
 2000 2813 Industrial Ln. • Garland, TX 75041 • (972) 926-9303 FAX (972) 926-6063
email: Gary@axman.com • web: http://www.axman.com

xiom

anufacturing

CME-12D60
 Development Board for Motorola

68HC912D60 Microcontroller

2

CONTENTSCONTENTS
GETTING STARTED..3

Installing the Software... 3
Board Startup .. 3
Support Software .. 4
Software Development .. 4

TUTORIAL..5
Creating source code.. 5
Assembling source code ... 6
Running your application .. 7
Programming Flash EEPROM... 8

MEMORY MAP ...9

CONFIG SWITCH...10

JUMPERS...11
MON-SEL JUMPER .. 11
PG_PULL / PH_PULL JUMPERS ... 11
JP1 Oscillator Select JUMPER ... 11

PORTS AND CONNECTORS ..12
LCD_PORT ... 12
KEYPAD.. 12
MCU_PORT .. 13
CAN_PORT... 13
COM1.. 14
COM2.. 14
ANALOG PORT .. 14
BUS_PORT... 15
BDM-IN ... 15

TROUBLESHOOTING ...16

TABLES..18
TABLE 1. LCD Command Codes ... 18
TABLE 2. LCD Character Codes.. 18
TABLE 3. Mon12 Monitor Commands.. 19

3

GETTING STARTED
The Axiom CME-12D60 single board computer is a fully assembled, fully functional
development system for the Motorola 68HC912D60 microcontroller, complete with wall plug
power supply and serial cable. Support software for this development board is provided for
Windows 95/98 and NT operating systems.

Follow the steps in this section to get started quickly and verify everything is working correctly.

Installing the Software
1. Insert the Axiom 68HC12 support CD in your PC. If the setup program does not start, run

the file called "SETUP.EXE" on the disk.

2. Follow the instructions on screen to install the support software onto your PC.
You should at minimum install the AxIDE for Windows software.

3. The programming utility “AxIDE” requires you to specify your board. You should select
"CME12D60" for this board.

Board Startup
Follow these steps to connect and power on the board. This assumes you're using the
provided AxIDE utility (installed in the previous section) or a similar communications terminal
program on your PC. If you're using a different terminal program than the one provided, set
it's parameters to 9600 baud, N,8,1.

1. Make certain the CONFIG SWITCH is set as follows:

1 2 3 4 5 6 7 8
ON ON ON ON OFF ON OFF OFF

2. Connect one end of the supplied 9-pin serial cable to a free COM port on your PC.
Connect the other end of the cable to the COM1 port on the CME-12D60 board.

3. Apply power to the board by plugging in the power adapter that came with the system.

4. If everything is working properly, you should see a message to “PRESS KEY TO START
MONITOR…” in your terminal window. Press the ENTER key and you should see:

Axiom MON12 - HC12 Monitor / Debugger
> _

5. Your board is now ready to use! If you do not see this message prompt, or if the text is
garbage, see the TROUBLESHOOTING section at the end of this manual.

4

Support Software
There are many useful programs and documents on the included HC12 support CD that can
make developing projects on the CME-12D60 easier. You should browse the disk and copy
anything you want to your hard drive.

The flash programming utility (AxIDE) communicates with the board via its COM1 port and the
supplied cable. This program also includes a simple terminal for interfacing with other
programs running on the CME-12D60, such as Mon12, and information from your own
programs that send output to the serial port.

Also on the disk is a free assembler, example source code, and other tools to get you started.

Software Development
Software development on the CME12B32 can be performed using either the Mon12 monitor
utility installed in EPROM (sockets U6/U7), a third party debugger (NoICE, CodeWarrior, etc.)
or a Background Debug Module (BDM) connected to the BDM-IN connector. Any of these
tools can be used to assist in creating and debugging your program stored in RAM (see
Memory Map).

After satisfactory operation running under a debugger, your program can be written to Internal
Flash Memory by changing the CONFIG SWITCH settings and programming it using one of
the included programming utilities. Your program will then run automatically whenever the
board is powered on or RESET is applied.

Option jumpers and switches on the board allow for easy transition from one memory type to
another and restoring an operating monitor or debugger.

5

TUTORIAL
This section was written to help you get started developing software with the CME-12D60
board. Be sure to read the rest of this manual as well as the documentation on the disk if you
need further information.

The following sections take you through the complete development cycle of a simple "hello
world" program, which sends the string "Hello World" to the serial port.

Creating source code
You can write source code for the CME-12D60 board using any language that compiles to
Motorola 68HC12 instructions. Included on the software disk is a free Assembler.

You can write your source code using any ASCII text editor. You can use the free EDIT or
NOTEPAD programs that come with your computer. Once your source code is written and
saved to a file, you can assemble or compile it to a Motorola S-Record (hex) format. This type
of output file usually has a .MOT, .HEX or .S19 file extension and is in a format that can be
read by the programming utilities and programmed into the CME-12D60 board.

It's important to understand your development board's use of Memory and Addressing when
writing source code so you can locate your code at valid addresses. For example, when in
debug mode, you should put your program CODE in External RAM. In assembly language,
you do this with ORG statements in your source code. Any lines following an ORG statement
will begin at that ORG location, which is the first number following the word ORG, for example:
ORG $1000. You must start your DATA (or variables) in a RAM location unused by your
program, for example: ORG $0000.

In “debug mode” you’ll be using a debugger utility (Mon12, NoICE, etc) which will handle both
interrupts (reset, timers, etc) and the STACK. When finished debugging, you must add code
to your application to handle the STACK and Interrupt vector initialization. Set the stack
somewhere at the top of your available RAM, for example $7FE, in assembly this would be
LDS #$7FE. Also define the RESET vector address, $FFFE, at the end of your program.
For example:

ORG $FFFE
FDB START ; where START is the beginning label of your program

A look at the example programs on the disk can make all of this clearer. If you're using a
compiler instead of an assembler, consult the compiler documentation for methods used to
locate your code, data and stack.

6

Assembling source code
An example program called “HELLO.ASM” is provided under the \EXAMPLES\D60 directory
of the CD and if you installed AxIDE, under that programs \EXAMPLE\HC12D60 directory.

You can assemble your source code using command line tools under a DOS prompt by typing:

AS12 HELLO.ASM –LHELLO

Most compilers and assemblers allow many command line options so using a MAKE utility or
batch file is recommended if you use this method. Run AS12 without any arguments to see all
the options, or see the AS12.TXT file on the disk.

The programming utility AxIDE provided with this board contains a simple interface to this
assembler. Use it by selecting "Build" from its menu. This will prompt you for the file to be
assembled. NOTE: You must select your board from the pull down menu first, or it may not
build correctly.

DO NOT use long path names (> 8 characters). The free assembler is an old DOS tool that
does not recognize them.

If there are no errors in your source code, 2 output files will be created:

HELLO.S19 a Motorola S-Record file that can be programmed into memory
HELLO.LST a common listing file which shows the relationship between source

and output

The listing file is especially helpful to look at when debugging your program. If your program
has errors, they will be displayed and no output will be generated, otherwise the listing file will
be displayed.

If you prefer a windows integrated programming environment, try the Motorola MCU-EZ tools.
Refer to the MCU-EZ documentation on the disk for more information.

Also, a port for the free GNU C compiler and tools for the HC12 is available on the CD under
\Shareware and also online at www.gnu-m68hc11.org.

7

Running your application
After creating a Motorola S-Record file you can "upload" it to the development board for a test
run. The provided example “HELLO.ASM” was created to run from RAM so you can use the
Mon12 Monitor to test it without programming it into Flash.

If you haven’t done so already, verify that the CME-12D60 board is connected and operating
properly by following the steps under “GETTING STARTED” until you see the Mon12 prompt,
then follow these steps to run your program:

1. Press and release the RESET button on the CME-12D60 board. You should see the
PRESS ANY KEY message. Hit the return key ↵ to get the monitor prompt.

2. Type LOAD ↵↵
This will prepare Mon12 to receive a program.

3. Select Upload and when prompted for a file name select your assembled program file in s-
record format that was created in the previous section called: HELLO.S19
Your program will be sent to the board thru the serial port.

4. When finished loading you will see the > prompt again. Type GO 1000 ↵↵
This tells Mon12 to execute the program at address $1000, which is the start of our test
program.

5. If everything is working properly you should see the message “Hello World” echoed back
to your terminal screen. Press RESET to return to the monitor.

6. If you do not get this message, see the TROUBLESHOOTING section in this manual

You can modify the hello program to display other strings or do anything you want. The
procedures for assembling your code, uploading it to the board and executing it remain the
same. Mon12 has many features such as breakpoints, assembly/disassembly, memory dump
and modify and program trace. Type HELP at the Mon12 prompt for a listing of commands or
consult the Mon12 documentation on the disk for more information.

For a more powerful debugger with many advanced features such as source level debugging,
you can use the NoICE debugger software. A full featured demo version is provided on the
CD, which you can use to get started. NOTE: To use this program instead of Mon12 you must
simply remove the MON-SEL jumper and run the NoICE software. See the help
documentation in this program for more information.

8

Programming Flash EEPROM
After debugging, you can program your application into Flash Memory so it executes
automatically when you apply power to the board as follows:

1. Make a backup copy of HELLO.ASM then use a text editor to modify it. Remove the
comment ; character before the following line to initialize the stack pointer which is
necessary when running outside of a debugger:

LDS #$7FE ; initialize the stack pointer

2. Remove the comment ; character from before the following 2 lines at the end, to set the
reset vector to go to the beginning of the program (the label START) when powered on:

org $fffe reset vector
 fdb START

3. Re-Assemble HELLO.ASM as described in the "Assembling Source Code" section.

4. Select Program from the AxIDE menu and follow the message prompts. When prompted
for a file name, enter the new HELLO.S19 file.

5. Set the CONFIG SWITCH positions 1-5 all ON. The red VPP light should come on.

6. Press the RESET button on the board before clicking OK. When prompted to Erase,
choose Yes.

7. When finished programming, REMOVE POWER then set the CONFIG SWITCH positions
1-5 all OFF. The VPP light should turn off.

8. Re-Apply Power to the board. Your new program should start automatically and the “Hello
World” prompt should be displayed in the terminal window.

To return to the Mon12 monitor program, set the CONFIG SWITCH positions 1-4 all back ON
then press RESET.

9

MEMORY MAP
Following is the memory map for this development board. Consult the 68HC912D60 technical
reference manual on the CD for internal memory map details for this processor.

FFFF

C000

CONFIG 1 2 3 4
 ON ON ON ON

External EPROM
U6/7 (Mon12)

BFFF

1000

External RAM
U4/5

CONFIG 1 2 3 4
 ON ON ON OFF

External RAM
U4/5

CONFIG 1 2 3 4
 OFF OFF OFF OFF

Internal Flash Memory

On-Chip

FFF

C00
HC12 Internal EEPROM On-Chip

Peripheral Area - see note 2 below
BFF

A00

Unused = A00-B7F
LCD / CS7 = BF0-BFF

CS6 = BE0-BEF

CS5 = BD0-BDF
CS4 = BC0-BCF
CS3 = BB0-BBF

CS2 = BA0-BAF
CS1 = B90-B9F
CS0 = B80-B8F

9FF

800

Internal Registers - see note 1 below
See 68HC912D60 Technical Reference Manual

7FF

000
Internal RAM On-Chip

1. The Internal Register base address is relocated from $000 to $800 on startup by the
debug utilities (Mon12 and NoICE). To preserve this memory map, you must also do this
in your software when booting from flash. To do this, load register $11 with $08 for
example: MOVB #08,$11 ; post-reset location of INITRG

2. The Peripheral Area (A00-BFF) is set to Narrow (8-bit) data width by the debug utilities. If
using this memory, you must also do this in your software when booting from flash as
follows:

MOVW #$0CF0,PEAR
MOVB #$73,MISC ; Flash on, p-sel stretch = 3

10

CONFIG SWITCH
The CME-12D60 board is shipped from the manufacturer with the following default CONFIG
SWITCH settings:

1 2 3 4 5 6 7 8
ON ON ON ON OFF ON OFF OFF

The 8 position CONFIG SWITCH provides an easy method of configuring the CME-12D60
board operation. Following are the configuration switch descriptions and HC12 I/O port
usage:

CONFIG
SWITCH

OPERATION when in ON position I/O PORT USED

1 MODE A selection (see Mode chart below) MODA / PE5
2 MODE B selection (see Mode chart below) MODB / PE6
3 EXT – External Memory enable (1) PORT A, B, Ext. Bus
4 MON – Monitor Memory enable (2) N/A
5 VPP - Flash VPP voltage enable N/A
6 RXD0 – COM1 Serial Port RXD0 input enable PS0 / RXD0
7 RXD1 – COM2 Serial Port RXD1 input enable PS3 / RXD1
8 CAN Port RX enable PCAN0

(1) Enables memory bus operation for access to board memory. Expanded bus must be
on for proper operation.

(2) Enables monitor EPROM’s in memory map at 0xC000 – FFFF hex if CONFIG
SWITCH position 3 is also on. When in off position memory space is SRAM for BDM
use.

MODE CHART

Single Chip Mode MOD A and B = OFF Boot from Internal Flash

Expanded Wide Mode MOD A and B = ON Boot from External Memory

NOTE: Expanded Narrow Mode is not available on this board.

11

JUMPERS

MON-SEL JUMPER
Selects which firmware monitor in External EPROM (U6/7) the board will execute upon reset
in expanded mode with monitor enabled by CONFIG SWITCH position 4.

ON Mon12 Debug Monitor
OFF Third party firmware support (NoICE, Metrowerks, etc.)

PG_PULL / PH_PULL JUMPERS
Pull up or Pull down I/O line bias resistor option jumpers. When port G or Port H are
configured as inputs these options select which way the internal pull resistor’s operate.

Port H should be in the pull down state if KEYPAD is used.

GND Pull Down active (default)
+5V Pull Up active

JP1 Oscillator Select JUMPER
Provides enabling and Disabling of the internal PLL and external clock oscillator X1.

Default configuration is XCLK position. The PLL is disabled in this position and the oscillator
is provided by X1 external clock.

PLL Enables PLL crystal oscillator (see below)
XCLK Disables PLL crystal oscillator (R1 should be installed) default

To enable PLL clock do the following:

1. Remove R1 on the bottom of the board to isolate the X1 external clock input to the
PLL oscillator.

2. Install user selected Y1, C1 and C2 to provide new oscillator clock.
3. Install RX1, CX1 and CX2 to provide correct XFC conditioning for the frequency of

operation desired. NOTE: see MC68HC912D60 user manual for more information.
4. Move JP1 to the PLL position.
5. Note that the provided firmware utilities (Mon12, NoICE, etc) in External EPROM

will not operate with PLL enabled.

12

PORTS AND CONNECTORS

LCD_PORT
The LCD_PORT interface is connected to the data bus and memory mapped to locations BF0
– BFF hex assigned to CS7. For the standard display, address BF0 is the Command register,
address BF1 is the Data register.

The interface supports all OPTREX DMC series displays in 8 bit bus mode with up to 80
characters and provides the most common pinout for a dual row rear mounted display
connector. Power, ground, and Vee are also available at this connector.

+5V 2 1 GND
A0 4 3 LCD-Vee

LCD1 6 5 /RW
D9 8 7 D8

D11 10 9 D10
D13 12 11 D12
D15 14 13 D14

Command Register: $BF0
Data Register: $BF1

LCD-Vee is supplied by U13 and is adjusted by the CONTRAST
Potentiometer (adjustable resistor).

See the file KLCD12D6.ASM for an example program using this
LCD connector.

J3

LCD3 2 1 LCD2

4 3 LCD4

Additional lines can be used as enables for larger panels and
are mapped as:

LCD2 = $BF4 & $BF5 LCD4 = $BFC & $BFD
LCD3 = $BF8 & $BF9

KEYPAD
1 PH0
2 PH1
3 PH2
4 PH3
5 PH4
6 PH5
7 PH6
8 PH7

The KEYPAD connector is a passive 8-pin connector that can be used to
connect a 4 x 4 matrix (16 key) keypad device. The connector is
mapped to HC12 I/O port H. This interface is implemented as a software
keyscan. Pins PH0-3 are used as column drivers which are active high
outputs. Pins PH4-7 are used for row input and will read high when their
row is high.

See the file KLCD12D6.ASM for an example program using this
connector.

13

MCU_PORT
The MCU_PORT provides access to the peripheral features and I/O lines of the HC12 as
follows:

D0 1 2 D1
D2 3 4 D3
D4 5 6 D5
D6 7 8 D7

/XIRQ, PE0 9 10 /DBE, PE7
VFP 11 12 /LSTRB
PG6 13 14 PG7
PG4 15 16 PG5
PG2 17 18 PG3
PG0 19 20 PG1
PH6 21 22 PH7
PH4 23 24 PH5
PH2 25 26 PH3
PH0 27 28 PH1

PS0 / RXD0 29 30 PS1 / TXD0
PS2 / RXD1 31 32 PS3 / TXD1

PS4 33 34 PS5
PS6 35 36 PS7

PCAN6 37 38 PCAN7
PCAN4 39 40 PCAN5
PCAN2 41 42 PCAN3
PCAN0 43 44 PCAN1

PT0 45 46 PT1
PT2 47 48 PT3
PT4 49 50 PT5
PT6 51 52 PT7
PP6 53 54 PP7
PP4 55 56 PP5
PP2 57 58 PP3
PP0 59 60 PP1

D0 – D7 Low Byte of the Data Bus in Wide Expanded
Mode. Port B in Single Chip Mode.

/XIRQ XIRQ interrupt input .

VFP Programming voltage, 12v, when CONFIG switch
position 5 is on.

/LSTRB LSTRB (PE3) output indicates 8 bit bus access.
Should be enabled in software for bus use.

PP0 – PP7 Port P I/O or PWM port.

PT0 – PT7 Port T I/O or Timer port.

PS0 – PS7 Port S I/O or Serial Port lines.

PG0 – PG7 Port G I/O or Key wakeup pins.

PH0 – PH7 Port H I/O or Key wakeup pins.
Also used by the KEYPAD Port.

RXD / TXD Serial Port (SCI) receive and transmit pins.

PCAN0 – PCAN7 CAN I/O lines.

CAN_PORT
1 GND
2 CAN-H
3 CAN-L
4 +5V

The CAN_PORT connector provides an interface to the MSCAN12 on
the microcontroller. This port provides a CAN transceiver device. See
the schematic drawing and the MC68HC912D60 data sheet for
information on using this peripheral.

RxCAN1-3 can be added to supply CAN port bus terminations as required (see schematic).

14

COM1
1

TXD0 2 6
RXD0 3 7

4 8
GND 5 9

The COM-1 port has a Female DB9 connector that interfaces to
the HC12 internal SCI0 serial port. It uses a simple 2 wire
asynchronous serial interface and is translated to RS232
signaling levels.

Pins 1, 4, and 6 are connected for default handshake standards.
Pins 7 and 8 are connected for default handshake standards.

Handshake pins can be easily isolated and connected to I/O ports if necessary.

COM2
1 2

TXD1 3 4
RXD1 5 6

7 8
GND 9 10

The COM-2 connector interfaces to the HC12 internal SCI1
serial port. It uses a simple 2 wire asynchronous serial interface
and is translated to RS232 signaling levels. This connector
supports a standard IDC ribbon cable to DB9 socket.

Pins 1, 2, and 7 are connected for default handshake standards.
Pins 4 and 6 are connected for default handshake standards.

ANALOG PORT
The ANALOG port provides access to the Port AD0 and Port AD1 Analog-to-Digital input lines
of the HC912D60 as follows:

PAD0 1 2 PAD10
PAD1 3 4 PAD11
PAD2 5 6 PAD12
PAD3 7 8 PAD13
PAD4 9 10 PAD14
PAD5 11 12 PAD15
PAD6 13 14 PAD16
PAD7 15 16 PAD17
VRL0 17 18 VRH0
VRL1 19 20 VRH1
VSSA 21 22 VDDA
GND 23 24 +5V
GND 25 26 +5V

PAD0 – PAD7 HC12 Port AD0 is an input port or A/D
Converter inputs.

PAD10 – PAD17 HC12 Port AD1 is an input port or A/D
Converter inputs.

VRH / VRL HC12 A/D Converter Reference Pins. See
A/D Reference Section. To provide an external reference
voltage, R3,4,10 and 32 may need to be removed. See
schematic.

15

BUS_PORT
The BUS_PORT supports off-board memory devices as follows:

GND 1 2 D11
D10 3 4 D12

D9 5 6 D13
D8 7 8 D14
A0 9 10 D15
A1 11 12 A2

A10 13 14 A3
/ OE 15 16 A4
A11 17 18 A5

A9 19 20 A6
A8 21 22 A7

A12 23 24 A13
/ WE 25 26 CS0
CS1 27 28 CS2
CS3 29 30 CS4
CS5 31 32 IRQ
+5V 33 34 /P-SEL
/RW 35 36 CS6

E 37 38 CS7
GND 39 40 / RESET

D8 - D15 High Byte Data Bus in Wide Expanded Mode and
Peripheral 8 bit data bus. Port A in Single Chip Mode.

A0 – A15 Memory Addresses 0 to 15.

/OE Memory Output Enable signal, Active Low. Valid with
ECLK and R/W high.

CS0 – CS7 Peripheral chip selects, 16 bytes each located at
$200 - $27F hex, 8 bit access (narrow bus).

/WE Memory Write Enable signal, Active Low. Valid with
ECLK high and R/W low.

IRQ HC12 IRQ (PE1) Interrupt Input.

/RW HC12 Read/Write (PE2) control signal.

E HC12 ECLK (PE4) bus clock signal. Stretch should be
enabled in software.

/P-SEL Selects Peripheral area, register following space, 8
bits wide.

J2 /RESET HC12 active low RESET signal.

A14 1 2 A15
MODA/PE5 3 4 MODB/PE6

GND 5 6 +5V

BDM-IN
The BDM-IN port is a 6 pin header compatible in pinout with the Motorola Background Debug
Mode (BDM) Pod. This allows the connection of a background debugger for software
development, programming and debugging in real-time, since the BDM control logic does not
reside in the CPU.

BGND 1 2 GND
3 4 /RESET
5 6 +5V

See the HC12 Technical Reference Manual for complete
documentation of the BDM.

A Background Debug Module is available from the manufacturer.

The BDM-OUT port is provided for future use.

16

TROUBLESHOOTINGTROUBLESHOOTING
The CME-12D60 board is fully tested and operational before shipping. If it fails to function
properly, inspect the board for obvious physical damage first. Ensure that all IC devices in
sockets are properly seated. Verify the communications setup as described under GETTING
STARTED and see the Tips and Suggestions sections following for more information.

The most common problems are improperly configured communications parameters, and
attempting to use the wrong COM port.

1. Verify that your communications port is working by substituting a known good serial
device or by doing a loop back diagnostic.

2. Verify the jumpers on the board and the CONFIG switch settings are correct.

3. Verify the power source. You should measure approximately 9 volts between the GND
and +9V test point pads on the board.

4. If no voltage is found, verify the wall plug connections to 115VAC outlet and the power
connector.

5. Disconnect all external connections to the board except for COM1 to the PC and the wall
plug.

6. Make sure that the RESET line is not being held low.
Check for this by measuring the RESET pin on P4 for +5V.

7. Verify the presence of a 16MHz square wave at the EXTAL pin or 8MHz E clock signal if
possible.

17

Tips and SuggestionsTips and Suggestions
Following are a number of tips, suggestions and answers to common questions that will solve
many problems users have with the CME-12D60 development system. You can download the
latest software from the Support section of our web page at:

www.axman.com

Utilities

• If you’re trying to program memory or start the utilities, make sure all jumpers and
CONFIG SWITCH settings are correct.

• Be certain that the data cable you’re using is bi-directional and is connected securely to
both the PC and the board. Also, make sure you are using the correct serial port.

• Make sure the correct power is supplied to the board. You should only use a 9 volt,
300 mA adapter or power supply. If you’re using a power strip, make sure it is turned
on.

• Make sure you load your code to an address space that actually exists. See the
Memory Map if you’re not sure. The CONFIG switch changes the memory map.

• If debugging under Mon12, make sure you're not over-writing RAM used by it.

• If you’re running in a multi-tasking environment (such as Windows™) close all
programs in the background to be certain no serial conflict occurs.

Code Execution

• Make sure the CONFIG SWITCH is set for the proper mode.

• CONFIG switch 3 must be ON to access the external bus (LCD display, etc) even if
executing code from Internal Flash memory.

• Under Mon12, breakpoints may not be acknowledged if you use the CALL command.
You should use one of the GO command instead.

• Check the HC12 reset vector located at FFFE - FFFF. These 2 bytes contain the
address where execution will begin when the unit is powered on.

• When running your code stand-alone, you must initialize ALL peripherals used by the
micro, including the Stack, Serial Port, Reset and Interrupt vectors etc.

• You must either reset the COP watchdog timer in the main loop of your code or disable
it when not running under Mon12 or BDM mode. The micro enables this by default and
if you don't handle it your code will reset every couple of ms.

18

TABLES
TABLE 1. LCD Command Codes
Command codes are used for LCD setup and control of character and cursor position. All
command codes are written to LCD panel address $B5F0. The BUSY flag (bit 7) should be
tested before any command updates to verify that any previous command is completed. A
read of the command address $B5F0 will return the BUSY flag status and the current display
character location address.

Command Code Delay
Clear Display, Cursor to Home $01 1.65ms
Cursor to Home $02 1.65ms
Entry Mode:

Cursor Decrement, Shift off $04 40us
Cursor Decrement, Shift on $05 40us
Cursor Increment, Shift off $06 40us
Cursor Increment, Shift on $07 40us

Display Control:
Display, Cursor, and Cursor Blink off $08 40us
Display on, Cursor and Cursor Blink off $0C 40us
Display and Cursor on, Cursor Blink off $0E 40us
Display, Cursor, and Cursor Blink on $0F 40us

Cursor / Display Shift: (nondestructive move)
Cursor shift left $10 40us
Cursor shift right $14 40us
Display shift left $18 40us
Display shift right $1C 40us

Display Function (default 2x40 size) $3C 40us
Character Generator Ram Address set $40-$7F 40us
Display Ram Address and set cursor location $80- $FF 40us

TABLE 2. LCD Character Codes
$20 Space $2D - $3A : $47 G $54 T $61 a $6E n $7B {
$21 ! $2E . $3B ; $48 H $55 U $62 b $6F o $7C |
$22 “ $2F / $3C { $49 I $56 V $63 c $70 p $7D }
$23 # $30 0 $3D = $4A J $57 W $64 d $71 q $7E >
$24 $ $31 1 $3E } $4B K $58 X $65 e $72 r $7F <
$25 % $32 2 $3F ? $4C L $59 Y $66 f $73 s
$26 & $33 3 $40 Time $4D M $5A Z $67 g $74 t
$27 ‘ $34 4 $41 A $4E N $5B [$68 h $75 u
$28 ($35 5 $42 B $4F O $5C Yen $69 i $76 v
$29) $36 6 $43 C $50 P $5D] $6A j $77 w
$2A * $37 7 $44 D $51 Q $5E ^ $6B k $78 x
$2B + $38 8 $45 E $52 R $5F _ $6C l $79 y
$2C , $39 9 $46 F $53 S $60 ` $6D m $7A z

19

TABLE 3. Mon12 Monitor Commands
BF <StartAddress> <EndAddress>
[<data>]

Fill memory with data

BR [<Address>] Set/Display user breakpoints
BULK Erase entire on-chip EEPROM contents
CALL [<Address>] Call user subroutine at <Address>
G [<Address>] Begin/continue execution of user code
HELP Display the Mon12 command summary
LOAD [<AddressOffset>] Load S-Records into memory
MD <StartAddress> [<EndAddress>] Memory Display Bytes
MM <StartAddress> Modify Memory Bytes
 <CR> Examine/Modify next location
 </> or <=> Examine/Modify same location
 <^> or <-> Examine/Modify previous location
 <.> Exit Modify Memory command
MOVE <StartAddress> <EndAddress>
<DestAddress>

Move a block of memory

RD Display all CPU registers
RM Modify CPU Register Contents
STOPAT <Address> Trace until address
T [<count>] Trace <count> instructions

1. Mon12 uses internal RAM space from $600 - $700. DO NOT use this space in your
program if debugging under Mon12.

2. Register space is located starting at $800.

3. Mon12 will not trace into interrupts. To trace an interrupt service set a breakpoint in the
service routine and then trace.

Free Manuals Download Website
h�p://myh66.com

h�p://usermanuals.us
h�p://www.somanuals.com

h�p://www.4manuals.cc
h�p://www.manual-lib.com
h�p://www.404manual.com
h�p://www.luxmanual.com

h�p://aubethermostatmanual.com
Golf course search by state

h�p://golfingnear.com
Email search by domain

h�p://emailbydomain.com
Auto manuals search

h�p://auto.somanuals.com
TV manuals search

h�p://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

