VINO-1500SS VINO-1900SS

Installer's Instruction

WARNING

Always check wiring harness connections before initiating any test procedures.

Disconnect electric power from the appliance before performing any maintenance or repairs.

Voltage checks should be made by inserting meter probes beside the wires in the connector blocks with the electric power source on and the connector block plugged in.

Resistance checks should be made on components with the electric power off and the connector block disconnected.

Federal law requires that WINEMATE split cooling systems be installed by an EPA certified refrigeration technician.

WINEMATE split system is shipped as components and is ready for use only after a certified refrigeration technician has properly installed, charged and tested the system. Proper installation is critical. Vinotemp can only warrant the quality of the components. The installation and proper operation of the system must be warranted by the installer. Installation of the system must be done in accordance with all state and local building codes.

The condensing unit and evaporator unit are connected by a liquid line and an insulated suction line that are supplied by the installer. These lines must be properly sized for the distance between the two units. After the units and the lines are installed, the system must be pressure tested. If no leaks are found, evacuate and charge system with R134A. Refrigerant amount will vary depending on the length of line set.

1. Condensing Unit

- Place the condensing unit WM-150SCU in a properly ventilated location. If it is not, heat exhausted by the condensing unit will build up and the cooling system will not operate properly.
- Leave minimum 5 feet clearance for the exhaust side and leave minimum 1 foot clearance for the fresh air intake side.
- Condensing unit shall be elevated to avoid possible flooding and shaded from direct sun. It shall not be exposed to temperatures higher than 110 °F or lower than 45 °F (optional low ambient kit for 20 °F).

2. Evaporator Unit

- The WM-15SFC evaporator unit is installed for ceiling mount with the air supply towards horizontally and air return on the bottom.
- The WM-19SFC evaporator unit is installed for wall mount with the air supply towards top and air return on the sides.
- Supply and return air flow from the evaporator unit shall be unobstructed for at least 1 foot.
- There is a gravity drain line so that it can not be installed above the evaporator unit. Otherwise a condensation pump must be used.

3. Refrigeration Piping and Charging

NOTES: ALWAYS USE THE SUPERHEAT AND SUBCOOLING, PRESSURE READINGS TO CHARGE REFRIGERANT PROPERLY, THE LISTED CHARGES ARE FOR REFERENCE ONLY.

- The installation order starts from condensing unit (including the receiver), liquid line filter-drier, moisture-liquid indicator (sight glass), liquid line, evaporator unit (including liquid line solenoid valve and thermostatic expansion valve or automatic expansion valve), returning to suction line and condensing unit.
- The subcooling at the condensing unit shall be around 10°F. The charge may be complete when there are no more bubbles forming in the sight glass.
- The evaporator superheat is set around 8-10 °F for a 10 °F TD system at factory.
- Low side pressure: around 33 psig
- High side pressure: 130 -150 psig at 75 -90 °F ambient temperatures

REFRIGERATION SUCTION LIQUID DRAIN MODEL CHARGE LINE LINE LINE LINES 1/4" R134a/ VINO-1500SS < 50 FT 3/8" OD 1/2" OD OD 15 OZ 1/4" R134a/ VINO-1900SS 3/8" OD 3/8" OD < 50 FT 15 OZ OD

The line sizes and refrigerant charges are listed as follows.

4. Pressure, Superheat and Subcooling Readings

NOTES: THE SERVICE VALVES MUST BE IN THE MIDDLE POSITIONS TO READ PROPERLY.

Complaint	Possible Causes
High suction pressure and low head pressure High suction pressure and low head pressure Low superheat and low subcooling	Compressor may be bad Expansion valve opened, too much oil

C.	High suction pressure and high head pressure	C.	Overcharge
	Low superheat and high subcooling		
d.	High to normal suction pressure and high head pressure	d.	Non-condensable gas
	Low subcooling		_
e.	High suction pressure and high head pressure	e.	Air restricted, dirty condenser,
	Low subcooling		bad condenser fans
f.	High suction pressure and high head pressure	f.	High room temperature, high
	High superheat		evaporator load
g.	Low suction pressure and low head pressure	g.	Undercharge
Ũ	High superheat and low subcooling	Ū	Ū.
h.	Low suction pressure and low to normal head pressure	h.	Liquid line restricted after
	High superheat and high subcooling		receiver, solenoid valve
	5 · 5 · 5		restricted
i.	Low suction pressure and low head pressure	i.	Suction line restricted
	Low subcooling		
j.	Low suction pressure and low head pressure	j.	Air restricted at evaporator,
,	Low superheat and low subcooling	ľ.	evaporator iced
k.	Low suction pressure and low to normal head pressure	k.	Evaporator restricted
	High superheat and normal to high subcooling		•
١.	Low suction pressure and normal head pressure	١.	Expansion valve restricted
	High superheat and normal subcooling		
m.		m.	Both evaporator and condenser
	High superheat and high subcooling		restricted
n.	Low suction pressure and high head pressure	n.	Liquid line restricted before
	High superheat and high subcooling		receiver
о.	low to normal suction pressure and high head pressure	о.	Condenser restricted
0.	High to normal superheat and high subcooling	0.	
	g teeal caperneat and high cabecoling		
L		I	

5. Valve Operation

SPINDLE BACK POSITION SPINDLE FRONT POSITION SPINDLE MIDDLE POSITION

Fig. 2.1 Valve Operation

Back Position: Process and manometer port closed for normal operation **Front Position**: Main connection to liquid or suction line closed **Middle Position**: All ports open for vacuum, charge and measurement

6. Electrical Wiring

EVAPORATOR UNIT

8. Condensing Unit Troubleshooting

	Unit not running								
а.	Incorrect power supply	a. Check for proper voltage							
b.	Incorrect or loose wirings	b. Check all wirings and connections							
C.	Failed components	c. Check start relay, start capacitor, overlaprotector, compressor.	oad						
d.		d. Call service for OEM information							
e.	Low pressure switch shutting down the system	e. Check for system restriction or refrigerant	low						

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com