XEROX 5915 SERVICE MANUAL

Issued by : Overseas Technical Group, Xerox of Shanghai Limited.
$\mathbf{7}^{\text {th }}$. July 200

XEROX

THE DOCUMENT COMPANY

XEROX 5915

Service Manual 1st Edition

- This service manual covers the following models:

Electrostatic Copier XEROX 5915 manufactured by SHANGHAI XEROX.

- Related Materials

No related materials are issued other than this service manual.

- Confidentiality
- This service manual is issued intending use by maintenance service personal authorized by XEROX. Coping, transferring or leasing this manual without prior consent by XEROX is prohibited
- Whenever a paper is eliminated because of issuance of a replacement page containing changes modifications, burn it or take the necessary action including cutting by a shredder.
- Be careful of handing the manual to avoid missing or damaging it.

- Revision and Modification Information

When design changes or revisions relating to this service manual occur, overseas technical information or overseas service bulletins may be issued as supplementary information until such change will be accommodated in the updated version of this service manual.

CAUTION: Important changes including revisions of spare part numbers and adjustment specifications must immediately be reflected on the respective pages of this service manual upon reception of such information

1. Scope and Comment Sheet

This service manual is prepared to specify service standards for the XEROX 5915.

- Service Manual Comment Sheet

When you have comments or corrections, or discover wrong descriptions in the XEROX 5915 service manual, enter these items on the comment sheet and send it to
Overseas Support Group,
Technical Services Department,
Xerox of Shanghai Ltd.
Via your company's Technical Department.

2. How to Use the Service Manua

This service manual covers standard maintenance servicing procedures for the Procedure for efficient work during maintenance calls.
2.1 Service Manual Composition

This manual is divided into the following 9 sections:

Section 1 Service Procedure

This section describes general and servicing procedures required to carry out maintenance of the XEROX 5915.

Section 2 Troubleshooting

This section specifies troubleshooting procedures, except those on the image or copy quality. How to use the diagnostic mode and programs are also contained in this section.

Section 3 Image Troubleshooting (Under

 preparation)This section describes troubleshooting
procedures relating to image quality problems.

Section 4 Disassembly, Assembly and

 AdjustmentThis section instructs the disassembly assembly, adjustment and replacement 5915.

Section 5 Parts List
This section lists the component parts of the XEROX 5915.

Section 6 General

The following pieces of information relating to the XEROX 5915 are contained in this section - Specifications

- Tools and servicing supplies

Consumables
Information relating to rnodifications

- Installation and removal procedures

Section 7 Wiring Information
This section contains information relating to electrical wiring of the XEROX 5915.

- Wiring connectors list

Wiring connectors positions

- PWBS reference materials

ection 8 information of Related Products

(Not to be issued as the 5915 is unique)
Section 9 Block Schematic Diagrams (BSD) This section contains the following Block Schematic Diagrams (BSD) of Chains 1 to 9 and other wiring information on the XEROX 5915
Chain 1. STANDBY POWER

- Chain 2. MODE SELECTION, MACHINE RUN CONTROL START PRINT POWER - Chain 3. DOCUMENT TRANSPORTATION OPTICS NO.I
- Chain 4. DOCUMENT TRANSPORTATION

OPTICS NO. 2
Chain 5. PAPER SUPPLYING AND
TRANSPORTATION NO. 1
Chain 6. PAPER SUPPLYING AND
Chain 7 XEROGRAPHIC
TRANSPORTATION AND FUSING

2.2 Revision Information

This manual will be revised as specified below and the necessary information sent to all customer engineers. Revisions must be incorporated correctly in order to keep the manual up-to-date.

Revision Procedure

- When the entire manual is revised, the Revision 1 on the front cover will be renewed to Revision 2, Revision 3 and so on.

Revision A, B, C and after will be issued. Each revised page will carry Revision A, B, C and up in order to clarify the revision history

- Change bar:

When a paragraph, table or figure is revised, a change bar will be inserted into respective revisions in order to clearly indicate that a change or addition is made.

Example:

When the same page is changed a second time, the previous change bar will be deleted

3. Warning, Cautions and Notes

WARNING

A Warning is used whenever an operating or maintenance procedure, practice, condition or statement, if not strictly observed, could sult in personal injury

CAUTION

A Caution is used whenever an operating or maintenance procedure, practice, condition or statement, if not strictly observed, could result in damage to the equipment.

NOTE

NOTE: A Note is used where it is essential to highlight a procedure, practice, condition or statement.

4. Symbols

The following symbols are used throughout this manual.
PL: This indicates you should refer to the parts list.

Section 1 Service Procedure

Section 1 Service Procedure

1.1 Precautions
1.1.1 Safety..1-2
1.1.2 Other precautions 1-2
1.2 Work Process When Making Calls $1-2$
1.3 Detailed Explanation of Work When Making Calls 1-3
3.1 What to do first 1-3
1.3.2 Check for repeatability of the problem
1.3.3 Check the image quality. 1-3
13.4 Feed Counter Check 1-3
3.5 Paper Jam Status Check1
1.3.6 TRIM 1-4

1. Service Call Procedure

FIRST CALL ACTIONS

1. Discuss with the customer the required and agreed configuration for the copier. Check that all required hardware and software is installed and/or enabled to meet this specification.
2. If the copier is configurated with either a sorter or ADF, check the alignment of the
output device.

NORMAL CALL ACTIONS

1. Ask the operator about the reason for the call. Obtain the operators description of the reason for the call and any other problems that may be occurring. Review any defective copies to determine what
First Call? If this is the first call, carry out the first call actions.
2. Switch on the copier... Observe the user interface panel <Note to author add initialising sequence of events>
3. System initialisation... Confirm that the < Note to author add initialising sequence of events eg drives moving etc>
4. Check the service log. Review the copier service log book for any previous actions
5. Check and record copy coun
and record copy counters in the XXX bock and record copy counters in the XXX book number of sheets of copy paper fed from Trays and that of originals fed from Document Feeders.
6. Enter Diagnostic Mode. Perform the following

Make a note of any faults recorded.
Make a note of the High Frequency Service Items
8. Verify and classify the fault. Use the information obtained in the previous steps to determine the cause of the fault. If the previous steps do not determine the fault, fully exercise the copier utilising all options until the fault is determined.
9. Plan the call. Using the information noted in previous steps, structure the call.

Check all H.F.S.I required are available. Any items unavailable shall be ordered at this point.

When troubleshooting or
repairing a fault in a particular subsystem, resolve any workaround and overthreshold faults and replace any noted

subsystem

ubsystem.

Perform any subsystem
maintenance actions applicable to that system.

FINAL ACTIONS

1. Perform any remaining maintenance actions. Check that all maintenance actions noted during the call have been completed.
2. Carry out TRIM procedure.
3. Make a copy of the customer document. Clean the document glass and make a copy. Ensure that the customer is Satisfied with the copy quality. have been replaced. Clean the copier and clean the servic area.

Remove any toner spillage's se "Formula A" cleaner to clean the covers.

WARNING

Do not use solvents.

CAUTION

Take care when cleaning the contro panel to not use an excessive
amount of the cleaner.
6. Provide customer with training (if required)
7. Make a note of the copy credits and
8. Complete the copier log book. Record all service actions performed in the copier log book and record any other relevant information.

HIGH FREQUENCY
SERVICE ITEMS

Component	Indication	Replacement threshold	Parts list	Replacement Procedure
Photoreceptor drum	With the Drum Unit replacement due, the Control Panel display turns on at 50K copies indicating its replacement is required. After "Replace Drum Cartridge" is displayed, J7 is displayed at 5K copies and copying is prohibited from this point.	50 K	673 S50211	REP 5.1.1
Toner Cartridge	When the Toner Cartridge runs short of toner, "Supply Toner" is flashing. When approx. 100 copies have been made since the display began flashing, J1 is displayed and copying is prohibited from this point.	6K The above copy quantities apply to A4 originals with an area coverage of 6\%..	6 R01020	
Half-Moon Feed Roll		67 K	$59 \mathrm{K03261}$	REP 2.5.1
MSI Feed Roller		60 K	6 650220	REP 2.3.2
MSI Retard Pad		60 K	19S50212	REP 2.2.2
Ozone Filter		50 K	53 E91510	REP 8.5.2

4

TRIM

- The XEROX 5915 TRIM procedure shall be performed at
all maintenance calls., unless the procedure has been carried out within the last 10 days.
TRIM work items are listed in the TRIM table.
The work is categorized into the following:
$\mathbf{\nabla}$:Check at calls. $\boldsymbol{\nabla}$: Make sure to clean
< TRIM Check List
V:Check at calls.
∇ : Make sure to clean

	Work Item	Category	Main Points
1	Check the overall M/C operation before work.	∇	- Check on paper feeding, copy quality, abnormal noise, etc.
2	Clean Platen Glass(top/bottom surfaces), Platen Cushion and Mirrors.	∇	- Clean Platen Glass top/bottom surfaces with silicon cloth and lens cleaning liquid. - Clean Platen Cushion with wet cloth. - Clean Mirrors 1-4 and Lamp Reflector with optics cleaning cloth.
3	Clean Transfer/Detach/Pre-transfer Corotrons.	∇	- Clean Wire Shield and Guide with a clean brush, and wipe them with dry cloth if necessary.
4	Clean Paper Transport Assy.	∇	- Clean Transport Belt and its surrounding area with a brush, and wipe them with a dry cloth if necessary.
5	Charge Corotron, Seal Glass, and I.S.I.L.	∇	- Wipe Charge Corotron, Seal Glass, and I.S.I.L. with dry cloth.
6	Check clean parts subject to wear.	-	- Check lives of the parts and replace/clean if necessary. - Ozone Filter (50k) - MSI Feed/Retard Roller/Pad (60k) - Half-Moon Feed Roller (67k)
7	Check on safety.	∇	- Carry out earth continuity check on mains cable. - Check Power Plug for damage(cracks/ exposed core)
8	Check the overall M/C operation after work.	V	- Enable all the operations and check paper feeding, copy quality, abnormal noise, etc. - Check counters. - Update the History Card and service report.

NOTE: a. The Drum doesn't normally need cleaning.
b. When you can't help cleaning the Drum because of fingerprints, etc., clean its surface with the XEROX 5915 toner slightly and then wipe it with dry cloth. (Clean it while rotating it in the Drum rotating direction.)
c. Never use Drum Cleaner or Refiner.

Section 2 Troubleshooting

Section 2 Troubleshooting

2.1 Preface
2.1.1 How to Troubleshoot. 2-2
2.1.2 Terminology -2
2.2 Diagnostic(C/E) Mode
2.2.1 How to Enter Diagnostic (C/E) Mode. 2-4

2.2.2 Entries of Chain Codes, Function Codes \& Se
2-4
2.2.3 How to Exit Diagnostic (C/E) Mode 2-4
2.2.4 Diagnostic Functions and Operating Procedure2-4
2.3 Level 1 Troubleshooting 2.3.1 Level 1 FIP.............................. 2-12
2.3.2 Chart of Jam Status Codes 2-15
2.4 Level 2 Troubleshooting

2.4.1 General FIPs. 2-16
2.4.2 U Code F.I.P.'s 2-19
2.4.3 Misfeed Jams
2.4.3 Misfeed Jams 2-25

2.1 Preface

2.1.1 How to Troubleshoot

Level 1 Troubleshooting

- Level 1 Troubleshooting (Level 1 F.I.P.) is the first step oward the diagnosis of a problem.
evel 1 F..P. asks you whether or not any Status Code and other problems exist, guiding you to Level 2
Troubleshooting.
Level 2 Troubleshooting
- Level 2 Troubleshooting is a diagnostic procedure of isolating one problem by classified Status Codes, Misfeed Jams and various problematic symptoms. Performing a F.I.P. or an appropriate procedure in the check list enables you to discover causes of a problem in a short period of time.
- Status Code

When a Status Code alerts you to a machine failure, perform appropriate troubleshooting items, referring to the list of Status Codes listing problem contents and corrective actions or troubleshooting items.

How to Troubleshoot and Notes

- First perform Level 1 F.I.P. to isolate one problem. Then go to an appropriate Level 2 Troubleshooting, BSD, or Disassembly/Assembly/Adjustment procedure to resolve the problem. When you try to find a cause of a problem using a F.I.P. or Check Chart, you should read its procedure carefully and perform it properly. When there are a number of possible causes, you may perform a F.I.P. of the same title again, because it is impossible to find all causes at once. In this case, pay attention to different judgments made in the process of the same F.I.P.
- When taking voltage measurements or performing operation tests of electric appliances, you should cheat their Interlock Switches.
- When replacing PWBs, you should check connectors on them for proper connections before replacements.

2.1.2 Terminology

Troubleshooting uses the following terms. You need to understand these terms in analyzing failures
Common Terminology
Status Code The message "Report XX." appears when the machine discovers a problem. This XX is called Status Code.

Mechanically press or release the Switch Actuator or the linking Mechanical Linkage.
Place a document or a sheet of paper against the Photo Sensor to make the Sensor detect one.

Visually Check parts such as the Relay or Mechanical Linkage for its proper operation or check to see if parts are defective.
Enter Diagnostic Mode
Enter Diagnostic Mode following the procedure indicated in Diagnostic(C/E) Mode
Power off. Measure the resistances between the wire and the frame with the teste Ohm range.

Check for an open circuit Power off. Measure the resistance on the both ends of the wire with the tester Ohm Set [.*.] to ON

Stop [**.*]
Exit Diagnostic Mode range.

Enter Diagnostic Mode following the procedure indicated in Diagnostic(C/E) Mode. Then enter [Chain Code \& Function Code]. Once you have entered Diagnostic Mode you must not exit it until you are instructed by the message to "Exit Diagnostic Mode" or you don't need to check any more because an area where a failure has occurred is found.
Press the Stop button to set the drive signal for the output component being tested to OFF.

Exit Diagnostic Mode following the procedure described in Diagnostic Mode/Program

Check Voltage Levels
+5 VDC

a little due to varying AC powers or loads.
$+24 \mathrm{VDC}$

- + $24 \mathrm{VDC} \pm 2.4 \mathrm{VDC}$
from Failure Analysis Procedure
Mechanical Problem This is used when you should move to mechanical adjustments and parts replacements. Read all items (describing main causes) and find causes of a problem in comparison with symptoms the machine shows.
PL 4.2 Refer to Parts List PL 4.2, Section 5.
BSD 6
Q4.1.3
Replace parts in order

Refer to BSD 6, Section 9
Refer to 4.1.3, Section 4 Disassembly/Assembly/Adjustment.
When it is impossible to further analyze causes of a problem, replace parts in order. Replacement parts are described in order of highest possible replacement items.

Intentional blank page

2.2 Diagnostic(C/E) Mode

2.2.1 How to Enter Diagnostic(C/E) Mode

Power on while pressing " 0 " on the keyboard.

- All the LEDs on Console Panel turn on. When you press the key pad or the Stop Clear "TONER EMPTY" starts flashing while the other TONER EMPT LEDs turn off
2.2.2 Entries of Chain Codes, Function Codes and Set Values

If you enter a wrong Chain Code or Function Code, press the Stop Clear button and re-enter a correct one.

- If you enter an unspecified Chain Code,

Function Code or Set Value, "Er" appears
2.2.3 How to Exit Diagnostic(C/E) Mode

Set the Power to OFF/ON.
2.2.4 Diagnostic Functions \& Operating Procedures

Input Check

Function:

This displays the input voltage level from the Sensor or the Switch with "H" or "L"

Procedure:

1. Enter Diagnostic (C/E) Mode.
2. Enter the Chain Code for a part to be
3. Enter the Function Code for a part to
4. Enter the Function Code for a part to be
5. Operate the part to be checked.

- When the voltage level is high, " H " is - When the voltage level is high, "When it is low, "L" is displayed 5. When you press the Stop Clear button once during the check, the Function Code Entry awaiting status is initiated, while you press it twice, the Chain Code Entry awaiting status is initiated.

A/D Input Check

Function:
This displays the input voltage level from the Sensor with a digital value.

Procedure:

1. Enter Diagnostic (C/E) Mode.
2. Enter the Chain Code for a part to be
checked and press the Start button.
3. Enter the Function Code for a part to be checked and press the Start button.

- The voltage levels are displayed with the digital values of $0 \sim$ FF The varying voltage level will change the display.

4. When you press the Stop Clear button once during the check, the Function Code Entry awaiting status is initiated, while you press it awaiting status is initiated, while you press it
twice, the Chain Code Entry awaiting status is initiated.

Console Button Check

Function:

This checks any other button than the Stop Clear one on the Console Panel

Procedure:

1. Enter Diagnostic (C/E) Mode
2. Enter Chain Code "2" and press the Start button.
3. Enter Function Code " 1 " and press the Start button.
4. Set any other button than the Stop Clea one to ON/OFF, then +2 is added to the displayed value.
5. When you press the Stop Clear button once during the check, the Function Code Entry awaiting status is initiated, while you press twice, the Chain Code Entry awaiting status is initiated.
2.2 Diagnostic(C/E) Mode
2.2.4 Diagnostic Functions \& Operating procedures

Input Check

$\begin{aligned} & \text { CHAIN } \\ & \text { CODE } \end{aligned}$	FUNCTION CODE	PART/SIGNAL	$\begin{aligned} & \text { DIS- } \\ & \text { PLAY } \end{aligned}$	$\begin{aligned} & \text { REF. } \\ & \text { BSD } \end{aligned}$
1	1	Front Interlock Switch	H/L	1
	2	RH Upper Interlock Switch	H/L	5
2	1	Console Button	+1	2
3	10	Option Set	H/L	2
	11	Option Start	H/L	2
	12	Option Stop	H/L	2
6	1	Lens Sensor	H/L	3
	2	Optical Regi Sensor	H/L	3
	8	Exposure Monitor Signal	A/D	3
	17	Fuser Thermistor	A/D	7
	18	Fuser Thermistor Open Circuit	A/D	7
7	1	Tray 1 Size Sensor	H/L	5
	6	Tray 1 No Paper Sensor	H/L	5
	10	MSI No Paper Sensor	H/L	5
8	8	Regi Gate Sensor	H/L	5
	9	Fuser Exit Switch	H/L	7
	10	MSI Size Sensor	H/L	5
9	9	Toner Empty Sensor	H/L	7

Function:

This operates parts such as the Solenoid, the
Clutch and the Motor. You can set parts within
the same Chain to the ON positions
simultaneously.

Procedure:

1. Enter Diagnostic(C/E) Mode.
. Enter the Chain Code for a part to be
operated. Press the Start button
2. Enter the Function Code and press the Start
button.

- The designated part starts operating.

4. When you operate parts simultaneously, enter the Function Codes for the parts you
whtton.
bun you stop operating a part
simultaneously, press the Stop Clear
button.

- When parts are operating, stop them simultaneously
- The following parts stop automatically after
respective specified periods of time.
- All Solenoids/Clutches 1 sec .
- Lamp Carriage Motor 1 sec .

Exposure Lamp 30 sec.
REF.: When you press the Start button
again after the above parts stop automatically, they start operating again.

CHAIN	FUNCTION	PART/SIGNAL	$\begin{gathered} \mathrm{ON} \\ \text { TIME } \end{gathered}$	REF.
4	1	Main Motor(\& Erase Lamp)		2,7
6	3	Lamp Carriage Motor(Scan)	1 sec	3
	4	Lamp Carriage Motor(Return)	1 sec	3
	7	Exposure Lamp(\& Erase Lamp)	30sec	2,3,7
8	1	Main Motor (\& Erase Lamp)		2,7
	2	Tray 1 Feed Solenoid		5
	6	Regi Gate Solenoid		5
	7	MSI Feed Clutch		5
9	1	Main Motor (\& Erase Lamp)		2,7
	2	DEVE Bias		7
	3	ISIL		7
10	1	Optical Cooling Fan Motor		3
	4	Fuser fan Motor		7

Function:

This performs the Parameter (NVM Value)
Adjustment.

Procedure:

1. Enter Diagnostic(C/E) Mode.
2. Enter Chain Code " 20 " and press the Start button.
3. Enter the Function Code for the parameter to be adjusted. Press the Start button.
The current value is displayed flashing on the Quantity Display.
4. Enter a new set value with the key pad and press the Start button.

- The flashing display comes to remain on. Then the old set value has been changed When you press the Stop Clear button
once,
the Function Code Entry awaiting status is nitiated, while you press it twice, the Chain Code Entry awaiting status is initiated.

NVM Initialization (20-96)

Function:

This initializes all NVM contents.

Procedure:

1. Enter Diagnostic(C/E) Mode.
2. Enter Chain Code " 20 " and Function Code
"96." Press the Start button.

- The Quantity is displayed as follows
" 55 " \rightarrow " "Ed
- Initialize the following NVM items:) Set initial values in all Functions in Rese
set all Counters in Chains 30/40.
Set set-values in all Functions in Chain

50.

) Set initial values in all programs in Specification Setup
3. To exit this mode, press the Stop Clear button twice.

$\begin{aligned} & \hline \text { CHAIN } \\ & \text { CODE } \end{aligned}$	FUNCTION	SETUP ITEM	MIN. VALUE	INITIAL VALUE	MAX.VALUE	1 STEP CHANGE	ADJ
20	1	Registration Adjustment	16(-4.13mm)	32	$64(+4.13 \mathrm{~mm})$	0.2564 mm	$\bigotimes_{2.7 .6}$
	2	Light Quantity Adj. 100\%	0	30	80	0.8\%	5.1.4- \oslash
		Enlargement/Reduction	0	50	99	0.8\%	5.1.4- \emptyset
	3	Paper Loop Amount Adjustment	$0(-8.27 \mathrm{~mm})$	32	$64(+8.27 \mathrm{~mm})$	0.2584 mm	
	4	ISIL Lead Edge Erase Amount Adjustment	$0(-8.27 \mathrm{~mm})$	32	$64(+8.27 \mathrm{~mm})$	0.2584 mm	$\bigotimes_{5.1 .6}$
	5	ISIL Trail Edge Erase Amount Adjustment	$0(-8.27 \mathrm{~mm})$	32	$64(+8.27 \mathrm{~mm})$	0.2584 mm	$\bigotimes_{5.1 .6}$
	6	Fine Tuning of 100\% Horizontal Magnification	0(-2.272\%)	32	64(+2.272\%)	0.071\%	$\oslash 4.3 .4$
	7	Fine Tuning of 100\% Vertical Magnification	0(-3.16\%)	32	64(+3.16\%)	0.099\%	$\oslash 4.3 .4$
	10	MSI Paper Loop Amount Adjustment	$0(-8.27 \mathrm{~mm})$	32	64(+8.27mm)	0.2584 mm	-
	11	Registration Adjustment (MSI)	$16(-4.13 \mathrm{~mm})$	32	$64(+4.13 \mathrm{~mm})$	0.2564 mm	
	14	Selection of Exposure Photoreceptor Sensitivity Correction	0(OFF)	1(ON)	1(ON)		-
	16	Bias Curve Selection 1	0	4	8		-
	17	Bias Curve Selection 2	0(slot)	1(Flat)	1(Flat)		-
	20	Exposure Lamp Adj.	0	50	99		5.1.4- \oslash
	23	Drum Photoreceptor Sensitivity Correction Constant	0(0)	11(1.1)	40(4.0)	0.1	-
	30	Fuser Temperature Adjustment (Stand-by)	$0\left(-23^{\circ} \mathrm{C}\right)$	32	$39\left(+5^{\circ} \mathrm{C}\right)$	$0.72{ }^{\circ} \mathrm{C}$	-
	31	Fuser Temp. Adjustment (Copy cycle)	$0\left(-23^{\circ} \mathrm{C}\right)$	32	$39\left(+5^{\circ} \mathrm{C}\right)$	$0.72{ }^{\circ} \mathrm{C}$	-
	41	Density Correction Light 6	$0(0 \mathrm{~V})$	52(-413V)	$64(-500 \mathrm{~V})$	-7.8125V	-
	42	Density Correction Dark 6	$0(0 \mathrm{~V})$	16(-125V)	64(-500V)	-7.8125V	-
	45	Density Correction Photo Light 6	$0(0 \mathrm{~V})$	$50(-388 \mathrm{~V})$	$64(-500 \mathrm{~V})$	-7.8125V	-
	46	Density Correction Photo Dark 6	0(0V)	24(-184V)	64(-500V)	-7.8125V	-
	96	NVM Initialization	This initializes all NVM values.				
50	9	Black band Function Time 1	0(-5.168mm)	$20(+9.56 \mathrm{~mm})$	64(+5.168mm)	0.2584 mm	
	10	Black band Function Time 2	0(-6.732mm)	$64(+10.3 \mathrm{~mm})$	$64(+6.732 \mathrm{~mm})$	0.2584 mm	

Feed Counter Check/Clearance.

Function:

This displays or clears Feed Counters for al trays.

Procedure:

1. Enter Diagnostic(C/E) Mode.
2. Enter Chain Code " 30 " and press the Start button.
3. Enter the Function Code for the Feed Counter to be checked. Press the Start
button.

- The counter value is displayed by the unit of k on the Quantity Display.
- When not clearing the counter value, go to Step 5.

4. Enter " 0 " with the keyboard and press the Start button.

- The counter value is cleared
- If you enter any other value than " $\mathbf{0}$, " "Er" appears.

5. Pressing the Stop Clear button once will initiate the Function Code Entry awaiting status, while pressing it twice will initiate the Chain Code Entry awaiting status.
REF.: Counter Value is countable within the range of $0 \sim 99 \mathrm{k}$ feeds, but uncountable when it exceeds 99 k .

CHAIN CODE	FUNCTION CODE	COMPONENT COUNTER
30	1	Tray 1 Feed Counter
	4	MSI Feed Counter

JAM Counter Check

Function:

This counts Original/Paper Jams and display
their counts for every component where they occur.

Procedure:

1. Enter Diagnostic(C/E) Mode.
2. Enter Chain Code " 40 " and press the Start button.
3. Enter the Function Code for the counter to be checked. Press the Start button.

- The counter value is displayed on the Quantity Display

5. To exit this mode, press the Stop Clear button twice.
NOTE: Counter Value is countable within the range of 0~99 feeds, but uncountable when it exceeds 99K.

Jam Counter Reset
Function:
This clears Original/Paper Jam Counters.

Procedure:

1. Enter Diagnostic(C/E) Mode.
2. Enter Chain Code " 40 " and press the Start button.
3. Enter the Function Code for the counter to
be checked. Press the Start button.
4. To exit this mode, press the Stop Clear button twice.

CHAIN CODE	FUNCTION CODE	COMPONENT COUNTER
40	1	E1 JAM Counter
	2	E3 JAM Counter
	5	C1 JAM Counter
	10	C9 JAM Counter
	21	E1 JAM Counter Reset
	22	E3 JAM Counter Reset
	25	C1 JAM Counter Reset
	30	C9 JAM Counter Reset

Function:
This sets up the execution/ inhibition of certain functions for individual users.

Procedure:

1. Enter Diagnostic(C/E) Mode.
2. Enter Chain Code " 50 " and press the Start
button.
3. Enter the Function Code for the mode (function) to be set up. Press the Start button.

- The present value appears on the Quantity Display
When not changing the set value, go to Step 5 .

4. Enter a new set value with the key pad and press the Start button.

- The old set value is rewritten into the new one.

5. Pressing the Stop Clear button once will initiate the Function Code Entry awaiting status, while pressing it twice will initiate the Chain Code Entry awaiting status.

Function:

When U4-6(Fuser Over Heat Fail) occurs, clear U4-6 by executing [50-20] in Diagnostic (C/E) Mode.

Procedure:

1. Open the Front Interlock and enter Diagnostic(C/E) Mode
NOTE: During the occurrence of U4-6, you cannot enter Diagnostic (C/E) Mode without opening the Front Interlock.
2. Enter Chain Code " 50 " and press the Start button.
3. Enter Function Code " 20 " and press the Start button.

- The Quantity Display displays "Ed" indicating the clearance is complete 4. Close the Front Interlock.

5. Set the power to OFF/ON

U8-7 Failure Clearance

Function:

When U8-7(Exposure Lamp mistakenly turns on) occurs, clear U8-7 by executing [50-21] in Diagnostic(C/E) Mode.

Procedure:

1. Open the Front Interlock and enter Diagnostic(C/E) Mode.
2. Enter Chain Code " 50 " and press the Start button.
3. Enter Function Code " 21 " and press the Start button.

- The Quantity Display displays "Ed indicating the clearance is complete.

4. Close the Front Interlock.
5. Set the power to OFF/ON.

$\begin{aligned} & \text { CHAIN } \\ & \text { CODE } \\ & \hline \end{aligned}$	$\begin{gathered} \text { FUNCTION } \\ \text { CODE } \\ \hline \end{gathered}$	SETUP ITEM	$\begin{gathered} \text { SET } \\ \text { VALUE } \end{gathered}$	CONTENT	EXPLANATION
50	1	Toner Touch Up Function	0	inhibit	Only when the new Drum unit is installed, this sets up Toner Touch Up Function at the start of copying to prevent Talc Deletion.
			*1	execute	
	2	Nation Configuration Setup	0	XE	This supplements a lack of exposure light quantity by the Deve. Bias when it doesn't reach its target value.
			1	KX	
			*2	AP	
	4	Black Band Creation Function	0	Execute	Create a black band of Toner on the Drum to prevent Talc Deletion.
			*1	Execute	
			2	execute	
			3	inhibit	
	6	Related Products' L6 Detection	*0	No	This temporarily inhibits the detection of L 6 when changes are made to specification setups of the machine with related products.
			1	Yes	
	7	Fuser Warm Up Function	*0	Inhibit	At the start of an initial copy with the power on, this warms up the Fuser by rotating the Main Motor for 20 sec .
			1	execute	
	8	Copy density selection	0	13Phase	In case of KX In case of AP
			*1	7Phase	
	9	Black Band Function Time1	0~40	20	
	10	Black Band Function Time2	0~40	20	
	20	Fuser Over Heat Failure Clearance	0	Cancellation	U4-6(Fuser Over Heat Fail) will be cleared.
			1	Cancellation	
	21	Exposure Lamp Failure Clearance	0	Cancellation	U8-7(Exposure Lamp mistakenly turns on) will be cleared.
			1	Cancellation	
	86	Machine Administrator Reset	-	-	Set to "1111".

NOTE: Set Value with * indicates that the value is its initial one at the execution of [20-96] .

2.3 Level 1 Troubleshooting

2.3.1 Level 1 F.I.P

2.3.3 Status Code List

STATUS CODE	NAME	PROBLEM	CORRECTIVE ACTION	$\begin{aligned} & \hline \text { REF. } \\ & \text { BSD } \end{aligned}$
U1-1	M/C CLOCK FAIL	M/C clock fails to input the signal to Main PWB even once for 0.47 sec ., while copying	- Refer to the U-Code F.I.P.	2
U2-1	LAMP CARRIAGE FAIL-STAND-BY	Lamp carriage doesn't actuate Optical Registration Sensor for 6.5 sec ., during stand-by.	- Refer to the U-Code F.I.P.	3
U2-2	LAMP CARRIAGE FAIL-POSITION	1: Optical Registration Sensor isn't turned on within 0.05 sec., after the initial operation of Lamp Carriage after copying is finished. 2: Optical Registration sensor isn't turned on within 0.05 sec ., after the start of copying.	- Refer to the U-Code F.I.P.	3
U2-3	LAMP CARRIAGE FAIL-SCAN	Optical Registration sensor isn't turned on within 0.46 sec., after Lamp Carriage starts scanning.	- Refer to the U-Code F.I.P.	3
U2-4	LAMP CARRIAGE FAIL-RETURN	Optical Registration sensor isn't turned on within 2.5 sec ., after Lamp Carriage starts scanning.	- Refer to the U-Code F.I.P.	3
U3-1	LENS POSITION FAIL	Lens Sensor isn't turned on within 3.1 sec., after the initial operation of Lens. (i.e. Lens starts moving)	- Refer to the U-Code F.I.P.	3
U4-1	FUSER THERMISTOR OPEN FAIL	Open or defective circuit of Fuser Thermistor	- Refer to the U-Code F.I.P.	5
U4-2	FUSER WARM UP FAIL	Fuser Ready is not initiated within 1 min . After the power is on or Front interlock Switch is turned OFF/ON.	- Refer to the U-Code F.I.P.	5
U4-3	FUSER OVER HEAT FAIL 1	Heater Rod has been on for 10 sec . or more after Fuser Ready	- Refer to the U-Code F.I.P.	5
U4-4	FUSER OVER HEAT FAIL 2	Heater Rod has been on for 20sec. or more after Cycle Down	- Refer to the U-Code F.I.P.	5
U4-6	FUSER OVER HEAT SAFETY FAIL	Fuser Thermistor has detected $240^{\circ} \mathrm{C}$ or a higher temperature for straight 0.5 sec . or more	- Enter Diagnostic(C/E) Mode and execute [5-20]	5
U6-4	NVM FAIL	NVM READ/WRITE VERIFY ERROR	- Refer to the U-Code F.I.P.	2
U8-1	EXPOSURE CONTROL FAIL	Control Mode is not initiated within 0.5 sec., after Exposure Lamp turns on.	- Refer to the U-Code F.I.P.	3
U8-2	NO ZERO CROSS FAIL	During Fuse Control, no Zero Cross is input for straight 3 sec .	- Refer to the U-Code F.I.P.	5
U8-4	EXPOSURE VOLTAGE OVER FAIL	Exposure Sensor signal voltage level is over 2.9 V when Exposure Lamp is on.	- Refer to the U-Code F.I.P.	3
U8-5	EXPOSURE VOLTAGE UNDER FAIL	Exposure Sensor signal voltage level is under 0.5 V at Standard Reflection Plate.	- Refer to the U-Code F.I.P.	3

$\begin{gathered} \text { STATUS } \\ \text { CODE } \end{gathered}$	NAME	PROBLEM	CORRECTIVE ACTION	$\begin{aligned} & \text { REF. } \\ & \text { BSD } \end{aligned}$
C1-2	TRAY 1 MIS FEED JAM	Regi-gate Sensor isn't turned on within 2.7 sec . after paper starts to be fed.	- Refer to the MISFEED JAM.	4
C9-3	MSI MISFEED JAM	Regi-gate Sensor isn't turned on within 2.3 sec . after paper starts to be fed.	- Refer to the MISFEED JAM	4
E1-1	FUSER EXIT SWITCH ON CHECK JAM	Fuser Exit Switch isn't turned on within 3.7 sec . After Regi-Gate is open.	- Refer to BSD Sheet 5	5
E1-2	REGI-GATE SENSOR OFF CHECK JAM	Regi-Gate Sensor isn't turned off (remains ON) a preset period of time (which varies with paper sizes) after Regi-Gate is open.	- Refer to BSD Sheet 5	5
E1-6	REGI-GATE SENSOR STATIC JAM	Regi-Sensor is on during Power On or Stand-by. (Paper remains)	- Remove the paper - Check the Regi-Gate sensor circuit.	4
E3-3	FUSER EXIT SWITCH OFF CHECK JAM	Fuser Exit isn't turned off (remains ON) a preset period of time (which varies with paper sizes) after Fuser Exit Switch is turned on.	- Refer to BSD Sheet 5	5
E3-6	FUSER EXIT SWITCH STATIC JAM	Fuser Exit Switch is on during Power On or Stand-by. (Paper remains)	- Remove the paper - Check the Fuser Exit Switch circuit.	5
E5-1	FRONT INTLK OPEN FAIL	Front Cover is open, or Front Interlock Switch is defective.	- Close Front Cover. - Check the Front Interlock Switch circuit.	4
E6-1	R/H UPPER INTLK OPEN FAIL	R/H Upper Cover is open, or R/H Upper Interlock Switch is defective.	- Check R/H Upper Cover. - Check the R/H Upper Interlock switch circuit.	4
J1-1	TONER EMPTY FAIL	Number of copies reaches 100 after toner empty sensor sensed toner end condition.	- Supply toner. - Check the Toner Empty Sensor circuit.	5
J1-2	TONER LIFE END	The counter value of toner unit reaches the default value 7700.	- Replace the Toner Cartridge.	5
J3-1	DRUM UNIT SET FAIL	Drum unit is not set, or is set incorrectly to the machine.	- Ensure to install the Drum Unit to the machine nronerlv	5
J3-2	Toner Cartridge SET FAIL	Toner unit is not set, or is set incorrectly to the machine.	- Ensure to install the Toner Unit to the machine nronerly	5
J3-3	Counter SET FAIL	Total counter is corrected improperly.	- Ensure to install the Total Copy Count Unit to the machine	5
J6-1	DRUM UNIT ID FAIL	Drum unit Read/Write is in error.	- Replace the Drum Unit.	5
J6-2	Toner Cartridge ID FAIL	Toner unit Read/Write is in error.	- Replace the Toner Unit.	5
J6-3	Counter ID FAIL	Total Counter Read/Write is in error.	- Replace the Total Copy Count Unit.	5
J7-1	DRUM UNIT LIFE END	Copy Value has become 50K (sheets of paper)	- Replace the Drum Unit.	5
J8-1	DRUM UNIT TYPE NO. FAIL	Type No. stored in ID of Drum Unit is not the same as that stored in NVM of the Main PWB.	- Replace with correct type Drum Unit	5
J8-2	Toner Cartridge TYPE NO. FAIL	Type No. stored in ID of Toner Unit does not match with that saved in NVM on main PWB.	- Replace with correct type Toner Unit	5
J8-3	Counter TYPE NO. FAIL	Type No. stored in ID of Total Counter does not match with that saved in NVM on main PWB.	- Replace with correct type Total Copy Count Unit	5
J9-1	DRUM UNIT ID No. FAIL	Identification No. of Drum Unit is not of Xerox origin.	- Replace with Xerox Drum Unit	5
J9-2	TONER UNIT ID No. FAIL	Identification No. of Toner Unit is not of Xerox origin.	- Replace with Xerox Toner Unit	5
J9-3	TOTAL COUNTER ID No. FAIL	Identification No. of Total Copy Count is not of Xerox origin.	- Replace with Xerox Total Copy Count Unit	5

2.4 Level 2 Troubleshooting

2.4.1 General F.I.P (General F.I.P for Defective Parts)

- Reflective Sensor F.I.P [SENSED(L)] ORIGINAL SIZE Sensors 1~4

Preparation: • Remove any remaining paper (if there is any).

Procedure

Enter Diag. [*- *]
Make the Sensor turn ON/OFF with a blank sheet of paper.
Does the display repeat (L) and (H) alternately?
Does the display remain (H)?
N It remains (L).
Check with the tester the harness from Pin 2 of the Sensor to Pin 5 of PWB for a short circuit. If it is good, replace the Sensor. Can

Check Pins $4 / 5 / 6$ for improper connections or
Harnesses \mathbb{A} 日 \circ for open circuits. If they are good, replace the Sensor.

* You can also check by exchanging the Sensor with another Sensor of the same type if one is available
Place the tester wire between Pin 2(+) of the Sensor and
COM(-)
Make the Sensor turn ON/OFF with blank paper
Does the voltage repeat (L) and (H) alternately?
N
Is the voltage from Pin $1(+)$ to Pin 3 of the Sensor +5 VDC ?
Check Pins $4 / 6$ for improper connections Harnesses \otimes o for open circuits.
Replace the Sensor
Check to see if the document detecting position on Platen Glass is contaminated. If not, replace the PWB
Check outer light/check the sensor for its installation and (signal) chattering. If no problem exists, replace the PWB.
- Permeable Sensor F.I.P [SENSOR(H)]

OTHER SENSORs with 3

Preparation: • Remove any remaining paper (if there is any)

Procedure

Enter Diag. [* - *]
Make Actuator turn ON/OFF manually or with paper. (If necessary, use Output Check.)

Does the display remain

N It remains (L)
Check with the tester the harness a from Pin 2 of the Sensor to Pin 5 of PWB for a short circuit. If it is good, replace the Sensor
Can the tester lead wire be inserted in Jxx of the Sensor?
Y N
Check Pins 4/5/6 for improper connections or Harnesses $A B \circ$ for open circuits. If they are good, replace the Sensor

* You can also check by exchanging the Sensor with another Sensor of the same type if one is available. Place the tester wire between Pin $2(+)$ of the Sensor and COM(-).
Make Actuator turn ON/OFF manually or with paper Does the voltage repeat (L) and (H) alternately?
$Y \quad N$
Is the voltage from Pin $1(+)$ to Pin 3 of the Sensor +5 VDC ?

Check Pins $4 / 6$ for improper connections or Harnesses $\otimes \circ$ for open circuits.
Replace the Sensor.
Replace the PWB
Check the Sensor for its installation and (signal) chattering. If no problem exists, replace the PWB.

Does the display remain (H)?
N It remains (L).
Disconnect Connector Jxx of the Switch.
Enter Diag. [* - *].
Does the display remain (L) ?
$\mathbf{Y} \quad \mathbf{N}$ The display has been changed to (H) Replace the Switch.
Check shorted areas(i.e. a wire caught in the frame) of
Harness \otimes and repair them.
Can the tester lead wire be inserted in Jxx of the Switch?
Check Harnesses A, B for open circuits. If they are good, replace the Switch.

* You can also check by exchanging the Switch with another Switch of the same type if one is available. Is the voltage from Pin $1(+)$ to COM +5 VDC with the Switch off?
$\mathrm{N}(0 \mathrm{~V})$
Check Pin 1 of the Switch or Pin 3 of PWB for an improper connection or Harness \otimes for an open circuit. Check Pin 2 or Sen wire If no problem exists, replace Harness e for an open wire. If no problem exists, replace the
Switch. problem exists, replace PWB
- Solenoid/Clutch/Motor F.I.P

1. Solenoid or Clutch doesn't energize. Motor doesn't rotate

Procedure

Enter Diag. [* - *]. (NOTE: All you have to do here is enter Diag.
Don't start.)
Is the voltage from Pin $3(+)$ of PWB to $\operatorname{COM}(-)+24 \mathrm{VDC}$?
N
Is the voltage
$(-)+24 \mathrm{VDC}$?
N
Is the voltage from Pin 2(+) of Solenoid/Clutch/Motor to GND (-) + 24 VDC ?

N
Go to 1. STANDBY POWER, BSD to check DC power(+24VDC).
Replace the Solenoid/Clutch/Motor
Check the circuit from Pin 3 of PWB to Pin I Solenoid/Clutch/ Motor for an improper connection/open circuit.

Start (or Actuate).

Has Power level dropped to (L)?
\mathbf{N} It remains (H).
Repair the binding Plunger or clear the inside of the Solenoid of contamination. Don't clean the Clutch
If necessary, replace the Solenoid/Clutch/Motor.

2. Solenoid/Clutch keeps energized. Motor keeps rotating

Procedur

Power off
Is the resistance value from Connector Pin 3 of PWB to the frame $0 \sim$ some hundred Ω ?

N(~)
Replace the PWB.
Repair shorted areas of the circuit from Connector Pin 3 to Pin 1 of绪 frame) exists, replace the Solenoid/Clutch/Motor

- Switch F.I.P

R/H UPPER INTLK SWITCH

Procedure

Enter Diag. [* - *]
Make the Switch turn ON/OFF(Cover open/close). If necessary, use Output Check.

```
M Noes the 
```

 Does the display remain (H)?
 N It remains (L).
 Power off
 Disconnect Connector Jxx of the Switch.
 Enter Diag. [* - *].
 Does the display remain (L)?
 \(N\) The display has been changed to(H)
 Replace the Switch.
 Check shorted areas(i.e. a wire caught in the frame) of
 Harness a and repair them
 Can the tester lead wire be inserted in Jxx of the Switch?
 N
 Check Harnesses \(A B\) for open circuits. If they are
 good, replace the Switch.
 * You can also check by exchanging the Switch with
 * You can also check by exchanging the Switch with
 another Switch of the same type if one is available.
Is the voltage from Pin $1(+)$ to COM +5 VDC with the Switch
off?
$\mathrm{N}(0 \mathrm{~V})$
Check Pin 1 of the Switch or Pin 3 of PWB for an
improper connection or Harness \otimes for an open circuit.
Check Pin 2 of the Switch for an improper connection or
Harness a for an open wire. If no problem exists, replace the
Switch.

Check the Panel, etc. for end play or recheck Switch Leads $1 / 2$. If no problem exists, replace PWB

- Solenoid/Clutch/Motor F.I.P

1. Solenoid or Clutch doesn't energize \qquad Motor doesn't rotate.

Procedure

Enter Diag. [* - *]. (NOTE: All you have to do here is enter Diag Don't start.)
Is the voltage from Pin $3(+)$ of PWB to $\operatorname{COM}(-)+24 V D C$?
Is the voltage from Pin $1(+)$ of Solenoid/Clutch/Motor to GND $(-)+24 \mathrm{VDC}$?

Is the voltage from Pin 2(+) of Solenoid/Clutch/Motor to GND (-) + 24 VDC ?

N
Go to 1. STANDBY POWER, BSD to check DC power(+24VDC).
Check the circuit from Pin 3 of PWB to Pin I Solenoid/Clutch/ Check the circuit from Pin 3 of PWB to Pin I S

Has Power level dropped to (L)?
\mathbf{N} It remains (H).
Replace the PWB.
Repair the binding Plunger or clear the inside of the Solenoid of contamination. Don't clean the Clutch.
If necessary, replace the Solenoid/Clutch/Motor.
2. Solenoid/Clutch keeps energized. \qquad Motor keeps rotating.

Procedure

Power off.
Is the resistance value from Connector Pin 3 of PWB to the frame
$0 \sim$ some hundred Ω ?
N(~
Replace the PWB
Repair shorted areas of the circuit from Connector Pin 3 to Pin 1 of Solenoid/Clutch/Motor. If no problem(such as a wire caught in the
frame) exists, replace the Solenoid/Clutch/Motor

2.4 Level 2 Troubleshooting

2.4.2 U-Code F.I.P'sM/C CLOCK FAIL

Ref. BSD: 2

Preparation: Ensure that the following connector is securely connected.

- P/J404 of Main PWB

Procedure
Open the Front Cover and cheat the Front Interlock. Enter Diag (C/E) Mode. Enter Code[4-1] and rotate the Main Motor. Does the Main Motor keep stopping?
$\mathbf{Y} \quad \mathbf{N}$
Does the Main Motor stop after rotating for 1-2 seconds? $\stackrel{N}{\mathrm{~N}}$
Open the ClamShell and restart the Main Motor. Do abnormal noises occur or does the Main Motor rotate irregularly?
$\stackrel{N}{N}$
WARNING: Power off the machine and Check the mechanics (Gear, Bearing, etc.) Check the mechanics (Gear, Bearing, etc.) the following and replace parts if necessary.
Fuser Assy(PL8.4) Regi. Roller Gear(PL2.7)
Slide out the Drum Unit and restart the Main Motor. Do abnormal noises occur or does the Main Motor rotate irregularly?

Check the Drum Unit for its drive mechanics. If any load or abnormal noise exists, replace the Drum Unit.
WARNING: Power off the machine and disconnect the power cord
Check the mechanics(Gear, Bearing, etc.) of the following and replace parts if necessary. Deve Assy(PL6.2)
Main Drives(PL1.1/1.2/1.3)

Is the voltage from J404-5 of Main PWB to COM +5 VDC ? N
Replace the Main Motor(PL1.1/1.2)/Main PWB(PL9.1) in order.
Replace the Main PWB.
Is the voltage from J404-1 of Main PWB to COM +24VDC?
$\mathbf{Y} \quad \mathbf{N}$
Check +24 VDC circuit in the DC Wiring Diagram. Is the voltage from J404-3 of Main PWB to COM +5VDC? $Y \quad \mathrm{~N}$
Check +5 VDC circuit in the DC Wiring Diagram. is the voltage from J404-6 of Main PWB to COM +5 VDC

Replace the Main PWB.
Replace the Main MotorLAMP CARRIAGE FAIL-STAND-BY
LAMP CARRIAGE FAIL-POSITION
LAMP CARRIAGE FAIL-SCANLAMP CARRIAGE FAIL-RETURN

REF. BSD: 3
Preparation: Ensure that the following connectors are securely connected.

- P/J404 of Main PWB
- P/J405 of Lamp Carriage Motor.
- Gently move the Lamp Carriage fro and back by hand, Check it for the mechanical jam.
- Ensure that the following Connectors are securely connected.
- Check the Scan Cable for disengagement, binding, load, etc.

Procedure

Power on, enter Diag. Mode and enter (6-3). Press the start button. Does the Lamp Carriage scan?

N
Are voltages from P/J 405-7,P/J 405-8 to COM +24VDC?
N
Check +24 VDC INTLK circuit
Power off and disconnect P/J 605.
Are J605-1 to -3, J605-1 to-4, J605-2 to -5, J605-2 to -6 esistance values approx. 6.3Ω each?
Y \mathbf{N}
Replace the Lamp Carriage Motor.
Replace the Main PWB.

Enter [6-4] and press the start button

Does the Lamp Carriage return?
$\mathbf{Y} \quad \mathbf{N}$
Replace the Main PWB.
Using the Permeable Sensor F.I.P., General F.I.P. and the wiring diagram, perform the diagnosis of Optical Regi Sensor. If no problem exists, replace the Main PWB.

U3-1
LENS POSITION FAIL
Ref. BSD: 3
Preparation: Ensure that the following connectors are securely connected.

- P/J405 of Main PWB
- Relay Connector P/J604 of Lens Moto
- Remedy the mechanical jam
- Check the Lens Cable for disengagement, binding oad, etc.

Procedure

Power on
Does the Lens Assy move?(Does it perform its initial operation?) $\mathbf{Y} \quad \mathbf{N}$

Are voltages from P/J 405-1,P/J 405-2 to COM + 24VDC? Check + 24VDC circuit
Power off and disconnect P/J604.Are J604-1 to - 3,J604-1 to $-5, \mathrm{~J} 604-2$ to $-4, \mathrm{~J} 604-2$ to -6 resistance values approx. 100Ω each?
?

Check P405-3,4,5,6 of Main PWB and P604-3,4,5,6 of Lens Motor for an open circuit or a short circuit to
If the harness is good, replace the lens Motor
Replace the main PWB
Using the Permeable Sensor F.I.P., General F.I.P. and the wiring diagram, perform the diagnosis of Lens Sensor. If no problem exists, replace the Main PWB.

Ref. BSD: 7

Preparation: Ensure that the following connectors are securely connected.

- P/J410 of Main PWB
- P/J118 of Fuser Thermistor

Procedure

WARNING: Power off the machine and disconnect the
power cord.
WARNING: Fuser surfaces are hot, allow the fuser to cool down before attempting service procedure. Fuser lubricant can cause discomfort to eyes. Do not allow fuser lubricant to touch eyes

Disconnect P/J118.
Measure the resistance from J118-1 to J118-2

- Fuser is hot: approx. $13 \mathrm{k} \Omega$
- Fuser is cool: approx. $236 \mathrm{k} \Omega$

Does the resistance value satisfy the above spec.
$\mathrm{N}(\infty)$
Check the wire from P/J118-1 to P/J410-3, and the wire from P/J118-2 to P/J410-4. If no problem exists, replace the Fuse Thermistor.

Replace the Main PWB

Ref. BSD: 7
Preparation: Ensure that the following connectors are securely connected.

- P/J410 of Main PWB
- P/J430/T111/T110 of AC Drive PWB
- P/J 12/13 of Main Heater Rod

Relay Connector P/J14
NOTE: This is sometimes displayed when C/E visits the custome and switches the m / c on after the power has been off after the occurrences of U4-3, U4-4 \& U4-6.
Therefore, the diagnosis of Thermostat is first performed.
Procedure
WARNING: Power off the machine and disconnect the
power cord.
WARNING: Fuser surfaces are hot, allow the fuser to cool down before attempting service procedure. Fuser lubricant can cause discomfort to eyes. Do not allow fuser lubricant to touch eyes

Remove the Fuser Cover.
Is there contin
$\mathbf{N}(\infty)$
Press the Manual Reset button of the Fuser Thermostat is there continuity between the Fuser Thermostat leads? Y $\quad \mathrm{N}$

Replace the Fuser Thermostat. Proceed with the diagnosis using U4-3/U4-4/U4-6 Over Heat FIPs. Proceed with the diagnosis using U4-3/U4-4/U4-6 Over Heat FIPs.
Disconnect J12/J13 of Heater Rod?
Is there continuity between J 12 and J 13 ?
$\stackrel{N}{\mathrm{~N}}$
Replace the Heater Rod
Remove the Fuser Cover
Cheat the Front Interlock Switch
Power on
Does the
$\mathbf{Y} \quad \mathbf{N}$

A B i
 Is the voltage from P410-11 of Main PWB to COM +24 VDC ?

Replace the AC Drive PWB
Is the voltage from P410-12 of Main PWB to COM +24 VDC ?

Replace the AC Drive PWB.
Check 220VAC circuit.
Is the voltage between Relay Connectors P/J14-1 and -2 220 VAC ?

Check the wire from P/J14-1 to T111 of AC DRIVER Check the wire from P/J14-2 to T110 of AC DRIVER
Check the wire from P/J14-1 to P/J12.
Check the wire from P/J14-2 to P/J13.

Power off.
Check for the scraped Heat Roll surface, the raised-off Fuser Thermistor, the deteriorated Heater Rod. If no problem exists, replace the Fuser Thermistor

Ref. BSD: 7
NOTE: At the occurrence of U4-6, open the Front Cover, enter
Diagnostic(C/E) Mode and clear U4-6 by executing [50-20].
Procedure
Power on. Check the starting signal of Fuser. Does the level between $\mathbf{Y} \quad \mathbf{N} / J 410-12$ to COM remain low(L)?

WARNING: Power off the machine and disconnect the
power cord.
WARNING: Fuser surfaces are hot, allow the fuser to cool
down before attempting service procedure. Fuser lubricant can cause discomfort to eyes. Do not allow fuser lubricant to touch
eyes
Disconnect P/J14.
Disconnect P/J14.
Check the circuit continuity from T111 to T110. (AC DRIVER) $\mathbf{C} \quad{ }_{\mathbf{N}}$

Check the following harnesses for short circuits. - from P/J12 to COM

- from P/J13 to COM

Replace the AC Drive PWB.
Replace the Main PWB

Ref. BSD: 2
Preparation: - Install the ground wire.

- Ensure that the power voltage hasn't dropped 10%
or more (with Power ON or Power OFF).
- Ensure that there is neither operating power
sources nor devices generating high frequencies
around the instaliation site
Ensure that no high voltage wires such as the Corotron have burnt out or have leakage.

Procedure

Power OFF/ON.
$\mathbf{Y} \quad \mathbf{N}$
Enter Diag.(C/E) Mode
Enter [20-96] and press the Start button.
Power OFF/ON.
Has the display of Status Code disappeared
N
Replace the Main PWB
Make copies. Confirm that the machine operates properly and monitor the machine operation for several days
If the problem reoccurs, replace the Main PWB.

EXPOSURE CONTROL FAIL

Ref. BSD: 3
Problem Area: Initial Light Quantity Control(Optics)

Cause/Corrective Action

- Defective Main PWB
- Defective AC Drive PWB
- Open harnesses or improper P/J connections of the circuits controlling the above PWB's.

No ZERO CROSS FAIL

Ref. BSD: 7
Preparation: Ensure that P/J410 of Main PWB is securely connected to P/J430 of AC Drive PWB.

WARNING: Hazardous voltage. Use extreme care.

Procedure

Power on. Detect the zero cross signal
Is the level from P/J410-9 to COM +0.5 VDC ?
Y $\quad \mathrm{N}$
Is the voltage from P/J437-1 to P/J437-2 220VAC?
$\mathbf{Y} \quad \mathbf{N}$
Check 220VAC input circuit.
is the Front INTLK switch close?
is the voltage from J431 to COM +24VDC?
Check the trouble chain E5.
Check the start signal of the INTLK Power Relay.
s the level from P/J410-11 to com Ov?
$\mathbf{Y} \quad \mathbf{N}$

Replace the Main PWB.

Check the wire from P/J430-4 of AC DRIVER to P/J410-11 of Main PWB for an open circuit, short circuit or improper connection. If no problem exists, replace the Main PWB Replace the Main PWB

U8-4 EXPOSURE VOLTAGE OVER FAIL

Ref. BSD: 3
Problem Area: Light Quantity/Voltage Control(Optics)
Procedure
check the wire from P/J430-1 of AC DRIVER to P/J410-10 of Main
PWB.
Power on. Detect the Exposure Sensor Signal level.
Is the level from P/J410-10 to COM over 2.9VDC?
$\mathbf{Y} \quad \mathbf{N}$
Replace Main PWB.
Replace AC DRIVER

U8-5 EXPOSURE LIGHT QTY/VOLTAGE UNDER FAIL

Ref. BSD: 3

Problem Area: Light Quantity/Voltage Control(Optics)
Preparation: Ensure that $P / J 410-10$ of Main PWB is securely Procedure connected to P/J430-1 of AC Drive PWB.
Procedure
Enter Diag. Mode. Enter [6-7],[6-8]
Check the A/D value, A5-A7]
Is the voltage from $\mathrm{P} / \mathrm{J} 430-1$ to $\mathrm{COM} \leq 0.5 \mathrm{~V}$?
Y N
Replace the Main PWB
Replace the AC DRIVER.TRAY 1 MISFEED JAM

Preparation:

- Ensure that no paper jam occurred
- Ensure that the Feed Roller has not worn out and the friction is proper.

Procedure

Clear paper jam, start copying
Does the Feed Roller rotate?
$\mathbf{Y} \quad \mathbf{N}$ Enter Diag. (C/E) Mode. Enter [8-2], and check the operation of Feed Solenoid.
$\mathbf{Y} \quad \mathbf{N}$
Check the start signal of Feed Solenoid. Does the
voltage from P/J406-10 to com go high correctly?
Replace the Main PWB
Remedy the mechanical jam, then check the
operation of Solenoid. If it cannot turn on, replace it.
Check the tension of the pick up gear spring. If the tension is weak, replace the spring.
Clean the Feed Roller and the Pinch Roller, Check them for the
deterioration
Did the lead edge of paper reach the Regi-Gate.

```
    Y N
            Replace the Feed Roller, Clean the paper path.
```

 Check the Regi-Gate sensor. Enter [8-8], check the level from
 P/J407-8 to com, does it go high(H) and go low(L)? If no
 change is the voltage from P/J600-1 to P/J600-3 +5VDC ?
 \(\mathbf{Y} \quad \mathbf{N}\)
 Check the +5VDC circuit.
 Replace the Regi-Gate Sensor.
 - Replace the Feed Roller
- Clean the paper path

MSI MISFEED JAM

Procedure:

Start the copying in by in by pass Mode.
Start the copying in by in by pass M
Y $\quad \mathrm{N}$
Does the MSI Solenoid operate?
Y N
Enter Diag. Mode, Enter [8-7], does MIS Solenoid turn on?
Y N
Replace the Main PWB
Remedy mechanical trouble. Check the operation of Solenoid again. If it does not turn on, replace it.
Replace the pick up Gear Spring

- Clean MSI Feed Roller and paper path
- If necessary, replace MSI Feed Roller, or adjust / replace the Retard Pad.

Section 4 Disassembly/Assembly/Adjustment

Section 4 Disassembly/ Assembly/ Adjustment
 1. Main Drive

1.1.1 Main Motor Replacement 4-3

2. Paper Handling

2.1.1 Side Registration Adjustment 4-3
2.2.1 MSI Feeder Assy Removal/Installation 4-4
2.2.2 MSI Retard Pad Replacement 4-4
2.3.2 MSI Feed Roller Replacement4-5
3.2 MSI Size Sensor Replacement 4-5
2.3.3 MSI Size Sensor Replacement 4-5
2.3.4 MSI No Paper Sensor Replacement 4-5
2.5.1 Feed Roller Replacement ... 4-6
2.5.3 No Paper Sensor Replacement 4-6
2.5.4 Right Cover Intlk switch Replacement 4-8
2.5.5 Tray1 Intlk Switch Replacement......................4-9
2.5.6 Tray1 Intlk Switch Adjustment... .4-9
2.7.1 Registration Assy Removal/Installation 4-10 2.7.2 Registration Gate Solenoid Replacement 4-10
2.7.3 Regi-Gate Sensor Replacement 4-10
2.7.4 Registration Roller Replacement 4-10
2.7.6 Lead Edge Registration Adjustment 4-1
3. Paper Transport
3.1.1 Vacuum Transport Belt Replacement 4-12

4. Optics

4.1.1 Plate Glass Replacement \qquad
4.1.2 Optical Cooling Fan Replacement 4-13
4.2.1 Optical Regi-Sensor Replacement 4-14
4.2.2 Lamp Carriage Motor Replacement 4-14
4.2.3 Carriage Cable Replacement
4.3.1 Full-Rate \& Half-Rate Carriages Paralle

Adjustment
\qquad
..... 4-16
3.2 Exposure Lamp Replacent
3.3 Optical Skew Adjustment 4-18
4.3.4 Size-for-Size Fine Tuning 4-19
4.5.3 Lens Cable Replacemen

4-20
5.1.4 Basic Copy Quality Adjustment 4-24
5.1.5 ISIL Assembly Replacement 4-26
5.1.6 ISIL Copy Edge Erase Amount Adjustment 4-26
6. Development
6.2.1 Deve. Unit Removal/Installation 4-27
6.2.2 Mag. Roll Blade Replacement 4-27
6.2.3 Toner Empty Sensor Replacement 4-27

8. Fuser

8.1.1 Fuser Thermostat Replacement 4-28
8.1.2 Fuser Thermistor Replacement $4-28$
8.2.1 Heater Rod Replacement 4-29
8.2.2 Heat Roller Replacement 4-31
8.2.3 Pressure Roller Replacement -31
8.2.4 Contact Arc Adjustment -
8.3.1 Heat Roller Fingers Replacement -
8.3.2 Pressure Roller Fingers Replacemen 4-3
8.5.2 Ozone Filter (Fuser Fan) Replacement 4-34
9. Electrical
9.1.2 Main PWB Replacemen 4-35
9.1.3 LVPS Replacement 4-38
10. Covers L Frame
10.1.1 Front Gas Spring Replacement 4-39
10.1.2 Rear Gas Spring Replacement 4-39
10.2.1 Console Assembly Replacement 4-40

How to Use the Disassembly/Assembly/Adjustmen

 Manual1. Specific removal/installation procedures are not described for parts for which those procedures are at first sight understood
2. Installation procedures refer only to items requiring your attention.
3. Install parts with their protrusions, if any, fitted into halfpunched dents
4. Circled numbers such as (1/(2)/3in each Figure indicate the order of a procedure and parts applicable.

5. Xerographic

[^0]
Intentional blank page

1.1.1 Main Motor Replacement

Removal

1. WARNING: Power off the machine and disconnect the power cord
2. Open the Front Cover and the machine.
3. Remove the Drum Unit
4. Remove the Rear Upper Cover.
5. (Fig. 1): Remove the Main Motor.
(1). Disconnect P/J404
(2.) Remove screws (3).

(Fig. 1)
Installation
6. Perform the installation in the reverse order of the removal.

2.1.1 Side Registration Adjustment

Purpose To adjust the position of the Cassette Tray to align the document image transferred onto the Drum with paper(in the Drum axis direction).

Reference
The Tray positions in front/rear directions are each adjustable by 2 mm (4 mm in total).

Adjustmen

1. Slide out the Cassette Tray from the machine.
2. (Fig. 1): Perform the Side Registration justment as follows.
NOTE: • The Right/Left Stoppers should be moved by the same distance.
(1). Remove Screws.
(2.) Install Screws to slots of both Stoppers respectively.
(3). Change the positions of Stoppers A direction (Front): X will widen B direction (Rear): X will narrow
(4.) Tighten Screws.

(Fig. 1)
3. (Fig. 1): After adjustment make a copy-if it is NOT OK, repeat Steps 1~3.
4. Main Drive/2. Paper Handling Section 4 Disassembly/Assembly/Adjustment

2.2.1 MSI Feeder Assy

Removal

1. WARNING: Power off the machine and disconnect the power cord
2. Open the Rear Upper Cover
3. Open the Right Upper
4. (Figs. 1 \& 2): Remove the MSI Tray
(1.) Open MSI Tray.
(2). Remove Screw and then open MSI Tray slide it toward rear and remove it.

(1)
(2)

Fig. 1)
5. Open the Right Transport Cover. 6. (Fig. 2): Remove the MSI Feeder Assembly
(1). Disconnect P/J616 and P/J210 .
(2). Remove Screw.
(3. Remove MSI Feeder Assembly.

(Fig. 2)
Installation

1. Perform the installation in the reverse order of removal.

2.2.2 MSI Retard Pad Replacement

NOTE: - You should replace the Retard Pad, the Feed Roller(2.3.2)

- You should clear the Feed Counter in Diag. Mode [30-4].

Removal

1. WARNING: Power off the machine and
disconnect the power cord
2. Remove the MSI Feeder Assembly (2.2.
3. (Fig.1): Remove the Tie Plate Assembly
(1). Remove Screws (2).
(2. Remove Tie Plate Assembly

(Fig. 1)
4. (Fig 2): Remove the Retard Pad.
(1). Turn over Tie Plate Assy
(2). Release locking of the Retard Pad

(3. Remove Retard Pad

(Fig. 3)

nstallation

Perform the installation in the reverse order of removal

2.3.2 MSI Feed Roller Replacement

NOTE: - You should clear the Feed Counter in Diag. Mode [30-4] at the time of eplacement.

Removal

1. WARNING: Power off the machine and disconnect the power cord
2. Remove the MSI Feeder Assy
3. (Fig. 1): Remove the MSI Feed Roller.
(1). Remove E Clip.
(2). Remove bearing.
(4). Push up hook and then slide Core Roll.
(5). Remove MSI Feed Roller.

(Fig. 1)
Installation
4. Perform the installation in the reverse order of removal.

2.3.3 MSI Size Sensor Replacement

Removal

1. WARNING: Power off the machine and
disconnect the power cord
2. Remove the MSI Feeder Assembly (2.2.1) 3. (Fig.1): Remove the MSI Size Sensor
(1). Disconnect P/J110.
(2.) Remove Size Sensor
(3.) Remove Size Sensor Actuator .

(Fig. 1)
Installation
3. Perform the installation in the reverse order of
4. Perform an Input Check of the MSI Size Sensor in Diag. Mode[8-10].

2.3.4 MSI No Paper Sensor

 Replacement
Removal

1. WARNING: Power off the machine and
disconnect the power cord
2. Remove the MSI Feeder Assembly (2.2.1) 3. (Fig.1): Remove the MSI No Paper Sensor.
(1). Remove Cover
(2. Disconnect P/J111
(3. Remove MSI No Paper Sensor.

Installation

1. Perform the installation in the reverse order of removal.
. Perform an Input Check of the MSI No Paper Sensor in Diag. Mode[7-10]

2.5.1 Feed Roller Replacement

2.5.3 No Paper Sensor Replacement

NOTE: - When replacing the Feed Roller, clear the Feed Counter of the appropriate Tray, using the Diag. Mode applicable:
 to the Above

Removal

1. WARNING: Power off the machine and
disconnect the power cord
2. Slide out the appropriate Tray
3. Remove the Transport Cover
(1). Remove Screw.
(2.) Push Transport Cover to rear side.
(3. Remove Transport Cover by sliding away Pin on its front side.

(1)
(Fig. 1)
4. (Fig. 2): Remove the Chute.
(1). Remove Chute from Pins by pulling its rear side.
(2). Slide Chute to rear and remove it.

(Fig. 2)

Replacement Procedur for Feed Roller only
5. (Fig. 3): Remove the Feeder Assy, (1). Disconnect P/J610 (Tray 1) and the Ground wire.
(2.) Remove Screws (2). (Wire Guard disengages together.)
(3. Lift No Paper Sensor Actuator manually
(4). Remove Feeder Assy.

(Fig 5): Remove the Feed Roller. NOTE: - Do not contaminate the Roller surface with grease, etc. Clean the contaminated Roller surface with the Drum Cleaner.

(Fig. 5)

Replacement Procedure For Pick Up Gear only

6. (Fig. 5): Remove the Pick Up Gear
(1.) Remove the Spring
(2.) Keep pushing the hook of the pick up gear sing the small screw gear
(3) Remove the pick up gear.

(Fig. 5)
7. (Fig. 6): Remove the No Paper Sensor. Remove No Paper Sensor tab.
(2. Lift Actuator
(3. Remove No Paper Sensor
(4. Remove Connector.

(Fig.6)

Common Procedure

Installation

1. Perform the installation in the reverse order of

NOTE: • (Fig.7): Install the Feeder Assy to the machine with the Feed Roller half moon shaped facing upwards.

(Fig. 7)

- When installing the Feeder Assembly to the machine, take great care not to damage the No Paper Sensor Actuator
- (Fig. 8): Install the Feeder Assy to the machine with the Assy cutouts hooked on the machine pins.

- Reconfirm that the Feed Roller half-moon shape faces upwards before installing the appropriate Tray
NOTE: - After the replacement of the No Paper Sensor, check the Sensors

Sensor	Diag. Code
Tray 1 No Paper Sensor	$7-6$

2.5.4 Transport Cover INTLK Switch Replacement

Removel

1. WARNING: Power off the machine and
disconnect the power cord
2. Open the Transport Cover
3. Remove the Transport Cover.
(1). Rush Transport Cover to rear side
4. Remove Transport Cover by sliding awa Pin on its front side.

(Fig. 1)
5. (Fig.2)Remove Transport Cover INTLK Switch. (1). Push up the hook that fixes INTLK Switch (2). Slide out INTLK switch then disconnect.

nstallation:
6. Perform the installation in the reverse order of remova

2.5.5 TRAY 1 Switch Replacement

Removal

1. WARNING: Power off the machine and

2 Remove the Rear Lower Cover
3 Remover the LVPS
4 (Fig1) Remove the Switch Bracket.
(1)Remove screw.

Installation

1. Perform the installation in the reverse order of the removal.
2.5.6 TRAY 1 Switch Adjustment

Purpose: To prevent the Tray from hitting
the Tray Switch, as deformation of the Tray Switch, as deformation of
the Switch Actuator will lead to poor he Switch Actuator will lead to poor contact.

1. WARNING: Power off the machine and disconnect the power cord
disconnect the power
2. Remove the Rear Lower Cover
3. (Fig.1)L
4. (Fig.1)Loosen two fixing screws of Tray 1 Switch Bracket.

(Fig.1)
5. Tighten two fixing screws of Tray 1 Switch Bracket.

2.7.1 Registration Assy

Removal/Installation

Removal

1. Power off the machine and disconnect the

Power Plug.
2. Remove the Drum Unit and place a black
3. Remove the Deve. Unit.
3. Remove the Deve. Unit.
5. Remove the following Covers:
-Right Upper Cowing Covers:

- Rear Upper Cover
- Rear Lower Cover

6. Remove the MSI Feeder Assy. \qquad
7. (Fig. 1): Remove the Upper Chute Assy.
8. Loosen Screw and remove Chute Bias resistance.
(2. Remove Spring
(3. Open Registration Assy pin-installed
bracket.
(4). Remove Upper Chute Assy

(Fig. 1)
9. (Fig. 2): Remove the Registration Assy.
(1). Disconnect P/J116 (for Regi-Sensor) \& P/J214 (for Regi-Gate Solenoid).
(2) Remove Screws(2)
(3. Remove Registration Assy

(Fig. 2)
Installation
10. Reinstall the Registration Assy by reversing Step 8, Removal.
11. Restore the machine to its original state in the reverse order of the removal.

2.7.2 Registration Gate Solenoid Replacement

 2.7.3 Regi-Gate Sensor Replacement

 2.7.3 Regi-Gate Sensor Replacement}

- Replace both by removing the Registration
Assy...

Assy... (2.7.1)
-The Solenoid/Sensor can now be replaced.

2.7.4 Registration Roller Replacement

emova

1. Power off the machine and disconnect the Power Plug.
Remove the Registration Assembly (2.7.1) 3. Remove the Registration Roler.
(1). (Fig.1): Remove E Clip and then Bearing.

(Fig. 1)
(2). (Fig.2): Remove Screw and then Gear

(Fig. 2)
(3. (Fig. 3): Remove One-Way Clutch and Gear. (Spring disengages together.) ${ }^{4}$. Remove E Clip and then Bearing.

Fig. 3)
. (Fig. 4): Turn over Registration Assy.
(.) Push in Registration Gate Solenoid plunger with your finger.
7. Remove Registration Roller (with plunger pushed in).

(Fig. 4)

Installation

1. Perform the installation in the reverse order of the removal.
2.7.6 Lead Edge Registration Adjustment

Purpose To properly align the copy image on the Drum with the lead edge of paper.

Check

1. In 100% Mode, align Test Chart(499T247 or 248) with Regi-Guide and make a copy
(Fig 1). Check that there is $10+16 \mathrm{~mm}$ from (Fig. 1). Check that there is $10 \pm 1.6 \mathrm{~mm}$ from

(Fig. 1)

Adjustmen

- Fast Paper Feed(The distance is more than $10 \pm 1.6 \mathrm{~mm}$ from the copy's lead edge to the reference line.)

1. Key in Diag. [20-1]
2. Increase data.

NOTE: • Changing the data by 1 will change the
distance by 0.2584 mm .

- Slow Paper Feed(The distance is less than $10+$ 1.6 mm from the copy's lead edge to the
reference line.)

2. Deyr Diag. 20

NOTE: • Changing the data by 1 will change the distance by 0.2584 mm .
3. Make a copy and check it
4. Perform the ISIL Copy Edge Erase Amount Adjustment .. (5.1.6)

3.1.1 Vacuum Transport Belt

Replacement

Removal

1. Power off the machine and disconnect the Power Plug.
2. Open the Front Cover and then the machine
3. Remove the Drum Unit and place a black
bag over it
4. Remove the Rear Upper Cover
5. Remove the TC/DTC Assembly
6. (Fig. 1): Remove the Main Switch Cover
(1). Remove Screw.
(2.) Remove Main Switch Cover.

(Fig. 1)
7. (Fig. 2): Remove AC DRIVE PWB.
(1.) Remove Screw.
(2. Remove AC Drive PWB Cover
(3). Disconnect the plug and remove AC Drive PWB,

(Fig. 2)
8. (Fig. 3): Remove the Vacuum Transport Assembly
(1). Remove Screw.
(2. Remove Vacuum Transport Assy. (2). Remove Vacuum ransport Assy.
NOTE: - Pushing the rear pin with a screw driver as shown in Fig. 3 makes it easier to remove.

(Fig. 3)
9. (Fig. 4): Remove the Transport Belt.
(1). Remove E Clip and then Bearing. (2.) Slide Shaft.
(3. Remove Transport Belt.

(Fig. 4)

Installation

1. Perform the installation in the reverse order of removal.
NOTE. - (Fig 5): Pay attention to the Belt direction.

Fuser Side

Drum Side
(Fig. 5)

4.1.1 Platen Glass Replacement

Removal

1. Power off the machine and disconnect the Power Plug.
Open the Platen Cover
2. (Fig. 1): Remove the Platen Glass
(1). Remove Screws (2).
(2. Remove Platen Glass Support.
3. Remove Platen Glass.

Installation

1. Perform the installation in the reverse order of removal.
4.1.2 Optical Cooling Fan Replacement

Removal

1. Power off the machine and disconnect the Power Plug.
2. Remove the Left Upper/Rear Upper Covers
3. (Fig. 1): Remove the Optical Cooling Fan
(1. Disconnect P/J408.
(2. Remove Screws(2).

Installation

1. Perform the installation in the reverse order of removal.
Reference - This Fan cools the Optics by taking air into the machine.

- Do not turn the Fan over when installing it.

4.2.1 Optical Regi-Sensor Replacemen

Removal

1. Power off the machine and disconnect the Power Plug.
2. Remove the Platen Glass. (4.1.1)
3. Open the Front Cover and remove the

Console Assy. (10.2.1)
4. (Fig. 1): Loosen the Top Cover.
(1). Remove Front Screws(2) to enable Top Cover Front to be raised.

(Fig. 1)
5. (Fig. 2): Remove Optical Regi-Sensor.
(1). Raise Top Cover a little
(2. Remove Screw.
(4. Disconnect P/J100.

(Fig. 2)
Installation

1. Perform the installation in the reverse order of removal.
NOTE: • While pushing the Regi-Sensor toward the lower right to eliminate end play tighten the Screw

4.2.2 Lamp Carriage Motor

 Replacement
Remova

1. Power off the machine and disconnect the Power Plug.
2. Remove Rear Upper Covers
3. (Fig. 1): Remove Lamp Carriage Motor
(1. Disconnect P/J605.
(2.) Remove Screws(2)
(3). Remove the Motor.

(Fig. 1)

Installation

1. Perform the installation in the reverse order of
removal.
2. Make a copy of Test Chart(499T247 or 248) and check that it exhibits no skip, that no abnormal noises are heard, etc.

NOTE: - The Cable winding procedure is described only for the Front Cable because the Front and Rear Cables are symmetrically wound.

- Prepare Scotch tape.
- Replace Cables one by one Refer to the location of the installed wiring for the correct Cable routing.
\qquad The Rear Cable is painted in black.

Removal

1. Power off the machine and disconnect the Power Plug.
2. Remove the Platen Cover
3. Remove the Platen Glass \qquad
4. Remove the Top Cover (10.2.2)
5. Remove the Regi-Guide
6. (Fig. 1): Gently move the Full-Rate Carriage manually up to the frame hole at the right of the Regi-Sensor.
(Fig. 1)

7. (Fig. 2): Loosen the Cable Mounting Screw for the Full-Rate Carriage.
NOTE: - When replacing the Rear Cable, remove the Optical Cooling Fan. (4.1 2)

(Fig. 2)
8. (Fig. 3): To make the rest of this procedure easier, gently move the Full-Rate Carriage up to the frame cutout.
NOTE: - Move the Carriage by holding at the rear keeping it perpendicular to the frame because its front is not fixed to the Cable.

9. (Fig. 4): Remove the Cable from the spring and then the whole Cable from the machine

(Fig. 4)
Installation
10. (Figs. $5 \& 6$): Wind the Cable on the Capstan Pulley.
(1). (Fig. 5): Determine the Cable direction.
(2. Wind Cable on Capstan Pulley shaft nine turns.

(Fig. 5)

NOTE: • The Full-Rate Carriage should be positioned at the frame cutout in Fig. 3
(3. (Fig. 6): With the Cable-centering ball in the Capstan Pulley hole, wind the Cable five turns on the front side and three turns on the rear side centering ne ball. The total number of w nentral ball. (Overlap of the cable indings is allowed here.)
(Fig. 6)

2. (Fig. 7): Route the ball-attached side of Cable to the Pulley via the far left Pulley as shown in Fig. 7, then fasten the ball into the left-hand Frame hole

(Fig. 7)
3. (Fig. 8): Route the ring-attached side of cable to the Pulley via the Full-Rate Carriage and spring.

(Fig. 8)
4. (Fig. 9): Finger tighten the Cable Mounting Screw for the Full-Rate Carriage.

(Fig. 9)
5. (Fig. 10): Arrange the cable windings on the Capstan Pulley by holding the Full-Rat Carriage with your hand and gently moving it right and left.

(Fig. 10)
6. Perform the Full-Rate \& Half-Rate Carriage Parallel Adjustment. (4.3. 7. Reinstall all the parts and make a copy. Check that the copy exhibits no optical skew, etc.

4.3.1 Full-Rate \& Half-Rate Carriages

 Parallel AdjustmentPurpose To set the Carriages parallel so tha the Front/Rear Light Paths are the same in length.

NOTE: • This adjustment should be performed when the following problem occurs or after the work is complete:
1.Optical Skew(Skewed image)
2.Carriage Cable Removal/Installation (4.2.3)

Chec

1. Power off the machine and disconnect the Power Plug.
2. Remove the Platen Cover
3. Remove the Platen Glass.
4. Remove the Left Upper Cover
5. Remove the Top Cover.
6. Remove the Regi-Guide.
7. Remove the Blocks for Parallel Adjustment from the Left-Hand Frame by moving the Full Rate \& Half-Rate Carriages manually to the Right.
(1). (Fig. 1): Push Block A convex from the frame hole and turn Block A through 180 degrees.
(Both front and rear)

(Fig. 1)
(2. (Fig. 2): Remove Block B's and install them to Full-Rate Carriage front/rear

(Fig. 2)
8. (Fig. 3). Move gently the Fuli/Half-Rate Carriages toward their home positions by rotating the Capstan Pulley shaft manually to check the following:

- The Half-Rate Carriage convex contacts Block A's at its front and rear.
Block B's installed to the Full-Rate Carriage contact the Left-Hand Frame at its front and rear.

Adjustmen

Half-Rate Carriage Adjustment

1. (Fig. 4): Make the Half-Rate Carriage convex contact (Front/Rear) Block A's.
(1. Loosen screws(2) for Front Capstan Pulley. (2. Adjust by rotating Capstan Pulley or Shaft NOTE: - Do not remove Screw for Rear

Capstan Pulley.

Reference The standard tightening Torque is $0.5 \mathrm{~N} . \mathrm{m}(5 \mathrm{kgf} . \mathrm{cm})$.

(Fig. 4)
2. (Fig. 5): Remove the end play in the Drive Shaft axis direction and tighten the screws fo the Capstan Pulley.
(1). Insert 0.5 mm Thickness Gauge between Capstan Pulley and Bearing
(2. Push Capstan Pulley to front and Shaft to rear and tighten screws(2)

(Fig. 5)

Full-Rate Carriage Adjustment

1. (Fig. 6): Make (Front/Rear) Block B's installed to the Carriage contact the Left-Hand Frame.
(1. Loosen the Carriage Wire Mounting Screw.

NOTE: • For the adjustment of Rear Block B remove the Optical Cooling Fan
(2.) Adjust by moving the Carriage
(3. Tighten Screw.

(Fig. 6)

4.3.2 Exposure Lamp Replacement

NOTE: - Do not touch the Exposure Lamp glass tube with your hand. If you touch it,
wipe it with the Drum Cleaner.

- Take care not to hit the Exposure Lamp glass tube. It is fragile

Removal

Power off the machine and disconnect the Power Plug.
2. Open the Platen Cover.
3. Remove the Platen Glass \qquad .. (4.1.1)
4. (Fig. 1): Move the Full-Rate Carriage gently to the frame cutout and remove the Lamp.
(1. Remove Screw
2. Remove Front/Rear Side Reflectors
3. Remove Cover
(4). Push open Front Contact Plate with you fingers.
©. Remove Lamp.

Installation

1. Perform the installation in the reverse order of remova
NOTE: • (Fig. 2): Install the Lamp with it protrusion facing the Reflector pening approx. 45° from the Platen Glass surface

(Fig. 2)
2. Key in Diag. Mode [6-7] and check that the Lamp is on.
3. Perform the Basic Copy Quality Adjustment

4.3.3 Optical Skew Adjustment

Purpose To correct the optical image skew in the Drum axis and paper feed directions.
NOTE: • Ensure that the following are functioning correctly:

1. Paper is fed properly.
a. There is no difference in skew level between Trays.
b. There is no difference in skew level between continuously-made copies
2. The Regi-Guide(or Gate) and the Platen Glass are positioned properly.
3. The Full-Rate/Half-Rate Carriages Paralle Adjustment is properly performed.
(4.3.1)
4. There is no difference in skew level between A4 \& A3 (or between B5 \& B4)
If there is some difference, check to see if the bottom half of A 3 (or B4) paper skews due to the uneven transporting force of Roll if necessary.
The Regi-Roll is deteriorated or worn out.
5. Do not adjust paper skew by this means.
6. After this adjustment, make sure to record in the Machine History Card that it has been performed.

Adjustment Flow chart

Check

1. Align Test Chart(499T247) with the RegiGuide and make a size-for-size copy of it on A3 paper.
2. (Fig. 1): Measure A B C \& D each. Check that the values each obtained by subtracting B from A and D from C are in the specifications below:
$A-B \rightarrow$ within $\pm 1.6 \mathrm{~mm}$
$C-D \rightarrow$ within $\pm 2.0 \mathrm{~mm}$

(Fig. 1)

Adjustmen

A-B is out of spec

1. Power off the machine and disconnect the Power Plug.
Remove the Platen Glass \qquad (4.1.1)
2. Remove the Optical Cooling Fan (4.1.2)
3. (Fig. 2): Move the Full-Rate Carriage holding it 4. (Fig. 2): Mo
at its rear.

NOTE: • Do not move the Carriage right and left more than 2 mm ; otherwise, there could occur problems such as poor resolution and the Carriage slamming on the frame.

1. Remove Carriage Wire Mounting Screw.
(2). Adjust by moving Full-Rate Carriage with Carriage Cable still.

C-D is out of spec

1. Power off the machine and disconnect the Power Plug
. Riat Glass. ...
... (4.1.1)
2. Remove the Right Upper Cove
3. (Fig. 3): Move the Half-Rate Carriage holding it at its front.
NOTE: • Do not move the Carriage right and left more than 2 mm ; otherwise, there could occur problems such as poor resolution and the Carriage slamming on the frame.
(1. Loosen Front Capstan Pulley screws(2).
(2). (Fig. 3): To adjust, move the Half Rate Carriage by rotating the Capstan Pulley.
NOTE: - Do not remove the screw for
the Rear Capstan Pulley.

- Do not rotate the Carriage

Drive Shaft.

- In the case of C > D, rotate the

Capstan in the a direction

- In the case of $C<D$, rotate the

Capstan in the \forall direction.

(3). Tighten Screw.

Reference
The standard tightening torque is $0.5 \mathrm{~N} \cdot \mathrm{~m}(5 \mathrm{kgf} \cdot \mathrm{cm})$

Front
4.3.4 Size-for-Size Fine Tuning

Purpose To set the vertical magnification (Scan direction) and horizontal magnification(Drum axis direction).
Reference When the machine is shipped out from the plant, its copy magnification is set to $100 \%+0.8 \%$

Check
Make a size-for-size A3 copy of Test Chart (499Т247)
2. (Fig. 1): Check that designated locations are the same in length by comparing Test Chart with the copy as follows:

Check on (2) to (4), (2) to (5) and (4) to (5)

- Horizontal Magnification

Check on (1) to (2), (2) to (3) and (1)to (3).

(Fig. 1)

Adjustment

- Vertical Magnification

Change the vertical magnification (Scan direction) referring to Table 1

- Horizontal Magnification

Change the horizontal magnification (Drum axis direction) referring to Table 1.

Chain	Code	Content	Min.	Initial Value	Max.
20	6	100% Horizontal Mag. Fine Tuning	0 (-2%)	32 $(\pm 0 \%)$	64 $(+2 \%)$
	7	100% Vertical Mag. Fine Tuning	0 (-3%)	32 $(\pm 0 \%)$	64 $(+3 \%)$

4.5.3 Lens Cable Replacement

Removal

1. Select 100% Magnification. After the Lens stops, power off the machine and disconnect the Power Plug
2. Open the Platen Cover and remove the Platen Glass.
(4.1.1)
3. (Fig. 1): Remove the Optical Shield
(1). Loosen Screws(2)
(2). Raise the rear side of Mirror Carriage and

remove Optical Shield
(Fig. 1)
4. (Fig. 2): Remove the Lens Carriage Shield.
(1. Remove Screw.
(2.) Remove Lens Carriage Shield.

NOTE: - Take care not to break the film

attached to the Shield.
(Fig. 2)
5. Check the following:

- (Fig. 3): The Lens Carriage timing hole should align with the Rail timing hole.

(Fig. 3)

6. (Fig. 4): Remove the Lens Cable

- First unhook the spring-attached side of

Cable.

(Fig. 4)

Installation

1. (Fig. 5): Check that the Lens Carriage timing
hole aligns with the Rail timing hole. Tape the Lens Carriage to the frame.

(Fig. 5)
2. Hook the shorter side of Cable from its ball on the Lens Carriage.
NOTE: • (Fig. 5): Hook the Cable with the flat side of the hook toward the Carriage.
3. (Fig. 6): Route the Cable to shaft of Pulley A then to the Pulley B, and finally wind it on th Gear Pulley. Wind the Cable five turns in total inserting the ball into the Gear

(Fig. 6)
4. (Fig. 7): Route the longer side of Cable form its ball to the Pulley, then hook it on the Lens Carriage with the spring.

5. Remove the tape fixing the Lens Carriage and route the Cable to the Pulley A
6. Power on the machine. Check that the Lens Carriage timing hole aligns with the Rail timing hole(Step 5, Removal) when the Lens is set to 100%. If the holes don't align with each other check the installation procedure again. Check in particular, that the Cable ball is in the Gear

Cle 61%
7. Select $61 \% / 163 \%$ Magnifications respectively e following:
ens Carriage moves smoothly.

- The Cable windings on the Gear Pulley are not overlapped.

8. Restore the machine to its original state. Make copies using Enlargement/100\%/Reduction Modes respectively. Check that the copies ar good. Perform the Size-for-Size Fine Tuning (4.3.4) if necessary.

4.5.4 Lens Motor Replacement

Removal

1. Select 100%. After the Lens stops, power off the machine and disconnect the Power Plug
2. Remove the Right/Rear Upper Covers
. Oper
bag over it Drum place a black
3. Remove th \qquad (6.2.1)
4. Close the machine
5. Remove the Platen Glass.
6. (Fig. 1): Remove the Optical Shield
(1). Loosen Screws(2).
(2. Raise the rear side of Mirror Carriage and remove Optical Shield.

(Fig. 1)
7. (Fig. 2): Disconnect Connector P/J604 from the Lens Motor

(Fig. 2)
8. Remove the Motor wire from each Cable clamp.
9. (Fig. 3): To fix the Mirror Carriage position at 100%, insert the Phillips Screwdrive hrough the Worm Wheel timing hole to the frame timing hole. (The screwdriver goes through the frame hole.)

(Fig. 3)
10. (Fig. 4): Remove the Gear.
(1). Remove E Clip
(2. Remove Gear.

(Fig. 4)
11. (Fig. 5): Remove the Lens Motor
(1). Remove Screws (2).
(2). Remove Lens Motor

6

(Fig. 5)

Installation

1. Perform the installation in the reverse order of . Perform the installation in the reverse or
removal. Pay attention to the following: NOTE: • (Fig. 6): When installing the Lens Motor, check that the Lens Carriage is set to 100%.

(Fig. 6)
2. Make copies using $100 \%, 70 \%$ and 141% Magnifications respectively. Check that the copies are good.

5.1.1 Drum Unit Replacement

NOTE: • Be careful of the following in handling the Drum Unit:
a. Place the removed Unit on a flat
b. Keep the Drum away from direct strong light. Put a protective cove ,
. Do not rotate the Drum anti --
clockwise.
your bare hach the Drum surface with your bare hand(s).

Removal

1. Power off the machine and disconnect the Power Plug.
2. Open the Front Cover and then the machine.
3. (Fig. 3): Remove the Drum Unit.
(1). Push Lock Lever.
(2.) Pull out Drum Unit

(Fig. 1)

Installation

1. Install the Drum Unit securely. Its improper installation will cause J 3 to be displayed. Put the plug ID into the socket.
2. Perform the Basic Copy Quality Adjustment. ..

Reference • Drum Unit

a. When replacing the Drum, replace the whole Drum Unit. (It is impossible to replace the Drum alone.) The Drum Unit contains he Drum Cleaning Corotron.
Max
b. Max. Copy Output Quantity When the Drum Unit is shipped out of the plant, the max. cop output quantit
ID as below:

M/C Type	Max. Copy Output Qty on ID (nnitial Value)
5915	50,000

c. "Drum Cartridge(Unit) Replacement" Display

Remaining Copy Output Oty	Drum Cartridge Replacement Display	Status Code	Copy
5,000	ON	--	Possible
500	Flash	--	Possible
0	Flash (continuously)	$\mathrm{J7-1}$	Not possible

When the cartridge reaches the end of its service life, the Replace copy cartridge lamp
flashes and the Copy Quantity display shows "J7".
d. Remaining Copy Output Qty The remaining copy output quantity is stored in EPROM incorporated into the Drum Unit. You can check on the remaining copy output quantity
in [81] of "Performance Spec."

5.1.2 Drum Finger Replacemen

Remova

1. Power off the machine and disconnect the Power Plug.
2. Open the Front Cover and then the machine 3. Remove the Drum Unit
3. (Figs. 1 \& 2): Remove the Finger Assembly.
(1.) (Fig. 1): Remove Stopper preventing the disengagement of Finger Assy

(Fig. 1)
(2.) (Fig. 2): Remove Finger Assy from Bracket by sliding it to the front of Drum Unit.

(Fig. 2)
4. (Fig. 3): Remove the Drum Finger

WARNING: - Take care not to hurt yourself in removing the Finger. Its tip is sharp.
(1). Remove Spring.
(2) Remove Drum Finger

(Fig. 3)

nstaliatio

Perform the installation in the reverse order of removal.
AUTION. Check that the Drum Finger tip is not damaged.
Take care not to damage the Drum surface in instaliing the Finger
Assy.

- Install the Stopper in the proper direction referring to Fig. 1

5.1.3 Charge Corotron Wire Replacement

Removal

1. Power off the machine and disconnect the Power Plug
Open the Front Cover and then the machine
2. Remove the Drum Unit.
(5.1.1)
3. (Fig. 1): Remove the Charge Corotron Assembly.
(1). Remove Screw.

(2. Remove Charge Corotron Assy
(Fig. 1)
4. (Fig. 2): Remove the Charge Corotron Wire
(1). Remove Front/Rear Arc Shields.
(2. Remove Spring
(3). Remove Corotron Wire

(Fig. 2)
Installation
5. Perform the installation in the reverse order of removal.
NOTE: • The copy edge erase amount changes according to the Front Arc Shield installing position. Install the Arc Shield so that the copy edge erase amount after replacement is the same as before.

5.1.4 Basic Copy Quality Adjustment

Purpose To determine the correction values of Exposure Light Quantity and Deve. Bias to obtain copy densities appropriate to various types of original.

NOTE: • Copy Quality Adjustment should be performed when copy quality problems occur or the following are replaced:
(1). Drum Unit Replacement
(2. Exposure Lamp Replacement (4.3.2)

NOTE: • Perform TRIM before making the Copy Quality Adjustment.

Adjustment Flow

5.1.4-A Exposure Light Quantity Setup

Purpose To adjust light quantities applicable to each magnification and store the values in NVM.

Check

1. Enter Diag. Mode [20-2]

The Control Panel displays the following Set/Count 30
Check that the magnification is 100%.
3. Set Test Chart(499T247 or 499T248) and select A3 or B4.
4. Press the Start button and make three straight copies. (Press the Stop button when the third copy has been made.)
NOTE: • Because pressing the Start button in Diag. [20-2] will allow ten straight copies to be made, press the Stop button at the completion of the third copy.
This Diag Mode detects paper jams and counts.
5. Evaluate the third copy

Spec: At the target in the center of the copy
(Fig. 1): 0.1 gray vertical/horizontal
lines disappear
al/horizontal lines are reproduced.
(Fig. 1)

vertical/horizontal
lines are reproduced.
6. Go to one of the following steps per the result of the evaluation.
Within Spec. \rightarrow Perform Steps 3 through 5 in $70 \% / 141 \%$ magnification modes
Out of Spec. \rightarrow Proceed with the adjustment procedure.

Adjustmen

Reference The Exposure Light Quantity can be set up by changing the NVM value.
a. Normally adjust by the [20-2] value.
. Adjust by $[20-20]$ in the cases
below:
Light Quantity is unadjustable by the NVM value.

- The Main PWB has been
replaced.
NOTE: • Make sure to first perform the adjustment in 100% mode.

Adjustment Flow

Adjustment by NVM Value (Normal Adjustmen

1. Enter Diag. Mode [20-2].
2. Select 100% Magnification
3. The exposure setting is adjusted by pressing保
b. Button 9 to increase the Exposure
4. While making the copies, adjust the exposure so that the .20 gray lines are reproduced clearly and the .10. gray lines disappear
5. When the correct setting has been achieved, press the Start button and make three straight copies.
6. Repeat Steps $3,4 \& 5$ until the results satisfy the spec. in Step 5, Check
7. When the reproduced copies meet the spec, press the Start button while the machine is running in Diag. Mode[20-2]. This enables the light quantity to be stored in NVM.
8. Perform Steps 3 through 7 in $70 \% / 141 \%$ modes

Adjustment by [20-20]

1. Enter Diag. Mode [20-20] The Control Panel displays the following Set/ Count 50
2. Select 100% Magnification
3. Using the keyboard enter number Increasing the number increases the exposure Decreasing the number decreases the exposure.
4. Check the copy meets the spec in step 5 of "check"
5. Perform steps 3 to 7 of Adjustment by NVM [20-2] Value Process Normal Value.

5.1.5 ISIL Assembly Replacement

Removal

1. WARNING: Power off the machine and disconnect the power cord
2. Open the Front Cover and then the machine 3. Remove the Drum Unit and place a black bag over it.
3. Remove the Deve Unit \qquad (5.1.1)
(6.2.1)
4. (Fig. 1): Remove the ISIL Assembly.
(1). Remove P/J200
(2). Remove Screw

NOTE: • Do not lose Spring.
(3. Remove ISIL.

(Fig. 1)
Installation

1. Perform the installation in the reverse order of removal.
2. Perform the Rear Side Edge Erase Amount Check of the ISIL Copy Edge Erase Amount Adjustment.
5.1.6 ISIL Copy Edge Erase Amount Adjustment

NOTE: • Ensure that the following adjustment is properly performed before making this adjustment:
Lead Edge Registration Adjustment
. (2.7.6)
Check

1. Make three size-for- size copies of Test Chart(499T247) onto A3. Check the third copy
2. (Fig. 1): Check the erase amount.

- 4 mm along lead/trail edges
- 4 mm or less at rear

NOTE: • Front Side Edge Amount is set up by moving the Front Shield Cover of the Charge Corotron.

(Fig. 1)

Adjustmen

1. Enter Diag. Mode and key in [20-4]
2. The current set value appears,
3. Key in a new set value and press the Start button
Increase the value. \rightarrow The erase amount decreases.
Decrease the value. \rightarrow The erase amount

- The adjustabl increases

0~64.

- A ste
- A step of " 1 " will change the erase amount
- The initial value is 32 .

Trail Edge

1. Enter Diag. Mode and key in [20-5]
2. The current set value appears.
3. Key in a new set value and press the Star button.
Increase the value. \rightarrow The erase amount decreases
Decrease the value. \rightarrow The erase amount increases.

- The adjustable range in the Diag. Mode is 0~64.
- A step of " 1 " will change the erase amount by 0.2584 mm
- The initial value is 32

Rear Side

1. Open the Front Cover.
2. (Fig. 2): Perform the ISIL Positioning Adjustment.
A . The erase amount decreases.
B . The erase amount increases.

(Fig. 2)
6.2.1 Deve. Unit Removal/Installation

Removal

1. WARNING: Power off the machine and disconnect the power cord
2. Open the Front Cover and then the machine 3. (Fig. 1): Remove the Deve. Unit

Ensure before the work that the Deve
Unit separates fully from the Drum
When you open the machine, the Deve Unit will separate from the Drum.
(1). Remove Screw.
2. Remove Deve. Unit.

(Fig. 1)
Installation

1. Perform the installation in the reverse order of removal.
6.2.2 Mag. Roll Blade Replacement 6.2.3 Toner Empty Sensor Replacemen

Common Procedure

Remova

1. WARNING: Power off the machine and disconnect the power cord
2. Open the Front Cover and then the machine. 3. (Fig. 1): Remove the Deve. Unit. (6.2.1)

Replacement Procedure Exclusively For Mag. Roll Blade
4. (Fig. 1): Remove the Deve. Housing Upper 4. (Fig. 1): Remove the Deve. Housing
Cover and then the Mag. Roll Blade.

NOTE: • Do not rotate the Mag. Roll after removing the Mag. Roll Blade, otherwise; a large quantity of toner will be spilled.

(1). Remove Screws (5).
 (2.) Remove Upper Cover
 (3. Remove Screws(2)

(4.) Remove Mag. Roll Blade.

(Fig. 1)

Installation

1. Perform the installation in the reverse order of removal. Pay attention to the following:
NOTE: • Ensure that the Blade and the Mag Roll have no foreign objects on thei surfaces.
Install the Blade flat.

- (Fig.2): After the assembly, ensure tha here are no white streaks, etc. in the Mag. Kog Roll Gear in the direction of the Mag. Roll Gear in the direction xist find their cause such as mix. foreign objects and remove them.

(Fig. 2)

Replacement Procedure for Toner Empty Sensor only
4. (Fig. 3): Remove the Toner Empty Sensor NOTE: - Take care not to cause any pressure or shock to the detection surface of the Empty Sensor.
(1). Remove Deve. Housing Front Cover.
(2.) Remove Screws (2).
(3. Remove Toner Empty Sensor, then disconnect P/J122.

(Fig. 3)

NOTE: • When loosening or removing the Screw with *, put the MSA Plate against the protrusion \uparrow and tighten
the screw (3) as shown in Fig. 4.

(Fig. 4)

instaliation

1. Perform the installation in the reverse order of removal.
8.1.1 Fuser Thermostat Replacemen
8.1.2 Fuser Thermistor Replacement

Common Procedure

Removal

1. WARNING: Power off the machine and disconnect the power cord

WARNING

Fuser surfaces are hot, allow the fuser to cool Fuser surfaces are hot, allow the fuser to coo down before attempting service procedure.
Fuser lubricant can cause discomfort to eyes Do not allow fuser lubricant to touch eyes.
2. Open the Front Cover and then the machine:
3. Remove the Drum Unit and place a black
4. Remove the Left Upper Cover
5. (Fig. 1): Remove the Main Switch Cover
(1). Remove Screw.
(2.) Remove Main Switch Cover.

(Fig. 1)
6. (Fig. 2): Remove the Fuser Cover.
(1). Loosen Screw.
(2. Remove Fuser Cover

(Fig. 2)

Replacement Procedure for Thermostat only
7. (Fig. 3): Remove the Thermostat.
(1). Remove Wire going to Thermostat.
(2. Loosen Screws (2) and remove Sensor Bracket.
(3). Remove Thermostat

(Fig. 3)

Replacement Procedure for Thermistor only

7. (Fig. 4): Remove the Thermistor.
(1). Disconnect P/J118.
(2). Remove Screw and then Thermistor.

(Fig. 4)
Common Procedure

Installation

1. Perform the installation in the reverse order of removal.

8.2.1 Heater Rod Replacement

NOTE: a. Take great care in handling the Heate Rod glass tube. It is fragile.
b. Do not touch the Heater Rod glass tube with your bare hand(s). If you

Removal

1. WARNING: Power off the machine and disconnect the power cord WARNING
Fuser surfaces can be hot. Fuser lubricant can cause discomfort to eyes. Do not allow fuser lubricant to touch eyes.
2. Open the Front Cover and then the machine 3. Remove the Drum Unit and place a black bag over it. 4. Remove the Left/Rear Upper Covers. 5. (Fig. 1): Remove the Main Switch Cover.
(1). Remove Screw.
(2.) Remove Main Switch Cover

(Fig. 1)
3. Disconnect P/J's 12, \& 13 from the Heater Rod.
4. (Fig. 2): Remove the Front/Rear Heater Rod Covers each
(1). Loosen Screw.

(2). Remove Front/Rear Heater Rod Covers
5. (Fig. 3): Remove the Heater Rod.
(1). Loosen Screw
(2.) Remove Front Support Bracket. (3) Remove Heater Rod

NOTE: - Hold the insulator and take out the Heater Rod.

(Fig. 3)

Installation

1. Perform the installation in the reverse order of removal.
NOTE: - Determine which way(front or rear) the Heater faces by the color of the connector.

8.2.2 Heat Roller Replacement

Removal

1. WARNING: Power off the machine and disconnect the power cord

WARNING

Fuser surfaces are hot, allow the fuser to coo down before attempting service procedure Fuser lubricant can cause discomfort to eyes. Do not allow fuser lubricant to touch eyes.
2. Open the Front Cover and then the machine
3. Remove the Drum Unit and place a black

> Remove the Left/Rear Upper Covers.
5. (Fig. 1): Remove the Main Switch Cover
(1). Remove Screw
(2). Remove Main Switch Cover.

(Fig. 1)
6. (Fig. 2): Disconnect P/J117 (for Fuser Exit Switch) at rear. Remove the Fuser Cover and the Finger Assy
(1). Disconnect P/J117.
(2. Loosen Screw and Remove Fuser Cover (3. Loosen Screw and Remove Finger Assy.

(Fig. 2)
7. (Fig. 3): Remove the Sensor Bracket
(1). Loosen Screws (2) (2. Remove Sensor Bracket.

(Fig. 3)
8. Remove the Heater Rod. at Rolle
(1). Remove Front/Rear Heat Roller Rings
(2) Remove Web Washer
(3) Remove Heat Roller Collar
(4.) Remove Bearing.
(๑). Remove Heat Roller. (Rear Gear will also be disengaged.)

(Fig. 4)

Installation

1. Perform the installation in the reverse order of removal.

Removal

1. WARNIN: Power off the machine and disconnect the power cord. WARNING
Fuser surfaces are hot, allow the fuser to coo down before attempting service procedure Fuser lubricant can cause discomfort to eyes. Do not allow fuser lubricant to touch eyes.
2. Open the Front Cover and then the machine
3. Remove the Heat
4. (Fig.1):Remove the Pressure Roller Finger Assy.
(1). Remove Screw (2).
(2. Remove the Pressure Roller Finger Assy.

(Fig. 1)
5. (Fig.2):Remove the Pressure Roller
(1). Remove the Pressure Roller Finger Assy.

(Fig.2)

8.2.4 Contact Arc Adjustment

Purpose To obtain the appropriate fusing
NOTE: A narrow contact arc would cause improper fusing. Wide contact arc or a great difference in contact arc between front and rear would cause wrinkled or curled copies.

Check
(Fig 1): Make two or three copies of A4(LEF) paper with their halves solid black. Regard the copies as the measurement paper.

(Fig. 1)
2. Make fifteen copies of Test Chart onto A3 paper to even the temperatures of the Heat Roller and the Pressure Roller.
3. Put the black copy obtained from procedure No. 1 on the MSI face down
4. Hold the measurement paper so that it cop 5. Taches the Heat Roll \& the Pressure Roll. 5. Take out the measurement paper after closing the machine for approx. $8 \sim 10$ seconds
6. (Fig. 2): Open the measurement paper gently Take measurements at the positions 75 mm from the both sides of the paper respectively (at two positions on the fold made when the paper is folded into quarters with its lead edge aligning to its trail edge.)

- Proper width of NIP
$5.5 \pm 0.15 \mathrm{~mm}$

measurement paper A4LEF
(Fig. 2)

Adjustmen

1. (Fig. 3): Adjust by rotating the Adjustment

Screws(at front/rear)
(1.) Loosen Lock Nut
(2.) Slide the bracket
(3). Tighten Lock Nut.

NOTE: Width of NIP increases: Slide the bracke to inside.
Width of NIP decreases: Slide the bracke to inside.

(Fig. 3)
2. Adjust by repeating Check Steps 1 through 6
8.3.1 Heat Roller Fingers Replacement

Common Procedure

Removal

1. WARNING: Power off the machine and disconnect the power cord.

WARNING

Fuser surfaces are hot, allow the fuser to cool down before attempting service procedure Fuser lubricant can cause discomfort to eyes. Do not allow fuser lubricant to touch eyes.
2. Open the Front Cover and then the machine 3. (Fig. 1): Remove the Main Switch Cover
(1). Remove Screw.
(2.) Remove Main Switch Cover.

(Fig. 1)
4. (Fig. 2): Disconnect P/J117(for Fuser Exit Switch) at rear and remove the Fuser Cove and the Finger Assy.
(1.) Disconnect P/J117
(2. Loosen Screw and remove Fuser Cover (3. Loosen Screw and remove Finger Assy.

(Fig. 2)
Replacement Procedure for Heat Roller Fingers only
5. (Fig. 3): Remove the Heat Roller Fingers.
(1). Remove Screws(4).
(2. Remove KL Clips(2)
(3). Remove Heat Roller Fingers along with their shafts

(Fig. 3)

Installation

1. Perform the installation in the reverse order of removal.
NOTE: • (Fig. 4): When installing the Shaft to the Finger Assy, pay attention to the following:
(1). the position of the Exit Sensor actuator.
2. The longer hook of the spring should be installed to the Finger Assy.

(Fig. 4)

Replacement Procedure for Pressure Roller Fingers only
5. (Fig. 5): Remove the Heat Roller Fingers.
(1). Remove Screws (2)
(2. Remove Pressure Roller Finger Assy

(Fig. 5)
6. (Fig. 6): Remove the Pressure Roller Fingers.
(1). Unhook the spring end
(2.) Pull out the Shaft
(3). Remove the Finger

(Fig. 6)

Installation

1. Perform the installation in the reverse order of removal.
NOTE: • (Fig. 7): Install the Finger with the both ends of the Spring under the Shaft.

(Fig. 7)

8.5.1 Fuser Fan Motor Assembly

 Replacement
Removal

1. WARNING: Power off the machine and disconnect the power cord.
2. Remove the Platen Glass
.. (4.1.1)
3. Open the Front Cover and then the machine
4. Remove the Left/Rear Upper Covers.
5. Remove the Drum Unit and place a black
bag over it. (5.1.1)
6. Move the Full-Rate Carriage slowly to the right.
7. (Fig.
(M. 1):Loosen the Fuser Fan Motor Assy Mounting Screw.

NOTE: • (Fig. 2): The Vibration Preventing Damper Tapes are attached to the Fan Motor Assy securing areas. If he screws are not loose enough, you may not be able to remove the Fan Motor Assy.
(1). Loosen Screws enough
(2.) Remove Screw.

(Fig. 1)
8. (Fig. 2): Remove the Fuser Fan Motor Assy.
(1). Disconnect P/J409 from Main PWB. (2. Remove Fuser Fan Motor Assy.

(Fig. 2)

Installation

1. Perform the installation in the reverse order of removal.
CAUTION: • Put the shock absorber of the Fan Motor Assy against the Ozone Filter securely.
8.5.2 Ozone Filter(Fuser Fan)

Replacement

Removal

1. WARNING: Power off the machine and disconnect the power cord
2. Open the Front Cover and then the machine 3 (Fig. 1): Remove the Ozone Filter
(1). Put the Filter at front by pushing the rear end of the Ozone Filter
NOTE: • When you can't push out the Filter by Step (1), remove the Fuser Fan Motor Using the screwdriver in an upright position prise out the Ozone Filter.
NOTE: • When removing the Ozone Filter
lone without replacing it with a new ne, do not use Step (2)
Remove the Filter by removing the
Fuser Fan Motor Assy instead

(Fig. 1)

Installation

1. Insert the new Filter into the area from which the old one has been removed.

Removal

1. If the machine is ready, make a copy of Table Diag. Modes from the succeeding pages.
2. Enter Diag. Mode and record the data of Chain Codes into Table Diag. Mode
NOTE: - If there is any unreadable data,
perform its appropriate adjustmen after the replacement of the Main
3. WARNING: PB
disconnect the power cord 4. Open the Front Cover and then machine 5. Remove the Rear Upper Cover.
4. Disconnect all connectors from the Main PWB 7. (Fig. 1): Remove the Main PWB.

Reference NVM stands for Nonvolatile Memory

4. Key-in to NVM the data recorded in the table in Removal Step 2.
5. Perform the Basic Copy Quality Adjustment.
6. Electrical Section 4 Disassembly/Assembly/Adjustment

CHAIN CODE 20 TABLE \quad The list below deletes Function which do not need recording.

$\begin{aligned} & \hline \text { CHAIN } \\ & \text { CODE } \end{aligned}$	FUNCTION CODE	SETUP ITEM	MIN. VALUE	INITIAL VALUE	MAX.VALUE	1 STEP CHANGE	ADJ
20	1	Registration Adjustment	16(-4.13mm)	32	$64(+4.13 \mathrm{~mm})$	0.2584 mm	$\bigotimes_{2.7 .6}$
	2	Light Quantity Adj. 100\%	0	30	80	0.8\%	5.1.4-A \oslash
		Enlargement/Reduction	0	50	99	0.8\%	5.1.4-A \oslash
	3	Paper Loop Amount Adjustment	$0(-8.27 \mathrm{~mm})$	32	64(+8.27mm)	0.2584 mm	
	4	ISIL Lead Edge Erase Amount Adjustment	$0(-8.27 \mathrm{~mm})$	32	$64(+8.27 \mathrm{~mm})$	0.2584 mm	$\bigotimes_{5.1 .6}$
	5	ISIL Trail Edge Erase Amount Adjustment	$0(-8.27 \mathrm{~mm})$	32	$64(+8.27 \mathrm{~mm})$	0.2584 mm	$\bigotimes_{5.1 .6}$
	6	Fine Tuning of 100\% Horizontal Magnification	0(-2.272\%)	32	64(+2.272\%)	0.071\%	$\bigotimes_{4.3 .4}$
	7	Fine Tuning of 100\% Vertical Magnification	0(-3.16\%)	32	64(+3.16\%)	0.099\%	$\bigotimes_{4.3 .4}$
	10	MSI Paper Loop Amount Adjustment	$0(-8.27 \mathrm{~mm})$	32	$64(+8.27 \mathrm{~mm})$	0.2584 mm	-
	11	MSI Registration Adjustment	16(-4.13mm)	32	48(+4.13mm)	0.2584 mm	
	14	Selection of Exposure Photoreceptor Sensitivity Correction	0(OFF)	1(ON)	1(ON)		-
	16	Bias Curve Selection 1	0	4	8		-
	17	Bias Curve Selection 2	0(slot)	1(Flat)	1(Flat)		-
	20	Light Quantity Adj.	0	50	99		5.1.4-A \oslash
	23	Drum Photoreceptor Sensitivity Correction Constant	0 (0)	11(1.1)	40(4.0)	0.1	-
	30	Fuser Temperature Adjustment (Stand-by)	$0\left(-23^{\circ} \mathrm{C}\right)$	32	$39\left(+5^{\circ} \mathrm{C}\right)$	$0.72{ }^{\circ} \mathrm{C}$	-
	31	Fuser Temp. Adjustment (Copy cycle)	$0\left(-23^{\circ} \mathrm{C}\right)$	32	$39\left(+5^{\circ} \mathrm{C}\right)$	$0.72{ }^{\circ} \mathrm{C}$	-
	41	Density Correction Light 6	0(0V)	52(-413V)	64(-500V)	-7.8125V	-
	42	Density Correction Dark 6	$0(0 \mathrm{~V})$	$16(-125 \mathrm{~V})$	$64(-500 \mathrm{~V})$	-7.8125V	-
	45	Density Correction Photo Light 6	$0(0 \mathrm{~V})$	50(-388V)	64(-500V)	-7.8125V	-
	46	Density Correction Photo Dark 6	0(0V)	24(-184V)	64(-500V)	-7.8125V	-
	96	NVM Initialization	This initializes all NVM values.				
50	9	Black band Function Time 1	$0(-5.168 \mathrm{~mm})$	20(+9.56mm)	$64(+5.168 \mathrm{~mm})$	0.2584 mm	
	10	Black band Function Time 2	$0(-6.732 \mathrm{~mm})$	$64(+10.3 \mathrm{~mm})$	64(+6.732mm)	0.2584 mm	

CHAIN CODE	FUNCTION CODE	CURRENT VALUE	COMPONENT COUNTER
30	1		Tray 1 Feed Counter
	4		MSI Feed Counter

CHAIN 40 CODE TABLE

CHAIN CODE	FUNCTION CODE	CURRENT VALUE	COMPONENT COUNTER
40	1		E1 JAM Counter
	2		E3 JAM Counter
	5		C1 JAM Counter
	10		C9 JAM Counter
	21		E1 JAM Counter Reset
	22		E3 JAM Counter Reset
	25		C1 JAM Counter Reset
	30		C9 JAM Counter Reset

CHAIN 50 CODE TABLE

CHAIN CODE	FUNCTION CODE	SETUP ITEM	$\begin{gathered} \text { SET } \\ \text { VALUE } \end{gathered}$	CONTENT	EXPLANATION
50	1	Toner Touch Up Function	0	inhibit	Only when the new Drum unit is installed, this sets up Toner Touch Up Function at the start of copying to prevent Talc Deletion.
			*1	execute	
	2	Nation Configuration Setup	0	XC	This supplements a lack of the exposure light quantity by the Deve. Bias when it doesn't reach its target value.
			1	KX	
			*2	AP	
	4	Black Band Creation Function	0	execute	Create a black band of Toner on the Drum to prevent Talc Deletion.
			*1	execute	
			2	execute	
			3	inhibit	
	6	Related Products' L6 Detection	*0	No	This temporarily inhibits the detection of L 6 when changes are made to specification setups of the machine.
			1	Yes	
	7	Fuser Warm Up Function	*0	Inhibit	At the start of an initial copy with the power on, this warms up the Fuser by rotating the Main Motor for 20 sec .
			1	execute	
	8	Copy density selection	0	13Phase	In case of KX In case of AP
			*1	7Phase	
	9	Black Band Function Time1	0~40	20	
	10	Black Band Function Time2	0~40	20	
	20	Fuser Over Heat Failure Clearance	0	Cancellation	U4-6(Fuser Over Heat Fail) will be cleared.
			1	Cancellation	
			1	Cancellation	
	86	Machine Administrator Reset	-	-	Set to "1111".

9.1.3 LVPS Replacement

Removal

1. WARNING: Power off the machine and disconnect the power cord.
2. Remove the Rear Lower Cover
3. (Fig. 1): Remove LVPS.
(1). Disconnect all connectors from LVPS (2. Remove Screws(2).
(3. Remove LVPS.

(Fig. 1)
Installation
4. Perform the installation in the reverse order of removal.
9.1.4 AC Drive PWB Replacement

Removal

1. WARNING: Power off the machine and disconnect the power cord
2. Remove the Rear Upper Covers,
(1. Remove Screws(2).
(2.) Remove AC Drive PWB Cover.
(3. Disconnect all connectors from AC Drive PWB and Remove it.

(Fig. 1)
Installation
3. Perform the installation in the reverse order of removal.

10.1.1 Front Gas Spring Replacement

Removal

1. Power off the machine and disconnect the Power Plug.
2. Remove the Console Assembly. (10.2.1)
3. Open the machine.

R
(1. Loosen Screw and remove Cover.

(Fig. 1)
5. (Fig. 2): Set the Stopper under the Rear Gas Spring.

7. (Fig. 3): Remove the Front Gas Spring. (1). Remove E Clip from bottom end of Gas Spring.
(2.) Remove E Clip from top end of Gas Spring (3. Remove Gas Spring.

WARNING: - Never lift the upper part of the machine after removing the Front Gas Spring. Because the Rear top or at bottom, the Spring would unhook, causing the M/C upper part to fall down, thus resulting in a possible injury.

(Fig. 4)

Installation

1. Perform the installation in the reverse order of removal.

10.1.2 Rear Gas Spring Replacement

Remova

1. Power off the machine and disconnect the Power Plug.
2. Open the Front Cover and then machine
3. (Fig. 1): Set the Stopper under the Front Gas Spring

(Fig. 1)
4. Remove the Left/Rear Upper Covers
5. Disconnect P/J14 (for Heater Rod), P/J117 (for Fuser Exit Switch) and P/J118(for Fuser Thermistor) from the AC Drive Chassis.
6. (Fig. 2): Remove the Rear Gas Spring.
(1). Remove the top end of Gas Spring while lifting the M/C upper part.
(2.) Pull out the bottom end of Gas Spring and remove Gas Spring from M/C.

(Fig. 2)
7. Insert the Rear Gas Spring top end at the back of Main PWB while lifting the M/C upper part. Do not install the top end of the Shaft here.
8. Insert the Gas Spring bottom end into the Gas Spring hole
9. Install the Gas Spring top end in the Shaft 4. Restore the machine to its original state by reversing the removal procedure.
10.2.1 Console Assembly Replacement

Removal

1. WARNING: Power off the machine and disconnect the power cord
2. Open the Front Cover
3. (Fig. 1): Remove the Console Assembly.
(1). Remove Screws(3).
(2. Disconnect P/J's 417/418.
(3.) Remove Console Assy.

Installation

1. Perform the installation in the reverse order of removal.
10.2.2 Top Cover Removal/Installation

Remova

1. WARNING: Power off the machine and disconnect the power cord
2. Remove the Platen Cove
3. Remove the Platen Glass.
4. Remove the Console Assy.
5. Remove the Drum Unit and place a black bag over it.
it. (5.2.1)
6. Disconnect P/J200 from IS
7. (Fig. 1): Remove the Top Cover
(1). Remove Screws(4).
(2.) Disconnect the following:

P/J209
T64,T65(for Front Interlock Switch) P/J100(for Optical Regi. Sensor) (3.) Remove Screw and Ground Wire.
(4. Remove Top Cover

(Fig. 1)
Installation

1. Perform the installation in the reverse order of removal.

Section 5 Parts List

Section 5 Parts List

Preface 5-2
PL-1 DRIVE
1.1 Main Drives(1) 5-3
1.2 Main Drives(2) 5-4
PL-2 PAPER HANDLING
. 1 Paper Cassettes Assembly.... 5-6
. MSI Sheet Inserter Assembly5-7
2.4 RH Transport Cover \& Paper Chute 5-8
2.5 Feeder Assembly 5-9
2.6 Upper Chute Assembly 5-10
2.7 Registration Chute Assembly 5-11
PL-3 PAPER TRANSPORT
3.1 Vacuum Transport Assembly 5-12
PL-4 OPTICAL
4.1 Optical Assembly 5-13
4.2 Optical Drive 5-14
4.3 Full Rate \& Half Rate Carriage 5-16
.5 Lens Carriage 5-17
PL-5 XEROGRAPHIC
5.1 XERO Module Assembly 5-18
5.2 TC/DTC Corotron 5-19
PL-6 DEVELOPMENT
6.1 Deve Mechanism
6.2 Deve Assembly 5-20
PL-8 FUSER
8.1 Inlet Chute \& Temperature Control 5-22
8.2 Heat Roller 5-23
8.3 Paper Exit 5-24
8.4 Upper Frame \& Receiving Tray 5-26
PL-9 ELECTRICAL
9.1 Rear Side (1) 5-27
92 Rear Side (2) 5-28

PL-10 FRAME \& COVER
10.1 Gas Spring \& Latch Lever5-29
10.2 Console \& Top, Platen Cover 5-30
10.3 Front \& Left Hand .. 5-31
10.4 Rear \& Right Hand 5-32

Hardware .. 5-33

Parts number index
5-35

5.1 Preface

5.1.1

Section 5 Parts List contains information on XEROX 5915 main Processor and Spare Parts.
Use this section for applying for replacement spare parts and entering area codes.
5.1.2 Plate Structure

Each plate is constructed as follows:

(1) PLATE NAME
(2) SUB PLATE No.

Parts List reference No. as described in each Section.
Art title of the Plate dividing the module. Shows the number in the Art for the same plate.
Nos. to be used for ordering parts and entering the Service Report. Describes the Part Name, V code and Note

5.1.3 Symbols and Marks

Symbols Marks	
With 2~10	Shows assembly parts containing "Item 2~10".
DETAIL "A"	Shows detailed illustration of "A".
SEE PLxx	For a part item related, indicates to refer to an appropriates PL No.
1	Shows that removal and installation procedure are included in the Service Manual.
$\mathbf{1}$	Shows that the adjustment procedure is included in the Service Manual.
12	Shows that the removal, installation, and adjustment procedure are included in the Service Manual.
(P/O Item)	Shows that the leader lines \& is connected to another leader lines \& as described.
Shows correction part for Item 1. Replace Item 1 as required.	

PL-1 DRIVE

1.1 Main Drive(1)

ITEM

PART NO.
DESCRIPTION
7E 35210 DRUM GEAR
7E 35200 MAIN MOTOR GEAR
7E 27680 GEAR HELICAL T36/T4 SHAFT (REF ONLY) BRACKET (REF ONLY)
7E 41270 GEAR T18/34
7E 41280 GEAR T22
9E 76500 SPRING EXTENSION
12E 97580 LINK ASSY
121E 84454 MSI SOLENOID ASSY SADDLE (REF ONLY) SADDLE (REF ONLY)
7E 27970 BRACKET
7E 27970 GEAR SPUR T35/28
7E 32890 GEAR T40 7E 28000 GEAR-T21

PL-1 Drive

1.2 Main Drive (2)

PART NO.

7E 32461
7E 30530 68 K 85541 68K 85541
7E 32961
7E 28881
7E 32981 7E 22910
7E 33020
7E 32450
22E 83690
7E 32970
7E 32951
7E 33010
$\begin{array}{ll}\text { 7E } 32951 & \text { GEAR HELICAL T19R } \\ \text { 7E } 33010 & \text { GEAR HELICAL T25 }\end{array}$
SUPPORT BRACKET(REF ONLY)
13E 92520 BEARING-DRUM
EARTH PLATE(REF ONLY)
$\begin{array}{ll}-- & \text { EARTH PLATE(REF ONLY) } \\ -- & \text { SCREW M3×8 (REF ONLY) }\end{array}$
SCREW M3×8 (REF ONLY)
EARTH PLATE(REF ONLY)
SCREW(REF ONLY)
7E 32990
7E 33000
DESCRIPTION
GEAR T36
WASHER(REF ONLY)
GEAR-SPUR T41/35
BRACKET ASSY (REF ONLY)
GEAR T36
GEAR-T25/16
GEAR T27
GEAR-T37/23
WASHER(REF ONLY
GEAR SPUR T25
GEAR BRACKET(REF ONLY)
GEAR T28
ROLLER
GEAR T18/32
GEAR HELICAL T19R

EAR T30/T
GEAR BRACKET
DRIVE FRAME(REF ONLY)

PL-2 PAPER HANDLING

2.1 Paper Cassette Assembly

PART NO.

50S 20240 38P 50216 9P 50223
19P 50218 SNUBBER-R
19E 93480 PAD-SIDE
49P 50212 PLATE BOTTOM
9P 50222 SPRING-N/F
9P 50221 SPRING-N/F
3P 63172 STOPPER
19P 50217 SNUBBER-F
$\begin{aligned} 19 P 50217 & \text { SNUBBER-F } \\ -- & \text { SPRING(REF ONLY) }\end{aligned}$
12E 93400 LINK

68K 85602 BRKT ASSY
9P 50213 SPRING
$\begin{aligned}-{ }^{-} & \text {TAPPING SCREW(REF ONLY) } \\ \text { 50P } 50237 & \text { CASSETTE }\end{aligned}$
50 50237- CASSETTE
38P 50217 INSTRUCTION LABEL
$\begin{aligned} \text { 38P } 50217 & \text { GUIDE-END } \\ 30040 & \text { STOPPER CASSETTE }\end{aligned}$
DESCRIPTION
CASSETTE ASSY
GUIDE ASSY-SIDE
SPRING
PAD-SIDE
PLATE BOTTOM

INSTRUCTION LABEL SPRING

PL-2 PAPER HANDLING

2.2 Multi Sheet Inserter Assembly

PART NO

DESCRIPTION
MSI FEEDER ASSY (WITH 2-5) (SEE PL2.3) CHUTE-MSI AP 220V PAD ASSY RETARD SPRING FILM CHUTE SPRING N/F MSI TRAY ASSY MSI GEAR-T29/28 GEAR-SKEW T22 SUPPORT(REF ONLY)

PL-2 PAPER HANDLING

2.3 MSI Upper Assembly

ITEM

PART NO.

7K 85620
13E 84520
120E 13150 MSI ACTUATOR
107E 06650 MSI SIZE SENSOR
13E 84490 BEARING
22E 84350 ROLL CORE
120E 09921 ACTUATOR N.P
107E 06650
--
8E 93751
6S 50220
6S 50220 802E 05051

BEARING

SENSOR
FRONT BRACKET ASSY(REF ONLY) REAR BRACKET ASSY (REF ONLY) REAR BRACKET SHAFT ASSY PICK UP COVER ROLL OAFR PICK UP

DESCRIPTION

PL-2 PAPER HANDLING

2.4 RH Transport Cover \& Paper Chute

PART NO.
121E 83330 63P 50206 63P 50206

54E 82040 110P 50202

121E 83312 48P 50237

9P 50214 9P 50215
22E 81851 22E 81861

DESCRIPTION
MAGNET CATCH
TAPE STOPPER
SCREW(REF ONLY)
CHUTE-FEED
SWITCH-SPOT MINIATURE
PLATE COVER(REF ONLY) MAGNET CATCH
COVER R/H
PLATE COVER(REF ONLY)
SPRING FRON ${ }^{\top}$
SPRING BACK
ROLLER-PINCH ROLLER-PINCH

PL-2 PAPER HANDLING

2.5 Feeder Assembly

ITEM	PART NO.	DESCRIPTION
1	22S 50260	FEEDER ASSY H/M (WITH 2-21)
2	22K 46310	ROLLER ASSY-TRANS
3	13E 84490	BEARING
4	59K 03261	ROLL ASSY FEED
5	- -	WASHER(REF ONLY)
6	7E 41593	GEAR PICK UP-FEED
7	9E 76810	SPRING PICK-UP
8	7E 41571	GEAR-T28
9	3E 35531	STOPPER
10	13E 84490	BEARING
11	6P 50236	SHAFT FEED ROLL
12	9E 65960	SPRING
13	12E 97890	LINK-SOL
14	121K 16860	SOLENOID ASSY
15	107E 06650	PHOTO INTERRUPT
16	120E 99400	ACTUATOR-SNR
17	- -	COVER(REF ONLY)
18	--	FRAME ASSY(REF ONLY)
19	7K 83521	DRIVE ASSY
20	7E 34950	GEAR IDLER T17
21	22P 50262	PINCH

PL-2 PAPER HANDLING

2.6 Upper Chute Assembly

ITEM
1
2
2
3

PART NO.

54K 08210

- 80030 3E 80030 3E 93670
22K 49970 22K 47662 32E 99342 -
\square
- -

9E 65760

DESCRIPTION

UPPER CHUTE ASSEMBLY (WITH 2~12) TORSION SPRING TORSION SPRING BEARING BEARING HOOK (REF ONLY)
ROLL ASSY-REGI PINCH ROLL ASSY PRE-REGI PINCH CHUTE-GUIDE
PINCH SUPPORT (REF ONLY) CHUTE UP (REF ONLY) FILM CHUTE (REF ONLY) SPRING

PL-2 PAPER HANDLING

2.7 Registration Chute Assembly

PART NO.
54K 16331 7E 3236 7E 32940 13E 80030 7E 32930 13E 84520 13E 84520 12K 93160 54E 08345 22K 47222 50K 28751 50K 28751 30K 56130 22K 47211 21K 22340 9E 65800 13E 84490

DESCRIPTION
REGISTRATION LOW CHUTE ASSY (WITH 2-15)
GEAR-T27
GEAR-T18
BEARING
GEAR-18
BEARING LINK-STUD SPRING
CHUTE-LOW REGI
ROLL ASSY-PRE,REG
GATE ASSY-REG
SENSOR REGI
ROLL ASSY-REGI SOLENOID ASSY SPRING GATE BEARING

PL-3 PAPER TRANSPORT

3.1 Vacuum Transport Assembly

ITEM
PART NO.
WKK 94292 WHEEL DESCRIPTION
6E 47160 SHAFT WHEE
3E 84130 BEARING
49E 40130 BRKT STOPPER
WHEEL SHAFT (P/O ITEM 1) WHEEL WEIGHT (P/O ITEM 1) SPACER (P/O ITEM 1)

TUBE (P/O ITEM 1)

20E 21860
WHEEL METAL
TUBE (P/O ITEM 1) WHEEL SUPPORT (P/O ITEM 1) SPACER (P/O ITEM 1)
03K 80361 REGISTOR ASSY
$1 S 50286$ FRAME ASSY-TRANSPORT
(WITH15-21)
ROLL IDLER
SHAFT (P/O ITEM 14)
22E 19430
13E 84490 BEARING
VACUUM TRANSPORT ASSEMBLY (P/O ITEM 14)
3E 12250
7E 32421
(P/O ITEM 14)
VACUUM TRANSPORT BELT SHAFT(P/O ITEM 14) GEAR-24T

PL-4 OPTICAL
4.1 Optical Assembly

ITEM

PART NO. DESCRIPTION
90S 50209 GLASS ASSY PLATEN 15P 50249

57K 90521
127S 50224
55K 20881
53E 91530
14P 61844 PLATEN SPACER 48E 17460 COVER GLASS SEAL

PL-4 OPTICAL

4.2 Optical Drive

PART NO.
12E 93380
41S 50210
41S 50211
413W 77559
113E 16680 9P 20224 20E 21721 20E 22063 12E 93390 130E 80970 20K 94411

DESCRIPTION
REAR CARRIAGE CABLE (CABLE SCAN IN)
HALF RATE CARRIAGE ASSY (SEE PL4.3)
FULL RATE CARRIAGE ASSY (SEE PL4.3) BEARING HOLDER CABLE SPRING EXT PULEY CAPSTAN PULLEY CAPSTAN OUT CABLE SCAN OUT SENSOR REGI OPT PULLEY IDLER METAL FULL RATE ADJUST BLOCK (REF ONLY) HALF RATE ADJUST BLOCK (REF ONLY)
6K 82301 SHAFT ASSY DRIVE
68S 50270 MOT SCAN ASSY (WITH 16-18)
127 S 50222 MOT SCAN
68S 50269 BRKT MOT SCAN
7E 94981

PL-4 OPTICAL

4.3 Full Rate \& Half Rate Carriage

PART NO.

41S 50211 48E 20972 108K 90710 9E 65820 162K 12611 122P 50201 62E 93400 1S 50210

20K 94441 113E 16410 62E 93420

DESCRIPTION

FULL RATE CARRIAGE ASSY (WITH 2-7)

 COVER CONTACT INFUSE ASSY EXP
SPRING FUSE
CABLE ASSY
LAMP HALOGEN
MIRROR \# 1
HALF RATE CARRIAGE ASSY (WITH 2-
7)

HALF RATE CARRIAGE (P/O ITEM 8) CARRIAGE CABLE PULLEY
CORD PULIEY
MIRROR SPRING (P/O ITEM 8) NO.2,3 MIRROR

PART NO.

35E 30190 9E 65650 9E 65360

9E 65610 $9 E 65610$ 6E 57190 20E 24480 0 24400 15K 87900

DESCRIPTION NO. 4 MIRROR ASSY (REF ONLY) SEAL SPRING NO. 4 HSG SHAFT (REF ONLY) SPRING EXTENSION ANGLE PLATE (REF ONLY) ANGLE SHAFT CAM SHAFT CAM WORM WHEEL SPRING NO. 4 SHAFT WORM GEAR

PL-4 OPTICAL

4.5 Lens Carriage

ITEM PART NO.

127K 84530

 107E 066509E 65630 41K 93880 9E 65460 9E 65460 7E 32820 7E 32820 7E 32830 7E 32840 7E 32850 20E 21710

DESCRIPTION

SENSOR BRACKET(REF ONLY

 LENS MOTOR ASSY SENSOR BRACKET(REF ONLY) LENS SENSOR LENS CARRIAGE SHIELD(REF ONLY) SPRING EXTENSIONLENS CARRIAGE ASSY
SPRING EXTENSION
LENS CABLE
CABLE GEAR PULLEY
GEAR-24/50T
GEAR-24/50T GEAR-48T PULLEY IDLER

PL-5 XEROGRAPHIC

5.1 XERO Module Assembly

ITEM

PART NO
125K 92513 55E 27511 118K 91572 55K 18323 55K 18323 9E 65900
118K 12000
118E 12000
55E 27391
15K 34621
122S 5020 9P 50220 9E 65710

- -

21E 71050

- -

9K 92822

- -
-
-

DESCRIPTION
COROTRON ASSY-CC(WITH 2-8
SHIELD-CC
REAR INSULATOR BLOCK
REAR ARC SHIELD
WIRE SPRING
COROTRON WIRE
FRONT INSULATOR BLOCK
FRONT ARC SHIELD
PLATE CRU ASSY
ISIL LAMP ASSY
SPRING COMPRESSION
SPRING
XERO MODULE
TAPPING SCREW (REF ONLY)
LABEL VOLTAGE(REF ONLY) TONER SEAL (REF ONLY) SPRING (REF ONLY) FINGER-ASSY
SPRING (REF ONLY)
DRUM FINGER
COOLING DUCT \& ERASELAMP (SEE PL8.5) ID ASSY

PL-5 XEROGRAPHIC

5.2 TC/DTC Corotron

PART NO.

125S 5020
55E 27650 55E 29550

32E 05740
9E 65900
117K 19220 118K 91591 118E 98610

9E 65722 9E 65732 55S 50204

DESCRIPTION

TRANSFER \& DETACH COROTRON ASSY (WITH 2-10 13-14) REAR ARC SHIELD FRONT ARC SHIELD VOLTAGE LABEL
DTC GUIDE
WIRE SPRING
COROTRON WIRE
REAR INSULATOR BLOCK
FRONT INSULATOR BLOCK TC/TDC SHIELD(P/O ITEM 1)
REAR TC/DTC SPRING FRONT TC/DTC SPRING ARTH SPRING SCREW(REF ONLY)

PL-6 DEVELOPMENT
6.1 Deve Mechanism

ITEM
PART NO.
1K 49781 1K 51861

- -

9E 65630 68K 11652 - $48 S 50267$

DESCRIPTION DEVE RAIL ASSY (WITH 2-5) RAIL ASSY
PLATE FRONT (REF ONLY) PLATE REAR (REF ONLY) SPRING BRACKET SUPPORT ASSY ROLL(P/O ITEM 6) STUD ROLL (P/O ITEM 6) DEVE ASSY (SEE PL 6.2) TONER CARTRIDGE

PL-6 DEVELOPMENT

6.2 Deve Assembly

\qquad WITH 221

ITEM

PART NO.

48S 50267 48K 49550

9E 65870 3E 36350

33K 91570
49E 37860
7K 82601 9E 65850 7E 32480 7E 41250 7E 41240 7E 34880

7E 88070 130E 80990 48E 62480 121K 86670

DESCRIPTION

DEVE ASSY (WITH 2 21) SCREW (P/O ITEM 1) UPPER DEVE COVER(P/O ITEM 1) LABEL (P/O ITEM 1)
SPRING COMPRASSION
CARTRIDGE STOPPER (P/O ITEM 1)
PLATE (P/O ITEM 1)
MAG ROLLER BLADE (P/O ITEM 1)
COVER PLATE
COUPLING PLATE
GEAR-27T (WITH 10 12)

SPRING

DLER GEAR-40T
GEAR-22/31T
GEAR-27T
IDLER GEAR-32/21T
(P/O ITEM 1) ROLLER ASSY MAG (P/O ITEM 1)
GEAR-24/20T
TONER EMPTY SENSOR
COVER
MAG ROLLER

PL-8 FUSER

8.1 Inlet Chute \& Temperature Control

DESCRIPTION
PART NO
48K 75880
130K 85732 FUSER COVER (WITH 2) CAUTION LABEL
130K 85732 FUSER SENSOR ASSY (WITH 4 6,10) SENSOR BRACKET(REF ONLY) HARNESS (REF ONLY)
130P 08241 FUSER THERMOSTAT
54E 11970 INLET CHUTE
21E 93630 REAR HEATER ROD COVER
21K 91341 FRONT HEATER ROD COVER HARNESS (REF ONLY)
FUSER THERMISTOR

PL-8 FUSER

8.2 Heat Roller

PART NO.

22P 50261

 59S 50200 13P 61059 49E 40170 FRONT HEATER ROD SUPPORT28E 93121 HEAT ROLLER RING
5J 90590 COLLAR
13E 82160 BEARING
7E 34910 GEAR-48T
49E 40190 REAR HEATER ROD SUPPORT
7E 34921 IDLER GEAR-22T
7 K 82230 IDLER GEAR-22T
7 K 82220 IDIER GEAR-23T
7E 32431 IDIER GEAR-24T
7E 32441 IDLER GEAR-31T
IDLER GEAR-31T
ROLLER (REF ONLY)
ROLLER (REF ONLY)
12E 90560 LINK
9E 65930 SPRING
126K 97451 HEATER ROD (220V) REAR LEVER (REF ONLY) WAVE WASHER
10E 91872 SLIDE
9E 76490 SPRING LEVER
49E 63961 FRONT SLIDE BRACKET
49E 63971 REAR SLIDE BRACKET FRONT LEVER (REF ONLY)

PL-8 FUSER

8.3 Paper Exit

ITEM 2
3

PART NO
120K 91080 9E 65940 19E 22120 19E 92740

110K 91880 22K 39321 22K 39321 59K 09000 54K 09470 19E 22130

9E 65950 26E 56030

7E 34931 13E 84490

DESCRIPTION
EXIT SWITCH ACTUATOR ASSY SPRING HEAT ROLLER FINGER HEAT ROLLER FINGER (ALT) SHAFT (REF ONLY)
EXIT SWITCH ASSY
EXIT PINCH ROLLER ASSY FUSER EXIT ROLLER ASSY CHUTE ASSEMBLY (WITH 9~12) PERSSURE ROLLER FINGER (P/O ITEM 8)
TORSION SPRING (P/O ITEM 8) STUD (P/O ITEM 8) CHUTE (P/O ITEM 8) GEAR-25T BEARING

ITEM PART NO.
 DESCRIPTION 126S 50225 FUSER ASSEMBLY

$\begin{array}{lr}1 & \text { 126S } 50225 \\ 2 & 50 P 50247\end{array}$ FUIT TRAY ASSY

PL-8 FUSER

8.5 Fuser Fan Motor \& Ozone Filter

ITEM	PART NO.	DESCRIPTION
1	--	PWB SUPPORT
2	140S 50182	MAIN PWB
3	140S 50191	AC DRIVE PWB
4	48 P 50261	AC DRIVE PWB COVER
5	110P 50203	TRAY 1 SWITCH
6	105 S 50209	LVPS
7	--	SCREW
8	--	POWER CORD (220V)

PL-9 ELECTRICAL
9.2 Rear Side (2)

ITEM PART NO.
11355021 CHARGE COROTRON HOLDER 113S 50218 TC/TDC COROTRON HOLDER 105S 50210 HVPS 48P 50273 HVPS COVER 26P 62407 SCREW

PL-10 FRAME \& COVER
10.1 Gas Spring \& Latch Lever

PL-10 FRAME \& COVER
10.2 Console \& Top, Platen Cover

ITEM PART NO.
48S 50214
8S 50214 PLATEN COVERACRIPTION
26 90941 COUNTER BALAN (WITH 2,3)
36K 90941 COUNTER BALANCE (P/O ITEM 1)
26E 46630 TAPPING SCREW
4K 92320 PLATEN CUSHION
26P 50221 SCREW
302P 50329 RIGHT BLIND COVER
302P 50330 LEFT BLIND COVER
26E 93961 SCREW M4×8
48S 50281 CONSOLE ASSEMBLY
48P 50236 TOP COVER
110P 50202 FRONT INTERLOCK SWITCH
121E 83330 MAGNET CATCH

PART NO.
48P 50294 63E 93100 112W 27659 26E 46630 3E 35414 110P 5020 96P 50345 48P 01440 2E 60560 48P 50232

DESCRIPTION

FRONT COVER STOPPER TAPE
SCREW DEL M 3×8
TAPPING SCREW
HINGE
MAIN POWER SWITCH
LEBEL DEVE
LEFT LOWER COVER
MAIN POWER SWITCH COVER
SCREW
LEFT COVER
LABEL NVM

PL-10 FRAME \& COVER
10.4 Rear \& Right Hand Cover

PART NO 48P 50238 302P 50322

26E 93961 26E 14060 48P 50251 53P 50204 48P 50268 48P 50231

DESCRIPTION
REAR LOWER COVER REAR CONNECTER COVER REAR CONNECTER COVE
SCREW DEL M 4×8
TAPPING SCREW
REAR UPPER COVER
FILTER FILTER HOUSING RIGHT COVER

	PART NO	DESCRIPTION		PART NO	DESCRIPTION
A	102W 27651	SCREW	BB	220W 21250	NUT-FLANGE
B	102W 28251	SCREW	BC	220W 24350	NUT
C	112W 27651	SCREW	BD	232W 26250	NUT CLINCHING
D	112W 27659	SCREW DEL SEMS	BE	236W 21250	NUT-SPEED
E	112W 27851	SCREW	BF	251W 21251	WASHER
F	112W 27859	SCREW (M3×8)	BG	251W 24251	WASHER
G	112W 28451	SCREW	BH	251W 24451	WASHER
H	112W 29751	SCREW WASHER	BI	252W 24250	WASHER NYLON
1	112W 36259	SCREW-DEL SEMS	BJ	252W 24350	WASHER
J	113W 15651	SCREW	BK	252W 27250	WASHER PLAIN
K	113W 15851	SCREW	BL	252W 27350	WASHER
L	113W 20457	SCREW TP	BM	252W 27450	WASHER-NYLON
M	113W 20557	SCREW-TP	BN	252W 29350	WASHER-NYLON
N	113W 20651	SCREW	BO	252W 29450	WASHER-NYLON
O	113W 20657	SCREW TP	BP	256W 21251	WASHER SPRING
P	113W 20857	SCREW TP	BQ	258W 21250	WASHER LOCK
Q	113W 21057	SCREW TP	BR	258W 24250	WASHER LOCK
R	113W 21257	SCREW-TP	BS	271W 16250	PIN DOWEL
S	113W 27451	SCREW	BT	271W 21250	PIN DOWEL
T	113W 27651	SCREW	BU	271W 21650	PIN-DOWEL
U	113W 27656	SCREW TP	BV	285W 15651	PIN SPRING
v	113W 27851	SCREW	BW	285W 15851	PIN SPG
W	113W 28056	SCREW-TP	BX	285W 16251	PIN SPRING
X	113W 28251	SCREW	BY	285W 16653	PIN SPRING
Y	113W 28451	SCREW	BZ	285W 21051	PIN SPRING
Z	113W 29751	SCREW PAN HEAD	CA	285W 28051	PIN-SPRING
AA	113W 35557	SCREW HEX HEAD	CB	285W 28251	PIN
AB	113W 35657	SCREW-TP	CC	285W 28651	PIN SPRING
AC	113W 35851	SCREW	CD	285W 28851	PIN SPRING
AD	113W 36051	SCREW M 4×10	CE	285W 37151	PIN SPRING
AE	113W 36057	SCREW	CF	286W 16050	PIN-SPRING
AF	113W 36851	SCREW	CG	351W 29250	RING
AG	131W 63851	SCREW-MACHINE	CH	354W 10655	RING-M
AH	141W 27651	SCREW-SET	Cl	354W 15251	RING-E
AI	141W 35651	SCREW-SET	CJ	354W 21251	RING-E 3
AJ	153W 27650	SCREW TAPPING	CK	354W 21254	RING KL
AK	153W 27850	SCREW TAPPING	CL	354W 24251	RING E
AL	153W 28050	SCREW L10	CM	354W 24254	RING KL
AM	153W 28250	SCREW TAPPING	CN	354W 26251	RING-E
AN	153W 35850	SCREW	CO	354W 27251	RING-E
AO	153W 36250	SCREW	CP	354W 27254	RING KL
AP	158W 27651	SCREW FORMING	CQ	354W 29251	RING E
AQ	158W 27655	SCREW DELTITE	CR	354W 30251	E-RING
AR	158W 27851	SCREW-FORMING	CS	356W 29251	RING RETAINING
AS	158W 27855	SCREW DEL	CT	358W 27251	RING-E
AU	158W 28255	SCREW-DELTITE	CU	252W 26350	WASHER NYLON
AV	158W 28655	SCREW			
AW	158W 35655	SCREW M 4×6			
AX	158W 35855	SCREW-DEL			
AY	158W 36255	SCREW DELTITE T			
AZ	180W 65850	SCREW WING			
BA	201W 21251	NUT			

Section 6 GENERAL

Section 6 GENERAL

6.1 XEROX 5915 Specifications
6.1.1 Product Code 6-2
6.1.3 Space required for installation 6-3
6.1.4 Levels. 6-3
6.1.5 Electrical Specification 6-3
6.1.6 Calorific power 6-3
6.1.7 Noise 6-3
6.1.8 Ozone Emission 6-3
6.1.10 Magnification ratio 6-3
.1.10 Magnification 6-3
6.1.12 Copy speed. 6-4
6-4
6.1.12 Copy speed 6-4
6.1.14 Image size 6-4
.1.15 Paper 6-4
6.1.16 Compatibility 6-4
6.1.17 Image loss
6-4
6.1.18 Copy capacity 6-4
6.1.20 Copy quality 6-5
6.2 Tools and consumables for servicing 6.2.1 Tools 6-6
6.2.2 Consumables for servicing 6-6
6.3 Consumables 6-6
6.4 Modification
6.4.1 Symbology 6-6
6.4.3 Modification lis 6-6
6.5 Installation / Remova
6.5.1 Installation 6-7
6.5.1 Installation/Removal 6-7
6.6 Program Setting
6.6.1 Entering the Program Mode 6-9
6.6.2 Entering the program number and setup value 6-9
6.6.3 Exiting the Program Mode.. 6-9
6.6.4 Program operation procedure
6.6.4 Program operation procedure -
6.6.5 Operation procedure to display the number ofcopies made
6-10
6.6.6 Setting start modes 6-11
6.6.8 Changing Password 6-12
6.1 XEROX 5915 Specifications
6.1.1 Product Code

6.1.2 Dimensions

XEROX 5915
(Unit: mm)

	Width (mm)	Depth (mm)	Height (mm)	Weight (kg)
5915	570	653	395	41

XEROX 5915
(Unit: mm)

6.1.4 Levels

- Front \& Rear directions: Moves freely for less than 5 mm .
- Horizontal directions: Moves freely for less than 10 mm .

6.1.5 Electrical Specifications

- Frequency $50 \mathrm{~Hz} / 60 \mathrm{~Hz} \pm 0.5 \%$
(All models are the same Hz)
- Input voltage ... $220 \pm 10 \%$
$230 \pm 10 \%$
- Cord The standard 2.5 m $240 \pm 6 \%$
- Operational current

15A or less at 100 V full system

- Overload protection

The current breaker is built-in

- Leakage protection

Grounding wire is available as standard.

- Electrical noise in conformity with VCCI, Class 2
- Power consumption

1. Maximum power consumption
2.Power consumption (To be included in the

Technical Information as disclosed)
At warm up $(30.0 \mathrm{sec}$) Wh/job At standby Wh/hr At copying ...Wh/sheet
3.Monthly power consumption kWh
(Conditions): XEROX 5915, A4 LEF, No optional, No Stand-by mode - Run length =

- Monthly average C/V $=2,000$ sheets . (V)
- Power ON/OFF = $1 /$ day .. \qquad ...(N)
- Workdays/monthly = 21 days \qquad
- Workhours/day $=8$ hours

$$
0.0 \text { (SEC) }
$$

Calculation for power consumption (Wh/Mo)
$=\frac{7.29 \mathrm{ND}}{* 1}+\frac{176.49[\mathrm{TD}-1 / 3600 \times(3.81 \mathrm{~V}+30.0 \mathrm{ND})]}{* 2}$
$+\frac{1.18 \mathrm{~V}}{}$
*3
*1: At warm up
*2. At standby
*2: At standby
6.1.6 Calorific power
(Power consumption $\times 0.86 \mathrm{kcal}$)

- At warm up (30.0 sec) 6.27 kcal - At stand by 151.78kcal - At copying . $1.01 \mathrm{kca} /$ /sheet

6.1.7 Noise

- The maximum levels of noise are as shown in the table.

6.1.10 Magnification ratio

	Mag. Ratio	Tolerance
$\begin{aligned} & \text { Preset zoom } \\ & \text { ratio(\%) } \end{aligned}$	70.7	± 1.3
	81.6	± 1.3
	86.5	± 1.3
	100.0	± 0.8
	141.4	± 1.8
	Mag.	Tolerance
	Ratio	Tolerance
Variable ratio adjustable 1\%	61~109	± 1.3
	110~119	± 1.5
	120~129	± 1.6
	130~139	± 1.7
	140~149	± 1.8
	150~156	± 1.9
	157~163	± 2.0
	100\%	± 0.8

6.1.8 Ozone emission0.02PPM or less
6.1.9 Environment

- Temperature $10-35^{\circ} \mathrm{C}$
- Humidity $15 \sim 85 \%$
- Height above sealevel 1800 m or less

6.1.11 Time required for changing

 magnification ratio- A ratio can be changed in less than 6 seconds within the magnification of $70-141 \%$. (Less than 9 seconds for $61 \% \rightarrow 163 \%$ or $163 \% \rightarrow 61 \%$)

6.1.12 Copy speed

- FCOT

XEROX 5915-6.7sec(A4LEF,Using the No. 1 tray)

- For making size-for-size copy (Tray 1)

6.1.13 Document size
- Max. size: $297 \times 432 \mathrm{~mm}$
- Min. size: Not limited

6.1.14 Image Size

- Max. image size: $297 \times 432 \mathrm{~mm}$
- Min. image size: Not limited

6.1.15 Paper

6.1.15 Paper

Type	Weight $\mathrm{g} / \mathrm{m}^{2}$	Thickness $\mathrm{mm} / 100$	Size
M Paper	68 ± 3.0	99 ± 3	$\mathrm{A} 3, \mathrm{~B} 4$, $\mathrm{A} 4, \mathrm{B5}$
L Paper	64 ± 3.0	85 ± 3	$\mathrm{A} 3, \mathrm{~A} 4$, $\mathrm{B5}, \mathrm{~A} 5$
P Paper	65 ± 2.0	91 ± 3	$\mathrm{A} 3, \mathrm{~B} 4$, $\mathrm{A} 4, \mathrm{B5}$
S Paper	56 ± 3.0	80 ± 3	$\mathrm{A} 3, \mathrm{B4}$, $\mathrm{A} 4, \mathrm{B5}$

* Other than the above types, paper of other manufacturers ($52 \sim 82 \mathrm{~g} / \mathrm{m}^{2}$), onion skin paper and special paper are also usable.

Ref: - For converting into kg, use the calculation of $\mathrm{g} / \mathrm{m}^{2} \times 0.86=$ (coefficient)
e.g.: L paper $64 \mathrm{~g} / \mathrm{m}^{2} \times 0.86=55(\mathrm{~kg})$

The following paper is applicable:

- Trays 1:

SEF-A3, B4, A4, B5
:LEF-A4, B5

- Bypass Tray: A3-A6 SEF
- Tray capacity

Trays 1... 100 sheets (L)
Bypass Tray
\qquad
6.1.16 Compatibility (Platen Mode)

Alignment to the 95% copies	Tolerance at 1:1 copies	Tolerance at reduction/ enlargement
Feeding direction (Lead Edge) Registration	$\begin{gathered} \pm 1.6 \mathrm{~mm} \\ \text { or less } \end{gathered}$	$\pm 2.7 \mathrm{~mm}$ or less ($\pm 4.0 \mathrm{~mm}$ or less)
Side Registration	$\begin{gathered} \pm 2.1 \mathrm{~mm} \\ \text { or less } \end{gathered}$	$\pm 3.3 \mathrm{~mm}$ or less ($\pm 4.5 \mathrm{~mm}$ or less)
Skew at Lead Edge	$\begin{gathered} \text { 200mm long } \\ \text { paper } \\ \pm 1.6 \mathrm{~mm} \\ \text { or less } \\ \hline \end{gathered}$	$\begin{gathered} 200 \mathrm{~mm} \text { long } \\ \text { paper } \\ \pm 2.3 \mathrm{~mm} \text { or less } \\ (\pm 2.6 \mathrm{~mm} \text { or less }) \\ \hline \end{gathered}$
Skew at Side Edge	$\begin{gathered} 200 \mathrm{~mm} \text { long } \\ \text { paper } \\ \pm 2.0 \mathrm{~mm} \\ \hline \end{gathered}$	$\begin{gathered} 200 \mathrm{~mm} \text { long } \\ \text { paper } \\ \pm 2.0 \mathrm{~mm} \text { or less } \\ \hline \end{gathered}$
Right (90 degree) Angle	$\begin{gathered} 200 \mathrm{~mm} \text { long } \\ \text { paper } \\ \pm 1.0 \mathrm{~mm} \\ \text { or less } \\ \hline \end{gathered}$	$\begin{gathered} 200 \mathrm{~mm} \text { long } \\ \text { paper } \\ \pm 1.5 \mathrm{~mm} \text { or less } \end{gathered}$

6.1.17 Image Loss

	Lead edge/Tail edge	Left edge/Right edge
•At magnification - At 11 - At reduction	4 mm or less	4 mm or less
Test Chart 499T247(A3)		

6.1.18 Copy capacity

	Tray/Bin	Capacity
Main Processor	Receiving Tray	Approx. 100 sheets

6.1.19 Warm up time

- Less than 35 seconds in an environment of temperature: $20^{\circ} \mathrm{C}$, humidity: 60%.
6.1.20 Copy quality

	item	Mag. Ratio (\%)	Test Chart	Test Chart Checked at	Copy quality		
						py density	
					Normal	Light	Dark
$\begin{gathered} \text { I.D } \\ \text { (Density) } \end{gathered}$	Density	100	499T247(A3)	0.7 gray	Over 1.08	--	--
	Uniformity				Tolerance less than 0.2	--	--
Low contrast (Light image)	Reproducibility	100	499 T247	0.2 gray	Over 0.17	--	Over 0.46
	Uniformity				Below 0.4	--	Below 0.40
	Reproducibility			0.1 gray	--	Not confirmed	--
Blue	Reproducibility	100	499 T247	0.2 Blue	Over 0.17	--	Over 0.57
	Uniformity				--	--	Below 0.40
Solid	Reproducibility	100	499 T247	1.0 solid	Over 1.2	--	--
	Uniformity				Below 0.3	--	--
Low contrast (Light image)	Reproducibility	100	499 T247	0.2 gray	--	--	Over 0.57
	Uniformity				--	--	Below 0.40
	Reproducibility			0.1 gray	--	Not confirmed	--
B.G.D (Background)		100	499 T247		Below 1.2	--	--
Resolution		100	4997247(A3)	Resolution target	Over 4.3(L/mm)	--	--
		70			Over 3.0(L/mm)		
		141			Over 4.3(L/mm)		
Focus depth		100	4997247	Resolution target	Over 3.0(L/mm)	--	--
		70			--		
		141			--		
Skip / Smear		100	499 T247	Ladder	Over $2.5(\mathrm{~L} / \mathrm{mm}$)	--	--
		70			Over 1.8(L/mm)		
		141			Over 2.5(L/mm)		

6.2 Tools and Consumables for servicing
6.2.1 Tools

No.	TOOL No.	TOOL NAME
1	$499 T 225$	TEST PATTERN(CAM-II)
2	$499 T 7002$	TEST PATTERN CASE
3	$499 T 247$	TEST PATTERN (A3):10
4	$499 T 248$	TEST PATTERN (B4):10
5	$499 T 301$	MINI DRIVER(-)
6	$499 T 355$	SCREW DRIVER(+)
7	$499 T 1423$	BOX DRIVER 5.5
8	$499 T 1901$	SIDE CUTTING NIPPER
9	$499 T 2004$	ROUND NOSE PLIER
10	$499 T 2320$	C/E TESTER SET
11	$499 T 6025$	C/E TOOLS CASE
12	$499 T 8104$	FLASH LIGHT(UM-2)
13	$499 T 8902$	BRUSH
14	$499 T 9583$	TESTER LEAD WIRE(RED)
15	$499 T 451$	SPANNER AND WRENCH 5.5×5.5
16	$499 T 2601$	SILVER SCALE(150mm)
17	$499 T 6402$	MAGNETICS SCREW PICK UP TOOL
18	$606 T 50206$	CHEAT

6.2.2 Consumables for servicing

- There are no unique consumables for this
model.
in case any servicing arises requiring a particular consumable unique to this model, the case will be handled separately.

6.3 Consumables

The consumables available with this model are:

Name	Prod. Code	Capacity	Ref. Life
Drum Unit	673 S50211		50 K
Toner Cartridge (black)	$6 R 01020$	500 g	6 K

* 6% Area coverage is assumed on A4 size documents

6.4 Modification

6.4.1 Symbology

When there are differences by modification in
the Manual, the modification code will be
shown by symbols or marks as below.

The arrow points out the information
which modification (shown by the No.) has been introduced.

The arrow points out the information which modification (shown by the No. has not been introduced yet.

6.4.2 Relevant Area

Modification is Implemented relative to the
following areas

- Reliability
- Safety
- Market Requirement
- Maintainability
- Operability

6.4.3 Modification List

Lists not issued: Technical Information will be issued as necessary, using the formally
recognise procedures
6.5 Installation/Removal 6.5.1 Installation

XEROX 5915
Installation Procedure
Note: To comply IEC 950, IEC 950 Brackets ($\mathrm{YJ}-68$) is required as mandatory
See procedure No 9 .

1. Introduction

- Tick (V) the "Check column of the table below as you proceed with the installation. Note: Prepare the Phillips head screwdriver (\oplus).

2. Check accessories (in the accessory box)

Check	Name	Qty
\square	User guide	1
\square	Copy Output Tray	1
\square	Tray Pad	1
\square	Paper	1
\square	Drum Cover (Black plastic bag)	1
\square	Service Record Card	1
\square	Warranty record	1

3. Remove the Tape
$\square 1)$ Peel off the tapes from the main Processor

4. Remove the Packing material that secures the
part.
\square 1) Remove the cushion from fuser exit. \square 2) Open the Front Cover, then open the machine.
\square 3) Pull the label to remove the packing material from the four areas of the machine.
\square 4) Close the machine

5. Peel off the tapes from the optical area. (air ship only)

6. Load the toner Cartridge

ㅁ) Open the Front Cover.

- 2) Spread a sheet of paper to protect the back of the cover from toner spillage
$\square 3)$ Remove the dummy Cartridge (tube) toward the front side. Put the it in the empty box for disposal.
-4) Shake the Toner Cartridge more than 10 times.

$\square 5)$ Fit the claw of the new Toner Cartridge to the groove and push the Cartridge. Pull the tape towards you \& remove. Place in the empty box for disposal
-6) Press in the Toner Cartridge as much as possible, then turn it counterclockwise until it clicks.

$\square 7)$ Press in the Toner Cartridge and engage the ID socket on to the cartridge

7. Install the Copy Output Tray
-1) Set the Copy Output Tray by placing the protrusion on the arrow make of the main processor.

8. Turn on the power switch
1) Make a copy from each tray
\square 2) Check that no paper is jammed and copy image quality is good.
9. Perform the Operator Initial Training Program

6.5.2 Removal

Removal as described in this Manual applies to field clearance activity only

Perform the removal procedure in the reverse order of installation.
Customer Service Engineers should check the fina destination of the machine prior to field clearance.

For removal, the following are required:

1. Category Check List
2. Sticker indicating M/C destination
3. Installation Procedure
4. Packaging Tapes and Clothe
5. Plastic Bag (Drum Cover)

Removal Procedure

1. Check if any consumable or wear parts requir eplacement by refering to the card. (See the "Trim" section of the Manual.) Note: If any parts are installed wrongly, correct, before removal.
2. If any adjustment has been made based on the customers desire, put it back to the original status.
3. Perform Trim operation and clean inside of the machine.
4. Turn on the power, make copies, and check copy quality, paper feed and copy count 5. Switch off the machine and unplug the power cord.
5. Remove paper from the Paper Tray.
6. Remove the Copy Output Tray.
7. Remove the Tray Module and unplug the connector from the Main Processor.
8. Clean the machine surroundings.
9. Enter relevant data in the service record card and store it along with the Category Check List.
10. Affix the return delivery sticker on the Top Cover.
11. Place the Drum Cover for consumables on the Platen Cover.
12. Log in the Service Report.

6.6 Program Setting

6.6.1 Entering the Program Mode

Press the Program button as "Ready to Copy" is on display.
Note: Inapplicable in the Interrupt Mode

6.6.2 Entering the program number and setup value.

- If you enter an inappropriate Program number or setup value, "Er" appears. Press the Clear button to enter a new value.
- Enter a Program number using the keypad, or select setup values using the Reduce Enlarge button or by moving the Paper Supply button. See "Entry" List.

6.6.3 Exiting the Program Mode

- Press the Program button
- Press the All Clear button
- The machine automatically exits the Program
mode if no buttons have been pressed for more than a minute.

6.6.4 Program operation procedure

Note: Operational procedure is different for the Program Number 81/83/84
See 6.6.5 Operational Procedure for
displaying the number of copies made.

1. Enter the Program Mode
2. Select the Program number to set up and press the Start button.

- Current values flash on the displays of Magnification, Tray, or Number of copies.

3. If you don't change the current values, press
. Select or enter a new setup values and press
the Start button
Note: See the Program List far entering setup values.

- Setup values will be changed.

5. If you have other features to set up, go back to
6. Exit the Program Mode.
6.6.5 Operation procedure to display the number of copies made.
Note: This applies only to the Program Number 81/83/84.
7. Enter the Program Mode.
8. Enter Program Number " 81 " and press the tart button.
LCD shows the copy volume made by the Drum cartridge.
9. Enter Program Number " 83 " and press the Start button.

- LCD shows the copy volume made by the Customer.

4. Enter Program Number " 84 " and press the - LCD shows the copy volume made by the Toner cartridge
5. Press the Clear button and the display goes back to the display ready to enter Program Number.
6. Exit the Program Mode

6.6.6 Setting start mode

The start mode can be set and changed as required.

Procedure

1. Press Custom Presets.

Note Custom Presets is cleared if no button is pressed within 60 seconds.
2. Enter 86 , using the Numeric Keyboard and the start mode is set
2. Enter 86 , using the Numeric Keyboard and the start mode is set.
3. Press Start, and the current value of the program code (0 is factory-set) will be displayed in the Copy 3. Press Start, and
Quantity display
4. Enter one of the numbers 0,1 , which represent respectively as follows:

0 -- No-password mode. The machine will enter directly the ready to copy state when it is turned on.
1-- Single-password mode. The information presenting state $\overline{\text { ld }} \square$ will be displayed when the machine is turned on, and a password has to be entered before copies can be made.
5. When the selected value is displayed in the Quantity display, press Start for the setting to be memorized There is no display in the Copy Quantity display, indicalng the entered code is correct. II a wrong code is entered and "Er" displayed in the Quantity display, press Start/Clear and re-enter a correct code.
6. Press Custom Presets to make the machine exit the customizing state and return to the normal copy state.

6.6.7 Setting Single-Password Mode

To prevent the machine from being incorrectly used, the machine administrator can exercise control by setting a password after turning the machine on.

Procedure

1. Press Custom Presets.

Note • Custom Presets is cleared if no button is pressed within 60 seconds since the Custom Presets button was pressed
2.Enter 86 , using the Numeric Keyboard and the start mode is set
3.Press Start, and " 0 ", the initial value of the code, is displayed in the Copy Quantity display
4.Enter 1. When the selected value is displayed in the Copy Quantity display, re-press Start for the setting to be memorized. Meanwhile, there is no display in the Copy Quantity display on the panel, indicating the entered value is correct.
6.Press " $*$ " or turn off the machine and turn it on again to make it enter the information presenting
state ld I.
7.Enter a 4-digit password using number keys , the initial one being " 1111 ". For security, each number is displayed in the Quantity display as IIII. If you want to re-enter a password, press Clear before confirmation to clear the entered number and then re-enter a desired one. After finishing the entry, press "*" to make the machine enter the waiting state.

Note - To ensure the safe use of the machine by its administrator, the initial password should be changed into another 4-digit password.
See: 6.6.8 Changing Passwords.

- The machine will enter the power-saving state automatically if no operation is done within 1 minute. Press key on the control panel, and the machine will re-enter the information presenting state.

6.6.8 Changing Passwords

This function enables the machine administrator or the account users to modify passwords

Procedure

1. Modifying passwords under single-password mode
(1). Turn the machine power switch on, and the information presenting state $\overline{\text { Id }} \square$ is displayed.
(2). Enter the original user password using number keys and the machine enters the waiting state.
(3). Press Custom Presets, and the machine enters the customizing state
(4). Press the number key " 0 " and then the Start button. There is $\square 1111$ displayed on the panel and the lamp in the Quantity display will keep flashing. Re-enter a 4 -digit password and the lamp in the Quantity display will stop flashing. Re-press Start. There is no display on the panel, indicating the entry s correct.
(5). Press Custom Presets to make the machine exit the customizing state and return to the normal copy state.

Section 7 Wiring Data

Section 7 Wiring Data

- Plug/Jack List
- Connector Configuration

Plug/Jack List

How to read the Plug/Jack List:
Fig ..
....................... • Indicates a figure or BSD where the respective plug/jack are shown.
Number of pins • Indicates the number of pins, which does not necessarily match with the number of wires.

Destination - Indicates to which component or module the plug/jack is connected.

P/J No.	Fig.No.	Number Of pins	Destination
1	2	3	LVPS
12	BSD7	1	HEATER ROD(FRONT)
13	BSD7	1	HEATER ROD (REAR)
14	9,4	3	FUSER THERMOSTAT \leftrightarrow AC DRIVE PWB
15	2	2	EXPOSURE LAMP $\leftrightarrow A C ~ D R I V E ~ P W B ~$
16	2	2	EXPOSURE LAMP
40	2	8	LVPS
100	5,8	3	OPTICAL REGI. SENSOR
105	8	3	LENS SENSOR
110	$9-14$	3	MSI SIZE SENSOR
111	$9-14$	3	MSI NO PAPER SENSOR

P/J NO.	Fig. No.	Number of Pins	Destination
114	BSD5	3	TRAY1 NO PAPER SENSOR
116	9,4	3	FEED REGI. SENSOR
117	9,4	2	FUSER EXIT SENSOR
118	BSD7	2	FUSER THERMISTOR
122	BSD7	3	TONER EMPTY SENSOR
200	5,8	10	ISIL
202	5	2	ERASE LAMP
203		2	COUNTER $\leftrightarrow M A I N ~ P W B ~$
204		3	MAIN PWB $\leftrightarrow D R U M ~ U N I T ~ I D ~$
205		2	MAIN $\leftrightarrow T O N E R ~ C A R T R I A G E ~ I D ~$
206		2	DRUM UNIT ID
207		2	TONER CARTRIAGE ID
209	3	3	AC DRIVE PWB $\leftrightarrow M / C ~ I N T L K ~$
		2	SWITCH
210	BSD5	2	TRAY1 FEED SOLENOLD
211	BSD5	2	FEED SOLENOLD
214	9	2	MAIN PWB
400	2	8	MAIN PWB
401	2	28	MAIN PWB
402	2	10	MAIN PWB
403	2	14	MAIN PWB
404	2	6	MAIN PWB
405	2	12	MAIN PWB
406	2	16	MAIN PWB
407	2	18	MAIN PWB
408	2	2	MAIN PWB
409	2	4	MAIN PWB
410	2	14	4
413	2	16	CONTRAL CONSOLE
417	8		
		2	

P/J NO.	Fig. No.	Number of Pins	Destination
418	8	12	CONTROL CONSOLE
430	2,4	10	AC DRIVE PWB
431	4	3	AC DRIVE PWB
437		2	AC DRIVE PWB
500	9	8	HVPS
600	9	3	MAIN PWB \leftrightarrow REGI GATE SENSOR
604	2	6	LENS MOTER
605		6	LAMP CARRIAGE PWB
610	1	6	MAIN PWB $\leftrightarrow R A Y 1 ~ N O ~$ PAPER TRAY1 FEED SOLENOLD
616	3,9	8	MAIN PWB $\leftrightarrow M S I ~ N O ~ P A P E R ~$ SENSOR MSI SIZE SENSOR MSI SOLENOLD
620	2	12	TONER EMPTY SENSOR
T11	5, BSD1		MAIN SWITCH
T12	5, BSD1		MAIN SWITCH
T13	5, BSD1		MAIN SWITCH
T14	5, BSD1		MAIN SWITCH
T24	BSD7		FUSER THERMOSTAT
T25			EXPOSURE LAMP
T26			EXPOSURE LAMP
T27			EXPOSURE LAMP THERMOSTAT
T28			EXPOSURE LAMP THERMOSTAT
T32			GROUND WIRE
T33	BSD1		LVPS GROUND WIRE
T34	BSD7		FUSER THERMOSTAT
T50			DEVE BIAS
T58	3,2,		TRAY1 SWITCH
BSD6			

P/J NO.	Fig. No.	Number of Pins	Destination				
T59	3,2, BSD2 BSD6		TRAY1 SWITCH				
T60			UP CHUTE ASSY GROUND WIRE				
T61			UP CHUTE ASSY GROUND WIRE				
T62	36 BSD6		RIGHT COVER SWITCH				
T63	36						
	BSD3						
BSD6				\quad	T64		RIGHT COVER SWITCH
:---	:---	:---					
BSD1		FRONT COVER INTLK SWITCH					
BSD2	BSD1						

TOP VIEW
(Fig.2)

REAR VIEW
(Fig.3)

TOP VIEW
(Fig.4)

Terminal	Wire		Wire	Terminal	
No	Color			Color	No
T13	BRN	$\overline{2}$	$\overline{5}$	Colo	BLU
T11	BRN	$\overline{1}$	$\overline{4}$	T14	
		BLU	T12		

FRONT VIEW
(Fig. 5)

Section 9 BSD (Block Schematic Diagram)

Section 9 BSD (Block Schematic Diagram)

9.1 Symbol/Signal Nomenclature
9.1.1 Symbols
9.1.2 Signal nomenclature ..9-2
9.2 BSD

1. STANDBY POWER ... 9-3
2. MODE SELECTION, MACHINE RUN CONTROL

START PRINT POWER
3. OPTICS ...9-7
4. PAPER SUPPLYING AND TRANSPORTATION
5. XEROGRAPHICS COPY TRANSPORTATION

AND FUSING 9-11

How to use the BSD

- Refer to this chapter containing 9 BSDs during troubleshooting which is normally begun from the Level 1 FIP or status code list
- Function parts are indicated on each BSD is being Supplemented by text data notes.
- Troubleshooting using the BSD is carried out using a combination of the necessary text data and diagnostic modes
- Adjustment (ADJ No.) and parts list (PL) number are indicated on each BSD, indicating where to refer to disassembly, replacement and adjustmen procedure.

9.1 Symbol/Signal Nomenclature

9.1.1 Symbols

Following symbols are used in BSDs.

- Test data

This symbol on a BSD indicates that test data must always be referred to check existence of the signal.

- NOTE

- Adjustment

3.1.11
$\varlimsup_{3.1 .11}$

- Parts list

PL7-1

- Diagnostic code

mbol indicates $/ \mathrm{O}$ to or from the BSD. Figures in a flag represent the original or destination BSD No. of the I/O signal.
Instructs to refer to the NOTE on the same page.

Instructs to refer to the adjustment procedure in Service Manual. In this of the Service Manual to be referred to.

This symbol is used to instruct reference of an electrical adjustment procedure using a control on PWB instructed in the Service Manual.
nstructs to refer to the parts list. This xample indicates that the part is listed at PL7-1 of the parts list.

This symbol is indicated on above a signa hame or in the main PWB on a BSD. " 4 " in this the main PWB on a BSD. code No. while "1", the function No.

9.1.2 Signal nomenclature

* For certain signals, the activating voltage level is high

- Input signal

REGI SENSOR SENSED

or energized.

- DC voltage

Unless otherwise specified by test data TDD or NOTE the +5 V and +24 V DC voltage levels must be within the
following ranges when measured between test points and
DC COM:
$+5 \mathrm{VDC}:+5.2 \pm 0.2 \mathrm{VDC}$
$+24 \mathrm{VDC}:+24.5 \pm 2.5 \mathrm{VDC}$

- AC voltage
$220 \mathrm{VAC}: \quad 220 \mathrm{~V} \pm 10 \%$
$240 \mathrm{VAC}: 240 \mathrm{~V} \pm 6 \%$
The above 220/240VACs are represented by 220VAC in the BSD.
- Wiring colors

Abbre- viation	Color	Description
BRN	BROWN	220 VAC LINE
BLU	BLUE	AC RETURN (220VAC)
GRN	GREEN	GROUND(EARTH)
GRN/YEL	GREEN/ YELLOW	GROUND(EARTH)
RED	RED	HIGH-VOLTAGE LINE
ORG	ORANGE	$+24 V D C$ VOLTAGE LINE
GRY	GRAY	$+5 V D C$ VOLTAGE LINE
BLU	BLUE	OUTPUT SIGNAL LINE FOR DRIVING PARTS AT + 24VDC VOLTAGE
YEL	YELLOW	INPUT SIGNAL LINE FROM SWITCH OR SENSOR OPERATING AT + 5VDC
VIO	VIOLET	DC COMMON

- Wiring colors are different around the heat roller since heat resistance wires must be used.

6

LAMP CARRIAGE FAIL - STANDBY
Lamp carriage fails to activate optical registration sensor for 6.5 sec during standby.
Case 1: Optical registration sensor fails to turn on within 0.65 sec at lamp carriage initialization after end of copying Case 2: Optical registration sensor fails to turn off within 0.65 sec at start of copy.Optical registration sensor fails to turn on within 0.46 sec after lamp carriage initiated scanning.OpAMP CARRIAGE FAIL - RETURNLens sensor fails to turn on within 3.1 sec after lens initialization was initiated (start of movement).EXPOSURE CONTROL FAIL
Control mode is not set within 0.5 sec after exposure lamp turned onEXPOSURE VOLTAGE OVER FAIL
Voltage level of exposure signal intensity level already exceeds 2.9 V when exposure lamp turns on.
EXPOSURE VOLTAGE UNDER FAIL
Voltage level of exposure signal intensity level is already below 0.5 V when exposure lamp turns on.

Test data No.	Signal name	Measurement point	Measurement method	Reference value
1	EXPOSURE LAMP TERMINAL VOLTAGE	$\begin{aligned} & \mathrm{P} / \mathrm{J} 16-1 \oplus \\ & \mathrm{P} / \mathrm{J} 16-2 \ominus \end{aligned}$	-Enter diag code [6-7] -Start a copy cycle in normal mode.	$\begin{aligned} & \hline 100 \mathrm{VAC} \\ & 60-70 \mathrm{VAC} \\ & \hline \end{aligned}$
2	EXPOSURE LAMP STARTING SINGNAL	$\begin{gathered} \hline \mathrm{P} 410-12 \oplus \\ \mathrm{COM} \ominus \\ \hline \end{gathered}$	Enter diag code [6-7] measure	$\begin{aligned} & \text { ON: +10.2VDC } \\ & \text { OFF: 22.3VDC } \\ & \hline \end{aligned}$
3	LAMP VOLTAGE MONITOR SIGNAL	Enter diag code [6-7] and then [6-8] to check A/D value		A/D VALUE: B4 to B6 (reference: +19VDC)
4	LAMP CARRIAGE MOTOR ON 24V CLOCK	$\begin{gathered} \mathrm{J} 605-3,4,5,6 \oplus \\ \operatorname{com} \ominus \\ \hline \end{gathered}$	Enter diag code [6-3] or [6-4] and measure	$\begin{aligned} & \text { ON: +24.0VDC } \\ & \text { OFF: +24.5VDC } \end{aligned}$

TRAY 1 MISFEED JAM
TRAY 1 MISFEED JAM
Feed sensor fails to turn on within 2.7 sec after feed was initiated.Registration gate sensor fails to turn on within 2.3 seconds after initiation of feed.REGI-GATE SENSOR OFF CHECK JAM
Registration gate sensor fails to turn off (remains on) at the end of the specified time (varies by paper size) after registration gate opened.
Registration gate sensor remains on at power on or standby. (Remaining paper)Right upper cover is open or right upper interlock switch is faulty.

MSI size detection
The MSI paper size is detected for the following purposes
a. Lamp scan control
b. Fuser temperature control

Width is detected by the MSI size sensor by measuring time from start of 1st paper feed to registration gate sensor ON
2. Length is detected by measuring the time from registration gate open to registration gate sensor OFF.

- Since length cannot be detected for the 1st paper, control is carried out using that for A3.


```
U4-1 FUSER THERMISTOR OPEN FAIL
    Electrical discontinuation of fuser thermistor or faulty fuser thermistor circuit.
U4-2
FUSER WARM UP FAIL
Fuser is not ready 1 minute after power on or front interlock switch is turned off and then on. FUSER OVERHEAT FAIL 1
Heater rod remains on for 10 sec or more after fuser is ready.

\section*{FUSER OVERHEAT FAIL 2}
```

Heater rod remains on for 20 sec or more after cycle down.

```
```FUSER OVERHEAT SAFETY FAIL
Fuser thermistor detected \(240^{\circ} \mathrm{C}\) or more continuously for 0.5 sec or more.
NO ZERO CROSS FAIL
No zero cross is input for 2 sec or more during fuser control.
```

```FUSER EXIT SWITCH ON CHECK JAM
Fuser exit switch fails to turn on 3.7 sec after registration gate opened
```

```
Fuser exit switch fails to turn off (remains on) the specified time (which varies according to paper size) after fuser exit switch turned on
FUSER EXIT SWITCH STATIC JAM
Fuser exit switch is on at power on or standby (paper is remaining).
```

```
Number of copies reaches 100 after toner empty sensor sensed toner end condition.
```

```TONER UNIT LIFE END
The counter value of toner unit reaches the default value 7700
```

```DRUM UNIT SET FAIL
Drum unit is not set, or is set incorrectly to the machine.
```

```TONER UNIT SET FAIL
Toner unit is not set, or is set incorrectly to the machine.
```

```TOTAL COUNTER SET FAIL
Total counter is corrected improperly.
```

```
CV counter value reaches 50 K .
```

```DRUM UNIT ID FAIL
Drum unit Read/Write is in error
```

```TONER UNIT ID FAIL
Toner unit Read/Write is in error.
```

```TOTAL COUNTER ID FAIL
Total Counter Unit Read/Write is in error
UNIT TYPE NO. FAIL
Type No. stored in ID of drum unit does not match with that saved in NVM on main PWB.
```

J8-2 TONER UNIT TYPE NO. FAIL
Type No. stored in ID of toner unit does not match with that saved in NVM on main PWB.TOTAL COUNTER TYPE NO. FAIL
Type No. stored in ID of total counter does not match with that saved in NVM on main PWB

J9-1 DRUM UNIT ID No. FAIL
Identification No. of drum unit is not of Xerox origin.TONER UNIT ID No. FAIL
Identification No. of toner unit is not of Xerox origin.
Identification No. of total copy count is not of Xerox origin

Test data No.	Signal name	Measurement Point	Measurement method	Reference value
1	ZERO CROSS SIGNAL	J410-9 $\oplus$ COM $\ominus$	Measure in standby mode.   (close front cover)	+0.5VDC
2	$\begin{aligned} & \text { ERASE LAMP ON(L) } \\ & +24 \mathrm{VDC} \end{aligned}$	$\begin{gathered} \mathrm{J} 403-5 \oplus \\ \text { COM } \ominus \end{gathered}$	Enter diag code [4-1] and measure.	$\begin{aligned} & \text { ON: +0.75VDC } \\ & \text { OFF: +12.5VDC } \\ & \hline \end{aligned}$
3	PHOTO MODE ON(L) +24 VDC	$\begin{gathered} \mathrm{J} 407-14 \oplus \\ \mathrm{COM} \Theta \end{gathered}$	Select Photo mode during standby and start a copy cycle.	ON: OV OFF: +13VDC-14VDC (Auto and variable modes)
4	CC\&TC ON(L) +24VDC	$\begin{gathered} \mathrm{J} 407-13 \oplus \\ \operatorname{com} \Theta \end{gathered}$	Start a copy cycle in normal mode.	$\begin{aligned} & \text { ON: } 0 \mathrm{~V} \\ & \text { OFF: }+13 \mathrm{VDC}-14 \mathrm{VDC} \end{aligned}$
5	DEVE BIAS ON(L) +5 VDC	$\begin{gathered} \mathrm{J} 407-16 \oplus \\ \mathrm{COM} \ominus \end{gathered}$	Enter diag. code [9-2] and start a copy cycle.	ON: OV   OFF: +13VDC-14VDC
6	DTC\&DEVE BIAS ON(L) +24 VDC	$\begin{gathered} \mathrm{J} 407-15 \oplus \\ \operatorname{com} \theta \\ \hline \end{gathered}$	Start a copy cycle in normal mode.	$\begin{aligned} & \text { ON: OV } \\ & \text { OFF: +13VDC-14VDC } \end{aligned}$
7	FUSER THERMISTOR SENSED SIGNAL	Enter diag code [6-18] and check A/D value.		A/D VALUE: 9C to 93
8	FUSER THERMISTOR discontinuation check	Enter diag code [6-19] and check A/D value.		A/D VALUE:   Normal: 00 to 01 Discontinuous: FF



## XEROX

## THE DOCUMENT COMPANY

## XEROX 5915

## Service Manual 1st Edition

- This service manual covers the following models:

Electrostatic Copier XEROX 5915 manufactured by SHANGHAI XEROX.

## - Related Materials

No related materials are issued other than this service manual.

- Confidentiality
- This service manual is issued intending use by maintenance service personal authorized by XEROX. Coping, transferring or leasing this manual without prior consent by XEROX is prohibited
- Whenever a paper is eliminated because of issuance of a replacement page containing changes modifications, burn it or take the necessary action including cutting by a shredder.
- Be careful of handing the manual to avoid missing or damaging it.


## - Revision and Modification Information

When design changes or revisions relating to this service manual occur, overseas technical information or overseas service bulletins may be issued as supplementary information until such change will be accommodated in the updated version of this service manual.

CAUTION: Important changes including revisions of spare part numbers and adjustment specifications must immediately be reflected on the respective pages of this service manual upon reception of such information
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com


[^0]:    5.1.1 Drum Unit Replacement 4-23
    5.1.2 Drum Finger Replacement $\qquad$ 4-23
    5.1.3 Charge Corotron Wire Replacement 4-24

