

REFERENCE MANUAL USER GUIDE

Lassen DR+GPS

NORTH AMERICA

Trimble Navigation Limited Corporate Headquarters 935 Stewart Drive Sunnyvale, CA 94086 +1-800-787-4225 +1-408-481-7741 timing@trimble.com

EUROPE

Trimble Navigation Europe Phone: +49-6142-2100-161

KOREA

Trimble Export Ltd, Korea Phone: +82 2 555 5361

CHINA

Trimble Navigation Ltd, China Phone: +86-21-6391-7814

USER GUIDE REFERENCE MANUAL

LASSEN[®] DR+GPS STARTER KIT

Revision A Part Number 58059-00

March 2007

Corporate Office

Trimble Navigation Limited Advanced Devices Group 935 Stewart Avenue Sunnyvale, CA 94086 USA +1-800-787-4225 (toll free in USA) +1-408-481-7741 www.trimble.com

Release Notice

This is the March 2007 release (Revision A) of the Trimble Lassen DR+GPS Starter Kit User Guide, part number **58059-00**.

Copyright and Trademarks

© 2007, Trimble Navigation Limited. Trimble and the Globe & Triangle logo are trademarks of Trimble Navigation Limited, registered in the United States Patent and Trademark Office and in other countries. Bullet, and Mini-T are trademarks of Trimble Navigation Limited. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.

Product Limited Warranty Information

For applicable product Limited Warranty information, please consult your local Trimble authorized sales manager. For applicable product Limited Warranty information, please refer to Legal Notices in the Help for this product, or consult your local Trimble authorized dealer.

RoHS statement

As of July 1, 2006, the Product is compliant in all material respects with DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS Directive) and Amendment 2005/618/EC filed under C(2005) 3143, with exemptions for lead in solder pursuant to Paragraph 7 of the Annex to the RoHS Directive applied. The foregoing is limited to Product placed on the market in the Member States of the European Union on or after 1 July 2006. Trimble has relied on representations made by its suppliers in certifying this Product as RoHS compliant.

LIMITED WARRANTY TERMS AND CONDITIONS

Product Limited Warranty

Subject to the following terms and conditions, Trimble Navigation Limited ("Trimble") warrants that for a period of one (1) year from date of purchase this Trimble product (the "Product") will substantially conform to Trimble's publicly available specifications for the Product and that the hardware and any storage media components of the Product will be substantially free from defects in materials and workmanship.

Product Software

Product software, whether built into hardware circuitry as firmware, provided as a standalone computer software product, embedded in flash memory, or stored on magnetic or other media, is licensed solely for use with or as an integral part of the Product and is not sold. If accompanied by a separate end user license agreement ("EULA"), use of any such software will be subject to the terms of such end user license agreement (including any differing limited warranty terms, exclusions, and limitations), which shall control over the terms and conditions set forth in this limited warranty.

Software Fixes

During the limited warranty period you will be entitled to receive such Fixes to the Product software that Trimble releases and makes commercially available and for which it does not charge separately, subject to the procedures for delivery to purchasers of Trimble products generally. If you have purchased the Product from an authorized Trimble dealer rather than from Trimble directly, Trimble may, at its option, forward the software Fix to the Trimble dealer for final distribution to you. Minor Updates, Major Upgrades, new products, or substantially new software releases, as identified by Trimble, are expressly excluded from this update process and limited warranty. Receipt of software Fixes or other enhancements shall not serve to extend the limited warranty period.

For purposes of this warranty the following definitions shall apply: (1) "Fix(es)" means an error correction or other update created to fix a previous software version that does not substantially conform to its Trimble specifications; (2) "Minor Update" occurs when enhancements are made to current features in a software program; and (3) "Major Upgrade" occurs when significant new features are added to software, or when a new product containing new features replaces the further development of a current product line. Trimble reserves the right to determine, in its sole discretion, what constitutes a Fix, Minor Update, or Major Upgrade.

Warranty Remedies

If the Trimble Product fails during the warranty period for reasons covered by this limited warranty and you notify Trimble of such failure during the warranty period, Trimble will repair OR replace the nonconforming Product with new, equivalent to new, or reconditioned parts or Product, OR refund the Product purchase price paid by you, at Trimble's option, upon your return of the Product in accordance with Trimble's product return procedures then in effect.

How to Obtain Warranty Service

To obtain warranty service for the Product, please contact your local Trimble authorized dealer. Alternatively, you may contact Trimble to request warranty service at +1-408-481-6940 (24 hours a day) or e-mail your request to trimble_support@trimble.com. Please be prepared to provide:

- your name, address, and telephone numbers proof of purchase
- a description of the nonconforming Product including the model number and serial number
- an explanation of the problem

The customer service representative may need additional information from you depending on the nature of the problem.

Warranty Exclusions and Disclaimer

This Product limited warranty shall only apply in the event and to the extent that (a) the Product is properly and correctly installed, configured, interfaced, maintained, stored, and operated in accordance with Trimble's applicable operator's manual and specifications, and; (b) the Product is not modified or misused. This Product limited warranty shall not apply to, and Trimble shall not be responsible for, defects or performance problems resulting from (i) the combination or utilization of the Product with hardware or software products, information, data, systems, interfaces, or devices not made, supplied, or specified by Trimble; (ii) the operation of the Product under any specification other than, or in addition to, Trimble's standard specifications for its products; (iii) the unauthorized installation, modification, or use of the Product; (iv) damage caused by: accident, lightning or other electrical discharge, fresh or salt water immersion or spray (outside of Product specifications); or exposure to environmental conditions for which the Product is not intended; (v) normal wear and tear on consumable parts (e.g., batteries); or (vi) cosmetic damage. Trimble does not warrant or guarantee the results obtained through the use of the Product, or that software components will operate error free.

NOTICE REGARDING PRODUCTS EQUIPPED WITH TECHNOLOGY CAPABLE OF TRACKING SATELLITE SIGNALS FROM SATELLITE BASED AUGMENTATION SYSTEMS (SBAS) (WAAS/EGNOS, AND MSAS), OMNISTAR, GPS, MODERNIZED GPS OR GLONASS SATELLITES. OR FROM IALA BEACON SOURCES: TRIMBLE IS NOT RESPONSIBLE FOR THE OPERATION OR FAILURE OF OPERATION OF ANY SATELLITE BASED POSITIONING SYSTEM OR THE AVAILABILITY OF ANY SATELLITE BASED POSITIONING SIGNALS. THE FOREGOING LIMITED WARRANTY TERMS STATE TRIMBLE'S ENTIRE LIABILITY, AND YOUR EXCLUSIVE REMEDIES, RELATING TO THE TRIMBLE PRODUCT. EXCEPT AS OTHERWISE EXPRESSLY PROVIDED HEREIN, THE PRODUCT, AND ACCOMPANYING DOCUMENTATION AND MATERIALS ARE PROVIDED "AS-IS" AND WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND, BY EITHER TRIMBLE OR ANYONE WHO HAS BEEN INVOLVED IN ITS CREATION, PRODUCTION, INSTALLATION, OR DISTRIBUTION, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. THE STATED EXPRESS WARRANTIES ARE IN LIEU OF ALL OBLIGATIONS OR LIABILITIES ON THE PART OF TRIMBLE ARISING OUT OF, OR IN CONNECTION WITH, ANY PRODUCT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW LIMITATIONS ON DURATION OR THE EXCLUSION OF AN IMPLIED WARRANTY, THE ABOVE LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU.

Limitation of Liability

TRIMBLE'S ENTIRE LIABILITY UNDER ANY PROVISION HEREIN SHALL BE LIMITED TO THE AMOUNT PAID BY YOU FOR THE PRODUCT. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL TRIMBLE OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE WHATSOEVER UNDER ANY CIRCUMSTANCE OR LEGAL THEORY RELATING IN ANYWAY TO THE PRODUCTS, SOFTWARE AND ACCOMPANYING DOCUMENTATION AND MATERIALS, (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF DATA, OR ANY OTHER PECUNIARY LOSS), REGARDLESS OF WHETHER TRIMBLE HAS BEEN ADVISED OF THE POSSIBILITY OF ANY SUCH LOSS AND REGARDLESS OF THE COURSE OF DEALING WHICH DEVELOPS OR HAS DEVELOPED BETWEEN YOU AND TRIMBLE. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES,

THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

PLEASE NOTE: THE ABOVE TRIMBLE LIMITED WARRANTY PROVISIONS WILL NOT APPLY TO PRODUCTS PURCHASED IN THOSE JURISDICTIONS (E.G., MEMBER STATES OF THE EUROPEAN ECONOMIC AREA) IN WHICH PRODUCT WARRANTIES ARE THE RESPONSIBILITY OF THE LOCAL TRIMBLE AUTHORIZED DEALER FROM WHOM THE PRODUCTS ARE ACQUIRED. IN SUCH A CASE, PLEASE CONTACT YOUR LOCAL TRIMBLE AUTHORIZED DEALER FOR APPLICABLE WARRANTY INFORMATION.

TABLE OF CONTENTS

ABOUT THIS MANUAL	10
TECHNICAL ASSISTANCE	10
CHAPTER 1: LASSEN DR+GPS STARTER KIT	11
INTRODUCTION	
STARTER KIT CONTENTS STARTER KIT INTERFACE UNIT ORDERING STARTER KIT COMPONENTS	
QUICK START GUIDE	
Copy the Supplied Files Install the FTDI Driver Connect the Starter Kit Components	
Software Toolkit	
INTERFACE PROTOCOL NMEA Tools HIPPO Tools	
CHAPTER 2: COMMON OPERATIONS	18
NMEA PORT CONFIGURATION	
Enable NMEA Mode View NMEA Output Changing NMEA Output and Report Rates	
CHANGE THE OUTPUT PROTOCOL	24
Change from the Default NMEA Output to HIPPO HIPPO COMMANDS TO CHANGE PROTOCOL HIPPO Commands to Change NMEA to HIPPO: HIPPO Commands to Change HIPPO to NMEA: Save the Calibration Settings	
USE NMEA READER	

APPENDIX A: NMEA 0183	33
INTRODUCTION	34
THE NMEA 0183 COMMUNICATION INTERFACE	35
NMEA 0183 Message Format	36
FIELD DEFINITIONS	37
NMEA 0183 MESSAGE OPTIONS	39
NMEA 0183 Message Formats	40
GGA-GPS Fix Data GSA - GPS DOP and Active Satellites GSV - GPS Satellites in View RMC - Recommended Minimum Specific GPS/Transit Data VTG - Track Made Good and Ground Speed	40 40 41 42 43
EXCEPTION BEHAVIOR	43

APPENDIX B: HIPPO	
HIPPO PROTOCOL RULES	45
GENERAL MESSAGE STRUCTURE RULES REPORT MESSAGE STRUCTURE (MODULE TO HOST) COMMAND MESSAGE STRUCTURE (HOST TO MODULE)	
CHAINED MESSAGES POST-FORMATTING: HCC STUFFING BEFORE TRANSMISSION PRE-PARSING: HCC UNSTUFFING AFTER RECEPTION	
COMMAND MESSAGES	50
SET CLASS QUERY CLASS SYSTEM CLASS Reset Receiver.	
REPORT CLASS	55
REPORT MESSAGE CODE ASSIGNMENT SYSTEM REPORT PACKETS 0x10: Acknowledge / Error Response to Command Packets	

EVENT LOG QUEUE	112
UX29-U8: 1 acno Data	111
UX29-U/: Short Map-Match Data	
UX29-US: Heading Initialization	109
0x29-04: Local Oscillator (LO) Frequency Offset Initialization	108
UX29-U5: Altitude Initialization	107
0x29-02: Latitude / Longitude Initialization	
0x29-01: Time Initialization	
0x28-16: Ephemeris Initialization	104
0x28-14: GPS Ionospheric Model and UTC Parameters Initialization	104
0x28-13: Almanac Health Initialization	
0x28-12: Almanac Initialization	
INITIALIZATION INFORMATION	101
0x30-03: Buffered Cumulative DR message	99
0x3F-06: Tacho/Reverse Production Test Data	98
0x3F-04: Gyro Bench Test Data	98
0x3F-03: Data Positioning Collection Test Data (ROM 15 and after)	97
0x3F-01: ADC and Gyro Self-test Data	96
0x36: DR Calibration Messages	
0x33-01: GPS Channel Measurement Short Status	92
0x32-03: UTC Time Message	91
0x32-02: Constellation Summary Message	90
0x32-01: UTC Time and Constellation Summary Message	
0x31-01: GPS Fix Message	
0x30-02: Fast Fix with Raw DR Data Message	
DATA REPORT PACKETS	
0x21-01: DR Engine Rate Control	85
0x2F-06: Tacho/Reverse Production Test Interval Control	
0x2F-04: Gyro Bench Test Interval Control	
0x2F-02: Data Positioning Collection Test Interval Control	83
0x2E-01: Soft Event Report Mask	
0x2A, 0x2B, 0x2C; 0x2D: Output Interval Control	79
0x27: DR Filter Configuration	75
0x26-03, 0x26-04, 0x26-05: DPP Speed Model	74
0x26-02: Available Report Subcodes	73
0x26-01: Available Report Codes	72
0x25: Kalman Filter Configuration	70
0x24: GPS Configuration	69
0x22-02: NMEA Output Control	69
0x22-01: Output Interval Control Table	
CONFIGURATION REPORT PACKETS	
0x16-02: Repeat Start-Up Report with System Time	67
0x16-01: Health Status Report	
0x15: Data Stored in Non-erasable Flash Report	65
0x14-02: Fatal Error Log Report	64
0x12-01: Soft Event Log Report	63
0x12-03. Froduction information Report	
0x12-02: Software Mode Report.	
0x12-01: Start-Up Report.	
0x11: Version Report	61
	C1

THEORY OF OPERATION	112
FATAL ERRORS	114
SOFT EVENTS	117
EVENT MESSAGES	120
Invalid BBRAM detected on startup	
Position recovery, solution snapped to GPS.	
Heading recovery, solution snapped to GPS	
DPP recovery, solution snapped to GPS.	
GPS receiver fixes not reasonable; try to recover.	
Gyro readings do not stay within specification	
No Tacho data when GPS is detecting movement	
Excessive tacho data is received for a long period of time	
Reverse signal opposite to direction determined by GPS.	
Large jump at power-up	
Oscillator values are not within specification.	
Antenna open detected.	
Antenna short detected	
Failure to connect to GPS DSP.	
RTC disagreed with GPS time	
Gyro Failure	
ADC Failure	
Gyro Shorted to 3.3 V.	

Dата I/O	128
GPS ANTENNA	131
Reference Board Diagrams	132
MECHANICAL SPECIFICATION	135

ABOUT THIS MANUAL

This Starter Kit Reference Manual describes how to integrate and operate the Trimble DR+GPS navigation receiver. The instructions in this manual assume that you know how to use the primary functions of Microsoft Windows.

If you are not familiar with GPS, visit Trimble's website, www.trimble.com, for an interactive look at Trimble and GPS.

Technical Assistance

If you cannot locate the information you need in this product documentation, contact the Trimble Technical Assistance Center at 800-767-4822.

CHAPTER

LASSEN[®] DR+GPS STARTER KIT

In this chapter:

- Product Overview
- Starter Kit
- Quick Start Guide
- Interface Protocols
- Power
- Software Toolkit

INTRODUCTION

The Trimble® Lassen® DR+GPS combines dead reckoning (DR) with GPS to produce accurate and instantaneous positions, even under the most difficult conditions. For service providers tracking high-value or perishable cargo, Lassen DR+GPS dramatically improves quality of service (QoS) and customer satisfaction and retention, helping tracking service providers to maximize revenue opportunities.

Dead reckoning (DR) estimates position based on heading and distance traveled since the last known position. The more accurate the speed, time and heading inputs, the more accurate the dead reckoning. This is where GPS helps. GPS continuously calibrates the gyro and speed sensors to produce optimal dead reckoning.

- Instantaneous and accurate positions in deep urban canyons and dense forests.
- Continuous position outputs in tunnels, parking garages and on lower bridge decks.
- Reliable positioning for tracking high-value assets and for mapping RF field strength.

Starter Kit Contents

The Starter Kit makes it simple to evaluate the Trimble DR+GPS module performance. The Starter Kit can be used as a platform for configuring the receiver software or as platform for troubleshooting your design. The Starter Kit includes the DR+GPS module mounted on an interface motherboard. The motherboard accepts power from 9 - 32 VDC and provides regulated +3.3V power to the DR+GPS module. The motherboard also contains:

- Miniature magnetic mount GPS 28dB Antenna with SMB connector and 5 meter cable
- 9-pin DR+GPS interface cable
- AC/DC power supply adapter (input: 100-240VAC, output: 12 VDC)
- USB Cable
- CD containing software tools used to communicate with the receiver, the System Designer Reference Manual, NMEA Reader, and the DrMonitor Program
- Lassen DR+GPS Starter Kit Module

Starter Kit Interface Unit

The Starter Kit interface unit consists of a DR+GPS module attached to an interface motherboard. This kit simplifies evaluation and software development with the receiver by providing a USB interface that is compatible with most PC communication ports. Power (9-32 VDC) is supplied through the power connector on the front of the interface unit. The motherboard features a switching power supply that converts this voltage input to the 3.3 volts required by the receiver and the 5 volts required by the antenna.

The DR+GPS module, installed on the Starter Kit interface unit, is a single port receiver. A FAKRA RF connector supports the GPS antenna connection. The center conductor of the FAKRA connector also supplies +5.5 VDC for the Low Noise Amplifier of the active antenna. On the DR+GPS module, a 14-pin (2x14), 2 mm AMP 1-215079-4 Micromatch connector (J1) supports the serial interface (CMOS level), the pulse-per-second (PPS) signal (CMOS level), and the input power (+3.3 VDC). The 14-pin Amp Micromatch I/O connector on the module connects to the motherboard via a ribbon cable (*see Appendix C for the pinout details*).

Ordering Starter Kit Components

The DR GPS Module is available in a Starter Kit or as an individual receiver and associated antenna. The Starter Kit includes all the components necessary to quickly test and integrate the receiver:

- AC/DC power supply adapter
- 9-pin DR+GPS interface cable
- USB interface cable
- Miniature magnetic mount antenna with 5 meters of cable
- CD-ROM containing the HIP Protocol (HIPPO) for DR+GPS, the System Designer Reference Manual, and the DrMonitor software

The following table provides ordering information for the DR+GPS module and the associated antennas and cables.

Table 1: Ordering Products

Product	Part Number
Shielded PCA with SMB Lassen DR+GPS module	55000-80
PCA with SMB Lassen DR+GPS module	46999-80
Lassen DR+GPS module Starter Kit	61100-05
Magnetic mount, miniature antenna	56237-00
AC/DC power adapter and clips	59495 and 59495-05
USB Interface Cable	61174
DR+GPS Starter Kit CD	61694-05
9-pin DR+GPS interface cable	60230-10

NOTE Part numbers are subject to change. Confirm part numbers with your Trimble representative when placing your order. Other rooftop cables and antenna combinations are also available.

QUICK START GUIDE

Before you begin, confirm that you have the following PC configuration in place:

- Windows XP, Service Pack 2, or Windows 2000 operating system
- Service Pack 4 installed
- A free USB port
- A CD drive

Copy the Supplied Files

- 1. Insert the supplied CD.
- 2. Copy all files all files to a directory on the hard drive.

Install the FTDI Driver

The starter kit uses a USB 2.0 dual serial port emulator interface chip from Future Technology Devices International Ltd. (FTDI). In order to use the Monitor software tool to communicate with the GPS receiver, you must first install the FTDI driver on your PC. *

1. Select the file "CDM_Setup.exe". If properly installed, an FTDI CDM Driver Installation popup window displays the following message: FTDI CDM Drivers have been successfully installed. Click the OK button.

You can check for the latest FTDI USB drivers at: www.ftdichip.com/Drivers/VCP.htm. Download the appropriate VCP (Virtual COM Port) driver for your operating system (Windows 2000 or XP). Select the "Installation Executable" link in the comments column for the driver self install package.

Connect the Starter Kit Components

- 1. Connect the GPS antenna to the interface unit. Antenna types are product dependent.
- 2. Place the antenna outside. The antenna should have a clear (180) view of the sky. A reduced number of satellites will be available if this direct view is obstructed.
- 3. Connect the supplied USB cable to the USB connector on the interface unit.
- 4. Connect the other end of the USB cable to your PC.

- 5. Connect the supplied 5 wire interface cable to the correct vehicle outputs.
- 6. If the unit is to be used in a lab, use the supplied international AC/DC adapter to supply the power.
- 7. Turn on the interface unit and confirm that the green power LED lights.
- 8. The FTDI driver automatically assigns a virtual COM ports to the USB port. During assignment the virtual COM ports display on your monitor screen. To view LPT and COM port assignments, select System Properties>Device Manager.
- 9. To view the NMEA output, use a terminal emulator program such as HyperTerminal. This is usually found under Start>Accessories>Communications.
- 10. Select one of the USB virtual COM ports.
- 11. Set the COM port parameters to 38400 baud, no parity, and one stop bit. This is the ONLY setting that is allowed.

1. 5-Wire Interface Cable

WIRING CHART

DB9 (MALE)	WIRE COLOR	SIGNAL SCHEME
1	BLK	GND
2 -	BROWN	TACH O
3	RED	DIR
4	ORANGE	Vcc BATT
5 🔫	YELLOW	Vcc -KEY
6	GREEN	GND
7 NC	BLUE	
8 NC	PURPLE	
9 🛥	WHITE	Vcc -KEY

SOFTWARE TOOLKIT

The CD provided in the Starter Kit contains the DR Monitor program used to monitor GPS performance and to assist system integrators in developing a software interface for the GPS module. DR Monitor runs on the Windows 95/98/2000/XP platforms. NMEA Reader is supplied to analyze the NMEA output.

NOTE Current units are configured to output NMEA by default. DR Monitor will not show the output results. Use HyperTerminal to view the output.

Interface Protocol

The DR+GPS Module can be configured to output NMEA messages at scheduled intervals from 1 to 60 seconds, or at 5Hz. See Appendix A for a full description of NMEA.

The DR+GPS Module also has a binary command/report protocol, HIPPO (HIP Protocol Object). This protocol is appropriate for system integrators that require real time control of the DR+GPS module. *See Appendix B for a full description of HIPPO*.

NMEA Tools

To capture NMEA output, use HyperTerminal or a similar terminal emulator program. By default the NMEA messages output are GGA, VTG, RMC, GSA, and GSV. NMEA analysis may be carried out using NMEA Reader and Google Earth.

HIPPO Tools

Use DrMonitor to configure and monitor the HIPPO protocol.

CHAPTER

2

COMMON OPERATIONS

In this chapter:

- NMEA Port Configuration
- Change the Output Protocol
- Use the NMEA Reader

NMEA PORT CONFIGURATION

By default, the DR+GPS module outputs NMEA messages. However if you have previously changed the unit to output HIPPO, follow these steps to return to NMEA.

Enable NMEA Mode

1. Open DrMonitor

If HIPPO output mode is selected, HIPPO data displays as in the screen below.

DrMonitor v2.39					
File SysCmd Initialize Config	View Test Tools Help				
Time	Position	SV Info	COM		
UTC Time 17:12:59	Latitute 0.00000000 ra	ad <u>SV SNR Elev</u> Azi	F		
UTC Date 03/08/2007	Longitude 0.00000000 ra	ad 7 0.0 14 314	1 17		
Time 407579711	Altitude 0 m	neters 30 0.0 27 272	2 18		
Delta Time 200	Heading 0.00000 s	C 1 00 90 0	3 19		
Offset 000	Speed 0 c	m/s	4 20		
Status	Accuracy		_ 5 21		
O Direction switch O Position	Position 65535 m	eters 22 0.0 -90 0	6 22		
O Delta distance O Heading	Altitude 1000 m	eters 11 0.0 -90 0	7 23		
O Motion indicator O Speed	Heading 1.18311 so	4 0.0 -90 0	8 24		
O Gyro Calibration O Motion	Speed 0 cr	m/s 15 0.0 -90 0	9 25		
 Tacho Calibration 		10 44.2 70 218	10 26		
 Direction (forward) 	Gyro Counts 22350	5 0.0 -90 0	11 27		
Time source GPS (<10ms)	Tacho Counts 0		12 28		
	# Samples 20	Srch Mode Blind	13 29		
	Dir switch val 01	Almanac Not Complete	14 30		
1					
Last Event Log Antenna Normal 1					
Tx O Rx O 01:Valid BBRAM : SelfTest Passed Running Time: 00:02:52 COM24-38400-8-None-1					

2. Select Config>Com setup

Þ	NMEA Output	×
	NMEA COM Port Settings	
	СОМ СОМ 15 💌	
	Baud 4800 💌	
	Parity None 💌	
	Data Bits 8 💌	
	Stop Bits 1	
	OK	<u>]</u>

- 3. Select the correct COM port number for the USB Virtual Serial Port.
- 4. Select 38400 Baud, No Parity, 8 Data Bits, and 1 Stop Bit.
- 5. Click the OK button.
- 6. Select Config>HIPPO>NMEA Output to open the Configuration window.

Protocol Confi	guration				
Protocol C HIPPO	Status:				٠
(• NMEA Clicking the Config device to outp s	gure button v ut the defaul ettings and c	vill clear t messa calibratio	Flash and RAM ges of the selec on data will be lo	l, then configure the ted protocol. All ost.	9
			Configure	Close	

7. Click the NMEA button and then the Configure button. The SUCCESS screen displays.

🖉 System Co	mmand Ack	
0309 Write BBRAM to Flash, Reset		
00 ===	SUCCES	S ===
🔽 Auto Close	2 [Close

8. Click the Close button. All output is displayed as NMEA data.

View NMEA Output

- 1. Open HyperTerminal or a similar terminal emulator.
- 2. Set the communication port settings to 38400 Baud, No Parity, 8 Data Bits, and 1 Stop Bit.
- 3. If you are using HyperTerminal you will see output as shown below.

🗞 DR - HyperTerminal
File Edit View Call Transfer Help
19
<pre>\$</pre>
\$GPGSV, 3, 3, 12, 12, 43, 171, , 20, , 000, , 10, 52, 083, 39, 22, , 000, *7C
Connected 0:00:47 VT100J 38400 8-N-1 SCROLL CAPS NUM Capture Print echo

NOTE To change the NMEA output you must quit HyperTerminal and start DrMonitor again.

Changing NMEA Output and Report Rates

1. Open DrMonitor

DrMonitor v2.39				
File SysCmd Initialize Config	View Test Tools Help			
Time	Position	SV	Info	COM
UTC Time	Latitute	rad SV	SNR Elev Azi	F
UTCDate	Longitude	rad		1 17
Time	Altitude	meters		2 18
Delta Time	Heading	sc		3 19
Offset	Speed	cm/s		4 20
Status	Accuracy			5 21
O Direction switch O Position	Position	meters		6 22
O Delta distance O Heading	Altitude	meters	i i i I	7 23
O Delta heading O Altitude O Motion indicator O Speed	Heading	sc		8 24
O Gyro Calibration O Motion	Speed	cm/s		9 25
O Tacho Calibration				10 26
O Direction (forward)	Gyro Counts			11 27
Time source	Tacho Counts			12 28
DOPs	# Samples	Sro	ch Mode	13 29
PUOP HUOP VUOP	Dir switch val	Aln	nanac	14 30
				15 31
Last Event Log			Antenna Normal	16 32
Txo Rxo	Running	; Time: 00:00:46	COM24-38400-8-None-1	

2. Select Config>Com setup.

Þ	NMEA Output	
	NMEA COM Port Settings	
	СОМ СОМ 15 💌	
	Baud 4800 💌	
	Parity None 💌	
	Data Bits 8	
	Stop Bits 1	

- 3. Select the correct Com port number for the USB Virtual Serial Port.
- 4. Select 38400 Baud, No Parity, 8 Data Bits, and 1 Stop Bit.
- 5. Click the OK button.
- 6. Select Config>NMEA Message Output Control to open the Configuration window.

NMEA Message Output Contro	ol (2202) 🛛 🔀
Messages to Output GGA V RMC GSA VTG GSV	•	Set Query
Interval (1 to 255; 0: FastFix): 1		Close

- 7. Select the NMEA messages to be output.
- 8. Enter a number between 1 and 255 for the output rate (in seconds). Selecting 0 enables the 5Hz output for GGA, VTG and RMC. GSA and GSV will output at 1Hz.
- 9. Click the Set button.
- 10. Wait for the operation to finish.
- 11. Click the Close button.
- 12. If necessary, you may quit DrMonitor and return to HyperTerminal.

CHANGE THE OUTPUT PROTOCOL

Change from the Default NMEA Output to HIPPO

Before you begin, confirm that you have no other terminal program such as HyperTerminal communicating with the DR+GPS unit. Quit any such program so that it does not occupy the COM port that will be used for DrMonitor.

DrMonitor v2.37			
File SysCmd Initialize Config	View Test Tools Help		
Time	Position	SV Info	COM
UTC Time	Latitute	rad SV SNR Elev Azi	F
UTC Date	Longitude	rad	1
Time	Altitude	meters	2
Delta Time	Heading	sc	3
Offset	Speed	cm/s	4
Status	Accuracy		5
O Direction switch O Position	Position	meters	6
O Delta distance O Heading	Altitude	meters	7
O Delta neading O Altitude O Motion indicator O Speed	Heading	sc	8
O Gyro Calibration O Motion	Speed	cm/s	9
O Tacho Calibration			10
O Direction (forward)	Gyro Counts		11
Time source	Tacho Counts		12
	# Samples	Srch Mode	13
	Dir switch val	Almanac	14
			15
Last Event Log			16
jixo Hxo jj		UUM1-38400-8-None-1	

1. Open DrMonitor

2. Select Config>Com setup

Þ	NMEA Output	<
	NMEA COM Port Settings	
	COM COM 15 💌	
	Baud 4800 💌	
	Parity None 💌	
	Data Bits 8 🗨	
	Stop Bits 1	
	OK Cancel	

- 3. Select the correct Com port number for the USB Virtual Serial Port.
- 4. Select 38400 Baud, No Parity, 8 Data Bits, and 1 Stop Bit.
- 5. Click the OK button.
- 6. Select Config>Protocol to open the Protocol Configuration window.

👺 Protocol Confi	guration		\mathbf{X}					
Protocol HIPPO	Status:		0					
O NMEA								
Clicking the Configure button will clear Flash and RAM, then configure the device to output the default messages of the selected protocol. All settings and calibration data will be lost.								
		Configure						

- 7. Select the HIPPO button.
- 8. Click the Configure button.

9. Wait for the operation to close. The protocol changes and the SUCCESS screen displays.

10. Click the Close button.

Updates to the DrMonitor screen display as illustrated below. All output is HIPPO.

DrMonitor v2.39									
File SysCmd Initialize Config	View Test Tools Help								
Time	Position	S	iV Info	COM					
UTC Time 17:12:59	Latitute 0.00000000	rad	SV SNR Elev	Azi F					
UTC Date 03/08/2007	Longitude 0.000000000	rad	7 0.0 14	314 1 17					
Time 407579711	Altitude 0	meters	30 0.0 27	272 2 18					
Delta Time 200	Heading 0.00000	sc	14 0.0 -90	0 3 19					
Offset 000	Speed 0	cm/s	1 0.0 -90	0 4 20					
Statue			2 41.0 70	38 5 21					
O Direction quitch O Position	Recurdly REE25	motors	28 0.0 90	0 6 22					
O Direction switch O Position	Position 60000	meters	22 0.0 -90	0					
Delta distance O Heading O Altitude	Altitude 1000	meters	11 0.0 -90	0 7 23					
 Motion indicator O Speed 	Heading 1.18311	sc	4 0.0 -90	0 8 24					
O Gyro Calibration O Motion	Speed 0	cm/s	15 0.0 90	0 9 25					
 Tacho Calibration 			10 44.2 70	218 10 26					
 Direction (forward) 	Gyro Counts 22350	í lí	5 0.0 -90	0 11 27					
Time source GPS (<10ms)	Tacho Counts 0	, L		12 28					
DOPs	# Samples 20		Srch Mode Blind	13 29					
PDOP HDOP VDOP	Dir switch val		Almanac Not Com	plete 14 30					
0.00 0.00 0.00			, not com	15 31					
Last Event Log	Last Event Log Antenna Normal								
Tx O Rx O 01:Valid BBRAN	1 : SelfTest Passed Running) Time: 00:02:5	i2 COM24-38400-8-	None-1					

HIPPO Commands to Change Protocol

HIPPO Commands to Change NMEA to HIPPO: 81 03 07 F3 82 81 01 2B 30 02 00 00 00 00 C8 00 00 00 D7 82 81 01 2A 31 01 00 0C 00 00 94 82 81 01 2A 32 01 00 0C 00 00 93 82 81 01 2A 33 01 00 0C 00 00 92 82 81 01 2A 11 01 00 00 20 00 A0 82 81 01 2A 12 01 00 00 20 00 9F 82 81 01 2A 36 03 00 00 00 4 95 82 81 01 2A 36 04 00 00 00 04 94 82 81 01 2A 36 05 00 00 00 02 95 82

81 01 2A 36 07 00 00 00 01 94 82

81 01 2A 36 08 00 00 00 04 90 82

81 01 22 02 00 00 00 00 00 D8 82

81 03 09 F1 82

HIPPO Commands to Change HIPPO to NMEA:

81 03 07 F3 82

81 01 2B 30 02 00 00 00 00 00 00 00 00 9F 82

81 01 2A 31 01 00 00 00 00 A0 82

81 01 2A 32 01 00 00 00 00 9F 82

81 01 2A 33 01 00 00 00 00 9E 82

81 01 2A 11 01 00 00 00 00 C0 82

81 01 2A 12 01 00 00 00 00 BF 82

- 81 01 2A 36 03 00 00 00 00 99 82
- 81 01 2A 36 04 00 00 00 00 98 82
- 81 01 2A 36 05 00 00 00 00 97 82
- 81 01 2A 36 07 00 00 00 00 95 82
- 81 01 2A 36 08 00 00 00 00 94 82
- 81 01 22 02 01 00 00 01 1D B9 82

81 03 09 F1 82

In both cases, there should be a 5-second pause after the first command, then a 100ms delay between each of the successive 13 commands.

Save the Calibration Settings

You can save the calibration settings of the Gyro and Tachometer in Flash memory for future use, should the power supply to the DR+GPS be removed and the settings lost.

Correct calibration of the Gyro can only be carried out after the Tachometer input has completed its calibration. The Tachometer calibrates after 40 GPS fixes which are above the speed of 8m/s. The Gyro bias calibration completes after a short standstill. The Gyro Scale Factor calibrates after twenty 90° turns.

- 1. Use DrMonitor in HIPPO output mode to view the Gyro Calibration and Tacho Calibration status lights.
- 2. Wait for these indicator lights to turn green.
- 3. From the DrMonitor menu, select SysCmd> Clear Position, Reset.
- 4. From the DrMonitor menu, select SysCmd> Write BBRAM to Flash, Reset.

USE NMEA READER

NMEAReader can be used to parse a single or batch of text files containing NMEA data and save them to an Excel CSV file along with the headings for the satellite information.

1. Open the NMEAReader application

	Reader-102	
File	Help	

- 2. Select File>Single Post Proc.
- 3. Use the Windows navigation screen to select the raw NMEA file. This can be the saved output from HyperTerminal for instance.
- 4. Use the Windows navigation screen to select the file path for the parsed CSV file.
- 5. Select Yes or No to parse another file.
- 6. Use Excel to open and view the satellite data.

DR + GPS Starter Kit Reference Manual

used00	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-
sgn100	0	0	0	35	35	35	35	35	36	36	36	36	36	35	35
elev00	0	0	0	<u>65</u>	65										
azim00	0	0	0	324	324	324	324	324	324	324	324	324	324	324	324
svid00	0	0	0	7	7	7	7	7	7	7	7	7	7	7	7
gpsqual	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
numsvsview	0	0	0	12	12	12	12	12	12	12	12	12	12	12	12
numused	0	0	0	7	7	7	7	7	7	7	7	7	7	7	7
numsvsinfix I	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sGSAMode	0	0	0	3	e	e	e	e	e	e	e	e	e	e	3
dopv	0	0	0	4	4	4	4	4	4	4	4	4	4	4	4
dop	0	0	0	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
dopo	0	0	0	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8
GGAhdop	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
heading	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
peed	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
msl	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•
alt	55.1	55.1	55.1	55.1	55.1	55.1	55.1	55.1	55	55	55	55	55	55	55
at	37.540796	37.540796	37.540796	37.540797	37.540797	37.540797	37.540797	37.540797	37.540797	37.540797	37.540797	37.540797	37.540797	37.540797	37.540797
lon	122.303673	122.303673	122.303673	122.303674	122.303674	122.303674	122.303674	122.303674	122.303674	122.303674	122.303674	122.303674	122.303674	122.303675	122.303675
tod	65536.3	65536.5	65536.7	65536.9	65537.1	65537.3	65537.5	65537.7	65537.9	65538.1	65538.3	65538.5	65538.7	65538.9	65539.1
index	-	2	ŝ	4	9	9	7	~	6	10	1	12	13	14	15

DR + GPS Starter Kit Reference Manual

APPENDIX

NMEA 0183

This appendix provides a brief overview of the NMEA 0183 v2.3 protocol, and describes both the standard and optional messages offered by the DR+GPS.

INTRODUCTION

NMEA 0183 is a simple, yet comprehensive ASCII protocol which was originally established to allow marine navigation equipment to share information. Since it is a well established industry standard, NMEA 0183 has also gained popularity for use in applications other than marine electronics. The DR+GPS NMEA output supports NMEA 0183 version 2.3.

For those applications requiring output only from the GPS receiver, NMEA 0183 is a popular choice since, in many cases, an NMEA 0183 software application code already exists. The DR+GPS is available with firmware that supports a subset of the NMEA 0183 messages: GGA, GSA, GSV, RMC, and VTG.

For a complete copy of the NMEA 0183 standard, contact:

NMEA National Office PO Box 3435 New Bern, NC 28564-3435 U.S.A. Telephone: +1-919-638-2626 Fax: +1-919-638-4885
THE NMEA 0183 COMMUNICATION INTERFACE

NMEA 0183 allows a single source (talker) to transmit serial data over a single twisted wire pair to one or more receivers (listeners). The table below lists the standard characteristics of the NMEA 0183 data transmissions.

Table 2: NMEA 0183 Characteristics

Signal	DR+ GPS NMEA
Baud Rate	38400
Data Bits	8
Parity	None (Disabled)
Stop Bits	1

NMEA 0183 MESSAGE FORMAT

The NMEA 0183 protocol covers a broad array of navigation data. This broad array of information is separated into discrete messages which convey a specific set of information. The entire protocol encompasses over 50 messages, but only a sub-set of these messages apply to a GPS receiver like the DR GPS. The NMEA message structure is described below.

\$IDMSG,D1,D2,D3,D4,.....,Dn*CS[CR][LF]

- "\$" The "\$" signifies the start of a message.
- ID The talker identification is a two letter mnemonic which describes the source of the navigation information. The GP identification signifies a GPS source.
- MSG The message identification is a three letter mnemonic which describes the message content and the number and order of the data fields.
- "," Commas serve as delimiters for the data fields.
- Dn Each message contains multiple data fields (Dn) which are delimited by commas.
- "*" The asterisk serves as a checksum delimiter.
- CS The checksum field contains two ASCII characters which indicate the hexadecimal value of the checksum.
- [CR][LF] The carriage return [CR] and line feed [LF] combination terminate the message.

NMEA 0183 messages vary in length, but each message is limited to 79 characters or less. This length limitation excludes the "\$" and the [CR][LF]. The data field block, including delimiters, is limited to 74 characters or less.

Null field, (no characters between commas), indicate data is not currently available.

Future versions of these messages may have extra fields added to the end.

FIELD DEFINITIONS

Many of the NMEA date fields are of variable length, and the user should always use the comma delineators to parse the NMEA message date field. Table\ specifies the definitions of all field types in the NMEA messages supported by Trimble

Туре	Symbol	Definition	
Status	A	Single character field:	
		A=Yes, data valid, warning flag clear	
		V=No, data invalid, warning flag set	
Special Format	Fields		
Latitude	1111.111	Fixed/variable length field:	
		Degreesminutes.decimal-2 fixed digits of degrees, 2 fixed digits of minutes and a variable number of digits for decimal-fraction of minutes. Leading zeros always included for degrees and minutes to maintain fixed length. The decimal point and associated decimal- fraction are optional if full resolution is not required.	
Longitude	ууууу.ууу	Fixed/Variable length field:	
		Degreesminutes.decimal-3 fixed digits of degrees, 2 fixed digits of minutes and a variable number of digits for decimal-fraction of minutes. Leading zeros always included for degrees and minutes to maintain fixed length. The decimal point and associated decimal- fraction are optional if full resolution is not required.	
Time	hhmmss.ss	Fixed/Variable length field:	
		hoursminutesseconds.decimal-2 fixed digits of minutes, 2 fixed digits of seconds and a variable number of digits for decimal-fraction of seconds. Leading zeros always included for hours, minutes, and seconds to maintain fixed length. The decimal point and associated decimal- fraction are optional if full resolution is not required.	
Defined		Some fields are specified to contain pre-defined constants, most often alpha characters. Such a field is indicated in this standard by the presence of one or more valid characters. Excluded from the list of allowable characters are the following that are used to indicated field types within this standard: "A", "a", "c", "hh", "hhmmss.ss", "IIII.II", "x", "vvvvv.vv"	

Table 3:Field Type Summary

DR + GPS Starter Kit Reference Manual

Туре	Symbol	Definition	
Numeric Value	Numeric Value Fields		
Variable	х.х	Variable length integer or floating numeric field. Optional leading and trailing zeros. The decimal point and associated decimal-fraction are optional if full resolution is not required (example: 73.10=73.1=073.1=73).	
Fixed HEX	hh	Fixed length HEX numbers only, MSB on the left	
Information Fields			
Fixed Alpha	аа	Fixed length field of upper-case or lower-case alpha characters.	
Fixed Number	хх	Fixed length field of numeric characters	

NOTE Spaces are only be used in variable text fields.

Units of measure fields are appropriate characters from the Symbol column unless a specified unit of measure is indicated.

Fixed length field definitions show the actual number of characters. For example, a field defined to have a fixed length of 5 HEX characters is represented as hhhhh between delimiters in a sentence definition.

NMEA 0183 MESSAGE OPTIONS

The DR GPS can output any or all of the messages listed in the table below. In its default configuration (as shipped from the factory), the DR GPS outputs only NMEA messages. Typically NMEA messages are output at a 1 second interval with the "GP" talker ID and checksums. These messages are output at all times during operation, with or without a fix. If a different set of messages has been selected and this setting has been stored in Flash memory, the default messages are permanently replaced until the receiver is returned to the factory default settings.

Message	Description
GGA	GPS fix data
GSA	GPS DOP and active satellites
GSV	GPS satellites in view
RMC	Recommended minimum specific GPS/Transit data
VTG	Track made good and ground speed

NOTE The user can configure a custom mix of the messages listed in the table below.

NMEA 0183 MESSAGE FORMATS

GGA-GPS Fix Data

The GGA message includes time, position and fix related data for the GPS receiver.

\$GPGGA,hhmmss.ss,IIII.III,a,nnnnn.nnn,b,t,uu, v.v,w.w,M,x.x,M,y.y,zzzz*hh <CR><LF>

Field #	Description
1	UTC of Position
2, 3	Latitude, N (North) or S (South)
4, 5	Longitude, E (East) or W (West)
6	GPS Quality Indicator: 0 = No GPS, 1 = GPS, 2 = DGPS
7	Number of Satellites in Use
8	Horizontal Dilution of Precision (HDOP)
9, 10	Antenna Altitude in Meters, M = Meters
11, 12	Geoidal Separation in Meters, M=Meters. Geoidal separation is the difference between the WGS-84 earth ellipsoid and mean-sea-level.
13	Age of Differential GPS Data. Time in seconds since the last Type 1 or 9 Update
14	Differential Reference Station ID (0000 to 1023)
hh	Checksum

Table 5: GGA Message

GSA - GPS DOP and Active Satellites

The GSA messages indicates the GPS receiver's operating mode and lists the satellites used for navigation and the DOP values of the position solution.

Field #	Description
1	Mode: M = Manual, A = Automatic. In manual mode, the receiver is forced to operate in either 2D or 3D mode. In automatic mode, the receiver is allowed to switch between 2D and 3D modes subject to the PDOP and satellite masks.
2	Current Mode: 1 = fix not available, 2 = 2D, 3 = 3D
3 - 14	PRN numbers of the satellites used in the position solution. When less than 12 satellites are used, the unused fields are null
15	Position dilution of precision (PDOP)
16	Horizontal dilution of precision (HDOP)
17	Vertical dilution of precision (VDOP)
hh	Checksum

Table 6:GSA Message

GSV - GPS Satellites in View

The GSV message identifies the GPS satellites in view, including their PRN number, elevation, azimuth and SNR value. Each message contains data for four satellites. Second and third messages are sent when more than 4 satellites are in view. Fields #1 and #2 indicate the total number of messages being sent and the number of each message respectively.

xxx,xx,xx,xx,xxx,xx*hh<CR><LF>

Field #	Description
1	Total number of GSV messages
2	Message number: 1 to 3
3	Total number of satellites in view
4	Satellite PRN number
5	Satellite elevation in degrees (90° Maximum)
6	Satellite azimuth in degrees true (000 to 359)
7	Satellite SNR (C/No), null when not tracking
8, 9, 10, 11	PRN, elevation, azimuth and SNR for second satellite
12, 13, 14, 15	PRN, elevation, azimuth and SNR for third satellite
16, 17, 18, 19	PRN, elevation, azimuth and SNR for fourth satellite
hh	Checksum

Table 7:GSV Message

RMC - Recommended Minimum Specific GPS/Transit Data

The RMC message contains the time, date, position, course, and speed data provided by the GPS navigation receiver. A checksum is mandatory for this message and the transmission interval may not exceed 2 seconds. All data fields must be provided unless the data is temporarily unavailable. Null fields may be used when data is temporarily unavailable.

\$GPRMC,hhmmss.ss,A,IIII.II,a,yyyyy.yy,a,x.x,x.x,xxxxxx,x.x,a,i*hh<CR><LF>

Field #	Description
1	UTC of Position Fix.
2	Status: A = Valid, V = navigation receiver warning
3, 4	Latitude, N (North) or S (South).
5, 6	Longitude, E (East) or W (West).
7	Speed over the ground (SOG) in knots
	Track made good in degrees true.
	Date: dd/mm/yy
	Magnetic variation in degrees, E = East / W= West
	Position System Mode Indicator; A=Autonomous, D=Differential, E=Estimated (Dead Reckoning), M=Manual Input, S=Simulation Mode, N=Data Not Valid
hh	Checksum (Mandatory for RMC)

Table 8: RMC Message

VTG - Track Made Good and Ground Speed

The VTG message conveys the actual track made good (COG) and the speed relative to the ground (SOG).

\$GPVTG,x.x,T,x.x,M,x.x,N,x.x,K,i*hh<CR><LF>

Field #	Description
1	Track made good in degrees true.
2	Track made good in degrees magnetic.
3, 4	Speed over the ground (SOG) in knots.
5, 6	Speed over the ground (SOG) in kilometer per hour.
7	Mode Indicator: A=Autonomous Mode, D=Differential Mode, E=Estimated (dead reckoning) Mode, M=Manual Input Mode, S=Simulated Mode, N-Data Not Valid
hh	Checksum

Table 9: VTG Message

EXCEPTION BEHAVIOR

When no position fix is available, some of the data fields in the NMEA messages will be blank. A blank field has no characters between the commas.

APPENDIX

HIPPO

This document describes the format of the Host Independent Positioning Protocol Object (HIPPO) protocol and messages implemented in the DR GPS module.

HIPPO is one of three communication modes of the DR GPS module, and is the one present in normal usage. The serial port operates at 38400 baud, eight data bits, no parity, one stop bit.

The other two modes are monitor mode, used for manufacture and low-level diagnosis and control, and flash-loading mode, used for updating the firmware. The receiver enters monitor mode through HIPPO command. The receiver will also enter monitor mode if the firmware ROM checksum fails. The only way to enter flash-loading mode is through the monitor mode. For detailed descriptions of these two modes, see the document "DR GPS Flash Loading Requirements", Trimble PN 45058-XX-SP, Rev 1.20.

HIPPO PROTOCOL RULES

The HIPPO message structure is derived from the TSIP message structure. Both are binary protocols with pre-parsers that "unstuff" the bytes in the serial stream (S-bytes) to create packets of message bytes (M-bytes). Both are asynchronous protocols, allowing the host and module to send multiple commands without waiting for the completion of the previous command.

The HIPPO design offers easier and more reliable parsing. In contrast to TSIP, which requires a small state machine after the pre-parser to determine the start and end of the message packet, HIPPO uses unique S-bytes to identify the start and end before the pre-parser. The HIPPO message structure currently uses three control characters: 0x80 = HIPPO Control Character (HCC); 0x81 = Start of Message (SOM); and 0x82 = End of Message (EOM). HIPPO reserves five other bytes (0x83-0x87) for future use as control characters. This contrasts with TSIP, which has two (DLE and ETX). HIPPO has a higher control character overhead (3% versus 0.4% for TSIP), but parser design is much simpler.

Because the DR GPS module is designed to send messages at 10 Hz, the message length has been limited to 128 bytes to ensure that two messages can be transmitted per 100 ms cycle.

Number representations use IEEE formats, and are sent least significant byte first (Intel specification or "little endian").

The module acknowledges all commands with a reply message after parsing and processing are complete. "Completion" is the point at which all immediate actions are complete in the protocol layer. These actions include replying to queries, setting global variables, flags, or semaphores, and sending messages to other tasks. If the command is a successful query for a single report, the report response itself is the acknowledgment response; otherwise, the module sends an acknowledgment response packet 0x10 to the host.

There are two general types of messages: report messages and command messages.

General Message Structure Rules

The byte SOM only occurs as an S-byte (in the serial stream) at the start of a message. The byte EOM only occurs as an S-byte at the end of a message. From the SOM byte until the following EOM byte, the following structure rules apply:

The first two S-bytes are the Parser Code PCOD and Parser Subcode PSUB. These specify a unique parser for the data bytes. PCOD and PSUB never have values of 0x80 to 0x87, so they are never "stuffed".

Depending on PCOD and PSUB, the next byte may be an index byte INDEX. INDEX never has a value of 0x80 to 0x87, so it is never "stuffed". Examples of an index are a channel number and a satellite PRN. All indexed messages with the same parser code and subcode must have the same length, format, and data structure.

The byte HCC only occurs as an S-byte as a "stuffing" character, as defined in Section 2.3. It may appear before CS or any of the data bytes.

The value of the checksum M-byte CS is such that the 8-bit sum of the M-bytes from SOM to EOM inclusive is zero. If the checksum is between 0x80 and 0x87, it is HCC-stuffed.

The number of data bytes per message is limited to 128. Counting the bytes for the SOM, parser code, parser subcode, checksum, EOM, and index, the total number of M-bytes can as many as 134. Data is not valid until the message is complete and the checksum agrees.

HIPPO ignores S-bytes between messages (from EOM to the following SOM), unless the values are between 0x80 and 0x87. This feature allows ASCII messages such as NMEA or TAIP to be interspersed with HIPPO messages. TSIP messages and other binary protocols in general cannot be interspersed with HIPPO messages.

Report Message Structure (Module to Host)

The table below provides the message structure for a simple data packet of N M-bytes. Each message has five framing bytes: SOM; two message ID bytes (PCOD and PSUB); a checksum byte; and EOM. The data type and data structure in the message (i.e., the parser) is specified by the Parser code PCOD and parser subcode PSUB.

Byte	Meaning	Value
SOM	start of message	0x81
PCOD	Parser code	0x00 – 0x7F
PSUB	Parser subcode	0x00 – 0x7F, 0xFF
D[0]	First byte of data	0x00 – 0xFF
D[1]	Second byte of data	0x00 – 0xFF
D[N-1]	Last byte of data	0x00 – 0xFF
CS	Checksum	0x00 – 0xFF
EOM	End of message	0x82

Table 10: HIPPO Report Message Structure

Some parser code / subcodes have data indexed by channel or satellite, as shown in the table below. The index is the first byte after the parser subcode. The parser code/subcode specifies whether a message uses indexing.

Byte	Meaning	Value
SOM	start of message	0x81
PCOD	Parser code	0x00 – 0x7F
PSUB	Parser subcode	0x00 – 0x7F
INDEX	Data indexed by channel, etc.	0x00-0x7F, 0xFF
D[0]	First byte of data	0x00 – 0xFF
D[1]	Second byte of data	0x00 – 0xFF
D[N-1]	Last byte of data	0x00 – 0xFF
CS	Checksum	0x00 – 0xFF
EOM	End of message	0x82

 Table 11:
 HIPPO Report Message Structure (Indexed Data)

Command Message Structure (Host to Module)

Command messages sent from host to module are built upon the report message structure. Except for system commands such as system reset, every command either sets or queries a reportable data structure. To accomplish this, the HIPPO set or query command protocol simply "wraps around" the report message protocol (see tables below).

Byte	Meaning	Value
SOM	start of message	0x81
CCOD	Set Command code	0x01
PCOD	Parser code	0x00 – 7F
PSUB	Parser subcode	0x00 – 7F, 0xFF
D[0]	First byte of data	0x00 – FF
D[1]	Second byte of data	0x00 – FF
D[N-1]	Last byte of data	0x00 – FF
CS	Checksum	0x00 – FF
EOM	End of message	0x82

 Table 12:
 HIPPO Command Message Structure

Table 13:	HIPPO Query Message Structure for Indexed Data
-----------	--

Byte	Meaning	Value
SOM	Start of message	0x81
CCOD	Query Command code	0x02
PCOD	Parser code	0x00 – 7F
PSUB	Parser subcode	0x00 – 7F
INDEX	Index	0x00 – 7F, 0xFF
CS	Checksum	0x00 – FF
EOM	End of message	0x82

Chained Messages

Chaining is not supported in the DR GPS module. If multiple messages are requested, they will be issued as time allows between the high-priority automatic report messages. An acknowledgment message appears at the end of the sequence of replies.

Post-Formatting: HCC Stuffing Before Transmission

Whenever an M-byte in the data fields or the checksum field is equal to one of the control characters 0x80-0x87, it generates two S-bytes as follows: the M-byte generates the S-byte pair [0x80, M-byte & 0x7F].

Pre-Parsing: HCC Unstuffing After Reception

Pre-parsing (assembly of the M-bytes) occurs as S-bytes are received. HIPPO pre-parsing begins with the appearance of the SOM S-byte and ends with the appearance of the EOM S-byte.

- Whenever the S-byte is SOM, a new message structure opens with room for 132 M-bytes. The first M-byte of a message is always SOM.
- Whenever the S-byte HCC appears, it does not generate a new M-byte. Rather, it generates a signal to OR the following S-byte with 0x80 to create the next M-byte. Otherwise, the M-byte is the same as the S-byte.
- If the S-byte is EOM, the message structure is closed. The last M-byte of a message is always EOM.
- The last M-byte before the EOM is the checksum. It is computed so that the sum of all M-bytes, including the SOM, the EOM, and the checksum, is zero.

After pre-parsing is complete, the message packet is ready to be parsed into structures according to the rules in Sections 3 and 4. The parser code and subcodes are the second and third M-bytes, directly after the SOM. The data will start on the fourth (non-indexed data) or fifth (indexed data) M-byte.

Possible pre-parser errors include:

- Two SOMs appear without an EOM in between.
- HCC occurs in the first two bytes (parser code and subcode).
- The byte following HCC is not equal to the 7 LSB's of a HIPPO control character.
- Control characters appear between message (after EOM but before the next SOM).
- No EOM appears in the first 134 M-bytes.

COMMAND MESSAGES

HIPPO has three classes of command message packets: set parameters, query parameters, and system command.

The set command is simple: it "wraps around" the report message structure of the parameter(s) to be set.

The query command structure is even simpler: it calls out the report code and subcode (and index, if applicable) of the desired reports.

The module always acknowledges a command in one of two ways.

An explicit acknowledgment message is sent in reply to either:

- 1. A command;
- 2. An unsuccessful query;
- 3. A query that generates a series of report messages.
- 4. If the query successfully generates a single report message, that message is the implicit acknowledgment.

The acknowledgment contains a status indicating the completion of the operation.

Set Class

The set class packets set receiver, system, and any other defined parameters within the target system.

Two types of parameters can be set.

- 1. Configuration parameters such as DOP mask;
- 2. Initialization parameters such as position, velocity, time, and ephemeris.

The target system returns an acknowledgment packet, but does not echo data values as in TSIP.

The parser code and subcode determine the length of the command packet. The packet has the following general format (indexed data has an extra byte after parser subcode):

Byte	Name	Туре	Value	Meaning
	Command Code	U8	0x01	
	Parser Code	U8	0x00-7F	Report Code
	Parser Subcode	U8	0x00-7F	See report packet definitions.
0	Data Value			Data corresponding to the subcode.
N _{R-1}	Data Value			N_R is the size of data for the specified report.

 Table 14:
 Set Class Message Structure

For example, to set the operating dimension to "2-D Altitude Hold", the host issues the following command to the module:

 Table 15:
 Example of GPS Configuration Message Parameter

Byte	Name	Туре	Value	Meaning
	Command Code	U8	0x01	
	Parser Code	U8	0x24	Report packet for GPS Configuration
	Parser Subcode	U8	0x01	Parameter Subcode for Operating Dim
0	Operating Dimension	U8	3	Alt-Hold (2D)

Query Class

The Query class packet allows user to retrieve configuration, report, and system data with the same packet. Like the Set class packet, it is indexed by the report code and subcode. This is possible because each parameter or set of parameters has a corresponding report message.

Four types of parameters can be queried.

- 1. System parameters (e.g., version numbers)
- 2. Configuration parameters (e.g. DOP mask)
- 3. Fix parameters (e.g., satellite strength, current position, velocity, time, ephemeris)
- 4. Initialization parameters (e.g., position, velocity, time, ephemeris)

The target system returns an acknowledgment packet. When a query for a single report is successful, the reply to that query is the acknowledgment. If the query fails, an explicit acknowledgment report message is sent as an acknowledgment. If the query generates a series of response messages, the last response is followed by an explicit acknowledgment report message that signals the end to the host's parser.

A query has two formats, depending on whether the information is indexed (e.g., by channel or satellite).

Byte	Name	Туре	Value	Meaning
	Command Code	U8	0x02	
	Parser Code	U8	0x00-7F	
	Parser Subcode	U8	0x00-7F	Single Subcode
			0xFF	All subcodes

 Table 16:
 Query Class Message Structure

Byte	Name	Туре	Value	Meaning
	Command Code	U8	0x02	
	Parser Code	U8	0x00-7F	Report Code
	Parser Subcode	U8	0x00-7F	See report packet definitions.
	Index	U8	0x00-7F	Single index (e. g., channel or satellite)
			0xFF	All indices

Table 17: Indexed Query Class Message Structure

Like the set class message, the query packet has two bytes body contains the parser code and subcode for a configuration packet or a report packet. For example, to query the operating dimension setting in the GPS configuration block:

Table 18:	Example of Query for	or "Operating	Dimension"	parameter
-----------	----------------------	---------------	------------	-----------

Byte	Name	Туре	Value	Meaning
	Command Code	U8	0x02	
	Parser Code	U8	0x24	Report packet for GPS Configuration
	Parser Subcode	U8	0x01	Parameter Subcode for Operating Dim

System Class

A system class packet is a set packet associated with the system operations. The following section describes each of packets.

Reset Receiver

This command resets the receiver software.

Byte	Name	Туре	Value	Meaning
	Code	U8	0x03	
	Subcode	U8	0x01	Reset
			0x02	Clear RAM, reset
			0x03	Force to Monitor Mode
			0x04	Shut Down
			0x05	Clear ephemeris and oscillator, reset
			0x06	Clear oscillator, reset
			0x07	Clear flash data and RAM, reset
			0x08	Clear position, reset
			0x09	Write BBRAM to flash, reset (graceful)
			0x0A	Io-DSP Pass-through mode

Table 19:0x03: Receiver Reset Command Messages

Force to Monitor Mode –Force the target system to exit from GPS function, and into the embedded monitor mode. The serial communication is reset to 38.4K baud, no parity. Once in the monitor mode, all HIPPO APIs are disabled. Refer to flash loading documents for more detail.

Shutdown: Once this packet is received, the target system shuts down the navigation system. The system can be restarted by hardware action (e.g., reset pin) only.

An acknowledgment packet in the current serial protocol is sent before the command is implemented, however transmission may not complete before the reset occurs.

REPORT CLASS

Report class packets are divided into four subclasses.

System data: contains system information, such as system status or an event log queue entry.

Configuration reports: have all the system configurable parameters.

Data reports: have navigation information generated by the Navigation Platform.

Initialization input reports: have start-up information and GPS system data (position, heading, almanac, etc.); also map-matching inputs for latitude, longitude, altitude, and heading.

Some report packets are indexed by channel number (tracking status, signal strength) or satellite number (almanac, ephemeris).

The parameters in the configuration and initialization reports can be set by 0x01 packet.

The host can query all report packets using the 0x02 packet, except as noted.

Report Message Code Assignment

This table lists all report data structures in HIPPO supported by the DR GPS module, and whether the data structure can be queried ('Q') or set ('S'). Data that can be neither queried nor set is automatic output only.

Code	Subcode	Indexed by	Message	Q	s
0x10	0x01		Acknowledge Set		
0x10	0x02		Acknowledge Query		
0x10	0x03		Acknowledge System Command		
0x11	0x01		Navigation Code ROM Version	Q	
0x11	0x02		Boot Code ROM Version	Q	
0x11	0x03		Io-DSP Code ROM Version	Q	
0x12	0x01		Start-up Message		
0x12	0x02		SW Mode	Q	
0x12	0x03		Product Information	Q	
0x12	0x04		Hardware ID	Q	
0x14	0x01	Event Log	Soft Event Log Entry	Q	
0x14	0x02	Event Log	Fatal Error Log Entry	Q	
0x15	various		Data Stored to Non-erasable Flash	Q	
0x16	0x01		Health Message	Q	
0x16	0x02		Repeat Start-Up Message	Q	
0x21	0x01		DR GPS Engine Rate	Q	S
0x22	0x01		Output Interval Control	Q	
0x22	0x02		Format of NMEA Output Control Parameters	Q	s
0x23	0x01		Variable length RTCM data	Q	S
0x23			Reserved as a "wrapper" for non-HIPPO protocols		
0x24	0x01-08		GPS Configuration Parameters	Q	S
0x25			Kalman Filter Configuration Parameters	Q	S
0x26	0x01		Available Report Codes	Q	
0x26	0x02	Rpt code	Available report Subcodes	Q	
0x26	0x03		DPP model speed levels	Q	
0x26	0x04		DPP minimum speed for estimate	Q	
0x26	0x05		DPP maximum speed for estimate	Q	
0x27			DR Filter Parameters	Q	S
0x28	0x12	SV PRN	Compressed Almanac	Q	S
0x28	0x13		Compressed Almanac Health Page	Q	S
0x28	0x14		Compressed GPS lonospheric/UTC Model Param,	Q	S
0x28	0x16	SV PRN	Compressed Ephemeris	Q	S

Table 20:Message Codes

Code	Subcode	Indexed by	Message	Q	s
0x29	0x01		Time Initialization	Q	s
0x29	0x02		Latitude / Longitude Initialization	Q	s
0x29	0x03		Altitude Initialization	Q	S
0x29	0x04		LO Frequency Initialization	Q	S
0x29	0x05		Heading Initialization	Q	S
0x29	0x07		Map-match Input	Q	S
0x29	0x08		Tacho Input	Q	S
0x2A	Rpt Code	Rpt Subcode	Automatic Output – Event	Q	S
0x2B	Rpt Code	Rpt Subcode	Automatic Output – Time Interval	Q	S
0x2C	Rpt Code	Rpt Subcode	Automatic Output – Distance Traveled	Q	S
0x2D	Rpt Code	Rpt Subcode	Automatic Output – Heading Change	Q	S
0x2E	0x01		Event Report Mask	Q	S
0x2F	0x02		Data Positioning Collection Test Interval Control		S
0x2F	0x04		Gyro Bench Test Interval Control		S
0x2F	0x06		Tacho/Reverse Production Test Interval Control		S
0x30	0x02		Fast Fix with raw DR Data	Q	
0x30	0x03		Buffered DR data with Health and Start-up message	Q	
0x31	0x01		GPS Fix	Q	
0x32	0x01		UTC Time and Constellation Summary	Q	
0x32	0x02		Constellation Summary	Q	
0x32	0x03		UTC Time	Q	
0x33	0x01	Channel	GPS Channel Measurement Short Status	Q	
0x36	0x03		ZRO Calibration	Q	S
0x36	0x04		Gyro Sensitivity Calibration	Q	S
0x36	0x05		Direction Switch Calibration	Q	S
0x36	0x07		DPP Calibration	Q	S
0x36	0x08		ZRO Rate Calibration	Q	
0x3F	0x01		ADC and Gyro Self-Test Data	Q	
0x3F	0x02		Data Positioning Collection Test Data (ROM 14)		
0x3F	0x03		Data Positioning Collection Test Data (ROM 15+)		
0x3F	0x04		Gyro Bench Test Data		
0x3F	0x06		Tacho/Reverse Production Test Data		
0x66	various		Diagnostic tag		
0x70	0x01	Channel	GPS Raw Measurement Diagnostic		
0x70	0x02		GPS Raw Position / Velocity Diagnostic		
0x70	0x03		DR Data		
0x70	0x04		Reset Diagnostic		

 Table 21:
 Message Codes (continued)

Indexed by QS Code Subcode Message DR BBRAM Diagnostic V1 0x70 0x05 0x70 0x07 Map Match Data Echo Diagnostic 0x70 0x08 DR BBRAM Diagnostic V2 0x70 0x09 GPS No Fix 0x70 0x0A DR BBRAM Diagnostic V3 0x70 0x7F Toggle Diagnostic Output Q S

Table 22: Message Codes (continued)

System Report Packets

0x10: Acknowledge / Error Response to Command Packets

This packet serves three different functions:

- 1. Acknowledge a command when the operation is carried out, such as set a flag to reset and change baud rate;
- 2. Indicate a result of an operation is successful, such as set commands; and
- 3. Indicate a parsing error.

Not all sets, queries, or auto-outputs generate a 0x10 response. Specifically, when a query or auto-output for a single report is successful, the reply to that query is the acknowledgment. When the query or auto-output fails, or when it generates a series of response messages, a 0x10 message follows the last response to explicitly end the host parser actions.

The last data byte of the message is a parser status code. If the status code is not zero, an error has occurred and the module has not implemented the command. The value of the status code indicates at the point in the procedure where the parser failed.

- 1. An M-byte stream of no more than 128 bytes could not be created (control character error);
- 2. The checksum did not compute properly;
- 3. The parser code and subcode were be recognized;
- 4. The message length as not correct for that parser code/subcode;
- 5. One or more of the data values was not reasonable and appropriate.
- 6. The data contradicts values of position, time, etc. that have been validated by the GPS. This data can be forced using the "host override" option if available.

There are three forms of the acknowledgment report:

- 1. for sets, queries, and auto-outputs of non-indexed reports,
- 2. for sets, queries, and auto-outputs of indexed reports, and
- 3. for system commands.

If the command includes a change in the serial port protocol, the module sends the acknowledgment in the old protocol.

The data length is three bytes if the report code (data byte 0) is for an non-indexed report.

STARTER KIT REFERENCE MANUAL

Byte	Name	Туре	Value	Meaning
	Code	U8	0x10	
	Subcode	U8	0x01	Set acknowledge
			0x02	Query acknowledge
			0x04	Auto-output acknowledge
0	Command Code	U8	0x00-7F	Non-indexed report
1	Command Subcode	U8	0x00-7F	Single subcode
		0xFF	0xFF	All subcodes
2	Status Code	U8	0	Acknowledged or a successful operation
			1	Pre-parser error
			2	Checksum error
			3	Unknown Code/Subcode
			4	Parser data length error
			5	Data value error (TBD)
			6	Contradicts current data
			7	Data table full (e.g., Output Interval Control)
			8	Data not available

Table 23:0x10: Non-indexed Set and Query Acknowledge

For indexed sets and queries, the data length is four bytes. The parser will expect this data length if the report code (byte 0) is for an indexed report.

Table 24:0x10: Indexed Set and Query Acknowledge

Byte	Name	Туре	Value	Meaning
_	Code	U8	0x10	
	Subcode	U8	0x01	Set acknowledge
			0x02	Query acknowledge
0	Command Code	U8	0x00-7F	Indexed report
1	Command Subcode	U8	0x00-7F	Single subcode
			0xFF	All subcodes
2	Index	U8	0x00-7F	Channel or satellite index
3	Status Code	U8	0	Acknowledged or a successful operation
			1	Pre-parser error
			2	Checksum error
			3	Unknown Code/Subcode
			4	Parser data length error
			5	Data value error (TBD)
			6	Contradicts current data
			7	Data table full (e.g., Output Interval Control)
			8	Data not available

For system commands, the data length is two bytes.

Byte	Name	Туре	Value	Meaning
	Code	U8	0x10	
	Subcode	U8	0x03	System command acknowledge
0	System Cmd Code	U8		See Sec. 0
1	Status Code	U8	0	Acknowledged or a successful operation
			1	Pre-parser Error
			2	Checksum Error
			3	Unknown Subcode
			4	Parser data length error
			9	Failed to execute properly

Table 25:	0x10-03: System	Command Acknowledge	è
-----------	-----------------	---------------------	---

A "query all" command may generate a series of responses, but only a single acknowledgment is sent to the host, with a "0xFF" byte in the report subcode or index field.

0x11: Version Report

This packet reports version numbers for the various firmware blocks within the module.

Byte	Name	Туре	Value	Meaning
	Code	U8	0x11	
	Subcode	U8	0x01	Navigation Code ROM
			0x02	Boot ROM
			0x03	Io-DSP ROM
0	Major Version	U8	0-100	Software major number
1	Minor Version	U8	0-100	software minor number
2	Release Code	U8	0	release
			> 0	beta version number
3	Release Day	U8	[1, 31]	software release day
4	Release Month	U8	[1, 12]	software release month
5-6	Release Year	U16	> 2000	software release year

 Table 26:
 0x11: Version Report Message

0x12-01: Start-Up Report

The module issues this report only at startup. This report cannot be queried; to query the data content after start-up, use message 0x16-02. The first two bytes show the error code associated with the previous shutdown. The second two bytes indicate health of the RTC and RAM.

Table 27:	0x12-01:	Start-Up	Report	Message
-----------	----------	----------	--------	---------

Byte	/ Bit	Name	Туре	Value	Meaning
		Code	U8	0x12	
		Subcode	U8	0x01	Parameter Subcode
0-1		Error Code	U16	0	Normal shutdown (SW or power)
				other	Abnormal shutdown (Error! Reference source not found.)
2		Reserved	U8		
3	0	RAM Signature	U1		1 = BBRAM signature valid
3	1	Gyro / ADC test	U1		1 = ADC or Gyro self-test error
3	2	RTC Valid	U1		1 = RTC valid at startup
3	3	Flash BBRAM	U1		1 = BBRAM loaded from Flash
3	4-7	Reserved			

0x12-02: Software Mode Report

This report indicates whether the module is currently in Monitor Mode or Normal mode. If the device is in monitor mode, it will recognize and reply (in HIPPO) to a HIPPO query for this report. If the device is in Monitor mode, it will also recognize and reply (in HIPPO) to a HIPPO query for this report.

Byte	Name	Туре	Value	Meaning
	Code	U8	0x12	
	Subcode	U8	0x02	Parameter Subcode
0	Mode	U8	1	Normal Mode
			2	Monitor Mode

 Table 28:
 0x12-02: Software Mode Report Message

0x12-03: Production Information Report

This report contains information stored in ROM; it cannot be set or changed through HIPPO command. It is available by query or auto-output.

 Table 29:
 Table 27: 0x12-03: Production Info Report Message

Byte	Name	Туре	Value	Meaning
	Code	U8	0x12	
	Subcode	U8	0x03	
0	Serial Number	U32		
4	Production Day	U8		
5	Production Month	U8		
6-7	Production Year	U16		
8-23	Product Name	16xCHAR		Descriptive string

0x12-04: Hardware ID Report

This report contains information stored in ROM; it cannot be set or changed through HIPPO command. It is available by query or auto-output.

Table 30:0x12-04: Hardware ID packet

Byte	Name	Туре	Value	Meaning
	Code	U8	0x12	
	Subcode	U8	0x04	Parameter Sub code
0-15	Hardware ID	16xCHAR		Hardware ID

0x14-01: Soft Event Log Report

These reports are auto-output upon the event. The report can also be queried by index number. Because of the volume of information, these reports cannot be queried with the "0xFF" option. The host can clear the soft event log completely by using the "set all" (0xFF) command with no data.

Byte	Name	Туре	Value	Meaning
	Code	U8	0x14	
	Subcode	U8	0x01	Parameter subcode
	Index	U8	0	Most recent soft event
			[1,127]	Soft Event Log index number
0-1	Year	U16	0	No GPS/UTC; time is since power-up
			>2000	year
2	Month	U8	[1, 12]	
3	Day	U8	[1, 31]	
4	Hour	U8	[0, 23]	
5	Minute	U8	[0, 59]	
6	Second	U8	[0, 60]	
7	Identity Code	U8	0xFF	No event
			0-0x7F	
8	Condition Code	U8		

 Table 31:
 0x14-01: Soft event log entry report

0x14-02: Fatal Error Log Report

On a fatal error, the receiver will reset. The report can be queried by index number after the reset. Because of the volume of information, these reports cannot be queried with the "0xFF" option. The fatal error log is retained in flash and cannot be cleared by the host.

Table 32:0x14-02: Fatal error log entry report

Byte	Name	Туре	Value	Meaning
	Code	U8	0x14	
	Subcode	U8	0x02	Parameter subcode
	Index	U8	0	Most recent fatal error
			[1, 31]	Fatal error Log index number
0	Year	U16	0	No GPS/UTC; time is since power-up
			>2000	year
2	Month	U8	[1, 12]	
3	Day	U8	[1, 31]	
4	Hour	U8	[0, 23]	
5	Minute	U8	[0, 59]	
6	Second	U8	[0, 60]	
7	Event Code	U16	0	No entry.
			>0	Event Code
9 – 30	Info block			

0x15: Data Stored in Non-erasable Flash Report

A section of non-erasable ROM is reserved for customer data blocks. There is no HIPPO command to set the data; data can only be set in Monitor mode. The data blocks are written serially into an area of ROM that cannot be erased or overwritten.

Each subcode corresponds to a different data block type. Unlike standard HIPPO, the parser is defined by the customer, so the message length and data content are not specified by the parser code and subcode. The maximum data block length is 128 bytes.

When queried with a subcode, the report scans the section of ROM and returns the last data block entry with that subcode. The customer can effectively "update" a data block by writing a new data block with the same subcode and updated data, provided that there is room left in the allocated ROM section (approximately 2K bytes).

If no data block is found with the queried subcode, the module returns an acknowledgment with "Data not available".

The "query all subcodes" mode 0xFF is not available.

Byte	Name	Туре	Value	Meaning
	Code	U8	0x15	
	Subcode	U8	0x01-7F	
0	User-defined	U8		
N-1	User-defined	U8		0 < N <=128

 Table 33:
 0x15: Data Stored in Non-erasable Flash Report

0x16-01: Health Status Report

This report contains status of various real-time operations in the DR GPS module.

B	yte	Name	Туре	Value	Meaning
		Code	U8	0x16	
		Subcode	U8	0x01	
0	0	Direction Switch	U1	0	Normal
		Status		1	Abnormal
0	1	Gyro status	U1	0	Normal
				1	Abnormal
0	2	Tacho status	U1	0	Normal
				1	Abnormal
0	3-7	Reserved			
1	0-1	Antenna status	U2	0	Normal
				1	Antenna open
				3	Antenna short
1	2	Oscillator status	U1	0	Normal
				1	Abnormal
1	3-7	Reserved			
2		Soft Event Index	U7	0	No soft event in log
				[1,127]	Most recent soft event index

 Table 34:
 0x16-01: Health status report

0x16-02: Repeat Start-Up Report with System Time

This report is a copy of the start-up message. The first two bytes show the error code associated with the previous shutdown. The second two bytes indicate health of the RTC and RAM. The system time is the number of milliseconds since power-up.

Byte Name Туре Value Meaning Code U8 0x16 Subcode U8 0x02 Parameter Subcode 0-1 Error Code U16 0 Normal shutdown (SW or power) other Abnormal shutdown (Error! Reference source not found.) Status U8 2 Reserved 3 0 **RAM Signature** U1 1 = BBRAM signature valid 3 1 Gyro / ADC test U1 1 = ADC or Gyro self-test error 3 2 **RTC Valid** U1 1 = RTC valid at startup 3 3 Flash BBRAM U1 1 = BBRAM loaded from Flash 4 Soft Event Index U7 0 No soft event in log at start-up [1,127] Last soft event index in log at start-up 5-8 SysClock U32 1 ms System Time

 Table 35:
 0x16-02: Repeat Start-Up with System Time Message

Configuration Report packets

0x22-01: Output Interval Control Table

Byte	Name	Туре	Value	Units	Meaning
	Code	U8	0x22		
	Subcode	U8	0x01		
0	Index	U8	0x00-0x0F, 0xFF		Table Slot Number
1	Code	U8	0x00-7F		Code in Slot
2	Subcode	U8	0x00-7F		Subcode in Slot
3-6	Automatic Output Event Trigger Mask	U32	0x00-0xFFFFFFF		See Table x.x.x
7-10	Time Threshold	U32		1 ms	Minimum Time required
11-14	Time Trigger	U32	0	1 ms	Not used
			> 0		Trigger value
15-18	Distance Threshold	U32		1 cm	Minimum Distance required
19-22	Distance Trigger	U32	0	1 cm	Not used
			> 0		Distance Trigger value
23-26	Heading Threshold	U32		1 cdeg	Minimum Heading required
27-30	Heading Trigger	U32	0	1 cdeg	Not used
			> 0		Heading Trigger value

 Table 36:
 0x22: Format of GPS Configuration Message Parameter

0x22-02: NMEA Output Control

Byte	Name	Туре	Value	Units	Meaning
	Code	U8	0x22		
	Subcode	U8	0x02		
0	Interval	U8	0-255	seconds	Output interval
					0 = 5Hz for GGA, VTG, and RMC; 1 Hz for GSA, GSV
					1-255 = interval for all messages.
1-4	Message mask	U32	0x00-7F		Bit 0 = output GGA
					Bit 2 = output VTG
					Bit 3 = output GSV
					Bit 4 = output GSA
					Bit 8 = output RMC

Table 37: 0x22: Format of NMEA Output Control Parameters

0x24: GPS Configuration

The Parser Code for GPS configuration parameters is 0x24. A typical parameter report is shown in **Error! Reference source not found.**

	Table 38:	0x24: Format of GPS	Configuration	Message Parameter
--	-----------	---------------------	---------------	--------------------------

Byte	Name	Туре	Value	Meaning	
	Code	U8	0x24		
	Subcode	U8	8 0x01-0x08 Parameter Subcode		
0	Parameter Value	Refer to Error! Reference source not found.			

DR + GPS

STARTER KIT REFERENCE MANUAL

Table 36 shows the subcode, range, and default value for each of the GPS configuration parameters. DGPS does not apply to all products. Products to which DGPS does not apply have a default DGPS Mode of 1 (Ignore), and the value cannot be changed.

Subcode	Name	Туре	Units	Range	Default	Meaning
0x01	Operating	U8		0	0	Auto 2D/3D
	Dimension			3		Alt-Hold (2D)
				4		Full Pos (3D)
0x02	DGPS Mode	U8		0	1	Require
				1		Ignore
				2		If Available
0x03	Dynamics Code	U8		17	17	Automobile
0x04	Elevation Mask	FLT	(degrees)	[0°, 90°]	5.0	Tracking limit
0x05	SNR Mask	U16	0.2 dBHz	[100, 240] =	145 =	Fix limit
				[20, 48] dBHz	29 dBHz	
0x06	DOP Mask	FLT		[0.0, 99.0]	20.0	Fix limit
0x07	DOP Switch	FLT		[0.0, 99.0]	20.0	Fix limit
0x08	DGPS Age Limit	U16	1 s	0-240	30	Fix limit

 Table 39:
 List of GPS Configuration Message Parameters

0x25: Kalman Filter Configuration

The Parser Code for the Kalman Filter configuration parameters is 0x25. A typical parameter report is shown in **Error! Reference source not found.**

Table 40:	0x25: Format of Kalman Filter Configuration Parameter
-----------	---

Byte	Name	Туре	Value	Meaning
	Code	U8 0x25		
	Subcode	U8	U8 0x01-16 Parameter Subcode	
0	Parameter Value	Refer to Error! Reference source not found.		

Error! Reference source not found. shows the subcode, range, and default value for each of the Kalman Filter configuration parameters.
DR + GPS STARTER KIT REFERENCE MANUAL

Subcode	Name	Туре	LSB	Range	Default	Meaning
0x01	MinGainIndex	U32	1 ms	< 40000	0	minimum settling time of code- carrier filter
0x02	MinSVs	U32		[3, # of channels]	3	Minimum number of SVs for fix
0x03	NoEditAMU5	U32	0.2 AMU	< 16.0 AMU	14.0 AMU	maximum AMU value at which editing is allowed
0x04	MinAMU5	U32	0.2 AMU	< 16.0 AMU	2.0 AMU	Minimum acceptable AMU value
0x05	MaxEdits	U32		[0, 2 ³² -1]	60	Maximum number of fix rejections before KF reset
0x06	MaxGPSPropTime	U32				Not currently used
0x07	MaxAcc	FLT	(m/s ²)	[0, 20]	6.0	vehicle acceleration limit
0x08	MaxVel	FLT	(m/s)	[0, 126]	150.0	vehicle velocity limit
0x09	SigmaHorizAcc	FLT	(m/s ²)	[0, 20]	0.5	typical horizontal acceleration
0x0A	SigmaFreqAcc	FLT	(m/s ²)	[0, 20]	1.0	typical frequency drift
0x0B	CarrSigSq	FLT	(m/s)	[0, 2]	$(0.07)^2$	Doppler error variance
0x0C	MaxAcceptSigmaSq	FLT	(σ ²)	[0, 10 ¹²]	$(4.0)^2$	edit limit for residuals
0x0D	InitPosVar	FLT	(m ²)	[0, 10 ¹²]	(1000.) ²	initial position error variance
0x0E	InitBiasVar	FLT	(m ²)	[0, 10 ¹²]	(1000.) ²	initial clock bias error variance
0x0F	ClockModelError	FLT	(m ²)	[0, 10 ⁶]	(1.0) ²	extra clock process noise (to de couple clock model)
0x10	RejectSSR	FLT	(σ ²)	[0, 10 ¹²]	$(6.0)^2$	rejection limit for normalized a posteriori residual
0x11	SigSlope1Sq	FLT	(slope ²)	[0, 4]	(0.1) ²	typical velocity slope
0x12	SigSlope2Sq	FLT	(slope ²)	[0, 4]	(0.05) ²	typical change-in-position slope
0x13	MaxSlope3Sq	FLT	(slope ²)	[0, 4]	$(0.3)^2$	rejection limit for velocity slope
0x14	MinVVelSq	FLT	(m/s)	[0, 16]	1.0	minimum vertical velocity for slope rejection
0x15	Alt2Dvar	FLT	(m ²)	[0, 10 ^{8]}	(1.0) ²	Variance of 2D altitude-hold altitude measurement
0x16	Tacho Delay Time	S32	1 ms		0	Not currently used
0x17	Bit Flag Controls	U32		[0, 2 ³² -1]	0	1 = suppress map match commands

Table 41: List of Kalman Filter Configuration parameters

0x26-01: Available Report Codes

This message reports the report codes and subcodes that are available in the firmware. There is no set command for this report.

 Table 42:
 0x26-01: Available Report Code Report Message

Byte		Name	Туре	Value	Meaning
		Code	U8	0x26	
		Subcode	U8	0x01	
0	0	Parser Code 0x00	U1		1 = Available
0	1	Parser Code 0x01	U1		1 = Available
0	2	Parser Code 0x02	U1		1 = Available
Ν	М	Parser Code (8 N + M)	U1		1 = Available
15	6	Parser Code 0x7E	U1		1 = Available
15	7	Parser Code 0x7F	U1		1 = Available

0x26-02: Available Report Subcodes

This message reports the report subcodes in each report code that are available in the firmware. There is no set command for this report.

 Table 43:
 0x26-02: Available Report Subcode Report Message

Byte		Name	Туре	Value	Meaning
		Code	U8	0x26	
		Subcode	U8	0x02	
		Index	U8	0x00-7F	Parser Code
0	0	Parser Subcode 0x00	U1		1 = Available
0	1	Parser Subcode 0x01	U1		1 = Available
Ν	М	Parser Subcode	U1		1 = Available
		(8 N + M)			
15	6	Parser Subcode 0x7E	U1		1 = Available
15	7	Parser Subcode 0x7F	U1		1 = Available

0x26-03, 0x26-04, 0x26-05: DPP Speed Model

The DPP model has multiple DPP values, each applicable over a limited speed range. The 0x26-03 message reports the maximum speed level of application for each DPP value. The 0x26-04 and 0x26-05 messages report the minimum and maximum speed levels used for calibrating each DPP. These values are compiled in the firmware, so there is no set procedure for these reports.

Table 44: 0x26-03: DPP Model Message

Byte	Name	Туре	Units	Value	Meaning
	Code	U8		0x26	
	Subcode	U8		0x03	
0	N = # of speed levels	U8			
1	Max Applicable Speed of DPP[0]	U8	0.5 m/s	[0.5, 127.0] m/s =127.5 m/s	Top speed Unlimited
Ν	Max Applicable Speed of DPP[N-1]	U8	0.5 m/s	[0.5, 127.0] m/s =127.5 m/s	Top of range Unlimited

 Table 45:
 0x26-04: DPP Minimum Calibration Speed Message

Byte	Name	Туре	Units	Value	Meaning
	Code	U8		0x26	
	Subcode	U8		0x04	
0	N = # of speed levels	U8			
1	Min Calibration Speed of DPP[0]	U8	0.5 m/s	[0.5, 127.0] m/s =127.5 m/s	Top speed Unlimited
N	Min Calibration Speed of DPP[N-1]	U8	0.5 m/s	[0.5, 127.0] m/s =127.5 m/s	Top of range Unlimited

Table 46: 0x26-05: DPP Maximum Calibration Speed Message

Byte	Name	Туре	Units	Value	Meaning
	Code	U8		0x26	
	Subcode	U8		0x05	
0	N = # of speed levels	U8			
1	Max Calibration Speed of DPP[0]	U8	0.5 m/s	[0.5, 127.0] m/s =127.5 m/s	Top speed Unlimited
N	Max Calibration Speed of DPP[N-1]	U8	0.5 m/s	[0.5, 127.0] m/s =127.5 m/s	Top of range Unlimited

0x27: DR Filter Configuration

The Parser Code for the DR Filter configuration parameters is 0x27. A typical parameter report is shown in **Error! Reference source not found.** and **Error! Reference source not found.** show the subcode, range, and default value for each of the DR Filter configuration parameters.

Table 47: 0x27: Format of DR Filter Configuration Parameter

Byte	Name	Туре	Value	Meaning
	Code	U8	0x27	
	Subcode	U8	0x00-19 0x40-6F	Integer Parameter Subcode
				Float Parameter Subcode
0-3	Parameter Value			

DR + GPS STARTER KIT REFERENCE MANUAL

Subcode	Name	Туре	Units	Range	Default	Meaning
0x01	GPSVelEditHoldoff	S32	1 count	[0, 1000]	20	
0x02	MinSpdDirSwThresh	S32	1 m/s	[0, 126]	8	
0x03	DirSwWarning	S32	1 m/s	[0, 126]	14	
0x04	MaxDirSwSpd	S32	1 m/s	[0, 126]	20	
0x05	ZROGPSStatThldSpdHi	S32	1 cm/s	[0, 12600]	10	
0x06	ZROGPSStatThldSpdLo	S32	1 cm/s	[0, 12600]	10	
0x07	ZROMaxDistThId	S32	1 cm	[0, 1000]	5	
0x08	MinGPSInitNFix	S32	1 count	[0, 1000]	10	
0x09	GPSJumpHoldOff	S32	1 count	[0, 1000]	50	
0x0A	MaxHBMSecs	S32	1 ms	[0, 9000]	3000	
0x0B	MinHBMSecs	S32	1 ms	[0, 9000]	1000	
0x0C	ZROMaxEdit	S32	1 ADC sample	[0, 10 ⁵]	1000	Gyro sampled at 100 Hz
0x0D	ZRRHoldOffSecs	S32	1 s	[0, 2 ³¹ -1]	100	
0x0E	ZROVarDecorTime	S32	1 s	[0, 100000]	1200	
0x0F	TachoDisconnectThrshld	S32	1 count	[0, 1000]	15	
0x10	GPSVDelayMSecs	S32	1 ms	[-2000, 2000]	300	
0x11	TachoDelayMSecs	S32	1 ms	[-2000, 2000]	0	
0x12	WinMaxTime	S32	1 ms	[0, 1000000]	90000	
0x13	WinMinPts	S32	1 count	[0, 1000]	10	
0x14	WinMin3D	S32	1 count	[0, 1000]	8	
0x15	WinENMinDist	S32	1 m	[0, 1000]	30	
0x16	MinPtsGrossErr	S32	1 count	[0, 1000]	3	
0x17	GSFCalcMinHdgChng	S32	2 ⁻¹⁵ sc	[0, 65536]	14563	80 degrees
0x18	GSFCalcMaxMsecs	S32	1 ms	[0, 100000]	30000	
0x19	MinTimeBetweenWinPos	S32	1 s	[0, 10000]	10	

Table 48: List of DR Filter Configuration Integer Parameters

DR + GPS Starter Kit Reference Manual

Subcode	Name		Туре	Units		Range		Default		Meaning
0x40	NoEditAddVelA	ссу	FLT	(m/s) ²		[0, 100]		1.0		
0x41	ZROMaxDelta	Gyro	FLT	(GCnts)		[0, 49152]		4.9152		1.5 mV
0x42	BadTachoMinS	pd	FLT	(m/s)		[0, 126]		8.0		
0x43	ZROCalcGyroN	loiseVar	FLT	(GCnts) ²		[0, 107374	4.2]	10.73742		$(1.0 \text{ mV})^2$
0x44	ZROCalcEditSi	gSq	FLT	(unitless)	2	[0, 10000]		100.0		
0x45	MaxGPSInitPos	sSig2	FLT	(m) ²		[0, 10 ¹²]		100.0		
0x46	MinGPSInitDist		FLT	(m)		[0, 10 ⁶]		60		
0x47	ZROVarValidTl	nreshold	FLT	(GCnts) ²		[0, 67108	900]	671089.		(250 mV) ²
0x48	SnapThreshold	2	FLT	(m) ²		[0, 10 ¹²]		100		
0x49	MaxHBSpd		FLT	(m/s)		[0, 126]		0.05		
0x4A	MinWindowVel	Cfm	FLT	(m/s)		[0, 126]		12.0		
0x4B	HdgCalcMinSp	d	FLT	(m/s)		[0, 126]		3.0		
0x4C	HdgCalcMinSp	dNoTacho	FLT	(m/s)		[0, 126]		10.0		
0x4D	HdgCalcMinHd	gSigSq	FLT	(rad) ²		[0, 12]		0.09		
0x4E	HdgMinSigSq		FLT	(rad) ²		[0, 12]		0.25		
0x4F	PosMinSigSq		FLT	(m) ²	n) ² [0, 10 ¹²]			10000.		
0x50	DPPCalMinSig	Sq	FLT	(m/pulse)) ²	[0, 1]		0.01		
0x51	SpdCalcMinSp	dSigSq	FLT	(m/s) ²		[0, 900]		9.0		
0x52	SpdCalcMinSp	eed	FLT	(m/s)		[0, 126]		8.0		
0x53	GPSVelEditSig	Sq	FLT	(unitless)	2	[0, 1000]		16.0		
0x54	GPSVelEditMa	xHdSq	FLT	(rad) ²		[0, 12]		0.04		
0x55	MinGPSSpdMc	otNoTacho	FLT	(m/s)		[0, 126]		3.0		
0x56	GvarColdHdg		FLT	(rad) ²		[10, 100]		100.0		
0x57	GvarColdZRO		FLT	(GCnts) ²		[67.1089, 67108900]	671089.		(250 Mv)
0x58	GvarColdZRR		FLT	(GCnts/s)2	[0, 10 ⁶]		0.0021263		
0x59	GvarWarmHdg		FLT	(rad) ²		[0, 12]		0.01		
0x5A	GvarWarmZRC)	FLT	(GCnts) ²		[67.1089, 67108900]	9663.68		(30 mV) ²
0x5B	GvarWarmZRF	ł	FLT	(GCnts/s)2	[0, 10 ⁶]		0.0021263		
0x5C	GPNVarHdg		FLT	(rad) ² /s		[0, 1]		10 ⁻⁸		
0x5D	GPNVarZRO		FLT	(GCnts) ²	/s	[0, 1]		0.00026843	35	(5 μV) ² /s
0x5E	GPNVarZRR		FLT	(GCnts) ²	/s ³	[0, 1]		.000004252	261	
0x5F	GyroSnsSig2	FLT	(unitless)	2	[0, 1]	0.0004	ļ	As a nomi	proportion of nal value
0x60	CarrSigMult Factor	FLT	(unitless)	2	[0, 1	0000]	9.0			
0x61	TinitVar	FLT	(m/pulse)	2	[.00	001, 4]	1.0		1	

Table 49: List of DR Filter Configuration Float Parameters

DR + GPS Starter Kit Reference Manual

0x62	TPNVar	FLT	(m/pulse) ² /s	[0, 1]	10 ⁻⁸	
0x63	TmaxVar	FLT	(m/pulse) ²	[.00001, 4]	0.0004	
0x64	ZRRHoldOff ZROAccy	FLT	(GCnts) ²	[.00107374, 107374.18]	10.737418	(1.0 mV) ²
0x65	WinSnapThd	FLT	(unitless) ²	[0, 10 ⁶]	36.0	
0x66	WinClusterVar	FLT	(unitless) ²	[0, 10 ⁶]	9.0	
0x67	MaxInitGross ErrSq	FLT	(m) ²	[0, 10 ¹²]	4.0x10 ⁶	
0x68	MaxCorrection SigSq	FLT	(unitless) ²	[0, 10 ⁶]	4.0	
0x69	GSFCalcMin HdgRate	FLT	(rad/s)	[0, 3]	0.0174533	
0x6A	GSFCalcMax HdgRate	FLT	(rad/s)	[0, 3]	1.04719755	
0x6B	GSFCalcMax ZROVar	FLT	(unitless) ²	[0, 10 ⁶]	4.0	
0x6C	MaxGSFVar	FLT	(GCnts/(rad/s)) ²	[0, 1]	4.53915 x 10 ⁻¹⁰	(2.5 mV/(°/s)) ²
0x6D	MinGSFVar	FLT	(GCnts/(rad/s)) ²	[0, 1]	4.53915 x 10 ⁻¹⁶	(0.0025 mV/(°/s)) 2
0x6E	MaxDelGSF	FLT	(GCnts/(rad/s))	[0, 1]	2.13053 x 10 ⁻⁸	0.025 mV/(°/s)
0x6F	MinNormVel ResidSq	FLT	(unitless) ²	[0, 100]	0.01	

(*) A GCnt is a 14-bit ADC count. Full scale (5 V) is 16384 GCnt, so 1 mV = 3.2768 GCnt.

0x2A, 0x2B, 0x2C; 0x2D: Output Interval Control

These reports contain the data structures describing the output interval for automatic messages. Automatic outputs are controlled by thresholds and triggers on three criteria: time, distance traveled, or heading change. A combination of criteria can be set for each message, and different report message codes can have different output controls. The number of message codes that can be chosen for auto-output is limited to 16.

The message codes chosen for auto-report are stored in a table that contains the values of time interval, distance traveled, and heading change since the last report. These values are kept separately for each message code. The table is scanned every time the gyro service routine is called (at 10 Hz or 5 Hz rate). For each message code, the current values of time interval, distance traveled, and heading change are differenced with the corresponding three table values. The three differences are compared against the three corresponding thresholds for that message code to determine whether an output is allowed. If so, the differences are then compared to against the three corresponding triggers (if any) to see if an output is required. If the message is output, the table values are updated to the current values.

The logic for report output is as follows:

(Time interval > T_{thresh}) AND

(Distance traveled > D_{thresh}) AND

(Heading change > H_{thresh}) AND

(EVENT OR (Time interval > $T_{trigger}$) OR (distance traveled > $D_{trigger}$) OR (Heading change > $H_{trigger}$))

Defaults are zero for all reports, except as specified in **Error! Reference source not found.**

DR + GPS STARTER KIT REFERENCE MANUAL

Byt	е	Name	Туре	Value	Meaning
		Code	U8	0x2A	Event Control
		Subcode	U8	0x00-7F	Parser Code
		Index	U8	0x00-7F	Parser Subcode
				0xFF	All subcodes
0	1	Event 1	U1		Almanac Page Collected
0	2	Event 2	U1		Ephemeris Page Collected
0	3	Event 3	U1		Ionosphere-UTC Page Collected
0	6	Event 6	U1		Almanac Health page Collected
0	7	Event 7	U1		Tacho/Gyro Collected (10 Hz, DR GPS)
1	1	Event 9	U1		GPS Measurement Collected (1 Hz)
1	2	Event 10	U1		Least Squares (LS) Fix generated (1 Hz)
1	3	Event 11	U1		LS Fix not generated
1	4	Event 12	U1		Tracking SV List Updated
2	1	Event 17	U1		Self-test complete (DR GPS)
2	3	Event 19	U1		Receiver status changed
2	4	Event 20	U1		Power-on acknowledge
2	5	Event 21	U1		Start-up complete
2	6	Event 22	U1		Ready to shutdown
3	0	Event 24	U1		DPP Calibrated
3	1	Event 25	U1		Direction Switch Calibrated
3	2	Event 26	U1		Gyro Calibrated
3	4	Event 28	U1		Time status change (time set)
3	5	Event 29	U1		Hard Error

Table 50: Automatic Output Event Trigger Report Message

 Table 51:
 Automatic Output Time Interval Trigger Report Message

Byte	Name	Туре	Value	Units	Meaning
	Code	U8	0x2B		Time Interval Control
	Subcode	U8	0x00-7F		Parser Code
	Index	U8	0x00-7F		Parser Subcode
			0xFF		All subcodes
0-3	Threshold	U32		1 ms	Minimum required
4-7	Trigger	U32	0	1 ms	Not used
			> 0		Trigger value

Byte	Name	Туре	Value	Units	Meaning
	Code	U8	0x2C		Distance Traveled Control
	Subcode	U8	0x00-7F		Parser Code
	Index	U8	0x00-7F		Parser Subcode
			0xFF		All subcodes
0-3	Threshold	U32		1 cm	Minimum required
4-7	Trigger	U32	0	1 cm	Not used
			> 0		Trigger value

Table 52: Automatic Output Distance Traveled Trigger Report

Table 53: Automatic Output Heading Change Trigger Report

Byte	Name	Туре	Range/Value	Units	Meaning
	Code	U8	0x2D		Heading Change Control
	Subcode	U8	0x00-7F		Parser Code
	Index	U8	0x00-7F		Parser Subcode
			0xFF		All subcodes
0-3	Threshold	U32		1 cdeg	Minimum required
4-7	Trigger	U32	0	1 cdeg	Not used
			> 0		Trigger value

Code/ Subcode	Event	Time Interval		Distance Tr	aveled	Heading Change	
	Trigger	Threshold	Trigger	Threshold	Trigger	Threshold	Trigger
12-01	21	*	0	0	0	0	0
30-02	-	*	200	0	0	0	0
31-01	10,11	*	0	0	0	0	0
32-01	10,11	*	0	0	0	0	0
33-01	10,11	*	0	0	0	0	0
36-03	26	*	0	0	0	0	0
36-04	26	*	0	0	0	0	0
36-05	25	*	0	0	0	0	0
36-07	24	*	0	0	0	0	0
36-08	26	*	0	0	0	0	0

 Table 54:
 List of Automatic Output Trigger Defaults

NOTE Since output thresholds and triggers are checked at the DR service rate, there is a minimum time interval corresponding to the DR engine rate. The effective minimum time interval threshold is 200 ms for DR engine rate of 5 Hz and 100 ms for DR engine rate of 10 Hz.

0x2E-01: Soft Event Report Mask

The soft event report can be suppressed. The following data structure shows whether it is masked, and can be set or queried. All events are unmasked at power-up.

B	yte	Name	Туре	Value	Meaning
		Code	U8	0x2E	
		Subcode	U8	0x01	
		Index	U8	0-0x7F	Soft Event Identity Code
				0xFF	All
0	0-1	Mask	U2	0	Do not report
				1	Report on change (single)
				3	Report as detected (continuous)

0x2F-02: Data Positioning Collection Test Interval Control

This test is part of the factory testing. At the end of the test, the module outputs diagnostic data in packet 0x3F-02.

There are two modes possible: automatic and manual. Automatic-control mode sets the Time Interval between one and 3600 seconds. The test begins immediately upon receipt of the set command and lasts until the end of the time interval. Manual-control mode uses the set command with the Time Interval Data field set to a large number (e.g., 3600) and then issuing an "Stop Immediately" command when desired. This message cannot be queried. If a test is currently running, this command will return an acknowledgment "contradicts current data".

This test does not interfere with the normal functioning of the module. The test collects statistics for a report at the end of the test.

Byte	Name	Туре	Value	Meaning
	Code	U8	0x2F	
	Subcode	U8	0x02	
0-1	Time Interval	U16	0	Stop Immediately
			[1, 3600]	Perform test for this interval (seconds)

 Table 56:
 0x2F-02: Data Positioning Collection Mode Control

0x2F-04: Gyro Bench Test Interval Control

The module can bench-test gyro performance. This test is similar to the gyro part of the power-up ADC/gyro test. The test starts immediately upon receipt of the set command for 2F-04. When the test is finished, it automatically reports message 3F-04. The unit must be stationary for this test to be meaningful. This message cannot be queried.

There are two modes possible: automatic and manual. Automatic-control mode sets the Time Interval between one and 60 seconds. The test begins immediately upon receipt of the set command and lasts until the end of the time interval. Manual-control mode uses the set command with the Time Interval Data field set to a large number (e.g., 60) and then issuing an "Stop Immediately" command when desired. If a test is currently running, this command will return an acknowledgment "contradicts current data".

Byte	Name	Туре	Value	Meaning
	Code	U8	0x2F	
	Subcode	U8	0x04	
0-1	Time Interval	U16	0	Stop Immediately
			[1, 60]	Perform test for this interval (seconds)

 Table 57:
 0x2F-04: Gyro Bench Test Interval Report Message

0x2F-06: Tacho/Reverse Production Test Interval Control

The test starts immediately upon receipt of the set command for 2F-06. When the test is finished, it automatically reports message 3F-06. This message cannot be queried. If a test is currently running, this command will return an acknowledgment "contradicts current data".

There are two modes possible: automatic and manual. Automatic-control mode sets the Time Interval between one and 60 seconds. The test begins immediately upon receipt of the set command and lasts until the end of the time interval. Manual-control mode uses the set command with the Time Interval Data field set to a large number (e.g., 60) and then issuing an "Stop Immediately" command when desired.

Byte	Name	Туре	Value	Meaning
	Code	U8	0x2F	
	Subcode	U8	0x06	
0-1	Time Interval	U16	0	Stop Immediately
			[1, 60]	Perform test for this interval (seconds)

 Table 58:
 0x2F-06: Tacho/Reverse Production Test Control

0x21-01: DR Engine Rate Control

The DR software engine can be adjusted to run at 5 Hz or 10 Hz sampling rate. The five Hz rate eases CPU load. The choice of rate affects the minimum report interval in report 0x2B. After the engine rate is changed, the system will be reset automatically.

 Table 59:
 0x21-01:DR Engine Rate Control

Byte	Name	Туре	Value	Meaning
	Code	U8	0x21	
	Subcode	U8	0x01	
0	DR Engine Rate	U8	5	Hz
			10	10 Hz

Data Report Packets

Data report packets can be queried or output based on time interval, distance traveled, heading change. Data validity must be checked before the data field are translated or used.

0x30-02: Fast Fix with Raw DR Data Message

This message is prepared for output every fast cycle (5 Hz or 10 Hz) when in HIPPO mode, except for a short period at start-up. The Output Interval Control determines the actual rate of output. This message has higher priority than other messages, so a series of reports that lasts longer than 100 milliseconds may have one or more of these messages interspersed. This should cause no problem, since all series of reports are terminated by an acknowledgment.

Byte		Name	Туре	Units/ LSB	Range / Value	Meaning
		Code	U8	0x30		
		Subcode	U8	0x02		
0	0	Position Status	U1			1 = Valid
0	1	Altitude Status	U1			1 = Valid
0	2	Heading Status	U1			1 = Valid
0	3	Speed Status	U1			1 = Valid
0	4	Direction Switch Status	U1			1 = Valid
0	5	Delta-Distance Status	U1			1 = Valid
0	6	Delta-Heading Status	U1			1 = Valid
0	7	Motion Status	U1			1 = Valid
1	0	Motion Indicator	U1			1 = Motion
1	1	Direction	U1			1 = Backward
1	2	Gyro Calibration Status	U1			1 = Calibrated
1	3	Tacho Calibration Status	U1			1 = Calibrated
1	4-5	Time source	U2		0	System clock
					1	RTC
					2	GPS (< 10 ms)
					3	GPS (< 1 ms)
1	6	Snap to DR+GPS	U1		0	DR-Propagated
					1	Jump
2		GPS Data Age Index	U8	s	0-253	Age
					254	>253 s
					255	GPS N/A

 Table 60:
 0x30-02: Fast Fix with Raw DR Data Message

DR + GPS

STARTER I	KIT REFERENCE	MANUAL
-----------	---------------	--------

Byte		Name	Туре	Units/LSB	Range / Value	Meaning
3-6		GPS Time of Week	U32	1 ms	0-604800000	-
7-10		Latitude	S32	2 ⁻³¹ sc	[-½, ½] SC.	
11-14		Longitude	S32	2 ⁻³¹ sc	[-1, 1) sc.	
15-16		Altitude	S16	1 m	[-400,10000] m	MSL
17-18		Heading	U16	2 ⁻¹⁵ sc	[0, 2) sc.	
19-20		Speed	U16	1 cm/s	[0, 655.34] m/s	
21-22		Delta time	U16	1 ms	[0, 1100] ms	even
23-24		Delta Distance	S16	1 cm	[-327.67, 327.67] m	
25-26		Delta Heading	S16	1 cdeg	[-327.67°, 327.67°]	
27-28		Position accuracy	U16	1 m	[0, 65534] m	
29-30		Altitude Accuracy	U16	1 m	[0, 65534] m	
31-32		Heading Accuracy	U16	2 ⁻¹⁵ sc	[0, 2) sc.	
33-34		Speed Accuracy	U16	1 cm/s	[0, 655.34] m/s	
35-36		Delta distance accy	U16	1 cm	[0, 655.34] m	
37-38		Delta heading accy	U16	1 cdeg	[0°, 360°]	
39	0-6	# of Gyro Samples	U7		0-127	< 110 typ
39	7	Direction Switch Value	U1			1 = High
40-43	•	Gyro Counts	U32		0-450560	Sum ADC values
44-45		Tacho Counts	U16		0-65535	< 3300 typ

The data source of the fast fix can be inferred from the current tacho status, the current gyro status, and the GPS age as follows:

Tacho Status	Gyro Status	GPS Age	Lat / Lon Source	Altitude Source	Speed / Delta Distance Source	Heading / Delta Heading Source
1	1	< 255	GPS + DR	GPS	DR + GPS Cal	DR + GPS Cal
1	0	< 255	GPS + DR	GPS	DR + GPS Cal	GPS
0	1	< 255	GPS	GPS	GPS	DR + GPS Cal
0	0	< 255	GPS	GPS	GPS	GPS
1	1	255	BBRAM + DR	BBRAM	DR	DR
1	0	255	BBRAM	BBRAM	DR	None
0	1	255	BBRAM	BBRAM	None	DR
0	0	255	BBRAM	BBRAM	None	None

0x31-01: GPS Fix Message

Byte		Name	Туре	Units / LSB	Range / Value	Meaning
		Code	U8	0x31		
		Subcode	U8	0x01		
0-3		GPS Time of Week	U32	1 ms	<604800000	
4	0-5	Fix Source	U6		0 1 3 4 8 9 10 11 12 13 14 15 16 17	No position in memory Input position, approximate Input position, accurate Have internal position Old valid GPS fix Converging Converging Output fix criterion failed 2-D fix, no reference altitude KF velocity RAIM failed KF edited too many SVs KF position RAIM failed Position Valid
4	6	Altitude Hold	U1		0 1	Full position (3-D) LS fix Altitude-Hold (2-D) LS fix
4	7	DGPS Status	U1			1 = DGPS-corrected
5	0	Position status	U1			1 = Valid
5	1	Altitude status	U1			1 = Valid
5	2	Heading status	U1			1 = Valid
5	3	Speed status	U1			1 = Valid
5	4-5	Time source	U2		0 1 2 3	System clock RTC GPS (< 10 ms) GPS (< 1 ms)
6-9		Latitude	S32	2 ⁻³¹ sc	[-½, ½] SC	
10-13		Longitude	S32	2 ⁻³¹ sc	[-1, 1) sc	
14-15		Altitude	S16	m	[-400,10000] m	MSL
16-17		Heading	U16	2 ⁻¹⁵ sc	[0, 2) sc	
18-19		Speed	U16	1 cm/s	[0, 655.34] m/s	
20-21		Position accuracy	U16	1 m	[0, 65535] m	
22-23		Altitude accuracy	U16	1 m	[0, 65535] m	
24-25		Heading Accuracy	U16	2 ⁻¹⁵ sc	[0, 2) sc	
26-27		Speed Accuracy	U16	1 cm/s	[0, 655.35] m/s	

Table 62:0x31-01: GPS Fix Message

STARTER KIT REFERENCE MANUAL

Position, heading and speed values are from GPS measurements. Code-carrier filtering has been applied, but not velocity (PV) or DR filtering. These fixes will be quite noisy in urban environments.

0x32-01: UTC Time and Constellation Summary Message

Byte		Name	Туре	Units	Range / Value	Meaning
		Code	U8	0x32		
		Subcode	U8	0x01		
0-1		UTC year	U16		2000+	
2		UTC month	U8		[1, 12]	
3		UTC day	U8		[1, 31]	
4		UTC hour	U8		[0, 23]	
5		UTC minute	U8		[0, 59]	
6		UTC second	U8		[0, 60]	= 60 only for the leap second
7		UTC / GPS offset	U8			GPS = UTC + offset
8-9		PDOP	U16	2 ⁻⁸		
10-11		HDOP	U16	2 ⁻⁸		
12-13		VDOP	U16	2 ⁻⁸	0	2D position
					>0	3D position
14		Max DGPS age	U8	Sec	<255	Seconds
					255	Overage or invalid
15	0-3	GPS Status	U4		0	Doing position fixes
					2	Need time
					3	PDOP too high
					5	One usable SVS
					7	Two usable SV
					8	Three usable SVs
15	1-5	Time source	U2		0	System clock
15	4-5				1	RTC
					2	GPS (< 10 ms)
					3	GPS (< 1 ms)
16	0-1	Search Mode	U2		0	None
					1	Blind
					2	Anywhere
16	7	Almanac Status	U1			1 = Complete
17	0-3	Number of SVs Visible	U4		[0,12]	

 Table 63:
 0x32-01: UTC Time and Constellation Summary Message

0x32-02: Constellation Summary Message

Byte	9	Name	Туре	Units	Range / Value	Meaning
		Code	U8	0x32		
		Subcode	U8	0x02		
0	0-3	GPS Status	U4		0	Doing position fixes
					2	Need time
					3	PDOP too high
					5	No usable SVs
					6	One usable SV
					7	Two usable SVs
					8	Three usable SVs
0	4-5	Time source	U2		0	System clock
					1	RTC
					2	GPS (< 10 ms)
					3	GPS (< 1 ms)
0	7	Almanac Status	U1			1 = Complete
1	0-3	Number of SVs Visible	U4		[0,12]	
1	4-5	Search Mode	U2		0	Not searching
					1	Blind
					2	Anywhere
2-5		GPS Time of Week	U32	1 ms	<604800000	Time of fix
6		Dimension	U8		2	Altitude-hold
					3	Full Position
7-8		PDOP	U16	2 ⁻⁸		
9-10		HDOP	U16	2 ⁻⁸		
11-12	2	VDOP	U16	2 ⁻⁸		
13		Max DGPS age	U8	Sec	0-254 255	Age of oldest DGPS correction Overage or invalid

 Table 64:
 0x32-02: Constellation Summary

0x32-03: UTC Time Message

By	te	Name	Туре	Units	Range / Value	Meaning
		Code	U8	0x32		
		Subcode	U8	0x03		
0	4-5	Time source	U2		0	System clock
					1	RTC
					2	GPS (< 10 ms)
					3	GPS (< 1 ms)
1-4		GPS Time of Week	U32	1 ms	<604800000	
5-6		GPS Week Number	U16		>1024	
7		UTC / GPS offset	U8		0	Not available
					>0	GPS = UTC + offset
8-9		UTC year	U16		2000+	
10		UTC month	U8		[1, 12]	
11		UTC day	U8		[1, 31]	
12		UTC hour	U8		[0, 23]	
13		UTC minute	U8		[0, 59]	
14		UTC second	U8		[0, 60]	

Table 65:0x32-03: UTC Time Message

0x33-01: GPS Channel Measurement Short Status

This report message type is indexed by channel number (0-7 for eight-channel receivers and 0-11 for twelve-channel receivers).

If the query is "query-all" (0xFF), only assigned channels will be reported. If channel status is queried for an unassigned channel, the data fields (including SV PRN) are zero-filled.

Table 66:	0x33-01: GPS	Channel Measurement	Short Status

Byt	e	Name	Туре	Units	Range / Value	Meaning
		Code	U8	0x33		
		Subcode	U8	0x01		
		Index	U4		0-11	Channel
0		SV PRN	U5		0 1 – 32	Channel unassigned
	T					SV PRN
1	0	SV Visible	U1			1 = Elevation > Mask
1	1	reserved	U1			
1	2	SV Has Been Tracked	U1			1 = Already Tracked
1	3	reserved	U1			
1	4	SV Currently Tracking	U1			1 = Tracking
1	5	SV Meets SNR Mask	U1			1 = SNR Meets Mask
2		SNR	U8	0.2 dB-Hz	[0,48] dBHz	
3		Azimuth	U8	2°	[0°, 358°]	
4		Elevation	S8	1°	[-90°,90°]	
5	0-1	Almanac Status	U2		0	None
					1	Old
					3	Current
5	2-3	Ephemeris Status	U2		0	None
					1	Old
					2	Decoded
					3	Verified

0x36: DR Calibration Messages

The DR calibration messages contain the current settings for the gyro and tacho parameters. They are typically transmitted when the parameters are updated. ZRO, ZRO rate, and DPP are updated upon generation of a valid GPS velocity. ZRO and ZRO rate are also updated during periods of zero speed.

When the host uses the "set" procedure with these messages, the "source" field must be set to "Clear", "Host Input", or "Host Override". The "set" procedure is not supported for ZRO rate (0x36-08).

For "Clear", the rest of the fields are ignored.

For "Host Input", if the device has already calibrated the parameters, the set procedure is aborted. The acknowledgment message has status set to "Contradicts current data".

For "Host Override", the value and accuracy must be valid quantities.

The "Cal Status" and "newness" fields are always ignored in the set procedure.

Byte		Name	Туре	Units / LSB	Range / Value	Meaning
		Code	U8		0x36	
		Subcode	U8		0x03	
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	GPS Fix
0	3	Newness	U1		0	From BBRAM
					1	New (since start-up)
0	4	Validity	U1		1	1 = Valid
1-4		Zero Rate Output (ZRO)	FLT	(mV)	(-2500.0, 2500.0)	
5-8		ZRO accuracy	FLT	(mV)	> 0	1 σ accuracy

 Table 67:
 0x36-03: ZRO Calibration Message

DR + GPS STARTER KIT REFERENCE MANUAL

Byte	9	Name	Туре	Units / LSB	Range / Value	Meaning
		Code	U8		0x36	
		Subcode	U8		0x04	
0	0-	Source	U3		0	Invalid / Clear
	2				1	Host Input
					2	Host Override
					3	GPS Fix
0	3	Newness	U1		0	From BBRAM
					1	New (since start-up)
0	4	Validity	U1		1	1 = Valid
1-4		Sensitivity (GyroSns)	FLT	(mV /(°/s))	[10.0,100.0]	
5-8		Sensitivity Accuracy	FLT	(mV /(°/s))	> 0	1 σ accuracy

Table 68: 0x36-04: Gyro Linearity Calibration Message

Table 69:

69: 0x36-05: Direction Switch Calibration Message

Byte		Name	Туре	Units / LSB	Range / Value	Meaning
		Code	U8		0x36	
		Subcode	U8		0x05	
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	GPS Fix
0	3	Newness	U1		0	From BBRAM
					1	New (since start-up)
0	4	Validity	U1		1	1 = Valid
0	7	Direction Switch	U1		0	0 = FWD, 1 = REV
		Sense			1	0 = REV, 1 = FWD
1		Confidence Speed	U8	1 m/s	< DirSwWarning	Last calibration
					(see 0x27; default=14 m/s) < 256 if Source is Host Override	speed

Byte	9	Name	Туре	Units / LSB	Range / Value	Meaning
		Code	U8		0x36	
		Subcode	U8		0x07	
		Index	U8		[0, N _{DPP} -1]	Speed Level Index
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	GPS Fix
0	3	Newness	U1		0	From BBRAM
					1	New (since start-up)
0	4	Validity	U1		1	1 = Valid
1-4		DPP	FLT	(m / pulse)	[.005, 5.0]	< 5 m/pulse typ
5-8		DPP accuracy	FLT	(m / pulse)	[.001, 1.0]	1 σ accuracy

 Table 70:
 0x36-07: DPP Calibration Message

Table 71: 0x36-08: ZRO Rate Calibration Message

Byte		Name	Туре	Units / LSB	Range / Value	Meaning
		Code	U8		0x36	
		Subcode	U8		0x08	
0	0-2	Source	U3		0	Invalid
					3	GPS Fix
0	3	Newness	U1		0	From BBRAM
					1	New (since start-up)
0	4	Validity	U1		1	1 = Valid
1-4		ZRO Rate of Change	FLT	(mV / sec)		
5-8		ZRO Rate accuracy	FLT	(mV / sec)		1 σ accuracy

0x3F-01: ADC and Gyro Self-test Data

The module performs a self-test on the ADC and gyro at start-up. (The module can also perform the gyro test after start-up.) If the tests are completely successful, the gyro/ADC self-test bit in the start-up message (0x12-01) is zero. If the bit is set to one, the host should examine the following message for diagnosis of the errors. The ADC at fixed voltage is from the test at start-up; the "at rest" data fields are from the most recent test. This information is not battery-backed, and is available by query only.

Byte	Name	Туре	Units / LSB	Range / Value	Meaning
	Code	U8	0x3F		
	Subcode	U8	0x01		
0	ADC validity	U8		0	No error
				1	ADC not functioning
1-4	ADC at fixed voltage	U32			
5-6	Samples at fixed voltage	U16			
7-10	ADC / gyro at rest	U32			
11-12	Samples at rest	U16			

 Table 72:
 0x3F-01: ADC and Gyro Self-Test Report Message

0x3F-03: Data Positioning Collection Test Data (ROM 15 and after)

This replaces report 0x3F-02 starting with ROM 15.

The Data Positioning Collection Mode Test starts immediately upon receipt of the set command 0x2F-02. When the test is finished, it automatically reports the data in this message. This information cannot be set or queried.

 Table 73:
 0x3F-03:Data Positioning Collection Test Data

Byte	!	Name	Туре	Units / LSB	Range / Value	Meaning
		Code	U8	0x3F		
		Subcode	U8	0x03		
0	0	Heading Valid before motion	U1			1 = valid
0	2	ZRO valid before motion	U1			1 = valid
0	3	DPP valid before motion	U1			1 = valid
0	4	Final Heading Valid	U1			1 = valid
1-4		Pulses counted	U32			
5-6		Maximum Speed	U16	1 cm/s		
7-10		Total Distance	U32	1 cm		
11		DirSw transitions F→R	U8			
12		DirSw transitions R→F	U8			
13-14		Heading at ZRO cal	U16	2 ⁻¹⁵ sc	[0, 2) sc	
15-16		DeltaHeading	U16	2 ⁻¹⁵ sc	[0, 2) sc	
17-18		Final Heading	U16	2 ⁻¹⁵ sc	[0, 2) sc	
19-20		Test Duration	U16	1 s	[1,3600]	
21-22		Initial Heading after ZRO calibration	U16	2 ⁻¹⁵ sc	[0, 2) sc	
23	0	2-D GPS fix	U1			1 = 2-D fix failed
23	1	3-D GPS fix	U1			1 = 3-D fix failed
23	2	GPS didn't calibrate DR	U1			1 = no GPS / DR cal
23	3	Almanac incomplete	U1			1 = incomplete
23	4	GPS error status	U1			1 = GPS error
24		Max SVs tracked	U8			
25		Max SNR	U8	0.2 dB-Hz		

0x3F-04: Gyro Bench Test Data

The module can bench-test gyro performance. This test is similar to the gyro part of the power-up ADC/gyro test.

The Gyro Bench Test starts immediately upon receipt of the set command 0x2F-04. When the test is finished, it automatically reports the data in this message. This information cannot be set or queried.

Table 74:0x3F-04: Gyro Bench Test Report Message

Byte	Name	Туре	Units / LSB	Range / Value	Meaning
	Code	U8	0x3F		
	Subcode	U8	0x04		
0-3	ADC / gyro at rest	U32		ADC counts	
4-5	Samples at rest	U16		1-6200 samples	
6-7	Test Duration	U16	1 s	[1,60]	

0x3F-06: Tacho/Reverse Production Test Data

The Tacho/Reverse Production Test starts immediately upon receipt of the set command 0x2F-06. When the test is finished, it automatically reports the data in this message. This information cannot be set or queried.

Table 75:0x3F-06: Tacho/Reverse Production Test Report

Byte	Name	Туре	Units / LSB	Range / Value	Meaning
	Code	U8	0x3F		
	Subcode	U8	0x06		
0	Tacho counts	U32		Tacho Counts	
4-5	Samples	U16		4-600 samples	
6-7	Changes in Direction Switch Value	U16			
8-9	Samples	U16		4-600 samples	
10-11	Test Duration	U16	1 s	[1,60]	

0x30-03: Buffered Cumulative DR message

This message provides the first 20 seconds (or more) of buffered DR information. If the host takes significant time to boot up, this provides the recent path for mapmatching purposes. The host should also request start-up information (0x16-02) and health information (0x16-01) on late boot-up. Once the message is queried, the data is frozen, and subsequent queries return the same data.

Validity Bits:

- The "all data" flag bit is set if the data buffer contains all data since power-up.
- The "rolling start" bit will be set if a tacho pulse (other than a heartbeat) is detected in the first 200 ms.
- Delta-distance is "valid" if the tacho was calibrated at start-up.
- Delta-heading is "valid" if the gyro was calibrated before vehicle started moving.
- Time source and position, and heading validity bits are taken from the most recent 0x30-02 message. These can be used with the current timetag, position, and heading to formulate a HIPPO mapmatch message.

An array of up to 20 delta-distances and delta-headings are in the message. These values will have been corrected with the estimate of ZRO and DPP current at the time. Each will be over an interval lasting about one second, except for the first and last intervals. The intervals are reported in reverse order, from newest (most-recent) first, to oldest (first recorded). If the module has collected less than twenty intervals of data, the unrecorded array elements will be set to zero. These zero-distance elements will have no effect on map-matching algorithms.

The oldest (first-recorded) interval lasts from power-up until the first integer second at which motion is detected.

The most recent interval for delta-distance and delta-heading gives the data between the most recent integer second and the request, so it may not be a complete second. If no motion has been recorded since power-up, this is the only interval reported and it may be much longer than one second.

Distance accuracy is relative to the total distance traveled (the sum of all the intervals). The accuracy of each one-second segment should be scaled proportionately.

Delta Heading accuracy is over each one-second interval, and is roughly the same for each of the intervals except the most recent, which may be more accurate.

DR + GPS STARTER KIT REFERENCE MANUAL

By	te	Name	Туре	Units / LSB	Range / Value	Meaning
		Code	U8		0x30	
		Subcode	U8		0x03	
0	0	Current Position Valid	U1			1 = Valid
0	1	Current Heading Valid	U1			1 = Valid
0	2	Delta Distance Valid	U1			1 = Valid
0	3	Delta Heading Valid	U1			1 = Valid
0	4	All data	U1			1 = contains all data since start
0	5	Rolling start	U1			1 = motion detected at start-up
0	6-7	Time Source	U2			Time Source for Map Match
1-2		Time Tag	U16	1 ms	[0, 65535] ms	Time Tag for Map Match
3-6		Current Latitude	S32	2 ⁻³¹ sc	[-½, ½] SC.	
7-10)	Current Longitude	S32	2 ⁻³¹ sc	[-1, 1) sc.	
11-1	12	Current Heading	U16	2 ⁻¹⁵ sc	[0, 2) sc	
13-1	14	Delta Distance [0]	S16	1 cm	[-327.67, 327.67] m	(Now – 1 s) to (Now)
15-1	16	Delta Heading [0]	S16	1 cdeg	[-327.67°, 327.67°]	(Now – 1 s) to (Now)
17-'	18	Delta Distance [1]	S16	1 cm	[-327.67, 327.67] m	(Now – 2 s) to (Now – 1 s)
19-2	20	Delta Heading [1]	S16	1 cdeg	[-327.67°, 327.67°]	(Now – 2 s) to (Now – 1 s)
89-9	90	Delta Distance [19]	S16	1 cm	[-327.67, 327.67] m	(Now – 20 s) to (Now – 19 s)
91-9	92	Delta Heading [19]	S16	1 cdeg	[-327.67°, 327.67°]	(Now – 20 s) to (Now – 19 s)
93-9	94	Current Heading Acc'y	U16	2 ⁻¹⁵ sc	[0, 2) sc	
95-9	96	Current Position Acc'y	U16	1 m	[0, 65534] m	
97-9	98	Distance accy	U16	1 cm	[0, 655.36] m	
99-	100	Delta heading accy	U16	1 cdeg	[0°, 360°]	

0x30-03: Buffered Cumulative DR Message Table 76:

Initialization Information

The following reports contain the information that the module is currently storing in BBRAM for initialization in the next session. If any information is updated in real time through data decode or fixes the module reports the updated information.

When these reports are used with the "set" command, the host sends the message with the "Source" byte set to "Host Input". If the information is already in use in the system and validated by fixes or decode, the module may reject the host input. This will be indicated in the acknowledgment message. Validated data can be over-written using the "Host override" option.

If BBRAM is lost, byte 3 of the start-up message 12-01 will indicate the module is doing a cold-start. The host can upload the initialization information to the module using the set procedure to speed GPS satellite acquisition. This information includes:

- 1. Almanac messages (28-12, 28-13, 28-14);
- 2. Time message (29-01);
- 3. Frequency message (29-04); and
- 4. Latitude / longitude message (29-02).

Of the above list, the frequency message is optional but the others are required for "warm-start" performance. The order of data entry is important. The latitude / longitude message 29-02 must be provided after the time, almanac, and (optionally) frequency messages, because this message triggers an immediate satellite re-selection using the new data. The other initialization messages (altitude, DR calibration, ephemeris) will also speed the first fix, and can be sent either before or after the latitude / longitude message.

Many of the data structures in this section have "source" and "newness" fields. A set command can use values 0 (clear), 1 (host input), or 2 (host override) for the source field. If the source is currently 2 (host override) or 3 (derived from GPS) and a new set command has source value 1 (host input), the acknowledgment message returns error "value contradict" for set command. The newness field cannot be set; if newness is 0, a reset has occurred since the value was last updated.

0x28-12: Almanac Initialization

The elements of the almanac message match subframes 4 and 5 as downlinked by the satellite. TLM words, HOW words and parity bits are omitted. The data in this message may change after initialization through data decode. A 10-bit Week Number of Applicability is added as a time tag.

If the information is unknown, all data fields are zero. To erase almanac health information in the DR GPS module, set this data with source byte equal to zero (Invalid / Clear).

Byte	;	Name	Туре	Units/LSB	Range / Value	Meaning
		Code	U8		0x28	
		Subcode	U8		0x12	Almanac
		Index	U8		1 – 32	SV PRN
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	Data Decode
0	3	Newness	U1		0	From BBRAM
					1	New
0	6-7	GPS Week Extension	U2			2 MSBs of WNoa
1		WN _{oa}	U8			IDC-200C
2-25		Compressed Almanac	24xU 8			

 Table 77:
 0x28-12: Almanac Fixed Point Report Message

0x28-13: Almanac Health Initialization

The elements of the almanac health message match subframe 4 and 5, page 25 as downlinked by the satellite. TLM words, HOW words and parity bits are omitted. The data in this message may change after initialization through data decode. An 8-bit Week Number of Applicability is included in the compressed data, and two extra bits are given in Byte 0 to extend this to a full GPS week number.

If the information is unknown, all data fields are zero. To erase almanac health information in the DR GPS module, set this data with source byte equal to zero (Invalid / Clear).

Byte		Name	Туре	Units/ LSB	Range / Value	Meaning
		Code	U8		0x28	
		Subcode	U8		0x13	Almanac Health Page
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	Data Decode
0	3	Newness	U1		0	From BBRAM
					1	New
0	6-7	GPS Week Extension	U2			2 MSBs of WNoa
1		WN _{oa}	U8			IDC-200C
2-25		Compressed Health & A-S	24xU8			Subframe 4 Page 25
26-49)	Compressed Health	24xU8			Subframe 5 Page 25

Table 78:0x28-13: Compressed Almanac Health Report Message

0x28-14: GPS Ionospheric Model and UTC Parameters Initialization

The elements of the ionosphere / UTC message match subframe 4, page 18 as downlinked by the satellite. TLM words, HOW words and parity bits are omitted. The data in this message may change after initialization through data decode. A 10-bit Week Number of Collection is added as a time tag.

If the information is unknown, all data fields are zero. To erase ionosphere and UTC model information in the DR GPS module, set this data with source byte equal to zero (Invalid / Clear).

Byte	;	Name	Туре	Units/LSB	Range / Value	Meaning
		Code	U8		0x28	
		Subcode	U8		0x14	Iono/UTC Model
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	Data Decode
0	3	Newness	U1		0	From BBRAM
					1	New
0	6-7	GPS Week Extension	U2			2 MSBs of Week
1		Week of collection	U8			8 LSBs of Week
2-25		Compressed Iono / UTC	24xU8			

 Table 79:
 0x28-14: GPS Ionospheric Fixed Point Model Report

0x28-16: Ephemeris Initialization

The elements of the ephemeris message match the three subframes that are downlinked by the satellite. TLM words, HOW words and parity bits are omitted. The data in this message may change after initialization through data decode. A 10-bit Week Number of Applicability is included in the compressed data.

If the information is unknown, all data fields are zero. To erase ephemeris information in the DR GPS module, set this data with source byte equal to zero (Invalid / Clear).

Byte	9	Name	Туре	Units/ LSB	Range / Value	Meaning
		Code	U8		0x28	
		Subcode	U8		0x16	Ephemeris
		Index	U8	1-32		SV PRN
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	Data Decode
0	3	Newness	U1		0	From BBRAM
					1	New
1		Reserved				
2-25		Compressed Ephemeris	24xU8			Subframe 1
26-49)	Compressed Ephemeris	24xU8			Subframe 2
50-73	3	Compressed Ephemeris	24xU8			Subframe 3

Table 80: 0x28-16: GPS Ephemeris Fixed Point Model Report

0x29-01: Time Initialization

The data in this message will change after initialization through fixes. The Invalid/Clear command and the Time Accuracy are currently not supported.

Table 81:0x29-01: Time Initialization Report Message

Byte)	Name	Туре	Units/LSB	Range / Value	Meaning	
		Code	U8		0x29		
		Subcode	U8		0x01		
0	0-2	Source	U3		0	Invalid / Clear	
					1	Host Input	
					2	Host Override	
					3	GPS Data Decode	
0	3	Newness	U1		0	From BBRAM	
					1	New	
0	4	Time Acc'y Status	U1		0	Acc'y Unknown Acc'y	
					1	Valid	
1-2		Week number	U16	1 wk	<1024	GPS week number	
3-6		Time of week	U32	1 ms	<604800000 ms	GPS time of week	
7-10		Time Accuracy	U32	1 ms	0-604800000 ms	1-sigma accuracy	

0x29-02: Latitude / Longitude Initialization

The data in this message will change after initialization through fixes. To erase latitude / longitude initialization information, use the corresponding set command with source byte equal to zero (Invalid / Clear). To override current latitude and longitude estimates, use "host override".

Latitude and longitude initialization must be done before altitude initialization.

By	te	Name	Туре	Units/LSB	Range / Value	Meaning
		Code	U8		0x29	
		Subcode	U8		0x02	
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	GPS Fix
0	3	Newness	U1		0	From BBRAM
					1	New
0	4	Lat/Lon Acc'y Status	U1		0	Acc'y Unknown
					1	Acc'y Valid
1-4		Latitude	S32	2 ⁻³¹ sc	[-½, ½] SC.	
5-8		Longitude	S32	2 ⁻³¹ sc	[-1, 1) sc.	
9-12		Latitude Accuracy	U32	2 ⁻³¹ sc	[0, 1) sc.	1-sigma accuracy
13-1	16	Longitude Accuracy	U32	2 ⁻³¹ sc	[0, 1) sc.	1-sigma accuracy
17-2	20	Lat/Lon Correlation	FLT	unitless	[-1.0,1.0]	

 Table 82:
 0x29-02: Latitude / Longitude Initialization Report
0x29-03: Altitude Initialization

The data in this message will change after initialization through fixes. To erase altitude initialization information, use the corresponding set command with source byte equal to zero (Invalid / Clear). To override current altitude estimate, use "host override".

Latitude and longitude initialization must be done before altitude initialization.

 Table 83:
 0x29-03: Altitude Initialization Report Message

Byte)	Name	Туре	Units/LSB	Range / Value	Meaning	
		Code	U8		0x29		
		Subcode	U8		0x03		
0	0-2	Source	U3		0	Invalid / Clear	
					1	Host Input	
					2	Host Override	
					3	GPS Fix	
0	3	Newness	U1		0	From BBRAM	
					1	New	
0	4	Altitude Acc'y	U1		0	Acc'y Unknown	
		Status			1	Acc'y Valid	
1-2		Altitude	S16	1 m	-400 – 10000 m	MSL	
3-4		Altitude Accuracy	U16	1 m	0 – 10000 m	1-sigma accuracy	

0x29-04: Local Oscillator (LO) Frequency Offset Initialization

The data in this message will change after initialization through fixes. To erase frequency initialization information, use the corresponding set command with source byte equal to zero (Invalid / Clear).

Table 84:	0x29-04: Local Oscillator (LO) Frequency Offset
	Initialization Report Message

Byte)	Name	Туре	Units/LSB	Range / Value	Meaning
		Code	U8		0x29	
		Subcode	U8		0x04	
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	GPS Fix
0	3	Newness	U1		0	From BBRAM
					1	New
0	4	Frequency Acc'y	U1		0	Acc'y Unknown
		Status			1	Acc'y Valid
1-4	•	Frequency	S32	1 PPB	±50 PPM	
5-6		Frequency Accuracy	U16	1 PPB	0 – 16 PPM	1-sigma accuracy

0x29-05: Heading Initialization

The data in this message will change after initialization through fixes. To erase heading initialization information, use the corresponding set command with source byte equal to zero (Invalid / Clear). To override current heading estimates, use "host override".

Table 85: 0x29-05: Hea	ding Initialization Report Message
------------------------	------------------------------------

Byte)	Name	Туре	Units/LSB	Range / Value	Meaning
		Code	U8		0x29	
		Subcode	U8		0x05	
0	0-2	Source	U3		0	Invalid / Clear
					1	Host Input
					2	Host Override
					3	GPS Fix
0	3	Newness	U1		0	From BBRAM
					1	New
0	4	Heading Accuracy	U1		0	Acc'y Unknown
		status			1	Acc'y Valid
1-2	•	Heading	U16	2 ⁻¹⁵ sc	[0, 2) sc.	
3-4		Heading Accuracy	U16	2 ⁻¹⁵ sc	[0, 1] sc.	1-sigma accuracy

Real-Time Input Data

The following reports are used primarily for the input of serial data for real-time aiding (e.g., DGPS corrections, map-match corrections) that are sent form the host to the DR GPS module.

0x29-07: Short Map-Match Data

This message contains the most recent map-match data. It can be set, queried, or auto-reported.

Bvte		Name	Туре	Units/LSB	Range / Value	Meaning
		Code	U8		0x29	
		Subcode	U8		0x07	
0	0	Lat-Lon Valid	U1			1 = Valid
0	1	Altitude Valid	U1			1 = Valid
0	2	Heading Valid	U1			1 = Valid
0	3	Lat-Lon Accy Valid	U1			1 = Valid
0	4	Altitude Accy Valid	U1			1 = Valid
0	5	Heading Accy Valid	U1			1 = Valid
0	6	Time Source	U2			From
						Msg 30-02
1-2		Time Tag	U16	1 ms	[0, 65535] ms	16 LSBs from Msg 0x30-02
3-6		Latitude	S32	2 ⁻³¹ sc	[-½, ½] SC.	
7-10		Longitude	S32	2 ⁻³¹ sc	[-1, 1) sc.	
11-12		Altitude	S16	1 m	[-400, 10000] m	MSL
13-14		Heading	U16	2 ⁻¹⁵ sc	[0, 2) sc.	
15-16		East Accy	U16	1 m	(0, 1000] m	1- σ accuracy
17-18		North Accy	U16	1 m	(0, 1000] m	1-σ accuracy
19-20		East / North Covariance	S16	1 m	[-1000, 1000]	
21-22		Altitude Accy	U16	1 m	[1, 1000] m	1-σ accuracy
23-24		Heading Accy	U16	2 ⁻¹⁵ sc	(0, 1] sc.	1-σ accuracy

 Table 86:
 0x29-07: Map-Match Report Message

The Time of Week and Time Source data fields must exactly match the Time of Week (16 LSBs) and Time Source fields of a recent 0x30-02 message. The mapmatch information is assumed to be the position/heading estimate at the time of that 0x30-02 message.

The "East / North Covariance" data field is a signed quantity, derived from the offdiagonal element $Cov_{E,N}$ of the 2x2 East-North error covariance matrix as follows:

SIGN (Cov_{E,N}) SQRT (ABS(Cov_{E,N}))

0x29-08: Tacho Data

This message contains Tacho data from the CAN bus. It is used if a tacho signal is not available. It can be set, queried, or auto-reported.

 Table 87:
 0x29-08: Tacho Report Message

Ву	te	Name	Туре	Units/LSB	Range / Value	Meaning
		Code	U8		0x29	
		Subcode	U8		0x08	
0	0	Timetag Offset Valid	U1			1 = Valid
0	1	Tacho Valid	U1			1 = Valid
0	2	Direction SwitchValid	U1			1 = Valid
0	7	Reverse Switch Value	U1		0	Low
					1	High
1-2		Host System Clock Timetag	U16	ms	[0,65767]	(Host time) mod 2 ¹⁶
3-4		Timetag offset	U16	ms	[0,65767]	(GPS – Host) mod 2 ¹⁶
5-8		Tacho pulses	U32			Accumulated
						Tacho pulses

EVENT LOG QUEUE

Theory of Operation

There are two types of events, hard and soft. Each type has its separate log. The soft event log resides in RAM and the fatal error log resides in flash. Each event has an event ID (two-byte unsigned value), a time tag indicating the time when the event occurred, and a status word if applicable.

Flow of execution for error logging is shown in the following figure.

2. Flow of Execution

Fatal Errors

Fatal errors indicate abnormal operation of the module. In general these errors (such as illegal address) are not recoverable. Under these conditions, the receiver writes to the log first, and then sends an event packet to notify user before it restarts (warm or cold reset). The fatal errors are divided based on the source of error:

- 1. Interrupt system errors have a high byte of 0x10. The low byte is the vector number at fault.
- 2. Hardware-related system error, e.g. RAM, ROM, or gyro, has a high byte of 0x12 or 0x13.
- 3. RTOS events (errors related to the Operating System related function calls) have a high byte of 0x20.
- 4. Navigation library events and run-time positioning diagnostics have a high byte of 0x40.

Hard Reset means "Clear RAM and Reset SW". The column "Ver" indicates which ROM versions have this fatal error code feature.

DR + GPS STARTER KIT REFERENCE MANUAL

Error/Event		Descriptions	Action
LOG_ILL_TRAP	0x10xx	Illegal hardware interrupts	Hard Reset
		(xx = vector number)	
LOG_ERR_RAM_FAILED	0x1200	RAM failed on self-test.	Monitor Mode
LOG_ERR_ROM_FAILED	0x1201	ROM failed on checksum test.	Monitor Mode
LOG_GET_SEMAPHORE_ERR	0x2001	Failure on acquiring a semaphore.	Reset
LOG_RELEASE_SEMAPHORE_ERR	0x2002	Failure on releasing a semaphore.	Reset
LOG_SEND_MESSAGE_ERR	0x2003	Failure on sending a message.	Reset
LOG_RECEIVE_MESSAGE_ERR	0x2004	Failure on receiving a message.	Reset
LOG_DELETE_MESSAGEQ_ERR	0x2005	Failure on deleting a message queue.	Reset
LOG_DELETE_TASK_ERR	0x2006	Failure to remove task from system.	Reset
LOG_SUSPEND_TASK_ERR	0x2007	Failure on suspending a task.	Reset
LOG_RESUME_TASK_ERR	0x2008	Failure on resuming a task.	Reset
LOG_CREATE_SEMAPHORE_ERR	0x2009	Failure on creating a semaphore.	Reset
LOG_CONNECTION_ERR	0x200A	Failure to connect to Io-DSP cell.	
LOG_CREATE_TASK_ERR	0x200B	Failure to creating a task.	Reset
LOG_ALLOCATE_BUF_ERR	0x200C	Failure on memory allocation.	Reset
LOG_MESSAGEQ_FULL	0x2120	A given message queue is full.	Reset
LOG_SIO_OPEN_ERR	0x2121	Failure to open serial port.	Monitor Mode
LOG_NAV_HARD_COCOM	0x4001	COCOM event, no recovery.	Hard Reset
LOG_NAV_HARD_ERR	0x4003	Other error in navigation library	Hard Reset

|--|

The fatal error log is located in the flash memory space at memory location 0x3000 - 0x4000. There are 31 reportable entries with 32 bytes per entry. The host cannot erase this log. A write-after-erase algorithm ensures the integrity of the log.

Field	Туре	Descriptions
Msec	U32	Time tag in GPS milliseconds. (0xffffffff if not available)
Week	U16	Time tag in GPS week number. (0xffff if not available)
Code	U16	Event/error code.
		Hard Reset means "Clear RAM and Reset SW". The column "Ver" indicates which ROM versions have this fatal error code feature.
Status	U16	Status code associated with the event. 0 if not apply.
Info block	22 bytes	

Table 89:Format of fatal error log entry

The last field holds information associated with type of error. It can be a stack frame, a memory dump up to 22 bytes, or the program count for the address of error. The following tables describe the format for each fatal error types.

Table 90:Block Format for Status Code 10xx

Field	Туре	Descriptions
Vector	U8	Illegal vector number
PC	U32	Program counter at fault
SP	U32	Supervisor stack address

Table 91: Block Format for Status Code 12xx

Field	Туре	Descriptions
Soft value	U32	Soft checksum or memory content.
Actual value	U32	Data read from the target.
Address	U32	Status code 1201 only.

Field	Туре	Descriptions
Src task	U8	Caller task ID
Dest task	U8	Receive task ID – 0 if not applicable.
Resource ID	U8	System resource such as semaphore, message queue,

Table 92: Block Format for Status Code 2xxx

Soft Events

Soft events, which include soft errors, periodic events, and user requested events, occur frequently. Only selected events will be logged into BBRAM. None of these events triggers a software reset. If the host desires to be notified of specific events with a HIPPO output message, it can specify the events to report with the event mask function (Sec 0).

Soft events have a 7-bit identity code and a two-bit condition status code. The soft event identity code is between 1 and 127. The last two columns in the table below indicate whether the event is a persistent condition such as a shorted antenna (C) or a single event like a RTC fault (S), and which ROM versions have this soft event code feature.

Soft event/Event		Descriptions	S/C
LOG_NO_ERROR	0x00	No error recorded in this entry	
LOG_SOFT_RESET	0x01	System performed a warm reset.	S
LOG_COLD_RESET	0x02	System performed a cold reset.	S
LOG_FACTORY_RESET	0x03	System cleared flash and RAM, reset.	S
LOG_SHUT_DOWN	0x04	System shut down by command.	S
LOG_BBRAM_INVALID	0x05	Invalid BBRAM detected on startup.	S
LOG_GRACEFUL_SHUTDOWN	0x06	System did graceful shutdown	S
LOG_TEST_PASSED	0x10	System passed all diagnostic tests.	S
LOG_TEST_START	0x11	Begin system test.	S
LOG_TEST_END	0x12	Indicates the end of a test event.	S
LOG_FORCE_TO_MONITOR	0x20	Force to monitor command executed.	S
LOG_NAV_FIRST_FIX	0x40	GPS receives the first fix on start up.	S
LOG_POSITION_SNAP	0x42	Output solution snapped to DR+GPS	S
LOG_POSITION_RECOVERY	0x43	Position recovery, snapped to GPS	S
LOG_HEADING_RECOVERY	0x44	Heading recovery, snapped to GPS	S
LOG_DPP_RECOVERY	0x45	DPP recovery, snapped to GPS	S
LOG_ZRO_RECOVERY	0x46	ZRO recovery	S
LOG_NAV_USER_TIME	0x50	User entered time on startup.	S
LOG_NAV_USER_POS	0x51	User entered position on startup.	S
LOG_NAV_FIX_SANITY	0x61	GPS receiver fix unreasonable.	С
LOG_GYRO_ANOMALY	0x62	Gyro readings not within specification	С
LOG_NO_TACHO_WHILE_MOVING	0x63	No Tacho when GPS detects motion	С
LOG_EXCESSIVE_TACHO	0x64	Consistently excessive tacho data	С
LOG_REVERSE_GPS_DISAGREE	0x65	Reverse signal opposite to GPS	С
LOG_LARGE_JUMP	0x66	Large jump at power-up	S
LOG_OSCILLATOR_ANOMALY	0x67	Oscillator values out of specification.	С
LOG_ERR_ANT_OPEN	0x70	Antenna open detected.	С
LOG_ERR_ANT_SHORT	0x71	Antenna short detected.	С
LOG_CONNECTION_ERR	0x72	Failure to connect to GPS DSP.	S
LOG_RTC_ERROR	0x73	RTC disagreed with GPS time	S
LOG_ERR_GYRO	0x74	Gyro failed.	С
LOG_ERR_A2D	0x75	A2D failed on self-test.	S
LOG_GYRO_SHORT_TO_3V	0x76	Gyro reads 3.3 V consistently	С

Table 93: Soft Event Identity Code

STARTER KIT REFERENCE MANUAL

Some of these soft events are "informational", and result from user action. Those soft events that are generated internally.

The condition code has four states. For a single event, the condition status code is zero. For a soft event condition, the condition code is defined in Error! Reference source not found.

Numeric Value	Descriptions
0x00	Status unknown (backwards compatible to old software) or single event
0x10	Newly detected condition
0x20	Condition previously detected, still present
0x30	Condition newly cleared

Table 94:	Soft Event	Condition	Code
-----------	------------	-----------	------

As an example, when an antenna short condition is first detected, a soft event with identity and condition codes (0x71, 0x10) is generated. Every second, when the antenna fault detection is repeated, the soft event (0x17, 0x20) is generated. When the condition is cleared and no fault is found, the soft event (0x17, 0x30) is generated.

The soft event log resides at the beginning of the RAM area in a circular buffer with 127 entries. The log records all single-event soft events and all changes in soft event conditions, but does not record soft events with status code 0x2 (condition previously detected, still present). The log persists as long as there is a battery-backup power. The log is erasable by user via a HIPPO command or by the startup RAM test (cold start only). The host can retrieve logs at any time via HIPPO guery. Error! Reference source not found. shows the format of the log entry for soft events:

Table 9	5: Forr	nat of Soft Event Log Entry

Field	Туре	Descriptions
Msec	U32	Time tag in GPS milliseconds.
Week	U16	Time tag in GPS week number.
Identity	U8	Soft event identity code.
Condition	U8	Soft event condition code.
Reserved	U16	

Event Messages

Invalid BBRAM detected on startup.

Condition cause:	Hardware failure.
Effect before Action:	If not cleared, very long time to first fix or worse.

Soft Event Detected: BBRAM checksum mismatch at power-up.

Action: Clear BBRAM.

Position recovery, solution snapped to GPS.

Condition cause:	Incorrect position at start-up, or substantial drift of DR+GPS position estimate.
Effect before Action:	Large position offset between GPS and DR outputs for a number of seconds.
Soft Event Detected:	Compute average of "window" of recent unfiltered GPS positions, propagated to current time using GPS velocities. Soft event occurs if this window average passes a series of criteria (see DR+GPS KF algorithm document 45172-XX-SP) and the offset relative to the DR position is large enough.
Action:	The DR position is snapped to the window average.

Heading recovery, solution snapped to GPS.

- Condition cause: Incorrect heading at start-up, or substantial drift of DR+GPS heading estimate.
- Effect before Action: Large heading offset between GPS and DR outputs for a number of seconds.
- Soft Event Detected: Compute average of "window" of recent raw GPS headings, propagated to current time gyro measurements. Soft event occurs if this window average passes a series of criteria (see DR+GPS KF algorithm document 45172-XX-SP) and the offset relative to the DR heading is large enough.
- Action: The DR heading is snapped to the window average.

DPP recovery, solution snapped to GPS.

Condition cause: Incorrect DPP at start-up, or substantial drift of DR+GPS DPP estimate.

- Effect before Action: Large speed offset between GPS and DR outputs for a number of seconds.
- Soft Event Detected: Compute average of "window" of recent DPP estimates, derived directly from the raw GPS speed and number of pulses. Soft event occurs if this window average passes a series of criteria (see DR+GPS KF algorithm document 45172-XX-SP) and the offset relative to the DR DPP is large enough.
- Action: The DPP estimate is snapped to the window average.

GPS receiver fixes not reasonable; try to recover.

Condition cause:	pseudorange error or ephemeris error.
Effect before Action:	GPS positions incorrect.
Soft Event Detected:	Fix altitude is above 18000 m or below –1000 m and fix speed is above 515 m/s.
Soft Event Cleared:	Cleared at reset.
Action (ROM15):	Erase BBRAM and RTC, re-start unit.

Gyro readings do not stay within specification

Condition cause:	Hardware failure.
Effect before Action:	Position goes in circles.
Soft Event Detected:	Average gyro reading over ten seconds at standstill is not between 2.0 V and 3.0 V.
Soft Event Cleared:	Cleared at reset.
Action:	Gyro labeled "bad". DR suspended. Speed measurement continues and tacho continues to be calibrated.

No Tacho data when GPS is detecting movement

Condition cause:	Tacho is disconnected or malfunctioning.	
Effect before Action:	Position solution will be not change when moving.	
Soft Event Detected:	GPS speed > 8.0 m/s and no tacho pulses reported (except heartbeats) for 15 GPS fixes.	
Soft Event Cleared:	Tacho pulse is reported, or unit is reset.	
Action:	Tacho labeled as "absent". DR is suspended. Heading measurement continues and gyro continues to be calibrated.	

Excessive tacho data is received for a long period of time

Condition cause:	Wheels spinning, other tacho malfunction.
Effect before Action:	Position fixes move at higher speed than actual position.
Soft Event Detected:	Not implemented in ROM 15. Function partly done by DPP recovery.

Reverse signal opposite to direction determined by GPS.

Condition cause:	Disconnected reverse switch.
Effect before Action:	Reverse driving is mistaken for forward driving, resulting in incorrect position.
Soft Event Detected:	Driving in reverse at raw GPS speed > 14 m/s.
Soft Event Cleared:	Driving forward at raw GPS speed > 14 m/s.
Action:	Direction Switch sense changed.

Large jump at power-up

Condition cause:	Position in BBRAM incorrect (e.g., travel by ferry).
Effect before Action:	Positions are offset by many kilometers after power-up.
Soft Event Detected:	Offset between first three GPS points and DR position > 2000 m.
Action:	Reset position to average GPS position.

DR + GPS Starter Kit Reference Manual

Oscillator values are not within specification.

Condition cause:	Excessive temperature response or aging of crystal.
Effect before Action:	Extended time-to-first fix.
Soft Event Detected:	Not implemented in ROM 15.

Antenna open detected.

Condition cause:	Hardware failure.
Effect before Action:	No GPS positions.
Soft Event Detected:	Hardware signal queried at one Hz.
Soft Event Cleared:	Hardware signal queried at one Hz.
Action:	DR functions without GPS positions.

STARTER KIT REFERENCE MANUAL

Antenna short detected.

Condition cause: Hardware failure.

Effect before Action:	No GPS positions.
Soft Event Detected:	Hardware signal queried at one Hz.
Soft Event Cleared:	Hardware signal queried at one Hz.
Action:	DR functions without GPS positions.

Failure to connect to GPS DSP.

Condition cause:	Hardware failure.
Effect before Action:	No GPS positions.
Soft Event Detected:	No response from DSP within 5 seconds.
Action:	DR functions without GPS positions.

RTC disagreed with GPS time

Condition cause:	Low battery voltage while powered down.		
Effect before Action:	Long time to first fix.		
Soft Event Detected:	Not implemented in ROM15.		

Gyro Failure.

•	
Condition cause:	Hardware failure.
Effect before Action:	Position goes in circles.
Soft Event Detected:	Tested with ADC at startup. Also tested at standstill; average gyro values (one-second averages) are collected over ten seconds at standstill. If average is not between 0.75 V and 4.25 V, declare detection.
Soft Event Cleared:	Cleared at reset.
Action:	Gyro labeled "bad". DR suspended. Speed measurement continues and tacho continues to be calibrated.

DR + GPS Starter Kit Reference Manual

ADC Failure.

Condition cause:	Hardware failure.
Effect before Action:	Position goes in circles.
Soft Event Detected:	At power-up.
Action:	Gyro labeled "bad". DR suspended. Speed measurement continues and tacho continues to be calibrated.

Gyro Shorted to 3.3 V.

Condition cause:	Hardware failure.
------------------	-------------------

Effect before Action: Position goes in circles.

Soft Event Detected: Average and range of gyro values (one-second averages) are collected over ten seconds at standstill. If average is between 3.05 V and 3.55 V, and range is less than six mV, declare detection.

Soft Event Cleared: Cleared at reset.

Action: Gyro labeled "bad". DR suspended. Speed measurement continues and tacho continues to be calibrated.

SPECIFICATIONS

Download from Www.Somanuals.com. All Manuals Search And Download.

Characteristic	Conditions	Min.	Typical	Max.	Unit
Supply voltage	Pin 7	3.0	3.3	3.6	VDC
Power consumption	Excluding antenna		190	250	mW
Supply voltage noise ripple	From 1Hz to 1MHz			100	mVpp
Input capacitance on power supply			22		μF
Power supply for Low Noise Amplifier of active antenna	Power Supply for antenna is an external input for this module. Pin 2		5.0		VDC
Supplied current for Low Noise Amplifier of active antenna	5.0V Miniature GPS Vehicle Ant.3.0V Miniature GPS Vehicle Ant.(at room temperature)			30 15	mA
Load capacitance of the antenna				0.3	μF
Backup Power Supply		2.5		3.6	VDC
Backup Current	Over temp. range –40 ,+85C			70	uA

Table 96: Power Supply for Internal DR Module

NOTE All specifications are over the entire temperature range, -40C to +85C

Table 97: Power Supply for DR+GPS Starter Kit Unit

Characteristic	Conditions	Min.	Typical	Max.	Unit
Supply voltage		9.0	13.5	32.0	VDC
Supply current	Excluding antenna		70		mA

NOTE All specifications are over the entire temperature range, 0C to +60C

Table 98:RF Characteristics

Characteristic	Conditions	Min.	Typical	Max.	Unit
Tracking sensitivity	At the RF connector input of the receiver	-140			dBm
Acquisition sensitivity	At the RF connector input of the receiver	-130			dBm
Noise Figure			16	21	dB
Dynamic range				20	dB
Resistance to broadband noise jamming	jamming to signal ratio at antenna input within input filter bandwidth of 20MHz;			20	dB
	GPS Signal Power ≥ -160dBW				
Input impedance			50		Ω

DR + GPS

STARTER KIT REFERENCE MANUAL

Table 99:	Tachometer
-----------	------------

Characteristic	Min.	Typical	Max.	Unit
Voltage input		12.0		V
Frequency			3000	Hz

Data I/O

The DR+GPS Module supports the following characteristics:

- CMOS/TTL levels on TXD and RXD
- Fixed UART baud rates

Table 100: Data I/O

Characteristic	Conditions	Min.	Typical	Max.	Unit
Data rate NMEA and HIPPO	+/- 3% error rate		38.4		kbps
Input voltage	low level at 50 uA			0.8	V
	high level at 50 uA	2.0			
Output voltage low level at 4 mA at Supply Volta				0.4	V
	high level at 4 mA at Supply Voltage				
		2.4			
Input current	low level	-50		50	μA
	high level	-50		50	
Data latency after PPS Delta between PPS and packet transmission				100	ms

Table 101: PPS

The PPS is present once power is applied to the unit.

Table 102:	PPS	Characteristics
------------	-----	------------------------

Characteristic	Conditions	Min.	Typical	Max.	Unit
Timing accuracy	To UTC time with valid position fixes			±500	ns
Pulse duration			80	90	us
Rise time of leading edge	Rising edge is synchronized to UTC second.			25	ns
Output voltage			2.76		V

Table 103: Gyro

Supported GYRO units are:

- Epson XV-810
- Epson XV-8100CB (3V)
- Epson XV-8000CB (5V)
- Murata ENX-0126
- Panasonic EWTS-82

Table 104: 3 Volt Gyros

Characteristic	Min.	Typical	Max.	Unit
Vgyro	0		3.3	V
Gyro rate		2.5		mV/(degree/s), +/- 10%
Zero Rate Output (Epson)		1.35		V

Note: Check with your local Trimble Sales for the latest version of Lassen DR+GPS firmware that supports your Gyro option.

The Murata part cannot fit inside the Lassen DR+GPS starter kit due to an incompatible pin-out, but could be suitable for use in a customer application.

Confirm that the Gyro used with the Lassen DR+GPS starter kit has the same pin-out as the Panasonic EWTS-82 and uses the specification to what is listed in the table above.

DR + GPS Starter Kit Reference Manual

Characteristic	Min.	Typical	Max.	Unit
Vgyro	0		5	V
Gyro rate		25		mV/(degree/s), +/- 10%
Zero Rate Output (Epson)		1.76		V
Zero Rate Output (Panasonic)		2.5		V

Table 105: 5 Volt Gyros

Notes: Check with your local Trimble Sales for the latest version of the Lassen DR+GPS firmware that supports your Gyro option.

GPS Antenna

The antenna receives the GPS satellite signals and passes them to the receiver. The GPS signals are spread spectrum signals in the 1575MHz range and do not penetrate conductive or opaque surfaces.

Therefore, the antenna must be located outdoors with a clear view of the sky. The Lassen DR+GPS Module receiver requires an *active* antenna. The received GPS signals are approximately -130 dBm, at the surface of the earth (in typical environments). Trimble's active antennas include a preamplifier that filters and amplifies the GPS signals before delivery to the receiver.

Trimble offers a range of suitable antennas for use with the Lassen DR+GPS Module.

Keep in mind that the DR+GPS module needs an LNA to work properly. The gain of the LNA should be approximately 18 dB as a minimum, and 35 dB maximum.

DUCKI DUCK

WWBD VIVED

100

NCK NCK

gor / al

D12 MM009H

NOL IN STORE

010 48167

523

Sa sa

ANBOR

E

10-20

NOR NOR

> 010 4010

POLINE REP

N XXX

D10 1010 12296 D0124

21

Pin	Input/Output	Function	Description
1	Output	TX2	Factory use only
2	Input	Vantenna	Voltage for GPS antenna (+5V)
3	Output	TX1	Serial port1 transmit
4	Input	Vbackup	Backup power (2.5 - 3.6V)
5	Input	RX1	Serial port1 receive
6	Output	PPS	Pulse per second
7	Input	VCC	Main Power (+3.3V)
8	Input	GND	Power Ground
9	Input	Gyro input	Analogue gyro input
10	Input	Tacho 1	Tacho pulses (Tacho only or ABS-L) (0/3.3V)
11	Input	Reset	External Reset
12	Input	Reverse Signal	Forward/backward signal (0/3.3V)
13	Input	Gyro_GND	Gyro Ground
14	Input	Vgyro	Voltage for gyro circuitry (3.3 or 5V)

Table 106: Table 115: DR Module Pin Assignments

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com