$1{ }^{13}$ Texas INSTRUMENTS

TI-73 Explorerim Graphing Calculator Guidebook

In this guidebook, TI-73 refers to both the TI-73 and TI-73 Explorer. All functions, instructions, and examples in this guidebook work identically for both the TI-73 and the TI-73 Explorer.

目

[^0]
Important Information

Texas Instruments makes no warranty, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis.
In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this calculator. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

US FCC Information Concerning Radio Frequency Interference

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference with radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, you can try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
Consult the dealer or an experienced radio/television technician for help.
Caution: Any changes or modifications to this equipment not expressly approved by Texas Instruments may void your authority to operate the equipment.

This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Table of Contents

Chapter 1: Operating the TI-73 1
Preparing to Use Your TI-73 3
The Home Screen 5
Entering Numbers and Other Characters 6
Functions and Instructions 12
Entering Expressions 15
Retrieving Previous Entries 2nd [ENTRY] 17
Recalling and Storing the Last Answer 2nd [ANS] 18
Mode Settings 22
Chapter 2: Math Operations 25
Keyboard Math Operations 27
The MATH MATH Menu 34
The MATH NUM Menu 44
The MATH PRB Menu 49
The MATH LOG Menu 54
Chapter 3: Fractions 57
Entering Fractions 58
Using Fractions in Calculations 59
Fraction Modes 60
Converting between Fractions and Decimals 64
Converting between Mixed Numbers and Simple Fractions 65
Chapter 4: Measurement Conversions and Constant Calculations 67
The 2nd [CONVERT] CONVERSIONS Menu 68
Constants 71
Chapter 5: Lists 77
Steps for Creating a List 78
The List Editor LIST 79
Naming a List 79
Entering List Elements 81
Editing Lists in the List Editor 87
The [2nd [STAT] Ls Menu 91
The 2nd [stat] OPS Menu 92
List Commands from the Home Screen 102
Chapter 6: Statistical Plots 107
Steps for Defining a Stat Plot 108
Defining Statistical Data in Lists 109
Deselecting Y_{n} Functions 109
Defining a Stat Plot 109
Selecting Stat Plot Types 111
Defining Stat Plot Options 112
Adjusting Window Values and Format 114
Displaying the Stat Plot 114
Stat Plot Examples 114
Chapter 7: Statistical Analyses 127
The 2 nd [stat] MATH Menu 128
The 2nd [STAT] CALC Menu 133
Chapter 8: Tables 149
What Is a Table? 150
Steps for Creating a Table 151
Defining and Selecting Functions in the $Y=$ Editor Y 152
Setting Up the Table [2nd [TBLSET] 153
Displaying the Table 2nd [TABLE] 154
Table Setup from the Home Screen 161
Chapter 9: Function Graphing 163
Steps for Graphing a Function 164
Example of Function Graphing 165
Defining Functions in the $Y=$ Editor $Y=$ 167
Selecting a Graph Style 169
Setting the Window Format [2nd [FORMAT] 171
Defining Window Values 173
Displaying a Graph GRAPH 177
Adjusting Window Values with the ZOOM ZOOM Menu 181
The ZOOM MEMORY Menu 185
Chapter 10: Drawing 187
The DRAW DRAW Menu 188
The DRAW POINTS Menu 201
The DRAW STO Menu 206
Chapter 11: Trigonometry 209
The [2nd [TRIG] TRIG Menu 210
Graphing Trig Functions 214
The 2nd [TRIG] ANGLE Menu 215
Chapter 12: Programming 221
What Is a Program? 223
Steps for Creating a Program 223
Creating and Naming a New Program 224
Entering Program Commands 226
The PRGM CTL Menu 227
The PRGM I/O Menu 241
Editing Program Commands 248
Executing a Program 251
Debugging a Program 252
Chapter 13: Communication Link and the CBL/CBR Application 253
TI-73 Link Capabilities 254
The Link SEND Menu APPS 1 255
The Link RECEIVE Menu APPS $1 \square$ 257
Transmitting Data Items 258
Backing Up Memory 261
Upgrading your TI-73 Graph Explorer Software 262
The APPLICATIONS Menu APPS 263
Steps for Running the CBL/CBR Application 264
Selecting the CBL/CBR Application 265
Specifying the Data Collection Method 265
Specifiying Data Collection Options 266
Collecting the Data 273
Stopping Data Collection 274
Chapter 14: Memory Management 275
The 2nd [MEM] MEMORY Menu 276
Appendix A: Function and Instruction Reference 283
Appendix B: Reference Information 319
The TI-73 Menu Map 320
The VARS Menu 2nd [VARS] 329
Equation Operating System (EOS ${ }^{\text {™ }}$) 330
In Case of Difficulty 330
Correcting an Error 331
Error Messages 332
Appendix C: Battery/Service and Warranty Information 339
Battery Information 340
Texas Instruments (TI) Support and Service 342
Warranty Information 343
Index 345

1 Operating the TI-73

Preparing to Use Your TI-73 3
Installing the AAA Batteries 3
Turning the TI-73 On and Off 3
Adjusting the Display Contrast 4
Resetting Memory and All Defaults 4
The Home Screen 5
Entering Numbers and Other Characters 6
Entering a Negative Number $-(-)$ 6
Entering a Number in Scientific Notation [2nd [EE] 7
Entering Secondary Functions 2nd 7
Entering Text 2nd [TEXT] 7
Common Display Cursors 10
Editing Numbers and Characters 11
Functions and Instructions 12
Accessing Functions and Instructions from Menus 12
Accessing Functions/Instructions from the CATALOG 14
Entering Expressions 15
Grouping Parts of Expressions with Parentheses 16
Using Implied Multiplication in Expressions 16
Entering Multiple Expressions on One Line 16
Retrieving Previous Entries [2nd [ENTRY] 17
Recalling and Storing the Last Answer 2nd [ANS] 18
Continuing a Calculation with Ans 18
Using Ans as a Variable in an Expression 19
Storing Values to a Variable STO 20
Recalling Variable Values [2nd [RCL] 21
Mode Settings 22
Numeric Notation Mode 23
Decimal Notation Mode 24
Angle Mode 24
Display Format Mode 24
Simplification Mode 24

Preparing to Use Your TI-73

Before using your TI-73, you must install the batteries, turn on the calculator, and adjust the contrast. You may reset (clear) the calculator memory and defaults, if desired.

Installing the AAA Batteries

Install four AAA batteries in the battery compartment on the back of the calculator. Arrange the batteries according to the polarity (+ and -) diagram in the battery compartment. For more information about installing batteries, see Appendix C: Battery/Service and Warranty Information.

Turning the TI-73 On and Off

To turn on the TI-73, press 0 N .
To turn off the TI-73 manually, press the yellow 2nd key and then press 0 N (indicated in this book as [2nd [OFF]).

When you press [2nd [0FF], all settings and memory contents are retained by Constant Memory ${ }^{\mathrm{TM}}$. Any error condition is cleared. To prolong battery life, the APD ${ }^{\text {TM }}$ (Automatic Power Down) feature turns the TI-73 off automatically after a few minutes without any activity.

When you turn on the calculator:

- The Home screen is displayed if you previously turned off the calculator by pressing 2nd [OFF]. It appears as it did when you last used it; all errors are cleared.
- or -
- The calculator displays the last screen (including the display, cursor, and any errors) that was displayed before Automatic Power Down turned off the calculator.

Adjusting the Display Contrast

The brightness and contrast of the display can depend on room lighting, battery freshness, and viewing angle.

To adjust the contrast:

1. Press and release the yellow 2nd key.
2. Press and hold \triangle (to darken the screen) or \square (to lighten the screen).

As you change the contrast setting, a number from 0 (lightest) to 9 (darkest) in the top-right corner indicates the current setting. You may not be able to see the number if the contrast is too light or too dark.

Resetting Memory and All Defaults

Follow these steps to reset the TI-73 to its factory settings and clear all memory:

1. Turn on the calculator.

2. Display the MEMORY menu.

2nd [MEM] (above 0)

3. Display the RESET menu.

7
4. Display the RESET RAM menu.

1

5. Select 2:Reset.

2

All memory is cleared, and the calculator is reset to the factory settings.

When you reset the TI-73, the display contrast is reset. To adjust the contrast, follow the directions in the previous section.

The Home Screen

The Home screen is the primary screen of the TI-73. To go to the Home screen from any other screen or menu, press 2nd [QuIT].

On the Home screen, you can enter instructions, functions, and expressions. The answers are displayed on the Home screen. The TI-73 screen can display a maximum of eight lines with a maximum of 16 characters per line.

When you calculate an entry on the Home screen, depending upon space, the answer is displayed either directly to the right of the entry or on the right
 side of the next line.

If an entry is longer than one line on the Home screen, it wraps to the beginning of the next line.

If all lines of the display are full, text scrolls off the top of the display. The TI-73 stores the previous entries as memory permits. See the section entitled, "Retrieving Previous Entries" on page 17.

You can scroll up with Δ to see previously entered entries. If you press ENTER while a previous entry is highlighted (for example, $2+2+2+2+2+2+2+2)$,

the calculator copies it to a new line below all entries (after $4+4+4 \ldots$ and its result, 52).

To clear the Home screen, see the section entitled "Editing Numbers and Characters" on page 11.

Entering Numbers and Other Characters

A symbol or abbreviation of each key's primary function is printed in white on the key. When you press that key, the function name is inserted at the cursor location.

Entering a Negative Number (-)

You enter a negative number with the negation key, $(-)$. You can use negation to modify a number, expression, or each element in a list. Notice that this is different from the subtraction key, \square, which CANNOT be used for negation.

目 Subtract-14-68.
2nd [QUIT] CLEAR

$-14-68$

(-)) $14-\square 68$ ENTER

Entering a Number in Scientific Notation 2nd [EE]

Using [2nd [EE], you can enter a number in scientific notation. The notation used to display the result of a calculation depends upon the MODE setting (Normal or Sci). For more information on selecting modes, see the section in this chapter entitled "Mode Settings."

琎 Add $30 \mathrm{e} 4+8600$.
2nd [QUIT] CLEAR 30
2nd [EE] +8600 ENTER

Entering Secondary Functions 2nd

The secondary function of each key is printed in yellow above the key. When you press the yellow 2nd key, the yellow character, abbreviation, or word above a key, becomes active for the next keystroke.

Entering Text 2nd [TEXT]

Many examples in this manual require you to enter alphabetic characters, braces, a quotation mark, a space, or test operators. You can access all of these from the Text editor.

To exit the Text editor without saving the contents on the entry line, press [2nd [QUIT], and the calculator returns you to the Home screen.

In all guidebook examples, when a character in the Text editor needs to be selected, the keystroke sequence shows the character followed by ENTER. Moving the Selection Cursor as necessary to highlight the character is implied. To exit the Text editor and display the contents on the entry line on the previous screen, select Done.

2nd [TEXT]	
Selection Cursor	Highlights the character you want to select. Use the cursor keys ($\square, \square, \square$, and \square) to move the cursor. A is highlighted with the selection cursor in the [2nd [TEXT] example screen.
Letters (A-Z)	Lists letters A-Z in alphabetical order.
List Braces \{\}	Surround a set of numbers separated by commas to create a list (outside of the List editor). For example, $\{1,2,3\}$ on the Home screen is interpreted as a list.
Quotation Mark (")	Surrounds the first text element in a categorical list or surrounds an attached list formula. (See Chapter 5: Lists for more information.)
Space (_)	Places a space between characters. It is frequently used in programs.
Test Operators $=, \neq,>, \geq,<, \leq$	Used to compare two values.
Logic (Boolean) Operators and, or	Used to interpret values as zero (false) or nonzero (true).

Done	Exits the Text editor when selected and pastes all contents on the entry line to the cursor location on the previous screen.
Entry Line	Displays all currently selected characters. All edit keys, except the cursor keys, edit characters on the entry line.

击 Insert R on the Home screen.

1. Go to the Home screen and clear it, if desired.

2nd [QUIT] CLEAR

2. Use the Text editor to select \mathbf{R}.

2nd [TEXT] R ENTER

3. Exit the Text editor.

Done ENTER

Test and Logic (Boolean) Operators

You select test and logic operators exactly as you would a letter. Both types of operators are explained in detail in Chapter 2: Math Operations.

Entry Line

The entry line displays all characters selected in the Text editor. The entry line also accepts all number keys (1), 2, [3, ..) and many keyboard operations ($\left.x^{2}, ~ \boxed{~}, ~ \Psi, ~ \%, ~ e t c.\right) . ~$ Enter these between Text editor characters, as necessary, without leaving the Text editor.

If you press a key that isn't accepted in the Text editor, the calculator does not return an error. You must select Done to exit and then continue your entry on the previous screen.

You can enter up to 16 characters on the entry line. If you need to enter more than 16 characters, select Done to save your entry. Then reenter the Text editor, and continue entering additional characters.

Common Display Cursors

In most cases, the appearance of the cursor indicates what happens when you press the next key or select the next menu item.

If you press 2nd while the Insert Cursor ($\mathbf{(1)}$) is displayed, the underline cursor becomes an underlined \uparrow.

Cursor	Appearance	Effect of Next Keystroke
Entry	Solid Rectangle	A character is entered at the cursor; any existing character is overwritten.
Insert	Underline	A character is inserted in front of the cursor location.
Second	Reverse Arrow \mathbf{T}	A 2nd character (yellow on the keyboard) is entered, or a 2nd operation is executed.
Full	Checkerboard Rectangle 	No entry; the maximum characters are entered at a prompt, or memory is full.

Editing Numbers and Characters

Using the edit keys, you can edit an entry on the Home screen or $\mathrm{Y}=$ editor, programming commands in the Program editor, the entry lines of the Text editor and List editor, and constants in the Set Constant editor.

Keystrokes Result

\square or \square	Moves the cursor to the left or right. Moves the Selection cursor in the Text editor.

Δ or \square	Moves/scrolls the cursor up or down.
2nd $⿴$	Moves the cursor to the beginning of an entry.

2nd \square Moves the cursor to the end of an entry.

CLEAR - Within a line on the Home screen, it clears all characters to the right of the cursor.

- At the beginning or end of a line on the Home screen, it clears the current line.
- On a blank line on the Home screen, it clears everything on the Home screen.
- In an editor, it clears the expression or value where the cursor is located.

DEL	Deletes the character at the cursor.
2nd [iNS]	Inserts characters in front of a character; to end insertion, press [2nd [iNS] or press $0, \square, \square$ or \square.
UNIT]	Inserts a character before a fraction on the Home screen. ([2nd [iNS] inserts a character before a fraction on any other screen.)
\square	Inserts the variable \mathbf{x} at the cursor location.

Functions and Instructions

A function returns a value. Generally, the first letter of each function is lowercase on the TI-73. For example, pxI-Test(is a function because it returns a value, 0 or 1 .

An instruction initiates an action. Generally, the first letter of each instruction name is uppercase. For example, PxI-On(is an instruction that draws a pixel on the graph screen.

Most functions and some instructions take at least one argument. An open parenthesis (() at the end of the function or instruction name prompts you to enter an argument. Complete the function with an end parenthesis, \square.

Note: Do not use the Text editor to enter names of functions or instructions. For example, you cannot enter L, then O, then G to calculate the log of a value. If you did this, the calculator would interpret the entry as implied multiplication of the variables \mathbf{L}, \mathbf{O}, and \mathbf{G}.

When this guidebook describes the syntax of a function or instruction, each argument is in italics. Optional arguments for a function are signified by brackets []. Do not enter the brackets.

Accessing Functions and Instructions from Menus

You can find most functions and instructions on menus (in other words, not directly from the keyboard).

Displaying a Menu

To display a menu, press the key associated with the menu. Up to four separate menus are displayed from which you choose the menu item you want.

To move from menu to menu on a menu screen, press \square or \square until the menu name is highlighted.

When a menu item ends in an ellipsis (...), the item displays a secondary menu or editor when you select it.

2nd [CONVERT]	

Accessing and Selecting Menu Items

To scroll up or down the menu items, press Δ or \square. To wrap to the last menu item directly from the first menu item, press
\square. To wrap to the first menu item directly from the last menu item, press \square.

When the menu continues beyond the displayed items, a \downarrow replaces the colon next to the last displayed item.

Select a menu item in one of two ways:

- Press \square or Δ to move the cursor to the number or letter of the item, and then press ENTER.
- Press the number key for the number next to the item. If a letter is next to the item, access letters from the Text editor ([2nd [TEXT]).

After you select an item from a menu, you usually are returned to the initial screen where you were working.

Exiting a Menu without Making a Selection

Exit a menu without making a selection in one of three ways:

- Press CLEAR to return to the screen where you were.
- Press [2nd [QUIT] to return to the Home screen.
- Press a key or key sequence for another menu or for another screen (except 2nd [TEXT], which is not accessible from all screens).

Accessing Functions/Instructions from the CATALOG

2nd [CATALOG] displays the CATALOG, which is an alphabetical list of all functions, instructions, programming commands, variables, and symbols on the TI-73. If, for example, you cannot remember where a particular menu item is located, you can find it in the CATALOG.

Items that begin with a number are in alphabetical order according to the first letter after the number. For example, 1 -Var Stats is among the items that begin with V .

Items that are symbols follow the last item that begins with \mathbf{Z}. You can access the symbols quickly by pressing Δ from the first catalog item, $A\lrcorner b / c$. The cursor moves to the bottom of the list.

2nd [CATALOG]	

To select an item from the CATALOG:

1. Press 2nd [catalog] to display the catalog. The Selection Cursor always points to the first item.
2. Press Δ or to scroll the CATALOG until the Selection Cursor points to the item you want.

To jump to the first item beginning with a particular letter, select that letter from the Text editor. Press 2nd [TEXT] while in the CATALOG, use the cursor keys to highlight the letter you want, and then press ENTER. You are automatically returned to the CATALOG, and the Selection Cursor has now moved to the new section. Scroll to the item you want.
3. Press ENTER to paste the CATALOG item to the current screen.

囲 Enter the CATALOG and go directly to the section starting with L．

1．Go to the catalog．
2nd［CATALOG］

2．Select \mathbf{L} from Text editor． 2nd［TEXT］L ENTER

CRTALOB ＊L Labloff －ヨbelor Lbl 10円C Line Lirfeg（ $\exists \mathrm{x}+\mathrm{b}$ ）

Selecting L by pressing ENTER pastes it to the previous screen， just as if you had selected it from a menu．

Entering Expressions

An expression is a group of numbers，variables，functions and their arguments，or a combination of these elements that evaluates to a single answer．Instructions cannot be used in expressions．An expression is completed when you press ENTER，regardless of the cursor location．

On the TI－73，you enter an expression in the same order as you would write it on paper．The entire expression is evaluated according to the Equation Operating System（EOS ${ }^{\text {TM }}$ ） rules（which is explained in detail in Appendix B：Reference Information），and the answer is displayed．

Calculate the area（A）of a circle whose radius $(R)=3$ using the formula $A=\pi R^{2}$ ．Then use the area to calculate the volume（V） of a cylinder whose height $(H)=4$ ．Use the formula $\mathrm{V}=\mathrm{A} \times \mathrm{H}$ ．

> 2nd [QUIT] CLEAR
> 2nd $[\pi] 3$ x2 ENTER

$$
\begin{array}{|}
\left|\begin{array}{c}
\pi 32 \\
\text { Arrs*4.2743.388 } \\
113.6973555
\end{array}\right| \\
\text { Ans is the previous } \\
\text { answer, } 28.27433388 .
\end{array}
$$

Grouping Parts of Expressions with Parentheses

The calculator calculates an expression within parentheses first.
(2) Calculate 4(1+2).

2nd [QUIT] CLEAR
4 1 1 2 \square ENTER

Using Implied Multiplication in Expressions

The calculator understands that two numbers separated by parentheses are multiplied together.
(囲 Calculate 4×3 using parentheses.
2nd [QUIT] CLEAR
$4 \square 3 \square$ ENTER

Entering Multiple Expressions on One Line

To store more than one expression on a line, separate two or more expressions or instructions on a line with a colon (2nd [CATALOG] $\Delta \Delta \Delta$ ENTER).
[䍖 Define the variable, $R=5$, and then calculate πR^{2} on the same line.

1. Store 5 to R.

$$
\begin{aligned}
& \text { 2nd [QUIT] CLEAR } \\
& \mathbf{5} \text { STO } \text { 2nd [TEXT] } \\
& \text { R ENTER Done ENTER } \\
& \text { 2nd [CATALOG] } \\
& \Delta \Delta \Delta \text { ENTER }
\end{aligned}
$$

$$
5 \rightarrow \mathrm{R}:
$$

2. Enter the second expression, $\pi \mathbf{R}^{2}$, and ${ }^{5 \rightarrow \mathrm{R}: \pi \mathrm{Re}_{8}^{2} .53961634}$ calculate the result.

2nd [π] 2nd [TEXT]
R ENTER Done ENTER
x^{2} ENTER

Retrieving Previous Entries 2nd [ENTRY]

When you press ENTER on the Home screen to evaluate an expression or execute an instruction, the expression or instruction is placed in a storage area called Entry (last entry). When you turn off the TI-73, Entry is retained in memory.

You can retrieve the last entry to the current cursor location, where you can edit it, if desired, and then execute it. On the Home screen or in an editor, press 2nd [ENTRY]; the current line is cleared and the last entry is pasted to the line.

The TI-73 retains as many previous entries as memory permits. To cycle through these entries, press 2nd [ENTRY] repeatedly. To view stored entries, use to scroll up the Home screen.
[華 Store 1 to variable A, 1 to variable B, and then 3 to variable A using 2nd [ENTRY].

1. Store 1 to \mathbf{A}.

2nd [QUIT] CLEAR

1 STO 2nd [TEXT]
A ENTER Done ENTER
ENTER
2. Recall the last entry. 2nd [ENTRY]

3. Edit and enter the new expression.

$\stackrel{1}{1+1}$	1

4 2nd [TEXT]
B ENTER Done ENTER ENTER
4. Cycle back two entries. 2nd [ENTRY] 2nd [ENTRY]
5. Edit and enter the new expression.

$1+\mathrm{F}$ $1+\mathrm{B}$	1
$1 \div \mathrm{H}$	
$1+\overline{\text { F }}$	
$1+\mathrm{E}$	1
$\bigcirc \rightarrow \mathrm{H}$	3

$4 \triangle 43$ ENTER

Recalling and Storing the Last Answer 2nd [ANS]

When an expression is evaluated successfully from the Home screen or from a program, the TI-73 stores the answer to a system variable called Ans (last answer). Recall Ans by pressing [2nd [ANS]. Ans can be a real number or a list. When you turn off the TI-73, the value in Ans is retained in memory.

You can use the variable Ans in any place that is appropriate for the type of answer Ans represents. For example, if Ans is a real number, you can use it anywhere where real numbers are accepted ($\mathrm{Y}=$ editor, WINDOW, List editor, etc.).

Continuing a Calculation with Ans

You can recall Ans as the first entry in the next expression without entering the value again or pressing 2nd [ANS]. After completing a calculation, press an operation or function key (excluding UNIT, b/b, or CONST) and the calculator displays Ans and uses the value in the next calculation.

目 1．Calculate 3^{4} using the Ans feature．

2nd［QUIT］CLEAR
3 区 3 ENTER
区 3 ENTER
区 3 ENTER
2．Check your answer，if desired．

3 $\boldsymbol{\wedge} 4$ ENTER

Using Ans as a Variable in an Expression

Since Ans is a variable，you can use it in expressions just as you would any other variable．When the expression is evaluated，the TI－73 uses the value of Ans in the calculation． For more information about variables，see the next two sections in this chapter entitled，＂Storing Values to a Variable＂ and＂Recalling Variable Values．＂

Calculate the area of a garden plot 1.7 meters by 4.2 meters． Then calculate the yield per square meter if the plot produces a total of 147 tomatoes．

1．Calculate the area．
2nd［QUIT］CLEAR

1．7区4．2 ENTER
2．Divide 147 by Ans，which was calculated in the first step．

147 2nd［ANS］［ENTER

Storing Values to a Variable STO

You can store values or expressions that result in one value or lists to a one-letter variable or a system variable (types are listed below) to save for later use. Also, you can save a result for later use by storing Ans to a variable before you evaluate another expression.

When an expression containing the name of a variable is evaluated, the value of the variable at that time is used. You can enter and use several types of data for variables, including real numbers, lists, functions, statistical plots, and graph pictures.

Variable names cannot be the same as a name that is preassigned by the TI-73. These include built-in functions such as abs(, instructions such as Line(, and system variables such as Xmin.

Variable Type	Names
Real Numbers	$\mathbf{A}, \mathbf{B}, \ldots, \mathbf{Z}$ (2nd [TEXT])
Lists-Numerical and Categorical	L1, L2, L3, L4, L5, L6, and any user-defined list names (2nd [STAT] Ls)
Functions	$\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}, \mathbf{Y}_{4}$ (2nd] [VARS] 2:Y-Vars)
Stat Plots	Plot1, Plot2, Plot3 (2nd [PLOT] from the Program editor)
Graph Pictures	Pic1, Pic2, Pic3 (2nd [VARS] 4:Picture)
System Variables	Xmin, Xmax, ... (2nd [VARS] 1:Window)

Store a value to either a system variable or a letter variable from the Home screen or a program using the STO key. Begin on a blank line and follow these steps.

1. Enter the numeric value. It can be an expression that results in a numeric value.
2. Press STO. \rightarrow is copied to the cursor location.
3. Select the type of variable to which you want to store the value. Use the Text editor (2nd [TEXT]) to enter a letter variable, the vars (2nd [VARS]) menu to enter a system variable, or the 2nd [STAT] Ls menu to enter a list name.
4. Press ENTER. If you entered an expression, it is evaluated. The value is stored to the variable.

圈 Store 10 to R, and then calculate πR^{2}.

1. On the Home screen, store 10 to \mathbf{R}.

2nd [QUIT] CLEAR
10 STO* 2nd [TEXT]
R ENTER Done ENTER ENTER
2. Calculate $\pi \mathbf{R}^{2}$.

2nd [π] 2nd [TEXT]
${ }^{16 \mathrm{R}^{2} \mathrm{R}} 314.1592654$

R ENTER Done ENTER
x^{2} ENTER

Recalling Variable Values 2nd [RCL]

To recall a variable's value to the current cursor location, follow these steps. To leave Rcl, press CLEAR.

1. Press 2nd [RCL]. Rcl and the edit cursor are displayed on the bottom line of the screen.
2. Enter the name of the variable in any of four ways:

- Enter letters using the Text editor (2nd [TEXT]).
- Press 2nd [STAT], and then select the name of the list from the Ls menu.
- Press [2nd [vars] to display the VARS menu; next select the type and then the name of the variable or function.
- Press PRGM (from the Program editor only), and then select the name of the program to call a program as a subroutine within another program.

3. The variable name you selected is displayed on the bottom line and the cursor disappears.
4. Press ENTER. The variable contents are inserted where the cursor was located before you began these steps.

㘣 Calculate $100+\mathrm{R}$ using the Rcl function. (R was defined in the previous section, "Storing Variable Values.")

1. On the Home screen, enter the first part of the calculation.

2nd [QuIT] CLEAR 100 (
2. Recall R.

2nd [RCL] 2nd [TEXT]
R ENTER Done ENTER
3. Finish the calculation.

ENTER
ENTER

REl R

$106+10$

Mode Settings

Mode settings control how the TI-73 interprets and displays numbers. Mode settings are retained by the Constant Memory feature when the TI-73 is turned off. All numbers, including elements of lists, are displayed according to the current mode settings, as applicable. To display the mode settings, press MODE. The default settings are highlighted on the following screen.

To select a mode setting, highlight the one you want by using the cursor keys, and then press ENTER.

Numeric Notation Mode

The Numeric Notation mode settings affect the way an answer is displayed on the TI-73. Numeric answers can be displayed with up to 10 digits and a two-digit exponent. Answers (excluding fractional ones) on the Home screen, list elements in the List editor, and table elements on the Table screen are displayed according to the Numeric Notation mode selected.

The Normal setting displays results with digits to the left and right of the decimal, as in 123456.78.

The Sci (scientific) setting expresses numbers with one digit to the left of the decimal and the appropriate power of 10 to the right of E , as in 1.2345678 E 5 , (which is the same as 123456.78).

Note: Answers that have more than 10 digits and whose absolute value is greater than .001 are displayed in scientific notation.

Decimal Notation Mode

The Decimal Notation mode has two settings, Float and 0123456789 , which only affect the way an answer is displayed on the TI-73.

The Float (floating decimal point) setting displays up to 10 digits, plus the sign and decimal.

The 0123456789 (fixed decimal point) setting specifies the number of digits (0 through 9) to display to the right of the decimal. Place the cursor on the desired number of decimal digits, and then press ENTER.

The decimal setting applies to answers (excluding fractional ones) on the Home screen, X - and Y-coordinates on a graph display, list elements in the List editor, table elements on the Table screen, and regression model results.

Angle Mode

The Angle mode has two settings, Degree and Radian, which control how the TI-73 interprets angle values in trigonometric functions. See Chapter 11: Trigonometry for a detailed explanation.

Display Format Mode

The Display Format mode has two settings, $\mathbf{A}\lrcorner \mathbf{b} / \mathbf{c}$ and \mathbf{b} / \mathbf{c}, which determine if a fraction is displayed as a mixed or simple fraction. See Chapter 3: Fractions for a detailed explanation.

Simplification Mode

The Simplification mode has two settings, Autosimp and Mansimp, which determine if the calculator automatically simplifies a fractional result completely or if you must simplify the results manually step-by-step. See Chapter 3: Fractions for detailed information.

2
 Math Operations

Keyboard Math Operations 27
Basic Operations $\quad \rightarrow, \square, \boxtimes, ~ \sqcap$ 27
Integer Division [2nd [iNT \div] 28
π 2nd [π] 28
Percent \% 29
Inverse Function [2nd [$x-1]$ 30
Square x^{2} 30
Power ㅅ 31
Square Root 2nd [v] 31
Test Operations 2nd [TEXT] 32
The MATH MATH Menu 34
lcm(MATH 1 35
gcd(IMATH 2 36
${ }^{3}$ (Cube) [MATH 3 37
$3 \sqrt{ }$ (MATH 4 38
$\times \sqrt{\text { MATH }} 5$ 38
Solver [MATH 6 38
The MATH NUM Menu 44
abs(MATH © 1 44
round (MATH \square 45
iPart(and fPart(MATH $\square 3$ and 4 46
$\min ($ and $\max ($ MATH $\square 5$ and 6 47
remainder (MATH \square 48
The MATH PRB Menu 49
rand MATH $\square \square 1$ 49
randlnt(MATH D $\quad 2$ 50
nPr MATH $\square 3$ 51
nCr MATH $\square \square 4$ 51
! MATH D 5 52
coin(MATH $\square \square 6$ 53
dice(MATH $\square \square 7$ 53
The MATH LOG Menu 54
$\log ($ MATH $\square \square \square 1$ 54
10^(MATH D $\square \square 2$ 55
$\ln ($ MATH $\square \square \square 3$ 55
$\mathrm{e}^{\wedge}(\mathrm{MATH}-\square \square 4$ 56

Keyboard Math Operations

The following sections explain how to use the math functions, including 2nd functions, found on the TI-73 keyboard. All of the examples in these sections assume that you are on the Home screen and that defaults are selected (unless specified otherwise).

Real numbers include fractions unless specified otherwise.

Basic Operations $\square, \square, \boxtimes, \div$

Returns the sum (\boxplus), difference (\square), product (\boxtimes), or quotient (-) of value A and valueB, which can be real numbers, expressions, or lists.

If both values are lists, they must have the same number of elements. If one value is a list and the other is a non-list, the non-list is paired with each element of the list, and a list is returned.

$$
\begin{aligned}
& \text { value } A+\text { value } B \\
& \text { value } A \text { value } B \\
& \text { value } A * \text { value } B \\
& \text { value } \div \text { value }
\end{aligned}
$$

琎 Add $-456+123$.

> CLEAR $(-) 456 \dagger 123$ ENTER

囲 Divide $45.68 \div 123$.

$$
45.68 \div 123 \text { ENTER }
$$

Multiply $\log (20) \times \cos (60)$.

$$
\begin{aligned}
& \square \text { MATH } \triangle \square \square 1 \\
& 20 \text { 2nd [TRIG] } 3 \\
& 60 \text { ENTER }
\end{aligned}
$$

Integer Division 2nd［iNT \div ］

2nd［iNT \div ］divides two positive integers and displays the quotient and the remainder，r．

posintegerA Int／posintegerB

You can include integer division in an expression，but the remainder may not be displayed as part of the final answer．

After a calculation with 2nd［iNT \div ］is completed，only the quotient from the result is stored in Ans（last answer）．
Therefore，if you use the result in another calculation，the remainder is ignored．
（击 Calculate $11 \div 2$ using integer division．

$11 \operatorname{Int} / 2$	$5 r 1$

CLEAR 11 ［nd［iNT \div ］ 2
ENTER
π 2nd［ π ］
Represents the value for the constant，π ，in calculations．The calculator uses $\pi=3.1415926535898$ ，although it only displays 3.141592654 on the screen．π acts as a real number in any calculation．

目 Multiply $4 \times \pi$ ．
CLEAR 4 区 2nd $[\pi]$ ENTER
$4 * \pi \quad 12.566 .7661$
［茀 Calculate $\sin (\pi)$ ．
CLEAR 2nd［TRIG］ 1 2nd $[\pi] \square$ ENTER

Percent \％

Changes a real＿number to percent．Results display according to the Decimal Notation mode setting．

```
real_number%
```

芭 Convert -30.6% to a decimal．
1．Select Float Decimal setting．

MODE ${ }^{-1}$ ENTER 2nd［QUIT］

2．Convert -30.6% to a decimal．

CLEAR -30.6% ENTER

琎 Calculate 20% of 30 ．

$$
20 \% \text { \% } 30 \text { ENTER }
$$

琎 Calculate $30+20 \%$ of 30 ．

$$
30 母 20 \text { 圂区 } 30 \text { ENTER }
$$

Inverse Function 2nd［ $x-1]$

Returns the inverse， x^{-1} ，of value，which is the equivalent of the reciprocal， $1 / \mathrm{x}$ ，of a real number，expression，or each element in a list．

$$
\text { value }^{-1}
$$

Important：To ensure that results are displayed as simple fractions instead of mixed numbers，select b／c Display Format mode．
（琎 Calculate $5 / 8^{-1}$ ．
CLEAR 5 ［／大 8 ［2nd［ $x-1]$ ENTER

目 Calculate -2.5^{-1} ．
（－1） 2.5 2nd［ $x-1]$ ENTER

Square x^{2}

Finds the square of a real number，an expression，or each element in a list．Note：Using parentheses with x^{2} ensures that you get the correct answer．Refer to Appendix B： Reference Information for Equation Operating System（EOS） calculation rules．

$$
\text { value }^{2}
$$

芭 Calculate 5 ． CLEAR 5 x x^{2} ENTER

琎 Compare the results of -5^{2} and $(-5)^{2}$ ．
1．Calculate -5^{2} ．
（－1） $\mathbf{5}$ 到 ENTER

2. Calculate $(-5)^{2}$.

$$
\square(-) \mathbf{5} \square x^{2} \text { ENTER }
$$

Power \wedge

Raises value to any power. value and power can be real numbers, expression, or lists. If both are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.

```
value^power
```

value is limited by mathematical rules. For example, (-4)^. 5 results in an error because this is the equivalent of $(-4)^{\wedge 1 / 2}$, which is $\sqrt{-4}$, a complex number.

瞱 Calculate 2^{5}.

CLEAR 2 ® 5 ENTER

Square Root 2nd [$\sqrt{ }$]

Calculates the square root of value, which can be a positive real number, an expression that results in a positive real number, or a list of positive numbers.

$$
\sqrt{ }(\text { value })
$$

击 Calculate $\sqrt{256}$.
CLEAR 2nd [V] 256 (
ENTER

Test Operations 2nd [TEXT]

The two types of test operations included in the Text editor are relational operators ($=, \neq,>, \geq,<$, and \leq) and logic (Boolean) operators (and and or).

Both relational and logic operators often are used in programs to control program flow and in graphing to control the graph as a function over specific values.

Relational Operators

Relational operators compare conditionA and conditionB and return 1 if the conditional statement is true. They return 0 if the conditional statement is false. conditionA and conditionB can be real numbers, expressions, or lists.

If both conditions are lists, they must have the same number of elements. If one condition is a list and the other a non-list, the non-list is compared with each element of the list, and a list is returned.

Test operations are frequently used in programs.

conditionA relational_operator condition B

Relational operators are evaluated after mathematical functions according to EOS rules (Appendix B: Reference Information). Therefore, for $2+2=2+3$, the TI- 73 returns 0 . It compares 4 with 5 and returns 0 , because the operation is false. For $2+(2=2)+3$, the TI- 73 returns 6 . The relational test in parentheses returns 1 , because the operation is true. Then it adds $2+(1)+3$.

Operator:	Returns true (1) if:
= (equal)	Two conditions are equal.
((not equal to)	Two conditions are not equal.
$>$ (greater than)	conditionA is greater than conditionB.
$\begin{aligned} & \geq \text { (greater than or } \\ & \text { equal to) } \end{aligned}$	condition A is greater than or equal to conditionB.
< (less than)	conditionA is less than conditionB.
\leq (less than or equal to)	conditionA is less than or equal to conditionB.

Logic (Boolean) Operators

Logic (Boolean) operators compare conditionA and condition B and return 1 if the conditional statement is true. They return 0 if the conditional statement is false. conditionA and conditionB can be real numbers, expressions, or lists.

If both conditions are lists, they must have the same number of elements. If one condition is a list and the other a non-list, the non-list is compared with each element of the list, and a list is returned.

> conditionA and conditionB conditionA or conditionB

Operator:	Returns true (1) if:
and	Both conditions are nonzero.
or	At least one condition is nonzero.

囲 Test $1 / 2=16 / 32$.

圆 For L1=\{1,2,3\}, test $L 1>\log (30)$.

1. Define L1.

CLEAR 2nd [TEXT]
$61,2,3)+\mathrm{L}_{1} \begin{array}{lll}6 & 2 & 3\end{array}$
\{ ENTER $1,2,1$ 3 \}
ENTER Done ENTER
STO 2 nd [STAT] 1 ENTER
2. Test $\mathbf{L} \mathbf{1} \boldsymbol{>} \boldsymbol{\operatorname { l o g } (3 0)}$.

2nd [STAT] $\mathbf{1}$ 2nd [TEXT]
$>$ ENTER Done ENTER
MATH $1130 \square$ ENTER

$$
\begin{aligned}
& \left|\begin{array}{ccc}
61,2,3)+L_{1} & 1 & 2 \\
L_{1}>1090630 & 2 & 3 \\
& & 1
\end{array}\right| \\
& 1>\log (30) \text { is false; } \\
& 2>\log (30) \text { is true; } \\
& 3>\log (30) \text { is true. }
\end{aligned}
$$

囩 Test $\cos (90)$ and $\boldsymbol{\operatorname { s i n }}(0)$.
CLEAR 2nd [TRIG] 3

$90 \square$ 2nd [TEXT] and
ENTER Done ENTER
2nd [TRIG] 100 ENTER

The MATH MATH Menu

The MATH MATH menu includes various math functions.

1:lcm(Finds the least common multiple, which is the smallest number that two integers can divide into evenly.

2:gcd(Finds the greatest common divisor, which is the largest number that divides into two integers evenly.

3: ${ }^{3} \quad$ Calculates the cube.
$4: \sqrt[3]{ }(\quad$ Calculates the cube root.
$5: \times \sqrt{ } \quad$ Calculates the $x^{\text {th }}$ root.
6:Solver... Displays the Equation Solver.

lcm(MATH 1

The least common multiple (LCM) function returns the smallest number that two positive whole numbers can divide into evenly, of two positive whole numbers or lists of positive whole numbers. If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.

Icm (is frequently used with fractions to find a common denominator. See Chapter 3: Fractions for more information on entering fractions.

```
Icm(valueA,valueB)
```

击 Find the LCM of 6 and 9.
CLEAR MATH 1

$6 \square$ © ENTER

击 Add $1 / 4+5 / 6$ (using LCM).

1. Find the LCM of the denominators.

the common denominator.
2. Use the LCM to convert $1 / 4$ and $5 / 6$ to fractions where 12 is the common denominator (without using the calculator).

$$
\left.\begin{array}{l}
\frac{1}{4} \times \frac{3}{3}=\frac{3}{12} \\
\frac{5}{6} \times \frac{2}{2}=\frac{10}{12}
\end{array}\right\rangle
$$

3. Add the newly converted fractions (without using the

$$
\frac{3}{12}+\frac{10}{12}=\frac{13}{12}
$$ calculator).

4. Verify your answer by adding the original fractions on the calculator. Select the b/c Display Format mode setting and clear the Home screen, if desired.

gcd(MATH 2

The greatest common divisor (GCD) function returns the largest number that divides into two positive whole numbers or lists of positive whole numbers evenly. If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.

This is frequently used with fractions to reduce them to lowest terms. See Chapter 2: Fractions for more information on entering fractions.
$\operatorname{gcd}($ value $A, v a l u e B)$

目 Find the greatest common divisor for the fraction， $27 / 36$ ．
1．Find the GCD of $27 / 36$ ．
MATH 2

$27 \square 36$ ENTER
2．Simplify the fraction completely using the GCD （without using the calculator）．

3．Verify your answer by simplifying $27 / 36$ by 9 on the calculator．You must be in
 Mansimp mode setting．

ENTER 2nd［QUIT］
27 因 $36 \square$ SIMP 9
ENTER

3 MATH 3

Calculates the cube of n ，which is equivalent to $n \times n \times n$ of any real number，expression，or each element in a list．

$$
n^{3}
$$

苞 Calculate 5^{3} ．
5 MATH 3
ENTER

$\sqrt[3]{ }($ MATH 4

Calculates the cube root of value, which is equivalent to n where $n^{3}=$ value. value can be a real number, expression, or list.

$$
\begin{aligned}
& \text { For } n^{3}=\text { value, } \sqrt[3]{ } \text { value }=n \\
& 3 \sqrt{ } \text { (value })
\end{aligned}
$$

瞱 Calculate $\sqrt[3]{(125)}$.

$$
\text { MATH } 4125 \text { ENTER }
$$

$\times \sqrt{\text { MATH }} 5$

Calculates the $x^{\text {th }}$ root of value, which is equivalent to n where $n^{\mathrm{x}}=$ value. value can be a real number, expression, or list. x can be any real number.

$$
\begin{aligned}
& \text { For } \mathrm{n} \mathrm{X}=\text { value, } \sqrt{\mathrm{x}} \text { value }=\mathrm{n} \\
& x \mathbf{x}_{\sqrt{ }(\text { value })}
\end{aligned}
$$

琎 Calculate $\sqrt[6]{64}$.
CLEAR 6 MATH 5
64 ENTER

$$
\begin{array}{rl}
6 \times \sqrt{6} 4 & 2 \\
& L^{2} x_{\sqrt{64}=2} \\
& \text { because } 2^{6}=64
\end{array}
$$

Solver MATH 6

The Equation Solver allows you to solve for one unknown one-letter variable in an equation containing up to 5 one-letter variables. By default, the equation is assumed to be equal to 0 ; however, you can set the equation equal to any real number (or an expression that results in a real number).

The screen you see when you select Solver depends on whether an equation has been defined previously.

To exit Solver and return to the Home screen, press [2nd [QUIT].

The EQUATION SOLVER Screen

If no equation is currently defined, pressing MATH 6 takes you to the EQUATION SOLVER screen. Enter the equation at the cursor, using the Text editor ([2nd [TEXT]) to enter the variable names.

You can have more than one variable on each side of the equation. For example, $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{D}+\mathbf{E}$.

If you do not set the equation equal to a value, the calculator automatically sets it equal to 0 . For example, to enter $\mathrm{A}+\mathrm{B}=0$, just enter $\mathbf{A}+\mathbf{B}$ and press ENTER. You are limited to 5 variables per equation.

The Equation Variables Screen

If an equation has been defined previously, pressing MATH 6 takes you to the Equation Variables screen.

MATH 6		Your screen may vary.

Equation	Displays the currently defined equation.
Equation Variables	Displays all equation variables and their values.
bound	Displays the bound limits that apply to Default=\{-1E99,1E99\} the unknown variable value for which you are solving.
Solve	You select one variable, the one you want to solve for, from this list.

Equation

The first line of the Equation Variables screen displays the equation you defined on the EQUATION SOLVER screen.

If you would like to edit a defined equation, press \square until the EQUATION SOLVER screen is displayed. Edit the equation with CLEAR, DEL, or 2nd [iNS], as necessary. Then press ENTER to return to the Equation Variables screen.

Equation Variables

All variables included in the defined equation are displayed. If those variables have never been assigned a value, they are set equal to 0 . If a variable has been defined previously (for example, from the Home screen), that value appears.

If a value extends beyond the screen, press \square to scroll to the end of the number. This is especially important if a number is in scientific notation and you need to see whether it has a negative or positive exponent.

For an equation with more than one variable, you must define all variables except the unknown variable for which you want to solve.

bound

bound limits apply to the unknown variable value for which you are solving. Default bounds are \{-1E99,1E99\}. Use these limits to narrow the unknown value solution to a specific range of numbers, especially if more than one answer exists.

Hint: For answers with many solutions (for example, trig functions), consider graphing the function first to get an idea of the most ideal (or specific) bound limits.

Solve

Specify the unknown variable from the Solve line. This prompts the calculator to solve for it.

To select a variable on the Solve line, highlight the unknown variable with the cursor, and then press ENTER. After you press ENTER, a solid black square appears next to the solved (previously unknown) variable displayed in the Equation Variables section.

Hint: The Solver allows for a small tolerance when solving a result, which is noticeable especially when solving complex equations or those with multiple solutions. For example, a result of 3.99999999999999 (instead of 4) for the equation $16=x^{2}$ is considered a correct answer.

Solving Equations with Only One Possible Answer

芭 For $2(L+M)=N$, solve for L when $N=268$, and $M=40,-14$, and 307.

1. Define the equation on the EQUATION SOLVER screen.

MATH 6
\triangle CLEAR (if necessary)
2. Enter the equation.
2nd [TEXT]
$2 \square$ LEENTER + m EENTER
\square = ENTER n ENTER
Done ENTER ENTER
3. Enter the first value for \mathbf{M}, 40, and $\mathbf{N}, 268$.

- 40 - 268

4. Solve for \mathbf{L}.

- $\square^{\text {ENTER }}$

5. Solve for \mathbf{L} when $\mathbf{M}=-14$.

6. Solve for \mathbf{L} when $\mathbf{M}=307$.
-307回回 ENTER

```
\(L=\underline{G}\)
    \(\cdots=40\)
    \(\mathrm{F}=2 \mathrm{E}\)
```



```
    GOIVE: M A
```


Solving Equations with More Than One Answer

The calculator only returns one solution even if more than one possible solution exists. When this is the case, you can first enter a guess by assigning a value to that variable and then asking the calculator to solve your equation. The TI-73 always chooses the solution closest to that guess. However, the guess must be within the bound limits; otherwise, you get an error.

瞱 Find the negative solution to the equation, $16=X^{2}$.

1. Define the equation on the EQUATION SOLVER screen.

MATH 6
\triangle CLEAR (if necessary)

2. Enter the equation.

> 2nd [TEXT]
$16=$ ENTER $x x^{2}$ Done ENTER ENTER

3. Use bound to limit your answer to a negative one (between -16 and 0).

$$
\begin{aligned}
& \text { 16=22 }
\end{aligned}
$$

$\nabla \square(-) 16$ DEL DEL $D 0$ DEL DEL DEL
4. Solve for \mathbf{X}.

ENTER
ERF: EAD GUESS
1日Quit
2)
5. The guess, $\mathbf{x}=\mathbf{1 0}$, is not between the limit bounds. You must clear or change it. (This step uses a different guess, -6.)

$$
2 \text { CLEAR } 6
$$

6. Solve for \mathbf{x}.

- ENTER

The MATH NUM Menu

The MATH NUM (number) menu includes seven different math functions.

	Calculates the absolute value of a real number, list, or expression.
1:abs(Rounds a real number, list, or expression.
3:round(Returns only the integer part of a result.
4:fPart(Returns the minimum of two real numbers, lists, or expressions.
5:min(Returns the maximum of two real numbers, lists, or expressions.
6:max(Returns the remainder resulting from the division
7:remainder(of two real numbers or lists.

abs (MATH $\square 1$

Returns the absolute value of a real number, expression, or each element in a list. For an expression, the expression is calculated and the absolute value of that result is returned.

```
abs(value)
```


round(MATH $\square 2$

Returns a number, expression, or each element in a list rounded to 10 digits or \#decimal_places (≤ 9), if specified. The final result is always displayed according to the Decimal Notation mode (MODE) unless \#decimal_places is specified, which overrides the current setting. Notice that the Decimal Notation mode settings do change the display but not the value of the result. Therefore, the entire result is stored in the calculator ready to use for future calculations, as applicable.

```
round(value[,#decimal_places])
```

Round π to different numbers of decimal places using different Decimal Notation mode settings.

1. Set Decimal Notation mode to Float, if necessary.

MODE ${ }^{-1}$ ENTER

 2nd [QUIT] CLEAR2. Round π to 3 decimal places.

$$
\begin{aligned}
& \text { MATH } \square \mathbf{2} 2 \mathrm{2nd}[\pi] \\
& \mathbf{3} \square \text { ENTER }
\end{aligned}
$$

3. Set Decimal Notation mode to 4.

ENTER 2nd [QUIT]

4. Round π to 3 decimal places.

2nd [ENTRY] ENTER
5. Leave the Decimal Notation mode at 4 and round π to 5 digits.
2nd [ENTRY] 105 ENTER

```
round(\pi,3)
round(\pi,3) 3.142
mound(\pi,5)
    3.1416
```

ENTER

iPart(and fPart(MATH $\square 3$ and 4

iPart(returns the integer part of a real number, expression, or each element in a list. For an expression, the expression is calculated and the integer part of the result is displayed.
iPart(value)
fPart(returns the fractional part of a real number, expression, or each element in a list. For an expression, the expression is calculated and the fractional part of the result is displayed.

If value is a mixed number, the fractional part is returned and displayed according to the current Simplification mode setting.

fPart(value)

目 Find the integer and fractional part of 23.45.

1. Set Decimal Notation mode to Float.

MODE \square ENTER

2nd [QuIT]
2. Find the integer part.

CLEAR MATH ${ }^{3}$
23.45 ENTER
3. Find the fractional part.

MATH 14

$23.45 \square$ ENTER

囲 Find the fractional part of $11 / 2$.

MATH $\triangle 14$ UNIT	iPartc 23.45923
1 b/c $2 \square$ ENTER	fFart 23.45) 45
	fFart (12) $\quad-\frac{1}{2}$

$\min ($ and \max (MATH $\square 5$ and 6

These are identical to the $\boldsymbol{\operatorname { m i n }}$ (and \max (commands found on the 2nd [STAT] MATH menu.
\min ((minimum) returns the smaller of two values or the smallest element in one list. value can be a real number, expression, or a list.

If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is compared with each element of the list, and a list is returned.

```
min(valueA,valueB)
min(list)
```

$\max ($ (maximum) functions exactly like $\min ($, but it always returns the larger of two values or the largest element in a list.

```
max(valueA,valueB)
max(list)
```

For this example, the Decimal mode settings are set to Float.
(囲 Compare L_{1} and $L 2$ to find the $\min \left(\right.$ and $\max \left(. L_{1}=\{1,2,3\}\right.$, and L2 $2=\{3,2,1\}$.

1. Define L_{1} and L_{2} in the List editor.
```
LIST
```

For more information on entering lists,
 see Chapter 5: Lists.
2. Find the list minimums.

> 2nd [QUIT] CLEAR

```
min\L1=L2%1_ll
```

MATH 5
2nd [STAT] $1 \square$
2nd [STAT] $2 \square$ ENTER
3. Find the list maximums.
MATH: 6
2nd [STAT] $1 \square$
2nd [STAT] 2
2 ENTER

remainder(MATH $\square 7$

Returns the remainder resulting from the division of two positive whole numbers, dividend and divisor, each of which can be a list of positive whole numbers. They also are subject to mathematical rules. For example, divisor $\neq 0$.

remainder(dividend,divisor)

If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list of remainders is returned.

```
remainder(list,divisor)
remainder(dividend,list)
remainder(list,list)
```

芭 Calculate $10 \div 6$ and return the remainder only.

$\begin{aligned} & \text { CLEAR MATH } \\ & \mathbf{1 0 \square} \mathbf{0} \square \text { ENTER } \end{aligned}$

remヨinder (10,6) $10 \square 6$ ENTER

The MATH PRB Menu

The MATH PRB (probability) menu lets you select functions that are often used to calculate probabilities.

1:rand	Generates a random number between 0 and 1.

rand MATH $\square 1$

Generates a random real number between 0 and 1 ($0<$ number <1). rand takes no arguments.

```
rand
```

If you want to control a sequence of random numbers, first store an integer "seed value" to rand. The calculator generates a specific sequence of random numbers from each seed value. To get a different sequence, use a different seed value. The default seed value is 0 .
seed STO rand
[:] Generate a sequence of random numbers using whatever value happens to be the current seed.

[: Generate a sequence of random numbers using seed=1.

randlnt(MATH D D

Generates a random integer between lower and upper (both integers) boundaries.

The random integer returned may be one of the boundaries. For example, randint $(1,5)$ may return $1,2,3,4$, or 5 .

To generate more than one random integer, specify \#ofIntegers, a positive whole number >0.
randlnt(lower,upper[,\#ofIntegers])

击 Find a random integer from 2 through 10.

$$
\begin{aligned}
& \text { CLEAR MATH } \square \mathbf{2} \\
& \mathbf{2 \square 1 0} \mathbf{1 0} \text { ENTER }
\end{aligned}
$$

준
Find 4 random integers from 2 through 10. (Recall and edit the last entry.)

$$
\begin{aligned}
& \text { 2nd }[\text { ENTRY }] \square 4 \square \\
& \text { ENTER }
\end{aligned}
$$

nPr MATH $\square \square^{\square}$

Returns the number of permutations of n items taken r number at a time. The order in which you select the items DOES matter. items and number can be nonnegative integers or lists of nonnegative integers.

If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element in the list, and a list of permutations is returned.
items nPr number

瞱 From a group of 4 items (ABCD), how many ways can you select 2 of the items if the order does matter?

Find 4 nPr 2.

nCr MATH $\square 4$

Returns the number of combinations of n items taken r number at a time. In combinations, the order in which you select the items DOES NOT matter. items and number can be nonnegative integers or lists of nonnegative integers.

If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element in the list, and a list of combinations is returned.
items $\mathbf{n C r}$ number

目 From a group of 4 items (ABCD), how many ways can you select 2 of the items if the order does not matter?

Find 4 nCr 2 .

$!$ MATH $\square 5$

Returns the factorial of value. value can be an integer or list of integers between 0 and 69 . By definition, $0!=1$.
Factorials are similar to permutations because the order DOES matter. You can think of 4 ! as the total number of ways that 4 items can be arranged.
value!

琎 Find 4!

24 possible arrangements
\downarrow

coin(MATH $\triangle \square 6$

Returns a random list of 0 s and 1 s that represents heads and tails for one or more coin tosses. tosses is a positive whole number.

```
coin(tosses)
```

囲 Simulate tossing a coin 7 times.
CLEAR MATH D ${ }^{-1}$ $7 \square$ ENTER

dice(MATH $\square \square 7$

(or 3 heads and 4 tails).
Your result may vary.

Returns a random list of numbers (between 1 and 6) that represents dice rolls. dice(takes one optional argument, \#ofdice, a positive whole number>1. If \#ofdice is specified, each list element is the total sum of one roll's results.

```
dice(rolls[,#ofDice])
```

Simulate 5 dice rolls for one die.

目 Simulate 5 rolls of 3 dice.

$$
\begin{aligned}
& \text { CLEAR 2nd [ENTRY] } \\
& 0 \square 3 \text { ENTER }
\end{aligned}
$$

The three dice totaled 11 on the first roll, 10 on the second roll, etc. Your result may vary.

The MATH LOG Menu

The MATH LOG (logarithm) menu lets you select functions that are used to calculate base-10 and base-e logarithms and powers.

MATH $\square \square \square$ -or- MATH		MHTH NUM FRE LITE t日log 2:10.9 3: $\ln 6$
$1: \log ($	Returns th	rithm of a value.
2:10^(Raises 10 t	
3: $\ln ($	Calculates	garithm of a value.
4: e^{\wedge}	Raises e to	2.71828182846).

$\log ($ MATH $\triangle \square \square 1$

The logarithm is the exponent, x, indicating the power which a fixed number (using base 10) must be raised to in order to produce a given number, a.

$$
\text { For } 10 x=a, \log _{10} a=x
$$

\log (returns the logarithm of a positive real number, an expression that results in a positive real number, or a list of positive real numbers.

$$
\begin{aligned}
& \log (\text { value }) \\
& \log (l i s t)
\end{aligned}
$$

囲 Calculate $\log (30)$.

10＾（ MATHDロロ2

Raises 10 to a power of x ，where x is an integer，an expression that results in an integer，or a list of integers．If $x \leq 10^{-4}$ or $\geq 10^{10}$ ， the result is displayed in scientific notation．

```
10^(integer)
10^(x)
```

目 Calculate $10^{\wedge}(6)$ ，which is often written as 10^{6} ．

瞱 Calculate $10^{\wedge}(-4)$ ．

（－） 4 ENTER

$\ln ($ MATH $\triangle \square \square 3$

The natural logarithm is the exponent，x ，indicating the power which the base，e，must be raised to in order to produce a given number，a ．

$$
\text { For } e^{x}=a, \ln (a)=x
$$

The calculator uses e＝2．718281828459，although it only displays 2.718281828 on the screen．
\ln（ returns the natural logarithm of a positive real number，an expression that results in a positive real number，or a list of positive real numbers．

$$
\begin{aligned}
& \operatorname{In}(\text { value }) \\
& \operatorname{In}(\text { list })
\end{aligned}
$$

(: Calculate $\ln (1 / 2)$.

e^{\wedge} (MATH $\square \square \square 4$
Raises e to a power of x, where x is a real number, an expression that results in an real number, or a list of real numbers.

The calculator uses $\mathrm{e}=2.718281828459$, although it only displays 2.718281828 on the screen.

$$
\begin{aligned}
& \mathbf{e}^{\wedge}(x) \\
& \mathbf{e}^{\wedge}(l i s t)
\end{aligned}
$$

琎 Calculate $\mathrm{e}^{\wedge} 5$, which is often written as e^{5}.

CLEAR MATH $\triangle \square \square$	$\overbrace{}^{\wedge}$ (5) ${ }^{\text {de }}$
5 \square ENTER	148.4131591

Entering Fractions 58
Using Fractions in Calculations 59
Fraction Modes 60
Display Format Mode Settings 60
Simplification Mode Settings 60
Autosimp Setting 61
Mansimp Setting 62
Converting Between Fractions and Decimals 64
Converting Between Mixed Numbers and Simple Fractions 65

Entering Fractions

Simple fractions consist of a numerator and denominator. Mixed numbers combine a whole number with a fraction.
Note: The numerator and denominator cannot be a fraction.

Simple Fractions

numerator b / C denominator \square

目 Enter $2 / 3$.

1. Enter the numerator, 2. 2 b/b

2. Enter the denominator, 3 . 3
3. End the fraction.

Mixed Numbers

whole_number UNIT numerator $\square / 0$ denominator \square

芭 Enter $12 / 3$.

1. Enter the whole number, 1 . 1 UNIT

2. Enter the numerator, 2 . $2 b / b$
3. Enter the denominator, 3. 3
4. End the mixed number.

\square

Using Fractions in Calculations

The type of calculation and the input values determine whether the results of a calculation are shown as a fraction or a decimal. You can enter fractions with all operation keys (\boxplus,区, \dagger, etc.), most function keys (x^{2}, , $\%,[x-1]$, etc.), and many menu items (abs(, fPart(, sin(, etc.).

Fractional calculations return fractional results, if possible, except for those that:

- Use 2nd $[\pi]$, \% \%, $\log \left(, \ln \left(, \mathrm{e}^{\wedge}(\right.\right.$ - or -
- Calculate to a result
$\geq \frac{1000}{1}$ or $<\frac{1}{1000}$
- or -
- Include both a fraction and a decimal

- or -
- Use items from the following menus: 2nd [CONVERT];
2nd [STAT] MATH and CALC;
2nd [TRIG] TRIG and ANGLE

Fraction Modes

Two fraction modes exist on the calculator：Display Format mode and Simplification mode．

Display Format Mode Settings

The Display Format mode settings， $\mathbf{A}_{\lrcorner} \mathbf{b} / \mathbf{c}$ and \mathbf{b} / \mathbf{c} ，determine whether or not a fractional result is displayed as a mixed number or a simple fraction．To select a mode setting，press MODE，highlight the setting with the cursor keys，and then press ENTER．

A $\lrcorner \mathbf{b} / \mathbf{c} \quad$ Displays result as a mixed number，if applicable．
b／c Displays result as a simple fraction．

圄

$$
\begin{aligned}
& \text { Add 4/5 + 8/5. } \\
& 4 \text { 田 } 5 \text { D田8 } 8 \\
& \text { ENTER }
\end{aligned}
$$

Simplification Mode Settings

The Simplification mode settings，Autosimp and Mansimp， determine whether or not a fractional result is simplified automatically．

Autosimp	The calculator automatically simplifies fractional results.
Mansimp	The user simplifies fractions manually step-by- step. \downarrow next to the result signifies that it can be simplified at least one more time.

Autosimp Setting

In this example, Display Format mode settings do not affect the display of the result because the result is a simple fraction.

目 Add $1 / 4+1 / 4$.

1. Select Autosimp mode, if necessary, and return to the Home screen.

```
2nd [QUIT]
```

2. Add $1 / 4+1 / 4$.

$$
1 \text { b/b 4■ } 1 \text { D } \mathrm{b} / \mathrm{b} 4 \text { ENTER }
$$

Mansimp Setting

When the Mansimp setting is selected, the result of a calculation is not simplified automatically. \downarrow next to a result means that it is unsimplified and can be simplified at least one more time. You then can decide if you want the calculator to simplify the result step-by-step using simplification factors it chooses or if you want the calculator to simplify the result using the simplification factors that you choose.

Letting the Calculator Choose the Simplification Factor

After getting an unsimplified result (one with \downarrow next to it) from any fractional calculation, press SIMP ENTER. The simplified result and simplification factor which the calculator chose are displayed. For example, Fac=3 means simplification factor=3. The Display Format mode settings affect whether a result is displayed as a mixed number or a simple fraction.

囲 1. Select Mansimp mode setting, if necessary, and return to the Home screen.

$$
\begin{aligned}
& \text { MODE } \\
& \text { ENTER 2nd [QUIT] }
\end{aligned}
$$

2. Add $13 / 4+24 / 8$.

CLEAR 1 UNIT 3 b/b 4 D 2 UNIT 4 D/b 8 ENTER
3. Let the calculator simplify the result.

SIMP ENTER

Choosing the Simplification Factor

After getting an unsimplified result from any fractional calculation, press SIIMP simplification_factor ENTER, where simplification_factor is a positive integer that you choose. The Display Format mode settings affect whether a result is displayed as a mixed number or as a simple fraction.

目 Add 4/16 + 8/16 and choose the simplification factor to reduce the sum to lowest terms.

1. Enter $4 / 16+8 / 16$.

2nd [QUIT] CLEAR

4 b/c $16 \square \square 8$ b/c
16 ENTER
2. Simplify by 2 .

SIMP 2 ENTER

3. Simplify by 3 .

SIMP 3 ENTER

4. Simplify by 2 .

SIMP 2 ENTER

Recalling the Factor 2nd [VARS] 6:Factor

If you execute a fractional calculation in Mansimp mode and then the user or the calculator simplifies the result, you can recall the simplification factor at a later time by selecting 2nd [VARS] 6:Factor.

Since Factor is a variable, you can use Factor in expressions or on any screen that accepts whole numbers ($\mathrm{Y}=$ editor, List editor, Home screen, etc.).

Only one simplification factor (the last one calculated) is stored in memory. Also, you can store a positive whole number to Factor using the STO key, just as you would store a number to any variable. For more information about storing values to variables, see Chapter 1: Operating the TI-73.

围 From the Home screen, simplify $6 / 8$ by a factor of 2 , and then recall the factor.

1. Select Mansimp mode, if
necessary.
```
MODE VOTVO
ENTER 2nd [QUIT]
MODE \(-\nabla \square \square \square\)
ENTER 2nd [QUIT]
```

2. Enter the fraction and simplify.

CLEAR 6 b/c 8 SIMP 2 ENTER
3. Recall the simplification factor, 2.

2nd [VARS] 6 ENTER

Converting Between Fractions and Decimals

To convert a fraction to a decimal or a decimal to a fraction, use $\mathbb{F \leftrightarrow D}$. If a fractional equivalent of a decimal does not exist, the calculator returns the same decimal number. Also, the calculator only recognizes and converts (if possible) the first ten digits of any decimal number.

You must follow $[\leftarrow D$ with [ENTER]; otherwise, you get an error.
The current Decimal Notation mode determines the display of the result. In the following example, the calculator is set to Float Decimal Notation mode.

羋 Convert $3 / 4$ to a decimal and back to a fraction．
1．Convert $3 / 4$ to a decimal．

> 2nd [QUIT] CLEAR
 3 B／6 $4 * D$ ENTER

2．Convert .75 back to a fraction．
$F \leftrightarrow D$ ENTER

［荓 Add 2 plus the decimal equivalent of $1 / 4$ ．

$$
2 円 1 \text { b/b } 4 E \leftrightarrow D \text { ENTER }
$$

Converting Between Mixed Numbers and Simple Fractions

To convert a mixed number to a simple fraction or a simple fraction to a mixed number use $A_{c}^{[} * \frac{d}{d}$ ．The Display Format

You must follow $A \frac{A c}{\frac{t}{c} * \frac{d}{e}}$ with ENTER；otherwise，you get an error．

琎 Convert $31 / 3$ to a simple fraction and back to a mixed number．
1．Convert $31 / 3$ to a simple fraction．

2nd［QUIT］CLEAR
$\mathbf{3}$ UNITT $\mathbf{1}$ b／C $\mathbf{3}$ A $\mathrm{AC} \rightarrow \frac{\mathrm{d}}{\mathrm{d}}$
ENTER
2．Convert $10 / 3$ back to a mixed number．
$A \frac{b}{c}+\frac{d}{e}$ ENTER

Measurement Conversions and Constant Calculations

The 2nd [CONVERT] CONVERSIONS Menu 68
Length 2nd [CONVERT] 1 68
Area 2nd [CONVERT] 2 68
Volume [2nd [CONVERT] 3 69
Time 2nd [CONVERT] 4 69
Temp (Temperature) 2nd [CONVERT] 5 69
Mass/Weight [2nd [CONVERT] 6 69
Speed [2nd [CONVERT] 7 69
Converting a Unit of Measure 70
Constants 71
Single Mode 72
Multiple Mode 75

The 2nd [CONVERT] CONVERSIONS Menu

Use this menu to access all conversion categories.

2nd [
1:Length	Displays the LENGTH menu.
2:Area	Displays the AREA menu.
3:Volume	Displays the volume menu.
4:Time	Displays the time menu.
5:Temp	Displays the temperature menu.
6:Mass/Weight	Displays the MASS/WT. menu.
7:Speed	Displays the SPEED menu.

Length 2nd [CONVERT] 1

mm. millimeters$\mathrm{cm} ~ c e n t i m e t e r s$$\mathrm{~m} e t e r s ~$inch........ inches

ft^{2}............. square feet
\mathbf{m}^{2}............ square meters
mi2............ square miles
km2.......... square kilometers
acres

Area 2nd [CONVERT] 2
ft
yard
feet
km.................. kilometers
mile................ miles

in ${ }^{2}$................... square inches
$\mathbf{c m}^{2}$. square centimeters
$y^{2}{ }^{2}$. square yards
ha.
hectares
ETDNETETDN:
 두르․․…

4: Ti 드르…
G: Mess Joi 9 ht. 7:Speed...

Displays the LENGTH menu.
Displays the Area menu.
Displays the VOLUME menu.
\qquad

Volume 2nd [CONVERT] 3

liter liters	
gal gallons	$\mathrm{ft}^{3} c u b i c ~ f e e t ~$
qt............. quarts	$\mathrm{m}^{3} c u b i c ~ m e t e r s ~$
pt............. pints	galUK UK gallons
oz ounces	ozUKUK ounces
cm ${ }^{3}$.......... cubic	

Time 2nd [CONVERT] 4

```
sec........... seconds
min .......... minutes
hr.............hours
```

day days
week................ weeks
yearyears

Temp (Temperature) 2nd [CONVERT] 5

degC degrees Celsius
degF degrees Fahrenheit
degK......... degrees Kelvin

Mass/Weight 2nd [CONVERT] 6

Converting a Unit of Measure

To convert a measurement value, enter the measurement value, select the category from the CONVERSIONS menu, select the unit you are converting from, and then the unit you are converting to. To know which category to select, look at the units of the original value. You can only convert within one category.
measurement_value current_unit new_unit

击 Convert 50 meters to inches.

1. Clear the Home screen, if desired. Enter the value, 50 .

2nd [QUIT] CLEAR 50

2. Display the CONVERSIONS menu.

2nd [CONVERT]

3. Select the applicable category, 1:LENGTH.

1
4. Select the current unit, meters.

3

5. Select the unit which you want to convert to, inches.
6. Calculate the result.

ENTER

1968.503937

EOS operating rules (Appendix B: Reference Information) apply when converting negative measurements as shown in the next example.

目 Compare the results of $-5^{\circ} \mathrm{F} \nabla^{\circ} \mathrm{C}$ and $(-5)^{\circ} \mathrm{F}{ }^{\circ} \mathrm{C}$.

1. From the Home screen, calculate $-5^{\circ} \mathrm{F}{ }^{\circ} \mathrm{C}$.

(-1) 5 2nd [CONVERT] 5
21 ENTER
2. Calculate $(-5)^{\circ} \mathrm{F}{ }^{\circ} \mathrm{C}$. 2nd [ENTRY] 2nd $]^{1}$ 2nd [iNS] $\square \square \square$ 2nd [INS]D ENTER

The calculator converts $5^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ and then returns the negative of the result.
-5 degfrdegC 15 (-5) depardera
-20.5555556
The calculator converts $(-5)^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$.

Constants

To save time re-entering long or complicated expressions and to help prevent entry errors, you can enter numbers, expressions, lists, commands, or functions into the calculator's memory by defining them as constants in the Set Constant editor. As constants, they then can be recalled at any time.

You can define up to four constants in the Set Constant editor and choose from one of two different modes: Single or Multiple.
The mode you select determines how many of the constants you can recall at a time. To enter a constant in the editor, select the mode from the Set Constant editor ([2nd [SET]), move the cursor to one of the four constants, and define it.

2nd [SET]	

To use a constant:

1. Define the constant in the Set Constant editor (2nd [SET]).
2. Recall the constant with the CONST key.

Single Mode

By selecting Single mode, you tell the calculator that you only want to access one constant from the list, even if more than one is defined.

To select the one constant ($\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}$, or \mathbf{C}_{4}) you want to use, highlight the $=$ next to it, and then press ENTER. This automatically deselects any other defined constants.

Defining Constants in Single Mode

Enter the constants in the Set Constant editor as shown in the following example. At any time you can enter this editor and edit, delete, or add constants.

Define $\mathbf{C}_{1}=+1 / 2$ and $\mathbf{C}_{3}=* 1 / 2$.

1. Enter the Set Constant editor.

2nd [SET]
2. Highlight Single with the cursor, if necessary.
Δ ENTER

3. Define \mathbf{c}_{1} as $+1 / 2$.

4. Define \mathbf{C}_{3} as $* 1 / 2$.

5. Exit the Set Constant editor. [2nd [QuIT]

Single Mode Constant Calculations

After a constant is defined and selected, return to the screen where you want to use it in a calculation. Pressing CONST pastes it to the cursor location. In Single mode, only one defined constant is available for use in calculations, and an expression using a constant is automatically solved after pressing CONST (without pressing ENTER).

瞱 Calculate $40+1 / 2$.

1. Select Single mode, if necessary.

2nd [SET] \triangle ENTER
2. Select \mathbf{C}_{1} (which deselects C_{3}), and exit the Set Constant editor.

- [ENTER 2nd [QUIT]

3. Clear the Home screen, if desired. Solve the problem using C_{1}.

CLEAR 40 CONST

Recalling a Constant in a Series of Calculations

When pressing CONST more than once in a series of calculations, the calculator automatically keeps count for you (shown in the following example) unless the defined constant includes a list. The counter starts over any time a new entry precedes CONST, including Ans.

羋 Find the multiple of 2 so that $5 * 2^{n}=40$ ．

1．Select Single mode，if necessary．

$$
\text { 2nd }[\mathrm{SET}] \Delta \text { ENTER }
$$

2．Enter $\mathbf{C}_{2}=* 2$ ．
回囚

3．Return to the Home screen and clear，if desired．

2nd［QUIT］CLEAR
4．Count the number of times you have to multiply 5 by 2 to get 40 （so that $5 \times 2^{n}=40$ ）．

5 CONST
CONST

Multiple Mode

In Multiple mode, all defined constants are available to use at any time. To define Multiple mode, highlight Multiple using the cursor keys, and then press ENTER.

Defining Constants in Multiple Mode

You define constants in Multiple mode exactly the same way you define them in Single mode. All constants are always selected, even if they are not defined.

并 Select Multiple mode and use the constants defined in the previous examples.

1. Enter the Set Constant editor.

2nd [SET]

2. Select Multiple mode.

Recalling Constants in Multiple Mode

When you press CONST from the Home screen and the Set Constant editor is in Multiple mode, the first six characters of every defined constant is displayed. Undefined constants are marked as Empty.

To select a constant，press the number associated with the constant（1，2，3，or 4）．You may choose another constant（or the same one）by pressing CONST again．In Multiple mode （unlike in Single mode），your constant expression is not evaluated until you press ENTER．
（囲 Define $\mathbf{C}_{3}=+3 * 2$ and $\mathbf{C}_{4}=* 2+3$ in Multiple mode．

2nd［SET］$\Delta \square$ ENTER \rightarrow CLEAR
区 2 ＋ 3

Sin31c Iultifis
$=1 日+1 / 2$
$=1 日+1$
$=2 日+2$
$=2 日+3+2$

```
=4日+2+3
```

$\left\lceil\right.$ You recognize that $\mathrm{C}_{3}=+3 * 2$ ．
击 Calculate $4+3 * 2$ ．
1．Go to the Home screen and clear it，if desired．

2nd［QUIT］CLEAR
2．Find the result．
4 CONST 3 ENTER

－You recognize that $\mathbf{C}_{4}=* \mathbf{2 + 3}$ ．
（䓒 Calculate $4 * 2+3$ ．
4 CONST 4 ENTER

5
 Lists

Steps for Creating a List 78
The List Editor ■IST 79
Naming a List 79
Entering List Elements 81
Editing Lists in the List Editor 87
Inserting or Deleting a New List 87
Deleting Lists from Calculator Memory 88
Inserting or Deleting One Element in a List 89
Editing an Existing Element 89
Clearing All Elements in a List 90
Clearing All Elements in All Lists 90
Editing a List Formula 90
The 2nd [STAT] Ls Menu 91
The 2nd [sTAT] OPS Menu 92
SortA(and SortD(2nd [STAT] $\square 1$ and 2 93
ClrList [2nd [sTAT] 3 95
$\operatorname{dim}($ 2nd [STAT] \square 95
Δ List(2nd [STAT] $\square 5$ 97
Select(2nd [STAT] 6 98
seq(2nd [STAT] 7 99
augment(2nd [STAT] $\square 8$ 100
L (List Signifier) 2nd [STAT] 9 101
List Commands from the Home Screen 102
Creating a List 102
Copying One List to Another 103
Displaying One List Element 103
Inserting or Changing a List Element 104
Using Math Functions with Lists 105

Steps for Creating a List

On the TI-73, a set of numerical or text information is called a list. Follow these basic steps when defining a list.

The List Editor LIST

You can enter up to 20 lists in the List editor. Each list can have up to 999 elements. You can only display three lists at the same time; use \square or to scroll to see all other defined lists.

List notation looks like this: $\operatorname{Ls=\{ 1,2,3,4,5,6\} \text {.Readitas"elements}}$ $1,2,3,4,5$, and 6 are stored in the list named Ls."

Numeric Notation, Decimal Notation, and Angle modes affect the display of an element (except fractional elements).

LIST

Naming a List

$\mathbf{L}_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}$, and one empty, unnamed list initially are
included in the List editor.

When you are ready to define your list, you can move to one of the columns labeled L1- L6 and begin entering your list elements.

If you do not want to use L1-L6 (you cannot rename them), you can create a new list and name it anything you want. A list name can be one to five characters long. The first character must be a letter from A to Z . The second through fifth characters can be any combination of letters and numbers. Access letters from the Text editor (2nd [TEXT]). A list accepts elements only after it is named.

Note: You cannot rename a user-named list, but you can copy its elements to a list with a different name. See the section entitled, "Copying One List to Another" on page 103.

In this guidebook, when a list name is referred to, its name is always preceded by the L symbol; however, you don't type the \llcorner when naming a list in the List editor.

If a defined list name is highlighted, the list elements or the attached formula are displayed on the entry line.
[瞱 Create a list named Num.

1. Display the List editor. LIST
2. Scroll to the blank, unnamed list to the far right of the List editor.

$$
\square \text { or } \square
$$

3. Use the Text editor to name the list Num.

2nd [TEXT]
\mathbf{N} ENTER \mathbf{u} ENTER
M ENTER Done ENTER

4. Move "NUM" from the entry line to the list name line.

ENTER

Entering List Elements

A named list accepts two types of elements: numerical and text.

- Lists that contain numerical elements not enclosed in quotation marks are called numerical lists.
- Lists that contain text elements or numerical elements whose numerical values are ignored (because they are enclosed in quotation marks) are called categorical lists.

To enter an element, highlight the space in the column under the list name where you want the element to be entered (you can't skip any spaces) and type in the element (it is displayed on the entry line). Press ENTER or to move the element into the list. Pressing \square or ENTER also moves the cursor to the next element space.

Access the quotation marks (for categorical lists) from the Text editor (2nd [TEXT]).

Numerical Lists

Numerical lists contain real numbers, fractions, or expressions that evaluate to real numbers or fractions. If you enter an expression like $\boldsymbol{\operatorname { s i n }}(30)$, the calculator displays the decimal equivalent in the list element space. The Numeric Notation, Decimal Notation, and Angle modes determine how the calculator displays all elements, except fractions.

Define $\mathbf{L N U M}=\{\mathbf{1 8 , 2 5 , 4 5}\}$.

1. Go to the first element space of the numerical list LNUM.

\square (as necessary)

\square (if necessary)
2. Enter the list elements.

$$
18 \circlearrowleft 25 \square 45 \square
$$

Entering Fractional Elements

When entering fractions from the Home screen, parentheses are optional around the numerator and denominator.

When entering fractions in the List editor (and any other editor), parentheses are mandatory around the numerator and denominator ONLY when operators are included:

LIST 1 + 2 b/c $3 \oplus 4$ ENTER

Dependent Numerical Lists

The numerical list described in the previous section (LNUM) is an independent list. You also can create dependent lists, which are dependent (or based) upon the contents of another defined numerical list.

You create a dependent list by attaching a formula to it. For example, " $2+L_{1}$," where L_{1} is already defined, is a formula. The formula always contains at least one other list. In addition, for a formula like $L_{3}=" 2+L_{1}+L_{2}, " L_{1}$ and L_{2} must have the same number of elements. Then, each element in L_{3} is the result of the attached formula.

When a formula is attached to a list, a small signifier (\bullet) appears next to the list name. You cannot edit a dependent list by simply typing over an element as with independent lists. You must highlight the element you want to change, press ENTER, and then edit it. However, this changes the entire list back to an independent list, and the formula and the formula signifier disappear.

Also, it is possible to have multiple dependent lists all based on the same list (for example, $L_{2}=" 2+L_{1}, " L 3=" 3+L_{1}$," and L4="4+L1").

An attached formula can be enclosed in quotation marks (located in the Text editor). A list whose formula:

- Is not enclosed in quotation marks is not automatically updated if the independent list changes.
- Is enclosed in quotation marks is automatically updated if the independent list changes.

Convert the following six Celsius temperatures
$\{-40,-15,-5,30,58,140\}$ to Fahrenheit and display both lists in the List editor.

$$
\begin{array}{c|l}
\text { Independent List } & \text { LCEL }=\{-40,-15,-5,30,58,140\} \\
\text { Dependent List } & \text { LFRHT="LCEL degC degF" }
\end{array}
$$

1. Create the independent list, LCEL.

LIST

\square or (as necessary to move to the blank list)

2nd [TEXT] C ENTER E ENTER LENTER Done ENTER ENTER
2. Enter the elements.

- $30-58$ - 140 -

3. Create the dependent list, LFRHT.
\square 2nd [TExT]
F ENTER R ENTER \mathbf{H} ENTER
TENTER Done ENTER ENTER
4. Attach the formula " LCEL degC>degF" to LFRHT.

EENTER 2nd [TEXT]
" ENTER DoneEENTER

FIUM	LEL	\|FFHT	$\underline{9}$
1日	-40	---	
25	-15		
	30		
	5140		

2nd [STAT]CEL ENTER
2nd [CONVERT] 512
2nd [TEXT] " ENTER
Done ENTER
5. Display the elements of LFRHT.

ENTER

6. Change -5 in LCEL to -8 .

IUH	CEL	\|FFHT 日
18	-40 -15 -80 E10 540 10	$\begin{array}{\|l\|} \hline-46 \\ 5 \\ 17.6 \\ 17.6 \\ 186.4 \\ 2.4 . \\ \hline-2 \\ \hline \end{array}$
45		
CELC		

Note: Since the formula is enclosed in quotation marks, element 3 in LFRHT is automatically updated.

Categorical Lists

Categorical lists usually contain words or letters (text elements). If they contain numerical elements, the numerical values of those elements are ignored. Categorical lists are usually used in statistical plotting, but they can allow you to label elements as explained in the following example. See Chapter 6: Statistical Plots for details about using categorical lists in stat plots.

To define a categorical list, enclose the first element in quotation marks (found in the Text editor). Quotation marks are optional on the remaining text elements. A categorical list signifier, c, appears next to the list name.

A math class has 4 test scores: 2 tests, 1 midterm test, and 1 final exam. Ivan earned test scores of $85,80,74$, and 82 . Karen earned test scores of $90,85,92$, and 79. Reflect this information in the List editor.

$$
\begin{aligned}
& 1 \text { Categorical } \\
& 2 \text { Numerical } \begin{array}{l}
\text { LTEST }=\{\text { TEST1,TEST2, MDTRM,FINAL }\} \\
\text { LIVAN }=\{85,80,74,82\}
\end{array} \\
& \text { LKAREN }=\{90,85,92,79\}
\end{aligned}
$$

1. Display the List editor and create a list named TEST.
[IST) \square or \square (as
necessary to move to
the blank list)
2nd [TEXT]
TEENTER E ENTER
s ENTER t ENTER
Done ENTER ENTER

CEL	\|FHFT \dagger	\|TEFTI	10
-40	-40		
-15	5		
12	6. 6		
30	砳		
$5 \cdot$	136.4		
140	284		
TEST =			

2. Enter the element TEST1.
[2nd [TEXT] " ENTER
TENTER E ENTER
SENTER TENTER 1
" ENTER Done
ENTER ENTER

The categorical
list signifier, c.

3. Repeat for the elements TEST2, MDTRM, and FINAL (quotation marks are optional after the first element).
4. Create a list named IVAN.
\square 2nd [TEXT]
IENTER v ENTER
A ENTER N ENTER
Done ENTER ENTER

CEL	\|FHFT	test at
-40	54	TEST1
-15	5	TETE
12	S6	ETIfit
3	星 4	-
	286.4	
TEST(S) $=$		

5. Enter 85, 80, 74, and 82.

6. Create a list named KAREN.

K ENTER A ENTER
R ENTER E ENTER
n ENTER Done ENTER ENTER
7. Enter 90, 85, 92, and 79.

Once you have these lists entered, you can display this data in various ways using related features on the calculator. For example, Chapter 6: Statistical Plots explains how you could easily convert this data into a bar chart. Chapter 7: Statistical Analyses explains ways to find each student's averages as well as doing other statistical analyses of their test scores.

Editing Lists in the List Editor

From the List editor, you can display, edit, insert, temporarily delete (not from memory), and move from view all lists stored in the calculator. You also can edit, insert, move, or delete list elements and attached formulas.

To see all list names that are stored into the calculator's memory (but not necessarily the List editor), display the 2nd [STAT] Ls menu and use Δ and to scroll the menu.

Inserting or Deleting a New List

Inserting a list into the List editor saves it in the calculator's memory. However, deleting a list from the List editor does not delete it from the calculator's memory. A deleted list's name still appears in the 2nd [STAT] Ls menu.

Therefore, if you would like to insert the deleted list back into the List editor, go to a blank list, select the list name from 2nd [STAT] Ls menu and press ENTER ENTER.

目 Insert L_{1} between L_{4} and L_{5}.

1. Move the cursor so that it highlights $\mathbf{L 5}$.
```
|IST |
\square
\(\square\) or (as necessary)
```


3. Identify it as \mathbf{L}.

2nd [STAT] 1 ENTER

目 Delete \mathbf{L}_{1}.
DEL

Deleting Lists from Calculator Memory

To delete a list from the calculator's memory, use the 2nd [MEM] 4:Delete menu. If you delete L1-L6 from the calculator's memory, the names still appear in the 2nd [STAT] Ls menu. If you delete a user-named list, its name is deleted from this menu.

圆 Delete L_{2} from the calculator's memory.
2nd [MEM] 4 ENTER
2nd [QUIT] (to return to
the Home screen)

Inserting or Deleting One Element in a List

To insert one element in a list:

1. Use the cursor keys as necessary to highlight the element space where you want to insert the element.
2. Press 2nd [INS] to insert the element space. All following elements move down one space.
3. Type the element, and press ENTER.

To delete one element from a list:

1. Use the cursor keys as necessary to highlight the element that you want to delete.
2. Press DEL to delete the element. All following elements move up one space.

Editing an Existing Element

You can edit any particular element in a list without having to reenter the entire list.

1. Use the cursor keys as necessary to highlight the element that you want to edit.
2. Press ENTER to move the element to the entry line.
3. Edit the element with 2nd [INS], CLEAR, or DEL, as necessary.
4. Press ENTER to replace the existing element with the edited element.

Clearing All Elements in a List

To clear all of the elements in a list when the List editor is displayed:

1. Use the cursor keys as necessary to highlight the list name. The list elements (or formula) are displayed on the entry line.
2. Press CLEAR ENTER to clear the list elements.

You also can clear elements from the Home screen using the 2nd [STAT] OPS 3:CIrList menu item.

Clearing All Elements in All Lists

You clear all elements in all lists using the 2nd [MEM] 6:CIrAllLists instruction from the Home screen. When you press ENTER, all elements in all lists are cleared from the calculator's memory, even for those lists not displayed in the List editor.
2nd [QUIT]
2nd [MEM] 6 ENTER

Editing a List Formula

To edit an attached formula:

1. Use the cursor keys as necessary to highlight the name of the list name that you want to edit.
2. Press ENTER to move the formula to the entry line.
3. Edit the formula with 2nd [iNS], CLEAR, or [DEL, as necessary.
4. Press ENTER to replace the existing formula with the edited formula. The list elements are updated automatically according to the new formula.

Deleting a List Formula

You can delete an attached formula in one of two ways. You can:

- Follow the preceding directions for editing a formula, but press CLEAR ENTER in place of step 3.
- Edit one of the elements in the dependent list as directed in the steps for editing an element. When you are finished, the formula signifier disappears, and the list becomes independent.

The 2nd [STAT] Ls Menu

Use the 2nd [sTAT] Ls (lists) menu to access all list names stored in the calculator's memory. Li-L6 are listed first followed by all user-named lists in alphabetical order. In this menu, the user-named lists appear as they do in the List editor (the List signifier, L , does not precede the name). However, if you select a list to display it anywhere else on the calculator, such as the on Home screen, the l automatically appears before the name.

From the Home screen, you can type in a new list name directly using the Text editor (except for L1- L6); however, you must precede the list name with the list signifier, l . Notice that the list signifier, L, is smaller than the L in the Text editor. You can access L by itself from [2nd [CATALOG] or under the 2nd [STAT] OPS menu.

If you try to use the L from the Text editor, the calculator reads that L plus any following characters as variables (representing numerical values), not as a list.

The 2nd [STAT] OPS Menu

Use the 2nd [STAT] OPS (options) menu to change defined lists from the Home screen.

2nd [ST	
1:SortA((Ascending)	Sorts list elements from lowest to highest in numerical order or in alphabetical order.
2:SortD((Descending)	Sorts list elements from highest to lowest in numerical order or in reverse alphabetical order.
3:CIrList	Clears all elements in specified list(s).
4:dim(Recalls, sets, or changes the dimension (number of elements) in a list.
5: Δ List(Returns the differences between consecutive elements in a list.
6:Select(Selects one or more specific data points from a Scatter or xyLine stat plot, and then updates the list(s) in memory. (Requires you to set up a statistical plot. See Chapter 6: Statistical Plots for more information.)
7:seq(Returns a list that fulfills the requirements of 5 arguments (expression, variable, begin, end, and increment) which you specify.
8:augment(Combines two lists to make a new list.
9:L	List signifier; all text characters or numbers following it are interpreted as a list name.

SortA (and SortD(2nd [STAT] $\square 1$ and 2

SortA ((sort ascending) sorts numerical list elements from lowest to highest value and categorical list elements alphabetically. SortD((sort descending) sorts the list elements from highest to lowest value or in reverse alphabetical order.

Enter the SortA(or SortD(instruction on the Home screen; and then enter all list names that you want to sort (separated by a comma), and press ENTER.

Sorting One List

> SortA(list)
> SortD(list)

目 Define $\mathrm{L}_{2}=\{4,7,3,9\}$ in the List editor, and sort in ascending order.

1. Define L_{2} in the List editor. LIST

2. From the Home screen, sort L_{2} in ascending order.

> SortPCLz
2nd [QUIT] CLEAR
2nd [STAT] 1
2nd [STAT] $2 \square$ ENTER
3. If desired, display L_{2} on the Home screen or in the List editor to see the new order.

$$
\text { 2nd [STAT] } 2 \text { ENTER }
$$

- Or -

LIST
\square (as necessary)

Sorting Multiple Lists

You can specify more than one list when using SortA(and SortD(. In this case, the first list specified is the independent one; any following lists are dependent.

The calculator sorts the independent list first, and then sorts all the dependent lists by placing their elements in the same order as their corresponding elements in the independent list. This allows you to keep sets of related data in the same order when you sort lists.

SortA(indpntlist,dependlist1,dependlist2...)
SortD(indpntlist,dependlist1,dependlist2...)

囲 Define $\mathrm{L}_{2}=\{3,4,7,9\}$ (independent), $\mathrm{L}_{3}=\{1,2,3,4\}$ (dependent), and $\mathrm{L} 4=\{14,13,12,11\}$ (dependent), and sort all three in descending order.

1. Define $\mathbf{L}_{2}, \mathbf{L}_{3}$, and \mathbf{L}_{4} in the List editor.

LIST

2. From the Home screen, sort the lists in descending order.

2nd [QUIT] CLEAR
2nd [STAT] $\quad 2$
2nd [STAT] $2 \square$
2nd [STAT] 3,
2nd [STAT] $4 \square$ ENTER
3. If desired, display the elements in the List editor to see the new order.

LIST

\square (as necessary)

CIrList 2nd [STAT] 3

Clears all items in specified list(s) from the Home screen.
CIrList list1[,list2,list3,...]

$\operatorname{dim}($ 2nd [STAT] $\square 4$

Use dim(from the Home screen to return the dimension (number of elements) of a defined list, to create a new list with a specified number of elements, or to change the dimension of a defined list.

When creating a new list with a specified dimension, you can assign a length from 1 to 999. The elements are set to zeros.

When changing the dimension of a defined list, all existing elements in the defined list within the new dimension are not changed.

- If you are increasing the number of elements, extra list elements are filled by 0 .
- If you are decreasing the number of elements, all existing elements in the defined list outside the new dimension are deleted.

To return the dimension of a list:

```
dim(list)
```

To create a new list with a specific dimension：

$$
\text { dimension\# }[\mathrm{STO} \operatorname{dim}(\text { newList })
$$

To change the dimension of an existing list：

```
newDimension#STO* dim(list)
```

击 Define $\mathbf{L} 5=\{1,2,3,4\}$ in the List editor．

LIST

目 From the Home screen，return the dimension of L5．

```
2nd [QUIT] CLEAR
2nd [STAT]\square4
2nd [STAT] 5\square ENTER
```


芭 Create a new list，LNEW，with 4 elements．

1．Define the list on the Home screen．

```
4 STO 2nd [STAT]D4
2nd [STAT]\square9
2nd [TEXT]
N ENTER E ENTER
w ENTER Done ENTER\
ENTER
```

2．Display the elements in LNEW on the Home screen，if desired．

2nd［STAT］NEW ENTER ENTER

1. Change the dimension of LNEW to 3 elements.

3 STO 2 Zd [STAT] $\square 4$ 2nd [STAT] NEW ENTER DENTER
2. Display the elements in LNEW, if desired.

2nd [STAT] N E W ENTER ENTER

Δ List (2 nd [STAT] $\square 5$

Δ List((delta list) returns a list containing the differences between consecutive elements in a list. It subtracts the first element in the list from the second element, subtracts the second element from the third, and so on. The resulting list is always one element shorter than the original list.

```
\DeltaList(list)
```

Define $\mathbf{L 6 = \{ 9 , 7 , 4 , 3 \}}$ and calculate its Δ List.

1. Enter the elements in the List editor.

LIST
2. From the Home screen, calculate Δ List for L6.
2nd [QUIT] CLEAR
2nd [STAT] 5
2nd [STAT] 6 [ENTER

Select(2nd [STAT] $\square 6$

This instruction is used to select a certain portion of an existing Scatter or xyLine stat plot, both of which contain an XList and a YList. Before you can use Select(, you must define and select (turn on) the statistical plot you want to use; otherwise, you get an error message. For a detailed explanation on setting up Scatter and xyLine plots, see Chapter 6: Statistical Plots.

From the Home screen, enter Select(followed by two list names, XList and YList. These list names are where you want to store the selected data points. All X-values are stored in the first list and all Y-values are stored in the second list.

XList and YList can be the same two lists as the ones which set up the stat plot, or you can enter new list names. If you choose to enter new list names, entering the list signifier (L) (found under the 2nd [STAT] OPS menu) is optional. Enter the new list names using the Text editor (2nd [TEXT]).

Select(XList,YList)

The calculator displays the stat plot and prompts you to select the left and the right bounds. The calculator then plots the selected points on the Graph screen for you to see. If desired, you can enter the List editor to see the lists with the selected data points.

The following example shows the steps you would follow when selecting a statistical plot. The data is acquired from a sample statistical xyLine plot. LTIME contains $94 X$-values; LDIST contains $94 Y$-values.

The example selects the first portion of the graph before Distance $=0$ and stores the selected X-values in LNEWT and the selected Y-values in LNEWD.

1. Display the graph or stat plot and determine the data points you want to select. GRAPH

2. The Select(command and two new list names are entered from the Home screen.
3. The left bound is chosen. ENTER

Select CLHELIT, LHE
WCD

2nd [STAT] 9 accesses the list signifier. 2nd [TEXT] accesses the Text editor.

4. The right bound is chosen.
\square (as necessary)
ENTER

5. The plot is regraphed to include only the selected data points.

LNEWT and LNEWD now exist in the calculator's memory. To display newly selected lists in the List editor, insert them as you would insert any other list.

seq(2nd [STAT] $\square 7$

seq(returns a list in which each element is the result of the evaluation of expression with regard to the variable. You also must specify a value range from begin to end. You can specify one optional argument, increment, which specifies the interval between each variable value used to solve expression.
variable need not be defined in memory. increment can be negative. The default value for increment is 1 . seq(is not valid within expressions.

```
seq(expression,variable,begin,end[,increment])
```

击 Solve expression, \mathbf{A}^{2}, with regard to variable, A. Use variable values ranging from 1 (begin) to 11 (end), and specify increment as 3.

1. Return to the Home screen, and clear it, if desired. 2nd [QUIT] CLEAR
2. Enter the seq(expression.
2nd [STAT] 7
2nd [TEXT] A ENTER x^{2},

A ENTER Done ENTER
1—11 3

augment(2 nd [STAT] $\square 8$

augment(combines the elements of two lists from the Home screen to create a new list. An augmented list is not saved in the calculator's memory unless you name it or store it to an existing list name. This is shown in the following example.

```
augment(list1,list2)
```

Define $\mathbf{L a}_{4}=\{1, \mathbf{2 , 3}\}$ and $\mathbf{L}_{5}=\left\{\mathbf{3 , 4 , 5 , 6 \}}\right.$ in the List editor, augment \mathbf{L}_{4} with L_{5} and store the augmented list to L6.

1. Define \mathbf{L}_{4} and \mathbf{L}_{5}.

LIST

2. Return to the Home screen, and augment L 4 and L .

2nd [QUIT] CLEAR
2nd [stat] $\square 8$
2nd [STAT] $4 \square$
2nd [STAT] 5 [ENTER

3. Store the augmented list to

 L6.2nd [ANS] STO• 2nd [STAT] 6 ENTER

L (ListSignifier) 2nd [STAT] 9

The list signifier, L, which is not the same as the L from the Text editor, is especially useful in programming when you want to specify a group of numbers or text characters as a list name.

llistname

The list signifier does not appear in front of a list name in the List editor or in the 2nd [STAT] Ls menu because it is obvious which groups of text characters or numbers are list names. Also, the list signifier is optional when entering commands that take only list names for arguments. For example,

Select(XList,YList)

Although XList and YList are not preceded by the list signifier, the calculator interprets them as list names since no other types of arguments are accepted.

Also, when defining lists from the Home screen, the list signifier is optional.

$$
\{ 1 , 2 , 3 \} \longdiv { S T O } A B C
$$

Since this command structure is only used with list names, the calculator interprets ABC as $\angle A B C$.

List Commands from the Home Screen

You can create, copy, display, and edit lists directly from the Home screen. You also can perform mathematical functions on lists from the Home screen.

Creating a List

To create a list on the Home screen, you must enter the list elements surrounded by braces and store them to the list name. You can access the braces from the Text editor (2nd [TEXT]) or from the Catalog (2nd [Catalog]).

If you create a list on the Home screen, it is stored in the calculator's memory, but it won't show up in the List editor unless you specifically insert it there.
$\{$ element1,element2, ...\}STO@list

芭 Define $\operatorname{LABC}=\{1,2,3\}$ on the Home screen.

1. Enter the elements.

2. Store to the list name.

STO 2nd [TEXT]
A ENTER B ENTER
c ENTER Done ENTER ENTER

Copying One List to Another

To copy a list on the Home screen, store it to another list name.

It is easiest to store the elements in the List editor. You then can review the results in the List editor. Otherwise, any lists you create on the Home screen are stored in memory, but they don't appear in the List editor unless you insert them there.
listSTO newList

国 Define $L_{1}=\{1,2,3\}$ and $L_{2}=\{4,5,6\}$ and copy L_{1} to L_{2}.

1. Enter the new elements.

LIST

2. Return to the Home screen and copy L_{1} to L_{2}.

$$
\begin{array}{llll}
\hline 1+\mathrm{L} 2 & 6 & 2 & 3
\end{array}
$$

2nd [QuIT] CLEAR
2nd [STAT] 1 STO*
2nd [STAT] 2 ENTER
3. Display the copied list in the List editor.

LIST

Displaying One List Element

From the Home screen, you can display one list element from a defined list.
list(element\#)

囲 Define L2=\{1,2,3\} in the List editor and display the second element from the Home screen.

1. Define L2.

LIST
2. Display the 2 nd element only.

2nd [QUIT] CLEAR
2nd [STAT] 2 1 2 2 ENTER

Inserting or Changing a List Element

From the Home screen, you can insert or change elements in a defined list. You can only insert elements in order. For example, you can't insert a 3rd element if the 2nd and 1st elements are not defined.

囲 Define $L_{1}=\{1,2,3\}$ and insert a fourth element, 6 . Then change the 4th element from 6 to 8.

1. Define L_{1} in the List editor. LIST.

2. Return to the Home screen, and insert a 4th element, 6.

2nd [QUIT] CLEAR
6 STO 2nd [STAT] 1
(1) 4 ENTER
3. Display results in the List editor, if desired.

LIST

4. Change the 4th element, 6 , to 8.

2nd [QUIT] 8 STO
2nd [STAT] 1 1 4 ${ }^{\text {ENTER }}$
5. Display results in the List editor, if desired.

LIST

Using Math Functions with Lists

When a math function (see Chapter 2: Math Operations) is applied to a list, it is calculated for every element in the list. Therefore, the function must be valid for every element in the list.

You cannot perform a mathematical function on two lists of different sizes. For example, $\{1,2,3\}+\{4,5,6,7\}$ results in an error. Mathematical rules always apply; for example, $1 \div\{0,1,2\}$ results in an error because 1 cannot be divided by 0 .

囲 Perform mathematical functions with L_{5} and L_{6} on the Home screen.

1. Define $\mathbf{L s}_{5=\{4,5,6\}}$ and $\mathrm{L} 6=\{7,8,9\}$.

LIST

2. Return to the Home screen, and calculate L5+ L6.

2nd [QUIT] CLEAR
2nd [STAT] 5 ■
2nd [STAT] 6 ENTER

3. Calculate $\mathbf{L s}^{2}$.

2nd [STAT] 5 x2 ENTER
4. Select Radian mode setting and calculate $\cos (\mathrm{L} 6)$.

MODE $\nabla \square$ ENTER
2nd [QUIT] CLEAR
2nd [TRIG] 3
2nd [STAT] $6 \square$ ENTER
$605659622543-\ldots$

For more information, see Chapter 11: Trigonometry.

6

Statistical Plots

Steps for Defining a Stat Plot 108
Defining Statistical Data in Lists 109
Deselecting Y_{n} Functions 109
Defining a Stat Plot 109
Selecting Stat Plot Types 111
Defining Stat Plot Options 112
Adjusting Window Values and Format 114
Displaying the Stat Plot 114
Stat Plot Examples 114
Scatter Plot $\stackrel{\because r}{ }$ and xyLine Plot $1 \sim$ 114
Pictograph N. 117
Bar Graph 118
Pie Chart ${ }^{\circ}$ 120
Histogram Ithe 121
Box Plot 123
Modified Box Plot 브… 124

Steps for Defining a Stat Plot

Follow these basic steps when defining a statistical plot. You may not have to do all of them each time you graph the designated lists.

Defining Statistical Data in Lists

Statistical plots (stat plots) are graphical representations of data that has been stored in lists. Therefore, since you need to create your lists before you can define stat plots, review Chapter 5: Lists for information on naming and creating both numerical and categorical lists.

Note: All examples in this chapter assume that you know how to enter lists in the List editor.

Deselecting Y_{n} Functions

When you press GRAPH or a ZOOM command, the calculator graphs all selected \mathbf{Y}_{n} functions (defined in the $\mathrm{Y}=$ editor) and graphs all stat plots that are defined and turned on. If you have defined and selected functions in the $\mathrm{Y}=$ editor and you don't want them displayed with your stat plots, deselect all defined functions with 2nd [VARS] 2:Y-Vars 6:FnOff.

For more information on defining and selecting functions in the $\mathrm{Y}=$ editor, see Chapter 9: Function Graphing.

Defining a Stat Plot

Once you have data lists stored in the calculator, you need to define the stat plot. This requires two steps:

1. Press 2nd [PLOT] to display the STAT PLOTS menu screen.
2. Select 1, 2, or $\mathbf{3}$ to enter the Stat Plot editor for Plot1, Plot2, or Plot3. Selecting 4 or 5 turns all stat plots off or on when you graph.

The Stat Plot Menu Screen

2nd [PLOT]

PlotsOff and PlotsOn 2nd [PLOT] 4 and 5

From the STAT PLOTS menu, you can choose to turn all stat plots off or on. This determines whether or not they are displayed on the Graph screen when you press GRAPH or select a ZOOM command. The TI-73 can graph all three stat plots at the same time, if desired. If you select either of these commands, the calculator returns you to the Home screen.

PlotsOff and PlotsOn accept three optional arguments, 1, 2 or 3, which represent their corresponding stat plot. If you do not include any arguments, the calculator automatically deselects (turns off) or selects (turns on) all three.

$$
\text { PlotsOff }[1,2,3]
$$

PlotsOn [1,2,3]

击 Turn off Plot1 and Plot2.
2nd [PLOT] 4 Flotsoff 1:2 ${ }_{\text {Done }}$
1 D 2 ENTER

The Stat Plot Editor

2nd [PLOT] 1, 2 or 3	

If the plot has been defined previously, that information is displayed when you select a plot number.

From the Stat Plot editor, you select (turn on) or deselect (turn off) the stat plot, and you can select one of eight plot types (represented as icons) as well as any options that go with the type.

Selecting Stat Plot Types

To select a stat plot type, display the Stat Plot editor. Use \triangle and \square to move to the Type line, and use \square and \square to highlight the individual Type icons. Once you have highlighted the Type icon that you want, press ENTER to select it. The options for the plot type then are displayed automatically.

Icon	Plot Type	Icon	Plot Type
\ldots	Scatter plot	φ	Pie chart
\ldots	xyLine plot	din	Histogram
s	Pictograph	파	Box plot
1ull	Bar graph	…	Modified Box plot

Defining Stat Plot Options

The plot type you select determines which options you can select. Therefore, when you select a different type, the options adjust automatically, if necessary.

- To specify a list name, use the 2nd [STAT] Ls menu.

Highlight the list name you want with the cursor keys, and then press ENTER. The TI-73 inserts the name at the cursor location.

- To select an option, highlight the one you want with the cursor keys, and then press ENTER.
- To enter a numerical value, use the number keys, and then press ENTER.

Remember that when entering elements in a categorical list, you must surround the first element by quotation marks; they are optional for the remaining elements.

The following table includes a list of all possible options for all stat plot types. You only need to specify or select the options which apply to the stat plot type you are defining.

For option:	Do the following:
Xlist	Specify a defined numerical list.
Ylist	Specify a defined numerical list. Ylist must be the same length as Xlist and can be the same as Xlist. Plots which require you to specify both the Xlist and Ylist plot points from those lists as coordinate pairs.
Mark	Select one type (ロ, +, or •) to specify appearance of data points or an outlier (Modified Box plot) on the graph screen.

For option:	Do the following:
CategList	Specify a defined categorical list. List dimension must be from 1 to 7 and must be the same length as all corresponding Data Lists.
Data List or DataList\#	Specify a defined numerical list. All Data Lists must be the same length as the corresponding CategList.
Scale	Specify a number which represents the quantity of each Pictograph icon. $1 \leq$ Scale ≤ 99999. Scale must be big enough so that it cannot be broken up into more than 7 icons. Using ZOOM 7:ZoomStat to display the stat plot automatically adjusts Scale for you.
Vert/Hor	Select vertical or horizontal orientation for Pictograph icons or Bar graph bars.
Icons	Select one of 7 Icons to represent your
123	Select number of bars you want graphed per category in a Bar graph. You must specify a corresponding Data List for each bar included in the graph.
Number/Percent	Select whether you want the values in DataList to be displayed as numbers or converted and displayed as percentages in a Pie chart.
Freq (optional) Default=1	Specify a frequency list that tells the calculator how many times each data point in Xlist occurs. Freq must have the same number of elements as Xlist.

Adjusting Window Values and Format

If you press GRAPH to display all selected stat plots, sometimes you see a blank screen. Try adjusting your viewing window.
The easiest way to do this is with the ZOOM 7:ZoomStat command. This adjusts the viewing window automatically so that all points of all turned on stat plots are visible. To adjust window values manually, press WINDOW.

In addition, the calculator automatically selects the AxesOff option ([2nd [FORMAT]) for Pictograph, Bar graph, Pie chart stat plots. However, any other selected options on the 2nd [FORMAT] screen still apply to stat plots (as they do with function graphs).

For more information on adjusting WINDOW values and formatting the Graph screen, see Chapter 9: Function Graphing.

Displaying the Stat Plot

Press GRAPH to display a stat plot. (Pressing GRAPH also displays any \mathbf{Y}_{n} functions that are defined and selected.) Once you have a plot displayed, you can press TRACE and use \square and \square to move from point to point.

If you have more than one plot turned on at the same time, you can trace all the points of each plot. Use Δ and \square to move from plot to plot.

Stat Plot Examples

The following examples assume that all \mathbf{Y}_{n} functions are deselected (turned off) (2nd [VARS] 2:Y-Vars 6:FnOff).

Scatter Plot $\because \because$ and xyLine Plot $\mid \sim$

Scatter plots $(\underset{\sim}{*})$ and xyLine plots $\left(l^{\wedge}\right)$ are especially useful for plotting data over a period of time to indicate trends. An xyLine plot (l^{\wedge}) functions exactly like the Scatter plot, except that it connects the data points with a line.

For the years 1978－1984，determine in which baseball league， North or South，the homerun leader tends to hit more home runs．Use Scatter plots to find your solution．

Year	Home Runs		Year	Home Runs	
	NORTH	SOUTH		NORTH	SOUTH
1978	40	46	1982	37	39
1979	48	45	1983	40	39
1980	48	41	1984	36	43
1981	31	22			

1．Create three lists in the List editor，YEAR，NORTH，and SOUTH．

LIST

MEAF	［IDF：TH	STUTH	$\underline{1}$
197日	40	46	
1979	41	45	
19日00	48	41	
19日1	31	2	
19日	40	3	
1984	36	47	
50］TH（7）$=43$			

For more information on entering lists， see Chapter 5：Lists．

2．Turn off all stat plots．

$$
\text { 2nd [PLOT] } 4 \text { ENTER }
$$

3．Display the STAT PLOTS menu．
2nd [PLOT]

4．Define Plot1 as a Scatter plot as shown to the right．
1 ENTER \square ENTER \square
2nd［STAT］YEAR ENTER
\square 2nd［STAT］NORTH
ENTER \square ENTER

5．Display the STAT PLOTS menu．

```
2nd [PLOT]
```

6. Define Plot2 as shown to the right.
2 ENTER \square ENTER
2nd [STAT] YEAR ENTER
\square 2nd [STAT] SOUTH
ENTER \square ENTER
7. Display the stat plots using the ZoomStat command.

ZOOM 7
8. Trace the Scatter plots to find the solution to the question.
TRACE
\square and \square (to trace
point to point)
\square and \square (to move
from plot to plot)

Δ and (to move from plot to plot)
9. Redefining Plot1 as an xyLine plot makes it even easier to follow the trends of its data.

2nd [PLOT] 1 - \square ENTER

10. Display Plot1 and Plot2 using the ZoomStat command. Trace, if desired.

ZOOM 7

TRACE (optional)

Pictograph \geqslant.

In a Pictograph, an icon symbolizes the quantities being represented. Pictographs are useful for observing changes in quantity over time. They also can illustrate comparisons between similar situations.

The calculator displays no more than seven Pictograph icons for up to seven categories on the screen. Therefore, if Scale is not big enough (meaning that Data List is broken up by more than seven icons), you get an INVALID DIM error.

If an element in Data List is too large to fit the maximum scale (99999) so that the calculator can't make all icons fit in one screen, you get a DOMAIN error.

击 For your geography class, you want to compare distances (in kilometers) between Dallas, Texas, and seven other cities in North America. Use a vertical Pictograph to display your results.

City	km	City	km
Toronto, ON	2215	Denver, CO	1397
Mexico City, MX	1775	Kansas City, KS	836
Los Angeles, CA	2180	Vancouver, BC	3444
Washington, DC	1927		

1. Create two lists in the List editor, CITY and DIST.
Remember to surround the first categorical list element with quotation marks (found in the Text editor).

For more information on entering lists, see Chapter 5: Lists.
2. Turn off all stat plots. 2nd [PLOT] 4 ENTER
3. Display the STAT PLOTS menu.

2nd [PLOT]
4. Define Plot1 as a Pictograph as shown to the right.

```
1 ENTER回DENTER
2nd [STAT] CITY
ENTER [\D] [STAT]
MILES ENTER 500■
ENTER Q ENTER
```

5. Display the stat plots. GRAPH
Flot:=0ff Dorne

Bar Graph Inll

A Bar graph plots a group of up to three data lists (converted to bars) for comparison among one category. Bar graphs are especially useful for comparing data lists (especially when organized in categories) over a period of time.

The calculator adjusts all bars so that they fit within the graphing screen. Therefore, the data list with the largest values is scaled to fit the screen, and then all other bars are graphed relative to it. Each element in CategList defines a category. You can define up to seven categories with up to three data bars per category.

The Xscl WINDOW value specifies the range of values for each interval of a Bar graph. The Yscl WINDOW value specifies the height of a bar in a Bar graph; in other words, it acts as your bar scale. To adjust Xscl and Yscl manually, press WINDOW and enter the new values with the number keys. For more information about setting WINDOW values, see Chapter 9: Function Graphing.

If you want the calculator to adjust the WINDOW values for you automatically, press ZOOM 7:ZoomStat.

Graph the data lists from the Scatter plot baseball example as a vertical Bar graph (see that section in this chapter, if necessary). Assign LYEAR as CategList, LNORTH as DataList1 and LSOUTH as DataList2. Ignore DataList3. (By default, L3 is assigned to DataList3, but if another list name is assigned you don't need to change it.)

1. Turn off all stat plots.

2nd [QUIT] CLEAR

2nd [PLOT] 4 ENTER
2. Display the STAT PLOTS menu.

> 2nd [PLOT]
3. Define Plot1 as a Bar graph as shown to the right.

ENTER

4. Specify CategList, DataList1, and DataList2.
\square [nd [STAT]
YEARENTER \square
2nd [STAT] NORTH
ENTER \square 2nd [STAT]
SOUTH ENTER
5. Select Vert and 2, if necessary.

ENTER
6. Display the stat plots.

GRAPH

7. Trace the Bar graph, if desired.

\square and \square (to trace bar to bar)

Pie Chart

A Pie chart is used to compare parts of a whole. The area of a "pie piece" is proportional to the part of 100% that it represents. You can display up to seven "pie pieces."

To trace the Pie chart with TRACE, use \square to trace clockwise and to trace counterclockwise.
[罬 Keisha owns 4 cats, 5 dogs, 3 fish, 8 birds, and 14 snakes. Use a percentage Pie chart to illustrate this.

1. Create two lists in the List editor, PETS and AMNT.

LIST

For more information on entering lists, see Chapter 5: Lists.
2. Turn off all stat plots. 2nd [PLOT] 4 ENTER

3. Display the stat plots menu and select Plot1.

2nd [PLOT] 1 EENTER

4. Define Plot1 as a Pie chart as shown to the right.

5. Display the stat plot. GRAPH

6. Trace the Pie chart, if desired.

TRACE

\square and (to trace from section to section)

Histogram Ithe

Histograms are useful for representing data grouped in intervals, and it plots the data's frequency of occurrence for each interval.

目 Thirty students recently took a math test. All scores between $100-90$ are considered an A, 89-80 as a B, 79-70 as a C, $69-60$ as a D, 59-0 as an F. Use a Histogram to show the scores grouped by their letter grade.

SCORE	$\{99,96,92,88,84,78,74,70,66,64\}$
FREQ	$\{1,2,3,5,2,7,4,3,2,1\}$

1. Create two lists in the List editor, SCORE and FREQ.

LIST

For more information on entering lists, see Chapter 5: Lists.
2. Turn off all stat plots. 2nd [PLOT] 4 ENTER

Flot: Off
3. Display the STAT PLOTS menu.

> 2nd [PLOT]
4. Define Plot1 as a Histogram as shown to the right.
1 ENTER
ENTER \square 2nd [STAT]
SCORE ENTER ∇
2nd [STAT] FREQ ENTER

5. Display the stat plot using the ZoomStat command and trace the Histogram.
ZOOM 7 TRACE
\square and \square (to trace bar
to bar)

6. Adjust the graphing window so that the data is grouped in intervals of 10 and so that the lowest test score is 60 and the highest is 100 .
WINDOW $60 \square 100 \square \square$
$10 \square 0 \square 20 \square 1$

7. Graph and trace the adjusted Histogram.

GRAPH TRACE \square and \square (to trace bar to bar)

BoxPlot W-

A Box plot illustrates median applications of a data list. Lines on the plot, called whiskers, extend from the minimum data point in the set $(\boldsymbol{\operatorname { m i n }} \mathbf{X})$ to the first quartile median point $\left(\mathbf{Q}_{1}\right)$ and from the third quartile median point $\left(\mathbf{Q}_{3}\right)$ to the maximum point (maxX). The middle vertical line is the median (Med) of all the data points.

The first quartile contains all data points between $\min X$ and Med; the third quartile contains all data points between Med and maxX.

When two Box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.

Xmin and Xmax specify minimum and maximum X-axis values when a Box plot is displayed on the Graph screen. Box plots ignore Ymin and Ymax values. To adjust Xmin and Xmax manually, press WINDOW and enter the new values with the number keys. If you want the calculator to adjust the window values for you automatically, press ZOOM 7:ZoomStat.

For more information about setting WINDOW values, see Chapter 9: Function Graphing.
[屏 Graph the test scores data from the Histogram example as a Box plot. (See previous section, if necessary.)

1. Turn off all stat plots. 2nd [PLOT] 4 ENTER
Flotelef
2. Display the Stat Plots menu.

2nd [PLOT]
3. Define Plot1 as a Box plot as shown to the right.

1 ENTER $\nabla \triangle \square \square$
$\square \square$ ENTER \square 2nd [STAT]
SCORE ENTER -
2nd [STAT] FREQ ENTER
4. Display the stat plot using the ZoomStat command.

ZOOM 7

5. Trace the Box plot.

TRACE
\square and (to trace point to point)

Modified BoxPlot 므…

The Modified Box plot functions exactly like the Box plot, except it separates outliers from the plot. Outliers are those data points which are 1.5 * Interquartile Range beyond the quartiles. The Interquartile Range is defined as the difference between the third quartile, \mathbf{Q}_{3}, and the first quartile, \mathbf{Q}_{1}.

Outliers are plotted individually beyond the whisker, using the Mark you select from the Stat Plot editor. Outliers are included in plot traces with TRACE.

Graph the test scores data from the Histogram and Box plot examples as a Modified Box plot. (See those sections, if necessary.) However, adjust SCORE and FREQ by inserting two outlier data points: 112 and 40 , both at a frequency of 1 .

1. Edit SCORE and FREQ in the List editor.

For more information on entering lists, see Chapter 5: Lists.
2. Turn off all STAT PLOTS. 2nd [PLOT] 4 ENTER

3. Display the stat plots menu.

2nd [PLOT]

4. Define Plot1 as a Modified Box plot as shown to the right.

1 ENTER $\square^{\square} \square \square$

-DDENTER
2nd [STAT] SCORE
EENTER \square 2nd [stat]
FREQ ENTER \square
ENTER
5. Display the stat plot using the ZoomStat command.

ZOOM 7
6. Trace the plot, if desired.

> TRACE
> \square and \square (to trace point to point)

TRACE
\square and \square (to trace
point to point)

7
 Statistical Analyses

The 2nd [sTAT] MATH Menu 128
\min (and max(2nd [STAT] $\square \square 1$ and 2 128
mean(, median(, and mode(2nd [STAT] $\square 3,4$, and 5 130
stdDev(2nd [STAT] $\square \square$ 131
sum(2nd [STAT] $\square \square$ 132
The 2nd [STAT] CALCULATE Menu 133
Using Frequency Lists with 2nd [sTAT] CALC Menu Items 133
1-Var Stats and 2-Var Stats 2nd [stat] $\square \square 1$ and 2 134
Manual-Fit [2nd [STAT] 3 138
Med-Med 2nd [STAT] 4 140
LinReg(ax+b) [2nd [STAT] $\square 5$ 142
QuadReg 2nd [STAT] 6 144
ExpReg 2nd [STAT] 7 146

The 2nd [STAT] MATH Menu

The 2nd [STAT] MATH menu allows you to calculate statistical analyses with lists (see chapter 5: Lists).

2nd [STAT] \square -		
1:min(Returns the minimum of two real numbers, lists, or expressions.	
2:max(Returns the maximum of two real numbers, lists, or expressions.	
3:mean(Returns the calculated average of the values in a list.	
4:median(Returns the middle value occurring in a list.	
5:mode(Returns the most frequently occurring element in a list.	
6:stdDev(Returns the standard deviation of the elements in a list.	
7:sum(Returns the sum of the elements in a list.	

$\min ($ and max(2nd [STAT] 1 and 2

These are identical to the \min (and \max (commands found on the MATH NUM menu.
\min ((minimum) returns the smaller of two values or the smallest element in one list. value can be a real number, expression or a list.

If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is compared with each element of the list, and a list is returned.

```
min(valueA,valueB)
min(list)
```

$\max ($ (maximum) functions exactly like $\boldsymbol{m i n}($, but it always returns the larger of two values or the largest element in a list. Simply substitute $\max ($ in place of \min (in the syntax models above.

Compare \mathbf{L}_{1} and \mathbf{L}_{2} to find the $\min \left(\right.$ and $\max \left(. \mathbf{L}_{1=\{1,2,3\}}\right.$, and $\mathrm{L} 2=\{3,2,1\}$.

1. Define two lists in the List editor, L_{1} and L_{2}.

LIST

For more information on entering lists,
 see Chapter 5: Lists.
2. Find the list minimums.

2nd [QUIT] CLEAR
2nd [STAT] $\square 1$
2nd [STAT] $1 \square$
2nd [STAT] $2 \square$ ENTER
3. Find the list maximums.

2nd [STAT] $\square \square 2$

2nd [STAT] $1 \square$
2nd [STAT] $2 \square$ ENTER

mean(, median(, and mode(2nd [STAT] \square 3, 4, and 5

median(returns the median (the middle element) of list when the elements, even if the list elements are not arranged in numerical order. With an even number of elements, the calculator returns the average of the two middle elements.
mean(returns the mean (mathematical average) of list. mode(returns the mode (element which occurs most frequently) of list.

If a second list, freq, is specified, it is interpreted as the frequency of the elements in the first list. list and freq must have the same number of elements. If freq is not included, then the default is 1 and every element in the first list is only counted once.

```
mean(list[,freq])
median(list[,freq])
mode(list[,freq])
```

目 Calculate David's final course average for his math class.
He received an 85 on Test 1, a 78 on Test 2, and a 90 on Test 3. He received an 82 on his Midterm Exam and a 75 on his Final Exam.

Tests count 1 time, the Midterm counts 2 times, and the Final Exam counts 3 times.

LTEST	$\{85,78,90,82,75\}$
LFREQ	$\{1,1,1,2,3\}$

1. Create two lists in the List editor, TEST and FREQ. LIST

For more information on entering lists,
 see Chapter 5:Lists.
 the test scores.
2nd [QuIT] CLEAR
2nd [STAT] DU 3
2nd [STAT] TEST
ENTER [STAT]
FREQ ENTER [ENTER
stdDev(2nd [STAT] D
stdDev(returns the standard deviation of list. If a second list, freq, is specified, it is interpreted as the frequency of the elements in the first list. list and freq must have the same number of elements.

```
stdDev(list,freq[,type])
```

type $=0$ (population standard deviation) or 1 (sample population deviation). If type is not specified, the calculator returns sample population deviation.

Find the population standard deviation of LTEST (from the previous example). Use LFREQ as

EtGIVUC LTEST, LFR EW, 6 5.14174695 your freq.
2nd [STAT] $\square 6$
2nd [STAT] TEST ENTER
[2nd [STAT] FREQ
ENTER 0 D ENTER

sum(2nd [STAT] $\square \square 7$

sum((summation) returns the sum of all elements in list.
Specify the additional optional arguments to return the sum of the range of elements between start and end. start and end represent element places, not the element values.

To add the entire list:

```
sum(list)
```

To add the range of elements from start to the last element in list:

```
sum(list,start)
```

To add the range of elements between start and end:

```
sum(list,start,end)
```

芭 Find the sum of ıSUM between elements 4 and 6, where LSUM $=\{3,10,36,14,33,5,22,45\}$.

1. Create a list, in the List editor, SUM. LIST

For more information on entering lists,
 see Chapter 5: Lists.
2. Return to the Home screen, and calculate the partial list

ELM LSUM, 4, 6) 52 sum.
2nd [QUIT] CLEAR
2nd [STAT] $\square>7$
2nd [STAT] SUM ENTER
$\square 4,6 \square$ ENTER

The 2nd [STAT] CALC Menu

The 2nd [STAT] CALC menu allows you to calculate statistical analyses on lists. When you choose an item from the menu, the calculator returns a list of statistical variables. Following the 1-Var Stats and 2-Var Stats explanation, a list and definition of all possible statistical variables is provided.

$\begin{aligned} & \text { 2nd [ST/ } \\ & \text { 2nd [ST/ } \end{aligned}$	$\square \square \text {-or- }$	
1:1-Var Stats	Calculates 1-v	iable statistics.
2:2-Var Stats	Calculates 2-v	iable statistics.
3:Manual-Fit	Allows user to plotted data.	fit a line manually to
4:Med-Med	Calculates a plotted data.	dian-Median line for the
5:LinReg(ax+b)	Fits a linear	del to plotted data.
6:QuadReg	Fits a quadra	model to plotted data.
7:ExpReg	Fits an expon	tial model to plotted data.

Using Frequency Lists with 2nd [STAT] CALC Menu Items

For all menu items, you can specify a second list, freq, which is interpreted as the frequency of the elements in the first list. Each element in freq must be ≥ 0, and at least one element must be >0.

Non－integer freq elements are valid．This is useful when entering frequencies expressed as percentages or parts that add up to 1 ．However，if freq contains non－integer frequencies， $\mathbf{S x}$ and $\mathbf{S y}$（sample standard deviation）are undefined，and values are not displayed for $\mathbf{S x}$ and $\mathbf{S y}$ in the statistical results．

1－Var Stats and 2－Var Stats 2nd［STAT］ 1 and 2

1－Var Stats（one－variable statistics）analyzes data from one list with one measured variable（ X ）．1－Var Stats accepts two optional arguments，XList and freq．If XList is not specified， the default list name is $\mathbf{L 1}$ ．

```
1-Var Stats [XList,freq]
```

2－Var Stats（two－variable statistics）analyzes paired data from two lists with two measured variables，X ，the independent variable，and Y ，the dependent variable．2－Var Stats accepts three optional arguments，XList，YList，and freq．If XList and YList are not specified，the default list names are \mathbf{L}_{1} and \mathbf{L} ．

2－Var Stats［XList，YList，freq］

目 Find the 1 －Var Stats for L_{1} ，where $L_{1}=\{1,3,4,5,5,7,8,9\}$ ．Use L_{2} as freq，where $\mathbf{L} 2=\{1,4,2,3,4,6,7,9\}$ ．

1．Define two lists in the List editor，L1 and L2．

LIST

For more information on entering lists，

L1	Lこ	L3	Σ
4	$\underline{2}$		
5	3		
5	4		
－	$\frac{7}{7}$		
$\underline{9}$	9		
Lご9）＝			

2. Return to the Home screen, and calculate the 1 -Var Stats for the lists.
2nd [QUIT] CLEAR
2nd [STAT] 1
2nd [STAT] 1
2nd [STAT] 2 ENTER
$\left\lvert\, \begin{aligned} & \text { 1-Uar Stat: } \mathrm{L}, \mathrm{L} \\ & \text { : }\end{aligned}\right.$

Find the 2-Var Stats for $\mathbf{L 1}$ (XList) and $\mathbf{L 2}$ (YList), where $\mathbf{L} 1=\{1,3,4,5,5,7,8,9\}$ and $\mathbf{L 2}=\{1,4,2,3,4,6,7,9\}$. Use $\mathbf{L 3}$ as freq, where \{L3=1,2,2,2,4,4,3,3\}.

1. Define the three lists in the List editor, L1, L2, and L3. LIST

For more information on entering lists,

L1	\|L2	L3	3
4	z	2	
5	3	2	
5	4	4	
-	$\frac{6}{7}$	$\stackrel{4}{3}$	
$\underline{9}$	9	2	
L3(9) $=$			

2. Return to the Home screen, and calculate the 2 -Var Stats for the lists.
2nd [QuIT] CLEAR
2nd [STAT] $\mathbf{1} 2$
2nd [STAT] $1 \square$
2nd [STAT] 2
2nd [STAT] 3 ENTER
2-War Stat.s L1, L
z, Ls

$\mathrm{rox}_{\mathrm{n}=21}=21.18009645$

2nd [STAT] 3 ENTER

Press \square and \square to scroll all results.

What Do the Results Mean?

1-Var Stats and 2-Var Stats variables are calculated and stored as indicated below. To access these variables for use in expressions, press 2nd [VARS] 3:Statistics and select the appropriate menu. If you edit a list or change the type of analysis, all statistical variables are cleared.

Variables	Definition	VARS Menu
$\overline{\mathrm{x}}$ or $\overline{\mathrm{y}}$	Mean of all x or \mathbf{y} values.	XY
Σx or $\Sigma \mathrm{y}$	Sum of all x values or \mathbf{y} values.	Σ
$\Sigma \mathbf{x}^{2}$ or $\Sigma \mathbf{y}^{2}$	Sum of all \mathbf{x}^{2} values or \mathbf{y}^{2} values.	Σ
Sx or Sy	Sample standard deviation of x or y .	XY
$\sigma \mathbf{x}$ Or $\sigma \mathbf{y}$	Population standard deviation of \mathbf{x} or \mathbf{y}.	XY
n	Number of \mathbf{x} or $\mathbf{x , y}$ data points.	XY
$\min X$ $\min Y$	Minimum of \mathbf{x} values or \mathbf{y} values.	XY
$\max X$ $\max \mathbf{Y}$	Maximum of \mathbf{x} values or \mathbf{y} values.	XY
$\Sigma \mathrm{xy}$	Sum of $\mathbf{x} * \mathbf{y}$ for all xy pairs in two lists.	Σ
\mathbf{Q}_{1}	Median of the elements between $\min X$ and Med (1st quartile). Only calculated for 1-Var Stats.	PTS
Med	Median of all data points.	PTS
\mathbf{Q}_{3}	Median of the elements between Med and maxX (3rd quartile). Only calculated for 1-Var Stats.	PTS

Variables	Definition	VARS Menu
\mathbf{r}	Correlation coefficient	EQ
$\mathbf{r}^{2}{\text { or } \mathbf{R}^{2}}^{\text {RegEQ }}$	Coefficient of determination	EQ
$\mathbf{x 1 , y 1 , x 2 , y 2}$, $\mathbf{x 3}, \mathbf{y 3}$	Summary points	EQ
$\mathbf{a , b}, \mathbf{c}$	Regression/ fit coefficients	EQ

n (number of data points)

$n=$ number of x data points in a 1-Var Stats analysis or the number of \mathbf{x} and \mathbf{y} data points in a 2-Var Stats analysis. Since both variable lists always have the same number of list elements in 2-Var Stats, \mathbf{n} for \mathbf{x} is always equal to \mathbf{n} for \mathbf{y}. Therefore, n applies to both the x and y analyses.

freq (Frequency Lists)

If freq is specified, \boldsymbol{n} is equal to the sum of the elements in that list. For example, if the freq is $\{2,2,3,1,2\}, \mathbf{n}=\{2+2+3+1+2\}=10$.

Q_{1}, Q_{3}, and Med

$\mathbf{Q}_{1}, \mathbf{Q}_{3}$, and Med are undefined if the freq contains non-integer values. They also are not calculated if the freq contains a value larger than 99.

RegEQ

The calculator stores the most recently generated regression equation (see 2nd [STAT] CALC menu items 3-7) to the variable, RegEQ. If, for example, you execute 5: LinReg(ax+b), but you don't initially store RegEQ to a \mathbf{Y}_{n} variable, you can later insert RegEQ into the $\mathrm{Y}=$ editor. The calculator graphs the regression equation when it is selected.

If the frequency for an element or data pair is 0 , the element or data pair is ignored in the calculation.

Manual-Fit 2nd [STAT] 3

Manual-Fit allows you to fit a line to plotted data on the Graph screen manually (as opposed to the calculator automatically drawing it for you). You can execute Manual-Fit from either the Graph screen or the Home screen.

From the Graph screen, select Manual-Fit, and then draw the line (steps provided below). The linear equation in the form $y=a x+b$ is shown at the top of the Graph screen. You can use the cursors to adjust the line, if necessary, and the \mathbf{a} and \mathbf{b} equation values change accordingly.

From the Home screen, Manual-Fit accepts one optional argument, $Y n$. The calculator stores to $Y n$ (in the $\mathrm{Y}=$ editor) the $\mathbf{a x}+\mathbf{b}$ equation that manually fits the plotted data. To access the \mathbf{Y}_{n} variables, press 2nd [VARS] 2.

Manual-Fit Yn

From either the Home screen or the Graph screen or Program editor, select Manual-Fit after you have plotted the stat plot. To draw the Manual-Fit line:

1. Position the cursor at the beginning of the line segment that you want to draw, and then press ENTER.
2. As you press the cursor keys, the line is drawn and the slope is adjusted. When you have matched the plotted points as desired, press ENTER.
3. The line segment is drawn across the entire screen and the $a x+b$ equation is shown at the top of the Graph screen.
4. Continue to adjust the line's slope with \triangle and \square, and the y-intercept with \square and \square, if desired.
5. If you specified a \mathbf{Y}_{n} variable on the Home screen, you can view the selected and defined equation in the $\mathrm{Y}=$ editor (Y) . If you no longer want to view the Manual-Fit line, deselect it in the $\mathrm{Y}=$ editor by highlighting the $=$ and pressing ENTER.

并 Graph a scatter plot for L_{1} and L_{2}, where $L_{1}=\{1,3,4,5,5,7,8,9\}$ and $\mathrm{L}_{2}=\{1,4,2,3,4,6,7,9\}$, and use Manual-Fit to draw a line through the points.

1. Set Decimal Notation mode to 2 , if desired. MODE $\square \square \square$ ENTER
2. After entering the lists, define Plot1 as a scatter plot using L_{1} and L_{2}, as shown to the right.
```
2nd [PLOT] ENTER
```

For more information on defining stat plots, see Chapter 6: Statistical Plots.
3. Turn off $\mathbf{Y}_{2}, \mathbf{Y}_{3}$, and \mathbf{Y}_{4}, if they have been previously defined and selected.

2nd [QUIT] CLEAR 2nd [VARS] 26 2 $\square^{\square} 4$ ENTER
4. Plot L_{1} and L_{2}.

```
ZOOM 7
```


5. From the Home screen, assign the Manual-Fit (ax+b)

$$
\text { Manuel-Fit. } \mathrm{V}_{1}
$$ line to Y_{1}.

2nd [QUIT] CLEAR
2nd [STAT] 3
2nd [VARS] $\mathbf{2} 1$ (ENTER
6. Move the cursor to the beginning point of line.

necessary)
ENTER

7. Move the cursor to the end point of line.

necessary)

8. Draw the line.

ENTER

9. Adjust line with cursor keys, if necessary.

ENTER (when finished)
10. View the equation in the $\mathrm{Y}=$ editor, if desired.

Y

Med-Med [2nd [STAT] 4

Med-Med (Median-Median) fits the model equation, $\mathbf{y}=\mathbf{a x + b}$, to the data using the median-median line (resistant line) technique, calculating the summary points $\mathbf{x 1}, \mathbf{y} \mathbf{1}, \mathbf{x} 2, \mathbf{y 2}, \mathbf{x} 3$, and y3. Med-Med displays values for \mathbf{a} (slope) and \mathbf{b} (y-intercept). You can execute Med-Med from either the Graph screen, the Home screen, or the Program editor.

From the Home screen or the Program editor, Med-Med accepts four optional arguments. Enter up to two list names, XList and YList; a frequency list, freq; and an equation variable, Yn. freq is the frequency of occurrence for each corresponding data point in XList and YList.

If $f r e q$ is omitted，all values are used once．If XList and YList are not specified，the default list names are \mathbf{L}_{1} and \mathbf{L}_{2} ．To access \mathbf{Y}_{n} variables，press 2nd［VARS］ $\mathbf{2 : Y \text {－Vars．}}$

Med－Med［XList，YList，freq，Yn］

Graph a scatter plot for \mathbf{L}_{1} and \mathbf{L}_{2} ，where $\mathbf{L}_{1=\{1,3,4,5,5,7,8,9\}}$ and L2 $2\{1,4,2,3,4,6,7,9\}$ ，and use Med－Med to draw the median－median line through the points．

1．Set Decimal Notation mode to $\mathbf{2}$ ，if desired．

MODE日ロロロ ENTER

2．After entering the lists， define Plot1 as a scatter plot using L_{1} and L_{2} ，as shown to the right．

```
2nd [PLOT]
```

For more information on defining stat plots，see Chapter 6：Statistical Plots．

3．Turn off $\mathbf{Y}_{\mathbf{3}}$ and \mathbf{Y}_{4} ，if they have been previously defined and selected．

4．Find the Med－Med line，and store the results to \mathbf{Y}_{2} ．

Med－liled Yz

$\exists=1$
$b=-1.17$

Specifying L1 and L2 is optional since
CLEAR 2nd［STAT］ 4 2nd［VARS］ 2 ［ENTER they are the default listnames． However，if you were using other list names，you would have to enter them before the $Y n$ variable．

5. View the line on the Graph screen.

ZOOM 7
The Manual-Fit line,

6. View the equation stored to \mathbf{Y}_{2}, if desired.

LinReg $(a x+b)$ 2nd [STAT] 5

LinReg(ax+b) (linear regression) fits the model equation $\mathbf{y}=\mathbf{a x + b}$ to the data using a least-squares fit. It displays the value for a (slope) and \mathbf{b} (y-intercept); when DiagnosticOn is set, it also displays values for \mathbf{r}^{2} (coefficient of determination) and \mathbf{r} (correlation coefficient). The Diagnosticon command is in the CATALOG (2nd[CATALOG]).You can execute LinReg(ax+b) from the Graph screen, Home screen, or the Program editor.

It is also helpful to compare the slope of the line you draw with Manual-Fit to the slope of the line the calculator calculates with the LinReg($\mathbf{a x + b}$) command.

From the Home screen or the Program editor, LinReg(ax+b) accepts four optional arguments. Enter up to two list names, XList and YList; a frequency list, freq; and an equation variable, Yn. freq is the frequency of occurrence for each corresponding data point in XList and YList. If freq is omitted, all values are used once. If XList and YList are not specified, the default list names are \mathbf{L}_{1} and \mathbf{L}. To access \mathbf{Y}_{n} variables, press 2nd [VARS] 2:Y-Vars.

> LinReg(ax+b) [XList,YList,freq,Yn]

芭 Graph a scatter plot for L_{1} and L_{2}, where $L_{1}=\{1,3,4,5,5,7,8,9\}$ and L2=\{1,4,2,3,4,6,7,9\}, and use LinReg(ax+b) to draw the linear regression line through the points.

1. Set Decimal Notation mode to 2 , if desired.

$$
\text { MODE } \rightarrow \square \square \square \text { ENTER }
$$

2. After entering the lists, define Plot1 as a scatter plot using L_{1} and $L 2$, as shown to the right.
2nd [PLOT]

For more information on defining stat plots, see Chapter 6: Statistical Plots.
3. Turn off $\mathbf{Y}_{\mathbf{3}}$ and \mathbf{Y}_{4}, if they have been previously defined and selected.

```
2nd [QUIT] CLEAR
2nd [VARS] 2 6
3,1, 4 ENTER
```

4. Find the LinReg $(\mathbf{a x}+\mathrm{b})$ line, and store the results to \mathbf{Y}_{2}. 2nd [QUIT] CLEAR
2nd [STAT] 05 2nd [VARS] 2 EENTER

LinRE日

- = =

G=. 93
$\mathrm{b}=-.38$

Specifying $\mathbf{L 1}$ and $\mathbf{L 2}$ is optional since they are the default listnames. However, if you were using other list names, you would have to enter them before the $Y n$ variable.
5. View the line on the Graph screen.

ZOOM 7

6. View the equation stored to \mathbf{Y}_{2}, if desired.

Y

QuadReg 2nd [STAT] 16

QuadReg (quadratic regression) fits the second-degree polynomial $\mathbf{y}=\mathbf{a x}^{2}+\mathbf{b x + c}$ to the data. It displays values for \mathbf{a}, \mathbf{b}, and \mathbf{c}; when DiagnosticOn is set, it also displays a value for \mathbf{r}^{2} (coefficient of determination). The DiagnosticOn command is in the CATALOG (2nd [CATALOG]). You can execute the QuadReg command from the Graph screen, the Home screen, or the Program editor.

For three data points, the equation is a polynomial fit; for four or more, it is a polynomial regression. At least three data points are required.

From the Home screen or the Program editor, QuadReg accepts four optional arguments. Enter up to two list names, XList and YList; a frequency list, freq; and an equation variable, Yn. freq is the frequency of occurrence for each corresponding data point in XList and YList. If freq is omitted, all values are used once. If XList and YList are not specified, the default list names are \mathbf{L}_{1} and L_{2}. To access \mathbf{Y}_{n} variables, press [2nd [VARS] 2.

[^1]㘣 Graph a scatter plot for L_{1} and L_{2}, where $L_{1}=\{1,3,4,5,5,7,8,9\}$ and L2=\{1,4,2,3,4,6,7,9\}, and use QuadReg to draw the quadratic regression curve through the points.

1. Set Decimal Notation mode to 2, if desired.

$$
\text { MODE } \nabla \triangle \square \square \text { ENTER }
$$

2. After entering the lists, define Plot1 as a scatter plot using L_{1} and $L 2$, as shown to the right.
2nd [PLOT]

RDrobl Sci
Dererer Redi ョri
Gubre blc
Rutos i mF GENESMF

For more information on defining Stat plots, see Chapter 6: Statistical Plots.
3. Turn off $\mathbf{Y}_{2}, \mathbf{Y}_{3}$ and \mathbf{Y}_{4}, if they have been previously
 defined and selected.
2nd [QUIT] CLEAR
2nd [VARS] $\mathbf{2} \mathbf{6}$
$\mathbf{2} \mathbf{4} \mathbf{3} \mathbf{4}$ ENTER
4. Find the QuadReg curve, and store the results to Y_{1}. 2nd [QUIT] CLEAR 2nd [STAT] 6 2nd [VARS] 21 ENTER

Specifying $\mathbf{L 1}$ and $\mathbf{L 2}$ is optional since they are the default listnames. However, if you were using other list names, you would have to enter them before the $Y n$ variable.
5. View the curve on the Graph screen.

ZOOM 6

6. View the equation stored to \mathbf{Y}_{1}, if desired.

ExpReg 2nd [STAT] 17

ExpReg (exponential regression) fits the model equation $y=a^{x}$ to the data using a least-squares fit and transformed values x and $\ln (y)$. It displays values for \mathbf{a} and \mathbf{b}; when DiagnosticOn is set, it also displays values for r^{2} (coefficient of determination) and \mathbf{r} (correlation coefficient). The DiagnosticOn command is in the CATALOG (2nd [CATALOG]). You can execute ExpReg from the Graph screen, the Home screen, or the Program editor.

From the Home screen or the Program editor, ExpReg accepts four optional arguments. Enter up to two list names, XList and YList; a frequency list, freq: and an equation variable, Yn. freq is the frequency of occurrence for each corresponding data point in XList and YList. If freq is omitted, all values are used once. If XList and YList are not specified, the default list names are L_{1} and L_{2}. To access \mathbf{Y}_{n} variables, press [2nd [VARS] 2.

ExpReg [XList,YList,freq,Yn]

㘣 Graph a scatter plot for L_{1} and L_{2}, where $L_{1}=\{1,3,4,5,5,7,8,9\}$ and $\mathrm{L}_{2}=\{1,4,2,3,4,6,7,9\}$, and use ExpReg to draw the exponential regression curve through the points.

1. Set Decimal Notation mode to 2 , if desired.

MODE日 \square^{\square} DENTER

2. After entering the lists, define Plot1 as a scatter plot using L_{1} and L 2 , as shown to the right.
2nd [PLOT]

For more information on defining stat zplots, see Chapter 6: Statistical Plots.
3. Turn off $\mathbf{Y}_{2}, \mathbf{Y}_{3}$, and \mathbf{Y}_{4}, if they have been previously defined and selected.

2nd [QUIT] CLEAR
2nd [VARS] 26
2円3 4 ENTER
4. Find the ExpReg curve, and store the results to \mathbf{Y}_{1}.
[2nd [QUIT] CLEAR 2nd [STAT] 17 2nd [VARS] 2 1 ENTER

Specifying L1 and L2 is optional since they are the default list names. However, if you were using other list names, you would have to enter them before the $Y n$ variable.
5. View the curve on the Graph screen.

ZOOM 6

6. View the equation stored to \mathbf{Y}_{1}, if desired.
$Y=$

8 Tables

What Is a Table? 150
Steps for Creating a Table 151
Defining and Selecting Functions in the $Y=$ Editor $Y=$ 152
Setting Up the Table 2nd [TBLSET] 153
Displaying the Table 2nd [TABLE] 154
Indpnt=Auto and Depend=Auto 155
Indpnt=Auto and Depend=Ask 156
Indpnt=Ask 157
Editing Y_{n} from the Table Screen 160
Table Setup from the Home Screen 161

What Is a Table?

A table displays coordinate pair (\mathbf{X}, \mathbf{Y}) solutions for a defined function. One column displays independent variable values (X), and all others display corresponding dependent variable values (\mathbf{Y}).

On the TI-73, functions can be displayed in one of three ways, as shown here with the function, $\mathbf{Y}_{1}=\mathrm{X}^{2}-4 \mathrm{X}+3$.

shows a graphic representation.

For more information about the $\mathrm{Y}=$ editor and function graphing, see Chapter 9: Function Graphing.

Steps for Creating a Table

Follow these basic steps when defining a table.

Defining and Selecting Functions in the $Y=$ Editor $Y=$

To create a table of values for a function, you first must define the function in the $Y=$ editor. Press $Y=$ to display the $Y=$ editor; then define up to four functions, $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}$, and \mathbf{Y}_{4}, in terms of the independent variable, \mathbf{x}.

For every selected function in the $\mathrm{Y}=$ editor, the calculator automatically creates a column of $\mathbf{Y}_{\boldsymbol{n}}$ values. Because the $\mathrm{Y}=$ editor holds up to four functions, the TI-73 can create up to four \mathbf{Y}_{n} columns in a table, one for each function.

When you first enter a function, it is selected automatically. To select or deselect a function, highlight the = with the cursor, and then press ENTER.

For more details on entering functions, see Chapter 9:
Function Graphing.

目 Define $\mathrm{Y}_{1}=X^{2}-4 X+3$.

1. Display the $\mathrm{Y}=$ editor.
Y
2. Move the cursor to \mathbf{Y}_{1}, and clear if necessary.

CLEAR
3. Enter $\mathbf{Y}_{\mathbf{1}}=\mathbf{X}^{\mathbf{2}} \mathbf{- 4 X} \mathbf{X} \mathbf{3}$.

Setting Up the Table 2nd [TBLSET]

Use the TABLE SETUP screen to specify the initial settings for your table. To select an Indpnt or Depend setting, highlight the one you want with the cursor, and then press ENTER.

2nd [TBLSET]	
TbIStart Default=0	Specifies the first value displayed in the independent variable (\mathbf{x}) column and can be any real number.
$\Delta \mathrm{Tb}$ Default=1	Specifies the increment by which the \mathbf{x} values increase or decrease.
Indpnt: Default=Auto	Refers to the independent variable (\mathbf{X}) column values. You must select one of two choices: - Auto - X values are automatically displayed in the independent variable column when you view the Table screen. - Ask - No X values are shown when you view the Table screen. Instead, you enter the values for the \mathbf{X} column.
Depend: Default= Auto	Refers to all dependent variable (\mathbf{Y}_{n}) column values. You must select one of two choices: - Auto - \mathbf{Y}_{n} values of all selected functions are automatically displayed in their respective columns when you view the Table screen. - Ask - No \mathbf{Y}_{n} values are shown when you view the Table screen. Instead you select which \mathbf{Y}_{n} values you want the calculator to display.

Displaying the Table 2nd [TABLE]

Once your functions are defined and selected in the $\mathrm{Y}=$ editor and you have set up your table in the TABLE SETUP screen, if necessary, you can display the table with 2nd [TABLE].

2nd [TABLE]

X	Y_{1}	
1	$\frac{3}{3}$	
$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & \frac{3}{4} \end{aligned}$	${ }^{-1}$	
5	8	

On the Table screen, you can see lower \mathbf{X} values by placing the cursor anywhere in the X column and pressing \triangle, as necessary (you can't scroll up from the \mathbf{Y}_{n} columns). To see higher \mathbf{X} values, use from anywhere on the Table screen.

Only two \mathbf{Y}_{n} columns appear at a time on the Table screen. Use \square to display a third or fourth \mathbf{Y}_{n} column.

When you highlight a table element, the entry line displays the value in its entirety.

The values displayed in the table are affected by the mode settings. If the calculator is set to the Sci Numeric Notation mode, all applicable values in all columns are displayed in scientific notation. If your calculator is set to Radian Angle mode and a defined function is a trig function, all the table values for that function are interpreted as radians, not degrees.

Indpnt=Auto and Depend=Auto

Select these settings on the TABLE SETUP screen when you want all \mathbf{X} and \mathbf{Y}_{n} values to appear automatically.
[: You have two dogs, Rover and Spot. You feed Rover 3 times a day. You feed Spot 4 times a day. How many times will Spot and Rover have eaten after 3 and 5 days?

$$
\begin{array}{l|l}
Y_{1}=3 X & \begin{array}{l}
X=\text { number of days } \\
Y=\text { total times Rover has eaten }
\end{array} \\
Y_{2}=4 X & \begin{array}{l}
X=\text { number of days } \\
Y=\text { total times Spot has eaten }
\end{array}
\end{array}
$$

1. Reset default settings. 2nd [MEM] 7 2 2
2. Display the $\mathrm{Y}=$ editor.
$Y=$

Note: This resets table settings and all mode settings, and deselects any previously defined and selected $\mathbf{Y}_{\mathbf{n}}$ functions.

4. Clear \mathbf{Y}_{2}, if necessary. Enter $\mathrm{Y}_{2}=4 \mathrm{X}$.

CLEAR 4
5. Display the table (using default table settings).

2nd [TABLE]

After Day 3	Rover has eaten 9 times.
Spot has eaten 12 times.	

After Day 5 $\begin{aligned} & \text { Rover has eaten } 15 \text { times. } \\ & \text { Spot has eaten } 20 \text { times. }\end{aligned}$

并 How many times will Spot and Rover have eaten after 1, 3, and 4 weeks? (Refer to the previous example, if necessary.)

1. Set up the table where TbIStart=0, $\mathbf{\Delta T b l}=\mathbf{7}$, Indpnt=Auto, and Depend=Auto.

2nd [TBLSET]
0 7 7 ENTER

- ENTER

2. Display the table.

2nd [TABLE]
\mathbf{X} values change by 7 since $\Delta \mathrm{Tbl}=7$.

After Day 7 Rover has eaten 21 times. (End of Week 1) Spot has eaten 28 times.

After Day 21 Rover has eaten 63 times. (End of Week 3) Spot has eaten 84 times.

After Day 28 Rover has eaten 84 times.
(End of Week 4) Spot has eaten 112 times.

Indpnt=Auto and Depend=Ask

Select these settings on the TABLE SETUP screen when you want X values to appear automatically, but you want to be able to reveal $\mathbf{Y}_{\boldsymbol{n}}$ values one at a time. It is also helpful in recognizing patterns between different \mathbf{Y}_{n} solutions.

Display the number of times Rover has eaten after 4 days and 8 days, and display the number of times Spot has eaten after 3 days and 6 days. (Refer to the previous example, if necessary.)

1. Setup the table where TblStart $=\mathbf{3}, \Delta \mathrm{Tbl}=\mathbf{1}$, Indpnt=Auto, and Depend=Ask.

2nd [TBLSET] $3 \square 1$ ENTER \square^{\square} ENTER

2. Display the table.

2nd [TABLE]

3. Display how many times Rover (\mathbf{Y}_{1}) has eaten after 4 and 8 days.

4. Display how many times Spot (\mathbf{Y}_{2}) has eaten after 3 and 6 days.

X	Y_{1}	Y
4	12	W2
5		24
㫛	24	
$\mathrm{v}_{2}=12$		

| After Day 3 | Spot has eaten 12 times. |
| :--- | :--- | :--- |
| After Day 4 | Rover has eaten 12 times. |
| After Day 6 | Spot has eaten 24 times. |
| After Day 8 | Rover has eaten 24 times. |

Indpnt=Ask

Select these settings on the TABLE SETUP screen when you want to find specific table values, especially those that are not in chronological order or which span across a large range of numbers. TbIStart and Δ Tbl do not apply when Indpnt=Ask.
[0] How many total times will Spot and Rover have eaten after 16 days, 37 days, 52 days, and 74 days? (Refer to the previous examples, if necessary.)

1. Setup the table where Indpnt=Ask and Depend=Auto.
$\nabla \square \square$ ENTER \rightarrow ENTER

2. Display the table. 2nd [TABLE]

3. Enter $\mathbf{X}=16$.

16 ENTER

4. Enter $\mathrm{X}=37, \mathrm{X}=52$, and $\mathrm{X}=\mathbf{7 4}$.

37 ENTER 52
ENTER 74 ENTER

After Day $16 \left\lvert\, \begin{aligned} & \text { Rover has eaten } 48 \text { times. } \\ & \text { Spot has eaten } 64 \text { times. }\end{aligned}\right.$
After Day 37 $\begin{aligned} & \text { Rover has eaten } 111 \text { times. } \\ & \text { Spot has eaten } 148 \text { times. }\end{aligned}$
After Day 52 $\begin{aligned} & \text { Rover has eaten } 156 \text { times. } \\ & \text { Spot has eaten } 208 \text { times. }\end{aligned}$
After Day 74
Rover has eaten 222 times. Spot has eaten 296 times.

Editing X Values from the Table Screen

You can edit \mathbf{X} values from the Table screen when Indpnt=Ask.
[-W Change $\mathrm{X}=37$ to $\mathrm{X}=36$. (Refer to the previous example, if necessary.)

1. Display the current table.
2nd [TABLE]

2. Highlight $\mathrm{X}=37$.

$$
\nabla \text { or } \square \text { (as necessary) }
$$

3. Move the cursor to the entry line.

ENTER

4. Clear the entry line.

CLEAR

5. Enter $\mathbf{3 6}$ and insert it into table.

36 ENTER

Editing Y_{n} from the Table Screen

At any time you can edit $\mathbf{Y}_{\mathbf{n}}$ from the Table screen without returning to the $\mathrm{Y}=$ editor．
［进 Change $Y_{1}=3 x$ to $Y_{1}=3 x+5$ ．（Refer to the previous example，if necessary．）

1．Display the Table screen， and highlight \mathbf{Y}_{1} with the cursor．

$$
\begin{aligned}
& \text { 2nd [TABLE] } \\
& \square \text { a nd } \Delta \text { (as } \\
& \text { necessary) }
\end{aligned}
$$

X	W1	Yz
$\begin{aligned} & \hline \frac{16}{} \\ & \frac{86}{56} \\ & \text { 祀 } \end{aligned}$		
Y1日SX		

2．Move the cursor to the entry line．

ENTER

3．Clear the entry line． CLEAR

4．Enter $3 X+5$ ．

$$
3 \boxed{x}+5
$$

5．Insert the equation back into the table．

```
ENTER
```


6．If desired，display the $Y=$ editor to confirm that \mathbf{Y}_{1} has indeed been changed．

Table Setup from the Home Screen

You can store values to Tbistart and Δ ты from the Home screen or the Program editor. These table variable names are on the 2nd [VARS] 5:Table menu.

You also can select DependAsk, DependAuto, IndpntAsk, and IndpntAuto from a Program editor to turn on these settings during program execution.

Assign 6 to TbIStart and 3 to Δ Tbl from the Home screen.

1. Go to Home screen and clear, if desired.

2nd [QUIT] CLEAR

2. Store 6 to TbIStart. 6 STO* 2nd [VARS] 5

1 ENTER
3. Assign 3 to Δ Tы.

3 STO 2nd [VARS] 5 2 ENTER
4. Display the table setup screen to confirm that the values you entered have indeed been set.

2nd [TBLSET]

- Function Graphing

Steps for Graphing a Function 164
Example of Function Graphing 165
Defining Functions in the $Y=$ Editor $Y=$ 167
Entering Functions 167
Editing Functions 168
Selecting Functions 168
Exiting the $\mathrm{Y}=$ Editor 169
Selecting a Graph Style 169
Setting the Window Format [2nd [FORMAT] 171
Defining Window Values 173
The Window Values Screen WINDOW 174
Determining Window Values for a Specific Graph 175
Displaying a Graph 177
Smart Graph 178
Exploring the Graph with the Free-Moving Cursor. 178
Exploring a Function Graph with TRACE 178
Controlling the Increments of a Trace 179
Adjusting Window Values with the ZOOM ZOOM Menu 181
Zoom Box ZOOM1 182
Zoom In and Zoom Out ZOOM 2 and 3 183
ZStandard ZOOM 6 184
ZInteger ZOOM 0 184
Other Zoom Commands 185
The ZOOM MEMORY Menu 185
ZPrevious ZOOM $\square 1$ 185
SetFactors ZOOM $\square 2$ 186

Steps for Graphing a Function

Follow these basic steps when graphing a function. You may not have to do all of them each time.

Example of Function Graphing

[进 For every cookie Tham eats, Antonio eats two. How many cookies does Antonio eat if Tham eats 1 cookie, 2 cookies, 3 cookies, and 4 cookies?

Find the equation that represents the relationship between how many cookies Tham eats and how many Antonio eats, and represent your answers in the form of a function graph.

$$
\begin{array}{l|l}
Y=2 X & \begin{array}{l}
X=\text { number of cookies Tham eats } \\
Y=n u m b e r ~ o f ~ c o o k i e s ~ A n t o n i o ~ e a t s ~
\end{array}
\end{array}
$$

These steps explain what the calculator does internally when you define a function graph. The next page shows how to use the TI-73 to find the answers to this example.

1. This example uses these X values:

$$
\begin{aligned}
& x=1 \\
& x=2 \\
& x=3 \\
& x=4
\end{aligned}
$$

2. The TI-73 solves for Y using specific X values.

$$
Y=2 * X
$$

$$
\begin{aligned}
& Y=2 * 1=2 \\
& y=2 * 2=4 \\
& Y=2 * 3=6 \\
& Y=2 * 4=8
\end{aligned}
$$

3. It generates a table of (X, Y) coordinate pairs for you to look at.

4. It graphs the (X, Y) pairs.

Graph $\mathrm{Y}=2 \mathrm{X}$ on your calculator and find the solutions to the word problem.

1. Display the $\mathrm{Y}=$ editor. $\mathrm{Y}=$
2. Clear $\mathbf{Y}_{1}=$, if necessary. Enter $\mathbf{Y}_{1}=\mathbf{2 X}$.

CLEAR $2 \times$
3. Show the table of (X, Y) coordinate pairs, if desired; use TbIStart=0 and Δ Tbl=1. 2nd [TABLE]

See Chapter 8: Tables for more information about function tables.
4. Define the viewing window for Quadrant 1 only.

ZOOM 4
5. Trace the graph with the cursor keys.

TRACE
(Use \square and \square to move the cursor along the graph.)
6. Find the Y values when $X=1,2,3$, and 4 .

1 ENTER
2 ENTER
3 ENTER
4 ENTER

Floti Flote Fiots
$\forall 1=$
$V z=$ — Your $Y=$ editor may vary. $\because 4=$

Defining Functions in the $Y=$ Editor $Y=$

Use the $\mathrm{Y}=$ editor to define up to four functions, $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}$, and \mathbf{Y}_{4}, in terms of the independent variable, X.

Press $Y=$ to display the $Y=$ editor. The TI-73 graphs up to four defined functions at the same time.

If the result of an expression is not a real number, that point is not plotted. You do not get an error.

Entering Functions

Functions can consist of variables, lists, trigonometric or logarithmic expressions, or variations of already defined functions (for example, $\mathbf{Y}_{2}=\mathbf{2} * \mathbf{Y}_{1}$). Access a \mathbf{Y}_{n} variable by pressing [2nd [VARS] $\mathbf{2 : Y - V a r s . ~}$

囲 Define $\mathrm{Y}_{2}=3 \mathrm{X}+5$.

1. Display the $\mathrm{Y}=$ editor.
$Y=$
2. Move the cursor to the function that you want to define, \mathbf{Y}_{2}.

3. Clear \mathbf{Y}_{2}, if necessary. CLEAR
4. Enter $\mathbf{Y}_{2}=\mathbf{3 X} \mathbf{+ 5}$.

$$
3 \boxed{x}+5
$$

Editing Functions

You can edit or delete functions at any time in the $\mathrm{Y}=$ editor. Move the cursor to the function in the $\mathrm{Y}=$ editor that you want to change.

You can:

- Use the edit keys such as [DEL and [2nd [ins] to delete and insert characters.
- Overwrite current entries.
- Delete a function with CLEAR. Position the cursor anywhere on the function.

Selecting Functions

Even if a function is defined in the $\mathrm{Y}=$ editor, the TI-73 only graphs the function if it is selected (turned on). You know that a function is selected because the background behind a function's equal sign ($=$) is dark.

When you first define a function, it is selected automatically.
To select or deselect a function, highlight its = using the cursor keys, and then press ENTER.

You can change the on/off status of a statistical plot in the Y = editor. To select or deselect Plot1, Plot2, or Plot3, highlight the name (across the top of the $\mathrm{Y}=$ editor) using the cursor keys, and then press ENTER. A plot is selected (on) if the background behind its name is dark.

See Chapter 6: Statistical Plots for more information on defining and graphing stat plots.

Exiting the $\mathrm{Y}=$ Editor

To select another screen, press the appropriate key, such as GRAPH or WINDOW. Press 2nd [QUIT] to return to the Home screen.

Selecting a Graph Style

For a defined function, you can set one of seven styles that specify the appearance of a function graph. The graph style icons described below are located to the left of \mathbf{Y}_{n} in the $\mathrm{Y}=$ editor. If you do not select a style, the calculator graphs all defined functions with the default style, Line.

To select a style, press \square from the \mathbf{Y}_{n} equal sign (=) to highlight the graph style icon, and then press ENTER, as necessary, to cycle through the seven styles. Press $\square \square$ to return to the \mathbf{Y}_{n} entry line.

Graph styles are especially useful when graphing multiple functions. For example, you can set \mathbf{Y}_{1} as a solid line, \mathbf{Y}_{2} as a dotted line, and \boldsymbol{Y}_{3} as a thick line.

Icon	Style	Description	Example ($\mathrm{Y}_{1}=2 \mathrm{x}$)
气	Line	Connects plotted points with a line. This is the default.	

"4. Thick Connects plotted points with a thick line.

" ${ }^{\text {II }}$ Above Shades the area above the graph.

m. Below Shades the area below the graph.

4
Path A circular cursor traces the graph and draws the path.

0
Animate A circular cursor traces the graph without drawing the path.

囲 Set the Below graph style for $Y_{2}=3 X+5$.

1. Enter the $Y=$ editor and define $\mathbf{Y}_{2}=\mathbf{Y X} \mathbf{X}$. .

Y

2. Highlight the graph style icon (to the left of the \mathbf{Y}_{2}) and select the graph style, Below.

404040
ENTER ENTER ENTER
3. Display the graph. ZOOM 6

Setting the Window Format 2nd [FORMAT]

The window format screen lets you choose display settings. These apply to function graphing and statistical plotting.

Setting	Turns these on or off:	Example:
CoordOn/ CoordOff	X - and Y-coordinates of the cursor at the bottom of the screen. Useful when tracing a graph.	
GridOff/ GridOn	Grid lines that correspond to the axes tick marks.	
AxesOn/ AxesOff	X - and Y-axes.	
LabelOff/ LabelOn	Labels for the X - and Y axes. These settings are disregarded when AxesOff is selected. LabeIOn is especially helpful when displaying Quadrant I (ZOOM 4) graphs.	
ExprOn/ ExprOff	Expression which is currently being traced. The expression is shown in the top left corner of a graph. When CoordOn and ExprOff are both selected, the number in the topright corner specifies which function is being traced.	

Defining Window Values

If you enter a function in the $\mathrm{Y}=$ editor and press GRAPH, but nothing happens or the graph doesn't look the way you expect it to, you may need to adjust the WINDOW values (WINDOW).

Depending upon which section of a graph you specify through the window values, the display on your calculator screen can look very different.

In the example below, the first calculator screen uses WINDOW values which include all four quadrants for the function, $\mathbf{Y}_{1}=\mathbf{X} * \cos (\mathbf{X})$. (Calculator is in Degree mode.) Then, Quadrants I, II, III, and IV are shown separately, so you can see how WINDOW values affect the display. The next section explains how to redefine the values.

$$
Y_{1}=X * \cos (X)
$$

Quadrant II
Xmin=-500
Xmax=0
Xscl=90
Ymin=0
Ymax=500
Yscl=75

Quadrant III
Xmin=-500
Xmax=0
Xscl=90
Ymin=-500
Ymax=0
Yscl=75

Quadrant I
Xmin=0
Xmax=500
Xscl=90
Ymin=0
Ymax=500
Yscl=75

Quadrant IV
Xmin=0
Xmax=500
Xscl=90
Ymin=-500
Ymax=0
Yscl=75

The Window Values Screen WINDOW

WINDOW values put specific boundaries on the display. For an explanation of $\Delta \mathbf{X}$, see the section in this chapter entitled "Controlling the Increments of a Trace."

To exit the WINDOW menu, select another screen by pressing the appropriate key, or press 2nd [QUIT] to return to the Home screen.

Xmin	The minimum value on the X-axis; must be less than Xmax.
Xmax	The maximum value on the X-axis.
$\Delta \mathrm{x}$	When tracing the graph with TRACE, this determines the increments between X values.
Xscl	The distance between tick marks on the X-axis. To turn off the tick marks, set Xscl=0.
Ymin	The minimum value on the Y-axis; must be less than Ymax.
Ymax	The maximum value on the Y-axis.
Yscl	The distance between tick marks on the Y-axis. To turn off the tick marks, set Yscl=0.

Determining Window Values for a Specific Graph

The following example shows how you can adjust the WINDOW values manually (as opposed to using the standard WINDOW values set by ZOOM 6:ZStandard).

囲 Yuko practices the piano 50 minutes per day. How many minutes has he practiced after 2, 4, and 5 days? Graph your answer.

$$
\begin{array}{l|l}
Y=50 X & \begin{array}{l}
X=\text { number of days } \\
Y=\text { number of total minutes }
\end{array}
\end{array}
$$

1. A table of coordinate pairs would look like this:

X	Y
2	100
4	200
5	250

2. A possible graph of the ordered pairs would look like this (the WINDOW values are labeled):

囲 Graph the function, $\mathrm{Y}_{1}=50 \mathrm{X}$, on your calculator.

1. Display the $\mathrm{Y}=$ editor.
$\mathrm{Y}=$
2. Enter $\mathbf{Y}_{\mathbf{1}}=\mathbf{5 0 X}$.

$$
\text { CLEAR } 50 \boxed{x}
$$

Note: Deselect any other functions by highlighting the corresponding = and pressing ENTER.
3. Graph the function using standard window values (ZStandard).

ZOOM 6
4. Adjust the window values to match the sample graph from the previous page.

WINDOW
$0 \nabla 6 \nabla$ $300 \square 50$
5. Graph \mathbf{Y}_{1}.

GRAPH

6. Trace the graph.

TRACE
(Use \square and \square to move the cursor along the graph.)

WIFTDIW
Xmin=
$\times \mathrm{P} \cdot \mathrm{x}=6$
A= 0658297872.人mir=1 Δx adjusts automatically.

$$
4 \leq 01=50
$$

7. Find the Y values when $X=2,4$, and 5 .

```
2 ENTER 4 ENTER 5 ENTER
```

Note: Consider using the
CONVERSIONS menu (2nd [CONVERT] 4)

to convert your answers (in minutes) to seconds, hours, days, weeks, or years.
If you trace (TRACE) the graph with the cursor keys to an X value greater than Xmax or less than Xmin, the cursor goes off the Graph screen, but the corresponding Y values are still displayed since they exist. However, you cannot enter X values (as you did in step 7 above) that are greater than Xmax or less than Xmin.

Displaying a Graph GRAPH

Press GRAPH to display the graph of the selected function(s). (Some operations, such as TRACE and ZOOM, display the graph automatically.) As a graph is plotted, the busy indicator comes on (upper right corner) until the graph is completely drawn and X and Y are updated.

Pressing GRAPH, TRACE, or selecting a ZOOM function graphs all defined and selected functions.

- Press ZOOM to change the WINDOW values and graph all selected functions.

ZOOM , then select a
 function from the menu

To pause while a graph is being drawn, press ENTER; press ENTER again to resume plotting.

Press 0 ON to stop graphing. Press GRAPH to start over and plot again.

Smart Graph

When you press GRAPH, the Graph screen immediately displays (instead of replotting) the previous function graph(s) if no changes were made. If changes were made, the functions are replotted.

The graph is replotted if you have:

- Changed a function.
- Selected or deselected a function.
- Changed the value of a variable in a selected function.
- Changed a WINDOw variable or a 2nd [FORMAT] setting.
- Cleared drawings by selecting CIrDraw (Chapter 10: Draw).
- Changed a stat plot definition (Chapter 6: Statistical Plots).

Exploring the Graph with the Free-Moving Cursor

Use $\square, \square, \square$, and \square to move the cursor around the Graph screen. When you first display the graph, the cursor is in the middle of the screen but is not visible. When you press a cursor key, the cursor moves from that point and can be seen. (Remember to use the [nd [FORMAT] CoordOn setting if you want to see the (X, Y) coordinates at the bottom of the screen.)

Exploring a Function Graph with TRACE

Pressing TRACE allows you to move the \square and \square cursor keys from one plotted point to another and displays the cursor coordinates at the bottom of the screen (if CoordOn is set). If Expron (2nd [FORMAT]) is set, the expression being traced appears in the top left corner.

When more than one function (or stat plot) is selected and graphed, press Δ and \square to move the cursor from one function graph to another.

The cursor movement is based on the order of the functions as they appear in the $Y=$ editor and not on the appearance of the functions as graphed on the screen. (However, the TI-73 starts with selected statistical plots first.)

The function number in the upper right corner of the display changes as you move to the various graphs.

To quit TRACE mode, select another screen by pressing the appropriate key, such as WINDOW or ZOOM, or press Znd [QUIT] to return to the Home screen. Press CLEAR to stay on the Graph screen.

Using QuickZoom

While tracing, you can press ENTER to adjust the viewing window. The cursor location then becomes the center of the new viewing window, and the cursor remains in TRACE mode. This is called QuickZoom. If you do a QuickZoom accidentally, and you want to return to the zoom settings in the previous window, select ZOOM MEMORY 1:ZPrevious.

Controlling the Increments of a Trace

By assigning a specific value to $\Delta \mathbf{X}$ (which is optional), you can control the X coordinates of a trace. $\Delta \mathrm{X}$ is a WINDOW value; change it by pressing WINDOW.

The TI-73 automatically calculates $\Delta \mathbf{X}$ as:
$\Delta \mathrm{X}=\frac{(\mathrm{Xmax}-\mathrm{Xmin})}{94}$
If standard window values are set (ZStandard),
$\Delta X=.21276595744681$. If you assign a value to ΔX, the values for $X \min$ and X max are adjusted automatically according to the formula above.

瞱 Graph $\mathrm{Y}_{1}=2 \mathrm{X}$ with ZStandard．
1．Define $\mathbf{Y}_{\mathbf{1}}=\mathbf{2 X}$ in the $\mathrm{Y}=$ editor． Y CLEAR $2 \boxed{x}$

Note：Deselect any other functions by highlighting the corresponding＝and pressing ENTER．

2．Graph and trace the function．

```
ZOOM 6
TRACE DO (as
necessary)
```


（目 Assign ． 5 to $\Delta \mathbf{X}$ ，and graph and trace $\mathbf{Y}_{\mathbf{1}}=\mathbf{2 X}$ ．

WINDOW -7.5

TRACE
4 and \square

Adjusting Window Values with the ZOOM ZOOM Menu

The ZOOM ZOOM menu items allow you to adjust the viewing WINDOW of a graph quickly in a variety of ways. From the Graph screen, press WINDOW to see the adjusted WINDOW values.

1:ZBox, 2:Zoom In, and 3:Zoom Out, require you to move the cursor first to define the viewing window.

Z00M	
1:ZBox	Lets you draw a box around a specific section of the Graph screen. The calculator then zooms in on the area inside the box.
2:Zoom In	Lets you select a point with the cursor keys. The calculator then zooms in around the point by an amount defined by SetFactors (found on the ZOOM MEMORY menu).
3:Zoom Out	Lets you select a point with the cursor keys. The calculator then zooms out around the point by an amount defined by SetFactors.
4:ZQuadrant1	Displays Quadrant I only. Replots the graph immediately.
5:ZSquare	Adjusts WINDOW variables so that a square or a circle is shown in correct proportion (instead of a rectangle or an ellipse). Replots the graph immediately.

6:ZStandard	Sets the standard (default) WINDOW variables. Replots the graph immediately.
7:ZoomStat	Sets the WINDOW values for the current stat lists. Replots the graph immediately.
8:ZDecimal	Sets $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to 0.1 and centers the origin. Replots the graph immediately; press TRACE to view the new coordinate values.
9:ZoomFit	Adjusts Ymin and Ymax so that the Graph screen displays the full range of Y variable values. Replots the graph immediately.
10:ZInteger	Lets you select a new center point, and then sets $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to 1 and sets $\mathbf{X s c l}$ and $\mathbf{Y s c l}$ to 10. Replots the graph immediately; press TRACE to view the new coordinate values.
11:ZTrig	Sets WINDOW variables to preset values that are often appropriate for graphing trig functions. Replots the graph immediately.

ZBox ZOOM 1

With ZBox, use the cursor keys to draw a box around a specific section of the Graph screen that you would like to view up close. The calculator then zooms in on the area inside the box with the cursor in the center of the screen.
(0) Explore the function graph, $\mathrm{Y}_{1}=2 \mathrm{X}$ with ZBox.

1. Display the graph of a selected function (the
 example shows $\mathbf{Y}_{1}=\mathbf{2 X}$).

ZOOM 6
2. Select the ZBox function and return to the function graph.

$$
\text { ZOOM } 1
$$

3. Move the cursor to one corner of the box you want to define.

$$
\Delta \Delta \Delta \square \text { ENTER }
$$

4. Move the cursor to the corner diagonally opposite from the first one.

5. Replot the graph.

ENTER

Zoom In and Zoom Out ZOOM 2 and 3

Zoom In magnifies the graph around the cursor location.
Zoom Out displays a greater portion of the graph, centered on the cursor location, to provide a more global view. (The procedure is the same for both.)

After a Zoom In or Zoom Out operation is selected, move the cursor, as necessary, and press ENTER to select the new center point. Repeat the operation until another operation is selected or you exit the Graph screen.

瞱 1. Display the graph of a selected function (the example shows $\mathbf{Y}_{1}=\mathbf{X}^{2}$).

ZOOM 6

2. Select the Zoom In operation for the function graph.

ZOOM 2

3. Move the cursor to the point that you want as the center of the new viewing window.

4. Replot the graph.

ENTER

Zoom Out works exactly the same way as Zoom In. The calculator zooms out automatically around the center point.

ZStandard ZOOM 6

zStandard is one of the more popular zoom commands because many function graphs look good when graphed according to the standard (default) WINDOW values: Xmin=-10, Xmax=10, Xscl=1, Ymin=--10, Ymax=10, Yscl=1.

If you select the ZStandard operation, either from the Graph screen or another screen, all selected functions are immediately replotted according to these standard wiNDOw values.

ZInteger ZOOM 0

ZInteger requires you first to select a new center point. The calculator then replots the graph immediately using the adjusted WINDOW values which set $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to 1 , and $\mathbf{X s c l}$ and Yscl to 10 .

Select the center point (as you would do for Zoomin and ZoomOut) by moving the cursor with the cursor keys, and then pressing ENTER. Press TRACE to view the new coordinate values.

Other Zoom Operations

All other Zoom commands, ZQuadrant, ZSquare, ZoomStat, ZDecimal, ZoomFit, and ZTrig, replot immediately all selected functions and adjust WINDOW values according to their definitions. For ZDecimal, press TRACE to view the new coordinate values.

Examples of these operations are included in Appendix A: Function and Instruction Reference.

The ZOOM MEMORY Menu

ZOOM	Replots all selected function graphs using the wINDOW variables of the graph that was displayed before you executed the last ZOOM operation.
1:ZPrevious	Define the magnification or reduction factor used to Zoom In or Zoom Out around a cursor point. There are two: XFact and YFact.

ZPrevious ZOOM 1

Selecting ZPrevious automatically replots all selected functions and stat plots and adjusts WINDOW values according to the definition of the previous graph.

SetFactors ZOOM D 2

The zoom factors, XFact and YFact, are positive real numbers ≥ 1. They define the magnification or reduction factor used to Zoom In or Zoom Out around a cursor point. The default values for both XFact and YFact are 4. Highlight the factor you want to change, press CLEAR, and then enter the new value. XFact and YFact do not affect any other Zoom operations.

10 Drawing

The DRAW DRAW Menu 188
ClrDraw DRAW 1 189
Line(DRAW 2 189
Horizontal and Vertical DRAW 3 and 4 191
Shade(DRAW 5 193
Circle(DRAW 6 195
Text(DRAW 7 197
Pen DRAW 8 199
The DRAW POINTS Menu 201
Pt-On(, Pt-Off(, and Pt-Change(DRAW ■ 1, 2, and 3 202
Pxl-On(, Pxl-Off(, and Pxl-Change(DRAW - 4, 5, and 6 205
pxI-Test(DRAW $\square 7$ 206
The DRAW STO Menu 206
StorePic DRAW $\square \square 1$ 207
RecallPic DRAW $\square \square 2$ 208
Deleting a Graph Picture 208

The DRAW DRAW Menu

The DRAW DRAW menu items let you draw on top of function graphs and stat plots (see Chapter 9: Function Graphing and Chapter 6: Statistical Plots). The way the TI-73 interprets draw instructions depends on whether you accessed the menu items from the Home screen or the Program editor, or directly from a graph.

Note: Redefining WINDOW values, graphing a \mathbf{Y}_{n} function or stat plot, or pressing ZOOM erases all drawn items from the Graph screen.

DRAW	
2:Line(Clears all drawn elements.
3:Horizontal	Draws a line segment between two points.
4:Vertical	Draws a vertical line.
5:Shade(Shades an area between two functions.
6:Circle(Draws a circle.
7:Text(Draws text on a Graph screen.
8:Pen	Activates the free-form drawing tool.

When using a DRAW DRAW menu item or DRAW POINTS menu item to draw directly on a graph, the cursor coordinates are displayed if CoordOn is selected (2nd [FORMAT]). If a graph is not displayed when you select a DRAW DRAW menu item, the Home screen is displayed.

CIrDraw DRAW 1

CIrDraw clears all drawn elements from the Graph screen. All points, lines, and shading drawn with DRAW DRAW menu items are temporary. Therefore, if you leave the Graph screen, and then return, all drawings are erased.

If you select CIrDraw from the Graph screen, the current graph is replotted and displayed with no drawn elements. You can save drawings and recall them with the DRAW STO menu.

If you select CIrDraw from the Home screen or a program, it is pasted to the cursor location. Pressing ENTER executes the instruction, all drawings on the current graph are erased, and the message Done is displayed. When you display the graph again, all drawn elements disappear.

Line(DRAW 2

Line(draws a line from point $\left(X_{1}, Y_{1}\right)$ to $\left(X_{2}, Y_{2}\right)$. You can execute the Line(instruction from the Graph screen, the Home screen or Program editor.

Line (from the Graph Screen

To draw a line on the Graph screen:

1. From the Graph screen, select DRAW 2. The cursor appears in the middle of the Graph screen. The X - and Y coordinates are shown at the bottom of the screen. If they are not, you can turn them on by selecting CoordOn (2nd [FORMAT]).
2. Position the cursor at the beginning point of the line segment that you want to draw, and then press ENTER. The cursor becomes a small box.
3. Move the cursor to the end point of the line segment, and then press ENTER. The line segment is drawn as you move the cursor.
4. Repeat steps 2 and 3, as necessary. To cancel Line(, press CLEAR.

琎 Draw a line segment from the Graph screen.

1. Clear all previous drawings, and select the beginning point of the line segment.

ZOOM 6 DRAW 1 DRAW 2
$\square \square \square$
(as necessary)
ENTER
2. Select the ending point of the line segment.

(as necessary)
ENTER

Line(from the Home Screen or Program Editor

From the Home screen or the Program editor, Line(can draw or erase a line segment from point $\left(X_{1}, Y_{1}\right)$ to $\left(X_{2}, Y_{2}\right)$ on the Graph screen.

You follow the Line(instruction with the coordinates of the beginning point ($\mathrm{X}_{1}, \mathrm{Y}_{1}$) and the ending point ($\mathrm{X}_{2}, \mathrm{Y}_{2}$) of the line segment. Including the argument, $\mathbf{0}$, after the X and Y coordinates erases a line from $\left(X_{1}, Y_{1}\right)$ to $\left(X_{2}, Y_{2}\right)$.

To draw the line segment:

$$
\operatorname{Line}\left(\mathrm{X}_{1}, Y_{1}, X_{2}, Y_{2}\right)
$$

To erase a line segment:

$$
\operatorname{Line}\left(\mathrm{X}_{1}, Y_{1}, X_{2}, Y_{2}, \mathbf{0}\right)
$$

[罬 From the Home screen, draw a line segment from $(0,0)$ to $(6,9)$.

1. From the Home screen, clear the Graph screen.

2nd [QUIT] CLEAR
DRAW 1 ENTER
2. Specify the (X, Y) coordinates and draw the line segment.

DRAW 2

$0 \square 0 \square 6 \square 9 \square$ ENTER

ClrDr. EW Done Line $0,6,6,9)$

芭 Erase the portion of the line from $(2,3)$ to $(4,6)$.
[2nd [QUIT] DRAW 2

```
2\square3\square4\square6\square0\square
ENTER
```


Horizontal and Vertical DRAW 3 and 4

Horizontal and Vertical draw a horizontal or vertical line on the Graph screen. You can execute both instructions from the Graph screen, Home screen or the Program editor.

Horizontal and Vertical from the Graph Screen

To draw a horizontal or vertical line on the Graph screen:

1. From the Graph screen, select DRAW 3 or 4 . The cursor appears in the middle of the Graph screen. The X - and Y-coordinates are shown at the bottom of the screen.
2. A line is displayed that moves as you move the cursor. Place the cursor on the Y-coordinate (for horizontal lines) or the X-coordinate (for vertical lines) through which you want the line to pass.
3. Press ENTER to draw the line on the graph.
4. Repeat steps 2 and 3, as necessary. To cancel Horizontal or Vertical, press CLEAR.

芭 Draw a horizontal line from the Graph screen.

GRAPH DRAW 1 DRAW 3 $\nabla \Delta$ (as necessary) ENTER

羋 Draw a vertical line from the Graph screen.

Horizontal and Vertical from the Home Screen or Program Editor

From the Home screen or the Program editor, Horizontal draws a horizontal line at $Y=y . y$ can be an integer or an expression.

Horizontal y

Vertical draws a vertical line at $X=x . x$ can be an integer or an expression.

Vertical x

From the Home screen, draw a horizontal line at $Y=4$.

2nd [QUIT] CLEAR DRAW 1 ENTER DRAW 3 4 ENTER

WINDOW is set to

Draw a vertical line at $X=4$.
2nd [QUIT] DRAW 4 4 ENTER

Shade(DRAW 5

With Shade(, you can shade areas above and below functions on the Graph screen.

You can execute Shade(only from the Home screen or in a programming instruction. Shade(accepts two mandatory arguments and four optional arguments. However, you cannot skip any arguments. For example, if you want to specify the 5th argument, pattern, you also must specify the 3rd and 4th arguments, left and right.

> Shade(lower,upper[,left,right,pattern,res])

To use Shade(from the Home screen or a program:

1. Select DRAW 5.
2. Enter two functions, lower and upper, in terms of X. After the instruction is executed, the calculator graphs the functions and shades above lower and below upper.
3. Enter left and right, the left and right X boundaries, if desired. Xmin and Xmax are the defaults.
4. Enter the shading pattern number, pattern, if desired. The four shading patterns are:
$\mathbf{1}=$ Vertical (default)
2=Horizontal
3=Diagonal upper left to lower right
4=Diagonal lower left to upper right
5. Specify the pattern resolution, res, an integer number between 1 and 8, if desired.
res $=1$ is the default and represents the lowest resolution (lines drawn very close together). res $=8$ represents the highest resolution (lines drawn very far apart).
6. Press ENTER to execute the instruction.

囲 Shade above the function $Y=X-2$ (lower) and below the function $Y=X^{3}-8 X$ (upper).
(The functions are shown to the right as they would look if graphed individually.)

Enter a left X boundary, -2 , and a right X boundary, 5 , for the same functions.

Circle(DRAW 6

You can execute the Circle(instruction from the Graph screen, Home screen, or the Program editor.

Circle(from the Graph Screen

To draw a circle on the Graph screen:

1. From the Graph screen, select DRAW 6. The cursor appears in the middle of the Graph screen. The X - and Y coordinates are shown at the bottom of the screen.
2. Place the cursor at the center point of the circle you want to draw. Press ENTER.
3. Move the cursor to a point on the circumference. Press ENTER. The circle is drawn automatically on the graph.
4. Repeat steps 2 and 3, as necessary. To cancel Circle(, press CLEAR.

芭 Draw a circle from the Graph screen.

1. Clear all previous drawings, and select the center point of the circle.

$$
\text { GRAPH DRAW } 1 \text { DRAW } 6
$$

$\square \square \square$ (as
necessary) ENTER
2. Move the cursor to a point on the circumference.

(as necessary)

3. Draw the circle.

ENTER

Circle(from the Home Screen or Program Editor

From the Home screen or the Program editor, you can draw a circle on the Graph screen. Circle(accepts three mandatory arguments: X and Y, the coordinates of the center point of the circle, and radius, the radius length which must be a positive real number.

Circle(X, Y, radius $)$
(2] Draw a circle with center point $=(0,0)$ and radius=7.

2nd [QUIT] CLEAR DRAW	Clrar.su Done
1 ENTER DRAW 6	Circle (0, 6, 7)
$\mathbf{0}, 0 \square 7 \square$ ENTER	

Note: Use ZOOM 5:ZSquare to adjust them and make the circle circular.

Text(DRAW 7

You can access Text(from the Graph screen, Home screen, or the Program editor. Text(allows you to draw text on the Graph screen when a graph is displayed. Use the Text editor (2nd [TEXT]) to access all text characters. You may enter TI-73 functions, variables, and instructions as text. The font is proportional, so the exact number of characters you can place on the graph varies.

Text(from the Graph Screen

To draw text on the Graph screen:

1. From the Graph screen, select DRAW 7. The cursor appears in the middle of the Graph screen.
2. Place the cursor at the point where you want the text to begin.
3. Press 2nd [TEXT] to display the Text editor. Select the text characters. Highlight Done with the cursor, and then press ENTER. The selected text is pasted onto the Graph screen.
4. Repeat steps 2 and 3, as necessary. To cancel Text(, press CLEAR.

囲 From the Graph screen, Label Quadrant I with QUAD1.

1. Clear all previous drawings, and select the beginning point where you want the text to start.
GRAPH DRAW 1 DRAW 7
$\square \triangle \square \square$
(as necessary)
2. Using the Text editor, enter QUAD1.

2nd [TEXT] Q ENTER
U ENTER A ENTER
DEENTER 1 Done ENTER

Text(from the Home Screen or the Program Editor

From the Home screen or the Program editor, you can draw text on the Graph screen.

Text(accepts three mandatory arguments: row and column, which specify the pixel value of the top-left corner of the first character, and text, which can be functions, variables, or text instructions.

```
Text(row,column,text)
Text(row,column,"text")
```

row is an integer between 0 and 57 and column is an integer between 0 and 94 . Therefore, $(0,0)$ is the top left corner, $(0,94)$, is the top right corner, $(57,0)$ is the lower left corner, and $(57,94)$ is the lower right corner. If you try to draw text on any edge of the Graph screen, the calculator only displays text that fits; text does not wrap to the next row.

If text is surrounded by quotation marks (" ") (found in the Text editor), the calculator interprets any characters, numbers, or expressions as text. If the quotation marks are omitted, the TI-73 calculates and displays the result, if applicable, with up to 10 characters.
[0 Label Quadrant I with QUAD1 from the Home screen. Start the text at the pixel value of $(10,60)$.

1. Clear all previous drawings, and select the beginning
 Textcig, 6 , point of the text.

2nd [QUIT] CLEAR
DRAW 1 ENTER
DRAW $710 \square 60 \square$

2. Using the Text editor, enter "QUAD1".
 2nd [TEXT] " ENTER
 Q ENTER U ENTER
 A ENTER D ENTER 1 " ENTER Done ENTER $]$ ENTER

Pen DRAW 8

Pen draws any shape you want, including irregular or unusual ones.

You can execute Pen only from the Graph screen. You cannot execute Pen from the Home screen or the Program editor.

To draw your own shape on the Graph screen:

1. From the Graph screen, select DRAW 8. The cursor appears in the middle of the Graph screen. The X - and Y coordinates are shown at the bottom of the screen.
2. Place the cursor at the point where you want to begin drawing. Press ENTER to turn on the pen.
3. Move the cursor. As you move the cursor, you draw on the graph, shading one pixel at a time.
4. Press ENTER to turn off the pen.
5. Repeat steps 2, 3, and 4, as necessary. To cancel Pen, press CLEAR.
(瞱 Draw a happy face on the Graph screen.
6. Clear all previous drawings, and then select AxesOff.

GRAPH DRAW 1 2nd [FORMAT] $\nabla \square$ ENTER
2. First draw a circle.

GRAPH DRAW 6 ENTER
Δ (as necessary)
ENTER

3. Use Pen(to draw the eyes.

DRAW 8
\square and 0
(as necessary)
ENTER ENTER
\square (as necessary)
ENTER ENTER

4. Draw the mouth.
\square ENTER (to begin
smile)
U (repeat as

necessary)
\checkmark (repeat as
necessary)
$\Delta \Delta$ (repeat as
necessary)

The DRAW POINTS Menu

The DRAW POINTS menu items let you draw or erase individual points or pixels on top of function graphs and stat plots (see Chapter 9: Function Graphing and Chapter 6: Statistical Plots). The way the TI-73 interprets the point instructions depends on whether you accessed the instructions from the Home screen or the Program editor, or directly from a graph.

Redefining window values (ZOOM 6:ZStandard), graphing a \mathbf{Y}_{n} function or stat plot, or pressing ZOOM erases all drawn items from the Graph screen.

Note: All examples in this section show the Graph screen set to standard wINDOW values and with all \mathbf{Y}_{n} functions and stat plots deselected.

DRAW	
1:Pt-On(Turns on a point.
2:Pt-Off(Turns off a point.
3:Pt-Change(Toggles a point on or off.
4:PxI-On(Turns on a pixel.
5:PxI-Off(Turns off a pixel.
6:Pxl-Change(Toggles a pixel on or off.
7:pxI-Test(Returns 1 if pixel is on, 0 if pixel is off.

Pt-On(, Pt-Off(, and Pt-Change(DRAW $\square 1,2$, and 3

Pt-On(, Pt-Off(, and Pt-Change(turn on, off, or change the status of a point from the Graph screen, Home screen, or Program editor.

A point (as opposed to a pixel) is tied directly to the X - and Y axes. The screen is divided into X - and Y-coordinates as specified by (X, Y). The points that you can view depend upon how the WINDOW values are defined.

For example, if standard WINDOW values are set, $-10 \leq X \leq 10$ and $-10 \leq Y \leq 10$. This does not mean that points outside these boundaries do not exist, only that you cannot see any turned on points outside these boundaries.

Pt-On(, Pt-Off(and Pt-Change(from the Graph Screen

To use Pt-On(, Pt-Off(, and Pt-Change(on the Graph screen:

1. From the Graph screen, select DRAW \square 1, 2, or 3. The cursor appears in the middle of the Graph screen. The X and Y-coordinates are shown at the bottom of the screen.
2. Move the cursor:

- To the position where you want to draw the point (Pt-On().
- To the position of the point you want to erase (Pt-Off().
- To the position of the point you want to change (toggle on or off) (Pt-Change().

3. Press ENTER to draw, erase, or change the point.
4. Repeat steps 2 and 3, as necessary. To cancel Pt-On(, Pt-Off(, or Pt-Change(, press CLEAR.
[0. Draw points from the Graph screen.
5. Select AxesOn, if desired, and then clear all previous drawings.

2nd [FORMAT] \square ENTER GRAPH DRAW 1
2. Select the beginning point where you want to draw the point.

(as necessary)

3. Draw the point.

ENTER

4. Repeat as necessary.

Erase four points from the Graph screen.

1. Move the cursor to the point you want to erase.

GRAPH DRAW ${ }^{2}$
$\square \Delta \Delta$
(as necessary) ENTER
2. Repeat as necessary.

Pt-On(, Pt-Off(, and Pt-Change(from the Home Screen and Program Editor

From the Home screen or the Program editor, you can draw, erase, or change a point's status on the Graph screen.
$\mathrm{Pt}-\mathrm{On}(, \mathrm{Pt}-\mathrm{Off}($, and Pt-Change(accept two mandatory arguments: X and Y, which specify the coordinates of the point that you want to draw, erase, or change. Pt-On(and Pt-Off(have one optional argument, mark, which determines the point's appearance. Specify 1 (default), 2, or 3, where:

$$
\mathbf{1} \text { (default) }=\cdot(\text { dot }) \quad 2=\square(\text { box }) \quad 3=+(\text { cross })
$$

If you specify mark to turn on a point with $\mathrm{Pt}-\mathrm{On}($, you must specify the same mark when you turn off the point with Pt-Off(. Pt-Change(does not have the mark argument.

Also note that if, for example, you specify the point $(20,30)$ but your viewing window is set to the standard values, you do not see the point since the viewing window does not include the specific part of the graph where $(20,30)$ exists. Press WINDOW to redefine the WINDOW values.

Note: Redefining WINDOW values, graphing a \mathbf{Y}_{n} function or stat plot, or pressing ZOOM erases all drawn items from the Graph screen.

```
Pt-On(X,Y[,mark])
Pt-Off(X,Y[,mark])
Pt-Change(X,Y)
```

圈 Turn on point $(-5,3)$ and assign the box mark to it.

Pxl-On(, Pxl-Off(, and Pxl-Change(DRAW - 4, 5, and 6

Pxl-On(, Pxl-Off(, and Pxl-Change(turn on, off, or change the status of a pixel only from the Home screen or the Program editor.

When you select a pixel instruction from the DRAW POINTS menu, the TI-73 returns you to the Home screen or the Program editor. Since the pixel instructions are not interactive, they cannot be used from the Graph screen.

A pixel is independent of the X - and Y - axes. It is based instead on the physical size of the screen. The screen is divided into pixels specified as (row,column). $0 \leq$ row ≤ 62 and $0 \leq$ column ≤ 94.

PxI-On(, PxI-Off(, and Pxl-Change(accept two mandatory arguments: row and column, which specify the pixel that you want to draw, erase, or change.

PxI-On(row,column)
PxI-Off(row,column)
PxI-Change(row,column)

Turn on the pixel at $(45,35)$.

1. From the Home screen, clear the Graph screen.

2nd [QUIT] CLEAR
DRAW 1 ENTER
2. Turn on the pixel.

DRAW $\square 4$

$45 \square 35 \square$ ENTER

pxl-Test(DRAW D7

You can execute pxl-Test(only from the Home screen or the Program editor.
pxl-Test(tests a pixel at (row,column) to see if it is turned on or off. If it is on, pxl-Test(returns 1 . If it is off, pxl-Test(returns 0 . $0 \leq$ row ≤ 57 and $0 \leq$ column ≤ 94.

```
pxI-Test(row,column)
```

芭 Test to see if the pixel at $(45,35)$ is turned on or off.

2nd [QUIT] DRAW 7	Clrary
$4535 \square$ ENTER	F×1-0nc 45,35$)$ -

The DRAW STO Menu

The DRAW STO (store) menu lets you store or recall up to three pictures in memory. When you select an instruction from the DRAW STO menu, the TI-73 returns to the Home screen or the Program editor. The picture instructions are not interactive, which means you cannot use them from the Graph screen.

Note: All examples in this section show the Graph screen set to standard WINDOW values (ZOOM 6:ZStandard) and with all \mathbf{Y}_{n} functions and stat plots deselected.

StorePic DRAW D1

You can execute StorePic only from the Home screen or Program editor. You can store up to three pictures, each of which is an image of the current graph display, in picture variables Pic1, Pic2, or Pic3. Later, you can superimpose the stored picture onto a displayed graph from the Home screen or a program.

A picture includes drawn elements, plotted functions, axes, and tick marks. The picture does not include axes labels, lower and upper bound indicators, prompts, or cursor coordinates. Any parts of the display hidden by these items are stored with the picture.

StorePic accepts one mandatory argument, number, which specifies the number of the picture variable to which you want to store the picture. For example, if you enter 3, the TI-73 stores the picture to Pic3. Pressing ENTER displays the current graph and stores the picture.

StorePic number

To see which graph variables have pictures stored to them, use the PICTURE secondary menu (2nd [VARS] 4:Picture). Each variable Pic1, Pic2, and Pic3 is marked as either Defined or Empty. If selected, the variable is pasted next to StoPic.

Store the drawn picture (to the right) in picture variable 2 .

For more information on drawing lines, see the previous section entitled "Line(."

2nd [QUIT] CLEAR
DRAW D 1 2 ENTER

RecallPic DRAW DD

You can execute RecallPic only from the Home screen or Program editor. Use RecallPic to recall the graph picture stored in the picture variables Pic1, Pic2, or Pic3.

RecallPic accepts one mandatory argument, number, which specifies the number of the picture variable that you want to recall. For example, if you enter 3, the TI-73 recalls Pic3. Pressing ENTER displays the current graph and superimposes Pic3 on it. Since pictures are drawings, you cannot trace a curve that is part of a picture.

RecallPic number

To see which graph variables have pictures stored to them, use the PICTURE secondary menu (2nd [VARS] 4:Picture). Each variable Pic1, Pic2, and Pic3 is marked as either Defined or Empty. If selected, the variable is pasted next to RecallPic.

目 1. Clear the Graph screen.
2nd [QuIT]
DRAW 1 ENTER GRAPH
2. Recall picture variable 2. (A picture was stored to it in the previous example.) DRAW $D>2$ ENTER

Storafic 2 Dons

Storepic 2 Done
Cirdraw Recallpic 2

Deleting a Graph Picture

To delete graph pictures from memory, use the MEMORY DELETE:Pic menu (2nd [MEM] 4:Delete 7:Pic).

11 Trigonometry

The 2nd [TRIG] TRIG Menu... 210
Trig Functions 2nd [TRIG] 1, 3, and 5.......................... 210
Inverse Trig Functions [2nd [TRIG] 2, 4, and 6 211
Angle Mode Settings .. 211
Graphing Trig Functions .. 214
The 2nd [TRIG] ANGLE Menu .. 215
Using ${ }^{\circ}$ and ${ }^{\mathrm{r}}$ to Specify Degrees and Radians
2nd [TRIG] 1 and 4.. 216
Converting between Degrees and Radians 217
Entering Angles in DMS Notation 2nd [TRIG] \square 1, 2, and 3... 218
-DMS 2nd [TRIG] 5 ... 220

The 2nd [TRIG] TRIG Menu

The 2nd [TRIG] TRIG (trigonometry) menu accesses the trigonometric (trig) functions ($\boldsymbol{\operatorname { s i n }}(, \cos (, \tan ()$ and their inverses ($\boldsymbol{s i n}^{-1}\left(, \cos ^{-1}\left(\tan ^{-1}\right)\right.$.
\qquad
The sine, cosine, and tangent of an angle (θ) are defined by the lengths of the sides of a right triangle.

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Trig Functions 2nd [TRIG] 1, 3, and 5

All trig functions return the sine, cosine, or tangent of a real number, expression, or a each element in a list. If value is a list, the calculator calculates the trig function of each element in the list, and a list is returned.

```
sin(value)
cos(value)
\boldsymbol{tan}(value)
```

For tan, value cannot be 90,270 , etc., or $-90,-270$, etc. In other words, since $\tan \theta=\sin / \cos$ by definition, $\tan \theta$ is undefined when $\cos \theta=0$.

Hint: This chapter's section entitled "Graphing Trig Functions" contains an example which graphs and traces $\mathbf{Y}_{1}=\tan (\mathbf{X})$ to show undefined Y values for the function.

Inverse Trig Functions 2nd [TRIG] 2, 4, and 6

The inverse trig functions calculate the smallest angle that gives a particular sine, cosine, or tangent. For example, $\boldsymbol{s i n}^{-1}(.5)$ calculates the angle whose sine is .5 .

```
sin-1
\mp@subsup{\operatorname{cos}}{}{-1}(value)
tan-1(value)
```

For $\cos ^{-1}$ (also called arccosine) and $\mathbf{s i n}^{-1}$ (also called arcsine), $-1 \leq$ value ≤ 1.

All inverse trig functions return the arcsine, arccosine, or arctangent of value or of each element in a list. If value is a list, the calculator calculates the inverse trig function of each element in the list, and a list is returned.

Angle Mode Settings

In trig calculations, angles are interpreted as degrees $\left({ }^{\circ}\right)$ or radians (${ }^{r}$), depending on the Angle mode setting, Degree or Radian.

Set the Angle mode from the mode screen.

Depending on the Angle mode, $\sin (1)$ is the sine of either 1° or 1^{r}. As you can see in the following illustration, 1° is not the same as 1^{r}. Therefore, $\sin \left(1^{\circ}\right) \neq \sin \left(1^{r}\right)$. For correct results, enter angle values in the same units (degrees or radians) as the Angle mode setting.

To perform a trig calculation, select the Angle mode for your value and then select the function. In Radian Angle mode, angles are often defined in terms of π.

目 Calculate $\sin (30)$ in both degrees and radians.

1. Select the Degree Angle mode.

MODE \square ENTER

2. Return to the Home screen, and clear it, if desired.

2nd [QUIT] CLEAR
3. Enter $\boldsymbol{\operatorname { s i n }}(30)$.

2nd [TRIG] 1

4. Change to the Radian Angle mode, and return to the Home screen.

MODE $\square \square$ ENTER

 2nd [QuIT]
5. Recall the previous entry to recalculate $\boldsymbol{\operatorname { s i n }}(30)$.

```
sing30
EincS6
.5
```

2nd [ENTRY] ENTER
［葛 In Degree Angle mode，calculate $\tan ^{-1}(1)$ ．Check your answer．
1．Select the Degree Angle mode． MODE \square ENTER

2．Return to the Home screen， and clear it，if desired．

2nd［QUIT］CLEAR
3．Enter $\boldsymbol{t a n}^{-1}(\mathbf{1})$ ．
2nd［TRIG］ 6

$1 \square$ ENTER
4．Using the result，enter $\boldsymbol{\operatorname { t a n }}(45)$ ．

$$
\text { 2nd [TRIG] } 5
$$

击 In Radian mode，calculate $\cos (\pi / 4)$ ．
1．Select the Radian Angle mode．

$$
\text { MODE } \square \square \text { ENTER }
$$

2．Return to the Home screen， and clear it，if desired．

2nd［QUIT］CLEAR
3．Enter $\boldsymbol{\operatorname { c o s }}(\pi / 4)$ ．
2nd［TRIG］ 3
－0E（ $\pi / 4671067812$
2nd $[\pi]$－ $4 \square$ ENTER

Graphing Trig Functions

In addition to using the calculator to solve trig functions numerically, as described so far in this chapter, you can solve trig functions graphically.

For more information on generating function tables or graphing functions, see Chapter 8: Tables and Chapter 9: Function Graphing.
[: In Degree Angle mode, find four Y values where $\mathbf{Y}_{1}=\tan (\mathbf{X})$ is undefined. Check your answer by displaying the table for \mathbf{Y}_{1}.

1. Select Degree Angle mode, if necessary.

MODE \square ENTER

2. Deselect all $\mathbf{Y}_{\mathbf{n}}$ functions. 2nd [VARS] 26 ENTER
3. Define $\mathbf{Y}_{\mathbf{1}}=\boldsymbol{\operatorname { t a n }}(\mathbf{X})$ in the $\mathrm{Y}=$ editor.
Y CLEAR 2nd [TRIG] 5 $\boxed{\square}$
4. Trace the graph and observe where the Y value is undefined.

TRACE
\checkmark and \triangle, as necessary

The 2nd [TRIG] ANGLE Menu

The ANGLE menu lets you specify the unit (degrees, radians, or DMS) of an angle, and it lets you convert an angle from one unit to another.

2nd [TRIG]	
$:^{\circ} \quad$Designates an angle as degrees, regardless of the current Angle mode setting or DMS notation.	
2:'In DMS (degrees ${ }^{\circ}$ minutes' seconds") notation, specifies the minutes.	
3:"In DMS (degrees ${ }^{\circ}$ minutes' seconds") notation, specifies the seconds.	
5:Specifies an angle as radians, regardless of the current Angle mode setting.	

Using ${ }^{\circ}$ and ${ }^{r}$ to Specify Degrees and Radians 2nd [TRIG] 1 and 4

Normally, angles are interpreted according to the Angle mode setting. However, you can specify an angle as degrees or radians regardless of the Angle mode.

Suppose a series of trig calculations uses radians, but a few use degrees. Rather than change from Radian to Degree Angle mode and then back again, you can stay in the Radian Angle mode and specify some angles as degrees.
[In Radian Angle mode, calculate $\sin (\pi / 3)$. Then, without changing to the Degree Angle mode, calculate $\sin \left(60^{\circ}\right)$.

1. Select Radian Angle mode. MODE \square - \square ENTER

2. Return to the Home screen, and clear it, if desired.

2nd [QUIT] CLEAR
3. Enter $\boldsymbol{\operatorname { s i n }}(\pi / 3)$.

2nd [TRIG] 1 2nd [π] ${ }^{\circ} \mathbf{~} 3$ DENTER
4. Use the ${ }^{\circ}$ designator to enter $\boldsymbol{\operatorname { s i n }}\left(60^{\circ}\right)$.

2nd [TRIG] 1 60 2nd [TRIG] 1 \square ENTER

Einc $\pi=3$


```
#1%4/3)
SiFG6O%
    -8660254058
                                    6 0 \text { is specified as degrees}
                                    Leven in Radian angle mode. \(\pi / 3 \mathrm{r}=60^{\circ}\).
```

Likewise, you can use \mathbf{r} to specify an angle as radians in the Degree Angle mode.

Converting between Degrees and Radians

Set the Angle mode to the unit you want to convert to because results are displayed according to the Angle mode setting． Then use ${ }^{\circ}$ or ${ }^{r}$ to designate the unit to convert from．
（2）Convert 50° to radians．
1．Set Angle mode to Radian． MODE $\square^{\square} \square$ ENTER

2．Return to the Home screen， and clear it，if desired．

2nd［QUIT］CLEAR
3．Enter the value to convert， 50 ．Use ${ }^{\circ}$ to specify it as degrees．

$$
50 \text { 2nd [TRIG] } 1 \text { ENTER }
$$

瞱 Convert 50^{r} to degrees．
1．Set the Angle mode to Degree．

```
MODED⿴囗\ENTER
2nd [QUIT]
```


2．Enter the value to convert， 50．Use ${ }^{r}$ to specify it as radians．

50 2nd［TRIG］ 4 ［ENTER

Entering Angles in DMS Notation 2nd [TRIG] 1, 2, and 3

DMS (degrees ${ }^{\circ}$ minutes' seconds") is often used for angles involving latitude and longitude. The degrees can be any real number; minutes and seconds must be ≥ 0. To enter an angle in DMS notation, use the 2nd [TRIG] ANGLE menu.

If you enter the angle of a trig function, where the angle is in DMS notation (as shown in the following example), the angle is interpreted as degrees, even in Radian mode.

目 Calculate $\sin \left(30^{\circ} 10^{\prime} 23^{\prime \prime}\right)$ in Degree and Radian mode.

1. Select Degree Angle mode. MODE \square ENTER

2. Return to the Home screen, and clear it, if desired.

2nd [QUIT] CLEAR
3. Enter $\boldsymbol{\operatorname { s i n }}\left(30^{\circ} 10^{\prime} 23^{\prime \prime}\right)$.

2nd [TRIG] 1
Eif(30016123")
.5026134491

30 2nd [TRIG] 1
10 2nd [TRIG] $\square 2$
23 2nd [TRIG] $\square 3 \square$
ENTER
4. Select Radian Angle mode.

5. Calculate $\boldsymbol{\operatorname { s i n }}\left(30^{\circ} 10^{\prime} 23^{\prime \prime}\right)$.

 2nd [ENTRY] ENTER

In Radian mode, if you enter an angle only (without a trig function) in DMS notation (as shown in the following example), the angle is interpreted as degrees, but converted to a result in radians.

囲 Convert $20^{\circ} 10^{\prime} 14^{\prime \prime}$ to radians.

1. Select Radian Angle mode. MODED日 \square^{\square} ENTER

2. Return to the Home screen, and clear it, if desired.

2nd [QUIT] CLEAR
3. Enter $20^{\circ} 10^{\prime} \mathbf{1 4}^{\prime \prime}$.

20 2nd [TRIG] 1
10 2nd [TRIG] ${ }^{2}$
14 [2nd [TRIG] ${ }^{3}$
ENTER

-DMS 2nd [TRIG] 5

To convert angles to DMS notation, use $>$ DMS from the 2nd [TRIG] ANGLE menu.

angle DMS

Entering ${ }^{\circ}$ overrides Radian mode. For example, if you enter $50^{\circ} \triangleright$ DMS in Radian mode, the calculator still interprets 50 as degrees and displays the DMS equivalent.

In Radian mode, if you enter $50>$ DMS (no ${ }^{\circ}$), the calculator interprets 50 as radians, and then displays the DMS equivalent. For example, $\mathbf{5 0 > D M S}$ in Radian mode shows $2804^{\circ} 47^{\prime} 20.312^{\prime \prime}$. Likewise, in Degree mode, if you enter $50>$ DMS ($n o^{\circ}$), the calculator interprets 50 as degrees, and then displays the DMS equivalent. For example, $50>$ DMS in Degree mode shows $50^{\circ} 0^{\prime} 0$ ".

目 In Degree Angle mode, convert 50.672° to DMS.

1. Select Degree Angle mode. MODE \square ENTER

2. Return to the Home screen, and clear it, if desired.

2nd [QUIT] CLEAR
3. Convert 50.672° to DMS.
50.672

2nd [TRIG] $\square 5$
ENTER

12
 Programming

What Is a Program? 223
Steps for Creating a Program 223
Creating and Naming a New Program 224
Create New PRGM $\square \square 1$ 224
The Program Editor 225
Entering Program Commands 226
The PRGM CTL Menu 227
If PRGM 1 229
If-Then PRGM 1 and 2 229
If-Then-Else PRGM 1, 2, and 3 230
For (PRGM 4 231
While PRGM 5 232
Repeat PRGM 6 232
End PRGM 7 233
Pause PRGM 8 233
Lbl and Goto PRGM 9 and 0 234
IS $>$ (PRGM A 235
DS<(PRGM B 235
Menu(PRGM C 236
SetMenu(PRGM D 237
prgm PRGM E 238
Return PRGM F 239
Stop PRGM G 239
DelVar PRGM H 240
GraphStyle(PRGM I 240
The PRGM I/O Menu 241
Input PRGM 1 242
Prompt PRGM $\square 2$ 244
Disp PRGM $\square 3$ 244
DispGraph PRGM $\square 4$ 245
DispTable PRGM 5 245
Output(PRGM $\quad 6$ 245
getKey PRGM \square 246
ClrScreen and ClrTable PRGM $\square 8$ and 9 247
GetCalc(PRGM $\square 0$ 247
Get (and Send (PRGM \square A and B 247
Editing Program Commands 248
Inserting, Deleting, and Editing Command Lines 249
Copying and Renaming a Program 249
Calling a Program from Another Program 250
Executing a Program 251
Breaking Out of a Program 252
Debugging a Program 252

What Is a Program?

A program is a series of one or more programming commands to be executed by the calculator. Each command is an expression or instruction and begins with a colon (:). The number and size of programs that the TI-73 can store is limited only by available memory.

Steps for Creating a Program

Follow these basic steps when creating and executing a program. You may not have to do all of them each time.

Creating and Naming a New Program

You create a new program by selecting 1：Create New from the PRGM NEW menu．You then are prompted to name the new program．

PRGM	
1：Create New	Creates a new program and displays the PROGRAM Name＝screen，prompting you to name the new program．

Create New PRGM D $\square 1$

After you select 1：Create New from the PRGM NEW menu，the TI－73 displays Name＝to prompt you to name the new program． A program name can be one to eight characters long．The first character must be a letter from A to Z ．The second through eighth characters can be any combination of letters and numbers．

Access letters from the Text editor（2nd［TEXT］）．If you type a name with more than eight characters，the calculator accepts the first eight characters and disregards the rest．

击 Create a new program and name it PROGRAM1．

3. Enter Program 1 at the cursor.

2nd [TEXT] P ENTER
R ENTER O ENTER
G ENTER R ENTER
A ENTER m ENTER 1
Done ENTER

FROGRFM
Hョme=FROGRHM18

FROGRAII: PROGRFH11
: with the name of the program on the top line.

ENTER

The Program Editor

You use the Program editor to enter and edit program commands. Enter the Program editor in one of two ways:

- Create and name a new program from the PRGM NEW menu with 1:Create New. Once the name is entered, the calculator automatically enters the Program editor with the name of the program on the top line.
- Select a program to edit from the PRGM EDIT menu (PRGM \square). The calculator automatically enters the Program editor with the name of the program on the top line.

Each new command line in the Program editor begins with a colon (:). Enter programming commands at the cursor. You can enter more than one command per line. To do this, separate the two commands with a colon (2nd [CATALOG]
$\Delta \Delta \Delta$ ENTER). If the command line is longer than the screen is wide, the command wraps to the next screen line.

To exit the Program editor, press [2nd [QUIT]. All commands are automatically saved.

PRGM \square prgmName	FROGRAMI PROGRAH1
- or -	-
PRGM $\triangle 1$ 2nd [TEXT]	
prgmName \mathbf{D} one	-Program Name
ENTER ENTER	

Entering Program Commands

The calculator contains built-in programming commands on three menus. You access these menus by pressing PRGM from the Program editor. The first two menus, the PRGM CTL menu and the PRGM I/O menu, are discussed extensively in the next two sections. The third menu, the PRGM EXEC menu, lets you call existing programs as subroutines. It is discussed in the section entitled, "Executing a Program."

Entering Functions, Instructions, and Variables

In the Program editor, you also can select from function menus on the calculator (IMATH, 2nd [CONVERT], etc.), change settings (MODE, 2nd [TBLSET], etc.), as well as select function keys ($\left[/ 6, x^{2}\right.$, etc.). Simply press the appropriate key, and the function, instruction, or mode setting is pasted at the cursor location in the Program editor. Also, remember that all instructions and functions are listed in the CATALOG (2nd [CATALOG]).

Programs can access variables and lists saved in memory. If a program stores a new value to a variable or list, the program changes the value in memory during execution.

The following menus or keystroke sequences change appearance or operate differently when accessed from the Program editor:

- PRGM (accesses programming command menus)
- 2nd [PLOT] (changes appearance)
- 2nd [SET] (changes appearance)
- 2nd [TBLSET] (changes appearance)
- DRAW DRAW (excludes 8:Pen)
- MATH MATH (excludes 6:Solver)
- ZOOM MEMORY (excludes 2:SetFactors)

Exiting the Program Editor

Pressing Y, WINDOW, GRAPH, 2nd [MEM], [2nd [QUIT], or LIST] exits the Program editor and displays the applicable screen. The calculator automatically saves all command lines in memory whenever you exit the Program editor.

The PRGM CTL Menu

You can only access the PRGM CTL (control) menu by pressing PRGM from the Program editor. These programming commands help control the flow of an executing program. They make it easy to repeat or skip a group of commands (block) during program execution.

If, For(, While, Repeat, IS>(, and DS<(check a defined condition to determine which command to execute next. Conditions frequently use relational or Boolean tests (Chapter 2: Math Operations). When you select an item from the menu, the name is pasted to the cursor location on a command line in the program. To return to the Program editor without selecting an item, press CLEAR.

PRGM (from the Program editor only)

1:If	Creates a conditional test.
2:Then	Executes commands when If condition is true.
3:Else	Executes commands when If condition is false.
4:For(Creates an incrementing loop.
5:While	Creates a conditional loop.
6:Repeat	Creates a conditional loop.
7:End	Signifies the end of a block.
8:Pause	Pauses program execution.
9:Lbl	Defines a label.
0:Goto	Goes to a label.
A:IS>(Increments and skips if greater than.
B:DS<(Decrements and skips if less than.
C:Menu(Defines menu items and branches.
D:SetMenu(Views and modifies variables on a menu.
E:prgm	Executes a program as a subroutine.
F:Return	Returns from a subroutine.
G:Stop	Stops execution.
H:DelVar	Deletes a variable from within program.
I:GraphStyle(Designates the graph style to be drawn.

If PRGM 1

Use If to execute one command depending upon condition. If condition is true (non-zero), then command1 is executed. If condition is false (zero), then command1 is skipped. If instructions can be nested.
:If condition
:command1 (if true)
:command2

瞱 Write a program named COUNT that adds one to variable A and displays the current value until $A \geq 2$.

```
PROGRAM:COUNT
:0->A
:Lbl Z
:A+1->A
:Disp "A IS",A
:Pause
:If A\geq2
:Stop
:Goto Z
```


If-Then PRGM 1 and 2

Use If with Then to execute more than one command (block) depending upon condition. If condition is true (non-zero), then block is executed. If condition is false (zero), then block is skipped. End identifies the end of the block. Both Then and End must be on a line by itself.
:If condition
:Then
:block (if true)
:End
:command
[- Write a program named TEST that tests the values of variable X. If $X<10$, manipulate X and Y and then display both values. If $X \geq 10$, then display X and Y (without manipulating them).

PROGRAM:TEST
$: 1 \rightarrow X: 10 \rightarrow Y$
: If $X<10$
:Then
$: 2 X+3 \rightarrow X$
$: 2 Y-3 \rightarrow Y$

: End
:Disp \{X,Y\}
:Pause

If-Then-Else PRGM 1, 2, and 3

Use If with Then and Else to execute only one of two blocks of commands depending upon condition. If condition is true (non-zero), then block1 is executed. If condition is false (zero), then block2 is executed. End identifies the end of block2. Then, Else, and End each must be on a line by itself.

:If condition

:Then
:block1 (if true)
:Else
:block2 (if false)
:End
:command

囲 Write a program named TESTELSE that tests an input value, X. If $X<0$, then square it and store it to Y. If $X \geq 0$, then store it to Y. Display X and Y.

```
PROGRAM:TESTELSE
:Input "X=",X
:If X<0
:Then
:X`Y
:Else
:X->Y
:End
:Disp {X,Y}
:Pause
\(X \rightarrow Y\)
: End
:Disp \{X,Y\}
:Pause
```


For(PRGM 4

Use For(to control how many times a loop is repeated. A For(command loops to repeat the same group of commands (block) and increments to control the number of times the loop is repeated.

It executes commands in block through end, increasing variable from begin by increment until variable>end. increment is optional (default=1) and can be negative (end<begin). end is a maximum or minimum value not to be exceeded, which identifies the end of the loop. End identifies the end of block. When variable>end, the program executes each command following End. For(loops can be nested.

```
:For(variable,begin,end[,increment])
:block (while variable \leq end)
:End
:command
```

[囲 Write a program named SQUARE that displays A^{2}, where $0=$ begin, $8=e n d$, and $2=$ increment.

PROGRAM:SQUARE
:For (A,0,8,2)
:Disp A ${ }^{2}$
:Pause
: End

$x=5$ 6
$x=-6$

While PRGM 5

Use While to test condition before the commands in the loop are executed. While performs a block of commands WHILE condition is true (non-zero). condition is frequently a relational test (Chapter 2: Math Operations) and is tested when While is encountered. End identifies the end of block. When condition is false (zero), the program executes each command following End. While instructions can be nested.
:While condition
:block (while condition is true)
:End
:command

目 Write a program named LOOP that increments two variables, I and J, and displays the value of J when $I \geq 6$.

PROGRAM: LOOP
$: 0 \rightarrow I$
$: 0 \rightarrow J$
:While I<6
: $\mathrm{J}+1 \rightarrow \mathrm{~J}$
: $\mathrm{I}+1 \rightarrow \mathrm{I}$
: End
:Disp "J=", J
:Pause

Repeat PRGM 6

Use Repeat to test condition after the commands in the loop are executed. Repeat executes block UNTIL condition is true (non-zero). It is similar to While, but condition is tested when End is encountered; therefore, the group of commands is always executed at least once. When condition is false (zero), Repeat instructions can be nested.
:Repeat condition
:block (until condition is true)
:End
:command

芭 Write a program named RPTLOOP that increments two variables, I and J, and displays the value of J while $I \geq 6$.

```
PROGRAM: RPTLOOP
:0->I
:0->J
:Repeat I\geq6
: J+1 }->\textrm{J
:I+1->I
:End
:Disp "J=",J
:Pause
```


End PRGM 7

End identifies the end of a group of commands. You must include an End instruction at the end of each For(, While, or Repeat loop. Also, you must enter an End instruction at the end of each If-Then group and each If-Then-Else group.
:End

Pause PRGM 8

After a program has been executed, the screen is erased. Therefore, Pause is useful to suspend program execution until you press ENTER, or to display value (such as answers or graphs) and suspend program execution until you press ENTER. During the pause, the pause indicator is on in the top-right corner. Press ENTER to resume execution.

Pause without value temporarily pauses the program. If the DispGraph or Disp instruction has been executed, the appropriate screen is displayed.

:Pause

Pause with value displays value on the Home screen. value can be scrolled.
:Pause value

芭 Write a program named PAUSE that stores a value to A, an equation to \mathbf{Y}_{1}, graphs \mathbf{Y}_{1} using standard WINDOW values
(ZStandard), pauses, and then displays A.
PROGRAM: PAUSE

$: 2 \rightarrow A$	Fo
: FnOff $: ~ " X+A " \rightarrow Y_{1}$	press [2nd [Vars] 21.
:ZStandard	For ZStandard,
:Pause	press Z00M 6.
:Disp "A=",A	
:Pause	

Lbl and Goto PRGM 9 and O

:Disp "A=",A
:Pause

LbI (label) and Goto are used together for branching.
Lbl gives a name (label) to a particular location in a program. label can be one or two text characters (A through Z, 0 through 99).
:Lbl label
Goto causes the program to branch to label when Goto is encountered.

:Goto label

[-Write a program named SQUARE2 that asks for an input, A, squares A, and then displays A until $A \geq 100$.

PROGRAM:SQUARE2
:Lb1 99
: Input A
:If $A \geq 100$
:Stop
:Disp A²
:Pause
: Goto 99

IS>(PRGM A

IS>((increment and skip if greater than) is used for testing and branching. IS $>$ (adds 1 to variable. If the answer is $>$ value (which can be an expression), then command1 is skipped; if the answer is \leq value, then command 1 is executed. command2 is always executed. variable cannot be a system variable. IS>(is not a looping instruction.

```
:IS>(variable,value)
:command1 (if answer \leq value)
:command2
```

囲 Write a program named ISKIP that displays A until $A>5$.

PROGRAM:ISKIP

```
:O->A
```

:Lbl S
:Disp A
:Pause
:IS>(A,5)
:Goto S
:Disp "A IS NOW >5"
:Pause

DS $<$ (PRGM B

DS<((decrement and skip if less than) is used for testing and branching. $\mathrm{DS}<$ (subtracts 1 from variable. If the answer is < value (which can be an expression), then command1 is skipped; if the answer is \geq value, then command1 is executed. command2 is always executed. variable cannot be a system variable. $\mathrm{DS}<$ (is not a looping instruction.
:DS<(variable,value)
:command1 (if answer \geq value)
:command2

目 Write a program named DSKIP that displays A until $A<5$.

```
PROGRAM:DSKIP
:9->A
:Lbl S
:Disp A
:Pause
:DS<(A,5)
:Goto S
:Disp "A IS NOW <5"
:Pause
```


Menu(PRGM C

Menu(generates a menu of up to seven items during program execution. The pause indicator stays on until you select a menu item. The calculator then branches to the label corresponding with that item.

The menu title is enclosed in quotation marks (" ") and can have up to 16 characters. Up to seven pairs of menu items follow. Each pair consists of a text item (also enclosed in quotation marks) to be displayed as a menu selection, and a label item to which to branch if you select the corresponding menu selection.

```
:Menu("title","item1",label1[,"item2",label2,...])
```

芭 Write a program named DATES that displays a menu of dates. Label the title "DATES", and label option one "JANUARY 16" with A, label option two "February 19" with B, label option three "APRIL 9 " with C, label option four "JULY 29 " with \mathbf{D}, label option five "AUGUST 2" with E, label option six "NOVEMBER 10" with F, and label option seven "DECEMBER 8" with F.

PROGRAM:DATES
:Menu("DATES", "JANUARY
16",A,"FEBRUARY 19",B,"APRIL 9",C,"JULY 29",D,"AUGUST
2", E,"NOVEMBER 10",F,"DECEMBER 8", G)

The program above pauses until you select $1,2,3,4,5,6$, or 7 . If you select 2:FEBRUARY 19, for example, the menu disappears and the program continues execution at Lbl B.

SetMenu(PRGM D

Like Menu(, SetMenu(sets up a menu of up to seven items. During program execution, the user assigns (and edits, as necessary) numerical values to each item. To assign a value, enter the value using the number keys, and then press ENTER or ∇.

Long values do not wrap; they scroll off the screen, and an ellipsis (...) is displayed. Use \square and to scroll the whole value. Use \triangle and \square to move between menu items as necessary.
:SetMenu("title","item1",variable1[,"item2",variable2,...])
The menu title is enclosed in quotation marks (" ") and can have up to 16 characters. Up to seven menu items (also enclosed in quotation marks) follow. During program execution, the menu displays the first 10 characters of item. Each item needs a corresponding variable where the entered value is stored.

The values you enter for the variables (assigned to the menu items) are stored in the calculator's memory. Also, if you assign to a menu item a variable that has been previously defined in the calculator's memory, that value displays when you first execute the program.

Press 2nd [QUIT] to exit the menu and end program execution.

击 Write a program named SETMENU that displays a menu of animal weights. Label the title "WEIGHTS", show weight values of five different animals, and allow the user to change the weight values.

prgm PRGM E

Use prgm to execute other programs as subroutines. When you select prgm, it is pasted to the cursor location. Use the Text editor to enter the characters needed to spell a program name. Using prgm is equivalent to selecting existing programs from the PRGM EXEC menu (see the section in this chapters entitled "Calling a Program from Another Program"; however, it allows you to enter the name of a program that you have not yet created.

:prgmname

[目 Write two programs named CALCAREA and VOLUME. CALCAREA calculates the area of a circle. VOLUME inputs the circle diameter D, and height H, calls CALCAREA as a subroutine, which calculates the area using D and H, and then displays the volume of a cylinder.

```
PROGRAM:VOLUME
:Input "DIAMETER=",D
:Input "HEIGHT=",H
:prgmCALCAREA
:A*H->V
:Disp "VOLUME=",V
:Pause
PROGRAM:CALCAREA
:D/2 }->\textrm{R
: }\pi*\mp@subsup{R}{}{2}->\textrm{A
:Return
```


Return PRGM F

Return quits the subroutine and returns execution to the calling program, even if it is encountered within nested loops. Any loops are ended. An implied Return exists at the end of any program that is called as a subroutine. Within the main program, Return stops execution and returns to the Home screen.

:Return

See the program examples (on the previous page), CALCAREA and VOLUME, explaining the programming command, prgm. The subroutine, CALCAREA, ends with a Return command.

Stop PRGM G

Stop ends program execution and returns to the Home screen. Stop is optional at the end of a program.

> :Stop
[0] Write a program named STOP that inputs T. If $T \geq 20$, then the program displays $T \geq 20$. If $T<20$, then the program stops execution. (Note: The example screens show two program executions so that you can see what happens with both types of input.)

```
PROGRAM:STOP
```

: Input "T=", T
: If $T \geq 20$
:Then
:Disp " $\mathrm{T} \geq 20$ "
: Pause
: Else
:Stop

DelVar PRGM H

to the Home screen.

DeIVar (delete variable) deletes the contents of variable from memory. You cannot delete a program or a system variable.

:DeIVar variable

[囲 Write a program named DELVAR that deletes the value for variable A from the calculator's memory.

```
PROGRAM:DELVAR
```

```
:{1,2}->L1
:Disp L1
:Pause
:DelVar L1
:Disp L1
:Pause
: Pause
```


ERE: DFVDEF INED

2: Gota

GraphStyle(PRGM I

GraphStyle(defines one of seven graph style types for $Y_{n} . Y_{n}=1$, 2, 3, or 4 (for $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}$, or \mathbf{Y}_{4}). The type icons described below are located to the left of Y_{n} in the $Y=$ editor.
1 = ' (line)
$5=4$ (path)
2 =
$6=4$ (animate)
3 = '" (shade above)
$7=\therefore$ (dot)
$4=$ 出 (shade below)
:GraphStyle(Y_{n}, type $)$

For a detailed description of each graph style, see Chapter 9: Function Graphing.

줎
Write a program named GRPHSTYL that defines the shade below graph style for $\mathbf{Y}_{1}=2 \mathrm{X}+5$ and graphs it.

PROGRAM:GRPHSTYL

The PRGM I/O Menu

You can only access the PRGM I/O (input/output) menu by pressing PRGM \square from the Program editor. The PRGM I/O menu instructions allow you to input values and output answers during program execution.

To return to the Program editor without selecting an item, press CLEAR.

PRGM (\quad (from the Program editor only)		
1:Input	Lets the user enter a value or display a graph.	
2:Prompt	Prompts the user to enter variable values.	
3:Disp	Displays text or values on the Home screen.	
4:DispGraph	Displays the current graph.	

5:DispTable	Displays the current table.
6:Output(Displays text or values at a specified position.
7:getKey	Checks the keyboard for a keystroke.
8:CIrScreen	Clears the Home screen.
9:CIrTable	Clears the current table.
0:GetCalc(Gets a variable from another TI-73.
A:Get(Gets a variable from the CBL $2 / \mathrm{CBL}$ or CBR.
B:Send(Sends a variable to the CBL $2 / \mathrm{CBL}$ or CBR.

Input PRGM $\square 1$

Input functions in two different ways. You can use it to store to a variable value or to display the current graph.

Storing to a Variable

Input accepts input and stores it to variable. When the program is executed, a ? (question mark) prompt (unless otherwise defined) is displayed. Enter a real number, a list name, or a \mathbf{Y}_{n} function. Then press ENTER, which tells the calculator to evaluate the input and store the value to variable.

:Input variable

To input lists and expressions during program execution, you must use the Text editor to include braces (\{\}) around the list elements and quotation marks ($"$ ") around the expressions and \mathbf{Y}_{n} functions.

You also can display text of up to 16 characters as a prompt. During program execution, enter a value after the prompt, and then press EENTER. The value is stored to variable, and the program resumes execution.

[^2]囲 Write a program named InPUTVAR that inputs two sets of data and a function, and then solves the function using both of the data sets.

PROGRAM:INPUTVAR
$\begin{array}{lll}\text { : Input } " \mathrm{Y}_{\mathrm{F}}=", \mathrm{Y}_{1} & \text { For } \mathrm{Y}_{1} \text {, press } \\ \text { [2nd [VARS] } 21 .\end{array}$
: Input "A=", A
: Input "LDATA=", LDATA ___For L, press
: Disp " $\mathrm{Y}_{1}(\mathrm{~A})=", \mathrm{Y}_{1}(\mathrm{~A})$
:Pause
: Disp " $\mathrm{Y}_{1}($ LDATA $)=$ ", $\mathrm{Y}_{1}($ LDATA $)$
:Pause

Displaying the Current Graph

Input, with no arguments, displays the current graph. Once the graph screen is shown, you can move the free-moving cursor, which updates \mathbf{X} and \mathbf{Y} by a value of .1 . The pause indicator is displayed. Press ENTER to resume program execution. The Home screen then displays the X- and Y-coordinates.

:Input

囲 Write a program named GRPHINPT that gets input from the graph screen (the (X, Y) coordinates of the cursor's position) and displays the values on the Home screen.

Prompt PRGM $\square 2$

During program execution, Prompt displays the specified variables followed by $=$?, one at a time on separate lines. During program execution, the user enters a value or expression for each variable, and then presses ENTER. The values are stored, and the program resumes execution. $\mathbf{Y}_{\mathbf{n}}$ functions are not valid with Prompt.
:Prompt variableA[,variableB,variableC...]
[囲 Write a program named WINDOW that requests inputs to be stored to WINDOW variables.

PROGRAM:WINDOW
: Prompt Xmin For WINDOW
:Prompt Xmax ——variables, press
:Prompt Ymin [2nd [vars] 1.
:Prompt Ymax

Disp PRGM 3

Disp displays one or more variable values during program execution. To display text, surround the text with quotation marks.

```
:Disp valueA[,valueB,valueC,...]
:Disp "text"[,valueA]
```

Pause after Disp halts execution temporarily so that you can examine the screen. To resume execution, press ENTER. If a list is too large to display in its entirety, an ellipsis (...) is displayed in the last column, but the list cannot be scrolled.

- If value is a variable, the current value stored to the variable is displayed.
- If value is an expression, it is evaluated and the result is displayed on the right side of the next line.
- If value is text within quotation marks, it is displayed on the left side of the current display line. \rightarrow is not valid as text.
[戒 Write a program named DISPNOTE that displays the messages, "I LOVE MATH" and "TEST1 GRADE=95".

PROGRAM:DISPNOTE
:Disp "I LOVE MATH"
: Pause
:Disp "TEST1 GRADE=",95
: Pause

DispGraph PRGM $\quad 4$

DispGraph (display graph) displays the graph of all defined and selected \mathbf{Y}_{n} functions during program execution. If Pause is encountered after DispGraph, the program halts temporarily so that you can examine the screen. Press ENTER to resume execution.

:DispGraph

DispTable PRGM 5

DispTable (display table) displays the table for all defined and selected $\mathbf{Y}_{\mathbf{n}}$ functions during program execution. If Pause is encountered after DispTable, the program halts temporarily so that you can examine the screen. Press ENTER to resume execution.

:DispTable

Output(PRGM $\sqrt{ } 6$

Output(displays text or value on the Home screen beginning at row (1-8) and column (1-16), overwriting any existing characters. You may want to precede Output(with CIrScreen.

Expressions are evaluated and values are displayed according to the current mode settings. \rightarrow is not valid as text.
:Output(row,column,"text")
:Output(row,column,value)
[茀 Write a program named OUTPUT that writes the contents of B to a specific area on the screen.

```
PROGRAM:OUTPUT
:3+5->B
:C1rScreen
:Output(5,4,"ANSWER: ")
:Output(5,12,B)
:Pause
```

FHEUER: 8

getKey PRGM $\square 7$

getKey returns a number corresponding to the last key pressed, according to the following key code diagram. If no key has been pressed, getKey returns 0 . Use getKey inside loops to transfer control, for example, when creating programs that use a key to control the logic flow.
:getKey

TI-73 Key Code Diagram

目 Write a program named GETKEY that displays the key code for the last key pressed, represented as variable K. End the program when $K=45$ (CLEAR).

```
PROGRAM:GETKEY
```

```
:Lbl A
:0->K
:While K=0
:getKey->K
:End
:Disp K
:If K*45
:Goto A
```


CIrScreen and CIrTable PRGM $D 8$ and 9

CIrScreen (clear Home screen) clears the Home screen during program execution.
:CIrScreen
ClrTable (clear table) clears the values in the table during program execution.

:ClrTable

GetCalc(PRGM DO

GetCalc(gets the contents of variable from another TI-73 and stores it to variable on the receiving 73. variable can be a real number, list element, list name, \mathbf{Y}_{n} variable, or picture.

:GetCalc(variable)

You can access GetCalc(from the CATALOG (2nd [CATALOG]) to execute it from the Home screen.

Get (and Send(PRGM A and B

Get(gets data from the Calculator-Based Laboratory ${ }^{\text {TM }}$ (CBL 2 ${ }^{\text {TM }}$, CBL $\left.^{\text {TM }}\right)$, or Calculator-Based Ranger ${ }^{\text {TM }}\left(\mathrm{CBR}^{\mathrm{TM}}\right.$) system and stores it to variable on the receiving TI-73. variable can be a real number, list element, list name, \mathbf{Y}_{n} variable, or picture.

```
:Get(variable)
```

Send(sends the contents of variable to the CBL 2/CBL or CBR. You cannot use it to send to another TI-73. variable can be a real number, list element, list name, \mathbf{Y}_{n} variable, or picture. variable can be a list of elements.

```
:Send(variable)
```

囲 Write a program named GETSOUND that gets sound data and time in seconds from a CBL 2/CBL.

PROGRAM:GETSOUND
:Send(\{3,.00025,99,1,0,0,0,0, 1\})
:Get(L1)
:Get(L2)

Editing Program Commands

To edit a stored program, select the program name that you want to edit from the PRGM EDIT menu. The calculator displays the Program editor and all existing program lines for that program.

The PRGM EDIT menu lists in alphabetical order all created programs. From this list, select the program you want to edit.
The calculator then displays the Program editor which displays all existing programming commands that make up the selected program.

This menu labels the first 10 items using 1 though 9, then 0 . All other programs are still included in the list but are not labeled with a number. To select a menu item, press the number associated with it or highlight the item with the cursor keys, and then press ENTER.

Inserting, Deleting, and Editing Command Lines

- To insert a new command line anywhere in the program, place the cursor where you want the new characters, press [2nd [iNS], and then press ENTER. A colon indicates a new line.
- To insert characters on an existing line, place the cursor where you want the new line, press [2nd [iNS], and then enter the new characters.
- To delete a command line, place the cursor on the line, press CLEAR to clear all instructions and expressions on the line, and then press $\overline{D E L}$ to delete the command line, including the colon.
- To move the cursor to the beginning of a command line, press 2nd \square; to move to the end, press 2nd \square.

Copying and Renaming a Program

You can copy all command lines from one program into a new or existing program.

- To copy into a new program, use the ((PRGM $\square \square)$ menu to create and name the new program. The calculator then automatically displays the Program editor with the program name on the top line.
- To copy into an existing program, use the PRGM EDIT ($\operatorname{PRGM} \square$) menu and select the existing program name. The calculator then automatically displays the Program editor with the existing program name on the top line.

Then follow these steps:

1. Position the cursor where you want the copy of the program to begin.
2. Press [2nd [RCL]. Rcl is displayed on the bottom line of the Program editor.
3. Press PRGM \square to display the PRGM EXEC menu.
4. Select a name from the menu. prgmname is pasted to the bottom line of the Program editor. You cannot directly enter the subroutine name using the Text editor when using RcI. You must select the name from the PRGM EXEC menu.)
5. Press ENTER. All command lines from the selected program are copied into the new or existing program.

Calling a Program from Another Program

The PRGM EXEC (execute) menu ($\mathrm{PRGM} \square \square$), accessed only from the Program editor, lets you call any stored program into the current program. The called program then becomes a subroutine in the current program.

The PRGM EXEC menu lists in alphabetical order all created programs. From this list, select the program that you want to call. The program name is pasted to the cursor location in the Program editor.

This menu labels the first 10 items using 1 though 9 , then 0 . All other programs are still included in the list, but are not labeled with a number. To select a menu item, press the number associated with it or highlight the item with the cursor keys, and then press ENTER.

You also can enter a program name on a command line by selecting E:prgm from the PRGM CTL menu, and then entering the program name using the Text editor.

	BEGEEIT NEW
PRGM $\triangle \square$ (from the	
Program editor only)	

When prgmname is encountered during execution, the next command that the program executes is the first command in the subroutine. It returns to the subsequent command in the first program when it encounters either Return or the implied Return at the end of the second program.

Notes about Calling Programs

- Variables are global.
- label used with Goto and Lbl is local to the program where it is located. label in one program is not recognized by another program. You cannot use Goto to branch to a label in another program.
- Return exits a subroutine and returns to the calling program, even if it is encountered within nested loops.

Executing a Program

The PRGM EXEC (execute) menu lists in alphabetical order all created programs. From this list, select the program that you want to execute. The program name is pasted to the cursor location on the Home screen. Pressing ENTER begins executing the program. Pressing ENTER after a program is completed returns you to the Home screen.

The PRGM EXEC menu labels the first 10 items using 1 though 9 , then $\mathbf{0}$. All other programs are still included in the list, but are not labeled with a number. To select a menu item, press the number associated with it or highlight the item with the cursor keys, and then press ENTER.

Breaking Out of a Program

To stop program execution, press 0N. The ERR:BREAK menu is displayed.

- To return to the Home screen, select 1:Quit.
- To go where the interruption occurred, select 2:Goto.

Debugging a Program

The TI-73 checks for program errors during program execution. It does not check for errors as you enter a program.

If the calculator finds an error during program execution, it stops execution and then displays an error screen.

- To return to the Home screen, press 1:Quit.
- To go where the error occurred in the program code, select 2:Goto.

13

Communication Link

 and the CBL/CBR ApplicationTI-73 Link Capabilities 254
Linking to Another Calculator 254
Linking to the CBL 2/CBL System or CBR 255
The Link SEND Menu APPS 1 255
The Link RECEIVE Menu APPS $1 \square$ 257
Transmitting Data Items 258
Repeating a Transmission to an Additional TI-73 259
DuplicateName Menu 259
Transmission Error Conditions 260
Backing Up Memory 261
Upgrading your TI-73 Graph Explorer Software 262
Graph Explorer Software Upgrades 262
Where to Get Upgrades 262
How to Install Upgrades 262
Backing Up Your Unit before an Installation 263
The APPLICATIONS Menu APPS 263
Steps for Running the CBL/CBR Application 264
Selecting the CBL/CBR Application 265
Specifying the Data Collection Method 265
Specifiying Data Collection Options 266
GAUGE 266
DATA LOGGER 269
RANGER 272
Collecting the Data 273
Stopping Data Collection 274

TI-73 Link Capabilities

The TI-73 comes with a unit-to-unit link cable. With this cable, you can connect to and communicate with another TI-73, a TI-82, a TI-83, the Calculator-Based Laboratory ${ }^{\mathrm{TM}}$ (CBL 2^{TM}, $\left.\mathrm{CBL}^{\mathrm{TM}}\right)$, or the Calculator-Based Ranger ${ }^{\mathrm{TM}}\left(\mathrm{CBR}^{\mathrm{TM}}\right)$. You can communicate with a personal computer using $\mathrm{TI}^{\mathrm{TM}}$ Connect or TI-GRAPH LINK ${ }^{\text {TM }}$ software and a TI-GRAPH LINK cable.

For information about any of these accessories, contact Texas Instruments Customer Support (see Appendix C:
Battery/Service and Warranty Information).
To connect the TI-73 to another device using the unit-to-unit cable, use the link port located at the center of the bottom edge of the calculator.

1. Insert either end of the unit-to-unit cable into the TI-73 port very firmly.
2. Insert the other end of the cable into the port of the other device.

Linking to Another Calculator

By linking two TI-73's you can transfer all variables and programs to another TI-73 or back up the entire RAM (Random Access Memory) of a TI-73. To transmit from one TI-73 to another, you first must set up one TI-73 to send and the other to receive using the APPS 1:Link SEND and RECEIVE menus (see page 255 and 257).

Linking a TI-73 to a TI-82 or TI-83 lets you transfer some types of data between the calculators. Use the APPS 1:Link SEND menu items 9:Vars to TI82 and 0:Vars to TI83 (see page 256).

- You can only transfer numerical list data stored in L1-L6 (NOT categorical lists) to a TI-82. All fractional elements are converted to decimals.

If dimension >99 for a TI- 73 list that is selected to be sent to a TI-82, the TI-82 truncates the list at the $99^{\text {th }}$ element during transmission.

- You can only transfer numerical list data stored in L1-L6 or user-named numerical lists to a TI-83 (NOT categorical lists). All fractional elements are converted to decimals.
- From a TI-82 or a TI-83 to a TI-73, you cannot perform a memory backup (but you can send real numbers, real number lists, and picture variables).

Linking to the CBL 2/CBL System or CBR

Connect a CBL 2/CBL or CBR to a TI-73 using one of the unit-to-unit link cables that are included with the calculator, the CBR and the CBL 2/CBL. See the section entitled, "Selecting the CBL/CBR Application" in this chapter.

Linking to a PC or Macintosh ${ }^{\mathrm{TM}}$

TI-GRAPH LINK ${ }^{\text {TM }}$ is an optional application that connects to a TI-73 to enable communications with a personal computer.

The Link SEND Menu APPS 1

You choose the type of data you want to send from the TI-73 to another device from the APPS 1:Link SEND menu.

To communicate between two calculators, you must set up one calculator to send the data and the other calculator to receive the data. The following section describes how to set up the TI-73 to send data. To set up a TI-82 or TI-83, refer to its user manual.

APPS 1	

1:All+...	Displays all RAM items as selected.
2:All-...	Displays all RAM items as deselected.
3:Prgm...	Displays all program names.
4:List...	Displays all list names.
5:Pic...	Displays all picture data types.
6:Real...	Displays all real variables.
7:Y-Vars...	Displays all \mathbf{Y}_{n} variables.
8:Consts...	Displays all constants.
9:Vars to TI82...	Displays list names Li-L6 that are defined as numerical lists, real number variables and picture variables.
0:Vars to TI83...	Displays list names that are defined as numerical lists, real number variables, and picture variables.
A:Apps...	Displays all software applications.
B:AppVars...	Displays all software applications variables.
C:Sendld	Sends the Calculator ID number immediately. (You do not need to select TRANSMIT.)
D:Back Up...	Selects all RAM for backup to a TI-73.

To select data items to send from the sending unit to another calculator, follow these steps:

1. Press APPS to display the APPLICATIONS menu.
2. Select 1:Link to display the Link SEND menu.
3. Select the type of data you want to send. The corresponding SELECT screen is displayed. Each SELECT screen, except the one for All+, is displayed initially with no data items selected.
4. Press Δ and to move the selection cursor (\downarrow) to an item you want to select or deselect.
5. Press ENTER to select or deselect an item. Selected names are marked with a black box (■). To exit a SELECT screen without transmitting any items, press [2nd [QUIT].

6. Repeat steps 4 and 5 to select or deselect additional items.

The Link RECEIVE Menu APPS $1 \square$

You set up the TI-73 to receive data from another device using the APPS 1:Link RECEIVE menu.

To communicate between two calculators, you must set up one calculator to send the data and the other calculator to receive the data. The following section describes how to set up the TI-73 to receive data. To set up a TI-82 or TI-83, refer to its user manual.

To set up the TI-73 to receive data, follow these steps:

1. Press APPS to display the APPLICATIONS menu.
2. Select 1:Link and press \square to display the Link RECEIVE menu.
3. Select 1:Receive. The message Waiting... and the busy indicator are displayed. The receiving unit is ready to receive transmitted items.

To exit the receive mode without receiving items, press 0 ON , and then select 1:Quit from the Error in Xmit menu.

When transmission is complete, the unit is still in the receive mode. Press [2nd [QUIT] to exit the receive mode.

Transmitting Data Items

To transmit data items from a TI-73, follow these steps:

1. Select items to send on the sending unit. Keep the SELECT screen displayed on the sending unit (see page 257).
2. Set the receiving unit to receive mode (see page 257).
3. Press \square on the TI-73 to display the TRANSMIT menu.

 HTransmit.

4. Confirm that Waiting... is displayed on the receiving unit, which indicates it is set to receive.
5. Select 1:Transmit. The name and type of each data item are displayed line by line on the sending unit as the item is queued for transmission, and then on the receiving unit as each item is accepted.
6. After all selected items have been transmitted, the message Done is displayed on both calculators. Press Δ and to scroll through the names.

To stop a transmission, press 0 N . The Error in Xmit menu is displayed on both units. To leave the error menu, select 1:Quit.

During transmission, if the receiving unit does not have sufficient memory to receive an item, the Memory Full menu is displayed on the receiving unit.

- To skip this item for the current transmission, select 1:Omit. Transmission resumes with the next item.
- To cancel the transmission and exit transmission mode, select 2:Quit.

Repeating a Transmission to an Additional TI-73

After sending and receiving data between two TI-73s, you can repeat the same transmission without having to reselect data items to send. Use the original sending unit only and as many additional TI-73 units as necessary.

Simply repeat the transmission process without selecting or deselecting any new items. Note: You cannot repeat the transmission if you selected All+ or All-.

DuplicateName Menu

During transmission, if a variable name is duplicated, the DuplicateName menu is displayed on the receiving TI-73.

The duplicate variable name, L1, and its type, LIST, are displayed.	
1:Rename	Prompts you to rename the receiving variable.
2:Overwrite	Overwrites data while receiving the variable.
3:Omit	Skips transmission of sending variable.
4:Quit	Stops transmission.

- When you select 1:Rename, the Name= prompt is displayed, and you can enter another appropriate variable name using the [2nd [VARS] menu (for example, renaming Pic1 to Pic2 where Pic2 is undefined), or you can enter text using the Text editor (2nd [TEXT]) (for example, renaming L_{1} to LABC where LABC is undefined). When renaming lists, do not enter the L (2nd [STAT] OPS 9). The calculator assumes that it is a list name. Press ENTER to resume transmission.

Note: You cannot rename software applications or constants (the 1:Rename option is excluded from the DuplicateName menu).

- When you select 2:Overwrite, the sending unit's data overwrites the existing data stored on the receiving unit. Transmission resumes.
- When you select 3:Omit, the sending unit does not send the data in the duplicated variable name. Transmission resumes with the next item.
- When you select 4:Quit, transmission stops, and the receiving unit exits receive mode.

Transmission Error Conditions

A transmission error (Error in Xmit) occurs after one or two seconds if:

- The unit-to-unit cable is not attached to the sending or receiving unit. Note: If the cable is attached, push it in firmly and try again.
- The receiving unit is not set to receive transmission.
- You attempt a backup between a TI-73 and a TI-82 or TI-83.
- You attempt a data transfer from a TI-73 to a TI-82 with data other than numerical lists, Li-L6, or without using menu item 9:Vars to TI82.
- You attempt a data transfer from a TI-73 to a TI-83 with data other than numerical lists, L1-L6, or user-named numerical lists, or without using menu item 0:Vars to TI83.

Although a transmission error does not occur, these two conditions may prevent successful transmission:

- You try to use Get(with a calculator instead of a CBL 2/CBL.
- You try to use GetCalc(with a TI-82 or TI-83 instead of a TI-73.

Backing Up Memory

The TI-73 includes two types of memory: RAM (Random Access Memory) and F-ROM (Flash Read Only Memory). RAM includes all lists, programs, variables, and equations. F-ROM includes software applications, such as the CBL/CBR application (APPS 2).

To copy (and overwrite) the exact contents of RAM in the sending TI-73 to the memory of the receiving TI-73, follow these steps:

1. Set up the receiving unit in receive mode (see page 257).
2. Then, on the sending unit, select D:Back Up from the Link SEND menu.
3. Select 1:Transmit from the MEMORYBACKUP menu on the sending unit to begin transmission. Selecting 2:Quit returns you to the Link SEND menu.
4. As a safety check to prevent accidental loss of memory, the message WARNING-BACKUP is displayed when the receiving unit receives notice of a backup.

Select 1:Continue to begin the backup transmission.
Select 2:Quit to prevent the backup and return to the Link SEND menu.

When the backup is complete, both the sending calculator and receiving calculator display a MEMORY BACKUP confirmation screen. If a transmission error occurs during a backup, the receiving unit's memory is reset.

Upgrading your TI-73 Graph Explorer Software

You can upgrade the software, or operating system, on your TI-73. You do this by transferring this software from a computer to your TI-73 using the TI Connect ${ }^{\text {TM }}$ or TI-GRAPH LINK ${ }^{\text {TM }}$ software and a TI-GRAPH LINK cable.

Graph Explorer Software Upgrades

You can upgrade two different types of software. These are stored in F-ROM. Therefore, this software is unaffected if you select [2nd [MEM] 7:Reset 1:All RAM. These include:

- New versions which enhance the existing software (released free of charge).
- Feature upgrades which modify or add functionality to existing software (available for purchase).

If you want to download these feature upgrades, which must be purchased from the TI web site, you must provide the unique ID number that identifies your TI-73. To find the ID number, press [2nd [MEM] 1:About.

Where to Get Upgrades

For up-to-date information about available upgrades and how to install them, check the TI web site at education.ti.com or contact Texas Instruments as described in Appendix C: Battery/Service and Warranty Information.

How to Install Upgrades

To install new Graph Explorer Software, including free or purchased upgrades and applications, you need your TI-73, a computer, TI Connect or TI-GRAPH LINK software, and a TI-GRAPH LINK cable. Extensive directions for installing upgrades are provided on the web site at education.ti.com.

1. Transfer the software from the web site to your computer.
2. Transfer the software from the computer to your unit.

Backing Up Your Unit before an Installation

When you install new operating system software, the installation process:

- Deletes all user-defined data items located in RAM.
- Resets all system variables and modes to their original factory settings. This is equivalent to using the MEMORY RESET menu to reset all memory.

To retain any existing data items, do either of the following before installing the upgrade:

- Transmit the data items to another TI-73 as described on page 258.
- Use the TI Connect ${ }^{\mathrm{TM}}$ or TI-GRAPH LINK ${ }^{\mathrm{TM}}$ software and a TI-GRAPH LINK cable to send the data items to a computer.

The APPLICATIONS Menu APPS

For the TI-73, you can buy additional software applications, which allow you to customize further your calculator's functionality. The calculator reserves four spaces (placeholders) within ROM memory specifically for applications. The TI-73 comes with the CBL/CBR application already listed on the APPLICATIONS menu (APPS 2).

Steps for Running the CBL/CBR Application

Follow these basic steps when using the CBL/CBR application. You may not have to do all of them each time.

Selecting the CBL/CBR Application

You access the CBL/CBR application by pressing APPS. In order to use a CBL/CBR application, you need a CBL 2/CBL or CBR (as applicable), a TI-73, and a unit-to-unit link cable.

Select 2:CBL/CBR to set up the TI-73 to use either of the applications. An informational screen first appears. Press any key to continue to the next menu.
\qquad

$$
\text { APPS } 2
$$

Specifying the Data Collection Method

With a CBL 2/CBL or CBR, you can collect data in one of three ways: GAUGE (bar or meter), DATA LOGGER (a Temp-Time, Light-Time, Volt-Time, or Sonic-Time graph), or RANGER, which runs the RANGER program, the built-in CBR data collection program.

CBL 2/CBL and CBR differ in that CBL 2/CBL allows you to collect data using one of four different probes: Temperature, Light, Volt, or Sonic. CBR collects data using only the Sonic probe. You can find more information on CBL 2/CBL and CBR in their user manuals.

APPS 2 ENTER	
1:GAUGE	Represents results as either a bar or meter. Compatible with CBL 2/CBL or CBR.
2:DATA LOGGER	Represents results as a Temp-Time, Light-Time, Volt-Time, or Sonic-Time graph. Compatible with CBL 2/CBL or CBR.
3:RANGER	Sets up and runs the RANGER program and represents results as a Distance-Time, Velocity-Time, or Acceleration-Time graph. Compatible with CBR only.
4:QUIT	Quits the CBL/CBR application.

Specifiying Data Collection Options

After you select a data collection method, a screen showing the options for that method is displayed. The method you choose, as well as the data collection options you choose for that method, determine whether you use the CBR or the CBL 2/CBL. Refer to the charts in the following sections to find the options for the application you are using.

GAUGE

The GAUGE data collection method lets you choose one of four different probes: Temp, Light, Volt, or Sonic. You can use the CBL 2/CBL with all probes; you can use the CBR only with the Sonic probe.

When you select a PROBE option, all other options change accordingly. Use \square and \square to move between the PROBE options. To select a probe, highlight the one you want with the cursor keys, and then press ENTER.

GAUGE Options (Defaults)					
	Temp	Light	Volt	Sonic	
TYPE:	Bar or Meter				
MIN:	0	0	-10	0	
MAX:	100	1	10	6	
UNITS:	${ }^{\circ}{ }^{\circ}$ or ${ }^{\circ} \mathrm{F}$	$\mathrm{mW} / \mathrm{cm}^{2}$	Volt	m or Ft	
DIRECTNS:	On or Off				

TYPE

The GAUGE data collection results are represented according to TYPE: Bar or Meter. Highlight the one you want with the cursor keys, and then press ENTER.

Bar

Meter

MIN and MAX

MIN and MAX refer to the minimum and maximum UNIT values for the specified PROBE. Defaults are listed in the table on page 267. See the CBL 2/CBL and CBR guidebook for specific min/max ranges. Enter values using the number keys.

UNITS

The results are displayed according to the UNITS specified. To specify a unit measurement (Temp or Sonic probes only), highlight the one you want using the cursor keys, and then press ENTER.

DIRECTNS (Directions)

If DIRECTNS=On, the calculator displays step-by-step directions on the screen, which help you set up and run the data collection. To select On or Off, highlight the one you want with the cursor keys, and then press ENTER.

With the Sonic data collection probe, if DIRECTNS=On, the calculator displays a menu screen before starting the application asking you to select 1:CBL or 2:CBR. This ensures that you get the appropriate directions. Press 1 to specify CBL or 2 to specify CBR.

Data Collection Comments and Results

To label a specific data point, press ENTER to pause the data collection. You see a Comment= prompt. Enter up to a six-character comment using the Text editor ([2nd [TEXT]) or number keys. The calculator automatically converts the comment labels and the corresponding results into list elements using the following list names (you cannot rename these lists):

Probe	Comment Labels (X) Stored to:	Data Results (Y) Stored to:
Temp	LTCMNT	LTEMP
Light	LLCMNT	LLIGHT
Volt	LVCMNT	LVOLT
Sonic	LDCMNT	LDIST

To see all elements in one of these lists, you can insert these lists into the List editor just as you would any other list. Access list names from the 2nd [STAT] Ls menu.

CAUTION: These lists are only temporary placeholders for comment labels and data results for any particular probe. Therefore, every time you collect data and enter comments for one of the four probes, the two lists pertaining to that probe are overwritten with comment labels and data results from the most recently collected data.

If you want to save comment labels and data results from more than one data collection, copy all list elements that you want to save to a list with a different name.

Also, the DATA LOGGER data collection method stores data results to the same list names, overwriting previouslycollected data results, even those collected using the GAUGE data collection method.

DATA LOGGER

The DATA LOGGER data collection method lets you choose one of four different probes: Temp, Light, Volt, or Sonic. You can use the CBL 2/CBL with all probes; you can use the CBR only with the Sonic probe.

When you select a PROBE option, all other options change accordingly. Use \square and \square to move between the PROBE options. To select a probe, highlight the one you want with the cursor keys, and then press ENTER.

DATA LOGGER Options (Defaults)				
	Temp	Light	Volt	Sonic
\#SAMPLES:	99	99	99	50
INTRVL (SEC):	1	1	1	1
UNITS:	${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$	$\mathrm{mW} / \mathrm{cm}^{2}$	Volt	m or Ft
PLOT: RealTme or End				
DIRECTNS:	On or Off			
Ymin (WINDOW):	0			
Ymax (WINDOW):	6			

The data logger data collection results are represented as a Temp-Time, Light-Time, Volt-Time, or Distance-Time graph.

Probe-Time Graph

\#SAMPLES

\#SAMPLES refers to how many data samples are collected and then graphed. For example, if \#SAMPLES=99, data collection stops after the $99^{\text {th }}$ sample is collected. Enter values using the number keys.

INTRVL (SEC)

INTRVL (SEC) specifies the interval in seconds between each data sample that is collected. For example, if you want to collect 99 samples and INTRVL=1, it takes 99 seconds to finish data collection. Enter values using the number keys. See the CBR or CBL 2/CBL guidebook for more information about interval limits.

UNITS

The results are displayed according to the UNITS specified. To specify a unit measurement (Temp or Sonic only), highlight the one you want using the cursor keys, and then press ENTER.

PLOT

You can specify whether you want the calculator to collect realtime (RealTme) samples, which means that the calculator graphs data points immediately as they are being collected, or you can wait and show the graph only after all data points have been collected (End). Highlight the option you want with the cursor keys, and then press ENTER.

Ymin and Y max

To specify Ymin and Ymax values for the final graph, press WINDOW to view the PLOT WINDOW screen. Use \triangle and \square to move between options. Enter Ymin and Ymax using the number keys. Press 2nd [QUIT] to return to the DATA LOGGER options screen.

DIRECTNS (Directions)

If DIRECTNS=On, the calculator displays step-by-step directions on the screen, which help you set up and run the data collection. To select On or Off, highlight the one you want with the cursor keys, and then press ENTER.

With the Sonic data collection probe, if DIRECTNS=On, the calculator displays a menu screen before starting the application asking you to select 1:CBL or 2:CBR. This ensures that you get the appropriate directions. Press 1 to specify CBL or 2 to specify CBR.

Data Collection Results

The calculator automatically converts all collected data points into list elements using the following list names (you cannot rename the lists):

Probe	Time Values ($\boldsymbol{X})$ stored to:	Data Results ($\boldsymbol{Y})$ Stored to:
Temp	LTTEMP	LTEMP
Volt	LTVAS	LLIGHT
Sonic	LTDIST	LVOLT

To see all elements in one of these lists, you can insert these lists into the List editor just as you would any other list. Access list names from the 2nd [STAT] Ls menu.

CAUTION: These lists are only temporary placeholders for data results for any particular probe. Therefore, every time you collect data for one of the four probes, the list pertaining to that probe is overwritten with data results from the most recently collected data.

If you want to save data results from more than one data collection, copy all list elements that you want to save to a list with a different name.

Also, the GAUGE data collection method stores data results to the same list names, overwriting previously-collected data results, even those collected using the data logaer data collection method.

RANGER

Selecting the RANGER data collection method runs the CBR RANGER program, a customized program especially for the TI-73 which makes it compatible with the CBR.

For detailed information about the RANGER program as well as option explanations, see the Getting Started with CBR ${ }^{\text {TM }}$ guidebook.

Note: If you execute the RANGER data collection method, the program name, RANGER, appears in the PRGM EXEC menu. You can't edit the program, but you can execute it from this menu, just as you would another program. If you delete RANGER from the PRGM EXEC menu ([2nd [MEM] 4:Delete 6:Prgm), you can no longer access RANGER from this menu; you must select APPS 2:CBL/CBR 3:RANGER.

The RANGER data collection method only uses the Sonic probe.

Collecting the Data

After you specify all of the options for your data collection method, select the Go option from the GAUGE or DATA LOGGER options screen. If you are using the RANGER data collection method, select 1:SETUP/SAMPLE from the MAIN MENU menu, and then START NOW.

- If DIRECTNS=Off, GAUGE and DATA LOGGER data collection begin immediately.
- If DIRECTNS=On, the calculator displays step-by-step directions.

If PROBE=Sonic, the calculator first displays a menu screen asking you to select 1:CBL or 2:CBR. This ensures that you get the appropriate directions. Press 1 to specify CBL or 2 to specify CBR.

- If you select START NOW from the MAIN MENU of the RANGER data collection method, the calculator displays one directions screen. Press ENTER to begin data collection.

Stopping Data Collection

To stop the GAUGE data collection method, press CLEAR on the TI-73.

The DATA LOGGER and RANGER data collection methods stop after the specified number of samples have been collected. To stop them before this happens:

1. Press 0 ON on the TI-73.
2. Press TRIGGER on the CBR, START/STOP on the CBL 2, or ON/HALT on the CBL.

To exit from the GAUGE or DATA LOGGER option menus without beginning data collection, press 2nd [QUIT].

To exit from the RANGER option menu without beginning data collection, select MAIN MENU. Select 6:QUIT to return to the CBL/CBR APP menu.

Press 4:QUIT from the CBL/CBR APP menu to return to the TI-73 Home screen.

Memory Management

The 2nd [MEM] MEMORY Menu 276
About 2nd [MEM] 1 276
Check RAM 2nd [MEM] 2 277
Check APPs 2nd [MEM] 3 277
Delete 2nd [MEM] 4 278
Clear Home 2nd [MEM] 5 279
ClrAllLists 2nd [MEM] 6 280
Reset [2nd [MEM] 7 280

The 2nd [MEM] MEMORY Menu

At any time, you can check available memory or manage existing memory by selecting items from the 2nd [MEM] MEMORY menu.

2nd [MEM]	
1:About	Displays information about the calculator.
2:Check RAM	Reports memory availability and variable usage.
3:Check APPs	Reports availability of application spaces.
4:Delete	Displays the DELETE FROM menu.

About 2nd [MEM] 1

About displays information about your TI-73. To leave the About screen and return to the Home screen, press either 2nd [QUIT] or CLEAR.

Check RAM [2nd [MEM] 2

Check RAM displays the MEM FREE screen. The top line reports the total amount of available memory. The remaining lines report the amount of memory each variable type is using. You can check this screen to see whether you need to delete variables from memory to make room for new data.

To leave the MEM FREE screen, press either 2nd [Quit] or [CLEAR.

2nd [MEM] 2	

Check APPs 2nd [MEM] 3

Check Apps displays the Spaces Free screen, which displays application memory available on the calculator. Four spaces in the calculator's memory are reserved for applications. The TI-73 comes with the CBL/CBR application already loaded.

Since applications take up no RAM memory, selecting 2nd [MEM] 4:Delete 1:All doesn't delete any applications. Instead, delete an application using 2nd [MEM] 4:Delete 8: Apps.

The Spaces Free screen displays how many spaces are free as well as the names of all loaded applications and the spaces each one occupies. (Any application can occupy anywhere from one to four spaces depending upon its size.)

To leave the Spaces Free screen and return to the Home screen, press either 2nd [QUIT] or CLEAR.

For more information on running applications on the TI-73, see Chapter 13: Communication Link and the CBL/CBR Application.

Delete [2nd [MEM] 4

To increase available RAM memory or application space, you can delete the contents of any type of system variable. You also can delete applications or the application variable, AppVars. Delete displays a menu of types of variables from which you can select. Selecting a type displays a DELETE:type screen of specific variables to delete.

To leave any DELETE:type screen without deleting anything, press 2nd [QUIT], which displays the Home screen. Some system variables, such as the last-answer variable Ans and the statistical variable RegEQ are not listed and cannot be deleted.

To delete from the DELETE FROM screen:

1. Press [2nd [MEM] 4:Delete to display the DELETE FROM secondary menu.
2. Select the data type of the variable you want to delete, or select 1:All for a list of all variables of all types. The DELETE: type menu is displayed, listing each specific variable of the type you selected and the number of bytes each variable is using.
3. Press \square and \square to move the selection cursor (\downarrow) next to the variable you want to delete, and then press ENTER. The variable is deleted from memory. Repeat, as necessary.

List 2nd [MEM] 43

In addition to deleting lists from the DELETE:List menu, you also can delete IDList. The IDList stores any additional IDs that have been collected from other calculators (using the APPS 1:Link 1:Receive feature). Therefore, at any time you can delete IDList, just as you would delete any other variable.

The 2nd [MEm] 2:Check RAM MEM FREE screen adds all statistical list and IDList memory bytes together and displays the total after the List.

Apps and AppVars 2nd [MEM] 48 and 9

Apps allows you to delete individual applications that have been stored on the calculator. Individual applications are not deleted when you select 2nd [MEM] 4:Delete 1:All because they are stored in ROM memory (as opposed to RAM).

AppVars is a variable holder used to store variables created by independent applications, but which are not recognized by the TI-73. For example, if you create a matrix with an application and save it to the calculator's memory, the calculator stores it in AppVars since matrices are not recognized by the TI-73.

In addition, you cannot edit or change variables in AppVars unless you do so through the application which created them.

For more information on running applications, see Chapter 13: Link Communication and the CBL/CBR Application.

Clear Home 2nd [MEM] 5

Clear Home not only clears the Home screen (like CIrScreen) but also clears all previous entries stored in 2nd [ENTRY] (unlike CIrScreen). In addition, all previous entries displayed on the Home screen are erased. To cancel Clear Home without clearing, press CLEAR.

Note: Clear Home is different from the CIrScreen programming command found under the PRGM I/O menu.

You can execute clear Home from either the Home screen or the Program editor. If you select Clear Home from the Program editor, it is inserted at the cursor location. The Home screen and all entries are cleared when the program is executed.

Clear Home takes no additional arguments.
To clear the Home screen and all entries:

1. Press [2nd [QuIT] to display the Home screen.
2. Press [2nd [MEM] 5 to paste the instruction to the Home screen.
3. Press ENTER to execute the instruction.

CIrAllLists 2nd [MEM] 6

CIrAllLists sets to 0 the dimension of each list in memory. To cancel CIrAIILists, press CLEAR. CIrAIILists does not delete list names from memory, from the 2nd [STAT] Ls menu, or from the List editor.

You can execute CIrAllists from either the Home screen or the Program editor. If you select ClrAllists from within the Program editor, it is inserted at the cursor location. The lists are cleared when the program is executed.

CIrAlllists takes no additional arguments.
To clear all elements from all lists:

1. Press 2nd [QuIT] to display the Home screen.
2. Press [2nd [MEM] 6 to paste the instruction to the Home screen.
3. Press ENTER to execute the instruction.

Reset [2nd [MEM] 7

The RESET secondary menu gives you the options of resetting all RAM memory (including default settings) or only resetting the default settings while preserving other data stored in memory, such as programs and $\boldsymbol{Y}_{\mathrm{n}}$ functions. To leave without resetting and to return to the Home screen, press either [2nd [QUIT] or CLEAR.

Resetting All Memory 2nd [MEM] 71

Resetting all RAM memory on the TI-73 restores the memory to the factory settings. It deletes all non-system variables and all programs. It resets all system variables to the default settings.

Before you reset $A L L$ memory, consider deleting only selected data using 2nd [MEM] 4:Delete.

2nd [MEM] 7	
2nd [MEM] 71	

From the Reset ram screen:

- Select 1:No to cancel memory reset and return to the Home screen.
- \quad Select 2:Reset to erase from memory all data and programs. All factory defaults are restored. Mem cleared is displayed on the Home screen.

When you clear memory, the contrast sometimes changes. If the screen is faded or blank, adjust the contrast. Press 2nd $\boldsymbol{\square}$ to increase the contrast or 2nd \square to decrease the contrast.

Resetting Defaults 2nd [MEM] 72

When you reset defaults on the TI-73, all defaults are restored to the factory settings. Stored data and programs are not changed.

Some examples of the TI-73 defaults that are restored by resetting the defaults are:

- Mode settings (MODE).
- \mathbf{Y}_{n} functions that are deselected (Y)
- WINDOW variables (WINDOW).
- Stat plots that are deselected (2nd [PLOT]).
- window format settings (2nd [FORMAT]).
- rand seed value (MATH PRB 1 :rand).

2nd [MEM] 7	
2nd [MEM] 72	

From the Reset defaults screen:

- Select 1:No to cancel defaults reset and return to the Home screen.
- Select 2:Reset to reset all defaults. Default settings are restored. Defaults set is displayed on the Home screen.

A Function and Instruction Reference

All the operations in this section are included in the CATALOG (2nd [CATALOG]). Non-alphabetic operations (such as +, !, and >) are listed at the end of the catalog.

You always can use the CATALOG to select an operation and insert it next to the cursor on the Home screen or to a command line in the Program editor. You also can use the specific keystrokes, menus, or screens listed here below the function or instruction's name.
\dagger Indicates menus or screens that insert the operation's name only if you are in the Program editor. In most cases (like mode or window format settings), you can use these menus or screens from the Home screen to perform the operation interactively; the name is not inserted at the cursor.
\ddagger Indicates menus or screens that are valid only from the Program editor's main menu. From the Home screen, you cannot use these menus or screens to select an operation.
[] Indicate optional arguments. If you specify an optional argument, do not enter the brackets.

$\overline{\mathbf{A}} \mathbf{\square} \mathbf{b / c}$	$\frac{4}{5}+\frac{8}{5} \text { ENTER }$	$2 \frac{2}{5}$
\dagger MODE		
Selects the $\mathbf{A}_{\bullet} \mathbf{b} / \mathbf{c}$ Display Format mode setting.		
Displays results as mixed numbers, if applicable.		
$\checkmark A b / c \leftrightarrow d / e$		$\underline{10}$
Act ${ }^{\frac{2}{c}+\cdots{ }^{\text {d }} \text { d }}$	${ }_{3} \downarrow \mathrm{Ab} / ¢ \mathrm{~d} / \mathrm{e}$ ENTER	3
Converts a simple fraction to a mixed number or a mixed number to a simple fraction.		$3 \frac{1}{3}$

abs(value)	$\operatorname{abs}(-35)$ ENTER	35
MATH N U M		

Returns the absolute value of a real number, expression, or each element of a list.
conditionA and conditionB

Logic (boolean) operator; returns 1 if both conditionA and condition B are true (non-zero). Returns 0 if either conditionA or conditionB is false (zero). condition A and condition B can be real numbers, expressions, or lists.
If both conditions are lists, they must have the same number of elements. If one condition is a list and the other a non-list, the non-list is compared with each element of the list, and a list is returned.

Test operations are frequently used in programs.

Ans	$1.7 * 4.2$ ENTER 7.14
2nd [ANS]	
Returns the last answer calculated.	147/ Ans ENTER
	20.58823529
augment(list1,list2)	augment (\{1,3,2\},\{5,4\}) ENTER
2nd [STAT] O P S	$\{1-3254\}$
Combines the elements of two lists, list1 and list2, to create a new list.	
Autosimp	
+MODE	$99 \longrightarrow 3$

Selects the Autosimp Simplification mode setting. Automatically simplifies fractional results.

AxesOff
 AxesOn

```
    \ 2nd [FORMAT]
```

WINDOW format settings; turns off or on the graph axes.

Selects the b/c Display Format mode setting. Displays results as simple fractions, if applicable.

```
BarPlot
See Plot1: Bar Graph
```


BoxPlot

See Plot1: Box Plot

Circle(X, Y, radius)

DRAW

Draws a circle with center (X, Y) and radius, a real number.

Clear Home

2nd [MEM]

Clears the Home screen (like ClrScreen), and also clears all entries stored in [2nd [ENTRY] and erases all entries on the History screen.

ClrAIILists

2nd [MEM]
Sets the dimension of all lists in memory to 0 .

ClrDraw

DRAW
Clears all drawn elements from the graph screen.

CIrList list1[,list2,list3,...]

ClrList L1,LLIST ENTER
2nd [STAT] O P S
Clears all items in at least one specified list.

CIrScreen

\ddagger PRGM I/O

Programming command; clears the Home screen during program execution.

CIrTable

```
    \dagger PRGM I/O -or- 2nd [CATALOG]
```

Clears the values in the table during program execution if Indpnt:Ask is set.

coin(tosses)

MATH P R B

Returns a random list of 0 s and 1 s that represents
heads and tails for one or more coin tosses. tosses is a positive whole number.

CoordOff
 CoordOn

\dagger [2nd [FORMAT]

WINDOW format settings; turns off or on cursor coordinates so that they are not displayed at the bottom of the graph.

Degree

In Degree mode:
+MODE
Selects the Degree Angle mode setting. Interprets angles as degrees.
$\sin (90)$ ENTER
1
$\sin (\pi / 2)$ ENTER .0274121336

DelVar variable

\dagger PRGM CTL -or- 2nd [CATALOG]
Deletes the contents of variable from memory. You cannot delete a program or a system variable.

PROGRAM:DELVAR
$:\{1,2\} \rightarrow \mathrm{L} 1$
:Disp L1 ${ }^{2}$
:Pause
:DelVar L1
:Disp Ll
:Pause

ERROR 14: UNDEFINED

DependAsk

\dagger 2nd [tBlSET]

Selects the Depend: Ask TABLE SETUP format setting.
The user must highlight a dependent variable (Y) space with the cursor, and then press ENTER to view the value.

DependAuto

\dagger 2nd [TBLSET]

Selects the Depend: Auto TABLE SETUP format setting. Table automatically displays dependent variable (Y) values.

DiagnosticOff
 DiagnosticOn

```
    2nd [catalog]
```

Settings which tell the calculator not to display
(DiagnosticOff) or to display (DiagnosticOn) r and r^{2} (coefficient of determination) with LinReg and ExpReg regression model (2nd [STAT] CALC) results or R^{2} for QuadReg regression model results.

dice(rolls[,\#dice])	dice(5)ENTER	$\{51362\}$
MATH P R B		
Returns a random list of numbers (between 1 and 6) that represent dice rolls. dice(takes one optional argument, \#dice, a positive whole number>1. If \#dice is specified, each list element is the total sum of one roll's results.	dice(5,2) ENTER	$\{1157210\}$

$\begin{aligned} & \hline \operatorname{dim}(\text { list }) \\ & \text { newDimension\# } \# \text { ST0 } \operatorname{dim}(\text { list }) \\ & \text { dimension\# }[\text { STO• } \operatorname{dim}(\text { newList }) \end{aligned}$	$\begin{aligned} & \{1,2,3 \vdash \mathrm{~L} 1 \text { ENTER } \\ & \operatorname{dim}(\mathrm{L}) \text { ENTER } \end{aligned}$	\{1 23 3
2nd [STAT] O P S	$5 \rightarrow \operatorname{dim}(\mathrm{~L})$ (ENTER	
Returns the dimension (number of elements) of a defined list, changes the dimension of an existing list, or creates a new list with a specified number of elements. New elements are set to 0 .	L1 ENTER $\begin{aligned} & \text { 4 } \rightarrow \text { dim(LNEW) ENTER } \\ & \text { LNEW ENTER } \end{aligned}$	$\begin{array}{r} 12300\} \\ 4 \\ \{000 \end{array}$
Disp [valueA,valueB, ...]	PROGRAM:DISP	
\# PRGM I/O	: $10 \rightarrow \mathrm{X}$	
Programming command (display); displays one or more values, as specified in an argument. To display text, surround the value with quotation marks. To see the output, follow Disp with a Pause instruction.	$\begin{aligned} & : \text { Disp X } \\ & : \text { Disp X }{ }^{3}+3 \mathrm{X}-6 \end{aligned}$	
	PROGRAM:DISPTEXT :Disp "MATH IS FUN!" :Pause	
DispGraph	PROGRAM:GRAPH	
\ddagger PRGM I/O	$: 2 \mathrm{X}+5^{\prime \prime} \rightarrow \mathrm{Y}_{1}$:DispGraph	
Programming command (display graph); displays the graph for all defined and selected $\mathbf{Y}_{\mathbf{n}}$ functions during program execution.		

DispTable

\# PRGMI/O
Programming command (display table); displays the table for all defined and selected $\mathbf{Y}_{\mathbf{n}}$ functions during program execution.

angle $>$ DMS

2nd [TRIG] A N G L E
Converts an angle to DMS (degrees ${ }^{\circ}$ minutes' seconds") notation. Results are determined by the Angle mode setting (Radian or Degree).

PROGRAM:TABLE
$: " 2 \mathrm{X}+5 \mathrm{~F} \rightarrow \mathrm{Y}_{1}$
:IndpntAuto
:DependAuto
:DispTable

In Degree or Radian mode:
$50^{\circ} \triangleright$ DMS ENTER $50^{\circ} 0^{\prime} 0^{\prime \prime}$
In Radian mode:
$50-$ DMS ENTER
$2864^{\circ} 47^{\prime} 20.312^{\prime \prime}$
:DS<(variable,value)
:command1 (if answer \geq value)
:command2

\ddagger PRGM CTL

Programming command (decrement and skip if less than); subtracts 1 from variable. If the answer is < value, then command1 is skipped; if the answer is \geq value, then command1 is executed. command2 is always executed.
$\mathbf{e}^{\wedge}(x)$
MATH LO G
Raises e to a power of x, where x is a real number, an expression that results in an real number, or a list of real numbers. e equals 2.71828182846 .
value \mathbf{E} exponent
[2nd [EE]
Enters a number in scientific notation. The display of the result depends upon the Numeric mode setting (Normal or Sci). value can be a real number or list.

In Normal Numeric mode:
12.3456789 E 5 ENTER 1234567.89
(1.78/2.34) E 2 ENTER
76.06837607
$\{6.34,854.6\} \mathrm{E} 3$ ENTER
$\{6340854600\}$

Else

See If:Then:Else:End

End

\# PRGM CTL

Programming command; you must include an End instruction at the end of each For(, While, or Repeat loop. Also, you must enter an End instruction at the end of each If-Then group and each If-Then-EIse group.

ExprOff
 ExprOn

```
    # 2nd [FORMAT]
```

WINDOW format settings; turns off or on the expression display in the top left corner while tracing a graph.

- \leftrightarrow D	$\frac{3}{4} \stackrel{\mathrm{~F}}{\mathrm{D}} \mathrm{D}$ ENTER	. 75
Converts a fraction to its decimal equivalent or	. $75>\mathrm{F} \leftrightarrow \mathrm{D}$ ENTER	

Fill(number,list)	$\{3,4,5\} \rightarrow$ Ll ENTER	\{345\}
2nd [Catalog]	Fill(8,L1) ENTER	Done
Replaces each element in existing list with specified real number, number.	L1 ENTER	\{888\}

Fix \#ofplaces	Fix 3ENTER	Done
\dagger MODE	π ENTER	3.142

Sets fixed Decimal mode setting for \# of decimal places. \#ofplaces must be an integer between 0 and 9 . It can be an expression which equals an appropriate integer.

Float

+ MODE

Float ENTER
Done
π ENTER 3.141592654

Selects the Float Decimal Notation mode setting. Displays a decimal with a maximum of 10 digits, including the sign and decimal point.

Goto label	PROGRAM:GOTO
\# PRGM CTL	:Lbl 99
Programming command; transfers program control to the label specified by preceding label instruction.	:Input A If $\mathrm{A} \geq 100$
	:Stop
	: Disp A ${ }^{2}$
	:Pause
	:Goto 99
GraphStyle(Y_{n}, type $)$	PROGRAM:STYLE
\dagger PRGM CTL -or- 2nd [CATALOG]	:"2X+5" $\rightarrow \mathrm{Y}_{1}$
Defines one of seven graphstyle types for $Y_{n} . Y_{n}=1,2$, 3 , or 4 (for $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}, \mathbf{Y}_{4}$). The type icons described	:GraphStyle(1,4)
	:ZStandard
below are located to the left of \mathbf{Y}_{n} in the $\mathrm{Y}=$ editor.	
$1=$ v (line) $\quad 5=4$ (path)	
$2=$ (thick) $6=0$ (animate)	couthan
$3=$ (above) $7=\therefore$ (dot)	
GridOff GridOn	!
	U充
\dagger 2nd [FORMAT]	-
WINDOW format settings; turn off or on grid lines that correspond with Xscl and Yscl while graphing.	

Histogram

See Plot1: Histogram

Horizontal y

DRAW DRAW

Draws a horizontal line on the current graph at $\mathrm{Y}=y . y$ can be an expression but not a list.

Horiz 4.5ENTER

:If condition
:command1 (if true)
:command2
\ddagger PRGM C TL
\quad Programming command; if condition is true
(non-zero), then command1 is executed. If condition
is false (zero), then command1 is skipped.

PROGRAM:IF
$: 0 \rightarrow \mathrm{~A}$
:Lbl Z
$: \mathrm{A}+1 \rightarrow \mathrm{~A}$
:Disp "A IS",A
:Pause
:If $\mathrm{A} \geq 2$
:Stop
:Goto Z

292 Appendix A: Function and Instruction Reference

If-Then	PROGRAM:THEN
:If condition	$: 1 \rightarrow X: 10 \rightarrow Y$
:Then	: If $\mathrm{X}<10$
:block (if true)	:Then
:End	$: 2 \mathrm{X}+3 \rightarrow \mathrm{X}$
\# PRGM CTL	:2Y-3 \rightarrow Y
Programming commands; if condition is true	:End
(non-zero), then block is executed. If conditio	:Disp (X,Y)
false (zero), then block is skipped.	:Pause
If-Then-Else	PROGRAM:ELSE
:If condition	:Input "X=",X
:Then	:If $\mathrm{X}<0$
:block1 (if true)	:Then
:Else	: $\mathrm{X}^{2} \rightarrow \mathrm{Y}$
:block2 (if false)	:Else
:End	: $\mathrm{X} \rightarrow \mathrm{Y}$
\ddagger PRGM C TL	:End
	:Disp X,Y
(non-zero), then block1 is executed. If condition is false (zero), then block2 is executed.	:Pause

IndpntAsk

```
    \dagger 2nd [TBLSET]
```

Selects the Indpnt: Ask TABLE SETUP format setting. Table asks the user for independent variable (X) values.

IndpntAuto

\dagger [2nd [TBLSET]

Selects the Indpnt: Auto TABLE SETUP format setting. Table automatically displays independent variable (X) values.
Input
Input $[$ variable $]$
Input ["text",variable $]$
\#四GM I/O
Programming command; Input, with no arguments,
displays the current graph. Otherwise, Input accepts
input and stores it to variable (prompted by a ?,
unless otherwise defined). text designates a specific
text prompt (≤ 16 characters), if desired, and must be
enclosed in quotation marks.

Input
Input [variable]
Input ["text",variable]

Programming command; Input, with no arguments, displays the current graph. Otherwise, Input accepts input and stores it to variable (prompted by a ?, unless otherwise defined). text designates a specific enclosed in quotation marks.

PROGRAM:INPUTVAR
:Input ' $\mathrm{Y}_{1}=$ ", Y_{1}
:Input "A=",A
:Input "LDATA=",LDATA
:Disp " $\mathrm{Y}_{1}(\mathrm{~A})=", \mathrm{Y}_{1}(\mathrm{~A})$
:Pause
:Disp
:" Y_{1} (LDATA)=", Y_{1} (LDATA)
:Pause
:PROGRAM:GRPHINPT
:FnOff
:PlotsOff
:ZStandard
:Input
:Line ($0,0,8,8$)
:Pause

int(value)	int (23.45) ENTER	23
2nd [CATALOG]		
Returns the largest integer \leq value, where value can be a real number, expression, or list.	int (-23.45) ENTER	-24
For a negative non-integer, int returns the integer that is one less than the integer part of the number. To return the exact integer part, use iPart instead.		

posintegerA $\operatorname{Int} /$ posintegerB	9 Int/ 2 ENTER	4 r 1
2nd [iNT \div]		

Divides two positive integers and displays the quotient and the remainder, r.

iPart(value)	iPart (23.45) ENTER	23
MATH N U M	iPart ($17.26 * 8$) ENTER	-138
Returns the integer part of a real number, expression, or each element of a list.	iPart ($\{1.2,3.4,5.6\}$)ENTER	
		\{135\}
	$\operatorname{iPart}\left(\frac{1}{2}\right)$	
:IS>(variable,value) :command1 (if answer is \leq value) :command2	:PROGRAM:IS	
	:Lbl S	
\ddagger PRGM CTL	:Disp A	
Programming command (increment and skip if	:IS>(A,5)	
greater than); adds variable by 1 . If the answer is >	:Goto S	
value, then command1 is skipped; if the answer is \leq	:Disp "A IS NOW >5 "	
value, then command1 is executed. command2 is	:Pause	

Llistname	$\{1,2,3\} \rightarrow$ LABC ENTER	\{123\}
2nd [STAT] O P S	LABC ENTER	\{123\}
List signifier; precedes all user-created names when displayed outside of the List editor.		

LabelOff
 LabelOn

```
    \dagger 2nd [FORMAT]
```

WINDOW format settings; turns off or on axes labels.

Lbl label \# PRGM CTL Programming command; gives a name (label) to a particular location in a program. label can be one or two text characters.	PROGRAM:LBL :Lbl 99 :Input A :If $\mathrm{A} \geq 100$:Stop :Disp A ${ }^{2}$:Pause :Goto 99	
Icm(valueA,valueB) MATH M A TH	$1 \mathrm{~cm}(10,6)$ ENTER	30

Returns the least common multiple (the smallest number that the two values can divide into evenly) of two positive whole numbers or lists of positive whole numbers.

If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.

Line $\left(X_{1}, Y_{1}, X_{2}, Y_{2}[, 0]\right)$

DRAW D R A W

Draws a line from point $\left(X_{1}, Y_{1}\right)$ to $\left(X_{2}, Y_{2}\right)$.
Including the argument, $\mathbf{0}$, after the X and Y coordinates erases a line from $\left(X_{1}, Y_{1}\right)$ to $\left(X_{2}, Y_{2}\right)$.

Select ZStandard and return to the Home screen.
Line ($0,0,6,9$) ENTER

Return to the Home screen.
Line $(2,3,4,6,0)$ ENTER

LinReg(ax+b) [XList,YList,freq, Y_{n}]
2nd [STAT] C A LC
Fits the linear equation $(\mathrm{y}=\mathrm{ax}+\mathrm{b})$ to X List and YList with frequency list, freq, and stores the regression equation to Y_{n}. XList, YList, and freq (if specified) must have the same number of elements.
freq is the frequency of occurrence for each corresponding data point in XList. If freq is omitted, all values are used once.

Defaults for XList and YList are L1 and L2.

Decimal mode set to 2:
$\{1,3,4,5,5,7,8,9\} \rightarrow$ L3 ENTER Done $\{1,4,2,3,4,6,7,9\} \rightarrow$ LA ENTER Done $\operatorname{LinReg}(\mathrm{ax}+\mathrm{b}) \mathrm{B}, \mathrm{L} 4, \mathrm{Y}_{1}$ ENTER

Select ZStandard.

Δ List(list)

$\{4.5,4.6,6,7.5\} \rightarrow 2$ ENTER
2nd [STAT] O P S
$\{4.54 .667 .5\}$
Returns a list of the differences between consecutive elements in a list.
$\Delta \operatorname{List}(L 2)$ ENTER
$\left\{\begin{array}{llll}1 & 1.4 & 1.5\end{array}\right\}$

\ln (value)

$\operatorname{In}($ list $)$
$\ln (2)$ ENTER .6931471806
MATH LOG
$\ln (36.4 / 3)$ ENTER 2.495956486
Returns the natural logarithm of a positive real number, an expression that results in a positive real number, or a list of positive real numbers.
$\log ($ value)
$\log (2)$ ENTER . 3010299957 $\log ($ list $)$

MATH LO G

$\log (36.4 / 3)$ ENTER
1.083980129

Returns the base 10 logarithm of a positive real number, an expression (that results in a positive real number), or a list of positive real numbers.

Mansimp

† MODE
Selects the Mansimp Simplification mode setting. Requires user to simplify fractional results manually using the SIMP key.

Manual-Fit [Y_{n}]	$\{1,3,4,5,5,7,8,9\}$ L3 ENTER Done
2nd [STAT] C A LC	$\{1,4,2,3,4,6,7,9\} _$L ENTER Done
Allows you to fit manually a line to plotted data. The regression equation is stored to Y_{n}, if specified.	Set up Plot1 as a scatter plot and graph using ZStat:
	Return to the Home screen anc select Manual-Fit.
Select beginning and ending points of line by moving thecursor and then pressing ©NTER.	
$\boldsymbol{m a x}($ valueA,valueB)	$\max (2.3,1.4)$ ENTER $\quad 2.3$
MATH N U M - or - 2nd [STAT] MATH	
Returns the larger of two values or the largest element in one list. value can be a real number, expression or a list.	$\max (\{1,3,6\})$ ENTER 6 $\max (\{1,10\},\{2,9\})$ ENTER $\{210\}$
If both values are lists, they must have the same number of elements. If one value is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.	$\max \left(\frac{2}{3}, \frac{3}{4}\right) \quad \frac{3}{4}$
mean(list[freq])	mean(\{1,2,3,4))ENTER 2.5
2nd [STAT] M A TH	
Returns the mean (mathematical average) of list. If a second list, freq, is specified, it is interpreted as the frequency of the elements in the first list. list and freq must have the same number of elements.	mean($(11,2,3,4\},\{4,5,4,6)$)[ENTER 2.631578947

median(list[,freq])

2nd [STAT] M A T H

Returns the median (the middle element) of list. If a
median(\{1,2,6\},\{4,5,4\})ENTER
second list, freq, is specified, it is interpreted as the
frequency of the elements in the first list. list and freq must have the same number of elements.

Med-Med [XList,YList,freq, Y_{n}]

2nd [STAT] C A LC

Fits a median-median model equation, $\mathbf{y}=\mathbf{a x}+\mathbf{b}$, to XList and YList with frequency list, freq, and stores the regression equation to Y_{n}. XList, YList, and freq (if specified) must have the same number of elements.
freq is the frequency of occurrence for each corresponding data point in XList. If freq is omitted, all values are used once.

Defaults for XList and YList are L1 and L2.

Decimal mode set to 2:
$\{1,3,4,5,5,7,8,9\} \rightarrow$ L3 ENTER Done $\{1,4,2,3,4,6,7,9\} \rightarrow$ L A ENTER Done Med-Med $\mathrm{L}, \mathrm{L} 4, \mathrm{Y}_{1}$ ENTER

Menu("title","item1",label1[,"item2",label2...])
\ddagger PRGM CTL
Programming command; generates a menu of up to seven items during program execution. When you select a menu item, the calculator branches to the label corresponding with that item.

$\min ($ valueA,valueB) \min (list)	$\min (3,5)$ ENTER $\min (-5.2,-5.3)$ ENTER	-5.3
[MATH $\mathbf{N U M}$ - or - [2nd [STAT] M ATH	$\min (5,2+2)$ ENTER	4
\min ((minimum) returns the smaller of two values or the smallest element in one list. value can be a real number, expression or a list.	$\min \left(\frac{2}{3}, \frac{3}{4}\right)$	$\frac{2}{3}$

If both values are lists, they must have the same number of elements. If one value is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.

ModBoxPlot

See Plot1: Modified Box Plot

mode(list[,freq])

mode($\{1,2,4,3,1,8\})$ ENTER
2nd [STAT] M A T H
Returns the mode (element which occurs most frequently) of list. If a second list, freq, is specified, it is interpreted as the frequency of the elements in the first list. list and freq must have the same number of elements.

MultiConst

```
    # 2nd [SET]
```

Selects the Multiple mode (affects the Set Constant editor). Allows the user to access all defined constants (as opposed to only one).

items $\mathbf{n C r}$ number

MATH P R B

Returns the number of combinations of n items taken r number at a time. The order in which you select the

5 nCr 2 ENTER items DOES NOT matter. items and number can be non-negative integers or lists.
If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element in the list, and list of combinations is returned.

Normal

\dagger MODE

Selects the Normal Decimal Notation mode setting; Displays results with digits to the left and right of the decimal (as opposed to scientific notation).
items $\mathbf{n P r}$ number
5 nPr 2 ENTER

MATH P R B
Returns the number of permutations of n items taken r number at a time. The order in which you select the
$5 \mathrm{nPr}\{2,4,6,8\}$ ENTER
$\left\{\begin{array}{llll}20 & 120 & 0 & 0\end{array}\right\}$ items DOES matter. items and number can be nonnegative integers or lists.

If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element in the list, and list of permutations is returned.

conditionA or conditionB	PROGRAM:OR
2nd [TEXT]	$: 1 \rightarrow \mathrm{~A}$
Logic (boolean) operator; returns $\mathbf{1}$ if either	$: 2 \rightarrow \mathrm{~B}$
conditionA or conditionB is true (non-zero). Returns	$: \mathrm{A}>0$ or $\mathrm{B}<0$
$\mathbf{0}$ if both conditionA or conditionB are false (zero).	
conditionA and conditionB can be real numbers,	
expressions, or lists	
If both conditions are lists, they must have the same	
number of elements. If one condition is a list and the	
other a non-list, the non-list is compared with each	
element of the list, and a list is returned.	
Test operations are frequently used in programs.	

Output(row,column,"text")
Output(row,column,value)
Output(row,column,value)

\# PRGM I/O

Programming command; displays text or value at the beginning of specified row and column. You must surround text with quotation marks (2nd [TEXT]).

PROGRAM:OUTPUT
$: 3+5 \rightarrow B$
:ClrScreen
:Output(5,4,"ANSWER")
:Output(5,12,B)
:Pause

PROGRAM:PAUSE
$: 10 \rightarrow X$
$: " \mathrm{X}+2 \mathrm{Z} \rightarrow \mathrm{Y}_{1}$
:ZStandard
:Pause

PictoPlot

See Plot1: Pictograph

PiePlot

See Plot1: Pie Chart

```
Plot1(type,argument1,argument2,...)
Plot2(type,argument1,argument2,...)
Plot3(type,argument1,argument2,...)
    \dagger 2nd [PLOT] P LO TS
```

Selects and defines Statistical Plot 1,2, or 3 (Plot1, Plot2, Plot3), according to one of eight stat plot types. All types and corresponding arguments are listed next. Select type from the [2nd [PLOT] TYPE menu.
(continued)

Scatter Plot $\stackrel{\cdots}{ }$
xyLine Plot $1 \sim \sim$
$\{1,2,3,4,5,6\} \rightarrow \mathrm{L} 1$ ENTER
Plotn(Scatter,Xlist,Ylist[,mark])
Plot $n(\mathbf{x y L i n e}, X l i s t, Y l i s t[$, mark])
The optional mark ($\square,+$, or \bullet) specifies the character used to plot the points. If omitted, default mark is box. Access mark from PRGM 2nd [PLOT] MARK or 2nd [CATALOG].
Pictograph $\geqslant \%$
Plot n (PictoPlot,CategList,DataList,scale, orientation,typeIcon)
orientation $=\mathbf{0}$ (vertical) or 1 (horizontal).
typeIcon choices: Personlcon (F F$)$; Treelcon ($\stackrel{4}{4}$); Dollarlcon (*); Facelcon (Ш); Pielcon (क); Diamondlcon (े); Starlcon (*). Access typeIcons from PRGM 2nd [PLOT] MARK or 2nd [CATALOG].
Bar Graph Inll
Plotn(BarPlot,CategList, orientation, DataList1[,DataList2,DataList3]) orientation $=\mathbf{0}$ (vertical) or $\mathbf{1}$ (horizontal). Specify between 1 and 4 DataLists.
Pie Chart ?
Plot $n($ PiePlot,CategList,DataList,type)
type $=\mathbf{0}$ (Number Pie Chart) or 1 (Percent Pie Chart).
Histogram dim
Box Plot 마..
Modified Box Plot 뜨
Plot n (Histogram, Xlist[,freq])
Plot n (BoxPlot,Xlist $[$, freq] $)$
Plot n (ModBoxPlot,Xlist[,freq,mark])
freq=1 (default) or a list name. The optional mark ($\square ;+; \bullet$) specifies the character used to plot the points.
If omitted, default mark is box. Access mark from PRGM 2nd [PLOT] MARK or 2nd [CATALOG].
$\{1,2,3,4,5,6\} \rightarrow \mathrm{L} 1$ ENTER
$\{123456\}$
$\{1,2,3,4,5,6\} \rightarrow \mathrm{L} 2$ ENTER

PROGRAM:HISTOGRM
:PlotsOff
:Plot1(Histogram,L,L2)
:ZStat
:Trace

PlotsOff [1,2,3]

PlotsOn [1,2,3]
PlotsOff 1,3 ENTER Done

Turns off (deselects) or on (selects) all stat plots if no arguments are specified, or turns off or on specified stat plots using 1, 2, or 3, (for Plot1, Plot2, or Plot3).

prgmename PROGRAM:VOLUME	
\# PRGM CTRL	:Input "DIAMETER=",D
Programming command; calls prgmname as a subroutine in an existing program. name can be a program not yet created.	:Input "HEIGHT=",H :prgmAREA
	$: \mathrm{A} * \mathrm{H} \rightarrow \mathrm{~V}$
	:Disp "VOLUME=",V
	:Pause
	PROGRAM:AREA
	: $\mathrm{D} / 2 \rightarrow \mathrm{R}$
	$: \pi * \mathrm{R}^{2} \rightarrow \mathrm{~A}$
	:Return
Prompt variableA[,variableB, ...]	PROGRAM:PROMPT
\# PRGM I/O	:Prompt Xmin
Programming command; displays specified variable followed by $=$? . During program execution, at each	:Prompt Xmax
	:Prompt Ymin
	:Prompt Ymax
variable, and then presses ENTER. \mathbf{Y}_{n} functions are not valid with Prompt.	The calculator adjustsvindow variable values according to user's input.
Pt-Change (X, Y)	Pt-Change(6,2) ENTER
DRAW POINTS	
Changes a point's status (on or off) at (X, Y).	
$\begin{aligned} & \hline \text { Pt-Off(} X, Y[\text {, mark }]) \\ & \text { Pt-On(X, } Y[, \text { mark }) \end{aligned}$	$\begin{aligned} & \text { Pt-Off(} 3,5,2 \text {) ENTER } \\ & \text { Pt-On }(3,5,2) \text { ENTER } \end{aligned}$
DRAW POINTS	
Erases or draws a point at (X, Y) using mark, $(\mathbf{1}=\cdot$; $\mathbf{2}=\square ; \mathbf{3}=\boldsymbol{+}$). If mark is omitted, the default mark is box. If you specified mark to turn on a point with	
Pt-On(, you must specify the same mark when turning it off.	
PxI-Change(row,column)	PxiChange(10,75) ENTER
DRAW POINTS	
Changes a pixel's status (on or off) at (row, column); $0 \leq$ row ≤ 62, and $0 \leq$ column ≤ 94.	
PxI-Off(row,column) PxI-On(row,column)	Pxl-Off(10,75)ENTER
	Pxl-On(10,75 ENTER
DRAW POINTS	
Erases or draws a pixel at (row, column); $0 \leq$ row ≤ 62, and $0 \leq$ column ≤ 94.	

pxI-Test(row,column)	Pxl-On(10,75)EETTER
DRAW POINTS	Done
Returns $\mathbf{1}$ if pixel at (row, column) is on; returns $\mathbf{0}$ if it is off; $0 \leq$ row ≤ 62, and $0 \leq$ column ≤ 94.	pxl-Test(10,75)ENTER
QuadReg [XList,YList, freq, Y_{n}]	Decimal mode set to 2 :
2nd [STAT] C A LC	$\{1,3,4,5,5,7,8,9\}$ L3 ENTER Done
Fits the second-degree polynomial ($\mathrm{y}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$) to	$\{1,4,2,3,4,6,7,9\}$ LA ENTER Done
XList and YList with frequency list, freq, and stores	QuadReg $\mathrm{I}, \mathrm{L} 4, \mathrm{Y}_{1}$ ENTER
the regression equation to Y_{n}. XList, YList, and freq (if specified) must have the same number of elements. freq is the frequency of occurrence for each	
corresponding data point in XList. If freq is omitted, all values are used once.	Select ZStandard.
Defaults for XList and YList are L1 and L2.	
Radian	In Radian mode:
+ MODE	$\sin (90)$ ENTER . 8939966636
Sets the Radian Angle mode setting. Interprets angles as radians.	$\sin (\pi / 2)$ ENTER 1
	$0 \rightarrow$ randEENTER 0
seed ST0 rand	randenter . 9435974025
MATH P R B	randENTER . 908318861
Generates a random number between 0 and 1. By storing an integer seed value (default=0) to rand, you can control a random number sequence.	$1 \rightarrow$ randENTER 1 randENTER .7455607728 randEENTER .8559005971
randlnt(lower,upper[,\#ofIntegers])	(Results may vary.)
MATH P R B	
Generates a random integer between lower and upper (both integers) boundaries. To generate more than one random integer, specify \#ofIntegers, a positive whole number>0.	randInt $(1,10)$ ENTER randInt $(1,10,3)$ ENTER $\left\{\begin{array}{ll}3 & 5\end{array}\right\}$
RecallPic number	Line ($0,0,6,6$) ENTER
DRAW STO	StorePic 2ENTER Done
Displays the current graph and superimposes Picnumber on it. number can be 1 (Pic1), 2 (Pic2), or 3 (Pic3).	RecallPic 2ENTER (Pic2 displayed

$\begin{aligned} & \text { remainder(dividend,divisor) } \\ & \text { remainder(list,divisor) } \\ & \text { remainder(dividend,list) } \\ & \text { remainder(list,list) } \end{aligned}$	$\{5,5,5,5,5\} \rightarrow$ L1 ENTER ${ }^{\text {E }}$ [55555\}
MATH N U M	$\{1,2,3,4,5\} \rightarrow \mathrm{L} 2$ ENTER
Returns the remainder resulting from the division of two positive whole numbers, dividend and divisor, each of which can be a list.	$\text { remainder(Il,L2) } \frac{\{12345\}}{\text { ENTER }} \frac{\{01210\}}{}$
If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.	

:Repeat condition :block	PROGRAM:REPEAT
	: $0 \rightarrow \mathrm{I}: 0 \rightarrow \mathrm{~J}$
:End	:Repeat $£ 6$
:command	: $\mathrm{I}+1 \rightarrow \mathrm{I}: \mathrm{J}+1 \rightarrow \mathrm{~J}$
\pm PRGM CTL	: Disp "J=",J
Programming command; executes block until	:Pause
condition is true.	:End

Return PROGRAM:AREA	
\# PRGM CTL	: $\mathrm{D} / 2 \rightarrow \mathrm{R}$
Programming command; returns to the calling	$: \pi * \mathrm{R}^{2} \rightarrow \mathrm{~A}$
program.	:Return
	PROGRAM:RETURN :Input "DIAMETER=",D :Input "HEIGHT=",H :prgmAREA : $\mathrm{A} * \mathrm{H} \rightarrow \mathrm{V}$:Disp "VOLUME=",V
round(value[,\#decimal_places])	In Float mode:
MATH N U M	round ($\pi, 4$) ENTER 3.1416
Returns a number, expression, or each element in a list rounded to 10 digits or \#decimal_places (≤ 9), if specified.	round (π) ENTER 3.141592654

Scatter

See Plot1: Scatter Plot

Sci

Selects the Sci Numeric Notation mode setting. Displays results in scientific notation.

SetMenu("title","item1",variable1[,"item2",variable2...])
\ddagger PRGM CTL
Sets up a menu with title ($1 \leq$ characters ≤ 16) and of up to seven items ($1 \leq$ characters ≤ 10). During program execution, the user inputs (and edits, as necessary) numerical values, called variables, to each item.

SetUpEditor [list1,list2,list3...]
2nd [catalog]
Removes all list names from the List editor, and then sets it up to display lists in the specified order, starting with column 1 . If no lists are specified, the calculator sets up L1-L6 in order and includes one blank list to the right of $\mathbf{L 6}$.

Shade(lower,upper[,left,right,pattern,res])

DRAW DRAW
Draws both functions, lower and upper, shading above lower and below upper. You can limit shading by defining up to four optional arguments. Specify left and right X boundaries, pattern, which can equal 1-4 (descriptions shown below), and res, which equals 1-8 (1=highest resolution; 8=lowest resolution).

Pattern:

$1=\operatorname{vertical}$ (default)
$2=$ horizontal
3 = diagonal upper left to lower right
4 = diagonal lower left to upper right

-Simp [simplification_factor]

 SIMPIn Mansimp Simplification mode, Simp simplifies a fraction by its lowest common factor (default) or by simplification_factor.

$\boldsymbol{\operatorname { s i n }}$ (value)

2nd [TRIG] TRIG
Returns the sine of a real number, expression, or each element of a list. Results are determined by the Angle mode setting (Degree or Radian).

PROGRAM:SETMENU
:SetMenu("MATHGRADES", "TEST1",A,"TEST2",B,"TEST3", C,"TEST4",D,"TEST5",E
$\{1,2,3,4\} \rightarrow \mathrm{L} 1$ ENTER
$\{1234\}$
$\{5,6,7,8\} \rightarrow \mathrm{L} 2$ ENTER
\{5678\}
SetUpEditor I1,L2 ENTER Done
Press LIST to view List editor.

Shade(X-2, $\mathrm{X}^{3}-8 \mathrm{X},-5,1,2,3$)
ENTER

ClrDrwENTER Done
Shade ($\mathrm{X}^{\beta}-8 \mathrm{X}, \mathrm{X}-2$) ENTER

In Mansimp mode:

$\frac{24}{36}>\operatorname{Simp} \text { ENTER }$	$\mathrm{Fac}=2 \downarrow \frac{12}{18}$
$\frac{24}{36}$ Simp 12 ENTER	$\underline{2}$
In Degree mode: $\sin (30)$ ENTER $\sin (\{0,30,90\})$ ENTER	.5 $\{0.51$
In Radian mode: $\sin (\pi / 2)$ ENTER $\sin (\{0, \pi / 2, \pi\})$ ENTER	1

$\mathbf{s i n}^{-1}$ (value)
2nd [TRIG]TRIG
Returns the arcsine of a real number, expression, or
each element of a list. $-1 \leq$ value ≤ 1. Results are
determined by the Angle mode setting (Degree or
Radian).

SingleConst

\dagger [2nd [SET]

Selects the Single mode (affects the Set Constant editor). Allows the user to access only one defined constant at a time.

SortA(list)
SortA(indpntlist,dependlist1,dependlist2,...)
2nd [STAT] O P S
Sorts list elements from lowest to highest value (ascending order) and categorical lists alphabetically.
When using dependent lists, dependlist, the calculator sorts indpndtlist first, and then sorts all dependlists by placing their elements in the same order as their corresponding elements in the independent list.

SortD(list)
SortD(indpntlist,dependlist1,dependlist2,...)
[STAT] O P S
Sorts list elements from highest to lowest value (descending order) and categorical lists in reverse alphabetical order.
When using dependent lists, dependlist, the calculator sorts indpndtlist first, and then sorts all dependlists by placing their elements in the same order as their corresponding elements in the independent list.
$\mathbf{s t d D e v}($ list $[$ freq,type $])$
2nd [STAT] M A T H
Returns the standard deviation of list. If a second list, freq, is specified, it is interpreted as the frequency of the elements in the first list. list and freq must have the same number of elements.
type $=\mathbf{0}$ (population standard deviation) or $\mathbf{1}$ (sample population deviation). If type is not specified, the calculator returns sample population deviation.
$\{5,8,-4,0,-6\} \rightarrow$ L1 ENTER
$\{5$ 8-4 0-6\}
SortA (L1) ENTER Done
L1 ENTER $\quad\{-6-4058\}$
$\{" \mathrm{E}$ ","A","Z"\} L 2 ENTER
\{"E" "A" " Z"\}
SortA (I2) ENTER Done
L2 ENTER $\quad\{" A "$ "E" "Z"\}
$\{5,8,-4,0 \mathrm{~d},-6\} \rightarrow \mathrm{L} 1$ ENTER
$\left\{58^{-4} 0^{-6}\right.$ -
SortD (L) ENTER Done
L 1 ENTER $\quad\left\{850^{-4} \mathbf{-}^{-6}\right\}$
$\{" E ", " \mathrm{~A} "$, "Z" $\} \rightarrow$ L2 ENTER
\{"E" "A" " Z"\}
SortD(L2) ENTER Done
L2 ENTER \{"Z" "E" "A"\}
$\{1,2,8,10,11,21 \ngtr L 1$ ENTER
$\{128101121\}$
$\operatorname{stdDev}(\mathrm{L})$ ENTER
7.250287351

Stop \ddagger PRGM CTL Programming command; ends program execution and returns to Home screen.	PROGRAM:STOP :Input "T=",T :If $\mathrm{T} \geq 20$:Then :Disp "T ≥ 20 " :Pause :Else :Stop
StorePic number DRAW STO Stores the current graph display in one of three picture variables. number is $\mathbf{1}, \mathbf{2}$, or 3 (for variable Pic1, Pic2, or Pic3).	Line $(0,0,6,6)$ ENTER StorePic 2ENTER Done
sum(list[,start,end]) 2nd [STAT] M A T H Returns the sum of all elements in list. Specify the additional optional arguments to return the sum of the range of elements between start and end.	$\operatorname{sum}(\{1,2,4,8\})$ ENTER 15 $\operatorname{sum}(\{1,2,4,8\}, 2,4)$ ENTER 14 $\operatorname{sum}(\{1,2,4,8\}, 3)$ ENTER 12
$\boldsymbol{\operatorname { t a n }}$ (value) 2nd [TRIG] T RIG Returns the tangent of a real number, expression, or all elements in a list. Results are determined by the Angle mode setting (Degree or Radian).	In Degree mode: $\tan (0)$ ENTER $\tan (\{0,1,30\})$ ENTER $\{0.0174550649 .5773502692\}$ In Radian mode: $\tan (\pi / 4)$ ENTER $\tan (\{\pi / 2, \pi / 4,0\})$ ENTER

$\boldsymbol{\operatorname { t a n }}^{-1}$ (value)	In Degree mode:
2nd [TRIG] TRIG	$\tan ^{-1}(1)$ ENTER $\quad 45$
Returns the arctangent of a real number, expression, or each element in a list.	$\begin{aligned} & \tan ^{-1}(\{.5,1,0)) \text { ENTER } \\ & \{26.56505118450\} \end{aligned}$
Since $\tan =\sin / \cos , \tan ^{-1}$ is undefined when $\cos =0$.	In Radian mode:
Results are determined by the Angle mode setting	$\tan ^{-1}(.5)$ ENTER 463647609
(Degree or Radian).	$\left.\tan ^{-1}(1.5,1,0)\right)$ ENTER
	\{.463647609 . 78539816340$\}$

Then

See If-Then-End

Trace \dagger TRACE Selects the TRACE mode when displaying a graph.	PROGRAM:TRACE :"X ${ }^{2 n} \rightarrow \mathrm{Y}_{1}$:DispGraph :Trace	
1-Var Stats [XList, freq]	\{1,2,3ヶL2 ENTER	\{123\}
2nd [STAT] C A LC	$\{3,2,1\rangle \rightarrow$ LREQ ENTER	\{321\}
Analyzes and returns data for one list, XList, with one	1-Var Stats I2,LFREQ ENTER	
frequency of occurrence for each corresponding data point in XList. Default XList is L1.		

xyLine
See Plot1: xyLine Plot

ZBox

ZOOM Z O O M

Displays a graph, lets you (interactively) draw a box that defines a new viewing WINDOW, and then updates the WINDOW.

Define $\mathrm{Y}_{1}=\mathrm{X} \sin (\mathrm{X})$.
Set the following WINDOW values:
Xmin=-1000, Ymin $=-1000$,
$X \max =1000, Y \max =1000$,
Xscl=90, Yscl=90

Graph Y_{1}.

Select ZBox.
Move the cursor, and press ENTER to select upper left and bottom right corners of the box.

ZDecimal

ZOOM Z OOM

Adjusts the viewing WINDOW so that $\Delta \mathrm{X}=0.1$ and $\Delta Y=0.1$, and displays the graph screen with the origin centered on the screen.

Define $\mathrm{Y}_{1}=\mathrm{X}$, graph using
ZStandard, and trace the graph

Select ZDecimal and trace the graph.

ZInteger

ZOOM ZOOM

Lets you select a new center point, and then sets $\Delta \mathrm{X}=\mathbf{1}, \Delta \mathrm{Y}=\mathbf{1}, \mathrm{Xscl}=\mathbf{1 0}, \mathrm{Yscl}=10$. Replots the graph immediately.

Define $Y_{1}=X$, graph using
ZStandard, and trace the graph

Select ZInteger, choose a new center point, and trace the graph.

Zoom In

ZOOM ZOOM

Lets you select a new center point, if desired, and then magnifies the part of the graph that surrounds the cursor location.

Define $\mathrm{Y}_{1}=\mathrm{X}^{2}$ and graph using ZStandard.

Select Zoom In. Move the cursor to the upper right section of the graph. Press ENTER to select a new center point and magnify the upper right side of the graphed function.

Zoom Out

Z00M ZOOM

Displays a greater portion of the graph, centered on the cursor location. Move the cursor keys, and press ENTER to select new center point.

Define $\mathrm{Y}_{1}=\mathrm{X} \cos (\mathrm{X})$ and graph using ZStandard.

Set the following WINDOW values:
Xmin $=-1000$, Ymin $=1000$,
$X \max =1000, Y \max =1000$,
Xscl=90, Yscl=90

Select Zoom Out, and then press
ENTER (since cursor automatically starts from the origin).

Zoom Out from the origin.

ZoomFit

ZOOM Z OOM

Recalculates Ymin and Ymax to include the minimum and maximum y values, between $\mathbf{X m i n}$ and $\mathbf{X m a x}$, of the selected functions and replots the functions.

Define $\mathrm{Y}_{1}=\mathrm{X}^{2}-20$ graph using using standard WINDOW value (ZOOM 6).

Adjust the graph with ZoomFit.

ZoomStat

$\{1,2,3,4,5,6\} \rightarrow \mathrm{L} 1$ ENTER

ZOOM ZOOM

Redefines the viewing WINDOW so that all statistical data points are displayed.
ZoomStat also selects an appropriate scale, if one exists, for a Pictograph plot.
$\{123456\}$
$\{1,2,3,4,5,6\} \succ \mathrm{L} 2$ ENTER
$\{123456\}$
Graph and trace a Scatter stat plot using I1 and I2 (2nd [PLOT]) and ZoomStat.

ZPrevious

Z ZOOM MEMORY

Replots the graph using the WINDOW variable values of the graph that was displayed before you executed the last ZOOM instruction.

ZQuadrant1

ZOOM ZOOM

Replots the graph using WINDOW variable values for Quadrant I (Xmin=0, Xmax=9.4, Xscl=1, Ymin=0, Ymax $=9.4, \mathrm{Yscl}=1$).

Define $Y_{1}=X$
using ZStandard (200M 6).

Select ZQuadrant1.

ZSquare

ZOOM Z OO M

Adjusts the \mathbf{X} or Y WINDOW settings so that each pixel represents an equal width and height in the coordinate system and updates the viewing WINDOW.

Circle is oval shaped instead of perfectly round.

Select ZStandard. Return to the Home screen.

Circle $(0,0,7)$ ENTER

(Continued)

Select ZSquare. Return to the Home screen.
Or, press 2nd [ENTRY] ENTER.— Circle $(0,0,7)$ ENTER

ZStandard
 ZOOM ZOOM

Define $\mathrm{Y}_{1}=\mathrm{X}$
Select ZStandard.
Replots the functions immediately, setting the
window variables to the default values ($\mathbf{X m i n}=-10, X \max =10$, Xscl=1, Ymin=-10, Ymax=10, Yscl=1).

ZTrig
ZOOM Z OOM
Replots the functions immediately, updating the WINDOW variables that are often appropriate for graphing trig functions.

Define $Y_{1}=\sin (X)(Y)$.
Select ZTrig.

value!
5 ! ENTER
MATH P R B
Returns the factorial of value. value can be an integer or list of integers between 0 and 69 .

angle ${ }^{\circ}$	In Radian mode:	
2nd [TRIG] ANGLE	50° ENTER	.872664626
Designates angle as degrees, regardless of the current	50° DMS EENTER	$50^{\circ} 0^{\prime} 0^{\prime \prime}$
Angle mode setting or DMS notation.		
	In Degree mode:	
	50° ENTER	50
	50° VMS	
		$50^{\circ} 0^{\prime} 0^{\prime \prime}$

angle \mathbf{r}
2nd [TRIG] A N G LE

Specifies an angle as radians, regardless of the current Angle mode setting.

In Radian mode:
50^{r} ENTER
50
501DMS ENTER
$2864^{\circ} 47^{\prime} 20.312^{\prime \prime}$

In Degree mode:
50^{r} ENTER $\quad 2864.788976$
50^{r} DMS ENTER
$2864^{\circ} 47^{\prime} 20.312^{\prime \prime}$

$x^{\mathbf{X}_{\sqrt{\prime}}}$ value	$4 \times \sqrt{256 \text { ENTER }}$
MATH M ATH	

Calculates the $x^{\text {th }}$ root of value, which is equivalent to n where $n^{\mathrm{x}}=$ value. value can be a real number, expression, or list.
n^{3}
MATH M A T H
Calculates the cube of n, which is equivalent to $n \times n \times n$ of any real number, expression, or each element in a list.

$\mathbf{3} \sqrt{(}$ value $)$	$\sqrt[3]{(8)}$ ENTER	2
MATH MATH		

Calculates the cube root of value, which is equivalent to n where $n^{3}=$ value. value can be a real number, expression, or list.

real_number\%	In Float mode:	
\%	-30.6% ENTER	-. 306
Changes real_number to percent. Results display according to the Decimal mode setting.	20% * 30 ENTER	6
conditionA $=$ condition B (equal)	In Degree mode:	
condition $A \neq$ condition B (not equal)	$\sin (30)=\cos (60) \text { ENTER }$	1
condition $A<$ condition B (less than)		1
condition $A>$ condition B (greater than)	$\sin (30)<\cos (90) \text { ENTER }$	0
condition $A \leq \operatorname{conditionB}$ (less than or equal to)	$\sin (30)>\cos (90)$ ENTER	1
condition $A \geq$ condition A (greater than or equal to)	$\sin (30) \leq \cos (60)$ ENTER	1
2nd [TEXT]	$\sin (30) \geq \cos (90)$ ENTER	1

Relational operators; return 1 if the conditional statement is true. Return 0 if the conditional statement is false. conditionA and conditionB can be real numbers, expressions, or lists.
If both conditions are lists, they must have the same number of elements. If one condition is a list and the other a non-list, the non-list is compared with each element of the list, and a list is returned.

See Plot1: xyLine, Scatter, and Modified Box Plot: mark

```
Personlcon (F#)
Treelcon (%)
Dollarlcon (%)
Facelcon (튜)
Pielcon (%)
Diamondlcon (%)
Starlcon (*)
See Plot1: Pictograph: typeIcons
```

value-1
2nd [$x-1]$

Returns the inverse, x^{-1}, of value, which is the In b / c mode: 2nd [$x-1]$ equivalent of its reciprocal, $1 / x$, of a real number, expression, or each element in a list.

value 2	$\{1,2,3\}$ Ll ENTER	\{123\}
x^{2}	Ll^{2} ENTER	\{149\}
Finds the square of value. value can be a real number, expression, or list.		
value^power	$4 \wedge 4$ ENTER	256
\wedge		
Raises value to any power. value and power can be real numbers, expressions, or lists. power is limited by mathematical rules.		
-	-14-68 ENTER	-82
-	-(42) ENTER	-16
Negates a number, expression, or each element in a	(-42) ENTER	16
list. Note: This is different from the subtraction key (-).	$-\{1,2,3\}$ ENTER	$\left\{\begin{array}{lll}-1-2-3\end{array}\right\}$
$10^{\wedge}(x)$		
10^{\wedge} (list)	10^(4)ENTER	1000
MATH LO G	$10^{\wedge}(\{1,2,3\})$ ENTER	
Raises 10 to the power of x , where x is an integer or a	\{10	1001000
list of integers. If $x \leq-4$ and $\geq 10^{10}$, then the result is displayed in scientific notation.		

(value)2ndcr	$\sqrt{(16) ~ E N T E R ~}$	4
Calculates the square root of value, which can be a positive real number, an expression that results in a positive real number, or a list of positive numbers.		
value A *value B valueA/valueB value $A+$ value B value A-value B		
	4*L1 ENTER	\{41632\}
	\{2,4,8\}/\{2,2,2\} [ENTER	\{12 4\}
区 \dagger ¢	-456-123 [NTER	-579

Returns the product (\boxed{x}), quotient (\ddagger), sum (\ddagger) or difference (\square) of valueA and valueB, which can be real numbers, expressions, or lists.
If both values are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned.

Signifies the beginning of a list.

)		$4(3)$ ENTER	12
\square		$(4+4) 6 \div 8$ ENTER	6
	Designates a 1st priority calculation, implies multiplication, or completes functions and instructions.	$4+4(6 \div 8)$ ENTER	

Separates list elements when entering them outside of the List editor, and separates function/programming Circle $(0,0,7)$ ENTER command arguments.
\qquad
In Radian mode:
2nd [TRIG] A N G LE
$50^{\circ} 0^{\prime} 0^{\prime \prime}$ ENTER
.872664626
Specifies the minutes in DMS angle notation.

[${ }^{\text {a }}$ [TEXT]	
2nd [text]	$\{\text { "A" "B" "C"\} }$
2nd [TRIG] A N G L E	
Surrounds categorical list elements and list formulas that are attached to a list name. Surrounds text displayed on the Graph display using the Text(command (from the Home screen or in a Program).	PROGRAM:TEXT :AxesOff :Text(15,45,"TEXT") :DispGraph
In a programming command, they surround text to be displayed with Disp, text which designates an Input prompt, and functions that are assigned to a \mathbf{Y}_{n} variable.	PROGRAM:FUNCTION :"2X+5" \rightarrow Y1 :ZStandard
Specifies seconds in DMS angle notation.	PROGRAM:INPUT :Input "NEW LIST=" + NEW :Disp 'LNEW=",LNEW :Pause
	$\begin{aligned} & \text { In Radian mode: } \\ & 50^{\circ} 0^{\prime} 0^{\prime \prime} \text { ENTER } \end{aligned} .872664626$
2nd [Catalog]	PROGRAM:GREETING :Disp "HI, TERESA":Pause
Precedes all programming commands (automatically displayed by the calculator in the Program editor). Separates two programming commands listed on one line or two entries on the Home screen.	
π 2nd [π]	In Float mode: 2π ENTER
Represents the value for the constant, π, in calculations. The calculator uses $\pi=3.1415926535898$.	
?	PROGRAM:QUESTION
2nd [Catalog]	:Disp "WHAT TIME IS IT?"
Displays a question mark, which acts like a text character.	:Pause

B
 Reference Information

The TI-73 Menu Map 320
The VARS Menu [2nd [VARS] 329
Equation Operating System (EOS ${ }^{\text {M }}$) 330
In Case of Difficulty 331
Correcting an Error 332
Error Messages 332

320 Appendix B: Reference Information

The TI-73 Menu Map

The TI-73 menu map begins at the top-left corner of the keyboard and follows the keyboard layout from left to right.
Default values and settings are shown.

Y

Plot1 Plot2 Plot3
: $\mathrm{Y} 1=$
: $\mathrm{Y} 2=$
:Y3=
: $\mathrm{Y} 4=$

2nd [PLOT]	2nd [PLOT] (in Program editor)		
	Γ	1	
STAT PLOTS	PLOTS	TYPE	MARK
1:Plot1...Off	1:Plot1(1:Scatter	1:■
$\stackrel{\because}{\because}$ L1 L2口	2:Plot2(2:xyLine	2:+
2:Plot2...Off	3:Plot3(3:PictoPlot	3:
$\stackrel{\because}{\because}$ L1 L2 \square	4:PlotsOff	4:BarPlot	4:Personlcon
3:Plot3...Off	5:PlotsOn	5:PiePlot	5:Treelcon
$\stackrel{\because}{\because}$ L1 L2 \square		6:Histogram	6:Dollarlcon
4:PlotsOff		7:BoxPlot	7:Facelcon
5:PlotsOn		8:ModBoxPlot	8:Pielcon
			9:Diamondlcon
			0:Starlcon

WINDOW

WINDOW
$X_{\text {min }}=-10$
Xmax=10
$\Delta X=$.2127659574...
Xscl=1
Ymin=-10
Ymax=10
Yscl=1

2nd [TBLSET] 2nd [TBLSET] (in Program editor)

TABLE SETUP	TABLE SETUP
TbIStart=0	Indpnt:Auto Ask
Δ Tbl $=1$	Depend:Auto Ask
Indpnt:Auto Ask	
Depend:Auto Ask	

2nd [FORMAT]	MODE
CoordOn CoordOff	Normal Sci
GridOff GridOn	Float 0123456789
AxesOn AxesOff	Degree Radian
LabelOff LabelOn	A $\lrcorner \mathbf{b} / \mathbf{c}$ b/c
ExprOn ExprOff	Autosimp Mansimp

322 Appendix B: Reference Information

MATH			
\ulcorner	1	1	7
MATH	NUM	PRB	LOG
1:lcm(1:abs(1:rand	1:log(
2:gcd(2:round(2:randlnt(2:10^(
3:3	3:iPart(3:nPr	$3: \ln ($
4: $\sqrt[3]{ }($	4:fPart(4:nCr	4: e^{\wedge} (
5: $x_{\sqrt{ }}$	5:min(5:!	
6:Solver...	6:max(6:coin(
	7:remainder(7:dice(

	DRAW		2nd [TRIG]	
Γ	1	7	Γ	\square
DRAW	POINTS	STO	TRIG	ANGLE
1:CIrDraw	1:Pt-On(1:StorePic	1: $\sin ($	1: ${ }^{\circ}$
2:Line(2:Pt-Off(2:RecallPic	$3: \cos ($	2:'
3:Horizontal	3:Pt-Change(4: $\cos ^{-1}($	3:"
4:Vertical	4:PxI-On(5:tan(4:r
5:Shade(5:PxI-Off(6:tan ${ }^{-1}$	5:DDMS
6:Circle(6:PxI-Change(
7:Text(7:px\|-Test(
8:Pen				

2nd [STAT]			
Γ	1	-	,
Ls	OPS	MATH	CALC
1:L1	1:SortA(1:min(1:1-Var Stats
2:L2	2:SortD(2:max(2:2-Var Stats
3:L3	3:CIrList	3:mean(3:Manual-Fit
4:L4	4:dim(4:median(4:Med-Med
5:L5	5:دList(5:mode(5:LinReg(ax+b)
6:L6	6:Select(6:stdDev(6:QuadReg
7:name1	7:seq(7:sum(7:ExpReg
8:name2	8:augment(
...	9:L		

	PRGM	
Γ	1	7
EXEC	EDIT	NEW
1:name1	1:name1	1:Create New
2:name2	2:name2	
...	...	

PRGM (in Program editor)		
「	1	\square
CTL	I/O	EXEC
1:If	1:Input	1:name1
2:Then	2:Prompt	2:name2
3:Else	3:Disp	\ldots
4:For(4:DispGraph	
5:While	5:DispTable	
6:Repeat	6:Output(
7:End	7:getKey	
8:Pause	8:CIrScreen	
9:Lbl	9:CIrTable	
0:Goto	0:GetCalc(
A:IS>(A:Get(
B:DS<(B:Send(
C:Menu(
D:SetMenu(
E:prgm		
F:Return		
G:Stop		
H:DelVar		
I:GraphStyle(

```
2nd [CATALOG]
CATALOG
A_b/c
Ab/c\leftrightarrowd/e
abs(
```



```
sin(
\mp@subsup{\operatorname{sin}}{}{-1}
SingleConst
SortA(
...
\pi
?
```

	AP	
	APPLIC	
1:Link		2:CBL/CBR
\square	\square	
SEND	RECEIVE	1:GAUGE
1:All+...	1:Receive	2:DATA LOGGER
2:All-...		3:CBR
3:Prgm...		4:QUIT
4:List...		
5:Pic...		
6:Real...		
7:Y-Vars...		
8:Consts...		
9:Vars to TI82...		
0:Vars to TI83...		
A:Apps...		
B.AppVars...		
C:Sendld		
D:Back Up...		

2nd [VARS]

VARS

1:Window...
2:Y-Vars...
3:Statistics...
4:Picture...
5:Table...
6:Factor

2nd [VARS] 1:Window	2nd [VARS] 2:Y-Vars
WINDOW	FUNCTION
1:Xmin	$1: Y_{1}$
2:Xmax	$2: Y_{2}$
3:Xscl	$3: Y_{3}$
4:Ymin	$4: Y_{4}$
5:Ymax	$5: F n O n$
6:Yscl	6:FnOff
7:Xres	
8: ΔX	
9: ΔY	
0:XFact	
A:YFact	

2nd [VARS] 3:Statistics			
Γ	1	1	\square
XY	Σ	EQ	PTS
1:n	1: $\Sigma \mathrm{x}$	1:RegEQ	1:x1
2:x	2: $\Sigma \mathrm{x}^{2}$	2:a	2:y1
3:Sx	$3: \Sigma y$	3:b	3:x2
4: σx	4: $\Sigma \mathrm{y}^{2}$	4:c	4:y2
5:y	5: $: \times x$	5:r	5:x3
6:Sy		6: r^{2}	6:y3
7:бy		7: $\mathbf{R}^{\mathbf{2}}$	7:Q1
8:minX			8:Med
9:maxX			9:Q3
$0: m i n Y$			
A:max Y			

2nd [VARS] 4:Picture	2nd [VARS] 5:Table
1:Pic1 (Empty)	TABLE
2:Pic2 (Empty)	1:TbIStart
3:Pic3 (Empty)	2: Δ TbI
2nd [CONVERT]	
CONVERSIONS	
1:Length...	
2:Area...	
3:Volume...	
4:Time...	
5:Temp...	
6:Mass/Weight...	
7:Speed...	

2nd [CONVERT]	2nd [CONVERT]	2nd [CONVERT]
1:Length	2:Area	3:Volume
LENGTH	AREA	VOLUME
1:mm	1:ft ${ }^{\text {²}}$	1 :liter
2:cm	2:m²	2:gal
3:m	3:mi ${ }^{2}$	3:qt
4:inch	4:km ${ }^{2}$	4:pt
5:ft	5:acre	5:0z
6:yard	6:in ${ }^{2}$	6:cm ${ }^{3}$
7:km	7:cm ${ }^{2}$	7:in ${ }^{3}$
8:mile	8:yd ${ }^{2}$	8:ft ${ }^{3}$
	9:ha	9:m ${ }^{3}$
		0:galUK
		A:ozUK
2nd [CONVERT]	2nd [CONVERT]	2nd [CONVERT]
5:Temp	6:Mass/Weight...	7:Speed...
TEMP	MASS/WT.	SPEED
1:degC	1:g	$1: \mathrm{ft} / \mathrm{s}$
2:degF	2:kg	2:m/s
3:degK	3:lb	3:mi/hr
	4:ton	4:km/hr
	5:mton	5:knot

2nd [SET]		2nd [SET] (in Program editor)
Set Constant:		ANTS
Single Multiple		
$\mathrm{C}_{1}=$		
$\mathrm{C}_{2}=$		
C3=		
C4=		
2nd [MEM]		
MEMORY		
1:About		
2:Check RAM...		
3:Check APPs...		
4:Delete...		
5:Clear Home		
6:CIrAllLists		
7:Reset...		
2nd [MEM] 2:Check RAM		2nd [MEM] 3:Check APPs
MEM FREE 25002		SPACES FREE 3
Real	15	CBL/CBR 1
List	54	
Y-Vars	32	
Consts	32	
Prgm	15	
Pic	0	

2nd [CONVERT] 4:Delete
DELETE FROM...
1:All...
2:Real...
3:List...
4:Y-Vars...
5:Consts...
6:Prgm...
7:Pic...
8:Apps...
9:AppVars...

2nd [CONVERT] 7:Reset
RESET

Resetting RAM erases all data and programs.

The VARS Menu 2nd [VARS]

Access system variables through the VARS menu (2nd [VARS]). You can enter the names of functions and system variables in an expression or store values to them directly. For more information about storing values to a variable, see Chapter 1: Operating the TI-73.

All VARS menu items, except 6:Factor, display secondary menus. For specific information about the individual menu items, see their respective chapter in this manual. When you select a variable from a menu, it is inserted at the cursor location.

2nd [VARS]	
1:Window	Accesses WINDOW screen (WINDOW) variables (Chapter 9: Function Graphing).
2:Y-Vars	Accesses Y= editor (Y) variables (Chapter 9: Function Graphing).
3:Statistics	Accesses 1-Var Stats and 2-Var Stats (2nd [STAT] CALC) variables (Chapter 7: Statistical Analyses).
4:Picture	Accesses picture (DRAW STO) variables (Chapter 10: Draw).
5:Table	Accesses table setup (2nd [TBLSET]) variables (Chapter 8: Tables).
6:Factor	Returns the simplification factor of a fraction after you simplify it using SIMP (Chapter 3: Fractions).

Equation Operating System (EOS ${ }^{\text {TM }}$)

The Equation Operating System (EOS) defines the order in which functions and expressions are entered and evaluated on the TI-73. Within a priority level, EOS evaluates functions from left to right and in the following order.

1	Calculations within parentheses.
2	Single-argument functions that precede the argument, such as $\sqrt{ }($ (sin(, or log(.
	Multi-argument functions, such as min(2,3), are evaluated as they are encountered.
3	Functions that are entered after the argument, such as !, \circ , r , and conversions.
4	Powers and roots, such as 2^{5} or $\sqrt[5]{32 .}$
5	Permutations (nPr) and combinations (nCr).
6	Multiplication, implied multiplication, and division.
7	Addition and subtraction.
8	Relational functions, such as >or \leq.
9	Logic operator and.
10	Logic operator or.

In Case of Difficulty

If	Suggested Action
You cannot see anything on the display.	Press 2nd \triangle to darken or 2nd ∇ to lighten the display contrast.
The LOW BATTERY message is displayed on the Home screen.	Replace the batteries as described in Appendix C: Battery/Service and Warranty Information.
A checkerboard cursor (\#) is displayed.	Either you have entered the maximum number of characters in a prompt or memory is full. If memory is full, press 2nd [MEM] 4:Delete, and then delete some items from memory (See Chapter 13: Memory Management).
The busy indicator (\vdots) is displayed in the top right corner.	A calculation, graph, or program has been paused; the TI-73 is waiting for input. Press ENTER to continue, or press 0 N to break.
An error message is displayed.	Refer to the section in this chapter entitled "Error Messages." Press ENTER to clear.
The TI-73 does not appear to be working properly.	Press 2nd [QUIT] as many times as needed to exit any menu and to return to the Home screen. - or - Be sure that the batteries are installed properly and that they are fresh.
The difficulty persists.	Refer to Appendix C: Battery/Service and Warranty Information for information on how to contact Customer Support to discuss the problem or to obtain service.

Correcting an Error

When the TI-73 detects an error, it returns an error message as a menu title, such as ERR:SYNTAX or ERR:DIM MISMATCH.

To correct an error, follow these steps:

1. Note the error type (ERR:error type).
2. Select 2:Goto, if it is available. The previous screen is displayed with the cursor at or near the error location.
3. If you select 1:Quit (or press 2nd [QuIT] or [CLEAR), the Home screen is displayed.
4. Determine the cause of the error. If you cannot recognize the error, use the Error Messages table below which describes error messages in detail.
5. Correct the expression.

If a syntax error occurs in the contents of a $\boldsymbol{Y}_{\mathrm{n}}$ function during program execution, selecting 2:Goto returns you to the $\mathrm{Y}=$ editor, not to the program.

Error Messages

When the TI-73 detects an error, it displays ERR:TYPE and an error menu. This table contains each error type, possible causes, and suggestions for correction.

The TI-73 detects errors while performing the following tasks:

- Evaluating an expression
- Executing an instruction
- Plotting a graph or stat plot
- Storing a value

Error Type	Possible Causes and Suggested Remedies
ARGUMENT	A function or instruction does not have the correct number of arguments. See Appendix A and the appropriate chapter.
BAD GUESS	You specified a guess in the Equation Solver that is not between the lower and upper bounds. Your guess and several points around it are undefined. Examine a graph of the function. If the equation has a solution, change the bounds and/or initial guess.
BOUND	With Select(, you defined Left Bound>Right Bound. In the Equation Solver, you entered lower \geq upper.
BREAK	You pressed the $0 \mathbb{O}$ key to break execution of a program, to halt a DRAW instruction, or to stop evaluation of an expression.
DATA TYPE	You entered a value or variable that is the wrong data type. - For a function (including implied multiplication) or an instruction, you entered an argument that is an invalid data type, such as a real number where a list is required. - In an editor, you entered a type that is not allowed. - You attempted to store to an incorrect data type, such as a real number to a list.
DIM MISMATCH	You attempted to perform an operation that references more than one list, but the lists do not have the same dimension (number of elements).

Error Type	Possible Causes and Suggested Remedies
DIVIDE BY 0	You attempted to divide by 0. This error is not returned during graphing. The TI-73 allows for undefined values on a graph.
	You attempted a linear regression with a vertical line.
DOMAIN	You specified an argument to a function or instruction outside the valid range, such as using a negative frequency in box plots. This error is not returned during graphing because the TI-73 allows for undefined values on a graph. See Chapter 6: In a Patistical Plots or Chapter 9: Function Graphing. so that the maximum scale (99999) can't make all icons fit in one screen.
	You attempted an exponential regression with a-Y.

Error Type	Possible Causes and Suggested Remedies
ILLEGAL NEST	You attempted to use an invalid function in an argument to a function, such as seq(within expression for seq(. Can occur when combinations of nesting of function evaluation exceeds five levels.
INCREMENT	The increment in seq(is 0 or has the wrong sign. This error is not returned during graphing. The TI-73 allows for undefined values on a graph. The increment in a For(loop is 0 .
INVALID	You attempted to reference a variable or use a function where it is not valid. For example, $\mathbf{Y n}$ cannot reference $\mathbf{Y}, \mathbf{X m i n}, \Delta \mathbf{X}$, or TbIStart. Defining and graphing a Yn equation using the variable Ans. You attempted to use Select(without having selected (turned on) at least one xyLine or Scatter plot.
INVALID DIM	You specified dimensions for an argument that are not appropriate for the operation. You specified a list dimension as something other than an integer between 1 and 999.
ITERATIONS	The Equation Solver has exceeded the maximum number of permitted iterations. Examine a graph of the function. If the equation has a solution, change the bounds, the initial guess, or both.
LABEL	The label in the Goto instruction is not defined with a Lbl instruction in the program.

Error Type	Possible Causes and Suggested Remedies
MEMORY	Memory is insufficient to perform the instruction or function. You must delete items from memory (Chapter 13: Memory Management) before executing the instruction or function.
	Recursive problems return this error; for example, graphing the equation $\mathrm{Y} 1=\mathrm{Y} 1$.
	Branching out of an If/Then, For(, While, or Repeat loop with a Goto also can return this error because the End statement that terminates the loop is never reached.
MemoryFull	You are unable to transmit an item because the receiving unit's available memory is insufficient. You may skip the item or exit receive mode.
	During a memory backup, the receiving unit's available memory is insufficient to receive all items in the sending unit's memory. A message indicates the number of bytes that the sending unit must delete to do the memory backup. Delete items and try again.
MODE	You attempt to simplify a fraction with SIMP while in Autosimp Simplification mode.
NO SIGN CHANGE	The Equation Solver did not detect a sign change.
OVERFLOW	You attempted to enter, or you have calculated, a number that is beyond the range of the calculator. This error is not returned during graphing. The TI-73 allows for undefined values on a graph.
RESERVED	You attempted to use a system variable inappropriately. See Chapter 1: Operating the TI-73.
SCALE	The Pictograph scale is invalid. Scale must be an integer between 1 and 99,999.

Error Type	Possible Causes and Suggested Remedies
SINGULARITY	expression in the Equation Solver contains a singularity (a point at which the function is not defined). Examine a graph of the function. If the equation has a solution, change the bounds or the initial guess or both.
STAT	You attempted a stat calculation with lists that are not appropriate. - Statistical analyses must have at least two data points. - Med-Med must have at least three data points in each partition. - When you use a frequency list, its elements must be ≥ 0. - (Xmax-Xmin)/Xscl must be ≤ 47 for a Histogram.
STAT PLOT	You attempted to display a graph when a stat plot that uses an undefined list is turned on.
SYNTAX	The command contains a syntax error. Look for misplaced functions, arguments, parentheses, or commas. See the appropriate chapter.
UNDEFINED	You referenced a variable that is not currently defined. For example, you referenced a stat variable when there is no current calculation because a list has been edited, or you referenced a variable when the variable is not valid for the current calculation, such as \mathbf{c} after Med-Med.
VALIDATION	Electrical interference caused a link to fail or this calculator is not authorized to run the application.

Error Type	Possible Causes and Suggested Remedies
WINDOW RANGE	A problem exists with the WINDOW variables. - You defined $\mathbf{X m a x} \leq \mathbf{X m i n}$ or Y max $\leq Y$ min. - WINDOW variables are too small or too large to graph correctly. You may have attempted to zoom in or zoom out to a point that exceeds the TI-73's numerical range.
ZOOM	A point or a line, instead of a box, is defined in ZBox. A ZOOM operation returned a math error.

Battery/

Service and

 Warranty InformationBattery Information 339
When to Replace Batteries 339
Effects of Replacing the Batteries 340
Replacing the Batteries 341
Battery Precautions 341
Texas Instruments (TI) Support and Service 342
Australia \& New Zealand Customers only 343
All Other Customers 344

Battery Information

The TI-73 uses four AAA alkaline batteries and has a userreplaceable backup lithium battery (CR1616 or CR1620).

When to Replace Batteries

When the battery voltage level drops below a usable level, the TI-73 displays the following message when you turn on the unit.

```
Your batteries
are low.
Recommend
chan!e 听
batteries.
```


Battery Information

The TI-73 uses four AAA alkaline batteries and has a userreplaceable backup lithium battery (CR1616 or CR1620).

When to Replace Batteries

When the battery voltage level drops below a usable level, the TI-73 displays the following message when you turn on the unit.

```
Your bstter'ies
are low.
Recommerid
change of
batteries.
```

Generally, the calculator continues to operate for one week after the low-battery message is first displayed. After this period, the TI-73 will turn off automatically and the unit will not operate. Batteries must be replaced. All memory is retained.

Note: The operating period following the first low-battery message could be longer if you use the calculator infrequently or shorter if you use the calculator frequently.

Replace the lithium battery every three to four years.
The calculator does not let you install new software or application programming if the batteries are too low.

Effects of Replacing the Batteries

Do not remove both types of batteries (AAA and lithium auxiliary) at the same time. Do not allow the batteries to lose power completely. If you follow these guidelines and the steps for replacing batteries on the next page, then you can replace either type of battery without losing any information in memory.

Replacing the Batteries

1. Turn off the calculator. Replace the slide cover over the keyboard to avoid inadvertently turning on the calculator. Turn the back of the calculator toward you.
2. Hold the calculator upright, push downward on the latch on the top of the battery cover with your finger, and then pull the cover toward you.

Note: To avoid loss of information stored in memory, you must turn off the calculator. Do not remove the AAA batteries and the lithium battery simultaneously.
3. Replace all four AAA alkaline batteries simultaneously. Or, replace the lithium battery.

- To replace the AAA alkaline batteries, remove all four discharged AAA batteries and install new ones according to the polarity (+ and -) diagram in the battery compartment.
- To replace the lithium battery, remove the screw from the lithium-battery cover, and then remove the cover. Install the new battery, + side up. Replace the cover and secure it with the screw. Use a CR1616 or CR1620 (or equivalent) lithium battery.

4. Replace the battery compartment cover. Turn the calculator on and adjust the display contrast (2nd) Δ or 2nd $⿴$), as necessary.

Battery Precautions

Take these precautions when replacing batteries:

- Do not mix new and used batteries. Do not mix brands or type within brands of batteries.
- Do not mix rechargeable and non-rechargeable batteries.
- Install batteries according to polarity (+ and -) diagrams.
- Do not place non-rechargeable batteries in a battery recharger.
- Do not incinerate batteries.

Texas Instruments (TI) Support and Service

For General Information

Home Page:
education.ti.com
KnowledgeBase and
E-mail Inquiries:
Phone:
education.ti.com/support
1.800.TI.CARES (1.800.842. 2737)

For U.S., Canada, Mexico, Puerto
Rico, and Virgin Islands only
International
Information:
education.ti.com/support (Click the International Information link.)

For Technical Support

KnowledgeBase and
Support by E-mail: education.ti.com/support
Phone (not toll-free): $\quad 1.972 .917 .8324$

For Product (hardware) Service

Customers in the U.S., Canada, Mexico, Puerto Rico and Virgin Islands: Always contact TI Customer Support before returning a product for service.

All other customers: Refer to the leaflet enclosed with this product (hardware) or contact your local TI retailer/distributor.

Customers in the U.S. and Canada Only

One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.

Abstract

Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date. Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.

Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.
Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality (at TI's option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value prior to mailing.
Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."
Copyright. The software and any documentation supplied with this product are protected by copyright.

Australia \& New Zealand Customers only

One-Year Limited Warranty for Commercial Electronic Product

This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.
Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.
Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. This warranty is void if the product has been damaged by accident or unreasonable use, neglect, improper service, or other causes not arising out of defects in materials or construction.
Warranty Disclaimers. Any implied warranties arising out of this sale, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, are limited in duration to the above one-year period. Texas Instruments shall not be liable for loss of use of the product or other incidental or consequential costs, expenses, or damages incurred by the consumer or any other user.
Some jurisdictions do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from jurisdiction to jurisdiction.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a new or reconditioned model of an equivalent quality (at TI's option) when the product is returned to the original point of purchase. The repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than your cost to return the product, no charge will be made for such repair and/or replacement. TI strongly recommends that you insure the product for value if you mail it.
Software. Software is licensed, not sold. TI and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."
Copyright. The software and any documentation supplied with this product are protected by copyright.

All Customers outside the U.S. and Canada

For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

Index

! (factorial), 52
" (seconds), 216

- (degrees), 216

L (list signifier), 101
\geq (relational operator), 32
$\overline{\mathrm{x}}$ (statistical result variable), 136
Δ List(, 97
\#SAMPLES
DATA LOGGER 270
$\Delta \mathrm{Tbl}$
definition, 153
storing to, 161
$\Delta \mathbf{X}, 171,179$
$\Sigma \mathbf{x}, 136$
$\Sigma \mathbf{x}^{2}, 136$
ミxy, 136
£y, 136
$\Sigma \mathbf{y}^{2} 136$
' (minutes), 216
< (relational operator), 32
= (relational operator), 32
> (relational operator), 32
0123456789 Decimal Notation mode, 24
123 (Bar graph), 113, 118
$\mathbf{1 0}^{\wedge}$ ((10 to the power of), 55
1-Var Stats 134
results, 136
2-Var Stats 134
results, 136
3((cube), 37

-A-

a (slope), 140, 142
A」b/c Display Format mode, 60
About (Memory Menu), 276
abs((absolute value), 44
addition, 27
All- (SEND) 256
All+ (SEND), 256
analyses, statistical, 128, 133
and (Boolean operator), 33
ANGLE (2nd [TRIG]) menu, 215
Angle mode
trig functions, 211

$$
-\mathrm{A}-(\text { continued })
$$

angle units, 215
angles
converting to DMS, 220
in DMS notation, 218
Ans (Last Answer), 18
continuing expressions, 18
variable, as a, 19
APD (Automatic Power Down), 3
applications
memory, 277
APPLICATIONS ([APPS)
menu, 263
Apps, 279
Apps (SEND), 256
AppVars 279
AppVars (SEND) 256
arccosine, 211
arcsine, 211
arctangent, 211
Area (units), 68
argument, 12
augment 100
Autosimp mode setting, 61
average (mean), 130
Axesoff 172
stat plots, 114
AxesOn 172
-B-
b (y-intercept), 140, 142
b/c Display Format mode, 60
Back Up (memory), 261,263
Back Up (SEND), 256
Bar (GAUGE), 267
Bar graph, 118
base 10 logarithm, 54
batteries, installing, 3
Boolean operators, 32
bound, 41
branching
DS $>$ (235
IS $>$ (, 235
Lbl/Goto 234

cable, unit-to-unit. See unit-tounit cable
CALC (2nd [STAT]) menu, 133
CATALOG, 14
CategList, 113
Bar graph, 118
Pictograph, 117
Pie chart, 120
categorical lists, 81
signifier, c, 85
CBL 2/CBL, 247, 254
CBL/CBR App
steps for running, 264
CBR, 247, 254
CBR (data collection method), 266
characters, editing, 11
Check APPs, 277
Check RAM, 277
Circle(
from Graph screen, 195
from Home screen, 196
circumference, 195
Clear Home, 279
ClrAllLists, $90 \mid 280$
ClrDraw, 189
ClrList, 95
ClrScreen, 247
CIrTable, 247
coefficient of determination
(\mathbf{r}^{2}), 136
ExpReg, 146
LinReg (ax+b), 142
QuadReg, 144
coin(, 53
colon (:), 16
column
pixel, 205, 206
table, 152
Text(, 198
combinations ($\mathbf{n C r}$), 51
commands, programming. See
programming commands
Constant Memory, 3
constants, 71
counter, 73
defining, 7275
Multiple mode, 75
recalling, 73.75
-C- (continued)
constants (continued)
Single mode, 72
Consts (SEND), 256
contrast, display, 4
CONVERSIONS
(2nd [CONVERT]) menu, 68
converting
degrees/radians (DMS), 217
fractions, 6465
units, 70
coordinate pair
function graphing, 165
table, 150
CoordOff, 172
CoordOn, 172
copying \qquad
lists, 103
programs, 249
correlation coefficient (r), 136
ExpReg, 146
LinReg(ax+b), 142
QuadReg, 144
$\boldsymbol{\operatorname { c o s }}$ ((cosine), 210
counter, constant, 73
Create New (program), 224
CTL (IPF GM) Menu, 227
cube, 37
cube root, 38
cursors, display
Entry, 10
Full, 10
Insert, 10
Second, 10

> -D-
data collection
starting, 273
stopping, 274
data collection methods, 265 ,
266
Data List, 113
Bar graph, 118
Pictograph, 117
Pie chart, 120
DATA LOGGER, 266
options, 270
Decimal Notation mode, 24
decimals
converting to fractions, 64

-D- (continued)

defaults, resetting, 282
degrees
DMS, 216
trig, 211
Delete (Memory Menu), 278
DelVar, 240
denominator, 58
Depend (tables)
Ask, 156
Auto 155, 156157
definition, 153
DependAsk 161
DependAuto 161
dependent list formula, 83
deleting, 91
dependent numerical lists, 83
dependent variable (Y), 150
DiagnosticOff
ExpReg 146
LinReg(ax+b) 142
QuadReg 144
DiagnosticOn
ExpReg 146
LinReg(ax+b) 142
QuadReg 144
dice(, 53
difference (subtraction), 27
difficulties, correcting, 331
dim((dimension), 95
DIRECTNS
DATA LOGGER 271
GAUGE 268
Disp, 244
DispGraph 245
display contrast, 4
Display Format mode, 60
DispTable 245
dividend
remainder(,48
division, 27
integer, 28
divisor
remainder (48,50
DMS, 220
converting to, 220
notation, 218
drawing
circles, 195
horizontal lines, 191
-D- (continued)
drawing (continued)
irregular shapes (Pen), 199
line segments, 189
pixels, 205
points, 202
shading, 193
text, 197
vertical lines, 191
DS<((Decrement and Skip), 235
DuplicateName menu, 259 -E-
e (natural log), 55
\mathbf{e}^{\wedge} ((e to the power of), 56
edit keys, 11
EDIT ([PRGM]) menu, 225, 248
editing
characters, 11
functions, 168
lists, 87
programs, 225
table elements, 159
elements, list, 81
categorical, 81
clearing, 90 95
deleting, 89
dimension, returning, 95
displaying, 103
editing, 89
fractional, 82
inserting, 89 | 104
numerical, 81
text, 8185
elements, table
editing, 159
End, 233
DATA LOGGER 271
For, 231
If-Then, 229
If-Then-Else 230
Repeat, 232
While, 232
entries, Home screen, 5
Clear Home 279
Entry (Last Entry), 17
multiple expressions, 16

-E- (continued)

Entry line
lists, 79
tables, 154, 160
Text editor, 8
Equation Operating System
(EOS), 15 | 330
Equation Solver, 38
bound, 41
Solve,41
error messages, 332
transmission, 260
errors, correcting, 332
EXEC ([RGGN]) Menu
calling a subroutine, 250
executing a program, 251
ExpReg (exponential
regression), 146
expressions, 15
multiple on one line, 16
ExprOff 172
ExprOn, 172

$$
-\mathrm{F}-
$$

Factor, simplification, 63
recalling, 64
factorial (!), 52
Float Decimal Notation mode, 24
For(, 231
format, window, 171
formula, dependent list, 83
attaching, 83
deleting, 91
fPart (fractional part), 46
fractions
converting mixed to simple, 65
converting to decimals, 64
Display Format mode, 60
entering, 58
factor, simplification, 63
recalling, 64
list elements, as, 82
mixed numbers, 58
negating, 59
results in calculations, 59
simple, 58
simplification factor, 62

-F- (continued)

fractions (continued)
Simplification mode, 60
simplification signifier (\downarrow), 62
simplifying automatically, 61
simplifying manually, 62
whole number, 58
F-RAM (Flash RAM), 261
Freq (frequency list), 113. See
frequency lists
frequency lists
Histogram, 121
stat plots,,113
with regressions, 133, 137
function graphing, 165
displaying, 177
free-moving cursor, 178
graph styles, 169
steps for, 164
tracing, 178
window format, 171
WINDOW values, 171, 173
zooming, 181
function graphs
drawing on, 188
functions
defining, 167
definition of, 12
editing, 168
entering, 167
primary, 6
secondary (2nd), 7
selecting, 168

-G-

GAUGE 266
comments, 268
options, 267
ged((greatest common
divisor), 36
Get(, 247
GetCalc(247
getKey 246
Goto, 234
Graph Explorer Software, 262
graph styles, 169
graphing
trig functions, 214

-G- (continued)

graphing, function. See function graphing
GraphStyle(,240
greatest common divisor (GCD), 36
GridOff, 172
GridOn, 172
-H-

Histogram, 121
Home screen, 5
Hor (stat plot option), 113
Bar graph, 118
Pictograph, 117
Horizontal (draw)
from Graph screen, 191
from Home screen, 192

I/O ([PF GM) Menu, 241
icons
graphstyle, 169
pictograph, 113, 117
Type (stat plots), 111
ID number, 262
IDList, 279
If, 229
If-Then, 229
If-Then-Else, 230
independent numerical lists, 83
independent variable (\mathbf{X}), 150,
167
Indpnt (tables)
Ask, 157
Auto, 155, 156, 157
definition, 153
IndpntAsk, 161
IndpntAuto, 161
Input, 242
instructions, 12
integer division, 28
integer part (iPart), 46
interquartile range, 124
INTRVL (SEC)
DATA LOGGER, 271
inverse function, 29
inverse trig functions, 211
iPart (integer part), 46

-I- (continued)

IS>((Increment and Skip), 235
-L-

L1-L6, 7980
LabelOff, 172
LabelOn, 172
Last Entry (Entry), 17
latitude (DMS), 218
Lbl (Label), 234
lcm((least common multiple), 35
LDCIMT, 269
LDIST
DATA LOGGER, 272
GAUGE, 269
least common multiple (LCM), 35
Length (units), 68
letter keys, 8
Light probe, 265
Line(
from Graph screen, 189
from Home screen, 190
linear equation, 138
link
TI Connect, 255
TI-GRAPH LINK. 255
to a calculator, 254
to CBL/CBR, 255
LINK SEND menu, 254
LinReg(ax+b), 142
List (IDList). 279
List (SEND), 256
list braces \{ \}, 8
List editor, 79
clearing elements, 90
deleting elements, 89
deleting lists, 87
editing elements, 89
inserting elements, 89
inserting lists, 87
list signifier (L), 91, 101
list, elements. See elements, list
lists
L (list signifier), 91,01
braces, 102
clearing elements, 90
ClrAllLists, 280
combining two, 100
copying, 103

-L- (continued)

lists (continued)
creating, 102
deleting elements, 89
deleting from memory, 88
dependent numerical, 83
editing elements, 89
entering elements, 81
formula, deleting, 91
formula, dependent list, 83
frequency. See frequency lists
independent numerical, 83
inserting elements, 89
L1-L6, 79, 80
LDCIMT, 269
LDIST, 269, 272
List editor, 79
list name notation, 80
LLCMT, 269
LLIGHT, 269, 272
LTCIMT, 269
LTEMP, 269, 272
LVCMT, 269
LVOLT, 2 29,272
math functions, with, 105
names, accessing, 91
naming, 79
notation, 79
numerical elements, 81
sorting, 93
stat plot data, 109
steps for creating, 78
text elements, 81.85
transferring (LINK), 254
Xlist 114
Ylist, 114
LLCMT, 269
LLIGHT
DATA LOGGER 272
GAUGE 269
$\ln ($ (natural \log), 55
LOG ([MATH]) Menu, 54
$\log ($ (base 10 logarithm), 54
logic (Boolean) operators, 32
longitude (DMS), 218
LTCMT, 269
LTEMP
DATA LOGGER 272
GAUGE 269
-L- (continued)
LVCMT, 269
LVOLT
DATA LOGGER, 272
GAUGE, 269
-M-
Mansimp mode setting, 62
Manual-Fit 138
Mark, 112
Modified Box plot, 124
Scatter plot, 114
Mass/Weight (units), 69
MATH (2nd [STAT]) menu, 34
Statistics, 128
math operations, basic, 27
matrix, 279
MAX (GAUGE), 268
$\max ($
2nd [sTat] MATH Menu, 128
MATH NUM Menu, 47
$\operatorname{maxX} 136$
$\operatorname{maxY} 136$
mean (130
Med (median), 137
median(130
Med-Med (median-median), 140
MEM FREE Screen 277
memory
resetting all, 4
Memory Full menu 259
MEMORY Menu, 276
memory, RAM. See RAM memory
MEMORYBACKUP menu 261
Menu Map, 320
Menu(, 236
menus
displaying, 12
exiting, 13
scrolling items, 13
secondary, 13
Meter (GAUGE), 267
MIN (GAUGE), 268
$\min ($
2nd [STAT] MATH Menu, 128
MATH NUM Menu, 47

-M- (continued)

minutes
conversions, 69
DMS, 218
$\min X, 136$
$\min Y, 136$
mixed numbers, 58
converting to fractions, 65
mode settings
0123456789, 24
$\mathbf{A}-\mathbf{b} / \mathbf{c} 60$
Autosimp, 61
b/c, 60
definition, 22
Degree, 211
Float, 24
list element display, 81
Mansimp, 62
Multiple (constants), 75
Normal, 23
Radian, 211
Sci, 23
Single (constants), 72
table element display, 154
mode(130
Modified Box plot, 124
Multiple mode (constants), 75
multiplication, 27
$-\mathrm{N}-$
n (number of data points), 136
naming
lists, 79
programs, 224
natural $\log (\ln), 55$
$\mathbf{n C r}$ (combinations), 51
negative numbers, 6
NEW ([PRGM]) Menu, 224
Normal mode setting, 23
nPr (permutations), 51
NUM ([MATH]) Menu, 44
Number (Pie chart) 113120
numbers
entering, 6
negative, 6
numerator, 58
Numeric Notation mode, 23
numerical lists, 81
dependent, 83
independent, 83

-O-

off/on, 3
Omit (LINK), 259
on/off, 3
OPS (2nd [STAT]) menu, 9295
or (Boolean operator), 33
outliers (Modified Box plot), 124
Output 245
Overwrite (LINK), 259

-P-

parentheses
implied multiplication, 16
in expressions, 16
Pause 233
Pen command, 199
percent, 29
Percent (Pie chart) 113120
permutations (nCr), 51
pi, 28
Pic (SEND), 256
Pic1, 2, 3
deleting, 208
recalling, 208
storing to, 207
Pictograph, 117
Pie chart, 120
pixel, 205
PLOT
DATA LOGGER, 271
Plot1, 2, and 3,109
PlotsOff/On, 110
POINTS ([DRAW]) menu, 201
population standard deviation, 131
power (^), 31
PRB ([MATH) Menu, 49
prgm (command), 238
Prgm (SEND), 256
primary function, 6
Probe-Time Graph, 270
product (multiplication), 27
Program editor, 225
exiting, 227
with PRGM CTL Menu, 227
programming commands
ClrScreen 247
ClrTable 247
deleting, 249

- $\mathbf{P -}$ (continued)

Programming Commands
(continued)
DelVar 240
Disp, 244
DispGraph, 245
DispTable, 245
DS $>$ (,235
editing, 248
End, 233
entering, 226
For(, 231
Get(,247
GetCalc(247
getKey, 246
Goto, 234
GraphStyle(240
If, 229
If-Then 229
If-Then-Else 230
Input 242
inserting, 249
IS>(, 235
Lbl (Label), 234
Menu(, 236
Output(245
Pause, 233
prgm, 238
Prompt, 244
Repeat, 232
Return, 239
Return with subroutines, 251
Send(, 247
SetMenu(237
Stop, 239
While, 232
programs
branching, 234
calling, 250
copying, 249
creating new, 224
debugging, 252
definition, 223
editing, 225
entering commands, 226
executing, 251
naming, 224
renaming, 249
steps for creating, 223
-P- (continued)
programs (continued)
stopping execution, 252
subroutines, 238, 250
Prompt, 244
Pt-Change(
from Graph screen, 202
from Home screen, 204
Pt-Off(
from Graph screen, 202
from Home screen, 204
Pt-On(
from Graph screen, 202
from Home screen, 204
Pxl-Change 205
Pxl-Off(205
Pxl-On(205
pxl-Test(206

-Q-

$\mathbf{Q}_{11}(1$ st quartile median point)
Modified Box plot, 124
\mathbf{Q}_{1} (statistical result variable), 137
\mathbf{Q}_{3} (3rd quartile median point)
Modified Box plot, 124
\mathbf{Q}_{3} (statistical result variable), 137
quadrants, 171, 173
QuadReg (quadratic
regression), 144
QuickZoom 179
quotation mark, 8
quotient
division, 27
integer division, 28
-R-
r. See correlation coefficient
r (radians), 216
$\mathbf{r}^{2} / \mathbf{R}^{2}$. See coefficient of determination
radians
DMS, 216
trig, 211
radius, circle, 196

-R- (continued)

RAM memory, 254
back up, 261, 263
resetting, 281
rand (random number), 49
randInt((random integer), 50
RANGER program, 265, 273
Rcl (Recall), 21
with programs, 250
Real (SEND), 256
RealTme
DATA LOGGER, 271
RecallPic, 208
Receive (LINK), 257
RECEIVE ([APPS]) menu, 257
reciprocal, 29
RegEQ (Regression Equation), 137
regression
exponential (ExpReg), 146
linear (LinReg(ax+b)) 142
quadratic (QuadReg) 144
regression models, 133
relational operators, 32
remainder
integer division, 28
remainder(,48
Rename (LINK), 259
Repeat, 232
Reset
All RAM, 281
Defaults, 282
Reset (MEMORY Menu), 280
Return, 239
subroutines, 251
right triangle, 210
round,44
row
pixel, 206
Text(198
-S-
sample standard deviation, 131, 136
Scale (pictograph) 113117
Scatter plot, 114
Select(, 98
Sci mode setting, 23
scientific notation, 7
-S- (continued)
scroll
cursor, 11
Home screen, 6
menu items, 13
secondary (2nd) functions, 7
secondary menus, 13
seconds
conversions, 69
seconds (DMS), 218
seed value (random number), 49
SELECT screen (LINK), 258
Select(, 98
Selection cursor
CATALOG, 14
Text editor, 8
send data (LINK), 255
SEND menu, 255
Send(,247
SendID (SEND), 256
seq(,99
SetFactors, 186
SetMenu(,237
Shade(, 193
Simplification mode, 60
simplification signifier (\downarrow), 62
$\boldsymbol{\operatorname { s i n }}$ ((sine), 210
Single mode (constants), 72
slope (a), 140, 142
Smart Graph, 178
software
upgrade, 262
Solve (Equation Solver), 41
Solver, Equation. See Equation Solver
Sonic probe, 265
SortA((ascending), 93
SortD((descending), 93
sorting lists, 93
multiple, 94
space (in text), 8
Spaces Free screen, 277
Speed (units), 69
square, 30
square root, 31
standard deviation
population, 131
sample, 131

-S- (continued)

stat plots
adjusting viewing window, 114
Bar graph, 118
defining plots, 109
deselecting $\mathbf{Y}_{\mathbf{n}}$ functions, 109
displaying, 114
drawing on, 188
editors, 111
Histogram, 121
list data, 109
main menu, 109
Modified Box plot, 124
options, defining, 112
Pictograph, 117
Pie chart, 120
Plot1, 109
Plot2, 109
Plot3, 109
PlotsOff, 110
PlotsOn, 110
Scatter plot, 114
steps for defining, 108
tracing, 114
types, selecting, 111
xyLine plot, 114
statistical analyses, 128, 133
stdDev(. See standard
deviation
Stop, 239
store (variables), 20
STORE ([DFiAW) menu, 206
StorePic, 207
subroutines, 238, 250
subtraction, 27
sum (addition), 27
sum(, 132
summary points, 136
Sx (statistical result variable), 136
Sy (statistical result variable), 136
system variables, 20329

$$
-\mathrm{T}-
$$

TABLE SETUP screen, 153
tables
defining functions, 152
definition, 150
-T- (continued)
tables (continued)
displaying, 154
editing X values, 159
editing $\mathbf{Y}_{\mathbf{n}}, 160$
setup from Home screen, 161
steps for creating, 151
TABLE SETUP screen, 153
$\boldsymbol{\operatorname { t a n }}$ ((tangent), 210
TblStart
definition, 153
storing to, 161
Temp probe, 265
Temperature (units), 69
test operations, 32
logic (Boolean) operators, 32
relational operators, 32
Text editor, 7
categorical list elements, 81
naming a program, 224
naming lists, 80
Text(, 197
Text
from Graph screen, 197
from Home screen, 198
text, entering, 7
TI Connect, 254
TI-GRAPH LINK, 254
Time (units), 69
tracing a graph, 178
controlling increments, 179
transmission errorc (LINK), 260

trig calculations, 212
trig functions, 210
Angle mode, 211
graphing, 214
TRIG (2nd [TRIG]) menu, 210
units
angle, 215
Area, 68
converting, 70
DATA LOGGER, 271
GAUGE, 268
Length, 68
Mass/Weight, 69
Speed, 69
Temperature, 69
Time, 69

-U- (continued)

units (continued)
Volume, 69
unit-to-unit cable, 254
upgrade software, 262
installing, 262
where to find, 262

$$
-\mathrm{V}-
$$

variables
recalling, 21
VARS Menu, 329
variables, types of, 20
VARS (2nd [VARs]) Menu, 329
Vars to TI82 (SEND), 256
Vars to TI83 (SEND), 256
Vert (stat plot option), 113
Bar graph, 118
Pictograph, 117
Vertical (draw)
from Graph screen, 191
from Home screen, 192
Volt probe, 265
Volume (units), 69

$$
-W-
$$

web site, TI, 262
Weight/Mass (units), 69
While, 232
window format, 171
WINDOW values, 171
defining, 173
WINDOW Values Screen, 174

$$
-X-
$$

x1 (summary point), 136
x2 (summary point), 136
x3 (summary point), 136
XFact 186
Xlist, 112
Histogram, 121
Modified Box plot 124
Scatter plot, 114
xyLine plot, 114
$\mathbf{X m a x} 171,179$
-X - (continued)
Xmin, 171, 179
Xscl, 171
xth root, 38
xyLine plot, 114
Select(,98
$-Y-$
Y = editor, 167
exiting, 169
selecting functions, 168
$\mathbf{y}=\mathbf{a b}^{\mathbf{x}} 146$
$\mathbf{y}=\mathbf{a x}+\mathbf{b} 142$
Manual-Fit, 138
Med-Med, 140
$\mathbf{y}=\mathbf{a x}{ }^{2}+\mathbf{b x}+\mathbf{c}, 144$
$\mathbf{Y}_{1}, 167$
y1 (summary point), 136
$\mathbf{Y}_{2}, 167$
y2 (summary point), 136
$\mathbf{Y}_{3}, 167$
y3 (summary point), 136
$\mathbf{Y}_{4}, 167$
YFact, 186
y-intercept (b), 140, 142
Ylist, 112
Scatter plot, 114
xyLine plot, 114
Ymax 171
DATA LOGGER 271
Ymin, 171
DATA LOGGER 271
Yscl, 171
Y-Vars (SEND), 256
-Z-
ZBox 182,310
ZDecimal 310
ZInteger 311
zoom
function graph, 181
ZOOM (ZZ00M) menu, 181
ZoomFit, 312
ZoomIn, 183311
SetFactors 186
ZoomOut, 183312
SetFactors 186

-Z-(continued)

ZoomStat, 114,313
ZPrevious 185
ZQuadrantI 313
ZSquare 313
ZStandard, 184, 314
ZTrig 314

Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

[^0]: Macintosh is a registered trademark of Apple Computer, Inc.
 © 1998, 2001-2003 Texas Instruments Incorporated

[^1]: QuadReg [XList,YList,freq,Yn]

[^2]: :Input "text",variable

