## INSTRUCTION MANUAL

## TRANSFORMER PROTECTION RELAY <br> GRT100 - ***D

## TOSHIBA CORPORATION

(C) TOSHIBA Corporation 2007 All Rights Reserved.

## Safety Precautions

Before using this product, be sure to read this chapter carefully.
This chapter describes safety precautions when using the GRT100. Before installing and using the equipment, read and understand this chapter thoroughly.

## Explanation of symbols used

Signal words such as DANGER, WARNING, and two kinds of CAUTION, will be followed by important safety information that must be carefully reviewed.

A DANGER Indicates an imminently hazardous situation which will result in death or serious injury if you do not follow instructions.

AWARNING
Indicates a potentially hazardous situation which could result in death or serious injury if you do not follow instructions.

ACAUTION Indicates a potentially hazardous situation which if not avoided, may result in minor injury or moderate injury.

CAUTION Indicates a potentially hazardous situation which if not avoided, may result in property damage.

## A DANGER

## - Current transformer circuit

Never allow the current transformer (CT) secondary circuit connected to this equipment to be opened while the primary system is live. Opening the CT circuit will produce a dangerous high voltage.

## AWARNING

- Exposed terminals

Do not touch the terminals of this equipment while the power is on, as the high voltage generated is dangerous.

- Residual voltage

Hazardous voltage can be present in the DC circuit just after switching off the DC power supply. It takes about 30 seconds for the voltage to discharge.

- Fiber optic

Do not view directly with optical instruments.

## ACAUTION

## - Earth

Earth the earthing terminal of the equipment securely.

## CAUTION

## - Operation conditions

Use the equipment within the range of ambient temperature, humidity and dust as detailed in the specification and in an environment free of abnormal vibration.

## - Ratings

Before applying AC voltage and current or DC power supply to the equipment, check that they conform to the equipment ratings.

- Printed circuit board

Do not attach and remove the printed circuit board while the DC power to the equipment is on, as this may cause the equipment to malfunction.

## - External circuit

When connecting the output contacts of the equipment to an external circuit, carefully check the supply voltage used and prevent the connected circuit from overheating.

## - Connection cable

Carefully handle the connection cable without applying excessive force.

## - Modification

Do not modify this equipment, as this may cause the equipment to malfunction, and any such modifications will invalidate the warranty.

## - Short-link

Do not remove a short-link which is mounted at the terminal block on the rear of the relay before
shipment, as this may cause the performance of this equipment such as withstand voltage, etc., to reduce.

- Disposal

When disposing of this product, do so in a safe manner according to local regulations.
This product contains a lithium-ion battery, which should be removed at the end-of-life of the product. The battery must be recycled or disposed of in accordance with local regulations. The battery can be removed by withdrawing the Signal Processing module (SPM) from the relay case, and cutting the connecting leads and plastic strap which hold the battery.

## Contents

Safety Precautions ..... 1

1. Introduction ..... 8
2. Application Notes ..... 10
2.1 Protection Scheme ..... 10
2.2 Current Differential Protection ..... 12
2.2.1 Differential Scheme ..... 12
2.2.2 Stability for CT Saturation during Through-fault Conditions ..... 16
2.2.3 Matching of CT Secondary Currents ..... 18
2.2.4 Connection between CT Secondary Circuit and the GRT100 ..... 22
2.2.5 Setting ..... 23
2.3 Restricted Earth Fault Protection ..... 34
2.4 Overcurrent Protection ..... 38
2.5 Thermal Overload Protection ..... 43
2.6 Frequency Protection ..... 44
2.7 Overexcitation Protection ..... 46
2.8 Trip by External Devices ..... 48
2.9 Tripping Output ..... 49
2.10 Characteristics of Measuring Elements ..... 51
2.10.1 Percentage Current Differential Element DIF ..... 51
2.10.2 High-set Overcurrent Element HOC ..... 52
2.10.3 Restricted Earth Fault Element REF ..... 52
2.10.4 Inverse Time Overcurrent Element OCI and EFI ..... 54
2.10.5 Definite Time Overcurrent element OC and EF ..... 55
2.10.6 Thermal Overload Element THR ..... 55
2.10.7 Frequency Element FRQ ..... 57
2.10.8 Overexcitation Element V/F ..... 57
3. Technical Description ..... 58
3.1 Hardware Description ..... 58
3.1.1 Outline of Hardware Modules ..... 58
3.1.2 Transformer Module ..... 61
3.1.3 Signal Processing Module ..... 62
3.1.4 Binary Input and Output Module ..... 63
3.1.5 Human Machine Interface (HMI) Module ..... 67
3.2 Input and Output Signals ..... 69
3.2.1 Input Signals ..... 69
3.2.2 Binary Output Signals ..... 70
3.2.3 PLC (Programmable Logic Controller) Function ..... 71
3.3 Automatic Supervision ..... 72
3.3.1 Basic Concept of Supervision ..... 72
3.3.2 Relay Monitoring and Testing ..... 72
3.3.3 PLC Data and IEC61850 Mapping Data Monitoring ..... 73
3.3.4 IEC61850 Communication Monitoring ..... 73
3.3.5 Failure Alarms ..... 73
3.3.6 Trip Blocking ..... 74
3.3.7 Setting ..... 74
3.4 Recording Function ..... 75
3.4.1 Fault Recording ..... 75
3.4.2 Event Recording ..... 76
3.4.3 Disturbance Recording ..... 76
3.5 Metering Function ..... 78
4. User Interface ..... 79
4.1 Outline of User Interface ..... 79
4.1.1 Front Panel ..... 79
4.1.2 Communication Ports ..... 81
4.2 Operation of the User Interface ..... 82
4.2.1 LCD and LED Displays ..... 82
4.2.2 Relay Menu ..... 84
4.2.3 Displaying Records ..... 87
4.2.4 Displaying the Status ..... 90
4.2.5 Viewing the Settings ..... 95
4.2.6 Changing the Settings ..... 95
4.2.7 Testing ..... 114
4.3 Personal Computer Interface ..... 118
4.4 Communication Interface ..... 118
4.4.1 RSM (Relay Setting and Monitoring System) ..... 118
4.4.2 IEC 60870-5-103 Interface ..... 119
4.4.3 IEC 61850 interface ..... 120
4.5 Clock Function ..... 120
5. Installation ..... 121
5.1 Receipt of Relays ..... 121
5.2 Relay Mounting ..... 121
5.3 Electrostatic Discharge ..... 121
5.4 Handling Precautions ..... 121
5.5 External Connections ..... 122
6. Commissioning and Maintenance ..... 123
6.1 Outline of Commissioning Tests ..... 123
6.2 Cautions ..... 124
6.2.1 Safety Precautions ..... 124
6.2.2 Cautions on Tests ..... 124
6.3 Preparations ..... 125
6.4 Hardware Tests ..... 126
6.4.1 User Interfaces ..... 126
6.4.2 Binary Input Circuit ..... 127
6.4.3 Binary Output Circuit ..... 128
6.4.4 AC Input Circuits ..... 129
6.5 Function Test ..... 130
6.5.1 Measuring Element ..... 130
6.5.2 Timer Test ..... 146
6.5.3 Protection Scheme ..... 148
6.5.4 Metering and Recording ..... 148
6.6 Conjunctive Tests ..... 149
6.6.1 On Load Test ..... 149
6.6.2 Tripping Circuit Test ..... 149
6.7 Maintenance ..... 151
6.7.1 Regular Testing ..... 151
6.7.2 Failure Tracing and Repair ..... 151
6.7.3 Replacing Failed Modules ..... 153
6.7.4 Resumption of Service ..... 155
6.7.5 Storage ..... 155
7. Putting Relay into Service ..... 156
Appendix A Block Diagram ..... 157
Appendix B Signal List ..... 159
Appendix C Variable Timer List ..... 179
Appendix D Binary Output Default Setting List ..... 181
Appendix E Details of Relay Menu and LCD \& Button Operation ..... 185
Appendix F Case Outline ..... 193
Appendix G External Connections ..... 199
Appendix H Relay Setting Sheet ..... 207
Appendix I Commissioning Test Sheet (sample) ..... 241
Appendix J Return Repair Form ..... 247
Appendix K Technical Data ..... 253
Appendix L Setting of REF Element ..... 261
Appendix M Symbols Used in Scheme Logic ..... 267
Appendix $\mathbf{N}$ Implementation of Thermal Model to IEC60255-8 ..... 271
Appendix $O$ IEC60870-5-103: Interoperability and Troublehsooting ..... 275
Appendix P IEC61850: MICS \& PICS ..... 287
Appendix $\mathbf{Q}$ Inverse Time Characteristics ..... 321
Appendix R Failed Module Tracing and Replacement ..... 325
Appendix S Ordering ..... 331

## 1. Introduction

GRT100 provides high-speed transformer and reactor protection, and realises high dependability and security for diverse faults such as single-phase faults, multi-phase faults, overload and over-excitation.

GRT100 is used as a main protection and backup protection of the following transformers and reactors.

- Two-winding or three-winding power transformers
- Auto-transformers
- Generator-transformer units
- Shunt reactors

GRT100 is designed to provide stability under magnetizing inrush and overexcitation conditions. GRT100 is available for mixed $1 \mathrm{~A} / 5 \mathrm{~A}$ inputs

GRT100 provides the following metering and recording functions.

- Metering
- Fault records
- Event records
- Disturbance records

GRT100 provides the following human interfaces for relay setting or viewing of stored data.

- Relay front panel: LCD, LED display and operation keys
- Local PC
- Remote PC

Password protection is provided to change settings. Eight active setting groups are provided. This allows the user to set one group for normal operating conditions while other groups may be set to cover alternative operating conditions by binary input using the PLC.

GRT100 can provide the following serial interface ports:

- RS232C for a local PC and Relay Setting and Monitoring System (RSM100)
- RS485 for a remote PC, and Relay Setting and Monitoring System (RSM100) or Substation control and Automation System (SAS) with IEC60870-5-103 protocol
- Fibre Optic (FO, option) for a remote PC, and Relay Setting and Monitoring System (RSM100) or Substation control and Automation System (SAS) with IEC60870-5-103 protocol
- 100BASE-TX, or -FX (option) for Substation control and Automation System (SAS) with IEC61850 protocol

Another interface IRIG-B port is provided for an external clock connection.
The RS232C port is located on the front panel of the relay. Other ports (RS485, FO, 100BASE-TX and IRIG-B) are located on the rear of the relay.

Further, the GRT100 provides the following functions.

- Configurable binary inputs and outputs
- Programmable logic for I/O configuration, alarms, indications, recording, etc.
- Automatic supervision

GRT100 has two model series which differ according to the number of three-phase current inputs for differential protection as follows:

## Relay Type and Model

## Relay Type:

- Type GRT100; Numerical transformer protection relay


## Relay Model:

- Model 100 series; 2 three-phase current inputs, applied to two-winding transformers
- Model 101; 16 binary inputs, 13 binary outputs, 5 binary outputs for tripping
- Model 102; 16 binary inputs, 23 binary outputs, 5 binary outputs for tripping
- Model 200 series; 3 three-phase current inputs, applied to two- and three-winding transformers
- Model 201; 16 binary inputs, 13 binary outputs, 5 binary outputs for tripping
- Model 202; 16 binary inputs, 23 binary outputs, 5 binary outputs for tripping
- Model 203; 15 binary inputs (12-independent), 13 binary outputs, 3 binary outputs for tripping
- Model 204; 15 binary inputs (12-independent), 23 binary outputs, 3 binary outputs for tripping

Model 100 series have 2 three-phase current inputs and can be applied to two-winding transformers. Model 200 series have 3 three-phase current inputs and can be applied to two- and three-winding transformers.

## 2. Application Notes

GRT100 is applied to both main protection and backup protection for the following transformers and reactors:

- Two-winding or three-winding power transformers
- Auto-transformers
- Generator-transformer units
- Shunt reactors


### 2.1 Protection Scheme

GRT100 provides the following protection schemes with measuring elements in parentheses. Appendix A shows the block diagrams of the GRT100 series.

- Current differential protection (DIFT)
- Restricted earth fault protection (1REF-3REF)
- Time-overcurrent protection (1OC-3OC, 1OCI-3OCI, 1EF-3EF and 1EFI-3EFI)
- Thermal overload protection (THR)
- Frequency protection (FRQ)
- Overexcitation protection (V/F)
- Trip and/or indication of external devices (Buchholtz relay, pressure or temperature sensing devices etc.)

The DIFT, provided with DIF and HOC elements and the REF are applied for main protection. For details, see Sections 2.2, 2.3 and 2.10.

They provide transformer protection coverage as follows:
REF: protection for winding to earth faults of star-winding side
DIF: protection for all internal transformer faults (The DIF can be blocked by 2F or 5F element.)

HOC: protection for all internal transformer faults, specifically for heavy internal faults, high-speed operation (The HOC is not blocked by 2 F or 5F element. The sensitivity is set above the estimated maximum inrush current.)


The number of measuring elements for the restricted earth fault protection and time-overcurrent protection is dependent on the relay models.

Figure 2.1.1, 2.1.2 and 2.1.3 show typical application and the relationship between AC inputs and the measuring elements applied in each model.


Figure 2.1.1 Measuring Elements of Model 100 series


Figure 2.1.2 Measuring Elements of Model 200 series


Figure 2.1.3 Measuring Elements of Model 200 series

### 2.2 Current Differential Protection

### 2.2.1 Differential Scheme

Current differential protection DIFT provides an overall transformer protection deriving phase current from each transformer winding, calculating the differential current on a per phase basis and detecting phase-to-phase and phase-to-earth faults.

The current differential protection is based on Kirchhoff's first law that the vector summation of all currents flowing into a protected zone must be zero. Figure 2.2.1.1 shows the principle of current differential protection. Differential current (id) is the vector summation of all terminal current of the transformer. The differential current (id=i1+i2) is zero because the current (i1) equals current (-i2) during a load condition or an external fault. During an internal fault, the differential current (id) is not zero because the current (i1) does not equal to the current (-i2), and the DIFT operates.


Figure 2.2.1.1 Current Differential Protection

## Scheme logic

Figure 2.2.1.2 shows the scheme logic of the current differential protection. Current differential element DIFT comprises sub-elements HOC, DIF, 2F and 5F which operate for differential current on a per phase basis.

Note: For the symbols used in the scheme logic, see Appendix M.
HOC is a high-set overcurrent element operating for differential current. It provides high-speed protection for heavy internal faults.

DIF is a percentage restraining element and has dual restraining characteristics, a weak restraint in the small current region and a strong restraint in the large current region, to cope with erroneous differential current which may be caused due to output imbalance of the CTs in case of an external fault. (For the characteristics, see Section 2.10.)

The DIF output signal can be blocked when the 2F or 5F elements detect second harmonic inrush current during transformer energization or fifth harmonic components during transformer overexcitation. Blocking is enabled by setting scheme switch [2F-LOCK] or [5F-LOCK] to "ON". The following two or three blocking schemes are selectable by scheme switch [DIFTPMD].
"3POR": When any one phase of the 2 F or 5F element operates, tripping by the DIF element is blocked in all 3 phases. "3POR" is recommended for transformers with large capacity whose second harmonic component may be low. Its blocking function is stronger than that of the " 1 P " or "2PAND" below.
" 1 P ": When any phase of the 2 F or 5 F elements operate, only the corresponding phase output of the DIF element is blocked.
"2PAND": Even if 2F or 5F element operates during manetising inrush, the trip by DIF element is allowed when any two phases or more of DIF element operate.
"2PAND" is recommended for a transformer with small or midium capacity whose second harmonic component in inrush current is genarally higher than that of transformer with large capacity. This mode is applicable if [Phase matching] is set to "Beta".

Protection by DIF and HOC can perform instantaneous three-phase tripping of up to five breakers. Any of the five breaker tripping signals DIFT-1 to DIFT-5 are enabled or disabled by the scheme switch [DIF1] to [DIF5] settings.

Note: Models 203 and 204 are not provided with DIFT-4 and DIFT-5, and perform tripping of up to three breakers.


Figure 2.2.1.2 Scheme Logic of Current Differential Protection

## Display mode following differential tripping

Following a trip output, GRT100 can display either the operating phase or the faulted phase according to the user’s requirements as shown in Table 2.2.1.1. The operating phase or faulted phase display is selectable by a setting in the Record menu.

Table 2.2.1.1 Operating Phase / Faulted Phase Display
\(\left.$$
\begin{array}{l|l|l} & \text { Operating phase display } & \text { Faulted phase display } \\
\hline \begin{array}{l}\text { Setting } \\
\text { (Setting/Record/Fault } \\
\text { record/Phase mode) }\end{array} & \text { 1 = Operating } & 2 \text { = Fault } \\
\hline \text { Displayed phase } & \begin{array}{l}\text { Operating phase } \\
\text { Generally, the operating phase of the DIF element } \\
\text { does not correspond with the faulted phase, but } \\
\text { depends on the transformer configuration and the } \\
\text { electrical quantities that are input to the GRT100 } \\
\text { current differential calculation. }\end{array} & \begin{array}{l}\text { Faulted phase (for single-phase to earth, phase to } \\
\text { phase, two-phase to earth and three-phase to } \\
\text { earth faults) }\end{array} \\
\hline \text { Application } & \begin{array}{l}\text { All two- and three-winding transformers }\end{array} & \begin{array}{l}\text { - Faults at primary side or secondary side of Yy0 } \\
\text { and Yy6 transformers }\end{array}
$$ <br>
- Faults at primary side of Yd1, Yd3, Yd5, Yd7, <br>
Yd9, Yd11, Yy2, Yy4, Yy8 and Yy10 <br>

transformers\end{array}\right]\)| - Faults at secondary side of Dy1, Dy3, Dy5, Dy7, |
| :--- |
| Dy9 and Dy11 transformers |



Figure 2.2.1.4 Operating Phase and Faulted Phase Selection Logic

### 2.2.2 Stability for CT Saturation during Through-fault Conditions

For current differential protection of transformers, GRT100 has a strong restraint characteristic in the large current region for erroneous differential current due to CT saturation. Further, GRT100 provides a CT saturation countermeasure function. If any CTs saturate due to a large through-fault current, an apparent differential current is generated in the differential circuit and may cause false operation of the differential protection.

## Operation Principle

Even when a CT saturates under very large primary currents, the waveform of the saturated CT secondary current has two identifiable periods in each cycle: a non-saturated period and a saturated period. The GRT100 utilizes this phenomenon and provides very secure operation for external faults with a large through-fault current.

Figure 2.2.2.1 shows a block diagram of the CT saturation countermeasure (CTS). The CTS has a waveform discriminating element (WDE) and starting element (SE). WDE operates if the change in the instantaneous value of the differential current is less than a specified percentage of the change in the instantaneous value of the restraining current. In the CTs non-saturated period, the differential current is theoretically zero for through-fault currents. The element operates in this period.


Figure 2.2.2.1 Differential Element with CT Saturation Countermeasure

The algorithm of this element is given by the following equation:

$$
\Delta \mathrm{Id}<0.15 \times(\Delta \mathrm{Ip}+\Delta \mathrm{In})
$$

where,
$\Delta$ Id : Change in the differential current Id
( $\Delta \mathrm{Ip}+\Delta \mathrm{In}$ ) : Change in the restraining current in the positive and negative cycles
Id : Differential current
Ip : Sum of positive input currents
In : Sum of negative input currents
SE operates when the sum of the absolute values of the difference between the instantaneous values of current data at each current input from one cycle is greater than $0.5 \times$ (CT secondary rated current).

SE discriminates between healthy and faulty power system conditions and blocks the output of WDE which may otherwise operate during healthy conditions.

Figure 2.2.2.2 shows CT secondary current waveforms of the incoming and outgoing terminals,
and also the differential current at the time of an external fault with outgoing terminal CT saturation.


Figure 2.2.2.2 CT Secondary Current Waveforms and Differential Current for an External Fault with CT Saturation

From the inception of the fault until the CT secondary current at the outgoing terminal saturates, the differential current Id is zero and the change in the differential current $\Delta$ Id obtained from equation (2) is also zero. However, the change in the restraining current given by equation (3) is a sufficiently large positive value, so equation (1) is met and WDE operates.

SE detects changes in the terminal currents and rapidly operates, producing an AND output with WDE. After this, since there is a period during which equation (1) is not satisfied, a certain time delay is inserted to reliably block the operation of the DIFT_DIF differential element.

If, during an internal fault, there is a period during which the change in the instantaneous value of the differential current is small due to CT saturation, WDE will not operate because the change in the restraining current is also small during that period. Thus, during an internal fault, operation of the differential element is not blocked falsely.

The CTS function can be disabled by the scheme switch [CTSEN].

### 2.2.3 Matching of CT Secondary Currents

The currents supplied to the differential elements must be matched in phase displacement and amplitude under through-load and through-fault conditions.
Generally, it is difficult to completely match the incoming current with the outgoing current for the relay input because the CT ratios at the primary, secondary and tertiary sides of a transformer are not matched in terms of the CT ratio, phase angle and cancelling of zero-sequence current.
GRT100 provides the following matching method:


Figure 2.2.2.1 Matching Method

GRT100 supports selectable two matching methods, $\alpha$-method (Alpha) and $\beta$-method (Beta). The method is selected by the scheme switch [Phase matching].

Phase matching is performed by setting according to the hands of a clock and the transformer connections described in IEC60076-1. For details of the setting, refer to 2.2.5.

### 2.2.3.1 $\alpha$-method phase matching

This method corrects the phase angle by using each winding current calculated as follows:

- Current substructed zero-sequence current from each phase current in Star- winding side of transformer
- Phase-to-phase Current in Delta-winding side of transformer

The followings show calculation formula and current vectors in an example of a transformer Yd11.


$$
\begin{equation*}
\dot{I} p 1=\frac{2 \dot{I} p a-\dot{I} p b-\dot{I} p c}{3}, \quad \dot{I} s 1=\frac{\dot{I} s a-\dot{I} s c}{\sqrt{3}} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \dot{I} p 2=\frac{2 \dot{I} p b-\dot{I} p c-\dot{I} p a}{3}, \quad \dot{I} s 2=\frac{\dot{I} s b-\dot{I} s a}{\sqrt{3}}  \tag{2}\\
& \dot{I} p 3=\frac{2 \dot{I} p c-\dot{I} p a-\dot{I} p b}{3}, \quad \dot{I} s 3=\frac{\dot{I} s c-\dot{I} s b}{\sqrt{3}} \tag{3}
\end{align*}
$$

where,
İpa, İpb, İpc: Primary side terminal current of transformer
İsa, İsb, İsc : Secondary side terminal current of transformer
Further, zero-sequence current is eliminated from the relay input current (Ip*) for the calculation of the differential current as follows:

$$
\begin{aligned}
& \dot{I} p 1=\frac{2 \dot{I} p a-\dot{I} p b-\dot{I} p c}{3}=\frac{3 I p a-(I p a+I p b+I p c)}{3}=I p a-I p o \\
& \dot{I} p 2=\frac{2 \dot{I} p b-\dot{I} p c-\dot{I} p a}{3}=\frac{3 I p b-(I p a+I p b+I p c)}{3}=I p b-I p o \\
& \dot{I} p 3=\frac{2 \dot{I} p c-\dot{I} p a-\dot{I} p b}{3}=\frac{3 I p a-(I p a+I p b+I p c)}{3}=I p c-I p o
\end{aligned}
$$

### 2.2.3.2 $\quad \beta$-method (Traditional method) phase matching

This is a traditional method that delta current (phase-to-phase current) on the Star-winding side of a Star/Delta transformer and phase current on the Delta-winding side of that is introduced into a relay input for the calculation of the differential current. Traditionally, the phase matching is realized by Delta connecting the CTs on the Star-winding side and by Star connecting the CTs on the Delta-winding side. In GRT100, however, it is realized by software.
The followings show calculation formula and current vectors in an example of a transformer Yd11.


$$
\begin{align*}
& \dot{I} p 1=\frac{\dot{I} p a-\dot{I} p b}{\sqrt{3}}, \dot{I} s 1=\dot{I} s a  \tag{4}\\
& \dot{I} p 2=\frac{\dot{I} p b-\dot{I} p c}{\sqrt{3}}, \dot{I} s 2=\dot{I} s b  \tag{5}\\
& \dot{I} p 3=\frac{\dot{I} p c-\dot{I} p a}{\sqrt{3}}, \dot{I} s 3=\dot{I} s c \tag{6}
\end{align*}
$$

### 2.2.3.3 Zero-sequence current elimination

In addition to compensating for the phase angle between the primary and secondary currents of the transforemer, also phase angle matching prevents unnecessary operation due to zero-sequence current during an external earth fault, such as in the following cases.

Case 1:
When an external fault occurs at the star-connected side of the transformer shown in Figure 2.2.3.2, a zero-sequence current flows in star-connected side, but the zero-sequence current at the delta-side circulates in the delta winding. The zero-sequence current is only fed into the star winding side of the DIFT which is star-connected at the CT secondary, thus causing the DIFT to operate incorrectly. In $\alpha$-method phase matching, the zero-sequence current is eliminated from a relay input current as described above. In $\beta$-method phase matching, the zero-sequence current is eliminated from the relay input current by Delta connection on the Star-winding side.
Since the DIFT provides a function to eliminate the zero-sequence current by software, the DIFT is insensitive the fault described.


Figure 2.2.3.2 External Earth Fault at the Star-connected side of a Transformer

## Case 2:

When the delta winding of a power transformer is earthed through an earthing transformer as shown in Figure 2.2.3.3 and the earthing transformer is located within the differential protection zone, in case of an external earth fault the zero-sequence current flows only on the delta side of the power transformer and appears as a differential current.


Figure 2.2.3.3 External Earth Fault at the Delta-winding side of a Transformer with in-zone Earthing Transformer

In $\alpha$-method phase matching, since the DIFT provides a function to eliminate the zero-sequence current by software, the DIFT is insensitive to the fault described.

In $\beta$-method phase matching, however, since the zero-sequence current is not eliminated because of Star connection on the Delta-winding side, the DIFT may operate unnecessary.

In case the GRT100 is applied to a transformer with in-zone earthing transformer, the [Phase matching] = "Alpha" setting is recommended.

### 2.2.3.4 Matching of CT Ratio

If $I_{1}$ to $I_{3}$ correspond to 1 CT to 3CT secondary currents, differential current $\mathrm{I}_{\mathrm{d}}$ is calculated according to the following equation,

$$
\mathrm{I}_{\mathrm{d}}=\mathrm{kct} 1 \cdot \mathrm{I}_{1}+\mathrm{kct} 2 \cdot \mathrm{I}_{2}+\mathrm{kct} 3 \cdot \mathrm{I}_{3}
$$

where kct1 to kct3 are settings corresponding to 1CT to 3CT.
Setting kct1 is obtained by using the following equation.

$$
\begin{aligned}
\mathrm{kct} 1 & =\mathrm{I}_{\mathrm{n}} / \mathrm{I}_{\text {base1 }} \\
& =\mathrm{I}_{\mathrm{n}} /\left(\sqrt{3} \times \mathrm{I}_{\text {base1 }}\right) \text { if 1CT is delta-connected. }
\end{aligned}
$$

where
$\mathrm{I}_{\mathrm{n}}=$ rated secondary current of 1 CT (1A or 5A)
$\mathrm{I}_{\text {base1 }}=$ secondary current of 1CT based on the kVA rating of the power transformer.
$=$ transformer capacity $(\mathrm{kVA}) /(\sqrt{3} \times$ rated voltage $(\mathrm{kV})) \times \mathrm{CT}$ ratio of 1 CT
If the 1CT secondary circuit is delta-connected, $\sqrt{3} \times \mathrm{I}_{\text {base1 }}$ is used instead of $\mathrm{I}_{\text {base1 }}$ in the equation above.

Settings kct2 and kct3 are obtained in the same way.
The differential current $\mathrm{I}_{\mathrm{d}}$ is zero under through-load and through-fault conditions.
$\mathrm{kct} 1 \times \mathrm{I}_{1}$ to $\mathrm{kct} 3 \times \mathrm{I}_{3}$ are equal to the rated secondary current of each CT when the rated line currents based on the kVA rating of the power transformer flow.

### 2.2.4 Connection between CT Secondary Circuit and the GRT100

GRT100 is provided with 2 or 3 three-phase current input terminals depending on the relay model.
To validate the phase angle matching described previously and apply in-phase current from each winding to the relay, connect the CT secondary circuits to the current input terminals of the relay as follows;

As shown below, the phases used in the phase angle setting (indicated by an arrowhead) must be connected to the AC input terminals with the lowest number in the terminal group such as $1,9,17$, then the other two phases should be connected to the terminals with a larger number clockwise from the setting phase, such as 3 and 5, 11 and 13, or 19 and 21.


Figure 2.2.4.1 Connection of CT Secondary Circuit and the GRT100

Terminal numbers and corresponding input currents are shown in the following table.

| Model | Terminal block | Terminal number | Input current |
| :--- | :--- | :--- | :--- |
| 100 series / 200 series | TB1 | $1-2$ |  |
|  |  | $3-4$ |  |
|  | $5-6$ |  |  |
|  | $9-10$ |  |  |
| $11-12$ |  |  |  |
|  |  | Current of primary winding |  |
|  |  |  |  |
|  |  | Current of secondary winding |  |
|  |  |  |  |
|  |  | $21-18-22$ |  |
|  |  |  |  |
|  |  | Current of tertiary winding |  |

### 2.2.5 Setting

The following shows the setting elements necessary for the current differential protection and their setting ranges. Setting can be performed on the LCD screen or PC screen.

| Element |  | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIFT |  |  |  |  |  |
| DIF | $i_{k}$ | 0.10-1.00 ${ }^{*}$ *) | 0.01 | 0.30 | Minimum operating current |
|  | p1 | 10-100\% | 1\% | 100\% | \% slope of small current region |
|  | p2 | 10-200\% | 1\% | 200\% | \% slope of large current region |
|  | kp | 1.00-20.00(*) | 0.01 | 1.00 | Break point of dual characteristics |
|  | k2f | 10-50\% | 1\% | 15\% | Second harmonic detection |
|  | k5f | 10-100\% | 1\% | 30\% | Fifth harmonic detection |
| HOC | kh | 2.00-20.00 (*) | 0.01 | 2.00 | High-set overcurrent protection |
| CT matching |  |  |  |  |  |
| CT ratio | kct1 | 0.05-50.00 | 0.01 | 1.00 | Primary winding |
|  | kct2 | 0.05-50.00 | 0.01 | 1.00 | Secondary winding |
|  | kct3 | 0.05-50.00 | 0.01 | 1.00 | Tertiary winding |
| Phase angle matching |  |  |  |  | If [Phase matching]=Alpha setting |
| ( $\alpha$-method) | yd_p | 1(star) / 2(delta) |  | 1 | Primary winding |
|  | yd_s | 1(star) / 2(delta) |  | 1 | Secondary winding |
|  | yd_t | 1(star) / 2(delta) |  | 1 | Tertiary winding |
|  | vec_s | $0-11$ | 1 | 0 | Phase angle difference between primary and secondary |
|  | vec_t | 0-11 | 1 | 0 | Phase angle difference between primary and tertiary |
|  |  |  |  |  | If [Phase matching]=Beta setting |
| ( $\beta$-method) | d1 | 0-11 | 1 | 0 | Primary winding |
|  | d2 | 0-11 | 1 | 0 | Secondary winding |
|  | d3 | 0-11 | 1 | 0 | Tertiary winding |
| Scheme switch |  |  |  |  |  |
| [Phase matching] |  | Alpha / Beta |  | Beta | Matching methods of CT secondary currents |
| [DIFTPMD] |  | 3POR / 1P |  | 3POR | Trip mode (if [Phase matching] = Alpha) |
| [DIFTPMD] |  | 3POR / 2PAND / 1P |  | 3POR | Trip mode (if [Phase matching] = Beta) |
| [2F - LOCK] |  | Off / On |  | On | Block by second harmonic |
| [5F - LOCK] |  | Off / On |  | On | Block by fifth harmonic |
| [DIF1] to [DIF5] |  | Off / On |  | (**) | Output tripping signal |
| [CTSEN] |  | Off / On |  | Off | CT saturation function |

(*): Multiplier of CT secondary rated current including CT ratio correction.
(**): Default settings are dependent on the models. See Appendix H.

## Setting of ik

ik determines the minimum operation sensitivity of the DIF element. ik is set as a ratio to the CT secondary rated current.

The minimum sensitivity setting ik is determined from the maximum erroneous differential current under normal operating conditions.

## Setting of p1, p2 and kp

Percentage restraining factor (\% slope)
$=$ (Differential current) / (Through current)
$=($ Differential current $) /[\{($ Incoming current $)+$ (Outgoing current) $\} / 2]$
p1 is the percentage restraining factor which defines the DIF restraining characteristic in the small current region. The setting is determined by the sum of:

- CT accuracy error (generally considered as 5\%)
- Tap error: Error between maximum/minimum tap and the middle tap when taking the middle tap of the tap changer as a reference.
- Matching error: The error due to CT mismatch may be small enough to be neglected in the setting.
- Relay calculation error, and others (5\%)

The recommended setting is "Sum of above" $\times 1.5$ (margin).
p2 is the percentage restraining factor which defines the restraining characteristic in the large current region. The setting is determined from the maximum erroneous differential current which is generated when a large through fault current flows.
kp is the break point of the dual percentage restraining characteristics. It is set above the maximum operating current level of the transformer between the maximum forced-cooled rated current and the maximum emergency overload current level, as a ratio to the CT secondary rated current.

## Setting of k2f

k2f is set to detect the second harmonic content in the inrush current during transformer energization and blocks GRT100 to prevent incorrect operation due to the inrush current. A setting of $15 \%$ is suggested if there is no data on the minimum second harmonic content.

## Setting of k5f

k5f is set to detect the fifth harmonic content during transformer over-excitation and blocks GRT100 to prevent incorrect operation due to transient over-excitation conditions.

A setting of $30 \%$ is suggested if there is no data on the minimum fifth harmonic content.

## Setting of kh

Kh is the HOC setting and should be set above the estimated maximum inrush current.
The recommended setting is more than "Maximum peak value of Inrush current" $\times$ kct.

## Setting for CT ratio matching

Taking the transformer shown in Figure 2.2.5.1 as an example, the CT ratio matching settings kct1 to kct3 can be calculated as follows. For transformer capacity, take the maximum of the rated capacites of the three windings.

| Calculation steps | Primary | Secondary | Tertiary |
| :--- | :--- | :--- | :--- |
| (1) Transformer capacity (kVA) |  | $40 \times 10^{3}$ |  |
| (2) Voltage $(\mathrm{kV})$ | 154 | 66 | 11 |
| (3) Rated line current(A) | 150 | 350 | 2100 |
| $=(1) /(\sqrt{3} \times(2))$ |  |  |  |
| (4) CT ratio | 60 | 120 | 240 |
| (5) Secondary rated line current(A) $=(3) /(4)$ | 2.50 | 2.92 | 8.75 |
| (6) CT secondary rating(A) | 5 | 5 | 5 |
| $(7)$ Setting $=(6) /(5)$ | Kct1=2.00 | Kct2=1.71 | Kct3=0.57 |

Note: kct1 to kct3 should be set to 2.00 or less. If more, the CT ratio matching of relay input current may be not stable.


Figure 2.2.5.1 CT Ratio Matching
As explained in Section 2.2.3 for Mathcing of CT Secondary Currents, examples of setting for both $\alpha$-method and $\beta$-method are described as follows:

## Setting for phase angle matching

The phase angle difference between line currents on either side of the power transformer are corrected by setting according to the hands of a clock and the transformer connections described in IEC60076-1 as follows:

## (When $\alpha$-method is selected for [Phase matching])

If a winding is star-connected, set 1 (=star) for winding setting yd_p, yd_s, and yd_t. If delta-connected, set 2 (=delta). Next, set the phase angle difference vec_s and vec_t from the primary winding as a lagging angle winding expressed in hours. One hour corresponds to lagging by thirty degrees.

Note: In the case of a zigzag connected winding, set 2 (=delta).
Example: Setting for star/star/delta transformer.


yd_p: $\quad$ Because the primary winding is star-connected, set 1.
yd_s: $\quad$ Because the secondary winding is star-connected, set 1.
vec_s: $\quad$ Because the secondary winding is in phase with the primary winding, set 0 .
yd_t: Because the tertiary winding is delta-connected, set 2.
vec_t: Because the tertiary winding lags the primary winding by $330^{\circ}$, set 11 .
The settings for the transformer connections described in IEC60076-1 are listed in Table 2.2.5.2.
Note: The following calculation is performed in the relay for phase angle correction.
Table 2.2.5.1 Phase Angle Matching Calculation

| O'clock | Calculation |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $1 \mathrm{Ia}^{\prime}=(2 \mathrm{la}-\mathrm{lb}-\mathrm{lc}) / 3$ | $\mathrm{lb}{ }^{\prime}=(2 \mathrm{lb}-\mathrm{lc}-\mathrm{la}) / 3$ | Ic' $=(2 \mathrm{lc}-\mathrm{la}-\mathrm{lb}) / 3$ |  |
| 1 | $\mathrm{la}^{\prime}=(\mathrm{la}-\mathrm{lb}) / \sqrt{3}$ | $\mathrm{lb} \mathrm{b}^{\prime}=(\mathrm{lb}-\mathrm{lc}) / \sqrt{3}$ | Ic' $=(\mathrm{lc}-\mathrm{la}) / \sqrt{3}$ | Setting value |
| 2 | $1 a^{\prime}=(1 a-2 \mid b+1 c) / 3$ | $\mathrm{lb}=(\mathrm{la}+\mathrm{lb}-2 \mathrm{lc}) / 3$ | $1 c^{\prime}=(1 b+1 c-2 l a) / 3$ |  |
| 3 | $\mathrm{la}^{\prime}=(\mathrm{lc}-\mathrm{lb}) / \sqrt{3}$ | $\mathrm{lb}=(\mathrm{la}-\mathrm{lc}) / \sqrt{3}$ | $\mid c^{\prime}=(b-l a) / \sqrt{3}$ |  |
| 4 | $\mathrm{la}^{\prime}=(2 \mathrm{lc}-\mathrm{la}-1 \mathrm{lb}) / 3$ | $\mathrm{lb} \mathrm{b}^{\prime}=(2 \mathrm{la}-\mathrm{lb}-\mathrm{lc}) / 3$ | Ic' $=(2 \mathrm{lb}-\mathrm{la}-\mathrm{lc}) / 3$ |  |
| 5 | $1 a^{\prime}=(1 c-l a) / \sqrt{3}$ | $\mathrm{lb} \mathrm{b}^{\prime}=(\mathrm{la}-\mathrm{lb}) / \sqrt{3}$ | Ic' $=(\mathrm{lb}-\mathrm{lc}) / \sqrt{3}$ | $\longleftrightarrow$ |
| 6 | $1 a^{\prime}=(1 b+l c-2 l a) / 3$ | $1 b^{\prime}=(1 a-2 l b+1 c) / 3$ | $1 c^{\prime}=(1 a+1 b-21 c) / 3$ |  |
| 7 | $\mathrm{a}^{\prime}=(\mathrm{lb}-\mathrm{la}) / \sqrt{3}$ | $\mathrm{lb} \mathrm{b}^{\prime}=(\mathrm{lc}-\mathrm{lb}) / \sqrt{3}$ | Ic' $=(\mathrm{la}-\mathrm{lc}) / \sqrt{3}$ |  |
| 8 | $\mathrm{la}^{\prime}=(2 l b-l a-l c) / 3$ | $\mathrm{lb}=(2 \mathrm{lc}-\mathrm{la}-\mathrm{lb}) / 3$ | Ic' $=(2 \mathrm{la}-\mathrm{lb}-\mathrm{lc}) / 3$ | ${ }_{7}^{\downarrow} \downarrow \searrow_{5}$ |
| 9 | $1 a^{\prime}=(1 b-l c) / \sqrt{3}$ | $\mathrm{lb}^{\prime}=(\mathrm{lc}-\mathrm{la}) / \sqrt{3}$ | Ic' $=(1 a-1 b) / \sqrt{3}$ |  |
| 10 | $1 a^{\prime}=(1 a+1 b-21 c) / 3$ | $1 b^{\prime}=(\mathrm{lb}+\mathrm{lc}-2 \mathrm{la}) / 3$ | $1 c^{\prime}=(l a-21 b+1 c) / 3$ |  |
| 11 | $\mathrm{la}^{\prime}=(\mathrm{la}-\mathrm{lc}) / \sqrt{3}$ | $\mathrm{lb}^{\prime}=(\mathrm{lb}-\mathrm{la}) / \sqrt{3}$ | Ic' $=(\mathrm{lc}-\mathrm{lb}) / \sqrt{3}$ |  |

Table 2.2.5.2 Setting for Phase Angle Matching (for $\alpha$-method)

| Transformer connections described in IEC60076-1 <br> Primary, Secondary <br> (P) <br> (S) |  | Settings for phase angle correction |  |  | Remarks <br> Phase angle matching calculation (Table 2.2.5.1) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Primary, Secondary, Phase angle Diff. (yd_p) (yd_s) (vec_s) |  |  |  |
| Yy0 |  | 1 | 1 | 0 | $\begin{aligned} & \text { P: } 0 \text { O'clock } \\ & \text { S: } 0 \text { O'clock } \end{aligned}$ |
| Dd0 |  | 2 | 2 | 0 | P: 1 O'clock <br> S: 1 O'clock |
| Yd1 |  | 1 | 2 | 1 | P: 0 O'clock <br> S: 1 O'clock |
| Dy1 | $\uparrow$ | 2 | 1 | 1 | P: 11 O'clock S: 0 O'clock |
| Dd2 |  | 2 | 2 | 2 | P: 1 O'clock S: 3 O'clock |
| Dd4 | $i k<$ | 2 | 2 | 4 | P: 1 O'clock <br> S: 5 O'clock |
| Yd5 |  | 1 | 2 | 5 | P: 0 O'clock S: 5 O'clock |
| Dy5 |  | 2 | 1 | 5 | P: 7 O'clock <br> S: 0 O'clock |
| Yy6 |  | 1 | 1 | 6 | $\begin{aligned} & \text { P: } 0 \text { O'clock } \\ & \text { S: } 6 \text { O'clock } \end{aligned}$ |
| Dd6 |  | 2 | 2 | 6 | P: 1 O'clock S: 7 O'clock |
| Yd7 |  | 1 | 2 | 7 | P: 0 O'clock <br> S: 7 O'clock |
| Dy7 |  | 2 | 1 | 7 | P: 5 O'clock <br> S: 0 O'clock |
| Dd8 |  | 2 | 2 | 8 | P: 1 O'clock <br> S: 9 O'clock |
| Dd10 |  | 2 | 2 | 10 | P: 1 O'clock <br> S: 11 O'clock |
| Yd11 |  | 1 | 2 | 11 | P: 0 O'clock <br> S: 11 O'clock |
| Dy11 |  | 2 | 1 | 11 | P: 1 O'clock <br> S: 0 O'clock |
| Dz10 |  | 2 | 2 | 10 | P: 1 O'clock <br> S: 11 O'clock |

Note: A 2-windings transformer covers a 3-windings transformer with a stabilizing-winding circuit for which 2-windings transformer protection relay can be applied.
(b) Settings for typical connections of 3-windings transformer

| Transformer connections described in IEC60076-1 |  | Settings for phase angle correction |  |  |  |  | Remarks <br> Phase angle matching calculation (Table 2.2.5.1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tertiary | rimary , Secondary, | Primary, Secondary, PA Diff., Tertiary, PA Diff. (yd_p) (yd_s) (vec_s) (yd_t) (vec_t) |  |  |  |  |  |
| Yyod1 |  | 1 | 1 | 0 | 2 | 1 | P: 0 O'clock <br> S: 0 O'clock <br> T: 1 O'clock |
| Yyod11 | $\uparrow \uparrow \$$ | 1 | 1 | 0 | 2 | 11 | P: 0 O'clock <br> S: 0 O'clock <br> T: 11 O'clock |
| Yd1d1 | $\uparrow<\lambda<\lambda$ | 1 | 2 | 1 | 2 | 1 | P: 0 O'clock <br> S: 1 O'clock <br> T: 1 O'clock |
| Yd11d11 |  | 1 | 2 | 11 | 2 | 11 | P: 0 O'clock <br> S: 11 O'clock <br> T: 11 O'clock |
| Dy11d0 |  | 2 | 1 | 11 | 2 | 0 | P: 1 O'clock <br> S: 0 O'clock <br> T: 1 O'clock |
| Dy1d0 |  | 2 | 1 | 1 | 2 | 0 | P: 11 O'clock <br> S: 0 O'clock <br> T: 11 O'clock |
| Dd0d0 |  | 2 | 2 | 0 | 2 | 0 | P: 1 O'clock <br> S: 1 O'clock <br> T: 1 O'clock |
| YyOyO |  | 1 | 1 | 0 | 1 | 0 | P: 0 O'clock <br> S: 0 O'clock <br> T: 0 O'clock |

Note: Dotted line: Reference phase

## <How to set phase angle matching for GRT100>

Reference phase for phase angle matching
The phase of a star-connected winding side is used as the reference phase for phase angle matching.

Yd: primary
Dy: secondary
Yy: primary
Dd: the reference vector leads the A phase of the primary side by $30^{\circ}$.

## Phase rotation

The relationship between each terminal current vector of a transformer, which depends on the transformer connection and the connection between the transformer and the power system, must be checked. The phase displacement of a delta-connected side may not be determined only by the transformer connection described in IEC60076. Table 2.2.5.3 shows an example illustrating the connection of a transformer and power system and their current vectors when a Yd1 type transformer is connected to the power system with both clockwise and anticlockwise phase rotation. In this case, the setting for phase angle correction is not corresponding to that of Table 2.2.5.1.

Table 2.2.5.3 Transformer Connection and Current Vector

|  | Delta-side connected with $30^{\circ}$ lagging | Delta-side connected with $30^{\circ}$ leading |
| :---: | :---: | :---: |
| Connection between Yd1 Transformer and Power system |  |  |
| Each winding connection and Incoming/Outgoing current |  |  |
| Incoming current vector and Outgoing current vector |  |  |
| Setting | Yd_p=1, yd_s=2, vec_s=1 (Same as Yd1) | Yd_p=1, yd_s=2, vec_s=11 (same as Yd11) |

Auto-transformer (with internal delta-winding)
Set Yy0.

## Zigzag connected transformer

Set yd_p, yd_s and vec_s to 2 (=delta) for zigzag connected side. Zero-sequence current is canceled.

When three-winding model (model 200 series) applied to two-winding transformer:
Keep the settings of "yd_t" and "vec_t" to the default setting values.
One-and-a-half breaker system
When applied to one-and-a-half breaker system, note the DIFT and REF setting as shown in Table 2.2.5.4.

Table 2.2.5.4 Example of DIFT and REF Setting

|  | Setting |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | DIFT |  | 1REF | 2REF |
|  | Yd11 | $\left[\begin{array}{c}\text { yd_p=1 } \\ \text { dd_s } \mathrm{s}=2 \\ \text { vec_s=11 }\end{array}\right]$ | 110 | -- |
|  | Yy0d11 | $\left(\begin{array}{c}\text { yd_ } \mathrm{p}=1 \\ \mathrm{yd} \mathrm{s}=1 \\ \text { vec_s=0 } \\ \text { yd_ts2 } \\ \text { vec_s=11 }\end{array}\right]$ | 210 | -- |
|  | Yy0d11 | $\left(\begin{array}{c}\text { yd_p } \mathrm{p}=1 \\ \text { yd_s } \mathrm{s}=1 \\ \text { vecso } \\ \text { yd_ti } \\ \text { vec_s=11 }\end{array}\right]$ | 110 | 110 |

## (When $\beta$-method is selected for [Phase matching])

The phase angle differences between line currents on each side of the power transformer are corrected by setting according to the hands of a clock as follows:

Rule 1:
If all the windings are star-connected, then take one of the windings as a reference winding and set 1 (= one o'clock) for it. For other winding(s), set the phase angle difference from the reference winding by the expression of the leading angle. One hour corresponds to leading by thirty degrees.
Example 1 If the setting winding leads the reference winding by $60^{\circ}$, set 3 (= three o'clock).
Example 2 If the setting winding is in phase with the reference winding, set 1 (= one o'clock).
Example 3 If the setting winding lags the reference winding by $60^{\circ}$ (that is leading by $300^{\circ}$ ), set 11 (= eleven o'clock).
Rule 2:
If any of the windings are delta-connected, take one of the delta-connected winding(s) as a reference winding and set 0 (= noon) for it. For other star- or delta-connected winding(s), set according to the Rule 1 mentioned above.

Example 1 If the setting winding leads the reference winding by $60^{\circ}$, set 2 (= two o'clock).
Example 2 If the setting winding is in phase with the reference winding, set 0 (= noon).
Example 3 If the setting winding lags the reference winding by $60^{\circ}$ (that is leading by $300^{\circ}$ ), set 10 (ten o'clock).

The settings for the two-winding transformer connections described in IEC60076-1 are listed in Table 2.2.5.5.

Three-winding transformers are also set according to the above mentioned rules.
Example 4 Setting for star/star/delta transformer.



Tertiary

|  | Setting (d1 / d2 / d3) |
| :--- | :---: |
| Primary (d1) | 11 |
| Secondary (d2) | 11 |
| Tertiary (d3) | 0 |

Note: The following calculation is performed in the relay for phase angle correction.

| Setting | Calculation | Remarks |
| :---: | :---: | :---: |
| 0 | $\mathrm{l} \mathrm{a}=\mathrm{la}$ |  |
| 1 | $\mathrm{la}=(\mathrm{la}-\mathrm{lc}) / \sqrt{3}$ | Setting value |
| 2 | $\mathrm{la}=-\mathrm{lc}$ | 0 |
| 3 | $\mathrm{la}=(-\mathrm{lc}+\mathrm{lb}) / \sqrt{3}$ | $11 \uparrow \text { la } \pi^{1}$ |
| 4 | $\mathrm{la}=\mathrm{lb}$ | $10 \sim \rightarrow 2$ |
| 5 | $l a=(l b-l a) / \sqrt{3}$ |  |
| 6 | $l a=-l a$ | $\xrightarrow{ }$ |
| 7 | $\begin{aligned} & \mathrm{I} a=(-\mathrm{la}+\mathrm{Ic}) / \sqrt{3} \\ & \mathrm{I}=\mathrm{Ic} \end{aligned}$ | ${ }_{8} \swarrow \searrow_{4}$ |
| 9 | $\mathrm{la}=(\mathrm{lc}-\mathrm{lb}) / \sqrt{3}$ | 65 |
| 10 | $\mathrm{la}=-\mathrm{lb}$ |  |
| 11 | $\mathrm{la}=(\mathrm{la}-\mathrm{lb}) / \sqrt{3}$ |  |

Table 2.2.5.5 Setting for Phase Angle Matching (for $\beta$-method)
(a) Settings for typical connections of 2-windings transformer

| Transformer connections described in IEC60076-1 |  | Settings for phase angle correction | Remarks |
| :---: | :---: | :---: | :---: |
|  |  | Primary, Secondary (d1) (d2) |  |
| Yyo |  | 1,1 |  |
| Dd0 |  | 0,0 |  |
| Yd1 |  | 1 , 0 |  |
| Dy1 | $\AA \cdots$ | 0,11 |  |
| Dd2 |  | $\begin{array}{llll}  & 0 & 10 \\ \text { or } & 2, & 0 \end{array}$ | Based on primary winding. <br> Based on secondary winding |
| Dd4 | $\wedge<$ |  0 8 <br> or 4, 0  | Based on primary winding. <br> Based on secondary winding |
| Yd5 |  | 5,0 |  |
| Dy5 | $\hat{\wedge} \downarrow$ | 0,7 |  |
| Yy6 |  | $\begin{array}{llll}  & 1, & 7 \\ \text { or } & 7, & 1 \end{array}$ | Based on primary winding. <br> Based on secondary winding |
| Dd6 |  | $\begin{array}{llll}  & 0 & & 6 \\ \text { or } & 6 & & 0 \end{array}$ |  |
| Yd7 |  | 7,0 |  |
| Dy7 |  | 0, 5 |  |
| Dd8 |  | $\begin{array}{llll}  & 0 & & 4 \\ \text { or } & 8 & , & 0 \end{array}$ | Based on primary winding. <br> Based on secondary winding |
| Dd10 |  | $\begin{array}{ccc} \hline 0, & 2 \\ \text { or } 10, & 0 \end{array}$ | Based on primary winding. <br> Based on secondary winding. |
| Yd11 |  | 11 , 0 |  |
| Dy11 |  | 0,1 |  |

Note: A 2-windings transformer covers a 3-windings transformer with a stabilizing-winding circuit for which 2-windings transformer protection relay can be applied.
(b) Settings for typical connections of 3-windings transformer


Note :

1. If all the windings are star-connected, then take one of the windings as a reference winding and set 1 (= one hour) for it.
2. If any of the windings are delta-connected, take one of the delta-connected winding(s) as a reference winding and set 0 for it.

### 2.3 Restricted Earth Fault Protection

Restricted earth fault protection (REF) is a zero-phase current differential scheme applied to a star-connected winding whose neutral is earthed directly or through a low impedance. It gives highly sensitive protection for internal earth faults.
REF employs a low impedance current differential scheme which detects the differential current between the zero-sequence current $\mathrm{I}_{0}$ derived from the three-phase line currents and the neutral current $\mathrm{I}_{\mathrm{N}}$ in the neutral conductor as shown in Figure 2.3.1.


Figure 2.3.1 Restricted Earth Fault Protection
REF and the overall differential protection DIFT use the three-phase line currents in common.
GRT100 has two or three REF elements depending on the model, providing separate protection for all star-connected and neutral-earthed windings.
The elements have the same percentage restraining characteristics and are stable for all faults outside the protected zone.
Figure 2.3.2 shows the block diagram of the REF element which is composed of REF_DIF and REF_DEF. The REF_DIF has a percentage restraining characteristic while the REF_DEF provides a directional check feature to discriminate between internal and external faults. When the REF_DEF is "ON", the REF_DEF element is used. The REF_DEF element provides additional security against incorrect operation of the REF element in the event of saturation of the neutral CT. The REF_DEF is blocked when the maximum phase current exceeds $2 \times \mathrm{kct} \times$ (Rated current of neutral CT), since the REF element is used for earth fault protection of transformer winding. For details, see Section 2.10.3. In case of terminal current larger than that, the DIFT element provides tripping. The REF_DEF can be disabled by setting the scheme switch [REF_DEF] to "OFF".


Figure 2.3.2 Block Diagram of REF
Figure 2.3.3 shows the scheme logic of the restricted earth fault protection when three REF elements are applied. Each REF element can perform instantaneous or time-delayed tripping of up to five breakers. Any of the five breaker tripping signals 1REF-1 to 3REF-5 are enabled or disabled by the scheme switch [1REF1] to [3REF5] settings.

Note: Models 203 and 204 are not provided with 1REF-4, 1REF5, 2REF-4, 2REF-5, 3REF-4 and

3REF-5.


Note: Models 203 and 204 are not provided with 1REF-4, 1REF-5, 2REF-4, 2REF-5, 3REF-4 and 3REF-5.

Figure 2.3.3 Scheme Logic of Restricted Earth Fault Protection

Appendix L shows applications of the three REF elements to various types of transformers. When protecting a two- or three-winding transformer, 1REF, 2REF and 3REF elements should be applied to the primary (or high-voltage) winding, secondary (or medium-voltage) winding and tertiary (or low-voltage) winding respectively. This is also valid for auto-transformer protection but the application must comply with Appendix L.

In the application to auto-transformers, one REF element may introduce two or three line currents and one neutral current as shown in Appendix L. 1REF to 3REF elements recognize the number of the line currents according to the scheme switch setting of [1REF] to [3REF].

## Setting

The following shows the setting elements for the restricted earth fault protection and their setting ranges.

| Element |  | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1REF | 1ik | 0.05-0.50(*) | 0.01 | 0.50 | Minimum operating current |
|  | 1kct1 | 1.00-50.00 | 0.01 | 1.00 |  |
|  | 1kct2 | 1.00-50.00 | 0.01 | 1.00 | CT ratio matching |
|  | 1kct3 | 1.00-50.00 | 0.01 | 1.00 |  |
|  | 1p2 | 50-100\% | 1\% | 100\% | \% slope of DF2 |
|  | 1kp | 0.50-2.00(*) | 0.01 | 1.00 | DF2 restraining current section of large current characteristic |
| 2REF | 2ik | 0.05-0.50(*) | 0.01 | 0.50 | Minimum operating current |
|  | 2kct1 | 1.00-50.00 | 0.01 | 1.00 |  |
|  | 2kct2 | 1.00-50.00 | 0.01 | 1.00 | CT ratio matching |
|  | 2kct3 | 1.00-50.00 | 0.01 | 1.00 |  |
|  | 2p2 | 50-100\% | 1\% | 100\% | \% slope of DF2 |
|  | 2kp | 0.50-2.00(*) | 0.01 | 1.00 | DF2 restraining current section of large current characteristic |
| 3REF | $3 i k$ | 0.05-0.50(*) | 0.01 | 0.50 | Minimum operating current |
|  | 3kct1 | 1.00-50.00 | 0.01 | 1.00 |  |
|  | 3kct2 | 1.00-50.00 | 0.01 | 1.00 | CT ratio matching |
|  | 3kct3 | 1.00-50.00 | 0.01 | 1.00 |  |
|  | 3 p 2 | 50-100\% | 1\% | 100\% | \% slope of DF2 |
|  | 3kp | 0.50-2.00(*) | 0.01 | 1.00 | DF2 restraining current section of large current characteristic |
| T1REF |  | 0.00-10.00s | 0.01s | 0.00s |  |
| T2REF |  | 0.00-10.00s | 0.01 s | 0.00s | Delayed tripping |
| T3REF |  | 0.00-10.00s | 0.01s | 0.00s |  |
| Scheme switch |  |  |  |  |  |
| [1REF1] to [1REF5] |  | Off/On |  | (**) | Enable or disable to output |
| [2REF1] to [2REF5] |  | Off/On |  | (**) | tripping signal |
| [3REF1] to [3REF5] |  | Off/On |  | (**) |  |
| [1REF] to [3REF] |  | 110/210/310 |  | 110 | Number of line currents input to |
| [REF_DEF] |  | Off/On |  | Off | 1REF, 2REF and 3REF elements |

${ }^{*}$ ): Multiplier of secondary rated current
$(* *)$ Default settings are dependent on the models. See Appendix H.

## Setting of ik (1ik, 2ik and 3ik)

1ik, 2 ik and 3 ik are minimum operating current settings and are set as a ratio to the line CT secondary rated current. ik is determined from the maximum erroneous zero sequence differential current under normal operating conditions. A typical setting would be between $10 \%$ and $50 \%$.

## Setting of kct (1kct1-1kct3, 2kct1-2kct3 and 3kct1-3kct3)

CT ratio matching is performed between the line CT(s) and the neutral CT by setting 1kct1-1kct3 for 1REF element, 2kct1-2kct3 for 2REF element and 3kct1-3kct3 for 3REF element. The settings are obtained as a ratio of the line CTs ratio to the neutral CT ratio and the line CTs have the notations shown in Appendix L according to 1REF to 3REF applications.
For example, the settings of $1 \mathrm{kct} 1,1 \mathrm{kct} 2,2 \mathrm{kct} 1$ and 2 kct 2 are calculated;
$1 \mathrm{kct} 1=(\mathrm{CT}$ ratio of line CT 1ct-1)/(CT ratio of neutral CT 1nCT)
$1 \mathrm{kct} 2=(\mathrm{CT}$ ratio of line CT 1ct-2)/(CT ratio of neutral CT 1nCT)
$2 \mathrm{kct} 1=(\mathrm{CT}$ ratio of line CT 2ct-1)/(CT ratio of neutral CT 2 nCT$)$
$2 \mathrm{kct} 2=(\mathrm{CT}$ ratio of line CT 2ct-2)/(CT ratio of neutral CT 2 nCT$)$
where,
CT ratio $=($ primary rated current)/(secondary rated current).

## Setting of scheme switch [1REF] to [3REF]

[1REF] to [3REF] are set to "1I0", "2I0" or "310" when they introduce one, two or three line currents respectively.

## Setting of scheme switch [REF_DEF]

The function of REF_DEF is set to "On/Off" by setting.

### 2.4 Overcurrent Protection

GRT100 provides definite time and inverse time overcurrent elements for both phase faults and earth faults, separately for each transformer winding. Three phase currents from each set of line CTs are used for the phase fault protection elements, while the earth fault protection is based on the neutral CT input.These elements can be used selectively depending on the requirements of the particular application, but the following points should be noted:

- In the case of large power transformers, overcurrent protection is usually employed only as back-up protection for terminal faults, and for uncleared LV system faults. In such cases, the overcurrent elements can be applied either on one or both sides of the transformer as required.
- Coverage of internal transformer faults is generally limited.
- It is common practice to apply IDMTL phase and earth fault overcurrent protection as back-up for the LV system. Current and time settings must be arranged to grade with downstream relays and fuses. The phase fault current setting must also be set to exceed the maximum overload current.
- High-set instantaneous overcurrent protection can be applied on the primary side to provide back-up protection for terminal faults. The current setting must be higher than the maximum through-fault current to ensure that the element does not operate for faults on the LV side.

One of the following IEC-standard-compliant inverse time characteristics or one long time inverse characteristic is available for the inverse current protection.

- standard inverse
- very inverse
- extremely inverse IEC 60255-3

Up to three definite time elements (1OC to 3OC) and inverse time elements (1OCI to 3OCI) input three phase currents from line CTs in the transformer windings.
Up to three definite time elements (1EF to 3EF) and inverse time elements (1EFI to 3EFI) input neutral currents from CTs in the neutral circuit.
Figure 2.4.1 and Figure 2.4.2 show the scheme logic of overcurrent protection. Each element can perform time-delayed tripping of up to five breakers. The breaker tripping signals are blocked by the scheme switch settings.

The number of overcurrent elements applied depends on the relay models.


Note: 20 C and 30 C provide the same logic as 10 C .20 Cl and 30 Cl provide the same logic as 10 Cl . Models 203 and 204 are not provided with 10C-4, 1OC-5, 2OC-4, 2OC-5, 3OC-4, 3OC-5, $10 \mathrm{Cl}-4,10 \mathrm{Cl}-5,20 \mathrm{Cl}-4,20 \mathrm{Cl}-5,30 \mathrm{Cl}-4$ and 30CI-5.

Figure 2.4.1 Scheme Logic of the Overcurrent Protection


Note: 2 EF and $3 E F$ provide the same logic as $1 E F$. 2 EFF and $3 E F I$ provide the same logic as $1 E F I$. Models 203 and 204 are not provided with 1EF-4, 1EF-5, 2EF-4, 2EF-5, 3EF-4, 3EF-5, 1EFI-4, $1 \mathrm{EFI}-5,2 \mathrm{EFI}-4,2 \mathrm{EFI}-5,3 \mathrm{EFI}-4$ and $3 \mathrm{EFI}-5$.

Figure 2.4.2 Scheme Logic of the Overcurrent Protection for Earth Faults

## Setting

The following shows the setting elements for the overcurrent protection and their setting ranges.

$\left(^{*}\right)$ : Multiplier of CT secondary rated current.
${ }^{(* *)}$ : Default settings are dependent on the models. See Appendix H.

The overcurrent elements use the same three-phase line currents and neutral current as the
differential protection and the restricted earth fault protection. When choosing settings, the following relationships between the overcurrent elements and the connected windings must be taken into account.

| 1OC, 1OCI : | Primary (high-voltage) winding |
| :--- | :--- |
| 2OC, 2OCI : | Secondary (medium-voltage) winding |
| 3OC, 3OCI : | Tertiary (low-voltage) winding |
| 1EF, 1EFI : | 1REF applied neutral circuit |
| 2EF, 2EFI : | 2REF applied neutral circuit |
| 3EF, 3EFI : | 3REF applied neutral circuit |

### 2.5 Thermal Overload Protection

The thermal overload protection is applied to protect transformers from electrical thermal damage. A-phase current is used to detect the thermal overload of a transformer. The characteristics are exponential functions according to the IEC 60255-8 standard and take into account the $I^{2} R$ losses due to the particular operational current and the simultaneous cooling due to the coolant. In this way the tripping time during an overload condition takes the pre-load into consideration. An alarm stage can be set to operate before reaching the tripping condition.
Figure 2.5.1 shows the scheme logic of the thermal overcurrent protection. THR tripping output can be given to up to five breakers. Any of the five breaker tripping signals THR-1 to THR-5 can be blocked by the scheme switch [THR1] to [THR5] settings. Alarming signal THR-A can be blocked by the scheme switch [THRA] setting.


Note: Models 203 and 204 are not provided with THR-4 and THR-5.
Figure 2.5.1 Scheme Logic of Thermal Overload Protection

## Setting

The following shows the setting elements for the thermal overload protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| $\tau$ | 0.5-500.0min | 0.1 min | 60.0 min | Thermal time constant |
| k | 0.10-4.00 | 0.01 | 1.30 | Constant |
| IB | 0.50-2.50(*1) | 0.01 | 1.00 | Basic current |
| Ip | 0.00-1.00(*1) | 0.01 | 0.00 | Pre-specified load current |
| TA | 0-10min | 1 min | 10min | Time for alarm (before trip) (*3) |
| Scheme switch |  |  |  | Enable or disable |
| THR1 to THR5 | Off/On |  | (*2) | Trip |
| THRA | Off/On |  | On | Alarm |

(*1): Multiplier of CT secondary rated current
(*2): Default settings are dependent on the models. See Appendix H.
(*3): Alarming time $=$ THR trip time (operating time) $-\mathrm{T}_{\mathrm{A}}$ (setting time)
Note: Ip sets a minimum level of previous load current to be used by the thermal element, and is typically used when testing the element. For the majority of applications, Ip should be set to zero, in which case the previous load current, Ip, is calculated internally by the thermal model, providing memory of conditions occurring before an overload.

### 2.6 Frequency Protection

GRT100 provides underfrequency or overfrequency protection and/or alarms for load shedding or for detecting such an overfrequency condition caused by disconnecting load from a particular generation location.

The frequency element FRQ comprises two frequency elements 81-1 and 81-2, the former is used for tripping and the latter for alarms.

Figure 2.6.1 shows the scheme logic of the frequency protection. The tripping element 81-1 outputs underfrequency and overfrequency trip signals L1 and H1. Either underfrequency or overfrequency protection is selected by setting the scheme switch [FRQ-UF1] to "ON" or "OFF".
The alarm element 81-2 outputs underfrequency and overfrequency alarm signals L2 and H2. Either underfrequency or overfrequency alarms are selected by setting the scheme switch [FRQ-UF2] to "ON" or "OFF".

Frequency protection can perform time-delayed tripping of up to five breakers. Any of the breaker tripping signals FRQ-1 to FRQ-5 can be blocked by the scheme switch [FRQ1] to [FRQ5] settings.

Note: Models 203 and 204 are not provided with FRQ-4 and FRQ-5.
Alarm signal FRQ-A can be blocked by the scheme switch [FRQA] setting.
Frequency protection is blocked under the condition that the system voltage is lower than the setting of the undervoltage element UV.


Note: Models 203 and 204 are not provided with FRQ-4 and FRQ-5.
Figure 2.6.1 Scheme Logic of Frequency Protection

## Setting

The following shows the setting elements for the frequency protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 81-1 (L1, H1) | $\begin{aligned} & 45.00-55.00 \mathrm{~Hz} \\ & (54.00-66.00 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 0.01 \mathrm{~Hz} \\ & 0.01 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 49.00 \mathrm{~Hz} \\ & 59.00 \mathrm{~Hz})\left({ }^{*}\right) \end{aligned}$ | Trip |
| 81-2 (L2, H2) | $\begin{aligned} & 45.00-55.00 \mathrm{~Hz} \\ & (54.00-66.00 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 0.01 \mathrm{~Hz} \\ & 0.01 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 48.00 \mathrm{~Hz} \\ & 58.00 \mathrm{~Hz}) \end{aligned}$ | Alarms |
| UV | 40-100V | 1V | 40V | Undervoltage block |
| TFRQL | 0.00-60.00s | 0.01s | 10.00s | Underfrequency trip time delay |
| TFRQH | 0.00-60.00s | 0.01s | 10.00s | Overfrequency trip time delay |
| TFRQA | 0.00-60.00s | 0.01s | 10.00s | Alarm time delay |
| Scheme switch |  |  |  | Enable or disable |
| [FRQ-UF1] | Off/On |  | On | Trip |
| [FRQ-UF2] | Off/On |  | On | Alarm |
| [FRQ1] to [FRQ5] | Off/On |  | (**) | Trip |
| [FRQA] | Off/On |  | On | Alarm |

$\left(^{*}\right)$ : Frequency values shown in parentheses are for the case of 60 Hz rating. Other frequency values are shown for the case of 50 Hz rating.
(**): Default settings are dependent on the models. See Appendix H.

### 2.7 Overexcitation Protection

Overexcitation protection is applied to protect transformers from overvoltage and overfluxing conditions.

Any single phase-to-phase connected voltage is used to detect overexcitation. Trip and alarm characteristics, which are based on a measurement of the voltage/frequency ratio, are provided.

Figure 2.7.1 shows the scheme logic of overexcitation protection. Overexcitation element V/F responds to voltage/frequency and outputs three signals. Signal T has an inverse time characteristic. Signals H and A have high-set and low-set definite time characteristics respectively. Signal T and signal H with a delayed pick-up timer TVFH are used for tripping. Signal A is used for alarm with a delayed pick-up timer TVFA.

The V/F element has a reset feature with definite time reset. The reset time RT is set to match the cooling characteristic that is the time for the protected transformer to reach a normal temperature after releasing the overexitation condition.


Note: Models 203 and 204 are not provided with V/F-4 and V/F-5.
Figure 2.7.1 Scheme Logic of Overexcitation Protection

Overexcitation protection can trip up to five breakers. Any of the breaker tripping signals V/F-1 to V/F-5 can be blocked by the scheme switch [V/F1] to [V/F5] settings.

Note: Models 203 and 204 are not provided with V/F-4 and V/F-5.
Alarm signal V/F-A can be blocked by the scheme switch [V/FA] setting.

## Setting

The following shows the setting elements for the overexcitation protection and their setting ranges.

| Element | Range | Step | Default | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| V | 100.0-120.0V | 0.1 V | 100.0V | Transformer rated voltage / VT ratio |
| A | 1.03-1.30 ${ }^{*}$ ) | 0.01 | 1.03 | Alarm |
| L | 1.05-1.30 | 0.01 | 1.05 | Low level |
| H | 1.10-1.40 | 0.01 | 1.40 | High level |
| LT | 1-600s | 1 s | 600s | Operation time at low level (Inverse time curve) |
| HT | $1-600$ s | 1 s | 1s | Operation time at high level (Inverse time curve) |
| RT | 60-3600s | 1 s | 250s | Reset time after removing overexcitation condition |
| TVFH | 1-600s | 1 s | 10s | Operating time at high level setting (Definite time delay) |
| TVFA | 1-600s | 1 s | 10s | Alarm time (Definite time delay) |
| Scheme switch |  |  |  |  |
| [V/F1] to [V/F5] | Off/On |  | (**) | Enable or disable tripping |
| [V/FA] | Off/On |  | On | Enable or disable alarm |

(*): Multiplier of (rated voltage) / (rated frequency)
(**): Refer to Appendix H for default setting.


Figure 2.7.2 Setting Points

### 2.8 Trip by External Devices

Up to four binary signals EXT. MECHANICAL TRIP1 to EXT. MECHANICAL TRIP4 can be used for tripping external devices. Figure 2.8 .1 shows the scheme logic for the signal EXT_MEC.TP1. The signal can trip up to five breakers. Any of the tripping signals EXT_MEC.TP1-1 to EXT_MEC.TP4-5 can be blocked by the scheme switches [M.T1-1] to [M.T1-5] setting.

Note: Models 203 and 204 are not provided with EXT_MEC.TP1-4 and EXT_MEC.TP1-5, and [M.T1-4] and [M.T1-5].

The other binary signals have the same scheme logic.


Figure 2.8.1 Scheme Logic of Trip by External Device

## Setting

The following shows the setting elements for tripping by external devices and their setting ranges.

| Element | Range | Step | Default |
| :--- | :--- | :--- | :--- |
| Scheme switch |  |  | Remarks |
| EXT_MEC.TP1-1 to -5 <br> EXT_MEC.TP2-1 to -5 <br> EXT_MEC.TP3-1 to -5 <br> EXT_MEC.TP4-1 to -5 |  |  |  |

(*): Default settings are dependent on the model. See Appendix H.

### 2.9 Tripping Output

Figure 2.9.1 shows the tripping logic. Each protection can output five tripping signals to enable tripping for five breakers. The tripping signals are set according to the number of breakers to be tripped and drive the heavy duty, high-speed tripping output relays TRIP-1 to TRIP-5.

Note: Models 203 and 204 are not provided with TRIP-4 and TRIP-5.
When the scheme switch [L/O] is set to "ON", tripping signals can be locked and reset with the〔RESET〕 key on the front panel. When the switch is set to "OFF", they are reset automatically after clearing the fault.

The tripping output relays reset 200 ms after the tripping signal disappears. When [L/O] is set to "OFF", the tripping circuit must be opened with the auxiliary contact of the breaker prior to reset of the tripping relay to prevent the tripping relay from directly interrupting the tripping current of the breaker.

TRIP-1


Figure 2.9.1 Tripping Logic

### 2.10 Characteristics of Measuring Elements

### 2.10.1 Percentage Current Differential Element DIF

The segregated-phase current differential element DIF has dual percentage restraining characteristics. Figure 2.10 .1 shows the characteristics of DF1 and DF2 on the differential current $\left(\mathrm{I}_{\mathrm{d}}\right)$ and restraining current $\left(\mathrm{I}_{\mathrm{r}}\right)$ plane. $\mathrm{I}_{\mathrm{d}}$ is a vector summation of phase current of all windings and $I_{r}$ is a scalar summation of phase current of all windings.


Figure 2.10.1 Current Differential Element

Characteristic DF1 is expressed by the following equation:

$$
\mathrm{I}_{\mathrm{d}} \geq \mathrm{p} 1 \cdot \mathrm{I}_{\mathrm{r}}+(1-\mathrm{p} 1 / 2) \mathrm{ik}
$$

where,
p1 : slope of DF1
ik : minimum operating current
Id and Ir are defined as follows for a three-winding transformer.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{d}}=\left|\mathrm{kct} 1 \cdot \mathrm{I}_{1}+\mathrm{kct} 2 \cdot \mathrm{I}_{2}+\mathrm{kct} 3 \cdot \mathrm{I}_{3}\right| \\
& \mathrm{I}_{\mathrm{r}}=\left(\mathrm{kct} 1 \cdot\left|\mathrm{I}_{1}\right|+\mathrm{kct} 2 \cdot\left|\mathrm{I}_{2}\right|+\mathrm{kct} 3 \cdot\left|\mathrm{I}_{3}\right|\right) / 2
\end{aligned}
$$

where,
kct1 , kct2 , kct3: CT ratio matching settings of primary, secondary and tertiary winding
$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ : currents of primary, secondary and tertiary winding
This characteristic has weaker restraint in the small current region and ensures sensitivity to low level faults.

Characteristic DF2 is expressed by the following equation:

$$
\mathrm{I}_{\mathrm{d}} \geq \mathrm{p} 2 \cdot \mathrm{I}_{\mathrm{r}}+(\mathrm{p} 1-\mathrm{p} 2) \mathrm{kp}+(1-\mathrm{p} 1 / 2) \mathrm{ik}
$$

where,
p2 : slope of DF2
kp : break point of DF1 characteristic
This characteristic has stronger restraint in the large current region and ensures stability against CT saturation during through faults.

### 2.10.2 High-set Overcurrent Element HOC

High-set overcurrent element HOC is an instantaneous overcurrent characteristic, and is applied in the differential circuit. The characteristic is expressed by the following equation:

$$
\mathrm{I}_{\mathrm{d}} \geq \mathrm{kh}
$$

Id is defined as follows for three-winding transformer.

$$
\mathrm{I}_{\mathrm{d}}=\left|\mathrm{kct} 1 \cdot \mathrm{I}_{1}+\mathrm{kct} 2 \cdot \mathrm{I}_{2}+\mathrm{kct} 3 \cdot \mathrm{I}_{3}\right|
$$

where,
kct1, kct2, kct3: CT ratio matching settings of primary, secondary and tertiary winding
HOC is an un-restrained current differential element which can protect a transformer against damage due to a heavy internal fault, because it has a simple operation principle and high-speed operation. Note that HOC is not immune to transformer inrush currents and therefore cannot be applied with a sensitive setting.

### 2.10.3 Restricted Earth Fault Element REF

The restricted earth fault element REF is composed of REF_DIF and REF_DEF, as was shown in Figure 2.3.2.

The REF_DIF has dual percentage restraining characteristics. Figure 2.10 .2 shows the characteristics on the differential current (Id) and restraining current (Ir) plane. Id is the differential current between the residual current of each winding and the neutral current and Ir is the restraining current which is the larger of the residual current and the neutral current.


Figure 2.10.2 REF_DIF Characteristic

Characteristic DF1 is expressed by the following equation:
$\mathrm{I}_{\mathrm{d}} \geq \mathrm{p} 1 \cdot \mathrm{I}_{\mathrm{r}}+(1-\mathrm{p} 1) \cdot \mathrm{ik} \cdot \mathrm{max}-\mathrm{kct}$
where,
p1 : slope of DF1 (fixed to $10 \%$ )
ik : minimum operating current
max-kct : CT ratio matching of line CT to neutral CT (when plural line CTs are applied, maximum kct is employed.)

For the 1REF element, $I_{d}$ and $I_{r}$ are calculated by the following equations when applied to a circuit with one neutral CT and three line CTs. (For the REF element application, see Appendix L.)

$$
\mathrm{I}_{\mathrm{d}}=\left|1 \mathrm{kct} 1 \cdot \mathrm{I}_{1 \mathrm{o}}+1 \mathrm{kct} 2 \cdot \mathrm{I}_{2 \mathrm{o}}+1 \mathrm{kct} 3 \cdot \mathrm{I}_{3 \mathrm{o}}+\mathrm{I}_{\mathrm{N}}\right|
$$

```
\(\mathrm{I}_{\mathrm{r}}=\) max.( \(1 \mathrm{kct} 1 \cdot\left|\mathrm{I}_{1 \mathrm{a}}\right|, 1 \mathrm{kct} 1 \cdot\left|\mathrm{I}_{\mathrm{lb}}\right|, 1 \mathrm{kct} 1 \cdot\left|\mathrm{I}_{\mathrm{cc}}\right|, 1 \mathrm{kct} 2 \cdot\left|\mathrm{I}_{2 \mathrm{a}}\right|, 1 \mathrm{kct} 2 \cdot\left|\mathrm{I}_{2 \mathrm{~b}}\right|, 1 \mathrm{kct} 2 \cdot\left|\mathrm{I}_{\mathrm{cc}}\right|, 1 \mathrm{kct} 3 \cdot\left|\mathrm{I}_{3 \mathrm{a}}\right|\),
    \(\left.1 \mathrm{kct} 3 \cdot\left|\mathrm{I}_{3 \mathrm{~b}}\right|, 1 \mathrm{kct3} 3 \cdot\left|\mathrm{I}_{\mathrm{zc}}\right|,\left|\mathrm{I}_{\mathrm{N}}\right|\right)\)
```

where,
$\mathrm{I}_{10}, \mathrm{I}_{20}, \mathrm{I}_{30}$ : residual current of primary, secondary and tertiary winding
$\mathrm{I}_{1 a}, \mathrm{I}_{1 \mathrm{~b}}, \mathrm{I}_{1 \mathrm{c}}, \mathrm{I}_{2_{2}}, \mathrm{I}_{2 b}, \mathrm{I}_{2 \mathrm{c}}, \mathrm{I}_{3 \mathrm{a}}, \mathrm{I}_{3 \mathrm{~b}}, \mathrm{I}_{3 c}$ : phase current of primary, secondary and tertiary winding
$\mathrm{I}_{\mathrm{N}}$ : residual current of neutral circuit
$1 \mathrm{kct} 1,1 \mathrm{kct} 2,1 \mathrm{kct} 3$ : CT ratio matching of primary, secondary and tertiary line CT to neutral CT

Characteristic DF2 is expressed by the following equation:
$\mathrm{I}_{\mathrm{d}} \geq \mathrm{p} 2\left(\mathrm{I}_{\mathrm{r}}-\mathrm{kp}\right)$
where
p2 : slope of DF2
kp : break point of DF1 characteristic
The characteristic of REF_DEF is composed of a directional characteristic and a non-directional characteristic as shown in Figure 2.10.3 (a) and (b). This characteristic is employed so that the REF is not blocked at one-end infeed current $\mathrm{I}_{\mathrm{N}}$.


Ik1, ik2: Current sensitivity (0.01pu, 0.025pu fixed)
$\mathrm{I}_{\mathrm{N}}$ : Neutral current of transformer
$3 \mathrm{I}_{0}$ : Zero sequence current (calculated from la, lb, Ic)
*1: MAX (la,lb,lc) $\leq 2 \times$ MAX (kct1,kct2,kct3)
(a)


Figure 2.10.3 REF_DEF Characteristic

The REF_DEF detects an internal fault by checking the direction between transformer neutral current $\mathrm{I}_{\mathrm{N}}$ and zero-sequence current $3 \mathrm{I}_{0}$ calculated from phase currents $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$ and $\mathrm{I}_{\mathrm{c}}$. The REF_DEF is blocked when the maximum phase current is larger than 2 times of Max-kct as follows:
(Example)

max-kct $=3$
Therefore, REF is blocked at
$\mathrm{I}_{\mathrm{BLK}}=3 \times 2.0=6 \mathrm{~A}$ (CT secondary)
If the maximum of phase
currents of both primary and
secondary windings is 7200A
( $=6 \times 1200 \mathrm{~A}$ ), the REF is blocked.
Reference current: 1200A
(Rated current of neutral CT)

### 2.10.4 Inverse Time Overcurrent Element OCI and EFI

The OCI and EFI elements have one long time inverse characteristic and three inverse time characteristics in conformity with IEC $60255-3$ as shown in Figure 2.10.4. One of these characteristics can be selected.

These characteristics are expressed by the following equations and curves.

## Long Time Inverse

$$
\mathrm{t}=\mathrm{T} \times \frac{120}{(\mathrm{I} / \mathrm{Is})-1}
$$

## Standard Inverse

$$
\mathrm{t}=\mathrm{T} \times \frac{0.14}{(\mathrm{I} / \mathrm{Is})^{0.02}-1}
$$

Very Inverse

$$
\mathrm{t}=\mathrm{T} \times \frac{13.5}{(\mathrm{I} / \mathrm{Is})-1}
$$

Extremely Inverse

$$
\mathrm{t}=\mathrm{T} \times \frac{80}{(\mathrm{I} / \mathrm{Is})^{2}-1}
$$

where,
t : operating time
I : fault current
Is: current setting
T : time multiplier setting

Operating time


Figure 2.10.4 Characteristics of Inverse Time Overcurrent Element

### 2.10.5 Definite Time Overcurrent element OC and EF

The OC and EF elements measure the phase currents and the residual current respectively.

### 2.10.6 Thermal Overload Element THR

Thermal overload element THR has a characteristic based on thermal replica according to the IEC 60255-8 standard (see Appendix N), which evaluates the phase current (A-phase) of the CT secondary circuits. Figure 2.10 .5 shows the characteristic of THR element. The element has trip and alarm stages.
Trip stage:

$$
\mathrm{t}=\tau \cdot \operatorname{Ln} \frac{\mathrm{I}^{2}-\mathrm{Ip}^{2}}{\mathrm{I}^{2}-\left(\mathrm{k} \cdot \mathrm{I}_{\mathrm{B}}\right)^{2}}
$$

Alarm stage:

$$
\mathrm{t}=\tau \cdot \operatorname{Ln} \frac{\left(\mathrm{I}^{2}-\mathrm{Ip}^{2}\right) \cdot\left(1-\mathrm{T}_{\mathrm{A}} / \tau\right)}{\mathrm{I}^{2}-\left(\mathrm{k} \cdot \mathrm{I}_{\mathrm{B}}\right)^{2}}
$$

where
t : operating time
$\tau$ : thermal time constant
I: load current
$\mathrm{k} \cdot \mathrm{I}_{\mathrm{B}}$ : allowable overload current as specified in IEC 60255-8 (refer to Appendix N )
$\mathrm{I}_{\mathrm{B}}: ~ b a s i c$ current of transformer (rated current)
k : constant (allowable overload current / $\mathrm{I}_{\mathrm{B}}$ )
Ip : prior load current before the overload occurs
$\mathrm{T}_{\mathrm{A}}$ : time for alarm
(Alarming time $=\mathrm{t}$ (operating time) $-\mathrm{T}_{\mathrm{A}}$ (setting time)
Ln: natural logarithm
Figure 2.10.6 shows the thermal curve for a range of time constant settings in the cold state when the prior load current Ip is zero.


Figure 2.10.5 Characteristic of Thermal Overload Element


Figure 2.10.6 Thermal Curves

### 2.10.7 Frequency Element FRQ

GRT100 has two elements for trip or alarm. Each element operates either in overfrequency or underfrequency.

### 2.10.8 Overexcitation Element V/F

The characteristic is based on the ratio of voltage to frequency. The alarm is definite time delayed, while the tripping characteristic is either definite time or inverse time, as shown in Figure 2.10.7.


Figure 2.10.7 Characteristic of Overexcitation Element

The inverse time characteristic of V/F is expressed by the following equation.

$$
t=\frac{K_{2}}{(V / F)-K_{1}}
$$

where,
t: operating time
V : voltage (any phase-to-phase voltage)
$F$ : frequency
$\mathrm{V} / \mathrm{F}=(\mathrm{Vm} / \mathrm{Fm}) /(\mathrm{Vs} / \mathrm{Fs})$
(Vm: Input voltage, Fm: Input frequency, Vs: Setting of rated voltage, Fs: Rated frequency)

$$
\begin{aligned}
& \mathrm{K}_{1}=\frac{(\mathrm{LT}) \times \mathrm{L}-(\mathrm{HT}) \times \mathrm{H}}{(\mathrm{LT})-(\mathrm{HT})} \\
& \mathrm{K}_{2}=\frac{(\mathrm{LT}) \times(\mathrm{HT}) \times(\mathrm{H}-\mathrm{L})}{(\mathrm{LT})-(\mathrm{HT})}
\end{aligned}
$$

The V/F element has a reset feature with definite time reset (RT). When the V/F falls below the reset threshold, the integral state of the inverse time function is reset to the initial value after the RT time.

Example: V/F=(Vin/Fin)/(V/Fs)=(130/50)/(100/50)=1.3, in case of Vin: Input voltage (130V), Fin: Input frequency (50Hz), V: Rated voltage (100V), Fs: Rated frequency ( 50 Hz )

## 3. Technical Description

### 3.1 Hardware Description

### 3.1.1 Outline of Hardware Modules

The case outline of GRT100 is shown in Appendix F.
The hardware structures of the models are shown in Figure 3.1.1 and Figure 3.1.2. The front view shows the equipment without the human machine interface module.

The GRT100 consists of the following hardware modules. The human machine interface module is provided with the front panel.

- Transformer module (VCT)
- Signal processing module (SPM)
- Binary input and output module \#1 (IO1 or IO8)
- Binary input and output module \#2 (IO2)
- Binary output module \#3 (IO3)
- Human machine interface module (HMI)

Front view without front panel


Figure 3.1.1 Hardware Structure (Model: 101, 201, 203)


Figure 3.1.2 Hardware Structure (Model: 102, 202, 204)

The correspondence between each model and module used is as follows:

|  | Models | 101 | 102 | 201 | 202 | 203 | 204 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Module |  |  |  |  |  |  |  |
| VCT | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ |  |
| SPM | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ |  |
| IO1 | $\times$ | $\times$ | $\times$ | $\times$ |  |  |  |
| IO2 | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ |  |
| IO3 |  | $\times$ |  | $\times$ |  | $\times$ |  |
| IO8 |  |  |  |  | $\times$ | $\times$ |  |
| HMI | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ |  |

Note: The VCT and SPM modules are not interchangeable among different models.

The hardware block diagram of the GRT100 using these moduls is shown in Figure 3.1.3.

(*1) I03: required for Model 102, 202, 204
Figure 3.1.3 Hardware Block Diagram (Models 101, 102, 201, 202, 203 and 204)

### 3.1.2 Transformer Module

The transformer module (VCT module) provides isolation between the internal and external circuits through auxiliary transformers and transforms the magnitude of the AC input signals to suit the electronic circuits. The AC input signals are as follows:

- three-phase currents ( $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$ and $\mathrm{I}_{\mathrm{C}}$ ) for each winding
- neutral current $\left(\mathrm{I}_{\mathrm{N}}\right)$ for each winding
- phase-to-phase voltage

Figure 3.1 .4 shows a block diagram of the transformer module. There are 8 to 12 auxiliary CTs and 1 auxiliary VT mounted in the transformer module depending on the relay model. (For the correspondence between the relay model and number of AC input signals, see Table 3.2.1.)

The transformer module is also provided with an IRIG-B port. This port collects the serial IRIG-B format data from an external clock for synchronization of the relay calendar clock. The IRIG-B port is isolated from the external circuit by a photo-coupler. A BNC connector is used as the input connector.


Figure 3.1.4 Transformer Module (e.g. models 101, 102)

### 3.1.3 Signal Processing Module

The signal processing and communication module (SPM) incorporates a signal processing circuit and a communication control circuit. Figure 3.1.3.1 shows the block diagram.

The signal processing circuit consists of an analog filter, multiplexer, analog to digital (A/D) converter, main processing unit (MPU) and memories (RAM and ROM), and executes all kinds of processing including protection, measurement, recording and display.
The SPM contains a lithium-ion battery, which should be removed at the end-of-life of the product. The nominal backup time of a lithium-ion battery is one year after the shipment from the factory.
The analog filter performs low-pass filtering for the corresponding current and voltage signals.
The A/D converter has a resolution of 16 bits and samples input signals at sampling frequencies of 2400 Hz (at 50 Hz ) and 2880 Hz (at 60 Hz ).

The MPU carries out operations for the measuring elements and scheme logic operations for protection, recording, displaying and signal transmission control.

The SPM can be provided with Optical interface or Ethernet LAN interface for serial communication system.


Figure 3.1.3.1 Signal Processing Module

### 3.1.4 Binary Input and Output Module

There are four types of binary input and output module (IO module): These modules are fitted according to the model (see Section 3.1.1).

### 3.1.4.1 IO1 and IO8 Module

IO1 and IO8 provide a DC/DC converter, binary inputs and binary outputs for tripping.
As shown in Figure 3.1.4.1, the IO1 module incorporates a DC/DC converter, 15 photo-coupler circuits (BI) for binary input signals and 6 auxiliary relays (TP1 to 5) dedicated to the circuit breaker tripping command.

As shown in Figure 3.1.4.2, the IO8 module incorporates a DC/DC converter, 12 photo-coupler circuits (BI) for binary input signals and 3 auxiliary relays (TP) dedicated to the circuit breaker tripping command. The 12 binary inputs have dedicated positive and negative inputs suitable for double-pole switching.
The nominal input voltage rating of the $\mathrm{DC} / \mathrm{DC}$ converter is $24 \mathrm{~V}, 48 \mathrm{~V}, 110 \mathrm{~V} / 125 \mathrm{~V}$ or $220 \mathrm{~V} / 250 \mathrm{~V}$. The normal range of input voltage is $-20 \%$ to $+20 \%$.
The five or three tripping command auxiliary relays are the high-speed operation type and have one normally open output contact.


Figure 3.1.4.1 101 Module


Figure 3.1.4.2 IO8 Module

### 3.1.4.2 IO2 Module

As shown in Figure 3.1.4.3, the IO2 module incorporates 3 photo-coupler circuits (BI14-BI16) for binary input signals, 14 auxiliary relays (BO1-BO13 and FAIL) for binary output signals and an RS-485 transceiver.

The auxiliary relay FAIL has one normally closed contact, and operates when a relay failure or abnormality in the DC circuit is detected. BO1 to BO13 each have one normally open contact. BO12 and BO13 are the high-speed operation type.
The RS-485 transceiver is used for the link with the relay setting and monitoring (RSM) system. The external signal is isolated from the relay internal signal.


Figure 3.1.4.3 IO2 Module

### 3.1.4.3 IO3 Module

The IO3 module is used to increase the number of binary outputs.
The IO3 module incorporates 10 auxiliary relays (BO1-BO10) for binary outputs. All auxiliary relays each have one normally open contact.


Figure 3.1.4.4 IO3 Module

### 3.1.5 Human Machine Interface (HMI) Module

The operator can access the GRT100 via the human machine interface (HMI) module. As shown in Figure 3.1.5, the HMI module has a liquid crystal display (LCD), light emitting diodes (LED), view and reset keys, operation keys, testing jacks and an RS-232C connector on the front panel.

The LCD consists of 40 columns by 4 rows with a backlight and displays record, status and setting data.

There are a total of 8 LED indicators and their signal labels and LED colors are defined as follows:

| Label | Color | Remarks |
| :--- | :--- | :--- |
| IN SERVICE | Green | Lit when relay is in service. |
| TRIP | Red | Lit when trip command is issued. |
| ALARM | Red | Lit when failure is detected. |
| TESTING | Red | Lit when disabling automatic monitoring function or resetting <br> the time counting of THR and V/F elements by the <br> scheme switches. |
| (LED1) | Red |  |
| (LED2) | Red |  |
| (LED3) | Red |  |
| (LED4) | Red |  |

LED1 to LED4 are user-configurable.
Once it has started operating, the TRIP LED continues to operate even after the trip command disappears. Pressing the RESET key resets it. Other LEDs operate as long as a signal is present. The RESET key is ineffective for these LEDs.

The VIEW key starts the LCD indication and switches between windows. The reset key clears the LCD indication and turns off the LCD backlight.

The operation keys are used to display the record, status and setting data on the LCD, input the settings or change the settings.

The monitoring jacks and two pairs of LEDs, $A$ and $B$, on top of the jacks can be used while the test mode is selected in the LCD window. Signals can be displayed on LED A or LED B by selecting the signal to be observed from the "Signal List" or "Variable Timer List" and setting it in the window and the signals can be transmitted to an oscilloscope via the monitoring jacks. (For the "Signal List" or "Variable Timer List", see Appendix B or C.)
The RS-232C connector is a 9-way D-type connector for serial RS-232C connection. This connector is used for connection with a local personal computer.


Figure 3.1.5 Front Panel

### 3.2 Input and Output Signals

### 3.2.1 Input Signals

## AC input signals

Table 3.2.1 shows the AC input signals necessary for each of the GRT100 models and their respective input terminal numbers. See Appendix $G$ for external connections.

Winding 1, 2 and 3 in the Table correspond to high-voltage or primary, medium-voltage or secondary, and low-voltage or tertiary winding respectively.

Table 3.2.1 AC Input Signals

| Terminal No. | GRT100-101, 102 | Terminal No. | GRT100-201, 202, 203, 204 |
| :---: | :---: | :---: | :---: |
| TB1 |  | TB1 |  |
| 1-2 | A phase current of winding 1 | 1-2 | A phase current of winding 1 |
| 3-4 | B phase current of winding 1 | 3-4 | B phase current of winding 1 |
| 5-6 | C phase current of winding 1 | 5-6 | C phase current of winding 1 |
| 7-8 | Neutral current of winding 1 | 7-8 | Neutral current of winding 1 |
| 9-10 | A phase current of winding 2 | 9-10 | A phase current of winding 2 |
| 11-12 | B phase current of winding 2 | 11-12 | B phase current of winding 2 |
| 13-14 | C phase current of winding 2 | 13-14 | C phase current of winding 2 |
| 15-16 | Neutral current of winding 2 | 15-16 | Neutral current of winding 2 |
| 17-18 | - | 17-18 | A phase current of winding 3 |
| 19-20 | - | 19-20 | $B$ phase current of winding 3 |
| 21-22 | - | 21-22 | C phase current of winding 3 |
| 23-24 | - | 23-24 | Neutral current of winding 3 |
| 25-26 | - | 25-26 |  |
| 27-28 | Phase to phase voltage of winding 1 | 27-28 | Phase to phase voltage of winding 1 |
| 30 | (earth) | 30 | (earth) |

## Binary input signals

Table 3.2.2 shows the binary input signals necessary for the GRT100, their driving contact conditions and functions enabled. See Appendix $G$ for external connections.

The binary input circuit of the GRT100 is provided with a logic level inversion function as shown in Figure 3.2.1. Each input circuit has a binary switch BISW which can be used to select either normal or inverted operation. This allows the inputs to be driven either by normally open or normally closed contacts. Where the driving contact meets the contact conditions indicated in Table 3.2.2 then the BISW can be set to " N " (normal). If not, then "I" (inverted) should be selected.

The default setting of the BISW is "N" (normal) for all input signals.
Further, all binary input functions are programmable by PLC (Programmable Logic Circuit) function.

If a signal is not required, the function concerned is disabled.
The operating voltage of binary input signal is typical 74 V DC at $110 \mathrm{~V} / 125 \mathrm{~V}$ DC rating and 138 V DC at $220 / 250 \mathrm{~V}$ DC. The minimum operating voltage is 70 V DC at $110 / 125 \mathrm{~V}$ DC rating and 125 V DC at $220 / 250 \mathrm{~V}$ DC.

Table 3.2.2 Binary Input Signals

| Signal Names | Driving Contact Condition / Function Enabled | BISW* (default) |
| :--- | :--- | :---: |
| External Mechanical trip <br> (EXT_MEC.TP1) | Closed when external device operated. / Initiate trip command <br> from operation of external device. <br> External Mechanical trip <br> (EXT_MEC.TP2) | 1 |
| External Mechanical trip <br> (EXT_MEC.TP3) <br> from operation of external device. <br> Closed when external device operated. / Initiate trip command <br> from operation of external device. | 2 |  |
| External Mechanical trip <br> (EXT_MEC.TP4) | Closed when external device operated. / Initiate trip command <br> from operation of external device. <br> Indication reset | Closed to reset TRIP LED indication. / Reset indication <br> externally. <br> Closed to block the protection. / Block the protection <br> externally. <br> Closed when external device operated. / Initiate event record <br> with external signal. <br> Closed when external device operated. / Initiate event record |
| Protection block | 14 |  |
| Signal for event record | 5 |  |
| Signal for event record external signal. |  |  |
| Closed when external device operated. / Initiate event record |  |  |
| with external signal. |  |  |



Figure 3.2.1 Logic Level Inversion

### 3.2.2 Binary Output Signals

The number of output binary signals and their output terminals vary depending on the relay model. See Appendix G for details. For all models, all outputs except the tripping command, signal for command protections and relay failure signal can be configured.

The signals shown in the signal list in Appendix B can be assigned to the output relay individually or in arbitrary combinations. Signals can be combined using either an AND circuit or OR circuit with 6 gates each as shown in Figure 3.2.2. The output circuit can be configured according to the setting menu. Appendix D shows the factory default settings.

A 0.2s delayed drop-off timer can be attached to these assigned signals. The delayed drop-off time is disabled by the scheme switch [BOTD].

The relay failure contact closes when a relay defect or abnormality in the DC power supply circuit is detected.


Figure 3.2.2 Configurable Output

### 3.2.3 PLC (Programmable Logic Controller) Function

GRT100 is provided with a PLC function allowing user-configurable sequence logics on binary signals. The sequence logics with timers, flip-flops, AND, OR, NOT logics, etc. can be produced by using the PC software "PLC tool" and linked to signals corresponding to relay elements or binary circuits.
Configurable binary inputs, binary outputs and LEDs, and the initiation trigger of disturbance record are programmed by the PLC function. Temporary signals are provided for complicated logics or for using a user-configured signal in many logic sequences.
PLC logic is assigned to protection signals by using the PLC editor tool. For PLC tool, refer to PLC tool instruction manual.


Figure 3.2.3 Sample Screen of PLC Tool

### 3.3 Automatic Supervision

### 3.3.1 Basic Concept of Supervision

Though the protection system is in a non-operating state under normal conditions, it is waiting for a power system fault to occur at any time and must operate for the fault without fail. Therefore, the automatic supervision function, which checks the health of the protection system during normal operation by itself, plays an important role. A numerical relay based on microprocessor technology is able to implement such as automatic supervision function. GRT100 implements an automatic supervision function based on the following concept:

- The supervising function should not affect protection performance.
- Perform supervision with no omissions wherever possible.
- When a failure occurs, it should be possible to easily identify the failure location.

Note: Automatic supervision function includes automatic monitor function and automatic test function. For the terminology, refer to IEC IEV 60448.

### 3.3.2 Relay Monitoring and Testing

The relay is supervised with the following items.

## AC input imbalance monitoring

The AC current input is monitored such that the following equation is satisfied and the health of the AC input circuit is checked.

$$
\operatorname{Max}\left(\left|\mathrm{Ia}_{\mathrm{a}}\right|,\left|\mathrm{Ib}_{\mathrm{b}}\right|,\left|\mathrm{I}_{\mathrm{c}}\right|\right)-4 \times \operatorname{Min}\left(\left|\mathrm{I}_{\mathrm{a}}\right|,\left|\mathrm{I}_{\mathrm{b}}\right|,\left|\mathrm{I}_{\mathrm{C}}\right|\right) \geq \mathrm{k}_{0}
$$

where,
$\operatorname{Max}\left(\left|I_{a}\right|,\left|I_{b}\right|,\left|I_{C}\right|\right)=$ Maximum amplitude among $I_{a}, I_{b}$ and $I_{C}$
$\operatorname{Min}\left(\left|I_{a}\right|,\left|I_{b}\right|,\left|I_{c}\right|\right)=$ Minimum amplitude among $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$ and $\mathrm{I}_{\mathrm{C}}$
$\mathrm{k}_{0}=20 \%$ of rated current

## A/D accuracy checking

An analogue reference voltage is transmitted to a prescribed channel in the analogue-to-digital (A/D) converter, and it is checked that the data after A/D conversion is within a prescribed range and that the $A / D$ conversion characteristics are correct.

## Memory monitoring

The memories are monitored as follows depending on the type of the memory and checked that the memory circuits are healthy:

- Random access memory monitoring:

Writes/reads prescribed data and checks the storage function.

- Program memory monitoring: Checks the checksum value of the written data.
- Setting value monitoring: Checks discrepancy between the setting values stored in duplicate.


## Watchdog Timer

A hardware timer which is cleared periodically by software is provided and it is checked that the software is running normally.

DC Supply monitoring
The secondary voltage level of the built-in DC/DC converter is monitored and checked that the DC voltage is within a prescribed range.

### 3.3.3 PLC Data and IEC61850 Mapping Data Monitoring

If there is a failure in PLC data and IEC61850 mapping data, the function may be stopped. Therefore, the PLC data and IEC61850 mapping data are monitored and an alarm of "PLC stop" or "MAP stop" is issued if any failure detected.

### 3.3.4 IEC61850 Communication Monitoring

The sending and receiving functions in the Ethernet LAN communication are monitored. The receiving function is executed by checking GOOSE message receiving status, and the sending function is executed by checking Ping response to the other party. If a failure is detected, an alarm of "GOOSE stop" or "Ping err" is issued.

These functions are disabled by setting the scheme switches [GSECHK] and [PINGCHK].

### 3.3.5 Failure Alarms

When a failure is detected by the automatic supervision, it is followed with LCD display, LEDs indication, external alarms and event recording. Table 3.3.1 summarizes the supervision items and alarms.

The LCD messages are shown on the "Auto-supervision" screen which is displayed automatically when a failure is detected or displayed by pressing the VIEW key. The event record messages are shown on the "Event record" screen by opening the "Record" sub-menu.
Those alarms are retained until the failure is recovered.
Those alarms can be disabled collectively by setting the scheme switch [AMF] to OFF. The setting is used to block unnecessary alarms during commissioning test or maintenance.
When the Watchdog Timer detects that the software fails to run normally, LCD display and event recording on the failure cannot be expected.

DC supply failure disables the LCD display and event recording on the failure as well.
For the discrimination of the two failures mentioned above, refer to Section 6.7.2.
Table 3.3.1 Supervision Items and Alarms

| Supervision Item | LCD Message | LED <br> "IN SERVICE" | LED <br> "ALARM" | Ext. alarm | Event record <br> Message |
| :--- | :---: | :---: | :---: | :---: | :---: |
| AC input <br> imbalance monitoring | (1) | On/Off (2) | On | (4) | CT err <br> Relay fail |
| A/D accuracy check | A/D err | Off | On | (4) | Relay fail |
| CPU, Memory monitoring | (1) |  |  |  |  |
| Watchdog Timer | --- | Off | On | (4) | ---- |
| DC supply monitoring | ---- | Off | $(3)$ | (4) | Relay fail |
| PLC data or IEC61850 <br> mapping data monitoring | PLC stop or <br> MAP stop | on | on | (4) | Relay fail-A |
| GOOSE message check | GOOSE stop | on | on | (4) | Relay fail-A |


| Supervision Item | LCD Message | LED <br> "IN SERVICE" | LED <br> "ALARM" | Ext. alarm | Event record <br> Message |
| :--- | :---: | :--- | :--- | :---: | :---: |
| Ping response check | Ping err | on | on | (4) | Relay fail-A |

(1): Diverse messages are provided as expressed with "---fail" in the Table in Section 6.7.2.
(2): The LED is on when the scheme switch [SVCNT] is set to "ALM" and off when set to "ALM \& BLK" (refer to Section 3.3.4).
(3): Whether the LED is lit or not depends on the degree of the voltage drops.
(4): The binary output relay "FAIL" operates.

### 3.3.6 Trip Blocking

When a failure is detected by the following supervision items, the trip function is blocked as long as the failure exists and restored when the failure is removed.

- A/D accuracy check
- Memory monitoring
- Watchdog Timer
- DC supply monitoring

When a failure is detected by the AC input imbalance monitoring, the scheme switch [SVCNT] setting can be used to determine if both tripping is blocked and an alarm is initiated, or, if only an alarm is initiated.

### 3.3.7 Setting

The setting elements necessary for the automatic supervision and its setting range are shown in the table below.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| $[$ SVCNT $]$ | ALM\&BLK / ALM |  | ALM\&BLK | Alarming and/or blocking |
| $[$ GSECHK $]$ | OFF/ON | OFF | GOOSE check |  |
| $[$ PINGCHK] | OFF/ON | OFF | Ping response check |  |

### 3.4 Recording Function

GRT100 is provided with the following recording functions:
Fault recording
Event recording
Disturbance recording
These records are displayed on the LCD of the relay front panel or on the local or remote PC.

### 3.4.1 Fault Recording

Fault recording is started by a tripping command of the GRT100 or PLC command by user-setting (max. 8) and the following items are recorded for one fault:

Date and time of fault occurrence
Operating phase or fault phase
Tripping command
Tripping mode
Power system quantities
Up to the 8 most-recent faults can be stored as fault records. If a new fault occurs when 8 faults have been stored, the record of the oldest fault is deleted and the record of the latest fault is then stored.

## Date and time of fault occurrence

The time resolution is 1 ms using the relay internal clock.
To be precise, this is the time at which a tripping command has been initiated, and thus it is approximately 10 ms after the occurrence of the fault.

## Operating phase or fault phase

The operating phase or fault phase can be selected to be displayed following tripping, depending on the requirements of user.

For details, see Section 2.3.1.

## Tripping command

The tripping output relay(s) operated is shown in terms of its number (e.g. TP-1: 1, TP-2: 2 etc.).

## Tripping mode

This shows the protection scheme that initiated the tripping command.

## Power system quantities

The following power system quantities for pre-fault and post-fault are recorded.

- Magnitude and phase angle of phase current of each winding ( $\mathrm{I}_{\mathrm{a}} 1, \mathrm{I}_{\mathrm{b}} 1, \mathrm{I}_{\mathrm{C} 1}$ up to $\mathrm{I}_{\mathrm{a} 3}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{C}} 3$ )
- Magnitude and phase angle of neutral current of each winding ( $\mathrm{I}_{\mathrm{n} 1}$ up to $\mathrm{I}_{\mathrm{n} 3}$ )
- Magnitude and phase angle of symmetrical component current of each winding ( $\mathrm{I}_{11}, \mathrm{I}_{21}, \mathrm{I}_{01}$ up to $\mathrm{I}_{13}, \mathrm{I}_{23}, \mathrm{I}_{03}$ )
- Magnitude and phase angle of phase-to-phase voltage (V)
- Magnitude of phase differential current (Ida, Idb, Idc)
- Magnitude of residual differential current for REF protection ( $\mathrm{I}_{\mathrm{d} 01}$ up to $\mathrm{I}_{\mathrm{d} 03}$ )
- Percentage of thermal capacity (THM\%)

Phase angles above are expressed taking that of the voltage as a reference phase angle. If the voltage input is not provided, then the positive sequence current of the primary winding is used as a reference phase angle.

### 3.4.2 Event Recording

The events shown are recorded with a 1 ms resolution time-tag when the status changes. The user can set a maximum of 128 recording items, and their status change mode. The event items can be assigned to a signal number in the signal list. The status change mode is set to "On" (only recording On transitions) or "On/Off"(recording both On and Off transitions) mode by setting. The "On/Off" mode events are specified by "Bi-trigger events" setting. If the "Bi-trigger events" is set to " 100 ", No. 1 to 100 events are "On/Off" mode and No. 101 to 128 events are "On" mode.
The name of an event cannot be set on LCD. It can set only by RSM100. Maximum 22 characters can be set and can be viewed on both of the LCD and RSM Setting(view) screen. But the LCD screen of event record displays only 11 characters. Therefore, it is recommended the maximum 11 characters are set.

The elements necessary for event recording and their setting ranges are shown in the table below. The default setting of event record is shown in Appendix H.

| Element | Range | Step | Default | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| BITRN | $0-128$ | 1 | 100 | Number of bi-trigger(on/off) events |
| EV1-EV128 | $0-3071$ |  |  | Assign the signal number |

Up to 1024 records can be stored. If an additional event occurs when 1024 records have been stored, the oldest event record is deleted and the latest event record is then stored.

### 3.4.3 Disturbance Recording

Disturbance Recording is started when overcurrent starter elements operate or a tripping command is output, or PLC command by user-setting (max. 4: Signal No. 2632 to 2635) is output. The records include 13 analog signals (primary: $\mathrm{I}_{\mathrm{a} 1}, \mathrm{I}_{\mathrm{b} 1}, \mathrm{I}_{\mathrm{c} 1}, \mathrm{I}_{\mathrm{n} 1}$, secondary: $\mathrm{I}_{\mathrm{a} 2}, \mathrm{I}_{\mathrm{b} 2}, \mathrm{I}_{\mathrm{c} 2}, \mathrm{I}_{\mathrm{n} 2}$, tertiary: $\mathrm{I}_{\mathrm{a} 3}, \mathrm{I}_{\mathrm{b} 3}, \mathrm{I}_{\mathrm{C} 3}, \mathrm{I}_{\mathrm{n} 3}$, voltage: V), 32 binary signals and the dates and times at which recording started. Any binary signal in shown in Appendix B can be assigned by the binary signal setting of disturbance record. The default setting of binary signal is shown in Appendix H.
The name of binary signal can be set only by RSM100. Maximum 22 characters can be set and can be viewed on both of the LCD and RSM Setting(view) screen. But the waveform data analysis screen of disturbance record displays up to 11 characters of them. Therefore, it is recommended the maximum 11 characters are set.

The LCD display only shows the dates and times of the disturbance records stored. Details can be displayed on a PC. For how to obtain disturbance records on the PC, see the PC software instruction manual.

The post-fault recording time can be set between 0.1 and 3.0 s and the default setting is 1.0 s . The pre-fault recording time depends on the post recording time. The pre-fault recording time is fixed at 0.3 s .

The number of records stored depends on the post-fault recording time. The approximate relationship between the post-fault recording time and the number of records stored is shown in Table 3.4.2.

Note: If the recording time setting is changed, all previously recorded data is deleted.
Table 3.4.2 Post Fault Recording Time and Number of Disturbance Records Stored

| Model | Recording <br> Fime | 0.1s | 0.5s | 1.0s | 1.5s | 2.0s | 2.5s | 3.0s |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 101,102 | 50 Hz | 40 | 34 | 20 | 15 | 11 | 9 | 8 |
|  | 60 Hz | 40 | 28 | 17 | 12 | 9 | 8 | 6 |
| 201,202 | 50 Hz | 40 | 25 | 15 | 11 | 8 | 7 | 6 |
|  | 203,204 | 60 Hz | 40 | 21 | 13 | 9 | 7 | 6 |

Disturbance recording is initiated when overcurrent elements operate, a tripping signal is output, 2 F or 5 F element operates or external event signals are input. Three phase overcurrent elements 1OCP-S to 3OCP-S are applied to the line CTs and neutral overcurrent elements 10CP-G to 3OCP-G to the neutral CTs.

The initiations are blocked by the scheme switches.

## Settings

The elements necessary for starting disturbance recording and their setting ranges are shown in the table below.

| Element | Range | Step | Default(**) | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 10CP-S | 0.10-20.00(*) | 0.01 |  | Phase overcurrent element |
| 20CP-S | 0.10-20.00(*) | 0.01 |  |  |
| 30CP-S | 0.10-20.00(*) | 0.01 |  |  |
| 10CP-G | 0.05-20.00(*) | 0.01 |  | Neutral overcurrent element |
| 20CP-G | 0.05-20.00(*) | 0.01 |  |  |
| 30CP-G | 0.05-20.00(*) | 0.01 |  |  |
| Scheme switch | ON/OFF |  |  | Initiating disturbance record by tripping <br> by phase overcurrent element by neutral overcurrent element by 2 F element by 5 F element by external event |
| TRIP1 to TRIP5 |  |  |  |  |
| 10CPS to 30CPS |  |  |  |  |
| 10CPG to 30CPG |  |  |  |  |
| 2 F |  |  |  |  |
| 5F |  |  |  |  |
| EVENT1 to EVENT3 |  |  |  |  |

(*) : Multiplier of CT secondary rated current
${ }^{(* *)}$ : Default settings are dependent on the models. See Appendix H.

### 3.5 Metering Function

The GRT100 performs continuous measurement of the analogue input quantities. The measurement data shown below are displayed on the LCD of the relay front panel or on the local or remote PC.

- Magnitude and phase angle of phase current of each winding ( $\mathrm{I}_{\mathrm{a} 1}, \mathrm{I}_{\mathrm{b}} 1, \mathrm{I}_{\mathrm{C} 1}$ up to $\mathrm{I}_{\mathrm{a}} 3, \mathrm{I}_{\mathrm{b}} 3, \mathrm{I}_{\mathrm{C}} 3$ )
- Magnitude and phase angle of neutral current of each winding ( $\mathrm{I}_{\mathrm{n} 1}$ up to $\mathrm{I}_{\mathrm{n} 3}$ )
- Magnitude and phase angle of symmetrical component current of each winding (I11, I21, I01 up to $\mathrm{I}_{13}, \mathrm{I}_{23}, \mathrm{I}_{03}$ )
- Magnitude and phase angle of phase-to-phase voltage (V)
- Magnitude of phase differential current ( $I_{d a}, I_{d b}, I_{d c}$ )
- Magnitude of residual differential current for REF protection ( $I_{d 01}$ up to $I_{d} 03$ )
- Percentage of thermal capacity (THM\%)
- Frequency

Phase angles above are expressed taking that of positive sequence voltage as a reference phase angle, where leading phase angles are expressed as positive values.
The above system quantities are displayed in values on the primary side or on the secondary side of the CT according to a setting. To display accurate values, it is necessary to set the CT ratio and VT ratio too. For the setting method, see "Setting the transformer parameters" in 4.2.6.7.

## 4. User Interface

### 4.1 Outline of User Interface

The user can access the relay from the front panel.
Local communication with the relay is also possible using a personal computer (PC) via an RS232C port. Furthermore, remote communication is also possible using RSM (Relay Setting and Monitoring), IEC103 communication via an RS485, optical fibre or Ethernet LAN etc.

This section describes the front panel configuration and the basic configuration of the menu tree of the local human machine communication ports and HMI (Human Machine Interface).

### 4.1.1 Front Panel

As shown in Figure 3.1.13, the front panel is provided with a liquid crystal display (LCD), light emitting diodes (LED), operation keys, VIEW and RESET keys, monitoring jack and RS232C connector.

## LCD

The LCD screen, provided with a 4-line, 40-character back-light, displays detailed information of the relay interior such as records, status and setting. The LCD screen is normally unlit, but pressing the VIEW key will display the digest screen and pressing any key other than VIEW and RESET will display the menu screen.

These screens are turned off by pressing the RESET key or END key. If any display is left for 5 minutes or longer without operation, the back-light will go off.

## LED

There are 8 LED displays. The signal labels and LED colours are defined as follows:

| Label | Color | Remarks |
| :--- | :--- | :--- |
| IN SERVICE | Green | Lit when the relay is in service. |
| TRIP | Red | Lit when a trip command is issued. |
| ALARM | Red | Lit when a failure is detected. |
| TESTING | Red | Lit when disabling automatic monitoring function or resetting the <br> time counting of THR and V/F elements by the scheme <br> switches. |
| (LED1) | Red | Configurable LED to assign signals with or without latch when relay operates. |
| (LED2) | Red | Configurable LED to assign signals with or without latch when relay operates. <br> (LED3) |
| Red | Configurable LED to assign signals with or without latch when relay operates. <br> (LED4) | Red |

LED1 to LED4 are configurable.
The TRIP LED lights up once the relay is operating and remains lit even after the trip command goes off. The TRIP LED can be turned off by pressing the RESET key. Other LEDs are lit as long as a signal is present and the RESET key is invalid while the signal is being maintained.

## Operation keys

The operation keys are used to display records, status, and set values on the LCD, as well as to input or change set values. The function of each key is as follows:
(1) 0-9, -: Used to enter a selected number, numerical values and text strings.
(2) $\boldsymbol{\nabla}, \boldsymbol{A}$ : Used to move between lines displayed on a screen

Keys 2, 4, 6 and 8 marked with $\boldsymbol{\nabla}, \boldsymbol{\Delta}$ and $\boldsymbol{\Delta}$ are also used to enter text strings.
(3) CANCEL: Used to cancel entries and return to the upper screen.
(4) END: Used to end entry operation, return to the upper screen or turn off the display.
(5) ENTER: Used to store or establish entries.

## VIEW and RESET keys

Pressing VIEW key displays digest screens such as "Metering", "Latest fault" and "Autosupervision".

Pressing RESET key turns off the display.

## Monitoring jacks

The two monitoring jacks A and B and their respective LEDs can be used when the test mode is selected on the LCD screen. By selecting the signal to be observed from the "Signal List" and setting it on the screen, the signal can be displayed on LED A or LED B, or transmitted to an oscilloscope via a monitoring jack.

## RS232C connector

The RS232C connector is a 9-way D-type connector for serial RS232C connection with a local personal computer.

### 4.1.2 Communication Ports

The following 3 individual interfaces are mounted as the communication ports:

- RS232C port
- Serial communication port (RS485 port, optional Fibre optic or Ethernet LAN etc.)
- IRIG-B port


## (1) RS232C port

This connector is a standard 9-way D-type connector for serial port RS232C transmission and mounted on the front panel. By connecting with a personal computer using this connector, setting operation and display functions can be performed on the personal computer.

## (2) Serial communication port

Two serial communication ports can be provided. In one port, it is connected to the RSM (Relay Setting and Monitoring system) via the protocol converter G1PR2 or IEC60870-5-103 communication via BCU/RTU (Bay Control Unit / Remote Terminal Unit) to connect between relays and to construct a network communication system. (See Figure 4.4.1 in Section 4.4.)

In another port, it is connected to the substation automation system via Ethernet communication networks using IEC 61850 protocol.

Screw terminal for RS485, ST connector for fibre optic, or 100Base-TX (RJ-45 connector) or 100Base-FX (SC connector) for Ethernet LAN is provided on the back of the relay as shown in Figure 4.1.1.

## (3) IRIG-B port

The IRIG-B port is mounted on the transformer module. This port collects serial IRIG-B format data from the external clock to synchronize the relay calendar clock. The IRIG-B port is isolated from the external circuit by using a photocoupler. A BNC connector is used as the input connector.
This port is provided on the back of the relay and Figure 4.1 . 1 shows the location of this connector.


### 4.2 Operation of the User Interface

The user can access such functions as recording, measurement, relay setting and testing with the LCD display and operation keys.

### 4.2.1 LCD and LED Displays

## Displays during normal operation

When the GRT100 is operating normally, the green "IN SERVICE" LED is lit and the LCD is off.
Press the VIEW key when the LCD is off to display the digest screens which are "Metering",
"Latest fault" and "Auto-supervision" screens in turn. The last two screens are displayed only when there is some data. The following are the digest screens and can be displayed without entering the menu screens.

| Metering 1 |  | $08 / \mathrm{Dec} / 1997$ |  | 22:56 |
| :---: | :---: | :---: | :---: | :---: |
| la 1 ***.*kA | 1 a 2 | **. **kA | In 1 | **. $* * \mathrm{kA}$ |
| \| b 1 ***.*kA | 1 b 2 | **. $* * \mathrm{kA}$ | In 2 | **. $* * \mathrm{kA}$ |
| l c 1 ***.*kA | 1 c 2 | **. $* * \mathrm{k} \mathrm{A}$ |  |  |


| Metering2 | 08/Dec/1997 | 22:56 |
| :---: | :---: | :---: |
| la3 ***.*kA | 1 n 3 | **. $* * \mathrm{kA}$ |
| lb3 ***.*kA | V | ***. $* \mathrm{kV}$ |
| lc 3 ***.*kA |  | **. $* \mathrm{~Hz}$ |

Note: I $\square 1$ for primary(high-voltage) winding current
I $\square 2$ for secondary(medium-voltage) winding current I $\square 3$ for tertiary(low-voltage) winding current $\mathrm{Ia} \square$, $\mathrm{Ib} \square$, $\mathrm{Ic} \square$ for phase current In $\square$ for neutral current

Press the RESET key to turn off the LCD.
For any display, the back-light is automatically turned off after five minutes.

## Displays in tripping

| Latest fault | $08 / D e c / 1997$ | $22: 56: * * . * * *$ |  |
| :--- | :--- | :---: | ---: |
| Phase | BC | Trip | $1-2-3-4-5$ |
| DIFT |  |  |  |

If a fault occurs and a tripping command is output when the LCD is off, the red "TRIP" LED and other configurable LED if signals assigned to trigger by tripping.
Press the VIEW key to scroll the LCD screen to read the rest of messages.
Press the RESET key to turn off the LEDs and LCD display.
Notes:

1) When configurable LEDs (LED1 through LED4) are assigned to latch signals by trigger of tripping, press the RESET key more than 3 s until the LCD screens relight. Confirm turning off the configurable LEDs. Refer to Table 4.2.1 Step 1.
2) Then, press the RESET key again on the "Latest fault" screen in short period, confirm turning
off the "TRIP" LED. Refer to Table 4.2.1 Step 2.
3) When only the "TRIP" LED is go off by pressing the RESET key in short period, press the RESET key again to reset remained LEDs in the manner 1) on the "Latest fault" screen or other digest screens. LED1 through LED4 will remain lit in case the assigned signals are still active state.

Table 4.2.1 Turning off latch LED operation

|  | Operation | LED lighting status |  |
| :---: | :---: | :---: | :---: |
|  |  | "TRIP" LED | Configurable LED <br> (LED1 - LED4) |
| Step 1 | Press the RESET key more than 3 s on the "Latest fault" screen | continue to lit |  |
| Step 2 | Then, press the RESET key in short period on the "Latest fault" screen | turn off |  |

When any of the menu screens is displayed, the VIEW and RESET keys do not function.
To return from menu screen to the digest "Latest fault" screen, do the following:

- Return to the top screen of the menu by repeatedly pressing the END key.
- Press the END key to turn off the LCD.
- Press the VIEW key to display the digest "Latest fault" screen.

Displays in automatic supervision operation

| Auto-supervision | $08 / D e c / 1997$ | $22: 56$ |
| :--- | :--- | :--- | :--- |
| DIO err |  |  |

If the automatic supervision function detects a failure while the LCD is off, the "Auto-supervision" screen is displayed automatically, showing the location of the failure and the "ALARM" LED lights.
Press the VIEW key to display other digest screens in turn including the "Metering" and "Latest fault" screens.

Press the RESET key to turn off the LEDs and LCD display. However, if the failure continues, the "ALARM" LED remains lit.
After recovery from a failure, the "ALARM" LED and "Auto-supervision" display turn off automatically.
If a failure is detected while any of the screens is displayed, the current screen remains displayed and the "ALARM" LED lights.

Notes:

1) When configurable LEDs (LED1 through LED4) are assigned to latch signals by issuing an alarm, press the RESET key more than 3s until all LEDs reset except "IN SERVICE" LED.
2) When configurable LED is still lit by pressing RESET key in short period, press RESET key again to reset remained LED in the above manner.
3) LED1 through LED4 will remain lit in case the assigned signals are still active state.

While any of the menu screens is displayed, the VIEW and RESET keys do not function. To return to the digest "Auto-supervision" screen, do the following:

- Return to the top screen of the menu by repeatedly pressing the END key.
- Press the END key to turn off the LCD.
- Press the VIEW key to display the digest screen.
- Press the RESET key to turn off the LCD.


### 4.2.2 Relay Menu

Figure 4.2.1 shows the menu hierarchy in the GRT100. The main menu has five sub-menus, "Record", "Status", "Setting (view)", "Setting (change)", and "Test". For details of the menu hierarchy, see Appendix E.


Figure 4.2.1 Relay Menu

## Record

In the "Record" menu, the fault records, event records and disturbance records are displayed or erased.

## Status

The "Status" menu displays the power system quantities, binary input and output status, relay measuring element status, signal source for time synchronization (IRIG-B, RSM or IEC) and adjusts the clock.

## Setting (view)

The "Setting (view)" menu displays the relay version, plant name and the current settings of relay address and RS232C baud rate in communication, record, status, protection, configurable binary inputs and outputs, and configurable LEDs.

## Setting (change)

The "Setting (change)" menu is used to set or change the settings of password, plant name, relay address and RS232C baud rate in communication, record, status, protection, configurable binary inputs and outputs, and configurable LEDs.

Since this is an important menu and is used to set or change settings related to relay tripping, it has password security protection.

## Test

The "Test" menu is used to set testing switches, to forcibly operate binary output relays, to measure variable timer time and to observe the binary signals in the logic circuit.

This menu also has password security protection.

When the LCD is off, press any key other than the VIEW and RESET keys to display the top "MENU" screen and then proceed to the relay menus.

$$
\begin{aligned}
& \text { MENU } \\
& 1=\mathrm{Record} \\
& 3=\text { Setting (view) } \quad 4=\text { Setting (change) } \\
& 5=\mathrm{T} \text { est } \\
& 2=S t a t u s
\end{aligned}
$$

To display the "MENU" screen when the digest screen is displayed, press the RESET key to turn off the LCD, then press any key other than the VIEW and RESET keys.
Press the END key when the top screen is displayed to turn off the LCD.
An example of the sub-menu screen is shown below. The top line shows the hierarchical layer of the screen, screen title and total number of lines of the screen. The last item is not displayed for all the screens. "/6" displayed on the far left means that the screen is in the sixth hierarchical layer, while $1 / 7$ displayed on the far right means that the screen has seven lines excluding the top line and that the cursor is on the first line.

To move the cursor downward or upward for setting or for viewing other lines not displayed on the window, use the $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ keys.

| /6 VT \& CT ratio |  |  |  |  |  | $1 / 7$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 CT | ( |  | 20000 ) | 2000 | - |  |
| 2 CT | ( |  | 20000 ) | 1000 |  |  |
| 3 CT | ( |  | 20000 ) | 400 |  |  |
| 1 nCT | ( |  | 20000 ) | 100 |  |  |
| 2 nCT | ( |  | 20000 ) | 100 |  |  |
| 3 nCT | ( |  | 20000 ) | 100 |  |  |
| V T | ( | 1 - | 20000 ) | 400 |  |  |

To move to the lower screen or move from the left-side screen to the right-side screen in Appendix E, select the appropriate number on the screen. To return to the higher screen or move from the right-side screen to the left-side screen, press the END key.

The CANCEL key can also be used to return to the higher screen but it must be used carefully because it may cancel entries made so far.

To move between screens of the same hierarchical depth, first return to the higher screen and then move to the lower screen.

### 4.2.3 Displaying Records

The sub-menu of "Record" is used to display fault records, event records and disturbance records.

### 4.2.3.1 Displaying Fault Records

To display fault records, do the following:

- Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
- Select 1 (= Record) to display the "Record" sub-menu.

$$
\begin{aligned}
& 1 \text { Record } \\
& 1=\text { Fault record } \\
& 3=\text { Disturbancerecord }
\end{aligned} \quad 2=\text { Event record }
$$

- Select 1 (= Fault record) to display the "Fault record" screen.

$$
\left\lvert\, \begin{array}{cc}
2 \text { Fault Record } \\
1=\mathrm{Display} & 2=\mathrm{Cl} \text { ear }
\end{array}\right.
$$

- Select 1 (= Display) to display the dates and times of fault records stored in the relay from the top in new-to-old sequence.

| $/ 3$ | Fault record |  | $1 / 4$ |
| :--- | :--- | :--- | :--- |
| $\# 1$ | $16 / 0 \mathrm{ct} / 1997$ | $18: 13: 57.031$ |  |
| $\# 2$ | $20 /$ Sep/1997 | $15: 29: 22.463$ |  |
| $\# 3$ | $04 / \mathrm{Jul/1997}$ | $11: 54: 53.977$ |  |

- Move the cursor to the fault record line to be displayed using the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys and press the ENTER key to display the details of the fault record.


Note: I $\square 1$ for primary(high-voltage) winding current
I $\square 2$ for secondary(medium-voltage) winding current
I $\square 3$ for tertiary(low-voltage) winding current
In $\square$ for neutral current
I1 $\square$, I2 $\square$, I0 $\square$ for symmetrical component current
Ida, Idb, Idc for differential current
Ido1, Ido2, Ido3 for zero-phase differential current in 1REF, 2REF, 3REF
The lines which are not displayed in the window can be displayed by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.
To clear all the fault records, do the following:

- Open the "Record" sub-menu.
- Select 1 (Fault record) to display the "Fault record" screen.
- Select 2 (= Clear) to display the following confirmation screen.

```
/2 Fault record
Clear all fault records?
    ENTER=Yes CANCEL=No
```

- Press the ENTER (= Yes) key to clear all the fault records stored in non-volatile memory.

If all fault records have been cleared, the "Latest fault" screen of the digest screens is not displayed.

### 4.2.3.2 Displaying Event Records

To display events records, do the following:

- Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
- Select 1 (= Record) to display the "Record" sub-menu.
- Select 2 (= Event record) to display the "Event record" screen.

$$
\left\lvert\, \begin{aligned}
& 2 \text { Event Record } \\
& 1=\mathrm{Display} \quad 2=\mathrm{Cl} \text { ear }
\end{aligned}\right.
$$

- Select 1 (= Display) to display the events with date and time from the top in new-to-old sequence.

| 3 Event record |  | $2 / 48$ |  |
| :--- | :--- | :--- | :--- | ---: |
| $16 / 0 \mathrm{ct} / 1998$ | $23: 18: 04.294$ | Trip | 0 ff |
| $16 / 0 \mathrm{ct} / 1998$ | $23: 18: 03.913$ | Trip | 0 n |
| $12 / \mathrm{Feb} / 1998$ | $03: 51: 37.622$ | Rly. set change |  |

The lines which are not displayed in the window can be displayed by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.
To clear all the event records, do the following:

- Open the "Record" sub-menu.
- Select 2 (Event record) to display the "Event record" screen.
- Select 2 (= Clear) to display the following confirmation screen.

```
/ 2 Event record
Clear all event records?
    ENTER=Yes CANCEL=No
```

- Press the ENTER (= Yes) key to clear all the event records stored in non-volatile memory.


### 4.2.3.3 Displaying Disturbance Records

Details of the disturbance records can be displayed on the PC screen only (*); the LCD displays only the recorded date and time for all disturbances stored in the relay. To display them, do the following:
(*) For the display on the PC screen, refer to RSM100 manual.

- Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys.
- Select 1 (= Record) to display the "Record" sub-menu.
- Select 3 (= Disturbance record) to display the "Disturbance record" screen.

$$
\left\lvert\, \begin{aligned}
& 2 \text { Disturbancerecord } \\
& 1=\text { Display }
\end{aligned}\right.
$$

- Select 1 (= Display) to display the date and time of the disturbance records from the top in new-to-old sequence.

| $/ 3$ | Disturbance record |  | $3 / 12$ |
| :--- | :--- | :--- | :--- |
| $\# 1$ | $16 / 0 \mathrm{ct/1997}$ | $18: 13: 57.031$ |  |
| $\# 2$ | $20 /$ Sep/1997 | $15: 29: 22.463$ |  |
| $\# 3$ | $04 / \mathrm{Jul/1997}$ | $11: 54: 53.977$ |  |

The lines which are not displayed in the window can be displayed by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.

To clear all the disturbance records, do the following:

- Open the "Record" sub-menu.
- Select 3 (Disturbance record) to display the "Disturbance record" screen.
- Select 2 (= Clear) to display the following confirmation screen.

| 2 Disturbancerecord |
| :---: | :---: |
| CI ear all disturbance records? |
| ENTER=Yes $\quad$ CANCEL=No |

- Press the ENTER (= Yes) key to clear all the disturbance records stored in non-volatile memory.


### 4.2.4 Displaying the Status

From the sub-menu of "Status", the following statuses can be displayed on the LCD:
Metering data of the protected transformer
Status of binary inputs and outputs
Status of measuring elements output
Status of time synchronization source
The data are renewed every second.
This sub-menu is also used to adjust the time of the internal clock.

### 4.2.4.1 Displaying Metering Data

To display metering data on the LCD, do the following.

- Select 2 (= Status) on the top "MENU" screen to display the "Status" screen.

| $/ 1$ Status | $2=$ Binary I/O |
| :--- | :--- |
| $1=$ Metering | $4=$ Time sync source |
| $3=$ Relay element |  |
| $5=$ C Iock adjustment |  |

- Select 1 (= Metering) to display the "Metering" screen.


Note: I $\square 1$ for primary(high-voltage) winding current
I $\square 2$ for secondary(medium-voltage) winding current
I $\square 3$ for tertiary(low-voltage) winding current
Ia $\square$, Ib $\square$, Ic $\square$ for phase current
In $\square$ for neutral current
I1 $\square$, I2 $\square$, I0 $\square$ for symmetrical component current
Ida, Idb, Idc for differential current
Ido1, Ido2, Ido3 for zero-phase differential current in 1REF, 2REF, 3REF
Metering data is expressed as primary values or secondary values depending on the setting. For setting, see Section 4.2.6.6.

### 4.2.4.2 Displaying the Status of Binary Inputs and Outputs

To display the binary input and output status, do the following:

- Select 2 (= Status) on the top "MENU" screen to display the "Status" screen.
- Select 2 (= Binary I/O) to display the binary input and output status. (Binary inputs and outputs depend oh the relay model.)

| /2 Binary input \& output |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input (10\#1) | 「000 | 000 | 000 | 000 |  |  |
| Input (10\#2) | 「000 |  |  |  |  |  |
| Output (10\#1-trip) | [000 | 00 |  |  |  |  |
| Output (10\#2) | [000 | 000 | 000 | 000 | 00 |  |
| Output (10\#3) | [ 000 | 000 | 000 | 0 |  |  |

The display format is shown below.

|  | [■ | ■ | ■ | $\square$ | ■ | ■ | ■ | ■ | C | ■ | ■ | - |  | ■ | ] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input (IO\#1) | BI1 | BI2 | BI3 | BI4 | BI5 | BI6 | BI7 | BI8 | B19 | Bl10 | BI11 | BI12 | - | - | - |
| Input (IO\#2) | BI14 | BI15 | BI16 | - | - | - | - | - | - | - | - | - | - | - |  |
| Output (IO\#1-trip) | TP-1 | TP-2 | TP-3 | TP-4 | TP-5 | - | - | - | - | - | - | - | - |  |  |
| Output (IO\#2) | BO1 | BO2 | B03 | B04 | B05 | B06 | B07 | B08 | B09 | B010 | B011 | B012 | FAIL | B013 | - |
| Output (IO\#3) | B01 | BO2 | BO3 | BO4 | BO5 | B06 | B07 | B08 | B09 | BO10 | - | - | - | - | - |

Lines 1 and 2 show the binary input status. BI1 to BI16 corresponds to each binary input signal. For details of the binary input signals, see Appendix G. The status is expressed with logical level " 1 " or " 0 " at the photo-coupler output circuit. IO\#1 and IO\# 2 in the table indicates the name of the module containing the binary input circuits.

Lines 3 to 5 show the binary output status. TP- 1 to TP- 5 of line 3 corresponding to the tripping command outputs. Models 203 and 204 are not provided with TP-4 and TP-5. FAIL of line 4 corresponds to the relay failure output. Other outputs expressed with BO1 to BO13 are configurable. The status of these outputs is expressed with logical level " 1 " or " 0 " at the input circuit of the output relay driver. That is, the output relay is energized when the status is " 1 ".

IO\#1 to IO\#3 in the table indicate the names of the module containing the binary output relays.
To display all the lines, press the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys.

## 4．2．4．3 Displaying the Status of Measuring Elements

To display the status of the measuring elements on the LCD，do the following：
－Select 2 （＝Status）on the top＂MENU＂screen to display the＂Status＂screen．
－Select 3 （＝Relay element）to display the status of the relay elements．

| ／2 Relav element |  |  |  | $3 / 9$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D IFT | 「000 | 000 | 000 | 000 | 1 |
| REF | 「000 |  |  |  | 1 |
| 0 C | $\Gamma 000$ | 000 | 000 |  | 1 |
| 0 Cl | 「000 | 000 | 000 |  | 1 |
| E F | 「000 |  |  |  | 1 |
| EFI | 「000 |  |  |  | 1 |
| THR | $\Gamma 00$ |  |  |  | 1 |
| V／F | 「000 |  |  |  | 1 |
| FRQ | 「000 | 0 |  |  | 1 |

The display format is as shown below．

| DIFT | A | B | C | A | B | C | A | B | C | A | B | C |  |  | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIF |  | DIF |  |  | $2 f$ |  |  | $5 f$ |  |  | HOC |  |  |  |  |
| REF | 1 | 2 | 3 | － | － | － | － | － | － | － | － | － | － | － | － |
| OC | A | B | C | A | B | C | A | B | C | － | － | － | － | － | － |
|  |  | 10C |  |  | 20C |  |  | 30C |  |  |  |  |  |  |  |
| OCl | A | B | C | A | B | C | A | B | C | － | － | － | － | － | － |
| OCl |  | 10Cl |  |  | 20Cl |  |  | 3 OCl |  |  |  |  |  |  |  |
| EF | 1 | 2 | 3 | － | － | － | － | － | － | － | － | － | － | － | － |
| EFI | 1 | 2 | 3 | － | － | － | － | － | － | － | － | － | － | － | － |
| THR | S | A | － | － | － | － | － | － | － | － | － | － | － | － | － |
| V／F | H | T | A | － | － | － | － | － | － | － | － | － | － | － | － |
| FRQ | L1 | L2 | H1 | H2 | － | － | － | － | － | － | － | － | － | － | － |

Line 1 shows the operation status of current differential elements．Line 2 shows the status of restricted earth fault elements．Line 3 shows the status of overcurrent elements．Line 4 shows the status of time overcurrent elements．Line 5 shows the status of the overcurrent element for earth fault．Line 6 shows the status of time overcurrent elements for earth fault．Lines 7,8 and 9 show the status of thermal overload element，overexcitation element and frequency element respectively．
The status of each element is expressed with logical level＂1＂or＂ 0 ＂．Status＂ 1 ＂means the element is in operation．

To display all the lines on the LCD，press the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys．

### 4.2.4.4 Displaying the Status of the Time Synchronization Source

The inner clock of the GRT100 can be synchronized with external clocks such as the IRIG-B time standard signal clock or RSM (relay setting and monitoring system) clock or by an IEC60870-5-103 or SNTP server. To display on the LCD whether these clocks are active or inactive and which clock the relay is synchronized with, do the following:

- Select 2 (= Status) on the top "MENU" screen to display the "Status" screen.
- Select 4 (= Time sync source) to display the status of time synchronization sources.

| /2 Time synchronization source | $4 /$ | 4 |  |
| :--- | :--- | :--- | :--- | :--- |
| IRIG: Inactive |  |  |  |
| RSM: Inactive |  |  |  |
| IEC: Inactive |  |  |  |
| *SNTP: Active (Server *) |  |  |  |

The asterisk on the far left shows that the internal clock is synchronized with the marked source clock. If the marked source clock is inactive, the internal clock runs locally.

For details of the setting time synchronization, see Section 4.2.6.6.

### 4.2.4.5 Adjusting the Time

To adjust the clock when the internal clock is running locally, do the following:

- Select 2 (= Status) on the top "MENU" screen to display the "Status" screen.
- Select 5 (= Clock adjustment) to display the setting screen.


Line 1 shows the current date, time and time synchronization source with which the internal clock is synchronized. The time can be adjusted only when [Local] is indicated on the top line, showing that the clock is running locally. When [IRIG] or [RSM] or [IEC] or [SNTP] is indicated, the following adjustment is invalid.

- Enter a numerical value within the specified range for each item and press the ENTER key.
- Press the END key to adjust the internal clock to the set hours without fractions and return to the previous screen.

If a date which does not exist in the calendar is set and END is pressed, "Error: Incorrect date" is displayed on the top line and the adjustment is discarded. Adjust again.

### 4.2.5 Viewing the Settings

The sub-menu "Setting (view)" is used to view the settings made using the sub-menu "Setting (change)" except for the relay version.
The following items are displayed:
Relay version
Description
Address in the RSM, IEC60870-5-103 or IEC61850 communication
Recording setting
Status setting
Protection setting
Binary input setting
Binary output setting
LED setting
Enter a number on the LCD to display each item as described in the previous sections.

### 4.2.5.1 Relay Version

To view the relay version, do the following.

- Press 3 (= Setting (view)) on the main "MENU" screen to display the "Setting (view)" screen.

- Press 1 (= Version) on the "Setting (view)" screen and the "Relay version" screen appears.

| /2 Relay version | $3 / 8$ |
| :---: | :---: |
| Relay type | ********************** |
| Serial No.: | ********************** |
| Main software: | $* * * * * * * * * * * * * * * * *$ |
| IEC61850 eng | ********************** |
| PLC data | $* * * * * * * * * * * *(* * * * * * * *) ~$ |
| IEC103 data | $* * * * * * * * * * * *(* * * * * * * *) ~$ |
| IEC61850 data | $* * * * * * * * * * * *(* * * * * * * *) ~$ |
| GOOSE subscript | $* * * * * * * * * * * *(* * * * * * * *)$ |

### 4.2.5.2 Settings

The "Description", "Comm.", "Record", "Status", "Protection", "Binary input", "Binary output" and "LED" screens display the current settings input using the "Setting (change)" sub-menu.

### 4.2.6 Changing the Settings

The "Setting (change)" sub-menu is used to make or change settings for the following items:
Password
Description
Address in the RSM, IEC60870-5-103 or IEC61850 communication

Recording
Status
Protection
Binary input
Binary output
LED
All of the above settings except the password can be seen using the "Setting (view)" sub-menu.

### 4.2.6.1 Setting Method

There are three setting methods as follows.

- To enter a selective number
- To enter numerical values
- To enter a text string


## To enter a selected number

If a screen as shown below is displayed, perform setting as follows.
The number to the left of the cursor shows the current setting or default setting set at shipment. The cursor can be moved to upper or lower lines within the screen by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys. If setting (change) is not required, skip the line with the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.

| /6 Scheme switch |  |  |  |  | 1/*** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIFTPMD | $1=3 \mathrm{P} 0 \mathrm{R}$ | $2=1 \mathrm{P}$ |  |  | 1 - |
| 1 REF | $1=1 \mid 0$ | $2=210$ | $3=310$ |  | 1 |
| 2 REF | $1=1 \mid 0$ | $2=210$ | $3=310$ |  | 1 |
| 3 REF | $1=110$ | $2=2 \mid 0$ | $3=310$ |  | 1 |
| REF_DEF | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| M 10 Cl | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{V}$ er y | $4=E \times t$ | 1 |
| M 200 l | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{V}$ er y | $4=E \times t$ | 1 |
| M 30 Cl | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{V}$ er y | $4=E \times t$ | 1 |
| M 1 EFI | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{V}$ er y | $4=E \times t$ | 1 |
| M 2 EF I | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{V}$ er y | $4=E \times t$ | 1 |
| M 3 EF I | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{V}$ er y | $4=E \times t$ | 1 |
| L / 0 | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  |  | 1 |
| 2F-LOCK | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| $5 \mathrm{~F}-\mathrm{L} 0 \mathrm{CK}$ | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| D I F 1 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| D IF 2 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| D I F 3 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
|  |  |  |  |  |  |
| M. T 4-1 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| M. T 4-2 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| M. T 4-3 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| S V C N T | $0=A L M \& B$ | LK 1= | L M |  | 1 |
| C T S EN | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  |  | 1 |

- Move the cursor to a setting line.
- Enter the selected number. (Numbers other than those displayed cannot be entered.)
- Press the ENTER key to confirm the entry and the cursor will move to the next line below. (On the lowest line, the entered number blinks.)
- After completing the setting on the screen, press the END key to return to the upper menu.

To correct the entered number, do the following.

- If it is before pressing the ENTER key, press the CANCEL key and enter the new number.
- If it is after pressing the ENTER key, move the cursor to the correct line by pressing the and $\nabla$ keys and enter the new number.
Note: If the CANCEL key is pressed after any entry is confirmed by pressing the ENTER key, all the entries performed so far on the screen concerned are canceled and screen returns to the upper one.

When the screen shown below is displayed, perform setting as follows.
The number to the right of "Current No.=" shows the current setting.

| /3 Change | - |  |  |
| :---: | :---: | :---: | :---: |
| $1=\mathrm{Group} 1$ | $2=\mathrm{Group} 2$ | $3=\mathrm{Group} 3$ | Group 4 |
| 5 = Group 5 | $6=\mathrm{Group} 6$ | 7 = Group 7 | $8=\mathrm{Group} 8$ |
| Current | No. $=*$ | Sel | t No |

- Enter a number to the right of "Select No. = ". (Numbers other than those displayed cannot be entered.)
- Press the ENTER key to confirm the entry and the entered number blinks.
- After completing the setting on the screen, press the END key to return to the upper screen.

To correct the entered number, do the following.

- If it is before pressing the ENTER key, press the CANCEL key and enter the new number.
- If it is after pressing the ENTER key, enter the new number.


## To enter numerical values

When the screen shown below is displayed, perform setting as follows:
The number to the left of the cursor shows the current setting or default setting set at shipment. The cursor can be moved to upper or lower lines within the screen by pressing the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys. If setting (change) is not required, skip the line with the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys.

| $/ 6$ V T | \& C T | ratio |  |  | $1 / 7$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 CT | ( | 1-20000) | 2000 | - |  |
| 2 CT | ( | 1-20000) | 1000 |  |  |
| 3 CT | $($ | 1-20000) | 400 |  |  |
| 1 nC T | ( | 1-20000) | 100 |  |  |
| 2 nCT | ( | 1-20000) | 100 |  |  |
| 3 nCT | ( | 1-20000) | 100 |  |  |
| V T | ( | 1-20000) | 400 |  |  |

- Move the cursor to a setting line.
- Enter the numerical value.
- Press the ENTER key to confirm the entry and the cursor will move to the next line below. (If a numerical value outside the displayed range is entered, "Error: Out of range" appears on the top line and the cursor remains on the line. Press the CANCEL key to clear the entry.)
- After completing the setting on the screen, press the END key to return to the upper screen.

To correct the entered numerical value, do the following.

- If it is before pressing the ENTER key, press the CANCEL key and enter the new numerical value.
- If it is after pressing the ENTER key, move the cursor to the correct line by pressing the and $\boldsymbol{\nabla}$ keys and enter the new numerical value.
Note: If the CANCEL key is pressed after any entry is confirmed by pressing the ENTER key, all the entries made so far on the screen concerned are canceled and the screen returns to the upper one.


## To enter a text string

Text strings are entered in the bracket under the "Plant name" or "Description" screen.
To select a character, use keys 2, 4, 6 and 8 to move the blinking cursor down, left, right and up. $" \rightarrow$ " and " $\leftarrow$ " on each of lines 2 to 4 indicate a space and backspace, respectively. A maximum of 22 characters can be entered within the brackets.


- Set the cursor position in the bracket by selecting " $\rightarrow$ " or " $\leftarrow$ " and pressing the ENTER key.
- Move the blinking cursor to select a character.
- Press the ENTER to enter the blinking character at the cursor position in the brackets.
- Press the END key to confirm the entry and return to the upper screen.

To correct the entered character, do either of the following.

- Discard the character by selecting " $\leftarrow$ " and pressing the ENTER key and enter the new character.
- Discard the whole entry by pressing the CANCEL key and restart the entry from the first.


## To complete the setting

Enter after making entries on each setting screen by pressing the ENTER key, the new settings are not yet used for operation, though stored in the memory. To validate the new settings, take the following steps.

- Press the END key to the upper screen. Repeat this until the confirmation screen shown below is displayed. The confirmation screen is displayed just before returning to the "Setting (change)" sub-menu.

- When the screen is displayed, press the ENTER key to start operation using the new settings, or press the CANCEL key to correct or cancel entries. In the latter case, the screen turns back to the setting screen to enable re-entries. Press the CANCEL key to cancel entries made so far
and to turn to the "Setting (change)" sub-menu.


### 4.2.6.2 Password

For the sake of security of changing the settings and testing the relay, password protection can be set as follows;

- Press 4 (= Setting (change)) on the main "MENU" screen to display the "Setting (change)" screen.

- Press 1 (= Password) to display the "Password" screen.

```
2 Password
    Input new password [_ ]
    Retype new password [ ]
```

- Enter a 4-digit number within the brackets after "Input new password" and press the ENTER key.
- For confirmation, enter the same 4-digit number in the brackets after "Retype new password" and press the ENTER key.
- Press the END key to display the confirmation screen. If the retyped number is different from that first entered, the following message is displayed on the bottom of the "Password" screen before returning to the upper screen.
"Mismatch-password unchanged."
Re-entry is then requested.
- Press 2 (= Test) on the "Password" screen to set the password for the test.

```
/2 Test
    lnput new password [_ ]
    Retype new password [ ]
```

Set the password the same manner as that of the "Setting" above.

## Password trap

After the password has been set, the password must be entered in order to enter the setting change and the test screens.

If 4 (= Setting (change)) is entered on the top "MENU" screen, the password trap screen "Password" is displayed. If the password is not entered correctly, it is not possible to move to the "Setting (change)" sub-menu screens.


## Canceling or changing the password

To cancel the password protection, enter "0000" in the two brackets on the "Password" screen. The "Setting (change)" screen is then displayed without having to enter a password.

The password can be changed by entering a new 4-digit number on the "Password" screen in the same way as the first password setting.

## If you forget the password

Press CANCEL and RESET together for one second on the top "MENU" screen. The screen disappears, and the password protection of the GRT100 is canceled. Set the password again.

### 4.2.6.3 Description

To enter the plant name and other data, do the following. These data are attached to records.

- Press 4 (= Setting (change)) on the main "MENU" screen to display the "Setting (change)" screen.
- Press 2 (= Description) to display the "Description" screen.

$$
\begin{aligned}
& 12 \text { Description } \\
& 1=P \text { Iant name } \quad 2=D e s c r i p t i o n
\end{aligned}
$$

- To enter the plant name, select 1 (= Plant name) on the "Description" screen.


To enter special items, select 2 (= Description) on the "Description" screen.

| 3 Description 「 |  | $]$ |
| :--- | :--- | :--- | :--- | :--- |
| ABCDEFGHIJKLMNOPQRSTUVWXYZ | ()$\lceil 1 @$ | $\leftarrow \rightarrow$ |
| abcdefghi ikImnopqrstuvwxvz | $\} * /+-く=\rangle$ | $\leftarrow \rightarrow$ |
| 0123456789 !"\#\$\%\&, :... |  | $\leftarrow \rightarrow$ |

- Enter the text string.


### 4.2.6.4 Communication

If the relay is linked with RSM (relay setting and monitoring system), IEC60870-5-103 or Ethernet LAN, the relay address must be set. Do this as follows:

- Press 4 (= Setting (change)) on the main "MENU" screen to display the "Setting (change)" screen.
- Press 3 (= Comm.) to display the "Communication" screen.

$$
\begin{aligned}
& / 2 \text { Communication } \\
& 1=\text { Address/Parameter } \\
& 2=\text { Switch }
\end{aligned}
$$

- Press 1 (= Address/Parameter) to enter the relay address number.

| /3 Address/Parameter |  |  | $1 / * *$ |  |
| :---: | :---: | :---: | :---: | :---: |
| HDLC ( | 1- | $32)$ | 1 |  |
| I EC ( | 0 - | 254 ) | 2 |  |
| S Y A D | -9999- | 9999 ) | 0 | m s |
| \| P 1-1 ( | 0 - | 254) : | 0 |  |
| \| P 1-2 ( | 0 - | 254 ): | 0 |  |
| \| P 1-3 | 0 - | 254 ): | 0 |  |
| \| P 1-4 ( | 0 - | 254 ): | 0 |  |
| S M 1-1 ( | 0 - | 254 ): | 0 |  |
| S M 1-2 ( | 0 - | 254 ) | 0 | For channel 1 (port 1) |
| S M 1-3 ( | 0 - | 254 ) | 0 |  |
| S M 1-4 ( | 0 - | 254 ) | 0 |  |
| G W 1-1 ( | 0 - | 254 ): | 0 |  |
| G W 1-2 ( | 0 - | 254 ) | 0 |  |
| G W 1-3 ( | 0 - | 254 ): | 0 |  |
| G W 1-4 ( | 0 - | 254 ) | 0 |  |
| S I 1-1 ( | 0 - | 254 ): | 0 |  |
| S 1 1-2 ( | 0 - | 254 ) | 0 | For SNTP server 1 |
| S 1 1-3 ( | 0 - | 254 ) | 0 |  |
| S \| 1-4 ( | 0 - | 254 ) | 0 |  |
| S 14-1 ( | 0 - | 254 ) | 0 |  |
| S 14-2( | 0 - | 254 ) | 0 | For SNTP server 4 |
| S 14-3 | 0 - | 254 ) | 0 |  |
| S \| 4-4 ( | 0 - | 254 ) | 0 |  |
| SMODE ( | 0 - | 1) | 0 |  |
| G O I N T ( | 1 - | 60 ) | 60 | s |
| P G 1-1 ( | 0 - | 254 ) | 0 |  |
| P G 1-2 ( | 0 - | 254 ) | 0 | For channel 1 (port 1) |
| P G 1-3 ( | 0 - | 254 ) | 0 |  |
| P G 1-4 ( | 0 - | 254 ) | 0 |  |

- Enter the address number on "HDLC" column for RSM and/or "IEC" column for IEC60870-5-103 and the compensation value on "SYADJ" column for adjustment of time synchronization of protocol used (-: lags the time, + : leads the time).
Enter IP address for IP1-1 to IP1-4, Subnet mask for SM1-1 to SM1-4, Default gateway for GW1-1 to GW1-4, and SNTP server address for SI1-1 to SI4-4. Four SNTP servers are available.
Enter "0" or "1" on "SMODE" column to set the standard time synchronized mode for SNTP server. Using low accuracy level of time server, synchronized compensation to maintain synchronization accuracy may not be done automatically. Therefore enter "1", and synchronized compensation is done forcibly. The default setting is "0".
Enter the time on "GOINT" to set the maximum GOOSE message publishing term if GOOSE message receive checked.
Enter the IP address of the device for PG1-1 to PG1-4 if Ping response checked.
IP address: $\underbrace{* * *}_{\text {IP1-1 }}, \underbrace{* * *}_{\text {IP1-2 }}, \underbrace{* * *}_{\text {IP1-3 IP1-4 }}, \underbrace{* * *}_{\text {I** }}$
SM1-1 to SM1-4, GW1-1 to GW1-4, SI1-1 to SI4-4, PG1-1 to PG1-4: same as above.
- Press the ENTER key.

CAUTION: Do not overlap the number in a network.

- Press 2 (= Switch) on the "Communication" screen to select the protocol, transmission speed
(baud rate) and test mode setting, etc., of the RSM or IEC60870-5-103 or IEC61850.

- Select the number corresponding to the system and press the ENTER key.


## <PRTCL1>

PRTCL1 is used to select the protocol for channel 1 (COM1 or OP1) of the serial communication port RS485 or FO (fibre optic).

- When the remote RSM system applied, select 1 (=HDLC). When the IEC60870-5-103 applied, select 2 (=IEC103).


## <232C>

This line is to select the RS-232C baud rate when the RSM system applied.
Note: The default setting of the 232C is 9.6 kbps . The 57.6 kbps setting, if possible, is recommended to serve user for comfortable operation. The setting of RSM100 is also set to the same baud rate.

## <IECBR>

This line is to select the baud rate when the IEC60870-5-103 system applied.

## <IECBLK>

Select 2 (=Blocked) to block the monitor direction in the IEC60870-5-103 communication.

## <850BLK>

Select 2 (=Blocked) to block the monitor direction in the IEC61850 communication.

## <850AUT>

In the IEC61850 communication, GRT100 provides the access restriction which permits a client to access only if an authentication parameter matches with a valid parameter (password). Password is 4-digit number and shared with RSM100.

Select 1 (=On) to use the authentication function.

## <TSTMOD>

Select $1(=O n)$ to set the test mode in the IEC61850 communication.

## <GSECHK>

This function is to alarm if any one of GOOSE messages written in GOOSE subscribe file cannot be received.

Select 1 (=On) to execute GOOSE receive check in the IEC61850 communication.
<PINGCHK>
This function is to check the health of network by regularly sending Ping to IP address which is set on PG*-*.

Select 1 (=On) to execute Ping response check.

### 4.2.6.5 Setting the Recording

To set the recording function as described in Section 4.2.3, do the following:

- Press 4 (= Setting (change)) on the main "MENU" screen to display the "Setting (change)" screen.
- Press 4 (= Record) to display the "Record" screen.

| 2 Record |
| :--- |
| $1=$ Fault record |
| $3=$ Disturbancerecord |$\quad 2=$ Event record

## Setting the fault recording

- Press 1 (= Fault record) to display the "Fault record" screen.

- Enter 1 or 2 and press the ENTER key.

Enter 1 (= Operating) to display the operating phase.
Enter 2 (= Fault) to display the fault phase.

## Setting the event recording

- Press 2 (= Event record) to display the "Event record" screen.

| /3 Event record |  |  |  | $1 / 129$ |
| :---: | :---: | :---: | :---: | :---: |
| B I TRN( | 0 - | $128)$ | 128 | _ |
| EV1 ( | 0 - | 3071 ) | 0 |  |
| E V 2 ( | $0-$ | 3071 ) | 1 |  |
| E V 3 ( | 0 - | 3071 ) | 1 |  |
| E V 4 ( | 0 - | 3071 ) | 1 |  |
| E V 5 ( | 0 - | 3071 ) | 3071 |  |
| E V 6 ( | 0 - | 3071 ) | 3071 |  |
| EV7 ( | $0-$ | 3071 ) | 3071 |  |
| E V 8 ( | 0 - | $3071)$ | 3071 |  |
| E V 9 ( | 0 - | 3071 ) | 3071 |  |
| EV10 ( | 0 - | 3071 ) | 3071 |  |
| EV128 ( | 0 - | 3071 ) | 3071 |  |

<BITRN>

- Enter the number of event to record the status change both to "On" and "Off". If enter 20, both status change is recorded for EV1 to EV20 events and only the status change to "On" is recorded for EV21 to EV128 events.


## <EV*>

- Enter the signal number to record as the event in Appendix B. It is recommended that this setting can be performed by RSM100 because the signal name cannot be entered by LCD screen. (Refer to Section 3.4.2.)


## Setting the disturbance recording

- Press 3 (= Disturbance record) to display the "Disturbance record" screen.
$/ 3$ Disturbance record
$1=$ Record time \& starter
$2=$ Scheme switch
$3=$ Binary signal
- Press 1 (= Record time \& starter) to display the "Record time \& starter" screen.

| $/ 4$ Record time \& starter |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Time ( | 0.1 | 3.0) | 1. 0 | s |
| 10 CPS ( | 0.10- | 20.00) | 1. 00 | pu |
| 20 CPS ( | 0.10- | 20.00) | 1. 00 | pu |
| 10 CPG ( | $0.05-$ | 20.00) | 1. 00 | pu |
| 20 CPG ( | 0. 10- | 20.00) | 1. 00 | pu |

- Enter the recording time and starter element settings.

To set starters, do the following:

- Press 2 (= Scheme switch) on the "Disturbance record" screen to display the "Scheme switch" screen.

| $/ 4$ | Scheme | switch | $1 / 14$ |
| :---: | :---: | :---: | :---: |
| TRIP 1 | $0=0 \mathrm{ff}$ | $1=0 n$ | 1 |
| TRIP2 | $0=0 \mathrm{ff}$ | $1=0 n$ | 1 |
| TRIP 3 | $0=0 \mathrm{ff}$ | $1=0 n$ | 1 |
| $\vdots$ | $\vdots$ | $\vdots$ | 1 |
| EVENT 3 | $0=0 \mathrm{ff}$ | $1=0 n$ | 1 |

- Enter 1 to use as a starter or enter 0 if not to use.
- Press 3 (= Binary signal) on the "Disturbance record" screen to display the "Binary signal" screen.

- Enter the signal number to record binary signals in Appendix B. It is recommended that this
setting can be performed by RSM100 because the signal name cannot be entered by LCD screen. (Refer to Section 3.4.3.)


### 4.2.6.6 Status

To set the status display described in Section 4.2.4, do the following.
Press 5 (= Status) on the "Setting (change)" sub-menu to display the "Status" screen.

$$
\begin{aligned}
& / 2 \text { Status } \\
& 1=\text { Metering } \\
& 2=T \text { ime synchronization } \\
& 3=T \text { ime zone }
\end{aligned}
$$

## Setting the metering

- Press 1 (= Metering) to display the "Metering" screen.

- Enter the selected number and press the ENTER key. Repeat this for all items.


## Setting the time synchronization

The calendar clock can run locally or be synchronized with external IRIG-B time standard signal, RSM clock, IEC60870-5-103(IEC) or SNTP. This is selected by setting as follows:

- Press 2 (= Time synchronization) to display the "Time synchronization" screen.

```
/3 Time synchronization
0=0ff 1=|R|G 2=RSM 3=|EC 4=SNTP
    Current No.=0 Select No.=
```

- Enter the selected number and press the ENTER key.

Note: When to select IRIG-B, RSM, IEC, or SNTP, check that they are active on the "Time synchronization source" screen in "Status" sub-menu. If it is set to an inactive IRIG-B, RSM, IEC, or SNTP, the calendar clock runs locally.

## Setting the time zone

When the calendar clock is synchronized with the IRIG-B time standard, it is possible to transform GMT to the local time.

- Press 3 (= Time zone) to display the "Time zone" screen.

| $/ 3$ Time | zone |  | $1 / 2$ |  |
| :--- | :--- | :--- | :--- | :--- |
| GMT | $($ | $-12-$ | $+12):$ | +9 |
| GMTm | $($ | $-59-$ | $+59):$ | +0 |

- Enter the difference between GMT and local time. Enter a numerical value to GMT (hrs) and GMTm (min), and press the ENTER key.


### 4.2.6.7 Protection

The GRT100 can have 8 setting groups for protection according to the change of power system operation, one of which is assigned to be active. To set protection, do the following:

- Press 6 (= Protection) on the "Setting (change)" screen to display the "Protection" screen.

$$
\begin{aligned}
& / 2 \text { Protection } \\
& 1=\text { Change active group } \\
& 2=\text { Change setting } \\
& 3=\text { Copy group }
\end{aligned}
$$

## Changing the active group

- Press 1 (= Change active group) to display the "Change active group" screen.

| 13 Change | active group (Active group= *) |  |  |
| :---: | :---: | :---: | :---: |
| 1 = Group 1 | $2=\mathrm{Group} 2$ | $3=\mathrm{Group} 3$ | $4=\mathrm{Group} 4$ |
| 5 = Group 5 | $6=\mathrm{Group} 6$ | 7 = Group 7 | $8=\mathrm{Group} 8$ |
| Current | No. $=$ * | Select No. |  |

- Enter the selected number and press the ENTER key.


## Changing the settings

Almost all the setting items have default values that are set when the product GRT100 was shipped. For the default values, see Appendix D and H. To change the settings, do the following:

- Press 2 (= Change setting) to display the "Change setting" screen.

| / 3 Change | setting | (Active | group $=*$ ) |
| :---: | :---: | :---: | :---: |
| 1 = Group 1 | $2=\mathrm{Group} 2$ | $3=\mathrm{Group} 3$ | $4=\mathrm{Group} 4$ |
| $5=\mathrm{Group} 5$ | $6=$ Group 6 | 7 = Group 7 | $8=\mathrm{Group} 8$ |

- Press the group number to change the settings and display the "Protection" screen.

| $/ 4$ Protection | (Group | $*)$ |
| :--- | :--- | :--- |
| $1=$ Transformer parameter |  |  |
| $2=$ Trip |  |  |

Settings are required for transformer parameter and protection functions.

## Setting the transformer parameters

Enter the VT\&CT ratio as follows:

- Press 1 (= Transformer parameter) on the "Protection" screen to display the "Transformer parameter" screen.

$$
\begin{aligned}
& 5 \text { Transformer parameter } \quad \text { (Group *) } \\
& 1=\mathrm{VT} \text { \& CT ratio }
\end{aligned}
$$

- Press 1 (VT\&CT ratio) to display the "VT\&CT ratio" screen.

| / 6 V T | \& C T | ratio |  |  | $1 / 7$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 CT | ( | 1-20000) | 2000 | - |  |
| 2 CT | ( | 1-20000) | 1000 |  |  |
| 3 CT | $($ | 1-20000) | 400 |  |  |
| 1 nCT | ( | 1-20000) | 100 |  |  |
| 2 nCT | ( | 1-20000) | 100 |  |  |
| 3 nCT | ( | 1-20000) | 100 |  |  |
| V T | ( | 1-20000) | 400 |  |  |

- Enter the VT ratio and press the ENTER key.
- Enter the CT ratio and press the ENTER key.


## CAUTION

Do not set the CT primary rated current. Set the CT ratio.
$(\mathrm{CT}$ ratio $)=(\mathrm{CT}$ primary rated current $[\mathrm{A}]) /($ Relay rated current $[\mathrm{A}])$

- Press the END key to return the display to the "Transformer parameter" screen.


## Setting the protection function

To set the protection schemes, scheme switches and protection elements, do the following. Protection elements are measuring elements and timers.

Note: Depending on the selected protection scheme and scheme switch setting, some of the scheme switches and protection elements are not used and so need not be set. The protection function setting menu of the GRT100 does not display unnecessary setting items. Therefore, start by setting the protection scheme, then set the scheme switch, then the protection elements.

As a result of the above, note that some of the setting items described below may not appear in the actual setting.

- Press 2 (= Trip) on the "Protection" screen to display the "Trip" screen.

| $/ 5$ Trip | (Group *) |  |
| :--- | :--- | :--- |
| $1=$ Phase matching |  |  |
| $2=$ Scheme switch |  |  |
| $3=$ Protection element |  |  |

## Setting the phase matching

- Press 1 (= Phase matching) to display the "Phase matching" screen.
- Select 1 (= Alpha) or 2 (= Beta) to set the phase matching method.

| $/ 6$ Phase matching |
| :--- |
| $1=$ Alpha $2=$ Beta |
| Current No. $=2$ |

Note: If the "Alpha" is selected, the phase matching method corresponds to that of GRT100-xxxC model. If the "Beta", it corresponds to that of GRT100-xxxA and -xxxB models.

- Press the END key to return the display to the "Trip" screen.


## Setting the scheme switch

- Press 2 (= Scheme switch) to display the "Scheme switch" screen.

| /6 Scheme | switch |  |  |  | 1/*** |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D IFTPMD | $1=3 \mathrm{P} 0 \mathrm{R}$ | $2=1 \mathrm{P}$ |  |  | 1 - |
| 1 R EF | $1=1 \mid 0$ | $2=210$ | $3=310$ |  | 1 |
| 2 REF | $1=1 \mid 0$ | $2=210$ | $3=310$ |  | 1 |
| 3 REF | $1=110$ | $2=2$ \\| 0 | $3=310$ |  | 1 |
| REF_DEF | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  |  | 1 |
| M 10 Cl | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{Very}$ | $4=E x t$ | 1 |
| M 200 Cl | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{Very}$ | $4=E \times t$ | 1 |
| M 30 Cl | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{V}$ er y | $4=E \times t$ | 1 |
| M 1 EFI | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{V}$ er y | $4=E \times t$ | 1 |
| M 2 EFI | $1=\mathrm{Long}$ | $2=S t d$ | $3=\mathrm{Very}$ | $4=E \times t$ | 1 |
| M 3 EFI | $1=\mathrm{L}$ ong | $2=S t d$ | $3=\mathrm{Very}$ | $4=E x t$ | 1 |
| L / 0 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| 2F-LOCK | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| 5 F - L 0 C K | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| D I F 1 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| D I F 2 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| D I F 3 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| M . T 4-1 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| M . T 4-2 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| M. T 4-3 | $0=0 \mathrm{ff}$ | $1=0 n$ |  |  | 1 |
| S V C N T | $0=A L M \& B$ | LK $1=$ | L M |  | 1 |
| C T SEN | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  |  | 1 |

Note: The menu of DIFTPMD depends on the phase matching. The above screen is $\alpha$-method (Alpha). In the case of $\beta$-method (Beta), DIFTPMD is $1=3 P O R$, $2=2$ PAND, $3=1 \mathrm{P}$. Refer to Section 2.2.1.
If the "On" is selected in the menu of REF_DEF, the REF characteristic corresponds to that of GRT100-xxxC model. If the "Off", it corresponds to that of GRT100-xxxA and -xxxB models.

- Enter the number corresponding to the switch status to be set and press the ENTER key for each switch.

The setting of REF depends on the type of the transformer. The setting method is shown in Appendix L.

- After setting all switches, press the END key to return to the "Trip" screen.


## Setting the protection elements

- Press 3 (= Protection element) on the "Trip" screen to display the "Protection element" screen.

| $/ 6$ Protection element | $($ Group $=*)$ |  |
| :--- | :--- | :--- |
| $1=$ DIFT | $2=$ REF | $3=0 \mathrm{C}$ |
| $4=$ THR | $5=\mathrm{V} / \mathrm{F}$ | $6=\mathrm{FRQ}$ |

## <DIFT>

- Press 1 (= DIFT) to display the "DIFT" screen. The measuring elements used in the current differential protection are set using this screen.
- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.

| 1 D IFT $1 / 15$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| i k |  | 0. $10-$ | 1. 00 ) | 0.10 | pu |
| p 1 | ( | $10-$ | 100 ) | 10 | \% |
| p 2 | ( | $10-$ | 200 ) | 100 | \% |
| kp | ( | 1. $00-$ | 20.00 ) | 1. 00 | pu |
| kc t 1 | ( | $0.05-$ | 50.00 ) | 1. 00 |  |
| kct 2 | $($ | $0.05-$ | 50.00 ) | 1. 50 |  |
| kct 3 | ( | 0. $05-$ | 50.00 ) | 2. 00 |  |
| y d_p |  | 1 - | $2)$ | 1 |  |
| $y d_{\sim} s$ |  | 1 - | $2)$ | 1 |  |
| $v e c_{-}$ |  | 1 - | 11) | 0 |  |
| $y d_{\sim}$ t |  | 1 - | 2 ) | 1 |  |
| $v \mathrm{~V}_{-} \mathrm{t}$ |  | 1 - | 11) | 0 |  |
| k 2 f | ( | $10-$ | 50 ) | 10 | \% |
| k 5 f | ( | $10-$ | 100 ) | 50 | \% |
| k h | $($ | 2. $00-$ | $20.00)$ | 2. 00 | pu |

## <REF>

- Press 2 (= REF) to display the "REF" screen. The measuring elements and timers used in the restricted earth fault protection are set using this screen.
- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.



## <OC>

- Press 3 (OC) to display the "OC" screen. The overcurrent elements and timers are set using this screen.
- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.



## <THR>

- Press 4 (= THR) to display the "THR" screen. The measuring elements and the timer used in the thermal overload protection are set using this screen.
- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.



## <VIF>

- Press 5 (= V/F) to display the "V/F" screen. The measuring elements and timers used in the overexcitation protection are set using this screen.
- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.



## <FRQ>

- Press 6 (= FRQ) to display the "FRQ" screen. The measuring elements and timers used in the frequency protection are set using this screen.
- Enter the numerical value and press the ENTER key for each element.
- After setting all elements, press the END key to return to the "Protection element" menu.



## Setting group copy

To copy the settings of one group and overwrite them to another group, do the following:

- Press 3 (= Copy group) on the "Protection" screen to display the "Copy group A to B" screen.

- Enter the group number to be copied in line A and press the ENTER key.
- Enter the group number to be overwritten by the copy in line B and press the ENTER key.


### 4.2.6.8 Binary Input

The logic level of binary input signals can be inverted by setting before entering the scheme logic. Inversion is used when the input contact cannot meet the conditions described in Table 3.2.2.

- Press 7 (= Binary input) on the "Setting (change)" sub-menu to display the "Binary input" screen.

| /2 Binary input | 1 = Norm | $2=1 \mathrm{nv}$ | $1 / 15$ |
| :---: | :---: | :---: | :---: |
| B। S W 1 |  |  | 1 - |
| BIS W 2 |  |  | 1 |
| B। SW 3 |  |  | 1 |
| BIS W 4 |  |  | 1 |
| B I S W 5 |  |  | 1 |
| : |  |  | : |
| B I S W 14 |  |  | 1 |
| B I S W 15 |  |  | 1 |
| B I SW 16 |  |  | 1 |

- Enter 1 (= Normal) or 2 (= Inverted) and press the ENTER key for each binary input.


### 4.2.6.9 Binary Output

All the binary outputs of the GRT100 except the tripping command, and the relay failure signal are user-configurable. It is possible to assign one signal or up to six ANDing or ORing signals to one output relay. Available signals are listed in Appendix B.
It is also possible to attach a drop-off delay time of 0.2 seconds to these signals. The drop-off delay time is disabled by the scheme switch [BOTD].
Appendix D shows the factory default settings.
To configure the binary output signals, do the following:

## Selection of output module

- Press 8 (= Binary output) on the "Setting (change)" screen to display the "Binary output" screen. The available output module(s) will be shown.

| 2 B inary output |  |
| :--- | :--- |
| $1=10 \# 2$ | $2=10 \# 3$ |

- Press the number corresponding to the selected output module to display the "Binary output" screen.


Note: The setting is required for all the binary outputs. If any of the binary outputs are not to be used, enter 0 for the logic gates \#1 to \#6 when assign signals.

## Selecting the output relay

- Enter the output relay number and press the ENTER key to display the "Setting" screen.
4 Setting
$1=$ Logic gate type \& delay timer
$2=1$ nput to logic gate


## Setting the logic gate type and timer

- Press 1 to display the "Logic gate type and delay timer" screen.

| /5 Logic gate type \& delay timer 1/2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Log ic | $1=0 \mathrm{R}$ | $2=A N D$ |  | 1 |
| B 0 T D | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ |  | 1 |

- Enter 1 or 2 to use an OR gate or AND gate and press the ENTER key.
- Enter 0 or 1 to add 0.2 s drop-off delay time to the output relay or not and press the ENTER key.
- Press the END key to return to the "Setting" screen.


## Assigning signals

- Press 2 on the "Setting" screen to display the "Input to logic gate" screen.

| $/$ | /5 Input to logic gate 1/ 6 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \#1 ( | 0 - | 3071 ) | 21 |  |  |
| 1 n | \# 2 ( | 0 - | 3071 ) | 4 |  |  |
| 1 n | \# 3 ( | 0 - | 3071 ) | 67 |  |  |
| 1 n | \# 4 ( | 0 - | 3071 ) | 0 |  |  |
| 1 n | \# 5 ( | 0 - | 3071 ) | 0 |  |  |
| 1 n | \# 6 ( | 0 - | 3071 ) | 0 |  |  |

- Assign signals to gates (In \#1 to \#6) by entering the number corresponding to each signal referring to Appendix B.

Note: If signals are not assigned to all the gates \#1 to \#6, enter 0 for the unassigned gate(s).
Repeat this process for the outputs to be configured.

### 4.2.6.10 LEDs

Four LEDs of the GRT100 are user-configurable. Each is driven via a logic gate which can be programmed for OR gate or AND gate operation. Further, each LED has a programmable reset characteristic, settable for instantaneous drop-off, or for latching operation. The signals listed in Appendix B can be assigned to each LED as follows.

## Selection of LED

- Press 9 (= LED) on the "Setting (change)" screen to display the "LED" screen.

| S LED Lect LED |  |
| :--- | :--- |
|  | $\left(\begin{array}{c}1-\quad 4) \\ \text { Select No. }= \\ \hline\end{array}\right.$ |

- Enter the LED number and press the ENTER key to display the "Setting" screen.

```
/ 3 Setting
    (LED1)
1=Logic gate type & reset
2 = lnput to logic gate
```


## Setting the logic gate type and reset

- Press 1 to display the "Logic gate type and reset" screen.

| $/ 4$ Lo | $g \mathrm{gate}$ | type \& reset | 1/2 |
| :---: | :---: | :---: | :---: |
| Log ic | $1=0 \mathrm{R}$ | 2 = AND | 1 _ |
| Reset | $0=1 \mathrm{nst}$ | $1=\mathrm{Latch}$ | 1 |

- Enter 1 or 2 to use an OR gate or AND gate and press the ENTER key.
- Enter 0 or 1 to select "Instantaneous reset" or "Latch reset" and press the ENTER key.
- Press the END key to return to the "Setting" screen.

Note: To release the latch state, refer to Section 4.2.1.

## Assigning signals

- Press 2 on the "Setting" screen to display the "Input to logic gate" screen.

- Assign signals to gates (In \#1- \#4) by entering the number corresponding to each signal referring to Appendix B.

Note: If signals are not assigned to all the gates \#1-\#4, enter 0 to the unassigned gate(s).
Repeat this process for other LEDs to be configured.

### 4.2.7 Testing

The sub-menu "Test" provides such functions as setting of testing switches, forced operation of binary outputs, time measurement of the variable setting timer and logic signal observation.

The password must be entered in order to enter the test screens because the "Test" menu has password security protection. (See Section 4.2.6.2.)

### 4.2.7.1 Setting the switches

The automatic monitor function (A.M.F.) can be disabled by setting the switch [A.M.F] to "OFF".
Disabling the A.M.F. prevents tripping from being blocked even in the event of a failure in the items being monitored by this function. It also prevents failures from being displayed on the "ALARM" LED and LCD described in Section 4.2.1. No events related to A.M.F. are recorded, either.

Disabling A.M.F. is useful for blocking the output of unnecessary alarms during testing.
Note: Set the switch [A.M.F] to "Off" before applying the test inputs, when the A.M.F is disabled.
The switch [Reset] is used to test the THR and V/F elements. When the switch [Reset] is set to "1", the time counting of inverse time characteristic can be forcibly reset.

While the switch [A.M.F] is set to "0" or [Reset] is set to "1", the red "TESTING" LED is lit for
alarm purposes.
Caution: Be sure to restore these switches after the tests are completed.

## Disabling automatic monitoring

- Press 5 (= Test) on the top "MENU" screen to display the "Test" screen.

| 1 Test | $2=$ Binary output |
| :--- | :--- |
| $1=$ Switch | $4=$ Logic circuit |
| $3=$ Timer |  |

- Press 1 (= Switch) to display the "Switch" screen.

| / 2 Switch |  |  | $1 / 3$ |
| :---: | :---: | :---: | :---: |
| A. M. F. | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ | 1 - |
| Reset | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ | 0 |
| I E C T S T | $0=0 \mathrm{ff}$ | $1=0 \mathrm{n}$ | 1 |

- Enter 0 for A.M.F to disable the A.M.F. and press the ENTER key.
- Enter 1(=On) for IECTST to transmit 'test mode' to the control system by IEC60870-5-103 communication when testing the local relay, and press the ENTER key.
- Press the END key to return to the "Test" screen.


## Resetting the time counting of THR and V/F elements

- Enter 1 for Reset to reset the time counting forcibly and press the ENTER key.
- Press the END key to return to the "Test" screen.


### 4.2.7.2 Binary Output Relay

It is possible to forcibly operate all binary output relays for checking connections with the external devices. Forced operation can be performed on one or more binary outputs at a time for each module.

- Press 2 (= Binary output) on the "Test" screen to display the "Binary output" screen.

$$
\left\lvert\, \begin{array}{lll}
/ 2 & \text { Binary output } \\
1=10 \# 1 \quad 2=10 \# 2 \quad 3=10 \# 3
\end{array}\right.
$$

The LCD displays the output modules mounted depending on the model.

- Enter the selected number corresponding to each module to be operated. Then the LCD displays the name of the module, the name of the output relay, the name of the terminal block and the terminal number to which the relay contact is connected.

| / 3 B 0 |  | ( $0=$ Disable $1=E n a b \mid e)$ | 1/14 |
| :---: | :---: | :---: | :---: |
| 10 \# 2 | B 01 |  | 1 |
| 10 \# 2 | B 02 |  | 1 |
| 10\#2 | B 03 |  | 1 |
| 10 \# 2 | B 04 |  | 0 |
| 10 \# 2 | B 05 |  | 0 |
| 10 \# 2 | B 06 |  | 0 |
| 10 \# 2 | B 07 |  | 0 |
| 10 \# 2 | B 08 |  | 0 |
| 10 \# 2 | B 09 |  | 0 |
| 10 \# 2 | B 010 |  | 0 |
| 10 \# 2 | B 011 |  | 0 |
| 10 \# 2 | B 012 |  | 0 |
| 10 \# 2 | FAIL |  | 0 |
| 10\#2 | B 013 |  | 0 |

- Enter 1 and press the ENTER key.
- After completing the entries, press the END key. Then the LCD displays the screen shown below.
B B O
Keep pressing 1 to operate.
Press CANCEL to cancel.
- Keep pressing 1 key to operate the output relays forcibly.
- Release the press of 1 key to reset the operation.


### 4.2.7.3 Timer

The pick-up or drop-off delay time of the variable timer used in the scheme logic can be measured with monitoring jacks A and B. Monitoring jacks A and B are used to observe the input signal and output signal to the timer respectively.

- Press 3 (= Timer) on the "Test" screen to display the "Timer" screen.

| 2 Timer |  |  | $1 / 1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Timer $($ | $1-$ | $100):$ |  |

- Enter the number corresponding to the timer to be observed and press the ENTER key. The timers and related numbers are listed in Appendix C.
- Press the END key to display the following screen.
T T imer
Press ENTER to operate.
Press CANCEL to cancel.
- Press the ENTER key to operate the timer. The "TESTING" LED turns on, and timer is
initiated and the following display appears. The input and output signals of the timer can be observed at monitoring jacks A and B respectively. The LEDs above monitoring jacks A or B are also lit if the input or output signal exists.

```
/2 Timer
Operating...
Press END to reset.
Press CANCEL to cancel.
```

- Press the END key to reset the input signal to the timer. The "TESTING" LED turns off.
- Press the CANCEL key to test other timers. Repeat the above testing.


### 4.2.7.4 Logic Circuit

It is possible to observe the binary signal level on the signals listed in Appendix B with monitoring jacks A and B.

- Press 4 (= Logic circuit) on the "Test" screen to display the "Logic circuit" screen.

| $/ 2 \mathrm{Logiccircuit}$ |  |  |  |  | $1 / 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TermA ( | 0 - | 3071 ) | 1 |  |  |
| TermB | 0 - | 3071 ) | 48 |  |  |

- Enter a signal number to be observed at monitoring jack A and press the ENTER key.
- Enter the other signal number to be observed at monitoring jack B and press the ENTER key.

After completing the setting, the signals can be observed by the binary logic level at monitoring jacks A and B or by the LEDs above the jacks.

On screens other than the above screen, observation with the monitoring jacks is disabled.

### 4.3 Personal Computer Interface

The relay can be operated from a personal computer using an RS-232C port on the front panel. On the personal computer, the following analysis and display of the fault voltage and current are available in addition to the items available on the LCD screen.

- Display of voltage and current waveform:
- Symmetrical component analysis:
- Harmonic analysis:
- Frequency analysis:

Oscillograph, vector display
On arbitrary time span
On arbitrary time span
On arbitrary time span

For the details, see the separate instruction manual "PC INTERFACE RSM100".

### 4.4 Communication Interface

The relay can be provided with the following communication interfaces:

- RSM100 (Relay Setting and Monitoring)
- IEC 60870-5-103
- IEC 61850


### 4.4.1 RSM (Relay Setting and Monitoring System)

The Relay Setting and Monitoring (RSM) system is a system that retrieves and analyses the data on power system quantities, fault and event records and views or changes settings in individual relays via a telecommunication network using a remote PC.

For the details, see the separate instruction manual "PC INTERFACE RSM100".
Figure 4.4.1.1 shows the typical configuration of the RSM system via a protocol converter G1PR2. The relays are connected through twisted pair cables, and the maximum 256 relays can be connected since the G1PR2 can provide up to 8 ports. The total length of twisted pair wires should not exceed 1200 m . Relays are mutually connected using an RS485 port on the relay rear panel and connected to a PC RS232C port via G1PR2. Terminal resistor ( 150 ohms) is connected the last relay. The transmission rate used is $64 \mathrm{kbits} / \mathrm{s}$.

Figure 4.4.1.2 shows the configuration of the RSM system with Ethernet LAN (option). The relays are connected to HUB through UTP cable using RJ-45 connector at the rear of the relay. The relay recognizes the transmission speed automatically.
In case of the optional fiber optic interface (option), the relays are connected through graded-index multi-mode $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ type optical fiber using ST connector at the rear of the relay.


Figure 4.4.1.1 Relay Setting and Monitoring System (1)


Figure 4.4.1.2 Relay Setting and Monitoring System (2)

### 4.4.2 IEC 60870-5-103 Interface

The relay can support the IEC60870-5-103 communication protocol. This protocol is mainly used when the relay communicates with substation automation system and is used to transfer the following measurand, status data and general command from the relay to the control system.

- Measurand data: current, voltage, frequency
- Status data: events, fault indications, etc.

The IEC60870-5-103 function in the relay can be customized with the original software "IEC103 configurator". It runs on a personal computer (PC) connected to the relay, and can help setting of Time-tagged messages, General command, Metering, etc. For details of the setting method, refer to "IEC103 configurator" manual. For the default setting of IEC60870-5-103, see Appendix N.

The protocol can be used through the RS485 port on the relay rear panel and can be also used through the optional fibre optical interface.
The relay supports two baud-rates 9.6 kbps and 19.2 kbps .
The data transfer from the relay can be blocked by the setting.
For the settings, see the Section 4.2.6.4.

### 4.4.3 IEC 61850 interface

The relay can also communicate with substation automation system via Ethernet communication networks using IEC 61850 protocols.


Figure 4.4.3.1 Substation Automation System using Ethernet-based IEC 61850 protocol

### 4.5 Clock Function

The clock function (Calendar clock) is used for time-tagging for the following purposes:

- Event records
- Disturbance records
- Fault records
- Metering
- Automatic supervision
- Display of the system quantities on the digest screen
- Display of the fault records on the digest screen
- Display of the automatic monitoring results on the digest screen

The calendar clock can run locally or be synchronized with the external IRIG-B time standard signal, RSM or IEC clock. This can be selected by setting.

If it is necessary to synchronize with the IRIG-B time standard signal, it is possible to transform GMT to the local time by setting.

When the relays are connected to the RSM system as shown in Figure 4.4.1.1, the calendar clock of each relay is synchronized with the RSM clock. If the RSM clock is synchronized with the external time standard (GPS clock etc.), then all the relay clocks are synchronized with the external time standard.

## 5. Installation

### 5.1 Receipt of Relays

When relays are received, carry out the acceptance inspection immediately. In particular, check for damage during transportation, and if any is found, contact the vendor.

Check that the following accessories are attached.

- 3 pins for the monitoring jack, packed in a plastic bag.
- An optional attachment kit required in rack-mounting. (See Appendix F.)

1 large bracket with 5 round head screws, spring washers and washers ( $\mathrm{M} 4 \times 10$ )
1 small bracket with 3 countersunk head screws (M4×6)
2 bars with 4 countersunk head screws (M3×8)
Always store the relays in a clean, dry environment.

### 5.2 Relay Mounting

Either a rack or flush mounting relay is delivered as designated by the customer. The GRT100 models are housed into type A case. Appendix F shows the case outline.

If the customer requires a rack-mounting relay, support metal fittings necessary to mount it in the 19 -inch rack are also supplied with the relay.

When mounting the relay in the rack, detach the original brackets fixed on both sides of the relay and seals on the top and bottom of the relay. Attach the larger bracket and smaller bracket on the left and right side of the relay respectively and the two bars on the top and bottom of the relay.

How to mount the attachment kit, see Appendix F.
Dimension of the attachment kit EP-101 is also shown in Appendix F.

### 5.3 Electrostatic Discharge

## ACAUTION

Do not take out any modules outside the relay case since electronic components on the modules are very sensitive to electrostatic discharge. If it is absolutely essential to take the modules out of the case, do not touch the electronic components and terminals with your bare hands. Additionally, always put the module in a conductive anti-static bag when storing it.

### 5.4 Handling Precautions

A person's normal movements can easily generate electrostatic potential of several thousand volts. Discharge of these voltages into semiconductor devices when handling electronic circuits can cause serious damage, which often may not be immediately apparent but the reliability of the circuit will have been reduced.

The electronic circuits are completely safe from electrostatic discharge when housed in the case. Do not expose them to risk of damage by withdrawing modules unnecessarily.

Each module incorporates the highest practicable protection for its semiconductor devices. However, if it becomes necessary to withdraw a module, precautions should be taken to preserve the high reliability and long life for which the equipment has been designed and manufactured.

## ACAUTION

- Before removing a module, ensure that you are at the same electrostatic potential as the equipment by touching the case.
- Handle the module by its front plate, frame or edges of the printed circuit board. Avoid touching the electronic components, printed circuit board or connectors.
- Do not pass the module to another person without first ensuring you are both at the same electrostatic potential. Shaking hands achieves equipotential.
- Place the module on an anti-static surface, or on a conducting surface which is at the same potential as yourself.
- Do not place modules in polystyrene trays.

It is strongly recommended that detailed investigations on electronic circuitry should be carried out in a Special Handling Area such as described in the IEC 60747.

### 5.5 External Connections

External connections are shown in Appendix G.
Note: In wire connections of terminal block for type A case, the following connections are recommended because a communication port is located between terminal blocks.


Figure 5.5.1 Example of Wire Connection

## 6. Commissioning and Maintenance

### 6.1 Outline of Commissioning Tests

The GRT100 is fully numerical and the hardware is continuously monitored.
Commissioning tests can be kept to a minimum and need only include hardware tests and conjunctive tests. The function tests are at the user's discretion.

In these tests, user interfaces on the front panel of the relay or local PC can be fully applied.
Test personnel must be familiar with general relay testing practices and safety precautions to avoid personal injuries or equipment damage.

## Hardware tests

These tests are performed for the following hardware to ensure that there is no hardware defect. Defects of hardware circuits other than the following can be detected by monitoring which circuits function when the DC power is supplied.

User interfaces
Binary input circuits and output circuits
AC input circuits

## Function tests

These tests are performed for the following functions that are fully software-based. Tests of the protection schemes and fault locator require a dynamic test set.

Measuring elements
Timers
Metering and recording

## Conjunctive tests

The tests are performed after the relay is connected with the primary equipment and other external equipment.

The following tests are included in these tests:
On load test: phase sequence check and polarity check
Tripping circuit test

### 6.2 Cautions

### 6.2.1 Safety Precautions

## ACAUTION

- The relay rack is provided with a grounding terminal.

Before starting the work, always make sure the relay rack is grounded.

- When connecting the cable to the back of the relay, firmly fix it to the terminal block and attach the cover provided on top of it.
- Before checking the interior of the relay, be sure to turn off the power.

Failure to observe any of the precautions above may cause electric shock or malfunction.

### 6.2.2 Cautions on Tests

## ACAUTION

- While the power is on, do not connect/disconnect the flat cable on the front of the printed circuit board (PCB).
- While the power is on, do not mount/dismount the PCB.
- Before turning on the power, check the following:
- Make sure the polarity and voltage of the power supply are correct.
- Make sure the CT circuit is not open.
- Make sure the VT circuit is not short-circuited.
- Be careful that the transformer module is not damaged due to an overcurrent or overvoltage.
- If settings are changed for testing, remember to reset them to the original settings.

Failure to observe any of the precautions above may cause damage or malfunction of the relay.
Before mounting/dismounting the PCB, take antistatic measures such as wearing an earthed wristband.

### 6.3 Preparations

## Test equipment

The following test equipment is required for the commissioning tests.
1 Single-phase voltage source
2 Single-phase current sources
1 Variable-frequency source
1 Combined fundamental and 2nd-harmonic adjustable current supply
1 Combined fundamental and 5th-harmonic adjustable current supply
1 DC power supply
1 DC voltmeter
1 AC voltmeter
1 Phase angle meter
2 AC ammeters
1 Frequency meter
1 Time counter, precision timer
1 PC (not essential)

## Relay settings

Before starting the tests, it must be specified whether the tests will use the user's settings or the default settings.

For the default settings, see the following appendixes:
Appendix D Binary Output Default Setting List
Appendix H Relay Setting Sheet

## Visual inspection

After unpacking the product, check for any damage to the relay case. If there is any damage, the internal module might also have been affected. Contact the vendor.

## Relay ratings

Check that the items described on the nameplate on the front of the relay conform to the user's specification. The items are: relay type and model, AC voltage, current and frequency ratings, and auxiliary DC supply voltage rating.

## Local PC

When using a local PC, connect it with the relay via the RS-232C port on the front of the relay. RSM100 software is required to run the PC.
For the details, see the separate instruction manual "PC INTERFACE RSM100".

### 6.4 Hardware Tests

The tests can be performed without external wiring, but DC power supply and AC voltage and current source are required.

### 6.4.1 User Interfaces

This test ensures that the LCD, LEDs and keys function correctly.

## LCD display

- Apply the rated DC voltage and check that the LCD is off.

Note: If there is a failure, the LCD displays the "Auto-supervision" screen when the DC voltage is applied.

- Press the RESET key for 1 second and check that black dots appear on the whole screen.


## LED display

- Apply the rated DC voltage and check that the "IN SERVICE" LED is lit in green.
- Press the RESET key for 1 second and check that seven LEDs under the "IN SERVICE" LED and two LEDs for monitoring jacks A and B are lit in red.


## VIEW and RESET keys

- Press the VIEW key when the LCD is off and check that the "Metering" screen is displayed on the LCD.
- Press the RESET key and check that the LCD turns off.


## Keypad

- Press any key on the keypad when the LCD is off and check that the LCD displays the "MENU" screen. Press the END key to turn off the LCD.
- Repeat this for all keys.


### 6.4.2 Binary Input Circuit

The testing circuit is shown in Figure 6.4.1.


Figure 6.4.1 Testing Binary Input Circuit

- Display the "Binary input \& output" screen from the "Status" sub-menu.

| $/ 2$ Binary input \& | output |  |  |  | $3 /$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input (10\#1) | 「000 | 000 | 000 | 000 |  |  |
| Input (10\#2) | [000 |  |  |  |  |  |
| Output (10\#1-trip) | 「000 |  |  |  |  |  |
| Output (10\#2) | [000 | 000 | 000 | 000 | 00 |  |
| Output (10\#3) | [ 000 | 000 | 000 | 0 |  |  |

- Apply the rated DC voltage to terminal A4, B4, ..., A6 of terminal block TB4, and A14, B14 and A15 of terminal block TB3.
Check that the status display corresponding to the input signal changes from 0 to 1. (For details of the binary input status display, see Section 4.2.4.2.)

The user will be able to perform this test for one terminal to another or for all the terminals at once.

### 6.4.3 Binary Output Circuit

This test can be performed by using the "Test" sub-menu and forcibly operating the relay drivers and output relays. Operation of the output contacts is monitored at the output terminal. The output contact and corresponding terminal number are shown in Appendix G.

- Press 2 (= Binary output) on the "Test" screen to display the "Binary output" screen. The LCD displays the output modules mounted, depending on the model.

```
/2 Binary output
1 = | 0# 2 2 = | 0# 3
```

- Enter the selected number corresponding to each module to be operated. Then the LCD displays the name of the module, the name of the output relay, the name of the terminal block and the terminal number to which the relay contact is connected.

| / 3 B 0 |  | $(0=D i s a b\|e \quad 1=E n a b\| e)$ | $1 / 14$ |
| :---: | :---: | :---: | :---: |
| $10 \# 2$ | B 01 |  | 1 |
| 10 \# 2 | B 02 |  | 1 |
| 10\#2 | B 03 |  | 1 |
| $10 \# 2$ | B 04 |  | 0 |
| $10 \# 2$ | B 05 |  | 0 |
| $10 \# 2$ | B 06 |  | 0 |
| $10 \# 2$ | B 07 |  | 0 |
| $10 \# 2$ | B 08 |  | 0 |
| $10 \# 2$ | B 09 |  | 0 |
| $10 \# 2$ | B 010 |  | 0 |
| 10 \# 2 | B 011 |  | 0 |
| $10 \# 2$ | B 012 |  | 0 |
| $10 \# 2$ | FAIL |  | 0 |
| 10\#2 | B 013 |  | 0 |

- Enter 1 and press the ENTER key.
- After completing the entries, press the END key. Then the LCD displays the screen shown below. If 1 is entered for all the output relays, the following forcible operation can be performed collectively.
K B 0
Keep pressing 1 to operate.
Press CANCEL to cancel.
- Keep pressing the 1 key to operate the output relays forcibly.
- Check that the output contacts operate at the terminal.
- Release pressing the 1 key to reset the operation.


### 6.4.4 AC Input Circuits

This test can be performed by applying the checking voltages and currents to the AC input circuits and verifying that the values applied coincide with the values displayed on the LCD screen.
The testing circuit for Model 100 series is shown in Figure 6.4.2. A single-phase voltage source and two single-phase current sources are required. (Test Model 200 series by same testing method of Model 100 series.)


Figure 6.4.2 Testing AC Input Circuit (Model 100s)

- Check that the metering data is set to be expressed as secondary values (Display value $=2$ ) on the "Metering" screen.
"Setting (view)" sub-menu $\rightarrow$ "Status" setting screen $\rightarrow$ "Metering" screen
If the setting is Primary (Display value $=1$ ), change the setting in the "Setting (change)" sub-menu. Remember to reset it to the initial setting after the test is finished.
- Open the "Metering" screen in the "Status" sub-menu.
"Status" sub-menu $\rightarrow$ "Metering" screen
- Apply the rated AC voltages and currents and check that the displayed values are within $\pm 5 \%$ of the input values.


### 6.5 Function Test

### 6.5.1 Measuring Element

Measuring element characteristics are realized by the software, so it is possible to verify the overall characteristics by checking representative points.

Operation of the element under test is observed by the binary output signal at monitoring jacks A or B or by the LED indications above the jacks. In any case, the signal number corresponding to each element output must be set on the "Logic circuit" screen of the "Test" sub-menu.

| /2 Logic circuit |  | $1 / 2$ |  |
| :--- | :--- | :--- | :--- | :--- |
| TermA | $0-3071):$ | 1 |  |
| Termb | $0-3071):$ | 48 |  |

When a signal number is entered for the TermA line, the signal is observed at monitoring jack A and when entered for the TermB line, observed at monitoring jack B.

Note: $\quad$ The voltage level at the monitoring jacks is $+15 \mathrm{~V} \pm 3 \mathrm{~V}$ for logic level " 1 " and less than 0.1 V for logic level " 0 ".

## CAUTION

- Use the testing equipment with more than $1 \mathrm{k} \Omega$ of internal impedance when observing the output signal at the monitoring jacks.
- Do not apply an external voltage to the monitoring jacks.

In case of a three-phase element, it is enough to test for a representative phase. A-phase element is selected hereafter.

### 6.5.1.1 Current differential element DIF

The current differential element is checked on the following items

- Operating current value
- Percentage restraining characteristic
- Operating time

Note: Set all the CT ratio matching settings (kct1 to kct3) to " 1 " and phase angle matching settings (d1 to d3) to " 0 " in the testing described in 6.5.1.1 to 6.5.1.4, because the operating value depends on the settings.

## Operating current value

Minimum operating current value is checked by simulating a one-end infeed. Figure 6.5 .1 shows a testing circuit simulating an infeed from a primary winding.


Figure 6.5.1 Operating Current Value Test Circuit (Model 100s, 200s)
The output signal numbers of the DIF elements are as follows:

| Element | Signal number |
| :--- | :---: |
| DIF-A | 44 |
| DIF-B | 45 |
| DIF-C | 46 |

- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number 44 to observe the DIF-A operation at monitoring jack A and press the ENTER key.
- Apply a test current to A-phase current terminals and change the magnitude of the current applied and measure the value at which the element DIF-A operates.
Check that the measured value is within $7 \%$ of the theoretical operating value.
Theoretical operating value $=(\mathrm{CT}$ secondary rated current $) \times(\mathrm{ik}$ setting $)$


## Percentage restraining characteristics

The percentage restraining characteristic is tested on the outflow current ( $\mathrm{I}_{\text {out }}$ ) and infeed current ( $\mathrm{I}_{\text {in }}$ ) plane as shown in Figure 6.5.2. The characteristic shown in Figure 6.5.2 is equivalent to the one on the differential current (Id) and restraining current (Ir) plane shown in Figure 2.11.1.


Figure 6.5.2 Current Differential Element (lout - lin Plane)

Figure 6.5.3 shows a testing circuit simulating an infeed from a primary winding and outflow from a secondary winding.


Figure 6.5.3 Percentage Restraining Characteristic Test of DIF (Model 100s, 200s)

- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number 44 to observe the DIF-A output at monitoring jack A and press the ENTER key.
- Apply an infeed current to terminal TB1-1 and -2.

When the infeed current applied is larger than the setting of ik (pu) and smaller than $\mathrm{kp}\left(2+\mathrm{p}_{1}\right) / 2+\mathrm{ik}\left(2-\mathrm{p}_{1}\right) / 4(\mathrm{pu})$, characteristic DF1 is checked.
When the infeed current applied is larger than $\mathrm{kp}\left(2+\mathrm{p}_{1}\right) / 2+\mathrm{ik}\left(2-\mathrm{p}_{1}\right) / 4(\mathrm{pu})$, characteristic DF2 is checked.

Note: When the default settings are applied, the critical infeed current which determines DF1 checking or DF2 checking is $1.56 \times$ (CT secondary rated current).

- Apply an outflow current of the same magnitude and counterphase with the infeed current to terminal TB1-9 and 10.
- Decrease the out flow current in magnitude and measure the values at which the element operates.
- Check that the measured values are within $7 \%$ of the theoretical values.

For characteristic DF1, the theoretical outflow current is given by the following equation:

$$
\mathrm{I}_{\text {out }}=\left(2-\mathrm{p}_{1}\right)\left(\mathrm{I}_{\mathrm{in}}-\mathrm{ik}\right) /\left(2+\mathrm{p}_{1}\right)(\mathrm{pu})
$$

where, $\mathrm{p}_{1}=$ slope setting of DF1
$\mathrm{ik}=$ minimum operating current setting
When the default settings are applied, $\mathrm{I}_{\text {out }}=\left[\left(\mathrm{I}_{\mathrm{in}}-0.3\right) / 3\right] \times$ (CT secondary rated current).
For characteristic DF2, the theoretical outflow current is given by the following equation.
$\mathrm{I}_{\text {out }}=\left[\left(2-\mathrm{p}_{2}\right) \mathrm{I}_{\text {in }}-\left(2-\mathrm{p}_{1}\right) \mathrm{ik}+2\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right) \mathrm{kp}\right] /\left(2+\mathrm{p}_{2}\right)(\mathrm{pu})$
where, $\mathrm{p}_{2}=$ slope setting of DF2
kp = break point of DF1 and DF2

When the default settings are applied, $\mathrm{I}_{\mathrm{out}}=0.43 \times$ (CT secondary rated current).

## Operating time

The testing circuit is shown in Figure 6.5.4.


Figure 6.5.4 Operating Time Test (Model 100s, 200s)

- Set a test current to 3 times of DIF operating current (= CT secondary rated current $\times \mathrm{ik}$ setting).
- Apply the test current and measure the operating time.
- Check that the operating time is 40 ms or less.


### 6.5.1.2 2F element

The testing circuit is shown in Figure 6.5.5.


Figure 6.5.5 Testing 2F Element (Model 100s, 200s)
The output signal number of the 2 F element is as follows:

| Element | Signal number |
| :--- | :---: |
| $2 F$ | 122 |

- Set the second harmonic restraint setting k2f to $15 \%$ (= default setting).
- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number to observe the 2 F output at monitoring jack A and press the ENTER key.
- Set the fundamental frequency current $\mathrm{I}_{1}$ to 3 times of ik setting. Change the magnitude of the second harmonic current $\mathrm{I}_{2}$ and measure the value at which the element operates.
- Calculate the percentage of the second harmonic by $\mathrm{I}_{2} / \mathrm{I}_{1}$ when the element operates. Check that the percentage is within $7 \%$ of the k 2 f setting.


### 6.5.1.3 5F element

The testing circuit is shown in Figure 6.5.6.


Figure 6.5.6 Testing 5F Element (Model 100s, 200s)
The output signal number of the 5 F element is as follows:

| Element | Signal number |
| :--- | :---: |
| 5 F | 123 |

- Set the fifth harmonic restraint setting k5f to $30 \%$.(= default setting)
- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number to observe the 5 F output at monitoring jack A and press the ENTER key.
- Set the fundamental frequency current $\mathrm{I}_{1}$ to 3 times of ik setting. Change the magnitude of the fifth harmonic current $\mathrm{I}_{5}$ and measure the value at which the element operates.
- Calculate the percentage of the fifth harmonic by $\mathrm{I}_{5} / \mathrm{I}_{1}$ when the element operates. Check that the percentage is within $7 \%$ of the k 5 f setting.


### 6.5.1.4 High-set overcurrent element HOC

## Operating current value

The testing circuit is shown in Figure 6.5.1.
The output signal numbers of the HOC elements are as follows:

| Element | Signal number |
| :--- | :---: |
| HOC-A | 41 |
| HOC-B | 42 |
| HOC-C | 43 |

- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number 41 to observe the HOC-A output at monitoring jack A and press the ENTER key.
- Apply a test current to A-phase current terminals and change the magnitude of the current applied and measure the value at which the element operates.
Check that the measured value is within $7 \%$ of the following value.
Operating value $=(\mathrm{CT}$ secondary rated current $) \times(\mathrm{kh}$ setting $)$


## Operating time

The testing circuit is shown in Figure 6.5.4.

- Set a test current to 2 times of HOC operating current (= CT secondary rated current $\times \mathrm{kh}$ setting)
- Apply the test current and measure the operating time.
- Check that the operating time is 25 ms or less.


### 6.5.1.5 Restricted earth fault element REF

The restricted earth fault element is checked on the following items.

- Operating current value
- Percentage restraining characteristic

Note: Set all the CT ratio matching settings (1kct1-1kct3 to 3kct1 - 3kct3) to "1", because the operating value depends on the settings.

## Operation current value

The testing circuit is shown in Figure 6.5.7.


Figure 6.5.7 Operating Current Value Test of REF_DIF element (Model 100s, 200s)

The test current input terminal number and output signal number of the REF_DIF element is as follows:

| Element | Input terminal <br> number | Output signal <br> number |
| :--- | :--- | :---: |
| 1REF_DIF | TB1-7 and -8 | 29 |
| 2REF_DIF | TB1-15 and -16 | 30 |
| 3REF_DIF | TB1-23 and -24 | 31 |

- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter the signal number 29 to observe the 1REF_DIF output at monitoring jack A and press the ENTER key.
- Apply a test current to TB1-7 and -8 and change the magnitude of the current applied and measure the value at which the element operates.

Check that the measured value is within $15 \%$ of the theoretical operating value.
Theoretical operating value $=(\mathrm{CT}$ secondary rated current $) \times(1 \mathrm{ik}$ setting $)$

## Percentage restraining characteristics

The percentage restraining characteristic is tested on the outflow current ( $l_{\text {out }}$ ) and infeed current $\left(l_{\text {in }}\right)$ plane as shown in Figure 6.5.8. The characteristic shown in Figure 6.5.8 is equivalent to the one on the differential current (ld) and restraining current (lr) plane shown in Figure 2.11.2.


Figure 6.5.8 REF_DIF Element (Iout - In $_{\text {in }}$ Plane)

Figure 6.5 .9 shows a testing circuit simulating infeed from a neutral circuit and outflow from a primary winding.


Figure 6.5.9 Testing Restricted Earth Fault Element (Model 100s, 200s)

- Enter a signal number 29 to observe the 1REF_DIF output at monitoring jack A and press the ENTER key.
- Apply an infeed current to terminal TB1-1 and -2.

When the infeed current applied is larger than the setting of $\mathrm{ik}(\mathrm{pu})$ and smaller than [kp•p2 + (1-p1)ik]/(p2 - p1) (pu), characteristic DF1 is checked.

When the infeed current applied is larger than $[k p \cdot p 2+(1-p 1) i k] /(p 2-p 1)(p u)$, characteristic DF2 is checked.

Note: When the default settings are applied, the critical infeed current which determines DF1 checking or DF2 checking is $1.6 \times(\mathrm{CT}$ secondary rated current).

- Apply an outflow current of the same magnitude and counterphase with the infeed current, to terminal TB1-7 and -8.
- Decrease the outflow current in magnitude and measure the values at which the element operates.
- Check that the measured values are within $15 \%$ of the theoretical values.

For characteristic DF1, the theoretical outflow current is given by the following equation.

$$
\mathrm{I}_{\mathrm{out}}=\left(1-\mathrm{p}_{1}\right)\left(\mathrm{I}_{\mathrm{in}}-\mathrm{ik}\right)(\mathrm{pu})
$$

where,

$$
\begin{aligned}
& \text { p1 }=\text { slope setting of DF1 (= } 0.1 \text { fixed }) \\
& \text { ik }=\text { minimum operating current setting }
\end{aligned}
$$

When the default settings are applied, $\mathrm{I}_{\text {out }}=0.9 \times\left(\mathrm{I}_{\mathrm{in}}-0.5\right) \times(\mathrm{CT}$ secondary rated current $)$. For characteristic DF2, the theoretical outflow current is given by the following equation

$$
\mathrm{I}_{\mathrm{out}}=\left(1-\mathrm{p}_{2}\right) \mathrm{I}_{\mathrm{in}}+\mathrm{p}_{2} \times \mathrm{kp}(\mathrm{pu})
$$

where,

$$
\mathrm{p}_{2}=\text { slope setting of DF2 }
$$

$\mathrm{kp}=$ restraining current section setting of DF2
When the default settings are applied, $\mathrm{I}_{\text {out }}=1.0 \times(\mathrm{CT}$ secondary rated current $)$.

### 6.5.1.6 Definite time overcurrent elements OC, EF

The testing circuit is shown in Figure 6.5.10.


Figure 6.5.10 Testing OC and EF (Model 100s, 200s)

| Element | Signal number |
| :--- | :--- |
| $10 C, 20 C, 30 C$ | $47,53,59$ |
| $1 E F, 2 E F, 3 E F$ | $72,75,78$ |

The testing procedure is as follows:

- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number to observe the OC or EF output at monitoring jack A and press the ENTER key.
- Apply a test current and change the magnitude of the current applied and measure the value at which the element operates.
Check that the measured value is within $\pm 5 \%$ of the theoretical operating value.
Theoretical operating value $=(\mathrm{CT}$ secondary rated current $) \times(\mathrm{OC}$ or EF setting $)$


### 6.5.1.7 Inverse time overcurrent elements OCI, EFI

The testing circuit is shown in Figure 6.5.11.


Figure 6.5.11 Testing OCI and EFI (Model 100s, 200s)
One of the four inverse time characteristics can be set, and the output signal numbers are as follows:

| Element | Signal number |
| :--- | :--- |
| $10 \mathrm{Cl}, 20 \mathrm{Cl}, 30 \mathrm{Cl}$ | $50,56,62$ |
| $1 \mathrm{EFI}, 2 \mathrm{EFI}, 3 \mathrm{EFI}$ | $73,76,79$ |

Fix the time characteristic to test by setting the OCI or EFI on the "OC" screen.
"Setting (change)" sub-menu $\rightarrow$ "Protection" screen $\rightarrow$ "Trip" screen $\rightarrow$ "Protection element" screen $\rightarrow$ "OC" screen

The testing procedure is as follows:

- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number to observe the OCI or EFI output at monitoring jack A and press the ENTER key.
- Apply a test current and measure the operating time. The magnitude of the test current should be between $1.2 \times \mathrm{I}_{\mathrm{S}}$ to $20 \times \mathrm{I}_{\mathrm{S}}$, where $\mathrm{I}_{\mathrm{S}}=(\mathrm{CT}$ secondary rated current) $\times$ (OCI or EFI current setting).
- Calculate the theoretical operating time using the characteristic equations shown in Section 2.11.4. Check that the measured operating time is within the error mentioned below.

Accuracy: Standard, Very and Long-time inverse: IEC 60255-3 class 5
Extremely inverse: IEC 60255-3 class 7.5

### 6.5.1.8 Thermal overload element THR

The testing circuit is shown in Figure 6.5.12.


Figure 6.5.12 Testing THR (Model 100s, 200s)

The output signal of testing element is assigned to the monitoring jack A.
The output signal numbers of the elements are as follows:

| Element | Signal No. |
| :--- | :---: |
| THR-S | 83 |
| THR-A | 87 |

To test easily the thermal overload element, the scheme switch [THMRST] in the "Switch" screen on the "Test" menu is used.

- Set the scheme switch [THMRST] to "ON".
- Enter the signal number to observe the operation at the monitoring jack A as shown in Section 6.5.1.
- Apply a test current and measure the operating time. The magnitude of the test current should be between $1.2 \times \mathrm{I}_{\mathrm{S}}$ to $10 \times \mathrm{I}_{\mathrm{S}}$, where $\mathrm{I}_{\mathrm{S}}$ is the current setting.


## CAUTION

After the setting of a test current, apply the test current after checking that the THM\% has become 0 on the "Metering" screen.

- Calculate the theoretical operating time using the characteristic equations shown in Section 2.10.6. Check that the measured operating time is within $5 \%$.


### 6.5.1.9 Frequency element FRQ

The frequency element is checked on the following items

- Operating frequency
- Undervoltage block


## Operating frequency test

The testing circuit is shown in Figure 6.5.13.


Figure 6.5.13 Testing Frequency Element (Model 100s, 200s)

The output signal numbers of the FRQ elements are as follows:

| Element | Signal number | Remarks |
| :--- | :--- | :--- |
| $81-1$ | 89 | Underfrequency tripping |
|  | 91 | Overfrequency tripping |
| $81-2$ | 90 | Underfrequency alarm |
|  | 92 | Overfrequency alarm |

- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number to observe the FRQ output at monitoring jack A and press the ENTER key.
- Apply rated voltage and change the magnitude of the frequency applied and measure the value at which the element operates. Check that the measured value is within $\pm 0.03 \mathrm{~Hz}$ of the setting.


## Undervoltage block test

- Apply rated voltage and change the magnitude of frequency to operate the element.
- Keep the frequency that the element is operating, and change the magnitude of the voltage applied from the rated voltage to less than UV setting voltage. And then, check that the element resets.


### 6.5.1.10 Overexcitation element VIF

The overexcitation element is checked on the following items

- Operating value of definite time tripping and alarm characteristic
- Operating time of inverse time tripping characteristic

The output signal numbers of the V/F elements are as follows:

| Element | Signal number | Remarks |
| :--- | :---: | :--- |
| V/F | 80 | Definite time tripping |
|  | 81 | Inverse time tripping |
|  | 82 | Definite time alarm |

## Operating value test for definite time tripping and alarm

The testing circuit is shown in Figure 6.5.14.


Figure 6.5.14 Operating Value Test of VIF (Model 100s, 200s)

- Set V (rated voltage setting) to 100 V .
- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number 80 or 82 to observe the V/F output at monitoring jack A and press the ENTER key.
- Apply a test voltage at rated frequency and increase the magnitude of the voltage applied and measure the value at which an alarm signal or a trip signal is output. Check that the measured values are within $2 \%$ of (V setting) $\times$ (A setting) for an alarm signal and (V setting) $\times$ (H setting) for a trip signal.


## Operating time characteristic test

The testing circuit is shown in Figure 6.5.15.


Figure 6.5.15 Operating Time Characteristic Test of VIF (Model 100s, 200s)

The testing procedure is as follows:

- Press 4 (= Logic circuit) on the "Test" sub-menu screen to display the "Logic circuit" screen.
- Enter a signal number 81 to observe the inverse time tripping output at monitoring jack A and press the ENTER key.

Note: Set the swich [Reset] to "Off" $\rightarrow$ "On" $\rightarrow$ "Off" to initialize a time count. See Section 4.2.7.1.

- Apply a test voltage at rated frequency and measure the operating time. The magnitude of the test voltage should be between ( V setting) $\times(\mathrm{L}$ setting) and $(\mathrm{V}$ setting) $\times(\mathrm{H}$ setting $)$.
- Calculate the theoretical operating time using the characteristic equations shown in Section 2.11.8 where V is the test voltage. Check that the measured operating time is from $+15 \%$ to $-10 \%$ of the calculated value.


### 6.5.2 Timer Test

The pick-up delay time of the variable timer can be measured by connecting the monitoring jacks A and B to a time counter as shown in Figure 6.5.15. Jacks A and B are used to observe the input signal and output signal of the timer, respectively.


Figure 6.5.16 Testing Variable Timer (Model 100s, 200s)

- Press 3 (= Timer) on the "Test" sub-menu screen to display the "Timer" screen.
- Enter the number corresponding to the timer to be observed. The timers and assigned numbers are listed in Appendix C.
- Press the END key to display the following screen.
/2 Timer
Press ENTER to operate.
Press CANCEL to cancel.
- Press the ENTER key to start measuring the time. The "TESTING" LED turns on, and timer is initiated and the following display appears. The input and output signals of the timer can be observed at monitoring jacks A and B respectively.

Check that the measured time is within $\pm 10 \mathrm{~ms}$ of the setting time.
During the test, the following display appears on the LCD and the LEDs above the jacks are also lit if the input or output signal exists.
/2 Timer
0 perating......
Press END to reset.
Press CANCEL to cancel.

- Press the END key to reset the input signal to the timer. The "TESTING" LED turns off.
- Press the CANCEL key to test other timers. Repeat the above testing.


### 6.5.3 Protection Scheme

In the protection scheme tests, a dynamic test set is required to simulate power system pre-fault, fault and post-fault conditions.
Tripping is observed with the tripping command output relays TRIP-1 to -5.
Check that the indications and recordings are correct.

### 6.5.4 Metering and Recording

The metering function can be checked while testing the AC input circuit. See Section 6.4.4.
Fault recording can be checked while testing the protection schemes. Open the "Fault records" screen and check that the descriptions are correct for the applied fault.

Recording events are listed in Table 3.4.1. The top 8 events are external events and others are internal events. Event recording on the external events can be checked by changing the status of binary input signals. Change the status in the same way as the binary input circuit test (see Section 6.4.2) and check that the description displayed on the "Event Records" screen is correct.

Note: Whether to record or not can be set for each event. Change the status of the binary input signal after confirming that the related event is set to record. (The default setting enables all the events to be recorded.)

Some of the internal events can be checked in the protection scheme tests.
Disturbance recording can be checked while testing the protection schemes. The LCD display only shows the date and time when a disturbance is recorded. Open the "Disturbance records" screen and check that the descriptions are correct.
Details can be displayed on the PC. Check that the descriptions on the PC are correct. For details on how to obtain disturbance records on the PC, see the RSM100 Manual.

### 6.6 Conjunctive Tests

### 6.6.1 On Load Test

With the relay connected to the line which is carrying a load current, it is possible to check the polarity of the voltage transformer and current transformer and the phase rotation with the metering displays on the LCD screen.

- Open the following "Metering" screen from the "Status" sub-menu.


Note: The magnitude of voltage and current can be set in values on the primary side or on the secondary side by the setting. (The default setting is the primary side.) Phase angles are expressed taking that of the voltage input as the reference angle.

- Check that the phase rotation is correct.
- Verify the phase relation between voltage and current with a known load current direction.


### 6.6.2 Tripping Circuit Test

The tripping circuit including the circuit breaker is checked by forcibly operating the output relay and monitoring the breaker that is tripped. Forcible operation of the output relay is performed on the "Binary output" screen of the "Test" sub-menu as described in Section 6.4.3.

## Tripping circuit

- Set the breaker to be closed.
- Press 2 (= Binary output) on the "Test" sub-menu screen to display the "Binary output" screen. The LCD displays the output modules mounted.
- Enter 1 to select the IO1 module, then the LCD displays the screen shown below.

| / 3 B 0 |  | ( $0=\mathrm{D}$ isab\|e $1=E n a b \mid e)$ | $1 / 5$ |
| :---: | :---: | :---: | :---: |
| I 0 \# 1 | T P-1 |  | 1 - |
| 1 0 \# 1 | T P-2 |  | 1 |
| 1 0 \# 1 | T P-3 |  | 1 |
| 10\#1 | T P-4 |  | 0 |
| 1 0 \# 1 | T P-5 |  | 0 |

TP-1 to 5 are output relays with one normally open contact. Models 203 and 204 are not provided with TP-4 and TP-5.

- Enter 1 for TP-1 and press the ENTER key.
- Press the END key. Then the LCD displays the screen shown below.
/ 3 B 0
Keep pressing 1 to operate.
Press CANCEL to cancel.
- Keep pressing the 1 key to operate the output relay TP-1 and check that the No. 1 breaker is tripped.
- Release pressing the 1 key to reset the operation.
- Repeat the above for other output relays TP-2 to TP-5.


### 6.7 Maintenance

### 6.7.1 Regular Testing

The relay is almost completely self-supervised. The circuits which cannot be supervised are binary input and output circuits and human interfaces.

Therefore regular testing can be minimized to checking the unsupervised circuits. The test procedures are the same as described in Sections 6.4.1, 6.4.2 and 6.4.3.

### 6.7.2 Failure Tracing and Repair

Failures will be detected by automatic supervision or regular testing.
When a failure is detected by supervision, a remote alarm is issued with the binary output signal of FAIL and the failure is indicated on the front panel with LED indicators or LCD display. It is also recorded in the event record.

Failures detected by supervision are traced by checking the "Auto-supervision "screen on the LCD.

If any messages are shown on the LCD, the failed module or failed external circuits can be located by referring to Table 6.7.1.

This table shows the relationship between messages displayed on the LCD and the estimated failure location. Locations marked with (1) have a higher probability than locations marked with (2).

As shown in the table, some of the messages cannot identify the fault location definitely but suggest plural possible failure locations. In these cases, the failure location is identified by replacing the suggested failed modules with spare modules one by one until the "Alarm" LED is turned off.

The replacement or investigation should be performed first for the module or circuit with higher probability in the table.

If there is a failure and the LCD is not working such as a screen is frozen or not displayed, the failure location is either SPM or HMI module.

Table 6.7.1 LCD Message and Failure Location

| Message | Failure location |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VCT | SPM | 101 or 108 | 102 | 103 | HMI | AC cable | LAN <br> cablel network | $\begin{aligned} & \text { PLC, } \\ & \text { IEC61850 } \\ & \text { data } \end{aligned}$ |
| Checksum err |  | $\times$ |  |  |  |  |  |  |  |
| ROM data err |  | $\times$ |  |  |  |  |  |  |  |
| ROM-RAM err |  | $\times$ |  |  |  |  |  |  |  |
| SRAM err |  | $\times$ |  |  |  |  |  |  |  |
| CPU err |  | $\times$ |  |  |  |  |  |  |  |
| Invalid err |  | $\times$ |  |  |  |  |  |  |  |
| NMI err |  | $\times$ |  |  |  |  |  |  |  |
| BU-RAM err |  | $\times$ |  |  |  |  |  |  |  |
| EEPROM err |  | $\times$ |  |  |  |  |  |  |  |
| A/D err |  | $\times$ |  |  |  |  |  |  |  |
| Sampling err |  | $\times$ |  |  |  |  |  |  |  |
| CT1 err | $\times(2)$ | $\times(2)$ |  |  |  |  | $\times(1)$ |  |  |
| CT2 err | $\times(2)$ | $\times(2)$ |  |  |  |  | $\times(1)$ |  |  |
| CT3 err | $\times(2)$ | $\times(2)$ |  |  |  |  | $\times(1)$ |  |  |
| DIO err |  | $\times(2)$ | $\times(1)$ | $\times(1)$ | $\times(1)$ |  |  |  |  |
| RSM err |  | $\times(1)$ | $\times(2)$ |  |  |  |  |  |  |
| LCD err |  |  |  |  |  | $\times$ |  |  |  |
| DC supply off |  |  | $\times$ |  |  |  |  |  |  |
| RTC err |  | $\times$ |  |  |  |  |  |  |  |
| PCI err |  | $\times$ |  |  |  |  |  |  |  |
| LAN err |  | $\times$ |  |  |  |  |  |  |  |
| GOOSE stop |  | $\times(2)$ |  |  |  |  |  | $\times(1)$ |  |
| Ping err |  | $\times(2)$ |  |  |  |  |  | $\times(1)$ |  |
| PLC stop |  |  |  |  |  |  |  |  | $\times$ |
| MAP stop |  |  |  |  |  |  |  |  | $\times$ |
| No-working of LCD |  | $\times(2)$ |  |  |  | $\times(1)$ |  |  |  |

The location marked with (1) has a higher probability than the location marked with (2).

If no message is shown on the LCD, this means that the failure location is either in the DC power supply circuit or in the microprocessors mounted on the SPM module. Then check the "ALARM" LED. If it is off, the failure is in the DC power supply circuit. If it is lit, open the relay front panel and check the LEDs mounted on the SPM module. If the LED is off, the failure is in the DC power supply circuit. If the LED is lit, the failure is in the microprocessors.
In the former case, check if the correct DC voltage is applied to the relay.
If so, replace the IO1 or IO8 module mounting the DC/DC converter and confirm that the "ALARM" LED is turned off.

In the latter case, replace the SPM module containing the processors and confirm that the "ALARM" LED is turned off.

When a failure is detected during regular testing, it will not be difficult to identify the failed module to be replaced.

Note: When a failure or an abnormality is detected during the regular test, confirm the following first:

- Test circuit connections are correct.
- Modules are securely inserted in position.
- Correct DC power voltage with correct polarity is applied and connected to the correct terminals.
- Correct AC inputs are applied and connected to the correct terminals.
- Test procedures comply with those stated in the manual.


### 6.7.3 Replacing Failed Modules

If the failure is identified to be in the relay module and the user has spare modules, the user can recover the protection by replacing the failed modules.
Repair at the site should be limited to module replacement. Maintenance at the component level is not recommended.
Check that the replacement module has an identical module name (VCT, SPM, IO1, IO2, etc.) and hardware type-form as the removed module. Furthermore, the SPM module should have the same software name.

The module name is indicated on the bottom front of the relay case. The hardware type-form is indicated on the module in the following format:

| Module name | Hardware type-form |
| :--- | :--- |
| VCT | G1PC2- $-\square \square \square$ |
| SPM | G1SP*- $-\square \square \square$ |
| IO1 | G1IO1- $\square \square \square \square$ |
| IO2 | G1IO2- $-\square \square \square$ |
| IO3 | G1IO3- $-\square \square \square$ |
| IO8 | G1IO8- $-\square \square \square$ |
| HMI | -- |

The software name is indicated on the memory device on the module with letters such as GSPTM1-***, etc.

A CAUTION When handling a module, take anti-static measures such as wearing an earthed wrist band and placing modules on an earthed conductive mat. Otherwise, many of the electronic components could suffer damage.
CAUTION After replacing the SPM module, check all of the settings including the data related to the PLC, IEC103 and IEC61850, etc. are restored the original settings.

The initial replacement procedure is as follows:

- Switch off the DC power supply.

A WARNING Hazardous voltage may remain in the DC circuit just after switching off the DC power supply. It takes approximately 30 seconds for the voltage to discharge.

- Disconnect the trip outputs.
- Short circuit all AC current inputs and disconnect all AC voltage inputs.
- Unscrew the relay front cover.


## Replacing the Human Machine Interface (HMI) Module (Front Panel)

- Open the front panel of the relay by unscrewing the binding screw located on the left side of the front panel.
- Unplug the ribbon cable on the front panel by pushing the catch outside.
- Remove the two retaining screws and one earthing screw on the relay case side, then detach the front panel from the relay case.
- Attach the replacement module in the reverse procedure.


## Replacing the Transformer (VCT) Module

CAUTION Before pulling out the transformer module, pull out all other modules. For the method of pulling out other module, see the section "Replacing other module".

- Open the right-side front panel (HMI module) by unscrewing the two binding screws located on the left side of the panel.
- Open the left-side front panel by unscrewing the two binding screws located on the right side of the panel.
- Detach the module holding bar by unscrewing the binding screw located on the left side of the bar.
- Unplug the ribbon cable on the SPM module by nipping the catch.
- Remove the metal cover by unscrewing the binding screw located at the top and bottom of the cover.
- Pull out the module.
- Insert the replacement module in the reverse procedure.


## Replacing other modules

- Open the right-side front panel (HMI module) by unscrewing the two binding screws located on the left side of the panel.
- Open the left-side front panel by unscrewing the two binding screws located on the right side of the panel.
- Detach the module holding bar by unscrewing the binding screw located on the left side of the bar.
- Unplug the ribbon cable running among the modules by nipping the catch (in case of black connector) and by pushing the catch outside (in case of gray connector) on the connector.
- Pull out the module by pulling up or down the top and bottom levers.
- Insert the replacement module in the reverse procedure.
- After replacing the SPM module, input the user setting values again.

For failed module tracing and its replacement, see Appendix Q.

### 6.7.4 Resumption of Service

After replacing the failed module or repairing failed external circuits, take the following procedures for the relay to restore the service.

- Switch on the DC power supply and confirm that the "IN SERVICE" green LED is lit and the "ALARM" red LED is not lit.

Note: Supply DC power after checking that all the modules are in their original positions and the ribbon cables are plugged in.

- Supply the AC inputs and reconnect the trip outputs.


### 6.7.5 Storage

The spare relay or module should be stored in a dry and clean room. Based on IEC Standard $60255-6$ the storage temperature should be $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, but the temperature of $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ is recommended for long-term storage.

## 7. Putting Relay into Service

The following procedure must be adhered to when putting the relay into service after finishing commissioning or maintenance tests.

- Check that all external connections are correct.
- Check the setting of all measuring elements, timers, scheme switches, recordings and clock are correct.
In particular, when settings are changed temporarily for testing, be sure to restore them.
- Clear any unnecessary records on faults, events and disturbances which are recorded during the tests.
- Press the VIEW key and check that no failure message is displayed on the "Auto-supervision" screen.
- Check that the green "IN SERVICE" LED is lit and no other LEDs are lit on the front panel.


## Appendix A

## Block Diagram



Note: Models 203 and 204 are not provided with TRIP-4 and TRIP-5.
Block Diagram of Transformer Differential Relay GRT100

## Appendix B

## Signal List

| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 0 | CONSTANT 0 | constant 0 |
| 1 | CONSTANT_1 | constant 1 |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| 5 |  |  |
| 6 |  |  |
| 7 |  |  |
| 8 |  |  |
| 9 |  |  |
| 10 |  |  |
| 11 |  |  |
| 12 |  |  |
| 13 |  |  |
| 14 |  |  |
| 15 |  |  |
| 16 |  |  |
| 17 |  |  |
| 18 |  |  |
| 19 |  |  |
| 20 |  |  |
| 21 |  |  |
| 22 |  |  |
| 23 |  |  |
| 24 |  |  |
| 25 |  |  |
| 26 |  |  |
| 27 |  |  |
| 28 |  |  |
| 29 |  |  |
| 30 |  |  |
| 31 |  |  |
| 32 |  |  |
| 33 |  |  |
| 34 |  |  |
| 35 |  |  |
| 36 |  |  |
| 37 |  |  |
| 38 | DIF_NBLK-A | Differential element(2f/5f lock is not included) |
| 39 | DIF_NBLK-B | ditto |
| 40 | DIF_NBLK-C | ditto |
| 41 | DIFT_HOC-A | Differential relay |
| 42 | DIFT_HOC-B | ditto |
| 43 | DIFT_HOC-C | ditto |
| 44 | DIFT_DIF-A | ditto |
| 45 | DIFT_DIF-B | ditto |
| 46 | DIFT_DIF-C | ditto |
| 47 | 10C-A | OC relay |
| 48 | 10C-B | ditto |
| 49 | 10C-C | ditto |
| 50 | 10CI-A | Inverse time OC relay |
| 51 | 10CI-B | ditto |
| 52 | 10CI-C | ditto |
| 53 | 20C-A | OC relay |
| 54 | 20C-B | ditto |
| 55 | 20C-C | ditto |
| 56 | 20CI-A | Inverse time OC relay |
| 57 | 20CI-B | ditto |
| 58 | 20Cl-C | ditto |
| 59 | 30C-A | OC relay |
| 60 | 30C-B | ditto |
| 61 | 30C-C | ditto |
| 62 | 30CI-A | Inverse time OC relay |
| 63 | 30CI-B | ditto |
| 64 | 30Cl-C | ditto |
| 65 | 40C-A | OC relay |
| 66 | 40C-B | ditto |
| 67 | 40C-C | ditto |
| 68 | 40CI-A | Inverse time OC relay |
| 69 | 40CI-B | ditto |
| 70 | 40CI-C | ditto |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 71 | 1REF | Restricted earth fault relay |
| 72 | 1EF | Earth fault relay |
| 73 | 1EFI | Inverse time earth fault relay |
| 74 | 2REF | Restricted earth fault relay |
| 75 | 2EF | Earth fault relay |
| 76 | 2EFI | Inverse time earth fault relay |
| 77 | 3REF | Restricted earth fault relay |
| 78 | 3EF | Earth fault relay |
| 79 | 3EFI | Inverse time earth fault relay |
| 80 | V/F-H | Overexcitation relay |
| 81 | V/F-T | ditto |
| 82 | V/F-A | ditto |
| 83 | THR-S | Thermal overload relay |
| 84 |  |  |
| 85 |  |  |
| 86 |  |  |
| 87 | THR-A | Thermal overload relay |
| 88 |  |  |
| 89 | FRQ-L1 | Frequency relay |
| 90 | FRQ-L2 | ditto |
| 91 | FRQ-H1 | ditto |
| 92 | FRQ-H2 | ditto |
| 93 | CTF | CT failure detection |
| 94 | CTF_ALARM | CT failure alarm |
| 95 | 2F-A | 2nd harmonic inrush current detection |
| 96 | 2F-B | ditto |
| 97 | 2F-C | ditto |
| 98 | 5F-A | fifth harmonic components detection |
| 99 | 5F-B | ditto |
| 100 | 5F-C | ditto |
| 101 | CT_SAT-A | CT saturation |
| 102 | CT_SAT-B | ditto |
| 103 | CT_SAT-C | ditto |
| 104 |  |  |
| 105 |  |  |
| 106 |  |  |
| 107 |  |  |
| 108 |  |  |
| 109 |  |  |
| 110 |  |  |
| 111 |  |  |
| 112 |  |  |
| 113 |  |  |
| 114 |  |  |
| 115 |  |  |
| 116 |  |  |
| 117 |  |  |
| 118 |  |  |
| 119 | FRQBLK | UV block signal for FRQ |
| 120 |  |  |
| 121 | DIF_TRIP | DIF relay trip |
| 122 | 2F_LOCK | 2 F detect |
| 123 | 5F LOCK | 5F detect |
| 124 | DIF-T1 | DIF relay trip 1 |
| 125 | DIF-T2 | DIF relay trip 2 |
| 126 | DIF-T3 | DIF relay trip 3 |
| 127 | DIF-T4 | DIF relay trip 4 |
| 128 | DIF-T5 | DIF relay trip 5 |
| 129 | T10C | 10C relay timer |
| 130 | 10C-1 | 10C relay trip 1 |
| 131 | 10C-2 | 10C relay trip 2 |
| 132 | 10C-3 | 10C relay trip 3 |
| 133 | 10C-4 | 10C relay trip 4 |
| 134 | 10C-5 | 10C relay trip 5 |
| 135 | 10CI-1 | 10CI relay trip 1 |
| 136 | 10CI-2 | 10CI relay trip 2 |
| 137 | 10CI-3 | 10CI relay trip 3 |
| 138 | 10CI-4 | 10CI relay trip 4 |
| 139 | 10CI-5 | 10CI relay trip 5 |
| 140 | T2OC | 20C relay timer |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 141 | 20C-1 | 20C relay trip 1 |
| 142 | 20C-2 | 20C relay trip 2 |
| 143 | 20C-3 | 20C relay trip 3 |
| 144 | 20C-4 | 20C relay trip 4 |
| 145 | 20C-5 | 20C relay trip 5 |
| 146 | 20Cl-1 | 20CI relay trip 1 |
| 147 | 20Cl-2 | 2OCI relay trip 2 |
| 148 | 2OCl-3 | 20CI relay trip 3 |
| 149 | 20Cl-4 | 2OCI relay trip 4 |
| 150 | 20Cl-5 | 20CI relay trip 5 |
| 151 | T30C | 30C relay timer |
| 152 | 30C-1 | 30C relay trip 1 |
| 153 | 30C-2 | 30C relay trip 2 |
| 154 | 30C-3 | 30C relay trip 3 |
| 155 | 3OC-4 | 30C relay trip 4 |
| 156 | 30C-5 | 30C relay trip 5 |
| 157 | 30Cl-1 | 30CI relay trip 1 |
| 158 | 30Cl-2 | 30CI relay trip 2 |
| 159 | 30Cl-3 | 30CI relay trip 3 |
| 160 | 30Cl-4 | 30CI relay trip 4 |
| 161 | 30Cl-5 | 30CI relay trip 5 |
| 162 | T40C | 40C relay timer |
| 163 | 40C-1 | 40C relay trip 1 |
| 164 | 40C-2 | 40C relay trip 2 |
| 165 | 40C-3 | 40C relay trip 3 |
| 166 | 40C-4 | 40C relay trip 4 |
| 167 | 40C-5 | 40C relay trip 5 |
| 168 | 40Cl-1 | 40CI relay trip 1 |
| 169 | 40Cl-2 | 40CI relay trip 2 |
| 170 | 40Cl-3 | 40CI relay trip 3 |
| 171 | 40Cl-4 | 40CI relay trip 4 |
| 172 | 40Cl-5 | 40CI relay trip 5 |
| 173 | T1REF | 1REF relay timer |
| 174 | T1EF | 1EF relay timer |
| 175 | 1REF-1 | 1REF relay trip 1 |
| 176 | 1REF-2 | 1REF relay trip 2 |
| 177 | 1REF-3 | 1REF relay trip 3 |
| 178 | 1REF-4 | 1REF relay trip 4 |
| 179 | 1REF-5 | 1REF relay trip 5 |
| 180 | 1EF-1 | 1EF relay trip 1 |
| 181 | 1EF-2 | 1EF relay trip 2 |
| 182 | 1EF-3 | 1EF relay trip 3 |
| 183 | 1EF-4 | 1EF relay trip 4 |
| 184 | 1EF-5 | 1EF relay trip 5 |
| 185 | 1EFI-1 | 1EFI relay trip 1 |
| 186 | 1EFI-2 | 1EFI relay trip 2 |
| 187 | 1EFI-3 | 1EFI relay trip 3 |
| 188 | 1EFI-4 | 1EFI relay trip 4 |
| 189 | 1EFI-5 | 1EFI relay trip 5 |
| 190 | T2REF | 2REF relay timer |
| 191 | T2EF | 2EF relay timer |
| 192 | 2REF-1 | 2REF relay trip 1 |
| 193 | 2REF-2 | 2REF relay trip 2 |
| 194 | 2REF-3 | 2REF relay trip 3 |
| 195 | 2REF-4 | 2REF relay trip 4 |
| 196 | 2REF-5 | 2REF relay trip 5 |
| 197 | 2EF-1 | 2EF relay trip 1 |
| 198 | 2EF-2 | 2EF relay trip 2 |
| 199 | 2EF-3 | 2EF relay trip 3 |
| 200 | 2EF-4 | 2EF relay trip 4 |
| 201 | 2EF-5 | 2EF relay trip 5 |
| 202 | 2EFI-1 | 2EFI relay trip 1 |
| 203 | 2EFI-2 | 2EFI relay trip 2 |
| 204 | 2EFI-3 | 2EFI relay trip 3 |
| 205 | 2EFI-4 | 2EFI relay trip 4 |
| 206 | 2EFI-5 | 2EFI relay trip 5 |
| 207 | T3REF | 3REF relay timer |
| 208 | T3EF | 3EF relay timer |
| 209 | 3REF-1 | 3REF relay trip 1 |
| 210 | 3REF-2 | 3REF relay trip 2 |


| Signal list |  |  |
| :---: | :---: | :---: |
| No. | Signal Name | Contents |
| 211 | 3REF-3 | 3REF relay trip 3 |
| 212 | 3REF-4 | 3REF relay trip 4 |
| 213 | 3REF-5 | 3REF relay trip 5 |
| 214 | 3EF-1 | 3EF relay trip 1 |
| 215 | 3EF-2 | 3EF relay trip 2 |
| 216 | 3EF-3 | 3EF relay trip 3 |
| 217 | 3EF-4 | 3EF relay trip 4 |
| 218 | 3EF-5 | 3EF relay trip 5 |
| 219 | 3EFI-1 | 3EFI relay trip 1 |
| 220 | 3EFI-2 | 3EFI relay trip 2 |
| 221 | 3EFI-3 | 3EFI relay trip 3 |
| 222 | 3EFI-4 | 3EFI relay trip 4 |
| 223 | 3EFI-5 | 3EFI relay trip 5 |
| 224 | DIF-T | DIFT relay trip |
| 225 | 10CI | 10CI relay trip |
| 226 | 20CI | 20CI relay trip |
| 227 | 30CI | 30CI relay trip |
| 228 | 40CI | 40CI relay trip |
| 229 | V/F_TRIP | V/F trip |
| 230 | FRQ | FRQ trip |
| 231 |  |  |
| 232 |  |  |
| 233 |  |  |
| 234 |  |  |
| 235 | TV/F-H | V/F-H relay timer |
| 236 | TV/F-A | V/F-A relay timer |
| 237 | V/F-1 | V/F relay trip 1 |
| 238 | V/F-2 | V/F relay trip 2 |
| 239 | V/F-3 | V/F relay trip 3 |
| 240 | V/F-4 | V/F relay trip 4 |
| 241 | V/F-5 | V/F relay trip 5 |
| 242 | V/F-ALARM | V/F relay alarm |
| 243 | THR-1 | THR relay trip 1 |
| 244 | THR-2 | THR relay trip 2 |
| 245 | THR-3 | THR relay trip 3 |
| 246 | THR-4 | THR relay trip 4 |
| 247 | THR-5 | THR relay trip 5 |
| 248 | THR-ALARM | THR relay alarm |
| 249 | TFRQ-L | FRQ-L relay timer |
| 250 | TFRQ-H | FRQ-H relay timer |
| 251 | TFRQ-A | FRQ-A relay timer |
| 252 | FRQ-1 | FRQ relay trip 1 |
| 253 | FRQ-2 | FRQ relay trip 2 |
| 254 | FRQ-3 | FRQ relay trip 3 |
| 255 | FRQ-4 | FRQ relay trip 4 |
| 256 | FRQ-5 | FRQ relay trip 5 |
| 257 | FRQ-A | FRQ relay alarm |
| 258 | MEC.TRIP1-1 | Mechanical trip 1 |
| 259 | MEC.TRIP1-2 | ditto |
| 260 | MEC.TRIP1-3 | ditto |
| 261 | MEC.TRIP1-4 | ditto |
| 262 | MEC.TRIP1-5 | ditto |
| 263 | MEC.TRIP2-1 | Mechanical trip 2 |
| 264 | MEC.TRIP2-2 | ditto |
| 265 | MEC.TRIP2-3 | ditto |
| 266 | MEC.TRIP2-4 | ditto |
| 267 | MEC.TRIP2-5 | ditto |
| 268 | MEC.TRIP3-1 | Mechanical trip 3 |
| 269 | MEC.TRIP3-2 | ditto |
| 270 | MEC.TRIP3-3 | ditto |
| 271 | MEC.TRIP3-4 | ditto |
| 272 | MEC.TRIP3-5 | ditto |
| 273 | MEC.TRIP4-1 | Mechanical trip 4 |
| 274 | MEC.TRIP4-2 | ditto |
| 275 | MEC.TRIP4-3 | ditto |
| 276 | MEC.TRIP4-4 | ditto |
| 277 | MEC.TRIP4-5 | ditto |
| 278 | WIND.1_TP-1 | Element for trip 1 |
| 279 | WIND.2_TP-1 | ditto |
| 280 | WIND.3_TP-1 | ditto |


| Signal list |  |  |
| :---: | :---: | :---: |
| No. | Signal Name | Contents |
| 281 | WIND.4_TP-1 | ditto |
| 282 | MEC.TRIP-1 | ditto |
| 283 | ELEMENT_OR-1 | ditto |
| 284 | TRIP-1 | Trip 0/P-1 |
| 285 | WIND.1_TP-2 | Element for trip 2 |
| 286 | WIND.2_TP-2 | ditto |
| 287 | WIND.3_TP-2 | ditto |
| 288 | WIND.4_TP-2 | ditto |
| 289 | MEC.TRIP-2 | ditto |
| 290 | ELEMENT_OR-2 | ditto |
| 291 | TRIP-2 | Trip 0/P-2 |
| 292 | WIND.1_TP-3 | Element for trip 3 |
| 293 | WIND.2_TP-3 | ditto |
| 294 | WIND.3_TP-3 | ditto |
| 295 | WIND.4_TP-3 | ditto |
| 296 | MEC.TRIP-3 | ditto |
| 297 | ELEMENT_OR-3 | ditto |
| 298 | TRIP-3 | Trip O/P-3 |
| 299 | WIND.1_TP-4 | Element for trip 4 |
| 300 | WIND.2_TP-4 | ditto |
| 301 | WIND.3_TP-4 | ditto |
| 302 | WIND.4_TP-4 | ditto |
| 303 | MEC.TRIP-4 | ditto |
| 304 | ELEMENT_OR-4 | ditto |
| 305 | TRIP-4 | Trip 0/P-4 |
| 306 | WIND.1_TP-5 | Element for trip 5 |
| 307 | WIND.2_TP-5 | ditto |
| 308 | WIND.3_TP-5 | ditto |
| 309 | WIND.4_TP-5 | ditto |
| 310 | MEC.TRIP-5 | ditto |
| 311 | ELEMENT_OR-5 | ditto |
| 312 | TRIP-5 | Trip O/P-5 |
| 313 | TRIP | Trip signal shot |
| 314 | TRIP-DETOR | Trip O/P OR |
| 315 | TP1 | Trip command without off-delay timer |
| 316 | TP2 | Trip command without off-delay timer |
| 317 | TP3 | Trip command without off-delay timer |
| 318 | TP4 | Trip command without off-delay timer |
| 319 | TP5 | Trip command without off-delay timer |
| 320 |  |  |
| 321 |  |  |
| 322 |  |  |
| 323 |  |  |
| 324 |  |  |
| 325 |  |  |
| 326 |  |  |
| 327 |  |  |
| 328 |  |  |
| 329 |  |  |
| 330 | DIFT-DIF_TP | DIFT-DIF trip signal |
| 331 | DIFT-HOC_TP | DIFT-HOC trip signal |
| 332 | 1REF_TRIP | 1REF trip signal |
| 333 | 2REF_TRIP | 2REF trip signal |
| 334 | 3REF_TRIP | 3REF trip signal |
| 335 | 10C_TRIP | 10C trip signal |
| 336 | 20C_TRIP | 20C trip signal |
| 337 | 30C_TRIP | 30C trip signal |
| 338 | 40C_TRIP | 40C trip signal |
| 339 | 10Cl_TRIP | 10CI trip signal |
| 340 | 20Cl_TRIP | 20CI trip signal |
| 341 | 30Cl_TRIP | 30CI trip signal |
| 342 | 40Cl_TRIP | 40CI trip signal |
| 343 | 1EF_TRIP | 1EF trip signal |
| 344 | 2EF_TRIP | 2EF trip signal |
| 345 | 3EF_TRIP | 3EF trip signal |
| 346 | 1EFI_TRIP | 1EFI trip signal |
| 347 | 2EFI_TRIP | 2EFI trip signal |
| 348 | 3EFI_TRIP | 3EFI trip signal |
| 349 | FRQ_TRIP | FRQ trip signal |
| 350 | V/F_TP | V/F trip signal |


| Signal list |  |  |
| :---: | :---: | :---: |
| No. | Signal Name | Contents |
| 351 | THR_TRIP | Thermal trip signal |
| 352 | DIFT_TRIP | DIFT trip signal |
| 353 | FRQ-UF_TRIP | Under-FRQ trip signal |
| 354 | FRQ-OF_TRIP | Over-FRQ trip signal |
| 355 | FRQ-UF_ALARM | Under-FRQ alarm signal |
| 356 | FRQ-OF_ALARM | Over-FRQ alarm signal |
| 357 | MEC.TRIP1 | Mechanical trip 1 |
| 358 | MEC.TRIP2 | Mechanical trip 2 |
| 359 | MEC.TRIP3 | Mechanical trip 3 |
| 360 | MEC.TRIP4 | Mechanical trip 4 |
| 361 | MEC.TRIP | Mechanical trip |
| 362 | V/F-L_TRIP | V/F low level trip signal |
| 363 | V/F-H_TRIP | V/F high level trip signal |
| 364 |  |  |
| 365 |  |  |
| 366 |  |  |
| 367 |  |  |
| 368 |  |  |
| 369 |  |  |
| 370 | 10C | OC relay |
| 371 | 20C | ditto |
| 372 | 30C | ditto |
| 373 | 40C | ditto |
| 374 | DIFT_HOC | Differential relay |
| 375 |  |  |
| 376 |  |  |
| 377 |  |  |
| 378 |  |  |
| 379 |  |  |
| 380 |  |  |
| 381 |  |  |
| 382 |  |  |
| 383 |  |  |
| 384 |  |  |
| 385 |  |  |
| 386 |  |  |
| 387 |  |  |
| 388 |  |  |
| 389 |  |  |
| 390 |  |  |
| 391 |  |  |
| 392 |  |  |
| 393 |  |  |
| 394 |  |  |
| 395 |  |  |
| 396 |  |  |
| 397 |  |  |
| 398 |  |  |
| 399 |  |  |
| 400 |  |  |
| 401 |  |  |
| 402 |  |  |
| 403 |  |  |
| 404 |  |  |
| 405 |  |  |
| 406 |  |  |
| 407 |  |  |
| 408 |  |  |
| 409 |  |  |
| 410 |  |  |
| 411 |  |  |
| 412 |  |  |
| 413 |  |  |
| 414 |  |  |
| : |  |  |
| : |  |  |
| : |  |  |
| 508 |  |  |
| 509 |  |  |
| 510 |  |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 511 |  |  |
| 512 |  |  |
| 513 | BI1_COMMAND | Binary input signal B11 |
| 514 | BI2_COMMAND | Binary input signal BI2 |
| 515 | BI3_COMMAND | Binary input signal BI3 |
| 516 | BI4_COMMAND | Binary input signal BI4 |
| 517 | BI5_COMMAND | Binary input signal BI5 |
| 518 | BI6_COMMAND | Binary input signal BI6 |
| 519 | BI7_COMMAND | Binary input signal BI7 |
| 520 | BI8_COMMAND | Binary input signal BI8 |
| 521 | BI9_COMMAND | Binary input signal BI9 |
| 522 | BI10_COMMAND | Binary input signal BI10 |
| 523 | BI11_COMMAND | Binary input signal BI11 |
| 524 | BI12_COMMAND | Binary input signal BI12 |
| 525 | BI13_COMMAND | Binary input signal BI13 |
| 526 | BI14_COMMAND | Binary input signal BI14 |
| 527 | BI15_COMMAND | Binary input signal BI15 |
| 528 | BI16_COMMAND | Binary input signal BI16 |
| 529 |  |  |
| 530 |  |  |
| 531 |  |  |
| 532 |  |  |
| 533 |  |  |
| 534 |  |  |
| 535 |  |  |
| 536 |  |  |
| 537 |  |  |
| 538 |  |  |
| 539 |  |  |
| 540 |  |  |
| 541 |  |  |
| 542 |  |  |
| 543 |  |  |
| 544 |  |  |
| 545 |  |  |
| 546 |  |  |
| 547 |  |  |
| 548 |  |  |
| 549 |  |  |
| 550 |  |  |
| 551 |  |  |
| 552 |  |  |
| 553 |  |  |
| 554 |  |  |
| 555 |  |  |
| 556 |  |  |
| 557 |  |  |
| 558 |  |  |
| 559 |  |  |
| 560 |  |  |
| 561 |  |  |
| 562 |  |  |
| 563 |  |  |
| 564 |  |  |
| 565 |  |  |
| 566 |  |  |
| 567 |  |  |
| 568 |  |  |
| 569 |  |  |
| 570 |  |  |
| 571 |  |  |
| 572 |  |  |
| 573 |  |  |
| 574 |  |  |
| 575 |  |  |
| $\cdots$ |  |  |
| - |  |  |
| 1238 |  |  |
| 1239 |  |  |
| 1240 |  |  |

Signal list

| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 1241 | IEC_MDBLK | monitor direction blocked |
| 1242 | IEC TESTMODE | IEC60870-5-103 testmode |
| 1243 | GROUP1_ACTIVE | group1 active |
| 1244 | GROUP2_ACTIVE | group2 active |
| 1245 | GROUP3_ACTIVE | group3 active |
| 1246 | GROUP4_ACTIVE | group4 active |
| 1247 | GROUP5_ACTIVE | group5 active |
| 1248 | GROUP6_ACTIVE | group6 active |
| 1249 | GROUP7_ACTIVE | group7 active |
| 1250 | GROUP8_ACTIVE | group8 active |
| 1251 | RLY_FAIL | RELAY FAILURE |
| 1252 | RLY_OP_BLK | RELAY OUTPUT BLOCK |
| 1253 | A.M.F._OFF | SV BLOCK |
| 1254 |  |  |
| 1255 |  |  |
| 1256 |  |  |
| 1257 |  |  |
| 1258 | RELAY_FAIL-A | RELAY FAILURE (only alarm) |
| 1259 |  |  |
| 1260 |  |  |
| 1261 | TRIP-H | Trip signal hold |
| 1262 |  |  |
| 1263 | CT1_ERR_UF | CT error(unfiltered) |
| 1264 | CT2_ERR_UF | ditto |
| 1265 | CT3_ERR_UF | ditto |
| 1266 | CT4_ERR_UF | ditto |
| 1267 | CT1_ERR | CT failure |
| 1268 | CT2_ERR | ditto |
| 1269 | CT3_ERR | ditto |
| 1270 | CT4_ERR | ditto |
| 1271 | CT_ERR | ditto |
| 1272 |  |  |
| 1273 |  |  |
| 1274 |  |  |
| 1275 |  |  |
| 1276 |  |  |
| 1277 |  |  |
| 1278 |  |  |
| 1279 | GEN PICKUP | General start/pick-up |
| 1280 | GEN_TRIP | General trip |
| 1281 |  |  |
| 1282 |  |  |
| 1283 |  |  |
| 1284 | BI1_COM_UF | Binary input signal B11 (unfiltered) |
| 1285 | BI2_COM_UF | Binary input signal BI2 (unfiltered) |
| 1286 | BI3_COM_UF | Binary input signal BI3 (unfiltered) |
| 1287 | BI4_COM_UF | Binary input signal BI4 (unfiltered) |
| 1288 | BI5_COM_UF | Binary input signal BI5 (unfiltered) |
| 1289 | BI6_COM_UF | Binary input signal BI6 (unfiltered) |
| 1290 | BIT_COM_UF | Binary input signal BI7 (unfiltered) |
| 1291 | BI8_COM_UF | Binary input signal B18 (unfiltered) |
| 1292 | BI9_COM_UF | Binary input signal BI9 (unfiltered) |
| 1293 | BI10_COM_UF | Binary input signal BI10 (unfiltered) |
| 1294 | BI11_COM_UF | Binary input signal Bl11 (unfiltered) |
| 1295 | BI12_COM_UF | Binary input signal BI12 (unfiltered) |
| 1296 | BI13_COM_UF | Binary input signal Bl13 (unfiltered) |
| 1297 | BI14_COM_UF | Binary input signal BI14 (unfiltered) |
| 1298 | BI15_COM_UF | Binary input signal BI15 (unfiltered) |
| 1299 | BI16_COM_UF | Binary input signal Bl16 (unfiltered) |
| 1300 |  |  |
| 1301 |  |  |
| 1302 |  |  |
| 1303 |  |  |
| 1304 |  |  |
| 1305 |  |  |
| 1306 |  |  |
| 1307 |  |  |
| 1308 |  |  |
| 1309 |  |  |
| 1310 |  |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 1311 |  |  |
| 1312 |  |  |
| 1313 |  |  |
| 1314 |  |  |
| 1315 |  |  |
| 1316 |  |  |
| 1317 |  |  |
| 1318 |  |  |
| 1319 |  |  |
| 1320 |  |  |
| 1321 |  |  |
| 1322 |  |  |
| 1323 |  |  |
| 1324 |  |  |
| 1325 |  |  |
| 1326 |  |  |
| 1327 |  |  |
| 1328 | GOOSE_IN_Q1 | Goose Input Quality \#1 |
| 1329 | GOOSE_IN_Q2 | Goose Input Quality \#2 |
| 1330 | GOOSE_IN_Q3 | Goose Input Quality \#3 |
| 1331 | GOOSE_IN_Q4 | Goose Input Quality \#4 |
| 1332 | GOOSE_IN_Q5 | Goose Input Quality \#5 |
| 1333 | GOOSE_IN_Q6 | Goose Input Quality \#6 |
| 1334 | GOOSE_IN_Q7 | Goose Input Quality \#7 |
| 1335 | GOOSE_IN_Q8 | Goose Input Quality \#8 |
| 1336 | GOOSE_IN_Q9 | Goose Input Quality \#9 |
| 1337 | GOOSE_IN_Q10 | Goose Input Quality \#10 |
| 1338 | GOOSE_IN_Q11 | Goose Input Quality \#11 |
| 1339 | GOOSE_IN_Q12 | Goose Input Quality \#12 |
| 1340 | GOOSE_IN_Q13 | Goose Input Quality \#13 |
| 1341 | GOOSE_IN_Q14 | Goose Input Quality \#14 |
| 1342 | GOOSE_IN_Q15 | Goose Input Quality \#15 |
| 1343 | GOOSE_IN_Q16 | Goose Input Quality \#16 |
| 1344 | GOOSE_IN_Q17 | Goose Input Quality \#17 |
| 1345 | GOOSE_IN_Q18 | Goose Input Quality \#18 |
| 1346 | GOOSE_IN_Q19 | Goose Input Quality \#19 |
| 1347 | GOOSE_IN_Q20 | Goose Input Quality \#20 |
| 1348 | GOOSE_IN_Q21 | Goose Input Quality \#21 |
| 1349 | GOOSE_IN_Q22 | Goose Input Quality \#22 |
| 1350 | GOOSE_IN_Q23 | Goose Input Quality \#23 |
| 1351 | GOOSE_IN_Q24 | Goose Input Quality \#24 |
| 1352 | GOOSE_IN_Q25 | Goose Input Quality \#25 |
| 1353 | GOOSE_IN_Q26 | Goose Input Quality \#26 |
| 1354 | GOOSE_IN_Q27 | Goose Input Quality \#27 |
| 1355 | GOOSE_IN_Q28 | Goose Input Quality \#28 |
| 1356 | GOOSE_IN_Q29 | Goose Input Quality \#29 |
| 1357 | GOOSE_IN_Q30 | Goose Input Quality \#30 |
| 1358 | GOOSE_IN_Q31 | Goose Input Quality \#31 |
| 1359 | GOOSE_IN_Q32 | Goose Input Quality \#32 |
| 1360 | GOOSE_IN_1 | Goose Input \#1 |
| 1361 | GOOSE_IN_2 | Goose Input \#2 |
| 1362 | GOOSE_IN_3 | Goose Input \#3 |
| 1363 | GOOSE_IN_4 | Goose Input \#4 |
| 1364 | GOOSE_IN_5 | Goose Input \#5 |
| 1365 | GOOSE_IN_6 | Goose Input \#6 |
| 1366 | GOOSE_IN_7 | Goose Input \#7 |
| 1367 | GOOSE_IN_8 | Goose Input \#8 |
| 1368 | GOOSE_IN_9 | Goose Input \#9 |
| 1369 | GOOSE_IN_10 | Goose Input \#10 |
| 1370 | GOOSE_IN_11 | Goose Input \#11 |
| 1371 | GOOSE_IN_12 | Goose Input \#12 |
| 1372 | GOOSE_IN_13 | Goose Input \#13 |
| 1373 | GOOSE_IN_14 | Goose Input \#14 |
| 1374 | GOOSE_IN_15 | Goose Input \#15 |
| 1375 | GOOSE_IN_16 | Goose Input \#16 |
| 1376 | GOOSE_IN_17 | Goose Input \#17 |
| 1377 | GOOSE_IN_18 | Goose Input \#18 |
| 1378 | GOOSE_IN_19 | Goose Input \#19 |
| 1379 | GOOSE_IN_20 | Goose Input \#20 |
| 1380 | GOOSE_IN_21 | Goose Input \#21 |

Signal list

| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 1381 | GOOSE_IN_22 | Goose Input \#22 |
| 1382 | GOOSE_IN_23 | Goose Input \#23 |
| 1383 | GOOSE_IN_24 | Goose Input \#24 |
| 1384 | GOOSE_IN_25 | Goose Input \#25 |
| 1385 | GOOSE_IN 26 | Goose Input \#26 |
| 1386 | GOOSE_IN_27 | Goose Input \#27 |
| 1387 | GOOSE_IN_28 | Goose Input \#28 |
| 1388 | GOOSE_IN_29 | Goose Input \#29 |
| 1389 | GOOSE_IN_30 | Goose Input \#30 |
| 1390 | GOOSE_IN_31 | Goose Input \#31 |
| 1391 | GOOSE_IN_32 | Goose Input \#32 |
| 1392 |  |  |
| 1393 |  |  |
| 1394 |  |  |
| 1395 |  |  |
| 1396 |  |  |
| 1397 |  |  |
| 1398 |  |  |
| 1399 |  |  |
| 1400 |  |  |
| 1401 | LOCAL_OP_ACT | local operation active |
| 1402 | REMOTE_OP_ACT | remote operation active |
| 1403 | NORM_LED_ON | IN-SERVICE LED ON |
| 1404 | ALM_LED_ON | ALARM LED ON |
| 1405 | TRIP_LED_ON | TRIP LED ON |
| 1406 | TEST_LED_ON | TEST LED ON |
| 1407 |  |  |
| 1408 |  |  |
| 1409 | LED_RESET | TRIP LED RESET |
| 1410 |  |  |
| 1411 |  |  |
| 1412 |  |  |
| 1413 | PROT_COM_ON | IEC103 communication command |
| 1414 | PRG_LED1_ON | PROGRAMMABLE LED1 ON |
| 1415 | PRG_LED2_ON | PROGRAMMABLE LED2 ON |
| 1416 | PRG_LED3_ON | PROGRAMMABLE LED3 ON |
| 1417 | PRG_LED4_ON | PROGRAMMABLE LED4 ON |
| 1418 |  |  |
| 1419 |  |  |
| 1420 |  |  |
| 1421 |  |  |
| 1422 |  |  |
| 1423 |  |  |
| 1424 |  |  |
| 1425 |  |  |
| 1426 |  |  |
| 1427 |  |  |
| 1428 |  |  |
| 1429 |  |  |
| 1430 |  |  |
| 1431 |  |  |
| 1432 |  |  |
| 1433 |  |  |
| 1434 | F.Record_DONE | fault record sotred |
| 1435 | F.Record_CLR | Fault record clear |
| 1436 | E.Record_CLR | Event record clear |
| 1437 | D.Record_CLR | Disturbance record clear |
| 1438 | Data_Lost | Data clear by BU-RAM memory monitoring error |
| 1439 |  |  |
| 1440 |  |  |
| 1441 |  |  |
| 1442 |  |  |
| 1443 |  |  |
| 1444 |  |  |
| 1445 | PLC_data_CHG | PLC data change |
| 1446 | IEC103_data_CHG | IEC-103 data change |
| 1447 | IEC850_data_CHG | IEC-850 data change |
| 1448 | Sys.set_change | System setting change |
| 1449 | Rly.set_change | Relay setting change |
| 1450 | Grp.set_change | Group setting change |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 1451 |  |  |
| 1452 |  |  |
| 1453 |  |  |
| 1454 |  |  |
| 1455 |  |  |
| 1456 | KEY-VIEW | VIEW key status (1:pressed) |
| 1457 | KEY-RESET | RESET key status (2:pressed) |
| 1458 | KEY-ENTER | ENTER key status (3:pressed) |
| 1459 | KEY-END | END key status (4:pressed) |
| 1460 | KEY-CANCEL | CANCEL key status (5:pressed) |
| 1461 |  |  |
| 1462 |  |  |
| 1463 |  |  |
| 1464 |  |  |
| 1465 | DC_supply_err | DC supply error |
| 1466 | RTC_err | RTC stopped |
| 1467 | PCl_err | PCI bus error |
| 1468 | GOOSE_stop | GOOSE stopped |
| 1469 | Ping_err | Ping no anwer |
| 1470 | PLC_err | PLC stopeed |
| 1471 | 61850_err | 61850 stopped |
| 1472 | SUM_err | Program ROM checksum error |
| 1473 | ROM_RAM_err | Rom - Ram mismatch error |
| 1474 | SRAM_err | SRAM memory monitoring error |
| 1475 | BU_RAM_err | BU-RAM memory monitoring error |
| 1476 |  |  |
| 1477 | EEPROM_err | EEPROM memory monitoring error |
| 1478 |  |  |
| 1479 | A/D_err | A/D accuracy checking error |
| 1480 | CPU_err | Program error |
| 1481 | Invalid | Invalid error |
| 1482 | NMI | NMI |
| 1483 | Sampling_err | Sampling error |
| 1484 | DIO_err | DIO card connection error |
| 1485 | LAN err | LAN error |
| 1486 | LCD_err | LCD panel connection error |
| 1487 | ROM_data_err | 8M Romdata error |
| 1488 |  |  |
| 1489 |  |  |
| 1490 |  |  |
| 1491 |  |  |
| 1492 |  |  |
| 1493 |  |  |
| 1494 |  |  |
| 1495 |  |  |
| 1496 |  |  |
| 1497 |  |  |
| 1498 |  |  |
| 1499 |  |  |
| 1500 |  |  |
| 1501 |  |  |
| 1502 |  |  |
| 1503 |  |  |
| 1504 |  |  |
| 1505 |  |  |
| 1506 |  |  |
| 1507 |  |  |
| 1508 |  |  |
| 1509 |  |  |
| 1510 |  |  |
| : |  |  |
| : |  |  |
| 1533 |  |  |
| 1534 |  |  |
| 1535 |  |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 1536 | EXT_MEC.TP1 | External mechanical trip commnad 1 |
| 1537 | EXT_MEC.TP2 | External mechanical trip commnad 2 |
| 1538 | EXT_MEC.TP3 | External mechanical trip commnad 3 |
| 1539 | EXT_MEC.TP4 | External mechanical trip commnad 4 |
| 1540 | IND.RESET | Indication reset command |
| 1541 |  |  |
| 1542 |  |  |
| 1543 |  |  |
| 1544 |  |  |
| 1545 |  |  |
| 1546 |  |  |
| 1547 |  |  |
| 1548 |  |  |
| 1549 |  |  |
| 1550 |  |  |
| 1551 |  |  |
| 1552 | EVENT1 | External event command 1 |
| 1553 | EVENT2 | External event command 2 |
| 1554 | EVENT3 | External event command 3 |
| 1555 |  |  |
| 1556 |  |  |
| 1557 |  |  |
| 1558 |  |  |
| 1559 |  |  |
| 1560 |  |  |
| 1561 |  |  |
| 1562 |  |  |
| 1563 |  |  |
| 1564 |  |  |
| 1565 |  |  |
| 1566 |  |  |
| 1567 |  |  |
| 1568 | PROT_BLOCK | Protection block command |
| 1569 | DIF_BLOCK | DIF trip block command |
| 1570 | 1REF_BLOCK | 1REF trip block command |
| 1571 | 10C_BLOCK | 10C trip block command |
| 1572 | 10Cl_BLOCK | 10CI trip block command |
| 1573 | 1EF_BLOCK | 1EF trip block command |
| 1574 | 1EFI_BLOCK | 1EFI trip block command |
| 1575 | 2REF_BLOCK | 2REF trip block command |
| 1576 | 20C_BLOCK | 20C trip block command |
| 1577 | 20Cl_BLOCK | 20CI trip block command |
| 1578 | 2EF_BLOCK | 2EF trip block command |
| 1579 | 2EFI_BLOCK | 2EFI trip block command |
| 1580 | 3REF_BLOCK | 3REF trip block command |
| 1581 | 30C_BLOCK | 30C trip block command |
| 1582 | 30Cl_BLOCK | 30CI trip block command |
| 1583 | 3EF_BLOCK | 3EF trip block command |
| 1584 | 3EFI_BLOCK | 3EFI trip block command |
| 1585 | 40C_BLOCK | 40C trip block command |
| 1586 | 40Cl_BLOCK | 40CI trip block command |
| 1587 | FRQ_BLOCK | FRQ trip block command |
| 1588 | FRQ-A BLOCK | FRQ-A trip block command |
| 1589 | V/F_BLOCK | V/F trip block command |
| 1590 | V/F-A_BLOCK | V/F-A trip block command |
| 1591 | THR_BLOCK | THR trip block command |
| 1592 | THR-A BLOCK | THR-A trip block command |
| 1593 | MEC.TP1_BLOCK | MEC.TP1 trip block command |
| 1594 | MEC.TP2_BLOCK | MEC.TP2 trip block command |
| 1595 | MEC.TP3_BLOCK | MEC.TP3 trip block command |
| 1596 | MEC.TP4_BLOCK | MEC.TP4 trip block command |
| 1597 |  |  |
| 1598 |  |  |
| 1599 |  |  |
| 1600 | TP1_DELAY | Trip command off-delay timer setting |
| 1601 | TP2_DELAY | Trip command off-delay timer setting |
| 1602 | TP3_DELAY | Trip command off-delay timer setting |
| 1603 | TP4_DELAY | Trip command off-delay timer setting |
| 1604 | TP5_DELAY | Trip command off-delay timer setting |
| 1605 |  |  |


| Signal list |  |  |
| :---: | :---: | :---: |
| No. | Signal Name | Contents |
| 1606 |  |  |
| 1607 |  |  |
| 1608 |  |  |
| 1609 |  |  |
| 1610 |  |  |
| 1611 |  |  |
| 1612 |  |  |
| 1613 |  |  |
| 1614 |  |  |
| 1615 |  |  |
| 1616 | DIF-A_BLOCK | DIF-A trip blocking command |
| 1617 | DIF-B_BLOCK | DIF-B trip blocking command |
| 1618 | DIF-C_BLOCK | DIF-C trip blocking command |
| 1619 |  |  |
| 1620 |  |  |
| 1621 |  |  |
| 1622 |  |  |
| 1623 |  |  |
| 1624 |  |  |
| 1625 |  |  |
| 1626 |  |  |
| 1627 |  |  |
| 1628 |  |  |
| 1629 |  |  |
| 1630 |  |  |
| 1631 |  |  |
| 1632 |  |  |
| 1633 |  |  |
| 1634 |  |  |
| 1635 |  |  |
| 1636 |  |  |
| 1637 |  |  |
| 1638 |  |  |
| 1639 |  |  |
| 1640 |  |  |
| 1641 |  |  |
| 1642 |  |  |
| 1643 |  |  |
| 1644 |  |  |
| 1645 |  |  |
| 1646 |  |  |
| 1647 |  |  |
| 1648 |  |  |
| 1649 |  |  |
| 1650 |  |  |
| 1651 |  |  |
| 1652 |  |  |
| 1653 |  |  |
| 1654 |  |  |
| 1655 |  |  |
| 1656 |  |  |
| 1657 |  |  |
| 1658 |  |  |
| 1659 |  |  |
| 1660 |  |  |
| 1661 |  |  |
| 1662 |  |  |
| 1663 |  |  |
| 1664 |  |  |
| 1665 |  |  |
| 1666 |  |  |
| 1667 |  |  |
| 1668 |  |  |
| 1669 |  |  |
| 1670 |  |  |
| : |  |  |
| : |  |  |
| 1788 |  |  |
| 1789 |  |  |
| 1790 |  |  |

Signal list

| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 1791 |  |  |
| 1792 | IO\#1-TP1 | Binary output signal of TP1 |
| 1793 | IO\#1-TP2 | Binary output signal of TP2 |
| 1794 | IO\#1-TP3 | Binary output signal of TP3 |
| 1795 | IO\#1-TP4 | Binary output signal of TP4 |
| 1796 | IO\#1-TP5 | Binary output signal of TP5 |
| 1797 |  |  |
| 1798 |  |  |
| 1799 |  |  |
| 1800 |  |  |
| 1801 |  |  |
| 1802 |  |  |
| 1803 |  |  |
| 1804 |  |  |
| 1805 |  |  |
| 1806 |  |  |
| 1807 |  |  |
| 1808 |  |  |
| 1809 |  |  |
| 1810 |  |  |
| 1811 |  |  |
| 1812 |  |  |
| 1813 |  |  |
| 1814 |  |  |
| 1815 |  |  |
| 1816 |  |  |
| 1817 |  |  |
| 1818 |  |  |
| 1819 |  |  |
| 1820 |  |  |
| 1821 |  |  |
| 1822 |  |  |
| 1823 |  |  |
| 1824 |  |  |
| 1825 |  |  |
| 1826 |  |  |
| 1827 |  |  |
| 1828 |  |  |
| 1829 |  |  |
| 1830 |  |  |
| 1831 |  |  |
| 1832 |  |  |
| 1833 |  |  |
| 1834 |  |  |
| 1835 |  |  |
| 1836 |  |  |
| 1837 |  |  |
| 1838 |  |  |
| 1839 |  |  |
| 1840 |  |  |
| 1841 |  |  |
| 1842 |  |  |
| 1843 |  |  |
| 1844 |  |  |
| 1845 |  |  |
| 1846 |  |  |
| 1847 |  |  |
| 1848 |  |  |
| 1849 |  |  |
| 1850 |  |  |
| 1851 |  |  |
| 1852 |  |  |
| 1853 |  |  |
| 1854 |  |  |
| 1855 |  |  |
| : |  |  |
| : |  |  |
| 2618 |  |  |
| 2619 |  |  |
| 2620 |  |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 2621 |  |  |
| 2622 |  |  |
| 2623 |  |  |
| 2624 | F.RECORD1 | Fault record stored command 1 |
| 2625 | F.RECORD2 | Fault record stored command 2 |
| 2626 | F.RECORD3 | Fault record stored command 3 |
| 2627 | F.RECORD4 | Fault record stored command 4 |
| 2628 |  |  |
| 2629 |  |  |
| 2630 |  |  |
| 2631 |  |  |
| 2632 | D.RECORD1 | Disturbance record stored command 1 |
| 2633 | D.RECORD2 | Disturbance record stored command 2 |
| 2634 | D.RECORD3 | Disturbance record stored command 3 |
| 2635 | D.RECORD4 | Disturbance record stored command 4 |
| 2636 |  |  |
| 2637 |  |  |
| 2638 |  |  |
| 2639 |  |  |
| 2640 | SET.GROUP1 | Active setting group changed commamd (Change to group1) |
| 2641 | SET.GROUP2 | Active setting group changed commamd (Change to group2) |
| 2642 | SET.GROUP3 | Active setting group changed commamd (Change to group3) |
| 2643 | SET.GROUP4 | Active setting group changed commamd (Change to group4) |
| 2644 | SET.GROUP5 | Active setting group changed commamd (Change to group5) |
| 2645 | SET.GROUP6 | Active setting group changed commamd (Change to group6) |
| 2646 | SET.GROUP7 | Active setting group changed commamd (Change to group7) |
| 2647 | SET.GROUP8 | Active setting group changed commamd (Change to group8) |
| 2648 |  |  |
| 2649 |  |  |
| 2650 |  |  |
| 2651 |  |  |
| 2652 |  |  |
| 2653 |  |  |
| 2654 |  |  |
| 2655 |  |  |
| 2656 | CON_TPMD1 | User configurable trip mode in fault record |
| 2657 | CON_TPMD2 | ditto |
| 2658 | CON_TPMD3 | ditto |
| 2659 | CON_TPMD4 | ditto |
| 2660 | CON_TPMD5 | ditto |
| 2661 | CON_TPMD6 | ditto |
| 2662 | CON_TPMD7 | ditto |
| 2663 | CON_TPMD8 | ditto |
| 2664 |  |  |
| 2665 |  |  |
| 2666 |  |  |
| 2667 |  |  |
| 2668 |  |  |
| 2669 |  |  |
| 2670 |  |  |
| 2671 |  |  |
| 2672 |  |  |
| 2673 |  |  |
| 2674 |  |  |
| 2675 |  |  |
| 2676 |  |  |
| 2677 |  |  |
| 2678 |  |  |
| 2679 |  |  |
| 2680 |  |  |
| 2681 |  |  |
| 2682 |  |  |
| 2683 |  |  |
| 2684 |  |  |
| 2685 |  |  |
| 2686 | PROT_COM_RECV | Protection inactivate command received |
| 2687 |  |  |
| 2688 | TPLED_RST_RCV | TRIP LED RESET command received |
| : |  |  |
| 2810 |  |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 2811 |  |  |
| 2812 |  |  |
| 2813 |  |  |
| 2814 |  |  |
| 2815 |  |  |
| 2816 | TEMP001 |  |
| 2817 | TEMP002 |  |
| 2818 | TEMP003 |  |
| 2819 | TEMP004 |  |
| 2820 | TEMP005 |  |
| 2821 | TEMP006 |  |
| 2822 | TEMP007 |  |
| 2823 | TEMP008 |  |
| 2824 | TEMP009 |  |
| 2825 | TEMP010 |  |
| 2826 | TEMP011 |  |
| 2827 | TEMP012 |  |
| 2828 | TEMP013 |  |
| 2829 | TEMP014 |  |
| 2830 | TEMP015 |  |
| 2831 | TEMP016 |  |
| 2832 | TEMP017 |  |
| 2833 | TEMP018 |  |
| 2834 | TEMP019 |  |
| 2835 | TEMP020 |  |
| 2836 | TEMP021 |  |
| 2837 | TEMP022 |  |
| 2838 | TEMP023 |  |
| 2839 | TEMP024 |  |
| 2840 | TEMP025 |  |
| 2841 | TEMP026 |  |
| 2842 | TEMP027 |  |
| 2843 | TEMP028 |  |
| 2844 | TEMP029 |  |
| 2845 | TEMP030 |  |
| 2846 | TEMP031 |  |
| 2847 | TEMP032 |  |
| 2848 | TEMP033 |  |
| 2849 | TEMP034 |  |
| 2850 | TEMP035 |  |
| 2851 | TEMP036 |  |
| 2852 | TEMP037 |  |
| 2853 | TEMP038 |  |
| 2854 | TEMP039 |  |
| 2855 | TEMP040 |  |
| 2856 | TEMP041 |  |
| 2857 | TEMP042 |  |
| 2858 | TEMP043 |  |
| 2859 | TEMP044 |  |
| 2860 | TEMP045 |  |
| 2861 | TEMP046 |  |
| 2862 | TEMP047 |  |
| 2863 | TEMP048 |  |
| 2864 | TEMP049 |  |
| 2865 | TEMP050 |  |
| 2866 | TEMP051 |  |
| 2867 | TEMP052 |  |
| 2868 | TEMP053 |  |
| 2869 | TEMP054 |  |
| 2870 | TEMP055 |  |
| 2871 | TEMP056 |  |
| 2872 | TEMP057 |  |
| 2873 | TEMP058 |  |
| 2874 | TEMP059 |  |
| 2875 | TEMP060 |  |
| 2876 | TEMP061 |  |
| 2877 | TEMP062 |  |
| 2878 | TEMP063 |  |
| 2879 | TEMP064 |  |
| 2880 | TEMP065 |  |


| No. | Signal Name | Contents |
| :---: | :---: | :---: |
| 2881 | TEMP066 |  |
| 2882 | TEMP067 |  |
| 2883 | TEMP068 |  |
| 2884 | TEMP069 |  |
| 2885 | TEMP070 |  |
| 2886 | TEMP071 |  |
| 2887 | TEMP072 |  |
| 2888 | TEMP073 |  |
| 2889 | TEMP074 |  |
| 2890 | TEMP075 |  |
| 2891 | TEMP076 |  |
| 2892 | TEMP077 |  |
| 2893 | TEMP078 |  |
| 2894 | TEMP079 |  |
| 2895 | TEMP080 |  |
| 2896 | TEMP081 |  |
| 2897 | TEMP082 |  |
| 2898 | TEMP083 |  |
| 2899 | TEMP084 |  |
| 2900 | TEMP085 |  |
| 2901 | TEMP086 |  |
| 2902 | TEMP087 |  |
| 2903 | TEMP088 |  |
| 2904 | TEMP089 |  |
| 2905 | TEMP090 |  |
| 2906 | TEMP091 |  |
| 2907 | TEMP092 |  |
| 2908 | TEMP093 |  |
| 2909 | TEMP094 |  |
| 2910 | TEMP095 |  |
| 2911 | TEMP096 |  |
| 2912 | TEMP097 |  |
| 2913 | TEMP098 |  |
| 2914 | TEMP099 |  |
| 2915 | TEMP100 |  |
| 2916 | TEMP101 |  |
| 2917 | TEMP102 |  |
| 2918 | TEMP103 |  |
| 2919 | TEMP104 |  |
| 2920 | TEMP105 |  |
| 2921 | TEMP106 |  |
| 2922 | TEMP107 |  |
| 2923 | TEMP108 |  |
| 2924 | TEMP109 |  |
| 2925 | TEMP110 |  |
| 2926 | TEMP111 |  |
| 2927 | TEMP112 |  |
| 2928 | TEMP113 |  |
| 2929 | TEMP114 |  |
| 2930 | TEMP115 |  |
| 2931 | TEMP116 |  |
| 2932 | TEMP117 |  |
| 2933 | TEMP118 |  |
| 2934 | TEMP119 |  |
| 2935 | TEMP120 |  |
| 2936 | TEMP121 |  |
| 2937 | TEMP122 |  |
| 2938 | TEMP123 |  |
| 2939 | TEMP124 |  |
| 2940 | TEMP125 |  |
| 2941 | TEMP126 |  |
| 2942 | TEMP127 |  |
| 2943 | TEMP128 |  |
| 2944 | TEMP129 |  |
| 2945 | TEMP130 |  |
| 2946 | TEMP131 |  |
| 2947 | TEMP132 |  |
| 2948 | TEMP133 |  |
| 2949 | TEMP134 |  |
| 2950 | TEMP135 |  |



Signal list

| No. | Signal Name |  |
| :---: | :--- | :--- |
| 3021 | TEMP206 |  |
| 3022 | TEMP207 |  |
| 3023 | TEMP208 |  |
| 3024 | TEMP209 |  |
| 3025 | TEMP210 |  |
| 3026 | TEMP211 |  |
| 3027 | TEMP212 |  |
| 3028 | TEMP213 |  |
| 3029 | TEMP214 |  |
| 3030 | TEMP215 |  |
| 3031 | TEMP216 |  |
| 3032 | TEMP217 |  |
| 3033 | TEMP218 |  |
| 3034 | TEMP219 |  |
| 3035 | TEMP220 |  |
| 3036 | TEMP221 |  |
| 3037 | TEMP222 |  |
| 3038 | TEMP223 |  |
| 3039 | TEMP224 |  |
| 3040 | TEMP225 |  |
| 3041 | TEMP226 |  |
| 3042 | TEMP227 |  |
| 3043 | TEMP228 |  |
| 3044 | TEMP229 |  |
| 3045 | TEMP230 |  |
| 3046 | TEMP231 |  |
| 3047 | TEMP232 |  |
| 3048 | TEMP233 |  |
| 3049 | TEMP234 |  |
| 3050 | TEMP235 |  |
| 3051 | TEMP236 |  |
| 3052 | TEMP237 |  |
| 3053 | TEMP238 |  |
| 3054 | TEMP239 |  |
| 3055 | TEMP240 |  |
| 3056 | TEMP241 |  |
| 3057 | TEMP242 |  |
| 3058 | TEMP243 |  |
| 3059 | TEMP244 |  |
| 3060 | TEMP245 |  |
| 3061 | TEMP246 |  |
| 3062 | TEMP247 |  |
| 3063 | TEMP248 |  |
| 3064 | TEMP249 |  |
| 3065 | TEMP250 | TEMP251 |

## Appendix C

## Variable Timer List

## Variable Timer List

| Timer | Timer No. | Contents |
| :--- | :--- | :--- |
| T1OC | 1 | 1OC TRIP TIMER |
| T2OC | 2 | 2OC TRIP TIMER |
| T3OC | 3 | 3OC TRIP TIMER |
| (T4OC) | 4 | (4OC TRIP TIMER) |
| T1REF | 5 | 1REF TRIP TIMER |
| T1EF | 6 | 1EF TRIP TIMER |
| T2REF | 7 | 2REF TRIP TIMER |
| T2EF | 8 | 2EF TRIP TIMER |
| T3REF | 9 | 3REF TRIP TIMER |
| T3EF | 10 | 3EF TRIP TIMER |
| TVFH | 11 | VIF-H TRIP TIMER |
| TVFA | 12 | V/F-A ALARM TIMER |
| TFRQL | 13 | FRQ-L TRIP TIMER |
| TFRQH | 14 | FRQ-H TRIP TIMER |
| TFRQA | 15 | FRQ-A ALARM TIMER |

## Appendix D

## Binary Output Default Setting List

Binary Output Default Setting List

| Relay <br> Model | Module <br> Name | BO No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Signal No. | Logic <br> (OR: 1, AND: <br> 2) | $\begin{gathered} \text { Timer } \\ \text { (OFF: } 0, \mathrm{ON}: 1 \text { ) } \end{gathered}$ |
| $\begin{aligned} & \text { GRT100 } \\ & -101 \end{aligned}$ | 102 | $B 01$ $B 02$ $B 03$ $B 04$ $B 05$ $B 06$ $B 07$ $B 08$ $B 09$ $B O 10$ $B 011$ $B 012$ $B 013$ |  | TRIP First <br> TRIP Second <br> DIFT relay operating 10C or 10CI relay operating 20 C or 20 Cl relay operating 1REF, 1EF or 1EFI relay operating 2REF, 2EF or 2EFI relay operating FRQ relay operating V/F-L, H relay operating V/F-A relay operating THR-L, H relay operating THR-A relay operating <br> External mechanical relay trip | 284 291 224 129,225 140,226 $173,174,73$ $190,191,76$ 230 229 242 83 248 $1536,1537,1538,1539$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
| $\begin{aligned} & \text { GRT100 } \\ & -102 \end{aligned}$ | 102 | B01 B02 B03 B04 B05 B06 B07 BO8 B09 B010 B011 B012 B013 | TRIP-1 <br> TRIP-2 <br> DIFT <br> 10C, 10Cl <br> 20C, 20CI <br> 1REF <br> 2REF <br> 1EF, 1EFI <br> 2EF, 2EFI <br> FRQ <br> V/F-T <br> V/F-H <br> V/F-A | TRIP First <br> TRIP Second <br> DIFT relay operating <br> 10C or 10CI relay operating <br> 20C or 2OCI relay operating <br> 1REF relay operating <br> 2REF relay operating <br> 1EF or 1EFI relay operating <br> 2EF or 2EFI relay operating <br> FRQ relay operating <br> V/F-T relay operating <br> V/F-H relay operating <br> V/F-A relay operating | 284 291 224 129,225 140,226 173 190 174,73 191,76 230 81 235 242 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | 103 | $\begin{aligned} & \mathrm{BO1} \\ & \mathrm{BO2} \\ & \mathrm{BO3} \\ & \mathrm{BO} \\ & \mathrm{BO5} \\ & \mathrm{BO6} \\ & \mathrm{BO7} \\ & \mathrm{BO8} \\ & \mathrm{BO9} \\ & \mathrm{BO} 10 \end{aligned}$ | THR <br> THR-A <br> TRIP-1 <br> TRIP-2 <br> TRIP-1 <br> TRIP-2 <br> EXT_MEC. TP1 <br> EXT_MEC. TP2 <br> EXT_MEC. TP3 <br> EXT_MEC. TP4 | THR-L, H relay operating <br> THR-A relay operating <br> TRIP First <br> TRIP Second <br> TRIP First <br> TRIP Second <br> External mechanical relay trip 1 <br> External mechanical relay trip 2 <br> External mechanical relay trip 3 <br> External mechanical relay trip 4 | $\begin{gathered} 83 \\ 248 \\ 284 \\ 291 \\ 284 \\ 291 \\ 1536 \\ 1537 \\ 1538 \\ 1539 \end{gathered}$ | $1$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |


| Relay <br> Model | Module <br> Name | BO No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Signal No. | Logic (OR: 1, AND: 2) | $\begin{gathered} \text { Timer } \\ \text { (OFF: } 0, \mathrm{ON}: 1 \text { ) } \end{gathered}$ |
| $\begin{aligned} & \text { GRT100 } \\ & -201 \end{aligned}$ | 102 | $B 01$ $B 02$ $B 03$ $B 04$ $B 05$ $B 06$ $B 07$ $B$ $B 08$ $B 09$ $B 010$ $B 011$ $B 012$ $B 013$ | TRIP-1 <br> TRIP-2 <br> TRIP-3 <br> DIFT <br> 10C, 10CI, 1REF, 1EF, <br> 1EFI <br> 20C, 2OCI, 2REF, 2EF, <br> 2EFI <br> 30C, 3OCI, 3REF, 3EF, <br> 3EFI <br> FRQ <br> V/F <br> V/F-A <br> THR <br> THR-A <br> EXT_MEC. TP1, 2, 3, 4 | TRIP First <br> TRIP Second <br> TRIP Third <br> DIFT relay operating <br> 10C, 10CI, 1REF, 1EF or 1EFI relay <br> operating <br> 20C, 20CI, 2REF, 2EF or 2EFI relay <br> operating <br> 30C, 30CI, 3REF, 3EF or 3EFI relay <br> operating <br> FRQ relay operating <br> V/F-L, H relay operating <br> V/F-A relay operating <br> THR-L, H relay operating <br> THR-A relay operating <br> External mechanical relay trip | 284 291 298 224 $129,225,173,174,73$ $140,226,190,191,76$ $151,227,207,208,79$ 230 229 242 83 248 $1536,1537,1538,1539$ |  |  |
| $\begin{aligned} & \text { GRT100 } \\ & -202 \end{aligned}$ | 102 | $\begin{aligned} & \mathrm{BO1} \\ & \mathrm{BO2} \\ & \mathrm{BO} 3 \\ & \mathrm{BO} \\ & \mathrm{BO5} \\ & \mathrm{BO6} \\ & \mathrm{BO} \\ & \mathrm{BO} \\ & \mathrm{BO9} \\ & \mathrm{BO} 10 \\ & \mathrm{BO} 11 \\ & \mathrm{BO} 12 \\ & \mathrm{BO} 13 \end{aligned}$ | TRIP-1 <br> TRIP-2 <br> TRIP-3 <br> DIFT <br> 10C, 10CI <br> 20C, 20CI <br> 30C, 30CI <br> 1REF <br> 2REF <br> 3REF <br> 1EF, 1EFI <br> 2EF, 2EFI <br> 3EF, 2EFI | TRIP First <br> TRIP Second <br> TRIP Third <br> DIFT relay operating <br> 10C or 10CI relay operating <br> 20 C or 20CI relay operating <br> 30 C or 30CI relay operating <br> 1REF relay operating <br> 2REF relay operating <br> 3REF relay operating <br> 1EF or 1EFI relay operating <br> 2EF or 2EFI relay operating <br> 3EF or 3EFI relay operating | $\begin{gathered} 284 \\ 291 \\ 298 \\ 224 \\ 129,225 \\ 140,226 \\ 151,227 \\ 173 \\ 190 \\ 207 \\ 174,73 \\ 191,76 \\ 208,79 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | 103 | BO1 BO2 BO3 B04 B05 $B 06$ $B 07$ BO8 B09 BO10 | FRQ <br> V/F-T <br> V/F-H <br> VIF-A <br> THR <br> THR-A <br> EXT_MEC. TP1 <br> EXT_MEC. TP2 <br> EXT_MEC. TP3 <br> EXT_MEC. TP4 | FRQ relay operating V/F-T relay operating V/F-H relay operating V/F-A relay operating THR-L, H relay operating THR-A relay operating <br> External mechanical relay trip 1 <br> External mechanical relay trip 2 <br> External mechanical relay trip 3 <br> External mechanical relay trip 4 | $\begin{gathered} 230 \\ 81 \\ 235 \\ 242 \\ 83 \\ 248 \\ 1536 \\ 1537 \\ 1538 \\ 1539 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |


| Relay <br> Model | Module <br> Name | BO No. | Signal Name | Contents | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Signal No. | Logic (OR: 1, AND: 2) | $\begin{gathered} \text { Timer } \\ \text { (OFF: } 0, \mathrm{ON}: 1 \text { ) } \end{gathered}$ |
| $\begin{aligned} & \text { GRT100 } \\ & -203 \end{aligned}$ | 102 | BO1 BO2 BO3 $B 04$ $B 05$ $B 06$ $B 07$ $B 08$ $B 09$ $B 010$ $B 011$ $B 012$ $B 013$ |  | TRIP First <br> TRIP Second <br> TRIP Third <br> DIFT relay operating <br> 10C, 10CI, 1REF, 1EF or 1EFI relay <br> operating <br> 2OC, 2OCI, 2REF, 2EF or 2EFI relay <br> operating <br> 30C, 30CI, 3REF, 3EF or 3EFI relay <br> operating <br> FRQ relay operating <br> V/F-L, H relay operating <br> V/F-A relay operating <br> THR-L, H relay operating <br> THR-A relay operating <br> External mechanical relay trip | 284 291 298 224 $129,225,173,174,73$ $140,226,190,191,76$ $151,227,207,208,79$ 230 229 242 83 248 $1536,1537,1538,1539$ | 1 1 1 1 1 <br> 1 <br> 1 <br> 1 <br> 1 <br> 1 <br> 1 <br> 1 <br> 1 |  |
| $\begin{aligned} & \text { GRT100 } \\ & -204 \end{aligned}$ | 102 | $\begin{aligned} & \mathrm{BO1} \\ & \mathrm{BO2} \\ & \mathrm{BO} 3 \\ & \mathrm{BO4} \\ & \mathrm{BO5} \\ & \mathrm{BO6} \\ & \mathrm{BO} \\ & \mathrm{BO} \\ & \mathrm{BO9} \\ & \mathrm{BO} 10 \\ & \mathrm{BO} 11 \\ & \mathrm{BO} 12 \\ & \mathrm{BO} 13 \\ & \hline \end{aligned}$ | TRIP-1 <br> TRIP-2 <br> TRIP-3 <br> DIFT <br> 10C, 10CI <br> 20C, 20Cl <br> 30C, 30Cl <br> 1REF <br> 2REF <br> 3REF <br> 1EF, 1EFI <br> 2EF, 2EFI <br> 3EF, 2EFI | TRIP First <br> TRIP Second <br> TRIP Third <br> DIFT relay operating 10C or 10CI relay operating 20 C or 20CI relay operating 30C or 30CI relay operating 1REF relay operating 2REF relay operating 3REF relay operating 1EF or 1EFI relay operating 2EF or 2EFI relay operating 3EF or 3EFI relay operating | $\begin{gathered} 284 \\ 291 \\ 298 \\ 224 \\ 129,225 \\ 140,226 \\ 151,227 \\ 173 \\ 190 \\ 207 \\ 174,73 \\ 191,76 \\ 208,79 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |
|  | 103 | BO1 BO2 BO3 B04 B05 BO6 B07 BO8 B09 BO10 | FRQ <br> V/F-T <br> VIF-H <br> V/F-A <br> THR <br> THR-A <br> EXT_MEC. TP1 <br> EXT_MEC. TP2 <br> EXT_MEC. TP3 <br> EXT_MEC. TP4 | FRQ relay operating <br> V/F-T relay operating <br> V/F-H relay operating <br> V/F-A relay operating <br> THR-L, H relay operating <br> THR-A relay operating <br> External mechanical relay trip 1 <br> External mechanical relay trip 2 <br> External mechanical relay trip 3 <br> External mechanical relay trip 4 | $\begin{gathered} 230 \\ 81 \\ 235 \\ 242 \\ 83 \\ 248 \\ 1536 \\ 1537 \\ 1538 \\ 1539 \end{gathered}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ |

## Appendix E

## Details of Relay Menu and LCD \& Button Operation



$a-1 \quad b-1$



| Scheme switch |  |  | $3 / * * *$ |
| :--- | :--- | :--- | ---: |
| DIFTPMD | 1=3POR | $2=1 \mathrm{P}$ |  |
| 1REF | 1=1IO | $2=2 I 0$ | $3=3 I 0$ |
| 2REF | 1=1IO | $2=2 I 0$ | $3=3 I 0$ |



| /6 REF |  |  |  | 3/11 |
| :---: | :---: | :---: | :---: | :---: |
| 1ik ( | 0.50 pu ) | 1kct1( | 1.00 | ) |
| 1kct2( | 1.00 ) | 1kct3( | 1.00 | ) |
| 1p2 ( | 10 \% ) | 1kp ( | 1.00pu | ) |


| $160 C$ |  | $3 / 12$ |  |
| :--- | :--- | :--- | :--- |
| $10 C$ | $(0.10 \mathrm{pu})$ | $20 C$ | $(0.10 \mathrm{pu})$ |
| $30 C$ | $(0.10 \mathrm{pu})$ | T10C $(10.00 \mathrm{~s})$ |  |
| T 20 C | $(10.00 \mathrm{~s})$ | T30C $(10.00 \mathrm{~s})$ |  |



$$
\mathrm{H} \quad\left(\begin{array}{l}
1.30 \mathrm{pu}) \\
\mathrm{IT}
\end{array} \mathrm{c}\right.
$$

/6 FRQ
/6 FRQ
3/ 3
81-1 ( 45.00 Hz ) 81-2 ( 55.00 Hz )
81-1 ( 45.00 Hz ) 81-2 ( 55.00 Hz )
UV ( 40 V ) TFRQL( 1.00 s
UV ( 40 V ) TFRQL( 1.00 s
TFRQH ( 1.00 s ) TFRQA( 1.00 s )



| /2 Binary input | 1/16 |
| :---: | :---: |
| BISW 1 1=Norm 2=Inv | 1 - |
| BISW 2 1=Norm 2=Inv | 1 |
| BISW 3 1=Norm 2=Inv | 1 |



## LCD AND BUTTON OPERATION INSTRUCTION



## Appendix F

## Case Outline

- Flush Mount Type
- Rack Mount Type


Terminal block

## Case Outline : Flush Mount Type



Top View


Front View

## Case Outline: Rack Mount Type


(c) Bar for Top and Bottom of Relay

|  | Parts |
| :--- | :--- | :--- |
| (a) | 1 Large bracket, $\quad 5$ Round head screws with spring washers and washers (M4x10) |
| (b) | 1 Small bracket, $\quad 3$ Countersunk head screws (M4x6) |
| (c) | 2 Bars, $\quad 4$ Countersunk head screws (M3x8) |

## How to Mount Attachment Kit for Rack-Mounting

Caution: Be careful that the relay modules or terminal blocks, etc., are not damage while mounting.
Tighten screws to the specified torque according to the size of screw.
Step 1.


Remove case cover.

Step 2.


Remove the left and right brackets by unscrewing the three screws respectively, then remove two screws on left side of the relay.
And then, remove four seals on the top and bottom of the relay.

Mount the small bracket by screwing three countersunk head screws(M4x6) and apply adhesives to the screws to prevent them from loosening.
Mount the large bracket by five round head screws(M4×10) with washer and spring washer.
And then, mount the top and bottom bars by two countersunk head screws(M3x8) respectivelv.
$\Sigma_{\text {Small bracket }}$

Completed.

## Appendix G

External Connections


Typical External Connection of Model 101D


Typical External Connection of Model 102D


Typical External Connection of Model 201D


Typical External Connection of Model 202D


Typical External Connection of Model 203D


Typical External Connection of Model 204D

## Appendix H

# Relay Setting Sheet 

\author{

1. Relay Identification <br> 2. Contacts Setting <br> 3. Relay and Protection Scheme Setting Sheet
}

## Relay Setting Sheets

1. Relay Identification

Date:

| $\frac{\text { Relay type }}{}$ |  |
| :--- | :--- |
| Frequency Serial Number <br> $V T$ rating  <br> Password  <br> Active supply voltage  |  |

2. Contacts Setting

| (1) IO\#2 | B01 |
| :---: | :---: |
|  | BO2 |
|  | B03 |
|  | B04 |
|  | B05 |
|  | B06 |
|  | B07 |
|  | B08 |
|  | B09 |
|  | B010 |
|  | B011 |
|  | B012 |
|  | B013 |
| (2) 10\#3 | B01 |
|  | BO2 |
|  | B03 |
|  | B04 |
|  | B05 |
|  | B06 |
|  | B07 |
|  | B08 |
|  | B09 |
|  | B010 |

3. Relay and Protection Scheme Setting Sheet


| № | Name | Range | Units | Contents | Def ault Setting of Relay Series(5A rating / 1A rating) |  |  |  |  |  | User setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | World wide |  |  |  | ENA |  |  |
|  |  |  |  |  | 2-Winding |  | 3-Winding |  |  |  |  |
|  |  | 5 A rating ${ }^{\text {a }}$ ( 1 A rating |  |  | 101D | 102D | 201D | 202D | 203D | 204D |  |
| 74 | 2EFI1 | Off - On | - | EFI trip | Off |  |  |  | Off |  |  |
| 75 | 2EFI2 | Off - On | - | ditto | On |  |  |  | On |  |  |
| 76 | 2EFI3 | Off - On | - | ditto | Off |  |  |  | Off |  |  |
| 77 | 2EFI4 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 78 | 2EFI5 | Off - On | - | ditto | Off |  |  |  |  |  |  |
| 79 | 3REF1 | Off - On | - | Restricted earth fault trip | -- |  |  |  |  |  |  |
| 80 | 3REF2 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 81 | 3REF3 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 82 | 3REF4 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 83 | 3REF5 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 84 | 30C1 | Off - On | - | OC trip | -- |  |  |  |  |  |  |
| 85 | 30C2 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 86 | 30C3 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 87 | 30C4 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 88 | 30 C 5 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 89 | $3 \mathrm{Cl1} 1$ | Off - On | - | OCI trip | -- |  |  |  |  |  |  |
| 90 | $3 \mathrm{OCl2}$ | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 91 | 3 OCl 3 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 92 | $3 \mathrm{CCI4}$ | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 93 | $3 \mathrm{CCl5}$ | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 94 | 3EF1 | Off - On | - | EF trip | -- |  |  |  |  |  |  |
| 95 | 3EF2 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 96 | 3EF3 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 97 | 3EF4 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 98 | 3EF5 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 99 | 3EFI1 | Off - On | - | EFI trip | -- |  |  |  |  |  |  |
| 100 | 3EFI2 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 101 | 3EFI3 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 102 | 3EFI4 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 103 | 3EFI5 | Off - On | - | ditto | -- |  |  |  |  |  |  |
| 104 | FRQ-UF1 | Off - On | - | FRQ trip |  |  |  |  |  |  |  |
| 105 | FRQ-UF2 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 106 | FRQ1 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 107 | FRQ2 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 108 | FRQ3 | Off - On | - | ditto | Off |  |  |  |  |  |  |
| 109 | FRQ4 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 110 | FRQ5 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 111 | FRQA | Off - On | - | ditto |  |  |  |  |  |  |  |
| 112 | V/F1 | Off - On | - | V/F trip |  |  |  |  |  |  |  |
| 113 | V/F2 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 114 | V/F3 | Off - On | - | ditto | Off |  |  |  |  |  |  |
| 115 | V/F4 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 116 | V/F5 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 117 | V/FA | Off - On | - | ditto |  |  |  |  |  |  |  |
| 118 | THR1 | Off - On | - | THR trip |  |  |  |  |  |  |  |
| 119 | THR2 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 120 | THR3 | Off - On | - | ditto | Off |  |  |  |  |  |  |
| 121 | THR4 | Off - On | - | ditto | Off |  |  |  |  |  |  |
| 122 | THR5 | Off - On | - | ditto | Off |  |  |  |  |  |  |
| 123 | THRA | Off - On | - | ditto | On |  |  |  |  |  |  |
| 124 | M. T1-1 | Off - On | - | Mechanical trip1 | On |  |  |  |  |  |  |
| 125 | M.T1-2 | Off - On | - | ditto | On |  |  |  | On |  |  |
| 126 | M.T1-3 | Off - On | - | ditto | Off |  |  |  | On |  |  |
| 127 | M. T1-4 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 128 | M. T1-5 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 129 | M. T2-1 | Off - On | - | Mechanical trip2 | On |  |  |  |  |  |  |
| 130 | M. T2-2 | Off - On | - | ditto | On |  |  |  | On |  |  |
| 131 | M. T2-3 | Off - On | - | ditto | Off |  |  |  | On |  |  |
| 132 | M. T2-4 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 133 | M. T2-5 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 134 | M. T3-1 | Off - On | - | Mechanical trip3 | On |  |  |  | On |  |  |
| 135 | M. T3-2 | Off - On | - | ditto | On |  |  |  | On |  |  |
| 136 | M. T3-3 | Off - On | - | ditto | Off |  |  |  | On |  |  |
| 137 | M. T3-4 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 138 | M. T3-5 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 139 | M. T4-1 | Off - On | - | Mechanical trip4 | On |  |  |  | On |  |  |
| 140 | M. T4-2 | Off - On | - | ditto | On |  |  |  | On |  |  |
| 141 | M. T4-3 | Off - On | - | ditto | Off |  | On |  | On |  |  |
| 142 | M. T4-4 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 143 | M. T4-5 | Off - On | - | ditto | Off |  |  |  | -- |  |  |
| 144 | SVCNT | ALM\&BLK - ALM | - | Super visor control | ALM\&BLK |  |  |  | ALM\&BLK |  |  |
| 145 | CTSEN | Off - On | - | $\begin{aligned} & \text { DIF output blocked by CT } \\ & \text { saturation } \end{aligned}$ | Off |  |  |  | Off |  |  |




| № | Name | Range | Units | Contents | Default Setting of Relay Series(5A rating / 1A rating) |  |  |  |  |  | User setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | World wide |  |  |  | $\frac{\text { ENA }}{3 \text { 3-Winding }}$ |  |  |
|  |  |  |  |  | 2-Winding |  | 3-Winding |  |  |  |  |
|  |  | 5A rating |  |  | 101D | 102D | 201D | 202D | 203D | 204D |  |
| 286 | \|P2-1 | 0-254 | - | IP Address of CH\#2 | 192 |  |  |  |  |  |  |
| 287 | IP2-2 | 0-254 | - |  |  |  |  |  | 168 |  |  |
| 288 | IP2-3 | 0-254 | - |  | 19 |  |  |  | 19 |  |  |
| 289 | IP2-4 | 0-254 | - |  | 173 |  |  |  | 173 |  |  |
| 290 | SM2-1 | 0-255 | - | Subnet Mask of CH\#2 | 255 |  |  |  | 255 |  |  |
| 291 | SM2-2 | 0-255 | - |  |  |  |  |  | 255 |  |  |
| 292 | SM2-3 | 0-255 | - |  | 255 |  |  |  | 255 |  |  |
| 293 | SM2-4 | 0-255 | - |  | 0 |  |  |  | 0 |  |  |
| 294 | GW2-1 | 0-254 | - | Gateway Address of CH\#2 | 192 |  |  |  | 192 |  |  |
| 295 | GW2-2 | 0-254 | - |  | 168 |  |  |  | 168 |  |  |
| 296 | GW2-3 | 0-254 | - |  | 19 |  |  |  | 19 |  |  |
| 297 | GW2-4 | 0-254 | - |  | 1 |  |  |  | 1 |  |  |
| 298 | SI1-1 | 0-254 | - | SNTP Server1 Address | 0 |  |  |  | 0 |  |  |
| 299 | SI1-2 | 0-254 | - |  |  |  |  |  | 0 |  |  |
| 300 | SI1-3 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 301 | SI1-4 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 302 | SI2-1 | 0-254 | - | SNTP Server2 Address | 0 |  |  |  | 0 |  |  |
| 303 | SI2-2 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 304 | SI2-3 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 305 | SI2-4 | 0-254 | - |  |  |  |  |  | 0 |  |  |
| 306 | SI3-1 | 0-254 | - | SNTP Server3 Address | 0 |  |  |  | 0 |  |  |
| 307 | SI3-2 | 0-254 | - |  |  |  |  |  | 0 |  |  |
| 308 | SI3-3 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 309 | SI3-4 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 310 | S14-1 | 0-254 | - | SNTP Server4 Address | 0 |  |  |  | 0 |  |  |
| 311 | SI4-2 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 312 | SI4-3 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 313 | SI4-4 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 314 | SMODE | 0-1 | - |  | 0 |  |  |  | 0 |  |  |
| 315 | GOINT | 1-60 | s | GOOSE message interval | 60 |  |  |  | 60 |  |  |
| 316 | PG1-1 | 0-254 | - | Ping check addrs port\#1 | 0 |  |  |  | 0 |  |  |
| 317 | PG1-2 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 318 | PG1-3 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 319 | PG1-4 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 320 | PG2-1 | 0-254 | - | Ping check addrs port\#2 | 0 |  |  |  | 0 |  |  |
| 321 | PG2-2 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 322 | PG2-3 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 323 | PG2-4 | 0-254 | - |  | 0 |  |  |  | 0 |  |  |
| 324 | PRTCL1 | HDLC - IEC103 | - | CH\#1 Communication protocol | HDLC |  |  |  | HDLC |  |  |
| 325 | 232 C | 9.6-19.2-38.4-57.6 | - | RS-232C baud rateIEC60870-5-103 baudrate | 9.6 |  |  |  | 9.6 |  |  |
| 326 | IECBR | 9.6-19.2 | - |  | 19.2 |  |  |  | 19.2 |  |  |
| 327 | IECBLK |  | - | Monitor direction blocked | Normal |  |  |  | Normal |  |  |
| 328 | 850BLK | Normal - Blocked | - | IEC61850 Block | Normal |  |  |  | Normal |  |  |
| 329 | 850AUT | Off - On | - | IEC61850 Authorize | Off |  |  |  | Off |  |  |
| 330 | TSTMOD | Off - On | - | IEC61850 Test mode | Off |  |  |  |  |  |  |
| 331 | GSECHK | Off - On | - | GOOSE receive check |  |  |  |  |  |  |  |
| 332 | PINGCHK | Off - On | - | Ping check |  |  |  |  |  |  |  |
| 333 | Phase mode | Operating - Fault | - | Phase indication of Fault recording |  |  |  |  |  | ting |  |
| 334 | BITRN | 0-128 | - | Number of bi-trigger (on/off) events |  |  |  |  |  |  |  |
| 335 | Time | 0.1-3.0 | S | Disturbance record |  |  |  |  |  |  |  |
| 336 | 10CPS | 0.10-20.00 | pu | OC element for |  |  |  |  |  |  |  |
| 337 | 2OCPS | 0.10-20.00 | pu | disturbance recorder |  |  |  |  |  |  |  |
| 338 | 30CPS | 0.10-20.00 | pu | initiation |  |  |  |  |  |  |  |
| 339 | 10CPG | 0.05-20.00 | pu |  |  |  |  |  |  |  |  |
| 340 | 20CPG | 0.05-20.00 | pu |  |  |  |  |  |  |  |  |
| 341 | 30CPG | 0.05-20.00 | pu |  |  |  |  |  |  |  |  |
| 342 | TRIP1 | Off - On | - | Disturbance trigger |  |  |  |  |  |  |  |
| 343 | TRIP2 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 344 | TRIP3 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 345 | TRIP4 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 346 | TRIP5 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 347 | 10CPS | Off - On | - | ditto |  |  |  |  |  |  |  |
| 348 | 20CPS | Off - On | - | ditto |  |  |  |  |  |  |  |
| 349 | 30CPS | Off - On | - | ditto |  |  |  |  |  |  |  |
| 350 | 10CPG | Off - On | - | ditto |  |  |  |  |  |  |  |
| 351 | 20CPG | Off - On | - | ditto |  |  |  |  |  |  |  |
| 352 | 30CPG | Off - On | - | ditto |  |  |  |  |  |  |  |
| 353 | 2 F | Off - On | - | ditto |  |  |  |  |  |  |  |
| 354 | 5 F | Off - On | - | ditto |  |  |  |  |  |  |  |
| 355 | EVENT1 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 356 | EVENT2 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 357 | EVENT3 | Off - On | - | ditto |  |  |  |  |  |  |  |
| 358 | Display value | Primary - Secondary | - | Metering |  |  |  |  |  |  |  |
| 359 | Time sync | Off - IRIG - RSM - IEC - SNTP | - | Time |  |  |  |  |  |  |  |
| 360 | GMT | $-12-+12$ | hrs | Time |  |  |  |  |  |  |  |
| 361 | GMTm | $-59-+59$ | min | Time |  |  |  |  |  |  |  |

Event record default setting

| No. | Name | Range | Unit | Contents | Default setting |  |  | Model |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Sig. NO. | Signal name | type | 101D | 102D | 201D | 201D | 203D | 204D |
| 1 | EV1 | 0-3071 | - | Event record signal | 1536 | Mec.Trip1 | On/Off |  |  | $\checkmark$ |  |  |  |
| 2 | EV2 | 0-3071 | - | ditto | 1537 | Mec.Trip2 | On/Off |  |  | $\checkmark$ |  |  |  |
| 3 | EV3 | 0-3071 | - | ditto | 1538 | Mec.Trip3 | On/Off |  |  | $\checkmark$ |  |  |  |
| 4 | EV4 | 0-3071 | - | ditto | 1539 | Mec.Trip4 | On/Off |  |  | $\checkmark$ |  |  |  |
| 5 | EV5 | 0-3071 | - | ditto | 314 | Trip | On/Off |  |  | $\checkmark$ |  |  |  |
| 6 | EV6 | 0-3071 | - | ditto | 1540 | Ind.reset | On/Off |  |  | $\checkmark$ |  |  |  |
| 7 | EV7 | 0-3071 | - | ditto | 1552 | Event1 | On/Off |  |  | $\checkmark$ |  |  |  |
| 8 | EV8 | 0-3071 | - | ditto | 1553 | Event2 | On/Off |  |  | $\checkmark$ |  |  |  |
| 9 | EV9 | 0-3071 | - | ditto | 1554 | Event3 | On/Off |  |  | $\checkmark$ |  |  |  |
| 10 | EV10 | 0-3071 | - | ditto | 1251 | Relay fail | On/Off |  |  | $\checkmark$ |  |  |  |
| 11 | EV11 | 0-3071 | - | ditto | 1267 | CT1 err | On/Off |  |  | $\checkmark$ |  |  |  |
| 12 | EV12 | 0-3071 | - | ditto | 1268 | CT2 err | On/Off |  |  | $\checkmark$ |  |  |  |
| 13 | EV13 | 0-3071 | - | ditto | 1269 | CT3 err | On/Off |  | - |  | $\checkmark$ |  |  |
| 14 | EV14 | 0-3071 | - | ditto | 1270 | CT4 err | On/Off |  |  | - |  |  |  |
| 15 | EV15 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 16 | EV16 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 17 | EV17 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 18 | EV18 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 19 | EV19 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 20 | EV20 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 21 | EV21 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 22 | EV22 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 23 | EV23 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 24 | EV24 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 25 | EV25 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 26 | EV26 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 27 | EV27 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 28 | EV28 | 0-3071 | - | difto | 0 |  | On/Off |  |  |  |  |  |  |
| 29 | EV29 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 30 | EV30 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 31 | EV31 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 32 | EV32 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 33 | EV33 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 34 | EV34 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 35 | EV35 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 36 | EV36 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 37 | EV37 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 38 | EV38 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 39 | EV39 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 40 | EV40 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 41 | EV41 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 42 | EV42 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 43 | EV43 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 44 | EV44 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 45 | EV45 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 46 | EV46 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 47 | EV47 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 48 | EV48 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 49 | EV49 | 0-3071 | - | ditto | 1258 | Relay fail-A | On/Off |  |  | $\checkmark$ |  |  |  |
| 50 | EV50 | 0-3071 | - | ditto | 1438 | Data lost | On/Off |  |  | $\checkmark$ |  |  |  |
| 51 | EV51 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 52 | EV52 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 53 | EV53 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 54 | EV54 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 55 | EV55 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 56 | EV56 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 57 | EV57 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 58 | EV58 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 59 | EV59 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 60 | EV60 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 61 | EV61 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 62 | EV62 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 63 | EV63 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 64 | EV64 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |

Event record default setting

| No. | Name | Range | Unit | Contents | Default setting |  |  | Model |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Sig. NO. | Signal name | type | 101D | 102D | 201D | 201D | 203D | 204D |
| 65 | EV65 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 66 | EV66 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 67 | EV67 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 68 | EV68 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 69 | EV69 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 70 | EV70 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 71 | EV71 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 72 | EV72 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 73 | EV73 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 74 | EV74 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 75 | EV75 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 76 | EV76 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 77 | EV77 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 78 | EV78 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 79 | EV79 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 80 | EV80 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 81 | EV81 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 82 | EV82 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 83 | EV83 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 84 | EV84 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 85 | EV85 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 86 | EV86 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 87 | EV87 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 88 | EV88 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 89 | EV89 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 90 | EV90 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 91 | EV91 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 92 | EV92 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 93 | EV93 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 94 | EV94 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 95 | EV95 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 96 | EV96 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 97 | EV97 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 98 | EV98 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 99 | EV99 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 100 | EV100 | 0-3071 | - | ditto | 0 |  | On/Off |  |  |  |  |  |  |
| 101 | EV101 | 0-3071 | - | ditto | 1243 | SET.GROUP1 | On |  |  |  |  |  |  |
| 102 | EV102 | 0-3071 | - | ditto | 1244 | SET.GROUP2 | On |  |  |  |  |  |  |
| 103 | EV103 | 0-3071 | - | ditto | 1245 | SET.GROUP3 | On |  |  |  |  |  |  |
| 104 | EV104 | 0-3071 | - | ditto | 1246 | SET.GROUP4 | On |  |  |  |  |  |  |
| 105 | EV105 | 0-3071 | - | ditto | 1247 | SET.GROUP5 | On |  |  |  |  |  |  |
| 106 | EV106 | 0-3071 | - | ditto | 1248 | SET.GROUP6 | On |  |  |  |  |  |  |
| 107 | EV107 | 0-3071 | - | ditto | 1249 | SET.GROUP7 | On |  |  |  |  |  |  |
| 108 | EV108 | 0-3071 | - | ditto | 1250 | SET.GROUP8 | On |  |  |  |  |  |  |
| 109 | EV109 | 0-3071 | - | ditto | 1448 | Sys. Set change | On |  |  |  |  |  |  |
| 110 | EV110 | 0-3071 | - | ditto | 1449 | Rly. Set change | On |  |  |  |  |  |  |
| 111 | EV111 | 0-3071 | - | ditto | 1450 | Grp. Set change | On |  |  |  |  |  |  |
| 112 | EV112 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 113 | EV113 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 114 | EV114 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 115 | EV115 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 116 | EV116 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 117 | EV117 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 118 | EV118 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 119 | EV119 | 0-3071 | - | ditto | 1445 | PLC data CHG | On |  |  |  |  |  |  |
| 120 | EV120 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 121 | EV121 | 0-3071 | - | ditto | 1409 | LED RST | On |  |  | $\checkmark$ |  |  |  |
| 122 | EV122 | 0-3071 | - | ditto | 1435 | F.record_CLR | On |  |  |  |  |  |  |
| 123 | EV123 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 124 | EV124 | 0-3071 | - | ditto | 1436 | E.record_CLR | On |  |  | $\checkmark$ |  |  |  |
| 125 | EV125 | 0-3071 | - | ditto | 1437 | D.record_CLR | On |  |  |  |  |  |  |
| 126 | EV126 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 127 | EV127 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |
| 128 | EV128 | 0-3071 | - | ditto | 0 |  | On |  |  |  |  |  |  |

Disturbance record default setting

| No. | Name | Range | Unit | Contents | Default setting |  | Model |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Signal No. | Signal name | $\begin{aligned} & \text { 101D } \\ & \text { 102D } \end{aligned}$ | $\begin{aligned} & \text { 201D } \\ & \text { 202D } \end{aligned}$ | $\begin{aligned} & 203 D \\ & 204 D \end{aligned}$ |
| 1 | SIG1 | 0-3071 | - | disturbance record triger | 284 | TRIP-1 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 2 | SIG2 | 0-3071 | - | ditto | 291 | TRIP-2 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 3 | SIG3 | 0-3071 | - | ditto | 298 | TRIP-3 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 4 | SIG4 | 0-3071 | - | ditto | 305 | TRIP-4 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 5 | SIG5 | 0-3071 | - | ditto | 312 | TRIP-5 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 6 | SIG6 | 0-3071 | - | ditto | 330 | DIFT | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 7 | SIG7 | 0-3071 | - | ditto | 331 | HOC | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 8 | SIG8 | 0-3071 | - | ditto | 122 | 2F | $\nabla$ | $\nabla$ | $\nabla$ |
| 9 | SIG9 | 0-3071 | - | ditto | 123 | 5F | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 10 | SIG10 | 0-3071 | - | ditto | 332 | 1REF | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 11 | SIG11 | 0-3071 | - | ditto | 333 | 2REF | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 12 | SIG12 | 0-3071 | - | ditto | 334 | 3REF | -- | $\checkmark$ | $\checkmark$ |
| 13 | SIG13 | 0-3071 | - | ditto | 335 | 10C | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 14 | SIG14 | 0-3071 | - | ditto | 336 | 2OC | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 15 | SIG15 | 0-3071 | - | ditto | 337 | 30C | -- | $\checkmark$ | $\checkmark$ |
| 16 | SIG16 | 0-3071 | - | ditto | 338 | 4OC | -- | -- | -- |
| 17 | SIG17 | 0-3071 | - | ditto | 339 | 10 Cl | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 18 | SIG18 | 0-3071 | - | ditto | 340 | 2 OCl | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 19 | SIG19 | 0-3071 | - | ditto | 341 | 3 OCl | -- | $\checkmark$ | $\checkmark$ |
| 20 | SIG20 | 0-3071 | - | ditto | 342 | 4 OCI | -- | -- | -- |
| 21 | SIG21 | 0-3071 | - | ditto | 343 | 1EF | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 22 | SIG22 | 0-3071 | - | ditto | 344 | 2EF | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 23 | SIG23 | 0-3071 | - | ditto | 345 | 3EF | -- | $\checkmark$ | $\checkmark$ |
| 24 | SIG24 | 0-3071 | - | ditto | 346 | 1EFI | $\nabla$ | $\nabla$ | $\nabla$ |
| 25 | SIG25 | 0-3071 | - | ditto | 347 | 2EFI | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 26 | SIG26 | 0-3071 | - | ditto | 348 | 3EFI | -- | $\checkmark$ | $\checkmark$ |
| 27 | SIG27 | 0-3071 | - | ditto | 349 | FRQ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 28 | SIG28 | 0-3071 | - | ditto | 350 | V/F | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 29 | SIG29 | 0-3071 | - | ditto | 351 | THR | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 30 | SIG30 | 0-3071 | - | ditto | 361 | Mec.tirp | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 31 | SIG31 | 0-3071 | - | ditto | 0 |  |  |  |  |
| 32 | SIG32 | 0-3071 | - | ditto | 0 |  |  |  |  |

PLC default setting

| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s | Model 200s | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  | Filename: PGRT100DA000 |  | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | Release Signal | Off <br> Delay | On <br> Delay | One <br> Shot | Time Value |  |
| 1536 | EXT_MEC.TP1 | X |  |  |  | [513]BI1_COMMAND |  |  |  |  |  |  |  |  | X |
| 1537 | EXT_MEC.TP2 | X |  |  |  | [514]BI2_COMMAND |  |  |  |  |  |  |  |  | X |
| 1538 | EXT_MEC.TP3 | X |  |  |  | [515]BI3_COMMAND |  |  |  |  |  |  |  |  | X |
| 1539 | EXT_MEC.TP4 | X |  |  |  | [516]BI4_COMMAND |  |  |  |  |  |  |  |  | X |
| 1540 | IND.RESET | X |  |  |  | [517]BI5_COMMAND |  |  |  |  |  |  |  |  | X |
| 1541 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1542 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1543 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1544 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1545 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1546 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1547 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1548 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1549 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1550 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1551 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1552 | EVENT1 | X |  |  |  | [526]Bl14 | OMMAND |  |  |  |  |  |  |  | X |
| 1553 | EVENT2 | X |  |  |  | [527]BI15 | OMMAND |  |  |  |  |  |  |  | X |
| 1554 | EVENT3 | X |  |  |  | [528]BI16 | OMMAND |  |  |  |  |  |  |  | X |
| 1555 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1556 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1557 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1558 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1559 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1560 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1561 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1562 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1563 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1564 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1565 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1566 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1567 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1568 | PROT_BLOCK |  |  |  |  | [518]BI6 | MMAND |  |  |  |  |  |  |  | X |
| 1569 DIF_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1570 1REF_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1571 10C_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1572 10CI_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1573 | 1EF_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1574 | 1EFI_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1575 | 2REF_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1576 | 2OC_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1577 | 20CI_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1578 | 2EF_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1579 | 2EFI BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1580 | 3REF_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1581 | 30C_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1582 | 30CI_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1583 | 3EF_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1584 | 3EFI_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1585 | 40C_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1586 | 40CI_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1587 | FRQ_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1588 | FRQ-A_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1589 | V/F_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1590 | V/F-A_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1591 | THR BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1592 | THR-A_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1593 | MEC.TP1_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1594 | MEC.TP2_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1595 | MEC.TP3_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1596 | MEC.TP4_BLOCK |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1597 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1598 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1599 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |




| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cycle |  |  | Turn | Model 100s | Model 200s | Flip Flop |  |  | Timer |  |  |  | None |
| № | Signal | 30 | 90 | User |  | Filename: PGRT100DA000 |  | Norm | Back <br> Up | Release Signal | $\begin{gathered} \text { Off } \\ \text { Delay } \end{gathered}$ | On <br> Delay | One Shot | Time Value |  |
| 1728 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1729 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1730 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1731 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1732 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1733 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1734 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1735 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1736 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1737 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1738 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1739 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1740 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1741 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1742 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1743 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1744 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1745 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1746 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1747 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1748 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1749 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1750 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1751 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1752 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1753 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1754 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1755 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1756 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1757 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1758 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1759 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1760 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1761 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1762 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1763 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1764 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1765 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1766 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1767 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1768 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1769 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1770 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1771 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1772 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1773 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1774 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1775 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1776 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1777 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1778 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1779 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1780 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1781 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1782 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1783 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1784 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1785 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1786 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1787 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1788 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1789 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1790 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1791 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s Model 200s <br> Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | Back Up | Release Signal | $\begin{array}{\|c} \hline \text { Off } \\ \text { Delay } \end{array}$ | On Delay | One Shot | Time Value |  |
| 1856 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1857 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1858 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1859 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1860 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1861 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1862 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1863 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1864 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1865 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1866 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1867 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1868 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1869 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1870 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1871 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1872 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1873 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1874 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1875 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1876 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1877 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1878 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1879 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1880 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1881 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1882 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1883 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1884 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1885 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1886 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1887 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1888 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1889 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1890 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1891 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1892 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1893 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1894 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1895 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1896 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1897 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1898 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1899 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1900 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1901 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1902 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1903 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1904 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1905 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1906 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1907 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1908 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1909 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1910 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1911 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1912 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1913 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1914 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1915 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1916 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1917 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1918 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1919 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s | Model 200s | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  | Filename: PGRT100DA000 |  | Norm | Back <br> Up | Release Signal | $\begin{array}{\|c\|} \hline \text { Off } \\ \text { Delay } \end{array}$ | On Delay | One Shot | Time Value |  |
| 1920 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1921 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1922 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1923 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1924 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1925 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1926 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1927 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1928 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1929 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1930 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1931 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1932 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1933 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1934 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1935 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1936 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1937 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1938 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1939 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1940 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1941 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1942 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1943 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1944 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1945 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1946 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1947 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1948 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1949 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1950 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1951 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1952 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1953 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1954 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1955 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1956 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1957 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1958 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1959 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1960 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1961 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1962 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1963 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1964 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1965 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1966 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1967 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1968 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1969 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1970 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1971 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1972 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1973 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1974 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1975 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1976 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1977 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1978 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1979 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1980 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1981 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1982 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1983 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s | Model 200s | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  | Filename: PGRT100DA000 |  | Norm | Back <br> Up | Release Signal | Off <br> Delay | On Delay | One Shot | Time Value |  |
| 1984 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1985 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1986 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1987 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1988 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1989 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1990 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1991 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1992 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1993 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1994 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1995 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1996 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1997 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1998 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1999 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2001 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2002 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2003 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2004 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2005 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2006 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2007 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2008 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2009 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2010 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2011 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2012 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2013 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2014 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2015 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2016 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2017 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2018 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2019 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2020 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2021 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2022 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2023 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2024 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2025 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2026 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2027 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2028 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2029 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2030 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2031 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2032 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2033 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2034 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2035 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2036 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2037 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2038 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2039 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2040 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2041 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2042 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2043 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2044 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2045 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2046 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2047 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s Model 200s <br> Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \\ \hline \end{gathered}$ | Release Signal | Off <br> Delay | On Delay | One Shot | Time Value |  |
| 2048 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2050 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2051 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2052 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2053 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2054 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2055 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2056 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2057 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2058 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2059 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2060 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2061 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2062 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2063 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2064 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2065 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2066 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2067 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2068 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2069 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2070 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2071 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2072 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2073 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2074 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2075 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2076 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2077 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2078 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2079 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2080 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2081 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2082 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2083 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2084 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2085 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2086 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2087 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2088 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2089 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2090 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2091 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2092 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2093 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2094 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2095 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2096 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2097 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2098 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2099 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2101 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2102 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2103 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2104 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2105 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2106 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2107 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2108 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2109 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2110 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2111 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s Model 200s <br> Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | Release Signal | Off <br> Delay | On Delay | One Shot | Time Value |  |
| 2112 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2113 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2114 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2115 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2116 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2117 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2118 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2119 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2120 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2121 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2122 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2123 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2124 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2125 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2126 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2127 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2128 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2129 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2130 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2131 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2132 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2133 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2134 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2135 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2136 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2137 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2138 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2139 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2140 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2141 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2142 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2143 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2144 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2145 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2146 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2147 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2148 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2149 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2150 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2151 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2152 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2153 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2154 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2155 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2156 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2157 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2158 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2159 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2160 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2161 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2162 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2163 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2164 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2165 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2166 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2167 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2168 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2169 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2170 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2171 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2172 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2173 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2174 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2175 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s | Model 200s | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  | Filename: PGRT100DA000 |  | Norm | Back <br> Up | Release Signal | Off <br> Delay | On Delay | One Shot | Time Value |  |
| 2176 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2177 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2178 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2179 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2180 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2181 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2182 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2183 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2184 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2185 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2186 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2187 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2188 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2189 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2190 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2191 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2192 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2193 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2194 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2195 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2196 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2197 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2198 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2199 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2200 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2201 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2202 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2203 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2204 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2205 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2206 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2207 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2208 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2209 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2210 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2211 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2212 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2213 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2214 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2215 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2216 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2217 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2218 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2219 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2220 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2221 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2222 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2223 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2224 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2225 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2226 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2227 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2228 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2229 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2230 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2231 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2232 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2233 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2234 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2235 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2236 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2237 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2238 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2239 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cycle |  |  | Turn | Model 100s | Model 200s | Flip Flop |  |  | Timer |  |  |  | None |
| № | Signal | 30 | 90 | User |  | Filename: PGRT100DA000 |  | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | Release Signal | $\begin{array}{\|c\|} \hline \text { Off } \\ \text { Delay } \end{array}$ | On Delay | One Shot | Time Value |  |
| 2240 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2241 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2242 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2243 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2244 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2245 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2246 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2247 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2248 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2249 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2250 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2251 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2252 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2253 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2254 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2255 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2256 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2257 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2258 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2259 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2260 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2261 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2262 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2263 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2264 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2265 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2266 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2267 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2268 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2269 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2270 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2271 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2272 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2273 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2274 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2275 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2276 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2277 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2278 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2279 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2280 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2281 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2282 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2283 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2284 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2285 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2286 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2287 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2288 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2289 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2290 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2291 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2292 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2293 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2294 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2295 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2296 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2297 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2298 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2299 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2300 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2301 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2302 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2303 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s | Model 200s | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  | Filename: PGRT100DA000 |  | Norm | Back <br> Up | Release Signal | Off <br> Delay | On Delay | One Shot | Time Value |  |
| 2304 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2305 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2306 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2307 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2308 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2309 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2310 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2311 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2312 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2313 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2314 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2315 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2316 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2317 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2318 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2319 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2320 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2321 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2322 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2323 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2324 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2325 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2326 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2327 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2328 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2329 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2330 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2331 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2332 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2333 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2334 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2335 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2336 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2337 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2338 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2339 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2340 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2341 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2342 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2343 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2344 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2345 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2346 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2347 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2348 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2349 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2350 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2351 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2352 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2353 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2354 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2355 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2356 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2357 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2358 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2359 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2360 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2361 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2362 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2363 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2364 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2365 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2366 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2367 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s Model 200s <br> Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | Release Signal | $\begin{gathered} \hline \text { Off } \\ \text { Delay } \end{gathered}$ | On Delay | One Shot | Time Value |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2369 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2370 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2371 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2372 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2373 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2374 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2375 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2376 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2377 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2378 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2379 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2380 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2381 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2382 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2383 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2384 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2385 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2386 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2387 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2388 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2389 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2390 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2391 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2392 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2393 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2394 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2395 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2396 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2397 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2398 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2399 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2400 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2401 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2402 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2403 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2404 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2405 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2406 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2407 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2408 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2409 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2410 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2411 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2412 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2413 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2414 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2415 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2416 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2417 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2418 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2419 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2420 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2421 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2422 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2423 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2424 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2425 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2426 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2427 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2428 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2429 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2430 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $2431$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | Back <br> Up | Release Signal | Off <br> Delay | On Delay | One Shot | Time Value |  |
| 2432 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2434 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2435 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2436 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2437 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2438 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2439 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2440 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2441 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2442 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2443 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2444 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2445 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2446 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2447 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2448 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2449 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2450 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2451 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2452 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2453 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2454 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2455 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2456 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2457 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2458 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2459 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2460 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2461 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2462 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2463 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2464 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2465 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2466 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2467 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2468 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2469 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2470 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2471 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2472 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2473 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2474 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2475 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2476 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2477 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2478 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2479 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2480 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2481 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2482 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2483 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2484 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2485 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2486 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2487 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2488 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2489 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2490 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2491 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2492 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2493 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2494 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2495 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s Model 200sFilename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | Back <br> Up | Release Signal | Off <br> Delay | On Delay | One Shot | Time Value |  |
| 2550 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2551 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2552 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2553 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2554 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2555 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2556 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2557 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2558 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2559 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2560 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2561 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2562 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2563 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2564 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2565 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2566 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2567 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2568 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2569 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2570 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2571 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2572 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2573 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2574 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2575 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2576 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2577 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2578 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2579 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2580 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2581 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2582 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2583 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2584 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2585 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2586 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2587 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2588 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2589 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2590 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2591 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2592 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2593 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2594 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2595 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2596 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2597 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2598 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2599 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2600 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2601 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2602 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2603 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2604 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2605 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2606 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2607 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2608 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2609 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2610 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2611 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2612 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2613 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s Model 200s <br> Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | Release Signal | $\begin{array}{\|c} \hline \text { Off } \\ \text { Delay } \end{array}$ | On Delay | One Shot | Time Value |  |
| 2614 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2615 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2616 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2617 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2618 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2619 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2620 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2621 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2622 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2623 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2624 | F.RECORD1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2625 | F.RECORD2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2626 | F.RECORD3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2627 | F.RECORD4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2628 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2629 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2630 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2631 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2632 | D.RECORD1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2633 | D.RECORD2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2634 | D.RECORD3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2635 | D.RECORD4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2636 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2637 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2638 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2639 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2640 | SET.GROUP1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2641 | SET.GROUP2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2642 | SET.GROUP3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2643 | SET.GROUP4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2644 | SET.GROUP5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2645 | SET.GROUP6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2646 | SET.GROUP7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2647 | SET.GROUP8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2648 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2649 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2650 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2651 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2652 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2653 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2654 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2655 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2656 | CON_TPMD1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2657 | CON_TPMD2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2658 | CON_TPMD3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2659 | CON_TPMD4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2660 | CON_TPMD5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2661 | CON_TPMD6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2662 | CON_TPMD7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2663 | CON_TPMD8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2664 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2665 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2666 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2667 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2668 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2669 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2670 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2671 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2672 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2673 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2674 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2675 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2676 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2677 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Model 100s Model 200s <br> Filename: PGRT100DA000  |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | Back <br> Up | Release Signal | $\begin{gathered} \text { Off } \\ \text { Delay } \end{gathered}$ | On Delay | One Shot | Time Value |  |
| 2742 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2743 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2744 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2745 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2746 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2747 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2748 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2749 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2750 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2751 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2752 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2753 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2754 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2755 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2756 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2757 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2758 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2759 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2760 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2761 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2762 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2763 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2764 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2765 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2766 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2767 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2768 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2769 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2770 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2771 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2772 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2773 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2774 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2775 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2776 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2777 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2778 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2779 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2780 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2781 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2782 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2783 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2784 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2785 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2786 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2787 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2788 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2789 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2790 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2791 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2792 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2793 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2794 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2795 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2796 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2797 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2798 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2799 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2800 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2801 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2802 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2803 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2804 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2805 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2806 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2807 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2808 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2809 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2810 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2811 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2812 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2813 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2814 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2815 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | Back <br> Up | Release Signal | $\begin{gathered} \text { Off } \\ \text { Delay } \end{gathered}$ | $\begin{gathered} \hline \text { On } \\ \text { Delay } \end{gathered}$ | One Shot | Time Value |  |
| 2816 | TEMP001 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2817 | TEMP002 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2818 | TEMP003 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2819 | TEMP004 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2820 | TEMP005 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2821 | TEMP006 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2822 | TEMP007 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2823 | TEMP008 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2824 | TEMP009 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2825 | TEMP010 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2826 | TEMP011 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2827 | TEMP012 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2828 | TEMP013 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2829 | TEMP014 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2830 | TEMP015 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2831 | TEMP016 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2832 | TEMP017 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2833 | TEMP018 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2834 | TEMP019 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2835 | TEMP020 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2836 | TEMP021 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2837 | TEMP022 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2838 | TEMP023 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2839 | TEMP024 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2840 | TEMP025 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2841 | TEMP026 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2842 | TEMP027 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2843 | TEMP028 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2844 | TEMP029 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2845 | TEMP030 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2846 | TEMP031 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2847 | TEMP032 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2848 | TEMP033 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2849 | TEMP034 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2850 | TEMP035 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2851 | TEMP036 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2852 | TEMP037 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2853 | TEMP038 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2854 | TEMP039 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2855 | TEMP040 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2856 | TEMP041 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2857 | TEMP042 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2858 | TEMP043 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2859 | TEMP044 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2860 | TEMP045 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2861 | TEMP046 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2862 | TEMP047 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2863 | TEMP048 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2864 | TEMP049 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2865 | TEMP050 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2866 | TEMP051 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2867 | TEMP052 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2868 | TEMP053 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2869 | TEMP054 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2870 | TEMP055 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2871 | TEMP056 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2872 | TEMP057 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2873 | TEMP058 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2874 | TEMP059 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2875 | TEMP060 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2876 | TEMP061 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2877 | TEMP062 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2878 | TEMP063 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2879 | TEMP064 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2880 | TEMP065 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | Back Up | Release Signal | $\begin{array}{\|c\|} \hline \text { Off } \\ \text { Delay } \\ \hline \end{array}$ | On Delay | One Shot | Time Value |  |
| 2881 | TEMP066 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2882 | TEMP067 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2883 | TEMP068 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2884 | TEMP069 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2885 | TEMP070 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2886 | TEMP071 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2887 | TEMP072 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2888 | TEMP073 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2889 | TEMP074 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2890 | TEMP075 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2891 | TEMP076 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2892 | TEMP077 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2893 | TEMP078 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2894 | TEMP079 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2895 | TEMP080 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2896 | TEMP081 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2897 | TEMP082 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2898 | TEMP083 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2899 | TEMP084 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2900 | TEMP085 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2901 | TEMP086 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2902 | TEMP087 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2903 | TEMP088 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2904 | TEMP089 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2905 | TEMP090 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2906 | TEMP091 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2907 | TEMP092 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2908 | TEMP093 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2909 | TEMP094 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2910 | TEMP095 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2911 | TEMP096 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2912 | TEMP097 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2913 | TEMP098 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2914 | TEMP099 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2915 | TEMP100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2916 | TEMP101 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2917 | TEMP102 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2918 | TEMP103 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2919 | TEMP104 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2920 | TEMP105 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2921 | TEMP106 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2922 | TEMP107 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2923 | TEMP108 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2924 | TEMP109 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2925 | TEMP110 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2926 | TEMP111 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2927 | TEMP112 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2928 | TEMP113 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2929 | TEMP114 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2930 | TEMP115 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2931 | TEMP116 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2932 | TEMP117 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2933 | TEMP118 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2934 | TEMP119 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2935 | TEMP120 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2936 | TEMP121 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2937 | TEMP122 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2938 | TEMP123 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2939 | TEMP124 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2940 | TEMP125 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2941 | TEMP126 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2942 | TEMP127 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2943 | TEMP128 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2944 | TEMP129 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Signal | Cycle |  |  | Turn | Model 100s | Model 200s | Flip Flop |  |  | Timer |  |  |  | None |
| № |  | 30 | 90 | User |  | Filename: PGRT100DA000 |  | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | Release Signal | $\begin{array}{\|c\|} \hline \text { Off } \\ \text { Delay } \end{array}$ | $\begin{gathered} \text { On } \\ \text { Delay } \end{gathered}$ | $\begin{aligned} & \text { One } \\ & \text { Shot } \end{aligned}$ | Time Value |  |
| 2945 | TEMP130 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2946 | TEMP131 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2947 | TEMP132 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2948 | TEMP133 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2949 | TEMP134 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2950 | TEMP135 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2951 | TEMP136 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2952 | TEMP137 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2953 | TEMP138 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2954 | TEMP139 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2955 | TEMP140 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2956 | TEMP141 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2957 | TEMP142 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2958 | TEMP143 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2959 | TEMP144 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2960 | TEMP145 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2961 | TEMP146 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2962 | TEMP147 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2963 | TEMP148 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2964 | TEMP149 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2965 | TEMP150 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2966 | TEMP151 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2967 | TEMP152 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2968 | TEMP153 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2969 | TEMP154 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2970 | TEMP155 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2971 | TEMP156 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2972 | TEMP157 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2973 | TEMP158 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2974 | TEMP159 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2975 | TEMP160 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2976 | TEMP161 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2977 | TEMP162 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2978 | TEMP163 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2979 | TEMP164 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2980 | TEMP165 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2981 | TEMP166 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2982 | TEMP167 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2983 | TEMP168 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2984 | TEMP169 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2985 | TEMP170 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2986 | TEMP171 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2987 | TEMP172 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2988 | TEMP173 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2989 | TEMP174 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2990 | TEMP175 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2991 | TEMP176 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2992 | TEMP177 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2993 | TEMP178 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2994 | TEMP179 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2995 | TEMP180 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2996 | TEMP181 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2997 | TEMP182 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2998 | TEMP183 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2999 | TEMP184 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3000 | TEMP185 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3001 | TEMP186 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3002 | TEMP187 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3003 | TEMP188 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3004 | TEMP189 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3005 | TEMP190 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3006 | TEMP191 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3007 | TEMP192 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3008 | TEMP193 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Output |  | Timing |  |  |  | Logic expression |  | Delay Time / Flip Flop |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| № | Signal | Cycle |  |  | Turn | Filename: PGRT100DA000 |  | Flip Flop |  |  | Timer |  |  |  | None |
|  |  | 30 | 90 | User |  |  |  | Norm | $\begin{gathered} \text { Back } \\ \text { Up } \end{gathered}$ | Release Signal | $\begin{gathered} \hline \text { Off } \\ \text { Delay } \\ \hline \end{gathered}$ | On <br> Delay | One Shot | Time Value |  |
| 3009 | TEMP194 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3010 | TEMP195 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3011 | TEMP196 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3012 | TEMP197 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3013 | TEMP198 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3014 | TEMP199 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3015 | TEMP200 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3016 | TEMP201 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3017 | TEMP202 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3018 | TEMP203 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3019 | TEMP204 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3020 | TEMP205 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3021 | TEMP206 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3022 | TEMP207 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3023 | TEMP208 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3024 | TEMP209 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3025 | TEMP210 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3026 | TEMP211 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3027 | TEMP212 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3028 | TEMP213 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3029 | TEMP214 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3030 | TEMP215 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3031 | TEMP216 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3032 | TEMP217 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3033 | TEMP218 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3034 | TEMP219 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3035 | TEMP220 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3036 | TEMP221 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3037 | TEMP222 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3038 | TEMP223 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3039 | TEMP224 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3040 | TEMP225 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3041 | TEMP226 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3042 | TEMP227 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3043 | TEMP228 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3044 | TEMP229 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3045 | TEMP230 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3046 | TEMP231 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3047 | TEMP232 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3048 | TEMP233 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3049 | TEMP234 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3050 | TEMP235 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3051 | TEMP236 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3052 | TEMP237 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3053 | TEMP238 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3054 | TEMP239 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3055 | TEMP240 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3056 | TEMP241 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3057 | TEMP242 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3058 | TEMP243 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3059 | TEMP244 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3060 | TEMP245 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3061 | TEMP246 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3062 | TEMP247 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3063 | TEMP248 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3064 | TEMP249 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3065 | TEMP250 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3066 | TEMP251 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3067 | TEMP252 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3068 | TEMP253 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3069 | TEMP254 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3070 | TEMP255 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3071 | TEMP256 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Appendix I

## Commissioning Test Sheet (sample)

1. Relay identification
2. Preliminary check
3. Hardware test
3.1 User interface check
3.2 Binary input/Binary output circuit check
3.3 AC input circuit check
4. Function test
4.1 Percentage current differential element DIF test
4.2 2F-lock element check
4.3 5F-lock element check
4.4 High-set overcurrent element HOC test
4.5 Restricted earth fault element REF test
4.6 Overcurrent element test
4.7 Thermal overload element THR test
4.8 Frequency element FRQ test
4.9 Overexcitation element V/F test
5. Protection scheme test
6. Metering and recording check
7. Conjunctive test
8. Relay identification
Engineer $\qquad$
Circuit $\qquad$ Witness $\qquad$ Serial number $\qquad$
Model $\qquad$ System frequency $\qquad$
Station
Date $\qquad$

Active settings group number $\qquad$

## 2. Preliminary check

Ratings $\square$
CT shorting contacts $\square$
DC power supply $\square$
Power up
Wiring
Relay inoperative帾

## 4. Function test

### 4.1 Percentage current differential element DIF test

(1) Minimum operating value test

| Tap setting | Measured current |
| :---: | :---: |
|  |  |

(2) Percentage restraining characteristic test

| Tap setting | $\mathrm{I}_{\mathbf{1}}$ | Measured current ( $\left.\mathrm{I}_{2}\right)$ |
| :---: | :---: | :---: |
|  | $\times \mathrm{I}_{\mathbf{k}}$ |  |
|  | $\times \mathrm{I}_{\mathbf{k}}$ |  |

(3) Operating time test

| Tap setting | Test current | Measured time |
| :---: | :---: | :---: |
|  |  |  |

4.2 2F-lock element check $\square$
4.3 5F-lock element check $\square$
4.4 High-set overcurrent element HOC test
(1) Minimum operating value test

| Tap setting | Measured current |
| :---: | :---: |
|  |  |

(2) Operating time test

| Tap setting | Test current | Measured time |
| :---: | :---: | :---: |
|  |  |  |

### 4.5 Restricted earth fault element REF test

| Tap setting | $\mathrm{I}_{\mathrm{a}}$ | Measured current $\left(\mathrm{I}_{\mathrm{n}}\right)$ |
| :---: | :---: | :---: |
|  | $\times \mathrm{I}_{\mathrm{k}}$ |  |
|  | $\times \mathrm{I}_{\mathbf{k}}$ |  |

### 4.6 Overcurrent element test

(1) OC element

| Element | Tap setting | Measured current |
| :---: | :---: | :---: |
| OC |  |  |

(2) EF element

| Element | Tap setting | Measured current |
| :---: | :---: | :---: |
| EF |  |  |

(3) OCI element

| Element | Test current | Measured operating time |
| :---: | :---: | :--- |
| OCl | $2 \times \mathrm{I}_{\mathrm{S}}$ |  |
|  | $20 \times \mathrm{I}_{\mathrm{S}}$ |  |
| $\mathrm{I}_{\mathrm{S}}:$ Setting value |  |  |

(4) EFI element

| Element | Test current | Measured operating time |
| :---: | :---: | :---: |
| EFI | $2 \times I_{\mathrm{S}}$ |  |
|  | $20 \times I_{\mathrm{S}}$ |  |

### 4.7 Thermal overload element THR test

| Element | Test current | Measured operating time |
| :---: | :---: | :---: |
| THR |  |  |

### 4.8 Frequency element FRQ test

(1) Frequency

| Element | Setting | Measured frequency |
| :---: | :---: | :---: |
| FRQ-L1 |  |  |
| FRQ-L2 |  |  |
| FRQ-H1 |  |  |
| FRQ-H2 |  |  |

(2) Undervoltage block


### 4.9 Overexcitation element VIF test

(1) Operating value test

| Element | Setting | Measured voltage |
| :---: | :---: | :---: |
| V/F |  |  |

(2) Operating time test

| Test voltage | Measured operating time |
| :--- | :--- |
|  |  |

5. Protection scheme test

| Scheme | Results |
| :---: | :---: |
|  |  |
|  |  |

6. Metering and recording check
$\square$
7. Conjunctive test

| Scheme | Results |
| :---: | :---: |
| On load |  |
| Tripping circuit |  |

## Appendix J

Return Repair Form

## RETURN / REPAIR FORM

Please fill in this form and return it to Toshiba Corporation with the GRT100 to be repaired.

TOSHIBA CORPORATION Fuchu Complex
1, Toshiba-cho, Fuchu-shi, Tokyo, Japan
For: Power Systems Protection \& Control Department
Quality Assurance Section

Type: $\qquad$ GRT100 Model: $\qquad$
(Example: Type:_GRT100 Model:_101D-10-A0 )

Product No.: $\qquad$
Serial No. : $\qquad$
Date:

1. Why the relay is being returned ?
$\square$ mal-operation
$\square$ does not operate
$\square$ increased error
$\square$ investigation
$\square$ others
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2. Fault records, event records or disturbance records stored in the relay and relay settings are very helpful information to investigate the incident.
So please inform us the information concerned in the incident with Floppy Disk, or filling up the Fault Record sheet and Relay Setting sheet attached.

## Fault Record

Date/Month/Year Time
(Example: 04/ Nov./ 1997 15:09:58.442)
Faulty phase:

| Prefault values | (CT ratio: | kA/: | A, VT ratio: | kV/: | V) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{a} 1}$ : | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{\mathrm{a}} 2$ : | kA or $\mathrm{A} \angle$ |  |
| Ib1: | kA or A $\angle$ |  | Ib2: | kA or $\mathrm{A} \angle$ |  |
| $\mathrm{I}_{\mathrm{c} 1}$ : | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{\mathrm{c} 2}$ : | kA or $\mathrm{A} \angle$ |  |
| I11: | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{12}$ : | kA or $\mathrm{A} \angle$ |  |
| I21: | kA or $\mathrm{A} \angle$ |  | I22: | kA or $\mathrm{A} \angle$ |  |
| $\mathrm{I}_{01}$ | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{02}$ | kA or $\mathrm{A} \angle$ |  |
| In1: | kA or $\mathrm{A} \angle$ |  | In2: | kA or $\mathrm{A} \angle$ |  |
| Ia3: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| Ib3: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| Ic3: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| I13: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| I23: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| I03: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| In3: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| V: | kV or $\mathrm{V} \angle$ |  |  |  |  |
| $\mathrm{I}_{\mathrm{da}}$ : | kA or A |  | $\mathrm{I}_{\mathrm{d} 01}$ : | kA or A |  |
| Idb: | kA or A |  | $\mathrm{I}_{\mathrm{d} 02}$ : | kA or A |  |
| Idc: | kA or A |  | Id03: | kA or A |  |
| Fault values | (CT ratio: | kA/: | A, VT ratio: | kV/: | V) |
| $\mathrm{I}_{\mathrm{a}}$ : | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{\mathrm{a}}$ : | kA or $\mathrm{A} \angle$ |  |
| Ib 1 : | kA or $\mathrm{A} \angle$ |  | Ib2: | kA or $\mathrm{A} \angle$ |  |
| $\mathrm{I}_{\mathrm{C} 1}$ : | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{\mathrm{c} 2}$ : | kA or $\mathrm{A} \angle$ |  |
| I11: | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{12}$ : | kA or $\mathrm{A} \angle$ |  |
| $\mathrm{I}_{21}$ : | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{22}$ : | kA or $\mathrm{A} \angle$ |  |
| $\mathrm{I}_{01}$ : | kA or $\mathrm{A} \angle$ |  | $\mathrm{I}_{02}$ : | kA or $\mathrm{A} \angle$ |  |
| In1: | kA or $\mathrm{A} \angle$ |  | In2: | kA or $\mathrm{A} \angle$ |  |
| Ia3: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| Ib3: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| Ic3: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| I13: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| I23: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| I03: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| In3: | kA or $\mathrm{A} \angle$ |  |  |  |  |
| V : | kV or V $\angle$ |  |  |  |  |
| $\mathrm{Ida}_{\text {da }}$ | kA or A |  | $\mathrm{I}_{\mathrm{d} 01}$ : | kA or A |  |
| $\mathrm{I}_{\mathrm{db}}$ : | kA or A |  | $\mathrm{I}_{\mathrm{d} 02}$ | kA or A |  |
| $\mathrm{I}_{\mathrm{dc}}$ : | kA or A |  | $\mathrm{I}_{\mathrm{d} 03}$ : | kA or A |  |

3. What was the message on the LCD display at the time of the incident.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
4. Please write the detail of the incident.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
5. Date of the incident occurred.

Day/ Month/ Year: / / /
(Example: 10/ July/ 1998)
6. Please write any comments on the GRT100, including the document.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Customer

Name:
Company Name: $\qquad$
Address: $\qquad$
$\qquad$

Telephone No.: $\qquad$
Facsimile No.: $\qquad$
Signature:

## Appendix K

## Technical Data

## TECHNICAL DATA

| Ratings |  |
| :---: | :---: |
| AC current <br> AC voltage <br> Frequency <br> DC power supply <br> AC ripple on DC supply IEC 60255-11 <br> DC supply interruption IEC 60255-11 <br> Permissive duration of DC supply voltage interruption to maintain normal operation <br> Restart time <br> Binary input circuit DC voltage | 1A or 5A <br> $100 \mathrm{~V}, 110 \mathrm{~V}, 115 \mathrm{~V}, 120 \mathrm{~V}$ <br> 50 Hz or 60 Hz <br> $110 \mathrm{Vdc} / 125 \mathrm{Vdc}$ (Operative range: 88 to 150 Vdc ) $220 \mathrm{Vdc} / 250 \mathrm{Vdc}$ (Operative range: 176 to 300 Vdc ) $48 \mathrm{Vdc} / 54 \mathrm{Vdc} / 60 \mathrm{Vdc}$ (Operative range: 38.4 to 72 Vdc ) $24 \mathrm{Vdc} / 30 \mathrm{Vdc}$ (Operative range: 19.2 to 36 Vdc ) maximum 12\% <br> maximum 50 ms at 110 Vdc <br> less than 10s <br> $110 \mathrm{Vdc} / 125 \mathrm{Vdc}$ (Operative range: 88 to 150 Vdc ) <br> $220 \mathrm{Vdc} / 250 \mathrm{Vdc}$ (Operative range: 176 to 300 Vdc ) <br> $48 \mathrm{Vdc} / 54 \mathrm{Vdc} / 60 \mathrm{Vdc}$ (Operative range: 38.4 to 72 Vdc ) <br> $24 \mathrm{Vdc} / 30 \mathrm{Vdc}$ (Operative range: 19.2 to 36 Vdc ) |
| Overload rating |  |
| AC current input <br> AC voltage input | 4 times rated continuous 100 times rated for 1 s 2 times rated continuous 2.5 times rated for 1 s |
| Burden |  |
| AC current circuit <br> AC voltage circuit DC power supply <br> Binary input circuit | 0.3VA per phase (at rated 5 A ) <br> 0.4 VA at zero sequence circuit (at rated 5 A ) <br> 0.1VA per phase (at rated 1 A ) <br> 0.3 VA at zero sequence circuit (at rated 1 A ) <br> 0.1VA (at rated voltage) <br> less than 15W (quiescent) <br> less than 25 W (operation) <br> $0.5 \mathrm{~W} /$ input at 110 Vdc |
| Current differential protection |  |
| Minimum operate current (ik) <br> Slope 1 (p1) <br> Slope 2 (p2) <br> kp <br> Vector group compensation <br> CT ratio correction (Winding 1 to 3 ) (kct1 - kct3) <br> Inrush setting (2nd harmonic ratio) (k2f) <br> Overexcitation setting (5th harmonic ratio) (k5f) Operating time | 0.10 to 1.00 pu in 0.01 pu steps 10 to $100 \%$ in $1 \%$ steps 10 to $200 \%$ in $1 \%$ steps 1.00 to 10.00pu in 0.01 pu steps 0 to $330^{\circ}$ in $30^{\circ}$ steps 0.05 to 50.00 in 0.01 steps 10 to $50 \%$ in $1 \%$ steps 10 to $100 \%$ in $1 \%$ steps typical 35 ms |
| High-set differential overcurrent protection |  |
| Overcurrent (kh) <br> Operating time | 2.00 to 20.00pu in 0.01pu steps typical 20 ms |


| Restricted earth fault element |  |
| :---: | :---: |
| Minimum operating current <br> Slope 1 (p1) <br> Slope 2 (p2) <br> kp <br> CT ratio correction (kct) <br> Operating time | 0.05 to 0.50 pu in 0.01 pu steps 10 \% <br> 50 to $100 \%$ in $1 \%$ steps <br> 0.50 to 2.00 pu in 0.01 pu steps <br> 1.00 to 50.00 in 0.01 steps <br> typical 35 ms |
| Time-overcurrent protection |  |
| High-set overcurrent element Pick up level (OC, EF) Delay time (TOC, TEF) Operating time | 0.10 to 20.00pu in 0.10 pu steps 0.00 to 10.00 s in 0.01 s steps typical 30 ms (without delay time) |
| Inverse time overcurrent element <br> Pick up level (OCI, EFI) <br> Time multiplier (TOCI, TEFI) Characteristic | 0.10 to 5.00 pu in 0.01 pu steps <br> 0.05 to 1.00 in 0.01 steps <br> Three IEC standard 60255-3 (Standard inverse, Very inverse, Extremely inverse), or Long-time inverse *Refer to Appendix P. |
| Thermal overload protection |  |
| Thermal time constant ( T ) <br> Constant (k) <br> Basic current (IB) <br> Special load current before overload (lp) <br> Time for alarming (TA) | 0.5 to 500.0 min in 0.1 min steps 0.10 to 4.00 in 0.01 steps 0.50 t0 2.50 pu in 0.01 pu steps 0.00 to 1.00 pu in 0.01 steps 0 to 10 min in 1 min steps |
| Frequency protection |  |
| Overfrequency <br> Underfrequency <br> Delay time <br> Start time <br> Undervoltage blocking | 50.00 to 55.00 Hz in 0.01 Hz steps ( 50 Hz relay) 60.00 to 66.00 Hz in 0.01 Hz steps ( 60 Hz relay) 45.00 to 50.00 Hz in 0.01 Hz steps ( 50 Hz relay) 54.00 to 60.00 Hz in 0.01 Hz steps ( 60 Hz relay) 0.00 to 60.00 s in 0.01 s steps less than 100 ms 40 to 100 V in 1 V steps |
| Overexitation protection |  |
| Pickup voltage <br> Alarm level (A) <br> High level (H) <br> Low level (L) <br> LT (Definite time) <br> HT (Definite time) <br> TVFH (Definite time) <br> TVFA (Definite time) <br> Start time <br> RT (Definite time) | 100.0 to 120.0 V in 0.1 V steps 1.03 to 1.30 pu in 0.01 pu steps <br> 1.10 to 1.40 pu in 0.01 pu steps <br> 1.05 to 1.30pu in 0.01pu steps <br> 1 to 600s in 1s steps <br> 1 to 600s in 1s steps <br> 1 to 600s in 1s steps <br> 1 to 600s in 1s steps <br> less than 130 ms <br> 60 to 3600 s in 1s steps |


| Accuracy |  |
| :---: | :---: |
| Current differential element: pick-up reset <br> Time-overcurrent protection: pick-up Inverse time overcurrent characteristics: <br> Standard inverse, Very and long-time inverse <br> Extremely inverse <br> Thermal overload protection: pick-up <br> Frequency protection: pick-up <br> Overexitation protection | $\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \\ & \pm 5 \% \\ & \\ & \text { IEC60255-3 class } 5 \\ & \text { IEC60255-3 class } 7.5 \\ & \pm 10 \% \\ & \pm 0.03 \mathrm{~Hz} \\ & \pm 2 \% \text { of pick-up voltage (frequency range } \pm 2 \% \text { ) } \end{aligned}$ |
| Disturbance record initiation |  |
| Overcurrent element <br> Earth fault <br> Pre-fault time <br> Post-fault time | 0.10 to 20.00pu in 0.01pu steps 0.05 to 20.00pu in 0.01pu steps 0.3 s (fixed) <br> 0.1 to 3.0 s in 0.1 s steps |
| Communication port |  |
| Front communication port (local PC) <br> Connection <br> Cable type <br> Cable length <br> Connector <br> Rear communication port (remote PC) <br> RS485 I/F: <br> Transmission data rate for RSM system <br> Connection <br> Connector <br> Cable and length <br> Isolation <br> Fibre optic I/F: <br> Ethernet LAN I/F: | Point to point <br> Multi-core (straight) <br> 15m (max.) <br> RS232C 9-pin D-subminiature connector female <br> 64kbps <br> Multidrop mode (max. 32 relays) <br> Screw terminals <br> Twisted pair cable, max. 1200m <br> 2 kVac for 1 min . <br> ST connector, graded-index multi-mode $50 / 125 \mu \mathrm{~m}$ or $62.5 / 125 \mu \mathrm{~m}$ type optical fibres <br> 100BASE-TX: RJ-45 connector <br> 100BASE-FX: SC connector |
| IRIG-B port |  |
| Connection Cable type | BNC connector <br> 50 ohm coaxial cable |
| Binary inputs |  |
| Operating voltage | Typical $74 \mathrm{Vdc}(\mathrm{min} .70 \mathrm{Vdc})$ for $110 \mathrm{~V} / 125 \mathrm{Vdc}$ rating Typical $138 \mathrm{Vdc}(\mathrm{min} .125 \mathrm{Vdc})$ for $220 \mathrm{~V} / 250 \mathrm{Vdc}$ rating Typical $31 \mathrm{Vdc}(\mathrm{min} .28 \mathrm{Vdc}$ ) for $48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ rating Typical $16 \mathrm{Vdc}($ min. 15 Vdc ) for $24 \mathrm{~V} / 30 \mathrm{Vdc}$ rating |


| Contact ratings |  |
| :--- | :--- |
| Trip contacts |  |
| Make and carry | 5A continuously, |
|  | $30 \mathrm{~A}, 290 \mathrm{Vdc}$ for $0.5 \mathrm{~s}(\mathrm{~L} / \mathrm{R}=10 \mathrm{~ms})$ |
| Break | $0.15 \mathrm{~A}, 290 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ |
| Auxiliary contacts |  |
| Make and carry | 4 A continuously, |
|  | $10 \mathrm{~A}, 220 \mathrm{Vdc}$ for $0.5 \mathrm{~s}(\mathrm{~L} / \mathrm{R} \geqq 5 \mathrm{~ms})$ |
| Break | $0.1 \mathrm{~A}, 220 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ |
| Durability |  |
| Make and carry | 10,000 operations minimum |
| Break | 100,000 operations minimum |
| Mechanical design |  |
| Weight | 12 kg |
| Case color | $2.5 \mathrm{Y} 7.5 / 1$ (approximation to Munsell value) |
| Installation | Flush mounting or rack mounting |

## CT requirement

The GRT100 does not require the use of dedicated CTs nor the use of CTs with an identical ratio. The GRT100 can share the CTs with other protections and the different ratios are adjusted by setting.

The general CT requirements are set for the through-fault stability which comes up when any CTs saturate under very large through-fault currents. To ensure correct operation of the GRT100 for such through-fault currents, the factor Ks of each CT is required to satisfy the following conditions:

$$
\mathrm{Ks} \geqq 1 \text { when } \mathrm{Tc} \leqq 150 \mathrm{~ms}
$$

or
$\mathrm{Ks} \geqq 5$ when $\mathrm{Tc} \leqq 200 \mathrm{~ms}$
where,
$\mathrm{Ks}=$ ratio of CT knee point voltage to CT secondary probable voltage under the maximum through-fault current

$$
=\mathrm{Vk} /\left\{\left(\mathrm{R}_{\mathrm{CT}}+\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{O}}\right)\left(\mathrm{I}_{\mathrm{F}} \max / \mathrm{CT} \text { ratio }\right)\right\}
$$

$\mathrm{Tc}=$ d.c. time constant of primary circuit
$\mathrm{Vk}=$ knee point voltage of CT
$\mathrm{R}_{\mathrm{CT}}=$ resistance of CT secondary winding
$\mathrm{R}_{\mathrm{L}}=$ loop resistance of cable between CT and relay
$R_{B}=$ ohmic load of GRT100 (i.e. 0.1 ohm for 1 A rating and 0.012 ohm for 5A rating)
$\mathrm{R}_{\mathrm{O}}=$ ohmic load of other series-connected relays (if any)
$\mathrm{I}_{\mathrm{F}} \max =$ maximum through-fault current
For example, if the following parameters are given:
$\mathrm{Vk}=800 \mathrm{~V}, \mathrm{CT}$ ratio $=1,200 / 1, \mathrm{R}_{\mathrm{CT}}=5.0 \mathrm{ohm}, \mathrm{R}_{\mathrm{L}}=3.0 \mathrm{ohm}, \mathrm{R}_{\mathrm{B}}=0.1 \mathrm{ohm}$,
$\mathrm{R}_{\mathrm{O}}=0$ ohm (i.e. no series-connected relays) and $\mathrm{I}_{\mathrm{F}} \mathrm{max}=40 \mathrm{kA}$
then the factor Ks is calculated as:

$$
\begin{aligned}
\mathrm{Ks} & =800 /\{(5.0+3.0+0.1) \times(40,000 / 1,200)\} \\
& =800 / 270 \\
& =3.0
\end{aligned}
$$

This shows that the GRT100 operates correctly for all the faults under the condition that the d.c. time constant of the primary circuit is less than 200 ms .

ENVIRONMENTAL PERFORMANCE CLAIMS

| Test | Standards | Details |
| :---: | :---: | :---: |
| Atmospheric Environment |  |  |
| Temperature | IEC60068-2-1/2 | Operating range: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. <br> Storage / Transit: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. |
| Humidity | IEC60068-2-78 | 56 days at $40^{\circ} \mathrm{C}$ and $93 \%$ relative humidity. |
| Enclosure Protection | IEC60529 | IP51 (Rear: IP20) |
| Mechanical Environment |  |  |
| Vibration | IEC60255-21-1 | Response - Class 1 <br> Endurance - Class 1 |
| Shock and Bump | IEC60255-21-2 | Shock Response Class 1 Shock Withstand Class 1 Bump Class 1 |
| Seismic | IEC60255-21-3 | Class 1 |
| Electrical Environment |  |  |
| Dielectric Withstand | IEC60255-5 | 2 kVrms for 1 minute between all terminals and earth. 2 kVrms for 1 minute between independent circuits. 1 kVrms for 1 minute across normally open contacts. |
| High Voltage Impulse | IEC60255-5 | Three positive and three negative impulses of 5 kV (peak), $1.2 / 50 \mu \mathrm{~s}, 0.5 \mathrm{~J}$ between all terminals and between all terminals and earth. |
| Electromagnetic Environment |  |  |
| High Frequency Disturbance / Damped Oscillatory Wave | $\begin{aligned} & \text { IEC60255-22-1 Class 3, } \\ & \text { IEC61000-4-12 / } \\ & \text { EN61000-4-12 } \end{aligned}$ | 1 MHz 2.5 kV applied to all ports in common mode. 1 MHz 1.0 kV applied to all ports in differential mode. |
| Electrostatic Discharge | $\begin{aligned} & \text { IEC60255-22-2 Class 3, } \\ & \text { IEC61000-4-2 / EN61000-4-2 } \end{aligned}$ | 6 kV contact discharge, 8kV air discharge. |
| Radiated RF <br> Electromagnetic <br> Disturbance | $\begin{aligned} & \text { IEC60255-22-3 Class 3, } \\ & \text { IEC61000-4-3 / EN61000-4-3 } \end{aligned}$ | Field strength $10 \mathrm{~V} / \mathrm{m}$ for frequency sweeps of 80 MHz to 1 GHz and 1.7 GHz to 2.2 GHz . Additional spot tests at $80,160,450,900$ and 1890MHz. |
| Fast Transient Disturbance | $\begin{aligned} & \text { IEC60255-22-4, } \\ & \text { IEC61000-4-4 / EN61000-4-4 } \end{aligned}$ | $4 \mathrm{kV}, 2.5 \mathrm{kHz}, 5 / 50 \mathrm{~ns}$ applied to all inputs. |
| Surge Immunity | $\begin{aligned} & \text { IEC60255-22-5, } \\ & \text { IEC61000-4-5 / EN61000-4-5 } \end{aligned}$ | $1.2 / 50 \mu \mathrm{~s}$ surge in common/differential modes: <br> HV ports: 2kV/1kV (peak) <br> PSU and I/O ports: $2 \mathrm{kV} / 1 \mathrm{kV}$ (peak) <br> RS485 port: 1kV (peak) |
| Conducted RF Electromagnetic Disturbance | $\begin{aligned} & \text { IEC60255-22-6 Class 3, } \\ & \text { IEC61000-4-6 / EN61000-4-6 } \end{aligned}$ | 10 Vrms applied over frequency range 150 kHz to 100 MHz . Additional spot tests at 27 and 68MHz. |
| Power Frequency Disturbance | $\begin{array}{\|l\|} \hline \text { IEC60255-22-7, } \\ \text { IEC61000-4-16 / } \\ \text { EN61000-4-16 } \\ \hline \end{array}$ | 300 V 50 Hz for 10 s applied to ports in common mode. 150 V 50 Hz for 10 s applied to ports in differential mode. Not applicable to AC inputs. |
| Conducted and Radiated Emissions | $\begin{array}{\|l\|} \hline \text { IEC60255-25, } \\ \text { EN55022 Class A, } \\ \text { IEC61000-6-4 / EN61000-6-4 } \end{array}$ | Conducted emissions: <br> 0.15 to 0.50 MHz : $<79 \mathrm{~dB}$ (peak) or $<66 \mathrm{~dB}$ (mean) <br> 0.50 to 30 MHz : $<73 \mathrm{~dB}$ (peak) or $<60 \mathrm{~dB}$ (mean) <br> Radiated emissions (at 30 m ): <br> 30 to 230MHz: <30dB <br> 230 to 1000 MHz : <37dB |


| Test | Standards | Details |
| :---: | :--- | :--- |
| European Commission Directives |  |  |
|  | $89 / 336 / E E C$ | Compliance with the European Commission Electromagnetic <br> Compatibility Directive is demonstrated according to EN <br> $61000-6-2$ and EN 61000-6-4. |
|  |  | Compliance with the European Commission Low Voltage Directive <br> is demonstrated according to EN 50178 and EN 60255-5. |

## Appendix L

## Setting of REF Element


Type of transformer
Type of transformer

| Type of transformer | Scheme switch setting |
| :---: | :---: |
|  | 3 REF $=110$ <br> 1REF1 to $5=0$ OF <br> 3REF1 to $5=$ OFF |
|  | $\begin{aligned} & 1 \text { REF }=210 \\ & 3 R E F=110 \end{aligned}$ <br> 2REF1 to $5=$ OFF |
|  | 1 REF $=210$ <br> 2REF1 to $5=$ OFF <br> 3REF1 to $5=$ OFF |
|  | $\begin{aligned} & 1 \text { 1REF }=110 \\ & 2 R E F=210 \end{aligned}$ <br> 3REF1 to $5=$ OFF |

Type of transformer

## Appendix M

## Symbols Used in Scheme Logic

Symbols used in the scheme logic and their meanings are as follows:

## Signal names

Marked with $\square:$ Measuring element output signal

Marked with $\square$ : | $\square$ |
| :--- |
| Marked with $[\quad]:$ |
| Scheme switch |
| Marked with " $\quad ":$ Scheme switch position |
| Unmarked |$\quad:$ Internal scheme logic signal

## AND gates



| A | B | C | Output |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 |
| Other cases |  | 0 |  |



| A | B | C | Output |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 |
| Other cases |  | 0 |  |



| A | B | C | Output |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 |
| Other cases |  | 0 |  |

## OR gates



| A | B | C | Output |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| Other cases |  |  | 1 |



| A | B | C | Output |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 |
| Other cases |  | 1 |  |

## Signal inversion



| A | Output |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |

Timer


## One-shot timer



XXX: Set time XXX: Set time XXX - YYY: Setting range XXX - YYY: Setting range

Delaye pick-up timer with fixed setting

Delayed drop-off timer with fixed setting

Delaye pick-up timer with variable setting

Delayed drop-off timer with variable setting
A

XXX - YYY: Setting range

## Flip-flop



## Scheme switch


$+$
 Output

| $S$ | $R$ | Output |
| :---: | :---: | :---: |
| 0 | 0 | No change |
| 1 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 1 | 0 |


| A | Switch | Output |
| :---: | :---: | :---: |
| 1 | ON | 1 |
| Other cases |  | 0 |


| Switch | Output |
| :---: | :---: |
| ON | 1 |
| OFF | 0 |

## Appendix N

## Implementation of Thermal Model to IEC60255-8

## Implementation of Thermal Model to IEC60255-8

Heating by overload current and cooling by dissipation of an electrical system follow exponential time constants. The thermal characteristics of the electrical system can be shown by equation (1).

$$
\begin{equation*}
\theta=\frac{\mathrm{I}^{2}}{\mathrm{I}_{\mathrm{AOL}}^{2}}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right) \times 100 \% \tag{1}
\end{equation*}
$$

where:
$\theta=$ thermal state of the system as a percentage of allowable thermal capacity,
$\mathrm{I}=$ applied load current,
$\mathrm{I}_{\mathrm{AOL}}=\mathrm{kI}_{\mathrm{B}}=$ allowable overload current of the system,
$\tau=$ thermal time constant of the system.
The thermal state $\theta$ is expressed as a percentage of the thermal capacity of the protected system, where $0 \%$ represents the cold state and $100 \%$ represents the thermal limit, that is the point at which no further temperature rise can be safely tolerated and the system should be disconnected. The thermal limit for any given electrical plant is fixed by the thermal setting $\mathrm{I}_{\mathrm{AOL}}$. The relay gives a trip output when $\theta=100 \%$.

If current I is applied to a cold system, then $\theta$ will rise exponentially from $0 \%$ to ( $\mathrm{I}^{2} / \mathrm{I}_{\mathrm{AOL}}{ }^{2} \times 100 \%$ ), with time constant $\tau$, as in Figure $\mathrm{N}-1$. If $\theta=100 \%$, then the allowable thermal capacity of the system has been reached.


Figure N-1

A thermal overload protection relay can be designed to model this function, giving tripping times according to the IEC60255-8 'Hot' and 'Cold' curves.

$$
\begin{array}{ll}
\mathrm{t}=\tau \cdot \operatorname{Ln}\left[\frac{\mathrm{I}^{2}}{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{AOL}}^{2}}\right] & \text { (1) } \cdots \cdots \text { Cold curve } \\
\mathrm{t}=\tau \cdot \operatorname{Ln}\left[\frac{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{P}}^{2}}{\mathrm{I}^{2}-\mathrm{I}_{\mathrm{AOL}}^{2}}\right] & \text { (2) } \cdots \cdots \text { Hot curve }
\end{array}
$$

where:
$\mathrm{I}_{\mathrm{P}}=$ prior load current.
In fact, the cold curve is simply a special case of the hot curve where prior load current $I_{P}=0$, catering for the situation where a cold system is switched on to an immediate overload.

Figure N-2 shows a typical thermal profile for a system which initially carries normal load current, and is then subjected to an overload condition until a trip results, before finally cooling to ambient temperature.


Figure N-2 (1) Thermal Curve without Prior Load Current


Figure $\mathrm{N}-2$ (2) Thermal curve with Prior Load Current ( $\theta=80 \%$ )

## Appendix 0

## IEC60870-5-103: Interoperability and Troubleshooting

## IEC60870-5-103 Configurator

IEC103 configurator software is included in a same CD as RSM100, and can be installed easily as follows:

Installation of IEC103 Configurator
Insert the CD-ROM (RSM100) into a CDROM drive to install this software on a PC.
Double click the "Setup.exe" of the folder "IIEC103Conf" under the root directory, and operate it according to the message.

When installation has been completed, the IEC103 Configurator will be registered in the start menu.

## Starting IEC103 Configurator

Click [Start] $\rightarrow$ [Programs $] \rightarrow[$ IEC103 Configurator $] \rightarrow[$ IECConf $]$ to the IEC103 Configurator software.

Note: The instruction manual of IEC103 Configurator can be viewed by clicking [Help] $\rightarrow$ [Manual] on IEC103 Configurator.

## IEC60870-5-103: Interoperability

## 1. Physical Layer

1.1 Electrical interface: EIA RS-485

Number of loads, 32 for one protection equipment
1.2 Optical interface

Glass fibre (option)
ST type connector (option)
1.3 Transmission speed

User setting: 9600 or $19200 \mathrm{bit} / \mathrm{s}$

## 2. Application Layer

## COMMON ADDRESS of ASDU

One COMMON ADDRESS OF ASDU (identical with station address)

## 3. List of Information

The following items can be customized with the original software tool "IEC103 configurator". (For details, refer to "IEC103 configurator" manual No.6F2S0812.)

- Items for "Time-tagged message": Type ID(1/2), INF, FUN, Transmission condition(Signal number), COT
- Items for "Time-tagged measurands": INF, FUN, Transmission condition(Signal number), COT, Type of measurand quantities
- Items for "General command": INF, FUN, Control condition(Signal number)
- Items for "Measurands": Type ID(3/9), INF, FUN, Number of measurand, Type of measurand quantities
- Common setting
- Transmission cycle of Measurand frame
- FUN of System function
- Test mode, etc.

CAUTION: To be effective the setting data written via the RS232C, turn off the DC supply of the relay and turn on again.

## 3. 1 IEC60870-5-103 Interface

### 3.1.1 Spontaneous events

The events created by the relay will be sent using Function type (FUN) / Information numbers (INF) to the IEC60870-5-103 master station.

### 3.1.2 General interrogation

The GI request can be used to read the status of the relay, the Function types and Information numbers that will be returned during the GI cycle are shown in the table below.

For details, refer to the standard IEC60870-5-103 section 7.4.3.

### 3.1.3 Cyclic measurements

The relay will produce measured values using Type $\mathrm{ID}=3$ or 9 on a cyclical basis, this can be read from the relay using a Class 2 poll. The rate at which the relay produces new measured values can be customized.

### 3.1.4 Commands

The supported commands can be customized. The relay will respond to non-supported commands with a cause of transmission (COT) of negative acknowledgement of a command.

For details, refer to the standard IEC60870-5-103 section 7.4.4.

### 3.1.5 Test mode

In test mode, both spontaneous messages and polled measured values, intended for processing in the control system, are designated by means of the CAUSE OF TRANSMISSION 'test mode'. This means that CAUSE OF TRANSMISSION $=7$ 'test mode' is used for messages normally transmitted with COT $=1$ (spontaneous) or $\mathrm{COT}=2$ (cyclic).
For details, refer to the standard IEC60870-5-103 section 7.4.5.

### 3.1.6 Blocking of monitor direction

If the blocking of the monitor direction is activated in the protection equipment, all indications and measurands are no longer transmitted.

For details, refer to the standard IEC60870-5-103 section 7.4.6.

### 3.2 List of Information

The followings are the default settings.

## List of Information

| INF | Description | Contents | IEC103 Configurator Default setting |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | GI | $\begin{array}{\|c\|} \hline \text { Type } \\ \text { ID } \end{array}$ | COT | FUN | DPI |  |  |
|  |  |  |  |  |  |  | Signal No. | OFF | ON |
| Standard Information numbers in monitor direction |  |  |  |  |  |  |  |  |  |
| System Function |  |  |  |  |  |  |  |  |  |
| 0 | End of General Interrogation | Transmission completion of Gl items. | -- | 8 | 10 | 255 | -- | -- | -- |
| 0 | Time Synchronization | Time Synchronization ACK. | -- | 6 | 8 | 255 | -- | -- | -- |
| 2 | Reset FCB | Reset FCB(toggle bit) ACK | -- | 5 | 3 | 176 | -- | -- | -- |
| 3 | Reset CU | Reset CU ACK | -- | 5 | 4 | 176 | -- | -- | -- |
| 4 | Start/Restart | Relay start/restart | -- | 5 | 5 | 176 | -- | -- | -- |
| 5 | Power On | Relay power on. | Not supported |  |  |  | -- | -- | -- |
| Status Indications |  |  |  |  |  |  |  |  |  |
| 16 | Auto-recloser active | If it is possible to use auto-recloser, this item is set active, if impossible, inactive. | Not supported |  |  |  |  |  |  |
| 17 | Teleprotection active | If protection using telecommunication is available, this item is set to active. If not, set to inactive. | Not supported |  |  |  |  |  |  |
| 18 | Protection active | If the protection is available, this item is set to active. If not, set to inactive. | GI | 1 | $\begin{array}{\|c\|} \hline 1,7,9,12, \\ 20,21 \\ \hline \end{array}$ | 176 | 1413 | 1 | 2 |
| 19 | LED reset | Reset of latched LEDs | -- | 1 | $\begin{array}{\|c\|} \hline 1,7,11,12, \\ 20,21 \\ \hline \end{array}$ | 176 | 1409 | -- | 2 |
| 20 | Monitor direction blocked | Block the 103 transmission from a relay to control system. IECBLK: "Blocked" settimg. | GI | 1 | 9,11 | 176 | 1241 | 1 | 2 |
| 21 | Test mode | Transmission of testmode situation froma relay to control system. IECTST "ON" setting. | GI | 1 | 9, 11 | 176 | 1242 | 1 | 2 |
| 22 | Local parameter Setting | When a setting change has done at the local, the event is sent to control system. | Not supported |  |  |  |  |  |  |
| 23 | Characteristic1 | Setting group 1 active | GI | 1 | $\begin{array}{\|l\|} \hline 1,7,9,11, \\ 12,20,21 \\ \hline \end{array}$ | 176 | 1243 | 1 | 2 |
| 24 | Characteristic2 | Setting group 2 active | GI | 1 | $\begin{aligned} & \hline 1,7,9,11, \\ & 12,20,21 \\ & \hline \end{aligned}$ | 176 | 1244 | 1 | 2 |
| 25 | Characteristic3 | Setting group 3 active | GI | 1 | $\begin{aligned} & 1,7,9,11, \\ & 12,20,21 \\ & \hline \end{aligned}$ | 176 | 1245 | 1 | 2 |
| 26 | Characteristic4 | Setting group 4 active | GI | 1 | $\begin{array}{\|l\|} \hline 1,7,9,11, \\ 12,20,21 \\ \hline \end{array}$ | 176 | 1246 | 1 | 2 |
| 27 | Auxiliary input1 |  |  |  |  | No |  |  |  |
| 28 | Auxiliary input2 |  |  |  |  | No |  |  |  |
| 29 | Auxiliary input3 |  |  |  |  | No |  |  |  |
| 30 | Auxiliary input4 |  |  |  |  | No |  |  |  |
| Supervision Indications |  |  |  |  |  |  |  |  |  |
| 32 | Measurand supervision I | Zero sequence current supervision | GI | 1 | 1,7, 9 | 176 | 1271 | 1 | 2 |
| 33 | Measurand supervision V | Zero sequence voltage supervision | Not supported |  |  |  |  |  |  |
| 35 | Phase sequence supervision | Negative sequence voltage supevision | Not supported |  |  |  |  |  |  |
| 36 | Trip circuit supervision | Output circuit supervision | Not supported |  |  |  |  |  |  |
| 37 | 1>> backup operation |  | Not supported |  |  |  |  |  |  |
| 38 | VT fuse failure | VT failure | Not supported |  |  |  |  |  |  |
| 39 | Teleprotection disturbed | CF(Communication system Fail) supervision | Not supported |  |  |  |  |  |  |
| 46 | Group warning | Only alarming | GI | 1 | 1, 7, 9 | 176 | 1258 | 1 | 2 |
| 47 | Group alarm | Trip blocking and alarming | GI | 1 | 1,7,9 | 176 | 1252 | 1 | 2 |
| Earth Fault Indications |  |  |  |  |  |  |  |  |  |
| 48 | Earth Fault L1 | A phase earth fault | No |  |  |  |  |  |  |
| 49 | Earth Fault L2 | B phase earth fault | No |  |  |  |  |  |  |
| 50 | Earth Fault L3 | C phase earth fault | No |  |  |  |  |  |  |
| 51 | Earth Fault Fwd | Earth fault forward | Not supported |  |  |  |  |  |  |
| 52 | Earth Fault Rev | Earth fault reverse | Not supported |  |  |  |  |  |  |


| INF | Description | Contents | IEC103 Configurator Default setting |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | GI | Type <br> ID | COT | FUN | DPI |  |  |
|  |  |  |  |  |  |  | Signal NO. | OFF | ON |
| Fault Indications |  |  |  |  |  |  |  |  |  |
| 64 | Start/pick-up L1 | A phase, A-B phase or C-A phase element pick-up | No |  |  |  |  |  |  |
| 65 | Start/pick-up L2 | B phase, A-B phase or B-C phase element pick-up | No |  |  |  |  |  |  |
| 66 | Start/pick-up L3 | C phase, B-C phase or C-A phase element pick-up | No |  |  |  |  |  |  |
| 67 | Start/pick-up N | Earth fault element pick-up | No |  |  |  |  |  |  |
| 68 | General trip | Any trip | -- | 2 | 1, 7 | 176 | 1280 | -- | 2 |
| 69 | Trip L1 | A phase, A-B phase or C-A phase trip | No |  |  |  |  |  |  |
| 70 | Trip L2 | B phase, A-B phase or B-C phase trip | No |  |  |  |  |  |  |
| 71 | Trip L3 | C phase, B-C phase or C-A phase trip | No |  |  |  |  |  |  |
| 72 | Trip l>>(back-up) | Back up trip | Not supported |  |  |  |  |  |  |
| 73 | Fault location X In ohms | Fault location (prim. [ohm] / second. [ohm] / km selectable by IECFL) | Not supported |  |  |  |  |  |  |
| 74 | Fault forward/line | Forward fault | Not supported |  |  |  |  |  |  |
| 75 | Fault reverse/Busbar | Reverse fault | Not supported |  |  |  |  |  |  |
| 76 | Teleprotection Signal transmitted | Carrier signal sending | Not supported |  |  |  |  |  |  |
| 77 | Teleprotection Signal received | Carrier signal receiving | Not supported |  |  |  |  |  |  |
| 78 | Zone1 | Zone 1 trip | Not supported |  |  |  |  |  |  |
| 79 | Zone2 | Zone 2 trip | Not supported |  |  |  |  |  |  |
| 80 | Zone3 | Zone 3 trip | Not supported |  |  |  |  |  |  |
| 81 | Zone4 | Zone 4 trip | Not supported |  |  |  |  |  |  |
| 82 | Zone5 | Zone 5 trip | Not supported |  |  |  |  |  |  |
| 83 | Zone6 | Zone 6 trip | Not supported |  |  |  |  |  |  |
| 84 | General Start/Pick-up | Any elements pick-up | No |  |  |  |  |  |  |
| 85 | Breaker Failure | CBF trip or CBF retrip | Not supported |  |  |  |  |  |  |
| 86 | Trip measuring system L1 |  | No |  |  |  |  |  |  |
| 87 | Trip measuring system L2 |  | No |  |  |  |  |  |  |
| 88 | Trip measuring system L3 |  | No |  |  |  |  |  |  |
| 89 | Trip measuring system E |  | No |  |  |  |  |  |  |
| 90 | Trip I> | Inverse time OC trip | No |  |  |  |  |  |  |
| 91 | Trip I>> | Definite time OC trip | No |  |  |  |  |  |  |
| 92 | Trip IN> | Inverse time earth fault OC trip | No |  |  |  |  |  |  |
| 93 | Trip IN>> | Definite time earth fault OC trip | No |  |  |  |  |  |  |
| Autoreclose indications |  |  |  |  |  |  |  |  |  |
| 128 | CB 'ON' by Autoreclose | CB close command output | Not supported |  |  |  |  |  |  |
| 129 | CB 'ON' by long-time Autoreclose |  | Not supported |  |  |  |  |  |  |
| 130 | Autoreclose Blocked | Autoreclose block | Not supported |  |  |  |  |  |  |


| INF | Description | Contents | IEC103 configurator Default setting |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | GI | Type | COT | FUN | Max. No. |
| Measurands |  |  |  |  |  |  |  |
| 144 | Measurand I | <meaurand l> | No |  |  |  | 0 |
| 145 | Measurand I,V | Ib1, Vab measurand <meaurand l> | -- | 3.2 | 2, 7 | 176 | 2 |
| 146 | Measurand I,V,P,Q | <meaurand l> | No |  |  |  | 0 |
| 147 | Measurand IN,VEN | <meaurand l> | No |  |  |  | 0 |
| 148 | Measurand IL1,2,3, VL1,2,3, P,Q,f | la1, lb1, lc1, f measurand <meaurand II> | -- | 9 | 2, 7 | 176 | 9 |

Generic Function

| 240 | Read Headings |  | Not supported |
| :---: | :--- | :--- | :---: |
| 241 | Read attributes of all entries <br> of a group |  | Not supported |
| 243 | Read directory of entry |  | Not supported |
| 244 | Real attribute of entry |  | Not supported |
| 245 | End of GGI |  | Not supported |
| 249 | Write entry with confirm |  | Not supported |
| 250 | Write entry with execute |  | Not supported |
| 251 | Write entry aborted |  | Not supported |

Details of MEA settings in IEC103 configurator

| INF | MEA | Tb1 | Offset | Data type | Limit |  | Co eff |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Lower | Upper |  |
| 145 | lb1 | 1 | 28 | short | 0 | 4096 | 1.706666 |
|  | Vab | 1 | 12 | short | 0 | 4096 | 3.413333 |
| 148 | la1 | 1 | 24 | short | 0 | 4096 | 1.706666 |
|  | la2 | 1 | 28 | short | 0 | 4096 | 1.706666 |
|  | la3 | 1 | 32 | short | 0 | 4096 | 1.706666 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | f | 2 | 28 | short | 0 | 4096 | 0.0000833 |


| INF | Description | Contents | IEC103 Configurator Default setting |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | COM | Type ID | COT | FUN |
| Selection of standard information numbers in control direction |  |  |  |  |  |  |
| System functions |  |  |  |  |  |  |
| 0 | Initiation of general interrogation |  | -- | 7 | 9 | 255 |
| 0 | Time synchronization |  | -- | 6 | 8 | 255 |
| General commands |  |  |  |  |  |  |
| 16 | Auto-recloser on/off |  | Not supported |  |  |  |
| 17 | Teleprotection on/off |  | Not supported |  |  |  |
| 18 | Protection on/off | (*1) | ON/OFF | 20 | 20 | 176 |
| 19 | LED reset | Reset indication of latched LEDs. | ON | 20 | 20 | 176 |
| 23 | Activate characteristic 1 | Setting Group 1 | ON | 20 | 20 | 176 |
| 24 | Activate characteristic 2 | Setting Group 2 | ON | 20 | 20 | 176 |
| 25 | Activate characteristic 3 | Setting Group 3 | ON | 20 | 20 | 176 |
| 26 | Activate characteristic 4 | Setting Group 4 | ON | 20 | 20 | 176 |
| Generic functions |  |  |  |  |  |  |
| 240 | Read headings of all defined groups |  | Not supported |  |  |  |
| 241 | Read values or attributes of all entries of one group |  | Not supported |  |  |  |
| 243 | Read directory of a single entry |  | Not supported |  |  |  |
| 244 | Read values or attributes of a single entry |  | Not supported |  |  |  |
| 245 | General Interrogation of generic data |  | Not supported |  |  |  |
| 248 | Write entry |  | Not supported |  |  |  |
| 249 | Write entry with confirmation |  | Not supported |  |  |  |
| 250 | Write entry with execution |  | Not supported |  |  |  |

(*1) Note: While the relay receives the "Protection off" command, " IN SERVICE LED" is off.

Details of Command settings in IEC103 configurator

| INF | DCO |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Sig off | Sig on | Rev | Valid time |
| 18 | 2686 | 2686 | $\boldsymbol{V}$ | 0 |
| 19 | 0 | 2688 |  | 200 |
| 23 | 0 | 2640 |  | 1000 |
| 24 | 0 | 2641 |  | 1000 |
| 25 | 0 | 2642 |  | 1000 |
| 26 | 0 | 2643 |  | 1000 |

$\checkmark$ : signal reverse

| Description | Contents | GRT100 supported | Comment |
| :---: | :---: | :---: | :---: |
| Basic application functions |  |  |  |
| Test mode |  | Yes |  |
| Blocking of monitor direction |  | Yes |  |
| Disturbance data |  | No |  |
| Generic services |  | No |  |
| Private data |  | Yes |  |
| Miscellaneous |  |  |  |
| Measurand |  | Max. MVAL = rated value times |  |
| Current L1 | la | Configurable |  |
| Current L2 | Ib | Configurable |  |
| Current L3 | Ic | Configurable |  |
| Voltage L1-E | Va | No |  |
| Voltage L2-E | Vb | No |  |
| Voltage L3-E | Vc | No |  |
| Active power $P$ | P | No |  |
| Reactive power Q | Q | No |  |
| Frequency f | f | Configurable |  |
| Voltage L1 - L2 | Vab | Configurable |  |

Details of Common settings in IEC103 configurator

- Setting file's remark:
- Remote operation valid time [ms]:

GRT100_1.00
4000

- Local operation valid time [ms]:

4000

- Measurand period [s]:

2

- Function type of System functions:

176

- Signal No. of Test mode:

1242

- Signal No. for Real time and Fault number: 1279
[Legend]
GI: General Interrogation (refer to IEC60870-5-103 section 7.4.3)
Type ID: Type Identification (refer to IEC60870-5-103 section 7.2.1)
1 : time-tagged message
2 : time-tagged message with relative time
3 : measurands I
4 : time-tagged measurands with relative time
5 : identification
6 : time synchronization
8 : general interrogation termination
9 : measurands II
10: generic data
11: generic identification
20: general command
23: list of recorded disturbances
26: ready for transmission for disturbance data
27: ready for transmission of a channel
28: ready for transmission of tags
29: transmission of tags
30: transmission of disturbance values
31: end of transmission
COT: Cause of Transmission (refer to IEC60870-5-103 section 7.2.3)
1: spontaneous
2: cyclic
3: reset frame count bit (FCB)
4: reset communication unit (CU)
5: start / restart
6: power on
7: test mode
8: time synchronization
9: general interrogation
10: termination of general interrogation
11: local operation
12: remote operation
20: positive acknowledgement of command
21: negative acknowledgement of command
31: transmission of disturbance data
40: positive acknowledgement of generic write command
41: negative acknowledgement of generic write command
42: valid data response to generic read command
43: invalid data response to generic read command
44: generic write confirmation
FUN: Function type (refer to IEC60870-5-103 section 7.2.5.1)
DPI: Double-point Information (refer to IEC60870-5-103 section 7.2.6.5)
DCO: Double Command (refer to IEC60870-5-103 section 7.2.6.4)


## IEC103 setting data is recommended to be saved as follows:

## (1) Naming for IEC103setting data

The file extension of IEC103 setting data is ".csv". The version name is recommended to be provided with a revision number in order to be changed in future as follows:
First draft:

```
lo*****01.csv _
```

The name "*******" is recommended to be able to discriminate the relay type such as GRZ100 or GRL100, etc. The setting files remark field of IEC103 is able to enter up to 12 one-byte characters. It is utilized for control of IEC103 setting data.


## (2) Saving thelEC103 setting data

The IEC103 setting data is recommended to be saved in external media such as FD (floppy disk) or CD-R, not to remain in the folder.

## Troubleshooting

| No. | Phenomena | Supposed causes | Check / Confirmation |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Object | Procedure |
| 1 | Communication trouble (IEC103 communication is not available.) | Address setting is incorrect. | $\begin{aligned} & \mathrm{BCU} \\ & \mathrm{RY} \end{aligned}$ | Match address setting between BCU and relay. Avoid duplication of address with other relay. |
|  |  | Transmission baud rate setting is incorrect. | $\begin{aligned} & \mathrm{BCU} \\ & \mathrm{RY} \end{aligned}$ | Match transmission baud rate setting between BCU and relay. |
|  |  | Start bit, stop bit and parity settings of data that $B C U$ transmits to relay is incorrect. | BCU | Go over the following settings by $B C U$. Relay setting is fixed as following settings. <br> - Start bit: 1bit <br> - Stop bit: 1bit <br> - Parity setting: even |
|  |  | RS485 or optical cable interconnection is incorrect. | Cable | - Check the connection port. <br> - Check the interconnection of RS485 A/B/COM <br> - Check the send and received interconnection of optical cable. |
|  |  | The setting of converter is incorrect. (RS485/optic conversion is executed with the transmission channel, etc.) | Converter | In the event of using G1IF2, change the DIPSW setting in reference to INSTRUCTION MANUAL (6F2SO794). |
|  |  | The relationship between logical "0/1" of the signal and Sig.on/off is incorrect. (In the event of using optical cable) | BCU | Check the following; Logical0 : Sig.on Logical1:Sig.off |
|  |  | Terminal resistor is not offered. (Especially when RS485 cable is long.) | cable | Impose terminal resistor ( 150 [ohms]) to both ends of RS 485 cable. |
|  |  | Relay cannot receive the requirement frame from BCU. <br> (The timing coordination of sending and receiving switch control is irregular in half-duplex communication.) | BCU | Check to secure the margin more than 15 ms between receiving the reply frame from the relay and transmitting the next requirement frame on $B C U$. |
|  |  | The requirement frame from BCU and the reply frame from relay contend. <br> (The sending and receiving timing coordination is irregular in half-duplex communication.) | BCU | Check to set the time-out of reply frame from the relay. <br> Time-out setting: more than 100 ms (acceptable value of response time 50 ms plus margin) |


| 2 | HMI does not display IEC103 event on the SAS side. | The relevant event sending condition is not valid. | RY | Change the event sending condition (signal number) of IEC103 configurator if there is a setting error. When the setting is correct, check the signal condition by programmable LED, etc. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | The relevant event Information Number (INF) and/or Function Type (FUN) may be different between the relay and SAS. | $\begin{aligned} & \text { RY } \\ & \text { SAS } \end{aligned}$ | Match the relevant event Information Number (INF) or Function Type (FUN) between the relay and SAS. |
|  |  | The relay is not initialised after writing IEC103 configurator setting. | RY | Check the sum value of IEC103 setting data from the LCD screen. When differing from the sum value on IEC103 configurator, initialise the relay. |
|  |  | It changes to the block mode. | RY | Change the IECBR settling to Normal. |
| 3 | Time can be synchronised with IEC103 communication. | BCU does not transmit the frame of time synchronisation. | BCU | Transmit the frame of time synchronisation. |
|  |  | The settling of time synchronisation source is set to other than IEC. | RY | Change the settling of time synchronisation source to IEC. |

(Note) BCU: Bay control unit, RY: Relay

## Appendix P

IEC61850: MICS \& PICS

## MICS: IEC61850 Model Implementation Conformance Statement

The GRT100 relay supports IEC 61850 logical nodes and common data classes as indicated in the following tables.

Logical nodes in IEC 61850-7-4

| Logical Nodes | GRT100 |
| :---: | :---: |
| L: System Logical Nodes |  |
| LPHD | Yes |
| Common Logical Node | Yes |
| LLN0 | Yes |
| P: Logical Nodes for Protection functions |  |
| PDIF | Yes |
| PDIR | --- |
| PDIS | --- |
| PDOP | --- |
| PDUP | --- |
| PFRC | --- |
| PHAR | Yes |
| PHIZ | --- |
| PIOC | --- |
| PMRI | --- |
| PMSS | --- |
| POPE | --- |
| PPAM | --- |
| PSCH | --- |
| PSDE | --- |
| PTEF | --- |
| PTOC | Yes |
| PTOF | Yes |
| PTOV | --- |
| PTRC | Yes |
| PTTR | Yes |
| PTUC | --- |
| PTUV | --- |
| PUPF | --- |
| PTUF | Yes |
| PVOC | --- |
| PVPH | Yes |
| PZSU | --- |
| R: Logical Nodes for protection related functions |  |
| RDRE | --- |
| RADR | --- |
| RBDR | --- |
| RDRS | --- |
| RBRF | --- |
| RDIR | --- |
| RFLO | --- |
| RPSB | --- |
| RREC | --- |
| RSYN | --- |
| C: Logical Nodes for Control |  |
| CALH | --- |
| CCGR | --- |
| CILO | --- |
| CPOW | --- |
| CSWI | --- |
| G: Logical Nodes for Generic references |  |
| GAPC | Yes |


| GGIO | Yes |
| :---: | :---: |
| Nodes | GRT100 |
| GSAL | --- |
| I: Logical Nodes for Interfacing and archiving |  |
| IARC | --- |
| IHMI | --- |
| ITCI | --- |
| ITMI | --- |
| A: Logical Nodes for Automatic control |  |
| ANCR | --- |
| ARCO | --- |
| ATCC | --- |
| AVCO | --- |
| M: Logical Nodes for Metering and measurement |  |
| MDIF | --- |
| MHAI | --- |
| MHAN | --- |
| MMTR | --- |
| MMXN | Yes |
| MMXU | Yes |
| MSQI | Yes |
| MSTA | --- |
| S: Logical Nodes for Sensors and monitoring |  |
| SARC | --- |
| SIMG | --- |
| SIML | --- |
| SPDC | --- |
| X: Logical Nodes for Switchgear |  |
| XCBR | --- |
| XSWI | --- |
| T: Logical Nodes for Instrument transformers |  |
| TCTR | --- |
| TVTR | --- |
| Y: Logical Nodes for Power transformers |  |
| YEFN | --- |
| YLTC | --- |
| YPSH | --- |
| YPTR | --- |
| Z: Logical Nodes for Further power system equipment |  |
| ZAXN | --- |
| ZBAT | --- |
| ZCAB | --- |
| ZCAP | --- |
| ZCON | --- |
| ZGEN | --- |
| ZGIL | --- |
| ZLIN | --- |
| ZMOT | --- |
| ZREA | --- |
| ZRRC | --- |
| ZSAR | --- |
| ZTCF | --- |
| ZTCR | --- |

Common data classes in IEC61850-7-3

| Common data classes | GRT100 |
| :---: | :---: |
| Status information |  |
| SPS | Yes |
| DPS | --- |
| INS | Yes |
| ACT | Yes |
| ACD | Yes |
| SEC | --- |
| BCR | --- |
| Measured information |  |
| MV | Yes |
| CMV | Yes |
| SAV | --- |
| WYE | Yes |
| DEL | --- |
| SEQ | Yes |
| HMV | --- |
| HWYE | --- |
| HDEL | --- |
| Controllable status information |  |
| SPC | Yes |
| DPC | --- |
| INC | Yes |
| BSC | --- |
| ISC | --- |
| Controllable analogue information |  |
| APC | --- |
| Status settings |  |
| SPG | --- |
| ING | Yes |
| Analogue settings |  |
| ASG | Yes |
| CURVE | --- |
| Description information |  |
| DPL | Yes |
| LPL | Yes |
| CSD | --- |


| LPHD class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| PhyName | DPL | Physical device name plate |  | M | Y |
| PhyHealth | INS | Physical device health |  | M | Y |
| OutOv | SPS | Output communications buffer overflow |  | O | N |
| Proxy | SPS | Indicates if this LN is a proxy |  | M | Y |
| InOv | SPS | Input communications buffer overflow |  | O | N |
| NumPwrUp | INS | Number of Power ups |  | O | N |
| WrmStr | INS | Number of Warm Starts |  | 0 | N |
| WacTrg | INS | Number of watchdog device resets detected |  | 0 | N |
| PwrUp | SPS | Power Up detected |  | 0 | N |
| PwrDn | SPS | Power Down detected |  | O | N |
| PwrSupAlm | SPS | External power supply alarm |  | 0 | N |
| RsStat | SPC | Reset device statistics | T | 0 | N |


| Common Logical Node class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Mandatory Logical Node Information (Shall be inherited by ALL LN but LPHD) |  |  |  |  |  |
| Mod | INC | Mode |  | M | Y |
| Beh | INS | Behaviour |  | M | Y |
| Health | INS | Health |  | M | Y |
| NamPlt | LPL | Name plate |  | M | Y |
| Optional Logical Node Information |  |  |  |  |  |
| Loc | SPS | Local operation |  | 0 | N |
| EEHealth | INS | External equipment health |  | 0 | N |
| EEName | DPL | External equipment name plate |  | 0 | N |
| OpCntRs | INC | Operation counter resetable |  | 0 | N |
| OpCnt | INS | Operation counter |  | 0 | N |
| OpTmh | INS | Operation time |  | 0 | N |
| Data Sets (see IEC 61850-7-2) |  |  |  |  |  |
| Inherited and pecialized from Logical Node class (see IEC 61850-7-2) |  |  |  |  |  |
| Control Blocks (see IEC 61850-7-2) |  |  |  |  |  |
| Inherited and pecialized from Logical Node class (see IEC 61850-7-2) |  |  |  |  |  |
| Services (see IEC 61850-7-2) |  |  |  |  |  |
| Inherited and pecialized from Logical Node class (see IEC 61850-7-2) |  |  |  |  |  |


| LLNO class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| Loc | SPS | Local operation for complete logical device |  | 0 | Y |
| OpTmh | INS | Operation time |  | 0 | N |
| Controls |  |  |  |  |  |
| Diag | SPC | Run Diagnostics |  | 0 | Y |
| LEDRs | SPC | LED reset | T | 0 | Y |


| PDIF class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| OpCntRs | INC | Resetable operation counter |  | 0 | N |
| Status Information |  |  |  |  |  |
| Str | ACD | Start |  | M | Y |
| Op | ACT | Operate | T | M | Y |
| TmAst | CSD | Active curve charactristic |  | 0 | N |
| Measured Values |  |  |  |  |  |
| DifAClc | WYE | Differential Current |  | 0 | Y |
| RstA | WYE | Restraint Current |  | 0 | N |
| Settings |  |  |  |  |  |
| LinCapac | ASG | Line capacitance (for load currents) |  | 0 | N |
| LoSet | ING | Low operate value, percentage of the nominal current |  | 0 | N |
| HiSet | ING | High operate value, percentage of the nominal current |  | 0 | N |
| MinOpTmms | ING | Minimum Operate Time |  | 0 | N |
| MaxOpTmms | ING | Maximum Operate Time |  | 0 | N |
| RstMod | ING | Restraint Mode |  | 0 | N |
| RsDITmms | ING | Reset Delay Time |  | 0 | N |
| TmACrv | CURVE | Operating Curve Type |  | 0 | N |


| PHAR class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| OpCntRs | INC | Resetable operation counter |  | 0 | N |
| Status Information |  |  |  |  |  |
| Str | ACD | Start |  | M | Y |
| Settings |  |  |  |  |  |
| HarRst | ING | Number of harmonic restrained |  | 0 | N |
| PhStr | ASG | Start Value |  | 0 | Y |
| PhStop | ASG | Stop Value |  | 0 | N |
| OpDITmms | ING | Operate Delay Time |  | 0 | N |
| RsDITmms | ING | Reset Delay Time |  | 0 | N |

## PTOC class

| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| :--- | :--- | :--- | :---: | :---: | :---: |
| LNName | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |  |
| Data |     <br> Common Logical Node Information    <br>   LN shall inherit all Mandatory Data from Common Logical Node Class  <br> OpCntRs INC Resetable operation counter O |  |  |  |  |

## Status Information

| Str | ACD | Start |  | M | Y |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Op | ACT | Operate | T | M | Y |
| TmASt | CSD | Active curve characteristic |  | O | N |
| Settings |  |  |  |  |  |
| TmACrv | CURVE | Operating Curve Type | O | N |  |
| StrVal | ASG | Start Value | O | Y |  |
| TmMult | ASG | Time Dial Multiplier | O | N |  |
| MinOpTmms | ING | Minimum Operate Time | O | N |  |
| MaxOpTmms | ING | Maximum Operate Time | O | N |  |
| OpDITmms | ING | Operate Delay Time | O | Y |  |
| TypRsCrv | ING | Type of Reset Curve | O | N |  |
| RsDITmms | ING | Reset Delay Time | O | N |  |
| DirMod | ING | Directional Mode | O | N |  |


| PTOF class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| OpCntRs | INC | Resetable operation counter |  | 0 | N |
| Status Information |  |  |  |  |  |
| Str | ACD | Start |  | M | Y |
| Op | ACT | Operate | T | M | Y |
| BlkV | SPS | Blocked because of voltage |  | 0 | Y |
| Settings |  |  |  |  |  |
| StrVal | ASG | Start Value (frequency) |  | 0 | Y |
| BIkVal | ASG | Voltage Block Value |  | 0 | Y |
| OpDITmms | ING | Operate Delay Time |  | 0 | Y |
| RsDITmms | ING | Reset Delay Time |  | 0 | N |


| PTRC class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| OpCntRs | INC | Resetable operation counter |  | 0 | N |
| Status Information |  |  |  |  |  |
| Tr | ACT | Trip |  | C | Y |
| Op | ACT | Operate (combination of subscribed Op from protection functions) |  | C | N |
| Str | ACD | Sum of all starts of all connected Logical Nodes |  | 0 | N |
| Settings |  |  |  |  |  |
| TrMod | ING | Trip Mode |  | 0 | N |
| TrPIsTmms | ING | Trip Pulse Time |  | 0 | N |

Condition C: At least one of the two status information (Tr, Op) shall be used.

| PTTR class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| OpCntRs | INC | Resetable operation counter |  | 0 | N |
| Measured Values |  |  |  |  |  |
| Amp | MV | Current for thermal load model |  | 0 | N |
| Tmp | MV | Temperature for thermal load |  | 0 | N |
| TmpRI | MV | Relation between temperature and max. temperature |  | 0 | N |
| LodRsvAlm | MV | Load reserve to alarm |  | 0 | N |
| LodRsvTr | MV | Load reserve to trip |  | 0 | N |
| AgeRat | MV | Ageing rate |  | 0 | N |
| Status Information |  |  |  |  |  |
| Str | ACD | Start |  | 0 | Y |
| Op | ACT | Operate | T | M | Y |
| AlmThm | ACT | Thermal Alarm |  | 0 | Y |
| TmTmpSt | CSD | Active curve characteristic |  | 0 | N |
| TmASt | CSD | Active curve characteristic |  | 0 | N |
| Settings |  |  |  |  |  |
| TmTmpCrv | CURVE | Characteristic Curve for temperature measurement |  | 0 | N |
| TmACrv | CURVE | Characteristic Curve for current measurement /Thermal model |  | 0 | N |
| TmpMax | ASG | Maximum allowed temperature |  | 0 | N |
| StrVal | ASG | Start Value |  | 0 | Y |
| OpDITmms | ING | Operate Delay Time |  | 0 | N |
| MinOpTmms | ING | Minimum Operate Time |  | 0 | N |
| MaxOpTmms | ING | Maximum Operate Time |  | 0 | N |
| RsDITmms | ING | Reset Delay Time |  | 0 | N |
| ConsTms | ING | Time constant of the thermal model |  | 0 | N |
| AlmVal | ASG | Alarm Value |  | 0 | N |


| PTUF class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| OpCntRs | INC | Resetable operation counter |  | 0 | N |
| Status Information |  |  |  |  |  |
| Str | ACD | Start |  | M | Y |
| Op | ACT | Operate | T | M | Y |
| BlkV | SPS | Blocked because of voltage |  | 0 | Y |
| Settings |  |  |  |  |  |
| StrVal | ASG | Start Value (frequency) |  | 0 | Y |
| BlkVal | ASG | Voltage Block Value |  | 0 | Y |
| OpDITmms | ING | Operate Delay Time |  | 0 | Y |
| RsDITmms | ING | Reset Delay Time |  | 0 | N |


| PVPH class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| OpCntRs | INC | Resetable operation counter |  | O | N |
| Status Information |  |  |  |  |  |
| Str | ACD | Start |  | M | Y |
| Op | ACT | Operate | T | M | Y |
| VHzSt | CSD | Active curve characteristic |  | 0 | N |
| Settings |  |  |  |  |  |
| VHzCrv | CURVE | Operating Curve Type |  | 0 | N |
| StrVal | ASG | Volts per hertz Start Value |  | 0 | Y |
| OpDITmms | ING | Operate Delay Time |  | 0 | Y |
| TypRsCrv | ING | Type of Reset Curve |  | 0 | N |
| RsDITmms | ING | Reset Delay Time |  | 0 | N |
| TmMult | ASG | Time Dial Multiplier |  | 0 | N |
| MinOpTmms | ING | Minimum Operate Time |  | 0 | N |
| MaxOpTmms | ING | Maximum Operate Time |  | 0 | N |


| GAPC class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| Loc | SPS | Local operation |  | 0 | N |
| OpCntRs | INC | Resetable operation counter |  | 0 | N |
| Controls |  |  |  |  |  |
| SPCSO | SPC | Single point controllable status output |  | 0 | N |
| DPCSO | DPC | Double point controllable status output |  | 0 | N |
| ISCSO | INC | Integer status controllable status output |  | O | N |
| Status Information |  |  |  |  |  |
| Auto | SPS | Automatic operation |  | O | N |
| Str | ACD | Start |  | M | Y |
| Op | ACT | Operate | T | M | Y |
| Setting |  |  |  |  |  |
| StrVal | ASG | Start Value |  | O | N |


| GGIO class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| EEHealth | INS | External equipment health (external sensor) |  | 0 | N |
| EEName | DPL | External equipment name plate |  | 0 | N |
| Loc | SPS | Local operation |  | 0 | N |
| OpCntRs | INC | Resetable operation counter |  | 0 | N |
| Measured values |  |  |  |  |  |
| Anln | MV | Analogue input |  | 0 | N |
| Controls |  |  |  |  |  |
| SPCSO | SPC | Single point controllable status output |  | 0 | N |
| DPCSO | DPC | Double point controllable status output |  | 0 | N |
| ISCSO | INC | Integer status controllable status output |  | 0 | N |
| Status Information |  |  |  |  |  |
| Intln | INS | Integer status input |  | 0 | N |
| Alm | SPS | General single alarm |  | 0 | N |
| Ind01 | SPS | General indication (binary input) |  | 0 | Y |
| Ind02 | SPS | General indication (binary input) |  | 0 | Y |
| Ind03 | SPS | General indication (binary input) |  | 0 | Y |
| Ind04 | SPS | General indication (binary input) |  | 0 | Y |
| Ind05 | SPS | General indication (binary input) |  | 0 | Y |
| Ind06 | SPS | General indication (binary input) |  | 0 | Y |
| Ind07 | SPS | General indication (binary input) |  | 0 | Y |
| Ind08 | SPS | General indication (binary input) |  | 0 | Y |
| Ind09 | SPS | General indication (binary input) |  | 0 | Y |
| Ind10 | SPS | General indication (binary input) |  | 0 | Y |
| Ind11 | SPS | General indication (binary input) |  | 0 | Y |
| Ind12 | SPS | General indication (binary input) |  | 0 | Y |
| Ind13 | SPS | General indication (binary input) |  | 0 | Y |
| Ind14 | SPS | General indication (binary input) |  | 0 | Y |
| Ind15 | SPS | General indication (binary input) |  | 0 | Y |
| Ind16 | SPS | General indication (binary input) |  | 0 | Y |
| Ind17 | SPS | General indication (binary input) |  | 0 | Y |
| Ind18 | SPS | General indication (binary input) |  | 0 | Y |
| Ind19 | SPS | General indication (binary input) |  | 0 | Y |
| Ind20 | SPS | General indication (binary input) |  | 0 | Y |
| Ind21 | SPS | General indication (binary input) |  | 0 | Y |
| Ind22 | SPS | General indication (binary input) |  | 0 | Y |
| Ind23 | SPS | General indication (binary input) |  | 0 | Y |
| Ind24 | SPS | General indication (binary input) |  | 0 | Y |
| Ind25 | SPS | General indication (binary input) |  | 0 | Y |
| Ind26 | SPS | General indication (binary input) |  | 0 | Y |


| MMXN class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| EEHealth | INS | External equipment health (external sensor) |  | 0 | N |
| EEName | DPL | External equipment name plate |  | 0 | N |
| Measured values |  |  |  |  |  |
| Amp | MV | Current I (rms) not allocated to a phase |  | 0 | N |
| Vol | MV | Voltage V (rms) not allocated to a phase |  | 0 | Y |
| Watt | MV | Power (P) not allocated to a phase |  | 0 | N |
| VolAmpr | MV | Reactive Power (Q) not allocated to a phase |  | 0 | N |
| VolAmp | MV | Apparent Power (S) not allocated to a phase |  | 0 | N |
| PwrFact | MV | Power Factor not allocated to a phase |  | 0 | N |
| Imp | CMV | Impedance |  | 0 | N |
| Hz | MV | Frequency |  | 0 | Y |


| MMXU class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| EEHealth | INS | External equipment health (external sensor) |  | 0 | N |
| Measured values |  |  |  |  |  |
| TotW | MV | Total Active Power (Total P) |  | 0 | N |
| TotVAr | MV | Total Reactive Power (Total Q) |  | 0 | N |
| TotVA | MV | Total Apparent Power (Total S) |  | 0 | N |
| TotPF | MV | Average Power factor (Total PF) |  | 0 | N |
| Hz | MV | Frequency |  | 0 | N |
| PPV | DEL | Phase to phase voltages (VL1VL2, ...) |  | 0 | N |
| PhV | WYE | Phase to ground voltages (VL1ER, ...) |  | 0 | N |
| A | WYE | Phase currents (IL1, IL2, IL3) |  | 0 | Y |
| W | WYE | Phase active power (P) |  | 0 | N |
| VAr | WYE | Phase reactive power (Q) |  | 0 | N |
| VA | WYE | Phase apparent power (S) |  | 0 | N |
| PF | WYE | Phase power factor |  | 0 | N |
| Z | WYE | Phase Impedance |  | 0 | N |


| MSQI class |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attr. Type | Explanation | T | M/O | GRT100 |
| LNName |  | Shall be inherited from Logical-Node Class (see IEC 61850-7-2) |  |  |  |
| Data |  |  |  |  |  |
| Common Logical Node Information |  |  |  |  |  |
|  |  | LN shall inherit all Mandatory Data from Common Logical Node Class |  | M |  |
| EEHealth | INS | External equipment health (external sensor) |  | 0 | N |
| EEName | DPL | External equipment name plate |  | 0 | N |
| Measured values |  |  |  |  |  |
| SeqA | SEQ | Positive, Negative and Zero Sequence Current |  | C | Y |
| SeqV | SEQ | Positive, Negative and Zero Sequence Voltage |  | C | N |
| DQ0Seq | SEQ | DQ0 Sequence |  | 0 | N |
| ImbA | WYE | Imbalance current |  | 0 | N |
| 1 mbNgA | MV | Imbalance negative sequence current |  | 0 | N |
| 1 mbNgV | MV | Imbalance negative sequence voltage |  | 0 | N |
| ImbPPV | DEL | Imbalance phase-phase voltage |  | 0 | N |
| ImbV | WYE | Imbalance voltage |  | 0 | N |
| ImbZroA | MV | Imbalance zero sequence current |  | 0 | N |
| ImbZroV | MV | Imbalance zero sequence voltage |  | 0 | N |
| MaxImbA | MV | Maximum imbalance current |  | 0 | N |
| MaxImbPPV | MV | Maximum imbalance phase-phase voltage |  | 0 | N |
| MaxImbV | MV | Maximum imbalance voltage |  | 0 | N |

Condition C: At least one of either data shall be used.

| SPS class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| status |  |  |  |  |  |  |
| stVal | BOOLEAN |  | dchg | TRUE \| FALSE | M | Y |
| q | Quality |  | qchg |  | M | Y |
| t | TimeStamp | ST |  |  | M | Y |
| substitution |  |  |  |  |  |  |
| subEna | BOOLEAN | SV |  |  | PICS_SUBST | N |
| subVal | BOOLEAN | SV |  | TRUE \| FALSE | PICS_SUBST | N |
| subQ | Quality | SV |  |  | PICS_SUBST | N |
| subID | VISIBLE STRING64 | SV |  |  | PICS_SUBST | N |
| configuration, description and extension |  |  |  |  |  |  |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 13 |  |  |  |  |  |  |


| INS class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| status |  |  |  |  |  |  |
| stVal | INT32 | ST | dchg |  | M | Y(*1) |
| q | Quality | ST | qchg |  | M | Y |
| t | TimeStamp | ST |  |  | M | Y |
| Substitution |  |  |  |  |  |  |
| subEna | BOOLEAN | SV |  |  | PICS_SUBST | N |
| subVal | INT32 | SV |  |  | PICS_SUBST | N |
| subQ | Quality | SV |  |  | PICS_SUBST | N |
| subID | VISIBLE STRING64 | SV |  |  | PICS_SUBST | N |
| configuration, description and extension |  |  |  |  |  |  |
| d | VISIBLE STRING255 | DC |  |  | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in | able 13 |  |  |  |  |  |

(*1): "ENUM" type is also used.

| ACT class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| status |  |  |  |  |  |  |
| general | BOOLEAN | ST | dchg |  | M | Y |
| phsA | BOOLEAN | ST | dchg |  | 0 | N |
| phsB | BOOLEAN | ST | dchg |  | 0 | N |
| phsC | BOOLEAN | ST | dchg |  | 0 | N |
| neut | BOOLEAN | ST | dchg |  | 0 | N |
| q | Quality | ST | qchg |  | M | Y |
| t | TimeStamp | ST |  |  | M | Y |
| configuration, description and extension |  |  |  |  |  |  |
| operTm | TimeStamp | CF |  |  | 0 | N |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 13 |  |  |  |  |  |  |


| ACD class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| status |  |  |  |  |  |  |
| general | BOOLEAN | ST | dchg |  | M | Y |
| dirGeneral | ENUMERATED | ST | dchg | unknown \| forward | backward both | M | Y |
| phsA | BOOLEAN | ST | dchg |  | GC_2 (1) | N |
| dirPhsA | ENUMERATED | ST | dchg | unknown \| forward | backward | GC_2 (1) | N |
| phsB | BOOLEAN | ST | dchg |  | GC_2 (2) | N |
| dirPhsB | ENUMERATED | ST | dchg | unknown \| forward | backward | GC_2 (2) | N |
| phsC | BOOLEAN | ST | dchg |  | GC_2 (3) | N |
| dirPhsC | ENUMERATED | ST | dchg | unknown \| forward | backward | GC_2 (3) | N |
| neut | BOOLEAN | ST | dchg |  | GC_2 (4) | N |
| dirNeut | ENUMERATED | ST | dchg | unknown \| forward | backward | GC_2 (4) | N |
| q | Quality | ST | qchg |  | M | Y |
| , | TimeStamp | ST |  |  | M | Y |
| configuration, description and extension |  |  |  |  |  |  |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 13 |  |  |  |  |  |  |


| MV class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/OIC | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| measured values |  |  |  |  |  |  |
| instMag | AnalogueValue | MX |  |  | 0 | N |
| mag | AnalogueValue | MX | dchg |  | M | Y |
| range | ENUMERATED | MX | dchg | $\begin{array}{l}\text { normal \| high \| low \| high-high } \\ \text { low-low \|... }\end{array}$ | 0 | N |
| q | Quality | MX | qchg |  | M | Y |
| t | TimeStamp | MX |  |  | M | Y |
| substitution |  |  |  |  |  |  |
| subEna | BOOLEAN | SV |  |  | PICS_SUBST | N |
| subVal | AnalogueValue | SV |  |  | PICS_SUBST | N |
| subQ | Quality | SV |  |  | PICS_SUBST | N |
| subID | VISIBLE STRING64 | SV |  |  | PICS_SUBST | N |
| configuration, description and extension |  |  |  |  |  |  |
| units | Unit | CF |  | see Annex A | 0 | Y |
| db | INT32U | CF |  | $0 \ldots 100000$ | 0 | N |
| zeroDb | INT32U | CF |  | 0... 100000 | 0 | N |
| sVC | ScaledValueConfig | CF |  |  | AC_SCAV | N |
| rangeC | RangeConfig | CF |  |  | GC_CON | N |
| smpRate | INT32U | CF |  |  | 0 | N |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 21 |  |  |  |  |  |  |



| WYE class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |  |
| Data |  |  |  |  |  |  |
| phsA | CMV |  |  |  | GC_1 | Y |
| phsB | CMV |  |  |  | GC_1 | Y |
| phsC | CMV |  |  |  | GC_1 | Y |
| neut | CMV |  |  |  | GC_1 | Y |
| net | CMV |  |  |  | GC_1 | N |
| res | CMV |  |  |  | GC_1 | N |
| DataAttribute |  |  |  |  |  |  |
| configuration, description and extension |  |  |  |  |  |  |
| angRef | ENUMERATED | CF |  | $\mathrm{Va}\|\mathrm{Vb}\| \mathrm{Vc}\|\mathrm{Aa}\| \mathrm{Ab}\|\mathrm{Ac}\| \mathrm{Vab} \mid \mathrm{Vbc}$ \| Vca | Vother | Aother | 0 | N |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in | able 21 |  |  |  |  |  |


| SEQ class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| Data |  |  |  |  |  |  |
| c1 | CMV |  |  |  | M | Y |
| c2 | CMV |  |  |  | M | Y |
| c3 | CMV |  |  |  | M | Y |
| DataAttribute |  |  |  |  |  |  |
| measured attributes |  |  |  |  |  |  |
| seqT | ENUMERATED | MX |  | pos-neg-zero \| dir-quad-zero | M | Y |
| configuration, description and extension |  |  |  |  |  |  |
| phsRef | ENUMERATED | CF |  | $\mathrm{A}\|\mathrm{B}\| \mathrm{C} \mid \ldots$ | 0 | N |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 21 |  |  |  |  |  |  |


| SPC class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Clas | (see IEC | 61850-7 |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| control and status |  |  |  |  |  |  |
| ctlVal | BOOLEAN | CO |  | off (FALSE) \| on (TRUE) | AC_CO_M | N |
| operTm | TimeStamp | CO |  |  | AC_CO_O | N |
| origin | Originator | CO, ST |  |  | AC_CO_O | Y |
| ctiNum | INT8U_RO | CO, ST |  | $0 . .255$ | AC_CO_O | N |
| SBO | VISIBLE STRING65 | CO |  |  | $\underset{\mathrm{M}}{\mathrm{AC}_{-} \mathrm{CO}_{-} \mathrm{SBO} \mathrm{~N}_{-}}$ | N |
| SBOw | SBOW | CO |  |  |  | N |
| Oper | Oper | CO |  |  | AC_CO_M | Y |
| Cancel | Cancel | CO |  |  | AC_CO_SBO_N_- $M$ and AC_CO_SBOW_E AC_CO_TA_E_M | N |
| stVal | BOOLEAN | ST | dchg | FALSE \| TRUE | AC_ST | Y |
| q | Quality | ST | qchg |  | AC_ST | Y |
| t | TimeStamp | ST |  |  | AC_ST | Y |
| stSeld | BOOLEAN | ST | dchg |  | AC_CO_O | N |
| substitution |  |  |  |  |  |  |
| subEna | BOOLEAN | SV |  |  | PICS_SUBST | N |
| subVal | BOOLEAN | SV |  | FALSE \| TRUE | PICS_SUBST | N |
| subQ | Quality | SV |  |  | PICS_SUBST | N |
| subID | VISIBLE STRING64 | SV |  |  | PICS_SUBST | N |
| configuration, description and extension |  |  |  |  |  |  |
| pulseConfig | PulseConfig | CF |  |  | AC_CO_O | N |
| CtIModel | CtIModels | CF |  |  | M | Y |
| sboTimeout | INT32U | CF |  |  | AC_CO_O | N |
| sboClass | SboClasses | CF |  |  | AC_CO_O | N |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 31 |  |  |  |  |  |  |


| INC class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| control and status |  |  |  |  |  |  |
| ctlVal | INT32 | CO |  |  | AC_CO_M | Y(*2) |
| operTm | TimeStamp | CO |  |  | AC_CO_O | N |
| origin | Originator | CO, ST |  |  | AC_CO_O | N |
| ctiNum | INT8U | CO, ST |  | $0 . .255$ | AC_CO_O | N |
| SBO | VISIBLE STRING65 | CO |  |  | AC_CO_SBO_N_M | N |
| SBOw | SBOW | CO |  |  | AC_CO_SBOW_E_M | N |
| Oper | Oper | CO |  |  | AC_CO_M | N |
| Cancel | Cancel | CO |  |  | AC_CO_SBO_N_M and AC_CO_SBOW_E_M and AC_CO_TA_E_M | N |
| stVal | INT32 | ST | dchg |  | M | Y |
| Q | Quality | ST | qchg |  | M | Y |
| T | TimeStamp | ST |  |  | M | Y |
| stSeld | BOOLEAN | ST | dchg |  | AC_CO_O | N |
| substitution |  |  |  |  |  |  |
| subEna | BOOLEAN | SV |  |  | PICS_SUBST | N |
| subVal | INT32 | SV |  | FALSE \| TRUE | PICS_SUBST | N |
| subQ | Quality | SV |  |  | PICS_SUBST | N |
| subID | VISIBLE STRING64 | SV |  |  | PICS_SUBST | N |
| configuration, description and extension |  |  |  |  |  |  |
| CtIModel | CtIModels | CF |  |  | M | Y |
| sboTimeout | INT32U | CF |  |  | AC_CO_O | N |
| sboClass | SboClasses | CF |  |  | AC_CO_O | N |
| minVal | INT32 | CF |  |  | 0 | N |
| maxVal | INT32 | CF |  |  | 0 | N |
| stepSize | INT32U | CF |  | 1 ... (maxVal - minVal) | 0 | N |
| D | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 31 |  |  |  |  |  |  |

(*2): "ENUM" type is used.

| ING class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| setting |  |  |  |  |  |  |
| setVal | INT32 | SP |  |  | AC_NSG_M | Y(*3) |
| setVal | INT32 | SG, SE |  |  | AC_SG_M | N |
| configuration, description and extension |  |  |  |  |  |  |
| minVal | INT32 | CF |  |  | 0 | N |
| maxVal | INT32 | CF |  |  | 0 | N |
| stepSize | INT32U | CF |  | $1 \ldots$ (maxVal - minVal) | 0 | N |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in | able 39 |  |  |  |  |  |

(*3): "ENUM" type is also used.

| ASG class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| setting |  |  |  |  |  |  |
| setMag | AnalogueValue | SP |  |  | AC_NSG_M | Y |
| setMag | AnalogueValue | SG, SE |  |  | AC_SG_M | N |
| configuration, description and extension |  |  |  |  |  |  |
| units | Unit | CF |  | see Annex A | 0 | Y |
| sVC | ScaledValueConfig | CF |  |  | AC_SCAV | Y |
| minVal | AnalogueValue | CF |  |  | 0 | N |
| maxVal | AnalogueValue | CF |  |  | 0 | N |
| stepSize | AnalogueValue | CF |  | $1 \ldots$ (maxVal - minVal) | 0 | N |
| d | VISIBLE STRING255 | DC |  | Text | 0 | N |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in | able 42 |  |  |  |  |  |


| DPL class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| configuration, description and extension |  |  |  |  |  |  |
| vendor | VISIBLE STRING255 | DC |  |  | M | Y |
| hwRev | VISIBLE STRING255 | DC |  |  | 0 | N |
| swRev | VISIBLE STRING255 | DC |  |  | 0 | Y |
| serNum | VISIBLE STRING255 | DC |  |  | 0 | N |
| model | VISIBLE STRING255 | DC |  |  | 0 | Y |
| location | VISIBLE STRING255 | DC |  |  | O | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 45 |  |  |  |  |  |  |


| LPL class |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Attribute Name | Attribute Type | FC | TrgOp | Value/Value Range | M/O/C | GRT100 |
| DataName | Inherited from Data Class (see IEC 61850-7-2) |  |  |  |  |  |
| DataAttribute |  |  |  |  |  |  |
| configuration, description and extension |  |  |  |  |  |  |
| vendor | VISIBLE STRING255 | DC |  |  | M | Y |
| SwRev | VISIBLE STRING255 | DC |  |  | M | Y |
| d | VISIBLE STRING255 | DC |  |  | M | Y |
| dU | UNICODE STRING255 | DC |  |  | 0 | N |
| configRev | VISIBLE STRING255 | DC |  |  | AC_LNO_M | Y |
| IdNs | VISIBLE STRING255 | EX |  | shall be included in LLNO only; for example "IEC 61850-7-4:2003" | AC_LNO_EX | N |
| InNs | VISIBLE STRING255 | EX |  |  | AC_DLD_M | N |
| cdcNs | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| cdcName | VISIBLE STRING255 | EX |  |  | AC_DLNDA_M | N |
| dataNs | VISIBLE STRING255 | EX |  |  | AC_DLN_M | N |
| Services |  |  |  |  |  |  |
| As defined in Table 45 |  |  |  |  |  |  |

## PICS: IEC61850 ASCI Conformance Statement

|  |  | Client/ subscriber | Serverl publisher | $\begin{gathered} \text { GRT10 } \\ 0 \end{gathered}$ | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Client-server roles |  |  |  |  |  |
| B11 | Server side (of TWO-PARTY-APPLICATION-ASSOCIATION) | - | c1 | Y |  |
| B12 | Client side of (TWO-PARTY-APPLICATION-ASSOCIATION) | c1 | - | - |  |
| SCSMs supported |  |  |  |  |  |
| B21 | SCSM: IEC61850-8-1 used |  |  | Y |  |
| B22 | SCSM: IEC61850-9-1 used |  |  | N |  |
| B23 | SCSM: IEC61850-9-2 used |  |  | N |  |
| B24 | SCSM: other |  |  | - |  |
| Generic substation event model (GSE) |  |  |  |  |  |
| B31 | Publisher side | - | 0 | Y |  |
| B32 | Subscriber side | 0 | - | Y |  |
| Transmission of sampled value model (SVC) |  |  |  |  |  |
| B41 | Publisher side | - | 0 | N |  |
| B42 | Subscriber side | 0 | - | N |  |
|  |  |  |  |  |  |
| If Server side (B11) supported |  |  |  |  |  |
| M1 | Logical device | c2 | c2 | Y |  |
| M2 | Logical node | c3 | c3 | Y |  |
| M3 | Data | c4 | c4 | Y |  |
| M4 | Data set | c5 | c5 | Y |  |
| M5 | Substitution | 0 | 0 | N |  |
| M6 | Setting group control | 0 | 0 | Y |  |
|  | Reporting |  |  |  |  |
| M7 | Buffered report control | 0 | 0 | Y |  |
| M7-1 | sequence-number |  |  | Y |  |
| M7-2 | report-time-stamp |  |  | Y |  |
| M7-3 | reason-for-inclusion |  |  | Y |  |
| M7-4 | data-set-name |  |  | Y |  |
| M7-5 | data-reference |  |  | Y |  |
| M7-6 | buffer-overflow |  |  | Y |  |
| M7-7 | entryID |  |  | Y |  |
| M7-8 | BufTm |  |  | Y |  |
| M7-9 | IntgPd |  |  | Y |  |
| M7-10 | GI |  |  | Y |  |
|  | Unbuffered report control | 0 | 0 | Y |  |
| M8-1 | sequence-number |  |  | Y |  |
| M8-2 | report-time-stamp |  |  | Y |  |
| M8-3 | reason-for-inclusion |  |  | Y |  |
| M8-4 | data-set-name |  |  | Y |  |
| M8-5 | data-reference |  |  | Y |  |
| M8-6 | BufTm |  |  | Y |  |
| M8-7 | IntgPd |  |  | Y |  |
| M8-8 | GI |  |  | Y |  |
|  | Logging | 0 | 0 | N |  |
| M9 | Log control | 0 | 0 | N |  |
| M9-1 | IntgPd |  |  | N |  |
| M10 | Log | 0 | 0 | N |  |
| M11 | Control | M | M | Y |  |
| If GSE (B31/B32) is supported |  |  |  |  |  |
|  | GOOSE | 0 | 0 | Y |  |
| M12-1 | entrylp |  |  |  |  |


| M12 2 | Datarefinc |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M13 | GSSE | 0 | 0 | N |  |
| If SVC (B41/B42) is supported |  |  |  |  |  |
| M14 | Multicast SVC | 0 | 0 | N |  |
| M15 | Unicast SVC | 0 | O | N |  |
| M16 | Time | M | M | Y |  |
| M17 | File Transfer | 0 | 0 | Y |  |
| Server |  |  |  |  |  |
| S1 | ServerDirectory |  | M | Y |  |
| Application association |  |  |  |  |  |
| S2 | Associate | M | M | Y |  |
| S3 | Abort | M | M | Y |  |
| S4 | Release | M | M | Y |  |
| Logical device |  |  |  |  |  |
| S5 | LogicalDeviceDirectory | M | M | Y |  |
| Logical node |  |  |  |  |  |
| S6 | LogicalNodeDirectory | M | M | Y |  |
| S7 | GetAllDataValues | 0 | M | Y |  |
| Data |  |  |  |  |  |
| S8 | GetDataValues | M | M | Y |  |
| S9 | SetDataValues | 0 | 0 | N |  |
| S10 | GetDataDirectory | 0 | M | Y |  |
| S11 | GetDataDefinition | 0 | M | Y |  |
| Data set |  |  |  |  |  |
| S12 | GetDataSetValues | 0 | M | Y |  |
| S13 | SetDataSetValues | 0 | 0 | N |  |
| S14 | CreateDataSet | 0 | 0 | N |  |
| S15 | DeleteDataSet | 0 | 0 | N |  |
| S16 | GetDataSetDirectory | 0 | 0 | Y |  |
| Substitution |  |  |  |  |  |
| S17 | SetDataValues | M | M | N |  |
| Setting group control |  |  |  |  |  |
| S18 | SelectActiveSG | 0 | 0 | Y |  |
| S19 | SelectEditSG | 0 | 0 | N |  |
| S20 | SetSGValues | 0 | 0 | N |  |
| S21 | ConfirmEditSGValues | 0 | 0 | N |  |
| S22 | GetSGValues | 0 | 0 | N |  |
| S23 | GetSGCBValues | 0 | 0 | Y |  |
| Reporting |  |  |  |  |  |
| Buffered report control block (BRCB) |  |  |  |  |  |
| S24 | Report | c6 | c6 | Y |  |
| S24-1 | data-change (dchg) |  |  | Y |  |
| S24-2 | quality-change (qchg) |  |  | Y |  |
| S24-3 | data-update (dupd) |  |  | N |  |
| S25 | GetBRCBValues | c6 | c6 | Y |  |
| S26 | SetBRCBValues | c6 | c6 | Y |  |
| Unbuffered report control block (BRCB) |  |  |  |  |  |
| S27 | Report | c6 | c6 | Y |  |
| S27-1 | data-change (dchg) |  |  | Y |  |
| S27-2 | quality-change (qchg) |  |  | Y |  |
| S27-3 | data-update (dupd) |  |  | N |  |
| S28 | GetURCBValues | c6 | c6 | Y |  |
| S29 | SetURCBValues | c6 | c6 | Y |  |
| Logging |  |  |  |  |  |
| Log control block |  |  |  |  |  |
| S30 | GetLCBValues | M | M | N |  |


| S31 | SetLCBValues | 0 | M | N |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Log |  |  |  |  |  |
| S32 | QueryLogByTime | c7 | M | N |  |
| S33 | QueryLogAfter | c7 | M | N |  |
| S34 | GetLogStatusValues | M | M | N |  |
| Generic substation event model (GSE) |  |  |  |  |  |
| GOOSE-CONTROL-BLOCK |  |  |  |  |  |
| S35 | SendGOOSEMessage | c8 | c8 | Y |  |
| S36 | GetGoReference | 0 | c9 | N |  |
| S37 | GetGOOSEElementNumber | 0 | c9 | N |  |
| S38 | GetGoCBValues | 0 | 0 | Y |  |
| S39 | SetGoCBValues | 0 | 0 | Y |  |
| GSSE-CONTROL-BLOCK |  |  |  |  |  |
| S40 | SendGSSEMessage | c8 | c8 | N |  |
| S41 | GetGsReference | 0 | c9 | N |  |
| S42 | GetGSSEElementNumber | 0 | c9 | N |  |
| S43 | GetGsCBValues | 0 | O | N |  |
| S44 | SetGsCBValues | 0 | 0 | N |  |
| Transmission of sampled value model (SVC) |  |  |  |  |  |
| Multicast SVC |  |  |  |  |  |
| S45 | SendMSVMessage | c10 | c10 | N |  |
| S46 | GetMSVCBValues | 0 | 0 | N |  |
| S47 | SetMSVCBValues | 0 | 0 | N |  |
| Unicast SVC |  |  |  |  |  |
| S48 | SendUSVMessage | c10 | c10 | N |  |
| S49 | GetUSVCBValues | 0 | O | N |  |
| S50 | SetUSVCBValues | 0 | 0 | N |  |
| Control |  |  |  |  |  |
| S51 | Select | M | 0 | N |  |
| S52 | SelectWithValue | M | 0 | N |  |
| S53 | Cancel | 0 | O | N |  |
| S54 | Operate | M | M | Y |  |
| S55 | CommandTermination | M | 0 | Y |  |
| S56 | TimeActivatedOperate | 0 | 0 | N |  |
| File Transfer |  |  |  |  |  |
| S57 | GetFile | 0 | M | Y |  |
| S58 | SetFile | 0 | O | N |  |
| S59 | DeleteFile | 0 | 0 | N |  |
| S60 | GetFileAttributeValues | 0 | 0 | Y |  |
| Time |  |  |  |  |  |
| T1 | Time resolution of internal clock |  |  | 1 ms |  |
| T2 | Time accuracy of internal clock |  |  | 1 ms | T1 |
| T3 | Supported TimeStamp resolution |  |  | 1 ms |  |

M - Mandatory
O - Optional
c 1 - shall be ' M ' if support for LOGICAL-DEVICE model has been declared.
c 2 - shall be ' M ' if support for LOGICAL-NODE model has been declared.
c3 - shall be ' M ' if support for DATA model has been declared.
c4 - shall be 'M' if support for DATA-SET, Substitution, Report, Log Control, or Time model has been declared.
c5 - shall be ' M ' if support for Report, GSE, or SV models has been declared.
c6 - shall declare support for at least one (BRCB or URCB)
c7 - shall declare support for at least one (QueryLogByTime or QueryLogAfter).
c8 - shall declare support for at least one (SendGOOSEMessage or SendGSSEMessage)
c9 - shall declare support if TWO-PARTY association is available.
c10 - shall declare support for at least one (SendMSVMessage or SendUSVMessage).

PICS for A-Profile support

| A-Profile <br> shortcut | Profile Description | Client |  | Server |  | GRT100 | Remarks |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  | F/S |  | F/S |  |  |  |
| A1 | Client/server A-Profile | c 1 |  | c 1 |  | Y |  |
| A2 | GOOSE/GSE <br> management A-Profile | c 2 |  | c 2 |  | Y |  |
| A3 | GSSE A-Profile | c 3 |  | c 3 |  | N |  |
| A4 | TimeSync A-Profile | c 4 |  | c 4 |  | Y |  |

$c 1$ Shall be ' $m$ ' if support for any service specified in Table 2 are declared within the ACSI basic conformance statement. c2 Shall be ' $m$ ' if support for any service specified in Table 6 are declared within the ACSI basic conformance statement. c3 Shall be ' $m$ ' if support for any service specified in Table 9 are declared within the ACSI basic conformance statement. c4 Support for at least one other A-Profile shall be declared (e.g. in A1-A3) in order to claim conformance to IEC 61850-8-1.

PICS for T-Profile support


MMS InitiateRequest general parameters

| InitiateRequest |  | Client-CR |  |  |  | Server-CR | GRT100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | F/S | Value/range | Base | F/S |  |  |
| InitiateRequest |  |  |  |  |  |  | Y |
| localDetailCalling | m | m |  | m | m |  | Y |
| proposedMaxServOutstandingCalling | m | m | 1 or greater | m | m | 1 or greater | Y |
| proposedMaxServOustandingCalled | m | m | 1 or greater | m | m | 1 or greater | Y |
| initRequestDetail | m | m |  | m | m |  | Y |
|  |  |  |  |  |  |  |  |
| InitiateRequestDetail |  |  |  |  |  |  |  |
| proposedVersionNumber | m | m | shall be 2.1 | m | m | shall be 2.1 | Y |
| proposedParameterCBB | m | m |  | m | m |  | Y |
| servicesSupportedCalling | m | m |  | m | m |  | Y |
| additionalSupportedCalling | c 1 | x |  | c 1 | x |  | N |
| additionalCbbSupportedCalling | c 1 | x |  | c 1 | x |  | N |
| privilegeClassidentityCalling | c 1 | x |  | c 1 | x |  | N |
| c1 Conditional upon Parameter CBB CSPI |  |  |  |  |  |  |  |

MMS InitiateResponse general parameters

| InitiateRequest | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| InitiateResponse |  |  |  |  |  |  |  |
| localDetailCalled | m | m |  | m | m |  | Y |
| negotiatedMaxServOutstandingCalling | m | m | 1 or greater | m | m | 1 or greater | Y |
| negotiatedMaxServOustandingCalled | m | m | 1 or greater | m | m | 1 or greater | Y |
| initResponseDetail | m | m |  | m | m |  | Y |
|  |  |  |  |  |  |  |  |
| InitiateResponseDetail |  |  |  |  |  |  |  |
| negotiatedVersionNumber | m | m | shall be 2.1 | m | m | shall be 2.1 | Y |
| negotiatedParameterCBB | m | m |  | m | m |  | Y |
| servicesSupportedCalled | m | m |  | m | m |  | Y |
| additionalSupportedCalled | c1 | x |  | c1 | x |  | N |
| additionalCbbSupportedCalled | c1 | x |  | c1 | x |  | N |
| privilegeClassIdentityCalled | c1 | x |  | c1 | x |  | N |
| c1 Conditional upon Parameter CBB CSPI |  |  |  |  |  |  |  |

MMS service supported conformance table

| MMS service supported CBB | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| status | 0 | 0 |  | 0 | m |  | Y |
| getNameList | 0 | 0 |  | 0 | c1 |  | Y |
| identify | 0 | 0 |  | m | m |  | Y |
| rename | 0 | 0 |  | 0 | 0 |  | N |
| read | 0 | 0 |  | 0 | c2 |  | Y |
| write | 0 | 0 |  | 0 | c3 |  | Y |
| getVariableAccessAttributes | 0 | 0 |  | 0 | c4 |  | Y |
| defineNamedVariable | 0 | 0 |  | 0 | $\bigcirc$ |  | N |
| defineScatteredAccess | 0 | i |  | 0 | i |  | N |
| getScatteredAccessAttributes | 0 | i |  | 0 | i |  | N |
| deleteVariableAccess | 0 | 0 |  | 0 | 0 |  | N |
| defineNamedVariableList | 0 | 0 |  | 0 | 0 |  | N |
| getNamedVariableListAttributes | 0 | 0 |  | 0 | c5 |  | Y |
| deleteNamedVariableList | 0 | 0 |  | 0 | c6 |  | N |
| defineNamedType | 0 | i |  | 0 | i |  | N |
| getNamedTypeAttributes | 0 | i |  | 0 | i |  | N |
| deleteNamedType | $\bigcirc$ | i |  | $\bigcirc$ | i |  | N |
| input | $\bigcirc$ | i |  | - | i |  | N |
| output | 0 | i |  | 0 | i |  | N |
| takeControl | 0 | i |  | 0 | i |  | N |
| relinquishControl | 0 | i |  | 0 | i |  | N |
| defineSemaphore | 0 | i |  | 0 | i |  | N |
| deleteSemaphore | 0 | i |  | 0 | i |  | N |
| reportPoolSemaphoreStatus | 0 | i |  | 0 | i |  | N |
| reportSemaphoreStatus | $\bigcirc$ | i |  | 0 | i |  | N |
| initiateDownloadSequence | 0 | i |  | 0 | i |  | N |
| downloadSegment | 0 | i |  | 0 | i |  | N |
| terminateDownloadSequence | 0 | i |  | 0 | i |  | N |
| initiateUploadSequence | 0 | i |  | 0 | i |  | N |
| uploadSegment | 0 | 1 |  | $\bigcirc$ | i |  | N |
| terminateUploadSequence | 0 | 1 |  | 0 | i |  | N |
| requestDomainDownload | 0 | i |  | 0 | i |  | N |
| requestDomainUpload | $\bigcirc$ | i |  | $\bigcirc$ | i |  | N |
| loadDomainContent | 0 | i |  | 0 | i |  | N |
| storeDomainContent | 0 | i |  | 0 | i |  | N |
| deleteDomain | 0 | i |  | 0 | i |  | N |
| getDomainAttributes | 0 | 0 |  | 0 | c14 |  | Y |
| createProgramInvocation | 0 | i |  | 0 | i |  | N |


| MMS service supported CBB | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| deleteProgramInvocation | 0 | i |  | 0 | i |  | N |
| start | 0 | i |  | 0 | i |  | N |
| stop | $\bigcirc$ | i |  | 0 | i |  | N |
| resume | 0 | i |  | 0 | i |  | N |
| reset | 0 | i |  | 0 | i |  | N |
| kill | 0 | i |  | 0 | i |  | N |
| getProgramInvocationAttributes | 0 | i |  | 0 | i |  | N |
| obtainFile | 0 | c9 |  | 0 | c9 |  | N |
| defineEventCondition | 0 | i |  | $\bigcirc$ | i |  | N |
| deleteEventCondition | $\bigcirc$ | i |  | $\bigcirc$ | i |  | N |
| getEventConditionAttributes | 0 | i |  | 0 | i |  | N |
| reportEventConditionStatus | 0 | i |  | 0 | i |  | N |
| alterEventConditionMonitoring | 0 | i |  | 0 | i |  | N |
| triggerEvent | 0 | i |  | 0 | i |  | N |
| defineEventAction | 0 | i |  | 0 | i |  | N |
| deleteEventAction | 0 | i |  | 0 | i |  | N |
| alterEventEnrollment | 0 | i |  | 0 | i |  | N |
| reportEventEnrollmentStatus | 0 | i |  | 0 | i |  | N |
| getEventEnrollmentAttributes | 0 | i |  | 0 | i |  | N |
| acknowledgeEventNotification | 0 | i |  | 0 | i |  | N |
| getAlarmSummary | 0 | i |  | 0 | i |  | N |
| getAlarmEnrollmentSummary | 0 | i |  | 0 | i |  | N |
| readJournal | 0 | c13 |  | 0 | c13 |  | N |
| writeJournal | 0 | 0 |  | 0 | 0 |  | N |
| initializeJournal | 0 | 0 |  | 0 | c12 |  | N |
| reportJournalStatus | 0 | i |  | $\bigcirc$ | i |  | N |
| createJournal | 0 | i |  | 0 | i |  | N |
| deleteJournal | 0 | i |  | 0 | i |  | N |
| fileOpen | 0 | c8 |  | 0 | c8 |  | Y |
| fileRead | 0 | c8 |  | 0 | c8 |  | Y |
| fileClose | 0 | c8 |  | 0 | c8 |  | Y |
| fileRename | 0 | i |  | 0 | i |  | N |
| fileDelete | 0 | c9 |  | 0 | c9 |  | N |
| fileDirectory | 0 | c11 |  | 0 | c11 |  | Y |
| unsolicitedStatus | 0 | i |  | O | i |  | N |
| informationReport | 0 | c7 |  | 0 | c7 |  | Y |
| eventNotification | 0 | i |  | 0 | i |  | N |
| attachToEventCondition | 0 | i |  | 0 | i |  | N |
| attachToSemaphore | 0 | i |  | 0 | i |  | N |
| conclude | m | m |  | m | m |  | N |
| cancel | 0 | 0 |  | 0 | m |  | N |
| getDataExchangeAttributes | 0 | c10 |  | 0 | c10 |  | N |
| exchangeData | 0 | c10 |  | 0 | c10 |  | N |


| MMS service supported CBB | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| defineAccessControlList | 0 | c10 |  | o | c10 |  | N |
| getAccessControlListAttributes | o | c10 |  |  | c10 |  | N |
| reportAccessControlledObjects |  | c10 |  |  | c10 |  | N |
| deleteAccessControlList | 0 | c10 |  |  | c10 |  | N |
| alterAccessControl |  | c10 |  |  | c10 |  | N |
| reconfigureProgramInvocation | 0 | c10 |  | 0 | c10 |  | N |
| c1 Shall be ' $m$ ' if logical device or logical node model support is declared in ACSI basic conformance statement. <br> c2 Shall be ' $m$ ' if logical node model support is declared in ACSI basic conformance statement or if support for the MMS write service is declared. <br> c3 Shall be ' $m$ ' if ACSI support for SetDataValues service is declared or implied. <br> c4 Shall be ' $m$ ' if logical node model support is declared in ACSI basic conformance statement. <br> c5 Shall be ' $m$ ' if data set support is declared in the ACSI basic conformance statement. <br> c6 Shall be ' $m$ ' if support for defineNamedVariableList is declared. <br> c7 Shall be ' $m$ ' if support for ACSI Report or ACSI command termination is declared. <br> c8 Shall be ' $m$ ' if support for ACSI GetFile is declared. <br> c9 Shall be ' $m$ ' if support for ACSI SetFile is declared. <br> c10 Shall not be present since MMS minor version is declared to be 1 . <br> c11 Shall be ' $m$ ' if support for ACSI GetFileAttributeValues is declared. <br> c 12 Shall be ' $m$ ' if support for the ACSI log model is declared. <br> c13 Shall be ' $m$ ' if support for the ACSI QueryLogByTime or QueryLogAfter is declared. <br> c14 Shall be ' $m$ ' if support for the ACSI logical device model is declared. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

MMS Parameter CBB

| MMS parameter CBB | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| STR1 | $\bigcirc$ | 0 |  | 0 | c1 |  | Y |
| STR2 | 0 | 0 |  | 0 | 0 |  | N |
| NEST | 1 | 1 or greater |  | 1 | c2 |  | $\mathrm{Y}(10)$ |
| VNAM | 0 | 0 |  | 0 | c1 |  | Y |
| VADR | 0 | 0 |  | 0 | 0 |  | N |
| VALT | 0 | 0 |  | 0 | c1 |  | Y |
| bit | X | x |  | X | x |  | N |
| TPY | 0 | 0 |  | 0 | 0 |  | N |
| VLIS | 0 | c1 |  | 0 | c3 |  | Y |
| bit | X | X |  | X | x |  | N |
| bit | X | x |  | X | x |  | N |
| CEI | 0 | i |  | 0 | i |  | N |
| ACO | 0 | c4 |  | $\bigcirc$ | c4 |  | N |
| SEM | 0 | c4 |  | 0 | c4 |  | N |
| CSR | 0 | c4 |  | 0 | c4 |  | N |
| CSNC | 0 | c4 |  | 0 | c4 |  | N |
| CSPLC | 0 | c4 |  | 0 | c4 |  | N |
| CSPI | 0 | c4 |  | 0 | c4 |  | N |

c1 Shall be ' $m$ ' if ACSI logical node model support declared.
c2 Shall be five(5) or greater if ACSI logical node model support is declared.
c3 Shall be ' $m$ ' if ACSI data set, reporting, GOOSE, or logging model support is declared.
c4 Shall not be present. Receiving implementations shall assume not supported.

GetNameList conformance statement

| GetNameList | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  |  |
| ObjectClass | m | m |  | m | m |  | Y |
| ObjectScope | m | m |  | m | m |  | Y |
| DomainName | 0 | 0 |  | m | m |  | Y |
| ContinueAfter | 0 | m |  | m | m |  | Y |
| Response+ |  |  |  |  |  |  |  |
| List Of Identifier | m | m |  | m | m |  | Y |
| MoreFollows | m | m |  | m | m |  | Y |
| Response- |  |  |  |  |  |  |  |
| Error Type | m | m |  | m | m |  | Y |

NOTE Object class 'vmd' (formerly VMDSpecific in MMS V1.0) shall not appear. If a request contains this ObjectClass, an MMS Reject shall be issued.

## AlternateAccessSelection conformance statement

Not applicable.

VariableAccessSpecification conformance statement

| VariableAccessSpecification | Client-CR |  |  |  | Server-CR |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| listOfVariable | $\mathbf{o}$ | $\mathbf{o}$ |  | $\mathbf{o}$ | $\mathbf{c 1}$ |  | $\mathbf{Y}$ |
| variableSpecification | $\mathbf{o}$ | $\mathbf{o}$ |  | $\mathbf{o}$ | $\mathbf{c 1}$ |  | $\mathbf{Y}$ |
| alternateAccess | $\mathbf{o}$ | $\mathbf{o}$ |  | $\mathbf{o}$ | $\mathbf{c 1}$ |  | $\mathbf{Y}$ |
| variableListName | $\mathbf{o}$ | $\mathbf{o}$ |  | $\mathbf{o}$ | $\mathbf{c} 2$ |  | $\mathbf{Y}$ |

c1 Shall be 'm' if ACSI support for Logical Node Model is declared.
c2 Shall be ' $m$ ' if ACSI support for ACSI DataSets, reporting, or logging is declared.

VariableSpecification conformance statement

| VariableSpecification | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| name | 0 | 0 |  | 0 | m |  | Y |
| address | 0 | 0 |  | 0 | i |  | N |
| variableDescription | 0 | 0 |  | 0 | i |  | N |
| scatteredAccessDescription | 0 | x |  | 0 | x |  | N |
| invalidated | 0 | x |  | 0 | x |  | N |


| Read | Read conformance statement |  |  |  |  |  | GRT100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Client-CR |  |  | Server-CR |  |  |  |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  |  |
| specificationWithResult | 0 | 0 |  | 0 | m |  | Y |
| variableAccessSpecification | m | m |  | m | m |  | Y |
| Response |  |  |  |  |  |  |  |
| variableAccessSpecification | 0 | 0 |  | 0 | m |  | Y |
| listOfAccessResult | m | m |  | m | m |  | Y |

Write conformance statement

| Write | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  |  |
| variableAccessSpecification | m | m |  | m | m |  |  |
| listOfData | m | m |  | m | m |  | Y |
| Response |  |  |  |  |  |  |  |
| failure | m | m |  | m | m |  |  |
| success | m | m |  | m | m |  | Y |

InformationReport conformance statement

| InformationReport | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  |  |
| variableAccessSpecification | m | m |  | m | m |  | Y |
| listOfAccessResult | m | m |  | m | m |  | Y |

GetVariableAccessAttributes conformance statement

| GetVariableAccessAttribute <br> s | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  |  |
| name | o | o |  | m | m |  |  |
| address | o | o |  | m | x |  | N |
| Response |  |  |  |  |  |  |  |
| mmsDeletable | m | m |  | m | m |  | Y |
| address | o | x |  | o | x |  | N |
| typeSpecification | m | m |  | m | m |  | Y |

DefineNamedVariableList conformance statement
Not applicable.

GetNamedVariableListAttributes conformance statement

| GetNamedVariableListAttributes | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  |  |
| ObjectName | m | m |  | m | m |  |  |
| Response |  |  |  |  |  |  |  |
| mmsDeletable | m | m |  | m |  |  |  |
| listOfVariable | m | m |  | m |  | Y |  |
| variableSpecification | m | m |  | m | m |  | Y |
| alternateAccess | o | m |  | m | m |  | Y |

DeleteNamedVariableList conformance statement
Not applicable.

ReadJournal conformance statement
Not applicable.

JournalEntry conformance statement
Not applicable.

InitializeJournal conformance statement
Not applicable.

FileDirectory conformance statement

| FileDirectory | Client-CR |  |  | Server-CR |  | GRT100 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S |  |  |
| Request |  |  |  |  |  |  | $\mathbf{Y}$ |
| filespecification | $\mathbf{o}$ | $\mathbf{o}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |
| continueAfter | $\mathbf{o}$ | $\mathbf{o}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  |  |
| Response+ |  |  |  |  |  |  | $\mathbf{Y}$ |
| listOfDirectoryEntry | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |
| MoreFollows | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  |  |

FileOpen conformance statement

| FileOpen | Client-CR |  |  | Server-CR |  |  | GRT100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  | $\mathbf{Y}$ |
| filename | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |
| initialPosition | $\mathbf{o}$ | $\mathbf{o}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  |  |
| Response + |  |  |  |  |  |  | $\mathbf{Y}$ |
| frsmID | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |
| fileAttributes | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  |  |

FileRead conformance statement

| FileRead |  | Client-CR |  |  | Server-CR |  | GRT100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  |  |
| frsmID | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |
| Response+ |  |  |  |  |  |  |  |
| fileData | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |
| MoreFollows | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |

FileClose conformance statement

| FileClose |  | Client-CR |  |  | Server-CR |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | Base | F/S | Value/range | Base | F/S | Value/range |  |
| Request |  |  |  |  |  |  |  |
| frsmID | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |
| Response + | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{m}$ | $\mathbf{m}$ |  | $\mathbf{Y}$ |

GOOSE conformance statement

|  | Subscriber | Publisher | Value/comment | GRT100 |
| :--- | :---: | :---: | :--- | :---: |
| GOOSE Services | c 1 | c 1 |  | Y |
| SendGOOSEMessage | m | m |  | Y |
| GetGoReference | o | c 3 |  | N |
| GetGOOSEElementNumber | o | c 4 |  | N |
| GetGoCBValues | o | o |  | Y |
| SetGoCBValues | o | o |  | Y |
| GSENotSupported | c 2 | c 5 |  | N |
| GOOSE Control Block (GoCB) | o | o |  | Y |

c1 Shall be ' $m$ ' if support is declared within ACSI basic conformance statement.
c2 Shall be ' $m$ ' if ACSI basic conformance support for either GetGoReference or GetGOOSEElementNumber is declared.
c3 Shall be ' $m$ ' if support for ACSI basic conformance of GetGoReference is declared.
c4 Shall be ' $m$ ' if support for ACSI basic conformance of GetGOOSEElementNumber.
c5 Shall be ' $m$ ' if no support for ACSI basic conformance of GetGOOSEElementNumber is declared.

## GSSE conformance statement

Not applicable.

## Appendix Q

## Inverse Time Characteristics




## Appendix R

Failed Module Tracing and Replacement

## 1. Failed module tracing and its replacement

If the "ALARM" LED is ON, the following procedure is recommended. If not repaired, contact the vendor.

Procedure


End

## Countermeasure

As shown in the table, some of the messages cannot identify the fault location definitely but suggest plural possible failure locations. In these cases, the failure location is identified by replacing the suggested failed modules with spare modules one by one until the "ALARM" LED is turned off.

If both "IN SERVICE" LED and "ALARM" LED are OFF, check the followings.
Check: Is DC supply voltage available with the correct polarity and of adequate magnitude, and connected to the correct terminals?

Table R-1 LCD Message and Failure Location

| Message | Failure location |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | VCT | SPM | IO1 or IO8 | 102 | 103 | HMI | AC cable | LAN cablel network | $\begin{gathered} \text { PLC, } \\ \text { IEC61850 } \\ \text { data } \end{gathered}$ |
| Checksum err |  | $\times$ |  |  |  |  |  |  |  |
| ROM data err |  | $\times$ |  |  |  |  |  |  |  |
| ROM-RAM err |  | $\times$ |  |  |  |  |  |  |  |
| SRAM err |  | $\times$ |  |  |  |  |  |  |  |
| CPU err |  | $\times$ |  |  |  |  |  |  |  |
| Invalid err |  | $\times$ |  |  |  |  |  |  |  |
| NMI err |  | $\times$ |  |  |  |  |  |  |  |
| BU-RAM err |  | $\times$ |  |  |  |  |  |  |  |
| EEPROM err |  | $\times$ |  |  |  |  |  |  |  |
| A/D err |  | $\times$ |  |  |  |  |  |  |  |
| Sampling err |  | $\times$ |  |  |  |  |  |  |  |
| CT1 err | $\times(2)$ | $\times(2)$ |  |  |  |  | $\times(1)$ |  |  |
| CT2 err | $\times(2)$ | $\times(2)$ |  |  |  |  | $\times(1)$ |  |  |
| CT3 err | $\times(2)$ | $\times(2)$ |  |  |  |  | $\times(1)$ |  |  |
| DIO err |  | $\times(2)$ | $\times(1)$ | $\times(1)$ | $\times(1)$ |  |  |  |  |
| RSM err |  | $\times(1)$ | $\times(2)$ |  |  |  |  |  |  |
| LCD err |  |  |  |  |  | $\times$ |  |  |  |
| DC supply off |  |  | $\times$ |  |  |  |  |  |  |
| RTC err |  | $\times$ |  |  |  |  |  |  |  |
| PCI err |  | $\times$ |  |  |  |  |  |  |  |
| LAN err |  | $\times$ |  |  |  |  |  |  |  |
| GOOSE stop |  | $\times(2)$ |  |  |  |  |  | $\times(1)$ |  |
| Ping err |  | $\times(2)$ |  |  |  |  |  | $\times(1)$ |  |
| PLC stop |  |  |  |  |  |  |  |  | $\times$ |
| MAP stop |  |  |  |  |  |  |  |  | $\times$ |
| No-working of LCD |  | $\times(2)$ |  |  |  | $\times(1)$ |  |  |  |

Note: This table shows the relationship between messages displayed on the LCD and the estimated failure location. Locations marked with (1) have a higher probability than locations marked with (2).

## 2. Methods of Replacing the Modules

A CAUTION When handling a module, take anti-static measures such as wearing an earthed wrist band and placing modules on an earthed conductive mat. Otherwise, many of the electronic components could suffer damage.
CAUTION After replacing the SPM module, check all of the settings including the data related the PLC, IEC103 and IEC61850, etc. are restored the original settings.

The initial replacement procedure is as follows:

## 1). Switch off the DC power supply.

A WARNING Hazardous voltage may remain in the DC circuit just after switching off the DC power supply. It takes about 30 seconds for the voltage to discharge.

## 2). Remove the front panel cover.

## 3). Open the front panel.

Open the front panel of the relay by unscrewing the binding screw located on the left side of the front panel.


Case size: $1 / 2^{\prime \prime}$ inchs

## 4). Detach the holding bar.

Detach the module holding bar by unscrewing the binding screw located on the left side of the bar.


## 5). Unplug the cables.

Unplug the ribbon cable running among the modules by nipping the catch (in case of black connector) and by pushing the catch outside (in case of gray connector) on the connector.


## 6). Pull out the module.

Pull out the failure module by pulling up or down the top and bottom levers (white).


## 7). Insert the replacement module.

Insert the replacement module into the same slots where marked up.

## 8). Do the No. 5 to No. 1 steps in reverse order.

A CAUTION Supply DC power after checking that all the modules are in their original positions and the ribbon cables are plugged in. If the ribbon cables are not plugged in enough (especially the gray connectors), the module could suffer damage.

Details of the gray connector on modules (top side)


## 9). Lamp Test

- RESET key is pushed 1 second or more by LCD display off.
- It checks that all LCDs and LEDs light on.


## 10). Check the automatic supervision functions.

- LCD not display "Auto-supervision" screens in turn, and Event Records
- Checking the "IN SERVICE" LED light on and "ALARM LED" light off.


## Appendix S

## Ordering

## Ordering

## Model 100 series

| Type: |  |
| :---: | :---: |
| Transformer protection Relay | GRT100 |
| Model: |  |
| -Model 100 series: 2 three-phase current inputs for 2-winding transformer <br> -16 BIs, 13 BOs, 5 trip BOs -16 BIs, 23 BOs, 5 trip BOs | $\begin{aligned} & 101 \\ & 102 \end{aligned}$ |
| CT Rating: |  |
| $1 \mathrm{~A}, 50 \mathrm{~Hz}, 110 \mathrm{~V} / 125 \mathrm{Vdc}$ | 1 |
| $1 \mathrm{~A}, 60 \mathrm{~Hz}, 110 \mathrm{~V} / 125 \mathrm{Vdc}$ | 2 |
| $5 \mathrm{~A}, 50 \mathrm{~Hz}, 110 \mathrm{~V} / 125 \mathrm{Vdc}$ | 3 |
| $5 \mathrm{~A}, 60 \mathrm{~Hz}, 110 \mathrm{~V} / 125 \mathrm{Vdc}$ | 4 |
| $1 \mathrm{~A}, 50 \mathrm{~Hz}, 220 \mathrm{~V} / 250 \mathrm{Vdc}$ | 5 |
| $1 \mathrm{~A}, 60 \mathrm{~Hz}, 220 \mathrm{~V} / 250 \mathrm{Vdc}$ | 6 |
| $5 \mathrm{~A}, 50 \mathrm{~Hz}, 220 \mathrm{~V} / 250 \mathrm{Vdc}$ | 7 |
| $5 \mathrm{~A}, 60 \mathrm{~Hz}, 220 \mathrm{~V} / 250 \mathrm{Vdc}$ | 8 |
| $1 \mathrm{~A}, 50 \mathrm{~Hz}, 48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ | A |
| $1 \mathrm{~A}, 60 \mathrm{~Hz}, 48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ | B |
| $5 \mathrm{~A}, 50 \mathrm{~Hz}, 48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ | C |
| $5 \mathrm{~A}, 60 \mathrm{~Hz}, 48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ | D |
| $1 \mathrm{~A}, 50 \mathrm{~Hz}, 24 \mathrm{~V} / 30 \mathrm{Vdc}$ | E |
| $1 \mathrm{~A}, 60 \mathrm{~Hz}, 24 \mathrm{~V} / 30 \mathrm{Vdc}$ | F |
| $5 \mathrm{~A}, 50 \mathrm{~Hz}, 24 \mathrm{~V} / 30 \mathrm{Vdc}$ | G |
| $5 \mathrm{~A}, 60 \mathrm{~Hz}, 24 \mathrm{~V} / 30 \mathrm{Vdc}$ | H |
| Mix, $50 \mathrm{~Hz}, 110 \mathrm{~V} / 125 \mathrm{Vdc}$ | J |
| Mix, $60 \mathrm{~Hz}, 110 \mathrm{~V} / 125 \mathrm{Vdc}$ | K |
| Mix, $50 \mathrm{~Hz}, 220 \mathrm{~V} / 250 \mathrm{Vdc}$ | L |
| Mix, $60 \mathrm{~Hz}, 220 \mathrm{~V} / 250 \mathrm{Vdc}$ | M |
| Mix, $50 \mathrm{~Hz}, 48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ | N |
| Mix, $60 \mathrm{~Hz}, 48 \mathrm{~V} / 54 \mathrm{~V} / 60 \mathrm{Vdc}$ | P |
| Mix, $50 \mathrm{~Hz}, 24 \mathrm{~V} / 30 \mathrm{Vdc}$ | Q |
| Mix, $60 \mathrm{~Hz}, 24 \mathrm{~V} / 30 \mathrm{Vdc}$ | R |
| CT Rating-2: |  |
| Single CT Rating | 0 |
| Mix, Primary:1A, Secondary: 5A | 1 |
| Mix, Primary:5A, Secondary: 1A | 2 |
| Communications: |  |
| RS485 + 100BASE-TX | A |
| RS485 + 100BASE-FX | B |
| Fibre optic + 100BASE-FX | E |
| Miscellaneous: |  |
| None | 0 |
| LED label: |  |
| Standard | None |
| Option: User configurable LED label | J |

Note: Please inform us which is ordered panel surface mount type or 19-inch rack mount type. In 19 inch rack mount type, please order optional attachment kit.

- for relay case Type-A attachment kit: EP101


## Model 200 series



Note: Please inform us which is ordered panel surface mount type or 19-inch rack mount type. In 19 inch rack mount type, please order optional attachment kit.

- for relay case Type-A attachment kit: EP101


## Version-up Records

| Version No. | Date | Revised Section | Contents |
| :---: | :---: | :---: | :---: |
| 0.0 | Sep. 12, 2007 | -- | First issue |
| 1.0 | Apr. 14, 2008 | $\begin{array}{\|l\|} \hline 2.2 .2 \\ 3.1 .3 \\ \text { 4.2.6.4, 4.2.6.6 } \\ \text { 4.4.2 } \end{array}$ | Modified the description and Figure 2.2.2.1. Modified the description. <br> Modified the description. <br> Modified the description. |
| 2.0 | Jul. 31, 2009 | Precaution 4.2.2,4.2.6.2,4.2.7 Appendixes | Modified the description of 'Disposal'. <br> Modified the description.(Add explanation of password for test screen.) Modified Appendix E and S. |
| 3.0 | Oct. 16, 2009 | 2.2.5 2.3 2.5 2.9 2.10 .6 3.1 .3 Appendix | Modified the description and Table numbers. <br> Modified Figure 2.3.3. (Add "ON" under the scheme switch) <br> Modified the description and Figure 2.5.1. (Add "ON" under the scheme switch) <br> Modified Figure 2.9.1. (Add "ON" under the scheme switch) <br> Modified the description <br> Modified the description <br> Modified Appendix N. |
| 4.0 | Dec. 11, 2009 | 2.2.1 | Modified Table 2.2.1.1 and Figure 2.2.1.4. |

Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

