

MVME177

Single Board Computer

Installation and Use Manual

VME177A/IH2

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document,
or from the use of the information obtained therein. Motorola reserves the right to
revise this document and to make changes from time to time in the content hereof
without obligation of Motorola to notify any person of such revision or changes.

No part of this material may be reproduced or copied in any tangible medium, or
stored in a retrieval system, or transmitted in any form, or by any means, radio,
electronic, mechanical, photocopying, recording or facsimile, or otherwise,
without the prior written permission of Motorola, Inc.

It is possible that this publication may contain reference to, or information about
Motorola products (machines and programs), programming, or services that are
not announced in your country. Such references or information must not be
construed to mean that Motorola intends to announce such Motorola products,
programming, or services in your country.

Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in
writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Motorola, Inc.
Computer Group

2900 South Diablo Way
Tempe, Arizona 85282

Preface

The MVME177 UserÕs Manual provides general information, hardware preparation
and installation instructions, operating instructions, and functional description for
the MVME177 Single Board Computer (referred to as MVME177 throughout this
manual). The information contained in this manual applies to the following
MVME177 models:

This manual is intended for anyone who wants to design OEM systems, supply
additional capability to an existing compatible system, or work in a lab
environment for experimental purposes.

A basic knowledge of computers and digital logic is assumed.

To use this manual, you should be familiar with the publications listed in the
Related Documentation section in Chapter 1 of this manual.

MVME177-001 MVME177-011

MVME177-002 MVME177-012

MVME177-003 MVME177-013

MVME177-004 MVME177-014

MVME177-005 MVME177-015

MVME177-006 MVME177-016

The computer programs stored in the Read Only Memory of this device contain
material copyrighted by Motorola Inc., Þrst published 1990, and may be used only
under a license such as the License for Computer Programs (Article 14) contained
in Motorola's Terms and Conditions of Sale, Rev. 1/79.

All Motorola PWBs (printed wiring boards) are manufactured by UL-recognized
manufacturers, with a ßammability rating of 94V-0.

!
WARNING

This equipment generates, uses, and can radiate
electromagnetic energy. It may cause or be susceptible to
electromagnetic interference (EMI) if not installed and used in
a cabinet with adequate EMI protection.

Motorola¨ and the Motorola symbol are registered trademarks of Motorola, Inc.

All other products mentioned in this document are trademarks or registered
trademarks of their respective holders.

© Copyright Motorola, Inc. 1995, 1996

All Rights Reserved

Printed in the United States of America

June 1996

European Notice: Board products with the CE marking comply with the
EMC Directive (89/336/EEC). Compliance with this directive implies
conformity to the following European Norms:

EN55022 (CISPR 22) Radio Frequency Interference

EN50082-1 (IEC801-2, IEC801-3, IEEC801-4) Electromagnetic
Immunity

The product also fulÞlls EN60950 (product safety) which is essentially the
requirement for the Low Voltage Directive (73/23/EEC).

This board product was tested in a representative system to show
compliance with the above mentioned requirements. A proper installation
in a CE-marked system will maintain the required EMC/safety
performance.

Safety Summary
Safety Depends On You

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with speciÞc warnings elsewhere in
this manual violates safety standards of design, manufacture, and intended use of the equipment.
Motorola, Inc. assumes no liability for the customer's failure to comply with these requirements.
The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You,
as the user of the product, should follow these warnings and all other safety precautions necessary for the
safe operation of the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground.
The equipment is supplied with a three-conductor ac power cable. The power cable must be plugged into
an approved three-contact electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in the presence of ßammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a deÞnite safety hazard.

Keep Away From Live Circuits.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualiÞed maintenance personnel may remove equipment covers for internal subassembly or
component replacement or any internal adjustment. Do not replace components with power cable
connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To
avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone.
Do not attempt internal service or adjustment unless another person capable of rendering Þrst aid and
resuscitation is present.

Use Caution When Exposing or Handling the CRT.
Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion).
To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the CRT should
be done only by qualiÞed maintenance personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modiÞcation of the equipment. Contact your local Motorola representative for service and
repair to ensure that safety features are maintained.

Dangerous Procedure Warnings.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual.
Instructions contained in the warnings must be followed. You should also employ all other safety
precautions which you deem necessary for the operation of the equipment in your operating environment.

!
WARNING

Dangerous voltages, capable of causing death, are present in
this equipment. Use extreme caution when handling, testing,
and adjusting.

Contents

Introduction 1-1
Model Designations 1-1
Features 1-2
SpeciÞcations 1-3

Cooling Requirements 1-3
FCC Compliance 1-5

General Description 1-5
Equipment Required 1-8
Related Documentation 1-9
Support Information 1-11
Manual Terminology 1-12
Introduction 2-1
Unpacking Instructions 2-1
Overview of Start-up Procedure 2-2
Hardware Preparation 2-4

Setup Instructions 2-10
MVME177 Module Installation Instructions 2-12

System Considerations 2-15
Introduction 3-1
Controls and Indicators 3-1

ABORT Switch S1 3-1
RESET Switch S2 3-2
Front Panel Indicators (DS1 - DS4) 3-3

Memory Maps 3-4
Local Bus Memory Map 3-4
Normal Address Range 3-4

Software Initialization 3-8
Multi-MPU Programming Considerations 3-8
Local Reset Operation 3-8

Introduction 4-1
MVME177 Functional Description 4-1

Data Bus Structure 4-1
MC68060 MPU 4-4
Flash Memory and EPROM 4-4

Flash Memory 4-4
EPROM 4-6

SRAM 4-7
Onboard DRAM 4-9
Battery Backed Up RAM and Clock 4-10
VMEbus Interface 4-11
I/O Interfaces 4-11

Serial Port Interface 4-12
Parallel Port Interface 4-14
Ethernet Interface 4-15
SCSI Interface 4-16
SCSI Termination 4-16

Local Resources 4-16
Programmable Tick Timers 4-17
Watchdog Timer 4-17
Software-Programmable Hardware Interrupts 4-17
Local Bus Time-out 4-18

Module IdentiÞcation 4-18
Timing Performance 4-18

Local Bus to DRAM Cycle Times 4-18
ROM Cycle Times 4-19
SCSI Transfers 4-19
LAN DMA Transfers 4-20

Remote Status and Control 4-20
Introduction A-1
Levels of Implementation A-3

Signal Adaptations A-4
Sample ConÞgurations A-4
Proper Grounding A-7

Overview of M68000 Firmware B-1
Description of 177Bug B-1

177Bug Implementation B-3
Autoboot B-3
ROMboot B-5
Network Boot B-6
Restarting the System B-7

Reset B-8
Abort B-8
Break B-9
SYSFAIL* Assertion/Negation B-10
MPU Clock Speed Calculation B-10

Memory Requirements B-11
Terminal Input/Output Control B-12

Disk I/O Support B-13
Blocks Versus Sectors B-13
Device Probe Function B-15
Disk I/O via 177Bug Commands B-16
IOI (Input/Output Inquiry) B-16
IOP (Physical I/O to Disk) B-16
IOT (I/O Teach) B-17
IOC (I/O Control) B-17
BO (Bootstrap Operating System) B-17
BH (Bootstrap and Halt) B-17
Disk I/O via 177Bug System Calls B-17
Default 177Bug Controller and Device Parameters B-19
Disk I/O Error Codes B-19
Network I/O Support B-19
Intel 82596 LAN Coprocessor Ethernet Driver B-20
UDP/IP Protocol Modules B-20
RARP/ARP Protocol Modules B-21
BOOTP Protocol Module B-21
TFTP Protocol Module B-21
Network Boot Control Module B-22
Network I/O Error Codes B-22

Multiprocessor Support B-22
Multiprocessor Control Register (MPCR) Method B-22
GCSR Method B-24

Diagnostic Facilities B-25
Using the 177Bug Debugger B-27

Entering Debugger Command Lines B-27
Syntactic Variables B-28

Expression as a Parameter B-29
Address as a Parameter B-31
Address Formats B-31
Offset Registers B-32

Port Numbers B-34
Entering and Debugging Programs B-35
Calling System Utilities from User Programs B-36
Preserving the Debugger Operating Environment B-36

177Bug Vector Table and Workspace B-36
Hardware Functions B-37
Exception Vectors Used by 177Bug B-37

Using 177Bug Target Vector Table B-39
Creating a New Vector Table B-40

177Bug Generalized Exception Handler B-42
Floating Point Support B-44

Single Precision Real B-45
Double Precision Real B-46
Extended Precision Real B-46
Packed Decimal Real B-46
ScientiÞc Notation B-47

Additions to FLASH Commands B-47
Flash Test ConÞguration Acceptable Entries B-48
Erase Test B-48
Flash Fill Test B-48
Flash Patterns Test B-49
Default Flash Test ConÞguration B-50
SFLASH Command B-51

The 177Bug Debugger Command Set B-53
Disk/Tape Controller Modules Supported C-1
Disk/Tape Controller Default ConÞgurations C-2
IOT Command Parameters for Supported Floppy Types C-5
ConÞgure Board Information Block D-1
Set Environment to Bug/Operating System D-3
Network Controller Modules Supported E-1

List of Figures

MVME177 Switches, Headers, Connectors, Polyswitches,
and LEDs 2-5
MVME177 Block Diagram 4-3

xii

List of Tables

MVME177 Model Designations 1-1
MVME177 Features 1-2
MVME177 SpeciÞcations 1-4
Start-up Overview 2-2
ConÞguring MVME177 Headers 2-6
Local Bus Memory Map 3-5
Local I/O Devices Memory Map 3-6
EPROM and Flash Control and ConÞguration 4-5
Diagnostic Test Groups B-26

1

1General Information
Introduction
This manual provides:

❏ General information

❏ Preparation for use and installation instructions

❏ Operating instructions

❏ Functional description

for the MVME177 series of Single Board Computers (referred to as
the MVME177 throughout this manual).

Model Designations
The MVME177 is available in the models listed in Table 1 - 1.

Table 1-1. MVME177 Model Designations

Model Number Speed Major Differences

MVME177-001 50 MHz MC68060, 4MB Onboard ECC DRAM
MVME177-002 50 MHz MC68060, 8MB Onboard ECC DRAM
MVME177-003 50 MHz MC68060, 16MB Onboard ECC DRAM
MVME177-004 50 MHz MC68060, 32MB Onboard ECCDRAM
MVME177-005 50 MHz MC68060, 64MB Onboard ECC DRAM
MVME177-006 50 MHz MC68060, 128MB Onboard ECC DRAM
MVME177-011 60 MHz MC68060, 4MB Onboard ECC DRAM
MVME177-012 60 MHz MC68060, 8MB Onboard ECC DRAM
MVME177-013 60 MHz MC68060, 16MB Onboard ECC DRAM
MVME177-014 60 MHz MC68060, 32MB Onboard ECCDRAM
MVME177-015 60 MHz MC68060, 64MB Onboard ECC DRAM
MVME177-016 60 MHz MC68060, 128MB Onboard ECC DRAM
1-1

General Information
1

Features
Features of the MVME177 are listed in the following table:

Table 1-2. MVME177 Features

Feature Description

Microprocessor MC68060 at 50 MHz (MVME177-00x) or 60 MHz (MVME177-01x)
DRAM 4/8/16/32/64/128/256MB with ECC protection
Flash Memory 4MB in four Intel 28F008SA chips with software control write

protection
EPROM 1MB in two 44-pin PLCC sockets (organized as one bank of 32 bits)
Jumper and software
control

Mixed EPROM/Flash, or
All Flash conÞguration

SRAM 128KB (with optional battery backup)
Status LEDs Eight LEDs: for FAIL, STAT, RUN, SCON, LAN, +12V (LAN

power), SCSI, and VME.
RAM 8K by 8 RAM and time of day clock with battery backup
Switches RESET

ABORT
Tick timers Four 32-bit tick timers for periodic interrupts
Watchdog timer One watchdog timer
Software interrupts Eight software interrupts
I/O SCSI Bus interface with DMA

Four serial ports with EIA-232-D buffers with DMA
8-bit bidirectional parallel port
Ethernet transceiver interface with DMA

VMEbus interface VMEbus system controller functions
VMEbus interface to local bus (A24/A32, D8/ D16/D32
(D8/D16/D32/D64BLT) (BLT = Block Transfer)
Local bus to VMEbus interface (A16/A24/A32, D8/D16/D32)
VMEbus interrupter
Global CSR for interprocessor communications
DMA for fast local memory - VMEbus transfers (A16/A24/A32,
D16/D32 (D16/D32/D64BLT)

Remote connector For RESET and ABORT switches and LEDs
1-2

Specifications
1

Specifications
General specifications for the MVME177 are listed in Table 1-3.

The following sections detail cooling requirements and FCC
compliance.

Cooling Requirements

The Motorola MVME177 VMEmodule is specified, designed, and
tested to operate reliably with an incoming air temperature range
from 0û to 55û C (32û to 131û F) with forced air cooling at a velocity
typically achievable by using a 100 CFM axial fan. Temperature
qualification is performed in a standard Motorola VMEsystem
chassis. Twenty-five watt load boards are inserted in two card slots,
one on each side, adjacent to the board under test, to simulate a high
power density system configuration. An assembly of three axial
fans, rated at 100 CFM per fan, is placed directly under the VME
card cage. The incoming air temperature is measured between the
fan assembly and the card cage, where the incoming airstream first
encounters the module under test. Test software is executed as the
module is subjected to ambient temperature variations. Case
temperatures of critical, high power density integrated circuits are
monitored to ensure component vendors specifications are not
exceeded.

While the exact amount of airflow required for cooling depends on:

❏ Ambient air temperature

❏ Type of board

❏ Number of boards

❏ Location of boards

❏ Other heat sources

adequate cooling can usually be achieved with 10 CFM and 490
LFM flowing over the module. Less airflow is required to cool the
module in environments having lower maximum ambients. Under
1-3

General Information
1

more favorable thermal conditions, it may be possible to operate
the module reliably at higher than 55û C with increased airflow. It
is important to note that there are several factors, in addition to the
rated CFM of the air mover, which determine the actual volume
and speed of air flowing over a module.

Forced air cooling is required for the Atlas motherboard.
Additional cooling is required with the installation of the MPC604
RISC processor. A 3-pin header (J17) is provided on the
motherboard for powering a dedicated fan. Refer to the Cooling
Requirements section in the General Information chapter for
temperature qualification information for the system board
platform.

Table 1-3. MVME177 Specifications

Characteristics SpeciÞcations

Power requirements
(with both EPROM
sockets populated and
excluding external
LAN transceiver)

+5 Vdc (± 5%), 4.5 A (typical), 6.0 A (max.)
 (at 50 MHz, with 128MB ECC DRAM)
+12 Vdc (± 5%), 100 mA (max.)

(1.0 A (max.) with offboard LAN
transceiver)

-12 Vdc (± 5%), 100 mA (max.)
Operating temperature (refer to

Cooling Requirements section)
0û to 55û C at point of entry of forced air
(approximately 490 LFM)

Storage temperature -40û to +85û C
Relative humidity 5% to 90% (non-condensing)
Physical dimensions

PC board with mezzanine
module only
Height
Depth
Thickness

PC boards with connectors and
 front panel

Height
Depth
Thickness

Double-high VMEboard

9.187 inches (233.35 mm)
6.299 inches (160.00 mm)
0.662 inches (16.77 mm)

10.309 inches (261.85 mm)
7.4 inches (188 mm)
0.80 inches (20.32 mm)
1-4

General Description
1

FCC Compliance

The MVME177 was tested in an FCC-compliant chassis, and meets
the requirements for Class A equipment. FCC compliance was
achieved under the following conditions:

1. Shielded cables on all external I/O ports.

2. Cable shields connected to earth ground via metal shell
connectors bonded to a conductive module front panel.

3. Conductive chassis rails connected to earth ground. This
provides the path for connecting shields to earth ground.

4. Front panel screws properly tightened.

For minimum RF emissions, it is essential that the conditions above
be implemented; failure to do so could compromise the FCC
compliance of the equipment containing the module.

General Description
The MVME177 is a double-high VMEmodule based on the
MC68060 microprocessor. The MVME177 has:

❏ 4/8/16/32/64/128/256 MB of ECC-protected DRAM

❏ 8KB of static RAM and time of day clock (with battery
backup)

❏ Ethernet transceiver interface

❏ Four serial ports with EIA-232-D interface

❏ Four tick timers

❏ Watchdog timer

❏ 4 MB of Flash memory

❏ Two EPROM sockets

❏ SCSI bus interface with DMA
1-5

General Information
1

❏ One parallel port

❏ A 16/A24/A32/D8/D16/D32/D64 VMEbus master/slave
interface

❏ 128KB of static RAM (with optional battery backup), and
VMEbus system controller.

The I/O on the MVME177 is connected to the VMEbus P2
connector. The main board is connected through a P2 transition
board and cables to the transition boards. The MVME177 supports
the following transition boards:

❏ MVME712-12

❏ MVME712-13

❏ MVME712M

❏ MVME712A

❏ MVME712AM

❏ MVME712B

(referred to in this manual as MVME712x, unless separately
specified).

The MVME712x transition boards provide configuration headers
and industry standard connectors for the I/O devices.

The VMEbus interface is provided by an ASIC called the
VMEchip2. The VMEchip2 includes:

❏ Two tick timers

❏ A watchdog timer

❏ Programmable map decoders for the master and slave
interfaces

❏ VMEbus to/from local bus DMA controller

❏ VMEbus to/from local bus non-DMA programmed access
interface
1-6

General Description
1

❏ VMEbus interrupter

❏ VMEbus system controller

❏ VMEbus interrupt handler

❏ VMEbus requester

Processor-to-VMEbus transfers can be:

❏ D8

❏ D16

❏ D32

VMEchip2 DMA transfers to the VMEbus, however, can be:

❏ D16

❏ D32

❏ D16/BLT

❏ D32/BLT

❏ D64/MBLT

The PCCchip2 ASIC provides:

❏ Two tick timers

❏ Interface to the LAN chip

❏ SCSI chip

❏ Serial port chip

❏ Parallel (printer) port

❏ BBRAM

The MCECC memory controller ASIC provides the programmable
interface for the ECC-protected DRAM mezzanine board.
1-7

General Information
1

Equipment Required
The following equipment is required to make a complete system
using the MVME177:

❏ Terminal

❏ Disk drives and controllers

❏ One of the following Transition modules:

Ð MVME712-12

Ð MVME712-13

Ð MVME712M

Ð MVME712A

Ð MVME712AM

Ð MVME712B

❏ Connecting cables

❏ P2 adapter

❏ Operating system

The MVME177Bug debug monitor firmware (177Bug) is provided
in the two EPROMs in sockets on the MVME177 main module. It
provides:

❏ Over 50 debug, up/downline load, and disk bootstrap load
commands

❏ Full set of onboard diagnostics

❏ One-line assembler/disassembler

177Bug includes a user interface which accepts commands from the
system console terminal. 177Bug can also operate in a System
Mode, which includes choices from a service menu. Refer to the
177Bug Diagnostics User's Manual and the Debugging Package for
Motorola 68K CISC CPUs User's Manual for details.
1-8

Related Documentation
1

The MVME712x series of transition modules provide the interface
between the MVME177 module and peripheral devices. They
connect the MVME177 to:

❏ EIA-232-D serial devices

❏ Centronics-compatible parallel devices

❏ SCSI devices

❏ Ethernet devices

The MVME712x series work with cables and a P2 adapter.

Software available for the MVME177 includes:

❏ SYSTEM V/68

❏ Real-time operating systems

❏ Programming languages

❏ Other tools and applications

Contact your local Motorola sales office for more details.

Related Documentation
The following publications are applicable to the MVME177 and
may provide additional helpful information. If not shipped with
this product, they may be purchased by contacting your local
Motorola sales office. Non-Motorola documents may be purchased
from the sources listed.

Note Although not shown in the following list, each
Motorola Computer Group manual publication
number is suffixed with characters which represent the
type and revision level of the document, such as "/xx2"
(the second revision of a manual); a supplement bears
the same number as a manual but has a suffix such as
"/xx2A1" (the first supplement to the second revision
of the manual).
1-9

General Information
1

The following publications are available from the sources
indicated:

Versatile Backplane Bus: VMEbus, ANSI/IEEE Std 1014-1987, The
Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY 10017 (VMEbus Specification). This is also
available as Microprocessor system bus for 1 to 4 byte data, IEC 821
BUS, Bureau Central de la Commission Electrotechnique
Internationale; 3, rue de Varemb�, Geneva, Switzerland.

ANSI Small Computer System Interface-2 (SCSI-2), Draft Document
X3.131-198X, Revision 10c; Global Engineering Documents, P.O.
Box 19539, Irvine, CA 92714.

CL-CD2400/2401 Four-Channel Multi-Protocol Communications
Controller Data Sheet, order number 542400-003; Cirrus Logic, Inc.,
3100 West Warren Ave., Fremont, CA 94538.

Document Title

Motorola
Publication

Number

177Bug Diagnostics UserÕs Manual V177DIAA/UM

Debugging Package for Motorola 68K CISC CPUs User's Manual 68KBUG1/D and
68KBUG2/D

Single Board Computers SCSI Software User's Manual SBCSCSI/D

Single Board Computers Programmer's Reference Guide VMESBCA/PG1
and
VMESBCA/PG2

MVME712M Transition Module and P2 Adapter Board User's
Manual

MVME712M/D

MVME712-12, MVME712-13, MVME712A, MVME712AM, and
MVME712B Transition Module and LCP2 Adapter Board
User's Manual

MVME712A/D

M68060 Microprocessor User's Manual M68060UM
1-10

Support Information
1

82596CA Local Area Network Coprocessor Data Sheet, order number
290218; and 82596 User's Manual, order number 296853; Intel
Corporation, Literature Sales, P.O. Box 58130, Santa Clara, CA
95052-8130.

NCR 53C710 SCSI I/O Processor Data Manual, order number
NCR53C710DM; and NCR 53C710 SCSI I/O Processor ProgrammerÕs
Guide, order number NCR53C710PG; NCR Corporation,
Microelectronics Products Division, Colorado Springs, CO.

MK48T08 Timekeeper TM and 8Kx8 Zeropower TM RAM data sheet in
Static RAMs Databook, SGS-THOMPSON Microelectronics Group;
North & South American Marketing Headquarters, 1000 East Bell
Road, Phoenix, AZ 85022-2699.

DS1643 Nonvolatile Timekeeping RAM, Dallas Semiconductor Data
Manual, 4401 South Beltwood Parkway, Dallas, Texas 75244-3292.

Support Information
You can obtain connector interconnect signal information, parts
lists, and schematics for the MVME177 free of charge by contacting
your local Motorola sales office.
1-11

General Information
1

Manual Terminology
Throughout this manual, a convention is used which precedes data
and address parameters by a character identifying the numeric
format as follows:

Unless otherwise specified, all address references are in
hexadecimal.

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal is
low.

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur on
high to low transition.

In this manual, assertion and negation are used to specify forcing a
signal to a particular state. In particular, assertion and assert refer
to a signal that is active or true; negation and negate indicate a
signal that is inactive or false. These terms are used independently
of the voltage level (high or low) that they represent.

Data and address sizes are defined as follows:

❏ A byte is eight bits, numbered 0 through 7, with bit 0 being
the least significant

❏ A word is 16 bits, numbered 0 through 15, with bit 0 being the
least significant

❏ A longword is 32 bits, numbered 0 through 31, with bit 0
being the least significant

$ dollar speciÞes a hexadecimal character
% percent speciÞes a binary number
& ampersand speciÞes a decimal number
1-12

2
2Hardware Preparation and
Installation
Introduction
This chapter provides the following for the MVME177:

❏ Unpacking instructions

❏ Hardware preparation

❏ Installation instructions

The MVME712x transition module hardware preparation is
provided in separate manuals. Refer to Related Documentation in
Chapter 1.

Unpacking Instructions

Note If the shipping carton is damaged upon receipt, request
carrier's agent be present during unpacking and
inspection of equipment

Unpack equipment from shipping carton. Refer to packing list and
verify that all items are present. Save packing material for storing
and reshipping of equipment.

!
Caution

Avoid touching areas of integrated circuitry; static
discharge can damage circuits.
2-1

Hardware Preparation and Installation

2
 Overview of Start-up Procedure
The following list identifies the things you will need to do before
you can use this board, and where to find the information you need
to perform each step. Be sure to read this entire chapter and read all
Caution notes before beginning.

Table 2-1. Start-up Overview

What you will need to do ... Refer to ... On page ...

Set jumpers on your MVME177
module.

Hardware Preparation 2-4

Ensure that EPROM devices are
properly installed in the sockets.

Hardware Preparation 2-4

Install your MVME177 module
in the chassis.

Installation Instructions 2-12

Set jumpers on the transition
board; connect and install the
transition board, P2 adapter
module, and optional SCSI
device cables.

The userÕs manual you received
with your MVME712 module, listed
in Related Documentation

1-9

You may also wish to obtain the
Single Board Computer SCSI
Software UserÕs Manual, listed in
Related Documentation

1-9

Connect a console terminal to
the MVME712.

Installation Instructions 2-12
The userÕs manual you received
with your MVME712 module, listed
in Related Documentation

1-9

Connect any other optional
devices or equipment you will
be using.

The userÕs manual you received
with your MVME712 module, listed
in Related Documentation

1-9

EIA-232-D Interconnections A-1
Port Numbers B-34
Disk/Tape Controller Data C-1

Power up the system. Installation Instructions 2-12
Front Panel Indicators (DS1 - DS4) 3-3
Troubleshooting the MVME177;
Solving Start-up Problems

F-1
2-2

Overview of Start-up Procedure

2

Note that the debugger prompt
appears.

Installation Instructions 2-12
Debugger General Information. B-1
You may also wish to obtain the
Debugging Package for Motorola
68K CISC CPUs UserÕs Manual and
the 177Bug Diagnostics UserÕs
Manual, listed in Related
Documentation

1-9

Initialize the clock. Installation Instructions 2-12
Debugger General Information B-1

Examine and/or change
environmental parameters.

Installation Instructions 2-12
Environment Command D-3

Program the PPCchip2 and
VMEchip2.

Memory Maps 3-4
You may also wish to obtain the
Single Board Computers
ProgrammerÕs Reference Guide,
listed in Related Documentation

1-9

Table 2-1. Start-up Overview (Continued)

What you will need to do ... Refer to ... On page ...
2-3

Hardware Preparation and Installation

2
 Hardware Preparation
To select the desired configuration and ensure proper operation of
the MVME177, certain option modifications may be necessary
before installation. The MVME177 provides software control for
most of these options. Some options cannot be done in software, so
are done by jumpers on headers. Most other modifications are done
by setting bits in control registers after the MVME177 has been
installed in a system. (The MVME177 registers are described in
Chapter 4, and/or in the Single Board Computers Programmer's
Reference Guide as listed in Related Documentation in Chapter 1).

The location of switches, jumper headers, connectors, and LED
indicators on the MVME177 is illustrated in Figure 2-1.

The MVME177 has been factory tested and is shipped with the
factory jumper settings described in the following sections. The
MVME177 operates with its required and factory-installed Debug
Monitor, MVME177Bug (177Bug), with these factory jumper
settings.

Settings can be made for:

❏ General purpose readable jumpers on header (J1)

❏ SRAM backup power source select header (J2) (optional)

❏ System controller header (J6)

❏ Thermal sensing pins (J7)

❏ EPROM/Flash configuration jumper (J8)

❏ Serial port 4 clock configuration select headers (J9 and J10)

Refer to Table 2-2 to configure the jumper settings for each header.
2-4

Hardware Preparation

2

Figure 2-1. MVME177 Switches, Headers, Connectors, Polyswitches,
and LEDs

S
1

S
2

P
1

A
1

B
1

C
1

A
32

B
32

C
32

1817 9604

MVME
177

P
R

IM
A

R
Y

 S
ID

E

P
2

A
32

B
32

C
32

A
1

B
1

C
1

1920
J3

DS1

12

STATFAIL

RUN SCON

LAN

SCSI VME

ABORT

RESET
J2

1

+12V

X
U

2

X
U

1

3

J9

J10

C
O

M
P

O
N

E
N

T
S

 A
R

E
 R

E
M

O
V

E
D

 F
O

R
 C

LA
R

IT
Y

6059
21

P
4

6059
21

P
5

M
E

Z
Z

A
N

IN
E

 B
O

A
R

D

DS2

DS3

DS4

23
4

J6
31 J8

12

J7
12

J1
216

15 1

F
1

F
2

1

3
1

3940
1

6
7

2

29 28
1817

29 28
1817

3940
1

6
7

2

POLYSWITCH
2-5

Hardware Preparation and Installation

2
 Table 2-2. Configuring MVME177 Headers

Header
Number

Header
Description ConÞguration Jumpers Notes

J1
General
purpose soft-
ware readable
jumpers

GPI0 - GPI2:
User-deÞnable

GPI3: Reserved

GPI4 - GPI7:
User-deÞnable

1 -- 2 (GPI0)
3 -- 4 (GPI1)
5 -- 6 (GPI2)

9-- 10 (GPI4)
11 -- 12 (GPI5)
13 -- 14 (GPI6)
15 -- 16 (GPI7)

(Factory
conÞguration)

1, 2

J2
SRAM backup
power source
select header

VMEbus +5V
STBY

2 -- 1
(Factory

conÞguration)

3
Backup power
disabled

4 -- 2

Backup from
battery

3 -- 2

15

GPI0

GPI1

GPI2

GPI6

GPI3

GPI4

GPI5

1 2

16GPI7

7 8

1

2

3

4

1

2

3

4

1

2

3

4

2-6

Hardware Preparation

2

J6
System
controller
header

System
controller

1 -- 2
(Factory

conÞguration)

4
Auto system
controller 2 -- 3

Not system
controller None

J7
Thermal sensing
pins

Connected to
MC68060
internal
thermal resistor

None
(Factory

conÞguration)
5

J8
EPROM/Flash
conÞguration
jumper

1MB EPROM
and 2MB Flash
enabled

1 -- 2
(Factory

conÞguration)

6

4 MB Flash
enabled

None

Table 2-2. Configuring MVME177 Headers (Continued)

Header
Number

Header
Description ConÞguration Jumpers Notes

3

2

1

3

2

1

3

2

1

THERM2

THERM1

2

1

2

1

2-7

Hardware Preparation and Installation

2

J9

Serial Port 4
clock
conÞguration
select headers

Receive RTXC4 2 -- 3
(Factory

conÞguration) 7

Drive RTXC4 1 -- 2

J10

Receive TRXC4 2 -- 3
(Factory

conÞguration) 7

Drive TRXC4 1 -- 2

MVME177 Header Notes:

1. The general purpose readable jumpers on header J1 can be read as I/O control
register 3 (at $FFF40088, bits 0-7) in the VMEchip2 LCSR (see Chapter 4,
VMEchip2). The bit values are read as a 1 when the jumper is off, and as a 0
when the jumper is on.

2. On the MVME177, pins 7 and 8 (bit 3) are removed for board ID and the bit
value is reserved.

Table 2-2. Configuring MVME177 Headers (Continued)

Header
Number

Header
Description ConÞguration Jumpers Notes

1 2 3

1 2 3

1 2 3

1 2 3
2-8

Hardware Preparation

2

3. Header J2 is used to select the power source used to back up the SRAM on the

MVME177 when the backup battery is installed.

!
Caution

Do not remove all jumpers from J2. This may
disable the SRAM.

If you remove the battery, you must install jumpers on J2 between pins 2 and 4,
as shown for Backup Power Disabled.

4. The MVME177 can be the VMEbus system controller. The system controller
function is enabled, disabled, or conÞgured for automatic select by jumpers on
header J6. If set for AUTO SCON, the MVME177 determines if it is the system
controller by its position on the bus. If the MVME177 is in the Þrst slot from the
left, it conÞgures itself as the system controller. When the MVME177 is system
controller, the SCON LED is turned on. The VMEchip2 may be conÞgured as a
system controller when J6 is jumpered as shown.

!
Caution

Do not jumper J6 to Auto System Controller. At
this time, this feature is not functioning
properly. Set up jumpers on J6 only as
System Controller or Not System Controller.

Note AUTO SCON only works with a non-active
backplane.

5. The thermal sensing pins, THERM1 and THERM2, are connected to an internal
thermal resistor and provide information about the average temperature of the
processor. Refer to the M68000 Microprocessors UserÕs Manual for additional
information on the use of these pins.

6. The FLASH jumper, J8, is used to select the Flash memory and EPROM
conÞguration on the MVME177. If the board is conÞgured for 1MB EPROM and
2MB Flash memory, the VMEchip2 GPIO bits can be programmed to select the
Þrst or second 2MB of Flash. See Chapter 4 for more information on Flash
memory. You can also use the 177Bug SFLASH command to map the Flash
memory.

7. Serial port 4 can be conÞgured to use clock signals provided by the RTXC4 and
TRXC4 signal lines. Headers J9 and J10 on the MVME177 conÞgure serial port 4
to drive or receive RTXC4 and TRXC4, respectively. Both jumpers should be set
the same way. Factory conÞguration is with port 4 set to receive both signals.
The remaining conÞguration of the clock lines is accomplished using the Serial
Port 4 Clock ConÞguration Select header on the MVME712M transition board.
Refer to the MVME712M Transition Module and P2 Adapter Board UserÕs Manual
for conÞguration of that header.

MVME177 Header Notes: (Continued)
2-9

Hardware Preparation and Installation

2
 Setup Instructions

Even though the MVME177Bug EPROMs are installed on the
MVME177 module in the factory, follow this setup procedure for
177Bug to operate properly with the MVME177.

!
Caution

Inserting or removing modules while power is applied
could damage module components.

1. Turn all equipment power OFF.

2. Refer to Table 2-2 in the Hardware Preparation section in this
chapter and install/remove jumpers on headers as required
for your particular application.

a. Jumpers on header J1 affect 177Bug operation as listed
below. The default condition is with seven jumpers
installed between the following pairs of pins:

The MVME177 may be configured with these readable
jumpers. These jumpers can be read as a register (at
$FFF40088) in the VMEchip2 LCSR. The bit values are read
as a one when the jumper is off, and as a zero when the
jumper is on. This jumper block (header J1) contains eight
bits. Refer to the Single Board Computers Programmer's
Reference Guide.

The MVME177Bug reserves/defines the four lower order
bits (GPI3 to GPI0). The following table shows the bits
reserved/defined by the debugger:

15

GPI0

GPI1

GPI2

GPI6

GPI3

GPI4

GPI5

1 2

16GPI7

7 8
2-10

Hardware Preparation

2

b. Jumpers on headers J2, J6, J7, J8, J9, and J10 configure the
board as described in the instructions in Table 2-2.

3. Be sure that the two 256K x 16 177Bug EPROMs are installed
in proper sockets on the MVME177 module. Install the odd
label (such as B01) EPROM in socket XU1 (for Least
Significant Words), and install the even label (such as B02)
EPROM in XU2 (for Most Significant Words). Be sure that
physical chip orientation is correct, with flatted corner of each
EPROM aligned with corresponding portion of EPROM
socket on the MVME177 module.

4. This completes the MVME177 Module hardware preparation
procedures. Proceed to the next section to install the module
in the chassis. Refer to the setup procedure for your particular
chassis or system for details concerning the installation of the
MVME177.

Bit J1 Pins Description

Bit #0 (GPI0) 1-2 When this bit is a one (high), it instructs the debugger
to use local Static RAM for its work page (i.e.,
variables, stack, vector tables, etc.).

Bit #1 (GPI1) 3-4 When this bit is a one (high), it instructs the debugger
to use the default setup/operation parameters in
ROM versus the user setup/operation parameters in
NVRAM. This is the same as depressing the RESET
and ABORT switches at the same time. This feature
can be used in the event the user setup is corrupted or
does not meet a sanity check. Refer to the ENV
command (Appendix B) for the ROM defaults.

Bit #2 (GPI2) 5-6 Reserved for future use.
Bit #3 (GPI3) 7-8 Reserved for bug board ID use.
Bit #4 (GPI4) 9-10 Open to your application.
Bit #5 (GPI5) 11-12 Open to your application.
Bit #6 (GPI6) 13-14 Open to your application.
Bit #7 (GPI7) 15-16 Open to your application.
2-11

Hardware Preparation and Installation

2
 MVME177 Module Installation Instructions
When you have configured the MVME177Õs headers and installed
the selected EPROMs in the sockets as described previously, install
the MVME177 module in the system as follows:

1. Turn all equipment power OFF and disconnect the power
cable from the AC power source.

!
Caution

Inserting or removing modules while power is applied
could result in damage to module components.

!
Warning

Dangerous voltages, capable of causing death, are
present in this equipment. Use extreme caution when
handling, testing, and adjusting.

2. Remove chassis cover as instructed in the equipment user's
manual.

3. Remove the filler panel(s) from the appropriate card slot(s) at
the front and rear of the chassis (if the chassis has a rear card
cage). The MVME177 module requires power from both P1
and P2. It may be installed in any double-height unused card
slot, if it is not configured as system controller. If the
MVME177 is configured as system controller, it must be
installed in the leftmost card slot (slot 1) to correctly initiate
the bus-grant daisy-chain and to have proper operation of the
IACK-daisy-chain driver. Install the MVME177 in the front of
the chassis. You can install the MVME712x in the front or the
rear of the chassis. Other modules in the system may have to
be moved to allow space for the MVME712M which has a
double-wide front panel.

4. Carefully slide the MVME177 module into the card slot. Be
sure the module is seated properly into the P1 and P2
connectors on the backplane. Do not damage or bend
connector pins. Fasten the module in the chassis with screws
2-12

MVME177 Module Installation Instructions

2
provided, making good contact with the transverse mounting
rails to minimize RFI emissions.

5. Remove IACK and BG jumpers from the header on the
chassis backplane for the card slot in which the MVME177 is
installed.

6. Connect the P2 Adapter Board and specified cable(s) to the
MVME177 at P2 on the backplane at the MVME177 slot, to
mate with (optional) terminals or other peripherals at the
EIA-232-D serial ports, parallel port, SCSI ports, and LAN
Ethernet port. Refer to the manuals listed in Related
Documentation in Chapter 1 for information on installing the
P2 Adapter Board and the MVME712x transition module(s).
(Some connection diagrams are in the Single Board Computers
Programmer's Reference Guide). Some cable(s) are not provided
with the MVME712x module(s), and therefore are made or
provided by the user. (Motorola recommends using shielded
cables for all connections to peripherals to minimize
radiation). Connect the peripherals to the cable(s). Detailed
information on the EIA-232-D signals supported is found in
Appendix A.

7. Connect the terminal to be used as the 177Bug system console
to the default debug EIA-232-D port at serial port 1 on
backplane connector P2 through an MVME712x transition
module. Refer to the Single Board Computers Programmer's
Reference Guide for some possible connection diagrams. Set up
the terminal as follows:

❏ Eight bits per character

❏ One stop bit per character

❏ Parity disabled (no parity)

❏ Baud rate 9600 baud (default baud rate of MVME177
ports at power-up)

After power-up, the baud rate of the debug port can be
reconfigured by using the Port Format (PF) command of the
177Bug debugger.
2-13

Hardware Preparation and Installation

2
 Note In order for high baud-rate serial communication
between 177Bug and the terminal to work, the terminal
must do some form of handshaking. If the terminal
being used does not do hardware handshaking via the
CTS line, then it must do XON/XOFF handshaking. If
you get garbled messages and missing characters, then
you should check the terminal to make sure
XON/XOFF handshaking is enabled.

8. If you want to connect devices (such as a host computer
system and/or a serial printer) to the other EIA-232-D port
connectors (marked SERIAL PORTS 2, 3, and 4 on the
MVME712x transition module), connect the appropriate
cables and configure the port(s) as detailed in step 6 above.
After power-up, this(these) port(s) can be reconfigured by
programming the MVME177 CD2401 Serial Controller Chip
(SCC), or by using the 177Bug PF command.

Note that the MVME177 also contains a parallel port. To use
a parallel device, such as a printer, with the MVME177,
connect it to the "printer" port at P2 through an MVME712x
transition module. Refer to the MVME177 Single Board
Computers Programmer's Reference Guide for some possible
connection diagrams. However, you could also use a module
such as the MVME335 for a parallel port connection.

9. Install any other required VMEmodules in the system.

10. Replace the chassis cover.

11. Connect power cable to AC power source.

12. Turn equipment power ON. 177Bug executes some self-
checks and displays the debugger prompt "177-Bug>" (if
177Bug is in Board Mode). However, if the ENV command
has put 177Bug in System Mode, the system performs a
selftest and attempts an autoboot. Refer to the ENV and
MENU commands listed in the Debugger Command Table in
Appendix B.
2-14

MVME177 Module Installation Instructions

2
Note that when the MVME177 comes up in a cold reset,
177Bug runs in System Mode. Using the Environment (ENV)
or MENU commands can make 177Bug run in Board Mode.
Refer to the Debugger Commands Table in Appendix B.

If the confidence test fails, the test aborts when the first fault
is encountered. If possible, an appropriate message displays,
and control then returns to the menu.

Refer to Appendix B for general information and operation of
the Debugger.

13. At the 177-Bug> prompt, use the SET command to initialize
the onboard Real-Time Clock (RTC) and to set the time and
date.

14. Use the 177BugÕs ENV command to verify the NVRAM
(BBRAM) parameters, and optionally use ENV to make
changes to the environmental parameters. Refer to Appendix
D for the environment parameters.

System Considerations

The MVME177 draws power from both P1 and P2 of the VMEbus
backplane. P2 is also used for the upper 16 bits of data for 32-bit
transfers, and for the upper 8 address lines for extended addressing
mode. The MVME177 will not operate properly unless its main
board is connected to P1 and P2 of the VMEbus backplane.

Whether the MVME177 operates as a VMEbus master or as a
VMEbus slave, it is configured for 32 bits of address and for 32 bits
of data (A32/D32). However, it handles A16 or A24 devices in the
address ranges indicated in Chapter 3. D8 and/or D16 devices in the
system must be handled by the MC68060 software. Refer to the
memory maps in Chapter 3.

The MVME177 contains shared onboard DRAM whose base
address is software-selectable. Both the onboard processor and
offboard VMEbus devices see this local DRAM at base physical
address $00000000, as programmed by the MVME177Bug
2-15

Hardware Preparation and Installation

2
 firmware. This may be changed, by software, to any other base
address. Refer to the Single Board Computers Programmer's Reference
Guide for details.

If the MVME177 attempts to access offboard resources in a
nonexistent location, and is not system controller, and if the system
does not have a global bus time-out, the MVME177 waits forever for
the VMEbus cycle to complete. This causes the system to hang up.
There is only one situation in which the system might lack this
global bus time-out:

❏ The MVME177 is not the system controller, and

❏ There is no global bus time-out elsewhere in the system

Multiple MVME177 modules may be configured into a single VME
card cage. In general, hardware multiprocessor features are
supported.

Other MPUs on the VMEbus can:

❏ Interrupt

❏ Disable

❏ Communicate with, and

❏ Determine the operational status of

the processor(s). One register of the GCSR set includes four bits
which function as location monitors to allow one MVME177
processor to broadcast a signal to other MVME177 processors, if
any. All eight registers are accessible from any local processor as
well as from the VMEbus.

The MVME177 provides +12 Vdc power to the Ethernet LAN
transceiver interface through a 1 amp polyswitch F2 located on the
MVME177 module. The +12V LED lights when +12 Vdc is
available. The polyswitch is located near diode CR1. Polyswitches
act like circuit breakers that reset automatically when the excessive
load is removed. If the Ethernet transceiver fails to operate, check
2-16

MVME177 Module Installation Instructions

2
the polyswitch. When using the MVME712M module, the yellow
LED (DS1) on the MVME712M front panel lights when LAN power
is available, indicating that the polyswitch is good.

The MVME177 provides SCSI terminator power through a diode
and a 1 amp polyswitch F1 located on the P2 Adapter Board. If the
polyswitch is blown (i.e., open), the SCSI devices may not operate
or may function erratically. When the P2 Adapter Board is used
with an MVME712M and the SCSI bus is connected to the
MVME712M, the green LED (DS2) on the MVME712M front panel
lights when there is SCSI terminator power. If the LED flickers
during SCSI bus operation, the polyswitch should be checked.
2-17

Hardware Preparation and Installation

2

2-18

3
3Operating Instructions
Introduction
This chapter provides necessary information to use the MVME177
module in a system configuration. This includes:

❏ Controls and indicators

❏ Memory maps

❏ Software initialization of the module

Controls and Indicators
On the front panel of the MVME177 module are the following:

❏ ABORT and RESET switches

❏ FAIL, STAT, RUN, SCON, LAN,+12V (LAN power), SCSI,
and VME indicators

ABORT Switch S1

When enabled by software, the recessed front panel ABORT switch
generates an interrupt at a user-programmable level. It is normally
used to abort program execution and return to the 177Bug
debugger firmware located in the MVME177 EPROMs.

The ABORT switch interrupter in the VMEchip2 is an
edge-sensitive interrupter connected to the ABORT switch. This
interrupter is filtered to remove switch bounce.
3-1

Operating Instructions

3

RESET Switch S2

The recessed front panel RESET switch resets all onboard devices,
and drives SYSRESET* if the board is system controller. The RESET
switch may be disabled by software.

The VMEchip2 includes both a global and a local reset driver. When
the chip operates as the VMEbus system controller, the reset driver
provides a global system reset by asserting the VMEbus signal
SYSRESET*. A SYSRESET* may be generated by the following:

❏ RESET switch

❏ Power up reset

❏ Watchdog timeout

❏ Control bit in the LCSR

SYSRESET* remains asserted for at least 200 msec, as required by
the VMEbus specification.

Similarly, the VMEchip2 provides an input signal and a control bit
to initiate a local reset operation. By setting a control bit, software
can maintain a board in a reset state, disabling a faulty board from
participating in normal system operation. The local reset driver is
enabled even when the VMEchip2 is not the system controller. A
local reset may be generated by:

❏ RESET switch

❏ Power up reset

❏ Watchdog timeout

❏ VMEbus SYSRESET*

❏ Control bit in the GCSR
3-2

Controls and Indicators

3

Front Panel Indicators (DS1 - DS4)

There are eight LEDs on the MVME177 front panel: FAIL, STAT,
RUN, SCON, LAN, +12V (LAN power), SCSI, and VME. The
purpose of each LED is as follows:

❏ The red FAIL LED (part of DS1) lights when the BRDFAIL
signal line is active

❏ The MC68060 status lines are decoded, on the MVME177, to
drive the yellow STAT (status) LED (part of DS1). In this case,
a halt condition from the processor lights the LED

❏ The green RUN LED (part of DS2) lights when the local bus
TIP* signal line is low. This indicates one of the local bus
masters is executing a local bus cycle

❏ The green SCON LED (part of DS2) lights when the
VMEchip2 in the MVME177 is the VMEbus system controller

❏ The green LAN LED (part of DS3) lights when the LAN chip
is local bus master

❏ The MVME177 supplies +12V power to the Ethernet
transceiver interface through a fuse. The green +12V (LAN
power) LED (part of DS3) lights when power is available to
the transceiver interface

❏ The green SCSI LED (part of DS4) lights when the SCSI chip
is local bus master

❏ The green VME LED (part of DS4) lights when the board is
using the VMEbus (VMEbus AS* is asserted by the
VMEchip2) or when the board is accessed by the VMEbus
(VMEchip2 is the local bus master)
3-3

Operating Instructions

3

Memory Maps
There are two possible perspectives or points of view for memory
maps:

❏ The mapping of all resources as viewed by local bus masters
(local bus memory map)

❏ The mapping of onboard resources as viewed by VMEbus
Masters (VMEbus memory map)

Local Bus Memory Map

The local bus memory map is split into different address spaces by
the transfer type (TT) signals. The local resources respond to the
normal access and interrupt acknowledge codes.

There is some address translation capability in the VMEchip2. This
allows multiple MVME177s on the same VMEbus with different
virtual local bus maps as viewed by different VMEbus masters.

Normal Address Range

The memory map of devices that respond to the normal address
range is shown in the following tables. The normal address range is
defined by the Transfer Type (TT) signals on the local bus. On the
MVME177, Transfer Types 0, 1, and 2 define the normal address
range.

Table 3-1. Local Bus Memory Map, is the entire map from $00000000
to $FFFFFFFF. Many areas of the map are user-programmable, and
suggested uses are shown in the table. The cache inhibit function is
programmable in the MMUs. The onboard I/O space must be
marked cache inhibit and serialized in its page table.

Table 3-2 on page 3-6 further defines the map for the local I/O
devices.
3-4

Memory Maps

3

Notes:
1. Flash/EPROM devices appear at $FF800000 through $FFBFFFFF,
and also appear at $00000000 through $003FFFFF if the ROM0 bit in
the VMEchip2 EPROM control register is high (ROM0 = 1). The
ROM0 bit is located at address $FFF40030 bit 20. ROM0 is set to 1
after each reset. The ROM0 bit must be cleared before other
resources (DRAM or SRAM) can be mapped in this range
($00000000 through $003FFFFF). The VMEchip2 and DRAM map
decoders are disabled by a local bus reset.

On the MVME177, the Flash/EPROM memory is mapped at
$00000000 through $003FFFFF by hardware default through the
VMEchip2.

Table 3-1. Local Bus Memory Map

Address
Range Devices Accessed Port Size Size

Software
Cache
Inhibit Notes

$00000000 -
DRAMSIZE

User programmable
(onboard ECC DRAM on
mezzanine)

D32 DRAMSIZE N 1, 2

DRAMSIZE -
$FF7FFFFF

User programmable
(VMEbus A32/A24)

D32/D16 3GB - 3, 4

$FF800000 -
$FFBFFFFF

EPROM/Flash D32 1MB
EPROM/
4MB Flash

N 1

$FFC00000 -
$FFDFFFFF

Reserved -- 2MB -- 5

$FFE00000 -
$FFE1FFFF

Onboard SRAM (default) D32 128KB N 6

$FFE20000 -
$FFEFFFFF

Onboard SRAM (repeated) D32 896KB N 6

$FFF00000 -
$FFFEFFFF

Local I/O devices
(refer to next table)

D32-D8 960KB
(1MB-
64KB)

Y 3

$FFFF0000 -
$FFFFFFFF

User programmable
(VMEbus A16)

D32/D16 64KB - 2, 4
3-5

Operating Instructions

3

2. This area is user-programmable. The suggested use is shown in
the table. The DRAM decoder is programmed in the MCECC chip,
and the local-to-VMEbus decoders are programmed in the
VMEchip2.

3. Size is approximate.

4. Cache inhibit depends on devices in area mapped.

5. This area is not decoded. If these locations are accessed and the
local bus timer is enabled, the cycle times out and is terminated by
a TEA signal.

6. The SRAM has optional battery backup on the MVME177.

The following table focuses on the Local I/O Devices portion of the
local bus Main Memory Map.

Table 3-2. Local I/O Devices Memory Map

Address Range Devices Accessed Port Size Size Notes

$FFF00000 - $FFF3FFFF Reserved -- 256KB 5
$FFF40000 - $FFF400FF VMEchip2 (LCSR) D32 256B 1,4
$FFF40100 - $FFF401FF VMEchip2 (GCSR) D32-D8 256B 1,4
$FFF40200 - $FFF40FFF Reserved -- 3.5KB 5,7
$FFF41000 - $FFF41FFF Reserved -- 4KB 5
$FFF42000 - $FFF42FFF PCCchip2 D32-D8 4KB 1
$FFF43000 - $FFF430FF MCECC #1 D8 256B 1
$FFF43100 - $FFF431FF MCECC #2 D8 256B 1
$FFF43200 - $FFF43FFF MCECCs (repeated) -- 3.5KB 1,7
$FFF44000 - $FFF44FFF Reserved -- 4KB 5
$FFF45000 - $FFF451FF CD2401 (Serial Comm. Cont.) D16-D8 512B 1,9
$FFF45200 - $FFF45DFF Reserved -- 3KB 7,9
$FFF45E00 - $FFF45FFF Reserved -- 512B 1,9
$FFF46000 - $FFF46FFF 82596CA (LAN) D32 4KB 1,8
$FFF47000 - $FFF47FFF 53C710 (SCSI) D32/D8 4KB 1
$FFF48000 - $FFF4FFFF Reserved -- 32KB 5
$FFF50000 - $FFF6FFFF Reserved -- 128KB 5
$FFF70000 - $FFF76FFF Reserved -- 28KB 6
3-6

Memory Maps

3

Notes:
1. For a complete description of the register bits, refer to the data
sheet for the specific chip. For a more detailed memory map, refer
to the following detailed peripheral device memory maps.

2. On the MVME177 this area does not return an acknowledge
signal. If the local bus timer is enabled, the access times out and
terminates by a TEA signal.

3. Byte reads should be used to read the interrupt vector. These
locations do not respond when an interrupt is not pending. If the
local bus timer is enabled, the access times out and terminates by a
TEA signal.

4. Writes to the LCSR in the VMEchip2 must be 32 bits. LCSR writes
of 8 or 16 bits terminate with a TEA signal. Writes to the GCSR may
be 8, 16 or 32 bits. Reads to the LCSR and GCSR may be 8, 16 or 32
bits.

5. This area does not return an acknowledge signal. If the local bus
timer is enabled, the access times out and terminates by a TEA
signal.

6. This area does return an acknowledge signal.

7. Size is approximate.

$FFF77000 - $FFF77FFF Reserved -- 4KB 2
$FFF78000 - $FFF7EFFF Reserved -- 28KB 6
$FFF7F000 - $FFF7FFFF Reserved -- 4KB 2
$FFF80000 - $FFF9FFFF Reserved -- 128KB 6
$FFFA0000 - $FFFBFFFF Reserved -- 128KB 5
$FFFC0000 - $FFFCFFFF DS1643/MK48T08 (BBRAM,

TOD Clock)
D32-D8 64KB 1

$FFFD0000 - $FFFDFFFF Reserved -- 64KB 5
$FFFE0000 - $FFFEFFFF Reserved -- 64KB 2

Table 3-2. Local I/O Devices Memory Map (Continued)

Address Range Devices Accessed Port Size Size Notes
3-7

Operating Instructions

3

8. Port commands to the 82596CA must be written as two 16-bit
writes: upper word first and lower word second.

9. The CD2401 appears repeatedly from $FFF45200 to $FFF45FFF
on the MVME177. If the local bus timer is enabled, the access times
out and terminates by a TEA signal.

Software Initialization
Most functions that have been enabled with switches or jumpers on
other modules are enabled by setting control registers on the
MVME177. At power up or reset, the EPROMs that contain the
177Bug debugging package set up the default values of many of
these registers.

Specific programming details may be determined by study of the
M68060 Microprocessor User's Manual. You can also check the details
of all the MVME177 onboard registers as given in the Single Board
Computers Programmer's Reference Guide.

Multi-MPU Programming Considerations

Good programming practice dictates that only one MPU at a time
has control of the MVME177 control registers.

Of particular note are:

❏ Registers that modify the address map

❏ Registers that require two cycles to access

❏ VMEbus interrupt request registers

Local Reset Operation

Local reset (LRST) is a subset of system reset (SRST). Local reset can
be generated five ways:

❏ Expiration of the watchdog timer
3-8

Software Initialization

3

❏ Pressing the front panel RESET switch (if the system
controller function is disabled)

❏ Asserting a bit in the board control register in the GCSR

❏ SYSRESET*

❏ Power-up reset

Note The GCSR allows a VMEbus master to reset the local
bus. This feature is very dangerous and should be used
with caution. The local reset feature is a partial system
reset, not a complete system reset such as power-up
reset or SYSRESET*. When the local bus reset signal is
asserted, a local bus cycle may be aborted. The
VMEchip2 is connected to both the local bus and the
VMEbus and if the aborted cycle is bound for the
VMEbus, erratic operation may result.
Communications between the local processor and a
VMEbus master should use interrupts or mailbox
locations; reset should not be used in normal
communications. Reset should be used only when the
local processor is halted or the local bus is hung and
reset is the last resort.

Any VMEbus access to the MVME177 while it is in the reset state is
ignored. If a global bus timer is enabled, a bus error is generated.
3-9

Operating Instructions

3

3-10

4
4Functional Description
Introduction
This chapter provides a block diagram level description for the
MVME177 module. The functional description provides an
overview of the module, followed by a detailed description of
several blocks of the module. The block diagram of the MVME177
is shown in Figure 4-1 on page 4-3.

Descriptions of the other blocks of the MVME177, including
programmable registers in the ASICs and peripheral chips, are
given in the Single Board Computers Programmer's Reference Guide.
Refer to it for the rest of the functional description of the MVME177
module.

MVME177 Functional Description
The MVME177 is a high functionality VMEbus single board
computer designed around the MC68060 chip. The MVME177 has:

❏ 4/8/16/32/64/128/256MB of dynamic RAM

❏ SCSI mass storage interface

❏ Four serial ports

❏ One parallel port

❏ Ethernet transceiver interface

Data Bus Structure

The local data bus on the MVME177 is a 32-bit synchronous bus
that is based on the MC68060 bus, and supports burst transfers and
snooping. The various local bus master and slave devices use the
4-1

Functional Description

4

local bus to communicate. The local bus is arbitrated by priority
type arbiter and the priority of the local bus masters from highest to
lowest is:

❏ 82596CA LAN

❏ CD2401 serial (through the PCCchip2)

❏ 53C710 SCSI

❏ VMEbus

❏ MPU

In the general case, any master can access any slave; however, not
all combinations pass the common sense test. Refer to the Single
Board Computers Programmer's Reference Guide and to the user's
guide for each device to determine:

❏ Port size

❏ Data bus connection

❏ Any restrictions that apply when accessing the device
4-2

MVME177 Functional Description

4

Figure 4-1. MVME177 Block Diagram

V
M

E
ch

ip
 2

V
M

E
bu

s
in

te
rf

ac
e

E
P

R
O

M
2

44
-p

in
 P

LC
C

i8
25

96
C

A
E

th
er

ne
t

C
on

tr
ol

le
r

53
C

71
0

S
C

S
I

C
op

ro
ce

ss
or

C
D

24
01

Q
ua

d
S

er
ia

l
I/O

 C
on

tr
ol

le
r

12
8K

B
S

R
A

M
 w

/
ba

tte
ry

 o
pt

io
n

M
C

68
06

0
M

P
U

50
 o

r
60

 M
H

Z
4M

B
 F

LA
S

H
A

dd
re

ss
M

U
X

D
at

a
M

U
X

C
on

tr
ol

P
C

C
2

A
S

IC

P
ar

al
le

l I
/O

P
or

t
C

en
tr

on
ic

s

D
S

16
43

 o
r

M
K

48
T

08
B

at
te

ry
 B

ac
ke

d

8K
B

 R
A

M
/C

lo
ck

4
to

 2
56

M
B

 E
C

C
 D

R
A

M

18
18

 9
60

4

V
M

E
bu

s
A

32
/2

4:
D

64
/3

2/
16

/0
8

M
as

te
r/

S
la

ve

E
th

er
ne

t
Tr

an
sc

ei
ve

r
S

C
S

I
P

er
ip

he
ra

ls
4

A
sy

nc
hr

on
ou

s
or

3
A

sy
nc

/1
 S

yn
c

4-3

Functional Description

4

MC68060 MPU

The MC68060 microprocessor is the main processor for the
MVME177. The superscalar MC68060 processor has:

❏ Two MC68040-compatible CPU integer cores

❏ MC68040-compatible floating point core

❏ Independent 8KB instruction and operand data caches

❏ MC68040-compatible paged memory management unit

❏ A bus controller

The processor is in a PGA socket. Its clock speed is 50 MHz (for the
-00x models), and 60 MHz (for the -01x models). Note that the local
processor bus runs at only half the processor speed. Refer to the
MC68060 user's manual for more information.

Flash Memory and EPROM

Flash Memory

The MVME177 includes four 28F008SA Flash memory devices. The
Flash devices provide 4MB of ROM at address $FF800000-
$FFBFFFFF. The Flash is organized as one 32-bit bank for 32-bit
code execution from the processor. The Flash could, for instance, be
used for the onboard debugger firmware (177Bug) which would be
downloaded from I/O resources such as:

❏ Ethernet

❏ SCSI

❏ A serial port, or

❏ The VMEbus

When Flash is used with EPROM, either the top or bottom 2MB of
Flash is available in the second 2MB of memory space after the
EPROM. Refer to Table 4-1 below.
4-4

MVME177 Functional Description

4

Because only 1M x 8-bit Flash chips are used, there is no user-
configured jumper selection block required to pick the Flash chip
size.

The memory map for the Flash devices is controlled by the
VMEchip2 ASIC. The 32-bit wide Flash can support:

❏ 8 bit

❏ 16 bit, and

❏ 32 bit access

Flash write protection is programmable through the VMEchip2
GPIO register. The address map location of Flash is at $000000
through $3FFFFF at local reset if the FLASHJP jumper (J8) is in,
providing for the all-Flash mode. In the mixed EPROM/Flash
mode, half of the Flash is accessable at addresses $200000 through
$3FFFFF, depending on the condition of the VMEchip2 GPIO2 bit.

Because the MVME177 uses 1M x 8-bit Flash memory devices and
EPROMs with no download ROM, the software programs the
VMEchip2 ROM0 and REV EROM bits properly so that the
Flash/EPROM appears at address $0 after powerup. The hardware
is implemented so that the EPROM/Flash appears at address
$00000000 following a local bus reset.

Table 4-1. EPROM and Flash Control and Configuration

Jumper or Control Bit Control Condition Memory ConÞguration

FLASHJP jumper J8 Jumper in (= low) 2MB EPROM (lower) and 2MB Flash
(upper)

Jumper out (= high) All 4MB Flash
VMEchip2 bit GPIO2 GPIO2 bit low (and

with J8 jumper in)
First 2MB Flash accessible (Note)

GPIO2 bit high (and
with J8 jumper in)

Second 2MB Flash accessible (Note)

Note: These 2MB of Flash will be following the EPROMs in memory if the FLASHJP (J8)
jumper is in, and could be read or write depending on the Flash write protect control.
4-5

Functional Description

4

The MVME177 implements Flash write protection through clearing
a control bit (GPIO1) in the GPIO register in the VMEchip2, to
enable write by the software after download process/
programming is completed.

EPROM

There are two 44-pin PLCC/CLCC EPROM sockets for SGS-
Thompson M27C4002 (256K x 16) or AMD 27C4096 type EPROMs.
They are organized as one 32-bit wide bank that supports:

❏ 8 bit

❏ 16 bit, and

❏ 32-bit read accesses

The EPROMs as shipped are normally used for the onboard
debugger firmware (177Bug), but could be used to download user
code to Flash. The EPROMs make up only 1MB of memory, but can
share the first 2MB of space with the first 2MB of Flash. The
EPROMs occupy only 1MB space in the ROM space in mixed mode
and will be repeated in the second 1MB space (which is reserved for
future expansion). The EPROMs could coexist with this 2MB of
Flash, or could be used to program all 4MB of Flash, then the J8
jumper could be removed to make only Flash available.

After a system reset, the EPROMs are mapped to the default
addresses $00000 through $FFFFF, and could be mapped to
$FF800000 through $FF8FFFFF if needed. The control between
mapping EPROM/Flash mixed mode and all Flash mode is done by
the combination of external board jumper J8 and the VMEchip2 bit
GPIO2. Table 4-1 shows how the ÒFlashÓ jumper and GPIO bit 2
change the EPROM/Flash configuration.
4-6

MVME177 Functional Description

4

The EPROMs/Flashes are mapped to local bus address 0 following
a local bus reset. This allows the MC68060 to access the reset vector
and execution address following a reset. The EPROMs are
controlled by the VMEchip2. The following items are all
programmable:

❏ Map decoder

❏ Access time

❏ Time they appear at address 0

For more detail, refer to the VMEchip2 in the Single Board Computers
Programmer's Reference Guide.

SRAM

The boards include 128KB of 32-bit wide static RAM arrays that are
not parity protected and support:

❏ 8 bit

❏ 16 bit, and

❏ 32 bit wide accesses

The SRAM allows the debugger to operate and limited diagnostics
to be executed without the DRAM mezzanine. The SRAM will not
support burst cycles. The SRAM is controlled by the VMEchip2,
and the access time is programmable. Refer to the VMEchip2 in the
Single Board Computers Programmer's Reference Guide for more detail.
The boards are populated with 100 ns SRAMs.

SRAM battery backup is optionally available on the MVME177. The
battery backup function is provided by a Dallas DS1210S. Only one
backup power source is supported on the MVME177. The battery
supplies VCC to the SRAMs when main power is removed.

Each time the MVME177 is powered up, the DS1210S checks the
power source. If the voltage of the backup source is less than two
volts, the second memory cycle is blocked. This allows software to
4-7

Functional Description

4

provide an early warning to avoid data loss. Because the DS1210S
may block the second access, the software should do at least two
accesses before relying on the data.

Optionally, the MVME177 provides jumpers that allow the power
source of the DS1210S to connect to the VMEbus +5 V STDBY pin
or the onboard battery.

The optional power source for the SRAM is a socketed Sanyo
CR2430 battery. A small capacitor is provided to allow the battery
to be quickly replaced without data loss.

The lifetime of the battery is very dependent on the ambient
temperature of the board and the power-on duty cycle. The FB1225
and CR2430 lithium batteries should provide at least two years of
backup time with the board powered off and the board at 40û C. If
the power-on duty cycle is 50% (the board is powered on half of the
time), the battery lifetime is four years. At lower ambient
temperatures the backup time is greatly extended and may
approach the shelf life of the battery.

When a board is stored, if the battery is present, it should be
disconnected to prolong battery life. This is especially important at
high ambient temperatures. MVME177 boards with battery backup
are shipped with the batteries disconnected.

The power leads from the battery are exposed on the solder side of
the board, therefore the board should not be placed on a conductive
surface or stored in a conductive bag unless the battery is removed.

Note Lithium batteries incorporate inflammable materials
such as lithium and organic solvents. If lithium
batteries are mistreated or handled incorrectly, they
may burst open and ignite, possibly resulting in injury
and/or fire. When dealing with lithium batteries,
carefully follow the precautions listed below in order to
prevent accidents:

❏ Do not short circuit
4-8

MVME177 Functional Description

4

❏ Do not disassemble, deform, or apply excessive pressure

❏ Do not heat or incinerate

❏ Do not apply solder directly

❏ Do not use different models, or new and old batteries
together

❏ Do not charge

❏ Always check proper polarity

To remove the battery from the module, carefully pull the battery
from the socket.

Onboard DRAM

The MVME177 onboard DRAM is located on a mezzanine board.
The mezzanine boards use error checking and correction (ECC)
protection to correct single-bit errors and detect double-bit errors.
Interrupts or bus exception can be enabled when a bit error is
detected. The interrupt output from the memory mezzanine is
connected to the VMEchip2 PEIRQ* interrupt input.

Mezzanine board sizes are:

❏ 4MB

❏ 8MB

❏ 16MB

❏ 32MB

❏ 64MB

❏ 128MB (ECC)
4-9

Functional Description

4

Two mezzanine boards may be stacked to provide 256MB of
onboard RAM. The main board and a single mezzanine board
together take one slot. The stacked configuration requires two
VMEboard slots. The DRAM is four-way interleaved to efficiently
support cache burst cycles.

The DRAM map decoder can be programmed to accommodate
different base address(es) and sizes of mezzanine boards. The
onboard DRAM is disabled by a local bus reset and must be
programmed before the DRAM can be accessed. Refer to the
MCECC in the Single Board Computers Programmer's Reference Guide
for detailed programming information. Most DRAM devices
require some number of access cycles before the DRAMs are fully
operational. Normally this requirement is met by the onboard
refresh circuitry and normal DRAM initialization. However,
software should insure a minimum of 10 initialization cycles are
performed to each bank of RAM.

Battery Backed Up RAM and Clock

The DS1643/MK48T08 RAM and clock chip is used on the
MVME177. This chip provides the following items, all in one 28-pin
package:

❏ Time of day clock

❏ Oscillator

❏ Crystal

❏ Power fail detection

❏ Memory write protection

❏ 8KB of RAM

❏ A battery

The clock provides:

❏ Seconds
4-10

MVME177 Functional Description

4

❏ Minutes

❏ Hours

❏ Day

❏ Date

❏ Month

❏ Year

in BCD 24-hour format. Corrections for 28-, 29- (leap year), and
30-day months are automatically made. No interrupts are
generated by the clock. The DS1643/MK48T08 is an 8 bit device;
however, the interface provided by the PCCchip2 supports:

❏ 8 bit

❏ 16 bit, and

❏ 32 bit accesses to the DS1643/MK48T08

Refer to the PCCchip2 in the Single Board Computers Programmer's
Reference Guide and to the DS1643/MK48T08 data sheet for detailed
programming information.

VMEbus Interface

The local bus to VMEbus interface, the VMEbus to local bus
interface, and the local-VMEbus DMA controller functions on the
MVME177 are provided by the VMEchip2. The VMEchip2 can also
provide the VMEbus system controller functions. Refer to the
VMEchip2 in the Single Board Computers Programmer's Reference
Guide for detailed programming information.

I/O Interfaces

The MVME177 provides onboard I/O for many system
applications. The I/O functions include:

❏ Serial ports
4-11

Functional Description

4

❏ Parallel (printer) port

❏ Ethernet transceiver interface

❏ SCSI mass storage interface

Serial Port Interface

The CD2401 serial controller chip (SCC) is used to implement the
four serial ports. The serial ports support the standard baud rates
(110 to 38.4K baud). The four serial ports are different functionally
because of the limited number of pins on the P2 I/O connector.
Serial port 1 is a minimum function asynchronous port. It uses:

❏ RXD

❏ CTS

❏ TXD

❏ RTS

Serial ports 2 and 3 are full function asynchronous ports. They use:

❏ RXD

❏ CTS

❏ DCD

❏ TXD

❏ RTS

❏ DTR

Serial port 4 is a full function asynchronous or synchronous port. It
can operate at synchronous bit rates up to 64 k bits per second. It
uses:

❏ RXD

❏ CTS

❏ DCD
4-12

MVME177 Functional Description

4

❏ TXD

❏ RTS

❏ DTR

It also interfaces to the synchronous clock signal lines. Refer to the
Single Board Computers Programmer's Reference Guide for drawings of
the serial port interface connections.

All four serial ports use EIA-232-D drivers and receivers located on
the main board, and all the signal lines are routed to the I/O
connector. The configuration headers are located on the main board
and the MVME712x transition board. An external I/O transition
board such as the MVME712x should be used to convert the I/O
connector pinout to industry-standard connectors.

Note The MVME177 board hardware ties the DTR signal
from the CD2401 to the pin labeled RTS at connector
P2. Likewise, RTS from the CD2401 is tied to DTR on
P2. Therefore, when programming the CD2401, assert
DTR when you want RTS, and RTS when you want
DTR.

The interface provided by the PCCchip2 allows the 16-bit CD2401
to appear at contiguous addresses; however, accesses to the
CD2401 must be 8 or 16 bits. 32-bit accesses are not permitted. Refer
to the CD2401 data sheet and to the PCCchip2 in the Single Board
Computers Programmer's Reference Guide for detailed programming
information.

The CD2401 supports DMA operations to local memory. Because
the CD2401 does not support a retry operation necessary to break
VMEbus lockup conditions, the CD2401 DMA controllers should
not be programmed to access the VMEbus. The hardware does not
restrict the CD2401 to onboard DRAM.
4-13

Functional Description

4

Parallel Port Interface

The PCCchip2 provides an 8-bit bidirectional parallel port. All
eight bits of the port must be either inputs or outputs (no individual
selection). In addition to the 8 bits of data, there are two control pins
and five status pins. Each of the status pins can generate an
interrupt to the MPU in any of the following programmable
conditions:

❏ High level

❏ Low level

❏ High-to-low transition

❏ Low-to-high transition

This port may be used as a Centronics- compatible parallel printer
port or as a general parallel I/O port.

When used as a parallel printer port, the five status pins function as
Printer:

❏ Acknowledge (ACK)

❏ Fault (FAULT*)

❏ Busy (BSY)

❏ Select (SELECT)

❏ Paper Error (PE)

The control pins act as:

❏ Printer Strobe (STROBE*)

❏ Input Prime (INP*)

The PCCchip2 provides an auto-strobe feature similar to that of the
MVME147 PCC. In auto-strobe mode, after a write to the Printer
Data Register, the PCCchip2 automatically asserts the STROBE* pin
for a selected time specified by the Printer Fast Strobe control bit. In
manual mode, the Printer Strobe control bit directly controls the
state of the STROBE* pin.
4-14

MVME177 Functional Description

4

Refer to the Single Board Computers Programmer's Reference Guide for
drawings of the printer port interface connections.

Ethernet Interface

The 82596CA is used to implement the Ethernet transceiver
interface. The 82596CA accesses local RAM using DMA operations
to perform its normal functions. Because the 82596CA has small
internal buffers and the VMEbus has an undefined latency period,
buffer overrun may occur if the DMA is programmed to access the
VMEbus. Therefore, the 82596CA should not be programmed to
access the VMEbus.

Every MVME177 is assigned an Ethernet Station Address. The
address is $08003E2xxxxx, where xxxxx is the unique 5-nibble
number assigned to the board (i.e., every MVME177 has a different
value for xxxxx).

Each module has an Ethernet Station Address displayed on a label
attached to the VMEbus P2 connector. In addition, the six bytes
including the Ethernet address are stored in the configuration area
of the BBRAM. That is, 08003E2xxxxx is stored in the BBRAM. At an
address of $FFFC1F2C, the upper four bytes (08003E2x) can be read.
At an address of $FFFC1F30, the lower two bytes (xxxx) can be read.
Refer to the BBRAM, TOD Clock memory map description in
Chapter 3. The MVME177 debugger has the capability to retrieve or
set the Ethernet address.

If the data in the BBRAM is lost, the user should use the number on
the VMEbus P2 connector label to restore it.

The Ethernet transceiver interface is located on the MVME177 main
module, and the industry standard connector is located on the
MVME712x transition module.

Support functions for the 82596CA are provided by the PCCchip2.
Refer to the 82596CA user's guide and to the Single Board Computers
Programmer's Reference Guide for detailed programming
information.
4-15

Functional Description

4

SCSI Interface

The MVME177 provides for mass storage subsystems through the
industry-standard SCSI bus. These subsystems may include:

❏ Hard and floppy disk drives

❏ Streaming tape drives

❏ Other mass storage devices

The SCSI interface is implemented using the NCR 53C710 SCSI I/O
controller.

The SCSI clock input to the 53C710 is fixed at 50 MHz, in order to
have higher SCSI bus performance, and to make it easier for
software to program the 53C710 controller when the MC68060
processor speed changes.

Support functions for the 53C710 are provided by the PCCchip2.
Refer to the 53C710 user's guide and to the Single Board Computers
Programmer's Reference Guide for detailed programming
information.

SCSI Termination

The system configurer must ensure that the SCSI bus is properly
terminated at both ends. On the MVME177, sockets are provided
for the terminators on the P2 transition board. If the SCSI bus ends
at the P2 transition board, then termination resistors must be
installed on the P2 transition board. +5V power to the SCSI bus
TERM power line and termination resistors is provided through a
fuse on the MVME712 transition board, and a diode located on the
P2 transition board.

Local Resources

The MVME177 includes many resources for the local processor.
These include:

❏ Tick timers

❏ Software programmable hardware interrupts

❏ Watchdog timer
4-16

MVME177 Functional Description

4

❏ Local bus time-out

Note The time basis for all local resources is set by Prescaler
register(s). Refer to the Single Board Computers
Programmer's Reference Guide for detailed programming
information.

Programmable Tick Timers

Four 32-bit programmable tick timers with 1 µs resolution are
provided:

❏ Two in the VMEchip2 and

❏ Two in the PCCchip2

The tick timers can be programmed to generate periodic interrupts
to the processor. Refer to the VMEchip2 and PCCchip2 in the Single
Board Computers Programmer's Reference Guide for detailed
programming information.

Watchdog Timer

A watchdog timer function is provided in the VMEchip2. When the
watchdog timer is enabled, it must be reset by software within the
programmed time or it times out. The watchdog timer can be
programmed to generate:

❏ A SYSRESET signal

❏ Local reset signal, or

❏ Board fail signal if it times out

Refer to the VMEchip2 in the Single Board Computers Programmer's
Reference Guide for detailed programming information.

Software-Programmable Hardware Interrupts

Eight software-programmable hardware interrupts are provided
by the VMEchip2. These interrupts allow software to create a
hardware interrupt. Refer to the VMEchip2 in the Single Board
Computers Programmer's Reference Guide for detailed programming
information.
4-17

Functional Description

4

Local Bus Time-out

The MVME177 provides a time-out function for the local bus. When
the timer is enabled and a local bus access times out, a Transfer
Error Acknowledge (TEA) signal is sent to the local bus master. The
time-out value is selectable by software for:

❏ 8 µsec

❏ 64 µsec

❏ 256 µsec

❏ Infinite

The local bus timer does not operate during VMEbus bound cycles.
VMEbus bound cycles are timed by the VMEbus access timer and
the VMEbus global timer. Refer to the VMEchip2 in the Single Board
Computers Programmer's Reference Guide for detailed programming
information.

Module Identification

Software distinguishes between an MVME177 module and an
MVME176 module by use of the I/O control register (GPI) bit 3. On
an MVME177, the I/O control register (GPI) bit 3 is out (open) for a
ÒhighÓ (one). On an MVME176, the I/O control register (GPI) bit 3
is hardwired in (shorted) for a ÒlowÓ (zero).

Timing Performance

This section provides the performance information for the
MVME177. Various MVME177s are designed to operate at 50 MHz
or 60 MHz (when supported by 060).

Local Bus to DRAM Cycle Times

The PCCchip2 and VMEchip2 have the same local bus interface
timing as the MC68060, therefore the following cycle times also
apply to the PCCchip2 and the VMEchip2. Read accesses to
4-18

MVME177 Functional Description

4

onboard DRAM require 5 bus clock cycles with the bus error
reported in the current cycle. Write accesses to onboard DRAM
require 2 bus clock cycles.

Burst read accesses require 8 (5-1-1-1) bus clock cycles with the bus
error reported in the current cycle. Burst write cycles require 5
(2-1-1-1) bus clock cycles.

ROM Cycle Times

The ROM cycle time is programmable from 4 to 11 bus clock cycles.
The data transfers are 32 bits wide. Refer to the Single Board
Computers Programmer's Reference Guide.

SCSI Transfers

The MVME177 includes a SCSI mass storage bus interface with
DMA controller. The SCSI DMA controller uses a FIFO buffer to
interface the 8-bit SCSI bus to the 32-bit local bus. The FIFO buffer
allows the SCSI DMA controller to efficiently transfer data to the
local bus in four longword bursts. This reduces local bus usage by
the SCSI device.

The first longword transfer of a burst, with snooping disabled,
requires:

❏ Four bus clocks with parity off, and

❏ Five bus clocks with parity on

Each of the remaining three transfers requires one bus clock.

The transfer rate of the DMA controller is 44MB/sec at 25 MHz
with parity off. Assuming a continuous transfer rate of 5MB/sec on
the SCSI bus, 12% of the local bus bandwidth is used by transfers
from the SCSI bus.

Note The actual SCSI bus transfer rate is fixed, no matter
what the speed of the microprocessor.
4-19

Functional Description

4

LAN DMA Transfers

The MVME177 includes a LAN interface with DMA controller. The
LAN DMA controller uses a FIFO buffer to interface the serial LAN
bus to the 32-bit local bus. The FIFO buffer allows the LAN DMA
controller to efficiently transfer data to the local bus.

The 82596CA does not execute MC68060 compatible burst cycles,
therefore the LAN DMA controller does not use burst transfers.
DRAM write cycles require 3 clock cycles, and read cycles require:

❏ 5 clock cycles with parity off and

❏ 6 clock cycles with parity on

The transfer rate of the LAN DMA controller is 20MB/sec at 25
MHz (or 24MB/sec at 30 MHz) with parity off. Assuming a
continuous transfer rate of 1MB/sec on the LAN bus, 5% (or 4%) of
the local bus bandwidth is used by transfers from the LAN bus.

Remote Status and Control

The remote status and control connector, J3, is a 20-pin connector
located behind the front panel of the MVME177. It provides system
designers the flexibility to access critical indicator and reset
functions. This allows a system designer to construct a
RESET/ABORT/LED panel that can be located remotely from the
MVME177.

In addition to the LED and the RESET and ABORT switches access,
this connector also includes:

❏ Two general purpose TTL-level I/O pins

❏ One general purpose interrupt pin which can also function as
a trigger input. This interrupt pin is level programmable
4-20

A
AEIA-232-D Interconnections
Introduction
The EIA-232-D standard is the most widely used
terminal/computer and terminal/modem interface, and yet it is
not fully understood. This may be because not all the lines are
clearly defined, and many users do not see the need to follow the
standard in their applications. Often designers think only of their
own equipment, but the state of the art is computer-to-computer or
computer-to-modem operation. A system should easily connect to
any other system.

The EIA-232-D standard was originally developed by the Bell
System to connect terminals via modems. Several handshaking
lines were included for that purpose. Although handshaking is
unnecessary in many applications, the lines themselves remain part
of many designs because they facilitate troubleshooting.

Table A-1 lists the standard EIA-232-D interconnections. To
interpret this information correctly, remember that EIA-232-D was
intended to connect a terminal to a modem. When computers are
connected to each other without modems, one of them must be
configured as a terminal (data terminal equipment: DTE) and the
other as a modem (data circuit-terminating equipment: DCE). Since
computers are normally configured to work with terminals, they
are said to be configured as a modem in most cases.

Signal levels must lie between +3 and +15 volts for a high level, and
between -3 and -15 volts for a low level. Connecting units in parallel
may produce out-of-range voltages and is contrary to EIA-232-D
specifications.
A-1

EIA-232-D Interconnections
A

Table A-1. EIA-232-D Interconnections

Pin
Number

Signal
Mnemonic Signal Name and Description

01 Not used.
02 TxD TRANSMIT DATA. Data to be transmitted; input to the modem

from the terminal.
03 RxD RECEIVE DATA. Data which is demodulated from the receive

line; output from the modem to the terminal.
04 RTS REQUEST TO SEND. Input to the modem from the terminal

when required to transmit a message. With RTS off, the modem
carrier remains off. When RTS is turned on, the modem
immediately turns on the carrier.

05 CTS CLEAR TO SEND. Output from the modem to the terminal to
indicate that message transmission can begin. When a modem is
used, CTS follows the off-to-on transition of RTS after a time
delay.

06 DSR DATA SET READY. Output from the modem to the terminal to
indicate that the modem is ready to transmit data.

07 SIG-GND SIGNAL GROUND. Common return line for all signals at the
modem interface.

08 DCD DATA CARRIER DETECT. Output from the modem to the
terminal to indicate that a valid carrier is being received.

09-14 Not used.
15 TxC TRANSMIT CLOCK (DCE). Output from the modem to the

terminal; clocks data from the terminal to the modem.
16 Not used.
17 RxC RECEIVE CLOCK. Output from the modem to the terminal;

clocks data from the modem to the terminal.
18, 19 Not used.

20 DTR DATA TERMINAL READY. Input to the modem from the
terminal; indicates that the terminal is ready to send or receive
data.

21 Not used.
A-2

Levels of Implementation
A

Notes:
1. A high EIA-232-D signal level is +3 to +15 volts. A low level is -3
to -15 volts. Connecting units in parallel may produce out-of-range
voltages and is contrary to specifications.

 2. The EIA-232-D interface is intended to connect a terminal to a
modem. When computers are connected without modems, one
must be configured as a modem and the other as a terminal.

Levels of Implementation
There are several levels of conformance that may be appropriate for
typical EIA-232-D interconnections. The bare minimum
requirement is the two data lines and a ground. The full
implementation of EIA-232-D requires 12 lines; it accommodates:

❏ Automatic dialing

❏ Automatic answering

❏ Synchronous transmission

A middle-of-the-road approach is illustrated in Figure A-1.

22 RI RING INDICATOR. Output from the modem to the terminal;
indicates to the terminal that an incoming call is present. The
terminal causes the modem to answer the phone by carrying
DTR true while RI is active.

23 Not used.
24 TxC TRANSMIT CLOCK (DTE). Input to modem from terminal;

same function as TxC on pin 15.
25 BSY BUSY. Input to modem from terminal. A positive EIA signal

applied to this pin causes the modem to go off-hook and make
the associated phone busy.

Table A-1. EIA-232-D Interconnections (Continued)

Pin
Number

Signal
Mnemonic Signal Name and Description
A-3

EIA-232-D Interconnections
A

Signal Adaptations

One set of handshaking signals frequently implemented are RTS
and CTS. CTS is used in many systems to inhibit transmission until
the signal is high. In the modem application, RTS is turned around
and returned as CTS after 150 microseconds. RTS is programmable
in some systems to work with the older type 202 modem (half
duplex). CTS is used in some systems to provide flow control to
avoid buffer overflow. This is not possible if modems are used. It is
usually necessary to make CTS high by connecting it to RTS or to
some source of +12 volts such as the resistors shown in Figure A-1.
CTS is also frequently jumpered to an MC1488 gate which has its
inputs grounded (the gate is provided for this purpose).

Another signal used in many systems is DCD. The original purpose
of this signal was to inform the system that the carrier tone from the
distant modem was being received. This signal is frequently used
by the software to display a message like CARRIER NOT PRESENT to help
the user to diagnose failure to communicate. Obviously, if the
system is designed properly to use this signal and is not connected
to a modem, the signal must be provided by a pullup resistor or
gate as described above (see Figure A-1).

Many modems expect a DTR high signal and issue a DSR response.
These signals are used by software to help prompt the operator
about possible causes of trouble. The DTR signal is sometimes used
to disconnect the phone circuit in preparation for another automatic
call. These signals are necessary in order to communicate with all
possible modems (see Figure A-1).

Sample Configurations

Figure A-1 is a good minimum configuration that almost always
works. If the CTS and DCD signals are not received from the
modem, the jumpers can be moved to artificially provide the
needed signal.
A-4

Levels of Implementation
A

Figure A-1. Middle-of-the-Road EIA-232-D Configuration

3
TXD

RXD

RTS

CTS

DCD

TXC

RXC

-12V

TXD

RXD

RTS

CTS

DCD

TXC

RXC

OPTIONAL

HARDWARE

TRANSPARENT

MODE

LOGIC

470Ω

39kΩ

39kΩ

39kΩ

470Ω

39kΩ
-12V

2

1

5

6

8

7

7

1

20

2

3

4

5

6

CHASSIS GND

CONNECTOR
TO
TERMINAL

CONNECTOR
TO
MODEM
OR
HOST
SYSTEM

RXD

TXD

NC

CTS

DSR

DCD

SIG GND

DTR

TXD

RXD

RTS

CTS

DCD

-12V

+12V

-12V
+12V

+12V
GND

+12V

SIG GND

NC

cb181 9210

470Ω

6850

6850

LS08

LS08

470Ω 470Ω 470Ω

MODULE
A-5

EIA-232-D Interconnections
A

Figure A-2 shows a way of wiring an EIA-232-D connector to enable
a computer to connect to a basic terminal with only three lines. This
is feasible because most terminals have a DTR signal that is ON,
and which can be used to pull up the CTS, DCD, and DSR signals.

Two of these connectors wired back-to-back can be used. In this
implementation, however, diagnostic messages that might
otherwise be generated do not occur because all the handshaking is
bypassed. In addition, the TX and RX lines may have to be crossed
since TX from a terminal is outgoing but the TX line on a modem is
an incoming signal.

Figure A-2. Minimum EIA-232-D Connection

GND 1

TxD 2

RxD 3

GND 7

RTS 4

CTS 5

DSR 6

DCD 8

EIA-232-D CONNECTOR

DTR 20

. .
 .

.

A-6

Levels of Implementation
A

Proper Grounding

Another subject to consider is the use of ground pins. There are two
pins labeled GND. Pin 7 is the SIGNAL GROUND and must be
connected to the distant device to complete the circuit. Pin 1 is the
CHASSIS GROUND, but it must be used with care. The chassis is
connected to the power ground through the green wire in the
power cord and must be connected to the chassis to be in
compliance with the electrical code.

The problem is that when units are connected to different electrical
outlets, there may be several volts of difference in ground potential.
If pin 1 of each device is interconnected with the others via cable,
several amperes of current could result. This condition may not
only be dangerous for the small wires in a typical cable, but may
also produce electrical noise that causes errors in data transmission.
That is why Figure A-1 shows no connection for pin 1. Normally,
pin 7 should only be connected to the CHASSIS GROUND at one
point; if several terminals are used with one computer, the logical
place for that point is at the computer. The terminals should not
have a connection between the logic ground return and the chassis.
A-7

EIA-232-D Interconnections
A

A-8

B
BDebugger General Information
Overview of M68000 Firmware
The firmware for the M68000-based (68K) series of board and
system level products has a common genealogy, deriving from the
debugger firmware currently used on all Motorola M68000-based
CPU modules. The M68000 firmware family provides:

❏ A high degree of functionality

❏ User friendliness

❏ Portability

❏ Ease of maintenance

This member of the M68000 firmware family is implemented on the
MVME177 Single Board Computer, and is known as the
MVME177Bug, or simply 177Bug.

Description of 177Bug
The 177Bug package is a powerful evaluation and debugging tool
for systems built around the MVME177 CISC-based
microcomputers. Facilities are available for loading and executing
user programs under complete operator control for system
evaluation. 177Bug includes:

❏ Commands for display and modification of memory

❏ Breakpoint and tracing capabilities

❏ A powerful assembler/disassembler useful for patching
programs

❏ A self-test at power-up feature which verifies the integrity of
the system
B-1

Debugger General Information

B
 ❏ Various 177Bug routines that handle I/O, data conversion,
and string functions available to user programs through the
TRAP #15 system calls

177Bug consists of three parts:

❏ A command-driven user-interactive software debugger,
described in this appendix, and hereafter referred to as Òthe
debuggerÓ or Ò177BugÓ

❏ A command-driven diagnostic package for the MVME177
hardware, hereafter referred to as Òthe diagnosticsÓ

❏ A user interface which accepts commands from the system
console terminal

When using 177Bug, you operate out of either the debugger
directory or the diagnostic directory. If you are in the debugger
directory, the debugger prompt Ò177-Bug>Ó displays and you have
all of the debugger commands at your disposal. If you are in the
diagnostic directory, the diagnostic prompt Ò177-Diag>Ó displays
and you have all of the diagnostic commands at your disposal as
well as all of the debugger commands. You may switch between
directories by using the Switch Directories (SD) command, or may
examine the commands in the particular directory that you are
currently in by using the Help (HE) command.

Because 177Bug is command-driven, it performs its various
operations in response to user commands entered at the keyboard.
When you enter a command, 177Bug executes the command and
the prompt reappears. However, if you enter a command that
causes execution of user target code (e.g., ÒGOÓ), then control may
or may not return to 177Bug, depending on the outcome of the user
program.

If you have used one or more of Motorola's other debugging
packages, you will find the CISC 177Bug very similar. Considerable
effort has also been made to make the interactive commands more
consistent. For example, delimiters between commands and
arguments may now be commas or spaces interchangeably.
B-2

Autoboot

B
177Bug Implementation

MVME177Bug is written largely in the ÒCÓ programming
language, providing benefits of portability and maintainability.
Where necessary, assembler has been used in the form of separately
compiled modules containing only assembler code - no mixed
language modules are used.

Physically, 177Bug is contained in two 44-pin PLCC/CLCC
EPROMs, providing 512KB (128K longwords) of storage. Both
EPROMs are necessary regardless of how much space is actually
occupied by the firmware, because of the 32-bit longword-oriented
MC68060 memory bus architecture. The executable code is
checksummed at every power-on or reset firmware entry, and the
result (which includes a pre-calculated checksum contained in the
EPROMs) is tested for an expected zero. Thus, users are cautioned
against modification of the EPROMs unless re-checksum
precautions are taken. The power-on defaults for the MVME177
debug port are:

❏ Eight bits per character

❏ One stop bit per character

❏ Parity disabled (no parity)

❏ Baud rate 9600 baud (default baud rate of MVME177 ports at
power-up)

After power-up, the baud rate of the debug port can be
reconfigured by using the Port Format (PF) command of the 177Bug
debugger.

Autoboot
Autoboot is a software routine that is contained in the several
177Bug EPROMs to provide an independent mechanism for
booting an operating system. This autoboot routine automatically
scans for controllers and devices in a specified sequence until a
valid bootable device containing a boot media is found, or the list is
B-3

Debugger General Information

B
 exhausted. If a valid bootable device is found, a boot from that
device begins. The controller scanning sequence goes from the
lowest controller Logical Unit Number (LUN) detected to the
highest LUN detected.

At power-up, Autoboot is enabled, and providing the drive and
controller numbers encountered are valid, the following message
displays on the system console:

"Autoboot in progress... To abort hit <BREAK>"

Following this message there is a delay to allow you an opportunity
to abort the Autoboot process if you wish. Then the actual I/O
begins: the program pointed to within the volume ID of the media
specified loads into RAM and control passes to it. If, however,
during this time you want to gain control without Autoboot, you
can press the:

❏ BREAK key

❏ Software ABORT switch

❏ RESET switch

Autoboot is controlled by parameters contained in the ENV
command. These parameters allow:

❏ Selection of specific boot devices

❏ Selection of files

❏ Programming of the Boot delay

Refer to the ENV command in the Commands Table for more
details.

!
Caution

Although streaming tape can be used to autoboot, the
same power supply must be connected to the:

❏ Streaming tape drive

❏ Controller

❏ MVME177
B-4

ROMboot

B

At power-up, the tape controller positions the streaming
tape to load point where the volume ID can correctly be
read and used.

If, however, the MVME177 loses power but the
controller does not, and the tape happens to be at load
point, the sequences of commands required (attach and
rewind) cannot be given to the controller and autoboot
will not be successful.

ROMboot
The ROMboot function is configured/enabled by the Environment
(ENV) command (refer to Commands Table at the end of this
Appendix) and executes:

❏ At power-up

❏ At reset (optionally)

❏ By the RB command, assuming there is valid code in the
EPROMs (or optionally elsewhere on the module or
VMEbus) to support it.

If ROMboot code is installed, a user-written routine is given control
(if the routine meets the format requirements). One use of
ROMboot might be resetting SYSFAIL* on an unintelligent
controller module. The NORB command disables the function.

For a user's ROMboot module to gain control through the
ROMboot linkage, four requirements must be met:

❏ Power must have just been applied (but the ENV command
can change this to also respond to any reset)

❏ Your routine must be located within the MVME177 ROM
memory map (but the ENV command can change this to any
other portion of the onboard memory, or even offboard
VMEbus memory)
B-5

Debugger General Information

B
 ❏ The ASCII string ÒBOOTÓ must be located within the
specified memory range

❏ Your routine must pass a checksum test, which ensures that
this routine was really intended to receive control at power-
up

For complete details on how to use ROMboot, refer to the
Debugging Package for Motorola 68K CISC CPUs User's Manual.

Network Boot
Network Auto Boot is a software routine contained in the 177Bug
EPROMs that provides a mechanism for booting an operating
system using a network (local Ethernet interface) as the boot device.
The Network Auto Boot routine automatically scans for controllers
and devices in a specified sequence until a valid bootable device
containing a boot media is found or the list is exhausted. If a valid
bootable device is found, a boot from that device begins. The
controller scanning sequence goes from the lowest controller
Logical Unit Number (LUN) detected to the highest LUN detected.

At power-up, Network Boot is enabled, and providing the drive
and controller numbers encountered are valid, the following
message displays on the system console:

"Network Boot in progress... To abort hit <BREAK>"

Following this message there is a delay to allow you to abort the
Auto Boot process if you wish. Then the actual I/O begins: the
program pointed to within the volume ID of the media specified
loads into RAM and control passes to it. If, however, during this
time you want to gain control without Network Boot, you can pres
the:

❏ BREAK key

❏ Software ABORT switch

❏ RESET switch
B-6

Restarting the System

B
Network Auto Boot is controlled by parameters contained in the
NIOT and ENV commands. These parameters allow:

❏ Selection of specific boot devices

❏ Selection of systems

❏ Selection of files

❏ Programming of the Boot delay

Refer to the ENV and NIOT commands in the Commands Table in
this Appendix for more details. Also refer to the ENV parameters
in Appendix D.

Restarting the System
You can initialize the system to a known state in three different
ways:

❏ Reset

❏ Abort

❏ Break

Each has characteristics which make it more appropriate than the
others in certain situations.

The debugger has a special feature upon a reset condition. This
feature is activated by depressing the RESET and ABORT switches
at the same time. This feature instructs the debugger to use the
default setup/operation parameters in ROM versus your
setup/operation parameters in NVRAM. This feature can be used
in the event your setup/operation parameters are corrupted or fail
to pass a sanity check.
B-7

Debugger General Information

B
 Reset

Pressing and releasing the MVME177 front panel RESET switch
initiates a system reset. COLD and WARM reset modes are
available. By default, 177Bug is in COLD mode. During COLD
reset, a total system initialization occurs, as if the MVME177 had
just been powered up. In other words, during a COLD reset:

❏ All static variables (including disk device and controller
parameters) restore to their default states

❏ The breakpoint table and offset registers are cleared

❏ The target registers are invalidated

❏ Input and output character queues are cleared

❏ Onboard devices (timer, serial ports, etc.) are reset

❏ The first two serial ports are reconfigured to their default state

During WARM reset, the 177Bug preserves the following:

❏ Variables

❏ Tables

❏ Target state registers

❏ Breakpoints

Reset must be used if the processor ever halts, or if the 177Bug
environment is ever lost (vector table is destroyed, stack corrupted,
etc.).

Abort

You can initiate an abort by pressing and releasing the ABORT
switch on the MVME177 front panel. If an abort is initiated while
executing a user program (running target code), a ÒsnapshotÓ of the
processor state is captured and stored in the target registers. For
this reason, abort is most appropriate when terminating a user
B-8

Restarting the System

B
program that is being debugged. Abort should be used to regain
control if the program gets caught in a loop, etc. The target PC and
register contents assist you in locating the malfunction.

Pressing and releasing the ABORT switch generates a local board
condition that causes:

❏ A processor interrupt (if enabled)

❏ The target registers (reflecting the machine state at the time
the ABORT switch was pressed) display on the screen

❏ All breakpoints installed in your code are removed

❏ Breakpoint table remains intact

❏ Control returns to the debugger

Break

You can generate a ÒBreakÓ by pressing and releasing the BREAK
key on the terminal keyboard. Break does not generate an interrupt.
The only time break is recognized is when characters are sent or
received by the console port. A Break causes:

❏ All breakpoints in your code to be removed

❏ Breakpoint table to be maintained intact

❏ A snapshot to be taken of the machine state if the function
was entered using SYSCALL

❏ The snapshot is accessible to you for diagnostic purposes

Often it is desirable to terminate a debugger command prior to its
completion; for example, during the display of a large block of
memory. Break allows you to terminate the command immediately.
B-9

Debugger General Information

B
 SYSFAIL* Assertion/Negation

Upon a reset/power-up condition the debugger asserts the
VMEbus SYSFAIL* line (refer to the VMEbus specification).
SYSFAIL* stays asserted if any of the following has occurred:

❏ Confidence test failure

❏ NVRAM checksum error

❏ NVRAM low battery condition

❏ Local memory configuration status

❏ Self test (if system mode) has completed with error

❏ MPU clock speed calculation failure

After debugger initialization is done and none of the above
situations have occurred, the SYSFAIL* line is negated. This
indicates to the user or VMEbus masters the state of the debugger.
In a multi-computer configuration, other VMEbus masters could
view the pertinent control and status registers to determine which
CPU is asserting SYSFAIL*. SYSFAIL* assertion/negation is also
affected by the ENV command.

MPU Clock Speed Calculation

The clock speed of the microprocessor is calculated and checked
against a user definable parameter housed in NVRAM (refer to the
CNFG command in the Commands Table). If the check fails, a
warning message displays. The calculated clock speed is also
checked against known clock speeds and tolerances.
B-10

Memory Requirements

B
Memory Requirements
The program portion of 177Bug is approximately 512KB of code,
consisting of:

❏ Download

❏ Debugger

❏ Diagnostic packages

and is contained entirely in EPROM. The EPROM sockets on the
MVME177 are mapped starting at location $FF800000.

177Bug requires a minimum of 64KB of contiguous read/write
memory to operate.

The ENV command controls where this block of memory is located.
Regardless of where the onboard RAM is located, the first 64KB is
used for 177Bug stack and static variable space and the rest is
reserved as user space. Whenever the MVME177 is reset:

❏ Target PC is initialized to the address corresponding to the
beginning of the user space

❏ Target stack pointers are initialized to addresses within the
user space

❏ Target Interrupt Stack Pointer (ISP) set to the top of the user
space

At power-up or reset, all 8KB of memory at addresses $FFE0C000
through $FFE0DFFF is completely changed by the 177Bug initial
stack.
B-11

Debugger General Information

B
 Terminal Input/Output Control
When entering a command at the prompt, the following control
codes may be entered for limited command line editing.

Note The presence of the caret (^) before a character
indicates that the Control (CTRL) key must be held
down while striking the character key.

When observing output from any 177Bug command, the XON and
XOFF characters which are in effect for the terminal port may be
entered to control the output, if the XON/XOFF protocol is enabled

^X (cancel line) The cursor is backspaced to the beginning of the line. If
the terminal port is conÞgured with the hardcopy or
TTY option (refer to PF command), then a carriage
return and line feed is issued along with another
prompt.

^H (backspace) The cursor is moved back one position. The character at
the new cursor position is erased. If the hardcopy
option is selected, a Ò/Ó character is typed along with
the deleted character.

^D (redisplay) The entire command line as entered so far is
redisplayed on the following line.

^A (repeat) Repeats the previous line. This happens only at the
command line. The last line entered is redisplayed but
not executed. The cursor is positioned at the end of the
line. You may enter the line as is or you can add more
characters to it. You can edit the line by backspacing
and typing over old characters.

 (delete or rubout) Performs the same function as ^H.
B-12

Disk I/O Support

B
(default). These characters are initialized to ̂ S and ̂ Q respectively
by 177Bug, but you may change them with the PF command. In the
initialized (default) mode, operation is as follows:

Disk I/O Support
177Bug can initiate disk input/output by communicating with
intelligent disk controller modules over the VMEbus. Disk support
facilities built into 177Bug consist of:

❏ Command-level disk operations

❏ Disk I/O system calls (only via one of the TRAP #15
instructions) for use by user programs

❏ Defined data structures for disk parameters

Parameters such as:

❏ Address where the module is mapped

❏ Device type

❏ Number of devices attached to the controller module

are kept in tables by 177Bug. Default values for these parameters
are assigned at power-up and cold-start reset, but may be altered as
described in the section on default parameters, later in this chapter.

Blocks Versus Sectors

The logical block defines the unit of information for disk devices. A
disk is viewed by 177Bug as a storage area divided into logical
blocks. By default, the logical block size is set to 256 bytes for every
block device in the system. You can change the block size on a per
device basis with the IOT command.

^S (wait) Console output is halted.
^Q (resume) Console output is resumed.
B-13

Debugger General Information

B
 The sector defines the unit of information for the media itself, as
viewed by the controller. The sector size varies for different
controllers, and the value for a specific device can be displayed and
changed with the IOT command.
B-14

Disk I/O Support

B
When a disk transfer is requested:

❏ Start and size of the transfer is specified in blocks

❏ 177Bug translates this into an equivalent sector specification

❏ Passes the sector specification on to the controller to initiate
the transfer

If the conversion from blocks to sectors yields a fractional sector
count, an error is returned and no data is transferred.

Device Probe Function

A device probe with entry into the device descriptor table is
performed whenever a specified device is accessed; i.e., when
system calls:

❏ .DSKRD

❏ .DSKWR

❏ .DSKCFIG

❏ .DSKFMT

❏ .DSKCTRL

or debugger commands:

❏ BH

❏ BO

❏ IOC

❏ IOP

❏ IOT

❏ MAR

❏ MAW

are used.
B-15

Debugger General Information

B
 The device probe mechanism utilizes the SCSI commands
ÒInquiryÓ and ÒMode SenseÓ. If the specified controller is non-SCSI,
the probe simply returns a status of Òdevice present and unknownÓ.
The device probe makes an entry into the device descriptor table
with the pertinent data. After an entry has been made, the next time
a probe is done it simply returns with Òdevice presentÓ status
(pointer to the device descriptor).

Disk I/O via 177Bug Commands

The 177Bug commands listed in the following paragraphs are
provided for disk I/O. Detailed instructions for their use are found
in the Debugging Package for Motorola 68K CISC CPUs User's Manual.
When a command is issued to a particular controller LUN and
device LUN, these LUNs are remembered by 177Bug so that the
next disk command defaults to use the same controller and device.

IOI (Input/Output Inquiry)

This command probes the system for all possible CLUN/DLUN
combinations and displays inquiry data for devices which support
it. The device descriptor table has space for a maximum of 16 device
descriptors. Use the IOI command to view the table or clear it if
necessary.

IOP (Physical I/O to Disk)

IOP allows you to:

❏ Read blocks of data

❏ Write blocks of data

❏ Format a specified device in a certain way

IOP creates a command packet from the arguments you have
specified, then invokes the proper system call function to carry out
the operation.
B-16

Disk I/O Support

B
IOT (I/O Teach)

IOT allows you to change any configurable parameters and
attributes of the device. In addition, it allows you to view the
controllers available in the system.

IOC (I/O Control)

IOC allows you to send command packets as defined by the
particular controller directly. IOC can also be used to examine the
resultant device packet after using the IOP command.

BO (Bootstrap Operating System)

BO reads an operating system or control program from the
specified device into memory, then transfers control to it.

BH (Bootstrap and Halt)

BH reads an operating system or control program from a specified
device into memory, then returns control to 177Bug. It is used as a
debugging tool.

Disk I/O via 177Bug System Calls

All operations that actually access the disk are done directly or
indirectly by 177Bug TRAP #15 system calls. (The command-level
disk operations provide a convenient way of using these system
calls without writing and executing a program).

The following system calls allow user programs to perform disk
I/O:

.DSKRD Disk read. Use this system call to read blocks from a disk into memory.

.DSKWR Disk write. Use this system call to write blocks from memory onto a
disk.
B-17

Debugger General Information

B

Refer to the Debugging Package for Motorola 68K CISC CPUs User's
Manual for information on using these and other system calls.

To perform a disk operation, 177Bug must eventually present a
particular disk controller module with a controller command
packet which has been especially prepared for that type of
controller module. (This is accomplished in the respective
controller driver module.) A command packet for one type of
controller module usually does not have the same format as a
command packet for a different type of module. The system call
facilities which perform disk I/O:

❏ Accept a generalized (controller-independent) packet format
as an argument

❏ Translate it into a controller-specific packet

❏ Send it to the specified device

Refer to the system call descriptions in the Debugging Package for
Motorola 68K CISC CPUs User's Manual for details on the format and
construction of these standardized ÒuserÓ packets.

The packets which a controller module expects to receive vary from
controller to controller. The disk driver module for the particular
hardware module (board) must take the standardized packet given
to a trap function and create a new packet which is specifically
tailored for the disk drive controller receiving it. Refer to
documentation on the particular controller module for the format
of its packets, and for using the IOC command.

.DSKCFIG Disk conÞgure. Use this system call to change the conÞguration of the
speciÞed device.

.DSKFMT Disk format. Use this system call to send a format command to the
speciÞed device.

.DSKCTRL Disk control. Use this system call to implement any special device
control functions that cannot be accommodated easily with any of the
other disk functions.
B-18

Disk I/O Support

B
Default 177Bug Controller and Device Parameters

177Bug initializes the parameter tables for a default configuration
of controllers and devices (refer to Appendix C). If the system needs
to be configured differently than this default configuration (for
example, to use a 70MB Winchester drive where the default is a
40MB Winchester drive), then these tables must be changed.

There are three ways to change parameter table contents:

❏ Using BO or BH. When you invoke one of these commands,
the configuration area of the disk is read and the parameters
corresponding to that device are rewritten according to the
parameter information contained in the configuration area.
This is a temporary change. If a cold-start reset occurs, then
the default parameter information is written back into the
tables.

❏ Using the IOT. You can use this command to reconfigure the
parameter table manually for any controller and/or device
that is different from the default. This is also a temporary
change and is overwritten if a cold-start reset occurs.

❏ Obtain the source. You can then change the configuration
files and rebuild 177Bug using different defaults. Changes
made to the defaults are permanent until changed again.

Disk I/O Error Codes

177Bug returns an error code if an attempted disk operation is
unsuccessful.

Network I/O Support

The Network Boot Firmware provides the capability to boot the
CPU through the ROM debugger using a network (local Ethernet
interface) as the boot device.

The booting process executes in two distinct phases:
B-19

Debugger General Information

B
 ❏ The first phase: the diskless remote node discovers its
network identify and the name of the file to be booted

❏ The second phase: the diskless remote node reads the boot
file across the network into its memory

The various modules (capabilities) and the dependencies of these
modules that support the overall network boot function are
described in the following paragraphs

Intel 82596 LAN Coprocessor Ethernet Driver

This driver manages/surrounds the Intel 82596 LAN Coprocessor.
Management is in the scope of:

❏ Reception of packets

❏ Transmission of packets

❏ Receive buffer flushing

❏ Interface initialization

This module ensures that the packaging and unpackaging of
Ethernet packets is performed correctly in the Boot PROM.

UDP/IP Protocol Modules

The Internet Protocol (IP) is designed for use in interconnected
systems of packet-switched computer communication networks.
The Internet protocol provides for transmitting of blocks of data
called datagrams (hence User Datagram Protocol, or UDP) from
sources to destinations, where sources and destinations are hosts
identified by fixed length addresses.

The UDP/IP protocols are necessary for the TFTP and BOOTP
protocols; TFTP and BOOTP require a UDP/IP connection.
B-20

Disk I/O Support

B
RARP/ARP Protocol Modules

The Reverse Address Resolution Protocol (RARP) basically consists
of:

❏ An identity-less node broadcasting a ÒwhoamiÓ packet onto
the Ethernet

❏ The node awaiting an answer

❏ The RARP server filling an Ethernet reply packet with the
target's Internet Address

❏ The RARP server sending it to the node

The Address Resolution Protocol (ARP) basically provides a
method of converting protocol addresses (e.g., IP addresses) to
local area network addresses (e.g., Ethernet addresses). The RARP
protocol module supports systems which do not support the
BOOTP protocol (next paragraph).

BOOTP Protocol Module

The Bootstrap Protocol (BOOTP) basically allows a diskless client
machine to discover:

❏ Its own IP address

❏ The address of a server host

❏ The name of a file to be loaded into memory and executed

TFTP Protocol Module

The Trivial File Transfer Protocol (TFTP) is a simple protocol to
transfer files. It is implemented on top of the Internet User
Datagram Protocol (UDP or Datagram) so it may be used to move
files between machines on different networks implementing UDP.
The only thing it can do is read and write files from/to a remote
server.
B-21

Debugger General Information

B
 Network Boot Control Module

The ÒcontrolÓ capability of the Network Boot Control Module is
needed to tie together all the necessary modules (capabilities) and
to sequence the booting process. The booting sequence consists of
two phases:

❏ ÒAddress determination and bootfile selectionÓ phase

❏ ÒFile transferÓ phase

The first phase utilizes the RARP/BOOTP capability and the
second phase utilizes the TFTP capability.

Network I/O Error Codes

177Bug returns an error code whenever an attempted network
operation is unsuccessful.

Multiprocessor Support
The MVME177 dual-port RAM feature makes the shared RAM
available to remote processors as well as to the local processor. This
can be done by either of the following two methods. Either method
can be enabled/disabled by the ENV command as its Remote Start
Switch Method.

Multiprocessor Control Register (MPCR) Method

A remote processor can initiate program execution in the local
MVME177 dual-port RAM by issuing a remote GO command
using the Multiprocessor Control Register (MPCR). The MPCR,
located at shared RAM location of $800 offset from the base address
the debugger loads it at, contains one of two longwords used to
control communication between processors. The MPCR contents
are organized as follows:

$800 * N/A N/A N/A (MPCR)
B-22

Multiprocessor Support

B
The status codes stored in the MPCR are of two types:

❏ Status returned (from the monitor)

❏ Status set (by the bus master)

The status codes that may be returned from the monitor are:

The status codes that may be set by the bus master are:

The Multiprocessor Address Register (MPAR), located in shared
RAM location of $804 offset from the base address the debugger
loads it at, contains the second of two longwords used to control
communication between processors. The MPAR contents specify
the address at which execution for the remote processor is to begin
if the MPCR contains a G or B. The MPAR is organized as follows:

At power-up, the debug monitor self-test routines initialize RAM,
including the memory locations used for multi-processor support
($800 through $807).

The MPCR contains $00 at power-up, indicating that initialization
is not yet complete. As the initialization proceeds, the execution
path comes to the ÒpromptÓ routine. Before sending the prompt,
this routine places an R in the MPCR to indicate that initialization
is complete. Then the prompt is sent.

If no terminal is connected to the port, the MPCR is still polled to
determine whether an external processor requires control to be
passed to the dual-port RAM. If a terminal does respond, the MPCR
is polled for the same purpose while the serial port is being polled
for user input.

HEX 0 (HEX 00) -- Wait. Initialization not yet complete.
ASCII R (HEX 52) -- Ready. The Þrmware monitor is watching for a change.
ASCII E (HEX 45) -- Code pointed to by the MPAR address is executing.

ASCII G (HEX 47) -- Use Go Direct (GD) logic specifying the MPAR address.
ASCII B (HEX 42) -- Install breakpoints using the Go (G) logic.

$804 * * * * (MPAR)
B-23

Debugger General Information

B
 An ASCII G placed in the MPCR by a remote processor indicates
that the Go Direct type of transfer is requested. An ASCII B in the
MPCR indicates that breakpoints are to be armed before control is
transferred (as with the GO command).

In either sequence, an E is placed in the MPCR to indicate that
execution is underway just before control is passed to RAM. (Any
remote processor could examine the MPCR contents).

If the code being executed in dual-port RAM is to reenter the debug
monitor, a TRAP #15 call using function $0063 (SYSCALL
.RETURN) returns control to the monitor with a new display
prompt. Note that each time the debug monitor returns to the
prompt, an R is moved into the MPCR to indicate that control can
be transferred once again to a specified RAM location.

GCSR Method

A remote processor can initiate program execution in the local
MVME177 dual-port RAM by issuing a remote GO command
using the VMEchip2 Global Control and Status Registers (GCSR).
The remote GO command causes the following sequence:

❏ Remote processor places the MVME177 execution address in
general purpose registers 0 and 1 (GPCSR0 and GPCSR1)

❏ Remote processor sets bit 8 (SIG0) of the VMEchip2 LM/SIG
register

❏ MVME177 installs breakpoints and begins execution

The result is identical to the MPCR method (with status code B)
described in the previous section.

The GCSR registers are accessed in the VMEbus short I/O space.
Each general purpose register is two bytes wide, occurring at an
even address. The general purpose register number 0 is at an offset
of $8 (local bus) or $4 (VMEbus) from the start of the GCSR
registers. The local bus base address for the GCSR is $FFF40100. The
VMEbus base address for the GCSR depends on the group select
value and the board select value programmed in the Local Control
B-24

Diagnostic Facilities

B
and Status Registers (LCSR) of the MVME177. The execution
address is formed by reading the GCSR general purpose registers
in the following manner:

The address appears as:

Diagnostic Facilities
The 177Bug hardware diagnostics are intended for testing and
troubleshooting of the MVME177.

In order to use the diagnostics, you must switch to the diagnostic
directory. You may switch between directories by using the SD
(Switch Directories) command. You may view a list of the
commands in the directory that you are currently in by using the
HE (Help) command.

If you are in the debugger directory, the debugger prompt
177-Bug> displays, and all of the debugger commands are available.
Diagnostics commands cannot be entered at the 177-Bug> prompt.

If you are in the diagnostic directory, the diagnostic prompt:
177-Diag> displays, and all of the debugger and diagnostic
commands are available.

The diagnostic test groups are listed in the following table. Refer to
the 177Bug Diagnostics User's Manual for complete descriptions of
the diagnostic routines available in each test group and instructions
on how to invoke them.

GPCSR0 used as the upper 16 bits of the address
GPCSR1 used as the lower 16 bits of the address

GPCSR0 GPCSR1
B-25

Debugger General Information

B

Notes 1. You may enter command names in either uppercase
or lowercase.

2. Some diagnostics depend on restart defaults that are
set up only in a particular restart mode. Refer to the
documentation on a particular diagnostic for the
correct mode.

Table B-1. Diagnostic Test Groups
Test Group Description

RAM Local RAM Tests
SRAM Static RAM Tests
RTC MK48T0x Real-Time Clock Tests
PCC2 Peripheral Channel Controller Tests
MCECC Memory Board Tests
MEMC1 MC040 Memory Controller 1 ASIC Tests
MEMC2 MC040 Memory Controller 2 ASIC Tests
ST2401 CD2401 Serial Port Tests
CMMU Cache and Memory Management Unit Tests
VME2 VME Interface ASIC VMEchip2 Tests
LANC LAN Coprocessor (Intel 82596) Tests
NCR NCR 53C710 SCSI I/O Processor Tests
FLASH Flash Memory Tests
B-26

Using the 177Bug Debugger

B
Using the 177Bug Debugger

Entering Debugger Command Lines

177Bug is command-driven and performs its various operations in
response to user commands entered at the keyboard. When the
debugger prompt (177-Bug>) appears on the terminal screen, then
the debugger is ready to accept commands.

As the command line is entered, it is stored in an internal buffer.
Execution begins only after the carriage return is entered, so that
you can correct entry errors, if necessary, using the control
characters described in Chapter 3.

When you enter a command, the debugger executes the command
and the prompt reappears. However, if the command entered
causes execution of user target code, for example GO, then control
may or may not return to the debugger, depending on what the
user program does. For example, if a breakpoint has been specified,
then control returns to the debugger when the breakpoint is
encountered during execution of the user program. Alternately, the
user program could return to the debugger by means of the TRAP
#15 function Ò.RETURNÓ.

In general, a debugger command is made up of the following parts:

a. The command identifier (i.e., MD or md for the Memory
Display command). Note that either upper- or lowercase is
allowed.

b. A port number if the command is set up to work with
more than one port.

c. At least one intervening space before the first argument.

d. Any required arguments, as specified by command.

e. An option Þeld, set off by a semicolon (;) to specify
conditions other than the default conditions of the
command.
B-27

Debugger General Information

B
 The commands are shown using a modified Backus-Naur form
syntax. The metasymbols used are:

Syntactic Variables

The following syntactic variables are encountered in the command
descriptions which follow. In addition, other syntactic variables
may be used and are defined in the particular command
description in which they occur.

boldface strings A boldface string is a literal such as a command or a
program name, and is to be typed just as it appears.

italic strings An italic string is a Òsyntactic variableÓ and is to be
replaced by one of a class of items it represents.

| A vertical bar separating two or more items
indicates that a choice is to be made; only one of the
items separated by this symbol should be selected.

[] Square brackets enclose an item that is optional. The
item may appear zero or one time.

{ } Braces enclose an optional symbol that may occur
zero or more times.

DEL Delimiter; either a comma or a space.
EXP Expression (described in detail in a following section).
ADDR Address (described in detail in a following section).
COUNT Count; the syntax is the same as for EXP.
RANGE A range of memory addresses which may be speciÞed

either by ADDR DEL ADDR or by ADDR: COUNT.
TEXT An ASCII string of up to 255 characters, delimited at

each end by the single quote mark (').
B-28

Using the 177Bug Debugger

B
Expression as a Parameter

An expression can be one or more numeric values separated by the
arithmetic operators:

❏ Plus (+)

❏ Minus (-)

❏ Multiplied by (*)

❏ Divided by (/)

❏ Logical AND (&)

❏ Shift left (<<)

❏ Shift right (>>)

Numeric values may be expressed in either:

❏ Hexadecimal

❏ Decimal

❏ Octal

❏ Binary

by immediately preceding them with the proper base identifier.

If no base identifier is specified, then the numeric value is assumed
to be hexadecimal.

Data Type Base IdentiÞer Examples

Integer Hexadecimal $ $FFFFFFFF
Integer Decimal & &1974, &10-&4
Integer Octal @ @456
Integer Binary % %1000110
B-29

Debugger General Information

B
 A numeric value may also be expressed as a string literal of up to
four characters. The string literal must begin and end with the
single quote mark ('). The numeric value is interpreted as the
concatenation of the ASCII values of the characters. This value is
right-justified, as any other numeric value would be.

Evaluation of an expression is performed according to the
following rules:

❏ Always from left to right unless parentheses are used to
group part of the expression

❏ There is no operator precedence

❏ Subexpressions within parentheses are evaluated first

❏ Nested parenthetical subexpressions are evaluated from the
inside out

 Valid expression examples:

The total value of the expression must be between 0 and
$FFFFFFFF.

String
Literal

Numeric Value
(In Hexadecimal)

'A' 41
'ABC' 414243
'TEST' 54455354

Expression Result (In Hex) Notes

FF0011 FF0011
45+99 DE
&45+&99 90
@35+@67+@10 5C
%10011110+%1001 A7
88<<4 880 shift left
AA&F0 A0 logical AND
B-30

Using the 177Bug Debugger

B
Address as a Parameter

Many commands use ADDR as a parameter. The syntax accepted
by 177Bug is similar to the one accepted by the MC68060 one-line
assembler. All control addressing modes are allowed. An Òaddress
+ offset registerÓ mode is also provided.

Address Formats

Table B-2 summarizes the address formats which are acceptable for
address parameters in debugger command lines.

Table B-2. Debugger Address Parameter Formats

Format Example Description

N 140 Absolute address+contents of
automatic offset register.

N+Rn 130+R5 Absolute address+contents of
the speciÞed offset register (not
an assembler-accepted syntax).

(An) (A1) Address register indirect (also
post-increment, predecrement)

(d,An) or
d(An)

(120,A1)
120(A1)

Address register indirect with
displacement (two formats
accepted).

(d,An,Xn) or
d(An,Xn)

(&120,A1,D2)
&120(A1,D2)

Address register indirect with
index and displacement (two
formats accepted).

([bd,An,Xn],od) ([C,A2,A3],&100) Memory indirect preindexed.
([bd,An],Xn,od) ([12,A3],D2,&10) Memory indirect postindexed.
For the memory indirect modes, Þelds can be omitted.
For example, three of many permutations are as follows:
([,An],od) ([,A1],4)
([bd]) ([FC1E])
([bd,,Xn]) ([8,,D2])

Notes N Ñ Absolute address(any valid expression).
B-31

Debugger General Information

B

Note In commands with RANGE specified as ADDR DEL
ADDR, and with size option W or L chosen, data at the
second (ending) address is acted on only if the second
address is a proper boundary for a word or longword,
respectively

Offset Registers

Eight pseudo-registers (R0 through R7) called offset registers are
used to simplify the debugging of relocatable and position-
independent modules. The listing files in these types of programs
usually start at an address (normally 0) that is not the one at which
they are loaded, so it is harder to correlate addresses in the listing
with addresses in the loaded program. The offset registers solve
this problem by taking into account this difference and forcing the
display of addresses in a relative address+offset format. Offset
registers have adjustable ranges and may even have overlapping
ranges. The range for each offset register is set by two addresses:

❏ Base

❏ Top

Specifying the base and top addresses for an offset register sets its
range. In the event that an address falls in two or more offset
registers' ranges, the one that yields the least offset is chosen.

Note Relative addresses are limited to 1MB (5 digits),
regardless of the range of the closest offset register.

An Ñ Address register n.
Xn Ñ Index register n (An or Dn).
d Ñ Displacement (any valid expression).
bd Ñ Base displacement (any valid expression).
od Ñ Outer displacement (any valid expression).
n Ñ Register number (0 to 7).
Rn Ñ Offset register n.
B-32

Using the 177Bug Debugger

B
Example:

A portion of the listing file of an assembled, relocatable module is
shown below:

 1
 2 *
 3 * MOVE STRING SUBROUTINE
 4 *
 5 0 00000000 48E78080 MOVESTR MOVEM.L D0/A0,—(A7)
 6 0 00000004 4280 CLR.L D0
 7 0 00000006 1018 MOVE.B (A0)+,D0
 8 0 00000008 5340 SUBQ.W #1,D0
 9 0 0000000A 12D8 LOOP MOVE.B (A0)+,(A1)+
 10 0 0000000C 51C8FFFC MOVS DBRA D0,LOOP
 11 0 00000010 4CDF0101 MOVEM.L (A7)+,D0/A0
 12 0 00000014 4E75 RTS
 13
 14 END
 ****** TOTAL ERRORS 0——
 ****** TOTAL WARNINGS 0——

The above program was loaded at address $0001327C.

The disassembled code is shown next:

177Bug>MD 1327C;DI
0001327C 48E78080 MOVEM.L D0/A0,—(A7)
00013280 4280 CLR.L D0
00013282 1018 MOVE.B (A0)+,D0
00013284 5340 SUBQ.W #1,D0
00013286 12D8 MOVE.B (A0)+,(A1)+
00013288 51C8FFFC DBF D0,$13286
0001328C 4CDF0101 MOVEM.L (A7)+,D0/A0
00013290 4E75 RTS
177Bug>

By using one of the offset registers, the disassembled code
addresses can be made to match the listing file addresses as follows:
B-33

Debugger General Information

B
 177Bug>OF R0
R0 =00000000 00000000? 1327C. <CR>
177Bug>MD 0+R0;DI <CR>
00000+R0 48E78080 MOVEM.L D0/A0,—(A7)
00004+R0 4280 CLR.L D0
00006+R0 1018 MOVE.B (A0)+,D0
00008+R0 5340 SUBQ.W #1,D0
0000A+R0 12D8 MOVE.B (A0)+,(A1)+
0000C+R0 51C8FFFC DBF D0,$A+R0
00010+R0 4CDF0101 MOVEM.L (A7)+,D0/A0
00014+R0 4E75 RTS
177Bug>

For additional information about the offset registers, refer to the
Debugging Package for Motorola 68K CISC CPUs User's Manual.

Port Numbers

Some 177Bug commands allow you the option of choosing the port
to be used to input or output. Valid port numbers which may be
used for these commands are as follows:

1. MVME177 EIA-232-D Debug (Terminal Port 0 or 00) (PORT 1
on the MVME177 P2 connector). Sometimes known as the
Òconsole portÓ, it is used for interactive user input/output by
default.

2. MVME177 EIA-232-D (Terminal Port 1 or 01) (PORT 2 on the
MVME177 P2 connector). Sometimes known as the Òhost
portÓ, this is the default for:

Ð Downloading

Ð Uploading

Ð Concurrent mode

Ð Transparent modes.

Note These logical port numbers (0 and 1) are shown in the
pinouts of the MVME177 module as ÒSERIAL PORT 1"
and ÒSERIAL PORT 2", respectively. Physically, they
are all part of connector P2.
B-34

Entering and Debugging Programs

B
Entering and Debugging Programs
There are various ways to enter a user program into system
memory for execution. One way is to create the program using the
Memory Modify (MM) command with the assembler/disassembler
option. You enter the program one source line at a time. After each
source line is entered, it is assembled and the object code loads into
memory. Refer to the Debugging Package for Motorola 68K CISC CPUs
User's Manual for complete details of the 177Bug Assembler /
Disassembler.

Another way to enter a program is to download an object file from
a host system. The program must be in S-record format (described
in the Debugging Package for Motorola 68K CISC CPUs User's Manual)
and may have been assembled or compiled on the host system.
Alternately, the program may have been previously created using
the 177Bug MM command as outlined above and stored to the host
using the Dump (DU) command. A communication link must exist
between the host system and the MVME177 port 1. (Hardware
configuration details are in the section on Installation and Start-Up in
Chapter 3.) The file is downloaded from the host to MVME177
memory by the Load (LO) command.

Another way is by reading in the program from disk, using one of
the following disk commands:

❏ BO

❏ BH

❏ IOP

Once the object code has been loaded into memory, you can:

❏ Set breakpoints

❏ Run the code

❏ Trace through the code
B-35

Debugger General Information

B
 Calling System Utilities from User Programs
A convenient way of doing character input/output and many other
useful operations has been provided so that you do not have to
write these routines into the target code. You can access various
177Bug routines via one of the MC68060 TRAP instructions, using
vector #15. Refer to the Debugging Package for Motorola 68K CISC
CPUs User's Manual for details on the various TRAP #15 utilities
available and how to invoke them from within a user program.

Preserving the Debugger Operating
Environment

This section explains how to avoid contaminating the operating
environment of the debugger. 177Bug uses certain of the MVME177
onboard resources and also offboard system memory to contain
temporary variables, exception vectors, etc. If you disturb resources
upon which 177Bug depends, then the debugger may function
unreliably or not at all.

If your application enables translation through the Memory
Management Units (MMUs), and if your application utilizes
resources of the debugger (e.g., system calls), your application must
create the necessary translation tables for the debugger to have
access to its various resources.The debugger honors the enabling of
the MMUs; it does not disable translation.

177Bug Vector Table and Workspace

As described in the Memory Requirements section in Chapter 3,
177Bug needs 64KB of read/write memory to operate. The 177Bug
reserves a 1024-byte area for a user program vector table area and
then allocates another 1024-byte area and builds an exception
vector table for the debugger itself to use. Next, 177Bug:

❏ Reserves space for static variables

❏ Initializes these static variables to predefined default values
B-36

Preserving the Debugger Operating Environment

B
❏ Allocates space for the system stack

❏ Initializes the system stack pointer to the top of this area

With the exception of the first 1024-byte vector table area, you must
be extremely careful not to use the above-mentioned memory areas
for other purposes. You should refer to the Memory Requirements
section in Chapter 3 to determine how to dictate the location of the
reserved memory areas. If, for example, your program
inadvertently wrote over the static variable area containing the
serial communication parameters, these parameters would be lost,
resulting in a loss of communication with the system console
terminal. If your program corrupts the system stack, then an
incorrect value may be loaded into the processor Program Counter
(PC), causing a system crash.

Hardware Functions

The only hardware resources used by the debugger are the
EIA-232-D ports, which are initialized to interface to the debug
terminal. If these ports are reprogrammed, the terminal
characteristics must be modified to suit, or the ports should be
restored to the debugger-set characteristics prior to reinvoking the
debugger.

Exception Vectors Used by 177Bug

The exception vectors used by the debugger are listed in Table B-3.
These vectors must reside at the specified offsets in the target
program's vector table for the associated debugger facilities
(breakpoints, trace mode, etc.) to operate.

When the debugger handles one of the exceptions listed in Table
B-3, the target stack pointer is left pointing past the bottom of the
exception stack frame created; that is, it reflects the system stack
pointer values just before the exception occurred. In this way, the
operation of the debugger facility (through an exception) is
transparent to users.
B-37

Debugger General Information

B

Example: Trace one instruction using debugger.

177Bug>RD
PC =000E0000 SR =2700=TR:OFF_S._7_..... VBR =00000000
SSP* =00010000 USP =00010000 SFC =1=UD DFC =1=UD
CACR =00000000=D:....._B:..._I:... PCR =04300000
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =000C0000 A6 =00000000 A7 =00010000 0000E
000 4E71 NOP 177Bug>T
PC =00010006 SR =2700=TR:OFF_S._7_..... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFFC
00010006 D280 ADD.L D0,D1
177Bug>

Table B-3. Exception Vectors Used by 177Bug

Vector
Offset Exception 177Bug Facility

$10 Illegal instruction Breakpoints (used by GO, GN, GT)
$24 Trace Trace operations (such as T, TC, TT)
$80-$B8 TRAP #0 - #14 Used internally
$BC TRAP #15 System calls
$Note Level 7 interrupt ABORT push-button
$Note Level 7 interrupt AC Fail
$DC FP Unimplemented Data

Type
Software emulation and data type
conversion of ßoating point data.

Note: Offsets marked ÒNoteÓ depend on what the Vector Base Register (VBR)
is set to in the VMEchip2.
B-38

Preserving the Debugger Operating Environment

B
Notice that the value of the target stack pointer register (A7) has not
changed even though a trace exception has taken place. Your
program may either use the exception vector table provided by
177Bug or it may create a separate exception vector table of its own.
The two following sections detail these two methods.

Using 177Bug Target Vector Table

The 177Bug initializes and maintains a vector table area for target
programs. A target program is any program started by the bug:

❏ Manually with GO command

❏ Manually with TR type command

❏ Automatically with the BO command

The start address of this target vector table area is the base address
of the debugger memory. This address loads into the target-state
VBR at power-up or cold-start reset and can be observed by using
the RD command to display the target-state registers immediately
after power-up.

The 177Bug initializes the target vector table with the debugger
vectors listed in Table B-3 and fills the other vector locations with
the address of a generalized exception handler (refer to the 177Bug
Generalized Exception Handler section in this chapter). The target
program may take over as many vectors as desired by simply
writing its own exception vectors into the table. If the vector
locations listed in Table B-3 are overwritten, the accompanying
debugger functions are lost.

The 177Bug maintains a separate vector table for its own use. In
general, you do not have to be aware of the existence of the
debugger vector table. It is completely transparent and you should
never make any modifications to the vectors contained in it.
B-39

Debugger General Information

B
 Creating a New Vector Table

Your program may create a separate vector table in memory to
contain its exception vectors. If this is done, the program must
change the value of the VBR to point to the new vector table. In
order to use the debugger facilities you can copy the proper vectors
from the 177Bug vector table into the corresponding vector
locations in your program vector table.

The vector for the 177Bug generalized exception handler (described
in detail in the 177Bug Generalized Exception Handler section in this
chapter) may be copied from offset $08 (bus error vector) in the
target vector table to all locations in your program vector table
where a separate exception handler is not used. This provides
diagnostic support in the event that your program is stopped by an
unexpected exception. The generalized exception handler gives a
formatted display of the target registers and identifies the type of
the exception.

The following is an example of a routine which builds a separate
vector table and then moves the VBR to point at it:

*
*** BUILDX - Build exception vector table ****
*
BUILDX MOVEC.L VBR,A0 Get copy of VBR.
 LEA $10000,A1 New vectors at $10000.
 MOVE.L $80(A0),D0 Get generalized exception vector.
 MOVE.W $3FC,D1 Load count (all vectors).
LOOP MOVE.L D0,(A1,D1) Store generalized exception vector.
 SUBQ.W #4,D1
 BNE.B LOOP Initialize entire vector table.
 MOVE.L $10(A0),$10(A1) Copy breakpoints vector.
 MOVE.L $24(A0),$24(A1) Copy trace vector.
 MOVE.L $BC(A0),$BC(A1) Copy system call vector.
 LEA.L COPROCC(PC),A2 Get your exception vector.
 MOVE.L A2,$2C(A1) Install as F-Line handler.
 MOVEC.L A1,VBR Change VBR to new table.
 RTS
 END
B-40

Preserving the Debugger Operating Environment

B
It may happen that your program uses one or more of the exception
vectors that are required for debugger operation. Debugger
facilities may still be used, however, if your exception handler can
determine when to handle the exception itself and when to pass the
exception to the debugger.

When an exception occurs which you want to pass on to the
debugger; i.e., ABORT, your exception handler must read the
vector offset from the format word of the exception stack frame.
This offset is added to the address of the 177Bug target program
vector table (which your program saved), yielding the address of
the 177Bug exception vector. The program then jumps to the
address stored at this vector location, which is the address of the
177Bug exception handler.

Your program must make sure that there is an exception stack
frame in the stack, and that it is exactly the same as the processor
would have created for the particular exception before jumping to
the address of the exception handler.

The following is an example of an exception handler which can pass
an exception along to the debugger:

*
*** EXCEPT - Exception handler ****
*
EXCEPT SUBQ.L #4,A7 Save space in stack for a PC value.
 LINK A6,#0 Frame pointer for accessing PC space.
 MOVEM.L A0-A5/D0-D7,-(SP) Save registers.
 :
 : decide here if your code handles exception, if so, branch...
 :
 MOVE.L BUFVBR,A0 Pass exception to debugger; Get saved VBR.
 MOVE.W 14(A6),D0 Get the vector offset from stack frame.
 AND.W #$0FFF,D0 Mask off the format information.
 MOVE.L (A0,D0.W),4(A6) Store address of debugger exc handler.
 MOVEM.L (SP)+,A0-A5/D0-D7 Restore registers.
 UNLK A6
 RTS Put addr of exc handler into PC and go.
B-41

Debugger General Information

B
 177Bug Generalized Exception Handler

The 177Bug has a generalized exception handler which it uses to
handle all of the exceptions not listed in Table B-3. For all these
exceptions, the target stack pointer is left pointing to the top of the
exception stack frame created. In this way, if an unexpected
exception occurs during execution of your code, you are presented
with the exception stack frame to help determine the cause of the
exception. The following example illustrates this:

Example:

Bus error at address $F00000. It is assumed for this example that an
access of memory location $F00000 initiates bus error exception
processing.

B-42

Preserving the Debugger Operating Environment

B

177Bug>RD
PC =000E0000 SR =2700=TR:OFF_S._7_..... VBR =00000000
SSP* =00010000 USP =00010000 SFC =1=UD DFC =1=UD
CACR =00000000=D:....._B:..._I:... PCR =04300000
D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =000C0000 A6 =00000000 A7 =00010000 0000E
000 4E71 NOP 177Bug>T

Exception: Access Fault (Local Off Board)
PC =FF839154 SR =2704
Format/Vector =7008
SSW =0145 Fault Address =00F00000 Effective Address =0000D4E8
PC =00010000 SR =2708=TR:OFF_S._7_.N... VBR =00000000
USP =0000DFFC MSP =0000EFFC ISP* =0000FFFC SFC =0=F0
DFC =0=F0 CACR =0=........
D0 =00000001 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000002 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFC0
00010000 203900F0 0000 MOVE.L ($F00000).L,D0
177Bug>

Notice that the target stack pointer is different. The target stack
pointer now points to the last value of the exception stack frame
that was stacked. The exception stack frame may now be examined
using the MD command.

177Bug>MD (A7):&30
0000FFC0 2708 0001 0000 7008 0000 FFFC 0105 0005 '.....p.........
0000FFD0 0005 0005 00F0 0000 0000 0A64 0000 FFF4 d....
0000FFE0 00F0 0000 FFFF FFFF 00F0 0000 FFFF FFFF
0000FFF0 2708 0001 A708 0001 0000 0000 '...........
177Bug>
B-43

Debugger General Information

B
 Floating Point Support
The floating point unit (FPU) of the MC68060 microprocessor chip
is supported in 177Bug. For MVME177Bug, the commands:

❏ MD

❏ MM

❏ RM

❏ RS

have been extended to allow display and modification of floating
point data in registers and in memory. Floating point instructions
can be assembled/disassembled with the DI option of the MD and
MM commands.

Valid data types that can be used when modifying a floating point
data register or a floating point memory location:

Integer Data Types

12 Byte
1234 Word
12345678 Longword

Floating Point Data Types

1_FF_7FFFFF Single Precision Real Format
1_7FF_FFFFFFFFFFFFF Double Precision Real Format
1_7FFF_FFFFFFFFFFFFFFFF Extended Precision Real Format
1111_2103_123456789ABCDEF01 Packed Decimal Real Format
-3.12345678901234501_E+123 ScientiÞc Notation Format (decimal)
B-44

Floating Point Support

B
When entering data in:

❏ Single precision

❏ Double precision

❏ Extended precision

❏ Packed decimal format

the following rules must be observed:

1. The sign field is the first field and is a binary field.

2. The exponent field is the second field and is a hexadecimal
field.

3. The mantissa field is the last field and is a hexadecimal field.

4. The sign field, the exponent field, and at least the first digit of
the mantissa field must be present (any unspecified digits in
the mantissa field are set to zero).

5. Each field must be separated from adjacent fields by an
underscore.

6. All the digit positions in the sign and exponent fields must be
present.

Single Precision Real

This format would appear in memory as:

A single precision number requires 4 bytes in memory.

1-bit sign Þeld (1 binary digit)
8-bit biased exponent Þeld (2 hex digits. Bias = $7F)

23-bit fraction Þeld (6 hex digits)
B-45

Debugger General Information

B
 Double Precision Real

This format would appear in memory as:

A double precision number requires 8 bytes in memory.

Note The single and double precision formats have an
implied integer bit (always 1).

Extended Precision Real

This format would appear in memory as:

An extended precision number requires 10 bytes in memory.

Packed Decimal Real

This format would appear in memory as:

A packed decimal number requires 12 bytes in memory.

1-bit sign Þeld (1 binary digit)
11-bit biased exponent Þeld (3 hex digits. Bias = $3FF)
52-bit fraction Þeld (13 hex digits)

1-bit sign Þeld (1 binary digit)
15-bit biased exponent Þeld (4 hex digits. Bias = $3FFF)
64-bit mantissa Þeld (16 hex digits)

4-bit sign Þeld (4 binary digits)
16-bit exponent Þeld (4 hex digits)
68-bit mantissa Þeld (17 hex digits)
B-46

Additions to FLASH Commands

B
Scientific Notation

This format provides a convenient way to enter and display a
floating point decimal number. Internally, the number is assembled
into a packed decimal number then converted into a number of the
specified data type.

Entering data in this format requires the following fields:

❏ An optional sign bit (+ or -)

❏ One decimal digit followed by a decimal point

❏ Up to 17 decimal digits (at least one must be entered)

❏ An optional Exponent field that consists of:

Ð An optional underscore

Ð The Exponent field identifier, letter ÒEÓ

Ð An optional Exponent sign (+, -)

Ð From 1 to 3 decimal digits

For more information about the MC68060 floating point unit, refer
to the MC68060 Microprocessor User's Manual.

Additions to FLASH Commands
The 4MB of Flash memory on the MVME177 is unique in the way
that the lower half ÒshadowsÓ the PROM space in the memory map.
A jumper on the board allows the user to switch visibility between
the PROM sockets or 2MB (one half) of the Flash array.

Under software control, the lower half of Flash memory may be
switched into and out of the address space normally occupied by
the upper half of Flash memory, when the jumper (J8) is installed.
B-47

Debugger General Information

B
 Flash Test Configuration Acceptable Entries

Command Input:

177-Diag>cf flash
FLASH Configuration Data:
Flash Device Test Mask =00000001 ? 0 or 1
Flash Test Starting Block =00000000 ? 0 through F
Flash Test Ending Block =0000000F ? 0 through F
Save/Restore For PATS Test [Y?N] =Y ? Y or N
Fill Data =000000FF ? any byte 00 through FF
Test Data Increment/Decrement Step =00000001? 0, 1, 2, F (-1) etc.

177-Bug>sd
177-Diag>he flash
FLASH Flash Memory Tests (DIR)
TESTS
ERASE Erase
FILL Fill
PATS Patterns

Erase Test

The erase test erases Flash memory according to the current test
configuration parameters selecting starting and ending blocks.

Command Input:

177-Diag>flash erase

Flash Fill Test

This test executes on the i28f008sa FLASHFILETM memory devices,
each having sixteen 64Kb blocks. On the MVME177 Flash memory
is jumper selectable (mapping to begin at $FF800000 or $FFA00000).
B-48

Additions to FLASH Commands

B
The Flash Fill test fills Flash memory according to the current test
configuration parameters selecting:

❏ Starting and ending block

❏ The data to fill with

❏ An increment/decrement value

Command Input:

177-Diag>flash fill

Flash Patterns Test

The Flash Patterns test writes and reads various data patterns in
Flash memory according to the current test configuration
parameters selecting starting and ending blocks, and saving /
restoring of the Flash contents.

Note If you are running the Flash test and 177Bug itself
resides in Flash, the test will fail as shown in the
example below.

Command Input:

177-Diag>flash pats

177-Bug>sd
177-Diag>flash
FLASH TESTS:.....................................Running->FAILED

FLASH/TESTS Test Failure Data:

Flash tests must be called individually and will only execute from
PROM. On many boards 177Bug is running in Flash memory.
B-49

Debugger General Information

B
 Default Flash Test Configuration

Command Input:

177-Diag>cf flash
FLASH Configuration Data:
Flash Device Test Mask =00000001 ?
Flash Test Starting Block =00000000 ?
Flash Test Ending Block =0000000F ?
Save/Restore For PATS Test [Y?N] =Y ?
Fill Data =000000FF ?
Test Data Increment/Decrement Step =00000001?

Figure B-1. Three Possible Mapping Options

When programming Flash memory on the MVME177, the
destination starting address argument to the PFLASH command
may be specified in two ways:

❏ A relative offset into the Flash memory array.

Ð $0 = the bottom or lowest possible Flash memory array
location.

Ð $3FFFFF = the top location or end of the Flash memory
array.

❏ An equivalent to the physical address that will apply when
the entire Flash is mapped in (as when J8 is removed).

Ð $FF800000 = the bottom or lowest possible Flash memory
array location.

Ð $FFBFFFFF = the top location or end of Flash memory.

UPPER
FLASH

UPPER
FLASHFLASH

LOWER

FLASH
LOWER

PROMPROM

Physical
Address
$FFBFFFFF

$FFA00000

$FF800000

$3FFFFF

$200000

$0

J8
Installed Removed

J8 J8
Installed

Flash Relative
(offset) Address
B-50

Additions to FLASH Commands

B
These addressing methods apply no matter which of the three
mapping options is in effect when the PFLASH command is
entered.

Two sets of information are reported to the user when the PFLASH
command is executed:

❏ The user is asked to verify the arguments entered.

❏ The block number and physical address for each operation
(erasing, programming, and verifying) is displayed.

PFLASH reports the current physical address and the absolute
block number for the operation in progress. In other words, the
messages displayed while Flash is being:

❏ Programmed

❏ Erased

❏ Verified

may not appear to be based on the same destination starting
address that was entered. This happens because the PFLASH
command is needed to switch the portion of the Flash that is visible
in order to program it. If switching is required, the map will be
restored to the condition that existed before PFLASH was entered.

SFLASH Command

A new command is added to the 177BUG to assist the user in
accessing the 4MB Flash memory array. However, the SFLASH
command is valid only when jumper J8 is installed. SFLASH
switches between the upper and lower half of the Flash array that
appears in the visible address space. Two arguments are allowed:

❏ ÒLÓ to specifically select the lower half of Flash

❏ ÒUÓ for the upper half

If no argument is entered, the switch will simply change from the
current half to the opposite and display a message to indicate the
change.
B-51

Debugger General Information

B

177-Diag>sflash;l
FLASH Memory Visible Now = Lower Half

177-Diag>sflash;u
FLASH Memory Visible Now = Upper Half

177-Diag>sflash
FLASH Memory Visible Now = Lower Half

The destination address DSAADR of the PFLASH command is
always interpreted using the J8 removed mapping, all of Flash
mapped in. See Figure B-1, Three Possible Mapping Options.

This mapping is used whether or not J8 is installed and regardless
of the most recent SFLASH command.

This mapping is also used if a relative offset is supplied as the
destination address.

This treatment of the destination address allows the same PFLASH
command to be used whether or not J8 is installed. It also allows
programming the entire 4MB of flash or any portion with a single
PFLASH command.

Assuming J8 is installed, then for this command sequence:

sflash;l
pflash ff800000 ff9fffff ffa00000

The SFLASH;L command has no effect on the destination address
used by the PFLASH command. It is only a convenient way for the
user to change which portion of the Flash memory array is in view.

In this case PFLASH programs the flash beginning at the location
of physical address ffa00000 when J8 is out. This copies the bug
from ROM at physical address ff800000 into the upper half of flash.

For the sequence:

pflash ff800000 ff9fffff 0

The PFLASH command programs the flash beginning at the Flash
Relative Address of 0 (which corresponds to the flash physical
address ff800000 when J8 is out). This copies the bug from ROM at
physical address ff800000 into the lower half of flash.
B-52

The 177Bug Debugger Command Set

B
Additionally, both of these PFLASH commands do the same thing
when J8 is removed as they do when J8 is installed, regardless of
any SFLASH command that may have been executed. In the case
where the bug is programming over itself the user will not regain
the bug prompt. Successful programming is indicated by the FAIL
LED blinking twice per second. If the programming fails or if the
programmed image is corrupted then it is likely that the bug image
in lower flash is corrupted and the only recourse is to replace J8 and
execute the bug from ROM.

For additional information on the PFLASH command consult the
Debugging Package for Motorola 68K CISC CPUs UserÕs Manual.

The 177Bug Debugger Command Set
The 177Bug debugger commands are summarized in Table B-4.

HE is the 177Bug help facility. HE<CR> displays only the
command names of all available commands along with their
appropriate titles. HE COMMAND displays:

❏ The command name

❏ Title for that particular command

❏ Complete command syntax

The command syntax is shown using the symbols explained earlier
in this appendix.

Appendix C lists:

❏ Controllers

❏ Devices

❏ LUNs associated with the devices

The CNFG and ENV commands are explained in Appendix D. All
other details of these two commands are explained in the 177Bug
Diagnostics User's Manual.

Details of all the other debugger commands are explained in the
Debugging Package for Motorola 68K CISC CPUs UserÕs Manual.
B-53

Debugger General Information

B
 Table B-4. Debugger Commands
Command
Mnemonic Title

Command Line
Syntax

AB Automatic Bootstrap
Operating System

AB [;V]

NOAB No Autoboot NOAB
AS One Line Assembler AS ADDR
BC Block of Memory Compare BC RANGE DEL ADDR [; B|W|L]
BF Block of Memory Fill BF RANGE DEL data [DEL increment]

[; B|W|L]
BH Bootstrap Operating

System and Halt
BH [DEL Controller LUN][DEL Device
LUN][DEL String]

BI Block of Memory Initialize BI RANGE [;B|W|L]
BM Block of Memory Move BM RANGE DEL ADDR [; B|W|L]
BO Bootstrap Operating

System
BO [DEL Controller LUN][DEL Device
LUN][DEL String]

BR Breakpoint Insert BR [ADDR[:COUNT]]
NOBR Breakpoint Delete NOBR [ADDR]
BS Block of Memory Search BS RANGE DEL TEXT [;B|W|L]

or BS RANGE DEL data [DEL mask] [;B|W|L
[,N][,V]]

BV Block of Memory Verify BV RANGE DEL data [increment] [;B|W|L]
CM Concurrent Mode CM [[PORT][DEL ID-STRING][DEL BAUD]

[DEL PHONE-NUMBER]]|[;A]|[;H]
NOCM No Concurrent Mode NOCM
CNFG ConÞgure Board

Information Block
CNFG [;[I][M]]

CS Checksum CS RANGE [;B|W|L]
DC Data Conversion DC EXP | ADDR [;[B][O][A]]
DMA DMA Block of Memory

Move
DMA RANGE DEL ADDR DEL VDIR DEL AM
 DEL BLK [;B|W|L]

DS One Line Disassembler DS ADDR [:COUNT | DEL ADDR]
DU Dump S-records DU [PORT]DEL RANGE [DEL TEXT][DEL

ADDR]
[DEL OFFSET][;B|W|L]

ECHO Echo String ECHO [PORT]DEL{hexadecimal number}
{'string'}
B-54

The 177Bug Debugger Command Set

B

ENV Set Environment to
Bug/Operating System

ENV [;[D]]

GD Go Direct (Ignore
Breakpoints)

GD [ADDR]

GN Go to Next Instruction GN
GO Go Execute User Program GO [ADDR]
GT Go to Temporary

Breakpoint
GT ADDR

HE Help HE [COMMAND]
IOC I/O Control for Disk IOC
IOI I/O Inquiry IOI [;[C|L]]
IOP I/O Physical (Direct Disk

Access)
IOP

IOT I/O ÒTEACHÓ for
ConÞguring
Disk Controller

IOT [;[A][F][H][T]]

IRQM Interrupt Request Mask IRQM [MASK]
LO Load S-records from Host LO [n] [ADDR] [;X|C|T] [=text]
MA Macro DeÞne/Display MA [NAME|;L]
NOMA Macro Delete NOMA [NAME]
MAE Macro Edit MAE name line# [string]
MAL Enable Macro Expansion

Listing
MAL

NOMAL Disable Macro Expansion
Listing

NOMAL

MAW Save Macros MAW [controller LUN][DEL[device LUN][DEL
block #]]

MAR Load Macros MAR [controller LUN][DEL[device LUN][DEL
block #]]

MD Memory Display MD[S] ADDR[:COUNT | ADDR]
 [; [B|W|L|S|D|X|P|DI]]

MENU Menu MENU
MM Memory Modify MM ADDR[;[[B|W|L|S|D|X|P][A][N]

]|[DI]]

Table B-4. Debugger Commands (Continued)
Command
Mnemonic Title

Command Line
Syntax
B-55

Debugger General Information

B

MMD Memory Map Diagnostic MMD RANGE DEL increment[;B|W|L]
MS Memory Set MS ADDR {Hexadecimal number} {'string'}
MW Memory Write MW ADDR DATA [;B|W|L]
NAB Automatic Network Boot

Operating System
NAB

NBH Network Boot Operating
System and Halt

NBH [Controller LUN][Device LUN][Client IP
Address]

[Server IP Address][String]
NBO Network Boot Operating

System
NBO [Controller LUN][Device LUN][Client IP
Address]

[Server IP Address][String]
NIOC Network I/O Control NIOC
NIOP Network I/O Physical NIOP
NIOT Network I/O Teach NIOT [;[H]|[A]]
NPING Network Ping NPING Controller-LUN Device-LUN Source-IP

Destination-IP [N-Packets]
OF Offset Registers

Display/Modify
OF [Rn[;A]]

PA Printer Attach PA [n]
NOPA Printer Detach NOPA [n]
PF Port Format PF [PORT]
NOPF Port Detach NOPF [PORT]
PFLASH Load FLASH Memory PFLASH SSADDR SEADDR DSADDR

[IEADDR] [; [A|R] [X]]
PFLASH SSADDR SEADDR DSADDR
[IEADDR] [;[B|W|L] [A|R] [X]]

PS Put RTC Into Power Save
Mode for Storage

PS

RB ROMboot Enable RB[;V]
NORB ROMboot Disable NORB
RD Register Display RD {[+|-|=][DNAME][/]} {[+|-|=][REG1[-

REG2]][/]} [;E]

Table B-4. Debugger Commands (Continued)
Command
Mnemonic Title

Command Line
Syntax
B-56

The 177Bug Debugger Command Set

B

REMOTE Connect the Remote
Modem to
CSO

REMOTE

RESET Cold/Warm Reset RESET
RL Read Loop RL ADDR;[B|W|L]
RM Register Modify RM [REG] [;[S|D]]
RS Register Set RS REG [DEL EXP|DEL ADDR][;[S|D]]
SD Switch Directories SD
SET Set Time and Date SET mmddyyhhmm

or SET n;C
SFLASH Switch Visible FLASH SFLASH [;L|U]
SYM Symbol Table Attach SYM [ADDR]
NOSYM Symbol Table Detach NOSYM
SYMS Symbol Table

Display/Search
SYMS [symbol-name]|[;S]

T Trace T [COUNT]
TA Terminal Attach TA [port]
TC Trace on Change of

Control Flow
TC [count]

TIME Display Time and Date TIME [;[C|L|O]]
TM Transparent Mode TM [n] [ESCAPE]
TT Trace to Temporary

Breakpoint
TT ADDR

VE Verify S-Records Against
Memory

VE [n] [ADDR] [;[X][C]] [=text]

VER Display Revision/Version VER [; E]
WL Write Loop WL ADDR:DATA;[B|W|L]

Table B-4. Debugger Commands (Continued)
Command
Mnemonic Title

Command Line
Syntax
B-57

Debugger General Information

B

B-58

C
CDisk/Tape Controller Data
Disk/Tape Controller Modules Supported
The following VMEbus disk/tape controller modules are
supported by 177Bug. The default address for each controller type
is First Address. The controller can be addressed by First CLUN
during:

❏ Command BH

❏ Command BO

❏ Command IOP

❏ TRAP #15 calls .DSKRD or .DSKWR

Note that if another controller of the same type is used, the second
one must have its address changed by its onboard jumpers and/or
switches, so that it matches Second Address and can be called up by
Second CLUN.

Controller Type
First

CLUN
First

Address
Second
CLUN

Second
Address

CISC Single Board Computer (SBC) $00
 (Note 1)

-- -- --

MVME320 - Winchester/Floppy Controller $11
(Note 2)

$FFFFB000 $12 (Note
2)

$FFFFA000

MVME323 - ESDI Winchester Controller $08 $FFFFA000 $09 $FFFFA200
MVME327A - SCSI Controller $02 $FFFFA600 $03 $FFFFA700
MVME328 - SCSI Controller $06 $FFFF9000 $07 $FFFF9800
MVME328 - SCSI Controller $16 $FFFF4800 $17 $FFFF5800
MVME328 - SCSI Controller $18 $FFFF7000 $19 $FFFF7800
MVME350 - Streaming Tape Controller $04 $FFFF5000 $05 $FFFF5100

Notes: (1) If the SBC (e.g., an MVME177) SCSI port is used, then the SBC module has
CLUN 0.

(2) For SBCs, the Þrst MVME320 has CLUN $11, and the second MVME320
has CLUN $12.
C-1

Disk/Tape Controller Data

C

Disk/Tape Controller Default Configurations

Note SCSI Common Command Set (CCS) devices are only
the ones tested by Motorola Computer Group.

CISC Embedded Controllers --Seven Devices

MVME320 --Four Devices

Controller
LUN

Address Device
LUN Device Type

0 $xxxxxxxx 00
10
20
30
40
50
60

SCSI Common Command Set
(CCS), which may be any of these:

- Fixed direct access
- Removable ßexible direct access

(TEAC style)
- CD-ROM
- Sequential access

Controller
LUN Address

Device
LUN Device Type

11 $FFFFB000 0
1
2
3

Winchester hard drive
Winchester hard drive
5-1/4" DS/DD 96 TPI ßoppy drive12 $FFFFAC00
5-1/4" DS/DD 96 TPI ßoppy drive
C-2

Disk/Tape Controller Default Configurations

C

MVME323 -- Four Devices

MVME327A --Nine Devices

Controller
LUN Address

Device
LUN Device Type

8 $FFFFA000 0
1
2
3

ESDI Winchester hard drive
ESDI Winchester hard drive
ESDI Winchester hard drive9 $FFFFA200
ESDI Winchester hard drive

Controller
LUN Address

Device
LUN Device Type

2 $FFFFA600 00
10
20
30
40
50
60

SCSI Common Command Set
(CCS), which may be any of these:

- Fixed direct access
- Removable ßexible direct access

(TEAC style)
- CD-ROM
- Sequential access

3 $FFFFA700

80
81

Local ßoppy drive

Local ßoppy drive
C-3

Disk/Tape Controller Data

C

MVME328 -- Fourteen Devices

MVME350 --One Device

Controller LUN Address Device LUN Device Type

6 $FFFF9000 00
08
10
18
20
28
30

SCSI Common Command Set
(CCS), which may be any of these:

- Removable ßexible direct access
(TEAC style)

- CD-ROM
- Sequential access

7 $FFFF9800

16 $FFFF4800

40
48
50
58
60
68
70

Same as above, but these
will only be available if
the daughter card for the
second SCSI channel is present.

17 $FFFF5800

18 $FFFF7000

19 $FFFF7800

Controller LUN Address Device LUN Device Type

4 $FFFF5000 0 QIC-02 streaming tape drive

5 $FFFF5100
C-4

IOT Command Parameters for Supported Floppy Types

C

IOT Command Parameters for Supported
Floppy Types

The following table lists the proper IOT command parameters for
floppies used with boards such as the:

❏ MVME328

❏ MVME167

❏ MVME177

❏ MVME187

IOT Parameter
Floppy Types and Formats

DSDD5 PCXT8 PCXT9 PCXT9_3 PCAT PS2 SHD

Sector Size
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 1 2 2 2 2 2 2

Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 1 1 1 1 1 1 1

Sectors/Track 10 8 9 9 F 12 24

Number of Heads 2 2 2 2 2 2 2

Number of
Cylinders

50 28 28 50 50 50 50

Precomp. Cylinder 50 28 28 50 50 50 50

Reduced Write
Current Cylinder

50 28 28 50 50 50 50

Step Rate Code 0 0 0 0 0 0 0

Single/Double
DATA Density

D D D D D D D

Single/Double
TRACK Density

D D D D D D D

Single/Equal_in_all
Track Zero Density

S E E E E E E

Slow/Fast Data Rate S S S S F F F
C-5

Disk/Tape Controller Data

C

Other
Characteristics

Number of Physical
Sectors

0A00 0280 02D0 05A0 0960 0B40 1680

Number of Logical
Blocks (100 in size)

09F8 0500 05A0 0B40 12C0 1680 2D00

Number of Bytes in
Decimal

653312 327680 368460 737280 1228800 1474560 2949120

Media Size/Density 5.25/DD 5.25/DD 5.25/DD 3.5/DD 5.25/D 3.5/HD 3.5/ED

Notes: 1. All numerical parameters are in hexadecimal unless otherwise noted.
2. The DSDD5 type ßoppy is the default setting for the debugger.

IOT Parameter
Floppy Types and Formats (Continued)

DSDD5 PCXT8 PCXT9 PCXT9_3 PCAT PS2 SHD
C-6

D
DConfigure and Environment
Commands
Configure Board Information Block
CNFG [;[I][M]]

This command is used to display and configure the board
information block. This block resides within the Non-Volatile RAM
(NVRAM). Refer to the Single Board Computer Programmer's
Reference Guide for the actual location. The information block
contains various elements detailing specific operation parameters
of the hardware. The Single Board Computer Programmer's Reference
Guide:

❏ Describes the elements within the board information block

❏ Lists the size of each element

❏ Lists the logical offset of each element

The CNFG command does not describe the elements and their use.
The board information block contents are checksummed for
validation purposes. This checksum is the last element of the block.

Example: to display the current contents of the board information
block.

177-Bug>cnfg
Board (PWA) Serial Number = "000000061050"
Board Identifier = "MVME177-001 "
Artwork (PWA) Identifier = "01-W3944B01D "
MPU Clock Speed = "5000"
Ethernet Address = 08003E20A867
Local SCSI Identifier = "07"
Optional Board 1 Artwork (PWA) Identifier = " "
Optional Board 1 (PWA) Serial Number = " "
Optional Board 2 Artwork (PWA) Identifier = " "
Optional Board 2 (PWA) Serial Number = " "
177-Bug>
D-1

Configure and Environment Commands

D

Note that the parameters that are quoted are left-justified character
(ASCII) strings padded with space characters, and the quotes (") are
displayed to indicate the size of the string. Parameters that are not
quoted are considered data strings, and data strings are right-
justified. The data strings are padded with zeroes if the length is not
met.

In the event of corruption of the board information block, the
command displays a question mark "?" for nondisplayable
characters.The following warning message:

 (WARNING: Board Information Block Checksum Error)

is also displayed in the event of a checksum failure.

Using the I option initializes the unused area of the board
information block to zero.

Modification is permitted by using the M option of the command.
At the end of the modification session, you are prompted for the
update to Non-Volatile RAM (NVRAM). A “YÓ response must be
made for the update to occur; any other response terminates the
update (disregards all changes). The update also recalculates the
checksum.

Be cautious when modifying parameters. Some of these parameters
are set up by the factory, and correct board operation relies upon
these parameters.

Once modification/update is complete, you can now display the
current contents as described earlier.
D-2

Set Environment to Bug/Operating System

D

Set Environment to Bug/Operating System
ENV [;[D]]

The ENV command allows you to interactively view/configure all
Bug operational parameters that are kept in Battery Backed Up
RAM (BBRAM), also known as Non-Volatile RAM (NVRAM). The
operational parameters are saved in NVRAM and used whenever
power is lost.

Any time the Bug uses a parameter from NVRAM, the NVRAM
contents are first tested by checksum to insure the integrity of the
NVRAM contents. In the instance of BBRAM checksum failure,
certain default values are assumed as stated below.

The bug operational parameters (which are kept in NVRAM) are
not initialized automatically on power up/warm reset. It is up to
the Bug user to invoke the ENV command. Once the ENV
command is invoked and executed without error, Bug default
and/or user parameters are loaded into NVRAM along with
checksum data. If any of the operational parameters have been
modified, these new parameters will not be in effect until a
reset/powerup condition.

If the ENV command is invoked with no options on the command
line, you are prompted to configure all operational parameters. If
the ENV command is invoked with the option D, ROM defaults
will be loaded into NVRAM.

The 177Bug ENV parameter display is shown in the following
example:

177-Bug>env
Bug or System environment [B/S] = S?
Field Service Menu Enable [Y/N] = Y?
Remote Start Method Switch [G/M/B/N] = B?
Probe System for Supported I/O Controllers [Y/N] = Y?
Negate VMEbus SYSFAIL* Always [Y/N] = N?
Local SCSI Bus Reset on Debugger Startup [Y/N] = N?
Local SCSI Bus Negotiations Type [A/S/N] = A?
Ignore CFGA Block on a Hard Disk Boot [Y/N] = Y?
D-3

Configure and Environment Commands

D

Auto Boot Enable [Y/N] = N?
Auto Boot at power-up only [Y/N] = Y?
Auto Boot Controller LUN = 00?
Auto Boot Device LUN = 00?
Auto Boot Abort Delay = 15?
Auto Boot Default String [NULL for a empty string] = ?
ROM Boot Enable [Y/N] = N?
ROM Boot at power-up only [Y/N] = Y?
ROM Boot Enable search of VMEbus [Y/N] = N?
ROM Boot Abort Delay = 0?
ROM Boot Direct Starting Address = FF800000?
ROM Boot Direct Ending Address = FFBFFFFC?
Network Auto Boot Enable [Y/N] = N?
Network Auto Boot at power-up only [Y/N] = Y?
Network Auto Boot Controller LUN = 00?
Network Auto Boot Device LUN = 00?
Network Auto Boot Abort Delay = 5?
Network Auto Boot Configuration Parameters Pointer (NVRAM) = 00000000?
Memory Search Starting Address = 00000000?
Memory Search Ending Address = 02000000?
Memory Search Increment Size = 00010000?
Memory Search Delay Enable [Y/N] = N?
Memory Search Delay Address = FFFFCE0F?
Memory Size Enable [Y/N] = Y?
Memory Size Starting Address = 00000000?
Memory Size Ending Address = 02000000?
Base Address of Local Memory = 00000000?
Size of Local Memory Board #0 = 02000000?
Size of Local Memory Board #1 = 00000000?
Slave Enable #1 [Y/N] = Y?
Slave Starting Address #1 = 00000000?
Slave Ending Address #1 = 01FFFFFF?
Slave Address Translation Address #1 = 00000000?
Slave Address Translation Select #1 = 00000000?
Slave Control #1 = 03FF?
Slave Enable #2 [Y/N] = Y?
Slave Starting Address #2 = FFE00000?
Slave Ending Address #2 = FFE1FFFF?
Slave Address Translation Address #2 = 00000000?
Slave Address Translation Select #2 = 00000000?
Slave Control #2 = 01EF?
Master Enable #1 [Y/N] = Y?
Master Starting Address #1 = 02000000?
Master Ending Address #1 = EFFFFFFF?
Master Control #1 = 0D?
Master Enable #2 [Y/N] = N?
D-4

Set Environment to Bug/Operating System

D

Master Starting Address #2 = 00000000?
Master Ending Address #2 = 00000000?
Master Control #2 = 00?
Master Enable #3 [Y/N] = N?
Master Starting Address #3 = 00000000?
Master Ending Address #3 = 00000000?
Master Control #3 = 00?
Master Enable #4 [Y/N] = N?
Master Starting Address #4 = 00000000?
Master Ending Address #4 = 00000000?
Master Address Translation Address #4 = 00000000?
Master Address Translation Select #4 = 00000000?
Master Control #4 = 00?
Short I/O (VMEbus A16) Enable [Y/N] = Y?
Short I/O (VMEbus A16) Control = 01?
F-Page (VMEbus A24) Enable [Y/N] = Y?
F-Page (VMEbus A24) Control = 02?
ROM Speed Bank A Code = 05?
ROM Speed Bank B Code = 05?
Static RAM Speed Code = 01?
PCC2 Vector Base = 05?
VMEC2 Vector Base #1 = 06?
VMEC2 Vector Base #2 = 07?
VMEC2 GCSR Group Base Address = D4?
VMEC2 GCSR Board Base Address = 00?
VMEbus Global Time Out Code = 01?
Local Bus Time Out Code = 00?
VMEbus Access Time Out Code = 02?
177-Bug>

The ENV command parameters to be configured are explained in
the following table:
D-5

Configure and Environment Commands

D

Table D-1. ENV Command Parameters

ENV Parameter and Options Default Meaning of Default

Bug or System environment [B/S] S System mode
Field Service Menu Enable [Y/N] Y Display Þeld service menu.
Remote Start Method Switch
[G/M/B/N]

B Use both the Global Control and Status
Register (GCSR) in the VMEchip2, and
the Multiprocessor Control Register
(MPCR) in shared RAM, methods to
pass and start execution of cross-loaded
program.

Probe System for Supported I/O
Controllers [Y/N]

Y Accesses will be made to VMEbus to
determine presence of supported
controllers.

Negate VMEbus SYSFAIL* Always
[Y/N]

N Negate VMEbus SYSFAIL after
successful completion or entrance into
the bug command monitor.

Local SCSI Bus Reset on Debugger
Startup [Y/N]

N Local SCSI bus is not reset on debugger
startup.

Local SCSI Bus Negotiations Type
[A/S/N]

A Asynchronous

Ignore CFGA Block on a Hard Disk
Boot [Y/N]

Y Enable the ignorance of the
ConÞguration Area (CFGA) Block (hard
disk only).

Auto Boot Enable [Y/N] N Auto Boot function is disabled.
Auto Boot at power-up only [Y/N] Y Auto Boot is attempted at power up

reset only.
Auto Boot Controller LUN 00 LUN of a disk/tape controller module

currently supported by the Bug. Default
is $0.

Auto Boot Device LUN 00 LUN of a disk/tape device currently
supported by the Bug. Default is $0.

Auto Boot Abort Delay 15 This is the time in seconds that the Auto
Boot sequence will delay before starting
the boot. The purpose for the delay is to
allow you the option of stopping the
boot by use of the Break key. The time
value is from 0 through 255 seconds.
D-6

Set Environment to Bug/Operating System

D

Auto Boot Default String [Y(NULL
String)/(String)]

You may specify a string (Þlename)
which is passed on to the code being
booted. Maximum length is 16
characters. Default is the null string.

ROM Boot Enable [Y/N] N ROMboot function is disabled.
ROM Boot at power-up only [Y/N] Y ROMboot is attempted at power up

only.
ROM Boot Enable search of
VMEbus [Y/N]

N VMEbus address space will not be
accessed by ROMboot.

ROM Boot Abort Delay 00 This is the time in seconds that the
ROMboot sequence will delay before
starting the boot. The purpose for the
delay is to allow you the option of
stopping the boot by use of the Break
key. The time value is from 0 through
255 seconds.

ROM Boot Direct Starting Address FF800000 First location tested when the Bug
searches for a ROMboot Module.

ROM Boot Direct Ending Address FFBFFFFC Last location tested when the Bug
searches for a ROMboot Module.

Network Auto Boot Enable [Y/N] N Network Auto Boot function is
disabled.

Network Auto Boot at power-up
only [Y/N]

Y Network Auto Boot is attempted at
power up reset only.

Network Auto Boot Controller
LUN

00 LUN of a disk/tape controller module
currently supported by the Bug. Default
is $0.

Network Auto Boot Device LUN 00 LUN of a disk/tape device currently
supported by the Bug. Default is $0.

Network Auto Boot Abort Delay 5 This is the time in seconds that the
Network Boot sequence will delay
before starting the boot. The purpose
for the delay is to allow you the option
of stopping the boot by use of the Break
key. The time value is from 0 through
255 seconds.

Table D-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default
D-7

Configure and Environment Commands

D

Network Autoboot ConÞguration
Parameters Pointer (NVRAM)

00000000 This is the address where the network
interface conÞguration parameters are
to be saved/retained in NVRAM; these
parameters are the necessary
parameters to perform an unattended
network boot.

!
Caution

If you use the NIOT debugger
command, these parameters
need to be saved/retained in
the NVRAM, somewhere in
the address range $FFFC0000
through $FFFC0FFF. The
NIOT parameters do not
exceed 128 bytes in size. The
location for these parameters
is determined by setting this
ENV pointer. If you have used
the exact same space for your
own program information or
commands, they will be
overwritten and lost.

You can relocate the network interface
conÞguration parameters in this space
by using the ENV command to change
the Network Auto Boot
Configuration Parameters
Pointer (NVRAM) from its default of
00000000 to the value you need so as
to be clear of your data within NVRAM.

Table D-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default
D-8

Set Environment to Bug/Operating System

D

Memory Search Starting Address 00000000 Where the Bug begins to search for a
work page (a 64KB block of memory) to
use for vector table, stack, and
variables. This must be a multiple of the
debugger work page, modulo $10000
(64KB). In a multi-MVME177
environment, each MVME177 board
could be set to start its work page at a
unique address to allow multiple
debuggers to operate simultaneously.

Memory Search Ending Address 02000000 Top limit of the Bug's search for a work
page. If a contiguous block of memory,
64KB in size, is not found in the range
speciÞed by Memory Search Starting
Address and Memory Search Ending
Address parameters, then the bug will
place its work page in the onboard
static RAM on the MVME177. Default
Memory Search Ending Address is the
calculated size of local memory.

Memory Search Increment Size 00010000 This multi-CPU feature is used to offset
the location of the Bug work page. This
must be a multiple of the debugger
work page, modulo $10000 (64KB).
Typically, Memory Search Increment
Size is the product of CPU number and
size of the Bug work page. Example:
Þrst CPU $0 (0 x $10000), second CPU
$10000 (1 x $10000), etc.

Memory Search Delay Enable
[Y/N]

N There will be no delay before the Bug
begins its search for a work page.

Table D-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default
D-9

Configure and Environment Commands

D

Memory Search Delay Address FFFFCE0F Default address is $FFFFCE0F. This is
the MVME177 GCSR GPCSR0 as
accessed through VMEbus A16 space
and assumes the MVME177 GRPAD
(group address) and BDAD (board
address within group) switches are set
to "on". This byte-wide value is
initialized to $FF by MVME177
hardware after a System or Power-on
Reset. In a multi-MVME177
environment, where the work pages of
several Bugs are to reside in the
memory of the primary (Þrst)
MVME177, the non-primary CPUs will
wait for the data at the Memory Search
Delay Address to be set to $00, $01, or
$02 (refer to the Memory Requirements
section in Chapter 3 for the deÞnition of
these values) before attempting to
locate their work page in the memory of
the primary CPU.

Memory Size Enable [Y/N] Y Memory will be sized for Self Test
diagnostics.

Memory Size Starting Address 00000000 Default Starting Address is $0.
Memory Size Ending Address 02000000 Default Ending Address is the

calculated size of local memory.
Base Address of Local Memory 00000000 Beginning address of Local Memory. It

must be a multiple of the Local Memory
board size, starting with 0. The Bug will
set up hardware address decoders so
that Local Memory resides as one
contiguous block at this address.
Default is $0.

Size of Local Memory Board #0
Size of Local Memory Board #1

02000000
00000000

You are prompted twice, once for each
possible MVME177 memory board.
Default is the calculated size of the
memory board.

Table D-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default
D-10

Set Environment to Bug/Operating System

D

Slave address decoders setup. The slave address decoders are use to allow another VMEbus master
to access a local resource of the MVME177. There are two slave address decoders set. They are set
up as follows:

Slave Enable #1 [Y/N] Y Yes, set up and enable the Slave
Address Decoder #1.

Slave Starting Address #1 00000000 Base address of the local resource that is
accessible by the VMEbus. Default is
the base of local memory, $0.

Slave Ending Address #1 01FFFFFF Ending address of the local resource
that is accessible by the VMEbus.
Default is the end of calculated
memory.

Slave Address Translation Address
#1

00000000 This register will allow the VMEbus
address and the local address to be
different. The value in this register is
the base address of local resource that is
associated with the starting and ending
address selection from the previous
questions. Default is 0.

Slave Address Translation Select #1 00000000 This register deÞnes which bits of the
address are signiÞcant. A logical one "1"
indicates signiÞcant address bits,
logical zero "0" is non-signiÞcant.
Default is 0.

Slave Control #1 03FF DeÞnes the access restriction for the
address space deÞned with this slave
address decoder. Default is $01FF.

Slave Enable #2 [Y/N] Y Yes, set up and enable the Slave
Address Decoder #2.

Slave Starting Address #2 FFE00000 Base address of the local resource that is
accessible by the VMEbus. Default is
the base address of static RAM,
$FFE00000.

Table D-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default
D-11

Configure and Environment Commands

D

Slave Ending Address #2 FFE1FFFF Ending address of the local resource
that is accessible by the VMEbus.
Default is the end of static RAM,
$FFE1FFFF.

Slave Address Translation Address
#2

00000000 Works the same as Slave Address
Translation Address #1. Default is 0.

Slave Address Translation Select #2 00000000 Works the same as Slave Address
Translation Select #1. Default is 0.

Slave Control #2 01EF DeÞnes the access restriction for the
address space deÞned with this slave
address decoder. Default is $01EF.

Master Enable #1 [Y/N] Y Yes, set up and enable the Master
Address Decoder #1.

Master Starting Address #1 02000000 Base address of the VMEbus resource
that is accessible from the local bus.
Default is the end of calculated local
memory.

Master Ending Address #1 EFFFFFFF Ending address of the VMEbus
resource that is accessible from the local
bus. Default is the end of calculated
memory.

Master Control #1 0D DeÞnes the access characteristics for the
address space deÞned with this master
address decoder. Default is $0D.

Master Enable #2 [Y/N] N Do not set up and enable the Master
Address Decoder #2.

Master Starting Address #2 00000000 Base address of the VMEbus resource
that is accessible from the local bus.
Default is $00000000.

Master Ending Address #2 00000000 Ending address of the VMEbus
resource that is accessible from the local
bus. Default is $00000000.

Master Control #2 00 DeÞnes the access characteristics for the
address space deÞned with this master
address decoder. Default is $00.

Table D-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default
D-12

Set Environment to Bug/Operating System

D

Master Enable #3 [Y/N] N Do not set up and enable the Master
Address Decoder #3.

Master Starting Address #3 00000000 Base address of the VMEbus resource
that is accessible from the local bus.
Default is $0.

Master Ending Address #3 00000000 Ending address of the VMEbus
resource that is accessible from the local
bus. Default is $0.

Master Control #3 00 DeÞnes the access characteristics for the
address space deÞned with this master
address decoder. Default is $0.

Master Enable #4 [Y/N] N Do not set up and enable the Master
Address Decoder #4.

Master Starting Address #4 00000000 Base address of the VMEbus resource
that is accessible from the local bus.
Default is $0.

Master Ending Address #4 00000000 Ending address of the VMEbus
resource that is accessible from the local
bus. Default is $0.

Master Address Translation
Address #4

00000000 This register will allow the VMEbus
address and the local address to be
different. The value in this register is
the base address of VMEbus resource
that is associated with the starting and
ending address selection from the
previous questions. Default is 0.

Master Address Translation Select
#4

00000000 This register deÞnes which bits of the
address are signiÞcant. A logical one "1"
indicates signiÞcant address bits,
logical zero "0" is non-signiÞcant.
Default is 0.

Master Control #4 00 DeÞnes the access characteristics for the
address space deÞned with this master
address decoder. Default is $00.

Short I/O (VMEbus A16) Enable
[Y/N]

Y Yes, enable the Short I/O Address
Decoder.

Table D-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default
D-13

Configure and Environment Commands

D

Short I/O (VMEbus A16) Control 01 DeÞnes the access characteristics for the
address space deÞned with the Short
I/O address decoder. Default is $01.

F-Page (VMEbus A24) Enable
[Y/N]

Y Yes, Enable the F-Page Address
Decoder.

F-Page (VMEbus A24) Control 02 DeÞnes the access characteristics for the
address space deÞned with the F-Page
address decoder. Default is $02.

ROM Speed Bank A Code
ROM Speed Bank B Code

05
05

Used to set up the ROM speed. Default
$05 = 165 ns (for 50 MHz MVME177s),
or $05 = 132 ns (for 60 MHz
MVME177s).

Static RAM Speed Code 01 Used to set up the SRAM speed.
Default $01 = 125 ns (for 50 MHz
MVME177s).

00 Used to set up the SRAM speed.
Default $00 = 132 ns (for 60 MHz
MVME177s).

PCC2 chip Vector Base
VMEC2 Vector Base #1
VMEC2 Vector Base #2

05
06
07

Base interrupt vector for the component
speciÞed. Default: PCC2 chip = $05,
VMEchip2 Vector 1 = $06,
VMEchip2 Vector 2 = $07.

VMEC2 GCSR Group Base Address D4 SpeciÞes the group address
($FFFFxx00) in Short I/O for this board.
Default = $D4.

VMEC2 GCSR Board Base Address 00 SpeciÞes the base address ($FFFFD4x0)
in Short I/O for this board.
Default = $00.

VMEbus Global Time Out Code 01 This controls the VMEbus timeout
when systems controller.
Default $01 = 64 µs.

Local Bus Time Out Code 00 This controls the local bus timeout.
Default $00 =8 µs.

VMEbus Access Time Out Code 02 This controls the local bus to VMEbus
access timeout.
Default $02 = 32 ms.

Table D-1. ENV Command Parameters (Continued)

ENV Parameter and Options Default Meaning of Default
D-14

E
ENetwork Controller Data
Network Controller Modules Supported
The VMEbus network controller modules in the following table are
supported by 177Bug. The default address for each type and
position is shown to indicate where the controller must reside to be
supported by 177Bug. The controllers are accessed via the specified
CLUN and DLUNs listed here. The CLUN and DLUNs are used in
conjunction with the debugger commands:

❏ NBH

❏ NBO

❏ NIOP

❏ NIOC

❏ NIOT

❏ NPING

❏ NAB

and also with the debugger system calls:

❏ .NETRD

❏ .NETWR

❏ .NETFOPN

❏ .NETFRD

❏ .NETCFIG

❏ .NETCTRL
E-1

Network Controller Data

E

Controller
Type CLUN DLUN Address

Interface
Type

MVME177 $00 $00 $FFF46000 Ethernet

MVME376 $02 $00 $FFFF1200 Ethernet

MVME376 $03 $00 $FFFF1400 Ethernet

MVME376 $04 $00 $FFFF1600 Ethernet

MVME376 $05 $00 $FFFF5400 Ethernet

MVME376 $06 $00 $FFFF5600 Ethernet

MVME376 $07 $00 $FFFFA400 Ethernet

MVME374 $10 $00 $FF000000 Ethernet

MVME374 $11 $00 $FF100000 Ethernet

MVME374 $12 $00 $FF200000 Ethernet

MVME374 $13 $00 $FF300000 Ethernet

MVME374 $14 $00 $FF400000 Ethernet

MVME374 $15 $00 $FF500000 Ethernet
E-2

F
FTroubleshooting the MVME177:
Solving Startup Problems
❏ Try these simple troubleshooting steps before calling for help
or sending your CPU board back for repair.

❏ Some of the procedures will return the board to the factory
debugger environment. (The board was tested under these
conditions before it left the factory.)

❏ Selftest may not run in all user-customized environments.

Table F-1. Basic Troubleshooting Steps

Condition ... Possible Problem ... Try This ...

I. Nothing works,
no display on the
terminal.

A. If the RUN or +12V
LED is not lit, the
board may not be
getting correct power.

1. Make sure the system is plugged in.
2. Check that the board is securely installed in
its backplane or chassis.
3. Check that all necessary cables are
connected to the board, per this manual.
4. Check for compliance with System
Considerations, per this manual.
5. Review the Installation and Startup
procedures, per this manual. In most cases,
this includes a step-by-step powerup routine.
Try it.

B. If the LEDs are lit,
the board may be in
the wrong slot.

1. For VMEmodules, the CPU board should be
in the Þrst (leftmost) slot.
2. Also check that the Òsystem controllerÓ
function on the board is enabled, per this
manual.

C.The Òsystem
consoleÓ terminal
may be conÞgured
wrong.

ConÞgure the system console terminal per this
manual.
F-1

Troubleshooting the MVME177: Solving Startup Problems

F

II. There is a
display on the
terminal, but
input from the
keyboard and/or
mouse has no
effect.

A. The keyboard or
mouse may be
connected incorrectly.

Recheck the keyboard and/or mouse
connections and power.

B. Board jumpers may
be conÞgured
incorrectly.

Check the board jumpers per this manual.

C. You may have
invoked ßow control
by pressing a HOLD or
PAUSE key, or by
typing
 <CTRL>-S
Also, a HOLD LED
may be lit.

Press the HOLD or PAUSE key again.
If this does not free up the keyboard, type in
 <CTRL>-Q

III. Debug
prompt
 177-Bug>
does not appear
at powerup, and
the board does
not auto boot.

A. Debugger
EPROM/Flash may
be missing

1. Disconnect all power from your system.
2. Check that the proper debugger EPROM or
debugger Flash memory is installed per this
manual.
3. Reconnect power.
4. Restart the system by Òdouble-button resetÓ:
press the RESET and ABORT switches at the
same time; release RESET Þrst, wait seven
seconds, then release ABORT.
5. If the debug prompt appears, go to step IV
or step V, as indicated. If the debug prompt
does not appear, go to step VI.

B. The board may
need to be reset.

Table F-1. Basic Troubleshooting Steps (Continued)

Condition ... Possible Problem ... Try This ...
F-2

F

IV. Debug prompt
 177-Bug>
 appears at
powerup, but the
board does not
auto boot.

A. The initial
debugger
environment
parameters may be
set wrong.

1. Start the onboard calendar clock and timer.
Type
 set mmddyyhhmm <CR>
where the characters indicate the month, day,
year, hour, and minute. The date and time will
be displayed.

!
Caution

Performing the
next step will
change some
parameters that
may affect your
system
operation.

2. Type in
 env;d <CR>
This sets up the default parameters for the
debugger environment.
3. When prompted to Update Non-Volatile
RAM, type in
 y <CR>
4. When prompted to Reset Local System, type
in
 y <CR>
5. After clock speed is displayed, immediately
(within Þve seconds) press the Return key
 <CR>
or
 BREAK
to exit to System Menu. Then enter a 3 ÒGo to
System DebuggerÓ and Return
 3 <CR>
Now the prompt should be
 177-Diag>
(continues>)

B. There may be
some fault in the
board hardware.

Table F-1. Basic Troubleshooting Steps (Continued)

Condition ... Possible Problem ... Try This ...
F-3

Troubleshooting the MVME177: Solving Startup Problems

F

6.You may need to use the cnfg command (see
your board Debugger Manual) to change clock
speed and/or Ethernet Address, and then later
return to
 env <CR>
and step 3.
7. Run selftest by typing in
 st <CR>
The tests take as much as 10 minutes,
depending on RAM size. They are complete
when the prompt returns. (The onboard
selftest is a valuable tool in isolating defects.)
8. The system may indicate that it has passed
all the selftests. Or, it may indicate a test that
failed. If neither happens, enter
 de <CR>
Any errors should now be displayed. If there
are any errors, go to step VI. If there are no
errors, go to step V.

V. The debugger
is in system mode
and the board
auto boots, or the
board has passed
selftests.

A. No problems -
troubleshooting is
done.

No further troubleshooting steps are required.

Note Even if the board passes all tests,
it may still be bad. Selftest does
not try out all functions in the
board (for example, SCSI, or
VMEbus tests).

VI. The board has
failed one or
more of the tests
listed above, and
can not be
corrected using
the steps given.

A. There may be some
fault in the board
hardware or the on-
board debugging and
diagnostic Þrmware.

1. Document the problem and return the board
for service.
2. Phone 1-800-222-5640.

Table F-1. Basic Troubleshooting Steps (Continued)

Condition ... Possible Problem ... Try This ...
F-4

Index
Numerics
177Bug C-1

network controller data E-1
177Bug (see debug monitor and

MVME177Bug) 1-8, 2-4, 3-1, 3-8,
B-27

177Bug Generalized Exception Handler
B-42

177Bug generalized exception handler
B-42

177Bug implementation B-3
177Bug stack B-11
177Bug vector table and workspace B-36
5-1/4 DS/DD 96 TPI floppy drive C-2
53C710 (see SCSI Controller) 4-15
82596CA (see Ethernet and LAN) 4-15

A
abort B-8
ABORT switch interrupter 3-1
ABORT switch S1 3-1
adapter board (see P2 adapter board) 1-6,

2-13
address B-28
address as a parameter B-31
address formats B-31
ambient air temperature 1-3
arguments B-27
arithmetic operators B-29
ASCII string B-28
assembler/disassembler 1-8, B-35
assertion 1-12
autoboot B-3

B
Backus-Naur B-28
base and top addresses B-32
base identifier B-29
Battery Backed Up RAM (BBRAM) and

Clock (see MK48T08 and
NVRAM) 4-10, D-3

battery backup 4-7
battery handling and disposal 4-8
battery lifetime 4-8
BBRAM (see Battery Backed Up RAM,

MK48T08, and NVRAM) 4-10
BG (bus grant) 2-13
BH (Bootstrap and Halt) B-17
binary number 1-12
blocks versus sectors B-13
BO (Bootstrap Operating System) B-17
Board Information Block (BIB) D-1
boldface strings B-28
BOOTP protocol module B-21
Bootstrap and Halt (BH) B-17
Bootstrap Operating System (BO) B-17
braces B-28
BREAK key B-9
bus error 3-9
bus grant (BG) 2-13
byte 1-12

C
C programming language B-3
cables (see also shielded cables) 2-13
calling system utilities from user pro-

grams B-36
IN-5

Index

I
N
D
E
X

CD2401 (see SCC and Serial Controller
Chip) 4-12

CD2401 Serial Controller Chip (SCC)
2-14

CFM (cubic feet per minute) 1-3
chassis ground A-7
checksum D-3
CISC Single Board Computer(s) (SBC)

C-1
Clear To Send (CTS) 2-14
CLUN (controller LUN) C-1, E-1
CNFG command D-1
command entry B-26
command identifier B-27
command line B-27
conductive chassis rails 1-5
configuration, default disk/tape control-

ler C-2
Configure (CNFG) and Environment

(ENV) commands D-1
configure BIB (Board Information Block)

D-1
configure debug parameters D-3
connector P2 B-34
console port B-34
controller C-1
controller LUN (CLUN) C-1
controls and indicators 3-1
count B-28
CR2430 4-8
CR2430 lithium batteries 4-8
creating a new vector table B-40
CTS (Clear To Send) 2-14
cubic feet per minute (CFM) 1-3
cycle times 4-18

local bus to DRAM 4-18

D
data bus structure 4-1
data circuit-terminating equipment

(DCE) A-1
data terminal equipment (DTE) A-1

DCE (data circuit-terminating equip-
ment) A-1

debug monitor (see 177Bug and
MVME177Bug) 2-4, 3-1, 3-8

debug port B-34
debugger address parameter formats

B-31
debugger commands B-53, B-54
debugger prompt B-27
debugging package 1-10, 3-8
decimal number 1-12
default 177Bug controller and device pa-

rameters B-19
default baud rate 2-13, B-3
default values

registers 3-8
delimiter B-28
description of 177Bug B-1
device LUN (DLUN) C-2, E-1
Device Probe Function B-15
diagnostic facilities B-25
diagnostics 1-8

test groups B-26
direct access device C-2, C-4
disk I/O error codes B-19
disk I/O support B-13
disk I/O via 177Bug commands B-16
Disk I/O via 177Bug System Calls B-17
disk/tape controller data C-1
disk/tape controller default configura-

tions C-2
disk/tape controller modules supported

C-1
DLUN (device LUN) C-2, E-1
DMA 4-13, 4-15
double precision real B-46
download B-35
DRAM (dynamic RAM) 4-9
DRAM base address 2-15
DS1 - DS4 3-3
DS1210S 4-7
DTE (data terminal equipment) A-1
IN-6

I
N
D
E
X

dynamic RAM (DRAM) 4-9

E
EIA-232-D 4-13
EIA-232-D interconnections A-1, A-2
EIA-232-D port(s) 2-13, B-37
EIA-232-D standard A-1
entering and debugging programs B-35
entering debugger command lines B-27
ENV command D-3

parameters D-6
Environment (ENV) and Configure (CN-

FG) commands D-1
EPROM sockets 1-8
EPROM(s) 2-10, 2-11, 3-5, 3-8, 4-4
EPROM/Flash Configuration Jumper

2-7
equipment required 1-8
ESDI Winchester hard drive C-3
Ethernet E-1
Ethernet (see 82596 and LAN) E-2
Ethernet (see 82596CA and LAN) 2-16,

4-15
Ethernet Driver B-20
Ethernet interface 4-15
Ethernet station address 4-15
Ethernet transceiver interface 4-15
example

display BIB D-1
exception vectors used by 177Bug B-38
exponent field B-45
expression B-28
expression as a parameter B-29
extended addressing 2-15
extended precision real B-46

F
factory jumper settings 2-4
FB1225 4-8
FCC compliance 1-5
Features 1-2
features 1-5

FLASH commands B-47
flexible diskette C-2
floating point instructions B-44
floating point support B-44
floating point unit (FPU) B-44, B-47
floppy disk command parameters C-5
floppy diskette C-4
floppy drive C-2, C-3
forced air cooling 1-3
FPU (floating point unit) B-44, B-47
front panel 3-2
front panel indicators (DS1- DS4) 3-3
functional description 4-1
fuse F1 2-17
fuse F2 2-16

G
GCSR (Global Control and Status Regis-

ters (GCSR) 3-9
GCSR (Global Control and Status Regis-

ters) B-24
GCSR (Global Control and Status Regis-

ters) (see VMEchip2 GCSR) 2-16
GCSR board control register 3-9
GCSR GPCSR0 D-10
GCSR method B-24
General 1-1
general description 1-5
General Purpose Readable Jumpers 2-6
global bus time-out 2-16
Global Control and Status Registers (GC-

SR) B-24
Global Control and Status Registers (GC-

SR) (see VMEchip2 GCSR) 2-16
grounding A-7

H
half duplex A-4
handshaking 2-14, A-1, A-4
hard disk drive C-3
Hardware 2-1
hardware functions B-37
IN-7

Index

I
N
D
E
X

hardware interrupts
software-programmable 4-17

hardware preparation 2-4
headers 2-10
hexadecimal character 1-12
host port B-34
host system B-35

I
I/O interfaces 4-11
IACK (interrupt acknowledge) 2-13
installation instructions 2-10
Intel 82596 LAN Coprocessor Ethernet

driver B-20
interrupt acknowledge (IACK) 2-13
Interrupt Stack Pointer (ISP) B-11
interrupts 4-17
introduction 1-1, 2-1, 3-1, 4-1, A-1
IOC (I/O Control) B-17
IOI (Input/Output Inquiry) B-16
IOP (Physical I/O to Disk) B-16
IOT (I/O Teach) B-17
IOT command parameters C-5
IOT command parameters for supported

floppy types C-5
ISP (Interrupt Stack Pointer) B-11
italic strings B-28

J
J1 2-6
J10 2-8
J2 2-6
J3 4-20
J6 2-7, 2-10
J7 2-7, 2-10
J8 2-7, 2-10
J9 2-8
jumpers 2-4, 2-10

L
LAN (see 82596CA and Ethernet) 4-15
LAN Coprocessor Ethernet Driver B-20

LAN DMA transfers 4-20
LAN FIFO buffer 4-19
LAN transceiver 2-16
LEDs 3-3
levels of implementation A-3
LFM (linear feet per minute) 1-3
linear feet per minute (LFM) 1-3
Local Area Network (see LAN) 4-15
local bus 4-18
local bus access 4-18
local bus memory map 3-4, 3-5
local bus time-out 4-18
local bus to DRAM cycle times 4-18
local I/O devices memory map 3-6
local reset (LRST) 3-2, 3-8
local reset operation 3-8
local resources 4-16
location monitors 2-16
logical unit number (LUN) (see CLUN or

DLUN)
longword 1-12
lowercase command entry B-26
LRST (local reset) 3-2, 3-8
LUN (logical unit number) (see CLUN or

DLUN)

M
mantissa field B-45
manual terminology 1-12
MC68040 TRAP instructions B-36
MC68060 MPU 4-4
MCECC 1-7
memory maps

local bus 3-4
local I/O devices 3-6

memory requirements B-11
metasymbols B-28
middle-of-the-road EIA-232-D configu-

ration A-5
minimum EIA-232-D connection A-6
MK48T08 (see Battery Backed Up RAM,

BBRAM, and NVRAM) 4-10
IN-8

I
N
D
E
X

models, MVME177 iii
modem(s) A-1
MPAR (Multiprocessor Address Regis-

ter) B-23
MPCR (Multiprocessor Control Register)

Method B-22
MPU clock speed calculation B-10
multi-MPU programming consider-

ations 3-8
Multiprocessor Address Register

(MPAR) B-23
Multiprocessor Control Register (MPCR)

Method B-22
multiprocessor support B-22
MVME177 Features 1-2
MVME177 functional description 4-1
MVME177 model designations 1-1
MVME177 module installation 2-12
MVME177 Network Controller Modules

Supported E-2
MVME177 specifications 1-4
MVME177 switches, headers, connec-

tors, fuses, and LEDs 2-5
MVME177Bug (see 177Bug and debug

monitor) 1-8, 2-4, 3-1, 3-8
MVME177Bug debug monitor 1-8
MVME177Bug debugging package 1-10
MVME320 C-2
MVME320 - Winchester/Floppy Con-

troller C-1
MVME323 C-3
MVME323 - ESDI Winchester Controller

C-1
MVME327A C-3
MVME327A - SCSI Controller C-1
MVME328 C-4
MVME328 - SCSI Controller C-1
MVME350 C-4
MVME374 E-2
MVME376 E-2
MVME712-12 1-6
MVME712-13 1-6

MVME712A 1-6
MVME712AM 1-6
MVME712B 1-6
MVME712M 1-6, 2-12, 2-17
MVME712X 1-9, 2-12, 4-13

N
negation 1-12
network boot B-6
network boot control module B-22
network controller data E-1
network controller modules E-1
network I/O error codes B-22
network I/O support B-19
Non-Volatile RAM (NVRAM) (see Bat-

tery Backed Up RAM, BBRAM,
and MK48T08) 4-10, D-3

normal address range 3-4
numeric value B-29
NVRAM (Non-Volatile RAM) (see Bat-

tery Backed Up RAM, BBRAM,
and MK48T08) 4-10, D-3

O
object code B-35
offset registers B-32
onboard DRAM 4-9
Operating 3-1
operating environment B-36
operating instructions 3-1
operating systems 1-9
operational parameters D-3
option field B-27
overview of M68000 firmware B-1

P
P2 adapter board 1-6, 2-13, 2-17
packed decimal real B-46
parallel port interface 4-14
parallel printer port 4-14
PCCchip2 1-7
port 0 or 00 B-34
IN-9

Index

I
N
D
E
X

port 1 or 01 B-34
port number(s) B-27, B-34
preserving the debugger operating envi-

ronment B-36
printer interface 4-14
printer port 4-14
programmable hardware interrupts 4-17
programmable tick timers 4-17
proper grounding A-7
pseudo-registers B-32

Q
QIC-02 streaming tape drive C-4

R
range B-28
RARP/ARP Protocol Modules B-21
Readable Jumper J1 2-8
registers 3-8

default values 3-8
relative address+offset B-32
remote status and control J3 4-20
reset B-8
RESET switch S2 3-2, 3-9
restart mode B-26
restarting the system B-7
RF emissions 1-5
RFI 2-13
ROMboot B-5

S
S1 3-1
S2 3-2, 3-9
sample configurations A-4
SBC (see CISC Single Board Comput-

er(s)) C-1
SCC (Serial Controller Chip) (see

CD2401) 4-12
scientific notation B-47
SCSI Common Command Set (CCS) C-2,

C-4
SCSI Controller (see 53C710) 4-15

SCSI FIFO buffer 4-19
SCSI interface 4-16
SCSI specification 1-10
SCSI termination 4-16
SCSI terminator power 2-17
SCSI transfers 4-19
sequential access device C-2, C-4
Serial Controller Chip (SCC) (see

CD2401) 4-12
serial port 1 B-34
serial port 2 B-34
Serial Port 4 Clock Configuration Select

Headers 2-8
serial port 4 clock configuration select

headers J6 and J7 2-10
serial port interface 4-12
Set Environment to Bug/Operating Sys-

tem (ENV) D-3
SFLASH Command B-51
shielded cables (see also cables) 1-5, 2-13
sign field B-45
signal adaptations A-4
signal ground A-7
signal levels A-1
signals

transfer type (TT) 3-4
Single Board Computer (SBC) (see CISC

Single Board Computer(s)) C-1
single precision real B-45
slave address decoders D-11
software initialization 3-8
software-programmable hardware inter-

rupts 4-17
source line B-35
specifications 1-3
square brackets B-28
SRAM (static RAM) 4-7
SRAM Backup Power Source Select

Header 2-6
SRAM backup power source select head-

er J8 2-10
SRAM battery backup 4-7
IN-10

I
N
D
E
X

S-record format B-35
SRST (system reset) 3-2, 3-8
start-up procedure overview 2-2
static RAM (SRAM) 4-7
static variable space B-11
streaming tape drive (see QIC-2 stream-

ing tape drive) C-4
string literal B-30
support information 1-11
syntactic variables B-28
SYSFAIL* assertion/negation B-10
SYSRESET* (see system reset) 3-2, 3-9
system considerations 2-15
system console 2-13
system console terminal 1-8
system controller function 3-9
System Controller Header 2-7
System Fail (SYSFAIL*) B-5
System Mode 2-15
system mode 1-8
system reset (SRST) 3-8
system reset (SRST) (see SYSRESET*) 3-2
SYSTEM V/68 1-9

T
terminal input/output control B-12
terminal(s) A-1
terminology 1-12
TFTP protocol module B-21
Thermal Sensing Pins 2-7
thermal sensing pins 2-9
tick timers 4-17
time-out 4-18

global bus 2-16
local bus 4-18

timers 4-17
timing performance 4-18
transfer type (TT) signals 3-4
transition modules 1-6, 4-13
transparent mode A-5
TRAP #15 B-36
TT (transfer type) signals 3-4

U
UDP/IP protocol modules B-20
uppercase command entry B-26
Using 177Bug Target Vector Table B-39
using the 177Bug debugger B-27

V
vector table B-37
vertical bar B-28
VMEbus accesses to the local bus 3-8
VMEbus interface 4-11
VMEbus specification 1-10
VMEchip2 1-6
VMEchip2 GCSR (Global Control and

Status Registers) 2-16

W
warnings 4-8
watchdog timer 3-8, 4-17
Winchester hard drive C-2, C-3
word 1-12

X
XON/XOFF 2-14
IN-11

Free Manuals Download Website
h�p://myh66.com

h�p://usermanuals.us
h�p://www.somanuals.com

h�p://www.4manuals.cc
h�p://www.manual-lib.com
h�p://www.404manual.com
h�p://www.luxmanual.com

h�p://aubethermostatmanual.com
Golf course search by state

h�p://golfingnear.com
Email search by domain

h�p://emailbydomain.com
Auto manuals search

h�p://auto.somanuals.com
TV manuals search

h�p://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	Notice
	Restricted Rights Legend
	Motorola, Inc. Computer Group 2900 South Diablo Wa...

	Preface
	 Copyright Motorola, Inc. 1995, 1996
	All Rights Reserved
	Printed in the United States of America
	June 1996

	Safety Summary Safety Depends On You
	Ground the Instrument.
	Do Not Operate in an Explosive Atmosphere.
	Keep Away From Live Circuits.
	Do Not Service or Adjust Alone.
	Use Caution When Exposing or Handling the CRT.
	Do Not Substitute Parts or Modify Equipment.
	Dangerous Procedure Warnings.
	MVME177
	Single Board Computer
	Installation and Use Manual
	General Information

	Introduction
	Model Designations
	Table 1-1. MVME177 Model Designations

	Model Number
	Speed
	Major Differences
	Features
	Table 1-2. MVME177 Features �

	Feature
	Description
	Specifications
	Cooling Requirements
	Table 1-3. MVME177 Specifications

	Characteristics
	Specifications
	FCC Compliance
	1. Shielded cables on all external I/O ports.
	2. Cable shields connected to earth ground via met...
	3. Conductive chassis rails connected to earth gro...
	4. Front panel screws properly tightened.

	General Description
	Equipment Required
	Related Documentation

	Document Title
	Motorola Publication Number
	Support Information
	Manual Terminology
	Hardware Preparation and Installation

	Introduction
	Unpacking Instructions
	Overview of Start-up Procedure
	Table 2-1. Start-up Overview (Continued)

	What you will need to do ...
	Refer to ...
	On page ...
	Hardware Preparation
	Figure 2-1. MVME177 Switches, Headers, Connectors,...
	Table 2-2. Configuring MVME177 Headers (Continued)...

	Header Number
	Header
	Description
	Configuration
	Jumpers
	Notes
	MVME177 Header Notes: (Continued)
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	Setup Instructions
	1. Turn all equipment power OFF.
	2. Refer to Table 2-2 in the Hardware Preparation ...
	a. Jumpers on header J1 affect 177Bug operation as...

	Bit
	J1 Pins
	Description
	1-2
	3-4
	5-6
	7-8
	9-10
	11-12
	13-14
	15-16
	b. Jumpers on headers J2, J6, J7, J8, J9, and J10 ...
	3. Be sure that the two 256K x 16 177Bug EPROMs ar...
	4. This completes the MVME177 Module hardware prep...
	MVME177 Module Installation Instructions
	1. Turn all equipment power OFF and disconnect the...
	2. Remove chassis cover as instructed in the equip...
	3. Remove the filler panel(s) from the appropriate...
	4. Carefully slide the MVME177 module into the car...
	5. Remove IACK and BG jumpers from the header on t...
	6. Connect the P2 Adapter Board and specified cabl...
	7. Connect the terminal to be used as the 177Bug s...
	8. If you want to connect devices (such as a host ...
	9. Install any other required VMEmodules in the sy...
	10. Replace the chassis cover.
	11. Connect power cable to AC power source.
	12. Turn equipment power ON. 177Bug executes some ...
	13. At the 177-Bug> prompt, use the SET command to...
	14. Use the 177Bug’s ENV command to verify the NVR...
	System Considerations
	Operating Instructions

	Introduction
	Controls and Indicators
	ABORT Switch S1
	RESET Switch S2
	Front Panel Indicators (DS1 � DS4)

	Memory Maps
	Local Bus Memory Map
	Normal Address Range
	Table 3-1. Local Bus Memory Map

	Address Range
	Devices Accessed
	Port Size
	Size
	Software Cache Inhibit
	Notes
	N
	1, 2
	-
	3, 4
	N
	1
	--
	5
	N
	6
	N
	6
	Y
	3
	-
	2, 4
	Table 3-2. Local I/O Devices Memory Map (Continued...

	Address Range
	Devices Accessed
	Port Size
	Size
	Notes
	5
	1,4
	1,4
	5,7
	5
	1
	1
	1
	1,7
	5
	1,9
	7,9
	1,9
	1,8
	1
	5
	5
	6
	2
	6
	2
	6
	5
	1
	5
	2
	Software Initialization
	Multi�MPU Programming Considerations
	Local Reset Operation
	Functional Description

	Introduction
	MVME177 Functional Description
	Data Bus Structure
	Figure 4-1. MVME177 Block Diagram

	MC68060 MPU
	Flash Memory and EPROM
	Flash Memory
	Table 4-1. EPROM and Flash Control and Configurati...

	Jumper or Control Bit
	Control Condition
	Memory Configuration
	EPROM
	SRAM
	Onboard DRAM
	Battery Backed Up RAM and Clock
	VMEbus Interface
	I/O Interfaces
	Serial Port Interface
	Parallel Port Interface
	Ethernet Interface
	SCSI Interface
	SCSI Termination

	Local Resources
	Programmable Tick Timers
	Watchdog Timer
	Software�Programmable Hardware Interrupts
	Local Bus Time-out

	Module Identification
	Timing Performance
	Local Bus to DRAM Cycle Times
	ROM Cycle Times
	SCSI Transfers
	LAN DMA Transfers

	Remote Status and Control
	EIA-232-D Interconnections

	Introduction
	Table A-1. EIA-232-D Interconnections (Continued)

	Pin Number
	Signal Mnemonic
	01
	02
	03
	04
	05
	06
	07
	08
	09-14
	15
	16
	17
	18, 19
	20
	21
	22
	23
	24
	25
	Levels of Implementation
	Signal Adaptations
	Sample Configurations
	Figure A-1. Middle-of-the-Road EIA-232-D Configura...
	Figure A-2. Minimum EIA-232-D Connection

	Proper Grounding
	Debugger General Information

	Overview of M68000 Firmware
	Description of 177Bug
	177Bug Implementation

	Autoboot
	ROMboot
	Network Boot
	Restarting the System
	Reset
	Abort
	Break
	SYSFAIL* Assertion/Negation
	MPU Clock Speed Calculation

	Memory Requirements
	Terminal Input/Output Control
	Disk I/O Support
	Blocks Versus Sectors
	Device Probe Function
	Disk I/O via 177Bug Commands
	IOI (Input/Output Inquiry)
	IOP (Physical I/O to Disk)
	IOT (I/O Teach)
	IOC (I/O Control)
	BO (Bootstrap Operating System)
	BH (Bootstrap and Halt)
	Disk I/O via 177Bug System Calls
	Default 177Bug Controller and Device Parameters
	Disk I/O Error Codes
	Network I/O Support
	Intel 82596 LAN Coprocessor Ethernet Driver
	UDP/IP Protocol Modules
	RARP/ARP Protocol Modules
	BOOTP Protocol Module
	TFTP Protocol Module
	Network Boot Control Module
	Network I/O Error Codes

	Multiprocessor Support
	Multiprocessor Control Register (MPCR) Method
	GCSR Method

	Diagnostic Facilities
	Table B-1. Diagnostic Test Groups

	Using the 177Bug Debugger
	Entering Debugger Command Lines
	a. The command identifier (i.e., MD or md for the ...
	b. A port number if the command is set up to work ...
	c. At least one intervening space before the first...
	d. Any required arguments, as specified by command...
	e. An option field, set off by a semicolon (;) to ...

	Syntactic Variables
	Expression as a Parameter

	Data Type
	Base
	Identifier
	Examples
	String
	Literal
	Numeric Value
	(In Hexadecimal)
	Expression �
	Result (In Hex)
	Notes
	Address as a Parameter
	Address Formats
	Table B-2. Debugger Address Parameter Formats

	Format
	Example
	Description
	Offset Registers
	Port Numbers
	1. MVME177 EIA-232-D Debug (Terminal Port 0 or 00)...
	2. MVME177 EIA-232-D (Terminal Port 1 or 01) (PORT...

	Entering and Debugging Programs
	Calling System Utilities from User Programs
	Preserving the Debugger Operating Environment
	177Bug Vector Table and Workspace
	Hardware Functions
	Exception Vectors Used by 177Bug
	Table B-3. Exception Vectors Used by 177Bug �

	Vector
	Offset
	Exception
	177Bug Facility
	Using 177Bug Target Vector Table
	Creating a New Vector Table
	177Bug Generalized Exception Handler
	Floating Point Support

	Integer Data Types
	Floating Point Data Types
	1. The sign field is the first field and is a bina...
	2. The exponent field is the second field and is a...
	3. The mantissa field is the last field and is a h...
	4. The sign field, the exponent field, and at leas...
	5. Each field must be separated from adjacent fiel...
	6. All the digit positions in the sign and exponen...
	Single Precision Real
	Double Precision Real
	Extended Precision Real
	Packed Decimal Real
	Scientific Notation
	Additions to FLASH Commands
	Flash Test Configuration Acceptable Entries
	Erase Test
	Flash Fill Test
	Flash Patterns Test
	Default Flash Test Configuration
	Figure B-1. Three Possible Mapping Options

	SFLASH Command

	The 177Bug Debugger Command Set
	Table B-4. Debugger Commands (Continued)

	Command Mnemonic
	Title
	Command Line Syntax
	Disk/Tape Controller Data
	Disk/Tape Controller Modules Supported

	First CLUN
	First Address
	Second CLUN
	Second Address
	$00 (Note 1)
	--
	--
	--
	$11 (Note 2)
	$FFFFB000
	$12 (Note 2)
	$FFFFA000
	$08
	$FFFFA000
	$09
	$FFFFA200
	$02
	$FFFFA600
	$03
	$FFFFA700
	$06
	$FFFF9000
	$07
	$FFFF9800
	$16
	$FFFF4800
	$17
	$FFFF5800
	$18
	$FFFF7000
	$19
	$FFFF7800
	$04
	$FFFF5000
	$05
	$FFFF5100
	Disk/Tape Controller Default Configurations

	Controller LUN
	Address
	Device LUN
	0
	$xxxxxxxx
	00
	10
	20
	30
	40
	50
	60

	Controller LUN
	Address
	Device LUN
	11
	$FFFFB000
	0
	1
	2
	3
	12
	$FFFFAC00

	Controller LUN
	Address
	Device LUN
	8
	$FFFFA000
	0
	1
	2
	3
	9
	$FFFFA200

	Controller LUN
	Address
	Device LUN
	2
	$FFFFA600
	00
	10
	20
	30
	40
	50
	60
	3
	$FFFFA700
	80
	81

	Controller LUN
	Address
	Device LUN
	 6
	$FFFF9000
	00
	08
	10
	18
	20
	28
	30
	 7
	$FFFF9800
	16
	$FFFF4800
	40
	48
	50
	58
	60
	68
	70
	17
	$FFFF5800
	18
	$FFFF7000
	19
	$FFFF7800

	Controller LUN
	Address
	Device LUN
	4
	$FFFF5000
	0
	5
	$FFFF5100
	IOT Command Parameters for Supported Floppy Types

	IOT Parameter (Continued)
	Floppy Types and Formats (Continued)
	DSDD5
	PCXT8
	PCXT9
	PCXT9_3
	PCAT
	PS2
	SHD
	Configure and Environment Commands
	Configure Board Information Block
	Set Environment to Bug/Operating System
	Table D�1. ENV Command Parameters (Continued)

	Default
	S
	Y
	B
	Y
	N
	N
	A
	Y
	N
	Y
	00
	00
	15
	N
	Y
	N
	00
	FF800000
	FFBFFFFC
	N
	Y
	00
	00
	5
	00000000
	00000000
	02000000
	00010000
	FFFFCE0F
	Y
	00000000
	02000000
	00000000
	02000000 00000000
	Y
	00000000
	01FFFFFF
	00000000
	00000000
	03FF
	Y
	FFE00000
	FFE1FFFF
	00000000
	00000000
	01EF
	Y
	02000000
	EFFFFFFF
	0D
	N
	00000000
	00000000
	00
	N
	00000000
	00000000
	00
	N
	00000000
	00000000
	00000000
	00000000
	00
	Y
	01
	Y
	02
	05 06 07
	D4
	00
	01
	00
	02
	Network Controller Data
	Network Controller Modules Supported

	Controller Type
	CLUN
	DLUN
	Address
	Interface Type
	$00
	$00
	$02
	$00
	$03
	$00
	$04
	$00
	$05
	$00
	$06
	$00
	$07
	$00
	$10
	$00
	$11
	$00
	$12
	$00
	$13
	$00
	$14
	$00
	$15
	$00
	Troubleshooting the MVME177: Solving Startup Probl...
	Table F�1. Basic Troubleshooting Steps (Continued)...

	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

