
DSP96002

32-BIT
DIGITAL SIGNAL PROCESSOR

USER’S MANUAL

Motorola, Inc.
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive, West
Austin, Texas 78735-8598

MOTOROLA DSP96002 USER’S MANUAL 1 - 1

SECTION 1
DSP96002 INTRODUCTION

This manual describes the first member of a family of dual-port IEEE floating point programmable CMOS
processors. The family concept defines a core as the Data ALU, Address Generation Unit, Program Con-
troller and associated Instruction Set. The On-Chip Program Memory, Data Memories and Peripherals sup-
port many numerically intensive applications and minimize system size and power dissipation; however,
they are not considered part of the core.

The first family member is the DSP96002. The main characteristics of the DSP96002 are support of IEEE
754 Single Precision (8 bit Exponent and 24 bit Mantissa) and Single Extended Precision (11 bit Exponent
and 32 bit Mantissa) Floating-Point and 32 bit signed and unsigned fixed point arithmetic, coupled with two
identical external memory expansion ports. Its features are listed below.

DSP96002 Features

• IEEE 745 Standard SP (32-bit) and SEP (44 bit) Arithmetic

• 16.5 Million Instructions per Second (Mips) with a 33 Mhz clock

• 49.5 Million Floating Point Instructions per Second (MFLOPS) peak with a 33 Mhz
clock

• Single-Cycle 32 x 32 Bit Parallel Multiplier

• Highly Parallel Instruction Set with Unique DSP Addressing Modes

• Nested Hardware Do Loops

• Fast Auto-Return Interrupts

• 2 Independent On-Chip 512 x 32 Bit Data RAMs

• 2 Independent On-Chip 1024 x 32 Bit Data ROMs

• Off-Chip Expansion to 2 x 2

32

 32-Bit Words of Data Memory

• On-Chip 1,024 x 32 Bit Program RAM

• On-Chip 64 x 32 Bit Bootstrap ROM

• Off-Chip Expansion to 2

32

 32-Bit Words of Program Memory

• Two Identical External Memory Expansion Ports

• Two 32-Bit Parallel Host MPU/DMA Interfaces

• On-Chip Two-Channel DMA Controller

• On-Chip Emulator

1 - 2 DSP96002 USER’S MANUAL MOTOROLA

SECTION 2
SIGNAL DESCRIPTION AND BUS OPERATION

 2.1 PINOUT
The functional signal groups of the DSP96002 are shown in Figure 2-2, and are described in the following
sections. A pin allocation summary is shown in Figure 2-1. Specific pinout and timing information is avail-
able in the DSP96002 Technical Data Sheet (DSP96002/D).

 2.1.1 Package
The DSP96002 is available in a 223 pin PGA package. There are 176 signal pins (including 5 spares), 17
power pins and 30 ground pins. All packaging information is available in the data sheet.

 2.1.2 Interrupt And Mode Control (4 Pins)

—

R
—

E
—

S
—

E
–
T(Reset) - active low, Schmitt trigger input.

—
R

—
E

—
S

—
E

–
T is internally synchronized

to the input clock (CLK). When asserted, the chip is placed in the reset state and the
internal phase generator is reset. The Schmitt trigger input allows a slowly rising input

(such as a capacitor charging) to reliably reset the chip. If
—

R
—

E
—

S
—

E
–
T is deas-

serted synchronous to the input clock (CLK), exact startup timing is guaranteed, allow-
ing multiple processors to startup synchronously and operate together in "lock-step".

When the
—

R
—

E
—

S
—

E
–
T pin is deasserted, the initial chip operating mode is latched

from the MODA, MODB and MODC pins.

MODA/
—

I
—

R
—

Q
–
A(Mode Select A/External Interrupt Request A) - active low input, internally

synchronized to the input clock (CLK). MODA/
—

I
—

R
—

Q
–
A selects the initial chip

operating mode during hardware reset and becomes a level sensitive or negative edge
triggered, maskable interrupt request input during normal instruction processing.
MODA, MODB and MODC select one of 8 initial chip operating modes, latched into the

operating mode register (OMR) when the
—

R
—

E
—

S
—

E
–
T pin is deasserted. If

—
I
—

R
—

Q
–
A is asserted synchronous to the input clock (CLK), multiple processors can be

resynchronized using the WAIT instruction and asserting
—

I
—

R
—

Q
–
A to exit the wait

state. If the processor is in the STOP standby state and
—

I
—

R
—

Q
–
A is asserted, the

processor will exit the STOP state.
MOTOROLA DSP96002 USER’S MANUAL 2 - 1

2 - 2

CPU Pins Pins
Reset and IRQs 4
Clock Input 1
OnCE Port 4
CPU Spare 1
Quiet Power 4
Quiet Ground 4
CPU Subtotal 18

Power/Ground Planes Pins
Package Noisy Power Plane 2
Package Noisy Ground Plane 5
Package Quiet Power Plane 1
Package Quiet Ground Plane 1

Power/Ground Plane Subtotal 9

 Each Port Both Ports
Port A/B Pins Pins

 Data Bus 32 64
Address Bus 32 64
Data Power 2 4
Data Ground 4 8
Address Power 2 4
Address Ground 4 8
Addr/Data Subtotal 76 152

Each Port Both Ports
Port A/B Pins Pins
Bus Control Signals 17 34
Bus Control Spare 2 4
Bus Control Power 1 2
Bus Control Ground 2 4
Control Subtotal 22 44

Pinout Summary Pins
CPU Pins 18
Package Power/Ground Planes 9
Port A/B Pins

Data and Address 152
Bus Control 44

 TOTALS 223

Figure 2-1. DSP96002 Functional Group Pin Allocation
— — — –
MODB/ I R Q B(Mode Select B/External Interrupt Request B) - active low input, internally synchronized

to the input clock (CLK). MODB/
—

I
—

R
—

Q
–
B selects the initial chip operating mode dur-

ing hardware reset and becomes a level sensitive or negative edge triggered, maskable
interrupt request input during normal instruction processing. MODA, MODB and MODC
select one of 8 initial chip operating modes, latched into the operating mode register

(OMR) when the
—

R
—

E
—

S
—

E
–
T pin is deasserted. If

—
I
—

R
—

Q
–
B is asserted syn-

chronous to the input clock (CLK), multiple processors can be resynchronized using the

WAIT instruction and asserting
—

I
—

R
—

Q
–
B to exit the wait state.

MODC/
—

I
—

R
—

Q
–
C(Mode Select C/External Interrupt Request C) - active low input, internally synchronized

to the input clock (CLK). MODC/
—

I
—

R
—

Q
–
C selects the initial chip operating mode dur-
DSP96002 USER’S MANUAL MOTOROLA

MOTOROLA DSP96002 USER’S MANUAL 2 - 3

OnCE

 is a trademark of Motorola Inc.

ADDRESS BUS A

32 32

ADDRESS BUS B

aA0-aA31 bA0-bA31
Vcc (2) (2) Vcc
Vss (4) (4) Vss

DATA BUS A

32 32

DATA BUS B

aD0-aD31 bD0-bD31
Vcc (2) (2) Vcc
Vss (4) (4) Vss

PORT A BUS CONTROL PORT B BUS CONTROL

aS1 bS1
aS0 bS0

aR/
—

W bR/
—

W

a
—

B
–
S

—
B

–
S

a
—

B
–
L b

—
B

–
L

a
—

T
–
T b

—
T

–
T

a
—

T
–
S b

—
T

–
S

a
—

T
–
A b

—
T

–
A

a
—

A
–
E b

—
A

–
E

a
—

D
–
E b

—
D

–
E

a
—

H
–
S b

—
H

–
S

a
—

H
–
A b

—
H

–
A

a
—

H
–
R b

—
H

–
R

a
—

B
–
R b

—
B

–
R

a
—

B
–
G b

—
B

–
G

a
—

B
–
B b

—
B

–
B

a
—

B
–
A b

—
B

–
A

aNC (2) (2) bNC

Vcc (1) (1) Vcc
Vss (2) (2) Vss

INTERRUPT AND OnCE

 ON-CHIP
MODE CONTROL EMULATION PORT

MODA/
—

I
—

R
—

Q
–
A DSO

MODB/
—

I
—

R
—

Q
–
B DSI/OS0

MODC/
—

I
—

R
—

Q
–
C DSCK/OS1

—
R

—
E

—
S

—
E

–
T

—–
D

–
R

CLOCK INPUT NOISY POWER PLANE

CLK (2) Vcc
NC (5) Vss

QUIET POWER QUIET POWER PLANE

Vcc (4) (1) Vcc
Vss (4) (1) Vss

DSP96002

223 PINS

Figure 2-2. DSP96002 Functional Signal Groups

ing hardware reset and becomes a level sensitive or negative edge triggered, maskable
interrupt request input during normal instruction processing. MODA, MODB and MODC
select one of 8 initial chip operating modes, latched into the operating mode register

(OMR) when the
—

R
—

E
—

S
—

E
–
T pin is deasserted. If

—
I
—

R
—

Q
–
C is asserted syn-

chronous to the input clock (CLK), multiple processors can be resynchronized using the

WAIT instruction and asserting
—

I
—

R
—

Q
–
C to exit the wait state.

 2.1.3 Power and Clock (39 Pins)
CLK (Clock Input) - active high input, high frequency processor clock. Frequency is twice the

instruction rate. An internal phase generator divides CLK into four phases (t0, t1, t2 and
t3) which is the basic instruction execution cycle. Additional tw phases are optionally
generated to insert wait states (WS) into instruction execution. A wait state is formed by
pairing a t2 and tw phase. CLK should be continuous with a 46-54% duty cycle.
t0 t1 t2 t3 t0 t1 t2 tw t2 tw t2 t3
CLK

No Wait State
 Instruction

Two Wait State Instruction

WS WS
Quiet VCC (4) (Power) - isolated power for the CPU logic. Must be tied to all other chip power pins ex-
ternally. User must provide adequate external decoupling capacitors.

Quiet VSS (4) (Ground) - isolated ground for the CPU logic. Must be tied to all other chip ground pins
externally. User must provide adequate external decoupling capacitors.

Address Bus VCC(4) (Power) - isolated power for sections of address bus I/O drivers. Must be tied to
all other chip power pins externally. User must provide adequate external decoupling
capacitors.

Address Bus VSS(8) (Ground) - isolated ground for sections of address bus I/O drivers. Must be tied
to all other chip ground pins externally. User must provide adequate external decoupling
capacitors.

Data Bus VCC(4) (Power) - isolated power for sections of data bus I/O drivers. Must be tied to all
other chip power pins externally. User must provide adequate external decoupling ca-
pacitors.

Data Bus VSS(8) (Ground) - isolated ground for sections of data bus I/O drivers. Must be tied to
all other chip ground pins externally. User must provide adequate external decoupling
capacitors.
2 - 4 DSP96002 USER’S MANUAL MOTOROLA

Bus Control VCC(2) (Power) - isolated power for the bus control I/O drivers. Must be tied to all other
chip power pins externally. User must provide adequate external decoupling capacitors.

Bus Control VSS(4) (Ground) - isolated ground for the bus control I/O drivers. Must be tied to all oth-
er chip ground pins externally. User must provide adequate external decoupling capac-
itors.

 2.1.4 On-chip Emulator Interface (OnCE) (4 Pins)
—

D
–
R (Debug Request) - The debug enable input provides a means of entering the debug

mode of operation from the external command controller. This pin when asserted causes
the DSP96002 to finish the current instruction being executed, save the instruction pipe-
line information, enter the debug mode and wait for commands to be entered from the
debug serial input line.

DSCK/OS1 (Debug Serial Clock/Chip Status 1) - The DSCK/OS1 pin, when configured as an input,
is the pin through which the serial clock is supplied to the OnCE. The serial clock pro-
vides pulses required to shift data into and out of the OnCE serial port. When output (not
in Debug Mode), this pin in conjunction with the OS0 pin, provides information about the
chip status.

DSI/OS0 (Debug Serial Input/Chip Status 0) - The DSI/OS0 pin, when configured as an input, is
the pin through which serial data or commands are provided to the OnCE controller. The
data received on the DSI pin will be recognized only when the DSP 96002 has entered
the debug mode of operation. When configured as an output (not in Debug Mode), this
pin in conjunction with the OS1 pin, provides information about the chip status.

DSO (Debug Serial Output) The debug serial output provides the data contained in one of the

OnCE controller registers as specified by the last command received from the external
command controller. When a trace or breakpoint occurs this line will be asserted for one
T cycle to indicate that the chip has entered the debug mode and is waiting for com-
mands.

 2.1.5 Port A and Port B (162 Pins)
Port A and Port B are identical in pinout and function. The following pin descriptions apply to both ports.
Each port may be a bus master and each port has a host interface which can be accessed on demand.

The pins are specified for a 50 pf load and two external TTL loads. Derating curves will be provided spec-
ifying performance up to 250 pf capacitive loads.

A0-A31 (Address Bus) - three-state, active high outputs when a bus master. When not a bus
master, A2-A5 are active high inputs, A0-A1 and A6-A31 are three-stated. As inputs,
A2-A5 may change asynchronous relative to the input clock (CLK). A2-A5 are host in-
terface address inputs which are used to select the host interface register. When a bus
master, A0-A31 specify the address for external program and data memory accesses.
If there is no external bus activity, A0-A31 remain at their previous values. When a bus

master, the Address Enable (
—

A
–
E) input acts as an output enable control for A0-A31.

When a bus master, A0-A31 are stable whenever the transfer strobe
—

T
–
S is asserted
MOTOROLA DSP96002 USER’S MANUAL 2 - 5

and may change only when
—

T
–
S is deasserted. A0-A31 are three-stated during hard-

ware reset.

D0-D31 (Data Bus) - three-state, active high, bidirectional input/outputs when a bus master or

not a bus master. The Data Enable (
—

D
–
E) input acts as an output enable control for

D0-D31. As a bus master, the data lines are controlled by the CPU instruction execution
or the DMA controller. D0-D31 are also the Host Interface data lines. If there is no ex-
ternal bus activity, D0-D31 are three-stated. D0-D31 are also three-stated during hard-
ware reset.

S1,S0 (Space Select) - three-state, active low outputs when a bus master, three-stated when
not a bus master. Timing is the same as the address lines A0-A31. S1 and S0 are three-
stated during hardware reset.

These signals can be viewed in different ways, depending on how the external memo-
ries are mapped. They support the trend toward splitting memory spaces among ports
and mapping multiple memory spaces into the same physical memory locations. Sev-
S1 S0 MEMORY SPACE
1 1 No access
1 0 P access
0 1 X access
0 0 Y access
eral examples are given in Figure 2-3 . The encoding S1:S0=11 may be used to place
external memories in their low power standby mode.

R/
—

W (Read/Write)- three-state, active low output when a bus master, active low input when
not a bus master. Bus master timing is the same as the DSP96002 address lines, giving
EXTERNAL MEMORY AND MAPPING S1 FUNCTION S0 FUNCTION

P only —
—

P
–
S

X only
—

D
–
S —

Y only
—

D
–
S —

X and Y mapped as 1 or 2 spaces
—

D
–
S X/

–
Y

P and X mapped as 2 spaces
—

D
–
S

—
P

–
S

P and Y mapped as 1 space
—

P
–
S/

—
D

–
S

—
P

–
S and

—
D

–
S

P, X, and Y mapped as 1 space
—

P
–
S/

—
D

–
S —

Figure 2-3. Program and Data Memory Select Encoding
2 - 6 DSP96002 USER’S MANUAL MOTOROLA

an "early write" signal for DRAM interfacing. R/
—

W is high for a read access and is low

for a write access. The R/
—

W pin is also the Host Interface read/write input. As an in-

put, R/
—

W may change asynchronous relative to the input clock. R/
—

W goes high if

the external bus is not used during an instruction cycle. R/
—

W is three-stated during
hardware reset.

—
B

–
S (Bus Strobe) - three-state, active low output when a bus master, three-stated when not

a bus master. Asserted at the start of a bus cycle (providing an "early bus start" signal
for DRAM interfacing) and deasserted at the end of the bus cycle. The early negation
provides an "early bus end" signal useful for external bus control. If the external bus is

not used during an instruction cycle,
—

B
–
S remains deasserted until the next external

bus cycle.
—

B
–
S is three-stated during hardware reset.

—
T

–
T (Transfer Type) - three-state, active low output when a bus master, three-stated when

not a bus master. When a bus master,
—

T
–
T is controlled by an on-chip page circuit

(see Section seven).
—

T
–
T is asserted when a fast access memory mode (page, static

column, nibble or serial shift register) is detected. If the external bus is not used during
an instruction cycle or a fault is detected by the page circuit during an external access,
—

T
–
T remains deasserted. The parameters of the page circuit fault detection are user

programmable.
—

T
–
T is three-stated during hardware reset.

—
T

–
S (Transfer Strobe) - three-state, active low output when a bus master, active low input

when not a bus master. When a bus master,
—

T
–
S is asserted to indicate that the ad-

dress lines A0-A31, S1, S0,
—

B
–
S,

—
B

–
L and R/

—
W are stable and that a bus read or

bus write transfer is taking place. During a read cycle, input data is latched inside the

DSP96002 on the rising edge of
—

T
–
S. During a write cycle, output data is placed on

the data bus after
—

T
–
S is asserted. Therefore

—
T

–
S can be used as an output enable

control for external data bus buffers if they are present. If the external bus is not used

during an instruction cycle,
—

T
–
S remains deasserted until the next external bus cycle.

An external flip-flop can delay
—

T
–
S if required for slow devices or more address de-

coding time. The
—

T
–
S pin is also the Host Interface transfer strobe input used to en-

able the data bus output drivers during host read operations and to latch data inside the

Host Interface during host write operations. As an input,
—

T
–
S may change asynchro-

nous relative to the input clock. Write data is latched inside the Host Interface on the

rising edge of
—

T
–
S.

—
T

–
S is three-stated during hardware reset.
MOTOROLA DSP96002 USER’S MANUAL 2 - 7

When a bus master, the combination of
—

B
–
S and

—
T

–
S can be decoded externally to

determine the status of the current bus cycle and to generate hardware strobes useful
for latching address and data signals. The encoding is shown in Figure 2-4.
—
B

–
S

—
T

–
S Bus Status Strobe Generation Application

1 1 Idle

0 1 Cycle Start Address Strobe (
—

A
–
S)

0 0 Wait

1 0 Cycle End Data Strobe (
—

D
–
S)

t0 t1 t2 t3 t0 t1 t2 tw t2 tw t2 t3
CLK

—
B

–

—
T

–
S

—
D

–

—
A

–

WS WS
—
T

–
A (Transfer Acknowledge) - active low input. If the DSP96002 is the bus master and either

there is no external bus activity or the DSP96002 is not the bus master, the
—

T
––

A input

is ignored by the core. The
—

T
–
A input is a synchronous "DTACK" function which can

extend an external bus cycle indefinitely.
—

T
–
A must be asserted and deasserted syn-

chronous to the input clock (CLK) for proper operation.
—

T
–
A is sampled on the falling

edge of the input clock (CLK). Any number of wait states (0, 1, 2, ..., infinity) may be

inserted by keeping
—

T
–
A deasserted. In typical operation,

—
T

–
A is deasserted at the

start of a bus cycle, is asserted to enable completion of the bus cycle and is deasserted

before the next bus cycle. The current bus cycle completes one clock period after
—

T
–

A is asserted synchronous to CLK. The number of wait states is determined by the
—

T
–
A input or by the Bus Control Register (BCR), whichever is longer. The BCR can be

used to set the minimum number of wait states in external bus cycles. If
—

T
–
A is tied

low (asserted) and no wait states are specified in the BCR register, zero wait states will
be inserted into external bus cycles.
2
Figure 2-4. Bus Status Encoding
- 8 DSP96002 USER’S MANUAL MOTOROLA

—
A

–
E (Address Enable) - active low input, must be asserted and deasserted synchronous to

the input clock (CLK) for proper operation. If a bus master,
—

A
–
E is asserted to enable

the A0-A31 address output drivers. If
—

A
–
E is deasserted, the address output drivers

are three-stated. If not a bus master, the address output drivers are three-stated regard-

less of whether
—

A
–
E is asserted or deasserted. The function of

—
A

–
E is to allow mul-

tiplexed bus systems to be implemented. Examples are a multiplexed address/data bus
such as the NuBus used in the Macintosh II or a multiplexed address1/address2 bus
used with dual port memories such as dynamic VRAMs. Note that there must be at least
one undriven CLK period between enables for multiplexed buses to allow one bus to
three-state before another bus is enabled. External control is responsible for this timing.

For non-multiplexed systems,
—

A
–
E should be tied low.

—
D

–
E (Data Enable) - active low input, must be asserted and deasserted synchronous to the

input clock (CLK) for proper operation. If a bus master or the Host interface is being read,
—

D
–
E is asserted to enable the D0-D31 data bus output drivers. If

—
D

–
E is deassert-

ed, the data bus output drivers are three-stated. If not a bus master, the data bus output

drivers are three-stated regardless of whether
—

D
–
E is asserted or deasserted. Read-

only bus cycles may be performed even though
—

D
–
E is deasserted. The function of

—
D

–
E is to allow multiplexed bus systems to be implemented. Examples are a multi-

plexed address/data bus such as the NuBus used in the Macintosh II or a multi-
plexed data1/data2 bus used for long word transfers with one 32 bit wide memory. Note
that there must be at least one undriven CLK period between enables for multiplexed
buses to allow one bus to three-state before another bus is enabled. External control is

responsible for this timing. For non-multiplexed systems,
—

D
–
E should be tied low.

—
H

–
S (Host Select) - active low input, may change asynchronous to the input clock.

—
H

–
S is

asserted low to enable selection of the Host Interface functions by the address lines A2-

A5. If
—

T
–
S is asserted when

—
H

–
S is asserted, a data transfer will take place with the

Host Interface. Note that both
—

H
–
S and

—
H

–
A must be tied high to disable the Host

Interface. When
—

H
–
A is asserted,

—
H

–
S is ignored.

—
H

–
A (Host Acknowledge) - active low input, may change asynchronous to the input clock.

—

H
–
A is used to acknowledge either an interrupt request or a DMA request to the host

interface. When the host interface is not in DMA mode, asserting
—

T
–
S when

—
H

–
A

and
—

H
–
R are asserted will enable the contents of the host interface interrupt vector
MOTOROLA DSP96002 USER’S MANUAL 2 - 9

NuBus is a trademark of Texas Instruments, Inc.
Macintosh II is a trademark of Apple Computer, Inc.

register (IVR) onto the data bus outputs D0-D31. This provides an interrupt acknowl-
edge capability compatible with MC68000 family processors.

If the host interface is in DMA mode,
—

H
–
A is used as a DMA transfer acknowledge in-

put and it is asserted by an external device to transfer data between the Host Interface

registers and an external device. In DMA read mode,
—

H
–
A is asserted to read the Host

Interface RX register on the data bus outputs D0-D31. In DMA write mode,
—

H
–
A is as-

serted to strobe external data into the Host Interface TX register. Write data is latched

into the TX register on the rising edge of
—

H
–
A.

—
H

–
R (Host Request) - active low output, never three-stated. The host request

—
H

–
R is as-

serted to indicate that the host interface is requesting service - either an interrupt request
or a DMA request - from an external device.

The
—

H
–
R output may be connected to interrupt request input

—
I
—

R
—

Q
–
A,

—
I
—

R
—

Q
–
B, or

—
I
—

R
—

Q
–
C of another DSP96002. The DSP96002 on-chip DMA Controller

channel can select the interrupt request input as a DMA transfer request input.

—
B

–
R (Bus Request) - active low output, never three-stated.

—
B

–
R is asserted when the CPU

or DMA is requesting bus mastership.
—

B
–
R is deasserted when the CPU or DMA no

longer needs the bus.
—

B
–
R may be asserted or deasserted independent of whether

the DSP96002 is a bus master or a bus slave. Bus "parking" allows
—

B
–
R to be

deasserted even though the DSP96002 is the bus master. See the description of bus

"parking" in the
—

B
–
A pin description. The RH bit in the Bus Control Register (see

Section seven) allows
—

B
–
R to be asserted under software control even though the

CPU or DMA does not need the bus.
—

B
–
R is typically sent to an external bus arbitrator

which controls the priority, parking and tenure of each DSP96002 on the same external

bus.
—

B
–
R is only affected by CPU or DMA requests for the external bus, never for the

internal bus. During hardware reset,
—

B
–
R is deasserted and the arbitration is reset

to the bus slave state.

—
B

–
G (Bus Grant) – active low input.

—
B

–
G must be asserted/ deasserted synchronous to the

input clock (CLK) for proper operation.
—

B
–
G is asserted by an external bus arbitration

circuit when the DSP96002 may become the next bus master. When
—

B
–
G is asserted,

the DSP96002 must wait until
—

B
–
B is deasserted before taking bus mastership. When

—
B

–
G is deasserted, bus mastership is typically given up at the end of the current bus

cycle. This may occur in the middle of an instruction which requires more than one ex-
ternal bus cycle for execution. Note that indivisible read-modify-write instructions
2 - 10 DSP96002 USER’S MANUAL MOTOROLA

(BSET, BCLR, BCHG) will not give up bus mastership until the end of the current instruc-

tion.
——

B
–
G is ignored during hardware reset.

—
B

–
A (Bus Acknowledge) - Open drain, active low output. When deasserting

—
B

–
A, the

DSP96002 drives
—

B
–
A high during half a CLK cycle and then disables the active pull-

up. In this way, only a weak external pull-up resistor is required to hold the line high.
—

B
–
A may be directly connected to

—
B

–
B in order to obtain the same functionality as the

MC68040
—

B
–
B pin. When

—
B

–
G is asserted, the DSP96002 becomes the pending

bus master. It waits until
—

B
–
B is negated by the previous bus master, indicating that

the previous bus master is off the bus. The pending bus master asserts
—

B
–
A to be-

come the current bus master.
—

B
–
A is asserted when the CPU or DMA has taken the

bus and is the bus master. While
—

B
–
A is asserted, the DSP96002 is the owner of the

bus (the bus master). When
—

B
–
A is negated, the DSP96002 is a bus slave.

—
B

–
A

may be used as a three-state enable control for external address, data and bus control

signal buffers.
—

B
–
A is three-stated during hardware reset.

Note that a current bus master may keep
—

B
–
A asserted after ceasing bus activity, re-

gardless of whether
—

B
–
R is asserted or deasserted. This is called "bus parking" and

allows the current bus master to use the bus repeatedly without re-arbitration until some
other device wants the bus.

The current bus master keeps
—

B
–
A asserted during indivisible read-modify-write bus

cycles, regardless of whether
—

B
–
G has been deasserted by the external bus arbitra-

tion unit. This form of "bus locking" allows the current bus master to perform atomic op-

erations on shared variables in multitasking and multiprocessor systems. Current in-

structions which perform indivisible read-modify-write bus cycles are BCLR, BCHG and

BSET.

—
B

–
B (Bus Busy) - active low input, must be asserted and deasserted synchronous to the input

clock (CLK) for proper operation.
—

B
–
B is deasserted when there is no bus master on

the external bus. In multiple DSP96002 systems, all
—

B
–
B inputs are tied together and

are driven by the logical AND of all
—

B
–
A outputs.

—
B

–
B is asserted by a pending bus

master (directly or indirectly by
—

B
–
A assertion) to indicate that it is now the current bus

master.
—

B
–
B is deasserted by the current bus master (directly or indirectly by

—
B

–
A

negation) to indicate that it is off the bus and is no longer the bus master. The pending

bus master monitors the
—

B
–
B signal until it is deasserted. Then the pending bus mas-

ter asserts
—

B
–
A to become the current bus master, which asserts

—
B

–
B directly or

indirectly.
MOTOROLA DSP96002 USER’S MANUAL 2 - 11

—
B

–
L (Bus Lock) - active low output, never three-stated. Asserted at the start of an external

indivisible Read-Modify-Write (RMW) bus cycle (providing an "early bus start" signal for

DRAM interfacing) and deasserted at the end of the write bus cycle.
—

B
–
L remains as-

serted between the read and write bus cycles of the RMW bus sequence.
—

B
–
L can

be used to indicate that special memory timing (such as RMW timing for DRAMs) may
be used or to "resource lock" an external multi-port memory for secure semaphore up-
dates. The early negation provides an "early bus end" signal useful for external bus con-

trol. If the external bus is not used during an instruction cycle,
—

B
–
L remains deassert-

ed until the next external indivisible RMW bus cycle.
—

B
–
L also remains deasserted if

the external bus cycle is not an indivisible RMW bus cycle or if there is an internal RMW

bus cycle. The only instructions which automatically assert
—

B
–
L are a BSET, BCLR

or BCHG instruction which accesses external memory.
—

B
–
L can also be asserted by

setting the LH bit in the BCR register (see Section seven).
—

B
–
L is deasserted during

hardware reset.

 2.1.6 Reserved Pins
There are 5 spare pins reserved for future use.

 2.2 BUS OPERATION
The external bus timing is defined by the operation of the Address Bus, Data Bus and Bus Control pins
described in paragraph 2.1.5. The DSP96002 external ports are designed to interface with a wide variety
of memory and peripheral devices, high speed static RAMs, dynamic RAMs and video RAMs as well as

slower memory devices. External bus timing is controlled by the
—

T
–
A control signal and by the Bus Con-

trol Registers (BCR) which are described in Section seven. The BCR and
—

T
–
A control the timing of the

bus interface signals. Insertion of wait states is controlled by the BCR to provide constant bus access tim-

ing, and by
—

T
–
A to provide dynamic bus access timing. The number of wait states is determined by the

—
T

–
A input or by the BCR, whichever is longer.

 2.2.1 Synchronous Bus Operation
Synchronous external bus cycle consists of at least 4 internal clock phases. See the DSP96002 Technical
Data Sheet (DSP96002/D) for the specification of the internal clock phases. Each synchronous external
memory access requires the following procedure:

3:3. The external memory address is defined by the Address Bus A0-A31 and the Memory Ref-
erence Select signals S1 and S0. These signals change in the first phase of the external bus
cycle. The Memory Reference Select signals have the same timing as the Address Bus and
may be used as additional address lines. The Address and Memory Reference signals are
also used to generate chip select signals for the appropriate memory chips. These chip se-
lect signals change the memory chips from low power standby mode to active mode and be-
gin the read access time. This allows slower memories to be used since the chip select sig-
nals are address-based rather than read or write enable-based.
2 - 12 DSP96002 USER’S MANUAL MOTOROLA

3:4. When the Address and Memory Reference signals are stable, the data transfer is enabled by

the Transfer Strobe
—

T
–
S signal.

—
T

–
S is asserted to "qualify" the Address and Memory

Reference signals as stable and to perform the read or write data transfer.
—

T
–
S is asserted

in the second phase of the bus cycle.

3:5. Wait states are inserted into the bus cycle controlled by a wait state counter or by
—

T
–
A,

whichever is longer. The wait state counter is loaded from the Bus Control Register. If the
wait state number determined by these two factors is zero, no wait states are inserted into

the bus cycle and
—

T
–
S is deasserted in the fourth phase. If the wait state number deter-

mined is W, then W wait states are inserted into the instruction cycle. Each wait state intro-
duces one Tc delay.

3:6. When the Transfer Strobe
—

T
–
S is deasserted at the end of a bus cycle, the data is latched

in the destination device. At the end of a read cycle, the DSP96002 latches the data inter-
nally. At the end of a write cycle, the external memory latches the data. The Address signals
remain stable until the first phase of the next external bus cycle to minimize power dissipa-
tion. The Memory Reference signals S1 and S0 are deasserted during periods of no bus ac-
tivity and the data signals are three-stated.

 3.6.1 Static RAM Support
Static RAM devices can be easily interfaced to the DSP96002 bus timing. There are two basic techniques

-
—

C
–
S controlled writes and

—
W

–
E controlled writes.

3. 6.1.1
—

C
–
S Controlled Writes

This form of static interface uses the memory chip select (
—

C
–
S) as the write strobe. The DSP96002 R/

—
W signal is used as an early read/write direction indication. Proper data buffer enable control on RAMs

without a separate output enable (
—

O
–
E) input must use this form to avoid multiple data buffers colliding

on the data bus. The interface schematic is shown in Figure 2-5.
MOTOR

 DSP96002 STATIC RAM

—
C

–
S

—
W

–
ER/

—
W

—
T

–

Figure 2-5.
—

C
–
S Controlled Writes Interface to Static RAM
OLA DSP96002 USER’S MANUAL 2 - 13

2 - 14

DSP96002

—

R/
—

STATIC RAM

—

—
O

–

—
C

–S1 or S0

Figure 2-6. —W–E Controlled Writes Interface To Static RAM
The disadvantage of this technique is that access time is measured from
—

T
–
S instead of from the address

or
—

B
–
S. Hence faster memories are required.
3. 6.1.2
—

W
–
E Controlled Writes

This form of static interface uses the memory write enable (
—

W
–
E) as the write strobe. The DSP96002

R/
—

W signal is used to form a late read/write indication by gating it with
—

T
–
S. This form is the one used

by the 56000/1 bus interface. Proper data buffer enable control requires a separate output enable (
—

O
–

E) input on the memory to avoid multiple data buffers colliding on the data bus. The interface schematic
is shown in Figure 2-6.

The advantage of this technique is that access time is measured from S1, S0 or addresses instead of
—

T
–
S. Hence slower memories can be used. The disadvantage of this technique is that the write data hold

will be shortened because the
—

W
–
E signal is delayed by the OR gate.

 3.6.2 Dynamic RAM and Video RAM Support
Modern dynamic memory (DRAM) and video memory (VRAM) are becoming the preferred choice for a
wide variety of computing systems based on

4:7. Cost per bit due to dynamic storage cell density.

4:8. Packaging density due to multiplexed address and control pins.

4:9. Improved performance relative to static RAMs due to fast access modes (page, static col-
umn, nibble and serial shift (VRAM)).

4:10. Commodity pricing due to high volume production.
DSP96002 USER’S MANUAL MOTOROLA

The Port A/B bus control signals are designed for efficient interface to DRAM/VRAM devices in both ran-
dom read/write cycles and fast access modes such as those listed above. The bus control signal timing
is specified relative to the external clock (CLK) to enable synchronous control by an external state ma-

chine. An on-chip page circuit controls the
—

T
–
T pin, indicating to the external state machine when a slow

or fast access is being made. The page circuit operation and programming is described in Section seven.

 4.11 BUS HANDSHAKE AND ARBITRATION
Bus transactions are governed by a single bus master. Bus arbitration determines which device becomes
the bus master. The arbitration logic implementation is system dependent, but must result in at most one
device becoming the bus master (even if multiple devices request bus ownership). The arbitration signals
permit simple implementation of a variety of bus arbitration schemes (e.g. fairness, priority, etc.). External
logic must be provided by the system designer to implement the arbitration scheme.

 4.11.1 Bus Arbitration Signals
Four signals are provided for bus arbitration. Three of them are considered as local arbitration signals and
one as system arbitration signal. The local arbitration signals run between a potential bus master and the

arbitration logic. The local signals are
—

B
–
R,

—
B

–
G, and

—
B

–
A;

—
B

–
B is a system arbitration signal.

These signals are described below.

—
B

–
R Bus Request - Asserted by the requesting device to indicate that it wants to use the bus,

and is held asserted until it no longer needs the bus. This includes time when it is the
bus master as well as when it is not the bus master.

—
B

–
G Bus Grant - Asserted by the bus arbitration controller to signal the requesting device that

it is the bus master elect.
—

B
–
G is valid only when the bus is not busy (Bus Busy signal

described below).

—
B

–
A Bus Acknowledge - Asserted by the device (bus master) that received the bus owner-

ship from the bus arbitration controller. The master holds
—

B
–
A asserted for the dura-

tion of its bus possession.
—

B
–
A indicates whether the device is a bus master or a bus

slave. When asserted,
—

B
–
A indicates that the device is the bus master.

—
B

–
A may

be used as a three-state enable control for external address, data and bus control signal
buffers.

—
B

–
B Bus Busy - The system arbitration signal

—
B

–
B is monitored by all potential bus masters

and is derived from the local bus signal
—

B
–
A. This signal controls the hand-over of

bus ownership by the bus master at the end of bus possession. Typically
—

B
–
B is the

wired-OR of all bus acknowledgments.
—

B
–
B is asserted if the Bus Acknowledge signal

is asserted by the bus master.
MOTOROLA DSP96002 USER’S MANUAL 2 - 15

 4.11.2 The Arbitration Protocol
The bus is arbitrated by a central bus arbitrator, using individual request/grant lines to each bus master.
The arbitration protocol can operate in parallel with bus transfer activity so that the bus hand-over can be
made without much performance penalty.

The arbitration sequence occurs as follows:

5:12. All candidates for bus ownership assert their respective
—

B
–
R signals as soon as they need

the bus.

5:13. The arbitration logic designates a bus master-elect by asserting the
—

B
–
G signal for that de-

vice.

5:14. The master-elect tests
—

B
–

B to ensure that the previous master has relinquished the bus.

If
—

B
–
B is deasserted, then the master-elect asserts

—
B

–
A, which designates the device as

the new bus master. If a higher priority bus request occurs before the
—

B
–
B signal was

deasserted, then the arbitration logic may replace the current master-elect with the higher

priority candidate. However, only one
—

B
–
G signal must be asserted at one time.

5:15. The new bus master begins its bus transfers after the assertion of
—

B
–
A.

5:16. The arbitration logic signals the current bus master to relinquish the bus by deasserting
—

B
–

G at any time. A DSP96002 bus master releases its ownership (deasserts
—

B
–
A) after

completing the current external bus access. If an instruction is executing a Read-Modify-

Write external access, a DSP96002 master asserts the
—

B
–
L signal and will only relinquish

the bus (and deassert
—

B
–
L) after completing the entire Read-Modify-Write sequence.

When the current bus master deasserts
—

B
–
A, the

—
B

–
B signal must also be deasserted

because the next bus master-elect has received its
—

B
–
G signal and is waiting for

—
B

–
B to

be deasserted before claiming ownership.

The DSP96002 has 2 control bits and one status bit, located in the Bus Control Registers (see Section 7)

to permit software control of the
—

B
–
R and

—
B

–
L signals, and to verify when the chip is the bus master.

If the RH bit in the BCR register is cleared, the DSP96002 asserts its
—

B
–
R signal only as long as requests

for bus transfers are pending or being attempted. If the RH bit is set,
—

B
–
R will remain asserted. If the

LH bit in the BCR register is cleared, the DSP96002 asserts its
—

B
–
L signal only during a read-modify-

write bus access. If the LH bit is set,
—

B
–
L will remain asserted.

 5.16.1 Arbitration Scheme
The bus arbitration scheme is implementation dependent. The diagram in Figure 2-7 illustrates a common
method of implementing the bus arbitration scheme. The arbitration logic determines the device priorities
and assigns bus ownership depending on those priorities.
2 - 16 DSP96002 USER’S MANUAL MOTOROLA

An implementation of a bus arbitration scheme may hold
—

B
–
G asserted, for example, to the current bus

owner if none of the other devices are requesting the bus. As a consequence, the current bus master may

keep
—

B
–
A asserted after ceasing bus activity, regardless of whether

—
B

–
R is asserted or deasserted.

This situation is called "bus parking" and allows the current bus master to use the bus repeatedly without
re-arbitration until some other device requests the bus.
DSP96002

—
B

–

—
B

–

—
B

–

—
B

–
L

—
B

–

—
B

–

—
B

–

—
B

–

—
B

–
L

—
B

–

DSP96002

ARBITRATION
LOGIC

Vcc
 5.16.2 Bus Handshake Unit
The bus handshake unit in the DSP96002 is implemented within a finite state machine. It consists of two

external outputs (
—

B
–
R,

—
B

–
A), two external inputs (

—
B

–
G,

—
B

–
B) and three internal inputs

(ext_acc_req, end_of_sequence, RH) (see Figure 2-8). The ext_acc_req signal is asserted when one or
more requests for external bus access are pending, and remains asserted as long as the transfers are
being executed. The end_of_sequence signal is asserted at the last bus cycle of the current sequence.
MOTOROLA

ext_acc_req

end_of_seq

Request Ho

—
B

–

Figure 2-7. Bus Arbitration Scheme
—
B

–
R

—
B

–
A

uence

ld (RH)

BUS
HANDSHAKE

UNIT

—
B

–
B

Figure 2-8. Bus Handshake Unit
DSP96002 USER’S MANUAL 2 - 17

 ACTIVE_
 MASTER
 (Z)

—

B
–
R = 0

—

B
–
A = 0

 REQUEST_BUS

 (Y)

—

B
–
R = 0

—

B
–
A = 1

 PARKING_
 MASTER
 (W)

—

B
–
R =

—

R
–
H

 IDLE
 (X)

—

B
–
R =

—
R

–

H

YY
XX

ZZ WW

(delayed)

ZY YZ

ZX

XZ

WY
(non-existant)

YX (illegal)

XY

ZW

WZ

WX XW

(delayed

)
YW (illegal)
Likewise, when executing the read part of a RMW access, the end_of_sequence signal is deasserted.

This signal is used to give up bus ownership if
—

B
–
G is deasserted during bus transfers. The state ma-

chine which controls the bus handshake is illustrated in Figure 2.9.

The transition arcs are labeled by two letters which denote its source and destination states. The equa-
tions of the transition arcs are described as follows:

 XX = ^ext_acc_req & ^(^
—

B
–
G &

—
B

–
B)

 XY = ext_acc_req & ^(^
—

B
–
G &

—
B

–
B)

 XZ = ext_acc_req & (^
—

B
–
G &

—
B

–
B)

 XW = ^ext_acc_req & (^
—

B
–
G &

—
B

–
B)

 YX = ^ext_acc_req & ^(^
—

B
–
G &

—
B

–
B) (note 1)

 YY = ext_acc_req & ^(^
—

B
–
G &

—
B

–
B)

 YZ = ext_acc_req & (^
—

B
–
G &

—
B

–
B)

 YW = ^ext_acc_req & (^
—

B
–
G &

—
B

–
B) (note 1)

 ZX = ^ext_acc_req &
—

B
–
G

 ZY = ext_acc_req &
—

D
—

B
–
G & end_of_sequence (note 3)
2 - 18
Figure 2-9. Bus Handshake State Diagram
DSP96002 USER’S MANUAL MOTOROLA

 ZZ = ^end_of_sequence v (ext_acc_req & ^
—

D
—

B
–
G) (note 3)

 ZW = ^ext_acc_req & ^
—

B
–
G

 WX = ^ext_acc_req &
—

B
–
G

 WY = NON-EXISTENT ARC (note 2)
 WZ = ext_acc_req

 WW = ^ext_acc_req & ^
—

B
–
G

 Notes: 1. Illegal arcs in DSP96002 since once the request of the bus is pending, it will not be canceled
before the execution of the access.

2. Non-existent arc since if ext_acc_req arrives together with the negation of
—

B
–
G, the device

becomes active master and begins its bus transfers.

3.
—

D
—

B
–
G is

—
B

–
G delayed by one phase. This is done to provide a response to the

ext_acc_req signal when it is asserted at the same phase together with
—

B
–
G negation.

 5.16.3 Bus Arbitration Example Cases

 5.16.3.1 Case 1 – Normal

If the device requesting mastership asserts
—

B
–
R: the arbiter asserts the requesting devices’

—
B

–
G and

—
B

–
B is deasserted indicating the bus is not busy. The requesting device will assert

—
B

–
A.

 5.16.3.2 Case 2 – Bus Busy

If the device requesting mastership asserts
—

B
–
R: the arbiter responds by asserting the requesting devic-

es’
—

B
–
G; however, the bus is busy because

—
B

–
B is asserted. The requesting device will not assert

—

B
–
A until

—
B

–
B is deasserted.

 5.16.3.3 Case 3 – Low Priority

If the device requesting mastership asserts
—

B
–
R: the arbiter withholds asserting the requesting devices’

—
B

–
G because a higher priority device requested the bus.

—
B

–
A of the requesting device will not be as-

serted.

 5.16.3.4 Case 4 – Default
If a device does not request the bus and it is not in the bus parking state but rather it is in the idle state: the

arbiter, by design (i. e., default), asserts
—

B
–
G.

—
B

–
A will remain deasserted.
MOTOROLA DSP96002 USER’S MANUAL 2 - 19

 5.16.3.5 Case 5 – Bus Lock during RMW

If the device requesting mastership asserts
—

B
–
R and the arbiter asserts the requesting devices’

—
B

–
G

and
—

B
–
B is deasserted, then the requesting device will assert

—
B

–
A. If a read-modify-write (RMW) in-

struction which accesses external memory is being executed, and the bus arbiter deasserts
—

B
–
G, then

—
B

–
A will remain asserted until the entire RMW instruction completes execution.

—
B

–
A will then be deas-

serted thereby relinquishing the bus. Note that during external RMW instruction execution,
—

B
–
L is assert-

ed. In general, the
—

B
–
L signal can be used to ensure that a multiport memory can only be written by one

master at a time. That is, referring to Figure 2-10,
—

B
–
L can be input from DSP #1to the memory controller

which prevents
—

T
–
A from being asserted by the controller (thereby suspending the memory access by

DSP #2) until DSP #1 completes its RMW access.

 5.16.3.6 Case 6 – Bus Park

The device requesting mastership asserts
—

B
–
R; the arbiter asserts the requesting devices’

—
B

–
G and

—
B

–
B is deasserted indicating the bus is not busy – the requesting device will assert

—
B

–
A. When the

requesting device no longer requires the bus it will deassert
—

B
–
R; if the bus arbiter leaves

—
B

–
G assert-

ed because other requests are not pending, then
—

B
–
A will remain asserted. This condition is called bus

parking and eliminates the need for the last bus master to rearbitrate for the bus during its next external
access.

Dual Port

Memory

Controller

DSP96002

#2#1

RMW
—

B
–

L
—

T
–
A

Figure 2-10. Bus Lock During RMW

DSP96002
2 - 20 DSP96002 USER’S MANUAL MOTOROLA

SECTION 3
CHIP ARCHITECTURE

 3.1 INTRODUCTION
The DSP96002 architecture is a 32-bit highly-parallel multiple-bus IEEE floating-point processor. The ar-
chitecture is designed to accommodate various IC family members with different memory and on-chip pe-
ripheral requirements while maintaining a standard programmable core. The overall chip architecture is
presented and detailed block diagrams of the Data ALU and Address Generation Unit AGU) core architec-
ture are described.

 3.2 DSP96002 BLOCK DIAGRAM
The major components of the DSP96002 are

• Data Buses

• Address Buses

• Data ALU

• Address Generation Unit

• X Data Memory

• Y Data Memory

• Program Control and System Stack

• Program Memory

• Port A and Port B External Bus Interfaces

• Internal Bus Switch and Bit Manipulation Unit

• I/O Interfaces

An overall block diagram of the DSP96002 architecture is shown in Figure 3-1.

3.2.1 Data Buses
Data movement on the chip occurs over five bidirectional 32-bit buses, X Data Bus (XDB), Y Data Bus
(YDB), Global Data Bus (GDB), the DMA Data Bus (DDB) and the Program Data Bus (PDB). The X and Y
data buses may also be treated by certain instructions as one 64-bit data bus by concatenation of XDB and
YDB. Data transfer between the Data ALU and the X Data Memory and Y Data Memory occur over the X
Data Bus and Y Data Bus. These are kept local on the chip to maximize speed and minimize power. The
direct memory access data transfers occur over the DMA Data Bus. Program memory data transfers and
instruction fetches occur over the Program Data Bus. All other data transfers occur over the Global Data
Bus.
MOTOROLA DSP96002 USER’S MANUAL 3 - 1

Figure 3-1. DSP96002 Block Diagram
3.2.2 Address Buses
Addresses are specified for internal X Data Memory and Y Data Memory on two unidirectional 32-bit buses,
X Address Bus (XAB) and Y Address Bus (YAB). Internal address bus sizes depend on the amount of in-
ternal memory implemented. External memory spaces for each port, A and B, are addressed via a single
32-bit unidirectional address bus driven by a three input multiplexer that can select the X Address Bus
(XAB), the Y Address Bus (YAB) or the Program Address Bus (PAB). On-chip peripherals and the DMA
Controller are memory mapped in the internal X memory space. When zero wait state external memory is
used, one instruction cycle is needed for each external memory access.

The XAB, YAB and PAB are dual access buses in the sense that one instruction cycle contains two slots,
the one slot is dedicated to the on-chip DMA transfers and the second is used for the core transfers.
3 - 2 DSP96002 USER’S MANUAL MOTOROLA

3.2.3 Data ALU
The Data ALU performs all of the arithmetic and logical operations on data operands. The Data ALU con-
sists of ten 96-bit general purpose registers, a 32-bit barrel shifter, a 32-bit adder, and a 32-bit parallel mul-
tiplier. Data ALU registers may be read or written over the XDB and YDB as 32 or 64-bit operands. The
Data ALU is capable of multiplication, addition, subtraction, format conversion, shifting and logical opera-
tions in one instruction cycle. Data ALU source operands may be 32 or 96-bits and originate from the gen-
eral purpose register file. Data ALU results are always stored in one of the general purpose registers. Float-
ing-point Data ALU operations always have a 96-bit result. Integer (fixed-point) Data ALU operations have
a 32 or 64-bit result.

The Data ALU fully implements the IEEE Standard 754 for binary floating-point arithmetic. The operations
are supported in three data formats: 32-bit two’s-complement fixed-point, 32-bit unsigned-magnitude fixed-
point and 44-bit IEEE single extended precision floating-point. All the floating-point computations are per-
formed using the single extended precision format and the results are automatically rounded to single pre-
cision or single extended precision numbers as programmed. All four IEEE rounding modes (round to zero,
round to nearest, round to plus infinity and round to minus infinity) are supported for all floating-point oper-
ations and conversions. The IEEE gradual underflow with denormalized numbers is supported by the IEEE
mode. In the IEEE mode, if input operand(s) or output result(s) are denormalized numbers, additional in-
struction cycles are required to process these numbers per the IEEE standard. A "Flush to Zero" mode is
also provided which forces all floating point result underflows to zero (all denormalized input operands are
considered as being zero). The Flush to Zero mode never requires any additional instruction cycles.

Refer to Section 3.3 for a detailed description of the Data ALU architecture.

3.2.4 AGU
The AGU performs all of the address storage and effective address calculations necessary to address data
operands in memory and it is used by both the core and the on-chip DMA Controller. The AGU operates in
parallel with other chip resources to minimize address generation overhead. The AGU contains eight Ad-
dress Registers (R0-R7), eight Offset Registers (N0-N7), and eight Modifier Registers (M0-M7). The Ad-
dress Registers are 32-bit registers which may contain any address or data. Each Address Register may
be accessed for output to the XAB, YAB, and PAB. The modifier and offset registers are 32-bit registers
which are normally used to control updating of the address registers.

AGU registers may be read or written over the Global Data Bus as 32-bit operands. The AGU can generate
two 32-bit addresses every instruction cycle - one for any two of the XAB, YAB or PAB. The AGU can di-
rectly address 4,294,967,296 locations on the XAB and 4,294,967,296 locations on the YAB - a total capa-
bility of 8,589,934,592 32-bit data words. Refer to Section 3.4 for a detailed description of the AGU archi-
tecture.

3.2.5 X Data Memory
The X Data Memory may contain both data RAM and ROM. The X Data RAM is a 32-bit wide internal mem-
ory and occupies the lowest 512 locations in X Memory Space. The X Data ROM is also a 32-bit wide in-
ternal memory and occupies 1024 locations in X Memory Space. Addresses are received from the XAB
and data transfers occur on the XDB. The X memory is a dual-access memory in the sense that it may be
accessed twice during a cycle: once by the core and once by the DMA. X memory may be expanded off
chip.
MOTOROLA DSP96002 USER’S MANUAL 3 - 3

3.2.6 Y Data Memory
The Y Data Memory may contain both data RAM and ROM. The Y Data RAM is a 32-bit wide internal mem-
ory and occupies the lowest 512 locations in Y Memory Space. The Y Data ROM is also a 32-bit wide in-
ternal memory and occupies 1024 locations in Y Memory Space. Addresses are received from the YAB
and data transfers occur on the YDB. The Y memory is dual-access memory in the sense that it may be
accessed twice during a cycle: once by the core and once by the DMA. Y memory may be expanded off
chip.

3.2.7 Program Control and System Stack
The Program Control logic performs instruction prefetch, instruction decoding and exception processing. A
32-bit program counter (PC) register can address 4,294,967,296 locations in Program Memory Space.

The System Stack is a separate internal RAM which stores the PC and the status register (SR) for subrou-
tine calls and long interrupts. The stack will also store the loop counter (LC) and the loop address register
(LA) in addition to the PC and SR registers for program looping. The System Stack is in Stack Memory
Space and its address is always inherent and implied by the current instruction. The stack RAM is 64-bits
wide and 15 locations "deep". When a subroutine call or long interrupt occurs, the contents of the PC and
SR registers are stored (pushed) on the "top" location in the System Stack. When a return from subroutine
occurs, the contents of the "top" location in the System Stack are copied (pulled) to the PC. When a return
from interrupt occurs, the contents of the "top" location in the System Stack are copied (pulled) to the PC
and SR.

An interrupt will cause the processor to enter the exception processing state. Upon entering this state, the
current instruction in decode will execute normally, unless it is the first word of a two-word instruction, in
which case it will be aborted, and re-fetched at the completion of exception processing. The next two fetch
addresses are supplied by the interrupt controller. During these fetches the PC is not updated.

If one of the words fetched by the interrupt controller is a jump to subroutine, a long interrupt routine is
formed, and a context switch is performed using the stack. If neither interrupt instruction word causes a
change of control flow, then the two interrupt instructions fetched constitute a fast interrupt routine. In this
case, the stack is not used, and interrupt service concludes with the execution of the instructions contained
within the two words. Fetching then resumes using the PC. The fast interrupt routine provides minimum
overhead exception processing. This mechanism is commonly used to move data between memory and
an I/O device.

For more details on the behavior of interrupts, see Section 8.

The system stack is also used to implement no-overhead hardware program loops. When a program loop
is initiated with the execution of a DO instruction, the following events occur:

• the current 32-bit loop counter (LC) and 32-bit loop address register (LA) are pushed onto the
system stack to allow nested loops.

• the LC and LA registers are initialized with values specified in the DO instruction.

• the address of the first instruction in the program loop and the current status register contents
are transferred onto the system stack.

• the loop flag bit in the status register is set.

The loop flag bit is set when a program loop is in progress and enables the end of loop detection (compar-
ison between the PC and LA registers, discussed below). The loop flag bit is pulled from the system stack
when a loop is terminated and indicates if the terminated loop was a nested loop.
3 - 4 DSP96002 USER’S MANUAL MOTOROLA

A program loop begins execution after the DO instruction and continues until the program address fetched
equals the loop address register contents (last address of program loop). The contents of the loop counter
are then tested for one. If the loop counter is not one, the loop counter is decremented and the top location
in the stack RAM is read (but not pulled) into the PC to return to the start of the loop. If the loop counter is
one, the program loop is terminated by incrementing the PC, reading the previous loop flag bit from the top
location in the stack into the status register, purging the stack (pulling the top location and discarding the
contents) and pulling the LA and LC registers off the stack and restoring the respective registers. When
terminating a loop the loop flag, LA and LC registers as well as the system stack pointer are restored.

3.2.8 Program Memory
The Program Memory consists of a 1,024 location by 32-bit RAM. Addresses are received from the pro-
gram control logic (usually the PC). The Program Memory may contain instructions, constants, and data
tables which are fixed at assembly time. The Program Memory is a dual-access memory in the sense that
it may be accessed twice during a cycle: once by the core and once by the DMA. Program Memory may
be expanded off-chip. Program RAM may be written to download instructions. The bootstrap ROM also ap-
pears in Program Memory space during the bootstrap mode. See Section 9.

3.2.9 External Bus Interfaces
The DSP96002 has two identical external bus interfaces. Each bus interface has a 32-bit wide address bus
and a 32-bit wide data bus, and may be used to access external Data Memory, Program Memory or I/O
devices. Separate select lines control access to the memory spaces. A Port Select control register permits
assigning sections of each memory space to each external bus interface port. Refer to Section 2 and Sec-
tion 9 for a detailed description of the external bus interface.

3.2.10 Internal Bus Switch and Bit Manipulation Unit
The Internal Bus Switch performs data transfers from one internal bus to another.

The Bit Manipulation Unit performs bit manipulation operations on memory and register operands on the
XDB, YDB, and GDB.

3.2.11 I/O Interfaces
The on-chip I/O interfaces are intended to minimize system chip count and "glue" logic in many DSP96002
applications. Each I/O interface has its own control, status and data registers and is treated as memory-
mapped I/O by the DSP96002. Each interface has several dedicated interrupt vector addresses and control
bits to enable/disable interrupts. This minimizes the overhead associated with servicing the device since
each interrupt source has its own service routine.

The DSP96002 provides the following I/O interfaces: two identical 32-bit parallel Host MPU/DMA Interface
peripherals are provided on the DSP96002, one connected to External Bus Interface A and the other to
External Bus Interface B; a two-channel DMA Controller.

3.2.11.1 Host Interfaces
The DSP96002 provides a Host MPU/DMA Interface for each of its external bus interface ports. Each Host
Interface (HI) is a 8-, 16-, 24- or 32-bit wide parallel port which may be connected directly to the data bus
of a host processor. The host processor may be any of a number of popular microcomputers or micropro-
MOTOROLA DSP96002 USER’S MANUAL 3 - 5

cessors, another DSP96002 or DMA hardware. The HI appears as a memory mapped peripheral occupy-
ing 16 words in the host processor address space. Separate transmit and receive data registers are double-
buffered to allow the DSP96002 and host processor to efficiently transfer data at high speed. Host proces-
sor communication with the HI is accomplished using standard Host processor data move instructions and
addressing modes. Handshake flags are provided for polled or interrupt-driven data transfers.

3.2.11.2 DMA Controller
The DMA Controller performs all the address storage and effective address calculations necessary to ad-
dress the DMA source and destination operands. The DMA controller operates in parallel with other chip
resources to minimize data or program transfers overhead. The DMA controller contains one Source Ad-
dress Register, one Source Offset Register, one Source Modifier Register, one Destination Address Reg-
ister, one Destination Offset Register and one Destination Modifier Register for each channel.

In addition there are two control registers per channel. The Transfer Count down counter, decremented af-
ter each transfer, contains the number of DMA transfers remaining to be done. The DMA Control/Status
Register controls the DMA activities and contains the DMA status. All DMA registers are mapped into the
X memory space. The AGU is shared by the DMA for the source and destination address calculations. The
DMA addressing modes are: linear, bit reversed and modulo. For more details see Section 7.5.

3.3 DATA ALU BLOCK DIAGRAM
The major components of the Data ALU are

• Data ALU Register File

• Multiply Unit

• Adder Unit

• Logic Unit

• Format Converter

• Divide and Square Root Unit

• Controller and Arbitrator

A block diagram of the Data ALU architecture is shown in Figure 3-2.

D0, D1, D2, D3, D4, D5, D6, D7, D8 and D9 are 96-bit registers which serve as the Data ALU general pur-
pose register file. Every register is divided into three portions: high, middle, and low, each 32-bits wide. The
registers may be treated as ten 96-bit registers Dn (Dn.H:Dn.M:Dn.L), n=0,1,..,9 for floating-point source
and/or destination operands. These floating point registers receive inputs from the Multiplier, the Adder,
and the Subtracter and supply a source data register of the same form. Most Data ALU floating-point op-
erations specify the 96-bit registers as source and/or destination operands. However, D8 and D9 are never
destinations of a Data ALU operation.

The data is stored in the registers in double precision floating-point format. Each register may be read or
written over the XDB or YDB as a floating-point operand. A format conversion is automatically performed
when a Dn register is written with an operand of a different floating-point format. This can occur when writ-
ing Dn from the XDB or YDB as a result of a single precision floating-point MOVE. If a single precision op-
erand is written to a floating point data register, the middle portion of the data register is written with the
mantissa portion of the word operand, the low portion is zeroed and the high portion is written with the ex-
ponent portion of the word operand.
3 - 6 DSP96002 USER’S MANUAL MOTOROLA

Figure 3-2. Data ALU Block Diagram Data ALU Register File (D0-D9)
The registers may also be treated as thirty 32-bit registers Dn.H, Dn.M, Dn.L, n=0,1,..,9. Each register may
be read or written over the XDB or YDB as a word operand. When an individual 32-bit register is written
over the XDB or YDB, no format conversion takes place and only the designated register is affected. The
low portion of the registers, Dn.L, is used as source and/or destination for most integer operations. In this
case the integer registers supply an operand for the Multiplier and the Adder/Subtracter while receiving an
input from the Multiplier and the Adder/subtracter. Note that in the case of integer multiplication the result
will be 64-bits wide and will be stored in both middle and low portions of the destination register.

3.3.1 Multiply Unit
The Multiplier is one of the two arithmetic processing units of the Data ALU and performs all the floating-
point multiplications as well as signed/unsigned fixed-point (integer) multiplications on the data operands.
MOTOROLA DSP96002 USER’S MANUAL 3 - 7

For the floating-point multiplication the Multiplier accepts two 44-bit input operands, and outputs one 44-bit
result. The operation of the floating-point Multiplier occurs independently and in parallel with the operation
of the floating-point Adder and with the XDB and YDB activity. For the fixed-point multiplication the Multi-
plier accepts two 32-bit input operands, and outputs one 64-bit result. The operation of the fixed point Mul-
tiplier occurs independently and in parallel with the XDB and YDB activity. The Data ALU registers can be
used by the programmer to implement Data ALU pipelines.

The Multiplier is implemented in asynchronous logic and all multiplication operations occur in one instruc-
tion cycle. Latches are provided on the Multiplier input operand buses to avoid race conditions. The major
components of the Multiply Unit are listed below.

• Multiplier Array

• Multiplier Control Recoder

• Exponent Adder

3.3.1.1 Multiplier Array
The multiplier array is a 32 X 32-bit asynchronous, parallel multiplier with 64-bit result. The multiplier array
is based on the modified Booth’s algorithm. The array performs signed/unsigned fixed-point multiplications
with an integer data representation and floating-point multiplications using a 32-bit mantissa. The multiplier
array performs automatic rounding to 32-bit result mantissa for the floating-point multiplications according
to the IEEE Standard 754 for single extended precision. If rounding to IEEE single precision is specified
(explicitly by the instruction or implicitly by the MR register), the result is rounded to 24-bit mantissa accord-
ing to IEEE Standard 754 for single precision. The four IEEE rounding modes are supported; the rounding
mode is specified by the rounding mode bits R1, R0 in the IER register.

3.3.1.2 Multiplier Control Recoder
The multiplier control decoder directs the operation of the Multiplier array and performs multiplier operand
recoding for the modified Booth’s algorithm multiplication.

3.3.1.3 Exponent Adder
The Exponent Adder is an 11-bit adder which serves as an adder for the exponents of the two operands of
the multiplication. It actually computes the sum between the two input exponents and subtracts the bias.
The resultant exponent is stored in the high portion of the destination register.

3.3.2 Adder Unit
The Adder is the second arithmetic processing unit of the Data ALU and performs all signed/unsigned in-
teger fixed-point add, subtract and shift operations on the data operands as well as floating-point add, sub-
tract and add-subtract. The floating-point add-subtract operation consists of a simultaneous add and sub-
tract performed on the same input operands. This operation is useful for implementing FFT’s (any Radix or
type) and other transforms.

The operation of the floating-point Adder/Subtracter occurs independently and in parallel with the operation
of the floating-point Multiplier and with the XDB and YDB activity.

The operation of the fixed-point Adder occurs independently and in parallel with the XDB and YDB activity.
The Data ALU registers provide pipelining for both Data ALU Adder inputs and outputs.
3 - 8 DSP96002 USER’S MANUAL MOTOROLA

All operations inside the Adder occur in one instruction cycle. Latches are provided on the Adder input op-
erand buses to avoid race conditions. The major components of the Adder are

• Add Unit

• Subtract Unit

• Barrel Shifter and Normalization Unit

• Exponent Comparator and Update Unit

• Special Function Unit

3.3.2.1 Add Unit
The Add Unit is a high speed 32-bit asynchronous adder used in all floating-point non-multiply operations
delivering a 32-bit result. The Add Unit performs automatic rounding to 32-bit result mantissa for the float-
ing-point add/subtract according to the IEEE Standard for single extended precision arithmetic. If rounding
to IEEE single precision is specified, the result is rounded to 24-bit mantissa according to the IEEE Stan-
dard for single precision arithmetic. The type of rounding is specified by the rounding mode bits in the MR
register.

Two input operands are received on two internal data buses which are the 32-bit mantissas and are sup-
plied to the Add Unit after the process of mantissa alignment required by a floating-point addition. The out-
put of the Add Unit is delivered to the rounding unit which produces the result that is stored in the destina-
tion register.

3.3.2.2 Subtract Unit
The Subtract Unit is a high speed 32-bit asynchronous adder/subtracter used in all floating-point non-mul-
tiply operations as well as all fixed-point operations delivering a 32-bit result. The Subtract Unit performs
automatic rounding to 32-bit result mantissa for the floating-point add/subtract according to the IEEE Stan-
dard for single extended precision arithmetic. If rounding to IEEE single precision is specified, the result is
rounded to 24-bit mantissa according to the IEEE Standard for single precision arithmetic. The type of
rounding is specified by the rounding mode bits in the MR register.

Two input operands are received on two internal data buses which are the 32-bit mantissas and are sup-
plied to the Subtract Unit after the process of mantissa alignment required by a floating-point subtraction.
For fixed-point operations the two input operands are supplied on the same data buses. The output of the
Subtract Unit is delivered, in case of floating-point operations, to the rounding unit.

The Subtract Unit delivers the result in the middle portion of the destination register in case of floating-point
operations and in the low portion of the destination register in case of integer operations.

3.3.2.3 Barrel Shifter and Normalization Unit
The Barrel Shifter is a 32-bit asynchronous parallel bidirectional (left-right) multibit shifter used in most float-
ing-point operations and in arithmetic and logical shifting operations delivering a 32-bit result. When used
in floating-point operations its main task is to provide operand alignment for add/subtract operations and
post normalization of the final result. When used in fixed-point shifts the Barrel Shifter performs the follow-
ing operations:

• single and multibit arithmetic shift left or right (ASL #n, ASR #n)

• single and multibit logical shift left or right (LSL #n, LSR #n)
MOTOROLA DSP96002 USER’S MANUAL 3 - 9

Linkages are provided to shift in/out the condition code carry (C) bit.

3.3.2.4 Exponent Comparator and Update Unit
EXC is an 11-bit subtracter which compares the exponents of the two operands of the add/subtract opera-
tions. It receives its inputs on the AEIA and AEIB buses from the high portion of the registers and delivers
as result the largest exponent and the difference between the exponents. The exponent difference is de-
livered to the barrel shifter which uses this information for the mantissa alignment process required by the
floating point add/subtract operations. The largest exponent is delivered to exponent update units which
may update it according to the result of the postnormalization process. The final result is supplied on the
AEOA and/or AEOS buses and stored in the high portion of the destination register(s).

3.3.3 Logic Unit
The logic unit in the Data ALU performs the logical operations AND, ANDC, OR, ORC, EOR, NOT, ROR
and ROL on Data ALU integer registers. It also performs the SPLIT, SPLITB, JOIN, JOINB, EXT and EXTB
field manipulation instructions. The logic unit is 32-bits wide and operates on data in the low portion of the
registers. The high and middle portions of the registers are not affected.

3.3.4 Divide and Square Root Unit
The Divide and Square Root Unit supports execution of the divide and square root operations. These op-
erations are done using iterative algorithms that require an initial seed (first approximation) of 1/x and sqr(1/
x).

3.3.5 Controller and Arbitrator
The controller and arbitrator unit (CA) supplies the control signals required by the processing units of the
Data ALU and register file and is responsible for the full implementation of the IEEE standard. For the latter
task the actions taken by the controller and arbitrator are determined by the FZ bit in the SR register. In the
"Flush-to-Zero" mode, all denormalized input operands are considered as being zero and all denormalized
results are "flushed to zero". Denormalized numbers include floating point zero. In the "IEEE" mode, all de-
normalized input operands are correctly used in calculations and denormalized results are computed and
stored correctly, according to the IEEE standard. The DSP96002 is not able to perform operations on de-
normalized numbers in a single cycle when in IEEE mode, except for operations done in the floating point
adder when the operand is a denormalized number in SEP. The controller and arbitrator unit is responsible
for generating the appropriate sequence that deals with such situations.

When detecting denormalized numbers as input operands, the controller and arbitrator unit will add one
extra cycle for entering the IEEE Mode procedure and afterwards it will add extra cycles, one for each de-
normalized input operand(s). These extra cycles are used for normalizing the input operand. After the nor-
malization, the operand is stored in a temporary format which has a negative biased exponent ("wrapped
format") but which is not available to the user. The original value of the operand in the source register is
however not affected. During the IEEE Mode procedure the activity of the chip is suspended and it is re-
sumed after all the input operands have been normalized. When detecting denormalized numbers as out-
put results, the controller and arbitrator unit will enter the IEEE Mode Procedure and will add extra cycles,
one for each denormalized output result.
3 - 10 DSP96002 USER’S MANUAL MOTOROLA

3.4 AGU
The major components of the AGU are

• Address Register Files

• Offset Register Files

• Modifier Register Files

• Temporary Address Registers

• Modulo Arithmetic Units

• Address Output Multiplexers

A block diagram of the AGU is shown in Figure 3-3.

3.4.1 Address Register Files
Each of two Address Register Files consists of four 32-bit registers. The two files contain the address reg-
isters R0-R3 and R4-R7 respectively, which usually contain addresses used as pointers to memory. Each
register may be read or written by the Global Data Bus. High speed access to the XAB and YAB is required
to allow maximum access time for the internal and external X Data Memory, Y Data Memory, and Program
Memory. Each address register may be used as input to its associated modulo arithmetic unit for a register
update calculation. Each register may be written by the Global Data Bus or by the output of its respective
modulo arithmetic unit. The registers accessed by the Global Data Bus and the Modulo Arithmetic Unit are
not required to be the same. A separate write enable is provided for each register.

CAUTION
Due to pipelining, if an address register R is the destination of a MOVE instruction,
the new contents will not be available for use as a pointer until the second following
instruction.

3.4.2 Offset Register Files
Each of two Offset Register Files consists of four 32-bit registers. The two files contain the offset registers
N0-N3 and N4-N7 respectively, and usually hold offset values used to update address pointers but can hold
data. Each offset register may be read or written by the Global Data Bus. Each offset register is read when
the same number address register is read and used as input to its associated modulo arithmetic unit. A
read address selects the offset register to be read to the Modulo Arithmetic Unit during an instruction cycle.
The registers accessed by the Global Data Bus and the Modulo Arithmetic Unit are not required to be the
same. A separate write enable is provided for each register.

CAUTION
Due to pipelining, if an offset register N is the destination of a MOVE instruction, the
new contents will not be available for use in address calculations until the second fol-
lowing instruction.

3.4.3 Modifier Register Files
Each of two Modifier Register Files consists of four 32-bit registers. The two files contain the modifier reg-
isters M0-M3 and M4-M7 respectively, and usually specify the type of modification made to an address reg-
MOTOROLA DSP96002 USER’S MANUAL 3 - 11

Figure 3-3. AGU Block Diagram
ister during address register update calculations but they can hold data. Each modifier register may be read
or written by the Global Data Bus. Each modifier register is automatically read when the same number ad-
dress register is read and used as input to its associated modulo arithmetic unit. The registers accessed
by the Global Data Bus and the Modulo Arithmetic Unit are not required to be the same. A separate write
enable is provided for each register. Each modifier register is set to $FFFFFFFF during a processor reset.

CAUTION
Due to pipelining, if a modifier register M is the destination of a MOVE instruction,
the new contents will not be available for use in address calculations until the second
following instruction.

3.4.4 Temporary Address Registers
There are two kinds of temporary registers in the AGU: TempR (high and low) and TempN (high and low).
The temporary address registers, TempR Low and TempR High, are 32-bit registers which provide tempo-
rary storage for an absolute address loaded from the Program Data Bus or for the output of the respective
modulo arithmetic units. The modulo arithmetic unit output is loaded into the TempR registers during the
pre-update cycle of the indexed by offset addressing mode and the LEA instruction. In each of these cases,
an address register is accessed, updated by its respective modulo arithmetic unit, and stored in TempR in
3 - 12 DSP96002 USER’S MANUAL MOTOROLA

one instruction cycle. In the following cycle, the contents of TempR are used to address X or Y memory.
For all absolute addressing modes, the address of the operand is written into TempR and then used to ad-
dress X, Y, or P memory.

The temporary address registers TempN Low and TempN High are 32-bit registers which provide tempo-
rary storage for the PC loaded from the Program Address Bus and it is used in case of the PC relative ad-
dressing mode. They may also be loaded from the Program Data Bus in case of Long or Short Displace-
ment addressing mode.

3.4.5 Modulo Arithmetic Units
A block diagram of one modulo arithmetic unit is shown in Figure 3-4. The two modulo arithmetic units are
identical. Each contains a 32-bit full adder (called offset adder) which may add one, minus one, the contents
of the respective offset register N or the two’s complement of N, to the contents of the selected address
register. A second full adder (called modulo adder) adds the summed result of the first full adder to a mod-
ulo value M or minus M, where M is stored in the respective modifier register. A third full adder (called re-
verse carry adder) adds the constant one, minus one, the offset N (stored in the respective offset register)
or minus N to the selected address register with the carry propagating in the reverse direction, i. e. from the
most significant bit to the least. The offset adder and the reverse carry adder are in parallel and share com-
mon inputs. The only difference between them is that the carry propagates in opposite directions. Test log-
ic, which consists of a modifier decoder, two carry multiplexers, and some control logic, determines which
of the three summed outputs of the full adders is output to its associated address register file or temporary
register.

Each modulo arithmetic unit can update one address register, Rn, from its respective address register file
during one instruction cycle. It is capable of performing linear, reverse carry, and modulo arithmetic. The
contents of the selected modifier register specifies the type of arithmetic to be used in an address register
update calculation. The modifier value is decoded in the modulo arithmetic unit and affects the unit’s oper-
ation. The modulo arithmetic unit’s operation is data-dependent and requires execution cycle decoding of
the selected modifier register contents. The modulo arithmetic unit performs three operations in parallel:

1. The output of the offset adder gives the result of linear arithmetic (e.g. Rn+1; Rn+Nn) and is
selected as the modulo arithmetic unit’s output for linear arithmetic addressing modifiers and
PC relative addressing modes.

2. The reverse carry adder performs the required operation for reverse carry arithmetic and its
output is selected as the modulo arithmetic unit’s output for reverse carry addressing modifiers.
Reverse carry arithmetic is useful for 2**K point Radix 2 FFT addressing. For modulo arith-
metic, the modulo arithmetic unit will perform the function (Rn+/-N) modulo M where N can be
one, minus one, or the contents of the offset register Nn.

3. If the modulo operation requires wraparound for modulo arithmetic, the summed output of the
modulo adder will give the correct updated address register value; otherwise, if wraparound is
not necessary, the output of the offset adder gives the correct result.

The test logic determines which output address to select. Modulo arithmetic units are shared by the DMA
and the AGU and they are time multiplexed.

3.4.6 Address Output Multiplexers
The address output multiplexers select the source for the XAB, YAB, and PAB. They allow the XAB, YAB,
or PAB address outputs to originate from either R0-R3, R4-R7, or from TempR Low or TempR High. The
MOTOROLA DSP96002 USER’S MANUAL 3 - 13

address output multiplexers are shared by the DMA and the AGU. The output multiplexers are time multi-
plexed – the first half instruction cycle is assigned to DMA transfers while the second half cycle is assigned
to core transfers.
3 - 14 DSP96002 USER’S MANUAL MOTOROLA

Figure 3-4. Modulo Arithmetic Unit Block Diagram
MOTOROLA DSP96002 USER’S MANUAL 3 - 15

3 - 16 DSP96002 USER’S MANUAL MOTOROLA

SECTION 4
SOFTWARE ARCHITECTURE

 4.1 PROGRAMMING MODEL
The programmer can view the DSP96002 architecture as three execution units operating in parallel. The
three execution units are the

• Data ALU

• Address Generation Unit

• Program Controller

The DSP96002 instruction set has been designed to allow flexible control of these parallel processing re-
sources. Many instructions allow the programmer to keep each unit busy, thus enhancing program execu-
tion speed. The programming model is shown in Figure 4-1 and Figure 4-2, and is described in the following
sections.
PC MR ERIER CCR * OMR

LA LC

SP*

15

1

31 5 0

31 0

31 0

31 0 31 0

31 0

23 15 7 7

31 0 0 31

SYSTEM STACK
(SS)
Program Controller* - Reserved bits: always read as zero, should be written with zero for future compatibil-
ity.

Figure 4-1. DSP96002 Programming Model - Program Controller
MOTOROLA DSP96002 USER’S MANUAL 4 - 1

M7

M6

M5

M4

M3

M2

M1

M0

R7

R6

R5

R4

R3

R2

R1

R0

ADDRESS GENERATION UNIT

N7

N6

N5

N4

N3

N2

N1

N0

95 0

31 0 31 0 31 0

31 0 31 0 31 0

D9.H

D8.H

D7.H

D6.H

D5.H

D4.H

D3.H

D2.H

D1.H

D0.H

D9.M

D8.M

D7.M

D6.M

D5.M

D4.M

D3.M

D2.M

D1.M

D0.M

D9.L

D8.L

D7.L

D6.L

D5.L

D4.L

D3.L

D2.L

D1.L

D0.L

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DATA ALU

Figure 4-2. DSP96002 Programming Model –
Data ALU and Address Generation Unit
 4.2 DATA ALU REGISTER FILE (D0-D9)
The ten registers, D0-D9, are 96-bits wide and may be treated as thirty independent 32-bit registers or as
ten 96-bit floating-point registers. Each 96-bit register is divided into three sub-registers: high, middle and
low. Each sub-registers may be addressed individually by specifying the register number and the name of
the sub-registers (e.g. D0.H, D0.M, D0.L). The low sub-register is used as source and destination for the
integer operations. When writing to or reading from a sub-register no format conversion is performed.

The 96-bit registers Dn (n=0,...,9) are developed by the concatenation of Dn.H:Dn.M:Dn.L forming a float-
ing-point data register. The data representation in a floating-point data register is always in an internal rep-
resentation of the IEEE double precision format. When writing a register with a single or double precision
4 - 2 DSP96002 USER’S MANUAL MOTOROLA

floating point number a format conversion to/from the internal representation takes place. The format con-
version is performed automatically and is transparent to the user.

The registers serve as input pipeline registers between the XDB and YDB and the multiplier and/or adder.
They are used as Data ALU source and/or destination operands allowing also new operands to be loaded
for the next instruction while the register contents are used by the current instruction. They may also be read
back out to the appropriate data bus to implement memory delay operations and save/restore operations
for interrupt service routines.

 4.2.1 Data ALU Auxiliary Registers (D8, D9)
D8 and D9 are two 96-bit data registers which are mainly present to permit a four instruction Radix-2 FFT
butterfly. Operations with these registers are limited. They may be source operands only in multiply opera-
tions and source or destination operands in MOVE instructions. These registers are useful for extra multi-
plier input registers, pipelining registers, holding constants for compilers and temporary storage.

 4.2.2 Data ALU General Purpose Registers (D0-D7)
D0, D1, D2, D3, D4, D5, D6 and D7 are eight general purpose data registers in the sense that MOVE in-
structions and arithmetic operations do not differentiate between them. They are used as Data ALU source
and destination operands for most of the Data ALU instructions.

 4.3 ADDRESS REGISTER FILES (R0-R3 AND R4-R7)
The eight address registers, R0-R7, are 32-bits wide and may contain addresses or general purpose data.
The 32-bit address in a selected address register is used in the calculation of the effective address of an
operand. This address may point to data directly or may be modified by a register offset. Most addressing
modes modify the selected address register in a read-modify-write fashion. Typically, the address register
is accessed, used as input to its associated modulo arithmetic unit, modified by the arithmetic unit and writ-
ten back into the selected register. The form of address register modification performed by the modulo arith-
metic unit is controlled by the contents of the offset and modifier registers discussed below. The contents
of an address register may be transferred to/from an effective address held in a temporary address register.

 4.4 OFFSET REGISTER FILES (N0-N3 AND N4-N7)
The eight offset registers, N0-N7, are 32-bits wide and may contain offset values used to increment and
decrement address registers in address register update calculations or they may be used for general pur-
pose storage. In addition, the contents of an offset register may be used to step through a table at some
rate for waveform generation or may specify the offset into a table or the base of the table. An offset register
will be accessed for an address register update calculation involving an address register of the same num-
ber (i.e., N0 is accessed when R0 is to be updated, N1 for R1, etc.).

 4.5 MODIFIER REGISTER FILES (M0-M3 AND M4-M7)
The eight modifier registers, M0-M7, are 32-bits wide and may contain values which specify address arith-
metic types used in address register update calculations (i.e., linear, reverse carry, and modulo) or they may
be used for general purpose storage. When specifying modulo arithmetic, a modifier register will also spec-
ify the modulo value to be used. Refer to Section 5.8 for a description of the modifier types. A modifier reg-
MOTOROLA DSP96002 USER’S MANUAL 4 - 3

ister will be accessed for an address register update calculation involving an address register of the same
number (i.e., M0 is accessed when R0 is to be updated, M1 for R1, etc.). Each modifier register is set to
$FFFFFFFF on processor reset which specifies the default value for linear arithmetic register update calcu-
lations.

 4.6 PROGRAM COUNTER (PC)
This 32-bit register contains the address of the next location to be fetched from Program Memory Space.
The PC may point to instructions, data operands or addresses of operands. References to this register are
always inherent and are implied by most instructions. This special purpose address register is stacked when
program looping is initiated, jump to subroutine is performed, and when interrupts occur except for fast in-
terrupts (refer to Section 8.3).

 4.7 STATUS REGISTER (SR)
The SR is a 32-bit register consisting of an 8-bit Mode register (MR), an 8-bit IEEE Exception register (IER),
an 8-bit Exception register (ER) and an 8-bit Condition Code register (CCR).

The MR bits are only affected by processor reset, exception processing, the DO, DOR, ENDDO, ILLEGAL,
RTI, RTR, FTRAPcc and TRAPcc instructions and by instructions which directly reference the MR register.

The IER bits are affected by processor reset, by instructions which directly reference the IER register and
by the Data ALU floating-point operations. The IER contains the IEEE Rounding Mode control and the five
exceptions flags as defined by the IEEE 754 standard. The five exception flags are "sticky" and the only way
in which they can be cleared is by hardware reset or by the user writing the IER register. The purpose of
making bits sticky is to prevent them from accidentally being cleared before being processed or used later
by other instructions. The standard definition of the IER bits and the complete IER exception flag computa-
tion rules are given in Section A.5. It is strongly recommended that users of the DSP96002 obtain and com-
prehend the ANSI/IEEE Standard 754-1985 so that the full advantage of the standard can be realized.

The ER bits are affected by processor reset, by instructions which directly reference the ER register and by
the Data ALU floating-point operations. The ER reflects the exceptions produced as a result of the execution
of the last instruction. The standard definition of the ER bits and the complete ER bit computation rules are
given in Section A.4.

The CCR contains flags that reflect the status produced by Data ALU instructions currently executing. The
CCR bits are affected by Data ALU operations and by instructions which directly reference the CCR register.
The standard definition of the CCR bits and the complete CCR bit computation rules are given in Section
A.3.

The SR register is stacked when program looping is initialized, jump or branch to subroutine is performed,
and when interrupts occur except for fast interrupts (refer to Section 8). The SR format is shown in Figure
4-3, and is described below.

 4.7.1 CCR Carry (C) Bit 0
The carry bit is set if a carry is generated in an integer addition or if a borrow is generated in an integer
subtraction. The carry bit is also modified by bit manipulation, rotate, and shift integer instructions as well
as by the Address Generation Unit operation when executing MOVETA instructions. The carry bit is not af-
fected by floating-point instructions. The C bit is cleared during processor reset.
4 - 4 DSP96002 USER’S MANUAL MOTOROLA

MOTOR

LF * I1 I0 FZ MP * *

31 30 29 28 27 26 25 24

Reserved
Multiply

Flush to Zero
Interrupt Mask

Reserved
Loop Flag

MR

* R1 R0 SIOP SOVF SUNF SDZ SINX
23 22 21 20 19 18 17 16

IEEE Inexact
IEEE Divide-by Zero

IEEE Underflow
IEEE Overflow

IEEE Invalid Operation
Rounding Mode

Reserved

IER

UN S OP
CC NAN NAN ERR OVF UNF DZ INX

 15 14 13 12 11 10 9 8

Inexact
Divide-by Zero

Underflow
Overflow

Operand error
Signaling NaN
Not-A-Number

Unordered Condition

ER

A R LR I N Z V C

 7 6 5 4 3 2 1 0

Carry
Overflow

Zero
Negative

Infinity
Local Reject

Reject
Accept

CCR
Figure 4-3. SR Format
OLA DSP96002 USER’S MANUAL 4 - 5

 4.7.2 CCR Overflow (V) Bit 1
The integer overflow bit is set if an arithmetic overflow occurred in a fixed point operation. This means that
the result is not representable in the destination size. The V bit is not affected by floating point operations
unless they have a fixed point result. The overflow bit is also modified by Address Generation Unit operation
when executing MOVETA instructions. The V bit is cleared during processor reset.

 4.7.3 CCR Zero (Z) Bit 2
The zero bit is set if the result equals plus or minus zero in a floating point or zero in a fixed point operation.
The zero bit is also modified by Address Generation Unit operation when executing MOVETA instructions.
The Z bit is cleared during processor reset.

 4.7.4 CCR Negative (N) Bit 3
The negative bit is set if the result is negative in a floating point or zero in a fixed point operation. The neg-
ative bit is also modified by Address Generation Unit operation when executing MOVETA instructions. The
N bit is cleared during processor reset.

 4.7.5 CCR Infinity (I) Bit 4
The infinity bit is set if the result of a floating-point operation is infinity. The I bit is not affected by fixed point
operations. The I bit is cleared during processor reset.

 4.7.6 CCR Local Reject (LR) Bit 5
The local reject bit is used for trivial reject testing of floating point or fixed point operands in graphics appli-
cations. The LR bit is cleared during processor reset.

 4.7.7 CCR Reject (
–
R) Bit 6

The global reject bit is used for trivial reject testing of floating point or fixed point operands in graphics ap-

plications. The
–
R bit is cleared during processor reset.

 4.7.8 CCR Accept (A) Bit 7
The accept bit is used for trivial accept testing of floating point or fixed point operands of floating point or
fixed point operands in graphics applications. The A bit is cleared during processor reset.

 4.7.9 ER Inexact (INX) Bit 8
The inexact bit is set if a floating-point result is inexact. This occurs when the mantissa of the intermediate
result from the Data ALU operation is rounded to the specified precision. If the rounded mantissa transferred
to the Dn register differs from the unrounded intermediate result mantissa, a loss of accuracy has occurred
and the INX bit will be set. The INX bit is not affected by fixed point operations. The INX bit is cleared during
processor reset.
4 - 6 DSP96002 USER’S MANUAL MOTOROLA

 4.7.10 ER Divide-by-Zero (DZ) Bit 9
The DZ flag in the DSP96002 can be set by software as part ofo an FDIV routine. No single DSP96002 in-
struction can set the DZ flag. The DZ bit is cleared during processor reset and during all floating-point in-
structions.

 4.7.11 ER Underflow (UNF) Bit 10
The underflow bit is set if a result of a floating-point operation is too small to be represented in a floating-

point data register (i. e., strictly between +2
Emin). The test is done on the exponent before rounding. A de-

normalized result will set the UNF bit. The UNF bit is not affected by fixed point operations. The UNF bit is
cleared during processor reset.

 4.7.12 ER Overflow (OVF) Bit 11
The overflow bit is set if a floating-point result is too large to be represented in a floating-point data register
with the specified rounding precision as a normalized result. The test is done on the exponent after round-

ing the mantissa (i. e., the result with its mantissa rounded > 1.0 x 2 Emax+1). Depending on the rounding
mode and the sign of the result, a decision is made as to what the returned result will be. This returned result
is the final rounded result. For example, the largest positive SP result which does not set OVF is $7F7FFFFF
for all rounding modes. Note that a positive overflow of a finite number with round to minus infinity also re-
turns $7F7FFFFF but sets OVF (see Section C.1.5.1 – General for additional information on the rounding
modes) . The OVF bit is not affected by fixed point operations. The OVF bit is cleared during processor re-
set.

 4.7.13 ER Operand Error (OPERR) Bit 12
The operand error bit is set if an operation has no mathematical interpretation for the given operands.

Examples of operations which set the OPERR bit are (+∞)+(-∞), 0×∞, and √—
-n. The OPERR bit is not

affected by fixed point operations. The OPERR bit is cleared during processor reset.

 4.7.14 ER Signaling NaN (SNAN) Bit 13
The signaling NaN bit is set when a signaling NaN is involved in an arithmetic floating-point operation. For
example, “FABS.S D” where D is an SNaN will set the SNaN bit and return a quiet NaN. The SNAN bit is
not affected by fixed point operations. The SNAN bit is cleared during processor reset. One example of
where signaling NaN can be used is to give a known value to uninitialized memory which can be used to
flag the user.

 4.7.15 ER Not-a-Number (NAN) Bit 14
The Not-a-Number bit is set if the result of a floating-point operation is a NaN. For example, the DSP96002
sets the NaN bit as the result of operations which set the OPERR bit (i. e., the default result of invalid oper-
ations). The NAN bit is not affected by fixed point operations but is affected by some conversion instructions.
For example, “INT D” where D is a NaN will return the fixed point value $FFFFFFFF and set the NaN bit.
The NAN bit is cleared during processor reset.
MOTOROLA DSP96002 USER’S MANUAL 4 - 7

 4.7.16 ER Unordered Condition (UNCC) Bit 15
The unordered condition bit is set if a non-aware floating-point conditional instruction (FBcc, FJcc, FIFcc,
etc) is executed when the NaN bit is set (the unordered condition). The result of the condition tested by an
instruction depends on being able to represent the operand on the real number line. By definition, if the op-
erand is a NaN, it cannot be ordered or represented on the real number line and therefore the UNCC bit will
be set. UNCC is not affected by fixed point operations. The UNCC bit is cleared during processor reset.

 4.7.17 IER IEEE Inexact Flag (SINX) Bit 16
The IEEE inexact flag is the IEEE flag for trap disabled operations that is set when the rounded result of an
operation is not exact or if it overflows without an overflow trap (i. e., the INX bit is set by the current or a
previous instruction). The SINX flag is cleared during processor reset.

 4.7.18 IER IEEE Divide-by-Zero Flag (SDZ) Bit 17
The IEEE division by zero flag is the IEEE flag for trap disabled operations and is set if the dividend is a
finite nonzero number and the divisor is zero (i. e., the DZ bit is set by the current or a previous instruction).
The SDZ flag is cleared during processor reset.

 4.7.19 IER IEEE Underflow Flag (SUNF) Bit 18
The IEEE underflow flag is the IEEE flag for trap disabled operations and is set when both tininess (UNF is
set) and loss of accuracy (INX is set) have been detected (i. e., the INX bit and the UNF bit were set simul-
taneously in the current or a previous instruction). The SUNF flag is cleared during processor reset.

 4.7.20 IER IEEE Overflow Flag (SOVF) Bit 19
The IEEE overflow flag is the IEEE flag for trap disabled operations and is set when the destination format’s
largest finite number is exceeded in magnitude by what would have been the rounded floating-point result
if the exponent range were unbounded (i. e., the OVF bit is set by the current or a previous instruction). The
SOVF flag is cleared during processor reset.

 4.7.21 IER IEEE Invalid Operation Flag (SIOP) Bit 20
The IEEE invalid operation flag is the IEEE flag for trap disabled operations and is set if an operand is invalid
for the operation to be performed (i. e., the OPERR bit is set by the current or a previous instruction). The
SIOP flag is cleared during processor reset.

 4.7.22 IER Rounding Mode (R0-R1) Bits 21,22
The rounding mode bits R1 and R0 specify the way in which inexact results should be rounded in floating
point operations. The rounding mode bits are cleared during processor reset.

R1 R0 Rounding Mode

0 0 Round to Nearest Even (default)

0 1 Round toward Zero
1 0 Round toward -Infinity
1 1 Round toward +Infinity
4 - 8 DSP96002 USER’S MANUAL MOTOROLA

The Data ALU performs rounding of the result to the precision specified by the instruction. The DSP96002
supports only single extended and single precision results. The DSP96002 implements all four rounding
modes specified by the IEEE standard. These modes are round to nearest (RN), round toward zero (RZ),
round toward plus infinity (RP) and round toward minus infinity (RM). The rounding definitions are listed be-
low.

RN Round to Nearest Even (default) - In this mode the representable value nearest to the infinitely pre-
cise value will be delivered as result. If the two nearest values are equally near, the one with the least
significand bit equal to zero (even) will be the result – e. g., 1.65 rounds to 1.6 whereas 1.75 rounds
to 1.8.

RZ Round Toward Zero - In this mode the result will be the value closest to, and no greater in magnitude
than the infinitely precise result. This mode is sometimes called "truncation mode" or "chopped
mode" since the bits to the right of the rounding point are discarded – e. g., 1.65 rounds to 1.6 and -
1.65 rounds to -1.6.

RM Round Toward Minus Infinity - In this mode the result will be the value closest to, and no greater than
the infinitely precise result (possibly minus infinity) – e. g., 1.65 rounds to 1.6 and -1.65 rounds
to -1.7.

RP Round Toward Plus Infinity - In this mode the result will be the value closest to, and no less than the
infinitely precise result (possibly plus infinity) – e. g., 1.65 rounds to 1.7 and -1.65 rounds to -1.6.

 4.7.23 Reserved Status (Bits 23,24,25)
These bits are reserved for future expansion and will read as zero during read operations. They should be
written with zero for future compatibility.

 4.7.24 MR Multiply Precision Control (MP) Bit 26
The multiply precision control bit specifies the output precision of the multiply operation in the FMPY//FADD,
FMPY//FADDSUB and FMPY//FSUB instructions. If MP is cleared, then the output precision of the multiply
operation is determined by the accompanying instruction (FADD, FADDSUB or FSUB). If MP is set, then
the output precision of the multiply operation is the maximum precision supported by the hardware (single
extended precision in theDSP96002). MP is cleared during processor reset.

For example, if MP=0 and the accompanying instruction is FADD.S, then the multiply output precision will
be single precision. If MP=1 and the accompanying instruction is FADD.S, then the multiply output precision
will be single extended precision. If the accompanying instruction is FADD.X, then the multiply output pre-
cision will be single extended precision independently of the state of MP.

 MP Multiply Precision Control
 0 Output Precision Determined By The Accompanying Instruction
 1 Maximum Output Precision (SEP in theDSP96002)

 4.7.25 Flush to Zero (FZ) Bit 27
The Flush to Zero bit specifies one of two modes for handling floating-point underflow - the IEEE gradual
underflow mode using denormalized numbers and the Flush to Zero mode. If FZ is cleared, floating-point
underflows are processed in full conformance to the IEEE 754-1985 floating-point standard, resulting in the
possible generation of denormalized numbers. If a Data ALU source operand or result is a denormalized
number, the IEEE underflow mode may insert additional instruction cycles for normalization and denormal-
MOTOROLA DSP96002 USER’S MANUAL 4 - 9

ization, respectively. If FZ is set, floating-point underflows are flushed to zero. Any denormalized source op-
erand is considered as zero (with the sign of the denormalized source operand) and any underflowed results
are flushed to zero (with the sign of the original underflowed result). Cleared during processor reset.

 FZ Description

0 IEEE Gradual Underflow with Denormalized Numbers (default)
1 Flush to Zero

 4.7.26 MR Interrupt Masks (I1-I0) Bits 28,29
The interrupt mask bits I1 and I0 reflect the current priority level of the processor and indicate the interrupt
priority level (IPL) needed for an interrupt source to interrupt the processor. The current priority level of the
processor may be changed under software control. The interrupt mask bits are set during processor reset.

 I1 I0 Exceptions Permitted Exceptions masked
0 0 IPL 0,1,2,3 None
0 1 IPL 1,2,3 IPL 0
1 0 IPL 2,3 IPL 0,1
1 1 IPL 3 IPL 0,1,2

 4.7.27 Reserved Status (Bit 30)
This bit is reserved for future expansion and will read as one during read operations. It should be written
with one for future compatibility.

 4.7.28 MR Loop Flag (LF) Bit 31
The loop flag bit is set when a program loop is in progress and enables the circuitry which detects the end
of a program loop. The loop flag is the only SR bit which is restored when terminating a program loop. Stack-
ing and restoring the loop flag when initiating and exiting a program loop, respectively, allow the nesting of
program loops. The loop flag is cleared during a processor reset.

 4.8 LOOP COUNTER (LC)
The loop counter is a special 32-bit counter used to specify the number of times to repeat a hardware pro-
gram loop. This register is stacked by a DO instruction and unstacked by end of loop processing or by ex-
ecution of an ENDDO instruction. When the end of a hardware program loop is reached, the contents of the
loop counter register are tested for one. If the loop counter is one, the program loop is terminated and the
LC register is loaded with the previous LC contents stored on the stack. If the counter is not one, it is dec-
remented by 1 and the program loop is repeated. The loop counter may be read under program control. This
allows the number of times a loop has been executed to be determined during execution. LC is also used
in the REP instruction.

 4.9 LOOP ADDRESS REGISTER (LA)
The loop address register indicates the location of the last instruction word in a program loop. This register
is stacked by a DO instruction and unstacked by end of loop processing or by execution of an ENDDO in-
struction. When the instruction word at the address contained in this register is fetched, the contents of LC
4 - 10 DSP96002 USER’S MANUAL MOTOROLA

are checked. If it is not one, the LC is decremented, and the next instruction is taken from the address at
the top of the system stack; otherwise the PC is incremented, the loop flag is restored (pulled from stack),
the stack is purged, the LA and LC registers are pulled from the stack and restored and instruction execution
continues normally. The LA register is a 32-bit read/write register written into by a DO instruction and is read
by the system stack for stacking the register.

 4.10 SYSTEM STACK (SS)
The system stack is a separate internal RAM 15 locations "deep" and divided into two banks: High (SSH)
and Low (SSL) each 32-bits wide. SSH stores the PC or LA contents; SSL stores the LC or SR contents.

The PC and SR registers are pushed on the stack for subroutine calls and long interrupts (see Section 8).
These registers are pulled from the stack for subroutine returns using the RTS instruction and for interrupt
returns that use the RTI instruction. The system stack is also used for storing the address of the beginning
instruction of a hardware program loop as well as the SR, LA and LC register contents just prior to the start
of the loop. This allows nesting of DO loops.

Up to 15 long interrupts, 7 DO loops, or 15 JSRs or combinations of these can be accommodated by the
Stack. Care must be taken when approaching the stack limit. When the Stack limit is exceeded the data to
be stacked will be lost and a non-maskable Stack Error interrupt will occur.

 4.11 STACK POINTER (SP)
The stack pointer register (SP) is a 32-bit register that indicates the location of the top of the system stack
and the status of the stack (underflow and overflow error conditions). The stack pointer is referenced implic-
itly by some instructions (DO, ENDDO, REP, JSR, RTI, etc.) or directly by the MOVEC, MOVEI, MOVEM,
MOVEP and MOVES instructions. The stack pointer register format is shown in Figure 4-4. Note that the
stack pointer register is implemented as a six bit counter which addresses (selects) a fifteen location stack
with its four least significant bits. The possible stack values are shown in Figure 4-5 and are described be-
low.

 4.11.1 Stack Pointer (SP) Bits 0,1,2,3
The stack pointer (SP) points to the last used place on the stack. Immediately after hardware reset these
bits are cleared (SP=0), indicating that the stack is empty.
MOTOROLA

31 6 5 4 3 2 1 0

* UF SE P3 P2 P1 P0

Stack Pointer
Stack Error Flag
Underflow Flag

Reserved
Figure 4-4. Stack Pointer Format
DSP96002 USER’S MANUAL 4 - 11

UF SE P3 P2 P1 P0 Description
1 1 1 1 1 0 Stack Underflow condition after double pull.
1 1 1 1 1 1 Stack Underflow condition.

0 0 0 0 0 0 Stack Empty (reset). Pull causes underflow.

0 0 0 0 0 1 Stack location 1. Double pull causes underflow.
0 0 0 0 1 0 Stack location 2.
.
.
.
0 0 1 1 0 1 Stack location 13.
0 0 1 1 1 0 Stack location 14. Double push causes overflow.
0 0 1 1 1 1 Stack location 15. (Stack full). Push causes overflow.
0 1 0 0 0 0 Stack overflow condition.
0 1 0 0 0 1 Stack overflow condition after double push.

Figure 4-5. Stack Pointer Values

Data is pushed onto the stack by incrementing SP by one then writing the item at the new stack location SP.

An item is pulled off the stack by copying it from location SP and then decrementing SP by one. Move in-
structions that read the SSH implicitly decrement the SP, and move instructions that write the SSH implicitly
increment the SP. This facilitates managing the stack under software control. Since each location that the
stack points to is 64 bits wide, it must be accessed by two move instructions. The first move should be to/
from the SSL and then the second move should be to/from the SSH to automatically trigger a SP increment/
decrement.

 4.11.2 Stack Error flag (SE) Bit 4
The Stack Error flag (SE) indicates that a stack error has occurred. The transition of SE from 0 to 1 causes
the priority level 3 Stack Error exception (see Section 8).

When the stack is completely full, the Stack Pointer reads 001111, and any operation that pushes data to
the stack will cause a stack error exception to occur and the stack register will read 010000 (or 010001 if
an implied double push occurs).

Any implied pull operation with SP=0 will cause a Stack Error exception (see Section 8), and the SP will
read all ones (or 111110 if an implied double pull occurs). As shown in Figure 4-5, the SE bit is set.

Once set, the SE flag remains so until a move or bit instruction that directly references the Stack Pointer
explicitly clears the SE flag. The SE flag is also cleared by hardware reset. When SP=0 (stack empty), no
stack level is selected. Instructions which read the stack without SP post-decrement (REP SSL, MOVEC
when SSL is specified as source, etc.) do not cause a stack error exception and the data read will be inde-
terminate. Instructions which write the stack without SP pre-increment (MOVEC when SSL is specified as
destination, etc.) do not cause a stack error exception and no stack registers are altered.
4 - 12 DSP96002 USER’S MANUAL MOTOROLA

MOTOROLA

31 4 3 2 1 0

Operating Mode
Data Rom Enable

Reserved

* DE MC MB MA
Figure 4-6. Operating Mode Register Format
 4.11.3 Underflow flag (UF) Bit 5
The Underflow flag (UF) is set when a stack underflow occurs. The UF flag is cleared when a stack overflow
occurs. While the SE flag remains set, the UF flag does not change with Stack Pointer operations caused
by instructions that refer implicitly to the Stack Pointer such as RTI, RTS, DO, ENDDO, JSR, etc. The UF
flag is cleared by hardware reset (see Figure 4-5). Implicit stack pointer operations that do not produce a
stack error (i.e. do not set SE) will always clear UF as long as SE is not set.

 4.11.4 Unimplemented Stack Pointer Register bits (Bits 6-31)
Any unimplemented stack pointer register bits are reserved for future expansion and read as zero during
DSP96002 read operations. They should be written with zero for future compatibility.

 4.12 OPERATING MODE REGISTER (OMR)
The operating mode register (OMR) is a 32-bit register which defines the current chip operating mode of the
processor. The OMR bits are only affected by processor reset and by instructions which directly reference
the OMR.

The operating mode register format is shown in Figure 4-6 and is described below.
 4.12.1 Chip Operating Mode (Bits 0,1,2)
The operating mode bits MA, MB and MC determine if the internal program RAM is enabled and the startup
procedure when the chip leaves the RESET state. These bits are loaded from the external Mode Select pins

MODC, MODB and MODA respectively when the
—

R
—

E
—

S
—

E
–
T pin is negated. After the DSP96002

leaves the RESET state, MC, MB and MA may be changed under program control. See Section 9 for more
details on the chip operating modes.

 4.12.2 Data ROM Enable (Bit 3)
The Data ROM Enable (DE) bit enables the two on-chip 512x32 Data ROMs located at address $00000400
to $000007FF in the X and Y memory spaces. When DE is cleared, the $00000200 to $000007FF space is
part of the external X and Y data spaces and the on-chip Data ROMs are disabled (see the DSP96002 data
memory maps in Section 9.2 for additional details).

 4.12.3 Reserved Operating Mode Register (Bits 4-31)
These operating mode register bits are reserved for future expansion and will read as zero during
DSP96002 read operations. They should be written with zero for future compatibility.
DSP96002 USER’S MANUAL 4 - 13

4 - 14 DSP96002 USER’S MANUAL MOTOROLA

SECTION 5
DATA ORGANIZATION AND ADDRESSING MODES

 5.1 OPERAND SIZES
Operand sizes are defined as follows: a byte is 8 bits long, a short word is 16 bits long, a word is 32 bits
long and a long word is 64 bits long. For floating-point operations the operand sizes are defined as follows:
a single real is 32 bits long, a double real is 64 bits long and a register operand is 96 bits long. The operand
size for each instruction is either explicitly encoded in the instruction or implicitly defined by the instruction
operation.

 5.2 DATA ORGANIZATION IN MEMORY
Program memory is 32 bits wide and supports 32-bit instruction words and instruction extension words.

The X and Y data memories are each 32 bits wide and support word and single real operands. The X and
Y memories may be referenced as a single 64-bit wide memory space (the "L" space) to support long word
and double real operands.

 5.2.1 Integer Memory Data Formats
The DSP96002 supports four integer memory data formats:

• Signed Word Integer - 32 bits wide with two’s complement representation.

• Signed Long Word Integer - 64 bits wide with two’s complement representation.

• Unsigned Word Integer - 32 bits wide with unsigned magnitude representation.

• Unsigned Long Word Integer - 64 bits wide with unsigned magnitude representation.

The bit weighting for signed integers is presented in Figure 5-1. The bit weighting for unsigned integers is
presented in Figure 5-2.

The DSP96002 does not support direct operations on Long Word Integers but they can be produced as
result of some ALU operations or as a result of a Long Move.

 5.2.2 Floating-point Memory Data Formats
The DSP96002 supports two floating-point memory data formats: Single Precision (32 bits) and Double
Precision (64 bits), both fully complying with the IEEE Standard 754 for Binary Floating-Point Arithmetic.
The memory formats for floating-point operands supported by DSP96002 are shown in Figure 5-3. The
memory format for single and double real operands which conform to the IEEE 754 standard are shown
below. Note that the stored exponent (e) is unsigned (i. e., biased positive) and positioned in the significant
bits above those for the mantissa. By doing this, data can be ordered (sorted) by an integer machine which
MOTOROLA DSP96002 USER’S MANUAL 5 - 1

5 - 2

SIGNED WORD INTEGER

2

0

2

1

2

30

-2

31

31 30 1 0

SIGNED LONG WORD INTEGER

2

0

2

1

2

62

-2

63

63 62 1 0

31 30

63 62

Figure 5-1. Bit Weighting and Alignment of Signed Integer Operands
UNSIGNED WORD INTEGER

20

21

230

231

UNSIGNED LONG WORD INTEGER

20

21

262

263

1 0

1 0
Figure 5-2. Bit Weighting and Alignment of Unsigned Integer Operands
DSP96002 USER’S MANUAL MOTOROLA

is not aware that the data is represented in a floating point format. The range of the unbiased exponent, E,
is every integer between Emin and Emax, inclusive (-Emin <E<Emax). For single precision (SP), Emin = -126

while Emax = +127; for double precision (DP), Emin = -1022 while Emax = +1023. For both SP and DP, Emin-

1 is reserved to encode ±0 and denormalized numbers while Emax+1 is used to encode ±∞ and NaN’s.
23-Bit
Fraction

11-Bit
Exponent

S

52-Bit
Fraction

8-Bit
Exponent

S

SINGLE REAL

DOUBLE REAL

Sign of Significand

Sign of Significand

31 30 23 22 0

63 62 52 51 0
 5.2.2.1 IEEE Single Precision Real Memory Format Summary
FractionS Biased
Exponent

31 30 23 22 0

31 0
Field Size (in bits):

s = Sign 1
e = Biased Exponent 8
f = Fraction 23

Interpretation of Sign:

Positive Mantissa: s = 0
Negative Mantissa: s = 1

Normalized Numbers:

Represents real numbers in the form (-1)sx 2(E+127)x 1.f
E unbiased exponent -126 < E < +127
Bias of e +127 ($7F)
e = E + bias 0 < e < 254 ($FE)
f Zero or Non-Zero
Mantissa................ 1.f
MOTO
Figure 5-3. Memory Format for floating-point Operands
ROLA DSP96002 USER’S MANUAL 5 - 3

Denormalized Numbers:

Represents real numbers in the form (-1)sx 2(Emin-1+127)x 0.f
Bias of e +127 ($7E)
e 0 ($00)
f....................... Non-Zero
Mantissa................ 0.f

Signed Zeros:

Represents real zeroes in the form (-1)sx 2(Emin-1+127)x 0.0
Bias of e +127 ($7F)
e 0 ($00)
f....................... Zero
Mantissa................ 0.f = 0.00...00

Signed Infinities:

Represents real infinities in the form (-1)sx 2(Emax+1+127)x 1.0
Bias of e +127 ($7F)
e 255 ($FF)
f....................... Zero
Mantissa 1.f+1.00...00

NaNs (Not-a-Number):

Represents NaNs as 2(Emax+1+127)x 1.f
s Don’t care
Bias of e n.a.
e 255($FF)
f Non-Zero: 11...11 Internal (legal) QNaN
 1x...xx recognized QNaN
 0x...xx SNaN

 5.2.2.2 Double Precision Real Memory Format Summary
FractionS Biased
Exponent

63 62 52 51 0

63 0
Field Size (in bits):

s = Sign 1
e = Biased Exponent 11
f = Fraction 52

Interpretation of Sign:

Positive Mantissa: s = 0
Negative Mantissa: s = 1
5 - 4 DSP96002 USER’S MANUAL MOTOROLA

Normalized Numbers:

Represents real numbers in the form (-1)s x 2(E+1023) x 1.f
E unbiased exponent -1022 < E < +1023
Bias of e +1023 ($3FF)
e + E + bias 0 < e < 2046 ($7FE)
f Zero or Non-Zero
Mantissa................ 1.f

Denormalized Numbers:

Represents real numbers in the form (-1)sx 2(Emin-1+1023)x 0.f
Emin.................... -1022

Bias of e +1023 ($3FF)
e 0 ($000)
f Non-Zero
Mantissa................ 0.f

Signed Zeros:

Represents real zeroes in the form (-1)sx 2(Emin-1+1023)x 0.0
Bias of e +1023 ($3FF)
e 0 ($000)
f Zero
Mantissa................ 0.f = 0.00...00

Signed Infinities:

Represents infinities in the form (-1)s x 2(Emax+1+1023) x 1.0
Bias of e n.a.
e 2047 ($7FF)
f Zero
Mantissa................ 1.f = 1.00...00

NaNs (Not-a-Number):

Represents NaNs as 2(Emax+1+1023) x 1.f
s Don’t care
Bias of e n.a.
e 2047 ($7FF)
f Non-Zero: 11...11 Internal (legal) QNaN
 1x...xx Recognized QNaN
 0x...xx SNaN

 5.3 DATA ORGANIZATION IN REGISTERS

 5.3.1 Data ALU Registers
The thirty Data ALU registers are 32 bits wide and may be accessed as word operands. Sets of 2 Data
ALU registers may be concatenated to form ten 64 bits registers which may be accessed as long words.
The least significant bit (LSB) is the right-most bit (bit 0) and the most significant bit (MSB) is bit 31 or 63 for
integer operands.
MOTOROLA DSP96002 USER’S MANUAL 5 - 5

Sets of 3 Data ALU registers may be concatenated to form ten 96 bit registers which may be accessed as
single real or double real operands. Floating-point operands are always represented in an internal double
precision format, described below.

 5.3.1.1 Internal floating-point Data Format
All DSP96002 internal floating-point operations are performed using single extended precision. All oper-
ands are converted to the internal double precision format when written into a Data ALU register. The in-
ternal double precision floating-point format used in the ten floating-point data registers is shown in Figure
5-4.
- S is the sign of the mantissa.

- U is the single precision unnormalized tag.

- V is the single extended precision unnormalized tag.

- Biased Exponent is a 11 bit number which is essentially the 11 bit double precision biased exponent.

- Zero are bits that are always cleared by floating-point operations and floating-point moves.

- I is the integer part of the mantissa.

- Fraction is a 52 bit field representing the fractional part of the mantissa.

FractionS
Biased
Exponent

63 62 0

ZeroZero IU V

95 94 93 92 75 74 64 11 10
When a result of an internal operations (which is a single extended precision number in the DSP96002) is
written into a Data ALU register or when writing single or double precision numbers represented in one of
the memory data formats to a Data ALU register as a result of a MOVE operation, automatic format con-
version to the internal double precision representation is performed. Thus, mixed mode arithmetic is im-
plicitly supported.

Since the DSP96002 implements single extended precision internal calculations, the Fraction part in the
register may contain actually only 31 significand bits for single extended precision results or 23 significand
bits for single precision results. However, if a double precision MOVE is performed, a 52 bit fraction will be
written into the register but, if the same register is used as a floating-point operand, only the 31 most sig-
nificand bits of the fraction will actually be used while the remaining bits are ignored by the Data ALU, re-
sulting in a truncation error toward zero. Therefore, for future compatibility, only single extended precision
data should be moved with the double precision data moves.

 5.3.1.2 Internal Double Precision Format Summary
Field Size (in bits):
s = Sign 1
Figure 5-4. Data Format in the Floating Point Registers
5 - 6 DSP96002 USER’S MANUAL MOTOROLA

e = Biased Exponent 11
S
Biased
Exponent

63 62 0

ZeroZero IU V

95 94 93 92 75 74 64 11 10

Fraction
u = U tag 1
v = V tag 1
i = Integer Part 1
f = Fraction 52
z = Unused bits......... 29

Interpretation of Unused Bits:
Input Don’t Care
Output.................. All Zeros

Unused bits should be written with zero for future compatibility.

Interpretation of Sign:
Positive Mantissa: s = 0
Negative Mantissa: s = 1

Normalized Numbers:

Represents real numbers in the form (-1)sx 2(e-1023) x 1.f
Bias of e +1023 ($3FF)
e 0 < e < 2047 ($7FF)
i 1
f Zero or Non-Zero
Mantissa................ i.f = 1.f

Denormalized Numbers:

Represents real numbers in the form (-1)sx 2(-1022)x 0.f
Bias of e +1022 ($3FE)
e 0 ($000)
i 0
f Non-Zero
Mantissa................ i.f = 0.f

Signed Zeros:
Bias of e n.a.
e 0 ($000)
i 0
f Zero
Mantissa................ i.f = 0.00...00

Signed Infinities:
Bias of e n.a.
e 2047 ($7FF)
i 1
f Zero
MOTOROLA DSP96002 USER’S MANUAL 5 - 7

Mantissa................ i.f = 1.00...00

NaNs (Not-a-Number):
s Don’t care
Bias of e n.a.
e 2047 ($7FF)
i 1
f Non-Zero
Mantissa................ i.f: 1.11...11 Legal QNaN
 1.1x...xx QNaN
 1.0x...xx SNaN

 5.3.2 Address Generation Unit (AGU) Registers
The notation Rn will be used to designate one of the 8 address registers R0-R7. The notation Nn will be
used to designate one of the 8 address offset registers N0-N7. The notation Mn will be used to designate
one of the 8 address modifier registers M0-M7. The eight AGU address registers R0-R7 support address
or data operands of 32 bits. The eight AGU offset registers N0-N7 support offsets of 32 bits or may support
address or data operands of 32 bits. The eight AGU modifier registers M0-M7 support modifiers of 32 bits
or may support address or data operands of 32 bits.

 5.3.3 Program Control Registers
The operating mode register (OMR) is 32 bits wide and may be accessed as a byte or word operand. The
status register (SR) is 32 bits wide with the system mode register (MR) occupying the high-order 8 bits, the
IEEE exception register (IER) occupying the next 8 bits, the exception register (ER) occupying the following
8 bits and the user condition code register (CCR) occupying the low-order 8 bits. The SR register may be
accessed as a word operand. The MR, IER, ER and CCR registers may be accessed as byte operands.
The loop counter register (LC), loop address register (LA), system stack pointer (SP), system stack high
(SSH), and system stack low (SSL) are 32 bits wide and may be accessed as word operands.

The program counter register (PC) is a special 32-bit wide program control register. It is always referenced
implicitly as a word operand.

The system stack is 64 bits wide and supports the concatenated PC and SR registers (PC:SR) for subrou-
tine calls, interrupts and program looping, and also supports the concatenated LA and LC registers (LA:LC)
for program looping.

 5.4 NOT-A-NUMBER IMPLEMENTATION
When created by the DSP96002, Quiet Not-a-Numbers (QNaNs) represent the result of operations that
have no mathematical interpretation (e.g. zero multiplied by infinity) or the result of operations involving a
NaN operand as input.

Two different types of NaNs are implemented, differentiated by the most significand bit (MSB) of the frac-
tion. NaNs with the most significant bit of the fraction set to one are quiet NaNs (QNaNs), also called non-
signaling NaNs. NaNs with the most significant fraction bit equal to zero are signaling NaNs (SNaNs). The
DSP96002 never creates a SNaN as a result of an operation.

The DSP96002 legal QNaN is defined as follows:
5 - 8 DSP96002 USER’S MANUAL MOTOROLA

• It has the same pattern for all precisions.

• All bits of the fraction are set to one.

• The biased exponent is set to all ones.

• The sign bit is cleared.

• In the internal floating-point format, the I bit is always set to one; note that if the I bit is set to
zero, the pattern is not recognized as a legal pattern by the Data ALU hardware, and opera-
tions on these bit patterns may yield unexpected results.

The IEEE specification defines the manner in which NaNs are handled when used as inputs to an operation.
If a SNaN is used as an input, it requires that a QNaN be returned as the result if traps are disabled, which
is the case for the DSP96002. The DSP96002 handles operations with SNaNs by generating the legal
QNaN as a result. If QNaNs are used as input, it requires that one of the input QNaNs be returned as a
result. The DSP96002 can only return the legal QNaN, and therefore, to be fully IEEE compatible, the only
QNaN that should be used is the legal QNaN.

 5.5 AUTOMATIC FLOATING-POINT FORMAT CONVERSIONS
There are two kinds of automatic floating-point format conversions within the DSP96002:

1. Conversion of a floating-point operand in any memory data format to the double precision in-
ternal data format of a floating-point data register. This is done when moving data from an ex-
ternal (to the Data ALU) location into a Data ALU floating-point register.

2. Conversion of a floating-point operand in the internal data format of a floating-point data reg-
ister to any memory data format. This is done when moving data from a Data ALU floating-
point register to an external (to the Data ALU) location.

 5.5.1 Conversion to the Double Precision Internal Data Format
Since the internal data format used by the DSP96002 Data ALU is double precision, all external floating-
point operands are converted to double precision values before writing them into a Data ALU floating-point
register. The conversion is actually a "bit rearranging" operation using the procedure shown in Figure 5-5.

When converting a single precision number to the internal register data format, the implicit bit is revealed
and stored as an explicit bit in the register. If the number to be converted is a denormalized single precision
floating-point number, the U tag will be set indicating an unnormalized number. If such a number is to be
used as an operand for floating-point operations, two cases arise depending on the state of the FZ (Flush-
to-Zero) bit in the SR. In the Flush-to-Zero mode, the operand will be considered as zero in calculations.
However, the data stored in the register will not be affected (unless the register is also the destination of
the current operation). In the IEEE mode, the operand will be first "corrected" by adding to the execution
cycle extra cycles for normalization. However, the data stored in the register will not be affected (unless
the register is also the destination of the current operation).

When converting a double precision number to the internal register data format, the implicit bit is revealed
and stored as an explicit bit in the register. If the number to be converted is a denormalized double preci-
sion (SEP in the DSP96002) floating-point number, the V tag will be set. If such a number is to be used as
an operand for floating-point operations, two cases arise depending on the state of the FZ (Flush-to-Zero)
bit in the SR. In the Flush-to-Zero mode, the operand will be considered as zero in calculations. However,
the data stored in the register will not be affected (unless the register is also the destination of the current
operation). In the IEEE mode, multiply operands will be first "wrapped" by adding to the execution cycle
extra cycles for normalization. However, the data stored in the register will not be affected (unless the
MOTOROLA DSP96002 USER’S MANUAL 5 - 9

Single Precision

→

 Double Precision
Memory Format Internal Format

31

→

 95 S
94 U - SET IF DENORMALIZED, CLEARED OTHERWISE
93 V - CLEARED
92 CLEARED
.

75 CLEARED
30

→

 74
 73 SET IF NAN OR INFINITY, CLEARED IF ZERO, INV(BIT 30) OTHERWISE
 72 SET IF NAN OR INFINITY, CLEARED IF ZERO, INV(BIT 30) OTHERWISE
 71 SET IF NAN OR INFINITY, CLEARED IF ZERO, INV(BIT 30) OTHERWISE

29

→

 70
 .

→ .

23

→

 64
63 I - CLEARED IF DENORM. OR ZERO, SET OTHERWISE

22

→

 62
 .

→ .

 0

→

 40
39 CLEARED
 . .
 0 CLEARED

Double Precision

→

 Double Precision
Memory Format Internal Format

63

→

 95 S
94 U - CLEARED
93 V - SET IF DENORMALIZED, CLEARED OTHERWISE
92 CLEARED
.

75 CLEARED
62

→

 74
 .

→

 .
52

→

 64

63 I - CLEARED IF DENORM. OR ZERO, SET OTHERWISE
51

→

 62
 . → .
 0 → 11

10 CLEARED
 . .
 0 CLEARED
Figure 5-5. Conversion to Double Precision Internal Data Format
5 - 10 DSP96002 USER’S MANUAL MOTOROLA

register is also the destination of the current operation). The DSP96002 does not support double precision.
It does support single extended precision.

 5.5.2 Conversion to the Memory Formats
Conversions from the internal double precision format to either of the two memory floating-point formats is
performed whenever a data register is to be stored in memory or any other location external to the Data
ALU. The conversion is actually a "bit rearranging" operation performed automatically by the MOVE in-
structions, and it is only responsible for collecting the required bits from the register and constructing the
32 or 64-bit data field to be stored in memory. This will produce correct results only if the data in the register
is in a precision equal to the specified MOVE precision. For example, for single precision MOVEs the data
must be already rounded to single precision.

Precision conversion to single precision (not format conversion) is accomplished by specifying an appro-
priate rounding operation (this may be an explicit instruction like FTFR.S or an implicit operation like
FADD.S). The result after rounding is still stored in the internal double precision format; however, MOVE
instructions that read it out of the Data ALU do not alter the value due to bit rearrangement. Figure 5-6
shows the bit rearrangement procedure performed by the MOVE instructions.

If a double precision value is to be rounded to single precision and the rounded result should yield a denor-
malized number, two different actions may be performed depending on FZ (Flush-to-Zero) bit in the SR. In
the Flush-to-Zero mode, the result will be stored as zero in the register. In the IEEE mode, the operand will
be first "corrected" by adding to the execution cycle extra cycles for denormalization. However, the data
stored in the register will be in the internal double precision format and the U-tag will be set. The U-tag
indicates that if another Data ALU operation will use this result as an operand, extra cycles should be added
for operand normalization before actually using it.

 5.6 OPERAND REFERENCES
The DSP96002 separates operand references into four classes: program, stack, register, and memory ref-
erences. The type of operand reference(s) required for an instruction is specified by both the opcode field
and the data bus movement field of the instruction (see Section 6.3). All operand reference types may not
be used with all instructions.

 5.6.1 Program References
Program references (called P references) are references to 32-bit wide program memory space and are
usually instruction reads. Instructions or data operands may be read from or written to program memory
space using the Move Program Memory (MOVEM), Move Peripheral Data (MOVEP), and Move Absolute
Short (MOVES) instructions. Program references may be internal or external memory references depend-
ing on the address and the chip operating mode.

 5.6.2 Stack References
Stack references (called S references) are references to a separate 64-bit wide internal memory space
(System Stack) used implicitly to store the PC and SR registers for subroutine calls, interrupts and returns.
In addition to the PC and SR registers, the LA and LC registers are stored on the stack when a program
loop is initiated. The stack space address is always implied by the instruction. Data is written to stack mem-
ory space to save the processor state and is read from the stack to restore the processor state.
MOTOROLA DSP96002 USER’S MANUAL 5 - 11

 Double Precision → Single Precision
Internal Format Memory Format

95 → 31
94
 .
75
74 → 30
73
72
71
70 → 29
 . → .
64 → 23
63
62 → 22
 . → .
40 → 0
39
 .
 0

Double Precision → Double Precision
Internal Format Memory Format

95 → 63
94
75
74 → 62
 . → .
64 → 52
63
62 → 51
 . → .
11 → 0
10
 0
 5.6.3 R Register References
Register references (called R references) are references to the Data ALU, Address Generation Unit and
Program Controller registers. Data may be read from one register and written into another register.
Figure 5-6. Conversion from Internal Format to Memory Formats
5 - 12 DSP96002 USER’S MANUAL MOTOROLA

 5.6.4 Memory References
Memory references are references to the 32-bit wide X or Y memory spaces and may be internal or external
memory references depending on the effective address of the operand in the data bus movement field of
the instruction. Data may be read or written from any address in either memory space.

 5.6.4.1 X Memory References
The operand is in X memory space and is a word reference. Data may be read from memory to a register
or from a register to memory.

 5.6.4.2 Y Memory References
The operand is in Y memory space and is a word reference. Data may be read from memory to a register
or from a register to memory.

 5.6.4.3 L Memory References
L memory space references both X and Y memory spaces with one operand address. L memory space is
developed by the concatenation (X:Y) of X and Y memory spaces. The data operand is a long word refer-
ence. The high-order word of the operand is in X memory; the low-order word of the operand is in Y mem-
ory. Data may be transferred between memory and concatenated registers (i.e., Dn.M:Dn.L) or double pre-
cision registers (i.e., Dn.D).

 5.6.4.4 XY Memory References
XY memory space references both X and Y memory spaces with two operand addresses. One word op-
erand is in X memory space and one word operand is in Y memory space.

 5.6.4.4.1 Two independent addresses
Two independent addresses are used to access two word operands. Two effective addresses in the in-
struction are used to derive two independent operand addresses - one operand address may reference X
memory space or Y memory space and the other operand address must reference the other memory
space. One of the two effective addresses specified in the instruction must reference one of the address
registers R0-R3, and the other effective address must reference one of the address registers R4-R7. Ad-
dressing modes are restricted to no-update and post-update by +1, -1, and +N addressing modes. Refer
to Section 5.7 for a description of the addressing modes. Each effective address provides independent
read/write control for its memory space. Data may be read from memory to a register or from a register to
memory.

 5.6.4.4.2 One common address
One common address is used to access two word operands. One effective address in the instruction is
used to derive two indentical operand addresses referencing X and Y memory spaces. The effective ad-
dress specified in the instruction references one of the address registers R0-R7. All address register indi-
rect addressing modes may be used. Refer to Section 5.7 for a description of the addressing modes. The
effective address provides a common read/write control for both memory spaces. Data may be read from
memory to a register or from a register to memory.
MOTOROLA DSP96002 USER’S MANUAL 5 - 13

 5.7 ADDRESSING MODES
The DSP96002 instruction set contains a full set of operand addressing modes. All address calculations
are performed in the Address Generation Unit to minimize execution time and loop overhead.

Addressing modes specify whether the operand(s) is in a register or memory and provide the specific ad-
dress of the operand(s). An effective address in an instruction will specify an addressing mode, and for
some addressing modes the effective address will further specify an address register. In addition, address
register indirect modes require additional address modifier information which is not encoded in the instruc-
tion. The address modifier information is specified in the selected address modifier register(s). All memory
references require one address modifier and the XY memory reference requires one or two address mod-
ifiers. The definition of certain instructions implies the use of specific registers and the addressing modes
used.

Address register indirect modes require an offset and a modifier register for use in address calculations.
These registers are implied by the address register specified in an effective address in the instruction word.
Each offset register Nn and each modifier register Mn is assigned to an address register Rn having the
same register number n. Thus the assigned registers are M0;N0;R0, M1;N1;R1, M2;N2;R2, M3;N3;R3,
M4;N4;R4, M5;N5;R5, M6;N6;R6 and M7;N7;R7. The address register Rn is used as the address register,
the offset register Nn is used to specify an optional offset and the modifier register Mn is used to specify an
addressing mode modifier.

The addressing modes are grouped into three categories: register direct, address register indirect and spe-
cial. These addressing modes are described below. Refer to Figure 5-7 for a summary of the addressing
modes and operand references.

 5.7.1 Register Direct Modes
These effective addressing modes specify that the operand is in one (or more) of the 30 Data ALU registers,
10 floating-point registers, 24 address registers or 7 control registers.

 5.7.1.1 Data or Control Register Direct
The operand is in one, two or three Data ALU register(s) as specified in a portion of the data bus movement
field in the instruction. This addressing mode is also used to specify a control register operand for special
instructions. This reference is classified as a register reference.

 5.7.1.2 Address Register Direct
The operand is in one of the 24 address registers specified by an effective address in the instruction. This
reference is classified as a register reference.

CAUTION:
Due to pipelining, if an address register (Mn, Nn, or Rn) is changed with a MOVE
instruction, the new contents will not be available for use as a pointer until the second
following instruction.
5 - 14 DSP96002 USER’S MANUAL MOTOROLA

 5.7.2 Address Register Indirect Modes
The effective address in the instruction specifies the address register Rn and the address calculation to be
performed. These addressing modes specify that the operand(s) is in memory and provide the specific
address of the operand(s). When an address register is used to point to a memory location, the addressing
mode is called address register indirect. The term indirect is used because the operand is not the address
register itself, but the contents of the memory location pointed to by the address register. A portion of the
data bus movement field in the instruction specifies the memory reference to be performed. The type of
address arithmetic used is specified by the address modifier register Mn.

 5.7.2.1 No Update (Rn)
The address of the operand is in the address register Rn. The contents of the Rn register are unchanged.
The Mn and Nn registers are ignored. This reference is classified as a memory reference.

 5.7.2.2 Postincrement by 1 (Rn)+
The address of the operand is in the address register Rn. After the operand address is used, it is incre-
mented by 1 and stored in the same address register. The type of arithmetic used to increment Rn is de-
termined by Mn. The Nn register is ignored. This reference is classified as a memory reference.

 5.7.2.3 Postdecrement by 1 (Rn)-
The address of the operand is in the address register Rn. After the operand address is used, it is decre-
mented by 1 and stored in the same address register. The type of arithmetic used to increment Rn is de-
termined by Mn. The Nn register is ignored. This reference is classified as a memory reference.

 5.7.2.4 Postincrement by Offset Nn (Rn)+Nn
The address of the operand is in the address register Rn. After the operand address is used, it is incre-
mented (added) by the contents of the Nn register and stored in the same address register. The content
of Nn is treated as a 2’s complement number and can therefore be interpreted as signed or unsigned (see
Section 5.8.1). The contents of the Nn register are unchanged. The type of arithmetic used to increment
Rn is determined by Mn. This reference is classified as a memory reference.

 5.7.2.5 Postdecrement by Offset Nn (Rn)-Nn
The address of the operand is in the address register Rn. After the operand address is used, it is decre-
mented (subtracted) by the contents of the Nn register and stored in the same address register. The con-
tent of Nn is treated as a 2’s complement number and can therefore be interpreted as signed or unsigned
(see Section 5.8.1). The contents of the Nn register are unchanged. The type of arithmetic used to incre-
ment Rn is determined by Mn. This reference is classified as a memory reference.

 5.7.2.6 Indexed by Offset Nn (Rn+Nn)
The address of the operand is the sum of the contents of the address register Rn and the contents of the
address offset register Nn. The content of Nn is treated as a 2’s complement number and can therefore
be interpreted as signed or unsigned (see Section 5.8.1). The contents of the Rn and Nn registers are un-
MOTOROLA DSP96002 USER’S MANUAL 5 - 15

changed. The type of arithmetic used to increment Rn is determined by Mn. This reference is classified as
a memory reference.

 5.7.2.7 Predecrement by 1 -(Rn)
The address of the operand is the contents of the address register Rn decremented by 1. Before the op-
erand address is used, it is decremented (subtracted) by 1 and stored in the same address register. The
type of arithmetic used to increment Rn is determined by Mn. The Nn register is ignored. This reference is
classified as a memory reference.

 5.7.2.8 Long displacement (Rn+Label)
This addressing mode requires one word (label) of instruction extension. The address of the operand is
the sum of the contents of the address register Rn and the extension word. The contents of the Rn register
is unchanged. The type of arithmetic used to increment Rn is determined by Mn. The Nn register is ignored.
This reference is classified as a memory reference.

 5.7.3 PC Relative Modes
In the PC relative addressing modes, the address of the operand is obtained by adding a displacement,
represented in two’s complement format, to the value of the program counter (PC). The PC always point
to the address of the next instruction, so PC relative addressing with zero displacement will produce the
address of the following instruction.

 5.7.3.1 Long Displacement PC Relative
This addressing mode requires one word of instruction extension. The address of the operand is the sum
of the contents of the PC and the extension word.

 5.7.3.2 Short Displacement PC Relative
The short displacement occupies 15 bits in the instruction operation word. The displacement is first sign
extended to 32 bits and then added to the PC to obtain the address of the operand.

 5.7.3.3 Address Register PC Relative
The address of the operand is the sum of the contents of the address register Rn and the PC. The Mn and
Nn registers are ignored.

 5.7.4 Special Address Modes
The special address modes do not use an address register in specifying an effective address. These
modes specify the operand or the address of the operand in a field of the instruction or they implicitly ref-
erence an operand.
5 - 16 DSP96002 USER’S MANUAL MOTOROLA

 5.7.4.1 Immediate Data
This addressing mode requires one word of instruction extension. The immediate data is a word operand
in the extension word of the instruction. This reference is classified as a program reference.

 5.7.4.2 Immediate Short Data
The 8-, 16-, or 19-bit operand is in the instruction operation word. The 8-bit operand is used for ANDI and
ORI instructions and it is zero extended. The 16-bit operand is used for immediate move to register and it
is sign extended (interpreted as signed integer). The 19-bit operand is used for DO and REP instructions
and it is zero extended. This reference is classified as a program reference.

 5.7.4.3 Absolute Address
This addressing mode requires one word of instruction extension. The address of the operand is in the ex-
tension word. This reference is classified as a memory reference and a program reference.

 5.7.4.4 Absolute Short Address
For the Absolute Short addressing mode the address of the operand occupies 7 bits in the instruction op-
eration word and it is zero extended. This reference is classified as a memory reference.

 5.7.4.5 Short Jump Address
The operand occupies 15 bits in the instruction operation word. The address is sign extended to 32 bits to
use the same format for jumps and relative branches. This reference is classified as a program reference.

 5.7.4.6 I/O Short Address
For the I/O short addressing mode the address of the operand occupies 7 bits in the instruction operation
word and it is one extended. I/O short is used with the bit manipulation and move peripheral data instruc-
tions.

 5.7.4.7 Implicit Reference
Some instructions make implicit reference to the program counter (PC), system stack (SSH, SSL), loop ad-
dress register (LA), loop counter (LC)or status register (SR). The registers implied and their use is defined
by the individual instruction descriptions (Appendix A).

 5.7.5 Addressing Modes Summary
Figure 5-7 contains a summary of the addressing modes discussed in the previous paragraphs.

 5.8 ADDRESS MODIFIER TYPES
The DSP96002 Address Generation Unit supports linear, modulo and bit-reversed address arithmetic for
all address register indirect modes. Address modifiers determine the type of arithmetic used to update ad-
dresses. Address modifiers allow the creation of data structures in memory for FIFOs (queues), delay lines,
circular buffers, stacks and bit-reversed FFT buffers. Data is manipulated by updating address registers
MOTOROLA DSP96002 USER’S MANUAL 5 - 17

(pointers) rather than moving large blocks of data. The contents of the address modifier register Mn defines
the type of address arithmetic to be performed for addressing mode calculations, and for the case of mod-
ulo arithmetic, the contents of Mn also specifies the modulus. All address register indirect modes may be
used with any address modifier type. Each address register Rn has its own modifier register Mn associated
with it.

 5.8.1 Linear Modifier
The address modification is performed using normal 32-bit (modulo 4,294,967,296) linear arithmetic (two’s
complement). A 32-bit offset Nn, or immediate data (+1, -1, or a displacement value) may be used in the
address calculations. The range of values may be considered as signed (Nn from -2,147,483,648 to
+2,147,483,647) or unsigned (Nn from 0 to +4,294,967,295). There is no arithmetic differences between
these two data representations. Addresses are normally considered unsigned, data is normally considered
signed.

 5.8.2 Reverse Carry Modifier
The address modification is performed by propagating the carry in the reverse direction, i.e., from the MSB
to the LSB. This is equivalent to bit-reversing the contents of Rn and the offset value Nn, adding normally
and then bit-reversing the result. If the (Rn)+Nn addressing mode is used with this address modifier, and

Nn contains the value 2K-1 (a power of two), then postincrementing by Nn is equivalent to bit-reversing the
K LSBs of Rn, incrementing Rn by 1, and bit-reversing the K LSBs of Rn. This address modification is use-

ful for 2K point FFT addressing. The range of values for Nn is 0 to +4,294,967,295. This allows bit-reversed
addressing for FFTs up to 8,589,934,592 points.

As an example, consider a 1024 point FFT with real data stored in X memory and imaginary data stored in
Y memory. Then Nn would contain the value 512 and postincrementing by +N would generate the address
sequence 0, 512, 256, 768, 128, 640, ... This is the scrambled FFT data order for sequential frequency
points from 0 to 2*pi. For proper operation the reverse carry modifier restricts the base address of the bit

reversed data buffer to an integer multiple of 2K, such as 1024, 2048, 3072, etc. The use of addressing
modes other than postincrement by Nn is possible but may not provide a useful result.

 5.8.3 Modulo Modifier
The address modification is performed modulo M, where M is permitted to range from 2 to +16,777,216.
Modulo M arithmetic causes the address register value to remain within an address range of size M defined
by a lower and upper address boundary. The value M-1 is stored in the modifier register Mn, thus allowing
a modulo size range from 2 to 16,777,216. The lower boundary (base address) value must have zeroes in

the k LSBs, where 2k >= M , and therefore must be a multiple of 2k. The upper boundary is the lower bound-
ary plus the modulo size minus one (base address plus M-1).

For example, to create a circular buffer of 24 stages, M is chosen as 24 and the lower address boundary

must have its 5 LSBs equal to zero (2k >= 24, thus k >= 5). The Mn register is loaded with the value 23
(m-1). The lower boundary may be chosen as 0, 32, 64, 96, 128, 160, etc. The upper boundary of the
buffer is then the lower boundary plus 23.

The address pointer is not required to start at the lower address boundary and may begin anywhere within
the defined modulo address range. In fact, the location of Rn determines the lower and upper boundaries.
5 - 18 DSP96002 USER’S MANUAL MOTOROLA

Addressing Mode Modifier Operand Reference
MMM P S C D A X Y L XY

Register Direct
Data or Control Register No x x
Address Register No x
Address Modifier Register No x
Address Offset Register No x

Address Register Indirect
No Update No x x x x x
Postincrement by 1 Yes x x x x x
Postdecrement by 1 Yes x x x x x
Postincrement by Offset Nn Yes x x x x x
Postdecrement by Offset Nn Yes x x x x
Indexed by Offset Nn Yes x x x x
Predecrement by 1 Yes x x x x
Long Displacement Yes x x x

PC Relative
Long Displacement No x
Short Displacement No x
Address Register No x

Special
Immediate Data No x
Absolute Address No x x x x
Absolute Short Address No x x x
Immediate Short Data No x
Short Jump Address No x
I/O Short Address No x x
Implicit No x x x

where MMM = address modifier
P = program reference
S = stack reference
C = Program Controller register reference
D = Data ALU register reference
A = Address Generation Unit register reference
X = X memory reference
Y = Y memory reference
L = L memory reference

XY = XY memory reference
Figure 5-7. Addressing Modes Summary
MOTOROLA DSP96002 USER’S MANUAL 5 - 19

On the DSP96002, the upper and lower boundaries are not explicitly needed. If the address register pointer
increments past the upper boundary of the buffer (base address plus M-1) it will wrap around to the base
address. If the address decrements past the lower boundary (base address) it will wrap around to the base
address plus M-1.

If an offset Nn is used in the address calculations, the 32-bit value ∫Nn∫ must be less than or equal to M for
proper modulo addressing. This is because a single modulo wrap around is detected. If ∫Nn∫ is greater than

M, the result is data dependent and unpredictable except for the special case where Nn=L*(2k), a multiple

of the block size, 2k, where L is a positive integer. Note that the offset Nn must be a positive two’s comple-
ment integer. For this case the pointer Rn will be incremented using linear arithmetic to the same relative
address L blocks forward in memory. Similarly, for the (Rn)-Nn addressing mode the pointer Rn will be dec-
remented, using linear arithmetic, L blocks backward in memory. For the normal case where ∫Nn∫ is less
than or equal to M, the modulo arithmetic unit will automatically wrap the address pointer around by the
required amount. This type of address modification is useful in creating circular buffers for FIFOs (queues),
delay lines and sample buffers up to 16,777,216 words long. It is also used for decimation, interpolation,

and waveform generation. The special case of (Rn)+/-Nn with Nn=L*(2k) is useful for performing the same
algorithm on multiple buffers, for example implementing a bank of parallel filters. The range of values for
Nn is -2,147,483,648 to +2,147,483,647 although all values are not useful when modulo addressing as de-
scribed above.

 5.8.4 Multiple Wrap-Around Modulo Modifier

The address modification is performed modulo M, where M may be any power of 2 in the range from 21 to

223. Modulo M arithmetic causes the address register value to remain within an address range of size M
defined by a lower and upper address boundary. The value M-1 is stored in the modifier register Mn least
significant 24 bits while the 8 most significant bits are set to $FF. The lower boundary (base address) value

must have zeroes in the k LSBs, where 2k = M , and therefore must be a multiple of 2k. The upper boundary
is the lower boundary plus the modulo size minus one (base address plus M-1).

For example, to create a circular buffer of 32 stages, M is chosen as 32 and the lower address boundary

must have its 5 LSBs equal to zero (2k = 32, thus k = 5). The Mn register is loaded with the value
$FF00001F. The lower boundary may be chosen as 0, 32, 64, 96, 128, 160, etc. The upper boundary of
the buffer is then the lower boundary plus 31.

The address pointer is not required to start at the lower address boundary and may begin anywhere within
the defined modulo address range (between the lower and upper boundaries). If the address register
pointer increments past the upper boundary of the buffer (base address plus M-1) it will wrap around to the
base address. If the address decrements past the lower boundary (base address) it will wrap around to
the base address plus M-1. If an offset Nn is used in the address calculations, the 32-bit value ∫Nn∫ is not
required to be less than or equal to M for proper modulo addressing since multiple wrap around is support-
ed for (Rn)+Nn, (Rn)-Nn and (Rn+Nn) address updates (multiple wrap-around cannot occur with (Rn)+,
(Rn)- and -(Rn) addressing modes). The range of values for Nn is -2,147,483,648 to +2,147,483,647.

This type of address modification is useful for decimation, interpolation and waveform generation since the
multiple wrap-around capability may be used for argument reduction.
5 - 20 DSP96002 USER’S MANUAL MOTOROLA

 5.8.5 Address Modifier Type Encoding Summary
Figure 5-8 contains a summary of the address modifier types discussed in the previous paragraphs.
MOTOROLA DSP96002 USER’S MANUAL 5 - 21

Modifier
MMMMMM M M Address Calculation Arithmetic
0 0 0 0 0 0 0 0 Reverse Carry (Bit Reversed Update)
0 0 0 0 0 0 0 1 Modulo 2
0 0 0 0 0 0 0 2 Modulo 3

. . .

. . .

. . .

0 0 F F F F F E Modulo 16,777,215 ((2**24)-1)
0 0 F F F F F F Modulo 16,777,216 (2**24)
0 1 x x x x x x reserved
0 2 x x x x x x reserved

. . .

. . .

. . .

F D x x x x x x reserved
F E x x x x x x reserved
F F 0 0 0 0 0 0 reserved
F F 0 0 0 0 0 1 Multiple Wrap-Around Modulo 2
F F 0 0 0 0 0 3 Multiple Wrap-Around Modulo 4
F F 0 0 0 0 0 7 Multiple Wrap-Around Modulo 8
F F 3 F F F F F Multiple Wrap-Around Modulo 2**22
F F 7 F F F F F Multiple Wrap-Around Modulo 2**23
F F F F F F F F Linear (Modulo 2**32)

where MMMMMMMM = Modifier Register Contents in Hex
5 - 22 DSP96002 USER’S MANUAL MOTOROLA

Figure 5-8. Address Modifier Summary
MOTOROLA DSP96002 USER’S MANUAL 5 - 23

SECTION 6
INSTRUCTION SET AND EXECUTION

 6.1 INTRODUCTION
This chapter introduces the DSP96002 instruction set and instruction format. The complete range of in-
struction capabilities combined with the flexible addressing modes described in Chapter 5 provide a very
powerful assembly language for digital signal processing and graphics algorithms. The instruction set has
been designed to allow efficient coding for high-level language compilers and yet be easily programmed in
assembly language.

As indicated by the programming model in Chapter 4, the DSP96002 architecture can be viewed as three
execution units operating in parallel (Data ALU, Address Generation Unit and Program Controller). The
goal of the instruction set is to keep each of these units busy during each instruction cycle. This achieves
maximum throughput and minimum use of program memory.

 6.2 INSTRUCTION GROUPS
The instruction set is divided into the following groups:

• Floating-Point Arithmetic (38)

• Fixed-Point Arithmetic (30)

• Logical (13)

• Bit Manipulation (4)

• Loop (4)

• Move (9)

• Program Control (35)

Each instruction group is described in the following sections. Detailed information on each of the 133 in-
structions is given in Appendix A.

 6.2.1 Floating-Point Arithmetic Instructions
All floating-point arithmetic instructions operate on the 96-bit Data ALU registers. The floating-point arith-
metic instructions are register-based (register direct addressing modes used for operands) and execute
within the Data ALU. This means that the X Data Bus, Y Data Bus and the Global Data Bus are free for
optional parallel move operations. This allows new data to be pre-fetched for use in following instructions
and results calculated by previous instructions to be stored. Floating-point instructions always execute in
a single instruction cycle in the Flush-to-Zero mode. Floating-point instructions execute in a single instruc-
MOTOROLA DSP96002 USER’S MANUAL 6 - 1

tion cycle in the IEEE mode if denormalized numbers are not detected, otherwise additional instruction cy-
cles will be required. See Figure 6-1 for a list of the thirty eight floating point arithmetic instructions.
FABS.S Absolute Value (Single Precision)

FABS.X Absolute Value (Single Extended Precision)

FADD.S Add (Single Precision)

FADD.X Add (Single Extended Precision)

FADDSUB.S Add and Subtract (Single Precision)

FADDSUB.X Add and Subtract (Single Extended Precision)

FCLR Clear a Floating-Point Operand

FCMP Compare

FCMPG Graphics Compare with Trivial Accept/Reject Flags

FCMPM Compare Magnitude

FCOPYS.S Copy Sign (Single Precision)

FCOPYS.X Copy Sign (Single Extended Precision)

FGETMAN Get Mantissa

FINT Convert to Floating-Point Integer

FLOAT.S Integer to SP Floating-Point Conversion

FLOAT.X Integer to SEP Floating-Point Conversion

FLOATU.S Unsigned Integer to SP Floating-Point Conversion

FLOATU.X Unsigned Integer to SEPFloating-Point Conversion

FLOOR Convert to Floating-Point Integer Round to -Infinity

FMPY FADD.S Multiply and Add (Single Precision)

FMPY FADD.X Multiply and Add (Single Extended Precision)

FMPY FADDSUB.S Multiply, Add and Subtract (Single Precision)

FMPY FADDSUB.X Multiply, Add and Subtract (Single Extended Precision)

FMPY FSUB.S Multiply and Subtract (Single Precision)

FMPY FSUB.X Multiply and Subtract (Single Extended Precision)

FMPY.S Multiply (Single Precision)

FMPY.X Multiply (Single Extended Precision)

FNEG.S Change Sign (Single Precision)

FNEG.X Change Sign (Single Extended Precision)

FSCALE.S Scale a Floating-Point Operand (Single Precision)

FSCALE.X Scale a Floating-Point Operand (Single Extended Precision)

FSEEDD Reciprocal Approximation

FSEEDR Square Root Reciprocal Approximation

FSUB.S Subtract (Single Precision)

FSUB.X Subtract (Single Extended Precision)

FTFR.S Transfer Floating-Point Register (Single Precision)

FTFR.X Transfer Floating-Point Register (Single Extended Precision)

FTST Test a Floating-Point Operand
Figure 6-1. Floating-Point Arithmetic Instructions
6 - 2 DSP96002 USER’S MANUAL MOTOROLA

 6.2.2 Fixed-Point Arithmetic Instructions
The fixed-point arithmetic instructions perform all operations within the Data ALU. Arithmetic instructions
are register-based (register direct addressing modes used for operands) so that the Data ALU operation
indicated by the instruction does not use the X Data Bus, the Y Data Bus, or the Global Data Bus. This
allows for parallel data movement over these buses during most Data ALU operations. This allows new
data to be pre-fetched for use in following instructions and results calculated by previous instructions to be
stored. Fixed-point arithmetic instructions execute in one instruction cycle. See Figure 6-2 for a list of the
thirty fixed-point arithmetic instructions.
ABS Absolute Value

ADD Add

ADDC Add with Carry

ASL Arithmetic Shift Left

ASR Arithmetic Shift Right

CLR Clear an Operand

CMP Compare

CMPG Graphics Compare with Trivial Accept/Reject Flags

DEC Decrement by one

EXT Sign Extend 16-Bit To 32-Bit

EXTB Sign Extend 8-Bit To 32-Bit

GETEXP Get Exponent

INC Increment by One

INT Floating-Point to Integer Conversion

INTRZ Floating-Point to Integer Conversion Round to Zero

INTU Floating-Point to Unsigned Integer Conversion

INTURZ Floating-Point to Un. Integer Conversion Round to Zero

JOIN Join Two 16-Bit Integers

JOINB Join Two 8-Bit Integers

MPYS Signed Multiply

MPYU Unsigned Multiply

NEG Negate

NEGC Negate with Carry

SETW Set an Operand

SPLIT Extract a 16-Bit Integer

SPLITB Extract an 8-Bit Integer

SUB Subtract

SUBC Subtract with Carry

TFR Transfer Data ALU Register

TST Test an Operand
Figure 6-2. Fixed-Point Arithmetic Instructions
MOTOROLA DSP96002 USER’S MANUAL 6 - 3

 6.2.3 Logical Instructions
The logical instructions perform all of the logical operations, except ANDI and ORI, within the Data ALU.
Logical instructions are register-based like the arithmetic instructions discussed previously. Optional data
transfers may be specified in parallel with most logical instructions – over the X and Y data buses or over
the Global Data Bus. This allows new data to be pre-fetched for use in following instructions and results
calculated in previous instructions to be stored. These instructions execute in one instruction cycle. See
Figure 6-3 for a list of the thirteen logical instructions.
AND Logical AND

ANDC Logical AND with Complement

ANDI AND Immediate to Control Register *

BFIND Find Leading One

EOR Logical Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

NOT Logical Complement

OR Logical Inclusive OR

ORC Logical Inclusive OR with Complement

ORI OR Immediate to Control Register *

ROL Rotate Left

ROR Rotate Right

* These instructions do not allow parallel data moves.
 6.2.4 Bit Manipulation Instructions
The bit manipulation instructions test the state of any single bit in a data memory location or register and
then optionally sets, clears, or inverts the bit. The Carry bit in the CCR register will contain the result of
the bit test. Parallel moves are not allowed with any of these instructions. See Figure 6-4 for a list of the
four bit manipulation instructions.
Figure 6-3. Logical Instructions
BCLR Bit Test and Clear

BSET Bit Test and Set

BCHG Bit Test and Change

BTST Bit Test
Figure 6-4. Bit Manipulation Instructions
6 - 4 DSP96002 USER’S MANUAL MOTOROLA

 6.2.5 Loop Instructions
The loop instructions control hardware looping by initiating a program loop and setting up looping parame-
ters, or by "cleaning" up the system stack when terminating a loop. Initialization includes saving registers
used by a program loop (LA and LC) on the system stack so that program loops can be nested. The ad-
dress of the first instruction in a program loop is also saved to allow no-overhead looping. See Figure 6-
5 for a list of the four loop instructions.
DO Start Hardware Loop

DOR Start PC Relative Hardware Loop

ENDDO Exit from Hardware Loop

REP Repeat Next Instruction
 6.2.6 Move Instructions
The move instructions perform data movement over the X and Y Data Buses, over the Global Data Bus
and over the Program Data Bus. Address Generation Unit instructions are also included among the follow-
ing move instructions. See Figure 6-6 for a list of the nine move instructions.
LEA Load Effective Address

LRA Load PC Relative Address

MOVE Move Data Register(s)

MOVETA Move Data Register(s) and Test Address

MOVEC Move Control Register

MOVEI Move Immediate

MOVEM Move Program Memory

MOVEP Move Peripheral Data

MOVES Move Absolute Short
 6.2.7 Program Control Instructions
The program control instructions include jumps, conditional jumps, branches, conditional branches and oth-
er instructions which affect the PC and system stack. Branch instructions allow PC relative displacements
needed for position independent code. See Figure 6-7 for a list of the thirty five program control instruc-
tions.
Figure 6-5. Loop Instructions
Figure 6-6. Move Instructions
MOTOROLA DSP96002 USER’S MANUAL 6 - 5

Bcc Branch Conditionally

BRA Branch Always

BRCLR Branch if Bit Clear

BRSET Branch if Bit Set

BScc Branch to Subroutine Conditionally

BSCLR Branch to Subroutine if Bit Clear

BSR Branch to Subroutine

BSSET Branch to Subroutine if Bit Set

DEBUG Enter Debug Mode

FBcc Branch Conditionally

FBScc Branch to Subroutine Conditionally (Floating-Point Condition)

FFcc Conditional Data ALU Operation without CCR Update

FFcc.U Conditional Data ALU Operation with CCR Update

FJcc Jump Conditionally

FJScc Jump to Subroutine Conditionally

FTRAPcc Conditional Software Interrupt

IFcc Conditional Data ALU Operation without CCR Update

IFcc.U Conditional Data ALU Operation with CCR Update

ILLEGAL Illegal Instruction Interrupt

Jcc Jump Conditionally

JCLR Jump if Bit Clear

JMP Jump

JScc Jump to Subroutine Conditionally

JSCLR Jump to Subroutine if Bit Clear

JSET Jump if Bit Set

JSR Jump to Subroutine

JSSET Jump to Subroutine if Bit Set

NOP No Operation

RESET Reset Peripheral Devices

RTI Return from Interrupt

RTR Return from Subroutine and Restore Status Register

RTS Return from Subroutine

STOP Stop Processing (low power stand-by)

TRAPcc Conditional Software Interrupt

WAIT Wait for Interrupt (low power stand-by)

Figure 6-7. Program Control Instructions
 6.3 INSTRUCTION FORMAT
Because of the multiple bus structure and the parallelism of the DSP96002, up to 3 data transfers may be
specified in the instruction word - one on the X Data Bus, one on the Y Data Bus and one within the Data
ALU. A fourth data transfer is generally implied and occurs in the Program Controller (instruction word
fetch, program looping control, etc.). Each data transfer will involve a source and a destination.
6 - 6 DSP96002 USER’S MANUAL MOTOROLA

In an instruction word, one or more "effective addresses" may be specified. An effective address defines
the way in which an operand location is derived. The effective address will include an addressing mode
and may also include a selected register. The addressing mode selects the address update to be used
(see Section 5.7). The register specified may be the location of an operand or it may be an address register
used to calculate the address of an operand. Certain instructions imply the use of specific registers and do
not specify effective addresses for these registers.

The DSP96002 instructions consist of one or two 32-bit words - an operation word and an optional effective
address extension word. The instruction and its length are specified by the first word of the instruction. The
general format of the operation word is shown in Figure 6-8.

Most instructions specify data movement on the X and Y data buses and Data ALU operations in the same
operation word. The DSP96002 is designed to perform each of these operations in parallel. The data bus
movement field provides the operand reference type, the direction of transfer and the effective address(es)
for data movement on the X and Y data buses. The operand reference type selects the type of memory or
register reference to be made. The data bus movement field may require additional information to fully
specify the operand for certain addressing modes. An effective address extension word following the oper-
ation word is used to provide immediate data, an absolute address or a displacement if required.

The opcode field of the operation word specifies the Data ALU operation or the Program Controller opera-
tion to be performed and any additional operands required by the instruction. Only those Data ALU and
Program Controller operations which can accompany data bus movement activity will be specified in the
opcode field of the instruction. Other Data ALU and Program Controller operations and all Address Gen-
eration Unit operations will be specified in an instruction word with a different format. These include oper-
ation words which contain short immediate data or short absolute addresses.

The assembly language source code for a typical one word instruction is shown below. The source code
is organized into up to six fields.

(Multiplier) (Adder/Subtracter)
OPCODE

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

DATA BUS MOVE FIELD
 Opcode Operands Opcode Operands X Bus Data Y Bus Data

 FMPY D0,D5,D2 FSUB.S D7,D3 X:(R0)+,D0.S Y:(R4)+,D5.S

The first Opcode field indicates the Data ALU, Address Generation Unit, Bit Manipulation Unit, or Program
Controller operation to be performed. The first Operands field specifies the operands to be used by the
opcode specified in the first Opcode field.

The second Opcode field indicates a floating-point adder/subtracter operation in the Data ALU whenever
parallel operation of the floating point adder/subtracter and multiplier is required. The second Operands
MOTOROLA
Figure 6-8. Instruction Word - General Format
DSP96002 USER’S MANUAL 6 - 7

field specifies the operands to be used by the adder/subtracter opcode. One of the Opcode fields must al-
ways be included in the source code.

The X Bus Data field specifies an optional data transfer over the X Bus and the addressing mode to be
used. The Y Bus Data field specifies an optional data transfer over the Y Bus and the addressing mode to
be used. The address space qualifiers X:, Y: and L: indicate which address space is being referenced.

The DSP96002 offers parallel processing of the Data ALU, Address Generation Unit and Program Control-
ler. For the instruction word above, the DSP96002 will perform the designated floating-point multiplier op-
eration (Data ALU), the designated floating-point adder/subtracter operation (Data ALU), the data transfers
specified with address register updates (Address Generation Unit), and will also decode the next instruction
and fetch an instruction from program memory (Program Controller) all in one instruction cycle. When an
instruction is more than one word in length, an additional instruction execution cycle is required.

Most instructions involving the Data ALU are register-based (all operands are in Data ALU registers) and
allow the programmer to keep each parallel processing unit busy. An instruction which is memory-oriented
(such as a bit manipulation instruction) or that causes a control flow change (such as a jump) prevents the
use of parallel processing resources during its execution.

 6.4 INSTRUCTION EXECUTION
Instruction execution is pipelined to allow most instructions to execute at a rate of one instruction every
instruction cycle. However, certain instructions will require additional time to execute. These include in-
structions which are longer than one word, instructions which use an addressing mode that requires more
than one cycle, instructions which make use of the global data bus more than once, and instructions which
cause a control flow change. In the latter case a cycle is needed to clear the pipeline.

 6.4.1 Instruction Processing
Pipelining allows the fetch-decode-execute operations of an instruction to occur during the fetch-decode-
execute operations of other instructions. While an instruction is executing, the next instruction to be exe-
cuted is decoded, and the instruction to follow the instruction being decoded is fetched from program mem-
ory. If an instruction is two words in length, the additional word will be fetched before the next instruction
is fetched. Figure 6-9 demonstrates pipelining; F1, D1 and E1 refer to the fetch, decode and execute op-
erations, respectively, of the first instruction. The third instruction contains an instruction extension word
and takes two cycles to execute.

Each instruction requires a minimum of 12 clock phases to be fetched, decoded, and executed. A new
instruction may be started after four phases. Two word instructions require a minimum of 16 phases to
execute and a new instruction may start after eight phases.
F1 F2 F3 F3e F4 F5 F6 . . .
D1 D2 D3 D3e D4 D5 . . .

E1 E2 E3 E3e E4 . . .
Instruction Cycle: 1 2 3 4 5 6 7 . . .
Figure 6-9. Instruction Pipelining
6 - 8 DSP96002 USER’S MANUAL MOTOROLA

 6.4.2 Memory Access Processing
One or more of the DSP96002 memory sources (X data memory, Y data memory and program memory)
may be accessed during the execution of an instruction. Each of these memory sources may be internal or
external to the DSP96002. Three address buses (XAB, YAB and PAB) and four data buses (XDB, YDB,
PDB and GDB) are available for internal memory core (as opposed to DMA) accesses during one instruc-
tion cycle.

The DSP96002 has two external expansion ports (Port A and Port B), that function as extensions of the
internal address and data buses for external memory accesses. If all memory sources are internal to the
DSP96002, one or more of the three memory sources may be accessed in one instruction cycle (i.e., pro-
gram memory access or program memory access plus an X, Y, XY or L memory reference; refer to Section
5.6 for a description of operand references). However, when one or more of the memories are external to
the DSP96002, and the external memories are located in the same expansion port, memory references
may require additional instruction cycles.

If, in one instruction cycle, more than one external access is required on the same port, the accesses will
be made with the following priority:

1. X memory.

2. Y memory.

3. Program memory.

4. DMA.
MOTOROLA DSP96002 USER’S MANUAL 6 - 9

6 - 10 DSP96002 USER’S MANUAL MOTOROLA

SECTION 7
EXPANSION PORTS AND I/O PERIPHERALS

 7.1 INTRODUCTION
The upper 128 locations of the X and Y Data memories are defined as the I/O space. The Y memory I/O
space is wholly external, while the X memory I/O space is internal. The X memory I/O space is used to ad-
dress the I/O Interface registers as well as the bus, port select and interrupt control registers. Both I/O spac-
es may be accessed by regular X and Y memory MOVE instructions. The MOVEP instructions offer I/O
short addressing and memory to memory move capability for easy data transfers with the I/O mapped reg-
isters.

The on-chip I/O peripherals are intended to minimize system chip count and "glue" logic in many applica-
tions. Each I/O interface has its own control, status and data registers memory-mapped into the X memory
I/O space. Each interface has several dedicated interrupt vector addresses and control bits to enable/dis-
able interrupts. This minimizes the overhead associated with servicing the device since each interrupt
source has its own service routine.

Three on-chip peripherals are provided in the DSP96002:

• a 32-bit parallel Host MPU/DMA Interface connected to Port A.

• a 32-bit parallel Host MPU/DMA Interface connected to Port B.

• a two-channel DMA Controller.

 7.2 EXPANSION PORTS CONTROL
The DSP96002 has two external expansion ports (Port A and Port B). Each port has a bus control register
where memory wait states may be specified, parameter and control bits for a page circuit dedicated to

DRAM/VRAM memory support are located, and control bits for direct software control of
—

B
–
R and

—
B

–

L pins are found.

 7.2.1 Bus Control Registers (BCRA and BCRB)
There are 2 identical BCR registers, one for each port. The Bus Control Registers (BCRx) may be pro-
grammed to insert wait states in a bus cycle during external memory accesses. They are also used to pro-

gram the Page Fault circuitry and for direct software control of the
—

B
–
R and

—
B

–
L pins.
MOTOROLA DSP96002 USER’S MANUAL 7 - 1

 7.2.1.1 BCRx Wait Control Fields (Bits 0-15)
The BCRx Wait Control fields specify the number of wait states to be inserted in the bus cycle for an external
X memory, Y memory, program memory or I/O access. Four bits are available in the control register for each
type of external memory access. Each 4 bit field can specify up to 15 wait states. The Wait Control fields
are set to ’$F’ (15 wait states) during hardware reset. See Section 2 for a description of the interaction be-

tween the wait states determined by the BCR and wait states generated due to the
—

T
–
A pin. Neither soft-

ware reset, nor page circuit personal reset, affect BCRx.

 7.2.1.2 BCRx Page Size (P3–P0) Bits 16-19
These bits define the page size for page fault operation. P3-P0 are set to ’1010’ by hardware reset. See
Section 7.2.2 on Page Circuit Operation.

31 16

15 12 11 8 7 4 3 0

RH LH BS XE YE PE SF1 SF0 MF NS ** ** P3 P2 P1 P0
Port A
Bus Control
Register (BCRA)
X:$FFFFFFFE

External X Memory
Wait Control

External Y Memory
Wait Control

External Prog Memory
Wait Control

External I/O Memory
Wait Control

15 12 11 8 7 4 3 0

31 16

RH LH BS XE YE PE SF1 SF0 MF NS ** ** P3 P2 P1 P0
Port B
Bus Control
Register (BCRB)
X:$FFFFFFFD

External X Memory
Wait Control

External Y Memory
Wait Control

External Prog Memory
Wait Control

External I/O Memory
Wait Control

** – reserved, read as zero, should be written with zero for future compatibility.

Figure 7-1. DSP96002 Bus Control Registers (BCRA and BCRB)

 P3-P0 Page Size

 0000 1
 0001 2
 0010 4
 0011 8
 0100 16
 0101 32
 0110 64
 0111 128
 1000 256
 1001 512
 1010 1,024 (Reset value)
 1011 2,048
 1000 4,096
 1101 8,192
 1110 16,384
 1111 32,768
7 - 2 DSP96002 USER’S MANUAL MOTOROLA

 7.2.1.3 BCRx Reserved bits (Bits 20, 21)
These reserved bits read as zero and should be written with zero for future compatibility.

 7.2.1.4 BCRx Non-Sequential Fault Enable (NS) Bit 22
Non-sequential fault detection is enabled if the NS control bit is set. Non-sequential faults are ignored by
the page circuit if the NS control bit is cleared. See Section 7.2.2 on Page Circuit Operation. Cleared by
hardware reset.

 7.2.1.5 BCRx Bus Mastership Fault Enable (MF) Bit 23
Bus mastership fault detection is enabled if the MF control bit is set. Bus mastership faults are ignored by
the page circuit if the MF control bit is cleared. See Section 7.2.2 on Page Circuit Operation. Cleared by
hardware reset.

 7.2.1.6 BCRx Memory Space Fault Enable (SF1-SF0) Bits 24-25
Memory space faults based on changes in S1 and/or S0 are enabled by SF1 and SF0, respectively. If
SF1(SF0) is set, changes in S1(S0) will cause a memory space fault. If SF1(SF0) is cleared, changes in
S1(S0) are ignored by the page circuit. See Section 7.2.2 on Page Circuit Operation. SF1 and SF0 are
cleared by hardware reset.

 7.2.1.7 BCRx Program Memory Fault Enable (PE) Bit 26
If the Program Memory Fault Enable bit PE is set, the page fault circuit will monitor program memory bus

cycles. If PE is set and a fault is detected during a program memory bus cycle,
—

T
–
T will be deasserted. If

PE is set and no fault is detected during a program memory bus cycle,
—

T
–
T will be asserted. If PE is

cleared, the page fault circuit will be inactive for program memory bus cycles and
—

T
–
T will remain deas-

serted. PE is cleared by hardware reset.

 7.2.1.8 BCRx Y Data Memory Fault Enable (YE) Bit 27
If the Y Data Memory Fault Enable bit YE is set, the page fault circuit will monitor Y Data memory bus cycles.

If YE is set and a fault is detected during a Y Data memory bus cycle,
—

T
–
T will be deasserted. If YE is set

and no fault is detected during a Y Data memory bus cycle,
—

T
–
T will be asserted. If YE is cleared, the

page fault circuit will be inactive for Y Data memory bus cycles and
—

T
–
T will remain deasserted. YE is

cleared by hardware reset.

 PE —T–T Pin Activity for P Space

 0 Deasserted
 1 Active

 YE —T–T Pin Activity for Y Space

 0 Deasserted
 1 Active
MOTOROLA DSP96002 USER’S MANUAL 7 - 3

 7.2.1.9 BCRx X Data Memory Fault Enable (XE) Bit 28
If the X Data Memory Fault Enable bit XE is set, the page fault circuit will monitor X Data memory bus cycles.

If XE is set and a fault is detected during a X Data memory bus cycle,
—

T
–
T will be deasserted. If XE is set

and no fault is detected during a X Data memory bus cycle,
—

T
–
T will be asserted. If XE is cleared, the

page fault circuit will be inactive for X Data memory bus cycles and
—

T
–
T will remain deasserted. XE is

cleared by hardware reset.

 7.2.1.10 BCRx Bus State (BS) Bit 29
The read-only Bus State status bit BS is set if the DSP96002 is currently the bus master. If the DSP96002
is not the bus master, BS is cleared. Cleared by hardware reset.

 7.2.1.11 BCRx Bus Lock Hold Control (LH) Bit 30

If the Bus Lock Hold control bit LH is set, the
—

B
–
L pin is asserted even if no read-modify-write access is

occurring. If LH is cleared, the
—

B
–
L pin will only be asserted during a read-modify-write external access.

Cleared by hardware reset.

 7.2.1.12 BCRx Bus Request Hold Control (RH) Bit 31

If the Bus Request Hold control bit RH is set, the
—

B
–
R pin is asserted even though the CPU or DMA does

not need the bus. If RH is cleared, the
—

B
–
R pin will only be asserted if an external access is being attempt-

ed or pending. Cleared by hardware reset.

 7.2.2 Page Circuit Operation
The goal of the page circuit is to allow designers to achieve static RAM performance with low cost, dynamic
RAM memory systems. With its internal page detection circuitry, the DSP96002 can achieve zero wait state
performance using the fast access modes available on DRAM/VRAM devices. Without internal page detec-
tion circuitry, zero wait state performance would not be possible. Example memories are:

When a bus master, the page circuit is active when the CPU or DMA accesses the external bus using the

P, X or Y memory spaces (S1:S0=10, 01 or 00). The page circuit uses the transfer type (
—

T
–
T) output pin

to indicate the type of external bus access. The page circuit asserts the transfer type (
—

T
–
T) pin when an

 XE —T–T Pin Activity for X Space
 0 Deasserted
 1 Active

Device Size Mode
MCM514256A 256K x 4 Page
MCM51L1000A 1Meg x 1 Page
MCM514258A 256K x 4 Static Column
MCM511002A 1Meg x 1 Static Column
7 - 4 DSP96002 USER’S MANUAL MOTOROLA

external memory may use a fast access mode (page, static column, nibble or serial shift) during the current
bus cycle. The page circuit must be programmed with the characteristics of the external memory which allow

fast access modes. When the external memory cannot use a fast access mode in the current bus cycle,
—

T
–
T remains deasserted.

The page circuit selectively compares the address, memory space selection and bus mastership of a pre-
viously latched bus cycle C’ to the same attributes of the current bus cycle C based on the memory param-
eters programmed by the user in the Bus Control Register. Note that the previously latched bus cycle C’
may not be immediately prior to the current bus cycle, depending on the memory space mapping. The at-
tributes of the current and previous bus cycle are defined in Figure 7-2, and the page circuit programming
parameters are defined in Figure 7-3. These parameters (or functional equivalents) are user programmable
in the Bus Control Register. Hardware, software, or page circuit personal reset (generated when PE, XE,
and YE are clear) will reset the page circuit.

Once the memory parameters are programmed in the page circuit, the
—

T
–
T pin will provide information

about the current external bus cycle based on information latched in the page circuit about a previous ex-
ternal bus cycle. The page circuit is capable of detecting the following faults:

Page Fault -
—

T
–
T is deasserted if the current address A is not in the same memory page as the latched

address A’. The page size for the random access port of a DRAM or VRAM is typically the number
of rows. The page size parameter P is equal to the number of row address lines latched into the mem-
ory when the row address strobe is asserted. Typical page sizes for page or static column mode
RAMs are 256, 1024, etc. The page size for nibble mode RAMs is 4.

C C’ Bus Access Attributes

A A’ Address A0-A31
S S’ Space Select S0-S1

M M’ Bus Mastership
—
B
–
A

Figure 7-2. Bus Access Attributes

 Name Memory Parameter Random Port(D/VRAM) Serial Port (VRAM)

 P3-P0 Log2(page size) number of rows serial reg. size
 (4 if nibble mode)
 NS Non-Sequential Fault yes if nibble mode yes
 MF Bus Mastership Fault depends on system depends on system
 SF1 Memory Space Fault 1 depends on system depends on system
 SF0 Memory Space Fault 0 depends on system depends on system
 PE P Space Enable depends on system depends on system
 XE X Space Enable depends on system depends on system
 YE Y Space Enable depends on system depends on system

Figure 7-3. Page Circuit Programming Parameters
MOTOROLA DSP96002 USER’S MANUAL 7 - 5

Non-Sequential Fault -
—

T
–
T is deasserted if the current address A is not the increment (+1) of the

latched address A’. The non-sequential fault is enabled if the NS control bit is set, otherwise disabled.
Nibble mode accesses on the random port or serial accesses on the serial port can cause non-se-
quential faults. Page and static column mode RAMs cannot have non-sequential faults and NS
should be cleared. The page circuit checks for non-sequential faults for addresses that are inside the
defined page.

Bus Mastership Fault -
—

T
–
T is deasserted if the current bus cycle is the first external bus cycle since

becoming the bus master. The first external bus cycle by any bus master typically is not a fast access
mode since other bus masters may have accessed the same external memory. This also ensures

that the first external bus cycle after hardware reset deasserts
—

T
–
T. The bus mastership fault is

enabled if the MF control bit is set, otherwise disabled. It is possible that certain multiple processor
systems may want to disable this feature if the external memory is allocated to a particular processor.

Memory Space (Physical Memory) Faults-
—

T
–
T is deasserted if the current bus cycle accesses a dif-

ferent memory space than the previously latched bus cycle. This is useful if the space select pins S1
or S0 are used as address lines to the external memory. In this case, the user is mapping the same
address in different memory spaces to DIFFERENT physical memory locations. If the space select
pins S1 and S0 are not being used as address lines to the external memory, the user is mapping the
same address in different memory spaces to the SAME physical memory location so changes in
memory space should be ignored. This is an example of the "single memory space" mentality prev-
alent in systems executing high level languages like C.

Memory space faults based on changes in S1 and/or S0 are enabled by the SF1 and SF0 control
bits, respectively. If SF1(SF0) is set, changes in S1(S0) will cause a memory space fault and deas-

sert
—

T
–
T. If SF1(SF0) is cleared, changes in S1(S0) are ignored. The user memory mapping and

memory space change detection for each SF1 and SF0 combination are given in Figure 7-4a.

Note that both the current bus cycle C and the previously latched bus cycle C’ represent accesses
to one of the three memory spaces. The S1:S0=11 combination will never appear as a current or
latched memory space value, since it means that no access is being done (S1:S0 = 00 ⇒ Y, S1:S0
= 01 ⇒ X, S1:S0 = 10 ⇒ P).

There is one combination (PX) missing from this encoding - where P and X share the same address-
es. Since this combination cannot directly use S1 or S0 as address lines, its use will not be as popular
and its implementation would require control on a "per-space" basis instead of the "per-pin" basis as
shown above.

This discussion assumes that if S1 and/or S0 are used as address lines, they are introduced as high
order address lines above the page size boundary. If S1 and/or S0 are introduced as low order ad-
dresses below the page size boundary, proper page fault operation can be achieved by adjusting the
page size but the non-sequential fault detection cannot be used. Therefore, it is recommended that
S1 and S0 only be used as high order address lines above the page size boundary. An example sys-
tem with SF1:SF0 = 10 to detect shifts between program and data spaces is shown in Figure 7-4b.

 7.2.2.1 Memory Space Enables and Page Fault Circuit Personal Reset
The page fault circuit is enabled if the current bus cycle is in a user selected memory space. Separate mem-
ory space enable control bits (PE, XE and YE) are provided so the user can select the memory space(s)
which the page fault circuit monitors. If a memory space enable bit (PE, XE and/or YE) is set, the page fault
circuit is active if the current bus cycle is in that memory space. If a memory space enable bit is cleared, the

page circuit is inactive for that bus cycle and
—

T
–
T remains deasserted. If all three memory space enables

are set, the page circuit is active for all external bus cycles.
7 - 6 DSP96002 USER’S MANUAL MOTOROLA

 Memory Spaces Mapped To Memory Space Changes
SF1 SF0 Same Physical Address Detected as Faults

0 0 PXY share same addresses none
0 1 PY share same addresses P

→

X,X

→

P,X

→

Y,Y

→

X
1 0 XY share same addresses P

→

X,X

→

P,P

→

Y,Y

→

P
1 1 none, all addresses unique P

→

X,X

→

P,X

→

Y,Y

→

X,P

→

Y,Y

→

P

Figure 7-4a. Memory Space Change Detection

—

PROGRAM

DATA

D

D

A

A

CE

Figure 7-4b. Using SF1 to Physically separate Data and Program Spaces

Data

Address

SF1
If the current bus cycle is in an enabled memory space, the
—

T
–
T pin is controlled by comparison of the

current bus cycle and the previously latched bus cycle and the current bus cycle information (A, S) is latched
at the end of the bus cycle. Thus the current bus cycle information becomes the previously latched bus cycle
information for comparison in the next enabled external bus cycle. The encoding of the memory space en-
ables is shown in Figure 7-5.

The page circuit normally monitors addresses intended for one external physical memory. However, if mul-
tiple memory spaces are mapped into one physical memory at either the same or different addresses, then
the page circuit must monitor multiple memory spaces. These memory space enable bits allow the user to
indicate which memory spaces should be monitored. Also if multiple memory spaces are mapped into dif-
ferent physical memories which are not accessed in an "interleaved" manner, one page circuit can serve
multiple external physical memories by being enabled for more than one memory space. Non-interleaved
accesses with multiple external physical memories are typical of systems where the main external bus ac-
tivity is block-oriented DMA transfers.

If all three memory space enable bits are cleared, the page circuit is in the Personal Reset state. While in

the Personal Reset state, the page circuit is inactive,
—

T
–
T remains deasserted for all external bus cycles,

and no bus cycle information is latched. The first bus cycle after re-enabling the page circuit always has
—

T
–
T deasserted since no previous bus cycle information is available for comparison.
MOTOROLA DSP96002 USER’S MANUAL 7 - 7

—
T
–
T Pin Activity for Current Bus Cycle Latched for

 PE XE YE P Space X Space Y Space P Space X Space Y Space

 0 0 0 Deasserted Deasserted Deasserted No No No

 0 0 1 Deasserted Deasserted Active No No Yes

 0 1 0 Deasserted Active Deasserted No Yes No

 0 1 1 Deasserted Active Active No Yes Yes

 1 0 0 Active Deasserted Deasserted Yes No No

 1 0 1 Active Deasserted Active Yes No Yes

 1 1 0 Active Active Deasserted Yes Yes No

 1 1 1 Active Active Active Yes Yes Yes

Figure 7-5. Memory Space Enables Encoding
 7.2.2.2 Refresh Faults
There is no internal support for refresh timers, refresh address counters or refresh faults which should deas-

sert
—

T
–
T. The page circuit assumes that refresh does not exist and therefore

—
T

–
T must be interpreted

by the external memory controller based on its knowledge of refresh timing and external bus activity. The
use of multiple processors with the same external DRAM/VRAM indicates that the memory controller is the
best place to enforce refresh priorities. With the variety of refresh techniques based on the expected mem-
ory activity, the external memory controller state machine is the best place to have global control over re-
fresh timing and arbitration caused by multiple access conflicts. At the end of each external bus cycle, the
external memory controller should determine if it should begin a refresh cycle. If yes, it will disable the trans-

fer acknowledge
—

T
–
A signal to ensure that the DSP96002 waits if it begins an external access. Once the

refresh is completed, the external memory controller must remember to ignore the
—

T
–
T signal for the next

memory cycle so that a fast access mode is not used. The external state machine should cancel (ignores)

the effect of the
—

T
–
T signal in the next external bus cycle after any hardware refresh operation. Note that

if fast interrupts are used to implement a software refresh, refresh looks like a memory read cycle so no

special treatment of
—

T
–
T is needed.

 7.2.2.3
—

R
—

A
–
S,

—
C

—
A

–
S and SC Timeout Faults

Since DRAM/VRAM devices are dynamic, there are maximum limits on the
—

R
—

A
–
S and

—
C

—
A

–
S low

time which must be observed. To effectively use the fast access modes with the DSP96002, the external

state machine must keep
—

R
—

A
–
S asserted between bus cycles for page, nibble and static column

modes.
—

C
—

A
–
S must remain asserted between bus cycles for static column mode only. However, if no

external access occurs after the external state machine is ready for a fast access mode, there is a possibility

that
—

R
—

A
–
S or

—
C

—
A

–
S may "timeout". This is because the idle memory state must be "

—
R

—
A

–
S ac-

tive" to use the fast access modes with the DSP96002 non-burst, random address bus cycles. The

DSP96002 does not provide any internal support for
—

R
—

A
–
S or

—
C

—
A

–
S timeouts. The external state
7 - 8 DSP96002 USER’S MANUAL MOTOROLA

machine is responsible for ensuring that
—

R
—

A
–
S or

—
C

—
A

–
S timeouts do not occur. Since typical

—
R

—

A
–
S and

—
C

—
A

–
S timeouts are 10-100 µsec, one of the simplest solutions is to perform a hardware refresh

which deasserts both
—

R
—

A
–
S and

—
C

—
A

–
S. If refresh is performed often enough,

—
R

—
A

–
S and

—

C
—

A
–
S timeout will never happen.

The serial port of VRAM devices is clocked by a serial clock SC. Since the serial shift register is dynamic,
there is a minimum frequency at which the shift register must be clocked to refresh its contents. This fre-
quency is typically about 20 kHz (50 µsec refresh period). The DSP96002 does not provide any internal sup-
port for SC timeouts. The external state machine is responsible for ensuring that SC timeouts do not occur.

If an SC timeout does occur, the external state machine cancels (ignores) the effect of the
—

T
–
T signal in

the next external bus cycle to force a reload of the serial shift register. Fortunately, future 1Mbit VRAMs are
being specified with static shift registers so the SC timeout problem should go away.

 7.2.2.4 DMA Accesses
External DMA accesses to P, X or Y memory spaces are normal bus cycles and cannot be distinguished

from CPU read/write cycles. Therefore DMA accesses can use the
—

T
–
T pin and do not need any special

treatment by external hardware.

 7.2.2.5 Multiple Memory Banks
Multiple memory banks exist when there are more external memories than needed just to cover the 32-bit
data bus size. In this case, the external memory controller typically selects between banks by enabling one

of several row address strobe (
—

R
—

A
–
S) signals or column address strobe (

—
C

—
A

–
S) signals based on

several address lines. Since changes from one memory bank to another will cause a page fault, multiple
memory banks are allowed and no special treatment is required.

 7.2.2.6 Multiple Memory Controllers
Multiple memory controllers may exist to support fast access modes with multiple external physical memo-
ries. Since the page circuit can monitor multiple memory spaces and detect or ignore changes in memory
spaces, multiple memory controllers are allowed and no special treatment is required.

 7.3 EXPANSION PORTS SELECTION
Every memory space (X, Y and P) is divided into 8 equal portions. The division is fixed, that is, the sizes of
the portions are fixed at 0.5 gigawords per portion and the address boundaries are fixed. Each portion of
each memory space may be individually assigned to one of the external expansion ports (Port A or B). The
mapping is controlled by the Port Select Register (PSR).

 7.3.1 Port Select Register (PSR)
The Port Select Register is a 32-bit wide read/write register situated in the X I/O memory space. For each
portion of each memory space there is a bit in the Port Select Register (PSR): if the bit is cleared, the re-
spective portion goes thorough Port A, and if the bit is set, then it goes thorough Port B. Any memory seg-
MOTOROLA DSP96002 USER’S MANUAL 7 - 9

 31 24 23 16 15 8 7 0 PSR
 X X X X X X X X Y Y Y Y Y Y Y Y P P P P P P P P Port Select
 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Register
 X:$FFFFFFFC
 * - reserved, read as zeros, should be written with
 zeros for future compatibility.

 X Y P
 $FFFFFF7F $FFFFFFFF $FFFFFFFF
 X7 Y7 P7
 $E0000000 $E0000000 $E0000000
 X6 Y6 P6
 $C0000000 $C0000000 $C0000000
 X5 Y5 P5
 $A0000000 $A0000000 $A0000000
 X4 Y4 P4
 $80000000 $80000000 $80000000
 X3 Y3 P3
 $60000000 $60000000 $60000000
 X2 Y2 P2
 $40000000 $40000000 $40000000
 X1 Y1 P1
 $20000000 $20000000 $20000000
 X0 Y0 P0
 $00000800 $00000800 $00000400
 or or or
 $00000200 $00000200 $00000000

 Note: X and Y Data Memories lowest external address determined by DE bit in the OMR register. P
Memory lowest external address determined by MA, MB and MC bits in the OMR register.

Figure 7-6. DSP96002 Port Select Register (PSR)
ment that is defined as internal remains internal. The Port Select Register format is shown in Figure 7-6 and
is described below.
 7.3.1.1 PSR Program Memory Port Select (P0-P7) Bits 0-7
The Program Memory Port Select control bits (P0-P7) determine the assignment of the 8 Program Memory
segments to Port A or B. If the segment bit is cleared, the Program Memory segment is assigned to Port A.
If the segment bit is set, the memory segment is assigned to Port B. The memory segment to control bit
correlation is shown in Figure 7-6. For example, if the P4 bit is set, then all memory traffic for addresses
P:$80000000 to P:$9FFFFFFF will go thorough Port B. During hardware reset, the P0-P7 bits are cleared

if the MODA pin was hold low when negating
—

R
—

E
—

S
—

E
–
T. P0-P7 are set if the MODA pin was hold

high when negating
—

R
—

E
—

S
—

E
–
T.

 7.3.1.2 PSR Y Data Memory Port Select (Y0-Y7) Bits 8-15
The Y Data Memory Port Select control bits (Y0-Y7) determine the assignment of the 8 Y Data Memory seg-
ments to Port A or B. If the segment bit is cleared, the Y Data Memory segment is assigned to Port A. If the
segment bit is set, the memory segment is assigned to Port B. The memory segment to control bit correla-
tion is shown in Figure 7-6. For example, if the Y4 bit is set, then all memory traffic for addresses
Y:$80000000 to Y:$9FFFFFFF will go thorough Port B. During hardware reset, the Y0-Y7 bits are cleared.
7 - 10 DSP96002 USER’S MANUAL MOTOROLA

 7.3.1.3 PSR X Data Memory Port Select (X0-X7) Bits 16-23
The X Data Memory Port Select control bits (X0-X7) determine the assignment of the 8 X Data Memory seg-
ments to Port A or B. If the segment bit is cleared, the X Data Memory segment is assigned to Port A. If the
segment bit is set, the memory segment is assigned to Port B. The memory segment to control bit correla-
tion is shown in Figure 7-6. For example, if the X4 bit is set, then all memory traffic for addresses
X:$80000000 to X:$9FFFFFFF will go thorough Port B. During hardware reset, the X0-X7 bits are cleared.

 7.3.1.4 PSR Reserved Bits (Bits 24-31)
These reserved bits read as zero and should be written with zero for future compatibility.

 7.4 HOST INTERFACES

 7.4.1 Introduction
The DSP96002 provides a Host MPU/DMA Interface for each of its ports. The Host MPU/DMA Interface
provides a 32-bit parallel port to a host processor or DMA controller.

These Host Interfaces (HI) are intended to minimize system chip count and "glue" logic in many computer
graphics and other multiprocessing applications. Each HI has its own control, status and data registers and
is treated as memory-mapped I/O by the DSP96002. Each interface has several dedicated interrupt vector
addresses and control bits to enable/disable interrupts. This minimizes the overhead associated with ser-
vicing the interface since each interrupt source has its own service routine.

The HI supports operation in a multiprocessor environment with a set of "host functions". The external de-
vice invoking these features is called the "host processor" and may be another DSP96002 processor or a
32-bit microprocessor such as the 68020, 68030, 68040 or 88000. Host processors with 32, 24 or 16-bit
data buses may access all status and control bits of the HI. Host processors with an 8-bit data bus should
add additional hardware to be able to access all status and control bits.

The HI functions allow:

• a host processor to transfer data having an arbitrary address to/from the DSP96002 without
using external shared memory.

• a host processor to interrupt the DSP96002 using multiple interrupt vectors without using ex-
ternal shared memory.

• a host processor (with DMA capability) to transfer data blocks to/from the DSP96002 without
using external shared memory.

• an external DMA controller to transfer data blocks to/from the DSP96002 without using exter-
nal shared memory.

• unbuffered systems with minimum external logic as well as large buffered systems.

The HI connects to the external world thorough the external expansion port and a set of dedicated pins (de-
scribed in Section 2):

• 32-bit bidirectional data bus D0-D31.

• 5 control lines: R/—W, —H–S, —H–A, —T–S, —H–R.

• address lines A2-A5.
MOTOROLA DSP96002 USER’S MANUAL 7 - 11

The HI appears as a memory mapped peripheral occupying 16 locations in the host processor address
space. Separate transmit and receive data registers are double-buffered to allow the DSP96002 and host
processor to efficiently transfer data at high speed. Host processor communication with the HI registers is
accomplished using standard host processor instructions and addressing modes.

Handshake flags are provided for polled or interrupt-driven data transfers with a host processor.

External DMA controllers (e.g. MC68450) are able to perform block data transfers between the DSP96002
HI and the external host processor memory. For this purpose, a "DMA mode" is provided in the HI. In this

mode, the
—

H
–
A pin is used to enable access to the transmit/receive registers in the HI, without regard to

the status of the address lines A2-A5.

The host processor can also issue vectored exception requests to the DSP96002 with the host command
feature. The host processor may select any of the 256 DSP96002 exception routines to be executed by writ-
ing a vector address register. This flexibility allows the host processor programmer to execute a wide num-
ber of preprogrammed functions inside the DSP96002. Host exceptions can allow the host processor to
read or write DSP96002 registers, X, Y, or Program memory locations and perform control and debugging
operations if exception routines are implemented in the DSP96002 to do these tasks.

The DSP96002 views the HI as a memory mapped peripheral occupying four 32-bit words in X data memory
space. The DSP96002 may use the HI as a normal memory-mapped peripheral using standard polled or
interrupt programming techniques.

 7.4.2 HI Reset
The HI is affected by the following types of reset:

HW/SW Reset Hardware (HW) reset, generated by asserting the
—

R
—

E
—

S
—

E
–
T pin, or Software

(SW) reset, generated by executing the RESET instruction. Status and control bits in
the HI are affected as defined in Figure 7-7 and Figure 7-8.

HOST Reset HI personal reset, generated when the HRES bit in the HCR register is set. Only HI sta-
tus bits are affected as defined in Figure 7-7 and 7-8. Only the DSP96002 may directly
activate the HOST Reset since HRES is located in the DSP96002 side. Note that the
HI remains in this state as long as the HRES bit is set. The HRES bit is not self-clearing.

INIT HI personal reset, generated when the INIT bit in the ICS register is set. Only HI status
bits are affected as defined in Figure 7-7 and Figure 7-8. Note that INIT may selectively
reset the transmit and/or the receive channel(s) according to the state of the TREQ and
RREQ control bits in the ICS register. Also, the INIT bit is self-clearing, in contrast to
the HRES bit which requires an explicit clear operation.

 7.4.3 HI Operation During Stop
The host processor is able to read/write the HI registers when the DSP96002 is in the Stop state (see Sec-
tion 8). If the clock is stopped in the middle of a host processor access, the flag setup and data transfer
across the HI will be frozen. The transfer and flag setup will finish after the clock is restarted.
7 - 12 DSP96002 USER’S MANUAL MOTOROLA

If
—

H
–
R is used and the host processor reads RX or writes TX when the DSP96002 is in the Stop state,

then
—

H
–
R will only be deasserted after exiting the Stop state. .

Register Register HW/SW HOST INIT INIT INIT Comments
Name Contents Reset Reset TREQ=1 TREQ=0 TREQ=1

RREQ=0 RREQ=1 RREQ=1
ICS HMRC 0 0 0 - 0

HRST 1 1 - - -
DMAE 0 - - - -
HF3-HF2 0 - - - -
HF1-HF0 0 - - - -
HREQ 0 Note 1 1 Note 2 1
INIT 0 - 0 0 0
TYEQ 0 - - - -
TREQ 0 - 1 0 1
RREQ 0 - 0 1 1
TRDY 1 1 1 - 1
TXDE 1 1 1 - 1
RXDF 0 0 - 0 0

CVR HC 0 - - - -
HV7-HV0 $0E - - - - port A

$0F - - - - port B
IVR IV7-IV0 $0F - - - -
SEM SEM(15-0) $0000 - - - -
Notes:

1. HREQ = TYEQ + TREQ
2. HREQ = (TYEQ & TRDY) + (TREQ & TXDE)

Symbols:

HW - Hardware Reset caused by asserting the external pin
—

R
—

E
—

S
—

E
–
T.

SW - Software Reset caused by executing the RESET instruction.
HOST - Host Personal Reset caused when HRES=1.
INIT - Host Personal Reset caused when INIT=1.
"1" - The bit is set.
"0" - The bit is cleared.
"-" - The bit is not affected.
"+" - Logical OR operation.

 "&" - Logical AND operation.

Figure 7-7. Host Interface Reset - Host Processor Side
MOTOROLA DSP96002 USER’S MANUAL 7 - 13

 7.4.4 HI Programming Model
The HI block diagram is shown in Figure 7-9. The HI has two programming models - one for the DSP96002
programmer and one for the external host processor programmer. In most cases, the notation used reflects
the DSP96002 perspective. The HI - DSP96002 Programming Model is shown in Figure 7-10. The HI - Ex-
ternal Host Processor Programming Model is shown in Figure 7-11. The HI Interrupt Structure is shown in
Figure 7-13. The DSP96002 has two HIs. The registers of the two HIs are identical except for the addresses.
Their names have an A or B suffix identifying the port they are connected to.

 7.4.5 Host Transmit Data Register (HTX) - DSP96002 Side
The Host Transmit register (HTX) is used for DSP96002 to host processor data transfers. The HTX register
is viewed as a 32-bit write-only register by the DSP96002. Writing the HTX register clears HTDE. The
DSP96002 may program the HTIE bit to cause a Host Transmit Data interrupt when HTDE is set. The HTX
register is transferred as 32-bit data to the Receive Register RX if both the HTDE bit and the Receive Data
Full RXDF status bit are cleared. This transfer operation sets RXDF and HTDE.

Register Register HW/SW HOST INIT INIT INIT Comments
Name Contents Reset Reset TREQ=1 TREQ=0 TREQ=1

RREQ=0 RREQ=1 RREQ=1
HCR HYWE 0 - - - -

HYRE 0 - - - -
HXWE 0 - - - -
HXRE 0 - - - -
HPWE 0 - - - -
HPRE 0 - - - -
HRES 1 1 - - -
HF3-HF2 0 - - - -
HCIE 0 - - - -
HTIE 0 - - - -
HRIE 0 - - - -

HSR HYWP 0 0 0 - 0
HYRP 0 0 0 - 0
HXWP 0 0 0 - 0
HXRP 0 0 0 - 0
HPWP 0 0 0 - 0
HPRP 0 0 0 - 0
HDMA 0 - - - -
HF1-HF0 0 - - - -
HCP 0 - - - -
HTDE 1 1 - 1 1
HRDF 0 0 0 - 0

Figure 7-8. Host Interface Reset - DSP96002 Side
7 - 14 DSP96002 USER’S MANUAL MOTOROLA

MOTOROLA DSP96002 USER’S MANUAL 7 - 15

Figure 7-9. HI Block Diagram (One Port)

 7.4.6 Host Transmit Data Register and HMRC Clear (HTXC) - DSP96002 Side
The Host Transmit register and HMRC Clear (HTXC) is used for DSP96002 to host processor data trans-
fers in conjunction with "TX register write (address) and X/Y/P Memory Read (data) Interrupt" host func-
tions. The HTXC register is viewed as a 32-bit write-only register by the DSP96002. Writing the HTXC
register clears HTDE, HPRP, HXRP and HYRP. The HTXC register is transferred as 32-bit data to the
Receive Register RX if both the HTDE bit and the Receive Data Full RXDF status bit are cleared. This
transfer operation sets RXDF and HTDE, and clears HMRC (See Section 7.4.21.10).

 7 6 5 4 3 2 1 0
 ** ** HRES HF3 HF2 HCIE HTIE HRIE READ/WRITE
 HOST CONTROL
 31 14 13 12 11 10 9 8 REGISTER
 ** ** ** HYWE HYRE HXWE HXRE HPWE HPRE HCR

 7 6 5 4 3 2 1 0
 HDMA ** ** HF1 HF0 HCP HTDE HRDF READ-ONLY
 HOST STATUS
 31 14 13 12 11 10 9 8 REGISTER
 ** ** ** HYWP HYRP HXWP HXRP HPWP HPRP HSR

 31 0
 READ-ONLY
 32-bit receive data register HOST RECEIVE
 DATA REGISTER
 HRX
 31 0
 WRITE-ONLY
 32-bit transmit data register HOST TRANSMIT
 DATA REGISTER
 HTX or HTXC

 HOST INTERFACE DSP96002 ADDRESS MAP

 ADDR (HEX) DSP96002 DSP96002
 READ WRITE

 X:$FFFFFFEC HCRA HCRA
 X:$FFFFFFED HSRA ---- PORT A
 X:$FFFFFFEE ---- HTXCA
 X:$FFFFFFEF HRXA HTXA

 X:$FFFFFFE4 HCRB HCRB
 X:$FFFFFFE5 HSRB ---- PORT B
 X:$FFFFFFE6 ---- HTXCB
 X:$FFFFFFE7 HRXB HTXB

 ** - reserved, read as zero, should be written with zero
 for future compatibility.

Figure 7-10. HI - DSP96002 Programming Model
7 - 16 DSP96002 USER’S MANUAL MOTOROLA

 7.4.7 Host Receive Data Register (HRX) - DSP96002 Side
The Host Receive Data register (HRX) is used for host processor to DSP96002 data transfers. The HRX
register is viewed as a 32-bit read-only register by the DSP96002. The HRX register is loaded with 32-bit
data from the TX register when both the Transmit Data Register Empty TXDE and Host Receive Data Full
HRDF bits are cleared. This transfer operation sets TXDE and HRDF. The HRX register contains valid data
when the HRDF bit is set. Reading HRX clears HRDF. The DSP96002 may program the HRIE bit to cause
a Host Receive Data interrupt when HRDF is set.

 7 6 5 4 3 2 1 0
 HREQ INIT TYEQ TREQ RREQ TRDY TXDE RXDF
 READ/WRITE
 15 14 13 12 11 10 9 8 INTERRUPT CONTROL/STATUS
 HMRC ** HRST DMAE HF3 HF2 HF1 HF0 REGISTER
 ICS
 31 16
 ** ** ** ** ** ** ** ** ** ** ** ** **

 31 16 15 0
 ** ** ** ** ** ** SEM15 - SEM0 READ/WRITE
 SEMAPHORE
 REGISTER
 SEM

 31 16 15 14 8 7 0
 ** ** ** ** ** ** HC ** HV READ/WRITE
 COMMAND VECTOR
 REGISTER
 CVR

 31 8 7 0
 ** ** ** ** ** ** ** ** ** IV7-IV0 READ/WRITE
 INTERRUPT VECTOR
 REGISTER
 IVR

 31 0
 RX READ-ONLY
 RECEIVE DATA
 REGISTER
 RX

 31 0
 TX WRITE-ONLY
 TRANSMIT DATA
 REGISTER
 TX
 ** - reserved, read as zero, should be written with zero
 for future compatibility.

Figure 7-11. HI - Host Processor Programming Model

MOTOROLA DSP96002 USER’S MANUAL 7 - 17

7
 7.4.8 Host Control Register (HCR) - DSP96002 Side
The Host Control Register (HCR) is a 32-bit read/write control register used by the DSP96002 to control the
HI interrupts and flags. HCR cannot be accessed by the host processor. HCR is a read/write register to allow
the use of bit manipulation instructions on control register bits.

 7.4.8.1 HCR Host Receive Interrupt Enable (HRIE) Bit 0
The Host Receive Interrupt Enable (HRIE) bit is used to enable the Host Receive Data interrupt when the
Host Receive Data Full (HRDF) status bit in the Host Status register (HSR) is set. When HRIE is cleared,
HRDF interrupts are disabled. When HRIE is set, the Host Receive Data interrupt request will occur if HRDF
is set. HRIE is cleared by HW/SW reset.

 —H–R
—

H
–
A

—
H

–
SR/

—
WA5-A2Host Function

 x 1 1 x xxxx Host Interface disabled
 x 1 0 1 1000 ICS register read
 x 1 0 0 1000 ICS register write
 x 1 0 1 1001 SEM register read
 x 1 0 0 1001 SEM register write
 x 1 0 1 1010 RX register read
 x 1 0 0 1010 TX register write
 x 1 0 x 1011 Reserved
 x 1 0 1 1100 IVR register read
 x 1 0 0 1100 IVR register write
 x 1 0 1 1101 CVR register read
 x 1 0 0 1101 CVR register write
 x 1 0 x 1110 Reserved
 x 1 0 x 1111 Reserved
 x 1 0 0 0000 TX register write and Y Memory Write interrupt
 x 1 0 0 0001 TX register write and Y Memory Read interrupt
 x 1 0 0 0010 TX register write and X Memory Write interrupt
 x 1 0 0 0011 TX register write and X Memory Read interrupt
 x 1 0 0 0100 TX register write and P Memory Write interrupt
 x 1 0 0 0101 TX register write and P Memory Read interrupt
 x 1 0 0 011x Reserved
 x 1 0 1 0xxx Reserved
 0 0 x 1 xxxx IVR read (DMAE=0) - 68K Interrupt Acknowledge
 0 0 x 0 xxxx Reserved (DMAE=0)
 1 0 x x xxxx Reserved (DMAE=0)
 x 0 x x xxxx RX read (DMA Mode: DMAE=1,TREQ=0,RREQ=1)
 x 0 x x xxxx TX write (DMA Mode: DMAE=1,TREQ=1,RREQ=0)
 x 0 x x xxxx Reserved (DMA Mode: DMAE=1,TREQ=0,RREQ=0)
 x 0 x x xxxx Reserved (DMA Mode: DMAE=1,TREQ=1,RREQ=1)

Figure 7-12. HI Functions
- 18 DSP96002 USER’S MANUAL MOTOROLA

 7.4.8.2 HCR Host Transmit Interrupt Enable (HTIE) Bit 1
The Host Transmit Interrupt Enable (HTIE) bit is used to enable the Host Transmit Data interrupt when the
Host Transmit Data Empty (HTDE) status bit in the Host Status Register (HSR) is set. When HTIE is
cleared, HTDE interrupts are disabled. When HTIE is set, the Host Transmit Data interrupt request will occur
if HTDE is set. HTIE is cleared by HW/SW reset.

 7.4.8.3 HCR Host Command Interrupt Enable (HCIE) Bit 2
The Host Command Interrupt Enable (HCIE) bit is used to enable Host Command vectored DSP96002 in-
terrupts when the Host Command Pending (HCP) status bit in the Host Status Register (HSR) is set. When
HCIE is cleared, HCP interrupts are disabled. When HCIE is set, the Host Command interrupt request will
occur if HCP is set. The starting address of this interrupt is determined by the Host Vector (HV). HCIE is
cleared by HW/SW reset.

 7.4.8.4 HCR Host Flag 2 (HF2) Bit 3
The Host Flag 2 (HF2) bit is used as a general purpose flag for DSP96002 to host processor communica-
tion. HF2 may be set or cleared by the DSP96002. HF2 Status can be read in the ICS register by the host
processor. HF2 is cleared by HW/SW reset.

 7.4.8.5 HCR Host Flag 3 (HF3) Bit 4
The Host Flag 3 (HF3) bit is used as a general purpose flag for DSP96002 to host processor communica-
tion. HF3 may be set or cleared by the DSP96002. HF3 Status can be read in the ICS register by the host
processor. HF3 is cleared by HW/SW reset.

 HI Interrupt Sources (96002 side)

 INTERRUPT SOURCE STATUS MASK Exception Starting Address
 Port A Port B

 Receive Data Full HRDF HRIE $00000020 $00000030
 Transmit Data Empty HTDE HTIE $00000022 $00000032
 X Memory Read HXRP HXRE $00000024 $00000034
 Y Memory Read HYRP HYRE $00000026 $00000036
 P Memory Read HPRP HPRE $00000028 $00000038
 X Memory Write HXWP HXWE $0000002A $0000003A
 Y Memory Write HYWP HYWE $0000002C $0000003C
 P Memory Write HPWP HPWE $0000002E $0000003E
 Host Command HCP HCIE 2*HV ($00000000-$000001FE)

 Host Processor —H–R Structure

 —H–R SOURCE STATUS MASK

 Receive Data Full RXDF RREQ
 Transmit Data Empty TXDE TREQ
 Transmitter Ready TRDY TYEQ

Figure 7-13. HI Interrupt Structure
MOTOROLA DSP96002 USER’S MANUAL 7 - 19

 7.4.8.6 HCR Host Reset (HRES) Bit 5
The Host Reset (HRES) bit is used to reset the status bits of the HI and to initialize the transmit/receive paths
to the same state produced by hardware or software reset. The HOST reset (Host Interface personal reset)
is generated when HRES is set. The Host Interface exits the HOST reset state after this bit is cleared. HRES
is set by HW/SW reset.

 7.4.8.7 HCR Reserved bits (Bits 6, 7, 14-31)
These reserved bits read as zero and should be written with zero for future compatibility.

 7.4.8.8 HCR Host P Memory Read Interrupt Enable (HPRE) Bit 8
The Host P Memory Read Interrupt Enable (HPRE) bit is used to enable the P Memory Read interrupt when
the Host P Memory Read Command Pending (HPRP) status bit in the Host Status Register (HSR) is set.
When HPRE is cleared, HPRP interrupts are disabled. When HPRE is set, the Host P Memory Read inter-
rupt request will occur if HPRP is set. The starting address of this interrupt is shown in Figure 7-13. HPRE
is cleared by HW/SW reset.

 7.4.8.9 HCR Host P Memory Write Interrupt Enable (HPWE) Bit 9
The Host P Memory Write Interrupt Enable (HPWE) bit is used to enable the P Memory Write interrupt when
the Host P Memory Write Command Pending (HPWP) status bit in the Host Status Register (HSR) is set.
When HPWE is cleared, HPWP interrupts are disabled. When HPWE is set, the Host P Memory Write in-
terrupt request will occur if HPWP is set. The starting address of this interrupt is shown in Figure 7-13.
HPWE is cleared by HW/SW reset.

 7.4.8.10 HCR Host X Memory Read Interrupt Enable (HXRE) Bit 10
The Host X Memory Read Interrupt Enable (HXRE) bit is used to enable the X Memory Read interrupt when
the Host X Memory Read Command Pending (HXRP) status bit in the Host Status Register (HSR) is set.
When HXRE is cleared, HXRP interrupts are disabled. When HXRE is set, the Host X Memory Read inter-
rupt request will occur if HXRP is set. The starting address of this interrupt is shown in Figure 7-13. HXRE
is cleared by HW/SW reset.

 7.4.8.11 HCR Host X Memory Write Interrupt Enable (HXWE) Bit 11
The Host X Memory Write Interrupt Enable (HXWE) bit is used to enable the X Memory Write interrupt when
the Host X Memory Write Command Pending (HXWP) status bit in the Host Status Register (HSR) is set.
When HXWE is cleared, HXWP interrupts are disabled. When HXWE is set, the Host X Memory Write in-
terrupt request will occur if HXWP is set. The starting address of this interrupt is shown in Figure 7-13.
HXWE is cleared by HW/SW reset.

 7.4.8.12 HCR Host Y Memory Read Interrupt Enable (HYRE) Bit 12
The Host Y Memory Read Interrupt Enable (HYRE) bit is used to enable the Y Memory Read interrupt when
the Host Y Memory Read Command Pending (HYRP) status bit in the Host Status Register (HSR) is set.
When HYRE is cleared, HYRP interrupts are disabled. When HYRE is set, the Host Y Memory Read inter-
7 - 20 DSP96002 USER’S MANUAL MOTOROLA

rupt request will occur if HYRP is set. The starting address of this interrupt is shown in Figure 7-13. HYRE
is cleared by HW/SW reset.

 7.4.8.13 HCR Host Y Memory Write Interrupt Enable (HYWE) Bit 13
The Host Y Memory Write Interrupt Enable (HYWE) bit is used to enable the Y Memory Write interrupt when
the Host Y Memory Write Command Pending (HYWP) status bit in the Host Status Register (HSR) is set.
When HYWE is cleared, HYWP interrupts are disabled. When HYWE is set, the Host Y Memory Write in-
terrupt request will occur if HYWP is set. The starting address of this interrupt is shown in Figure 7-13.
HYWE is cleared by HW/SW reset.

 7.4.9 Host Status Register (HSR) – DSP96002 Side
The Host Status register (HSR) is a 32-bit read-only status register used by the DSP96002 to interrogate
status and flags of the HI. It cannot be directly accessed by the host processor.

 7.4.9.1 HSR Host Receive Data Full (HRDF) Bit 0
The Host Receive Data Full (HRDF) bit indicates that the Host Receive Data register (HRX) contains data
from the host processor, written by the host processor via the host function "TX register write" only. HRDF
is set when the data is transferred from the TX register to the HRX register. HRDF is cleared when the Re-
ceive Data register HRX is read by the DSP96002. HRDF is cleared by INIT (TREQ=1), HOST reset, and
HW/SW reset.

 7.4.9.2 HSR Host Transmit Data Empty (HTDE) Bit 1
The Host Transmit Data Empty (HTDE) bit indicates that the Host Transmit Data register (HTX) is empty
and can be written by the DSP96002. HTDE is set when the HTX register is transferred to the RX register.
HTDE is cleared when the Transmit Data register HTX is written by the DSP96002. HTDE is set by INIT
(RREQ=1), HOST reset, and HW/SW reset.

 7.4.9.3 HSR Host Command Pending (HCP) Bit 2
The Host Command Pending (HCP) bit indicates that the host processor has set the HC bit and that a Host
Command Interrupt is pending. The HCP bit reflects the status of the HC bit in the Command Vector Reg-
ister (CVR). HC and HCP are cleared by the DSP96002 exception hardware when the second vector loca-
tion of the Host Command interrupt is fetched. HCP is cleared by HW/SW reset.

 7.4.9.4 HSR Host Flag 0 (HF0) Bit 3
The Host Flag 0 (HF0) bit indicates the state of Host Flag 0 (HF0) in the Interrupt Control Register ICS. HF0
can only be changed by the host processor. HF0 is cleared by HW/SW reset.

 7.4.9.5 HSR Host Flag 1 (HF1) Bit 4
The Host Flag 1 (HF1) bit indicates the state of Host Flag 1 (HF1) in the Interrupt Control Register ICS. HF1
can only be changed by the host processor. HF1 is cleared by HW/SW reset.
MOTOROLA DSP96002 USER’S MANUAL 7 - 21

 7.4.9.6 HSR Reserved bits (Bits 5, 6, 14-31)
These status bits are reserved for future expansion and read as zero during DSP96002 read operations.

 7.4.9.7 HSR DMA Status (HDMA) Bit 7
The DMA Status bit (HDMA) indicates that the host processor has enabled the external DMA handshake
mode of the HI. When HDMA is cleared, it indicates that the DMA Mode is disabled (DMAE=0) in the Inter-
rupt Control Register ICS. When HDMA is set, it indicates that the DMA Mode is enabled (DMAE=1).
Cleared by HW/SW reset.

 7.4.9.8 HSR Host P Memory Read Command Pending (HPRP) Bit 8
The Host P Memory Read Command Pending (HPRP) bit indicates that the HRX register contains data from
the host processor written by the host processor via the host function "TX register write and P Memory Read
interrupt". HPRP is set when data is transferred from the TX register to the HRX register. HPRP is cleared
when the HTXC register is written by the DSP96002. HPRP is cleared by INIT (TREQ=1), HOST reset, and
HW/SW reset.

 7.4.9.9 HSR Host P Memory Write Command Pending (HPWP) Bit 9
The Host P Memory Write Command Pending (HPWP) bit indicates that the HRX and TX registers contain
data from the host processor written by the host processor via the host function "TX register write and P
Memory Write interrupt". HPWP is set when the host processor writes TX for the second time consecutively
using this host function. HPWP is cleared when the HRX register is read twice consecutively (once for ad-
dress and once for data) by the DSP96002. HPWP is cleared by INIT (TREQ=1), HOST reset, and HW/SW
reset.

 7.4.9.10 HSR Host X Memory Read Command Pending (HXRP) Bit 10
The Host X Memory Read Command Pending (HXRP) bit indicates that the HRX register contains data from
the host processor written by the host processor via the host function "TX register write and X Memory Read
interrupt". HXRP is set when data is transferred from the TX register to the HRX register. HXRP is cleared
when the HTXC register is written by the DSP96002. HXRP is cleared by INIT (TREQ=1), HOST reset, and
HW/SW reset.

 7.4.9.11 HSR Host X Memory Write Command Pending (HXWP) Bit 11
The Host X Memory Write Command Pending (HXWP) bit indicates that the HRX and TX registers contain
data from the host processor written by the host processor via the host function "TX register write and X
Memory Write interrupt". HXWP is set when the host processor writes TX for the second time consecutively
using this host function. HXWP is cleared when the HRX register is read twice consecutively (once for ad-
dress and once for data) by the DSP96002. HXWP is cleared by INIT (TREQ=1), HOST reset, and HW/SW
reset.

 7.4.9.12 HSR Host Y Memory Read Command Pending (HYRP) Bit 12
The Host Y Memory Read Command Pending (HYRP) bit indicates that the HRX register contains data from
the host processor written by the host processor via the host function "TX register write and Y Memory Read
7 - 22 DSP96002 USER’S MANUAL MOTOROLA

interrupt". HYRP is set when data is transferred from the TX register to the HRX register. HYRP is cleared
when the HTXC register is written by the DSP96002. HYRP is cleared by INIT (TREQ=1), HOST reset, and
HW/SW reset.

 7.4.9.13 HSR Host Y Memory Write Command Pending (HYWP) Bit 13
The Host Y Memory Write Command Pending (HYWP) bit indicates that the HRX and TX registers contain
data from the host processor written by the host processor via the host function "TX register write and Y
Memory Write interrupt". HYWP is set when the host processor writes TX for the second time consecutively
using this host function. HYWP is cleared when the HRX register is read twice consecutively (once for ad-
dress and once for data) by the DSP96002. HYWP is cleared by INIT (TREQ=1), HOST reset, and HW/SW
reset.

 7.4.10 Receive Register (RX) - Host Processor Side
This 32-bit register receives data from the Host Transmit Data register HTX. The RX register contains valid
data when the RXDF bit is set. The host processor may program the Receive Request Enable bit (RREQ),

to assert the Host Request
—

H
–
R pin when RXDF is set. This informs the host processor that the Receive

Registers RX is full. The RXDF bit is cleared by reading the RX register.

The RX register is viewed by the external host processor as an address in its memory map and may be read
by a host processor memory read operation. The RX register may also be read by an external DMA con-
troller (no A2-A5 address required) when the HI is in DMA mode (DMAE=1).

 7.4.11 Transmit Register (TX) - Host Processor Side
This 32-bit register sends data to the Host Receive Data register HRX. The TX register contains valid data
when the TXDE bit is cleared. The TXDE bit is cleared by writing the TX register. The host processor may

program the Transmit Request Enable bit (TREQ) to assert the Host Request
—

H
–
R pin when TXDE is set.

This informs the host processor that the TX register is empty.

The Transmit Register (TX) is viewed by the external host processor as address in its memory map and
may be written by a host processor memory write operation. The TX register may also be written by an ex-
ternal DMA controller (no A2-A5 address required) when the HI is in DMA mode (DMAE=1).

 7.4.12 Command Vector Register (CVR) - Host Processor Side
The 32-bit Host Command Vector Register (CVR) is used by the host processor to request a vectored ex-
ception service from the DSP96002. Any exception routine in the DSP96002 may be specified. The Host
Command feature is independent of any of the data transfer mechanisms in the HI.

 7.4.12.1 CVR Host Vector (HV) Bits 0-7
The eight bit Host Vector (HV) specifies the Host Command exception address indirectly. When the Host
Command exception is recognized by the DSP96002 interrupt control logic, the starting address of the ex-
ception taken is 2*HV. This allows the host processor to change the exception starting address for the Host
Command exception. The host processor can select any of the 256 possible exception routine starting ad-
dresses in the DSP96002 by writing the exception routine starting address divided by 2 into HV. This means
MOTOROLA DSP96002 USER’S MANUAL 7 - 23

that the host processor can force any of the existing exception handlers (IRQA, IRQB, etc.) and can use any
of the reserved or otherwise unused starting addresses provided they have been pre-programmed in the
DSP96002. The HV is set to a predefined value for each port by HW/SW reset (see Figure 7-7). If HC is set,
the host processor should not change HV.

 7.4.12.2 CVR Reserved bits (Bits 8-14, 16-31)
Reserved bits are read by the host processor as zeros. They should be written with zero for future compat-
ibility.

 7.4.12.3 CVR Host Command (HC) Bit 15
The Host Command bit (HC) is used by the host processor to start execution of Host Command exceptions.
Normally the host processor sets HC to request a Host Command exception service from the DSP96002.
Setting HC causes HCP (Host Command Pending) to be set in the HSR register. When the Host Command
second vector location is fetched, the HC bit is cleared by the HI hardware (interrupt acknowledge). HC is
cleared by HW/SW reset.

CAUTION:
The host processor should verify that HC is cleared before attempting to set HC. This
is necessary to avoid hardware contention between the host processor set operation

and the Host Interface clear operation when receiving the interrupt acknowledge. HC
should not be cleared by the host processor.

 7.4.13 Interrupt Control/Status Register (ICS) - Host Processor Side
The Interrupt Control/Status Register (ICS) is a 32-bit read/write control and status register used by the host
processor to control the HI and verify the current status of the HI. ICS is a read/write register which can be
accessed using bit manipulation instructions. The control and status bits are described in the following para-
graphs.

 7.4.13.1 ICS Receive Data Register Full (RXDF) Bit 0
The read-only Receive Data Register Full (RXDF) bit indicates that the Receive Register RX contains data
from the DSP96002 and may be read by the host processor. RXDF is set when the Host Transmit Data Reg-
ister HTX or HTXC is transferred to the Receive Register RX. RXDF is cleared when RX is read by the host
processor. RXDF is cleared by INIT (RREQ=1), HOST reset, and HW/SW reset.

RXDF may be used to assert the Host Request
—

H
–
R pin if the Receive Request Enable bit (RREQ) is set.

RXDF provides valid status regardless of whether the RXDF interrupt is enabled or not so that polling tech-
niques may be used by the host processor.

 7.4.13.2 ICS Transmit Data Register Empty (TXDE) Bit 1
The read-only Transmit Data Register Empty (TXDE) bit indicates that the Transmit Register TX is empty
and can be written by the host processor. TXDE is set when the Transmit Register TX is transferred to the
Host Receive Data Register (HRX). TXDE is cleared when TX is written by the host processor. TXDE is set
by INIT (TREQ=1), HOST reset, and HW/SW reset.
7 - 24 DSP96002 USER’S MANUAL MOTOROLA

TXDE may be used to assert the Host Request
—

H
–
R pin if the Transmit Request Enable bit (TREQ) is set.

TXDE provides valid status regardless of whether the TXDE interrupt is enabled or not so that polling tech-
niques may be used by the host processor.

 7.4.13.3 ICS Transmitter Ready (TRDY) Bit 2
The read-only Transmitter Ready (TRDY) status bit indicates that both the Transmit Register TX (on the
host processor side) and Host Receive Data Register HRX (on the DSP96002 side) are empty. TRDY may

be used to assert the Host Request
—

H
–
R pin if the Transmitter Ready Request Enable bit (TYEQ) is set.

TRDY provides valid status regardless of whether the TRDY interrupt is enabled or not so that polling tech-
niques may be used by the host processor. TRDY is set by INIT (TREQ=1), HOST reset, and HW/SW reset.

 7.4.13.4 ICS Receive Request Enable (RREQ) Bit 3

RREQ is used to enable host processor interrupts/requests via the external Host Request
—

H
–
R pin when

the Receive Data Register Full (RXDF) status bit is set. When RREQ is cleared, RXDF interrupts are dis-

abled. When RREQ is set, the Host Request
—

H
–
R pin will be asserted if RXDF is set.

In DMA Mode (DMAE=1), RREQ must be set or cleared by software to select the direction of DMA transfers.

Setting RREQ defines the direction of DMA transfer to be DSP96002 → external DMA, and enables the
—

H
–
R pin to request these data transfers.

See Figure 7-15 and Figure 7-16 for a summary of the effect of RREQ on the
—

H
–
R pin. RREQ is cleared

by HW/SW reset.

 7.4.13.5 ICS Transmit Request Enable (TREQ) Bit 4

TREQ is used to enable host processor interrupt/requests via the Host Request
—

H
–
R pin when the Trans-

mit Data Register Empty (TXDE) status bit is set. When TREQ is cleared, TXDE interrupts are disabled.

When TREQ is set, the Host Request
—

H
–

R pin will be asserted if TXDE is set.
MOTOROLA DSP96002 USER’S MANUAL 7 - 25

In DMA Mode (DMAE=1), TREQ must be set or cleared by software to select the direction of DMA transfers.

Setting TREQ defines the direction of DMA transfer to be from external DMA→96002, and enables the
—

H
–
R pin to request these data transfers.

See Figure 7-15 and Figure 7-16 for a summary of the effect of TREQ on the
—

H
–
R pin. TREQ is cleared

by HW/SW reset.

 7.4.13.6 ICS Transmitter Ready Request Enable (TYEQ) Bit 5

TYEQ is used to enable interrupts via the Host Request
—

H
–
R pin when the Transmitter Ready (TRDY)

status bit is set. When TYEQ is cleared, TRDY interrupts are disabled. When TYEQ is set, the Host Request
—

H
–
R pin will be asserted if TRDY is set.

See Figure 7-15 for a summary of the effect of TYEQ on the
—

H
–
R pin. TYEQ is cleared by HW/SW reset.

In DMA Mode (DMAE=1), TYEQ must be cleared.

 7.4.13.7 ICS Initialize (INIT) Bit 6
The INIT bit is used by the host processor to force initialization of the HI hardware. This may or may not be
necessary, depending on the software design of the interface.

To correctly initialize the HI, set the INIT bit with the other control bits in ICS which determine the initialization
procedure (TREQ, RREQ). All bits may be written in the same command. After setting the INIT bit, the HI
starts the initialize procedure, and at the end of the procedure, the HI clears the INIT bit. During the initialize
procedure, the host processor should not attempt to read RX, write TX or write the ICS register. The host
processor should first ensure that the Initialize procedure has completed, using one of the following tech-
niques:

1. When using the —H–R pin for handshake, wait until —H–R is asserted and then start writing/
reading data.

—
T

–
S

INIT bit
in ICS

RX, TX no accesses first access

3Tc+Th minimum

write ICS
INIT=1

Figure 7-14. Minimum Delay to Ensure Correct INIT Execution
7 - 26 DSP96002 USER’S MANUAL MOTOROLA

2. When not using the —H–R pin for handshake, use polling of the INIT bit in ICS to make sure
it is cleared by the hardware (which means the INIT execution is completed). Then, start writ-
ing/reading data.

3. If using neither the —H–R pin for handshake nor polling the INIT bit, wait at least 3Tc+Th after

the deassertion of —T–S that wrote ICS, before writing/reading data. This ensures that the
INIT is completed. See Figure 7-14.

The type of initialization done depends on the state of TREQ and RREQ. If both TREQ and RREQ are
cleared, the INIT procedure will not affect the HI. The effect of the initialization procedure is described in
Figure 7-7 and Figure 7-8. The INIT bit is cleared by HW/SW reset.

CAUTION:
The host processor should verify that INIT is cleared before attempting to set INIT.

This is necessary to avoid hardware contention between the host processor set opera-
tion and the Host Interface clear operation at the end of the INIT procedure. INIT

should not be cleared by the host processor.

 7.4.13.8 ICS Host Request (HREQ) Bit 7

The read-only Host Request (HREQ) bit indicates the status of the Host Request
—

H
–
R pin.

In interrupt mode (DMAE=0):

When the HREQ status bit is cleared, it indicates that the
—

H
–
R pin is deasserted and host processor in-

terrupts are not being requested. When the HREQ status bit is set, it indicates that the
—

H
–
R pin is asserted

indicating that the DSP96002 is interrupting the host processor. The HREQ interrupt request may originate
from one or more of 3 sources, selected by their enable bits RREQ, TREQ and TYEQ (See Figure 7-15):

• the RX register or HTX register is full,

• the TX register or HRX register is empty,

• both the TX register (on the host processor side) and the HRX register (on the DSP96002 side)
are empty.

In DMA Mode (DMAE=1):

When the HREQ status bit is cleared, it indicates that the
—

H
–
R pin is deasserted and no DMA transfers

are being requested. When the HREQ status bit is set, it indicates that the
—

H
–
R pin is asserted and a DMA

transfer request is being made. The DMA transfer request may originate because the Receive Register (RX)
is full when the DMA transfer direction is DSP96002 → external DMA, or because the Transmit Register
(TX) is empty when the DMA transfer direction is external DMA → DSP96002 (See Figure 7-16).

The condition of RX full and TX empty is indicated by the ICS register RXDF and TXDE status bits, respec-
tively. If the interrupt source has been enabled by the associated request enable bit in the Interrupt Control
Register ICS, HREQ will be set if one or more of the 2 enabled interrupt sources is set. HREQ is cleared by
HW/SW reset. HREQ is cleared by HOST reset if both TYEQ and TREQ are cleared, and set otherwise. For
the effect of INIT on HREQ, see Figure 7-7.
MOTOROLA DSP96002 USER’S MANUAL 7 - 27

 7.4.13.9 ICS Host Flag 0 (HF0) Bit 8
The Host Flag 0 (HF0) bit is used as a general purpose flag for host processor to DSP96002 communica-
tion. HF0 may be set or cleared by the host processor. HF0 is cleared by HW/SW reset. The status of HF0
can be read in the HSR, bit 3.

 7.4.13.10 ICS Host Flag 1 (HF1) Bit 9
The Host Flag 1 (HF1) bit is used as a general purpose flag for host processor to DSP96002 communica-
tion. HF1 may be set or cleared by the host processor. HF1 is cleared by HW/SW reset. The status of HF1
can be read in the HSR, bit 4.

 7.4.13.11 ICS Host Flag 2 (HF2) Bit 10
The read-only Host Flag 2 (HF2) bit indicates the state of Host Flag 2 (HF2) in the Host Control Register
HCR. HF2 can only be changed by the DSP96002. HF2 is cleared by HW/SW reset.

 7.4.13.12 ICS Host Flag 3 (HF3) Bit 11
The read-only Host Flag 3 (HF3) bit indicates the state of Host Flag 3 (HF3) in the Host Control Register
HCR. HF3 can only be changed by the DSP96002. HF3 is cleared by HW/SW reset.

 7.4.13.13 ICS DMA Mode Enable (DMAE) Bit 12
The DMA Mode Enable bit (DMAE) selects the mode of operation of the HI. When DMAE is set, the HI op-
erates in the DMA Mode. When DMAE is cleared, the DMA Mode is disabled. Cleared by HW/SW reset.

When DMAE is cleared, the HI registers are selected by address lines A2-A5. This mode of operation is
appropriate for interfacing with external devices, such as a microprocessor, that are able to supply address-

 TREQ RREQ TYEQ HREQ flag and
—
H
–
R pin

 0 0 0 No interrupts (polling).
 0 1 0 RX full or HTX full.
 1 0 0 TX empty or HRX empty.
 1 1 0 RX full, HTX full, TX empty or HRX empty.
 x 0 1 TX empty and HRX empty.
 x 1 1 All interrupts (no polling).

Figure 7-15. HREQ and —H–R Definition - Interrupt Mode (DMAE=0)

 TREQ RREQ TYEQ HREQ flag and —H–R pin

 0 0 0 Reserved
 0 1 0 DSP96002→DMA Request (RX full)
 1 0 0 DMAÆ→DSP96002 Request (TX empty)
 1 1 0 Reserved
 x x 1 Reserved

Figure 7-16.
HREQ, —H–R and DMA Transfer Direction Definition - DMA Mode (DMAE=1)
7 - 28 DSP96002 USER’S MANUAL MOTOROLA

es. In this mode, the
—

H
–
R pin can be used as an interrupt request to the host processor, and the

—
H

–
A

pin may be used to support a 68K family interrupt acknowledge.

When DMAE is set, the HI operates in the DMA Mode. When in DMA Mode, the RX and TX registers are
accessed without regard to the address lines A2-A5, permitting data transfers under control of external de-

vices, such as DMA controllers, that do not supply addresses. The
—

H
–
R pin is used as a DMA transfer

request to the external DMA controller. The direction of the DMA transfer is selected by TREQ and RREQ.
Bidirectional DMA transfers are not supported; the user cannot set both RREQ and TREQ in the DMA mode.
Also, TYEQ should remain cleared.

 7.4.13.14 ICS Host Reset Status (HRST) Bit 13
The read-only Host Reset Status bit (HRST) may be tested by the host processor to verify the state of the
HRES control bit. If HRST is set, the HRES bit is set and the HI is in the reset state. If the HRST bit is
cleared, the HRES bit is cleared and the HI operation is enabled. The HRST bit is cleared by clearing HRES.
The HRST bit is set by HOST reset and HW/SW reset.

 7.4.13.15 ICS Reserved bits (Bits 14, 16-31)
Reserved bits are read by the host processor as zero. They should be written with zero for future compati-
bility.

 7.4.13.16 ICS Host Memory Read Command (HMRC) Bit 15
The read-only Host Memory Read Command status bit (HMRC) may be tested by the host processor to ver-
ify when data written to the HTXC register (96002 side) is transferred to the RX register (host processor
side).

HMRC is set when the host processor writes into the TX register using the host function "TX register write
and X/Y/P Memory Read Interrupt". HMRC is cleared when the HTX register contents which were written,
in the DSP96002 side, thorough the HTXC address, are transferred to the RX register in the host processor
side. HMRC is cleared by INIT (TREQ=1), HOST reset, and HW/SW reset.

 7.4.14 Semaphore Register (SEM) - Host Processor Side
The Semaphore Register (SEM) is a 32-bit read/write register used by the host processor to control the HI
allocation in a multiprocessor system and show the current host processor ID.

 7.4.14.1 SEM Host Semaphore (SEM0-SEM15) Bits 0-15
The Host Semaphore register bits SEM0-SEM15 are used by host processors for software arbitration of
mastership over the HI. This register does not affect the HI operation and only serves as a read/write sema-
phore repository. All external host processors that compete for mastership over the HI should work accord-
ing to the same software protocol for handing over the HI from one host processor to another.

Typically, a host processor, before accessing the HI, checks the Semaphore Register to see if the HI is al-
located to another host processor. If SEM0-SEM15 are not cleared then the HI is already allocated and the
host processor cannot access the HI. If SEM0-SEM15 are cleared then the HI is assumed free and the host
processor writes SEM0-SEM15. The host processor can either set just one bit (which will serve as a host
MOTOROLA DSP96002 USER’S MANUAL 7 - 29

busy semaphore bit), several bits or write the whole 16 bits (which, for example, may be used as host pro-
cessor ID).

Host processors should use read/modify/write uninterruptable instructions (such as XMEM in the
MC88000, CAS in the MC680x0, or BSET in the DSP96002) and examine which host processor has allo-
cated the HI or set the semaphore bit by "bit test and set" instructions. The BSET in the DSP96002 is "un-
interruptable" in that it tests the semaphore bit and indicates the results in the status register and then sets
the semaphore bit without relinquishing the bus. This combined operation prevents another processor from
reading or writing the semaphore bit between the BSET testing and setting operations.

After the present HI "owner" has completed its transfers, it must release the HI (if there are other potential
masters capable of host transfers) by clearing the Semaphore Register bits. SEM0-SEM15 are cleared by
HW/SW reset.

 7.4.14.2 SEM Reserved bits (Bits 16-31)
Reserved bits are read by the host processor as zeros. They should be written with zero for future compat-
ibility.

 7.4.15 Interrupt Vector Register (IVR) - Host Processor Side
The Interrupt Vector Register (IVR) is a 32-bit read/write register which contains the exception vector num-
ber for use with MC680x0 processor family vectored interrupts.

 7.4.15.1 IVR Interrupt Vector (IVR0-IVR7) Bits 0-7
When not in DMA Mode (DMAE=0), the contents of the IVR register may be read to the data bus by assert-

ing
—

T
–
S when both

—
H

–
R and

—
H

–
A are asserted. The contents of the IVR register are initialized to $0F

during HW/SW reset. This corresponds to the un-initialized exception vector in the MC68K family.

The IVR register may also be accessed by the host processor as a regular read/write register using the ad-
dress lines A2-A5 as shown in Figure 7-12.

 7.4.15.2 IVR Reserved Bits – Bits 8-31
The upper 24-bits are reserved and are read by the host processor as zeros. They should be written with
zero for future compatibility.

 7.4.16 HI Interrupts
The HI may request interrupt service from either the DSP96002 core or the external host processor.

The HI interrupt requests to the DSP96002 core are internal and do not require the use of an external inter-
rupt pin. The DSP96002 core services HI interrupts by fetching the appropriate interrupt vector locations
(see Section 8). The interrupt service routine must read or write the appropriate HI register to clear the in-
terrupt request (reading HRX to clear HRDF for example). In the case of Host Command interrupts, the in-
terrupt acknowledge from the DSP96002 core, generated when the second interrupt vector location is
fetched, will clear the pending interrupt condition.
7 - 30 DSP96002 USER’S MANUAL MOTOROLA

The HI interrupt requests to the external host processor use the Host Request
—

H
–
R pin.

—
H

–
R is normally

connected to a host processor interrupt input. The host processor acknowledges HI interrupts by executing

an interrupt service routine. The MC680x0 processor family will assert the
—

T
–
S pin when both

—
H

–
R and

—
H

–
A are asserted to read the exception vector number from the IVR register of the HI. In a multi-

DSP96002 system, the HREQ bit in the Interrupt Status Register (ICS) may be tested to determine which
DSP96002 HI is the interrupting device and the RXDF, TXDE and TRDY bits may then be tested to deter-
mine the interrupt source. The host processor interrupt service routine must read or write the appropriate

HI register to clear the interrupt and deassert
—

H
–
R.

 7.4.17 Host Processor Programmer Considerations

 7.4.17.1 Reading RX
When reading the Receive register RX, the host processor programmer should use interrupts or poll the
RXDF flag which indicates that data is available. This guarantees that the data in the RX register will be
stable.

 7.4.17.2 Writing TX
The host processor programmer should not write to the Transmit register TX unless the TXDE bit is set,
indicating that the TX register is empty. This guarantees that the HI will transfer stable data to the HRX reg-
ister on the DSP96002 side.

 7.4.17.3 Synchronization of Status Bits from DSP96002 to Host Processor
HC, HMRC, HREQ, HF3, HF2, TRDY, TXDE, and RXDF status bits are set or cleared from the DSP96002
side of the HI and read by the host processor. The host processor is able to read these status bits without
regard to the clock rate used by the DSP96002, but there is a chance that the state of the bit could be chang-
ing during the read operation. This is generally not a system problem, since, if the bit is changing, the read
will indicate that another poll should be taken and the bit will be read correctly in the next pass of the polling
routine.

The only potential system problem with the uncertainty of reading any status bits by the Host is when HF3
and HF2 are being used as an encoded pair. For example, if the DSP96002 changes HF3 and HF2 from
"00" to "11" there is a very small probability that the host processor could read the bits during the transition
and receive "01" or "10" instead of "11". If the combination of HF3 and HF2 has significance, it is recom-
mended that the HF3 and HF2 bits be read twice and checked for consensus.

 7.4.17.4 Writing the Host Vector Register
The host processor programmer should change the Host Vector register only when the Host Command bit
(HC) is cleared. Clearing HC is a DSP96002 HI task and should not be done by the host programmer. This
guarantees that the DSP96002 interrupt control logic will receive a stable vector.
MOTOROLA DSP96002 USER’S MANUAL 7 - 31

 7.4.18 96002 Programmer Considerations

 7.4.18.1 Reading Status Bits
HF1, HF0, HCP, HPRP, HPWP, HXRP, HXWP, HYRP, HYWP, HTDE, and HRDF status bits are set or
cleared by the host processor side of the HI. These bits are individually synchronized to the DSP96002
clock.

The only system problem with reading status is HF1 and HF0 if they are encoded as a pair, e.g. the four
combinations 00, 01, 10, and 11 each have significance. This is because there is a very small probability
that the DSP96002 will read the status bits that were synchronized during transition. The solution to this
potential problem is to read the bits twice for consensus.

 7.4.19 DSP96002 to DSP96002 Data Transfers - Examples
This section presents examples showing the use of the HI and the on-chip DMA Controller for data transfers
between two DSP96002 processors. The bus master accesses the slave’s HI using regular memory refer-
ences. The slave’s HI registers are memory mapped into the bus master memory space. Note that the bus
master HI is not used and that the slave’s HI is not in the DMA Mode (DMAE=0).

 7.4.19.1 Data Write Using The On-Chip DMA Controllers
This example outlines the steps that a DSP96002 bus master, behaving as host processor, transfers data
to a DSP96002 bus slave, thorough the slave’s HI. The on-chip DMA Controllers of both DSP96002 proces-
7 - 32 DSP96002 USER’S MANUAL MOTOROLA

sors are used to transfer data without interfering with the local processing in both chips. Figure 7-17 contains
a diagram showing the data paths and control lines used for the data transfers.

A data write transfer is initiated when the slave’s
—

H
–
R signal is asserted, indicating that its HI TX register

is empty and ready to receive a data word from the master. The
—

H
–
R signal is connected to an

–
I
—

R
–
Q

pin in the master where this pin is defined as a DMA service request input. When
—

H
–
R is asserted, the

master DMA Controller transfers the data word from the master’s memory to an external address selecting

the TX register in the slave’s HI as destination. After TX is written (negating
—

H
–
R), the data is transferred

by the HI to the HRX register, setting HRDF and TXDE. Setting TXDE causes
—

H
–
R to be asserted if TREQ

is set. In the slave’s DMA Controller, HRDF is defined as a DMA service request signal. When HRDF is
asserted, the slave’s DMA Controller initiates a data transfer from HRX to the slave memory, completing the
data transfer.

 7.4.19.2 Data Read Using The On-Chip DMA Controllers
This example outlines the steps that a DSP96002 bus master, behaving as host processor, transfers data
from a DSP96002 bus slave, thorough the slave’s HI. The on-chip DMA Controllers of both DSP96002 pro-
cessors are used to transfer data without interfering with the local processing in both chips. Figure 7-18 con-
tains a diagram showing the data paths and control lines used for the data transfers.

A data read transfer is initiated when the slave’s
—

H
–
R signal is asserted, indicating that its HI RX register

is full and the data is ready to be read by the master.
—

H
–
R is connected to an

–
I
—

R
–
Q pin in the master

DSP96002 Bus Master
DMA Source

DSP96002 Bus Slave
DMA Destination

DMA Request

Bus Master

Write Bus Cycle
from Memory

—
I
—

R
–
Q

S1, S0

A0–A31

—
T

–
A

—
T

–
S

R/
—

W

space

address

data

Vcc

empty

slave

select

decode

—
H

–
R

—
H

–
S

—
H

–
A

A2–A5

—
T

–
S

R/
—

W

D0–D31

DMA Request

Host → Memory
DMA Transfer

Host Data Full

Figure 7-17. DSP96002 to DSP96002 Data Write

(HRDF=1)

Transmit Data
Empty (TXDE=1)
MOTOROLA DSP96002 USER’S MANUAL 7 - 33

where this pin is defined as a DMA service request input. When
—

H
–
R is asserted, the master DMA Con-

troller transfers the data word from the external address that selects the RX register in the slave’s HI to a

master memory location. After RX is read (negating
—

H
–
R), the HI may transfer the next data word from

the HI HTX register, setting HTDE and RXDF. Setting RXDF causes
—

H
–
R to be asserted if RREQ is set.

In the slave’s DMA Controller, HTDE is defined as a DMA service request signal. When HTDE is asserted,
the slave’s DMA Controller initiates a data transfer from the slave memory to the HTX register, keeping the
register full for further data transfers.

 7.4.20 External DMA Controller to DSP96002 Data Transfers - Examples
This section presents examples showing the use of the HI and the on-chip DMA Controller for data transfers
between a DSP96002 and an external DMA Controller. The external DMA Controller is the bus master and
the DSP96002 is the bus slave. The external DMA Controller accesses the DSP96002 HI without supplying
an address to select a HI register. Note that the HI is programmed to work in the DMA Mode (DMAE=1).

 7.4.20.1 Data Write Using the DSP96002 On-Chip DMA Controller
This example outlines the steps that an external DMA Controller, the bus master, takes to transfer data to
a DSP96002 bus slave, thorough the slave’s HI. The on-chip DMA Controller of the DSP96002 is used to
locally transfer data between the HI and the DSP96002 memory without interfering with core processing.
The TREQ and RREQ bits in the ICS register must be programmed to define the direction of data transfer
as being from the external DMA Controller to the HI (TREQ=1, RREQ=0). The TYEQ bit in the ICS register

DSP96002 Bus Master
DMA Destination

DSP96002 Bus Slave
DMA Source

DMA Request

Bus Master

Read Bus Cycle
into Memory

—
I
—

R
–
Q

S1, S0

A0–A31

—
T

–
A

—
T

–
S

R/
—

W

space

address

data

Vcc

full

slave
select

decode

—
H

–
R

—
H

–
S

—
H

–
A

A2–A5

—
T

–
S

R/
—

W

D0–D31

DMA Request

Memory → Host
DMA Transfer

Host Data Empty

Figure 7-18. DSP96002 to DSP96002 Data Read

Receive Data Full
(RXDF=1)

(HTDE=1)
7 - 34 DSP96002 USER’S MANUAL MOTOROLA

should be cleared. Figure 7-19 contains a diagram showing the data paths and control lines used for the
data transfers.

A data write transfer is initiated when the slave’s
—

H
–
R signal is asserted, indicating that its HI TX register

is empty and ready to receive a data word from the master.
—

H
–
R is connected to a

—
R

—
E

–
Q pin in the

master which is a DMA service request input. When
—

H
–
R is asserted, the external DMA Controller trans-

fers the data word from memory to the TX register in the HI. The TX register is written by asserting
—

H
–
A

and TREQ=1 and RREQ=0. After TX is written (negating
—

H
–
R), the data is transferred by the HI to the

HRX register, setting HRDF and TXDE. Setting TXDE causes
—

H
–
R to be asserted since TREQ is set. In

the slave’s on-chip DMA Controller, HRDF is defined as a DMA service request signal. When HRDF is set,
the slave’s on-chip DMA Controller initiates a data transfer from HRX to the slave memory, completing the
data transfer.

 7.4.20.2 Data Read Using the DSP96002 On-Chip DMA Controller
This example outlines the steps that an external DMA Controller, the bus master, takes to transfer data from
a DSP96002 bus slave, thorough the slave’s HI. The on-chip DMA Controller of the DSP96002 is used to
locally transfer data between the HI and the DSP96002 memory without interfering with core processing.
The TREQ and RREQ bits in the ICS register must be programmed to define the direction of data transfer
as being from the HI to the external DMA Controller (TREQ=0, RREQ=1). The TYEQ bit in the ICS register
should be cleared. Figure 7-20 contains a diagram showing the data paths and control lines used for the
data transfers.

External DMA Controller
Bus Master

DSP96002
Bus Slave

DMA Request

Bus Master

Write Bus Cycle
from Memory

—
R

—
E

–
Q

data

empty —
H

–
R

—
H

–
A

D0–D31

DMA Request

Host → Memory
DMA Transfer

Host Data Full

Figure 7-19. External DMA to DSP96002 Data Write

—
A

—
C

–
K

Transmit Data
Empty (TXDE=1)

(HRDF=1)
MOTOROLA DSP96002 USER’S MANUAL 7 - 35

A data read transfer is initiated when the slave’s
—

H
–
R signal is asserted, indicating that its HI RX register

is full and the data is ready to be read by the external DMA Controller.
—

H
–
R is connected to a

—
R

—
E

–
Q

pin in the master which is a DMA service request input. When
—

H
–
R is asserted, the external DMA Con-

troller transfers the data word from the RX register in the slave’s HI to a memory location. The RX register

is read by asserting
—

H
–
A and TREQ=0 and RREQ=1. After RX is read (negating

—
H

–
R), the HI may

transfer the next data word from the HI HTX register, setting HTDE and RXDF. Setting RXDF causes
—

H
–

R to be asserted since RREQ is set. In the slave’s on-chip DMA Controller, HTDE is defined as a DMA ser-
vice request signal. When HTDE is asserted, the slave’s on-chip DMA Controller initiates a data transfer
from the slave memory to the HTX register, keeping the register full for further data transfers.

 7.4.21 HI Performance Analysis and Programming Examples
The following host programming examples show the software needed to support Master-Slave transfers be-
tween two DSP96002s. Master processor load, the minimal transfer cycle, and the overhead are estimated.
These estimates can vary depending on the addressing mode. In most cases the fastest addressing mode
possible was used. Also, it was assumed that the master processor did not loose the bus in the middle of
host activity. The HI registers are accessed by the host processor with 0 wait states.

External DMA Controller
Bus Master

DSP96002
Bus Slave

DMA Request

Bus Master

Read Bus Cycle
into Memory

—
R

—
E

–
Q

data

full —
H

–
R

—
H

–
A

D0–D31

DMA Request

Memory → Host
DMA Transfer

Host Data Empty

—
A

—
C

–
K

Figure 7-20. DSP96002 to External DMA Data Read

(HTDE=1)

Receive Data Full
(RXDF=1)
7 - 36 DSP96002 USER’S MANUAL MOTOROLA

 7.4.21.1 Semaphore Control
Whenever a host transfer is to be executed, the host processor must first obtain ownership of the slave’s
HI. This is done by semaphore control. The following is an example of code used by the host processor to
obtain ownership of the HI. The LSB bit of the SEM register is used as a semaphore bit:

 clock

 words cycles

SEMA BSET #0,Y:SEMR 1 4
 JCS SEMA 1 4
 start host activity

 .

 .

 .
 end of host activity
 BCLR #0,Y:SEMR 1 4

The BSET instruction tests the semaphore bit and then sets the bit before releasing the bus. If (1) the bit
was already set when tested, the slave is being used by another master and this master enters a loop wait-
ing for the other master to finish and clear the semaphore bit. If (2) the bit was zero when tested, the slave
was available and the master can continue to access the slave. Setting the bit with the BSET instruction
signals other masters that the slave is now unavailable. After completing the host activity, the current master
clears the semaphore bit to allow other masters to access this slave. The minimal overhead for one host
transfer is 3 program words and 12 clock cycles. This procedure is not necessary when there can be only
one bus master.

 7.4.21.2 Host Command Register Read
In this example, both master and slave are DSP96002s. HCVR points to the address of the selected slave

CVR register (
—

H
–
S=0,

—
H

–
A=1, A5-A2=1101). The master executes the following instruction:

 MOVE Y:HCVR,R0

 7.4.21.3 Host Command Register Write

In this example, both master and slave are DSP96002s. HCVR points to the slave CVR register (
—

H
–

S=0,
—

H
–
A=1, A5-A2=1101). It is recommended to verify, before initiating the Host Command, that the previous

host command has been executed (HC bit is cleared). The master executes the following instructions:

HCMD BRSET 15,Y:HCVR,HCMD ;testing of HC
 MOVE R0,Y:HCVR
MOTOROLA DSP96002 USER’S MANUAL 7 - 37

 7.4.21.4 ICS Register Read

HICSR points to the slave ICS register (
—

H
–
S=0,

—
H

–
A=1, A5-A2=1000). The master executes the follow-

ing instruction:
 MOVE Y:HICSR,R0

 7.4.21.5 ICS Register Write

HICSR points to the slave ICS register (
—

H
–
S=0,

—
H

–
A=1, A5-A2=1000). The master executes the follow-

ing instruction:

 MOVE R0,Y:HICSR

 7.4.21.6 68K Interrupt Acknowledge Sequence
The MC680x0 interrupt acknowledge sequence is as follows:

1. When there is a pending interrupt the 68K must first determine the starting location of the in-
terrupt service routine. The 68K supports the acquisition of this information with the interrupt
acknowledge cycle.

2. The 68K interrupt controller generates in response the IACK signal to the interrupting device

(96K in this case), which is connected to the 96K —H–A pin.

3. The interrupting device places the vector number on the bus in response to IACK signal from
the interrupt controller.

Figure 7-21 shows a flowchart of 68K interrupt acknowledge sequence.

 7.4.21.7 IVR Register Read

In this example, the master and slave are two DSP96002s. HIVR points to the slave IVR register (
—

H
–
S=0,

—
H

–
A=1, A5-A2=1100). The master executes the following instruction:

 MOVE Y:HIVR,R0
7 - 38 DSP96002 USER’S MANUAL MOTOROLA

 7.4.21.8 68K Interrupt Register Write

HIVR points to the slave IVR register (
—

H
–
S=0,

—
H

–
A=1, A5-A2=1100). The master executes the follow-

ing instruction:

 MOVE R0,Y:HIVR

 7.4.21.9 X/Y/P Memory Write Procedure
The X/Y/P Memory Write procedure enables the host processor to write a data word D into an arbitrary ad-
dress A located in the DSP96002 memory space. The host processor must execute the following steps:

1. Verify that TX is empty (TXDE=1).

2. Write A into the TX register using the host function "TX register write and X/Y/P Memory Write
Interrupt". If HRX is empty, the HI then transfers A to HRX automatically.

3. Verify that TX is empty (TXDE=1).

4. Write D into the TX register using the host function "TX register write and X/Y/P Memory Write
Interrupt". This second write initiates the X/Y/P Memory Write interrupt.

 MC680x0 PROCESSOR INTERRUPTING DEVICE - DSP96002

 Acknowledge Interrupt Request Interrupt

 1.Compare Interrupt Request Level
 with Interrupt Mask.

 2.Set R/
—
W to Read.

 3.Set Function Code to CPU Space
 and output IACK address.

 4.Assert Address Strobe (
—
A
–
S) and

 Data Strobe (
—
D
–
S). Provide 68K Vector

 Place IVR contents on

 Data Bus in response

 Acquire vector number to
—
H
–
A=0 &

—
T
–
S=0, when

—
H
–
R=0.

 1.Latch Vector Number

 2.Deassert
—
D
–
S and

—
A
–
S

 Start Interrupt Processing

Figure 7-21. 68K Interrupt Acknowledge Sequence
MOTOROLA DSP96002 USER’S MANUAL 7 - 39

5. In the DSP96002 side, the X/Y/P Memory Write interrupt vector should point to a routine that
first reads HRX to get the address A, stores A in an address pointer Rn, and then again reads
HRX to retrieve the data D and store D into the DSP96002 memory location pointed by Rn.

6. The host processor may test TRDY to see if both A and D were removed from the input double
buffer (TX/HRX).

Figure 7-22 shows a flowchart for X Memory Write.

The following code is executed by the master processor. The R3 register contains the address needed for
selecting the "TX register write and X Memory Write interrupt" host function in the slave HI, as defined in
Figure 7-12. The R4 register contains the address needed for reading the ICS register of the slave HI. The
R1 register contains the target X memory address. The R0 register contains the data to be written to the
target X memory address. The master executes the following instructions:

 DSP96002 MASTER PROCESSOR DSP96002 SLAVE PROCESSOR

 Semaphore Control Semaphore Register (SEM)

 1.Set Semaphore in slave’s
 Semaphore Register using
 BSET Instruction.
 2.If Semaphore was set before
 repeat step 1 else continue

 X Memory Write Interrupt/Status Register

 1.Check if the slave’s TX
 register is empty (TXDE=1)
 2.If TXDE=0
 repeat step 1 else continue
 3.Write the X memory address
 to the slave’s "TX register
 + X Memory Write Interrupt"

 (—H–S=0, —H–A=1, A5-A2=0010)
 4.Check if the slave’s TX
 register is empty (TXDE=1)
 5.If TXDE=0
 repeat step 4 else continue
 6.Write the data
 to the slave’s TX register
 + X Memory Write Interrupt

 (—H–S=0, —H–A=1, A5-A2=0010) X Memory Write Interrupt Pend

 Start Interrupt Processing

 1.Move contents of Host HRX
 Register to AGU Register:
 When was interrupt serviced? MOVEP X:HRX,Rn
 2.Move contents of Host HRX
 If both address and data are Register to X Memory Addr:
 read from HRX, TRDY = 1. MOVEP X:HRX,X:(Rn)

Figure 7-22. X Memory Write Procedure
7 - 40 DSP96002 USER’S MANUAL MOTOROLA

 clock
 words cycles
_LOOP1 JCLR #TXDE,X:(R4),_LOOP1 2 6
 MOVE R1,X:(R3) 1 2
_LOOP2 JCLR #TXDE,X:(R4),_LOOP2 2 6
 MOVE R0,X:(R3) 1 2
 6 16

The minimal memory write is 6 program words and 16 clock cycles. The second move triggers the X Mem-
ory Write interrupt request in the slave. The interrupt service routine in the slave takes 10-14 clock cycles
to execute. If there are other interrupts with higher priority the response to this interrupt may be delayed.

A somewhat faster procedure may be employed by ensuring that sufficient time has elapsed after the writing
the address to TX before writing the data to eliminate testing for TXDE=1 as above:

 clock
 words cycles
_LOOP JCLR #TRDY,X:(R4),_LOOP 2 6
 MOVE R1,X:(R3) 1 2
 NOP 1 2
 MOVE R0,X:(R3) 1 2
 5 12

This procedure requires 5 program words and 12 clock cycles. The NOP instruction provides the necessary
elapse time between two consecutive TX writes if both master and slave processors are being fed the same
clock frequency and duty cycle, otherwise a second NOP instruction should be added to the above code.

 7.4.21.10 X/Y/P Memory Read Procedure
The X/Y/P Memory Read procedure enables the host processor to read a data word D from an arbitrary
address A located in the DSP96002 memory space. The host processor must execute the following steps:

1. Verify that TX is empty (TXDE=1).

2. Write A into the TX register using the host function "TX register write and X/Y/P Memory Read
Interrupt". This sets HMRC. If HRX is empty, the HI then transfers A to HRX automatically and
initiates the X/Y/P Memory Read interrupt.

3. In the DSP96002 side, the X/Y/P Memory Read interrupt vector should point to a routine that
first reads HRX to get the address A, stores A in an address pointer Rn, reads the memory
location pointed to by Rn, and stores the data D in the HTX register using the HTXC address.
The data D passes to the RX register (host processor side), HMRC is cleared and RXDF is set

(this may assert —H–R).
MOTOROLA DSP96002 USER’S MANUAL 7 - 41

4. The host processor polls the ICS register until HMRC is cleared and then reads the data D from
the RX register.

Figure 7-23 shows a flowchart for X Memory Read.

Following is the code executed by the master processor. The R3 register contains the address needed for
selecting the "TX register write and X Memory Read interrupt" host function in the slave HI, as defined in
Figure 7-12. The R4 register contains the address needed for reading the ICS register of the slave HI. The
R1 register contains the target X memory address. The R2 register contains the address needed for reading
the RX register of the slave HI. The required data word is finally stored in D0.s. The master executes the
following instructions:

 clock
 words cycles
_LOOP1 JCLR #TXDE,X:(R4),_LOOP1 2 6
 MOVE R1,X:(R3) 1 2

_LOOP2 JCLR #HMRC,X:(R4),_LOOP2 2 6
 MOVE X:(R2),D0.S 1 2
 6 16

 96K MASTER PROCESSOR 96K SLAVE PROCESSOR

 Semaphore Control Semaphore Register (SEM)

 1.Set Semaphore in slave’s
 Semaphore Register using
 BSET Instruction.
 2.If Semaphore was set before
 repeat step 1 else continue

 X Memory Read Interrupt/Status Register

 1.Check if the slave’s TX
 register is empty (TXDE=1)
 2.If TXDE=0
 repeat step 1 else continue
 3.Write the X memory address
 to the slave’s TX register
 + X Memory Read Interrupt

 (—H–S=0, —H–A=1, A5-A2=0011) HMRC=1 in ICS
 X Memory Read Interrupt Pend

 Start Interrupt Processing

 1.Write contents of Host HRX
 HMRC Polling Register to AGU Register:
 MOVEP X:HRX,Rn
 1.Check if HMRC=0 in slave’s 2.Read contents of X Memory
 ICS register Address to Host HTXC reg:
 2.If HMRC=1 then repeat 1 MOVEP X:(Rn),X:HTXC
 else read RX register 3.HTX -→ RX and HMRC=0

Figure 7-23. X Memory Read Procedure
7 - 42 DSP96002 USER’S MANUAL MOTOROLA

The minimal memory read procedure is 6 program words and 16 clock cycles. The first move triggers the X
Memory Read interrupt request in the slave. The interrupt service routine in the slave takes 8-12 clock cy-
cles to execute. If there are other interrupts with higher priority the response to this interrupt may be delayed.
Only then can the master continue with the second move to read the data.

 7.4.21.11 DSP96002 to DSP96002 Transfers Using On-Chip DMA Controllers
Data transfers done by the on-chip DMA Controllers do not require intervention by the core. Since the DMA
has dedicated internal data paths and internal memory slots, no penalty is imposed on execution time of the
core processing. However, there is overhead associated with the initialization procedure for the on-chip
DMA channels. The following initialization steps have to be done:

1. The master verifies that the slave DMA channel is free by reading the DMA channel Control/
Status register. This can be done using the X Memory Read procedure. If the DMA channel is
dedicated to this transfer, this step may be bypassed.

2. The master initializes the slave DMA channel. This can done by X Memory Write procedures
or more efficiently using a predefined Host Command. If repetitive DMA transfers of data
blocks to a predefined address region will be done, the Host Command routine will contain just
two instructions: enable DMA channel and load the DMA Counter register.

3. The master initializes its own DMA channel.

4. The master initializes the slave HI.

The entire initialization process may take from less than 12 cycles up to more than a hundred cycles.

For example, in block DMA transfers in a linear array of 96Ks (transferring data only in one direction to fixed
predefined addresses), the initialization procedure may be executed only once. Each DMA block transfer
will demand just a DMA enable (bit set) and DMA Counter load for both master and slave processors. This
may be done in 8-12 cycles using fast interrupts.

The initialization process for system configuration with one master and N slaves is not much longer. If the
master makes "constant" DMA transfers then it may have N predefined interrupts while each slave DMA
has fixed control register setup. In this case, initialization may be done in less than 20 cycles.

 7.5 DMA CONTROLLER

 7.5.1 Introduction
The Direct Memory Access (DMA) Controller is an on-chip device that permits data transfers between any
two locations in any combination of memory spaces, without intervention of the DSP96002 core. Due to ded-
icated DMA buses and dual-access internal memories, a high level of isolation is achieved where the DMA
operation does not interfere or slow down the core operation. The DMA Controller has two channels, each
with its own register set. The DMA Controller registers are read/write registers memory-mapped in the in-
ternal I/O memory space (the highest 128 locations in X memory).
MOTOROLA DSP96002 USER’S MANUAL 7 - 43

The table in Figure 7-24 shows the data transfers that the DMA Controller is capable of. The number of cy-
cles specified in the Figure 7-24 notes are for the operation of one channel using a continuous block trans-
fer.

 DMA data transfers Notes
 Int. mem Int. mem (different memory space) #1
 Int. mem Int. mem (same memory space) #2
 Ext. mem Int. mem (different memory space) #1
 Ext. mem Int. mem (same memory space) #2
 Ext. mem Ext. mem #3
 Int. mem Int. I/O (different memory space) #1
 Int. mem Int. I/O (same memory space) #2
 Ext. mem Int. I/O (different memory space) #1
 Ext. mem Int. I/O (same memory space) #2
 Int. I/O Int. I/O #2

Figure 7-24. Direction of DMA Data Transfers
Notes:

1. Two clock cycles for every word.

2. Four clock cycles for every word (the same address bus is used for source and destination).

3. Four clock cycles for every word.
7 - 44 DSP96002 USER’S MANUAL MOTOROLA

 7.5.2 DMA Controller Programming Model
The registers comprising the DMA Controller are shown in Figure 7-25 and Figure 7-26.

 DMA Source Modifier Register
 DSM0
 addr X:$FFFFFFDF
 DMA Source Address Register
 DSR0
 addr X:$FFFFFFDE
 DMA Source Offset Register
 DSN0
 addr X:$FFFFFFDD
 DMA Destination Modifier Register
 DDM0
 addr X:$FFFFFFDB
 DMA Destination Address Register
 DDR0
 addr X:$FFFFFFDA
 DMA Destination Offset Register
 DDN0
 addr X:$FFFFFFD9
 DMA Counter
 DCO0
 addr X:$FFFFFFDC

 31 30 29 28 27 26 25 24 DMA Control/Status Register
 DCS0
 DE DIE * DTD * DTM1 DTM0 DMAP addr X:$FFFFFFD8

 23 22 21 20 19 18 17 16

 DCP * * * * * * *

 15 14 13 12 11 10 9 8

 * M6 M5 M4 M3 M2 M1 M0

 7 6 5 4 3 2 1 0

 * * DSS2 DSS1 DSS0 DDS2 DDS1 DDS0

Figure 7-25. DMA Controller Programming Model - Channel 0

31 0
MOTOROLA DSP96002 USER’S MANUAL 7 - 45

 7.5.3 DMA Control/Status Register (DCS)
The DMA Control/Status Register (DCS) is a 32-bit read/write register that controls the DMA operation.
Each bit is described in the following paragraphs.

 DMA Source Modifier Register
 DSM1
 addr X:$FFFFFFD7
 DMA Source Address Register
 DSR1
 addr X:$FFFFFFD6
 DMA Source Offset Register
 DSN1
 addr X:$FFFFFFD5
 DMA Destination Modifier Register
 DDM1
 addr X:$FFFFFFD3
 DMA Destination Address Register
 DDR1
 addr X:$FFFFFFD2
 DMA Destination Offset Register
 DDN1
 addr X:$FFFFFFD1
 DMA Counter
 DCO1
 addr X:$FFFFFFD4

 31 30 29 28 27 26 25 24 DMA Control/Status Register
 DCS1
 DE DIE * DTD * DTM1 DTM0 DMAP addr X:$FFFFFFD0

 23 22 21 20 19 18 17 16

 DCP * * * * * * *

 15 14 13 12 11 10 9 8

 * M6 M5 M4 M3 M2 M1 M0

 7 6 5 4 3 2 1 0

 * * DSS2 DSS1 DSS0 DDS2 DDS1 DDS0

Figure 7-26. DMA Controller Programming Model - Channel 1

31 0
7 - 46 DSP96002 USER’S MANUAL MOTOROLA

 7.5.3.1 DCS DMA Destination Space Control (DDS2-DDS0) Bits 0,1,2
The DMA Destination Space control bits (DDS2-DDS0) specify the memory or I/O space that will be refer-
enced as destination by the DMA. The DDS2-DDS0 bits are cleared by Hardware and Software Reset.

 7.5.3.2 DCS DMA Source Space Control (DSS2-DSS0) Bits 3,4,5
The DMA Source Space control bits (DSS2-DSS0) specify the memory or I/O space that will be referenced
as source by the DMA. The DSS2-DSS0 bits are cleared by Hardware and Software Reset.

 7.5.3.3 DCS Reserved Bits (Bits 6, 7, 15-22, 27, 29)
These bits read as zero and should be written with zero for future compatibility.

 7.5.3.4 DCS DMA Request Masks (M0-M6) Bits 8-14
The DMA Request mask bits select the source of DMA requests used to trigger DMA transfers. If a mask
bit is set, the corresponding device is selected as the DMA request source. If the mask bit is cleared, the
device is ignored. The DMA request sources may be the internal peripherals or external devices requesting

service through the
—

I
—

R
—

Q
–
A,

–
I
—

R
—

Q
–
B and

–
I
—

R
—

Q
–
C pins. The external inputs behave as edge-

triggered synchronous inputs. The mask bits are cleared by Hardware and Software Reset. The internal
DMA request sources are produced by ANDing the internal peripheral status bits with DE.

Each requesting device input is first individually ANDed with its respective mask bit (M0,M1,etc) and then
all AND outputs are ORed together. The OR output goes to the edge-triggered latch whose output initiates

DDS2 DDS1 DDS0 DMA Destination Memory Space
 0 0 0 Internal Program Memory
 0 0 1 Internal X Data Memory
 0 1 0 Internal Y Data Memory
 0 1 1 Internal I/O (X Memory Space)

 1 0 0 External Program Memory
 1 0 1 External X Data Memory
 1 1 0 External Y Data Memory
 1 1 1 External I/O (Y Memory Space)

DSS2 DSS1 DSS0 DMA Source Memory Space
 0 0 0 Internal Program Memory
 0 0 1 Internal X Data Memory
 0 1 0 Internal Y Data Memory
 0 1 1 Internal I/O (X Memory Space)

 1 0 0 External Program Memory
 1 0 1 External X Data Memory
 1 1 0 External Y Data Memory
 1 1 1 External I/O (Y Memory Space)
MOTOROLA DSP96002 USER’S MANUAL 7 - 47

the DMA transfer. If an input is unmasked, asserting that input will set the latch and initiate a DMA transfer.
The DMA state machine clears the latch when accessing the DMA source address. If more than one re-
questing device input is enabled, the first edge on any input is latched and triggers a DMA transfer, and any
other edge that appears before the latch is cleared will be ignored.

 7.5.3.5 DCS DMA Channel Priority (DCP) Bit 23
The DMA Channel Priority (DCP) bit contains the priority level of the DMA channel relative to the other DMA
channel. When DMA transfers are pending, the DMA Channel Priority of both channels are compared to
decide which channel will be activated. This decision must be made since both channels use common re-
sources such as the DMA ALU, and the address buses. DCP is cleared by Hardware and Software Reset.

If both channels have the same priority then the channels will be active in a round-robin fashion: Channel 0
will be activated to transfer a single data word, followed by Channel 1.

If the channel priorities are different, the channel with highest priority will start executing DMA transfers and
will remain doing so as long as there are DMA transfers pending. In the event that the lower priority channel
is executing DMA transfers when the higher priority channel receives a transfer request, the lower priority
channel will finish the transfer of the current data word and arbitration will again occur.

 7.5.3.6 DCS DMA Priority (DMAP) Bit 24
This bit permits setting the DMA priority relative to the core when an external bus access is required. The
priority determines, in case of contention between the core and the DMA Controller, whether the DMA will
wait or not. If DMAP is cleared, then the DMA will wait until a free slot is available on the external bus. If
DMAP is set, the core cycle will be stretched and both core and DMA will access during the same cycle.
DMAP is cleared by Hardware and Software Reset.

DMA Request
Mask BitRequesting Device

 M0 External (–I—R—Q–A pin)

 M1 External (–I—R—Q–B pin)

 M2 External (–I—R—Q–C pin)
 M3 Port A Host Receive Data (HRDF=1)
 M4 Port A Host Transmit Data (HTXE=1)
 M5 Port B Host Receive Data (HRDF=1)
 M6 Port B Host Transmit Data (HTXE=1)

DCP DMA Channel Priority
 0 Priority 0
 1 Priority 1

DMAP External Access Priority
 0 Core
 1 Equal
7 - 48 DSP96002 USER’S MANUAL MOTOROLA

 7.5.3.7 DCS DMA Transfer Mode – (DTM1–DTM0) Bits 25,26
DMA Transfer Mode bits (DTM1-DTM0) specify the mode of operation of the DMA channel. DTM1-DTM0
are cleared by Hardware and Software Reset.

When DTM1-DTM0=00, a single block is transferred, the length of the block is determined by the counter,
the transfer is initiated by setting the DE bit, and the transfer is completed when the counter decrements to
zero.

When DTM1-DTM0=01, a single block is transferred, the length of the block is determined by the counter,
the transfer is initiated by the first DMA request after DE is set to 1, and the transfer is completed when the
counter decrements to zero.

When DTM1-DTM0=10, a single block is transferred, the length of the block is determined by the counter,
each DMA request will transfer a single word while DE=1, and the transfer is completed when the counter
decrements to zero.

When DTM1-DTM0=11, a single word is transferred each time a DMA request is received while DE=1. The
counter is ignored in this mode.

 7.5.3.8 DCS DMA Transfer Done Status (DTD) Bit 28
The read-only DMA Transfer Done Status bit is set when the last word during a Single Block transfer is
stored in the destination, stopping DMA operation. At the same time, DE will be cleared. The last transfer is
defined as the one where the DMA Counter reaches zero, or the transfer being done when the DE bit is
cleared by the core. If DIE is set (DMA Interrupt enabled), then DTD=1 will cause a DMA interrupt request.
When the DMA Interrupt is disabled (DIE=0), the core may verify the DMA status by polling this bit. DTD is
set by Hardware and Software Reset. DTD is cleared by setting DE.

 7.5.3.9 DCS DMA Interrupt Enable Control Bit (DIE) Bit 30
When the DMA Interrupt Enable (DIE) bit is set, the DMA interrupt occurs when DTD is set. When DIE is
cleared, the DMA interrupt is disabled. Cleared by Hardware and Software Reset.

 7.5.3.10 DCS DMA Channel Enable Control Bit (DE) Bit 31
The DE bit enables DMA Controller operation. Setting DE will clear DTD. Setting DE will trigger a single
block DMA transfer if DTM1-DTM0=00. Setting DE will enable transfers in DMA modes that use a request-
ing device as trigger. DE is cleared by Hardware and Software Reset, and by end of DMA transfer if a Single

DTM1 DTM0 Transfer Mode
 0 0 Single Block, Trig. by DE Bit, DMA Request Ignored
 0 1 Single Block, Trig. by First DMA Request
 1 0 Single Block, Word Transfer Trig. by DMA Request
 1 1 Single Word, Triggered by DMA Request

DIE DMA Interrupt
 0 Disabled
 1 Enabled
MOTOROLA DSP96002 USER’S MANUAL 7 - 49

Block transfer mode is selected. Clearing DE during DMA operation will stop the DMA only after the present
DMA transfer has been completed (the data is stored in the destination), setting DTD.

 7.5.4 DMA Counter (DCO)
The DMA Counter is a read/write 32-bit register that contains the number of DMA data transfers to be done.
If the DMA channel is set to Single Block transfer mode then, after each DMA data transfer, the DMA
Counter is decremented by one and tested for zero. When the count reaches zero, the DMA Block transfer
is done and the DMA channel will stop the data transfers. If the channel is set to Single Word mode (DTM1-
DTM0=11), the contents of the DMA counter are ignored since each DMA data transfer is done on demand.

The DMA Counter should not be written while the DMA channel is operating in one of the Block Transfer
modes. The DMA Counter may be written only when the channel is disabled (DE=0 and DTD=1), or when
in Single Word mode (DTM1-DTM0=11).

 7.5.5 DMA Address Registers (DSR and DDR)
The DMA Source Address register (DSR) and the DMA Destination Address register (DDR) are two 32-bit
registers that contain the addresses of the source and destination, respectively, for the next DMA transfer.
The DMA Address registers are functionally identical to the Address Generation Unit address registers.

 7.5.6 DMA Offset Registers (DSN and DDN)
The DMA Source Offset register (DSN) and the DMA Destination Offset register (DDN) are two 32-bit reg-
isters that specify the offset values used to update the respective DMA address registers. Each offset reg-
ister is read when the associated address register is read and used as input to its modulo arithmetic unit.
The DMA Offset registers are functionally identical to the Address Generation Unit offset registers.

 7.5.7 DMA Modifier Registers (DSM and DDM)
The DMA Source Modifier register (DSM) and the DMA Destination Modifier register (DDM) are two 32-bit
registers that specify the type of arithmetic used to update the respective DMA address register during DMA
address register update calculations. Each modifier register is read when the associated address register
is read and used as input to its modulo arithmetic unit. The DMA Modifier registers are functionally identical
to the Address Generation Unit modifier registers. Both DMA modifier registers are set to $FFFFFFFF (lin-
ear arithmetic) during a processor reset or software reset.

 7.5.8 DMA ALU
The ALU is common to the DMA and Address Generation Unit, and time multiplexed between them. The
DMA ALU is hardwired in the (R)+N configuration. Users can increment or decrement by 1 or N by loading
the DMA Offset registers accordingly. For example, DMA block transfers with DSP96002 word addressable
memory would often load the DMA Offset register with +1. However, interpolation, decimation, and commu-
tation operations could require an arbitrary address offset value N. DMA block transfers with byte address-

DE DMA Operation
 0 Disabled
 1 Enabled
7 - 50 DSP96002 USER’S MANUAL MOTOROLA

able memory would typically load the Offset register with +4 to perform 32-bit aligned accesses. DMA trans-
fers to/from I/O peripherals would load the Offset register with zero to continuously access the same ad-
dress.

 7.5.9 DMA Addressing Modes
The DMA Controller may be programmed for address calculation and updates in the same manner as the
registers in the Address Generation Unit. The DMA Modifier registers are completely identical to the Modifier
registers M0-M7. In this way, the DMA source and/or destination address registers may be updated using
linear, bit-reverse or modulo address calculations. See Section 5.8 for a description of how to program the
Modifier registers.

 7.5.10 DMA Restrictions
The following are some restrictions that apply to the DMA operation:

1. Source/Destination address area must be wholly internal or external. The DMA cannot handle
blocks of data that are partially internal and partially external. These blocks must be handled as
two separate blocks, one internal and the other external.

If the Source/Destination address area is defined as internal, and an address that is greater than
the highest internal address is generated by the DMA ALU, the address will wrap around into
the internal address space.

If the Source/Destination address area is defined as external, and an address that is less than
the lowest external address is generated by the DMA ALU, the address will access external
memory anyway. Note that X and Y Data Memory locations that are always considered as in-
ternal by the core may be accessed as external memory locations by the DMA.

2. WAIT and STOP will halt DMA transfers. STOP and WAIT may disable the internal clock in the
middle of a DMA transfer. The user should stop DMA transfers before executing the STOP or
WAIT instructions. To stop DMA transfers, DE must be cleared. Before executing the STOP or
WAIT instruction, the user should poll the DTD bit (or receive a DMA interrupt when DTD is set)
to ensure that the present DMA transfer has been completed.

Note that the use of these instructions already require some kind of software management in
multiprocessing systems, since there is no way that the external devices could know that the
chip entered the STOP or WAIT state.

3. Only the Host Transmit/Receive Data registers may be accessed by the DMA Controller when
specifying source or destination in the internal I/O space.

4. During any (internal or external) read-modify-write core access, the DMA is not permitted to
complete or initiate any DMA transfer. The DMA is halted as if it is trying to access an external
bus and it is not the bus master.

5. Cases where DMA operation is affected:

1. If the core is accessing external memory thorough both ports simultaneously, and one or
both of the core accesses are delayed due to memory wait, internal DMA transfers will be
delayed because the chip clock is generating wait states, freezing internal activity.

2. If the core is doing one external access and the DMA is also doing an external access
thorough the other port, and the DMA access is delayed (for example, due to wait states),
the access by the core in the other port is not affected. The DMA has a separate wait
mechanism, and in this case the core continues normal execution since the core clock
does not enter wait states.
MOTOROLA DSP96002 USER’S MANUAL 7 - 51

3. If the core is doing one external access and the DMA is also doing an external access
thorough the other port, and the core access is delayed, the access by the DMA in the
other port is also delayed. This happens because the chip clock generates wait states and
the whole chip stops. Also, the arbitration between DMA and core cannot continue if the
core is frozen.

4. If one of the DMA channels is accessing external memory thorough a port, and the access
is delayed due to bus arbitration or memory wait, the second DMA channel will also stop,
since the DMA mechanism does not distinguish between the two channels.

5. If the Data ALU is executing a floating point instruction that requires normalization cycles
(IEEE mode with denormalized numbers), the Data ALU may freeze the clock for the other
chip sections including the DMA. In this case, the DMA operation will be slowed down.

 7.6 I/O MEMORY MAP
Internal I/O peripherals occupy the top 128 locations in X memory space. External I/O peripherals occupy
the top 128 locations in Y memory space. Figure 7-27 shows the I/O memory map for the internal I/O pe-
ripherals.
7 - 52 DSP96002 USER’S MANUAL MOTOROLA

 X DATA Memory Space
 $FFFFFFFF IPR - Interrupt Priority Register

 $FFFFFFFE BCRA - Port A Bus Control Register

 $FFFFFFFD BCRB - Port B Bus Control Register

 $FFFFFFFC PSR - Port Select Register

 : RESERVED :

 $FFFFFFF0 Reserved for OnCE Operation (OGDBR)

 $FFFFFFEF HTXA/HRXA - HOSTA HTX/HRX Register

 $FFFFFFEE HTXCA - HOSTA HTX Reg. and HMRC Clear

 $FFFFFFED HSRA - HOSTA Status Register

 $FFFFFFEC HCRA - HOSTA Control Register

 : RESERVED :

 $FFFFFFE7 HTXB/HRXB - HOSTB HTX/HRX Register

 $FFFFFFE6 HTXCB - HOSTB HTX Reg. and HMRC Clear

 $FFFFFFE5 HSRB - HOSTB Status Register

 $FFFFFFE4 HCRB - HOSTB Control Register

 : RESERVED :

 $FFFFFFE0 RESERVED

 $FFFFFFDF DSM0 -DMA CH0 Source Modifier Register

 $FFFFFFDE DSR0 -DMA CH0 Source Address Register

 $FFFFFFDD DSN0 -DMA CH0 Source Offset Register

 $FFFFFFDC DCO0 -DMA CH0 Counter Register

 $FFFFFFDB DDM0 -DMA CH0 Destination Modifier Register

 $FFFFFFDA DDR0 -DMA CH0 Destination Address Register

 $FFFFFFD9 DDN0 -DMA CH0 Destination Offset Register

 $FFFFFFD8 DCS0 -DMA CH0 Control/Status Register

 $FFFFFFD7 DSM1 -DMA CH1 Source Modifier Register

 $FFFFFFD6 DSR1 -DMA CH1 Source Address Register

 $FFFFFFD5 DSN1 -DMA CH1 Source Offset Register

 $FFFFFFD4 DCO1 -DMA CH1 Counter Register

 $FFFFFFD3 DDM1 -DMA CH1 Destination Modifier Register

 $FFFFFFD2 DDR1 -DMA CH1 Destination Address Register

 $FFFFFFD1 DDN1 -DMA CH1 Destination Offset Register

 $FFFFFFD0 DCS1 -DMA CH1 Control/Status Register

 $FFFFFFCF RESERVED

 : RESERVED :

 $FFFFFF80 RESERVED

Figure 7-27. Internal I/O Memory Map
MOTOROLA DSP96002 USER’S MANUAL 7 - 53

7 - 54 DSP96002 USER’S MANUAL MOTOROLA

SECTION 8
EXCEPTION PROCESSING

 8.1 INTRODUCTION
This section describes the actions of the DSP96002 which are outside the normal processing associated
with the execution of instructions. The sequence of actions taken by the DSP96002 on exception conditions
is described. Also, the interrupt priority level (IPL) of the processor and interrupt sources is described.

 8.2 PROCESSING STATES
The DSP96002 is always in one of five processing states: normal, exception, reset, wait, or stop. The nor-
mal processing state is that associated with instruction execution.

 8.2.1 Exception Processing State
The exception processing state is associated with interrupts. Exception processing may be internally gen-
erated by a software interrupt instruction, by an on-chip peripheral hardware interrupt, or by an error con-
dition. Externally, exception processing can be generated by an interrupt. Exception processing provides
an efficient context switch for servicing I/O devices.

 8.2.2 Reset Processing State

The reset processing state is entered in response to the external
—

R
—

E
—

S
—

E
–
T pin being asserted.

Upon entering the reset state the following actions occur:

• Internal peripheral devices are reset and disabled.

• The modifier registers Mn are set to $FFFFFFFF.

• The Interrupt Priority Register (IPR) is cleared.

• All CCR, ER, IER and MR bits are cleared, except for I1 and I0 in the MR register.

• The interrupt mask bits I1,I0 in the MR register are set.

The DSP96002 remains in the reset state until
—

R
—

E
—

S
—

E
–
T is deasserted. Upon leaving the reset

state the chip operating mode bits of the operating mode register are loaded from the external Mode Select
pins (MODA, MODB, MODC) and program execution begins at the location described in Section 9.
MOTOROLA DSP96002 USER’S MANUAL 8 - 1

 8.2.3 Wait Processing State
The wait processing state is a low power consumption mode entered by execution of the WAIT instruction.
In wait mode, the internal clock is disabled from all internal circuitry except the internal peripherals (the in-
terrupt controller and host interfaces). All internal processing is halted until any unmasked interrupt occurs,

the DSP96002 is reset, or
—

D
–
R is asserted. If exit from the wait state was caused by asserting

—
D

–
R,

the processor may enter the debug mode (see Section 10).

 8.2.4 Stop Processing State
The stop processing state is the lowest power consumption mode and is entered by the execution of the
STOP instruction. In the stop mode, the clock oscillator is gated off, in contrast to the wait mode where the
clock oscillator remains active. All activity in the processor is halted until one of the following actions occurs:

 1. A low level is applied to the —I—R—Q–A pin (—I—R—Q–A asserted)

 2. A low level is applied to the —R—E—S—E–T pin (—R—E—S—E–T asserted)

 3. A low level is applied to the —D–R pin.

Either of these actions will gate on the oscillator and, after a clock stabilization delay, clocks to the proces-
sor and peripherals will be re-enabled.

When the clocks to the processor and peripherals are re-enabled then the processor will enter the reset

processing state if the exit from stop state was caused by a low level on the
—

R
—

E
—

S
—

E
–
T pin.

If the exit from stop state was caused by a low level on the
—

I
—

R
—

Q
–
A pin then the processor will service

the highest priority pending interrupt. If no interrupt is pending (i. e.
—

I
—

R
—

Q
–
A was deasserted before

interrupts were arbitrated) then the processor resumes execution at the instruction following the STOP in-
struction that caused the entry into the stop state.

If the exit from stop state was caused by a low level on the
—

D
–
R pin, the processor may enter the debug

mode (see Section 10).

 8.3 EXCEPTION PROCESSING
Exception processing in a digital signal processing environment is primarily associated with transfer of data
between DSP96002 memory or registers and a peripheral device. When an interrupt occurs, a limited con-
text switch must be performed with minimum overhead.

When a hardware interrupt is received, it is synchronized on instruction boundaries so that the first two in-
terrupt instruction words can be inserted into the instruction stream. Suppose that the interrupt is stored
in the interrupt pending latch during the current instruction fetch cycle. During the next cycle, which is the
decode cycle of the current instruction, the PC will be updated to fetch the next instruction. However, in
the following cycle, which is the execution cycle of the current instruction, the address placed on the pro-
gram address bus (PAB) comes from the appropriate interrupt start address, rather than from the PC. Note
that the PC is frozen until exception processing terminates.

Figure 8-1illustrates the effect of the interrupt controller, which is simply to insert two instruction words into
the processor’s instruction stream.
8 - 2 DSP96002 USER’S MANUAL MOTOROLA

 *

 Int ctl cyc1 i i

 Int ctl cyc2 i i

 Fetch n3 n4 ii1 ii2 n5 n6 n7 n8 ii3 ii4

 Decode n2 n3 n4 ii1 ii2 n5 n6 n7 n8 ii3 ii4

 Execute n1 n2 n3 n4 ii1 ii2 n5 n6 n7 n8 ii3

 i = interrupt
 ii = interrupt instruction word
 n = normal single word instruction
 * subsequent interrupts are enabled at this time

Figure 8-1. Interrupt Pipeline Operation
The following one-word instructions are aborted when they are fetched in the cycle preceding the fetch of
the first interrupt instruction word (n4 or n8 in Figure 8-1): Bcc, BRA, BScc, BSR, FBcc, FBScc, FJcc,
FJScc, Jcc, JMP, JScc, JSR, LRA, REP, RESET, RTI, RTR, RTS, STOP, and WAIT.

Two-word instructions are aborted when the first interrupt instruction word fetched will replace the fetch of
the second word of the two word instruction (n5 in Figure 8-2).

Aborted instructions are re-fetched again when program control returns from the interrupt routine. The PC
is adjusted appropriately prior to the end of the decode cycle of the aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word instruction not listed
above or the second word of a two-word instruction, that instruction will complete normally prior to the start
of the interrupt routine.

The following cases have been identified where service of an interrupt might encounter an extra delay:

1. If a long interrupt routine is used to service a (F)TRAPcc interrupt, then the processor priority
level is set to 3. Thus, all interrupts except for illegal instruction and stack error are disabled
until the (F)TRAPcc service routine terminates with an RTI (unless the (F)TRAPcc service
routine software lowers the processor priority level).

2. While servicing an interrupt the next interrupt service will be delayed according to the following
rule:

After the first interrupt instruction word reaches the instruction decoder, at least four more in-
structions will be decoded before decoding the next first interrupt instruction word (see Figure
8-1). If any one pair of instructions being counted is the REP instruction followed by a instruc-
tion to be repeated then the whole "package" is counted as two instructions independently of
the number of repeats done.

3. The following instructions are uninterruptable: ILLEGAL, (F)TRAPcc, STOP, WAIT and RE-
SET.

4. The REP instruction and the instruction being repeated are uninterruptable.

 8.3.1 Interrupt Instruction Fetch
During an interrupt instruction fetch, instruction words are fetched from the interrupt starting address and
interrupt starting address+1 locations.

The interrupt controller generates an interrupt instruction fetch address which points to the first instruction
word of a two-word fast interrupt routine. This address is used for the next instruction fetch, instead of the
PC, and the interrupt instruction fetch address+1 is used for the subsequent instruction fetch. While the
MOTOROLA DSP96002 USER’S MANUAL 8 - 3

interrupt instructions are being fetched, the PC is inhibited from being updated. After the two interrupt
words have been fetched, the PC is used for any following instruction fetches.

After both interrupt instructions words have been fetched, they are guaranteed to be executed. This is true
even if the instruction that is currently being executed is a change of flow instruction (i.e., JMP, JSR, etc.)
that would normally ignore the instructions in the pipe. After the interrupt instruction fetch, the PC will point
to the instruction that would have been fetched if the interrupt instructions had not been substituted.

 8.3.2 Interrupt Instruction Execution
Two types of interrupt routines may be used: fast and long. The fast routine consists of only the two auto-
matically inserted interrupt instruction words. These words can contain any single two-word instruction or
any two one-word instructions, except for restrictions listed in Section A.9.2.1. Interrupt instruction execu-
tion is considered to be fast if neither of the instructions of the interrupt service routine cause a change of
flow. A jump to subroutine within a fast interrupt routine forms a long interrupt. A long interrupt routine is
terminated with an RTI instruction to restore the PC and SR from the stack and return to normal program
execution. Hardware Reset is a special exception which will normally contain only a JMP instruction at the
exception start address.

 8.3.2.1 Fast Interrupt Instruction Execution
Execution of a fast interrupt routine always follows the following rules:

1. Status is not saved during a fast interrupt routine; therefore, instructions which modify status
should not be used.

2. Fast interrupt routines are never interruptible.

3. The fast interrupt routine may contain any single two-word instruction or any two one-word in-
structions, except for restrictions listed in Section A.9.2.1.

4. If one of the instructions in the fast routine is a jump to subroutine, then a long interrupt routine
is formed.

5. The PC is never updated during a fast interrupt routine.

6. Normal instruction fetching resumes using the PC following the completion of the fast interrupt
routine.

Figure 8-3 illustrates the effect of a fast interrupt routine on the instruction pipeline.
8 - 4 DSP96002 USER’S MANUAL MOTOROLA

 *

 Int ctl cyc1 i i

 Int ctl cyc2 i i

 Fetch n3 n4 ii1 ii2 n4 n5 n6 n7 ii3 ii4 n8

 Decode n2 n3 n4 f1 f2 n4 -- n6 n7 f3 f4

 Execute n1 n2 n3 NOP f1 f2 n4 -- n6 n7 f3

 f = fast interrupt instruction word (non-control-flow-change)
 i = interrupt
 ii = interrupt instruction word
 n = normal single word instruction
 n4 = 2-word instruction
 n5 = 2nd word of n4
 * subsequent interrupts are enabled at this time

Figure 8-2. Example of Aborting a Two Word Instruction Fast Interrupt
 *
 Int ctl cyc1 i i

 Int ctl cyc2 i i

 Fetch n3 n4 ii1 ii2 n5 n6 n7 n8 ii3 ii4 n9

 Decode n2 n3 n4 f1 f2 n5 n6 n7 -- f3 f4

 Execute n1 n2 n3 n4 f1 f2 n5 n6 n7 -- f3

 f = fast interrupt instruction word (non-control-flow-change)
 i = interrupt
 ii = interrupt instruction word
 n = normal instruction word
 n7 = 2-word instruction
 n8 = 2nd word of n7
 * subsequent interrupts are enabled at this time
Figure 8-3.
Example Of The Case Of Four Instructions Between Consecutive Vectors
 8.3.2.2 Long Interrupt Instruction Execution
A jump to subroutine instruction within a fast interrupt routine forms a long interrupt routine. One-word or
two-word jump to subroutine instructions may be used to form a long interrupt routine. The one-word jump
to subroutine may be located in either the first or second interrupt vector location. If a conditional one-word
jump to subroutine is located in the first interrupt vector location, the instruction in the second vector loca-
tion will be ignored if the jump condition is true but executed if the jump condition is false. If the one-word
jump to subroutine is located in the second interrupt vector location, the instruction in the first vector loca-
tion will be fetched and executed before executing the jump to subroutine. Execution of a long interrupt
routine always follows the following rules:

1. During execution of the jump to subroutine instruction, when it occurs in the first or second
interrupt vector location, the following actions occur:

1. The PC and SR are stacked.
MOTOROLA DSP96002 USER’S MANUAL 8 - 5

2. The status register is modified as follows: the interrupt mask bits I1, I0 in the MR are up-
dated to mask interrupts of the same or lower priority (except that illegal instruction, stack
error and (F)TRAPcc can always interrupt).

3. The PC will be altered by the JSR instruction so that instruction execution will continue
with the instructions located in the address pointed to by the JSR instruction.

2. Long interrupt routines are interruptible by higher priority interrupts. The first instruction word
of the next interrupt service may reach the decoder only after the decoding of at least four in-
structions following the decoding of the first instruction of the previous interrupt.

3. The long interrupt routine should be terminated by an RTI, which pulls the PC and SR from
the stack.
 Int ctl cyc1 i

 Int ctl cyc2 i

 Fetch n3 n4 ii1 ii2 sr1 sr2 sr3 sr4

 Decode n2 n3 n4 JSRf NOP sr1 sr2 sr3

 Execute n1 n2 n3 n4 JSRf NOP sr1 sr2

 *

 Int ctl cyc1 i

 Int ctl cyc2 i

 Fetch sr5 n5 ii3 ii4 n6 n7 n8 n9

 Decode RTI NOP n5 ii3 ii4 n6 n7 n8

 Execute sr3 RTI NOP n5 ii3 ii4 n6 n7

 i = interrupt
 ii = interrupt instruction word
 JSRf = fast JSR (one-word JSR instruction)
 n = normal instruction word
 sr = service routine word
 * subsequent interrupts are enabled at this time
Figure 8-4 illustrates the effect of a long interrupt routine on the instruction pipeline. A fast JSR (that is, a
one-word JSR instruction) is used to form the long interrupt routine. For this example, word 4 of the long
interrupt routine is an RTI. A subsequent interrupt is shown to illustrate the uninterruptable nature of the
early instructions in the long interrupt routine.

See Figure 8-5 for an example of interrupt service when the instruction that receives the internal interrupt
service request is the REP instruction (n3 in Figure 8-5). During the repeated executions of the instruction
that follows the REP instruction (n4), instruction fetches are suspended. The fetches will be reactivated
only after the loop counter is decremented to one. During the execution of n4, interrupts will not be ser-
viced. When LC finally reaches one, the fetches are reinitiated and the interrupt can be serviced. In Figure
8-5 it can be seen that n5 (loaded into the instruction latch from the backup instruction latch) is decoded
and executed as well as n6 before the first interrupt vector.
Figure 8-4. Long Interrupt Pipeline Action
8 - 6 DSP96002 USER’S MANUAL MOTOROLA

 Int ctl cyc1 i † i*

 Int ctl cyc2 i i

 Fetch n3 n4 n5 n6 ii1 ii2 n7 n8 n9

 Decode n2 REP NOP n4 n4 n5 n6 ii1 ii2 n7 n8

 Execute n1 n2 REP NOP n4 n4 n5 n6 ii1 ii2 n7

 i = interrupt
 ii = interrupt instruction word
 n = normal instruction word
 n3 = REP #2 instruction
 n4 = instruction being repeated twice
 n5 = instruction that waits in the backup instruction latch
 † interrupt rejected at this time
 * interrupt can be reenabled at this time

Figure 8-5.
Example Of Interrupt Service When Interrupt Is Presented To REP Instruction
 8.4 INTERRUPT SOURCES
Exceptions may originate from a number of interrupt sources. The DSP96002 interrupt sources are given
in Figure 8-6. The corresponding interrupt starting addresses for each interrupt source are shown. Inter-
rupt starting addresses are internally-generated 32-bit addresses which point to the starting address of the
fast interrupt service routine. The interrupt starting address for each interrupt is an address constant for
minimum overhead. Motorola reserves 128 interrupt starting address locations, while 128 locations are
reserved for user applications. These locations occupy the lowest 512 words of program memory space,
except for Hardware Reset, which may also occupy a location in the upper range of the program memory
address. If some of this space is not used, it may be used for program storage.

 8.4.1 Internal Peripheral Interrupt Sources
The internal peripheral interrupt sources include all of the on-chip peripheral devices (Host and DMA).
Each internal interrupt source is level sensitive; i.e., each is serviced any time it is present and the interrupt
is not masked. Each internal hardware source has independent enable control.

 8.4.2 Hardware RESET
The Hardware RESET interrupt is level sensitive and is the highest priority 3 interrupt. It is caused by as-

serting the
—

R
—

E
—

S
—

E
–
T pin.

 8.4.3 External Interrupt Requests IRQA, IRQB and IRQC
The IRQA, IRQB and IRQC interrupts can be programmed to be level-sensitive or edge-sensitive. Level-
sensitive interrupts are not internally latched and are not automatically cleared when they are serviced; they
must be cleared by other means to prevent multiple interrupts. The edge-sensitive interrupts are latched as
pending on the high-to-low transition of the interrupt input and are automatically cleared when the interrupt
is serviced. IRQA, IRQB and IRQC can be programmed to one of three priority levels: level 0, 1, or 2, all of
MOTOROLA DSP96002 USER’S MANUAL 8 - 7

Interrupt
Starting
Address interrupt Source

$FFFFFFFE Hardware RESET
$00000000 Hardware RESET
$00000002 Stack Error
$00000004 Illegal Instruction
$00000006 (F)TRAPcc (default)
$00000008 IRQA
$0000000A IRQB
$0000000C IRQC
$0000000E Reserved
$00000010 DMA Channel 1
$00000012 DMA Channel 2
$00000014 Reserved
$00000016 Reserved
$00000018 Reserved
$0000001A Reserved
$0000001C Host A Command (default)
$0000001E Host B Command (default)
$00000020 Host A Receive Data
$00000022 Host A Transmit Data
$00000024 Host A Read X Memory
$00000026 Host A Read Y Memory
$00000028 Host A Read P Memory
$0000002A Host A Write X Memory
$0000002C Host A Write Y Memory
$0000002E Host A Write P Memory
$00000030 Host B Receive Data
$00000032 Host B Transmit Data
$00000034 Host B Read X Memory
$00000036 Host B Read Y Memory
$00000038 Host B Read P Memory
$0000003A Host B Write X Memory
$0000003C Host B Write Y Memory
$0000003E Host B Write P Memory
$00000040 Reserved

: :
$000000FE Reserved
$00000100 User interrupt vector

: :
$000001FE User interrupt vector

Note: User interrupt vector locations are available
for host commands.

Figure 8-6. DSP96002 Interrupt Sources
8 - 8 DSP96002 USER’S MANUAL MOTOROLA

which are maskable. Additionally, each of these interrupts has independent enable control. When the IRQA,
IRQB or IRQC interrupts are disabled in the interrupt priority register, pending requests will be discarded,
no new requests will be accepted, and the edge-detection latch will remain in the reset state. Also, if the
interrupt is defined as level-sensitive, its edge-detection latch will remain in the reset state.

Interrupt service, which begins by fetching the instruction word in the first vector location, is considered
finished when the instruction word in the second vector location is fetched. In the case of an edge-sensi-
tive interrupt, the internal latch is automatically cleared when the second vector location is fetched. The fetch
of the first vector location does not guarantee that the second location will be fetched. Figure 8.7 illustrates
the one case where the second vector location is not fetched. In Figure 8.7, the (F)TRAPcc instruction "dis-
cards" the fetch of the first interrupt vector to ensure that the (F)TRAPcc vectors will be fetched. Instruction
n4 is decoded as a (F)TRAPcc while ii1 is being fetched. Execution of the (F)TRAPcc requires that ii1 be
discarded and the two (F)TRAPcc vectors (ii3 and ii4) be fetched instead.

 8.4.4 (F)TRAPcc (Conditional Software Interrupt Instruction)
The (F)TRAPcc instruction causes a non-maskable interrupt which is serviced immediately following the
(F)TRAPcc instruction if the specified condition is true. (F)TRAPcc is a priority 3 interrupt.

 Int ctl cyc1 i i*

 Int ctl cyc2 i i

 Fetch n3 n4 ii1 ii3 ii4 tr1 tr2 tr3

 Decode n2 n3 trap -- -- -- -- JSR -- tr1 tr2

 Execute n1 n2 n3 trap -- -- -- -- JSR -- tr1

 i = interrupt request
 i* = interrupt request generated by (F)TRAPcc
 ii1 = first vector of interrupt i
 ii3 = first (F)TRAPcc vector (one word JSR)
 ii4 = second (F)TRAPcc vector
 n = normal instruction word
 n4 = (F)TRAPcc, cc condition true
 tr = instructions pertaining to the (F)TRAPcc long interrupt routine
Figure 8-7. (F)TRAPcc Instruction Rejecting Another Interrupt
MOTOROLA DSP96002 USER’S MANUAL 8 - 9

CAUTION
On all level-sensitive interrupts, the Interrupt must be externally released before
interrupts are internally re-enabled or the processor will be interrupted repeatedly
until the interrupt is released.

 Exceptions
 I1 I0 Exceptions Permitted Masked

 0 0 IPL 0, 1, 2, 3 None
 0 1 IPL 1, 2, 3 IPL 0
 1 0 IPL 2, 3 IPL 0,1
 1 1 IPL 3 IPL 0,1,2
Figure 8-8. Status Register Interrupt Mask Bits
 31 30 29 28 27 26 25 24

 ** ** ** ** ** ** ** **

 Reserved

 23 22 21 20 19 18 17 16

 HBL1 HBL0 HAL1 HAL0 D1L1 D1L0 D0L1 D0L0

 DMA Channel 0 IPL
 DMA Channel 1 IPL
 Host A IPL
 Host B IPL
 15 14 13 12 11 10 9 8

 ** ** ** ** IRCS ICL2 ICL1 ICL0

IRQC IPL
IRQC Trigger Mode
IRQC Status
Reserved

 7 6 5 4 3 2 1 0

 IRBS IBL2 IBL1 IBL0 IRAS IAL2 IAL1 IAL0

IRQA IPL
IRQA Trigger Mode
IRQA Status
IRQB IPL
IRQB Trigger Mode
IRQB Status

 Note: Reserved bits read as zero and should be written with zero
 for future compatibility.
Figure 8-9. Interrupt Priority Register IPR (Address X:$FFFFFFFF)
8 - 10 DSP96002 USER’S MANUAL MOTOROLA

 xxL1 xxL0 Enabled Int. Priority Level (IPL)

 0 0 no -
 0 1 yes 0
 1 0 yes 1
 1 1 yes 2

Figure 8-10. Interrupt Priority Level Bits
 IxL2 Trigger Mode IRxS Status

 0 level 0 Serviced
 1 neg. edge 1 Pending

Figure 8-11. External Interrupt Trigger Mode and Status
 8.4.5 Illegal Instruction Interrupt
The illegal instruction interrupt is a non-maskable interrupt which is serviced immediately following the ille-
gal instruction interrupt instruction (ILLEGAL) or upon loading an illegal instruction in the instruction latch.
The illegal instruction interrupt is a priority 3 interrupt.

 8.4.6 Stack Error Interrupt
The Stack Error interrupt is a priority 3 interrupt. It is generated by turning on the Stack Error flag in the
Stack Pointer register, generally due to improper stack operation. The Stack Error flag will remain set until
it is cleared by some instruction that explicitly writes into the SP register. Since the IPL level (3) of this
interrupt does not mask other pending interrupts of this same level, it is recommended that the Stack Error
flag be cleared by the first instruction of the Stack Error interrupt service routine in order not to get the same
request again.

 8.5 INTERRUPT PRIORITY STRUCTURE
Four levels of interrupt priority are provided. Interrupt priority levels (IPLs) numbered 0, 1, and 2, are
maskable. Level 0 is the lowest level. Level 3 is the highest level, and is nonmaskable. The only level 3
interrupts are Stack Error, Reset, Illegal Instruction (ILLEGAL) and (F)TRAPcc. The interrupt mask bits (I1,
I0) in the status register reflect the current processor priority level and indicate the interrupt minimum priority
level needed for an interrupt source to interrupt the processor. Figure 8-8 gives a description of the interrupt
mask bits. Interrupts are inhibited for all priority levels less than the current processor priority level. Level
3 interrupts can always interrupt the processor.

 8.5.1 Interrupt Priority Levels (IPL)
The interrupt priority level for each on-chip peripheral device (Host, DMA) and for each external interrupt
source (IRQA, IRQB, IRQC) can be programmed under software control. Each on-chip or external periph-
eral device can be programmed to one of the three maskable priority levels (IPL 0, 1, or 2). Interrupt priority
levels are set by writing to the Interrupt Priority Register.
MOTOROLA DSP96002 USER’S MANUAL 8 - 11

 8.5.2 Interrupt Priority Register (IPR)
This read/write register specifies the interrupt priority level for each of the interrupting devices (Host, DMA,
IRQA, IRQB, IRQC). In addition, this register specifies the trigger mode of each external interrupt source
and shows the status of the external interrupt request. The register is cleared on Hardware reset or by the
RESET instruction. The Interrupt Priority Register is shown in Figure 8-9. Figure 8-10 defines the interrupt
priority level bits. Figure 8-11 defines the external interrupt trigger mode bits and status information.

 8.5.2.1 IRQA Interrupt Priority Level - IAL1-IAL0 (Bits 0-1)

The IRQA Interrupt Priority Level (IAL1-IAL0) bits are used to enable and specify the priority level of the
external interrupt input IRQA.

 8.5.2.2 IRQA Trigger Mode - IAL2 (Bit 2)
The IRQA Trigger Mode (IAL2) bit specifies the trigger method for the external interrupt input IRQA.

 8.5.2.3 IRQA Status - IRAS (Bit 3)
The read-only IRQA Status (IRAS) bit indicates the status of the interrupt request for the external interrupt
input IRQA. If the IRQA interrupt is defined as edge-sensitive and it is enabled, the IRAS bit indicates
the state of the edge-detection latch. If the IRQA interrupt is defined as level-sensitive or is disabled,
the IRAS bit indicates the state of the IRQA pin after internal synchronization.

 8.5.2.4 IRQB Interrupt Priority Level - IBL1-IBL0 (Bits 4-5)
The IRQB Interrupt Priority Level (IBL1-IBL0) bits are used to enable and specify the priority level of the
external interrupt input IRQB.

 IAL1 IAL0 Enabled Int. Priority Level (IPL)
 0 0 no -

0 1 yes 0
1 0 yes 1
1 1 yes 2

 IAL2 Trigger Mode
0 level
1 negative edge

 IRAS Status (edge and enabled) IRQA pin (level or disabled)
0 Serviced High
1 Pending Low
8 - 12 DSP96002 USER’S MANUAL MOTOROLA

 8.5.2.5 IRQB Trigger Mode - IBL2 (Bit 6)
The IRQB Trigger Mode (IBL2) bit specifies the trigger method for the external interrupt input IRQB.

 8.5.2.6 IRQB Status - IRBS (Bit 7)
The read-only IRQB Status (IRBS) bit indicates the status of the interrupt request for the external interrupt
input IRQB. If the IRQB interrupt is defined as edge-sensitive and it is enabled, the IRBS bit indicates the
state of the edge-detection latch. If the IRQB interrupt is defined as level-sensitive or is disabled, the
IRBS bit indicates the state of the IRQB pin after internal synchronization.

 8.5.2.7 IRQC Interrupt Priority Level - ICL1-ICL0 (Bits 8-9)
The IRQC Interrupt Priority Level (ICL1-ICL0) bits are used to enable and specify the priority level of the
external interrupt input IRQC.

 8.5.2.8 IRQC Trigger Mode - ICL2 (Bit 10)
The IRQC Trigger Mode (ICL2) bit specifies the trigger method for the external interrupt input IRQC.

 IBL1 IBL0 Enabled Int. Priority Level (IPL)
0 0 no -
0 1 yes 0
1 0 yes 1
1 1 yes 2

 IBL2 Trigger Mode
0 level
1 negative edge

 IRBS Status (edge and enabled) IRQB pin (level or disabled)
0 Serviced High
1 Pending Low

 ICL1 ICL0 Enabled Int. Priority Level (IPL)
0 0 no -
0 1 yes 0
1 0 yes 1
1 1 yes 2
MOTOROLA DSP96002 USER’S MANUAL 8 - 13

 8.5.2.9 IRQC Status - IRCS (Bit 11)
The read-only IRQC Status (IRCS) bit indicates the status of the interrupt request for the external interrupt
input IRQC. If the IRQC interrupt is defined as edge-sensitive and it is enabled, the IRCS bit indicates
the state of the edge-detection latch. If the IRQC interrupt is defined as level-sensitive or is disabled,
the IRCS bit indicates the state of the IRQC pin after internal synchronization.

 8.5.2.10 Reserved bits (Bits 12-15, 24-31)
These reserved bits read as zero and should be written with zero for future compatibility.

 8.5.2.11 DMA Channel 0 Interrupt Priority Level - D0L1-D0L0 (Bits 16-17)
The DMA Channel 0 Interrupt Priority Level (D0L1-D0L0) bits are used to enable and specify the priority
level of the DMA Channel 0 interrupt.

 8.5.2.12 DMA Channel 1 Interrupt Priority Level - D1L1-D1L0 (Bits 18-19)
The DMA Channel 1 Interrupt Priority Level (D1L1-D1L0) bits are used to enable and specify the priority
level of the DMA Channel 1 interrupt.

 8.5.2.13 Host A Interrupt Priority Level - HAL1-HAL0 (Bits 20-21)
The Host A Interrupt Priority Level (HAL1-HAL0) bits are used to enable and specify the priority level of all
interrupt sources located in the Port A Host Interface.

 ICL2 Trigger Mode
0 level
1 negative edge

 IRCS Status (edge and enabled) IRQC pin (level or disabled)
0 Serviced High
1 Pending Low

 D0L1 D0L0 Enabled Int. Priority Level (IPL)
0 0 no -
0 1 yes 0
1 0 yes 1
1 1 yes 2

 D1L1 D1L0 Enabled Int. Priority Level (IPL)
0 0 no -
0 1 yes 0
1 0 yes 1
1 1 yes 2
8 - 14 DSP96002 USER’S MANUAL MOTOROLA

 8.5.2.14 Host B Interrupt Priority Level - HBL1-HBL0 (Bits 22-23)
The Host B Interrupt Priority Level (HBL1-HBL0) bits are used to enable and specify the priority level of all
interrupt sources located in the Port B Host Interface.

 HAL1 HAL0 Enabled Int. Priority Level (IPL)
0 0 no -
0 1 yes 0
1 0 yes 1
1 1 yes 2

 HBL1 HBL0 Enabled Int. Priority Level (IPL)
0 0 no -
0 1 yes 0
1 0 yes 1
1 1 yes 2
MOTOROLA DSP96002 USER’S MANUAL 8 - 15

 8.5.3 Exception Priorities within an IPL
If more than one exception is pending when an instruction is executed, the interrupt with the highest priority
level is serviced first. Within a given interrupt priority level, a second priority structure determines which
interrupt is serviced when multiple interrupt requests with the same IPL are pending. The priority of equal
IPL interrupts is given in Figure 8-12. Also given in Figure 8-12 are the interrupt enable bits for all inter-
rupts.

Priority Exception Enabled by
highest Hardware RESET -

Illegal Instruction -

Stack Error -

(F)TRAPcc -

IRQA (External Interrupt) (IPR) IAL1-IAL0

IRQB (External Interrupt) (IPR) IBL1-IBL0

IRQC (External Interrupt) (IPR) ICL1-ICL0

Host A Command Interrupt (HCR) HCIE

Host A Receive Data Interrupt (HCR) HRIE

Host A Read X Memory Interrupt (HCR) HXRE

Host A Read Y Memory Interrupt (HCR) HYRE

Host A Read P Memory Interrupt (HCR) HPRE

Host A Write X Memory Interrupt (HCR) HXWE

Host A Write Y Memory Interrupt (HCR) HYWE

Host A Write P Memory Interrupt (HCR) HPWE

Host A Transmit Data Interrupt (HCR) HTIE

Host B Command Interrupt (HCR) HCIE

Host B Receive Data Interrupt (HCR) HRIE

Host B Read X Memory Interrupt (HCR) HXRE

Host B Read Y Memory Interrupt (HCR) HYRE

Host B Read P Memory Interrupt (HCR) HPRE

Host B Write X Memory Interrupt (HCR) HXWE

Host B Write Y Memory Interrupt (HCR) HYWE

Host B Write P Memory Interrupt (HCR) HPWE

Host B Transmit Data Interrupt (HCR) HTIE

DMA Channel 0 Interrupt (DCS0) DIE0

lowest DMA Channel 1 Interrupt (DCS1) DIE1

Figure 8-12. DSP96002 Exception Priorities within an IPL
8 - 16 DSP96002 USER’S MANUAL MOTOROLA

SECTION 9
CHIP OPERATING MODES AND MEMORY MAPS

 9.1 OPERATING MODES AND PROGRAM MEMORY MAPS
The operating mode bits MA, MB, and MC in the OMR register determine the bus expansion mode for pro-
gram memory and the startup procedure when the DSP96002 leaves the RESET state. The Data ROM
Enable bit DE in the OMR determines the bus expansion mode for the data memories.

The MODA, MODB, and MODC pins are used to load MA, MB and MC with the initial operating mode of
the DSP96002. These pins are sampled as the DSP96002 leaves the RESET state. These pins do not
affect the operating mode after that time and are available for other functions. Chip operating modes are
programmable by writing the operating mode bits MA, MB and MC in the operating mode register. Refer
to Section 4.12 for a description of the operating mode register OMR. Figure 9-1 shows the mode assign-
ments.

 Mode MC MB MA DSP96002 Initial Chip Operating Mode

 0 0 0 0 PRAM enabled, Reset at $FFFFFFFE (Port A)
 1 0 0 1 PRAM enabled, Reset at $FFFFFFFE (Port B)
 2 0 1 0 PRAM disabled, Reset at $00000000 (Port A)
 3 0 1 1 PRAM disabled, Reset at $00000000 (Port B)
 4 1 0 0 Bootstrap from byte-wide (bits D7-D0)
 external memory at $FFFF0000 (Port A)
 5 1 0 1 Bootstrap from byte-wide (bits D7-D0)
 external memory at $FFFF0000 (Port B)
 6 1 1 0 Bootstrap thru the Host Interface (Port A)
 7 1 1 1 Bootstrap thru the Host Interface (Port B)

Figure 9-1. DSP96002 Initial Chip Operating Mode Summary

There are eight chip operating modes divided in two groups:

• Non-bootstrap modes - these modes are used to access program memories that are already
programmed.

• Bootstrap modes - these modes are used to load the internal program memory implemented
in RAM. After loading the internal program memory, the DSP96002 switches to Mode 0 or 1
but begins program execution at the address located at the on-chip program memory address
$00000000.

 9.1.1 Mode 0 (Internal PRAM enabled, Reset at $FFFFFFFE, Port A)
In mode 0, the internal program memory occupies the lower portion of the program memory space. Ad-
dresses higher than the highest internal program memory location are directed to external program mem-
ory. The address of the hardware reset vector is $FFFFFFFE, located in the Port A external program mem-
ory space. The program memory map for this mode is shown in Figure 9-2.
MOTOROLA DSP96002 USER’S MANUAL 9 - 1

 9.1.2 Mode 1 (Internal PRAM enabled, Reset at $FFFFFFFE, Port B)
In Mode 1, the internal program memory occupies the lower portion of the program memory space. Ad-
dresses higher than the highest internal program memory location are directed to external program mem-
ory. The address of the hardware reset vector is $FFFFFFFE, located in the Port B external program mem-
ory space. The program memory map for this mode is shown in Figure 9-2.

 9.1.3 Mode 2 (Internal PRAM disabled, Reset at $00000000, Port A)
In Mode 2 the internal program memory is disabled. All references to program memory space are directed
external program memory. The address of the hardware reset vector is $00000000, located in the Port A
external program memory space. The program memory map for this mode is shown in Figure 9-2.

 9.1.4 Mode 3 (Internal PRAM disabled, Reset at $00000000, Port B)
In Mode 3 the internal program memory is disabled. All references to program memory space are directed
external program memory. The address of the hardware reset vector is $00000000, located in the Port B
external program memory space. The program memory map for this mode is shown in Figure 9-2.

 9.1.5 Modes 4-7 (Bootstrap modes)
The bootstrap modes load the internal program memory from an external source. The type and location of
the source is selected according to the values of the MA and MB bits in the OMR. After loading the internal
program memory, the DSP96002 begins program execution at the address located at the on-chip program
memory address $00000000.

The bootstrap is implemented by executing a bootstrap program located in an user invisible bootstrap pro-
gram ROM which is mapped into the program memory space for the duration of the bootstrap operations.

When the chip exits the reset state in one of the bootstrap modes, the following actions occur:

1. On-chip hardware maps a 64 word by 32-bit, user invisible, ROM into the internal DSP96002
program memory space starting at location $00000000.

2. On-chip hardware makes the internal program RAM write-only for the duration of the bootstrap
load.

3. Program execution begins at location $00000000 of the internal bootstrap ROM. See Figure
9-3 for a listing of the DSP96002 Bootstrap program.

4. The bootstrap program reads OMR bits MA and MB to determine the bootstrap mode select-
ed.

In mode 4, the bootstrap program loads the internal program RAM from 4,096 consecutive byte-wide
external program memory locations starting at $FFFF0000 through Port A.

In mode 5, the bootstrap program loads the internal program RAM from 4,096 consecutive byte-wide
external program memory locations starting at $FFFF0000 through Port B.

In mode 6, the bootstrap program loads the internal program RAM from an external host processor
through the Host Interface in Port A. If the Host Interface flag HF1 is cleared, the bootstrap program
assumes that the external host processor is an 8-bit wide source which will supply up to 4,096 bytes.
If the Host Interface flag HF1 is set, the bootstrap program assumes that the external host processor
is a 32-bit wide source which will supply up to 1,024 32-bit words to load into the program RAM.
The external host processor may terminate the bootstrap program by setting the Host Interface flag
HF0.

In mode 7, the bootstrap program loads the internal program RAM from an external host processor
through the Host Interface in Port B. If the Host Interface flag HF1 is cleared, the bootstrap program
assumes that the external host processor is an 8-bit wide source which will supply up to 4,096 bytes.
9 - 2 DSP96002 USER’S MANUAL MOTOROLA

If the Host Interface flag HF1 is set, the bootstrap program assumes that the external host processor
is a 32-bit wide source which will supply up to 1,024 32-bit words to load into the program RAM.
The external host processor may terminate the bootstrap program by setting the Host Interface flag
HF0.

5. Enter Mode 0 or 1 by writing to the OMR. This action will begin a timed delay to remove the
bootstrap ROM from the program memory map.

6. This timed delay is exactly timed to allow the boot program to execute a NOP then a JMP to
location $00000000 and begin execution of the user’s program.

The user may also select a bootstrap mode by writing into the OMR. This technique allows the
DSP96002 programmer to re-boot his system. From any operating mode, the user may program the
OMR to the required bootstrap mode. This begins a timed delay to map the bootstrap ROM into the
program address space. This timed delay is exactly timed to allow the programmer to execute a
NOP then a JMP to bootstrap ROM location $00000000 and begin the bootstrap process described
above in steps 1 to 6.

 Mode 0 Mode 1 Mode 2 Mode 3
 $FFFF- $FFFF- $FFFF- $FFFF-
 FFFF FFFF FFFF FFFF

 External External External External
 Program Program Program Program
 Memory Memory Memory Memory

 $0000- $0000-
 03FF Internal 03FF Internal
 Program Program
 RAM RAM

 $0000- $0000- $0000- $0000-
 0000 0000 0000 0000

 HW Reset: $FFFFFFFE $FFFFFFFE $00000000 $00000000
 Port A Port B Port A Port B

Figure 9-2. DSP96002 Program Memory Maps
MOTOROLA DSP96002 USER’S MANUAL 9 - 3

 PAGE 132,50,0,10

; BOOTSTRAP CODE FOR DSP96002 - Copyright 1988 Motorola Inc.
;

; Host algorithm / AND / external bus method.

;

; This is the Bootstrap program contained in the DSP96002. This program

; can load the internal program memory from one of 4 external sources.

; The program reads the OMR bits MA and MB to decide which external

; source to access.

; If MB:MA = 0X - load from 4,096 consecutive byte-wide P: memory

; locations (starting at P:$FFFF0000).

; If MB:MA = 10 - load internal PRAM thru Host Interface in Port A.

; If MB:MA = 11 - load internal PRAM thru Host Interface in Port B. BOOT
EQU $FFFF0000 ; The location in P: memory

; where the external byte-wide

; EPROM is expected to be mapped

M_HCRA EQU $FFFFFFEC ; Port A Host Control Register

M_HSRA EQU $FFFFFFED ; Port A Host Status Register

M_HRXA EQU $FFFFFFEF ; Port A Host Rec. Data Register

M_HCRB EQU $FFFFFFE4 ; Port B Host Control Register

M_HSRB EQU $FFFFFFE5 ; Port B Host Status Register

M_HRXB EQU $FFFFFFE7 ; Port B Host Rec. Data Register

ORG PL:$0 ; bootstrap code starts at P:$0

START MOVE #BOOT,R1 ; R1 = External P: address of

; bootstrap byte-wide ROM

MOVEI #0,R0 ; R0 = starting P: address of

; internal memory where program

; will begin loading.

; If this program is entered by changing the OMR to bootstrap mode,

; make certain that registers M0 and M1 have been set to $FFFFFFFF.

; Make sure the appropriate BCR register is set to $xxxxxxFx since

; EPROMs are slow.

; Make sure that the Port Selection Register is set to permit program

; memory accesses thru the required memory expansion port (Port A or B).

;

; The first routine will load 4,096 bytes from the external P memory

; space beginning at P:$FFFF0000 (bits 7-0). These will be condensed

; into 1,024 32-bit words and stored in contiguous internal PRAM memory

; locations starting at P:$0. Note that the first routine loads data

; starting with the least significant byte of P:$0 first.

; The Port Selection Register is not set by this program. It is set

; by HW Reset.

Figure 9-3. Assembler Source for DSP96002 Bootstrap Program (1 of 3)
9 - 4 DSP96002 USER’S MANUAL MOTOROLA

; The second routine loads the internal PRAM using the Host

; Interface logic.

; If HF1=0, it will load 4,096 bytes from the external host processor.

; These will be condensed into 1,024 32-bit words and stored in

; contiguous internal PRAM memory locations starting at P:$0. Note that

; the routine loads data starting with the least significant byte of

; P:$0 first.

; If HF1=1, it will load 1,024 32-bit words from the external host

; processor.

; If the host processor only wants to load a portion of the P memory,

; and start execution of the loaded program, the Host Interface

; bootstrap load program routine may be killed by setting HF0 = 0.

;

 INLOOP DO #1024,_LOOP1 ; Load 1,024 instruction words

; This is the context switch

 JSET #1,OMR,_HOSTLD ; Perform load from Host

; Interface if MB=1.

; This is the first routine. It loads from external P: memory.

 DO #4,_LOOP2 ; Get 4 bytes into D0.L

LSR #8,D0 ; Shift previous byte down

MOVEM P:(R1)+,D1.L ; Get byte from ext. P mem.

LSL #24,D1 ; Shift into upper byte

OR D1,D0 ; concatenate

 _LOOP2 JMP <_STORE ; Then put the word in P memory

;

; This is the second routine. It loads thru the Host Interface.

 _HOSTLD JSET #0,OMR,_HOSTB ; Port A or Port B?

; Boot thru Host Interface in Port A

 _HOSTA BCLR #5,X:M_HCRA ; Enable Port A Host Interface

MOVE #M_HSRA,R2 ; R2 points to HSRA

MOVE #M_HRXA,R3 ; R3 points to HRXA

JMP <_HOSTR ; go to host routine

; Boot thru Host Interface in Port B

 _HOSTB BCLR #5,X:M_HCRB ; Enable Port B Host Interface

MOVE #M_HSRB,R2 ; R2 points to HSRB

MOVE #M_HRXB,R3 ; R3 points to HRXB

Figure 9-3. Assembler Source for DSP96002 Bootstrap Program (2 of 3)
MOTOROLA DSP96002 USER’S MANUAL 9 - 5

; Host load routine

_HOSTR

_LBL11 JCLR #3,X:(R2),_LBL22 ; if HF0=1, stop loading data.

ENDDO ; Must terminate the do loops

JMP <_BOOTEND

_LBL22 JCLR #0,X:(R2),_LBL11 ; Wait for HRDF to go high

; (meaning data is present).

JCLR #4,X:(R2),_LBL33 ; 8-bit source?

MOVE X:(R3),D0.L ; Get 32-bit word from host

JMP <_STORE

_LBL33 DO #4,_LOOP4 ; Get 4 bytes into D0.L

LSR #8,D0 ; Shift previous byte down

_LBL1 JCLR #3,X:(R2),_LBL2 ; if HF0=1, stop loading data.

ENDDO ; Must terminate the do loops

ENDDO

JMP <_BOOTEND

_LBL2 JCLR #0,X:(R2),_LBL1 ; Wait for HRDF to go high

; (meaning data is present).

MOVE X:(R3),D1.L ; Get byte from host

LSL #24,D1 ; Shift into upper byte

OR D1,D0 ; concatenate

_LOOP4

_STORE MOVEM D0.L,P:(R0)+ ; Store 32-bit result in P mem.

_LOOP1 ; and go get another 32-bit word

; This is the exit handler that returns execution to internal PRAM

_BOOTEND ANDI #$F9,OMR ; Set the operating mode to 00x

; (and trigger an exit from

; bootstrap mode).

ANDI #$0,CCR ; Clear CCR as if HW RESET.

; Also delay needed for

; Op. Mode change.

JMP <$0 ; Start fetching from PRAM.

; DSP96002 bootstrap program size = 50 words

Figure 9-3. Assembler Source for DSP96002 Bootstrap Program (3 of 3)

 9.2 DATA MEMORY MAPS
The data memory maps are shown in Figure 9-4 and Figure 9-5.
9 - 6 DSP96002 USER’S MANUAL MOTOROLA

 9.2.1 Internal Data RAMs
The on-chip X and Y Data RAMs occupy locations $00000000 to $000001FF in X and Y Data Memory
maps, respectively, and they are always enabled.

 9.2.2 Internal Data ROMs
The X and Y Data Memory expansion mode is affected by the DE bit located in the OMR. The on-chip X
and Y Data ROMs occupy locations $00000400 to $000007FF in X and Y Data Memory maps, respectively,
when enabled by setting DE=1 in the Operating Mode Register. If DE=0, the on-chip Data ROMs are dis-
abled and the address range they previously occupied is now in external data memory.

The X and Y Data ROMs each occupy 1,024 locations. The X Data ROM contains a full cycle of cosine val-
ues while the Y Data ROM contains a full cycle of sine values. The sine and cosine values were generated
using the MC68881 IEEE floating-point coprocessor rounded to IEEE single precision floating-point using
the round to nearest mode.

When the internal Data ROMs are enabled (DE=1), the X and Y Data Memory locations in the address range
$00000200 to $000003FF are defined as internal. This address range is unpopulated and is reserved for
future expansion. When the internal Data ROMs are disabled (DE=0), the address range $00000200 to
$000003FF is defined as external.

 X DATA Y DATA

 $FFFFFFFF $FFFFFFFF

 On-Chip External

 Peripherals Peripherals

 $FFFFFF80 $FFFFFF80

 External External

 X Data Y Data

 Memory Memory

 $000001FF $000001FF

 Internal Internal

 X Data RAM Y Data RAM

 $00000000 $00000000

Figure 9-4. DSP96002 Data Memory Maps for DE=0
MOTOROLA DSP96002 USER’S MANUAL 9 - 7

 X DATA Y DATA

 $FFFFFFFF $FFFFFFFF

 On-Chip External

 Peripherals Peripherals

 $FFFFFF80 $FFFFFF80

 External External

 X Data Y Data

 Memory Memory

 $000007FF $000007FF

 Internal Internal

 X Data Y Data

 ROM ROM

 $000003FF $000003FF

 Internal Internal

 Reserved Reserved

 $000001FF $000001FF

 Internal Internal

 X Data RAM Y Data RAM

 $00000000 $00000000

Figure 9-5. DSP96002 Data Memory Maps for DE=1
9 - 8 DSP96002 USER’S MANUAL MOTOROLA

 PROGRAM MEMORY

 MMM HW RESET MODE INTERNAL PROGRAM EXTERNAL PROGRAM PORT

 CBA VECTOR SPACE SPACE

 000 $FFFFFFFE 0 $00000000-$000003FF $00000400-$FFFFFFFF A

 001 $FFFFFFFE 1 $00000000-$000003FF $00000400-$FFFFFFFF B

 010 $00000000 2 none $00000000-$FFFFFFFF A

 011 $00000000 3 none $00000000-$FFFFFFFF B

 1X0 $00000000 4,6 For reading (Boot ROM): $00000400-$FFFFFFFF A

 in $00000000-$0000003F

 Bootstrap For writing (Prog RAM):

 ROM $00000000-$000003FF

 1X1 $00000000 5,7 For reading (Boot ROM): $00000400-$FFFFFFFF B

 in $00000000-$0000003F

 Bootstrap For writing (Prog RAM):

 ROM $00000000-$000003FF

 Note: Bootstrap ROM is at $00000000-$0000003F, PRAM becomes write-only

 in Bootstrap modes.

 After the bootstrap program executes, the chip reverts to Mode 0

 (from Bootstrap Modes 4 or 6) or to Mode 1 (from Bootstrap Modes

 5 or 7), and program execution begins at location $00000000 in

 internal PRAM.

 DATA MEMORIES

 INTERNAL EXTERNAL EXTERNAL

 D X AND Y DATA Y DATA X DATA

 E SPACE SPACE SPACE

 0 $00000000-$000001FF $00000200-$FFFFFFFF $00000200-$FFFFFF7F

 1 $00000000-$000007FF $00000800-$FFFFFFFF $00000800-$FFFFFF7F

 Note: Internal X I/O space is located in the range $FFFFFF80-$FFFFFFFF.

Figure 9-6. DSP96002 Memory Maps - Summary
MOTOROLA DSP96002 USER’S MANUAL 9 - 9

9 - 10 DSP96002 USER’S MANUAL MOTOROLA

SECTION 10
ON-CHIP EMULATOR

 10.1 INTRODUCTION
Conventional methods of system development (for example the DSP56001) consist of a program which re-
sides in the DSP program memory (monitor). An interface circuit which either uses on-chip resources or an
additional program memory address communicates with a host computer or terminal. This technique is not
transparent, loads the DSP bus and sometimes interferes with the user system configuration. To emulate
the DSP in a user’s target system an expensive cable must be used to bring out the DSP pins onto the sys-
tem under development.

The DSP96002’s on-chip emulation (OnCE) circuitry provides a means of interacting with the DSP96002
and its peripherals non-intrusively so that a user may examine registers, memory or on-chip peripherals.
This will facilitate hardware/software development on the DSP96002 processor. To achieve this, special cir-
cuits and dedicated pins on the DSP96002 die are defined to avoid sacrificing any user accessible on-chip
resource.

A key feature of the OnCE dedicated pins is to allow the user to insert the DSP96002 into his target system
yet retaining debug control. The need for a costly cable which brings out the DSP96002 footprint on an em-

ulator system is eliminated because of the easy access to the dedicated OnCE debug serial port. Figure

10-1illustrates the block diagram of the OnCE serial interface.

 10.2 ON-CHIP EMULATION (OnCE) PINOUT

 10.2.1 Debug Serial Input/Chip Status 0 (DSI/OS0)

Serial data or commands are provided to the OnCE controller through the DSI/OS0 pin when it is an input.
The data received on the DSI pin will be recognized only when the DSP96002 has entered the debug mode
of operation. Data must have valid TTL logic levels before being latched on the falling edge of the serial

clock. Data is always shifted into the OnCE serial port most significant bit (MSB) first. When an output,
this pin in conjunction with the OS1 pin, provides information about the chip status indicating why the debug
mode cannot be entered in response to an external request. The DSI/OS0 pin is an output when not in De-
bug Mode (until the acknowledge signal is issued to the Command Controller). When switching from output
to input, the pin is three-stated. In order to avoid any possible glitches, an external pull-down resistor should
be attached to this pin. During hardware reset, this pin is defined as an output and it is driven low.
MOTOROLA DSP96002 USER’S MANUAL 10 - 1

OnCE is a trademark of Motorola Inc.

Figure 10-1. OnCE Block Diagram
 10.2.2 Debug Serial Clock/Chip Status 1 (DSCK/OS1)
The serial clock is supplied to the OnCE through the DSCK/OS1 pin when it is an input. The serial clock

provides pulses required to shift data into and out of the OnCE serial port. Data is clocked into the OnCE

on the falling edge and is clocked out of the OnCE serial port on the rising edge. When an output, this pin
in conjunction with the OS0 pin, provides information about the chip status describing why the debug mode
cannot be entered in response to an external request. The DSCK/OS1 pin is output when not in the Debug
Mode (until the acknowledge signal is issued to the Command Controller). When switching from output to
input, the pin is three-stated. In order to avoid any possible glitches, an external pull-down resistor should
be attached to this pin. During hardware reset, this pin is defined as an output and it is driven low. The max-
imum SCK frequency is one third of the system clock frequency.

 OS1 OS0 Status
 0 0 Normal state
 0 1 STOP or WAIT state
 1 0 Core busy state
 1 1 Core or DMA busy state
10 - 2 DSP96002 USER’S MANUAL MOTOROLA

 10.2.3 Debug Serial Output (DSO)

The debug serial output provides the data contained in one of the OnCE controller registers as specified
by the last command received from the external command controller. When idle, this pin is held high. When
the requested data is available, the DSO line will be asserted (negative true logic) for two T cycles (2T =
period of DSP96002 master clock) to indicate that the serial shift registers are ready to receive clocks in
order to deliver the data. When a trace or breakpoint occurs this line will be asserted for one T cycle to
indicate (acknowledge) that the chip has entered the debug mode and is waiting for commands. Data is

always shifted out the OnCE serial port most significant bit (MSB) first. During hardware reset, this pin is
held high.

 10.2.4 Debug Enable Input (
—

D
–
R)

The debug request input provides a means of entering the debug mode of operation from the external com-
mand controller. This pin, when asserted, causes the DSP96002 to finish the current instruction being exe-
cuted, save the instruction pipeline information, enter the debug mode, and wait for commands to be en-
tered from the debug serial input line.

 10.3 OnCE CONTROLLER AND SERIAL INTERFACE

The OnCE Controller and Serial Interface contains the following blocks: input shift register, bit counter,

OnCE decoder, and the status/control register. Figure 10-2 illustrates a block diagram of the OnCE se-
rial interface.

 10.3.1 OnCE Input Shift Register (OISR)

The OnCE Input Shift Register is an 8-bit shift register that receives the serial data from the DSI line. The
data is clocked into the register on the falling edge of the clock applied to the DSCK pin. After the 8th bit is

received, the OISR will stop shifting in new data. The latched data will be used as input for the OnCE De-
coder. The data is always shifted into the OISR most significant bit (MSB) first.

 10.3.2 OnCE Bit Counter (OBC)

The OnCE Bit Counter is a 5-bit counter associated with shifting in and out the data bits. The OBC is in-
cremented by the falling edges of the DSCK. The OBC is cleared during hardware reset and whenever the
DSP96002 acknowledges that the Debug Mode has been entered. The OBC supplies two signals to the

OnCE Decoder: one indicating that the first 8 bits were shifted-in (so a new command is available) and
the second indicating that 32 bits were shifted-in (the data associated with that command is available) or
that 32 bits were shifted-out (the data required by a read command was shifted out).

 10.3.3 OnCE Decoder (ODEC)

The OnCE Decoder supervises the entire OnCE activity. It receives as input the 8-bit command from the
OISR, two signals from OBC (one indicating that 8 bits have been received and the other that 32 bits have
MOTOROLA DSP96002 USER’S MANUAL 10 - 3

Figure 10-2. OnCE Controller and Serial Interface
been received), and two signals indicating that the core was halted and the DMA was halted. The ODEC

generates all the strobes required for reading and writing the selected OnCE registers.

 10.3.4 OnCE Status and Control Register (OSCR)
The Status and Control Register is a 32-bit register used to select the events that will put the chip in Debug
Mode (see Figure 10-3). Breakpoints may be disabled or enabled on one or more memory spaces. The
Trace Mode of operation is also selected from OSCR. The control bits are read/write while the status bits
are read only.

 10.3.4.1 Program Memory Breakpoint Enable (PBE0-PBE1) Bits 0-1
These control bits unmask program memory breakpoints allowing break-point interrupts to occur when a
program memory address is within the low and high program memory address registers and will select
whether the breakpoint will be recognized for read or write accesses. These bits are cleared on hardware
reset.

 PBE1 PBE0 Selection
 0 0 Breakpoint disabled
 0 1 Breakpoint on write accesses
 1 0 Breakpoint on read accesses
 1 1 Breakpoint on both read and write accesses

 10.3.4.2 Program Memory Breakpoint Selection (PBS0-PBS1) Bits 2-3
These control bits select whether the program memory breakpoints will be recognized on core program
memory fetches, core program memory accesses (MOVEM or MOVEP) or DMA program memory access-
es. These bits are cleared on hardware reset.
10 - 4 DSP96002 USER’S MANUAL MOTOROLA

* TO DBO PBO * TME DBS1 DBS0 DBE1 DBE0 PBS1 PBS0 PBE1 PBE0

31 19 18 17 16 15 9 8 7 6 5 4 3 2 1 0

* Read as zeroes, should be written with zero for future compatibility.

 PBS1 PBS0 Selection
 0 0 Breakpoint on Core fetch accesses
 0 1 Breakpoint on Core P move accesses
 1 0 Breakpoint on Core and P move accesses
 1 1 Breakpoint on DMA accesses

When PBS1=0 and PBS0=0, program memory breakpoints are enabled only for fetches of the first instruc-
tion word of instructions that are actually executed (not the killed instructions and not the second word of
jump instructions that are not taken). Program memory address breakpoints occur after the fetched instruc-
tion is executed and the breakpoint counter has been decremented to zero.

When PBS1=0 and PBS0=1, program memory breakpoints are enabled only for explicit program memory
access resulting from MOVEP and MOVEM instructions to/from P: memory space (MOVEP P:..,.. or MOVE
..,P:..).

When PBS1=1 and PBS0=0, program memory breakpoints are enabled for any access to the Program
space (any kind of PMOVE, true and false fetches, fetches of 2nd word, etc.).

When PBS1=1 and PBS0=1, program memory breakpoints are enabled only for DMA accesses to program
memory space.

 10.3.4.3 Data Memory Breakpoint Enable (DBE0-DBE1) Bit 4-5
These control bits enable data memory breakpoints to occur when a data memory address is within the low
and high data memory address registers and will select whether the breakpoint will be recognized for read
or write accesses. These bits are cleared on hardware reset.

 DBE1 DBE0 Selection
 0 0 Breakpoint disabled
 0 1 Breakpoint on write accesses
 1 0 Breakpoint on read accesses
 1 1 Breakpoint on both read and write accesses

 10.3.4.4 Data Memory Breakpoint Selection (DBS0-DBS1) Bits 6-7
These control bits select whether the data memory breakpoints will be recognized on core or DMA data
memory accesses for X or Y data spaces. These bits are cleared on hardware reset.

 DBS1 DBS0 Selection
 0 0 Breakpoint on X Core fetch addresses
 0 1 Breakpoint on Y Core fetch addresses
 1 0 Breakpoint on X DMA fetch addresses
 1 1 Breakpoint on Y DMA fetch addresses
Figure 10-3. OnCE Programming Model
MOTOROLA DSP96002 USER’S MANUAL 10 - 5

 10.3.4.5 Trace Mode Enable (TME) Bit 8
This control bit, when set, enables the Trace Mode causing the chip to enter the Debug Mode whenever the
execution of an instruction is completed and the Trace Counter is zero. This bit is cleared on hardware reset.

 10.3.4.6 Reserved (Bits 9-15, 20-31)
These bits are reserved for future use. They are read as zero and should be written as zero for future com-
patibility.

 10.3.4.7 Program Memory Breakpoint Occurrence (PBO) Bit 16
This read only status bit is set when a program memory breakpoint occurs. It is used by the external com-
mand controller to determine how the Debug Mode was entered. This bit is cleared on hardware reset and
when the OSCR is read.

 10.3.4.8 Data Memory Breakpoint Occurrence (DBO) Bit 17
This read only status bit is set when a data memory breakpoint occurs. It is used by the external command
controller to determine how the debug mode was entered. This bit is cleared on hardware reset and when
the OSCR is read.

 10.3.4.9 Trace Occurrence (TO) Bit 18
This read only status bit is set when the debug mode of operation is entered from a decrement to zero of
the trace counter and the trace mode has been armed. This bit is cleared on hardware reset and when the
OSCR is read.

 10.3.4.10 Software Debug Occurrence (SWO) Bit 19
This status bit is set when the debug mode of operation is entered due to the execution of the (F)DEBUGcc
instruction with condition true. This bit is cleared on hardware reset and when the OSCR is read.

 10.4 OnCE HARDWARE BREAKPOINT LOGIC
Hardware breakpoints may be set on program memory or data memory locations. Also, the breakpoint does
not have to be in the program flow but within an approximate address range of where the program may be
executing. This significantly increases the programmer’s ability to monitor what the program is doing real-
time (see Section 10-3.4 for programming details).

The breakpoint logic has two identical sections: one for program memory breakpoints and one for data
memory breakpoints. Each section contains latches for core or DMA addresses, registers that store the up-
per and lower address limit, comparators and a counter. Figure 10-4 illustrates a block diagram of the

OnCE Program Memory Breakpoint Logic and Figure 10-5 illustrates a block diagram of the OnCE Data
Memory Breakpoint Logic.

 10.4.1 Address Comparator Breakpoint Registers
Address comparators are useful in determining where a program may be getting lost or when data is being
written to areas that should not be written to in real-time. They are also useful in halting a program at a spe-
10 - 6 DSP96002 USER’S MANUAL MOTOROLA

Figure 10-4. Program Memory Breakpoint Logic
cific point to examine/change registers or memory. Using address comparators to set breakpoints enables
the user to set breakpoints in RAM or ROM and while in any operating mode.

The low address comparator will cause a logic true signal when the address on the bus is greater than or
equal to the low boundary. The high address comparator will cause a logic true signal when the address on
the bus is less than or equal to the high boundary. If the low address comparator and high address compar-
ator both issue a logic true signal, the address is within the address range and the breakpoint counter is
decremented if the contents are greater than zero. If zero, the counter is not decremented and the break-
point exception occurs.

Conditional jump addresses produced by the instruction pipeline that are within a program address block
being monitored are only valid if the conditional jump instruction occurs, otherwise the conditional jump ad-
MOTOROLA DSP96002 USER’S MANUAL 10 - 7

Figure 10-5. Data Memory Breakpoint Logic
dress is ignored. Program memory address breakpoints occur after the opcode or operand is executed and
the breakpoint counter has been decremented to zero.

Data memory address breakpoints also occur after the execution of the instruction which formed the data
memory address and the breakpoint counter has decremented to zero.

All breakpoint registers are controlled by the debug status and control register, OSCR.

 10.4.2 Breakpoint Counter
The breakpoint counter is useful for stopping at the nth iteration of a program loop or when the nth occur-
rence of a data memory access occurs. This information significantly decreases algorithm debug time and
10 - 8 DSP96002 USER’S MANUAL MOTOROLA

provides a means of checking hot spots in program segments as well as peripheral or data memory access-
es.

Program hot spots may be statistically evaluated by setting the breakpoint counter to a value, setting a pro-
gram address in the program address comparator registers, passing control of the DSP96002 back to the
user program and checking to see if a breakpoint occurs after n iterations of the program memory access.

The breakpoint counter becomes a powerful tool when debugging real-time fast interrupt sequences such
as servicing an A/D or D/A converter or stopping after a specific number of host transfers have occurred.

The breakpoint counters are cleared by hardware reset.

 10.4.3 Program Memory Address Latch (OPAL)
The Program Memory Address Latch is a 32-bit register that latches the PAB on every cycle during the core
slot or during the DMA slot according to the PBS1-PBS0 bits in OSCR.

 10.4.4 Program Memory Upper Limit Register (OPULR)
The Program Memory Upper Limit Register is a 32-bit register that stores the program memory breakpoint
upper limit. OPULR can only be read or written through the serial interface. Before enabling breakpoints,
OPULR must be loaded by the command controller.

 10.4.5 Program Memory Lower Limit Register (OPLLR)
The Program Memory Lower Limit Register is a 32-bit register that stores the program memory breakpoint
lower limit. OPLLR can only be read or written through the serial interface. Before enabling breakpoints,
OPLLR must be loaded by the command controller.

 10.4.6 Program Memory High Address Comparator (OPHC)
The Program Memory High Address Comparator compares the current program memory address (stored
by OPAL) with the OPULR contents. If OPULR is higher or equal than OPAL then the comparator delivers
a signal indicating that the address is lower than or equal to the high limit.

 10.4.7 Program Memory Low Address Comparator (OPLC)
The Program Memory Low Address Comparator compares the current program memory address (stored
by OPAL) with the OPLLR contents. If OPLLR is lower or equal than OPAL then the comparator delivers a
signal indicating that the address is higher than or equal to the low limit.

 10.4.8 Program Memory Breakpoint Counter (OPBC)
The Program Memory Breakpoint Counter is a 32-bit counter which is loaded with a value equal to the num-
ber of times minus one that a program memory address should be accessed before a breakpoint is acknowl-
edged. On each occurrence of the program memory address access, the counter is decremented. When
the counter has reached the value of zero and a new occurrence takes place a signal is generated and if
PBE is set the chip will enter the Debug Mode. The OPBC can only be read or written through the serial
interface. Before enabling Program Memory Breakpoints, OPBC must be loaded by the command control-
ler. Figure 10-5 illustrates a block diagram of the Program Memory Breakpoint Counter logic.
MOTOROLA DSP96002 USER’S MANUAL 10 - 9

 10.4.9 Data Memory Address Latch (ODAL)
The Data Memory Address Latch is a 32-bit register that latches the XAB or YAB on every cycle during the
core or DMA slot according to the DBS1-DBS0 bits in OSCR.

 10.4.10 Data Memory Upper Limit Register (ODULR)
The Data Memory Upper Limit Register is a 32-bit register that stores the program memory breakpoint upper
limit. ODULR can only be read or written through the serial interface. Before enabling breakpoints, ODULR
must be loaded by the command controller.

 10.4.11 Data Memory Lower Limit Register (ODLLR)
The Data Memory Lower Limit Register is a 32-bit register that stores the program memory breakpoint lower
limit. ODLLR can only be read or written through the serial interface. Before enabling breakpoints, ODLLR
must be loaded by the command controller.

 10.4.12 Data Memory High Address Comparator (ODHC)
The Data Memory High Address Comparator compares the current data memory address (stored by ODAL)
with the ODULR contents. If ODULR is higher than or equal to ODAL then the comparator delivers a signal
indicating that the address is lower than or equal to the high limit.

 10.4.13 Data Memory Low Address Comparator (ODLC)
The Data Memory Low Address Comparator compares the current data memory address (stored by ODAL)
with the ODLLR contents. If ODLLR is lower than or equal to ODAL then the comparator delivers a signal
indicating that address is higher than or equal to the low limit.

 10.4.14 Data Memory Breakpoint Counter (ODBC)
The Data Memory Breakpoint Counter is a 32-bit counter which is loaded with a value equal to the number
of times minus one that a data memory address should be accessed before a breakpoint is acknowledged.
On each data memory access, the counter is decremented. When the counter has reached the value of zero
and a new occurrence takes place, a signal is generated and if the DBE bit is set, the chip will enter the
Debug Mode. ODBC can only be read or written through the serial interface. Before enabling Data Memory
Breakpoints, ODBC must be loaded by the command controller. Figure 10-5 illustrates a block diagram of
the Program Memory Breakpoint Counter logic.

 10.5 TRACE/STEP MODE
To execute DSP96002 instructions in single or multiple steps, a special mode similar to the trace mode of
operation on the DSP56001 is necessary. The DSP96002 does not cause an interrupt exception as is the
case with the DSP56001 but enters the debug mode of operation instead and waits for further instructions
from the debug serial port after each instruction or group of instructions.

 10.5.1 Trace Counter (OTC)
The trace mode has a 32-bit counter associated with it so that more than one instruction may be executed
before returning back to the debug mode of operation. The objective of the counter is to allow the user to
take multiple instruction steps real-time with no interference from the debug mode. This feature helps the
10 - 10 DSP96002 USER’S MANUAL MOTOROLA

software developer debug sections of code which do not have a normal flow or are getting hung up in infinite
loops. The trace counter also enables the user to debug areas of code which are time critical.

To enable the trace mode of operation the counter is loaded with a value, the program counter is set to the
start location of the instruction(s) to be executed real-time, the trace mode is selected in the OSCR and the
DSP96002 exits the debug mode by executing the appropriate command issued by the external command
controller.

Upon exiting the debug mode the counter is decremented after each execution of an instruction. Interrupts
are serviceable and all instructions executed (including fast interrupt services) will decrement the trace
counter. Upon decrementing to zero, the DSP96002 will re-enter the debug mode (interrupt service break-
point signal, ISBKPT, set), the trace occurrence bit in the OSCR will be set and the DSO pin will be toggled
to indicate that the DSP96002 has entered debug mode and is requesting service.

The Trace Counter is cleared by hardware reset or whenever the debug mode of operation is entered. Fig-
ure 10-6 illustrates a block diagram of the Trace Counter logic.

 10.6 OnCE SERIAL PORT TIMING
External data is fed into the serial input line by clocking each bit at a variable rate. The minimum clock rate
should be 1 MHZ and the maximum clock rate should be 10 MHZ. The serial input bit must be stable at least
10 ns before the falling edge of the serial clock (set up time) and must remain stable for at least 10 ns after
the falling edge of the clock (hold time).

The serial output line will clock out data from selected register as specified by the last command entered
from the command controller. The data bit value will be valid on the rising edge of the clock and will remain
valid for at least 10 ns after the rising edge of the clock.

After entering the debug mode of operation the serial output line will go low for at least one T cycle to flag
the command controller that the DSP96002 is requesting a breakpoint or trace service.

 10.7 METHODS OF ENTERING THE DEBUG MODE
Entering the Debug Mode is acknowledged by the chip by toggling the DSO line for 1 T cycle. This informs
the external command controller that the chip has entered the Debug Mode and is waiting for commands.
There are seven ways in which the Debug Mode may be entered.

 10.7.1 External request during
—

R
—

E
—

S
—

E
–
T

Holding the
—

D
–
R line asserted during the assertion of

—
R

—
E

—
S

—
E

–
T causes the chip to enter the De-

bug Mode. After receiving the acknowledge, the command controller must deassert the
—

D
–
R line. Note

that in this case the chip does not perform any fetch or memory access before entering the Debug Mode.

 10.7.2 External request during normal activity

Holding the
—

D
–
R line asserted during normal chip activity causes the chip to finish the execution of the

current instruction and then enter the Debug Mode. After receiving the acknowledge, the command control-

ler must deassert the
—

D
–
R line. Note that in this case the chip completes the execution of the current in-

struction and stops after the newly fetched instruction enters the instruction latch. This process is the same
MOTOROLA DSP96002 USER’S MANUAL 10 - 11

Figure 10-6. Breakpoint and Trace Counter Logic
for any newly fetched instruction including instructions fetched by the interrupt processing or instructions
that will be killed by the interrupt processing.

 10.7.3 External Request During STOP

Asserting
—

D
–
R when the chip is in the STOP state (i. e., has executed a STOP instruction) causes the

chip to exit the STOP state and enter the Debug Mode. After receiving the acknowledge, the command con-

troller must negate
—

D
–
R . Note that in this case, the chip completes the execution of the STOP instruction

and halts after the next instruction enters the instruction latch.
10 - 12 DSP96002 USER’S MANUAL MOTOROLA

 10.7.4 External Request During WAIT

Asserting
—

D
–
R when the chip is in the WAIT state (i. e., has executed a WAIT instruction) causes the chip

to exit the WAIT state and enter the Debug Mode. After receiving the acknowledge, the command controller

must negate
—

D
–
R . Note that in this case, the chip completes the execution of the WAIT instruction and

halts after the next instruction enters the instruction latch.

 10.7.5 Software request during normal activity
Upon executing the (F)DEBUGcc instruction when the specified condition is true, the chip enters the Debug
Mode after the instruction following the (F)DEBUGcc instruction has entered the instruction latch (see the
DEBUGcc and FDEBUGcc instruction descriptions in Appendix A).

 10.7.6 Enabling Trace Mode
When operating in Trace Mode and the Trace Counter has reached a value of zero, the chip enters the De-
bug Mode after completing the execution of the instruction that caused the last Trace Counter decrement.
Only instructions actually executed cause the Trace Counter to decrement i.e. a killed instruction will not
decrement the Trace Counter and will not cause the chip to enter the Debug Mode.

 10.7.7 Enabling breakpoints
When operating in Trace Mode or in Normal Mode, and the breakpoint mechanism is enabled with a Break-
point Counter value of zero, the chip enters the Debug Mode after completing the execution of the instruc-
tion that caused the Breakpoint Counter decrement. In case of breakpoints on Program memory addresses,
the breakpoint will be acknowledged immediately after the execution of the instruction that has caused the
occurrence of the specified address. In case of breakpoints on Data memory addresses, the breakpoint will
be acknowledged after the completion of the instruction following the instruction that caused the occurrence
of the specified address.

 10.8 PIPELINE INFORMATION
In order restore the pipeline to resume normal chip activity upon returning from the Debug Mode, a number
of on-chip registers store the chip pipeline status. Figure 10-7 illustrates a block diagram of Pipeline Infor-
mation Registers with the exception of the PAB registers which are shown in Figure 10-7.

 10.8.1 PAB Registers (OPABF, OPABD)
There are two read only PAB registers which give pipeline information when the debug mode is entered.
The OPABF register tells which opcode address is in the fetch stage of the pipeline and OPABD tells which
opcode is in the decode stage. Under normal program flow conditions, the program address saved will be
that of the instruction preceding the last instruction fetched and decoded before the debug mode was en-
tered. The PAB registers can only be read or written through the serial interface.

 10.8.2 PDB Register (OPDBR)
The PDB Register is a 32-bit latch that stores the value of the Program Data Bus generated by the last Pro-
gram Memory access of the core before the Debug Mode is entered. OPDBR can only be read or written
MOTOROLA DSP96002 USER’S MANUAL 10 - 13

Figure 10-7. Pipeline Information Registers
through the serial interface. This register is affected by the operations performed during the Debug Mode
and must be restored by the command controller when returning to normal mode.

 10.8.3 PIL Register (OPILR)
The PIL Register is a 32-bit latch that stores the value of the Instruction Latch before the Debug Mode is
entered. OPILR can only be read through the serial interface. This register is affected by the operations per-
formed during the Debug Mode and must be restored by the command controller when returning to normal
mode. Since there is no direct access to this register, this task is accomplished by writing the OPDBR first
and then the data from OPDBR is latched in OPILR.

 10.8.4 GDB Register (OGDBR)
The GDB Register is a 32-bit latch that can only be read through the serial interface. OGDBR is not actually
required from a pipeline status restore point of view but is required as a means of passing information be-
tween the chip and the command controller. OGDBR is mapped on the X internal I/O space at address
$FFFFFFF0. Whenever the command controller needs a data word such as a register or memory value, it
will force the chip to execute an instruction that brings that information to OGDBR. Then, the contents of
OGDBR will be delivered serially to the command controller by the command "READ GDB REGISTER".

 10.9 PAB HISTORY BUFFER
To ease the debugging activity and keep track of the program flow, a First-In-First-Out buffer is provided
which stores the addresses of the last five instructions that were executed as well as the addresses of the
last fetched instruction and of the instruction currently in the Instruction Latch.
10 - 14 DSP96002 USER’S MANUAL MOTOROLA

Figure 10-8. Program Address Bus FIFO
MOTOROLA DSP96002 USER’S MANUAL 10 - 15

 10.9.1 PAB Register for Fetch (OPABFR)
The PAB Register for Fetch is a 32-bit register that stores the address of the last instruction that was fetched
before the Debug Mode was entered. OPABFR can only be read through the serial interface. This register
is not affected by the operations performed during the Debug Mode.

 10.9.2 PAB Register for Decode (OPABDR)
The PAB Register for Decode is a 32-bit register that stores the address of the instruction currently in the
Instruction Latch. This is the instruction that would have been decoded if the chip would not have entered
the Debug Mode. OPABDR can only be read through the serial interface. This register is not affected by the
operations performed during the Debug Mode.

 10.9.3 PAB FIFO
To ease the debugging activity and keep track of the program flow, a First-In-First-Out buffer is provided
which stores the addresses of the last five instructions that were executed. The FIFO is implemented as a
circular buffer containing five 32-bit registers and one 3-bit counter. All the registers have the same address
but any read access to the FIFO address will cause the counter to increment thus pointing to the next FIFO
register. The registers are serially available to the command controller through their common FIFO address.
Figure 10-8 illustrates a block diagram of the Program Address Bus FIFO. The FIFO is not affected by the
operations performed during the Debug Mode except for the FIFO pointer increment when reading the
FIFO. The last instruction executed before entering debug mode will be on the bottom of the FIFO.

Caution
To ensure FIFO coherence, a complete set of five reads of the FIFO must be per-

formed. This is necessary due to the fact that each read increments the FIFO pointer
thus pointing to the next location. After five reads the pointer will point to the same

location as before starting the read procedure.

 10.10 SERIAL PROTOCOL DESCRIPTION
In order to permit an efficient means of communication between the command controller and the DSP96002
chip, the following protocol is adopted. Before starting any debugging activity the command controller has
to wait for an acknowledge that the chip has entered the Debug Mode. Note that in case of a breakpoint,
trace, or software (F)DEBUGcc instruction, the acknowledge itself is the initiates the debug session. The
command controller communicates with the chip by sending 8-bit commands that may be accompanied by
32-bit data. After sending a command the command processor waits for the chip to acknowledge execution
of the command. The command processor may send a new command only after the chip has acknowledged
execution of the previous command.

 10.10.1 OnCE Commands
There are two types of commands: read commands (when the chip will deliver required data) and write com-
mands (when the chip will receive data and will write the data in one of the on-chip resources). The com-
mands are 8 bits long and have the format shown in Figure 10-9.

 10.10.1.1 Register Select (RS4-RS0) Bits 0-4
The Register Select bits define which register is source(destination) for the read(write) operation.
10 - 16 DSP96002 USER’S MANUAL MOTOROLA

 RS4-RS0 Register Selected
 00000 Debug Status/Control (OSCR)
 00001 Breakpoint Counter Program (OPBC)
 00010 Breakpoint Counter Data (ODBC)
 00011 Trace Counter (OTC)
 00100 Breakpoint Data Memory Higher-Equal (ODULR)
 00101 Breakpoint Data Memory Lower-Equal (ODLLR)
 00110 Breakpoint Program Memory Higher-Equal (OPULR)
 00111 Breakpoint Program Memory Lower-Equal (OPLLR)
 01000 Transfer Register (OGDBR)
 01001 Program Data Bus Latch (OPDBR)
 01010 Program Address Bus Latch for Fetch (OPABF)
 01011 Program Instruction Latch (OPILR)
 01100 Clear Program Breakpoint Counter
 01101 Clear Data Breakpoint Counter
 01110 Clear Trace Counter
 01111 Reserved
 10000 Reserved
 10001 Program Address Bus FIFO and Increment Counter
 7 6 5 4 3 2 1 0
 10010 Program Address Bus Latch for Decode (OPABD)
 10011 Reserved
 101xx Reserved
 11xx0 Reserved
 11x0x Reserved
 110xx Reserved
 11111 No Register Selected

 10.10.1.2 Exit Command (EX) Bit 5
If EX is set, leave Debug Mode and resume normal operation.

 EX Action
 0 remain in Debug Mode
 1 leave Debug Mode

 10.10.1.3 Go Command (GO) Bit 6
If GO is set, execute instruction.

 GO Action
 0 inactive (no action taken)
 1 execute instruction

 10.10.1.4 Read/Write Command (R/W) Bit 7

 R/W Action
R/W GO EX RS4 RS3 RS2 RS1 RS0

Figure 10-9. OnCE Command Format
MOTOROLA DSP96002 USER’S MANUAL 10 - 17

 0 write the data associated with the command into the
 register specified by RS4-RS0
 1 read the data contained in the register specified by
 RS4-RS0

 10.11 DSP96002 TARGET SITE DEBUG SYSTEM REQUIREMENTS
A typical DSP96002 debug environment consists of a target system where the DSP96002 resides in the
user defined hardware. The debug serial port interfaces to the command convertor over a 6 wire link con-

sisting of the 4 OnCE wires, a ground and reset wire. The reset wire is optional and is only used to reset
the DSP96002 and its associated circuitry.

The command controller acts as the medium between the DSP96002 target system and a host computer.
The host computer interfaces to the controller using a standard RS232 three wire cable or the DSP96002
Application Development System parallel bus. A jumper option on the command controller board selects
which method of communications will be used. This allows a variety of different host computers to commu-
nicate with the controller circuit.

The controller circuit provides several important functions. It acts as a DSP96002 serial debug port driver,
host computer command interpreter, and DSP96002 controller. The DSP96002 acts as a slave when in the
debug mode and provides data only upon request. The controller issues commands based on the host com-
puter inputs from a user interface program which communicates with the user.

 10.12 USING THE OnCE
The following notations are used:

ACK = Wait for acknowledge on the DSO pin
CLK = issue 32 clocks to read out data from selected register

 10.12.1 Begin Debug Activity
Most of the Debug activities will have the following beginning:

1. ACK

2. Save pipeline information:

1. Send command READ PDB REGISTER

2. ACK

3. CLK

4. Send command READ PIL REGISTER (instruction latch).

5. ACK

6. CLK

3. Read PAB FIFO and fetch/decode info (this step is optional):

1. Send command READ PAB address for fetch

2. ACK

3. CLK

4. Send command READ PAB address for decode

5. ACK
10 - 18 DSP96002 USER’S MANUAL MOTOROLA

6. CLK

7. Send command READ FIFO REGISTER (and increment pointer).

8. ACK

9. CLK

10. Send command READ FIFO REGISTER (and increment pointer).

11. ACK

12. CLK

13. Send command READ FIFO REGISTER (and increment pointer).

14. ACK

15. CLK

16. Send command READ FIFO REGISTER (and increment pointer).

17. ACK

18. CLK

19. Send command READ FIFO REGISTER (and increment pointer).

20. ACK

21. CLK

 10.12.2 Displaying a specified register
1. Send command WRITE PDB REGISTER and GO (no EX).

(ODEC selects PDB as destination for serial data.)

2. ACK

3. Send the 32-bit opcode: "MOVE reg,x:OGDB"

(After 32 bits have been received, the PDB register drives the PDB. ODEC releases the chip
from the "halt" state and the contents of the register specified in the instruction are loaded in
the GDB REGISTER. The signal that marks the end of the instruction returns the chip to the
"halt" state and an acknowledge is issued to the command controller.)

4. ACK

5. Send command READ GDB REGISTER
(ODEC selects GDB as source for serial data and an acknowledge is issued to the command
controller.)

6. ACK

7. CLK

 10.12.3 Displaying X memory area starting from address xxxx
This command uses Rn to minimize serial traffic.

1. Send command WRITE PDB REGISTER and GO (no EX).
(ODEC selects PDB as destination for serial data.)

2. ACK

3. Send the 32-bit opcode: "MOVE R0,x:OGDB"

(After 32 bits have been received the PDB register drives the PDB. ODEC releases the chip
from the "halt" state and the contents of R0 are loaded in the GDB REGISTER. The signal that
marks the end of the instruction returns the chip to the "halt" state and an acknowledge is is-
sued to the command controller.)
MOTOROLA DSP96002 USER’S MANUAL 10 - 19

4. ACK

5. Send command READ GDB REGISTER

(ODEC selects GDB as source for serial data and an acknowledge is issued to the command
controller.

6. ACK

7. CLK

(The command controller generates 32 clocks that shift out the contents of the GDB register.
The value of R0 is thus saved and will be restored before exiting the Debug Mode.)

8. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects PDB as destination for serial data.)

9. ACK

10. Send the 32-bit opcode: "MOVE #$xxxx,R0"

(After 32 bits have been received, the PDB register drives the PDB. ODEC causes the core to
load the opcode. An acknowledge is issued to the command controller.)

11. ACK

12. Send command WRITE PDB REGISTER and GO (no EX).

(ODEC selects PDB as destination for serial data.)

13. ACK

14. Send the 32-bit 2nd word of: "MOVE #$xxxx,R0" (the xxxx field).

(After 32 bits have been received, the PDB register drives the PDB. ODEC releases the chip
from the "halt" state and the instruction starts execution. The signal that marks the end of the
instruction returns the chip to the "halt" state and an acknowledge is issued to the command
controller.)

15. ACK

16. Send command WRITE PDB REGISTER and GO (no EX).

(ODEC selects PDB as destination for serial data.)

17. ACK

18. Send the 32-bit opcode: "MOVE X:(R0)+,x:OGDB"

(After 32 bits have been received, the PDB register drives the PDB. ODEC releases the chip
from the "halt" state and the contents of X:(R0) are loaded in the GDB REGISTER. The signal
that marks the end of the instruction returns the chip to the "halt" state and an acknowledge
is issued to the command controller.)

19. ACK

20. Send command READ GDB REGISTER

(ODEC selects GDB as source for serial data and an acknowledge is issued to the command
controller.)

21. ACK

22. CLK

23. Send command NO SELECTION and GO (no EX).
10 - 20 DSP96002 USER’S MANUAL MOTOROLA

(ODEC releases the chip from the "halt" state and the instruction is executed again (in a "RE-
PEAT-like" fashion. The signal that marks the end of the instruction returns the chip to the
"halt" state and an acknowledge is issued to the command controller.)

24. ACK

25. Send command READ GDB REGISTER

(ODEC selects GDB as source for serial data and an acknowledge is issued to the command
controller.)

26. ACK

27. CLK

28. Repeat from step 23 until the entire memory area is examined. At the end of the process R0
has to be restored.

 10.12.4 Returning from Debug Mode to Normal Mode
There are two cases for returning from the debug mode. Either control will be returned to the program that
was running before debug was initiated or the registers will be changed to jump to a different program.

 10.12.4.1 Case 1: Return to the previous program (Return to normal mode).
1. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects the PDB as the destination for serial data – also, ODEC selects the on-chip
PAB register as the source for the PAB bus. After the PAB was driven, an acknowledge is is-
sued to the command controller.)

2. ACK

3. Send the 32 bits of the saved PIL (instruction latch) value.

(After all the 32-bits have been received the PDB register drives the PDB. ODEC causes the
core to load the opcode. An acknowledge is issued to the command controller.)

4. ACK

5. Send command WRITE PDB REGISTER (GO, EX).

(ODEC selects PDB as destination for serial data.)

6. ACK

7. Send the 32-bit of the saved PDB value.

(After 32 bits have been received, the PDB register drives the PDB. ODEC releases the chip
from the "halt" state and the Debug Mode bit in OSCR is cleared. The chip continues to ex-
ecute instructions until a Debug Mode condition occurs.)

 10.12.4.2 Case 2: Jump to a new program (Go from address $xxxxxxxx).
1. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects PDB as destination for serial data.)

2. ACK

3. Send 32 bits of the opcode of a two word jump instruction ($030c3f80) instead of the saved
PIL (instruction latch) value.

(After all the 32-bits have been received the PDB register drives the PDB. ODEC causes the
core to load the opcode. An acknowledge is issued to the command controller.)
MOTOROLA DSP96002 USER’S MANUAL 10 - 21

4. ACK

5. Send command WRITE PDB REGISTER (GO, EX).

(ODEC selects PDB as destination for serial data.)

6. ACK

7. Send 32 bits of the target absolute address ($xxxxxxxx). The chip will resume fetching from
the target address (you do not have to worry about the pipeline). Note that the trace counter
will count this instruction so the current trace counter may need to be corrected if the trace
mode enable bit in the OSCR has been set.

(e. g., After 32 bits have been received, the PDB register drives the PDB. ODEC releases the
chip from the "halt" state and the Debug Mode bit in OSCR is cleared. The chip executes first
the jump instruction and will then fetch the instruction from the target address. The chip con-
tinues to execute instructions from that address until a Debug Mode condition occurs.)
10 - 22 DSP96002 USER’S MANUAL MOTOROLA

APPENDIX A
INSTRUCTION SET DETAILS

 A.1 INTRODUCTION
This appendix contains detailed information about each instruction defined in the DSP96002 instruction
set. They are arranged in alphabetical order.

 A.2 ADDRESSING MODES
Addressing modes are categorized by the ways in which they may be used. The following classifications
will be used in the instruction definitions. Figure A-1 shows the various categories to which each address-
ing mode belongs.

Update (U) The addressing mode may be used to modify address registers without an associated
data move.

Parallel (P) The addressing mode may be used in instructions where two effective addresses are
required.

Memory (M) The addressing mode uses the effective addressing field and refers to operands in
memory.

Alterable (A) The addressing mode refers to alterable (writable) registers or memory.

These addressing mode categories may be combined so that additional, more restrictive classifications
may be defined. For example, the instruction descriptions may use a memory alterable classification. This
refers to addressing modes which are both memory addressing modes and alterable addressing modes.
Memory alterable addressing modes use the effective address to address memory and exclude the imme-
diate addressing mode and the long displacement addressing mode.

The address register indirect addressing modes require that the offset register number be the same as the
address register number. The assembler syntax "Nn" supports this future feature. The assembler syntax
"N" may be used instead of "Nn" in the address register indirect memory addressing modes. If "N" is spec-
ified, the offset register number is the same as the address register number.

 A.2.1 Addressing Mode Modifiers
The addressing mode selected in the instruction word is further specified by the contents of the address
modifier register Mn. The addressing mode update modifiers are shown in Figure A-2. There are no re-
strictions on the use of modifier types with any memory addressing mode.
MOTOROLA DSP96002 USER’S MANUAL A - 1

Register Direct
Data or Control Register – – X Note 1
Address Register – – X Rn
Address Offset Register – – X Nn
Address Modifier Register – – X Mn

Address Register Indirect
No Update 100 Rn X X X X (Rn)
Postincrement by 1 011 Rn X X X X (Rn)+
Postdecrement by 1 010 Rn X X X X (Rn)-
Postincrement by Offset Nn 001 Rn X X X X (Rn)+Nn
Postdecrement by Offset Nn 000 Rn X X X (Rn)- Nn
Indexed by Offset Nn 101 Rn X X (Rn+Nn)
Predecrement by 1 111 Rn X X -(Rn)
Long Displacement – Rn X (Rn+displacement)

PC Relative
Long Displacement – – (PC+displacement)
Short Displacement – – (PC+xx)
Address Register – Rn (PC+Rn)

Special
Immediate Data 110 100 X #Data
Absolute Address 110 000 X X label
Absolute Short Address – – X aa
I/O Short Address – – X pp
Immediate Short Data – – #xx
Short Jump Address – – X xx
Implicit – – X

Note 1: Refer to Figure A-6 for the assembler syntax.

Figure A-1. Addressing Mode Summary

 Addressing
 Mode Reg Categories Assembler

 Addressing Mode U P M A Syntax
 A.3 CONDITION CODE COMPUTATION
The CCR contains the condition code bits Carry (C), Overflow (V), Zero (Z), Negative (N), Infinity (I), Local

Reject (LR), Reject (
–
R), and Accept (A).

The C, V, Z, N, I, LR,
–
R, and A bits are true condition code bits that reflect the condition of the result of a

Data ALU operation. The C, V, Z and N bits are also affected by Address Generation Unit calculations
during MOVETA instruction execution. The CCR bits are not affected by data transfers over the X, Y or
global data buses.

The standard definition of the CCR bits is given below. Exceptions to these are given in Figure A-4.

C(Carry) Set if a carry is generated in an integer addition. Also set if a borrow is generated in an
integer subtraction. The carry or borrow is generated out of the most significant bit
(MSB) of the result. The carry bit is also modified by bit manipulation, rotate, and shift
integer instructions as well as by the Address Generation Unit operation when execut-
ing MOVETA instructions. Cleared otherwise. The carry bit is not affected by floating-
point instructions. The C bit is cleared during processor reset.

V(Overflow) Set if an arithmetic overflow occurs in a fixed point operation. This indicates that the
result is not representable in the destination size. The V bit is not affected by floating-
point operations unless they have a fixed point result. The overflow bit is also modified
A - 2 DSP96002 USER’S MANUAL MOTOROLA

Modifier
MMMMMM M M Address Calculation Arithmetic
0 0 0 0 0 0 0 0 Reverse Carry (Bit Reversed Update)
0 0 0 0 0 0 0 1 Modulo 2
0 0 0 0 0 0 0 2 Modulo 3

. . .

. . .

. . .

0 0 F F F F F E Modulo 16,777,215 ((2**24)-1)
0 0 F F F F F F Modulo 16,777,216 (2**24)
0 1 x x x x x x reserved
0 2 x x x x x x reserved

. . .

. . .

. . .

F D x x x x x x reserved
F E x x x x x x reserved
F F 0 0 0 0 0 0 reserved
F F 0 0 0 0 0 1 Multiple Wrap-Around Modulo 2
F F 0 0 0 0 0 3 Multiple Wrap-Around Modulo 4
F F 0 0 0 0 0 7 Multiple Wrap-Around Modulo 8
F F 3 F F F F F Multiple Wrap-Around Modulo 2**22
F F 7 F F F F F Multiple Wrap-Around Modulo 2**23
F F F F F F F F Linear (Modulo 2**32)

where MMMMMMMM = Modifier Register Contents in Hex
Figure A-2. Address Modifier Summary
by Address Generation Unit operation when executing MOVETA instructions. Cleared
otherwise. The V bit is cleared during processor reset.

Z(Zero) Set if the result equals zero. The Z bit is also set for floating-point -zero as well as +zero.
The zero bit is also modified by Address Generation Unit operation when executing
MOVETA instructions. Cleared otherwise. The Z bit is cleared during processor reset.

N(Negative) Set if the MSB of the result is set for integer operations or if the sign bit of the result is
set for floating-point operations. The negative bit is also modified by Address Genera-
tion Unit operation when executing MOVETA instructions. Cleared otherwise. The N
bit is cleared during processor reset.

I(Infinity) Set if the result of a floating-point operation is a signed infinity. Cleared otherwise. The
I bit is not affected by fixed point operations but is affected by some conversion instruc-
tions. For example, if D is infinity, then executing FABS.S D will set the I bit. The I bit is
cleared during processor reset.

LR(Local Reject) The LR bit is only affected by the compare instructions CMP, CMPG, FCMP and FC-
MPG. The LR bit is cleared during processor reset. See the example for the FCMPG
instruction for additional information.

–
R(Reject) The

–
R bit is only affected by the compare instructions CMP, CMPG, FCMP and FC-

MPG. The
–
R bit is calculated based on its previous value and the results of the current
MOTOROLA DSP96002 USER’S MANUAL A - 3

A

compare instruction. The
–
R bit is cleared during processor reset. See the example for

the FCMPG instruction for additional information.

A(Accept) The A bit is only affected by the compare instructions CMP, CMPG, FCMP and FCMPG.
The A bit is calculated based on its previous value and the results of the current compare
instruction. The A bit is cleared during processor reset. See the example for the FCMPG
instruction for additional information.

There are 16 theoretical combinations of N, Z, I and NAN for floating point results, but only eight combina-
tions are possible in practice due to the exclusive nature of the data types described by the condition
codes. The eight possible combinations are shown in Figure A-3.

Figure A-4 details how each instruction affects the condition codes. Figure A-4 gives the chip implemen-
tation viewpoint while the opcode descriptions in Section A-3 give the user viewpoint. For example, the Z
bit computation for the CLR instruction is shown in the figure as the standard definition while the opcode
description indicates that Z is always set.
 - 4 DSP96002 USER’S MANUAL MOTOROLA

N Z I NAN Result Data Type
0 0 0 0 +Normalized/Denormalized
1 0 0 0 - Normalized/Denormalized
0 1 0 0 +0
1 1 0 0 -0
0 0 1 0 +Infinity
1 0 1 0 -Infinity
0 0 0 1 +NaN
1 0 0 1 - NaN

Figure A-3.
Possible Combinations of the N, Z, I and NAN Bits for Floating-Point Results

MOTORO
Mnemonic A
–
R LR I N Z V C Special Definitions

ABS – – – – * * * –
ADD – – – – – * * *
ADDC – – – – * ? * * Note 1
AND – – – – * * 0 –
ANDC – – – – * * 0 –

ANDI ? ? ? ? ? ? ? ? Note 2
ASL – – – – * * ? ? Note 3,4
ASR – – – – * * 0 ? Note 3
Bcc – – – – – – – –
BCHG ? ? ? ? ? ? ? ? Note 29

BCLR ? ? ? ? ? ? ? ? Note 30
BFIND – – – – ? ? 0 – Note 15,24
BRA – – – – – – – –
BRCLR – – – – – – – –
BRSET – – – – – – – –

BScc – – – – – – – –
BSCLR – – – – – – – –
BSET ? ? ? ? ? ? ? ? Note 31
BSR – – – – – – – –
BSSET – – – – – – – –

BTST – – – – – – – ? Note 5
CLR – – – – * * 0 –
CMP ? – ? – * * * * Note 32,33
CMPG ? ? 1 – * * * ? Note 23,32,34
DEBUGcc – – – – – – – –

DEC – – – – * * * *
DO – – – – – – – –
DOR – – – – – – – –
ENDDO – – – – – – – –
EOR – – – – * * 0 –

EXT – – – – * * 0 –
EXTB – – – – * * 0 –
FABS.S – – – * * * – –
FABS.X – – – * * * – –
FADD.S – – – * * * – –

FADD.X – – – * * * – –
FADDSUB.S – – – ? ? ? – – Note 9,10,11
FADDSUB.X – – – ? ? ? – – Note 9,10,11
FBcc – – – – – – – –
FBScc – – – – – – – –

FCLR – – – * * * – –
FCMP ? ? ? ? * ? – – Note 27,35,36,37,40
FCMPG ? ? 1 ? * ? – ? Note 27,35,38,39,40
FCMPM – – – ? * ? – – Note 27,40
FCOPYS.S – – – * * * – –
Symbols: * Set according to the standard definition by the result
 - Not affected by the operation
 0 Cleared
 1 Set
 ? Set according to the special computation definition by the result of the operation
Figure A-4. Condition Codes Computation
LA DSP96002 USER’S MANUAL A - 5

A - 6 DSP96002 USER’S MANUAL MOTOROLA

Mnemonic A
–
R LR I N Z V C Special Definitions

FCOPYS.X – – – * * * – –
FDEBUGcc – – – – – – – –
FFcc – – – – – – – –
FFcc.U ? ? ? ? ? ? ? ? Note 21
FGETMAN – – – * * * – –

FINT – – – * * * – –
FJcc – – – – – – – –
FJScc – – – – – – – –
FLOAT.S – – – * * * – –
FLOAT.X – – – * * * – –

FLOATU.S – – – * * * – –
FLOATU.X – – – * * * – –
FLOOR – – – * * * – –
FMPY//FADD.S – – – ? ? ? – – Note 9,10,11
FMPY//FADD.X – – – ? ? ? – – Note 9,10,11

FMPY//FADDSUB.S – – – ? ? ? – – Note 9,10,11
FMPY//FADDSUB.X – – – ? ? ? – – Note 9,10,11
FMPY//FSUB.S – – – ? ? ? – – Note 12,13,14
FMPY//FSUB.X – – – ? ? ? – – Note 12,13,14
FMPY.S – – – * * * – –

FMPY.X – – – * * * – –
FNEG.S – – – * * * – –
FNEG.X – – – * * * – –
FSCALE.S – – – * * * – –
FSCALE.X – – – * * * – –

FSEEDD – – – * * * – –
FSEEDR – – – * * * – –
FSUB.S – – – * * * – –
FSUB.X – – – * * * – –
FTFR.S – – – * * * – –

FTFR.X – – – * * * – –
FTRAPcc – – – – – – – –
FTST – – – * * * – –
GETEXP – – – ? * * – – Note 16
IFcc – – – – – – – –

IFcc.U ? ? ? ? ? ? ? ? Note 21
ILLEGAL – – – – – – – –
INC – – – – * * * *
INT – – – ? ? * ? – Note 16,17,24
INTRZ – – – ? ? ? – Note 16,17,24
NTU – – – ? ? * ? – Note 16,24,41
INTURZ – – – ? ? * ? – Note 16,24,41
Jcc – – – – – – – –
JCLR – – – – – – – –
JMP – – – – – – – –

Figure A-4. Condition Codes Computation (continued)

Symbols:

 * Set according to the standard definition by the result
 - Not affected by the operation
 0 Cleared
 1 Set
 ? Set according to the special computation definition by the result of the operation

MOTOROLA DSP96002 USER’S MANUAL A - 7

Mnemonic A
–
R LR I N Z V C Special Definitions

 JOIN – – – – * * 0 –
JOINB – – – – * * 0 –
JScc – – – – – – – –
JSCLR – – – – – – – –
JSET – – – – – – – –

JSR – – – – – – – –
JSSET – – – – – – – –
LEA ? ? ? ? ? ? ? ? Note 28
LRA ? ? ? ? ? ? ? ? Note 28
LSL – – – – * * 0 ? Note 3

LSR – – – – * * 0 ? Note 3
MOVE – – – – – – – –
MOVEC ? ? ? ? ? ? ? ? Note 28
MOVEI ? ? ? ? ? ? ? ? Note 28
MOVEM ? ? ? ? ? ? ? ? Note 28

MOVEP ? ? ? ? ? ? ? ? Note 28
MOVES ? ? ? ? ? ? ? ? Note 28
MOVETA – – – – ? ? ? ? Note 6,7,8,22
MPYS – – – – * * ? – Note 18
MPYU – – – – 0 * ? – Note 25

NEG – – – – * * * *
NEGC – – – – * ? * * Note 1
NOP – – – – – – – –
NOT – – – – * * 0 –
OR – – – – * * 0 –

ORC – – – – * * 0 –
ORI ? ? ? ? ? ? ? ? Note 19
REP – – – – – – – –
RESET – – – – – – – –
ROL – – – – * * 0 ? Note 26

ROR – – – – * * 0 ? Note 26
RTI ? ? ? ? ? ? ? ? Note 20
RTR ? ? ? ? ? ? ? ? Note 20
RTS – – – – – – – –
SETW – – – – * * 0 –

SPLIT – – – – * * 0 –
SPLITB – – – – * * 0 –
STOP – – – – – – – –
SUB – – – – * * * *
SUBC – – – – * ? * * Note 1

TFR – – – – – – – –
TRAPcc – – – – – – – –
TST – – – – * * 0 –
WAIT – – – – – – – –

Symbols: * Set according to the standard definition by the result
 - Not affected by the operation
 0 Cleared
 1 Set
 ? Set according to the special computation definition by the result of the operation

Figure A-4. Condition Codes Computation (continued)

A

Note 1 Z - Cleared if the result is not zero. Unchanged otherwise.

Note 2 All ? Bits - Cleared if corresponding bit in immediate data is cleared and the operand is CCR.
Not affected otherwise.

Note 3 C - Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared for a shift
count of zero.

Note 4 V - Set if the MSB is changed any time during the shift operation. Cleared otherwise.

Note 5 C - Set if bit #n of the source operand is set. Cleared otherwise.

Note 6 C - For increment addressing modes: Set if carry occurred out of the MSB during address cal-
culation with linear modifier or carry occurred out of the LSB during address calculation with
reverse carry modifier. Cleared otherwise.

For decrement addressing modes: Set if borrow occurred out of the MSB during address cal-
culation with linear modifier or borrow occurred out of the LSB during address calculation with
reverse carry modifier. Cleared otherwise.

Note 7 V - Set if overflow occurred out of the MSB during the address calculation with a linear modifier.
Set if overflow occurred out of the least significant bit (LSB) during the address calculation with
a reverse carry modifier. Set if wraparound occurred during the address calculation with a mod-
ulo modifier. Set if at least one wrap-around occurred during address calculation with a multiple
wrap-around modulo modifier. Cleared otherwise.

Note 8 Z - Set if the result of the address calculation is zero. Cleared otherwise.

Note 9 I - Set if the result of the addition is infinity. Cleared otherwise.

Note 10 N - Set if the result of the addition is negative. Cleared otherwise.

Note 11 Z - Set if the result of the addition is zero. Cleared otherwise.

Note 12 I - Set if the result of the subtraction is infinity. Cleared otherwise.

Note 13 N - Set if the result of the subtraction is negative. Cleared otherwise.

Note 14 Z - Set if the result of the subtraction is zero. Cleared otherwise.

Note 15 Z - Set if the source operand is zero. Cleared otherwise.

Note 16 I - Set if the source operand is infinity. Cleared otherwise.

Note 17 V - Set if source operand is a NaN, infinity, or its magnitude is too big to be representable in the
integer number range. Cleared otherwise.

Note 18 V - Cleared if the most significant 32 bits of the 64-bit result are the sign extension of the least
significant 32 bits. Set otherwise.

Note 19 All ? Bits - Set if corresponding bit in immediate data is set and the operand is CCR. Not affected
otherwise.

Note 20 All ? Bits - Set according to the value pulled from the stack.

Note 21 All ? Bits - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

Note 22 N - Set if the MSB of the result of the address calculation with linear modifier is set. Set if the
LSB of the result of the address calculation with reverse carry modifier is set. Set if the MSB of
the result of the address calculation with modulo modifier is set. Cleared otherwise.

Note 23 C - Set if result is negative without overflow. Set if result is positive with overflow. Cleared oth-
erwise.

Note 24 N - Set if the source operand is negative. Cleared otherwise.

Note 25 V - Cleared if the most significant 32 bits of the 64-bit result are zero. Set otherwise.

Note 26 C - Set if the last bit shifted out of the operand is set. Cleared otherwise.

Note 27 I - Set if any one of the source operands is infinity. Cleared otherwise.
 - 8 DSP96002 USER’S MANUAL MOTOROLA

Note 28 All ? bits - If SR is specified as a destination operand, set according to the corresponding bit of
the source operand. Not affected otherwise.

Note 29 All ? bits - If SR is specified as destination operand, and A,
–
R, LR, I, N, Z, V or C is selected,

then the selected bit will be changed. If SR is not specified, then C will be set if bit #n of the
source operand is set and cleared if bit #n of the source operand is set. Not affected otherwise.

Note 30 All ? bits - If SR is specified as destination operand, and A,
–
R, LR, I, N, Z, V or C is selected,

then the selected bit will be cleared. If SR is not specified, then C will be set if bit #n of the
source operand is set set and cleared if bit #n of the source operand is set. Not affected oth-
erwise.

Note 31 All ? bits - If SR is specified as destination operand, and A,
–
R, LR, I, N, Z, V or C is selected,

then the selected bit will be set. If SR is not specified, then C will be set if bit #n of the source
operand is set set and cleared if bit #n of the source operand is set. Not affected otherwise.

Note 32 A - Cleared if result is negative without overflow. Cleared if result is positive with overflow. Not
affected otherwise.

Note 33 LR - Cleared if result is positive without overflow. Cleared if result is negative with overflow. Not
affected otherwise.

Note 34 R - Cleared if LR was set and result is negative without overflow. Cleared if LR was set and
result is positive with overflow. Not affected otherwise.

Note 35 A - Cleared if result is a NaN. Cleared if result is negative and not zero. Not affected otherwise.

Note 36 LR - Cleared if result is positive, zero or NaN. Not affected otherwise.

Note 37 R - Cleared if result is a NaN. Not affected otherwise.

Note 38 R - Cleared if result is a NaN. Cleared if result is negative and not zero and LR was set. Not
affected otherwise.

Note 39 C - Set if result is a NaN. Set if result is negative and not zero. Cleared otherwise.

Note 40 Z - Set if source operands are equal. Cleared otherwise.

Note 41 V - Set if source operand is a NaN, infinity or negative non-zero. Set if positive source operand
is too big to be representable in the integer number range. Cleared otherwise.

 A.4 EXCEPTION STATUS BITS COMPUTATION
Floating-point operations affect the seven status bits located in the IER register. The standard definitions
of the ER bits is given below. These definitions are based on the ANSI/IEEE Standard 754-1985 which can
be ordered from:

IEEE

345 East 47th Street

New York, N.Y. 10017

Additional information (particularly relating to test cases) can be found in J. T. Coonen, An Implementation
Guide to a Proposed Standard for Floating-Point Arithmetic, Computer, 1980, pages 68-79. Examples of
the use of these bits are given in Section 4.6.

INX (Inexact) - Set if a floating-point mantissa, considered as having infinite precision, has too many
significant bits to be represented exactly in the current rounding precision. That is, a result is
inexact if there was a loss of accuracy due to rounding. Cleared otherwise. The INX bit is not
affected by fixed point operations. The INX bit is cleared during processor reset.
MOTOROLA DSP96002 USER’S MANUAL A - 9

A

DZ (Division by Zero) - Set if the dividend is a finite nonzero number and the divisor is zero. The
result will be a correctly signed infinity (generated by the exclusive OR of the signs of the source
operands). Cleared otherwise. The DZ bit is not affected by fixed point operations. The DZ bit
is cleared during processor reset.

UNF (Underflow) - Set if tininess is detected, that is, set if an intermediate unrounded result of a float-
ing-point operation is too small to be represented in a floating-point data register with the se-
lected rounding precision as a normalized result. The UNF bit is not affected by fixed point op-
erations. The UNF bit is cleared during processor reset.

OVF (Overflow) - Set if a rounded floating-point intermediate result is too large to be represented in
a floating-point data register with the selected rounding precision. If the result is greater than or

equal to |±2
Emax-1

| the OVF bit will be set; otherwise it will be cleared. The largest single preci-
sion IEEE floating-point number representable in memory is $7F7FFFFF. It is possible to set
OVF and have INX cleared if the overflow is exact. The OVF bit is not affected by fixed point
operations. The OVF bit is cleared during processor reset.

OPERR (Operand Error) - Set if an operation has no mathematical interpretation for the given operands.
Cleared otherwise. The result will be a quiet NaN if the destination has a floating-point format.
Examples of operations which generate quiet NaNs and set the OPERR bit are (+∞)+(-∞), 0×∞,

and √—
-n. The OPERR bit is not affected by fixed point operations. The OPERR bit is cleared

during processor reset.

SNAN (Signaling NaN) - Set when a signaling NaN is involved in an arithmetic floating-point operation.
Cleared otherwise. The result will be a non-signaling NaN obtained by setting the most signif-
icant fraction bit of the significand. The SNAN bit is not affected by fixed point operations. The
SNAN bit is cleared during processor reset.

NaN (Not-a-Number) - Set if the result of a floating-point operation is a NaN. Cleared otherwise. The
NAN bit is not affected by fixed point operations but is affected by some conversion instructions.
The NAN bit is cleared during processor reset.

UNCC (Unordered Condition) - Set if a non-aware floating-point conditional instruction (FBcc, FJcc,
FFcc, etc.) is executed when the NAN bit is set (the unordered condition). Not affected other-
wise. The UNCC bit is cleared during processor reset.

The IEEE Standard 754-1985 for Binary Floating-Point Arithmetic (754-standard) explicitly
specifies how to handle comparison operations when one or more of the operands is a NaN
(which the 754-standard created). However, a great deal of software has been written and some
is still being written, in an environment which is not aware of the NaN data type. In order to port
such software to an IEEE 754-1985 standard environment, a special bit, the unordered condition
code (UNCC) bit, was created in the DSP96002. This bit can be used when porting the software
to ensure that the intended branch is taken, or an exception is generated, when the ported pro-
gram processes a NaN.

Typically, branches are taken on predicates and their compliments assuming the operands can
be ordered (i. e., placed on the real number line). However, NaNs, by definition, do not have any
order relationship to numbers on the real number line. For example, when a FCMP is executed
the NaN bit in the ER will be set if either operand is a NaN. When a subsequent conditional in-
struction (e. g. FBGT) is executed, the UNCC bit in the ER will be set if the NaN bit in the ER
was set when the conditional branch instruction was executed. Because one of the operands
was a NaN, the branch will be failed. If the original author was "aware" of NaNs, then the deci-
sion may be wrong. In this case, it may be prudent to insert a FBERR instruction following the
conditional branch instruction in the failed path. This is because one of the error conditions that
the FBERR instruction detects is that the UNCC bit was set. The error handler will be aware of
NaNs and take corrective action.

It could be argued that the same result would be achieved by executing a Floating-Point Branch
on an unordered (FBUN) instruction instead of the FBERR instruction thereby eliminating the
 - 10 DSP96002 USER’S MANUAL MOTOROLA

need for the UNCC bit. This would be true except for the way in which the 754-standard treats
the equal and "not equal" predicates. From the condition code tables associated with the float-
ing-point conditional instructions, it can be seen that the UNCC bit will not be set if one or both
of the operands is a NaN. This is because the 754-standard recognizes that operands do not
have to be ordered to be tested for equality (i. e., UNCC will not be affected when executing
FBEQ or FBNE). That is, the same branch should be taken in a programming environment which
was aware of the IEEE binary floating-point number system as in one which was not aware.
This is not the case for inequality predicates.

In summary, conditional predicates whose outcome may depend upon "NaN awareness" by the
original author of the program are those involving inequalities. The UNCC bit has been provided
on the DSP96002 to aid in porting programs written in an IEEE non-aware environment to the
DSP96002 (IEEE aware environment). FBERR instructions which branch on UNCC set can be
inserted in branches which could have been incorrectly taken due to NaN operands being in-
volved in the FCMP. When executing programs whose author was "NaN aware", the UNCC bit
can be ignored. When executing programs whose author was "NaN unaware", the UNCC bits
status should be tested since the original author’s intentions are unclear.

Figure A-5 details how each floating-point instruction affects the ER register bits.
MOTOROLA DSP96002 USER’S MANUAL A - 11

A - 12 DSP96002 USER’S MANUAL MOTOROLA

Mnemonic UNCC NAN SNAN OPERR OVF UNF DZ INX Special Definitions
ABS – – – – – – – –
ADD – – – – – – – –
ADDC1 – – – – – – – –
AND – – – – – – – –
ANDC – – – – – – – –

ANDI ? ? ? ? ? ? ? ? Note 9
ASL – – – – – – – –
ASR – – – – – – – –
Bcc – – – – – – – –
BCHG ? ? ? ? ? ? ? ? Note 13

BCLR ? ? ? ? ? ? ? ? Note 14
BFIND – – – – – – – –
BRA – – – – – – – –
BRCLR – – – – – – – –
BRSET – – – – – – – –

BScc – – – – – – – –
BSCLR – – – – – – – –
BSET ? ? ? ? ? ? ? ? Note 15
BSR – – – – – – – –
BSSET – – – – – – – –

BTST – – – – – – – –
CLR – – – – – – – –
CMP – – – – – – – –
CMPG – – – – – – – –
DEBUGcc – – – – – – – –

DEC – – – – – – – –
DO – – – – – – – –
DOR – – – – – – – –
ENDDO – – – – – – – –
EOR – – – – – – – –

EXT – – – – – – – –
EXTB – – – – – – – –
FABS.S 0 * * 0 * * 0 *
FABS.X 0 * * 0 * * 0 *
FADD.S 0 * * ? * * 0 * Note 18

FADD.X 0 * * ? * * 0 * Note 18
FADDSUB.S 0 ? * ? ? ? 0 ? Note 2, 3, 4, 5, 7
FADDSUB.X 0 ? * ? ? ? 0 ? Note 2, 3, 4, 5, 7
FBcc * – – – – – – –
FBScc * – – – – – – –

FCLR 0 * 0 0 0 0 0 0
FCMP 0 * * 0 0 0 0 0
FCMPG 0 * * 0 0 0 0 0
FCMPM 0 * * 0 0 0 0 0
FCOPYS.S 0 * * 0 * * 0 *

Figure A-5. ER Exception Bits Computation

SYMBOLS: * set according to the standard definition by the result
 - not affected by the operation
0 cleared
1 set
? set according to the special computation definition by the result of the operation

MOTOROLA DSP96002 USER’S MANUAL A - 13

Mnemonic UNCC NAN SNAN OPERR OVF UNF DZ INX Special Definitions

FCOPYS.X 0 * * 0 * * 0 *
FDEBUGcc * – – – – – – –
FFcc * – – – – – – –
FFcc.U * ? ? ? ? ? ? ? Note 26
FGETMAN 0 * * ? 0 0 0 0 Note 27

FINT 0 * * 0 0 0 0 *
FJcc * – – – – – – –
FJScc * – – – – – – –
FLOAT.S 0 0 0 0 0 0 0 *
FLOAT.X 0 0 0 0 0 0 0 *

FLOATU.S 0 0 0 0 0 0 0 *
FLOATU.X 0 0 0 0 0 0 0 *
FLOOR 0 * * 0 0 0 0 *
FMPY//FADD.S 0 ? ? ? ? ? 0 ? Notes 1,7,19,22,23,24
FMPY//FADD.X 0 ? ? ? ? ? 0 ? Notes 1,7,19,22,23,24

FMPY//FADDSUB.S 0 ? ? ? ? ? 0 ? Notes 1,7,21,22,23,24
FMPY//FADDSUB.X 0 ? ? ? ? ? 0 ? Notes 1,7,21,22,23,24
FMPY//FSUB.S 0 ? ? ? ? ? 0 ? Notes 1,8,20,22,23,24
FMPY//FSUB.X 0 ? ? ? ? ? 0 ? Notes 1,8,20,22,23,24
FMPY.S 0 * * ? * * 0 * Note 6

FMPY.X 0 * * ? * * 0 * Note 6
FNEG.S 0 * * 0 * * 0 *
FNEG.X 0 * * 0 * * 0 *
FSCALE.S 0 * * 0 * * 0 *
FSCALE.X 0 * * 0 * * 0 *

FSEEDD 0 * * 0 * * 0 0
FSEEDR 0 * * ? 0 0 0 0 Note 31
FSUB.S 0 * * ? * * 0 * Note 28
FSUB.X 0 * * ? * * 0 * Note 28
FTFR.S 0 * * 0 * * 0 *

FTFR.X 0 * * 0 * * 0 *
FTRAPcc * – – – – – – –
FTST 0 * * 0 0 0 0 0
GETEXP 0 ? * ? 0 0 0 0 Notes 29,30
IFcc – – – – – – – –

IFcc.U – ? ? ? ? ? ? ? Note 26
ILLEGAL – – – – – – – –
INC – – – – – – – –
INT 0 ? * ? 0 0 0 ? Notes 12,17,29
INTRZ 0 ? * ? 0 0 0 ? Notes 12,17,29

INTU 0 ? * ? 0 0 0 ? Notes 12,25,29
INTURZ 0 ? * ? 0 0 0 ? Notes 12,25,29
Jcc – – – – – – – –
JCLR – – – – – – – –
JMP – – – – – – – –

Figure A-5. ER Exception Bits Computation (Continued)

SYMBOLS: * set according to the standard definition by the result
 - not affected by the operation
0 cleared
1 set
? set according to the special computation definition by the result of the operation

A - 14 DSP96002 USER’S MANUAL MOTOROLA

Mnemonic A
–
R LR I N Z V C Special Definitions

 JOIN – – – – – – – –
JOINB – – – – – – – –
JScc – – – – – – – –
JSCLR – – – – – – – –
JSET – – – – – – – –

JSR – – – – – – – –
JSSET – – – – – – – –
LEA ? ? ? ? ? ? ? ? Note 16
LRA ? ? ? ? ? ? ? ? Note 16
LSL – – – – – – – –

LSR – – – – – – – –
MOVE – – – – – – – –
MOVEC ? ? ? ? ? ? ? ? Note 16
MOVEI ? ? ? ? ? ? ? ? Note 16
MOVEM ? ? ? ? ? ? ? ? Note 16

MOVEP ? ? ? ? ? ? ? ? Note 16
MOVES ? ? ? ? ? ? ? ? Note 16
MOVETA – – – – – – – –
MPYS – – – – – – – –
MPYU – – – – – – – –

NEG – – – – – – – –
NEGC – – – – – – – –
NOP – – – – – – – –
NOTB – – – – – – – –
OR – – – – – – – –

ORC – – – – – – – –
ORI ? ? ? ? ? ? ? ? Note 10
REP – – – – – – – –
RESET – – – – – – – –
ROL – – – – – – – –

ROR – – – – – – – –
RTI ? ? ? ? ? ? ? ? Note 11
RTR ? ? ? ? ? ? ? ? Note 11
RTS – – – – – – – –
SETW – – – – – – – –

SPLIT – – – – – – – –
SPLITB – – – – – – – –
STOP – – – – – – – –
SUB – – – – – – – –
SUBC – – – – – – – –

TFR – – – – – – – –
TRAPcc – – – – – – – –
TST – – – – – – – –
WAIT – – – – – – – –

SYMBOLS: * set according to the standard definition by the result
 - not affected by the operation
0 cleared
1 set
? set according to the special computation definition by the result of the operation

Figure A- 5. ER Exception Bits Computation (Continued)

Note 1 SNAN - Set if anyone of the source operands is a signaling NaN. Cleared otherwise.

Note 2 OPERR - Set if the operands of the floating-point addition are opposite-signed infinities or if
the operands of the floating-point subtraction are like-signed infinities. Cleared otherwise.

Note 3 UNF - Set if the addition or subtraction operation underflows. Cleared otherwise.

Note 4 INX - Set if the addition or subtraction result is inexact. Cleared otherwise.

Note 5 OVF - Set if the addition or subtraction overflows. Cleared otherwise.

Note 6 OPERR -Set if one operand is infinity and the other is zero. Cleared otherwise.

Note 7 NAN - Set if the result of the addition is a NaN. Cleared otherwise.

Note 8 NAN - Set if the result of the subtraction is a NaN. Cleared otherwise.

Note 9 All ? bits - Cleared if corresponding bit in immediate data is cleared and the operand is ER. Not
affected otherwise.

Note 10 All ? bits - Set if corresponding bit in immediate data is set and the operand is ER. Not affected
otherwise.

Note 11 All ? bits - Set according to the value pulled from the stack.

Note 12 INX - Set if the floating-point number has no exact integer representation. Cleared otherwise.

Note 13 All ? bits - If SR is specified as destination operand, and INX, DZ, UNF, OVF, OPERR, SNAN,
NAN or UNCC is selected, then the selected bit will be changed. Not affected otherwise.

Note 14 All ? bits - If SR is specified as destination operand, and INX, DZ, UNF, OVF, OPERR, SNAN,
NAN or UNCC is selected, then the selected bit will be cleared. Not affected otherwise.

Note 15 All ? bits - If SR is specified as destination operand, and INX, DZ, UNF, OVF, OPERR, SNAN,
NAN or UNCC is selected, then the selected bit will be set. Not affected otherwise.

Note 16 All ? bits - If SR is specified as a destination operand, set according to the corresponding bit of
the source operand. Not affected otherwise.

Note 17 OPERR - Set if the source operand is a NaN or infinity. Also set if overflow occurred. Cleared
otherwise.

Note 18 OPERR - Set if the operands are opposite-signed infinities. Cleared otherwise.

Note 19 OPERR - Set if one of the multiply operands is infinity and the other is zero. Set if the addition
operands are opposite-signed infinities. Cleared otherwise.

Note 20 OPERR - Set if one of the multiply operands is infinity and the other is zero. Set if the subtraction
operands are like-signed infinities. Cleared otherwise.

Note 21 OPERR - Set if one of the multiply operands is infinity and the other is zero. Set if the subtraction
operands are like-signed infinities. Set if the addition operands are opposite-signed infinities.
Cleared otherwise.

Note 22 OVF - Set if anyone of the operations overflows. Cleared otherwise.

Note 23 UNF - Set if anyone of the operations underflows. Cleared otherwise.

Note 24 INX - Set if the result of one or more operations is inexact. Cleared otherwise.

Note 25 OPERR - Set if the source operand is a NaN, infinity or negative non-zero. Also set if overflow
occurred. Cleared otherwise.

Note 26 All ? bits - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

Note 27 OPERR - Set if the source operand is infinity. Cleared otherwise.

Note 28 OPERR - Set if the operands are like-signed infinities. Cleared otherwise.

Note 29 NAN - Set if the source operand is a NaN. Cleared otherwise.

Note 30 OPERR - Set if the source operand is infinity, zero or NaN. Cleared otherwise.
MOTOROLA DSP96002 USER’S MANUAL A - 15

Note 31 OPERR - Set if the source operand is less than zero. Cleared otherwise.

 A.5 IEEE EXCEPTION BITS COMPUTATION
The IEEE Exception bits are the five exception bits required by the IEEE standard for trap disabled oper-
ations. They actually record a history of all floating-point exceptions which have occurred since the user
last cleared the IER register. At the end of each floating-point operation, the bits of the ER are logically
combined and then are logically ORed into the existing IER bits creating "sticky" floating-point exception
bits which can be polled at the end of a series of floating-point operations. The standard definition of the
IER bits and the complete IER exception flag computation rules are given below.

SINX (IEEE Inexact) - signaled when the rounded result of an operation is not exact or if it overflows
without an overflow trap.

SINX = SINX v (OVF v INX)

SDZ (IEEE Division by Zero) - signaled if the dividend is a finite nonzero number and the divisor is
zero.

SDZ = SDZ v DZ

SUNF (IEEE Underflow) - signaled when both tininess and loss of accuracy have been detected. Ti-
niness is detected before round (see definition of UNF in the ER register). Loss of accuracy is
detected as an inexact result (see definition of INX in the ER register).

SUNF = SUNF v (UNF & INX)

SOVF (IEEE Overflow) - signaled when the destination format largest finite number is exceeded in
magnitude by what would have been the rounded floating-point result were the exponent range
unbounded.

SOVF = SOVF v OVF

SIOP (IEEE Invalid Operation) - signaled if an operand is invalid for the operation to be performed.

SIOP = SIOP v (UNCC v SNAN v OPERR)

 A.6 NOTATION
Symbols are used to abbreviate operands and operations in each instruction description. Figure A-6 lists
the symbols used and their respective meanings.
A - 16 DSP96002 USER’S MANUAL MOTOROLA

Operands

Data ALU
Dn Data ALU Registers, n= 0-9, SP/SEP/Integer reference as specified by the Data ALU operation.
Dn.S Floating-Point Registers, n= 0-9 (96 bits) SP reference

Dn.D Floating-Point Registers, n= 0-9 (96 bits) DP reference
Dn.L Integer Registers, n= 0-9 (32 bits, Low part of Dn)
Dn.M Integer Registers, n= 0-9 (32 bits, Middle part of Dn)
Dn.H Integer Registers, n= 0-9 (32 bits, High part of Dn)
Dn.ML Long Integer Register, n=0-9 (Dn.M:Dn.L, 64 bits)

Address Generation Unit
Rn Address registers R0 through R7 (32 bits)
Nn Address offset registers N0 through N7 (32 bits)
Mn Address modifier registers M0 through M7 (32 bits)

Program Controller
PC Program counter (32 bits)
MR Mode register (8 bits)
ER Exception register (8 bits)
IER IEEE Exception register (8 bits)
CCR Condition code register (8 bits)
SR Status register (32 bits)
OMR Operating mode register (32 bits)
LA Hardware loop address register (32 bits)
LC Hardware loop counter (32 bits)
SP System stack pointer (32 bits)
SS System stack RAM (15 x 64 bits)
SSH Upper 32 bits of the contents of the current top of stack.
SSL Lower 32 bits of the contents of the current top of stack.

Addresses
ea Effective address
xxxx Absolute address (32 bits)
xx Short jump address (15 bits sign extended)
pp I/O short address (7 bits one extended)
aa Absolute short address (7 bits zero extended)
<...> The contents of the specified address
X: X memory reference (32 bits)
Y: Y memory reference (32 bits)
L: Long memory reference - X concatenated with Y (64 bits)
P: Program memory reference (32 bits)

Figure A-6. Instruction Description Notation
MOTOROLA DSP96002 USER’S MANUAL A - 17

Operators

Miscellaneous
#xx Immediate short data (16 bits sign extended)
#xxx Immediate short data (19 bits zero extended)
#Data Immediate data (32 bits)
#shift, #bit, or #bits Immediate short data (5 or 6 bits)
#byte Immediate short data (8 bits)
S,Sn Source operand register
D,Dn Destination operand register
D{n} Bit n of D affected
D(8,9) Destination Operand Register D8 or D9 only
D(MS) Most significant word of double precision or long integer destination
D(LS) Least significand word of double precision or long integer destination
S(MS) Most significant word of double precision or long integer source
S(LS) Least significant word of double precision or long integer source
R Round optional rounding precision
I1,I0 Interrupt priority level in SR
LF Loop flag in SR

Unary
- Negation
~ Logical NOT
PUSH Push onto SS
PULL Pull from SS
READ Read top of SS
PURGE Delete top of SS
| | Absolute Value

Binary
+ Addition
- Subtraction
* Multiplication
/ Division
v Logical Inclusive OR
& Logical AND
&& Logical Exclusive OR
→ Is transferred to
: Concatenation

Miscellaneous
(..) Indicates an optional operand or operation
Sign Ext Sign Extension
Zero Zero a register

Figure A-6. Instruction Description Notation (Continued)

 A.7 OPCODE DESCRIPTIONS
The following pages define each opcode in the instruction set and its associated operands. Instructions
which may use a parallel move operation are indicated by the notation “(parallel data bus move)” in the
Operation portion of the description. Detailed information on each parallel move operation is given in the
MOVE instruction description.
A - 18 DSP96002 USER’S MANUAL MOTOROLA

ABS Absolute Value ABS
Operation:

|-D.L| → D.L (parallel data bus move)

A

A

MOTOROLA DSP96

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRE
ssembler Syntax:

BS D (move syntax - see the MOVE instruction de-
scription.)
31 14 13 0

Description:

Take the absolute value of the destination operand low portion and store the result in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

 C - Not affected.

V - Set if result overflows. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: ABS D (move syntax - see the MOVE instruction description.)
10 0100 uu11 1ddd

SS EXTENSION OR IMMEDIATE LONG DATA
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
002 USER’S MANUAL A - 19

ADD Add ADD
A

A

Operation:

D.L + S.L → D.L (parallel data bus move)
A - 20 DSP96002 USE

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EX
ssembler Syntax:

DD S,D (move syntax - see the MOVE in-
struction description.)
31 14 13 0

Description:

Add the low portion of the two specified operands and store the result in the low portion of the destination
operand D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if carry is generated from MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: ADD S,D (move syntax - see the MOVE instruction description.)
00 1sss uu11 1ddd

TENSION OR IMMEDIATE LONG DATA
 Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
R’S MANUAL MOTOROLA

ADDC Add with Carry ADDC
Operation:

D.L + S.L + C → D.L (parallel data bus move)

A

A

MOTOROLA DSP96002 US

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS EXT
ssembler Syntax:

DDC S,D (move syntax - see the MOVE in-
struction description.)
31 14 13 0

Description:

Add the low portion of the two specified operands along with the C bit of the condition code register and
store the result in the low portion of destination operand D. When doing multiple precision addition, the
higher precision long words of the input variables must be moved to the low portion of the Dn register.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if carry is generated from the MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Cleared if the result is not zero. Unchanged otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: ADDC S,D (move syntax - see the MOVE instruction description.)
00 1sss uu01 1ddd

ENSION OR IMMEDIATE LONG DATA
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
ER’S MANUAL A - 21

AND Logical AND AND
 Operation:

D.L & S.L → D.L (parallel data bus move)

A

A

A - 22 DSP96002 USE

DATA BUS MOVE FIELD

31

OPTIONAL EFFECTIVE ADDRESS EX
ssembler Syntax:

ND S,D (move syntax - see the MOVE instruc-
tion description.)
Description:

Logically AND the low portion of the two specified operands and store the result in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: AND S,D (move syntax - see the MOVE instruction description.)

Instruction Fields:
00 0sss uu00 1ddd

14 13 0

TENSION OR IMMEDIATE LONG DATA
(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
R’S MANUAL MOTOROLA

ANDC Logical AND with Complement ANDC
 Operation:

D.L & ~S.L → D.L (parallel data bus move)

A

A

MOTOROLA DSP96002 U

DATA BUS MOVE FIELD

OPTIONAL EFFECTIVE ADDRESS E
ssembler Syntax:

NDC S,D (move syntax - see the MOVE instruc-
tion description.)
31 14 13 0

Description:

Logically AND the low portion of D with the logical complement of the low portion of S, and store the result
in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: AND S,D (move syntax - see the MOVE instruction description.)
SER’S MANUAL A - 23

11 0sss 1000 1ddd

XTENSION OR IMMEDIATE LONG DATA

Instruction Fields:

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 24 DSP96002 USER’S MANUAL MOTOROLA

ANDI AND Immediate to Control Register ANDI
 Operation:

D & #xx → D
MOTOROLA DSP96002 US
Assembler Syntax:

AND(I) #Byte,D
Description:

Logically AND the contents of the control register with an 8-bit immediate operand. The result is stored
back into the specified control register. See Section A.10 for restrictions.

CCR Condition Codes:

For CCR operand:

C - Cleared if bit 0 of the immediate operand is cleared. Not affected otherwise.

V - Cleared if bit 1 of the immediate operand is cleared. Not affected otherwise.

Z - Cleared if bit 2 of the immediate operand is cleared. Not affected otherwise.

N - Cleared if bit 3 of the immediate operand is cleared. Not affected otherwise.

I - Cleared if bit 4 of the immediate operand is cleared. Not affected otherwise.

LR - Cleared if bit 5 of the immediate operand is cleared. Not affected otherwise.

–
R - Cleared if bit 6 of the immediate operand is cleared. Not affected otherwise.

A - Cleared if bit 7 of the immediate operand is cleared. Not affected otherwise.

For OMR, MR, IER, ER operands:

C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

For ER operand:

INX - Cleared if bit 0 of the immediate operand is cleared. Not affected otherwise.

DZ - Cleared if bit 1 of the immediate operand is cleared. Not affected otherwise.

UNF - Cleared if bit 2 of the immediate operand is cleared. Not affected otherwise.

OVF - Cleared if bit 3 of the immediate operand is cleared. Not affected otherwise.

OPERR - Cleared if bit 4 of the immediate operand is cleared. Not affected otherwise.

SNAN - Cleared if bit 5 of the immediate operand is cleared. Not affected otherwise.

NAN - Cleared if bit 6 of the immediate operand is cleared. Not affected otherwise.

UNCC - Cleared if bit 7 of the immediate operand is cleared. Not affected otherwise.
ER’S MANUAL A - 25

For OMR, MR, IER, CCR operands:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR - Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For IER operand:

SINX - Cleared if bit 0 of the immediate operand is cleared. Not affected otherwise.

SDZ - Cleared if bit 1 of the immediate operand is cleared. Not affected otherwise.

SUNF - Cleared if bit 2 of the immediate operand is cleared. Not affected otherwise.

SOVF - Cleared if bit 3 of the immediate operand is cleared. Not affected otherwise.

SIOP - Cleared if bit 4 of the immediate operand is cleared. Not affected otherwise.

For OMR, MR, ER, CCR operands:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.

Instruction Format: AND(I) #Byte,D
31 14 13 0
0000 0001 0001 i i i i i i i i 00ff 0111 10EE
Instruction Fields:

Immediate Short Data - iiiiiiii (8 bits)

D E E f f

CCR 0 1 0 0

ER 0 1 0 1

IER 0 1 1 0

MR 0 1 1 1

OMR 1 0 0 0

Timing: 2 oscillator clock cycles

Memory: 1 program words
A - 26 DSP96002 USER’S MANUAL MOTOROLA

ASL Arithmetic Shift Left ASL

Operation:
31 0

C 0 (parallel data bus move)
 Assembler Syntax:

ASL D (move syntax - see the MOVE instruction description.)

ASL S,D (move syntax - see the MOVE instruction description.)

ASL #shift,D

Description:

Single-bit shift: Arithmetically shift the low portion of the specified operand one bit to the left. The carry
bit receives the MSB shifted out of the low portion of the source operand. A zero is shifted into the least
significant bit of the destination operand. The result is stored in the low portion of D.

Multi-bit shift: Arithmetically shift the low portion of the specified operand N bits (up to 63 bits) to the left.
The number of bits to shift is determined by the 11-bit unsigned integer located in the 11 LSBs of the high
portion of S or by a 6-bit immediate field in the instruction. The carry bit receives the Nth bit shifted out of
the low portion of the source operand; it is cleared for a shift count of zero. N zeros are shifted into the
LSBs of the destination operand. If more than 32 bits are shifted, zeros will be stored in D and the carry
bit. The result is stored in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared for a
shift count of zero.

V - Set if the MSB is changed any time during the shift operation. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 27

Instruction Format: ASL D(move syntax - see the MOVE instruction description.)
31 14 13 0
DATA BUS MOVE FIELD 10 0101 uu01 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD 11 0sss 0011 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

01 001n nnnn nddd

31 14 13 0

0000 0000 0000 0000 10

Instruction Format: ASL #shift,D

Instruction Format: ASL S,D(move syntax - see the MOVE instruction description.)
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.H n n n where nnn = 0-7

N n n n n n n

0 0 0 0 0 0 0

1 0 0 0 0 0 1

2 0 0 0 0 1 0

. .

. . .

. . .

62 1 1 1 1 1 0

63 1 1 1 1 1 1

Timing: 2 + mv oscillator clock cycles (2 oscillator clock cycles for ASL #shift)

Memory: 1 + mv program words (1 program word for ASL #shift)
A - 28 DSP96002 USER’S MANUAL MOTOROLA

ASR Arithmetic Shift Right ASR

Operation:
31 0

C (parallel data bus move)
Assembler Syntax:

ASR D (move syntax - see the MOVE instruction description.)

ASR S,D (move syntax - see the MOVE instruction description.)

ASR #shift,D

Description:

Single-bit shift: Arithmetically shift the low portion of the specified operand one bit to the right. The carry
bit receives the LSB shifted out of the low portion of the source operand. The MSB of the operand is held
constant. The result is stored in the low portion of D.

Multi-bit shift: Arithmetically shift the low portion of the specified operand N bits (up to 63 bits) to the right.
The number of bits to shift is determined by the 11-bit unsigned integer located in the 11 LSBs of the high
portion of S or by a 6-bit immediate field in the instruction. The carry bit receives the Nth bit shifted out of
the low portion of the source operand; it is cleared for a shift count of zero. N copies of the MSB of the
operand are shifted into the N MSBs of the destination operand. If more than 32 bits are shifted, copies
of the MSB will be stored in D and the carry bit. The result is stored in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared for a
shift count of zero.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 29

Instruction Format: ASR D(move syntax - see the MOVE instruction description.)
31 14 13 0
DATA BUS MOVE FIELD 10 0000 uu11 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD 11 0sss 0011 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

01 000n nnnn nddd

31 14 13 0

0000 0000 0000 0000 10

Instruction Format: ASR S,D(move syntax - see the MOVE instruction description.)

Instruction Format: ASR #shift,D
 Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.H n n n where nnn = 0-7

N n n n n n n

0 0 0 0 0 0 0

1 0 0 0 0 0 1

2 0 0 0 0 1 0

. .

. . .

. . .

62 1 1 1 1 1 0

63 1 1 1 1 1 1

Timing: 2 + mv oscillator clock cycles (2 oscillator clock cycles for ASR #shift)

Memory: 1 + mv program words (1 program word for ASR #shift)
A - 30 DSP96002 USER’S MANUAL MOTOROLA

Bcc Branch Conditionally Bcc
Assembler Syntax:

Bcc label (short)

Bcc label

Bcc Rn
 Operation:

If cc, then PC+xx → PC
else PC+1 → PC

If cc, then PC+xxxx → PC
else PC+1 → PC

If cc, then PC+Rn → PC
else PC+1 → PC

Description:

If the specified condition is true, program execution continues at location PC+displacement. The PC con-
tains the address of the next instruction. If the specified condition is false, the PC is incremented and
program execution continues sequentially. The displacement is a 2’s complement 32-bit integer that rep-
resents the relative distance from the current PC to the destination PC. Short Displacement, Long Dis-
placement and Address Register PC Relative addressing modes may be used. The Short Displacement
15-bit data is sign extended to form the PC relative displacement. See Section A.10 for restrictions.

"cc" may specify the following conditions:

Mnemonic Condition
CC (HS) - carry clear (higher or same) C = 0
CS (LO) - carry set (lower) C = 1
EQ - equal Z = 1
GE - greater or equal N && V = 0
GT - greater than Z v (N && V) = 0
HI - higher Z v C = 0
LE - less or equal Z v (N && V) = 1
LS - lower or same Z v C = 1
LT - less than N && V = 1
MI - minus N = 1
NE(Q) - not equal Z = 0
PL - plus N = 0
VC - overflow clear V = 0
VS - overflow set V = 1

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 31

Instruction Format: Bcc label (short)
31 14 13 0
1c cccc 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0000 0000 00

1c cccc 0000 0000

31 14 13 0

0000 0011 0000 001R

1c cccc 0aaa aaaa0000 0011 10aa aaaa aa

Instruction Format: Bcc label

Instruction Format: Bcc Rn
Instruction Fields:

Rn - R0-R7

Long Displacement - 32 bits

Short Displacement - aaaaaaaaaaaaaaa (15 bits)

Mnemonic c c c c c Mnemonic c c c c c
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
CC(HS) 0 1 0 1 0 CS(LO) 1 1 0 1 0
GE 0 1 0 1 1 LT 1 1 0 1 1
GT 0 1 1 0 0 LE 1 1 1 0 0
VC 0 1 1 0 1 VS 1 1 1 0 1
HI 0 1 1 1 0 LS 1 1 1 1 0

Timing: 6 + jx oscillator clock cycles

Memory: 1 + ea program words
A - 32 DSP96002 USER’S MANUAL MOTOROLA

BCHG Bit Test and Change BCHG
 Operation:

 D{n} → C;
~D{n} → D{n}
 D{n} → C;
~D{n} → D{n}
 D{n} → C;
~D{n} → D{n}
 D{n} → C;
~D{n} → D{n}
 D{n} → C;
~D{n} → D{n}
 D{n} → C;
~D{n} → D{n}
 D{n} → C;
~D{n} → D{n}

As

BC

BC

BC

BC

BC

BC

BC
MOTOROLA DSP960
sembler Syntax:

HG #bit,X: ea

HG #bit,X: aa

HG #bit,X: pp

HG #bit,Y: ea

HG #bit,Y: aa

HG #bit,Y: pp

HG #bit,D
Description:

The nth bit of the destination operand is tested and the state of the nth bit is reflected in the C condition
code bit. After the test, the state of the nth bit is changed in the destination. All memory alterable ad-
dressing modes may be used. Register, Absolute Short and I/O Short addressing may also be used.

The bit to be tested is selected by an immediate bit number 0-31. This instruction performs a read-modify-
write operation on the destination operand and requires two destination accesses. This instruction pro-
vides a test-and-change capability which is useful for synchronizing multiple processors using a shared
memory. See Section A.10 for restrictions.

CCR Condition Codes:

For destination operand SR:

C - Changed if bit 0 is specified. Not affected otherwise.

V - Changed if bit 1 is specified. Not affected otherwise.

Z - Changed if bit 2 is specified. Not affected otherwise.

N - Changed if bit 3 is specified. Not affected otherwise.

I - Changed if bit 4 is specified. Not affected otherwise.

LR - Changed if bit 5 is specified. Not affected otherwise.

–
R - Changed if bit 6 is specified. Not affected otherwise.

A - Changed if bit 7 is specified. Not affected otherwise.
02 USER’S MANUAL A - 33

For other destination operands:

C - Set if bit tested is set. Cleared otherwise.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

For destination operand SR:

INX - Changed if bit 8 is specified. Not affected otherwise.

DZ - Changed if bit 9 is specified. Not affected otherwise.

UNF - Changed if bit 10 is specified. Not affected otherwise.

OVF - Changed if bit 11 is specified. Not affected otherwise.

OPERR - Changed if bit 12 is specified. Not affected otherwise.

SNAN - Changed if bit 13 is specified. Not affected otherwise.

NAN - Changed if bit 14 is specified. Not affected otherwise.

UNCC - Changed if bit 15 is specified. Not affected otherwise.

For other destination operands:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR - Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For destination operand SR:

SINX - Changed if bit 16 is specified. Not affected otherwise.

SDZ - Changed if bit 17 is specified. Not affected otherwise.

SUNF - Changed if bit 18 is specified. Not affected otherwise.

SOVF - Changed if bit 19 is specified. Not affected otherwise.

SIOP - Changed if bit 20 is specified. Not affected otherwise.
A - 34 DSP96002 USER’S MANUAL MOTOROLA

For other destination operands:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.

Instruction Format: BCHG #bit,D
31 14 13 0
aa 010S 000b bbbb

31 14 13 0

0000 0010 0110 0aaa aa

00 010S 000b bbbb

31 14 13 0

0000 0010 0101 MMMR

pp 010S 000b bbbb

31 14 13 0

0000 0010 0110 1ppp pp

d0 0100 000b bbbb0000 0010 0111 dddd dd

Instruction Format: BCHG #bit,X: pp

BCHG #bit,Y: pp

Instruction Format: BCHG #bit,X: aa

BCHG #bit,Y: aa

Instruction Format: BCHG #bit,X: ea

BCHG #bit,Y: ea

OPTIONAL EFFECTIVE ADDRESS EXTENSION
Instruction Fields:

 <ea> Rn - R0-R7 (Memory alterable addressing modes only)

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)

Memory Space S Bit Number b b b b b

X Memory 0 Bit 0-31 n n n n n where nnnnn = 0-31

 Y Memory 1
MOTOROLA DSP96002 USER’S MANUAL A - 35

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 4 + mvb oscillator clock cycles

Memory: 1 + ea program words
A - 36 DSP96002 USER’S MANUAL MOTOROLA

BCLR Bit Test and Clear BCLR
 Operation:

 D{n} → C;
 0 → D{n}

 D{n} → C;
 0 → D{n}

D{n} → C;
 0 → D{n}

D{n} → C;
 0 → D{n}

D{n} → C;
 0 → D{n}

D{n} → C;
 0 → D{n}

D{n} → C;
 0 → D{n}

Assem

BCLR

BCLR

BCLR

BCLR

BCLR

BCLR

BCLR
MOTOROLA DSP96002
bler Syntax:

 #bit,X: ea

 #bit,X: aa

 #bit,X: pp

 #bit,Y: ea

 #bit,Y: aa

 #bit,Y: pp

 #bit,D
Description:

The nth bit of the destination operand is tested and the state of the nth bit is reflected in the C condition
code bit. After the test, the nth bit is cleared in the destination. All memory alterable addressing modes
may be used. Register, Absolute Short and I/O Short addressing may also be used.

The bit to be tested is selected by an immediate bit number 0-31. This instruction performs a read-modify-
write operation on the destination operand and requires two destination accesses. This instruction pro-
vides a test-and-clear capability which is useful for synchronizing multiple processors using a shared
memory. See Section A.10 for restrictions.

CCR Condition Codes:

For destination operand SR:

C - Cleared if bit 0 is specified. Not affected otherwise.

V - Cleared if bit 1 is specified. Not affected otherwise.

Z - Cleared if bit 2 is specified. Not affected otherwise.

N - Cleared if bit 3 is specified. Not affected otherwise.

I - Cleared if bit 4 is specified. Not affected otherwise.

LR - Cleared if bit 5 is specified. Not affected otherwise.

–
R - Cleared if bit 6 is specified. Not affected otherwise.

A - Cleared if bit 7 is specified. Not affected otherwise.
 USER’S MANUAL A - 37

For other destination operands:

C - Set if bit tested is set. Cleared otherwise.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

For destination operand SR:

INX - Cleared if bit 8 is specified. Not affected otherwise.

DZ - Cleared if bit 9 is specified. Not affected otherwise.

UNF - Cleared if bit 10 is specified. Not affected otherwise.

OVF - Cleared if bit 11 is specified. Not affected otherwise.

OPERR- Cleared if bit 12 is specified. Not affected otherwise.

SNAN - Cleared if bit 13 is specified. Not affected otherwise.

NAN - Cleared if bit 14 is specified. Not affected otherwise.

UNCC - Cleared if bit 15 is specified. Not affected otherwise.

For other destination operands:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For destination operand SR:

SINX - Cleared if bit 16 is specified. Not affected otherwise.

SDZ - Cleared if bit 17 is specified. Not affected otherwise.

SUNF - Cleared if bit 18 is specified. Not affected otherwise.

SOVF - Cleared if bit 19 is specified. Not affected otherwise.

SIOP - Cleared if bit 20 is specified. Not affected otherwise.
A - 38 DSP96002 USER’S MANUAL MOTOROLA

For other destination operands:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.

Instruction Format: BCLR #bit,D
31 14 13 0
aa 010S 000b bbbb

31 14 13 0

0000 0010 0010 0aaa aa

00 010S 000b bbbb

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0010 0001 MMMR

pp 010S 000b bbbb

31 14 13 0

0000 0010 0010 1ppp pp

d0 0100 000b bbbb0000 0010 0011 dddd dd

Instruction Format: BCLR #bit,X: pp

BCLR #bit,Y: pp

Instruction Format: BCLR #bit,X: aa

BCLR #bit,Y: aa

Instruction Format: BCLR #bit,X: ea

BCLR #bit,Y: ea
 Instruction Fields:

 <ea> Rn - R0-R7 (Memory alterable addressing modes only)

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)
MOTOROLA DSP96002 USER’S MANUAL A - 39

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 4 + mvb oscillator clock cycles

Memory: 1 + ea program words
A - 40 DSP96002 USER’S MANUAL MOTOROLA

BFIND Find Leading One BFIND
 Operation:

Leading One(S.L) → D.H (Parallel data bus move)
MOTOROLA DSP96002 USER’S

OPTIONAL EFFECTIVE ADDRESS EXTENS

DATA BUS MOVE FIELD
Assembler Syntax:

BFIND S,D (move syntax - see the MOVE in-
struction description.)
31 14 13 0

Description:

Return the position of the source operand S leading one, considered from left to right, as a 2’s complement
integer in the high portion of destination operand D. If the source operand is zero then return $80000000.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if source operand is zero. Cleared otherwise.

N - Set if source operand is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: BFIND S,D (move syntax - see the MOVE instruction description.)
11 0sss 0111 1ddd

ION OR IMMEDIATE LONG DATA
Instruction Fields:

D d d d

Dn.H n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
 MANUAL A - 41

 Assembler Syntax:

BRA label (short)

BRA label

BRA Rn
Description:

Program execution continues at location PC+displacement. The PC contains the address of the next in-
struction. The displacement is a 2’s complement 32-bit integer that represents the relative distance from
the current PC to the destination PC. Short Displacement, Long Displacement and Address Register PC
Relative addressing modes may be used. The Short Displacement 15-bit data is sign extended to form
the PC relative displacement. See Section A.10 for restrictions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: BRA label (short)
31 14 13 0
11 1111 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0000 0000 00

11 1111 0000 0000

31 14 13 0

0000 0011 0000 001R

11 1111 0aaa aaaa0000 0011 10aa aaaa aa

Instruction Format: BRA label

Instruction Format: BRA Rn
Instruction Fields:

 Rn - R0-R7

 Long PC Relative Displacement - 32 bits

 Short PC Relative Displacement - aaaaaaaaaaaaaaa (15 bits)

Timing: 6 + jx oscillator clock cycles

Memory: 1 + ea program words
BRA Branch Always BRA
 Operation:

PC+xx → PC

PC+xxxx → PC

PC+Rn → PC
A - 42 DSP96002 USER’S MANUAL MOTOROLA

BRCLR Branch if Bit Clear BRCLR
Assembler Syntax:

BRCLR #bit,X: ea, label

BRCLR #bit,X: aa, label

BRCLR #bit,X: pp, label

BRCLR #bit,Y: ea, label

BRCLR #bit,Y: aa, label

BRCLR #bit,Y: pp, label

BRCLR #bit,S,label
 Operation:

If S{n} = 0, then PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 0, then PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 0, then PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 0, then PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 0, then PC + xxxx → PC
 else PC + 1 → PC

 If S{n} = 0, then PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 0, then PC + xxxx → PC
 else PC + 1 → PC
MOTOROLA DSP96002 USER’S MANUAL A - 43

Description:

The nth bit in the source operand is tested. If the tested bit is cleared, program execution continues at
location PC+displacement. The PC contains the address of the next instruction. If the tested bit is set,
the PC is incremented and program execution continues sequentially. However, the address register spec-
ified in the effective address field is always updated independently of the condition. The displacement is
a 2’s complement 32-bit integer that represents the relative distance from the current PC to the destination
PC. The 32-bit displacement is contained in the extension word of the instruction. All memory alterable
addressing modes may be used to reference the source operand. Absolute Short, I/O Short and Register
Direct addressing modes may also be used. Note that if the specified source operand S is the SSH, the
stack pointer register will be decremented by one. The bit to be tested is selected by an immediate bit
number 0-31. See Section A.10 for restrictions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: BRCLR #bit,S,label

aa 010S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1010 0aaa aa

00 010S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1000 MMMR

pp 010S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1010 1ppp pp

d0 0100 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1011 dddd dd

Instruction Format: BRCLR #bit,X: pp, label
BRCLR #bit,Y: pp, label

Instruction Format: BRCLR #bit,X: aa, label
BRCLR #bit,Y: aa, label

Instruction Format: BRCLR #bit,X: ea, label
BRCLR #bit,Y: ea, label
 Instruction Fields:

 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxxx))

 PC Relative Displacement - 32 bits

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)
A - 44 DSP96002 USER’S MANUAL MOTOROLA

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 8 + jx oscillator clock cycles

Memory: 2 program words
MOTOROLA DSP96002 USER’S MANUAL A - 45

BRSET Branch if Bit Set BRSET
Assembler Syntax:

BRSET #bit,X: ea, label

BRSET #bit,X: aa, label

BRSET #bit,X: pp, label

BRSET #bit,Y: ea, label

BRSET #bit,Y: aa, label

BRSET #bit,Y: pp, label

BRSET #bit,S,label
 Operation:

If S{n} = 1, then PC + xxxx → PC
 else PC + 1 → PC
 If S{n} = 1, then PC + xxxx → PC
 else PC + 1 → PC
If S{n} = 1, then PC + xxxx → PC
 else PC + 1 → PC
If S{n} = 1, then PC + xxxx → PC
 else PC + 1 → PC
If S{n} = 1, then PC + xxxx → PC
 else PC + 1 → PC
If S{n} = 1, then PC + xxxx → PC
 else PC + 1 → PC
If S{n} = 1, then PC + xxxx → PC
 else PC + 1 → PC
A - 46 DSP96002 USER’S MANUAL MOTOROLA

Description:

The nth bit in the source operand is tested. If the tested bit is set, program execution continues at location
PC+displacement. The PC contains the address of the next instruction. If the tested bit is cleared, the PC
is incremented and program execution continues sequentially. However, the address register specified in
the effective address field is always updated independently of the condition. The displacement is a 2’s
complement 32-bit integer that represents the relative distance from the current PC to the destination PC.
The 32-bit displacement is contained in the extension word of the instruction. All memory alterable ad-
dressing modes may be used to reference the source operand. Absolute Short, I/O Short and Register
Direct addressing modes may also be used. Note that if the specified source operand S is the SSH, the
stack pointer register will be decremented by one. The bit to be tested is selected by an immediate bit
number 0-31. See Section A.10 for restrictions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: BRSET #bit,S,label

aa 110S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1010 0aaa aa

00 110S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1000 MMMR

pp 110S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1010 1ppp pp

d0 1100 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1011 dddd dd

Instruction Format: BRSET #bit,X: ea, label
BRSET #bit,X: ea, label

Instruction Format: BRSET #bit,X: aa, label
BRSET #bit,Y: aa, label

Instruction Format: BRSET #bit,X: pp, label
BRSET #bit,Y: pp, label
Instruction Fields:

 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxxx))

 PC Relative Displacement - 32 bits

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)
MOTOROLA DSP96002 USER’S MANUAL A - 47

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 8 + jx oscillator clock cycles
Memory: 2 program words
A - 48 DSP96002 USER’S MANUAL MOTOROLA

BScc Branch to Subroutine Conditionally BScc
Assembler Syntax:

BScc label (short)

BScc label

BScc Rn
 Operation:

If cc, then PC → SSH; SR → SSL; PC+xx → PC
else PC + 1 → PC

If cc, then PC → SSH; SR → SSL; PC+xxxx → PC
else PC + 1 → PC

If cc, then PC → SSH; SR → SSL; PC+Rn → PC
else PC + 1 → PC

Description:

If the specified condition is true, the address of the instruction immediately following the BScc instruction
and the status register are pushed onto the stack. Program execution then continues at location PC+dis-
placement. The PC contains the address of the next instruction. If the specified condition is false, the PC
is incremented and program execution continues sequentially. The displacement is a 2’s complement 32-
bit integer that represents the relative distance from the current PC to the destination PC. Short Displace-
ment, Long Displacement and Address Register PC Relative addressing modes may be used. The Short
Displacement 15-bit data is sign extended to form the PC relative displacement. See Section A.10 for
restrictions.

"cc" may specify the following conditions:

Mnemonic Condition
CC (HS) - carry clear (higher or same) C = 0
CS (LO) - carry set (lower) C = 1
EQ - equal Z = 1
GE - greater or equal N && V = 0
GT - greater than Z v (N && V) = 0
HI - higher Z v C = 0
LE - less or equal Z v (N && V) = 1
LS - lower or same Z v C = 1
LT - less than N && V = 1
MI - minus N = 1
NE(Q) - not equal Z = 0
PL - plus N = 0
VC - overflow clear V = 0
VS - overflow set V = 1

CCR Condition Codes: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 49

ER Status Bits: Not affected.

IER Flags: Not affected.
Instruction Format: BScc label (short)

1c cccc 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0100 0000 00

1c cccc 0000 0000

31 14 13 0

0000 0011 0100 001R

1c cccc 0aaa aaaa

31 14 13 0

0000 0011 11aa aaaa aa

Instruction Format: BScc Rn

Instruction Format: BScc label
Instruction Fields:

 Rn - R0-R7

 Long Displacement - 32 bits

 Short Displacement - aaaaaaaaaaaaaaa (15 bits)

Mnemonic c c c c c Mnemonic c c c c c
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
CC(HS) 0 1 0 1 0 CS(LO) 1 1 0 1 0
GE 0 1 0 1 1 LT 1 1 0 1 1
GT 0 1 1 0 0 LE 1 1 1 0 0
VC 0 1 1 0 1 VS 1 1 1 0 1
HI 0 1 1 1 0 LS 1 1 1 1 0

Timing: 6 + jx oscillator clock cycles
Memory: 1 + ea program words
A - 50 DSP96002 USER’S MANUAL MOTOROLA

BSCLR Branch to Subroutine if Bit Clear BSCLR
 Operation:

If S{n} = 0,then PC → SSH; SR → SSL; PC + xxxx→ PC
else PC + 1 → PC

If S{n} = 0,then PC → SSH; SR → SSL; PC + xxxx→ PC
else PC + 1 → PC

If S{n} = 0,then PC → SSH; SR → SSL; PC + xxxx→ PC
else PC + 1 → PC

If S{n} = 0,then PC → SSH; SR → SSL; PC + xxxx→ PC
else PC + 1 → PC

If S{n} = 0,then PC → SSH; SR → SSL; PC + xxxx→ PC
else PC + 1 → PC

If S{n} = 0,then PC → SSH; SR → SSL; PC + xxxx→ PC
else PC + 1 → PC

If S{n} = 0,then PC → SSH; SR → SSL; PC + xxxx→ PC
else PC + 1 → PC

Assembler Syntax:

BSCLR #bit,X: ea, label

BSCLR #bit,X: aa, label

BSCLR #bit,X: pp, label

BSCLR #bit,Y: ea, label

BSCLR #bit,Y: aa, label

BSCLR #bit,Y: pp, label

BSCLR #bit,S,label
Description:

The nth bit in the source operand is tested. If the tested bit is cleared, the address of the instruction im-
mediately following the BSCLR instruction and the status register are pushed onto the stack. Program
execution then continues at location PC+displacement. The PC contains the address of the next instruc-
tion. If the tested bit is set, the PC is incremented and program execution continues sequentially. How-
ever, the address register specified in the effective address field is always updated independently of the
condition. The displacement is a 2’s complement 32-bit integer that represents the relative distance from
the current PC to the destination PC. The 32-bit displacement is contained in the extension word of the
instruction. All memory alterable addressing modes may be used to reference the source operand. Ab-
solute Short, I/O Short and Register Direct addressing modes may also be used. Note that if the specified
source operand S is the SSH, the stack pointer register will be decremented by one; if the condition is true,
the push operation will write over the stack level where the SSH value was taken. The bit to be tested is
selected by an immediate bit number 0-31. See Section A.10 for restrictions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 51

Instruction Format: BSCLR #bit,S,label

aa 010S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1110 0aaa aa

00 010S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1100 MMMR

pp 010S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1110 1ppp pp

d0 0100 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1111 dddd dd

Instruction Format: BSCLR #bit,X: pp, label
BSCLR #bit,Y: pp, label

Instruction Format: BSCLR #bit,X: aa, label
BSCLR #bit,Y: aa, label

Instruction Format: BSCLR #bit,X: ea, label
BSCLR #bit,Y: ea, label
Instruction Fields:

 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxx))

 PC Relative Displacement - 32 bits

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)

D d d d d d d d
A - 52 DSP96002 USER’S MANUAL MOTOROLA

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 8 + jx oscillator clock cycles
Memory: 2 program words
MOTOROLA DSP96002 USER’S MANUAL A - 53

BSET Bit Test and Set BSET

ssembler Syntax:

SET #bit,X: ea

SET #bit,X: aa

SET #bit,X: pp

SET #bit,Y: ea

SET #bit,Y: aa

SET #bit,Y: pp

SET #bit,D
Operation:

D{n} → C;
 1 → D{n}
D{n} → C;
 1 → D{n}
D{n} → C;
 1 → D{n}
D{n} → C;
 1 → D{n}
D{n} → C;
 1 → D{n}
D{n} → C;
 1 → D{n}
D{n} → C;
 1 → D{n}

A

B

B

B

B

B

B

B

Description:

The nth bit of the destination operand is tested and the state of the nth bit is reflected in the C condition
code bit. After the test, the nth bit is set in the destination. All memory alterable addressing modes may
be used. Register, Absolute Short and I/O Short addressing may also be used.

The bit to be tested is selected by an immediate bit number 0-31. This instruction performs a read-modify-
write operation on the destination operand and requires two destination accesses. This instruction pro-
vides a test-and-set capability which is useful for synchronizing multiple processors using a shared mem-
ory. See Section A.10 for restrictions.

CCR Condition Codes:

For destination operand SR:

C - Set if bit 0 is specified. Not affected otherwise.

V - Set if bit 1 is specified. Not affected otherwise.

Z - Set if bit 2 is specified. Not affected otherwise.

N - Set if bit 3 is specified. Not affected otherwise.

I - Set if bit 4 is specified. Not affected otherwise.

LR - Set if bit 5 is specified. Not affected otherwise.

–
R - Set if bit 6 is specified. Not affected otherwise.

A - Set if bit 7 is specified. Not affected otherwise.
A - 54 DSP96002 USER’S MANUAL MOTOROLA

For other destination operands:

C - Set if bit tested is set. Cleared otherwise.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

For destination operand SR:

INX -Set if bit 8 is specified. Not affected otherwise.

DZ -Set if bit 9 is specified. Not affected otherwise.

UNF -Set if bit 10 is specified. Not affected otherwise.

OVF -Set if bit 11 is specified. Not affected otherwise.

OPERR-Set if bit 12 is specified. Not affected otherwise.

SNAN -Set if bit 13 is specified. Not affected otherwise.

NAN -Set if bit 14 is specified. Not affected otherwise.

UNCC -Set if bit 15 is specified. Not affected otherwise.

For other destination operands:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For destination operand SR:

SINX -Set if bit 16 is specified. Not affected otherwise.

SDZ -Set if bit 17 is specified. Not affected otherwise.

SUNF -Set if bit 18 is specified. Not affected otherwise.

SOVF -Set if bit 19 is specified. Not affected otherwise.

SIOP -Set if bit 20 is specified. Not affected otherwise.
MOTOROLA DSP96002 USER’S MANUAL A - 55

For other destination operands:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.

Instruction Format: BSET #bit,D
31 14 13 0
aa 110S 000b bbbb

31 14 13 0

0000 0010 0010 0aaa aa

00 110S 000b bbbb

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0010 0000 MMMR

pp 110S 000b bbbb

31 14 13 0

0000 0010 0010 1ppp pp

d0 1100 000b bbbb0000 0010 0011 dddd dd

Instruction Format: BSET #bit,X: pp
BSET #bit,Y: pp

Instruction Format: BSET #bit,X: aa
BSET #bit,Y: aa

Instruction Format: BSET #bit,X: ea
BSET #bit,Y: ea
Instruction Fields:

 <ea> Rn - R0-R7 (Memory alterable addressing modes only)

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)
A - 56 DSP96002 USER’S MANUAL MOTOROLA

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 4 + mvb oscillator clock cycles

Memory: 1 + ea program words
MOTOROLA DSP96002 USER’S MANUAL A - 57

BSR Branch to Subroutine BSR

Assembler Syntax:

BSR label (short)

BSR label

BSR Rn
Operation:

PC → SSH; SR → SSL; PC+xx→ PC
PC → SSH; SR → SSL; PC+xxxx→ PC

PC → SSH; SR → SSL; PC+Rn→ PC

31 14 13 0

Description:

The address of the instruction immediately following the BSR instruction and the status register are pushed
onto the stack. Program execution then continues at location PC+displacement. The PC contains the ad-
dress of the next instruction. The displacement is a 2’s complement 32-bit integer that represents the
relative distance from the current PC to the destination PC. Short Displacement, Long Displacement and
Address Register PC Relative addressing modes may be used. The Short Displacement 15-bit data is
sign extended to form the PC relative displacement. See Section A.10 for restrictions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: BSR label (short)
A - 58 DSP96002 USER’S MANUAL MOTOROLA

11 1111 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0100 0000 00

11 1111 0000 0000

31 14 13 0

0000 0011 0100 001R

11 1111 0aaa aaaa0000 0011 11aa aaaa aa

Instruction Format: BSR label

Instruction Format: BSR Rn

Instruction Fields:

 Rn - R0-R7

 Long PC Relative Displacement - 32 bits

 Short PC Relative Displacement - aaaaaaaaaaaaaaa (15 bits)

Timing: 6 + jx oscillator clock cycles

Memory: 1 + ea program words
MOTOROLA DSP96002 USER’S MANUAL A - 59

BSSET Branch to Subroutine if Bit Set
BSSET
Assembler Syntax:

BSSET #bit,X: ea, label

BSSET #bit,X: aa, label

BSSET #bit,X: pp, label

BSSET #bit,Y: ea, label

BSSET #bit,Y: aa, label

BSSET #bit,Y: pp, label

BSSET #bit,S,label

Operation:

If S{n} = 1, then PC → SSH; SR → SSL;
 PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then PC → SSH; SR → SSL;
 PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then PC → SSH; SR → SSL;
 PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then PC → SSH; SR → SSL;
 PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then PC → SSH; SR → SSL;
 PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then PC → SSH; SR → SSL;
 PC + xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then PC → SSH; SR → SSL;
 PC + xxxx → PC
 else PC + 1 → PC
Description:

The nth bit in the source operand is tested. If the tested bit is set, the address of the instruction immediately
following the BSSET instruction and the status register are pushed onto the stack. Program execution
then continues at location PC+displacement. The PC contains the address of the next instruction. If the
tested bit is cleared, the PC is incremented and program execution continues sequentially. However, the
address register specified in the effective address field is always updated independently of the condition.
The displacement is a 2’s complement 32-bit integer that represents the relative distance from the current
PC to the destination PC. The 32-bit displacement is contained in the extension word of the instruction.
All memory alterable addressing modes may be used to reference the source operand. Absolute Short,
I/O Short and Register Direct addressing modes may also be used. Note that if the specified source oper-
and S is the SSH, the stack pointer register will be decremented by one; if the condition is true, the push
operation will write over the stack level where the SSH value was taken. The bit to be tested is selected
by an immediate bit number 0-31. See Section A.10 for restrictions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Fields:
A - 60 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: BSSET #bit,S,label

aa 110S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1110 0aaa aa

00 110S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1100 MMMR

pp 110S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1110 1ppp pp

d0 1100 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 1111 dddd dd

Instruction Format: BSSET #bit,X: pp, label
BSSET #bit,Y: pp, label

Instruction Format: BSSET #bit,X: aa, label
BSSET #bit,Y: aa, label

Instruction Format: BSSET #bit,X: ea, label
BSSET #bit,Y: ea, label
 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxx))

 PC Relative Displacement - 32 bits

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)
MOTOROLA DSP96002 USER’S MANUAL A - 61

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

 D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 8 + jx oscillator clock cycles
Memory: 2 program words
A - 62 DSP96002 USER’S MANUAL MOTOROLA

BTST Bit Test BTST

Assembler Syntax:

BTST #bit,X: ea

BTST #bit,X: aa

BTST #bit,X: pp

BTST #bit,Y: ea

BTST #bit,Y: aa

BTST #bit,Y: pp

BTST #bit,S
Operation:

 S{n} → C

 S{n} → C

 S{n} → C

 S{n} → C

 S{n} → C

 S{n} → C

 S{n} → C

Description:

The nth bit of the source operand is tested and the state of the nth bit is reflected in the C condition code
bit. All memory alterable addressing modes may be used. Register Direct, Absolute Short and I/O Short
addressing may also be used.

The bit to be tested is selected by an immediate bit number 0-31. When used with the appropriate rotate
instructions, this instruction is useful for serial to parallel conversions.

If the system stack register SSH is specified as a source operand, the system stack pointer SP is postdec-
remented by 1 after SSH is read.

CCR Condition Codes:

C - Set if bit tested is set. Cleared otherwise.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 63

Instruction Format: BTST #bit,S

aa 110S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 0110 0aaa aa

00 110S 000b bbbb

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0010 0100 MMMR

pp 110S 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 0110 1ppp pp

d0 1100 000b bbbb

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0010 0111 dddd dd

Instruction Format: BTST #bit,X: ea
BTST #bit,Y: ea

Instruction Format: BTST #bit,X: pp
BTST #bit,Y: pp

Instruction Format: BTST #bit,X: aa
BTST #bit,Y: aa
Instruction Fields:

 <ea> Rn - R0-R7 (Memory alterable addressing modes only)

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)
A - 64 DSP96002 USER’S MANUAL MOTOROLA

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 4 + mvb oscillator clock cycles
Memory: 1 + ea program words
MOTOROLA DSP96002 USER’S MANUAL A - 65

CLR Clear an Operand CLR

Assembler Syntax:

CLR D (move syntax - see the MOVE instruction
description.)
Operation:

0 → D.L (parallel data bus move)

Description:

The low portion of the destination operand is cleared to zero. This instruction is implemented by executing
ANDC D,D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Always set.

N - Always cleared.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: CLR D (move syntax - see the MOVE instruction description.)
11 0uuu 1000 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

 (u u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 66 DSP96002 USER’S MANUAL MOTOROLA

CMP Compare CMP

Assembler Syntax:

CMP S1,S2 (move syntax - see the MOVE in-
struction description.)
Operation:

S2.L - S1.L (parallel data bus move)

Description:

Subtract the low portion of the two operands as specified in the operation column above. No result is
stored; however, the condition codes are affected as described below.

CMPG and CMP differ primarily in the definition of the CCR condition code bits LR and R. These differenc-
es are particularly useful in performing clipping operations in graphics applications. In the code segment,

the CMP instruction tests the first point of a line, X0, against Xmin and sets LR accordingly; the FCMPG

instruction tests the second point of a line, X1, against Xmin and sets –R depending on the condition of LR.

Note that the line segment will be trivially accepted if A is set (and R=1), whereas the line will be trivially

rejected if
–
R is cleared (and A=0). This choice of accept/reject conditions was selected to permit the CCR

to be initialized by a single ORI instruction.

ORI #$E0,CCR ;SET A,
–
R, LR – i. e.,

;assume line is initially

;accepted and not rejected.

MOVE X:(R0)+N0,D0.L Y:(R4)+,D1.S ;get X0, Xmin

CMP D1, D0 X:(R0)-N0, D0.L ;X0-Xmin, get X1

CMPG D1, D0 ;X1=Xmin

Input Operand(s) Precision: 32-bit 2’s complement integer.

Output Operand Precision: n.a.

CCR Condition Codes:

C - Set if a borrow is generated from the MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Cleared if result is positive without overflow or zero. Cleared if result is negative
with overflow. Not affected otherwise. See the example for the FCMPG instruction.

–
R - Not affected. See the example for the FCMPG instruction.
MOTOROLA DSP96002 USER’S MANUAL A - 67

A - Cleared if result is negative without overflow. Cleared if result is positive with over-
flow. Not affected otherwise. See the example for the FCMPG instruction.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: CMP S1,S2 (move syntax - see the MOVE instruction description.)
A

00 0sss uu11 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

Instruction Fields:

S1 s s s
 - 68 DSP96002 USER

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles
Memory: 1 + mv program words
S2 (u u)

D d d d

Dn.L n n n where nnn = 0-7
’S MANUAL MOTOROLA

CMPG Graphics Compare with Trivial CMPG
Accept/Reject Flags
Assembler Syntax:

CMPG S1,S2

(move syntax - see the MOVE instruction de-
 Operation:

S2.L - S1.L (parallel data bus move)

scription.)

 Description:

Subtract the low portion of the two operands as specified in the operation column above. No result is
stored; however, the condition codes are affected as described below.

CMPG and CMP differ primarily in the definition of the CCR condition code bits LR and R. These differenc-
es are particularly useful in performing clipping operations in graphics applications. In the code segment,

the CMP instruction tests the first point of a line, X0, against Xmin and sets LR accordingly; the FCMPG

instruction tests the second point of a line, X1, against Xmin and sets –R depending on the condition of LR.

Note that the line segment will be trivially accepted if A is set (and R=1), whereas the line will be trivially

rejected if
–
R is cleared (and A=0). This choice of accept/reject conditions was selected to permit the CCR

to be initialized by a single ORI instruction.

ORI #$E0,CCR ;SET A,
–
R, LR – i. e.,

;assume line is initially

;accepted and not rejected.

MOVE X:(R0)+N0,D0.L Y:(R4)+,D1.S ;get X0, Xmin

CMP D1, D0 X:(R0)-N0, D0.L ;X0-Xmin, get X1

CMPG D1, D0 ;X1=Xmin

Input Operand(s) Precision: 32-bit 2’s complement integer.

Output Operand Precision: n.a.

CCR Condition Codes:

C - Set if result is negative without overflow. Set if result is positive with overflow.
Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Always set (initialize for the next CMP, CMPG combination; see the example for
the FCMPG instruction.

–
R - Cleared if LR was set and result is negative without overflow. Cleared if LR was set

and result is positive with overflow. Not affected otherwise. See the example for
the FCMPG instruction.
MOTOROLA DSP96002 USER’S MANUAL A - 69

A - Cleared if result is negative without overflow. Cleared if result is positive with over-
flow. Not affected otherwise. See the example for the FCMPG instruction.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: CMPG S1,S2 (move syntax - see the MOVE instruction description.)

31 14 13 0
11 0sss 0110 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

S1 s s s
A - 70 DSP96002 USE

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles
Memory: 1 + mv program words
S2 d d d

Dn.L n n n where nnn = 0-7
R’S MANUAL MOTOROLA

DEBUGcc Enter Debug Mode DEBUGcc
Conditionally

Assembler Syntax:

DEBUGcc

Operation:

If cc, then enter debug mode.

Description:

If the specified condition is true, enter Debug mode and wait for OnCE commands. If the specified con-
dition is false, continue with the next instruction.

"cc" may specify the following conditions:

Mnemonic Condition
CC (HS) - carry clear (higher or same) C = 0
CS (LO) - carry set (lower) C = 1
EQ - equal Z = 1
GE - greater or equal N && V = 0
GT - greater than Z v (N && V) = 0
HI - higher Z v C = 0
LE - less or equal Z v (N && V) = 1
LS - lower or same Z v C = 1
LT - less than N && V = 1
MI - minus N = 1
NE(Q) - not equal Z = 0
PL - plus N = 0
VC - overflow clear V = 0
VS - overflow set V = 1
AL - always true n.a.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: DEBUGcc
MOTOROLA DSP96002 USER’S MANUAL A - 71

0c cccc 1111 1111

31 14 13 0

0000 0000 0000 0000 01

OnCE

 is a trademark of Motorola Inc.

 Instruction Fields:

Mnemonic c c c c c Mnemonic c c c c c
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
CC(HS) 0 1 0 1 0 CS(LO) 1 1 0 1 0
GE 0 1 0 1 1 LT 1 1 0 1 1
GT 0 1 1 0 0 LE 1 1 1 0 0
VC 0 1 1 0 1 VS 1 1 1 0 1
HI 0 1 1 1 0 LS 1 1 1 1 0
AL 1 1 1 1 1

Timing: 4 oscillator clock cycles
Memory: 1 program words
A - 72 DSP96002 USER’S MANUAL MOTOROLA

DEC Decrement by One DEC

Assembler Syntax:

DEC D (move syntax - see the MOVE instruction
description.)
Operation:

D.L - 1 → D.L (parallel data bus move)

31 14 13 0

Description:

Decrement by one the low portion of the specified operand. The result is stored in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if a borrow is generated from the MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: DEC D (move syntax - see the MOVE instruction description.)
MOTOROLA DSP96002 USER’S MANUAL A - 73

10 0111 uu11 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles
Memory: 1 + mv program words

DO Start Hardware Loop DO

Assembler Syntax:

DO X: ea, label

DO Y: ea, label

DO S,label

DO #count,label
Operation:

LA → SSH; LC → SSL; X:<ea> → LC

PC → SSH; SR → SSL; expr → LA; 1 → LF

LA → SSH; LC → SSL; Y:<ea> → LC

PC → SSH; SR → SSL; expr → LA; 1 → LF

LA → SSH; LC → SSL; S → LC

PC → SSH; SR → SSL; expr → LA; 1 → LF

LA → SSH; LC → SSL; #xxx → LC

PC → SSH; SR → SSL; expr → LA; 1 → LF

Description:
Begin a hardware DO loop that is to be repeated the number of times specified in the instruction’s source
operand and whose range of execution is terminated by the destination operand (previously shown as "ex-
pr"). No overhead other than the execution of this DO instruction is required to set up this loop. DO loops
can be nested and the loop count can be passed as a parameter.

During the first instruction cycle, the current contents of the loop address (LA) and the loop counter (LC)
registers are pushed onto the system stack. The DO instruction’s source operand is then loaded into the
loop counter (LC) register. The LC register contains the remaining number of times the DO loop will be ex-
ecuted and can be accessed from inside the DO loop subject to certain restrictions. If LC equals zero, the

DO loop is executed 232 times. All address register indirect addressing modes (less long displacement) may
be used to generate the effective address of the source operand. Register Direct addressing mode may also
be used. If immediate short data is specified, the LC is loaded with the zero extended 19-bit immediate
data.

During the second instruction cycle, the current contents of the program counter (PC) register and the status
register (SR) are pushed onto the system stack. The stacking of the LA, LC, PC, and SR registers is the
mechanism which permits nesting DO loops. The DO instruction’s 32-bit absolute address extension word
(which is the destination operand and shown as "expr") is then loaded into the loop address (LA) register.
The value in the program counter (PC) register pushed onto the system stack is the address of the first in-
struction following the DO instruction (i.e., the first actual instruction in the DO loop). This value is read
(i.e., copied but not pulled) from the top of the system stack to return to the top of the loop for another pass
through the loop.

During the third instruction cycle, the loop flag (LF) is set. This results in the PC being repeatedly compared
with LA to determine if the last instruction in the loop has been fetched. If LA equals PC, the last instruction
in the loop has been fetched and the loop counter (LC) is tested. If LC is not equal to one, it is decremented
by one and SSH is loaded into the PC to fetch the first instruction in the loop again. If LC equals one, the
A - 74 DSP96002 USER’S MANUAL MOTOROLA

"end-of-loop" processing begins.

When executing a DO loop, the instructions are actually fetched each time through the loop. Therefore, a
DO loop can be interrupted. DO loops can also be nested. When DO loops are nested, the end-of-loop ad-
dresses must also be nested and are not allowed to be equal. The assembler generates an error message
when DO loops are improperly nested. Nested DO loops are illustrated in the example.

NOTE: The assembler calculates the end-of-loop address to be loaded into LA (the absolute address
extension word) by evaluating the end-of-loop expression "expr" and subtracting one. This is done to ac-
commodate the case where the last word in the DO loop is a two-word instruction. Thus, the end-of-loop
expression "expr" in the source code must represent the address of the instruction after the last instruction
in the loop as shown in the example. This is in contrast to locating labels for instructions other than DO and
DOR. In this case the labels are located on the same line as the target.

During the "end-of-loop" processing, the loop flag (LF) from the lower portion (SSL) of SP is written into the
status register (SR), the contents of the loop address (LA) register are restored from the upper portion (SSH)
of (SP-1), the contents of the loop counter (LC) are restored from the lower portion (SSL) of (SP-1), and the
stack pointer (SP) is decremented by two. Instruction fetches now continue at the address of the instruction
following the last instruction in the DO loop. Note that LF is the only bit in the status register (SR) that is
restored after a hardware DO loop has been exited.
Note: The loop flag (LF) is cleared by a hardware reset.

Restrictions: The "end-of-loop" comparison previously described actually occurs at instruction fetch time.
That is, LA is being compared with PC when the instruction at LA-2 is being executed. Therefore, instruc-
tions which access the program controller registers and/or change program flow cannot be used in locations
LA-2, LA-1, or LA.

Proper DO loop operation is not guaranteed if an instruction starting at address LA-2, LA-1, or LA specifies
one of the program controller registers SR, SP, SSL, LA, LC, (implicitly) PC as a destination register.
Similarly, the SSH program controller register may not be specified as a source or destination register in
an instruction starting at address LA-2, LA-1, or LA. Additionally, the SSH register cannot be specified as
a source register in the DO instruction itself and LA cannot be used as a target for jumps to subroutine
(i.e., JSR, JScc, JSSET, or JSCLR to LA). A DO instruction cannot be repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a DO loop:

At LA-2, LA-1 and LA:
 DO
 BCHG/BCLR/BSET LA, LC, SR, SP, SSH, or SSL
 BTST SSH
 JCLR/JSET/JSCLR/JSSET SSH
 LEA to LA, LC, SR, SP, SSH, or SSL
 LRA to LA, LC, SR, SP, SSH, or SSL
 MOVEC/M/P/S from SSH
 MOVEC/I/M/P/S to LA, LC, SR, SP, SSH, or SSL
 ANDI MR
 ORI MR
 At LA:
 any two word instruction
 (F)Jcc, JMP, (F)JScc, JSR, (F)Bcc, BRA, (F)BScc, BSR,
 LRA, REP, RESET, RTI, RTR, RTS, STOP, WAIT
MOTOROLA DSP96002 USER’S MANUAL A - 75

Other restrictions:
 BSR to (LA), if Loop Flag is set
 (F)BScc to (LA), if Loop Flag is set
 JSR to (LA), if Loop Flag is set
 (F)JScc to (LA), if Loop Flag is set
 JSCLR to (LA), if Loop Flag is set
 JSSET to (LA), if Loop Flag is set
 BSCLR to (LA), if Loop Flag is set
 BSSET to (LA), if Loop Flag is set

A DO instruction cannot be repeated using the REP instruction.

Note: Due to pipelining, if an address register (R0-R7, N0-N7, or M0-M7) is changed using a move-type
instruction (LUA, Tcc, MOVE, MOVEC, MOVEM, MOVEP, or parallel move), the new contents of the des-
tination address register will not be available for use during the following instruction (i.e., there is a single
instruction cycle pipeline delay). This restriction also applies to the situation in which the last instruction in
a DO loop changes an address register and the first instruction at the top of the DO loop uses that same
address register. The top instruction becomes the following instruction because of the loop construct.

Similarly, since the DO instruction accesses the program controller registers, the DO instruction must not
be immediately proceeded by any of the following instructions:

Immediately before DO:

 BCHG/BCLR/BSET LA, LC, SSH, SSL or SP

 LEA to LA, LC, SSH, SSL or SP
 LRA to LA, LC, SSH, SSL or SP
 MOVEC/I/M/S to LA, LC, SSH, SSL or SP
 MOVEC/M/S from SSH

During hardware loop operation, each instruction is fetched each time through the program loop. There-
fore, instructions being executed in a hardware loop are interruptible and may be nested. The value of the
PC pushed onto the system stack is the location of the first instruction after the DO instruction. This value
is read from the top of the system stack to return to the start of the program loop. When DO instructions
are nested, the end of loop addresses must also be nested and are not allowed to be equal. An example
is shown:
A - 76 DSP96002 USER’S MANUAL MOTOROLA

Example:

DO #n1,END1

DO #n2,END2

MOVE D0,X:(R0)+

END2

ADD D1,D2 X:(R1)+,D3

 END1

The assembler calculates the end of loop address (LA) (absolute address extension word xxxx) by evalu-
ating the end of loop expression and subtracting one. Thus the end of loop expression in the source code
represents the "next address" after the end of the loop. If a simple end of loop address label is used, it
should be placed after the last instruction in the loop.

The LA register is compared to the PC to determine when the end of loop is reached. If the end of loop is
reached, the loop counter (LC) is tested for one. If LC is not equal to one then it is decremented by one.
If LC is equal to one, the system stack is purged and instruction fetches continue at the incremented PC
address. Otherwise, the PC value on the top of the stack is read to fetch the start of the loop again.

Since the end of loop comparison is at fetch time and ahead of the end of loop execution, instructions which
change program flow or change the system stack may not be used near the end of the loop without some
restrictions. Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1 or LA
specifies the program controller registers SR, SP, SSL, LA, LC or (implicitly) PC as a destination register;
or specifies SSH as a source or destination register. Also, SSH cannot be specified as a source register
in the DO instruction itself. The assembler will generate a warning if the restricted instructions are found
within their restricted boundaries. See Section A.10 for the complete list of restrictions.

Implementation Notes:

 DO SP,label The actual value that will be loaded in the LC is the value of the SP before the DO instruction
incremented by one.

 DO SSL,label The LC will be loaded with its previous value that was saved in the stack by the DO in-
struction itself.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 77

Instruction Format: DO #count,label

i i i i i i i i i i i i i i

31 14 13 0

ABSOLUTE ADDRESS

0000 0001 1011 i i i i i i

A - 78 DSP96002 USER’S MANUAL MOTOROLA

Instruction Fields:

 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxx))

 Absolute Address - 32 bits

 Immediate Short Data - iiiiiiiiiiiiiiiiiii (19 bits)

Memory Space S

X Memory 0

 Y Memory 1

D d d d d d d d
D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7
D0.L-D7.L 0 0 0 1 n n n
D0.M-D7.M 0 0 1 0 n n n
D0.H-D7.H 0 0 1 1 n n n
D8.L 0 1 0 0 0 0 0
D9.L 0 1 0 0 0 0 1
D8.M 0 1 0 0 0 1 0
D9.M 0 1 0 0 0 1 1
D8.H 0 1 0 0 1 0 0
D9.H 0 1 0 0 1 0 1
D8.S 0 1 0 0 1 1 0
D9.S 0 1 0 0 1 1 1
R0-R7 0 1 0 1 n n n
N0-N7 0 1 1 0 n n n
M0-M7 0 1 1 1 n n n
SR 1 1 1 1 0 0 1
OMR 1 1 1 1 0 1 0
SP 1 1 1 1 0 1 1
SSH 1 1 1 1 1 0 0
SSL 1 1 1 1 1 0 1
LA 1 1 1 1 1 1 0
LC 1 1 1 1 1 1 1

Timing: 6 + mv oscillator clock cycles
Memory: 2 program words

00 0000 1000 0000

31 14 13 0

ABSOLUTE ADDRESS

0000 0001 100S MMMR

00 0000 1ddd dddd

31 14 13 0

ABSOLUTE ADDRESS

0000 0001 1010 0000 00

Instruction Format: DO S,label

Instruction Format: DO X: ea, label
DO X: ea, label

DOR Start PC Relative Hardware Loop DOR

Assembler Syntax:

DOR X: ea, label

DOR Y: ea, label

DOR S,label

DOR #count,label
Operation:

LA → SSH; LC → SSL; X:<ea> → LC
PC → SSH; SR → SSL; PC+xxxx → LA; 1 → LF

LA → SSH; LC → SSL; Y:<ea> → LC
PC → SSH; SR → SSL; PC+xxxx → LA; 1 → LF

LA → SSH; LC → SSL; S → LC
PC → SSH; SR → SSL; PC+xxxx → LA; 1 → LF

LA → SSH; LC → SSL; #xxx → LC
PC → SSH; SR → SSL; PC+xxxx → LA; 1 → LF
Description:

This instruction initiates the beginning of a PC relative hardware program loop. The current loop address
(LA) and loop counter (LC) values are pushed onto the system stack. With proper system stack manage-
ment, this allows unlimited nested hardware DO loops. The PC and SR are pushed onto the system stack.
The PC is added to the 32-bit address displacement extension word and the resulting address is loaded
into the loop address register (LA). The PC points to the next instruction when it is added to the displace-
ment. The effective address specifies the address of the loop count which is loaded into the loop counter
(LC). The DO loop is executed LC times. If LC=0, the loop is executed 2**32 times. All address register

indirect addressing modes (less Long Displacement) may be used. Register Direct addressing mode may
also be used. If immediate short data is specified, the LC is loaded with the zero extended 19-bit immedi-
ate data.

During hardware loop operation, each instruction is fetched each time through the program loop. There-
fore, instructions being executed in a hardware loop are interruptible and may be nested. The value of the
PC pushed onto the system stack is the location of the first instruction after the DOR instruction. This
value is read from the top of the system stack to return to the start of the program loop. When DOR in-
structions are nested, the end of loop addresses must also be nested and are not allowed to be equal.
An example is shown below.

DOR #n1,END1

DOR #n2,END2

MOVE D0,X:(R0)+

END2

ADD D1,D2 X:(R1)+,D3

END1

The assembler calculates the end of loop address LA (PC relative address extension word xxxx) by eval-
uating the end of loop expression and subtracting one. Thus the end of loop expression in the source code
MOTOROLA DSP96002 USER’S MANUAL A - 79

represents the "next address" after the end of the loop. If a simple end of loop address label is used, it
should be placed after the last instruction in the loop.

The LA register is compared to the PC to determine when the end of loop is reached. If the end of loop is
reached, the loop counter (LC) is tested for one. If LC is not equal to one then it is decremented by one.
If LC is equal to one, the system stack is purged and instruction fetches continue at the incremented PC
address. Otherwise, the PC value on the top of the stack is read to fetch the start of the loop again.

Since the end of loop comparison is at fetch time and ahead of the end of loop execution, instructions which
change program flow or change the system stack may not be used near the end of the loop without some
restrictions. Proper hardware loop operation is guaranteed if no instruction starting at address LA-2, LA-
1 or LA specifies the program controller registers SR, SP, SSL, LA, LC or (implicitly) PC as a destination
register; or specifies SSH as a source or destination register. Also, SSH cannot be specified as a source
register in the DOR instruction itself. The assembler will generate a warning if the restricted instructions
are found within their restricted boundaries. See Section A.10 for the complete list of restrictions.

Implementation Notes:

 DOR SP,label The actual value that will be loaded in the LC is the value of the SP before the DOR
instruction incremented by one.

 DOR SSL,label The LC will be loaded with its previous value that was saved in the stack by the DOR
instruction itself.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Fields:

 <ea> Rn - R0-R7 (All address register indirect addressing modes except (Rn+xxx))
A - 80 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: DOR #count,label

00 0000 0000 0000

31 14 13 0

PC RELATIVE REPLACEMENT

0000 0001 100S MMMR

00 0000 0ddd dddd

31 14 13 0

PC RELATIVE REPLACEMENT

0000 0001 1010 0000 00

i i i i i i 0 i i i i i i i

31 14 13 0

PC RELATIVE REPLACEMENT

0000 0001 1011 i i i i i i

Instruction Format: DOR S,label

Instruction Format: DOR X: ea, label
DOR Y: ea, label

 PC displacement - 32 bits

 Immediate Short Data - iiiiiiiiiiiiiiiiiii (19 bits)

Memory Space S

X Memory 0

 Y Memory 1

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 8 + mv oscillator clock cycles

Memory: 2 program words
MOTOROLA DSP96002 USER’S MANUAL A - 81

ENDDO End Current DO Loop ENDDO

Assembler Syntax:

ENDDO
Operation:

SSL(LF) → SR; SP-1 → SP
SSH → LA; SSL → LC; SP-1 → SP

Description:

This instruction will cause the termination of the current hardware DO loop before the current loop counter
(LC) equals one. If the value of the current DO loop counter is needed, it must be read before the execution
of the ENDDO instruction. Initially, the loop flag (LF) is restored from the system stack and the remaining
portion of the status register (SR) and the program counter (PC) are purged from the system stack. The
loop address (LA) and the loop counter (LC) registers are them restored from the system stack.

Restrictions:

Due to pipelining, and the fact that the ENDDO instruction accesses the program controller registers, the
ENDDO instruction must not be immediately preceded by any of the following instructions:

Immediately before ENDDO MOVEC to LA, LC, SR, SSH, SSL, OR SP

MOVEM to LA, LC, SR, SSH, SSL, OR SP

MOVEP to LA, LC, SR, SSH, SSL, OR SP

MOVEC from SSH

MOVEM from SSH

MOVEP from SSH

ORI MR

ANDI MR

Also, the ENDDO instruction cannot be the next to last instruction in a DO loop (at LA-1).

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Fields:
Instruction Format: ENDDO
00 0000 0000 0111

31 14 13 0

0000 0000 0000 0000 00
 None

Timing: 2 oscillator clock cycles

Memory: 1 program words
A - 82 DSP96002 USER’S MANUAL MOTOROLA

EOR Logical Exclusive OR EOR

ssembler Syntax:

OR S,D (move syntax - see the MOVE in-
struction description.)
Operation:

D.L && S.L → D.L (parallel data bus move)

A

E

31 14 13 0

Description:

Logically exclusive OR the low portion of the two specified operands and store the result in the low portion
of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: EOR S,D (move syntax - see the MOVE instruction description.)
00 0sss uu10 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 83

EXT Sign Extend Half Word EXT

Assembler Syntax:

EXT D (move syntax - see the MOVE in-
struction description.)
Operation:

D.L {15:0} → D.L {15:0} (parallel data bus move)
D.L {15} → D.L {31:16}

31 14 13 0

Description:

Sign extend the lower 16 bits of D.L into the upper 16 bits of D.L.

Input Operand(s) Precision: 16-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: EXT D (move syntax - see the MOVE instruction description.)
10 0001 uu00 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 84 DSP96002 USER’S MANUAL MOTOROLA

EXTB Sign Extend Byte EXTB

Assembler Syntax:

EXTB D (move syntax - see the MOVE in-
struction description.)
Operation:

D.L {7:0} → D.L {7:0} (parallel data bus move)
D.L {7} → D.L {31:8}

31 14 13 0

Description:

Sign extend the lower byte of D.L into the upper 24 bits of D.L.

Input Operand(s) Precision: 8-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: EXTB D (move syntax - see the MOVE instruction description.)
10 0001 uu01 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 85

FABS.S Absolute Value FABS.S

Assembler Syntax:

FABS.S D (move syntax - see the MOVE in-
struction description.)
Operation:

D → ROUND(SP) → D (parallel data bus move)

Description:

Take the absolute value of the destination operand, round to single precision and store the result in the
destination operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Always cleared.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 86 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FABS.S D (move syntax - see the MOVE instruction description.)

10 0001 uu11 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 87

FABS.X Absolute Value FABS.X

Assembler Syntax:

FABS.X D (move syntax - see the MOVE instruc-
tion description.)

Operation:

D → D (parallel data bus move)

Description:

Take the absolute value of the destination operand and store the result in the destination operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Always cleared.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 88 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FABS.X D (move syntax - see the MOVE instruction description.)

10 0001 uu10 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 89

FADD.S Floating-Point Add FADD.S

Assembler Syntax:

FADD.S S,D (move syntax - see the MOVE instruc-
tion description.)
Operation:

D + S → ROUND(SP) → D
(parallel data bus move)
Description:

Add the two specified operands, round to single precision and store the result in the destination operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Set if operands are opposite-signed infinities. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: FADD.S S,D (move syntax - see the MOVE instruction description.)
A - 90 DSP96002 USER’S MANUAL MOTOROLA

Instruction Fields:
31 14 13 0
01 0sss uu01 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
(u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 91

FADD.X Floating-Point Add FADD.X

Assembler Syntax:

FADD.X S,D (move syntax - see the MOVE instruc-
tion description.)
Operation:

D + S → ROUND(SEP) → D
(parallel data bus move)
Description:

Add the two specified operands, round to single extended precision and store the result in the destination
operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Set if operands are opposite-signed infinities. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 92 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FADD.X S,D (move syntax - see the MOVE instruction description.)

01 0sss uu00 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 93

FADDSUB.S Add and Subtract FADDSUB.S

Assembler Syntax:

FADDSUB.S D1,D2

 (move syntax - see the MOVE instruc-
tion description.)
Operation:

D1 + D2 → ROUND(SP) → D2 (parallel data bus move)
D1 - D2 → ROUND(SP) → D1

Description:

Add and subtract the two specified operands and round to single precision. Store the rounded result of
the addition in D2 and of the subtraction in D1.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand(s) Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Set if result of the addition is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if the addition or subtraction result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if the addition or subtraction result underflows. Cleared otherwise.

OVF -Set if the addition or subtraction result overflows. Cleared otherwise.

OPERR -Set if operands of the addition are opposite-signed infinities or if the operands of
the subtraction are like-signed infinities. Cleared otherwise.

SNAN -Set if any operand is a signaling NaN. Cleared otherwise.

NAN -Set if result of the addition is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 94 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FADDSUB.S D1,D2 (move syntax - see the MOVE instruction description.)

01 0sss uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

D1 s s s

Dn n n n where nnn = 0-7

D2 d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 95

FADDSUB.X Add and Subtract FADDSUB.X

ssembler Syntax:

ADDSUB.X D1,D2 (move syntax - see the MOVE
instruction description.)
A

F

Operation:

D1 + D2 → ROUND(SEP) → D2

 (parallel data bus move)

D1 - D2 → ROUND(SEP) → D1
Description:

Add and subtract the two specified operands and round to single extended precision. Store the result of
the addition in D2 and of the subtraction in D1.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand(s) Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Set if result of the addition is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if the addition or subtraction result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if the addition or subtraction result underflows. Cleared otherwise.

OVF -Set if the addition or subtraction result overflows. Cleared otherwise.

OPERR -Set if operands of the addition are opposite-signed infinities or if the operands of
the subtraction are like-signed infinities. Cleared otherwise.

SNAN -Set if any operand is a signaling NaN. Cleared otherwise.

NAN -Set if result of the addition is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 96 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FADDSUB.X D1,D2 (move syntax - see the MOVE instruction description.)

01 0sss uu01 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

D1 s s s

Dn n n n where nnn = 0-7

D2 d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 97

FBcc Floating-Point Branch Conditionally FBcc
 Assembler Syntax:

FBcc label (short)

FBcc label

FBcc Rn
 Operation:

If cc, then PC+xx → PC
else PC+1 → PC

If cc, then PC+xxxx → PC
else PC+1 → PC

If cc, then PC+Rn → PC
else PC+1 → PC
Description:

If the specified floating-point condition is true, the address of the instruction immediately following the FB-
Scc instruction and the status register are pushed onto the stack. Program execution then continues at
location PC+displacement. The PC contains the address of the next instruction. If the specified condition
is false, the PC is incremented and program execution continues sequentially. The displacement is a 2’s
complement 32-bit integer that represents the relative distance from the current PC to the destination PC.
Short Displacement, Long Displacement and Address Register PC Relative addressing modes may be
used. The Short Displacement 15-bit data is sign extended to form the PC relative displacement. See
Section A.10 for restrictions. Non-aware floating-point conditions set the SIOP flag in the IER register and
the UNCC bit in the ER register if the NAN bit is set.

"cc" may specify the following conditions:
 Non-aware

Mnemonic Condition Set UNCC*
EQ - equal Z = 1 No
ERR - error UNCC v SNAN v OPERR v No

 OVF v UNF v DZ = 1
GE - greater than or equal NAN v (N & ~Z) = 0 Yes
GL - greater or less than NAN v Z = 0 Yes
GLE - greater, less or equal NAN = 0 Yes
GT - greater than NAN v Z v N = 0 Yes
INF - infinity I = 1 Yes
LE - less than or equal NAN v ~(N v Z) = 0 Yes
LT - less than NAN v Z v ~N = 0 Yes
MI - minus N = 1 No
NE(Q) - not equal Z = 0 No
NGE - not(greater than or equal) NAN v (N & ~Z) = 1 Yes
NGL - not(greater or less than) NAN v Z = 1 Yes
NGLE - not(greater, less or equal) NAN = 1 Yes
NGT - not greater than NAN v Z v N = 1 Yes
NINF - not infinity I = 0 Yes
NLE - not(less than or equal) NAN v ~(N v Z) = 1 Yes
NLT - not less than NAN v Z v ~N = 1 Yes
OR - ordered NAN = 0 No
PL - plus N = 0 No
UN - unordered NAN = 1 No

 Note: The operands for the ERR condition are taken from the ER register.
 See the description of UNcc in Section A.4.

CCR Condition Codes: Not affected.
A - 98 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

IER Flags:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

Instruction Format: FBcc label (short)

Instruction Fields:
31 14 13 0
MOTOROLA DSP96002 USER’S MANUAL A - 99

1c cccc 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0000 0000 00

1c cccc 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0000 001R

1c cccc 0aaa aaaa

PC RELATIVE DISPLACEMENT

0000 0011 10aa aaaa aa

Instruction Format: FBcc Rn

Instruction Format: FBcc label

 Rn - R0-R7

 Long Displacement - 32 bits

 Short Displacement - aaaaaaaaaaaaaaa (15 bits)

Mnemonic c c c c c Mnemonic c c c c c
GT 0 0 0 0 0 NGT 1 0 0 0 0
LT 0 0 0 0 1 NLT 1 0 0 0 1
GE 0 0 0 1 0 NGE 1 0 0 1 0
LE 0 0 0 1 1 NLE 1 0 0 1 1
GL 0 0 1 0 0 NGL 1 0 1 0 0
INF 0 0 1 0 1 NINF 1 0 1 0 1
GLE 0 0 1 1 0 NGLE 1 0 1 1 0
OR 0 0 1 1 1 UN 1 0 1 1 1
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
ERR 0 1 1 1 1

Timing: 6 + jx oscillator clock cycles
Memory: 1 + ea program words
A - 100 DSP96002 USER’S MANUAL MOTOROLA

FBScc Floating-Point Branch FBScc
To Subroutine Conditionally

Assembler Syntax:

FBScc label (short)

FBScc label

FBScc Rn
Operation:

If cc, then PC → SSH; SR → SSL; PC+xx → PC
 else PC+1 → PC

If cc, then PC → SSH; SR → SSL; PC+xxxx → PC
 else PC+1 → PC

If cc, then PC → SSH; SR → SSL; PC+Rn → PC
 else PC+1 → PC

Description:

If the specified floating-point condition is true, the address of the instruction immediately following the FB-
Scc instruction and the status register are pushed onto the stack. Program execution then continues at a
location specified by a PC relative address in the instruction. If the specified condition is false, the PC is
incremented and the PC relative address is ignored. Short Displacement, Long Displacement, and Ad-
dress Register PC Relative addressing modes may be used. The Short Displacement 15-bit data is sign
extended to form the PC relative displacement. The PC points to the next instruction when it is added to
the displacement. See Section A.10 for restrictions. Non-aware floating-point conditions set the SIOP flag
in the IER and the UNCC bit in the ER if the NAN bit is set. This action occurs before stacking the status
register when the specified non-aware floating-point condition is true.
MOTOROLA DSP96002 USER’S MANUAL A - 101

"cc" may specify the following conditions:

 Non-aware*

Mnemonic Condition Set UNCC
EQ - equal Z = 1 No
ERR - error UNCC v SNAN v OPERR v No

OVF v UNF v DZ = 1
GE - greater than or equal NAN v (N & ~Z) = 0 Yes
GL - greater or less than NAN v Z = 0 Yes
GLE - greater, less or equal NAN = 0 Yes
GT - greater than NAN v Z v N = 0 Yes
INF - infinity I = 1 Yes
LE - less than or equal NAN v ~(N v Z) = 0 Yes
LT - less than NAN v Z v ~N = 0 Yes
MI - minus N = 1 No
NE(Q) - not equal Z = 0 No
NGE - not(greater than or equal) NAN v (N & ~Z) = 1 Yes
NGL - not(greater or less than) NAN v Z = 1 Yes
NGLE - not(greater, less or equal)NAN = 1Yes
NGT - not greater than NAN v Z v N = 1 Yes
NINF - not infinity I = 0 Yes
NLE - not(less than or equal) NAN v ~(N v Z) = 1 Yes
NLT - not less than NAN v Z v ~N = 1 Yes
OR - ordered NAN = 0 No
PL - plus N = 0 No
UN - unordered NAN = 1 No

 Note: The operands for the ERR condition are taken from the ER register.
 * See description of UNcc bit in Section A.4.

CCR Condition Codes: Not affected.

ER Status Bits:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC -Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

IER Flags:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.
A - 102 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format:

1c cccc 0000 0000

31 14 13 0

OPTIONAL LONG DISPLACEMENT EXTENSION

0000 0011 0100 0000 00

1c cccc 0000 0000

31 14 13 0

OPTIONAL LONG DISPLACEMENT EXTENSION

0000 0011 0100 001R

1c cccc 0aaa aaaa

31 14 13 0

OPTIONAL LONG DISPLACEMENT EXTENSION

0000 0011 11aa aaaa aa

Instruction Format: FBScc Rn

Instruction Format: FBScc label

Instruction Format: FBScc label (short)
Instruction Fields:

 Rn - R0-R7

 Long Displacement - 32 bits

 Short Displacement - aaaaaaaaaaaaaaa (15 bits)

Mnemonic c c c c c Mnemonic c c c c c
GT 0 0 0 0 0 NGT 1 0 0 0 0
LT 0 0 0 0 1 NLT 1 0 0 0 1
GE 0 0 0 1 0 NGE 1 0 0 1 0
LE 0 0 0 1 1 NLE 1 0 0 1 1
GL 0 0 1 0 0 NGL 1 0 1 0 0
INF 0 0 1 0 1 NINF 1 0 1 0 1
GLE 0 0 1 1 0 NGLE 1 0 1 1 0
OR 0 0 1 1 1 UN 1 0 1 1 1
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
ERR 0 1 1 1 1

Timing: 6 + jx oscillator clock cycles

Memory: 1 + ea program words

MOTOROLA DSP96002 USER’S MANUAL A - 103

FCLR Clear Floating-Point Register FCLR

Operation:

+0 → D (parallel data bus move)

A - 104 DSP96002 US

31

OPTIONAL EFFECTIVE ADDRESS EX

DATA BUS MOVE FIELD
Assembler Syntax:

FCLR D (move syntax - see the MOVE instruc-
tion description.)

Description:

All 96 bits of the destination operand are cleared to zero.

Input Operand(s) Precision: DEP Floating-Point.

Output Operand Precision: DEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Always set.

N - Always cleared.

I - Always cleared.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Not affected.

NAN -Always cleared.

UNCC -Always cleared.

IER Flags: Not affected.

Instruction Format: FCLR D (move syntax - see the MOVE instruction description.)
ER’S MANUAL MOTOROLA

10 0000 uu11 0ddd

14 13 0

TENSION OR IMMEDIATE LONG DATA

 Instruction Fields:

 (u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 105

FCMP Compare Two FCMP
 Floating-Point Operands
ssembler Syntax:

MP S1,S2 (move syntax - see the MOVE in-
struction description.)
Operation:

S2 - S1 (parallel data bus move)

A

FC
Description:

Subtract the two operands as specified in the operation column above. No result is stored; however, the
condition codes are affected as described. This instruction differs from FSUB when S1=S2; in this case,
the result is always +0 and therefore, N is cleared. Note that this is true even if S1, S2 are infinity.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: n.a.

CCR Condition Codes:

(Note: Since there is no destination, there is no rounding and therefore the condition code bits are set as-
suming an infinite precision result)

C - Not affected.

V - Not affected.

Z - Set if source operands are equal. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if anyone of the operands is infinity. Cleared otherwise.

LR - Cleared if result is positive, zero or NaN (if cleared first, print accepted; see the FC-
MPG example). Not affected otherwise.

–
R - Cleared if result is a NaN. Not affected otherwise.

A - Cleared if result is a NaN. Cleared if result is negative and not zero. Not affected
otherwise.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 106 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FCMP S1,S2 (move syntax - see the MOVE instruction description.)

01 1sss uu01 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

S1 s s s

Dn n n n where nnn = 0-7

(u u)

S2 d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 107

FCMPG Graphics Compare FCMPG
 with Trivial Accept/Reject Flags
Assembler Syntax:

FCMPG S1,S2 (move syntax - see the MOVE in-
struction description.)
Operation:

S2 - S1 (parallel data bus move)

Description:

Subtract the two operands as specified in the operation column above. No result is stored; however, the
condition codes are affected as described. This instruction differs from FSUB when S1=S2; in this case,
the result is always +0 and therefore, N is cleared. Note that this is true even if S1, S2 are infinity.

FCMPG and FCMP differ primarily in the definition of the CCR condition code bits LR and R. These differ-
ences are particularly useful in performing clipping operations in graphics applications. In the code seg-

ment, the FCMP instruction tests the first point of a line, X0, against Xmin and sets LR accordingly; the FC-

MPG instruction tests the second point of a line, X1, against Xmin and sets –R depending on the condition

of LR. Note that the line segment will be trivially accepted if A is set (and R=1), whereas the line will be

trivially rejected if
–
R is cleared (and A=0). This choice of accept/reject conditions was selected to permit

the CCR to be initialized by a single ORI instruction.

ORI #$E0,CCR ;SET A,
–
R, LR – i. e.,

;assume line is initially

;accepted and not rejected.

MOVE X:(R0)+N0,D0.S Y:(R4)+,D1.S ;get X0, Xmin

FCMP D1, D0 X:(R0)-N0, D0.S ;X0-Xmin, get X1

FCMPG D1, D0 ;X1=Xmin

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: n.a.
A - 108 DSP96002 USER’S MANUAL MOTOROLA

CCR Condition Codes:

(Note: Since there is no destination, there is no rounding and therefore the condition codes are set assum-
ing an infinite precision result)

C - Set if result is a NaN. Set if result is negative and not zero. Cleared otherwise.

V - Not affected.

Z - Set if source operands are equal. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if anyone of the operands is infinity. Cleared otherwise.

LR - Always set (initialize for the next FCMP, FCMPG combination).

–
R - Cleared if result is a NaN. Cleared if result is negative and not zero and LR was set

(i. e., first point was rejected). Not affected otherwise.

A - Cleared if result is a NaN. Cleared if result is negative and not zero. Not affected
otherwise.

ER Status Bits:

IER Flags: Flags changed according to standard definition.

Instruction Format: FCMPG S1,S2 (move syntax - see the MOVE instruction description.)

31 14 13 0
01 1sss uu10 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
 Instruction Fields:

S1 s s s

Dn n n n where nnn = 0-7

(u u)

S2 d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 109

FCMPM Compare Magnitude FCMPM
of Two Floating-Point Operands

Assembler Syntax:

FCMPM S1,S2 (move syntax - see the MOVE in-
struction description.)
Operation:

S2 - S1 (parallel data bus move)

Description:

Subtract the absolute value (magnitude) of the two operands as specified in the operation column above.
No result is stored; however, the condition codes are affected as described. This instruction differs from
FSUB when S1=S2; in this case, the result is always +0 and therefore, N is cleared. Note that this is true
even if S1, S2 are infinity.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: n.a.

CCR Condition Codes:

 (Note: Since there is no destination, there is no rounding and therefore the condition code bits are set as-
suming an infiite precision result)

C - Not affected.

V - Not affected.

Z - Set if source operands are equal. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if anyone of the operands is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.
A - 110 DSP96002 USER’S MANUAL MOTOROLA

IER Flags: Flags changed according to standard definition.

Instruction Format: FCMPM S1,S2 (move syntax - see the MOVE instruction description.)

01 1sss uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

S1 s s s

Dn n n n where nnn = 0-7

S2 d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 111

FCOPYS.S Copy Sign FCOPYS.S

ssembler Syntax:

COPYS.S S,D (move syntax - see the MOVE in-
struction description.)
A

F

Operation:

Sign of S → D → ROUND(SP) → D

(parallel data bus move)
Description:

Copy the sign of the floating-point operand S to the floating-point operand D, round the resulting operand
D to single precision and store the result in the specified destination D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 112 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FCOPYS.S S,D (move syntax - see the MOVE instruction description.)

01 1sss uu11 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

S s s s

Dn n n n where nnn = 0-7

(u u)

D d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 113

FCOPYS.X Copy Sign FCOPYS.X

Operation:

Sign of S → D (parallel data bus move)

A

F

A - 114 DSP96002 US
ssembler Syntax:

COPYS.X S,D (move syntax - see the MOVE in-
struction description.)
Description:

Copy the sign of the floating-point operand S to the floating-point operand D. Since both S and D are single
extended precision operands, rounding is not performed.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
ER’S MANUAL MOTOROLA

Instruction Format: FCOPYS.X S,D (move syntax - see the MOVE instruction description.)

01 0sss uu11 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 115

FDEBUGcc Enter Debug Mode FDEBUGcc
 Conditionally
Assembler Syntax:

FDEBUGcc

Operation:

If cc, then enter debug mode.

Description:

If the specified floating-point condition is true, enter Debug mode and wait for OnCE commands. If the
specified condition is false, continue with the next instruction. Non-aware floating-point conditions set the
SIOP flag in the IER register and the UNCC bit in the ER register if the NAN bit is set.

 "cc" may specify the following conditions:

 Non-aware

Mnemonic Condition Set UNCC*
EQ - equal Z = 1 No
ERR - error UNCC v SNAN v OPERR v No

OVF v UNF v DZ = 1
GE - greater than or equal NAN v (N & ~Z) = 0 Yes
GL - greater or less than NAN v Z = 0 Yes
GLE - greater, less or equal NAN = 0 Yes
GT - greater than NAN v Z v N = 0 Yes
INF - infinity I = 1 Yes
LE - less than or equal NAN v ~(N v Z) = 0 Yes
LT - less than NAN v Z v ~N = 0 Yes
MI - minus N = 1 No
NE(Q) - not equal Z = 0 No
NGE - not(greater than or equal) NAN v (N & ~Z) = 1 Yes
NGL - not(greater or less than) NAN v Z = 1 Yes
NGLE - not(greater, less or equal) NAN = 1 Yes
NGT - not greater than NAN v Z v N = 1 Yes
NINF - not infinity I = 0 Yes
NLE - not(less than or equal) NAN v ~(N v Z) = 1 Yes
NLT - not less than NAN v Z v ~N = 1 Yes
OR - ordered NAN = 0 No
PL - plus N = 0 No
UN - unordered NAN = 1 No

Note: The operands for the ERR condition are taken from the ER register.
 * See description of the UNcc bit in Section A.4.

CCR Condition Codes: Not affected.
A - 116 DSP96002 USER’S MANUAL MOTOROLA

Once

 is a trademark of Motorola Inc.

ER Status Bits:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

IER Flags:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise. Instruction Format:

Instruction Fields:
Instruction Format: FDEBUGcc

0c cccc 1111 1111

31 14 13 0

0000 0000 0000 0000 01
Mnemonic c c c c c Mnemonic c c c c c
GT 0 0 0 0 0 NGT 1 0 0 0 0
LT 0 0 0 0 1 NLT 1 0 0 0 1
GE 0 0 0 1 0 NGE 1 0 0 1 0
LE 0 0 0 1 1 NLE 1 0 0 1 1
GL 0 0 1 0 0 NGL 1 0 1 0 0
INF 0 0 1 0 1 NINF 1 0 1 0 1
GLE 0 0 1 1 0 NGLE 1 0 1 1 0
OR 0 0 1 1 1 UN 1 0 1 1 1
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
ERR 0 1 1 1 1

Timing: 4 oscillator clock cycles
Memory: 1 program word
MOTOROLA DSP96002 USER’S MANUAL A - 117

FGETMAN Extract the Mantissa FGETMAN

Assembler Syntax:

FGETMAN S,D (move syntax - see the MOVE in-
struction description.)

Operation:

Normalized mantissa of S → D

 (parallel data bus move)
Description:

Extract the mantissa and sign of the floating-point operand S, normalizes the mantissa, forces the expo-
nent to "ebias" so the result is in the range 1-2, and stores the result as a floating-point value in the spec-
ified destination D regardless of whether the mantissa is denormalized or not.

As an example of the use of FGETMAN, GETEXP, and FSCALE; consider decomposing a floating-point
number into its mantissa and unbiased exponent and then recreating the original floating-point number.

FGETMAN D0, D1 ;extract normalized mantissa

GETEXP D0,D2 ;extract unbiased exponent

MOVE D2.L, D2.H ;move unbiased exponent

FSCALE.X D2.H, D1 ;scale original mantissa

Input (SEP) Output (SEP)

-infinity NaN, signals OPERR

negative, non-zero signed mantissa

-0.0 -0.0

+0.0 +0.0

positive, non-zero signed mantissa

+infinity NaN, signals OPERR

NaN NaN

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.
A - 118 DSP96002 USER’S MANUAL MOTOROLA

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Always cleared.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Set if the source operand is infinity. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: FGETMAN S,D (move syntax - see the MOVE instruction description.)
01 1sss uu10 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 119

FINT Extract the Integer Part FINT

Operation:

S → ROUND TO INTEGER → D

 (parallel data bus move)
A - 120 DSP9600
 Assembler Syntax:

FINT S,D (move syntax - see the MOVE instruction de-
scription.)
 Description:

Round the floating-point source operand S to an integer value using the current rounding mode specified
by bits R1-R0 in the IER register, and store the result as a floating-point number in the specified destination
D. The rounding precision is always SEP. For example: if the rounding is to +∞, then 110.50 rounds to
111.00; however if the rounding is to 0, -∞, or even, then 110.50 rounds to 110.0.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Fields:
2 USER’S MANUAL MOTOROLA

Instruction Format: FINT S,D (move syntax - see the MOVE instruction description.)

01 1sss uu11 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
(u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 121

FJcc Floating-Point Jump Conditionally FJcc

 Assembler Syntax:

FJcc label (short)

FJcc ea
Operation:

If cc, then xx → PC
 else PC+1 → PC

If cc, then ea → PC
 else PC+1 → PC

Description:
If the specified floating-point condition is true, program execution then continues at a location specified by
an effective address in the instruction. If the specified condition is false, the PC is incremented and the
effective address is ignored. However, the address register specified in the effective address field is al-
ways updated independently of the condition. All memory alterable addressing modes may be used for
the effective address. A Fast Short Jump addressing mode may also be used. The 15-bit data is sign
extended to form the effective address. See Section A.10 for restrictions. Non-aware floating-point con-
ditions set the SIOP flag in the IER register and the UNCC bit in the ER register if the NAN bit is set.

 "cc" may specify the following conditions:

 Non-aware

Mnemonic Condition Set UNCC*
EQ - equal Z = 1 No
ERR - error UNCC v SNAN v OPERR v No

OVF v UNF v DZ = 1
GE - greater than or equal NAN v (N & ~Z) = 0 Yes
GL - greater or less than NAN v Z = 0 Yes
GLE - greater, less or equal NAN = 0 Yes
GT - greater than NAN v Z v N = 0 Yes
INF - infinity I = 1 Yes
LE - less than or equal NAN v ~(N v Z) = 0 Yes
LT - less than NAN v Z v ~N = 0 Yes
MI - minus N = 1 No
NE(Q) - not equal Z = 0 No
NGE - not(greater than or equal) NAN v (N & ~Z) = 1 Yes
NGL - not(greater or less than) NAN v Z = 1 Yes
NGLE - not(greater, less or equal) NAN = 1 Yes
NGT - not greater than NAN v Z v N = 1 Yes
NINF - not infinity I = 0 Yes
NLE - not(less than or equal) NAN v ~(N v Z) = 1 Yes
NLT - not less than NAN v Z v ~N = 1 Yes
OR - ordered NAN = 0 No
PL - plus N = 0 No
UN - unordered NAN = 1 No

 Note: The operands for the ERR condition are taken from the ER register.
 * See the description of the UNcc bit in Section A.4.
A - 122 DSP96002 USER’S MANUAL MOTOROLA

CCR Condition Codes: Not affected.

ER Status Bits:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

IER Flags:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.
MOTOROLA DSP96002 USER’S MANUAL A - 123

1c cccc 1aaa aaaa

31 14 13 0

0000 0011 10aa aaaa aa

1c cccc 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0000 MMMR

Instruction Format: FJcc ea

Instruction Format: FJcc label (short)

 Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

 Short Jump Address - aaaaaaaaaaaaaaa (15 bits)
Mnemonic c c c c c Mnemonic c c c c c
GT 0 0 0 0 0 NGT 1 0 0 0 0
LT 0 0 0 0 1 NLT 1 0 0 0 1
GE 0 0 0 1 0 NGE 1 0 0 1 0
LE 0 0 0 1 1 NLE 1 0 0 1 1
GL 0 0 1 0 0 NGL 1 0 1 0 0
INF 0 0 1 0 1 NINF 1 0 1 0 1
GLE 0 0 1 1 0 NGLE 1 0 1 1 0
OR 0 0 1 1 1 UN 1 0 1 1 1
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
ERR 0 1 1 1 1

Timing: 6 + jx oscillator clock cycles
Memory: 1 + ea program words
A - 124 DSP96002 USER’S MANUAL MOTOROLA

FJScc Floating-Point Jump To Subroutine FJScc
 Conditionally
Assembler Syntax:

FJScc label (short)

Operation:

If cc, then PC → SSH; SR → SSL; xx → PC
 else PC+1 → PC

If cc, then PC → SSH; SR → SSL; ea → PC
 else PC+1 → PC
Description:

If the specified floating-point condition is true, the address of the instruction immediately following the
FJScc instruction and the status register are pushed onto the stack. Program execution then continues at
the effective address in program memory. If the specified condition is false, the PC is incremented and
any extension word is ignored. However, the address register specified in the effective address field is
always updated independently of the condition. All memory alterable addressing modes may be used for
the effective address. A fast Short Jump addressing mode may also be used. The 15-bit data is sign ex-
tended to form the effective address. See Section A.10 for restrictions. Non-aware floating-point condi-
tions set the SIOP flag in the IER and the UNCC bit in the ER if the NAN bit is set. This action occurs before
stacking the status register when the specified non-aware floating-point condition is true.

"cc" may specify the following conditions:

 Non-aware

Mnemonic Condition Set UNCC*
EQ - equal Z = 1 No
ERR - error UNCC v SNAN v OPERR v No

OVF v UNF v DZ = 1
GE - greater than or equal NAN v (N & ~Z) = 0 Yes
GL - greater or less than NAN v Z = 0 Yes
GLE - greater, less or equal NAN = 0 Yes
GT - greater than NAN v Z v N = 0 Yes
INF - infinity I = 1 Yes
LE - less than or equal NAN v ~(N v Z) = 0 Yes
LT - less than NAN v Z v ~N = 0 Yes
MI - minus N = 1 No
NE(Q) - not equal Z = 0 No
NGE - not(greater than or equal) NAN v (N & ~Z) = 1 Yes
NGL - not(greater or less than) NAN v Z = 1 Yes
NGLE - not(greater, less or equal) NAN = 1 Yes
NGT - not greater than NAN v Z v N = 1 Yes
NINF - not infinity I = 0 Yes
NLE - not(less than or equal) NAN v ~(N v Z) = 1 Yes
NLT - not less than NAN v Z v ~N = 1 Yes
OR - ordered NAN = 0 No
PL - plus N = 0 No
UN - unordered NAN = 1 No

 Note: The operands for the ERR condition are taken from the ER register.
 * See the description of the UNcc bit in Section A.4.

CCR Condition Codes: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 125

ER Status Bits:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC -Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

IER Flags:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP -Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

Instruction Fields:
A - 126 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FJScc label (short)

1c cccc 1aaa aaaa

31 14 13 0

0000 0011 11aa aaaa aa

1c cccc 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0100 MMMR

Instruction Format: FJScc ea

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

 Short Jump Address - aaaaaaaaaaaaaaa (15 bits)
Mnemonic c c c c c Mnemonic c c c c c
GT 0 0 0 0 0 NGT 1 0 0 0 0
LT 0 0 0 0 1 NLT 1 0 0 0 1
GE 0 0 0 1 0 NGE 1 0 0 1 0
LE 0 0 0 1 1 NLE 1 0 0 1 1
GL 0 0 1 0 0 NGL 1 0 1 0 0
INF 0 0 1 0 1 NINF 1 0 1 0 1
GLE 0 0 1 1 0 NGLE 1 0 1 1 0
OR 0 0 1 1 1 UN 1 0 1 1 1
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
ERR 0 1 1 1 1

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 127

FLOAT.S Integer to Floating-Point FLOAT.S
 Conversion
Assembler Syntax:

FLOAT.S D (move syntax - see the MOVE in-
struction description.)

Operation:

D.L → CONVERT TO FP → ROUND(SP) → D

 (parallel data bus move)
Description:

Convert the 2’s complement 32-bit integer located in the low portion of the operand D into a floating-point
operand, round to single precision and store the result in the operand D.

Input Operand(s) Precision: 32-bit 2’s complement integer.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Always cleared.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Always cleared.

NAN -Always cleared.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 128 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FLOAT.S D (move syntax - see the MOVE instruction description.)

10 0100 uu11 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 129

FLOAT.X Integer to Floating-Point FLOAT.X
 Conversion
A

 Assembler Syntax:

FLOAT.X D (move syntax - see the MOVE in-
struction description.)
Operation:

D.L → CONVERT TO FP → D

 (parallel data bus move)
 Description:

Convert the 2’s complement 32-bit integer located in the low portion of the operand D into a floating-point
operand and store the result in the operand D. The rounding precision is SEP.

Input Operand(s) Precision: 32-bit 2’s complement integer.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Always cleared.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Always cleared.

NAN -Always cleared.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
 - 130 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FLOAT.X D (move syntax - see the MOVE instruction description.)

10 0100 uu10 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 131

FLOATU.S Unsigned Integer to FLOATU.S
 Floating-Point Conversion
 Assembler Syntax:

FLOATU.S D

(move syntax - see the MOVE instruction de-
scription.)
Operation:

D.L → CONVERT TO FP → ROUND(SP) → D

 (parallel data bus move)
Description:

Convert the unsigned 32-bit integer located in the low portion of the operand D into a floating-point oper-
and, round to single precision and store the result in the operand D.

Input Operand(s) Precision: 32-bit unsigned integer.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Always cleared.

I - Always cleared.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Always cleared.

NAN -Always cleared.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 132 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FLOATU.S D move syntax - see the MOVE instruction description.)

10 0101 uu11 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

 (u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words

MOTOROLA DSP96002 USER’S MANUAL A - 133

FLOATU.X Unsigned Integer to FLOATU.X
 Floating-Point Conversion
A

 Assembler Syntax:

FLOATU.X D (move syntax - see the MOVE in-
struction description.)

I

3

Operation:

D.L → CONVERT TO FP → D

 (parallel data bus move)
Description:

Convert the unsigned 32-bit integer located in the low portion of the operand D into a floating-point operand
and store the result in the operand D. The rounding precision is SEP.

Input Operand(s) Precision: 32-bit unsigned integer.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:
C - Not affected.
V - Not affected.
Z - Set if result is zero. Cleared otherwise.
N - Always cleared.
I - Always cleared.
LR - Not affected.
–
R - Not affected.

A - Not affected.

ER Status Bits:
INX -Always cleared.
DZ -Always cleared.
UNF -Always cleared.
OVF -Always cleared.
OPERR-Always cleared.
SNAN -Always cleared.
NAN -Always cleared.
UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
 - 134 DSP96002 USER’S MANUAL MOTOROLA

nstruction Format: FLOATU.X D (move syntax - see the MOVE instruction description.)

10 0101 uu10 0ddd

1 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

Instruction Fields:
(u u)

D ddd
Dnnnn where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 135

FLOOR Extract the Integer Part FLOOR

A

 Assembler Syntax:

FLOOR S,D (move syntax - see the MOVE in-
struction description.)
Operation:

S→ ROUND TO INTEGER → D

 (parallel data bus move)
Description:

Round the floating-point source operand S to an integer value using the round to minus infinity mode and
store the result as a floating-point number in the specified destination D. The rounding precision is always
SEP. FLOOR is equivalent to FINT with R1, R0 in the IER set to select minus infinity; however, the round-
ing mode does not need to be saved, changed, and recalled. This is particularly useful when using C since
FLOOR is a standard C function.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.
 - 136 DSP96002 USER’S MANUAL MOTOROLA

IER Flags: Flags changed according to standard definition.

Instruction Format: FLOOR S,D (move syntax - see the MOVE instruction description.)

01 0sss uu11 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 137

Operation:

FMPY//FADD.S Floating-Point FMPY//FADD.S
 Multiply and Add

 Assembler Syntax:
A

FMPY S1,S2,D1 FADD.S S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

FMPY S2,S1,D1 FADD.S S3,D2

(move syntax - see the MOVE instruction de-
scription.)
S1 * S2 → ROUND(MP) → D1

 (parallel data bus move)

S3 + D2 → ROUND(SP) → D2
Description:

Multiply the two operands S1 and S2, round to the precision indicated by the MP mode bit and store the
result in the specified destination register D1. Simultaneously, add the two operands S3 and D2, round to
single precision and store the result in the destination operand D2. Typically, if the result of the multiplica-
tion will be used immediately following a data ALU instruction such as FADD (i.e., equivalent to an FMAC),
the maximum precision (MP=1) will be programmed. However, if the product is to be stored, then single
precision (MP=0) rounding will be used.

Input Operand(s) Precision: SEP Floating-Point.

Addition Output Operand Precision: SP Floating-Point.

Multiplication Output Operand Precision: as indicated by MP.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Set if result of the addition is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX - Set if the result of the addition or the multiplication is inexact. Cleared otherwise.

DZ - Always cleared.

UNF - Set if the result of the addition or the multiplication underflows. Cleared otherwise.

OVF - Set if the result of the addition or the multiplication overflows. Cleared otherwise.

OPERR- Set if one of the multiply operands is infinity and the other is zero. Set if the addition
operands are opposite-signed infinities. Cleared otherwise.
 - 138 DSP96002 USER’S MANUAL MOTOROLA

SNAN -Set if anyone of the source operands is a signaling NaN. Cleared otherwise.

NAN -Set if result of the addition is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: FMPY S1,S2,D1 FADD.S S3,D2 (move syntax - see the MOVE instruction de-
scription.)

Instruction Fields:

31 14 13 0
00 1sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 Q QQ Q

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 139

 FMPY//FADD.X Floating-Point FMPY//FADD.X
 Multiply and Add
 Assembler Syntax:

FMPY S1,S2,D1 FADD.X S3,D2

(move syntax - see the MOVE instruction descrip-
tion.)

FMPY S2,S1,D1 FADD.X S3,D2

(move syntax - see the MOVE instruction descrip-
tion.)
Operation:

S1 * S2 → ROUND(SEP) → D1

 (parallel data bus move)

S3 + D2 → ROUND(SEP) → D2
Description:

Multiply the two operands S1 and S2, round to single extended precision and store the result in the spec-
ified destination register D1. Simultaneously, add the two operands S3 and D2, round to single extended
precision and store the result in the destination operand D2.

Input Operand(s) Precision: SEP Floating-Point.

Addition Output Operand Precision: SEP Floating-Point.

Multiplication Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Set if result of the addition is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if the result of the addition or the multiplication is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if the result of the addition or the multiplication underflows. Cleared otherwise.

OVF -Set if the result of the addition or the multiplication overflows. Cleared otherwise.

OPERR-Set if one of the multiply operands is infinity and the other is zero. Set if the addition
operands are opposite-signed infinities. Cleared otherwise.

SNAN -Set if anyone of the source operands is a signaling NaN. Cleared otherwise.

NAN -Set if result of the addition is a NaN. Cleared otherwise.

UNCC -Always cleared.
A - 140 DSP96002 USER’S MANUAL MOTOROLA

IER Flags: Flags changed according to standard definition.

Instruction Format: FMPY S1,S2,D1 FADD.X S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

 FMPY S2,S1,D1 FADD.X S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

 Instruction Fields:

D1 D D

31 14 13 0
00 0sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

S1*S2 Q QQ Q
D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 141

FMPY//FADDSUB.S FMPY//FADDSUB.S
Floating-Point Multiply, Add, and Subtract
Operation:

S1 * S2 → ROUND(MP) → D1

 (parallel data bus move)

D3 + D2 → ROUND(SP) → D2

D3 - D2 → ROUND(SP) → D3

Assembler Syntax:

FMPY S1,S2,D1 FADDSUB.S D3,D2

(move syntax - see the MOVE instruction descrip-
tion.)

FMPY S2,S1,D1 FADDSUB.S D3,D2

(move syntax - see the MOVE instruction descrip-
tion.)
Description:

Multiply the two operands S1 and S2, round to the precision indicated by the MP mode bit and store the
result in the specified destination register D1. Simultaneously, add the two operands D2 and D3, subtract
D2 from D3, round both results to single precision and store the result of the addition in register D2 and
of the subtraction in register D3. Typically, if the result of the multiplication will be used immediately follow-
ing a data ALU instruction such as FADD (i.e., equivalent to an FMAC), the maximum precision (MP=1) will
be programmed. However, if the product is to be stored, then single precision (MP=0) rounding will be used.
For the special case of |s|=|D|, the result can be +0 or -0; the sign of the resulting zero will be the sign of
the input operand in D.

Input Operand(s) Precision: SEP Floating-Point.

Addition Output Operand Precision: SP Floating-Point.

Subtraction Output Operand Precision: SP Floating-Point.

Multiplication Output Operand Precision: as indicated by MP.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Set if result of the addition is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 142 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Set if the result of the addition, subtraction or multiplication is inexact. Cleared oth-
erwise.

DZ -Always cleared.

UNF -Set if the result of the addition, subtraction or multiplication underflows. Cleared oth-
erwise.

OVF -Set if the result of the addition, subtraction or multiplication overflows. Cleared oth-
erwise.

OPERR-Set if one of the multiply operands is infinity and the other is zero. Set if the addition
operands are opposite-signed infinities. Set if the subtract operands are like-signed
infinities. Cleared otherwise.

SNAN -Set if anyone of the source operands is a signaling NaN. Cleared otherwise.

NAN -Set if result of the addition is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

31 14 13 0
10 1sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Format:

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7
MOTOROLA DSP96002 USER

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words

S1*S2 Q QQ Q
D0*D4 0 0 0 0

D4*D4 0 0 0 1

D4*D5 0 0 1 0

D4*D6 0 0 1 1

D5*D6 0 1 0 0

D4*D7 0 1 0 1

D5*D7 0 1 1 0

D6*D7 0 1 1 1

D4*D8 1 0 0 0

D5*D8 1 0 0 1

D6*D8 1 0 1 0

D7*D8 1 0 1 1

D4*D9 1 1 0 0

D5*D9 1 1 0 1

D6*D9 1 1 1 0

D7*D9 1 1 1 1
’S MANUAL A - 143

FMPY//FADDSUB.X FMPY//FADDSUB.X
 Floating-Point Multiply, Add, and Subtract
 Assembler Syntax:

FMPY S1,S2,D1 FADDSUB.X D3,D2

(move syntax - see the MOVE instruction de-
scription.)

FMPY S2,S1,D1 FADDSUB.X D3,D2

(move syntax - see the MOVE instruction de-
scription.)
Operation:

S1 * S2 → ROUND(SEP) → D1

 (parallel data bus move)

D3 + D2 → ROUND(SEP) → D2

D3 - D2 → ROUND(SEP) → D3
Description:

Multiply the two operands S1 and S2, round to single extended precision and store the result in the spec-
ified destination register D1. Simultaneously, add the two operands D2 and D3, subtract D2 from D3,
round both results to single extended precision and store the result of the addition in register D2 and of the
subtraction in register D3. Typically, if the result of the multiplication will be used immediately following
FADD (i.e., equivalent to an FMAC), the maximum precision (MP=1) will be programmed. For the special
case of |s|=|D|, the result can be +0 or -0; the sign of the resulting zero will be the sign of the input operand
in D.

Input Operand(s) Precision: SEP Floating-Point.

Addition Output Operand Precision: SEP Floating-Point.

Subtraction Output Operand Precision: SEP Floating-Point.

Multiplication Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Set if result of the addition is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 144 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX - Set if the result of the addition, subtraction or multiplication is inexact. Cleared oth-
erwise.

DZ - Always cleared.

UNF - Set if the result of the addition, subtraction or multiplication underflows. Cleared
otherwise.

OVF - Set if the result of the addition, subtraction or multiplication overflows. Cleared oth-
erwise.

OPERR- Set if one of the multiply operands is infinity and the other is zero. Set if the addition
operands are opposite-signed infinities. Set if the subtract operands are like-
signed infinities. Cleared otherwise.

SNAN - Set if anyone of the source operands is a signaling NaN. Cleared otherwise.

NAN - Set if result of the addition is a NaN. Cleared otherwise.

UNCC - Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: FMPY S1,S2,D1 FADDSUB.X D3,D2 (move syntax - see the MOVE instruction
10 0sss ddQQ QQDD

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

description.)

FMPY S2,S1,D1 FADDSUB.X D3,D2 (move syntax - see the MOVE instruction
description.)
Instruction Fields:

D1 D D
Dn n n where nn = 0-3

D2 d d
Dn n n where nn = 0-3

S3 s s s
 Dn n n n where nnn = 0-7

MOTOROLA DSP96002 USER

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
S1*S2 Q QQ Q
D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1
’S MANUAL A - 145

FMPY//FSUB.S Floating-Point FMPY//FSUB.S
 Multiply and Subtract
 Assembler Syntax:

FMPY S1,S2,D1 FSUB.S S3,D2
(move syntax - see the MOVE instruction descrip-
tion.)

FMPY S2,S1,D1 FSUB.S S3,D2

(move syntax - see the MOVE instruction descrip-
tion.)
Operation:

S1 * S2 → ROUND(MP) → D1

 (parallel data bus move)

D2 - S3 → ROUND(SP) → D2
Description:

Multiply the two operands S1 and S2, round to the precision indicated by the MP mode bit and store the
result in the specified destination register D1. Simultaneously, subtract S3 from D2, round to single pre-
cision and store the result in the destination operand D2. Typically, if the result of the multiplication will be
used immediately following FADD (i.e., equivalent to an FMAC), the maximum precision (MP=1) will be
programmed. For the special case of |s|=|D|, the result can be +0 or -0; the sign of the resulting zero will
be the sign of the input operand in D.

Input Operand(s) Precision: SEP Floating-Point.

Subtraction Output Operand Precision: SP Floating-Point.

Multiplication Output Operand Precision: as indicated by MP.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result of the subtraction is zero. Cleared otherwise.

N - Set if result of the subtraction is negative. Cleared otherwise.

I - Set if result of the subtraction is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if the result of the subtraction or multiplication is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if the result of the subtraction or multiplication underflows. Cleared otherwise.

OVF -Set if the result of the subtraction or multiplication overflows. Cleared otherwise.
A - 146 DSP96002 USER’S MANUAL MOTOROLA

OPERR-Set if one of the multiply operands is infinity and the other is zero. Set if the subtract
operands are like-signed infinities. Cleared otherwise.

SNAN -Set if anyone of the source operands is a signaling NaN. Cleared otherwise.

NAN -Set if result of the subtraction is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
01 1sss ddQQ QQDD

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

D1 D D
Dn n n where nn = 0-3

D2 d d
Dn n n where nn = 0-3

S3 s s s
 Dn n n n where nnn = 0-7

 S1*S2 Q QQ Q
D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
Instruction Format: FMPY S1,S2,D1 FSUB.S S3,D2 (move syntax - see the MOVE instruction de-
scription.)
MOTOROLA DSP96002 USER’S MANUAL A - 147

FMPY S2,S1,D1 FSUB.S S3,D2 (move syntax - see the MOVE instruction de-
scription.)
A - 148 DSP96002 USER’S MANUAL MOTOROLA

MOTOROLA DSP96002 USER’S MANUAL A - 149

FMPY//FSUB.X Floating-Point FMPY//FSUB.X
 Multiply and Subtract
 Assembler Syntax:

FMPY S1,S2,D1 FSUB.X S3,D2
(move syntax - see the MOVE instruction descrip-
tion.)

FMPY S2,S1,D1 FSUB.X S3,D2
(move syntax - see the MOVE instruction descrip-
tion.)
Operation:

S1 * S2 → ROUND(SEP) → D1
 (parallel data bus move)

D2 - S3 → ROUND(SEP) → D2
Description:

Multiply the two operands S1 and S2, round to single extended precision and store the result in the spec-
ified destination register D1. Simultaneously, subtract S3 from D2, round to single extended precision and
store the result in the destination operand D2. For the special case of |s|=|D|, the result can be +0 or -0; the
sign of the resulting zero will be the sign of the input operand in D.

Input Operand(s) Precision: SEP Floating-Point.

Subtraction Output Operand Precision: SEP Floating-Point.

Multiplication Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result of the subtraction is zero. Cleared otherwise.

N - Set if result of the subtraction is negative. Cleared otherwise.

I - Set if result of the subtraction is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if the result of the subtraction or multiplication is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if the result of the subtraction or multiplication underflows. Cleared otherwise.

OVF -Set if the result of the subtraction or multiplication overflows. Cleared otherwise.

OPERR-Set if one of the multiply operands is infinity and the other is zero. Set if the subtract
operands are like-signed infinities. Cleared otherwise.

SNAN -Set if anyone of the source operands is a signaling NaN. Cleared otherwise.
A - 150 DSP96002 USER’S MANUAL MOTOROLA

NAN -Set if result of the subtraction is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: FMPY S1,S2,D1 FSUB.X S3,D2 (move syntax - see the MOVE instruction de-
scription.)
FMPY S2,S1,D1 FSUB.X S3,D2 (move syntax - see the MOVE instruction de-
scription.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3
31 14 13 0
01 0sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

S1*S2 Q QQ Q
D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 151

FMPY.S Floating-Point Multiply FMPY.S

 Assembler Syntax:

FMPY.S S1,S2,D
(move syntax - see the MOVE instruction de-
scription.)

FMPY.S S2,S1,D
(move syntax - see the MOVE instruction de-
scription.)
Operation:

S1 * S2 → ROUND(SP) → D
 (parallel data bus move)

S1 * S2 → ROUND(SP) → D
 (parallel data bus move)
 Description:

Multiply the two specified operands S1 and S2, round to single precision and store the result in the desti-
nation operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Set if one operand is infinity and the other zero. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 152 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FMPY.S S1,S2,D (move syntax - see the MOVE instruction description.)

11 1sss SSS1 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

11 0sss 11S1 0ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

31 14 13 0
Instruction Format: FMPY.S S1,S2(8,9),D (move syntax - see the MOVE instruction description.)
Instruction Fields:

S1 s s s

Dn n n n where nnn = 0-7

S2 S S S

 Dn n n n where nnn = 0-7

S2 S

D8 0

D9 1

D d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 153

FMPY.X Floating-Point Multiply FMPY.X

 Assembler Syntax:

FMPY.X S1,S2,D
(move syntax - see the MOVE instruction descrip-
tion.)

FMPY.X S2,S1,D
(move syntax - see the MOVE instruction descrip-
tion.)
Operation:

S1 * S2 → ROUND(SEP) → D
 (parallel data bus move)

S1 * S2 → ROUND(SEP) → D
 (parallel data bus move)
Description:

Multiply the two specified operands S1 and S2, round to single extended precision and store the result in
the destination operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Set if one operand is infinity and the other zero. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 154 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FMPY.X S1,S2,D (move syntax - see the MOVE instruction description.)

11 1sss SSS0 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

31 14 13 0

Instruction Fields:

S1 s s s

Dn n n n where nnn = 0-7

S2 S S S

 Dn n n n where nnn = 0-7

S2 s

D8 0

D9 1

Instruction Format: FMPY.X S1,S2(8,9),D (move syntax - see the MOVE instruction description.)

11 0sss 11s0 0ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

S1 s s s

Dn n n n where nnn = 0-7

S2 S S S

 Dn n n n where nnn = 0-7

S2 S

D8 0

D9 1

D d d d

 Dn n n n where nnn = 0-7

D d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 155

FNEG.S Negate FNEG.S

 Assembler Syntax:

FNEG.S D
(move syntax - see the MOVE instruction
description.)
Operation:

0 - D → ROUND(SP) → D
(parallel data bus move)
Description:

Subtract the destination operand D from zero, round to single precision and store the result in the destina-
tion operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 156 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FNEG.S D (move syntax - see the MOVE instruction description.)

10 0001 uu01 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 157

 FNEG.X Negate FNEG.X

Assembler Syntax:

FNEG.X D
(move syntax - see the MOVE instruction descrip-
tion.)
Operation:

0 - D → D (parallel data bus move)

Description:

Subtract the destination operand D from zero and store the result in the destination operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:
C - Not affected.
V - Not affected.
Z - Set if result is zero. Cleared otherwise.
N - Set if result is negative. Cleared otherwise.
I - Set if result is infinity. Cleared otherwise.
LR - Not affected.
–
R - Not affected.

A - Not affected.

ER Status Bits:
INX -Always cleared.
DZ -Always cleared.
UNF -Always cleared.
OVF -Always cleared.
OPERR-Always cleared.
SNAN -Set if operand is a signaling NaN. Cleared otherwise.
NAN -Set if result is a NaN. Cleared otherwise.
UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 158 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FNEG.X D (move syntax - see the MOVE instruction description.)

10 0001 uu00 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

Instruction Fields:
(u u)

D d d d
Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles
Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 159

FSCALE.S Scale FSCALE.S
 a Floating-Point Operand
 Assembler Syntax:

FSCALE.S S,D
(move syntax - see the MOVE instruction description.)

FSCALE.S #byte,D
Operation:

 2S.H * D → ROUND(SP) → D
 (parallel data bus move)

 2nn * D → ROUND(SP) → D
Description:

Scale the destination operand D according to the scale factor contained in the 11 LSBs of the high portion
of the source register S, round to single precision and store the result in the destination operand D. An 8-
bit Immediate Short scaling factor, sign-extended to 11 bits, may also be used. The scale factor is a signed
2’s complement 11-bit integer.

As an example of the use of FGETMAN, GETEXP, and FSCALE; consider decomposing a floating-point
number into its mantissa and unbiased exponent and then recreating the original floating-point number.

FGETMAN D0, D1 ;extract normalized mantissa

GETEXP D0,D2 ;extract unbiased exponent

MOVE D2.L, D2.H ;move unbiased exponent

FSCALE.S D2.H, D1 ;scale original mantissa

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 160 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
Instruction Format: FSCALE.S S,D (move syntax - see the MOVE instruction description.)

01 0sss uu10 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

11 1nnn nnnn nddd

31 14 13 0

0000 0000 0000 0000 10

Instruction Format: FSCALE.S #byte,D
Instruction Fields:

 Immediate Short Data - nnnnnnnn (8 bits)

 (u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn.H n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles (2 + da oscillator clock cycles for FSCALE.S #byte,D)
Memory: 1 + mv program words (1 program word for FSCALE.S #byte,D)
MOTOROLA DSP96002 USER’S MANUAL A - 161

FSCALE.X Scale FSCALE.X
a Floating-Point Operand
 Assembler Syntax:

FSCALE.X S,D

(move syntax - see the MOVE instruction description.)

FSCALE.X #byte,D
Operation:

 2S.H * D → ROUND(SEP) → D

 (parallel data bus move)

 2nn * D → ROUND(SEP) → D
Description:

Scale the destination operand D according to the scale factor contained in the 11 LSBs of the high portion
of the source register S, round to single extended precision and store the result in the destination operand
D. An 8-bit Immediate Short scaling factor, sign-extended to 11 bits, may also be used. The scale factor
is a signed 2’s complement 11-bit integer.

As an example of the use of FGETMAN, GETEXP, and FSCALE; consider decomposing a floating-point
number into its mantissa and unbiased exponent and then recreating the original floating-point number.

FGETMAN D0, D1 ;extract normalized mantissa

GETEXP D0,D2 ;extract unbiased exponent

MOVE D2.L, D2.H ;move unbiased exponent

FSCALE.S D2.H, D1 ;scale original mantissa

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 162 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.
Instruction Format: FSCALE.X S,D (move syntax - see the MOVE instruction description.)

01 0sss uu10 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

11 0nnn nnnn nddd

31 14 13 0

0000 0000 0000 0000 10

Instruction Format:FSCALE.X #byte,D
IER Flags: Flags changed according to standard definition.

Instruction Fields:

 Immediate Short Data - nnnnnnnn (8 bits)

 (u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn.H n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles (2 + da oscillator clock cycles for FSCALE.X #byte,D)
Memory: 1 + mv program words (1 program word for FSCALE.X #byte,D)
MOTOROLA DSP96002 USER’S MANUAL A - 163

FSEEDD Reciprocal Approximation FSEEDD

Assembler Syntax:

FSEEDD S,D
Operation:

Approximation(1/S) → D

Description:

Take the contents of the specified source operand S, determine an approximation to 1.0/S, and store the
result in the destination operand D. The 9 MSBs of the destination significand are determined by using a
lookup ROM. The remaining bits of the significand are zeroed. This instruction is useful for initializing
floating-point divide algorithms.

The table below describes the operation of the FSEEDD instruction:

Source Operand Result

 SNaN or QNaN QNaN

+/- zero +/- infinity

+/- denormalized normalized, then FSEEDD approximation

+/- normalized FSEEDD approximation

+/- infinity +/- zero

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 164 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Always cleared.

SNAN -Set if the source operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: FSEEDD S,D
00 0sss 1111 1ddd

31 14 13 0

0000 0000 0000 0000 10
Instruction Fields:

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + da oscillator clock cycles

Memory: 1 program words
MOTOROLA DSP96002 USER’S MANUAL A - 165

FSEEDR Square Root FSEEDR
Reciprocal Approximation
Assembler Syntax:

FSEEDR S,D
Operation:

Approximation(1/SQRT(S)) → D

Description:
Take the contents of the specified source operand S, determine an approximation to sqrt(1.0/S), and store
the result in the destination operand D. The 9 MSBs of the destination significand are determined by using
a lookup ROM. The remaining bits of the significand are zeroed. This instruction is useful for initializing
floating-point square root algorithms.

The table below describes the operation of the FSEEDR instruction:

Source Operand Result

SNaN or QNaN QNaN

less than zero QNaN

+/- zero +/- zero

+ denormalized normalized, then FSEEDR approximation

+ normalized FSEEDR approximation

+ infinity + infinity

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 166 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Set if the source operand is less than zero. Cleared otherwise.

SNAN -Set if the source operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: FSEEDR S,D
31 14 13 0
00 0sss 1111 0ddd0000 0000 0000 0000 10
Instruction Fields:

 D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + da oscillator clock cycles

Memory: 1 program words
MOTOROLA DSP96002 USER’S MANUAL A - 167

FSUB.S Floating-Point Subtract FSUB.S

 Assembler Syntax:

FSUB.S S,D
(move syntax - see the MOVE instruction description.)
Operation:

D - S → ROUND(SP) → D
 (parallel data bus move)
Description:

Subtract the two specified operands, round to single precision and store the result in the destination oper-
and D. For the special case of |S| = |D|, the result can be +0 or -0; the sign of the resulting zero will be the
sign of the input operand in D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Set if operands are like-signed infinities. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 168 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FSUB.S S,D (move syntax - see the MOVE instruction description.)

01 1sss uu00 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 169

FSUB.X Floating-Point Subtract FSUB.X

 Assembler Syntax:

FSUB.X S,D
(move syntax - see the MOVE instruction description.)
Operation:

D - S → ROUND(SEP) → D
 (parallel data bus move)
Description:

Subtract the two specified operands, round to single extended precision and store the result in the desti-
nation operand D. For the special case of |S| = |D|, the result can be +0 or -0; the sign of the resulting zero
will be the sign of the input operand in D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Set if operands are like-signed infinities. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 170 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FSUB.X S,D (move syntax - see the MOVE instruction description.)

01 1sss uu00 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

 (u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 171

FTFR.S Transfer Floating-Point FTFR.S
Data ALU Register
 Assembler Syntax:

FTFR.S S,D
(move syntax - see the MOVE instruction description.)
Operation:

S → ROUND(SP) → D
 (parallel data bus move)
Description:

Take the contents of the specified source operand S, round to single precision and store the result in the
destination operand D. If S and D are the same register, this is equivalent to “Round to Single Precision”
instruction.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if result is inexact. Cleared otherwise.

DZ -Always cleared.

UNF -Set if result underflows. Cleared otherwise.

OVF -Set if result overflows. Cleared otherwise.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 172 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FTFR.S S,D (move syntax - see the MOVE instruction description.)

10 1sss uu11 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 173

FTFR.X Transfer Floating-Point FTFR.X
Data ALU Register
Assembler Syntax:

FTFR.X S,D
(move syntax - see the MOVE instruction description.)
Operation:

S → D (parallel data bus move)

Description:

Take the contents of the specified source operand S and store in the destination operand D.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: SEP Floating-Point.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 174 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FTFR.X S,D (move syntax - see the MOVE instruction description.)

10 1sss uu11 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

 (u u)

D d d d

Dn n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 175

FTRAPcc Conditional Software Interrupt FTRAPcc

Assembler Syntax:

TRAPcc
Operation:

If cc, then begin software exception processing.

F

Description:

If the specified floating-point condition is true, normal instruction execution is suspended and software ex-
ception processing is initiated. The interrupt priority level (I1,I0) is set to 3 in the status register if a long
interrupt service routine is used. If the specified condition is false, continue with the next instruction. See
Section A.10 for restrictions. Non-aware floating-point conditions set the SIOP flag in the IER register and
the UNCC bit in the ER register if the NAN bit is set. This action occurs before stacking the status register
when the specified non-aware floating-point condition is true.

"cc" may specify the following conditions:

 Non-aware

Mnemonic Condition Set UNCC*
EQ - equal Z = 1 No
ERR - error UNCC v SNAN v OPERR v No

OVF v UNF v DZ = 1
GE - greater than or equal NAN v (N & ~Z) = 0 Yes
GL - greater or less than NAN v Z = 0 Yes
GLE - greater, less or equal NAN = 0 Yes
GT - greater than NAN v Z v N = 0 Yes
INF - infinity I = 1 Yes
LE - less than or equal NAN v ~(N v Z) = 0 Yes
LT - less than NAN v Z v ~N = 0 Yes
MI - minus N = 1 No
NE(Q) - not equal Z = 0 No
NGE - not(greater than or equal)NAN v (N & ~Z) = 1 Yes
NGL - not(greater or less than) NAN v Z = 1 Yes
NGLE - not(greater, less or equal)NAN = 1 Yes
NGT - not greater than NAN v Z v N = 1 Yes
NINF - not infinity I = 0 Yes
NLE - not(less than or equal) NAN v ~(N v Z) = 1 Yes
NLT - not less than NAN v Z v ~N = 1 Yes
OR - ordered NAN = 0 No
PL - plus N = 0 No
UN - unordered NAN = 1 No

 Note: The operands for the ERR condition are taken from the ER register.
 * See the description of the UNcc bit in Section A.4.

CCR Condition Codes: Not affected.

ER Status Bits:
A - 176 DSP96002 USER’S MANUAL MOTOROLA

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

UNCC - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

IER Flags:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

Instruction Format: FTRAPcc

Instruction Fields:
31 14 13 0
1c cccc 0000 00110000 0000 0000 0000 00
 Mnemonic c c c c c Mnemonic c c c c c
GT 0 0 0 0 0 NGT 1 0 0 0 0
LT 0 0 0 0 1 NLT 1 0 0 0 1
GE 0 0 0 1 0 NGE 1 0 0 1 0
LE 0 0 0 1 1 NLE 1 0 0 1 1
GL 0 0 1 0 0 NGL 1 0 1 0 0
INF 0 0 1 0 1 NINF 1 0 1 0 1
GLE 0 0 1 1 0 NGLE 1 0 1 1 0
OR 0 0 1 1 1 UN 1 0 1 1 1
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
ERR 0 1 1 1 1

Timing: 10 oscillator clock cycles
Memory: 1 program words
MOTOROLA DSP96002 USER’S MANUAL A - 177

FTST Test a Floating-Point Operand FTST

Assembler Syntax:

FTST S
(move syntax - see the Move instruction description.)
Operation:

S - 0 (parallel data bus move)

Description:

Compare the specified operand with zero. No result is stored, however, the condition codes are affected
as described.

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: n.a.

CCR Condition Codes:

Note: Since there is no destination, there is no rounding and therefore the condition code bits are set as-
suming an infinite precision result.

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if result is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Always cleared.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if result is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
A - 178 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: FTST S (move syntax - see the Move instruction description.)

10 0110 uu00 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

 (u u)

S d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 179

GETEXP Extract Exponent GETEXP

ssembler Syntax:

ETEXP S,D
move syntax - see the Move instruction description.)
Operation:

Exponent(S) → D.L (parallel data bus move)

A

G
(

Description:

Extract the exponent of the single extended precision floating-point operand S and store it as an unbiased,
2’s complement, 32-bit integer in the low portion of D . The exponent value is decremented by the number
of shifts needed to normalize the mantissa if the floating-point number was denormalized.

As an example of the use of FGETMAN, GETEXP, and FSCALE; consider decomposing a floating-point
number into its mantissa and unbiased exponent and then recreating the original floating-point number.

FGETMAN D0, D1 ;extract normalized mantissa

GETEXP D0,D2 ;extract unbiased exponent

MOVE D2.L, D2.H ;move unbiased exponent

FSCALE.S D2.H, D1 ;scale original mantissa

The following table lists the results for some special cases:

Source operand Result

+/- infinity $7FFFFFFF

+/- zero $80000000

SNaN or QNaN $FFFFFFFF

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Not affected.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Set if the source operand is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 180 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Always cleared.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Set if the source operand is infinity, zero or NaN. Cleared otherwise.

SNAN -Set if the source operand is a signaling NaN. Cleared otherwise.

NAN -Set if the source operand is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

31 14 13 0
11 0sss 0110 0ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Format: GETEXP S,D (move syntax - see the Move instruction description.)

Instruction Fields:

 D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 181

ILLEGAL Illegal Instruction Interrupt ILLEGAL

Operation:

Begin Illegal Instruction exception processing.

Description:
A - 182 DSP96002 US

0000 0000 0000 0000
Assembler Syntax:

ILLEGAL
31 14 13 0

Normal instruction execution is suspended and Illegal Instruction exception processing is initiated. The
interrupt priority level (I1,I0) is set to 3 in the status register if a long interrupt service routine is used.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: ILLEGAL
00 0000 0000 010100
Instruction Fields:

 None

Timing: 8 oscillator clock cycles

Memory: 1 program words
ER’S MANUAL MOTOROLA

INC Increment by One INC

Assembler Syntax:

INC D
(move syntax - see the Move instruction description.)
Operation:

D.L + 1 → D.L (parallel data bus move)

31 14 13 0

Description:

Increment by one the low portion of the specified operand. The result is stored in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if carry is generated from the MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: INC D (move syntax - see the Move instruction description.)
10 0110 uu11 0ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 183

INT Floating-Point to Integer Conversion INT

Operation:

Integer(D) → D.L (parallel data bus move)

A - 184 DSP96002 US
Assembler Syntax:

INT D
(move syntax - see the Move instruction description.)
Description:
Convert the specified floating-point operand to 32-bit, 2’s complement integer. The rounding mode is that
programmed in the SR. The result is stored in the low portion of D. The high and middle portions of D
remain unchanged.

The following table lists the results for some special cases:

Source operand Result

Greater than 231- 1 $7FFFFFFF

 Less than -231 $80000000

+infinity $7FFFFFFF

-infinity $80000000

NaN $FFFFFFFF

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Set if source operand is a NaN, infinity, or its magnitude is too big to be represent-
able in the integer number range. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if source operand is negative. Cleared otherwise.

I - Set if source operand is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX -Set if the floating-point operand has no exact integer representation. Cleared oth-
erwise.

DZ -Always cleared.

UNF -Always cleared.
ER’S MANUAL MOTOROLA

OVF -Always cleared.

OPERR-Set if source operand is a NaN or infinity. Set if overflow occurred. Cleared other-
wise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if source operand is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: INT D (move syntax - see the Move instruction description.)

Instruction Fields:
10 0011 uu00 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
(u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 185

INTRZ Floating-Point INTRZ
to Integer Conversion with Round to Zero
Assembler Syntax:

INTRZ D
(move syntax - see the Move instruction de-
scription.)
Operation:

Integer(D) → D.L (parallel data bus move)

Description:

Convert the specified floating-point operand to 32-bit, 2’s complement integer rounding towards zero. The
result is stored in the low portion of D. The high and middle portions of D remain unchanged. Since this
operation is frequently required (e. g., truncation assignment), this instruction has been implemented to
eliminate the need to change the rounding mode associated with INT.

The following table lists the results for some special cases:

Source operand Result

Greater than 231- 1 $7FFFFFFF

 Less than -231 $80000000

+infinity $7FFFFFFF

-infinity $80000000

NaN $FFFFFFFF

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Set if source operand is a NaN, infinity, or its magnitude is too big to be represent-
able in the integer number range. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if source operand is negative. Cleared otherwise.

I - Set if source operand is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 186 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Set if the floating-point operand has no exact integer representation. Cleared oth-
erwise.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Set if source operand is a NaN or infinity. Set if overflow occurred. Cleared other-
wise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if source operand is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: INTRZ D (move syntax - see the Move instruction description.)
31 14 13 0
10 0011 uu10 0ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 187

INTU Floating-Point INTU
to Unsigned Integer Conversion

 Assembler Syntax:
INTU D
(move syntax - see the Move instruction description.)
Operation:

Unsigned Integer(D) → D.L
 (parallel data bus move)
Description:

Convert the specified floating-point operand to 32-bit, unsigned integer. The rounding mode is that spec-
ified in the SR. The result is stored in the low portion of D. The high and middle portions of D remain un-
changed.

The following table lists the results for some special cases:

Source operand Result

Greater than 231- 1 $7FFFFFFF

 Less than -231 $80000000

+infinity $7FFFFFFF

-infinity $80000000

NaN $FFFFFFFF

+/- Zero $00000000

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Set if source operand is a NaN, infinity or negative non-zero. Set if positive source
operand is too big to be representable in the integer number range. Cleared oth-
erwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if source operand is negative. Cleared otherwise.

I - Set if source operand is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 188 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Set if the floating-point operand has no exact integer representation. Cleared oth-
erwise.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Set if source operand is a NaN, infinity or negative non-zero. Also set if overflow
occurred. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if source operand is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.

Instruction Format: INTU D (move syntax - see the Move instruction description.)
10 0010 uu00 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 189

INTURZ Floating-Point INTURZ
to Unsigned Integer with Round to Zero
 Assembler Syntax:

INTURZ D (move syntax - see the Move in-
struction description.)
Operation:

Unsigned Integer(D) → D.L
 (parallel data bus move)
Description:

Convert the specified floating-point operand to 32-bit, unsigned integer rounding towards zero. The result
is stored in the low portion of D. The high and middle portions of D remain unchanged. Since this operation
is frequently required (e. g., truncation assignment), this instruction has been implemented to eliminate the
need to change the rounding mode associated with INTU.

The following table lists the results for some special cases:

 Source operand Result

Greater than 231- 1 $7FFFFFFF

 Less than -231 $80000000

+infinity $7FFFFFFF

-infinity $80000000

NaN $FFFFFFFF

Input Operand(s) Precision: SEP Floating-Point.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Set if source operand is a NaN, infinity or negative non-zero. Set if positive source
operand is too big to be representable in the integer number range. Cleared oth-
erwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if source operand is negative. Cleared otherwise.

I - Set if source operand is infinity. Cleared otherwise.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 190 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

INX -Set if the floating-point operand has no exact integer representation. Cleared oth-
erwise.

DZ -Always cleared.

UNF -Always cleared.

OVF -Always cleared.

OPERR-Set if source operand is a NaN, infinity or negative non-zero. Also set if overflow
occurred. Cleared otherwise.

SNAN -Set if operand is a signaling NaN. Cleared otherwise.

NAN -Set if source operand is a NaN. Cleared otherwise.

UNCC -Always cleared.

IER Flags: Flags changed according to standard definition.
10 0010 uu10 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

Instruction Format: INTURZ D (move syntax - see the Move instruction description.)
Instruction Fields:

(u u)

D d d d

Dn n n n where nnn = 0-7

Timing: 2 + mv + da oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 191

Jcc Jump Conditionally Jcc

Assembler Syntax:

Jcc label (short)

Jcc ea
Operation:

If cc, then xx → PC
 else PC + 1 → PC

If cc, then ea → PC
 else PC + 1 → PC

Description:
If the specified condition is true, program execution continues at a location specified by an effective ad-
dress in the instruction. If the specified condition is false, the PC is incremented and the effective address
is ignored. However, the address register specified in the effective address field is always updated inde-
pendently of the condition. All memory alterable addressing modes may be used for the effective address.
A Fast Short Jump addressing mode may also be used. The 15-bit data is sign extended to form the ef-
fective address. See Section A.10 for restrictions.

"cc" may specify the following conditions:

Mnemonic Condition
CC (HS) - carry clear (higher or same) C = 0
CS (LO) - carry set (lower) C = 1
EQ - equal Z = 1
GE - greater or equal N && V = 0
GT - greater than Z v (N && V) = 0
HI - higher Z v C = 0
LE - less or equal Z v (N && V) = 1
LS - lower or same Z v C = 1
LT - less than N && V = 1
MI - minus N = 1
NE(Q) - not equal Z = 0
PL - plus N = 0
VC - overflow clear V = 0
VS - overflow set V = 1

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
A - 192 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: Jcc label (short)

1c cccc 1aaa aaaa

31 14 13 0

0000 0011 10aa aaaa aa

1c cccc 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0000 MMMR

Instruction Format: Jcc ea
Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

 Short Jump Address - aaaaaaaaaaaaaaa (15 bits)

Mnemonic c c c c c Mnemonic c c c c c
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
CC(HS) 0 1 0 1 0 CS(LO) 1 1 0 1 0
GE 0 1 0 1 1 LT 1 1 0 1 1
GT 0 1 1 0 0 LE 1 1 1 0 0
VC 0 1 1 0 1 VS 1 1 1 0 1
HI 0 1 1 1 0 LS 1 1 1 1 0

Timing: 4 + jx oscillator clock cycles
Memory: 1 + ea program words
MOTOROLA DSP96002 USER’S MANUAL A - 193

JCLR Jump if Bit Clear JCLR

Assembler Syntax:

JCLR #bit,X: ea, label

JCLR #bit,X: aa, label

JCLR #bit,X: pp, label

JCLR #bit,Y: ea, label

JCLR #bit,Y: aa, label

JCLR #bit,Y: pp, label

JCLR #bit,S,label
Operation:

If S{n} = 0, then xxxx → PC
 else PC + 1 → PC
If S{n} = 0, then xxxx → PC
 else PC + 1 → PC
If S{n} = 0, then xxxx → PC
 else PC + 1 → PC
If S{n} = 0, then xxxx → PC
 else PC + 1 → PC
If S{n} = 0, then xxxx → PC
 else PC + 1 → PC
If S{n} = 0, then xxxx → PC
 else PC + 1 → PC
If S{n} = 0, then xxxx → PC
 else PC + 1 → PC
Description:

The nth bit in the source operand is tested. If the tested bit is zero, program execution continues at a lo-
cation specified by a 32-bit absolute address in the extension word of the instruction. Otherwise, the PC
is incremented and the extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the condition. All memory alterable addressing modes
may be used to reference the source operand. Absolute Short, I/O Short and Register Direct addressing
modes may also be used. The bit to be tested is selected by an immediate bit number 0-31. See Section
A.10 for restrictions. Note that if the specified source operand S is the SSH, the stack pointer register will
be decremented by one.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
A - 194 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: JCLR #bit,X: aa, label
JCLR #bit,Y: aa, label

aa 010S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1010 0aaa aa

00 010S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1000 MMMR

pp 010S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1010 1ppp pp

d0 0100 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1011 dddd dd

Instruction Format: JCLR #bit,X: ea, label
JCLR #bit,Y: ea, label

Instruction Format: JCLR #bit,X: pp, label
JCLR #bit,Y: pp, label

Instruction Format: JCLR #bit,S,label
Instruction Fields:

 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxx))

 Absolute Address - 32 bits

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)

Memory Space S Bit Number b b b b b
MOTOROLA DSP96002 USER’S MANUAL A - 195

X Memory 0

 Y Memory 1

Bit 0-31 n n n n n where nnnnn = 0-31

 D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words
A - 196 DSP96002 USER’S MANUAL MOTOROLA

JMP Jump JMP

Assembler Syntax:

JMP label (short)

JMP ea
Operation:

xx → PC

ea → PC

Description:
11 1111 1aaa aaaa

31 14 13 0

0000 0011 10aa aaaa aa

11 1111 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0000 MMMR

Program execution continues at the effective address in program memory. All memory alterable address-
ing modes may be used for the effective address. A fast Short Jump addressing mode may also be used.
The 15-bit data is sign extended to form the effective address. See Section A.10 for restrictions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: JMP label (short)

Instruction Format: JMP ea
Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

 Short Jump Address - aaaaaaaaaaaaaaa (15 bits)

Timing: 4 + jx oscillator clock cycles

Memory: 1 + ea program words
MOTOROLA DSP96002 USER’S MANUAL A - 197

JOIN Join Two 16-bit Integers JOIN

 Assembler Syntax:

JOIN S,D
(move syntax - see the Move instruction description.)
Operation:

S.L {15:0} → D.L {31:16}
 (parallel data bus move)

D.L {15:0} → D.L {15:0}
31 14 13 0

Description:

Transfer the 16 LSBs of the lower portion of source operand S into the 16 MSBs of the lower portion of
destination D. The 16 LSBs of the lower portion of D remain unchanged.

Input Operand(s) Precision: 16-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: JOIN S,D (move syntax - see the Move instruction description.)
11 0sss 1010 0ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 198 DSP96002 USER’S MANUAL MOTOROLA

JOINB Join Two 8-bit Integers JOINB

Assembler Syntax:

JOINB S,D
(move syntax - see the Move instruction description.)
Operation:

D.L {7:0} → D.L {7:0} (parallel data bus move)

S.L {7:0} → D.L {15:8}

 0 → D.L {31:16}

Description:
Transfer the 8 LSBs of the lower portion of source operand S into bits 15-8 of the lower portion of destina-
tion D. The 8 LSBs of the lower portion of D remain unchanged. The 16 MSBs of the lower portion of D
are zeroed.

Input Operand(s) Precision: 8-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Always cleared.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: JOINB S,D (move syntax - see the Move instruction description.)
11 0sss 1010 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 199

JScc Jump to Subroutine Conditionally JScc

Assembler Syntax:

Scc label (short)

Scc ea
Operation:

If cc, then PC → SSH; SR → SSL; xx → PC
 else PC + 1 → PC

If cc, then PC → SSH; SR → SSL; ea → PC
 else PC + 1 → PC

J

J

Description:

If the specified condition is true, the address of the instruction immediately following the JScc instruction
and the status register are pushed onto the stack. Program execution then continues at the effective ad-
dress in program memory. If the specified condition is false, the PC is incremented and any extension
word is ignored. However, the address register specified in the effective address field is always updated
independently of the condition. All memory alterable addressing modes may be used for the effective ad-
dress. A fast Short Jump addressing mode may also be used. The 15-bit data is sign extended to form
the effective address. See Section A.10 for restrictions.

"cc" may specify the following conditions:

Mnemonic Condition
CC (HS) - carry clear (higher or same) C = 0
CS (LO) - carry set (lower) C = 1
EQ - equal Z = 1
GE - greater or equal N && V = 0
GT - greater than Z v (N && V) = 0
HI - higher Z v C = 0
LE - less or equal Z v (N && V) = 1
LS - lower or same Z v C = 1
LT - less than N && V = 1
MI - minus N = 1
NE(Q) - not equal Z = 0
PL - plus N = 0
VC - overflow clear V = 0
VS - overflow set V = 1

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
A - 200 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: JScc label (short)

1c cccc 1aaa aaaa

31 14 13 0

0000 0011 11aa aaaa aa

1c cccc 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0100 MMMR

Instruction Format: JScc ea
Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

 Short Jump Address - aaaaaaaaaaaaaaa (15 bits)

Mnemonic c c c c c Mnemonic c c c c c
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
CC(HS) 0 1 0 1 0 CS(LO) 1 1 0 1 0
GE 0 1 0 1 1 LT 1 1 0 1 1
GT 0 1 1 0 0 LE 1 1 1 0 0
VC 0 1 1 0 1 VS 1 1 1 0 1
HI 0 1 1 1 0 LS 1 1 1 1 0
AL 1 1 1 1 1

Timing: 4 + jx oscillator clock cycles
Memory: 1 + ea program words
MOTOROLA DSP96002 USER’S MANUAL A - 201

JSCLR Jump to Subroutine if Bit Clear JSCLR

Assembler Syntax:

JSCLR #bit,X: ea, label

JSCLR #bit,X: aa, label

JSCLR #bit,X: pp, label

JSCLR #bit,Y: ea, label

JSCLR #bit,Y: aa, label

JSCLR #bit,Y: pp, label

JSCLR #bit,S,label
Operation:

If S{n} = 0,
then PC → SSH; SR → SSL; xxxx → PC
 else PC + 1 → PC

If S{n} = 0,
then PC → SSH; SR → SSL; xxxx → PC
 else PC + 1 → PC

If S{n} = 0,
then PC → SSH; SR → SSL; xxxx → PC
 else PC + 1 → PC

If S{n} = 0,
then PC → SSH; SR → SSL; xxxx → PC
 else PC + 1 → PC

If S{n} = 0,
then PC → SSH; SR → SSL; xxxx → PC
 else PC + 1 → PC

If S{n} = 0,
then PC → SSH; SR → SSL; xxxx → PC
 else PC + 1 → PC

If S{n} = 0,
then PC → SSH; SR → SSL; xxxx → PC
 else PC + 1 → PC
Description:

The nth bit in the source operand is tested. If the tested bit is zero, the address of the instruction immedi-
ately following the JSCLR instruction and the status register are pushed onto the stack. Program execu-
tion then continues at a location specified by a 32-bit absolute address in the extension word of the instruc-
tion. Otherwise, the PC is incremented and the extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the condition. All memory alter-
able addressing modes may be used for the source operand. Absolute Short, I/O Short and Register Di-
rect addressing modes may also be used. The bit to be tested is selected by an immediate bit number 0-
31. See Section A.10 for restrictions. Note that if the specified source operand S is the SSH, the stack
pointer register will be decremented by one; if the condition is true, the push operation will write over the
stack level where the SSH value was taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Fields:
A - 202 DSP96002 USER’S MANUAL MOTOROLA

MOTOROLA DSP96002 USER’S MANUAL A - 203

Instruction Format: JSCLR #bit,S,label

d0 0100 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1111 dddd dd

Instruction Format: JSCLR #bit,X: ea, label
JSCLR #bit,Y: ea, label

aa 010S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1110 0aaa aa

00 010S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1100 MMMR

pp 010S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1110 1ppp pp

Instruction Format: JSCLR #bit,X: aa, label
JSCLR #bit,Y: aa, label

Instruction Format: JSCLR #bit,X: pp, label
JSCLR #bit,Y: pp, label

 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxx))

 Absolute Address - 32 bits

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words
A - 204 DSP96002 USER’S MANUAL MOTOROLA

JSET Jump if Bit Set JSET

Assembler Syntax:
JSET #bit,X: ea, label

JSET #bit,X: aa, label

JSET #bit,X: pp, label

JSET #bit,Y: ea, label

JSET #bit,Y: aa, label

JSET #bit,Y: pp, label

JSET #bit,S,label
Operation:
If S{n} = 1, then xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then xxxx → PC
 else PC + 1 → PC

If S{n} = 1, then xxxx → PC
 else PC + 1 → PC
Description:

The nth bit in the source operand is tested. If the tested bit is set, program execution continues at a loca-
tion specified by a 32-bit absolute address in the extension word of the instruction. Otherwise, the PC is
incremented and the extension word is ignored. However, the address register specified in the effective
address field is always updated independently of the condition. All memory alterable addressing modes
may be used to reference the source operand. Absolute Short, I/O Short and Register Direct addressing
modes may also be used. The bit to be tested is selected by an immediate bit number 0-31. See Section
A.10 for restrictions. Note that if the specified source operand S is the SSH, the stack pointer register will
be decremented by one.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 205

Instruction Format: JSET #bit,S,label

aa 110S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1010 0aaa aa

00 110S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1000 MMMR

pp 110S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1010 1ppp pp

d0 1100 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1011 dddd dd

Instruction Format: JSET #bit,X: pp, label
JSET #bit,Y: pp, label

Instruction Format: JSET #bit,X: aa, label
JSET #bit,Y: aa, label

Instruction Format: JSET #bit,X: ea, label
JSET #bit,X: ea, label
Instruction Fields:

 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxx))

 Absolute Address - 32 bits

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)
A - 206 DSP96002 USER’S MANUAL MOTOROLA

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 6 + jx oscillator clock cycles
Memory: 2 program words
MOTOROLA DSP96002 USER’S MANUAL A - 207

JSR Jump to Subroutine JSR

Assembler Syntax:

JSR label (short)

JSR ea
Operation:

PC → SSH; SR → SSL; xx → PC

PC → SSH; SR → SSL; ea → PC

Description:
31 14 13 0

The address of the instruction immediately following the JSR instruction and the status register are pushed
onto the stack. Program execution then continues at the effective address in program memory. All mem-
ory alterable addressing modes may be used for the effective address. A fast Short Jump addressing
mode may also be used. The 15-bit data is sign extended to form the effective address. See Section
A.10 for restrictions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: JSR label (short)
11 1111 1aaa aaaa0000 0011 11aa aaaa aa

11 1111 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0100 MMMR

Instruction Format: JSR ea
Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

 Short Jump Address - aaaaaaaaaaaaaaa (15 bits)

Timing: 4 + jx oscillator clock cycles
Memory: 1 + ea program words
A - 208 DSP96002 USER’S MANUAL MOTOROLA

JSSET Jump to Subroutine if Bit Set JSSET

Assembler Syntax:
JSSET #bit,X: ea, label

JSSET #bit,X: aa, label

JSSET #bit,X: pp, label

JSSET #bit,Y: ea, label

JSSET #bit,Y: aa, label

JSSET #bit,Y: pp, label

JSSET #bit,S,label
Operation:
If S{n} = 1,
then PC → SSH; SR → SSL; xxxx → PC
else PC + 1 → PC

If S{n} = 1,
then PC → SSH; SR → SSL; xxxx → PC
else PC + 1 → PC

If S{n} = 1,
then PC → SSH; SR → SSL; xxxx → PC
else PC + 1 → PC

If S{n} = 1,
then PC → SSH; SR → SSL; xxxx → PC
else PC + 1 → PC

If S{n} = 1,
then PC → SSH; SR → SSL; xxxx → PC
else PC + 1 → PC

If S{n} = 1,
then PC → SSH; SR → SSL; xxxx → PC
else PC + 1 → PC

If S{n} = 1,
then PC → SSH; SR → SSL; xxxx → PC
else PC + 1 → PC
Description:

The nth bit in the source operand is tested. If the tested bit is set, the address of the instruction immediately
following the JSSET instruction and the status register are pushed onto the stack. Program execution
then continues at a location specified by a 32-bit absolute address in the extension word of the instruction.
Otherwise, the PC is incremented and the extension word is ignored. However, the address register spec-
ified in the effective address field is always updated independently of the condition. All memory alterable
addressing modes may be used for the source operand. Register Direct, Absolute Short and I/O Short
addressing modes may also be used. The bit to be tested is selected by an immediate bit number 0-31.
See Section A.10 for restrictions. Note that if the specified source operand S is the SSH, the stack pointer
register will be decremented by one; if the condition is true, the push operation will write over the stack
level where the SSH value was read.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Fields:
MOTOROLA DSP96002 USER’S MANUAL A - 209

Instruction Format:JSSET #bit,S,label

aa 110S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1010 0aaa aa

00 110S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1000 MMMR

pp 110S 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1010 1ppp pp

d0 1100 100b bbbb

31 14 13 0

ABSOLUTE ADDRESS EXTENSION

0000 0010 1011 dddd dd

Instruction Format: JSSET #bit,X: ea, label
JSSET #bit,Y: ea, label

Instruction Format: JSSET #bit,X: aa, label
JSSET #bit,Y: aa, label

Instruction Format: JSSET #bit,X: pp, label
JSSET #bit,Y: pp, label
 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxx))

 Absolute Address - 32 bits

 Immediate Short Data - bbbbb (5 bits)

 Absolute Short Address - aaaaaaa (7 bits)

 I/O Short Address - ppppppp (7 bits)
A - 210 DSP96002 USER’S MANUAL MOTOROLA

Memory Space S

X Memory 0

 Y Memory 1

Bit Number b b b b b
Bit 0-31 n n n n n where nnnnn = 0-31

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 6 + jx oscillator clock cycles

Memory: 2 program words
MOTOROLA DSP96002 USER’S MANUAL A - 211

LEA Load Effective Address LEA

 Assembler Syntax:

LEA ea,D

LEA (Rn+displacement),D
Operation:

ea → D

Rn+xxxx → D
Description:

The address calculation specified is executed and the resulting effective address is stored in the destina-
tion register. The source address registers are not affected. Post-update and Long Displacement address
register indirect addressing modes may be used. Note that if D is SSH, the SP will be preincremented by
one.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

CCR Condition Codes:

For destination operand SR:

C - Set according to bit 0 of the source operand.

V - Set according to bit 1 of the source operand.

Z - Set according to bit 2 of the source operand.

N - Set according to bit 3 of the source operand.

I - Set according to bit 4 of the source operand.

LR - Set according to bit 5 of the source operand.

–
R - Set according to bit 6 of the source operand.

A - Set according to bit 7 of the source operand.

For destination operands other than SR:

C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 212 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

For destination operand SR:

INX -Set according to bit 8 of the source operand.

DZ -Set according to bit 9 of the source operand.

UNF -Set according to bit 10 of the source operand.

OVF -Set according to bit 11 of the source operand.

OPERR-Set according to bit 12 of the source operand.

SNAN -Set according to bit 13 of the source operand.

NAN -Set according to bit 14 of the source operand.

UNCC -Set according to bit 15 of the source operand.

For destination operands other than SR:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For destination operand SR:

SINX -Set according to bit 16 of the source operand.

SDZ -Set according to bit 17 of the source operand.

SUNF -Set according to bit 18 of the source operand.

SOVF -Set according to bit 19 of the source operand.

SIOP -Set according to bit 20 of the source operand.

For destination operands other than SR:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 213

Instruction Format: LEA ea,D

00 0000 1ddd dddd

31 14 13 0

LONG DISPLACEMENT

0000 0000 0100 000R

10 0000 1ddd dddd

31 14 13 0

0000 0000 0100 0MMR

Instruction Format: LEA (Rn+displacement),D
Instruction Fields:

 ea Rn - R0-R7 (Post-update addressing modes only)

 Long Displacement - 32 bits

D d d d d d d d
D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7
D0.L-D7.L 0 0 0 1 n n n
D0.M-D7.M 0 0 1 0 n n n
D0.H-D7.H 0 0 1 1 n n n
D8.L 0 1 0 0 0 0 0
D9.L 0 1 0 0 0 0 1
D8.M 0 1 0 0 0 1 0
D9.M 0 1 0 0 0 1 1
D8.H 0 1 0 0 1 0 0
D9.H 0 1 0 0 1 0 1
D8.S 0 1 0 0 1 1 0
D9.S 0 1 0 0 1 1 1
R0-R7 0 1 0 1 n n n
N0-N7 0 1 1 0 n n n
M0-M7 0 1 1 1 n n n
SR 1 1 1 1 0 0 1
OMR 1 1 1 1 0 1 0
SP 1 1 1 1 0 1 1
SSH 1 1 1 1 1 0 0
SSL 1 1 1 1 1 0 1
LA 1 1 1 1 1 1 0
LC 1 1 1 1 1 1 1

Timing: 4 + le oscillator clock cycles
Memory: 1 + ea program words
A - 214 DSP96002 USER’S MANUAL MOTOROLA

LRA Load PC Relative Address
LRA
 Assembler Syntax:

LRA Rn,D

LRA label,D

Operation:

PC+Rn → D
Description:

The PC is added to the specified displacement and the result is stored in destination D. The PC contains
the address of the next instruction. The displacement is a 2’s complement 32-bit integer that represents
the relative distance from the current PC to the destination PC. Long Displacement and Address Register
PC Relative addressing modes may be used. See Section A.10 for restrictions. Note that if D is SSH,
the SP will be preincremented by one.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

CCR Condition Codes:

For destination operand SR:

C - Set according to bit 0 of the source operand.

V - Set according to bit 1 of the source operand.

Z - Set according to bit 2 of the source operand.

N - Set according to bit 3 of the source operand.

I - Set according to bit 4 of the source operand.

LR - Set according to bit 5 of the source operand.

–
R - Set according to bit 6 of the source operand.

A - Set according to bit 7 of the source operand.

For destination operands other than SR:

C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 215

PC+xxxx → D
A - 216 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

For destination operand SR:

INX -Set according to bit 8 of the source operand.

DZ -Set according to bit 9 of the source operand.

UNF -Set according to bit 10 of the source operand.

OVF -Set according to bit 11 of the source operand.

OPERR-Set according to bit 12 of the source operand.

SNAN -Set according to bit 13 of the source operand.

NAN -Set according to bit 14 of the source operand.

UNCC -Set according to bit 15 of the source operand.

For destination operands other than SR:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For destination operand SR:

SINX -Set according to bit 16 of the source operand.

SDZ -Set according to bit 17 of the source operand.

SUNF -Set according to bit 18 of the source operand.

SOVF -Set according to bit 19 of the source operand.

SIOP -Set according to bit 20 of the source operand.

For destination operands other than SR:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 217

Instruction Format: LRA Rn,D

00 0000 0ddd dddd

31 14 13 0

OPTIONAL LONG DISPLACEMENT EXTENSION

0000 0000 0100 000R 00

00 0000 0ddd dddd

31 14 13 0

0000 0000 0100 001R

Instruction Format: LRA label,D
Instruction Fields:

 Rn - R0-R7

 Long Displacement - 32 bits

D d d d d d d d
D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7
D0.L-D7.L 0 0 0 1 n n n
D0.M-D7.M 0 0 1 0 n n n
D0.H-D7.H 0 0 1 1 n n n
D8.L 0 1 0 0 0 0 0
D9.L 0 1 0 0 0 0 1
D8.M 0 1 0 0 0 1 0
D9.M 0 1 0 0 0 1 1
D8.H 0 1 0 0 1 0 0
D9.H 0 1 0 0 1 0 1
D8.S 0 1 0 0 1 1 0
D9.S 0 1 0 0 1 1 1
R0-R7 0 1 0 1 n n n
N0-N7 0 1 1 0 n n n
M0-M7 0 1 1 1 n n n
SR 1 1 1 1 0 0 1
OMR 1 1 1 1 0 1 0
SP 1 1 1 1 0 1 1
SSH 1 1 1 1 1 0 0
SSL 1 1 1 1 1 0 1
LA 1 1 1 1 1 1 0
LC 1 1 1 1 1 1 1

Timing: 4 + lr oscillator clock cycles

Memory: 1 + lr program words
A - 218 DSP96002 USER’S MANUAL MOTOROLA

LSL Logical Shift Left LSL

Operation:
31 0

C 0 (parallel data bus move)
Assembler Syntax:

LSL D (move syntax - see the Move instruction description.)

LSL S,D (move syntax - see the Move instruction description.)

LSL #bits,D

Description:

Single-bit shift:

Logically shift the low portion of the specified operand one bit to the left. The carry bit receives the MSB
shifted out of the low portion of the source operand. A zero is shifted into the least significant bit of the
destination operand. The result is stored in the low portion of D.

Multi-bit shift:

Logically shift the low portion of the specified operand N bits (up to 63 bits) to the left. The number of bits
to shift is determined by the 11-bit unsigned integer located in the 11 LSBs of the high portion of S, or by
a a 6-bit immediate field in the instruction. The carry bit receives the Nth bit shifted out of the low portion
of the source operand; it is cleared for a shift count of zero. N zeros are shifted into the LSBs of the des-
tination operand. If more than 32 bits are shifted, zeros will be stored in D and the carry bit. The result is
stored in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared for a
shift count of zero.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 219

Instruction Format: LSL D (move syntax - see the Move instruction description.)

10 0100 uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

11 0sss 0010 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

01 011n nnnn nddd

31 14 13 0

0000 0000 0000 0000 10

Instruction Format: LSL #bits,D

01 011n nnnn nddd

31 14 13 0

0000 0000 0000 0000 10

Instruction Format: LSL S.H,D (move syntax - see the Move instruction description.)
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.H n n n where nnn = 0-7

N n n n n n n

0 0 0 0 0 0 0

1 0 0 0 0 0 1

2 0 0 0 0 1 0

. .

. . .

. . .

62 1 1 1 1 1 0

63 1 1 1 1 1 1

Timing: 2 + mv oscillator clock cycles (2 oscillator clock cycles for LSL #shift)

Memory: 1 + mv program words (1 program word for LSL #shift)
A - 220 DSP96002 USER’S MANUAL MOTOROLA

LSR Logical Shift Right LSR

Operation:

31 0
0 C (parallel data bus move)
Assembler Syntax:

LSR D (move syntax - see the Move instruction description.)

LSR S,D (move syntax - see the Move instruction description.)

LSR #shift,D

Description:

Single-bit shift:

Logically shift the low portion of the specified operand one bit to the right. The carry bit receives the LSB
shifted out of the low portion of the source operand. A zero is shifted into bit 31 of the operand. The result
is stored in the low portion of D.

Multi-bit shift:

Logically shift the low portion of the specified operand N bits (up to 63 bits) to the right. The number of bits
to shift is determined by the 11-bit unsigned integer located in the 11 LSBs of the high portion of S or by a
6-bit immediate field in the instruction. The carry bit receives the Nth bit shifted out of the low portion of
the source operand; it is cleared for a shift count of zero. N zeros are shifted into the MSBs of the desti-
nation operand. If more than 32 bits are shifted, zeros will be stored in D and the carry bit. The result is
stored in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared for a
shift count of zero.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 221

Instruction Format: LSR D (move syntax - see the Move instruction description.)

10 0000 uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

11 0sss 0010 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

01 010n nnnn nddd

31 14 13 0

0000 0000 0000 0000 10

Instruction Format: LSR #shift,D

Instruction Format: LSR S.H,D (move syntax - see the Move instruction description.)
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.H n n n where nnn = 0-7

N n n n n n n

0 0 0 0 0 0 0

1 0 0 0 0 0 1

2 0 0 0 0 1 0

. .

. . .

. . .

62 1 1 1 1 1 0

63 1 1 1 1 1 1

Timing: 2 + mv oscillator clock cycles (2 oscillator clock cycles for LSR #shift)

Memory: 1 + mv program words (1 program word for LSR #shift)
A - 222 DSP96002 USER’S MANUAL MOTOROLA

MOVE Move Data Registers MOVE

Operation: Assembler Syntax:
MOVE (See the MOVE instruction description.)
Parallel data bus move
31 14 13 0

Description:

Move the contents of the specified source to the specified destination. This instruction is a Data ALU NOP
instruction with the parallel data move operations described in the following pages. Some parallel data
move operations differentiate between integer or floating-point operands according to the kind of Data ALU
operation specified. For this purpose, two Data ALU NOP opcodes are used: an "integer NOP" and a
"floating-point NOP". For example, if a XY parallel move is specified with integer operands, the assembler
will produce a 32-bit instruction word with the "integer NOP" in the Data ALU opcode field. If floating point
XY parallel move operands are specified, the "floating-point NOP" is used instead.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: Fixed point NOP

Instruction Fields:

See the following pages for Data Bus Move Field encoding.
10 0000 0000 0000

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

10 0000 0000 0100

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

Instruction Format: Floating-Point NOP
 A.7.1 PARALLEL MOVE OPERATION DESCRIPTIONS
Many instructions provide the capability to specify an optional data bus movement over the X and Y Data
Bus. This allows a Data ALU operation to be executed in parallel with up to two data bus moves in the
same instruction cycle. Register to register, register to memory and memory to register data moves are
provided. However, not all addressing modes are allowed for each memory reference type. Addressing
mode restrictions which apply to specific move types are noted in the individual move operation descrip-
tions. The following pages contain detailed information about each parallel move operation.

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 223

No Parallel Data Move
Move Move
Assembler Syntax:

Opcode-Operands
Operation:

Opcode Operation – none
Description:

No data bus move activity.
Instruction Format: Opcode-operands

0000 0000 0110 0000 01 uu uuuu uuuu uuuu

31 14 13 0
Instruction Fields:

None.

Timing: 0 oscillator clock cycles

Memory: 0 program words
A - 224 DSP96002 USER’S MANUAL MOTOROLA

R Register To Register Parallel Move R
Move Move
Assembler Syntax:

Opcode-Operands S1,D1

Opcode-Operands S2,D2
Operation:

Opcode Operation S1 → D1

Opcode Operation S2 → D2
Description:

Move the source register to the destination register. Single precision to single precision moves (S1,D1) or
double precision to double precision moves (S2,D2) may be specified.

If the opcode-operand portion of the instruction specifies as the destination a portion of the register Dn, the
same register portion may not be specified as a destination D in the data bus move operation. That is, du-
plicate destinations are not allowed in the same instruction. For example, both a Data ALU operation and
a data move operation cannot write into the same register in the same instruction.

If the opcode-operand portion of the instruction specifies as the source or destination a portion of the reg-
ister Dn, the same register portion may be specified as a source S in the data bus move operation. That is,
duplicate sources are allowed in the same instruction. For example, a data move operation can read the
same register which is being used as a source or destination by a Data ALU operation in the same instruc-
tion.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.
MOTOROLA DSP96002 USER’S MANUAL A - 225

Single Precision Instruction Format - Opcode-operands: S1, D1

0000 10DD DDDD dddd dd uu uuuu uuuu uuuu

31 14 13 0

0001 011D DDDD 0ddd dd uu uuuu uuuu uuuu

31 14 13 0

Double Precision Instruction Format - Opcode-operands: S2, D2

A - 226 DSP96002 USER’S MANUAL MOTOROLA

 Instruction Fields:
 S1 or D D D D D D
 D1 d d d d d d
 D0.S-D7.S 0 0 0 n n n where nnn = 0-7
 D0.L-D7.L 0 0 1 n n n
 D0.M-D7.M 0 1 0 n n n
 D0.H-D7.H 0 1 1 n n n

 D8.S 1 0 0 0 0 0
 D9.S 1 0 0 0 0 1
 D8.L 1 0 0 0 1 0
 D9.L 1 0 0 0 1 1
 D8.M 1 0 0 1 0 0
 D9.M 1 0 0 1 0 1
 D8.H 1 0 0 1 1 0
 D9.H 1 0 0 1 11

 R0-R7 1 0 1 n n n
 N0-N7 1 1 0 n n n
 M0-M7 1 1 1 n n n

S2 or D D D D D
D2 d d d d d
D0.ML-D7.ML 1 1 n n n where nnn = 0-7
D0.D-D7.D 1 0 n n n

reserved 0 1 x x x

D9.ML 0 0 1 1 1
D8.ML 0 0 1 1 0
D9.D 0 0 1 0 1
D8.D 0 0 1 0 0

Timing: 0 oscillator clock cycles
Memory: 0 program words

U Move Update U
(Effective Address Calculation)

Move Move
Operation:

Opcode Operation ea

Assembler Syntax:

Opcode-Operands ea
Description:

The specified effective address calculation is executed. The specified address register is updated accord-
ing to the addressing mode. All update addressing modes may be used. The No Update mode (Rn) is
useful, in conjunction with the MOVETA instruction, to test address registers.

Instruction Format - Opcode-operands: ea
31 14 13 0
MOTOROLA DSP96002 USER’S MANUAL A - 227

Instruction Fields:
 ea Rn - R0-R7 (Update addressing modes only)

Timing: 0 oscillator clock cycles
Memory: 0 program words

0001 0101 1011 MMMR uu uuuu uuuu uuuu

A - 228 DSP96002 USER’S MANUAL MOTOROLA

X: X Memory Move X:

Operation:

X:<ea> → D

X:<Rn+xxxx> → D

S → X:<ea>

S → X:<Rn+xxxx>

#xxxx → D

Assembler Syntax:

X: ea, D

X:(Rn+displacement),D

S,X: ea

S,X:(Rn+displacement)

#Data,D

Description:

Move one word operand to/from X memory. One effective address is specified. All memory addressing
modes, including absolute address and immediate data, may be used. Long displacement addressing
may also be used. A memory to register or register to memory direction may be specified.

If the opcode-operand portion of the instruction specifies as the destination a portion of the register Dn, the
same register portion may not be specified as a destination D in the data bus move operation. That is, du-
plicate destinations are not allowed in the same instruction. For example, both a Data ALU operation and
a data move operation cannot write into the same register in the same instruction.

If the opcode-operand portion of the instruction specifies as the source or destination a portion of the reg-
ister Dn, the same register portion may be specified as a source S in the data bus move operation. That is,
duplicate sources are allowed in the same instruction. For example, a data move operation can read the
same register which is being used as a source or destination by a Data ALU operation in the same instruc-
tion.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

Move Move

MOTOROLA DSP96002 USER’S MANUAL A - 229

Instruction Format - Opcode-operands: S,X: ea

X: ea, D

#Data,D

0011 W0DD DDDD MMMR uu uuuu uuuu uuuu

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

Instruction Format - Opcode-operands: S,X:(Rn+displacement)
X:(Rn+displacement),D

0000 11DD DDDD 0W1R uu uuuu uuuu uuuu

31 14 13 0

LONG DISPLACEMENT

A - 230 DSP96002 USER’S MANUAL MOTOROLA

Instruction Fields: <ea> Rn - R0-R7 (Memory addressing modes only)

Register W
Read S 0
Write D 1

S1 or D D D D D D
D1 d d d d d d
D0.S-D7.S 0 0 0 n n n where nnn = 0-7
D0.L-D7.L 0 0 1 n n n
D0.M-D7.M 0 1 0 n n n
D0.H-D7.H 0 1 1 n n n

D8.S 1 0 0 0 0 0
D9.S 1 0 0 0 0 1
D8.L 1 0 0 0 1 0
D9.L 1 0 0 0 1 1
D8.M 1 0 0 1 0 0
D9.M 1 0 0 1 0 1
D8.H 1 0 0 1 1 0
D9.H 1 0 0 1 1 1

R0-R7 1 0 1 n n n
N0-N7 1 1 0 n n n
M0-M7 1 1 1 n n n

Timing: ea + ax oscillator clock cycles
Memory: ea program words

X: R X Memory and Register Move X: R
Move Move
 Assembler Syntax:

X: ea, D1 S2,D2

S1,X: ea S2,D2

#Data,D1 S2,D2
Operation:

X:<ea> → D1 S2 → D2

S1 → X:<ea> S2 → D2

#xxxx → D1 S2 → D2
MOTOROLA DSP96002 USER’S MANUAL A - 231

Description:

Move one word operand to/from X memory and one word operand from register to register. One effective
address is specified. A memory to register or register to memory direction may be specified in the effective
address.

When two parallel data move operations are specified in the same instruction, certain restrictions apply. If
the instruction has an integer opcode, both data moves must be integer moves and specify integer oper-
ands. If the instruction has a floating-point opcode, both data moves must be floating-point moves and
specify floating-point operands.

If the opcode-operand portion of the instruction specifies as the destination a portion of the register Dn, the
same register portion may not be specified as a destination D in the data bus move operation. That is, du-
plicate destinations are not allowed in the same instruction. For example, both a Data ALU operation and
a data move operation cannot write into the same register in the same instruction.

If the opcode-operand portion of the instruction specifies as the source or destination a portion of the reg-
ister Dn, the same register portion may be specified as a source S in the data bus move operation. That is,
duplicate sources are allowed in the same instruction. For example, a data move operation can read the
same register which is being used as a source or destination by a Data ALU operation in the same instruc-
tion.

010d WdYY YXXX MMMR uu uuuu uuuu uuuu

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

Instruction Format - Opcode-operands: X: ea, D1S2,D2

S1,X: ea S2,D2
#Data,D1S2,D2

A - 232 DSP96002 USER’S MANUAL MOTOROLA

Instruction Fields: <ea> Rn - R0-R7 (Memory addressing modes only)
Register W
Read S1 0
Write D1 1

Integer Opcodes Floating-Point Opcodes

S1,D1 X X X S1,D1 X X X
D0.L-D7.L n n n D0.S-D7.S n n n where nnn = 0-7

S2 d d D2 Y Y Y S2 d d D2 Y Y Y
D4.L 0 0 D0.L 0 0 0 D4.S 0 0 D0.S 0 0 0
D5.L 0 1 D1.L 0 0 1 D5.S 0 1 D1.S 0 0 1
D6.L 1 0 D2.L 0 1 0 D6.S 1 0 D2.S 0 1 0
D7.L 1 1 D3.L 0 1 1 D7.S 1 1 D3.S 0 1 1

D0.L 0 0 D4.L 1 0 0 D0.S 0 0 D4.S 1 0 0
D1.L 0 1 D5.L 1 0 1 D1.S 0 1 D5.S 1 0 1
D2.L 1 0 D6.L 1 1 0 D2.S 1 0 D6.S 1 1 0
D3.L 1 1 D7.L 1 1 1 D3.S 1 1 D7.S 1 1 1

Timing: ea + ax oscillator clock cycles
Memory: ea program words

Y: Y Memory Move Y:

Operation:

Opcode Operation Y:<ea> → D

Opcode Operation Y:<Rn+xxxx> → D

Opcode Operation S → Y:<ea>

Opcode Operation S → Y:<Rn+xxxx>

Opcode Operation #xxxx → D

Assembler Syntax:

Opcode-Operands Y: ea, D

Opcode-Operands Y:(Rn+displacement),D

Opcode-Operands S,Y: ea

Opcode-Operands S,Y:(Rn+displacement)

Opcode-Operands #Data,D

Move Move

Description:

Move one word operand to/from Y memory. One effective address is specified. All memory addressing
modes, including absolute address and immediate data, may be used. Long displacement addressing
may also be used. A memory to register or register to memory direction may be specified.

If the opcode-operand portion of the instruction specifies as the destination a portion of the register Dn, the
same register portion may not be specified as a destination D in the data bus move operation. That is, du-
plicate destinations are not allowed in the same instruction. For example, both a Data ALU operation and
a data move operation cannot write into the same register in the same instruction.

If the opcode-operand portion of the instruction specifies as the source or destination a portion of the reg-
ister Dn, the same register portion may be specified as a source S in the data bus move operation. That is,
duplicate sources are allowed in the same instruction. For example, a data move operation can read the
same register which is being used as a source or destination by a Data ALU operation in the same instruc-
tion.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

Instruction Fields: <ea> Rn - R0-R7 (Memory addressing modes only)
MOTOROLA DSP96002 USER’S MANUAL A - 233

0011 W1DD DDDD MMMR uu uuuu uuuu uuuu

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

Instruction Format - Opcode-operands: S,Y:(Rn+displacement)
Y:(Rn+displacement),D

0000 11DD DDDD 1W1R uu uuuu uuuu uuuu

31 14 13 0

LONG DISPLACEMENT

Instruction Format - Opcode-operands: S,Y: ea

Y: ea, D
#Data,D
 Register W
 Read S 0
 Write D 1

 S1 or D D D D D D
 D1 d d d d d d
 D0.S-D7.S 0 0 0 n n n where nnn = 0-7
 D0.L-D7.L 0 0 1 n n n
 D0.M-D7.M 0 1 0 n n n
 D0.H-D7.H 0 1 1 n n n

 D8.S 1 0 0 0 0 0
 D9.S 1 0 0 0 0 1
 D8.L 1 0 0 0 1 0
 D9.L 1 0 0 0 1 1
 D8.M 1 0 0 1 0 0
 D9.M 1 0 0 1 0 1
 D8.H 1 0 0 1 1 0
 D9.H 1 0 0 1 11

 R0-R7 1 0 1 n n n
 N0-N7 1 1 0 n n n
 M0-M7 1 1 1 n n n

Timing: ea + ay oscillator clock cycles
Memory: ea program words
A - 234 DSP96002 USER’S MANUAL MOTOROLA

Y: R Y Memory and Register Move Y: R

Move Move
Assembler Syntax:

Opcode-Operands S1,D1 Y: ea, D2
Opcode-Operands S1,D1 S2,Y: ea
Opcode-Operands S1,D1 #Data,D2

Operation:

Opcode Operation S1 → D1 Y:<ea> → D2

Opcode Operation S1 → D1 S2 → Y:<ea>

Opcode Operation S1 → D1 #xxxx → D2

Description:
Move one word operand to/from Y memory and one word operand from register to register. One effective
address is specified. A memory to register or register to memory direction may be specified in the effective
address.

When two parallel data move operations are specified in the same instruction, certain restrictions apply. If
the instruction has an integer opcode, both data moves must be integer moves and specify integer oper-
ands. If the instruction has a floating-point opcode, both data moves must be floating-point moves and
specify floating-point operands.

If the opcode-operand portion of the instruction specifies as the destination a portion of the register Dn, the
same register portion may not be specified as a destination D in the data bus move operation. That is, du-
plicate destinations are not allowed in the same instruction. For example, both a Data ALU operation and
a data move operation cannot write into the same register in the same instruction.

If the opcode-operand portion of the instruction specifies as the source or destination a portion of the reg-
ister Dn, the same register portion may be specified as a source S in the data bus move operation. That is,
duplicate sources are allowed in the same instruction. For example, a data move operation can read the
same register which is being used as a source or destination by a Data ALU operation in the same instruc-
tion.
 Instruction Fields: <ea> Rn - R0-R7 (Memory addressing modes only)
MOTOROLA DSP96002 USER’S MANUAL A - 235

011d WdYY YXXX MMMR uu uuuu uuuu uuuu

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

Instruction Format - Opcode-operands: S1,D1 Y: ea, D2

S1,D1 S2,Y: ea

S1,D1 #Data,D2

Register W
Read S2 0
Write D2 1

Integer Opcodes Floating-Point Opcodes

S2,D2 Y Y Y S2,D2 Y Y Y
D0.L-D7.L n n n D0.S-D7.S n n n where nnn = 0-7

S1 d d D1 X X X S1 d d D1 X X X
D4.L 0 0 D0.L 0 0 0 D4.S 0 0 D0.S 0 0 0
D5.L 0 1 D1.L 0 0 1 D5.S 0 1 D1.S 0 0 1
D6.L 1 0 D2.L 0 1 0 D6.S 1 0 D2.S 0 1 0
D7.L 1 1 D3.L 0 1 1 D7.S 1 1 D3.S 0 1 1

D0.L 0 0 D4.L 1 0 0 D0.S 0 0 D4.S 1 0 0
D1.L 0 1 D5.L 1 0 1 D1.S 0 1 D5.S 1 0 1
D2.L 1 0 D6.L 1 1 0 D2.S 1 0 D6.S 1 1 0
D3.L 1 1 D7.L 1 1 1 D3.S 1 1 D7.S 1 1 1

Timing: ea + ay oscillator clock cycles
Memory: ea program words
A - 236 DSP96002 USER’S MANUAL MOTOROLA

L: Long Memory Move L:
Move Move
Assembler Syntax:

L: ea, D
L:(Rn+displacement),D
S,L: ea
S,L:(Rn+displacement)
Operation:

X:<ea> → D(MS) Y:<ea> → D(LS)

X:<Rn+xxxx> → D(MS) Y:<Rn+xxxx> → D(LS)

S(MS) → X:<ea> S(LS) → Y:<ea>

S(MS) → X:<Rn+xxxx> S(LS) → Y:<Rn+xxxx>
MOTOROLA DSP96002 USER’S MANUAL A - 237

0010 01WD DDDD MMMR uu uuuu uuuu uuuu

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

Instruction Format - Opcode-operands: L:(Rn+displacement),D
S,L:(Rn+displacement)

0000 111D DDDD 0W0R uu uuuu uuuu uuuu

31 14 13 0

LONG DISPLACEMENT

Description:

This instruction allows long word operand data moves to/from one effective address in L (X:Y) memory.
The long word operand is a long integer for integer moves and a double precision IEEE data type for float-
ing-point moves. One effective address is specified. All memory alterable addressing modes may be
used. Long displacement addressing may also be used. A memory to register or register to memory di-
rection may be specified.

If the opcode-operand portion of the instruction specifies as the destination a portion of the register Dn, the
same register portion may not be specified as a destination D in the data bus move operation. That is, du-
plicate destinations are not allowed in the same instruction. For example, both a Data ALU operation and
a data move operation cannot write into the same register in the same instruction.

If the opcode-operand portion of the instruction specifies as the source or destination a portion of the reg-
ister Dn, the same register portion may be specified as a source S in the data bus move operation. That is,
duplicate sources are allowed in the same instruction. For example, a data move operation can read the
same register which is being used as a source or destination by a Data ALU operation in the same instruc-
tion.

Instruction Format - Opcode-operands: L: ea, D
S,L: ea

A - 238 DSP96002 USER’S MANUAL MOTOROLA

Instruction Fields: <ea>Rn - R0-R7 (Memory alterable addressing modes only)

Register W
Read S 0
Write D 1

S2 or D D D D D
D2 d d d d d
D0.ML-D7.ML 1 1 n n n where nnn = 0-7
D0.D-D7.D 1 0 n n n

D9.ML 0 0 1 1 1
D8.ML 0 0 1 1 0
D9.D 0 0 1 0 1
D8.D 0 0 1 0 0

Timing: ea + axy oscillator clock cycles
Memory: ea program words

X: Y: XY Memory X: Y:
Move Move
 Operation:

X:<ea> → D1 Y:<ea> → D2

X:<ea> → D1 S2 → Y:<ea>

S1 → X:<ea> Y:<ea> → D2

S1 → X:<ea> S2 → Y:<ea>

X:<ea> → D1 Y:<> → D2

S1 → X:<ea> S2 → Y:<>

X:<Rn+xxxx> → D1 Y:<> → D2

S1 → X:<Rn+xxxx> S2 → Y:<>
MOTOROLA DSP96002 US
Assembler Syntax:

X: ea, D1 Y: ea, D2

X: ea, D1 S2,Y: ea

S1,X: ea Y: ea, D2

S1,X: ea S2,Y: ea

X: ea, D1 Y:,D2

S1,X: ea S2,Y:

X:(Rn+displacement),D1 Y:,D2

S1,X:(Rn+displacement) S2,Y:
 Description:

Move two word operands to/from X and Y memory. All word operands are integer for integer moves and
single precision IEEE data type for floating-point moves. They may represent a complex (real:imaginary)
data pair, a data:coefficient data pair or two independent data words. One or two independent effective
addresses may be specified. If one effective address is specified, all memory alterable addressing modes
and long displacement may be used; both data moves have the same memory to register or register to
memory direction. If two effective addresses are specified, all parallel addressing modes may be used
and each data move may have a memory to register or register to memory direction.

When two parallel data move operations are specified in the same instruction, certain restrictions apply. If
the instruction has an integer opcode, both data moves must be integer moves and specify integer oper-
ands. If the instruction has a floating-point opcode, both data moves must be floating-point moves and
specify floating-point operands.

If the opcode-operand portion of the instruction specifies as the destination a portion of the register Dn, the
same register portion may not be specified as a destination D in the data bus move operation. That is, du-
plicate destinations are not allowed in the same instruction. For example, both a Data ALU operation and
a data move operation cannot write into the same register in the same instruction.

If the opcode-operand portion of the instruction specifies as the source or destination a portion of the reg-
ister Dn, the same register portion may be specified as a source S in the data bus move operation. That is,
duplicate sources are allowed in the same instruction. For example, a data move operation can read the
same register which is being used as a source or destination by a Data ALU operation in the same instruc-
tion.
ER’S MANUAL A - 239

A - 240 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format - Opcode-operands: X: ea, D1 Y: ea, D2
X: ea, D1 S2,Y: ea
S1,X: ea Y: ea, D2
S1,X: ea S2,Y: ea

1mmw WrYY YXXX rMMR uu uuuu uuuu uuuu

31 14 13 0

Instruction Format - Opcode-operands: X: ea, D1 Y:,D2
S1,X: ea S2,Y:

0010 1WYY YXXX MMMR uu uuuu uuuu uuuu

31 14 13 0

Instruction Format - Opcode-operands:X: ea, D1(8,9) Y:,D2(8,9)

0001 010W Y11X MMMR uu uuuu uuuu uuuu

31 14 13 0

Instruction Format - Opcode-operands: X:(Rn+displacement),D1 Y:,D2
S1,X:(Rn+displacement) S2,Y:

0000 11YY YXXX 1W0R uu uuuu uuuu uuuu

31 14 13 0

Instruction Fields:

For two independent effective addresses:
X: ea Rn - R0,R1,R2,R3 (Parallel addressing modes only)
Y: ea Rn - R4,R5,R6,R7
 or
X: ea Rn - R4,R5,R6,R7 (Parallel addressing modes only)
Y: ea Rn - R0,R1,R2,R3

Register W
Read S1 0
Write D1 1

Register w
Read S2 0
Write D2 1

Effective Address
X: ea MM R R R
Y: ea mm r r

Integer Opcodes Floating-Point Opcodes

S1,D1 X X X S1,D1 X X X
D0.L-D7.L n n n D0.S-D7.S n n n where nnn = 0-7

S2,D2 Y Y Y S2,D2 Y Y Y
D0.L-D7.L n n n D0.S-D7.S n n n where nnn = 0-7

Instruction Format - Opcode-operands: X:(Rn+displacement),D1 Y:,D2(8,9)
S1,X:(Rn+displacement) S2(8,9),Y:

0000 1101 Y11X 0W0R uu uuuu uuuu uuuu

31 14 13 0

LONG DISPLACEMENT

LONG DISPLACEMENT

MOTOROLA DSP96002 USER’S MANUAL A - 241

For a single effective address:

Register W
Read S1,S2 0
Write D1,D2 1

Effective Address
X: ea = Y: ea MMM RRR (Memory alterable addressing modes only)
X: ea = Y: ea RRR (Long displacement addressing mode)

Integer Opcodes Floating-Point Opcodes
S1,D1 X X X S1,D1 X X X
D0.L-D7.L n n n D0.7.S n n n where nnn = 0-7

S2,D2 Y Y Y S2,D2 Y Y Y
D0.7-D7.L n n n D0.S-D7.S n n n

S1,D1 X S1,D1 X
D8.L 0 D8.S 0
D9.L 1 D9.S 0

S2,D2 Y S2,D2 Y
D8.L 0 D8.S 0
D9.L 1 D9.S 0

Timing: axy oscillator clock cycles
Memory: program words

FFcc Floating-Point iF FFcc
Conditional Instruction

without CCR, ER, IER update

Move Move
Operation:

If cc, then

Opcode Operation S → D
A - 242 DSP96002 US
Assembler Syntax:

Opcode-Operands S,D FFcc

Opcode-Operands FFcc
Description:

If the specified floating-point condition is true, transfer data from the specified source S to the specified
destination D. Also, store result(s) of the specified Data ALU operation. If the specified condition is false,
no destinations are altered. The CCR and ER registers are not updated with the condition codes gener-
ated by the Data ALU operation. The UNCC bit in the ER register and SIOP flag in the IER are set by the
FFcc instruction if the NAN bit in the ER register was set and the specified condition is one of the condi-
tions with a "Yes" entry in the "Set UNCC" column. If no register move is specified, this instruction is as-
sembled with a R0 to R0 move.

"cc" may specify the following conditions:

 Non-aware

Mnemonic Condition Set UNCC*
EQ - equal Z = 1 No
ERR - error UNCC v SNAN v OPERR v No

OVF v UNF v DZ = 1
GE - greater than or equal NAN v (N & ~Z) = 0 Yes
GL - greater or less than NAN v Z = 0 Yes
GLE - greater, less or equal NAN = 0 Yes
GT - greater than NAN v Z v N = 0 Yes
INF - infinity I = 1 Yes
LE - less than or equal NAN v ~(N v Z) = 0 Yes
LT - less than NAN v Z v ~N = 0 Yes
MI - minus N = 1 No
NE(Q) - not equal Z = 0 No
NGE - not(greater than or equal) NAN v (N & ~Z) = 1 Yes
NGL - not(greater or less than) NAN v Z = 1 Yes
NGLE - not(greater, less or equal) NAN = 1 Yes
NGT - not greater than NAN v Z v N = 1 Yes
NINF - not infinity I = 0 Yes
NLE - not(less than or equal) NAN v ~(N v Z) = 1 Yes
NLT - not less than NAN v Z v ~N = 1 Yes
OR - ordered NAN = 0 No
PL - plus N = 0 No
UN - unordered NAN = 1 No

 Note: The operands for the ERR condition are taken from the ER register.
* See description of UNcc bit in Section A.4.
ER’S MANUAL MOTOROLA

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a destination.

CCR Condition Codes:

 C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVFD - Not affected.

OPERR - Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

IER Flags:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.
MOTOROLA DSP96002 USER’S MANUAL A - 243

0000 011c cccc tttT uu uuuu uuuu uuuu

31 14 13 0

Instruction Format - Opcode-operands: S,D FFcc
FFcc

A - 244 DSP96002 USER’S MANUAL MOTOROLA

 Instruction Fields:
S t t t
Rn n n n where nnn = 0-7

D T T T
Rn n n n where nnn = 0-7

Mnemonic c c c c c Mnemonic c c c c c
GT 0 0 0 0 0 NGT 1 0 0 0 0
LT 0 0 0 0 1 NLT 1 0 0 0 1
GE 0 0 0 1 0 NGE 1 0 0 1 0
LE 0 0 0 1 1 NLE 1 0 0 1 1
GL 0 0 1 0 0 NGL 1 0 1 0 0
INF 0 0 1 0 1 NINF 1 0 1 0 1
GLE 0 0 1 1 0 NGLE 1 0 1 1 0
OR 0 0 1 1 1 UN 1 0 1 1 1
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
ERR 0 1 1 1 1

Timing: 2 + da oscillator clock cycles
Memory: 1 program words

FFcc.U Floating-Point iF FFcc.U
Conditional Instruction

with CCR, ER, IER Update

Move Move
Assembler Syntax:

Opcode-Operands S,D FFcc.U

 FFcc.U
Operation:

If cc, then opcode operation

S → D

Description:
If the specified floating-point condition is true, transfer data from the specified source S to the specified
destination D. Also, store result(s) of the specified Data ALU operation and update the CCR, ER and IER
registers with the status information generated by the Data ALU operation. If the specified condition is
false, no destinations are altered and the status register is not affected by the Data ALU operation. The
UNCC bit in the ER register and SIOP flag in the IER are set by the FFcc.U instruction if the NAN bit in the
ER register was set and the specified condition is one of the conditions with a "Yes" entry in the "Set UN-
CC" column. If no register move is specified, this instruction is assembled with a R0 to R0 move.

"cc" may specify the following conditions:

Non-aware

Mnemonic Condition Set UNCC*
EQ - equal Z = 1 No
ERR - error UNCC v SNAN v OPERR v No

OVF v UNF v DZ = 1
GE - greater than or equal NAN v (N & ~Z) = 0 Yes
GL - greater or less than NAN v Z = 0 Yes
GLE - greater, less or equal NAN = 0 Yes
GT - greater than NAN v Z v N = 0 Yes
INF - infinity I = 1 Yes
LE - less than or equal NAN v ~(N v Z) = 0 Yes
LT - less than NAN v Z v ~N = 0 Yes
MI - minus N = 1 No
NE(Q) - not equal Z = 0 No
NGE - not(greater than or equal)NAN v (N & ~Z) = 1 Yes
NGL - not(greater or less than) NAN v Z = 1 Yes
NGLE - not(greater, less or equal)NAN = 1 Yes
NGT - not greater than NAN v Z v N = 1 Yes
NINF - not infinity I = 0 Yes
NLE - not(less than or equal) NAN v ~(N v Z) = 1 Yes
NLT - not less than NAN v Z v ~N = 1 Yes
OR - ordered NAN = 0 No
PL - plus N = 0 No
UN - unordered NAN = 1 No

 Note: The operands for the ERR condition are taken from the ER register.
* See description of UNcc bit in Section A.4.
MOTOROLA DSP96002 USER’S MANUAL A - 245

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

CCR Condition Codes:

C - Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

V - Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

Z - Affected by the accompanying Data ALU operation if the specified condition is true. Not af-
fected otherwise.

N - Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

I - Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

LR - Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

R - Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

A - Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

ER Status Bits:

INX -Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

DZ - Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

UNF -Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

OVF -Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

OPERR -Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

SNAN -Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

NAN -Affected by the accompanying Data ALU operation if the specified condition is true. Not
affected otherwise.

UNCC -Set if NAN is set and a non-aware floating-point condition is tested ("cc" conditions
marked "YES" above). Not affected otherwise.

IER Flags: Flags changed according to standard definition.
A - 246 DSP96002 USER’S MANUAL MOTOROLA

MOTOROLA DSP96002 USER’S MANUAL A - 247

Instruction Format - Opcode-operands: S,D FFcc.U

FFcc.U

Instruction Fields:

S t t t
Rn n n n where nnn = 0-7

D T T T
Rn nn n where nnn = 0-7

Mnemonic c c c c c Mnemonic c c c c c
GT 0 0 0 0 0 NGT 1 0 0 0 0
LT 0 0 0 0 1 NLT 1 0 0 0 1
GE 0 0 0 1 0 NGE 1 0 0 1 0
LE 0 0 0 1 1 NLE 1 0 0 1 1
GL 0 0 1 0 0 NGL 1 0 1 0 0
INF 0 0 1 0 1 NINF 1 0 1 0 1
GLE 0 0 1 1 0 NGLE 1 0 1 1 0
OR 0 0 1 1 1 UN 1 0 1 1 1
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
ERR 0 1 1 1 1

Timing: 2 + da oscillator clock cycles
Memory: 1 program words

0000 011c cccc tttT TT uu uuuu uuuu uuuu

31 14 13 0

IFcc Integer iF IFcc
 Conditional Instruction

without CCR Update

Move Move
Assembler Syntax:

Opcode-Operands S,D IFcc

IFcc
Operation:

If cc, then opcode operation

S → D
A - 248 DSP96002 USER’S MANUAL MOTOROLA

Description:

If the specified integer condition is true, transfer data from the specified source S to the specified destina-
tion D. Also, store result(s) of the specified Data ALU operation. If the specified condition is false, no
destinations are altered. The CCR, ER and IER registers are never updated with the condition codes gen-
erated by the Data ALU operation. If no register move is specified, this instruction is assembled with a R0
to R0 move.

"cc" may specify the following conditions:

Mnemonic Condition
CC (HS) - carry clear (higher or same) C = 0
CS (LO) - carry set (lower) C = 1
EQ - equal Z = 1
GE - greater or equal N && V = 0
GT - greater than Z v (N && V) = 0
HI - higher Z v C = 0
LE - less or equal Z v (N && V) = 1
LS - lower or same Z v C = 1
LT - less than N && V = 1
MI - minus N = 1
NE(Q) - not equal Z = 0
PL - plus N = 0
VC - overflow clear V = 0
VS - overflow set V = 1
AL - always true n.a.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

MOTOROLA DSP96002 USER’S MANUAL A - 249

CCR Condition Codes:

 C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVFD - Not affected.

OPERR - Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.

Instruction Format - Opcode-operands: S,D IFcc

IFcc

0000 011c cccc tttT TT uu uuuu uuuu uuuu

31 14 13 0

A - 250 DSP96002 USER’S MANUAL MOTOROLA

Instruction Fields:
S t t t
Rn n n n where nnn = 0-7

D T T T
Rn n n n where nnn = 0-7

Mnemonic c c c c c Mnemonic c c c c c
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
CC(HS) 0 1 0 1 0 CS(LO) 1 1 0 1 0
GE 0 1 0 1 1 LT 1 1 0 1 1
GT 0 1 1 0 0 LE 1 1 1 0 0
VC 0 1 1 0 1 VS 1 1 1 0 1
HI 0 1 1 1 0 LS 1 1 1 1 0
AL 1 1 1 1 1

Timing: 2 + da oscillator clock cycles
Memory: 1 program words

IFcc.U Integer iF IFcc.U
Conditional Instruction

with CCR, ER, and IER Update

Move Move
M

Assembler Syntax:

Opcode-Operands S,D IFcc.U

IFcc.U

Operation:

If cc, then opcode operation

S → D
OTOROLA DSP96002 USER’S MANUAL A - 251

Description:

If the specified integer condition is true, transfer data from the specified source S to the specified destina-
tion D. Also, store result(s) of the specified Data ALU operation and update the CCR, ER and IER regis-
ters with the status information generated by the Data ALU operation. If the specified condition is false,
no destinations are altered and the status register is not affected. The UNCC bit in the ER register is never
updated by the Data ALU operation. If no register move is specified, this instruction is assembled with a
R0 to R0 move.

"cc" may specify the following conditions:

Mnemonic Condition
CC (HS) - carry clear (higher or same) C = 0
CS (LO) - carry set (lower) C = 1
EQ - equal Z = 1
GE - greater or equal N && V = 0
GT - greater than Z v (N && V) = 0
HI - higher Z v C = 0
LE - less or equal Z v (N && V) = 1
LS - lower or same Z v C = 1
LT - less than N && V = 1
MI - minus N = 1
NE(Q) - not equal Z = 0
PL - plus N = 0
VC - overflow clear V = 0
VS - overflow set V = 1
AL - always true n.a.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

A - 252 DSP96002 USER’S MANUAL MOTOROLA

CCR Condition Codes:

C - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

V - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

Z - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

N - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

I - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

LR - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

–
R - Affected by the accompanying Data ALU operation if the specified condition is true.

Not affected otherwise.

A - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

ER Status Bits:

INX - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

DZ - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

UNF - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

OVF - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

OPERR - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

SNAN - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

NAN - Affected by the accompanying Data ALU operation if the specified condition is true.
Not affected otherwise.

UNCC - Not affected.

IER Flags: Flags changed according to standard definition.

Instruction Format - Opcode-operands: S,D IFcc.U

IFcc.U

0000 010c cccc tttT TT uu uuuu uuuu uuuu

31 14 13 0

MOTOROLA DSP96002 USER’S MANUAL A - 253

Instruction Fields:
 S t t t

Rn n n n where nnn = 0-7

D T T T
Rn n n n where nnn = 0-7

Mnemonic c c c c c Mnemonic c c c c c
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
CC(HS) 0 1 0 1 0 CS(LO) 1 1 0 1 0
GE 0 1 0 1 1 LT 1 1 0 1 1
GT 0 1 1 0 0 LE 1 1 1 0 0
VC 0 1 1 0 1 VS 1 1 1 0 1
HI 0 1 1 1 0 LS 1 1 1 1 0
AL 1 1 1 1 1

Timing: 2 + da oscillator clock cycles
Memory: 1 program words

MOVE(C) Move Control Register MOVE(C)

Operation:

 S3 → D2

 S2 → D1

 #xxxx → D1

 X:<ea> → D1

X:<Rn+xxxx> → D1

 S1 → X:<ea>

 S1 → X:<Rn+xxxx>

 Y:<ea> → D1
Y:<Rn+xxxx> → D1

 S1 → Y:<ea>

 S1 → Y:<Rn+xxxx>

Assembler Syntax:
A - 254 DSP96002 US
MOVE(C) S3,D2

MOVE(C) S2,D1

MOVE(C) #Data,D1

MOVE(C) X: ea, D1

MOVE(C) X:(Rn+displacement),D1

MOVE(C) S1,X: ea

MOVE(C) S1,X:(Rn+displacement)

MOVE(C) Y: ea, D1

MOVE(C) Y:(Rn+displacement),D1

MOVE(C) S1,Y: ea

MOVE(C) S1,Y:(Rn+displacement)

Description:
Move the contents of the specified control register to the specified destination or move the specified source
to the specified control register. The control registers S1, S3, and D1 are the program controller registers
and may be moved to or from any other register or memory space. All operands are word operands. All
memory addressing modes plus Long Displacement addressing may be used.

If the system stack register SSH is specified as a source operand, the system stack pointer SP is postdec-
remented by 1 after SSH is read. If the system stack register SSH is specified as a destination operand,
the system stack pointer SP is preincremented by 1 before SSH is written. This allows the system stack
to be efficiently extended using software stack pointer operations.

See Section A.10 for restrictions that apply to this instruction.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

CCR Condition Codes:
ER’S MANUAL MOTOROLA

For destination operand SR:

C - Set according to bit 0 of the source operand.

V - Set according to bit 1 of the source operand.

Z - Set according to bit 2 of the source operand.

N - Set according to bit 3 of the source operand.

I - Set according to bit 4 of the source operand.

LR - Set according to bit 5 of the source operand.

–
R - Set according to bit 6 of the source operand.

A - Set according to bit 7 of the source operand.

For destination operands other than SR:

C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

For destination operand SR:

INX -Set according to bit 8 of the source operand.

DZ -Set according to bit 9 of the source operand.

UNF -Set according to bit 10 of the source operand.

OVF -Set according to bit 11 of the source operand.

OPERR-Set according to bit 12 of the source operand.

SNAN -Set according to bit 13 of the source operand.

NAN -Set according to bit 14 of the source operand.

UNCC -Set according to bit 15 of the source operand.

For destination operands other than SR:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:
MOTOROLA DSP96002 USER’S MANUAL A - 255

For destination operand SR:

SINX -Set according to bit 16 of the source operand.

SDZ -Set according to bit 17 of the source operand.

SUNF -Set according to bit 18 of the source operand.

SOVF -Set according to bit 19 of the source operand.

SIOP -Set according to bit 20 of the source operand.

For destination operands other than SR:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.

Instruction Format: MOVE(C) X: ea, D1 MOVE(C) S1,X: ea
A - 256 DSP96002 USER’S MANUAL MOTOROLA

D0 0001 0ddd dddd

31 14 13 0

0000 0001 0010 DDDD DD

0W s001 0ddd dddd

31 14 13 0

LONG DISPLACEMENT

0000 0001 0011 xxxR RR

1W s001 0ddd dddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0001 0011 MMMR RR

MOVE(C) Y: ea, D1 MOVE(C) S1,Y: ea

Instruction Format: MOVE(C) S1,D2
MOVE(C) S2,D1

Instruction Format: MOVE(C) X:(Rn+displacement),D1 MOVE(C) S1,X:(Rn+displacement)
 MOVE(C) X:(Rn+displacement),D1 MOVE(C) S1,X:(Rn+displacement)

Instruction Fields:

 <ea> Rn - R0-R7 (Memory addressing modes only)

 Immediate data - 32 bits

 Absolute Address - 32 bits

 Long Displacement - 32 bits

Register W

Read S 0
Write D 1

Memory Space S

X Memory 0
 Y Memory 1

S3 D D D D D D D
S1, D1 d d d d d d d

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

S2 D D D D D D D
 D2 d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 2 + mvc oscillator clock cycles

Memory: 1 + ea program words
MOTOROLA DSP96002 USER’S MANUAL A - 257

MOVE(I) Immediate Short Data Move MOVE(I)

Assembler Syntax:

MOVE(I) #Data,D
Operation:

#xx → D
Description:

The 16-bit immediate short operand is sign extended to a word operand and is stored in the destination
register D. Care should be taken if the specified destination register is D0.S-D9.S, since there is no special
formatting for short floating-point data and the sign extended immediate short operand may produce small
positive denormalized numbers or a negative NANs. See Section A.10 for restrictions that apply to this
instruction. Note that if D is SSM, the SP will be preincremented by one.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

CCR Condition Codes:

For destination operand SR:

C - Set according to bit 0 of the source operand.

V - Set according to bit 1 of the source operand.

Z - Set according to bit 2 of the source operand.

N - Set according to bit 3 of the source operand.

I - Set according to bit 4 of the source operand.

LR - Set according to bit 5 of the source operand.

–
R - Set according to bit 6 of the source operand.

A - Set according to bit 7 of the source operand.

For destination operands other than SR:

C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.
A - 258 DSP96002 USER’S MANUAL MOTOROLA

ER Status Bits:

For destination operand SR:

INX -Set according to bit 8 of the source operand.

DZ -Set according to bit 9 of the source operand.

UNF -Set according to bit 10 of the source operand.

OVF -Set according to bit 11 of the source operand.

OPERR-Set according to bit 12 of the source operand.

SNAN -Set according to bit 13 of the source operand.

NAN -Set according to bit 14 of the source operand.

UNCC -Set according to bit 15 of the source operand.

For destination operands other than SR:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For destination operand SR:

SINX -Set according to bit 16 of the source operand.

SDZ -Set according to bit 17 of the source operand.

SUNF -Set according to bit 18 of the source operand.

SOVF -Set according to bit 19 of the source operand.

SIOP -Set according to bit 20 of the source operand.

For destination operands other than SR:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.

Instruction Format: MOVE(I) #Data,D
MOTOROLA DSP96002 USER’S MANUAL A - 259

i i i i i i i ddd dddd

31 14 13 0

0000 0000 1 i i i i i i i i i

Instruction Fields:

 Immediate Short Data - iiiiiiiiiiiiiiii (16 bits)

D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 2 oscillator clock cycles

Memory: 1 program words
A - 260 DSP96002 USER’S MANUAL MOTOROLA

MOVE(M) Move Program Memory MOVE(M)

Assembler Syntax:

MOVE(M) P: ea, D

MOVE(M) S,P: ea
Operation:

P:<ea> → D

S → P:<ea>
Description:

Move the specified program memory word operand to the specified destination register or move the spec-
ified source register to the specified program memory location. The registers S and D may be any register.
All memory alterable addressing modes may be used.

If the system stack register SSH is specified as a source operand, the system stack pointer SP is postdec-
remented by 1 after SSH is read. If the system stack register SSH is specified as a destination operand,
the system stack pointer SP is preincremented by 1 before SSH is written. This allows the system stack
to be efficiently extended using software stack pointer operations.

See Section A.10 for restrictions that apply to this instruction.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

CCR Condition Codes:

For destination operand SR:

C - Set according to bit 0 of the source operand.

V - Set according to bit 1 of the source operand.

Z - Set according to bit 2 of the source operand.

N - Set according to bit 3 of the source operand.

I - Set according to bit 4 of the source operand.

LR - Set according to bit 5 of the source operand.

–
R - Set according to bit 6 of the source operand.

A - Set according to bit 7 of the source operand.
MOTOROLA DSP96002 USER’S MANUAL A - 261

For destination operands other than SR:
C - Not affected.
V - Not affected.
Z - Not affected.
N - Not affected.
I - Not affected.
LR - Not affected.
–
R - Not affected.

A - Not affected.

ER Status Bits:

For destination operand SR:
INX -Set according to bit 8 of the source operand.
DZ -Set according to bit 9 of the source operand.
UNF -Set according to bit 10 of the source operand.
OVF -Set according to bit 11 of the source operand.
OPERR-Set according to bit 12 of the source operand.
SNAN -Set according to bit 13 of the source operand.
NAN -Set according to bit 14 of the source operand.
UNCC -Set according to bit 15 of the source operand.

For destination operands other than SR:
INX - Not affected.
DZ - Not affected.
UNF - Not affected.
OVF - Not affected.
OPERR- Not affected.
SNAN - Not affected.
NAN - Not affected.
UNCC - Not affected.

IER Flags:

For destination operand SR:
SINX -Set according to bit 16 of the source operand.
SDZ -Set according to bit 17 of the source operand.
SUNF -Set according to bit 18 of the source operand.
SOVF -Set according to bit 19 of the source operand.
SIOP -Set according to bit 20 of the source operand.

For destination operands other than SR:
SINX - Not affected.
SDZ - Not affected.
SUNF - Not affected.
SOVF - Not affected.
SIOP - Not affected.
A - 262 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: MOVE(M) P: ea, D MOVE(M) S,P: ea
31 14 13 0
1W 0001 0ddd dddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0001 0110 MMMR RR
Instruction Fields:

 <ea> Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

Register W
Read S 0
Write D 1

D d d d d d d d
D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7
D0.L-D7.L 0 0 0 1 n n n
D0.M-D7.M 0 0 1 0 n n n
D0.H-D7.H 0 0 1 1 n n n
D8.L 0 1 0 0 0 0 0
D9.L 0 1 0 0 0 0 1
D8.M 0 1 0 0 0 1 0
D9.M 0 1 0 0 0 1 1
D8.H 0 1 0 0 1 0 0
D9.H 0 1 0 0 1 0 1
D8.S 0 1 0 0 1 1 0
D9.S 0 1 0 0 1 1 1
R0-R7 0 1 0 1 n n n
N0-N7 0 1 1 0 n n n
M0-M7 0 1 1 1 n n n
SR 1 1 1 1 0 0 1
OMR 1 1 1 1 0 1 0
SP 1 1 1 1 0 1 1
SSH 1 1 1 1 1 0 0
SSL 1 1 1 1 1 0 1
LA 1 1 1 1 1 1 0
LC 1 1 1 1 1 1 1

Timing: 6 + mvm oscillator clock cycles
Memory: 1 + ea program words
MOTOROLA DSP96002 USER’S MANUAL A - 263

MOVE(P) Move Peripheral Data MOVE(P)

Assembler Syntax:

MOVE(P) X: pp, D

MOVE(P) S,X: pp

MOVE(P) #Data,X: pp

MOVE(P) Y: pp, D

MOVE(P) S,Y: pp

MOVE(P) #Data,Y: pp

MOVE(P) X: pp, X: ea

MOVE(P) X: ea, X: pp

MOVE(P) X: pp, Y: ea

MOVE(P) Y: ea, X: pp

MOVE(P) Y: pp, X: ea

MOVE(P) X: ea, Y: pp

MOVE(P) Y: pp, Y: ea

MOVE(P) Y: ea, Y: pp

MOVE(P) X: pp, X:(Rn+displacement)

MOVE(P) X:(Rn+displacement),X: pp

MOVE(P) X: pp, Y:(Rn+displacement)

MOVE(P) Y:(Rn+displacement),X: pp

MOVE(P) Y: pp, X:(Rn+displacement)

MOVE(P) X:(Rn+displacement),Y: pp

MOVE(P) Y: pp, Y:(Rn+displacement)

MOVE(P) Y:(Rn+displacement),Y: pp

MOVE(P) X: pp, P: ea

MOVE(P) P: ea, X: pp

MOVE(P) Y: pp, P: ea

MOVE(P) P: ea, Y: pp
Operation:

X:<pp> → D

S → X:<pp>

 #xxxx → X:<pp>

Y:<pp> → D

S → Y:<pp>

 #xxxx → Y:<pp>

X:<pp> → X:<ea>

X:<ea> → X:<pp>

X:<pp> → Y:<ea>

Y:<ea> → X:<pp>

Y:<pp> → X:<ea>

X:<ea> → Y:<pp>

Y:<pp> → Y:<ea>

Y:<ea> → Y:<pp>

X:<pp> → X:<Rn+xxxx>

X:<Rn+xxxx> → X:<pp>

X:<pp> → Y:<Rn+xxxx>

Y:<Rn+xxxx> → X:<pp>

Y:<pp> → X:<Rn+xxxx>

X:<Rn+xxxx> → Y:<pp>

Y:<pp> → Y:<Rn+xxxx>

Y:<Rn+xxxx> → Y:<pp>

X:<pp> → P:<ea>

P:<ea> → X:<pp>

Y:<pp> → P:<ea>

P:<ea> → Y:<pp>

Description:
Move the word operand to or from the X and Y I/O peripherals. The 7-bit I/O Short Address is one extended
permitting access to the I/O peripheral addresses located in the highest 128 locations of the X and Y data
memories. All memory addressing modes may be used for the memory effective address. The Long Dis-
placement addressing mode may also be used.

If the system stack register SSH is specified as a source operand, the system stack pointer SP is postdec-
remented by 1 after SSH is read. If the system stack register SSH is specified as a destination operand,
A - 264 DSP96002 USER’S MANUAL MOTOROLA

the system stack pointer SP is preincremented by 1 before SSH is written. This allows the system stack
to be efficiently extended using software stack pointer operations.

See Section A.10 for restrictions that apply to this instruction.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

CCR Condition Codes:

For destination operand SR:

C - Set according to bit 0 of the source operand.

V - Set according to bit 1 of the source operand.

Z - Set according to bit 2 of the source operand.

N - Set according to bit 3 of the source operand.

I - Set according to bit 4 of the source operand.

LR - Set according to bit 5 of the source operand.

–
R - Set according to bit 6 of the source operand.

A - Set according to bit 7 of the source operand.

For destination operands other than SR:

C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

For destination operand SR:

INX -Set according to bit 8 of the source operand.

DZ -Set according to bit 9 of the source operand.

UNF -Set according to bit 10 of the source operand.

OVF -Set according to bit 11 of the source operand.

OPERR-Set according to bit 12 of the source operand.

SNAN -Set according to bit 13 of the source operand.

NAN -Set according to bit 14 of the source operand.

UNCC -Set according to bit 15 of the source operand.
MOTOROLA DSP96002 USER’S MANUAL A - 265

For destination operands other than SR:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For destination operand SR:

SINX -Set according to bit 16 of the source operand.

SDZ -Set according to bit 17 of the source operand.

SUNF -Set according to bit 18 of the source operand.

SOVF -Set according to bit 19 of the source operand.

SIOP -Set according to bit 20 of the source operand.

For destination operands other than SR:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.
A - 266 DSP96002 USER’S MANUAL MOTOROLA

10 1sSW 1ppp pppp

31 14 13 0

LONG DISPLACEMENT

0000 0000 0111 000R RR

11 1sSW 1ppp pppp

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

0000 0000 0111 MMMR RR

Instruction Format: MOVE(P) X: pp, X: ea MOVE(P) Y: pp, Y: ea
MOVE(P) X: ea, X: pp MOVE(P) Y: ea, Y: pp
MOVE(P) X: pp, Y: ea MOVE(P) #Data,X: pp
MOVE(P) Y: ea, X: pp MOVE(P) #Data,Y: pp
MOVE(P) Y: pp, X: ea
MOVE(P) X: ea, Y: pp

Instruction Format:
 MOVE(P) X: pp, X:(Rn+displacement) MOVE(P) Y: pp, X:(Rn+displacement)

MOVE(P) X:(Rn+displacement),X: pp MOVE(P) X:(Rn+displacement),Y: pp
MOVE(P) X: pp, Y:(Rn+displacement) MOVE(P) Y: pp, Y:(Rn+displacement)
MOVE(P) Y:(Rn+displacement),X: pp MOVE(P) Y:(Rn+displacement),Y: pp

d0 00SW 1ppp pppp

31 14 13 0

0000 0000 0111 dddd dd

11 01SW 1ppp pppp

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0000 0111 MMMR RR

Instruction Format: MOVE(P) X: pp, D MOVE(P) Y: pp, D
MOVE(P) S,X: pp MOVE(P) S,Y: pp

Instruction Format: MOVE(P) X: pp, P: ea MOVE(P) Y: pp, P: ea
MOVE(P) P: ea, X: pp MOVE(P) P: ea, Y: pp
 Instruction Fields:

 <ea> Rn - R0-R7

 X: or Y: reference (Memory addressing modes only)

 P: reference (Memory Alterable addressing modes only)

 Absolute Address - 32 bits

 Long Displacement - 32 bits

 I/O Short Address - ppppppp (7 bits)

 Memory Space s Periph Space S Peripheral W

 X Memory 0 X Memory 0 Read 0

 Y Memory 1 Y Memory 1 Write 1
MOTOROLA DSP96002 USER’S MANUAL A - 267

S,D d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 2 + mvp oscillator clock cycles

Memory: 1 + mv program words
A - 268 DSP96002 USER’S MANUAL MOTOROLA

MOVE(S) Move Absolute Short MOVE(S)

Assembler Syntax:

MOVE(S) X: aa, D1

MOVE(S) S1,X: aa

MOVE(S) #Data,X: aa

MOVE(S) Y: aa, D1

MOVE(S) S1,Y: aa

MOVE(S) #Data,Y: aa

MOVE(S) L: aa, D2

MOVE(S) S2,L: aa

MOVE(S) X: aa, X: ea

MOVE(S) X: ea, X: aa

MOVE(S) X: aa, Y: ea

MOVE(S) Y: ea, X: aa

MOVE(S) Y: aa, X: ea

MOVE(S) X: ea, Y: aa

MOVE(S) Y: aa, Y: ea

MOVE(S) Y: ea, Y: aa

MOVE(S) X: aa, X:(Rn+displacement)

MOVE(S) X:(Rn+displacement),X: aa

MOVE(S) X: aa, Y:(Rn+displacement)

MOVE(S) Y:(Rn+displacement),X: aa

MOVE(S) Y: aa, X:(Rn+displacement)

MOVE(S) X:(Rn+displacement),Y: aa

MOVE(S) Y: aa, Y:(Rn+displacement)

MOVE(S) Y:(Rn+displacement),Y: aa

MOVE(S) X: aa, P: ea

MOVE(S) P: ea, X: aa

MOVE(S) Y: aa, P: ea

MOVE(S) P: ea, Y: aa
Operation:

X:<aa> → D1

S1 → X :<aa>

 #xxxx → X:<aa>

Y:<aa> → D1

S1 → Y:<aa>

 #xxxx → Y:<aa>

L:<aa> → D2

S2 → L:<aa>

X:<aa> → X:<ea>

X:<ea> → X:<aa>

X:<aa> → Y:<ea>

Y:<ea> → X:<aa>

Y:<aa> → X:<ea>

X:<ea> → Y:<aa>

Y:<aa> → Y:<ea>

Y:<ea> → Y:<aa>

X:<aa> → X:<Rn+xxxx>

X:<Rn+xxxx> → X:<aa>

X:<aa> → Y:<Rn+xxxx>

Y:<Rn+xxxx> → X:<aa>

Y:<aa> → X:<Rn+xxxx>

X:<Rn+xxxx> → Y:<aa>

Y:<aa> → Y:<Rn+xxxx>

Y:<Rn+xxxx> → Y:<aa>

X:<aa> → P:<ea>

P:<ea> → X:<aa>

Y:<aa> → P:<ea>

P:<ea> → Y:<aa>
Description:

Move the word operand to or from the lower 128 memory locations in X and Y Data memories. The 7-bit
Absolute Short Address is zero extended. All memory addressing modes may be used for the memory
effective address. The Long Displacement addressing mode may also be used.
MOTOROLA DSP96002 USER’S MANUAL A - 269

If the system stack register SSH is specified as a source operand, the system stack pointer SP is postdec-
remented by 1 after SSH is read. If the system stack register SSH is specified as a destination operand,
the system stack pointer SP is preincremented by 1 before SSH is written. This allows the system stack
to be efficiently extended using software stack pointer operations.

See Section A.10 for restrictions that apply to this instruction.

CAUTION
See restrictions in Section A.10.6 concerning Rn, Mn, and Nn registers as a
destination.

CCR Condition Codes:

For destination operand SR:

C - Set according to bit 0 of the source operand.

V - Set according to bit 1 of the source operand.

Z - Set according to bit 2 of the source operand.

N - Set according to bit 3 of the source operand.

I - Set according to bit 4 of the source operand.

LR - Set according to bit 5 of the source operand.

–
R - Set according to bit 6 of the source operand.

A - Set according to bit 7 of the source operand.

For destination operands other than SR:

C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

For destination operand SR:

INX -Set according to bit 8 of the source operand.

DZ -Set according to bit 9 of the source operand.

UNF -Set according to bit 10 of the source operand.

OVF -Set according to bit 11 of the source operand.

OPERR-Set according to bit 12 of the source operand.

SNAN -Set according to bit 13 of the source operand.

NAN -Set according to bit 14 of the source operand.

UNCC -Set according to bit 15 of the source operand.
A - 270 DSP96002 USER’S MANUAL MOTOROLA

3

3

In

In
For destination operands other than SR:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For destination operand SR:

SINX -Set according to bit 16 of the source operand.

SDZ -Set according to bit 17 of the source operand.

SUNF -Set according to bit 18 of the source operand.

SOVF -Set according to bit 19 of the source operand.

SIOP -Set according to bit 20 of the source operand.

For destination operands other than SR:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 271

10 1sSW 0aaa aaaa

1 14 13 0

LONG DISPLACEMENT

0000 0000 0111 000R RR

11 1sSW 0aaa aaaa

1 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

0000 0000 0111 MMMR RR

struction Format:
MOVE(S) X: aa, X:(Rn+displacement) MOVE(S) Y: aa, X:(Rn+displacement)
MOVE(S) X:(Rn+displacement),X: aa MOVE(S) X:(Rn+displacement),Y: aa
MOVE(S) X: aa, Y:(Rn+displacement) MOVE(S) Y: aa, Y:(Rn+displacement)
MOVE(S) Y:(Rn+displacement),X: aa MOVE(S) Y:(Rn+displacement),Y: aa

struction Format: MOVE(S) X: aa, X: ea MOVE(S) Y: aa, X: ea
MOVE(S) X: ea, X: aa MOVE(S) X: ea, Y: aa
MOVE(S) X: aa, Y: ea MOVE(S) Y: aa, Y: ea
MOVE(S) Y: ea, X: aa MOVE(S) Y: ea, Y: aa
MOVE(S) #Data,X: aa
MOVE(S) #Data,Y: aa

SIOP - Not affected.
A - 272 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: MOVE(S) X: aa, P: ea MOVE(S) Y: aa, P: ea
MOVE(S) P: ea, X: aa MOVE(S) P: ea, Y: aa

11 01SW 0aaa aaaa

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0000 0111 MMMR RR

d0 00SW 0aaa aaaa

31 14 13 0

0000 0000 0111 dddd dd

D1 000W 0aaa aaaa

31 14 13 0

0000 0000 0111 DDDD DD

Instruction Format: MOVE(S) L: aa, D2
MOVE(S) S2,L: aa

Instruction Format: MOVE(S) X: aa, D1 MOVE(S) Y: aa, D1
MOVE(S) S1,X: aa MOVE(S) S1,Y: aa
Instruction Fields:

 <ea> Rn - R0-R7

 X: or Y: reference (Memory addressing modes only)

 P: reference (Memory Alterable addressing modes only)

 Absolute Address - 32 bits

 Long Displacement - 32 bits

 Absolute Short Address - aaaaaaa (7 bits)

 Memory Space s Abs. Short Space S Abs. Short Location W

 X Memory 0 X Memory 0 Read 0

 Y Memory 1 Y Memory 1 Write 1

MOTOROLA DSP96002 USER’S MANUAL A - 273

S1, D1 d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

 S2,D2 D D D D D D D

 D0.ML-D7.ML 1 0 1 1 n n n where nnn = 0-7

 D0.D-D7.D 1 0 1 0 n n n

 D9.ML 1 0 0 0 1 1 1

 D8.ML 1 0 0 0 1 1 0

 D9.D 1 0 0 0 1 0 1

 D8.D 1 0 0 0 1 0 0

Timing: 2 + mvs oscillator clock cycles

Memory: 1 + mv program words
A - 274 DSP96002 USER’S MANUAL MOTOROLA

MOVETA Move Data Registers MOVETA
 and Test Address
Assembler Syntax:

MOVETA
(move syntax - see the Move instruction de-
Operation:

parallel data bus move

Description:

scription).

Move the contents of the specified source to the specified destination and update the C, V, N and Z flags
in the CCR according to the result of the address calculation. Only Address Register Indirect addressing
modes will give meaningful flag updates. For the No Update addressing mode, the address calculation is
assumed to be Rn-0 with linear modifier while ignoring the contents of the Mn and Nn registers. For XY
moves, update the CCR according to the result of the X address calculation. This instruction is a Data ALU
NOP instruction with the parallel data move operations described in the MOVE instruction description.

Some parallel data move operations differentiate between integer or floating-point operands according to
the kind of Data ALU operation specified. For this purpose, two Data ALU NOP opcodes are used: an
"integer NOP" and a "floating-point NOP". For example, if a XY parallel move is specified with integer op-
erands, the assembler will produce a 32 bit instruction word with the "integer NOP" in the Data ALU opcode
field. If floating-point operands are specified, the "floating-point NOP" is used instead.

CCR Condition Codes:

C - For increment addressing modes: Set if carry occurred out of the MSB during ad-
dress calculation with linear modifier or carry occurred out of the LSB during ad-
dress calculation with reverse carry modifier. Cleared otherwise.

For decrement addressing modes: Set if borrow occurred out of the MSB during
address calculation with linear modifier or borrow occurred out of the LSB during
address calculation with reverse carry modifier. Cleared otherwise.

For modulo addressing modes: Always cleared.

V - Set if overflow occurred out the MSB during address calculation with a linear mod-
ifier. Set if overflow occurred out the LSB during address calculation with a reverse
carry modifier. Set if wrap-around occurred during address calculation with a mod-
ulo modifier. Set if at least one wrap-around occurred during address calculation
with a multiple wrap-around modulo modifier. Cleared otherwise.

Z - Set if result of the address calculation is zero. Cleared otherwise.

N - Set if the MSB of the result of the address calculation with linear or modulo modifier
is set. Set if the LSB of the result of the address calculation with reverse carry
modifier is set. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 275

Instruction Format: MOVETA (Integer NOP)

Instruction Fields:

See the MOVE instruction description for Data Bus Move Field encoding.

31 14 13 0
10 0000 1000 0010

OPTIONAL EFFECTIVE ADDRESS EXTENSION

DATA BUS MOVE FIELD

10 0000 1000 0110

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

DATA BUS MOVE FIELD

Instruction Format: MOVETA (Integer NOP)
Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 276 DSP96002 USER’S MANUAL MOTOROLA

MPYS Signed Multiply MPYS

Assembler Syntax:

MPYS S1,S2,D
(See the MOVE instruction description.)

MPYS S2,S1,D
Operation:

S1.L * S2.L → D.M:D.L (parallel data bus move)
(See the MOVE instruction description.)
Description:

Multiply two signed operands and store the product in the specified destination register. The two source
operands are 32-bit integers and are taken from the low portion of S1 and S2. The result is a 64-bit signed
integer stored in the middle and low portions of D. Registers D8 and D9 can be used as source registers.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Not affected.

V - Cleared if the most significant 32 bits of the 64-bit result are the sign extension of
the least significant 32 bits. Set otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 277

Instruction Format: MPYS S1,S2,D (See the MOVE instruction description.)

11 1sss SSS0 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

11 0sss 11S0 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

Instruction Format: MPYS S2(8,9),S1,D (See the MOVE instruction description.)
IER Flags: Not affected.

Instruction Fields:

S1 s s s

Dn n n n where nnn = 0-7

S2 S S S

 Dn n n n where nnn = 0-7

S2 S

D8 0

D9 1

D d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 278 DSP96002 USER’S MANUAL MOTOROLA

MPYU Unsigned Multiply MPYU

Assembler Syntax:

MPYU S1,S2,D
(See the MOVE instruction description.)

MPYU S2,S1,D
Operation:

S1.L * S2.L → D.M:D.L (parallel data bus move)

(See the MOVE instruction description.)
Description:

Multiply two unsigned operands and store the product in the specified destination register. The two source
operands are 32-bit integers and are taken from the low portion of S1 and S2. The result is a 64-bit un-
signed integer stored in the middle and low portions of D. Registers D8 and D9 can be used as source reg-
isters.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Not affected.

V - Cleared if the most significant 32 bits of the 64-bit result are zero. Set otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Always cleared.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Fields:
MOTOROLA DSP96002 USER’S MANUAL A - 279

Instruction Format: MPYU S2(8,9),S1,D (See the MOVE instruction description.)

Instruction Format: MPYU S1,S2,D (See the MOVE instruction description.)

11 1sss SSS1 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

11 0sss 11S1 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
S1 s s s

Dn n n n where nnn = 0-7

S2 S S S

 Dn n n n where nnn = 0-7

S2 s

D8 0

D9 1

D d d d

 Dn n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 280 DSP96002 USER’S MANUAL MOTOROLA

NEG Negate NEG

Assembler Syntax:

NEG D
(See the MOVE instruction description.)
Operation:

0 - D.L → D.L (parallel data bus move)

31 14 13 0

Description:

The low portion of the destination operand is subtracted from zero. The result is stored in the low portion
of D. This instruction is preferable to using the SUB instruction since it is not necessary to zero an input
operand.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if a borrow is generated from the MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: NEG D (See the MOVE instruction description.)
10 0101 uu11 1ddd

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

 (u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 281

NEGC Negate with Carry NEGC

Operation:
ssembler Syntax:

EGC D
ee the MOVE instruction description.)
0 - D.L - C → D.L (parallel data bus move)

A

N
(S

Description:
Subtract the low portion of the destination operand D from zero along with the C bit of the condition code
register and store the result in the low portion of D. This instruction is useful when negating a multiple
precision number since it is not necessary to first zero an input operand as would be the case if the SUB
instruction were used. Note that the higher precision long words of the input variable must first be moved
to the lower portion of the Dn.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if a borrow is generated from the MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Cleared if the result is not zero. Unchanged otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: NEGC D (See the MOVE instruction description.)
10 0001 uu11 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 282 DSP96002 USER’S MANUAL MOTOROLA

 NOP No Operation NOP

Assembler Syntax:

NOP
Operation:

None
31 14 13 0

Description:

No operation occurs. The processor state, other than the program counter, is not affected. Execution con-
tinues with the instruction following the NOP.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: NOP
00 0000 0000 00000000 0000 0000 0000 00
Instruction Fields:

 None

Timing: 2 oscillator clock cycles

Memory: 1 program words
MOTOROLA DSP96002 USER’S MANUAL A - 283

NOT Logical Complement NOT

Assembler Syntax:

NOT D
(See the MOVE instruction description.)
Operation:

~D{31:0} → D{31:0} (parallel data bus move)

Description:

The one’s complement of the low portion of the destination operand is taken and the result is stored in D.
This instruction is a 32-bit operation and is performed on bits 0-31 of D. The remaining bits of D are not
affected.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: NOT D (See the MOVE instruction description.)
10 0010 uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 284 DSP96002 USER’S MANUAL MOTOROLA

OR Logical Inclusive OR OR

Assembler Syntax:

OR S,D
(See the MOVE instruction description.)
Operation:

D.L v S.L → D.L (parallel data bus move)

Description:
Logically inclusive OR the low portion of the two specified operands and store the result in the low portion
of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: OR S,D (See the MOVE instruction description.)

Instruction Fields:
00 0sss uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 285

ORC Logical Inclusive OR with Complement ORC

ssembler Syntax:

RC S,D
See the MOVE instruction description.)
Operation:

D.L v ~S.L → D.L (parallel data bus move)

A

O
(
11 0sss 1001 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

DATA BUS MOVE FIELD

Description:

Logically inclusive OR the low portion of D with the logical complement of the low portion of S, and store
the result in the low portion of D. This instruction is useful for manipulating bit maps in graphic operations.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: ORC S,D (See the MOVE instruction description.)
Instruction Fields:

 D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 286 DSP96002 USER’S MANUAL MOTOROLA

ORI OR Immediate to Control Register ORI

Assembler Syntax:

OR(I) #Mask,D
Operation:

D v #xx → D
Description:

Logically OR the contents of the control register with an 8-bit immediate operand. The result is stored back
into the specified control register. See Section A.10 for restrictions.

CCR Condition Codes:

For CCR operand:

C - Set if bit 0 of the immediate operand is set. Not affected otherwise.

V - Set if bit 1 of the immediate operand is set. Not affected otherwise.

Z - Set if bit 2 of the immediate operand is set. Not affected otherwise.

N - Set if bit 3 of the immediate operand is set. Not affected otherwise.

I - Set if bit 4 of the immediate operand is set. Not affected otherwise.

LR - Set if bit 5 of the immediate operand is set. Not affected otherwise.

–
R - Set if bit 6 of the immediate operand is set. Not affected otherwise.

A - Set if bit 7 of the immediate operand is set. Not affected otherwise.

For OMR, MR, IER, ER operands:

C - Not affected.

V - Not affected.

Z - Not affected.

N - Not affected.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits:

For ER operand:

INX -Set if bit 0 of the immediate operand is set. Not affected otherwise.

DZ -Set if bit 1 of the immediate operand is set. Not affected otherwise.

UNF -Set if bit 2 of the immediate operand is set. Not affected otherwise.

OVF -Set if bit 3 of the immediate operand is set. Not affected otherwise.

OPERR-Set if bit 4 of the immediate operand is set. Not affected otherwise.

SNAN -Set if bit 5 of the immediate operand is set. Not affected otherwise.

NAN -Set if bit 6 of the immediate operand is set. Not affected otherwise.

UNCC -Set if bit 7 of the immediate operand is set. Not affected otherwise.
MOTOROLA DSP96002 USER’S MANUAL A - 287

For OMR, MR, IER, CCR operands:

INX - Not affected.

DZ - Not affected.

UNF - Not affected.

OVF - Not affected.

OPERR- Not affected.

SNAN - Not affected.

NAN - Not affected.

UNCC - Not affected.

IER Flags:

For IER operand:

SINX -Set if bit 0 of the immediate operand is set. Not affected otherwise.

SDZ -Set if bit 1 of the immediate operand is set. Not affected otherwise.

SUNF -Set if bit 2 of the immediate operand is set. Not affected otherwise.

SOVF -Set if bit 3 of the immediate operand is set. Not affected otherwise.

SIOP -Set if bit 4 of the immediate operand is set. Not affected otherwise.

For OMR, MR, ER, CCR operands:

SINX - Not affected.

SDZ - Not affected.

SUNF - Not affected.

SOVF - Not affected.

SIOP - Not affected.

Instruction Format: OR(I) #Mask,D
31 14 13 0
i i 00ff 1111 10EE0000 0001 0001 i i i i i i
Instruction Fields:

 Immediate Short Data - iiiiiiii (8 bits)

D E E f f
CCR 0 1 0 0
ER 0 1 0 1
IER 0 1 1 0
MR 0 1 1 1
OMR 1 0 0 0

Timing: 2 + mv oscillator clock cycles
Memory: 1 program words
A - 288 DSP96002 USER’S MANUAL MOTOROLA

REP Repeat Next Instruction
REP
Assembler Syntax:

REP X: ea

REP Y: ea

REP S

REP #Count

Operation:

LC → TEMP; X:<ea> → LC

Repeat next instruction until LC = 1.

TEMP → LC

LC → TEMP; Y:<ea> → LC

Repeat next instruction until LC = 1.

TEMP → LC

LC → TEMP; S → LC

Repeat next instruction until LC = 1.

TEMP → LC

LC → TEMP; #xxx → LC

Repeat next instruction until LC = 1.

TEMP → LC
Description:

The single word instruction following the REP instruction is executed LC times repetitively, where LC is the
value in the loop counter. If LC=0, the instruction is repeated 2**32 times. The current loop counter (LC)

value is stored in an internal temporary register. The effective address specifies the address of the repeat
count which is loaded into LC. All address register indirect addressing modes except Long Displacement
may be used. Immediate Short and Register Direct addressing modes may also be used. The 19-bit im-
mediate data is zero extended to form the loop counter value.

When the REP instruction is in effect, the repeated instruction is fetched only once and remains in the in-
struction register for the duration of the repeat count.

REP is not interruptible and can repeat any single word instruction which does not change program flow.
See Section A.10 for the complete list of restricted instructions.

If the system stack register SSH is specified as a source operand, the system stack pointer SP is postdec-
remented by 1 after SSH is read.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
MOTOROLA DSP96002 USER’S MANUAL A - 289

Instruction Format: REP #Count

i i i i i i 1 i i i i i i i

31 14 13 0

0000 0001 1111 i i i i i i

00 0000 1ddd dddd

31 14 13 0

0000 0001 1110 0000 00

00 0000 1000 0000

31 14 13 0

0000 0001 110s MMMR RR

Instruction Format: REP X: ea
REP Y: ea

Instruction Format: REP S
Instruction Fields:

 <ea> Rn - R0-R7 (Address Register Indirect Modes except (Rn+xxx))

 Immediate Short Data - iiiiiiiiiiiiiiiiiii (19 bits)

Memory Space s

X Memory 0

Y Memory 1

A - 290 DSP96002 USER’S MANUAL MOTOROLA

S d d d d d d d

D0.S-D7.S 0 0 0 0 n n n where nnn = 0-7

D0.L-D7.L 0 0 0 1 n n n

D0.M-D7.M 0 0 1 0 n n n

D0.H-D7.H 0 0 1 1 n n n

D8.L 0 1 0 0 0 0 0

D9.L 0 1 0 0 0 0 1

D8.M 0 1 0 0 0 1 0

D9.M 0 1 0 0 0 1 1

D8.H 0 1 0 0 1 0 0

D9.H 0 1 0 0 1 0 1

D8.S 0 1 0 0 1 1 0

D9.S 0 1 0 0 1 1 1

R0-R7 0 1 0 1 n n n

N0-N7 0 1 1 0 n n n

M0-M7 0 1 1 1 n n n

SR 1 1 1 1 0 0 1

OMR 1 1 1 1 0 1 0

SP 1 1 1 1 0 1 1

SSH 1 1 1 1 1 0 0

SSL 1 1 1 1 1 0 1

LA 1 1 1 1 1 1 0

LC 1 1 1 1 1 1 1

Timing: 4 + mv oscillator clock cycles

Memory: 1 program words
MOTOROLA DSP96002 USER’S MANUAL A - 291

RESET Reset Peripheral Devices RE-
SET

Operation:

Reset all on-chip peripherals and
A - 292 DSP96002 US

0000 0000 0000 0000
the Interrupt Priority Register.

 Assembler Syntax:

RESET
31 14 13 0

Description:

All on-chip peripherals and the Interrupt Priority Register are reset. See Chapter 7 for a description of the
effect of the RESET instruction on the peripherals. The processor state is not affected and execution con-
tinues with the next instruction, but all maskable interrupt sources are disabled. The only interrupts that
can then occur are Stack Error, Hardware Reset, ILLEGAL, TRAPcc and FTRAPcc.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: RESET
00 0000 0000 010000
Instruction Fields:

 None

Timing: 4 oscillator clock cycles

Memory: 1 program words
ER’S MANUAL MOTOROLA

ROL Rotate Left ROL

Operation:

31 0
C (parallel data bus move)
Assembler Syntax:

ROL D (See the MOVE instruction description.)

Description:

Rotate the low portion of the specified operand one bit to the left. The carry bit receives the previous value
of bit 31 of the operand. The previous value of the carry bit is shifted into bit 0 of the operand. The result
is stored in the low portion of D. This instruction is a 32 bit operation and is performed on bits 0-31 of D.
The remaining bits of D are not affected.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if the bit shifted out of the operand is set. Cleared otherwise.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.
10 0011 uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD

Instruction Format: ROL D (See the MOVE instruction description.)
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 293

ROR Rotate Right ROR

Operation:

31 0
C (parallel data bus move)
Assembler Syntax:

ROR D (See the MOVE instruction description.)

Description:

Rotate the low portion of the specified operand one bit to the right. The carry bit receives the previous value
of bit 0 of the operand. The previous value of the carry bit is shifted into bit 31 of the operand. The result
is stored in the low portion of D. This instruction is a 32 bit operation and is performed on bits 0-31 of D.
The remaining bits of D are not affected.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if the bit shifted out of the operand is set. Cleared otherwise.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: ROR D (See the MOVE instruction description.)
10 0011 uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
 Instruction Fields:

 (u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 294 DSP96002 USER’S MANUAL MOTOROLA

RTI Return from Interrupt
RTI
Assembler Syntax:

RTI

Operation:
Description:

The program counter and the status register are pulled from the system stack. The interrupt routine pro-
gram counter and status register are lost. RTI if functionally identical to RTR but has been made a separate
instruction to be upward compatible with future parts and to simplify porting software.

Due to pipelining, the RTI instruction must not be immediately preceded by some instructions. See Sec-
tion A.10 for the list of restricted instructions.

CCR Condition Codes:

C - Set according to value pulled from stack.

V - Set according to value pulled from stack.

Z - Set according to value pulled from stack.

N - Set according to value pulled from stack.

I - Set according to value pulled from stack.

LR - Set according to value pulled from stack.

–
R - Set according to value pulled from stack.

A - Set according to value pulled from stack.

ER Status Bits:

INX -Set according to value pulled from stack.

DZ -Set according to value pulled from stack.

UNF -Set according to value pulled from stack.

OVF -Set according to value pulled from stack.

OPERR-Set according to value pulled from stack.

SNAN -Set according to value pulled from stack.

NAN -Set according to value pulled from stack.

UNCC -Set according to value pulled from stack.

IER Flags:

SINX -Set according to value pulled from stack.

SDZ -Set according to value pulled from stack.

SUNF -Set according to value pulled from stack.

SOVF -Set according to value pulled from stack.

SIOP -Set according to value pulled from stack.
MOTOROLA DSP96002 USER’S MANUAL A - 295

SSH → PC; SSL → SR; SP – 1 → SP
A - 296 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: RTI

00 0000 0000 1100

31 14 13 0

0000 0000 0000 0000 00
Instruction Fields:

 None.

Timing: 4 + rx oscillator clock cycles

Memory: 1 program words

MOTOROLA DSP96002 USER’S MANUAL A - 297

RTR Return from Subroutine with Restore RTR

Assembler Syntax:

RTR
Operation:

SSH → PC; SSL → SR; SP – 1 → SP
Description:

The program counter and the status register are pulled from the system stack. The subroutine program
counter and status register are lost. RTR if functionally identical to RTI but has been made a separate in-
struction to be upward compatible with future parts and to simplify porting software.

Due to pipelining, the RTR instruction must not be immediately preceded by some instructions. See Sec-
tion A.10 for the list of restricted instructions.

CCR Condition Codes:

C - Set according to value pulled from stack.

V - Set according to value pulled from stack.

Z - Set according to value pulled from stack.

N - Set according to value pulled from stack.

I - Set according to value pulled from stack.

LR - Set according to value pulled from stack.

–
R - Set according to value pulled from stack.

A - Set according to value pulled from stack.

ER Status Bits:

INX -Set according to value pulled from stack.

DZ -Set according to value pulled from stack.

UNF -Set according to value pulled from stack.

OVF -Set according to value pulled from stack.

OPERR-Set according to value pulled from stack.

SNAN -Set according to value pulled from stack.

NAN -Set according to value pulled from stack.

UNCC -Set according to value pulled from stack.

IER Flags:

SINX -Set according to value pulled from stack.

SDZ -Set according to value pulled from stack.

SUNF -Set according to value pulled from stack.

SOVF -Set according to value pulled from stack.

SIOP -Set according to value pulled from stack.
A - 298 DSP96002 USER’S MANUAL MOTOROLA

Instruction Format: RTR

00 0000 0000 1000

31 14 13 0

0000 0000 0000 0000 00
Instruction Fields:

 None.

Timing: 4 + rx oscillator clock cycles

Memory: 1 program words

MOTOROLA DSP96002 USER’S MANUAL A - 299

RTS Return from Subroutine RTS

Assembler Syntax:

RTS
Operation:

SSH → PC; SP – 1 → SP
31 14 13 0

Description:

The program counter is pulled from the system stack. The status register is not affected. The subroutine
program counter is lost.

Due to pipelining, the RTS instruction must not be immediately preceded by some instructions. See Sec-
tion A.10 for the list of restricted instructions.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: RTS
00 0000 0000 11010000 0000 0000 0000 00
Instruction Fields:

 None.

Timing: 4 + rx oscillator clock cycles

Memory: 1 program words
A - 300 DSP96002 USER’S MANUAL MOTOROLA

SETW Set Long Word Operand SETW

Assembler Syntax:

SETW D

(move syntax - see the Move instruction description.)
Operation:

$FFFFFFFF → D.L (parallel data bus move)

Description:

The low portion (long word) of the destination operand is set to all ones.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Always cleared.

N - Always set.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: SETW D (move syntax - see the Move instruction description.)

11 0uuu 1001 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 301

SPLIT Extract a 16-bit Integer SPLIT

Operation: Assembler Syntax:
SPLIT S,D
(move syntax - see the Move instruction de-
scription.)
S.L {31:16} → D.L {15:0} (parallel data bus move)

S.L {31} → D.L {31:16}

Description:
Transfer the 16 MSBs of the lower portion of source operand S into the 16 LSBs of the lower portion of
destination D and sign-extend to 32 bits.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: SPLIT S,D (move syntax - see the Move instruction description.)

11 0sss 1011 0ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
 Instruction Fields:

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 302 DSP96002 USER’S MANUAL MOTOROLA

SPLITB Extract an 8-bit Integer SPLITB

Operation: Assembler Syntax:
SPLITB S,D

(move syntax - see the Move instruction de-
scription.)
S.L {15:8} → D.L {7:0} (parallel data bus move)

S.L {15} → D.L {31:8}

Description:
Transfer bits 15-8 of the lower portion of source operand S into the 8 LSBs of the lower portion of destina-
tion D and sign-extend to 32 bits.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: SPLITB S,D (move syntax - see the Move instruction description.)

11 0sss 1011 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 303

STOP Stop Instruction Processing STOP

Operation: Assembler Syntax:
Enter the STOP processing state and

stop the clock oscillator.

Description:
A - 304 DSP96002 US

31

0000 0000 0000 0000
STOP
When a STOP instruction is executed, the processor enters the STOP processing state. The clock oscil-

lator is gated off. All activity in the processor is suspended until the
—

R
—

E
—

S
—

E
–
T or

—
I
—

R
—

Q
–
A pin

is asserted. The STOP processing state is the lowest-power stand-by state.

During the STOP state, port A is in an idle state with the control signals held inactive (i.e.,
—

R
–
D =

—
W

–
R

= Vcc etc., the data pins (D0–D23) are high impedance, and the address pins (A1–A15) are unchanged from

the previous instruction. If the bus grant was asserted when the STOP instruction was executed, port A will
remain three-stated until the DSP exits the STOP state.

If the exit from the STOP state was caused by a low level on the
—

R
—

E
—

S
—

E
–
T pin, then the processor

will enter the reset processing state. Consult the DSP96002 Technical Data Sheet (DSP96002/D) for timing
details.

If the exit from the STOP state was caused by a low level on the
—

I
—

R
—

Q
–
A pin, then the processor will

service the highest priority pending interrupt and will not service the
—

I
—

R
—

Q
–
A interrupt unless it is high-

est priority. The interrupt will be serviced after an internal delay (see the DSP96002 Technical Data Sheet
(DSP96002/D) for details). The processor will resume program execution at the instruction following the
STOP instruction that caused the entry into the STOP state after the interrupt has been serviced or if no

interrupt was pending immediately after the delay. If the
—

I
—

R
—

Q
–
A pin is asserted when the STOP in-

struction is executed, the clock will not be gated off, and the internal delay counter will be started.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: STOP
00 0000 0000 1111

14 13 0

00
Instruction Fields:

 None

Timing: n/a

Memory: 1 program words
ER’S MANUAL MOTOROLA

SUB Subtract SUB

Operation: Assembler Syntax:
SUB S,D
(move syntax - see the Move instruction de-
scription.)
D.L - S.L → D.L (parallel data bus move)

Description:
Subtract the low portion of the specified source operand S from the low portion of the destination operand
D and store the result in the low portion of D.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if a borrow is generated from the MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: SUB S,D (move syntax - see the Move instruction description.)

00 1sss uu00 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 305

SUBC Subtract with Carry SUBC

Operation: Assembler Syntax:
SUBC S,D
(move syntax - see the Move instruction de-
scription.)
D.L - S.L - C → D.L (parallel data bus move)

Description:

Subtract the low portion of the specified source operand S from the low portion of the destination operand
D along with the C bit of the condition code register and store the result in the low portion of D. This in-
struction is useful in multiple precision integer arithmetic routines. Note that the higher precision long words
of the input variables must be moved to the low portion of the Dn.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes:

C - Set if a borrow is generated from the MSB of the result. Cleared otherwise.

V - Set if result overflows. Cleared otherwise.

Z - Cleared if the result is not zero. Unchanged otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: SUBC S,D (move syntax - see the Move instruction description.)

00 1sss uu10 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 306 DSP96002 USER’S MANUAL MOTOROLA

TFR Transfer Data ALU Register TFR

Assembler Syntax:

TFR S,D
(move syntax - see the Move instruction de-
scription.)
Operation:

S.L → D.L (parallel data bus move)

Description:

Transfer data from the low portion of the specified source Data ALU register to the low portion of the spec-
ified destination Data ALU register. TFR uses the internal Data ALU paths but does not affect the condition
code bits. When the S and D registers are the same, this instruction is equivalent to an integer rounding
operation.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: 32-bit integer.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: TFR S,D (move syntax - see the Move instruction description.)

10 1sss uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

D d d d

Dn.L n n n where nnn = 0-7

S s s s

 Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA DSP96002 USER’S MANUAL A - 307

TRAPcc Conditional Software Interrupt TRAPcc

Assembler Syntax:

TRAPcc
Operation:

If cc, then

begin software exception processing.
A - 308 DSP96002 USER’S MANUAL MOTOROLA

Description:

If the specified integer condition is true, normal instruction execution is suspended and software exception
processing is initiated. The interrupt priority level (I1,I0) is set to 3 in the status register if a long interrupt
service routine is used. If the specified condition is false, continue with the next instruction. See Section
A.10 for restrictions.

"cc" may specify the following conditions:

Mnemonic Condition
CC (HS) - carry clear (higher or same) C = 0
CS (LO) - carry set (lower) C = 1
EQ - equal Z = 1
GE - greater or equal N && V = 0
GT - greater than Z v (N && V) = 0
HI - higher Z v C = 0
LE - less or equal Z v (N && V) = 1
LS - lower or same Z v C = 1
LT - less than N && V = 1
MI - minus N = 1
NE(Q) - not equal Z = 0
PL - plus N = 0
VC - overflow clear V = 0
VS - overflow set V = 1
AL - always true n.a.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: TRAPcc

1c cccc 0000 0011

31 14 13 0

0000 0000 0000 0000 00

MOTOROLA DSP96002 USER’S MANUAL A - 309

Instruction Fields:
Mnemonic c c c c c Mnemonic c c c c c
EQ 0 1 0 0 0 NE(Q) 1 1 0 0 0
PL 0 1 0 0 1 MI 1 1 0 0 1
CC(HS) 0 1 0 1 0 CS(LO) 1 1 0 1 0
GE 0 1 0 1 1 LT 1 1 0 1 1
GT 0 1 1 0 0 LE 1 1 1 0 0
VC 0 1 1 0 1 VS 1 1 1 0 1
HI 0 1 1 1 0 LS 1 1 1 1 0
AL 1 1 1 1 1

Timing: 10 oscillator clock cycles
Memory: 1 program words

TST Test an Operand TST

Assembler Syntax:

TST S
(move syntax - see the Move instruction
description.)
Operation:

S - 0 (parallel data bus move)

Description:

Compare the low portion of the specified operand with zero. No result is stored, however the condition
codes are affected.

Input Operand(s) Precision: 32-bit integer.

Output Operand Precision: n.a.

CCR Condition Codes:

C - Not affected.

V - Always cleared.

Z - Set if result is zero. Cleared otherwise.

N - Set if result is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

–
R - Not affected.

A - Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: TST S (move syntax - see the Move instruction description.)

10 0110 uu01 1ddd

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

(u u)

S d d d

Dn.L n n n where nnn = 0-7

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
A - 310 DSP96002 USER’S MANUAL MOTOROLA

WAIT Wait for Interrupt WAIT

Operation:

Enter WAIT processing state and stop all internal processing.

Wait for an unmasked interrupt to occur.
MOTOROLA DSP96002 USER’S MANUAL

00 00000000 0000 0000 0000 00
Assembler Syntax:

WAIT
Description:

When a WAIT instruction is executed, the processor enters the WAIT state. The internal clocks to the pro-
cessor core, memories, and DMA are gated off and all activity in the processor is suspended until an un-
masked interrupt occurs. However the clock oscillator and the internal I/O peripheral clocks remain active.
If WAIT is executed when an interrupt is pending, the interrupt will be processed; the effect will be the same
as if the processor never entered the WAIT state and three NOPs followed the WAIT instruction. When an
unmasked interrupt or external (hardware) processor RESET occurs, the processor leaves the WAIT state.
The WAIT state is then cleared and exception processing of the unmasked interrupt or RESET condition

begins. The
—

B
–
R/

—
B

–
G circuits remain active during the WAIT state. The WAIT state is a low-power

standby mode. The processor always leaves the WAIT state in the T2 clock phase (see the DSP96002 Ad-
vance Information Data Sheet (DSP96002/D)). Therefore, multiple processors may be synchronized by
having them all enter the WAIT state and then interrupting them with a common interrupt.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: WAIT

31 14 13 0
0000 1110
Instruction Fields:

 None

Timing: n/a

Memory: 1 program words
A - 311

 A.8 INSTRUCTION ENCODING SUMMARY
The encoding for each instruction is provided with the instruction descriptions in subsection A.7. An instruc-
tion encoding summary is available upon request. Some instructions have legal operation codes but specify
the same destination for two or more simultaneous operations. These instructions are called insane instruc-
tions. An example of an insane instruction is:

MOVE X: ea, D3 Y: ea, D3

Both parallel moves write to the same register (D3) which puts an indeterminate result in D3. These instruc-
tions are flagged as errors by the assembler. However, it is possible to produce an illegal or insane instruc-
tion with the assembler using the DC command.

The following parallel instructions produce insane instructions which will be flagged by the assembler and
should not be used:

X: ea, XXX Y: ea, YYY – for YYY=XXX,

or for all combinations where YYY specifies the same destination as the Data ALU operation,

or for all combinations where XXX specifies the same destination as the Data ALU operation.

—
Xdd → XXX Y: ea, YYY – for YYY=XXX, where

–
X is the inversion of the MSB of the XXX field.

or for all combinations where XXX specifies the same destination as the Data ALU operation,

or for all combinations where YYY specifies the same destination as the Data ALU operation.

X: ea, XXX
–
Ydd → YYY – for YYY=XXX, where

–
Y is the inversion of the MSB of the YYY field.

or for all combinations where YYY specifies the same destination as the Data ALU operation.

or for all combinations where XXX specifies the same destination as the Data ALU operation.

S: ea, 0DDDDDD – for all combinations where DDDDDD specifies the same destination as the Data ALU
operation.

X: ea, XXX Y:,YYY – for YYY=XXX,

or for all combinations where YYY or XXX specifies the same destination as the Data ALU operation.

L: ea, 10DDDDD – for all combinations where DDDDD specifies the same destination as the Data ALU
operation.

10DDDDD → 10ddddd (DP) – for all combinations where ddddd specifies the same destination as the
Data ALU operation.

X: ea, X Y:,Y – for Y=X.

S:(Rn+aaaa),0DDDDDD – for all combinations where DDDDDD specifies the same destination as the Data
ALU operation.

X:(Rn+aaaa),XXX Y:,YYY – for YYY=XXX

or for all combinations where YYY or XXX specifies the same destination as the Data ALU operation.

L:(Rn+aaaa),10DDDDD (DP) – for all combinations where DDDDD specifies the same destination as
the Data ALU operation.

X:(Rn+aaaa),X Y:,Y – for Y=X.

0DDDDDD → 0dddddd – for all combinations where dddddd specifies the same destination as the Data
ALU operation.
A - 312 DSP96002 USER’S MANUAL MOTOROLA

 A.9 INSTRUCTION TIMING
Figure A-7 shows the number of words and the number of clock cycles required for instruction execution.
The symbols used reference other tables to complete the instruction word and cycle count. The number
of words per instruction is dependent on the addressing mode and the type of parallel data bus move op-
eration specified. The number of execution clock cycles per instruction is dependent on many factors, in-
cluding the number of words per instruction, the addressing mode, whether the instruction fetch pipe is full
or not, whether the Data ALU is operating in the IEEE mode, the number of external bus accesses and
the number of wait states inserted in each external access. The following tables assume:

1. All instruction cycles are counted in clock oscillator cycles.

2. The instruction fetch pipeline is full.

3. There is no contention for instruction fetches.

4. There are no wait states for instruction fetches done sequentially (as for non-change-of-flow in-
structions), but they are taken into account for branch instructions (JMP, Jcc, RTI, etc.).

Mnemonic Words Cycles
ABS 1 + mv 2 + mv

ADD 1 + mv 2 + mv

ADDC 1 + mv 2 + mv

AND 1 + mv 2 + mv

ANDC 1 + mv 2 + mv

ANDI 1 2

ASL 1 + mv 2 + mv

ASL #shift 1 2

ASR 1 + mv 2 + mv

ASR #shift 1 2

Bcc 1 + ea 6 + jx

BCHG 1 + ea 4 + mvb

BCLR 1 + ea 4 + mvb

BFIND 1 + mv 2 + mv

BRA 1 + ea 6 + jx

BRCLR 2 8 + jx

BRSET 2 8 + jx

Mnemonic Words Cycles
MOTOROLA DSP96002 USER’S MANUAL A - 313

Figure A-7 Instruction Timing Summary

BScc 1 + ea 6 + jx

BSCLR 2 8 + jx

BSET 1 + ea 4 + mvb

BSR 1 + ea 6 + jx

BSSET 2 8 + jx

BTST 1 + ea 4 + mvb

CLR 1 + mv 2 + mv

CMP 1 + mv 2 + mv

CMPG 1 + mv 2 + mv

DEBUGcc 1 4

DEC 1 + mv 2 + mv

DO 2 6 + mv

DOR 2 8 + mv

ENDDO 1 2

EOR 1 + mv 2 + mv

EXT 1 + mv 2 + mv

EXTB 1 + mv 2 + mv

FABS.S 1 + mv 2+mv+da

FABS.X 1 + mv 2+mv+da

FADD.S 1 + mv 2+mv+da

FADD.X 1 + mv 2+mv+da

FADDSUB.S 1 + mv 2+mv+da

FADDSUB.X 1 + mv 2+mv+da

FBcc 1 + ea 6 + jx

FBScc 1 + ea 6 + jx

FCLR 1 + mv 2+mv+da

FCMP 1 + mv 2+mv+da

FCMPG 1 + mv 2+mv+da

FCMPM 1 + mv 2+mv+da

FCOPYS.S 1 + mv 2+mv+da

FCOPYS.X 1 + mv 2+mv+da

FDEBUGcc 1 4

FFcc 1 2 + da

FFcc.U 1 2 + da

FGETMAN 1 + mv 2+mv+da

FINT 1 + mv 2+mv+da

FJcc 1 + ea 6 + jx

Mnemonic Words Cycles
A - 314 DSP96002 USER’S MANUAL MOTOROLA

Figure A-7 Instruction Timing Summary (Continued)

FJScc 1 + ea 6 + jx

FLOAT.S 1 + mv 2+mv+da

FLOAT.X 1 + mv 2+mv+da

FLOATU.S 1 + mv 2+mv+da

FLOATU.X 1 + mv 2+mv+da

FLOOR 1 + mv 2+mv+da

FMPY//FADD.S 1 + mv 2+mv+da

FMPY//FADD.X 1 + mv 2+mv+da

FMPY//FADDSUB.S 1 + mv 2+mv+da

FMPY//FADDSUB.X 1 + mv 2+mv+da

FMPY//FSUB.S 1 + mv 2+mv+da

FMPY//FSUB.X 1 + mv 2+mv+da

FMPY.S 1 + mv 2+mv+da

FMPY.X 1 + mv 2+mv+da

FNEG.S 1 + mv 2+mv+da

FNEG.X 1 + mv 2+mv+da

FSCALE.S 1 + mv 2+mv+da

FSCALE.X 1 + mv 2+mv+da

FSCALE.S #byte 1 2 + da

FSCALE.X #byte 1 2 + da

FSEEDD 1 2 + da

FSEEDR 1 2 + da

FSUB.S 1 + mv 2+mv+da

FSUB.X 1 + mv 2+mv+da

FTFR.S 1 + mv 2+mv+da

FTFR.X 1 + mv 2+mv+da

FTRAPcc 1 10

FTST 1 + mv 2+mv+da

GETEXP 1 + mv 2+mv+da

IFcc 1 2 + da

IFcc.U 1 2 + da

ILLEGAL 1 8

INC 1 + mv 2 + mv

INT 1 + mv 2+mv+da

INTRZ 1 + mv 2+mv+da

INTU 1 + mv 2+mv+da

INTURZ 1 + mv 2+mv+da

Mnemonic Words Cycles
MOTOROLA DSP96002 USER’S MANUAL A - 315

Figure A-7 Instruction Timing Summary (Continued)

Jcc 1 + ea 4 + jx

JCLR 2 6 + jx

JMP 1 + ea 4 + jx

JOIN 1 + mv 2 + mv

JOINB 1 + mv 2 + mv

JScc 1 + ea 4 + jx

JSCLR 2 6 + jx

JSET 2 6 + jx

JSR 1 + ea 4 + jx

JSSET 2 6 + jx

LEA 1 + ea 4 + le

LRA 1 + lr 4 + lr

LSL 1 + mv 2 + mv

LSL #shift 1 2

LSR 1 + mv 2 + mv

LSR #shift 1 2

MOVE 1 + mv 2 + mv

MOVEC 1 + ea 2 + mvc

MOVEI 1 2

MOVEM 1 + ea 6 + mvm

MOVEP 1 + ea 2 + mvp

MOVES 1 + ea 2 + mvs

MOVETA 1 + mv 2 + mv

MPYS 1 + mv 2 + mv

MPYU 1 + mv 2 + mv

NEG 1 + mv 2 + mv

NEGC 1 + mv 2 + mv

NOP 1 2

NOT 1 + mv 2 + mv

OR 1 + mv 2 + mv

ORC 1 + mv 2 + mv

ORI 1 2

REP 1 4 + mv

RESET 1 4

ROL 1 + mv 2 + mv

ROR 1 + mv 2 + mv

RTI 1 4 + rx

Mnemonic Words Cycles
A - 316 DSP96002 USER’S MANUAL MOTOROLA

Figure A-7 Instruction Timing Summary (Continued)

RTR 1 4 + rx

RTS 1 4 + rx

SETW 1 + mv 2 + mv

SPLIT 1 + mv 2 + mv

SPLITB 1 + mv 2 + mv

STOP 1 n/a Note 1

SUB 1 + mv 2 + mv

SUBC 1 + mv 2 + mv

TFR 1 + mv 2 + mv

TRAPcc 1 10

TST 1 + mv 2 + mv

WAIT 1 n/a Note 2

Figure A-7 Instruction Timing Summary (Continued)
Note 1: The STOP instruction disables all internal clocks.

Note 2: The WAIT instruction takes a minimum of 16 clock
cycles to execute when an internal interrupt is
pending during the execution of the WAIT in-
struction.

 A.9.1 Data ALU Operation Timing Summary
All Data ALU operations require only one instruction word. The actual number of words may be more than
one due to the parallel move specified with the Data ALU operation; this is indicated by the term "+mv"
which can be obtained from Figure A-9 . The number of cycles required for execution is also affected by
the parallel move operation, and the values for the term "+mv" are listed in Figure A-9. The values for the
term "+da" are listed in Figure A-8 for Data ALU operations when the IEEE mode is selected. In the Flush-
to-Zero mode, the term "+da" is always zero.

Data ALU Operation +da Cycles
MOTOROLA DSP96002 USER’S MANUAL A - 317

(IEEE Mode) + da Cycles worst case Comments

FABS.S das 6 Worst case: res=1, den=1

FABS.X dax 4 Worst case: den=1

FADD.S das 8 Worst case: res=1, den=2

FADD.X dax 6 Worst case: den=2

FADDSUB.S das 10 Worst case: res=2, den=2

FADDSUB.X dax 6 Worst case: den=2

FCLR 0 0

FCMP dax 6 Worst case: den=2

FCMPG dax 6 Worst case: den=2

FCMPM dax 6 Worst case: den=2

FCOPYS.S das 8 Worst case: res=1, den=2

FCOPYS.X dax 6 Worst case: den=2

FFcc daff n/a

FFcc.U daff n/a

FGETMAN dax 4 Worst case: den=1

FINT dax 4 Worst case: den=1

FLOAT.S 0 0

FLOAT.X 0 0

FLOATU.S 0 0

FLOATU.X 0 0

FLOOR dax 4 Worst case: den=1

FMPY//FADD.S dams 14 Worst case: res=2, den=4

FMPY//FADD.X damx 12 Worst case: res=1, den=4

FMPY//FADDSUB.S dams 16 Worst case: res=3, den=4

FMPY//FADDSUB.X damx 12 Worst case: res=1, den=4

FMPY//FSUB.S dams 14 Worst case: res=2, den=4

FMPY//FSUB.X damx 12 Worst case: res=1, den=4

FMPY.S dam 8 Worst case: res=1, den=2

FMPY.X dam 8 Worst case: res=1, den=2

FNEG.S das 6 Worst case: res=1, den=1

Figure A-8 Data ALU Operation Timing Summary
A - 318 DSP96002 USER’S MANUAL MOTOROLA

Data ALU Operation +da Cycles
(IEEE Mode) + da Cycles worst case Comments

FNEG.X dax 4 Worst case: den=1

FSCALE.S dam 6 Worst case: res=1, den=1

FSCALE.X dam 6 Worst case: res=1, den=1

FSEEDD dam 6 Worst case: res=1, den=1

FSEEDR dam 4 Worst case: res=0 den=1

FSUB.S das 8 Worst case: res=1, den=2

FSUB.X dax 6 Worst case: den=2

FTFR.S das 6 Worst case: res=1, den=1

FTFR.X dax 4 Worst case: den=1

FTST dax 4 Worst case: den=1

GETEXP dam 4 Worst case: den=1

IFcc daff n/a

IFcc.U daff n/a

INT dax 4 Worst case: den=1

INTRZ dax 4 Worst case: den=1

INTU dax 4 Worst case: den=1

INTURZ dax 4 Worst case: den=1

Figure A-8 Data ALU Operation Timing Summary (Continued)

 where

 dam = 2 * (res + i * (1 + den)) clock cycles

 res= number of de/unnormalized results.
 den= number of source operands with U-tag or V-tag set.
 i = 0, if den=0; 1 otherwise.

 dams= 2 * (res + i * (1 + den)) clock cycles

 res= number of multiplier and add/sub de/unnormalized results.
 den= number of multiplier source operands with U-tag or V-tag set +
 number of add/sub source operands with U-tag set.
 i = 0, if den=0; 1 otherwise.

 damx= 2 * (res + i * (1 + den)) clock cycles
MOTOROLA DSP96002 USER’S MANUAL A - 319

 res = number of multiplier de/unnormalized results.
 den = number of multiplier source operands with U-tag or V-tag set +
 number of add/sub source operands with U-tag set.
 i = 0, if den=0; 1 otherwise.

 das = 2 * (res + i * (1 + den)) clock cycles

 res = number of de/unnormalized results.
 den = number of de/unnormalized source operands (U-tag set).
 i = 0, if den=0; 1 otherwise.

 dax = 2 * i * (1 + den) clock cycles

 den = number of de/unnormalized source operands (U-tag set).
 i = 0, if den=0; 1 otherwise.

 daff If the accompanying Data ALU operation is a Data ALU NOP (MOVE or MOVETA)

then the "+da" term will be zero. Otherwise the "+da" term will be determined by the
Data ALU operation. If the specified condition is true, the "+da" term is as specified in
Figure A-8 for the Data ALU operation. If the specified condition is false, the "+da"
term is calculated as in the figure but always setting res=0.

 A.9.2 Parallel Data Move Timing Summary

+ mv + mv
Parallel Move Operation Words Cycles Comments

No Parallel Data Move 0 0

R Register to Register 0 0

U Address Reg. Update 0 0

X: X Memory Move ea ea + ax Note 1

X: R X Memory and Register ea ea + ax Note 1

 Y: Y Memory Move ea ea + ay Note 1

R Y: Y Memory and Register ea ea + ay Note 1

L: Long Memory Move ea ea + axy

X: Y: XY Memory Move 0 axy

Note 1: The ax(ay) term does not apply to MOVE IMMEDIATE DATA.

Figure A-9 Parallel Data Move Timing Summary
A - 320 DSP96002 USER’S MANUAL MOTOROLA

If there are wait states, (i.e., assumption 4 is not applicable) then to each 1-word instruction timing a "+ap"
term should be added and to each 2-word instruction a "+(2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

 A.9.3 MOVEC Timing Summary

+ mvc
MOVEC Operation Cycles Comments

Register ↔ Register 0

X Memory ↔ Register ea + ax Note 1

Y Memory ↔ Register ea + ay Note 1

Note 1: The ax(ay) term does not apply to MOVE IMMEDIATE DATA.

Figure A-10 MOVEC Timing Summary

If there are wait states, (i.e., assumption 4 is not applicable) then to each 1-word instruction timing a "+ap"
term should be added and to each 2-word instruction a "+(2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

 A.9.4 MOVEM Timing Summary
+ mvm

MOVEM Operation Cycles Comments

P Memory ↔ Register ea + ap

Figure A-11 MOVEM Timing Summary

If there are wait states, (i.e., assumption 4 is not applicable) then to each 1-word instruction timing a "+ap"
term should be added and to each 2-word instruction a "+(2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

Note that the "ap" term present in Figure A-11 for the P Memory Move entry represents the wait states
spent when accessing the program memory during DATA read or write and does not refer to instruction
fetches.
MOTOROLA DSP96002 USER’S MANUAL A - 321

 A.9.5 MOVEP Timing Summary

+ mvp
MOVEC Operation Cycles Comments

Register ↔ Peripheral 2 + aio

X Memory ↔ Peripheral 2 + ea + ax + aio Note 1

Y Memory ↔ Peripheral 2 + ea + ay + aio Note 1

P Memory ↔ Peripheral 4 + ea + ap + aio

Note: The ax(ay) term does not apply to MOVE IMMEDIATE DATA.

Figure A-12 MOVEP Timing Summary

If there are wait states, (i.e., assumption 4 is not applicable) then to each 1-word instruction timing a "+ap"
term should be added and to each 2-word instruction a "+(2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

Note that the "ap" term present in Figure A-12 for the P Memory Move entry represents the wait states
spent when accessing the program memory during DATA read or write and does not refer to instruction
fetches.

 A.9.6 MOVES Timing Summary

+ mvs
MOVEC Operation Cycles Comments

Register ↔ Abs. Short Mem. 0

X Memory ↔ Abs. Short Mem. 2 + ea + ax Note 1

Y Memory ↔ Abs. Short Mem. 2 + ea + ay Note 1

P Memory ↔ Abs. Short Mem. 4 + ea + ap

Note 1: The ax(ay) term does not apply to MOVE IMMEDIATE DATA.

Figure A-13 MOVES Timing Summary

If there are wait states, (i.e., assumption 4 is not applicable) then to each 1-word instruction timing a "+ap"
term should be added and to each 2-word instruction a "+(2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

Note that the "ap" term present in Figure A-13 for the P Memory Move entry represents the wait states
spent when accessing the program memory during DATA read or write and does not refer to instruction
fetches.
A - 322 DSP96002 USER’S MANUAL MOTOROLA

 A.9.7 LEA Timing Summary

+ le
MOVEC Operation Cycles Comments

Update Addressing Modes 0

Long Displacement 2

Figure A-14 LEA Timing Summary

If there are wait states, (i.e., assumption 4 is not applicable) then to each 1-word instruction timing a "+ap"
term should be added and to each 2-word instruction a "+(2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

 A.9.8 LRA Timing Summary

+ lr + lr

LRA Operation Words Cycles

PC Relative Long Displacement 1 2

PC Relative Address Reg. 0 0

Figure A-15 LRA Timing Summary
If there are wait states, (i.e., assumption 4 is not applicable) then to each 1-word instruction timing a "+ap"
term should be added and to each 2-word instruction a "+(2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

 A.9.9 Bit Manipulation Timing Summary

Bit Manipulation + mvb
Operation Cycles

Bxxx I/O Short 2 * aio where Bxxx = BCHG, BCLR or BSET

Bxxx Absolute Short 0 where Bxxx = BCHG, BCLR or BSET

Bxxx Register Direct 0 where Bxxx = BCHG, BCLR or BSET

Bxxx X Memory ea + (2 * ax) where Bxxx = BCHG, BCLR or BSET

Bxxx Y Memory ea + (2 * ay) where Bxxx = BCHG, BCLR or BSET

BTST I/O Short aio

BTST Absolute Short 0

BTST Register Direct 0

BTST X Memory ea + ax

BTST Y Memory ea + ay

Figure A-16 Bit Manipulation Timing Summary
MOTOROLA DSP96002 USER’S MANUAL A - 323

If there are wait states, (i.e., assumption 4 is not applicable) then to each 1-word instruction timing a "+ap"
term should be added and to each 2-word instruction a "+(2 * ap)" term should be added to account for the
program memory wait states spent to fetch an instruction word to fill the pipeline.

 A.9.10 Jump Instructions Timing Summary

+ jx
Jump Instruction Operation Cycles
Jbit I/O Short aio + (2 * ap)
Jbit Absolute Short 2 * ap
Jbit Register Direct 2 * ap
Jbit X Memory ea + ax + (2 * ap)
Jbit Y Memory ea + ay + (2 * ap)
Jxxx ea + (2 * ap)

where Jbit = JCLR, JSCLR, JSET, JSSET, BRCLR, BSCLR,

BRSET and BSSET

Jxxx = Jcc, JMP, JScc, JSR, Bcc, BRA, BScc and BSR

Figure A-17 Jump Instruction Timing Summary

The "ea" term in the Jbit equations refers only to the clock cycles spent in X and Y Data memory accesses
to obtain the bit to be tested. The "ea" term in the Jxxx equation refers only to the clock cycles spent while
calculating the jump target address.

All one-word jump instructions execute TWO program memory fetches to refill the pipeline and this is rep-
resented by the "+(2 * ap)" term.

All two-word jumps execute THREE program memory fetches to refill the pipeline but one of those fetches
is sequential (the instruction word located at the jump instruction 2nd word address+1),and so it is not
counted as per assumption 4. If the jump instruction was fetched from a program memory segment with
wait states, another "ap" should be added to account for that third fetch.

 A.9.11 RTI/RTR/RTS Timing Summary

Operation + rx cycles

RTI 2 * ap

RTR 2 * ap

RTS 2 * ap

Figure A-18 RTI/RTR/RTS Timing Summary
A - 324 DSP96002 USER’S MANUAL MOTOROLA

The term "2 * ap" comes from the two instruction fetches done by the RTS/RTR/RTI instruction to refill the
pipeline.

A.9.12 Addressing Mode Timing Summary

 + ea + ea

Effective Addressing Mode Words Cycles

Address Register Indirect

No Update 0 0

Postincrement by 1 0 0

Postdecrement by 1 0 0

Postincrement by Offset Nn 0 0

Postdecrement by Offset Nn 0 0

Indexed by Offset Nn 0 2

Predecrement by 1 0 2

Long Displacement 1 4

PC Relative

Long Displacement 1 2

Short Displacement 0 0

Address Register 0 0

Special

Immediate Data 1 2

Absolute Address 1 2

Immediate Short Data 0 0

Short Jump Address 0 0

Absolute Short Address 0 0

I/O Short Address 0 0

Implicit 0 0

Figure A-19 Addressing Mode Timing Summary
MOTOROLA DSP96002 USER’S MANUAL A - 325

 A.9.13 Memory Access Timing Summary

Access X Mem Y Mem P Mem I/O + ax + ay + ap + aio + axy

Type Access Access Access Access Cycle Cycle Cycle Cycle Cycle

X: Int –– –– –– 0 –– –– –– ––

X: Ext –– –– –– wx –– –– –– ––

Y: –– Int –– –– –– 0 –– –– ––

Y: –– Ext –– –– –– wy –– –– ––

P: –– –– Int –– –– –– 0 –– ––

P: –– –– Ext –– –– –– wp –– ––

IO: –– –– –– Int –– –– –– 0 ––

IO: –– –– –– Ext –– –– –– wio ––

L: XY: Int Int –– –– –– –– –– –– 0

L: XY: Int Ext –– –– –– –– –– –– wy

L: XY: Ext Int –– –– –– –– –– –– wx

L: XY: Ext Ext –– –– –– –– –– –– 2+wx+wy

where wx = external X memory access wait states

wy = external Y memory access wait states

wp = external P memory access wait states

wio = external I/O memory access wait states

Figure A-20 Memory Access Timing Summary

 A.10 INSTRUCTION SEQUENCE RESTRICTIONS
Due to the pipelined nature of the DSP core processor, there are certain instruction sequences that are
forbidden and will cause undefined operation. Most of these restricted sequences would cause contention
for an internal resource, such as the Stack Register.

The DSP assembler will flag these sequences as an assembly error. These restrictions are listed below.

 A.10.1 Restrictions Near the End of DO Loops
Proper loop operation is guaranteed if no instruction starting at address LA-2, LA-1 or LA specifies the pro-
gram controller registers SR, SP, SSL, LA, LC or (implicitly) PC as a destination register; or specifies SSH
as a source or destination register.
A - 326 DSP96002 USER’S MANUAL MOTOROLA

These restricted instructions include:

at LA-2, LA-1 and LA:
 DO
 BCHG/BCLR/BSET LA, LC, SR, SP, SSH, or SSL
 BTST SSH
 JCLR/JSET/JSCLR/JSSET SSH
 LEA to LA, LC, SR, SP, SSH, or SSL
 LRA to LA, LC, SR, SP, SSH, or SSL
 MOVEC/M/P/S from SSH
 MOVEC/I/M/P/S to LA, LC, SR, SP, SSH, or SSL
 ANDI MR
 ORI MR

at LA:
 any two word instruction
 (F)Jcc, JMP, (F)JScc, JSR, (F)Bcc, BRA, (F)BScc, BSR,
 LRA, REP, RESET, RTI, RTR, RTS, STOP, WAIT

Other restrictions:

 BSR to (LA), if Loop Flag is set
 (F)BScc to (LA), if Loop Flag is set
 JSR to (LA), if Loop Flag is set
 (F)JScc to (LA), if Loop Flag is set
 JSCLR to (LA), if Loop Flag is set
 JSSET to (LA), if Loop Flag is set
 BSCLR to (LA), if Loop Flag is set
 BSSET to (LA), if Loop Flag is set

 A.10.2 DO and DOR Restrictions
SSH can not be specified as a source register in the DO and DOR instructions:

 DO SSH,label
 DOR SSH,label

Due to pipelining, the DO and DOR instructions must not be immediately preceded by any of the following
instructions:

 BCHG/BCLR/BSET LA, LC, SSH, SSL or SP
 LEA to LA, LC, SSH, SSL or SP
 LRA to LA, LC, SSH, SSL or SP
 MOVEC/I/M/S to LA, LC, SSH, SSL or SP
 MOVEC/M/S from SSH
MOTOROLA DSP96002 USER’S MANUAL A - 327

 A.10.3 ENDDO Restrictions
Due to pipelining, the ENDDO instruction must not be immediately preceded by any of the following in-
structions:

 BCHG/BCLR/BSET LA, LC, SR, SSH, SSL or SP
 LEA to LA, LC, SR, SSH, SSL or SP
 LRA to LA, LC, SR, SSH, SSL or SP
 MOVEC/I/M/S to LA, LC, SR, SSH, SSL or SP
 MOVEC/M/S from SSH
 ANDI MR
 ORI MR

 A.10.4 RTI, RTR and RTS Restrictions
Due to pipelining, the RTI and RTR instruction must not be immediately preceded by any of the following
instructions:

 BCHG/BCLR/BSET SR, SSH, SSL or SP
 LEA to SR, SSH, SSL or SP
 LRA to SR, SSH, SSL or SP
 MOVEC/I/M/S to SR, SSH, SSL or SP
 MOVEC/M/S from SSH
 ANDI MR, ANDI IER, ANDI ER or ANDI CCR
 ORI MR, ORI IER, ORI ER or ORI CCR

Due to pipelining, the RTS instruction must not be immediately preceded by any of the following instruc-
tions:

 BCHG/BCLR/BSET SSH, SSL or SP
 LEA to SSH, SSL or SP
 LRA to SSH, SSL or SP
 MOVEC/I/M/S to SSH, SSL or SP
 MOVEC/M/S from SSH

 A.10.5 SP and SSH/SSL Manipulation Restrictions
In addition to all the above restrictions concerning MOVEC, MOVEP, SP, SSH, and SSL, the following in-
struction sequences are illegal:

 1. BCHG/BCLR/BSET SP
 2. MOVEC/M/P/S from SSH or SSL
and
 1. MOVEC/I/M/S to SP
 2. MOVEC/M/P/S from SSH or SSL
and
 1. LEA to SP
 2. MOVEC/M/P/S from SSH or SSL
and
 1. LRA to SP
 2. MOVEC/M/P/S from SSH or SSL
A - 328 DSP96002 USER’S MANUAL MOTOROLA

and
 1. BCHG/BCLR/BSET SP
 2. JCLR/JSET/JSCLR/JSSET SSH or SSL
and
 1. MOVEC/I/M/S to SP
 2. JCLR/JSET/JSCLR/JSSET SSH or SSL
and
 1. LEA to SP
 2. JCLR/JSET/JSCLR/JSSET SSH or SSL
and
 1. LRA to SP
 2. JCLR/JSET/JSCLR/JSSET SSH or SSL

Also, the instruction MOVEC SSH, SSH is illegal.

 A.10.6 R, N, and M Register Restrictions
If an address register Rn is the destination of a MOVE instruction, the new contents will not be available for
use as an address pointer until the second following instruction.

If an offset register Nn or a modifier register Mn is the destination of a MOVE instruction, the new contents
will not be available for use in address calculations until the second following instruction.

From the above definitions, it is clear that if Mn or Nn is the destination of a MOVE instruction, the next
instruction may use the corresponding Rn register as an address pointer if using the No Update or the Ad-
dress Register PC Relative addressing mode (Mn and Nn are ignored).

Also, a MOVE to Nn may be followed by an instruction using Rn as an address pointer if the Long Displace-
ment, Postincrement by 1, Postdecrement by 1, or Predecrement by 1 addressing mode is employed (Nn
is ignored).

 A.10.7 Fast Interrupt Routines
DO, (F)TRAPcc, STOP, and WAIT may not be used in a fast interrupt routine. All PC Relative instructions
(Bcc, BScc, FBcc, FBScc, BRA, BSR, BRCLR, BSCLR, BRSET, BSSET, LRA and DOR) should not be
used in fast interrupt routines since the resulting PC Relative address cannot be predicted.
MOTOROLA DSP96002 USER’S MANUAL A - 329

 A.10.8 REP Restrictions
The REP instruction can repeat any single word instruction except the REP instruction itself and any in-
struction that changes program flow. The following instructions are not allowed to follow a REP instruction:

 any two-word instruction
 (F)Bcc
 BRA
 BRCLR
 BRSET
 (F)BScc
 BSCLR
 BSR
 BSSET
 (F)Jcc
 JCLR
 JMP
 JSET
 (F)JScc
 JSCLR
 JSR
 JSSET

 LRA
 REP
 RTI
 RTS
 STOP
 (F)TRAPcc
 WAIT
A - 330 DSP96002 USER’S MANUAL MOTOROLA

MOTOROLA DSP96002 USER’S MANUAL A - 331

MOT

APPENDIX B
DSP BENCHMARKS

 B.1 DSP96002 STANDARD DSP BENCHMARKS
Program size and instruction cycle counts for the DSP56000/1 are in parentheses on the line following the
DSP96002 program size and instruction cycle count.

All floating-point data ALU operations are performed using single precision operations (".s" extension on
opcode) rather than in extended precision (".x" extension on opcode). Using only single precision will yield
the same exact answers on any other machine using IEEE standard single precision assuming the same
operations are used and performed in the same sequence. Using a mixture of extended precision and sin-
gle precision may produce higher precision results at the expense of not obtaining exact IEEE conform-
ance.

 B.1.1 Real Multiply
 c = a * b

 Program ICycles
 Words
 move x:(r0),d4.s y:(r4),d6.s 1 1

 fmpy.s d4,d6,d0 1 1

 move d0.s,x:(r1) 1 1

 --- ---

 Totals: 3 3

 (3 3)
OROLA DSP96002 USER’S MANUAL B-1

B-2

 B.1.2 N Real Multiplies
 c(I) = a(I) * b(I) , I=1,...,N

 Program ICycles
 Words
 move #aaddr,r0 1 1

 move #baddr,r4 1 1

 move #caddr,r1 1 1

 move x:(r0)+,d4.s y:(r4)+,d6.s 1 1

 do #n,end 2 3

 fmpy.s d4,d6,d0 x:(r0)+,d4.s y:(r4)+,d6.s 1 1

 move d0.s,x:(r1)+ 1 1

end --- ---

 Totals: 8 2N+7

 (8 2N+7)

 B.1.3 Real Update
 d = c + a * b

 Program ICycles
 Words
 move x:(r0),d4.s y:(r4),d6.s 1 1

 fmpy.s d4,d6,d1 x:(r1),d0.s 1 1

 fadd.s d1.s,d0.s 1 1

 move d0.s,x:(r2) 1 1

 --- ---

 Totals: 4 4

 (4 4)
DSP96002 USER’S MANUAL MOTOROLA

MOT

 B.1.4 N Real Updates
 d(I) = c(I) + a(I) * b(I), I=1,2,...,N

 Program ICycles
 Words
 move #aaddr,r0 1 1

 move #baddr,r4 1 1

 move #caddr,r1 1 1

 move #daddr,r5 1 1

 move x:(r0)+,d4.s y:(r4)+,d6.s 1 1

 fmpy.s d4,d6,d1 x:(r1)+,d0.s 1 1

 do #N,_end 2 3

 fadd.s d1,d0 x:(r0)+,d4.s y:(r4)+,d6.s 1 1

 fmpy.s d4,d6,d1 x:(r1)+,d0.s d0.s,y:(r5)+ 1 1

_end --- ---

 Totals: 10 2N+9

 (10 2N+9)

 B.1.5 FIR Filter with Data Shift
 N-1

 c(n) = SUM {a(I) * b(n-I)}

 I=0
 Program ICycles
 Words
 move #data,r0 1 1

 move #coef,r4 1 1

 move #n-1,m0 1 1

 fclr d1 m0,m4 1 1

 movep x:input,x:(r0) 1 2

 fclr d0 x:(r0)-,d4.s y:(r4)+,d6.s 1 1

 rep #N 1 2

 fmpy d4,d6,d1 fadd.s d1,d0 x:(r0)-,d4.s y:(r4)+,d6.s 1 1

 fadd.s d1,d0 (r0)+ 1 1

 movep d0.s,x:output 1 2

 --- ---

 Totals: 10 1N+12

 (10 1N+12)
OROLA DSP96002 USER’S MANUAL B-3

B-4

 B.1.6 Real * Complex Correlation Or Convolution (FIR Filter)

 cr(n) + jci(n) = SUM(I=0,...,N-1) {(ar(I) + jai(I)) * b(n-I)}

 cr(n) = SUM(I=0,...,N-1) { ar(I) * b(n-I) }

 ci(n) = SUM(I=0,...,N-1) { ai(I) * b(n-I) }

 Program ICycles
 Words
 move #aaddr,r0 1 1

 fclr d0 #baddr+n,r4 1 1

 fclr d1 x:(r0),d4.s 1 1

 fclr d2 x:(r4)-,d5.s y:(r0)+,d6.s 1 1

 do #n,end 2 3

 fmpy d4,d5,d2 fadd.s d2,d1 x:(r0),d4.s 1 1

 fmpy d6,d5,d2 fadd.s d2,d0 x:(r4)-,d5.s y:(r0)+,d6.s 1 1

end

 fadd.s d2,d1 1 1

 --- ---

 Totals 9 2N+8

 (10 2N+9)

 B.1.7 Complex Multiply
 cr + jci = (ar + jai) * (br + jbi)

 cr = ar * br - ai * bi R1 → cr,ci R0 → ar,ai R4 → br,bi

 ci = ar * bi + ai * br D5 = ar D6 = bi D4 = br D7 = ai

 Program ICycles
 Words
 move x:(r0),d5.s y:(r4),d6.s 1 1

 fmpy.s d6,d5,d1 x:(r4),d4.s y:(r0),d7.s 1 1

 fmpy.s d4,d7,d2 1 1

 fmpy.s d4,d5,d0 1 1

 fmpy d6,d7,d2 fadd.s d2,d1 1 1

 fsub.s d2,d0 d1.s,y:(r1) 1 1

 move d0.s,x:(r1) 1 1

 --- ---

 Totals: 7 7

 (6 6)
DSP96002 USER’S MANUAL MOTOROLA

MOT

 B.1.8 N Complex Multiplies
 cr(I) + jci(I) = (ar(I) + jai(I)) * (br(I) + jbi(I)), I=1,...,N

 cr(I) = ar(I) * br(I) - ai(I) * bi(I)

 ci(I) = ar(I) * bi(I) + ai(I) * br(I)

 R1 → cr,ci R0 → ar,ai R4 → br,bi

 D5 = ar D6 = bi D4 = br D7 = ai
 Program ICycles
 Words
 move #aaddr,r0 1 1

 move #baddr,r4 1 1

 move #caddr-1,r1 1 1

 move x:(r0),d5.s y:(r4),d6.s 1 1

 fmpy.s d6,d5,d1 x:(r4)+,d4.s y:(r0)+,d7.s 1 1

 fmpy.s d4,d7,d2 1 1

 do #N,_end 2 3

 fmpy d6,d7,d2 fadd.s d2,d1 y:(r0),d7.s 1 1

 fmpy.s d4,d5,d0 x:(r0)+,d5.s y:(r4),d6.s 1 1

 fmpy d6,d5,d1 fsub.s d2,d0 x:(r4)+,d4.s d1.s,y:(r1) 1 1

 fmpy.s d4,d7,d2 d0.s,x:(r1)+ 1 1

_end --- ---

 Totals: 12 4N+9

 (12 4N+9)
OROLA DSP96002 USER’S MANUAL B-5

B-6

 B.1.9 Complex Update
 dr + jdi = (cr + jci) + (ar + jai) * (br + jbi)

 dr = cr + ar * br - ai * bi R0 → a R4 → b R1 → c R → d

 di = ci + ar * bi + ai * br

 Program ICycles
 Words
 move y:(r1),d1.s 1 1

 move x:(r0),d5.s y:(r4),d6.s 1 1

 fmpy.s d6,d5,d2 x:(r4),d4.s y:(r0),d7.s 1 1

 fmpy d4,d7,d2 fadd.s d2,d1 x:(r1),d0.s 1 1

 fmpy d4,d5,d2 fadd.s d2,d1 1 1

 fmpy d6,d7,d2 fadd.s d2,d0 d1.s,y:(r2) 1 1

 fsub.s d2,d0 1 1

 move d0.s,x:(r2) 1 1

 --- ---

 Totals: 8 8

 (7 7)

 B.1.10 N Complex Updates
 dr(I)+jdi(I) = {cr(I)+jci(I)}+{ar(I)+jai(I)}*{br(I)+jbi(I)}, I=1,...,N

 dr(I) = cr(I) + ar(I) * br(I) - ai(I) * bi(I)

 di(I) = ci(I) + ar(I) * bi(I) + ai(I) * br(I)

 D5 = ar D4 = ai D6 = br D7 = bi

 X Memory Organization Y Memory Organization

 . .

 ci2 di2

 cr2 dr2

 ci1 di1

 R1 → cr1 CADDRR5 → dr1 DADDR

 . .

 . .

 ai2 bi2

 ar2 br2

 R0 → ai1 bi1

 ar1 AADDR R4 → br1 BADDR
DSP96002 USER’S MANUAL MOTOROLA

MOT

 Program ICycles
 Words
 move #aaddr+1,r0 1 1

 move #3,n0 1 1

 move #baddr,r4 1 1

 move #caddr,r1 1 1

 move #daddr-1,r5 1 1

 move x:(r0)-,d4.s y:(r4)+,d6.s 1 1

 fclr d2 x:(r0)+n0,d5.s y:(r5),d0.s 1 1

 do #n,end 2 3

 fmpy d5,d6,d2 fadd.s d2,d0 x:(r1)+,d1.s y:(r4)+,d7.s 1 1

 fmpy d4,d7,d2 fadd.s d2,d1 x:(r1)+,d0.s d0.s,y:(r5)+ 1 1

 fmpy d4,d6,d2 fsub.s d2,d1 x:(r0)-,d4.s y:(r4)+,d6.s 1 1

 fmpy d5,d7,d2 fadd.s d2,d0 x:(r0)+n0,d5.s d1.s,y:(r5)+ 1 1

end

 fadd.s d2,d0 1 1

 move d0.s,y:(r5)+ 1 1

 Totals: 15 4N+12

 (13 4N+10)

or

 d5 = ar d4 = br d6 = bi d7 = ai

 X Memory Organization Y Memory Organization

 . .

 dr2 di2

 R5→ dr1 DADDR R2 → di1 DADDR

 . .

 . .

 cr2 ci2

 R1 → cr1 CADDR R6 → ci1 CADDR

 . .

 . .

 br2 bi2

 R4 → br1 BADDR R4 → bi1 BADDR

 . .

 . .

 ar2 ai2

 R0 → ar1 AADDR R0 → ai1 AADDR
 Program ICycles
 Words
OROLA DSP96002 USER’S MANUAL B-7

B-8

 move #aaddr,r0 1 1

 move #baddr,r4 1 1

 move #caddr,r1 1 1

 move r1,r6 1 1

 move #daddr,r5 1 1

 move r5,r2 1 1

 move x:(r4),d6.s 1 1

 move x:(r0),d4.s 1 1

 fmpy.s d4,d6,d2 y:(r0)+,d5.s 1 1

 fmpy.s d5,d6,d3 x:(r1)+,d0.s y:(r4)+,d7.s 1 1

 fmpy d5,d7,d2 fadd.s d2,d0 x:(r4),d6.s 1 1

 do #N,_end 2 3

 fmpy d4,d7,d2 fsub.s d2,d0 x:(r0),d4.s y:(r6)+,d1.s 1 1

 fmpy d4,d6,d2 fadd.s d2,d1 d0.s,x:(r5)+ y:(r0)+,d5.s 1 1

 fmpy d5,d6,d3 fadd.s d3,d1 x:(r1)+,d0.s y:(r4)+,d7.s 1 1

 fmpy d5,d7,d3 fadd.s d2,d0 x:(r4),d6.s d1.s,y:(r2)+ 1 1
_end --- ---

 Totals: 17 4N+14

 (13 5N+9)

 B.1.11 Complex Correlation Or Convolution (FIR Filter)
 cr(n) + jci(n) = SUM(I=0,...,N-1) { (ar(I) + jai(I)) *

 (br(n-I) + jbi(n-I)) }

 cr(n) = SUM(I=0,...,N-1) { ar(I) * br(n-I) - ai(I) * bi(n-I) }

 ci(n) = SUM(I=0,...,N-1) { ar(I) * bi(n-I) + ai(I) * br(n-I) }

 Program ICycles
 Words
 move #aaddr,r0 1 1

 fclr d2 #baddr,r4 1 1

 fclr d0 1 1

 fclr d1 x:(r0),d5.s y:(r4),d6.s 1 1

 do #N,end 2 3

 fmpy d6,d5,d2 fsub.s d2,d0 x:(r4)+,d4.s y:(r0)+,d7.s 1 1

 fmpy d4,d7,d2 fadd.s d2,d1 1 1

 fmpy d4,d5,d2 fadd.s d2,d1 1 1

 fmpy d6,d7,d2 fadd.s d2,d0 x:(r0),d5.s y:(r4),d6.s 1 1

end

 fsub.s d2,d0 1 1
 --- ---
 Totals: 1 1 4N+8

(11 4N+8)
DSP96002 USER’S MANUAL MOTOROLA

MOT

 B.1.12 Nth Order Power Series (Real)

 c = SUM (I=0,...,N) { a(I) * bI } c = aNbN + aN-1bN-1 + ... + a1b1 + a0

 Program ICycles
 Words
 move #baddr,r4 1 1

 move #aaddr,r0 1 1

 move y:(r4),d7.s 1 1

 fclr d2 x:(r0)+,d0.s y:(r4),d6.s 1 1

 do #N,end 2 3

 fmpy d6,d7,d1 fadd.s d2,d0 x:(r0)+,d4.s 1 1

 fmpy.s d6,d4,d2 d1.s,d6.s 1 1

end

 fadd.s d2,d0 1 1

 --- ---

 Totals: 9 2N+8

 (9 2N+8)

 B.1.13 2nd Order Real Biquad IIR Filter
 w(n) = x(n) - a1 * w(n-1) - a2 * w(n-2)

 y(n) = w(n) + b1 * w(n-1) + b2 * w(n-2)

 Input sample in d0.

 X Memory Order - w(n-2), w(n-1)

 Y Memory Order - a2, a1, b2, b1
 Program ICycles
 Words
 move x:(r0)+,d4.s y:(r4)+,d6.s 1 1

 fmpy.s d6,d4,d2 x:(r0)-,d5.s y:(r4)+,d6.s 1 1

 fmpy d6,d5,d2 fsub.s d2,d0.s d5.s,x:(r0)+ y:(r4)+,d6.s 1 1

 fmpy d6,d4,d2 fsub.s d2,d0 y:(r4),d6.s 1 1

 fmpy d6,d5,d2 fadd.s d2,d0 d0.s,x:(r0) 1 1

 fadd.s d2,d0 1 1

 move d0.s,x:output 1 1

 --- ---

 Totals: 7 7

 (7 7)
OROLA DSP96002 USER’S MANUAL B-9

B-10
 B.1.14 N Cascaded Real Biquad IIR Filters
 w(n) = x(n) - a1 * w(n-1) - a2 * w(n-2)

 y(n) = w(n) + b1 * w(n-1) + b2 * w(n-2)

 X Memory Organization Y Memory Organization

 b1N Coef. + 4N-1

 b2N

 a1N

 a2N

 wN(n-1) Data + 2N-1 .

 wN(n-2) .

 . b11

 . b21

 w1(n-1) a11

 R1,R0 → w1(n-2) Data R4 → a21 Coef.

 DSP56000 IMPLEMENTATION
 Program ICycles
 Words
 move #$ffffffff,m0 2 2

 move m0,m4 1 1

 move #data,r0 2 2

 move #coef,r4 2 2

 movep x:input,a 1 2

 move x:(r0)+,x0 y:(r4)+,y0 1 1

 do #n,end 2 3

 mac -x0,y0,a x:(r0)-,x1 y:(r4)+,y0 1 1

 macr -x1,y0,a x1,x:(r0)+ y:(r4)+,y0 1 1

 mac x0,y0,a a,x:(r0)+ y:(r4)+,y0 1 1

 mac x1,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

end

 rnd a 1 1

 movep a,x:output 1 2

 Totals 17 4N+16
DSP96002 USER’S MANUAL MOTOROLA

MOT
 DSP96002 IMPLEMENTATION
 ProgramICycles
 Words

 move #$ffffffff,m0 2 2

 move m0,m4 1 1

 move m0,m1 1 1

 move #data,r0 2 2

 move r0,r1 1 1

 move #coef,r4 2 2

 movep x:input,d0.s 1 2

 fclr d1 x:(r0)+,d4.s y:(r4)+,d6.s 1 1

 do #n,end 2 3

 fmpy d4,d6,d1 fadd.s d1,d0 x:(r0)+,d5.s y:(r4)+,d6.s 1 1

 fmpy d5,d6,d1 fsub.s d1,d0 d5.s,x:(r1)+ y:(r4)+,d6.s 1 1

 fmpy d4,d6,d1 fsub.s d1,d0 x:(r0)+,d4.s y:(r4)+,d6.s 1 1

 fmpy d5,d6,d1 fadd.s d1,d0 d0.s,x:(r1)+ y:(r4)+,d6.s 1 1

end

 fadd.s d1,d0 1 1

 movep d0.s,x:output 1 2

 --- ---

 Totals: 19 4N+18

 (17 4N+16)

 B.1.15 Fast Fourier Transforms

 B.1.15.1 Radix 2 Decimation in Time FFT
metr2a macro points,data,coef,coefsize

metr2a ident 1,4

;

;Radix 2 Decimation in Time In-Place Fast Fourier Transform Routine

;

; Complex input and output data

; Real data in X memory

; Imaginary data in Y memory

; Normally ordered input data

; Bit reversed output data

;

; Coefficient lookup table

; +Cosine value (1/2 cycle) in X memory
OROLA DSP96002 USER’S MANUAL B-11

B-12
; +Sine value (1/2 cycle) in Y memory

; Table size can be i*points/2, i=1,2,...

;

; Macro Call - metr2a points,data,coef,coefsize

;

; points number of points (2 - 2,147,483,648, power of 2)

; data start of data buffer

; coef start of 1/2 cycle sine/cosine table

; coefsize number of table points in sine/cosine table

; = i*points/2, i=1,2,... (1 - 2,147,483,648)

;

;
; ar Radix 2 ar’

; ai Butterfly ai’

; br A’=A+B*Wk br’

; bi B’=A-B*Wk bi’

;

;

;

; wr wi

;
; wrk = cosine(k*pi/points) table

; wik = sine(k*pi/points) table

;

; ar’ = ar + (wr*br + wi*bi)

; ai’ = ai + (wr*bi - wi*br)

; br’ = ar - wr*br - wi*bi = ar - (wr*br + wi*bi)

; bi’ = ai - wr*bi + wi*br = ai - (wr*bi - wi*br)

;

 move #points,d1.l

 move #@cvi(@log(points)/@log(2)+0.5),n1

 move #data,r2

 move #coef,m2

 move #coefsize,d2.l

 move #0,m6

 move #-1,m0

 clr d0 m0,m1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 inc d0 m0,m4

 lsr d2 m0,m5

 move d2.l,n6

 do n1,_end_pass

 move r2,r0

 move d0.l,n2

 lsr d1 m2,r6

 dec d1 d1.l,n0

 move d1.l,n1

 move n0,n4

 move n0,n5

 lea (r0)+n0,r1

 lea (r0)-,r4

 lea (r1)-,r5

 do n2,_end_grp

 move x:(r6)+n6,d9.s y:,d8.s

 move x:(r1)+,d6.s y:,d7.s

 fmpy.s d8,d7,d3 y:(r5),d2.s

 fmpy.s d9,d6,d0 y:(r4),d5.s

 fmpy.s d9,d7,d1 y:(r1),d7.s

 do n0,_end_bfy

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+

 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s

 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s

_end_bfy

 move x:(r0)+n0,d7.s d2.s,y:(r5)+n5

 move x:(r1)+n1,d7.s d5.s,y:(r4)+n4

_end_grp

 move n2,d0.l

 lsl d0 n0,d1.l

_end_pass

 B.1.15.2 Faster Radix 2 Decimation in Time FFT
; Complex, Radix 2 Cooley-Tukey Decimation in Time FFT

; This program has not been exhaustively tested and may contain errors.
OROLA DSP96002 USER’S MANUAL B-13

B-14
;

; Faster FFT using Programming Tricks found in Typical FORTRAN Libraries

;

; First two passes combined as a four butterfly loop since

; multiplies are trivial.

; 2.25 cycles internal (4 cycles external) per Radix 2

; butterfly.

; Middle passes performed with traditional, triple-nested DO loop.

; 4 cycles internal (8 cycles external) per Radix 2 butterfly

; plus overhead. Note that a new pipelining technique is

; being used to minimize overhead.

; Next to last pass performed with double butterfly loop.

; 4.5 cycles internal (8.5 cycles external) per Radix 2

; butterfly.

; Last pass has separate single butterfly loop.

; 5 cycles internal (9 cycles external) per Radix 2

; butterfly.

;

; For 1024 complex points, average Radix 2 butterfly = 3.8 cycles

; internal and 7.35 cycles external, assuming a single external

; data bus.

;

; Because of separate passes, minimum of 32 points using these

; optimizations. Approximately 150 program words required.

; Uses internal X and Y Data ROMs for twiddle factor coefficients

; for any size FFT up to 1024 complex points.

;

; Assuming internal program and internal data memory (or two

; external data buses), 1024 point complex FFT is 1.57 msec at

; 75 nsec instruction rate. Assuming internal program and

; external data memory, 1024 point complex FFT is 2.94 msec

; at 75 nsec instruction rate.

;

; First two passes

;

; 9 cycles internal, 1.77X faster than 4 cycle Radix 2 bfy

; 16 cycles external, 2.0X faster than 4 cycle Radix 2 bfy

;

; r0 = a pointer in and out

; r6 = a pointer in
DSP96002 USER’S MANUAL MOTOROLA

MOT
; r4 = b pointer in and out

; r1 = c pointer in and out

; r5 = d pointer in and out

; n5 = 2

;

 move #points,d1.l

 move #passes,d9.l

 move #data,d0.l

 move #coef,m2

 move #coefsize,d2.l

 lsr d1 d0.l,r0

 lsr d1 r0,r2

 add d1,d0 d1.l,d8.l

 add d1,d0 d0.l,r4

 add d1,d0 d0.l,r1

 lsr d2 d0.l,r5

 lsr d2 r0,r6

 move #2,n5

 move d2.l,n6

 move #-1,m0

 move m0,m1

 move m0,m4

 move m0,m5

 move m0,m6

 move x:(r0),d1.s

 move x:(r1),d0.s

 move x:(r5)-,d2.s

 move y:(r5)+,d4.s

 faddsub.s d1,d0 x:(r4),d5.s

 faddsub.s d5,d2 y:(r4),d7.s

;

; Combine first two passes with trivial multiplies.

;

 do d8.l,_twopass

 faddsub.s d0,d2 y:(r5),d6.s

 faddsub.s d7,d6 d2.s,x:(r0)+ y:(r6)+,d3.s
OROLA DSP96002 USER’S MANUAL B-15

B-16
 faddsub.s d1,d7 d0.s,x:(r4) y:(r1)+,d2.s

 faddsub.s d3,d2 d1.s,x:(r5)-

 faddsub.s d2,d6 x:(r0)-,d1.s d4.s,y:(r5)+n5

 faddsub.s d3,d5 x:(r1)-,d0.s d2.s,y:(r4)+

 faddsub.s d1,d0 x:(r5),d2.s d6.s,y:(r0)+

 ftfr.s d5,d4 x:(r4),d5.s d3.s,y:(r1)

 faddsub.s d5,d2 d7.s,x:(r1)+ y:(r4),d7.s

_twopass

 move d4.s,y:(r5)+

;

; Middle passes

;

 tfr d9,d3 #4,d0.l

 clr d2 d8.l,d1.l

 sub d0,d3 d2.l,m6

 do d3.l,_end_pass

 move d0.l,n2

 move r2,r0

 lsr d1 m2,r6

 dec d1 d1.l,n0

 dec d1 d1.l,n1

 move d1.l,n3

 move n0,n4

 move n0,n5

 lea (r0)+n0,r1

 move r0,r4

 move r1,r5

 move x:(r6)+n6,d9.s y:,d8.s

 move y:(r1),d7.s

 fmpy.s d8,d7,d3 x:(r1)+,d6.s

 fmpy.s d9,d6,d0

 fmpy.s d9,d7,d1 y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s

 do n2,_end_grp

 do n3,_end_bfy
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s

 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s

 fmpy d8,d6,d2 fadd d3,d0 x:(r0),d4.s d2.s,y:(r5)+

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+

_end_bfy

 move (r1)+n1

 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s

 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+

 move x:(r6)+n6,d9.s y:,d8.s

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+

 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+n0,d5.s

 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+n5

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+n4

_end_grp

 move n2,d0.l

 lsl d0 n0,d1.l

_end_pass

;

; next to last pass

;

 move d0.l,n2

 move r2,r0

 move r0,r4

 lea (r0)+2,r1

 move r1,r5

 move m2,r6

 move #3,n0

 move n0,n1

 move n0,n4

 move n0,n5

 move x:(r6)+n6,d9.s y:,d8.s

 move y:(r1),d7.s

 fmpy.s d8,d7,d3 x:(r1)+,d6.s

 fmpy.s d9,d6,d0

 fmpy.s d9,d7,d1 y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+n1,d6.s
OROLA DSP96002 USER’S MANUAL B-17

B-18

 do n2,_end_next

 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+,d5.s

 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+

 move x:(r6)+n6,d9.s y:,d8.s

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+

 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+n0,d5.s

 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+n5

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+n1,d6.s d5.s,y:(r4)+n4

_end_next

;

; last pass

;

 move n2,d0.l

 lsl d0 r2,r0

 move d0.l,n2

 move r0,r4

 lea (r0)+,r1

 move r1,r5

 move m2,r6

 move #2,n0

 move n0,n1

 move n0,n4

 move n0,n5

 move x:(r6)+n6,d9.s y:,d8.s

 move y:(r1),d7.s

 fmpy.s d8,d7,d3 x:(r1)+n1,d6.s

 fmpy.s d9,d6,d0

 fmpy.s d9,d7,d1 y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s

 move x:(r6)+n6,d9.s y:,d8.s

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+n1,d6.s

 do n2,_end_last

 fmpy d9,d6,d0 fsub.s d1,d2 d0.s,x:(r4) y:(r0)+n0,d5.s

 fmpy d9,d7,d1 faddsub.s d5,d2 d4.s,x:(r5) y:(r1),d7.s

 fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+n5
DSP96002 USER’S MANUAL MOTOROLA

MOT
 move x:(r6)+n6,d9.s y:,d8.s

 fmpy d8,d7,d3 faddsub.s d4,d0 x:(r1)+n1,d6.s d5.s,y:(r4)+n4

_end_last

 B.1.15.3 Radix 4 Decimation in Frequency FFT
fftr4z macro points,data,coef,table,temp

fftr4z ident 1,1

;

; Radix 4 Decimation in Frequency In-Place FFT Routine

;

; Complex input and output data

; Real data in X memory

; Imaginary data in Y memory

; Normally ordered input data

; Digit reversed output data

; Coefficient lookup table

; Full cycle sinewave in Y memory

; Coefficient table can be generated by "sinewave" macro.

;

;

; Macro Call - mfftr4z points,data,coef,table,temp

;

; points number of points (4-16384, power of 4)

; data starting address of data buffer

; coef starting address of sinewave table

; table size of sinewave table

; temp starting address of temporary storage area

;

; Cooley-Tukey Radix 4 FFT Algorithm

;

;
; ar,ai ar’,ai’

; br,bi Radix 4 br’,bi’

; cr,ci Butterfly cr’,ci’

; dr,di dr’,di’

;

;
; t1 = ar + cr

; t2 = ar - cr
OROLA DSP96002 USER’S MANUAL B-19

B-20
;

; t3 = dr + br

; t4 = dr - br

;

; t5 = ai + ci

; t6 = ai - ci

;

; t7 = bi + di

; t8 = bi - di

;

; t9 = t2 + t8

; t10 = t2 - t8

;

; t11 = t6 + t4

; t12 = t6 - t4

;

; ar’ = t1 + t3

; t13 = t1 - t3

;

; ai’ = t5 + t7

; t14 = t5 - t7

;

; br’ = t9*wr1 + t11*wi1

; bi’ = t11*wr1 - t9*wi1

;

; cr’ = t13*wr2 + t14*wi2

; ci’ = t14*wr2 - t13*wi2

;

; dr’ = t10*wr3 + t12*wi3

; di’ = t12*wr3 - t10*wi3

;

; Address pointers are organized as follows:

;

; r0 = ar,ai,br,bi pointer n0 = butterflies per group

; r1 = wr (cos) pointer n1 = rotation factor

; r2 = temp storage pointer n2 = groups per pass

; r3 = group index counter n3 = rotation factor

; r4 = cr,ci,dr,di pointer n4 = butterflies per group

; r5 = wi (sin) pointer n5 = rotation factor
DSP96002 USER’S MANUAL MOTOROLA

MOT
; r6 = temp storage pointer n6 = not used

; r7 = not used n7 = not used

;

; Alters Data ALU Registers

; d0 d4 d8

; d1 d5 d9

; d2 d6

; d3 d7

;

; Alters Address Registers

; r0 n0 m0

; r1 n1 m1

; r2 n2 m2

; r3 n3 m3

; r4 n4 m4

; r5 n5 m5

; r6 m6

;

; Alters Program Control Registers

; pc sr

;

; Uses 6 locations on System Stack

;

; This program has not been exhaustively tested and may contain errors.

;

; ICycles Prog

; Word Cycle

 page ;

 move #points/4,n0 ;initialize butterflies per group 2 2

 move n0,n4 ; " 1 1

 move #1,n2 ;initialize groups per pass 1 1

 move #1,n3 ;initialize w rotation factor 1 1

 move #-1,m0 ;initialize linear addressing 1 1

 move m0,m1 ; " 1 1

 move m0,m2 ; " 1 1

 move m0,m3 ; " 1 1

 move m0,m4 ; " 1 1

 move m0,m5 ; " 1 1

 move m0,m6 ; " 1 1
OROLA DSP96002 USER’S MANUAL B-21

B-22
 move #temp,r2 ;initialize temp storage pointers 2 2

 move (r2)+,r6 ; " 1 1

 move #0,r3 ;initialize group index counter 1 1

 move #coef+table/4,r1 ;initialize wr (cos) pointer 2 2

 move #coef,r5 ;initialize wi (sin) pointer 2 2

;

; Perform all FFT passes with triple nested DO loops

;

 do #@cvi(@log(points)/@log(4)+0.5),_end_pass 2 3

 move #data,r4 2 2

 do n2,_end_grp 2 3

 move r3,n5 ;update rotation factor 1 1

 move n5,n1 ; " 1 1

 move (r5)+n5 ;point at wi1 1 1

 move (r1)+n1 ;point at wr1 1 1

 move (r4)+n4 1 1

 move r4,r0 ;point at B data (br,bi) 1 1

 move (r4)+n4 1 1

 move (r4)+n4 ;point at D data (dr,di) 1 1

 do n0,_end_bfy 2 3

 move x:(r4),d0.s 1 1

 move x:(r0),d7.s y:(r4),d2.s 1 1

 faddsub.s d0,d7 y:(r0)-n0,d5.s 1 1

 faddsub.s d5,d2 x:(r0),d1.s 1 1

 move x:(r4)-n4,d4.s 1 1

 move x:(r4),d4.s y:(r0),d6.s 1 1

 faddsub.s d1,d4 d2.s,x:(r2)+ y:(r4),d3.s 1 1

 faddsub.s d1,d5 y:(r1)+n1,d8.s 1 1

 fmpy d5,d8,d2 faddsub.s d6,d3 y:(r5)+n5,d9.s 1 1

 fmpy d5,d9,d3 faddsub.s d6,d0 d1.s,x:(r2)- d3.s,y:(r6) 1 1

 faddsub.s d4,d7 d0.s,d6.s d6.s,y:(r2) 1 1

 fmpy.s d6,d9,d0 y:(r5)+n5,d9.s 1 1

 fmpy d6,d8,d0 fadd.s d0,d2 y:(r1)+n1,d8.s 1 1

 fmpy d4,d8,d3 fsub.s d3,d0 x:(r2)+,d1.s y:(r6),d5.s 1 1

 faddsub.s d5,d1 x:(r2)-,d6.s 1 1

 fmpy.s d4,d9,d1 d7.s,x:(r0)+n0 d1.s,y: 1 1

 fmpy.s d5,d8,d2 d2.s,x:(r0) d0.s,y: 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fmpy d5,d9,d0 fsub.s d1,d2 y:(r1)-n1,d8.s 1 1

 fmpy d6,d8,d1 fadd.s d0,d3 y:(r5)-n5,d9.s 1 1

 fmpy.s d6,d9,d0 d3.s,x:(r4) y:(r2),d4.s 1 1

 fmpy.s d4,d8,d3 d2.s,y:(r4)+n4 1 1

 fmpy d4,d9,d2 fsub.s d0,d3 y:(r1)-n1,d8.s 1 1

 fadd.s d2,d1 y:(r5)-n5,d9.s 1 1

 move d1.s,x:(r4) d3.s,y: 1 1

_end_bfy

 move #coef,r5 ;point at wi0 2 2

 move #coef+table/4,r1 ;point at wr0 2 2

 move #0,r3 ;reset group index counter 1 1

_end_grp

 move n0,d0.l ;get butterflies per group 1 1

 lsr d0.l ; 1 1

 lsr d0.l n2,d1.l ;divide butterflies/group by 4 1 1

 lsl d1.l d0.l,n0 ;multiply groups/pass by 4 1 1

 lsl d1.l n3,d0.l ;get w rotation factor 1 1

 lsl d0.l d1.l,n2 ;multiply rotation factor by 4 1 1

 lsl d0.l n0,n4 ; 1 1

 move d0.l,n3 ; 1 1

 move n0,d1.l ;check for 1 butterfly per group 1 1

 lsr d1.l ; 1 1

 jne skip ; 1 2

 move #0,n3 ;reset rotation factor - last pass 1 1

skip nop ; 1 1

_end_pass ; --- ---

 endm ; 78 82

The speed for 1024 points using a 75ns instruction cycle is 2.72ms, assuming internal program and internal
data memory.
OROLA DSP96002 USER’S MANUAL B-23

 B.1.16 LMS ADAPTIVE FILTER

z-1 z-1 z-1

∑

∑

+
-

f(n)

e(n)

x(n)
x(0) x(n-1) x(n-2) x(n-3)

h0 h1 h2 h3

d(n)

B-24
Notation and symbols:

 x(n) - Input sample at time n.

 d(n) - Desired signal at time n.

 f(n) - FIR filter output at time n.

 H(n) - Filter coefficient vector at time n. H={h0,h1,h2,h3}

 X(n) - Filter state variable vector at time n. X={x0,x1,x2,x3}

 u - Adaptation gain.

 ntaps - Number of coefficient taps in the filter. For this

 example, ntaps=4.

 Exact LMS Algorithm:

 e(n)=d(n)-H(n)X(n) (FIR filter and error)

 H(n+1)=H(n)+uX(n)e(n) (Coefficient update)

 Delayed LMS Algorithm:

 e(n)=d(n)-H(n)X(n) (FIR filter and error)

 H(n+1)=H(n)+uX(n-1)e(n-1) (Coefficient update)

In the exact LMS algorithm, the output of the FIR filter is first calculated (f(n)) and then the coefficients are
updated using the current error signal and coefficients. In the delayed LMS algorithm, the FIR filter and
coefficient update is performed at the same time. The coefficients are updated with the error value and co-
efficients from the previous sample.

References:

 "Adaptive Digital Filters and Signal Analysis", Maurice G. Bellanger

 Marcel Dekker, Inc. New York and Basel

 "The DLMS Algorithm Suitable for the Pipelined Realization of Adaptive

 Filters", Proc. IEEE ASSP Workshop, Academia Sinica, Beijing, 1986

The sections of code shown describe how to initialize all registers, filter an input sample and do the coefficient
update. Only the instructions relating to the filtering and coefficient update are shown as part of the bench-
mark. Instructions executed only once (for initialization) or instructions that may be user application depen-
dent are not included in the benchmark.

 Exact LMS Algorithm

ntaps equ 4

u equ .01

 org x:0

sbuf ds ntaps

DSP96002 USER’S MANUAL MOTOROLA

MOT
 org y:0

cbuf ds ntaps

 org y:10

dsig ds 1

xsig ds 1

 org p:$50

start

 move #sbuf,r0 ;point to state buffer

 move #cbuf,r4 ;point to coefficient buffer

 move r4,r5 ;extra pointer

 move #ntaps-1,m0 ;mod on pointers

 move #ntaps-1,m4

 move #ntaps-1,m5

 move #-3,n0 ;final adjustment

 move #u,d7.s ;adaptation constant

main

 fclr d1 y:xsig,d4.s

 fclr d0 d4.s,x:(r0)+ y:(r4)+,d5.s

 rep #ntaps

 fmpy d4,d5,d1 fadd.s d1,d0 x:(r0)+,d4.s y:(r4)+,d5.s

 fadd.s d1,d0 x:(r0)-,d4.s y:(r4)-,d5.s

 move y:dsig,d1.s

 fsub.s d0,d1

 fmpy.s d7,d1,d1 x:(r0)+,d4.s

 fmpy.s d4,d1,d3 y:(r4)+,d5.s

 fadd.s d3,d5 x:(r0)+,d4.s

 do #ntaps,cup

 fmpy.s d4,d1,d3 d5.s,d0.s y:(r4)+,d5.s

 fadd.s d3,d5 x:(r0)+,d4.s d0.s,y:(r5)+

cup

 move x:(r0)+n0,d4.s y:(r4)-,d0.s

 jmp main

 end

The FIR filter requires 1N/coefficient and the coefficient update requires 2N/coefficient for a total of 3N/co-
efficient.
OROLA DSP96002 USER’S MANUAL B-25

B-26
On the delayed LMS algorithm, the coefficients are updated with the error from the previous iteration while
the FIR filter is being computed for the current iteration. In the following implementation, two coefficients
are updated with each pass of the loop.

 Delayed LMS Algorithm

iter equ 50 ;Number of LMS iterations

conv_fact equ 0.01 ;Convergence factor

 org x:$0

state ds 11 ;State of lms fir

 org y:$0

coef ds 10 ;LMS coefficients

e dc 0.0 ;Signal error

xin ds 1 ;Input to system

dsig ds 1 ;Desired signal

 org p:$100

lmstest

 move #state,r0 ;Set up address generators

 move #10,m0

 move #xstate,r1

 move #9,m1

 move #coef,r4

 move #9,m4

 move #coef,r5

 move #9,m5

 move #xcoef,r6

 move #9,m6

 move #iter,d0.l

 do d0.l,lms

 ; LMS algorithm setup

 move y:e,d0.s

 move #conv_fact,d1.s

 fmpy.s d0,d1,d0 y:xin,d6.s

 move d0.s,d9.s

 move d6.s,x:(r0)

 ; LMS algorithm loop
DSP96002 USER’S MANUAL MOTOROLA

MOT
 FIR LATTICE FILTER

 move x:(r0)+,d6.s y:(r4)+,d7.s

 fmpy.s d7,d6,d1 x:(r0)+,d4.s y:(r4)+,d5.s

 fmpy.s d9,d4,d2

 fmpy d5,d4,d0 fadd.s d7,d2 x:(r0)+,d6.s

 do #4,_lms_loop

 fmpy d9,d6,d3 fadd.s d0,d1 y:(r4)+,d7.s

 fmpy d7,d6,d0 fadd.s d5,d3 x:(r0)+,d4.s d2.s,y:(r5)+

 fmpy d9,d4,d2 fadd.s d0,d1 y:(r4)+,d5.s

 fmpy d5,d4,d0 fadd.s d7,d2 x:(r0)+,d6.s d3.s,y:(r5)+

_lms_loop

 fmpy d9,d6,d3 fadd.s d0,d1 d2.s,y:(r5)+

 fadd.s d5,d3 (r0)-

 move d3.s,y:(r5)+

 move y:dsig,d2.s

 fsub.s d1,d2

 move d2.s,y:e

lms

 nop

 nop

 end

The inner loop updates the coefficients and performs the FIR filtering for a speed of 2N per coefficient.

 B.1.17 FIR Lattice Filter
N refers to the number of ’k’ coefficients in the lattice filter. Some filters may have other coefficients other
than the ’k’ coefficients but their number may be determined from k.
OROLA DSP96002 USER’S MANUAL B-27

z-1

K1 K2 K3

∑

∑

∑

∑

∑

∑ z-1 z-1

K1 K2 K3

B(in)

B(out)

Sx

B-28 DSP96002 USER’S MANUAL MOTOROLA

 COEFFICIENT AND STATE VARIABLE STORAGE

 R0 R4

 x: S1 S2 S3 Sx y: k1 k2 k3

 M0=3 (mod 4) M4=2 (mod 3)

 SINGLE SECTION

 t t’ equations:

 t’=s*k+t, t’→t

 k s’=t*k+s

 k

 s s’
Z-1 ∑

∑

MOTOROLA DSP96002 USER’S MANUAL B-29

 DSP56000 IMPLEMENTATION

 Program ICycles
 Words
 move #state,r0 ;point to state variable storage

 move #N,m0 ;N=number of k coefficients

 move #k,r4 ;point to k coefficients

 move #N-1,m4 ;mod for k’s

 movep y:datin,b ;get input

 move b,x:(r0)+ y:(r4)+,y0 ;save 1st state, get k 1 1

 do #N,_elat ;do each section 2 3

 move x:(r0),a b,y1 ;get s, copy t for mul 1 1

 macr y1,y0,a a,y0 ;t*k+s, copy s 1 1

 macr x0,y0,b a,x:(r0)+ y:(r4)+,y0 ;s*k+t, sv st, nxt k 1 1

_elat

 move x:(r0)-,x0 y:(r4)-,y0 ;adj r0,r4 w/dummy loads 1 1

 movep b,y:datout ;output sample ----- -----

 Totals: 7 3N+5

 DSP96002 IMPLEMENTATION

 Program ICyc
 Words
 move #state,r0 ;point to state variable storage

 move #N,m0 ;N=number of k coefficients

 move #k,r4 ;point to k coefficients

 move #N-1,m4 ;mod for k’s

 move y:datin,d5.s ;get input

 move d5.s,x:(r0)+ y:(r4)+,d4.s ;sv s,get k 1 1

 do #N,_elat ;do filter 2 3

 fmpy d5,d4,d3 x:(r0),d0.s ;t*k, get s 1 1

 fmpy d0,d4,d1 fadd.s d3,d0 ;s*k,t*k+s 1 1

 fadd.s d1,d5 d0.s,x:(r0)+ y:(r4)+,d4.s ;s*k+t; s,k 1 1

_elat

 move x:(r0)-,d0.s y:(r4)-,d7.s ;adj r0,r4 w/dummy loads 1 1

 movep d5,y:datout ;output sample

 --- ---

 Totals: 7 3N+5

B-30 DSP96002 USER’S MANUAL MOTOROLA

 B.1.18 All Pole IIR Lattice Filter
 ALL POLE IIR LATTICE FILTER

 A(in) A(out)

 k2 k1

-k -k2 -k1

 S3 S2 S1

 Coefficient And State Variable Storage

 R0 R4

 x: k1 k2 k3 y: s3 s2 s1

 M0=2 (mod 3) M4=2 (mod 3)

 SINGLE SECTION

 EQUATIONS:

 t t’

 k t’=t-k*s

 s’=s+k*t’

 t’→t

 -k

 S’ S

∑

∑

∑

∑∑

Z-1 Z-1 Z-1

∑

∑ Z-1

MOTOROLA DSP96002 USER’S MANUAL B-31

 DSP56000 IMPLEMENTATION
 Program ICycles
 Words
 move #k+N-1,r0 ;point to k

 move #N-1,m0 ;number of k’s-1

 move #state,r4 ;point to filter states

 move m0,m4 ;mod for states

 movep y:datin,a ;get input sample

 move x:(r0)-,x0 y:(r4)+,y0 ;first k, first s 1 1

 macr -x0,y0,a x:(r0)-,x0 y:(r4)-,y0 ;t’=t-k*s 1 1

 do #n-1,_endlat ;do sections 2 3

 macr -x0,y0,a b,y:(r4)+ ;t’-k*s, save state 1 1

 move a,x1 y:(r4)+,b ;copy t’,get s again 1 1

 macr x1,x0,b x:(r0)-,x0 y:(r4)-,y0 ;fnd s,get s,get k 1 1

_endlat

 move b,y:(r4)+ ;save second last s 1 1

 move x:(r0)+,x0 a,y:(r4)+ ;update r0,save last s 1 1

 movep a,y:datout ;output sample

 ----- -----

 9 3N+4

 DSP96002 IMPLEMENTATION
 Program ICycles
 Words
 move #k+N-1,r0 ;point to k

 move #N-1,m0 ;number of k’s-1

 move #state,r4 ;point to filter states

 move m0,m4 ;mod for states

 move #2,n4 ;offset for state indexing 1 1

 movep y:datin,d1 ;get input sample

 move x:(r0)-,d5.s y:(r4)+,d6.s 1 1

 fmpy.s d5,d6,d3 x:(r0)-,d5.s y:(r4)-,d6.s 1 1

 fsub.s d3,d1 1 1

 do #N-1,_elat 2 3

 fmpy d5,d6,d0 fadd.s d0,d3 1 1

 fsub.s d0,d1 d6.s,d3.s d3.s,y:(r4)+n4 1 1

 fmpy d5,d1,d0 x:(r0)-,d5.s y:(r4)-,d6.s 1 1

_elat

 fadd.s d0,d3 (r0)+ 1 1

 move d3.s,y:(r4)+ 1 1

 move d1.s,y:(r4)+ 1 1

 movep d1.s,y:datout

 --- ---

 Totals: 12 3N+7

B-32 DSP96002 USER’S MANUAL MOTOROLA

 B.1.19 General Lattice Filter
 GENERAL LATTICE

 COEFFICIENT AND STATE VARIABLE STORAGE

 r0 r4

 x: k3 k2 k1 w3 w2 w1 w0 y: s4 s3 s2 s1

 m0=6 (=2*N, mod 7) m4=3 (=N, mod 4)

∑ ∑∑

∑∑ ∑

∑

(in)

(out)

Z-1 Z-1
Z-1

k3 k2 k1

-k3 -k2 -k3

w1 w0w2w3

MOT
 SINGLE SECTION

 EQUATIONS:

 t’=t-k*s

 s’=s+k*t’

 t’→t

 output= sum(s’*w)

 DSP56000 IMPLEMENTATION
 Program ICycles
 Words
 move #k,r0 ;point to coefficients

 move #2*N,m0 ;mod 2*(# of k’s)+1

 move #state,r4 ;point to filter states

 move #N,m4 ;mod on filter states

 movep y:datin,a ;get input sample

 move x:(r0)+,x0 y:(r4)-,y0 ;get first k, first s 1 1

 do #N,_el ;do filter 2 3

 macr -x0,y0,a b,y:(r4)+ ;t-k*s, save prev s 1 1

 move a,x1 y:(r4)+,b ;copy t’,get s again 1 1

 macr x1,x0,b x:(r0)+,x0 y:(r4)-,y0 ;t’*k+s,get k,get s 1 1

_el

 move b,y:(r4)+ ;sv scnd to 1st st 1 1

 clr a a,y:(r4)+ ;save first state 1 1

 move y:(r4)+,y0 ;get last state 1 1

 rep #N 1 2

 mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;do fir taps 1 1

 macr x0,y0,a (r4)+ ;finish, adj pointer 1 1

 movep a,y:datout ;output sample

 --- ---

 Totals: 12 4N+10

 DSP96002 IMPLEMENTATION

∑

∑

Z-1

t t’

s’ s

w

k

k’
OROLA DSP96002 USER’S MANUAL B-33

B-34
 Program ICycles
 Words

 move #k,r0 ;point to coefficients

 move #2*N,m0 ;mod 2*(# of k’s)+1

 move #state,r4 ;point to filter states

 move #N,m4 ;mod on filter states

 move p y:datin,d1 ;get input sample

 move #2,n4 1 1

 move x:(r0)+,d5.s y:(r4)-,d6.s 1 1

 do #N,_elat 2 3

 fmpy d5,d6,d0 fadd.s d0,d3 1 1

 fadd.s d0,d1 d6.s,d3.s d3.s,y:(r4)+n4 1 1

 fmpy.s d5,d1,d0 x:(r0)+,d5.s y:(r4)-,d6.s 1 1

_elat

 fadd.s d0,d3 1 1

 fclr d0 d3.s,y:(r4)+ 1 1

 fclr d1 d1.s,y:(r4)+ 1 1

 move y:(r4)+,d4.s 1 1

 rep #N 1 2

 fmpy d5,d4,d0 fadd.s d0,d1 x:(r0)+,d5.s y:(r4)+,d6.s 1 1

 fadd.s d2,d3 (r4)+ 1 1

 move p d3.s,y:datout ;output sample

 --- ---

 Totals: 14 4N+12
DSP96002 USER’S MANUAL MOTOROLA

MOT
 B.1.20 Normalized Lattice Filter

 NORMALIZED LATTICE FILTER

 COEFFICIENT AND STATE VARIABLE STORAGE

 r0 r4

 X: q2 k2 q1 k1 q0 k0 w3 w2 w1 w0 Y: sx s2 s1 s0

 m0=3*N (=9, mod 10) m4=N (=3, mod 4)

Z-1 Z-1 Z-1

∑ ∑ ∑

∑ ∑ ∑

∑

q2

q1

k2 k1 k0-k2 -k1 -k0

q0

q1 q0

q2

w0w1w2w3

input

output
OROLA DSP96002 USER’S MANUAL B-35

B-36
 SINGLE SECTION

 EQUATIONS:

 t’=t*q-k*s

 u’=t*k+s*q

 t’→t

 output=sum (w*u’)

 DSP56000 IMPLEMENTATION
 Program ICycles
 Words
 move #coef,r0 ;point to coefficients

 move #3*N,m0 ;mod on coefficients

 move #state,r4 ;point to state variables

 move #N,m4 ;mod on filter states

 movep y:datin,y0 ;get input sample

 move x:(r0)+,x1 ;get first Q in table 1 1

 do #order,_endnlat 2 3

 mpy x1,y0,a x:(r0)+,x0 y:(r4),y1 ;q*t, get k, get s 1 1

 macr -x0,y1,a b,y:(r4)+ ;q*t-k*s, save new s 1 1

 mpy x0,y0,b a,y0 ;k*t, set t’ 1 1

 macr x1,y1,b x:(r0)+,x1 ;k*t+q*s, get next q 1 1

_endnlat

 move b,y:(r4)+ ;sv scnd lst st 1 1

 move a,y:(r4)+ ;save last state 1 1

 clr a y:(r4)+,y0 ;clr acc, get fst st 1 1

 rep #order ;do fir taps 1 2

 mac x1,y0,a x:(r0)+,x1 y:(r4)+,y0 1 1

 macr x1,y0,a (r4)+ ;rnd, adj pointer 1 1

 movep a,y:datout ;output sample

 --- ---

 Totals: 13 5N+10

 DSP96002 IMPLEMENTATION

∑

∑

Z-1

t’

u’
s

w

k k’

t q

q u
DSP96002 USER’S MANUAL MOTOROLA

MOT

 Program ICycles
 Words
 move #coef,r0 ;point to coefficients

 move #3*N,m0 ;mod on coefficients

 move #state,r4 ;point to state variables

 move #N,m4 ;mod on filter states

 move p y:datin,d5.s ;get input sample

 move x:(r0)+,d6.s ;get q 1 1

 do #N,_elat 2 3

; t*q k*w+q*s get k get s

 fmpy d5,d6,d2 fadd.s d1,d3 x:(r0)+,d4.s y:(r4)+,d7.s 1 1

; k*s save s

 fmpy.s d4,d7,d0 d3.s,y:(r4)+ 1 1

; t*k w*q-k*s

 fmpy d5,d4,d1 fsub.s d0,d2 1 1

; q*s t→t’ get q

 fmpy.s d6,d7,d3 d2.s,d5.s x:(r0)+,d6.s 1 1

_elat

 fadd.s d1,d3 ;finish last t 1 1

 move d3.s,y:(r4)+ ;save 2nd s 1 1

 fclr d2 d5.s,y:(r4)+ ;save 1st s 1 1

 fclr d3 y:(r4)+,d7.s ;get s 1 1

 rep #N 1 2

 fmpy d6,d7,d2 fadd.s d2,d3 x:(r0)+,d6.s y:(r4)+,d7.s ;fir 1 1

 fadd.s d2,d3 (r4)+ ;adj r4 1 1

 move p d3.s,y:datout

 --- ---

 Totals: 14 5N+11
OROLA DSP96002 USER’S MANUAL B-37

B-38
 B.1.21 1x3 3x3 and 1x4 4x4 Matrix Multiply
 1x3 3x3 Matrix Multiply
 Program ICycles
 Words
 move #mat_a,r0 ;point to A matrix

 move #2,m0 ;mod 3

 move #mat_b,r4 ;point to B matrix

 move #-1,m4 ;set for linear addressing

 move #mat_c,r1 ;output C matrix

 move x:(r0)+,d4.s y:(r4)+,d5.s ;a11,b11 1 1

 fmpy.s d4,d5,d3 x:(r0)+,d4.s y:(r4)+,d5.s ;a12,b21 1 1

 fmpy.s d4,d5,d0 x:(r0)+,d4.s y:(r4)+,d5.s ;a13,b31 1 1

 fmpy d4,d5,d3 fadd.s d3,d0 x:(r0)+,d4.s y:(r4)+,d5.s ;a11,b12 1 1

 fmpy d4,d5,d3 fadd.s d3,d0 x:(r0)+,d4.s y:(r4)+,d5.s ;a12,b22 1 1

 fmpy.s d4,d5,d1 x:(r0)+,d4.s y:(r4)+,d5.s ;a13,b32 1 1

 fmpy d4,d5,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+,d5.s ;a11,b13 1 1

 fmpy d4,d5,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+,d5.s ;a12,b23 1 1

 fmpy.s d4,d5,d2 x:(r0)+,d4.s y:(r4)+,d5.s ;a13,b33 1 1

 fmpy d4,d5,d3 fadd.s d3,d2 d0.s,y:(r1)+ ;save 1 1 1

 fadd.s d3,d2 d1.s,y:(r1)+ ;save 2 1 1

 move d2.s,y:(r1)+ ;save 3 1 1

 --- ---

 Totals: 12 12

 1x4 4x4 Matrix Multiply
 Program ICycles
 Words
 move #mata,r0 ;[1x4] matrix pointer, X memory

 move #matb,r4 ;[4x4] matrix pointer, Y memory

 move #matc,r1 ;output matrix, X memory

 move x:(r0)+,d4.s y:(r4)+,d7.s ;a11,b11 1 1

 fmpy.s d7,d4,d0 x:(r0)+,d3.s y:(r4)+,d7.s ;a12,b21 1 1

 fmpy.s d7,d3,d1 x:(r0)+,d5.s y:(r4)+,d7.s ;a13,b31 1 1

 fmpy d7,d5,d1 fadd.s d1,d0 x:(r0)+,d6.s y:(r4)+,d7.s ;a14,b41 1 1

 fmpy d7,d6,d1 fadd.s d1,d0 y:(r4)+,d7.s ;b12 1 1

 fmpy d7,d4,d1 fadd.s d1,d0 y:(r4)+,d7.s ;b22 1 1

 fmpy.s d7,d3,d2 d0.s,x:(r1)+ y:(r4)+,d7.s ;b32 1 1

 fmpy d7,d5,d2 fadd.s d2,d1 y:(r4)+,d7.s ;b42 1 1

 fmpy d7,d6,d2 fadd.s d2,d1 y:(r4)+,d7.s ;b13 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fmpy d7,d4,d0 fadd.s d2,d1 y:(r4)+,d7.s ;b23 1 1

 fmpy.s d7,d3,d2 d1.s,x:(r1)+ y:(r4)+,d7.s ;b33 1 1

 fmpy d7,d5,d2 fadd.s d2,d0 y:(r4)+,d7.s ;b43 1 1

 fmpy d7,d6,d2 fadd.s d2,d0 y:(r4)+,d7.s ;b14 1 1

 fmpy d7,d4,d1 fadd.s d2,d0 y:(r4)+,d7.s ;b24 1 1

 fmpy.s d7,d3,d0 d0.s,x:(r1)+ y:(r4)+,d7.s ;b34 1 1

 fmpy d7,d5,d0 fadd.s d0,d1 y:(r4)+,d7.s ;b44 1 1

 fmpy d7,d6,d0 fadd.s d0,d1 1 1

 fadd.s d0,d1 1 1

 move d1.s,x:(r1)+ 1 1

 --- ---

 Totals: 19 19

 B.1.22 NxN NxN Matrix Multiply
The matrix multiplications are for square NxN matrices. All the elements are stored in "row major" format.
i.e. for the array A:

 a(1,1) ... a(1,N)

 a(N,1) ... a(N,N)

the elements are stored:

a(1,1), a(1,2), ..., a(1,N), a(2,1), a(2,2), ..., a(2,N), ...

The following code implements C=AB where A and B are square matrices.

 DSP56000 IMPLEMENTATION
 Program ICycles
 Words

 move #mat_a,r0 ;point to A 1 1

 move #mat_b,r4 ;point to B 1 1

 move #mat_c,r6 ;output mat C 1 1

 move #N,n0 ;array size 1 1

 move n0,n5 1 1

 do #N,_rows ;do rows 2 3

 do #N,_cols ;do columns 2 3

 move r0,r1 ;copy start of row A 1 1

 move r4,r5 ;copy start of col B 1 1

 clr a ;clear sum and pipe 1 1

 move x:(r1)+,x0 y:(r5)+n5,y0 1 1
OROLA DSP96002 USER’S MANUAL B-39

B-40
 rep #N-1 ;sum 1 1

 mac x0,y0,a x:(r1)+,x0 y:(r5)+n5,y0 1 2

 macr x0,y0,a (r4)+ ;finish, next column B 1 1

 move a,y:(r6)+ ;save output 1 1

_ecols

 move (r0)+n0 ;next row A 1 1

 move #mat_b,r4 ;first element B 1 1

_erows
 ----- -----

 19

 ((8+(N-1))N+5)N+8 = N3 +7*N
2 +5N+8 ←

At a DSP56000/1 clock speed of 20.5 MHz, a [10x10][10x10] can be computed in .1715 ms.

 DSP96002 IMPLEMENTATION

 Program ICycles
 Words

 move #mat_a,r0 ;point to A 1 1

 move #mat_c,r6 ;output mat C 1 1

 move #N,n0 ;array size 1 1

 move n0,n5 1 1

 do #N,_rows 2 3

 move #mat_b,r4 ;point to B 1 1

 move r0,r1 ;copy start of row 1 1

 do #N,_cols 2 3

 move r4,r5 1 1

 fclr d0 (r4)+ 1 1

 fclr d1 x:(r1)+,d4.s y:(r5)+n5,d5.s 1 1

 rep #N 1 2

 fmpy d4,d5,d1 fadd.s d1,d0 x:(r1)+,d4.s y:(r5)+n5,d5.s 1 1

 fadd.s d1,d0 r0,r1 1 1

 move d0.s,y:(r6)+ 1 1

_cols

 move (r0)+n0 1 1

_rows

 ----- -----

 Totals: 19

 ((N+7)N+6)N+7 = N3 +7*N
2 +6N+7 ←

 At a DSP96002 clock speed of 26.66 MHz, a [10x10][10x10] can be computed in .1325 ms.
DSP96002 USER’S MANUAL MOTOROLA

MOT
 B.1.23 N Point 3x3 2-D FIR Convolution
The two dimensional FIR uses a 3x3 coefficient mask:

 c(1,1) c(1,2) c(1,3)

 c(2,1) c(2,2) c(2,3)

 c(3,1) c(3,2) c(3,3)

Stored in Y memory in the order:

c(1,1), c(1,2), c(1,3), c(2,1), c(2,2), c(2,3), c(3,1), c(3,2), c(3,3)

The image is an array of 512x512 pixels. To provide boundary conditions for the FIR filtering, the image is
surrounded by a set of zeros such that the image is actually stored as a 514x514 array. i.e.

 514

 ... 0 ...

 .

 . 512 .

 . . 514

 0 0

 . Image Area 512 .

 . .

 ... 0 ...

The image (with boundary) is stored in row major storage. The first element of the array image(,) is im-
age(1,1) followed by image(1,2). The last element of the first row is image(1,514) followed by the beginning
of the next column image(2,1). These are stored sequentially in the array "im" in X memory.

Image(1,1) maps to index 0, image(1,514) maps to index 513, Image(2,1) maps to index 514 (row major
storage).

Although many other implementations are possible, this is a realistic type of image environment where the
actual size of the image may not be an exact power of 2. Other possibilities include storing a 512x512 im-
age but computing only a 511x511 result, computing a 512x512 result without boundary conditions but
throwing away the pixels on the border, etc.
OROLA DSP96002 USER’S MANUAL B-41

B-42
 r0 →image(n,m) image(n,m+1) image(n,m+2)

 r1 →image(n+514,m) image(n+514,m+1) image(n+514,m+2)

 r2 →image(n+2*514,m) image(n+2*514,m+1) image(n+2*514,m+2)

 r4 →FIR coefficients

 r5 →output image

 DSP56000 IMPLEMENTATION

 Program ICycles
 Words
 move #mask,r4 ;point to coefficients 1 1

 move #8,m4 ;mod 9 1 1

 move #image,r0 ;top boundary 1 1

 move #image+514,r1 ;left of first pixel 1 1

 move #image+2*514,r2 ;left of first pixel 2nd row 1 1

 move #2,n1 ;adjustment for end of row 1 1

 move n1,n2 1 1

 move #imageout,r5 ;output image 1 1

 move x:(r0)+,x0 y:(r4)+,y0 ;first element, c(1,1) 1 1

 do #512,_rows 2 3

 do #512,_cols 2 3

 mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;c(1,2) 1 1

 mac x0,y0,a x:(r0)-,x0 y:(r4)+,y0 ;c(1,3) 1 1

 mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,1) 1 1

 mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,2) 1 1

 mac x0,y0,a x:(r1)-,x0 y:(r4)+,y0 ;c(2,3) 1 1

 mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,1) 1 1

 mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,2) 1 1

 mac x0,y0,a x:(r2)-,x0 y:(r4)+,y0 ;c(3,3) 1 1

 macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;preload, get c(1,1) 1 1

 move a,y:(r5)+ ;output image sample 1 1

_rows

; adjust pointers for frame boundary

 move x:(r0)+,x0 y:(r5)+,y1 ;adj r0,r5 w/dummy loads 1 1

 move x:(r1)+n1,x0 y:(r5)+,y1 ;adj r1,r5 w/dummy loads 1 1

 move (r2)+n2 ;adj r2 1 1

 move x:(r0)+,x0 ;preload for next pass 1 1

_cols

 --- ---

 28

 (Kernel=10N), 10N2 +7N+12 ←
DSP96002 USER’S MANUAL MOTOROLA

MOT
 DSP96002 IMPLEMENTATION

 Program ICycles
 Words
 move #mask,r4 ;point to coefficients 1 1

 move #8,m4 ;mod 9 1 1

 move #image,r0 ;top boundary 1 1

 move #image+514,r1 ;left of first pixel 1 1

 move #image+2*514,r2 ;left of first pixel 2nd row 1 1

 move #2,n1 ;adjustment for end of row 1 1

 move n1,n2 1 1

 move #imageout,r5 ;output image 1 1

 move x:(r0)+,d4.s y:(r4)+,d5.s ;preload, get c(1,1) 1 1

 fmpy.s d4,d5,d0 x:(r0)+,d4.s y:(r4)+,d6.s ;get c(1,2) 1 1

 do #512,_rows 2 3

 do #512,_cols 2 3

 fmpy.s d4,d6,d1 x:(r0)-,d4.s y:(r4)+,d5.s ;c(1,3) 1 1

 fmpy d4,d5,d0 fadd.s d0,d1 x:(r1)+,d4.s y:(r4)+,d5.s ;c(2,1) 1 1

 fmpy d4,d5,d0 fadd.s d0,d1 x:(r1)+,d4.s y:(r4)+,d5.s ;c(2,2) 1 1

 fmpy d4,d5,d0 fadd.s d0,d1 x:(r1)-,d4.s y:(r4)+,d5.s ;c(2,3) 1 1

 fmpy d4,d5,d0 fadd.s d0,d1 x:(r2)+,d4.s y:(r4)+,d5.s ;c(3,1) 1 1

 fmpy d4,d5,d0 fadd.s d0,d1 x:(r2)+,d4.s y:(r4)+,d5.s ;c(3,2) 1 1

 fmpy d4,d5,d0 fadd.s d0,d1 x:(r2)-,d4.s y:(r4)+,d5.s ;c(3,3) 1 1

 fmpy d4,d5,d0 fadd.s d0,d1 x:(r0)+,d4.s y:(r4)+,d5.s ;c(1,1) 1 1

 fmpy d4,d5,d0 fadd.s d0,d1 x:(r0)+,d4.s y:(r4)+,d6.s ;c(1,2) 1 1

 move d1.s,y:(r5)+ ;output 1 1

_cols

 move x:(r0)+,d4.s y:(r5)+,d7.s ;adj r0,r5 1 1

 move x:(r0)+,d4.s y:(r5)+,d7.s ;load,aj r5 1 1

 fmpy.s d4,d5,d0 (r1)+n1 1 1

 move (r2)+n2 1 1

 move x:(r0)+,d4.s ;load 1 1

_rows

 Totals: 29

 (Kernel=10N), 10N2 +8N+13 ←
OROLA DSP96002 USER’S MANUAL B-43

B-44
 B.1.24 Table Lookup with Linear Interpolation Between Points
This performs a table lookup and linear interpolation between points in the table. It is assumed that the
spacing between the known values (breakpoints) is a constant. No range checking is performed on the
input number because it is assumed that previous calculations may have limiting and range checking. This
can be used to approximate arbitrary functions given a set of known points (such as digital sine wave gen-
eration) or to interpolate linearly between values of a set of data such as an image.

The function to be approximated is shown below:

 o ¨ known values of function

 o o

 Y(i) o

 o

 ----+------+------+------+------+

 X(i)→ 1.0 6.0 11.0 16.0 21.0 ¨ indexes

 ^ / spacing between indexes is INDSPC, 5.0

 in this example

 FIRSTINDEX - value of the first index in the table, 1.0

 in this example

Given an input value "x", the linearly interpolated value "y" from the tabulated known values is:

 Y(i+1)-Y(i)

 y = --------------(x-X(i)) + Y(i)

 X(i+1)-X(i)

 Program ICycles
 Words
;

; Approximate d4=exp(d0) for 1.0 <= x <= 21.0

;

 page 132,60,1,1

 org x:0

table dc 2.7182818e+00 ;exp(1.0)

 dc 4.0342879e+02 ;exp(6.0)

 dc 5.9874141e+04 ;exp(11.0)

 dc 8.8861105e+06 ;exp(16.0)

 dc 1.3188157e+09 ;exp(21.0)

 org p:$50

firstindex equ 1.0 ;value of first table index
DSP96002 USER’S MANUAL MOTOROLA

MOT
indspc equ 5.0 ;index spacing

rindspc equ 1.0/indspc ;reciprocal of index spacing

 move #table,n0 ;point to start of table

 move #firstindex,d6.s ;value of first index

 move #rindspc,d7.s ;reciprocal of index spacing

 fsub.s d6,d0 ;adjust input relative to index 1 1

 fmpy.s d7,d0,d0 ;reduce range and create index 1 1

 floor d0,d1 ;get index 1 1

 int d1 d1.s,d2.s ;convert index to int,copy int part 1 1

 fsub.s d2,d0 d1.l,r0 ;x-X(i), get ptr to table 1 1

 nop ;clear address ALU pipe 1 1

 move (r0)+n0 ;point to Y(i) 1 1

 move x:(r0)+,d4.s ;get Y(i) 1 1

 move x:(r0),d5.s ;get Y(i+1) 1 1

 fsub.s d4,d5 ;Y(i+1)-Y(i) 1 1

 fmpy.s d0,d5,d5 ; *(x-X(i)) 1 1

 fadd.s d5,d4 ;+Y(i) 1 1

 --- ---

 Totals: 12 12

 B.1.25 Argument Reduction
Argument reduction (AR) is the problem of having a desired floating point number range and an argument
that is outside of the range. The argument is placed inside of the desired range by adding or subtracting
multiples of the desired number range. Of course, adding and subtracting multiples of a number is inher-
ently slow and requires infinite precision. Some simple methods can be used with some assumptions on
the precision of the data and relative argument sizes.

The following program performs AR when the desired range is arbitrary and the input value is arbitrary. This
may be used to reduce an angle to the range of -pi to pi.

The following variables are defined:

 rmin = range minimum value, -pi in this example

 rmax = range maximum value, pi in this example

 range = rmax-rmin, 2*pi in this example

 o_range = 1.0/range

Assume the input is in d0.
OROLA DSP96002 USER’S MANUAL B-45

B-46

rmin equ -3.14159

range equ 2*3.14159

o_range equ 1.0/range
 Program ICycles
 Words

 move #range,d7.s ;load desired range

 move #rmin,d2.s ;load range min

 move #o_range,d3.s ;load reciprocal of range

 fadd.s d2,d0 ;adjust to rmin 1 1

 fmpy.s d0,d3,d0 ;scale the input 1 1

 floor d0,d1 ;get integer part 1 1

 fsub.s d1,d0 ;get fractional part 1 1

 fmpy.s d7,d0d0 ;spread out fraction to range 1 1

 fadd.s d2,d0 ;adjust to rmin 1 1

 --- ---

 Totals: 6 6

The output is in d0. Note that the constant initialization is not included in the benchmark because it does
not need to be executed every time argument reduction is desired and is therefore application dependent.

If the desired range begins at zero (i.e. the desired range is zero to two pi), then the first and last fadd in-
structions can be deleted for a four cycle argument reduction.

This is one possible method for AR and it is efficient. This method will not work when the argument divided
by the result range has no fractional part (in the current precision). This is obvious since it is the fractional
part that contains the information relating to how far the scaled argument is in the reduced range. The in-
teger part tells how many times the range has wrapped around. Typically, a good programmer will keep
the argument to a few multiples of the desired range. In most practical applications, the argument may ex-
ceed the desired range by several integral values. In this case, the presented algorithms work very well.
After the final reduced argument has been obtained, any increments should be made from the reduced ar-
gument to prevent eventual overflow and maintain maximum precision.

 B.1.26 Non-IEEE floating-point Division
The following code segments perform the division of d0/d5. The resulting quotient is in d0. These code
segments are used for a fast division without the need to conform to the error checking or error bounds of
the IEEE standard.

The code uses a "convergent division" algorithm. The initial seed obtained from the FSEEDD instruction
has 8 bits of accuracy. Two iterations of the convergent division algorithm provide approximately 32 bits
of accuracy. For more information on the convergent division algorithm, consult "Computer Arithmetic,
Principles, Architecture, and Design" by Kai Hwang, 1979, John Wiley and Sons, New York.

 Non-IEEE Division Algorithm
DSP96002 USER’S MANUAL MOTOROLA

MOT
 Program ICycles
 Words
 fseedd d5,d4 1 1

 fmpy.s d5,d4,d5 #2.0,d2.s 2 2

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 1 1

 fmpy.s d0,d3,d0 1 1

 --- ---

 Totals: 7 7

Operation table:

 d0 (dividend)

 /

 0.0 number infinity / d5 (divisor)

------------------------------------/

 NaN NaN NaN 0.0

 0.0 number infinity number

 NaN NaN NaN infinity

 B.1.27 Multibit Rotates
This describes how to perform multibit rotates using the logical barrel shifts. Both the static case (rotate by
a fixed constant) and the dynamic case (rotate by a value in a register) are presented.

The following code assumes a rotating model of the form:

In this type of rotate, the carry participates in the bit rotations. Bits rotated out of the register go into the
carry bit; the previous value of the carry bit goes into the register.

1. Static rotate left 1-32 bits. The 32 bit integer to be rotated is in d0.l. The number of bits to rotate
is N. The resulting carry is the value of bit 32-N of the register. For example, if N=3 (three bit
rotate left), then the resulting carry will be the value of bit 29 of the register.

 Program ICycles
 Words
 rol d0 d0.l,d1.l ;shift in carry, copy input 1 1

 lsl #N-1,d0 ;shift up, pad with zeros 1 1

 lsr #33-N,d1 ;shift down, set carry 1 1

 or d1,d0 ;put numbers back together 1 1

31 0

C

OROLA DSP96002 USER’S MANUAL B-47

B-48
 --- ---
Totals: 4 4

2. Static rotate right 1-32 bits. The 32 bit integer to be rotated is in d0.l. The number of bits to
rotate is N. The resulting carry is the value of bit N-1 of the register. For example, if N=3 (three
bit rotate right), then the resulting carry will be the value of bit 2 of the register.

 Program ICycles
 Words
 ror d0 d0.l,d1.l ;shift in carry, copy input 1 1

 lsr #N-1,d0 ;shift up, pad with zeros 1 1

 lsl #33-N,d1 ;shift down, set carry 1 1

 or d1,d0 ;put numbers back together 1 1

 --- ---
Totals: 4 4

3. Dynamic rotate left 0-32 bits. The 32 bit integer to be rotated is in d0.l. The number of bits to
rotate is in d2.l. In the following example, the code for checking if the shift count is zero may
be eliminated if it is known that the shift count is greater than zero.

 Program ICycles
 Words

 tst d2 ;see if shift count is zero 1 1

 jeq _done ;yes, done 2 2

 rol d0 d0.l,d1.l ;shift in carry, copy input 1 1

 dec d2 #32,d3.l ;dec shift count, get 32 2 2

 sub d2,d3 d2.l,d0.h ;get 32-shift, move count 1 1

 lsl d0,d0 d3.l,d1.h ;shift, move shift count 1 1

 lsr d1,d1 ;shift, set carry 1 1

 or d1,d0 ;or bits together 1 1
_done --- ---

 Totals: 10 10

4. Dynamic rotate right 0-32 bits. The 32 bit integer to be rotated is in d0.l. The number of bits
to rotate is in d2.l. In the following example, the code for checking if the shift is zero count may
be eliminated if it is known that the shift count is greater than zero.

 Program ICycles
 Words
tst d2 ;see if shift count is zero 1 1 jeq
_done ;yes, done 2 2 ror d0
d0.l,d1.l ;shift in carry, copy input 1 1 dec d2 #32,d3.l
;dec shift count, get 32 2 2 sub d2,d3 d2.l,d0.h ;get
32-shift, move count 1 1 lsr d0,d0 d3.l,d1.h ;shift,
move shift count 1 1 lsl d1,d1 ;shift, set
carry 1 1 or d1,d0 ;or bits together
1 1 _done --- ---
DSP96002 USER’S MANUAL MOTOROLA

MOT
 Totals: 10 10

The following code assumes a rotating model of the form:

In this model, the carry does not participate in the rotations. The carry assumes the value of the bit that was
rotated around the end of the register.

1. Static rotate left 0-32 bits. The 32 bit integer to be rotated is in d0.l. The number of bits to rotate
is N. The resulting carry is the value of bit 32-N of the register. For example, if N=3 (three bit
rotate left), then the resulting carry will be the value of bit 29 of the register. The resulting carry
is the value of the least significant bit of the register after rotation.

In the special case of a zero shift count, the resulting carry is the most significant bit. In the
special case of a 32 shift count, the resulting carry is the least significant bit. In both cases, the
register shifted is unchanged.

 Program ICycles
 Words
move d0.l,d1.l ;copy input 1 1 lsr
#32-N,d0 ;shift first part 1 1 lsl #N,d1
;shift other part 1 1 or d1,d0 ;merge
bits together 1 1

 --- ---
Totals: 4 4

2. Static rotate right 0-32 bits. The 32 bit integer to be rotated is in d0.l. The number of bits to
rotate is N. The resulting carry is the value of bit N-1 of the register. For example, if N=3 (three
bit rotate right), then the resulting carry will be the value of bit 2 of the register. The resulting
carry is the value of the most significant bit of the register after rotation.

In the special case of a zero shift count, the resulting carry is the least significant bit. In the
special case of a 32 shift count, the resulting carry is the most significant bit. In both cases, the
register shifted is unchanged.

 Program ICycles
 Words
move d0.l,d1.l ;copy input 1 1 lsl
#32-N,d0 ;shift first part 1 1 lsr #N,d1

31 0

C

OROLA DSP96002 USER’S MANUAL B-49

B-50
;shift other part 1 1 or d1,d0 ;merge
bits together 1 1

 --- ---
Totals: 4 4

3. Dynamic rotate left 0-32 bits. The 32 bit integer to be rotated is in d0.l. The number of bits to
rotate is in d2.l.

In the special case of a zero shift count, the resulting carry is the most significant bit. In the
special case of a 32 shift count, the resulting carry is the least significant bit. In both cases, the
register shifted is unchanged.

 Program ICycles
 Words
move #32,d1.l ;get 32 1 1 sub
d2,d1 d2.l,d1.h ;32-shift, move shift 1 1 move
d1.l,d0.h ;move other shift 1 1 lsr d0,d0 d0.l,d1.l
;shift, copy input 1 1 lsl d1,d1 ;shift
other part 1 1 or d1,d0 ;merge bits
together 1 1

 --- ---
Totals: 6 6

4. Dynamic rotate right 0-32 bits. The 32 bit integer to be rotated is in d0.l. The number of bits
to rotate is in d2.l.

In the special case of a zero shift count, the resulting carry is the least significant bit. In the
special case of a 32 shift count, the resulting carry is the most significant bit. In both cases,
the register shifted is unchanged.
DSP96002 USER’S MANUAL MOTOROLA

MOT
 Program ICycles
 Words
move #32,d1.l ;get 32 1 1 sub
d2,d1 d2.l,d1.h ;32-shift, move shift 1 1 move
d1.l,d0.h ;move other shift 1 1 lsl d0,d0 d0.l,d1.l
;shift, copy input 1 1 lsr d1,d1 ;shift
other part 1 1 or d1,d0 ;merge bits
together 1 1

 --- ---
Totals: 6 6

 B.1.28 Bit Field Extraction/Insertion
The process of bit field extraction is performed on a 32 bit integer in the lower part of a register. A bit field
of length FSIZE starting at bit position FOFF is extracted and right justified with zero or sign extension. The
value of FSIZE ranges from 1-32 and the field offset ranges from 0-31. Bit field extraction and insertion
operations are used in high level languages such as "structures" in C. Both the static case (extraction
based on fixed constants) and the dynamic case (extraction based on the values in registers) are given. In
the examples, the field to be extracted is in d0.l.

The process of bit field insertion is performed on two 32 bit integer registers. A bit field of length FSIZE
from one register is shifted left by an offset FOFF and the field is then inserted into the second register.
The field size FSIZE ranges from 1-32 and the field offset from the right of the register ranges from 0-31.
For meaningful results, FSIZE+FOFF is less than or equal to 32. The bit field to insert is right justified in
the register with zero extension to 32 bits. Both the static case (extraction based on fixed constants) and
the dynamic case (extraction based on the values in registers) are given. In the examples, the field in d1.l
is inserted into d0.l.

1. Static bit field extraction, zero extend.

 Program ICycles
 Words
lsl #32-(foff+fsize),d0 ;shift off upper bits 1 1 lsr
#32-fsize,d0 ;right justify 1 1

 --- ---
Totals: 2 2

2. Static bit field extraction, sign extend.

 Program ICycles
 Words
lsl #32-(foff+fsize),d0 ;shift off upper bits 1 1

asr #32-fsize,d0 ;right justify, sign ext 1 1

 --- ---
Totals: 2 2
OROLA DSP96002 USER’S MANUAL B-51

B-52

3. Dynamic bit field extraction, zero extend. Register d1.l contains FOFF,
d2.l contains FSIZE.

 Program ICycles
 Words
move #32,d3.l ;register size 1 1 sub
d2,d3 ;32-fsize 1 1 sub d1,d3
d3.l,d4.h ;32-fsize-foff, 32-fsize 1 1 move d3.l,d0.h
;move 32-fsize-foff 1 1 lsl d0,d0 d4.h,d0.h ;shift
off upper bits 1 1 lsr d0,d0 ;right justify
1 1

 --- ---
Totals: 6 6

4. Dynamic bit field extraction, sign extend. Register d1.l contains FOFF,
d2.l contains FSIZE.

 Program ICycles
 Words
move #32,d3.l ;register size 1 1 sub
d2,d3 ;32-fsize 1 1 sub d1,d3
d3.l,d4.h ;32-fsize-foff, 32-fsize 1 1 move d3.l,d0.h
;move 32-fsize-foff 1 1 lsl d0,d0 d4.h,d0.h ;shift
off upper bits 1 1 asr d0,d0 ;right justify
1 1

 --- ---
Totals: 6 6

5. Static bit field insertion.

 Program ICycles
 Words
move #-1,d2.l ;get all ones mask 1 1 lsl
#32-fsize,d2 ;keep field fsize long 1 1 lsr #32-
(fsize+foff),d2 ;move to insertion 1 1 andc d2,d0
;clear field 1 1 lsl #foff,d1 ;move
field to insert 1 1 or d1,d0 ;insert bit
field 1 1

 --- ---

 Totals: 6 6
DSP96002 USER’S MANUAL MOTOROLA

MOT

6. Dynamic bit field insertion. Register d2.l contains FOFF, d3.l con-
tains FSIZE.

 Program ICycles
 Words
move #32,d4.l ;get 32 1 1 sub
d3,d4 #-1,d5.l ;32-fsize, load 1’s mask 2 2 sub d2,d4
d4.l,d5.h ;32-(fsize+foff) 1 1 lsl d5,d5 d4.l,d5.h
;shift one’s mask up 1 1 lsr d5,d5 ;shift
one’s mask down 1 1 andc d5,d0 d2.l,d1.h ;invert mask
and clear 1 1 lsl d1,d1 ;move bits to field
1 1 or d1,d0 ;insert bit field 1 1

 --- ---
Totals: 9 9

7. Static bit field clear.

 Program ICycles
 Words
move #-1,d1.l ;mask of all 1s 1 1 lsr
#32-fsize,d1 ;make 1s size of foff 1 1 lsl #foff,d1
;align field 1 1 andc d1,d0 ;invert
mask and clear 1 1

 --- ---
Totals: 4 4

8. Static bit field set.

 Program ICycles
 Words
move #-1,d1.l ;mask of all 1s 1 1 lsr
#32-fsize,d1 ;make 1s size of foff 1 1 lsl #foff,d1
;align field 1 1 or d1,d0 ;clear
field 1 1

 --- ---
Totals: 4 4

OROLA DSP96002 USER’S MANUAL B-53

B-54
9. Dynamic bit field clear. Register d1.l contains FOFF, d2.l contains
FSIZE.

 Program ICycles
 Words
move #32,d3.l ;register size 1 1 sub
d2,d3 #-1,d2.l ;32-fsize, get 1s mask 2 2 move
d3.l,d3.h ;move shift count 1 1 lsr d3,d2 d1.l,d1.h
;trim mask, get foff 1 1 lsl d1,d2 ;align
mask 1 1 andc d2,d0 ;invert mask
and clear 1 1

 --- ---
Totals: 7 7

10. Dynamic bit field set. Register d1.l contains FOFF, d2.l contains FSIZE.

 Program ICycles
 Words
move #32,d3.l ;register size 1 1 sub
d2,d3 #-1,d2.l ;32-fsize, get 1s mask 2 2 move
d3.l,d3.h ;move shift count 1 1 lsr d3,d2 d1.l,d1.h
;trim mask, get foff 1 1 lsl d1,d2 ;align
mask 1 1 or d2,d0 ;clear bit
field 1 1

 --- ---
Totals: 7 7

 B.1.29 Newton-Raphson Approximation for 1.0/SQRT(x)
The Newton-Raphson iteration can be used to approximate the function:

 1.0
 y= -------
 sqrt(x)

by minimizing the function:
 1.0
 F(y) = x - -------
 y*y

Given an initial approximate value y=1/sqrt(x), the Newton-Raphson iteration for refining the estimate is:

 y(n+1)=y(n)*(3.0-x*y*y)/2.0

 Newton-Raphson Approximation Program ICycles

 of 1.0/SQRT(x) Words
DSP96002 USER’S MANUAL MOTOROLA

MOT

 seedr d5,d4 ;y approx 1/sqrt(x) 1 1

 fmpy.s d4,d4,d2 #.5,d7.s ;y*y, get .5 2 2

 fmpy.s d5,d2,d2 #3.0,d3.s ;x*y*y, get 3.0 2 2

 fmpy d4,d7,d2 fsub.s d2,d3 d3.s,d6.s ;y/2, 3-x*y*y 1 1

 fmpy.s d2,d3,d4 d6.s,d3.s ;y/2*(3-x*y*y) 1 1

 fmpy.s d4,d4,d2 ;y*y 1 1

 fmpy.s d5,d2,d2 ;x*y*y 1 1

 fmpy d4,d7,d2 fsub.s d2,d3 d3.s,d6.s ;y/2, 3-x*y*y 1 1

 fmpy.s d2,d3,d4 ;y/2*(3-x*y*y) 1 1

 --- ---

 Totals: 11 11

 B.1.30 Newton-Raphson Approximation for SQRT(x)
The approximation of sqrt(x) may be performed by using the Newton-Raphson iteration to first find 1.0/
sqrt(x). The sqrt(x) then can be approximated by x*(1.0/sqrt(x)).

 Newton-Raphson Approximation Program ICycles
 of SQRT(x) Words

 seedr d5,d4 ;y approx 1/sqrt(x) 1 1

 fmpy.s d4,d4,d2 #.5,d7.s ;y*y, get .5 2 2

 fmpy.s d5,d2,d2 #3.0,d3.s ;x*y*y, get 3.0 2 2

 fmpy d4,d7,d2 fsub.s d2,d3 d3.s,d6.s ;y/2, 3-x*y*y 1 1

 fmpy.s d2,d3,d4 d6.s,d3.s ;y/2*(3-x*y*y) 1 1

 fmpy.s d4,d4,d2 ;y*y 1 1

 fmpy.s d5,d2,d2 ;x*y*y 1 1

 fmpy d4,d7,d2 fsub.s d2,d3 d3.s,d6.s ;y/2, 3-x*y*y 1 1

 fmpy.s d2,d3,d4 ;y/2*(3-x*y*y) 1 1

 fmpy.s d5,d4,d4 ;x*(1/sqrt(x)) 1 1

 --- ---

 Totals: 12 12

 B.1.31 Unsigned Integer Divide
The unsigned integer divide operation divides two 32 bit unsigned integers. The following code divides d0/
d2 with the resulting quotient in d0 and the remainder in d1.
OROLA DSP96002 USER’S MANUAL B-55

B-56

 Unsigned 32 Bit Integer Program ICycles
 Division of d0 = d0/d2 Words
 eor d1,d1 ; clear d1

 do #32,dloop ;32 quotient bits 2 3

 rol d0 ;dividend bit out, q bit in 1 1

 rol d1 ;put in temp 1 1

 cmp d2,d1 ;check for q bit 1 1

 sub d2,d1 ifcc ;update if less 1 1

dloop

 rol d0 ;last q bit 1 1

 not d0 ;complement q bits 1 1

 --- ---

 Totals: 8 133

The final remainder is not produced. This program may calculate only the number of quotient bits required
and has variable execution time.

 Unsigned 32 Bit Integer
 Division of d0 = d0/d1, d0>=d1

cmp d1,d0 d0.l,d2.m

eor d0,d0 iflo

jlo divdone ; divisor > dividend

bfind d0,d0 d3.l,d8.l

jmi dive2big ;dividend has

;32 significant bits

bfind d1,d2 d0.h,d0.l ;find # of quotient bits

movei #32,d3

move d2.h,d2.l

sub d0,d2 d2.m,d0.l

inc d2 d2.l,d2.h ;compute loop iteration count

sub d2,d3

lsl d2,d1 d3.l,d2.h ;align divisor

do d2.l,divloop_fast

cmp d1,d0 ;perform test subtract

sub d1,d0 ifhs ;if no borrow, do subtract

rol d0 ;mult remx2, save quo. bit (borrow)

divloop_fast

not d0 d8.l,d3.l ;flip inverted quotient

lsl d2,d0 ;clean off any remainder

lsr d2,d0

jmp divdone ;done
DSP96002 USER’S MANUAL MOTOROLA

MOT
dive2big eor d2,d2

do #32,divloop_slow ;same algorithm as 1st routine

rol d0

rol d2

cmp d1,d2

sub d1,d2 ifhs

divloop_slow rol d0

not d0

divdone end

The final quotient is not produced. This program may calculate only the number of quotient bits required
and has variable execution time.

 Unsigned 32 Bit Integer
 Remainder of d0 = d0 rem d1, d0>=d1

cmp d1,d0 d0.l,d2.m

jlo divdone ;divisor > dividend

bfind d0,d0 #0,d2.l

jmi dive2big ;dividend has

;32 significant bits

bfind d1,d2 d0.h,d0.l ;find # of remainder bits

move d2.h,d2.l

sub d0,d2 d2.m,d0.l

inc d2 d2.l,d2.h ;compute loop count

lsl d2,d1 d2.l,d2.h ;align divisor

do d2.l,remloop_fast

cmp d1,d0 ;perform test subtract

sub d1,d0 ifhs ;if no borrow, perform subtract

rol d0 ;adjust remainder

remloop_fast lsr d2,d0 ;align remainder

jmp remdone ;done

dive2big do #32,remloop_slow ;same algorithm as 1st routine

rol d0

rol d2

cmp d1,d2

sub d1,d2 ifhs

remloop_slow tfr d2,d0

remdone end

 B.1.32 Signed Integer Divide
The signed integer divide operation divides two 32 bit signed two’s complement integers. The divide oper-
ation uses a one quadrant restoring divide iteration to divide the operands. The following code divides d5/
d2 with the resulting quotient in d0.
OROLA DSP96002 USER’S MANUAL B-57

B-58
 Signed 32 Bit Integer Program ICycles
 Division of d0 = d5/d2 Words
 eor d2,d5 d5.l,d0.l ;determine final sign 1 1

 abs d2 d0.l,d3.l ;make divisor positive 1 1

 abs d0 ;make dividend positive 1 1

 do #32,dloop ;32 quotient bits 2 3

 rol d0 ;dividend bit out, q bit in 1 1

 rol d1 ;put in temp 1 1

 cmp d2,d1 ;check for q bit 1 1

 sub d2,d1 ifcc ;update if less 1 1

dloop

 rol d0 ;last q bit 1 1

 not d0 ;complement q bits 1 1

 tst d5 ;check sign of result 1 1

 neg d0 iflt ;negate if needed 1 1

 tst d3

 neg dl iflt

 --- ---

 Totals: 13 138

The final remainder is destroyed in the generation of the quotient. This program may calculate only the
number of quotient bits required and has variable execution time.

 Signed 32 Bit Integer
 Division of d0 = d0/d1, d0 >= d1

abs d1 d1.l,d2.l

eor d0,d2

abs d0 d2.l,d1.m

cmp d1,d0 d0.l,d2.m

eor d0,d0 iflo

jlo divdone

bfind d0,d0 d3.l,d8.l

bfind d1,d2 d0.h,d0.l

movei #32,d3

move d2.h,d2.l

sub d0,d2 d2.m,d0.l

inc d2 d2.l,d2.h

sub d2,d3

lsl d2,d1 d3.l,d2.h

do d2.l,divloop_fast

cmp d1,d0

sub d1,d0 ifhs

rol d0
DSP96002 USER’S MANUAL MOTOROLA

MOT
divloop_fast not d0 d8.l,d3.l

lsl d2,d0

lsr d2,d0 d1.m,d2.l

tst d2

neg d0 ifmi

divdone

The final quotient is destroyed in the generation of the remainder. This program calculates only the number
of quotient bits required and has variable execution time.

 Signed 32 Bit Integer
 Remainder of d0 = d0 rem d1, d0 >= d1

abs d1 d0.l,d2.l

abs d2 d0.l,d1.m

cmp d1,d2 d2.l,d2.m

jlo divdone

bfind d2,d0

bfind d1,d2 d0.h,d0.l

move d2.h,d2.l

sub d0,d2 d2.m,d0.l

inc d2 d2.l,d2.h

lsl d2,d1 d2.l,d2.h

do d2.l,remloop_fast

cmp d1,d0

sub d1,d0 ifhs

rol d0

remloop_fastlsr d2,d0 d1.m,d2.l

tst d2

neg d0 ifmi

divdone

 B.1.33 Graphics Accept/Reject Of Polygons
In graphics applications, checks are made to determine if objects are within a viewing window. Initial
checks are made to see if the object can be trivially accepted or trivially rejected. If the object can not be
trivially accepted/rejected, then a clipping algorithm is used.

The following code segments perform the trivial accept/reject of a point, line or 4 point polygon within a
cube.

 B.1.33.1 One Point Accept/Reject
This determines if the point (x,y,z) is within a three-dimensional view cube. If the point is within the cube,
the A (accept) bit of the CCR will be set. Single point accept/reject for plotting is useful for plotting of sto-
chastic images such as fractals.
OROLA DSP96002 USER’S MANUAL B-59

B-60
Registers:

 d0 = x d4 = limit

 d1 = y d5 = unused

 d2 = z d6 = unused

 d3 = unused d7 = unused

Memory Map:

 X Memory Y Memory

 Xmin ← r0

 Xmax

 Ymin

 Ymax

 Zmin

 Zmax

 Single Point Accept/Reject
 Program ICycles
 Words
 ori #$80,ccr ;set accept bit 1 1

 move y:(r0)+,d4.s ;get window minimum 1 1

 fcmp d4,d0 y:(r0)+,d4.s ;x-Xmin 1 1

 fcmp d0,d4 y:(r0)+,d4.s ;Xmax-x 1 1

 fcmp d4,d1 y:(r0)+,d4,s ;y-Ymin 1 1

 fcmp d1,d4 y:(r0)+,d4.s ;Ymax-y 1 1

 fcmp d4,d2 y:(r0)+,d4.s ;z-Zmin 1 1

 fcmp d2,d4 ;Zmax-z 1 1

 --- ---

 Totals: 8 8

If the point is within the limits, then the A bit of the CCR is equal to one, otherwise, the point can be rejected.

 B.1.33.2 Line Accept/Reject, floating-point Version
This determines if the line from (x0,y0,z0) to (x1,y1,z1) is within a three-dimensional view cube. If the line
is within the cube, the A (accept) bit of the CCR will be set. If the line is entirely outside of the cube, then
the R bit will be cleared. If the line can not be accepted or rejected, then further processing is required to
clip the line where it intersects with a boundary plane.

Registers:
 d0 = dimension d4 = unused
 d1 = limit d5 = unused
 d2 = unused d6 = unused
 d3 = unused d7 = unused

Memory Map:
DSP96002 USER’S MANUAL MOTOROLA

MOT
 X Memory Y Memory
(n0=3) r0 → x0 Xmin ← r4
 y0 Xmax
 z0 Ymin
 x1 Ymax
 y1 Zmin
 z1 Zmax
OROLA DSP96002 USER’S MANUAL B-61

B-62
 Program ICycles
 Words
 ori #$e0,ccr ;set accept/reject/overflow bits 1 1

 move x:(r0)+n0,d0.s y:(r4)+,d1.s ;get x0,Xmin 1 1

 fcmp d1,d0 x:(r0)-n0,d0.s ;x0-Xmin, get x1 1 1

 fcmpg d1,d0 y:(r4)+,d1.s ;x1-Xmin, Xmax 1 1

 fcmp d0,d1 x:(r0)+,d0.s ;Xmax-x1, get x0 1 1

 fcmpg d0,d1 x:(r0)+n0,d0.s y:(r4)+,d1.s ;Xmax-x0, y0,Ymin 1 1

 fcmp d1,d0 x:(r0)-n0,d0.s ;y0-Ymin, get y1 1 1

 fcmpg d1,d0 y:(r4)+,d1.s ;y1-Ymin, Ymax 1 1

 fcmp d0,d1 x:(r0)+,d0.s ;Ymax-y1, get y0 1 1

 fcmpg d0,d1 x:(r0)+n0,d0.s y:(r4)+,d1.s ;Ymax-y0, z0,Zmin 1 1

 fcmp d1,d0 x:(r0)-n0,d0.s ;z0-Zmin, get z1 1 1

 fcmpg d1,d0 y:(r4)+,d1.s ;z1-Zmin, Zmax 1 1

 fcmp d0,d1 x:(r0),d0.s ;Zmax-z1, get z0 1 1

 fcmpg d0,d1 ;Zmax-z0 1 1

 --- ---

 Totals: 14 14

If the A bit is set, the line can be accepted. If the R bit is cleared, the line can be rejected.

 B.1.33.3 Line Accept/Reject, Fixed Point Version
 Program ICycles
 Words
 ori #e0,ccr ;set accept/reject/infinity bits 1 1

 move x:(r0)+n0,d0.l y:(r4)+,d1.l ;get x0,Xmin 1 1

 cmp d1,d0 x:(r0)-n0,d0.l ;x0-Xmin, get x1 1 1

 cmpg d1,d0 y:(r4)+,d1.l ;x1-Xmin, Xmax 1 1

 cmp d0,d1 x:(r0)+,d0.l ;Xmax-x1, get x0 1 1

 cmpg d0,d1 x:(r0)+n0,d0.l y:(r4)+,d1.l ;Xmax-x0, y0,Ymin 1 1

 cmp d1,d0 x:(r0)-n0,d0.l ;y0-Ymin, get y1 1 1

 cmpg d1,d0 y:(r4)+,d1.l ;y1-Ymin, Ymax 1 1

 cmp d0,d1 x:(r0)+,d0.l ;Ymax-y1, get y0 1 1

 cmpg d0,d1 x:(r0)+n0,d0.l y:(r4)+,d1.l ;Ymax-y0, z0,Zmin 1 1

 cmp d1,d0 x:(r0)-n0,d0.l ;z0-Zmin, get z1 1 1

 cmpg d1,d0 y:(r4)+,d1.l ;z1-Zmin, Zmax 1 1

 cmp d0,d1 x:(r0),d0.l ;Zmax-z1, get z0 1 1

 cmpg d0,d1 ;Zmax-z0 1 1

 --- ---

 Totals: 14 14
DSP96002 USER’S MANUAL MOTOROLA

MOT
If the A bit is set, the line can be accepted. If the R bit is cleared, the line can be rejected.

 B.1.33.4 Four Point Polygon Accept/Reject
This determines if the polygon consisting of the points (x0,y0,z0), (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) is within
a three-dimensional view cube. If the polygon is within the cube, the A (accept) bit of the CCR will be set.
If the polygon is entirely outside of the cube, then the R bit will be cleared. If the polygon can not be ac-
cepted or rejected, then further processing is required to clip the polygon.

Registers:

 d0 = dimension d4 = unused

 d1 = limit d5 = unused

 d2 = unused d6 = unused

 d3 = unused d7 = unused

Memory Map:
 X Memory Y Memory
 (n0=3) r0 → x0 Xmin ← r4
 y0 Xmax
 z0 Ymin
 x1 Ymax
 y1 Zmin
 z1 Zmax
 x2
 y2
 z2
 x3
 y3
 z3

 Polygon Accept/Reject
 Program ICycles
 Words
 ori #$e0,ccr ;set accept/reject/overflow bits 1 1

 move x:(r0)+n0,d0.s y:(r4)+,d1.s ;get x0,Xmin 1 1

 fcmp d1,d0 x:(r0)+n0,d0.s ;x0-Xmin, get x1 1 1

 fcmp d1,d0 x:(r0)+n0,d0.s ;x1-Xmin, get x2 1 1

 fcmp d1,d0 x:(r0)-n0,d0.s ;x2-Xmin, get x3 1 1

 fcmpg d1,d0 y:(r4)+,d1.s ;x3-Xmin, Xmax 1 1

 fcmp d0,d1 x:(r0)-n0,d0.s ;Xmax-x3, get x2 1 1

 fcmp d0,d1 x:(r0)-n0,d0.s ;Xmax-x2, get x1 1 1

 fcmp d0,d1 x:(r0)+,d0.s ;Xmax-x1, get x0 1 1

 fcmpg d0,d1 x:(r0)+n0,d0.s y:(r4)+,d1.s ;Xmax-x0, y0,Ymin 1 1

 fcmp d1,d0 x:(r0)+n0,d0.s ;y0-Ymin, get y1 1 1

 fcmp d1,d0 x:(r0)+n0,d0.s ;y1-Ymin, get y2 1 1

 fcmp d1,d0 x:(r0)-n0,d0.s ;y2-Ymin, get y3 1 1

 fcmpg d1,d0 y:(r4)+,d1.s ;y3-Ymin, ymax 1 1

 fcmp d0,d1 x:(r0)-n0,d0.s ;Ymax-y3, get y2 1 1

 fcmp d0,d1 x:(r0)-n0,d0.s ;Ymax-y2, get y1 1 1
OROLA DSP96002 USER’S MANUAL B-63

B-64
 fcmp d0,d1 x:(r0)+,d0.s ;Ymax-y1, get y0 1 1

 fcmpg d0,d1 x:(r0)+n0,d0.s y:(r4)+,d1.s ;Ymax-y0, z0,Zmin 1 1

 fcmp d1,d0 x:(r0)+n0,d0.s ;z0-Zmin, get z1 1 1

 fcmp d1,d0 x:(r0)+n0,d0.s ;z1-Zmin, get z2 1 1

 fcmp d1,d0 x:(r0)-n0,d0.s ;z2-Zmin, get z3 1 1

 fcmpg d1,d0 y:(r4)+,d1.s ;z3-Zmin, Zmax 1 1

 fcmp d0,d1 x:(r0)-n0,d0.s ;Zmax-z3, get z2 1 1

 fcmp d0,d1 x:(r0)-n0,d0.s ;Zmax-z2, get z1 1 1

 fcmp d0,d1 x:(r0)+,d0.s ;Zmax-z1, get z0 1 1

 fcmpg d0,d1 ;Zmax-z0 1 1

 --- ---

 Totals: 26 26

If the A bit is set, the polygon can be accepted, if the R bit is cleared, the polygon can be rejected.

 B.1.33.5 Four Point Polygon Accept/Reject (looped)
 Polygon Accept/Reject
 Program Icycles
 Words
 ori #$e0,ccr ;set accept/reject/overflow bits 1 1

 move x:(r0)+n0,d0.s y:(r4)+,d1.s ;get x0,Xmin 1 1

 do #3,clip 2 3

 fcmp d1,d0 x:(r0)+n0,d0.s ;d0-Dmin, get d1 1 1

 fcmp d1,d0 x:(r0)+n0,d0.s ;d1-Dmin, get d2 1 1

 fcmp d1,d0 x:(r0)-n0,d0.s ;d2-Dmin, get d3 1 1

 fcmpg d1,d0 y:(r4)+,d1.s ;d3-Dmin, Dmax 1 1

 fcmp d0,d1 x:(r0)-n0,d0.s ;Dmax-x3, get d2 1 1

 fcmp d0,d1 x:(r0)-n0,d0.s ;Dmax-x2, get d1 1 1

 fcmp d0,d1 x:(r0)+,d0.s ;Dmax-x1, get d0 1 1

 fcmpg d0,d1 x:(r0)+n0,d0.s y:(r4)+,d1.s ;Dmax-x0, d0,Dmin 1 1

clip --- ---

 Totals: 12 26

 B.1.34 Cascaded Five Coefficient Transpose IIR Filter
The cascaded transpose IIR filter has a filter section:
DSP96002 USER’S MANUAL MOTOROLA

MOT

The filter equations are:

 y = x*bi0 + w1

 w1 = x*bi1 + y*ai1 + w2

 w2 = x*bi2 + y*a2

 Program ICycles
 Words
nsec equ 3

 org x:0

coef

 dc .93622314E-04 ;/* section 1 B0 */

 dc .18724463E-03 ;/* section 1 B1 */

 dc .19625904E+01 ;/* section 1 A1 */

 dc .93622314E-04 ;/* section 1 B2 */

 dc -.96296486E+00 ;/* section 1 A2 */

 dc .94089162E-04 ;/* section 2 B0 */

 dc .18817832E-03 ;/* section 2 B1 */

 dc .19723768E+01 ;/* section 2 A1 */

 dc .94089162E-04 ;/* section 2 B2 */

 dc -.97275320E+00 ;/* section 2 A2 */

 dc .94908880E-04 ;/* section 3 B0 */

 dc .18981776E-03 ;/* section 3 B1 */

 dc .19895605E+01 ;/* section 3 A1 */

 dc .94908880E-04 ;/* section 3 B2 */

 dc -.98994009E+00 ;/* section 3 A2 */

Z-1

Z-1

∑

∑

∑

bi0

bi1

bi2

w1

ai1

ai2

x y

w2
OROLA DSP96002 USER’S MANUAL B-65

B-66

 org y:0

w1 dsm nsec

w2 dsm nsec

 org p:$100

 move #coef,r0

 move #5*nsec-1,m0

 move #w1,r4

 move #nsec-1,m4

 move #w2,r5

 move m4,m5

;

; input in d7

;

 move x:(r0)+,d4.s ;get b0 1 1

 do #nsec,tran 2 3

 fmpy d7,d4,d0 fadd.s d1,d2 x:(r0)+,d4.s y:(r4),d5.s 1 1

 fmpy d7,d4,d1 fadd.s d5,d0 x:(r0)+,d4.s y:(r5),d6.s 1 1

 fmpy d0,d4,d2 fadd.s d6,d1 x:(r0)+,d4.s d2.s,y:(r5)+ 1 1

 fmpy d7,d4,d2 fadd.s d2,d1 x:(r0)+,d4.s d0.s,d7.s 1 1

 fmpy.s d0,d4,d1 x:(r0)+,d4.s d1.s,y:(r4)+ 1 1

tran

 fadd.s d1,d2 1 1

 move d2.s,y:(r5)+ 1 1

 move d0.s,y:$ffff

 --- ---

 Totals: 10 5N+6

 B.1.35 3-Dimensional Graphics Illumination
Illumination of objects in three dimensions consists of light from three sources: diffuse lighting from a point
source, ambient light and specular lighting. Specular lighting is caused by an object directly reflecting the
illumination source. The following variables describe the illumination process:

L Direction vector to the point light source L={Lx,Ly,Lz}

N Direction vector normal to the object N={Nx,Ny,Nz}

Ip Intensity of the point source

Kd Diffuse reflection constant 0<= Kd <= 1.0

Ia Intensity of ambient light

Ka Ambient reflection constant 0<= Ka <= 1.0
DSP96002 USER’S MANUAL MOTOROLA

MOT
R Direction vector of reflection of the point source from the

 object R={Rx,Ry,Rz}

V Direction vector from the object to the viewpoint

Ks Specular reflection constant 0<= Ks <= 1.0

It should be noted that all vectors are normalized to unit magnitude.

The illumination can be described several ways depending on the complexity of the object and light source:

I=Ip Kd L*N Diffuse reflection

I=Ia Ka + Ip Kd L*N Ambient lighting and diffuse reflection

I=Ia Ka + Ip(Kd L*N + Ks(R*V)**n)

 Ambient lighting, diffuse reflection and

 specular reflection (Phong model)

In the above equations, * represents a vector dot product such as L*N = LxNx+LyNy+LzNz and ** repre-

sents exponentiation.

Since the dot product of two normalized vectors is less than or equal to one, the term Ks(R*V)**n is less

than one. The value of this term is found by using a 256 element lookup table with 256.0(R*V) as an index.

The value of n is an arbitrary term that is fixed for the algorithm and depends on empirical conditions.

 X memory Y memory

 vec R0 → Rx Vx
 Ry Vy

 Rz Vz

 Lx Nx

 Ly Ny

 Lz Nz

 ktbl R4→ 256.0

 address of spctbl

 Kd

 Ip

 Ia

 Ka
OROLA DSP96002 USER’S MANUAL B-67

B-68
 3-D Graphics Illumination Program ICycles
 Words
 move #vec,r0 2 2

 move #ktbl,r4 2 2

 move x:(r0)+,d6.s y:,d7.s 1 1

 fmpy.s d6,d7,d0 x:(r0)+,d6.s y:,d7.s 1 1

 fmpy.s d6,d7,d1 x:(r0)+,d6.s y:,d7.s 1 1

 fmpy d6,d7,d1 fadd.s d1,d0 x:(r0)+,d6.s y:,d7.s 1 1

 fmpy d6,d7,d1 fadd.s d1,d0 x:(r4)+,d2.s 1 1

 fmpy.s d2,d0,d0 x:(r4)+,n1 1 1

 intrz d0 x:(r0)+,d6.s y:,d7.s 1 1

 fmpy.s d6,d7,d0 d0.l,r1 1 1

 move x:(r0)+,d6.s y:,d7.s 1 1

 fmpy d6,d7,d0 fadd.s d0,d1 x:(r1+n1),d2.s 1 2

 fadd.s d0,d1 x:(r4)+,d0.s 1 1

 fmpy.s d0,d1,d1 x:(r4)+,d0.s 1 1

 fadd.s d1,d2 x:(r4)+,d1.s 1 1

 fmpy.s d2,d0 x:(r4),d2.s 1 1

 fmpy.s d1,d2,d1 1 1

 fadd.s d1,d0 1 1

 --- ---

 Totals: 20 21

The illumination value I is in d0.

Reference: "Fundamentals of Interactive Computer Graphics",

 James D. Foley, Andries Van Dam

 Addison-Wesley 1982

 B.1.36 Pseudorandom Number Generation
This pseudorandom number generator requires a 32 bit seed and returns an unsigned 32 bit random num-
ber. There are no restrictions on the value of the seed. The equation for the seed is:

 seed = (69069*seed + 1) mod 2**32

 Pseudorandom Number Generation Program ICycles
 Words
 move x:seed,d0.l ;get seed 2 2

 move #69069,d1.l ;get constant 2 2

 mpyu d0,d1,d0 ;multiply 1 1

 inc d0 ; +1 1 1

 move d0.l,x:seed ;mod 2**32, new seed 2 2

 --- ---

 Totals: 8 8
DSP96002 USER’S MANUAL MOTOROLA

MOT
The resulting unsigned pseudorandom integer number is in d0.l.

Reference: VAX/VMS Run-Time Library Routines Reference Manual,

 Volume 8C, p. RTL-433.

 B.1.37 Bezier Cubic Polynomial Evaluation
Bezier polynomials are used to represent curves and surfaces in graphics. The Bezier form requires four
points: two endpoints and two points other points. The four points define (in two dimensions) a convex
polygon. The curve is bounded by the edges of the polygon.

A typical application of the Bezier cubic is generating character fonts for laser printers using the postscript
notation.

Given the four sets of points, the cubic equation for the X coordinate is:

x(t)=(P1x)*(1-t)**3 + (P2x)*3*t*(t-1)**2 + (P3x)*3*t*t*(1-t) + (P4x)t**3

where:

 P1x = x coordinate of an endpoint

 P2x = a point used for defining the convex polygon

 P3x = a point used for defining the convex polygon

 P4x = x coordinate of an endpoint

 0.0 <= t <= 1.0

As t varies from zero to one, the x coordinate moves along the cubic from one endpoint to the other.

With a little inspiration, the equation can be factored as:

x(t)=-(t-1)**3*(P1X) + 3t(t-1)**2*(P2x) - 3t*t(1-t)*(P3x) + t**3*(P4x)

x(t)=(t-1)(-(t-1)**2*(P1x)+3t{(t-1)*(P2x)-t*(P3x)}) + t**3*(P4x)

Memory Map: X Y

 r4 → t 1.0
 3.0

 P1x

 P2x

 r0 → P3x

 P4x

The P coefficients are accessed in the order: P3x,P2x,P1x,P4x.

OROLA DSP96002 USER’S MANUAL B-69

B-70
 Bezier Cubic Evaluation Program ICycles
 Words
 move #Ptable+2,r0

 move #2,n0

 move #TK,r4

 move x:(r0)-,d4.s 1 1

 move x:(r4)+,d0.s y:,d5.s 1 1

 fmpy d4,d0,d1 fsub.s d5,d0 x:(r0)-,d4.s d0.s,d5.s 1 1

 fmpy.s d4,d0,d2 y:(r4)-,d4.s 1 1

 fmpy d4,d5,d1 fsub.s d1,d2 1 1

 fmpy.s d1,d2,d2 1 1

 fmpy.s d0,d0,d1 x:(r0)+n0,d4.s 1 1

 fmpy.s d1,d4,d1 d5.s,d4.s 1 1

 fmpy d4,d4,d1 fsub.s d1,d2 1 1

 fmpy.s d0,d2,d2 1 1

 fmpy.s d1,d4,d1 x:(r0)+n0,d5.s 1 1

 fmpy.s d1,d5,d1 1 1

 fadd.s d1,d2 1 1

 --- ---

 Totals: 13 13

The result x(t) is in d2. The setup of the pointers is not included because this is application dependent and
does not have to be performed for each evaluation of x(t). The first two moves may also be application
dependent and be merged with other data ALU operations for a savings of two more cycles and program
steps.

Reference: "Fundamentals of Interactive Computer Graphics",

 James D. Foley Andries Van Dam

 Addison-Wesley 1982

 B.1.38 Byte/16 Bit Packing/Unpacking From/To 32 Bits

 B.1.38.1 Pack Four Bytes Into a 32 Bit Word
The following packs four 8 bit bytes into a single 32 bit word. The bytes to be packed are right justified in
four separate registers:

 d0 = xxxA d2 = xxxC

 d1 = xxxB d3 = xxxD

DSP96002 USER’S MANUAL MOTOROLA

MOT
 Four 8 Bit Packs Program ICycles
 Words
 joinb d0,d1 ;d1 = xxAB 1 1

 joinb d2,d3 ;d3 = xxCD 1 1

 join d1,d3 ;d3 = ABCD 1 1

 --- ---

 Totals: 3 3

 B.1.38.2 Pack Two 16 Bit Words Into a 32 Bit Word
The following packs two 16 bit words into a single 32 bit word. The words to be packed are right justified in
two separate registers:

 d0 = xY d1 = xZ

 Two 16 Bit Packs Program ICycles
 Words
 join d0,d1 ;d1 = YZ 1 1
 --- ---
 Totals: 1 1

 B.1.38.3 Unpack a 32 Bit Word Into Four Sign-extended Bytes
The following unpacks a 32 bit word into four 8 bit sign-extended bytes in separate registers.

 Four 8 Bit Unpacks Program ICycles
 Words
 move #data,d3.l ;get data

 split d3,d1 ;d1=ssAB, d3=ABCD 1 1

 splitb d1,d0 ;d0=sssA, d1=ssAB 1 1

 extb d1 ;d1=sssB 1 1

 splitb d3,d2 ;d2=sssC 1 1

 extb d3 ;d3=sssD 1 1
 --- ---
 Totals: 5 5

 B.1.38.4 Unpack a 32 Bit Word Into Two Sign-extended 16 Bit Words
The following unpacks a 32 bit word into two 16 bit sign-extended 16 bit words.

 Two 16 Bit Unpacks Program ICycles
 Words
 move #data,d0.l ;get data

 split d0,d1 ;d1=sX, d0=XY 1 1

 ext d1 ;d1=sY 1 1
 --- ---
 Totals: 2 2
OROLA DSP96002 USER’S MANUAL B-71

B-72
 B.1.39 Nth Order Polynomial Evaluation for Two Points

;An Nth order polynomial c1XN + c2XN-1 + ...cNX + cN+1 can be factored
;and represented as ((c1X + c2)X + c3)X + ...) + cN+1. This routine
;evaluates the polynomial at both X = s and X = t.
;
;Memory Map : X Y
;
; r1 -> s t
; .
; .
; r0 -> c1
; c2
; c3
; .
; .
; cN+1

; Setup N equ order of polynomial

move #coef,r0
move #2_pts,r1
move x:(r1)+,d5.s y:,d4.s ; s, t
move x:(r0)+,d1.s ; c1
move d1.s,d0.s

; Inner loop for evaluating 2 consecutive points

do #N,_loop
fmpy.x d1,d5,d1 x:(r0)+,d2.s ; c(n)*s, c(n+1)
fmpy d0,d4,d0 fadd.x d2,d1 ; c(n)*t, c(n)*s+c(n+1)
fadd.x d2,d0 ; c(n)*t+c(n+1) _loop

 B.1.40 Graphics BITBLT (Bit Block Transfer)
The bit block transfer (BITBLT) is an operation that transfers a bit field from one area of memory to another.
Four parameters describe the BITBLT operation:

SOURCE - The source address of the block to be transferred. Data transferred from the source starts at
the lsb of the first data word.

COUNT - The number of words to transfer from the source field. This must be greater than zero.

DEST - Destination starting address.

OFFSET - The starting bit number of the destination word that the transfer is to start. The offset is in the
range of 0-31.

Note that the source data starts at the lsb of the first word whereas the destination starts at an arbitrary
offset from the lsb.
DSP96002 USER’S MANUAL MOTOROLA

MOT
 B.1.40.1 32 Bit Block Transfer

 32 Bit Block Transfer Program ICycles
 BITBLT Words
 org x:0

source ds 1 ;source address

dest ds 1 ;destination address

offset ds 1 ;bit number start (0-31)

count ds 1 ;number of 32 bit source words

 org p:$50

 move x:offset,d0.l ;get output bit position 2 2

 move #32,d1.l ;get 32 1 1

 sub d0,d1 x:source,r0 ;32-offset, point to source 2 2

 move x:dest,r1 ;point to destination address 2 2

 move d1.l,d1.h ;move shift factor 1 1

 move y:(r1),d4.l ;get first bits of dest 1 1

 lsl d1,d4 d0.l,d0.h ;shift bits, move shift fact 1 1

 move x:count,n0 ;get source word count 2 2

 do n0,bitblt ;do transfer 2 3

 lsr d1,d4 y:(r0)+,d5.l ;shift old bits, get source bits 1 1

 lsl d0,d5 d5.l,d3.l ;shift new bits, save new bits 1 1

 or d4,d5 d3.l,d4.l ;merge bits, save new as old bit 1 1

 move d5.l,y:(r1)+ ;save new dest field 1 1

bitblt

 lsr d1,d4 y:(r1),d5.l ;shift old bits, get dest bits 1 1

 lsr d0,d5 ;shift dest bits 1 1

 lsl d0,d5 ;shift dest bits back 1 1

 or d4,d5 ;part of dest with source bits 1 1

 move d5.l,y:(r1) ;save new destination bits 1 1

 --- ---

 Totals: 24 4N+20

Where N represents 32 bits transferred. At a 13.5 MIPS, a total of (13.5/4)*32 = 108 MBits/Second transfer

rate is possible.
OROLA DSP96002 USER’S MANUAL B-73

B-74
 B.1.40.2 64 Bit Block Transfer
A more efficient implementation of BITBLT may be performed by transferring 64 bits at a time. Thus, the
value of COUNT specifies the number of 64 bit transfers (two 32 bit words).

 64 Bit Block Transfer Program ICycles
 BITBLT Words
 org x:0

source ds 1 ;source address

dest ds 1 ;destination address

offset ds 1 ;bit number start (0-31)

count ds 1 ;number of 64 bit source words

 org p:$50

 move x:offset,d0.l ;get output bit position 2 2

 move x:offset,d0.l ;get output bit position 2 2

 move #32,d1.l ;get 32 2 2

 sub d0,d1 x:source,r0 ;32-offset, get source address 2 2

 move x:dest,r1 ;point to destination address 2 2

 move d1.l,d1.h ;move shift factor 1 1

 lsl d1,d4 d0.l,d0.h ;shift bits, move shift factor 1 1

 move x:count,n0 ;get source word count 2 2

 move (r1)- ;backup pointer 1 1

 move y:(r1)+,d6.l ;init pipe 1 1

 move y:(r1)-,d4.l ;get first bits of dest 1 1

 move y:(r0)+,d5.l ;get source bits 1 1

 do n0,bitblt ;do transfer 2 3

 lsr d1,d4 d6.l,y:(r1)+ 1 1

 lsl d0,d5 d5.l,d3.l 1 1

 or d4,d5 y:(r0)+,d6.l 1 1

 lsr d1,d3 d5.l,y:(r1)+ 1 1

 lsl d0,d6 d6.l,d4.l 1 1

 or d3,d6 y:(r0)+,d5.l 1 1

bitblt

 move d6.l,y:(r1)+ 1 1

 lsr d1,d4 y:(r1),d5.l ;shift old bits, get dest bits 1 1

 lsr d0,d5 ;shift dest bits 1 1

 lsl d0,d5 ;shift dest bits back 1 1

 or d4,d5 ;part of dest with source bits 1 1

 move d5.l,y:(r1) ;save new destination bits 1 1

 --- ---

 Totals: 32 6N+27

Where N represents 64 bits transferred. At a 13.5 MIPS, a total of (13.5/6)*64 = 144 MBits/Second transfer

rate is possible.
DSP96002 USER’S MANUAL MOTOROLA

MOT
 B.1.41 64x64 Bit Unsigned Multiply
This performs a double precision unsigned integer multiply. The 64 bit integer is formed by the concatena-
tion of two 32 bit registers.

Let X = A:B and Y = C:D, then X*Y can be written as:

 A B

 * C D

 + B * D

 + A * D

 + B * C

 + A * C

 = W X Y Z

 64x64 Bit Unsigned Multiply Program ICycles
 d3:d7:d6:d4 = d0:d1 * d2:d3 Words

 mpyu d0,d2,d7 1 1

 mpyu d0,d3,d5 1 1

 mpyu d1,d3,d4 d7.h,d3.l 1 1

 mpyu d1,d2,d6 d4.h,d0.l 1 1

 move d6.h,d2.l 1 1

 add d0,d5 d5.h,d1.l 1 1

 addc d1,d2 1 1

 inc d3 ifcs 1 1

 add d5,d6 1 1

 addc d2,d7 1 1

 inc d3 ifcs 1 1

 --- ---

 Totals: 11 11
OROLA DSP96002 USER’S MANUAL B-75

B-76
 B.1.42 Signed Reciprocal Generation
This generates a fast approximation to 1/x.

 Approximation of 1/d1 Program ICycles
 16 Bit Accuracy Words
 fseedd d1,d6 1 1

 fmpy.s d1,d6,d1 #2.0,d4.s 2 2

 fsub.s d1,d4 1 1

 fmpy.s d6,d4,d1 1 1

 --- ---

 Totals: 5 5

 Approximation of 1/d1 Program ICycles
 32 Bit Accuracy Words
 fseedd d1,d6 1 1

 fmpy.s d1,d6,d1 #2.0,d4.s 2 2

 fsub.s d1,d4 d4.s,d3.s 1 1

 fmpy.s d1,d4,d1 1 1

 fmpy d6,d4,d1 fsub.s d1,d3 1 1

 fmpy.s d1,d3,d1 1 1

 --- ---

 Totals: 7 7

 B.1.43 Line Drawing

 B.1.43.1 Floating-Point Incremental Line Drawing Algorithm
This algorithm generates points along a line given the endpoints. As the coordinate along one axis is incre-
mented in fixed point, the other coordinate is incremented in floating-point and then converted to fixed
point. A full line drawing algorithm which draws lines in all directions is given below.

Registers:

 d0 = temporary d4 = temporary x1 d8 =

 d1 = temporary d5 = temporary y1 d9 = 2.0

 d2 = x1 (dx) d6 = x0 and xScreen

 d3 = y1 (dy) d7 = y0 and yScreen

DSP96002 USER’S MANUAL MOTOROLA

MOT
 Program ICycles
 Words
; Calculate dx and dy

 fsub.s d6,d2 d2.s,d4.s 1 1

 fsub.s d7,d3 d3.s,d5.s 1 1

; Determine whether to increment x or y

 fcmpm d3,d2 1 1

 fjge _inc_x 2 2

; Switch endpoints if necessary

_inc_y

 ftst d3 d2.s,d0.s 1 1

 ftfr.s d4,d6 fflt 1 1

 ftfr.s d5,d7 fflt 1 1

; Fix y0 and dy

 int d7 d3.s,d1.s 1 1

 int d1 1 1

 neg d1 iflt 1 1

 jeq _draw1_y 2 2

; Calculate dx/dy

 fseedd d3,d4 1 1

 fmpy.s d3,d4,d5 d9.s,d2.s 1 1

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 1 1

 fmpy.s d0,d3,d0 d6.s,d2.s 1 1

; Draw first point

 int d6 1 1

 jsr _draw_point application dependent

; d0 = dx/dy d1 = dy d6 = x0 d7 = y0

 do d1.l,_end_y 2 3

 fadd.x d0,d2 1 1

 inc d7 d2.s,d6.s 1 1

 int d6 1 1

 jsr _draw_point application dependent

_end_y

 rts 2 2

_draw1_y

 int d6 1 1

 jsr _draw_point application dependent

 rts 2 2
OROLA DSP96002 USER’S MANUAL B-77

B-78
; Switch endpoints if necessary

_inc_x

 ftst d2 d3.s,d0.s 1 1

 ftfr.s d4,d6 fflt 1 1

 ftfr.s d5,d7 fflt 1 1

; Fix x0 and dx

 int d6 d2.s,d1.s 1 1

 int d1 1 1

 neg d1 iflt 1 1

 jeq _draw1_x 2 2

; Calculate dy/dx

 fseedd d2,d4 1 1

 fmpy.s d2,d4,d5 d9.s,d2.s 1 1

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 1 1

 fmpy.s d0,d3,d0 d7.s,d2.s 1 1

; Draw first point

 int d7 1 1

 jsr _draw_point application dependent

; d0 = dy/dx d1 = dx d6 = x0 d7 = y0

 do d1.l,_end_x 2 3

 fadd.x d0,d2 1 1

 inc d6 d2.s,d7.s 1 1

 int d7 1 1

 jsr _draw_point application dependent

_end_x

 rts 2 2

_draw1_x

 int d7 1 1

 jsr _draw_point application dependent

 rts 2 2

Performance:

 Trivial case: (single point) 16 cycles

 Other cases: 25 + 3n cycles
DSP96002 USER’S MANUAL MOTOROLA

MOT
 B.1.43.2 Integer Incremental Line Drawing Algorithm
This implementation of line drawing uses Bresenham’s algorithm. This algorithm uses only integer opera-
tions to generate the points.

; Bresenham Line Drawing Implementation

;

; When entering subroutine, the registers must

; be set as follows:

;

; d0 = d4 =

; d1 = d5 =

; d2 = x1 d6 = x0

; d3 = y1 d7 = y0

;

; When entering a line drawing loop, the registers

; are set as follows:

;

; d6 = x0

; d7 = y0

; d4 = dmajor

; d5 = n0 = dminor

; r0 = dmajor/2

; m0 = dmajor - 1

 org p:$50

; Calculate dx and dy

_line

 sub d6,d2 d2.l,d4.l

 sub d7,d3 d3.l,d5.l

; Determine whether to increment x or y

 tst d2 d2.l,d0.l

 neg d2 iflt

 tst d3 d3.l,d1.l

 neg d3 iflt

 cmp d3,d2

 jge _inc_x

; Increment y case

; If dy is negative, switch endpoints and sign of dx and dy

_inc_y

 tst d1

 tfr d4,d6 iflt

 tfr d5,d7 iflt
OROLA DSP96002 USER’S MANUAL B-79

B-80
 neg d1 iflt

 neg d0 iflt

 tst d0

 jlt _set_y_xn

; Increment y, dx positive case

; Set up registers

_set_y_xp

 lsr d1 d1.l,d2.l

 dec d2 d2.l,d4.l

 move d1.l,r0

 move d2.l,m0

 move d0.l,n0

 move d0.l,d5.l

; Draw first point

 jsr _draw_point

; Draw additional points

 do d4.l,_line_y_xp

 inc d7 r0,d2.l

 add d5,d2 (r0)+n0

 cmp d4,d2

 inc d6 ifge

 jsr _draw_point

_line_y_xp

 rts

; Increment y, dx negative case

; Set up registers

_set_y_xn

 lsr d1 d1.l,d2.l

 dec d2 d2.l,d4.l

 neg d0 d1.l,r0

 move d2.l,m0

 move d0.l,n0

 move d0.l,d5.l

; Draw first point

 jsr _draw_point

; Draw additional points

 do d4.l,_line_y_xn

 inc d7 r0,d2.l

 add d5,d2 (r0)+n0
DSP96002 USER’S MANUAL MOTOROLA

MOT
 cmp d4,d2

 dec d6 ifge

 jsr _draw_point

_line_y_xn

 rts

; Increment x case

; If dx is negative, switch endpoints and sign of dx and dy

_inc_x

 tst d0

 jeq _draw1

 tfr d4,d6 iflt

 tfr d5,d7 iflt

 neg d0 iflt

 neg d1 iflt

 tst d1

 jlt _set_x_yn

; Increment x, dy positive case

; Set up registers

_set_x_yp

 lsr d0 d0.l,d2.l

 dec d2 d2.l,d4.l

 move d0.l,r0

 move d2.l,m0

 move d1.l,n0

 move d1.l,d5.l

; Draw first point

 jsr _draw_point

; Draw additional points

 do d4.l,_line_x_yp

 inc d6 r0,d2.l

 add d5,d2 (r0)+n0

 cmp d4,d2

 inc d7 ifge

 jsr _draw_point

_line_x_yp

 rts

; Increment x, dy negative case

; Set up registers

_set_x_yn
OROLA DSP96002 USER’S MANUAL B-81

B-82
 lsr d0 d0.l,d2.l

 dec d2 d2.l,d4.l

 neg d1 d0.l,r0

 move d2.l,m0

 move d1.l,n0

 move d1.l,d5.l

; Draw first point

 jsr _draw_point

; Draw additional points

 do d4.l,_line_x_yn

 inc d6 r0,d2.l

 add d5,d2 (r0)+n0

 cmp d4,d2

 dec d7 ifge

_draw1

 jsr _draw_point

_line_x_yn

 rts

; Draw a single point

_draw_point

 move d6.l,x:(r1)+ d7.l,y:

 rts

 B.1.44 Wire-Frame Graphics Rendering

 WIRE-FRAME RENDITION OF A THREE DIMENSIONAL POLYLINE

 ON THE MOTOROLA DSP96002

 Version 1.00

OVERVIEW

This program displays a three dimensional polyline in two dimensions. The points of the polyline, as defined
in the input list, are projected into two dimensions using the perspective transformation. The projected
points are output to a display list that can be drawn by a graphics engine or a fast drawing program.

In order to maximize speed, two loops perform the graphics transformations: the trivial accept loop and the
trivial reject loop.

The trivial accept loop assumes that the last displayed point was inside the viewing pyramid and thus not
clipped. It pulls a new point from the input list, converts it to clipping space and checks if it is inside the
viewing pyramid. If so, the routine performs the perspective transformation, scales and translates the point
so it lies within the viewing window, and finally adds it to the display list.
DSP96002 USER’S MANUAL MOTOROLA

MOT
If the point is found to lie outside the viewing pyramid, an algorithm to clip a single point is performed and
the program enters the trivial reject loop.

The trivial reject loop assumes that the last displayed point was outside the viewing pyramid. It pulls a new
point from the input list, converts it to clipping space and checks if the line joining the new point and the
last point can be trivially rejected. Trivial rejection occurs when both points of a line lie outside of a clipping
plane. When this occurs, the current point is saved and the trivial reject loop repeats.

Should the line not be trivially rejected but the current point is accepted, an algorithm to clip a single point
is performed. If the current point is not accepted, two-point clipping is performed.

PERFORMANCE

All times are given in instruction cycles.

 Accept loop

 First point 38

 Each additional point 39

 Accept single point clip

 Minimum (single plane) 68

 Maximum (three planes) 94

 Reject loop

 Each point 37

 Reject single point clip

 Minimum (single plane) 89

 Maximum (three planes) 115

 Reject double clip line drawn

 Minimum (two single planes) 145

 Maximum (six planes) 206

 Reject double clip line rejected

 Minimum (two single planes) 112

 Maximum (six planes) 173

The DSP96002 has an instruction cycle time of 74ns and will transform 347K points/sec in the accept loop.
In the reject loop, 365K points can be rejected each second.

INPUT

Before calling the polyline generator, address register r1 should point to the area in X memory which con-
tains the X, Y and Z coordinates of the input points. Data register d7.l should contain the number of points
in the polyline in the form of a 32-bit integer.
OROLA DSP96002 USER’S MANUAL B-83

B-84
OUTPUT

Address register r5 should point to a display list data area when the polyline generator is called. Afterwards,
the display list will be in the following format:

 Polygon1: X1,Y1

 X2,Y2

 X3,Y3

 Xn,Yn

 Delimiter -1.0

 Polygon2: X1,Y1

 X2,Y2

 Delimiter -1.0

 PolygonM: X1,Y1

 Xn,Yn

 -2.0

All coordinates are in IEEE single-precision floating-point format to speed up the DSP96002 floating-point
incremental line drawing algorithm.

ADDRESS REGISTER USAGE

Four address registers are used:

 r0 input list

 r1 temporary coordinates

 r4 transformation matrix, scale and offset for 2D transformation

 r5 output list

 r6 miscellaneous scratchpad memory
DSP96002 USER’S MANUAL MOTOROLA

MOT
The following memory map results:

 X Memory Y Memory

 r0 → Xobj0
 n0=0.0 Yobj0

 Zobj0

 Xobj1

 r1 → Xnew Znew
 n1=2 Ynew Wnew

 m1=3 Xold Zold

 Yold Wold

 r4 → Matrix1,1
 n4=2 Matrix4,1 Matrix2,1

 m4=13 Matrix3,1

 Matrix1,2

 Matrix4,2 Matrix2,2

 Matrix3,2

 Matrix1,3

 Matrix4,3 Matrix2,3

 Matrix3,3

 Matrix1,4

 Matrix4,4 Matrix2,4

 Matrix3,4

 Xscale Xoffset

 Yscale Yoffset

 Xout0 ← r5

 Yout0 n5=-1.0

 Xout1

 Yout1

 TempCount TOld,Xtemp ¨ r6 (temporaries)

 Ytemp

 Wtemp

Several registers hold constants that speed up calculations. These are:

 d8 = 1.0 for double point clipping

 d9 = 2.0 for division
OROLA DSP96002 USER’S MANUAL B-85

B-86
 n0 = 0.0 for z limit test and double point clipping

 n5 = -1.0 for end of polyline marker

TRIVIAL ACCEPT LOOP

The transformation from object space to screen space is performed in lines 19-33. This is a {1x4}{4x4}
matrix multiplication but because the W coordinate of the {1x4} input vector {X Y Z W} is always equal to
one, four multiplications can be eliminated.

Lines 39-47 determine if the point is within the viewing pyramid. The FCMP s,d instruction is designed to
clear the sticky accept (A) bit (bit 7 in the CCR) whenever s > d. By switching the order of the operands,
the FCMP instruction can be used to test both the maximum and minimum boundaries of a window. To
test acceptance, the A bit is set in line 40 and the X and Y coordinates are compared to the boundaries -
W and W. The Z coordinate is compared to the boundaries 0 and W. If the A bit remains set, the point is
within the viewing pyramid and is transformed to screen coordinates.

If the A bit is clear, the reject loop is entered. Note that the A bit is only affected by the CMP, CMPG, FCMP
and FCMPG instructions.

The reciprocal 1/W is calculated in lines 53-58. The result is accurate to approximately 32 bits. It is multi-
plied by the X coordinate and then by the X scale to scale the data to the output screen. The coordinate
is then translated to screen space. The procedure is repeated for the Y coordinate and the coordinates
are added to the display list.

For additional points the accept loop code is almost identical to the first point code except that if the new
point is not within the viewing pyramid, a jump to a single point clipping routine is performed.

ACCEPT LOOP SINGLE POINT CLIPPING CODE

The method used for clipping a line when one point is inside the viewing pyramid and one point is outside
is a special case of a general clipping algorithm presented in [1] and is used in the double point clipping
code.

Suppose that the line between points P1 and P2 was rejected because the x coordinate of P2, x2, was
larger than w2. Then,

 y2 = y1 + t (y2 - y1)

where

 t = w1 - x1

 (w1 - x1) - (w2 - x2)

DSP96002 USER’S MANUAL MOTOROLA

MOT
Substituting the value of t results in the determinant

 y2 = | y2 w2-y2 |

 | y1 w1-y1 |

 (w1-x1) - (w2-x2)

The equations for z2 and w2 are analogous. Since w2 has the same denominator as x2, y2 and z2, and
these will be divided by w2 in the perspective transformation, the division shown above does not need to
be performed.

Lines 151-162 determine which planes that the point is outside and call the appropriate clipping routines.
These routines (lines 520-617) calculate the determinants and return with the resulting coordinates in the
data registers.

The resulting point is transformed using the perspective transformation, scaled and translated in lines 168-
186. A code (-1.0) is stored in the display list to indicate that the next line to be drawn is not joined with
the current one. Control is then transferred to the trivial reject loop.

TRIVIAL REJECT LOOP

The trivial reject loop starts with the {1x4}{4x4} matrix multiplication to transform the input point to clipping
space. Next, the line joining the current point and the previously rejected point is tested for trivial rejection.
As mentioned earlier, trivial rejection occurs whenever both of the endpoints lie outside of one clipping
plane.

A sticky bit called Local Reject (LR) is defined as bit 5 of the CCR. It is cleared by the FCMP s,d instruction
whenever s <= d. In other words, the LR bit is cleared whenever the FCMP instruction finds the coordinate
inside of the boundary.

An additional instruction, FCMPG, is needed because trivial rejection occurs when both points are outside
of any boundary plane. Thus, an additional sticky bit called Reject (R) (bit 6 of the CCR) is used to "re-
member" that a trivial reject has occurred after comparisons against one boundary plane. The FCMPG
instruction affects R and is performed as the last comparison to a boundary plane. When FCMPG s,d is
executed, the R flag is cleared if the previous point was outside of the boundary (LR is set) and the current
point is outside of the boundary (s > d). The FCMPG instruction also resets the LR bit to 1 for comparison
to the next boundary plane.

To perform the trivial reject test, the LR and R bits are set to 1. The two points are tested against the X = -
W boundary plane and then tested against the X = W plane etc. The first point is tested using FCMP and
the second point is tested using FCMPG to clear the R bit if both comparisons were outside of the boundary.
At the end of these comparisons, if the R bit is 0, the line was trivially rejected. With this definition, the
trivial rejection test can be generalized to a polygon with any number of points. The execution time is of
order 6N cycles where N is the number of points.

The lines 225-236 perform the trivial reject test. Should the line be trivially rejected, the new coordinates
are stored for the next comparison and the reject loop repeats.

If the line is not trivially rejected, a check is made to determine if the current point is accepted. If so, control
is transferred to the reject loop single point clip routine. Otherwise the double point routine is entered.

REJECT LOOP SINGLE POINT CLIPPING CODE
OROLA DSP96002 USER’S MANUAL B-87

B-88
The reject loop single point clipping code is very similar to the analogous code in the accept loop. It calls
the same clipping subroutines in lines 520-617. Then the point that was just calculated is transformed,
scaled and translated and stored in the output list (lines 305-321). Finally, the new point (which was ac-
cepted) is transformed, scaled and translated (lines 327-345). Control is transferred to the accept loop.

REJECT LOOP DOUBLE POINT CLIPPING CODE

Lines 359-492 are a direct implementation of a clipping algorithm using endpoint coordinates given in {1}.
The clipping method using determinants is not powerful enough to handle the cases where the line is re-
jected but not trivially rejected. Thus, the line parameters t1 and t2 are calculated explicitly. The t1 param-
eter is calculated based on the coordinates of the old point and the t2 parameter is calculated based on
the current point.

These parameters are calculated by a set of double point clipping subroutines in lines 631-853. These sub-
routines are called based on the coordinates in lines 359-395.

The line is checked for rejection which occurs when t1 > t2. If the line is not rejected, the plane intersections
are interpolated based on t1 and t2 (lines 409-431). Then the two new points are transformed, scaled and
translated in lines 437-478. Control is then transferred to the reject loop.

If the line is rejected, control is transferred to the reject loop after some housekeeping is performed.

TERMINATION CODE

Lines 499-509 swallow the line delimiter code (-1.0) if it is the last coordinate in the display list. Then it adds
the end of display list code (-2.0) to the display list and exits.

REFERENCE

{1} William M. Newman and Robert F. Sproull, Principles of Interactive

 Computer Graphics, (New York: McGraw-Hill, 1979).

;

; WIRE-FRAME RENDITION OF A THREE DIMENSIONAL POLYLINE

; ON THE MOTOROLA DSP96002

;

; Version 1.00 18-Nov-88

;

;

;

;---

;

; First point

;

;---

; Transform to clip space
DSP96002 USER’S MANUAL MOTOROLA

MOT
; Words ICycles
wf3d

 move x:(r0)+,d0.s ;X 1 1

 move x:(r0)+,d5.s y:(r4)+,d4.s ;Y M11 1 1

 fmpy.s d4,d0,d2 x:(r4)+,d3.s y:,d4.s ;M41 M21 1 1

 fmpy d4,d5,d3 fadd.s d3,d2 x:(r0)+,d6.s y:(r4)+,d4.s ;Z M31 1 1

 fmpy d4,d6,d3 fadd.s d3,d2 x:(r1)+n1,d1.s y:(r4)+,d4.s ;r1+ M12 1 1

 fmpy d4,d0,d1 fadd.s d3,d2 x:(r4)+,d3.s y:,d4.s ;M42,M22 1 1

 fmpy d4,d5,d3 fadd.s d3,d1 y:(r4)+,d4.s ; M32 1 1

 fmpy d4,d6,d3 fadd.s d3,d1 d2.s,x:(r1)+ y:(r4)+,d4.s ;Xo M13 1 1

 fmpy d4,d0,d2 fadd.s d3,d1 x:(r4)+,d3.s y:,d4.s ;M43 M23 1 1

 fmpy d4,d5,d3 fadd.s d3,d2 y:(r4)+,d4.s ; M33 1 1

 fmpy d4,d6,d3 fadd.s d3,d2 d1.s,x:(r1)- y:(r4)+,d4.s ;Yo M14 1 1

 fmpy d4,d0,d1 fadd.s d3,d2 x:(r4)+,d3.s y:,d4.s ;M44 M24 1 1

 fmpy d4,d5,d3 fadd.s d3,d1 y:(r4)+,d4.s ; M34 1 1

 fmpy d4,d6,d3 fadd.s d3,d1 d2.s,y:(r1) ; Zo 1 1

 fadd.s d3,d1 x:(r1)+,d0.s ;Xo 1 1

; Test if point is within viewing pyramid

 fneg.s d1 d1.s,d2.s ; 1 1

 ori #$80,ccr ; 1 1

 fcmp d1,d0 ; 1 1

 fcmp d0,d2 x:(r1)-,d5.s ;Yo 1 1

 fcmp d1,d5 n0,d4.s ; 1 1

 fcmp d5,d2 y:(r1)+,d6.s ; Zo 1 1

 fcmp d4,d6 ; 1 1

 fcmp d6,d2 ; 1 1

 jclr #7,sr,_reject_entry ; 2 3

; Calculate reciprocal 1/W

 fseedd d2,d6 ; 1 1

 fmpy.s d2,d6,d1 d9.s,d4.s ; 1 1

 fsub.s d1,d4 d4.s,d3.s d2.s,y:(r1)+ ; Wo 1 1

 fmpy.s d1,d4,d1 ; 1 1

 fmpy d6,d4,d1 fsub.s d1,d3 ; 1 1

 fmpy.s d1,d3,d1 x:(r4)+,d4.s y:,d3.s ;Xs Xf 1 1
OROLA DSP96002 USER’S MANUAL B-89

B-90

; Multiply coordinates by 1/W, scale and add offset

 fmpy.s d0,d4,d2 ; 1 1

 fmpy.s d2,d1,d2 x:(r4)+,d4.s y:,d6.s ;Ys Yf 1 1

 fmpy d5,d4,d3 fadd.s d3,d2 ; 1 1

 fmpy.s d3,d1,d3 d2.s,y:(r5)+ ; 1 1

 fadd.s d6,d3 x:(r0)+,d0.s ; 1 1

 dec d7 d3.s,y:(r5)+ ; Y1 1 1

;---

;

; Accept loop

;

;---

; Transform point to clip space

_accept_loop

 move x:(r0)+,d5.s y:(r4)+,d4.s ;Y M11 1 1

 fmpy.s d4,d0,d2 x:(r4)+,d3.s y:,d4.s ;M41 M21 1 1

 fmpy d4,d5,d3 fadd.s d3,d2 x:(r0)+,d6.s y:(r4)+,d4.s ;Z M31 1 1

 fmpy d4,d6,d3 fadd.s d3,d2 y:(r4)+,d4.s ; M12 1 1

 fmpy d4,d0,d1 fadd.s d3,d2 x:(r4)+,d3.s y:,d4.s ;M42,M22 1 1

 fmpy d4,d5,d3 fadd.s d3,d1 y:(r4)+,d4.s ; M32 1 1

 fmpy d4,d6,d3 fadd.s d3,d1 d2.s,x:(r1)+ y:(r4)+,d4.s ;Xn M13 1 1

 fmpy d4,d0,d2 fadd.s d3,d1 x:(r4)+,d3.s y:,d4.s ;M43 M23 1 1

 fmpy d4,d5,d3 fadd.s d3,d2 y:(r4)+,d4.s ; M33 1 1

 fmpy d4,d6,d3 fadd.s d3,d2 d1.s,x:(r1)- y:(r4)+,d4.s ;Yn M14 1 1

 fmpy d4,d0,d1 fadd.s d3,d2 x:(r4)+,d3.s y:,d4.s ;M44 M24 1 1

 fmpy d4,d5,d3 fadd.s d3,d1 y:(r4)+,d4.s ; M34 1 1

 fmpy d4,d6,d3 fadd.s d3,d1 d2.s,y:(r1) ; Zn 1 1

 fadd.s d3,d1 x:(r1)+,d0.s ;Xn 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT

; Determine if point is within view volume

 fneg.s d1 d1.s,d2.s ; 1 1

 ori #$80,ccr ; 1 1

 fcmp d1,d0 d2.s,y:(r1) ; Wn 1 1

 fcmp d0,d2 x:(r1)-,d5.s ;Yn 1 1

 fcmp d1,d5 n0,d4.s ; 1 1

 fcmp d5,d2 y:(r1)-,d6.s ; Zn 1 1

 fcmp d4,d6 d7.l,x:(r6) ; 1 1

 fcmp d6,d2 d6.s,d7.s ; 1 1

 jclr #7,sr,_accept_clip ; 2 3

; Calculate reciprocal 1/W

 fseedd d2,d6 ; 1 1

 fmpy.s d2,d6,d1 d9.s,d4.s ; 1 1

 fsub.s d1,d4 d4.s,d3.s d2.s,y:(r1)- ; Wo 1 1

 fmpy.s d1,d4,d1 d0.s,x:(r1)+ d7.s,y: ;Xo Zo 1 1

 fmpy d6,d4,d1 fsub.s d1,d3 d5.s,x:(r1)+ ;Yo 1 1

 fmpy.s d1,d3,d1 x:(r4)+,d4.s y:,d3.s ;Xs Xf 1 1

; Multiply coordinates by 1/W, scale and add offset

 fmpy.s d0,d4,d2 ; 1 1

 fmpy.s d2,d1,d2 x:(r4)+,d4.s y:,d6.s ;Ys Yf 1 1

 fmpy d5,d4,d3 fadd.s d3,d2 x:(r6),d7.l ; 1 1

 fmpy.s d3,d1,d3 d2.s,y:(r5)+ ; 1 1

 fadd.s d6,d3 x:(r0)+,d0.s ; 1 1

 dec d7 d3.s,y:(r5)+ ; Y1 1 1

 jne _accept_loop ; 2 2

 jmp _end ; 2 2

OROLA DSP96002 USER’S MANUAL B-91

B-92
;---

;

; Accept loop single-clip routine

;

;---

; Dispatch to single-plane clipping routines

_accept_clip

 fsub.s d0,d2 d2.s,d1.s ; 1 1

 fjslt _clip1_xp ; 2 2

 fadd.s d0,d1 d1.s,d2.s ; 1 1

 fjslt _clip1_xn ; 2 2

 fsub.s d5,d2 d2.s,d1.s ; 1 1

 fjslt _clip1_yp ; 2 2

 fadd.s d5,d1 d1.s,d2.s ; 1 1

 fjslt _clip1_yn ; 2 2

 fsub.s d6,d2 d2.s,d1.s ; 1 1

 fjslt _clip1_zp ; 2 2

 ftst d6 ; 1 1

 fjslt _clip1_zn ; 2 2

; Calculate reciprocal 1/W

 fseedd d1,d6 ; 1 1

 fmpy.s d1,d6,d1 d9.s,d4.s ; 1 1

 fsub.s d1,d4 d4.s,d3.s y:(r1)+n1,d2.s ; r1+2 1 1

 fmpy.s d1,d4,d1 x:(r1)+n1,d2.s y:,d7.s ;Yn Wn 1 1

 fmpy d6,d4,d1 fsub.s d1,d3 d2.s,x:(r1)+ d7.s,y: ;Yo Wo 1 1

 fmpy.s d1,d3,d1 x:(r4)+,d4.s y:,d3.s ;Xs Xf 1 1

; Multiply coordinates by 1/W, scale and add offset

 fmpy.s d0,d4,d2 x:(r1)+n1,d0.s y:,d7.s ;Xn Zn 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fmpy.s d2,d1,d2 x:(r4)+,d4.s y:,d6.s ;Ys Yf 1 1

 fmpy d5,d4,d3 fadd.s d3,d2 d0.s,x:(r1)+n1 d7.s,y: ;Xo Zo 1 1

 fmpy.s d3,d1,d3 x:(r6),d7.l ;Cnt 1 1

 fadd.s d6,d3 x:(r0)+,d0.s d2.s,y:(r5)+ ;X 1 1

 move d3.s,y:(r5)+ ; Y1 1 1

 dec d7 n5,y:(r5)+ ; -1.0 1 1

 jne _reject_loop ; 2 2

 jmp _end ; 2 2

;---

;

; Reject loop

;

;---

; Transform point to clip space

_reject_entry

 dec d7 d2.s,y:(r1)+ ; Wo 1 1

 move x:(r0)+,d0.s y:(r4)+n4,d4.s ;X r4+2 1 1

_reject_loop

 move x:(r0)+,d5.s y:(r4)+,d4.s ;Y M11 1 1

 fmpy.s d4,d0,d2 x:(r4)+,d3.s y:,d4.s ;M41 M21 1 1

 fmpy d4,d5,d3 fadd.s d3,d2 x:(r0)+,d6.s y:(r4)+,d4.s ; M31 1 1

 fmpy d4,d6,d3 fadd.s d3,d2 y:(r4)+,d4.s ; M12 1 1

 fmpy d4,d0,d1 fadd.s d3,d2 x:(r4)+,d3.s y:,d4.s ;M42 M22 1 1

 fmpy d4,d5,d3 fadd.s d3,d1 y:(r4)+,d4.s ; M32 1 1

 fmpy d4,d6,d3 fadd.s d3,d1 d2.s,x:(r1)+ y:(r4)+,d4.s ;Xn M13 1 1

 fmpy d4,d0,d2 fadd.s d3,d1 x:(r4)+,d3.s y:,d4.s ;M43 M23 1 1

 fmpy d4,d5,d3 fadd.s d3,d2 y:(r4)+,d4.s ; M33 1 1

 fmpy d4,d6,d3 fadd.s d3,d2 d1.s,x:(r1)- y:(r4)+,d4.s ;Yn M14 1 1

 fmpy d4,d0,d1 fadd.s d3,d2 x:(r4)+,d3.s y:,d4.s ;M44 M24 1 1

 fmpy d4,d5,d3 fadd.s d3,d1 y:(r4)+,d4.s ; M34 1 1

 fmpy d4,d6,d3 fadd.s d3,d1 d2.s,y:(r1)- ; Zn 1 1

 fadd.s d3,d1 ; 1 1

; Determine trivial rejection
OROLA DSP96002 USER’S MANUAL B-93

B-94

 ori #$e0,ccr ; 1 1

 fneg.s d1 d1.s,d5.s y:(r1)-,d2.s ; Wo 1 1

 fneg.s d2 x:(r1)+n1,d6.s d2.s,d4.s ;Xo 1 1

 fcmp d2,d6 x:(r1)-,d0.s ;Xn 1 1

 fcmpg d1,d0 (r4)+n4 ;r4+2 1 1

 fcmp d6,d4 ; 1 1

 fcmpg d0,d5 x:(r1)+n1,d6.s ;Yo 1 1

 fcmp d2,d6 x:(r1)+,d3.s ;Yn 1 1

 fcmpg d1,d3 ; 1 1

 fcmp d6,d4 ; 1 1

 fcmpg d3,d5 y:(r1)+n1,d6.s ;Zo 1 1

 fcmp d6,d4 y:(r1)+n1,d2.s ;Zn 1 1

 fcmpg d2,d5 n0,d4.s ; 1 1

 fcmp d4,d6 ; 1 1

 fcmpg d4,d2 ; 1 1

 jset #6,sr,_reject_clip ; 2 3

; Save new point

 move d0.s,x:(r1)+ d2.s,y: ;Xo Zo 1 1

 move d3.s,x:(r1)+ d5.s,y: ;Yo Wo 1 1

 dec d7 x:(r0)+,d0.s ;X 1 1

 jne _reject_loop ; 2 2

 jmp _end ; 2 2

;---

;

; Reject loop clipping routine

;

;---

; Determine if new point is within view volume

_reject_clip

 ori #$80,ccr ; 1 1

 fcmp d1,d0 (r1)- ;r1- 1 1

 fcmp d1,d3 d5.s,y:(r1)+ ; Wn 1 1

 fcmp d4,d2 ; 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fcmp d0,d5 ; 1 1

 fcmp d3,d5 ; 1 1

 fcmp d2,d5 ; 1 1

 jclr #7,sr,_r_clip2 ; 2 3

;---

;

; Reject loop single-clip routine

;

;---

; Dispatch to clipping routines

 move x:(r1)+,d0.s y:,d6.s ;Xo Zo 1 1

 move x:(r1)+n1,d5.s y:,d2.s ;Yo Wo 1 1

 move d7.l,x:(r6) ;Cnt 1 1

 fsub.s d0,d2 d2.s,d1.s ; 1 1

 fjslt _clip1_xp ; 2 2

 fadd.s d0,d1 d1.s,d2.s ; 1 1

 fjslt _clip1_xn ; 2 2

 fsub.s d5,d2 d2.s,d1.s ; 1 1

 fjslt _clip1_yp ; 2 2

 fadd.s d5,d1 d1.s,d2.s ; 1 1

 fjslt _clip1_yn ; 2 2

 fsub.s d6,d2 d2.s,d1.s ; 1 1

 fjslt _clip1_zp ; 2 2

 ftst d6 ; 1 1

 fjslt _clip1_zn ; 2 2

; Calculate reciprocal 1/W (old point)

 fseedd d1,d6 ; 1 1

 fmpy.s d1,d6,d1 d9.s,d4.s ; 1 1

 fsub.s d1,d4 d4.s,d3.s ; 1 1

 fmpy.s d1,d4,d1 (r4)-n4 ; r4-2 1 1

 fmpy d6,d4,d1 fsub.s d1,d3 ; 1 1

 fmpy.s d1,d3,d1 x:(r4)+,d4.s y:,d3.s ;Xs Xf 1 1

OROLA DSP96002 USER’S MANUAL B-95

B-96

; Multiply coordinates by 1/W, scale and add offset (old point)

 fmpy.s d0,d4,d2 ; 1 1

 fmpy.s d2,d1,d2 x:(r4)-,d4.s y:,d6.s ;Ys Yf 1 1

 fmpy d5,d4,d3 fadd.s d3,d2 ; 1 1

 fmpy.s d3,d1,d3 d2.s,y:(r5)+ ; X1 1 1

 fadd.s d6,d3 y:(r1)+n1,d2.s ; Wn 1 1

 move d3.s,y:(r5)+ ; Y1 1 1

; Calculate reciprocal 1/W (new point)

 fseedd d2,d6 ; 1 1

 fmpy.s d2,d6,d1 d9.s,d4.s ; 1 1

 fsub.s d1,d4 d4.s,d3.s d2.s,y:(r1)+ ; Wo 1 1

 fmpy.s d1,d4,d1 x:(r1)+n1,d0.s y:,d2.s ;Xn Zn 1 1

 fmpy d6,d4,d1 fsub.s d1,d3 d0.s,x:(r1)- d2.s,y: ;Xo Zo 1 1

 fmpy.s d1,d3,d1 x:(r4)+,d4.s y:,d3.s ;Xs Xf 1 1

; Multiply coordinates by 1/W, scale and add offset (new point)

 fmpy.s d0,d4,d2 x:(r1)+n1,d5.s ;Yn 1 1

 fmpy.s d2,d1,d2 x:(r4)+,d4.s y:,d6.s ;Ys Yf 1 1

 fmpy d5,d4,d0 fadd.s d3,d2 d5.s,x:(r1)+ ;Yo 1 1

 fmpy.s d0,d1,d5 x:(r0)+,d0.s d2.s,y:(r5)+ ;X X1 1 1

 fadd.s d5,d3 x:(r6),d7.l ;Cnt 1 1

 dec d7 d3.s,y:(r5)+ ; Y1 1 1

 jne _accept_loop ; 2 2

 jmp _end ; 2 2

DSP96002 USER’S MANUAL MOTOROLA

MOT
;---

;

; Double point clipping routine

;

;---

; Dispatch to old point clipping routines

_r_clip2

 move d7.l,x:(r6) y:(r1)+,d1.l ;Cnt r1+ 1 1

 move y:(r1)-,d1.s ; Wo 1 1

 move x:(r1)+,d5.s ;Xo 1 1

 move n0,d7.s ; 1 1

 fsub.s d1,d5 d5.s,d6.s ; 1 1

 fjsgt _clip2_xop ; 2 2

 fadd.s d1,d6 x:(r1)-,d5.s ;Yo 1 1

 fjslt _clip2_xon ; 2 2

 fsub.s d1,d5 d5.s,d6.s ; 1 1

 fjsgt _clip2_yop ; 2 2

 fadd.s d1,d6 y:(r1)+n1,d5.s ;Zo 1 1

 fjslt _clip2_yon ; 2 2

 fsub.s d1,d5 d5.s,d6.s ; 1 1

 fjsgt _clip2_zop ; 2 2

 ftst d6 x:(r1)+,d5.s ;Xn 1 1

 fjslt _clip2_zon ; 2 2

 move d7.s,y:(r6) ; to 1 1

; Dispatch to new point clipping routines

 move y:(r1),d1.s ; Wn 1 1

 move d8.s,d7.s ; tn 1 1

 fsub.s d1,d5 d5.s,d6.s ; 1 1

 fjsgt _clip2_xnp ; 2 2

 fadd.s d1,d6 x:(r1)-,d5.s ;Yn 1 1

 fjslt _clip2_xnn ; 2 2

 fsub.s d1,d5 d5.s,d6.s ; 1 1
OROLA DSP96002 USER’S MANUAL B-97

B-98
 fjsgt _clip2_ynp ; 2 2

 fadd.s d1,d6 y:(r1)+n1,d5.s ;Zn 1 1

 fjslt _clip2_ynn ; 2 2

 fsub.s d1,d5 d5.s,d6.s ; 1 1

 fjsgt _clip2_znp ; 2 2

 ftst d6 ; 1 1

 fjslt _clip2_znn ; 2 2

; Check for rejection

 move x:(r1)+n1,d3.s y:(r6),d5.s ;Xo to 1 1

 fcmp d5,d7 d7.s,d4.s ; 1 1

 fjlt _clip2_reject ; 2 2

; Calculate end point coordinates: X

 move x:(r1)+n1,d6.s ;Xn 1 1

 fsub.s d3,d6 d6.s,x:(r1)- ;Xo 1 1

 fmpy.s d4,d6,d1 ; 1 1

 fmpy d5,d6,d2 fadd.s d3,d1 x:(r1)+n1,d6.s ;Yn 1 1

 fadd.s d3,d2 x:(r1),d3.s ;Yo 1 1

; Calculate end point coordinates: Y

 fsub.s d3,d6 d6.s,x:(r1)+n1 d1.s,y:(r6)+ ;Yo Xnd 1 1

 fmpy.s d4,d6,d1 d2.s,d0.s ; 1 1

 fmpy d5,d6,d2 fadd.s d3,d1 y:(r1)+n1,d6.s ; Wn 1 1

 fadd.s d3,d2 y:(r1)+n1,d3.s ; Wo 1 1

; Calculate end point coordinates: W

 fsub.s d3,d6 d1.s,y:(r6)+ ;Ynd 1 1

 fmpy.s d4,d6,d1 d2.s,d7.s y:(r1)+n1,d4.s ; Wn 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fmpy d5,d6,d2 fadd.s d3,d1 d4.s,y:(r1)+ ; Wo 1 1

 fadd.s d3,d2 d1.s,y:(r6) ;Wnd 1 1

; Calculate reciprocal 1/W (old point)

 fseedd d2,d6 ; 1 1

 fmpy.s d2,d6,d1 d9.s,d4.s ; 1 1

 fsub.s d1,d4 d4.s,d3.s ; 1 1

 fmpy.s d1,d4,d1 (r4)-n4 ; r4-2 1 1

 fmpy d6,d4,d1 fsub.s d1,d3 ; 1 1

 fmpy.s d1,d3,d1 x:(r4)+,d4.s y:,d3.s ;Xs Xf 1 1

; Multiply coordinates by 1/W, scale and add offset (old point)

 fmpy.s d0,d4,d2 ; 1 1

 fmpy.s d2,d1,d2 x:(r4)-,d4.s y:,d6.s ;Ys Yf 1 1

 fmpy d7,d4,d3 fadd.s d3,d2 y:(r1)+n1,d4.s ; Zn 1 1

 fmpy.s d3,d1,d3 d4.s,y:(r1)+n1 ; Zo 1 1

 fadd.s d6,d3 d2.s,y:(r5)+ ; X1 1 1

 move y:(r6)-,d1.s ; Wnd 1 1

 move d3.s,y:(r5)+ ; Y1 1 1

; Calculate reciprocal 1/W (new point)

 fseedd d1,d6 ; 1 1

 fmpy.s d1,d6,d1 d9.s,d4.s ; 1 1

 fsub.s d1,d4 d4.s,d3.s y:(r6)-,d5.s ; Ynd 1 1

 fmpy.s d1,d4,d1 y:(r6),d0.s ; Xnd 1 1

 fmpy d6,d4,d1 fsub.s d1,d3 ; 1 1

 fmpy.s d1,d3,d1 x:(r4)+,d4.s y:,d3.s ;Xs Xf 1 1

; Multiply coordinates by 1/W, scale and add offset (old point)
OROLA DSP96002 USER’S MANUAL B-99

B-100

 fmpy.s d0,d4,d2 ; 1 1

 fmpy.s d2,d1,d2 x:(r4)+,d4.s y:,d6.s ;Ys Yf 1 1

 fmpy d5,d4,d3 fadd.s d3,d2 ; 1 1

 fmpy.s d3,d1,d3 x:(r6),d7.l ; 1 1

 fadd.s d6,d3 x:(r0)+,d0.s d2.s,y:(r5)+ ;X X1 1 1

 move d3.s,y:(r5)+ ; Y1 1 1

 dec d7 n5,y:(r5)+ ; -1.0 1 1

 jne _reject_loop ; 2 2

 jmp _end ; 2 2

; Reject double-clipped line

_clip2_reject

 move x:(r6),d7.l ; 1 1

 move x:(r1)+n1,d0.s y:,d1.s ;Xn Zn 1 1

 move d0.s,x:(r1)- d1.s,y: ;Xo Zo 1 1

 move x:(r1)+n1,d0.s y:,d1.s ;Yn Wn 1 1

 move d0.s,x:(r1)+ d1.s,y: ;Yo Wo 1 1

 dec d7 x:(r0)+,d0.s ; 1 1

 jne _reject_loop ; 2 2

; Terminate endpoint list and exit

_end

 move n5,d0.s ;-1.0 1 1

 move (r5)- ; 1 1

 move y:(r5),d1.s ; 1 1

 fcmp d0,d1 ; 1 1

 fjeq _end1 ; 2 2

 move (r5)+ ; 1 1

_end1

 move #-2.0,d0.s ; 2 2

 move d0.s,y:(r5)+ ; 1 1

 rts ; 2 2
DSP96002 USER’S MANUAL MOTOROLA

MOT

;---

;

; Single point clipping routines

;

;---

; x = w boundary

_clip1_xp

 move y:(r1)-,d4.s ;W1 1 1

 fmpy.s d2,d4,d3 x:(r1)+,d0.s d2.s,d7.s ;X1 1 1

 fsub.s d0,d4 x:(r1)-,d0.s ;Y1 1 1

 fmpy.s d1,d4,d1 ; 1 1

 fmpy d4,d5,d2 fsub.s d3,d1 d0.s,d5.s ; 1 1

 fmpy.s d5,d7,d3 ; 1 1

 fmpy d4,d6,d3 fsub.s d3,d2 y:(r1)+,d4.s ;Z1 1 1

 fmpy.s d4,d7,d2 d2.s,d5.s ; 1 1

 fsub.s d2,d3 d1.s,d0.s ; 1 1

 move d3.s,d6.s ; 1 1

 rts ; 2 2

; x = -w boundary

_clip1_xn

 move y:(r1)-,d4.s ;W1 1 1

 fmpy.s d1,d4,d3 x:(r1)+,d0.s d1.s,d7.s ;X1 1 1

 fadd.s d0,d4 x:(r1)-,d0.s ;Y1 1 1

 fmpy.s d2,d4,d2 ; 1 1

 fmpy d4,d5,d1 fsub.s d3,d2 d0.s,d5.s ; 1 1

 fmpy.s d5,d7,d3 ; 1 1

 fmpy d4,d6,d3 fsub.s d3,d1 y:(r1)+,d4.s ;Z1 1 1

 fmpy.s d4,d7,d1 d1.s,d5.s ; 1 1

 fsub.s d1,d3 d2.s,d0.s ; 1 1

 fneg.s d0 d3.s,d6.s ; 1 1

 rts ; 2 2

OROLA DSP96002 USER’S MANUAL B-101

B-102

; y = w boundary

_clip1_yp

 move y:(r1),d4.s ;W1 1 1

 fmpy.s d2,d4,d3 x:(r1)-,d5.s d2.s,d7.s ;Y1 1 1

 fsub.s d5,d4 x:(r1),d5.s ;X1 1 1

 fmpy.s d1,d4,d1 ; 1 1

 fmpy d0,d4,d2 fsub.s d3,d1 ; 1 1

 fmpy.s d5,d7,d3 ; 1 1

 fmpy d4,d6,d3 fsub.s d3,d2 y:(r1)+,d4.s ;Z1 1 1

 fmpy.s d4,d7,d2 d2.s,d0.s ; 1 1

 fsub.s d2,d3 d1.s,d5.s ; 1 1

 move d3.s,d6.s ; 1 1

 rts ; 2 2

; y = -w boundary

_clip1_yn

 move y:(r1),d4.s ;W1 1 1

 fmpy.s d1,d4,d3 x:(r1)-,d5.s d1.s,d7.s ;Y1 1 1

 fadd.s d5,d4 x:(r1),d5.s ;X1 1 1

 fmpy.s d2,d4,d2 ; 1 1

 fmpy d0,d4,d1 fsub.s d3,d2 ; 1 1

 fmpy.s d5,d7,d3 ; 1 1

 fmpy d4,d6,d3 fsub.s d3,d1 y:(r1)+,d4.s ;Z1 1 1

 fmpy.s d4,d7,d1 d1.s,d0.s ; 1 1

 fsub.s d1,d3 d2.s,d5.s ; 1 1

 fneg.s d5 d3.s,d6.s ; 1 1

 rts ; 2 2

; Clip at z = w boundary

_clip1_zp

 move y:(r1)-,d4.s ;W1 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fmpy.s d2,d4,d3 d2.s,d7.s y:(r1),d6.s ;Z1 1 1

 fsub.s d6,d4 x:(r1)+,d6.s ;X1 1 1

 fmpy.s d1,d4,d1 ; 1 1

 fmpy d0,d4,d2 fsub.s d3,d1 ; 1 1

 fmpy.s d6,d7,d3 ; 1 1

 fmpy d4,d5,d3 fsub.s d3,d2 x:(r1),d4.s ;Y1 1 1

 fmpy.s d4,d7,d2 d2.s,d0.s ; 1 1

 fsub.s d2,d3 d1.s,d6.s ; 1 1

 move d3.s,d5.s ; 1 1

 rts ; 2 2

; Clip at z = 0 boundary

_clip1_zn

 move y:(r1)-,d2.s ;W1 1 1

 fmpy.s d2,d6,d2 y:(r1),d4.s ;Z1 1 1

 fmpy.s d1,d4,d1 x:(r1)+,d7.s ;X1 1 1

 fmpy d0,d4,d2 fsub.s d2,d1 ; 1 1

 fmpy.s d6,d7,d0 x:(r1),d7.s ;Y1 1 1

 fmpy d6,d7,d3 fsub.s d0,d2 ; 1 1

 fmpy.s d4,d5,d5 d2.s,d0.s ; 1 1

 fsub.s d3,d5 n0,d6.s ; 1 1

 rts ; 2 2

;---

;

; Double point clipping routines

;

;---

; XOld = WOld boundary

_clip2_xop

 move (r1)+n1 ; 1 1
OROLA DSP96002 USER’S MANUAL B-103

B-104
 move y:(r1)-,d3.s ;Wn 1 1

 fadd.s d3,d5 x:(r1)-,d3.s d5.s,d0.s ;Xn 1 1

 fsub.s d3,d5 ; 1 1

 fseedd d5,d4 ; 1 1

 fmpy.s d5,d4,d5 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s ; 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 ffgt ; 1 1

 rts ; 2 2

; XOld = -WOld boundary

_clip2_xon

 move (r1)- ; 1 1

 move y:(r1)-,d3.s ;Wn 1 1

 fsub.s d3,d6 x:(r1)+n1,d3.s d6.s,d0.s ;Xn 1 1

 fsub.s d3,d6 ; 1 1

 fseedd d6,d4 ; 1 1

 fmpy.s d6,d4,d6 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d2 d2.s,d3.s ; 1 1

 fmpy.s d6,d2,d6 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 ffgt ; 1 1

 rts ; 2 2

; YOld = WOld boundary

_clip2_yop

 move (r1)- ; 1 1

 move y:(r1),d3.s ;Wn 1 1

 fadd.s d3,d5 x:(r1)+,d3.s d5.s,d0.s ;Yn 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fsub.s d3,d5 ; 1 1

 fseedd d5,d4 ; 1 1

 fmpy.s d5,d4,d5 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s ; 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 ffgt ; 1 1

 rts ; 2 2

; YOld = -WOld boundary

_clip2_yon

 move (r1)+ ; 1 1

 move y:(r1),d3.s ;Wn 1 1

 fsub.s d3,d6 x:(r1)-,d3.s d6.s,d0.s ;Yn 1 1

 fsub.s d3,d6 ; 1 1

 fseedd d6,d4 ; 1 1

 fmpy.s d6,d4,d6 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d2 d2.s,d3.s ; 1 1

 fmpy.s d6,d2,d6 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 ffgt ; 1 1

 rts ; 2 2

; ZOld = WOld boundary

_clip2_zop

 move (r1)+ ; 1 1

 move y:(r1)-,d3.s ;Wn 1 1

 fadd.s d3,d5 d5.s,d0.s y:(r1),d3.s ;Zn 1 1

 fsub.s d3,d5 ; 1 1

 fseedd d5,d4 ; 1 1
OROLA DSP96002 USER’S MANUAL B-105

B-106
 fmpy.s d5,d4,d5 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s ; 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 ffgt ; 1 1

 rts ; 2 2

; ZOld = 0 boundary

_clip2_zon

 move (r1)- ; 1 1

 move y:(r1)+,d3.s ;Zn 1 1

 fsub.s d3,d6 d6.s,d0.s ; 1 1

 fseedd d6,d4 ; 1 1

 fmpy.s d6,d4,d6 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d2 d2.s,d3.s ; 1 1

 fmpy.s d6,d2,d6 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 ffgt ; 1 1

 rts ; 2 2

; XNew = WNew boundary

_clip2_xnp

 move (r1)+n1 ; 1 1

 move y:(r1)-,d0.s ;Wo 1 1

 move x:(r1)-,d2.s ;Xo 1 1

 fsub.s d2,d0 ; 1 1

 fadd.s d0,d5 ; 1 1

 fseedd d5,d4 ; 1 1

 fmpy.s d5,d4,d5 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s ; 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 ; 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOT
 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 fflt ; 1 1

 rts ; 2 2

; XNew = -WNew boundary

_clip2_xnn

 move (r1)- ; 1 1

 move y:(r1)-,d3.s ;Wo 1 1

 move x:(r1)+n1,d2.s ;Xo 1 1

 fadd.s d3,d2 ; 1 1

 fsub.s d6,d2 d2.s,d0.s ; 1 1

 fseedd d2,d4 ; 1 1

 fmpy.s d2,d4,d6 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d2 d2.s,d3.s ; 1 1

 fmpy.s d6,d2,d6 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 fflt ; 1 1

 rts ; 2 2

; YNew = WNew boundary

_clip2_ynp

 move (r1)- ; 1 1

 move x:(r1)+,d2.s y:,d0.s ;Yo Wo 1 1

 fsub.s d2,d0 ; 1 1

 fadd.s d0,d5 ; 1 1

 fseedd d5,d4 ; 1 1

 fmpy.s d5,d4,d5 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s ; 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 fflt ; 1 1

 rts ; 2 2
OROLA DSP96002 USER’S MANUAL B-107

B-108

; YNew = -WNew boundary

_clip2_ynn

 move (r1)+ ; 1 1

 move x:(r1)-,d2.s y:,d3.s ;Yo Wo 1 1

 fadd.s d3,d2 ; 1 1

 fsub.s d6,d2 d2.s,d0.s ; 1 1

 fseedd d2,d4 ; 1 1

 fmpy.s d2,d4,d6 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d2 d2.s,d3.s ; 1 1

 fmpy.s d6,d2,d6 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 fflt ; 1 1

 rts ; 2 2

; ZNew = WNew boundary

_clip2_znp

 move (r1)+ ; 1 1

 move y:(r1)-,d0.s ;Wo 1 1

 move y:(r1),d2.s ;Zo 1 1

 fsub.s d2,d0 ; 1 1

 fadd.s d0,d5 ; 1 1

 fseedd d5,d4 ; 1 1

 fmpy.s d5,d4,d5 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d2 d2.s,d3.s ; 1 1

 fmpy.s d5,d2,d5 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d5,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 fflt ; 1 1

 rts ; 2 2

; ZNew = 0 boundary
DSP96002 USER’S MANUAL MOTOROLA

MOT

_clip2_znn

 move d6.s,d0.s y:(r1),d6.s ;Zo 1 1

 fsub.s d0,d6 d6.s,d0.s ; 1 1

 fseedd d6,d4 ; 1 1

 fmpy.s d6,d4,d6 d9.s,d2.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d2 d2.s,d3.s ; 1 1

 fmpy.s d6,d2,d6 d2.s,d4.s ; 1 1

 fmpy d0,d4,d0 fsub.s d6,d3 ; 1 1

 fmpy.s d0,d3,d0 ; 1 1

 fcmp d7,d0 ; 1 1

 ftfr.s d0,d7 fflt ; 1 1

 rts ; 2 2

 B.1.45 Walsh-Hadamard Transforms
The Walsh-Hadamard transform (WHT) is an orthogonal transform requiring only additions and subtrac-
tions. The transform can be decomposed similar to the fast fourier transform (FFT) to yield a fast imple-
mentation of the WHT.

 B.1.45.1 In-place WHT
Since the WHT requires 2 loads and 2 stores per butterfly, the maximum throughput for a WHT butterfly is
4 cycles. This implementation executes 2 butterflies in 8 cycles on the inner loop for a 4N per butterfly
execution speed. The last stage is split out and also executes 2 butterflies in 8 cycles for each pass of the
loop.

In this example, a 16 point transform is performed. The input data are in X:0-f and the output is in x:0-f in
bit reversed order.

Execution speed for a 1024 point WHT is 1.68 milliseconds at 13.5 MIPS.

 page 132,60,1,1

;

; Implements the Walsh-Hadamard Transform

;

iord equ 4 ;order of transform=log2(npoints)

n equ 1<<iord ;length of transform

 org x:0

data
OROLA DSP96002 USER’S MANUAL B-109

B-110
 dc 0.0000000E+00

 dc 2.000000

 dc 3.000000

 dc 8.000000

 dc 9.000000

 dc 12.00000

 dc 15.00000

 dc 19.00000

 dc 20.00000

 dc 22.00000

 dc 23.00000

 dc 24.00000

 dc 25.00000

 dc 26.00000

 dc 27.00000

 dc 28.00000

 org p:$100

start

 move #1,d7.l ;number of groups

 move #n/4,d6.l ;number of butterflies/group

 move #data,r0 ;upper leg pointer

 move #n/2,n0 ;offset between groups

 move #n-1,m0 ;mod N

 move #data+n/2,r4 ;lower leg pointer

 move #n/2,n4 ;offset between groups

 do #iord-1,_stage ;do stages

 do d7.l,_grp ;do groups

 do d6.l,_bfly ;do butterflies

 move x:(r0)+,d0.s ;upper leg 1

 move x:(r4)+,d1.s ;lower leg 1

 faddsub.s d0,d1 x:(r0)-,d2.s ;upper leg 2, point back to 1

 move x:(r4)-,d3.s ;lower leg 2, point back to 1

 faddsub.s d2,d3 d1.s,x:(r0)+ ;save upper 1, point to 2

 move d0.s,x:(r4)+ ;save lower 1, point to 2

 move d3.s,x:(r0)+ ;save upper 2, point to next
DSP96002 USER’S MANUAL MOTOROLA

MOT
 move d2.s,x:(r4)+ ;save lower 2, point to next

_bfly

 move x:(r0)+n0,d0.s y:(r4)+n4,d1.s ;adjust r0,r4

_grp

 lsr d6 d6.l,n0 ;bflys/2, make old value new offset

 lsl d7 n0,n4 ;ngroups*2, move new offset

 lea (r0)+n0,r4 ;new lower leg pointer

_stage

 move #3,n0 ;offset between 2 butterflies-1

 move n0,n4 ;same

 move (r4)+ ;point r4 to second bfly

 do #n/4,_laststage ;do last stage, 2 bflys at a time

 move x:(r0)+,d0.s ;get upper of bfly 1

 move x:(r0)-,d1.s ;get lower of bfly 1, point to upper

 faddsub.s d0,d1 x:(r4)+,d2.s ;get upper of bfly 2

 move x:(r4)-,d3.s ;get lower of bfly 1, point to upper

 faddsub.s d2,d3 d1.s,x:(r0)+ ;save upper 1

 move d0.s,x:(r0)+n0 ;save lower 1, point to next group

 move d3.s,x:(r4)+ ;save upper 2

 move d2.s,x:(r4)+n4 ;save lower 2, point to next group

_laststage

 end

 B.1.45.2 Out-of-place WHT
Since the WHT requires 2 loads and 2 stores per butterfly, the maximum throughput for a WHT butterfly is
4 cycles. However, if the data is split between two memories, then the 2 loads and 2 stores can be per-
formed in 2 cycles. Thus, it is possible to execute each butterfly in 2 cycles. This implementation takes the
input data in a single memory space and on the first stage of the transform, splits the data into X and Y
memory. The middle stages then perform 4 WHT butterflies in 8 cycles. The last stage is split out and also
performs 4 WHT butterflies in 8 cycles. Thus, except for the first stage, all WHT butterflies are performed
in 2 cycles.

In this example, a 16 point transform is performed. The input data are in X:0-f and the output is split be-
tween X and Y memory. The first 8 output values are at x:0-7 and the next 8 output values are at y:0-7 in
bit reversed order starting at x:0. To increase execution speed, an extra block of memory is used at y:0-7.
Thus, with this algorithm, an extra block of memory is required in Y memory equal to one-half of the trans-
form data size in X memory.

If both X and Y memory are on the same port (A or B), then all X and Y memory references are performed
on the same port. Thus, the WHT butterfly executes in 4 cycles. This gives an execution speed of 1.64
milliseconds at 13.5 MIPS. However, if X memory is on port A and Y memory is on port B, then the memory
bandwidth is doubled and an X memory access and Y memory access can occur in a single cycle. This
gives an execution speed of 0.939 milliseconds at 13.5 MIPS.
OROLA DSP96002 USER’S MANUAL B-111

B-112
 page 132,60,1,1

;

; Implements the Walsh-Hadamard Transform

;

iord equ 4 ;order of transform=log2(npoints)

n equ 1<<iord ;length of transform

 org x:$1000

data

 dc 0.0000000E+00

 dc 2.000000

 dc 3.000000

 dc 8.000000

 dc 9.000000

 dc 12.00000

 dc 15.00000

 dc 19.00000

 dc 20.00000

 dc 22.00000

 dc 23.00000

 dc 24.00000

 dc 25.00000

 dc 26.00000

 dc 27.00000

 dc 28.00000

 org p:$100

start

 move #data,r0 ;point to upper leg

 move #data+n/2,r4 ;point to lower leg

 do #n/4,_firststage ;do first stage. split into X and Y

 move x:(r0)+,d0.s ;get upper leg of bfly 1

 move x:(r4)+,d1.s ;get lower leg of bfly 1

 faddsub.s d0,d1 x:(r0)-,d2.s ;get upper leg of bfly 2

 move x:(r4)+,d3.s ;get lower leg of bfly 2

 faddsub.s d2,d3 d1.s,x:(r0) ;save sum 1

 move d0.s,y:(r0)+ ;save dif 1

 move d3.s,x:(r0) ;save sum 2
DSP96002 USER’S MANUAL MOTOROLA

MOT
 move d2.s,y:(r0)+ ;save dif 2

_firststage

 nop

 nop

 move #data,r0 ;point to data

 move #n/2-1,m0 ;mod n/2

 move #n/4,n0 ;offset to next group

 move #data+n/4,r4 ;point to lower leg of half

 move #n/4,n4 ;offset to next group

 move #1,d8.l ;number of groups/stage

 move #n/8,d9.l ;number of bflys/group

 do #iord-2,_mid ;do middle part of transform

 move d8.l,d7.l ;get group count

 do d7.l,_grps ;do groups

 move d9.l,d7.l ;get bfly count

 do d7.l,_bfly ;do bflys

 move x:(r0)+,d0.s y:,d4.s ;upper x,y #1

 move x:(r4)+,d1.s y:,d5.s ;lower x,y #1

 faddsub.s d0,d1 x:(r0)-,d2.s y:,d6.s ;upper x,y #2

 faddsub.s d4,d5 x:(r4)-,d3.s y:,d7.s ;lower x,y #2

 faddsub.s d2,d3 d1.s,x:(r0)+ d5.s,y: ;save sum x,y #1

 faddsub.s d6,d7 d0.s,x:(r4)+ d4.s,y: ;save dif x,y #1

 move d3.s,x:(r0)+ d7.s,y: ;save sum x,y #2

 move d2.s,x:(r4)+ d6.s,y: ;save dif x,y #2

_bfly

 move x:(r0)+n0,d0.s y:(r4)+n4,d1.s ;adj r0,r4

_grps

 move d9.l,d7.l ;get # bflys/stage

 lsr d7 d7.l,n0 ;divide # bflys by 2, divide offset by 2

 move d7.l,d9.l ;save # bflys/stage

 move d8.l,d6.l ;get # of groups/stage

 lsl d6 n0,n4 ;multiply # groups by 2,copy offset

 move d6.l,d8.l ;save new # groups/stage

 lea (r0)+n0,r4 ;update other pointer
OROLA DSP96002 USER’S MANUAL B-113

B-114
_mid

 move #3,n0 ;new offset

 move n0,n4 ;copy

 move (r4)+ ;point to second butterfly

 do #n/8,_laststage ;do last stage, 4 bflys at a time

 move x:(r0)+,d0.s y:,d4.s ;upper x,y #1

 move x:(r0)-,d1.s y:,d5.s ;lower x,1 #1

 faddsub.s d0,d1 x:(r4)+,d2.s y:,d6.s ;upper x,y #2

 faddsub.s d4,d5 x:(r4)-,d3.s y:,d7.s ;lower x,y #2

 faddsub.s d2,d3 d1.s,x:(r0)+ d5.s,y: ;save upper x,y #1

 faddsub.s d6,d7 d0.s,x:(r0)+n0 d4.s,y: ;save lower x,y #1

 move d3.s,x:(r4)+ d7.s,y: ;save upper x,y #2

 move d2.s,x:(r4)+n4 d6.s,y: ;save lower x,y #2

_laststage

 end

If it is desired to have the results in a single memory, then the last pass of the above algorithm can be mod-
ified to merge the data from X memory and Y memory back into X memory as the butterflies are performed.
Each butterfly is read from a separate memory space but the outputs are written to a single memory space.
This executes in 3 cycles per butterfly on the final stage. Note that the last stage performs 4 butterflies per
loop and the loop takes 12 cycles for an average of 3 cycles per butterfly on the final stage.

 move #data+n/2,r5 ;pointer to move back to X

 move #3,n0 ;new offset

 move n0,n4 ;copy

 move (r4)+ ;point to second butterfly

 do #n/8,_laststage ;do last stage, 4 bflys at a time

 move x:(r0)+,d0.s y:,d4.s ;upper x,y #1

 move x:(r0)-,d1.s y:,d5.s ;lower x,1 #1

 faddsub.s d0,d1 x:(r4)+,d2.s y:,d6.s ;upper x,y #2

 faddsub.s d4,d5 x:(r4)-,d3.s y:,d7.s ;lower x,y #2

 faddsub.s d2,d3 d1.s,x:(r0)+ ;save upper x #1

 move d5.s,x:(r5)+ ;move upper #1 back to X

 faddsub.s d6,d7 d0.s,x:(r0)+n0 ;save lower x #1

 move d4.s,x:(r5)+ ;move lower #1 back

 move d3.s,x:(r4)+ ;save upper x,y #2

 move d7.s,x:(r5)+ ;move upper #2 back

 move d2.s,x:(r4)+n4 ;save lower x,y #2

 move d6.s,x:(r5)+ ;move lower #2 back

_laststage
DSP96002 USER’S MANUAL MOTOROLA

MOT
 B.1.46 Evaluation of LOG(x)
Floating-point evaluation of log2(x) can be performed by representing x as s*(2**e) where s is the signifi-

cand and e is the unbiased exponent. Then, log2(s*(2**e)) = log2(s) + e. After extracting the significand s,

log2(s) can be evaluated with a polynomial. By adding the unbiased exponent, log2(x) results. Various

execution speeds and accuracies may be determined by using different order polynomials.

 page 132,60,1,1

 org x:0

polyc

 dc 0.6681523e-02 ;**8

 dc -0.6736254e-01 ;**7

 dc 0.2584541e+00 ;**6

 dc -0.3676691e+00 ;**5

 dc -0.4461204e+00 ;**4

 dc 0.2740512e+01 ;**3

 dc -0.5236615e+01 ;**2

 dc 0.6184454e+01 ;**1

 dc -0.3072334e+01 ;**0

 org p:$100

;

; calculate d2=log2(d0)

;
 Program ICycles
 Words
 getexp d0,d7 #polyc,r0 2 2

 fgetman d0,d0 1 1

 fclr d2 x:(r0)+,d1.s 1 1

 do #9,_log2sig 2 3

 fmpy.x d2,d0,d2 1 1

 fadd.x d1,d2 x:(r0)+,d1.s 1 1

_log2sig

 float.x d7 1 1

 fadd.s d7,d2 1 1

 --- ---

 Totals: 10 27
OROLA DSP96002 USER’S MANUAL B-115

B-116
 B.1.47 Evaluation of EXP2(x)
Floating-point evaluation of exp2(x) can be performed by representing x as i+f where f is the fractional part
and i is the greatest integer in x that does not exceed x. Then, exp2(i+f) = exp2(f)*(2**i). After extracting

the fractional part f, exp2(f) can be evaluated with a polynomial. By scaling by the integer part, exp2(x)
results. Various execution speeds and accuracies may be determined by using different order polynomi-
als.

 page 132,60,1,1

 org x:0

polyc

 dc -0.5770606e-03 ;**8

 dc 0.2093549e-02 ;**7

 dc -.02777411e-02 ;**6

 dc 0.3357901e-02 ;**5

 dc 0.8940958e-02 ;**4

 dc 0.5558203e-01 ;**3

 dc 0.2402348e+00 ;**2

 dc 0.6931450e+00 ;**1

 dc 0.1000000e+01 ;**0

 org p:$100

;

; calculate d2=exp2(d0)

;
 Program ICycles
 Words
 floor d0,d7 #polyc,r0 2 2

 fsub.x d7,d0 1 1

 fclr d2 x:(r0)+,d1.s 1 1

 int d7 1 1

 do #9,_log2sig 2 3

 fmpy.x d2,d0,d2 d7.l,d7.h 1 1

 fadd.x d1,d2 x:(r0)+,d1.s 1 1

_log2sig

 fscale.s d7,d2 1 1

 --- ---

 Totals: 10 27
DSP96002 USER’S MANUAL MOTOROLA

MOT
 B.1.48 Vector Cross Product
The cross product of two vectors is always perpendicular to both of the vectors making this vector useful
for 3D graphics, shading, and illumination. The three dimensional cross product a X b where a and b are
{1 x 3} vectors can be written as the determinant:

 i j k

 ax ay az

 bx by bz

where i, j and k are the unit vectors in the x, y and z directions respectively. Expanding this determinant
yields:

 cx = ay bz - az by

 cy = az bx - ax bz

 cz = ax by - ay bx

where vector c is the cross product of a and b.

Memory Map: X Y

 r0 → ax .
 m0=2 ay .

 (mod 3) az .

 . bx ← r4

 . by m0=2

 . bz (mod 3)

 r1→ cx .
 cy .

 cz .

 move #aaddr,r0 ; set up pointers

 move #2,m0

 move #baddr,r4

 move #2,m4

 move #caddr,r1
 Program ICycles
 Words
 move x:(r0)+,d6.s y:(r4)-,d7.s ;ax bx 1 1

 move x:(r0)+,d6.s y:(r4)-,d7.s ;ay bz 1 1

 fmpy.s d6,d7,d3 x:(r0)+,d6.s y:(r4)-,d7.s ;az by 1 1

 fmpy.s d6,d7,d2 y:(r4)-,d7.s ; bx 1 1

 fmpy d6,d7,d1 fsub.s d2,d3 x:(r0)+,d6.s y:(r4)-,d7.s ;ax bz 1 1

 fmpy.s d6,d7,d0 d3.s,x:(r1)+ y:(r4)-,d7.s ;cx by 1 1

 fmpy d6,d7,d3 fsub.s d0,d1 x:(r0)+,d6.s y:(r4)-,d7.s ;ay bx 1 1

 fmpy.s d6,d7,d2 d1.s,x:(r1)+ ;cy 1 1
OROLA DSP96002 USER’S MANUAL B-117

B-118
 fsub.s d2,d3 ; 1 1

 move d3.s,x:(r1)+ ;cz 1 1

 --- ---

 Totals: 10 10

 B.1.49 Power Function X**Y

 Power Function X**Y

 X = Single Precision Float, Y = 5 Bit Integer
 Program ICycles
 Words
;

; d1.s = d4.s**d0.l

;

 andi #0,ccr ;clear ccr bits 1 1

 move sr,d3.l ;get sr 1 1

 or d0,d3 #1.0,d1.s ;set ccr bits 2 2

 move d3.l,sr ;move power to CCR bits 1 1

 fmpy.x d1,d4,d1 ifcs ;bit 0, carry 1 1

 fmpy.x d4,d4,d4 ifal ;do multiply w/o ccr update 1 1

 fmpy.x d1,d4,d1 ifvs ;bit 1, overflow 1 1

 fmpy.x d4,d4,d4 ifal ;do multiply w/o ccr update 1 1

 fmpy.x d1,d4,d1 ifeq ;bit 2, zero 1 1

 fmpy.x d4,d4,d4 ifal ;do multiply w/o ccr update 1 1

 fmpy.x d1,d4,d1 ifmi ;bit 3, negative 1 1

 fmpy.x d4,d4,d4 ifal ;do multiply w/o ccr update 1 1

 fmpy.s d1,d4,d1 ffinf ;bit 4, infinity 1 1

 --- ---

 Totals: 14 14

 Power Function X**Y

 X = Single Precision Float, Y = 32 Bit Unsigned Integer
 Program ICycles
 Words
;

; d1.s = d4.s**d0.l

;

 move #1.0,d1.s ;initialize power 2 2

 do #32,pwr 2 3

 lsr d0 ;get lsb 1 1

 fmpy.x d1,d4,d1 ifcs ;multiply if bit set 1 1
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 fmpy.x d4,d4,d4 ;scale power 1 1

pwr --- ---

 Totals: 7 100

 Power Function X**Y

 X = Single Precision Float, Y = 32 Bit Unsigned Integer
 Program ICycles
 Words
;

; d1.s = d4.s**d0.l

;

 bfind d0,d0 #32,d2.l ;how many bits 2 2

 move d0.h,d3.l 1 1

 sub d3,d2 #1.0,d1.s ;initialize power 2 2

 do d2.l,pwr 2 3

 lsr d0 ;get lsb 1 1

 fmpy.x d1,d4,d1 ifcs ;multiply if bit set 1 1

 fmpy.x d4,d4,d4 ;scale power 1 1

pwr --- ---

 Totals: 10 3N+8

where N is the bit position of the most significant "one" bit in Y

plus 1.

 Power Function X**Y

 X = Single Precision Float, Y = Single Precision Float
 Program ICycles
 Words
logc

 dc 0.6681523e-02 ;**8

 dc -0.6736254e-01 ;**7

 dc 0.2584541e+00 ;**6

 dc -0.3676691e+00 ;**5

 dc -0.4461204e+00 ;**4

 dc 0.2740512e+01 ;**3

 dc -0.5236615e+01 ;**2

 dc 0.6184454e+01 ;**1

 dc -0.3072334e+01 ;**0

expc

 dc -0.5770606e-03 ;**8
ROLA DSP96002 USER’S MANUAL B-119

B-12
 dc 0.2093549e-02 ;**7

 dc -.02777411e-02 ;**6

 dc 0.3357901e-02 ;**5

 dc 0.8940958e-02 ;**4

 dc 0.5558203e-01 ;**3

 dc 0.2402348e+00 ;**2

 dc 0.6931450e+00 ;**1

 dc 0.1000000e+01 ;**0

;

; d2.s = d4.s**d0.s = exp2(d0 * log2(d4))

;

; calculate d2=log2(d4)

;

 getexp d4,d7 #logc,r0 ;get exponent 2 2

 fgetman d4,d4 ;get mantissa 1 1

 fclr d2 x:(r0)+,d1.s ;clr sum, get coef 1 1

 do #9,_log ;do log2(man) 2 3

 fmpy.x d2,d4,d2 ;sum*x 1 1

 fadd.x d1,d2 x:(r0)+,d1.s ;sum*x+coef, coef 1 1

_log

 float.x d7 ;float exponent 1 1

 fadd.s d7,d2 ;add log2(man) 1 1

;

 fmpy.x d2,d0,d0 ;y*log2(x) 1 1

;

; calculate d2=exp2(d0)

;

 floor d0,d7 #expc,r0 ;get lowest int 2 2

 fsub.x d7,d0 ;get fraction part 1 1

 fclr d2 x:(r0)+,d1.s 1 1

 int d7 ;get lowest int 1 1

 do #9,_exp 2 3

 fmpy.x d2,d0,d2 d7.l,d7.h ;sum*x, move scale 1 1

 fadd.x d1,d2 x:(r0)+,d1.s ;+coef, get next coef 1 1

_exp

 fscale.s d7,d2 ;exp2(y*log2(x)) 1 1

 --- ---

 Totals: 21 55
0 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 B.1.50 Cascaded Five Coefficient Biquad Filter
Filter Section:

 Program ICycles
 Words
nsec equ 3

 org x:0

states ds 2*nsec

 org y:0

coef

 dc -.68461698E+00 ;/* section 1 A2 */

 dc .16526726E+01 ;/* section 1 A1 */

 dc .83384343E-02 ;/* section 1 B2 */

 dc .16676869E-01 ;/* section 1 B1 */

 dc .83384343E-02 ;/* section 1 B0 */

 dc -.75893794E+00 ;/* section 2 A2 */

 dc .17255842E+01 ;/* section 2 A1 */

 dc .90060414E-02 ;/* section 2 B2 */

 dc .18012083E-01 ;/* section 2 B1 */

 dc .90060414E-02 ;/* section 2 B0 */

 dc -.90446499E+00 ;/* section 3 A2 */

 dc .18683517E+01 ;/* section 3 A1 */

 dc .25061846E+00 ;/* section 3 B2 */

 dc .50123692E+00 ;/* section 3 B1 */

 dc .25061846E+00 ;/* section 3 B0 */

;

; input in d2

;

 move #states,r0

Z-1

Z-1

∑∑

∑∑

∑ ∑

a1

a2

b0

b1

b2
ROLA DSP96002 USER’S MANUAL B-121

B-12
 move #coef,r4

 nop

 fclr d1 x:(r0)+,d4.s y:(r4)+,d6.s 1 1

 do #nsec,loop 2 3

 fmpy d4,d6,d0 fadd.s d1,d2 x:(r0)-,d5.s y:(r4)+,d6.s 1 1

 fmpy d5,d6,d1 fadd.s d2,d0 d5.s,x:(r0)+ y:(r4)+,d6.s 1 1

 fmpy d6,d4,d1 fadd.s d1,d0 y:(r4)+,d6.s 1 1

 fmpy.s d6,d5,d2 d0.s,x:(r0)+ y:(r4)+,d4.s 1 1

 fmpy d4,d0,d1 fadd.s d1,d2 x:(r0)+,d4.s y:(r4)+,d6.s 1 1

loop

 move d2.s,y:output

 --- ---

 Totals: 8 5N+4

 B.1.51 Four Quadrant Trigonometric SINE (CORDIC Algorithm)

 page 132,60,1,1
 opt mex,cex
tabsize equ 16

 org x:0
scale set 1.0
tantab
tanarg set 45.0*3.14159/180.0
 dup tabsize
scale set scale*@cos(tanarg)
 dc @tan(tanarg)
tanarg set tanarg/2.0
 endm

 org p:$100
;
; Do argument reduction, input in d6 in degrees
;
 move #-180.0,d7.s ;get range min
 fadd.x d7,d6 #1.0/360.0,d5.s ;adjust to min, get range
 fmpy.x d5,d6,d6 ;reduce range
 floor d6,d5 ;get int part
 fsub.x d5,d6 #360.0,d5.s ;get frac part, spread
 fmpy.x d5,d6,d6 ;spread fraction part to range
 fadd.x d7,d6 ;adjust to min
;
; Input angle in d6 in degrees, -180 < d6 < 180
;
 fabs.x d6 d6.s,d3.s ;make positive, save sign
2 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 move #90.0,d7.s ;get pi/2
 fcmp d7,d6 #180.0,d7.s ;see if greater than 90
 fsub.x d6,d7 ffge ;reduce to less than 90
 ftfr.x d6,d7 fflt ;copy if no change
;
; First quadrant CORDIC trig computation
; Input angle in d7 in degrees
; Output d1=sine, d0=cosine
;
 move #tantab,r0 ;point to tangent table
 fclr d1 #scale,d0.s ;y=0, x=scale
 fclr d5 #45.0,d6.s ;z=0,alp=45
 do #tabsize,_cordic
 fcmp d5,d7 x:(r0)+,d4.s ;angle < z? get tangent
 fneg.x d4 fflt ;yes, rotate cw
 fsub.x d6,d5 fflt ;yes, subtract angle
 fadd.x d6,d5 ffge ;no, add angle for ccw
 fmpy.x d1,d4,d2 ;y*tan
 fmpy d0,d4,d2 fsub.x d2,d0 ;x*tan, x’=x-y*tan
 fadd.x d2,d1 ;y’=y+x*tan
 fscale.x #-1,d6 ;alp=alp/2
_cordic
 fcopys.s d3,d1 ;fix sign of sine
 end

 Program ICycles
 Words
Argument Reduction 10 10
Quadrantizing 7 7
CORDIC Algorithm 16 8N+9
 ---- -------
 Totals: 33 8N+26

 B.1.52 Four Quadrant Trigonometric COSINE (CORDIC Algorithm)

 page 132,60,1,1
 opt mex,cex
tabsize equ 16
ROLA DSP96002 USER’S MANUAL B-123

B-12
 org x:0
scale set 1.0
tantab
tanarg set 45.0*3.14159/180.0
 dup tabsize
scale set scale*@cos(tanarg)
 dc @tan(tanarg)
tanarg set tanarg/2.0
 endm

 org p:$100

;
; Do argument reduction, input in d6 in degrees
;
 move #-180.0,d7.s ;get range min
 fadd.x d7,d6 #1.0/360.0,d5.s ;adjust to min, get range
 fmpy.x d5,d6,d6 ;reduce range
 floor d6,d5 ;get int part
 fsub.x d5,d6 #360.0,d5.s ;get frac part, spread
 fmpy.x d5,d6,d6 ;spread fraction part to range
 fadd.x d7,d6 ;adjust to min
;
; Input angle in d6 in degrees, -180 < d6 < 180
;
 fabs.x d6 #90.0,d7.s ;make positive, get pi/2
 move d6.s,d3.s ;save new sign
 fcmp d7,d6 #180.0,d7.s ;see if greater than 90
 fsub.x d6,d7 ffge ;reduce to less than 90
 ftfr.x d6,d7 fflt ;transfer if no change
 fneg.x d3 ffge ;flip if other quadrant
;
; First quadrant CORDIC trig computation
; Input angle in d7 in degrees
; Output d1=sine, d0=cosine
;
 move #tantab,r0 ;point to tangent table
 fclr d1 #scale,d0.s ;y=0, x=scale
 fclr d5 #45.0,d6.s ;z=0,alp=45
 do #tabsize,_cordic
 fcmp d5,d7 x:(r0)+,d4.s ;angle < z? get tangent
 fneg.x d4 fflt ;yes, rotate cw
 fsub.x d6,d5 fflt ;yes, subtract angle
 fadd.x d6,d5 ffge ;no, add angle for ccw
 fmpy.x d1,d4,d2 ;y*tan
 fmpy d0,d4,d2 fsub.x d2,d0 ;x*tan, x’=x-y*tan
4 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 fadd.x d2,d1 ;y’=y+x*tan
 fscale.x #-1,d6 ;alp=alp/2
_cordic
 fcopys.s d3,d0 ;fix sign of cosine
 end

 Program ICycles
 Words
Argument Reduction 10 10
Quadrantizing 8 8
CORDIC Algorithm 16 8N+9
 ---- -------
 Totals: 34 8N+27

 B.1.53 Four Quadrant Trigonometric TANGENT (CORDIC Algorithm)

 page 132,60,1,1
 opt mex,cex
tabsize equ 16

 org x:0
scale set 1.0
tantab
tanarg set 45.0*3.14159/180.0
 dup tabsize
scale set scale*@cos(tanarg)
 dc @tan(tanarg)
tanarg set tanarg/2.0
 endm

 org p:$100

;
; Do argument reduction, input in d6 in degrees
;
 move #-180.0,d7.s ;get range min
 fadd.x d7,d6 #1.0/360.0,d5.s ;adjust to min, get range
 fmpy.x d5,d6,d6 ;reduce range
 floor d6,d5 ;get int part
 fsub.x d5,d6 #360.0,d5.s ;get frac part, spread
 fmpy.x d5,d6,d6 ;spread fraction part to range
 fadd.x d7,d6 ;adjust to min
;

ROLA DSP96002 USER’S MANUAL B-125

B-12
; Input angle in d6 in degrees, -180 < d6 < 180
;
 fabs.x d6 d6.s,d3.s ;make positive, save sign
 move #90.0,d7.s ;get pi/2
 fcmp d7,d6 #180.0,d7.s ;see if greater than 90
 fsub.x d6,d7 ffge ;reduce to less than 90
 ftfr.x d6,d7 fflt ;transfer if no change
 fneg.x d3 ffge ;flip if other quadrant
;
; First quadrant CORDIC trig computation
; Input angle in d7 in degrees
; Output d1=sine, d0=cosine
;
 move #tantab,r0 ;point to tangent table
 fclr d1 #scale,d0.s ;y=0, x=scale
 fclr d5 #45.0,d6.s ;z=0,alp=45
 do #tabsize,_cordic
 fcmp d5,d7 x:(r0)+,d4.s ;angle < z? get tangent
 fneg.x d4 fflt ;yes, rotate cw
 fsub.x d6,d5 fflt ;yes, subtract angle
 fadd.x d6,d5 ffge ;no, add angle for ccw
 fmpy.x d1,d4,d2 ;y*tan
 fmpy d0,d4,d2 fsub.x d2,d0 ;x*tan, x’=x-y*tan
 fadd.x d2,d1 ;y’=y+x*tan
 fscale.x #-1,d6 ;alp=alp/2
_cordic
 fcopys.s d3,d0 ;fix sign of tangent
 ftfr.s d1,d0 d0.s,d1.s ;exchange d0←→ d1
 fseedd d1,d4 ;d0/d1
 ftfr.s d4,d1 ffinf
 fneg.s d1 ffinf
 fmpy.s d1,d4,d1 #2.0,d2.s
 fmpy d0,d4,d0 fsub.s d1,d2 d2.s,d3.s
 fmpy.s d1,d2,d1 d2.s,d4.s
 fmpy d0,d4,d0 fsub.s d1,d3
 fmpy.s d0,d3,d0 ;tangent
 end

 Program ICycles
 Words
Argument Reduction 10 10
Quadrantizing 8 8
CORDIC Algorithm 16 8N+9
Division/Error Check 10 10
 ---- -------
6 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 Totals: 44 8N+37

 B.1.54 [NxN] by [NxN] Matrix Multiplication (Modulo-Aligned)

;This routine performs an [NxN] by [NxN] matrix multiplication
;for the 96000 floating-point DSP chip. Sample data is given
;for N=4. The data for all matrices is stored in row major
;format. For example, take the matrix A:
;
; A(1,1) ... A(1,N)
; . . .
; . . .
; A(N,1) ... A(N,N)
;
;Matrix A’s elements are stored as such:
;amatrix dc A(1,1),A(1,2),...,A(1,N),A(2,1),A(2,2),...,A(2,N), ...
;
;Matrices A and C are in X memory, while matrix B is in Y memory.
;Since modulo N**2 addressing is used for all matrices, the first
;k least significant bits of the address of the beginning of any
;matrix storage area must be equal to zero, where 2**k >= N**2.
;
;This routine takes
;
; 16 + n(3 + n(2 +n(1) + 2) + 2)
;
; = n**3 + 4n**2 + 5n + 16 instruction cycles to complete.
;
;
;
 Program ICycles
 Words
 page 132,60,1,1
N equ 4
N_sqr equ N*N
 org x:$0
amatrix dc .1,.2,.3,.4
 dc .5,.6,.7,.8
 dc .9,.1,.2,.3
 dc .4,.5,.6,.7
 org x:$20
cmatrix ds N_sqr
 org y:$0
bmatrix dc .5,.5,.5,.5
ROLA DSP96002 USER’S MANUAL B-127

B-12
 dc .5,.5,.5,.5
 dc .5,.5,.5,.5
 dc .5,.5,.5,.5
 org p:$100
 move #amatrix,r0 1 1
 move #N,n0 1 1
 move #N_sqr-1,m0 ; modulo N-squared addressing 1 1
 move #bmatrix,r4 1 1
 move #cmatrix,r1 1 1
 move n0,n4 1 1
 move m0,m4 1 1
 move n0,n1 1 1
 move m0,m1 1 1
 fclr d1 x:(r0)+,d0.s y:(r4)+n4,d4.s 1 1
 fclr d3 d1.s,d7.s 1 1
 do #N,endall 2 3
 do #N,endcol 2 3
 rep #N 1 2
 fmpy d0,d4,d3 fadd.s d3,d1 x:(r0)+,d0.s y:(r4)+n4,d4.s 1 1
 fadd.s d3,d1 d7.s,d3.s 1 1
 fclr d1 d1.s,x:(r1)+n1 1 1
endcol
 move (r4)+ ; increment r4 1 1
 move (r1)+ ; increment r1 1 1
endall --- ---
 Totals: 21 n**3
 +4n**2
 +5n
 +16

 B.1.55 [4x4] by [4x4] Matrix Multiplication (Modulo-Aligned)

;This routine performs a [4x4] by [4x4] matrix multiplication
;for the 96000 floating-point DSP chip. Sample data is given.
;The data for all matrices is stored in row major
;format. For example, take the matrix A:
;
; A(1,1) ... A(1,N)
; . . .
; . . .
; A(N,1) ... A(N,N)
;
;Matrix A’s elements are stored as such:
8 DSP96002 USER’S MANUAL MOTOROLA

MOTO
;amatrix dc A(1,1),A(1,2),...,A(1,N),A(2,1),A(2,2),...,A(2,N), ...
;
;Matrix A is in X memory, while matrices B and C are in Y memory.
;Since modulo N**2 addressing is used for all matrices, the first
;k least significant bits of the address of the beginning of any
;matrix storage area must be equal to zero, where 2**k >= N**2.
;
;This routine takes
; 15 + 4*18 = 87 instruction cycles to complete.
;
;
;
 Program ICycles
 Words
 page 132,60,1,1
N equ 4
N_sqr equ N*N
 org x:$0
amatrix dc .1,.2,.3,.4
 dc .5,.6,.7,.8
 dc .9,.1,.2,.3
 dc .4,.5,.6,.7
 org y:$0
bmatrix dc .5,1.0,.5,.5
 dc .5,1.0,.5,.5
 dc .5,1.0,.5,.5
 dc .5,1.0,.5,.5
 org y:$20
cmatrix ds N_sqr
 org p:$100
 move #amatrix,r0 1 1
 move #N,n4 1 1
 move #N_sqr-1,m0 ; modulo-N addressing 1 1
 move #bmatrix,r4 1 1
 move #cmatrix+N_sqr-1,r5 1 1
 move m0,m4 1 1
 move n4,n5 1 1
 move m0,m5 1 1
 fclr d1 x:(r0)+,d4.s 1 1
 fclr d5 y:(r4)+n4,d8.s 1 1
 do #4,endall 2 3
 fmpy.s d4,d8,d3 x:(r0)+,d4.s y:(r4)+n4,d0.s 1 1
 fmpy d4,d0,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d6.s 1 1
 fmpy d4,d6,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r5)+,d2.s

;junk into d2.s 1 1
ROLA DSP96002 USER’S MANUAL B-129

B-13
 fmpy d4,d8,d3 fadd.s d3,d1 x:(r0)+,d4.s d5.s,d2.s 1 1
 fmpy d4,d0,d3 fadd.s d3,d2 x:(r0)+,d4.s d1.s,y:(r5)+n5 1 1
 fmpy d4,d6,d3 fadd.s d3,d2 x:(r0)+,d4.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s 1 1
 fmpy d4,d8,d3 fadd.s d3,d2 x:(r0)+,d4.s d5.s,d1.s 1 1
 fmpy d4,d0,d3 fadd.s d3,d1 x:(r0)+,d4.s d2.s,y:(r5)+n5 1 1
 fmpy d4,d6,d3 fadd.s d3,d1 x:(r0)+,d4.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s 1 1
 fmpy d4,d8,d3 fadd.s d3,d1 x:(r0)+,d4.s d5.s,d2.s 1 1
 fmpy d4,d0,d3 fadd.s d3,d2 x:(r0)+,d4.s d1.s,y:(r5)+n5 1 1
 fmpy d4,d6,d3 fadd.s d3,d2 x:(r0)+,d4.s d5.s,d1.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+,d0.s

;junk into d0.s 1 1
 fadd.s d3,d2 y:(r4)+n4,d8.s 1 1
 move d2.s,y:(r5)+n5 1 1
endall --- ---
 Totals: 30 87

 B.1.56 [8x8] by [8x8] Matrix Multiplication (Modulo-Aligned)

;This routine performs an [8x8] by [8x8] matrix multiplication
;for the 96000 floating-point DSP chip. Sample data is given
;for N=8. The data for all matrices is stored in row major
;format. For example, take the matrix A:
;
; A(1,1) ... A(1,N)
; . . .
; . . .
; A(N,1) ... A(N,N)
;
;Matrix A’s elements are stored as such:
;amatrix dc A(1,1),A(1,2),...,A(1,N),A(2,1),A(2,2),...,A(2,N), ...
;
;Matrix A is in X memory, while matrices B and C are in Y memory.
;Since modulo N**2 addressing is used for all matrices, the first
;k least significant bits of the address of the beginning of any
;matrix storage area must be equal to zero, where 2**k >= N**2.
;
;This routine takes 15 + 8*74 = 607 instruction cycles.
;
;
;
 Program ICycles
0 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 Words
 page 132,60,1,1
N equ 8
N_sqr equ N*N
 org x:$0
amatrix dc .1,.2,.3,.4,.1,.2,.3,.4
 dc .5,.6,.7,.8,.5,.6,.7,.8
 dc .9,.1,.2,.3,.9,.1,.2,.3
 dc .4,.5,.6,.7,.4,.5,.6,.7
 dc .1,.2,.3,.4,.1,.2,.3,.4
 dc .5,.6,.7,.8,.5,.6,.7,.8
 dc .9,.1,.2,.3,.9,.1,.2,.3
 dc .4,.5,.6,.7,.4,.5,.6,.7
 org y:$0
bmatrix dc .5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5
 org y:$40
cmatrix ds N_sqr
 org p:$100
 move #amatrix,r0 1 1
 move #N,n4 1 1
 move #N_sqr-1,m0 ; modulo-N addressing 1 1
 move #bmatrix,r4 1 1
 move #cmatrix,r5 1 1
 move m0,m4 1 1
 move n4,n5 1 1
 move m0,m5 1 1
 fclr d1 x:(r0)+,d4.s 1 1
 fclr d5 y:(r4)+n4,d7.s 1 1
;
 do #8,endall 2 3
 fmpy.s d4,d7,d3 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
ROLA DSP96002 USER’S MANUAL B-131

B-13
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s1 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
2 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+,d1.s

;junk to d1.s 1 1
 fadd.s d3,d2 y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 move (r5)+ 1 1
endall --- ---
 Totals: 86 607

 B.1.57 [16x16] by [16x16] Matrix Multiplication (Modulo Aligned)

;This routine performs a [16x16] by [16x16] matrix multiplication
;for the 96000 floating-point DSP chip. Sample data is given
;for N=16. The data for all matrices is stored in row major
;format. For example, take the matrix A:
;
; A(1,1) ... A(1,N)
; . . .
; . . .
; A(N,1) ... A(N,N)
;
;Matrix A’s elements are stored as such:
;amatrix dc A(1,1),A(1,2),...,A(1,N),A(2,1),A(2,2),...,A(2,N), ...
;
;Matrix A is in X memory, while matrices B and C are in Y memory.
;Since modulo N**2 addressing is used for all matrices, the first
;k least significant bits of the address of the beginning of any
;matrix storage area must be equal to zero, where 2**k >= N**2.
;

ROLA DSP96002 USER’S MANUAL B-133

B-13
;This routine takes 15 + 16(18 + 14*17 + 18) = 4399 instruction
cycles.
;
;
;
 Program ICycles
 Words
 page 132,60,1,1
N equ 16
N_sqr equ N*N
 org x:$0
amatrix dc .1,.2,.3,.4,.1,.2,.3,.4,1,1,1,1,1,1,1,1
 dc .5,.6,.7,.8,.5,.6,.7,.8,1,1,1,1,1,1,1,1
 dc .9,.1,.2,.3,.9,.1,.2,.3,1,1,1,1,1,1,1,1
 dc .4,.5,.6,.7,.4,.5,.6,.7,1,1,1,1,1,1,1,1
 dc .1,.2,.3,.4,.1,.2,.3,.4,1,1,1,1,1,1,1,1
 dc .5,.6,.7,.8,.5,.6,.7,.8,1,1,1,1,1,1,1,1
 dc .9,.1,.2,.3,.9,.1,.2,.3,1,1,1,1,1,1,1,1
 dc .4,.5,.6,.7,.4,.5,.6,.7,1,1,1,1,1,1,1,1
 dc .1,.2,.3,.4,.1,.2,.3,.4,1,1,1,1,1,1,1,1
 dc .5,.6,.7,.8,.5,.6,.7,.8,1,1,1,1,1,1,1,1
 dc .9,.1,.2,.3,.9,.1,.2,.3,1,1,1,1,1,1,1,1
 dc .4,.5,.6,.7,.4,.5,.6,.7,1,1,1,1,1,1,1,1
 dc .1,.2,.3,.4,.1,.2,.3,.4,1,1,1,1,1,1,1,1
 dc .5,.6,.7,.8,.5,.6,.7,.8,1,1,1,1,1,1,1,1
 dc .9,.1,.2,.3,.9,.1,.2,.3,1,1,1,1,1,1,1,1
 dc .4,.5,.6,.7,.4,.5,.6,.7,1,1,1,1,1,1,1,1
 org y:$0
bmatrix dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 dc .5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5,.5
 org y:$100
cmatrix ds N_sqr
4 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 org p:$100
 move #amatrix,r0 1 1
 move #N,n4 1 1
 move #N_sqr-1,m0 ; modulo-N addressing 1 1
 move #bmatrix,r4 1 1
 move #cmatrix,r5 1 1
 move m0,m4 1 1
 move n4,n5 1 1
 move m0,m5 1 1
 fclr d1 x:(r0)+,d4.s 1 1
 fclr d5 y:(r4)+n4,d7.s 1 1
;
 do #16,endall 2 3
 fmpy.s d4,d7,d3 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
ROLA DSP96002 USER’S MANUAL B-135

B-13
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
6 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
ROLA DSP96002 USER’S MANUAL B-137

B-13
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
8 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
ROLA DSP96002 USER’S MANUAL B-139

B-14
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d1 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 move d1.s,y:(r5)+n5 d5.s,d2.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
0 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+n4,d7.s 1 1
 fmpy d4,d7,d3 fadd.s d3,d2 x:(r0)+,d4.s y:(r4)+,d1.s
 ;junk to d1.s 1 1
 fadd.s d3,d2 y:(r4)+n4,d7.s 1 1
 move d2.s,y:(r5)+n5 d5.s,d1.s 1 1
 move (r5)+ 1 1
endall --- ---
 Totals: 286 4399

 B.1.58 Sine Wave Oscillators

 Program Icycles
 Double Integrator Oscillator Words

 page 132,60,1,1
fs equ 8192.0 ;sampling frequency
f0 equ 256.0 ;center frequency
mag equ 1.0 ;magnitude
scale equ (2.0*@sin(3.14159*f0/fs))*(2.0*@sin(3.14159*f0/fs))
output equ $ffff ;output file

 org p:$100
 move #scale,d7.s ;init scale factor
 fclr d6 #mag,d5.s ;init magnitudes
 do #100,_gen ;do 100 points
 fmpy.x d7,d6,d0 1 1
 fadd.s d0,d5 1 1
 fsub.x d5,d6 1 1

 move d5.s,y:output ;output signal
_gen --- ---
 Totals: 3 3

 Program Icycles
 Second Order Oscillator Words
ROLA DSP96002 USER’S MANUAL B-141

B-14
 page 132,60,1,1
fs equ 8000.0 ;sampling frequency
f0 equ 320.0 ;center frequency
scale equ 2.0*@cos(2.0*3.14159*f0/fs)
mag equ 1.0*@sin(2.0*3.14159*f0/fs)
output equ $ffff

 org p:$100
 move #scale,d7.s ;init scale factor
 fclr d6 #mag,d5.s ;init magnitudes
 do #200,_gen ;generate 200 points
 fmpy.s d6,d7,d6 d6.s,d4.s 1 1
 fsub.s d5,d6 d4.s,d5.s 1 1

 move d5.s,y:output
_gen --- ---
 Totals: 2 2

 B.1.59 DTMF Generation

 Program Icycles
 DTMF Generation Words
 page 132,60,1,1
fs equ 8000.0 ;sampling frequency
f0 equ 697.0 ;frequency 0
scale0 equ 2.0*@cos(2.0*3.14159*f0/fs)
mag0 equ 1.0*@sin(2.0*3.14159*f0/fs)
f1 equ 1209.0 ;frequency 1
scale1 equ 2.0*@cos(2.0*3.14159*f1/fs)
mag1 equ 1.0*@sin(2.0*3.14159*f1/fs)
output equ $ffff

 org p:$100
 move #scale0,d7.s ;init scale0 factor
 fclr d6 #mag0,d5.s ;init magnitude0
 move #scale1,d3.s ;init scale1
 fclr d2 #mag1,d1.s ;init magnitude1
 do #4096,_gen
 fmpy.s d6,d7,d6 d6.s,d4.s 1 1
 fsub.s d5,d6 d4.s,d5.s 1 1
 fmpy.s d2,d3,d2 d2.s,d0.s 1 1
 fsub.s d1,d2 d0.s,d1.s 1 1
2 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 fadd.s d4,d0 1 1
 move d0.s,y:output
_gen --- ---
 Totals: 5 5

 B.2 IEEE STANDARD CONFORMANCE FUNCTIONS

 B.2.1 IEEE Remainder

 B.2.2 IEEE floating-point Round to Integer
The IEEE standard section 5.5 specifies that it shall be possible to round a floating-point number to an in-
tegral valued floating point number in the same format. If the rounding mode is round to nearest, the round-
ed result is even if the difference between the rounded result and the unrounded operand is exactly one
half.

 Program ICycles
 Words
 fint d0 ;round to nearest integer 1 1
 --- ---
 1 1

The FINT instruction rounds the number in d0 according to the current rounding mode.

 B.2.3 IEEE floating-point to Decimal String

 B.2.4 IEEE Decimal String to floating-point

 B.2.5 Format Conversions
The IEEE standard states that it shall be possible to convert between all supported floating-point formats
and all supported integer formats. Conversions between floating-point integers and integer formats shall
be exact unless an exception arises. If the floating point number is infinity, a NaN or overflows the integer
data type, then the invalid operation is signaled.

Some conversions may require range checking to signal an error if the source would produce an invalid
result for the destination data type. In some programming languages, the programmer is responsible for
the correct value of the source and the conversion of an out of range source produces an erroneous result.
In the conversion descriptions, conversions that require range checking will perform the actual range
ROLA DSP96002 USER’S MANUAL B-143

B-14
checking on the source and either jump to an error handling procedure or return a valid result. The pro-
grams provided may vary depending on the application.

The following data types and abbreviations will be used:

 I - Signed 32 bit integer

 U - Unsigned 32 bit integer

 SP - Single precision floating-point

All conversion examples assume that the value to be converted is in d0 if floating-point or in d0.l if fixed
point.

 I → U
 Program ICycles
 Words
 tst d0 ;check for in range 1 1
 jmi _negerr ;if negative, error 1 2
 --- ---
 2 3

 I → SP
 Program ICycles
 Words
 float.s d0 ;convert to SP float 1 1
 --- ---
 1 1

 U → I
 Program ICycles
 Words

 tst d0 ;see if msb is set 1 1

 jmi _toobig ;if set, too big 1 2

 --- ---

 2 3

 U → SP
 Program ICycles
 Words
 floatu.s d0.1 ;convert 1 1

 --- ---

 1 1
4 DSP96002 USER’S MANUAL MOTOROLA

MOTO

 SP → I Program ICycles
 Words
 i nt d0 ;convert to integer 1 1
 jset #20,sr,_error ;jump if invalid op set 2 3
 --- --
- 3 4

 SP → U
 Program ICycles
 Words
 intu d0 ;convert to integer 1 1
 jset #20,sr,_error ;jump if invalid op set 2 3
 --- ---
 3 4

 B.3 IEEE RECOMMENDED FUNCTIONS AND PREDICATES
The following functions are recommended by the IEEE-754 standard but are not required.

Functions that require explicit knowledge of the variable precision and may lead to families of functions on
high level languages are 4, 5, and 10. Functions 1 and 2 have an arithmetic form (signals IOP if the source
is a NaN) and a non-arithmetic form.

 B.3.1 Copysign(x,y)
Copysign(x,y) returns y with the sign of x.

 Arithmetic Implementation Of
 Copysign(d1,d0) Program ICycles
 Words
 fcopys.s d1,d0 ;copy sign of d1 to d0 1 1
 --- ---
 Totals: 1 1

 Non-Arithmetic Implementation Of
 Copysign(d1,d0) Program ICycles
 Words
 bclr #31,d0.h ;clear sign bit 2 2

 jclr #31,d1.h,_bitclr ;sign bit clear 2 3
 bset #31,d0.h ;set sign bit 2 2
 _bitclr --- ---
 Totals: 6 7

43
ROLA DSP96002 USER’S MANUAL B-145

B-14
 B.3.2 -x
The arithmetic form signals IOP if x is a signalling NaN. The non-arithmetic form copies x with its sign com-
plemented.

 Arithmetic Implementation Of
 -d0 Program ICycles
 Words
 fneg.s d0 ;change sign bit 1 1
 --- ---
 Totals: 1 1

 Non-Arithmetic Implementation Of
 -d0 Program ICycles
 Words
 bchg #31,d0.h ;change sign bit 1 2
 --- ---
 Totals: 1 2

 B.3.3 Scalb(y,N)
Scalb(y,N) returns y*(2**N) for integral values of N without computing 2**N. This is an arithmetic function.

 Arithmetic Implementation Of
 d0*(2**d1.h) Program ICycles
 Words
 fscale.s d1.h,d0 ;scale d0 1 1
 --- ---
 Totals: 1 1

 B.3.4 Logb(x)
Logb(x) returns the unbiased exponent of x, a signed integer in the format of x, except that logb(NaN) is a
NaN, logb(infinite) is +infinity, and logb(0) is -infinity and signals the division by zero exception. When x is
positive and finite, the expression scalb(x,-logb(x)) lies strictly between 0 and 2; it is less than 1 only when
x is denormalized. This is an arithmetic function.

 Arithmetic Implementation Of
 d0=logb(d1) Program ICycles
 Words
 ninf equ $ff800000 ;negative infinity

 ftst d1 d1.s,d0.s ;check input, copy 1 1

 fjun _done ;done if nan 2 3

 fjinf _done ;done if infinity 2 3

 fjne _notzero ;jump if non-zero 2 3
6 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 move #ninf,d0.s ;set -infinity result 2 2

 ori #2,er ;set DZ in ER 1 1

 ori #2,ier ;set DZ in IER 1 1

 jmp _done ;done 2 2

 _notzero

 getexp d1,d0 #-126,d3.l ;get exponent 2 2

 cmp d3,d0 ;cmp to SP exp min 1 1

 tfr d3,d0 iflt ;limit if denorm 1 1

 float.s d0 ;convert to SP FP 1 1

 _done --- ---

 Totals: 18 *

 Execution Time:
 Nan 4

 Infinity 7

 Zero 16

 In-range 15

 B.3.5 Nextafter(x,y)
Nextafter(x,y) returns the next representable neighbor of x in the direction toward y. The following special
cases arise: if x=y, then the result is x without any exception being signaled; otherwise, if either x or y is a
quiet NaN, then the result is one or the other input NaNs. Overflow is signaled when x is finite but nex-
tafter(x,y) is infinite; underflow is signaled when nextafter(x,y) lies strictly between +/-2**(Emin); in both

cases, inexact is signaled.

The x argument of the nextafter(x,y) must be a single precision number and not a single-extended number.
This is an arithmetic function.
ROLA DSP96002 USER’S MANUAL B-147

B-14
 Implementation of nextafter(d0,d4)
 d0 for single precision numbers:
 Program ICycles
 Words
 ftst d4 1 1
 ftfr.s d4,d0 ffun 1 1
 ftst d0 d0.s,d1.l 1 1
 fjor _not_nan 2 2
 move #$7fffffff,d0.s 2 2
 jmp _ok 2 2 _not_nan
 fjinf _ok 2 2
 bclr #31,d1.l 2 2
 neg d1 ifcs 1 1
 fcmp d0,d4 #$00800000,d3.s 2 2
 inc d1 ffgt 1 1
 dec d1 fflt 1 1
 tst d1 #$80000000,d2.l 2 2
 neg d1 ifmi 1 1
 or d2,d1 ifmi 1 1
 move d1.l,d0.s 1 1
 fcmpm d3,d0 1 1
 fjge _not_denorm 2 2
 ori #$5,er 1 1
 ori #$5,ier 1 1
 _not_denorm
 fjninf _ok 2 2
 ori #$9,er 1 1
 ori #$9,ier 1 1
 _ok --- ---
 Totals: 32 *
 Execution Timing in ICycles
 Either operand a NaN: 9
 X is + or - infinity: 7
 Result is normalized: 26
 Result denormalized: 24
 Result overflowed: 26
8 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 B.3.6 Finite(x)
Finite(x) returns the value TRUE if -inf<x<+inf, and returns FALSE otherwise. This is an arithmetic function.

 d1=Finite(d0) Program ICycles
 Words
 ftst d0 #0,d1.l ;set ccr bits 2 2

 inc d1 ffinf ;set true if infinite 1 1

 --- ---

 Totals: 3 3

 B.3.7 Isnan(x)
Isnan(x) returns the value TRUE if x is a NaN, and returns FALSE otherwise. This is an arithmetic function.

 d1=Isnan(d0) Program ICycles
 Words
 ftst d0 #0,d1.l ;set ccr bits 2 2

 inc d1 ffun ;set true if NaN 1 1

 --- ---

 Totals: 3 3

 B.3.8 x<>y
x<>y is TRUE only when x<y or x>y, and is distinct from x=/=y which means NOT(x=y). This is an arithmetic
function.

 d2=d0<>d1 Program ICycles
 Words
 fcmp d0,d1 #0,d2.l ;set ccr bits 2 2

 inc d2 ffgl ;set true if GL 1 1

 --- ---

 Totals: 3 3
ROLA DSP96002 USER’S MANUAL B-149

B-15
When comparing two values, GL is true if the values are not equal and both values being compared are
valid floating-point numbers. The GL condition is false if either number is a NaN even though the values
are not equal.

 B.3.9 Unordered(x,y) or x?y
Unordered(x,y), or x?y, returns the value TRUE if x is unordered with y, and returns FALSE otherwise. This
is an arithmetic function.

 d2=d0?d1 Program ICycles
 Words
 fcmp d0,d1 #0,d2.l ;set ccr bits 2 2

 inc d2 ffun ;set true if unordered 1 1

 --- ---

 Totals: 3 3

 B.3.10Class(x)
Class(x) tells which of the following ten classes x falls into:

1. signaling NaN

2. quiet NaN

3. -infinity

4. negative normalized nonzero

5. negative denormalized

6. -0

7. +0

8. positive denormalized

9. positive normalized nonzero

10. +infinity

Class(x) function applies to single precision floating-point numbers.
0 DSP96002 USER’S MANUAL MOTOROLA

MOTO
 d1=class(d0) Program ICycles
 Words
 ftst d0 ;test d0 1 1

 fjor _notnan ;jump if ordered 2 3

 jset #5,er,_tsnan ;check signaling nan bit 2 3

 jmp _tqnan ;quiet nan 2 2

 _notnan

 fjne _notz ;jump if not zero 2 3

 fjmi _tmzer ;type is minus zero 2 3

 jmp _tpzer ;type is plus zero 2 3

 _notz

 fjninf _finite ;jump if finite 2 3

 fjmi _tminf ;minus infinity 2 3

 jmp _tpinf ;plus infinity 2 2

 _finite

 fjge _pos ;see if positive 2 3

 jset #30,d0.h,_tmdnrm ;denormalized 2 3

 jmp _tmnorm ;normalized 2 2

 _pos

 jset #30,d0.h,_tpdnrm ;denormalized 2 3

 jmp _tpnorm ;normalized 2 2

 _tpinf

 inc d1 1 1

 _tpnorm

 inc d1 1 1

 _tpdnrm

 inc d1 1 1

 _tpzer

 inc d1 1 1

 _tmzer

 inc d1 1 1

 _tmdnrm

 inc d1 1 1

 _tmnorm

 inc d1 1 1

 _tminf

 inc d1 1 1

 _tqnan

 inc d1 1 1

 _tsnan --- ---

 Totals: 38 *

ROLA DSP96002 USER’S MANUAL B-151

B-152
 Execution Times:

Signaling not a number - 7

Quiet not a number - 10

Negative infinity - 15

Negative normalized nonzero - 21

Negative denormalized - 20

Negative zero - 15

Positive zero - 19

Positive denormalized - 23

Positive normalized nonzero - 26

Positive infinity - 25

Note the following code assignments:

Signaling not a number - 0

Quiet not a number - 1

Negative infinity - 2

Negative normalized nonzero - 3

Negative denormalized - 4

Negative zero - 5

Positive zero - 6

Positive denormalized - 7

Positive normalized nonzero - 8

Positive infinity - 9

 B.4 IEEE DOUBLE PRECISION USING SOFTWARE EMULATION

Note: The following programs have not been exhaustively tested and may contain errors.

 B.4.1 IEEE Double Precision Addition
;
; Double Precision IEEE floating-point Addition For The DSP96002
;
; D0 + D1 → D1
;
;
;
; Alters Data ALU Registers
; d0.h d0.m d0.l
; d1.h d1.m d1.l
; d2.m d2.l
; d3.l
DSP96002 USER’S MANUAL MOTOROLA

MOTO
; d4.h d4.l
; d5.h d5.l
; d6.l
; d7.l
;
; Alters Program Control Registers
; pc sr
;
;
; Version 1.0
; Latest Revision - 01-Aug-88
;

section ieeeadd
emsk equ $7ff ; exponent mask
eden equ $1 ; denorm exponent
grsmsk equ $700 ; GRS (guard-round-sticky) bits mask
grmsk equ $fffffe00 ; GR (guard-round) bits mask
smsk equ $ffffff00 ; mask to clear bits to right of the sticky
bit
onemsk equ $1ff ; mask to set bits to right of the round bit
inum equ $100 ; increment number
imsk equ $7fffffff ; infinity mask
qnane equ $7ff ; quiet NaN exponent
qnanmh equ $7fffffff ; quiet NaN mantissa high
qnanml equ $ffffffff ; quiet NaN mantissa low
maxnum equ $fffff800 ; low part of maximum number
;
sdptest ; double precision add subroutine
;
; Clear ER portion of status register
;
 andi #0,er
;
; Check for Maximum and Minimum Exponents
;
 move #0,d6.l ; addend 0 flag
 move d0.h,d4.l ; get exp0
 move #emsk,d7.l ; get exponent mask
 and d7,d4 d0.m,d2.l ; delete tags, get m0.h
 cmp d7,d4 d1.m,d3.l ; check max exp, get m1.h
 jeq _mant1 ; jump if exp0 = max exp
 move d1.h,d5.l ; get exp1
 and d7,d5 #1,d6.l ; delete tags, a1 flag
 cmp d7,d5 #0,d2.m ; check max exp, sticky=0
 jeq _mant2 ; jump if exp1 = max exp
 tst d4 #0,d6.l ; check min exp, a0 flag
 jeq _mant3 ; jump if exp0 = min exp
 tst d5 #1,d6.l ; check min exp, a1 flag
 jeq _mant4 ; jump if exp1 = min exp
 jmp _nadd ; jump to normalized add
 ;
 ; Check if Addend 0 is Infinity
 ;
_mant1 move #imsk,d7.l ; get infinity mask
ROLA DSP96002 USER’S MANUAL B-153

B-154
 and d7,d2 ; remove implied one bit
 tst d2 ; check m0.high = zero
 jne _nan0 ; jump if nan
 tst d0 ; check m0.low = zero
 jne _nan0 ; jump if nan
 move #emsk,d7.l ; get exponent mask
 move d1.h,d5.l ; get exp1
 and d7,d5 ; delete tags
 cmp d7,d5 ; check for max exp
 jne _inf1 ; jump if a1 is not inf or NaN
 ;
 ; Check if Addend 1 is Infinity
 ;
_mant2 move #imsk,d7.l ; get infinity mask
 and d7,d3 ; remove implied one bit
 tst d3 ; check m1.high = zero
 jne _nan1 ; jump if nan
 tst d1 ; check m1.low = zero
 jne _nan1 ; jump if nan
 jclr #0,d6.l,_binf ; jump if a0 and a1 are inf
 ori #$10,ccr ; set infinity bit
 jmp _done ; a1 is infinity
 ;
 ; Check for Case: (+Inf) + (-Inf) = QNaN
 ;
_inf1 ftfr.x d0,d1 ; move result to d1

ori #$10,ccr ; set infinity bit
 jmp _done ; a0 is infinity
_binf ftst d0 ; check sign of a0
 jmi _minf ; jump if a0 is -inf
 ftst d1 ; check sign of a1
 jmi _inan ; (+inf) + (-inf) = QNaN
 ori #$10,ccr ; set infinity bit
 jmp _done ; a0 and a1 are +inf
_minf ftst d1 ; check sign of a1
 jpl _inan ; (-inf) + (+inf) = QNaN
 ori #$10,ccr ; set infinity bit
 jmp _done ; a0 and a1 are -inf
 ;
 ; Check for NaNs
 ;
_nan0 jclr #30,d0.m,_inan ; jump if a0 is a SNaN
 move #emsk,d7.l ; get exponent mask
 move d1.h,d5.l ; get exp1
 and d7,d5 ; delete tags
 cmp d7,d5 ; check for max exp
 jne _qnan ; jump if a1 is not a NaN
 move #imsk,d7.l ; get infinity mask
 and d7,d3 ; remove implied one bit
 tst d3 ; check mant1.high = zero
 jne _nan1 ; jump if a1 is a NaN
 tst d1 ; check mant1.low = zero
 jeq _qnan ; jump if a1 is infinity
_nan1 jset #30,d1.m,_qnan ; jump if a1 is a QNaN
DSP96002 USER’S MANUAL MOTOROLA

MOTO
_inan ori #$10,ier ; set invalid operation bit
_qnan move #qnane,d1.h ; get QNaN exponent
 move #qnanmh,d1.m ; get QNaN mantissa high
 move #qnanml,d1.l ; get QNaN mantissa low
 ori #$20,ccr ; set Not-a-Number bit
 jmp _done ; result is a NaN
 ;
 ; Check if Addend 0 is a Denormalized Number
 ;
_mant3 tst d2 ; check mant0.high = zero
 jne _den0 ; jump if a0 is a denorm
 tst d0 ; check mant0.low = zero
 jne _den0 ; jump if a0 is a denorm
 cmp d7,d5 ; check min exp for a1
 jgt _done ; a1 is the answer
 ;
 ; Check if Addend 1 is a Denormalized Number
 ;
_mant4 tst d3 ; check mant1.high = zero
 jne _den1 ; jump if a1 is a denorm
 tst d1 ; check mant1.low = zero
 jne _den1 ; jump if a1 is a denorm
 jclr #0,d6.l,_bzero ; jump if both are zero
 jmp _tfr ; move result to d1
 ;
 ; Addend 0 is a Denormalized Number
 ;
_den0 bset #0,d0.h ; get denorm exponent
 inc d4 ; "
 tst d5 ; check if a1 is a denorm
 jgt _ftz ; jump if a1 is a normal number
 tst d3 ; check mant1.high = zero
 jne _bden ; jump if a1 is a denorm
 tst d1 ; check mant1.low = zero
 jne _bden ; jump if a1 is a denorm
 jmp _tfr ; move result to d1
_bden bset #0,d1.h ; get denorm exponent
 inc d5 ; "
_ftz jclr #27,sr,_nadd ; jump to add for ieee mode
 jmp _done ; a0 is flushed-to-zero
 ;
 ; Addend 1 is a Denormalized Number
 ;
_den1 jclr #0,d6.l,_done ; a1 is the answer
 bset #0,d1.h ; get denorm exponent
 inc d5 ; "
 jclr #27,sr,_nadd ; jump to add for ieee mode
_tfr move #eden,d7.l ; get denorm exponent
 move d0.h,d5.l ; get expr
 move #emsk,d4.l ; get exponent mask
 and d4,d5 ; delete tags and sign
 cmp d7,d5 d0.h,d5.l ; compare exps, get expr
 jne _tmov ; jump if not a denorm
 move d0.m,d3.l ; get mantr.high
ROLA DSP96002 USER’S MANUAL B-155

B-156
 tst d3 ; test mantr.high, get expr
 dec d5 ifpl.u ; decrement expr if no int bit
_tmov move d5.l,d1.h ; move result to d1
 move d0.m,d1.m ; "
 move d0.l,d1.l ; "
 jmp _done ; a0 is the answer
 ;
 ; Both Addends are Zero
 ;
_bzero move d0.h,d4.l ; get exp0
 move d1.h,d5.l ; get exp1
 eor d4,d5 ; check for opposite signs
 jclr #31,d5.l,_done ; jump if same signs
 bclr #31,d1.h ; set result as positive
 jclr #22,sr,_done ; jump if round bit r1 = zero
 jset #21,sr,_done ; jump if round bit r0 = one
 bset #31,d1.h ; set result as negative
 jmp _done ; result is negative zero
;
;
;
; **
; *** DP Addition for Normalized Numbers ***
; **
;
;
; Compare Exponents
;
_nadd cmp d4,d5 d1.h,d6.l ; compare exps, get expr
 jgt _pos ; jump if exp1 > exp0
 jeq _add ; jump if exp0 = exp1
;
; *** Case: Exp0 > Exp1 ***
;
 ;
 ; Align Mantissas
 ;
 sub d5,d4 d0.h,d6.l ; get shift, get expr
 move #55,d7.l ; get number of bits
 cmp d7,d4 ; check for shift > 55
 jgt _setst0 ; jump if shift > 55
 do d4.l,_end1 ; align mantissas
 lsr d3 ; shift right m1.h
 ror d1 ; shift right m1.l and GRS1
 jclr #8,d1.l,_cclr1 ; jump if sticky bit clear
 move #1,d2.m ; set sticky bit
_cclr1 nop ;
 ;
 ; Calculate Sticky Bit
 ;
_end1 move #grmsk,d7.l ; get GR mask

and d7,d1 ; remove bits right of round bit
 jclr #0,d2.m,_add ; jump if sticky = 0
 bset #8,d1.l ; put in sticky bit
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 jmp _add ;
 ;
 ; Set Sticky Bit for Shift > 55 Bits
 ;
_setst0 move #0,d3.l ; get number for addition
 move #inum,d1.l ; "
 jmp _add ;
;
; *** Case: Exp1 > Exp0 ***
;
 ;
 ; Align Mantissas
 ;
_pos sub d4,d5 d1.h,d6.l ; get shift, get expr
 move #55,d7.l ; get number of bits
 cmp d7,d5 ; check for shift > 55
 jgt _setst1 ; jump if shift > 55
 do d5.l,_end2 ; align mantissas
 lsr d2 ; shift right m0.h
 ror d0 ; shift right m0.l and GRS0
 jclr #8,d0.l,_cclr2 ; jump if sticky bit clear
 move #1,d2.m ; set sticky bit
_cclr2 nop ;
 ;
 ; Calculate Sticky Bit
 ;
_end2 move #grmsk,d7.l ; get GR mask
 and d7,d0 ; remove bits right of round bit
 jclr #0,d2.m,_add ; jump if sticky = 0
 bset #8,d1.l ; put in sticky bit
 jmp _add ;
 ;
 ; Set Sticky Bit for Shift > 55 Bits
 ;
_setst1 move #0,d2.l ; get number for addition
 move #inum,d0.l ; "
;
; Check the Signs of the Addends
;
_add jset #31,d0.h,_neg1 ; jump if a0 negative
 jset #31,d1.h,_neg2 ; jump if a1 negative
 jmp _fadd ; jump to addition for a0+,a1+
;
; *** Case: Addend 0 is Negative,
; Addend 1 is Positive ***
;
_neg1 jset #31,d1.h,_nset ; jump if a1 negative
 sub d0,d1 ; subtract for case: a0-,a1+
 subc d2,d3 ; "
 jcc _zchk ; jump if result is positive
 bset #31,d6.l ; set result as negative
 move #inum,d7.l ; get increment number
 not d1 ; get 2’s comp of result
 not d3 ; "
ROLA DSP96002 USER’S MANUAL B-157

B-158
 add d7,d1 ; "
 jcc _zchk ; "
 inc d3 ; "
 jmp _zchk ;
;
; *** Case: Addend 0 is Positive,
; Addend 1 is Negative ***
;
_neg2 bclr #31,d6.l ; set result as positive
 sub d1,d0 ; subtract for case: a0+,a1-
 subc d3,d2 ; "
 jcc _cclr3 ; jump if result is positive
 bset #31,d6.l ; set result as negative
 move #inum,d7.l ; get increment number
 not d0 ; get 2’s comp of result
 not d2 ; "
 add d7,d0 ; "
 jcc _cclr3 ; "
 inc d2 ; "
_cclr3 move d0.l,d1.l ; get mantr.low and GRS bits
 move d2.l,d3.l ; get mantr.high
;
; Check result equal zero (do not want to normalize)
;
_zchk move #smsk,d7.l ; get sticky mask
 and d7,d1 ; remove bits right of sticky
 tst d3 ; check mantr.high = zero
 jne _snrm ; normalize result
 tst d1 ; check mantr.low = zero
 jne _snrm ; normalize result
 move #0,d6.l ; set expr = zero
 ;
 ; Check for Special Case (Round toward -infinity)
 ;
 jclr #22,sr,_rnd ; jump if round bit r1 = zero
 jset #21,sr,_rnd ; jump if round bit r0 = one
 bset #31,d6.l ; set result to negative zero
 jmp _rnd ; check rounding mode
;
; Normalize for Opposite Sign Cases
;
_snrm jset #31,d3.l,_rnd ; jump if result normalized
 move #emsk,d7.l ; get exp mask
 move d6.l,d5.l ; get expr
 and d7,d5 ; delete tags
 move #eden,d4.l ; get denorm exponent
 jclr #8,d1.l,_st0 ; jump if sticky bit = 0
 move #onemsk,d7.l ; get one mask
_st1 or d7,d1 ; set bits right of round bit
_st0 cmp d4,d5 ; test expr = zero

jle _rnd ; jump if denormalized number
 dec d6 ; decrement expr
 dec d5 ; decrement expr copy
 lsl d1 ; shift mantr.l left
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 rol d3 ; shift mantr.h left
 jset #31,d3.l,_rnd ; jump if result normalized
 jclr #8,d1.l,_st0 ; jump if sticky bit = 0
 jmp _st1 ; jump if sticky bit = 1
;
; *** Cases: 1) Addend 0 is Negative,
; Addend 1 is Negative
; 2) Addend 0 is Positive,
; Addend 1 is Positive ***
;
_nset bset #31,d6.l ; set result as negative
_fadd add d0,d1 ; add for case: a0-,a1-
 addc d2,d3 ; and case: a0+,a1+
 jcc _rnd ; jump if number normalized
 lsr d3 ; shift right mantr.h
 ror d1 ; shift right mantr.low
 jclr #8,d1.l,_cclr4 ; jump if sticky bit = 0
 bset #8,d1.l ; set sticky bit
_cclr4 bset #31,d3.l ; set bit 31 of mantr.high
 inc d6 ; increment expr
;
; Check if Result is Infinity
;
 move #emsk,d7.l ; get exp mask
 move d6.l,d5.l ; get expr
 and d7,d5 ; delete tags
 cmp d7,d5 ; check max exp
 jne _rnd ; jump if no overflow
 jset #31,d6.l,_ninf ; jump if result is -infinity
 ;
 ; Positive Infinity
 ;
 jset #22,sr,_rmchk ; jump if rounding bit r1 = 1
 jclr #21,sr,_setinf ; jump if rounding bit r0 = 0
 jmp _setbig ; round toward zero case
 ;
 ; Negative Infinity
 ;
_ninf jclr #21,sr,_setinf ; jump if rounding bit r0 = 0
 ;
 ; Result is Largest Number Less Than Infinity
 ;
_setbig dec d6 ; get big exponent
 move #qnanml,d1.m ; get mantr.high
 move #maxnum,d1.l ; get mantr.low
 ori #$09,ier ; set OVF and INX bits in IER
 ori #$09,er ; set OVF and INX bits in ER
 jmp _emove ; get expr
_rmchk jclr #21,sr,_setbig ; round toward -inf case
 ;
 ; Result is Infinity
 ;
_setinf move #0,d1.l ; set result to infinity
 move #0,d1.m ; "
ROLA DSP96002 USER’S MANUAL B-159

B-160
 move d6.l,d1.h ; "
 ori #$10,ccr ; set infinity bit
 ori #$09,ier ; set OVF and INX bits in IER
 ori #$09,er ; set OVF and INX bits in ER
 jmp _done ; result is infinity
;
; Begin Rounding the Result
;
 ;
 ; Check for Denormalized Numbers
 ;
_rnd move #eden,d7.l ; get denorm exponent
 move d6.l,d5.l ; get expr
 move #emsk,d4.l ; get exponent mask
 and d4,d5 ; delete tags and sign
 cmp d7,d5 ; compare exponents
 jne _remst ; jump if not a denorm
 tst d3 ; test mantr.high
 dec d6 ifpl.u ; decrement expr if no int bit
 ;
 ; Remove Bits to Right of the Sticky Bit
 ;
_remst move #smsk,d7.l ; get sticky mask
 and d7,d1 ; remove bits right of sticky
 ;
 ; Check GRS Bits Equal Zero
 ;
 move d1.l,d5.l ; get register with GRS bits
 move #grsmsk,d7.l ; get GRS mask
 and d7,d5 ; get GRS bits
 tst d5 ; check GRS bits = zero
 jeq _lmove ; jump if no rounding required
 ori #$1,ier ; set inexact result bit
 ori #$1,er ; set inexact result bit
 ;
 ; Check Rounding Mode
 ;
 jset #21,sr,_r1chk ; jump if rounding bit r0 = 1
 jset #22,sr,_rminf ; jump if round toward -infinity
;
; Round to nearest even
;
 jclr #10,d5.l,_lmove ; check guard bit
 bclr #10,d5.l ; delete G bit
 tst d5 ; check sticky and round bits
 jne _addone ; jump if S or R bits = 1
 jset #11,d1.l,_addone ; add one if LSB of result = 1
 jmp _lmove ; no rounding required
_r1chk jclr #22,sr,_lmove ; jump if round toward zero
;
; Round toward +infinity
;
 jclr #31,d6.l,_addone ; add one if positive
 jmp _lmove ; get result in d1
DSP96002 USER’S MANUAL MOTOROLA

MOTO
;
; Round toward -infinity
;
_rminf jclr #31,d6.l,_lmove ; no rounding if positive
_addone move #$800,d7.l ; get increment number
 add d7,d1 ; add one to lsb
 jcc _acar ; jump if no carry
 inc d3 ; increment mantr.high
_acar jcc _lmove ; jump if result normalized
 lsr d3 ; shift right mantr.high
 ror d1 ; shift right mantr.low
 inc d6 ; increment expr
 ;
 ; Check if Result is Infinity
 ;
 move #emsk,d7.l ; get exp mask
 move d6.l,d5.l ; get expr
 and d7,d5 ; delete tags
 cmp d7,d5 ; check for max exp
 jne _lmove ; jump if no overflow
 move #0,d1.l ; set result to infinity
 move #0,d1.m ; "
 ori #$10,ccr ; set infinity bit
 ori #$09,ier ; set OVF and INX bits in IER
 ori #$09,er ; set OVF and INX bits in ER
 jmp _emove ; get infinity exponent
;
; Get Result in D1
;
_lmove move d3.l,d1.m ; move mantr.high to d1
_emove move d6.l,d1.h ; move expr to d1
_done nop ;
 nop ;
 nop ;
 rts ; end of subroutine

endsec

 B.4.2 IEEE Double Precision Subtraction
;
; Double Precision IEEE floating-point Subtraction
;
; D0 - D1 → D1
;
;
;
; Alters Data ALU Registers
; d0.h d0.m d0.l
; d1.h d1.m d1.l
; d2.m d2.l
; d3.l
ROLA DSP96002 USER’S MANUAL B-161

B-162
; d4.h d4.l
; d5.h d5.l
; d6.l
; d7.l
;
; Alters Program Control Registers
; pc sr
;
;
; Version 1.0
; Latest Revision - 01-Aug-88
;

section ieeesub
emsk equ $7ff ; exponent mask
eden equ $1 ; denorm exponent
grsmsk equ $700 ; GRS (guard-round-sticky) bits mask
grmsk equ $fffffe00 ; GR (guard-round) bits mask
smsk equ $ffffff00 ; mask to clear bits to right of the sticky bit
onemsk equ $1ff ; mask to set bits to right of the round bit
inum equ $100 ; increment number
imsk equ $7fffffff ; infinity mask
qnane equ $7ff ; quiet NaN exponent
qnanmh equ $7fffffff ; quiet NaN mantissa high
qnanml equ $ffffffff ; quiet NaN mantissa low
maxnum equ $fffff800 ; low part of maximum number
;
sdptest ; double precision subtraction subroutine
;
; Clear ER portion of status register
;
 andi #0,er
;
; Check for Maximum and Minimum Exponents
;
 bchg #31,d1.h ; change sign of addend 1
 move #0,d6.l ; addend 0 flag
 move d0.h,d4.l ; get exp0
 move #emsk,d7.l ; get exponent mask
 and d7,d4 d0.m,d2.l ; delete tags, get m0.h
 cmp d7,d4 d1.m,d3.l ; check max exp, get m1.h
 jeq _mant1 ; jump if exp0 = max exp
 move d1.h,d5.l ; get exp1
 and d7,d5 #1,d6.l ; delete tags, a1 flag
 cmp d7,d5 #0,d2.m ; check max exp, sticky=0
 jeq _mant2 ; jump if exp1 = max exp
 tst d4 #0,d6.l ; check min exp, a0 flag
 jeq _mant3 ; jump if exp0 = min exp
 tst d5 #1,d6.l ; check min exp, a1 flag
 jeq _mant4 ; jump if exp1 = min exp
 jmp _nadd ; jump to normalized add
 ;
 ; Check if Addend 0 is Infinity
 ;
_mant1 move #imsk,d7.l ; get infinity mask
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 and d7,d2 ; remove implied one bit
 tst d2 ; check m0.high = zero
 jne _nan0 ; jump if nan
 tst d0 ; check m0.low = zero
 jne _nan0 ; jump if nan
 move #emsk,d7.l ; get exponent mask
 move d1.h,d5.l ; get exp1
 and d7,d5 ; delete tags
 cmp d7,d5 ; check for max exp
 jne _inf1 ; jump if a1 is not inf or NaN
 ;
 ; Check if Addend 1 is Infinity
 ;
_mant2 move #imsk,d7.l ; get infinity mask
 and d7,d3 ; remove implied one bit
 tst d3 ; check m1.high = zero
 jne _nan1 ; jump if nan
 tst d1 ; check m1.low = zero
 jne _nan1 ; jump if nan
 jclr #0,d6.l,_binf ; jump if a0 and a1 are inf
 ori #$10,ccr ; set infinity bit
 jmp _done ; a1 is infinity
 ;
 ; Check for Case: (+Inf) + (-Inf) = QNaN
 ;
_inf1 ftfr.x d0,d1 ; move result to d1

ori #$10,ccr ; set infinity bit
 jmp _done ; a0 is infinity
_binf ftst d0 ; check sign of a0
 jmi _minf ; jump if a0 is -inf
 ftst d1 ; check sign of a1
 jmi _inan ; (+inf) + (-inf) = QNaN
 ori #$10,ccr ; set infinity bit
 jmp _done ; a0 and a1 are +inf
_minf ftst d1 ; check sign of a1
 jpl _inan ; (-inf) + (+inf) = QNaN
 ori #$10,ccr ; set infinity bit
 jmp _done ; a0 and a1 are -inf
 ;
 ; Check for NaN
 ;
_nan0 jclr #30,d0.m,_inan ; jump if a0 is a SNaN
 move #emsk,d7.l ; get exponent mask
 move d1.h,d5.l ; get exp1
 and d7,d5 ; delete tags
 cmp d7,d5 ; check for max exp
 jne _qnan ; jump if a1 is not a NaN
 move #imsk,d7.l ; get infinity mask
 and d7,d3 ; remove implied one bit
 tst d3 ; check mant1.high = zero
 jne _nan1 ; jump if a1 is a NaN
 tst d1 ; check mant1.low = zero
 jeq _qnan ; jump if a1 is infinity
_nan1 jset #30,d1.m,_qnan ; jump if a1 is a QNaN
ROLA DSP96002 USER’S MANUAL B-163

B-164
_inan ori #$10,ier ; set invalid operation bit
_qnan move #qnane,d1.h ; get QNaN exponent
 move #qnanmh,d1.m ; get QNaN mantissa high
 move #qnanml,d1.l ; get QNaN mantissa low
 ori #$20,ccr ; set Not-a-Number bit
 jmp _done ; result is a NaN
 ;
 ; Check if Addend 0 is a Denormalized Number
 ;
_mant3 tst d2 ; check mant0.high = zero
 jne _den0 ; jump if a0 is a denorm
 tst d0 ; check mant0.low = zero
 jne _den0 ; jump if a0 is a denorm
 cmp d7,d5 ; check min exp for a1
 jgt _done ; a1 is the answer
 ;
 ; Check if Addend 1 is a Denormalized Number
 ;
_mant4 tst d3 ; check mant1.high = zero
 jne _den1 ; jump if a1 is a denorm
 tst d1 ; check mant1.low = zero
 jne _den1 ; jump if a1 is a denorm
 jclr #0,d6.l,_bzero ; jump if both are zero
 jmp _tfr ; move result to d1
 ;
 ; Addend 0 is a Denormalized Number
 ;
_den0 bset #0,d0.h ; get denorm exponent
 inc d4 ; "
 tst d5 ; check if a1 is a denorm
 jgt _ftz ; jump if a1 is a normal number
 tst d3 ; check mant1.high = zero
 jne _bden ; jump if a1 is a denorm
 tst d1 ; check mant1.low = zero
 jne _bden ; jump if a1 is a denorm
 jmp _tfr ; move result to d1
_bden bset #0,d1.h ; get denorm exponent
 inc d5 ; "
_ftz jclr #27,sr,_nadd ; jump to add for ieee mode
 jmp _done ; a0 is flushed-to-zero
 ;
 ; Addend 1 is a Denormalized Number
 ;
_den1 jclr #0,d6.l,_done ; a1 is the answer
 bset #0,d1.h ; get denorm exponent
 inc d5 ; "
 jclr #27,sr,_nadd ; jump to add for ieee mode
_tfr move #eden,d7.l ; get denorm exponent
 move d0.h,d5.l ; get expr
 move #emsk,d4.l ; get exponent mask
 and d4,d5 ; delete tags and sign
 cmp d7,d5 d0.h,d5.l ; compare exps, get expr
 jne _tmov ; jump if not a denorm
 move d0.m,d3.l ; get mantr.high
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 tst d3 ; test mantr.high, get expr
 dec d5 ifpl.u ; decrement expr if no int bit
_tmov move d5.l,d1.h ; move result to d1
 move d0.m,d1.m ; "
 move d0.l,d1.l ; "
 jmp _done ; a0 is the answer
 ;
 ; Both Addends are Zero
 ;
_bzero move d0.h,d4.l ; get exp0
 move d1.h,d5.l ; get exp1
 eor d4,d5 ; check for opposite signs
 jclr #31,d5.l,_done ; jump if same signs
 bclr #31,d1.h ; set result as positive
 jclr #22,sr,_done ; jump if round bit r1 = zero
 jset #21,sr,_done ; jump if round bit r0 = one
 bset #31,d1.h ; set result as negative
 jmp _done ; result is negative zero
;
;
;
; **
; *** DP Addition for Normalized Numbers ***
; **
;
;
; Compare Exponents
;
_nadd cmp d4,d5 d1.h,d6.l ; compare exps, get expr
 jgt _pos ; jump if exp1 > exp0
 jeq _add ; jump if exp0 = exp1
;
; *** Case: Exp0 > Exp1 ***
;
 ;
 ; Align Mantissas
 ;
 sub d5,d4 d0.h,d6.l ; get shift, get expr
 move #55,d7.l ; get number of bits
 cmp d7,d4 ; check for shift > 55
 jgt _setst0 ; jump if shift > 55
 do d4.l,_end1 ; align mantissas
 lsr d3 ; shift right m1.h
 ror d1 ; shift right m1.l and GRS1
 jclr #8,d1.l,_cclr1 ; jump if sticky bit clear
 move #1,d2.m ; set sticky bit
_cclr1 nop ;
 ;
 ; Calculate Sticky Bit
 ;
_end1 move #grmsk,d7.l ; get GR mask

and d7,d1 ; remove bits right of round bit
 jclr #0,d2.m,_add ; jump if sticky = 0
 bset #8,d1.l ; put in sticky bit
ROLA DSP96002 USER’S MANUAL B-165

B-166
 jmp _add ;
 ;
 ; Set Sticky Bit for Shift > 55 Bits
 ;
_setst0 move #0,d3.l ; get number for addition
 move #inum,d1.l ; "
 jmp _add ;
;
; *** Case: Exp1 > Exp0 ***
;
 ;
 ; Align Mantissas
 ;
_pos sub d4,d5 d1.h,d6.l ; get shift, get expr
 move #55,d7.l ; get number of bits
 cmp d7,d5 ; check for shift > 55
 jgt _setst1 ; jump if shift > 55
 do d5.l,_end2 ; align mantissas
 lsr d2 ; shift right m0.h
 ror d0 ; shift right m0.l and GRS0
 jclr #8,d0.l,_cclr2 ; jump if sticky bit clear
 move #1,d2.m ; set sticky bit
_cclr2 nop ;
 ;
 ; Calculate Sticky Bit
 ;
_end2 move #grmsk,d7.l ; get GR mask
 and d7,d0 ; remove bits right of round bit
 jclr #0,d2.m,_add ; jump if sticky = 0
 bset #8,d1.l ; put in sticky bit
 jmp _add ;
 ;
 ; Set Sticky Bit for Shift > 55 Bits
 ;
_setst1 move #0,d2.l ; get number for addition
 move #inum,d0.l ; "
;
; Check the Signs of the Addends
;
_add jset #31,d0.h,_neg1 ; jump if a0 negative
 jset #31,d1.h,_neg2 ; jump if a1 negative
 jmp _fadd ; jump to addition for a0+,a1+
;
; *** Case: Addend 0 is Negative,
; Addend 1 is Positive ***
;
_neg1 jset #31,d1.h,_nset ; jump if a1 negative
 sub d0,d1 ; subtract for case: a0-,a1+
 subc d2,d3 ; "
 jcc _zchk ; jump if result is positive
 bset #31,d6.l ; set result as negative
 move #inum,d7.l ; get increment number
 not d1 ; get 2’s comp of result
 not d3 ; "
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 add d7,d1 ; "
 jcc _zchk ; "
 inc d3 ; "
 jmp _zchk ;
;
; *** Case: Addend 0 is Positive,
; Addend 1 is Negative ***
;
_neg2 bclr #31,d6.l ; set result as positive
 sub d1,d0 ; subtract for case: a0+,a1-
 subc d3,d2 ; "
 jcc _cclr3 ; jump if result is positive
 bset #31,d6.l ; set result as negative
 move #inum,d7.l ; get increment number
 not d0 ; get 2’s comp of result
 not d2 ; "
 add d7,d0 ; "
 jcc _cclr3 ; "
 inc d2 ; "
_cclr3 move d0.l,d1.l ; get mantr.low and GRS bits
 move d2.l,d3.l ; get mantr.high
;
; Check result equal zero (do not want to normalize)
;
_zchk move #smsk,d7.l ; get sticky mask
 and d7,d1 ; remove bits right of sticky
 tst d3 ; check mantr.high = zero
 jne _snrm ; normalize result
 tst d1 ; check mantr.low = zero
 jne _snrm ; normalize result
 move #0,d6.l ; set expr = zero
 ;
 ; Check for Special Case (Round toward -infinity)
 ;
 jclr #22,sr,_rnd ; jump if round bit r1 = zero
 jset #21,sr,_rnd ; jump if round bit r0 = one
 bset #31,d6.l ; set result to negative zero
 jmp _rnd ; check rounding mode
;
; Normalize for Opposite Sign Cases
;
_snrm jset #31,d3.l,_rnd ; jump if result normalized
 move #emsk,d7.l ; get exp mask
 move d6.l,d5.l ; get expr
 and d7,d5 ; delete tags
 move #eden,d4.l ; get denorm exponent
 jclr #8,d1.l,_st0 ; jump if sticky bit = 0
 move #onemsk,d7.l ; get one mask
_st1 or d7,d1 ; set bits right of round bit
_st0 cmp d4,d5 ; test expr = zero

jle _rnd ; jump if denormalized number
 dec d6 ; decrement expr
 dec d5 ; decrement expr copy
 lsl d1 ; shift mantr.l left
ROLA DSP96002 USER’S MANUAL B-167

B-168
 rol d3 ; shift mantr.h left
 jset #31,d3.l,_rnd ; jump if result normalized
 jclr #8,d1.l,_st0 ; jump if sticky bit = 0
 jmp _st1 ; jump if sticky bit = 1
;
; *** Cases: 1) Addend 0 is Negative,
; Addend 1 is Negative
; 2) Addend 0 is Positive,
; Addend 1 is Positive ***
;
_nset bset #31,d6.l ; set result as negative
_fadd add d0,d1 ; add for case: a0-,a1-
 addc d2,d3 ; and case: a0+,a1+
 jcc _rnd ; jump if number normalized
 lsr d3 ; shift right mantr.h
 ror d1 ; shift right mantr.low
 jclr #8,d1.l,_cclr4 ; jump if sticky bit = 0
 bset #8,d1.l ; set sticky bit
_cclr4 bset #31,d3.l ; set bit 31 of mantr.high
 inc d6 ; increment expr
;
; Check if Result is Infinity
;
 move #emsk,d7.l ; get exp mask
 move d6.l,d5.l ; get expr
 and d7,d5 ; delete tags
 cmp d7,d5 ; check max exp
 jne _rnd ; jump if no overflow
 jset #31,d6.l,_ninf ; jump if result is -infinity
 ;
 ; Positive Infinity
 ;
 jset #22,sr,_rmchk ; jump if rounding bit r1 = 1
 jclr #21,sr,_setinf ; jump if rounding bit r0 = 0
 jmp _setbig ; round toward zero case
 ;
 ; Negative Infinity
 ;
_ninf jclr #21,sr,_setinf ; jump if rounding bit r0 = 0
 ;
 ; Result is Largest Number Less Than Infinity
 ;
_setbig dec d6 ; get big exponent
 move #qnanml,d1.m ; get mantr.high
 move #maxnum,d1.l ; get mantr.low
 ori #$09,ier ; set OVF and INX bits in IER
 ori #$09,er ; set OVF and INX bits in ER
 jmp _emove ; get expr
_rmchk jclr #21,sr,_setbig ; round toward -inf case
 ;
 ; Result is Infinity
 ;
_setinf move #0,d1.l ; set result to infinity
 move #0,d1.m ; "
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 move d6.l,d1.h ; "
 ori #$10,ccr ; set infinity bit
 ori #$09,ier ; set OVF and INX bits in IER
 ori #$09,er ; set OVF and INX bits in ER
 jmp _done ; result is infinity
;
; Begin Rounding the Result
;
 ;
 ; Check for Denormalized Numbers
 ;
_rnd move #eden,d7.l ; get denorm exponent
 move d6.l,d5.l ; get expr
 move #emsk,d4.l ; get exponent mask
 and d4,d5 ; delete tags and sign
 cmp d7,d5 ; compare exponents
 jne _remst ; jump if not a denorm
 tst d3 ; test mantr.high
 dec d6 ifpl.u ; decrement expr if no int bit
 ;
 ; Remove Bits to Right of the Sticky Bit
 ;
_remst move #smsk,d7.l ; get sticky mask
 and d7,d1 ; remove bits right of sticky
 ;
 ; Check GRS Bits Equal Zero
 ;
 move d1.l,d5.l ; get register with GRS bits
 move #grsmsk,d7.l ; get GRS mask
 and d7,d5 ; get GRS bits
 tst d5 ; check GRS bits = zero
 jeq _lmove ; jump if no rounding required
 ori #$1,ier ; set inexact result bit
 ori #$1,er ; set inexact result bit
 ;
 ; Check Rounding Mode
 ;
 jset #21,sr,_r1chk ; jump if rounding bit r0 = 1
 jset #22,sr,_rminf ; jump if round toward -infinity
;
; Round to nearest even
;
 jclr #10,d5.l,_lmove ; check guard bit
 bclr #10,d5.l ; delete G bit
 tst d5 ; check sticky and round bits
 jne _addone ; jump if S or R bits = 1
 jset #11,d1.l,_addone ; add one if LSB of result = 1
 jmp _lmove ; no rounding required
_r1chk jclr #22,sr,_lmove ; jump if round toward zero
;
; Round toward +infinity
;
 jclr #31,d6.l,_addone ; add one if positive
 jmp _lmove ; get result in d1
ROLA DSP96002 USER’S MANUAL B-169

B-170
;
; Round toward -infinity
;
_rminf jclr #31,d6.l,_lmove ; no rounding if positive
_addone move #$800,d7.l ; get increment number
 add d7,d1 ; add one to lsb
 jcc _acar ; jump if no carry
 inc d3 ; increment mantr.high
_acar jcc _lmove ; jump if result normalized
 lsr d3 ; shift right mantr.high
 ror d1 ; shift right mantr.low
 inc d6 ; increment expr
 move #emsk,d7.l ; get exp mask
 move d6.l,d5.l ; get expr
 and d7,d5 ; delete tags
 cmp d7,d5 ; check for max exp
 jne _lmove ; jump if no overflow
 move #0,d1.l ; set result to infinity
 move #0,d1.m ; "
 ori #$10,ccr ; set infinity bit
 ori #$09,ier ; set OVF and INX bits in IER
 ori #$09,er ; set OVF and INX bits in ER
 jmp _emove ; get infinity exponent
;
; Get Result in D1
;
_lmove move d3.l,d1.m ; move mantr.high to d1
_emove move d6.l,d1.h ; move expr to d1
_done nop ;
 nop ;
 nop ;
 rts ; end of subroutine

endsec

 B.4.3 IEEE Double Precision Multiplication
;
;**
;**
; *** IEEE Double Extended Precision Multiply Operation
; ***
; *** The routine was implemented as a unsigned multiply routine.
; ***
; *** 64-bit input operand format (immediately before multiply):
; *** i.fff...fl
; ***
; *** 67-bit intermediate result format (immediately after post norm):
; *** i.fff...flgrs
; *** where
; *** i = integer bit
DSP96002 USER’S MANUAL MOTOROLA

MOTO
; *** f = fraction bits, initially bits in mantissas
; *** l = least significant fraction bit, initially in mantissas
; *** g = guard bit
; *** r = round bit
; *** s - sticky bit
; ***
; ***
; *** Routine Inputs:
; *** d6 - IEEE double extended precision operand 1 (destroyed)
; *** d7 - IEEE double extended precision operand 2 (destroyed)
; ***
; *** Routine Outputs:
; *** d5 - IEEE double extended precision result
; ***
; *** Registers Used:
; *** d0.l - general purpose usage
; *** d0.m - unbiased operand 2 exponent
; *** - unbiased result exponent
; *** d0.h - MSB contains the XOR of the sign bits
; *** d1.l - general purpose usage
; *** d1.m - unbiased operand 1 exponent
; *** - loop index for denormalizing upon underflow.
; *** d1.h - LSB contains the sticky bit
; *** d2.m,l - partial product and intermediate calculations
; *** d3.m,l - partial product and intermediate calculations
; *** d4.m,l - partial product and intermediate calculations
; *** d5.m,l - partial product and intermediate calculations
; ***
; *** NOTES: Currently ignores the FR, P, RP bits.
; *** Assumes that operands are NOT UNnormalized numbers
; *** Code size greatly decreased if "depftst" macro
; *** becomes a routine
; ***

section ieeemult
SR_MASK equ $ffff80c0 ; Status Register Mask, resets cond. codes
EXP_MSK equ $7ff ; Mask for exponent field, 16-bits
EBIAS equ $3ff ; Exponent bias for IEEE double precision
EMAX equ $3ff ; Max exp for normalized double precision val
EMIN equ $fffffc02 ; Min exp for normalized double precision val
EDEN equ $fffffc01 ; Exp for denormalized double precision val
MAX equ $7ff ; Max exp (biased), indicating infs & NaNs
SMSK equ $1ff ; Mask for sticky bit calculation
INUM equ $800 ; Increment for LSB
sdptest ; double precision multiplication subroutine

; ****** Define Program Macros ******

depftst macro op,tmp1,tmp2

; This macro performs the "ftst" function on DEP floating pt vars.
; It sets the NAN,I,N,Z bits in the CCR register appropriately.
;
; op = register name of the form "Dn" containing the floating pt var
; in all 96 bits of the register (not destroyed)
ROLA DSP96002 USER’S MANUAL B-171

B-1
; tmp1 = register name of the form "Dn", and is a temporary var which
; uses the lowest 32 bits of the register (Dn.L is destroyed)
; tmp2 = register name of the form "Dn", and is a temporary var which
; uses the lowest 32 bits of the register (Dn.L is destroyed)
;
; Note that op, tmp1, and tmp2 must all be different registers.

 andi #$c3,ccr ;

 jclr #31,op.h,_chkrst ;
 ori #$8,ccr ;

_chkrst move op.h,tmp1.l ;
 move #EXP_MSK,tmp2.l ;
 and tmp2,tmp1 ;

 tst op ;
 jneq _chknan ;
 tst tmp1 op.m,tmp2.l ;
 jneq _maxexp ;
 tst tmp2 ;
 jneq _chknan ;
 ori #$4,ccr ;
 jmp _done ;
_maxexp move #MAX,tmp2.l ;
 cmp tmp1,tmp2 op.m,tmp1.l ;
 jne _done ;

 bclr #31,tmp1.l ;
 tst tmp1 ;
 jneq _nan ;
 andi #$b,ccr ;
 ori #$10,ccr ;
 jmp _done ;
_chknan move #MAX,tmp2.l ;
 cmp tmp1,tmp2 ;
 jne _done ;
_nan andi #$b,ccr ;
 ori #$20,ccr ;
 jset #30,op.m,_done ;
 ori #$20,er ;
_done
 endm

; ****** Reset Processor Flags ******

 movec sr,d0.l ;
 move #SR_MASK,d1.l ;
 and d1,d0 ;
 movec d0.l,sr ;
72 DSP96002 USER’S MANUAL MOTOROLA

MOTO
; ****** Flush DeNorms to 0 if Fast Mode ******

 jclr #27,sr,_chksgn ;
 move #$80000000,d1.l ;
 jset #31,d6.m,_chkop2 ;
 fclr d6 d6.h,d0.l ;
 and d1,d0 ;
 move d0.l,d6.h ;
_chkop2 jset #31,d7.m,_chksgn ;
 fclr d7 d7.h,d0.l ;
 and d1,d0 ;
 move d0.l,d7.h ;

; ****** Sign Bit Calculation ******

_chksgn move d6.h,d0.l ;
 move d7.h,d1.l ;
 eor d1,d0 ;
 move d0.l,d0.h ;

; ****** Check Input Operands ******

_chkops
 depftst d6,d0,d1 ;
 jeq _op1_0 ;
 jset #4,sr,_op1inf ;
 jset #5,sr,_op1nan ;

 depftst d7,d0,d1 ;
 jeq _op2_0 ;
 jset #4,sr,_op2inf ;
 jset #5,sr,_op2nan ;

; ****** Extract Exponents ******
; ------ Should be able to use FGETEXP here on double-extended ------

 move d7.h,d0.l ;
 move #EXP_MSK,d1.l ;
 and d1,d0 ;
 tst d0 ;
 jne _ebias1 ;
 inc d0 ;
_ebias1 move #EBIAS,d1.l ;
 sub d1,d0 ;
 move d0.l,d0.m ;

 move d6.h,d0.l ;
ROLA DSP96002 USER’S MANUAL B-173

B-174
 move #EXP_MSK,d1.l ;
 and d1,d0 ;
 tst d0 ;
 jne _ebias2 ;
 inc d0 ;
_ebias2 move #EBIAS,d1.l ;
 sub d1,d0 ;
 move d0.l,d1.m ;

; ****** Extract Mantissas ******

 move #0,d6.h ;
 move #0,d7.h ;

; ****** Normalize any Denorms ******

 jset #31,d6.m,_nrmop2 ;
 move d6.m,d0.l ;
 tst d0 ;
 jneq _op1nrm ;
 move d1.m,d0.l ;
 move #32,d1.l ;
 sub d1,d0 ;
 move d0.l,d1.m ;
 move d6.l,d6.m ;
 move #0,d6.l ;
 jset #31,d6.m,_nrmop2 ;
_op1nrm ; normalize
 asl d6 d6.m,d0.l ;
 rol d0 ;
 move d0.l,d6.m ;
 move d1.m,d0.l ;
 dec d0 ;
 move d0.l,d1.m ;
 jclr #31,d6.m,_op1nrm ;

_nrmop2 jset #31,d7.m,_domul ;
 move d7.m,d0.l ;
 tst d0 ;
 jneq _op2nrm ;
 move d0.m,d0.l ;
 move #32,d1.l ;
 sub d1,d0 ;
 move d0.l,d0.m ;
 move d7.l,d7.m ;
 move #0,d7.l ;
 jset #31,d7.m,_domul ;
_op2nrm ; normalize operand 2
 asl d7 d7.m,d0.l ;
 rol d0 ;
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 move d0.l,d7.m ;
 move d0.m,d0.l ;
 dec d0 ;
 move d0.l,d0.m ;
 jclr #31,d7.m,_op2nrm ;
_domul

; ****** Initial Exponent Processing ******

 move d0.m,d0.l ;
 move d1.m,d1.l ;
 add d0,d1 ;
 inc d1 ;
 move d1.l,d0.m ;

; ****** Calculate Partial Products (A:B * C:D) ******

 mpyu d6,d7,d2 ;
 move d6.m,d0.l ;
 mpyu d0,d7,d3 ;
 move d7.m,d1.l ;
 mpyu d1,d6,d4 ;
 mpyu d0,d1,d5 ;

; ****** Sum Partial Products ******

 move #0,d1.h ;
 tst d2 d2.m,d0.l ;
 jeq _addpps ;
 move #1,d1.h ;

_addpps
 add d0,d3 ;
 rol d1 d3.m,d2.l ;
 add d4,d3 d4.m,d0.l ;

 addc d2,d0 ;
 rol d2 ;
 ror d1 d5.m,d4.l ;
 addc d0,d5 ;

 move #0,d0.l ;
 addc d0,d4 ;
 ror d2 ;
 addc d0,d4 ;

 ; At this point,
 ; d4.l = most significant 32 bits,
ROLA DSP96002 USER’S MANUAL B-175

B-176
 ; d5.l = next most significant word,
 ; d3.l = next most significant word,
 ; and least significant word info
 ; is in the sticky bit.
 ;
 ; Upper 96 bits = d4.l:d5.l:d3.l, and
 ; the lowest 32 bits have been ORed
 ; into the sticky bit.

; ****** Continue Calculating Sticky Bit ******

 move #SMSK,d0.l ;
 move d5.l,d2.l ;
 and d0,d2 ;
 tst d2 ;
 jeq _stlow ;
 move #1,d1.h ;

_stlow tst d3 ;
 jeq _post ;
 move #1,d1.h ;

; ****** Post Normalization ******

_post jset #31,d4.l,_undr ;
_ptop asl d3 ;
 rol d5 ;
 rol d4 d0.m,d0.l ;
 move d0.m,d0.l ;
 dec d0 ;
 move d0.l,d0.m ;
 jclr #31,d4.l,_ptop ;

; ****** Underflow Check ******
_undr
 move d0.m,d0.l ;
 move #EMIN,d1.l ;
 sub d1,d0 ;
 jpl _rnd ;

 jset #27,sr,_ret0 ;
 ;
 move #-52,d1.l ;
 cmp d1,d0 ;
 jmi _rnd0 ;
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 move #EDEN,d0.m ;
 abs d0 ;
 move d0.l,d1.m ;
 do d1.m,_dnrmq ;
 lsr d4 ;
 ror d5 ;
 ror d3 ;
_dnrmq
 jset #0,d1.h,_sundr ;
 jset #9,d5.l,_sundr ;
 jset #10,d5.l,_sundr ;
 jmp _asml ;

; ****** Round ******

_rnd jset #10,d5.l,_inex ;
 jset #9,d5.l,_inex ;
 jset #0,d1.h,_inex ;
 jmp _endrnd ;
_sundr
 ori #$04,er ;
 ori #$04,ier ;
_inex ;
 ori #$01,er ;
 ori #$01,ier ;
 jclr #22,sr,_nxt ;
 jset #21,sr,_pinf ;
 jclr #31,d0.h,_endrnd ;
 jmp _add1 ;
_nxt ;
 jclr #21,sr,_rn ;
 jmp _endrnd ;
_pinf jset #31,d0.h,_endrnd ;
 jmp _add1 ;

_rn jclr #10,d5.l,_endrnd ;
 jset #9,d5.l,_add1 ;
 jset #0,d1.h,_add1 ;
 jset #11,d5.l,_add1 ;
 jmp _endrnd ;
 ;

_add1 move #INUM,d0.l ;
 add d0,d5 ;
 move #0,d0.l ;
 addc d0,d4 ;

 jcc _den ;
 move d0.m,d0.l ;
 inc d0 ;
 move d0.l,d0.m ;
 lsr d4 ;
 ror d5 ;
ROLA DSP96002 USER’S MANUAL B-177

B-178
 jmp _endrnd ;

_den move #EDEN,d1.l ;
 move d0.m,d0.l ;
 cmp d1,d0 ;
 jne _endrnd ;
 jclr #31,d4.l,_asml ;
 inc d0 ;
 move d0.l,d0.m ;
 jmp _asml ;

_rnd0 ; Reaches here if value is too small
 ; to denormalize.
 ori #$05,er ;
 ori #$05,ier ;
 jset #22,sr,_nxt1 ;
 jclr #21,sr,_rn1 ;
 jmp _ret0 ;

_pinf1 jset #31,d0.h,_ret0 ;
 jmp _retsml ;

_rn1 move #-56,d1.l ;
 cmp d1,d0 ;
 jle _grs0 ;
 move #-53,d1.l ;
_grsl cmp d1,d0 ;
 jeq _rnrnd ;
 lsr d4 ;
 dec d0 ;
 jmp _grsl ;
_grs0 move #0,d4.l ;
_rnrnd jclr #31,d4.l,_ret0 ;
 jset #30,d4.l,_retsml ;
 jset #0,d1.h,_retsml ;
 jmp _ret0 ;

_nxt1 ;
 jset #21,sr,_pinf1 ;
 jclr #31,d0.h,_ret0 ;

_retsml jset #27,sr,_ret0 ;
 move #0,d5.h ;
 move d5.h,d5.m ;
 move #$800,d5.l ;
 jmp _putsgn ;

_endrnd

; ****** Overflow Check ******
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 move #EMAX,d1.l ;
 move d0.m,d0.l ;
 cmp d1,d0 ;
 jle _asml ;
 ori #$09,er ;
 ori #$09,ier ;

 jclr #22,sr,_next ;
 jset #21,sr,_posinf ;
 jset #31,d0.h,_retinf ;
 jmp _retlrg ;
_posinf
 jclr #31,d0.h,_retinf ;
 jmp _retlrg ;
_next ;
 jclr #21,sr,_retinf ;
 ;
_retlrg move #$ffffffff,d5.m ;
 move #$ffffffff,d5.l ;
 move #MAX,d0.l ;
 dec d0 ;
 move d0.l,d5.h ;
 jmp _putsgn ;

; ****** Assemble Result into IEEE Format ******

_asml move d4.l,d5.m ;

 move d0.m,d0.l ;
 move #EBIAS,d1.l ;
 add d1,d0 ;
 move d0.l,d5.h ;

 jclr #31,d0.h,_done ;
 bset #31,d5.h ;

; ****** Exit Routine ******

_putsgn jclr #31,d0.h,_done ;
 bset #31,d5.h ;
 jmp _done ;

; ****** Zero Operand Detected (or denorm in FAST mode) ******

_op2_0 depftst d6,d0,d1 ;
ROLA DSP96002 USER’S MANUAL B-179

B-180
 jset #5,sr,_op1nan ;
 jset #4,sr,_operr ;
 jmp _ret0 ;

_retinf move #0,d5.l ;
 move d5.l,d5.m ;
 move #MAX,d5.h ;
 ori #$10,ccr ;
 jmp _putsgn ;

_op1_0 depftst d7,d0,d1 ;
 jset #5,sr,_op2nan ;
 jset #4,sr,_operr ;

_ret0 move #0,d5.h ;
 move d5.h,d5.m ;
 move d5.m,d5.l ;
 bset #2,sr ;
 jmp _putsgn ;

_operr bset #12,sr ;
 bset #20,sr ;
 bset #4,sr ;
 move #$ffffffff,d5.l ;
 move #$ffffffff,d5.m ;
 move #$7ff,d5.h ;
 jclr #31,d0.h,_done ;
 bset #31,d5.h ;
 jmp _done ;

; ****** Infinity Operand Detected ******

_op2inf depftst d6,d0,d1 ;
 jset #5,sr,_op1nan ;
 jeq _operr ;
 jmp _retinf ;

_op1inf depftst d7,d0,d1 ;
 jset #5,sr,_op2nan ;
 jeq _operr ;
 jmp _retinf ;

; ****** NaN Operand Detected ******

_op2nan jset #13,sr,_op2sn ;
 ftfr.x d7,d5 ;
 jmp _done ;
_op1nan jset #13,sr,_op1sn ;
 bset #4,sr ;
 ftfr.x d6,d5 ;
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 depftst d7,d0,d1 ;
 jset #5,sr,_snan2 ;
 jmp _done ;
_snan2 jset #13,sr,_op2sn ;
 jmp _done ;

_op2sn ftfr.x d7,d6 ;
_op1sn bset #30,d6.m ;
 ftfr.x d6,d5 ;
 bset #4,sr ;
 bset #13,sr ;
 bset #20,sr ;
_done nop ;
 nop
 nop
 rts ; end of subroutine

endsec

 B.5 NON-IEEE DOUBLE PRECISION USING SOFTWARE EMULATION

dplib ident 1,0
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; EXTENDED DOUBLE PRECISION floating-point SUBROUTINE LIBRARY
;
 page 132,60,1,1
;
; equates
;
exp equ 0 ;offset to exponent
sign equ 1 ;offset to sign
ms equ 2 ;offset to most significant word
ls equ 3 ;offset to least significand word
bias equ $1fffffff ;exponent bias
dptemp equ $1fc ;temporary storage in top 4 internal
 ;x memory locations
 page
 org x:dptemp ;double precision register
 ds 1 ;exponent
 ds 1 ;sign: 0=+, 1=-
 ds 2 ;64 bit significand
;
 page
 org p:
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; IEEE2DPLIB - Convert floating-point number in d0 to an internal
ROLA DSP96002 USER’S MANUAL B-181

B-182
; extended precision number.
;
; Entry point: ieee2dplib: c(r0) ← convert(d0)
;
; Input: r0 contains the lowest address of the 4-word internal
; extended precision number
; d0 contains the DSP96002 floating-point number.
; The DSP96002 has the following floating-point formats:
; SP normalized (24 bit mantissa)
; SP denormalized
; SEP normalized (32 bit mantissa)
; SEP denormalized (encoded as DP normalized)
; DP normalized
; The SP denormalized is encoded using the U tag. All other encodings
; appear the same with varying amount of significand bits.
;
; Output: r0 points to the lowest address of a double precision
; number in non-IEEE double precision format.
;
; Error checking:
; NaNs - Not converted, internal A register not affected
; +/- inf - Limited to maximum internal format value
;
; Alters: D0.L,D1.L,D2.L,D0.H,D1.H
;
ieee2dplib
 ftst d0 ;check input
 fjor _notnan ;ok if not nan
 rts ;no conversion
_notnan fjeq uflow ;if zero, set zero
 clr d1 ;get zero for sign
 bclr #31,d0.h ;get sign and clear sign bit
 inc d1 ifcs ;if sign bit is set, inc
 ftst d0 d1.l,x:(r0+sign) ;reset flags, save sign
 fjinf oflow ;limit if infinity
 jset #30,d0.h,_dodenorm ;do denorm if U tag is set
 move d0.m,x:(r0+ms) ;save ms of significand
 move d0.l,x:(r0+ls) ;save ls of significand
 move d0.h,d0.l ;get dp exponent
 move #$1ffffc00,d1.l ;get bias adjustment
 add d1,d0 ;new bias
 move d0.l,x:(r0) ;set exponent
 rts
_dodenorm
 move d0.m,d0.l ;get denormed sp significand
 bfind d0,d1 ;find first 1
 clr d2 d1.h,d1.l ;get a 0, move shift
 lsl d1.h,d0 d2.l,x:(r0+ls) ;norm ms, set 0 ls
 move d0.l,x:(r0+ms) ;set ms
 move #$1fffff81,d0.l ;get exponent
 sub d1,d0 ;sub denorm shift to get new bias
 move d0.l,x:(r0) ;set exponent
 rts
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DPLIB2IEEE - Convert internal double precision format to a double
; precision format in d0.
;
; Entry point: dplib2ieee: d0 ← convert(c(r0))
;
; Input: r0 contains the lowest address of the 4-word internal
; extended precision number
;
; Output: The returned format is DSP96002 extended precision
; floating-point format. Typical calling sequences:
;
; jsr dplib2ieee ;convert to register format
; move d0.d,L:0 ;save as dp format
;
; jsr dplib2ieee ;convert to register format
; ftfr.s d0,d0 ;round to sp
; move d0.s,x:0 ;save as sp format
;
; jsr dplib2ieee ;convert to register format
; move d0.d,d0.ml ;convert to IEEE dp format
; move d0.ml,l:0 ;save IEEE dp format
;
; Alters: D0.L,D1.L,D0.M,D0.H
;
dplib2ieee
 move x:(r0),d0.l ;get internal exponent
 move #$200003fe,d1.l ;max limit for register
 cmp d1,d0 #$1ffffc01,d1.l ;compare to max, get min
 jhi _setinf ;too big for register, set inf
 cmp d1,d0 #$1ffffc00,d1.l ;compare to min, get adjust
 jlo _setzero ;return zero
 sub d1,d0 x:(r0+ms),d0.m ;adjust exponent, get ms
 move d0.l,d0.h ;move exponent
 move x:(r0+ls),d0.l ;get ls part
_fixsign move x:(r0+sign),d1.l ;get sign
 jclr #0,d1.l,_ok ;jump if bit clear
 bset #31,d0.h ;set negative
_ok rts
_setinf move #$7f800000,d0.s ;get infinity
 jmp _fixsign
_setzero fclr d0 ;get 0
 jmp _fixsign
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_ABS _ Absolute value of a double precision number
;
; Entry point: dp_abs: c(r0+sign)← 0 (make the number positive);
ROLA DSP96002 USER’S MANUAL B-183

B-184
;
; Input: r0 contains the lowest address of the 4-word internal
; extended precision number
;
; Output: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.l
;
dp_abs clr d0.l
 move d0.l,x:(r0+sign) ;clear the sign word
 rts
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_ADD - Add two double precision numbers.
;
; Entry point: dp_add: c(r0) ← c(r0) + c(r1)
;
; Input: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Output: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.L,D1.L,D2.L,D3.L,D4.L,D5.L,D6.L,D7.L,D0.H,D1.H
;
dp_add move x:(r0+ms),d0.l ;get c(r0)_ms
 move x:(r0+ls),d1.l ;get c(r0)_ls
 move x:(r1+ms),d2.l ;get c(r1)_ms
 move x:(r1+ls),d3.l ;get c(r1)_ls
 move x:(r0),d4.l ;get c(r0) exponent
 move x:(r1),d5.l ;get c(r1) exponent
 move d4.l,d6.l ;copy of c(r0) exponent
 cmp d5,d4 #63,d7.l ;compare exponents
 jeq addmant ;exponents are equal
 jpl abig ;c(r0) exponent is greater
;
; X has a larger exponent than c(r0)
;
xbig sub d4,d5 d5.l,d4.l ;c(r1) exponent is greater
 cmp d5,d7 #31,d7.l ;is |r0(exp)-r1(exp)| > 63?
 jmi aequalx ;yes, then c(r0) + c(r1) = c(r1)
 cmp d5,d7 #32,d7.l ;is |r0(exp)-r1(exp)| > 31?
 jge dshifta ;no, shift both c(r0) words
 sub d7,d5 d0.l,d1.l ;yes, shift ms to ls
 clr d0.l d5.l,d0.h ;# of shifts to be performed
 lsr d0.h,d1 ;align the c(r0) mantissa
 jmp addmant ;add the mantissas
;
; A has a larger exponent than X
;

DSP96002 USER’S MANUAL MOTOROLA

MOTO
abig sub d5,d6 ;c(r0) exponent is greater
 cmp d6,d7 #31,d7.l ;is |r0(exp)-r1(exp)| > 63?
 jmi aequala ;yes, then c(r0) + c(r1) = c(r0)
 cmp d6,d7 #32,d7.l ;is |r0(exp)-r1(exp)| > 31?
 jge dshiftx ;no, shift both c(r1) words
 sub d7,d6 d2.l,d3.l ;yes, shift ms to ls
 clr d2.l d6.l,d0.h ;# of shifts to be performed
 lsr d0.h,d3 ;align the mantissas
;
; Add the two mantissas together
;
addmant move x:(r0+sign),d6.l ;get c(r0) sign
 move x:(r1+sign),d7.l ;get c(r1) sign
 cmp d7,d6 ;are the signs the same?
 jmi apos ;c(r0) > 0 and c(r1) < 0
 jeq signseq ;c(r0) and X have the same sign
;
; Calculate the result assuming that c(r1) > 0 and c(r0) < 0
;
aneg cmp d2,d0 ;compare mantissas
 jne decid ;if ms’s are equal, test ls’s
 cmp d3,d1 #0,d7.l ;compare ls of mantissas
 jeq dp_clr ;clear reg_a if same magnitude
decid jcc r1fromr0 ;if c(r0) > c(r1), c(r0) - c(r1)
r0fromr1 move d7.l,x:(r0+sign) ;make sign positive
 sub d1,d3 ;subtract c(r0) from c(r1)
 subc d0,d2 d3.l,d1.l ;calculate c(r0)_ms
 move d2.l,d0.l ;put result in c(r0) register
;
; Normalize the result
;
subnorm jeq msis0 ;test ms word
 bfind d0,d0 ;find out how many zeros in ms
 lsl d0.h,d0 d1.l,d2.l ;shift c(r0)_ms
 lsl d0.h,d1 #32,d7.l ;shift c(r0)_ls
 move d0.h,d3.l ;copy # of shifts
 sub d3,d7 ;# of opposite dir. shifts
 move d7.l,d0.h ;move # of shifts to .h reg.
 lsr d0.h,d2 ;get bits to go from ls to ms
 or d2,d0 ;shift in bits from ls to ms
 sub d3,d4 ;decrement the exponent
 jmp leave ;make sure the exp is valid
msis0 tst d1.l #32,d3.l ;test if ls is zero
 jeq dp_clr ;zero reg_a if yes
 bfind d1,d0 d1.l,d0.l ;find out how many zeros in ls
 lsl d0.h,d0 d0.h,d2.l ;get bits to go from ls to ms
 add d2,d3 ;include shifts from ms
 sub d3,d4 #0,d1.l ;decrement the exponent
 jmp leave ;make sure the exp is valid
signseq add d3,d1 ;add lower words
 addc d2,d0 ;add upper words
addnorm jcc leave ;test for carry
 ror d0.l ;normalize the sum
 ror d1.l ;shift ms and ls
ROLA DSP96002 USER’S MANUAL B-185

B-186
 inc d4.l ;increment the exponent
 jmp leave ;check for overflow
;
; Calculate the result assuming that c(r0) > 0 and X < 0
;
apos cmp d2,d0 ;compare mantissas
 jne decide ;if ms’s are equal, test ls’s
 cmp d3,d1 #1,d7.l ;compare ls of mantissas
 jeq dp_clr ;clear reg_a if same magnitude
decide jcc r1fromr0 ;if c(r0) > c(r1), c(r0) - c(r1)
 jmp r0fromr1 ;subtract c(r0) from c(r1)
r1fromr0 sub d3,d1 ;subtract c(r1) from c(r0)
 subc d2,d0 ;calculate c(r0)_ms
 jmp subnorm ;normalize result
;
; Shift the c(r0) 64 bit significand
;
dshifta move d5.l,d0.h ;# of shifts in .h register
 lsr d0.h,d1 d0.l,d6.l ;shift ls, copy ms
 lsr d0.h,d0 #32,d7.l ;shift ms
 sub d5,d7 ;calc. # opposite dir. shifts
 move d7.l,d0.h ;# of shifts in .h register
 lsl d0.h,d6 ;get bits to be shifted to ls
 or d6,d1 ;shift in bits from ms to ls
 jmp addmant
;
; Shift the c(r1) 64 bit significand
;
dshiftx move d6.l,d0.h ;# of shifts in .h register
 lsr d0.h,d3 d2.l,d1.h ;shift ls, copy ms
 lsr d0.h,d2 #32,d7.l ;shift ms
 sub d6,d7 d1.h,d6.l ;calc. # opposite dir. shifts
 move d7.l,d0.h ;# of opposite dir. shifts
 lsl d0.h,d6 ;get bits to be shifted to ls
 or d6,d3 ;shift in bits from ms to ls
 jmp addmant
;
; Replace c(r0) with c(r1) (c(r0) is insignificant compared to c(r1))
;
aequalx move x:(r1+sign),d0.l
 move d0.l,x:(r0+sign) ;c(r0)_sign ← c(r1)_sign
 move d3.l,x:(r0+ls) ;c(r0)_ls ← c(r1)_ls
 move d2.l,x:(r0+ms) ;c(r0)_ms ← c(r1)_ms
 move d4.l,x:(r0) ;c(r0)_exp ← c(r1)_exp
;
; Leave c(r0) unchanged (c(r1) is insignificant compared to c(r0))
;
aequala rts
;
; Place the result of the operation in c(r0)
;
leave move d0.l,x:(r0+ms) ;store c(r0)_ms
 move d1.l,x:(r0+ls) ;store c(r0)_ls
 move d4.l,x:(r0) ;store c(r0) exponent
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 jmp echeck
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_CLR - Set the double precision number to zero.
;
; Entry point: dp_clr: c(r0) = 0
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.L
;
dp_clr clr d0.l ;get a 0
 move d0.l,x:(r0)
 move d0.l,x:(r0+sign)
 move d0.l,x:(r0+ms)
 move d0.l,x:(r0+ls)
 rts
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_CMP - Compare the two double precision numbers.
;
; Entry point: dp_cmp: c(r0)-c(r1) (set condition codes)
;
; Inputs: r0 contains the lowest address of the 4-word internal
; extended precision number
;
; Outputs: none
;
; CCR CONDITION CODES:
;
; C - NOT AFFECTED.
; V - ALWAYS CLEARED
; Z - SET IF RESULT IS ZERO, CLEARED OTHERWISE.
; N - SET IF RESULT IS NEGATIVE, CLEARED OTHERWISE.
; I - NOT AFFECTED.
; LR - NOT AFFECTED.
; R - NOT AFFECTED.
; A - NOT AFFECTED.
;
; The following Jcc branch conditions can be used after
; calling dp_cmp. The other branch conditions should not
; be used.
;
; "cc" Mnemonic Condition
; EQ - equal Z = 1
ROLA DSP96002 USER’S MANUAL B-187

B-188
; GE - greater than or equal N eor V = 0
; GT - greater than Z + (N eor V) = 0
; LE - less than or equal Z + (N eor V) = 1
; LT - less than N eor V = 1
; NE - not equal Z = 0
;
; Alters: D0.L,D1.L,D2.L
;
dp_cmp move x:(r0+sign),d0.l ;get sign
 tst d0 x:(r0),d1.l ;get exponent
 jeq _pos1 ;positive
 bset #31,d1.l ;set sign bit
_pos1 move x:(r1+sign),d0.l ;get sign
 tst d0 x:(r1),d2.l ;get exponent
 jeq _pos2 ;positive
 bset #31,d2.l ;set sign bit
_pos2 cmp d2,d1 ;compare signs and exponents
 jeq _same1 ;more if same
 rts ;conditions are set
_same1 move x:(r0+ms),d1.l ;get ms parts
 move x:(r1+ms),d2.l
 cmp d2,d1 ;compare
 jeq _same2 ;more if same
 rts ;conditions are set
_same2 move x:(r0+ls),d1.l ;get ls parts
 move x:(r1+ls),d2.l
 cmp d2,d1 ;do final compare
 rts
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
;DP_COPYS-Copy sign from one double precision number to another.
;
; Entry point: dp_copys: c(r0+sign) ← c(r1+sign)
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
; r1 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.L
;
dp_copys move x:(r0+ms),d0.l ;get ms
 tst d0 ;test for zero
 jne notzero ;if not zero, copy the sign
 move x:(r0+ls),d0.l ;get ls
 tst d0 ;test for zero
 jne notzero ;if not zero, copy the sign
 rts
notzero move x:(r1+sign),d0.l ;get sources sign
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 move d0.l,x:(r0+sign) ;apply to destination
 rts
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_DIV - Divide two double precision numbers.
;
; Entry point: dp_div: c(r0) ← c(r0)/c(r1)
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
; r1 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; NOTE: Error checking:
; 0/0 returns 0
; finite/0 returns saturated value
;
; Alters: D0.L,D1.L,D4.L,D5.L,D6.L,D7.L
;
dp_div move x:(r1),d0.l ;get divisor exponent
 tst d0 x:(r1),d1.l ;test, get ms
 jne _notdiv0 ;non-zero
 tst d1 ;test
 jne _notdiv0
 move x:(r0+sign),d0.l ;get sign
 move x:(r1+sign),d1.l ;get sign
 eor d0,d1 x:(r0),d0.l ;new sign, get dividend exp
 move d1.l,x:(r0+sign) ;save new sign
 tst d0 x:(r0+ms),d1.l ;test, get ms
 jne oflow ;finite/0 => overflow
 tst d1 ;test
 jne oflow ;finite/0 => overflow
 jmp uflow ;0/0 => zero
_notdiv0 move x:(r0),d1.l ;get exponent a
 move x:(r1),d0.l ;get exponent x
 sub d0,d1 #bias,d0.l ;new exponent, get bias
 add d0,d1 ;Add bias back
 move x:(r0+ms),d7.l ;a ms
 move x:(r0+ls),d6.l ;a ls
 move x:(r1+ms),d5.l ;x ms
 move x:(r1+ls),d4.l ;x ls
 cmp d5,d7 ;compare magnitudes
 jhi _startdiv ;dividend>divisor
 jlo _adj ;adjust if <
 cmp d4,d6 ;extend comparison
 jhs _startdiv ;dividend >= divisor
_adj lsr d5 ;scale down divisor
 ror d4
ROLA DSP96002 USER’S MANUAL B-189

B-190
 dec d1 ;and adjust exponent
_startdiv
 move d1.l,x:(r0) ;save new exponent
;
; unsigned fractional divide: d7:d6 / d5:d4 = d3:d2
;
 do #64,_divloop
 cmp d5,d7 ;compare ms word
 jhi _big ;dividend > divisor
 jlo _small ;dividend < divisor
 cmp d4,d6 ;compare ls word
 jhs _big ;dividend >= divisor
_small andi #$fe,ccr ;set 0 q bit
 jmp _q
_big sub d4,d6 ;adjust remainder
 subc d5,d7
 ori #$01,ccr ;set 1 q bit
_q rol d2 ;move in q bit
 rol d3
 lsl d6 ;adjust remainder
 rol d7
_divloop move d3.l,x:(r0+ms) ;save ms
 move d2.l,x:(r0+ls) ;save ls
 move x:(r0+sign),d0.l ;get sign
 move x:(r1+sign),d1.l ;get sign
 eor d1,d0 ;new sign
 move d0.l,x:(r0+sign) ;save sign
 jmp echeck ;check for errors
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_INT - Truncate a double precision number to an integer.
;
; Entry point: dp_int: c(r0) ← truncate to integer ← c(r0)
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D2.L,D3.L,D4.L,D7.L,D0.H
;
dp_int move x:(r0),d4.l ;get exponent
 move #bias,d7.l ;get bias
 sub d7,d4 #64,d2.l ;calculate how far to shift
 jmi dp_clr ;if a fraction, zero the number
 cmp d2,d4 #32,d2.l ;is A > 2**63
 jpl aequala ;yes, out of range
 cmp d2,d4 #$80000000,d3.l ;is A > 2**31
 jpl rndls ;yes, last valid digit is in ls
 clr d1.l d4.l,d0.h ;no, put # shifts in .h register
 asr d0,d3 x:(r0+ms),d0.l ;zero ls, create trunc. mask
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 and d3,d0 d1.l,x:(r0+ls) ;truncate to an integer
 move d0.l,x:(r0+ms) ;store the result
 rts
rndls sub d2,d4 x:(r0+ls),d1.l ;calculate # shifts, get ls
 move d4.l,d0.h ;put # shifts in .h register
 asr d0,d3 ;create the truncation mask
 and d3,d1 ;truncate to an integer
 move d1.l,x:(r0+ls) ;store the result
 rts
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_MAC - Multiply two double precision numbers and
; accumulate the sum.
;
; Entry point: dp_mac: c(r0) ← c(r0) + c(r1) * c(r2)
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
; r1 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.L,D1.L,D2.L,D3.L,D4.L,D5.L,D6.L,D7.L,D8.L,D9.L
;
dp_mac move r0,d8.l ;store the r0 pointer
 move #dptemp,r0 ;get temporary pointer
 jsr dp_mpy ;multiply (r1)*(r2)
 move r1,d9.l ;store the r1 pointer
 move #dptemp,r1 ;point to result
 move d8.l,r0 ;restore the r0 pointer
 jsr dp_add ;accumulate the result
 move d9.l,r1 ;restore the r1 pointer
 rts
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_MOVE - Copy floating-point value from one address to another
;
; Entry point: dp_move: c(r0) ← c(r1)
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
; r1 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;

ROLA DSP96002 USER’S MANUAL B-191

B-192
dp_move move x:(r1),d0.l ;move exponent
 move d0.l,x:(r0)
 move x:(r1+sign),d0.l ;move sign
 move d0.l,x:(r0+sign)
 move x:(r1+ms),d0.l ;move ms
 move d0.l,x:(r0+ms)
 move x:(r1+ls),d0.l ;move ls
 move d0.l,x:(r0+ls)
 rts
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_MPY - Multiply two double precision numbers.
;
; Entry point: dp_mpy: c(r0) ← c(r1) * c(r2)
;
; c d
; * a b
; d b
; c b
; d a
; c a
; x y
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
; r1 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.L,D1.L,D2.L,D3.L,D4.L,D5.L,D6.L,D7.L,D0.M
;
dp_mpy clr d4 x:(r1+ms),d2.l ;get c
 move x:(r2+ms),d3.l ;get a
 mpyu d2,d3,d0 x:(r2+ls),d5.l ;c*a, get b
 mpyu d5,d2,d2 d0.m,d1.l ;c*b, move high
 move d2.m,d2.l
 add d2,d0 x:(r1+ls),d2.l ;add to low, get d
 addc d4,d1 x:(r2),d5.l ;get exponent
 mpyu d2,d3,d2 x:(r2+sign),d7.l ;d*a
 move d2.m,d2.l
 add d2,d0 x:(r1),d6.l ;add to low
 addc d4,d1 #bias,d4.l ;get bias
 jeq uflow ;if *0, set 0 result
 inc d5 ifmi ;if normed
 jmi _nonorm
 lsl d0 ;if not normed
 rol d1 ;if not normed
_nonorm add d5,d6 d1.l,x:(r0+ms) ;do exponents
 sub d4,d6 d0.l,x:(r0+ls) ;1 bias
 move x:(r1+sign),d1.l
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 eor d7,d1 d6.l,x:(r0) ;new sign, save exp
 move d1.l,x:(r0+sign) ;save sign
 jmp echeck ;go check for errors
 page
;
; Check for overflow and underflow and saturate or flush to zero
;
echeck move x:(r0),d0.l ;get exponent
 jset #31,d0.l,uflow ;bit 31 indicates underflow
 jset #30,d0.l,oflow ;bit 30 indicates overflow
 rts ;no errors
oflow move #$3fffffff,d0.l ;max exponent
 move d0.l,x:(r0)
 move #$ffffffff,d0.l ;max significand
 move d0.l,x:(r0+ms)
 move d0.l,x:(r0+ls)
 rts
uflow clr d0 ;min exponent and significand
 move d0.l,x:(r0)
 move d0.l,x:(r0+sign)
 move d0.l,x:(r0+ms)
 move d0.l,x:(r0+ls)
 rts
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_NEG - Negate the double precision number pointed to by r0.
;
; Entry point: dp_neg: c(r0) = -c(r0)
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.L,D1.L
;
dp_neg move x:(r0+ms),d0.l ;get mantissa ms
 move x:(r0+ls),d1.l ;get mantissa ls
 or d1,d0 ;check to see if zero
 jeq negzero ;can’t have negative zero
 move x:(r0+sign),d0.l ;get sign
 neg d0 ;negate
 inc d0 ;correct
 move d0.l,x:(r0+sign) ;save sign
negzero rts ;and return
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_SCALE: scale the double precision number
;

ROLA DSP96002 USER’S MANUAL B-193

B-194
; Entry point: dp_scale: c(r0) ← c(r0) * 2**r1
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
; r1 contains an integer number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.L,D1.L
;
; NOTE: r1 contains an integer. (It does NOT point to an address.)
;
dp_scale move r1,d0.l ;put scale factor in data register
 move x:(r0),d1.l ;get exponent
 add d0,d1 #$3fffffff,d0.l ;scale the number
 jvc scle ;scale if no overflow
 move d0.l,x:(r0) ; if overflow,
 move #$ffffffff,d0.l ; set the result
 move d0.l,x:(r0+ms) ; to the maximum
 move d0.l,x:(r0+ls) ; number achievable
 rts
scle move d1.l,x:(r0) ;save scaled exponent
 rts
 page
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_SQRT - Find the square root of a double precision number.
;
; Entry point: dp_sqrt: c(r0) ← sqrt(c(r0))
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Outputs: r0 contains the lowest address of a 4-word internal
; extended precision number
;
; Alters: D0.L,D1.L,D2.L,D3.L,D4.L,D5.L,D6.L,D7.L
;
dp_sqrt move x:(r0+ms),d0.l ;get most significant
 tst d0 x:(r0),d1.l ;check, get exponent
 jne _ok ;not zero
 tst d1 ;check ls
 jne _ok ;not zero
 rts ;if already 0, return
_ok
 move x:(r0+sign),d0.l ;get sign
 tst d0 ;check for negative
 jne uflow ;return 0
 move #bias,d2.l ;get bias
 sub d2,d1 #1,d0.l ;unbias exponent
 lsr d1 ;square root of exponent
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 inc d0 ifcs ;if odd exponent, use 2 bits
 add d2,d1 ;restore exponent bias
 move d1.l,x:(r0) ;store it
 move x:(r0+ms),d7.l ;get ms
 move x:(r0+ls),d6.l ;get ls
 clr d4 #0,d5.l ;clear RR
 clr d3 #0,d2.l ;clear DR
 do d0.l,_initshift ;initial shift
 lsl d6 ;shift 2 bits from d7:d6 (SQR)
 rol d7
 rol d4 ;to d5:d4 (RR)
 rol d5
_initshift
 do #62,_sqrt ;take root of SQR into DR
 lsl d2 d4.l,d0.l ;(dr<<2)|1, copy rr
 rol d3 d5.l,d1.l
 lsl d2
 rol d3
 inc d2 ;set lsb
 sub d2,d0 ;temp=rr-(dr<<2)|1
 subc d3,d1
 jcs _ofl ;overflow
 lsr d3 d0.l,d4.l ;shift dr back only 1 bit
 ror d2 d1.l,d5.l ;rr=temp
 inc d2 ;root bit=1
 jmp _next
_ofl lsr d3 ;shift dr back only 1 bit
 ror d2 ;root bit=0
_next lsl d6 ;shift 2 bits from d7:d6 (SQR)
 rol d7
 rol d4 ;to d5:d4 (RR)
 rol d5
 lsl d6 ;shift 2 bits from d7:d6 (SQR)
 rol d7
 rol d4 ;to d5:d4 (RR)
 rol d5
_sqrt lsl d2 ;adjust to msb
 rol d3
 lsl d2 ;adjust to msb
 rol d3
 move d3.l,x:(r0+ms) ;save ms part
 move d2.l,x:(r0+ls) ;save ls part
 rts
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_SUB - Double precision subtraction.
;
; Entry point: dp_sub: c(r0) ← c(r0) - c(r1)
;
; Inputs: r0 contains the lowest address of a 4-word internal
; extended precision number
; r1 contains the lowest address of a 4-word internal
ROLA DSP96002 USER’S MANUAL B-195

B-196
; extended precision number
;
; Outputs: r0 contains the lowest address of the 4-word internal
; extended precision number with the result
;
; Alters: D0.L,D1.L,D2.L,D3.L,D4.L,D5.L,D6.L,D7.L,D0.H,D1.H
;
dp_sub jsr dp_neg ;negate the operand
 jsr dp_add ;add the numbers
 jmp dp_neg ;negate the operand
;

; MOTOROLA DSP96002 DPLIB - VERSION 1.0
;
; DP_TST - Test a double precision operand. (The same as "TST.")
;
; Entry point: dp_tst: c(r0) - 0 (Set the flags)
;
; Inputs: r0 contains the lowest address of the 4-word internal
; extended precision number
;
; Outputs: none
;
; CCR CONDITION CODES:
;
; C - NOT AFFECTED.
; V - ALWAYS CLEARED
; Z - SET IF RESULT IS ZERO, CLEARED OTHERWISE.
; N - SET IF RESULT IS NEGATIVE, CLEARED OTHERWISE.
; I - NOT AFFECTED.
; LR - NOT AFFECTED.
; R - NOT AFFECTED.
; A - NOT AFFECTED.
;
; The following Jcc branch conditions can be used after
; calling dp_tst. The other branch conditions should not
; be used.
;
; "cc" Mnemonic Condition
; EQ - equal Z = 1
; GE - greater than or equal N eor V = 0
; GT - greater than Z + (N eor V) = 0
; LE - less than or equal Z + (N eor V) = 1
; LT - less than N eor V = 1
; NE - not equal Z = 0
;
; Alters: D0.L,D1.L,D2.L
;
dp_tst move x:(r0+ms),d0.l ;get ms
 tst d0 x:(r0+sign),d1.l ;test ms = 0, get sign
 jeq mszero ;if zero, check if ls = 0
sgntst tst d1 #-1,d0.l ;test the sign
 move #2,d1.l ;get offset for negative sign
 add d1,d0 ifeq ;make d0 same sign as (r0)
DSP96002 USER’S MANUAL MOTOROLA

MOTO
 tst d0 ;set the correct flags
 rts
mszero move x:(r0+ls),d0.l ;get ls
 tst d0 #0,d2.l ;check if ls = 0
 jne sgntst ;if not, check sign
 tst d2 ;set the correct flags
 rts
;
; END OF DPLIB
;
 end

; Double precision FIR example

;
; "data" and "coef" are assumed to be in DPLIB format.
; Other variables are assumed to be in IEEE DP format.
;
 org x:0
ntaps equ 8
data ds 4*ntaps
coef ds 4*ntaps
p ds 1
a ds 1
ieee_in ds 1
ieee_out ds 1
;
 org p:$100
start
 move #data,r2 ;point to data
 move #coef,r3 ;point to coefficients
 move #p,r4 ;temp product
 move #a,r5 ;product accumulator
 move #4,n2 ;dp size
 move n2,n3
 move #4*ntaps-1,m2 ;mod buffer size
 move m2,m3
_loop
 move l:ieee_in,d0.d ;get ieee number
 move r2,r0 ;point r0 to data buffer
 jsr ieee2dplib ;convert register to dp and save
 do #ntaps,_dpfir
 move r4,r0 ;point to product variable
 move r3,r1 ;point to coefficients
 jsr dp_mpy ;multiply, result in p
 move r5,r0 ;point to accumulations
 move r4,r1 ;point to product variable
 jsr dp_add ;add them together
 move (r2)+n2 ;shift to next dp data value
 move (r3)+n3 ;move to next dp coefficient
_dpfir
 move r5,r0 ;point to result
 jsr dplib2ieee ;convert to a value in d0
ROLA DSP96002 USER’S MANUAL B-197

 move d0.d,l:ieee_out ;output as dp ieee number
 move (r2)-n2 ;delete last sample
 jmp _loop

; NxN by NxN Matrix Multiplication Example

;
; Multiply Two Matrices: AB = C
;
; ***NOTE: All numbers are assumed to be in DPLIB format.
;
 org x:0
order equ 3 ;Nth order system
elements equ order*order
a ds 4*elements ;matrix A stored starting at x:$00
 org x:64
b ds 4*elements ;matrix B stored starting at x:$40
 org x:128
c ds 4*elements ;matrix C stored starting at x:$80
;
 org p:$100
start move #a,r2 ;r2 points to matrix A elements
 move #b,r1 ;r1 points to matrix B elements
 move #c,r0 ;r0 points to matrix C (the result)
 move #4,n0 ;offset for 4 word numbers
 move #order*4,n1 ;offset for one row
 move #4,n2 ;offset for 4 word numbers
 move #(elements-order+1)*4,n3
 move #(order+1)*4,n4
 move n1,n5
 move #(elements*4)-1,m0
 move #(elements*4)-1,m1
 move #(elements*4)-1,m2
;
3x3mult do #order,rows ;calculate each row of the result
 do #order,columns ;calculate each column of the result
 jsr dp_mpy ;multiply the first row-column elements
 move (r1)+n1 ;update B offset for next column element
 move (r2)+n2 ;update A offset for next row element
 jsr dp_mac ;accumulate the inner products
 move (r1)+n1 ;update B offset for next column element
 move (r2)+n2 ;update A offset for next row element
 jsr dp_mac ;accumulate the inner products
 move n3,n2 ;update A offset to return to column 1
 move n4,n1 ;update B offset for next column
 move (r0)+n0 ;update result matrix pointer
 move (r1)+n1 ;point to a row 1 element
 move (r2)+n2 ;point to a column 1 element
 move n0,n2 ;restore A offset
 move n5,n1 ;restore B offset
columns move n1,n2 ;update A offset for row shift
 move #b,r1 ;point to B column 1
 move (r2)+n2 ;point to the next A row
 move n0,n2 ;restore A offset
rows stop ;resultant matrix finished
 include "dplib"
 end
B-198 DSP96002 USER’S MANUAL MOTOROLA

MOTO
ROLA DSP96002 USER’S MANUAL B-199

B-200 DSP96002 USER’S MANUAL MOTOROLA

 B.6 STANDARD BENCHMARK SUMMARY

 56000/1 DSP96000

 Benchmark Word Icyc Word Icyc

B.1.1 Real Multiply 3 3 3 3
B.1.2 N Real Multiplies 8 2N+7 8 2N+7
B.1.3 Real Update 4 4 4 4
B.1.4 N Real Updates 10 2N+9 10 2N+9
B.1.5 N Term Real Convolution (FIR) 10 1N+12 10 1N+12
B.1.6 N Term Real*Complex Convolution 10 2N+9 9 2N+8
B.1.7 Complex Multiply 6 6 7 7
B.1.8 N Complex Multiplies 12 4N+9 12 4N+9
B.1.9 Complex Update 7 7 8 8
B.1.10 N Complex Updates 13 4N+10 15 4N+12
 13 5N+9 17 4N+14
B.1.11 N Term Complex Convolution (FIR) 11 4N+8 11 4N+8
B.1.12 Nth Order Power Series 9 2N+8 9 2N+8
B.1.13 2nd Order Real Biquad Filter 7 7 7 7
B.1.14 N Cascaded 2nd Order Biquads 17 4N+16 19 4N+18
B.1.15 Radix 2 FFT Butterfly 6 6N 4 4N
B.1.16 Adaptive True LMS Filter 3N
 Adaptive Delayed LMS Filter 2N
B.1.17 FIR Lattice Filter 7 3N+5 7 3N+5
B.1.18 All Pole IIR Lattice Filter 9 3N+4 12 3N+7
B.1.19 General Lattice Filter 12 4N+10 14 4N+12
B.1.20 Normalized Lattice Filter 13 5N+10 14 5N+11
B.1.21 [1x3 [3x3 Matrix Multiply 12 12
 [1x4 [4x4 Matrix Multiply 19 19
B.1.22 [NxN [NxN Matrix Multiply

 19 N3+7N2 19 N3+7N2
 +5N+8 +6N+7

B.1.23 N Point 3x3 2-Dimensional FIR 28 10N2 29 10N2
 +7N+12 +8N+13
B.1.24 Table Lookup with Interpolation 12 12
B.1.25 Argument Reduction 6 6
B.1.26 Non-IEEE Floating-Point Division
 No Error Checking 7 7
 With Divide By Zero Checking 9 9
 With Divide By Infinity Checking 8 8
 With Divide By Zero And Infinity 10 10
 Checking
B.1.27 Multibit Rotates
 With Carry, Static 4 4
 With Carry, Dynamic 9 9
 Without Carry, Static 4 4
 Without Carry, Dynamic 6 6

Figure B-1. Standard Benchmark Summary

MOTOROLA DSP96002 USER’S MANUAL B-201

 DSP96000

 Benchmark Word Icyc

B.1.28 Bit Field Extraction/Insertion
 Static Field Extraction, Zero Extend 2 2
 Static Field Extraction, Sign Extend 2 2
 Dynamic Field Extraction, Zero Extend 6 6
 Dynamic Field Extraction, Sign Extend 6 6
 Static Field Insertion 6 6
 Dynamic Field Insertion 9 9
 Static Field Clear 4 4
 Static Field Set 4 4
 Dynamic Field Clear 7 7
 Dynamic Field Set 7 7
B.1.29 Newton-Raphson Approximation of 1.0/SQRT(x) 11 11
B.1.30 Newton-Raphson Approximation of SQRT(x) 12 12
B.1.31 Unsigned 32 Bit Integer Division/Remainder 8 133
 Unsigned 32 Bit Integer Division 16 3N+14
 Unsigned 32 Bit Integer Remainder 14 3N+12
B.1.32 Signed 32 Bit Integer Division/Remainder 13 138
 Signed 32 Bit Integer Division 21 3N+19
 Signed 32 Bit Integer Remainder 17 3N+15
B.1.33 Trivial Accept/Reject In Three Dimensions
 Single Point 8 8
 Polyline (Fixed Point) 14 14
 Polyline (floating-point) 14 14
 Four Point Polygon (in-line) 26 26
 Four Point Polygon (looped) 12 29
B.1.34 Cascaded Five Coefficient Transpose IIR Filter 10 5N+6
B.1.35 3-D Graphics Illumination 20 21
B.1.36 Pseudorandom Number Generation 8 8
B.1.37 Bezier Cubic Polynomial Evaluation 13 13
B.1.39 Nth Order Polynomial Evaluation for Two Points 12
B.1.38 Byte/16 Bit Packing/Unpacking From/To 32 Bits
 Four 8 Bit Byte Packs Into 32 Bits 3 3
 Two 16 Bit Word Packs Into 32 Bits 1 1
 Four 8 Bit Byte Unpacks From 32 Bits 5 5
 Two 16 Bit Word Unpacks From 32 Bits 2 2
B.1.40 Graphics BITBLT (Bit Block Transfer)
 32 Bits/Iteration 24 4N+20
 64 Bits/Iteration 32 6N+27
B.1.41 64x64 Bit Unsigned Integer Multiply 11 11
B.1.42 Signed Reciprocal Approximation
 16 Bit 5 5
 32 Bit 7 7
B.1.43 Incremental Line Drawing
 floating-point 3N/pt
 Fixed Point (Bresenham’s algorithm) 4N/pt
B.1.44 Three Dimensional Wire-Frame Rendition
B.1.45 Walsh-Hadamard Transforms
B.1.46 Evaluation of LOG2(x) 10 27

Figure B-1. Standard Benchmark Summary (continued)

B-202 DSP96002 USER’S MANUAL MOTOROLA

 DSP96000

 Benchmark Word Icyc

B.1.47 Evaluation of EXP2(x) 10 27
B.1.487 Vector Cross Product 10 10
B.1.49 Power Function X**Y, X = Single Precision FP
 Y = 5 Bit Integer, Straight 14 14
 Y = 32 Bit Unsigned Integer, Looped 7 100
 Y = 32 Bit Unsigned Integer, Variable Loop 10 3N+8
 Y = Single Precision FP 21 55
B.1.50 Cascaded Five Coefficient Biquad Filter 8 5N+4
B.1.51 CORDIC Sine (4 Quadrant/Argument Reduction) 33 8N+26
B.1.52 CORDIC Cosine (4 Quadrant/Argument Reduction) 34 8N+27
B.1.53 CORDIC Tangent (4 Quadrant/Argument Reduction) 44 8N+37
B.1.54 [NxN by [NxN Matrix Multiplication

 (Modulo-Aligned) 21 n3+4n2

 +5n+16
B.1.55 [4x4 by [4x4 Matrix Multiplication
 (Modulo-Aligned) 30 87
B.1.56 [8x8 by [8x8 Matrix Multiplication
 (Modulo-Aligned) 86 607
B.1.57 [16x16 by [16x16 Matrix Multiplication
 (Modulo-Aligned) 286 4399
B.1.58 Double Integrator Oscillator 3 3
 Second Order Oscillator 2 2
B.1.59DTMF Signal Generator 5 5

 IEEE Standard Conformance Benchmarks

B.2.1 IEEE Floating-point Remainder
B.2.2 IEEE Floating-point Round to Integer 1 1
B.2.3 IEEE Floating-point to Decimal String
B.2.4 IEEE Decimal String to F.P.
B.2.5 Format Conversions
 Signed 32 Bit Integer to:
 Unsigned 32 Bit Integer 2 3
 Single Precision floating-point 1 1
 Unsigned 32 Bit Integer to:
 Signed 32 Bit Integer 2 3
 Single Precision floating-point 1 1
 Single Precision to:
 Signed 32 Bit Integer 3 4
 Unsigned 32 Bit Integer 3 4

Figure B-1. Standard Benchmark Summary (continued)

MOTOROLA DSP96002 USER’S MANUAL B-203

 IEEE Recommended Functions and Predicates DSP96000
 Benchmark Word Icyc

B.3.1 Copysign(x,y)
 Arithmetic 1 1
 Non-arithmetic 6 7
B.3.2 -x
 Arithmetic 1 1
 Non-arithmetic 1 2
B.3.3 Scalb(y,N) 1 1
B.3.4 Logb(x) 18
 x = NaN 4
 x = Infinity 7
 x = Zero 16
 x = In-range 15
B.3.5 Nextafter(x,y) 32
 Either operand a NaN 9
 X is signed infinity 7
 Result is normalized 26
 Result is denormalized 24
 Result overflowed 26
B.3.6 Finite(x) 3 3
B.3.7 Isnan(x) 3 3
B.3.8 x<>y 3 3
B.3.9 Unordered(x,y) 3 3
B.3.10 Class(x) 38
 Signaling not a number 7
 Quiet not a number 10
 Negative infinity 15
 Negative normalized nonzero 21
 Negative denormalized 20
 Negative zero 15
 Positive zero 19
 Positive denormalized 23
 Positive normalized nonzero 26
 Positive infinity 25

Figure B-1. Standard Benchmark Summary (continued)

B-204 DSP96002 USER’S MANUAL MOTOROLA

IEEE Double Precision

Using Software Emulation TYPICAL WORST CASE FULLY TESTED

B.4.1 ADDITION 6.86 us 29.1 us YES
B.4.2 SUBTRACTION 7.01 us 29.2 us YES
B.4.3 MULTIPLICATION 13.58 us 39.5 us YES

 Non-IEEE Double Precision Instruction Cycles
 Using Software Emulation TYPICAL WORST CASE BEST CASE

B.5.1 CONVERT NUMBERS:
 -TO DPLIB FORMAT 23 33 6
 (IEEE2DPLIB)
 -TO IEEE FORMAT 20 23 16
 (DPLIB2IEEE)
B.5.2 ABSOLUTE VALUE 5 5 5
 (DP_ABS)
B.5.3 ADDITION 69 86 22
 (DP_ADD)
B.5.4 CLEAR 9 9 9
 (DP_CLR)
B.5.5 COMPARE 22 30 14
 (DP_CMP)
B.5.6 COPY SIGN 13 16 11
 (DP_COPYS)
B.5.7 DIVISION 852 1020 32
 (DP_DIV)
B.5.8 ROUND TO AN INTEGER 16 20 10
 (DP_INT)
B.5.9 MAC 109 149 61
 (DP_MAC)
B.5.10 COPY A NUMBER 15 15 15
 (DP_MOVE)
B.5.11 MULTIPLICATION 109 51 27
 (DP_MPY)
B.5.12 NEGATE 14 14 14
 (DP_NEG)
B.5.13 SCALE 11 13 8
 (DP_SCALE)
B.5.14 SQUARE ROOT 1317 1413 9
 (DP_SQRT)
B.5.15 SUBTRACTION 103 120 56
 (DP_SUB)
B.5.16 TEST A NUMBER 13 14 12
 (DP_TST)

Note: typical execution times are the average of all possible
 paths through the algorithm.

Figure B-1. Standard Benchmark Summary (continued)

APPENDIX C
IEEE ARITHMETIC

C.1 FLOATING-POINT NUMBER STORAGE AND ARITHMETIC

C.1.1 General
The IEEE standard for binary floating point arithmetic provides for the compatibility of floating-point numbers
across all implementations which use the standard by defining bit-level encoding of floating-point numbers.
Maximum mathematical accuracy, with respect to roundoff errors, is achieved by optimally scaling floating-
point numbers by using a normalized exponential notation. Error bounds are guaranteed by the standard
for the basic mathematical operations (add, subtract, multiply, divide, square root, round to nearest integer,
conversion to and from integers and conversion to and from decimal strings). The standard also defines er-
ror handling for five floating point exceptions: invalid operation, divide by zero, overflow, underflow and in-
exact result.

The standard defines two data storage formats which are identical across implementations (basic formats):
Single Precision (SP) and Double Precision (DP). It also specifies the use of two implementation-dependent
encodings (extended formats): Single Extended Precision (SEP) and Double Extended Precision (DEP), on
which it only places some general constraints, and for which bit-level encodings are not defined. The ex-
tended formats are consequently implementation-dependent and should never be used for representation
of numbers which are to be shared across different processors (i. e., stored).

Each format provides representation of the following elements:

1. Floating-point numbers of the form:

X = (-1)
S
2

E
(b0•b1b2...p-1)

where:

s = 0 or 1

E = an integer between Emin and Emax , inclusive.

bi = 0 or 1

2. Infinities: +∞ and -∞

3. " Not-a-Numbers (NaNs) ". NaNs are special symbolic elements, encoded in the floating point
format. They can appear as operands and/or as results of arithmetic operations. The standard
provides two types of NaNs:

4. Quiet NaNs (QNaNs): are encodings of information regarding meaningless or invalid results.
MOTOROLA DSP96002 USER’S MANUAL C-1

Examples of QNaNs are results of operations such as 0/0, ∞−∞, ∞/∞, etc. Encodings of QNaNs
are intended to provide some kind of retrospective diagnostic information concerning the origin
of the NaN. Since this information needs to remain available even after a large number of arith-
metic operations, QNaNs "propagate" unchanged through arithmetic operations and format
conversions. QNaNs can thus occur as operands of an arithmetic operation. If one or more
QNaN occur as operands, the result is a quiet NaN, and no floating point exception is signaled.
Hence the name "quiet" NaN. The standard specifies that at least one QNaN must be support-
ed.

5. Signaling NaNs (SNaNs): Signaling NaNs are used only in systems with arithmetic-like en-
hancements that are not defined by the standard. As opposed to QNaNs, they are never gen-
erated by the DSP96002 arithmetic. They can, however, appear as operands in arithmetic op-
erations (as generated by other processors, for instance). In this case, they always signal the
"Invalid Operation" floating point exception. The returned result is a QNaN.

Floating point operands in the DSP96002 are either 32 bits long (Single Real), 64 bits long (Double Real)
or 96 bits long (Register operand). The operand size is either explicitly encoded in the instruction or implicitly
defined by the instruction operation. The following sections describe the details of each operand type.

C.1.2 DSP96002 Floating Point Storage Format in Memory
DP and SP are the only floating point formats for which the IEEE standard provides bit-level
definitions. Since the DSP96002 is designed for multiprocessing applications, where data in
memory can be shared among different processors, SP and DP are the only formats supported
for memory storage of floating point numbers.

SP numbers are represented by 32 bits in memory, and can be located in either X: or Y: data spaces. DP
numbers take up 64 bits in memory, and can thus only be stored in long (L:) memory space.

The basic formats (SP and DP) contain three fields in their binary representation, as shown in Figure C-1.
These fields are described as:

1. Sign Bit (s): The sign bit denotes the sign of the number, in a signed magnitude notation. When
s=0, the number is positive. When s=1, the number is negative. Note that floating-point num-
bers do not use a two’s complement notation.

2. Exponent Field (e): The exponent of SP and DP numbers is stored as a positive (biased) inte-
ger:

e = E + bias

where E is the actual exponent of the floating point number as explained later in this section. e
is also used in conjunction with the fractional field f to encode non-numerical values (infinities
and NaNs).

For SP, the exponent consists of 8 bits (bits 23 through 30) , and the bias equals 127. The bi-
ased exponent e can thus take on integer values between 0 (denoted by emin-1) and 255 (de-

noted by emax+1) inclusive.

For DP, the exponent consists of 11 bits (bits 52 through 62) , and the bias equals 1023. Values
for the biased exponent e thus fall between 0 (emin-1) and 2047 (emax+1), inclusive. Table C-1

summarizes these values for SP and DP.

3. Fraction (f): The fractional field consists of bits bi:
C-2 DSP96002 USER’S MANUAL MOTOROLA

31 30 23 22 0

S 8-bit biased
exponent 23-bit fraction

Single Precision (SP)

Double Precision (DP)

S
11-bit biased
exponent 52-bit fraction

63 62 52 51 0

Figure C-1. SP and DP IEEE Formats
 p-1 bias emin emax Emin Emax

 SP 23 127 +1 + 254 - 126 + 127
 DP 52 1023 +1 +2046 -1022 +1023

Table C-1. Parameters for Numerical Formats
f = •b1b2•••bp-1

There are 23 fractional bits (p=24) (bits 0 through 22) in the SP format, and 52 fractional bits
(p=53) (bits 0 through 51) in the DP format. Note that bit b0 is not explicitly represented.

The sign bit, exponent, and fraction fields encode the numerical values of floating-point numbers, as well as
± 0, ±∞, and NaNs as follows:

1. Normalized Numerical Values (Emin ≤ E ≤ Emax): For numerical values, the biased exponent

e lies between emin and emax, inclusive. Equivalently, the exponent E takes on values between

Emin and Emax inclusive. Table C-1 summarizes these values for SP and DP. If the biased ex-

ponent e is equal to or greater than e
min

 (E is greater than E
min

), the number in question is

called normalized (i.e. the implicit integer value b0 is equal to one). Note that this integer value,
b0, is not stored in memory. Normalized numbers x are equal in value to:

x = (-1)s • 2e - bias 1.f

where 1.f is a binary, fixed point number, i.e.:

1.f = 1+(o.5) • b
1
 + (0.25) • b

2
 +...+ (– 1

2
)

p-1
• b

p-1

Therefore, the smallest magnitude of any normalized number, Xmin, n , is equal to (e=e
min

, f=0):

x
min,n

 = 1 • 2
emin - bias = 1• 2Emin

Using the value from Table C-1, this equals approximately 1.18 • 10-38 for SP numbers.

The largest normalized numerical value that can be represented equals (all b
i
=1, e=e

max
):
MOTOROLA DSP96002 USER’S MANUAL C-3

x
max,n

= (2 - 0.5
p-1

) 2
emax - bias

= (2 - 0.25p-1) 2Emax

For SP this equals approximately (using the values in Table C-1) 3.4 • 1038 .

2. Denormalized Numerical Values (e = e
min

-1, f ≠ 0): When the exponent e equals the value e
min

-

1 and the fraction field is non-zero the floating point number is called denormalized, and the
implicit integer bit b0 is equal to zero. The numerical value of a denormalized number y is given
by:

y = (-1)s • 0.f • 2
emin-bias

 = (-1)s • 0.f • 2Emin

The denormalization of the fractional part allows the representation of very small numbers near
the underflow threshold. The smallest possible magnitude of any denormalized number (f=f

min
)

which can be represented equals:

y
min

 = (0.5)p-1 • 2
emin - bias

For SP denormalized numbers, this results in a smallest magnitude of approximately 1.4 •

10-45 .

3. Zeros (e = e
min

-1,f=0): Floating point value(s) of zero are encoded by a biased exponent e

equal to e
min

-1, and a fractional field f of all zeros. Note that this encoding retains a significant

sign bit: plus and minus zero are two separate entities. Figure C-2 shows the encoding of plus
and minus zero in floating point format.

4. Infinities (e = e
max

 + 1, f = 0) Infinities are encoded in the floating point format by a biased ex-

ponent equal to e
max

+1, and a fractional field f consisting of all zeros. The sign bit distinguishes

between + and -∞. Figure C-3 shows the encodings for + and -∞ in SP and DP.

5. NaNs (e = e
max

+1, f≠0): NaNs are encoded in the floating point format by a biased exponent

equal to e
max

+1, and a nonzero fractional field. The value of the sign bit is irrelevant in this en-

coding.

QNaNs (b
1
=1) Quiet NaNs are represented by a fraction with MSB = 1 (and e=e

max
+1). The

DSP96002 only fully supports one QNaN, the "legal" QNaN as required by the standard. This
QNaN is encoded by a fractional field of all ones (all b

i
 = 1 in f). Other types of QNaNs

(DSP96002 "illegal" NaNs) may occur in multiprocessing situations (as generated by other pro-
cessors) however, and do deliver well-defined results in the DSP96002. When QNaNs other
than the "legal" QNaN occur as operand(s) to floating point arithmetic, the delivered result is
always a "legal" QNaN. Figure C-4 shows the encoding for QNaNs.

SNaNs (b
1
=0) Signaling NaNs are never generated by the DSP96002 as arithmetic results, but

may appear in the DSP96002 memory as passed along by other processors. SNaNs are char-
acterized by a MSB of the fractional field equal to 0 (and e = e

max
+1). When a SNaN appears

as an operand of an arithmetic instruction, the invalid operation exception is signaled, and the
result is returned as a "legal" QNaN.

The two basic formats, discussed in the previous paragraphs, are the only formats which are used for rep-
resentation of floating point values in the DSP96002 memory (internal and/or external). The SEP format,
C-4 DSP96002 USER’S MANUAL MOTOROLA

31 30 23 22 0

S

Single Precision

Double Precision

S

63 62 52 51 0

0 0

0 0
Figure C-2. Encodings for + and - Zero
31 30 23 22 0

S

Single Precision

Double Precision

S

63 62 52 51 0

0

0

11..................1

11...............................1
Figure C-3. Encodings for + and - Infinity
31 30 23 22 0

X

Single Precision

Double Precision

X

63 62 52 51 0

11..................1

11...............................1

1111....................................1

11111111..1
Figure C-4. Encodings for QNaNs
MOTOROLA DSP96002 USER’S MANUAL C-5

generated exclusively by the DSP96002 data ALU as a result of floating point arithmetic operations, is em-
bedded in the DP format, and is thus stored implicitly as a DP number with zeros in the lower 21 bits of the
fraction.

C.1.3 DSP96002 Floating Point Storage Format in the Data ALU
The data ALU is designed to accommodate mixed-precision operands in a common format. To this end, a
common DP storage format is used internal to the data ALU. SP and DP numbers from memory are auto-
matically converted to the internal format by means of a format conversion unit, the operation of which is
transparent to the user.

The bit-level DP representation internal to the ALU is illustrated in Figure C-5. The internal floating point
format is 96 bits wide and consists of the following fields:

1. Sign of the mantissa (S) bit 95.

2. SP Unnormalized tag (U) bit 94. The U-TAG is set when writing a floating-point register with a
denormalized SP number. Cleared otherwise.

3. DP Unnormalized tag (V) bit 93. The V-TAG is set when writing a floating-point register with a
denormalized DP number (denormalized SEP in the DSP96002). Cleared otherwise.

4. Unused bits (Z) bits 75 through 92 and bits 0 through 10. These bits read as zeros, and should
be written with zeros for future compatibility. They are cleared by floating-point moves and op-
erations.

5. Biased Exponent (e) bits 64 through 74. Since the internal ALU format is DP, there are 11 ex-
ponent bits, with an integer bias of 1023 ($3FF). The encodings of the exponent are identical
to the ones explained in the section on memory storage formats (Appendix D.1.2) .

6. Integer bit (i or b0) bit 63. The integer bit is explicitly presented in the internal representation as

bit 63 and is the integer part of the mantissa.

7. Fraction – bits 11 through 62. This is a 52-bit field representing the fractional part of the man-
tissa (only 31 are used by the DSP96002 floating-point ALU). The remaining bits are set to
zero by floating-point ALU operations or single-precision floating-point moves. Since the inter-
nal format is DP, the fraction consists of 52 bits. The data ALU arithmetic, however, only pro-
vides results in either SP or SEP. The SEP format is the same as the DP format, except for the
size of the fraction. The SEP fraction consists of only 31 bits. Consequently, the lower 21 or 29
bits of the fraction will consist of zeros when representing SEP or SP arithmetic results, respec-
tively. When DP values are moved from memory to the data ALU, the fraction contains all 52
significant bits. However, when using these DP values as operands in a floating-point arithmetic
operation, only 31 bits of the 52-bit fraction are used; the remaining bits are simply truncated.
The SEP format is shown in Figure C-7.

C.1.4 IEEE Floating Point Exceptions
The IEEE standard defines five types of exceptions which must be signaled when detected. The DSP96002
implements the default "trap disabled" way of signaling exceptions: when an exception occurs, a flag is set
and program execution continues. The flag remains set until cleared by the user. The different exceptions
are:

1. Invalid operation: The invalid operation exception is signaled when an operand is invalid for the
C-6 DSP96002 USER’S MANUAL MOTOROLA

95 94 93 92 75 74 64 63 62 32 31 11 10 0

S U V Z e ZFraction (MSBs) Fraction (LSBs)i

Dn.h Dn.m Dn.l

S : sign
U : single precision unnormalized tag
V : double precision unnormalized
 i : explicit integer

Tiny SP Numbers between +2
Emin ,Exclusive

-1.0 × 2-126 0 +1.0 × 2-126
specific operation to occur. The result of an invalid operation is a QNaN, as described above.
Examples of invalid operations are 0/0, ∞/∞, ∞−∞, 0×∞, etc.

2. Division by zero: The result of a division by zero is an infinity (with the correct sign), and the
operation is signaled as an exception.

3. Overflow: The overflow exception is signaled when the result of an operation exceeds the larg-
est magnitude that the result precision can accommodate. The result generated by the hard-
ware is dependent upon the rounding mode. For round to nearest, an infinity with correct
sign is generated. Round to zero results in the largest possible numerical value the result pre-
cision can accommodate, with correct sign (i. e., the result saturates). Round to -∞ results in
the largest possible numerical value the result precision can accommodate (i. e., the result sat-
urates) when the overflow is positive. It results in -∞ when the overflow is negative. Round to
+∞ results in +∞ when the overflow is positive, and in the largest negative numerical value the
result precision can accommodate (i. e., the result saturates) when the overflow is negative.

4. Underflow: Underflow is signaled when both (1) a very small (tiny) number is detected as the
Figure C-5. DP Format in the Data ALU
Figure C-6. Tiny Numbers on the Real Number Line
95 94 93 92 75 74 64 63 62 32 31 11 10 0

S U V Z e ZFraction 0i

Dn.h Dn.m Dn.l
Figure C-7. SEP Format in the Data ALU
MOTOROLA DSP96002 USER’S MANUAL C-7

result of a floating point operation (nonzero result with true exponent smaller than the minimum
exponent, see Figure C-6) and (2) loss of accuracy is detected (delivered result differs from
what would have been computed if the exponent range was unbounded – i. e., cannot be ac-
curately represented as a denormalized number due to an insufficient number of bits or round-
off errors). Consider the case of floating point multiplication as an example. Let the first SP
source operand have a mantissa of 1.01, with biased exponent emin=1 (unbiased exponent of

-126) and the second SP source operand have a mantissa of 1.0 with a biased exponent of 60
(unbiased exponent of -67). The result of a multiplication with infinite precision arithmetic would
be a mantissa of 1.01 with actual (unbiased) exponent of -193 (=-126-67). Since this exponent
is smaller than the smallest exponent possible in SP, the number is tiny, and since the number
is so tiny that it cannot be accurately represented as a denormalized number (a mantissa hav-
ing 68 bits would be required), loss of accuracy also occurs, therefore an underflow will be sig-
naled. The delivered SP result would be a SP zero, and the underflow flag would be set. Note
that the SEP format can accommodate this exponent, and thus the result of an SEP operation
would not signal the underflow exception. In that case, the correct result is delivered. If the first
operand of the SP multiplication has the same value as before, but the second operand has a
biased exponent of 104 (actual exponent of -23), the result of an infinite-precision multiplication
has a mantissa of 1.01 and an actual exponent of -149. The SP result consists of a denormal-
ized number (i.e., tiny) with a mantissa of 0.00000000000000000000001 and biased exponent
of 0. Note that the denormalization process results in loss of accuracy, and therefore the the
underflow flag will be set. Finally, if the second source operand has a biased exponent of 120
(actual exponent of -7), then the resulting mantissa with infinite precision would be 1.01 as be-
fore, with an actual exponent of -133. The SP result is again denormalized (tiny) with a mantissa
of 0.000000101 and a biased exponent equal to 0. Note that there is no loss in accuracy due
to the normalization (no lost significant bits), and thus the underflow flag will not be set. The
delivered result is the correct SP denormalized number.

5. Inexact: The inexact exception is signaled if the delivered result differs from what would have
been obtained with infinite-precision arithmetic. For instance, the examples of underflow shown
above deliver numerically inexact results, and thus set the inexact flag. Another example is the
case where floating point numbers are rounded up or down.

C.1.5 Data ALU Block Diagram
The block diagram of the data ALU is shown in Figure C-8. The data ALU consists of four main parts:

1. Register file and automatic conversion unit: All operations in the data ALU are register-based
– operands as well as results of data ALU operations are read from and written to registers. A
register file consisting of ten 96-bit registers are available for storage of floating-point numbers.
An automatic conversion unit converts the floating point storage format in memory to the inter-
nal DP format when moving operands and/or results from/to memory.

2. Multiply unit: A full IEEE floating-point multiply unit, delivering either a SP or SEP result in one
instruction cycle.

3. Adder/Subtracter unit: A full IEEE floating-point adder/subtracter unit, which can deliver the
sum as well as the difference of two operands in the same instruction cycle, to either SP or SEP.

4. Special function unit: A special function unit provides various logic functions, as well as support
for divide and square root in terms of an initial seed for a fast convergent divide and square root
C-8 DSP96002 USER’S MANUAL MOTOROLA

Automatic Format Conversion Unit

d0.h d0.m d0.l d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

Register File

Control and

Arbitration Unit

Add/Subtract Unit

Multiply Unit

Special Function Unit

Operands Results

X-Data Bus

Y-Data Bus
Figure C-8. The Data ALU Block Diagram
MOTOROLA DSP96002 USER’S MANUAL C-9

Infinite-precision Rounded result (to
result p=4 bits for example)
1.000 11100000.... 1.001 (round up)
1.000 01100000.... 1.000 (round down)
1.000 10000000....(absolute tie) 1.000 (round down)
1.001 10000000....(absolute tie) 1.010 (round up)

Table C-2. Example of the Round to Nearest (Even) Mode.

algorithm.

5. Controller and arbitrator: A controller/arbitrator supplies all of the control signals necessary for
the operation of the data ALU.

The data ALU uses the SEP format for all of its operations: the results are automatically rounded to either
SP or SEP. All of the rounding modes specified by the IEEE standard are supported. These rounding modes
are:

1. Round to nearest (even): a convergent rounding mode, designed to deliver results without a
rounding bias. In this case the infinite-precision result is rounded to the finite-precision result
which is closest. In the case of an absolute tie, the infinite-precision result is rounded to the
"nearest even" finite precision result, as is illustrated in Table C-2.

2. Round to zero: in this case, the infinite-precision result is rounded to the nearest finite-precision
result which is closest to zero. Clearly, results are rounded up in this mode when negative, and
down when positive.

3. Round to plus infinity: results are always rounded in the direction of plus infinity, i.e. "up".

4. Round to minus infinity: results are always rounded in the direction of minus infinity, or "down".

C.1.5.1 Register file and automatic format conversion unit
The general-purpose register file consists of ten 96-bit registers named d0..d9, as shown in Figure C-9.
Each 96-bit register accommodates the DP internal floating point storage format. Each 96-bit register is ob-
tained by the concatenation of three 32-bit registers dn.h:dn.m:dn.l. The registers dn.h, dn.m, and dn.l can
be accessed as individual registers by MOVE operations and integer and logic instructions, as is further de-
scribed in Appendix C.2 and in Appendix A.

The registers d0..d7 are general-purpose registers in the sense that MOVE instructions and data ALU op-
erations do not differentiate between them. They are used for data ALU source and destination operands
for most of the data ALU instructions. They can be used as operands for MOVE operations as well as for
data ALU operations in the same instruction cycle: dual source operands are allowed. They can not be used
as dual destinations in the same instruction cycle.
d0.h d0.m d0.l d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

95 0
Figure C-9. The Data ALU’s Register File
C-10 DSP96002 USER’S MANUAL MOTOROLA

31 30 29 0

Fraction

23 22

e

95 94 74 73 72 71 64 63 62 32 31 11 10 0

S e (3)Fractioni*

X or Y Data Memory

i = 1 when normalized
i = 0 when unnormalized

(2) Dn

S

40 39

31 30 29 0

Fraction

23 22

e X or Y Data MemoryS

† † †† (1)

Notes: * –

† – When NaN, bits 71, 72, 73 = 1
 When not NaN Bit 74 ↔ Bit 30
 Bits 73, 72, 71 are complement
 of Bit 74.

(1) – Bits 32-39 are nonzero when the register
 contains a SEP floating point result or a
 DP floating point number.
 Bits 32-39 are zero when the register
 contains a SP floating point number.

(2) – Bits 11-31 are only nonzero when the
 register contains a DP floating point
 number.

(3) – Bits 0-10 are always zero when
 representing a floating point number.
The registers d8 and d9 are auxiliary registers which can be used for temporary data storage. Their main
purpose is to allow a fast, four-cycle radix-2, decimation in time FFT butterfly kernel, though their use is cer-
tainly not limited to this application. d8 and d9 can be used as source operands in multiply operations and
MOVE instructions, but can only be written as destinations of MOVE instructions.

The format conversion unit provides automatic format conversion from/to the SP and DP memory storage
formats to/from the DP storage format in the data ALUs register file. The conversion is depicted in Figure
C-10 and is done in a transparent fashion.

When moving SP numbers into the data ALU (see Figure C-10a), the 52-bit fraction of the DP internal for-
mat is written with the 23-bit fraction of the source in its most significant bits, and the implicit integer bit is
made explicit. The remaining bits of the fraction are set equal to zero. If the number in question is denor-
malized (exponent = emin and the first bit of the mantissa = 0), the U tag is set. In the non-IEEE "flush to

zero" mode (indicated by the FZ bit in the Status Register), the number is considered zero when used as
an operand for floating-point operations, although the contents of the register are not changed. In the IEEE
Figure C-10a. Automatic Format Conversion – Single Precision
MOTOROLA DSP96002 USER’S MANUAL C-11

63 62 52 51 0

S Fraction

21 20

e

63 62 52 51 0

S Fraction

21 22

e

95 94 75 74 64 63 62 32 31 11 10 0

S e 0Fractioni

L Data Memory

L Data Memory

i = 1 when normalized
i = 0 when unnormalized

*

* – Bits 11-31 (in Dn) or 0-20
 (in L memory) are zero when
 the register contains an SEP
 result.

Dn
Figure C-10b. Automatic Format Conversion – Double Precision
mode, the number is "corrected" when used as an operand for floating point calculations, at the expense of
extra cycles introduced for normalization.

The 8-bit exponent of the SP source is translated into an 11-bit exponent by copying the 7 least significant
bits of the source exponent into the seven least significant bits of the destination. The most significant bit of
the 8-bit exponent of the source is copied to the most significant bit of the exponent of the destination. The
remaining 3 bits of the destination’s exponent are set if the number is a NaN or infinity, otherwise they are
the inverted MSB of the source’s exponent. Inverting the MSB effectively changes the bias from 127 to
1023.

When moving single precision numbers from the data ALU to memory (see Figure C-10a), the above pro-
cess is reversed. The 23 most significant bits of the fraction are moved to the 23 fraction bits of the desti-
nation. Note that the contents of the data ALU register may have more than 23 fractional bits if it was the
result of a previous DP move or SEP arithmetic operation; in this case, the fraction is simply truncated.

The MSB of the 11-bit exponent of the source in the data ALU is moved to the MSB of the exponent of the
destination. The 7 LSBs of the exponent of the source are copied to the seven LSBs of the exponent of the
source. Note that if the source was not a SP number (result of a DP move or a SEP arithmetic operation),
an incorrect exponent may be moved. Therefore, care must be taken to always round results to SP be-
fore moving them to memory as single precision numbers.

When moving DP numbers into the Data ALU from memory (see Figure C-10b), the 52 bit fraction of the
C-12 DSP96002 USER’S MANUAL MOTOROLA

source is moved to the 52 bit fraction of the destination, and the implicit integer bit is made explicit. If the
number is denormalized, the V tag is set. Again, extra cycles may be required when a denormalized number
is used as an operand, depending on the FZ bit in the SR. The 11-bit exponent of the source is copied to
the 11-bit exponent of the destination.

When moving DP numbers from the data ALU to memory, the above process is reversed, as shown in Fig-
ure C-10b. Note that the 52-bit fraction may actually consist of 21 zeros if the number in question was the
result of a SEP arithmetic or 29 zeros in the case of a SP move. SEP arithmetic result precision can only
be retained in memory by using DP moves.

C.1.5.1.1 FLOATING-POINT MOVES TO/FROM DATA ALU REGISTERS
The following sections deal with the case where a write (move in) is followed by a read (move out) without
any floating-point operation being actually performed on the Data ALU register (save-restore procedure).
The only way to provide correct results for save-restore procedures is to perform the same type of moves
when writing and then reading the register (SP write followed by SP read or DP write followed by DP read).

C.1.5.1.1.1 Single Precision (SP) Move Of A SP Normalized Number
This section illustrates what happens when a 32-bit source (normalized single precision) is written by a sin-
gle precision floating-point move and the data is stored in a Data ALU floating-point register D0-D9. Fol-
lowing the above operation, the Data ALU register will be read first by a single precision and then by a dou-
ble precision floating-point move.

 - 32-bit data from source is 3F800000 (= +1.0)
 - exp = 7F (8 bit bias)
 - mantissa = 000000 (the hidden bit is one)

 - data stored in the register
 - e = 3FF (correct representation with 11-bit bias)
 - I = 1 (the number is normalized so hidden bit is 1)
 - U-TAG = 0 (cleared; the number can be used in computations
 without adding extra cycles for normalization,
 since it is a normalized number)

 - fraction = 00...00 - mantissa = 1.00...00

One should notice that both single and double precision floating-point moves out of the register will produce
correct results in this case as shown in Figure C-11.
MOTOROLA DSP96002 USER’S MANUAL C-13

C.1.5.1.1.2 SP Move Of A SP Denormalized Number
This section describes what happens when a 32-bit denormalized, single precision number is written by a sin-
gle precision floating-point move, into a Data ALU floating-point register D0-D9. Following the above opera-
tion, the Data ALU register will be read first by a single precision and then by a double precision floating-point
move.

 - 32-bit data from source is $00200000 (= +2**(-128))
 - exp = $00 (8 bit bias)
 - mantissa = $200000 (the hidden bit is zero)

 - data stored in the register
 - e = 380 (incorrect representation with 11-bit bias; the
 correct representation would be 37F)
 - I = 0 (the number is unnormalized)
 - U-TAG = 1 (set; the number cannot be used in computations
 without adding extra cycles for normalization,
 since it is unnormalized)
 - fraction = 40000000
 - mantissa = 0.010...00

In this last case, the U-TAG tells us that an operation using this operand will first add extra cycles to normalize
it. However, an SP move will render the correct result since the format conversion presented in Section 5.5
chooses the correct bits. One should notice that a double precision floating-point move that reads the register
will yield the wrong data in this case.

 0 01111111 0000 00

 inv

 0 0 0 Zero 01111111111 1 0000 00

 SP read of the register

 0 0 0 Zero 01111111111 1 0000 00

 0 01111111 0000 00 Data read correctly
 (read as 1.0)

 DP read of the register

 0 0 0 Zero 01111111111 1 0000 00

 \ /

 / \

 0 01111111111 0000 00 Data read correctly
 (read as 1.0)

 SP move into the register

Figure C-11. Single Precision (SP) Move Of A SP Normalized Number
C-
14 DSP96002 USER’S MANUAL MOTOROLA

C.1.5.1.1.3 Denormalized Numbers In Double Precision (DP)
This section describes what happens when a 64-bit denormalized double precision number is written by a
double precision floating-point move, into a Data ALU floating-point register D0-D9. Following the above
operation, the Data ALU register will be read first by a single precision and then by a double precision float-
ing-point move.

The denormalized double precision data is stored in the Data ALU register with the V tag set and the ex-
ponent set to $000 (always). The V-TAG set indicates that floating-point multiply operations will require
extra cycles to wrap it ("normalize") before using it as an operand. Double precision moves will yield correct
results when reading the denormalized DP from the register to memory (the V-TAG will also be set when
a single extended denormalized result is obtained from a Data ALU operation).

Here is an example of a double precision denormalized number:

 - 64 bit data from source is 0004000000000000 (= 2**(-1024))
 - exp = $000 (11-bit bias)
 - mantissa = $4000000000000 (the hidden bit is zero)

 - data stored in the register
 - e = 000 (correct representation with 11-bit bias)
 - I = 0 (the number is not normalized)
 - U-TAG = 0 (cleared; the number can be used in computations
 as it is by the adder)

 - V-TAG = 1 (set; it indicates a denormalized number in DP,
 requiring extra cycles for denormalization in
 multiply operations)
 - fraction = 40000000
 - mantissa = 0.010...00
MOTOROLA DSP96002 USER’S MANUAL C-15

C-1

 SP move into the register

 0 00000000 0100 00

 \ /

 inv
 / \

 0 1 0 Zero 01110000000 0 0100 00

 SP read of the register

 0 1 0 Zero 01110000000 0 0100 00

 \ /

 / \

 0 00000000 0100 00 Data read correctly
 (read as 2**(-128))

 DP read of the register

 0 1 0 Zero 01110000000 0 0100 00

 \ /

 / \

 0 01110000000 0100 00 Data read
 incorrectly (read
 as 1.01x2**(127))
Figure C-12. SP Move Of A SP Denormalized Number
6 DSP96002 USER’S MANUAL MOTOROLA

C.1.5.1.1.4 Floating-Point Moves Summary
Figure C-14 summarizes what will be the result of a data move into a Data ALU register followed by a read
of the same register, depending on the data range and the type of moves.

 DP move into the register

 0 00000000000 0100 00

 \ /

 / \

 0 0 1 Zero 00000000000 0 0100 00

 NOTE THAT THE V TAG IS SET IN THIS CASE

 SP read of the register

 0 0 1 Zero 00000000000 0 0100 00

 \ /

 / \

 0 00000000 0100 00 Data read incorrectly
 (read as 2**(-128))

 DP read of the register

 0 0 1 Zero 00000000000 0 0100 00

 \ /

 / \

 0 00000000000 0100 00 Data read correctly
 (read as 2**(-1024))
MOTOROLA DSP96002 USER’S MANUAL C-17

.

 MOVE EXPONENT RANGE INPUT DATA MOVE MOVE
 IN (UNBIASED) OUT OUT
 TYPE U V TYPE RESULT

 SP E= 128 signaling NaN (SNAN) 0 0 SP CORRECT
 Fraction= written as DP SNAN
 .0xx...xx read as SNAN (see Note 1) DP CORRECT

 SP E= 128 non signaling NaN (QNAN) 0 0 SP CORRECT
 Fraction= written as DP QNAN
 .1xx...xx read as QNAN (see Note 2) DP CORRECT

 SP E= 128 infinity in SP 0 0 SP CORRECT
 Fraction= written as DP infinity
 .000...00 read as infinity (all formats) DP CORRECT

 SP -127<E< 128 normalized (all formats) 0 0 SP CORRECT

 DP CORRECT

 SP -150<E<-126 denormalized in SP 1 0 SP CORRECT

 DP WRONG

 DP E= 1024 signaling NaN (SNAN) 0 0 SP CORRECT
 Fraction= written as DP SNAN
 .0xx...xx read as SNAN (see Notes 1,3) DP CORRECT

 DP E= 1024 non signaling NaN (QNAN) 0 0 SP CORRECT
 Fraction= written as DP QNAN
 .1xx...xx read as QNAN (see Note 2) DP CORRECT

 DP E= 1024 infinity in SP 0 0 SP CORRECT
 Fraction= written as DP infinity
 .000...00 read as infinity (all formats) DP CORRECT

 DP +127<E< 1024 no SP representation 0 0 SP WRONG
 normalized in DP/SEP
 DP CORRECT

 DP -127<E< 128 normalized (all formats) 0 0 SP TRUNC

 DP CORRECT

 DP -150<E<-126 denormalized in SP 0 0 SP WRONG
 normalized in DP/SEP
 DP CORRECT

 DP -1023<E<-149 no SP representation 0 0 SP WRONG
 normalized in DP/SEP
 DP CORRECT

 DP -1054<E<-1022 denormalized (in DP/SEP) 0 1 SP WRONG

 DP CORRECT

Figure C-14. Floating-Point Moves Summary

Figure C-13. Denormalized Numbers In Double Precision (DP)
C-
18 DSP96002 USER’S MANUAL MOTOROLA

Note 1 The xx...xx pattern for the signaling NaNs indicates any NON-ZERO bit pattern.

Note 2 The xx...xx pattern for the non-signaling NaNs indicates any bit pattern. The DSP96002 gener-
ates all ones for QNaNs.

Note 3 If a register is written with a SNAN using a double precision floating-point move and then the
same register is read using single precision floating-point move the result will be a single preci-
sion SNAN (if the first 23 bits of the fraction are a non-zero pattern) or single precision infinity
(if the first 23 bits of the fraction are a zero pattern).

Note 4 The case when both U-TAG = 1 and V-TAG = 1 is reserved for future use.

C.1.5.1.2 RESULTS OF DATA ALU FLOATING-POINT OPERATIONS
This section describes how the Data ALU floating-point operation results are stored in the Data ALU regis-
ters.

All DSP96002 Data ALU floating-point operations are executed in single extended precision, using single
extended precision input operands, and return single extended or single precision results in double pre-
cision format. The results are formatted in double precision before being stored in the Data ALU registers.
When performing a DP move into a register and then using that register in a DSP96002 SEP floating
point operation, the mantissa of the operand will be first truncated to a SEP value, as the hardware is
unable to operate on more than 32 mantissa bits. Figure C-13 explains how a DP register is used as
operand for a SEP operating unit (adder/multiplier).

The 11-bit exponent used by the SEP operating units is identical with the exponent of the original DP
number loaded into the register (both have the same bias, namely $3FF). This means that the number
can be used in computations directly, assuming that the least significant 21 mantissa bits are zero, oth-
erwise a round towards zero occurs because the mantissa is truncated to 32 bits (21 bits of the 52-bit
DP mantissa are ignored).

 DP register
 95 63 62 32 0

 0 0 1 Zero 00000000000 0 010000 0........ 00

 \ / \ /
 these bits
 are ignored

 / \ / \

 0 00000000000 0100 00

 sign of the 11-bit exponent 32-bit mantissa
 mantissa with 11-bit bias (1 bit integer
 31 bits fraction)

Figure C-15. DP operand in a SEP operation

Note 4
Tags
MOTOROLA DSP96002 USER’S MANUAL C-19

C.1.5.1.2.1 Results Rounded To SP
Data ALU results are rounded to SP when the instruction is specified with the .S suffix (FMPY.S, FADD.S,
etc.). The rounding mode is programmed using the rounding mode bits in the status register.

C.1.5.1.2.1.1 Results Rounded To SP That Are Normalized
If the Data ALU operation result was rounded to SP and the rounded result may be represented as a nor-
malized single precision floating-point number, the result will be stored in normalized DP format that may
be read out by single and double precision moves without errors or truncation.

C.1.5.1.2.1.2 Results Rounded To SP That Are Denormalized
If the Data ALU operation result was rounded to SP and the rounded result must be represented as a de-
normalized single precision floating-point number, the result will be stored in unnormalized DP format with
the U tag set and the I bit cleared, and it may be read out by single precision moves without errors or trun-
cation. If the register is read by a double precision move, completely incorrect data will be obtained; see
the discussion in Section C.1.5.1.1.2.

In this case, before the result is delivered, an additional Data ALU execution cycle is required in which the
SEP mantissa is shifted right the required number of places for correct rounding to SP.

The presence of unnormalized numbers in DP format will add one dummy cycle followed by an additional
cycle for each unnormalized DP operand to any Data ALU operation that uses them as input. During the
additional cycle the unnormalized operand (U-TAG=1) is normalized, however the register itself will not be
modified.

C.1.5.1.2.2 Results Rounded To SEP
Data ALU results are rounded to SEP when the instruction is specified with the .X suffix (FMPY.X, FADD.X,
etc.). The rounding mode is programmed using the rounding mode bits in the status register.

C.1.5.1.2.2.1 Results Rounded To SEP That Are Normalized
If the Data ALU operation result was rounded to SEP and the rounded result may be represented as a nor-
malized single extended precision floating-point number, the result will be stored in normalized DP format
that may be read out by double precision moves without errors or truncation.

If the result stored in the register is read with a single precision move, two situations may occur:

1. The SEP exponent is in the range of the normalized SP exponent: the data read will be round-
ed to SP by truncating the SEP mantissa; this is equivalent to IEEE round towards zero.

2. The SEP exponent is not in the range of the normalized SP exponent: the data read will not
have the right exponent. The correct value should have been infinity, zero or a denormalized
SP, but the move instruction does not provide it.

C.1.5.1.2.2.2 Results Rounded To SEP That Are Denormalized
If the Data ALU operation result was rounded to SEP and the rounded result must be represented as a
denormalized single extended precision floating-point number, the result will be stored in normalized DP
format with the V tag set and I bit cleared, and it may be read out by double precision moves without errors
C-20 DSP96002 USER’S MANUAL MOTOROLA

or truncation. If the register is read by a single precision move, completely incorrect data will be obtained;
see the discussion in Section C.1.5.1.1.3.

C.1.5.1.2.3 Data ALU Results/Move Compatibility Summary
Figure C-16 summarizes what happens when Data ALU operation results of a certain range are stored in
the destination register, and the register is read by a certain kind of move.

 All cases where "move out type"=SP and "move out result"=WRONG can be corrected by rounding in the
instruction (using the .S option). The case where "move out type"=SP and "move out result"=TRUNC can
also be corrected by using the .S option.
MOTOROLA DSP96002 USER’S MANUAL C-21

C.1.5.2 Multiply unit
The multiply unit consists of a hardware multiplier, an exponent adder, and a control unit, as shown in Figure
C-17. The multiply unit accepts two 44 bit input operands for floating point multiplications, each consisting
of a sign bit, eleven exponent bits, the explicit integer bit, and 31 fractional bits. Note that for full double pre-
cision operands, as obtained by double precision MOVEs, the least significant 8 bits of the fraction are sim-
ply truncated. Multiply operations occur in parallel with and independent of data moves over the X and Y
data buses.

The hardware multiplier accepts the two 32-bit mantissas (integer bit + 31 bit fraction), and delivers a 64 bit
result, as shown in Figure C-18. This result is automatically rounded to a 32-bit mantissa for SEP arithmetic
or a 24 bit mantissa for SP arithmetic, as specified by the instruction opcode. The result is stored into the
mantissa portion of the destination register.

The exponent adder takes the two unsigned (i. e., biased) operand exponents, adds them together, and
subtracts one bias, resulting in an 11-bit biased exponent which is stored in the exponent part of the floating
point format in the destination register, as depicted in Figure C-19.

C.1.5.3 Adder/Subtracter Unit
The adder/subtracter is depicted in Figure C-20, and consists of a barrel shifter and normalization unit, an
add unit, a subtract unit, an exponent comparator and update unit and a special function unit. The adder/
subtracter unit accepts 44-bit floating point operands, and delivers 44-bit results. The adder/subtracter op-
erations deliver the sum and the difference of the same two floating point operands in a single instruction
cycle. In addition, the barrel shifter used for mantissa alignment in floating point additions and subtractions
is used for executing multibit shifts for fixed point operation. The adder/subtracter operates in parallel with
and independent of data moves over the X and Y data buses.

The add unit is a high speed 32-bit adder, used in all floating-point non-multiply operations. For floating point
operations, 32-bit mantissas (1 integer bit and 31 fractional bits) are first "aligned" for floating point addition
in the barrel shifter and normalization unit, after which they are added in the add unit. The result is then
rounded to 32 bits for SEP results, and to 24 bits for SP results, as indicated by the instruction opcode. The
type of rounding implemented depends on the rounding mode bits in the MR register. The rounded result is
stored in the middle portion (mantissa) of the destination register. This is illustrated in Figure C-21

The subtract unit is a high speed 32-bit adder/subtracter, used in all floating-point non-multiply operations
and in all fixed point operations delivering a 32-bit result. For floating point operations, 32-bit mantissas (1
integer bit and 31 fractional bits) are first "aligned" for floating point subtraction in the barrel shifter and nor-
malization unit, after which they are subtracted in the subtract unit. The result is then rounded to 32 bits for
SEP results, and to 24 bits for SP results, as indicated by the instruction opcode. The type of rounding im-
plemented depends on the rounding mode bits in the MR register. The rounded result is stored in the middle
portion (mantissa) of the destination register for floating point operations, and in the low portion for fixed-
point operations. This is illustrated in Figure C-21.

The barrel shifter/normalization unit is used for the alignment of the two operand mantissas, needed for ad-
dition/subtraction of two floating point numbers. The barrel shifter is a 32-bit left-right multibit shifter, which
is also used in fixed point arithmetic and logic shifting operations with a 32-bit result. For the addition of two
floating point operands, the barrel shifter receives the exponent difference of the two operand exponents
from the exponent comparator and update unit, and uses this difference to align the mantissas for addition.
For example, if the biased exponent of the first floating point operand equals 10 and the biased exponent
of the second floating point operand equals 13, the mantissa of the first operand will be right shifted by three
C-22 DSP96002 USER’S MANUAL MOTOROLA

MOTOROLA DSP96002 USER’S MANUAL C-23

 ROUND EXPONENT RANGE DATA ALU OPERATION TAGS MOVE MOVE OUT
 TO BEFORE ROUND RESULT OUT RESULT
 (UNBIASED) U V TYPE

 SP NaN operand or non signaling NaN (QNAN) 0 0 SP CORRECT
 invalid op written as DP QNAN

e=7FF mantissa=1.11...11 DP CORRECT

 SP 127<E infinity (overflow) 0 0 SP CORRECT

written as DP infinity
e=7FF mantissa=1.00...00 DP CORRECT

 SP 127<E< 128 normalized (all formats) 0 0 SP CORRECT

DP CORRECT

 SP -150 < E< −126 denormalized (in SP) 1 0 SP CORRECT

DP WRONG

 SP E < −149 zero (underflow) 0 0 SP CORRECT

DP CORRECT

 SEP NaN operand or non signaling NaN (QNAN) 0 0 SP CORRECT
 invalid op written as DP QNAN

e=7FF mantissa=1.11...11 DP CORRECT

 SEP 1023<E infinity in SP and SEP 0 0 SP CORRECT

written as DP infinity
e=7FF mantissa=1.00...00 DP CORRECT

 SEP 127<E< 1024 infinity in SP 0 0 SP WRONG

normalized in SEP
DP CORRECT

 SEP -127<E< 128 normalized (all formats) 0 0 SP TRUNC

DP CORRECT

 SEP -150< e < -126 denormalized in SP 0 0 SP WRONG
 normalized in SEP
 DP CORRECT

 SEP -1023< e < -149 zero in SP 0 0 SP WRONG
 normalized in SEP
 DP CORRECT

 SEP -1054< e< -1022 zero in SP 0 1 SP WRONG
 denormalized in SEP
 DP CORRECT

 SEP e< -1053 zero in SP 0 0 SP CORRECT
 zero in SEP (underflow)
 DP CORRECT

Figure C-16. Data ALU Results/Move Compatibility Summary

Exponent Adder Multiplier Array Control

ES1 ES2 MS1 MS2

ED MD
positions (3 bit shift).

The exponent comparator and update unit consists of an 11 bit subtracter, which compares the two expo-
nents of the floating point operands, and delivers the difference to the barrel shifter for mantissa alignment.
The largest of the two exponents is delivered to the exponent update unit. The exponent update unit may
update this exponent for normalization of the result, after which the exponent (biased) is stored in the high
portion of the destination register. This is depicted in Figure C-22.

For example, if the mantissa of the first operand in a floating point addition is 1.010...0, with biased exponent
of 10, and the mantissa of the second operand is 1.000...0000, with biased exponent of 13, the exponent
comparator simply delivers the difference (=3) to the barrel shifter, the first operand’s mantissa is aligned to
0.001010...0, the two mantissas are added to deliver 1.001010...0, and the result (biased) exponent equals
13. The postnormalization unit does not need to postnormalize the result in this case.

If the first operand’s mantissa is 1.010...0 with biased exponent of 13 and the second operand’s mantissa
is 1.000...0 with biased exponent of 13, the exponent difference is zero and the barrel shifter does not need
to realign the mantissas. The result after addition is now equal to 10.010...0, which needs to be postnormal-
ized by adding one to the result exponent. The exponent update unit sets the result exponent (biased) equal
to 14 and the result mantissa is 1.0010...0.

Finally, if the first operand’s mantissa in a floating point subtraction is 1.010...0 with biased exponent of 10,
and the second operand’s mantissa is 1.00...0 with a biased exponent of 10, the result mantissa after sub-
traction is -0.010...0. This is not normalized, and the postnormalization unit subtracts two from the exponent.
The result mantissa is -1.000...0 with a biased exponent equal to 8.
C-24 DSP96002 USER’S MANUAL MOTOROLA

M1 M2

MD

D

32 Bits

64 Bits

32 Bits
32 Bits

Multiplier Array

Round Rounding mode is determined
by rounding bits in the MR.
C.1.5.4 Special Function Unit
The special function unit (SFU) consists of a logic unit and a divide and square root unit. The logic unit is
further described under the fixed point (integer) operations.

The divide and square root unit supports execution of the divide and square root algorithms. These algo-
rithms are iterative, and require an initial approximation or "seed". These seeds are generated in the SFU.
The FSEEDD and FSEEDR instructions provide an initial approximation to 1/x and sqrt(1/x), as is described
in Appendix A.

C.1.5.5 Controller and Arbitrator Unit
The controller and arbitrator (CA) unit supplies control signals to the processing units of the data ALU and
register file, and is responsible for the full implementation of the IEEE standard. Its operation is determined
by the flush-to-zero (FZ) bit in the status register (SR), which determines whether or not denormalized num-
bers are treated as defined by the standard. In the flush-to-zero mode, all denormalized input operands are
treated as zeros (although their original contents are preserved), and denormalized results are set equal to
zero ("flushed-to-zero"). In the flush-to-zero mode, no additional cycles are required for the normalization of
denormalized numbers as they are treated as zeros. In the IEEE mode, the standard for treatment of de-
normalized numbers is correctly and fully implemented. However, operations on denormalized numbers can
not be performed in a single instruction cycle, except for operations done in the floating point adder when
the operand is a denormalized number in SEP. The controller and arbitrator is responsible for providing the
correct sequence that deals with such situations.

When denormalized numbers are detected as input operands in IEEE mode, the CA unit adds one extra
cycle for entering the IEEE mode procedure. Next, one additional cycle is added for each denormalized in-
MOTOROLA DSP96002 USER’S MANUAL C-25

E1 E2

ED

D

11 Bits

11 Bits
11 Bits

Add exponents
and subtract bias

S1 S2
put operand. These cycles are used to normalize the input operand. The original value of the operand in the
source register is not affected. During the IEEE mode procedure all activity of the chip is suspended
until the input operands have been normalized. When denormalized output results are detected, each
denormalized output result is normalized (one additional instruction cycle). There is no extra cycle penalty
for entering the IEEE mode procedure when normalizing output results.

C.2 FIXED-POINT NUMBER STORAGE AND ARITHMETIC

C.2.1 General
Integer operand sizes are defined as follows:

1. Byte: 8 bits long

2. Short word: 16 bits long

3. Word: 32 bits long

4. Long word: 64 bits long

The operand size for each instruction is either explicitly encoded in the instruction or implicitly defined by
the instruction.

C.2.2 Integer Storage Format in Memory
The DSP96002 supports four integer memory data formats:

1. Signed word integer: 32 bits wide, two’s complement representation. This storage format can
be used in either X and/or Y data memory space.

2. Signed Long Word Integer: 64 bits wide, two’s complement representation. This storage format
C-26 DSP96002 USER’S MANUAL MOTOROLA

Exponent Comparator/ Barrel Shifter/

Adder

ES1 ES2 MS1 MS2

ED1 MD2

Update Unit Normalization Unit

Subtracter

Round

ED2MD1
Adder Subtracter

From Pre-normalization

32 Bits

MRMR Rounding Rounding

32 Bits 32 Bits 32 Bits

32 Bits 32 Bits

To Post-normalization
MOTOROLA DSP96002 USER’S MANUAL C-27

Exponent Comparator/Update Unit

11 Bits

11 Bits 11 Bits

11 Bits

ES1 ES2

max(E1, E2) E1-E2

To Mantissa
Alignment

To Post-
Normalization
can only be used in long (L) data memory space.

3. Unsigned Word Integer: 32 bits wide with unsigned magnitude representation. This storage for-
mat can be used in either X and/or Y data memory space.

4. Unsigned Long Word Integer: 64 bits wide with unsigned magnitude representation. This stor-
age format can only be used in long (L) data memory space.

Long type integers can be moved to and from the data ALU register file. However, long integers can not be
directly used as input operands to data ALU operations. Long integers can however be results of data ALU
operations.

C.2.3 Integer Storage Format in the Data ALU
There are thirty 32-bit registers in which can contain integer words. However, data ALU arithmetic opera-
tions use the low portion of the register files as word source and destination operands. Long word integers
are only generated as results of integer arithmetic operations and are never used as source operands.

C.2.4 Integer Arithmetic
The integer arithmetic operations use the same arithmetic units in the data ALU as the floating point oper-
ations. These units consist of:

1. Adder: The subtract unit in the adder/subtracter unit described in paragraph C.1.5.3 is used for
integer add and subtract operations. It accepts two 32-bit integer operands from the low por-
tions of the data ALU source registers and delivers a 32-bit result in the low portion of the des-
C-28 DSP96002 USER’S MANUAL MOTOROLA

tination register.

2. Multiplier: The multiplier in the multiply unit described in paragraph C.1.5.2 also performs the
integer multiplications. It accepts two 32-bit operands in the low portion of the data ALU source
registers, and delivers a 64-bit result in the low and middle portions of the destination register.
Both signed and unsigned multiplications are supported.

3. Logic Unit: The logic unit is responsible for the logical operations AND, ANDC, OR, ORC,
EOR, NOT, ROR. In addition, it performs the bit field manipulation instructions SPLIT, SPLITB,
JOIN, JOINB, EXT, and EXTB. The logic unit operates on 32-bit operands located in the low
portions of the data ALU registers. Results are also stored in the low portion of the destination.

4. Barrel Shifter: The barrel shifter in the normalization unit used for mantissa alignment in float-
ing point additions is also available for performing multibit shifts on integer (fixed-point) data.
Both single and multibit arithmetic shifts left and right and logical shifts left and right are sup-
ported.
MOTOROLA DSP96002 USER’S MANUAL C-29

APPENDIX D

D.1 FLOATING-POINT NUMBER STORAGE AND ARITHMETIC

D.1.1 General
The IEEE standard for binary floating point arithmetic provides for the compatibility of floating-point numbers
across all implementations which use the standard by defining bit-level encoding of floating-point numbers.
Maximum mathematical accuracy, with respect to roundoff errors, is achieved by optimally scaling floating-
point numbers by using a normalized exponential notation. Error bounds are guaranteed by the standard
for the basic mathematical operations (add, subtract, multiply, divide, square root, round to nearest integer,
conversion to and from integers and conversion to and from decimal strings). The standard also defines er-
ror handling for five floating point exceptions: invalid operation, divide by zero, overflow, underflow and in-
exact result.

The standard defines two data storage formats which are identical across implementations (basic formats):
Single Precision (SP) and Double Precision (DP). It also specifies the use of two implementation-dependent
encodings (extended formats): Single Extended Precision (SEP) and Double Extended Precision (DEP), on
which it only places some general constraints, and for which bit-level encodings are not defined. The ex-
tended formats are consequently implementation-dependent and should never be used for representation
of numbers which are to be shared across different processors (i. e., stored).

Each format provides representation of the following elements:

1. Floating-point numbers of the form:

X = (-1)
S
2

E
(b0•b1b2...p-1)

where:

s = 0 or 1

E = an integer between Emin and Emax , inclusive.

bi = 0 or 1

2. Infinities: +∞ and -∞

3. " Not-a-Numbers (NaNs) ". NaNs are special symbolic elements, encoded in the floating point
format. They can appear as operands and/or as results of arithmetic operations. The standard
provides two types of NaNs:

Quiet NaNs (QNaNs): are encodings of information regarding meaningless or invalid results.
Examples of QNaNs are results of operations such as 0/0, ∞−∞, ∞/∞, etc. Encodings of QNaNs
MOTOROLA DSP96002 USER’S MANUAL D-1

are intended to provide some kind of retrospective diagnostic information concerning the origin
of the NaN. Since this information needs to remain available even after a large number of arith-
metic operations, QNaNs "propagate" unchanged through arithmetic operations and format
conversions. QNaNs can thus occur as operands of an arithmetic operation. If one or more
QNaN occur as operands, the result is a quiet NaN, and no floating point exception is signaled.
Hence the name "quiet" NaN. The standard specifies that at least one QNaN must be support-
ed.

Signaling NaNs (SNaNs): Signaling NaNs are used only in systems with arithmetic-like en-
hancements that are not defined by the standard. As opposed to QNaNs, they are never gen-
erated by the DSP96002 arithmetic. They can, however, appear as operands in arithmetic op-
erations (as generated by other processors, for instance). In this case, they always signal the
"Invalid Operation" floating point exception. The returned result is a QNaN.

Floating point operands in the DSP96002 are either 32-bits long (Single Real), 64 bits long (Double Real)
or 96 bits long (Register operand). The operand size is either explicitly encoded in the instruction or implicitly
defined by the instruction operation. The following sections describe the details of each operand type.

D.1.2 DSP96002 Floating Point Storage Format in Memory
DP and SP are the only floating point formats for which the IEEE standard provides bit-level definitions.
Since the DSP96002 is designed for multiprocessing applications, where data in memory can be shared
among different processors, SP and DP are the only formats supported for memory storage of floating point
numbers.

SP numbers are represented by 32-bits in memory, and can be located in either X: or Y: data spaces. DP
numbers take up 64 bits in memory, and can thus only be stored in long (L:) memory space.

The basic formats (SP and DP) contain three fields in their binary representation, as shown in Figure D-1.
These fields are described as:

1. Sign Bit (s): The sign bit denotes the sign of the number, in a signed magnitude notation. When
s=0, the number is positive. When s=1, the number is negative. Note that floating-point num-
bers do not use a two’s complement notation.

2. Exponent Field (e): The exponent of SP and DP numbers is stored as a positive (biased) inte-
ger:

e = E + bias

where E is the actual exponent of the floating point number as explained in Appendix D.1.1. e
is also used in conjunction with the fractional field f to encode non-numerical values (infinities
and NaNs).

For SP, the exponent consists of 8 bits (bits 23 through 30) , and the bias equals 127. The bi-
ased exponent e can thus take on integer values between 0 (denoted by emin-1) and 255 (de-

noted by emax+1) inclusive.

For DP, the exponent consists of 11 bits (bits 52 through 62) , and the bias equals 1023. Values
for the biased exponent e thus fall between 0 (emin-1) and 2047 (emax+1), inclusive. Table D-1

summarizes these values for SP and DP.

3. Fraction (f): The fractional field consists of bits bi:
D-2 DSP96002 USER’S MANUAL MOTOROLA

31 30 23 22 0

S 8-bit biased
exponent 23-bit fraction

Single Precision

Double Precision

S
11-bit biased
exponent 52-bit fraction

63 62 52 51 0

Figure D-1. SP and DP Formats
 p-1 bias emin emax

SP 23 127 +1 +254
 DP 52 1023 +1 +2046

Table D-1. Parameters for Numerical Formats
f = •b1b2•••bp-1

There are 23 fractional bits (p=24) (bits 0 through 22) in the SP format, and 52 fractional bits
(p=53) (bits 0 through 51) in the DP format.

The sign bit, exponent, and fraction fields encode the numerical values of floating-point numbers, as well as
± 0, ±∞, and NaNs as follows:

1. Normalized Numerical Values (Emin ≤ E ≤ Emax): For numerical values, the biased exponent

e lies between emin and emax, inclusive. Equivalently, the exponent E takes on values between

Emin and Emax inclusive. Table D-1 summarizes these values for SP and DP. If the biased ex-

ponent e is larger than e
min

 (E is larger than E
min

), the number in question is called normalized,

i.e. the implicit integer value b0 is equal to one. Note that this integer value is not stored in mem-
ory. Normalized numbers x are equal in value to:

x = (-1)s • 2e - bias 1.f

where 1.f is a binary, fixed point number, i.e.:

1.f = 1+(o.5) • b
1
 + (0.25) • b

2
 +...+ (– 1

2
)

p-1
• b

p-1

Therefore, the smallest magnitude of any normalized number is equal to (e=e
min

, f=0):

x
min,n

 = 1 • 2
emin - bias

Using the value from Table D-1, this equals approximately 1.18 • 10-38 for SP numbers.

The largest (normalized) numerical value that can be represented equals (all b
i
=1, e=e

max
):
MOTOROLA DSP96002 USER’S MANUAL D-3

x
max,n

= (2 - 0.5
p-1

) 2
emax - bias

For SP this equals approximately (using the values in Table D-1) 3.4 • 1038 .

2. Denormalized Numerical Values (e = e
min

-1, f ≠ 0): When the exponent e equals the value e
min

-

1 and the fraction field is non-zero the floating point number is called denormalized, and the
implicit integer bit b0 is equal to zero. The numerical value of a denormalized number y is given
by:

y = (-1)s • 0.f • 2
emin-bias

The denormalization of the fractional part allows the representation of very small numbers near
the underflow threshold. The smallest possible magnitude of any denormalized number equals
(f=f

min
) :

y
min

 = (0.5)p-1 • 2
emin - bias

For SP denormalized numbers, this results in a smallest magnitude of 1.4 • 10-45 .

3. Zeros (e = e
min

-1,f=0): Floating point value(s) of zero are encoded by a biased exponent e

equal to e
min

-1, and a fractional field f of all zeros. Note that this encoding retains a significant

sign bit: plus and minus zero are two separate entities. Figure D-2 shows the encoding of plus
and minus zero in floating point format.

4. Infinities (e = e
max

 + 1, f = 0) Infinities are encoded in the floating point format by a biased ex-

ponent equal to e
max

+1, and a fractional field f consisting of all zeros. The sign bit distinguishes

between + and -∞. Figure D-3 shows the encodings for + and -∞ in SP and DP.

5. NaNs (e = e
max

+1, f≠0): NaNs are encoded in the floating point format by a biased exponent

equal to e
max

+1, and a nonzero fractional field. The value of the sign bit is irrelevant in this en-

coding.

QNaNs (b
1
=1) Quiet NaNs are represented by a fraction with MSB = 1 (and e=e

max
+1). The DSP96002 only

fully supports one QNaN, as required by the standard. This QNaN is encoded by a fractional field of all ones
(all b

i
 = 1 in f) ("legal" QNaN). Other types of QNaNs ("illegal" NaNs) may occur in multiprocessing situa-

tions (as generated by other processors) however, and do deliver well-defined results in the DSP96002.
When QNaNs other than the "legal" QNaN occur as operand(s) to floating point arithmetic, the delivered
result is always a "legal" QNaN. Figure D-4 shows the encoding for QNaNs.

SNaNs (b
1
=0) Signaling NaNs are never generated by the DSP96002 as arithmetic results, but may appear

in the DSP96002 memory as passed along by other processors. SNaNs are characterized by a MSB of the
fractional field equal to 0 (and e = e

max
). When a SNaN appears as an operand of an arithmetic instruction,

the invalid operation exception is signaled, and the result is returned as a "legal" QNaN.

The two basic formats, discussed in the previous paragraphs, are the only formats which are used for rep-
resentation of floating point values in the DSP96002 memory (internal and/or external). As is shown in Ap-
pendix D.1.4, the SEP format, generated exclusively by the data ALU as a result of floating point arithmetic
operations, is embedded in the DP format, and is thus stored implicitly as a DP number with zeros in the
lower 21 bits of the fraction.
D-4 DSP96002 USER’S MANUAL MOTOROLA

31 30 23 22 0

S

Single Precision

Double Precision

S

63 62 52 51 0

0 0

0 0
Figure D-2. Encodings for + and - Zero
31 30 23 22 0

S

Single Precision

Double Precision

S

63 62 52 51 0

0

0

11..................1

11...............................1
Figure D-3. Encodings for + and - Infinity
31 30 23 22 0

X

Single Precision

Double Precision

X

63 62 52 51 0

11..................1

11...............................1

1111....................................1

11111111..1
Figure D-4. Encodings for QNaNs
MOTOROLA DSP96002 USER’S MANUAL D-5

D.1.3 IEEE Floating Point Exceptions
The IEEE standard defines five types of exceptions which must be signaled when detected. The DSP96002
implements the default "trap disabled" way of signaling exceptions: when an exception occurs, a flag is set
and program execution continues. The flag remains set until cleared by the user. The different exceptions
are:

1. Invalid operation: The invalid operation exception is signaled when an operand is invalid for the
specific operation to occur. The result of an invalid operation is a QNaN, as described above.
Examples of invalid operations are 0/0, ∞/∞, ∞−∞, 0×∞, etc.

2. Division by zero: The result of a division by zero is an infinity (with the correct sign), and the
operation is signaled as an exception.

3. Overflow: The overflow exception is signaled when the result of an operation exceeds the larg-
est magnitude that the result precision can accommodate. The result is dependent upon the
rounding mode. For round to nearest, an infinity with correct sign is generated. Round to zero
results in the largest possible numerical value the result precision can accommodate, with cor-
rect sign (i. e., the result saturates). Round to -∞ results in the largest possible numerical value
the result precision can accommodate (i. e., the result saturates) when the overflow is positive.
It results in -∞ when the overflow is negative. Round to +∞ results in +∞ when the overflow is
positive, and in the smallest negative numerical value the result precision can accommodate (i.
e., the result saturates) when the overflow is negative.

4. Underflow: Underflow is signaled when both (1) a very small (tiny) number is detected as the
result of a floating point operation (nonzero result with true exponent smaller than the minimum
exponent, see Figure D-6) and (2) loss of accuracy is detected (delivered result differs from
what would have been computed if the exponent range was unbounded – i. e., cannot be ac-
curately represented as a denormalized number). Consider the case of floating point multipli-
cation as an example. Let the first SP source operand have a mantissa of 1.01, with biased ex-
ponent emin=1 (unbiased exponent of -126) and the second SP source operand have a mantis-

sa of 1.0 with a biased exponent of 60 (unbiased exponent of -67). The result of a multiplication
with infinite precision arithmetic would be a mantissa of 1.01 with actual (unbiased) exponent
of -193 (=-126-67). Since this exponent is smaller than the smallest exponent possible in SP,
the number is tiny, and since the number is so tiny that it cannot be accurately represented as
a denormalized number, loss of accuracy also ocurs, underflows will be signaled. The delivered
SP result would be a SP zero, and the underflow flag would be set. Note that the SEP format
can accommodate this exponent, and thus the result of an SEP operation would not signal the
underflow exception. In that case, the correct result is delivered. If the first operand of the SP
multiplication has the same value as before, but the second operand has a biased exponent of
96 (actual exponent of -31), the result of an infinite-precision multiplication has a mantissa of
1.01 and an actual exponent of -157. The SP result consists of a denormalized number (i.e.,
tiny) with a mantissa of 0.0000000000000000000000000000001 and biased exponent of 0.
Note that the denormalization process results in loss of accuracy, and therefore the the under-
flow flag will be set. Finally, if the second source operand has a biased exponent of 120 (actual
exponent of -7), then the resulting mantissa with infinite precision would be 1.01 as before, with
an actual exponent of -133. The SP result is again denormalized (tiny) with a mantissa of
0.000000101 and a biased exponent equal to 0. Note that there is no loss in accuracy due to
the normalization (no lost significant bits), and thus the underflow flag will not be set. The de-
D-6 DSP96002 USER’S MANUAL MOTOROLA

livered result is the correct SP denormalized number.

5. Inexact: The inexact exception is signaled if the delivered result differs from what would have
been obtained with infinite-precision arithmetic. For instance, the examples of underflow shown
above deliver numerically inexact results, and thus set the inexact flag. Another example is the
case where floating point numbers are rounded up or down.

D.1.4 DSP96002 Floating Point Storage Format in the Data ALU
The data ALU is designed to accommodate mixed-precision operands in a common format. To this end, a
common DP storage format is used internal to the data ALU. SP and DP numbers from memory are auto-
matically converted to the internal format by means of a format conversion unit, the operation of which is
transparent to the user.

The bit-level DP representation internal to the ALU is illustrated in Figure D-5. The internal floating point
format is 96 bits wide and consists of the following fields:

1. Sign of the mantissa (S) bit 95.

2. SP Unnormalized tag (U) bit 94. The U-TAG is set when writing a floating-point register with a
denormalized SP number. Cleared otherwise.

3. DP Unnormalized tag (V) bit 93. The V-TAG is set when writing a floating-point register with a
denormalized DP number (denormalized SEP in the DSP96002). Cleared otherwise.

4. Unused bits (Z) bits 75 through 92 and bits 0 through 10. These bits read as zeros, and should
be written with zeros for future compatibility. They are cleared by floating-point moves and op-
erations.

5. Biased Exponent (e) bits 64 through 74. Since the internal ALU format is DP, there are 11 ex-
ponent bits, with an integer bias of 1023 ($3FF). The encodings of the exponent are identical
to the ones explained in the section on memory storage formats (Appendix D.1.2) .

6. Integer bit (i or b0) bit 63. The integer bit is explicitly presented in the internal representation as

bit 63 and is the integer part of the mantissa.

7. Fraction – bits 11 through 62. This is a 52-bit field representing the fractional part of the man-
tissa (only 31 are used by the DSP96002 floating-point ALU). The remaining bits are set to
zero by floating-point ALU operations or single-precision floating-point moves. Since the inter-
nal format is DP, the fraction consists of 52 bits. The data ALU arithmetic, however, only pro-
vides results in either SP or SEP. The SEP format is the same as the DP format, except for the
size of the fraction. The SEP fraction consists of only 31 bits. Consequently, the lower 21 or 29
bits of the fraction will consist of zeros when representing SEP or SP arithmetic results, respec-
tively. When DP values are moved from memory to the data ALU, the fraction contains all 52
significant bits. However, when using these DP values as operands in a floating-point arithmetic
operation, only 31 bits of the 52-bit fraction are used; the remaining bits are simply truncated.
The SEP format is shown in Figure D-7.

D.1.5 Data ALU Block Diagram
The block diagram of the data ALU is shown in Figure D-8. The data ALU consists of four main parts:

1. Register file and automatic conversion unit: All operations in the data ALU are register-based:
operands as well as results of data ALU operations are read from and written to registers. A
MOTOROLA DSP96002 USER’S MANUAL D-7

95 94 93 92 75 74 64 63 62 32 31 11 10 0

S U V O E 0Fraction (MSBs) Fraction (LSBs)i

Dn.h Dn.m Dn.l

S : sign
U : single precision unnormalized tag
V : double precision unnormalized
 i : explicit integer

Tiny SP Numbers between ±2
Emin

-1.0 × 2-126 0 +1.0 × 2-126
register file consisting of 10 96-bit registers for storage of floating-point numbers is available for
that purpose. An automatic conversion unit converts the floating point storage format in memory
to the internal DP format when moving operands and/or results from/to memory.

2. Multiply unit: A full IEEE floating-point multiply unit, delivering either a SP or SEP result in one
instruction cycle.

3. Adder/Subtracter unit: A full IEEE floating-point adder/subtracter unit, which can deliver the
sum as well as the difference of two operands in the same instruction cycle, to either SP or SEP.

4. Special function unit: A special function unit provides various logic functions, as well as support
for divide and square root in terms of an initial seed for a fast convergent divide and square root
algorithm.

5. Controller and arbitrator: A controller/arbitrator supplies all of the control signals necessary for
the operation of the data ALU.

The data ALU uses the SEP format for all of its operations: the results are automatically rounded to either
SP or SEP. All of the rounding modes specified by the IEEE standard are supported. These rounding modes
are:
Figure D-5. DP Format in the Data ALU
Figure D-6. Tiny Numbers
95 94 93 92 75 74 64 63 62 32 31 11 10 0

S U V O E 0Fraction 0i

Dn.h Dn.m Dn.l
Figure D-7. SEP Format in the Data ALU
D-8 DSP96002 USER’S MANUAL MOTOROLA

Automatic Format Conversion Unit

d0.h d0.m d0.l d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

Register File

Control and

Arbitration Unit

Add/Subtract Unit

Multiply Unit

Special Function Unit

Operands Results

X-Data Bus

Y-Data Bus
Figure D-8. The Data ALU
1. Round to nearest (even): a convergent rounding mode, designed to deliver results without a
rounding bias. In this case the infinite-precision result is rounded to the finite-precision result
which is closest. In the case of an absolute tie, the infinite-precision result is rounded to the
"nearest even" finite precision result, as is illustrated in Table D-2.

2. finite precision result which is closest to zero. Clearly, results are rounded up in this mode when
negative, and down when positive.

3. Round to plus infinity: results are always rounded in the direction of plus infinity, i.e. "up".
MOTOROLA DSP96002 USER’S MANUAL D-9

4. Round to minus infinity: results are always rounded in the direction of minus infinity, or "down".

D.1.5.1 Register file and automatic format conversion unit
The general-purpose register file consists of ten 96-bit registers named d0..d9, as shown in Figure D-9.
Each 96-bit register accommodates the DP internal floating point storage format. Each 96-bit register is ob-
Infinite-precision Rounded result (to
result p=4 bits for example)
1.000 11100000.... 1.001 (round up)
1.000 01100000.... 1.000 (round down)
1.000 10000000....(absolute tie) 1.000 (round down)
1.001 10000000.... 1.010 (round up)

Table D-2. Example of the Round to Nearest Mode.
tained by the concatenation of three 32-bit registers dn.h:dn.m:dn.l. The registers dn.h, dn.m, and dn.l can
be accessed as individual registers by MOVE operations and integer and logic instructions, as is further de-
scribed in Appendix D.2.

The registers d0..d7 are general-purpose registers in the sense that MOVE instructions and data ALU op-
erations do not differentiate between them. They are used for data ALU source and destination operands
for most of the data ALU instructions. They can be used as operands for MOVE operations as well as for
data ALU operations in the same instruction cycle: dual source operands are allowed. They can not be used
as dual destinations in the same instruction cycle.

The registers d8 and d9 are auxiliary registers which can be used for temporary data storage. Their main
purpose is to allow a fast, four-cycle radix-2, decimation in time FFT butterfly kernel, though their use is cer-
tainly not limited to this application. d8 and d9 can only be used as source operands in multiply operations
and MOVE instructions, and can only be written as destinations of MOVE instructions.

The format conversion unit provides automatic format conversion from/to the SP and DP memory storage
d0.h d0.m d0.l d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

95 0
Figure D-9. The Data ALU’s Register File
D-10 DSP96002 USER’S MANUAL MOTOROLA

31 30 29 0

Fraction

23 22

E

95 94 74 73 72 71 64 63 62 32 31 11 10 0

S E (3)Fractioni*

X or Y Data Memory

i = 1 when normalized
i = 0 when unnormalized

(2) Dn

S

40 39

31 30 29 0

Fraction

23 22

E X or Y Data MemoryS

† † †† (1)

Notes: * –

† – When NaN bits 71, 72, 73 = 1
 When not NaN Bit 74 ↔ Bit 30
 Bits 73, 72, 71 are complement
 of Bit 74.

(1) – Bits 32-39 are nonzero when the register
 contains a SEP floating point result or a
 DP floating point number.
 Bits 32-39 are zero when the register
 contains a SP floating point number.

(2) – Bits 11-31 are only nonzero when the
 register contains a DP floating point
 number.

(3) – Bits 0-10 are always zero when
 representing a floating point number.
formats to/from the DP storage format in the data ALUs register file. The conversion is depicted in Figure
D-10 and is done in a transparent fashion.

When moving SP numbers into the data ALU, the 52-bit fraction of the DP internal format is written with the
23-bit fraction of the source in its most significant bits, and the implicit integer bit is made explicit. The re-
maining bits of the fraction are set equal to zero. If the number in question is denormalized (exponent = emin

and the first bit of the mantissa = 0), the U tag is set. In the non-IEEE "flush to zero" mode (indicated by the
FZ bit in the Status Register), the number is considered zero when used as an operand for floating-point
operations, although the contents of the register are not changed. In the IEEE mode, the number is "cor-
rected" when used as an operand for floating point calculations, at the expense of extra cycles introduced
for normalization.

The 8-bit exponent of the SP source is translated into an 11-bit exponent by copying the 7 least significant
bits of the source exponent into the seven least significant bits of the destination. The most significant bit of
the 8-bit exponent of the source is copied to the most significant bit of the exponent of the destination. The
Figure D-10a. Automatic Format Conversion – Single Precision
MOTOROLA DSP96002 USER’S MANUAL D-11

63 62 52 51 0

S Fraction

21 20

E

63 62 52 51 0

S Fraction

21 22

E

95 94 75 74 64 63 62 32 31 11 10 0

S E 0Fractioni

L Data Memory

L Data Memory

i = 1 when normalized
i = 0 when unnormalized

*

* – Bits 11-31 (in Dn) or 0-20
 (in L memory) are zero when
 the register contains an SEP
 result.

Dn
Figure D-10b. Automatic Format Conversion – Double Precision
remaining 3 bits of the destination’s exponent are set if the number is an NaN or infinity, otherwise they are
the inverted MSB of the source’s exponent. Inverting the MSB effectively changes the bias from 127 to
1023.

When moving single precision numbers from the data ALU to memory, the above process is reversed, as
shown in Figure 10-a. The 23 most significant bits of the fraction are moved to the 23 fraction bits of the
destination. Note that the contents of the data ALU register may have more than 23 fractional bits if it was
the result of a previous DP move or SEP arithmetic operation; in this case, the fraction is simply truncated.

The MSB of the 11-bit exponent of the source in the data ALU is moved to the MSB of the exponent of the
destination. The 7 LSBs of the exponent of the source are copied to the seven LSBs of the exponent of the
source. Note that if the source was not a SP number (result of a DP move or a SEP arithmetic operation),
an incorrect exponent may be moved. Therefore, care must be taken to always round results to SP before
moving them to memory as single precision numbers.

When moving DP numbers from memory, the 52 bit fraction of the source is moved to the 52 bit fraction of
the destination, and the implicit integer bit is made explicit. If the number is denormalized, the V tag is set.
Again, extra cycles may be required when a denormalized number is used as an operand, depending on
the FZ bit in the SR. The 11-bit exponent of the source is copied to the 11-bit exponent of the destination.

When moving DP numbers from the data ALU to memory, the above process is reversed, as shown in Fig-
D-12 DSP96002 USER’S MANUAL MOTOROLA

ure D-10b. Note that the 52-bit fraction may actually consist of zeros (21 or 29) if the number in question
was the result of a SEP arithmetic or a SP move. SEP arithmetic result precision can only be retained in
memory by using DP moves.

D.1.5.1.1 FLOATING-POINT MOVES TO/FROM DATA ALU REGISTERS
The following sections deal with the case where a write (move in) is followed by a read (move out) without
any floating-point operation being actually performed on the Data ALU register (save-restore procedure).
The only way to provide correct results for save-restore procedures is to perform the same type of moves
when writing and then reading the register (SP write followed by SP read or DP write followed by DP read).

D.1.5.1.1.1 Single Precision (SP) Move Of A SP Normalized Number
This section describes what happens when a 32-bit source (normalized single precision) is writen by a sin-
gle precision floating-point move and the data is stored in a Data ALU floating-point register D0-D9. Fol-
lowing the above operation, the Data ALU register will be read first by a single precision and then by a dou-
ble precision floating-point move.

 - 32-bit data from source is 3F800000 (= +1.0)
 - exp = 7F (8 bit bias)
 - mantissa = 000000 (the hidden bit is one)

 - data stored in the register
 - e = 3FF (correct representation with 11-bit bias)
 - I = 1 (the number is normalized so hidden bit is 1)
 - U-TAG = 0 (cleared; the number can be used in computations
 without adding extra cycles for normalization,
 since it is a normalized number) - fraction
= 00...00 - mantissa = 1.00...00
MOTOROLA DSP96002 USER’S MANUAL D-13

One should notice that both single and double precision floating-point moves out of the register will produce
correct results in this case.

D.1.5.1.1.2 SP Move Of A SP Denormalized Number
This section describes what happens when a 32-bit source (denormalized single precision) is writen by a
single precision floating-point move and the data is stored in a Data ALU floating-point register D0-D9. Fol-

 SP move into the register

 0 01111111 0000 00

 inv

 0 0 0 Zero 01111111111 1 0000 00

 SP read of the register

 0 0 0 Zero 01111111111 1 0000 00

 \ /

 0 01111111 0000 00 Data read correctly
 (read as 1.0)

 DP read of the register

 0 0 0 Zero 01111111111 1 0000 00

 \ /

 / \

 0 01111111111 0000 00 Data read correctly
 (read as 1.0)

\ /

/

D-14 DSP96002 USER’S MANUAL MOTOROLA

lowing the above operation, the Data ALU register will be read first by a single precision and then by a dou-
ble precision floating-point move.

 - 32-bit data from source is $00200000 (= +2**(-128))
 - exp = $00 (8 bit bias)
 - mantissa = $200000 (the hidden bit is zero)

 - data stored in the register
 - e = 380 (incorrect representation with 11-bit bias; the
 correct representation would be 37F)
 - I = 0 (the number is unnormalized)
 - U-TAG = 1 (set; the number cannot be used in computations
 without adding extra cycles for normalization,
 since it is unnormalized)
 - fraction = 40000000
 - mantissa = 0.010...00

In this last case, the U-TAG tells us that an operation using this operand will first add extra cycles to nor-
malize it. However, an SP move will render the correct result since the "formatting" scheme presented in
Section 5.5 chooses the right bits. One should notice that a double precision floating-point move that reads
MOTOROLA DSP96002 USER’S MANUAL D-15

the register will yield the wrong data in this case.

D.1.5.1.1.3 Denormalized Numbers In Double Precision (DP)
This section describes what happens when a 64-bit source (denormalized double precision) is writen by a
double precision floating-point move and the data is stored in a Data ALU floating-point register D0-D9.

 SP move into the register

 0 00000000 0100 00

 \ /

 inv
 / \

 0 1 0 Zero 01110000000 0 0100 00

 SP read of the register

 0 1 0 Zero 01110000000 0 0100 00

 \ /

 / \

 0 00000000 0100 00 Data read correctly
 (read as 2**(-128))

 DP read of the register

 0 1 0 Zero 01110000000 0 0100 00

 \ /

 / \

 0 01110000000 0100 00 Data read
 incorrectly (read
 as 1.01x2**(127))
D-16 DSP96002 USER’S MANUAL MOTOROLA

Following the above operation, the Data ALU register will be read first by a single precision and then by a
double precision floating-point move.

The denormalized double precision data is stored in the Data ALU register with the V tag set and the ex-
ponent set to $000 (always). The V-TAG set indicates that floating-point multiply operations will require
extra cycles to wrap it ("normalize") before using it as operand. Double precision moves will yield correct
results when reading the denormalized DP from the register to memory (the V-TAG will also be set when
single extended denormalized result is obtained from a Data ALU operation).

Here is an example of a double precision denormalized number:

 - 64 bit data from source is 0004000000000000 (= 2**(-1024))
 - exp = $000 (11-bit bias)
 - mantissa = $4000000000000 (the hidden bit is zero)

 - data stored in the register
 - e = 000 (correct representation with 11-bit bias)
 - I = 0 (the number is not normalized)
 - U-TAG = 0 (cleared; the number can be used in computations
 as it is by the adder)

 - V-TAG = 1 (set; it indicates a denormalized number in DP,
 requiring extra cycles for denormalization in
 multiply operations)
 - fraction = 40000000
 - mantissa = 0.010...00
MOTOROLA DSP96002 USER’S MANUAL D-17

D.1.5.1.1.4 Floating-Point Moves Summary
Figure C-1 summarizes what will be the result of a data move into an Data ALU register followed by a read
of the same register, depending on the data range and the type of moves.

 DP move into the register

 0 00000000000 0100 00

 \ /

 / \

 0 0 1 Zero 00000000000 0 0100 00

 NOTE THAT THE V TAG IS SET IN THIS CASE

 SP read of the register

 0 0 1 Zero 00000000000 0 0100 00

 \ /

 / \

 0 00000000 0100 00 Data read incorrectly
 (read as 2**(-128))

 DP read of the register

 0 0 1 Zero 00000000000 0 0100 00

 \ /

 / \

 0 00000000000 0100 00 Data read correctly
 (read as 2**(-1024))
D-18 DSP96002 USER’S MANUAL MOTOROLA

.

Note 1 The xx...xx pattern for the signaling NaNs indicates any NON-ZERO bit pattern.

 MOVE EXPONENT RANGE INPUT DATA TAGS MOVE MOVE
 IN (UNBIASED) OUT OUT
 TYPE U V TYPE RESULT

 SP e= 128 signaling NaN (SNAN) 0 0 SP CORRECT
 Fraction= written as DP SNAN
 .0xx...xx read as SNAN (see Note 1) DP CORRECT

 SP e= 128 non signaling NaN (QNAN) 0 0 SP CORRECT
 Fraction= written as DP QNAN
 .1xx...xx read as QNAN (see Note 2) DP CORRECT

 SP e= 128 infinity in SP 0 0 SP CORRECT
 Fraction= written as DP infinity
 .000...00 read as infinity (all formats) DP CORRECT

 SP -127<e< 128 normalized (all formats) 0 0 SP CORRECT

 DP CORRECT

 SP -150<e<-126 denormalized in SP 1 0 SP CORRECT

 DP WRONG

 DP e= 1024 signaling NaN (SNAN) 0 0 SP CORRECT
 Fraction= written as DP SNAN
 .0xx...xx read as SNAN (see Notes 1,3) DP CORRECT

 DP e= 1024 non signaling NaN (QNAN) 0 0 SP CORRECT
 Fraction= written as DP QNAN
 .1xx...xx read as QNAN (see Note 2) DP CORRECT

 DP e= 1024 infinity in SP 0 0 SP CORRECT
 Fraction= written as DP infinity
 .000...00 read as infinity (all formats) DP CORRECT

 DP -127<e< 1024 no SP representation 0 0 SP WRONG
 normalized in DP/SEP
 DP CORRECT

 DP -127<e< 128 normalized (all formats) 0 0 SP TRUNC

 DP CORRECT

 DP -150<e<-126 denormalized in SP 0 0 SP WRONG
 normalized in DP/SEP
 DP CORRECT

 DP -1023<e<-149 no SP representation 0 0 SP WRONG
 normalized in DP/SEP
 DP CORRECT

 DP -1054<e<-1022 denormalized (in DP/SEP) 0 1 SP WRONG

 DP CORRECT

Figure C- 1. Floating-Point Moves Summary

MOTOROLA DSP96002 USER’S MANUAL D-19

Note 2 The xx...xx pattern for the non-signaling NaNs indicates any bit pattern.

Note 3 If a register is written with a SNAN using a double precision floating-point move and then the
same register is read using single precision floating-point move the result will be a single preci-
sion SNAN (if the first 23 bits of the fraction are a non-zero pattern) or single precision infinity
(if the first 23 bits of the fraction are a zero pattern).

Note 4 The case when both U-TAG = 1 and V-TAG = 1 is reserved for future use.

D.1.5.1.2 RESULTS OF DATA ALU FLOATING-POINT OPERATIONS
This section describes how the Data ALU floating-point operation results are stored in the Data ALU regis-
ters.

All DSP96002 Data ALU floating-point operations are executed in single extended precision, using single
extended precision input operands, and return single extended or single precision results in double pre-
cision format. The results are formatted in double precision before being stored in the Data ALU registers.
When performing a DP move into a register and then using that register in a DSP96002 SEP floating
point operation, the mantissa of the operand will be first truncated to a SEP value, as the hardware is
unable to operate on more than 32 mantissa bits. Figure C-2 explains how a DP register is used as
operand for a SEP operating unit (adder/multiplier).

The 11-bit exponent used by the SEP operating units is identical with the exponent of the original DP
number loaded into the register (both have the same bias, namely $3FF). This means that the number
can be used in computations directly, assuming that the least significant 21 mantissa bits are zero, oth-
erwise a round towards zero occurs because the mantissa is truncated to 32 bits (21 bits of the 52-bit DP
mantissa are ignored).

D.1.5.1.2.1 Results Rounded To SP
Data ALU results are rounded to SP when the instruction is specified with the .S suffix (FMPY.S, FADD.S,
etc.).

 DP register
 95 63 62 32 0

 0 0 1 Zero 00000000000 0 010000 0........ 00

 \ / \ /
 these bits
 are ignored

 / \ / \

 0 00000000000 0100 00

 sign of the 11-bit exponent 32-bit mantissa
 mantissa with 11-bit bias (1 bit integer
 31 bits fraction)

Figure C -2. DP operand in a SEP operation
D-20 DSP96002 USER’S MANUAL MOTOROLA

D.1.5.1.2.2 Results Rounded To SP That Are Normalized
If the Data ALU operation result was rounded to SP and the rounded result may be represented as a nor-
malized single precision floating-point number, the result will be stored in normalized DP format that may
be read out by single and double precision moves without errors or truncation.

D.1.5.1.2.3 Results Rounded To SP That Are Denormalized
If the Data ALU operation result was rounded to SP and the rounded result must be represented as a de-
normalized single precision floating-point number, the result will be stored in unnormalized DP format with
the U tag set and the I bit cleared, and it may be read out by single precision moves without errors or trun-
cation. If the register is read by a double precision move, completely incorrect data will be obtained; see
the discussion in Section C.3.2.

In this case, before the result is delivered, an additional Data ALU execution cycle is required in which the
SEP mantissa is shifted right the required number of places for correct rounding to SP.

The presence of unnormalized numbers in DP format will add one dummy cycle followed by an additional
cycle for each unnormalized DP operand to any Data ALU operation that uses them as input. During the
additional cycle the unnormalized operand (U-TAG=1) is normalized, however the register itself will not be
modified.

D.1.5.1.2.4 Results Rounded To SEP
Data ALU results are rounded to SEP when the instruction is specified with the .X suffix (FMPY.X, FADD.X,
etc.).

D.1.5.1.2.5 Results Rounded To SEP That Are Normalized
If the Data ALU operation result was rounded to SEP and the rounded result may be represented as a nor-
malized single extended precision floating-point number, the result will be stored in normalized DP format
that may be read out by double precision moves without errors or truncation.

If the result stored in the register is read with a single precision move, two situations may occur:

1. The SEP exponent is in the range of the normalized SP exponent: the data read will be round-
ed to SP by truncating the SEP mantissa; this is equivalent to IEEE round towards zero.

2. The SEP exponent is not in the range of the normalized SP exponent: the data read will not
have the right exponent. The correct value should have been infinity, zero or a denormalized
SP, but the move instruction does not provide it.

D.1.5.1.2.6 Results Rounded To SEP That Are Denormalized
If the Data ALU operation result was rounded to SEP and the rounded result must be represented as a
denormalized single extended precision floating-point number, the result will be stored in normalized DP
format with the V tag set and I bit cleared, and it may be read out by double precision

moves without errors or truncation. If the register is read by a single precision move, completely incorrect
data will be obtained; see the discussion in Section C.3.3 (double precision and single extended precision
numbers have the same exponent bias).
MOTOROLA DSP96002 USER’S MANUAL D-21

D.1.5.1.2.7 Data ALU Results/Move Compatibility Summary
Figure C-3 summarizes what happens when Data ALU operation results of a certain range is stored in the
destination register, and the register is read by a certain kind of move.

 All cases where "move out type"=SP and "move out result"=WRONG can be corrected by rounding in the
instruction (using the .S option). The case where "move out type"=SP and "move out result"=TRUNC can
also be corrected by using the .S option.

 ROUND EXPONENT RANGE DATA ALU OPERATION TAGS MOVE MOVE OUT
 TO BEFORE ROUND RESULT OUT RESULT
 (UNBIASED) U V TYPE

 SP NaN operand or non signaling NaN (QNAN) 0 0 SP CORRECT
 invalid op written as DP QNAN
 e=7FF mantissa=1.11...11 DP CORRECT

 SP 127<e infinity (overflow) 0 0 SP CORRECT
 written as DP infinity
 e=7FF mantissa=1.00...00 DP CORRECT

 SP 127<e< 128 normalized (all formats) 0 0 SP CORRECT

 DP CORRECT

 SP -150 < e < −126 denormalized (in SP) 1 0 SP CORRECT

 DP WRONG

 SP e < −149 zero (underflow) 0 0 SP CORRECT

 DP CORRECT

 SEP NaN operand or non signaling NaN (QNAN) 0 0 SP CORRECT
 invalid op written as DP QNAN
 e=7FF mantissa=1.11...11 DP CORRECT

 SEP 1023<e infinity in SP and SEP 0 0 SP CORRECT
 written as DP infinity
 e=7FF mantissa=1.00...00 DP CORRECT

 SEP 127<e< 1024 infinity in SP 0 0 SP WRONG
 normalized in SEP
 DP CORRECT

 SEP -127<e< 128 normalized (all formats) 0 0 SP TRUNC

 DP CORRECT

 Figure C -3. Data ALU Results/Move Compatibility Summary (Continued)
D-22 DSP96002 USER’S MANUAL MOTOROLA

D.1.5.2 Multiply unit
The multiply unit consists of a hardware multiplier, an exponent adder, and a control unit, as shown in Figure
D-11. The multiply unit accepts two 44 bit input operands for floating point multiplications, each consisting
of a sign bit, eleven exponent bits, the explicit integer bit, and 31 fractional bits. Note that for full double pre-
cision operands, as obtained by double precision MOVEs, the least significant 8 bits of the fraction are sim-
ply truncated. Multiply operations occur in parallel with and independent of data moves over the X and Y
data buses.

The hardware multiplier accepts the two 32-bit mantissas (integer bit + 31 bit fraction), and delivers a 64 bit
result, as shown in Figure D-12. This result is automatically rounded to a 32-bit mantissa for SEP arithmetic
or a 24 bit mantissa for SP arithmetic, as specified by the instruction opcode. The result is stored into the
mantissa portion of the destination register.

The exponent adder takes the two unsigned (i. e., biased) operand exponents, adds them together, and
subtracts the bias, resulting in an 11-bit biased exponent which is stored in the exponent part of the floating
point format in the destination register, as depicted in Figure D-13.

D.1.5.3 Adder/Subtracter Unit
The adder unit is depicted in Figure D-14, and consists of a barrel shifter and normalization unit, an add unit,
a subtract unit, an exponent comparator and update unit and a special function unit. The adder/subtracter
unit accepts 44-bit floating point operands, and delivers 44-bit results. The adder/subtracter operations de-
liver the sum and the difference of the same two floating point operands in a single instruction cycle. In ad-
dition, the barrel shifter used for mantissa alignment in floating point additions and subtractions is used for
executing multibit shifts. The adder/subtracter operates in parallel with and independent of data moves over
the X and Y data buses.

The add unit is a high speed 32-bit adder, used in all floating-point non-multiply operations. For floating point
operations, 32-bit mantissas (1 integer bit and 31 fractional bits) are first "aligned" for floating point addition

 ROUND EXPONENT RANGE DATA ALU OPERATION TAGS MOVE MOVE OUT
 TO BEFORE ROUND RESULT OUT RESULT
 (UNBIASED) U V TYPE

 SEP -150< e < -126 denormalized in SP 0 0 SP WRONG
 normalized in SEP
 DP CORRECT

 SEP -1023< e < -149 zero in SP 0 0 SP WRONG
 normalized in SEP
 DP CORRECT

 SEP -1054< e< -1022 zero in SP 0 1 SP WRONG
 denormalized in SEP
 DP CORRECT

 SEP e< -1053 zero in SP 0 0 SP CORRECT
 zero in SEP (underflow)
 DP CORRECT

Figure C- 4. Data ALU Results/Move Compatibility Summary
MOTOROLA DSP96002 USER’S MANUAL D-23

Exponent Adder Multiplier Array Control

ES1 ES2 MS1 MS2

ED MD
Figure D-11. The Multiply Unit
in the barrel shifter and normalization unit, after which they are added in the add unit. The result is then
rounded to 32-bits for SEP results, and to 24 bits for SP results, as indicated by the instruction opcode. The
type of rounding implemented depends on the rounding mode bits in the MR register. The rounded result is
stored in the middle portion (mantissa) of the destination register.

The subtract unit is a high speed 32-bit adder/subtracter, used in all floating-point non-multiply operations
and in all fixed point operations delivering a 32-bit result. For floating point operations, 32-bit mantissas (1
integer bit and 31 fractional bits) are first "aligned" for floating point subtraction in the barrel shifter and nor-
malization unit, after which they are subtracted in the subtract unit. The result is then rounded to 32-bits for
SEP results, and to 24 bits for SP results, as indicated by the instruction opcode. The type of rounding im-
plemented depends on the rounding mode bits in the MR register. The rounded result is stored in the middle
portion (mantissa) of the destination register for floating point operations, and in the low portion for fixed-
point operations. This is shown in Figure D-15.

The barrel shifter/normalization unit is used for the alignment of the two operand mantissas, needed for ad-
dition of two floating point numbers. The barrel shifter is a 32-bit left-right multibit shifter, which is also used
in fixed point arithmetic and logic shifting operations with a 32-bit result. For the addition of two floating point
operands, the barrel shifter receives the exponent difference of the two operand exponents from the expo-
nent comparator and update unit, and uses this difference to align the mantissas for addition. For example,
if the biased exponent of the first floating point operand equals 10 and the biased exponent of the second
floating point operand equals 13, the mantissa of the first operand will be right shifted by three positions (3
bit shift).

The exponent comparator and update unit consists of an 11 bit subtracter, which compares the two expo-
nents of floating point operands, and delivers the difference to the barrel shifter for mantissa alignment. The
largest of the two exponents is delivered to the exponent update unit. The exponent update unit may update
D-24 DSP96002 USER’S MANUAL MOTOROLA

M1 M2

MD

D

32 Bits

64 Bits

32 Bits
32 Bits

Multiplier Array

Round Rounding mode is determined
by rounding bits in the MR.
Figure D-12. The Multiply Unit
this exponent for normalization of the result, after which the exponent (biased) is stored in the high portion
of the destination register. This is depicted in Figure D-16.

For example, if the mantissa of the first operand in a floating point addition is 1.010...0, with biased exponent
of 10, and the mantissa of the second operand is 1.000...0000, with biased exponent of 13, the exponent
comparator simply delivers the difference (=3) to the barrel shifter, the first operand’s mantissa is aligned to
0.001010...0, the two mantissas are added to deliver 1.001010...0, and the result (biased) exponent equals
13. The postnormalization unit does not need to postnormalize the result in this case.

If the first operand’s mantissa is 1.010...0 with biased exponent of 13 and the second operand’s mantissa
is 1.000...0 with biased exponent of 13, the exponent difference is zero and the barrel shifter does not need
to realign the mantissas. The result after addition is now equal to 10.010...0, which needs to be postnormal-
ized by adding one to the result exponent. The exponent update unit sets the result exponent (biased) equal
to 14 and the result mantissa is 1.0010...0.

Finally, if the first operand’s mantissa in a floating point subtraction is 1.010...0 with biased exponent of 10,
and the second operand’s mantissa is 1.00...0 with a biased exponent of 10, the result mantissa after sub-
traction is -0.010...0. This is not normalized, and the postnormalization unit subtracts two from the exponent.
The result mantissa is -1.000...0 with a biased exponent equal to 8.

D.1.5.4 Special Function Unit
The special function unit consists of a logic unit and a divide and square root unit. The logic unit is further
described under the fixed point (integer) operations.

The divide and square root unit supports execution of the divide and square root algorithms. These algo-
rithms are iterative, and require an initial approximation or "seed". The FSEEDD and FSEEDR instructions
MOTOROLA DSP96002 USER’S MANUAL D-25

M1 M2

ED

D

11 Bits

11 Bits
11 Bits

Add exponents
and subtract bias

S1 S2
Figure D-13. The Exponent Adder
provide an initial approximation to 1/x and sqrt(1/x), as is described in Appendix A.

D.1.5.5 Controller and Arbtrator Unit
The controller and arbitrator (CA) unit supplies control signals to the processing units of the data ALU and
register file, and is responsible for the full implementation of the IEEE standard. Its operation is determined
by the flush-to-zero (FZ) bit in the status register (SR), which determines whether or not denormalized num-
bers are treated as defined by the standard. In the flush-to-zero mode, all denormalized input operands are
treated as zeros (although their original contents are preserved), and denormalized results are set equal to
zero ("flushed-to-zero"). In the flush-to-zero mode, no additional cycles are required for the normalization of
denormalized numbers as they are treated as zeros. In the IEEE mode, the standard for treatment of de-
normalized numbers is correctly and fully implemented. However, operations on denormalized numbers can
not be performed in a single instruction cycle, except for operations done in the floating point adder when
the operand is a denormalized number in SEP. The controller and arbitrator is responsible for providing the
correct sequence that deals with such situations.

When denormalized numbers are detected as input operands in IEEE mode, the CA unit adds one extra
cycle for entering the IEEE mode procedure. Next, one additional cycle is added for each denormalized in-
put operand. These cycles are used to normalize the input operand. The original value of the operand in the
source register is not affected. During the IEEE mode procedure all activity of the chip is suspended until
the input operands have been normalized. When denormalized output results are detected, the IEEE mode
procedure is entered (one additional instruction cycle) and each result is again normalized (another cycle).
D-26 DSP96002 USER’S MANUAL MOTOROLA

Exponent Comparator/ Barrel Shifter/

Adder

ES1 ES2 MS1 MS2

ED1 MD2

Update Unit Normalization Unit

Subtracter

Round

ED2MD1
Figure D-14. The Adder/Subtracter
Adder Subtracter

From Pre-normalization

32 Bits

MRMR Rounding Rounding

32 Bits 32 Bits 32 Bits

32 Bits 32 Bits

To Post-normalization
Figure D-15. The Adder/Subtracter Unit
MOTOROLA DSP96002 USER’S MANUAL D-27

Exponent Comparitor/Update Unit

11 Bits

11 Bits 11 Bits

11 Bits

ES1 ES2

max(E1, E2) E1-E2

To Mantissa
Alignment

To Post-
Normalization
Figure D-16. Exponent Comparator/Update Unit.
D.2 FIXED-POINT NUMBER STORAGE AND ARITHMETIC

D.2.1 General
Integer operand sizes are defined as follows:

1. Byte: 8 bits long

2. Short word: 16 bits long

3. Word: 32-bits long

4. Long word: 64 bits long

The operand size for each instruction is either explicitly encoded in the instruction or implicitly defined by
the instruction.

D.2.2 Integer Storage Format in Memory
The DSP96002 supports four integer memory data formats:

1. Signed word integer: 32-bits wide, two’s complement representation. This storage format can
be used in either X and/or Y data memory space.

2. Signed Long Word Integer: 64 bits wide, two’s complement representation. This storage format
can only be used in long (L) data memory space.

3. Unsigned Word Integer: 32-bits wide with unsigned magnitude representation. This storage for-
mat can be used in either X and/or Y data memory space.
D-28 DSP96002 USER’S MANUAL MOTOROLA

4. Unsigned Long Word Integer: 64 bits wide with unsigned magnitude representation. This stor-
age format can only be used in long (L) data memory space.

Long type integers can be moved to and from the data ALU register file. However, long integers can not be
directly used as input operands to data ALU operations. Long integers can however be results of data ALU
operations.

D.2.3 Integer Storage Format in the Data ALU
There are thirty 32-bit registers in which can contain integer words. However, data ALU arithmetic opera-
tions use the low portion of the register files as word source and destination operands. Long word integers
are only generated as results of integer arithmetic operations and are never used as source operands.

D.2.4 Integer Arithmetic
The integer arithmetic operations use the same arithmetic units in the data ALU as the floating point oper-
ations. These units consist of:

1. Adder: The subtract unit in the adder/subtracter unit described above is used for integer add
and subtract operations. It accepts two 32-bit integer operands from the low portions of the data
ALU source registers and delivers a 32-bit result in the low portion of the destination register.

2. Multiplier: The multiplier in the multiply unit described above also performs the integer multi-
plications. It accepts two 32-bit operands in the low portion of the data ALU source registers,
and delivers a 64-bit result in the low and middle portions of the destination register. Both
signed and unsigned multiplications are supported.

3. Logic Unit: The logic unit is responsible for the logical operations AND, ANDC, OR, ORC,
EOR, NOT, ROR. In addition, it performs the bit field manipulation instructions SPLIT, SPLITB,
JOIN, JOINB, EXT, and EXTB. The logic unit operates on 32-bit operands located in the low
portions of the data ALU registers. Results are also stored in the low portion of the destination.

4. Barrel Shifter: The barrel shifter in the normalization unit used for mantissa alignment in float-
ing point additions is also available for performing multibit shifts on integer (fixed-point) data.
Both single and multibit arithmetic shifts left and right and logical shifts left and right are sup-
ported.
MOTOROLA DSP96002 USER’S MANUAL D-29

Order this document by DSP96002UM/AD

Motorola reserves the right to make changes without further notice to any products herein to im-
prove reliability, function or design. Motorola does not assume any liability arising out of the appli-
cation or use of any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola products are not authorized for use as components
in life support devices or systems intended for surgical implant into the body or intended to support
or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola
shall determine availability and suitability of its product or products for the use intended. Motorola
and M are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Oppor-
tunity /Affirmative Action Employer.

OnCE is a trade mark of Motorola, Inc.

 Motorola Inc., 1994

MOTOROLA

TECHNICAL DATA

SEMICONDUCTOR

Order this document by
DSP96002UMAD/AD

Addendum to

DSP96002 Digital Signal Processor User Manual
THE DSP96002 INSTRUCTION CACHE and
32-BIT TIMER/EVENT COUNTER

DSP96002
FOREWORD
This document is an addendum to the DSP96002 IEEE Floating-Point Dual-Port Proces-
sor User’s Manual (DSP96002UM/AD). It describes significant new features added to the
DSP96002 functionality, including an instruction cache, a new integer mode of operation
and new parallel integer instructions to support it, data ALU register file decoupling, en-
hancements to the OnCE, and a new timer/event counter.

The revised DSP96002 is fully compatible with its predecessor. Special mode bits in var-
ious registers allow the user to access the new features.

This addendum describes each of the features in detail. Section 2 introduces the Instruc-
tion Cache. Section 3 describes the new integer mode and its associated parallel integer
instructions. Section 4 presents presents the single precision mode. Section 5 introduces
enhancements to the On Chip Emulation (OnCE) module. Section 6 describes the new
timer/event counter modules, Section 7 discusses some additional changes to support
the timer operation, and APPENDIX A gives the details of additions to the DSP96002
instruction set.

1 SUMMARY OF NEW DSP96002 FEATURES
Instruction Cache
The functionality of the 1K internal Program Memory (PRAM) has been extended by al-
lowing it to operate as a 4K byte (1K word) “real-time” Instruction Cache. The term “real-
time” emphasizes the high degree of controllability available within the Instruction Cache
permitting deterministic results. After reset the cache is disabled and the Program Mem-
ory functionality is identical to the DSP96002 described in the DSP96002 User’s Manual.
 MOTOROLA INC., 1993 May, 1993

MOTOROLA

This document contains information on a new product. Specifications and information herein are subject to change without notice.

2

 Integer Mode
The integer performance on the DSP96002 has been doubled with the introduction of the
Integer Mode (IM). The Integer Mode of operation significantly improves the performance
of integer algorithms and supports four new parallel arithmetic operations:

• integer signed multiply and add (MPYS//ADD)
• integer signed multiply and subtract (MPYS//SUB)
• integer unsigned multiply and add (MPYU//ADD)
• integer unsigned multiply and subtract (MPYU//SUB)

 Single Precision Mode
The newly added Single Precision Mode (SPM) of operation improves the efficiency of the
Data ALU register file. This new operating mode gives the user access to two Data-ALU
register files: a 10 floating-point register file (d0.h..d9.h, d0.m..d9.m) and a 10 integer reg-
ister file (d0.l..d9.l). If the program uses only single-precision MOVE operations and float-
ing-point operations that yield single-precision results, then the two register files are
completely decoupled - thus effectively doubling the amount of registers available to the
data ALU.

 OnCE Enhancement
The support for development and debugging of multiprocessor systems has been
improved by the addition of a new OnCE1 feature that permits simultaneous start of the
program execution for any number of processors, regardless of the code they are exe-
cuting. Different processors may be stopped at different points in the code they are exe-
cuting, and then their activity may be restarted synchronously and simultaneously.

Timer/Event Counter Modules
This addendum also describes the two identical and independent timer/event counter
modules newly featured on the DSP96002. The timers can use internal or external clock-
ing and can interrupt the processor after a number of events (clocks) specified by a user
program, or it can signal an external device after counting internal events. Figure 1 shows
the DSP96002 block diagram revised to include the timers.

New aWR and bWR (Write Strobe) Pins
The DSP96002 features two new outputs, aW/R and bW/R, which support a glueless in-
terface to external SRAMs. They are active-low when the DSP96002 is the bus master,
and three-stated when the DSP96002 is not the bus master. They are asserted during ex-
ternal memory write cycles to indicate that the address lines A0-A32, S1, S0, BS, BL, and
R/W are stable. The output data goes to the data bus after WR is asserted. WR is three-

1. OnCE is a trademark of Motorola Inc.
MOTOROLA

MO

stated during hardware reset, requires a weak external pull-up resistor, and can be con-
nected directly to the WE pin of a static RAM. The DSP96002 diagram shown in Figure 6
on page 29 includes the new write strobe pins.

The timings and functionality of TS and R/W remain unchanged, so that existing configu-
rations may still be used. From a logical standpoint, WR = (TS or R/W).

2 INSTRUCTION CACHE

2.1 INTRODUCTION
The instruction cache may be viewed as a buffer memory between the main (external
and probably slow) memory, and the fast CPU. The cache is used to store frequently
used program instructions and it offers an increase in throughput by eliminating the time
required to access the instruction words on the external bus.

Reduced external bus activity maintains single-cycle program memory access, while al-
lowing the use of a low cost, slow external program memory. It also frees the processor’s
memory expansion port for other tasks such as data moves, DMA transfers, Host Interface
data moves, etc.

Figure 1 - DSP96002 Block Diagram

INTERNAL
SWITCH and BIT
MANIPULATION

UNIT

PROGRAM CONTROLLER

ADDRESS

DATA

YAB

XAB

PAB

YDB

XDB

PDB

GDB

32-BIT HOST
INTERFACE

PROGRAM
ADDRESS

GENERATOR

PROGRAM
ADDRESS

GENERATOR

PROGRAM
INTERRUPT

CONTROLLER

CLOCK
GENERATOR

DDB

DUAL CHANNEL
DMA

CONTROLLER

OnCE DEBUG
CONTROLLER

4 SERIAL
DEBUG
PORT

MODB/IRQB
MODA/IRQA

RESET

EXTERNAL
ADDRESS
SWITCH

ADDRESS
GENERATION

UNIT (AGU)

EXTERNAL
DATA BUS
SWITCH

• IEEE FLOATING POINT
• 32x32 INTEGER ALU

CLK

 MEMORY
512x32
RAM

 MEMORY
512x32
RAM

PROGRAM

1024x32
RAM
and

64x32
BOOTSTRAP

ROM
512x32
ROM

512x32
ROM

DATA ALU

32-BIT BUSES

ADDRESS EXTERNAL
ADDRESS
SWITCH

BUS
CONTROL

CONTROL

EXTERNAL
DATA BUS
SWITCH

P
O

R
T

 B

MEMORY X DATA Y DATA

32

MODC/IRQC

BUS
CONTROL

CONTROL

32-BIT HOST
INTERFACE

DATA
32

* * *

*

*

*

*

DUAL ACCESS (DMA/CORE)

4
4

1919

INSTRUCTION
CACHE

TIMERTIMER

P
O

R
T

 A
TOROLA 3

4

The DSP96002 instruction cache is a “real-time” cache and therefore it has no inherent
penalty on a cache miss. In other words, if there is a cache hit, it takes exactly one bus
cycle to fetch the instruction from the on-chip cache - like fetching any other data from an
on-chip memory. If there is a cache miss, it behaves exactly as a “normal” instruction fetch,
as if it were fetching any other data from that external memory.

Furthermore, a “real-time” instruction cache allows the user to declare some code areas
as time-critical and therefore “non-replaceable”. Six new instructions have been added to
the instruction set, allowing the user to lock sectors of the cache, and to flush the cache
contents under software control.

The following list is a summary of the instruction cache features:

• 1K, 32-bit wide, on-chip instruction cache

• Switching from PRAM mode to cache mode is software controlled

• Fully compatible with the DSP96002 PRAM mode when cache is disabled

• 8-way, fully associative, sectored cache

• One-word transfer granularity

• Least recently used (LRU) sector replacement algorithm

• User transparent - no user management required

• No additional wait states on cache miss

• Global cache mode, allowing normal cache operation

• Individual sector locking, preventing replacement of sector contents, but allowing
updating of new entries within sector

• Global cache flush in software, allowing immediate clearing of the contents of the
Instruction Cache

• Global PRAM mode, allowing compatibility with original architecture (including
PRAM disabled and DMA to/from program memory)

• Full cache observability (tags, valid-bits, LRU, locked sectors) with OnCE
commands in debug mode.

2.2 INSTRUCTION CACHE STRUCTURE
A cache controller has been added to the existing Internal Program RAM. Figure 2 shows
a block diagram of the instruction cache controller.

The internal program RAM contains 1024 32-bit words, logically divided into eight 128-
word cache sectors. In a similar way, the external program memory is virtually divided into
128-word sectors. The term “sector” is used, rather than “block”, since a sectored-cache
distinguishes between “sectors” which are the basic replacement units, and “blocks” which
are the basic transfer units. In our case a “block” is a 32 bit word so that one can use the
terms “block” and “word” interchangeably.
MOTOROLA

MO

Since there are 8 sectors of 128 words each, in the internal program RAM, the 32 bit ad-
dress is divided into the following two fields:

• 7 LSBs for the word displacement or offset in the sector

• 25 MSBs for the tag

The sector placement algorithm is fully associative so that each external program memory
sector could be placed in any of the 8 internal program RAM sectors, essentially making
it an eight-way fully associative cache.

A 25-bit tag is associated with every one of the eight internal program memory RAM sec-
tors. When the cache controller searches for a tag equal to the tag field of the current ad-
dress, it compares it to the eight tags in parallel using the eight comparators.

Each word in each cache sector is associated with a cache-word-valid-bit (or valid-bit),
that specifies whether the data in that word has already been fetched from external mem-
ory and is therefore valid. There are a total of 1024 valid-bits, arranged as eight banks of
128 valid-bits each, one bank for every sector. Note that the valid-bits are not available to
the user for direct use. They are cleared by the processor RESET to indicate that the
PRAM context has not been initialized.

32 bit address 25 bit Tag Field 7 bits

comparator 0

tag 0

128 valid
bits for
sector 0

hit/miss

Figure 2 - Cache Controller Block Diagram

Tag Values
TOROLA 5

6

2.3 CACHE OPERATION
During cache operation each instruction is fetched on demand, only when it is needed.
When the core generates an address for an instruction fetch, the cache controller com-
pares the tag field portion of the physical address to the tag values currently stored in the
tag register file. The tag values are the memory sector’s 25 upper bits currently mapped
into the cache.

When a tag match occurs (i.e. sector hit), then the valid-bit of the corresponding word in
that cache sector is checked. If the valid-bit is set, meaning the word in the cache has al-
ready been brought to the cache and is valid, then that word is fetched from the cache
location corresponding to the desired address. This event is called a cache hit, meaning
that both the sector and its corresponding instruction word are present and valid in the in-
struction cache. The sector replacement unit (SRU) updates the used sector state accord-
ing to the LRU algorithm.

When a tag match occurs, but the desired word is not valid in the cache (corresponding
valid-bit cleared, indicating a word miss), then the cache initiates a read cycle from the
external program memory. The fetched instruction is both sent to the core and copied to
the relevant sector location. Then the valid-bit of that word is set. All of this is done in par-
allel with normal execution and does not require any additional clock or memory cycles.
The SRU updates the used sector state according to the LRU algorithm.

If no match occurs between the tag field and all sector tag registers, meaning that the
memory sector containing the requested word is not present in the cache, the situation is
called a sector miss, which is another form of a cache miss. When a sector miss occurs,
the cache’s SRU selects the sector to be replaced. The cache controller then flushes the
selected cache sector by resetting all corresponding valid-bits, loads the corresponding
tag register with the new tag field, and at the same time initiates an external instruction
read cycle from the physical address requested by the core. When the data arrives from
external memory, it is transferred to the core, and at the same time the cache controller
copies it to the word location in the cache sector, specified by the 7 LSBs of the address,
and sets the corresponding valid-bit. The SRU now updates the new situation in the sector
replacement control unit.

In PRAM mode, when the cache is disabled, fetches are done internally or externally as
in the first revision of the DSP96002.

2.4 INSTRUCTION CACHE PROGRAMMING MODEL

2.4.1 Operating Mode Register (OMR)
To support the cache operation, the Operating Mode Register (OMR) now features a new
MOTOROLA

MO

Cache Enable (CE) bit. When the CE bit is cleared (0) the DSP96002 is in PRAM mode.
When the CE bit is set, the processor is in cache mode. The CE bit is cleared during reset.

2.5 NEW INSTRUCTIONS
The DSP96002 instruction set features six new instructions discussed in the following
paragraphs to support the instruction cache operation. APPENDIX A, starting on page 54,
presents a full description for each of the new instructions.

2.5.1 PLOCK ea
The PLOCK instruction locks the cache sector to which the specified effective address be-
longs. If the specified effective address does not belong to any cache sector, then the in-
struction will load the least recently used cache sector tag with the 25 most significant bits
of the specified address and then lock that cache sector. The instruction will update the
LRU stack accordingly.

All memory-alterable addressing modes may be used for the effective address, but a short
absolute address may not.

The PLOCK instruction is enabled only in cache mode. In PRAM mode it will cause an
illegal instruction trap to be taken.

2.5.2 PUNLOCK ea
The PUNLOCK instruction unlocks the cache sector to which the specified effective ad-
dress belongs. If the specified effective address does not belong to any cache sector, the
instruction will load the least recently used cache sector tag with the 25 most significant
bits of the specified address. The instruction will then update the LRU stack accordingly.

All memory-alterable addressing modes may be used for the effective address, but a short
absolute address may not.

The PUNLOCK instruction is enabled only in cache mode. In PRAM mode it will cause an
illegal instruction trap to be taken.

2.5.3 PLOCKR label or PLOCKR Rn
The PLOCKR instruction locks the cache sector to which the sum (PC + specified dis-
placement) belongs. If the sum does not belong to any cache sector, then the instruction

31 5 4 3 2 1 0
MAMBMCDECEreserved

Cache Enable

SPM

6

TOROLA 7

8

will load the least recently used cache sector tag with the 25 most significant bits of the
sum and then lock that cache sector. The instruction will update the LRU stack according-
ly.

The displacement is a 2’s complement 32-bit integer that represents the relative distance
from the current PC to the address to be locked. Short Displacement, Long Displacement
and Address Register PC Relative addressing modes may be used. The Short Displace-
ment 15-bit data is sign extended to form the 32-bit PC Relative Displacement.

The PLOCKR instruction is enabled only in cache mode. In PRAM mode it will cause an
illegal instruction trap to occur.

2.5.4 PUNLOCKR label or PUNLOCKR Rn
The PUNLOCKR instruction unlocks the cache sector to which the sum (PC + specified
displacement) belongs. If the sum does not belong to any cache sector, and is therefore
definitely unlocked, nevertheless, the instruction will load the least recently used cache
sector tag with the 25 most significant bits of the sum. The instruction will then update the
LRU stack accordingly.

The displacement is a 2’s complement 32-bit integer that represents the relative distance
from the current PC to the address to be locked. Short Displacement, Long Displacement
and Address Register PC Relative addressing modes may be used. The Short Displace-
ment 15-bit data is sign extended to form the 32-bit PC Relative Displacement.

The PUNLOCKR instruction is enabled only in cache mode. In PRAM mode it will cause
an illegal instruction trap to occur.

2.5.5 PFREE
The PFREE instruction unlocks all the locked cache sectors.

The PFREE instruction is enabled in both the cache mode and the PRAM mode.

2.5.6 PFLUSH
The PFLUSH instruction will flush the whole cache, unlock all cache sectors, set the LRU
stack, and tag registers to their default values.

The PFLUSH instruction is enabled both in cache mode and PRAM mode.
MOTOROLA

MO

2.6 CACHE OPERATING MODES
There are two main operating modes for the DSP96002: cache mode and PRAM mode.
They are both global, as they affect the internal program memory as a whole. When the
processor is in cache mode, each separate sector could be in one of two operating modes:
sector unlocked mode or sector locked mode. When the processor is in PRAM mode the
PRAM itself could be in one of two modes: PRAM enabled or PRAM disabled. Both in
cache mode and PRAM mode, the whole cache can be flushed by a software instruction.

The following list summarizes the DSP96002’s operating modes:

 Cache Mode (global):
• Sector Unlocked Mode (per sector)

• Sector Locked Mode (per sector)

• Cache flush (global)

 PRAM Mode (global):
• PRAM Enabled (global)

• PRAM Disabled (global)

• Cache flush (global)

2.6.1 Cache Mode
In the cache mode, accesses to the storage area of the sectors are done implicitly by in-
struction fetches or by MOVEM instructions. DMA references to and from program mem-
ory space (in the cache or external) are disabled in hardware.

2.6.1.1 Sector Unlocked Mode
When the processor is in the sector unlocked mode, the program memory sector is con-
figured as a regular cache sector. Sector replacement from that cache sector is allowed.
The cache controller will decide when to replace an external memory sector that resides
in a certain cache sector (sector miss), according to the cache controller LRU algorithm.

Unlocking a sector could happen in four different situations. In the first situation, the user
unlocks a specific cache sector by using the PUNLOCK instruction. In the second situa-
tion, the user unlocks all the cache sectors in the internal program memory by using the
PFREE instruction. In the third situation, the user unlocks all the cache sectors in the in-
ternal program memory as part of a cache flush by using the PFLUSH instruction. In the
forth situation, a hardware reset unlocks all the cache sectors.

A locked sector can be unlocked by the new special instructions PUNLOCK and PUN-
LOCKR. Their operand is an effective memory address. The memory sector containing
this address is allocated into a cache sector (if it is not already in a cache sector) and the
TOROLA 9

10

cache sector is unlocked. As a result of this sequence, the unlocked cache sector is
placed at the top of the LRU stack, as it is the most recently used.

Unlocking a locked cache sector using the PUNLOCK or PUNLOCKR instructions does
not affect the sector’s contents, its tag, or its valid-bits. If the specified effective address
does not belong to one of the current cache sectors, a memory sector containing the spec-
ified address will be allocated into the cache, thereby flushing the least recently used
cache sector. The unlocked cache sector will be placed at the top of the LRU stack and it
will be readied for replacement by the LRU algorithm.

All of the locked sectors can be unlocked simultaneously using PFREE instruction, which
provides a software reset of the locking mechanism. Unlocking the sectors using PFREE
does not affect the sectors’ contents (instructions already fetched into the sector storage
area), their valid-bits, their tag register contents or the LRU stack status.

The locked sectors could also be unlocked by the PFLUSH instruction as part of a total
cache flush. Unlocking the sectors using PFLUSH clears all the sector’s valid-bits and sets
the LRU stack and tag registers to their default values.

2.6.1.2 Sector Locked Mode
The sector locked mode is useful for latching some time critical code parts in the cache
memory. The sector locked mode is set by the user to lock the memory sector that cur-
rently resides in the cache sector. When a cache sector is in sector locked mode the sector
replacement unit (SRU) cannot replace it even if it is the least recently used sector (bottom
of LRU stack).

The sector locked mode allows the processor to fetch instructions from addresses con-
tained in the current memory sector and it will either update the storage area (during a
word miss), or it will be read directly from the sector area (during a cache hit). On the other
hand, replacement of the current sector by the SRU is disabled. When a sector is locked,
its LRU status continues to be updated, but when choosing the cache sector to be re-
placed, this sector is ignored and will never be the destination for the new memory sector.

The PLOCK and the PLOCKR instructions can lock a sector. The instructions’ operand is
an effective memory address. The cache sector to which the address belongs (if there is
one) is locked. If the specified effective address does not belong to one of the current
cache sectors, a memory sector containing the address will be allocated into the cache,
thereby replacing the least recently used cache sector. This cache sector will be locked
but empty. As a result, the locked cache sector is placed at the top of the LRU stack indi-
cating that it is the most recently used sector.
MOTOROLA

MO

Locking a sector does not affect the contents of the cache sector (instructions already
fetched into the cache sector storage area), the valid-bits or the tag register contents of
that particular sector.

2.6.2 PRAM Mode
In the PRAM mode the DSP96002 is fully compatible with the original DSP96002. The in-
ternal program RAM is either enabled or disabled, according to the OMR. DMA references
to/from program memory, and the MOVEM instruction are fully enabled.

Nevertheless, when writing a word into the internal PRAM in PRAM mode, the corre-
sponding valid-bit is set, indicating that, when the user switches into cache mode, the
word has been initialized and is therefore valid.

In the PRAM mode, the processor does not update the tag registers in any way, it does
not update the SRU, it does not test the valid-bits, and it ignores the HIT/MISS signal.

The PFLUSH and PFREE instructions can be issued when the chip is in PRAM mode. For
further information on PFLUSH usage, refer to the next section.

2.6.3 Cache Flush
Cache flush is a cache operation rather than a cache operating mode. It is performed by
executing the PFLUSH instruction, which causes a global cache flush that brings the
cache to a reset condition. All valid-bits will be cleared. The tag registers’ values will form
a contiguous 1K segment of memory and therefore hold the values 0,1,2,...,7 that corre-
spond to the PRAM addresses 0, 128, 256,... etc. The LRU stack will hold a default de-
scending order of sectors. All locked cache sectors will be unlocked.

PFLUSH works in either PRAM or cache mode.

When switching from PRAM mode to cache mode, the PFLUSH instruction will allow the
user to flush the old data stored in the internal Program Memory. But if the user has
brought valid data into the internal program memory while in PRAM mode and would pre-
fer to leave the data untouched, it is not necessary to execute the PFLUSH instruction in
connection with changing modes.

However, when switching from cache mode to PRAM mode the cache is not flushed au-
tomatically and it is highly recommended that the PFLUSH instruction be executed. If the
cache is not flushed, the tag register could contain values different than the 0 to 1K ad-
dress mapping. In such a case, a write into the internal PRAM could set a valid-bit that
corresponds, from the tag value point of view, to an address outside the 0 to 1K address
range. This will be transparent to the user while in PRAM mode, but it could be harmful
when switching back to cache mode (again if no PFLUSH had been executed).
TOROLA 11

12

The PFLUSH instruction is not performed automatically when switching from cache mode
to PRAM mode to give the user full control of the cache.

2.7 SECTOR REPLACEMENT POLICY
When a sector miss occurs, a cache sector must be selected to contain the new desired
memory sector. The selected cache sector typically contains another memory sector. The
sector replacement policy determines which sector would be flushed from the cache, and
thus frees the cache sector for the new memory sector. In order to determine which sector
should be replaced during a sector miss, the SRU constantly monitors the use of request-
ed addresses and sectors and uses the information as input to the sector replacement al-
gorithm.

The sector replacement policy dictates the replacement of the Least Recently Used (LRU)
sector.

The LRU stack status is effected only in cache mode by fetch operations and by PLOCK
and PUNLOCK instructions. Locked cache sectors continue to “move” up and down the
LRU stack. This implies that when picking the least recently used sector (the one at the
bottom of the LRU stack), locked sectors that can’t be flushed from the cache should be
skipped.

When the processor is in cache mode, MOVEM instructions do not affect the LRU stack
status. When the processor is in PRAM mode, fetches, MOVEM instructions, or DMA
transfers do not effect the LRU stack status either.

2.8 DMA TRANSFERS TO/FROM PROGRAM MEMORY
DMA transfers to and from the program memory space (internal and external) are only
possible while the cache is in PRAM mode because, while the processor is in cache
mode, cache misses update the internal program memory using the DMA time slot.
Therefore, DMA transfers to/from program memory are disabled in hardware by blocking
the DMA strobes so that such DMA sequences will run without actually accessing the pro-
gram memory.

While the processor is in PRAM mode a DMA move into the internal PRAM should set the
corresponding valid-bit to indicate that the location has been initialized. This feature could
be useful is the user wishes to load the cache while the processor is still in PRAM mode.

Note that transferring code from external program memory addresses higher than 1K to
internal program memory address (0 to 1K), and then switching into cache mode would
cause non-consistency because the cache content for the first 1K addresses is different
from the external program memory for these addresses. Since the DMA transfer into in-
ternal program memory is usually used for time critical routines and interrupt vectors, and
MOTOROLA

MO

since these will be usually locked, all further accesses to these locations would not cause
a miss and therefore the external Program Memory would not be read. In this case the
non-consistency would have no affect. On the other hand, a user that switches from
PRAM mode to cache mode and doesn’t want the content to be kept should issue the
PFLUSH instruction and therefore prevent this situation altogether.

Before switching from PRAM mode to cache mode, or before issuing a PFLUSH instruc-
tion while in PRAM mode, it is the user’s responsibility to check that any previously started
DMA transfers to/from Program Memory have been completed.

2.9 MOVEM/MOVEP/MOVES INSTRUCTIONS
The MOVE(M) instruction (Move Program Memory) performs a move from a register to
program memory or from program memory to a register. For simplicity, this discussion will
use the term “MOVEM-in” to indicate a MOVEM into the program memory and the term
“MOVEM-out” to indicate a MOVEM from program memory. Furthermore, MOVE(P) in-
struction (Move Peripheral Data) and MOVE(S) instruction (Move Absolute Short) perform
similarly when the source or destination is a program memory location, and therefore will
not be mentioned separately.

The MOVE(M) instruction is widely used by the OnCE. For example, MOVEM-out is used
for program memory display and disassembler while MOVEM-in is used by in-line assem-
bler and software breakpoints.

For compatibility reasons, all of these capabilities are available in cache mode. Therefore,
when performing a MOVEM-out instruction, the program memory location has to be read
from the cache if it resides in the cache (hit), and from the external program memory if it
does not (miss). When preforming a MOVEM-in, the program memory location has to be
written both inside the cache and in the external program memory if there was a hit (to
maintain cache coherency) but only in the external program memory if there was a cache
miss.

In cache mode, neither MOVEM-out nor MOVEM-in updates the valid-bit or the LRU sta-
tus, nor do they write back the missed word into the cache if there was a miss! This is be-
cause MOVEM instruction is NOT an instruction fetch. Furthermore, it allows the user to
use the MOVEM with OnCE in a non-intrusive manner.

While in PRAM mode a MOVEM-in to the internal PRAM should set the corresponding val-
id-bit, to indicate that the location has been initialized. This feature could be useful for a
user that wises to load his cache while still in PRAM mode.

Note: For implementation reasons, when a MOVEM-in in cache mode causes a word
miss, but a sector hit (i.e. the specified word is not in the cache but the sector it belongs
TOROLA 13

14

to does), the content of that word is changed in the internal Program Memory. This should
be transparent to the user since, although the word content had been changed, it’s valid-
bit remains cleared as it was, and therefore the content is meaningless. Nevertheless, if
the user switches to PRAM mode without flushing the cache the new word content could
be meaningful.

2.10 DEFAULT MODE ON HARDWARE RESET
After reset, the DSP96002 configuration acts just as if there were no instruction cache fea-
ture available, and the three MOD pins determine the processor’s operating mode. All val-
id-bits are cleared. All cache sectors are in unlocked state. The tag registers values form
a contiguous 1K segment of memory and therefore hold the values 0,1,2,...,7 that corre-
spond to the PRAM addresses 0, 128, 256,... etc. The LRU stack holds a default descend-
ing order of sectors, so that sector number 0 is the most recently used and sector number
7 is the least recently used.

2.11 CACHE OBSERVABILITY THROUGH THE OnCE
The DSP96002 OnCE supports a fully non-intrusive system debug capability when the
processor is in cache mode. It allows the user to observe the cache status, showing which
memory sectors are currently mapped into cache sectors, which cache sectors are
locked, and which cache sector is the least recently used. Furthermore, the user can ob-
serve the values of the valid-bits for any cache location while the chip is in debug mode
by reading the tag registers’ contents, lock bits, LRU bits, and valid-bits serially through
the OnCE.

For more information, refer to Section 5 - OnCE ENHANCEMENTS.

2.12 RESTRICTIONS AND REMARKS

2.12.1 Change of OMR Bit 4 (Cache Enable bit)
The instruction which changes the value of OMR bit 4 should be followed by three NOPs
prior to the first instruction whose fetch will be executed in the new cache operating mode.
The use of NOPs is highly recommended. Although other instructions could be used, note
that the delay in the switch of cache operating mode will be three decoding cycles. For
example, a MOVE with predecrement addressing mode, followed by a single NOP will suf-
fice.

It is recommended that OMR bits 0, 1, and 2 not be changed in parallel with a change in
OMR bit 4 since they affect the bootstrap mode, which should not be used while the pro-
cessor is in cache mode. Therefore, it is recommended that the ORI and ANDI instructions
MOTOROLA

MO

be executed to set or clear OMR bit 4 without affecting other OMR bits, which could be
changed safely three cycles later.

2.12.2 Change of OMR Bit 4 Relative to PLOCK/PUNLOCK
The instruction that sets OMR bit 4 should appear at least three instruction cycles prior to
a PLOCK or PUNLOCK instruction, otherwise an illegal instruction trap will be executed.

2.12.3 Fetches Following a PFLUSH Instruction
When the processor is in cache mode, the first two words following a PFLUSH instruction
are not cached. The first word of the two words will be cached at first, but then flushed.
The second of the two words will be fetched from external program memory but will not
be written into the internal program memory. The tag registers, valid-bits, and LRU stack
will not be updated by this last fetch.

2.12.4 Bootstrap in Cache Mode
The user may select a bootstrap mode by writing into the OMR, thereby mapping the boot-
strap ROM into addresses 0 to 64 of the program address space. A jump to address 0 will
begin the bootstrap program that is coded in the bootstrap ROM. But, if the processor is
in cache mode, the result could be unpredictable. From these 64 words, a word that is in
the cache will be fetched from the internal bootstrap ROM, but a word that is not contained
in the cache will be fetched from external program memory. Therefore, it is strongly rec-
ommended that the user switch the processor into PRAM mode and flush the cache be-
fore mapping the bootstrap ROM into the program address space.

2.12.5 Change of Port Select Register (PSR) in Cache Mode
A change in the PSR while the processor is in cache mode could change the program
memory mapping from one port to another, causing an inconsistency problem since the
cache data brought from one port could differ from the external memory content at the
same addresses in the other port.

2.12.6 JCC Instructions in Cache Mode
When the processor performs JCC (Jump Conditionally) instructions, it fetches both the
next code word and the memory location to which the effective address (“target”) points
before the condition is resolved. Therefore, both the “next” and “target” code words may
cause a miss, or even a sector miss, thereby replacing the current LRU sector with a new
sector that is not necessarily needed.
TOROLA 15

16

2.13 CACHE USE SCENARIO
This section demonstrates a possible scenario of cache use in a real time system.

1. The DSP96002 leaves the hardware reset in PRAM mode as determined by the mode
bits in the OMR.

2. To achieve “hit on first access” (especially important for the fast interrupt vectors), the
user, while still in PRAM mode and using DMA, transfers the interrupt vectors and
some critical routines into the lower PRAM addresses. The DMA transfers set the cor-
responding valid-bits. Presume that the code uses 200 PRAM words and therefore it
will be contained in 2 cache sectors. Since these routines are time critical, the user will
wish to lock the sectors. A possible code may look like this:

LABEL ADDRESS CODE

$00000000 reset vector

. . .

$0000003e host b write p memory vector

user_code $00000040 user critical routines

. . .

$0000007f end of sector 1

$00000080 beginning of sector 2

. . .

$000000c8 end of user critical routines

3. To enter cache mode, the user sets OMR bit 4. To lock address 0 to 200 in the cache
the user issues the PLOCK instruction twice, each time with an effective address that
belongs to the corresponding memory sector. Please notice that three cycles should
separate the change of OMR bit 4 from the PLOCK instruction.

The code may look like this:

ORI #$10, OMR ; set CE bit in OMR

NOP ; pipeline delay

NOP ; pipeline delay

NOP ; pipeline delay

PLOCK #0 ; lock sector containing address 0

MOVE #128, R0 ; load effective address to r0

NOP ; pipeline delay for move

PLOCK R0 ; lock sector containing address 128
MOTOROLA

MO

Notice that the code doesn’t fall within the critical sectors, but rather in the initialization
code.

PLOCK is the first instruction fetched in cache mode.

4. Now the cache is ready for normal operation with 2 sectors locked and 6 sectors in un-
locked mode. Notice that a fetch from one of the locked sectors (addresses 0 to 200)
will not cause a miss since the code for these sectors was brought into the cache while
in the processor is in PRAM mode.

5. The user can lock an additional sector dynamically. The sequence is similar to the one
shown in steps 2 and 3, but a dynamically locked cache sector will not necessarily con-
tain the valid data and would therefore be filled by word misses each time a new word
is fetched.

6. It would be wise to place time critical routines on sector boundaries. This would give
optimal cache sector utilization. The compiler could certainly obey this constraint.

7. To unlock the cache sector containing addresses 128 to 255, for example, all the user
has to do is:

MOVE #140, R0 ; load effective address to r0

NOP ; pipeline delay

PUNLOCK R0 ; unlock sector containing address 128

Notice that address 140 was used as an example since it belongs to the range 128 to 255.

8. To unlock all the locked cache sectors the code should be:

PFREE

This instruction is useful in case the user forgets which sectors or addresses were previ-
ously locked, or as a software reset to the locking mechanism.

9. When debugging the software or the system, the user can enter the debug mode at any
time and observe the tags, the valid-bits, the lock bits, and the least recently used sec-
tor to be replaced next.

10. To execute the bootstrap program the user switches to PRAM mode, executes the 3
NOPs needed for pipeline delay, performs a PFLUSH, and only then switches to boot-
strap mode:
TOROLA 17

18

ANDI #$ef, OMR ; clear CE bit in OMR

NOP ; pipeline delay

NOP ; pipeline delay

NOP ; pipeline delay

PFLUSH

MOVEI #$04, OMR ; bootstrap from Port A

NOP ; pipeline delay

JMP #0 ; jump to bootstrap ROM

Notice that PFLUSH was fetched and executed in PRAM mode. It could have appeared
one cycle earlier, in which case it would have been fetched in cache mode but executed
in PRAM mode.

3 INTEGER MODE
The DSP96002’s integer performance has been doubled with the definition of the new in-
teger mode. The integer mode improves the performance of integer algorithms and sup-
ports four new parallel integer operations that are enabled while the processor is in integer
mode:

• MPYS//ADD (integer signed multiply and add)

• MPYS//SUB (integer signed multiply and subtract)

• MPYU//ADD (integer unsigned multiply and add)

• MPYU//SUB (integer unsigned multiply and subtract).

A full description of these instructions appears in APPENDIX A on page 54. Since they
use the opcodes of the parallel floating-point instructions, the following four instructions
are disabled while the processor is in integer mode:

• FMPY//FADD.S

• FMPY//FSUB.S

• FMPY//FADD.X

• FMPY//FSUB.X
MOTOROLA

MO

3.1 CHANGE TO THE PROGRAMMING MODEL (INTEGER MODE)
To support the integer mode, bit 25 of the status register now features a new integer mode
(IM) bit as shown in Figure 3.

When the IM bit is cleared (0) the integer mode is disabled. When the IM bit is set, the
processor is in integer mode. The IM bit is cleared during reset.

3.1.1 Switching Into Integer Mode
The correct sequence for switching from the floating-point mode to integer mode is:

 ORI #2,mr ; set the IM bit in MR register

 NOP ; pipeline delay

 NOP ; pipeline delay

 parallel integer operation

4 SINGLE PRECISION MODE
The efficiency of the data ALU register file has been improved with the definition of the
new single precision mode (SPM), where the user has access to two data ALU register
files: a 10 floating-point register file (d0.h..d9.h, d0.m..d9.m) and a 10 integer register file
(d0.l..d9.l). If the program uses only single-precision MOVE operations and floating-point

LF * I1 I0 FZ MP IM *

31 30 29 28 27 26 25 24

Integer Mode
Multiply

Flush to Zero
Interrupt Mask

Reserved
Loop Flag

MR

* R1 R0 SIOP SOVF SUNF SDZ SINX
23 22 21 20 19 18 17 16

IER

UN S OP
CC NAN NAN ERR OVF UNF DZ INX

 15 14 13 12 11 10 9 8

ER

A R LR I N Z V C
 7 6 5 4 3 2 1 0

CCR

 Reserved

Figure 3 - DSP96002 Programming Model
TOROLA 19

20

operations that yield single-precision results, then the two register files are completely de-
coupled - thus effectively doubling the amount of registers available for the data ALU.

4.1 CHANGE TO THE PROGRAMMING MODEL (SINGLE PRECISION MODE)
To support the single precision mode, bit 5 of the OMR supports a new single precision
mode (SPM) bit. When OMR bit 5 is clear, the single precision mode is disabled. When
OMR bit 5 is set, the processor is in the single precision mode. The SPM bit is cleared
during reset.

4.2 SINGLE PRECISION MODE DETAILS
The processor supports the following three measures to achieve the Data-ALU Register
File decoupling when it is in single precision mode:

1. Single-precision MOVE operations affect the high and middle portion of the destination
register. They DO NOT clear the low portion of the destination register.

2. Data-ALU floating-point operations that yield single-precision results affect the high
and middle portion of the destination register. They DO NOT clear the low portion of
the destination register.

3. Integer multiply operations (MPYS and MPYU) yield 64-bit results (from the condition
code’s point of view) of which only the 32 least significant bits are written into the low
portion of the destination register. The middle portion of the destination register is not
affected. Thus, the implication is that the largest two integers that can be multiplied in
this mode without a loss of significant digits is 16. If you are using the integer multiply
operation MPYS for the multiplication of 16-bit numbers, you must sign-extend the up-
per 16 bits of the multiplicand and the multiplier to get a valid integer result.

These measures assure that a single-precision floating-point operation or a MOVE does
not overwrite an integer variable stored in the low portion of the destination register. Fur-
thermore these measures assure that an integer multiply does not overwrite a single-pre-
cision floating-point number stored in the high and middle portions of the destination
register. Thereby full decoupling is achieved.

Single Precision Mode does not affect double-precision MOVE operations, long integer
MOVE operations or the single-extended-precision floating-point operations.

31 5 4 3 2 1 0
MAMBMCDECEreserved

Single Precision Mode Bit

SPM

6

MOTOROLA

MO
5 OnCE ENHANCEMENTS
The OnCE has been enhanced to provide the user with fully non-intrusive system debug
capability when the processor is in cache mode. When the processor is in debug mode,
the OnCE offers the ability to observe the cache status, such as which memory sectors
are currently mapped into cache sectors, which cache sectors are locked, and which
cache sector is the least recently used by reading the tag registers contents, lock bits, and
LRU bits serially.

After the user has determined which memory sectors are in the cache, it is still necessary
to find out which words in each sector are actually valid. Performing a loop for every sector
that accesses the corresponding addresses using MOVEM instruction and testing a status
bit that indicates HIT/MISS will make the determination, which shows again that MOVEM
does not effect the cache status in any way.

5.1 Change to OnCE Status and Control Register (OSCR)
The OnCE status and control register has been changed to support cache mode debug
with the addition of the read-only cache hit (HIT) at bit 20. Bit 20 is set when a cache hit
has occurred when the processor is in cache mode and in debug mode. When the proces-
sor is in PRAM mode, bit 20 will read as zero. Hardware reset clears the HIT bit.

5.2 Change to Register Select Bits (RS4-RS0) of the OnCE Command Format
The Register Select Bits (RS4-RS0) now support a new register address destination to
accommodate writes to the tags buffer. The RS4-RS0 configuration 10010 refers to the
tags buffer (8 tags + locks/lru).

The configuration was previously noted as the Program Address Bus Latch for Decode
(OPABD) in the table on page 10-17 of the DSP96002 User’s Manual (DSP96002UM/AD).
The following table replaces the table currently in the manual.

Table 1 Register Select Bits 4-0 (RS4-RS0)

RS4-RS0 Register Selected

00000 Debug Status/Control (OSCR)

00001 Breakpoint Counter Program (OPBC)

00010 Breakpoint Counter Data (ODBC)

00011 Trace Counter (OTC)

00100 Breakpoint Data Memory Higher-Equal (ODULR)

00101 Breakpoint Data Memory Lower-Equal (ODLLR)

00110 Breakpoint Program Memory Higher-Equal (OPULR)
TOROLA 21

22
5.3 Obtaining Cache Information Through the OnCE
The OnCE allows the user to keep track of the eight tag values, tags lock/unlock status,
and LRU status. In the OnCE, nine 32-bit registers are implemented as a circular buffer
with a 4-bit counter. All these registers have the same address but any access to the tags
buffer in the cache controller will cause the counter to increment, and thus point to the next
register in the circular buffer. When the processor leaves the debug mode, the counter is
cleared. When the processor enters debug mode again, the first read from the tags buffer
address will always start from the first of the nine registers (tag number 0) and will contin-
ue circularly among them.

The registers mapped in the circular tags buffer are shown in Figure 4.

At any point in time at least one lru bit in the “LRU/LOCK status” register will be set. But it
is possible for more than one of the lru bits to be set simultaneously because locked sec-

00111 Breakpoint Program Memory Lower-Equal (OPLLR)

01000 Transfer Register (OGDBR)

01001 Program Data Bus Latch (OPDBR)

01010 Program Address Bus Latch for Fetch (OPABF)

01011 Program Instruction Latch (OPILR)

01100 Clear Program Breakpoint Counter

01101 Clear Data Breakpoint Counter

01110 Clear Trace Counter

01111 Reserved

10000 Reserved

10001 Program Address Bus FIFO and Increment Counter

10010 Tags Buffer

10011 Program Address Bus Latch for Decode (OPABD)

101xx Reserved

11xx0 Reserved

11x0x Reserved

110xx Reserved

11111 No Register Selected

Table 1 Register Select Bits 4-0 (RS4-RS0)

RS4-RS0 Register Selected
MOTOROLA

MO
tors could be “least recently used” although they can not be replaced. Therefore, the “next
to be replaced sector” is the only sector whose lru bit is set and lock bit cleared. The ex-
ception to this rule is the case where all of the eight sectors are locked and designated as
“least recently used”, in which case there is no “next to be replaced sector” because no
sector will be replaced until at least one sector is unlocked.

TAG number 0

031

msb lsb 0 0

7 6

TAG number 1msb lsb 0 0

TAG number 2msb lsb 0 0

TAG number 3msb lsb 0 0

TAG number 4msb lsb 0 0

TAG number 5msb lsb 0 0

TAG number 6msb lsb 0 0

TAG number 7msb lsb 0 0

lock lock 0 0
0 0 1 7 7
lru lru lru LRU/LOCK status

31 30 29 1617 15 0

lock
1

28

Figure 4 - Circular Tags Buffer
TOROLA 23

24
5.4 USING THE OnCE FOR CACHE OBSERVABILITY

5.4.1 Displaying the tags, locks and LRU status

 1. ACK

 2. Save pipeline information:

1. Send command READ PDB REGISTER

2. ACK

3. CLK

4. Send command READ PIL REGISTER (instruction latch).

5. ACK

6. CLK

3. Read the 9 registers from the tags buffer:

1. Send command READ TAGS BUFFER (read tag 0 and increment pointer).

2. ACK

3. CLK

4. Send command READ TAGS BUFFER (read tag 1 and increment pointer).

5. ACK

6. CLK

7. Send command READ TAGS BUFFER (read tag 2 and increment pointer).

8. ACK

9. CLK

10. Send command READ TAGS BUFFER (read tag 3 and increment pointer).

11. ACK

12. CLK

13. Send command READ TAGS BUFFER (read tag 4 and increment pointer).

14. ACK

15. CLK

16. Send command READ TAGS BUFFER (read tag 5 and increment pointer).

17. ACK

18. CLK

19. Send command READ TAGS BUFFER (read tag 6 and increment pointer).

20. ACK

21. CLK

22. Send command READ TAGS BUFFER (read tag 7 and increment pointer).

23. ACK

24. CLK

25. Send command READ TAGS BUFFER (read locks/lru register and increment pointer).

26. ACK

27. CLK
MOTOROLA

MO
5.4.2 Displaying the Valid-bits of Specific Cache Locations Starting From
Address xxx

This routine uses R0 as pointer to cache addresses. Therefore this register has to be read
before the routine, and has to be loaded with the value xxx. At the end of the routine, the
values of R0 must be restored. See Section 10.12.3 in the DSP96002 User’s Manual
(DSP96002UM/AD) for an example.

1. Send command WRITE PDB REGISTER and GO (no EX).

 (ODEC selects PDB as destination for serial data.)

2. ACK

3. Send the 32-bit opcode: “MOVEP P:(R0)+, x:OGDB”

(After the 32 bits have been received, the PDB register drives the PDB. ODEC releases the chip
from “halt” state and the MOVEM instruction is executed. This instruction does not change the
cache status in any way but the hit/miss mechanism is activated. The value of HIT/MISS signal
is sampled in bit 20 in the OSCR register. The signal that marks the end of the instruction returns
the chip to the “halt” state and an acknowledge is issued to the command controller.)

4. ACK

5. Send command READ OSCR REGISTER

(ODEC selects OSCR as the source for the serial data and an acknowledge is issued to the
command controller.)

6. ACK

7. CLK

8. Send command NO SELECTION and GO (no EX).

(ODEC releases the chip from the “halt” state and the instruction is executed again (in a
“REPEAT-like “fashion). The signal that marks the end of the instruction returns the chip to the
“halt” state and an acknowledge is issued to the command controller.)

9. ACK

10. Send command READ OSCR REGISTER

 (ODEC selects OSCR as source for serial data and an acknowledge is issued to the command
controller.)

11. ACK

12. CLK

13. Repeat from step 8 until the entire cache area is examined. At the end of the process R0 should be
restored.

5.4.3 Displaying the Valid-bits of Specific Cache Locations Starting From
Address xxx, When in PRAM Mode

When in PRAM mode the MOVEM instruction would not activate the HIT/MISS mecha-
nism and therefore the value of the valid-bit would not be reflected in the HIT/MISS status
bit. Therefore, it is necessary to switch to cache mode before reading the valid-bits. Use
the following sequence to switch to cache mode:
TOROLA 25

26
1. Send command WRITE PDB REGISTER and GO (no EX).

 (ODEC selects PDB as destination for serial data.)

2. ACK

3. Send the 32-bit opcode: “ORI #$10, OMR”

(After the 32 bits have been received, the PDB register drives the PDB. ODEC releases the chip
from “halt” state and the ORI instruction is executed. This instruction sets the “CE” bit in the
OMR register. The signal that marks the end of the instruction returns the chip to the “halt” state
and an acknowledge is issued to the command controller.)

4. ACK

Only now can we read the valid-bits using the HIT/MISS mechanism as described in sec-
tion 5.2.

To switch back to the PRAM mode, the same sequence is preformed, but this time using
“ANDI #$ef, OMR”.

5.4.4 Synchronous Start of the Execution of Multiple Chips
This routine will load each processor with the information necessary for starting the exe-
cution of its program and in the end will synchronously release all the processors from the
Debug Mode.

 1. The command controller selects the first processor.

 2. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects PDB as destination for serial data.)

3. ACK

4. Send 32 bits of the opcode of a two word jump instruction ($030c3f80).

(After all the 32-bits have been received the PDB register drives the PDB. ODEC causes the
core to load the opcode. An acknowledge is issued to the command controller.)

5. ACK

6. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects PDB as destination for serial data.)

7. ACK

8. Send 32 bits of the target absolute address for the first processor ($xxxxxxxx)

9. ACK

10. The command controller selects the second processor.

11. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects PDB as destination for serial data.)

12. ACK

13. Send 32 bits of the opcode of a two word jump instruction ($030c3f80).

(After all the 32-bits have been received the PDB register drives the PDB. ODEC causes the
core to load the opcode. An acknowledge is issued to the command controller.)

14. ACK
MOTOROLA

MO
15. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects PDB as destination for serial data.)

16. ACK

17. Send 32 bits of the target absolute address for the second processor ($xxxxxxxx).

18. ACK

The sequence of instructions described above will be repeated for the remaining proces-
sors in the system. Finally the command controller will select ALL the processors in the
system and will issue in a broadcast manner the synchronous GO command.

19. Send command GO and EX with no register select.

 (All the chips will resume fetching from their target addresses synchronously. Note that the trace
counter will count this instruction so the current trace counter may need to be corrected if the
trace mode enable bit in the OSCR has been set.)
TOROLA 27

28
6 INTRODUCTION TO THE TIMER/EVENT COUNTER
This section describes the two identical and independent timer/event counter modules
now featured on the DSP96002. The timer can use internal or external clocking and can
interrupt the processor after a number of events specified by a user program, or it can sig-
nal an external device after counting internal events. The timer can also be used to trigger
DMA transfers after a specified number of events (clocks) occurs.

Each timer connects to the external world through its own bidirectional TIO pin. When TIO
is used as input, the module is functioning as an external event counter or is measuring
external pulse width/signal period. When TIO is used as output, the module is functioning
as a timer and TIO becomes the timer pulse. When the TIO pin is not used by the timer
module it can be used as a general purpose I/O (GPIO) pin.

Note: When the timer is disabled, the TIO pin becomes three-stated. To prevent undes-
ired spikes from occurring, the TIO pin should be pulled up or down when it is not in use.

6.1 TIMER BLOCK DIAGRAM
Figure 5 shows a block diagram of the timer module. It includes a 32-bit read-write Timer
Control and Status Register (TCSR), a 32-bit read-write Timer Count Register (TCR), a
32-bit counter, and logic for clock selection and interrupt generation.

Figure 5 - Single Timer Module Block Diagram

Register addresses are shown in Figure 5 on page 28.

GDB

Timer Control/Status Register (TCSR)

Interrupt

C
o
u
n
t
e
r

T
C
R

INV bit TE bit

TC2-TC0

TIO

CLK/2

0

1

DIR

3

24

2424

111

32

TIE bit
MOTOROLA

MO
ADDRESS BUS A 32 32 ADDRESS BUS B
aA0-aA31 (32) (32) bA0-bA31
Vcc (2) (2) Vcc
Vss (4) (4) Vss

DATA BUS A 32 32 DATA BUS B
aD0-aD31 (32) (32) bD0-bD31
Vcc (2) (2) Vcc
Vss (4) (4) Vss

PORT A BUS CONTROL PORT B BUS CONTROL
aS1 bS1
aS0 bS0

aR/W bR/W

aWR bWR

aBS bBS

aBL bBL

aTT bTT

aTS bTS

aTA bTA

aAE bAE

aDE bDE

aHS bHS

aHA bHA

aHR bHR

aBR bBR

aBG bBG

aBB bBB

aBA bBA

Vcc (1) (1) Vcc
Vss (2) (2) Vss

TIMER/EVENT COUNTER
(2) TIO

INTERRUPT AND
MODE CONTROL OnCE ON-CHIP EMULATION PORT

MODA/IRQA DSO

MODB/IRQB DSI/OS0

MODC/IRQC DSCK/OS1

RESET DR

CLOCK INPUT NOISY POWER PLANE
CLK (2) Vcc
NC (5) Vss

QUIET POWER QUIET POWER PLANE
Vcc (4) (1) Vcc
Vss (4) (1) Vss

DSP96002

223 PINS

Figure 6 - DSP96002 Signal Functional Groups
TOROLA 29

30 MOTOROLA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A BA23 BA27 BA29 BA31 IRQA ABB ABR TIO0 AR/W AS0 ATS AAE AA02 AA04 AA07 AA10 AA13 AA16 A

B BA20 BA25 BA28 BA30 IRQB ABG ABA BTT AS1 ABS AA00 AA03 AA06 AA09 AA11 AA14 AA18 AA20 B

C BA17 BA21 BA26 GNDN IRQC RES ABL ATT AWR AA01 AA05 AA08 AA12 AA15 AA17 AA19 AA21 AA23 C

D BA15 BA18 BA24 GNDN GNDN GNDN VCCN VCCN VCCQ GNDQ VCCN GNDN GNDN GNDN AA22 AA25 AA26 D

E BA13 BA16 BA22 GNDN GNDN AA24 AA28 AA29 E

F BA12 BA14 BA19 GNDN GNDN AA27 AA30 AD31 F

G BA09 BA10 VCCN VCCN DSP96002 GNDN AA31 AD30 AD29 G

H BA08 CLK BA11 VCCQ 223 PIN VCCN AD28 AD27 AD26 H

J ATA BTA BA07 GNDQ PGA GNDQ AD24 AD25 AD23 J

K BA04 BA05 BA06 VCCN TOP VIEW GNDQ AD20 AD21 AD22 K

L BA03 BA01 BA02 VCCN VCCQ AD16 AD18 AD19 L

M BA00 BS1 BS0 GNDN VCCN VCCN ADE AD17 M

N BAE TIO1 BWR GNDN GNDN AD11 AD14 AD15 N

P BR/W BTS BBL GNDN GNDN AD07 AD12 AD13 P

R BBS BBR BBB GNDN GNDN GNDN VCCN GNDQ VCCQ VCCQ VCCN GNDN GNDN GNDN GNDN AD05 AD09 AD10 R

T BBG BBA AHR DR AHS BD31 GNDN BD26 BD22 BD17 BD14 BD11 BD07 BD04 BD01 AD02 AD06 AD08 T

U BHR DSCK NC(1) AHA BDE BD29 BD27 BD24 BD21 BD18 BD15 BD12 BD09 BD06 BD03 BD00 AD03 AD04 U

V DSO DSI BHA BHS BD30 BD28 BD25 BD23 BD20 BD19 BD16 BD13 BD10 BD08 BD05 BD02 AD00 AD01 V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 7 - DSP96002 Pin Assignment

MO
The DSP96002 views each timer as a memory-mapped peripheral occupying two 32-bit
words in the X data memory space, and may use each timer as a normal memory-mapped
peripheral by using standard polled or interrupt programming techniques.The program-
ming model is shown in Figure 5.

6.2 TIMER CONTROL/STATUS REGISTER (TCSR)
The 32-bit read/write TCSR controls the timer and verifies its status. The TCSR can be
accessed by normal move instructions and by bit manipulation instructions. The control
and status bits are described in the following paragraphs.

6.2.1 Timer Enable (TE) Bit 31
The TE bit enables or disables the timer. Setting the TE bit (TE=1) will enable the timer,
and the counter will be loaded with the value contained in the TCR and will start decre-
menting at each incoming event. Clearing the TE bit will disable the timer. Hardware
RESET and software RESET (RESET instruction) clear TE.

6.2.2 Timer Interrupt Enable (TIE) Bit 30
The TIE bit enables the timer interrupts after the counter reaches zero and a new event
occurs. If TCR is loaded with n, an interrupt will occur after (n+1) events.

Setting TIE (TIE=1) will enable the interrupts.When the bit is cleared (TIE=0) the interrupts
are disabled. Hardware and software resets clear TIE.

6.2.3 Inverter (INV) Bit 29
The INV bit affects the polarity of the external signal coming in on the TIO input and the
polarity of the output pulse generated on the TIO output.

If TIO is programmed as an input and INV=0, the 0-to-1 transitions on the TIO input pin
will decrement the counter. If INV=1, the 1-to-0 transitions on the TIO input pin will decre-
ment the counter.

If TIO is programmed as output and INV=1, the pulse generated by the timer will be in-
verted before it goes to the TIO output pin. If INV=0, the pulse is unaffected.

In Timer Mode 4 (see Section 6.4.4 - Timer Mode 4 (Pulse Width Measurement Mode)),
the INV bit determines whether the high pulse or the low pulse is measured to determine
input pulse width. In Timer Mode 5 (see Section 6.4.5 - Timer Mode 5 (Period Measure-
ment Mode)), the INV bit determines whether the period is measured between leading or
trailing edges.

In GPIO mode, the INV bit determines whether the data read from or written to the TIO
pin shall be inverted (INV=1) or not (INV=0).

INV is cleared by hardware and software resets.
TOROLA 31

32
Note: Because of its affect on signal polarity, and on how GPIO data is read and written,

31 30 29 28 27 26 25 24
TE TIE INV TC2 TC1 TC0 TS

23 22 21 20 19 18 17 16
DIR DI DO ** ** ** ** **

15 14 13 12 11 10 9 8

** ** ** ** ** ** ** **

7 6 5 4 3 2 1 0

** ** ** ** ** ** ** **

READ/WRITE
TIMER CONTROL/STATUS
REGISTER (TCSR0)
ADDRESS X:$FFFFFFE0

** - reserved, read as zero, should be written with zero for future compatibility

31 0 READ/WRITE
TIMER COUNT
REGISTER (TCR0)
ADDRESS X:$FFFFFFE1

31 30 29 28 27 26 25 24
TE TIE INV TC2 TC1 TC0 GPIO TS

23 22 21 20 19 18 17 16
DIR DI DO ** ** ** ** **

15 14 13 12 11 10 9 8

** ** ** ** ** ** ** **

7 6 5 4 3 2 1 0

** ** ** ** ** ** ** **

READ/WRITE
TIMER CONTROL/STATUS
REGISTER (TCSR1)
ADDRESS X:$FFFFFFE8

** - reserved, read as zero, should be written with zero for future compatibility

31 0 READ/WRITE
TIMER COUNT
REGISTER (TCR1)
ADDRESS X:$FFFFFFE9

GPIO

Figure 8 - Timer Module Programming Model

(0) (0) (0) (0) (0) (0) (0)(0)

(1)(0) (0)

(0) (0) (0) (0) (0) (0) (0)(0)

(0) (1) (0)

The numbers in parentheses represent the bits’ reset values

The numbers in parentheses represent the bits’ reset values
MOTOROLA

MO
the status of the INV bit is crucial to the timer’s function. Change it only when the timer is
disabled (TE=0).

6.2.4 Timer Control (TC2-TC0) Bits 28-26
The three TC bits control the source of the timer clock, the behavior of the TIO pin, and
the timer mode of operation. Table 2 summarizes the functionality of the TC bits.

A detailed description of the timer operating modes is given in Section 6.4 on page 35.

The timer control bits are cleared by hardware RESET and software RESET (RESET
instruction).

Note 1: If the clock is external, the counter will be decremented by the transitions on the
TIO pin. The DSP synchronizes the external clock to its own internal clock. The external
clock’s frequency should be lower than the maximum internal frequency divided by 4
(CLK/4).

Note 2: The TC2-TC0 bits should be changed only when the timer is disabled (TE=0) to
ensure proper functionality.

* - the GPIO function is enabled only if TC2-TC0 are all 0 (zero) and the GPIO bit is set.

6.2.5 General Purpose IO (GPIO) Bit 25
If the GPIO bit is set (GPIO=1) and if TC2-TC0 are all zeros, the TIO pin operates as a
general purpose IO pin, whose direction is determined by the DIR bit. If GPIO=0 the gen-
eral purpose IO function is disabled. GPIO is cleared by hardware and software resets.

Note: The case where TC2-TC0 are not all zero and GPIO=1 is undefined and should not
be used

Table 2 TC Bit Functionality

TC2 TC1 TC0 TIO CLOCK MODE

0 0 0 GPIO* Internal Timer (Mode 0)

0 0 1 Output Internal Timer Pulse (Mode 1)

0 1 0 Output Internal Timer Toggle (Mode 2)

0 1 1 — — Reserved - Do Not Use

1 0 0 Input Internal Input Width (Mode 4)

1 0 1 Input Internal Input Period (Mode 5)

1 1 0 — — Undefined

1 1 1 Input External Event Counter (Mode 7)
TOROLA 33

34
6.2.6 Timer Status (TS) Bit 24
When the TS bit is set, it indicates that the counter has been decremented to zero.

The TS bit is cleared when the TCSR is read. The bit is also cleared when the timer inter-
rupt is serviced (timer interrupt acknowledge). TS is cleared by hardware and software
resets.

6.2.7 Direction (DIR) Bit 23
The DIR bit determines the behavior of the TIO pin when TIO acts as general purpose IO.
When DIR=0, the TIO pin acts as an input. When DIR=1, the TIO pin acts as an output.
DIR is cleared by hardware and software resets.

Note: The TIO pin can act as a general purpose IO pin only when TC2-TC0 are all zero
and the GPIO bit is set. If one of TC2, TC1, or TC0 is not 0, the GPIO function is disabled
and the DIR bit has no effect.

6.2.8 Data Input (DI) Bit 22
When the TIO pin acts as a general purpose IO input pin (TC2-TC0 are all zero and
DIR=0), the contents of the DI bit will reflect the value the TIO pin. However, if the INV bit
is set, the data in DI will be inverted. When GPIO mode is disabled or it is enabled in out-
put mode (DIR=1), the DI bit reflects the value of the TIO pin, again depending on the
status of the INV bit. DI is set by hardware and software resets.

6.2.9 Data Output (DO) Bit 21
When the TIO pin acts as a general purpose IO output pin (TC2-TC0 are all zero and
DIR=1), writing to the DO bit writes the data to the TIO pin. However, if the INV bit is set,
the data written to the TIO pin will be inverted. When GPIO mode is disabled, writing to
the DO bit will have no effect. DO is cleared by hardware and software resets.

6.2.10 TCSR Reserved bits (Bits 20-0)
These reserved bits are read as zero and should be written with zero for future
compatibility.

6.3 TIMER COUNT REGISTER (TCR)
The 32-bit read-write TCR contains the value (specified by the user program) to be loaded
into the counter when the timer is enabled (TE=1), or when the counter has been decre-
mented to zero and a new event occurs. If the TCR is loaded with n, the counter will be
reloaded after (n+1) events.

If the timer is disabled (TE=0) and the user program writes to the TCR, the value is stored
there but will not be loaded into the counter until the timer becomes enabled. When the
timer is enabled (TE=1) and the user program writes to the TCR, the value is stored there
and will be loaded into the counter after the counter has been decremented to zero and a
new event occurs.
MOTOROLA

MO
In Timer Modes 4 and 5, however, the TCR will be loaded with the current value of the
counter on the appropriate edge of the TIO input signal (rather than with a value specified
by the user program). The value loaded to the TCR represents the width or the period of
the signal coming in on the TIO pin, depending on the timer mode. See Sections 6.4.4 and
6.4.5 for detailed descriptions of Timer Modes 4 and 5.

6.4 TIMER MODES OF OPERATION
This section gives the details of each of the timer modes of operation. Table 2 on page 33
summarizes the items which determine the timer mode, including the configuration of the
timer control bits, the function of the TIO pin, and the clock source.

6.4.1 Timer Mode 0 (Standard Timer Mode, Internal Clock, No Timer Output)
Timer Mode 0 is defined by TCSR bits TC2-TC0 equal to 000.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR.
The counter is decremented by a clock derived from the internal DSP clock, divided by
two (CLK/2). During the clock cycle following the point where the counter reaches 0, the
TS bit is set and the timer generates an interrupt. The counter is reloaded with the value
contained by the TCR, and the entire process is repeated until the timer is disabled
(TE=0). Figure 9 illustrates Mode 0 with the timer enabled. Figure 10 illustrates the events
with the timer disabled.

Figure 9 - Standard Timer Mode (Mode 0)

TE

TCR

write to

N

Counter N 0 N

TS

first event last event

N-1

Clock

Interrupt

TCR (N)

(CLK/2)
TOROLA 35

36
Note: It is recommended that the GPIO input function of Mode 0 only be activated with
the timer disabled. If the processor attempts to read the DI bit, it must read the entire
TCSR register, which would clear the TS bit and, thus, clear a pending timer interrupt.

6.4.2 Timer Mode 1 (Standard Timer Mode, Internal Clock, Output Pulse Enabled)
Timer Mode 1 is defined by TC2-TC0 equal to 001.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR.
The counter is decremented by a clock derived from the DSP’s internal clock, divided by
two (CLK/2). During the clock cycle following the point where the counter reaches 0, the
TS bit is set and the timer generates an interrupt. A pulse with a width equal to two clock
cycles, and whose polarity is determined by the INV bit, will be put out on the TIO pin. The
counter is reloaded with the value contained by the TCR and the entire process is repeat-
ed until the timer is disabled (TE=0). Figure 11 illustrates Timer Mode 1 when INV=0, and
Figure 12 illustrates Timer Mode 1 when INV=1.

6.4.3 Timer Mode 2 (Standard Timer Mode, Internal Clock, Output Toggle Enabled)
Timer Mode 2 is defined by TC2-TC0 equal to 010.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR.
The counter is decremented by a clock derived from the DSP’s internal clock, divided by

TE

TCR N

Counter N-k N-k-1 N

TS

first event

N-k-1

stop

N-1

Clock

Interrupt

Figure 10 - Timer Disabled

write to
TCR (N)counting

(CLK/2)
MOTOROLA

MO
two (CLK/2). During the clock cycle following the point where the counter reaches 0, the

TE

TCR N

Counter N 0 N

Interrupt

first
last event

N-1

TIO

new event

2xCLK

N-1

Clock

Figure 11 - Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=0)

write to
TCR (N) event

 (CLK/2)

TE

TCR

write to

N

Counter

Interrupt

first
last event

TIO

new event

2xCLK

Clock

Figure 12 - Standard Timer Mode, Internal Clock, Output Pulse Enabled (INV=1)

TCR(N) event

N 0 NN-1 N-1

(CLK/2)
TOROLA 37

38
TS bit in TCSR is set and, if the TIE is set, an interrupt is generated.The counter is reload-
ed with the value contained by the TCR and the entire process is repeated until the timer
is disabled (TE=0). Each time the counter reaches 0, the TIO output pin will be toggled.
The INV bit determines the polarity of the TIO output. Figure 13 illustrates Timer Mode 2.

6.4.4 Timer Mode 4 (Pulse Width Measurement Mode)
Timer Mode 4 is defined by TC2-TC0 equal to 100.

In this mode, TIO acts as a gating signal for the DSP’s internal clock. With the timer en-
abled (TE=1), the counter is driven by a clock derived from the DSP’s internal clock
divided by two (CLK/2). The counter is loaded with 0 by the first transition occurring on the
TIO input pin and starts incrementing. When the first edge of opposite polarity occurs on
TIO, the counter stops, the TS bit in TCSR is set and, if TIE is set, an interrupt is gener-
ated. The contents of the counter is loaded into the TCR. The user’s program can read
the TCR, which now represents the widths of the TIO pulse. The process is repeated until
the timer is disabled (TE=0).The INV bit determines whether the counting is enabled when
TIO is high (INV=0) or when TIO is low (INV=1). Figure 14 illustrates Timer Mode 4 when
INV=0 and Figure 15 illustrates Timer Mode 4 with INV=1.

TE

TCR

last event

N

Counter N 0 N

Interrupt

first event last event

N-1

TIO

new event

N-10

Clock

Figure 13 - Standard Timer Mode, Internal Clock, Output Toggle Enable

(CLK/2)
MOTOROLA

MO
TE

TCR

start event

Clock

Counter 0 N-1 N

Interrupt

1

TIO

start event

0

stop event

N

Figure 14 - Pulse Width Measurement Mode (INV=0)

xxx

yyy

TE

TCR

start event

Clock

xxx

Counter 0 N-1 N

Interrupt

1

TIO

start event

0yyy

stop event

N

Figure 15 - Pulse Width Measurement Mode (INV=1)
TOROLA 39

40
6.4.5 Timer Mode 5 (Period Measurement Mode)
Timer Mode 5 is defined by TC2-TC0 equal to 101.

In Timer Mode 5, the counter is driven by a clock derived from the DSP’s internal clock
divided by 2 (CLK/2). With the timer enabled (TE=1), the counter is loaded with the value
contained by the TCR and starts incrementing. On each transition of the same polarity that
occurs on TIO, the TS bit in TCSR is set and, if TIE is set, an interrupt is generated. The
contents of the counter is loaded in the TCR. The user’s program can read the TCR and
subtract consecutive values of the counter to determine the distance between TIO edges.
The counter is not stopped and it continues to increment. The INV bit determines whether
the period is measured between 0-to-1 transitions of TIO (INV=0), or between 1-to-0 tran-
sitions of TIO (INV=1). Figure 16 illustrates Timer Mode 5 when INV=0, and Figure 17
illustrates Mode 5 with INV=1.

6.4.6 Timer Mode 7 (Event Counter Mode, External Clock)
Timer Mode 7 is defined by TC2-TC0 equal to 111.

With the timer enabled (TE=1), the counter is loaded with the value contained by the TCR.
The counter is decremented by the transitions of the signal coming in on the TIO input pin.
At the transition that occurs after the counter has reached 0, the TS bit in TCSR is set and,
if the TIE is set, the timer generates an interrupt. The counter is reloaded with the value
contained by the TCR, and the entire process is repeated until the timer is disabled
(TE=0). The INV bit determines whether 0-to-1 transitions (INV=0) or 1-to-0 transitions
(INV=1) will decrement the counter. Figure 18 illustrates Timer Mode 7 when INV=0, and
Figure 19 illustrates Timer Mode 7 when INV=1.
MOTOROLA

MO
TE

TCR

periodic event (first event)

Clock

N

Counter N N+1 N+2

Interrupt

TIO

periodic event

M-1

M

M M+1 M+2

N+1

Figure 16 - Period Measurement Mode (INV=0)

TIO

Figure 17 - Period Measurement Mode (INV=1)

TE

TCR

periodic event (first event)

Clock

N

Counter N N+1 N+2

Interrupt

periodic event

M-1

M

M M+1 M+2

N+1
TOROLA 41

42
TE

TCR

write to

TIO (Event)

N

Counter N 0 N

Interrupt

first event last event

N-1

Figure 18 - Event Counter Mode, External Clock (INV=0)

TCR (N)

TIO (Event)

Figure 19 - Event Counter Mode, External Clock (INV=1)

TE

TCR

write to

N

Counter N 0 N

Interrupt

first event last event

N-1

TCR (N)
MOTOROLA

MO
6.5 TIMER BEHAVIOR DURING WAIT and STOP
During the execution of the WAIT instruction, the timer clocks are active and the timer ac-
tivity continues undisturbed. If the timer interrupt is enabled when the final event occurs,
an interrupt will be generated and serviced.

It is recommended that the timer be disabled before executing the STOP instruction be-
cause, during the execution of the STOP instruction, the timer clocks are disabled and the
timer activity will be stopped. If, for example, the TIO pin is used as input, the changes
that occur while the chip is in STOP mode will be ignored.

6.6 OPERATING CONSIDERATIONS
The value 0 for the Timer Count Register (TCR) is considered a boundary case and af-
fects the behavior of the timer under the following conditions:

• If the TCR is loaded with 0, and the counter contained a non-zero value before the
TCR was loaded, then after the timer is enabled, it will count 232 events, generate an
interrupt, and then generate an interrupt for every new event.

• If the TCR is loaded with 0, and the counter contained a zero value prior to loading,
then after the timer is enabled, it will generate an interrupt for every event.

• If the TCR is loaded with 0 after the timer has been enabled, the timer will be loaded
with 0 when the current count is completed and then generate an interrupt for every
new event.

6.7 SOFTWARE EXAMPLES

6.7.1 General purpose IO input
The following routine can be used to read the TIO0 input pin:

movep #$02000000,X:TCSR0 ;clear TC2-TC0, set GPIO

;and clear INV for GPIO input

here

jset #22,x:TCSR0,here ; spin here until TIO0 is set

......
TOROLA 43

44
6.7.2 General purpose IO output
The following routine can be used to write the TIO1 output pin:

movep #$02800000,x:TCSR1 ;clear TC2-TC0, set GPIO

;and set DIR for GPIO output, set TIO1 to 0

movep #$02a00000,x:TCSR1 ; set TIO1 to 1

movep #$02800000,x:TCSR1 ; set TIO1 to 0

This routine generates a pulse on the TIO1 pin with the duration equal to 8 CLK (assuming
no wait states, no external bus conflict etc.)

6.7.3 Standard timer mode (mode 0), input clock, no output and GPIO output
The following program illustrates the standard timer mode with simultaneous GPIO. The
timer is used to activate an internal task after 65536 clocks; at the end of the task the TIO0
pin is toggled to signal end of task.

org p:$14 ; this is timer 0 interrupt vector address

jsr task ; go and execute task (long interrupt)

....
org p:main_body

.....
movep #$42000000,x:TCSR0 ; enable timer interrupts and enable GPIO

; (input!) and set DO =0 to have stable data

movep #$42800000,x:TCSR0 ; change DIR to output (clean 0, no spikes)

movep #$0000ffff,x:TCR0 ; load 64k -1 into the counter

bset #24,x:IPR ; enable IPL for timer 0

andi #$cf,mr ; remove interrupt masking in status register

bset #31,x:TCSR0 ; timer enable

......
; application program

.....
task

.....
; task instructions

....
end_of_task

bset #22,x:TCSR0 ; set TIO0 to signal end of task

bclr #22,x:TCSR0 ; clear TIO0

rti ; return to main program
MOTOROLA

MO
6.7.4 Pulse width measurement mode (mode 4)
The following program illustrates the use of the timer module for input pulse width mea-
surement. The width is measured in this example for the low active period of the input
pulse on the TIO1 pin and is stored in a table (in multiples of the chip operating clock di-
vided by 2).

org x:$100 ; define buffer in X memory internal

pulse_width ds $100 ; measure up to 256 pulses

org p:$16

; this is timer1 interrupt vector address

movep x:TCR1,x:(r0)+ ; store width value in table

nop ; second word of the short interrupt

....
org p:main_body

.....
move #pulse_width,r0 ; r0 points to start of table

move #$ff,m0 ; modulo 100 to wrap around on end of table

movep #$70000000,x:TCSR1 ; enable timer interrupts, mode 4 and set INV

; to measure the low active pulse

bset #26,x:IPR ; enable IPL for timer 1

andi #$cf,mr ; remove interrupt masking in status register

bset #31,x:TCSR1 ; timer enable

......
; do other tasks

.....
TOROLA 45

46
6.7.5 Period measurement mode (mode 5)
The following program illustrates the usage of the timer module for input period measure-
ment. The period is measured in this example between 0 to 1 transitions of the input signal
on TIO0 and is stored in a table (in multiples of the chip operating clock divided by 2).

org x:$100 ; define buffer in X memory internal

period ds $100 ; measure up to 256 pulses

temp ds $1 ; temporary storage

org p:$14 ; this is timer0 interrupt vector address

jsr measure ; long interrupt to measure period

....
org p:main_body

.....
move #0,x:temp ; clear temporary storage

move #period,r0 ; r0 points to start of table

move #$ff,m0 ; modulo 100 to wrap around on end of table

movep #$54000000,x:TCSR0 ; enable timer interrupts, mode5

bset #26,x:IPR ; enable IPL for timer 1

andi #$cf,mr ; remove interrupt masking in status register

bset #31,x:TCSR0 ; timer enable

......
; do other tasks

.....
measure

movep x:TCR0,d0.l ; read new counter value

move x:temp,d1.l ; retrieve former read value (initially zero)

sub d1.l,d0.l d0.l,x:temp ; compute delta (i.e. new -old) and store the

; new read value in temp

move d0.l,x:(r0)+ ; store period value in table

rti
MOTOROLA

MO
7 ADDITIONAL CHANGES
This section presents various other changes to the DSP96002 to support the addition of
the Timer/Event Counter modules. Specifically, two new DMA mask bits (M7 and M8) were
added to the DMA Control/Status Register. Figure 20 and Figure 20 indicate the changed
DMA Controller Programming Models. Table 3 indicates the DMA Request Mask Bits func-
tions. The DMA Controller Programming Model is discussed on Section 7 of the
DSP96002 User’s Manual (DSP96002UM/AD)

This section also presents the X Memory map, interrupt vector addresses, the list of pri-
orities within an IPL, and the interrupt priority register for the DSP96002, all of which have
been changed in support of the timer modules.

 DMA Source Modifier Register
 DSM0
 addr X:$FFFFFFDF

 DMA Source Address Register
 DSR0
 addr X:$FFFFFFDE

 DMA Source Offset Register
 DSN0
 addr X:$FFFFFFDD

 DMA Destination Modifier Register
 DDM0
 addr X:$FFFFFFDB

 DMA Destination Address Register
 DDR0
 addr X:$FFFFFFDA

 DMA Destination Offset Register
 DDN0
 addr X:$FFFFFFD9

 DMA Counter
 DCO0
 addr X:$FFFFFFDC

31 30 29 28 27 26 25 24 DMA Control/Status Register
DCS0

DE DIE * DTD * DTM1 DTM0 DMAP addr X:$FFFFFFD8

23 22 21 20 19 18 17 16

DCP * * * * * * M8

15 14 13 12 11 10 9 8

M7 M6 M5 M4 M3 M2 M1 M0

7 6 5 4 3 2 1 0

 * * DSS2 DSS1 DSS0 DDS2 DDS1 DDS0

Figure 20 - DMA Controller Programming Model - Channel 0

31 0
TOROLA 47

48
7.1 DCS Reserved Bits (Bits 6, 7, 17-22, 27, 29)
These bits read as zero and should be written with zero for future compatibility.

7.2 DCS DMA Request Masks (M0-M8) Bits 8-16
The DMA Request mask bits select the source of DMA requests used to trigger DMA
transfers. If a mask bit is set, the corresponding device is selected as the DMA request
source. If the mask bit is cleared, the device is ignored. The DMA request sources may
be the internal peripherals or external devices requesting service through the IRQA,
IRQB and IRQC pins. The external inputs behave as edge-triggered synchronous inputs.
The mask bits are cleared by hardware and software reset. The internal DMA request
sources are produced by ANDing the internal peripheral status bits with DE.

 DMA Source Modifier Register
 DSM1
 addr X:$FFFFFFD7

 DMA Source Address Register
 DSR1
 addr X:$FFFFFFD6

 DMA Source Offset Register
 DSN1
 addr X:$FFFFFFD5

 DMA Destination Modifier Register
 DDM1
 addr X:$FFFFFFD3

 DMA Destination Address Register
 DDR1
 addr X:$FFFFFFD2

 DMA Destination Offset Register
 DDN1
 addr X:$FFFFFFD1

 DMA Counter
 DCO1
 addr X:$FFFFFFD4

31 30 29 28 27 26 25 24 DMA Control/Status Register
DCS1

DE DIE * DTD * DTM1 DTM0 DMAP addr X:$FFFFFFD0

23 22 21 20 19 18 17 16

DCP * * * * * * M8

15 14 13 12 11 10 9 8

M7 M6 M5 M4 M3 M2 M1 M0

7 6 5 4 3 2 1 0

 * * DSS2 DSS1 DSS0 DDS2 DDS1 DDS0

Figure 21 - DMA Controller Programming Model - Channel 1

31 0
MOTOROLA

MO
Each requesting device input is first individually ANDed with its respective mask bit
(M0,M1,etc) and then all AND outputs are ORed together. The OR output goes to the
edge-triggered latch whose output initiates the DMA transfer. If an input is unmasked,
asserting that input will set the latch and initiate a DMA transfer. The DMA state machine
clears the latch when accessing the DMA source address. If more than one requesting
device input is enabled, the first edge on any input is latched and triggers a DMA transfer,
and any other edge that appears before the latch is cleared will be ignored.

Table 3 DMA Request Mask Bits

DMA
Request
Mask Bit

Requesting Device

M0 External (IRQA pin)

M1 External (IRQB pin)

M2 External (IRQC pin)

M3 Port A Host Receive Data (HRDF=1)

M4 Port A Host Transmit Data (HTDE=1)

M5 Port B Host Receive Data (HRDF=1)

M6 Port B Host Transmit Data (HTDE=1)

M7 Timer 0 (TS=1)

M8 Timer 1 (TS=1)
TOROLA 49

Table 4 Internal I/O Memory Map of the X Data Memory Space

ADDRESS REGISTER

$FFFFFFFF IPR - Interrupt Priority Register

$FFFFFFFE BCRA - Port A Bus Control Register

$FFFFFFFD BCRB - Port B Bus Control Register

$FFFFFFFC PSR - Port Select Register

 : RESERVED :

$FFFFFFF0 Reserved for OnCE Operation (OGDBR)

$FFFFFFEF HTXA/HRXA - HOSTA HTX/HRX Register

$FFFFFFEE HTXCA - HOSTA HTX Reg. and HMRC Clear

$FFFFFFED HSRA - HOSTA Status Register

$FFFFFFEC HCRA - HOSTA Control Register

: RESERVED :

$FFFFFFE9 TCR1 - Timer Count Register 1

$FFFFFFE8 TCSR1 - Timer Control Status Register 1

$FFFFFFE7 HTXB/HRXB - HOSTB HTX/HRX Register

$FFFFFFE6 HTXCB - HOSTB HTX Reg. and HMRC Clear

$FFFFFFE5 HSRB - HOSTB Status Register

$FFFFFFE4 HCRB - HOSTB Control Register

$FFFFFFE3 RESERVED :

$FFFFFFE2 RESERVED

$FFFFFFE1 TCR0 - Timer Count Register 0

$FFFFFFE0 TCSR0 - Timer Control Status Register 0

$FFFFFFDF DSM0 -DMA CH0 Source Modifier Register

$FFFFFFDE DSR0 -DMA CH0 Source Address Register

$FFFFFFDD DSN0 -DMA CH0 Source Offset Register

$FFFFFFDC DCO0 -DMA CH0 Counter Register

$FFFFFFDB DDM0 -DMA CH0 Destination Modifier Register

$FFFFFFDA DDR0 -DMA CH0 Destination Address Register

$FFFFFFD9 DDN0 -DMA CH0 Destination Offset Register

$FFFFFFD8 DCS0 -DMA CH0 Control/Status Register

$FFFFFFD7 DSM1 -DMA CH1 Source Modifier Register

$FFFFFFD6 DSR1 -DMA CH1 Source Address Register

$FFFFFFD5 DSN1 -DMA CH1 Source Offset Register

$FFFFFFD4 DCO1 -DMA CH1 Counter Register

$FFFFFFD3 DDM1 -DMA CH1 Destination Modifier Register

$FFFFFFD2 DDR1 -DMA CH1 Destination Address Register

$FFFFFFD1 DDN1 -DMA CH1 Destination Offset Register

$FFFFFFD0 DCS0 -DMA CH1 Control/Status Register

$FFFFFFCF RESERVED

: RESERVED :

$FFFFFF80 RESERVED

ADDRESS REGISTER
50
Table 5 Interrupt Vector Addresses
MOTOROLA

MO
Interrupt
Starting
Address

Interrupt Source

$FFFFFFFE Hardware RESET

$00000000 Hardware RESET

$00000002 Stack Error

$00000004 Illegal Instruction

$00000006 (F)TRAPcc (default)

$00000008 IRQA

$0000000A IRQB

$0000000C IRQC

$0000000E Reserved

$00000010 DMA Channel 1

$00000012 DMA Channel 2

$00000014 Timer 0

$00000016 Timer 1

$00000018 Reserved

$0000001A Reserved

$0000001C Host A Command (default)

$0000001E Host B Command (default)

$00000020 Host A Receive Data

$00000022 Host A Transmit Data

$00000024 Host A Read X Memory

$00000026 Host A Read Y Memory

$00000028 Host A Read P Memory

$0000002A Host A Write X Memory

$0000002C Host A Write Y Memory

$0000002E Host A Write P Memory

$00000030 Host B Receive Data

$00000032 Host B Transmit Data

$00000034 Host B Read X Memory

$00000036 Host B Read Y Memory

$00000038 Host B Read P Memory

$0000003A Host B Write X Memory

$0000003C Host B Write Y Memory

$0000003E Host B Write P Memory

$00000040 Reserved

: :

$000000FE Reserved

$00000100 User interrupt vector

: :

$000001FE User interrupt vector

Interrupt
Starting
Address

Interrupt Source
TOROLA
 51

52
7.3 Exception Priorities within an IPL
If more than one exception is pending when an instruction is executed, the interrupt with
the highest priority level is serviced first. Within a given interrupt priority level, a second
priority structure determines which interrupt is serviced when multiple interrupt requests
with the same IPL are pending.

Table 6 DSP96002 Exception Priorities within an IPL

Priority Exception Enabled by

highest Hardware RESET -

Illegal Instruction -

Stack Error -

(F)TRAPcc -

IRQA (External Interrupt) (IPR) IAL1-IAL0

IRQB (External Interrupt) (IPR) IBL1-IBL0

IRQC (External Interrupt) (IPR) ICL1-ICL0

Host A Command Interrupt (HCR) HCIE

Host A Receive Data Interrupt (HCR) HRIE

Host A Read X Memory Interrupt (HCR) HXRE

Host A Read Y Memory Interrupt (HCR) HYRE

Host A Read P Memory Interrupt (HCR) HPRE

Host A Write X Memory Interrupt (HCR) HXWE

Host A Write Y Memory Interrupt (HCR) HYWE

Host A Write P Memory Interrupt (HCR) HPWE

Host A Transmit Data Interrupt (HCR) HTIE

Host B Command Interrupt (HCR) HCIE

Host B Receive Data Interrupt (HCR) HRIE

Host B Read X Memory Interrupt (HCR) HXRE

Host B Read Y Memory Interrupt (HCR) HYRE

Host B Read P Memory Interrupt (HCR) HPRE

Host B Write X Memory Interrupt (HCR) HXWE

Host B Write Y Memory Interrupt (HCR) HYWE

Host B Write P Memory Interrupt (HCR) HPWE

Host B Transmit Data Interrupt (HCR) HTIE

DMA Channel 0 Interrupt (DCS0) DIE0

DMA Channel 1 Interrupt (DCS1) DIE1

Timer0 Interrupt (TCSR0) TIE0

lowest Timer1Interrupt (TCSR1) TIE1
MOTOROLA

MO
7.4 Interrupt Priority Register (IPR)
The Interrupt Priority Register supports the timer module with the addition of the Timer0
and Timer1 priority level bits. Figure 21 shows the revised IPR with the new bits indicated
in bold characters.

Figure 21 - Interrupt Priority Register (Address X:$FFFFFFFF)

T1L1 T0L1 T0L0******** T1L0

Reserved

HBL1 HBL0 HAL1 HAL0 D1L1 D1L0 D0L1 D0L0

IRCS ICL2 ICL1 ICL0

IRBS IBL2 IBL1 IBL0 IRAS IAL2 IAL1 IAL0

DMA Channel 0 IPL
DMA Channel 1 IPL
Host A IPL
Host B IPL

IRQC IPL
IRQC Trigger Mode
IRQC Status
Reserved

IRQA IPL
IRQA Trigger Mode
IRQA Status
IRQB IPL
IRQB Trigger Mode
IRQB Status

** ** ** **

Timer0 IPL
Timer1 IPL
TOROLA 53

54
7.4.1 Reserved bits (Bits 12-15, 28-31)
These reserved bits read as zero and should be written with zero for future compatibility.

7.4.2 Timer 0 Interrupt Priority Level - T0L1-T0L0 (Bits 24-25)
The Timer 0 Interrupt Priority Level (T0L1-T0L0) bits are used to enable and specify the
 priority level of the Timer 0 interrupt.

7.4.3 Timer 1 Interrupt Priority Level - T1L1-T1L0 (Bits 26-27)
The Timer 1 Interrupt Priority Level (T1L1-T1L0) bits are used to enable and specify the
 priority level of the Timer 1 interrupt.

APPENDIX A – INSTRUCTION SET ADDENDUM DETAILS

The following pages present a detailed description of the new instructions added to the
 DSP96002 instruction set.

 T0L1 T0L0 Enabled Int. Priority Level (IPL)
0 0 no -
0 1 yes 0
1 0 yes 1
1 1 yes 2

 T1L1 T1L0 Enabled Int. Priority Level (IPL)
0 0 no -
0 1 yes 0
1 0 yes 1
1 1 yes 2
MOTOROLA

MO
Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

S3.L + D2.L → D2.L

MPYS//ADD Integer Signed MPYS//ADD
 Multiply and Add

Description:

Multiply the two signed operands S1 and S2 and store the product in the specified destination register D1.
The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and S2.
The result is a 64-bit signed integer stored in the middle and low portions of D1.

Simultaneously, add the low portion of the two operands S3 and D2 and store the result in the low portion
of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Addition Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if carry is generated from the MSB of the addition result. Cleared otherwise.

V - Set if the addition result overflows. Cleared otherwise.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYS S1,S2,D1 ADD S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYS S2,S1,D1 ADD S3,D2

(move syntax - see the MOVE instruction de-
scription.)
TOROLA 55

56
Instruction Format: MPYS S1,S2,D1 ADD S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

00 1sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
MOTOROLA

MO
Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

D2.L - S3.L → D2.L

MPYS//SUB Integer Signed MPYS//SUB
 Multiply and Subtract

Description:

Multiply the two signed operands S1 and S2 and store the product in the specified destination register D1.
The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and S2.
The result is a 64-bit signed integer stored in the middle and low portions of D1.

Simultaneously, subtract the low portion of the specified source operand S3 from the low portion of the des-
tination operand D2 and store the result in the low portion of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Subtraction Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if borrow is generated from the MSB of the subtraction result. Cleared

 otherwise.

V - Set if the subtraction result overflows. Cleared otherwise.

Z - Set if result of the subtraction is zero. Cleared otherwise.

N - Set if result of the subtraction is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYS S1,S2,D1 SUB S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYS S2,S1,D1 SUB S3,D2

(move syntax - see the MOVE instruction de-
scription.)
TOROLA 57

58
Instruction Format: MPYS S1,S2,D1 SUB S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

01 1sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
MOTOROLA

MO
Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

S3.L + D2.L → D2.L

MPYU//ADD Integer Unsigned MPYU//ADD
Multiply and Add

Description:

Multiply the two unsigned operands S1 and S2 and store the product in the specified destination register
D1. The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and
S2. The result is a 64-bit unsigned integer stored in the middle and low portions of D1.

Simultaneously, add the low portion of the two operands S3 and D2 and store the result in the low portion
of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Addition Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if carry is generated from the MSB of the addition result. Cleared otherwise.

V - Set if the addition result overflows. Cleared otherwise.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYU S1,S2,D1 ADD S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYU S2,S1,D1 ADD S3,D2

(move syntax - see the MOVE instruction de-
scription.)
TOROLA 59

60
Instruction Format: MPYU S1,S2,D1 ADD S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

00 0sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
MOTOROLA

MO
Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

D2.L - S3.L → D2.L

MPYU//SUB Integer Unsigned MPYU//SUB
 Multiply and Subtract

Description:

Multiply the two unsigned operands S1 and S2 and store the product in the specified destination register
D1. The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and
S2. The result is a 64-bit unsigned integer stored in the middle and low portions of D1.

Simultaneously, subtract the low portion of the specified source operand S3 from the low portion of the des-
tination operand D2 and store the result in the low portion of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Subtraction Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if borrow is generated from the MSB of the subtraction result. Cleared

 otherwise.

V - Set if the subtraction result overflows. Cleared otherwise.

Z - Set if result of the subtraction is zero. Cleared otherwise.

N - Set if result of the subtraction is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYU S1,S2,D1 SUB S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYU S2,S1,D1 SUB S3,D2

(move syntax - see the MOVE instruction de-
scription.)
TOROLA 61

62
Instruction Format: MPYU S1,S2,D1 SUB S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

01 0sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
MOTOROLA

MOT
PFLUSH Program-Cache Flush PFLUSH

Assembler Syntax:

PFLUSH
Operation:

Flush instruction cache

Description:
OROLA 63

Instruction Fields:

 None

Timing: 2 oscillator clock cycles

Memory: 1 program words

00 0000 0000 0011

31 14 13 0

0000 0000 0000 0000 00

Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and tag registers to their
default values.

The PFLUSH instruction is enabled both in Cache Mode and PRAM Mode.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PFLUSH

64
PFREE Program-Cache Global Unlock PFREE

Assembler Syntax:

PFREE
Operation:

Unlock all locked sectors

Description:
MOTOROLA

Instruction Fields:

 None

Timing: 2 oscillator clock cycles

Memory: 1 program words

00 0000 0000 0010

31 14 13 0

0000 0000 0000 0000 00

Unlock all the locked cache sectors in the instruction cache.

The PFREE instruction is enabled both in Cache Mode and PRAM Mode.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PFREE

MO
PLOCK Program-Cache-Sector Lock PLOCK

Assembler Syntax:

PLOCK ea
Operation:

Lock sector by ea

Description:
TOROLA 65

Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

00 0000 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0000 MMMR RR

Lock the cache sector to which the specified effective address belongs. If the specified effective address
does not belong to any cache sector, then load the least recently used cache sector tag with the 25 most
significant bits of the specified address and then lock that cache sector. Update the LRU stack accordingly.
All memory alterable addressing modes may be used for the effective address, but not a short absolute
address.

The PLOCK instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PLOCK ea

66
PLOCKR Program-Cache-Sector PLOCKR
 Relative Lock
Assembler Syntax:

PLOCKR label

PLOCKR Rn

he sum PC + specified displacement belongs. If the sum does not belong
Operation:

Lock sector by PC + xx

Lock sector by PC + xxxx

Lock sector by PC + Rn

Description:

Lock the cache sector to which t
MOTOROLA

00 0000 0aaa aaaa

31 14 13 0

0000 0011 10aa aaaa aa

to any cache sector, then load the least recently used cache sector tag with the 25 most significant bits of
the sum and then lock that cache sector. Update the LRU stack accordingly.

The displacement is a 2’s complement 32-bit integer that represents the relative distance from the current

PC to the address to be locked. Short Displacement, Long Displacement and Address Register PC Relative

addressing modes may be used. The Short Displacement 15-bit data is sign extended to form the 32-bit
PC Relative Displacement.

The PLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PLOCKR label (short)

00 0000 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0000 1000 00

Instruction Format: PLOCKR label

00 0000 0000 0000

31 14 13 0

0000 0011 0000 001R RR

Instruction Format: PLOCKR Rn

MOTOROLA 67

Instruction Fields:

 Rn - R0-R7

 Long PC Relative Displacement - 32 bits

 Short PC Relative Displacement - aaaaaaaaaaaaaaa (15 bits)

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

68
PUNLOCK Program-Cache-Sector PUNLOCK
 Unlock
Assembler Syntax:

PUNLOCK ea
Operation:

Unlock sector by ea

Description:
MOTOROLA

Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

00 0000 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0100 MMMR RR

Unlock the cache sector to which the specified effective address belongs. If the specified effective address
does not belong to any cache sector, and is therefore definitely unlocked, nevertheless, load the least re-
cently used cache sector tag with the 25 most significant bits of the specified address. Update the LRU
stack accordingly. All memory alterable addressing modes may be used for the effective address, but not
a short absolute address.

The PUNLOCK instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PUNLOCK ea

MOT
PUNLOCKR Program-Cache-Sector PUNLOCKR
 Relative Unlock
Assembler Syntax:

PUNLOCKR label

PUNLOCKR Rn

 the sum PC + specified displacement belongs. If the sum does not belong
Operation:

Unlock sector by PC + xx

Unlock sector by PC + xxxx

Unlock sector by PC + Rn

Description:

Unlock the cache sector to which
OROLA 69

00 0000 0aaa aaaa

31 14 13 0

0000 0011 11aa aaaa aa

to any cache sector, and is therefore definitely unlocked, nevertheless, load the least recently used cache
sector tag with the 25 most significant bits of the sum. Update the LRU stack accordingly.

The displacement is a 2’s complement 32-bit integer that represents the relative distance from the current

PC to the address to be locked. Short Displacement, Long Displacement and Address Register PC Relative

addressing modes may be used. The Short Displacement 15-bit data is sign extended to form the 32-bit
PC Relative Displacement.

The PUNLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruc-
tion trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PUNLOCKR label (short)

00 0000 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0100 1000 00

Instruction Format: PUNLOCKR label

00 0000 0000 0000

31 14 13 0

0000 0011 0100 001R RR

Instruction Format: PUNLOCKR Rn

70 MOTOROLA

Instruction Fields:

 Rn - R0-R7

 Long PC Relative Displacement - 32 bits

 Short PC Relative Displacement - aaaaaaaaaaaaaaa (15 bits)

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

 MOTOROLA INC., 1994

MOTOROLA

TECHNICAL DATA

SEMICONDUCTOR

M

FOREWORD

The following ten instructions have been added to the DSP96002 instruction set. These instruc-
tions are available only on versions of the DSP96002 that have an instruction cache. The silicon
mask numbers for the DSP96002s that

do not have

 these instructions available are:

• C15T

• D12C

• D91G

• D35G

All later mask numbers have these instructions available. This mask number can be found on
the top of the chip along with the chip designation and other numbers.

The descriptions of these new instructions can also be found in the addendum to the

DSP96002 Digital Signal Processor User’s Manual — The DSP96002 Instruction Cache and
32-bit Timer/event Counter

(order number DSP96002UMAD/AD).

Addendum to the

DSP96002 Digital Signal Processor Instruction Set
found in the
DSP96002 Digital Signal Processor User’s Manual
and the
DSP96002 CLAS Documentation

DSP96002

2

Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

S3.L + D2.L → D2.L

MPYS//ADD Integer Signed MPYS//ADD
 Multiply and Add

Description:

Multiply the two signed operands S1 and S2 and store the product in the specified destination register D1.
The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and S2.
The result is a 64-bit signed integer stored in the middle and low portions of D1.

Simultaneously, add the low portion of the two operands S3 and D2 and store the result in the low portion
of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Addition Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if carry is generated from the MSB of the addition result. Cleared otherwise.

V - Set if the addition result overflows. Cleared otherwise.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYS S1,S2,D1 ADD S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYS S2,S1,D1 ADD S3,D2

(move syntax - see the MOVE instruction de-
scription.)
MOTOROLA

MO

Instruction Format: MPYS S1,S2,D1 ADD S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

00 1sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
TOROLA 3

4

Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

D2.L - S3.L → D2.L

MPYS//SUB Integer Signed MPYS//SUB
 Multiply and Subtract

Description:

Multiply the two signed operands S1 and S2 and store the product in the specified destination register D1.
The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and S2.
The result is a 64-bit signed integer stored in the middle and low portions of D1.

Simultaneously, subtract the low portion of the specified source operand S3 from the low portion of the des-
tination operand D2 and store the result in the low portion of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Subtraction Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if borrow is generated from the MSB of the subtraction result. Cleared

 otherwise.

V - Set if the subtraction result overflows. Cleared otherwise.

Z - Set if result of the subtraction is zero. Cleared otherwise.

N - Set if result of the subtraction is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYS S1,S2,D1 SUB S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYS S2,S1,D1 SUB S3,D2

(move syntax - see the MOVE instruction de-
scription.)
MOTOROLA

MO

Instruction Format: MPYS S1,S2,D1 SUB S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

01 1sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
TOROLA 5

6

Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

S3.L + D2.L → D2.L

MPYU//ADD Integer Unsigned MPYU//ADD
Multiply and Add

Description:

Multiply the two unsigned operands S1 and S2 and store the product in the specified destination register
D1. The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and
S2. The result is a 64-bit unsigned integer stored in the middle and low portions of D1.

Simultaneously, add the low portion of the two operands S3 and D2 and store the result in the low portion
of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Addition Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if carry is generated from the MSB of the addition result. Cleared otherwise.

V - Set if the addition result overflows. Cleared otherwise.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYU S1,S2,D1 ADD S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYU S2,S1,D1 ADD S3,D2

(move syntax - see the MOVE instruction de-
scription.)
MOTOROLA

MO

Instruction Format: MPYU S1,S2,D1 ADD S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

00 0sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
TOROLA 7

8

Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

D2.L - S3.L → D2.L

MPYU//SUB Integer Unsigned MPYU//SUB
 Multiply and Subtract

Description:

Multiply the two unsigned operands S1 and S2 and store the product in the specified destination register
D1. The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and
S2. The result is a 64-bit unsigned integer stored in the middle and low portions of D1.

Simultaneously, subtract the low portion of the specified source operand S3 from the low portion of the des-
tination operand D2 and store the result in the low portion of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Subtraction Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if borrow is generated from the MSB of the subtraction result. Cleared

 otherwise.

V - Set if the subtraction result overflows. Cleared otherwise.

Z - Set if result of the subtraction is zero. Cleared otherwise.

N - Set if result of the subtraction is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYU S1,S2,D1 SUB S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYU S2,S1,D1 SUB S3,D2

(move syntax - see the MOVE instruction de-
scription.)
MOTOROLA

MOT

Instruction Format: MPYU S1,S2,D1 SUB S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

01 0sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
OROLA 9

10
PFLUSH Program-Cache Flush PFLUSH

Assembler Syntax:

PFLUSH
Operation:

Flush instruction cache

Description:
MOTOROLA

Instruction Fields:

 None

Timing: 2 oscillator clock cycles

Memory: 1 program words

00 0000 0000 0011

31 14 13 0

0000 0000 0000 0000 00

Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and tag registers to their
default values.

The PFLUSH instruction is enabled both in Cache Mode and PRAM Mode.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PFLUSH

MO
PFREE Program-Cache Global Unlock PFREE

Assembler Syntax:

PFREE
Operation:

Unlock all locked sectors

Description:
TOROLA 11

Instruction Fields:

 None

Timing: 2 oscillator clock cycles

Memory: 1 program words

00 0000 0000 0010

31 14 13 0

0000 0000 0000 0000 00

Unlock all the locked cache sectors in the instruction cache.

The PFREE instruction is enabled both in Cache Mode and PRAM Mode.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PFREE

12
PLOCK Program-Cache-Sector Lock PLOCK

Assembler Syntax:

PLOCK ea
Operation:

Lock sector by ea

Description:
MOTOROLA

Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

00 0000 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0000 MMMR RR

Lock the cache sector to which the specified effective address belongs. If the specified effective address
does not belong to any cache sector, then load the least recently used cache sector tag with the 25 most
significant bits of the specified address and then lock that cache sector. Update the LRU stack accordingly.
All memory alterable addressing modes may be used for the effective address, but not a short absolute
address.

The PLOCK instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PLOCK ea

MO
PLOCKR Program-Cache-Sector PLOCKR
 Relative Lock
Assembler Syntax:

PLOCKR label

PLOCKR Rn

he sum PC + specified displacement belongs. If the sum does not belong
Operation:

Lock sector by PC + xx

Lock sector by PC + xxxx

Lock sector by PC + Rn

Description:

Lock the cache sector to which t
TOROLA 13

00 0000 0aaa aaaa

31 14 13 0

0000 0011 10aa aaaa aa

to any cache sector, then load the least recently used cache sector tag with the 25 most significant bits of
the sum and then lock that cache sector. Update the LRU stack accordingly.

The displacement is a 2’s complement 32-bit integer that represents the relative distance from the current

PC to the address to be locked. Short Displacement, Long Displacement and Address Register PC Relative

addressing modes may be used. The Short Displacement 15-bit data is sign extended to form the 32-bit
PC Relative Displacement.

The PLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PLOCKR label (short)

00 0000 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0000 1000 00

Instruction Format: PLOCKR label

00 0000 0000 0000

31 14 13 0

0000 0011 0000 001R RR

Instruction Format: PLOCKR Rn

14 MOTOROLA

Instruction Fields:

 Rn - R0-R7

 Long PC Relative Displacement - 32 bits

 Short PC Relative Displacement - aaaaaaaaaaaaaaa (15 bits)

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

MO
PUNLOCK Program-Cache-Sector PUNLOCK
 Unlock
Assembler Syntax:

PUNLOCK ea
Operation:

Unlock sector by ea

Description:
TOROLA 15

Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

00 0000 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0100 MMMR RR

Unlock the cache sector to which the specified effective address belongs. If the specified effective address
does not belong to any cache sector, and is therefore definitely unlocked, nevertheless, load the least re-
cently used cache sector tag with the 25 most significant bits of the specified address. Update the LRU
stack accordingly. All memory alterable addressing modes may be used for the effective address, but not
a short absolute address.

The PUNLOCK instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PUNLOCK ea

16
PUNLOCKR Program-Cache-Sector PUNLOCKR
 Relative Unlock
Assembler Syntax:

PUNLOCKR label

PUNLOCKR Rn

 the sum PC + specified displacement belongs. If the sum does not belong
Operation:

Unlock sector by PC + xx

Unlock sector by PC + xxxx

Unlock sector by PC + Rn

Description:

Unlock the cache sector to which
MOTOROLA

00 0000 0aaa aaaa

31 14 13 0

0000 0011 11aa aaaa aa

to any cache sector, and is therefore definitely unlocked, nevertheless, load the least recently used cache
sector tag with the 25 most significant bits of the sum. Update the LRU stack accordingly.

The displacement is a 2’s complement 32-bit integer that represents the relative distance from the current

PC to the address to be locked. Short Displacement, Long Displacement and Address Register PC Relative

addressing modes may be used. The Short Displacement 15-bit data is sign extended to form the 32-bit
PC Relative Displacement.

The PUNLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruc-
tion trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PUNLOCKR label (short)

00 0000 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0100 1000 00

Instruction Format: PUNLOCKR label

00 0000 0000 0000

31 14 13 0

0000 0011 0100 001R RR

Instruction Format: PUNLOCKR Rn

MOTOROLA 17

Instruction Fields:

 Rn - R0-R7

 Long PC Relative Displacement - 32 bits

 Short PC Relative Displacement - aaaaaaaaaaaaaaa (15 bits)

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

18 MOTOROLA

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unau-
thorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and M are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbor Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T.,

Hong Kong.

M

 MOTOROLA INC., 1994

MOTOROLA

TECHNICAL DATA
SEMICONDUCTOR

M

Addendum

 MOTOROLA INC., 1994

MOTOROLA

TECHNICAL DATA

SEMICONDUCTOR

M

FOREWORD

The following ten instructions have been added to the DSP96002 instruction set. These instruc-
tions are available only on versions of the DSP96002 that have an instruction cache. The silicon
mask numbers for the DSP96002s that

do not have

 these instructions available are:

• C15T

• D12C

• D91G

• D35G

All later mask numbers have these instructions available. This mask number can be found on
the top of the chip along with the chip designation and other numbers.

The descriptions of these new instructions can also be found in the addendum to the

DSP96002 Digital Signal Processor User’s Manual — The DSP96002 Instruction Cache and
32-bit Timer/event Counter

(order number DSP96002UMAD/AD).

Addendum to the

DSP96002 Digital Signal Processor Instruction Set
found in the
DSP96002 Digital Signal Processor User’s Manual
and the
DSP96002 CLAS Documentation

DSP96002

2

Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

S3.L + D2.L → D2.L

MPYS//ADD Integer Signed MPYS//ADD
 Multiply and Add

Description:

Multiply the two signed operands S1 and S2 and store the product in the specified destination register D1.
The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and S2.
The result is a 64-bit signed integer stored in the middle and low portions of D1.

Simultaneously, add the low portion of the two operands S3 and D2 and store the result in the low portion
of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Addition Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if carry is generated from the MSB of the addition result. Cleared otherwise.

V - Set if the addition result overflows. Cleared otherwise.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYS S1,S2,D1 ADD S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYS S2,S1,D1 ADD S3,D2

(move syntax - see the MOVE instruction de-
scription.)
MOTOROLA

MO

Instruction Format: MPYS S1,S2,D1 ADD S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

00 1sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
TOROLA 3

4

Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

D2.L - S3.L → D2.L

MPYS//SUB Integer Signed MPYS//SUB
 Multiply and Subtract

Description:

Multiply the two signed operands S1 and S2 and store the product in the specified destination register D1.
The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and S2.
The result is a 64-bit signed integer stored in the middle and low portions of D1.

Simultaneously, subtract the low portion of the specified source operand S3 from the low portion of the des-
tination operand D2 and store the result in the low portion of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Subtraction Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if borrow is generated from the MSB of the subtraction result. Cleared

 otherwise.

V - Set if the subtraction result overflows. Cleared otherwise.

Z - Set if result of the subtraction is zero. Cleared otherwise.

N - Set if result of the subtraction is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYS S1,S2,D1 SUB S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYS S2,S1,D1 SUB S3,D2

(move syntax - see the MOVE instruction de-
scription.)
MOTOROLA

MO

Instruction Format: MPYS S1,S2,D1 SUB S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

01 1sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
TOROLA 5

6

Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

S3.L + D2.L → D2.L

MPYU//ADD Integer Unsigned MPYU//ADD
Multiply and Add

Description:

Multiply the two unsigned operands S1 and S2 and store the product in the specified destination register
D1. The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and
S2. The result is a 64-bit unsigned integer stored in the middle and low portions of D1.

Simultaneously, add the low portion of the two operands S3 and D2 and store the result in the low portion
of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Addition Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if carry is generated from the MSB of the addition result. Cleared otherwise.

V - Set if the addition result overflows. Cleared otherwise.

Z - Set if result of the addition is zero. Cleared otherwise.

N - Set if result of the addition is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYU S1,S2,D1 ADD S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYU S2,S1,D1 ADD S3,D2

(move syntax - see the MOVE instruction de-
scription.)
MOTOROLA

MO

Instruction Format: MPYU S1,S2,D1 ADD S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words

00 0sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
TOROLA 7

8

Operation:

S1.L * S2.L → D1.M:D1.L

 (parallel data bus move)

D2.L - S3.L → D2.L

MPYU//SUB Integer Unsigned MPYU//SUB
 Multiply and Subtract

Description:

Multiply the two unsigned operands S1 and S2 and store the product in the specified destination register
D1. The two source operands S1and S2 are 32-bit integers and are taken from the low portion of S1 and
S2. The result is a 64-bit unsigned integer stored in the middle and low portions of D1.

Simultaneously, subtract the low portion of the specified source operand S3 from the low portion of the des-
tination operand D2 and store the result in the low portion of the destination operand D2.

This instruction is enabled only in Integer Mode.

Input Operand(s) Precision: 32-bit integer.

Subtraction Output Operand Precision: 32-bit integer.

Multiplication Output Operand Precision: 64-bit integer.

CCR Condition Codes:

C - Set if borrow is generated from the MSB of the subtraction result. Cleared

 otherwise.

V - Set if the subtraction result overflows. Cleared otherwise.

Z - Set if result of the subtraction is zero. Cleared otherwise.

N - Set if result of the subtraction is negative. Cleared otherwise.

I - Not affected.

LR - Not affected.

R - Not affected.

A - Not affected.

ER Status Bits: Not affected

IER Flags: Not affected

 Assembler Syntax:

MPYU S1,S2,D1 SUB S3,D2

 (move syntax - see the MOVE instruction de-
scription.)

MPYU S2,S1,D1 SUB S3,D2

(move syntax - see the MOVE instruction de-
scription.)
MOTOROLA

MOT

Instruction Format: MPYU S1,S2,D1 SUB S3,D2 (move syntax - see the MOVE instruction descrip-
tion.)

01 0sss ddQQ QQDD

OPTIONAL EFFECTIVE ADDRESS EXTENSION OR IMMEDIATE LONG DATA

DATA BUS MOVE FIELD
Instruction Fields:

D1 D D

Dn n n where nn = 0-3

D2 d d

Dn n n where nn = 0-3

S3 s s s

 Dn n n n where nnn = 0-7

 S1*S2 QQQQ

D0*D4 0 0 0 0
D4*D4 0 0 0 1
D4*D5 0 0 1 0
D4*D6 0 0 1 1
D5*D6 0 1 0 0
D4*D7 0 1 0 1
D5*D7 0 1 1 0
D6*D7 0 1 1 1
D4*D8 1 0 0 0
D5*D8 1 0 0 1
D6*D8 1 0 1 0
D7*D8 1 0 1 1
D4*D9 1 1 0 0
D5*D9 1 1 0 1
D6*D9 1 1 1 0
D7*D9 1 1 1 1

Timing: 2 + mv oscillator clock cycles

Memory: 1 + mv program words
OROLA 9

10
PFLUSH Program-Cache Flush PFLUSH

Assembler Syntax:

PFLUSH
Operation:

Flush instruction cache

Description:
MOTOROLA

Instruction Fields:

 None

Timing: 2 oscillator clock cycles

Memory: 1 program words

00 0000 0000 0011

31 14 13 0

0000 0000 0000 0000 00

Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and tag registers to their
default values.

The PFLUSH instruction is enabled both in Cache Mode and PRAM Mode.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PFLUSH

MO
PFREE Program-Cache Global Unlock PFREE

Assembler Syntax:

PFREE
Operation:

Unlock all locked sectors

Description:
TOROLA 11

Instruction Fields:

 None

Timing: 2 oscillator clock cycles

Memory: 1 program words

00 0000 0000 0010

31 14 13 0

0000 0000 0000 0000 00

Unlock all the locked cache sectors in the instruction cache.

The PFREE instruction is enabled both in Cache Mode and PRAM Mode.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PFREE

12
PLOCK Program-Cache-Sector Lock PLOCK

Assembler Syntax:

PLOCK ea
Operation:

Lock sector by ea

Description:
MOTOROLA

Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

00 0000 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0000 MMMR RR

Lock the cache sector to which the specified effective address belongs. If the specified effective address
does not belong to any cache sector, then load the least recently used cache sector tag with the 25 most
significant bits of the specified address and then lock that cache sector. Update the LRU stack accordingly.
All memory alterable addressing modes may be used for the effective address, but not a short absolute
address.

The PLOCK instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PLOCK ea

MO
PLOCKR Program-Cache-Sector PLOCKR
 Relative Lock
Assembler Syntax:

PLOCKR label

PLOCKR Rn

he sum PC + specified displacement belongs. If the sum does not belong
Operation:

Lock sector by PC + xx

Lock sector by PC + xxxx

Lock sector by PC + Rn

Description:

Lock the cache sector to which t
TOROLA 13

00 0000 0aaa aaaa

31 14 13 0

0000 0011 10aa aaaa aa

to any cache sector, then load the least recently used cache sector tag with the 25 most significant bits of
the sum and then lock that cache sector. Update the LRU stack accordingly.

The displacement is a 2’s complement 32-bit integer that represents the relative distance from the current

PC to the address to be locked. Short Displacement, Long Displacement and Address Register PC Relative

addressing modes may be used. The Short Displacement 15-bit data is sign extended to form the 32-bit
PC Relative Displacement.

The PLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PLOCKR label (short)

00 0000 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0000 1000 00

Instruction Format: PLOCKR label

00 0000 0000 0000

31 14 13 0

0000 0011 0000 001R RR

Instruction Format: PLOCKR Rn

14 MOTOROLA

Instruction Fields:

 Rn - R0-R7

 Long PC Relative Displacement - 32 bits

 Short PC Relative Displacement - aaaaaaaaaaaaaaa (15 bits)

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

MO
PUNLOCK Program-Cache-Sector PUNLOCK
 Unlock
Assembler Syntax:

PUNLOCK ea
Operation:

Unlock sector by ea

Description:
TOROLA 15

Instruction Fields:

 ea Rn - R0-R7 (Memory alterable addressing modes only)

 Absolute Address - 32 bits

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

00 0000 1000 0000

31 14 13 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

0000 0011 0100 MMMR RR

Unlock the cache sector to which the specified effective address belongs. If the specified effective address
does not belong to any cache sector, and is therefore definitely unlocked, nevertheless, load the least re-
cently used cache sector tag with the 25 most significant bits of the specified address. Update the LRU
stack accordingly. All memory alterable addressing modes may be used for the effective address, but not
a short absolute address.

The PUNLOCK instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruction
trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PUNLOCK ea

16
PUNLOCKR Program-Cache-Sector PUNLOCKR
 Relative Unlock
Assembler Syntax:

PUNLOCKR label

PUNLOCKR Rn

 the sum PC + specified displacement belongs. If the sum does not belong
Operation:

Unlock sector by PC + xx

Unlock sector by PC + xxxx

Unlock sector by PC + Rn

Description:

Unlock the cache sector to which
MOTOROLA

00 0000 0aaa aaaa

31 14 13 0

0000 0011 11aa aaaa aa

to any cache sector, and is therefore definitely unlocked, nevertheless, load the least recently used cache
sector tag with the 25 most significant bits of the sum. Update the LRU stack accordingly.

The displacement is a 2’s complement 32-bit integer that represents the relative distance from the current

PC to the address to be locked. Short Displacement, Long Displacement and Address Register PC Relative

addressing modes may be used. The Short Displacement 15-bit data is sign extended to form the 32-bit
PC Relative Displacement.

The PUNLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause an illegal instruc-
tion trap to be taken.

CCR Condition Codes: Not affected.

ER Status Bits: Not affected.

IER Flags: Not affected.

Instruction Format: PUNLOCKR label (short)

00 0000 0000 0000

31 14 13 0

PC RELATIVE DISPLACEMENT

0000 0011 0100 1000 00

Instruction Format: PUNLOCKR label

00 0000 0000 0000

31 14 13 0

0000 0011 0100 001R RR

Instruction Format: PUNLOCKR Rn

MOTOROLA

 INDEX - 1

INDEX

INDEX

—A—

A Law . 8-17
A/D Comb Filter Transfer Function . . 6-12
A/D Converter 6-3
A/D Decimation DSP Filter . 6-32, 6-40, 6-

48, . 6-56
A/D Section . 6-5
A/D Section DC Gain 6-12
A/D Section Frequency Response and DC

Gain . 6-12
Address Registers 1-9
Analog Low-pass Filter Transfer Function

6-24
Attenuator . 6-4

—B—

Bias Current Generator 6-3
Bit Field Manipulation Instructions 34
Bootstrap Control Logic 3-7, 13
Bootstrap Example, Host 21
Bootstrap Example, Low Cost21
Bootstrap Firmware Program 14
Bootstrap from the External P Memory .15
Bootstrap from the Parallel Host Interface

17
Bootstrap from the SSI0 16
Bootstrap Memory 3-4
Bootstrap Mode 3-6
Bootstrap Program 3-7
Bootstrap Program Listing 15
Bootstrap ROM 3-6, 13

Bus Control Register 4-3, 4-4
Bus Control Register (BCR) 42

—C—

CCITT . 8-17
CCR . 1-21
Clock Synthesis Control Register (PLCR)

9-7
COCR Audio Level Control Bits (VC3-VC0)

. 6-7
COCR Codec Enable Bit (COE) 6-9
COCR Codec Interrupt Enable Bit (COIE)

6-9
COCR Codec Ratio Select Bits (CRS1-0)

6-8
COCR Input Select Bit (INS) 6-9
COCR Microphone Gain Select Bits

(MGS1-0) 6-8
COCR Mute Bit (MUT) 6-8
Codec . 6-3
Codec Control Register (COCR) .6-6, 6-7,

49
Codec DC Constant for 105 Decimation/in-

terpolation Ratio 6-47
Codec DC Constant for 125 Decimation/in-

terpolation Ratio 6-31, 6-39
Codec DC Constant for 81 Decimation/in-

terpolation Ratio 6-55
Codec Master Clock 6-3
Codec Receive Data Register 6-6
MOTOROLA INDEX - 3

Index (Continued)

Codec Status Register (COSR) . 6-6, 6-9,
49

Codec Transmit Data Register 6-6
Comb Filter . 6-3
Command Vector Register 5-7
Command Vector Register (CVR)55
Companding/Expanding Hardware . . 8-17
Compare Interrupt Enable (CIE) Bit 10 7-7
Condition Code Register 1-21
Conditional Program Controller Instruc-

tions .38
Control Register (PBC)51, 53
Control Register (PCC)52
COSR Codec Receive Data Full Bit

(CRDF) 6-10
COSR Codec Receive Overrun Error Flag

Bit (CROE) 6-10
COSR Codec Transmit Data Empty Bit

(CTDE) 6-10
COSR Codec Transmit Under Run Error

FLag Bit (CTUE) 6-9
CRA Frame Rate Divider Control

(DC0…DC4) Bits 8-12 8-13
CRA Prescale Modulus Select

(PM0…PM7) Bits 0-7 8-13
CRA Prescaler Range (PSR) Bit 15 . 8-15
CRA Word Length Control (WL0,WL1) Bits

13, 14 8-14
CRB A/Mu Law Selection Bit (A/MU) Bit 3

8-17
CRB Clock Polarity Bit (SCKP) Bit 6 . 8-17
CRB Clock Source Direction (SCKD) Bit 5

 . 8-17
CRB Frame Sync Invert (FSI) Bit 9 . . 8-17
CRB Frame Sync Length (FSL) Bit 8 8-17
CRB MSB Position Bit (SHFD) Bit 7 . 8-17
CRB Serial Output Flag 0 and 1 (OF0,

OF1) Bit 0, 1 8-16
CRB SSI0 Mode Select (MOD) Bit 11 8-18
CRB SSI0 Receive Enable (RE) Bit 13 . 8-

18
CRB SSI0 Receive Interrupt Enable (RIE)

Bit 15 8-19

CRB SSI0 Transmit Enable (TE) Bit 12 8-
18

CRB SSI0 Transmit Interrupt Enable (TIE)
Bit 14 8-19

CRB Sync/Async (SYN) Bit 10 8-18
CVR Host Command Bit (HC) Bit 7 . . 5-9
CVR Host Vector 5-7

—D—

D/A Analog Comb Decimating Filter 6-21
D/A Analog Comb Filter Transfer Function

. 6-21
D/A Analog Low Pass Filter 6-24
D/A Comb Filter Transfer Function . 6-19
D/A Interpolation Filter 6-35, 6-43, 6-51, 6-

59
D/A Second Order Digital Comb Filter . 6-

19
D/A Section . 6-5
D/A Section DC Gain 6-17
D/A Section Frequency Response and DC

Gain . 6-17
D/A Section Overall Frequency Response

6-26
Data ALU Instructions 40
Data ALU Instructions with One Parallel

Operation 33
Data Direction Register (PBDDR) 51
Data Direction Register (PCDDR) 52
Data Register (PBD) 51
Data Register (PCD) 52
Decimation . 6-3
Decimation/Interpolation 6-67
Decimation/Interpolation Ratio Control 6-8
Decrement Ratio (DC7-DC0) Bit 0-7 . 7-6
Differential Output 6-4
Division Instruction 39
DMA Mode Operation 5-18
Double Precision Data ALU Instructions .

39
DSP Programmer Considerations . . 5-23
DSP Reset . 8-8
DSP to Host 5-20
INDEX - 4 MOTOROLA

Index (Continued)
Dual Read Instructions 32

—E—

Effective Address Update34
Event Select (ES) Bit 8 7-6
Exception Priorities within an IPL . . . 1-12

—F—

Fractional Arithmetic 1-8
Frequency Multiplier 9-4

—G—

G Bus Data . 1-30
GDB . 1-7
Global Data Bus 1-7
GSM Bit (GSM) 9-8

—H—

HCR Host Command Interrupt Enable
(HCIE) Bit 2 5-10

HCR Host Flag 2 (HF2) Bit 3 5-10
HCR Host Flag 3 (HF3) Bit 4 5-10
HCR Host Receive Interrupt Enable

(HRIE) Bit 0 5-10
HCR Host Transmit Interrupt Enable

(HTIE) Bit 1 5-10
HCR Reserved Control – Bits 5, 6 and 7 .

5-11
HI . 5-3
Host Control Register 5-9
Host Control Register (HCR) 53
Host Interface 1-17, 5-3
Host Port Usage 5-21
Host Programmer Considerations . . . 5-21
Host Receive Data Register 5-6
Host Receive Data Register (HRX)54
Host Status Register 5-11
Host Status Register (HSR) 54
Host to DSP 5-19
Host Transmit Data Register 5-5

Host Transmit Data Register (HTX) . . . 54
HSR DMA Status (DMA) Bit 7 5-12
HSR Host Command Pending (HCP) Bit 2

. 5-11
HSR Host Flag 0 (HF0) Bit 3 5-12
HSR Host Flag 1 (HF1) Bit 4 5-12
HSR Host Receive Data Full (HRDF) Bit 0

. 5-11
HSR Host Transmit Data Empty (HTDE)

Bit 1 . 5-11
HSR Reserved Status – Bits 5 and 6 5-12

—I—

I/O Port Set-up 4-3
ICR Host Flag 0 (HF0) Bit 3 5-13
ICR Host Flag 1 (HF1) Bit 4 5-14
ICR Host Mode Control (HM1, HM0) Bits 5

and 6 5-14
ICR Initialize Bit (INIT) Bit 7 5-15
ICR Receive Request Enable (RREQ) Bit 0

. 5-12
ICR Transmit Request Enable (TREQ) Bit

1 . 5-13
Instruction Set Summary 29
Integer Data ALU Instructions 39
Integer Operations 1-8
Interrupt Control Register (ICR) . .5-12, 55
Interrupt Priority Levels 1-12
Interrupt Priority Register (IPR) . .1-11, 43
Interrupt Priority Structure 1-12
Interrupt Status Register (ISR) . . .5-16, 56
Interrupt Vector Register (IVR) . . .5-17, 57
Interrupts Starting Addresses and Sources

. 28
Inverter Bit (INV) Bit 14 7-7
IPL . 1-12
IPR . 27, 43
ISR (Reserved Status) Bit 5 5-17
ISR DMA Status (DMA) Bit 6 5-17
ISR Host Flag 2 (HF2) Bit 3 5-17
ISR Host Flag 3 (HF3) Bit 4 5-17
ISR Host Request (HREQ) Bit 7 . . . 5-17
MOTOROLA INDEX - 5

Index (Continued)
ISR Receive Data Register Full (RXDF) Bit
0 . 5-16

ISR Transmit Data Register Empty (TXDE)
Bit 1 . 5-16

ISR Transmitter Ready (TRDY) Bit 2 5-16
IVR Host Interface Interrupts 5-18

—J—

Jump/Branch Instructions35

—L—

Linear . 1-9
LMS Instruction32
Logical Immediate Instructions38

—M—

MAC . 1-8
MC68020 1-18, 5-3
Microphone Gain Control 6-9
Mode 0 . 3-7
Mode 1 . 3-7
Mode Register 1-21
Modifier Registers 1-9
Modulo . 1-9
Move — Program and Control Instructions

 .36
Move Absolute Short Instructions37
Move Peripheral Instructions 37
MR . 1-21
Mu Law . 8-17
Multiply-Accumulator 1-8

—N—

Network Mode 8-25
Network Mode Receive 8-27
Network Mode Transmit 8-26
Normal Mode Receive 8-25
Normal Mode Transmit 8-25
Normal Operating Mode 8-25

—O—

Offset Registers 1-9
On-chip Codec Programming Model . 6-6
On-Chip Codec Programming Model Sum-

mary 6-11
On-chip Frequency Synthesizer Program-

ming Model 46
On-chip Peripherals Memory Map 27
On-Demand Mode 8-27
Opcode . 1-30
Operands . 1-30
Operating Mode Register (OMR) 44
Other Data ALU Instructions 40
Overflow Interrupt Enable (OIE) Bit 9 . 7-6

—P—

PBC . 4-6
PBD . 4-6
PBDDR . 4-6
PCC . 4-6
PCDDR . 4-6
PDB . 1-7
Phase Comparitor 9-3
Phase Locked Loop (PLL) 9-3
Pins, 16-Bit Timer 2-12
Pins, Address and Data Bus 2-3
Pins, Bus Control 2-3
Pins, Host Interface 2-11
Pins, Interrupt and Mode Control 2-9
Pins, On-chip Codec 2-14
Pins, On-chip Emulation 2-13
Pins, Power, Ground and Clock 2-10
PLCR Clockout Select Bits (CS1-CS0) 9-7
PLCR Feedback Divider Bits 9-7
PLCR Input Divider Bits (ED3-ED0) . . 9-7
PLCR PLL Enable Bit (PLLE) 9-8
PLCR PLL Power Down Bit (PLLD) . . 9-8
PLCR Voltage Controlled Oscillator Lock

Bit (LOCK) 9-9
PLL . 9-3
PLL Control Register (PLCR) 45
Port B . 4-6
INDEX - 6 MOTOROLA

Index (Continued)
Port B Control Register (PBC) 4-6
Port B Data Direction Register 4-6
Port B Data Register 4-6
Port C . 4-6
Port C Control Register 4-6
Port C Data Direction Register 4-6
Port C Data Register 4-6
Port C Data Register (PCD) 4-6
Port Registers 4-4
Programming Models 5-5

—R—

Real-Time I/O Example with On-Chip Co-
dec and PLL 6-62

Receive Byte Registers 5-5, 57
Receive Data Register (CRX)50
Receive Slot Mask Registers 8-23
Receive Slot Mask Shift Register . . . 8-24
Reference Voltage Generator 6-3
Register Transfer Conditional Move In-

struction 38
Register Transfer without Parallel Move In-

struction 37
REP and DO Instructions 35
Reset Circuit .23
Reverse Carry 1-9

—S—

Serial Clock . 8-7
Serial Control 8-7, 8-8
Serial Receive Data Pin 8-7
Serial Transmit Data Pin 8-7
Short Immediate Move Instructions . . .36
Special Instructions41
SSI Control Register (PCC) 58
SSI Control Register A (CRA)61
SSI Control Register B (CRB)61
SSI Receive Slot Mask59
SSI Serial Receive Register 58
SSI Serial Transmit Register58
SSI Status Register (SSISR) 62
SSI Transmit Slot Mask 60

SSI0 Clock and Frame Sync Generation .
8-4

SSI0 Clock Generator 8-15
SSI0 Control Register A 8-12
SSI0 Control Register B 8-15
SSI0 Data and Control Pins 8-4
SSI0 Interface Programming Model . . 8-9
SSI0 Operating Modes 8-3, 8-24
SSI0 Receive Data Register 8-12
SSI0 Receive Shift Register 8-12
SSI0 Reset . 8-9
SSI0 Reset and Initialization Procedure 8-

8
SSI0 Status Register 8-19
SSI0 Transmit Data Register 8-12
SSI0 Transmit Shift Register 8-10
SSISR Receive Data Register Full (RDF)

Bit 7 . 8-22
SSISR Receive Frame Sync (RFS) Bit 3 .

8-20
SSISR Receiver Overrun Error (ROE) Bit 5

. 8-21
SSISR Serial Input Flag 1 and 0(IF0, IF1)

Bit 0, 1 8-20
SSISR Transmit Data Register Empty

(TDE) Bit 6 8-21
SSISR Transmit Frame Sync (TFS) Bit 2 .

8-20
SSISR Transmitter Underrun Error (TUE)

Bit 4 . 8-21
Status Register (SR) 42
STOP Instruction 9-4
STOP Reset . 8-9
Switched Capacitor Filter 6-4
System Stack (SS) 1-23

—T—

TCR Inverter Bit (INV) Bit 14 7-7
Time Slot Register 8-22
Timer Architecture 7-3
Timer Compare Register (TCPR) . 1-17, 7-

3, .7-5, 48
Timer Control Register 7-3
MOTOROLA INDEX - 7

Index (Continued)
Timer Control Register (TCR) 1-17, 7-6, 47
Timer Count Register (TCR) 7-3
Timer Count Register (TCTR) 1-17, 7-3, 48
Timer Enable (TE) Bit 15 7-8
Timer Functional Description 7-8
Timer Preload Register 7-3
Timer Preload Register (TPR) . 1-17, 7-4,

48
Timer Resolution 7-8
TOUT Enable (TO2-TO0) Bit 11-13 7-7, 7-

8
Transfer with Parallel Move Instruction .37
Transmit and Receive Frame Sync Direc-

tions -FSD0,FSD1 (Bit 2,4) 8-16, 8-
17

Transmit Byte Registers 5-5, 57
Transmit Data Register (CTX) 50
Transmit Slot Mask Registers 8-22
Transmit Slot Mask Shift Register . . . 8-23
Two’s-complement 1-8

—V—

VCO .9-3, 9-4
Voltage Controlled Oscillator (VCO) . . 9-4

—W—

Wait State . 4-4
Word Length Divider 8-15

—X—

XDB . 1-7

—Y—

YD3-YD0 . 9-4
INDEX - 8 MOTOROLA

MOTOROLA 17

Instruction Fields:

 Rn - R0-R7

 Long PC Relative Displacement - 32 bits

 Short PC Relative Displacement - aaaaaaaaaaaaaaa (15 bits)

Timing: 4 + ea oscillator clock cycles

Memory: 1 + ea program words

18 MOTOROLA

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unau-
thorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and M are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbor Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T.,

Hong Kong.

M

Free Manuals Download Website
h�p://myh66.com

h�p://usermanuals.us
h�p://www.somanuals.com

h�p://www.4manuals.cc
h�p://www.manual-lib.com
h�p://www.404manual.com
h�p://www.luxmanual.com

h�p://aubethermostatmanual.com
Golf course search by state

h�p://golfingnear.com
Email search by domain

h�p://emailbydomain.com
Auto manuals search

h�p://auto.somanuals.com
TV manuals search

h�p://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	DSP96002 INTRODUCTION
	SIGNAL DESCRIPTION AND BUS OPERATION
	CHIP ARCHITECTURE
	SOFTWARE ARCHITECTURE
	DATA ORGANIZATION AND ADDRESSING MODES
	INSTRUCTION SET AND EXECUTION
	EXPANSION PORTS AND I/O PERIPHERALS
	EXCEPTION PROCESSING
	OPERATING MODES AND PROGRAM MEMORY MAPS
	ON-CHIP EMULATOR
	INSTRUCTION SET DETAILS
	STANDARD DSP BENCHMARKS
	IEEE ARITHMETIC
	FLOATING-POINT NUMBER STORAGE AND ARITHMETIC
	INSTRUCTION CACHE and 32-BIT TIMER/EVENT COUNTER
	ADDENDUM/CORRECTIONS
	Index
	— A—
	— B—
	— C—
	— D—
	— E—
	— F—
	— G—
	— H—
	— I—
	— J—
	— L—
	— M—
	— N—
	— O—
	— P—
	— R—
	— S—
	— T—
	— V—
	— W—
	— X—
	— Y—

