHU**, the upper 16 bits of *dst* are zero-filled. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file.

Square brackets, [], indicate that the *ucst*15 offset is left-shifted by 1. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

3-134 Instruction Set

3

1

5

Table 3–20. Data Types Supported by LDH(U) Instruction (15-Bit Offset)

Mnemonic	<i>op</i> Field	Load Data Type	Size	Left Shift of Offset
LDH	1 0 0	Load halfword	16	1 bit
LDHU	0 0 0	Load halfword unsigned	16	1 bit

Execution

if (cond) mem $\rightarrow dst$ else nop

Note:

г

This instruction executes only on the B side (.D2).

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	B14 / B15				
	Written					dst
	Unit in use	.D2				

Instruction Type	Load
Delay Slots	4
See Also	LDB, LDW

LDW	Load Word From Mem Register Offset	nory With a 5-Bit Unsigne	ed Constant Offset or		
Syntax	Register Offset	Unsigned C	Constant Offset		
	LDW (.unit) *+ <i>baseR[offsetR]</i> , <i>dst</i> LDW (.unit) *+ <i>baseR[ucst5]</i> , <i>dst</i>				
	.unit = .D1 or .D2				
Compatibility	C62x, C64x, C67x, and (C67x+ CPU			
Opcode					
31 29 28 27	23 22 18 17	7 13 12 9	8 7 6 4 3 2 1 0		
creg z ds	t baseR	offsetR/ucst5 mode	0 y 1 1 0 0 1 s p		
3 1 5	5	5 4	1 1 1		

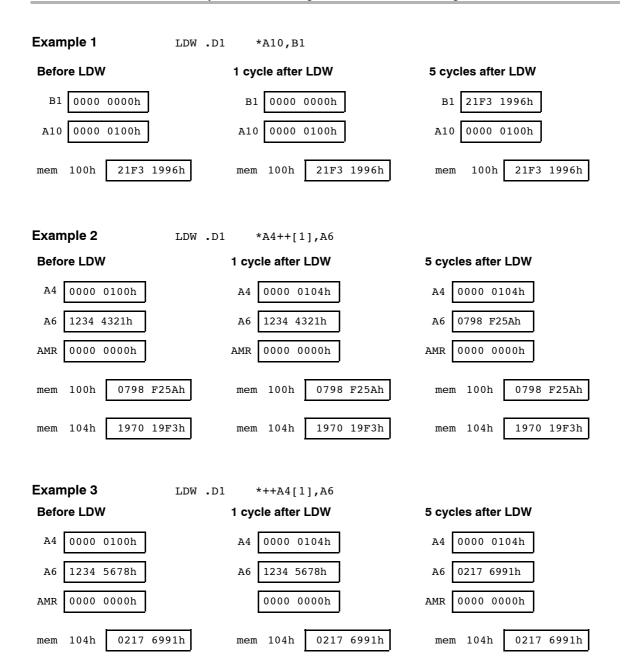
Description Loads a word from memory to a general-purpose register (*dst*). Table 3–11 (page 3-33) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*). If an offset is not given, the assembler assigns an offset of zero.

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **LDW**, the entire 32 bits fills *dst*. *dst* can be in either register file, regardless of the .D unit or *baseR* or *offsetR* used. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file. The *r* bit should be cleared to 0.


Increments and decrements default to 1 and offsets default to 0 when no bracketed register or constant is specified. Loads that do no modification to the baseR can use the syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 2. Parentheses, (), can be used to set a nonscaled, constant offset. For example, LDW (.unit) *+baseR (12) dst represents an offset of 12 bytes; whereas, LDW (.unit) *+baseR [12] dst represents an offset of 12 words, or 48 bytes. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution	if (cond)	$\text{mem} \ \rightarrow \ \textit{dst}$
	else nop	

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	baseR offsetR				
	Written	baseR				dst
	Unit in use	.D				

Instruction Type	Load
Delay Slots	4 for loaded value 0 for address modification from pre/post increment/decrement For more information on delay slots for a load, see Chapter 4.
See Also	LDB, LDDW, LDH

3-138 Instruction Set

LDW	Load Word From Memory With a 15-Bit Unsigned Constant Offset
Syntax	LDW (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i>
	.unit = .D2
Compatibility	C62x, C64x, C67x, and C67x+ CPU
Opcode	
31 29 28 27	23 22 18 17 13 12 9 8 7 6 4 3 2 1 0
creg z d	st ucst15 y 1 1 0 1 1 s p

Description Load a word from memory to a general-purpose register (*dst*). The memory address is formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (*ucst15*). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction operates only on the .D2 unit.

15

The offset, *ucst15*, is scaled by a left shift of 2 bits. After scaling, *ucst15* is added to *baseR*. Subtraction is not supported. The result of the calculation is the address sent to memory. The addressing arithmetic is always performed in linear mode.

For **LDW**, the entire 32 bits fills *dst*. *dst* can be in either register file. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file.

Square brackets, [], indicate that the *ucst*15 offset is left-shifted by 2. Parentheses, (), can be used to set a nonscaled, constant offset. For example, **LDW** (.unit) *+B14/B15(60), *dst* represents an offset of 60 bytes; whereas, **LDW** (.unit) *+B14/B15[60], *dst* represents an offset of 60 words, or 240 bytes. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution

3

1

if (cond) mem $\rightarrow dst$ else nop

Note:

5

This instruction executes only on the B side (.D2).

SPRU733

Instruction Set 3-139

1 1

1

_						
Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
			LL	LJ	L4	
	Read	B14 / B15				
	Written					dst
	Unit in use	.D2				
Instruction Type	Load					
Delay Slots	4					
See Also	LDB, LDH					

LMBD	Leftn	nost Bit Detectio	on			
Syntax		D (.unit) <i>src1</i> , <i>src.</i> = .L1 or .L2	2, dst			
	.um	= .LT 01 .L2				
Compatibility	C62x	, C64x, C67x, an	d C67x+ CPU			
Opcode						
31 29 28 27	23	22 18	17 13	12 11	5	4 3 2 1 0
creg z	dst	src2	src1/cst5	х	ор	1 1 0 <i>s p</i>
3 1	5	5	5	1	7	1 1
	Орсе	ode map field use	d For operan	d type	Unit	Opfield
	src1 src2		uint xuint		.L1, .L2	110 1011

src1 src2 dst	cst5 xuint uint	.L1, .L2	110 1010

uint

DescriptionThe LSB of the *src1* operand determines whether to search for a leftmost 1 or 0
in *src2*. The number of bits to the left of the first 1 or 0 when searching for a 1
or 0, respectively, is placed in *dst*.

The following diagram illustrates the operation of **LMBD** for several cases.

When searching for 0 in *src2*, LMBD returns 0:

dst

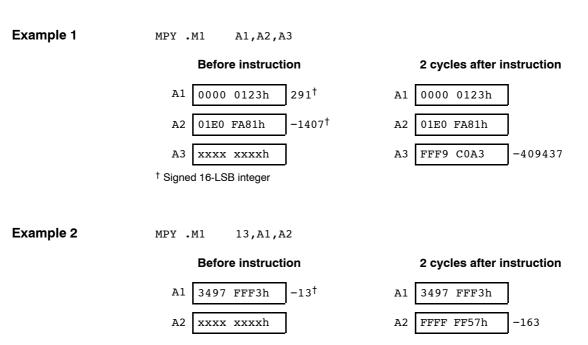
[0	1	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

When searching for 1 in *src2*, **LMBD** returns 4:

0	0	0	0	1	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	х	x
•	· ·	1 .		••	~	1^	~	~	~	~	I^	~	1^	~	I^	~	~	~	~	~	~	~	~	~	~	1^	~	· ^	~	~	~

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

When searching for 0 in *src2*, LMBD returns 32:


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPRU733

Execution	if (cond) else nop	{ if (<i>src1</i> ₀ == 0) if (<i>src1</i> ₀ == 1) }		
Pipeline	Pipeline Stage	E1		
	Read	src1, src2		
	Written	dst		
	Unit in us	e.L		
Instruction Type	Single-cyc	le		
Delay Slots	0			
Example	LMBD .L1	A1,A2,A3		
	Befo	re instruction		1 cycle after instruction
	A1 0000	0 0001h	А	1 0000 0001h
	A2 009E	3A81h	А	2 009E 3A81h
	A3 XXXX	x xxxxh	A	3 0000 0008h

3-142 Instruction Set

MPY	Multiply Signed 16 LSE	3 × Signed 16 LSB	
Syntax	MPY (.unit) <i>src1</i> , <i>src2</i> , <i>ds</i>	t	
	.unit = .M1 or .M2		
Compatibility	C62x, C64x, C67x, and C	C67x+ CPU	
Opcode			
-	00 00 10 17	10 10 11	
31 29 28 27 <i>creg z</i>	23 22 18 17 dst src2	13 12 11 src1 x op	7 6 5 4 3 2 1 0 0 0 0 0 0 0 s p
3 1	5 5	5 1 5	1 1
	Opcode map field used	For operand type	Unit Opfield
	src1 src2 dst	slsb16 xslsb16 sint	.M1, .M2 11001
	src1 src2 dst	scst5 xslsb16 sint	.M1, .M2 11000
Description Execution	The source operands are		The result is placed in <i>dst</i> .
Pipeline	Pipeline		
	Stage E1	E2	
	Read src1, src2	<i></i>	
	Written Unit in use .M	dst	
	Unit in use .M		
Instruction Type	Multiply (16 $ imes$ 16)		
Delay Slots	1		
See Also	MPYU, MPYSU, MPYUS	, SMPY	
SPRU733			Instruction Set 3-143

[†] Signed 16-LSB integer

Multiply Signed 16 LSB x Signed 16 LSB

MPY

Syntax	MPYDP (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>	
Cymax		
	.unit = .M1 or .M2	
Compatibility	C67x and C67x+ CPU	
Opcode		
31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2	2 1 0
creg z		0 s p
3 1	5 5 5 1	1 1
	Opcode map field used For operand type Unit	
	src1 dp .M1, .M2	2
	src2 dp dst dp	
Description Execution	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed if (cond) $src1 \times src2 \rightarrow dst$	d in <i>dst</i>
	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed if (cond) $src1 \times src2 \rightarrow dst$ else nop	d in <i>dst</i> .
	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed if (cond) $src1 \times src2 \rightarrow dst$ else nop Notes:	
	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed if (cond) $src1 \times src2 \rightarrow dst$ else nop	either
	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed if (cond) <i>src1</i> × <i>src2</i> → <i>dst</i> else nop Notes: 1) If one source is SNaN or QNaN, the result is a signed NaN_out. If source is SNaN, the INVAL bit is set also. The sign of NaN_out	either is the (other
	 The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed if (cond) <i>src1 × src2 → dst</i> else nop Notes: 1) If one source is SNaN or QNaN, the result is a signed NaN_out. If source is SNaN, the INVAL bit is set also. The sign of NaN_out exclusive-OR of the input signs. 2) Signed infinity multiplied by signed infinity or a normalized number than signed 0) returns signed infinity. Signed infinity multiplied 	either is the (other ed by
	 The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed if (cond) <i>src1 × src2 → dst</i> else nop Notes: If one source is SNaN or QNaN, the result is a signed NaN_out. If source is SNaN, the INVAL bit is set also. The sign of NaN_out exclusive-OR of the input signs. Signed infinity multiplied by signed infinity or a normalized number than signed 0) returns signed infinity. Signed infinity multipli signed 0 returns a signed NaN_out and sets the INVAL bit. If one or both sources are signed 0, the result is signed 0 unless the source is NaN or signed infinity, in which case the result is set. 	either is the (other ed by e other signed is set. signed

Pipeline Stage	E1	E2	E3	E4	E5	E6	E7	E8	E9	E1
Read	_	_	src1_h src2_l	_						
Written									dst_l	dst
Unit in use	.М	.М	.M	.M						

If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

Instruction Type	MPYDP
Delay Slots	9
Functional Unit	4
Latency	

See Also MPY, MPYSP

Example

Pipeline

MPYDP .M1 A1:A0,A3:A2,A5:A4

Before instruction

10 cycles after instruction

A1:A0	4021 3333h	3333 3333h	8.6	A1:A0	4021 3333h	4021 3333h	8.6
A3:A2	C004 0000h	0000 0000	-2.5	A3:A2	C004 0000h	0000 0000h	-2.5
A5:A4	XXXX XXXXh	XXXX XXXXh		A5:A4	C035 8000h	0000 0000h	-21.5

МРҮН	Multiply Signed	16 MSB × Signe	d 16 MSB				
Syntax	MPYH (.unit) src1	IPYH (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>					
	.unit = .M1 or .M2	2					
Compatibility	C62x, C64x, C67	x, and C67x+ CPL	J				
Opcode							
31 29 28 27 Creg z 0	23 22	18 17 src1	13 12 11 X 0 0 0	7 6 5 4 3 2 1 0 0 1 0 0 0 0 0 <i>s p</i>			
5	5 5	5	1	1 1			
	Opcode map field	used For o	perand type	Unit			
	src1	smsb		.M1, .M2			
	src2 dst	xsms sint	b16				
Description		is multiplied by the Inds are signed by		ne result is placed in <i>dst</i> .			
Execution	if (cond) msb1 else nop	6(<i>src1</i>) × msb16(s	src2) \rightarrow dst				
Pipeline	Pipeline Stage	E1 E2					
	Read sro	c1, src2					
	Written	dst					
	Unit in use	.M					
Instruction Type	Multiply (16 $ imes$ 16)						
Delay Clata							
Delay Slots	1						

Example MPYH .M1 A1,A2,A3 2 cycles after instruction **Before instruction** 0023 0000h 35† A1 0023 0000h A1 FFA7 1234h -89† A2 FFA7 1234h A2 A3 FFFF F3D5h A3 xxxx xxxxh -3115 [†] Signed 16-MSB integer

3-148 Instruction Set

MPYHL	Multiply Signed 16 MSB × Signed 16 LSB							
Syntax	MPYHL (.unit) src1, src2, dst							
	.unit = .M1 or .M2							
Compatibility	C62x, C64x, C67x, and C67x+ CPU							
Opcode								
31 29 28 27	23 22 18 17	13 12 11	7 6 5 4 3 2 1 0					
<u> </u>	st src2	src1 x 0 1 0 (0 1 0 0 0 0 s p 1 1					
5 1 .		5 1						
	Opcode map field used	For operand type	Unit					
	src1	smsb16	.M1, .M2					
	src2 dst	xslsb16 sint						
Description	The <i>src1</i> operand is multi _l The source operands are	blied by the <i>src2</i> operand. Th signed by default.	ne result is placed in <i>dst</i> .					
Execution	if (cond) msb16(<i>src1</i>) else nop	\times lsb16(<i>src2</i>) \rightarrow <i>dst</i>						
Pipeline	Pipeline Stage E1	E2						
	Read src1, src2							
	Written	dst						
	Unit in use .M							
Instruction Type	Multiply (16 $ imes$ 16)							
Delay Slots	1							
See Also	MPYHLU, MPYHSLU, M	PYHULS, SMPYHL						

Example

МРҮН	L .M1 A1,A2,A3		
	Before instruction		2
A1	008A 003Eh 138 [†]	A1	0
A2	21FF 00A7h 167 [‡]	A2	2
А3	xxxx xxxxh	A3	0

[†] Signed 16-MSB integer [‡] Signed 16-LSB integer 2 cycles after instruction

3-150 Instruction Set

MPYHLU	Multiply Unsigned 16 MSB × Unsigned 16 LSB
Syntax	MPYHLU (.unit) src1, src2, dst
	.unit = .M1 or .M2
Compatibility	C62x, C64x, C67x, and C67x+ CPU

Opcode

31	29	28	27	23	22	18	17	13	12	11				7	6	5	4	3	2	1	0
	creg	z		dst	src2		src1		х	0	1	1	1	1	0	0	0	0	0	s	р
	3	1		5	5		5		1											1	1

Opcode map field used	For operand type	Unit
src1	umsb16	.M1, .M2
src2	xulsb16	
dst	uint	

Description	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is place The source operands are unsigned by default.						
Execution	if (cond) else nop	msb16(<i>src1</i>) × lsb16(<i>src2</i>) \rightarrow <i>dst</i>					

Pipeline	Pipeline Stage	E1	E2
	Read	src1, src2	
	Written		dst
	Unit in use	.М	

See Also	MPYHL, MPYHSLU, MPYHULS
Delay Slots	1
Instruction Type	Multiply (16 $ imes$ 16)

SPRU733

MPYHSLU Multiply Signed 16 MSB x Unsigned 16 LSB

MPYHSLU	Multiply Signed 16 MSB × Unsigned 16 LSB								
Syntax	MPYHSLU (.unit) src1, src2, dst								
	.unit = .M1 or .M2								
Compatibility	C62x, C64x, C67x, and C67x+ CPU								

Opcode

31 29 28 27	23 22 18	17 13 12 11	7 6 5 4 3 2 1 0
creg z	dst src2	<i>src1</i> x 0 1 0	1 1 0 0 0 0 0 <i>s p</i>
3 1	5 5	5 1	1 1
	Opcode map field used	For operand type	Unit
	src1	smsb16	.M1, .M2
	src2	xulsb16	
	dst	sint	
Description	is placed in <i>dst</i> . The S i when both signed and	at is multiplied by the unsigned is needed in the mnemonic to unsigned operands are used.	specify a signed operand
Execution	if (cond) msb16(<i>src</i> else nop	$(1) \times lsb16(src2) \rightarrow dst$	
Pipeline	Pipeline		
	Stage E1	E2	
	Read src1, src	2	
	Written	dst	
	Unit in use .M		
Instruction Type	Multiply (16 $ imes$ 16)		
Delay Slots	1		
See Also	MPYHL, MPYHLU, MP	YHULS	
3-152 Instruction	n Set		SPRU733

MPYHS	U	Multiply Signed 16 MSB × Unsigned 16 MSB										
Syntax		MPYHSU (.unit) src1, src2, dst										
		.unit = .M1 or .M2										
Compatil	oility	C62x, C64x, C67x, and C67x+ CPU										
Opcode												
31 29	28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1 0										
creg	Z	dst src2 src1 x 0 0 0 1 1 0 0 0 0 s p										
3	1	5 5 5 1 1 1										
		Opcode map field used For operand type Unit										
		<i>src1</i> smsb16 .M1, .M2 <i>src2</i> xumsb16										
		dst sint										
Descripti		The signed operand <i>src1</i> is multiplied by the unsigned operand <i>src2</i> . The result is placed in <i>dst</i> . The S is needed in the mnemonic to specify a signed operand when both signed and unsigned operands are used.										
Executio	n	if (cond) msb16(<i>src1</i>) × msb16(<i>src2</i>) \rightarrow <i>dst</i> else nop										
Pipeline		Pipeline Stage E1 E2										
		Read src1, src2										
		Written dst										
		Unit in use .M										
Instructio	on Type	Multiply (16 \times 16)										
Delay Sic		1										
See Also		MPYH, MPYHU, MPYHUS										
Example		MPYHSU .M1 A1,A2,A3										
		Before instruction 2 cycles after instruction										
		A1 0023 0000h 35 [†] A1 0023 0000h										
		A2 FFA7 FFFFh 65447 [‡] A2 FFA7 FFFFh										
		A3 xxxx xxxh A3 0022 F3D5h 2290645										
		[†] Signed 16-MSB integer [‡] Unsigned 16-MSB integer										

SPRU733

MPYHU	Multiply Unsigned 16 MSB × Unsigned 16 MSB											
Syntax	MPYHU (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>											
	.unit = .M1 or .M2											
Compatibility	C62x, C64x, C67x, and C67x+ CPU											
Opcode												
31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1 0											
Ŭ Ŭ	dst src2 src1 x 0 0 1 1 1 0 0 0 0 s p											
3 1	5 5 5 1 1 1											
	Opcode map field used For operand type Unit											
	<i>src1</i> umsb16 .M1, .M2 <i>src2</i> xumsb16											
	dst uint											
Description	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed in <i>dst</i> . The source operands are unsigned by default.											
Execution	if (cond) msb16(<i>src1</i>) × msb16(<i>src2</i>) \rightarrow <i>dst</i> else nop											
Pipeline	Pipeline Stage E1 E2											
	Read src1, src2											
	Written dst											
	Unit in use .M											
Instruction Type	Multiply (16×16)											
Delay Slots	1											
See Also	MPYH, MPYHSU, MPYHUS											
Example	MPYHU .M1 A1,A2,A3											
	Before instruction 2 cycles after instruction											
	A1 0023 0000h 35 [‡] A1 0023 0000h											
	A2 FFA7 1234h 65447 [‡] A2 FFA7 1234h											
	A3 xxxx xxxxh A3 0022 F3D5h 2290645 [§]											
	[‡] Unsigned 16-MSB integer [§] Unsigned 32-bit integer											

MPYHULS	Multiply Unsigned 16 MSB × Signed 16 LSB									
Syntax	MPYHULS (.unit) src1, src2, dst									
	.unit = .M1 or .M2									
Compatibility	C62x, C64x, C67x, and C67x+ CPU									

Opcode

- 6																							
31	29	28	27		23	22		18	17		13	12	11				7	6	54	3	2	1	0
	creg	z		dst			src2	2		src1		х	0	1	1	0	1	0	0 0	0) 0	s	р
	3	1		5			5			5		1										1	1
					Орсо	de m	ap fie	ld used	ł	F	or oper	and	l typ	ре					Ur	nit			
				src1 umsb16 src2 xslsb16							.M1, .M2												
					dst					si	nt												
De	scripti	on			is plac	ed ir	n <i>dst</i> .	perand The S ed and	is ne	eded	in the	nne	emo	onic	to s	•							
Ex	ecutio	า			if (con else n	,	msl	b16(<i>sr</i> é	c1) >	sb16	ð(src2)	\rightarrow	ds	st									
Pip	oeline				Pipel Stage			E1			2	_											

Stage	E1	E2
Read	src1, src2	
Written		dst
Unit in use	.М	

See Also	MPYHL, MPYHLU, MPYHSLU
Delay Slots	1
Instruction Type	Multiply (16 $ imes$ 16)

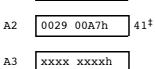
SPRU733

MPYHUS	S Multiply Unsigned 16 MSB × Signed 16 MSB													
Syntax	MPYHUS (.unit) src1, src2, dst													
	.unit = .M1 or .M2													
Compatibility	C62x, C64x, C67x, and C67x+ CPU													
Opcode														
31 29 28 27	23 22		17 13	12	11			7	-	5 4 3 2 1 0				
creg z ds 3 1 5	t	5 src2	5 src1	1	0	0	1 () 1	0	0 0 0 0 <i>s p</i>				
5 1 5		5	5	1						1 1				
	Opcode m	ap field used	For oper	and	l typ	ю				Unit				
	src1 src2 dst		umsb16 xsmsb16 sint	6						.M1, .M2				
Description	is placed in	n <i>dst.</i> The S i		mne	emo	nic	to s			d <i>src2</i> . The result a signed operand				
Execution	if (cond) else nop	msb16(<i>src</i>	1) × msb16(<i>src2</i>	2) -	→ c	lst								
Pipeline	Pipeline Stage	E1	E2	_										
	Read	src1, src	2											
	Written		dst											
	Unit in use	e.M		_										
Instruction Type	Multiply (10	6 × 16)												
Delay Slots	1													
See Also	MPYH, MPYHU, MPYHSU													

Curtox	MDVI (unit		roQ dat	L						
Syntax	MPYI (.unit	-	rc2, asi							
	.unit = .M1	or .M2								
Compatibility	C67x and C	C67x+ C	PU							
Opcode										
31 29 28 27	23 22		18 17		13 12	2 11		765	4 3	2 1 0
creg z	dst	src2		src1	×		ор	0 0	00	0 s p
3 1	5	5		5	1		5			1 1
	Opcode ma	ap field u	used	Fo	r operar	nd type)	Unit	0	ofield
	src1			sin				.M1, .M2	0	0100
	src2 dst			xsi sin						
	src1			cst	5			.M1, .M2	0	0110
	src2 dst			xsi sin						
Description	The <i>src1</i> or result are p			lied by	the <i>src</i>	2 oper	and. 1	The lowe	er 32 bi	ts of th
-		laced in Isb32(s	dst.	-		2 oper	and. 1	The lowe	er 32 bi	ts of th
-	result are p if (cond)	laced in	dst.	-		2 oper	rand. 1	The lowe	er 32 bi	ts of th
Execution	result are p if (cond)	laced in Isb32(s	dst.	-		2 oper E5	and. 1	The lowe	er 32 bi	ts of th
Execution	result are p if (cond) else Pipeline	laced in Isb32(s nop	dst. src1 × s	src2) —	→ dst	-				
Execution	result are p if (cond) else Pipeline Stage	laced in Isb32(s nop E1 src1	dst. src1 × s E2 src1	E3	dst E4 src1	-				
Execution	result are p if (cond) else Pipeline Stage Read	laced in Isb32(s nop E1 src1 src2	dst. src1 × s E2 src1	E3	dst E4 src1	-				E9
Execution	result are p if (cond) else Pipeline Stage Read Written	laced in Isb32(s nop E1 src1 src2	dst. src1 × s E2 src1 src2	E3 src1 src2	edst E4 src1 src2	-				E9
Execution Pipeline	result are p if (cond) else Pipeline Stage Read Written	laced in Isb32(s nop E1 src1 src2	dst. src1 × s E2 src1 src2	E3 src1 src2	edst E4 src1 src2	-				E9
Description Execution Pipeline Instruction Type Delay Slots	result are p if (cond) else Pipeline Stage Read Written Unit in use	laced in Isb32(s nop E1 src1 src2	dst. src1 × s E2 src1 src2	E3 src1 src2	edst E4 src1 src2	-				E9

Functional Unit Latency	4					
See Also	MPYID					
Example	MPYI	.M1X	A1,B2,A3			
	Befor	e instructi	on		9 cycles after in	struction
	A1 0034	5678h	3430008	A1	0034 5678h	3430008
	B2 0011	2765h	1124197	В2	0011 2765h	1124197
	A3 xxxx	xxxxh]	A3	CBCA 6558h	-875928232

3-158 Instruction Set

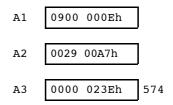

Syntax		MF	YID (.ur	nit) <i>src1</i>	, <i>src2</i> ,	dst							
		.ur	nit = .M1	or .M2									
Compatik	oility	C6	7x and (C67x+ C	PU								
Opcode													
31 29	28 27		23 22		18 17		13	12 1 [.]	I	7	65	4 3 2	2 1 0
creg	z	dst		src2		src	1	х	ор		00	00) <i>s</i> µ
3	1	5		5		5		1	5				1 1
		0	pcode m	ap field	used	F	or ope	rand t	ype	U	nit	Opf	ield
			c1 c2 st			Х	sint sint dint			.M1	, .M2	010	000
			c1 c2			х	st5 sint dint			.M1	, .M2	011	100
Descripti		Th in ¹	e <i>src1</i> op the <i>dst</i> re	egister p	oair.	plied by	y the <i>sı</i>		erand. ⁻	The 6	4-bit re	esult is	place
-		Th in ¹	e <i>src1</i> op the <i>dst</i> ro cond)	egister p Isb32(a msb32	oair. src1 ×	blied by	y the si $\rightarrow dst_{\pm}$	_I	erand. ⁻	The 6	4-bit re	esult is	place
-		Th in t if (e <i>src1</i> op the <i>dst</i> ro cond)	egister p lsb32(oair. src1 ×	blied by	y the si $\rightarrow dst_{\pm}$	_I	erand. ⁻	The 6	4-bit re	esult is	place
Executio		Th in f if (els Pi	e <i>src1</i> op the <i>dst</i> ro cond)	egister p Isb32(a msb32	oair. src1 ×	blied by	y the si $\rightarrow dst_{\pm}$	_I	erand. ⁻	The 6	4-bit re	esult is	
Executio		Th in [†] if (els Pi St	e <i>src1</i> op the <i>dst</i> ro cond) se	egister p Isb32(a msb32 nop	eair. Src1 × (src1) E2 Src1	src2) src2) × src2	y the si $\rightarrow dst_{2}$ $\rightarrow ds$	_! :t_h					
Executio		Th in f els Pi St Re	e <i>src1</i> op the <i>dst</i> ro cond) se ipeline t age	egister p Isb32(a msb32 nop E1 src1	eair. Src1 × (src1) E2 Src1	src2) × src2 E3 src1	y the si $\rightarrow dst_{2}$ $\rightarrow ds$ $\rightarrow ds$ src1	_! :t_h				E9	E10
Executio		Th in f els Pi St Re	e <i>src1</i> op the <i>dst</i> ro cond) se ipeline tage	egister p Isb32(a msb32 nop E1 src1 src1 src2	eair. Src1 × (src1) E2 Src1	src2) × src2 E3 src1	y the si $\rightarrow dst_{2}$ $\rightarrow ds$ $\rightarrow ds$ src1	_! :t_h				E9	E10
Executio		Th in f els Pi St Re	e <i>src1</i> op the <i>dst</i> ro cond) se ipeline tage ead	egister p Isb32(: msb32 nop E1 <i>src1</i> <i>src2</i>	eair. src1 × src1 × E2 src1 src2	src2) × src2 E3 src1 src2	y the <i>si</i> $\rightarrow dst_{-}$ $r) \rightarrow ds$ <u>E4</u> src1 src2	_! :t_h				E9	E10
Execution	n	Th in f if (els Pi St R W U	e <i>src1</i> op the <i>dst</i> ro cond) se ipeline tage ead	egister p Isb32(: msb32 nop E1 <i>src1</i> <i>src2</i>	eair. src1 × src1 × E2 src1 src2	src2) × src2 E3 src1 src2	y the <i>si</i> $\rightarrow dst_{-}$ $r) \rightarrow ds$ <u>E4</u> src1 src2	_! :t_h				E9	E10
Descripti Execution Pipeline Instructic Delay Sic	n on Type	Th in f if (els Pi St R W Ut	e <i>src1</i> op the <i>dst</i> ro cond) se ipeline tage ead /ritten nit in use	egister p Isb32(a msb32 nop E1 src1 src2	eair. src1 × (src1 E2 src1 src2 .M	src2) × src2 E3 src1 src2 .M	y the si $\rightarrow dst$ $P) \rightarrow ds$ E4 src1 src2 .M	_! :t_h				E9	E10
Execution Pipeline Instructio	n on Type	Th in f if (els Pi St R W Ut	e <i>src1</i> op the <i>dst</i> ro cond) se ipeline tage ead /ritten nit in use	egister p Isb32(a msb32 nop E1 src1 src2	eair. src1 × (src1 E2 src1 src2 .M	src2) × src2 E3 src1 src2 .M	y the si $\rightarrow dst$ $P) \rightarrow ds$ E4 src1 src2 .M	_! :t_h	E6	E7		E9 dst_l	place E10 <i>dst_f</i> 3-15

Function Latency	al Unit		4				
See Also)	I	MPYI				
Example		1	MPYID .M1 A1	,A2,A5:A4	l		
	Before	instruct	ion		10 cycles afte	r instruction	
A1	0034 5	678h	3430008	A1	0034 5678h	3430008	
A2	0011 2	765h	1124197	A2	0011 2765h	1124197	
A5:A4	xxxx x	xxxh	xxxx xxxxh	A5:A4	0000 0381h	CBCA 6558h	3856004703576

3-160 Instruction Set

MPYLH	Multiply Signed 16 L	SB × Signed 16 MSB								
Syntax	MPYLH (.unit) src1, src2, dst									
	.unit = .M1 or .M2									
Compatibility	C62x, C64x, C67x, and	I C67x+ CPU								
Opcode										
31 29 28 27		17 13 12 11	7 6 5 4 3 2 1 0							
3	st src2	src1 x 1 0	0 0 1 0 0 0 0 <i>s p</i>							
	Opcode map field used	For operand type	Unit							
	src1	slsb16	.M1, .M2							
	src2 dst	xsmsb16 sint								
Description	The <i>src1</i> operand is mu The source operands a		d. The result is placed in <i>dst</i> .							
Execution	if (cond) lsb16(<i>src1</i>) else nop	$) \times msb16(src2) \rightarrow dst$								
Pipeline										
	Pipeline Stage E1	E2								
	Read src1, src.	2								
	Written	dst								
	Unit in use .M									
Instruction Type	Multiply (16 $ imes$ 16)									
Delay Slots	1									
See Also	MPYLHU, MPYLSHU,	MPYLUHS, SMPYLH								

Example MPYLH .M1 A1,A2,A3 A1



0900 000Eh

Before instruction

 14^{+}

2 cycles after instruction

[†] Signed 16-LSB integer [‡] Signed 16-MSB integer

3-162 Instruction Set

MPYLHU	Multiply Unsigned 16 LSB × Unsigned 16 MSB
Syntax	MPYLHU (.unit) src1, src2, dst
	.unit = .M1 or .M2
Compatibility	C62x, C64x, C67x, and C67x+ CPU

Opcode

3	81 29	28	27	23	22 18	17	13	12	11				7	6	5	4	3	2	1	0
	creg	z		dst	src2	src1		х	1	0	1	1	1	0	0	0	0	0	s	р
	3	1		5	5	5		1											1	1

Opcode map field used	For operand type	Unit			
src1	ulsb16	.M1, .M2			
src2	xumsb16				
dst	uint				

Description	•	perand is multiplied by the <i>src2</i> operand. The result is placed in <i>dst</i> . e operands are unsigned by default.
Execution	if (cond) else nop	$lsb16(src1) \times msb16(src2) \rightarrow dst$

Pipeline	Pipeline Stage	E1	E2
	Read	src1, src2	
	Written		dst
	Unit in use	.M	

See Also	MPYLH, MPYLSHU, MPYLUHS
Delay Slots	1
Instruction Type	Multiply (16 \times 16)

SPRU733

MPYLSHU Multiply Signed 16 LSB x Unsigned 16 MSB

MPYLSHU	Multiplv Si	aned 16 L	.SB × Unsigned	d 16	5 M	ISE	3				
Syntax	MPYLSHU	-					-				
· • • • • • • • • • • • • • • • • • • •	.unit = .M1 or .M2										
Composibility											
Compatibility	C02X, C047	(, C07X, an	d C67x+ CPU								
Opcode											
31 29 28 27	23 22	18	17 13	12	11				7	6	543210
creg z dst		src2	src1	х	1	0	C) 1	1	0	0000 <i>sp</i>
3 1 5		5	5	1							1 1
	Opcode ma	ap field used	I For oper	rand	ty	be					Unit
	src1		slsb16	_							.M1, .M2
	src2 dst		xumsb16 sint	5							
Description	is placed in when both s	<i>dst</i> . The S signed and	is needed in the unsigned operar	mne nds :	emo are	onio us	c to	o sp	-		nd <i>src2</i> . The result a signed operand
Execution	if (cond) else nop	ISD TO(SICT	/) × msb16(<i>src2</i>)	\rightarrow	<i>u</i> :	51					
Pipeline	Pipeline Stage	E1	E2								
	Read	src1, src	c2	_							
	Written		dst								
	Unit in use	.M									
Instruction Type	Multiply (16	6×16)									
Delay Slots											
	1	Multiply (16 × 16)									

3-164 Instruction Set

MPYLUHS	Multiply Unsigned 16 LSB × Signed 16 MSB
Syntax	MPYLUHS (.unit) src1, src2, dst
	.unit = .M1 or .M2
Compatibility	C62x, C64x, C67x, and C67x+ CPU

Opcode

Opcode															
31 29	28	27	23	22 1	8 17	13 12	2	11		7	65	4	32	1	0
creg	z	dst		src2	src1	x	Ċ	1 0	1 () 1	0 0	0	0 0	s	р
3	1	5		5	5	1								1	1
			Орсо	de map field use	ed F	or operan	nd .	type				Unit			
			src1 src2			sb16 msb16					.M	1, .N	12		
			dst		si	nt									
Descriptic	n		is plac	nsigned operant ced in <i>dst</i> . The S both signed and	is needed	in the mr	nei	monic	to s	•					
Execution			if (cor else n	, ,	c1) × msb16	6(src2) –	→	dst							
Pipeline			Pipel Stage			2									
			Read	src1, s	rc2										
			\ \ /			1-1									

Written		dst
Unit in use	.M	

Instruction Type	Multiply (16 $ imes$ 16)
Delay Slots	1
See Also	MPYLH, MPYLHU, MPYLSHU

SPRU733

MPYSP	Multiply Two Single-Preci							
Syntax	MPYSP (.unit) src1, src2, d	MPYSP (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>						
	.unit = .M1 or .M2							
Compatibility	C67x and C67x+ CPU							
Opcode								
31 29 28 27	23 22 18 17	13 12 11	7 6 5 4 3 2 1 0					
creg z	dst src2		0 0 0 0 0 0 0 <i>s</i> µ					
3 1	5 5	5 1	1 1					
	Opcode map field used	For operand type	Unit					
	src1	sp	.M1, .M2					
	src2 dst	xsp sp						
-	The <i>src1</i> operand is multiplie if (cond) $src1 imes src2 o$	ed by the <i>src2</i> operand.	The result is placed in <i>ds</i>					
Description Execution		ed by the <i>src2</i> operand.	The result is placed in <i>ds</i>					
-	if (cond) src1 $ imes$ src2 $ o$	ed by the <i>src2</i> operand.	The result is placed in <i>ds</i>					
	if (cond) src1 × src2 → else nop Notes: 1) If one source is SNaN o	ed by the <i>src2</i> operand. <i>dst</i> or QNaN, the result is a VVAL bit is set also. Th	signed NaN_out. If either					
	if (cond) src1 × src2 → else nop Notes: 1) If one source is SNaN of source is SNaN, the IN exclusive-OR of the inp 2) Signed infinity multiplied than signed 0) return	ed by the <i>src2</i> operand. <i>dst</i> or QNaN, the result is a NVAL bit is set also. Th put signs. d by signed infinity or a l	signed NaN_out. If either e sign of NaN_out is the normalized number (other ed infinity multiplied by					
-	 if (cond) src1 × src2 → else nop Notes: If one source is SNaN of source is SNaN, the IN exclusive-OR of the inp Signed infinity multiplied than signed 0) return signed 0 returns a sign If one or both sources a 	ed by the <i>src2</i> operand. <i>dst</i> or QNaN, the result is a NVAL bit is set also. Th put signs. d by signed infinity or a n as signed infinity. Sign ned NaN_out and sets t are signed 0, the result is	signed NaN_out. If eithe e sign of NaN_out is the normalized number (othe ed infinity multiplied by					
-	 if (cond) src1 × src2 → nop Notes: If one source is SNaN of source is SNaN, the IN exclusive-OR of the inp Signed infinity multiplied than signed 0 returns a signed 0 returns a sign If one or both sources a source is NaN or sign NaN_out. A denormalized source The INEX bit is set exceends NaN, or signed 0. There 	ed by the <i>src2</i> operand. <i>dst</i> or QNaN, the result is a NVAL bit is set also. Th put signs. d by signed infinity or a r as signed infinity. Sign ned NaN_out and sets t are signed 0, the result is ned infinity, in which c e is treated as signed 0 ept when the other source	signed NaN_out. If eithe e sign of NaN_out is the normalized number (othe ed infinity multiplied by he INVAL bit. signed 0 unless the othe ase the result is signed and the DENn bit is set the is signed infinity, signed multiplied by a denormal					

Pipeline	Pipeline Stage	E1	E2	E3	E4
	Read	src1 src2			
	Written				dst
	Unit in use	.M			

If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

Instruction Type	4-cycle	
Delay Slots	3	
Functional Unit Latency	1	
See Also	MPY, MPYDP, MPYSP2DP	
Example	MPYSP .M1X A1,B2,A3	
	Before instruction	4 cycles after instruction
	A1 C020 0000h -2.5	A1 C020 0000h -2.5
	B2 4109 999Ah 8.6	B2 4109 999Ah 8.6
	A3 xxxx xxxxh	A3 C1AC 0000h -21.5

MPYSPDP		iply Single-Precisio ting-Point Value	on Floating	Poir	nt Vä	alu	e x I	Dοι	ıble	e-Precision
Syntax	MPY	′SPDP (.unit) <i>src1</i> , <i>s</i>	rc2, dst							
	.unit	= .M1 or .M2								
Compatibility	C67	x+ CPU only								
Opcode										
31 29 28 27	2	3 22 18 17	, .	3 12	11			7	6	543210
creg z ds		src2	src1	3 12 X	0	1	0 1			1 1 0 0 <i>s p</i>
3 1 5		5	5	1						1 1
	qQ	ode map field used	. For opera	nd ty	/pe					Unit
	src1	•	sp			-				.M1, .M2
	src2		xsp							
	dst		sp							
Execution	if (co else	nop	·	on re	sult.	Th	e res	sult	is p	laced in <i>dst</i> .
	Not	es:								
	1)	If one source is SNa source is SNaN, the exclusive-OR of the	e INVAL bit is				-			-
			inpat orginor							-
	2)	Signed infinity multip than signed 0) retu signed 0 returns a s	lied by signe	infin	ity.	Sig	ned	infi	inity	– I number (other multiplied by
		than signed 0) retu	lied by signed urns signed igned NaN_o s are signed	infin out a 0, the	ity. nd s e res	Sig ets ult i	ned the s sig	infi INV INec	inity ΆL 1 Ο ι	number (other multiplied by bit.
	3)	than signed 0) retu signed 0 returns a s If one or both source source is NaN or s	lied by signed urns signed igned NaN_ s are signed igned infinit rce is treate xcept when therefore, a s	infin out a 0, the y, in d as ne ot	ity. nd s e res whi sign her s	Sig ets ch ed sour	ned the s sig case 0 an rce is mul	infi INV Inec th d th s sig	inity AL I 0 u e re ne D jnec ed I	I number (other multiplied by bit. unless the other esult is signed DENn bit is set. I infinity, signed by a denormal-
	3) 4)	than signed 0) retu signed 0 returns a s If one or both source source is NaN or s NaN_out. A denormalized sou The INEX bit is set ex NaN, or signed 0. Th	lied by signed urns signed igned NaN_ s are signed signed infinit rce is treate xcept when the nerefore, a s a signed NaN	infin out a 0, the y, in d as ne ot gneo I_out	ity. nd s res whi sign her s l infi anc	Sig ets cult i ch ed sour nity	ned the s sig case 0 an rce is mul	infi INV Inec th d th s sig	inity AL I 0 u e re ne D jnec ed I	I number (other multiplied by bit. unless the other esult is signed DENn bit is set. I infinity, signed by a denormal-

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5	E6	E7
	Read	src1 src2_l	src1 src2_h					
	Written						dst_l	dst_h
	Unit in use	.М	.M					

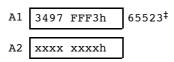
The low half of the result is written out one cycle earlier than the high half. If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, **MPYSPDP**, **MPYSP2DP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

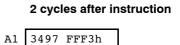
See Also	MPY, MPYDP, MPYSP, MPYSP2DP
Functional Unit Latency	3
Delay Slots	6
Instruction Type	MPYSPDP

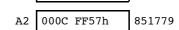
MPYSP2DP		oly Two Single- le-Precision Re		ting	-Pol	int	Valu	ies	for				
Syntax	MPYS	3P2DP (.unit) <i>src</i>	1, src2, dst										-
-	.unit =	.M1 or .M2											
Compatibility		+ CPU only											
Opcode		, ,											
31 29 28 27	23	22 18	17 13	12	11			7	6	54	3 2	2 1 0	n
creg z ds		src2	src1	X		1	0 1		· · ·	5 4 1 1	0 (— — —	1
3 1 5		5	5	1								1 1	1
	Орсо	de map field use	d For opera	nd tv	/pe					U	nit		-
	src1		sp		, p	-					.M2		—
	src2		xsp										
	dst		sp										_
Description	The	<i>src1</i> operand i	s multiplied by	y tł	ne s	src2	ор	era	nd	to	prod	luce	a
	doubl	e-precision resul	t. The result is p	olace	ed in	dsi	t.						
Execution	if (cor	(d) src1 \times sr											
			c2 \rightarrow dst										
	else	nop	c2 $ ightarrow$ dst										
	else Note	nop	c2 → dst										٦
	Note 1) li s	nop s: one source is Sl ource is SNaN,	NaN or QNaN, th the INVAL bit is				-			_			
	Note 1) If s e 2) S tt	nop s: i one source is Sl	NaN or QNaN, th the INVAL bit is he input signs. Itiplied by signed eturns signed	set I infi infin	also nity o iity.	o. Ti or a Sigi	he s norr ned	ign mali infi	of I zec nity	NaN_ I num	_out nber	is the (other	e r
	Note 1) If s 2) S tl s 3) If s	nop s: one source is SI ource is SNaN, exclusive-OR of t Signed infinity mu nan signed 0) r	NaN or QNaN, th the INVAL bit is he input signs. Itiplied by signed eturns signed a signed NaN_o ces are signed 0	set I infi infin ut a), the	also nity d iity. 3 nd s e res	o. Ti or a Sigi ets ult i	norr ned the s sig	ign mali infi INV	of I zec nity AL	NaN_ I num / mu bit. unles	_out hber Itiplie s the	is the (other ed by e other	e r /
	Note 1) If s 2) S tl s 3) If s N 4) A T N	nop s: one source is Sl ource is SNaN, exclusive-OR of the signed infinity mu nan signed 0) r igned 0 returns a one or both sour ource is NaN o	NaN or QNaN, the the INVAL bit is he input signs. Itiplied by signed eturns signed i a signed NaN_o r signed infinity ource is treated t except when th Therefore, a sig	set l infi infin ut a), the c, in l as e ot gneo	also nity o iity. 3 nd s e res whic sign her s d infi	o. Ti or a Sign ets ult is ch ch ch ch ch u ti sour nity	he s norr ned the s sig case 0 an ce is mul	ign mali infi INV ned the the sig	of I zec nity AL I 0 u e re ne E nec ed I	NaN I num mu bit. unles əsult DENr d infir by a	_out hber Itiplie is s is s i bit iity, s deno	is the (other ed by other signed is set.	e r // t t
	Note 1) If s e 2) S tf s 3) If s N 4) A T N iz	nop s: fone source is SI ource is SNaN, exclusive-OR of the signed infinity mu nan signed 0) r igned 0 returns a fone or both sour ource is NaN o laN_out. A denormalized s he INEX bit is se laN, or signed 0.	NaN or QNaN, the the INVAL bit is he input signs. Itiplied by signed eturns signed in a signed NaN_o res are signed 0 r signed infinity ource is treated t except when th Therefore, a sig s a signed NaN_	set I infin infin ut a), the , in I as e ot gnec _out	also nity of ity. 1 nd s e res which sign her s d infii t and	o. TI or a Sign ets ult is ch ch sour nity I se	he s norr ned the s sig case 0 an ce is mul	ign mali infi INV ned the the sig	of I zec nity AL I 0 u e re ne E nec ed I	NaN I num mu bit. unles əsult DENr d infir by a	_out hber Itiplie is s is s i bit iity, s deno	is the (other ed by other signed is set.	e r // i i

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	src1 src2				
	Written				dst_l	dst_h
	Unit in use	.М				

The low half of the result is written out one cycle earlier than the high half. If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, **MPYSPDP**, **MPYSP2DP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

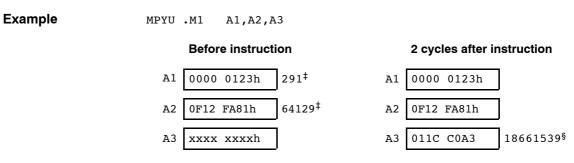

See Also	MPY, MPYDP, MPYSP, MPYSPDP
Functional Unit Latency	2
Delay Slots	4
Instruction Type	5-cycle


MPYSU	Multiply S	Signed 16 LSB	× Unsigned	16 LSB		
Syntax	MPYSU (.unit) <i>src1, src2, dst</i>					
,	.unit = .M1					
Compatibility		ix, C67x, and C	67x± CPU			
	002, 00-	ix, 007 x, and 0	0771 01 0			
Opcode			10			
31 29 28 27 <i>creg z ds</i>	23 22 t	18 17 src2		12 11 X <i>OP</i>	<u> </u>	4 3 2 1 0 0 0 0 <i>s p</i>
3 1 5		5	5	1 5		1 1
	Opcode m	nap field used	For opera	nd type	Unit	Opfield
	src1 src2 dst	-	slsb16 xulsb16 sint		.M1, .M2	11011
	src1 src2 dst		scst5 xulsb16 sint		.M1, .M2	11110
Description Execution	is placed in	d operand <i>src1</i> is n <i>dst</i> . The S is n signed and uns lsb16(<i>src1</i>) ×	eeded in the m	nemonic to ds are used.	specify a sig	
Pipeline	Pipeline Stage	E1	E2			
	Read	src1, src2		-		
	Written		dst			
	Unit in us	e.M		_		
Instruction Type	Multiply (1	6 × 16)				
Delay Slots	1					
3-172 Instruction S	et					SPRU733


See Also MPY, MPYU, MPYUS

Example MPYSU .M1 13,A1,A2

Before instruction

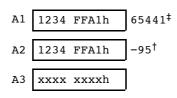


[‡] Unsigned 16-LSB integer

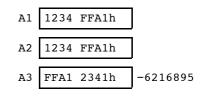
SPRU733

MPYU	Multiply Unsigned 16	LSB × Unsigned 16 LSB	
Syntax	MPYU (.unit) <i>src1, src2</i>	, dst	
	.unit = .M1 or .M2		
Compatibility	C62x, C64x, C67x, and	C67x+ CPU	
Opcode			
31 29 28 27	23 22 18	17 13 12 11	76543210
creg z ds		17 13 12 11 src1 x 1 1 1	
3 1 5	5	5 1	1 1
	Opcode map field used.	For operand type	Unit
	src1 src2 dst	ulsb16 xulsb16 uint	.M1, .M2
Description Execution	The source operands a	Itiplied by the <i>src2</i> operand. The unsigned by default. × lsb16(<i>src2</i>) \rightarrow <i>dst</i>	ie result is placed in <i>ast</i> .
Pipeline	Pipeline Stage E1	E2	
	Read src1, src2	2	
	Written	dst	
	Unit in use .M		
Instruction Type	Multiply (16 $ imes$ 16)		
Delay Slots	1		
See Also	MPY, MPYSU, MPYUS		
3-174 Instruction S	Set		SPRU733

[‡] Unsigned 16-LSB integer


SPRU733

	Multiply Unsigned 16	LSB × Signed 16 LSB			
Syntax	MPYUS (.unit) src1, src	MPYUS (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>			
,	.unit = .M1 or .M2	,			
Compatibility	C62x, C64x, C67x, and				
	CO2X, CO4X, CO7X, and	007X+ 0F0			
Opcode					
31 29 28 27 <i>creg z</i>	23 22 18 dst src2	17 13 12 11 src1 x 1 1	7 6 5 4 3 2 1 0 1 0 1 0 0 0 0 0 <i>s p</i>		
3 1	5 5	5 1	1 1		
	Opcode map field used	. For operand type	Unit		
	src1 src2 dst	ulsb16 xslsb16 sint	.M1, .M2		
Execution	_	nsigned operands are us \times lsb16(<i>src2</i>) \rightarrow <i>dst</i>			
Pipeline	Pipeline Stage E1	 E2			
	Read src1, src2	2			
	Written	dst			
	Unit in use .M				
	Unit in use .M				
Instruction Type	Unit in use $.M$ Multiply (16 \times 16)				
Instruction Type Delay Slots					
	Multiply (16 × 16)				


Example

MPYUS .M1 A1,A2,A3

Before instruction

2 cycles after instruction

[†] Signed 16-LSB integer [‡] Unsigned 16-LSB integer

SPRU733

MV Move From Register to Register

MV	Move From Register to Register			
Syntax	MV (.unit) <i>src2, dst</i>			
	.unit = .L1, .L2, .S1, .S2, .D1, .D2			
Compatibility	C62x, C64x, C67x, and C67x+ CPU			
Opcode	.L unit			
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0			
creg z dst	src2 0 0 0 0 0 x op 1 1 0 s p			
3 1 5	5 1 7 1 1			
	Opcode map field used For operand type Unit Opfield			
	src2 xsint .L1, .L2 000 0010 dst sint			
	src2 slong .L1, .L2 010 0000 dst slong . .L1, .L2 .L1, .L2 <t< th=""></t<>			
Opcode	.S unit			
31 29 28 27	23 22 18 17 13 12 11 6 5 4 3 2 1 0			
creg z dst	src2 0 0 0 0 0 x 0 0 0 1 1 0 1 0 0 s p			
3 1 5	5 1 1 1			
	Opcode map field used For operand type Unit			
	src2 xsint .S1, .S2 dst sint			

Opcode	.D unit	
31 29 28 27	23 22 18 17 13 12 7 6 5 4	3 2 1 0
creg z	t src2 0 0 0 0 0 0 1 0 0 1 0 0	0 0 <i>s p</i>
3 1	5	1 1
	Opcode map field used For operand type Unit	
	src2 sint .D1, .D2 dst sint	
Description	The MV pseudo-operation moves a value from one register to a assembler uses the operation ADD (.unit) 0, <i>src2</i> , <i>dst</i> to perform	
Execution	if (cond) 0 + src2 \rightarrow dst else nop	
Instruction Type	Single-cycle	
Delay Slots	0	

MVC	Move Between Control File and Register File			
Syntax	MVC (.unit) <i>src2</i> , <i>dst</i>			
	.unit = .S2			
Compatibility	C62x, C64x, C67x, and C67x+ CPU			
Opcode				
31 29 28 27	23 22 18	17 13 12	11 6 5 4	3 2 1 0
creg z d	st src2	0 0 0 0 0 x	<i>op</i> 1 0	0 0 <i>s p</i>
3 1	5 5	1	6	1 1

Operands when moving from the control file to the register file:

Opcode map field used	For operand type	Unit	Opfield
src2 dst	uint uint	.S2	00 1111

Description The *src2* register is moved from the control register file to the register file. Valid values for *src2* are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3–21 (page 3-182).

Operands when moving from the register file to the control file:

Opcode map field used	For operand type	Unit	Opfield
src2 dst	xuint uint	.S2	00 1110

Description The *src2* register is moved from the register file to the control register file. Valid values for *src2* are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3–21 (page 3-182).

Execution

if (cond) $src2 \rightarrow dst$ else nop

Note:

The MVC instruction executes only on the B side (.S2).

Refer to the individual control register descriptions for specific behaviors and restrictions in accesses via the **MVC** instruction.

Pipeline	Pipeline Stage	E1			
	Read	src2			
	Written	dst			
	Unit in use	.S2			
Instruction Type	Single-cycle				
	slot because	the results can		ruction) effectively ha e MVC instruction) in [.]	
Delay Slots	0				
Example	MVC .S2	B1,AMR			
	Before	e instruction		1 cycle after instruct	tion
	B1 F009	0001h	B1	F009 0001h	
	AMR 0000	0000h	AMR	0009 0001h	

Note:

The six MSBs of the AMR are reserved and therefore are not written to.

Acronym	Register Name	Address	Read/ Write
AMR	Addressing mode register	00000	R, W
CSR	Control status register	00001	R, W
FADCR	Floating-point adder configuration	10010	R, W
FAUCR	Floating-point auxiliary configuration	10011	R, W
FMCR	Floating-point multiplier configuration	10100	R, W
ICR	Interrupt clear register	00011	W
IER	Interrupt enable register	00100	R, W
IFR	Interrupt flag register	00010	R
IRP	Interrupt return pointer	00110	R, W
ISR	Interrupt set register	00010	W
ISTP	Interrupt service table pointer	00101	R, W
NRP	Nonmaskable interrupt return pointer	00111	R, W
PCE1	Program counter, E1 phase	10000	R

Table 3–21. Register Addresses for Accessing the Control Registers

Legend: R = Readable by the **MVC** instruction; W = Writeable by the **MVC** instruction

Move Signed Constar	nt Into Register and Sign I	Extend	
MVK (.unit) <i>cst, dst</i>			
.unit = .S1 or .S2			
C62x, C64x, C67x, and	C67x+ CPU		
02 00		7 6 5 4 3 2 1 0	
dst	cst16	01010sp	
5	16	1 1	
Opcode map field used.	For operand type	Unit	
cst16 dst	scst16 sint	.S1, .S2	
In most cases, the C600 when a constant is outsi of MVK .S, a warning is 16-bit range, -32768 to For example: MVK .S1 0x000080 will generate a warning; MVK .S1 0xFFFF80 will not generate a warn	00 assembler and linker issued the range supported by the issued whenever the consta 32767 (or FFFF 8000h to 00 0000X, A0 whereas:	ue a warning or an error e instruction. In the case ant is outside the signed	
if (cond) $scst \rightarrow dst$ else nop			
Pipeline Stage E1	_		
Read			
Written dst			
Unit in use .S			
	MVK (.unit) cst , dst .unit = .S1 or .S2 C62x, C64x, C67x, and 23 22 dst 5 cst16 dst The 16-bit signed const In most cases, the C60 when a constant is outsi of MVK .S, a warning is 16-bit range, -32768 to For example: MVK .S1 0x0008 will generate a warning; MVK .S1 0xFFFF8 will not generate a warn if (cond) scst $\rightarrow dst$ else nop if (cond) scst $\rightarrow dst$ else nop if (cond) scst $\rightarrow dst$ else nop	.unit = .S1 or .S2 C62x, C64x, C67x, and C67x+ CPU 23 22 dst cst16 5 16 Copcode map field used For operand type cst16 scst16 dst sint The 16-bit signed constant, <i>cst</i> , is sign extended and In most cases, the C6000 assembler and linker issue when a constant is outside the range supported by the of MVK .S, a warning is issued whenever the consta 16-bit range, -32768 to 32767 (or FFFF 8000h to 00 For example: MVK .S1 0x00008000X, A0 will generate a warning; whereas: MVK .S1 0xFFFF8000, A0 will not generate a warning. if (cond) scst \rightarrow dst else nop Pipeline Stage E1 Read Written dst	

SPRU733

Instruction Type	Single cycle	
Delay Slots	0	
See Also	MVKH, MVKL, MVKLH	
Example 1	MVK .L2 -5,B8	
	Before instruction	1 cycle after instruction
	B8 xxxx xxxxh B8	FFFF FFFBh
Example 2	MVK .D2 14,B8 Before instruction	1 cycle after instruction
	B8 xxxx xxxh B8	0000 000Eh

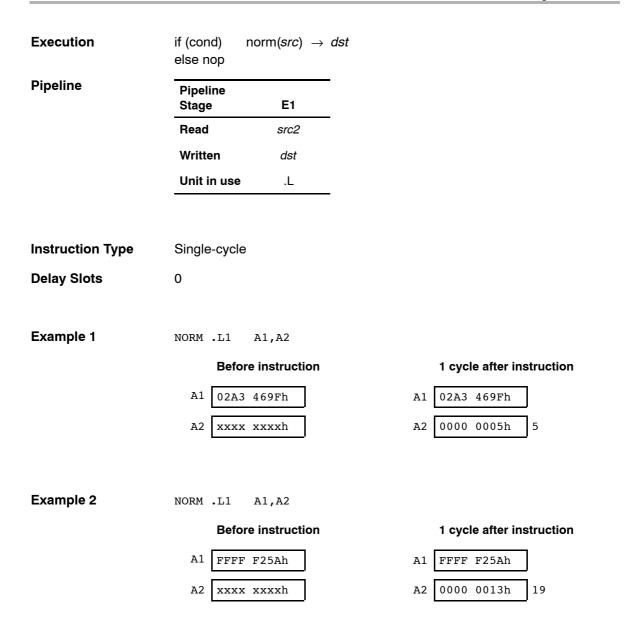

MVKH/MVKLH		Move 16-Bit Constant Into Upper Bits of Register									
Syntax		MVKH (.unit) c	st, dst								
		or MVKLH (.unit)	cst, dst								
		.unit = .S1 or .S	62								
Compatibility		C62x, C64x, C	67x, and C6	37x+ CPU							
Opcode											
31 29 28 27		23 22			7 6 5 4 3 2 1 0						
creg z	dst			cst16	1 1 0 1 0 <i>s p</i>						
3 1	5			16	1 1						
		Opcode map f	eld used	For operand type	Unit						
		cst16		uscst16	.S1, .S2						
		dst		sint							
Description		of <i>dst</i> are unch 16 MSBs of a 3 instruction, the	anged. For 2-bit constar assembler	the MVKH instruction, the tinto the <i>cst16</i> field of the tinto t	16 bits of <i>dst</i> . The 16 LSBs ne assembler encodes the e opcode . For the MVKLH f a constant into the <i>cst16</i>						
Description Execution		of <i>dst</i> are unch 16 MSBs of a 3 instruction, the field of the opc For the MVKLI	anged. For 2-bit constar assembler ode. I instructior . ₀) << 16) or	the MVKH instruction, the mVKH instruction, the tinto the <i>cst16</i> field of the encodes the 16 LSBs or	e opcode . For the MVKLH						
		of <i>dst</i> are unch 16 MSBs of a 3 instruction, the field of the opc For the MVKLI if (cond)((<i>cst</i> ₁₅ , else nop For the MVKH	anged. For 2-bit constar assembler ode. I instructior .0) << 16) or instruction:	the MVKH instruction, the nt into the <i>cst16</i> field of th encodes the 16 LSBs or n:	ne assembler encodes the e opcode . For the MVKLH						
		of <i>dst</i> are unch 16 MSBs of a 3 instruction, the field of the opc For the MVKLI if (cond)((<i>cst</i> ₁₅ , else nop For the MVKH if (cond)((<i>cst</i> ₃₁ ,	anged. For 2-bit constar assembler ode. I instructior .0) << 16) or instruction:	the MVKH instruction, the tinto the <i>cst16</i> field of the encodes the 16 LSBs or h : (dst_{150}) $\rightarrow dst$	ne assembler encodes the e opcode . For the MVKLH						
Execution		of <i>dst</i> are unch 16 MSBs of a 3 instruction, the field of the opc For the MVKLI if (cond)((<i>cst</i> ₁₅ , else nop For the MVKH if (cond)((<i>cst</i> ₃₁ , else nop	anged. For 2-bit constant assembler ode. I instruction .0) << 16) or instruction: .16) << 16) o	the MVKH instruction, the tinto the <i>cst16</i> field of the encodes the 16 LSBs or h : (dst_{150}) $\rightarrow dst$	ne assembler encodes the e opcode . For the MVKLH						
Execution		of <i>dst</i> are unch 16 MSBs of a 3 instruction, the field of the opc For the MVKLI if (cond)((<i>cst</i> ₁₅ , else nop For the MVKH if (cond)((<i>cst</i> ₃₁ , else nop Pipeline Stage	anged. For 2-bit constant assembler ode. I instruction .0) << 16) or instruction: .16) << 16) o	the MVKH instruction, the tinto the <i>cst16</i> field of the encodes the 16 LSBs or h : (dst_{150}) $\rightarrow dst$	ne assembler encodes the e opcode . For the MVKLH						

SPRU733

MVKH/MVKLH	Move 16-Bit Constant Into Upper Bits of Register
------------	--

Instruction Type	Single-cycle							
Delay Slots	0							
	Note:							
	Use the MVK instruction (page 3-183) to load 16-bit constants. The assembler generates a warning for any constant over 16 bits. To load 32-bit constants, such as 1234 5678h, use the following pair of instructions:							
	MVKL 0x12345678 MVKH 0x12345678							
	If you are loading the address of a label, use:							
	MVKL label MVKH label							
Example 1	MVKH .S1 0A329123h,A1							
	Before instruction 1 cycle after instruction							
	A1 0000 7634h A1 0A32 7634h							
Example 2	MVKLH .S1 7A8h,A1							
	Before instruction 1 cycle after instruction							
	A1 FFFF F25Ah A1 07A8 F25Ah							

MVKL	Move Signed Constant	Into Register and Sign	Extend							
Syntax	MVKL (.unit) <i>cst, dst</i>									
	.unit = .S1 or .S2									
Compatibility	C62x, C64x, C67x, and C	67x+ CPU								
Opcode										
31 29 28 27	23 22		7 6 5 4 3 2 1 0							
creg z	dst	cst16	0 1 0 1 0 <i>s p</i>							
3 1	5	16	1 1							
	Opcode map field used	For operand type	Unit							
	cst16 dst	scst16 sint	.S1, .S2							
	except that the MVKL in normally performed by the to be paired with the M constants.	assembler/linker. This allo	ows the MVKL instruction							
	To load 32-bit constants instructions:	, such as 1234 ABCDh, i	use the following pair of							
	MVKL .S1 0x0ABCD, A4 MVKLH .S1 0x1234, A4									
	This could also be used:									
	MVKL .S1 0x1234ABCD, MVKH .S1 0x1234ABCD,									
	Use this to load the addre	ss of a label:								
	MVKL .S2 label, B5 MVKH .S2 label, B5									
Execution	if (cond) $scst \rightarrow dst$ else nop									
SPRU733			Instruction Set 3-187							



NEG		Nega	te																
Syntax		NEG	(.unit) <i>si</i>	rc2, d	lst														
-		.unit = .L1, .L2, .S1, .S2																	
Compatibility			C64x,				v+ (PH	I										
				007,	, and	007	ΛT (51 0											
Opcode		.S uni																	
31 29 28 27	dst	23	22 S	rc2		17 0 0	0	0	13 0	12 X	11 0	1	0 -	1 1	6 0		4 3 0 0	-	1 0 s p
3 1	5		I	5						1						1			1 1
		Onco	de map	field i	hoa	Fo	r on	oran	nd tr	Ine			Un	it		-			
		src2	de map		13eu	xsi	-			ype.			.S1,						
		dst				sin							,			_			
Opcode		.L unit	ŀ																
-																			
31 29 28 27		23																	
creg z	dst		22 S	rc2		¹⁷ 0 0	0	0	13 0	12 X	11		ор)		5	4 3 1 1	-	1 0 s p
creg z 3 1	dst 5			rc2 5			0	0		1	11	_	<i>ор</i> 7		_	5	– –		
			Si	5		0 0			0	X		_	7		_	5	1 1	0	s p
				5		0 0	r op nt		0	X				it		5	1 1 O f		s p 1 1
		Opco src2	Si	5		0 0 Fo .xsi	r op nt t		0	X			7 Un	iit .L2		5	1 1 Or 000	0 ofield	s p 1 1 1 0
		Opco src2 dst src2	Si	5		0 0 Fo xsi sin slo	r op nt t		0	X			7 Un .L1,	iit .L2		5	1 1 Or 000	0 ofield	s p 1 1 1 0
		Opco src2 dst src2 dst	Si	⁵ field ι	used	0 0 Fo xsi sin slo slo	r op nt t ng ng	eran	0 nd ty	x 1 ype.		d pl	7 Un .L1, .L1,	iit .L2 .L2	ne	res	1 1 0r 000 010	0 ofielc 0 011	s p 1 1 1 0
3 1		Opco src2 dst src2 dst The N assen	de map IEG pse nbler us nd) 0 – <i>s</i>	field u eudo- ses SU	opera JB (.	0 0 Fo xsi sin slo slo unit)	r op nt t ng ng	eran	0 nd ty	x 1 ype.		d pl	7 Un .L1, .L1,	iit .L2 .L2	ne	res	1 1 0r 000 010	0 ofielc 0 011	s p 1 1 1 0 00
3 1 Description		Opco src2 dst src2 dst The N assen if (con else n	de map IEG pse nbler us nd) 0 – <i>s</i>	field u eudo- ses SU	opera JB (.	0 0 Fo xsi sin slo slo unit)	r op nt t ng ng	eran	0 nd ty	x 1 ype.		d pl	7 Un .L1, .L1,	iit .L2 .L2	ne	res	1 1 0r 000 010	0 ofielc 0 011	s p 1 1 1 0 00
3 1 Description Execution		Opco src2 dst src2 dst The N assen if (con else n	iEG pse nbler us nd) 0 – <i>s</i>	field u eudo- ses SU	opera JB (.	0 0 Fo xsi sin slo slo unit)	r op nt t ng ng	eran	0 nd ty	x 1 ype.		d pl	7 Un .L1, .L1,	iit .L2 .L2	ne	res	1 1 0r 000 010	0 ofielc 0 011	s p 1 1 1 0 00

NOP	No Operation											
Syntax	NOP [count]											
	.unit = none											
Compatibility	C62x, C64x, C67x, and C67x+ CPU											
Opcode												
31	18	17 16 13 12	11 10 9 8 7 6	5 4 3 2 1 0								
Re	served	0 <i>src</i> 0	000000	00000								
	14	4		1								
	Opcode map field use	ed For operand ty	уре	Unit								
	src	ucst4		none								
Description	<i>src</i> is encoded as <i>count</i> – 1. For <i>src</i> + 1 cycles, no operation is performed maximum value for <i>count</i> is 9. NOP with no operand is treated like NOP 1 <i>src</i> encoded as 0000.											
	A multicycle NOP will not finish if a branch is completed first. For example, if a branch is initiated on cycle n and a NOP 5 instruction is initiated on cycle $n + 3$, the branch is complete on cycle $n + 6$ and the NOP is executed only from cycle $n + 3$ to cycle $n + 5$. A single-cycle NOP in parallel with other instructions does not affect operation.											
Execution	No operation for count	t cycles										
Instruction Type	NOP											
Delay Slots	0											

Example 1	NOP MVK .S1 125h,A1		
	Before NOP	1 cycle after NOP (No operation executes)	1 cycle after MVK
	A1 1234 5678h	A1 1234 5678h	A1 0000 0125h
Example 2	MVK .S1 1,A1 MVKLH .S1 0,A1 NOP 5 ADD .L1 A1,A2,A1		
	Before NOP 5	1 cycle after ADD instruction (6 cycles after NOP 5)	
	A1 0000 0001h	A1 0000 0004h	
	A2 0000 0003h	A2 0000 0003h	

Ν	IORM			Norma	lize Intege	r							
S	yntax			NORM	(.unit) <i>src2</i> ,	dst							
					L1 or .L2								
С	ompatib	oilitv		C62x. (C64x, C67x,	and	1 C67	7x+ C	PU				
	pcode	, ,											
	-				0	40	47			10	10 11		
31	29 creg	28 2 Z	dst	23 2	src2	18	17 0 0) ()	0	13 0	12 11 X	ор	5 4 3 2 1 0 1 1 0 <i>s p</i>
	3	1	5	Į	5	!					1	7	1 1
				Oncod	e map field		4	For	000	an	d type	. Unit	Opfield
				src2		usec	••••	xsint	pei		a type	. Unit .L1, .L2	110 0011
				dst				uint				,	
				src2 dst				slong uint	J			.L1, .L2	110 0000
D	escripti	on	src2	are sho In this c	wn in the fc ase, NORM	l retu x x 23 22	ving d urns (x x 21 20	liagra 0: x x ^{19 18}	am. x	x x	××××	x x x x x x x	everal examples
			src2		0 1 x x x 28 27 26 25 24 case, NORI	23 22	21 20	19 18	x) 17 1	-			x x x x x x x x 5 5 4 3 2 1 0
			src2	1 1 1 31 30 29	1 1 1 1 1 28 27 26 25 24 case, NORI	1 1 23 22	1 1 21 20	1 1 1 1 19 18		1 1 6 15	1 1 1 14 13 12	1 1 1 1 1 1	1 1 1 1 1 1 0 5 5 4 3 2 1 0
			src2	1 1 1 31 30 29	1 1 1 1 1 1 28 27 26 25 24	1 1 23 22	1 1 21 20	1 1 19 18		1 1 6 15	1 1 1 14 13 12	1 1 1 1 1 1 1 1 10 9 8 7 6	
3- ⁻	192	Inst	ruction Se	ət									SPRU733

NOT Bitwise NOT

NOT	Bitwise NOT										
Syntax	NOT (.unit) <i>src2, dst</i>	NOT (.unit) <i>src2, dst</i>									
	.unit = .L1, .L2, .S1, .S2										
Compatibility	C62x, C64x, C67x, and C67x	x+ CPU									
Opcode	.L unit										
31 29 28 27	23 22 18 17	13 12 11	5 4 3 2 1 0								
3	dst src2 1	1 1 1 1 x 1 1 0	1 1 1 0 1 1 0 <i>s p</i>								
3 1	5 5	1	1 1								
	Opcode map field used	For operand type	Unit								
		xuint	.L1, .L2								
	dst	uint									
Opcode	.S unit										
31 29 28 27	23 22 18 17	13 12 11	6543210								
	dst src2 1		0 1 0 1 0 0 0 <i>s p</i>								
3 1	5 5	5 1	1 1								
		For operand type									
		xuint uint	.S1, .S2								
Description	The NOT pseudo-operation p places the result in <i>dst</i> . Th perform this operation.										
Description Execution	places the result in dst. Th	ne assembler uses XOR (
	places the result in <i>dst</i> . The perform this operation. if (cond) $-1 \text{ XOR } src2 \rightarrow ds$	ne assembler uses XOR (
Execution	places the result in <i>dst</i> . The perform this operation. if (cond) $-1 \text{ XOR } src2 \rightarrow ds$ else nop	ne assembler uses XOR (

OR	Bitwise OR							
Syntax OR (.unit) src1, src2, dst								
	.unit = .L1, .L2, .S1, .S2							
Compatibility	C62x, C64x, C67x, and C67x+ CPU							
Opcode	.L unit							
31 29 28 27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

creg	Ζ	dst	src2	src1	х	ор	110 <i>sp</i>
3	1	5	5	5	1	7	1 1

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.L1, .L2	111 1111
src2	xuint		
dst	uint		
src1	scst5	.L1, .L2	111 1110
src2	xuint		
dst	uint		

Opcode

.S unit

-

_	31	29	28	27		23	22 18	17	7 10	3	12	11	654	32	1 0	_
	(creg	Ζ		dst		src2		src1		х	ор	1 0	0 0	s p	
		3	1		5		5		5		1	6			1 1	

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.S1, .S2	01 1011
src2	xuint		
dst	uint		
src1	scst5	.S1, .S2	01 1010
src2	xuint		
dst	uint		

Description

Performs a bitwise **OR** operation between *src1* and *src2*. The result is placed in dst. The scst5 operands are sign extended to 32 bits.

SPRU733

Execution	if (cond) src1 OR src2 \rightarrow dst else nop	
Pipeline	PipelineStageE1Readsrc1, src2	
	Written dst	
	Unit in use .L or .S	
• • • • • • • • •		
Instruction Type	Single-cycle	
Delay Slots	0	
See Also	AND, XOR	
Example 1	OR .S1 A3,A4,A5	
	Before instruction	1 cycle after instruction
	A3 08A3 A49Fh	A3 08A3 A49Fh
	A4 00FF 375Ah	A4 00FF 375Ah
	A5 xxxx xxxxh	A5 08FF B7DFh
Example 2	OR .L2 -12,B2,B8 Before instruction	1 cycle after instruction
	B2 0000 3A41h	B2 0000 3A41h
	B8 xxxx xxxxh	B8 FFFF FFF5h

3-196 Instruction Set

RCPDP	Double-Precision Flo	ating-Point Reciproc	Double-Precision Floating-Point Reciprocal Approximation					
Syntax	RCPDP (.unit) src2, dst							
	.unit = .S1 or .S2							
Compatibility	C67x and C67x+ CPU							
Opcode								
31 29 28 27	23 22 18	17 13 12 11	6 5 4 3 2 1 0					
creg z ds	st src2	reserved x 1	0 1 1 0 1 1 0 0 0 <i>s p</i>					
3 1 5	5 5	5 1	1 1					
	Opcode map field used	d For operand type	Unit					
	src2	dp	.S1, .S2					
	dst	dp						
Description		he operand is read in o	ciprocal approximation value of one cycle by using the <i>src1</i> port					

The **RCPDP** instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2^{-8}). This estimate can be used as a seed value for an algorithm to compute the reciprocal to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa's precision:

 $x[n + 1] = x[n](2 - v \times x[n])$

where v = the number whose reciprocal is to be found.

x[0], the seed value for the algorithm, is given by **RCPDP**. For each iteration, the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the mantissa; with the second iteration, the accuracy is 32 bits; with the third iteration, the accuracy is the full 52 bits.

Execution if (cond) $\operatorname{rcp}(src2) \rightarrow dst$ else nop

SPRU733

Note:

- If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits are set.
- 2) If src2 is QNaN, NaN out is placed in dst and the NAN2 bit is set.
- 3) If *src2* is a signed denormalized number, signed infinity is placed in *dst* and the DIV0, INFO, OVER, INEX, and DEN2 bits are set.
- If *src2* is signed 0, signed infinity is placed in *dst* and the DIV0 and INFO bits are set.
- 5) If *src2* is signed infinity, signed 0 is placed in *dst*.
- 6) If the result underflows, signed 0 is placed in *dst* and the INEX and UNDER bits are set. Underflow occurs when $2^{1022} < src2 <$ infinity.

Pipeline

Pipeline Stage	E1	E2
Read	src2_l src2_h	
Written	dst_l	dst_h
Unit in use	.S	

If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

Instruction Type	2-cycle DP			
Delay Slots	1			
Functional Unit Latency	1			
See Also	RCPSP, RSQRDP			
Example	RCPDP .S1 A1:A0,A3	:A2		
Before instru	ction	2 cycles after in	nstruction	
A1:A0 4010 0000h	0000 0000h A1	:A0 4010 0000h	0000 0000h	4.00
A3:A2 xxxx xxxxh	xxxx xxxxh A3	3:A2 3FD0 0000h	0000 0000h	0.25

3-198 Instruction Set

RCPSP	Single-Precision Floating-Point Reciprocal Approximation										
Syntax	RCPSP (.unit) src2, dst										
	.unit = .S1	or .S2									
Compatibility	C67x and	C67x+ CPU	I								
Opcode											
31 29 28 27	23 22	18	17		13	12	11		<u> </u>		6 5 4 3 2 1 0
creg z ds	t	5 src2	0 0	0 0	0	1	1	1 .	1 1	0	1 1 0 0 0 <i>s p</i>
0 1 0		0									
	Opcode n	nap field use	d F	or ope	eran	d ty	/pe				Unit
	src2 dst		X: SI	•							.S1, .S2
Description	The single	•	loating-	point	reci	pro	cal a	ppr	roxir	natio	on value of <i>src2</i> is
	accurate t than 2 ⁻⁸).	to the eight	th binai ate can	y pos be us	sitio sed	n (as	there a se	efor	e, r	nant	nd the mantissa is issa error is less or an algorithm to
	The Newto	on-Rhapson	algorith	m ca	n fu	rthe	er ext	tend	d the	e ma	antissa's precision:
	x[n + 1] =	x[n](2 – v × :	x[n])								
	where v =	the number	whose	recipi	roca	al is	to be	e fo	ound	Ι.	
	the accura		. Thus,	with	one	e ite	eratio	n, a	accı	urac	For each iteration, y is 16 bits in the Il 23 bits.
Execution	if (cond) else	rcp(<i>src2</i>) · nop	→ dst								

Notes:

- 1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits are set.
- 2) If src2 is QNaN, NaN out is placed in dst and the NAN2 bit is set.
- 3) If *src2* is a signed denormalized number, signed infinity is placed in *dst* and the DIV0, INFO, OVER, INEX, and DEN2 bits are set.
- 4) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO bits are set.
- 5) If *src2* is signed infinity, signed 0 is placed in *dst*.
- 6) If the result underflows, signed 0 is placed in dst and the INEX and UNDER bits are set. Underflow occurs when $2^{126} < src2 < infinity.$

Dinalina				
Pipeline	Pipeline Stage	E1		
	Read	src2		
	Written	dst		
	Unit in use	.S		
Instruction Type	Single-cycle			
Delay Slots	0			
Functional Unit Latency	1			
See Also	RCPDP, RSQF	RSP		
Example	RCPSP .S1 A	A1,A2		
	Before ir	nstruction		1 cycle after instructio
	A1 4080 00	000h 4.0	A1	4080 0000h 4.0
	A2 XXXX XX	xxh	A2	3E80 0000h 0.25

3-200 Instruction Set SPRU733

	Double-Precision Floating-Point Square-Root Reciprocal Approximation							
RSQRDP								
Syntax	RSQRDP (.unit) <i>src2</i> , <i>dst</i>							
	.unit = .S1 or .S2							
Compatibility	C67x and C67x+ CPU							
Opcode								
31 29 28 27	23 22 18 17 13 12 11 6 5 4 3 2 1 0							
creg z ds								
3 1 5	5 5 1 1 1							
	Opcode map field used For operand type Unit							
	<i>src2</i> dp .S1, .S2 <i>dst</i> dp							
	·							
Description	The 64-bit double-precision floating-point square-root reciprocal approxima-							
	tion value of <i>src2</i> is placed in <i>dst</i> . The operand is read in one cycle by using the src1 port for the 32 LSBs and the <i>src2</i> port for the 32 MSBs.							
	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less							
	The RSQRDP instruction provides the correct exponent, and the mantissa is							
	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2^{-8}). This estimate can be used as a seed value for an algorithm to compute the reciprocal square root to greater accuracy.							
	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2 ⁻⁸). This estimate can be used as a seed value for an algorithm to compute the reciprocal square root to greater accuracy. The Newton-Rhapson algorithm can further extend the mantissa's precision:							
	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2 ⁻⁸). This estimate can be used as a seed value for an algorithm to compute the reciprocal square root to greater accuracy. The Newton-Rhapson algorithm can further extend the mantissa's precision: $x[n + 1] = x[n](1.5 - (v/2) \times x[n] \times x[n])$							
	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2 ⁻⁸). This estimate can be used as a seed value for an algorithm to compute the reciprocal square root to greater accuracy. The Newton-Rhapson algorithm can further extend the mantissa's precision:							
	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2^{-8}). This estimate can be used as a seed value for an algorithm to compute the reciprocal square root to greater accuracy. The Newton-Rhapson algorithm can further extend the mantissa's precision: $x[n + 1] = x[n](1.5 - (v/2) \times x[n] \times x[n])$ where v = the number whose reciprocal square root is to be found. x[0], the seed value for the algorithm is given by RSQRDP . For each iteration							
	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2^{-8}). This estimate can be used as a seed value for an algorithm to compute the reciprocal square root to greater accuracy. The Newton-Rhapson algorithm can further extend the mantissa's precision: $x[n + 1] = x[n](1.5 - (v/2) \times x[n] \times x[n])$ where v = the number whose reciprocal square root is to be found. x[0], the seed value for the algorithm is given by RSQRDP . For each iteration the accuracy doubles. Thus, with one iteration, the accuracy is 16 bits in the mantissa; with the second iteration, the accuracy is 32 bits; with the third itera-							
	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2^{-8}). This estimate can be used as a seed value for an algorithm to compute the reciprocal square root to greater accuracy. The Newton-Rhapson algorithm can further extend the mantissa's precision: $x[n + 1] = x[n](1.5 - (v/2) \times x[n] \times x[n])$ where v = the number whose reciprocal square root is to be found. x[0], the seed value for the algorithm is given by RSQRDP . For each iteration the accuracy doubles. Thus, with one iteration, the accuracy is 16 bits in the mantissa; with the second iteration, the accuracy is 32 bits; with the third iteration, the accuracy is the full 52 bits.							
Execution	The RSQRDP instruction provides the correct exponent, and the mantissa is accurate to the eighth binary position (therefore, mantissa error is less than 2^{-8}). This estimate can be used as a seed value for an algorithm to compute the reciprocal square root to greater accuracy. The Newton-Rhapson algorithm can further extend the mantissa's precision: $x[n + 1] = x[n](1.5 - (v/2) \times x[n] \times x[n])$ where v = the number whose reciprocal square root is to be found. x[0], the seed value for the algorithm is given by RSQRDP . For each iteration the accuracy doubles. Thus, with one iteration, the accuracy is 16 bits in the mantissa; with the second iteration, the accuracy is 32 bits; with the third itera-							

SPRU733

Ν	otes:	
	0103.	

Instruction Set

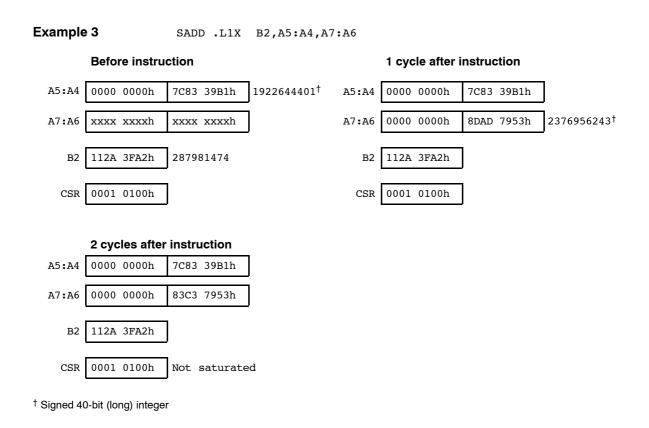
3-202

- If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits are set.
- 2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.
- 3) If *src2* is a negative, nonzero, nondenormalized number, NaN_out is placed in *dst* and the INVAL bit is set.
- 4) If *src2* is a signed denormalized number, signed infinity is placed in *dst* and the DIV0, INEX, and DEN2 bits are set.
- 5) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO bits are set. The Newton-Rhapson approximation cannot be used to calculate the square root of 0 because infinity multiplied by 0 is invalid.

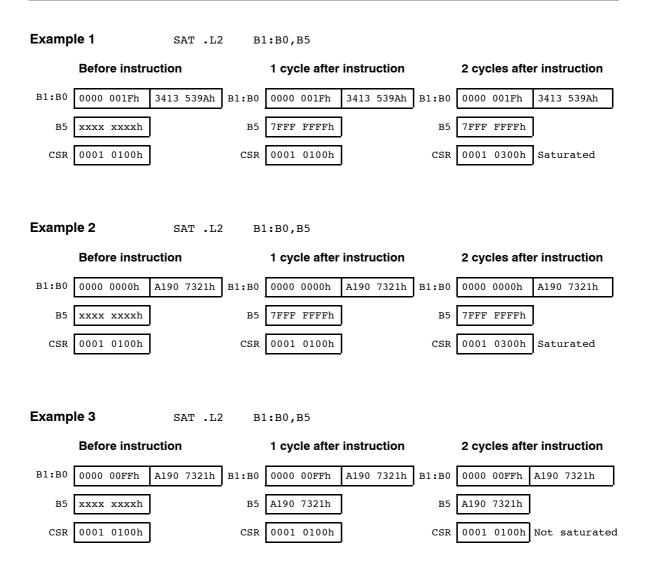
Pipeline	Pipeline Stage	E1	E2	•		
	Read	src2_l src2_h				
	Written	_ dst_l	dst_h			
	Unit in use	.S				
	roduced by c					
	source one c		e these instruc he upper worc			a of the DP
Instruction Type	source one c 2-cycle DP					a of the DP
Delay Slots Functional Unit	source one c					a of the DP
Delay Slots Functional Unit Latency	source one c 2-cycle DP 1	ycle before t				a of the DP
Instruction Type Delay Slots Functional Unit Latency See Also Example	source one c 2-cycle DP 1 1	ycle before t		of the DP		a of the DP
Delay Slots Functional Unit Latency See Also	source one c 2-cycle DP 1 1 RCPDP, RSC RCPDP	ycle before t	he upper word A1:A0,A3:A	of the DP		a of the DP
Delay Slots Functional Unit Latency See Also Example	source one c 2-cycle DP 1 1 RCPDP, RSC RCPDP	SRSP .s1	he upper word A1:A0,A3:A 2 cy	of the DP	source.	

Download from Www.Somanuals.com. All Manuals Search And Download.

RSQRSP	Single-Precision Floating-Point Square-Root Reciprocal Approximation									
Syntax	RSQRSP (.unit) src2, dst									
	.unit = .S1 or .S2									
Compatibility	C67x and C67x+ CPU									
Opcode										
31 29 28 27	23 22	18	17	13	12	11			6	5 4 3 2 1 0
creg z ds	t	src2	0 0 0	0 0	x	1	1 1	1	1 (
3 1 5		5			1					1 1
	Opcode m	ap field use	d For	operan	d ty	'pe				Unit
	src2 dst		xsp sp							.S1, .S2
			-6							
Description	•	-precision flo placed in <i>dst</i>	•••	int squa	ıre-r	oot r	ecip	roc	al ap	proximation value
	accurate t than 2 ⁻⁸).	o the eight	h binary ite can b	positio e used	n (as	there a se	efore ed	ə, n valı	nanti ue fo	nd the mantissa is ssa error is less or an algorithm to
	The Newto	on-Rhapson	algorithn	n can fu	rthe	er ext	tend	l the	e ma	ntissa's precision:
	x[n + 1] = x	x[n](1.5 – (v,	/2) × x[n]	×x[n])						
	where v =	the number	whose re	eciproca	al so	quare	e roc	ot is	to b	e found.
	the accura		. Thus, v	vith one	ite	ratio	n, a	accu	iracy	For each iteration, is 16 bits in the 23 bits.
Execution	if (cond) else	sqrcp <i>(src2</i> nop	?) \rightarrow dst							


	Note:							
	 If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 b are set. 	oits						
	2) If <i>src2</i> is QNaN, NaN_out is placed in <i>dst</i> and the NAN2 bit is set.							
	 If src2 is a negative, nonzero, nondenormalized number, NaN_out placed in dst and the INVAL bit is set. 	t is						
	If <i>src2</i> is a signed denormalized number, signed infinity is placed in <i>dst</i> and the DIV0, INEX, and DEN2 bits are set.							
	5) If <i>src2</i> is signed 0, signed infinity is placed in <i>dst</i> and the DIV0 and INI bits are set. The Newton-Rhapson approximation cannot be used calculate the square root of 0 because infinity multiplied by 0 is inval	to						
	6) If <i>src2</i> is positive infinity, positive 0 is placed in <i>dst</i> .							
Pipeline	Pipeline Stage E1							
	Read src2							
	Written dst							
	Unit in use .S							
Instruction Type	Single-cycle							
Delay Slots)							
Functional Unit Latency	1							
See Also	RCPSP, RSQRDP							
Example 1	RSQRSP .S1 A1,A2							
	Before instruction 1 cycle after instruction							
	A1 4080 0000h 4.0 A1 4080 0000h 4.0							
	A2 xxxx xxxxh A2 3F00 0000h 0.5							
Example 2	RSQRSP .S2X A1,B2							
	Before instruction 1 cycle after instruction							
	A1 4109 999Ah 8.6 A1 4109 999Ah 8.6							
	B2 xxxx xxxxh B2 3EAE 8000h 0.34082031	L						

3-204 Instruction Set


SADD	Add Two Signed Intege	rs With Saturation	
Syntax	SADD (.unit) <i>src1</i> , <i>src2</i> , <i>d</i>	st	
-			
	.unit = .L1 or .L2		
Compatibility	C62x, C64x, C67x, and C	67x+ CPU	
Opcode			
31 29 28 27	23 22 18 17	13 12 11	5 4 3 2 1 0
creg z	dst src2	src1 x	op 1 1 0 s p
3 1	5 5	5 1	7 1 1
	Opcode map field used	For operand type	Unit Opfield
	src1	sint	.L1, .L2 001 0011
	src2 dst	xsint sint	
	src1 src2	xsint slong	.L1, .L2 011 0001
	dst	slong	
	src1	scst5	.L1, .L2 001 0010
	src2	xsint	,
	dst	sint	
	src1	scst5	.L1, .L2 011 0000
	src2	slong	
	dst	slong	
Description	<i>src1</i> is added to <i>src2</i> and following rules:	l saturated, if an overf	low occurs according to the
	 If the <i>dst</i> is an int and If the <i>dst</i> is a long and 	$src1 + src2 < -2^{31}$, the	then the result is $2^{39} - 1$.
	The result is placed in <i>dst.</i> register (CSR) is set one o		e SAT bit in the control status n.
Execution	if (cond) <i>src1</i> + <i>s src2</i> - else nop	→ dst	
SPRU733			Instruction Set 3-205

Pipeline Pipeline Stage E1 Read src1, src2 Written dst Unit in use .L Instruction Type Single-cycle **Delay Slots** 0 See Also ADD, SSUB Example 1 SADD .L1 A1,A2,A3 **Before instruction** 1 cycle after instruction 2 cycles after instruction 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h A1 5A2E 51A3h A2 012A 3FA2h 19546018 A2 012A 3FA2h 012A 3FA2h A2 1532531013 5B58 9145h A3 5B58 9145h A3 xxxx xxxxh A3 CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated Example 2 SADD .L1 A1,A2,A3 **Before instruction** 1 cycle after instruction 2 cycles after instruction 4367 71F2h 1130852850 4367 71F2h A1 A1 A1 4367 71F2h 1512984995 5A2E 51A3h A2 5A2E 51A3h 5A2E 51A3h A2 A2 7FFF FFFFh 2147483647 A3 xxxx xxxxh A3 A3 7FFF FFFFh CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

3-206 Instruction Set

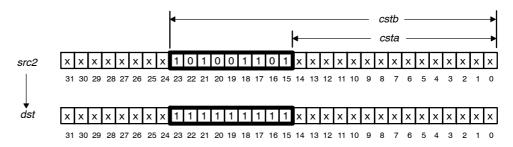
SAT		5	Saturate a	40-Bit Int	eger to) a 32	2-Bit In	teg	er					
Syntax		ę	SAT (.unit)	src2, dst										
			unit = .L1 c	or .L2										
Compatib	oility	(C62x, C64>	k, C67x, an	d C67x	+ CP	U							
Opcode														
31 29	28 27		23 22	18	17		13 12	11				54	32	1 0
creg	z	dst		src2	0 0	0 0		1	0	0 0	0 0	0 1	1 0	s p
3	1	5		5			1							1 1
		-	-	ap field use	d F	or op	erand ty	/pe	•			Unit		
			src2 dst			ong nt						.L1, .L	2	
		-												
Executior	ı	i	n <i>dst</i> . If a s		curs, th is writt $2^{31} - 1)$ $1) \rightarrow c$	e SAī en.)) dst							•	
		e	else nop	else if (<i>src</i> -2 ³¹ - else <i>src</i> 2 ₃ }	→ dst	-								
Pipeline		-	Pipeline Stage	E1										
		-	Read	src2										
			Written	dst										
		_	Unit in use	.L										
Instructio	n Type	S	Single-cycle	е										
Delay Slo	ts	()											
3-208	Instruct	ion Set											SPR	U733

SPRU733

SET	Set a Bit Field						
Syntax	SET (.unit) <i>src2</i> , <i>csta</i> , <i>cstb</i> , <i>dst</i> or SET (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i>						
	.unit = .S1 or .S2						
Compatibility	C62x, C64x, C67x, and C67x+ CPU						
Opcode	Constant form:						
31 29 28 27	23 22 18 17 13 12 8 7 6 5 4 3 2 1 0						
creg z dsi	t src2 csta cstb 1 0 0 0 1 0 s p						
3 1 5	5 5 5 1 1						
	Opcode map field used For operand type Unit						
	src2 uint .S1, .S2						
	csta ucst5						
	cstb ucst5 dst uint						
	dst uint						
Opcode	Register form:						
31 29 28 27	23 22 18 17 13 12 11 6 5 4 3 2 1 0						
creg z dsi	t src2 src1 x 1 1 1 0 1 1 1 0 0 0 s p						

1	5	5	5	1		1 1
		Opcode map field used	For operan	d type	Unit	
		src2	xuint		.S1, .S2	

uint


uint

src1

dst

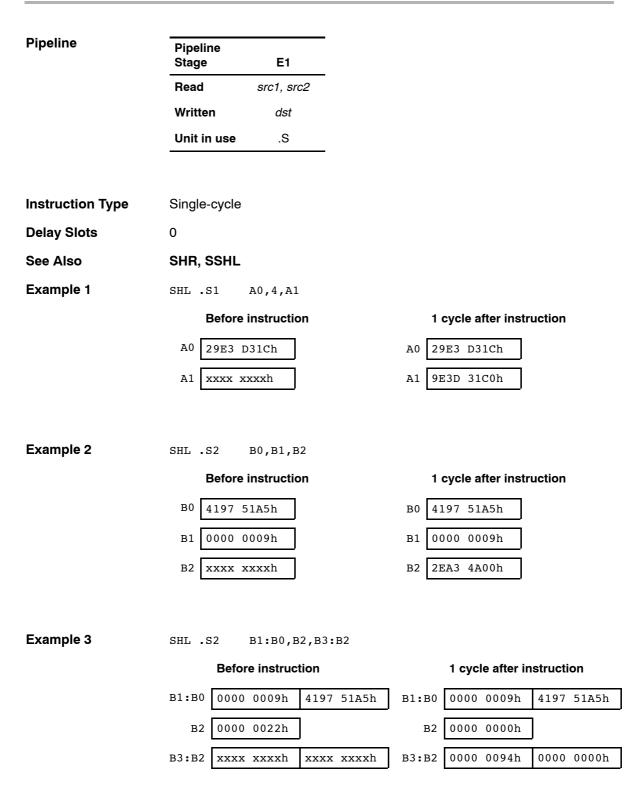
3

Description The field in *src2*, specified by *csta* and *cstb*, is set to all 1s. The *csta* and *cstb* operands may be specified as constants or in the ten LSBs of the *src1* register, with *cstb* being bits 0–4 and *csta* bits 5–9. *csta* signifies the bit location of the LSB of the field and *cstb* signifies the bit location of the MSB of the field. In other words, *csta* and *cstb* represent the beginning and ending bits, respectively, of the field to be set to all 1s. The LSB location of *src2* is 0 and the MSB location of *src2* is 31. In the example below, *csta* is 15 and *cstb* is 23. Only the ten LSBs are valid for the register version of the instruction. If any of the 22 MSBs are non-zero, the result is invalid.

Execution	If the constant form is used:							
	if (cond) else nop	<i>src2</i> SET <i>csta</i> ,	cstb \rightarrow dst					
	If the registe	If the register form is used:						
	if (cond) else nop	src2 SET src1 _{9.}	$_{.5}$, src1 _{4.0} \rightarrow dst					
Pipeline	Pipeline Stage	E1						
	Read	src1, src2						
	Written	dst						
	Written Unit in use	dst .S						
Instruction Type		.S						
Instruction Type Delay Slots	Unit in use	.S						

SPRU733

Example 1	SET .S1 A0,7,21,A1	
	Before instruction	1 cycle after instruction
	A0 4B13 4A1Eh	A0 4B13 4A1Eh
	Al xxxx xxxxh	A1 4B3F FF9Eh
Example 2	SET .S2 B0,B1,B2	
	Before instruction	1 cycle after instruction
	B0 9ED3 1A31h	B0 9ED3 1A31h
	B1 0000 C197h	B1 0000 C197h
	B2 xxxx xxxxh	B2 9EFF FA31h


3-212 Instruction Set

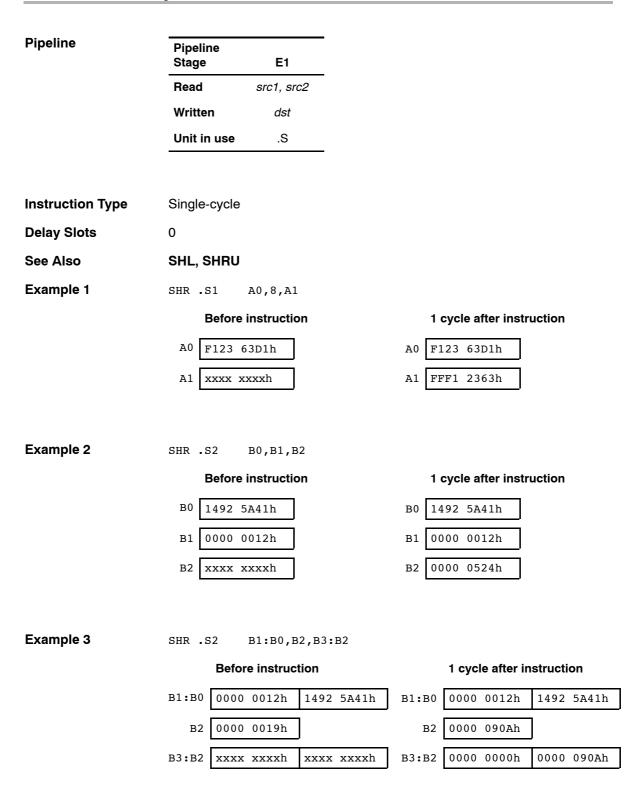
SHL	Arithmetic Shift Left	Arithmetic Shift Left								
Syntax	SHL (.unit) <i>src2</i> , <i>src1</i> ,	SHL (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i>								
	.unit = .S1 or .S2									
Compatibility	C62x, C64x, C67x, an	id C67x+ CPU								
Opcode										
31 29 28 27	23 22 18	17 13	12 11	6 5 4 3 2 1 0						
creg z	dst src2	src1	х ор	1 0 0 0 <i>s p</i>						
3 1	5 5	5	1 6	1 1						

Opcode map field used	For operand type	Unit	Opfield
src2	xsint	.S1, .S2	11 0011
src1	uint		
dst	sint		
src2	slong	.S1, .S2	11 0001
src1	uint		
dst	slong		
src2	xuint	.S1, .S2	01 0011
src1	uint		
dst	ulong		
src2	xsint	.S1, .S2	11 0010
src1	ucst5		
dst	sint		
src2	slong	.S1, .S2	11 0000
src1	ucst5		
dst	slong		
src2	xuint	.S1, .S2	01 0010
src1	ucst5		
dst	ulong		

DescriptionThe *src2* operand is shifted to the left by the *src1* operand. The result is placed
in *dst*. When a register is used, the six LSBs specify the shift amount and valid
values are 0-40. When an immediate is used, valid shift amounts are 0-31.
If 39 < src1 < 64, src2 is shifted to the left by 40. Only the six LSBs of *src1* are
used by the shifter, so any bits set above bit 5 do not affect execution.**Execution**if (cond) $src2 << src1 \rightarrow dst$
else nop

```
SPRU733
```


3-214 Instruction Set


SHR	Arithmetic Shift Right
Syntax	SHR (.unit) src2, src1, dst
	.unit = .S1 or .S2
Compatibility	C62x, C64x, C67x, and C67x+ CPU
Opcode	

31	29	28	27	23	22 18	17	13 12	11	6	5	4	3	2	1	0
	creg	Ζ	dst		src2	src1	x	ор		1	0	0	0	s	р
	3	1	5		5	5	1	6						1	1

Opcode map field used	For operand type	Unit	Opfield
src2	xsint	.S1, .S2	11 0111
src1	uint		
dst	sint		
src2	slong	.S1, .S2	11 0101
src1	uint		
dst	slong		
src2	xsint	.S1, .S2	11 0110
src1	ucst5		
dst	sint		
src2	slong	.S1, .S2	11 0100
src1	ucst5		
dst	slong		

DescriptionThe src2 operand is shifted to the right by the src1 operand. The sign-extended
result is placed in dst. When a register is used, the six LSBs specify the shift
amount and valid values are 0–40. When an immediate value is used, valid
shift amounts are 0–31.If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.Executionif (cond) $src2 >>s src1 \rightarrow dst$
else nop

SPRU733

SHRU	Logical Shift Right
Syntax	SHRU (.unit) src2, src1, dst
	.unit = .S1 or .S2
Compatibility	C62x, C64x, C67x, and C67x+ CPU
Opcode	

31	29	28	27	2	3 22	2 18	17		13	12	11		6	5	4	3	2	1	0
creg		Ζ		dst		src2		src1		х		ор		1	0	0	0	s	р
3		1		5		5		5		1		6						1	1

Opcode map field used	For operand type	Unit	Opfield
src2	xuint	.S1, .S2	10 0111
src1	uint		
dst	uint		
src2	ulong	.S1, .S2	10 0101
src1	uint		
dst	ulong		
src2	xuint	.S1, .S2	10 0110
src1	ucst5		
dst	uint		
src2	ulong	.S1, .S2	10 0100
src1	ucst5		
dst	ulong		

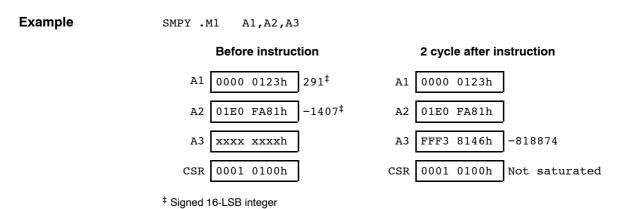
Description The *src2* operand is shifted to the right by the *src1* operand. The zero-extended result is placed in *dst*. When a register is used, the six LSBs specify the shift amount and valid values are 0–40. When an immediate value is used, valid shift amounts are 0–31.

If 39 < *src1* < 64, *src2* is shifted to the right by 40. Only the six LSBs of *src1* are used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) $src2 >>z src1 \rightarrow dst$ else nop

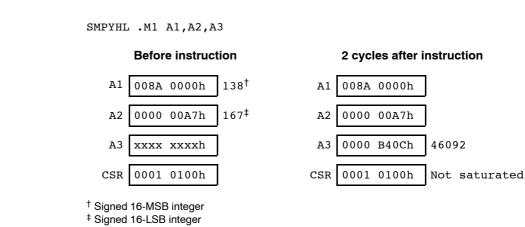
SPRU733

Pipeline	Pipeline Stage	E1
	Read	src1, src2
	Written	dst
	Unit in use	.S
Instruction Type	Single-cycle	9
Delay Slots	0	
See Also	SHL, SHR	
Example	SHRU .S1	A0,8,A1
	Before	e instruction
	A0 F123	63D1h
	A1 XXXX	xxxxh

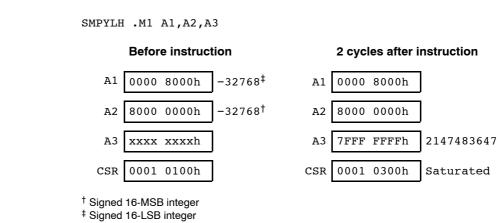

1 cycle after instruction

A0	F123	63D1h	
A1	00F1	2363h	

SMPY Multiply Signed 16 LSB × Signed 16 LSB With Left Shift and Saturation										uration	
Syntax		SMPY	SMPY (.unit) src1, src2, dst								
		.unit =	.M1 or .M2								
Compati	bility	C62x,	C64x, C67x, an	d C67x+ Cl	۶U						
Opcode	-										
• 31 29	9 28 27	23	22 18	17	13 12	11		76	543	2 1 0	
creg	z	dst	src2	src1	x	1 1	0 1	0 0	000		
3	1	5	5	5	1	-				1 1	
		Орсос	de map field used	ap field used For oper		d type			Unit		
		src1 src2 dst			b16 sb16 t				.M1, .M2	2	
Executio	'n		if (((<i>src1</i>)		source (1) != 800	operan 00 000	ids are				
			else 7EEE	$FFFFh \rightarrow$	det						
			}		031						
		else n	ор								
Pipeline		Pipeli Stage		E	2						
		Read	src1, sr	c2							
		Writte	n	ds	t						
		Unit i	n use .M								
Instructio	on Type	Single	-cycle (16 × 16)								
Delay Slo	ots	1									
See Also		MPY, S	SMPYH, SMPY	HL, SMPYL	.H						
0001700										0.044	


SPRU733

SMPY Multiply Signed 16 LSB x Signed 16 LSB With Left Shift and Saturation


SMPYH	Multiply Sign	ed 16 MSB	× Signed 16 N	ASB With Le	eft Shift and Saturation					
Syntax	SMPYH (.un	it) <i>src1</i> , <i>src2</i> ,	dst							
	.unit = .M1 or .M2									
Compatibility	C62x, C64x,	C67x, and C	67x+ CPU							
Opcode										
31 29 28 27	23 22	18 17	13 1	2 11	7 6 5 4 3 2 1 0					
creg z	dst s	src2	src1 >	x 0 0 0	1 0 0 0 0 0 0 <i>s p</i>					
3 1	5	5	5	1	1 1					
	Opcode map	field used	For operar	nd type	Unit					
	src1 src2 dst		smsb16 xsmsb16 sint		.M1, .M2					
Execution	is saturated to one cycle aft if (cond)	to 7FFF FFFI er <i>dst</i> is writt [f (((<i>src1</i> × <i>s</i>	⁻ h. If a saturati	on occurs, th operands an 000 0000h)	0 0000h, then the result ne SAT bit in CSR is set re signed by default.					
	(else		001						
]		FFh <i>→ dst</i>							
	else nop									
Pipeline	Pipeline Stage	E1	E2							
	Read	src1, src2								
	Written		dst							
	Unit in use	.M								
Instruction Type	Single-cycle	(16 × 16)								
Delay Slots	1									
See Also	MPYH, SMP	Y, SMPYHL,	SMPYLH							
SUDI 1722				1	activities for 0.001					

SMPYHL	Multiply Signed 16 MSB × Signed 16 LSB With Left Shift and Saturation									
Syntax	SMPYHL (.unit) src1, src2, dst									
	.unit = .M1 or .M2									
Compatibility	C62x, C64x, C67x, and C67x+ CPU									
Opcode										
31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1 0									
creg z ds										
3 1 5	5 5 1 1 1									
	Opcode map field used For operand type Unit									
	src1 smsb16 .M1, .M2 src2 xslsb16									
	dst sint									
Description	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is left shifted by 1 and placed in <i>dst</i> . If the left-shifted result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set one cycle after <i>dst</i> is written.									
Execution	$\begin{array}{ll} \text{if (cond)} & \{ \\ & \text{if (((src1 \times src2) << 1) != 8000 0000h)} \\ & & ((src1 \times src2) << 1) \rightarrow dst \end{array}$									
	else 7FFF FFFFh <i>→ dst</i>									
	}									
	else nop									
Pipeline	Pipeline Stage E1 E2									
	Read src1, src2									
	Written dst									
	Unit in use .M									
Instruction Type	Single-cycle (16 \times 16)									
Delay Slots	1									
See Also	MPYHL, SMPY, SMPYH, SMPYLH									
3-222 Instruction S	Set SPRU733									

Example

SMPYLH	Multiply Signed 16 LSB × Signed 16 MSB With Left Shift and Saturation			
Syntax	SMPYLH (.unit) src1, src2, dst			
	.unit = .M1 or .M2			
Compatibility	C62x, C64x, C67x, and C67x+ CPU			
Opcode				
31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1 0			
creg z ds				
3 1 5	5 5 1 1 1			
	Opcode map field used For operand type Unit			
	src1slsb16.M1, .M2src2xsmsb16			
	dst sint			
Description	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is left shifted by 1 and placed in <i>dst</i> . If the left-shifted result is 8000 0000h, then the result is saturated to 7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set one cycle after <i>dst</i> is written.			
Execution	if (cond) {			
	else 7FFF FFFFh <i>→ dst</i>			
	} else nop			
Pipeline	Pipeline Stage E1 E2			
	Read src1, src2			
	Written dst			
	Unit in use .M			
Instruction Type	Single-cycle (16 \times 16)			
Delay Slots	1			
See Also	MPYLH, SMPY, SMPYH, SMPYHL			
3-224 Instruction S	Set SPRU733			

SPRU733

Example

Convert Single-Precision Floating-Point Value to Double- Floating-Point Value	Precision		
SPDP (.unit) <i>src2</i> , <i>dst</i>			
.unit = .S1 or .S2			
C67x and C67x+ CPU			
23 22 18 17 13 12 11 6 5	4 3 2 1 0		
src2 0 0 0 0 0 x 0 0 0 1 0 1	0 0 0 <i>s p</i>		
5 1	1 1		
Opcode map field used For operand type Unit			
src2 xsp .S1, .S2 dst dp			
The single-precision value in <i>src2</i> is converted to a double-precise placed in <i>dst</i> .	sion value and		
if (cond)dp($src2$) $\rightarrow dst$ elsenop			
Notes:			
 If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits are set. 			
2) If <i>src2</i> is QNaN, NaN_out is placed in <i>dst</i> and the NAN2 b	it is set.		
3) If <i>src2</i> is a signed denormalized number, signed 0 is placed in <i>dst</i> and the INEX and DEN2 bits are set.			
4) If <i>src2</i> is signed infinity, INFO bit is set.			
5) No overflow or underflow can occur.			
	Floating-Point Value SPDP (.unit) $src2$, dst unit = .S1 or .S2 C67x and C67x+ CPU 22 23 22 18 17 13 23 22 18 10 23 22 18 13 12 Opcode map field used For operand type src2 xsp dst dst dst dst glaced in dst . if (cond) dp(src2) $\rightarrow dst$ else nop Notes: 1) If $src2$ is SNaN, NaN_out is placed in dst and the INVAL ar are set. 2)		

SPDP Convert Single-Precision Floating-Point Value to Double-Precision Floating-Point Value

Pipeline	Pipeline Stage	E1	E2
	Read	src2	
	Written	dst_l	dst_h
	Unit in use	.S	

If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

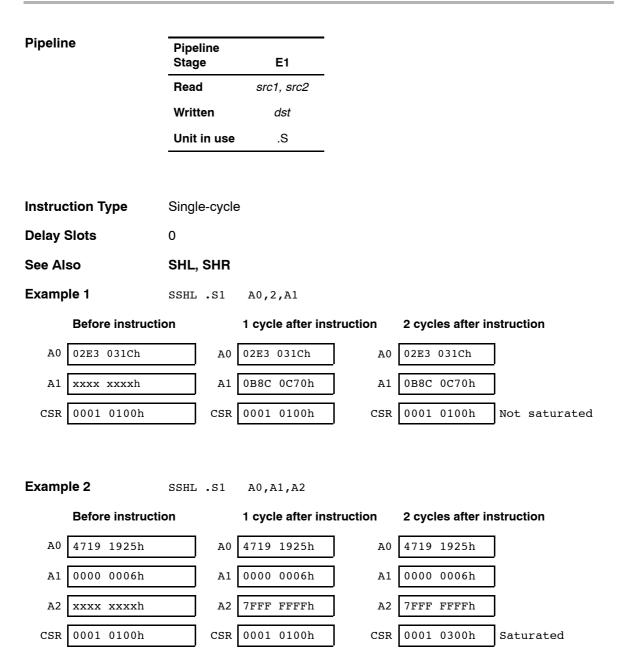
Instruction Type	2-cycle DP	
Delay Slots	1	
Functional Unit Latency	1	
See Also	DPSP, INTDP, SPINT, SPTRUNC	
Example	SPDP .S1X B2,A1:A0	
Before instru	ction	2 cycles after instruction
B2 4109 999Ah	8.6 B2	4109 999Ah 8.6
A1:A0 xxxx xxxxh	xxxx xxxxh A1:A0	4021 3333h 4000 0000h 8.6

SPINT	Convert Single-Precision Floating-Point Value to	Integer			
Syntax	SPINT (.unit) <i>src2</i> , <i>dst</i>				
	.unit = .L1 or .L2				
Compatibility	C67x and C67x+ CPU				
Opcode					
31 29 28 27	23 22 18 17 13 12 11	5 4 3 2 1 0			
creg z ds 3 1 5	src2 0 0 0 0 0 x 0 0 0 1	0 1 0 1 1 0 <i>s p</i>			
5 1 5					
	Opcode map field used For operand type Unit				
	src2 xsp dst sint	.L1, .L2			
Description	The single-precision value in <i>src2</i> is converted to an inte	eger and placed in <i>dst</i> .			
Execution	if (cond) $int(src2) \rightarrow dst$				
	else nop				
	Notes:				
	 If <i>src2</i> is NaN, the maximum signed integration 8000 0000h) is placed in <i>dst</i> and the INVAL bit is 	•			
	2) If <i>src2</i> is signed infinity or if overflow occurs, the maximum signed integer (7FFF FFFFh or 8000 0000h) is placed in <i>dst</i> and the INEX and OVER bits are set. Overflow occurs if <i>src2</i> is greater than $2^{31} - 1$ or less than -2^{31} .				
	 If src2 is denormalized, 0000 0000h is placed in dsi bits are set. 	t and INEX and DEN2			

_					
Pipeline	Pipeline				
	Stage	E1	E2	E3	E4
	Read	src2			
	Written				dst
	Unit in use	.L			
Instruction Type	4-cycle				
Delay Slots	3				
Functional Unit	1				
Latency					
See Also	DPINT, INTSP,	SPDP, SPTRL	JNC		
Example	SPINT .L1 A	1,A2			
	Before in:	struction	4	cycles after inst	ruction
	A1 4109 999	99Ah 8.6	A1 41	109 999Ah 8.	6
	A2 XXXX XXX	xxh	A2 0	000 0009h 9	

SPTRUNC Convert Single-Precision Floating-Point Value to Integer With Truncation

SPTRUNC	Conv	ert Single-Precision Floating-Point Value to Integer With Truncation			
Syntax	SPTF	RUNC (.unit) <i>src2</i> , <i>dst</i>			
	.unit =	= .L1 or .L2			
Compatibility	C67x	and C67x+ CPU			
Opcode					
31 29 28 27	23				
creg z ds 3 1 5	t	src2 0 0 0 0 0 x 0 0 0 1 0 1 1 1 0 s p			
5 1 5					
	Орсо	ode map field used For operand type Unit			
	src2 dst	xsp .L1, .L2 sint			
		Sint			
Description	This i	single-precision value in <i>src2</i> is converted to an integer and placed in <i>dst</i> . instruction operates like SPINT except that the rounding modes in the CR are ignored, and round toward zero (truncate) is always used.			
Execution	if (cor else	nd) $int(src2) \rightarrow dst$ nop			
	Note	ידי איז איז איז איז איז איז איז איז איז אי			
	,	If <i>src2</i> is NaN, the maximum signed integer (7FFF FFFFh or B000 0000h) is placed in <i>dst</i> and the INVAL bit is set.			
	 If <i>src2</i> is signed infinity or if overflow occurs, the maximum signed integer (7FFF FFFFh or 8000 0000h) is placed in <i>dst</i> and the INEX and OVER bits are set. Overflow occurs if <i>src2</i> is greater than 2³¹ – 1 or less than –2³¹. 				
	,	If <i>src2</i> is denormalized, 0000 0000h is placed in <i>dst</i> and INEX and DEN2 pits are set.			
	4) l [.]	f rounding is performed, the INEX bit is set.			
	L				


Pipeline	Dineline				
	Pipeline Stage	E1	E2	E3	E4
	Read	src2			
	Written				dst
	Unit in use	.L			
Instruction Type	4-cycle				
Delay Slots	3				
Functional Unit Latency	1				
See Also	DPTRUNC, SI	PDP, SPINT			
Example	SPTRUNC .L1X	B1,A2			
	Before in	struction	4	cycles after inst	ruction
	B1 4109 99	99Ah 8.6	B1 4	109 999Ah 8	.6
	A2 XXXX XX	xxh	A2 0	000 0008h 8	

SSHL		Shift	Left With Satur	atior	ז						
Syntax		SSHL	L (.unit) <i>src2, src</i>	1, ds	t						
		.unit =	= .S1 or .S2								
Compatibility		C62x,	, C64x, C67x, ar	d C6	7x+ CP	U					
Opcode											
31 29 28 27		23	22 18	17		13	12	11		6	5 4 3 2 1 0
creg z	dst		src2		src1		х		ор		1 0 0 0 <i>s p</i>
3 1	5		5		5		1		6		1 1
		Орсс	ode map field use	d	For ope	erano	d ty	ре	U	Init	Opfield
		src2			xsint				.S1	, .S2	10 0011
		src1			uint						
		dst			sint						
		src2			xsint				.S1	, .S2	10 0010
		src1 dst			ucst5 sint						
					Sint						

Description The *src2* operand is shifted to the left by the *src1* operand. The result is placed in *dst*. When a register is used to specify the shift, the five least significant bits specify the shift amount. Valid values are 0 through 31, and the result of the shift is invalid if the shift amount is greater than 31. The result of the shift is saturated to 32 bits. If a saturate occurs, the SAT bit in CSR is set one cycle after *dst* is written.

Executionif (cond){if (bit(31) through bit(31-src1) of src2 are all 1s or all 0s)
dst = src2 << src1;
else if (src2 > 0)
saturate dst to 7FFF FFFFh;
else if (src2 < 0)
saturate dst to 8000 0000h;
}
else nop

3-232 Instruction Set

dst

src1 src2

dst

src1 src2

dst

src1

src2

dst

SSUB	Sub	tract Two Signed	d Integers With	Saturatio	on				
Syntax	SSU	B (.unit) src1, src	2, dst						
	.unit	= .L1 or .L2							
Compatibility	C62	C62x, C64x, C67x, and C67x+ CPU							
Opcode									
31 29 28 27	2	3 22 18	17 13	12 11		543210			
creg z	dst	src2	src1	x	ор	1 1 0 <i>s p</i>			
3 1	5	5	5	1	7	1 1			
	Оро	code map field use	d For operan	d type	Unit	Opfield			
	src1 src2		sint xsint		.L1, .L2	000 1111			

sint

xsint

sint

sint scst5

xsint

sint

scst5

slong

slong

Description	src2 is subtracted from src1 and is saturated to the result size according to the
	following rules:

1) If the result is an int and $src1 - src2 > 2^{31} - 1$, then the result is $2^{31} - 1$.

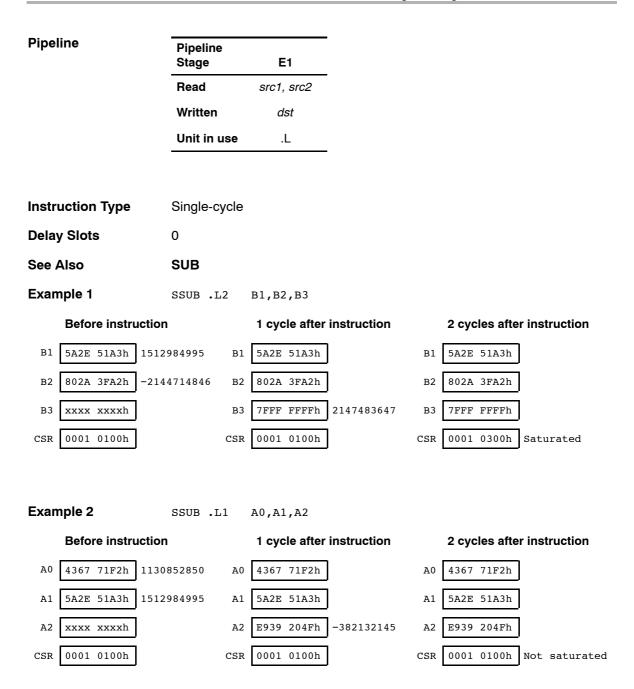
.L1, .L2

.L1, .L2

.L1, .L2

001 1111

000 1110


010 1100

- 2) If the result is an int and $src1 src2 < -2^{31}$, then the result is -2^{31} .
- 3) If the result is a long and $src1 src2 > 2^{39} 1$, then the result is $2^{39} 1$.
- 4) If the result is a long and $src1 src2 < -2^{39}$, then the result is -2^{39} .

The result is placed in *dst*. If a saturate occurs, the SAT bit in CSR is set one cycle after *dst* is written.

Execution if (cond) $src1 - s src2 \rightarrow dst$ else nop

3-234 Instruction Set

STB	Store Byte to Memory Wit Register Offset	th a 5-Bit Unsigned Constant Offset or	
Syntax	Register Offset	Unsigned Constant Offset	
	STB (.unit) src, *+baseR[of	fsetR] STB (.unit) src, *+baseR[ucst5]	
	.unit = .D1 or .D2		
Compatibility	C62x, C64x, C67x, and C67	x+ CPU	
Opcode			
31 29 28 27	23 22 18 17	13 12 9 8 7 6 4 3 2	1 0
creg z	src baseR offse	etR/ucst5 mode 0 y 0 1 1 0 1	s p
3 1	5 5	5 4 1	1 1

Description Stores a byte to memory from a general-purpose register (*src*). Table 3–11 (page 3-33) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **STB**, the 8 LSBs of the *src* register are stored. *src* can be in either register file, regardless of the .D unit or *baseR* or *offsetR* used. The *s* bit determines which file *src* is read from: s = 0 indicates *src* will be in the A register file and s = 1 indicates *src* will be in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to zero when no bracketed register or constant is specified. Stores that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Execution	if (cond) else nop	$src \rightarrow mem$
Pipeline	Pipeline Stage	E1
	Read	baseR, offsetR, src
	Written	baseR

Unit in use

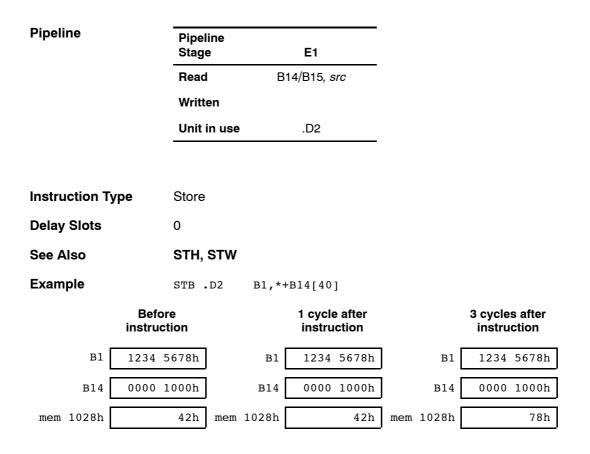
Instruction T	y pe Sto	re			
Delay Slots	0 Fo	more informati	on on delay slots	s for a store, s	ee Chapter 4.
See Also	ST	H, STW			
Example	ST	3.D1 A1,*	A10		
	Before instruction		1 cycle after instruction		3 cycles after instruction
A1	9A32 7634	h A1	9A32 7634h	A1	9A32 7634h
A10	0000 0100	h A10	0000 0100h	A10	0000 0100h
T		_		1	

.D2

STB	Store Byte to Memory With a 15-Bit Unsigned Constant Offset									
Syntax	STB (.unit) <i>src</i> , *+B14/B15[<i>ucst15</i>]									
	.unit = .D2									
Compatibility	C62x, C64x, C67x, and C67x+ CPU									
Opcode										
31 29 28 27	23 22	8	7	6		4	3	2	1	0
creg z sr	c ucst15		у	0	1	1	1	1	s	р
3 1 5	15		1						1	1

Description Stores a byte to memory from a general-purpose register (*src*). The memory address is formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (*ucst15*). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction executes only on the .D2 unit.

The offset, *ucst15*, is scaled by a left-shift of 0 bits. After scaling, *ucst15* is added to *baseR*. The result of the calculation is the address that is sent to memory. The addressing arithmetic is always performed in linear mode.


For **STB**, the 8 LSBs of the *src* register are stored. *src* can be in either register file. The *s* bit determines which file *src* is read from: s = 0 indicates *src* is in the A register file and s = 1 indicates *src* is in the B register file.

Square brackets, [], indicate that the *ucst15* offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Execution if (cond) $src \rightarrow mem$ else nop

Note:

This instruction executes only on the B side (.D2).

STH	Store Halfword to Memory With Register Offset	h a 5-Bit Unsigned Constant Offset or
Syntax	Register Offset	Unsigned Constant Offset
	STH (.unit) <i>src</i> , *+ <i>baseR[offsetR]</i>	STH (.unit) <i>src</i> , *+ <i>baseR[ucst5]</i>
	.unit = .D1 or .D2	
Compatibility	C62x, C64x, C67x, and C67x+ CF	PU
Opcode		
31 29 28 27	23 22 18 17	13 12 9 8 7 6 4 3 2 1 0
creg z s	rc baseR offsetR/uc	st5 mode 0 y 1 0 1 0 1 s p
3 1	5 5 5	4 1 1 1

Description Stores a halfword to memory from a general-purpose register (*src*). Table 3–11 (page 3-33) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

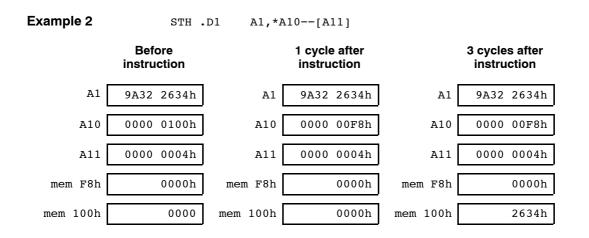
offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, *offsetR/ucst5* is added to or subtracted from *baseR*. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of *baseR* before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **STH**, the 16 LSBs of the *src* register are stored. *src* can be in either register file, regardless of the .D unit or *baseR* or *offsetR* used. The *s* bit determines which file *src* is read from: s = 0 indicates *src* will be in the A register file and s = 1 indicates *src* will be in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to zero when no bracketed register or constant is specified. Stores that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 1. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.


Execution	if (cond)	$\textit{src} \rightarrow \textit{mem}$
	else nop	

Pipeline	Pipeline Stage	E1
	Read	baseR, offsetR, src
	Written	baseR
	Unit in use	.D2

Instruction Type	Store	
Delay Slots) For more information on delay slots for a store, see Chapter 4.	
See Also	STB, STW	
Example 1	STH .D1 A1,*+A10(4)	

	Before instruction		1 cycle after instruction		3 cycles after instruction
A1	9A32 7634h	A1	9A32 7634h	A1	9A32 7634h
A10	0000 0100h	A10	0000 0100h	A10	0000 0100h
mem 104h	1134h	mem 104h	1134h	mem 104h	7634h

SPRU733

3-242 Instruction Set

STH	Store	Store Halfword to Memory With a 15-Bit Unsigned Constant Offset								
Syntax	STH (STH (.unit) <i>src</i> , *+B14/B15[<i>ucst15</i>]								
	.unit =	.unit = .D2								
Compatibility	C62x,	C62x, C64x, C67x, and C67x+ CPU								
Opcode										
31 29 28 27	23	22 8	7	6		4	3	2	1	0
creg z	src	ucst15	у	1	0	1	1	1	s	р

15

Description	Stores a halfword to memory from a general-purpose register (<i>src</i>). The memory address is formed from a base address register B14 ($y = 0$) or B15 ($y = 1$) and an offset, which is a 15-bit unsigned constant (<i>ucst15</i>). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction executes only on the .D2 unit.							
	The offset, <i>ucst15</i> , is scaled by a left-shift of 1 bit. After scaling, <i>ucst15</i> is added to <i>baseR</i> . The result of the calculation is the address that is sent to memory. The addressing arithmetic is always performed in linear mode.							
	For STH , the 16 LSBs of the <i>src</i> register are stored. <i>src</i> can be in either register file. The <i>s</i> bit determines which file <i>src</i> is read from: $s = 0$ indicates <i>src</i> is in the A register file and $s = 1$ indicates <i>src</i> is in the B register file.							
	Square brackets, [], indicate that the <i>ucst15</i> offset is left-shifted by 1. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.							
	Halfword addresses must be aligned on halfword (LSB is 0) boundaries.							
Execution	if (cond) $src \rightarrow mem$ else nop							
Note:								
	This instruction executes only on the B side (.D2).							

SPRU733

3

1

5

Instruction Set 3-243

1 1

1

Pipeline	Pipeline Stage E1				
	Read	B14/B15, <i>src</i>			
	Written				
	Unit in use	.D2			
Instruction Type	Store				
Delay Slots	0				
See Also	STB, STW				

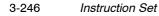
STW	Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset							
Syntax	Register Offset	Unsigned C	onstant Offset					
	STW (.unit) <i>src</i> , *+ <i>baseR[offsetR]</i> STW (.unit) <i>src</i> , *+ <i>baseR[ucst5]</i>							
	.unit = .D1 or .D2							
Compatibility	C62x, C64x, C67x, and C	C67x+ CPU						
Opcode								
31 29 28 27	23 22 18 17	, 13 12 9	8 7 6 4 3 2 1 0					
creg z s	rc baseR c	offsetR/ucst5 mode	0 y 1 1 1 0 1 s p					
3 1	5 5	5 4	1 1 1					

DescriptionStores a word to memory from a general-purpose register (*src*). Table 3–11
(page 3-33) describes the addressing generator options. The memory
address is formed from a base address register (*baseR*) and an optional offset
that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

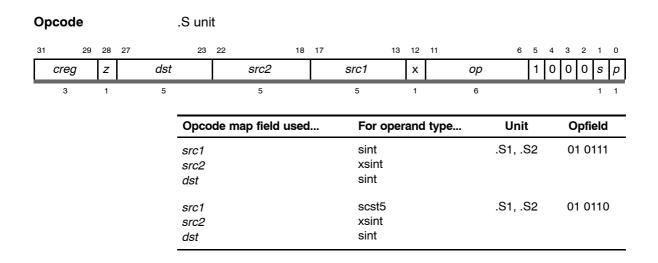

For **STW**, the entire 32-bits of the *src* register are stored. *src* can be in either register file, regardless of the .D unit or *baseR* or *offsetR* used. The *s* bit determines which file *src* is read from: s = 0 indicates *src* will be in the A register file and s = 1 indicates *src* will be in the B register file. The *r* bit should be cleared to 0.

SPRU733

Increments and decrements default to 1 and offsets default to zero when no bracketed register or constant is specified. Stores that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 2. Parentheses, (), can be used to set a nonscaled, constant offset. For example, **STW** (.unit) *src*, *+*baseR*(12) represents an offset of 12 bytes; whereas, **STW** (.unit) *src*, *+*baseR*[12] represents an offset of 12 words, or 48 bytes. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution	if (cond) else nop	<i>src</i> → r	nem		
Pipeline	Pipeline Stage				
	Read	baseF	R, offsetR, src		
	Written		baseR		
	Unit in use)	.D2		
Instruction Type Delay Slots	Store 0 For more ir	nformatio	n on delay slots	for a store, s	ee Chapter 4.
See Also	STB, STH				
Example	STW .D1	A1,*+	+A10[1]		
	Before struction		1 cycle after instruction		3 cycles after instruction
A1 9A	.32 7634h	A1	9A32 7634h	A1	9A32 7634h
A10 00	00 0100h	A10	0000 0104h	A10	0000 0104h
mem 100h 11	11 1134h me	m 100h	1111 1134h	mem 100h	1111 1134h
mem 104h 00	00 1111h me	m 104h	0000 1111h	mem 104h	9A32 7634h


STW	Store Word to Memory With a 15-Bit Unsigned Constant Offset						
Syntax	STW (.unit) <i>src</i> , *+B14/B15[<i>ucst15</i>]						
	.unit = .D2						
Compatibility	C62x, C64x, C67x, and C67x+ CPU						
Opcode							
31 29 28 27	23 22	8 7 6 4 3 2 1 0					
creg z s	c ucst15	y 1 1 1 1 1 <i>s p</i>					
3 1	15	1 1 1					

Description	Stores a word to memory from a general-purpose register (<i>src</i>). The memory address is formed from a base address register B14 ($y = 0$) or B15 ($y = 1$) and an offset, which is a 15-bit unsigned constant (<i>ucst15</i>). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction executes only on the .D2 unit.				
	The offset, <i>ucst15</i> , is scaled by a left-shift of 2 bits. After scaling, <i>ucst15</i> is added to <i>baseR</i> . The result of the calculation is the address that is sent to memory. The addressing arithmetic is always performed in linear mode.				
	For STW , the entire 32-bits of the <i>src</i> register are stored. <i>src</i> can be in either register file. The <i>s</i> bit determines which file <i>src</i> is read from: $s = 0$ indicates <i>src</i> is in the A register file and $s = 1$ indicates <i>src</i> is in the B register file.				
	Square brackets, [], indicate that the <i>ucst15</i> offset is left-shifted by 2. Paren- theses, (), can be used to set a nonscaled, constant offset. For example, STW (.unit) <i>src</i> , *+B14/B15(60) represents an offset of 12 bytes; whereas, STW (.unit) <i>src</i> , *+B14/B15[60] represents an offset of 60 words, or 240 bytes. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.				
	Word addresses must be aligned on word (two LSBs are 0) boundaries.				
Execution	if (cond) $src \rightarrow mem$ else nop				
	Note: This instruction executes only on the B side (.D2).				

Pipeline	Pipeline Stage E1			
	Read	B14/B15, <i>src</i>		
	Written			
	Unit in use	.D2		
Instruction Type	Store			
Delay Slots	0			
See Also	STB, STH			

SUB	Subtract Two Signed	Subtract Two Signed Integers Without Saturation						
Syntax	or	SUB (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> or SUB (.D1 or .D2) <i>src2</i> , <i>src1</i> , <i>dst</i>						
	.unit = .L1, .L2, .S1, .S	.unit = .L1, .L2, .S1, .S2						
Compatibility	C62x, C64x, C67x, an	C62x, C64x, C67x, and C67x+ CPU						
Opcode	.L unit							
31 29 28 27	23 22 18	17 13	12 11	5	4 3 2 1 0			
creg z	dst src2	src1	х	ор	1 1 0 <i>s p</i>			
3 1	5 5	5	1	7	1 1			

Opcode map field used	For operand type	Unit	Opfield
src1	sint	.L1, .L2	000 0111
src2	xsint		
dst	sint		
src1	xsint	.L1, .L2	001 0111
src2	sint		
dst	sint		
src1	sint	.L1, .L2	010 0111
src2	xsint		
dst	slong		
src1	xsint	.L1, .L2	011 0111
src2	sint		
dst	slong		
src1	scst5	.L1, .L2	000 0110
src2	xsint		
dst	sint		
src1	scst5	.L1, .L2	010 0100
src2	slong		
dst	slong		

Description for .L1, .L2 and .S1, .S2 Opcodes

src2 is subtracted from *src1*. The result is placed in *dst*.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) $src1 - src2 \rightarrow dst$ else nop

Opcode			.D uni	it				
31 29	28	27	23	22 18	17 13	12	765	4 3 2 1 0
creg	z	d	st	src2	src1	ор	10	0 0 0 <i>s p</i>
3	1		5	5	5	6		1 1
			Орсо	de map field used	I For oper	rand type	Unit	Opfield
			src2		sint		.D1, .D2	01 0001
			src1		sint			
			dst		sint			
			src2		sint		.D1, .D2	01 0011
			src1		ucst5			
			dst		sint			

Description for .D1, .D2 Opcodes

src1 is subtracted from *src2*. The result is placed in *dst*.

Execution for .D1, .D2 Opcodes

if (cond) $src2 - src1 \rightarrow dst$ else nop

Note:

Subtraction with a signed constant on the .L and .S units allows either the first or the second operand to be the signed 5-bit constant.

SUB (.unit) *src1*, *scst5*, *dst* is encoded as **ADD** (.unit) *-scst5*, *src2*, *dst* where the *src1* register is now *src2* and *scst5* is now *-scst5*.

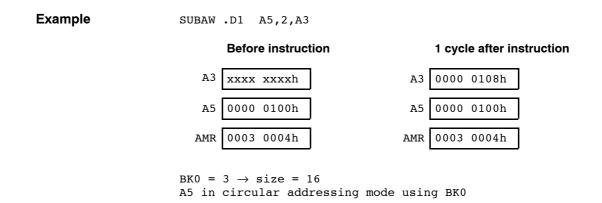
However, the .D unit provides only the second operand as a constant since it is an unsigned 5-bit constant. *ucst5* allows a greater offset for addressing with the .D unit.

Pipeline

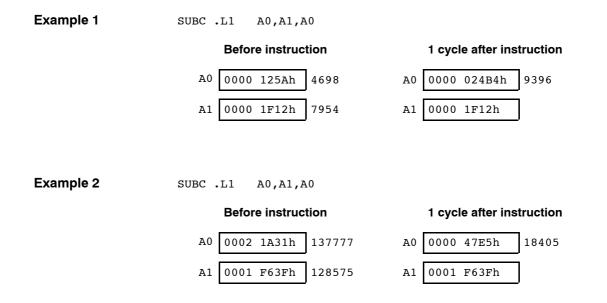
Pipeline Stage	E1
Read	src1, src2
Written	dst
Unit in use	.L, .S, or .D

SPRU733

Instruction Type	Single-cycle	
Delay Slots	0	
See Also	ADD, SSUB, SUBC, SUB	DP, SUBSP, SUBU, SUB2
Example	SUB .L1 A1,A2,A3	
Before instru	uction	1 cycle after instruction
A1 0000 325Ah	n 12810	A1 0000 325Ah
A2 FFFF FF12h	n –238	A2 FFFF FF12h
A3 xxxx xxxxh	h	A3 0000 3348h 13128


	SUBAB (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i>					
	.unit = .D1	or .D2				
Compatibility	C62x, C64	k, C67x, and C	67x+ CPU			
Opcode						
31 29 28 27	23 22	18 17	13	12 7	6 5 4 3 2 1	
creg z de		src2	src1	ор	100005	
3 1 5		5	5	6	1	
	Opcode ma	ap field used	For operand	type Unit	Opfield	
	src2		sint	.D1, .D2	11 0001	
	src1 dst		sint sint			
	src2		sint	01 02	11 0011	
	src2 src1		ucst5	.D1, .D2	11 0011	
	dst		sint			
			-	-		
Execution	if (cond)	src2 -a src1 -		age 2-10). The res	- · · ·	
Execution				age 2-10). The res	iting the appropria sult is placed in <i>ds</i>	
	if (cond) else nop			age 2-10). The res	- · · ·	
	if (cond)			age 2-10). The res	- · · ·	
	if (cond) else nop Pipeline	src2 –a src1 -		age 2-10). The res	- · · ·	
	if (cond) else nop Pipeline Stage	src2 –a src1 – E1		age 2-10). The res	- · · ·	
	if (cond) else nop Pipeline Stage Read	src2 –a src1 – E1 src1, src2 dst		age 2-10). The res	- · · ·	
Pipeline	if (cond) else nop Pipeline Stage Read Written	src2 –a src1 – E1 src1, src2 dst .D		age 2-10). The res	- · · ·	
Pipeline Instruction Type	if (cond) else nop Pipeline Stage Read Written Unit in use	src2 –a src1 – E1 src1, src2 dst .D		age 2-10). The res	- · · ·	
Execution Pipeline Instruction Type Delay Slots See Also	if (cond) else nop Pipeline Stage Read Written Unit in use Single-cycl 0	src2 –a src1 – E1 src1, src2 dst .D		age 2-10). The res	- · · ·	

Example SUBAB .D1 A5,A0,A5 1 cycle after instruction **Before instruction** A0 0000 0004h 0000 0004h A0 0000 4000h A5 0000 400Ch A5 0003 0004h 0003 0004h AMR AMR BKO = 3 \rightarrow size = 16 A5 in circular addressing mode using BK0


Syntax		SUBAH (.unit) src2, src1, dst						
			.unit = .D1	or .D2				
Compatik	oility		C62x, C64	1x, C67x, and	C67x+ CPU			
Opcode								
31 29	28 27		23 22	18 1	7 1	3 12	7 6	5 4 3 2 1 0
creg	Ζ	dst		src2	src1		ор 1	00005
3	1	5		5	5		6	1
			Opcode n	nap field used.	For operar	nd type	Unit	Opfield
			src2 src1 dst		sint sint sint		.D1, .D2	11 0101
			src2		sint		.D1, .D2	11 0111
Descripti	on		<i>src2</i> . The	subtraction def	faults to linear	^r mode. H	owever, if <i>src2</i>	node specified fo 2 is one of A4–A
Descripti	on		<i>dst</i> <i>src1</i> is sub <i>src2</i> . The or B4–B7, ate value	subtraction def the mode can	sint <i>rc2</i> using the faults to linear be changed se section 2.7	^r mode. H to circular	owever, if <i>src2</i> ⁻ mode by wri	
Descripti Execution			<i>dst</i> <i>src1</i> is sub <i>src2</i> . The or B4–B7, ate value	subtraction def the mode can to the AMR (se	sint <i>rc2</i> using the faults to linear be changed be section 2.7 st.	^r mode. H to circular	owever, if <i>src2</i> ⁻ mode by wri	2 is one of A4–A ting the appropr
			dst src1 is sub src2. The or B4–B7, ate value f The result if (cond) else nop Pipeline	subtraction def the mode can to the AMR (se is placed in <i>d</i>	sint <i>rc2</i> using the faults to linear be changed be section 2.7 st.	^r mode. H to circular	owever, if <i>src2</i> ⁻ mode by wri	2 is one of A4–A ting the appropr
Executio			<i>dst</i> <i>src1</i> is sub <i>src2</i> . The or B4–B7, ate value to The result if (cond) else nop	subtraction def the mode can to the AMR (se is placed in <i>d</i> <i>src2 –a src1</i>	sint <i>rc2</i> using the faults to linear be changed be section 2.7 st.	^r mode. H to circular	owever, if <i>src2</i> ⁻ mode by wri	2 is one of A4–A ting the appropr
Executio			dst src1 is sub src2. The or B4–B7, ate value f The result if (cond) else nop Pipeline Stage	subtraction def the mode can to the AMR (se is placed in <i>d</i> <i>src2</i> –a <i>src1</i>	sint <i>rc2</i> using the faults to linear be changed be section 2.7 st.	^r mode. H to circular	owever, if <i>src2</i> ⁻ mode by wri	2 is one of A4–A ting the appropr
Executio			dst src1 is sub src2. The or B4–B7, ate value f The result if (cond) else nop Pipeline Stage Read	subtraction def the mode can to the AMR (se is placed in <i>d</i> src2 –a src1 <u>E1</u> src1, src2 dst	sint <i>rc2</i> using the faults to linear be changed be section 2.7 st.	^r mode. H to circular	owever, if <i>src2</i> ⁻ mode by wri	2 is one of A4–A ting the appropr
Execution Pipeline	n		dst src1 is sub src2. The or B4–B7, ate value f The result if (cond) else nop Pipeline Stage Read Written	subtraction def the mode can to the AMR (se is placed in <i>d</i> <i>src2</i> –a <i>src1</i> <u>E1</u> <i>src1, src2</i> <i>dst</i> e .D	sint <i>rc2</i> using the faults to linear be changed be section 2.7 st.	^r mode. H to circular	owever, if <i>src2</i> ⁻ mode by wri	2 is one of A4–A ting the approp
Executio	n on Type		dst src1 is sub src2. The or B4–B7, ate value f The result if (cond) else nop Pipeline Stage Read Written Unit in us	subtraction def the mode can to the AMR (se is placed in <i>d</i> <i>src2</i> –a <i>src1</i> <u>E1</u> <i>src1, src2</i> <i>dst</i> e .D	sint <i>rc2</i> using the faults to linear be changed be section 2.7 st.	^r mode. H to circular	owever, if <i>src2</i> ⁻ mode by wri	2 is one of A4–A ting the appropr

SUBAW	Subtract Using Word Addressing Mode						
Syntax	SUBAW (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i>						
	.unit = .D1 or .D2	.unit = .D1 or .D2					
Compatibility	C62x, C64x, C67x, and	C67x+ CPU					
Opcode							
31 29 28 27	23 22 18 1	7 13 12	7 6	5 4 3 2 1 0			
creg z	dst src2	src1	ор 1	0 0 0 0 <i>s p</i>			
3 1	5 5	5	6	1 1			
	Opcode map field used	. For operand type	Unit	Opfield			
	src2 src1 dst	sint sint sint	.D1, .D2	11 1001			
	src2 src1 dst	sint ucst5 sint	.D1, .D2	11 1011			
Description	<i>src1</i> is subtracted from <i>src2</i> . The subtraction def or B4–B7, the mode can ate value to the AMR (see The result is placed in definition).	aults to linear mode. H be changed to circula se section 2.7.3, page	However, if <i>src2</i> ar mode by writ	is one of A4–A7 ing the appropri-			
Execution	if (cond) src2 –a src1 else nop	\rightarrow dst					
Pipeline	Pipeline Stage E1	_					
	Read src1, src2						
	Written dst						
	Unit in use .D	_					
Instruction Type	Single-cycle						
Delay Slots	0						
See Also	SUB, SUBAB, SUBAH						

3-256 Instruction Set

SUBC	Subtract Conditionally and Shift—Used for Division					
Syntax	SUBC (.unit) src1, src2, dst					
	.unit = .L1 or .L2					
Compatibility	C62x, C64x, C67x, and C67x+ CPU					
Opcode						
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0					
3	dst src2 src1 x 1 0 0 1 0 1 1 1 1 0 s p					
3 1	5 5 5 1 1 1					
	Opcode map field used For operand type Unit					
	<i>src1</i> uint .L1, .L2 <i>src2</i> xuint					
	dst uint					
Execution	by 1, add 1 to it, and place it in <i>dst</i> . If result is less than 0, left shift <i>src1</i> by 1, and place it in <i>dst</i> . This step is commonly used in division. if (cond) { if (<i>src1 - src2</i> \ge 0) ((<i>src1-src2</i>) << 1) + 1 \rightarrow <i>dst</i> else <i>src1</i> << 1 \rightarrow <i>dst</i> } else nop					
Pipeline	Pipeline Stage E1					
	Read src1, src2					
	Written dst					
	Unit in use .L					
Instruction Type	Single-cycle					
Delay Slots	0					
See Also	ADD, SSUB, SUB, SUBDP, SUBSP, SUBU, SUB2					
3-258 Instruction	n Set SPRU733					

SUBDP	Subtract Two Double-Precision Floating-Point Values				
Syntax	SUBDP (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> .unit = .L1 or .L2 or SUBDP (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>			(C67x and (C67x+ CPU) U only)
	.unit = .S1 or .S2			,	,,
Compatibility	C67x and C67x+ CP	U			
Opcode					
31 29 28 27	23 22 18	3 17 13	12 11		5 4 3 2 1 0
creg z	lst src2	src1	х	ор	1 1 0 <i>s p</i>
3 1	5 5	5	1	7	1 1

Opcode map field used	For operand type	Unit	Opfield
src1	dp	.L1, .L2	001 1001
src2	xdp		
dst	dp		
src1	xdp	.L1, .L2	001 1101
src2	dp		
dst	dp		
src1	dp	.S1, .S2	111 0011
src2	xdp		
dst	dp		
src1	dp	.S1, .S2	111 0111
src2	xdp		src2 – src1
dst	dp		

Note:

else

The assembly syntax allows a cross-path operand to be used for either src1 or src2. The assembler selects between the two opcodes based on which source operand in the assembly instruction requires the cross path. If src1 requires the cross path, the assembler chooses the second (reverse) form of the instruction syntax and reverses the order of the operands in the encoded instruction.

Description

src2 is subtracted from *src1*. The result is placed in *dst*.

Execution

if (cond) $src1 - src2 \rightarrow dst$ nop

Instruction Set 3-260

Notes:

- 1) This instruction takes the rounding mode from and sets the warning bits in FADCR, not FAUCR as for other .S unit instructions.
- 2) The source specific warning bits set in FADCR are set according to the registers sources in the actual machine instruction and not according to the order of the sources in the assembly form.
- 3) If rounding is performed, the INEX bit is set.
- If one source is SNaN or QNaN, the result is NaN_out. If either source is SNaN, the INVAL bit is set also.
- If both sources are +infinity or -infinity, the result is NaN_out and the INVAL bit is set.
- 6) If one source is signed infinity and the other source is anything except NaN or signed infinity of the same sign, the result is signed infinity and the INFO bit is set.
- 7) If overflow occurs, the INEX and OVER bits are set and the results are set as follows (LFPN is the largest floating-point number):

	Overflow Output Rounding Mode					
Result Sign	Nearest Even	Zero	+Infinity	-Infinity		
+	+infinity	+LFPN	+infinity	+LFPN		
-	-infinity	-LFPN	-LFPN	-infinity		

8) If underflow occurs, the INEX and UNDER bits are set and the results are set as follows (SPFN is the smallest floating-point number):

	Underflow Output Rounding Mode					
Result Sign	Nearest Even	Zero	+Infinity	-Infinity		
+	+0	+0	+SFPN	+0		
-	-0	-0	-0	-SFPN		

- If the sources are equal numbers of the same sign, the result is +0 unless the rounding mode is –infinity, in which case the result is –0.
- 10) If the sources are both 0 with opposite signs or both denormalized with opposite signs, the sign of the result is the same as the sign of *src1*.
- A signed denormalized source is treated as a signed 0 and the DENn bit is set. If the other source is not NaN or signed infinity, the INEX bit is also set.

Instruction Set 3-261

Pipeline Stage	E1	E2	E3	E4	E5	E6	E7
Read		src1_h src2_h					
Written						dst_l	dst_h
Unit in use	.L or .S	.L or .S					

For the C67x CPU, if *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

For the C67x+ CPU, the low half of the result is written out one cycle earlier than the high half. If *dst* is used as the source for the **ADDDP**, **CMPEQDP**, **CMPLTDP**, **CMPGTDP**, **MPYDP**, **MPYSPDP**, **MPYSP2DP**, or **SUBDP** instruction, the number of delay slots can be reduced by one, because these instructions read the lower word of the DP source one cycle before the upper word of the DP source.

Instruction Type ADDDP/SUBDP

Delay Slots

Functional Unit Latency

B1:B0

A3:A2

A5:A4

Pipeline

See Also ADDDP, SUB, SUBSP, SUBU

6

2

Example SUBDP .L1X B1:B0,A3:A2,A5:A4

3333 3333h

0000 0000h

xxxx xxxxh

8.6

-2.5

Before instruction

4021 3333h

C004 0000h

xxxx xxxxh

7 cycles after instruction

					-
B1:B0	4021	3333h	3333	3333h	8.6
A3:A2	C004	0000h	0000	0000h	-2.5
A5:A4	4026	3333h	3333	3333h	11.1

3-262 Instruction Set

SUBSP	Subtract Two Single-Precision Floating-Point Values				
Syntax	SUBSP (.unit) <i>src1, s</i> .unit = .L1 or .L2 or				
	SUBSP (.unit) src1, src2, dst (C67x+ CPU only) .unit = .S1 or .S2				PU only)
Compatibility	C67x and C67x+ CPL	C67x and C67x+ CPU			
Opcode					
31 29 28 27	23 22 18	17 13	12 11		5 4 3 2 1 0
creg z	dst src2	src1	х	ор	1 1 0 <i>s p</i>
3 1	5 5	5	1	7	1 1

Opcode map field used	For operand type	Unit	Opfield
src1	sp	.L1, .L2	001 0001
src2	xsp		
dst	sp		
src1	xsp	.L1, .L2	001 0101
src2	sp		
dst	sp		
src1	sp	.S1, .S2	111 0001
src2	xsp		
dst	sp		
src1	sp	.S1, .S2	111 0101
src2	xsp		src2 – src1
dst	sp		

Note:

The assembly syntax allows a cross-path operand to be used for either *src1* or *src2*. The assembler selects between the two opcodes based on which source operand in the assembly instruction requires the cross path. If *src1* requires the cross path, the assembler chooses the second (reverse) form of the instruction syntax and reverses the order of the operands in the encoded instruction.

Description

src2 is subtracted from src1. The result is placed in dst.

Execution

if (cond) $src1 - src2 \rightarrow dst$ else nop

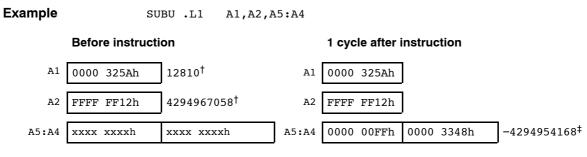
SPRU733

Notes:

- 1) This instruction takes the rounding mode from and sets the warning bits in FADCR, not FAUCR as for other .S unit instructions.
- 2) The source specific warning bits set in FADCR are set according to the registers sources in the actual machine instruction and not according to the order of the sources in the assembly form.
- 3) If rounding is performed, the INEX bit is set.
- 4) If one source is SNaN or QNaN, the result is NaN_out. If either source is SNaN, the INVAL bit is set also.
- 5) If both sources are +infinity or -infinity, the result is NaN_out and the INVAL bit is set.
- 6) If one source is signed infinity and the other source is anything except NaN or signed infinity of the same sign, the result is signed infinity and the INFO bit is set.
- 7) If overflow occurs, the INEX and OVER bits are set and the results are set as follows (LFPN is the largest floating-point number):

	Overflow Output Rounding Mode				
Result Sign	Nearest Even	Zero	+Infinity	-Infinity	
+	+infinity	+LFPN	+infinity	+LFPN	
-	-infinity	-LFPN	-LFPN	-infinity	

8) If underflow occurs, the INEX and UNDER bits are set and the results are set as follows (SPFN is the smallest floating-point number):


	Underflow Output Rounding Mode				
Result Sign	Nearest Even	Zero	+Infinity	-Infinity	
+	+0	+0	+SFPN	+0	
-	-0	-0	-0	-SFPN	

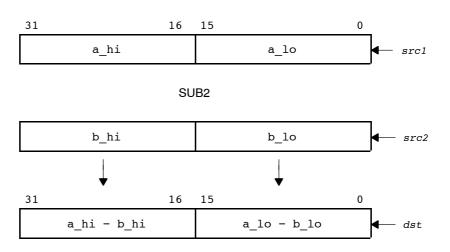
9) If the sources are equal numbers of the same sign, the result is +0 unless the rounding mode is –infinity, in which case the result is –0.

- 10) If the sources are both 0 with opposite signs or both denormalized with opposite signs, the sign of the result is the same as the sign of *src1*.
- A signed denormalized source is treated as a signed 0 and the DENn bit is set. If the other source is not NaN or signed infinity, the INEX bit is also set.

Pipeline	Pipeline Stage	E1	E2	E3	E4
	Read	src1 src2			
	Written				dst
	Unit in use	.L			
Instruction Type	4-cycle				
Delay Slots	3				
Functional Unit Latency	1				
See Also	ADDSP, SUB, S	SUBDP, SUBU			
Example	SUBSP .L1X A2	2,B1,A3			
	Before ins	struction		4 cycles after ir	struction
	A2 4109 999	Ah	A2	4109 999Ah	8.6
	B1 C020 000)0h	В1	C020 0000h	-2.5
	A3 XXXX XXX	XXh	A3	4131 999Ah	11.1

SUBU	Subtract Tw	o Unsigned	Integers Without S	aturation	
Syntax	SUBU (.unit)	src1, src2, ds	t		
-	.unit = .L1 or	.L2			
Compatibility	C62x, C64x,	C67x, and C6	7x+ CPU		
Opcode					
31 29 28 27	23 22	18 17	13 12 11	5	4 3 2 1 0
creg z de		src2	src1 x	·	1 1 0 <i>s p</i>
3 1 5		5	5 1	7	1 1
	Opcode map	field used	For operand type	Unit	Opfield
	src1 src2		uint xuint	.L1, .L2	010 1111
	dst		ulong		
	src1		xuint	.L1, .L2	011 1111
	src2 dst		uint ulong		
Description Execution	if (cond)	acted from <i>src</i> $rc2 \rightarrow dst$	1. The result is place	ed in <i>dst</i> .	
Pipeline	Pipeline Stage	E1			
	Read	src1, src2			
	Written	dst			
	Unit in use	.L			
Instruction Type	Single-cycle				
Delay Slots	0				
See Also	ADDU, SSU	B, SUB, SUB(C, SUBDP, SUBSP,	SUB2	
3-266 Instruction S	Set				SPRU733

[†] Unsigned 32-bit integer


[‡] Signed 40-bit (long) integer

SPRU733

Instruction Set 3-267

Subtract Two 16-Bit Integers on Upper and Lower Register Halves									
SUB2 (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>									
.unit = .S1 or .S2									
C62x, C64x, C67x, and C67x+ CPU									
23 22 18	17 13 12 11	6 5 4 3 2 1 0							
dst src2	<i>src1</i> x 0 1 0 0 0) 1 1 0 0 0 <i>s p</i>							
5 5	5 1	1 1							
Opcode map field used	For operand type	Unit							
src1 src2	sint xsint	.S1, .S2							
	SUB2 (.unit) $src1$, $src2$, a .unit = .S1 or .S2 C62x, C64x, C67x, and C 23 22 18 dst src2 5 5 <u>Opcode map field used</u> src1 src2	SUB2 (.unit) $src1$, $src2$, dst .unit = .S1 or .S2 C62x, C64x, C67x, and C67x+ CPU 23 22 18 17 13 12 11 dst $src2$ $src1$ x 0 1 0 0 0 5 5 5 1 5 5 1 Opcode map field used For operand type sint							

Description The upper and lower halves of *src2* are subtracted from the upper and lower halves of *src1* and the result is placed in *dst*. Any borrow from the lower-half subtraction does not affect the upper-half subtraction. Specifically, the upper-half of *src2* is subtracted from the upper-half of *src1* and placed in the upper-half of *src2* is subtracted from the lower-half of *src1* and placed in the lower-half of *src1* and placed in the lower-half of *src1* and placed in the lower-half of *dst*.

3-268 Instruction Set

Execution	if (cond) { (lsb16(<i>src1</i>) - lsb16(<i>src2</i>)) \rightarrow lsb16(<i>dst</i>); (msb16(<i>src1</i>) - msb16(<i>src2</i>)) \rightarrow msb16(<i>dst</i>); } else nop
Pipeline	Pipeline StageE1Readsrc1, src2WrittendstUnit in use.S
Instruction Type	Single-cycle
Delay Slots	0
See Also	ADD2, SSUB, SUB, SUBC, SUBU
Example 1	SUB2 .S1 A3, A4, A5
	Before instruction 1 cycle after instruction A3 1105 6E30h 4357 28208 A3 1105 6E30h 4357 28208 A4 1105 6980h 4357 27008 A4 1105 6980h 4357 27008 A5 xxxx xxxh A5 0000 04B0h 0 1200
Example 2	SUB2 .S2X B1,A0,B2
	Before instruction 1 cycle after instruction
	A0 0021 3271h [†] 33 12913 [‡] A0 0021 3271h
	B1 003A 1B48h [†] 58 6984 [‡] B1 003A 1B48h
	B2 xxxx xxxh B2 0019 E8D7h 25 [†] -5929 [‡]
	[†] Signed 16-MSB integer [‡] Signed 16-LSB integer
SPRU733	Instruction Set 3-269

XOR	Bitwise Exclusive OR								
Syntax	XOR (.unit) src1, src2, dst								
	.unit = .L1, .L2, .S1, .S2								
Compatibility	C62x, C64x, C67x, and C67x+ CPU								
Opcode	.L unit								
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0								
creg z	dst src2 src1 x op 1 1 0 s p								
3 1	5 5 5 1 7 1 1								

Opcode map field used	For operand type	Unit	Opfield		
src1	uint	.L1, .L2	110 1111		
src2	xuint				
dst	uint				
src1	scst5	.L1, .L2	110 1110		
src2	xuint				
dst	uint				

Opcode .S unit

31	29	28	27	23	22	18	17	13	12	11	65	4 3	21	0
creg		Ζ	dst		src2		src1		х	ор	1	0 0	0 s	; p
3		1	5		5		5		1	6			1	1

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.S1, .S2	00 1011
src2	xuint		
dst	uint		
src1	scst5	.S1, .S2	00 1010
src2	xuint		
dst	uint		

Description

Performs a bitwise exclusive-OR (**XOR**) operation between *src1* and *src2*. The result is placed in *dst*. The *scst5* operands are sign extended to 32 bits.

3-270 Instruction Set

Execution	if (cond) <i>src1</i> XOR <i>src2</i> \rightarrow <i>dst</i> else nop	
Pipeline	Pipeline Stage E1	
	Read src1, src2	
	Written dst	
	Unit in use .L or .S	
Instruction Type Delay Slots	Single-cycle 0	
See Also	AND, OR	
Example 1	XOR .S1 A3, A4, A5	
	Before instruction	1 cycle after instruction
	A3 0721 325Ah	A3 0721 325Ah
	A4 0019 0F12h	A4 0019 0F12h
	A5 xxxx xxxxh	A5 0738 3D48h
Example 2	XOR.L2 B1, 0dh, B8	
	Before instruction	1 cycle after instruction
	B1 0000 1023h	B1 0000 1023h
	B8 xxxx xxxxh	B8 0000 102Eh

SPRU733

Instruction Set 3-271

ZERO	Zero a Register			
Syntax	ZERO (.unit) dst			
	.unit = .L1, .L2, .D1, .D2,	.S1, .S2		
Compatibility	C62x, C64x, C67x, and (C67x+ CPU		
Opcode				
	Opcode map field used	For operand type	Unit	Opfield
	dst	sint	.L1, .L2	001 0111
	dst	slong	.L1, .L2	011 0111
	dst	sint	.D1, .D2	01 0001
	dst	sint	.S1, .S2	01 0111
Description	The ZERO pseudo-opera from itself and placing th	•	er with 0s by sub	tracting the <i>dst</i>
	In the case where <i>dst</i> instruction.	is sint, the assemble	er uses the MV	′K (.unit) 0, <i>dst</i>
	In the case where SUB (.unit) <i>src1, src2, d</i> e	0,	the assemble	er uses the
Execution	if (cond) $dst - dst \rightarrow$ else nop	dst		
Instruction Type	Single-cycle			
Delay Slots	0			

Chapter 4

Pipeline

The C67x DSP pipeline provides flexibility to simplify programming and improve performance. Two factors provide this flexibility:

- Control of the pipeline is simplified by eliminating pipeline interlocks.
- Increased pipelining eliminates traditional architectural bottlenecks in program fetch, data access, and multiply operations. This provides singlecycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

- The pipeline can dispatch eight parallel instructions every cycle.
- Parallel instructions proceed simultaneously through each pipeline phase.
- Serial instructions proceed through the pipeline with a fixed relative phase difference between instructions.
- Load and store addresses appear on the CPU boundary during the same pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and decode, but require a varying number of execute phases. This chapter contains a description of the number of execution phases for each type of instruction.

Finally, the chapter contains performance considerations for the pipeline. These considerations include the occurrence of fetch packets that contain multiple execute packets, execute packets that contain multicycle **NOP**s, and memory considerations for the pipeline. For more information about fully optimizing a program and taking full advantage of the pipeline, see the *TMS320C6000 Programmer's Guide* (SPRU198).

Торі	c Page
4.1	Pipeline Operation Overview 4-2
4.2	Pipeline Execution of Instruction Types
4.3	Functional Unit Constraints 4-33
4.4	Performance Considerations 4-56

4.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

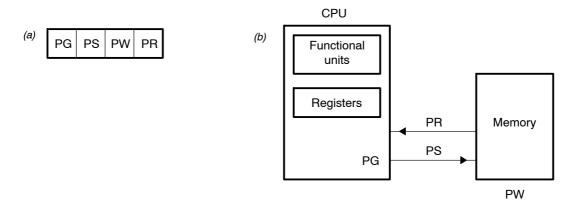
- Fetch
- Decode
- Execute

All instructions in the C67x DSP instruction set flow through the fetch, decode, and execute stages of the pipeline. The fetch stage of the pipeline has four phases for all instructions, and the decode stage has two phases for all instructions. The execute stage of the pipeline requires a varying number of phases, depending on the type of instruction. The stages of the C67x DSP pipeline are shown in Figure 4–1.

Figure 4–1. Pipeline Stages

Fetch → Decode ▶						Execute —								▶
- I		1												

4.1.1 Fetch


The fetch phases of the pipeline are:

- **PG:** Program address generate
- PS: Program address send
- **PW:** Program access ready wait
- **PR:** Program fetch packet receive

The C67x DSP uses a fetch packet (FP) of eight instructions. All eight of the instructions proceed through fetch processing together, through the PG, PS, PW, and PR phases. Figure 4–2(a) shows the fetch phases in sequential order from left to right. Figure 4–2(b) is a functional diagram of the flow of instructions through the fetch phases. During the PG phase, the program address is generated in the CPU. In the PS phase, the program address is sent to memory. In the PW phase, a memory read occurs. Finally, in the PR phase, the fetch packet is received at the CPU. Figure 4–2(c) shows fetch packets flowing through the phases of the fetch stage of the pipeline. In Figure 4–2(c), the first fetch packet (in PR) is made up of four execute packets, and the second and third fetch packets (in PW and PS) contain two execute packets each. The last fetch packet (in PG) contains a single execute packet of eight single-cycle instructions.

4-2 Pipeline

Figure 4–2. Fetch Phases of the Pipeline

(C)

Fetch				2	56				
	LDW	LDW	SHR	SHR	SMPYH	SMPYH	MV	NOP	PG
	LDW	LDW	SMPYH	SMPY	SADD	SADD	В	MVK	PS
	LDW	LDW	MVKLH	MV	SMPYH	SMPY	В	MVK	PW
	LDW	LDW	MVK	ADD	SHL	LDW	LDW	MVK	PR
	Docada								

Decode

4.1.2 Decode

The decode phases of the pipeline are:

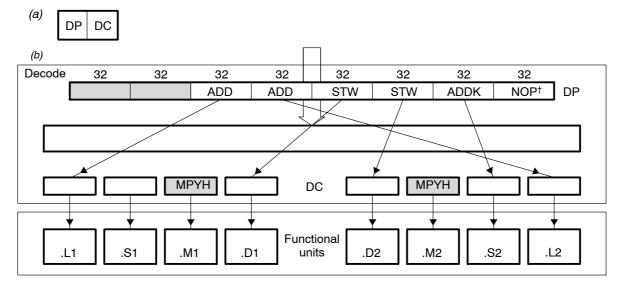
- **DP:** Instruction dispatch
- DC: Instruction decode

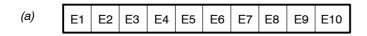
In the DP phase of the pipeline, the fetch packets are split into execute packets. Execute packets consist of one instruction or from two to eight parallel instructions. During the DP phase, the instructions in an execute packet are assigned to the appropriate functional units. In the DC phase, the the source registers, destination registers, and associated paths are decoded for the execution of the instructions in the functional units.

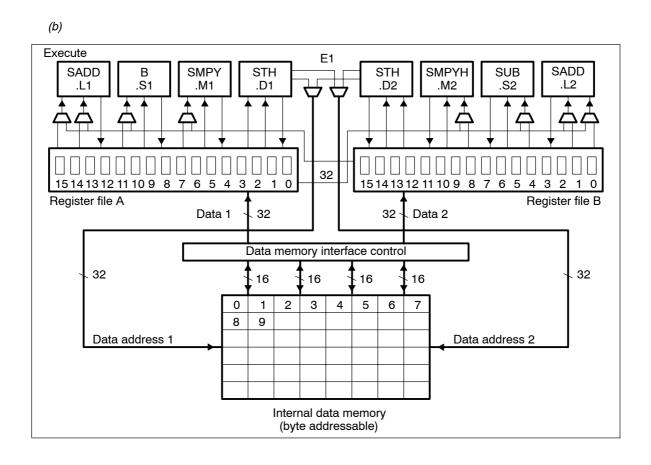
SPRU733

Figure 4–3(a) shows the decode phases in sequential order from left to right. Figure 4–3(b) shows a fetch packet that contains two execute packets as they are processed through the decode stage of the pipeline. The last six instructions of the fetch packet (FP) are parallel and form an execute packet (EP). This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate each instruction's assigned functional unit for execution during the same cycle. The **NOP** instruction in the eighth slot of the FP is not dispatched to a functional unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute packet of two parallel instructions that were dispatched on the previous cycle. This execute packet contains two **MPY** instructions that are now in decode (DC) one cycle before execution. There are no instructions decoded for the .L, .S, and .D functional units for the situation illustrated.




Figure 4–3. Decode Phases of the Pipeline


[†] NOP is not dispatched to a functional unit.

4.1.3 Execute

The execute portion of the pipeline is subdivided into ten phases (E1–E10), as compared to the five phases in a fixed-point pipeline. Different types of instructions require different numbers of these phases to complete their execution. These phases of the pipeline play an important role in your understanding the device state at CPU cycle boundaries. The execution of different types of instructions in the pipeline is described in section 4.2, *Pipeline Execution of Instruction Types*. Figure 4–4(a) shows the execute phases of the pipeline in sequential order from left to right. Figure 4–4(b) shows the portion of the functional block diagram in which execution occurs.

Figure 4-4. Execute Phases of the Pipeline

SPRU733

4.1.4 Pipeline Operation Summary

Figure 4–5 shows all the phases in each stage of the C67x DSP pipeline in sequential order, from left to right.

Figure 4–5. Pipeline Phases

◀	—— Fe	etch —	•		ode 🔸	4				– Exec	ute —				
PG	PS	PW	PR	DP	DC	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10

Figure 4–6 shows an example of the pipeline flow of consecutive fetch packets that contain eight parallel instructions. In this case, where the pipeline is full, all instructions in a fetch packet are in parallel and split into one execute packet per fetch packet. The fetch packets flow in lockstep fashion through each phase of the pipeline.

For example, examine cycle 7 in Figure 4–6. When the instructions from FPn reach E1, the instructions in the execute packet from FPn +1 are being decoded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are each in one of four phases of program fetch. See section 4.4, page 4-56, for additional detail on code flowing through the pipeline. Table 4–1 summarizes the pipeline phases and what happens in each phase.

Clock cycle Fetch packet 2 3 4 5 7 9 10 13 1 6 8 11 12 14 15 16 17 n PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 n+1 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 PS PW PR E8 n+2 PG DP DC E1 F2 E3 E4 E5 E6 E7 E9 n+3 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 n+4 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 n+5 PS PW PG PR DP DC E1 E2 E3 E4 E5 E6 n+6 PG PS PW PR DP DC E1 E2 E3 E4 E5 n+7 PG PS PW PR DP DC E1 E2 E3 E4 n+8 PG PS PW PR DP DC E1 E2 E3 n+9 PG PW PR DP DC E1 E2 PS n+10 PG PS PW PR DP DC E1

Figure 4–6. Pipeline Operation: One Execute Packet per Fetch Packet

4-6 Pipeline

				Instruction Type
Stage	Phase	Symbol	During This Phase	Completed
Program fetch	Program address generation	PG	The address of the fetch packet is determined.	
	Program address sent	PS	The address of the fetch packet is sent to the memory.	
	Program wait	PW	A program memory access is performed.	
	Program data receive	PR	The fetch packet is at the CPU boundary.	
Program decode	Dispatch	DP	The next execute packet of the fetch packet is deter- mined and sent to the appropriate functional unit to be decoded.	
	Decode	DC	Instructions are decoded in functional units.	
Execute	Execute 1	E1	For all instruction types, the conditions for the instructions are evaluated and operands are read.	Single-cycle
			For load and store instructions, address generation is performed and address modifications are written to the register file. †	
			For branch instructions, branch fetch packet in PG phase is affected. †	
			For single-cycle instructions, results are written to a register file. †	
			For DP compare, ADDDP/SUBDP, and MPYDP instructions, the lower 32-bits of the sources are read. For all other instructions, the sources are read. [†]	
			For MPYSPDP instruction, the <i>src1</i> and the lower 32 bits of <i>src2</i> are read. [†]	
			For 2-cycle DP instructions, the lower 32 bits of the result are written to a register file. †	

Table 4–1. Operations Occurring During Pipeline Phases

[†] This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction does not write an y results or have any pipeline operation after E1.

				Instruction Type
Stage	Phase	Symbol	During This Phase	Completed
	Execute 2	E2	For load instructions, the address is sent to memory. For store instructions, the address and data are sent to memory. ^{\dagger}	Multiply 2-cycle DP DP compare
			Single-cycle instructions that saturate results set the SAT bit in the SCR if saturation occurs. ^{\dagger}	
			For multiply, 2-cycle DP, and DP compare instruc- tions, results are written to a register file. [†]	
			For DP compare and ADDDP/SUBDP instructions, the upper 32 bits of the source are read. [†]	
			For MPYDP instruction, the lower 32 bits of <i>src1</i> and the upper 32 bits of <i>src2</i> are read. [†]	
			For MPYI and MPYID instructions, the sources are read. †	
			For MPYSPDP instruction, the <i>src1</i> and the upper 32 bits of <i>src2</i> are read. [†]	
	Execute 3	E3	Data memory accesses are performed. Any multiply instruction that saturates results sets the SAT bit in the CSR if saturation occurs. [†]	Store
			For MPYDP instruction, the upper 32 bits of <i>src1</i> and the lower 32 bits of <i>src2</i> are read. [†]	
			For MPYI and MPYID instructions, the sources are read. †	
	Execute 4	E4	For load instructions, data is brought to the CPU boundary	4-cycle
			For MPYI and MPYID instructions, the sources are read. †	
			For MPYDP instruction, the upper 32 bits of the sources are read. †	
			For MPYI and MPYID instructions, the sources are read. †	
			For 4-cycle instructions, results are written to a register file. †	
			For INTDP and MPYSP2DP instructions, the lower 32 bits of the result are written to a register file. ^{\dagger}	

Table 4–1. Operations Occurring During Pipeline Phases (Continued)

[†] This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction does not write an y results or have any pipeline operation after E1.

Stage	Phase	Symbol	During This Phase	Instruction Type Completed
	Execute 5	E5	For load instructions, data is written into a register file. [†]	Load INTDP
			For INTDP and MPYSP2DP instructions, the upper 32 bits of the result are written to a register file. [†]	MPYSP2DP
	Execute 6	E6	For ADDDP/SUBDP and MPYSPDP instructions, the lower 32 bits of the result are written to a register file. [†]	ADDDP/ SUBDP, MPYSPDP
	Execute 7	E7	For ADDDP/SUBDP and MPYSPDP instructions, the upper 32 bits of the result are written to a register file. ^{\dagger}	ADDDP/ SUBDP, MPYSPDP
	Execute 8	E8	Nothing is read or written.	
	Execute 9	E9	For MPYI instruction, the result is written to a register file. [†] For MPYDP and MPYID instructions, the lower 32 bits of the result are written to a register file. [†]	MPYI MPYDP MPYID
	Execute 10	E10	For MPYDP and MPYID instructions, the upper 32 bits of the result are written to a register file.	MPYDP MPYID

Table 4–1. Operations Occurring During Pipeline Phases (Continued)

[†] This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction does not write an y results or have any pipeline operation after E1.

Figure 4–7 shows a functional block diagram of the pipeline stages. The pipeline operation is based on CPU cycles. A CPU cycle is the period during which a particular execute packet is in a particular pipeline phase. CPU cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts of the C67x DSP. Figure 4–7 shows a full pipeline with a fetch packet in every phase of fetch. One execute packet of eight instructions is being dispatched at the same time that a 7-instruction execute packet is in decode. The arrows between DP and DC correspond to the functional units identified in the code in Example 4–1.

In the DC phase portion of Figure 4–7, one box is empty because a **NOP** was the eighth instruction in the fetch packet in DC, and no functional unit is needed for a **NOP**. Finally, Figure 4–7 shows six functional units processing code during the same cycle of the pipeline.

SPRU733

Registers used by the instructions in E1 are shaded in Figure 4–7. The multiplexers used for the input operands to the functional units are also shaded in the figure. The bold crosspaths are used by the **MPY** and **SUBSP** instructions.

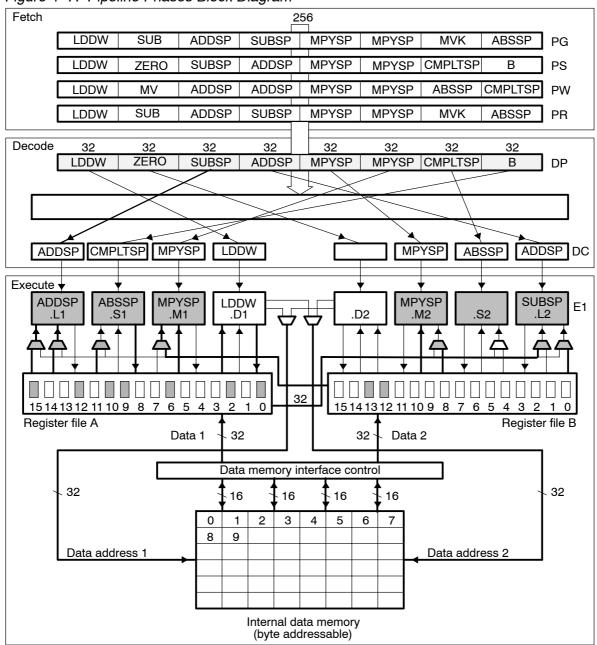


Figure 4–7. Pipeline Phases Block Diagram

4-10 Pipeline

Many C67x DSP instructions are single-cycle instructions, which means they have only one execution phase (E1). The other instructions require more than one execute phase. The types of instructions, each of which require different numbers of execute phases, are described in section 4.2.

	LDDW	.D1	*A0[4],B5:B4	;	Ε1	Phase
	ADDSP	.L1	A9,A10,A12			
l i i	SUBSP	.L2X	B12,A2,B12			
lii	MPYSP	.M1X	A6,B13,A11			
lii	MPYSP	.M2	B5,B13,B11			
lii	ABSSP	.S1	A12,A15			
11	112001					
	LDDW	.D1	*A0++[5],A7:A6	•	DC	Phase
11	ADDSP	.L1	A12, A11, A12	'	20	
	ADDSP	.L2	B10, B11, B12			
	MPYSP	.M1X	A4,B6,A9			
	MPYSP	.M2X	A7, B6, B9			
	CMPLTSP	.51	A15,A8,A1			
	ABSSP	.51 .S2	B12, B15			
	ADSSP	.52	B12,B15			
LOOP:						
[!B2]	LDDW	.D1	*A0++[2],A5:A4	•	DP	and PS Phases
[B2]	ZERO	.D2	B0	'	51	
	SUBSP	.L1	A12,A2,A12			
	ADDSP	.L2	B9, B12, B12			
	MPYSP	.M1X	A5,B7,A10			
		•M1X				
	MPYSP	.M2 .S1	B4,B7,B10			
[B0]	B		LOOP			
[!B1]	CMPLTSP	.S2	B15,B8,B1			
[!B2]	LDDW	.D1	*A0[4],B5:B4	;	PR	and PG Phases
[B0]	SUB	.D2	B0,2,B0			
	ADDSP	.L1	A9,A10,A12			
	SUBSP	.L2X	B12,A2,B12			
	MPYSP	.M1X	A6,B13,A11			
	MPYSP	.M2	B5,B13,B11			
	ABSSP	.S1	A12,A15			
[A1]	MVK	.S2	1,B2			
[10.2 1	TDDW	1 ת	***		7107	Phago
[!B2]		.D1	*A0++[5],A7:A6	;	PW	Phase
[B1]	MV	.D2	B1,B2			
	ADDSP	.L1	A12,A11,A12			
	ADDSP	.L2	B10,B11,B12			
	MPYSP	.M1X	A4,B6,A9			
[! A1]	CMPLTSP	.S1	A15,A8,A1			
	ABSSP	.S2	B12,B15			

Example 4–1. Execute Packet in Figure 4–7

SPRU733

4.2 Pipeline Execution of Instruction Types

The pipeline operation of the C67x DSP instructions can be categorized into fourteen instruction types. Thirteen of these are shown in Table 4–2 (**NOP** is not included in the table), which is a mapping of operations occurring in each execution phase for the different instruction types. The delay slots and functional unit latency associated with each instruction type are listed in the bottom row. See section 3.7.8 for any instruction constraints.

Table 4–2. Execution Stage Length Description for Each Instruction Type

		Inst	ruction Type		
Execution phases	Single Cycle	16 × 16 Multiply	Store	Load	Branch
E1	Compute result and write to register	Read operands and start computations	Compute address	Compute address	Target code in PG [‡]
E2		Compute result and write to register	Send address and data to memory	Send address to memory	
E3			Access memory	Access memory	
E4				Send data back to CPU	
E5				Write data into register	
E6					
E7					
E8					
E9					
E10					
Delay slots	0	1	0†	4†	5 [‡]
Functional unit latency	1	1	1	1	1

[†] See sections 4.2.3 And 4.2.4 for more information on execution and delay slots for stores and loads.

[‡] See section 4.2.5 for more information on branches.

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

4-12 Pipeline

		Instruc	tion Type	
Execution phases	2-Cycle DP	4-Cycle	INTDP	DP Compare
E1	Compute the lower results and write to register	Read sources and start computation	Read sources and start computation	Read lower sources and start computation
E2	Compute the upper results and write to register	Continue computation	Continue computation	Read upper sources, finish computation, and write results to register
E3		Continue computation	Continue computation	
E4		Complete computation and write results to register	Continue computation and write lower results to register	
E5			Complete computation and write upper results to register	
E6				
E7				
E8				
E9				
E10				
Delay slots	1	3	4	1
Functional unit latency	1	1	1	2

Table 4–2. Execution Stage Length Description for Each Instruction	Type (Continued)
--	------------------

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

	Instruction Type					
Execution phases	ADDDP/SUBDP	MPYI	MPYID	MPYDP		
E1	Read lower sources and start computation	Read sources and start computation	Read sources and start computation	Read lower sources and start computation		
E2	Read upper sources and continue computation	Read sources and continue computation	Read sources and continue computation	Read lower <i>src1</i> and upper <i>src2</i> and continue computation		
E3	Continue computation	Read sources and continue computation	Read sources and continue computation	Read lower <i>src2</i> and upper <i>src1</i> and continue computation		
E4	Continue computation	Read sources and continue computation	Read sources and continue computation	Read upper sources and continue computation		
E5	Continue computation	Continue computation	Continue computation	Continue computation		
E6	Compute the lower results and write to register	Continue computation	Continue computation	Continue computation		
E7	Compute the upper results and write to register	Continue computation	Continue computation	Continue computation		
E8		Continue computation	Continue computation	Continue computation		
E9		Complete computa- tion and write results to register	Continue computation and write lower results to register	Continue computation and write lower results to register		
E10			Complete computa- tion and write upper results to register	Complete computa- tion and write upper results to register		
Delay slots	6	8	9	9		
Functional unit latency	2	4	4	4		

Table 4–2. Execution Stage Length Description for Each Instruction Type (Continued)

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

	Instruction Type				
Execution phases	MPYSPDP	MPYSP2DP			
E1	Read <i>src1</i> and lower <i>src2</i> and start computation	Read sources and start computation			
E2	Read <i>src1</i> and upper <i>src2</i> and continue computation	Continue computation			
E3	Continue computation	Continue computation			
E4	Continue computation	Continue computation and write lower results to register			
E5	Continue computation	Complete computa- tion and write upper results to register			
E6	Continue computation and write lower results to register				
E7	Complete computa- tion and write upper results to register				
E8					
E9					
E10					
Delay slots	6	4			
Functional unit latency	3	2			

Table 4–2. Execution Stage Length Description for Each Instruction Type (Continued)

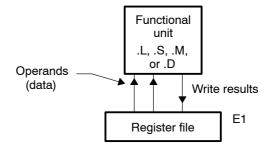
Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

4.2.1 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipeline (see Table 4–3). Figure 4–8 shows the fetch, decode, and execute phases of the pipeline that single-cycle instructions use.

Figure 4–9 shows the single-cycle execution diagram. The operands are read, the operation is performed, and the results are written to a register, all during E1. Single-cycle instructions have no delay slots.


Table 4–3. Single-Cycle Instruction Execution

Pipeline Stage	E1
Read	src1 src2
Written	dst
Unit in use	.L, .S., .M, or .D

Figure 4–8. Single-Cycle Instruction Phases

PG F	PS PW	PR	DP	DC	E1
------	-------	----	----	----	----

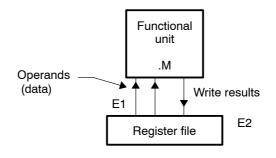
Figure 4–9. Single-Cycle Instruction Execution Block Diagram

4-16 Pipeline

4.2.2 16 × 16-Bit Multiply Instructions

The 16×16 -bit multiply instructions use both the E1 and E2 phases of the pipeline to complete their operations (see Table 4–4). Figure 4–10 shows the fetch, decode, and execute phases of the pipeline that the multiply instructions use.

Figure 4–11 shows the operations occurring in the pipeline for a multiply. In the E1 phase, the operands are read and the multiply begins. In the E2 phase, the multiply finishes, and the result is written to the destination register. Multiply instructions have one delay slot.


Table 4–4. 16 × 16-Bit Multiply Instruction Execution

Pipeline Stage	E1	E2
Read	src1 src2	
Written		dst
Unit in use	.М	

Figure 4–10. Multiply Instruction Phases

PG	PS	PW	PR	DP	DC	E1	E2	1 delay slot
----	----	----	----	----	----	----	----	--------------

Figure 4–11. Multiply Instruction Execution Block Diagram

SPRU733

4.2.3 Store Instructions

Store instructions require phases E1 through E3 of the pipeline to complete their operations (see Table 4–5). Figure 4–12 shows the fetch, decode, and execute phases of the pipeline that the store instructions use.

Figure 4–13 shows the operations occurring in the pipeline phases for a store instruction. In the E1 phase, the address of the data to be stored is computed. In the E2 phase, the data and destination addresses are sent to data memory. In the E3 phase, a memory write is performed. The address modification is performed in the E1 stage of the pipeline. Even though stores finish their execution in the E3 phase of the pipeline, they have no delay slots. There is additional explanation of why stores have zero delay slots in section 4.2.4.

Table 4–5. Store Instruction Execution

Pipeline Stage	E1	E2	E3
Read	baseR, offsetR src		
Written	baseR		
Unit in use	.D2		

Figure 4–12. Store Instruction Phases

PG	PS	PW	PR	DP	DC	E1	E2	E3
						Address nodification		

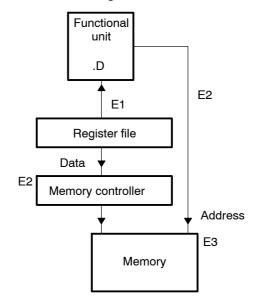


Figure 4–13. Store Instruction Execution Block Diagram

When you perform a load and a store to the same memory location, these rules apply (*i* = cycle):

- U When a load is executed before a store, the old value is loaded and the new value is stored.
 - i LDW *i* + 1 STW
- U When a store is executed before a load, the new value is stored and the new value is loaded.
 - STW i *i* + 1 LDW
- U When the instructions are executed in parallel, the old value is loaded first and then the new value is stored, but both occur in the same phase.
 - i STW i
 - LDW

4.2.4 Load Instructions

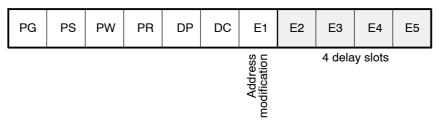

Data loads require five, E1–E5, of the pipeline execute phases to complete their operations (see Table 4–6). Figure 4–14 shows the fetch, decode, and execute phases of the pipeline that the load instructions use.

Figure 4–15 shows the operations occurring in the pipeline phases for a load. In the E1 phase, the data address pointer is modified in its register. In the E2 phase, the data address is sent to data memory. In the E3 phase, a memory read at that address is performed.

Table 4–6. Load Instruction Execution

Pipeline Stage	E1	E2	E3	E4	E5
Read	baseR offsetR				
Written	baseR				dst
Unit in use	.D				

Figure 4–14. Load Instruction Phases

4-20 Pipeline

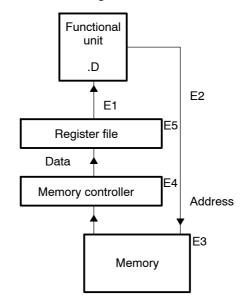


Figure 4–15. Load Instruction Execution Block Diagram

In the E4 stage of a load, the data is received at the CPU core boundary. Finally, in the E5 phase, the data is loaded into a register. Because data is not written to the register until E5, load instructions have four delay slots. Because pointer results are written to the register in E1, there are no delay slots associated with the address modification.

In the following code, pointer results are written to the A4 register in the first execute phase of the pipeline and data is written to the A3 register in the fifth execute phase.

LDW .D1 *A4++,A3

Because a store takes three execute phases to write a value to memory and a load takes three execute phases to read from memory, a load following a store accesses the value placed in memory by that store in the cycle after the store is completed. This is why the store is considered to have zero delay slots.

4.2.5 Branch Instructions

Although branch takes one execute phase, there are five delay slots between the execution of the branch and execution of the target code (see Table 4–7). Figure 4–16 shows the pipeline phases used by the branch instruction and branch target code. The delay slots are shaded.

Figure 4–17 shows a branch instruction execution block diagram. If a branch is in the E1 phase of the pipeline (in the .S2 unit in the figure), its branch target is in the fetch packet that is in PG during that same cycle (shaded in the figure). Because the branch target has to wait until it reaches the E1 phase to begin execution, the branch takes five delay slots before the branch target code executes.

Table 4–7. Branch Instruction Execution

Pipeline Stage	E1	PS	PW	PR	DP	DC	E1
Read	src2						
Written							
Branch Taken							\checkmark
Unit in use	.S2						

Figure 4–16. Branch Instruction Phases

PG	PS	PW	PR	DP	DC	E1						
				Br t	anch arget	PG	PS	PW	PR	DP	DC	E1
		5 delay slots										

Fetch				2	256						
	STH	STH	SADD	SADD	SMPYH	SMPY	SUB	В	PG		
	SADD	SADD	SHR	SHR	SMPYH	SMPYH	LDW	LDW	PS		
	STH	STH	SADD	SADD	SMPYH	SMPY	SUB	В	PW		
	LDW	LDW	SHR	SHR	SMPYH	SMPYH	MV	NOP	PR		
Decode	32	32	32	32	32	32	32	32			
			SMPYH	SMPY	SADD	SADD	В	MVK	DP		
			\square	\geq							
			×								
				W		W			DC		
	Execute MVK SMPY .L1 .S1 .M1										

Figure 4–17. Branch Instruction Execution Block Diagram

SPRU733

4.2.6 Two-Cycle DP Instructions

Two-cycle DP instructions use both the E1 and E2 phases of the pipeline to complete their operations (see Table 4–8). The following instructions are two-cycle DP instructions:

- ABSDP
- □ RCPDP
- RSQDP
- SPDP

The lower and upper 32 bits of the DP source are read on E1 using the src1 and src2 ports, respectively. The lower 32 bits of the DP source are written on E1 and the upper 32 bits of the DP source are written on E2. The two-cycle DP instructions are executed on the .S units. The status is written to the FAUCR on E1. Figure 4–18 shows the fetch, decode, and execute phases of the pipe-line that the two-cycle DP instructions use.

Table 4–8. Two-Cycle DP Instruction Execution

Pipeline Stage	E1	E2
Read	src2_l src2_h	
Written	dst_l	dst_h
Unit in use	.S	

Figure 4–18. Two-Cycle DP Instruction Phases

PG	PS	PW	PR	DP	DC	E1	E2	
----	----	----	----	----	----	----	----	--

1 delay slot

4.2.7 Four-Cycle Instructions

Four-cycle instructions use the E1 through E4 phases of the pipeline to complete their operations (see Table 4–9). The following instructions are four-cycle instructions:

- ADDSP
- DPINT
- DPSP
- DPTRUNC
- INTSP
- MPYSP
- SPINT
- □ SPTRUNC
- SUBSP

The sources are read on E1 and the results are written on E4. The four-cycle instructions are executed on the .M or .L units. The status is written to the FMCR or FADCR on E4. Figure 4–19 shows the fetch, decode, and execute phases of the pipeline that the four-cycle instructions use.

Table 4–9. Four-Cycle Instruction Execution

Pipeline Stage	E1	E2	E3	E4
Read	src1 src2			
Written				dst
Unit in use	.L or .M			

Figure 4–19.	Four-Cycle	Instruction	Phases
--------------	------------	-------------	--------

PG	PS	PW	PR	DP	DC	E1	E2	E3	E4
3 delay slots								ots	

SPRU733

4.2.8 INTDP Instruction

The INTDP instruction uses the E1 through E5 phases of the pipeline to complete its operations (see Table 4–10). *src2* is read on E1, the lower 32 bits of the result are written on E4, and the upper 32 bits of the result are written on E5. The INTDP instruction is executed on the .L unit. The status is written to the FADCR on E4. Figure 4–20 shows the fetch, decode, and execute phases of the pipeline that the INTDP instruction uses.

Table 4–10. INTDP Instruction Execution

Pipeline Stage	E1	E2	E3	E4	E5
Read	src2				
Written				dst_l	dst_h
Unit in use	.L				

Figure 4–20. INTDP Instruction Phases

PG PS PW PR DP	DC E1 E2	E3 E4	E5
----------------	----------	-------	----

⁴ delay slots

4.2.9 DP Compare Instructions

The DP compare instructions use the E1 and E2 phases of the pipeline to complete their operations (see Table 4–11). The lower 32 bits of the sources are read on E1, the upper 32 bits of the sources are read on E2, and the results are written on E2. The following instructions are DP compare instructions:

- CMPEQDP
- □ CMPLTDP
- □ CMPGTDP

The DP compare instructions are executed on the .S unit. The functional unit latency for DP compare instructions is 2. The status is written to the FAUCR on E2. Figure 4–21 shows the fetch, decode, and execute phases of the pipe-line that the DP compare instruction uses.

Table 4–11. DP Compare Instruction Execution

Pipeline Stage	E1	E2
Read	src1_l src2_l	src1_h src2_h
Written		dst
Unit in use	.S	.S

Figure 4–21. DP Compare Instruction Phases	Figure 4–21.	DP Compare	Instruction	Phases
--	--------------	------------	-------------	--------

PG	PS	PW	PR	DP	DC	E1	E2	1 delay slot
----	----	----	----	----	----	----	----	--------------

4.2.10 ADDDP/SUBDP Instructions

The ADDDP/SUBDP instructions use the E1 through E7 phases of the pipeline to complete their operations (see Table 4–12). The lower 32 bits of the result are written on E6, and the upper 32 bits of the result are written on E7. The ADDDP/SUBDP instructions are executed on the .L unit. The functional unit latency for ADDDP/SUBDP instructions is 2. The status is written to the FADCR on E6. Figure 4–22 shows the fetch, decode, and execute phases of the pipeline that the ADDDP/SUBDP instructions use.

Table 4–12. ADDDP/SUBDP Instruction Execution

Pipeline Stage	E1	E2	E3	E4	E5	E6	E7
Read	src1_l src2_l	src1_h src2_h					
Written						dst_l	dst_h
Unit in use	.L or .S	.L or .S					

Figure 4–22. ADDDP/SUBDP Instruction Phases

PG PS PW PR DP DC E1	E2 E3	E4 E5	E6	E7
----------------------	-------	-------	----	----

6 delay slots

4.2.11 MPYI Instruction

The MPYI instruction uses the E1 through E9 phases of the pipeline to complete its operations (see Table 4–13). The sources are read on cycles E1 through E4 and the result is written on E9. The MPYI instruction is executed on the .M unit. The functional unit latency for the MPYI instruction is 4. Figure 4–23 shows the fetch, decode, and execute phases of the pipeline that the MPYI instruction uses.

Table 4–13. MPYI Instruction Execution

Pipeline Stage	E1	E2	E3	E4	E5	E6	E7	E8	E9
Read	src1 src2	src1 src2	src1 src2						
Written									dst
Unit in use	.М	.М	.М	.M					

Figure 4-23. MPYI Instruction Phases

PG PS PW PR DP DC E1 E2	E3 E4	E5 E6	E7 E8	E9
-------------------------	-------	-------	-------	----

8 delay slots

4.2.12 MPYID Instruction

The MPYID instruction uses the E1 through E10 phases of the pipeline to complete its operations (see Table 4–14). The sources are read on cycles E1 through E4, the lower 32 bits of the result are written on E9, and the upper 32 bits of the result are written on E10. The MPYID instruction is executed on the .M unit. The functional unit latency for the MPYID instruction is 4. Figure 4–24 shows the fetch, decode, and execute phases of the pipeline that the MPYID instruction uses.

Table 4–14. MPYID Instruction Execution

Pipeline Stage	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
Read	src1 src2	src1 src2	src1 src2							
Written									dst_l	dst_h
Unit in use	.M	.М	.М	.M						

Figure 4-24. MPYID Instruction Phases

9 delay slots


4.2.13 MPYDP Instruction

The MPYDP instruction uses the E1 through E10 phases of the pipeline to complete its operations (see Table 4–15). The lower 32 bits of *src1* are read on E1 and E2, and the upper 32 bits of *src1* are read on E3 and E4. The lower 32 bits of *src2* are read on E1 and E3, and the upper 32 bits of *src2* are read on E2 and E4. The lower 32 bits of the result are written on E9, and the upper 32 bits of the result are written on E9, and the upper 32 bits of the result are written on E10. The MPYDP instruction is executed on the .M unit. The functional unit latency for the MPYDP instruction is 4. The status is written to the FMCR on E9. Figure 4–25 shows the fetch, decode, and execute phases of the pipeline that the MPYDP instruction uses.

Table 4–15. MPYDP Instruction Execution

Pipeline Stage	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
Read	_	src1_l src2_h								
Written									dst_l	dst_h
Unit in use	.M	.М	.М	.М						

Figure 4–25. MPYDP Instruction Phases

9 delay slots

4.2.14 MPYSPDP Instruction

The MPYSPDP instruction uses the E1 through E7 phases of the pipeline to complete its operations (see Table 4–16). *src1* is read on E1 and E2. The lower 32 bits of *src2* are read on E1, and the upper 32 bits of *src2* are read on E2. The lower 32 bits of the result are written on E6, and the upper 32 bits of the result are written on E6, and the upper 32 bits of the result are written on E7. The MPYSPDP instruction is executed on the .M unit. The functional unit latency for the MPYSPDP instruction is 3. Figure 4–26 shows the fetch, decode, and execute phases of the pipeline that the MPYSPDP instruction uses.

Table 4–16. MPYSPDP Instruction Execution

Pipeline Stage	E1	E2	E3	E4	E5	E6	E7
Read	src1 src2_l	src1 src2_h					
Written						dst_l	dst_h
Unit in use	.М	.М					

Figure 4–26. MPYSPDP Instruction Phases

	PG	PS	PW	PR	DP	DC	E1	E2	E3	E4	E5	E6	E7
--	----	----	----	----	----	----	----	----	----	----	----	----	----

⁶ delay slots

4.2.15 MPYSP2DP Instruction

The MPYSP2DP instruction uses the E1 through E5 phases of the pipeline to complete its operations (see Table 4–17). *src1* and *src2* are read on E1. The lower 32 bits of the result are written on E4, and the upper 32 bits of the result are written on E5. The MPYSP2DP instruction is executed on the .M unit. The functional unit latency for the MPYSP2DP instruction is 2. Figure 4–27 shows the fetch, decode, and execute phases of the pipeline that the MPYSP2DP instruction uses.

Table 4–17. MPYSP2DP Instruction Execution

Pipeline Stage	E1	E2	E3	E4	E5
Read	src1 src2				
Written				dst_l	dst_h
Unit in use	.М				

Figure 4–27. MPYSP2DP Instruction Phases

PG	PS	PW	PR	DP	DC	E1	E2	E3	E4	E5
								4 dela	y slots	

4.3 Functional Unit Constraints

If you want to optimize your instruction pipeline, consider the instructions that are executed on each unit. Sources and destinations are read and written differently for each instruction. If you analyze these differences, you can make further optimization improvements by considering what happens during the execution phases of instructions that use the same functional unit in each execution packet.

The following sections provide information about what happens during each execute phase of the instructions within a category for each of the functional units.

SPRU733

Pipeline 4-33

4.3.1 .S-Unit Constraints

Table 4–18 shows the instruction constraints for single-cycle instructions executing on the .S unit.

		Instruction Execution
Cycle	1	2
Single-cycle	RW	
Instruction Type		Subsequent Same-Unit Instruction Executable
Single-cycle		
DP compare		
2-cycle DP		
ADDDP/SUBDP		
ADDSP/SUBSP		
Branch		
Instruction Type	Sam	e Side, Different Unit, Both Using Cross Path Executable
Single-cycle		~
Load		
Store		
INTDP		
ADDDP/SUBDP		
16×16 multiply		
4-cycle		~
MPYI		~
MPYID		~
MPYDP		~

Table 4–18. Single-Cycle .S-Unit Instruction Constraints

Legend: E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle

4-34 Pipeline

SPRU733

Table 4–19 shows the instruction constraints for DP compare instructions executing on the .S unit.

Table 4–19.	DP Compare .S-Unit Instruction Constraints	
-------------	--	--

			Instruction Execution
Cycle	1	2	3
DP compare	R	RW	
Instruction Type		Su	ubsequent Same-Unit Instruction Executable
Single-cycle		Xrw	\mathbf{V}
DP compare		Xr	Y
2-cycle DP		Xrw	Y
ADDDP/SUBDP		Xr	~
ADDSP/SUBSP		Xr	V
Branch [†]		Xr	r
Instruction Type	San	ne Side	e, Different Unit, Both Using Cross Path Executable
Single-cycle		Xr	~
Load		Xr	۲ ۰
Store		Xr	Y
INTDP		Xr	~
ADDDP/SUBDP		Xr	V
16×16 multiply		Xr	٢
4-cycle		Xr	٢
MPYI		Xr	٢
MPYID		Xr	٢
MPYDP		Xr	٢

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/decode/write constraint; Xrw = Next instruction cannot enter E1 during cycle-read/decode/write constraint

[†] The branch on register instruction is the only branch instruction that reads a general-purpose register

SPRU733

Pipeline 4-35

Table 4–20 shows the instruction constraints for 2-cycle DP instructions executing on the .S unit.

			Instruction Execution
Cycle	1	2	3
2-cycle	RW	W	
Instruction Type		Su	ubsequent Same-Unit Instruction Executable
Single-cycle		Xw	
DP compare		1	
2-cycle DP		Xw	
ADDDP/SUBDP		1	
ADDSP/SUBSP		1	
Branch		1	Va
Instruction Type	Sam	ne Sid	e, Different Unit, Both Using Cross Path Executable
Single cycle			
Load		1	
Store		1	
INTDP		1	
ADDDP/SUBDP		1	
16×16 multiply		1	Va
4-cycle		1	
MPYI		1	Va
MPYID		1	V
MPYDP		1	Va

Table 4–20. 2-Cycle DP .S-Unit Instruction Constraints

Legend: E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write constraint

Table 4–21 shows the instruction constraints for **ADDSP/SUBSP** instructions executing on the .S unit.

	Instruction Execution								
Cycle	1	2	3	4					
ADDSP/SUBSP	R			W					
Instruction Type		Sı	ıbseqı	uent Same-Unit Instruction Executa					
Single-cycle		7	\checkmark	Xw					
2-cycle DP		1	Xw	Xw					
DP compare		1	Xw	\checkmark					
ADDDP/SUBDP		\checkmark	1	1~					
ADDSP/SUBSP		1	\checkmark	V					
Branch		4	1	\mathcal{V}					

Table 4–21. ADDSP/SUBSP .S-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write constraint

Table 4–22 shows the instruction constraints for **ADDDP/SUBDP** instructions executing on the .S unit.

Table 4-22. ADDDP/SUBDP .S-Unit Instruction Constraints

				In	struct	ion E	xecution
Cycle	1	2	3	4	5	6	7
ADDDP/SUBDP	R	R				W	W
Instruction Type		Sı	ıbseqı	uent S	ame-l	Jnit In	struction Executable
Single-cycle		Xr	1			Xw	Xw
2-cycle DP		Xr		1	Xw	Xw	Xw
DP compare		Xr		\checkmark	Xw	Xw	Va
ADDDP/SUBDP		Xr		\checkmark	1		Va
ADDSP/SUBSP		Xr	Xw	Xw		\checkmark	
Branch		Xr	\checkmark			\checkmark	
Instruction Type	Sam	e Sid	e, Diff	erent	Unit, E	Both U	sing Cross Path Executabl
Single-cycle		Xr	\checkmark	\checkmark		\checkmark	~
DP compare		Xr	\checkmark			\checkmark	V
2-cycle DP		Xr	\checkmark	1	1	1	Va
4-cycle		Xr		1		\sim	Va
Load		1	\checkmark	\checkmark		\checkmark	V
Store		1	\checkmark			\checkmark	
Branch		Xr	\checkmark			\checkmark	
16×16 multiply		Xr	\checkmark			1	
MPYI		Xr	1	1	1	1	
MPYID		Xr	1	1-	1	1	
MPYDP		Xr	\checkmark			1	V~

Legend: E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/ decode constraint; Xw = Next instruction cannot enter E1 during cycle-write constraint

4-38 Pipeline

SPRU733

Table 4–23 shows the instruction constraints for branch instructions executing on the .S unit.

				In	struct	ion E	cecuti	on		
Cycle	1	2	3	4	5	6	7	8		
Branch [†]	R									
Instruction Type		Subsequent Same-Unit Instruction Executable								
Single-cycle				\checkmark				V		
DP compare								\mathcal{V}		
2-cycle DP		1				1		\checkmark		
ADDDP/SUBDP		1	1	1	1	1	1			
ADDSP/SUBSP		1	1	1	1	\sim	1			
Branch		1	1	1	1	1	1			
Instruction Type	Sam	e Sid	e, Diffe	erent	Unit, E	Both U	sing (Cross Path Execut		
Single-cycle		1	\checkmark	\checkmark				\checkmark		
Load		1			1	1		\checkmark		
Store		1	1	1	1	1	1			
INTDP		1	\checkmark	\checkmark			\checkmark	1-		
ADDDP/SUBDP		1		\checkmark				1-		
16×16 multiply		1		\checkmark				1-		
4-cycle		1		\checkmark				1-		
MPYI								1~		
MPYID		1						1~		
MPYDP		1	1		1-	1-	1-	\checkmark		

Table 4-23. Branch .S-Unit Instruction Constraints

Legend: E1 phase of the single-cycle instruction; R = Sources read for the instruction; \vee = Next instruction can enter E1 during cycle

[†] The branch on register instruction is the only branch instruction that reads a general-purpose register

SPRU733

Pipeline 4-39

4.3.2 .M-Unit Constraints

Table 4–24 shows the instruction constraints for 16×16 multiply instructions executing on the .M unit.

			Instruction Execution
Cycle	1	2	3
16×16 multiply	R	W	
Instruction Type		Su	ubsequent Same-Unit Instruction Executable
16×16 multiply		1	1
4-cycle		1	٢
MPYI		1	٧
MPYID		1	~
MPYDP		1	~
Instruction Type	Sam	ne Sid	e, Different Unit, Both Using Cross Path Executable
Single-cycle			٢
Load		1	V
Store		1	٢
DP compare		1	\sim
2-cycle DP		1	ν
Branch		1	\sim
4-cycle		1	ν
INTDP		1	\mathcal{V}
ADDDP/SUBDP		~	ν

Table 4–24. 16 × 16 Multiply .M-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle

Table 4–25 shows the instruction constraints for 4-cycle instructions executing on the .M unit.

				In	nstruction Execution
Cycle	1	2	3	4	5
4-cycle	R			W	
Instruction Type		Sı	ıbsequ	ient S	Same-Unit Instruction Executable
16×16 multiply			Xw		
4-cycle			\checkmark	\checkmark	
MPYI		1	1-		
MPYID			\checkmark	1	مر
MPYDP		1		1	Va
Instruction Type	Sam	e Sid	e, Diffe	erent	Unit, Both Using Cross Path Executable
Single-cycle		\checkmark	\checkmark	\checkmark	~
Load		1	1-		
Store		1	1-	1	مس
DP compare		1	\checkmark	\checkmark	
2-cycle DP		1	1		
Branch		1	1-	1-	
4-cycle		1	1	1	
INTDP		1	\checkmark	1	
ADDDP/SUBDP		1-	1	1-	\mathcal{V}

Table 4–25. 4-Cycle .M-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write constraint

Table 4–26 shows the instruction constraints for **MPYI** instructions executing on the .M unit.

Table 4–26. MPYI .M-	Init Instruction Constraints
----------------------	------------------------------

				In	struct	ion Ex	cecuti	on		
Cycle	1	2	3	4	5	6	7	8	9	10
MPYI	R	R	R	R					W	
Instruction Type		Subsequent Same-Unit Instruction Executable								
16×16 multiply		Xr	Xr	Xr	\checkmark	\checkmark		Xw	\checkmark	~
4-cycle		Xr	Xr	Xr	Xu	Xw	Xu			
MPYI		Xr	Xr	Xr	1		1	1-		1-
MPYID		Xr	Xr	Xr		\checkmark	\sim		1	1-
MPYDP		Xr	Xr	Xr	Xu	Xu	Xu		\checkmark	
MPYSPDP		Xr	Xr	Xr	Xu	Xu	Xu	1	\checkmark	
MPYSP2DP		Xr	Xr	Xr	Xw	Xw	Xu	1	1	
Instruction Type	Sam	ne Sid	e, Diff	erent	Unit, E	Both U	sing (Cross	Path B	Executable
Single-cycle		Xr	Xr	Xr	\checkmark	\checkmark		\checkmark		
Load		1	1	1	1		1	1-		1-
Store		1	\sim			\checkmark	\sim		1	1-
DP compare		Xr	Xr	Xr	\checkmark	\checkmark		1	\checkmark	/
2-cycle DP		Xr	Xr	Xr	\checkmark			1		V-
Branch		Xr	Xr	Xr	1		1			\checkmark
4-cycle		Xr	Xr	Xr	\checkmark					\checkmark
INTDP		Xr	Xr	Xr	1		1	1		\checkmark
ADDDP/SUBDP		Xr	Xr	Xr	1	1-	1	1	1-	\sim

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; \checkmark = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle–read/ decode constraint; Xw = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write co

4-42 Pipeline

SPRU733

Table 4–27 shows the instruction constraints for **MPYID** instructions executing on the .M unit.

Instruction Execution Cycle 3 4 5 6 7 1 2 8 9 10 11 MPYID R R R R W W Instruction Type Subsequent Same-Unit Instruction Executable 16×16 multiply Xr Xr Xr \checkmark $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ Xw Xw 1 \checkmark 4-cycle Xr Xr Xr 1 Xu Xw Xw $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ MPYI Xr Xr Xr \checkmark \checkmark \checkmark $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ 1 MPYID Xr Xr Xr 1 $\boldsymbol{\nu}$ 1 $\boldsymbol{\vee}$ 1 1 1 MPYDP \checkmark Xr Xr Xr Xu Xu Xu $\boldsymbol{\nu}$ \mathbf{V} 1 MPYSPDP Xr Xr Xr Xw Xu Xu \checkmark \checkmark $\boldsymbol{\vee}$ \mathbf{V} MPYSP2DP Xr Xr Xr Xw Xw Xw $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ Instruction Type Same Side, Different Unit, Both Using Cross Path Executable Single-cycle Xr Xr Xr $\boldsymbol{\vee}$ 1 $\boldsymbol{\vee}$ $\boldsymbol{\nu}$ $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ $\boldsymbol{\nu}$ Load \checkmark $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ \checkmark \checkmark $\boldsymbol{\vee}$ $\boldsymbol{\nu}$ $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ Store \checkmark 1 \checkmark \checkmark \mathbf{V} \mathbf{V} $\boldsymbol{\nu}$ \checkmark \mathbf{V} \mathbf{V} DP compare \mathbf{V} Xr Xr Xr \checkmark \mathbf{V} $\boldsymbol{\vee}$ $\boldsymbol{\nu}$ 2-cycle DP Xr Xr Xr 1 $\boldsymbol{\nu}$ $\boldsymbol{\vee}$ 1 $\boldsymbol{\vee}$ 1 1 Branch Xr Xr Xr 1 $\boldsymbol{\nu}$ $\boldsymbol{\vee}$ \mathbf{V} \checkmark $\boldsymbol{\vee}$ $\boldsymbol{\nu}$ 4-cycle Xr Xr Xr $\boldsymbol{\vee}$ $\boldsymbol{\vee}$ 1 $\boldsymbol{\vee}$ \checkmark INTDP Xr Xr Xr \checkmark 1 1 1 1 \checkmark

Table 4–27. MPYID .M-Unit Instruction Constraints

Xr

Xr

 \mathbf{V}

 \checkmark

 \checkmark

 $\boldsymbol{\nu}$

 $\boldsymbol{\nu}$

Xr

SPRU733

ADDDP/SUBDP

Pipeline 4-43

 \checkmark

 \mathbf{V}

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; \mathcal{V} = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/ decode constraint; Xw = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write

Table 4–28 shows the instruction constraints for **MPYDP** instructions executing on the .M unit.

				In	struct	ion Ex	cecuti	on			
Cycle	1	2	3	4	5	6	7	8	9	10	11
MPYDP	R	R	R	R					W	W	
Instruction Type	Subsequent Same-Unit Instruction Executable										
16×16 multiply		Xr	Xr	Xr	1	\checkmark	\checkmark	Xw	Xw		
4-cycle		Xr	Xr	Xr	Xu	Xw	Xw	\checkmark	\checkmark	\checkmark	\checkmark
MPYI		Xr	Xr	Xr	Xu	Xu	Xu	\checkmark			
MPYID		Xr	Xr	Xr	Xu	Xu	Xu	\sim		1	
MPYDP		Xr	Xr	Xr	1	\checkmark		\sim	\checkmark	1	\checkmark
MPYSPDP		Xr	Xr	Xr	Xw	Xu	Xu	\checkmark	\checkmark	\checkmark	\checkmark
MPYSP2DP		Xr	Xr	Xr	Xw	Xw	Xw	1			
Instruction Type	Sam	ne Sid	e, Diff	erent	Unit, E	Both U	sing (Cross	Path E	Execut	able
Single-cycle		Xr	Xr	Xr		\checkmark			\checkmark		\checkmark
Load		1	\checkmark		1	\checkmark		1	\checkmark	\checkmark	\checkmark
Store		4						\checkmark			
DP compare		Xr	Xr	Xr	1-		1	\sim		1	
2-cycle DP		Xr	Xr	Xr	1	\checkmark		\sim	\checkmark	1	\checkmark
Branch		Xr	Xr	Xr		\checkmark			\checkmark	\checkmark	\checkmark
4-cycle		Xr	Xr	Xr	\sim		1	\checkmark			1
INTDP		Xr	Xr	Xr	\sim		1	\checkmark			1
ADDDP/SUBDP		Xr	Xr	Xr	1	1	1	1	1-	1-	1

Table 4–28. MPYDP .M-Unit Instruction Constraints

Legend: E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; \checkmark = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/ decode constraint; Xw = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write cons

Table 4–29 shows the instruction constraints for $\ensuremath{\text{MPYSP}}$ instructions executing on the .M unit.

				Instruction Execution
Cycle	1	2	3	4
MPYSP	R			W
Instruction Type		Su	ıbsequ	uent Same-Unit Instruction Executable
MPYSPDP		\checkmark		V
MPYSP2DP		1	1	
Instruction Type	Sam	e Side	e, Diff	erent Unit, Both Using Cross Path Executable
Single-cycle		1	\checkmark	~
Load		1	1	V
Store		1		
DP compare		1		
2-cycle DP		1		
Branch		1		
4-cycle		1		~
INTDP		1		~
ADDDP/SUBDP		1		

Table 4–29. MPYSP .M-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle

Table 4–30 shows the instruction constraints for $\ensuremath{\text{MPYSPDP}}$ instructions executing on the .M unit.

Table 4–30. MPYSPDP .M-Unit Instruction Constraints

				In	struct	ion Ex	recution
Cycle	1	2	3	4	5	6	7
MPYSPDP	R	R				W	W
Instruction Type		Su	ıbsequ	ient S	ame-L	Jnit In	struction Executable
16×16 multiply		Xr		1	Xw	Xw	
MPYDP		Xr	Xu	Xu			\sim
MPYI		Xr	Xu	Xu	1		
MPYID		Xr	Xu	Xu	\checkmark	\checkmark	1~
MPYSP		Xr	Xw	Xw			V
MPYSPDP		Xr	Xu	\checkmark		\checkmark	V
MPYSP2DP		Xr	Xw	Xw	1	1	\sim
Instruction Type	Samo	e Sid	e, Diff	erent	Unit, E	Both U	sing Cross Path Executable
Single-cycle		Xr		\checkmark		\checkmark	\checkmark
Load		Xr	1	1	1	1	
Store		Xr	1	1	1	1	
DP compare		Xr	\checkmark	1	\checkmark	\checkmark	1~
2-cycle DP		Xr					V
Branch		Xr		\checkmark			1~
4-cycle		Xr		\checkmark			1~
INTDP		Xr					V
ADDDP/SUBDP		Xr	1	1	1	\checkmark	\mathcal{V}

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; \checkmark = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle–read/ decode constraint; Xw = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write constraint; Xu = Next instruction cannot enter E1 during cycle–write co

4-46 Pipeline

SPRU733

Table 4–31 shows the instruction constraints for **MPYSP2DP** instructions executing on the .M unit.

				Ir	nstruc	tion Execution
Cycle	1	2	3	4	5	
MPYSP2DP	R	R		W	W	
Instruction Type		Su	ıbsequ	uent S	ame-l	Unit Instruction Executable
16 imes 16 multiply		1	Xw	Xw	\checkmark	
MPYDP		Xu			\checkmark	
MPYI		Xu				
MPYID		Xu	1	1		
MPYSP		Xw	1	1	1	
MPYSPDP		Xu			\checkmark	
MPYSP2DP		Xw	1	1	1	
Instruction Type	Sam	ie Sid	e, Diff	erent	Unit, I	Both Using Cross Path Executable
Single-cycle		Xr			\checkmark	
Load		Xr			\checkmark	
Store		Xr				
DP compare		Xr	1	1		
2-cycle DP		Xr	1	1	1	
Branch		Xr	\checkmark		\checkmark	
4-cycle		Xr		1		
INTDP		Xr		1		
ADDDP/SUBDP		Xr	1-	1	1	

Table 4–31. MPYSP2DP .M-Unit Instruction Constraints

Legend: E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/ decode constraint; Xw = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction cannot enter E1 during cycle-write constraint; Xu = Next instruction; Xu = Next instructin; Xu = Next instru

SPRU733

Pipeline 4-47

4.3.3 .L-Unit Constraints

Table 4–32 shows the instruction constraints for single-cycle instructions executing on the .L unit.

	Instruction Execution
Cycle	1 2
Single-cycle	RW
Instruction Type	Subsequent Same-Unit Instruction Executable
Single-cycle	
4-cycle	
INTDP	
ADDDP/SUBDP	
Instruction Type	Same Side, Different Unit, Both Using Cross Path Executable
Single-cycle	
DP compare	
2-cycle DP	
4-cycle	
Load	V ·
Store	V-
Branch	l de la constante de
16×16 multiply	n n n n n n n n n n n n n n n n n n n
MPYI	n n n n n n n n n n n n n n n n n n n
MPYID	مر
MPYDP	

Table 4–32. Single-Cycle .L-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle

Table 4–33 shows the instruction constraints for 4-cycle instructions executing on the .L unit.

				In	truction Execution	
Cycle	1	2	3	4	5	
4-cycle	R			W		
Instruction Type		Su	ıbseqı	uent Sa	me-Unit Instruction Executabl	е
Single-cycle				Xw	$\mathcal{V}^{\mathbf{A}}$	
4-cycle		1		\checkmark	\checkmark	
INTDP		1	1		\checkmark	
ADDDP/SUBDP		1			\mathcal{V}	
Instruction Type	Sam	e Sid	e, Diff	erent l	nit, Both Using Cross Path Ex	ecutable
Single-cycle					$\mathcal{V}^{\mathbf{r}}$	
DP compare		1		\checkmark	\checkmark	
2-cycle DP				\checkmark	\checkmark	
4-cycle				\checkmark	\checkmark	
Load		1	1		\checkmark	
Store		1		1-	\checkmark	
Branch		1		\checkmark	1~	
16×16 multiply		1	1		1~	
MPYI		1			V	
MPYID		1	1		1 ^m	
MPYDP		1		1-	\mathcal{V}	

Table 4–33. 4-Cycle .L-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write constraint

Table 4–34 shows the instruction constraints for **INTDP** instructions executing on the .L unit.

				In	struct	ion Execution
Cycle	1	2	3	4	5	6
INTDP	R			W	W	
Instruction Type		Su	bseq	uent S	ame-U	Init Instruction Executable
Single-cycle		1		Xw	Xw	V
4-cycle		Xw		\checkmark		\mathcal{V}
INTDP		Xw	1	\checkmark		\checkmark
ADDDP/SUBDP		1		1		V
Instruction Type	Sam	ne Side	e, Diff	erent	Unit, E	Both Using Cross Path Executabl
Single-cycle		1			\checkmark	V
DP compare		1		\checkmark	\checkmark	\checkmark
2-cycle DP		1	1	1	1	\checkmark
4-cycle		1		/	\checkmark	\sim
Load		1		\checkmark		1~
Store		1	1	1	1	1
Branch		1	1		1	\mathcal{V}
16×16 multiply		1				\mathcal{V}
MPYI		1				\mathcal{V}
MPYID		1				\mathcal{V}
MPYDP		1	1	1-		\checkmark

Table 4–34. INTDP .L-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write constraint

Table 4–35 shows the instruction constraints for **ADDDP/SUBDP** instructions executing on the .L unit.

				In	struc	tion Ex	cecutio	Instruction Execution											
Cycle	1	2	3	4	5	6	7	8											
ADDDP/SUBDP	R	R				W	W												
Instruction Type		Su	bsequ	uent S	ame-l	Jnit In	structi	ion Executa	ble										
Single-cycle		Xr				Xw	Xw												
4-cycle		Xr	Xw	Xw		1	\checkmark	~											
INTDP		Xrw	Xw	Xw		\mathcal{V}													
ADDDP/SUBDP		Xr		1		\checkmark													
Instruction Type	Sam	ne Side	e, Diff	erent l	Jnit, E	3oth U	sing C	cross Path I	Exe										
Single-cycle		Xr					\checkmark												
DP compare		Xr		\checkmark		\checkmark													
2-cycle DP		Xr				\mathcal{V}													
4-cycle		Xr		1		\checkmark													
Load		1	1	1	1	1-	1												
Store		1	\checkmark	1		\checkmark	\checkmark												
Branch		Xr	\checkmark	1		\checkmark	\checkmark												
16×16 multiply		Xr	\checkmark	1		\checkmark	\checkmark												
MPYI		Xr	\checkmark	1		\checkmark	\checkmark												
MPYID		Xr	\checkmark	1		\checkmark	\checkmark												
MPYDP		Xr	1	1-		1	1-												

Table 4–35. ADDDP/SUBDP .L-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/ decode constraint; Xw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction cannot enter E1 during cycle-write constraint; Xrw = Next instruction; Xrw = Next instructio

4.3.4 .D-Unit Instruction Constraints

Table 4–36 shows the instruction constraints for load instructions executing on the .D unit.

		tion Execution				
Cycle	1	2	3	4	5	6
Load	RW				W	
Instruction Type		Su	bsequ	ient S	ame-l	Init Instruction Executable
Single-cycle		\checkmark				1 m
Load		\sim	1	\checkmark	\checkmark	\mathcal{V}
Store		\checkmark	1	1	\checkmark	V
Instruction Type	Sam	e Side	e, Diffe	erent I	Unit, E	Both Using Cross Path Executable
16×16 multiply			\checkmark	\checkmark	\checkmark	\mathcal{V}
MPYI		\sim				\checkmark
MPYID		1				$\boldsymbol{\nu}$
MPYDP		\sim			1	\checkmark
Single-cycle		\checkmark	1	1	\checkmark	\mathcal{V}
DP compare		\checkmark	1	1		V
2-cycle DP		\checkmark	1	1	\checkmark	\mathcal{V}
Branch		1	1	1		V
4-cycle		1	1	1		Va
INTDP		1	1	1	1-	V
ADDDP/SUBDP		1	1	1		V

Table 4–36. Load .D-Unit Instruction Constraints

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle

Table 4–37 shows the instruction constraints for store instructions executing on the .D unit.

	Instruction Execution
Cycle	1 2 3 4
Store	RW
Instruction Type	Subsequent Same-Unit Instruction Executable
Single-cycle	
Load	
Store	
Instruction Type	Same Side, Different Unit, Both Using Cross Path Executable
16×16 multiply	
MPYI	
MPYID	
MPYDP	
Single-cycle	
DP compare	
2-cycle DP	
Branch	
4-cycle	
INTDP	
ADDDP/SUBDP	

Table 4–37. Store	.D-Unit Instructior	Constraints
-------------------	---------------------	-------------

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle

Table 4–38 shows the instruction constraints for single-cycle instructions executing on the .D unit.

	Instruction Execution
Cycle	1 2
Single-cycle	RW
Instruction Type	Subsequent Same-Unit Instruction Executable
Single-cycle	
Load	
Store	
Instruction Type	Same Side, Different Unit, Both Using Cross Path Executable
16×16 multiply	
MPYI	
MPYID	V
MPYDP	Va
Single-cycle	Va
DP compare	La construction of the second s
2-cycle DP	La construction of the second s
Branch	V
4-cycle	L.
INTDP	
ADDDP/SUBDP	

Table 4–38. Single-Cycle .D-Unit Instruction Constraints

Legend: E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle

Table 4–39 shows the instruction constraints for **LDDW** instructions executing on the .D unit.

Table 4–39. LDDW Instruction With Long Write Instruction Constraints

	Instruction Execution
Cycle	1 2 3 4 5 6
LDDW	RW W
Instruction Type	Subsequent Same-Unit Instruction Executable
Instruction with long result	V V XW V

Legend: = E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the instruction; ν = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write constraint

SPRU733

Pipeline 4-55

4.4 Performance Considerations

The C67x DSP pipeline is most effective when it is kept as full as the algorithms in the program allow it to be. It is useful to consider some situations that can affect pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into from one to eight execute packets (EPs). Each EP contains instructions that execute in parallel. Each instruction executes in an independent functional unit. The effect on the pipeline of combinations of EPs that include varying numbers of parallel instructions, or just a single instruction that executes serially with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of instructions through the pipeline. Another defining factor is the instruction types in the EP. Each type of instruction has a fixed number of execute cycles that determines when this instruction's operations are complete. Section 4.4.2 covers the effect of including a multicycle **NOP** in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is considered. The access of program and data memory is discussed, along with memory stalls.

4.4.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Referring to Figure 4–6, page 4-6, pipeline operation is shown with eight instructions in every fetch packet. Figure 4–28, however, shows the pipeline operation with a fetch packet that contains multiple execute packets. Code for Figure 4–28 might have this layout:

instruction A ; EP k FP n || instruction B ; instruction C ; EP k + 1 FP n instruction D instruction E instruction F ; EP k + 2FP n instruction G instruction H instruction I ; EP k + 3 FP n + 1 instruction J instruction K instruction L instruction M instruction N instruction 0 instruction P ... continuing with EPs k + 4 through k + 8, which have eight instructions in parallel, like k + 3.

4-56 Pipeline

SPRU733

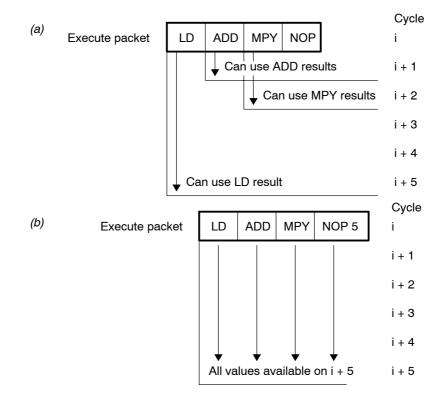
	Clock cycle																	
Fetch packet (FP)	Execute packet (EP)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
n	k	PG	PS	PW	PR	DP	DC	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	
n	k+1						DP	DC	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
n	k+2							DP	DC	E1	E2	E3	E4	E5	E6	E7	E8	E9
n+1	k+3		PG	PS	PW	PR			DP	DC	E1	E2	E3	E4	E5	E6	E7	E8
n+2	k+4			PG	PS	PW	Pipe	eline	PR	DP	DC	E1	E2	E3	E4	E5	E6	E7
n+3	k+5				PG	PS	st	all	PW	PR	DP	DC	E1	E2	E3	E4	E5	E6
n+4	k+6					PG			PS	PW	PR	DP	DC	E1	E2	E3	E4	E5
n+5	k+7								PG	PS	PW	PR	DP	DC	E1	E2	E3	E4
n+6	k+8									PG	PS	PW	PR	DP	DC	E1	E2	E3

Figure 4–28. Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets

In Figure 4–28, fetch packet n, which contains three execute packets, is shown followed by six fetch packets (n + 1 through n + 6), each with one execute packet (containing eight parallel instructions). The first fetch packet (n) goes through the program fetch phases during cycles 1–4. During these cycles, a program fetch phase is started for each of the fetch packets that follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the *p*-bits and detects that there are three execute packets (k through k + 2) in fetch packet n. This forces the pipeline to stall, which allows the DP phase to start for execute packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready to move on to the DC phase (cycle 8), the pipeline stall is released.

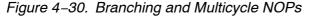
The fetch packets n + 1 through n + 4 were all stalled so the CPU could have time to perform the DP phase for each of the three execute packets (k through k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles 6 and 7: it was not allowed to enter the PG phase until after the pipeline stall was released in cycle 8. The pipeline continues operation as shown with fetch packets n + 5 and n + 6 until another fetch packet containing multiple execution packets enters the DP phase, or an interrupt occurs.

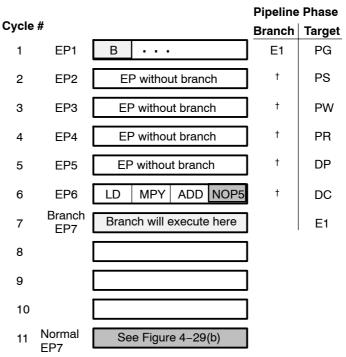

4.4.2 Multicycle NOPs

The **NOP** instruction has an optional operand, *count*, that allows you to issue a single instruction for multicycle **NOP**s. A **NOP** 2, for example, fills in extra delay slots for the instructions in its execute packet and for all previous execute packets. If a **NOP** 2 is in parallel with an **MPY** instruction, the **MPY** results is available for use by instructions in the next execute packet.

Figure 4–29 shows how a multicycle **NOP** can drive the execution of other instructions in the same execute packet. Figure 4–29(a) shows a **NOP** in an execute packet (in parallel) with other code. The results of the **LD**, **ADD**, and **MPY** is available during the proper cycle for each instruction. Hence **NOP** has no effect on the execute packet.

Figure 4–29(b) shows the replacement of the single-cycle **NOP** with a multicycle **NOP** (**NOP 5**) in the same execute packet. The **NOP 5** causes no operation to perform other than the operations from the instructions inside its execute packet. The results of the **LD**, **ADD**, and **MPY** cannot be used by any other instructions until the **NOP 5** period has completed.


Figure 4–29. Multicycle NOP in an Execute Packet

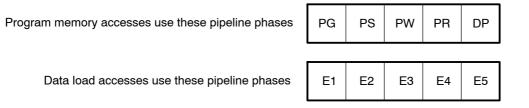


4-58 Pipeline

SPRU733

Figure 4–30 shows how a multicycle **NOP** can be affected by a branch. If the delay slots of a branch finish while a multicycle **NOP** is still dispatching **NOP**s into the pipeline, the branch overrides the multicycle **NOP** and the branch target begins execution five delay slots after the branch was issued.

[†] Delay slots of the branch


In one case, execute packet 1 (EP1) does not have a branch. The **NOP 5** in EP6 forces the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch coincide with cycles 2 through 6. Once the target code reaches E1 in cycle 7, it executes.

4.4.3 Memory Considerations

The C67x DSP has a memory configuration with program memory in one physical space and data memory in another physical space. Data loads and program fetches have the same operation in the pipeline, they just use different phases to complete their operations. With both data loads and program fetches, memory accesses are broken into multiple phases. This enables the C67x DSP to access memory at a high speed. These phases are shown in Figure 4–31.

Figure 4-31. Pipeline Phases Used During Memory Accesses

To understand the memory accesses, compare data loads and instruction fetches/dispatches. The comparison is valid because data loads and program fetches operate on internal memories of the same speed on the C67x DSP and perform the same types of operations (listed in Table 4–40) to accommodate those memories. Table 4–40 shows the operation of program fetches pipeline versus the operation of a data load.

Table 4–40. Program Memory Accesses Versus Data Load Accesses

Operation	Program Memory Access Phase	Data Load Access Phase
Compute address	PG	E1
Send address to memory	PS	E2
Memory read/write	PW	E3
Program memory: receive fetch packet at CPU boundary Data load: receive data at CPU boundary	PR	E4
Program memory: send instruction to functional units Data load: send data to register	DP	E5

Depending on the type of memory and the time required to complete an access, the pipeline may stall to ensure proper coordination of data and instructions. This is discussed in section 4.4.3.1.

In the instance where multiple accesses are made to a single ported memory, the pipeline will stall to allow the extra access to occur. This is called a memory bank hit and is discussed in section 4.4.3.2.

4.4.3.1 Memory Stalls

A memory stall occurs when memory is not ready to respond to an access from the CPU. This access occurs during the PW phase for a program memory access and during the E3 phase for a data memory access. The memory stall causes all of the pipeline phases to lengthen beyond a single clock cycle, causing execution to take additional clock cycles to finish. The results of the program execution are identical whether a stall occurs or not. Figure 4–32 illustrates this point.

	Clock cycle															
Fetch packet (FP)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
n	PG	PS	PW	PR	DP	DC	E1			E2	E3				E4	E5
n+1		PG	PS	PW	PR	DP	DC			E1	E2				E3	E4
n+2			PG	PS	PW	PR	DP	Pro	gram	DC	E1				E2	E3
n+3				PG	PS	PW	PR	memo	ory stall	DP	DC		Data		E1	E2
n+4					PG	PS	PW	1		PR	DP	m	emory s	tall	DC	E1
n+5						PG	PS			PW	PR				DP	DC
n+6							PG			PS	PW				PR	DP
n+7										PG	PS				PW	PR
n+8											PG				PS	PW
n+9															PG	PS
n+10																PG

Figure 4–32. Program and Data Memory Stalls

4.4.3.2 Memory Bank Hits

Most C67x devices use an interleaved memory bank scheme, as shown in Figure 4–33. Each number in the diagram represents a byte address. A load byte (**LDB**) instruction from address 0 loads byte 0 in bank 0. A load halfword (**LDH**) instruction from address 0 loads the halfword value in bytes 0 and 1, which are also in bank 0. A load word (**LDW**) instruction from address 0 loads bytes 0 through 3 in banks 0 and 1. A load double-word (**LDDW**) instruction from address 0 loads bytes 0 through 3.

Figure 4–33. 8-Bank Interleaved Memory

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
:	:	:	•	:	:	:	:	:	:	:		:	:	:	•
16N	16N+1	16N + 2	16N+3	16N+4	16N+5	16N+6	16N+7	16N+8	16N +9	16N +10	16N +11	16N+12	16N +13	16N+14	16N +15
Bar	nk 0	Bar	nk 1	Bar	nk 2	Bar	nk 3	Bar	nk 4	Ba	nk 5	Ba	nk 6	Bar	nk 7

Because each of these banks is single-ported memory, only one access to each bank is allowed per cycle. Two accesses to a single bank in a given cycle result in a memory stall that halts all pipeline operation for one cycle, while the second value is read from memory. Two memory operations per cycle are allowed without any stall, as long as they do not access the same bank.

Consider the code in Example 4–2. Because both loads are trying to access the same bank at the same time, one load must wait. The first **LDW** accesses bank 0 on cycle i + 2 (in the E3 phase) and the second **LDW** accesses bank 0 on cycle i + 3 (in the E3 phase). See Table 4–41 for identification of cycles and phases. The E4 phase for both LDW instructions is in cycle i + 4. To eliminate this extra phase, the loads must access data from different banks (B4 address would need to be in bank 1). For more information on programming topics, see the *TMS320C6000 Programmer's Guide* (SPRU198).

Example 4–2.	Load From	Memory Banks
--------------	-----------	--------------

Γ	LDW	.D1	*A4++ , A5	;	load 1,	A4	address	is	in	bank	0
	LDW	.D2	*B4++,B5	;	load 2,	В4	address	is	in	bank	0

4-62 Pipeline

SPRU733

	i	<i>i</i> + 1	<i>i</i> + 2	<i>i</i> + 3	<i>i</i> + 4	<i>i</i> + 5
LDW .D1 Bank 0	E1	E2	E3	_	E4	E5
LDW .D2 Bank 0	E1	E2	-	E3	E4	E5

Table 4–41. Loads in Pipeline from Example 4–2

For devices that have more than one memory space (see Figure 4–34), an access to bank 0 in one space does not interfere with an access to bank 0 in another memory space, and no pipeline stall occurs.

The internal memory of the C67x DSP family varies from device to device. See the device-specific data manual to determine the memory spaces in your device.

Memory space 0

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
•	•••	•	•	:	•	•	•	•	•••	•	•	:	•	•	• •
16N	16N+1	16N+2	16N+3	16N+4	16N+5	16N+6	16N+7	16N+8	16N+9	16N+10	16N +11	16N+12	16N +13	16N+14	16N+15
Ba	nk 0	Bar	nk 1	Bar	nk 2	Bar	nk 3	Bar	nk 4	Bar	nk 5	Bar	nk 6	Bar	nk 7

Memory space 1

16M	16M+1	16M+2	16M+3	16M+	416M+5	16M+6	16M+7	16M+8	16M+9	16M+10	16M+11	16M+12	16M+13	16M+14	16M+15
:	• •	•	• •	•	•	•	•	•	• •	•	• •	•	•	•	•
Bai	nk 0	Bar	nk 1	Ba	ink 2	Bar	nk 3	Bar	nk 4	Bar	nk 5	Bar	nk 6	Bank 7	

SPRU733

Pipeline 4-63

Chapter 5

Interrupts

This chapter describes CPU interrupts, including reset and the nonmaskable interrupt (NMI). It details the related CPU control registers and their functions in controlling interrupts. It also describes interrupt processing, the method the CPU uses to detect automatically the presence of interrupts and divert program execution flow to your interrupt service code. Finally, the chapter describes the programming implications of interrupts.

Topio	C	Page
5.1	Overview	5-2
5.2	Globally Enabling and Disabling Interrupts	. 5-11
5.3	Individual Interrupt Control	. 5-13
5.4	Interrupt Detection and Processing	. 5-16
5.5	Performance Considerations	. 5-21
5.6	Programming Considerations	. 5-22

5.1 Overview

Typically, DSPs work in an environment that contains multiple external asynchronous events. These events require tasks to be performed by the DSP when they occur. An interrupt is an event that stops the current process in the CPU so that the CPU can attend to the task needing completion because of the event. These interrupt sources can be on chip or off chip, such as timers, analog-to-digital converters, or other peripherals.

Servicing an interrupt involves saving the context of the current process, completing the interrupt task, restoring the registers and the process context, and resuming the original process. There are eight registers that control servicing interrupts.

An appropriate transition on an interrupt pin sets the pending status of the interrupt within the interrupt flag register (IFR). If the interrupt is properly enabled, the CPU begins processing the interrupt and redirecting program flow to the interrupt service routine.

5.1.1 Types of Interrupts and Signals Used

There are three types of interrupts on the CPUs of the TMS320C6000™ DSPs.

- Reset
- Maskable
- Nonmaskable

These three types are differentiated by their priorities, as shown in Table 5–1. The reset interrupt has the highest priority and corresponds to the RESET signal. The nonmaskable interrupt has the second highest priority and corresponds to the NMI signal. The lowest priority interrupts are interrupts 4–15 corresponding to the INT4–INT15 signals. RESET, NMI, and some of the INT4–INT15 signals are mapped to pins on C6000 devices. Some of the INT4–INT15 interrupt signals are used by internal peripherals and some may be unavailable or can be used under software control. Check your device-specific data manual to see your interrupt specifications.

Priority	Interrupt Name	Interrupt Type
Highest	Reset	Reset
	NMI	Nonmaskable
	INT4	Maskable
	INT5	Maskable
	INT6	Maskable
	INT7	Maskable
	INT8	Maskable
	INT9	Maskable
	INT10	Maskable
	INT11	Maskable
	INT12	Maskable
	INT13	Maskable
	INT14	Maskable
Lowest	INT15	Maskable

Table 5–1. Interrupt Priorities

5.1.1.1 Reset (RESET)

Reset is the highest priority interrupt and is used to halt the CPU and return it to a known state. The reset interrupt is unique in a number of ways:

- RESET is an active-low signal. All other interrupts are active-high signals.
- RESET must be held low for 10 clock cycles before it goes high again to reinitialize the CPU properly.
- ☐ The instruction execution in progress is aborted and all registers are returned to their default states.
- The reset interrupt service fetch packet must be located at address 0.
- RESET is not affected by branches.

SPRU733

5.1.1.2 Nonmaskable Interrupt (NMI)

NMI is the second-highest priority interrupt and is generally used to alert the CPU of a serious hardware problem such as imminent power failure.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in the interrupt enable register must be set to 1. If NMIE is set to 1, the only condition that can prevent NMI processing is if the NMI occurs during the delay slots of a branch (whether the branch is taken or not).

NMIE is cleared to 0 at reset to prevent interruption of the reset. It is cleared at the occurrence of an NMI to prevent another NMI from being processed. You cannot manually clear NMIE, but you can set NMIE to allow nested NMIs. While NMI is cleared, all maskable interrupts (INT4–INT15) are disabled.

5.1.1.3 Maskable Interrupts (INT4–INT15)

The CPUs of the C6000[™] DSPs have 12 interrupts that are maskable. These have lower priority than the NMI and reset interrupts. These interrupts can be associated with external devices, on-chip peripherals, software control, or not be available.

Assuming that a maskable interrupt does not occur during the delay slots of a branch (this includes conditional branches that do not complete execution due to a false condition), the following conditions must be met to process a maskable interrupt:

- The global interrupt enable bit (GIE) bit in the control status register (CSR) is set to1.
- The NMIE bit in the interrupt enable register (IER) is set to1.
- The corresponding interrupt enable (IE) bit in the IER is set to1.
- The corresponding interrupt occurs, which sets the corresponding bit in the interrupt flags register (IFR) to 1 and there are no higher priority interrupt flag (IF) bits set in the IFR.

5.1.1.4 Interrupt Acknowledgment (IACK) and Interrupt Number (INUMn)

The IACK and INUM*n* signals alert hardware external to the C6000 that an interrupt has occurred and is being processed. The IACK signal indicates that the CPU has begun processing an interrupt. The INUM*n* signal (INUM3–INUM0) indicates the number of the interrupt (bit position in the IFR) that is being processed. For example:

INUM3 = 0 (MSB) INUM2 = 1 INUM1 = 1 INUM0 = 1 (LSB)

Together, these signals provide the 4-bit value 0111, indicating INT7 is being processed.

5.1.2 Interrupt Service Table (IST)

When the CPU begins processing an interrupt, it references the interrupt service table (IST). The IST is a table of fetch packets that contain code for servicing the interrupts. The IST consists of 16 consecutive fetch packets. Each interrupt service fetch packet (ISFP) contains eight instructions. A simple interrupt service routine may fit in an individual fetch packet.

The addresses and contents of the IST are shown in Figure 5–1. Because each fetch packet contains eight 32-bit instruction words (or 32 bytes), each address in the table is incremented by 32 bytes (20h) from the one adjacent to it.

000h	RESET ISFP			
020h	NMI ISFP			
040h	Reserved			
060h	Reserved			
080h	INT4 ISFP			
0A0h	INT5 ISFP			
0C0h	INT6 ISFP			
0E0h	INT7 ISFP			
100h	INT8 ISFP			
120h	INT9 ISFP			
140h	INT10 ISFP			
160h	INT11 ISFP			
180h	INT12 ISFP			
1A0h	INT13 ISFP			
1C0h	INT14 ISFP			
1E0h	INT15 ISFP			
Program memory				

Figure 5–1. Interrupt Service Table

5.1.2.1 Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 5-2 shows an ISFP that contains an interrupt service routine small enough to fit in a single fetch packet (FP). To branch back to the main program, the FP contains a branch to the interrupt return pointer instruction (B IRP). This is followed by a NOP 5 instruction to allow the branch target to reach the execution stage of the pipeline.

Note:

If the NOP 5 was not in the routine, the CPU would execute the next five execute packets that are associated with the next ISFP.

Figure 5–2. Interrupt Service Fetch Packet

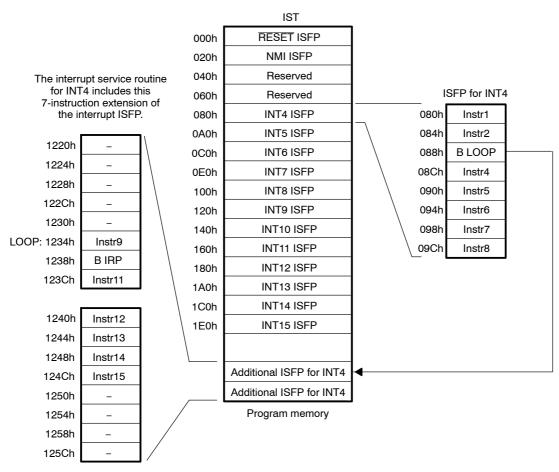
			Interrupt service table (IST)
		000h	RESET ISFP
		020h	NMI ISFP
FP for INT	3	040h	Reserved
		060h	Reserved
Instr1	\backslash	080h	INT4 ISFP
Instr2		0A0h	INT5 ISFP
Instr3		0C0h	INT6 ISFP
Instr4		0E0h	INT7 ISFP
Instr5		100h	INT8 ISFP
Instr6		120h	INT9 ISFP
B IRP		140h	INT10 ISFP
NOP 5	/	160h	INT11 ISFP
		180h	INT12 ISFP
ne for INT6 is short igh to be contained single fetch packet.		1A0h	INT13 ISFP
		1C0h	INT14 ISFP
	Instr1 Instr2 Instr3 Instr4 Instr5 Instr6 B IRP NOP 5 errupt servior INT6 is s o be contai	Instr2 Instr3 Instr4 Instr5 Instr6 B IRP NOP 5 errupt service or INT6 is short o be contained	PP for INT6 Instr1 Instr2 Instr3 Instr5 Instr6 B IRP NOP 5 Instr6 is short o be contained

1E0h

0C0h 0C4h 0C8h 0CCh 0D0ł 0D4h 0D8h 0DCh

The routin enou in a s

> INT15 ISFP Program memory


> > Interrupts

If the interrupt service routine for an interrupt is too large to fit in a single fetch packet, a branch to the location of additional interrupt service routine code is required. Figure 5–3 shows that the interrupt service routine for INT4 was too large for a single fetch packet, and a branch to memory location 1234h is required to complete the interrupt service routine.

Note:

The instruction **B LOOP** branches into the middle of a fetch packet and processes code starting at address 1234h. The CPU ignores code from address 1220h–1230h, even if it is in parallel to code at address 1234h.

Figure 5–3. Interrupt Service Table With Branch to Additional Interrupt Service Code Located Outside the IST

5-8 Interrupts

5.1.2.2 Interrupt Service Table Pointer (ISTP)

The reset fetch packet must be located at address 0, but the rest of the IST can be at any program memory location that is on a 256-word boundary. The location of the IST is determined by the interrupt service table base (ISTB) field of the interrupt service table pointer register (ISTP). The ISTP is shown in Figure 2–11 (page 2-21) and described in Table 2–12. Example 5–1 shows the relationship of the ISTB to the table location.

Example 5–1. Relocation of Interrupt Service Table

(a) Relocating the IST to 800h

- 1) Copy the IST, located between 0h and 200h, to the memory location between 800h and A00h.
- 2) Write 800h to ISTP: MVK 800h, A2 MVC A2, ISTP

ISTP = 800h = 1000 0000 0000b

(b) How the ISTP directs the CPU to the appropriate ISFP in the relocated IST

Assume: IFR = BBC0h = 101<u>1</u> 10<u>1</u>1 1100 0000b IER = 1230h = 000<u>1</u> 00<u>1</u>0 0011 0001b

2 enabled interrupts pending: INT9 and INT12

The 1s in the IFR indicate pending interrupts; the 1s in the IER indicate the interrupts that are enabled. INT9 has a higher priority than INT12, so HPEINT is encoded with the value for INT9, 01001b.

HPEINT corresponds to bits 9–5 of the ISTP: ISTP = 1001 0010 0000b = 920h = address of INT9

	IST
0	RESET ISFP
800h	RESET ISFP
820h	NMI ISFP
840h	Reserved
860h	Reserved
880h	INT4 ISFP
8A0h	INT5 ISFP
8C0h	INT6 ISFP
8E0h	INT7 ISFP
900h	INT8 ISFP
920h	INT9 ISFP
940h	INT10 ISFP
96h0	INT11 ISFP
980h	INT12 ISFP
9A0h	INT13 ISFP
9C0h	INT14 ISFP
9E0h	INT15 ISFP

Program memory

5.1.3 Summary of Interrupt Control Registers

Table 5-2 lists the interrupt control registers on the C67x CPU.

Table 5–2. Interrupt Control Registers

Acronym	Register Name	Description	Page
CSR	Control status register	Allows you to globally set or disable interrupts	2-13
ICR	Interrupt clear register	Allows you to clear flags in the IFR manually	2-16
IER	Interrupt enable register	Allows you to enable interrupts	2-17
IFR	Interrupt flag register	Shows the status of interrupts	2-18
IRP	Interrupt return pointer register	Contains the return address used on return from a maskable interrupt. This return is accomplished via the B IRP instruction.	2-19
ISR	Interrupt set register	Allows you to set flags in the IFR manually	2-20
ISTP	Interrupt service table pointer register	Pointer to the beginning of the interrupt service table	2-21
NRP	Nonmaskable interrupt return pointer register	Contains the return address used on return from a nonmaskable interrupt. This return is accomplished via the B NRP instruction.	2-22

5.2 Globally Enabling and Disabling Interrupts

The control status register (CSR) contains two fields that control interrupts: GIE and PGIE, as shown in Figure 2–4 (page 2-13) and described in Table 2–7 (page 2-14). The global interrupt enable (GIE) allows you to enable or disable all maskable interrupts:

- GIE = 1 enables the maskable interrupts so that they are processed.
- GIE = 0 disables the maskable interrupts so that they are not processed.

Bit 1 of CSR is the PGIE bit and holds the previous value of GIE when a maskable interrupt is processed. During maskable interrupt processing, the value of the GIE bit is copied to the PGIE bit, and the GIE bit is cleared. The previous value of the PGIE bit is lost. The GIE bit is cleared during a maskable interrupt to prevent another maskable interrupt from occurring before the device state has been saved. Upon returning from an interrupt, by way of the **B IRP** instruction, the content of the PGIE bit is copied back to the GIE bit. The PGIE bit remains unchanged.

The purpose of the PGIE bit is to record the value of the GIE bit at the time the interrupt processing begins. This is necessary because interrupts are detected in parallel with instruction execution. Typically, the GIE bit is 1 when an interrupt is taken. However, if an interrupt is detected in parallel with an **MVC** instruction that clears the GIE bit, the GIE bit may be cleared by the **MVC** instruction after the interrupt processing begins. Because the PGIE bit records the state of the GIE bit after all instructions have completed execution, the PGIE bit captures the fact that the GIE bit was cleared as the interrupt was taken.

For example, suppose the GIE bit is set to 1 as the sequence of code shown in Example 5–2 is entered. An interrupt occurs, and the CPU detects it just as the CPU is executing the **MVC** instruction that writes a 0 to the GIE bit. Interrupt processing begins. Meanwhile, the 0 is written to the GIE bit as the **MVC** instruction completes. During the interrupt dispatch, this updated value of the GIE bit is copied to the PGIE bit, leaving the PGIE bit cleared to 0. Later, upon returning from the interrupt (using the **BIRP** instruction), the PGIE bit is copied to the GIE bit. As a result, the code following the **MVC** instruction recognizes the GIE bit is cleared to 0, as directed by the **MVC** instruction, despite having taken the interrupt.

Example 5–2 and Example 5–3 show code examples for disabling and enabling maskable interrupts globally, respectively.

SPRU733

Example 5–2. Code Sequence to Disable Maskable Interrupts Globally

MVC CSR, B0	; get CSR
AND -2, B0, B0	; get ready to clear GIE
MVC B0, CSR	; clear GIE
MVC BU,CSR	; Clear Gin

Example 5–3. Code Sequence to Enable Maskable Interrupts Globally

MVC	CSR,B0	; get CSR
OR	1,B0,B0	; get ready to set GIE
MVC	B0,CSR	; set GIE

5.3 Individual Interrupt Control

Servicing interrupts effectively requires individual control of all three types of interrupts: reset, nonmaskable, and maskable. Enabling and disabling individual interrupts is done with the interrupt enable register (IER). The status of pending interrupts is stored in the interrupt flag register (IFR). Manual interrupt processing can be accomplished through the use of the interrupt set register (ISR) and interrupt clear register (ICR). The interrupt return pointers restore context after servicing nonmaskable and maskable interrupts.

5.3.1 Enabling and Disabling Interrupts

You can enable and disable individual interrupts by setting and clearing bits in the IER that correspond to the individual interrupts. An interrupt can trigger interrupt processing only if the corresponding bit in the IER is set. Bit 0, corresponding to reset, is not writeable and is always read as 1, so the reset interrupt is always enabled. You cannot disable the reset interrupt. Bits IE4–IE15 can be written as 1 or 0, enabling or disabling the associated interrupt, respectively. The IER is shown in Figure 2–7 (page 2-17) and described in Table 2–9.

When NMIE = 0, all nonreset interrupts are disabled, preventing interruption of an NMI. The NMIE bit is cleared at reset to prevent any interruption of process or initialization until you enable NMI. After reset, you must set the NMIE bit to enable the NMI and to allow INT15–INT4 to be enabled by the GIE bit in CSR and the corresponding IER bit. You cannot manually clear the NMIE bit; the NMIE bit is unaffected by a write of 0. The NMIE bit is also cleared by the occurrence of an NMI. If cleared, the NMIE bit is set only by completing a **B NRP** instruction or by a write of 1 to the NMIE bit. Example 5–4 and Example 5–5 show code for enabling and disabling individual interrupts, respectively.

Example	e 5–4.	Code S	Seauence	to En	able an	Individual	Interrupt	(INT9)	

MVK	200h,B1	; set bit 9
MVC	IER,B0	; get IER
OR	B1,B0,B0	; get ready to set IE9
MVC	B0,IER	; set bit 9 in IER

Example 5–5.	Code Sequence	to Disable an	Individual	Interrupt	(INT9)

MVK	FDFFh,B1	; clear bit 9
MVC	IER,B0	
AND	В1,В0,В0	; get ready to clear IE9
MVC	B0,IER	; clear bit 9 in IER

SPRU733

5.3.2 Status of Interrupts

The interrupt flag register (IFR) contains the status of INT4–INT15 and NMI. Each interrupt's corresponding bit in IFR is set to 1 when that interrupt occurs; otherwise, the bits have a value of 0. If you want to check the status of interrupts, use the **MVC** instruction to read IFR. The IFR is shown in Figure 2–8 (page 2-18) and described in Table 2–10.

5.3.3 Setting and Clearing Interrupts

The interrupt set register (ISR) and the interrupt clear register (ICR) allow you to set or clear maskable interrupts manually in IFR. Writing a 1 to IS4–IS15 in ISR causes the corresponding interrupt flag to be set in IFR. Similarly, writing a 1 to a bit in ICR causes the corresponding interrupt flag to be cleared. Writing a 0 to any bit of either ISR or ICR has no effect. Incoming interrupts have priority and override any write to ICR. You cannot set or clear any bit in ISR or ICR to affect NMI or reset. The ISR is shown in Figure 2–10 (page 2-20) and described in Table 2–11. The ICR is shown in Figure 2–6 (page 2-16) and described in Table 2–8.

Note:

Any write to the ISR or ICR (by the **MVC** instruction) effectively has one delay slot because the results cannot be read (by the **MVC** instruction) in IFR until two cycles after the write to ISR or ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in ISR.

Example 5–6 and Example 5–7 show code examples to set and clear individual interrupts, respectively.

Example 5–6.	Code to Set an	Individual	Interrupt	(INT6) and R	Read the	Flag Re	aister
				`				J

MVK	40h,B3	
MVC	B3,ISR	
NOP		
MVC	IFR,B4	

Example 5–7.	Code to Clear an	Individual Interrup	: <i>(INT6</i>) and Read the F	-laa Reaister

MVK	40h,B3
MVC	B3,ICR
NOP	
MVC	IFR,B4

5-14 Interrupts

5.3.4 Returning From Interrupt Servicing

After **RESET** goes high, the control registers are brought to a known value and program execution begins at address 0h. After nonmaskable and maskable interrupt servicing, use a branch to the corresponding return pointer register to continue the previous program execution.

5.3.4.1 CPU State After RESET

After RESET, the control registers and bits contain the following values:

- \square AMR, ISR, ICR, IFR, and ISTP = 0
- 🗋 IER = 1h
- □ IRP and NRP = undefined

CSR bits 15–0 = 100h in little-endian mode

= 000h in big-endian mode

5.3.4.2 Returning From Nonmaskable Interrupts

The NMI return pointer register (NRP), shown in Figure 2–12 (page 2-22), contains the return pointer that directs the CPU to the proper location to continue program execution after NMI processing. A branch using the address in NRP (**B NRP**) in your interrupt service routine returns to the program flow when NMI servicing is complete. Example 5–8 shows how to return from an NMI.

Example 5-8. Code to Return From NMI

В	NRP	; return, sets NMIE
NOP	5	; delay slots

5.3.4.3 Returning From Maskable Interrupts

The interrupt return pointer register (IRP), shown in Figure 2–9 (page 2-19), contains the return pointer that directs the CPU to the proper location to continue program execution after processing a maskable interrupt. A branch using the address in IRP (**B IRP**) in your interrupt service routine returns to the program flow when interrupt servicing is complete. Example 5–9 shows how to return from a maskable interrupt.

Example 5–9. Code to Return from a Maskable Interrupt

BI	RP ;	return, moves PGIE to GIE
NOP 5	;	delay slots

SPRU733

5.4 Interrupt Detection and Processing

When an interrupt occurs, it sets a flag in the interrupt flag register (IFR). Depending on certain conditions, the interrupt may or may not be processed. This section discusses the mechanics of setting the flag bit, the conditions for processing an interrupt, and the order of operation for detecting and processing an interrupt. The similarities and differences between reset and nonreset interrupts are also discussed.

5.4.1 Setting the Nonreset Interrupt Flag

Figure 5–4 shows the processing of a nonreset interrupt (INTm). The flag (IFm) for INTm in the IFR is set following the low-to-high transition of the INTm signal on the CPU boundary. This transition is detected on a clock-cycle by clock-cycle basis and is not affected by memory stalls that might extend a CPU cycle. Once there is a low-to-high transition on an external interrupt pin (cycle 1), it takes two clock cycles for the signal to reach the CPU boundary (cycle 3). When the interrupt signal enters the CPU, it is has been detected (cycle 4). Two clock cycles after detection, the interrupt's corresponding flag bit in the IFR is set (cycle 6).

In Figure 5–4, IFm is set during CPU cycle 6. You could attempt to clear IFm by using an **MVC** instruction to write a 1 to bit m of the ICR in execute packet n + 3 (during CPU cycle 4). However, in this case, the automated write by the interrupt detection logic takes precedence and IFm remains set.

Figure 5–4 assumes INTm is the highest-priority pending interrupt and is enabled by GIE and NMIE, as necessary. If it is not the highest-priority pending interrupt, IFm remains set until either you clear it by writing a 1 to bit m of the ICR or the processing of INTm occurs.

5.4.2 Conditions for Processing a Nonreset Interrupt

In clock cycle 4 of Figure 5–4, a nonreset interrupt in need of processing is detected. For this interrupt to be processed, the following conditions must be valid on the same clock cycle and are evaluated every clock cycle:

- □ IFm is set during CPU cycle 6. (This determination is made in CPU cycle 4 by the interrupt logic.)
- There is not a higher priority IFm bit set in the IFR.
- \Box The corresponding bit in the IER is set (IEm = 1).
- GIE = 1
- □ NMIE = 1
- ☐ The five previous execute packets (n through n + 4) do not contain a branch (even if the branch is not taken) and are not in the delay slots of a branch.

5-16 Interrupts

Any pending interrupt will be taken as soon as pending branches are completed.

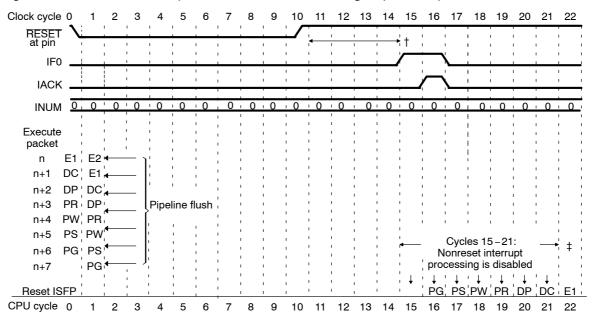
5							'							0	'			'					
CPU cycle	0	1 '	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	' 17 '	18	' 19	20	21	22
External N INTm at pin		1	1				. t				 		1		I I		 	· · · · · · · · · · · · · · · · · · ·					
IFm _		1			1 1	1	1								I I	1	1 1	1 I		ı 1	1	1 1	· ·
IACK					ı	1 1	1 1										ı ı			1 1	1	1	
INUM	0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Execute packet n, n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11	DC DP PR PW PS PG	E1 DC DP PR PW PSI PG	E2 E1 DC PR PW PS PG	E3 E2 DC PR PW PS PG	E2 E1 DC DP PR PW	E2 E1 DC DF PR PW	E3 E2 E1 E2 DP PR				E10 E9 E8 E7 E6	€10 E9 E8 E7	← E10 E9 E8 ns	← E10 E9	E10				ns no l	, , , , , , , , , , , , , , , , , , ,			
1055	1	I I	1		1 1	1 1	, ,	1 1	interr			ng is di PW				+	' ==			' ==	' F a	'	' - '
ISFP CPU cycle	0 1	1 1	2	3	4	- 5 -	· 6	, 7 ,	8	PG 9	PS 10	PW 11	PR 12	DP 13	DC 14	E1 15	<u>E2</u> 16	<u>E3</u> 17 1	<u>E4</u> 18	<u>E5</u> 19	<u>E6</u> 20	<u>E7</u> 21	<u> </u>

Figure 5–4. Nonreset Interrupt Detection and Processing: Pipeline Operation

[†] IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.

[‡] After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are disabled when GIE = 0.

5.4.3 Actions Taken During Nonreset Interrupt Processing


During CPU cycles 6 through 14 of Figure 5–4, the following interrupt processing actions occur:

- Processing of subsequent nonreset interrupts is disabled.
- For all interrupts except NMI, the PGIE bit is set to the value of the GIE bit and then the GIE bit is cleared.
- For NMI, the NMIE bit is cleared.
- The next execute packets (from n + 5 on) are annulled. If an execute packet is annulled during a particular pipeline stage, it does not modify any CPU state. Annulling also forces an instruction to be annulled in future pipeline stages.
- The address of the first annulled execute packet (n + 5) is loaded in NRP (in the case of NMI) or IRP (for all other interrupts).
- During cycle 7, IACK is asserted and the proper INUMn signals are asserted to indicate which interrupt is being processed. The timings for these signals in Figure 5–4 represent only the signals' characteristics inside the CPU. The external signals may be delayed and be longer in duration to handle external devices. Check the device-specific data manual for your timing values.
- IFm is cleared during cycle 8.
- A branch to the address held in ISTP (the pointer to the ISFP for INTm) is forced into the E1 phase of the pipeline during cycle 9.

5.4.4 Setting the RESET Interrupt Flag

RESET must be held low for a minimum of 10 clock cycles. Four clock cycles after RESET goes high, processing of the reset vector begins. The flag for RESET (IF0) in the IFR is set by the low-to-high transition of the RESET signal on the CPU boundary. In Figure 5–5, IF0 is set during CPU cycle 15. This transition is detected on a clock-cycle by clock-cycle basis and is not affected by memory stalls that might extend a CPU cycle.

Figure 5–5. RESET Interrupt Detection and Processing: Pipeline Operation

[†] IF0 is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of RESET.

[‡] After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are disabled when GIE = 0.

5.4.5 Actions Taken During RESET Interrupt Processing

A low signal on the RESET pin is the only requirement to process a reset. Once RESET makes a high-to-low transition, the pipeline is flushed and CPU registers are returned to their reset values. GIE, NMIE, and the ISTB in the ISTP are cleared. For the CPU state after reset, see section 5.3.4.1.

During CPU cycles 15 through 21 of Figure 5–5, the following reset processing actions occur:

- Processing of subsequent nonreset interrupts is disabled because the GIE and NMIE bits are cleared.
- A branch to the address held in ISTP (the pointer to the ISFP for INT0) is forced into the E1 phase of the pipeline during cycle 16.
- During cycle 16, IACK is asserted and the proper INUMn signals are asserted to indicate a reset is being processed.
- □ IF0 is cleared during cycle 17.

Note:

Code that starts running after reset must explicitly enable the GIE bit, the NMIE bit, and IER to allow interrupts to be processed.

5.5 Performance Considerations

The interaction of the C6000 CPU and sources of interrupts present performance issues for you to consider when you are developing your code.

5.5.1 General Performance

- Overhead. Overhead for all CPU interrupts is 9 cycles. You can see this in Figure 5–4, where no new instructions are entering the E1 pipeline phase during CPU cycles 6 through 14.
- □ Latency. Interrupt latency is 13 cycles (21 cycles for RESET). In Figure 5–4, although the interrupt is active in cycle 2, execution of interrupt service code does not begin until cycle 15.
- □ Frequency. The logic clears the nonreset interrupt (IFm) on cycle 8, with any incoming interrupt having highest priority. Thus, an interrupt is can be recognized every second cycle. Also, because a low-to-high transition is necessary, an interrupt can occur only every second cycle. However, the frequency of interrupt processing depends on the time required for interrupt service and whether you reenable interrupts during processing, thereby allowing nested interrupts. Effectively, only two occurrences of a specific interrupt can be recognized in two cycles.

5.5.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect the DC and subsequent phases of the pipeline, no conflicts between code parallelism and interrupts exist. There are three operations or conditions that can affect or are affected by interrupts:

- Branches. Nonreset interrupts are delayed, if any execute packets n through n + 4 in Figure 5–4 contain a branch or are in the delay slots of a branch.
- □ **Memory stalls.** Memory stalls delay interrupt processing, because they inherently extend CPU cycles.
- Multicycle NOPs. Multicycle NOPs (including the IDLE instruction) operate like other instructions when interrupted, except when an interrupt causes annulment of any but the first cycle of a multicycle NOP. In that case, the address of the next execute packet in the pipeline is saved in NRP or IRP. This prevents returning to an IDLE instruction or a multicycle NOP that was interrupted.

SPRU733

5.6 Programming Considerations

The interaction of the C6000 CPUs and sources of interrupts present programming issues for you to consider when you are developing your code.

5.6.1 Single Assignment Programming

Using the same register to store different variables (called here: multiple assignment) can result in unpredictable operation when the code can be interrupted.

To avoid unpredictable operation, you must employ the single assignment method in code that can be interrupted. When an interrupt occurs, all instructions entering E1 prior to the beginning of interrupt processing are allowed to complete execution (through E5). All other instructions are annulled and refetched upon return from interrupt. The instructions encountered after the return from the interrupt do not experience any delay slots from the instructions prior to the instructions after the interrupt can appear, to the instructions after the interrupt, to have fewer delay slots than they actually have.

Example 5–10 shows a code fragment which stores two variables into A1 using multiple assignment. Example 5–11 shows equivalent code using the single assignment programming method which stores the two variables into two different registers.

For example, suppose that register A1 contains 0 and register A0 points to a memory location containing a value of 10 before reaching the code in Example 5–10. The **ADD** instruction, which is in a delay slot of the **LDW**, sums A2 with the value in A1 (0) and the result in A3 is just a copy of A2. If an interrupt occurred between the **LDW** and **ADD**, the **LDW** would complete the update of A1 (10), the interrupt would be processed, and the **ADD** would sum A1 (10) with A2 and place the result in A3 (equal to A2 + 10). Obviously, this situation produces incorrect results.

In Example 5–11, the single assignment method is used. The register A1 is assigned only to the **ADD** input and not to the result of the **LDW**. Regardless of the value of A6 with or without an interrupt, A1 does not change before it is summed with A2. Result A3 is equal to A2.

Example 5–10. Code Without Single Assignment: Multiple Assignment of A1

LDW	.D1	*A0,A1	
ADD	.L1	A1,A2,A3	
NOP	3		
MPY	.M1	A1,A4,A5	; uses new Al

5-22 Interrupts

Example 5–11. Code Using Single Assignment

LDW	.D1	*A0,A6	
ADD	.L1	A1,A2,A3	
NOP	3		
МРҮ	.M1	A6,A4,A5	; uses A6

5.6.2 Nested Interrupts

Generally, when the CPU enters an interrupt service routine, interrupts are disabled. However, when the interrupt service routine is for one of the maskable interrupts (INT4–INT15), an NMI can interrupt processing of the maskable interrupt. In other words, an NMI can interrupt a maskable interrupt, but neither an NMI nor a maskable interrupt can interrupt an NMI.

There may be times when you want to allow an interrupt service routine to be interrupted by another (particularly higher priority) interrupt. Even though the processor by default does not allow interrupt service routines to be interrupted unless the source is an NMI, it is possible to nest interrupts under software control. To allow nested interrupts, the interrupt service routine must perform the following initial steps in addition to its normal work of saving any registers (including control registers) that it modifies:

- 1) The contents of IRP (or NRP) must be saved
- 2) The contents of the PGIE bit must be saved
- 3) The GIE bit must be set to 1

Prior to returning from the interrupt service routine, the code must restore the registers saved above as follows:

- 1) The GIE bit must be first cleared to 0
- 2) The PGIE bit saved value must be restored
- 3) The IRP (or NRP) saved value must be restored

Although steps 2 and 3 above may be performed in any order, it is important that the GIE bit is cleared first. This means that the GIE and PGIE bits must be restored with separate writes to CSR. If these bits are not restored separately, then it is possible that the PGIE bit is overwritten by nested interrupt processing just as interrupts are being disabled.

Example 5–12 shows a simple assembly interrupt handler that allows nested interrupts on the C67x CPU. This example saves its context to the system stack, pointed to by B15. This assumes that the C runtime conventions are being followed. The example code is not optimized, to aid in readability.

SPRU733

Example 5–13 shows a C-based interrupt handler that allows nested interrupts. The steps are similar, although the compiler takes care of allocating the stack and saving CPU registers. For more information on using C to access control registers and write interrupt handlers, see the *TMS320C6000 Optimizing C Compiler Users Guide*, SPRU187.

Example 5–12. Assembly Interrupt Service Routine That Allows Nested Interrupts

```
isr:
            B0, *B15--[4]
      STW
                              ; Save B0, allocate 4 words of stack
            B1, *B15[1]
      STW
                                ; Save B1 on stack
      MVC
            IRP, BO
      STW
            B0, *B15[2]
                              ; Save IRP on stack
            CSR, B0
      MVC
      STW
            B0, *B15[3]
                              ; Save CSR (and thus PGIE) on stack
      OR
            B0, 1, B1
      MVC
            B1, CSR
                                ; Enable interrupts
      ; Interrupt service code goes here.
      ; Interrupts may occur while this code executes.
            CSR, BO
      MVC
                                ; \
                                ; |-- Disable interrupts.
            B0, -2, B1
      AND
                                ;/ (Set GIE to 0)
            B1, CSR
      MVC
            *B15[3], B0
                            ; get saved value of CSR into B0
      T.DW
      NOP
                                ; wait for LDW *B15[3] to finish
            4
            B0, CSR
      MVC
                                ; Restore PGIE
            *B15[2], B0
                              ; get saved value of IRP into B1
      LDW
      NOP
            4
      MVC
            BO, IRP
                               ; Restore IRP
      в
            IRP
                               ; Return from interrupt
LDW
            *B15[1], B1
                                ; Restore B1
      LDW
            *++B15[4], B0
                                ; Restore B0, release stack.
      NOP
                                ; wait for B IRP and LDW to complete.
            4
```

Example 5–13. C Interrupt Service Routine That Allows Nested Interrupts

```
/* c6x.h contains declarations of the C6x control registers
                                                                                     */
#include <c6x.h>
interrupt void isr(void)
{
       unsigned old csr;
       unsigned old irp;
       old_csr = CSR ;/* Save CGF
                                                                                     */
                             ;/* Save CSR (and thus PGIE)
                                                                                     */
       CSR = old csr | 1 ;/* Enable interrupts
                                                                                     */
       /* Interrupt service code goes here.
                                                                                     */
       /* Interrupts may occur while this code executes
                                                                                     */
       CSR = CSR & -2;/* Disable interruptsCSR = old_csr;/* Restore CSR (and thus PGIE)IRP = old_irp;/* Restore IRP
                                                                                     */
                                                                                     */
                                                                                     */
```

5.6.3 Manual Interrupt Processing

You can poll the IFR and IER to detect interrupts manually and then branch to the value held in the ISTP as shown below in Example 5–14.

The code sequence begins by copying the address of the highest priority interrupt from the ISTP to the register B2. The next instruction extracts the number of the interrupt, which is used later to clear the interrupt. The branch to the interrupt service routine comes next with a parallel instruction to set up the ICR word.

The last five instructions fill the delay slots of the branch. First, the 32-bit return address is stored in the B2 register and then copied to the interrupt return pointer (IRP). Finally, the number of the highest priority interrupt, stored in B1, is used to shift the ICR word in B1 to clear the interrupt.

MVC		ISTP,B2	;	get related ISFP address	
EXTU		B2,23,27,B1	;	extract HPEINT	
[B1]	В	В2	;	branch to interrupt	
[B1]	MVK	1,A0	;	setup ICR word	
[B1]	MVK	RET_ADR, B2	;	create return address	
[B1]	MVKH	RET_ADR, B2	;		
[B1]	MVC	B2,IRP	;	save return address	
[B1]	SHL	A0,B1,B1	;	create ICR word	
[B1]	MVC	B1,ICR	;	clear interrupt flag	
RET_AD	DR:	(Post interrupt service routine Code)			

Example 5–14. Manual Interrupt Processing

SPRU733

5.6.4 Traps

A trap behaves like an interrupt, but is created and controlled with software. The trap condition can be stored in any one of the conditional registers: A1, A2, B0, B1, or B2. If the trap condition is valid, a branch to the trap handler routine processes the trap and the return.

Example 5–15 and Example 5–16 show a trap call and the return code sequence, respectively. In the first code sequence, the address of the trap handler code is loaded into register B0 and the branch is called. In the delay slots of the branch, the context is saved in the B0 register, the GIE bit is cleared to disable maskable interrupts, and the return pointer is stored in the B1 register. If the trap handler were within the 21-bit offset for a branch using a displacement, the **MVKH** instructions could be eliminated, thus shortening the code sequence.

The trap is processed with the code located at the address pointed to by the label TRAP_HANDLER. If the B0 or B1 registers are needed in the trap handler, their contents must be stored to memory and restored before returning. The code shown in Example 5–16 should be included at the end of the trap handler code to restore the context prior to the trap and return to the TRAP_RETURN address.

Example 5–15. Code Sequence to Invoke a Trap

[A1]	MVK	TRAP_HANDLER,B0	; load 32-bit trap address
[A1]	MVKH	TRAP_HANDLER,B0	
[A1]	В	В0	; branch to trap handler
[A1]	MVC	CSR,B0	; read CSR
[A1]	AND	-2,B0,B1	; disable interrupts:GIE = 0
[A1]	MVC	B1,CSR	; write to CSR
[A1]	MVK	TRAP_RETURN, B1	; load 32-bit return address
[A1]	MVKH	TRAP_RETURN, B1	
TRAP_R	ETURN:	(post-trap code)	

Note: A1 contains the trap condition.

Example 5–16.	Code Sequence	ce for Trap Return
---------------	---------------	--------------------

]	В	B1	;	return
1	MVC	B0,CSR	;	restore CSR
1	NOP	4	;	delay slots

5-26 Interrupts

Appendix A

Instruction Compatibility

The C62x, C64x, and C67x DSPs share an instruction set. All of the instructions valid for the C62x DSP are also valid for the C67x and C67x+ DSPs. The C67x DSP adds specific instructions for 32-bit integer multiply, doubleword load, and floating-point operations. Table A–1 lists the instructions that are common to the C62x, C64x, C67x, and C67x+ DSPs.

Instruction	Page	C62x DSP	C64x DSP	C67x DSP	C67x+ DSP
ABS	3-38	\checkmark	\checkmark	\checkmark	\checkmark
ABSDP	3-40				
ABSSP	3-42				
ADD	3-44				
ADDAB	3-48				
ADDAD	3-50				
ADDAH	3-52				
ADDAW	3-54				
ADDDP	3-56				
ADDK	3-59				
ADDSP	3-60				
ADDU	3-63				
ADD2	3-65				
AND	3-67			1	1

Table A–1. Instruction Compatibility Between Co	62x, C64x, C67x,
and C67x+ DSPs	

SPRU733

Instruction Compatibility A-1

Instruction	Page	C62x DSP	C64x DSP	C67x DSP	C67x+ DSP
B displacement	3-69	\checkmark		\checkmark	\checkmark
B register	3-71	\checkmark			
B IRP	3-73	\checkmark			
B NRP	3-75				
CLR	3-77				
CMPEQ	3-80				
CMPEQDP	3-82				
CMPEQSP	3-84				
CMPGT	3-86				
CMPGTDP	3-89				
CMPGTSP	3-91				
CMPGTU	3-93	\checkmark			
CMPLT	3-95				
CMPLTDP	3-98				
CMPLTSP	3-100				
CMPLTU	3-102				
DPINT	3-104				
DPSP	3-106				
DPTRUNC	3-108				
EXT	3-110			1	
EXTU	3-113				
IDLE	3-116			1-	
INTDP	3-117				
INTDPU	3-119				\checkmark

A-2 Instruction Compatibility

Instruction	Page	C62x DSP	C64x DSP	C67x DSP	C67x+ DSP
INTSP	3-121				
INTSPU	3-122				
LDB memory	3-123				
LDB memory (15-bit offset)	3-126				
LDBU memory	3-123				
LDBU memory (15-bit offset)	3-126	1			
LDDW	3-128				
LDH memory	3-131	1			
LDH memory (15-bit offset)	3-134				
LDHU memory	3-131				
LDHU memory (15-bit offset)	3-134	1			
LDW memory	3-136				
LDW memory (15-bit offset)	3-139	1			
LMBD	3-141				
MPY	3-143				
MPYDP	3-145				
MPYH	3-147				
MPYHL	3-149				
MPYHLU	3-151				
MPYHSLU	3-152				
MPYHSU	3-153				
MPYHU	3-154				
MPYHULS	3-155				
MPYHUS	3-156		1-		

Instruction	Page	C62x DSP	C64x DSP	C67x DSP	C67x+ DSP
MPYI	3-157			/	\checkmark
MPYID	3-159				\sim
MPYLH	3-161				
MPYLHU	3-163				
MPYLSHU	3-164				
MPYLUHS	3-165				
MPYSP	3-166				
MPYSPDP	3-168				
MPYSP2DP	3-170				
MPYSU	3-172				
MPYU	3-174				
MPYUS	3-176				
MV	3-178				
MVC	3-180				
MVK	3-183				
MVKH	3-185				
MVKL	3-187				
MVKLH	3-185				
NEG	3-189				
NOP	3-190				
NORM	3-192			1	
NOT	3-194			1	
OR	3-195			1	
RCPDP	3-197			1	
RCPSP	3-199				

A-4 Instruction Compatibility

Instruction	Page	C62x DSP	C64x DSP	C67x DSP	C67x+ DSP
RSQRDP	3-201			\checkmark	
RSQRSP	3-203				\checkmark
SADD	3-205				\checkmark
SAT	3-208				
SET	3-210				
SHL	3-213				
SHR	3-215				
SHRU	3-217				\checkmark
SMPY	3-219				
SMPYH	3-221				
SMPYHL	3-222				
SMPYLH	3-224				
SPDP	3-226				
SPINT	3-228				
SPTRUNC	3-230				
SSHL	3-232			1	
SSUB	3-234			1	
STB memory	3-236			1	
STB memory (15-bit offset)	3-238				
STH memory	3-240			1	
STH memory (15-bit offset)	3-243			1	
STW memory	3-245			1	
STW memory (15-bit offset)	3-247				\checkmark

Instruction	Page	C62x DSP	C64x DSP	C67x DSP	C67x+ DSP
SUB	3-249		\checkmark	\checkmark	\checkmark
SUBAB	3-253				
SUBAH	3-255				
SUBAW	3-256				
SUBC	3-258				
SUBDP	3-260				
SUBSP	3-263				
SUBU	3-266				
SUB2	3-268				
XOR	3-270				
ZERO	3-272				

Table A–1. Instruction Compatibility Between C62x, C64x, C67x, and C67x+ DSPs (Continued)

Appendix B

Mapping Between Instruction and Functional Unit

Table B-1 lists the instructions that execute on each functional unit.

		Functio	nal Unit	
Instruction	.L Unit	.M Unit	.S Unit	.D Unit
ABS	/			
ABSDP				
ABSSP				
ADD	V			
ADDAB				
ADDAD				
ADDAH				
ADDAW				
ADDDP	/		∕ ∕§	
ADDK				
ADDSP	~		۶ ا	
ADDU	V			
ADD2				
AND				

Table B–1.	Functional	Unit to	Instruction	Mapping

[†] S2 only

[‡] D2 only

§ C67x+ DSP-specific instruction

SPRU733

Mapping Between Instruction and Functional Unit B-1

	Functional Unit						
Instruction	.L Unit	.M Unit	.S Unit	.D Unit			
B displacement							
B register			$ u^{\dagger}$				
B IRP			\mathbf{r}^{\dagger}				
B NRP			\mathbf{r}^{\dagger}				
CLR							
CMPEQ							
CMPEQDP							
CMPEQSP							
CMPGT							
CMPGTDP							
CMPGTSP							
CMPGTU							
CMPLT							
CMPLTDP							
CMPLTSP							
CMPLTU							
DPINT							
DPSP							
DPTRUNC							
EXT							
EXTU							
IDLE							

Table B-1. Functional Unit to Instruction Mapping (Continued)

	Functional Unit					
Instruction	.L Unit	.M Unit	.S Unit	.D Unit		
INTDP						
INTDPU						
INTSP						
INTSPU						
LDB memory						
LDB memory (15-bit offset)				/ *		
LDBU memory						
LDBU memory (15-bit offset)				/ ∕ [≠]		
LDDW						
LDH memory						
LDH memory (15-bit offset)				/ *‡		
LDHU memory						
LDHU memory (15-bit offset)				/ *		
LDW memory						
LDW memory (15-bit offset)				/ *		
LMBD	/					
MPY						
MPYDP						
МРҮН						
MPYHL						
MPYHLU						
MPYHSLU						
MPYHSU						

Table B-1. Functional Unit to Instruction Mapping (Continued)

SPRU733

Mapping Between Instruction and Functional Unit B-3

		Functio	nal Unit	
Instruction	.L Unit	.M Unit	.S Unit	.D Unit
MPYHU		\checkmark		
MPYHULS		\checkmark		
MPYHUS		\checkmark		
MPYI		\checkmark		
MPYID		\checkmark		
MPYLH		\checkmark		
MPYLHU		\checkmark		
MPYLSHU		\checkmark		
MPYLUHS		\checkmark		
MPYSP		\checkmark		
MPYSPDP [§]		\checkmark		
MPYSP2DP§				
MPYSU				
MPYU				
MPYUS				
MV	~			
MVC			\mathbf{r}^{\dagger}	
MVK				
MVKH				
MVKL				
MVKLH				
NEG	1		1	
NOP				

Table B-1. Functional Unit to Instruction Mapping (Continued)

B-4 Mapping Between Instruction and Functional Unit

Instruction	Functional Unit			
	.L Unit	.M Unit	.S Unit	.D Unit
NORM	V			
NOT	\checkmark		\checkmark	
OR	~		\checkmark	
RCPDP			\checkmark	
RCPSP			\sim	
RSQRDP			\sim	
RSQRSP			\sim	
SADD	V			
SAT				
SET				
SHL				
SHR				
SHRU				
SMPY				
SMPYH				
SMPYHL				
SMPYLH				
SPDP				
SPINT				
SPTRUNC				
SSHL				
SSUB				
STB memory				

Table B-1. Functional Unit to Instruction Mapping (Continued)

SPRU733

Mapping Between Instruction and Functional Unit B-5

		Functio	onal Unit	
Instruction	.L Unit	.M Unit	.S Unit	.D Unit
STB memory (15-bit offset)				/ ∕‡
STH memory				\sim
STH memory (15-bit offset)				/ ∕ [≠] ‡
STW memory				
STW memory (15-bit offset)				/ ∕ [≠] ‡
SUB	/			
SUBAB				
SUBAH				
SUBAW				
SUBC	/			
SUBDP	/		∕ ∕§	
SUBSP	~		∕ ∕§	
SUBU	~			
SUB2				
XOR				
ZERO				

[†] S2 only [‡] D2 only [§] C67x+ DSP-specific instruction

Appendix C

.D Unit Instructions and Opcode Maps

This appendix lists the instructions that execute in the .D functional unit and illustrates the opcode maps for these instructions.

TopicPageC.1Instructions Executing in the .D Functional UnitC-2C.2Opcode Map Symbols and MeaningsC-3C.332-Bit Opcode MapsC-5

C.1 Instructions Executing in the .D Functional Unit

Table C-1 lists the instructions that execute in the .D functional unit.

Table C-1. Instructions Executing in the .D Functional Unit

Instruction	Instruction
ADD	LDW memory
ADDAB	LDW memory (15-bit offset) [‡]
ADDAD	MV
ADDAH	STB memory
ADDAW	STB memory (15-bit offset) [‡]
LDB memory	STH memory
LDB memory (15-bit offset) [‡]	STH memory (15-bit offset) [‡]
LDBU memory	STW memory
LDBU memory (15-bit offset) [‡]	STW memory (15-bit offset) [‡]
LDDW	SUB
LDH memory	SUBAB
LDH memory (15-bit offset) [‡]	SUBAH
LDHU memory	SUBAW
LDHU memory (15-bit offset) [‡]	ZERO

[†] S2 only [‡] D2 only

C.2 Opcode Map Symbols and Meanings

Table C-2 lists the symbols and meanings used in the opcode maps.

Table C-2. .D Unit Opcode Map Symbol Definitions

Symbol	Meaning
baseR	base address register
creg	3-bit field specifying a conditional register
dst	destination. For compact instructions, <i>dst</i> is coded as an offset from either A16 or B16 depending on the value of the <i>t</i> bit.
mode	addressing mode, see Table C-3
offsetR	register offset
ор	opfield; field within opcode that specifies a unique instruction
p	parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel
r	LDDW instruction
S	side A or B for destination; $0 = side A$, $1 = side B$. For compact instructions, side of base address (<i>ptr</i>) register; $0 = side A$, $1 = side B$.
src	source. For compact instructions, <i>src</i> is coded as an offset from either A16 or B16 depending on the value of the <i>t</i> bit.
src1	source 1
src2	source 2
x	cross path for <i>src2</i> ; $0 = do$ not use cross path, $1 = use$ cross path
у	.D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit
z	test for equality with zero or nonzero

	mode	Field		Syntax	Modification Performed
0	0	0	0	*-R[ucst5]	Negative offset
0	0	0	1	*+R[<i>ucst5</i>]	Positive offset
0	1	0	0	*-R[<i>offsetR</i>]	Negative offset
0	1	0	1	*+R[<i>offsetR</i>]	Positive offset
1	0	0	0	*R[<i>ucst5</i>]	Predecrement
1	0	0	1	*++R[<i>ucst5</i>]	Preincrement
1	0	1	0	*R[<i>ucst5</i>]	Postdecrement
1	0	1	1	*R++[<i>ucst5</i>]	Postincrement
1	1	0	0	*R[offsetR]	Predecrement
1	1	0	1	*++R[<i>offsetR</i>]	Preincrement
1	1	1	0	*R[<i>offsetR</i>]	Postdecrement
1	1	1	1	*R++[<i>offsetR</i>]	Postincrement

Table C-3. Address Generator Options for Load/Store

C.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the .D unit are mapped in Figure C–1 through Figure C–4.

Figure C-1. 1 or 2 Sources Instruction Forma	t
--	---

31	29	28	27	23	22 18	17	13	12	7	6	5	4	3	2	1	0
	creg	z		dst	src2	src1		ор		1	0	0	0	0	s	р
	3	1		5	5	5		6							1	1

Figure C-2. Extended .D Unit 1 or 2 Sources Instruction Format

_	31	29	28	27		23	22	18	3	17	13	12	11	10	9	6	5	4	3	2	1	0
	cre	g	Ζ		dst			src2		src1		х	1	0	ор		1	1	0	0	s	р
	3		1		5			5		5		1			4						1	1

Figure C-3. Load/Store Basic Operations

31	29	28	27	2	3 2	22	18	17		13	12	9	8	7	6	4	3	2	1	0
	creg	z		src/dst		baseR			offsetR		mode		r	у	ор		1	0	s	р
	3	1		5		5			5		4		1	1	3				1	1

Figure C-4. Load/Store Long-Immediate Operations

_	31	29	28	27	23	22	8	7	6	4	3	2	1	0
	(creg	z		dst	offsetR		у	ор		1	1	s	р
1		3	1		5	15		1	3				1	1

Appendix D

.L Unit Instructions and Opcode Maps

This appendix lists the instructions that execute in the .L functional unit and illustrates the opcode maps for these instructions.

TopicPageD.1Instructions Executing in the .L Functional UnitD-2D.2Opcode Map Symbols and MeaningsD-3D.332-Bit Opcode MapsD-4

D.1 Instructions Executing in the .L Functional Unit

Table D-1 lists the instructions that execute in the .L functional unit.

Table D-1. Instructions Executing in the .L Functional Unit

Instruction	Instruction
ABS	LMBD
ADD	MV
ADDDP	NEG
ADDSP	NORM
ADDU	NOT
AND	OR
CMPEQ	SADD
CMPGT	SAT
CMPGTU	SPINT
CMPLT	SPTRUNC
CMPLTU	SSUB
DPINT	SUB
DPSP	SUBC
DPTRUNC	SUBDP
INTDP	SUBSP
INTDPU	SUBU
INTSP	XOR
INTSPU	ZERO

D-2 .L Unit Instructions and Opcode Maps

D.2 Opcode Map Symbols and Meanings

Table D-2 lists the symbols and meanings used in the opcode maps.

Table D-2. .L Unit Opcode Map Symbol Definitions

Symbol	Meaning
creg	3-bit field specifying a conditional register
dst	destination
ор	opfield; field within opcode that specifies a unique instruction
p	parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel
s	side A or B for destination; $0 = $ side A, $1 = $ side B
src1	source 1
src2	source 2
x	cross path for <i>src2</i> ; $0 = do$ not use cross path, $1 = use$ cross path
Z	test for equality with zero or nonzero

D.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the .L unit are mapped in Figure D–1 through Figure D–3.

Figure D–1. 1 or 2 Sources Instruction Format

31	29	28	27	23	22 18	17	13	12	11 5	4	3	2	1	0
	creg	z		dst	src2		src1	х	ор	1	1	0	s	р
	3	1		5	5		5	1	7				1	1

Figure D-2. 1 or 2 Sources, Nonconditional Instruction Format

31		29	28	27	23	22	18	17	13	12	11	5	4	3	2	1	0
0	0	0	1	dst		src2		src1		х	ор		1	1	0	s	р
				5		5		5		1	7					1	1

Figure D-3. Unary Instruction Format

31	29	28	27		23	22	18	17	13	12	11						5	4	3	2	1	0
	creg	Ζ		dst		src2		ор		х	0	0	1	1	0	1	0	1	1	0	s	р
	3	1		5		5		5		1											1	1

Appendix E

.M Unit Instructions and Opcode Maps

This appendix lists the instructions that execute in the .M functional unit and illustrates the opcode maps for these instructions.

TopicPageE.1Instructions Executing in the .M Functional Unit E-2E.2Opcode Map Symbols and Meanings E-3E.332-Bit Opcode Maps E-4

E.1 Instructions Executing in the .M Functional Unit

Table E-1 lists the instructions that execute in the .M functional unit.

Table E-1. Instructions Executing in the .M Functional Unit

Instruction	Instruction
MPY	MPYLHU
MPYDP	MPYLSHU
МРҮН	MPYLUHS
MPYHL	MPYSP
MPYHLU	MPYSPDP§
MPYHSLU	MPYSP2DP§
MPYHSU	MPYSU
MPYHU	MPYU
MPYHULS	MPYUS
MPYHUS	SMPY
MPYI	SMPYH
MPYID	SMPYHL
MPYLH	SMPYLH

§ C67x+ DSP-specific instruction

E.2 Opcode Map Symbols and Meanings

Table E-2 lists the symbols and meanings used in the opcode maps.

Table E-2. .M Unit Opcode Map Symbol Definitions

Symbol	Meaning
creg	3-bit field specifying a conditional register
dst	destination
ор	opfield; field within opcode that specifies a unique instruction
p	parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel
s	side A or B for destination; 0 = side A, 1 = side B
src1	source 1
src2	source 2
х	cross path for <i>src2</i> ; 0 = do not use cross path, 1 = use cross path
Ζ	test for equality with zero or nonzero

E.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the .M unit are mapped in Figure E–1 through Figure E–3.

Figure E-1. Extended M-Unit with Compound Operations

3	1 2	28	27	23	22 18	17	13	12	11	10	6	5	4	3	2	1	0
	creg	z		dst	src2	src1		х	0	ор		1	1	0	0	s	р
	3	1		5	5	5		1		5						1	1

Figure E-2. Extended .M Unit 1 or 2 Sources, Nonconditional Instruction Format

31		29	28	27	23	22		18	17		13	12	11	10	6	5	4	3	2	1	0
0	0	0	1	d	st		src2			src1		х	0	ор		1	1	0	0	s	р
				ţ	5		5			5		1		5						1	1

Figure E-3. Extended .M-Unit Unary Instruction Format

31		29	28	27		23	22		18	17		13	12	11	10				6	5	4	3	2	1	0
0	0	0	1		dst			src2			ор		х	0	0	0	0	1	1	1	1	0	0	s	р
					5			5			5		1											1	1

Appendix F

.S Unit Instructions and Opcode Maps

This appendix lists the instructions that execute in the .S functional unit and illustrates the opcode maps for these instructions.

TopicPageF.1Instructions Executing in the .S Functional UnitF-2F.2Opcode Map Symbols and MeaningsF-3F.332-Bit Opcode MapsF-4

F.1 Instructions Executing in the .S Functional Unit

Table F-1 lists the instructions that execute in the .S functional unit.

Table F-1. Instructions Executing in the .S Functional Unit

Instruction	Instruction
ABSDP	MVKH
ABSSP	MVKL
ADD	MVKLH
ADDDP§	NEG
ADDK	NOT
ADDSP§	OR
ADD2	RCPDP
AND	RCPSP
B displacement	RSQRDP
B register [†]	RSQRSP
B IRP [†]	SET
B NRP [†]	SHL
CLR	SHR
CMPEQDP	SHRU
CMPEQSP	SPDP
CMPGTDP	SSHL
CMPGTSP	SUB
CMPLTDP	SUBDP§
CMPLTSP	SUBSP§
EXT	SUBU
EXTU	SUB2
MV	XOR
MVC [†]	ZERO
MVK	

[†] S2 only

§ C67x+ DSP-specific instruction

F-2 .S Unit Instructions and Opcode Maps

F.2 Opcode Map Symbols and Meanings

Table F-2 lists the symbols and meanings used in the opcode maps.

Table F-2. .S Unit Opcode Map Symbol Definitions

Symbol	Meaning
creg	3-bit field specifying a conditional register
csta	constant a
cstb	constant b
cstn	n-bit constant field
dst	destination
h	MVK or MVKH/MVKLH instruction; 0 = MVK, 1 = MVKH/MVKLH
ор	opfield; field within opcode that specifies a unique instruction
p	parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel
s	side A or B for destination; $0 = $ side A, $1 = $ side B
src1	source 1
src2	source 2
x	cross path for $src2$; 0 = do not use cross path, 1 = use cross path
Z	test for equality with zero or nonzero

F.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the .S unit are mapped in Figure F–1 through Figure F–11.

Figure F-1. 1 or 2 Sources Instruction Format

31	29	28	27	23	22	18	17	13	12	11	6	5	4	3	2	1	0
creg		Ζ	dst		src2		src1		х	ор		1	0	0	0	s	р
3		1	5		5		5		1	6						1	1

Figure F-2. Extended .S Unit 1 or 2 Sources Instruction Format

_	31	29	28	27	23	22	18	17		13	12	11	10	9	6	5	4	3	2	1	0
	creg	'	z		dst		src2		src1		х	1	1	ор		1	1	0	0	s	р
1	3		1		5		5		5		1			4						1	1

Figure F-3. Extended .S Unit 1 or 2 Sources, Nonconditional Instruction Format

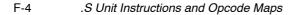

31		29	28	27		23	22	18	17	13	12	11	10	9	6	5	4	3	2	1	0
0	0	0	z		dst		src2		src1		х	1	1	ор		1	1	0	0	s	р
			1		5		5		5		1			4						1	1

Figure F-4. Unary Instruction Format

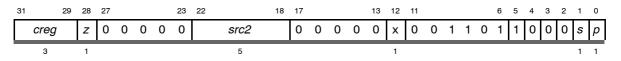
31	29	28	27	23	22	18	17		13	12	11						5	4	3	2	1	0
	creg	Ζ		dst	src	:2		ор		х	1	1	1	1	0	0	1	0	0	0	s	р
	3	1		5	5			5		1											1	1

Figure F-5. Extended .S Unit Branch Conditional, Immediate Instruction Format

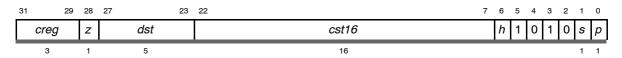
31 29	28	27 7	6	5	4	3	2	1	0
creg	Ζ	cst21	0	0	1	0	0	s	р
3	1	21						1	1

31 29 28 27 76 54 3 2 0 0 0 0 1 0 0 z cst21 0 0 s р 21 1

Figure F-6. Call Unconditional, Immediate with Implied NOP 5 Instruction Format


Figure F-7. Branch with NOP Constant Instruction Format

;	31 29	28	27	16	15	13	12	11					6	5	4	3	2	1	0
	creg	z	src2		src1	1	0	0	0	0	1	0	0	1	0	0	0	s	р
	3	1	12		3													1	1


Figure F-8. Branch with NOP Register Instruction Format

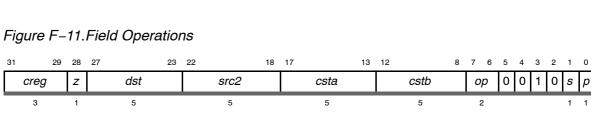

3	31 2	92	28	27				23	22	18	17	16	15	13	12	11					6	5	4	3	2	1	0
	creg	Z	z	0	0	0	0	1	S	rc2	0	0	src	1	х	0	0	1	1	0	1	1	0	0	0	s	р
	3	1	1							5			3		1											1	1

Figure F-9. Branch Instruction Format

Figure F-10.	MVK	Instruction	Format
--------------	-----	-------------	--------

SPRU733

.S Unit Instructions and Opcode Maps F-5

Appendix G

No Unit Specified Instructions and Opcode Maps

This appendix lists the instructions that execute with no unit specified and illustrates the opcode maps for these instructions.

For a list of the instructions that execute in the .D functional unit, see Appendix C. For a list of the instructions that execute in the .L functional unit, see Appendix D. For a list of the instructions that execute in the .M functional unit, see Appendix E. For a list of the instructions that execute in the .S functional unit, see Appendix F.

Topic

Page

G.1	Instructions Executing With No Unit SpecifiedG-2
G.2	Opcode Map Symbols and MeaningsG-2
G.3	32-Bit Opcode Maps G-3

G.1 Instructions Executing With No Unit Specified

Table G-1 lists the instructions that execute with no unit specified.

Table G-1. Instructions Executing With No Unit Specified

Instruction	_
IDLE	
NOP	_

G.2 Opcode Map Symbols and Meanings

Table G-2 lists the symbols and meanings used in the opcode maps.

Table G–2. No Unit Specified Instructions Opcode Map Symbol Definitions

Symbol	Meaning
creg	3-bit field specifying a conditional register
csta	constant a
cstb	constant b
cstn	n-bit constant field
ii _n	bit n of the constant <i>ii</i>
N3	3-bit field
ор	opfield; field within opcode that specifies a unique instruction
p	parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel
S	side A or B for destination; $0 = side A$, $1 = side B$.
stg _n	bit n of the constant <i>stg</i>
z	test for equality with zero or nonzero

G.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the no unit instructions are mapped in Figure G-1 through Figure G-3.

Figure G–1.	Loop Buffer	Instruction Format
-------------	-------------	--------------------

31	29	28	27	23	3 22	2	18	17	16	13	12	11	10	9	8	7	6	5	4	3	2	1	0
creg	1	Ζ		cstb		csta		1	ор		0	0	0	0	0	0	0	0	0	0	0	s	р
3		1		5		5			4													1	1

Figure G–2. NOP and IDLE Instruction Format

31		29	28	27 18	17	16		13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	1	Reserved (0)	0		ор		0	0	0	0	0	0	0	0	0	0	0	s	р
				10			4													1	1

Figure G–3. Emulation/Control Instruction Format

31	29	28	27	23	22	18	17	16		13	12	11	10	9	8	7	6	5	4	3	2	1	0
	creg	z	Reserved (0))	cst5		0		ор		0	0	0	0	0	0	0	0	0	0	0	s	р
	3	1	5		5				4													1	1

Index

1X and 2X paths 2-6
2-cycle DP instructions, .S-unit instruction constraints 4-36
4-cycle instructions

.L-unit instruction constraints 4-49
.M-unit instruction constraints 4-41

Α

A4 MODE bits 2-10
A5 MODE bits 2-10
A6 MODE bits 2-10
A7 MODE bits 2-10
ABS instruction 3-38
ABSDP instruction 3-40
absolute value floating-point double-precision (ABSDP) 3-40 single-precision (ABSSP) 3-42 with saturation (ABS) 3-38
ABSSP instruction 3-42
actions taken during nonreset interrupt processing 5-18
actions taken during RESET interrupt processing 5-20
add
floating-point
double-precision (ADDDP) 3-56
single-precision (ADDSP) 3-60
signed 16-bit constant to register (ADDK) 3-59
two 16-bit integers on upper and lower register halves (ADD2) 3-65
using byte addressing mode (ADDAB) 3-48
using doubleword addressing mode
(ADDAD) 3-50
using halfword addressing mode (ADDAH) 3-52

using word addressing mode (ADDAW) 3-54 with saturation, two signed integers (SADD) 3-205 without saturation two signed integers (ADD) 3-44 two unsigned integers (ADDU) 3-63 ADD instruction 3-44 add instructions using circular addressing 3-32 using linear addressing 3-30 ADD2 instruction 3-65 ADDAB instruction 3-48 ADDAD instruction 3-50 ADDAH instruction 3-52 ADDAW instruction 3-54 ADDDP instruction 3-56 ADDDP instruction .L-unit instruction constraints 4-51 .S-unit instruction constraints 4-38 pipeline operation 4-28 ADDK instruction 3-59 address generation for load/store 3-32 address paths 2-7 addressing mode 3-30 circular mode 3-31 linear mode 3-30 addressing mode register (AMR) 2-10 ADDSP instruction 3-60 .S-unit instruction constraints 4-37 ADDU instruction 3-63 AMR 2-10 AND instruction 3-67 applications, TMS320 DSP family 1-3 architecture, TMS320C67x DSP 1-7 arithmetic shift left (SHL) 3-213 arithmetic shift right (SHR) 3-215

Index-1

Β

B instruction using a displacement 3-69 using a register 3-71 B IRP instruction 3-73 B NRP instruction 3-75 B4 MODE bits 2-10 B5 MODE bits 2-10 B6 MODE bits 2-10 B7 MODE bits 2-10 bit field clear (CLR) 3-77 extract and sign-extend a bit field (EXT) 3-110 extract and zero-extend a bit field (EXTU) 3-113 set (SET) 3-210 bitwise AND (AND) 3-67 bitwise exclusive OR (XOR) 3-270 bitwise NOT (NOT) 3-194 bitwise OR (OR) 3-195 BK0 bits 2-10 BK1 bits 2-10 block diagram branch instructions 4-23 decode pipeline phases 4-4 execute pipeline phases 4-5 fetch pipeline phases 4-3 load instructions 4-21 multiply instructions 4-17 pipeline phases 4-10 single-cycle instructions 4-16 store instructions 4-19 TMS320C67x CPU data path 2-3 TMS320C67x DSP 1-7 block size calculations 2-12 branch using a displacement (B) 3-69 using a register (B) 3-71 using an interrupt return pointer (B IRP) 3-73 using NMI return pointer (B NRP) 3-75 branch instruction .S-unit instruction constraints 4-39 block diagram 4-23 pipeline operation 4-22 branching into the middle of an execute packet 3-18 performance considerations 5-21

to additional interrupt service routine 5-8

С

circular addressing, block size calculations 2-12 circular addressing mode add instructions 3-32 block size specification 3-31 load instructions 3-31 store instructions 3-31 subtract instructions 3-32 clear a bit field (CLR) 3-77 clear an individual interrupt 5-14 clearing interrupts 5-14 CLR instruction 3-77 CMPEQ instruction 3-80 CMPEQDP instruction 3-82 CMPEQSP instruction 3-84 CMPGT instruction 3-86 CMPGTDP instruction 3-89 CMPGTSP instruction 3-91 CMPGTU instruction 3-93 CMPLT instruction 3-95 CMPLTDP instruction 3-98 CMPLTSP instruction 3-100 CMPLTU instruction 3-102 compare for equality double-precision floating-point values (CMPEQDP) 3-82 signed integers (CMPEQ) 3-80 single-precision floating-point values (CMPEQSP) 3-84 for greater than double-precision floating-point values (CMPGTDP) 3-89 signed integers (CMPGT) 3-86 single-precision floating-point values (CMPGTSP) 3-91 unsigned integers (CMPGTU) 3-93 for less than double-precision floating-point values (CMPLTDP) 3-98 signed integers (CMPLT) 3-95 single-precision floating-point values (CMPLTSP) 3-100 unsigned integers (CMPLTU) 3-102

Index-2

compare for equality floating-point double-precision values (CMPEQDP) 3-82 single-precision values (CMPEQSP) 3-84 signed integers (CMPEQ) 3-80 compare for greater than floating-point double-precision values (CMPGTDP) 3-89 single-precision values (CMPGTSP) 3-91 signed integers (CMPGT) 3-86 unsigned integers (CMPGTU) 3-93 compare for less than floating-point double-precision values (CMPLTDP) 3-98 single-precision values (CMPLTSP) 3-100 signed integers (CMPLT) 3-95 unsigned integers (CMPLTU) 3-102 conditional operations 3-19 conditional subtract and shift (SUBC) 3-258 conditions for processing a nonreset interrupt 5-16 constraints .D unit LDDW instruction with long write instruction 4-55 load instruction 4-52 single-cycle instruction 4-54 store instruction 4-53 .L unit 4-cycle instruction 4-49 ADDDP instruction 4-51 INTDP instruction 4-50 single-cycle instruction 4-48 SUBDP instruction 4-51 M unit 4-cycle instruction 4-41 MPYDP instruction 4-44 MPYI instruction 4-42 MPYID instruction 4-43 MPYSP instruction 4-45 MPYSPDP instruction 4-46 MPYSP2DP instruction 4-47 multiply instruction 4-40 .S unit 2-cycle DP instruction 4-36 ADDDP instruction 4-38 ADDSP instruction 4-37 branch instruction 4-39 DP compare instruction 4-35 single-cycle instruction 4-34

SUBDP instruction 4-38 SUBSP instruction 4-37 on cross paths 3-21 on floating-point instructions 3-26 on instructions using the same functional unit 3-20 on loads and stores 3-22 on long data 3-23 on register reads 3-24 on register writes 3-25 on the same functional unit writing in the same instruction cycle 3-20 pipeline 4-33 control, individual interrupts 5-13 control register, interrupts 5-10 control status register (CSR) 2-13 convert double-precision floating-point value to integer (DPINT) 3-104 to integer with truncation (DPTRUNC) 3-108 to single-precision floating-point value (DPSP) 3-106 signed integer to double-precision floating-point value (INTDP) 3-117 to single-precision floating-point value (INTSP) 3-121 single-precision floating-point value to double-precision floating-point value (SPDP) 3-226 to integer (SPINT) 3-228 to integer with truncation (SPTRUNC) 3-230 unsigned integer to double-precision floating-point value (INTDPU) 3-119 to single-precision floating-point value (INTSPU) 3-122 CPU control register file 2-7 control register file extensions 2-23 data paths 2-3 functional units 2-5 general-purpose register files 2-2 introduction 1-8 load and store paths 2-6 CPU data paths relationship to register files 2-6 TMS320C67x DSP 2-3 CPU ID bits 2-13

SPRU733

Index-3

cross paths 2-6 CSR 2-13

D

DA1 and DA2 2-7 data address paths 2-7 DC pipeline phase 4-3 DCC bits 2-13 decoding instructions 4-3 delay slots 3-14 DEN1 bit in FADCR 2-24 in FAUCR 2-27 in FMCR 2-31 DEN2 bit in FADCR 2-24 in FAUCR 2-27 in FMCR 2-31 detection and processing, interrupts 5-16 disabling an individual interrupt 5-13 disabling maskable interrupts globally 5-12 DIV0 bit 2-27 double-precision data format 3-9 DP compare instruction, pipeline operation 4-27 DP compare instructions, .S-unit instruction constraints 4-35 DP pipeline phase 4-3 DPINT instruction 3-104 DPSP instruction 3-106 DPTRUNC instruction 3-108

E1 phase program counter (PCE1) 2-22 E1-E5 pipeline phases 4-5 EN bit 2-13 enabling an individual interrupt 5-13 enabling maskable interrupts globally 5-12 execute packet, pipeline operation 4-56 execution notations 3-2 EXT instruction 3-110 extract and sign-extend a bit field (EXT) 3-110 extract and zero-extend a bit field (EXTU) 3-113 EXTU instruction 3-113

FADCR 2-23 FAUCR 2-27 features TMS320C67x DSP 1-4 TMS320C67x+ DSP 1-4 fetch packet 3-16 fetch packet (FP) 5-7 fetch packets fully parallel 3-17 fully serial 3-17 partially serial 3-18 fetch pipeline phase 4-2 floating-point adder configuration register (FADCR) 2-23 floating-point auxiliary configuration register (FAUCR) 2-27 floating-point multiplier configuration register (FMCR) 2-31 floating-point operands double precision (DP) 3-9 single precision (SP) 3-9 FMCR 2-31 four-cycle instructions, pipeline operation 4-25 functional unit to instruction mapping B-1 functional units 2-5

G

```
general-purpose register files
cross paths 2-6
data address paths 2-7
description 2-2
memory, load, and store paths 2-6
GIE bit 2-13
```

ŀ

HPEINT bits 2-21

ICn bit 2-16 ICR 2-16 IDLE instruction 3-116 IEEE standard formats 3-9

Index-4

IEn bit 2-17 IER 2-17 IFn bit 2-18 IFR 2-18 INEX bit in FADCR 2-24 in FAUCR 2-27 in FMCR 2-31 INFO bit in FADCR 2-24 in FAUCR 2-27 in FMCR 2-31 instruction compatibility 3-34, A-1 instruction descriptions 3-34 instruction execution .D unit C-2 .L unit D-2 .M unit E-2 .S unit F-2 no unit instructions G-2 instruction operation, notations 3-2 instruction to functional unit mapping B-1 instruction types ADDDP instruction 4-28 branch instructions 4-22 DP compare 4-27 four-cycle 4-25 INTDP instruction 4-26 load instructions 4-20 MPYDP instruction 4-31 MPYI instruction 4-29 MPYID instruction 4-30 MPYSPDP instruction 4-32 MPYSP2DP instruction 4-33 multiply instructions 4-17 single-cycle 4-16 store instructions 4-18 SUBDP instruction 4-28 two-cycle DP 4-24 INTDP instruction 3-117 .L-unit instruction constraints 4-50 pipeline operation 4-26 INTDPU instruction 3-119 interleaved memory bank scheme 4-62 8-bank memory single memory space 4-62 with two memory spaces 4-63 interrupt clear register (ICR) 2-16

interrupt enable register (IER) 2-17 interrupt flag register (IFR) 2-18 interrupt return pointer register (IRP) 2-19 interrupt service fetch packet (ISFP) 5-7 interrupt service table (IST) 5-6 interrupt service table pointer (ISTP), overview 5-9 interrupt service table pointer register (ISTP) 2-21 interrupt set register (ISR) 2-20 interrupts clearing 5-14 control 5-13 control registers 5-10 detection and processing 5-16 actions taken during nonreset interrupt processing 5-18 actions taken during RESET interrupt processing 5-20 conditions for processing a nonreset interrupt 5-16 setting the nonreset interrupt flag 5-16 setting the RESET interrupt flag 5-19 disabling 5-13 enabling 5-13 global control 5-11 globally disabling 5-11 globally enabling 5-11 overview 5-2 performance considerations 5-21 frequency 5-21 latency 5-21 overhead 5-21 pipeline interaction 5-21 pipeline interaction branches 5-21 code parallelism 5-21 memory stalls 5-21 multicycle NOPs 5-21 priorities 5-3 programming considerations 5-22 manual interrupt processing 5-25 nested interrupts 5-23 single assignment 5-22 traps 5-26 returning from interrupt servicing 5-15 setting 5-14 signals used 5-2 status 5-14 types of 5-2 INTSP instruction 3-121

SPRU733

Index-5

Index

```
INTSPU instruction 3-122
INVAL bit
in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31
IRP 2-19
ISn bit 2-20
ISR 2-20
ISTB bits 2-21
ISTP 2-21
```


latency 3-14 LDB instruction 5-bit unsigned constant offset or register offset 3-123 15-bit unsigned constant offset 3-126 LDBU instruction 5-bit unsigned constant offset or register offset 3-123 15-bit constant offset 3-126 LDDW instruction 3-128 constraints 3-29 LDDW instruction with long write instruction, D-unit instruction constraints 4-55 LDH instruction 5-bit unsigned constant offset or register offset 3-131 15-bit unsigned constant offset 3-134 LDHU instruction 5-bit unsigned constant offset or register offset 3-131 15-bit unsigned constant offset 3-134 LDW instruction 5-bit unsigned constant offset or register offset 3-136 15-bit unsigned constant offset 3-139 leftmost bit detection (LMBD) 3-141 linear addressing mode 3-30 add instructions 3-30 load instructions 3-30 store instructions 3-30 subtract instructions 3-30 LMBD instruction 3-141

load

byte from memory with a 5-bit unsigned constant offset or register offset (LDB and LDBU) 3-123 from memory with a 15-bit unsigned constant offset (LDB and LDBU) 3-126 doubleword from memory with an unsigned constant offset or register offset (LDDW) 3-128 halfword from memory with a 5-bit unsigned constant offset or register offset (LDH and LDHU) 3-131 from memory with a 15-bit unsigned constant offset (LDH and LDHU) 3-134 word from memory with a 5-bit unsigned constant offset or register offset (LDW) 3-136 from memory with a 15-bit unsigned constant offset (LDW) 3-139 load and store paths, CPU 2-6 load instructions .D-unit instruction constraints 4-52 block diagram 4-21 conflicts 3-22 pipeline operation 4-20 syntax for indirect addressing 3-32 using circular addressing 3-31 using linear addressing 3-30 load or store to the same memory location, rules 4-19 load paths 2-6 logical shift right (SHRU) 3-217

M

memory introduction 1-8 paths 2-6 memory bank hits 4-62 memory considerations 4-60 memory bank hits 4-62 memory stalls 4-61 memory paths 2-6 memory stalls 4-61

Index-6

move 16-bit constant into upper bits of register (MVKH and MVKLH) 3-185 between control file and register file (MVC) 3-180 from register to register (MV) 3-178 signed constant into register and sign extend (MVK) 3-183 signed constant into register and sign extend (MVKL) 3-187 MPY instruction 3-143 MPYDP instruction 3-145 .M-unit instruction constraints 4-44 pipeline operation 4-31 MPYH instruction 3-147 MPYHL instruction 3-149 MPYHLU instruction 3-151 MPYHSLU instruction 3-152 MPYHSU instruction 3-153 MPYHU instruction 3-154 MPYHULS instruction 3-155 MPYHUS instruction 3-156 MPYI instruction 3-157 .M-unit instruction constraints 4-42 pipeline operation 4-29 MPYID instruction 3-159 .M-unit instruction constraints 4-43 pipeline operation 4-30 MPYLH instruction 3-161 MPYLHU instruction 3-163 MPYLSHU instruction 3-164 MPYLUHS instruction 3-165 MPYSP instruction 3-166 .M-unit instruction constraints 4-45 MPYSPDP instruction 3-168 .M-unit instruction constraints 4-46 pipeline operation 4-32 MPYSP2DP instruction 3-170 .M-unit instruction constraints 4-47 pipeline operation 4-33 MPYSU instruction 3-172 MPYU instruction 3-174 MPYUS instruction 3-176 multicycle NOP with no termination until interrupt (IDLE) 3-116

multicycle NOPs 4-58 multiply 32-bit by 32-bit into 32-bit result (MPYI) 3-157 into 64-bit result (MPYID) 3-159 floating-point double-precision (MPYDP) 3-145 single-precision (MPYSP) 3-166 single-precision by double-precision (MPYSPDP) 3-168 single-precision for double-precision result (MPYSP2DP) 3-170 signed by signed signed 16 LSB by signed 16 LSB (MPY) 3-143 signed 16 LSB by signed 16 LSB with left shift and saturation (SMPY) 3-219 signed 16 LSB by signed 16 MSB (MPYLH) 3-161 signed 16 LSB by signed 16 MSB with left shift and saturation (SMPYLH) 3-224 signed 16 MSB by signed 16 LSB (MPYHL) 3-149 signed 16 MSB by signed 16 LSB with left shift and saturation (SMPYHL) 3-222 signed 16 MSB by signed 16 MSB (MPYH) 3-147 signed 16 MSB by signed 16 MSB with left shift and saturation (SMPYH) 3-221 signed by unsigned signed 16 LSB by unsigned 16 LSB (MPYSU) 3-172 signed 16 LSB by unsigned 16 MSB (MPYLSHU) 3-164 signed 16 MSB by unsigned 16 LSB (MPYHSLU) 3-152 signed 16 MSB by unsigned 16 MSB (MPYHSU) 3-153 unsigned by signed unsigned 16 LSB by signed 16 LSB (MPYUS) 3-176 unsigned 16 LSB by signed 16 MSB (MPYLUHS) 3-165 unsigned 16 MSB by signed 16 LSB (MPYHULS) 3-155 unsigned 16 MSB by signed 16 MSB (MPYHUS) 3-156

SPRU733

Index-7

Index

multiply (continued) unsigned by unsigned unsigned 16 LSB by unsigned 16 LSB (MPYU) 3-174 unsigned 16 LSB by unsigned 16 MSB (MPYLHU) 3-163 unsigned 16 MSB by unsigned 16 LSB (MPYHLU) 3-151 unsigned 16 MSB by unsigned 16 MSB (MPYHU) 3-154 multiply instructions .M-unit instruction constraints 4-40 block diagram 4-17 pipeline operation 4-17 MV instruction 3-178 MVC instruction 3-180 MVK instruction 3-183 MVKH instruction 3-185 MVKL instruction 3-187 MVKLH instruction 3-185

Ν

NAN1 bit in FADCR 2-24 in FAUCR 2-27 in FMCR 2-31 NAN2 bit in FADCR 2-24 in FAUCR 2-27 in FMCR 2-31 NEG instruction 3-189 negate (NEG) 3-189 nested interrupts 5-23 NMI return pointer register (NRP) 2-22 NMIE bit 2-17 NMIF bit 2-18 no operation (NOP) 3-190 NOP instruction 3-190 NORM instruction 3-192 normalize integer (NORM) 3-192 NOT instruction 3-194 notational conventions iii NRP 2-22

0

opcode, fields and meanings 3-7 opcode map .D unit C-3 .L unit D-3 .M unit E-3 .S unit F-3 32-bit .D unit C-5 .L unit D-4 .M unit E-4 .S unit F-4 no unit instructions G-3 no unit instructions G-2 symbols and meanings .D unit C-3 .L unit D-3 .M unit E-3 .S unit F-3 no unit instructions G-2 operands, examples 3-35 options 1-4 OR instruction 3-195 OVER bit in FADCR 2-24 in FAUCR 2-27 in FMCR 2-31 overview interrupts 5-2 TMS320 DSP family 1-2 TMS320C6000 DSP family 1-2

Ρ

parallel code 3-18 parallel fetch packets 3-17 parallel operations 3-16 branch into the middle of an execute packet 3-18 parallel code 3-18 partially serial fetch packets 3-18 PCC bits 2-13 PCE1 2-22 performance considerations interrupts 5-21 pipeline 4-56 PG pipeline phase 4-2

Index-8

PGIE bit 2-13 pipeline decode stage 4-3 execute stage 4-5 execution 4-12 factors that provide programming flexibility 4-1 fetch stage 4-2 functional unit constraints 4-33 overview 4-2 performance considerations 4-56 phases 4-2 stages 4-2 summary 4-6 pipeline execution 4-12 pipeline operation ADDDP instruction 4-28 branch instructions 4-22 DP compare instruction 4-27 four-cycle instructions 4-25 INTDP instruction 4-26 load instructions 4-20 MPYDP instruction 4-31 MPYI instruction 4-29 MPYID instruction 4-30 MPYSPDP instruction 4-32 MPYSP2DP instruction 4-33 multiple execute packets in a fetch packet 4-56 multiply instructions 4-17 one execute packet per fetch packet 4-6 single-cycle instructions 4-16 store instructions 4-18 SUBDP instruction 4-28 two-cycle DP instructions 4-24 pipeline phases block diagram 4-10 used during memory accesses 4-60 PR pipeline phase 4-2 programming considerations, interrupts 5-22 PS pipeline phase 4-2 PW pipeline phase 4-2 PWRD bits 2-13

R

RCPDP instruction 3-197 RCPSP instruction 3-199

SPRU733

reciprocal approximation double-precision floating-point (RCPDP) 3-197 single-precision floating-point (RCPSP) 3-199 square-root double-precision floating-point (RSQRDP) 3-201 single-precision floating-point (RSQRSP) 3-203 register files cross paths 2-6 data address paths 2-7 general-purpose 2-2 memory, load, and store paths 2-6 relationship to data paths 2-6 reaisters addresses for accessing 2-8 addressing mode register (AMR) 2-10 control register file 2-7 control register file extensions 2-23 control status register (CSR) 2-13 E1 phase program counter (PCE1) 2-22 floating-point adder configuration register (FADCR) 2-23 floating-point auxiliary configuration register (FAUCR) 2-27 floating-point multiplier configuration register (FMCR) 2-31 interrupt clear register (ICR) 2-16 interrupt enable register (IER) 2-17 interrupt flag register (IFR) 2-18 interrupt return pointer register (IRP) 2-19 interrupt service table pointer register (ISTP) 2-21 interrupt set register (ISR) 2-20 NMI return pointer register (NRP) 2-22 read constraints 3-24 write constraints 3-25 related documentation from Texas Instruments iii resource constraints 3-20 cross paths 3-21 floating-point instructions 3-26 on loads and stores 3-22 on long data 3-23 on register reads 3-24 on register writes 3-25 on the same functional unit writing in the same instruction cycle 3-20 using the same functional unit 3-20 return from maskable interrupt 5-15 return from NMI 5-15

Index-9

returning from interrupt servicing 5-15 REVISION ID bits 2-13 RMODE bits in FADCR 2-24 in FMCR 2-31 RSQRDP instruction 3-201 RSQRSP instruction 3-203

S

SADD instruction 3-205 SAT bit 2-13 SAT instruction 3-208 saturate a 40-bit integer to a 32-bit integer (SAT) 3-208 serial fetch packets 3-17 set a bit field (SET) 3-210 set an individual interrupt 5-14 SET instruction 3-210 setting interrupts 5-14 setting the nonreset interrupt flag 5-16 setting the RESET interrupt flag 5-19 shift arithmetic shift left (SHL) 3-213 arithmetic shift right (SHR) 3-215 logical shift right (SHRU) 3-217 shift left with saturation (SSHL) 3-232 shift left with saturation (SSHL) 3-232 SHL instruction 3-213 SHR instruction 3-215 SHRU instruction 3-217 single-cycle instructions .D-unit instruction constraints 4-54 .L-unit instruction constraints 4-48 .S-unit instruction constraints 4-34 block diagram 4-16 pipeline operation 4-16 single-precision data format 3-9 SMPY instruction 3-219 SMPYH instruction 3-221 SMPYHL instruction 3-222 SMPYLH instruction 3-224 SPDP instruction 3-226 SPINT instruction 3-228 SPTRUNC instruction 3-230

square-root reciprocal approximation double-precision floating-point (RSQRDP) 3-201 single-precision floating-point (RSQRSP) 3-203 SSHL instruction 3-232 SSUB instruction 3-234 STB instruction 5-bit unsigned constant offset or register offset 3-236 15-bit unsigned constant offset 3-238 STH instruction 5-bit unsigned constant offset or register offset 3-240 15-bit unsigned constant offset 3-243 store byte to memory with a 5-bit unsigned constant offset or register offset (STB) 3-236 to memory with a 15-bit unsigned constant offset (STB) 3-238 halfword to memory with a 5-bit unsigned constant offset or register offset (STH) 3-240 to memory with a 15-bit unsigned constant offset (STH) 3-243 word to memory with a 5-bit unsigned constant offset or register offset (STW) 3-245 to memory with a 15-bit unsigned constant offset (STW) 3-247 store instructions .D-unit instruction constraints 4-53 block diagram 4-19 conflicts 3-22 pipeline operation 4-18 syntax for indirect addressing 3-32 using circular addressing 3-31 using linear addressing 3-30 store or load to the same memory location, rules 4-19 store paths 2-6 STW instruction 5-bit unsigned constant offset or register offset 3-245 15-bit unsigned constant offset 3-247 SUB instruction 3-249 SUB2 instruction 3-268 SUBAB instruction 3-253 SUBAH instruction 3-255 SUBAW instruction 3-256

Index-10

SUBC instruction 3-258 SUBDP instruction 3-260 .L-unit instruction constraints 4-51 .S-unit instruction constraints 4-38 pipeline operation 4-28 SUBSP instruction 3-263 .S-unit instruction constraints 4-37 subtract conditionally and shift (SUBC) 3-258 floating-point double-precision (SUBDP) 3-260 single-precision (SUBSP) 3-263 two 16-bit integers on upper and lower register halves (SUB2) 3-268 using byte addressing mode (SUBAB) 3-253 using halfword addressing mode (SUBAH) 3-255 using word addressing mode (SUBAW) 3-256 with saturation, two signed integers (SSUB) 3-234 without saturation two signed integers (SUB) 3-249 two unsigned integers (SUBU) 3-266 subtract instructions using circular addressing 3-32 using linear addressing 3-30 SUBU instruction 3-266 syntax, fields and meanings 3-7

Т

TMS320 DSP family applications 1-3 overview 1-2 TMS320C6000 DSP family, overview 1-2 TMS320C67x DSP architecture 1-7 block diagram 1-7 features 1-4 options 1-4 trademarks iv traps invoking a trap 5-26 returning from 5-26 two 16-bit integers add on upper and lower register halves (ADD2) 3-65 subtract on upper and lower register halves (SUB2) 3-268 two-cycle DP instructions, pipeline operation 4-24

U

UND bit 2-27 UNDER bit in FADCR 2-24 in FMCR 2-31 UNORD bit 2-27

VelociTI architecture 1-1 VLIW (very long instruction word) architecture 1-1

XOR instruction 3-270

zero a register (ZERO) 3-272 ZERO instruction 3-272 Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com