Acutime[™]2000 Synchronization Kit

User Guide

Part Number 45005-00-ENG Revision A April 2001

Corporate Office

Trimble Navigation Limited *Timing and Synchronization Group* 645 North Mary Avenue Post Office Box 3642 Sunnyvale, CA 94088-3642 U.S.A. Phone: +1-408-481-8940, 1-800-545-7762 Fax: +1-408-481-7744 www.trimble.com

Support Offices

Trimble Navigation Europe Limited Trimble House, Meridian Office Park Osborn Way, Hook Hampshire RG27 9HX ENGLAND +44-1256-760-150 Fax: +44-1256-760-148 Voicemail: +44-1256-761-130

Trimble Navigation Singapore PTE Limited 79 Anson Road # 05-02 Singapore 079906 SINGAPORE +65-325-5668 Fax: +65-225-9989 Voicemail: +65-325-5668

Trimble Japan K.K. Sumitomo Hamamatsu-cho, Building 10F 1-18-16 Hamamatsu-cho Minato-ku Tokyo 105 JAPAN +81-3-5472-0880 Fax: +81-3-5472-2326

Trimble Navigation Australia Pty Limited P.O. Box 769 Spring Hill QLD 4004 AUSTRALIA +61-7-3216-0044 Fax: +61-7-3216-0088

Copyright and Trademarks

© 2001, Trimble Navigation Limited. All rights reserved. No part of this manual may be copied, reproduced, translated, or reduced to any electronic medium or machine-readable form for any use other than with the *Acutime*TM 2000 GPS Smart Antenna, or *Acutime* 2000 Synchronization Kit.

The Sextant logo with Trimble is a trademark of Trimble Navigation Limited, registered in the United States Patent and Trademark Office.

The Globe & Triangle logo, Trimble, and Acutime are trademarks of Trimble Navigation Limited.

All other trademarks are the property of their respective owners.

Release Notice

This is the *April 2001* release (Revision A) of the *Acutime 2000 Synchronization Kit User Guide*, part number 45005-00-ENG. It applies to the *Acutime* TM 2000 Synchronization Kit software.

The following limited warranties give you specific legal rights. You may have others, which vary from state/jurisdiction to state/jurisdiction.

Hardware Limited Warranty

Trimble warrants that this Trimble hardware product (the "Product") shall be free from defects in materials and workmanship and will substantially conform to Trimble's applicable published specifications for the Product for a period of one (1) year, starting from the date of delivery. The warranty set forth in this paragraph shall not apply to software/firmware products.

Software and Firmware License, Limited Warranty

This Trimble software and/or firmware product (the "Software") is licensed and not sold. Its use is governed by the provisions of the applicable End User License Agreement ("EULA"), if any, included with the Software. In the absence of a separate EULA included with the Software providing different limited warranty terms, exclusions, and limitations, the following terms and conditions shall apply. Trimble warrants that this Trimble Software product will substantially conform to Trimble's applicable published specifications for the Software for a period of ninety (90) days, starting from the date of delivery.

Warranty Remedies

Trimble's sole liability and your exclusive remedy under the warranties set forth above shall be, at Trimble's option, to repair or replace any Product or Software that fails to conform to such warranty ("Nonconforming Product"), or refund the purchase price paid by you for any such Nonconforming Product, upon your return of any Nonconforming Product to Trimble in accordance with Trimble's standard return material authorization procedures.

Warranty Exclusions and Disclaimer

These warranties shall be applied only in the event and to the extent that: (i) the Products and Software are properly and correctly installed, configured, interfaced, maintained, stored, and operated in accordance with Trimble's relevant operator's manual and specifications, and; (ii) the Products and Software are not modified or misused. The preceding warranties shall not apply to, and Trimble shall not be responsible for defects or performance problems resulting from (i) the combination or utilization of the Product or Software with products, information, data, systems or devices not made, supplied or specified by Trimble; (ii) the operation of the Product or Software under any specification other than, or in addition to, Trimble's standard specifications for its products; (iii) the unauthorized modification or use of the Product or Software; (iv) damage caused by accident, lightning or other electrical discharge, fresh or salt water immersion or spray; or (v) normal wear and tear on consumable parts (e.g., batteries).

THE WARRANTIES ABOVE STATE TRIMBLE'S ENTIRE LIABILITY, AND YOUR EXCLUSIVE REMEDIES. RELATING TO PERFORMANCE OF THE PRODUCTS AND SOFTWARE. EXCEPT AS OTHERWISE EXPRESSLY PROVIDED HEREIN, THE PRODUCTS, SOFTWARE, AND ACCOMPANYING DOCUMENTATION AND MATERIALS ARE PROVIDED "AS-IS" AND WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND BY EITHER TRIMBLE NAVIGATION LIMITED OR ANYONE WHO HAS BEEN INVOLVED IN ITS CREATION, PRODUCTION, INSTALLATION, OR DISTRIBUTION, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. THE STATED EXPRESS WARRANTIES ARE IN LIEU OF ALL OBLIGATIONS OR LIABILITIES ON THE PART OF TRIMBLE ARISING OUT OF, OR IN CONNECTION WITH, ANY PRODUCTS OR SOFTWARE. SOME STATES AND JURISDICTIONS DO NOT ALLOW LIMITATIONS ON DURATION OR THE EXCLUSION OF AN IMPLIED WARRANTY, SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

TRIMBLE NAVIGATION LIMITED IS NOT RESPONSIBLE FOR THE OPERATION OR FAILURE OF OPERATION OF GPS SATELLITES OR THE AVAILABILITY OF GPS SATELLITE SIGNALS.

Limitation of Liability

TRIMBLE'S ENTIRE LIABILITY UNDER ANY PROVISION HEREIN SHALL BE LIMITED TO THE GREATER OF THE AMOUNT PAID BY YOU FOR THE PRODUCT OR SOFTWARE LICENSE OR U.S.\$25.00. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL TRIMBLE OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHATSOEVER UNDER ANY CIRCUMSTANCE OR LEGAL THEORY RELATING IN ANY WAY TO THE PRODUCTS, SOFTWARE, AND ACCOMPANYING DOCUMENTATION AND MATERIALS, (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS), REGARDLESS OF WHETHER TRIMBLE HAS BEEN ADVISED OF THE POSSIBILITY OF ANY SUCH LOSS AND REGARDLESS OF THE COURSE OF DEALING WHICH DEVELOPS OR HAS DEVELOPED BETWEEN YOU AND TRIMBLE. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

Notices

Class B Statement - Notice to Users. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Changes and modifications not expressly approved by the manufacturer or registrant of this equipment can void your authority to operate this equipment under Federal Communications Commission rules.

European Community (CE) Directive Conformance Statement

The Acutime 2000 GPS Smart Antenna conforms with the essential requirements of the EMC Directive 89/336/EEC. A Declaration of Conformity indicating the requirements met has been signed at Trimble Navigation Limited, 645 North Mary Avenue, Sunnyvale, CA 94086, USA.

Contents

1

2

About This Manual

	Scope and Audience
	Organization
	Reader Feedback
	Related Information
	Update Notes
	World Wide Web (WWW) Site
	Technical Assistance
	Abbreviations
	Document Conventions
	Cautions and Notes
Int	roduction
1.1	Overview
1.2	Acutime 2000 GPS Smart Antenna Features 1-2
1.3	Starter Kit
Get	tting Started
2.1	Connecting the Smart Antenna
2.2	Connecting the Computer and Power Source

2.3 Communicating with the Acutime $2000 \dots 2.4$

3	Acı	utime 2	000 Installation
	3.1	Choosin	ng a Location
	3.2	Mounti	ng the Smart Antenna
	3.3	Routing	g and Securing the Interface Cable
	3.4	Connec	ting the Host System
4	Acu	utime 2	000 Connections
	4.1	Interfac	e and Power Connections
	4.2	Interfac	e Cables and Connectors
		4.2.1	Pin-Outs
	4.3	Connec	tion Instructions
		4.3.1	Power Connection (Red and Black Wires)
		4.3.2	Timing Pulse Connections
		4.3.3	Serial Port Connections

5 System Operation

4.3.4

5.2Automatic Operation5-25.2.1Satellite Masks5-25.2.2Tracking Modes5-45.2.3PPS Output Options5-65.2.4PPS Quantization Error5-75.2.5External Event Input5-95.2.6Cable Delay Compensation5-95.3Serial Data Communication5-105.3.1Port B5-10	5.1	Start-Up	
5.2.2 Tracking Modes .5-4 5.2.3 PPS Output Options .5-6 5.2.4 PPS Quantization Error .5-7 5.2.5 External Event Input .5-9 5.2.6 Cable Delay Compensation .5-9 5.3 Serial Data Communication .5-10	5.2	Automat	ic Operation
5.2.3 PPS Output Options		5.2.1	Satellite Masks
5.2.4PPS Quantization Error5.2.55.2.55.2.55.2.6<		5.2.2	Tracking Modes
5.2.5External Event Input.5.2.6 <t< td=""><td></td><td>5.2.3</td><td>PPS Output Options</td></t<>		5.2.3	PPS Output Options
5.2.6Cable Delay Compensation		5.2.4	PPS Quantization Error
5.3 Serial Data Communication		5.2.5	External Event Input
		5.2.6	Cable Delay Compensation
5.3.1 Port B	5.3	Serial Da	ata Communication
		5.3.1	Port B
5.3.2 Port A (Timing)		5.3.2	Port A (Timing)
5.4 GPS Timing 5-12	5.4	GPS Tim	ning
5.4.1 Timing Operation		5.4.1	Timing Operation

	5.5	Using the	e Acutime 2000 in Mobile Applications	5-15
	5.6	Customiz	zing Acutime 2000 Operations	5-16
6	NTI	P Softwa	are Installation and Configuration	
	6.1	Network	Time Protocol.	6-1
		6.1.1	NTP Time Servers	.6-2
	6.2	Software	Sources and Compatibility	6-3
		6.2.1	Installation Support	.6-4
	6.3	Pre-Insta	llation Check List	6-4
		6.3.1	GPS Preparation	.6-5
		6.3.2	Host System Preparation	.6-6
		6.3.3	Operating System Specific Information	.6-7
	6.4	Time Tra	Insfer Cable Connection	6-8
		6.4.1	Optional Connections	.6-9
	6.5	NTP Sof	tware Installation	6-10
		6.5.1	NTP Configuration File	.6-11
		6.5.2	Acutime Configuration	.6-12
		6.5.3	Network Server Selection	.6-13
		6.5.4	Additional Configuration Information	.6-14
	6.6	Windows	NT Installation	6-15
		6.6.1	Automatic Installation	.6-16
		6.6.2	Manual Installation	.6-17
		6.6.3	Starting the Service	.6-23
	6.7	UNIX In	stallation	6-24
		6.7.1	Create the Configuration File	.6-25
		6.7.2	Set Up Device Links	.6-26
		6.7.3	Hardware Configuration	.6-28
		6.7.4	Copying Executable Files	.6-29
		6.7.5	System Initialization.	.6-30
		6.7.6	Start NTP	.6-31

Acutime 2000 Synchronization Kit User Guide

vii

A

Monitor	ring NTP
6.8.1	NTP Events on Windows NT
6.8.2	UNIX System Log Files
6.8.3	NTPQ – The NTP Query Utility
mble S	tandard Interface Protocol
Interfac	e Scope
A.1.1	Packet Structure
Physica	ll Interface Characteristics
A.2.1	Nomenclature
A.2.2	Protocol Capabilities
A.2.3	Event Input
Packets	Output at Power-Up
Receive	er Warm Start
Default	Background Packets for Acutime 2000
	Automatic Position and Velocity Reports utime 2000
	atic Primary and Supplemental Timing Reports
	$E \text{ UTC} \dots \dots$
Low-La	atency Timing Packets
Event P	Packets
Satellite	e Data Packets
Custom	izing Receiver Operations
Comma	and Packets Sent to the Receiver
Report	Packets Sent by the GPS Receiver to the User
Packet	Structure
Packet l	Descriptions
6 Custom	OEM Packets
TSIP Su	uperpackets
	A-126
	TSIP Routines
	 6.8.1 6.8.2 6.8.3 mble S Interfac A.1.1 Physica A.2.1 A.2.2 A.2.3 Packets Receive Default Default for Act Automa for AC Low-La Event P Satellita Custom Report Packet S

B	Tim	ing Re	ceiver Monitor	
	B .1	Start-Up		B-1
	B.2	Main scr	een	B-2
С	NM	EA 018	33	
	C.1	The NM	EA 0183 Communication Interface	C-2
	C.2	NMEA (0183 Message Format	C-2
	C.3	NMEA (0183 Message Options	C-4
	C.4	NMEA (0183 Message Formats	C-5
		C.4.1	GGA – GPS Fix Data	.C-5
		C.4.2	GLL – Geographic Position – Latitude/Longitude	.C-6
		C.4.3	GSA – GPS DOP and Active Satellites	.C-7
		C.4.4	GSV – GPS Satellites in View.	.C-8
		C.4.5	RMC – Recommended Minimum Specific GPS/Transit Data	.C-9
		C.4.6	VTG – Track Made Good and Ground Speed	
		C.4.7	ZDA – Time & Date	
D	Spe	cificatio	ons and Drawings	
	D.1	Acutime	2000 GPS Smart Antenna Specifications	D-1
	D.2		2000 Standard Interface Cable Diagram	
E	NTI	P Diagn	nostics and Debugging	
	E.1	Diagnost	tics and Debugging	E-1
		E.1.1	System Log Entries	.E-1
		E.1.2	Error Log Entries	.E-3
	E.2	Running	NTP in Debug Mode	E-8
		E.2.1	Debug Mode Not Available	.E-9
		E.2.2	NTP Startup and Acutime Poll	.E-9
		E.2.3	Acutime is not Responding	.E-11
Acuti	me 20	00 Synch	ronization Kit User Guide	ix

Contents

	E.2.4	Running NTP with Event Polling Disabled
	E.2.5	Incorrect Port and Bad Data
	E.2.6	Serial Port is Unavailable
E.3	Compilir	g the NTP Distribution
E.4	Windows	NT Administration
	E.4.1	Controlling the NTP Service
	E.4.2	Removing the NTP Service
E.5	Addition	al Information

F Theory of Operation

F.1	GPS Sat	tellite Message
F.2	Satellite	Acquisition and Time to First Fix
	F.2.1	Cold Start
	F.2.2	Warm Start
	F.2.3	"Garage Search" Strategy
	F.2.4	Hot Start
F.3	Position	Accuracy
	F.3.1	Selective Availability (S/A)
F.4	Coordin	ate Systems
	F.4.1	TSIP
	F.4.2	NMEA 0183
F.5	Perform	ance Characteristics
	F.5.1	Update Rate
	F.5.2	Dynamic Limits
	F.5.3	Re-Acquisition
F.6	System	Architecture

Glossary

Index

List of Figures

Figure 1-1	Acutime 2000 GPS Smart Antenna Enclosure
Figure 2-1	Connection Diagram
Figure 3-1	Mounted Antenna
Figure 4-1	Acutime 2000 Interface Connector
Figure 4-2	Acutime 2000 12-pin Connector format
Figure 5-1	PPS Quantization Error
Figure 5-2	Removing the Quantization Error from the PPS Output 5-8
Figure 6-1	Time Transfer Connection Diagram
Figure 6-2	NTP Configuration File
Figure 6-3	Disabling Serial Port Services Using an Administrative Tool . 6-28
Figure 6-4	Sample UNIX Log Entries
Figure D-1	Acutime 2000 Standard Interface Cable
Figure D-2	NTP Interface Cable
Figure F-1	Acutime 2000 Block Diagram (RS-232 Version)
Figure F-2	Acutime 2000 Block Diagram (RS-422 Version)

List of Figures

List of Tables

Table 4-1	Mating Connectors
Table 4-2	Acutime 2000 RS-422 Cable Pin-Out
Table 4-3	Acutime 2000 RS-232 Cable Pin-Out
Table 5-1	Default Satellite Mask Settings
Table 5-2	Receiver Configuration (segment 2)
Table 5-3	OEM Configuration (segment 3)
Table 5-4	Port A and B Configuration (segment 4)
Table 5-5	PPS Configuration (segment 5)
Table 5-6	Position Information (segment 6)
Table 5-7	Self-Survey Configuration (segment 7)
Table 5-8	NMEA Configuration (segment 8)
Table 5-9	UTC Information (segment 11)
Table 6-1	System Serial Ports and Symbolic Link Names 6-27
Table A-1	Ace UTC Port Translation Table
Table A-2	Acutime 2000 Port Translation Table
Table A-3	Secondary Port Features (Acutime 2000)
Table A-4	Secondary Port Features (Ace UTC)A-6
Table A-5	Event Packets
Table A-6	Packets Output at Power-Up
Table A-7	Receiver Warm Start Commands
Table A-8	Background Packets
Table A-9	Automatic position and Velocity Reports
Table A-10	Low-Latency Timing Packets

Acutime 2000 Synchronization Kit User Guide

xiii

List of Tables

Table A-11	Satellite Data Packets
Table A-12	Customizing Receiver Operations
Table A-13	Advanced Packets
Table A-14	Command Packets Sent to the Receiver
Table A-15	Report Packets Sent by GPS Receiver to User
Table A-16	Command Packet 1D - Clear Oscillator Offset
Table A-17	Command Packet 1D - Set Oscillator Offset
Table A-18	Command Packet 1E
Table A-19	Command Packet 23
Table A-20	Command Packet 2B
Table A-21	Command Packet 2E
Table A-22	Command Packet 35
Table A-23	Command Packet 38
Table A-24	Command Packet 39
Table A-25	Command Packet 3A
Table A-26	Command Packet 3B
Table A-27	Command Packet 3C
Table A-28	Command Packet 3F-11
Table A-29	Report Packet 40
Table A-30	Report Packet 41
Table A-31	Relationship Between Packet 41 and Packet 46
Table A-32	Report Packet 42
Table A-33	Report Packet 43
Table A-34	Report Packet 45
Table A-35	Report Packet 46
Table A-36	Report Packet 46
Table A-37	Report Packet 47
Table A-38	Report Packet 49
Table A-39	Report Packet 4A – Report Reference Altitude
Table A-40	Report Packet $4A-Report\ Single-Precision\ LLA\ Position\ .\ .\ A-50$

Table A-41	Report Packet 4B
Table A-42	Byte 1 Bit Encoding – Status 1
Table A-43	Report Packet 4C
Table A-44	Report Packet 4E
Table A-45	Report UTC Parameters
Table A-46	Report Packet 54
Table A-47	0x56 – Velocity Fix, East-North-Up (ENU) Report A-56
Table A-48	Report Packet 57
Table A-49	Report Packet 58
Table A-50	Report Packet 58 – ALMANAC Data Report
Table A-51	Report Packet 58 – ALMANAC HEALTH Data Report A-60
Table A-52	Report Packet 58 – IONOSPHERE Data Report
Table A-53	Report Packet 58 – UTC Data Report
Table A-54	Report Packet 58 – EPHEMERIS Data Report
Table A-55	Report Packet 59
Table A-56	Report Packet 5A
Table A-57	Report Packet 5B
Table A-58	Report Packet 5C A-68
Table A-59	Report Packet 5F-11 – EEPROM Segment Status Report A-70
Table A-60	Report Packet 0x60 Data Formats
Table A-61	Report Packet 0x60 Data Formats for Health and Power A-72
Table A-62	Command Packet 0x61 Data Formats
Table A-63	Report Packet 6D
Table A-64	Command Packet 7A
Table A-65	Report Packet 83
Table A-66	Report Packet 84
Table A-67	Survey State Configurations
Table A-68	Vaild GPS Configuration Settings
Table A-69	Command Packet BB
Table A-70	Command Packet BC

Acutime 2000 Synchronization Kit User Guide

xv

List of Tables

Table A-71	Command Packet 8E-14
Table A-72	Command Packet 8E-14
Table A-73	Command Packet 8E-20
Table A-74	Command Packet 0x8E-45
Table A-75	Command Packet 8E-4A
Table A-76	Command Packet 8E-4D
Table A-77	Command Packet 8E-4D - Packets Affected By Bits A-93
Table A-78	Command Packet 0x8E-4E
Table A-79	Command Packet 0x8E-4F A-95
Table A-80	Command Packet 8E-A5
Table A-81	Command Packet 8E-A6
Table A-82	Command Packet 8E-A9 Data Format < <segment 7="">> A-99</segment>
Table A-83	Command Packet 8E-AB
Table A-84	Command Packet 8E-AC
Table A-85	Report Packet 8F-0B
Table A-86	Report Packet 8F-14
Table A-87	Report Packet 8F-20
Table A-88	Report Packet 8F-20
Table A-89	Report Packet 0x8F-26
Table A-90	Report Packet 8F-41
Table A-91	Report Packet 8F-42
Table A-92	Command Packet 8E-AD
Table A-93	Report Packet 8F-4A
Table A-94	Report Packet 8F-4D
Table A-95	Report Packet 8F-4D
Table A-96	Report Packet 0x8F-AB
Table A-97	Report Packet 8F-AC
Table A-98	Report Packet 8F-AD
Table A-99	Tracking Status Flag Definitions
Table A-100	Leap Second Flag Definitions

Table A-101	Datums
Table C-1	NMEA 0183 Characteristics
Table C-2	Acutime 2000 NMEA Messages
Table C-3	GGA – GPS Fix Data Message Parameters
Table C-4	GLL – Geographic Position – Latitude / Longitude Message Parameters
Table C-5	GSA – GPS DOP and Active Satellites Message Parameters . C-7
Table C-6	GSV – GPS Satellites in View Message Parameters C-8
Table C-7	RMC – Recommended Minimum Specific GPS / Transit Data Message Parameters
Table C-8	VTG – Track Made Good and Ground Speed Message Parameters
Table C-9	ZDA – Time & Date Message Parameters
Table D-1	Physical Specifications
Table D-2	Environmental Specifications
Table D-3	Performance Specifications
Table D-4	Electrical Specifications
Table D-5	Serial Protocols
Table E-1	Troubleshooting: Acutime is Not Responding
Table E-2	Troubleshooting: Incorrect Port and Bad Data E-15
Table F-1	Dynamic Upper Bound

Acutime 2000 Synchronization Kit User Guide

xvii

List of Tables

About This Manual

Welcome to the *Acutime*TM 2000 Synchronization Kit User Guide. This manual describes how to integrate the Acutime 2000 smart antenna with your host system.

Note – The Acutime 2000 has replaced the Palisade[™] and Palisade Network Time Protocol (NTP). It can be used with NTP (See Chapter 6) or as a stand-alone timing receiver. In some instances the term Palisade is still used in the screen captures and text in this manual. This will be updated in future revisions.

Scope and Audience

Even if you have used other Global Positioning System (GPS) products before, Trimble recommends that you spend some time reading this manual to learn about the special features of this product.

If you are not familiar with GPS, Trimble recommends that you do one of the following:

- Read the booklet *GPS*, *A Guide to the Next Utility* (available from Trimble).
- Complete the GPS tutorial at:
 - www.trimble.com/gps

The following sections provide you with a guide to this manual, as well as to other documentation that you may have received with this product.

Organization

This manual contains the following:

- Chapter 1, Introduction, describes the Acutime 2000 GPS smart antenna.
- Chapter 2, Getting Started, describes how to quickly install, connect and operate the Acutime 2000.
- Chapter 3, Acutime 2000 Installation, provides general installation guidelines.
- Chapter 4, Acutime 2000 Connections, provides detailed interfacing guidelines for connecting the Acutime 2000 GPS smart antenna to the host system.
- Chapter 5, System Operation, describes the operating characteristics of the Acutime 2000 from power-up through the output of GPS information. GPS timing applications are also described.
- Chapter 6, NTP Software Installation and Configuration, desrcibes the use of the Acutime 2000 in a NTP time server implemintation.
- Appendix A, Trimble Standard Interface Protocol, defines the TSIP protocol and the structure of all message packets.
- Appendix B, Timing Receiver Monitor, describes the monitor program included on the Acutime 2000 CD-ROM.
- Appendix C, NMEA 0183, provides a brief description of the NMEA 0183 protocol and defines the structure of the NMEA message output by the Acutime 2000.
- Appendix D, Specifications and Drawings, includes the specifications and mechanical drawings for the Acutime 2000 GPS smart antenna interface cables.
- Appendix E, NTP Diagnostics and Debugging, provides information to help troubleshoot NTP problems.

Acutime[™] 2000 Synchronization Kit User Guide

- Appendix F, Theory of Operation, gives a more detailed technical description of many of the Acutime 2000 GPS smart antenna's operating characteristics. A brief overview of the system architecture is also presented.
- The Glossary contains definitions of GPS and technical terms used in this manual.

Reader Feedback

Your feedback about the product documentation helps us to improve it with each revision. To forward your comments, do one of the following:

- Send an email to ReaderFeedback@trimble.com.
- Complete the Reader Comment Form at the back of this manual and mail or fax it according to the instructions at the bottom of the form.

If the Reader Comment Form is not available, send your comments and suggestions to the address in the front of this manual. Please mark it *Attention: Documentation Group*.

All comments and suggestions become the property of Trimble Navigation Limited. Thank you for your help.

Related Information

The following sections discuss other sources of information that introduce, extend, or update this manual.

Update Notes

If any changes are made to the firmware, update notes and firmware are posted to the Trimble Web site.

World Wide Web (WWW) Site

For more information about Trimble, visit our site on the World Wide Web:

• www.trimble.com

Technical Assistance

If you have a problem and cannot find the information you need in the product documentation, *contact your sales representative*. Alternatively, request technical support via email at trimble_support@trimble.com or by phone at 1-800-767-4822.

Abbreviations

In this manual, the following abbreviations are used:

- TSIP Trimble Standard Interface Protocol
- host system or host the device or instrument connected to the Acutime 2000 smart antenna

The host system can be a PC, network equipment, or timing system, depending on the application.

Document Conventions

Italics identify software menus, menu commands, dialog boxes, and the dialog box fields.

SMALL CAPITALS identify user commands, directories, filenames, and filename extensions.

Helvetica represents messages printed on the screen.

Courier Bold represents information that you must type in a software screen or window.

Helvetica Bold identifies a software command button.

Ctrl is an example of a hardware function key that you must press on a personal computer (PC). If you must press more than one of these at the same time, this is represented by a plus sign, for example, Ctrl + C.

Cautions and Notes

Cautions, notes, and tips draw attention to important information and indicate its nature and purpose.

Caution – Cautions describe operating procedures and practices required for correct operation and alert you to situations that could cause hardware damage or malfunction or software error.

Note – Notes give additional significant information about the subject to increase your knowledge, or guide your actions.

Warning – Warnings alert you to situations that could cause personal injury or unrecoverable data loss. A warning precedes the text it references.

Acutime[™] 2000 Synchronization Kit User Guide

1 Introduction

This chapter provides an overview of the Acutime 2000 GPS smart antenna.

1.1 Overview

The Acutime 2000 is the latest in the Trimble family of GPS smart antennas. The smart antenna allows OEMs and systems integrators to add GPS capability to their product lines quickly and easily, without becoming GPS experts. The Trimble Acutime 2000 GPS smart antenna encompasses the experience of four product lines: AcutisTM, AcutimeTM, AcutimeTM II and PalisadeTM.

The Acutime 2000, using Trimble's latest GPS technology, is designed for wireless voice and data network synchronization. It offers precise PPS output, event input, and also supports long cable runs.

The Acutime 2000 is composed of a set of matched subsystems. This ensures optimal GPS performance, long-term reliability, ease of operation, and easy integration.

The Acutime 2000 houses the GPS receiver, antenna, power supply, interface and other support circuitry in a single enclosure that mounts like an antenna. As a sealed, shielded, self-contained unit with a digital interface, the Acutime 2000 eliminates most of the difficulties associated with integrating GPS. Once power is applied, the Acutime 2000 self-initializes, acquires satellite signals, and computes position and time, automatically outputting this data to the host system.

To integrate the Acutime 2000, the OEM only needs to add a standard serial interface port on the host system and develop a software interface. Commonly used interface protocols, such as NMEA 0183, and the software interface tool (the Timing Receiver Monitor), simplify this task, minimizing the engineering costs associated with integrating the Acutime 2000.

1.2 Acutime 2000 GPS Smart Antenna Features

The Acutime 2000 has many features common to previous products in the Trimble family of smart antennas, including:

- an 8 to 36-volt DC power supply with protection against reverse polarity.
- Trimble's advanced multi-channel GPS receiver architecture, including:
 - the reference oscillator
 - the synthesizer and IF circuits
 - the digital signal processing hardware
 - a microprocessor
 - the serial interface circuitry
- a patch GPS antenna with a proprietary pre-amp design for excellent performance against jamming signals.
- a sealed, waterproof connector supporting both the power and interface connections.

a waterproof, UV-resistant, plastic (polycarbonate) enclosure with a proven epoxy seal.

(The enclosure is illustrated in Figure 1-1).

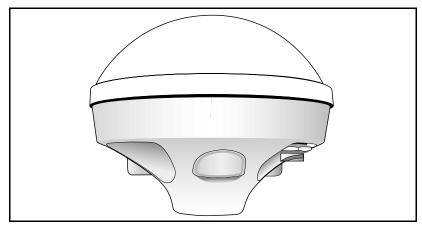


Figure 1-1 Acutime 2000 GPS Smart Antenna Enclosure

Acutime 2000 generates a PPS synchronized to UTC within 50 nanoseconds (one sigma). This level of precision is obtained using an overdetermined time solution, an 80-nanosecond pulse steering resolution and a T-RAIM (Time-Receiver Autonomous Integrity Monitor) algorithm. The Acutime 2000's PPS conforms to RS-422, which supports long cable runs. The Acutime 2000 outputs a comprehensive time packet after each PPS on a dedicated serial port. It also features an automatic operating mode that requires no user or host intervention. The Acutime 2000 accepts an event input and reports time stamps in response to an external event signal.

The Acutime 2000 is available in the following configurations:

- Acutime 2000 with RS-422 Interface and 8-channel receiver
- Acutime 2000 with RS-232 Interface and 8-channel receiver

Acutime 2000 Synchronization Kit User Guide

1

•

1-3

1.3 Starter Kit

The Acutime 2000 Synchronization Kit includes the following:

- Acutime 2000 with RS-422 interface and 8-channel receiver
- Acutime 2000 User Guide
- 100' interface cable with DB25 connectors
- RS-422 to RS-232 converter
- Timing Receiver Monitor software
- Power Supply

For information about Acutime 2000 interface cables, see Chapter 4, Acutime 2000 Connections.

For information about part numbers, refer to:

• www.trimble.com/products/acutime2000

2 Getting Started

This chapter describes how to quickly install, connect and communicate with the Acutime 2000 GPS Smart Antenna.

Note - For permanent installations, see the instructions in Chapter 3.

You will need the following items:

- a PC running Windows
- the Timing Receiver Monitor software for Windows (also available on the web site)
- an interface cable for the smart antenna
- an RS-422 to RS-232 converter (included in the Acutime 2000 Starter Kit)

You may require this if you are using an Acutime 2000 with an RS-422 interface. In many cases, however, a PC's communication port is flexible enough to accept an RS-422 signal without a converter.

• connectors/adapters for connecting the interface cable to the PC's communication port

The interface cable included in the Acutime 2000 Starter Kit is terminated with a DB25 connector. The standard interface cables are not terminated with connectors.

• a DC power source

The Acutime 2000 accepts 8-36 V DC power, and draws approximately 110 milliamps at 12 volts.

• A mounting pole

The Acutime 2000 accepts a standard 1"-14 straight thread.

2.1 Connecting the Smart Antenna

The Acutime 2000 can be placed anywhere with a clear view of the sky.

Connect the interface cable to the smart antenna. The connector on the interface connector has a locking ring for securing the connection.

2-2

2.2 Connecting the Computer and Power Source

The connection instructions illustrated in Figure 2-1 assume use of the Trimble interface cable included in the Synchronization Kit. If you are using your own cable, modify the instructions accordingly.

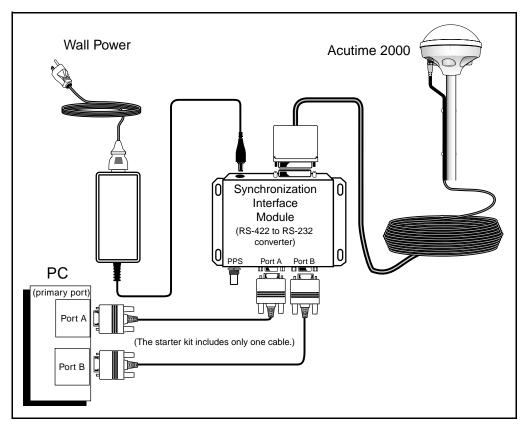


Figure 2-1 Connection Diagram

2.3 Communicating with the Acutime 2000

When power is applied, the Acutime 2000 acquires a valid set of satellites and automatically transmits position and time messages. During the satellite acquisition process, the Acutime 2000 outputs periodic status messages.

To begin communicating with the Acutime 2000, start the Timing Receiver Monitor program. Data fields in the Timing Receiver Monitor program fill up as the data becomes available. For more information, see Appendix B, Timing Receiver Monitor.

2-4

3 Acutime 2000 Installation

This chapter provides installation guidelines for the Acutime 2000 GPS smart antenna. Installation of the Acutime 2000 requires four steps:

- 1. Choosing a location.
- 2. Mounting the smart antenna.
- 3. Routing and securing the interface cable.
- 4. Connecting the host system.

Each of these installation steps is described on the following pages.

3.1 Choosing a Location

Select an outdoor location for the antenna (such as the roof of your building) that has a relatively unobstructed view of the sky. Consider the length of the cable run and the length of the interface cable when selecting a location. The Acutime 2000 GPS smart antenna is designed for a pole mount. (The mounting pole is not included with the Acutime 2000.) Pole mounting is illustrated in Figure 3-1.

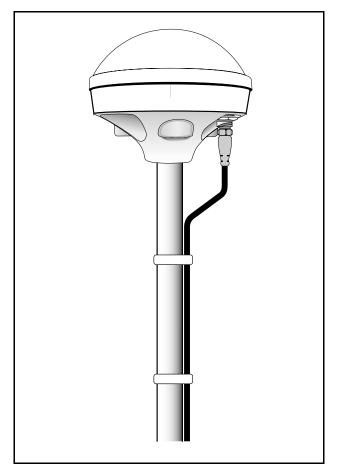


Figure 3-1 Mounted Antenna

The antenna can receive satellite signals through glass, canvas, and thin fiberglass, but dense wood, concrete and metal structures shield the antenna from satellite signals.

The Acutime 2000 GPS smart antenna contains an active antenna. For optimal performance, place it as far as possible from transmitting antennas, including radars, satellite communication equipment and cellular transmitters. When locating the antenna near a radar installation, ensure that the antenna is positioned outside of the radar's cone of transmission. When installing the antenna near satellite communication equipment, follow the same guideline. For best results, mount the antenna below and at least ten feet away from satellite communication equipment.

For installations exposed to shock or vibration exceeding the limits specified in Appendix D, Specifications and Drawings, use a mounting scheme that isolates the Acutime 2000 from the excessive shock or vibration.

3.2 Mounting the Smart Antenna

The smart antenna is designed for a pole mount, as illustrated in Figure 3-1. The threaded socket in the base of the antenna accepts a standard 1"-14 straight thread. A wide variety of 1"-14 pole mounts are available from marine hardware suppliers.

After obtaining an appropriate mounting pole, follow these simple steps to install the Acutime 2000 GPS smart antenna.

- 1. Secure the mounting pole to a solid structure so that it is oriented vertically.
- 2. Thread the smart antenna onto the pole or pipe and hand-tighten until snug.

Caution – Do not over-tighten the smart antenna on the pole or use a tool—this could damage the threaded socket in the base of the antenna. Also, do not use a thread-locking compound because it can damage the plastic housing.

3. Connect the interface cable to the smart antenna.

Download from Www.Somanuals.com. All Manuals Search And Download.

The connector on the interface connector has a locking ring for securing the connection.

Caution – Do not over-tighten the locking ring—this can strip the connector.

3.3 Routing and Securing the Interface Cable

After the smart antenna is mounted:

1. Route the interface cable from the smart antenna to the host location.

Note – The interface cable is a digital cable, so it can be spliced and extended, if necessary.

Choose the most direct path to the host system, while avoiding the following hazards:

- sharp bends or kinks in the cable
- hot surfaces (exhaust manifolds or stacks)
- rotating or reciprocating equipment
- sharp or abrasive surfaces
- door and window jambs
- corrosive fluids or gases
- 2. When you have established the ideal cable routing, secure the cable along the routing using tie-wraps.

When securing the cable, start at the antenna and work towards the host system. To provide strain relief for the interface cable connections, ensure that the cable is secured at points close to the smart antenna and the host system.

Note – Additional protection (for example, heat-shrink tubing) may be required to protect the cable jacket at points where the cable enters or exits bulkheads, especially if the opening is rough or sharp.

3. Once the cable is secured, the host end of the cable can be cut to an appropriate length (if necessary).

Leave enough slack to allow for easy connection to the host and normal movement (for example, rack, gimbal or swivel mounts).

3.4 Connecting the Host System

The final step, if applicable, is the installation of the connector on the host end of the cable. The connector installation instructions depend on the type of connector required by the host system.

For information on pin-outs, see Chapter 4, Acutime 2000 Connections.

4 Acutime 2000 Connections

This chapter provides instructions on connecting the Acutime 2000 to the host system and power source.

4.1 Interface and Power Connections

The black plastic connector located in the base of the Acutime 2000 supports both the interface and power connections. The Acutime 2000 uses a 12-pin connector. Figure 4-1 illustrates the location of the connector.

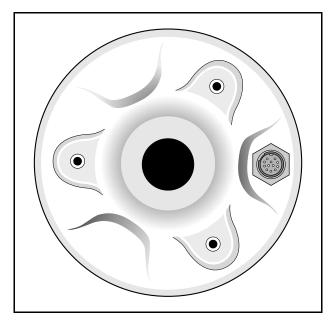
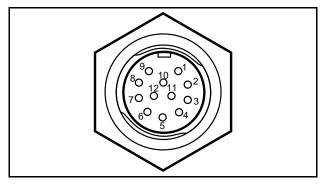



Figure 4-1 Acutime 2000 Interface Connector

Figure 4-2 illustrates the pin arrangement for this connector.

4.2 Interface Cables and Connectors

Interface cables for the Acutime 2000 are available in the following standard lengths.

- 50' (15-meter)
- 100' (30-meter)
- 200' (60-meter)
- 400' (120-meter)

Contact Trimble for custom-length cables up to 300 m.

For a list of part numbers, refer to:

• www.trimble.com/products/acutime2000

Note – The standard interface cables offered by Trimble are not terminated on the host end, so the appropriate connector must be installed before connecting the cable to the host system.

For OEMs and integrators who want to produce their own interface cables, Table 4-3 specifies the source and part number of the mating cable connectors for the 12-pin connector.

Table 4-1 Mating Connectors

Antenna Connector	Mating Connector	Manufacturer	Description
MMP Series #68001-2212P1	MMP Series #26C-2212S1	Deutsch Commercial Products 5733 W. Whittier Avenue Hemet, California 92545 Phone: (909) 765-2200	Connector body (requires a molded
		Fax: (909) 922-1544	backshell)

4.2.1 Pin-Outs

Table 4-2 lists the pin-out descriptions and color codes for the standard interface cables.

Table 4-2 Acutime 2000 RS-422 Cable Pin-Out

Signal Description	Wire Color	Protocol	Acutime 2000 Connector
DC Power (+8 to +36 Volts DC)	Red	+8 to 36 V	Pin 1
Port B: RS-422 / Receive	Violet	TSIP RS422	Pin 2
Port B: RS-422 / Receive +	Orange	TSIP RS422	Pin 3
Port B: RS-422 / Transmit -	Brown	TSIP RS422	Pin 4
Port B: RS-422 / Transmit +	Yellow	TSIP RS422	Pin 5
Port A: RS-422 / Receive -	White	Event Input / RTCM RS422	Pin 6
Port A: RS-422 / Receive +	Gray	Event Input/ RTCM RS422	Pin 7
Port A: RS-422 / Transmit -	Green	NMEA / TSIP RS422	Pin 8
DC Ground	Black	Ground	Pin 9
Port A: RS-422 / Transmit +	Blue	NMEA / TSIP RS422	Pin 10
One PPS: Transmit +	Orange w/ White stripe	RS422	Pin 11
One PPS: Transmit -	Black w/ White stripe	RS422	Pin 12

Table 4-3 Acutime 2000 RS-232 Cable Pin-Out

Signal Description	Wire Color	Protocol	Acutime 2000 Connector
DC Power	Red	+8 to +36V	Pin 1
Port B: RS-232 Receive	Violet	TSIP RS232	Pin 2
Not Used	Orange	Not Used	Pin 3
Port B: RS-232 Transmit	Brown	TSIP RS232	Pin 4
Not Used	Yellow	Not Used	Pin 5
Port A: RS-232 Receive	White	Event Input/RTCM	Pin 6
Port A: RS-232 Transmit	Gray	TSIP RS232	Pin 7
Vback	Green	Battery Backup	Pin 8
DC Ground	Black	Ground	Pin 9
Not Used	Blue	Not Used	Pin 10
One PPS: Transmit +	Orange/White	RS422	Pin 11
One PPS: Transmit -	Black/White	RS422	Pin 12

Note – The cable color codes listed in this table apply only if you are using the Trimble interface cable.

 \sum

Note – Receive and Transmit are with respect to the Acutime 2000 GPS smart antenna. The host Transmit should be connected to the Acutime 2000's Receive, and vice versa.

\sim

Note – The Acutime 2000 with an RS-232 interface is designed especially for short cable runs (usually under 50 feet). For longer cable runs, an RS-422 interface is recommended.

4-6

4.3 Connection Instructions

This section provides detailed information for connecting the Acutime 2000's power, timing pulse and data packet lines.

4.3.1 Power Connection (Red and Black Wires)

The red wire (Acutime 2000 pin #1) and black wire (Acutime 2000 pin #9) in the interface cable support the power and ground connections, respectively. The Acutime 2000 features a switching DC power supply, which accepts from 8 to 36 volts. The Acutime 2000 is protected against reverse polarity and brief over-voltage conditions; however, sustained over-voltage conditions can cause permanent damage.

Warning – Voltages exceeding 36 volts can cause permanent damage to the Acutime 2000's power supply.

The typical power consumption of the Acutime 2000 at an input voltage of 12 volts is 110 milliAmps, or 1.3 watts.

Note – The Acutime 2000 requires a minimum of 8 volts at the interface connector. When specifying the supply voltage, line losses in the interface cable must be considered. To account for line loss, the supply voltage may need to exceed 8 volts to satisfy the minimum voltage at the Acutime 2000.

4.3.2 Timing Pulse Connections

The Acutime 2000 outputs a timing pulse for use in timing and synchronization applications. The timing pulse is generated using an RS-422 line driver circuit (pins #11 and #12). The leading edge of the PPS output pulse is synchronized to UTC. The width of the pulse's leading edge is 20 nanoseconds or less. The exact width and shape of the pulse depends on the distributed capacitance in the interface cable.

For more information on using the timing pulse, see Chapter 5, System Operation.

4.3.3 Serial Port Connections

The recommended use of the serial ports on the Acutime 2000 for most users is as follows:

- Use Port B to configure the Acutime 2000 as necessary.
- Disable the automatic output packets on Port B using command packet 8E-A5.
- Use Port B to transmit the desired timing packet.
- Use Port B to query for specific satellite data as needed.
- Use the Port A receive line to time-tag external events or input RTCM data.

If you have two serial ports, use ports A and B on the Acutime 2000 as follows:

- Use Port B to configure the Acutime 2000 as necessary.
- Use Port A to transmit the desired timing packet.
- Use Port B to query for specific satellite data as needed.
- Use the Port A receive line to time-tag external events or input RTCM data.

Port B

Port B is the primary serial port for the Acutime 2000. You can send commands, receive command replies, and query for and receive a variety of satellite data (for example, ephemeris, tracking information, signal levels, and so on) using Port B. You can also receive timing packets that are synchronized with the PPS output on Port B.

TSIP timing packets 8F-0B, 8F-AB and 8F-AC (which work together as a pair of packets) or 8F-AD can be enabled on Port B using command packet 8E-A5. These packets are sent within 30 milliseconds after the PPS pulse when enabled.

By default, the Acutime 2000 automatically sends a variety of satellite data packets on Port B that you may not need. You can disable these automatic output packets with command packet 8E-A5 so that only the timing packets are sent. You can also choose to receive these timing packets on Port A, which serves as a dedicated transmit port for timing packets, and use Port B to send commands and receive satellite data.

Port B can also be configured to transmit NMEA packets, but these packets are not guaranteed to be sent within 30 milliseconds after the PPS output.

Port A

By default, the Port A receive line is used to receive external event inputs as described below; however, Port A can also receive serial RTCM (differential corrections.) When you enable RTCM messages on Port A (by sending command packets on Port B), the event input mechanism is automatically disabled. When RTCM messages are off (the default state), the event input mechanism is automatically enabled.

4.3.4 Event Input

The Acutime 2000 accepts an external event input in the form of an RS-422 pulse. The external event pulse input is supported on Port A (pins #6 and #7). The Acutime 2000 transmits a TSIP time packet (8Fx0B or 8FxAD) in response to the event input. The TSIP packet increments the event count field for each event received.

The event time stamp is generated within 320 nanoseconds of arrival at the Acutime 2000's interface connector. The precision of the time stamp is subject to Selective Availability.

Note – These Port A pins are shared between the external event input and serial RTCM message inputs. When differential GPS is enabled, this input is set up to receive RTCM messages. When differential GPS is off, this input is set up to receive external event signals.

4-10

Acutime 2000 Synchronization Kit User Guide

4

5 System Operation

This chapter describes the operating characteristics of the Acutime 2000 GPS smart antenna, including start-up, satellite acquisition, operating modes, serial data communication, and the timing pulse. The Acutime 2000 acquires satellites and computes position and time solutions. It outputs data in the TSIP (or NMEA) protocol through its serial ports.

For more technical information on system operation, see Appendix F, Theory of Operation .

5.1 Start-Up

At power-up, the Acutime 2000 automatically begins to acquire and track GPS satellite signals. It typically obtains its first fix in under two minutes.

During the satellite acquisition process, the Acutime 2000 outputs periodic TSIP status messages on Port B. These status messages confirm that the receiver is working.

Note – The Acutime 2000 has no provision for external backup power and always begins operation from a cold start unless a warm start is forced by uploading almanac data and time.

5.2 Automatic Operation

When the Acutime 2000 has acquired and locked onto a set of satellites that pass the mask criteria listed below, and has obtained a valid ephemeris for each satellite, it performs a self-survey. After a number of position fixes, lasting approximately 40 minutes, the selfsurvey is complete. At that time, the Acutime 2000 automatically switches to a time-only mode and periodic outputs of navigation information cease.

5.2.1 Satellite Masks

The Acutime 2000 continuously tracks and uses up to eight satellites in an overdetermined clock solution. The satellites must pass the mask criteria to be included in the solution.

Table 5-1 lists the default satellite masks used by the Acutime 2000. These masks serve as the screening criteria for satellites used in fix computations and ensure that solutions meet a minimum level of accuracy. The satellite masks can be adjusted using the TSIP protocol described in Appendix A, Trimble Standard Interface Protocol.

Mask	Setting	Notes
Elevation	10°	SV elevation above horizon
SNR	4	Signal strength
DOP	8	Self-survey only

Table 5-1 Default Satellite Mask Settings

Elevation Mask

Satellites below 10° elevation are not used in the solution. Generally, signals from low-elevation satellites are of poorer quality than signals from higher elevation satellites. These signals travel farther through the ionospheric and tropospheric layers and undergo distortion due to these atmospheric conditions.

SNR Mask

Although the Acutime 2000 is capable of tracking signals with SNRs as low as 2, the default SNR mask is set to 4 to eliminate poor quality signals from the fix computation. Low SNR values can result from:

- low-elevation satellites
- partially obscured signals (for example, dense foliage)
- multi-reflected signals (multipath)

Multi-reflected signals, also known as multipath, can degrade the position solution. Multipath is most commonly found in urban environments with many tall buildings and a preponderance of mirrored glass. Multi-reflected signals tend to be weak (low SNR value), since each reflection diminishes the signal. Setting the SNR mask to 4 or higher minimizes the impact of multi-reflected signals.

PDOP Mask

Position Dilution of Position (PDOP) is a measure of the error caused by the geometric relationship of the satellites used in the position solution. Satellite sets that are tightly clustered or aligned in the sky have a high PDOP and contribute to a lower position accuracy. For most applications, a PDOP mask of 8 offers a satisfactory trade-off between accuracy and GPS coverage. With worldwide GPS coverage, the PDOP mask can be lowered even more for many applications without sacrificing coverage.

Note – PDOP is only applicable during self-survey or whenever the receiver is performing position fixes.

5.2.2 Tracking Modes

The Acutime 2000 operates in one of two main fix modes:

- Self-Survey (Position fix mode)
- Overdetermined Clock mode

After establishing a reference position in Self-Survey mode, the Acutime 2000 automatically switches to Overdetermined (OD) Clock mode.

Self-Survey Mode

At power-on, the Acutime 2000 performs a self-survey by averaging 2000 position fixes. The number of position fixes until survey completion is configurable using the 8E-4B or 8E-A9 command.

The default mode during self-survey is 3-D manual, where the receiver must obtain a 3-D solution with a PDOP below both the PDOP mask and PDOP switch. The PDOP mask and switch criteria can be set and queried using a TSIP packet. If fewer than four conforming satellites are visible, the Acutime 2000 suspends data output.

The highest accuracy fix mode is 3-D manual, where altitude is always calculated along with the latitude, longitude, and time. Obtaining a position requires four satellites with a PDOP below the PDOP mask. Depending on how the PDOP mask is set, 3-D mode can be restrictive when the receiver is subjected to frequent obscuration or when the geometry is poor due to an incomplete constellation.

If only a 2-D solution is desired, or if the exact altitude is known, 2-D manual should be requested. In this case, the receiver uses either the last altitude obtained in a 3-D fix, or the altitude supplied by the user. Any error in the assumed altitude affects the accuracy of the latitude and longitude solution. Use packet BB to set the desired position fix mode.

5-4

Note - Altitude and the fix mode are stored in non-volatile memory.

Overdetermined Clock Mode

Overdetermined Clock Mode is used only in stationary timing applications. This is Acutime 2000's default mode. After the Acutime 2000 self-surveys its static reference position, it automatically switches to Overdetermined Clock Mode and determines the clock solution. The timing solution is qualified by a T-RAIM algorithm, which automatically detects and rejects faulty satellites from the solution.

In this mode, the Acutime 2000 does not navigate or update positions and velocities, but maintains the PPS output, solving only for the receiver clock error (bias) and error rate (bias rate).

5.2.3 PPS Output Options

The PPS (Pulse Per Second) output is the primary timing output generated by the Acutime 2000. In all configurations of the product, the PPS output is provided through a RS-422 differential driver. Although using a RS-422 differential receiver to receive the PPS provides the best noise immunity, you can use just one side of the differential signal for single-ended applications.

You can program the characteristics of the PPS output using TSIP packets. Packet 0x8E-4A allows you to enable or disable (turn it on or off), control the polarity, select the time base (GPS or UTC) and set the offset (control the cable delay compensation) of the PPS output. Packet 0x8E-4E allows you to set an accuracy criterion for the generation of the PPS signal based on the number of usable satellites. The accuracy of the PPS output depends to some degree on the number of satellites used in the solution that determine the placement of the PPS output. In some systems, it is preferable to have the PPS generated only when it meets the highest levels of accuracy and to leave it off if these accuracy levels are not met. Packet 0x8E-4F allows you to select the width of the PPS output from 10 us to 500 ms.

Note – For a complete description of the packets described here, see Appendix A, Trimble Standard Interface Protocol.

Acutime 2000 Synchronization Kit User Guide

5-6

5.2.4 PPS Quantization Error

The Acutime 2000 uses a high-precision, fixed-frequency oscillator as the timing source to down-convert and decode the GPS signal and to generate the PPS output signal. Since a fixed-frequency oscillator is used, the Acutime 2000 must place the PPS output on the clock edge that it determines is closest to UTC or GPS. This situation results in a quantization error on the placement of the PPS whose magnitude is equal to one-half the period of the fixed frequency oscillator. The oscillator frequency is 12.504 MHz, which is equivalent to a period just under 80 nanoseconds; therefore, the quantization error on the PPS output is between +/-40ns.

Figure 5-1 illustrates quantization error.

The top waveform represents the 12.504 MHz clock.

The Acutime 2000 PPS output must be placed on one of the rising edges of this clock. The middle waveform represents the UTC/GPS on-time mark as determined by the Acutime 2000's GPS receiver electronics.

The bottom waveform represents the Acutime 2000's PPS output, which is output on the clock edge closest to the actual UTC/GPS on-time mark.

12.504 Mhz Clock			
UTC or GPS PPS	 . 1		1
Acutime 2000 PPS		<u> </u>	

Figure 5-1 PPS Quantization Error

The amount of quantization error present on each PPS output pulse is reported in packet 0x8F-AC. This quantization error information can be used to reduce the effective amount of jitter on the PPS pulse.

Figure 5-2 illustrates the result of removing the quantization error from the PPS output in a user system.

The top plot shows the offset of the PPS output pulse relative to a stable standard such as a Cesium atomic clock. The quantization error is responsible for the jagged appearance of the waveform.

The middle plot shows the quantization error as reported by the Acutime 20000 in packet 0x8F-AC.

The bottom plot is the result of subtracting the quantization error from the PPS offset.

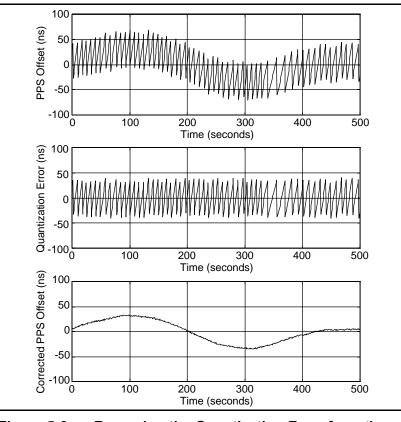


Figure 5-2 Removing the Quantization Error from the PPS Output

5.2.5 External Event Input

The Acutime 2000 provides an External Event Input that allows the user to time tag external event pulses. The event capture mechanism is triggered on the low-to-high transition of the external event input. The time tag provides a resolution of 320 nanoseconds and represents the time at which the event pulse occurred at the Acutime 2000 connector input. Therefore, it is offset by the amount of delay in the cable. The time tag information is reported in packet 0x8F-0B (or 8F-AD). This feature is intended for use with relatively infrequent event pulses. A practical limit on event pulse frequency is about 10 Hz. To prevent the Acutime 2000 hardware and firmware from being overrun with event pulse inputs, make sure that an event pulse will not occur until the time tag from the previous event pulse reported in packet 0x8F-0B (or 8F-OB (or 8F-AD) is received.

5.2.6 Cable Delay Compensation

The PPS output from the Acutime 2000 is calibrated to be aligned with UTC/GPS at the connector. The PPS you receive is delayed by the amount of propagation delay in the cable between the Acutime 2000 and your equipment. You can compensate for this delay by setting the PPS offset field of packet 0x8E-4A. The propagation delay through the cable depends on the cable type used, but in general, the delay is approximately 1.25 nanosecond per foot of cable. Negative PPS offset values cause the PPS output to occur early, which compensates for the propagation delay of the cable.

5.3 Serial Data Communication

When the Acutime 2000 has acquired a set of satellites that conforms to the mask and mode settings and has collected a valid ephemeris for each satellite, it automatically commences periodic outputs of GPS data and generates a timing pulse (PPS).

5.3.1 Port B

The Acutime 2000 outputs periodic TSIP health, mode, and time messages on Port B. These status messages confirm that the receiver is working. These packets are described in Appendix A, Trimble Standard Interface Protocol.

The factory default port setting is 9600 baud in/out, 8 data bits, odd parity, 1 stop bit. The serial port setting can be changed and stored in serial EEPROM using a TSIP command.

This port can also be configured to transmit timing packets, using packet 8E-A5 to determine which timing packet to output on this port.

5.3.2 Port A (Timing)

The Acutime 2000 has a dedicated serial port for outputting comprehensive time packets. Messages are output after the PPS and after external events. The factory default setting is TSIP, 9600, 8-odd-1, output only.

The host system receives both the PPS and the time packet identifying each pulse. Use packet 8E-A5 to determine which timing superpacket to output on this port.

The Acutime 2000 generates a packet in response to the external event input. The event count field in packet 8F-0B (or 8F-AD) increments for each event received. This field resets after a power cycle and rolls over at 65535. The event tag messages are interleaved with the PPS messages. PPS tags are distinguished by a zero (0) in the event count field. The Acutime 2000 accepts external events up to a

10 Hertz rate. Use packet 8E-A5 to configure this port to output the 8F-0B (or 8F-AD) packet in response to external events.

Acutime 2000 Synchronization Kit User Guide

5-11

5.4 GPS Timing

In many timing applications, such as time/frequency standards, site synchronization systems, wireless voice and data networks, and event measurement systems, GPS receivers are used to steer a local reference oscillator. The steering algorithm combines the short-term stability of the oscillator with the long-term stability of the GPS PPS. An accurate GPS PPS allows the use of cost-effective crystal oscillators, which have poorer stability than expensive, high-quality oscillators, such as atomic cells.

The GPS constellation consists of at least 24 orbiting satellites. Unlike most telecommunications satellites, GPS satellites are not geostationary, so satellites in view are constantly changing. Each GPS satellite contains four highly-stable atomic clocks, which are continuously monitored and corrected by the GPS control segment. Consequently, the GPS constellation can be considered a set of 24 orbiting "clocks" with worldwide 24-hour coverage.

A Trimble GPS receiver uses the signals from these GPS "clocks" to correct its own internal clock, which is not as stable or accurate as the GPS atomic clocks. A GPS receiver like the Acutime 2000 outputs a highly accurate timing pulse (PPS) generated by its internal clock, which is constantly corrected using the GPS clocks. In the case of the Acutime 2000, this timing pulse is synchronized to UTC within 50 nanoseconds (one sigma) after survey is complete.

In addition to serving as highly-accurate stand-alone time sources, GPS receivers are used to synchronize distant clocks in communication or data networks. This is possible because all GPS satellites are corrected to a common master clock. Therefore, the relative clock error is the same, regardless of which satellites are used. For synchronization applications requiring a common clock, GPS is the ideal solution.

GPS time accuracy is affected by the same major source of error that affects position accuracy: Selective Availability (S/A). The position and time errors are related by the speed of light. Therefore, a position error of 100 meters corresponds to a time error of approximately 333 nanoseconds. The GPS receiver's clocking rate and software affect PPS accuracy. The Acutime 2000's 12.5 MHz clocking rate enables a steering resolution of 80 ns (\pm 40 ns). Using software algorithms like an overdetermined clock solution, the Acutime 2000 mitigates the effects of S/A to achieve a PPS accuracy of 50 ns (one sigma) after survey is complete.

5.4.1 Timing Operation

The Acutime 2000 automatically outputs a PPS and time tag. With an accurate reference position, the Acutime 2000 automatically switches to an overdetermined clock mode, activates its T-RAIM algorithm and outputs a precise PPS. The overdetermined clock solution mitigates the effects of S/A. Using a simple voting scheme based on pseudo-range residuals, the Acutime 2000's integrity algorithm automatically removes the worst satellite with the highest residual from the solution set if that satellite's residual is above a certain threshold.

The Acutime 2000's default configuration provides optimal timing accuracy. The only item under user or host control that can affect the Acutime 2000's absolute PPS accuracy is the delay introduced by the interface cable. For long cable runs, this delay can be significant (1.25 nanoseconds per foot). TSIP packet 8Ex4A sets the cable delay parameter, which is stored in non-volatile memory. For the best absolute PPS accuracy, adjust the cable delay to match the installed cable length. The cable delay is 1.25 nanoseconds per foot of cable. To compensate for cable delay, use a negative offset to advance the PPS output.

Acutime 2000 Synchronization Kit User Guide

5-13

Timing Pulse Output (PPS)

A pulse-per-second (PPS), 1 microsecond-wide pulse is available on the Acutime 2000's interface connector. The pulse is sent once per second and the leading edge of the pulse is synchronized to UTC or GPS time. The pulse shape is affected by the distributed capacitance of the attached cabling and input circuit. The leading edge is typically less than 20 nanoseconds wide. The pulse's trailing edge should never be used for timing applications. An accurate timing pulse is available only when the Acutime 2000 is operating in the static Overdetermined Clock mode.

Note – GPS time differs from UTC (Universal Coordinated Time) by a small, sub-microsecond offset and an integer-second offset. The small offset is the steering offset between the GPS DoD clock ensemble and the UTC (NIST) clock ensemble. The large offset is the cumulative number of leap seconds since 1 January 1970, which, on 31 December 1998, was increased from 12 to 13 seconds. Historically, the offset increases by one second approximately every 18 months, usually just before midnight on 30 June or 31 December. System designers should note whether the output time is UTC or GPS time.

5-14

Note – The event time reported in 8F-0B and 8-AD is corrected for the fractional UTC offset if UTC PPS (default) is selected.

5.5 Using the Acutime 2000 in Mobile Applications

Although it is intended primarily for use in static applications, the Acutime 2000 can also be used in mobile applications. The factory default settings for the Acutime 2000 assume that the antenna is going to be used in a static timing application. To use the Acutime 2000 in mobile applications, you must disable the Acutime's selfsurvey mechanism and ensure that a stored position does not exist in the nonvolatile EEPROM.

To prepare the Acutime 2000 for mobile applications, complete the following steps.

• Make sure that there is no stored position in the nonvolatile EEPROM by using command packet 8E-45 with data byte 1 set to 6 (accurate position segment.)

This operation clears any stored position from the EEPROM.

• Disable the self-survey mechanism using command packet 8E-A9.

If not disabled, the self-survey mechanism will automatically survey the antenna's position and then set the receiver to operate in a static, time-only mode.

• Set the desired position fix mode using command packet BB.

After these steps are completed, the Acutime 2000 is ready to operate properly in mobile applications. While operating in a mobile application, the Acutime 2000 can continue to output a PPS pulse as well as timing packets.

Note – The accuracy of the PPS output pulse will be degraded by a factor of about 3 when the unit is operated in a mobile application.

5.6 Customizing Acutime 2000 Operations

The Acutime 2000 provides a number of user configurable parameters that allow you to customize the operation of the unit. These parameters are stored in a non-volatile memory chip (EEPROM) to be retained during loss of power and through resets. At reset or power-up, the Acutime 2000 configures itself based on the parameters stored in the EEPROM. You can change the values of these parameters to achieve the desired operations using a variety of TSIP packets. The Acutime 2000 configures itself based on the new parameter immediately, but the new parameter value is not automatically saved to the EEPROM. You must direct the Acutime 2000 to save the parameters to the EEPROM.

Parameters are grouped into sections of the EEPROM called segments. Each segment is identified with a number and contains a group of related parameters. To change the parameter values stored in EEPROM, send packet 0x8E-26 to direct the Acutime 2000 to save the current parameter values in a specified segment in the EEPROM. You can also direct the Acutime 2000 to set the parameter values to their factory default settings with packet 0x8E-45. When a segment is set to its factory defaults, the contents of the EEPROM segment are set and the Acutime 2000 configures itself with the default settings.

In brief, to customize the Acutime 2000 operations for your application:

- Configure the Acutime 2000 using TSIP command packets until the desired operation is achieved.
- Use TSIP packet 0x8E-26 to save the settings in non-volatile memory (EEPROM.)

The new settings will control the Acutime 2000 operations whenever it is reset or power cycled.

Tables 5-2 through 5-12 list the user configurable parameters by segment number. Each table lists the parameter name, its factory default value, and the TSIP packet that sets or reads the parameter value (typically, one TSIP packet sets or reads several related parameters.)

Parameter	Factory default	Set	Request	Report
Operating dimension	4 (Full Position 3D)	BB	BB	BB
DGPS mode	3 (Auto DGPS/GPS)	BB	BB	BB
Dynamics code	1 (Land)	BB	BB	BB
Elevation mask	0.175 radians (10 degrees)	BB	BB	BB
Signal level mask	4.0 AMU	BB	BB	BB
PDOP mask	8.0	BB	BB	BB
PDOP switch	6.0	BB	BB	BB
Foliage mode	0 (never)	BB	BB	BB
DGPS age limit	30 seconds	BB	BB	BB
Have reference altitude flag	FALSE	2A	2A	4A
Reference altitude (meters)	0.0	2A	2A	4A

Table 5-2 Receiver Configuration (segment 2)

 Table 5-3
 OEM Configuration (segment 3)

Parameter	Factory Default	Set	Request	Report
Datum index	WGS 84 Ellipsoid	8E-14	8E-15	8F-15
Position	0x12	35	35	35
Velocity	0x02	35	35	35
Time	0x01	35	35	35
Auxiliary	0x02	35	35	35
Super packets output mask (byte 1)	0x32	8E-A5	8E-A5	8F-A5
Super packets output mask (byte 2)	0x21	8E-A5	8E-A5	8F-A5
Auto TSIP output mask	0xFFFFFFC0	8E-4D	8E-4D	8F-4D

Acutime 2000 Synchronization Kit User Guide

5-17

Parameter	Factory default	Set	Request	Report
Input baud rate	9600	BC	BC	BC
Output baud rate	9600	BC	BC	BC
Parity	Odd	BC	BC	BC
Data bits	8	BC	BC	BC
Stop bits	1	BC	BC	BC
Input protocol	none	BC	BC	BC
Output protocol	TSIP	BC	BC	BC

Table 5-4 Port A and B Configuration (segment 4)

Table 5-5 PPS Configuration (segment 5)

Parameter	Factory default	Set	Request	Report
PPS enabled switch	Enabled	8E-4A	8E-4A	8E-4A
PPS timebase	UTC	8E-4A	8E-4A	8E-4A
Polarity	TRUE	8E-4A	8E-4A	8E-4A
PPS offset	0.0 Seconds	8E-4A	8E-4A	8E-4A
Bias uncertainty threshold	300.0 Meters	8E-4A	8E-4A	8E-4A
PPS width	10.0e-6 Seconds	8E-4F	8E-4F	8E-4F
PPS driver switch	3 (At least 1 SV)	8E-4E	8E-4E	8E-4E

Table 5-6 Position Information (segment 6)

Parameter	Factory default	Set	Request	Report
XYZ coordinates	Such that LLA coordinates are all zeros	31		
Have position flag	FALSE			

Parameter	Factory default	Set	Request	Report
Survey enable flag	TRUE	8E-A6	8E-A6	8F-A6
Survey length	2000	8E-A6	8E-A6	8F-A6
Survey save flag	FALSE	8E-A6	8E-A6	8F-A6
Survey operating dimension	Full Position 3D	0xBB	0xBB	0xBB

 Table 5-7
 Self-Survey Configuration (segment 7)

The survey operating dimension can be set to auto and 2D if segments are saved (8E-26) while a survey is in process. The receiver uses the dimension setting saved for the next survey. If a reference altitude has been entered and the receiver is set to 2D survey, the reference altitude is used. If a reference altitude has not been entered and the receiver is set to 2D survey, an altitude of 0 is used for 2D survey (not recommended).

Table 5-8NMEA Configuration (segment 8)

Parameter	Factory default	Set	Request	Report
NMEA message mask	0x0000020 (ZDA)	7A	7A	7A
NMEA message rate	1	7A	7A	7A
NMEA options	0	7A	7A	7A

Table 5-9UTC Information (segment 11)

Parameter	Factory default	Set	Request	Report
have_utc	FALSE			

Acutime 2000 Synchronization Kit User Guide

5-19

6 NTP Software Installation and Configuration

6.1 Network Time Protocol

The Network Time Protocol (NTP) is a family of programs that are used to adjust the system clock on your computer and keep it synchronized with external sources of time. NTP was developed by Dr. David Mills at the University of Delaware. Information is available at the official NTP web site:

www.eecis.udel.edu/~ntp

The Network Time Protocol is designed to function as a background task on the host operating system, so that its operation is transparent to the user and system tasks. Time data is transferred from external time sources to clients within your domain. NTP achieves accuracy in the sub-microsecond to low-millisecond range with hardware currently available.

This section describes installation of the NTP software on a designated network computer for use with the Acutime Smart Antenna as primary reference clock.

Note – The Acutime 2000 has replaced the Palisade and Palisade NTP. It can be used with NTP or as a stand-alone timing receiver. In some instances the term Palisade is still used in the screen captures and text in this manual. This will be updated in future revisions.

6.1.1 NTP Time Servers

A primary network time server is a networked computer connected to an accurate external source of reference time. The time server synchronizes its clock to the reference clock's time, and provides accurate time of day information to clients on the network. The network computer is also referred to as the host, because it provides a serial interface for the Acutime and processing facilities for time transfer.

NTP Time Server Requirements

The Acutime NTP Synchronization Kit can be used on any Windows NT or UNIX system with an available serial port. The NTP software used must include support for the Acutime Smart Antenna.

- Windows NT 4.0 or UNIX System with RS-232 Port
- NTP Version 4 Executable with Acutime NTP reference clock support

As many as four Acutime receivers can be connected to a single time server.

Optional Equipment:

DOS/Windows 95/98/NT System for monitoring GPS operation through Acutime Port B.

6.2 Software Sources and Compatibility

The list of systems supporting the Acutime NTP reference clock is continuously growing. For updated information, see the Trimble web site at **www.trimble.com/oem/ntp**.

For the latest documentation for the Acutime driver, or if Acutime NTP reference clocks are not supported by the version of NTP shipped with your operating system, see the Trimble FTP site at **ftp://ftp.trimble.com/pub/ntp**. You may also be able to obtain binaries supporting Acutime NTP through your operating system vendor's support channel.

You can also download and compile a late release of the NTP distribution yourself. For more information, see Compiling the NTP Distribution, page E-17.

6.2.1 Installation Support

Trimble is attempting to provide the best possible support for customers who use the Acutime NTP Synchronization Kit to transfer time to NTP hosts. Due to the wide variety of systems, peripherals, and associated configurations, Trimble is not able to provide assistance installing and testing NTP. Technical support for installation and configuration of NTP servers is limited to NTP documentation and software available on the Trimble Navigation NTP Web site at www.trimble.com/oem/ntp.

Please consult with a qualified systems administrator to verify I/O connections between the Acutime NTP reference clock and your host system.

For more information, consult the Internet news group **news:**//comp.protocols.time.ntp.

If you suspect a problem with the Acutime GPS receiver, please see Chapter 2, Getting Started, before calling Trimble technical support.

6.3 Pre-Installation Check List

Before beginning installation and configuration of NTP, complete the following tasks:

6.3.1 GPS Preparation

• Perform the checkout, installation and connection instructions in chapters 1–4.

 \searrow

Note – Temporary installations, as described in Chapter 2, can be used to establish functionality of NTP, but reliable performance cannot be achieved until the Acutime smart antenna is properly installed with clear view of the sky.

- The Acutime and Synchronization Interface Module should be powered up.
- PPS indicator LED should be flashing once per second, indicating the output of data packets.
- A valid UTC almanac has been acquired by the Acutime Smart Antenna. This should be confirmed using the Acutime Monitor or TSIPCHAT applications.

Note – NTP will not accept time stamps from the Acutime NTP reference clock until a valid UTC almanac has been obtained. The UTC information is stored in non volatile memory and only erased during a factory reset operation.

Acutime 2000 Synchronization Kit User Guide

6

6.3.2 Host System Preparation

- Installation of NTP must be performed by a user with administrative or super-user privileges.
- Network Time Protocol can not coexist with other clock synchronization utilities, such as the TimeServ utility available in the Microsoft Windows NT Resource Kit. Any other time synchronization utility running on the host system must be stopped, disabled or de-installed.
- The host system clock should be set manually to the correct time. If your network already has a time server, use the NTPDATE utility to reset the system clock is recommended. For more information on using NTPDATE, see Appendix E, NTP Diagnostics and Debugging. In absence of existing time servers, use the operating system date/time facilities to reset the clock to the approximate local time.

6.3.3 Operating System Specific Information

This documentation is applicable to Windows NT and UNIX Installation. Separate instructions for the different operating systems are provided where required.

6.4 Time Transfer Cable Connection

The serial port of the host computer serves as a precision synchronization interface between NTP and the Acutime smart antenna.

Connect Port A on the Acutime Synchronization Interface Module, to the NTP time server's serial port, as shown in Figure 6-1. Trimble provides a standard DB-9 serial cable with the Acutime NTP Synchronization Kit.

 \searrow

Note – If your network host's serial port is not a standard DB-9 serial connector, you need an appropriate converter. Ensure that proper Ground, Request To Send, Data Transmit and Data Receive connections are supported by the converter.

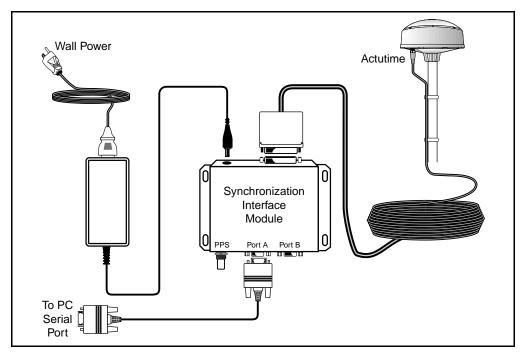


Figure 6-1 Time Transfer Connection Diagram

6-8

6.4.1 Optional Connections

Port B and the PPS output of the Synchronization Interface Module are not currently used by the Acutime NTP reference clock driver, and do not require connection. They are available for other applications, such as backup timing interfaces on the time server.

6.5 **NTP Software Installation**

NTP software installation consists of copying the NTP program and utilities to the host system's fixed disk, and configuring the system to start NTP after booting.

The same NTP software can be used on servers and client workstations. This versatility allows efficient reconfiguration of time servers to function with the Acutime NTP reference clock if necessary.

6-10

Acutime 2000 Synchronization Kit User Guide

6

6.5.1 NTP Configuration File

The NTP configuration file, NTP.CONF, is a human readable text file which contains information about security settings, time servers and reference clocks. NTP reads the information in this file at startup, and initializes itself according to the configuration entries.

The order of the line items in the configuration file is arbitrary. You must edit the configuration file for the serial port connection on your system. You should also include any available time servers on your network.

Note – The configuration file is a security sensitive file. It should be protected from accidental or intentional modification by users, and should only be modified by a qualified systems administrator.

Create a NTP configuration file similar to the one shown in Figure 6-2.

```
#-----
# Simple NTP Configuration File for Acutime NTP
#
# Trimble Acutime Smart Antenna GPS (Stratum 1).
server 127.127.29.1
#
# A network time server
server terrapin.trimble.com
#------
```

Figure 6-2 NTP Configuration File

Note – If your system already has a configuration file, you may want to review the entries or make a backup file before modifying the existing configuration.

Acutime 2000 Synchronization Kit User Guide

6.5.2 Acutime Configuration

The following line must be found in the NTP configuration file to declare an external Acutime NTP reference clock:

server 127.127.29.x

The prefix 127.127.29 uniquely identifies the Acutime NTP reference clock.

The last number, represented by \mathbf{x} , represents the reference clock unit number.

Unit Number

The unit number identifies the physical serial port to which Acutime is connected. Selection of the unit number, location of the NTP configuration file and installation of the software are different for Windows NT and UNIX. Follow the appropriate instructions to select the correct unit number for your Acutime Reference Clock.

6.5.3 Network Server Selection

To complete the configuration file, you need to define additional sources of time for the server. Each time server on the network should have at least three independent clock references to function optimally.

In large organizations there may already be network time servers in operation. Consult your system administrators for their names or IP numbers. If you have Internet Access, look at the list of public time servers and choose geographically close sites for your sources.

You should choose a minimum of one time server, and it is a good idea to choose three or more for redundancy. An example of a time server entry is provided in the sample configuration file. Create one server line item with the name or IP number for each available time server.

Additional Configuration Information 6.5.4

This documentation provides only minimal required configuration information. For complete information about available configuration options, please refer to documentation provided with your NTP distribution.

6-14

Acutime 2000 Synchronization Kit User Guide

6

6.6 Windows NT Installation

The following instructions are specific to installing the port of NTP for Windows NT distributed by Trimble Navigation at **ftp://ftp.timble.com/pub/ntp/binaries/winnt**.

Note – To install NTP, you must log into the Windows NT system as a user with administrator privileges.

Note – Other third-party distributions of NTP for Windows NT may not support the Acutime NTP reference clock.

Note – Not all features documented in the UNIX Version of NTP are supported in the Windows NT port. Trimble makes every effort to maintain the Windows NT port at the highest performance levels, but cannot maintain complete compatibility with UNIX versions, or provide technical support on the NTP port beyond the online documentation.

6.6.1 Automatic Installation

The automatic installation program for Windows NT performs all the steps required to install and configure the Network Time Protocol Service for Windows NT, with minimal input from the user.

For detailed installation instructions, please refer to the documentation accompanying the NTP installation program. The installation program creates the NTP configuration file after allowing the user to input the names or IP numbers of Network Time Servers, and information about the Acutime NTP reference clock.

6.6.2 Manual Installation

Manual installation requires the user to create the configuration file, copy the NTP executable to the appropriate location on disk, and then install, configure and start the NTP service.

The manual installation procedures for the NTP software are below.

Create the Configuration File

The NTP configuration file, NTP.CONF, should be created in the \WINNT\ directory.

The lines preceded by # symbols are comments and are ignored by NTP.

```
Imp-Notepad
File Edit Search Help
#-----
# Simple NTP Configuration File for Palisade NTP
#
# Trimble Palisade Smart Antenna GPS (Stratum 1).
server 127.127.29.1
#
# A network time server
server terrapin.trimble.com
#-----
```

Valid unit numbers on Windows NT are 1-255. The unit number identifies the number of the serial port on the Windows NT host. For example, if the Acutime NTP reference clock is connected to COM2, the entry line should read:

server 127.127.29.2

- 1. Copy the sample configuration file above.
- 2. Change the Acutime unit number to the correct number corresponding to the COM port you are using.

Acutime 2000 Synchronization Kit User Guide

- 3. Add SERVER lines for available NTP servers on your network. You must add one line for each NTP server with which you want your time server to communicate.
- 4. NTP clients should not be included in the SERVER configuration entries in the configuration file.

Note – If you are using NOTEPAD to create the configuration file, make sure that you select *All files* in the *Save as type* drop-down menu (this avoids creating a file named NTP.CONF.TXT, which NTP will not recognize).

Save As				? ×
Save <u>i</u> n:	🔄 tmp	•		* ::: :
File <u>n</u> ame:	ntp.conf			<u>S</u> ave
Save as type:	All Files		-	Cancel
🗖 Save as Uni	icode			

Copying Executable Files

The NTP service requires the NTP service executable, NTPD.EXE, to be available at system boot. In this example, the NTP executable is located in the \WINNT\SYSTEM32 directory.

1. Verify that all required files are present. The file sizes and dates may vary, but all files must be present for successful installation.

🎇 Command	Prompt					- D ×
C:\ntp>di			-			
		has no labe				
Volume S	erial Num	ber is D845-	2F2F			
Dimostan		L				
Director	y of C:∖n	гр				
05/09/99	02:46p	<dir></dir>				
	02:46p	<dir></dir>				
05/04/99			36,864	Instsrv.exe		
05/04/99				ntpq.exe		
05/04/99	02:21p		65,536	ntpdate.exe		
05/04/99	02:22p		102,400	ntpdc.exe		
05/04/99	02:22p		57,344	ntptrace.exe		
05/04/99	02:21p		167,936	ntpd.exe		
05/09/99	03:18p	<dir></dir>		debug		
	9 F	ile(s)	528,384	4 bytes		
			9,601,024	4 bytes free		
C:\ntp>						

The debug directory contains a debug version of NTP, which can be used to obtain more information about system operation or to diagnose problems. For more information on using the debug version of NTP, refer to Appendix E, NTP Diagnostics and Debugging.

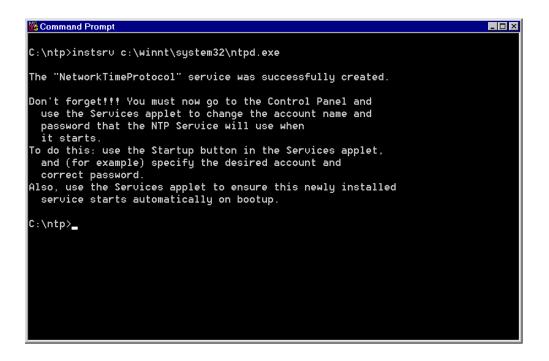
Acutime 2000 Synchronization Kit User Guide

2. Copy NTPQ.EXE, NTPDATE.EXE, NTPDC.EXE, NTPTRACE.EXE and NTPD.EXE to the \WINNT\SYSTEM32 directory.

🚜 Command	Prompt				_ 🗆 ×
Volume S	erial Numbe	er is D845-2F	2F		
Director	y of C:∖ntp)			
05/09/99	02:46p	<dir></dir>			
	02:46p	<dir></dir>			
	01:52p		 36.864 Inst	STU AYA	
05/04/99			98,304 ntpc		
	02:21p		65,536 ntpc		
	02:22p		02,400 ntpc		
05/04/99			57,344 ntpt		
05/04/99			67,936 ntpc		
05/09/99		<dir></dir>	debu		
		le(s)	528,384 byt	-	
			601,024 byt		
C:\ntp>co	py ntp×.exe	e c:\winnt\sy	stem32\		
ntpq.exe					
ntpdate.e	xe				
ntpdc.exe					
ntptrace.	exe				
ntpd.exe					
5	file(s) co	opied.			
C:\ntp>					

This operation ensures the NTP service files are available to Windows NT when the system starts.

Acutime 2000 Synchronization Kit User Guide


6

Installing the Service

The NTP service must be registered with the Windows NT Service Control Manager and configured to start at system boot.

To register the service, use the command line utility, INSTSRV.EXE, provided with NTP. The INSTSRV.EXE utility requires a single parameter representing the complete path to the location of the NTPD.EXE executable. This example assumes Windows NT is installed in: C:\WINNT. If your system directory is different, modify the path to the NTP executable accordingly.

- 1. Start a *command prompt* window, and change to the directory containing the INSTSRV.EXE utility.
- 2. Type instsrv c:\winnt\system32\ntpd.exe.

Note – Make sure to also type the .exe extension of the file name.

The program has registered the NTP service with the operating system. A message is printed informing the user to change the account name and password for NTP. This is not necessary in later versions of the Windows NT port.

6.6.3 Starting the Service

The last steps are performed using the Services Applet in the Windows NT Control panel.

- 1. Open the Control Panel Services Applet.
- 2. Scroll to Network Time Protocol.
- 3. Make sure Startup is set to Automatic.
- 4. Click Start.

e rvices Service	Status	Startup		
Net Logon	Started	Automatic	•	Close
Network Associates McShield	Started	Automatic		Start
Network Associates Task Manager	Started	Automatic		<u></u> (dirt
Network DDE		Manual		Stop
Network DDE DSDM		Manual		
NetworkTimeProtocol		Automatic		Pause
Novell Target Service Agent	Started	Automatic		Continue
Novell Workstation Manager		Automatic		
NT LM Security Support Provider		Manual		Sta <u>r</u> tup
pcANYWHERE Host Service		Manual	•	
				H <u>W</u> Profiles
St <u>a</u> rtup Parameters:				
				<u>H</u> elp

NTP starts and the Network Time Protocol service status changes to Started. Close the Services Applet.

Manual NTP configuration is complete. NTP will start each time the system is booted. To verify the correct operation of NTP and the Acutime NTP reference clock, follow the instructions in Monitoring NTP, page 6-31.

Acutime 2000 Synchronization Kit User Guide

6.7 UNIX Installation

Unix installation must be performed by a user with root (or super-user) privileges on the system.

The host system is usually configured to start NTP when the system boots, so that re-synchronization can be established quickly in case of a power or network failure.

Consult your UNIX system documentation to determine what start-up scripts must be modified to load NTP at system boot time. Many late Unix distributions contain administration tools that perform automatic installation and configuration of startup system tasks such as NTP.

6.7.1 Create the Configuration File

The NTP configuration file, NTP.CONF, should be located in the /ETC directory.

The window below shows a simple configuration file declaring a Acutime NTP reference clock and a network time server in the Trimble.COM domain. The Acutime NTP reference clock is declared as unit #1.

A maximum of four Acutime NTP reference clocks can be connected to any UNIX host. Valid unit numbers on UNIX systems are 0–3. The next section examines the use of the unit number in mapping to physical serial ports on the host system.

× xterm	_ 🗆 🗡
lucky_first# cat /etc/ntp.conf #	
# # UNIX Configuration for Palisade NTP refclock #1 server 127,127,29,1 #	
# a Network Time Server	
server terrapin.trimble.com #	
# lucky_first# ∎	

The /ETC/DRIFT file is used to record information about the onboard system's intrinsic frequency error. For more information on this feature, please refer to NTP documentation .

Acutime 2000 Synchronization Kit User Guide

6.7.2 Set Up Device Links

NTP attempts to open the I/O file /DEV/ACUTIMEX, to communicate with the Acutime NTP reference clock. The \mathbf{x} represents the unit number of the reference clock in the configuration file.

A symbolic link /DEV/ACUTIMEX must be set up to point to the correct host serial port. This is typically performed by a sequence of shell commands similar to:

cd /dev ln -s ttyS0 /dev/Acutime0

Creation of a symbolic link for Acutime NTP reference clock unit #1 connected to the second serial port, **ttyb**, is shown below for a Solaris system. The link for unit 0 has already been established and remains unused in this configuration.

🛛 xterm							
lucky_first#							
lucky_first#	cd /dev						
lucky_first#							
lucky_first#							
lrwxrwxrwx	1 root	other	4	Nov	3	1998	palisade0 -> ttya
lucky_first#							
lucky_first#	· · · · ·		_		_		
lrwxrwxrwx							ttya -> term/a
lrwxrwxrwx	1 root	root	6	Feb	2	1995	ttyb -> term/b
lucky_first#							
	In -s ttyb	/dev/palisade1					
lucky_first#		1.4					
lucky_first#					_	4000	
lrwxrwxrwx							palisadeO -> ttya
lrwxrwxrwx	1 root	other	4	May	10	00:17	palisade1 -> ttyb
lucky_first#		- 4 - 4					
lucky_first#				-	, _	N	1005
Sun Microsyst		sunus s₊s		Gener	°1C	Novemb	ber 1995
lucky_first#							

6-26

- 1. Replace the string **ttyb** in the **ln** command with the appropriate serial port designator for your system.
- 2. Replace the number 1 in the string /dev/Acutime1 with the unit number in your NTP configuration file.

Serial port designators on UNIX systems are usually designated by /dev/cuau or /dev/ttyu, where u may be composed of one or more alphanumeric characters.

The following table may assist you in locating the appropriate serial port and symbolic link names for your system. Verify presence of the actual device files and validity of all links in the /DEV directory before using a serial device.

 Table 6-1
 System Serial Ports and Symbolic Link Names

Operating system	Port Name / Enumeration	Serial Port	Sample Link
Linux	ttyS / 0, 1, 2,	/dev/ttyS0	/dev/Acutime0
HPUX	cua / 0, 1, 2,	/dev/cua1	/dev/Acutime1
SUN OS / Solaris	tty / a, b, c,	/dev/ttyc	/dev/Acutime2

6.7.3 Hardware Configuration

You may want to use a system configuration tool to enable and configure system serial ports to function with Acutime. Turn off any login service or modem server that may be attempting to use the port.

I	🛛 Adm	intool	Serial Ports				_ 🗆 🗵
	<u>F</u> ile	Edit	Browse				Help
	Port		Port Monitor	Service Tag	Connent		
	а			<pre>< no service ></pre>			
	b			< no service >			
						Host:	lucky_first

Figure 6-3 Disabling Serial Port Services Using an Administrative Tool

Acutime NTP uses the following serial port configuration:

- 9600 baud, 8-bits, 1-stop bit, odd parity.
- No DSR signal is generated.
- No DTR signal is required.
- Flow control protocols are not acknowledged.

If your UNIX system requires initialization of serial devices, use a configuration corresponding to these parameters.

6.7.4 Copying Executable Files

If you obtained binary executable versions of the NTP daemon and its utilities, you will have to unpack the archive and manually move the files to the desired storage directory. NTP is commonly located in /USR/LOCAL/BIN.

You must also edit your startup scripts to point to the location of the NTP executable you choose.

Acutime 2000 Synchronization Kit User Guide

6.7.5 System Initialization

Some systems may require additional initialization before NTP can run. Sun OS and Solaris may require running the TICKADJ utility to turn off synchronization with the onboard real-time clock.

⊠ xterm	_ 🗆 🗵
lucky_first#	
lucky_first#	
lucky_first# cat /etc/motd	
Sun Microsystems Inc. SunOS 5.5 Generic November 1995 lucky_first#	
lucky_first#	
lucky_first# tickadj -s	
KERNEL nsec_per_tick = 10000000 nsec	
KERNEL tick = 10000 usec (from nsec_per_tick kernel variable)	
PRESET tick = 10000 usec	
PRESET tickadj = 5 usec	
dosynctodr is off	
kernel level printf´s: on KERNEL hz = 100	
calculated hz = 100.00 Hz	
zeroing dosynctodr: done!	
lucky_first#	
lucky_first# _	
lucky_first#	

6.7.6 Start NTP

Execute NTP from the command line by typing the path and name of the ntp executable:

/usr/local/bin/ntpd

Installation of NTP is complete. You still need to modify startup scripts to ensure NTP is loaded when the system reboots.

To verify the correct operation of NTP and the Acutime NTP reference clock, follow the instructions in the next section, Monitoring NTP. To diagnose possible problems communicating with the Acutime, see Appendix E, NTP Diagnostics and Debugging.

6.8 Monitoring NTP

This section briefly describes the tools and operating system facilities used when monitoring NTP for correct operation. For more information of the capabilities of these tools, please refer to your Operating System and NTP documentation.

NTP provides a network accessible management interface that allows the NTP utilities included in the distribution to communicate with different servers. The NTP utilities are virtually identical on both UNIX and Windows platforms.

NTP query is a utility to quickly check the status of NTP servers or clients. The use of the NTP Query utility, NTPQ.EXE, is outlined on page 6-35.

NTP start-up and synchronization events are written into the Operating System Log files. The same messages are generated for UNIX and Windows NT, although the log interface is different for the two system classes.

6.8.1 NTP Events on Windows NT

On Windows NT, the Application Event Log is used to record NTP events.

Event Log Entries

Check the Application Event Log for status messages from the NTP task. Event log entries generated by the NTP service appear in the event log as shown. When reviewing events in the event log, begin with the first event, and move upwards reviewing events in chronological order.

		ion Log on \\US	01SWC03				_ 🗆 ×
	Options <u>H</u> elp	1	0	E		0	
Date	Time	Source	Category	Event		Computer	
 5/9/99 5/9/99 	8:42:50 PM 8:42:50 PM	NTP NTP	None None	3	N/A N/A	US01SWC03 US01SWC03	
er 9/9/99	0.42.301 M		None	y	190	000101/000	

The first entry in the Application log is the NTP startup message, reporting the NTP Version and build date. This entry indicates that NTP has started. For more information on system log entries generated by NTP, see Appendix E, NTP Diagnostics and Debugging.

Event D	etail				×
<u>U</u> ser:	5/9/99 8:42:50 PM N/A uter: US01SW0		Event ID: Source: Type: Category:	NTP Information	
<u>D</u> escri	intion:				
[htpd 4	.0.91 Tue May	4 14:19:58 1999 (i	0)		×
D <u>a</u> ta:	© <u>B</u> ytes (⊃ <u>W</u> ords			
4					A V A
	Close	<u>P</u> re∨ious	<u>N</u> ext	<u>H</u> e	lp

Acutime 2000 Synchronization Kit User Guide

6.8.2 UNIX System Log Files

In its native UNIX environment, NTP uses the host system's system log facilities to send reports to the operating system log files. Refer to your specific system's documentation to learn how to check the system log reports.

Monitor the host's system message log for status messages from the NTP task. A sample sequence of log entries generated by the NTPD daemon at startup are shown below:

```
May 3 17:42:27 terrapin ntpd[4032]: ntpd 4.0.92h Mon
May 3 14:28:00 PDT 1999
May 3 17:42:28 terrapin ntpd[4032]: precision = 25 usec
May 3 17:42:28 terrapin ntpd[4032]: using kernel phase-
lock loop 0041
May 3 17:42:28 terrapin ntpd[4032]: Acutime(0) fd: 8
dev: /dev/Acutime0
```

Figure 6-4 Sample UNIX Log Entries

6.8.3 NTPQ – The NTP Query Utility

NTP includes a network-enabled monitoring utility called NTP QUERY. This utility has a number of features that enable the user to monitor the performance of all time servers from a single console. To learn more about NTPQ, please refer to NTP documentation.

When NTPQ is first started, it presents a prompt:

ntpq>

The user enters **pe** to request the Peer Status List from the local server:

ntpq> pe

A table similar to the following one is generated. Each entry in the table provides information about a reference clock that NTP is attempting to synchronize with.

NTP is Communicating with the Acutime NTP Reference	ļ
Clock	

C:\WINNT\System32	\ntpq.exe								_ 🗆 ×	
ntpq>										
ntpq>										
ntpq> pe										
remote	refid	st	t	when	poll	reach	delay	offset	jitter	
-US01SWC02					1024	377	2.449		1.058	
+ra.Trimble.COM				98	128	377	3.587			
+terrapin.Trimbl				87	128		2.679			
spring.ENG.Trim		16			1024	0	0.000		4000.00	
x155.63.38.190			u		64					
<pre>*GPS_PALISADE(1)</pre>	.GP3.	U		61	128	377	0.000	-0.017	0.002	
ntpq>										
ntpq>										
ntpq>										
ntpq>										
ntpq> ru										
	status=04f4 leap_none, sync_uhf_clock, 15 events, event_peer/strat_chg,									
processor="i586", system="Linux2.0.30", leap=00, stratum=1, provision=17, restdelou:0,000, restdienersion=2,025, poer-40057										
precision=-17, rootdelay=0.000, rootdispersion=2.935, peer=48057, refid=GPS, reftime=bae0f470.1e077036 Sun, May 9 1999 23:00:16.117,										
poll=7, clock=bae0f4b6.ac232096 Sun, May 9 1999 23:01:26.672, state=4,										
phase=0.000, frequency=8.632, jitter=0.002, stability=0.001										
ntpg>										
ntpq>										
ntpq>										

The Acutime NTP reference clock is identified in the list as GPS_ACUTIME. The data indicates that the Acutime GPS is selected as reference clock, that it was last polled 61 seconds ago, and that it has responded to each of the last 11 polls. The offset between the system clock and UTC is 17 microseconds, with a jitter of 2 microseconds.

The use of the **rv** command is also shown above. It reveals more information about the reference clock source in use by NTP.

NTP is not Running

If NTP is not running on the machine, you will see a timeout message:

```
ntpq> pe
hostname.trimble.com: timed out, nothing
received
***Request timed out
ntpq>
```

Problems with NTP and the Acutime NTP reference clock can be observed using NTPQ by monitoring the *when* and *reach* fields of the GPS_ACUTIME line item.

No Response from the Acutime NTP Reference Clock

If the Acutime is not responding to NTP poll requests, the debug output appears as follows:

C:\WINNT\System32\ntpq.exe									
ntpq>									
ntpq>									
ntpq>									
ntpq> pe									
remote	refid	st	t	when	poll	reach	delay	offset	jitter
		= = = :		= = = = = = =	=====				=======
ra.Trimble.COM	155.63.38.190	2	u	81	256	377	3.805	-619.49	0.000
+terrapin.Trimbl	iq.Trimble.COM	2	u	24	64	377	2.215	-589.47	23.508
xspring.ENG.Trim	LOCAL(0)	- 4	u	24	256	377	2.626	7579.85	0.000
x155.63.38.190	.GPS.	1	u	25	64	377	3.439	-889.22	29.290
GPS_PALISADE(2)	.GPS.	Θ	u		16	Θ	0.000	0.000	4000.00
<pre>*homer.Trimble.C</pre>	iq.Trimble.COM	2	u	5	64	377	-4.628	-579.42	23.760
ntpq>									
ntpq>									
ntpq> ru									
status=06a4 leap_none, sync_ntp, 10 events, event_peer/strat_chg,									
processor="unknown", system="WINDOWS/NT", leap=00, stratum=3,									
precision=-20, rootdelay=6.917, rootdispersion=95.273, peer=35601,									
refid=homer.Trimble.COM,									
reftime=bae2553d.5b0f27bb Tue, May 11 1999 0:05:33.355, poll=6,									
clock=bae25559.a0cd5304									
phase=-583.564, frequency=-58.680, jitter=85.053, stability=75.934									
ntpq>									
ntpq>									
ntpq>									

Acutime 2000 Synchronization Kit User Guide

The reach count for GPS_ACUTIME is 0, which indicates a clock or communication failure.

Observe also that the status reports sync_ntp, and that refid is no longer GPS, indicating the server has fallen back to an available network time source.

For more information on correcting this condition, see Appendix E.

6-38

A Trimble Standard Interface Protocol

The Trimble Standard Interface Protocol (TSIP) provides commands that the system designer can use to configure a GPS receiver for optimum performance in a variety of applications. TSIP enables the system designer to customize the configuration of a GPS module to meet the requirements of a specific application.

TSIP is a simple bidirectional, binary packet protocol used in a wide variety of Trimble GPS receivers. TSIP offers a broad range of command packets and report packets that provide the GPS user with maximum control over the Acutime 2000 and ACE UTC receivers.

This appendix provides the information needed to make use of the powerful TSIP features, enhance overall system performance, and reduce the total development time. The reference tables beginning on page A-7 help you determine which packets apply to your application. For those applications requiring customization, see Table A-12 for a detailed description of the key setup parameters. Application guidelines are provided for each TSIP command packet, beginning on page A-10.

A.1 Interface Scope

The Trimble Standard Interface Protocol (TSIP) is based on the transmission of packets of information between the user equipment (host) and the GPS receiver. Each packet includes an identification code (1 byte, representing 2 hexadecimal digits) that identifies the

Acutime 2000 Synchronization Kit User Guide

A-1

meaning and format of the data that follows. Each packet begins and ends with control characters.

A.1.1 Packet Structure

TSIP packet structure is the same for both commands and reports. The packet format is:

<DLE> <id> <data string bytes> <DLE> <ETX>

<DLE> is the byte 0x10, <ETX> is the byte 0x03, and <id> is apacket identifier byte, which can have any value except for <ETX>and <DLE>. The bytes in the data string can have any value. To prevent confusion with the frame sequences <DLE> <id> and <DLE><ETX>, every <DLE> byte in the data string is preceded by an extra<DLE> byte ('stuffing'). These extra <DLE> bytes must be added ('stuffed') before sending a packet, and removed ('unstuffed') after receiving the packet.

Note – A simple <DLE> <ETX> sequence does not necessarily signify the end of the packet, as these can be bytes in the middle of a data string. The end of a packet is <ETX> preceded by an odd number of <DLE> bytes.

Multiple-byte numbers (integer, float, and double) follow the ANSI/ IEEE Std 754 IEEE Standard for Binary Floating-Point Arithmetic as illustrated below. They are sent most-significant-byte-first. This may involve switching the order of the bytes as they are normally stored in Intel-based machines. Only the fractional part of the mantissa for real numbers, SINGLE and DOUBLE, is reported because the leading bit on the mantissa is always 1. Specifically:

INTEGER is a 16-bit unsigned number sent in two's complement format.

SINGLE (float, or 4 byte REAL) is sent as a series of four bytes; it has a precision of 24 significant bits, approximately 6.5 digits.

DOUBLE (8 byte REAL) is sent as a series of eight bytes (a, b, c, d, e, f, g, h); it has a precision of 52 significant bits, a little better than 15 digits.

The TSIP protocol is the primary protocol used by the Ace UTC and Acutime 2000 receivers. This document describes in detail all TSIP packet identification codes, the format of each packet, and all available information that can be output from the Ace UTC and Acutime 2000. This manual allows the user to configure the receiver to output information required for a particular application. The receiver transmits some of the information (position and velocity solutions, etc.) automatically when it is available, while other information is transmitted only on request.

A.2 Physical Interface Characteristics

The Ace UTC and the Acutime 2000 utilize high-quality serial I/O components to drive the available serial transmit and receive channels.

The Acutime 2000 is available in RS-232 and RS-422 configurations, while the Ace UTC utilizes single-ended technology the proven in a long series of embedded board-level receiver products.

Regardless of the physical transmission medium, the receiver architectures allow both products to achieve identical performance, while the firmware offers a proven standardized interface.

The Ace UTC's I/O capabilities differ from those of Acutime 2000 as a result of physical differences, between the two boards. Some options in the serial port configuration packet 0xBC are not applicable to either Ace UTC or Acutime 2000 and are labeled as such.

This section is provided to provide the user with a complete understanding of the capabilities of each receiver.

Acutime 2000 Synchronization Kit User Guide

A

A.2.1 Nomenclature

Historically, the ports of the Smart Antenna product lines which include Acutis, Acutime and Palisade products, have been described using letters "A" and "B". The board-level products, such as Lassen, Ace and Core Module 3, have historically used port numbers "1" and "2" to label the ports on the starter kit.

The Acutime 2000 ports are referenced by letters "A" and "B", conformant to standards established by the Palisade product line.

The Ace UTC ports are referenced by numbers, conformant with the conventions of previous board-level products.

This manual reconciles the naming schemes of both receiver lines, and generally refers to the ports using the Ace UTC convention of using "1" and "2". Exclusively, where designations apply only to Acutime 2000, the ports will be referenced as letters "A" or "B".

The following tables can be used to cross reference the port identifiers:

Function	Label	Internal
Primary	Port 1	Port 0
Secondary	Port 2	Port 1

Table A-2Acutime 2000 Port Translation Table

Function	Label	Internal
TSIP	Port B	Port 0
Timing	Port A	Port 1

A.2.2 Protocol Capabilities

The I/O ports of Ace UTC and Acutime 2000 are highly configurable. Port settings are stored in non-volatile memory, and are retained across power outages. For systems with minimal bandwidth for processing serial data streams, the receivers can be configured as silent devices, which only generate I/O when polled. On the other end of the spectrum, the Ace UTC and Acutime 2000 receivers can be configured to output various automatic report packets and protocols to satisfy demanding real-time update requirements of complex monitoring systems.

Event Input

Both receivers feature an event input which can capture and report time stamps with the same precision as the PPS signal.

Primary Port Features

The Acutime 2000 and Ace UTC both feature a primary bidirectional port, which is factory configured as for TSIP input and output.

Secondary Port Features (Acutime 2000)

The Acutime 2000 has a bi-directional, programmable secondary port, that is designated as the Timing port. The timing port's protocol input lines are shared with the Event input feature.

The receiver can be configured to accept protocol input or event signals, but not both. Acutime 2000 cannot generate event time tags if port A is configured for RTCM input or TSIP input.

The port can be configured to accept and output data using various protocols as shown in the table below.

 Table A-3
 Secondary Port Features (Acutime 2000)

Port Designator	Input	Default	Output	Default
"Port A"	TSIP, RTCM	none	TSIP, NMEA	TSIP

Acutime 2000 Synchronization Kit User Guide

Secondary Port Features (Ace UTC)

Due to the number of available I/O pins, the Ace UTC does not generate output on its secondary port.

The input port may be configured as shown in the table below.

Table A-4Secondary Port Features (Ace UTC)

Port Designator	Input	Default	Output
"Port 2"	TSIP, RTCM	TSIP	N/A

A.2.3 Event Input

The Ace UTC and Acutime 2000 receivers are capable of timestamping external events with high-precision. Events are triggered by an input pulse, and can be reported by either or both of two super packets. The output of the event packets can be configured using packet 8E-A5.

The data in both packets allows constructing a unique 4-dimensional coordinate identifying each event.

Event Reporting

Table A-5Event Packets

Super Packet	Length	Description
8F-0B	74	Comprehensive time with LLA position
8F-AD	22	Primary UTC time with leap information

The receivers can output the event reports on any available TSIP port.

A.3 Packets Output at Power-Up

The following table lists the messages output by the receiver at power-up. After completing its self-diagnostics, the receiver automatically outputs a series of packets that indicate the initial

operating condition of the receiver. Messages are output in the following order. Upon output of packet 82, the sequence is complete and the receiver is ready to accept commands.

Output ID	Description	Notes
46	Receiver health	
4B	Machine code/status	
45	Software version	
83	Double precision XYZ position	If single precision is selected, packet 42 is output instead.
84	Double precision LLA position	If single precision is selected, packet 4A is output instead.
82	DGPS position fix mode	

 Table A-6
 Packets Output at Power-Up

A.4 Receiver Warm Start

You can warm-start the receiver by sending each of the following commands after the receiver has completed its internal initialization and has output packet 82 (see Table).

Input ID	Description
2B/23	Initial position (LLA)/ECEF
2E	Initial time
38 (type 2)	Almanac (for each SV)
38 (type 3)	Almanac health
38 (type 4)	lonosphere page
38 (type 5)	UTC correction

 Table A-7
 Receiver Warm Start Commands

Acutime 2000 Synchronization Kit User Guide

A.5 Default Background Packets for Acutime 2000

The Acutime 2000 automatically outputs a set of packets that you can monitor for changes in receiver operations, including receiver health, time, almanac pages, and ephemeris updates. These messages are output at the rates indicated in the table below.

Table A-8 Background Packets

Output ID	Description	Notes
41	GPS time	If the receiver's GPS clock is set and the receiver is not outputting positions, time is output approximately every 16 seconds.
		Output approximately every 2.5 minutes if the receiver is doing position fixes.
46	Receiver health	Output approximately every 16 seconds, if the receiver is not doing fixes.
		Output approximately every 30 seconds if the receiver is doing position fixes.
		Whenever any bit in the health message changes, receiver health is automatically output.
6D	Mode packet	Output approximately every 30 seconds or when a constellation change occurs.

 \searrow

Note – The background packets listed in this table are automatically output. Background packets can be turned off. For more information on this option, see Command Packet 8E-4D.

A.6 Default Automatic Position and Velocity Reports for Acutime 2000

The Acutime 2000 automatically outputs position and velocity reports at set intervals. Report intervals are controlled by packet 35.

Output ID	Description
42	Single precision XYZ position
83	Double-precision XYZ position
4A	Single-precision LLA position
84	Double-precision LLA position
43	Velocity fix (XYZ ECEF)
54	See Note
56	Velocity fix (ENU)

 Table A-9
 Automatic position and Velocity Reports

Note – When the receiver is in the Manual or Overdetermined Clock mode, it outputs packet 54 to provide the computed clock-only solution.

A.7 Automatic Primary and Supplemental Timing Reports for ACE UTC

Timing Packets 8F-AB and 8F-AC are automatically output at 1 Hz. These packets are part of the low-latency packet series AB/AC/AD/ OB. See section A.8.

A.8 Low-Latency Timing Packets

The Ace UTC and Acutime 2000 feature a sequence of high-priority timing super packets, which are output within a bounded period of time after the PPS. The LLT packets offer an advanced data interface for applications requiring accurate data reports in a time constrained environment.

On Acutime 2000 and Ace UTC, the first super packet will start transmission no later than 15 - 25 ms after the PPS transition.

The super packets which meet the LLTP criteria are in the table below. The packets are listed in order of output priority. Output of each packet can be turned on/off by using the mask in packet 8E-A5, but the output order cannot be changed.

The packets may also be requested, please refer to the specific packet documentation for details.

LLTP Packet ID	Description	Request Packet ID
8F-AB	Primary Timing	8E-AB
8F-AC	Supplemental Timing	8E-AC
8F-AD	Primary UTC Time	8E-AD
8F-0B	Comprehensive Time and Position	8E-0B

 Table A-10
 Low-Latency Timing Packets

The receiver will output all other TSIP packets after the transmission of LLTP packet sequence is complete.

Note – Only the first packet will meet the LLTP specification. All other LLTP packets will be output immediately after the first LLTP packet completes.

A.9 Event Packets

Event packets 8F-0B and 8F-0A are output in response to the event input as configured by packet 8E-A5

A.10 Satellite Data Packets

The following packets request data transmitted by the GPS satellites and satellite tracking information.

Input ID	Description	Output ID
20	Request almanac	40
27	Request signal levels	47
28	Request GPS system message	48
29	Request almanac health page	49
2F	Request UTC parameters	4F
38	Request/load satellite system data	58
39	Set/request satellite disable or ignore health	59
3A	Request last raw measurement	5A
3B	Request satellite ephemeris status	5B
3C	Request tracking status	5C

Table A-11 Satellite Data Packets

A.11 Customizing Receiver Operations

The following packets let you customize the receiver output for your application.

Input ID	Description Outp			
21	Request current time	41		
23	Initial position (XYZ Cartesian ECEF)			
24	Request receiver position fix mode	6D		
26	Request receiver health	46 and 4B		
27	Request satellite signal levels	47		
2A	Altitude for 2-D mode	4A		
2B	Initial position (LLA)			
2E	GPS time	4E		
35	Set input/output options	55		
37	Status and values of last position and velocity	57 (Note 1)		
7A	Set/request NMEA interval and message mask	7B		
BB	Set/request receiver configuration	BB		
BC	Set/request port configuration	BC		
8E-14	Set/request datum value	8F-14		
8E-15	Request datum values	8F-15		
8E-4A	Set/request PPS characteristics	8F-4A		
8E-A5	Set/request packet broadcast mask	8F-A5		
8E-A6	Issue self-survey command 8F-A6			
Note 1: Output is	s determined by packet 35 settings (see Table A-3).	·		

 Table A-12
 Customizing Receiver Operations

The following packets let you customize receiver operations.

Input ID	Description	Output ID
1E	Clear memory, reset	(Note 1)
25	Soft reset and self test	(Note 1)
2D	Request Oscillator offset	4D
37	Information about last computed fix	57 (Note 1)
39	Satellite disable or ignore health	59 (Note 2)
3A	Last raw measurement	5A
3B	Satellite ephemeris status	5B
3C	Tracking status	5C
BB	Set receiver configuration parameters	BB
8E-4A	Set PPS characteristics	8F-4A
8E-4E	Set PPS output option	8F-4E
8E-4F	Set PPS Width (Acutime 2000 only)	8F-4F
8E-20	Fixed Point Superpacket	8F-20

Table A-13 Advanced Packets

Note 1: Output is determined by packet 35 settings. For packets 1E and 25, see Table to determine which packets are output at power-up.

Note 2: Not all modes of packet 39 cause a reply (see the description for packet 39, page A-37).

A.12 Command Packets Sent to the Receiver

Table A-14 summarizes the command packets sent to the receiver. It includes a short description of each packet and the associated output packet. In some cases, the response packets depend on user-selected options. These selections are described beginning on page A-20.

Input	Packet Description	Output ID
1D	Oscillator Offset	
1E	Reset receiver	(Note 1)
1F	Software version	45
20	Almanac	40
21	Current GPS time	41
22	Fix Mode select	(Note 2)
23	Initial position (XYZ Cartesian ECEF)	
24	Receiver position fix mode	6D
25	Soft reset and self-test	(Note 1)
26	Receiver health	46, 4B
27	Signal levels	47
28	GPS system message	48
29	Almanac health page	49
2A	Altitude for 2-D mode	4A
2B	Initial position (LLA)	
2C	Operating parameters	4C
2D	Oscillator offset	4D
2E	Set GPS time	4E
2F	UTC parameters	4F
31	Accurate initial position (XYZ Cartesian ECEF)	
32	Accurate initial position (LLA)	
34	Satellite # for 1-SV mode	
35	I/O options	55
37	Status and values of last position and velocity	57 (Note 4)

 Table A-14
 Command Packets Sent to the Receiver

Acutime 2000 Synchronization Kit User Guide

Input	Packet Description	Output ID
38	Load satellite system data	58
39	Satellite enable/disable and health heed/ignore	59 (Note 3)
3A	Last raw measurement	5A
3B	Satellite ephemeris status	5B
3C	Tracking status	5C
3D	Timing port configuration	3D
3F-11	Request EEPROM segment status	5F-11
7A	Set/request NMEA interval and message mask	7B
BB	Set receiver configuration	BB
BC	Set port configuration	BC
8E-0B	8F-0B output configuration	8F-A5/8F-0B
8E-14	Set new datum	8F-14
8E-15	Current datum values	8F-15
8E-20	Last fix (fixed point)	8F-20
8E-26	Write receiver configuration EEPROM	8F-26
8E-41	Manufacturing parameters	8F-41
8E-42	Production parameters	8F-42
8E-45	Revert segments to default settings	8F-45
8E-4A	Set/request PPS characteristics	8F-4A
8E-4B	Survey limit	8F-4B
8E-4D	Packet Output Mask	8F-4D
8E-4E	Set PPS output option	8F-4E
8E-4F	Set PPS Width (Acutime 2000 only)	8F-4F
8E-A5	Set or request packet broadcast mask	8F-A5
8E-A6	Issue self-survey command	8F-A6
8E-AB	Set/request primary timing packet 8F-AB	
8E-AC	Set/request supplemental timing packet	8F-AC
8E-AD	8F-AD output configuration	8F-A5/8F-AD

 Table A-14
 Command Packets Sent to the Receiver (Continued)

Note 1: Output is determined by packet 35 settings. See Table to determine which messages are output at power-up.

Acutime 2000 Synchronization Kit User Guide

Table A-14	Command Packets Sent to the Receiver ((Continued)	

Input	Packet Description	Output ID	
Note 2: Entering 1SV mode initiates automatic output of packet 54.			

Note 3: Not all packet 39 operations have a response. See packet 39 description.

Note 4: Output is determined by packet 35 settings.

A.13 Report Packets Sent by the GPS Receiver to the User

Table A-15 summarizes the packets output by the receiver. It includes the output packet ID, a short description of each packet, and the associated input packet. In some cases, the response packets depend on user-selected options. These selections are covered in the packet descriptions beginning on page A-20.

Output ID	Packet Description	Input
3D	Timing port configuration	3D
40	Almanac data for one satellite	20
41	GPS time	21
42	Single-precision XYZ ECEF position	37
43	Velocity fix (XYZ ECEF)	37
45	Software version information	1F
46	Health of receiver	26
47	Signal level for all satellites	27
48	GPS system message	28
49	Almanac health for all sats	29
4A	Single-precision LLA position	37
4B	Machine code/status	26
4C	Report operating parameters	2C
4D	Oscillator offset	2D
4E	Response to set GPS time	2E
4F	UTC parameters 2F	

Table A-15 Report Packets Sent by GPS Receiver to User

A-16

Table A-15	Report Packets Sent by	y GPS Receiver to Us	ser (Continued)
------------	------------------------	----------------------	-----------------

Output ID	Input	
54	One-satellite bias and bias rate	22
55	I/O options	35
56	Velocity fix (ENU)	37
57	Information about last computed fix	37
58	GPS system data/acknowledge	38
59	Satellite enable/disable and health heed/ignore	39
5A	Raw measurement data	3A
5B	Satellite ephemeris status	3B
5C	Satellite tracking status	3C
5F-11	Request EEPROM segment status	3F-11
6D	All-in-view satellite selection	24
7B	NMEA interval and message mask	7A
83	Double-precision XYZ position	37
84	Double-precision LLA position	37
BB	Receiver configuration	BB
BC	Port configuration	BC
8F-0B	Comprehensive time	Auto/Event
8F-14	Current datum values	8E-14
8F-15	Current datum values	8E-15
8F-20	Last fix with extra information (fixed point)	8E-20
8F-26	Response to save EEPROM segments	8E-26
8F-41	Manufacturing parameters	8E-41
8F-42	Production parameters	8E-42
8F-45	Response to revert segments to default	8E-45
8F-4A	PPS characteristics	8E-4A
8F-4B	Survey limit	8E-4B
8F-4D	Automatic packet output mask	8E-4D
8F-4E	PPS output option	8E-4E
8F-4F	Set PPS width (Acutime 2000 only)	8E-4F
8F-A5	Packet broadcast mask	8E-A5

Acutime 2000 Synchronization Kit User Guide

Output ID	Packet Description	Input
8F-A6	Response to self-survey command	8E-A6
8F-AB	Primary timing packet	8E-AB
8F-AC	Supplemental timing packet	8E-AC
8F-AD	UTC event time	Event/Auto

 Table A-15
 Report Packets Sent by GPS Receiver to User (Continued)

A.14 Packet Structure

TSIP packet structure is the same for both commands and reports. The packet format is:

<DLE> <id> <data string bytes> <DLE> <ETX>

<DLE> is the byte 0x10, <ETX> is the byte 0x03, and <id> is a packet identifier byte, which can have any value except for <ETX> and <DLE>. The bytes in the data string can have any value. To prevent confusion with the frame sequences <DLE> <id> and <DLE> <ETX>, every <DLE> byte in the data string is preceded by an extra <DLE> byte ('stuffing'). These extra <DLE> bytes must be added ('stuffed') before sending a packet, and removed ('unstuffed') after receiving the packet.

Note – A simple <DLE> <ETX> sequence does not necessarily signify the end of the packet, as these can be bytes in the middle of a data string. The end of a packet is <ETX> preceded by an odd number of <DLE> bytes.

Multiple-byte numbers (integer, float, and double) follow the ANSI/ IEEE Std 754 IEEE Standard for Binary Floating-Point Arithmetic as illustrated below. They are sent most-significant-bytefirst. This may involve switching the order of the bytes as they are normally stored in Intel-based machines. Only the fractional part of the mantissa for real numbers, SINGLE and DOUBLE, is reported because the leading bit on the mantissa is always 1. Specifically:

INTEGER is a 16-bit unsigned number sent in two's complement format.

SINGLE (float, or 4 byte REAL) is sent as a series of four bytes; it has a precision of 24 significant bits, approximately 6.5 digits.

DOUBLE (8 byte REAL) is sent as a series of eight bytes (a, b, c, d, e, f, g, h); it has a precision of 52 significant bits, a little better than 15 digits.

Acutime 2000 Synchronization Kit User Guide

A.15 Packet Descriptions

Command packets are sent from an external device, such as a computer or terminal, to the receiver when requesting report packets, setting receiver parameters, or performing receiver command operations such as resetting the receiver. Many command packets have a corresponding report packet, which is sent to the external device in response to the command packet. Some commands perform discrete operations and have no matching report packet.

0x1D Command Packet 1D Oscillator Offset

This packet commands the GPS receiver to set or clear the oscillator offset in battery backed memory. This is normally used for servicing the unit.

Table A-16 Command Packet 1D - Clear Oscillator Offset

Byte	ltem	Туре	Value	Response
0	Operation	Byte	"C," 43 hex	Clear the oscillator offset

To set the oscillator offset, four data bytes are sent: the oscillator offset in Hertz relative to L1 as a SINGLE real value. The oscillator offset is automatically updated when the receiver is doing fixes.

Table A-17 Command Packet 1D - Set Oscillator Offset

Byte	ltem	Туре	Value	Response
0-3	Offset	Single	Offset in Hertz	Set the oscillator offset

Note – Use of this packet is for diagnostic purposes only and is not recommended for the user.

0x1E Command Packet 1E Initiate Cold or Factory Reset

This command packet tells the receiver to perform either a cold reset or a factory reset. A cold reset clears all navigation data (for example, almanac, and ephemeris) stored in RAM and is equivalent to a power cycle. A factory reset also restores the factory defaults for all configuration and navigation parameters stored in non-volatile memory. This packet can affect separately the configuration parameters and navigation parameters. It contains one data byte equal to one of the following ASCII letters: 'K', 'F', 'C','N', or 'R'.

Table A-18 Command Packet 1E

Byte	Item	Туре	Value	Response
0	Rest	BYTE	'K' (0x4B) 'F' (0x46) 'C' (0x43) 'N' (0x4E) 'R' (0x52)	Cold reset Factory reset Compatibility re-start for the Palisade firmware version v7.02 Clear navigation data in EEPROM and cold reset Set configuration parameters in EEPROM to factory defaults

Caution – The factory reset commands 0x1E-'F' and 0x1E-'R' will delete the stored position and cause a self-survey to restart. All almanac, ephemeris, current position, mode, and communication port setup information stored in RAM is lost by the execution of these commands.

0x1F Command Packet 1F Software Versions Request

This packet requests information about the version of software running in the Navigation and Signal Processors. This packet contains no data bytes. The GPS receiver returns packet 45.

Acutime 2000 Synchronization Kit User Guide

0x20 Command Packet 20 Almanac Request

This packet requests almanac data for one satellite from the GPS receiver. This packet contains one data byte specifying the satellite PRN number. The GPS receiver returns packet 40 hex.

0x21 Command Packet 21 Current Time Request

This packet requests current GPS time. This packet contains no data. The GPS receiver returns packet 41 hex.

0x23 Command Packet 23 Initial Position (XYZ Cartesian ECEF) Command

This packet provides the GPS receiver with an approximate initial position in XYZ coordinates. This packet is useful if the user has moved more than about 1,000 miles since the previous fix.

Note – The GPS receiver can initialize itself without any data from the user; this packet merely reduces the time required for initialization.

This packet is ignored if the receiver is already calculating positions.

The origin is the earth's center. The X-axis points toward the intersection of the equator and the Greenwich meridian, the Y-axis points toward the intersection of the equator and the 90° meridian, and the Z-axis points toward the North Pole. The cold-start default LLA (not XYZ) position is 0, 0, 0.

The data format is shown in the table below.

Table A-19Command Packet 23

Byte	ltem	Туре	Units
0-3	Х	Single	meters

A-22

Byte	ltem	Туре	Units
4-7	Y	Single	meters
8-11	Z	Single	meters

Table A-19 Command Packet 23

0x24 Command Packet 24 GPS Receiver Position Fix Mode Request

This packet requests the current position fix mode of the GPS receiver. This packet contains no data. The GPS receiver returns packet 6D.

0x25 Command Packet 25 Initiate Soft Reset / Self Test Command

This packet commands the GPS receiver to perform a software reset. The GPS receiver performs a self-test as part of the reset operation. This packet contains no data. Following completion of the reset, the receiver outputs the startup messages (see Table A-1). The receiver retains the time, survey position, port configuration, and almanac contents during this operation.

Note – The GPS receiver sends packet 45 only on power-up and reset (or on request). If packet 45 appears unrequested, either the GPS receiver power was cycled or the GPS receiver was reset.

0x26

Command Packet 26 Health Request

This packet requests health and status information from the GPS receiver. This packet contains no data. The GPS receiver returns packets 46 and 4B.

0x27 Command Packet 27 Signal Levels Request

This packet requests signal levels for all satellites currently being tracked. This packet contains no data. The GPS receiver returns packet 47.

0x28 Command Packet 28 GPS System Message Request

This packet requests the GPS system ASCII message sent with the navigation data by each satellite. This packet contains no data. The GPS receiver returns packet 48.

0x29 Command Packet 29 Almanac Health Page Request

This packet requests the health page from the almanac. This packet contains no data. The GPS receiver returns packet 49.

Ox2A Command Packet 2A Altitude for 2-D Mode Command

This packet provides the altitude to be used for Manual 2-dimensional navigation mode. This altitude is also used for Auto 2-D mode. This packet contains one SINGLE number (4 bytes) specifying the altitude in meters, using the WGS-84 model of the earth or MSL geoid altitude, depending on I/O options (set by packet 35). The GPS receiver returns packet 4A. It is recommended that the user upload the reference altitude before the receiver starts doing position fixes.

If an altitude is not provided, the receiver will use the altitude of the previous 3-D fix (altitude-hold mode). Sending packet 2A with one data byte equal to 0xFF will cancel altitude-set mode and return the reference altitude to 0. The altitude setting is stored in non-volatile memory. Packet 0x8E-26 can be used to write receiver configuration to EEPROM.

To use the fixed altitude survey mode, the receiver must be configured to Manual 2-D navigation mode using packet BB. The reference altitude will be used in 2-D survey from both warm and cold starts.

Note – If the receiver altitude is set above 18,000 m, the receiver will be forced to reset each time it acquires satellites. This is implemented to conform with the COCOM industry standard.

0x2B

Command Packet 2B Initial Position (Latitude, Longitude, Altitude) Command

This packet provides the GPS receiver with an approximate initial position in latitude and longitude coordinates (WGS-84). This packet is useful if the user has moved more than about 1,000 miles since the previous fix.

Note – The GPS receiver can initialize itself without any data from the user; this packet merely reduces the time required for initialization.

This packet is ignored if the receiver is already calculating positions. The cold-start default LLA position is 0, 0, 0.

The data format is shown below.

Table A-20Command Packet 2B

Byte	ltem	Туре	Units
0-3	Latitude	Single	radians, north
4-7	Longitude	Single	radians, east
8-11	Altitude	Single	meters

The GPS receiver returns packet 4C.

0x2D Command Packet 2D Oscillator Offset Request

This packet requests the calculated offset of the GPS receiver master oscillator. This packet contains no data. The GPS receiver returns packet 4D hex. This packet is used mainly for service.

0x2E Command Packet 2E GPS Time Command

This packet provides the approximate GPS time of week and the week number to the GPS receiver. The GPS receiver returns packet 4E. The data format is shown below. The GPS week number reference is Week # 0 starting January 6, 1980. The seconds count begins at the midnight which begins each Sunday morning.

Table A-21Command Packet 2E

Byte	ltem	Туре	Units
0-3	GPS time of week	Single	seconds
4-5	GPS week number	Integer	weeks

This packet is ignored if the receiver has already calculated the time from tracking a GPS satellite.

0x2F Command Packet 2F UTC Parameters Request

This packet requests the current UTC-GPS time offset (leap seconds). The packet has no data. The receiver returns packet 4F.

0x31 Command Packet 31 Accurate Initial Position (XYZ Cartesian ECEF) Command

This packet is identical in content to packet 23. This packet provides an initial position to the GPS receiver in XYZ coordinates. However, the GPS receiver assumes the position provided in this packet to be accurate. This packet is used for satellite acquisition aiding in systems where another source of position is available and in time transfer (one-satellite mode) applications. For acquisition aiding, the position provided by the user to the GPS receiver in this packet should be accurate to a few kilometers. For high-accuracy time transfer, position should be accurate to a few meters. TRAIM flags come on if this position is not accurate enough.

Acutime 2000 Synchronization Kit User Guide

A-27

A

Inputting accurate position sets the self-survey completion state to 100%. The uploaded position is not stored in EEPROM unless it is stored with command packet 8E-26. The input position is reported by packet 8F-AC.

Acutime 2000 Synchronization Kit User Guide

Download from Www.Somanuals.com. All Manuals Search And Download.

0x32 Command Packet 32 Accurate Initial Position (Latitude, Longitude, Altitude) Command

This packet is identical in content to packet 2B. This packet provides the GPS receiver with an initial position in latitude, longitude, and altitude coordinates. However, the GPS receiver assumes the position provided in this packet to be accurate. This packet is used for satellite acquisition aiding in systems where another source of position is available and in time transfer (one-satellite mode) applications. For acquisition aiding, the position provided by the user to the GPS receiver in this packet should be accurate to a few kilometers. For high-accuracy time transfer, position should be accurate to a few meters. TRAIM flags come on if this position is not accurate enough.

Inputting accurate position sets the self-survey completion state to 100%. The uploaded position is not stored in EEPROM unless it is stored with command packet 8E-26. The input position is reported by packet 8F-AC.

0x34 Command Packet 34 Satellite Number For One-Satellite Mode Command

This packet allows the user to control the choice of the satellite to be used for the 1D Timing mode. This packet contains one byte. If the byte value is 0, the GPS receiver automatically chooses the usable satellite with the highest elevation above the horizon. This automatic selection of the highest satellite is the default action, and the GPS receiver does this unless it receives this packet. If the byte value is from 1 to 32, the packet specifies the PRN number of the satellite to be used. A subsequent value of 0 will return the receiver to automatic 1-SV mode.

Acutime 2000 Synchronization Kit User Guide

A-29

A

0x35 Command Packet 35 I/O Option Flags Command

This packet requests the current I/O option states and optionally allows the I/O option states to be set as desired.

To request the option states without changing them, the user sends the packet with no data bytes included. To change any option states, the user includes 4 data bytes with the values indicated below in the packet. The I/O options, their default states, and the byte values for all possible states are shown below. These option states are held in non-volatile memory. The GPS receiver returns packet 55. Use packet 8E-26 to save settings to EEPROM.

These abbreviations apply:

- ALT Altitude
- ECEF Earth-centered, Earth-fixed
- XYZ Cartesian coordinates
- LLA Latitude, Longitude, Altitude
- HAE Height Above Ellipsoid
- WGS-84 Earth model (ellipsoid)
- MSL geoid Earth Mean Sea Level mode
- UTC Universal Coordinated Time

Byte	Parameter Name	Bit Position	Default Bit Value	Option	Associated Packets
0	Position	0 (LSB)	0	XYZ ECEF Output 0: Off, 1: On	42 or 83
		1	1	LLA Output 0: Off, 1: On	4A or 84
		2	0	LLA ALT Output 0: HAE (current datum) 1: MSL geoid WGS-84	4A or 84
		3	0	ALT input 0: HAE (current datum) 1: MSL geoid WGS-84	2A
		4	1	Precision-of-position output 0: Single-precision packet 42 and/or 4A. 1: Double-precision packet 83 and/or 84	
		5	0	8F-20 Output 0: Off 1: On	
		6-7	0	Unused	
1	Velocity	0	0	XYZ ECEF Output 0: Off, 1: On	43
		1	1	ENU output 0: Off, 1: On	56
		2-7	0	Unused	
2	Timing	0	1	Time type 0: GPS time, 1: UTC	
		1	0	Fix computation time 0: ASAP 1: Next integer sec	
		2	0	Fix output time 0: When computed 1: Only on request	37

Table A-22Command Packet 35

Byte	Parameter Name	Bit Position	Default Bit Value	Option	Associated Packets
2	Timing	3	0	Synchronized measurements 0: Off 1: On	N/A
		4	0	Minimize Projection 0: Off, 1: On	N/A
		5-7	0	Unused	
3	Auxiliary	0	0	Raw measurements 0: Off, 1: oN	5A
		1	1	Doppler smoothed codephase 0: Raw, 1: Smoothed	5A
		2-7		Unused	

 Table A-22
 Command Packet 35 (Continued)

Packet 35 is used to control the format and timing of the position and velocity output.

Bytes 0-1

Bytes 0 and 1 control the message output format.

Byte 2

Byte 2 contains the five time parameters described below:

- Time Type This bit defines whether the time tags associated with a position fix are in GPS time or UTC time. The default is UTC time.
- Fix Computation Time This bit controls the time and frequency of position fixes. The default is ASAP.

Alternatively, in the integer second mode, the most recent measurements are projected to next integer second, and the solution is then valid at this time. The benefit of this mode is the standard fix time and a 1 Hz output rate. The drawbacks are that some measurement projection is performed and that the fix may be slightly older than with the default option. This mode also conforms to the output rate of NMEA.

- Output Time This bit defines whether fixes are automatically output when computed or only sent in response to a packet 37 request. The default is automatic output.
- Synchronized Measurements This bit controls whether all satellite range measurements are required to have the same time tag. The default is OFF. Slightly older measurements are tolerated (on the order of 3-5 seconds) to provide solutions when obscurations make it impossible to obtain exactly concurrent measurements from each satellite.

When this bit is ON, all measurements are required to have the same time tag. This mode is used only when the user application requires all satellite measurements to be identical to the position time tag. If a satellite that is in the selected set for the solution is lost, then no fix will be made until a new selection is made.

The synchronized measurement mode combined with the minimized projection timing mode (see next paragraph) allows absolutely no measurement projection. However, obscurations may reduce the fix density when there are limited satellites. Use this mode cautiously.

Acutime 2000 Synchronization Kit User Guide

•

Minimized Projection - This bit controls the time of the position fix relative to the time of the satellite range measurements. The default mode is OFF. In this mode, the time of solution is the time at which the GPS position fix is computed. Thus, all measurements are projected by an interval which is roughly the amount of time it takes to compute the solution. This approach minimizes the latency between the time tag of the computed solution and the solution output. The drawback is that the measurement projection (which is only about 100 ms) may induce some error during high accelerations.

Alternatively, when minimized projection is ON, the time of the solution is the time of the most recent measurements. Thus, if all measurements are taken at exactly the same time, there is no measurement projection. If a selected satellite's measurement time lags the most recent measurement, then it is projected to this time. The difference is that the fix will have more latency than a fix provided with the above timing option. This is the best choice for users performing non realtime error analysis, or non real-time DGPS solution-space corrections. This is also the preferable mode for users integrating GPS with other sensors, where communication lags are the dominant latencies, and thus the time lag between the applicability and availability of the fix is small.

Byte 3

Byte 3, the auxiliary byte, controls the output of additional fix data. It contains two control bits:

- Bit 0 controls the output of raw measurements (Packet 5A).
- Bit 1 controls whether the raw measurements output in packet 5A are doppler smoothed.

0x37 Command Packet 37 Last Position and Velocity Request

This packet requests information regarding the last position fix. The GPS receiver returns packet 57 and the appropriate position packet 42 or 4A, or 83 or 84, and the appropriate velocity packet 43 or 56, based on the I/O options in effect. In timing mode, the GPS receiver returns packets 57 and 54.

0x38 Command Packet 38 Download and UpLoad Satellite System Data

This packet requests current satellite data (almanac, ephemeris, etc.) or permits loading initialization data from an external source (for example, by extracting initialization data from an operating GPS receiver via a data logger or computer and then using that data to initialize a second GPS receiver unit). The GPS receiver returns packet 58.

Note – The GPS receiver can initialize itself without any data from the user; it just requires more time.

To request data without loading data, use only bytes 0 through 2. To load data, use all bytes.

Caution – Proper structure of satellite data is critical to receiver operation. Requesting data is not hazardous; loading data improperly is hazardous. Use this packet only with extreme caution. The data should not be modified in any way. It should only be retrieved and stored for later reload.

Acutime 2000 Synchronization Kit User Guide

Byte	ltem	Туре	Value	Meaning
0	Operation	Byte	1 2	Request data from receiver Load data into receiver
1	Type of data	Byte	1 2 3 4 5 6	Not used Almanac Health page, T_oa, WN_oa Ionosphere UTC Ephemeris
2	Sat PRN#	Byte	0 1-32	Data that is not satellite-ID specific satellite PRN number
3	length (n)	Byte		Number of bytes of data to be loaded
4 to n+3	data		n Bytes	

Table A-23Command Packet 38

A-36

Acutime 2000 Synchronization Kit User Guide

А

0x39 Command Packet 39 Satellite Attribute Database Command

Normally the GPS receiver selects only healthy satellites (based on transmitted values in the ephemeris and almanac) that satisfy all mask values for use in the position solution. This packet allows you to override the internal logic and force the receiver to either unconditionally disable a particular satellite or to ignore a bad health flag. The GPS receiver returns packet 59 for operation modes 3 and 6 only.

Table A-24 Command Packet 39

Byte	ltem	Туре	Value	Meaning
0	Operation	Byte	1 2 3 4 5 6	Enable for selection (default) Disable for selection Request enable or disable status of all 32 satellites Heed health on satellite (default) Ignore health on satellite Request heed or ignore health on all 32 satellites
1	Satellite #	Byte	0 1-32	All 32 satellites Any one satellite PRN number

At power-on and after a reset the default values are set for all satellites.

Caution – Ignoring health can cause the GPS receiver software to fail, as an unhealthy satellite may contain defective data. Use extreme caution in ignoring satellite health.

Acutime 2000 Synchronization Kit User Guide

A-37

А

Ox3A Command Packet 3A Last Raw Measurement Request

This packet requests the most recent raw measurement data for one specified satellite. The GPS receiver returns packet 5A if data is available.

Table A-25 Command Packet 3A

Byte	ltem	Туре	Value	Meaning
1	Satellite #	Byte	0	All satellites in the current tracking set
			1-32	Desired satellite

0x3B Command Packet 3B Satellite Ephemeris Status Request

This packet requests the current status of satellite ephemeris data. The GPS receiver returns packet 5B if data is available.

Table A-26Command Packet 3B

В	Byte	ltem	Туре	Value	Meaning
1		Satellite #	Byte	0	All satellites for which ephemeris data is available
				1-32	Desired satellite

0x3C Command Packet 3C Satellite Tracking Status Request

This packet requests the current satellite tracking status. The GPS receiver returns packet 5C if data is available.

Table A-27 Command Packet 3C

Byte	ltem	Туре	Value	Meaning
1	Satellite #	Byte	0	All satellites in the current tracking set
			1-32	Desired satellite

Acutime 2000 Synchronization Kit User Guide

0x3D Command Packet 3D Timing Port Configuration Command

This packet is superceded by 0xBC.

0x3F-11_{Command Packet 3F-11} EEPROM Segment Commands

This command packet requests the status of the EEPROM segments and clears the EEPROM status minor alarm bit (Bit 10) in the supplemental timing packet 8F-AC. The ACE UTC replies with report packet 5F-11.

Table A-28 Command Packet 3F-11

Byte	ltem	Туре	Value	Meaning
0	Subcode	BYTE	0x11	EEPROM segment status

0x40 Report Packet 40 Almanac Data Page Report

This packet provides almanac data for a single satellite. The GPS receiver sends this packet on request (packet 20 hex) and optionally, when the data is received from a satellite. The data format is shown below.

Table A-29Report Packet 40

Byte	Item	Туре	Units
0	satellite	BYTE	(identification number)
1-4	T_zc	SINGLE	seconds
5-6	week number	INTEGER	weeks
7-10	eccentricity	SINGLE	(dimensionless)
11-14	T_oa	SINGLE	seconds
15-18	i_o	SINGLE	radians
19-22	OMEGA_dot	SINGLE	radians/second

A-40

Acutime 2000 Synchronization Kit User Guide

А

Byte	ltem	Туре	Units
23-26	square_root_A	SINGLE	(meters) ^{1/2}
27-30	OMEGA_0	SINGLE	radians
31-34	omega	SINGLE	radians
35-38	M_0	SINGLE	radians

Table A-29 Report Packet 40

T_zc is normally positive. If no almanac data is available for this satellite, then T_zc is negative. T_zc and the week number in this packet refer to the Z-count time and week number at the time the almanac was received. The remaining items are described in the ICD-GPS-200.

0x41 Report Packet 41 GPS Time Report

This packet provides the current GPS time of week and the week number. The GPS receiver sends this packet in response to packet 21 and during an update cycle. Update cycles occur approximately every 15 seconds when not doing fixes and occur approximately every 150 seconds when doing fixes. The data format is shown below.

Byte	ltem	Туре	Units
0-3	GPS time of week	SINGLE	seconds
4-5	GPS week number	INTEGER	weeks
6-9	GPS/UTC offset	SINGLE	seconds

Note – GPS time differs from UTC by a variable integral number of seconds. UTC = (GPS time) - (GPS/UTC offset).

Caution – GPS week numbers run from 0 to 1023 and then cycles back to week #0. Week #0 began January 6, 1980. Another week #0 began August 22, 1999. The receiver automatically adds 1024 to the GPS week number after August 21, 1999, and reports the cumulative week number.

The seconds count begins with "0" each Sunday morning at midnight GPS time. A negative indicated time-of-week indicates that time is not yet known; in that case, the packet is sent only on request. The following table shows the relationship between the information in packet 41, and the packet 46 status code.

Approximate Time Accuracy	Time Source	Sign (TOW)	Packet 0x46 Status Code
None	No time at all	-	0x01
Unknown	Approximate time from real-time clock or packet 2E	+	0x01
20 to 50 msec + clock drift	Time from satellite	+	not 0x01
Full accuracy	Time from GPS solution	+	0x00

 Table A-31
 Relationship Between Packet 41 and Packet 46

 \geq

Ŵ

Note – Before using the GPS time, verify that the packet 46 status code is 0x00 ("Doing position fixes"). This ensures the most accurate GPS time.

0x42 Report Packet 42 Single-Precision Position Fix, XYZ ECEF Report

This packet provides current GPS position fix in XYZ ECEF coordinates. If the I/O "position" option is set to "XYZ ECEF" and the I/O "precision-of-position output" (Packet 35) is set to single-precision, and the packet is masked for output by packet 8E-4D, then the GPS receiver sends this packet each time a fix is computed. The data format is shown below.

Byte	Item	Туре	Units
0-3	Х	SINGLE	meters
4-7	Y	SINGLE	meters
8-11	Z	SINGLE	meters
12-15	time-of-fix	SINGLE	seconds

Table A-32Report Packet 42

The time-of-fix is in GPS time or UTC as selected by the I/O "timing" option. At start-up, this packet or packet 83 is also sent with a negative time-of-fix to report the current known position. Packet 83 provides a double-precision version of this information.

Acutime 2000 Synchronization Kit User Guide

0x43 Report Packet 43 Velocity Fix, XYZ ECEF Report

This packet provides current GPS velocity fix in XYZ ECEF coordinates. If the I/O "velocity" option (Packet 35) is set to "XYZ ECEF ", and the packet is masked for output by packet 8E-4D, then the GPS receiver sends this packet each time a fix is computed if selected by the I/O "timing" option. The data format is shown below.

Byte	Item	Туре	Units
0-3	X velocity	SINGLE	meters/second
4-7	Y velocity	SINGLE	meters/second
8-11	Z velocity	SINGLE	meters/second
12-15	bias rate	SINGLE	meters/second
16-19	time-of-fix	SINGLE	seconds

Table A-33Report Packet 43

The time-of-fix is in GPS time or UTC as selected by the I/O "timing" option.

0x45 Report Packet 45 Software Version Information Report

This packet provides information about the version of software in the Navigation and Signal Processors. The GPS receiver sends this packet after power-on and in response to packet 1F.

Byte	Item	Туре
0	Major version number	BYTE
1	Minor version number	BYTE
2	Month	BYTE
3	Day	BYTE
4	Year number minus 1900	BYTE
5	Major revision number	BYTE
6	Minor revision number	BYTE
7	Month	BYTE
8	Day	BYTE
9	Year number minus 1900	BYTE

Table A-34 Report Packet 45

The first five bytes refer to the Navigation Processor and the second five bytes refer to the Signal Processor.

0x46 Report Packet 46 Health of Receiver Report

This packet provides information about the satellite tracking status and the operational health of the receiver. The receiver sends this packet after power-on or software-initiated resets, in response to packet 26, during an update cycle, when a new satellite selection is attempted, and when the receiver detects a change in its health. Packet 4B is always sent with this packet. The data format is given in the following table.

Byte	ltem	Туре	Value	Meaning
0	Status code	Byte		
			00 hex	Doing position fixes
			01 hex	Do not have GPS time yet
			02 hex	Not used
			03 hex	PDOP is too high
			08 hex	No usable satellites
			09 hex	Only 1 usable satellite
			0A hex	Only 2 usable satellites
			0B hex	Only 3 usable satellites
			0C hex	The chosen satellite is unusable
		.		นานรอมเย
1	Error codes	Byte		

Table A-35 Report Packet 46

The error codes in Byte 1 of packet 46 are encoded into individual bits within the byte. The bit positions and their meanings are shown in Table A-36.

Error Code Bit Position	Meaning if bit value = 1
0 (LSB)	Battery back-up failed (Note 3)
1	Signal Processor error (Note 1)
2	Alignment error, channel or chip 1 (Note 1)
3	Alignment error, channel or chip 2 (Note 1)
4	Antenna feed line fault (Open or Short)
5	Excessive reference frequency error (Note 2)
6	(Unused)
7 (MSB)	(Unused)

Table A-36Report Packet 46

Note 1: After this error is detected, the bit remains set until the receiver is reset.

Note 2: This bit is "1" if the last computed reference frequency error indicated that the reference oscillator is out of tolerance. (Packet 2D requests the oscillator offset and packet 4D returns the oscillator offset to the user.)

Note 3: The Acutime 2000 does not support BB-RAM, the bit is always set. The ACE UTC supports BB-RAM, indicating BB-RAM checksum and the bit reports the state of the BB-RAM at system startup.

0x47 Report Packet 47 Signal Levels for all Satellites Report

This packet provides received signal levels for all satellites currently being tracked or on which tracking is being attempted (that is, above the elevation mask and healthy according to the almanac). The receiver sends this packet only in response to packet 27. Table A-37 shows the data format.

Byte	Item	Туре
0	Count	BYTE
1	Satellite number 1	BYTE
2-5	Signal level 1	SINGLE
6	Satellite number 2	BYTE
7-10	Signal level 2	SINGLE
(etc.)	(etc.)	(etc.)

Table A-37Report Packet 47

Up to 12 satellite number/signal level pairs may be sent, indicated by the count field. Signal level is normally positive. If it is zero then that satellite has not yet been acquired. If it is negative then that satellite is not currently in lock. The absolute value of signal level field is the last known signal level of that satellite.

The signal level provided in this packet is a linear measure of the signal strength after correlation or de-spreading.

0x48 Report Packet 48 GPS System Message Report

This packet provides the 22-byte ASCII message carried in the GPS satellite navigation message. The receiver sends this packet in response to packet 28 and when this data is received from a satellite.

The message is effectively a bulletin board from the Air Force to GPS users. The format is free-form ASCII. The message may be blank.

0x49 Report Packet 49 Almanac Health Page Report

This packet provides health information on all 32 satellites. Packet data consists of 32 bytes each containing the 6-bit health from almanac page 25. The first byte is for satellite #1, and so on. The receiver sends this packet in response to packet 29 and when this data is received from a satellite.

Byte	Item
0	health of satellite #1
1	health of satellite #2
31	health of satellite #32

Table A-38Report Packet 49

In each data byte of this packet, a value "0" indicates that the satellite is healthy; all other values indicate that the satellite is unhealthy.

0x4A

Report Packet 4A Reference Altitude or Single-Precision LLA Position Fix Report

The Reference Altitude variation of the packet is returned in response to command packet 2A when setting or requesting reference altitude.

Table A-39Report Packet 4A – Report ReferenceAltitude

Byte	Item	Туре	Units
0-3	Altitude	SINGLE	Meters above WGS-84 or MSL
4-7	Reserved	SINGLE	Reserved
8	Flag	BYTE	Reserved

Acutime 2000 Synchronization Kit User Guide

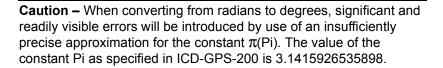

The Single-Precision LLA Position Fix variation of the packet provides current GPS position fix in LLA (latitude, longitude, and altitude) coordinates. If the I/O "position" option is set to "LLA" and the I/O "precision-of-position output" is set to single-precision, and the packet is masked with packet 8E-4D, then the receiver sends this packet each time a fix is computed. The data format is shown below.

Table A-40Report Packet 4A – Report Single-PrecisionLLA Position

Byte	ltem	Туре	Units
0-3	Latitude	SINGLE	Radians; + for north, - for south
4-7	Longitude	SINGLE	Radians; + for east, - for west
8-11	Altitude	SINGLE	Meters
12-15	Clock Bias	SINGLE	Meters
6-19	Time-of-Fix	SINGLE	Seconds

The LLA conversion is done according to the datum selected using packet 8E-14. The default is WGS-84. Altitude is referred to the WGS-84 ellipsoid or the MSL Geoid, depending on which I/O "LLA altitude" option is selected. The time-of-fix is in GPS time or UTC, depending on which I/O "timing" option is selected.

This packet also is sent at start-up with a negative time-of-fix to report the current stored position. Packet 84 provides a doubleprecision version of this information.

The MSL option is only valid with the WGS-84 datum. When using other datums, only the HAE option is valid.

Acutime 2000 Synchronization Kit User Guide

Report Packet 4A – Report

0x4B Report Packet 4B Machine/Code ID and Additional Status Report

The receiver transmits this packet in response to packets 25 and 26 and following a change in state. This packet identifies the receiver and may present error messages. Packet 46 is always sent with this packet. The machine ID can be used by equipment communicating with the receiver to determine the type of receiver to which the equipment is connected. Then the interpretation and use of packets can be adjusted accordingly.

Byte	ltem	Type/ Value	Status/Meaning
0	Machine	BYTE	0x61 =Acutime 2000
	ID		0x62 = ACE UTC
1	Status 1	BYTE	The Status 1 codes are encoded into individual bits within the byte
2	Status 2	BYTE	Super packets are supported.

Table A-41 Report Packet 4B

The status codes are encoded into individual bits within the bytes. The bit positions and their meanings are shown below.

Table A-42 Byte 1 Bit Encoding – Status 1

Status 1 Bit Position	Meaning if bit value = 1
0 (LSB)	(Not Used)
1	Battery Backed Time Clock (ACE UTC only)
2	(Not Used)
3	The Almanac stored in the receiver is not complete and current
4-7	Not used

Acutime 2000 Synchronization Kit User Guide

0x4C Report Packet 4C Operating Parameters Report

This packet provides several operating parameter values of the receiver. The receiver sends this packet in response to packet 2C. The data string is four SINGLE values. The dynamics code indicates the expected vehicle dynamics and is used to assist the initial solution. The elevation angle mask determines the lowest angle at which the receiver tries to track a satellite. The signal level mask sets the required signal level for a satellite to be used for position fixes.

The PDOP mask sets the maximum PDOP with which position fixes are calculated. The PDOP switch sets the threshold for automatic 3-D/2-D mode. If 4 or more satellites are available and the resulting PDOP is not greater than the PDOP mask value, then 3-dimensional fixes are calculated. This information is stored in non-volatile memory.

Byte	ltem	Type, Units	Default	Value, Velocity
0	Dynamics code	BYTE	Land	(0) value left unchanged
				(1) land, <120 knots
				(2) sea, <50 knots
				(3) air, <800 knots
				(4) static, stationary
1-4	Elevation angle mask	SINGLE, radians	0.1745 (or 10°)	
5-8	Signal level mask	SINGLE/	4.0	
9-12	PDOP mask	SINGLE/	8.0	
13-16	PDOP switch (3-D or 2-D)	SINGLE/	6.0	

Table A-43 Report Packet 4C

0x4D Report Packet 4D Oscillator Offset

This packet provides the current value of the receiver master oscillator offset in Hertz at carrier. This packet contains one SINGLE number (4 Bytes). The receiver sends this packet in response to packet 2D.

0x4E Report Packet 4E GPS Time Change Acknowledgment

Indicates whether the receiver accepted the time given in a Set GPS time packet. The receiver sends this packet in response to packet 2E. This packet contains one byte.

Table	A-44	Report	Packet	4E
IUNIC	A 77	TOPOIL	1 401.01	

Value	Meaning
ASCII "Y"	The receiver accepts the time entered via packet 2E. The receiver has not yet received the time from a satellite.
ASCII "N"	The receiver does not accept the time entered via packet 2E. The receiver has received the time from a satellite and uses that time. The receiver disregards the time in packet 2E.

0x4F Report Packet 4F UTC Parameters Report

This packet is sent in response to command packet 2F and contains 26 bytes. It reports the UTC information broadcast by the GPS system. For details on the meanings of the following parameters, consult ICD-200, Sections 20.3.3.5.2.4, 20.3.3.5.1.8, and Table 20-IX. On the simplest level, to get UTC time from GPS time, subtract ΔT_{LS} seconds. The other information contained in this packet indicates when the next leap second is scheduled to occur.

Byte	Value	Туре
0-7	A0	DOUBLE
8-11	A1	SINGLE
12-13	ΔT_{LS}	INTEGER
14-17	Т _{ОТ}	SINGLE
18-19	WN _T	INTEGER
20-21	WN _{LSF}	INTEGER
22-23	DN	INTEGER
24-25	$\Delta \mathrm{T_{LSF}}$	INTEGER

Table A-45 Report UTC Parameters

0x54 Report Packet 54 Bias and Bias Rate Report

The receiver sends this packet to provide the computed clock-only solution when the receiver is in the manual or automatic Overdetermined Clock mode or Time Only (1-SV) mode.

Table A-46Report Packet 54

Byte	ltem	Туре	Units
0-3	Bias	SINGLE	meters
4-7	Bias rate	SINGLE	meters/second
8-11	Time of fix	SINGLE	seconds

The bias is the offset of the receiver internal time clock from GPS time. Bias is expressed as meters of apparent range from the satellites. It is used to correct the one PPS output. Bias rate is the frequency error of the receiver internal oscillator. It is expressed as apparent range rate. Time-of-fix is in GPS or UTC time as selected by the I/O "timing" option in packet 0x35.

Caution – For accurate interpretation of the propagation delay, the precise constant for the speed of light must be used. The ICD-200 value for the speed of light is 299,792,458 meters per second.

0x55

Report Packet 55 I/O Option Flags Report

This packet provides current I/O options in response to packet 35 request. The data format is the same as for packet 35. See packet 35 for details.

Acutime 2000 Synchronization Kit User Guide

A

0x56

Report Packet 56 Velocity Fix, East-North-Up (ENU) Report

If East-North-Up (ENU) coordinates have been selected for the I/O "velocity" option (Packet 35), the receiver sends this packet under the following conditions: (1) each time that a fix is computed if masked for output by packet 8E-4D; (2) in response to packet 37 (last known fix). The data format is shown in Table A-47.

Table A-470x56 – Velocity Fix, East-North-Up (ENU)Report

Byte	Item	Туре	Units
0-3	East Velocity	SINGLE	m/s; + for east, - for west
4-7	North Velocity	SINGLE	m/s; + for north, - for south
8-11	Up Velocity	SINGLE	m/s; + for up, - for down
12-15	Clock Bias Rate	SINGLE	m/s
16-19	Time-of-fix	SINGLE	seconds

The time-of-fix is in GPS or UTC time as selected by the I/O "timing" option.

0x57 Report Packet 57 Information About Last Computed Fix Report

This packet provides information concerning the time and origin of the previous position fix. The receiver sends this packet, among others, in response to packet 37.

The data format is shown below.

Byte	ltem	Type/Units	Value
0	Source of information	BYTE/	0/none 1/regular fix
1	Tracking mode	BYTE/	0/Auto 1/Time Only 1-SV 2/2Dclock Hold 3/2D 4/3D 5/Overdetermined Clock 6/DGPS Reference
2-5	Time of last fix	SINGLE/seconds, GPS time	
6-7	Week of last fix	INTEGER/weeks, GPS time	

Table A-48 Report Packet 57

0x58

Report Packet 58 Satellite System Data/Acknowledge from Receiver

This packet provides GPS data (almanac, ephemeris, etc.). The receiver sends this packet under the following conditions: (1) on request; (2) in response to packet 38 (acknowledges the loading of data). The data format is shown below.

Table A-49Report Packet 58

Byte	ltem	Туре	Value	Meaning
0	Operation	BYTE	1	Acknowledge
			2	Data Out
1	Type of data	BYTE	1	not used
			2	Almanac
			3	Health page, T_oa, WN_oa
			4	Ionosphere
			5	UTC
			6	Ephemeris
2	Sat PRN #	BYTE	0	Data that is not satellite ID- specific
			1 to 32	Satellite PRN number
3	length (n)	BYTE		Number of bytes of data to follow
4 to n+3	data	n BYTES		

The binary almanac, health page, and UTC data streams are similar to reports 40, 49, and 4F respectively, and those reports are preferred. To get ionosphere or ephemeris, this report must be used.

Byte	Item	Туре	Meaning
4	t_oa_raw	BYTE	(cf. ICD-200, Sec 20.3.3.5.1.2)
5	SV_HEALTH	BYTE	(cf. ICD-200, Sec 20.3.3.5.1.2)
6-9	е	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
10-13	t_oa	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
14-17	i_o	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
18-21	OMEGADOT	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
22-25	sqrt_A	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
26-29	OMEGA_0	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
30-33	omega	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
34-37	M_0	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
38-41	a_f0	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
42-45	a_f1	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
46-49	Axis	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
50-53	n	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
54-57	OMEGA_n	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
58-61	ODOT_n	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
62-65	t_zc	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.2)
66-67	weeknum	INTEGER	(cf. ICD-200, Sec 20.3.3.5.1.2)
68-69	wn_oa	INTEGER	(cf. ICD-200, Sec 20.3.3.5.1.2)

 Table A-50
 Report Packet 58 – ALMANAC Data Report

Note: All angles are in radians.

Byte	Item	Туре	Meaning
4	week # for health	BYTE	(cf. ICD-200, Sec 20.3.3.5.1.3)
5-36	SV_health	32 BYTES	(cf. ICD-200, Sec 20.3.3.5.1.3)
37	t_oa for health	BYTE	(cf. ICD-200, Sec 20.3.3.5.1.3)
38	current t_oa	BYTE	units = seconds/2048
39-40	current week #	INTEGER	

 Table A-51
 Report Packet 58 – ALMANAC HEALTH Data Report

Table A-52	Report Packet 58 – IONOSPHERE Data Report
------------	--

Byte	Item	Туре	Meaning
4-11			compact storage of the following info
12-15	alpha_0	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.9)
16-19	alpha_1	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.9)
20-23	alpha_2	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.9)
24-27	alpha_3	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.9)
28-31	beta_0	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.9)
32-35	beta_1	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.9)
36-39	beta_2	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.9)
40-43	beta_3	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.9)

Byte	Item	Туре	Meaning
4-16			compact storage of the following info
17-24	A_0	DOUBLE	(cf. ICD-200, Sec 20.3.3.5.1.8)
25-28	A_1	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.8)
29-30	delta_t_LS	INTEGER	(cf. ICD-200, Sec 20.3.3.5.1.8)
31-34	t_ot	SINGLE	(cf. ICD-200, Sec 20.3.3.5.1.8)
35-36	WN t	INTEGER	(cf. ICD-200, Sec 20.3.3.5.1.8)
37-38	WN_LSF	INTEGER	(cf. ICD-200, Sec 20.3.3.5.1.8)
39-40	DN	INTEGER	(cf. ICD-200, Sec 20.3.3.5.1.8)
41-42	delta_t_LSF	INTEGER	(cf. ICD-200, Sec 20.3.3.5.1.8)

Table A-53 Report Packet 58 – UTC Data Report

Table A-54	Report Packet 58 – EPHEMERIS Data Report
------------	--

Byte	Item	Туре	Meaning
4	sv_number	BYTE	SV PRN number
5-8	t_ephem	SINGLE	time of collection
9-10	weeknum	INTEGER	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
11	codeL2	BYTE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
12	L2Pdata	BYTE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
13	SVacc_raw	BYTE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
14	SV_health	BYTE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
15-16	IODC	INTEGER	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
17-20	T_GD	SINGLE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
21-24	t_oc	SINGLE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
25-28	a_f2	SINGLE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
29-32	a_f1	SINGLE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
33-36	a_f0	SINGLE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)
37-40	SVacc	SINGLE	(cf. ICD-200, Sec 20.3.3.3, Table 20-I)

Acutime 2000 Synchronization Kit User Guide

Byte	ltem	Туре	Meaning
41	IODE	BYTE	(cf. ICD-200, Sec 20.3.3.4)
42	fit_interval	BYTE	(cf. ICD-200, Sec 20.3.3.4)
43-46	C_rs	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
47-50	delta_n	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
51-58	M_0	DOUBLE	(cf. ICD-200, Sec 20.3.3.4)
59-62	C_uc	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
63-70	е	DOUBLE	(cf. ICD-200, Sec 20.3.3.4)
71-74	C_us	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
75-82	sqrt_A	DOUBLE	(cf. ICD-200, Sec 20.3.3.4)
83-86	t_oe	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
87-90	C_ic	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
91-98	OMEGA_0	DOUBLE	(cf. ICD-200, Sec 20.3.3.4)
99-102	C_is	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
103-110	i_o	DOUBLE	(cf. ICD-200, Sec 20.3.3.4)
111-114	C_rc	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
115-122	omega	DOUBLE	(cf. ICD-200, Sec 20.3.3.4)
123-126	OMEGADOT	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
127-130	IDOT	SINGLE	(cf. ICD-200, Sec 20.3.3.4)
131-138	Axis	DOUBLE	= (sqrt_A) ²
139-146	n	DOUBLE	derived from delta_n
147-154	r1me2	DOUBLE	$=$ sqrt(1.0- e^2)
155-162	OMEGA_n	DOUBLE	derived from OMEGA_0, OMEGADOT
163-170	ODOT_n	DOUBLE	derived from OMEGADOT

 Table A-54
 Report Packet 58 – EPHEMERIS Data Report (Continued)

Note: All angles are in radians.

0x59 Report Packet 59 Satellite Attributes Database Report

This packet is returned in response to packet 39 if operation mode 3 or 6 is used with packet 39.

Normally the GPS receiver selects only healthy satellites (based on transmitted values in the ephemeris and almanac) which satisfy all mask values, for use in the position solution.

Packet 59 indicates whether each satellite is allowed or not allowed to be selected for use in the position solution, or whether each satellite's health is to be heeded or ignored. The data format is shown below.

Note – When viewing the satellite disabled list, the satellites are not numbered but are in numerical order. The disabled satellites are signified by a 1 and enabled satellites are signified by a 0.

Byte	ltem	Туре	Value	Meaning
0	Operation	BYTE	3	The remaining bytes tell whether receiver is allowed to select each satellite.
			6	The remaining bytes tell whether the receiver heeds or ignores each satellite's health as a criterion for selection.
1 to 32	Satellite #	32 BYTES (1 byte per satellite)		(Depends on byte 0 value.)
			0	Enable satellite selection or heed satellite's health. Default value.
			1	Disable satellite selection or ignore satellite's health.

Table A-55 Report Packet 59

Acutime 2000 Synchronization Kit User Guide

0x5A

Report Packet 5A Raw Measurement Data Report

This packet provides raw GPS measurement data. If the I/O auxiliary option for "raw data" has been selected (packet 35), and it is masked for output by packet 8E-4D, the receiver outputs a packet 5A for each satellite being tracked, once per second. The receiver also sends this packet in response to packet 3A. The data format is shown below.

Byte	ltem	Туре	Units
0	Satellite PRN number	BYTE	
1-4	reserved	SINGLE	
5-8	Signal level	SINGLE	
9-12	Code phase	SINGLE	1/16th chip
13-16	Doppler	SINGLE	Hertz
17-24	Time of Measurement	DOUBLE	seconds

Table A-56Report Packet 5A

Note – Report Packet 5A provides the raw satellite signal measurement information used in computing a fix.

The *satellite PRN* (Byte 0) number is a unique identification for each of the 32 GPS satellites.

Signal level

The *Signal Level* (Byte 5) is a linear approximation of C/N0 which is stated in antenna amplitude measurement units (AMUs), a Trimble devised unit.

Note – SNR $_{(\pm 3)}$ = 20log((signal counts/noise counts)*(BW/2)) where: signal counts = 64 * AMU; noise counts = 90, and BW = 1000Hz.

The C/N0 is affected by five basic parameters:

- signal strength from the GPS satellite
- receiver/antenna gain
- pre-amplifier noise figure
- receiver noise bandwidth
- accumulator sample rate and statistics

The approximation is very accurate from 0 to 25 AMUs.

Codephase

The *codephase* (Byte 9) value is the average delay over the sample interval of the received C/A code and is measured with respect to the receiver's millisecond timing reference. Thus, it includes all receiver, satellite, and propagation biases and errors. It is expressed in 1/16th of a C/A code chip.

Doppler

The *Doppler* (Byte 13) value is apparent carrier frequency offset averaged over the sample interval. It is measured with respect to the nominal GPS L1 frequency of 1575.42 MHz, referenced to the receiver's internal oscillator. Thus, it includes all receiver and satellite clock frequency errors. It is expressed in Hertz at the L1 carrier.

Acutime 2000 Synchronization Kit User Guide

Time of measurement

The *time of measurement* (Byte 17) is the center of the sample interval adjusted by adding the receiver-supplied codephase (modulo mS) to a user-determined integer number of mS between user and satellite.

The receiver codephase resolution is 1/16th of a C/A code chip. This corresponds to:

1/16 × C/A code chip 977.517ns/16 \approx 61.0948 ns \approx 61.0948 × speed of light, m/s \approx 18.3158 meters

The integer millisecond portion of the pseudo-range must then be derived by utilizing the approximate user and satellite positions. Rough user position (within a few hundred kilometers) must be known; the satellite position can be found in its almanac/ephemeris data.

Each mS integer corresponds to:

C/A code epoch \times speed of light	1 ms $ imes$ speed of light m/s
=	
~	300 km (approximate)
≈	299.792458 km (precise)

The satellite time-of-transmission for a measurement can be reconstructed using the code phase, the time of measurement, and the user-determined integer number of milliseconds.

0x5B Report Packet 5B Satellite Ephemeris Status Report

This packet is sent in response to packet 3B and optionally, when a new ephemeris (based on IODE) is received. It contains information

on the status of the ephemeris in the receiver for a given satellite. The structure of packet 5B is shown in the table below.

Byte	ltem	Туре	Units
0	Satellite PRN number	BYTE	
1-4	Time of Collection	SINGLE	seconds
5	Health	BYTE	
6	IODE	BYTE	
7-10	toe	SINGLE	seconds
11	Fit Interval Flag	BYTE	
12-15	SV Accuracy (URA)	SINGLE	meters

Table A-57Report Packet 5B

SV PRN Number is from 1 to 32 representing the satellite PRN number. Time of Collection is the GPS time when this ephemeris data was collected from the satellite. Health is the 6-bit ephemeris health. IODE, toe, and Fit Interval Flag are as described in ICD-GPS-200. SV Accuracy (URA) is converted to meters from the 4-bit code as described in ICD-GPS-200.

Acutime 2000 Synchronization Kit User Guide

0x5C

Report Packet 5C Satellite Tracking Status Report

This packet provides tracking status data for a specified satellite. Some of the information is very implementation-dependent and is provided mainly for diagnostic purposes. The receiver sends this packet in response to packet 3C hex. The data format is shown below.

Table A-58 Report Packet 5C

Byte/Item	Type/Units	Value/Meaning
Byte 0 / Satellite PRN number	BYTE/ number 1-32	
Byte 1 / Channel and slot code	BYTE	
		Bit position within Byte 1: bits 7(MSB)-3 (channel number beginning with 0) (MSB) 0 0 0 0 0 channel 1: used by all receivers 0 0 0 1 channel 2: 8-channel receivers 0 0 0 1 0 channel 3: 8-channel receivers 0 0 0 1 1 channel 4: 8-channel receivers 0 0 1 0 0 channel 5: 8-channel receivers 0 0 1 0 1 channel 6: 8-channel receivers 0 0 1 1 0 channel 7: 8-channel receivers 0 0 1 1 1 channel 8: 8-channel receivers
Byte 2 / Acquisition flag	BYTE	 never acquired acquired re-opened search
Byte 3 / Ephemeris flag	BYTE	0 flag not set ≠ (0 or 33) good ephemeris for this satellite (<4 hours old, good health)
Byte 4-7 / Signal level	SINGLE	same as in packet 47 hex
Byte 8-11 / GPS time of last measurement	SINGLE/ seconds	<0 no measurements have been taken ≥0 center of the last measurement taken from this satellite

A-68

Byte/Item	Type/Units	Value/Meaning
Byte 12-15 / Elevation	SINGLE/ radians	Approximate elevation of this satellite above the horizon. Updated about every 15 seconds. Used for searching and computing measurement correction factors.
Byte 16-19 / Azimuth	SINGLE/ radians	Approximate azimuth from true north to this satellite. Updated about every 15 seconds. Used for computing measurement correction factors.
Byte 20 / old measurement flag	BYTE	N/A
Byte 21 / Integer msec flag	BYTE	N/A
Byte 22 / bad data flag	BYTE	N/A
Byte 23 / Data collection flag	BYTE	N/A

Table A-58 Report Packet 5C (Continued)

0x5F-11 Report Packet 5F-11 EEPROM Segment Status Reports

This report packet is sent in response to command packet 3F-11. It contains all the segments in the EEPROM. The Segment Status is bitwise encoded with the status of each segment and is cleared to 0 after it is read. A zero in the bit field indicates that the segment contents are valid. A one in the bit field indicates that the segment contents were corrupt and had to be reverted to their factory default values. The Manufacturing and Production parameters (Bits 0, 1) do not have factory default values.

Byte	Bit	ltem	Туре	Value	Meaning
0		Subcode	BYTE	0x11	
1-2	0 1 2 3 4 5 6 7 8 9-10 11 12-15	Segment Status	Bit field U16		Manufacturing parameters (8F-41) Production parameters (8F-42) Receiver configuration Packet I/O control Serial port configuration Timing output configuration Accurate position Self-survey configuration NMEA configuration (Not Used) UTC information (Not used)

Table A-59 Report Packet 5F-11 – EEPROM Segment Status Report

0x60 Command Packet 0x60 Type 1 Differential GPS Corrections

This packet provides the ACE UTC GPS with differential corrections from RTCM SC-104 record types 1 and 9, in the TSIP format. There is no response to this packet. If bit 6 is set, the corrections are as in RTCM Type 9 records. The format for this packet is shown in Table A-60.

Byte	Bit	Item	Туре	Range	Units
0 - 1		Modified z-count	UINT16	0-5999	.6 SEC
2		Station health	UINT8		
3	0 - 5	Number of SVs in packet	Bits	0-31	0 - 5
3	6	Type 9 flag	Bit	0 1	type 1 type 9
3	7	Version 2 flag	Bit	1	must be set

Table A-60 Report Packet 0x60 Data Formats

Acutime 2000 Synchronization Kit User Guide

А

The next 5 bytes are repeated as a group for each satellite. The SV PRN and scale factor contains the SV PRN in the lower 5 bits, and the scale factor in the upper 3 bits. Range corrections are scaled by 0.02 meters times 2 raised to the scale factor power. Range-rate corrections are scaled by 0.002 meters per second times 2 raised to the scale factor power. The format is shown in Table A-61.

 Table A-61
 Report Packet 0x60 Data Formats for Health and Power

Byte	Bit	ltem	Туре	Value	Definition
4+ (N*5)	0-4	SV PRN		0-31	"0" Is SV 32
4+ (N*5)	5-7	Scale factor		0 4 7	Low Scale factor (.02m, .002 m/s) High Scale factor (.32m, .032 m/s) Correction not usable
5+ (N*5)		Range correction	UINT16		RTCM-104
7+ (N*5)		Range-rate correction	UINT8		RTCM-104
8+ (N*5)		IODE	UINT8		

0x61 Command Packet 0x61 Set Differential GPS Corrections

This TSIP packet provides the delta differential corrections from RTCM-104 record type 2. There is no response to this packet. Scale factors are version 1 unless the version 2 flag is set. The format for this packet is shown in Table A-62.

 Table A-62
 Command Packet 0x61 Data Formats

Byte	Bit	ltem	Туре	Value	Definition
0 - 1		Modified Z-count	UINT16	0-5999	.6 SEC
2	0-6	Number of SVs		0-31	
2	7	Version 2 flag	Bit	1	must be set
	The ne	xt 3 bytes are repeat	ied as a grou	up for each s	atellite:
3+(N*2)	0-4	SV PRN		0-31	"0" Is SV 32
3+(N*2)	5-7	Scale factor		0	Low Scale factor (.02m, .002 m/s)
				4	High Scale factor (.32m, .032 m/s)
				7	Correction not usable
4+(N*2)		Range correction	UINT16		RTCM-104

The units and scale factors are as defined by Packet 0x60. Delta range correction rates are not entered.

Acutime 2000 Synchronization Kit User Guide

0x6D

Report Packet 6D All-In-View Satellite Selection Report

This packet provides a list of satellites used for position fixes by the GPS receiver. The packet also provides the PDOP, HDOP, and VDOP of that set and provides the current mode (automatic or manual, 3-D or 2-D). This packet has variable length equal to 16+nsvs (minimum 4), where "nsvs" is the number of satellites used in the solution.

The GPS receiver sends this packet in response to packet 24 or whenever a new satellite selection is attempted. The GPS receiver attempts a new selection every 30 seconds and whenever satellite availability and tracking status change. The data format is shown below.

Byte	ltem	Туре	Units		
0	Mode	BYTE	<u>Bit</u>	Value	Meaning
			0-2	0	Auto
				1	Time Only (1-SV)
				2	2D Clock Hold
				3	2D
				4	3D
				5	Overdetermined Clock
				6	DGPS Reference
			3	0	Auto
				1	manual
			4-7		nsvs
1-4	PDOP	SINGLE	PDOP		
5-8	HDOP	SINGLE	HDOP		
9-12	VDOP	SINGLE	VDOP		
13-16	TDOP	SINGLE	TDOP		
(16+nsvs)	SV PRN	BYTE			

Table A-63 Report Packet 6D

0x7A Command Packet 7A Set or Request NMEA Interval and Message Mask

The NMEA mask determines whether or not a given NMEA message will be output. If the bit for a message is set, the message will be sent every "interval" seconds. To determine the NMEA interval and message mask, use the values shown in Table A-64. While fixes are being generated, the output order is: ZDA, GGA, GLL, VTG, GSA, GSV, RMC.

Byte	Bit	ltem	Туре	Value	Definition
0		Subcode	UINT8	0	
1		Interval	UINT8	1-255	Fix interval in seconds
2		Reserved	UINT8	0	
3		Reserved	UINT8	0	
4	0	RMC	Bit	0 1	Off On
4	1-7	Reserved	Bit	0	
5	0	GGA	Bit	0 1	Off On
5	1	GLL	Bit	0 1	Off On
5	2	VTG	Bit	0 1	Off On
5	3	GSV	Bit	0 1	Off On
5	4	GSA	Bit	0 1	Off On
5	5	ZDA	Bit	0 1	Off On
5	6-7	Reserved	Bit	0	

Table A-64 Command Packet 7A

Acutime 2000 Synchronization Kit User Guide

A-75

А

0x7B Report Packet 7B NMEA Message Output

This packet is sent in response to command packet 7A and has the same data format as packet 7A.

0x83 Report Packet 83 Double-precision XYZ Position Fix And Bias Information

This packet provides current GPS position fix in XYZ ECEF coordinates. If the I/O "position" option is set to "XYZ ECEF" and the I/O double-precision option is selected (packet 35), the receiver sends this packet each time a fix is computed. The data format is shown below.

Byte Туре Item Units 0-7 Х DOUBLE meters Y 8-15 DOUBLE meters Ζ 16-23 DOUBLE meters 24-31 DOUBLE clock bias meters 32-35 SINGLE time of fix seconds

Table A-65Report Packet 83

The time-of-fix is in GPS time or UTC, as selected by the I/O "timing" option in packet 0x35. At start-up, if the I/O doubleprecision option is selected, this packet is also sent with a negative time-of-fix to report the current stored position.

Packet 42 provides a single-precision version of this information.

0x84 Report Packet 84 Double-precision LLA Position Fix and Bias Information

This packet provides current GPS position fix in LLA coordinates. If the I/O "position" option is set to "LLA" and the double-precision option is selected (packet 35), the receiver sends this packet each time a fix is computed. The data format is shown in the table below.

Byte	ltem	Туре	Units
0-7	latitude	DOUBLE	radians; +for north, –for south
8-15	longitude	DOUBLE	radians; +for east, −for west
16-23	altitude	DOUBLE	meters
24-31	clock bias	DOUBLE	meters
32-35	time of fix	SINGLE	seconds

Table A-66Report Packet 84

The time-of-fix is in GPS time or UTC, as selected by the I/O "timing" option "packet 35." At start-up, this packet is also sent with a negative time-of-fix to report the current stored position.

Packet 4A provides a single-precision version of this information.

Caution – When converting from radians to degrees, using an insufficiently precise approximation for the constant π (Pi) introduces significant and readily visible errors. The value of π as specified in ICD-GPS-200 is 3.1415926535898.

0xBB

Command Packet BB Set Primary Receiver Configuration

TSIP command packet BB contains the primary receiver configuration parameters.

The Ace UTC and Acutime 2000 store 3 independent sets of configuration parameters. These are designated as the "Mobile", "Survey" and "Timing" configurations.

The active configuration is determined by the survey state:

Table A-67 Survey State Configurations

Survey State	Active Configuration
Survey Disabled	Mobile
Survey Active	Survey
Survey Complete	Timing

When the survey state changes, the receiver automatically switches to the new configuration. Only the active configuration can be programmed.

To program configurations, switch the active configuration by changing to the appropriate survey state using packets 8E-A6 and 8E-A9, update the configuration (BB), and save settings (8E-26).

There are restrictions to the dynamics code and operating dimension settings, which take effect when survey is enabled, ensuring that the receiver performs a valid survey and enters a timing mode afterwards.

The following table shows valid settings for each configuration.

Survey State	Active Configuration	Dynamics Code	Operating Dimension
Survey Disabled	Mobile	any	any
Survey Active	Survey	Land/Sea/Air	2D or 3D or Auto
Survey Complete	Timing	Stationary	1SV or Over-determined

Table A-68 Vaild GPS Configuration Settings

Send packet BB with subcode 0 as the only data byte, to query for the primary receiver configuration. The receiver will respond with report packet BB. The table below lists the individual fields within the BB packet. When sending this packet, enter 0xFF or -1.0 to leave any parameter unchanged.

Dynamics Code

The default is LAND mode, where the receiver assumes a moderate dynamic environment. In this case, the satellite search and re-acquisition routines are optimized for vehicle-type environments. In SEA mode, the search and re-acquisition routines assume a low acceleration environment and the receiver reverts to the user-entered altitude in 2-D auto. In AIR mode, the search and re-acquisition routines are optimized for high acceleration conditions.

Elevation Mask

This is the minimum elevation angle for satellites to be used in a solution output by the receiver. Satellites near the horizon are typically more difficult to track due to signal attenuation, and are also generally less accurate due to higher variability in the ionospheric and tropospheric corruption of the signal. When there are no obstructions, the receiver can generally track a satellite down to near the horizon. However, when this mask is set too low, the receiver may experience frequent constellation switching due to low elevation satellites being obscured.

Acutime 2000 Synchronization Kit User Guide

Frequent constellation switching is undesirable because position jumps may be experienced when Selective Availability is present and DGPS is not available to remove these effects. The benefit of a low elevation mask is that more satellites are available for use in a solution and a better PDOP may be yielded. The current default mask is set to 0.1745 radians (10°) and provides a reasonable trade-off between the benefits and drawbacks.

Signal Level Mask

This mask defines the minimum signal strength for a satellite used in a solution. There is some internal hysteresis on this threshold, which allows brief excursions below the threshold if lock is maintained and the signal was previously above the mask. This mask should be lowered only with caution since it is also used to minimize the effects of jammers and reflected signals on the receiver. Users who require high accuracy can use a slightly higher mask of 6.0-8.0, since weaker measurements may be noisier and are often caused by reflected signals, which provide erroneous ranges.

Make sure that the elevation and SNR masks are not set too low. The satellite geometry is sometimes improved considerably by selecting low-elevation satellites. These satellites are, however, subject to significant signal degradation by the greater ionospheric and tropospheric attenuation that occurs. They are also subject to more obscuration by the passing scenery when the receiver is in a moving vehicle. The code phase data from those satellites is more difficult to decode and therefore has more noise.

 \geq

Note – A level of hysteresis in the signal level mask is allowed in the core operating software. The hysteresis allows the receiver to continue using satellite signals which fall slightly below the mask and prevents the receiver from incorporating a new signal until the signal level slightly exceeds the mask. This feature minimizes constellation changes caused by temporary fluctuations in signal levels.

PDOP Mask and Switch

The PDOP mask is the maximum PDOP limit for which any 2-D or 3-D position solution will be made. The PDOP switch is the level at which the receiver stops attempting a 3-D solution, and tries for a 2-D solution when in automatic 2-D, 3-D mode. The switch level has no effect on either manual mode. Raising the PDOP mask generally increases the fix density during obscuration, but the fixes with the higher PDOP are less accurate (especially with Selective Availability present). Lowering the mask improves the average accuracy at the risk of lowering the fix density.

Note – The receiver may require an initial position fix before switching to some modes.

Byte #	ltem	Туре	Value	Meaning	Default
0	Subcode	BYTE	0	Primary receiver configuration block	
1	Operating Dimension	BYTE	0 1 3 4 5 6 7	Automatic Time only (1-SV) Horizontal (2D) Full position (3D) DGPS reference 2D clock hold Overdetermined clock	Full Position
2	DGPS Mode	BYTE	0 1 3	DGPS off DGPS only DGPS auto	DGPS Auto
3	Dynamics Code	BYTE	1 2 3 4	Land, <120 knots Sea, <50 knots Air, <800 knots Static	Land

Acutime 2000 Synchronization Kit User Guide

Byte #	ltem	Туре	Value	Meaning	Default
4	Solution Mode	BYTE	1	Overdetermined fix	Over- determined fix
5-8	Elevation	SINGLE	0-π/2	Lowest satellite	0.1745
	Mask			elevation for fixes	(10 deg.)
9-12	AMU Mask	SINGLE		Minimum signal level for fixes	4.0
13-16	PDOP Mask	SINGLE		Maximum PDOP for fixes	8
17-20	PDOP Switch	SINGLE		Selects 2D/3D mode	6
21	DGPS Age	BYTE		Maximum time to use a DGPS correction (seconds)	30 seconds
22	Foliage Mode	BYTE	0	Never	Never
23	Reserved	BYTE	N/A	N/A	
24	Reserved	BYTE	N/A	N/A	
25	Measurement Rate	BYTE	0	1 Hertz	1 Hz
26	Position Fix Rate	BYTE	0	1 Hertz	1 Hz
27-42	Reserved	BYTE	-1	Reserved for future use	

Table A-69 Command Packet BB (Continued)

0xBB Report Packet BB Report Receiver Configuration

TSIP report packet BB is used to report the GPS Processing options. For information about the data formats, see command packet BB.

0xBC Command Packet BC Set Port Configuration Parameters

TSIP command packet BC is used to set the communication parameters on Port 1 and Port 2. The table below lists the individual fields within the BC packet.

Flow control is not supported. Please refer to section A.2 "Physical Interface Characteristics" for details on the capabilities of each port on the Ace UTC and Acutime 2000.

Byte #	ltem	Туре	Value	Meaning	Default
0	Port Number	BYTE	0 1 0xFF	Port 2 / Port B Port 1 / Port A current port	
1	Input Baud Rate	BYTE	0 1 2 3 4 5 6 7 8 9	None 110 baud 300 baud 600 baud 1200 baud 2400 baud 4800 baud 9600 baud 19200 baud 38400 baud	9600
2	Output Baud Rate	BYTE	As above	As above	9600
3	# Data Bits	BYTE	2 3	7 bits 8 bits	8 bits

Table A-70 Command Packet BC

Byte #	ltem	Туре	Value	Meaning	Default
4	Parity	BYTE	0 1 2	None Odd Even	Odd
5	# Stop Bits	BYTE	0 2	1 bit 2 bits	1 bit
6	reserved	BYTE	0-15	0 = none	0
7	Input Protocols	BYTE	0 2 8	none TSIP RTCM (Port 2 only)	none
8	Output Protocols	BYTE	0 2 4	none TSIP NMEA	TSIP
9	Reserved	BYTE	0	None	

Table A-70 Command Packet BC (Continued)

0xBC Report Packet BC Request Port Configuration Parameters

TSIP packet BC is used to request the communication parameters on Port 2 and Port B. To query a port's configuration parameters, send packet BC with only Byte 0. Table A-70, above, lists the individual fields within the BC report packet.

A.16 Custom OEM Packets

Several packets have been added to the core TSIP protocol to provide additional capability for OEM receivers. In OEM packets 8E and their 8F responses, the first data byte is a subcode that indicates the superpacket type. For example, in packet 8E-14, 14 is the subcode that indicates the superpacket type. Therefore, the ID code for OEM packets is 2 bytes long, followed by the data.

A.17 TSIP Superpackets

Superpackets describes packets that reduce the I/O traffic with the receiver and facilitate interpretation to a modem or data acquisition device with limited programming facilities.

Acutime 2000 Synchronization Kit User Guide

0x8E-0B Command Packet 8E-0B Request or Configure Super Packet Output

The 8E-0B packet is identical in function to the 8E-AD packet. If the 8E-0B byte sequence is sent with no data, the receiver will return an 8F-0B packet on port 1. The time reported by the 8F-0B packet on port 1 is always the beginning of the current second.

A-86

0x8E-14 Command Packet 8E-14 Set New Datum

This packet allows the user to change the default datum from WGS-84 to one of 180 selected datums or to a user-entered custom datum. The datum is a set of 5 parameters which describe an ellipsoid to convert the GPS receiver's internal coordinate system of XYZ ECEF into Latitude, Longitude and Altitude (LLA). This will affect all calculations of LLA in packets 4A and 84 and 8F-AC and 8F-0B. The receiver responds with packet 8F-14.

The user may want to change the datum to match coordinates with some other system (usually a map). Most maps are marked with the datum used and in the US the most popular datum for maps is NAD-27. The user may also want to use a datum that is more optimized for the local shape of the earth in that area. However, these optimized datums are truly "local" and will provide very different results when used outside of the area for which they were intended. WGS-84 is an excellent general ellipsoid valid around the world.

To change to one of the internally held datums the packet must contain exactly 2 bytes representing the integer value of the index of the datum desired. For a list of the datums and their indexes, see Table A-101.

Byte #	Туре	Value
0	Superpacket ID	0x14
1-2	INTEGER	Datum index

Table A-71 Command Packet 8E-14

Alternatively, the unit will accept a 40 byte input packet containing 5 double-precision floating point values representing the ellipse. The first 3 are DX, DY, and DZ, which represent an offset in meters from the ECEF origin for the ellipse. The fourth parameter is the semi-major axis of the ellipse (called the a-axis) and is also in meters. The fifth parameter is the eccentricity of the ellipse and is dimensionless.

Caution – The GPS receiver does not perform an integrity check on the datum values. If unusual inputs are used, the output will be equally unusual.

Byte #	Туре	Value	Units
0	Superpacket ID	0x14	
1-8	DOUBLE	DX	meters
9-16	DOUBLE	DY	meters
17-24	DOUBLE	DZ	meters
25-32	DOUBLE	A-axis	meters
33-40	DOUBLE	Eccentricity Squared	None

Table A-72 Command Packet 8E-14

0x8E-15

Command Packet 8E-15 Request Current Datum Values

This packet contains only the subpacket ID, 0x15. The response to this packet is 8F-15.

0x8E-20 Command Packet 8E-20 Request Last Fix with Extra Information

This packet requests packet 8F-20 or marks it for automatic output. If only the first byte (20) is sent, an 8F-20 report containing the last available fix will be sent immediately. If two bytes are sent, the packet is marked/unmarked for auto report according to the value of the second byte.

Table A-73 Command Packet 8E-20

Byte #	ltem	Туре	Value
0	Sub-packet ID	BYTE	0x20
1	Mark for Auto-report	BYTE	0 = do not auto-report 1 = auto-report

 \ge

Note – Auto-report requires that superpacket output is enabled. Refer to command packet 35. This packet must also be enabled with packet 8E-4D.

0x8E-26

Command Packet 8E-26 Write Receiver Configuration to EEPROM

This command packet causes the current configuration settings to be written to the EEPROM. It also generates a report packet 8F-26. This packet contains only a single byte: the subpacket ID.

0x8E-41

Command Packet 8E-41 Manufacturing Operating Parameters

This packet is used to request the manufacturing parameters stored in nonvolatile memory. The packet contains only a single byte, the subpacket ID. The receiver returns packet 8F-41.

Acutime 2000 Synchronization Kit User Guide

0x8E-42 Command Packet 8E-42 Production Parameters

This packet is used to request the production parameters stored in nonvolatile memory. This packet contains only a single byte, the subpacket ID. The receiver returns packet 8F-42.

0x8E-45 Command Packet 8E-45 Revert Segments to Default Settings

This command packet reverts the parameters stored in a specific EEPROM segment (or all segments) to their factory default settings and reconfigures the ACE UTC GPS using those settings. The receiver returns packet 8F-45.

Byte	ltem	Туре	Value	Segment Description
0	Subcode	BYTE	0x45	
1	Segment number	BYTE	2 3 4 5 6 7 8 11 0xFD 0xFF	Receiver configuration Packet I/O control Serial port configuration Timing output configuration Accurate position Self-survey configuration NMEA configuration UTC information Segments 2 through 8 All segments

Table A-74Command Packet 0x8E-45

0x8E-4A Command Packet 8E-4A Set/Request PPS Characteristics

Using this packet, you can query and control the receiver's PPS characteristics. The receiver responds to a query or control command with packet 8F-4A. The packet contains 16 bytes in the following order:

Byte #	Item	Туре	Meaning
0	Sub-packet ID	BYTE	Always 0x4A
1	PPS Driver Switch	BYTE	0 = off 1 = on (default)
2	Time Base	BYTE	0: GPS 1: UTC (default)
3	PPS Polarity	BYTE	0: positive (default) 1: negative
4-11	PPS Offset or Cable Delay	DOUBLE	seconds (default = 0.0)
12-15	Bias Uncertainty Threshold	FLOAT	meters (default = 300)

Table A-75 Command Packet 8E-4A

To request 8F-4A, send a two-byte 8E-4A packet without any parameters. To update parameters, send the entire 16-byte message.

The default setting for byte 3 is positive. Bytes 4 to 11 define the PPS cable delay offset. The default offset is 0, which corresponds to a 100-foot (30-meter) cable. These bytes allow the application to adjust the cable delay offset for longer or shorter cable lengths. Use a cable delay of \pm 1.25 ns/foot to adjust PPS offset for cable lengths different than 100 feet. For a longer cable, a negative value should be used to advance the PPS. ACE UTC GPS estimates the bias uncertainty as part of a PPS validity monitor. If the bias uncertainty exceeds the threshold, then ACE UTC GPS disables the PPS output. The default bias uncertainty threshold is 300 meters, but this parameter may be programmed by the application. ACE UTC GPS limits the threshold to $3x10^8$ meters. Each time the application adjusts the packet 8E-4A settings, the new settings are stored in nonvolatile memory.

0x8E-4D

Command Packet 8E-4D Automatic Packet Output Mask

Automatic output of packets on Port 1 can be throttled using this command packet. The current mask can be requested by sending this packet with no data bytes except the subcode byte. The receiver returns packet 8F-4D.

The automatic packet output mask can be set by sending this packet with 4 data bytes. This mask only disables automatic packet output. Packets generated in response to TSIP set or query commands will always be output by the receiver.

Byte #	ltem	Туре	Meaning
0	Subcode	BYTE	ID for this subpacket is always 0x4D
1-4	Auto-output mask	LONG	32-bit packet enable bitmap

Table A-76 Command Packet 8E-4D

The bits are numbered in descending order of receipt, starting with bit 31 as the MSB of Byte 1, down to bit 0 as the LSB of Byte 4. A "0" in the bit position disables automatic output of the associated packets; a "1" in the bit position makes the associated packets available for automatic output. Table A-77 describes the packets affected by each bit.

 Table A-77
 Command Packet 8E-4D - Packets Affected By Bits

		1			1
Bit #	Output Packets	Default	Default	When	Meaning
	Packets	A2K	ACE UTC	Output	
0 (LSB)	40	0	0	After Decode	Almanac data collected from satellite.
1	58, 5B	0	0	After Decode	Ephemeris data collected from satellite.
2	4F	0	0	After Decode	UTC data collected from satellite.
3	58	0	0	After Decode	Ionospheric data collected from satellite.
4	48	0	0	After Decode	GPS Message.
5	49	0	0	After Decode	Almanac health page collected from satellite.
6		1	0		Reserved
7		1	0		Reserved
8	41	1	0	New Fix	Partial and full fix complete and packet output timer has expired.
9		1	0		Reserved

Acutime 2000 Synchronization Kit User Guide

Bit #	Output Packets	Default A2K	Default ACE UTC	When Output	Meaning
10		1	0		Reserved
11 (Note 1)	6D, 46, 4B, 82	1	0	Constellation Change, New Fix	New satellite selection
12		1	0		Reserved
13-29		1	0		Reserved
30	42, 43, 4A, 54, 56, 83, 84, 8F-20,	1	0	New Fix Update	Kinetic and Timing information. Output must be enabled using I/O options.
31	5A	1	0	New Fix	Raw Measurement Data Output must be enabled using I/O options.

Table A-77 Command Packet 8E-4D - Packets Affected By Bits

Note 1: A 1 in the bit mask turns on the associated packets and a 0 turns off the output of the associated packets.

0x8E-4E

Command Packet 8E-4E Set PPS Output Option

This command packet sets the PPS driver switch to one of the values listed in Table A-78. The receiver returns packet 8F-4E. The current driver switch value can be requested by sending this packet with no data bytes except the subcode byte.

Driver switch values 3 and 4 only make sense in Overdetermined Timing mode. In any position fix mode the effective choices are

always on or during fixes which you get if you set the driver switch to 3 or 4.8E-4

Table A-78 Command Packet 0x8E-4E

Byte	Item	Туре	Value	Meaning
0	Subcode	BYTE	0x4E	
1	PPS driver switch	BYTE	2 3 4	PPS is always output PPS is output when at least one satellite is tracking PPS is output when at least three satellites are tracking

0x8E-4F

Command Packet 8E-4F for Acutime 2000 only Set PPS Width

This command packet sets the PPS width to a value in the range of 10 microseconds to 500 milliseconds. The receiver returns packet 8F-4F. The current PPS width can be requested by sending this packet with no data bytes except the subcode byte.

Table A-79	Command Packet 0x8E-4F

Byte	ltem	Туре	Value	Meaning
0	Subcode	BYTE	0x4F	
1-8	PPS width	DOUBLE		Seconds

0x8E-A5

Command Packet 8E-A5 Set or Request Packet Broadcast Mask

Use command packet 8E-A5 to set the packet broadcast masks or to request the current mask settings. The ACE UTC replies to requests with response packet 8F-A5. The broadcast mask is bitwise encoded to allow the user to turn on and off the automatic output (broadcast) of certain packets. For those broadcast packets that have multiple

formats, the ACE UTC GPS will broadcast only one of the formats. If more than one of the formats is masked on for broadcast, then the format with the greatest precision of content will be sent and the rest will not. The coding for each bit in the mask follows:

- 0: Turn off automatic output (broadcast) of this packet
- 1: Turn on automatic output (broadcast) of this packet

Byte	Bit	ltem	Туре	Def	ault	Description
0		Subcode	UINT8	А	А	0xA5
				2	С	
				К	Е	
1-2	0	0x8F-20	Bit	1	0	Enable 0x8F-20 output on Port
	1		field	0	0	Reserved
	2			0	0	Reserved
	3			0	0	Reserved
	4			0	0	Reserved
	5			1	1	Enable auto TSIP outputs
	6	0x8F-AB		0	1	0x8F-AB, Primary timing info on all
						TSIP output ports
	7	0x8F-AC		0	1	0x8F-AC, Supplemental timing info
						on all TSIP output ports
	8	0x8F-0B		0	0	Synchronous 0x8F-0B (1 Hertz) on
						Port A (Acutime 2000 only)
	9	0x8F-0B		1	0	Event output of 0x8F-0B on Port A
				-	_	(Acutime 2000 only)
	10	0x8F-0B		0	0	Event output of 0x8F-0B on Port 1
	11	0x8F-0B		0	0	Synchronous 0x8F-0B on Port 1
	12	0x8F-AD		1	0	Synchronous 0x8F-AD (1 Hertz) on
						Port A (Acutime 2000 only)
	13	0x8F-AD		1	0	Event output of 0x8F-AD on Port A
				_		(Acutime 2000 only)
	14	0x8F-AD		0	1	Event output of 0x8F-AD on Port 1
	15	0x8F-AD		0	0	Synchronous 0x8F-AD on Port 1
3-4	0-15		Bit		0	Reserved (always 0)
			field			

Table A-80 Command Packet 8E-A5

Acutime 2000 Synchronization Kit User Guide

0x8E-A6 Command Packet 8E-A6 Issue Self-Survey Command

This command packet starts a self-survey. The ACE UTC GPS responds with report packet 8F-A6. This command has no effect when survey is disabled.

Table A-81 Command Packet 8E-A6

Byte	ltem	Туре	Value	Meaning
0	Subcode	BYTE	0xA6	
1	Self-survey command	BYTE	0	Restart self-survey

0x8E-A9

Command Packet 8E-A9 Set Self-Survey Parameters

Use command packet 8E-A9 to set the self-survey parameters or to request the current settings. The ACE UTC GPS replies with response packet 8F-A9.

Data Fields:

<u>Self-Survey Enable</u>: Use this field to enabled or disabled the self-survey mechanism.

- 0: Disable the self-survey mechanism
- 1: Enable the self-survey mechanism

<u>Position Save Flag</u>: Use this field to tell the self-survey mechanism to automatically save (or to not save) the self-surveyed position at the end of the self-survey procedure.

0: Do not automatically save the surveyed position when the self-survey is complete

1: Automatically save the surveyed position when the selfsurvey is complete.

<u>Self-Survey Length</u>: Use this field to specify the number of position fixes that are to be averaged together to form the self-surveyed position used for clock-only fixes.

<u>Limits</u>: 1 to $(2^{31} - 1)$ fixes.

 \searrow

Note – After disabling the self-survey, the survey in progress can be stopped by issuing a restart self-survey command (0x8E-A6).

Table A-82 Command Packet 8E-A9 Data Format << segment 7>>

Byte	ltem	Туре	Value	Description
0	Subcode	UINT8	0xA9	
1	Self-Survey	UINT8	0	Disabled
	Enable		1	Enabled (factory default)
2	Position Save	UINT8	0	Don't save position (factory
	Flag		1	default)
				Save self-surveyed position
3-6	Self-Survey	UINT32	see	Number of fixes
	Length		above	(factory default = 2000)
7-10	Reserved	UINT32	0	0

0x8E-AB Command Packet 8E-AB Request Primary Timing Packet

This command packet may be used to request the primary timing packet 8F-AB. To receive report packet 8F-AB once per second use command 8E-A5 to enable the automatic output.

The Request Type item determines how the ACE UTC GPS will reply to this command.

- Request Type 0: The most current primary timing values will be sent in report packet 8F-AB immediately.
- Request Type 1: The response is not sent immediately. Instead report packet 8F-AB is sent within 20ms after the next PPS output. This is the same time that the packet would be automatically sent if enabled.
- Request Type 2: Same as type 1 except that both report packets 8F-AB and 0x8F-AC are sent after the next PPS output.

Table A-83 Command Packet 8E-AB

Byte	ltem	Туре	Value	Meaning
0	Subcode	BYTE	0xAB	
1	Request type	BYTE	0 1 2	Send 0x8F-AB immediately Send 0x8F-AB on-time next second Send 0x8F-AB and 0x8F-AC on- time next second

A-100

0x8E-AC

Command Packet 8E-AC Request Supplemental Timing Packet

This command packet can be used to request the supplemental timing packet 8F-AC. To receive report packet 8F-AC once per second use command 8E-A5 to enable the automatic output.

The Request Type item determines how the ACE UTC GPS will reply to this command.

- Request Type 0: The most current supplemental timing values will be sent in report packet 8F-AC immediately.
- Request Type 1: The response is not sent immediately. Instead report packet 8F-AC is sent within 300ms after the next PPS output. This is the same time that the packet would be automatically sent if enabled.
- Request Type 2: Same as type 1 except that both report packets 8F-AB and 8F-AC are sent after the next PPS output.

Table A-84 Command Packet 8E-AC

Byte	ltem	Туре	Value	Meaning
0	Subcode	BYTE	0xAC	
1	Request type	BYTE	0 1 2	Send 0x8F-AC immediately Send 0x8F-AC on-time next second Send 0x8F-AB and 0x8F-AC on-time next second

Acutime 2000 Synchronization Kit User Guide

0x8E-AD Command Packet 8E-AD (Acutime 2000 only) Request or Configure Super Packet Output

If the 8E-AD byte sequence is sent with no data, the receiver will generate an 8F-AD packet on port 1. The time reported by the 8F-AD packet on port 1 is always the beginning of the current second.

A-102

0x8F-0B Report Packet 8F-0B Comprehensive Time

The output of the packet is synchronized with the PPS, and may also be generated in response to external events. Report packet 8F-0B provides easy identification of each timing pulse and contains all the information required for most timing and synchronization applications. Output of this packet can be disabled and configured using the 8E-A5 packet on Port 1. If output of the 8F-AD packet is also enabled, the 8F-0B packet will always be output after the 8F-AD packet. The packet contains 74 bytes in the following order:

Byte #	ltem	Туре	Meaning
0	Subpacket ID	BYTE	Subcode 0x0B
1-2	Event Count	INTEGER	External event counter. Zero for PPS.
3-10	UTC/GPS TOW	DOUBLE	UTC/GPS time of week (seconds)
11	Date	BYTE	Date of event or PPS
12	Month	BYTE	Month of event or PPS
13-14	Year	INTEGER	Year of event or PPS
15	Receiver Mode	BYTE	Receiver operating dimensions 0 Horizontal (2D) 1 Full position (3D) (Survey) 2 Single satellite (0D) 3 Automatic (2D/3D) 4 DGPS reference 4 Clock hold (2D) 6 Overdetermined clock (default)
16-17	UTC Offset	INTEGER	UTC offset value (seconds)
18-25	Oscillator Bias	DOUBLE	Oscillator bias (meters)
26-33	Oscillator Drift Rate	DOUBLE	Oscillator drift (meters/second)
34-37	Oscillator Bias Uncertainty	SINGLE	Oscillator bias uncertainty (meters)

Table A-85 Report Packet 8F-0B

Acutime 2000 Synchronization Kit User Guide

A-103

А

Byte #	Item	Туре	Meaning
38-41	Oscillator Drift Uncertainty	SINGLE	Oscillator bias rate uncertainty (meters/second)
42-49	Latitude	DOUBLE	Latitude in radians
50-57	Longitude	DOUBLE	Longitude in radians
58-65	Altitude	DOUBLE	Altitude according to current datum, meters
66-73	Satellite ID	8 BYTES	Identification numbers of tracking and usable satellites

Table A-85 Report Packet 8F-0B (Continued)

Bytes 66 through 73 identify the tracking and usable satellites. A tracked satellite is distinguished from a usable satellite by a negative sign (\rightarrow) appended to its PRN number.

In this superpacket, time is referenced to UTC to correspond to the default PPS timebase. To configure the receiver to output time relative to GPS, the PPS must be characterized accordingly. Command packet 8E-4A enables the PPS to be re-defined at run-time and stores the new settings in nonvolatile memory.

Note – Leap seconds can not be predicted in advance using only the 8F-0B packet. A leap second can be identified by observing that the date does not increment after 86400 seconds have elapsed in the current day. The date rollover is delayed for the duration of the leap second, and the day/month/year count reported does not increment to the next day until the beginning of the second following the leap event. Decoding of the 8F-AD packet provides complete leap status information.

The UTC offset is incremented at the beginning of the first second following the leap second.

0x8F-14 Report Packet 8F-14 Current Datum Values

This packet contains 43 data bytes with the values for the datum currently in use and is sent in response to packet 8E-14. If a built-in datum is being used, both the datum index and the five double-precision values for that index are returned. If the receiver is operating on a custom user-entered datum, the datum index is set to -1 and the five values are displayed. These five values describe an ellipsoid to convert ECEF XYZ coordinate system into LLA.

Byte #	Туре	Value	Units
0	Super packet ID	14	
1-2	Datum index (-1 for custom)	Datum index	
3-10	DOUBLE	DX	meters
11-18	DOUBLE	DY	meters
19-26	DOUBLE	DZ	meters
27-34	DOUBLE	A-axis	meters
35-42	DOUBLE	Eccentricity squared	none

Table A-86 Report Packet 8F-14

Note – A complete list of datums is provided at the end of this appendix.

Acutime 2000 Synchronization Kit User Guide

00x8F-20 Report Packet 8F-20 Last Fix with Extra Information (binary fixed point)

This packet provides information concerning the time and origin of the previous position fix. This is the last-calculated fix; it could be quite old. The receiver sends this packet in response to Packet 8E-20; it also can replace automatic reporting of position and velocity packets. Automatic output of 8F-20 must also be enabled by setting bit 5 of byte 0 in command packet 0x35 and bit 0 of bytes 1-2 in command packet 0x8E-A5.

The data format is shown in the table below.

Byte #	ltem/Type	Meaning
0	Subpacket ID / BYTE	ID for this subpacket (always 0x20)
1	KeyByte/BYTE	Reserved for Trimble DGPS postprocessing
2-3	east velocity / INTEGER	units 0.005 m/s or 0.020 m/s (see Byte 24). Overflow = 0 x 8000
4-5	north velocity / INTEGER	units 0.005 m/s or 0.020 m/s (see Byte 24). Overflow = 0 x 8000
6-7	up velocity /INTEGER	units 0.005 m/s or 0.020 m/s (see Byte 24). Overflow = 0 x 8000
8-11	Time of Week / UNSIGNED LONG	GPS Time in milliseconds
12-15	Latitude / LONG INTEGER	Latitude, units = 2^{-31} semicircle, according to current datum. Range = -2^{30} to 2^{32}
16-19	Longitude / UNSIGNED LONG	Longitude east of meridian, units = 2^{-31} semicircle, according to current datum. Range = 0 to 2^{32}
20-23	Altitude / LONG INTEGER	Altitude above ellipsoid, mm, according current datum.
24	Velocity Scaling	When bit 0 is set to 1, velocities in Bytes 2-7 have been scaled by 4.

Table A-87 Report Packet 8F-20

A-106

Byte #	Item/Type	Meaning	
25	Reserved	0	
26	Datum	Datum index +1	
27	Fix Type / BYTE	Type of fix. This is a set of flags.0 (LSB) 0: Fix was available1: No fix available1: 0: Fix is autonomous1: Fix was corrected with RTCM20: 3D fix1: 2D fix30: 2D fix used last-circulated altitude1: 2D fix used entered altitude40: Unfiltered1: Position or altitude filter on5-7unused (always 0)	
28	NumSVs/BYTE	Number of satellites used for fix. Will be zero if no fix was available.	
29	UTC Offset / BYTE	Number of leap seconds between UTC time and GPS time.	
30-31	Week/INTEGER	GPS time of fix (weeks)	
32-47	Fix SVs	Repeated groups of 2 bytes, one for each satellite. The bytes are 0 if group N/A. The following table describes the contents of each group.	
48-55	lono Param / 8 CHARS	The broadcast ionospheric parameters.	

Table A-87 Report Packet 8F-20 (Continued)

Table A-88Report Packet 8F-20

Bytes 32-47	Item/Type	Meaning
0	PRNX/BYTE	Satellite number and IODC - IODE. PRN = the lower six bits of PRNX. IODC = (PRNX/64)×256 + IODE
1	IODE/BYTE	

Acutime 2000 Synchronization Kit User Guide

0x8F-26 Report Packet 0x8F-26 Response to Save EEPROM Segments

This report packet is output after the command packet 8E-26 has been executed.

Table A-89Report Packet 0x8F-26

Byte	ltem	Туре	Value	Meaning
0	Subcode	BYTE	0x26	
1-4	Reserved	ULONG	0x00	

A-108

0x8F-41 Report Packet 8F-41 Manufacturing Parameters

This packet provides information on the manufacturing parameters stored in nonvolatile memory in response to command packet 8E-41.

Table A-90 Report Packet 8F-41

Byte #	ltem	Туре	Meaning
0	Subcode	BYTE	ID for this subpacket is always 0x41
1-2	Board serial number prefix	INTEGER	
3-6	Board serial number	ULONG	
7	Year of build	BYTE	
8	Month of build	BYTE	
9	Day of build	BYTE	
10	Hour of build	BYTE	
11-14	Oscillator offset	SINGLE	
15-16	Test code identification number	INTEGER	

0x8F-42 Report Packet 8F-42 Production Parameters

This packet provides information on the production parameters stored in nonvolatile memory in response to command packet 8E-42.

Table A-91Report Packet 8F-42

Byte #	Item	Туре	Meaning
0	Subcode	BYTE	ID for this subpacket is always 0x42
1	Production options prefix	BYTE	
2	Production number extension	BYTE	
3-4	Case serial number prefix	INTEGER	
5-8	Case serial number	ULONG	
9-12	Production number	ULONG	
13-14	Reserved	INTEGER	
15-16	Machine identification number	INTEGER	
17-18	Reserved	INTEGER	

0x8F-45

Report Packet 8F-45

This report packet is output after the command packet 8E-45 has been executed. See the corresponding command packet for information about the data formats.

A-110

Acutime 2000 Synchronization Kit User Guide

А

0x8E-AD Command Packet 8E-AD (Request 8F-AD) Request or Configure Super Packet Output

If the 8E-AD byte sequence is sent with no data, the receiver will generate an 8F-AD packet on port B. The time reported by the 8F-AD packet on port B is always the beginning of the current second.

Output of the 8F-AD Primary UTC timing packet on Port A is configured by sending a 3 byte message 8E-AD n, where n ranges from 0 to 3, as defined below. The receiver returns the 8F-A5 Super Packet Output Mask.

ng
-packet ID
e packet output on port A t packet on port A only at t packet on port A only at input t at both event input and
1

Table A-92 Command Packet 8E-AD

Acutime 2000 Synchronization Kit User Guide

0x8F-4A Report Packet 8F-4A PPS Characteristics

This packet reports ACE UTC's PPS characteristics. This packet is sent in response to a query or control command with packet 8E-4A. The packet contains 16 bytes in the following order:

Table A-93	Report Packet 8F-4A
------------	---------------------

Byte #	ltem	Туре	Units
0	Subpacket ID	BYTE	Always 0x4A
1	PPS Driver Switch	BYTE	0: Off 1: On
2	Time Base	BYTE	0: GPS 1: UTC (default)
3	PPS Polarity	BYTE	0: Positive (default) 1: Negative
4-11	PPS Offset or Cable Delay	DOUBLE	seconds
12-15	Bias Uncertainty Threshold	SINGLE	meters

A-112

Acutime 2000 Synchronization Kit User Guide

0x8F-4D Report Packet 8F-4D Automatic Packet Output Mask

This packet provides information on the automatic packets that may be output by the receiver. Sent in response to 8E-4D query or set.

Table A-94 Report Packet 8F-4D

Byte #	ltem	Туре	Meaning
0	Subcode	BYTE	ID for this sub-packet is always 0x4D
1-4	Bit Mask	ULONG	Bits in the mask enable output packets

A "0" in the bit position means that automatic output of the associated packets is disabled; a "1" in the bit positions means that the associated packets can be automatically output. The following table describes the meaning and packets output by each set bit.

Table A-95 Report Packet 8F-4D

Bit #	Output Packets	When Output	Meaning	
0(LSB)	40 Alm	After Decode	Almanac data collected from satellite	
1	58, 5B	After Decode	Ephemeris data collected from satellite.	
2	4F	After Decode	UTC data collected from satellite	
3	58	After Decode	Ionospheric data collected from satellite	
4	48	After Decode	GPS Message.	
5	49	After Decode	Almanac health page collected from satellite.	
6			Reserved	
7			Reserved	
8	41	New Fix	Partial and full fix complete and packet output timer has expired.	

Acutime 2000 Synchronization Kit User Guide

A-113

A

Bit #	Output Packets	When Output	Meaning
9			Reserved
10			Reserved
11	6D, 82	Constellation Change	New satellite selection
12			Reserved
13-29			Reserved
30	4A, 8F-20, 42, 43, 54, 56, 82, 83, 84	New Fix Update	Dynamic and Timing information. Output must be enabled with I/O options.
31 (Note 1)	5A	New Fix	Output must be enabled with I/O options.

 Table A-95
 Report Packet 8F-4D (Continued)

Note 1: A 1 in the bit mask indicates that output for the associated packets is ON; a 0 indicates that the output is turned OFF.

0x8F-4E

Report Packet 0x8F-4E

This report packet is output after the command packet 8E-4E has been executed. See the corresponding command packet for information about the data formats.

0x8F-A5

Report Packet 8F-A5

This report packet is output after the command packet 8E-A5 has been executed and is identical in structure to packet 8E-A5. See the corresponding command packet for information about the data formats.

A-114

0x8F-A6 Report Packet 8F-A6

This report packet is output after the command packet 8E-A6 has been executed and is identical in structure to packet 8E-A6. See the corresponding command packet for information about the data formats.

0x8F-A9

Report Packet 0x8F-A9

This report packet is output after the command packet 8E-A9 has been executed and is identical in structure to packet 8E-A9. See the corresponding command packet for information about the data formats.

0x8F-AB Report Packet 8F-AB

This automatic report packet provides time information once per second if enabled with command packet 8E-A5. GPS week number, GPS time-of-week (TOW), UTC integer offset, time flags, date and time-of-day (TOD) information is provided. This packet can be requested with packet 8E-AB. This packet will begin transmission within 30 ms after the PPS pulse to which it refers.

Data Fields:

Time of Week: This field represents the number of seconds since Sunday at 00:00:00 GPS time for the current GPS week. Time of week is often abbreviated as TOW.

Week Number: This field represents the current GPS week number. GPS week number 0 started on January 6, 1980. Unfortunately, the GPS system has allotted only 10-bits of information to carry the GPS week number and therefore it rolls-over to 0 in just 1024 weeks (19.6 years), and there is no mechanism built into GPS to tell the user to which 1024 week epoch the week number refers. The first week

Acutime 2000 Synchronization Kit User Guide

number roll-over occurred as August 21, 1999 (GPS) transitioned to August 22, 1999 (GPS). The ACE UTC GPS adjusts for this week rollover by adding 1024 to any week number reported by GPS that is less than week number 1023, which began on December 14, 1997. With this technique, the ACE UTC GPS will provide an accurate translation of GPS week number and TOW to time and date until July 30, 2017.

UTC Offset: This field represents the current integer leap second offset between GPS and UTC according to the relationship: Time (UTC) = Time (GPS) - UTC Offset. The UTC offset information is reported to ACE UTC GPS by the GPS system and can take up to 12.5 minutes to obtain. Before the ACE UTC GPS has received UTC information from the GPS system, it is only capable of representing time in the GPS time scale, and the UTC offset will be shown as 0.

Timing Flags: This field is bitwise encoded to provide information about the timing outputs. Unused bits should be ignored.

Bit 0: When 0, the date and time fields broadcast in packet 0x8F-AB are in the GPS time scale. When 1, these fields are in the UTC time scale and are adjusted for leap seconds.

Bit 2: When 0, time has been set from GPS. When 1, time has not yet been set from GPS.

Bit 3: When 0, UTC offset information has been received. When 1, UTC offset information is not yet known.

Time of Day: The time of day is sent in hours-minutesseconds format and varies from 00:00:00 to 23:59:59, except when time is in UTC and a leap second insertion occurs. In this case the time will transition from 23:59:59 to 23:59:60 to 00:00:00.

Date: The date is sent in day-month-year format.

Byte	Bit	Item	Туре	Value	Meaning	
0		Subcode	BYTE		0xAB	
1-4		Time of week	ULONG		GPS seconds of week	
5-6		Week Number	UINTEGER		GPS Week Number (see above)	
7-8		UTC Offset	INTEGER		UTC Offset (seconds)	
9	0	Timing Flag	Bit Field	0 1	GPS time UTC time	
	1			0 1	Reserved Reserved	
	2			0	Time is set	
	3			1 0 1	Time is not set Have UTC info No UTC info	
10		Seconds	BYTE	0-59	(60 for UTC leap second event)	
11		Minutes	BYTE	0-59	Minutes of Hour	
12		Hours	BYTE	0-23	Hour of Day	
13		Day of Month	BYTE	YTE 1-31 Day of Month		
14		Month	BYTE	1-12 Month of Year		
15-16		Year	UINTEGER		Four digits of Year (e.g. 1999)	

Table A-96 Report Packet 0x8F-AB

Acutime 2000 Synchronization Kit User Guide

0x8F-AC

Report Packet 8F-AC

This report packet provides supplemental timing information once per second if enabled with command packet 8E-A5. Information regarding position, unit status and health, and the operational state of the unit is provided. This packet can be requested with command packet 8E-AC. When enabled, this packet is transmitted once per second shortly after report packet 8F-AB.

The position sent in report packet 8F-AC depends on the Receiver Operating Mode and on self-survey activity. When a self-survey is in progress, the position sent is the running average of all of the position fixes collected so far. When the self-survey ends or whenever the receiver is using a time-only operating mode, then the position sent is the position the receiver is using to perform time-only fixes. When the self-survey is disabled or otherwise inactive and the receiver is using a position fix operating mode, then the position sent is the position fix computed on the last second.

Data Fields:

Receiver Mode: This field shows the fix mode that the GPS receiver is currently configured for. The ACE UTC GPS spends most of its time in the Overdetermined Clock mode where it uses all available satellites to perform the best time-only fix possible. See packet 0xBB for a description of all available receiver modes.

Self-Survey Progress: When a self-survey procedure is in progress, this field shows the progress of the survey as a percentage of fixes collected so far. The self-survey will be complete when the self-survey progress reaches 100 percent.

Minor Alarms: This field is bitwise encoded with several minor alarm indicators. A minor alarm indicates a condition that the user should be alerted to, but does not indicate an immediate (or necessarily any) impairment of functionality. For each bit, a value of 0 means that the condition is not indicated. Bits not described below should be ignored.

- Bit 1 Antenna Open (ACE UTC only)
- Bit 2 Antenna Short((ACE UTC only)
- Bit 3 When 1, indicates that no satellites are yet usable. In order for a satellite to be usable, it must be tracked long enough to obtain ephemeris and health data.
- Bit 5 When 1, indicates that a self-survey procedure is in progress.
- Bit 6 When 1, indicates that there is no accurate position stored in EEPROM.
- Bit 7 When 1, indicates that the GPS system has alerted the GPS that a leap second transition is pending.
- Bit 8 When 1, indicates that the GPS is operating in one of its test modes.
- Bit 9 When 1, indicates that the accuracy of the position being used for a time-only fix is questionable. While operating in the Overdetermined Clock mode (which is most of the time) with at least 2 satellites available, the receiver can detect position inaccuracies as small as 1/2 to 1 mile. If this bit is set, it is likely that the receiver is using a stored position but has been moved to a new site. The stored position should be cleared (packet 0x8E-45) and a new position should be established either by user input (packet 0x31 or 0x32) or by self-survey (packet 0x8E-A6).
- Bit 10 When 1, indicates that one or more EEPROM segments where found to be corrupt at reset and had to be set to their factory default settings. Use packet 0x3F-11 to retrieve details about which segments where corrupt and to clear this bit. The GPS will send packet 0x5F-11 with the segment status. Only bits 2-12 of the segment status are used to set this alarm bit.
- Bit 11 When 1, indicates that the almanac is not current or complete.

Acutime 2000 Synchronization Kit User Guide

GPS Decoding Status: This field indicates the decoding status of the GPS receiver.

Local Clock Offset: This field carries the offset of the local clock relative to UTC or GPS as reported by the GPS receiver in nanoseconds. Positive values indicate that the ACE UTC GPS's local clock is late relative to GPS or UTC. Also known as bias.

Oscillator Offset: This field carries the frequency offset of the local clock relative to UTC or GPS as reported by the GPS receiver in ppb (parts-per-billion). Positive values indicate that the ACE UTC GPS's local clock is running slow relative to GPS or UTC. Also known as bias rate.

Latitude: This field carries the latitude of the position being shown. The units are in radians and vary from $-\pi/2$ to $+\pi/2$. Negative values represent southern latitudes. Positive values represent northern latitudes.

Longitude: This field carries the longitude of the position being shown. The units are in radians and vary from $-\pi$ to $+\pi$. Negative values represent western longitudes. Positive values represent eastern longitudes.

Altitude: This field carries the altitude of the position being shown. The units are in meters according to the current datum.

PPS Quantization Error: This field identifies the PPS quantization error in nanoseconds.

PPS Output Status: This field identifies the status of the PPS output.

A-120

The table below identifies the fields associated with packet 8F-AC.

Table A-97 Report Packet 8F-AC

Byte	Bit	ltem	Туре	Value	Meaning	
0		Subcode	BYTE	0xAC		
1		Receiver Mode	BYTE	0 1 3 4 5 6 7	Automatic (2D/3D) Single Satellite (Time) Horizontal (2D) Full Position (3D) DGPS Reference Clock Hold (2D) Overdetermined Clock	
2		Reserved				
3		Self-Survey Progress	BYTE	0-100	Percent completed	
4-7		Reserved				
8-9		Reserved				
10-11		Minor Alarms	UINTEGER	Bit field	Bit 1: Antenna Open	
					Bit 2: Antenna Shorted	
					Bit 3: Not tracking satellites Bit 5: Survey-in progress Bit 6: No stored position Bit 7: Leap second pending Bit 8: In test mode Bit 10: EEPROM segments status Bit 11: Almanac status	
12		GPS Decoding Status	BYTE	0 1 3 8 9 0x0A 0x0A 0x0B 0x0C 0x10	Doing fixes Do not have GPS time PDOP is too high No usable satellites Only 1 usable satellite Only 2 usable satellites Only 3 usable satellites The chosen satellite is unusable TRAIM rejected the fix	

Acutime 2000 Synchronization Kit User Guide

Byte	Bit	Item	Туре	Value	Meaning
13		Reserved			
14		Reserved			
15		Reserved			
16-19		Bias	SINGLE		Estimate of UTC/GPS offset (ns) of local clock
20-23		Bias Rate	SINGLE Estimate of UTC/GPS offse (ppb) of local clock		Estimate of UTC/GPS offset (ppb) of local clock
24-27		Reserved			
28-31		Reserved			
32-35		Reserved			
36-43		Latitude	DOUBLE		Radians
44-51		Longitude	DOUBLE Radians		Radians
52-59		Altitude	DOUBLE		Meters
60-63		PPS Quantization Error	Single		PPS quantization error (ns)
64		PPS output status	UINT8		0: PPS Not Generated 1: PPS Was Generated
65-67		Reserved			

 Table A-97
 Report Packet 8F-AC (Continued)

A-122

Acutime 2000 Synchronization Kit User Guide

0x8F-AD Report Packet 8F-AD Primary UTC Time

The output of the 8F-AD packet is synchronized with the PPS, and may also be generated in response to external events. This packet provides accurate time and date information for time stamping and time transfer. The leap flag provides complete UTC event information, allowing implementation of sophisticated distributed systems intended to operate synchronously with UTC time. This packet is always output first in a possible sequence of up to 4 synchronous packets. Output of this packet can be disabled and configured using the 8E-AD packet .

Byte #	ltem	Туре	Meaning
0	Subpacket ID	BYTE	Subcode 0xAD
1-2	Event Count	INTEGER	External event counter. Zero for PPS.
3-10	Fractional Second	DOUBLE	Time elapsed in current second (seconds)
11	Hour	BYTE	UTC Hour
12	Minute	BYTE	UTC Minute
13	Second	BYTE	Second (0-59; 60 = leap)
14	Day	BYTE	Date (1-31)
15	Month	BYTE	Month (1-12)
16-17	Year	INTEGER	Year (4 digit)
18	Receiver Status	BYTE	Tracking Status (see definition below)
19	UTC Flags	BYTE	Leap Second Flags (see definition below)
20	Reserved	BYTE	Contains 0xFF
21	Reserved	BYTE	Contains 0xFF

Table A-98 Report Packet 8F-AD

Acutime 2000 Synchronization Kit User Guide

A-123

The tracking status flag allows precise monitoring of receiver tracking status and allows a host system to determine whether the time output by the receiver is valid. After self-survey has completed, the receiver only needs to track one satellite to maintain precise synchronization with UTC.

Flag Value	Status	Meaning
0	DOING_FIXES	Receiver is navigating.
1	GOOD_1SV	Receiver is timing using one satellite
2	APPX_1SV	Approximate time
3	NEED_TIME	Start-up
4	NEED_INITALIZATION	Start-up
5	PDOP_HIGH	Dilution of Precision too High
6	BAD_1SV	Satellite is unusable
7	0SVs	No satellites usable
8	1SV	Only 1 satellite usable
9	2SVs	Only 2 satellites usable
10	3SVs	Only 3 satellites usable
11	NO_INTEGRITY	Invalid solution
12	DCORR_GEN	Differential corrections
13	OVERDET_CLK	Overdetermined fixes

Table A-99 **Tracking Status Flag Definitions**

A-124

Acutime 2000 Synchronization Kit User Guide

Leap Second Flag

Leap seconds are inserted into the UTC timescale to counter the effect of gradual slowing of the earth's rotation due to friction. The 8F-AD packet provides extensive UTC leap second information to the user application.

The *Leap Scheduled* bit is set by the receiver, when the leap second has been scheduled by the GPS control segment. The Control segment may schedule the leap second several weeks before the leap second takes place.

The *Leap Pending* bit indicates that the leap second will be inserted at the end of the current day.

The *GPS Leap Warning* bit is set while GPS is operating in the leap exception mode specified in ICD-200.

The *Leap in Progress* bit is set to 1 at the beginning of the leap second, and cleared at the beginning of the second following the leap event. The date rollover is delayed by one second on the day the leap second is inserted. The date will not increment until the beginning of the first second following the leap second.

Bit # Name Meaning if set to 1 0 UTC Flag UTC Time is available 1-3 Reserved N/A 4 Leap Scheduled GPS Almanac's leap second date is not in the past. 5 Leap Pending 24-hour warning. Cleared before leap second. 6 **GPS Leap Warning** Set +/- 6 hours before/after leap event. 7 Leap in Progress Leap second is now being inserted.

Table A-100 Leap Second Flag Definitions

Acutime 2000 Synchronization Kit User Guide

A.18 Datums

The table on the following pages lists datums.

Table A-101 Datums

Index	DX	DY	DZ	A-axis	Eccentricity	Description
0	0	0	0	6378137.000	0.00669437999014	/*WGS-84*/
1	-128	481	664	637797.155	0.00667437311265	/*Tokyo from old J6 values*/
2	-8	160	176	6378206.400	0.0067865799761	/*NAD-27*/
3	-9	151	185	6378206.400	0.00676865799761	/*Alaska/Canada*/
4	-87	-98	-121	6378388.000	0.00672267002233	/*European*/
5	-133	-48	148	6378160.000	0.00669454185459	/*Australian*/
6	0	0	4	6378135.000	0.00669431777827	/*WGS-72*/
7	0	0	0	6378137.000	0.00669438002290	/*NAD-83*/
8	0	0	0	6378137.000	0.00669437999014	/*NAD-02*/
9	0	0	0	6378137.000	0.00669437999014	/*Mexican*/
10	0	0	0	6378137.000	0.00669437999014	/*Hawaiian*/
11	0	0	0	6378137.000	0.00669437999014	/*Astronomic*/
12	0	0	0	6378137.000	0.00669437999014	/*U S Navy*/
13	-87	-98	-121	6378388.000	0.00672267002233	/*European*/
14	-134	-48	149	6378160.000	0.00669454185459	/*Australian 1984*/
15	-166	-15	204	6378249.145	0.00680351128285	/*Adindan-Mean*/
16	-165	-11	206	6378249.145	0.00680351128285	/*Adindan-Ethiopia*/
17	-123	-20	220	6378249.145	0.00680351128285	/*Adindan-Mali*/
18	-128	-18	224	6378249.145	0.00680351128285	/*Adindan-Senegal*/
19	-161	-14	205	6378249.145	0.00680351128285	/*Adindan-Sudan*/
20	-43	-163	45	6378245.000	0.00669342162297	/*Afgooye-Somalia*/
21	-150	-250	-1	6378388.000	0.00672267002233	/*Ain El Abd- Bahrain*/
22	-491	-22	435	6378160.000	0.00669454185459	/*Anna 1 Astr 1965*/
23	-143	-90	-294	6378249.145	0.00680351128285	/*Arc 1950-Mean*/
24	-138	-105	-289	6378249.145	0.00680351128285	/*Arc 1950- Botswana*/

A-126

Index	DX	DY	DZ	A-axis	Eccentricity	Description
25	-125	-108	-295	6378249.145	0.00680351128285	/*Arc 1950-Lesotho*/
26	-161	-73	-317	6378249.145	0.00680351128285	/*Arc 1950-Malawi*/
27	-134	-105	-295	6378249.145	0.00680351128285	/*Arc 1950- Swaziland*/
28	-169	-19	-278	6378249.145	0.00680351128285	/*Arc 1950-Zaire*/
29	-147	-74	-283	6378249.145	0.00680351128285	/*Arc 1950-Zambia*/
30	-142	-96	-293	6378249.145	0.00680351128285	/*Arc 1950- Zimbabwe*/
31	-160	-6	-302	6378249.145	0.00680351128285	/*Arc 1960-Mean*/
32	-160	-6	-302	6378249.145	0.00680351128285	/*Arc 1960-Kenya*/
33	-160	-6	-302	6378249.145	0.00680351128285	/*Arc 1960- Tanzania*/
34	-205	107	53	6378388.000	0.00672267002233	/*Ascension Isl 1958*/
35	145	75	272	6378388.000	0.00672267002233	/*Astro Beacon E 1945*/
36	114	-116	-333	6378388.000	0.00672267002233	/*Astro B4 Sorol Atoll*/
37	-320	550	-494	6378388.000	0.00672267002233	/*Astro Dos 71/4*/
38	124	-234	-25	6378388.000	0.00672267002233	/*Astro Station 1952*/
39	-133	-48	148	6378160.000	0.00669454185459	/*Australian Geo 1966*/
40	-127	-769	472	6378388.000	0.00672267002233	/*Bellevue (IGN)*/
41	-73	213	296	6378206.400	0.00676865799761	/*Bermuda 1957*/
42	307	304	-318	6378388.000	0.00672267002233	/*Bogota Observatory*/
43	-148	136	90	6378388.000	0.00672267002233	/*Compo Inchauspe*/
44	298	-304	-375	6378388.000	0.00672267002233	/*Canton Island 1966*/
45	-136	-108	-292	6378249.145	0.00680351128285	/*Cape*/
46	-2	151	181	6378206.400	0.00676865799761	/*Cape Canaveral mean*/

Table A-101 Datums (Continued)

Acutime 2000 Synchronization Kit User Guide

Index	DX	DY	DZ	A-axis	Eccentricity	Description
47	-263	6	431	6378249.145	0.00680351128285	/*Carthage*/
48	175	-38	113	6378388.000	0.00672267002233	/*Chatham 1971*/
49	-134	229	-29	6378388.000	0.00672267002233	/*Chua Astro*/
50	-206	172	-6	6378388.000	0.00672267002233	/*Corrego Alegre*/
51	-377	681	-50	6377397.155	0.00667437223180	/*Djakarta (Batavia)*/
52	230	-199	-752	6378388.000	0.00672267002233	/*DOS 1968*/
53	211	147	111	6378388.000	0.00672267002233	/*Easter Island 1967*/
54	-87	-98	-121	6378388.000	0.00672267002233	/*Euro 1950-Mean*/
55	-104	-101	-140	6378388.000	0.00672267002233	/*Euro 1950-Cyprus*/
56	-130	-117	-151	6378388.000	0.00672267002233	/*Euro 1950-Egypt*/
57	-86	-96	-120	6378388.000	0.00672267002233	/*Euro 1950-Eng/ Scot*/
58	-86	-96	-120	6378388.000	0.00672267002233	/*Euro 1950-Eng/Ire*/
59	-84	-95	-130	6378388.000	0.00672267002233	/*Euro 1950- Greece*/
60	-117	-132	-164	6378388.000	0.00672267002233	/*Euro 1950-Iran*/
61	-97	-103	-120	6378388.000	0.00672267002233	/*Euro 1950- Sardinia*/
62	-97	-88	-135	6378388.000	0.00672267002233	/*Euro 1950-Sicily*/
63	-87	-95	-120	6378388.000	0.00672267002233	/*Euro 1950- Norway*/
64	-87	-107	-120	6378388.000	0.00672267002233	/*Euro 1950-Port/ Spain*/
65	-86	-98	-119	6378388.000	0.00672267002233	/*European 1979*/
66	-133	-321	50	6378388.000	0.00672267002233	/*Gandajika Base*/
67	84	-22	209	6378388.000	0.00672267002233	/*Geodetic Datum 1949*/
68	-100	-248	259	6378206.400	0.00676865799761	/*Guam 1963*/
69	252	-209	-751	6378388.000	0.00672267002233	/*GUX 1 Astro*/
70	-73	46	-86	6378388.000	0.00672267002233	/*Hjorsey 1955*/

Table A-101 Datums (Continued)

A-128

Index	DX	DY	DZ	A-axis	Eccentricity	Description
71	-156	-271	-189	6378388.000	0.00672267002233	/*Hong Kong 1963*/
72	209	818	290	6377276.345	0.00663784663020	/*Indian-Thai/Viet*/
73	295	736	257	6377301.243	0.00663784663020	/*Indian-India/Nepal*/
74	506	-122	611	6377340.189	0.00667053999999	/*Ireland 1965*/
75	208	-435	-229	6378388.000	0.00672267002233	/*ISTS O73 Astro 1969
76	89	-79	-202	6378388.000	0.00672267002233	/*Johnston Island 1961*/
77	-97	787	86	6377276.345	0.00663784663020	/*Kandawala*/
78	145	-187	103	6378388.000	0.00672267002233	/*Kerguelen Island*/
79	-11	851	5	6377304.063	0.00663784663020	/*Kertau 1948*/
80	94	-948	-1262	6378388.000	0.00672267002233	/*La Reunion*/
81	42	124	147	6378206.400	0.00676865799761	/*L.C. 5 Astro*/
82	-90	40	88	6378249.145	0.00680351128285	/*Liberia 1964*/
83	-133	-77	-51	6378206.400	0.00676865799761	/*Luzon-Phillippines*/
84	-133	-79	-72	6378206.400	0.00676865799761	/*Luzon-Mindanao*/
85	41	-220	-134	6378249.145	0.00680351128285	/*Mahe 1971*/
86	-289	-124	60	6378388.000	0.00672267002233	/*Marco Astro*/
87	639	405	60	6377397.155	0.00667437223180	/*Massawa*/
88	31	146	47	6378249.145	0.00680351128285	/*Merchich*/
89	912	-58	1227	6378388.000	0.00672267002233	/*Midway Astro 1961*/
90	-92	-93	122	6378249.145	0.00680351128285	/*Minna*/
91	-247	-148	369	6378249.145	0.00680351128285	/*Nahrwan-Masirah*/
92	-249	-156	381	6378249.145	0.00680351128285	/*Nahrwan-UAE*/
93	-243	-192	477	6378249.145	0.00680351128285	/*Nahrwan-Saudia*/
94	616	97	-251	6377483.865	0.00667437223180	/*Namibia*/
95	-10	375	165	6378388.000	0.00672267002233	/*Naparima*/
96	-8	159	175	6378206.400	0.00676865799761	/*NAD 27-Western US*/

Table A-101 Datums (Continued)

Acutime 2000 Synchronization Kit User Guide

Index	DX	DY	DZ	A-axis	Eccentricity	Description
97	-9	161	179	6378206.400	0.00676865799761	/*NAD 27-Eastern US*/
98	-5	135	172	6378206.400	0.00676865799761	/*NAD 27-Alaska*/
99	-4	154	178	6378206.400	0.00676865799761	/*NAD 27-Bahamas*/
100	1	140	165	6378206.400	0.00676865799761	/*NAD 27-San Salvador*/
101	-10	158	187	6378206.400	0.00676865799761	/*NAD 27-Canada*/
102	-7	162	188	6378206.400	0.00676865799761	/*NAD 27-Alberta/ BC*/
103	-22	160	190	6378206.400	0.00676865799761	/*NAD 27-East Canada*/
104	-9	157	184	6378206.400	0.00676865799761	/*NAD 27-Manitoba/ Ont*/
105	4	159	188	6378206.400	0.00676865799761	/*NAD 27-NW Ter/ Sask*/
106	-7	139	181	6378206.400	0.00676865799761	/*NAD 27-Yukon*/
107	0	125	201	6378206.400	0.00676865799761	/*NAD 27-Canal Zone*/
108	-3	143	183	6378206.400	0.00676865799761	/*NAD 27- Caribbean*/
109	0	125	194	6378206.400	0.00676865799761	/*NAD 27-Central Amer*/
110	-9	152	178	6378206.400	0.00676865799761	/*NAD 27-Cuba*/
111	11	114	195	6378206.400	0.00676865799761	/*NAD 27- Greenland*/
112	-12	130	190	6378206.400	0.00676865799761	/*NAD 27-Mexico*/
113	0	0	0	6378137.0	0.00669438002290	/*NAD 83-Alaska*/
114	0	0	0	6378137.0	0.00669438002290	/*NAD 83-Canada*/
115	0	0	0	6378137.0	0.00669438002290	/*NAD 83-CONUS*/
116	0	0	0	6378137.0	0.00669438002290	/*NAD 83-Mex/Cent Am*/
117	-425	-169	81	6378388.0	0.00672267002233	/*Observatorio 1966*/

Table A-101 Datums (Continued)

A-130

Acutime 2000 Synchronization Kit User Guide

Index	DX	DY	DZ	A-axis	Eccentricity	Description
118	-130	110	-13	6378200.0	0.00669342162297	/*Old Egyptian 1907*/
119	61	-285	-181	6378206.400	0.00676865799761	/*Old Hawaiian- mean*/
120	89	-279	-183	6378206.400	0.00676865799761	/*Old Hawaiian- Hawaii*/
121	45	-290	-172	6378206.400	0.00676865799761	/*Old Hawaiian*/
122	65	-290	-190	6378206.400	0.00676865799761	/*Old Hawaiian*/
123	58	-283	-182	6378206.400	0.00676865799761	/*Old Hawaiian*/
124	-346	-1	224	6378249.15	0.00680351128285	/*Oman*/
125	375	-111	431	6377563.4	0.00667053999999	/*Ord Sur Brit '36- Mean*/
126	375	-111	431	6377563.4	0.00667053999999	/*OSB-England*/
127	375	-111	431	6377563.4	0.00667053999999	/*OSB-Isle of Man*/
128	375	-111	431	6377563.4	0.00667053999999	/*OSB-Scotland/ Shetland*/
129	375	-111	431	6377563.4	0.00667053999999	/*OSB-Wales*/
130	-307	-92	127	6378388.0	0.00672267002233	/*Pico De Las Nieves*/
131	-185	165	42	6378388.0	0.00672267002233	/*Pitcairn Astro 1967*/
132	16	196	93	6378388.0	0.00672267002233	/*Prov So Chilean1963*/
133	-288	175	-376	6378388.0	0.00672267002233	/*Prov S. American 1956-Mean*/
134	-270	188	-388	6378388.0	0.00672267002233	/*Prov S. American 1956-Bolivia*/
135	-270	183	-390	6378388.0	0.00672267002233	/*Prov S. American 1956-N Chile*/
136	-305	243	-442	6378388.0	0.00672267002233	/*Prov S. American 1956-S Chile*/
137	-282	169	-371	6378388.0	0.00672267002233	/*Prov S. American 1956-Colom*/

Table A-101 Datums (Continued)

Acutime 2000 Synchronization Kit User Guide

Index	DX	DY	DZ	A-axis	Eccentricity	Description
138	-278	171	-367	6378388.0	0.00672267002233	/*Prov S. American 1956-Equador*/
139	-298	159	-369	6378388.0	0.00672267002233	/*Prov S. American 1956-Guyana*/
140	-279	175	-379	6378388.0	0.00672267002233	/*Prov S. American 1956-Peru*/
141	-295	173	-371	6378388.0	0.00672267002233	/*Prov S. American 1956-Venez*/
142	11	72	-101	6378206.4	0.00676865799761	/*Puerto Rico*/
143	-128	-283	22	6378388.0	0.00672267002233	/*Quatar National*/
144	164	138	-189	6378388.0	0.00672267002233	/*Qornoq*/
145	-225	-65	9	6378388.0	0.00672267002233	/*Rome 1940*/
146	-203	141	53	6378388.0	0.00672267002233	/*Santa Braz*/
147	170	42	84	6378388.0	0.00672267002233	/*Santo (DOS)*/
148	-355	21	72	6378388.0	0.00672267002233	/*Sapper Hill 1943*/
149	-57	1	-41	6378160.0	0.00669454185459	/*S. American 1969- Mean*/
150	-62	-1	-37	6378160.0	0.00669454185459	/*S. American 1969- Argentina*/
151	-61	2	-48	6378160.0	0.00669454185459	/*S. American 1969- Bolivia*/
152	-60	-2	-41	6378160.0	0.00669454185459	/*S. American 1969- Brazil*/
153	-75	-1	-44	6378160.0	0.00669454185459	/*S. American 1969- Chile*/
154	-44	6	-36	6378160.0	0.00669454185459	/*S. American 1969- Colombia*/
155	-48	3	-44	6378160.0	0.00669454185459	/*S. American 1969- Ecuador*/
156	-53	3	-47	6378160.0	0.00669454185459	/*S. American 1969- Guyana*/
157	-61	2	-33	6378160.0	0.00669454185459	/*S. American 1969- Paraguay*/

Table A-101 Datums (Continued)

A-132

Index	DX	DY	DZ	A-axis	Eccentricity	Description
158	-58	0	-44	6378160.0	0.00669454185459	/*S. American 1969- Peru*/
159	-45	12	-33	6378160.0	0.00669454185459	/*S. American 1969- Trin/Tob*/
160	-45	8	-33	6378160.0	0.00669454185459	/*S. American 1969- Venezuela*/
161	7	-10	-26	6378155.0	0.00669342162297	/*South Asia*/
162	-499	-249	314	6378388.0	0.00672267002233	/*Southeast Base*/
163	-104	167	-38	6378388.0	0.00672267002233	/*Southwest Base*/
164	-689	691	-46	6377276.345	0.00663784663020	/*Timbalai 1948*/
165	-148	507	685	6377397.16	0.00667437223180	/*Tokyo-Mean*/
166	-146	507	687	6377397.16	0.00667437223180	/*Tokyo-Korea*/
167	-158	507	676	6377397.16	0.00667437223180	/*Tokyo-Okinawa*/
168	-632	438	-609	6378388.0	0.00672267002233	/*Tristan Astro 1968*/
169	51	391	-36	6378249.15	0.00680351128285	/*Viti Levu 1916*/
170	102	52	-38	6378270.0	0.00672267002233	/*Wake-Eniwetok*/
171	-265	120	-358	6378388.0	0.00672267002233	/*Zanderij*/
172	-384	664	-48	6377397.16	0.00667437223180	/*Bukit Rimpah*/
173	-104	-129	239	6378388.0	0.00672267002233	/*Camp Area Astro*/
174	-403	684	41	6377397.16	0.00667437223180	/*Gunung Segara*/
175	-333	-222	114	6378388.0	0.00672267002233	/*Herat North*/
176	-637	-549	-203	6378388.0	0.00672267002233	/*Hu-Tzu-Shan*/
177	-189	-242	-9	6378388.0	0.00672267002233	/*Tananarive Observ. 1925*/
178	-155	171	37	6378388.0	0.00672267002233	/*Yacare*/
179	-146.43	507.89	681.46	6377397.155	0.00667437223180	/*Tokyo GSI coords*/

Table A-101 Datums (Continued)

Acutime 2000 Synchronization Kit User Guide

A.19 Sample TSIP Routines

The following sections give sample routines that use command packet 0x1F and report packet 0×45 for getting software version information from the ACE UTC GPS via COM1. Source code for a working TSIP monitor program is available at *www.trimble.com/support/files*.

```
Sending out TSIP command packet 0x1F
```

In general, all TSIP packets use the structure TSIPPKT:

```
#define MAX_RPTBUF 256
typedef struct {
    short
        cnt; /* size of buf */
    unsigned char
        status, /* TSIP packet format and parse status */
        code, /* TSIP id code */
        buf[MAX_RPTBUF]; /* command or report string */
} TSIPPKT;
```

Communication with the ACE UTC GPS is accomplished through command routines and report routines. Each command routine use *send_cmd()* which supplies the DLE stuffing to the command string and sends the command to the serial port using the primitive function *sendb()*.

Acutime 2000 Synchronization Kit User Guide

All TSIP packet formats take the form <DLE > <ID > <Data String Bytes > <DLE > <ETX >, where <DLE > and <ETX > are reserved frame characters with values 0x10 and 0x03, respectively, and <ID > is the packet identifier. The following routines perform DLE stuffing on a command packet and send it to the ACE UTC GPS.

```
#define DLE 0x10
#define ETX 0x03
#define PORT 1
/* Send a byte to Port 1 */
short sendb(unsigned char db)
{
   /* put_char outputs a character to the serial port; it
    * returns 0 for success and 1 for failure.
    */
   return(put_char(PORT, db));
}
/* Format a command for sending to a TSIP receiver */
void send_cmd(TSIPPKT *cmd)
short i;
   sendb(DLE);
   sendb(cmd->code);
   for (i = 0; i < cmd->cnt; i++) {
      if (cmd->buf[i] == DLE)
          sendb(DLE);
       sendb(cmd->buf[i]);
       }
   sendb(DLE);
   sendb(ETX);
}
```

Acutime 2000 Synchronization Kit User Guide

To issue command packet 0x41 to request software version from the ACE UTC GPS use the following routine.

```
/* Request software version */
void cmd_0xlF(void)
{
   TSIPPKT cmd;
      cmd.cnt = 0;
      cmd.code = 0xlF;
      send_cmd(&cmd);
}
```

Handling incoming TSIP packet 0x45

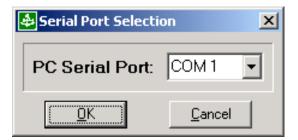
Report routines handle incoming receiver packets. They call the routine *end_of_rptpkt()* which accumulates from the serial buffer, unstuffs these bytes, and checks whether the end-of-packet sequence <DLE><EXT> has been received.

```
#define FALSE
                      0
#define TRUE
                      !FALSE
#define INCOMPLETE
                      0
#define HAVE DLE
                      1
#define COMPLETE
                      2
#define MAXEND_RPTBUF 256
/* Read bytes until serial buffer is empty or a complete report has
 * been received; end of report is signified by DLE ETX.
*/
short end_of_rptpkt(TSIPPKT *rpt)
{
short this_byte;
   for (;;) {
      this_byte = getb();
      if (this_byte == -1) {
         return(FALSE);
      }
      if (rpt->status == HAVE_DLE) {
          switch (this_byte) {
          case DLE: /* DLE-stuffed, so it's a data byte */
                break;
```

```
case ETX: /* End of message. */
                  rpt->status = COMPLETE;
                   return(TRUE);
          default: /* If previous message has ended, this is new ID
                      code. */
                   reset_rptbuf(rpt); /* if not, this is an error. */
                   rpt->code = this_byte;
                   return(FALSE);
          }
       }
      else if (this_byte == DLE) {
          /* DLE byte without previous DLE stuffing...must be stuffing.
*/
          rpt->status = HAVE_DLE;
          continue;
          }
       /* normal byte; add to report */
      rpt->status = INCOMPLETE;
      rpt->buf[rpt->cnt] = this_byte;
      rpt->cnt++;
       if (rpt->cnt > MAX_RPTBUF) {
          reset_rptbuf (rpt);
          return(FALSE);
       }
   }
}
/* Prepare for receipt of new report */
void reset_rptbuf (TSIPPKT *rpt)
{
   rpt -> cnt = 0;
   rpt->code = ETX;
   rpt->status = INCOMPLETE;
}
```

Acutime 2000 Synchronization Kit User Guide

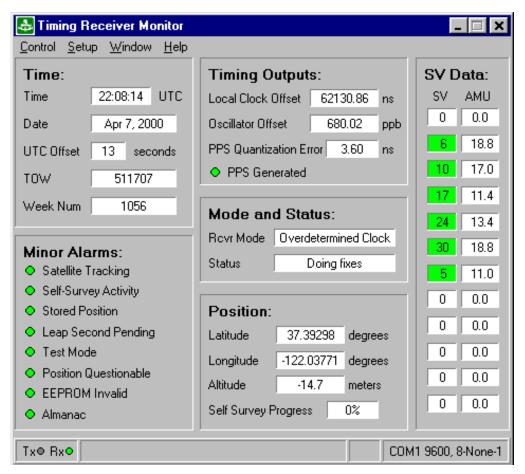
A-138


B Timing Receiver Monitor

The Timing Receiver Monitor program disk is included with the Acutime 2000 Synchronization Kit. The latest version of the program is also available on the Trimble website:

• www.trimble.com/products/acutime2000

B.1 Start-Up


The *Serial Port Selection* screen shown below appears at the start of the program:

This screen lets you choose which PC serial port the Acutime 2000 is connected to. If the desired port is not available in the selection box, you can start the program using the parameter $-c^*$, with * being the number of the serial port you want to select.

B.2 Main screen

The main screen for the Timing Receiver Monitor is shown below:

The main screen displays time, position, SV selection and data, receiver status, and timing outputs. The status bar displays Tx and Rx activity, program hints, firmware version number, and serial port settings. The menu provides other options for sending data to and requesting data from the receiver.

For additional program information and help, see the Help menu.

C NMEA 0183

NMEA 0183 is an interface protocol created by the National Marine Electronics Association. The latest release of NMEA 0183 is Version 2.1 (October 15, 1995). This protocol was originally established to allow marine navigation equipment to share information. NMEA 0183 is a simple, yet comprehensive ASCII protocol which defines both the communication interface and the data format. Since it is a well established industry standard, NMEA 0183 has also gained popularity for use in applications other than marine electronics.

For those applications requiring output only from the GPS receiver, NMEA 0183 is a popular choice since, in many cases, an NMEA 0183 software application code already exists. The Acutime 2000 GPS smart antenna is available with firmware that supports a subset of the NMEA 0183 messages: GGA and VTG. For a nominal fee, Trimble can offer custom firmware with a different selection of messages to meet your application requirements.

This appendix provides a brief overview of the NMEA protocol and describes both the standard and optional messages offered by the Acutime 2000.

For a complete copy of the NMEA 0183 standard, contact:

NMEA National Office PO Box 3435 New Bern, NC 28564-3435 U.S.A. Telephone: +1-919-638-2626 Fax: +1-919-638-4885

C.1 The NMEA 0183 Communication Interface

NMEA 0183 allows a single source (talker) to transmit serial data over a single twisted wire pair to one or more receivers (listeners). The table below lists the characteristics of the NMEA 0183 data transmissions.

Signal Characteristic	NMEA Standard
Baud Rate	4800
Data Bits	8
Parity	None (Disabled)
Stop Bits	1

Table C-1 NMEA 0183 Characteristics

C.2 NMEA 0183 Message Format

The NMEA 0183 protocol covers a broad array of navigation data. This broad array of information is separated into discrete messages, which convey a specific set of information. The entire protocol encompasses over 50 messages, but only a sub-set of these messages apply to a GPS receiver like the Acutime 2000. The NMEA message structure is described below.

\$IDMSG,D1,D2,D3,D4,...,Dn*CS[CR][LF]

" \$ "	The "\$" signifies the start of a message.
ID	The talker identification is a two-letter mnemonic that describes the source of the navigation information. The GP identification signifies a GPS source.
MSG	The message identification is a three-letter mnemonic that describes the message content and the number and order of the data fields.
"	Commas serve as delimiters for the data fields.

C-2

Acutime 2000 Synchronization Kit User Guide

С

Dn	Each message contains multiple data fields (Dn), which are delimited by commas.
···*·,	The asterisk serves as a checksum delimiter.
CS	The checksum field contains two ASCII characters which indicate the hexadecimal value of the checksum.
[CR][LF]	The carriage return [CR] and line feed [LF] combination terminate the message.
79 characters o	hessages vary in length, but each message is limited to or less. This length limitation excludes the "\$" and the data field block, including delimiters, is limited to 74
[UN][LI]. Inc	uata field block, including definitiers, is initied to 74

Acutime 2000 Synchronization Kit User Guide

characters or less.

C-3

С

C.3 NMEA 0183 Message Options

The Acutime 2000 can output any or all of the messages listed in Table C-2. When NMEA is chosen, its default configuration (as shipped from the factory) outputs two messages: GGA and VTG. These messages are output at a one-second interval with the "GP" talker ID and checksums.

Note – The user can configure a custom mix of the messages listed in Table C-2. See Port A (Timing), page 5-10, and TSIP command packets 0xBC, 0x7A, and 0x8E 0x26 in Appendix A, Trimble Standard Interface Protocol, for details on configuring NMEA output.

Warning – If too many messages are specified for output, you may need to increase the unit's baud rate.

Table C-2Acutime 2000 NMEA Messages

Setting	Message	Description
Default	GGA	GPS fix data (NMEA Version 2.1)
	GLL	Geographic position - Latitude/ Longitude
	GSA	GPS DOP and active satellites
	GSV	GPS satellites in view
	RMC	Recommended minimum specific GPS/ Transit data
Default	VTG	Track made good and ground speed
	ZDA	Time & Date

C.4 NMEA 0183 Message Formats

The format for each message is described in more detail in the following sections.

C.4.1 GGA – GPS Fix Data

The GGA message includes time, position and fix related data for the GPS receiver.

\$GP GGA,hhmmss,llll.lll,a,nnnnn.nnn,b,t,uu,v.v,w.w, M,x.x,M,y.y,zzzz*hh <CR><LF>

Table C-3	GGA – GPS Fix Data Message Parameters
-----------	---------------------------------------

Field	Description
1	UTC of Position
2,3	Latitude, N (North) or S (South)
4,5	Longitude, E (East) or W (West)
6	GPS Quality Indicator: 0 = No GPS, 1 = GPS, 2 = DGPS
7	Number of Satellites in Use
8	Horizontal Dilution of Precision (HDOP)
9, 10	Antenna Altitude in Meters, M = Meters
11, 12	Geoidal Separation in Meters, M=Meters. Geoidal separation is the difference between the WGS-84 earth ellipsoid and mean-sea-level.
13	Age of Differential GPS Data. Time in seconds since the last Type 1 or 9 Update
14	Differential Reference Station ID (0000 to 1023)
hh	Checksum

Acutime 2000 Synchronization Kit User Guide

C-5

C.4.2 GLL – Geographic Position – Latitude/Longitude

The GLL message contains the latitude and longitude of the present vessel position, the time of the position fix and the status.

\$GP GLL,llll.lll,a,yyyyy.yyy,a,hhmmss.s, A*hh<CR><LF>

Table C-4GLL – Geographic Position – Latitude /
Longitude Message Parameters

Field #	Description
1,2	Latitude, N (North) or S (South)
3,4	Longitude, E (East) or W (West)
5	UTC of position
6	Status: A = Valid, V= Invalid
hh	Checksum

C-6

C.4.3 GSA – GPS DOP and Active Satellites

The GSA messages indicates the GPS receiver's operating mode and lists the satellites used for navigation and the DOP values of the position solution.

Table C-5	GSA – GPS DOP and Active Satellites
	Message Parameters

Field #	Description
1	Mode: M = Manual, A = Automatic. In manual mode, the receiver is forced to operate in either 2D or 3D mode. In automatic mode, the receiver is allowed to switch between 2D and 3D modes subject to the PDOP and satellite masks.
2	Current Mode: 1 = fix not available, 2 = 2D, 3 = 3D
3 to 14	PRN numbers of the satellites used in the position solution. When less than 12 satellites are used, the unused fields are null
15	Position dilution of precision (PDOP)
16	Horizontal dilution of precision (HDOP)
17	Vertical dilution of precision (VDOP)
hh	Checksum

C.4.4 GSV – GPS Satellites in View

The GSV message identifies the GPS satellites in view, including their PRN number, elevation, azimuth and SNR value. Each message contains data for four satellites. Second and third messages are sent when more than four satellites are in view. Fields #1 and #2 indicate the total number of messages being sent and the number of each message respectively.

Field #	Description
1	Total number of GSV messages
2	Message number: 1 to 3
3	Total number of satellites in view
4	Satellite PRN number
5	Satellite elevation in degrees (90° Maximum)
6	Satellite azimuth in degrees true (000 to 359)
7	Satellite SNR (C/No), null when not tracking
8,9,10,11	PRN, elevation, azimuth and SNR for second satellite
12,13,14,15	PRN, elevation, azimuth and SNR for third satellite
16,17,18,19	PRN, elevation, azimuth and SNR for fourth satellite
hh	Checksum

Table C-6GSV – GPS Satellites in View Message
Parameters

C.4.5 RMC – Recommended Minimum Specific GPS/Transit Data

The RMC message contains the time, date, position, course, and speed data provided by the GPS navigation receiver. A checksum is mandatory for this message and the transmission interval may not exceed two seconds. All data fields must be provided unless the data is temporarily unavailable. Null fields may be used when data is temporarily unavailable.

\$GP RMC,hhmmss.s,A,llll.lll,a,yyyyy.yyy,a,x.x,x.x, xxxxxx,x.x,a*hh<CR><LF>

Table C-7 RMC – Recommended Minimum Specific GPS / Transit Data Message Parameters

Field #	Description
1	UTC of Position Fix.
2	Status: A = Valid, V = navigation receiver warning
3,4	Latitude, N (North) or S (South).
5,6	Longitude, E (East) or W (West).
7	Speed over the ground (SOG) in knots
8	Track made good in degrees true.
9	Date: dd/mm/yy
10,11	Magnetic variation in degrees, E = East / W= West
hh	Checksum (Mandatory for RMC)

Acutime 2000 Synchronization Kit User Guide

C-9

C.4.6 VTG – Track Made Good and Ground Speed

The VTG message conveys the actual track made good (COG) and the speed relative to the ground (SOG).

\$GP VTG,x.x,T,x.x,M,x.x,N,x.x,K*hh<CR><LF>

Table C-8VTG – Track Made Good and Ground Speed
Message Parameters

Field #	Description
1	Track made good in degrees true.
2	Track made good in degrees magnetic.
3,4	Speed over the ground (SOG) in knots.
5,6	Speed over the ground (SOG) in kilometer per hour.
hh	Checksum

C-10

C.4.7 ZDA – Time & Date

The ZDA message contains UTC, the day, the month, the year and the local time zone.

\$GP ZDA, hhmmss.s, xx, xx, xxx, , *hh<cr><LF>

 Table C-9
 ZDA – Time & Date Message Parameters

Field #	Description
1	UTC
2	Day (01 to 31)
3	Month (01 to 12)
4	Year
5	unused
6	unused
hh	Checksum

$$\sum$$

Note – Fields #5 and #6 are null fields in the Acutime 2000 output. A GPS receiver cannot independently identify the local time zone offsets.

Caution – If UTC offset is not available, time output will be in GPS time.

Note – GPS time can be used as a time tag for the 1 PPS. The ZDA message comes out 100–500 msec after the PPS.

Acutime 2000 Synchronization Kit User Guide

C-11

D Specifications and Drawings

This appendix contains the specifications for the Acutime 2000 GPS smart antenna and a diagram of the Acutime 2000 Interface Cable.

Note – The interface cable specifications provided in this appendix are for the 100-foot (30-meter) versions of the cables. Longer versions of these cables are available. The specifications for the longer cables are identical to that of the 100-foot version.

D.1 Acutime 2000 GPS Smart Antenna Specifications

The following tables list the specifications for the Acutime 2000 GPS Smart Antenna.

Dimensions:	6.12" D, 5.0" H (155.5mm x 127.0mm)	
Weight:	12.8 oz. (363 g)	
Connector:	12-pin round, waterproof	
Mounting:	1"-14 straight thread	
Dimensions:	Height: 5.0" (127 mm)	
	Width: 6.12" (155.5 mm)	

Table D-1 Physical Specifications

Operating temp:	-40 to +85° C		
Storage temp:	-55 to +105° C		
Vibration:	0.008 g ² /Hz	5 Hz to 20 Hz	
	0.05 g ² /Hz	20 Hz to 100 Hz	
	-3dB/octave	100 Hz to 900 Hz	
Operating			
Humidity:	95% RH, non-condensing @ 60° C		
EMC:	CE, FCC Class B		

 Table D-2
 Environmental Specifications

Table D-3 Performance Specifications

General:	L1 frequency, C/A code (SPS), continuous tracking receiver. Available in 8-channel	
Update Rate:	1Hz	
Accuracy:	Dynamic SPS (with S/A)	Dynamic DGPS
Position	40m CEP	1.5m CEP
Velocity	0.25 m/s CEP	0.05 m/s CEP
Time to First Fix (no stored position):	8-channel typical cold start: < 120 seco	onds
Time to First PPS (stationary with stored position, e.g., recovery after power outage):	<60 seconds	
Re-acquisition after 60-second signal loss:	<2 seconds (90%)	
Dynamics:		
Velocity:	500 m/sec. maximum	

D-2

 Table D-3
 Performance Specifications (Continued)

Acceleration:	4g (39.2 m/sec. ²)
Jerk:	20 m/sec. ³
PPS output	
Physical Interface:	RS-422
Width:	10 microseconds (default). User-programmable from 10 microseconds to 500 milliseconds.
On-Time Edge:	Rising edge on-time (default). User-programmable rising or falling.
Resolution:	80 nanoseconds (quantization error reported through TSIP)
Accuracy	UTC 50 nanoseconds (static)
(one sigma):	UTC 150 nanoseconds (dynamic, TDOPS)
External Event Capture	
Interface:	RS-422/485 or RS-232
Resolution:	320 nanoseconds
Minimum Pulse Width:	1 microsecond, rising edge on-time
Reporting Mechanism:	TSIP Packet

 Table D-4
 Electrical Specifications

Prime Power:	+8 Vdc to +36 Vdc, reverse polarity protection
Power Consumption:	110mA @ 12 volts, 1.3 watts (typical), <1.5 watts max

Port	Interface	Protocols	Defaults
TxB (primary)	RS-422/485 or RS-232	TSIP, NMEA	TSIP @ 9600, 8-odd-1
RxB (primary)	RS-422/485 or RS-232	TSIP	TSIP @ 9600, 8-odd-1
TxA (secondary)	RS-422/485 or RS-232	TSIP	TSIP @ 9600, 8-odd-1
RxA (secondary)	RS-422/485 or RS-232	Event/RTCM	Event Input
All ports support baud rates of 300-38,400; 8 data bits; even, odd, no parity			
NMEA messages (default):	ZDA		
Available messages:	GGA, GLL, VTG, GSV, GSA, ZDA, RMC		

Table D-5Serial Protocols

D-4

D.2 Acutime 2000 Standard Interface Cable Diagram

Figure D-1 provides a technical drawing of the Acutime 2000 standard interface cable.

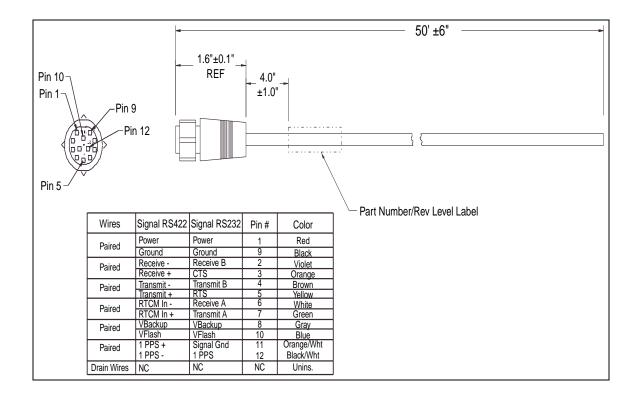


Figure D-1 Acutime 2000 Standard Interface Cable

Download from Www.Somanuals.com. All Manuals Search And Download.

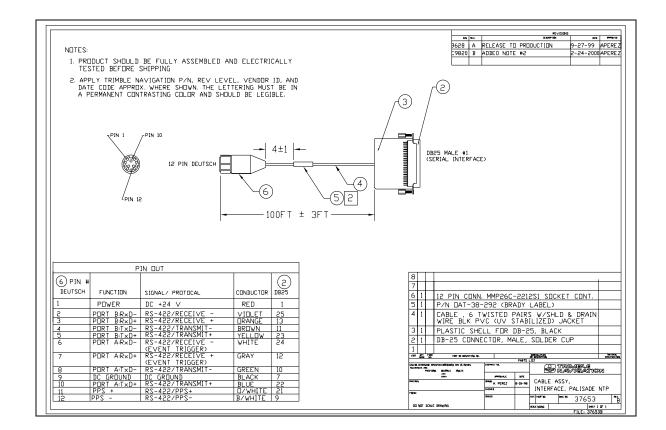


Figure D-2 NTP Interface Cable

D-7

D-8

E NTP Diagnostics and Debugging

E.1 Diagnostics and Debugging

This section presents common reports and failure conditions that may occur on Windows NT and UNIX systems, and provides suggestions for their possible sources.

Note – Administrators should check the system's log files periodically. Failures usually do not occur unexpectedly, and can be averted in many cases.

E.1.1 System Log Entries

The system log entries are shown here in a Windows NT context. The text contained in the *Description* field of the *Event Detail* dialog is the same that would be found in the System Log of a UNIX system. Separate descriptions are provided where the log messages differ.

Acutime 2000 Synchronization Kit User Guide

Serial Port Acces Report

The configuration of the Acutime NTP reference clock is acknowledged by a report of the COM port used by the driver. Verify that the correct port is being used by NTP. If this message does not appear, there has been a failure. Refresh the system log to observe additional error messages.

Event Detail				×
	5/9/99 8:42:50 PM N/A US01 SWC03	Event ID: Source: Type: Category:	NTP Information	
<u>D</u> escriptior	n:			
	 1) fd: 252 dev: \\.\COM1			X
D <u>a</u> ta: ©	<u>B</u> ytes <u>O</u> <u>W</u> ords			
<u>r</u>			_	× ×
Cl	ose <u>P</u> revious	<u>N</u> ext	<u>H</u> elp	

The UNIX version of the message reports the serial port device used in a message similar to:

May 3 17:42:28 terrapin ntpd[4032]: Acutime(0) fd: 8 dev: /dev/Palisade0

For more information on UNIX device names, see Set Up Device Links, page 6-26.

E.1.2 Error Log Entries

The following entries show NTP errors that degrade system operation. These failures should be corrected immediately.

Configuration File Not Found

If the Configuration File is not found, the following event log entry will be generated:

On a UNIX system, the message will report the file name </etc/ntp.conf>.

Event Detai	l		×
	5/13/99 11:25:11 PM N/A US01SWC03	Event ID: Source: Type: Category:	3 NTP Information None
Description	n: Couldn't open <c:\winnt\nt< td=""><td>p.conf></td><td>×</td></c:\winnt\nt<>	p.conf>	×
4	ose	Next	

Acutime 2000 Synchronization Kit User Guide

Note – If you are using Windows NT, please review Create the Configuration File, page 6-17 to ensure the configuration file is named correctly.

Warning – NTP does not stop because of this error. Provide a valid configuration file, and stop and re-start NTP.

For more information on correcting this error, see NTP Configuration File, page 6-11.

Acutime Configuration Failure

An Event Log message that indicates a problem configuring the Acutime NTP reference clock is shown below:

Event Detai				X
Time: <u>U</u> ser:	5/10/99 9:16:56 PM N/A US01SWC03	Event ID: Source: Type: Category:	NTP Error	
<u>D</u> escription	n:			
NT_COM:	Device \\.\COM1: CreateFile			Ă
D <u>a</u> ta: C	Bytes O <u>W</u> ords			
र				×
Cl	ose <u>P</u> revious	<u>N</u> ext	<u>H</u> elp	

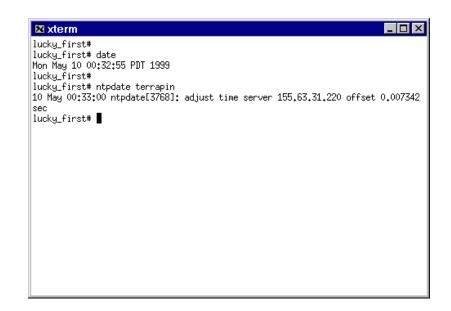
This message is accompanied by additional messages indicating the source of the failure.

COM Port Unavailable

If the COM port defined in the NTP configuration file is not found, or is locked by another application, the following Application Event Message is generated:

Event Detai				×
L vent Detai				
Date: Time: <u>U</u> ser:	5/10/99 9:16:56 PM N/A	E∨ent ID: Source: Turno:	1 NTP Error	
	US01SWC03	Type: Category:		
		Calegory.	None	
Description	n:			
	Device \\.\COM1: CreateFile			×
D <u>a</u> ta: C	Bytes C Words			
1				×
Cl	ose <u>P</u> revious	<u>N</u> ext	<u>H</u> elp	

This message is unique to Windows NT, but the solution is based on general guidelines. For more information on resolving device unavailablility, see page E-16.


System Clock Not Set

The system clock must be set close to the correct local time. If NTP finds the system clock too far offset, it will stop and report the following error:

Event Detail				×
Lvent Detai				
<u>U</u> ser:	3:11:55 AM	E∨ent ID: Source: Type: Category:	NTP Error	
<u>D</u> escriptior	n:			
	-1158 over 1000 seconds; set Bytes C Words	clock manu	ally)	×
4	ose <u>Previous</u>	Next	<u>H</u> elp	× F

Solution:

The sample screen below demonstrates using NTPDATE to reset UNIX system time to another NTP server. The utility requires an additional **-b** parameter behind the server name when run on Windows NT. If you cannot use NTPDATE, use your system's native clock function to reset the system clock.

E.2 Running NTP in Debug Mode

NTP can be run in debug mode as a foreground command line application. In this mode, messages reporting system events are printed to the screen, which reveal more information about errors and problems encountered by the program.

In order to be able to quickly diagnose communication problems with the Acutime, it is helpful to have a debug version of NTP available. The debug version allows starting NTP from the command line, and observing text debug messages reporting events and failures.

If the normal operating exectable is not debug enabled, you may need to consult your system documentation or obtain a debug-enabled executable for your system using the software sources listed on page 6-3. This file should be stored in a dignostic tools folder on the system.

NTP is run in debug mode by a command such as: ntpd –d

E.2.1 Debug Mode Not Available

If NTP is not compiled in debug mode, it will report:

ntpd not compiled with -DDEBUG option - no DEBUG supportusage: ...

E.2.2 NTP Startup and Acutime Poll

The startup of NTP debug output from start to the Acutime NTP reference clock's first poll response is shown below:

× xterm
lucky_first# ntpd -d
create_sockets(123)
bind() fd 5, family 2, port 123, addr 0.0.0.0, flags=1
bind() fd 6, family 2, port 123, addr 127.0.0.1, flags=0
bind() fd 7, family 2, port 123, addr 155.63.33.57, flags=1
init_io: maxactivefd 7
refclock_open: fd 9 modem status 6
refclock_ioctl: fd 9 flags 20
peer_config: 127,127,29,0 mode 3 vers 4 min 5 max 10 flags 0x00a1 ttl 0 key 0
resolving terrapin.trimble.com
resolving iq.trimble.com
loop_config: state 2 freq -40.642
report_event: system event 'event_restart' (0x01) status 'sync_alarm, sync_unspe
c, 1 event, event_unspec' (0xc010)
auth_agekeys: at 1 keys 1 expired 0
key_expire_all: at 1 private f9bcd099
peer_config: 155.63.31.220 mode 3 vers 4 min 6 max 10 flags 0x0001 ttl 0 key 0
peer_config: 155.63.32.173 mode 3 vers 4 min 6 max 10 flags 0x0001 ttl 0 key 0
refclock_transmit: at 18 127,127,29.0
palisade_poll: unit 0: polling event
palisade_receive: unit 0: 1999 131 06:25:36.981446
palisade_receive: unit 0: bae24be0.fc549b62 Mon, May 10 1999 23:25:36.985 refclock_receive: at 18 127.127.29.0
peer GPS_PALISADE(0) event 'event_reach' (0x84) status 'unreach, conf, 1 event,
event_reach' (0x8014)
refclock_sample: offset -0.004220 disp 0.000000 std 0.000000
clock_filter: offset -0.004220 delay 0.000000 disp 7.937502 std 0.003947, age 0
transmit: at 19 to 155.63.31.220 mode 3
transmit: at 19 to 155.63.32.173 mode 3
receive: at 19 from 155,63,31,220 mode 4
pkt_mode 4 action 1
peer 155.63.31.220 event 'event_reach' (0x84) status 'unreach, conf, 1 event, ev
ent_reach' (0x8014)
clock_filter: offset -0.006652 delay 0.002852 disp 7.937510 std 0.006222, age 0
receive: at 19 from 155.63.32.173 mode 4
pkt_mode 4 action 1
peer 155.63.32.173 event 'event_reach' (0x84) status 'unreach, conf, 1 event, ev
ent_reach' (0x8014)
clock_filter: offset -0.005882 delay 0.002414 disp 7.937506 std 0.005502, age 0

Acutime 2000 Synchronization Kit User Guide

The Acutime NTP reference clock driver reports requests and receipt of the time stamp data. Typical Acutime NTP time transfer debug output appears as four lines in the debug output, as shown here.

Palisade_poll: unit 0: polling event Palisade_receive: unit 0: 1999 131 06:25:36.981446 Palisade_receive: unit 0: bae24be0.fc549b62 Mon, May 10 1999 23:25:36.985 refclock_receive: at 18 127.127.29.0

The Acutime driver reports the GPS time stamp in the first Acutime_receive line. The second line reports the local NTP and system time associated with the time transfer event. The third line discloses the source identifier prefix and unit number of the time source.

 \searrow

Note – The Acutime_poll message may not be immediately succeeded by a Acutime_receive event.

E.2.3 Acutime is not Responding

If the Acutime smart antenna is not responding to polls, the following output is generated in the debug stream:

× xterm
lucky_first# ntpd -d
create_sockets(123)
bind() fd 5, family 2, port 123, addr 0.0.0.0, flags=1
bind() fd 6, family 2, port 123, addr 127.0.0.1, flags=0
bind() fd 7, family 2, port 123, addr 155.63.33.57, flags=1
init_io: maxactivefd 7
refclock_open: fd 9 modem status 6
refclock_ioctl: fd 9 flags 20
peer_config: 127,127,29,1 mode 3 vers 4 min 5 max 10 flags 0x0021 ttl 0 key 0
resolving terrapin,trimble.com
resolving iq.trimble.com
loop_config: state 2 freq -40,642
report_event: system event 'event_restart' (0x01) status 'sync_alarm, sync_unspe
c, 1 event, event_unspec' (0xc010)
auth_agekeys: at 1 keys 1 expired 0
key_expire_all: at 1 private 3b9d1599
peer_config: 155.63.31.220 mode 3 vers 4 min 6 max 10 flags 0x0001 ttl 0 key 0 peer_config: 155.63.32.173 mode 3 vers 4 min 6 max 10 flags 0x0001 ttl 0 key 0
receive: at 9 from 155.63.31.220 mode 3
pkt_mode 3 action 0
pkt_mode 3 action 0
transmit: at 9 to 155.63.31.220 mode 4
refclock_transmit: at 18 127,127,29,1
palisade_poll: unit 1: polling event
transmit: at 19 to 155.63.31.220 mode 3
transmit: at 19 to 155.63.32.173 mode 3
receive: at 19 from 155.63.31.220 mode 4
pkt_mode 4 action 1
peer 155,63,31,220 event 'event_reach' (0x84) status 'unreach, conf, 1 event, ev
ent_reach' (0x8014)
clock_filter: offset -0.004226 delay 0.002572 disp 7.937510 std 0.003953, age 0
receive: at 19 from 155.63.32.173 mode 4
pkt_mode 4 action 1
peer 155.63.32.173 event 'event_reach' (0x84) status 'unreach, conf, 1 event, ev
ent_reach' (0x8014)
clock_filter: offset -0.003626 delay 0.002129 disp 7.937506 std 0.003391, age 0
refclock_transmit: at 50 127,127,29,1
clock GPS_PALISADE(1) event 'clk_noreply' (0x01)
palisade_poll: unit 1: polling event

The last two lines of output on this screen show the Acutime NTP driver reporting failure to receive a time stamp from the GPS. These messages indicate that NTP is not receiving data from the reference clock.

Acutime 2000 Synchronization Kit User Guide

Table E-1 shows troubleshooting options.

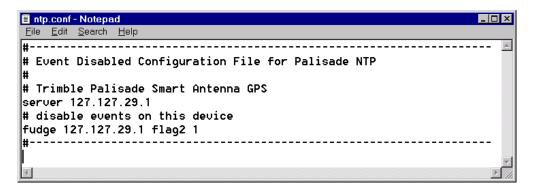
 Table E-1
 Troubleshooting: Acutime is Not Responding

Possible Problem	Solution
Cabling or connectors have become detached.	Connect and secure loose or disconnected cables and connectors.
System does not support event polling.	Configure fallback to synchronous polling mode. Update NTP software.
No activity of Power or PPS indicators on the Acutime Synchronization Interface Module.	Confirm availability of wall power. Use a monitoring utility on Port B to check GPS status.
GPS is not tracking satellites. (The Acutime NTP driver will not accept time stamps from the GPS receiver if it is not tracking satellites.)	Receiver may be jammed or obscured. Use a TSIP monitoring utility on Port B to check GPS health and status. Verify that adequate power is being supplied to the receiver.

If none of these options solve the problem, check your operating system error log for failure reports.

E.2.4 Running NTP with Event Polling Disabled

The Acutime NTP reference clock can be operated without event polling.


This mode can be used to confirm communication between the Acutime NTP Reference Clock and NTP, without relying on the event trigger connection. The event trigger feature may not be functional on all systems. If the Acutime NTP driver detects a problem using the event trigger, it reverts to **event disabled** mode.

Note – Running NTP without the Event Trigger degrades performance to the level of a conventional serial NTP reference clock.

To configure NTP to disable output you need to edit the configuration file and add the line:

```
fudge 127.127.127.x flag2 1
```


Then run NTP in debug mode (ntpd -d), to observe Palisade_receive events.

Receive events generated without event polling should be reported as poll events of this format:

Palisade_poll: unit x: polling synchronous
packet

× xterm
lucky_first# ntpd -d
create_sockets(123)
bind() fd 5, family 2, port 123, addr 0.0.0.0, flags=1
bind() fd 6, family 2, port 123, addr 127.0.0.1, flags=0
bind() fd 7, family 2, port 123, addr 155.63.33.57, flags=1
init_io: maxactivefd 7
refclock_open: fd 9 modem status 6
refclock_ioctl: fd 9 flags 20
peer_config: 127,127,29,0 mode 3 vers 4 min 5 max 10 flags 0x00a1 ttl 0 key 0
resolving terrapin.trimble.com
resolving iq.trimble.com
loop_config: state 2 freq -40.642
report_event: system event 'event_restart' (0x01) status 'sync_alarm, sync_unspe
c, 1 event, event_unspec' (0xc010)
auth_agekeys: at 1 keys 1 expired 0
key_expire_all: at 1 private 3ca12abf
peer_config: 155.63.31.220 mode 3 vers 4 min 6 max 10 flags 0x0001 ttl 0 key 0
peer_config: 155.63.32.173 mode 3 vers 4 min 6 max 10 flags 0x0001 ttl 0 key 0
refclock_transmit: at 16 127,127,29.0
palisade_poll: unit 0: polling synchronous packet
palisade_receive: unit 0: 1999 131 06:55:24.000000
palisade_receive: unit 0: bae252dc.06cb4289 Mon, May 10 1999 23:55:24.026
refclock_receive: at 16 127.127.29.0
peer GPS_PALISADE(0) event 'event_reach' (0x84) status 'unreach, conf, 1 event,
event_reach' (0x8014)
refclock_sample: offset -0.026539 disp 0.000000 std 0.000000
clock_filter: offset -0.026539 delay 0.000000 disp 7.937502 std 0.024825, age 0
transmit: at 17 to 155.63.31.220 mode 3
transmit: at 17 to 155,63,32,173 mode 3
receive: at 17 from 155.63.31.220 mode 4
pkt_mode 4 action 1
peer 155,63,31,220 event 'event_reach' (0x84) status 'unreach, conf, 1 event, ev
ent_reach' (0x8014)
clock_filter: offset -0.005294 delay 0.003325 disp 7.937510 std 0.004953, age 0
receive: at 17 from 155.63.32.173 mode 4
pkt_mode 4 action 1
peer 155,63,32,173 event 'event_reach' (0x84) status 'unreach, conf, 1 event, ev
ent_reach' (0x8014)
clock_filter: offset -0.005417 delay 0.004297 disp 7.937506 std 0.005067, age 0

The *seconds* value reported by the Acutime NTP reference clock is always an integer, since the synchronous packets are always transmitted at the beginning of the second.

After confirming functionality of NTP using synchronous packets, you can remove fudge flag2 from the configuration file and restart NTPD in debug mode to observe event polling receive events.

E.2.5 Incorrect Port and Bad Data

If the Acutime NTP driver detects invalid packet data on the serial line, it generates debug messages similar to the following. Run NTP in a higher level debug mode to observe this message: ntpd -d -d

```
clock GPS_Palisade(1) event 'clk_badformat' (0x02)
TSIP_decode: unit 1: bad packet 6d-4d event 0 len 21
clock GPS_Palisade(1) event 'clk_badformat' (0x02)
TSIP_decode: unit 1: bad packet 82-02 event 0 len 1
clock GPS_Palisade(1) event 'clk_badformat' (0x02)
TSIP_decode: unit 1: bad packet 46-00 event 0 len 2
clock GPS_Palisade(1) event 'clk_badformat' (0x02)
TSIP_decode: unit 1: bad packet 4b-5b event 0 len 3
clock GPS_Palisade(1) event 'clk_badformat' (0x02)
TSIP_decode: unit 1: bad packet 54-48 event 0 len 12
```

Table E-2 shows troubleshooting options.

Table E-2 Troubleshooting: Incorrect Port and Bad Data

Possible Problem	Solution
The host is connected to the wrong Acutime port. NTP requires connection with Acutime Port A.	Connect Acutime Port A to the host serial port.
The Acutime Port A serial port configuration does not match the NTP configuration.	Verify Acutime Baud Rate, Parity, Start and Stop Bits and Protocol settings.

Acutime 2000 Synchronization Kit User Guide

E.2.6 Serial Port is Unavailable

When NTP is unable to open a serial port, the following debug message is generated, along with an error report in the system log:

Palisade(2) start: open /dev/Acutime2 failed

A failed serial port open attempt is shown below:

🗙 xterm
<pre>lucky_first# ntpd -d create_sockets(123) pind() fd 5, family 2, port 123, addr 0.0.0,0, flags=1 pind() fd 6, family 2, port 123, addr 155.63.33.57, flags=0 pind() fd 7, family 2, port 123, addr 155.63.33.57, flags=1 init_io: maxactivefd 7 Palisade(2) start: open /dev/palisade2 failed resolving iq.trimble.com loop_config: state 2 freq -40.642 report_event: system event 'event_restart' (0x01) status 'sync_alarm, sync_unspe c, 1 event, event_unspec' (0xc010) auth_agekeys: at 1 keys 1 expired 0 key_expire_all: at 1 private d2389037 peer_config: 155.63.32.173 mode 3 vers 4 min 6 max 10 flags 0x0001 ttl 0 key 0</pre>

On a Windows NT system, the device name would refer to a device such as COM1:

Possible Problems:

• The configured serial port is not actually present on the system.

Solution: Edit the configuration file and select a valid serial port.

• The link to the actual UNIX device file is incorrect.

Solution: Delete and re-link the UNIX serial device using the procedures outlined in Set Up Device Links, page 6-26.

• Other services or applications are attempting to use the same port as NTP.

Solution: Reconfigure NTP or the conflicting application to resolve the conflict.

E.3 Compiling the NTP Distribution

To obtain compatibility updates, download the latest published versions of the Acutime NTP reference clock I/O module and associated documentation from:

ftp://ftp.trimble.com/pub/ntp/Palisadedrv

If you cannot locate a copy of an **NTP** executable for your system that supports Acutime, you can download and compile NTP yourself. You will need to build NTP on a system with a compiler.

- 1. Download the current version of NTP to your working directory.
- Use GZIP to uncompress the NTP distribution archive file: gzip -d ntp-4.xx.xx.tar.gz
- 3. Unpack the archive file using tar xf ntp-4.xx.tar

A directory named NTP-4.XX.XX will be created in your working directory.

4. Change to the new directory: cd ntp-4.xx.xx

NTP is distributed with an automatic configuration utility.

Acutime 2000 Synchronization Kit User Guide

5. Start configuration by typing: ./configure

<pre>bash# cat /etc/motd Linux 2.0.30. bash# whoami root bash# ls -1 total 2611 -rw-rr 1 sven users 2660615 May 10 23:44 ntp-4.0.92h.tar.gz bash# gzip -d ntp-4.0.92h.tar.gz bash# ls -1 total 7601 -rw-rr 1 sven users 7751680 May 10 23:44 ntp-4.0.92h.tar bash# tar xf ntp-4.0.92h.tar bash# tar xf ntp-4.0.92h.tar bash# ls -1</pre>
total 2611 -rw-r 1 sven users 2660615 May 10 23:44 ntp-4.0.92h.tar.gz bash# gzip -d ntp-4.0.92h.tar.gz bash# 1s -1 total 7601 -rw-r 1 sven users 7751680 May 10 23:44 ntp-4.0.92h.tar bash# tar xf ntp-4.0.92h.tar bash# tar xf ntp-4.0.92h.tar
-rwrr 1 sven users 7751680 May 10 23:44 ntp-4.0.92h.tar bash# tar xf ntp-4.0.92h.tar bash# 1s -1
total 7602
drwxr-xr-x 19 427 6011 1024 Apr 24 00:18 ntp-4.0.92h -rw-rr 1 sven users 7751680 May 10 23:44 ntp-4.0.92h.tar bash# cd ntp-4.0.92h bash# ./configure creating cache ./config.cache checking host system type

- 6. If the configuration program fails, or does not complete by creating make files, you will need to consult with your software or system administrator to obtain the correct compiler and libraries for your system.
- 7. After configuration is complete, type **make** to begin the software build. If the build does not complete successfully, please consult with your software or system administrator to diagnose the problem.

⊠ xterm	
updating cache ./config.cache	
creating ./config.status	
creating Makefile	
creating adjtimed/Makefile	
creating clockstuff/Makefile	
creating include/Makefile	
creating kernel/Makefile	
creating kernel/sys/Makefile	
creating libntp/Makefile	
creating libparse/Makefile	
creating ntpd/Makefile	
creating ntpdc/Makefile	
creating ntpdate/Makefile	
creating ntpq/Makefile	
creating ntptrace/Makefile	
creating parseutil/Makefile	
creating scripts/ntpver	
creating util/Makefile	
creating config.h	
bash#	
bash#	
bash#	
bash#_make	
Compiling with GCC now generates lots of new warnin	98.

NTP installs into the directory /USR/LOCAL/BIN. If you wish to install into a different directory, please consult the NTP documentation.

8. To install NTP into the default directory, log in as super user, or root, and type **make install** from the NTP-4.XX.XX directory.

× xterm						
tickadj.c:584: warning: initialization discards `const' from pointer target type tickadj.c:592: warning: initialization discards `const' from pointer target type tickadj.c:593: warning: initialization discards `const' from pointer target type tickadj.c:596: warning: unused variable `kernels' tickadj.c: In function `openfile':						
tickadj.c:738: warning: declaration of `fd' shadows global declaration tickadj.c: At top level:						
tickadj.c:756: warning: declaration of `fd' shadows global declaration tickadj.c: In function `writevar':						
tickadj.c:760: warning: declaration of `fd' shadows global declaration tickadj.c: At top level:						
tickadj.c:783: warning: declaration of `fd´ shadows global declaration tickadj.c: In function `readvar´: tickadj.c:787: warning: declaration of `fd´ shadows global declaration						
gcc -g -O2 -Wall -Wshadow -Wwrite-strings -Wconversion -Wpointer-arith -Wcast-q ual -Wstrict-prototypes -pipe -o tickadj tickadj.o/libntp/libntp.a -lsocke t -loosix4 -lnst -lkvm -lelf						
<pre>make[2]: Leaving directory '/usr/local/ntp/ntp-4.0.92h/util' make[2]: Entering directory '/usr/local/ntp/ntp-4.0.92h' make[2]: Leaving directory '/usr/local/ntp/ntp-4.0.92h'</pre>						
make[1]: Leaving directory `/usr/local/ntp/ntp-4.0.92h' bash# make install Making install						
Making install in include make[1]: Entering directory `/usr/local/ntp/ntp-4.0.92h/include'						

To complete installation of NTP on your system, see UNIX Installation, page 6-24.

E.4 Windows NT Administration

This section describes starting and stopping NTP on Windows NT, and removing the NTP service from the system.

E.4.1 Controlling the NTP Service

Use the Control Panel Services Applet to Stop or Disable the NTP service at any time. This procedure is the same whether you installed the NTP service manually or using the installation program.

Bervices				×
Service	Status	Startup		Close
EventLog	Started	Automatic		l
Messenger		Manual		Start
Net Logon	Started	Automatic		
Network DDE		Manual		Stop
Network DDE DSDM		Manual		
NetworkTimeProtocol	Started	Automatic		Pause
Novell Target Service Agent	Started	Automatic		Continue
Novell Workstation Manager		Automatic		
NT LM Security Support Provider	Started	Manual		Startup
pcANYWHERE Host Service		Manual	-	
			_	H <u>W</u> Profiles
St <u>a</u> rtup Parameters:				
			_	Help
1				

E.4.2 Removing the NTP Service

If you used the automatic installation procedure for installing NTP, de-install the NTP software using the Control Panel Add/Remove programs applet.

The NTP service can only be removed using the INSTSRV.EXE utility.

The NTP service must be stopped prior to removing.

1. To stop the NTP Service, click **Stop** in the Control Panel Services Applet.

Acutime 2000 Synchronization Kit User Guide

- 2. Start a *command prompt* window, and change to the directory containing the INSTSRV.EXE utility.
- 3. Type instsrv remove.

Command Prompt								
C:\ntp>dir								
Volume in drive C has no label.								
Volume Serial Number is D845–2F2F								
Director	Directory of C:\ntp							
05/09/99	02.46p	<dir></dir>						
05/09/99		<dir></dir>						
05/04/99		(DIR/	428 25	 Instsrv.exe				
05/04/99				ntpq.exe				
05/04/99				ntpdate.exe				
05/04/99				ntpdc.exe				
05/04/99				ntptrace.exe				
05/04/99				ntpd.exe				
		<dir></dir>		debug				
	9 F:	ile(s)	528,384	4 bytes				
		1	9,437,184	4 bytes free				
C:\ntp>instsrv remove								
Delete of Service "NetworkTimeProtocol" was SUCCESSFUL								
C. Antra								
C:\ntp>								

The program reports successful removal of the service. The executable files copied during installation, as well as the configuration file must be manually removed from the system if a permanent installation is desired.

This concludes the manual Windows NT installation. The remaining part of this section describes the Windows NT specific control, event logging and diagnostics features available.

E.5 Additional Information

For up-to-date hardware, software, and configuration information, please refer to the Trimble Navigation NTP Web Site at **www.trimble.com/oem/ntp**.

Acutime 2000 Synchronization Kit User Guide

E-23

E-24

F Theory of Operation

This chapter describes the smart antenna's satellite acquisition and tracking processes, performance characteristics and system architecture. This discussion assumes you are familiar with basic GPS theory.

The smart antenna's satellite acquisition and tracking algorithms can achieve a position solution without any initialization. The receiver tracks up to eight satellites and automatically selects the best combination of satellites to compute position, velocity and time. As satellites move out of view, the smart antenna automatically acquires new satellites and includes them in the solution set as required.

Before proceeding to the detailed discussion of the satellite acquisition and tracking process, please review the GPS satellite message description on the next page.

F.1 GPS Satellite Message

Every GPS satellite transmits the Coarse/Acquisition (C/A) code and satellite data modulated onto the L1 carrier frequency (1575.42 MHz). The C/A code is a unique pseudo-random sequence for each satellite. The satellite data transmitted by each satellite includes a satellite almanac for the entire GPS system, its own satellite ephemeris, and its own clock correction.

The satellite data is transmitted in 30-second frames. Each frame contains the clock correction and ephemeris for that specific satellite, and two pages of the 50-page GPS system almanac. The time required to transmit the complete system almanac is 12.5 minutes; the time to transmit the satellite ephemeris is 30 seconds.

The system almanac contains information about each of the satellites in the constellation, ionospheric data, and special system messages. The ephemeris contains detailed orbital information for a specific satellite. The GPS system almanac changes infrequently and is typically valid for weeks. Ephemeris data changes hourly, but is valid for up to four hours. The GPS control segment updates the system almanac weekly and the ephemeris hourly through three groundbased control stations. During normal operation, the smart antenna updates the ephemeris stored in its memory at 30-minute intervals.

The performance of a GPS receiver at power-on is determined largely by the availability and accuracy of the satellite ephemeris data and the availability of a GPS system almanac.

F.2 Satellite Acquisition and Time to First Fix

This section describes satellite acquisition times for different start conditions.

F.2.1 Cold Start

The term *cold start* describes the performance of a GPS receiver at power-on when no navigation data is available. *Cold* signifies that the receiver does not have a current almanac, satellite ephemeris, initial position, or time. The cold start search algorithm applies to a smart antenna that is powered on without the memory backup circuit connected to a source of DC power. Since the Acutime 2000 has no provision for external backup power, it always operates from a cold start. This is the condition of the GPS module as received from the factory.

In a cold start condition, the receiver automatically selects a set of satellites and dedicates an individual tracking channel to search the Doppler frequency for each satellite in the set. If none of the selected satellites are acquired after a pre-determined period of time (time-out), the receiver selects a new search set of satellites and repeats the process until the first satellite is acquired. As satellites are acquired, the receiver automatically collects ephemeris and almanac data. The smart antenna uses the information gained from acquiring a specific satellite to eliminate other satellites (those below the horizon) from the search set. This strategy speeds the acquisition of additional satellites required to achieve the first position fix.

The cold start search sets are established to ensure that at least three satellites are acquired within the first two time-out periods. As soon as four satellites are acquired, the receiver computes an initial position fix. The Acutime 2000 typically achieves a cold start in under two minutes.

A complete system almanac is not required to achieve a first position fix. The almanac is used in subsequent *warm starts*, and to aid in acquiring GPS satellites that come into view.

F.2.2 Warm Start

In a warm start condition, the receiver has a current almanac, an initial position (within 3,000 km) and current time (within five minutes) stored in memory. Although the smart antenna does not have an onboard battery for preserving memory, it can be initialized using the TSIP protocol. To force a warm start, the almanac, time, and initial position must be uploaded to the receiver.

During a warm start, the smart antenna identifies the satellites that are expected to be in view, given the system almanac, the initial position and the time. The receiver calculates the elevation and expected Doppler shift for each satellite in this expected set and directs the eight tracking channels in a parallel search for these satellites. If the internal oscillator error is known, the smart antenna compensates for the offset to optimize the search. If the offset is not known, the search algorithms are set wide enough to allow for oscillator tolerance, aging, and temperature errors.

If the receiver has an almanac and an initial position, but does not have the current time, it executes a cold start search until the first satellite is acquired. Once this first satellite is acquired, the receiver can obtain an approximate time and will convert to warm start mode to acquire additional satellites. Although the time to first fix is slightly longer in this case, it is significantly shorter than a complete cold start.

The warm start time to first fix is usually less than 50 seconds (40 seconds is typical).

F.2.3 "Garage Search" Strategy

During a warm start search, the smart antenna knows which satellites to search for, based on the system almanac, the initial position and the current time. In some cases, the receiver may not be able to acquire the expected satellite signals (for example, if the Acutime 2000 is in a jamming environment). Trimble's patented *garage search* strategy, also known as a split search, is designed for such situations.

If the receiver does not acquire the expected set of satellites within five minutes of a warm start, one of the channels is directed in a cold start search. This strategy minimizes the time to first fix in cases where the stored almanac, position and time are invalid. If the cold start search proves effective and the garage search fails, the stored information is flushed from memory.

F.2.4 Hot Start

A hot start strategy applies when the almanac, position, time and ephemeris in memory are valid. The hot start search strategy is similar to a warm start, but since the ephemeris data in memory is considered current and valid, the acquisition time is typically less than 30 seconds. This may occur if the GPS signals are temporarily obscured or jammed.

Acutime 2000 Synchronization Kit User Guide

F-5

F.3 Position Accuracy

GPS position accuracy is degraded by atmospheric distortion, satellite and receiver clock errors, and Selective Availability (S/A). Effective models for atmospheric distortion of satellite signals have been developed to minimize the impact of tropospheric and ionospheric effects. The impact of satellite clock errors is minimized by incorporating the clock corrections transmitted by each satellite used in the position solution. S/A is the most significant contributor to position error and cannot be effectively counteracted except with differential GPS.

F.3.1 Selective Availability (S/A)

The U.S. Department of Defense, through a program called Selective Availability, intentionally degrades GPS accuracy for civilian users. The S/A program creates position errors by modifying the apparent position of each satellite and introducing random dither into each satellite's clock.

In extreme cases, all sources of error (natural, PDOP, and S/A) can combine to produce large position errors. The DOD's definition of accuracy under S/A is 100 meters 2 dRMS (horizontal two-dimensional, 95 percent of the time).

F.4 Coordinate Systems

This section lists the coordinate system formats supported by the TSIP and NMEA 0183 protocols.

F.4.1 TSIP

In the default TSIP configuration, position is output in a Latitude-Longitude-Altitude (LLA) format based on a default datum, WGS-84. The LLA format can be easily converted by the host system to other coordinate systems using the appropriate translation algorithm. By sending the appropriate TSIP command, the smart antenna's position output can be changed to a Cartesian (XYZ) coordinate format. The datum used for LLA transformations can also be changed using the TSIP 8E packet. The smart antenna offers a selection of 179 datums, which are listed in Appendix A, Trimble Standard Interface Protocol.

The TSIP velocity output format is also three-dimensional. The default format is X-Y-Z with the option of an East-North-Up (ENU) coordinate format. Time tags on fix messages default to UTC (Universal Coordinated Time), but can be switched to GPS time by sending the appropriate TSIP command.

F.4.2 NMEA 0183

The NMEA 0183 protocol supports only LLA format and UTC time. If a custom datum is required, it can be set through TSIP using command 0x8E-15.

F.5 Performance Characteristics

This section lists performance information for the Acutime 2000.

F.5.1 **Update Rate**

The Acutime 2000 updates position at one-second intervals during self-survey. The surveyed position is frozen after the survey completes.

F.5.2 **Dynamic Limits**

Table F 4

The dynamic operating limits for the various receiver designs are listed below. These operating limits assume that the smart antenna is correctly installed and that the overall system is designed to operate under the same dynamic conditions.

Dynamic	Operating Limits
Velocity	500 m/s
Acceleration	4 g (39.2 m/s ²)
Jerk	20 m/s ³

F.5.3 **Re-Acquisition**

When a satellite signal is momentarily interrupted during normal operation, the receiver continues to search for the lost signal at the satellite's last known Doppler frequency. If the lost signal is not reacquired within 15 seconds, the receiver initiates a broader frequency search. The smart antenna uses the last known information about the dynamics of the receiver and the satellite to establish the center frequency and range for the search. Every 15 seconds, until the lost signal is re-acquired, a new center frequency and search range is computed. Each frequency range is searched in 500 Hz increments. The duration of the code search at a given frequency is approximately one second and switches automatically.

If ephemeris or almanac data is available for the lost satellite, then the satellite's velocity is factored into the center frequency calculation. The diminished accuracy of an older almanac is accounted for in the width of the search range. If neither the ephemeris nor almanac is available, then the Doppler frequency at last lock is searched for two minutes. If the satellite has not been re-acquired after two minutes, then the maximum expected Doppler frequency, based on satellite dynamics, is searched.

If the current position is not accurately known, the search width is increased. If the smart antenna is computing velocity or velocity aiding is provided, then the receiver's motion is also factored into the Doppler frequency. If velocity information is not available, then the dynamics code is used to determine the maximum expected Doppler frequency.

The re-acquisition time for momentary signal blockages is typically under two seconds.

Acutime 2000 Synchronization Kit User Guide

F-9

F.6 System Architecture

The standard Acutime 2000 incorporates a proprietary DSP (Digital Signal Processor), which operates at the L1 frequency (1575.42 MHz) and processes the Coarse/Acquisition (C/A) code portion of the GPS signal. The RF and digital signal processing components of the GPS module are custom ASICs designed by Trimble. In addition to the signal processing functions, these ASICs also contain support circuitry for the microprocessor. The microprocessor performs the navigation computations in addition to controlling the DSP channels and managing the I/O operations.

GPS satellite signals are collected by the antenna, filtered and amplified by the antenna's pre-amp and then fed to the RF down converter. A highly stable, crystal reference oscillator, operating at 12.504 MHz, supports the down converter in producing the correct signals for the digital signal processor. The signal processing stage tracks the GPS satellite signals and extracts the carrier code information, as well as the navigation data at 50 bits per second.

In addition to supporting the down conversion process, the crystal oscillator also serves as the reference clock for the navigation processor. This microprocessor controls the operation of the signal processing channels by allocating the channels during satellite acquisition and tracking. In the overdetermined mode of operation, the smart antenna automatically tracks the highest eight (or twelve) satellites above the horizon and selects the optimal set of satellites for the position solution.

In addition to controlling the DSP stage, the navigation processor also collects the ephemeris and almanac data for all of the satellites and manages the Universal Asynchronous Receiver/Transmitter (UART or DUART) interface. The UART supports full-duplex serial communication with the smart antenna.

The RS-232 and RS-422 versions of the Acutime 2000 block diagram for the GPS smart antenna are illustrated in Figure F-1 and Figure F-2.

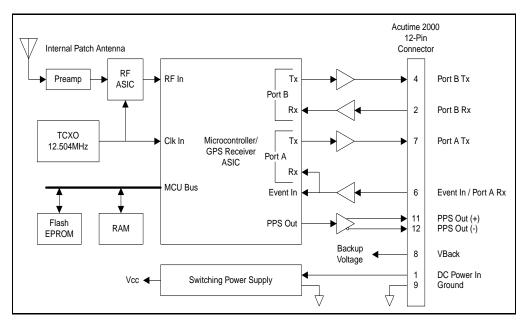


Figure F-1 Acutime 2000 Block Diagram (RS-232 Version)

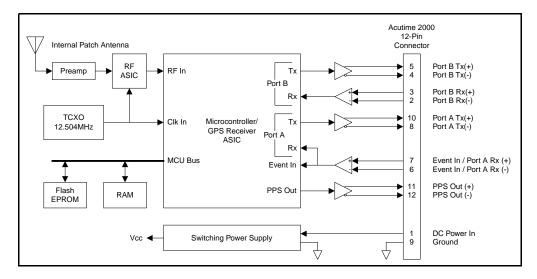


Figure F-2 Acutime 2000 Block Diagram (RS-422 Version)

F-11

Glossary

This section defines technical terms and abbreviations used in this manual. It includes terms from the field of GPS technology.

2-D	Two Dimensional. A 2-D position is defined as latitude and longitude. Altitude is assumed to be fixed.
2-D GPS mode	A procedure of determining a 2-D position using signals received from the best (or only) three available GPS satellites. Altitude is assumed to be known and constant. A 2-D position solution will only be determined if signals from three or more satellites are available.
3-D	Three Dimensional. A 3-D position is defined as latitude, longitude, and altitude.
3-D GPS mode	A procedure of determining a 3-D position using signals received from the best (or only) four available GPS satellites. A 3-D position solution will only be determined if signals from four or more satellites are available.
almanac	A reduced-precision subset of the ephemeris parameters. Used by the receiver to compute the elevation angle, azimuth angle, and estimated Doppler of the satellites. Each satellite broadcasts the almanac for all the satellites in the system.

Acutime 2000 Synchronization Kit User Guide

Glossary-1

ASCII	American Standard Code for Information Interchange. A standard set of 128 characters, symbols and control codes used for computer communications. ASCII characters require 7 bits of data to send, but are often sent 8 bits at a time with the extra bit being a zero.
auto GPS mode	A procedure of automatically determining either a 2-D or 3- D position using signals received from GPS satellites. The solution automatically transitions between 2-D and 3-D depending on the number of satellites available, the PDOP of the available satellites, and the defined PDOP switch value. (See PDOP and PDOP constellation switch).
azimuth angle	The angle of the line-of-site vector, projected on the horizontal plane, measured clockwise from true North.
bandwidth	The range of frequencies occupied by a signal. Also, the information carrying capability of a communication channel or line.
baud	A measure of the speed of data transmission. Baud and bit rate are the same for direct equipment interconnections (for example, through RS-232). Baud and bit rate are not the same for modulated data links, whether wire or radio.
bit	Binary digit. The smallest unit of information into which digital data can be subdivided and which a computer can hold. Each bit has only two values (e.g., on/off, one/zero, true/false).
bit rate	The rate at which bits are transmitted over a communication path. Normally expressed in bits per second (bps).
byte	A set of contiguous bits that make up a discrete item of information. A byte usually consists of a series of 8 bits, and represents one character.

Glossary-2

C/A code	The Coarse/Acquisition code. This is the civilian code made available by the Department of Defense. It is subject to selective availability (SA). Users can reduce the effects of SA by using differential GPS.
carrier	The radio signal on which information is carried. The carrier can be sensed to determine the presence of a signal.
channel	Either a single frequency or a pair of radio frequencies used as a communication path.
chip	The length of time to transmit either a zero or a one in a binary pulse code.
chip rate	Number of chips per second (e.g., C/A code = 1.023 MHz).
configuration	A set of conditions or parameters that define the structure of an item. In regards to Placer, a configuration defines the GPS processing and characteristics of the RS-232 interface ports. The term configuration can also define the hardware components that comprise a subsystem or system.
data bits	The bits in a byte of data which carry the actual information.
datum	A mathematical model of the earth. Many local datums model the earth for a small region: for example, Tokyo datum, Alaska, NAD-27 (North America). Others, such as WGS-84, model the whole earth.
DCE	Data Communications Equipment. The equipment that provides the functions required to establish, maintain, and terminate a communication connection. Any equipment that connects to DTE using an RS-232 or CCITT V.24 standard interface.
default setting	A preset or initial value that is assumed to be the preferred or appropriate selection for most situations. The Placer GPS sensor is shipped with factory default configuration settings; the settings were determined by Trimble.

Glossary-3

Glossary

differential relative positioning	Determination of relative coordinates of two or more receivers which are simultaneously tracking the same satellites. Static differential GPS involves determining baseline vectors between pairs of receivers. Also see <i>differential GPS</i> .
dilution of precision	A description of the purely geometrical contribution to the uncertainty in a position fix, given by the expression DOP = SQRT TRACE (A A) where A A is the design matrix for the instantaneous position solution (dependent on satellite- receiver geometry). The DOP factor depends on the parameters of the position-fix solution. Standard terms for the GPS application are:
	 GDOP – Geometric (three position coordinates plus clock offset in the solution) PDOP – Position (three coordinates) HDOP – Horizontal (two horizontal coordinates) VDOP – Vertical (height only) TDOP – Time (clock offset only) RDOP – Relative (normalized to 60 seconds)
DOP	See dilution of precision.
Doppler shift	The apparent change in frequency of a received signal due to the rate of change of the range between the transmitter and receiver.
earth-centered earth-fixed (ECEF)	Cartesian coordinate system where the X direction is the intersection of the prime meridian (Greenwich) with the equator. The vectors rotate with the earth. Z is the direction of the spin axis.
elevation angle	The angle between the line of sight vector and the horizontal plane.

Glossary-4

elevation mask angle	A measure of the minimum elevation angle, above the horizon, above which a GPS satellite must be located before the signals from the satellite will be used to compute a GPS location solution. Satellites below the elevation angle are considered unusable. The elevation mask angle is used to prevent the GPS receiver from computing position solutions using satellites which are likely to be obscured by buildings or mountains.
ellipsoid	In geodesy, unless otherwise specified, a mathematical figure formed by revolving an ellipse about its minor axis. It is often used interchangeably with spheroid. Two quantities define an ellipsoid; these are usually given as the length of the semi-major axis, a, and the flattening, $f = (a - b)/a$, where b is the length of the semi-minor axis.
ephemeris	A set of parameters that describe the satellite orbit very accurately. It is used by the receiver to compute the position of the satellite. This information is broadcast by the satellites.
epoch	Measurement interval or data frequency, as in making observations every 15 seconds. Loading data using 30- second epochs means loading every other measurement.
firmware	A set of software computer/processor instructions that are permanently or semi-permanently resident in read-only memory.
frequency	The number of vibrations per second of an audio or radio signal. Measured in hertz (Hz), kilohertz (kHz), or megahertz (MHz).
	GPS frequencies are: L1 = 1575.42 MHz L2 = 1227.60 MHz

Glossary-5

Glossary

GDOP	Geometric Dilution of Precision. GDOP describes how much an uncertainty in pseudo-range and time affects the uncertainty in a position solution. GDOP depends on where the satellites are relative to the GPS receiver and on GPS clock offsets.
geodetic datum	A mathematical model designed to best fit part or all of the geoid. It is defined by an ellipsoid and the relationship between the ellipsoid and a point on the topographic surface established as the origin of datum. This relationship can be defined by six quantities, generally (but not necessarily) the geodetic latitude, longitude, and the height of the origin, the two components of the deflection of the vertical at the origin, and the geodetic azimuth of a line from the origin to some other point. The GPS uses WGS-84.
geoid	The actual physical shape of the earth which is hard to describe mathematically because of the local surface irregularities and sea-land variations. In geodetic terms it is the particular equipotential surface which coincides with mean sea level, and which may be imagined to extend through the continents. This surface is everywhere perpendicular to the force of gravity.
GPD	GPS with differential corrections applied.

Glossary-6

GPS	Global Positioning System. A satellite-based navigation system operated and maintained by the U.S. Department of Defense and consisting of a constellation of 24 satellites providing worldwide, 24-hour, three-dimensional (3-D) GPS coverage. These satellites transmit signals used (by GPS receivers) to determine precise location (position, velocity, and time) solutions. GPS signals are available in all weather conditions. This system also includes 5 monitor ground stations, 1 master control ground station, and 3 upload ground stations.
	GPS is emerging as the technology of choice in many timing applications, including site and network synchronization.
GPS antenna	An antenna designed to receive GPS radio navigation signals.
GPS processor	An electronic device that interprets the GPS radio navigation signals (received by a GPS antenna) and determines a location solution. The GPS processor may also be able to apply (and determine) differential GPS corrections.
GPS receiver	The combination of a GPS antenna and a GPS processor.
GPS time	The length of the second is fixed and is determined by primary atomic frequency standards. Leap-seconds are not used, as they are in UTC. Therefore, GPS time and UTC differ by a variable whole number of seconds.
HDOP	Horizontal Dilution of Precision.
host system	The device or instrument connected to the Acutime 2000 smart antenna. The host system can be a PC, network equipment, or timing system, depending on the application.
HOW	Hand-over word. The word in the GPS message that contains time synchronization information for the transfer from C/A to P-code.

Glossary-7

Glossary

interface cable	The interface cable allows data to flow between the Acutime 2000 and the communication equipment.
interference	Refers to the unwanted occurrences on communication channels that are a result of natural or man-made noises and signals, not properly a part of the signals being transmitted or received.
integrated Doppler	A measurement of Doppler shift frequency or phase over time.
IODE	Issue Of Data, Ephemeris. Part of the navigation data. It is the issue number of the ephemeris information. A new ephemeris is available usually on the hour. Especially important for Differential GPS operation that the IODE change is tracked at both the reference station and mobile stations.
jamming	Interference (in either transmitting or receiving signals) caused by other radio signals at exactly or approximately the same frequency.
masks	See satellite masks.
maximum PDOP	A measure of the maximum Position Dilution of Precision (PDOP) that is acceptable in order for the GPS processor to determine a location solution (see PDOP).
NAVSTAR	The name given to the GPS satellites, built by Rockwell International, which is an acronym formed from NAVigation System with Time And Ranging.
NMEA	National Marine Electronics Association. An association that defines marine electronic interface standards for the purpose of serving the public interest.
NMEA 0183 message	NMEA 0183 is a standard for interfacing marine electronics navigational devices. The standard specifies the message format used to communicate with marine devices/ components.
Glossary-8	Acutime 2000 Synchronization Kit User Guide

packet	An "envelope" for data, which contains addresses and error checking information as well as the data itself.
parity	A scheme for detecting certain errors in data transmission. Parity defines the condition (i.e., even or odd) of the number of items in a set (e.g., bits in a byte).
PDOP	Position Dilution of Precision. PDOP is a unitless figure of merit that describes how an uncertainty in pseudo-range affects position solutions.
PDOP constellation switch	A value, based on PDOP, that defines when the GPS receiver/processor should switch between 2-D and 3-D GPS modes. The PDOP constellation switch is only active when the GPS mode of operation is set to Auto.
PRN	Pseudo-random noise. Each GPS satellite generates its own distinctive PRN code, which is modulated onto each carrier. The PRN code serves as identification of the satellite, as a timing signal, and as a subcarrier for the navigation data.
protocol	A formal set of rules that describe a method of communication. The protocol governs the format and control of inputs and outputs.
pseudo-range	A measure of the range from the GPS antenna to a GPS satellite. Pseudo-range is obtained by multiplying the speed of light by the apparent transit time of the signal from the GPS satellite. Pseudo-range differs from actual range because the satellite and user clocks are offset from GPS time and because of propagation delays and other errors.
RAM	Random-Access Memory.
random-access memory	Memory in which information can be referred to in an arbitrary or random order. The contents of RAM are lost when the System Unit is turned off.

Glossary-9

Glossary

range	A term used to refer to the distance radio signals can travel before they must be received or repeated due to loss of signal strength, the curvature of the earth and the noise introduced because of moisture in the air surrounding the earth's surface.
range rate	The rate of change of range between the satellite and receiver. The range to a satellite changes due to satellite and observer motions. Range rate is determined by measuring the Doppler shift of the satellite beacon carrier.
read-only memory	Memory whose contents can be read, but not changed. Information is placed into ROM only once. The contents of ROM are not erased when the system unit's power is turned off.
relative positioning	The process of determining the vector distance between two points and the coordinates of one spot relative to another. This technique yields GPS positions with greater precision than a single point positioning mode can.
rise/set time	The period during which a satellite is visible (i.e., has an elevation angle that is above the elevation mask). A satellite is said to "rise" when its elevation angle exceeds the mask and "set" when the elevation drops below the mask.
ROM	Read-Only Memory.
RTCM	Radio Technical Commission for Maritime Services. Commission that recommends standards for differential GPS services. <i>RTCM Recommended Standards For</i> <i>Differential GPS Service</i> , prepared by RTCM Special Committee No. 104 (RTCM SC-104), defines a communication protocol for sending GPS differential corrections from a differential reference station to remote GPS receivers.

Glossary-10

satellite masks	As satellites approach the horizon, their signals can become weak and distorted, preventing the receiver from gathering accurate data. Satellite masks enable you to establish criteria for using satellite data in a position solution. There are three types of satellite masks: Elevation, SNR, and PDOP.
SA	Selective Availability. This is the name of the policy and the implementation scheme by which unauthorized users of GPS will have their accuracy limited to 100 meters 2D RMS horizontal and 156 meters 2D RMS vertical.
SEP	Spherical Error Probability. The radius of a sphere such that 50% of the position estimates will fall within the surface of the sphere.
serial communication	A system of sending bits of data on a single channel one after the other, rather than simultaneously.
serial port	A port in which each bit of information is brought in/out on a single channel. Serial ports are designed for devices that receive data one bit at a time.
signal-to-noise level	GPS signals with SNRs that do not meet the mask criteria are considered unusable.
signal-to-noise ratio	A measure of the relative power levels of a communication signal and noise on a data line. SNR is expressed in decibels (dB).
SNR	Signal-to-Noise Ratio.
spread spectrum	The received GPS signal is a wide bandwidth, low-power signal (-160 dBW). This property results from modulating the L-band signal with a PRN code in order to spread the signal energy over a bandwidth which is much greater than the signal information bandwidth. This is done to provide the ability to receive all satellites unambiguously and to provide some resistance to noise and multi-path.

Glossary-11

Glossary	
----------	--

SPS	Standard Positioning Service. Refers to the GPS as available to the authorized user.
start bit	In asynchronous transmission, the start bit is appended to the beginning of a character so that the bit sync and character sync can occur at the receiver equipment.
stop bit	In asynchronous transmission, the stop bit is appended to the end of each character. It sets the receiving hardware to a condition where it looks for the start bit of a new character.
SV	Space Vehicle (GPS satellite).
synchronous communication	A method of sending digital data in which the bits come at fixed, rather than random, times and are synchronized to a clock.
TSIP	Trimble Standard Interface Protocol. A binary/hex packet bi-directional protocol, also known as the TANS protocol. Used by a large number of Trimble sensors. TSIP is the subset of TANS which is recognized by all Trimble sensors except the 4000 series. The TSIP protocol is defined in full in Appendix A.
URA	Satellite user range accuracy. The URA is sent by the satellite and is computed by the GPS operators. It is a statistical indicator of the contribution of the apparent clock and ephemeris prediction accuracies to the ranging accuracies obtainable with a specific satellite based on historical data.
UTC	Universal Coordinated Time. Uniform atomic time system/ standard that is maintained by the US Naval Observatory. UTC defines the local solar mean time at the Greenwich Meridian.
UTC offset	The difference between local time and UTC (Example: UTC - EST = 5 hours).

Glossary-12

Index

Α

abbreviations used in manual xxiii Acutime 2000 GPS Smart Antenna 12-pin connector format 4-3 communicating with 2-4 connecting 2-2 connecting host system 3-6 connection diagram 2-3 connections 4-1 enclosure illustration 1-3 installation choosing location 3-2 routing and securing interface cable 3-5 installing 2-1, 3-1 interface cables and connectors 4-4 interface connector 4-3 mounting 3-4 overview 1-2 specifications D-1 start-up 5-1 almanac A-40, A-58 Appendix F, Theory of Operation xxi, 5-1 Appendix F, Theory of Operation. 5-1 audience xix automatic installation Windows NT 6-16

С

cable delay compensation 5-9 cautions xxiv choosing location for antenna 3-2 cold start F-3 command packets A-14 communicating with Acutime 2000 2-4 Timing Receiver Monitor 2-4 computer and power source connecting 2-3 configuration NTP software 6-1 Palisade 6-12 connecting computer and power source 2-3 connecting host system 3-6 connection instructions 4-7 power 4-7 timing packet 4-8 timing pulse 4-7 connection diagram 2-3 coordinate systems F-7 NMEA 0183 F-7 TSIP F-7

D

Department of Defense Glossary-6 document conventions xxiii dynamic limits F-8

Acutime 2000 Synchronization Kit User Guide

Index-1

Ε

ECEF A-30 electrical specifications D-3 elevation mask 5-2 environmental specifications D-2 event input 4-9 external event input 5-9

G

garage search strategy F-5 getting started 2-1 Glossary Glossary-1 GPS timing 5-12

Η

HAE A-30 health of receiver A-46 health of satellite A-49 height above ellipsoid A-30 hot start F-5

I

installation 3-1 software 6-1 UNIX 6-24 Windows NT 6-15 interface and power connections 4-2 interface cable routing and securing 3-5 introduction 1-1 items required for installation 2-1

Μ

main screen B-2 manual installation Windows NT 6-17 monitoring NTP 6-31 mounting the smart antenna 3-4

Ν

Network Time Protocol (NTP) 6-1 NMEA 0183 F-7 NMEA 0183 message formats C-5 notes xxiv NTP configuration file 6-11 monitoring 6-31 software installation 6-10 time servers 6-2 NTP software installation and configuration 6-1

0

operation theory F-1 organization xx other information xxii overdetermined timing mode 5-5

Ρ

packet descriptions A-20 Palisade configuration 6-12 PDOP mask 5-3 performance F-8 dynamic limits F-8 re-acquisition F-8

Index-2

update rate F-8 performance specifications D-2 physical specifications D-1 pin-out descriptions 4-5 position accuracy F-6 selective availability F-6 power connection 4-7 PPS output options 5-6 PPS quantization error 5-6, 5-7 pre-installation check list 6-4 preparation GPS 6-5 host system 6-6

R

raw measurement data A-38 re-acquisition F-8 reader comment form 5 report packets A-16 routing interface cable 3-5

S

satellite acquisition F-3 cold start F-3 garage search strategy F-5 hot start F-5 warm start F-4 satellite masks 5-2 satellite signal levels A-48 scope xix securing interface cable 3-5 selective availability F-6 self-survey mode 5-4 serial communication 5-10 serial port selection screen B-1 serial protocols D-4 SNR mask 5-3 specifications D-1 electrical D-3 environmental D-2 performance D-2 physical D-1 serial protocols D-4 start-up 5-1 system architecture F-10 system operation overview 5-1

Т

technical assistance xxiii technical support 6-4 theory of operation F-1 timing packet serial connection 4-8 timing pulse connections 4-7 Timing Receiver Monitor 2-4 Timing Receiver Monitor screen serial port selection B-1 Timing Receiver Monitor screens main B-2 tips xxiv tracking codes 5-4 Trimble Standard Interface Protocol see TSIP A-1 TSIP F-7 command packets A-14 0x26, Health Request A-23 0x2B, Initial Position (Latitude, Longitude, Altitude) Command A-26 0x2F, UTC Parameters Command A-27 0x3D, Timing Port Configuration Command A-40 report packets A-16

Acutime 2000 Synchronization Kit User Guide

Index-3

0x4C, Operating Parameters Report A-52 0x4E, GPS Time Change Acknowledgment A-53 0x57, Information About Last Computed Fix Report A-57 0x59, Satellite Attributes Database Report A-63 0x5A, Raw Measurement Data Report A-64 0x5C, Satellite Tracking Status Report A-68 0x5F, EEPROM Segment Status Reports A-70

U

unit number 6-12 UNIX installation 6-24 hardware configuration 6-28 update notes xxii update rate F-8

W

warm start F-4 Windows NT installation 6-15 automatic 6-16 manual 6-17 World Wide Web (WWW) site xxii

Index-4

Reader Comment Form

Acutime 2000 Synchronization Kit User Guide	April 2001
P/N: 45005-00-ENG	Revision A

We appreciate your comments and suggestions for improving this publication. Contributors of particularly helpful evaluations will receive a thank-you gift.

I use the following Trimble product_____

Please circle a response for each of the sta					
1 = Strongly Agree $2 = $ Agree $3 = $ Neutral	4 = Disagree	5 = Strongly Disagree			
The manual is well organized.	1	2	3	4	5
I can find the information I want.	1	2 2	3 3 3 3	4 4	5
The information in the manual is accurate.	1				5
I can easily understand the instructions.	1 1				5
The manual contains enough examples.					5
The examples are appropriate and helpful.	1	2	3	4	5
The layout and format are attractive and useful.	1	2	3	4	5
The illustrations are clear and helpful.	1	2	3	4	5
The manual is:	too lo	ng	just right	too	short
Please answer the following questions:					
Which sections do you use the most?					
What do you like best about the manual?					
What do you like least about the manual?					
Optional					
Name					
Company					
Address					
TelephoneFax					

Please mail to Trimble Navigation Limited, 645 North Mary Avenue, P.O. Box 3642, Sunnyvale, CA 94088-3642. Alternatively, email your comments and suggestions to ReaderFeedback@trimble.com. All comments and suggestions become the property of Trimble Navigation Limited.

Download from Www.Somanuals.com. All Manuals Search And Download.

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com