
ibm.com/redbooks

Front cover

Geac System21
commerce.connect
Implementation on the IBM iSeries Server

Yessong Johng
Colin Brown

Jim Hirsch
John Lawler

Gain useful insights through the
product overview

Follow the step-by-step guide to
install commerce.connect

Learn helpful usage and
performance tips and techniques

International Technical Support Organization

Geac System21 commerce.connect:
Implementation on the IBM ~ iSeries Server

December 2002

SG24-6526-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.

First Edition (December 2002)

This edition applies to Geac call.connect Version 1.1, vendor.connect 1.1, and System21 3.5.2b SP4 or SP5.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . ix
Comments welcome. .x

Chapter 1. The .connect applications . 1
1.1 call.connect . 2
1.2 vendor.connect . 4

Chapter 2. Architecture of the commerce.connect products . 7
2.1 The need for an architecture . 8

2.1.1 Key Enterprise JavaBeans and WebSphere Application Server benefits 8
2.1.2 The architecture moving forward. 9
2.1.3 The development process. 10
2.1.4 Implementation . 10
2.1.5 The design methodology: Using Unified Modelling Language 10

2.2 Messaging: Java Message Service and IBM WebSphere MQ 12
2.2.1 call.connect . 12
2.2.2 vendor.connect . 14

2.3 Overview of process.connect . 15
2.4 Architectural representation . 16

2.4.1 Architectural goals and constraints . 16
2.4.2 Non-functional architectural considerations . 16
2.4.3 Functional architectural considerations. 17

2.5 Reusing and extending System21 business logic . 17
2.5.1 Accessing System21 RPG business logic . 17

Chapter 3. Installing and setting up call.connect. 19
3.1 Skills and prerequisites for installing, running WebSphere Application Server 20

3.1.1 Skills . 20
3.1.2 Prerequisites . 20
3.1.3 System21 authorization code for Order Management (OM) 22

3.2 Standard installation procedures. 22
3.2.1 Installing Order Management and call.connect. 23
3.2.2 WebSphere installation and configuration. 24
3.2.3 Journaling . 27
3.2.4 Stored procedures and SQL . 29
3.2.5 Java Message Service . 31
3.2.6 User profiles . 36
3.2.7 System21 data set up . 39
3.2.8 Java Web Start . 39
3.2.9 Backup . 52

3.3 call.connect housekeeping . 52
3.3.1 Daily backups . 52
3.3.2 Stopping WebSphere . 52
3.3.3 Starting call.connect . 53
© Copyright IBM Corp. 2002. All rights reserved. iii

3.3.4 Restoring IFS objects . 53
3.4 Troubleshooting . 53

3.4.1 WebSphere node name . 54
3.4.2 Errors on starting the client . 54
3.4.3 Errors when running the client . 54
3.4.4 Cached data and .bl and .cd files . 54
3.4.5 Log files and debugging . 55

3.5 Manual configuration . 56
3.5.1 Non-standard Order Management and call.connect installation 56
3.5.2 WebSphere manual configuration. 57
3.5.3 Manual client installation . 61

3.6 Alternative configurations . 62
3.6.1 Setting up a test instance of WebSphere . 62
3.6.2 Setting up an iSeries server for a test system. 63
3.6.3 Server configuration . 64
3.6.4 WebSphere administration . 65
3.6.5 Manual client installation . 66

Chapter 4. Installing and setting up vendor.connect. 73
4.1 Preparing for the installation . 74

4.1.1 Skills required . 74
4.2 Installing vendor.connect . 74

4.2.1 System21 base . 75
4.2.2 Java components and configuration files . 75
4.2.3 Restoring libraries . 76
4.2.4 Installing and configuring WebSphere . 76
4.2.5 IBM HTTP Server for iSeries. 79
4.2.6 MQSeries . 88
4.2.7 Work Management Trigger Handler for the iSeries. 89
4.2.8 Active Architecture framework . 89
4.2.9 JConnects server . 92
4.2.10 Setting up new vendor.connect user IDs and supplier IDs 92
4.2.11 Database synchronization from System21 to the vendor.connect database . . 103
4.2.12 Testing the vendor.connect Web site . 105
4.2.13 Backing up the configuration components . 105

4.3 Changing the iSeries on which the application is running . 105
4.4 Housekeeping . 105

4.4.1 Daily . 105
4.4.2 Stopping . 105
4.4.3 Starting . 106
4.4.4 Restoring the vendor.connect IFS objects . 106

Chapter 5. Performance tuning . 107
5.1 Hardware. 108
5.2 Operating System/400 (OS/400). 109

5.2.1 SQL server job configuration . 109
5.2.2 Toolbox JDBC driver . 113
5.2.3 Subsystems and memory pools . 115
5.2.4 Automatic performance adjustment . 121
5.2.5 Manual performance adjustment. 122

5.3 Stateless and stateful connections, datasources, connection pools, etc. 122
5.3.1 Stateful connections . 122
5.3.2 Stateless connections . 123
iv Geac System21 commerce.connect: Implementation on the iSeries Server

5.3.3 Total connections and SQL server jobs . 124
5.4 Performance topics for Java virtual machine (JVM) settings 124

5.4.1 Initial Java heap size. 125
5.4.2 Maximum Java heap size . 125
5.4.3 Verbose garbage collection . 126
5.4.4 Static compilation . 127

Chapter 6. Tips and techniques . 137
6.1 The iSeries integrated file system . 138

6.1.1 Using File Transfer Protocol (FTP) with the iSeries IFS 139
6.1.2 Mapping a PC drive to the iSeries IFS . 140
6.1.3 Editing an iSeries stream file using a PC editor . 142
6.1.4 Stream files and CCSID . 142
6.1.5 The cd command . 143
6.1.6 Managing stream files with the OS/400 WRKLNK command 143
6.1.7 Other stream file commands. 144
6.1.8 Stream file authority . 145
6.1.9 Editing an iSeries stream file using the OS/400 EDTF command. 146

6.2 The Qshell . 146
6.2.1 Managing stream files with Qshell commands . 148
6.2.2 The touch and setccsid commands. 149
6.2.3 Viewing an iSeries stream file using the Qshell tail command 149
6.2.4 Qshell scripts . 150

6.3 Checking the QEJBSBS subsystem . 152
6.3.1 Instance monitor jobs . 153
6.3.2 Instance administration jobs . 153
6.3.3 Specifying ports . 155
6.3.4 Application server jobs . 155

6.4 WebSphere versions on the iSeries, your console system, and clients 156
6.4.1 Checking the WebSphere PTF level on the iSeries . 156
6.4.2 Checking the WebSphere PTF level on a PC. 157

6.5 Common problems with commerce.connect on iSeries . 158
6.5.1 Problems connecting the console to WebSphere on the iSeries 158
6.5.2 Checking the iSeries name as required by WebSphere 159
6.5.3 Checking the iSeries database name . 160

Related publications . 161
IBM Redbooks . 161

Other resources . 161
Referenced Web sites . 161
How to get IBM Redbooks . 161

IBM Redbooks collections. 161

Index . 163
 Contents v

vi Geac System21 commerce.connect: Implementation on the iSeries Server

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks(logo)™
AS/400®
DB2®
DB2 Universal Database™
IBM®
IBM eServer™

iSeries™
MQSeries®
OS/390®
OS/400®
Perform™
Redbooks™

S/390®
SecureWay®
SP™
TCS®
VisualAge®
WebSphere®

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® Notes® Word Pro®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
viii Geac System21 commerce.connect: Implementation on the iSeries Server

Preface

This IBM Redbook introduces the new Geac commerce platform .connect applications – the
call.connect and vendor.connect applications. These applications extend and enhance the
capabilities of Geac System21 into the intranet and Internet.

This redbook targets consultants or customers who work with these .connect applications. It
explains how to install, maintain, integrate, and manage these applications on the IBM
~ iSeries server. It also helps you to understand the architecture and middleware used
by the applications.

Prior to reading this book, you must be familiar with the basic, traditional use of the iSeries or
AS/400 and System21. For example, you should know how to enter simple commands and
understand such concepts as the library list. Similarly for System21, you should be familiar
with the menus and such tasks as defining a System21 user.

As necessary throughout the book, detail is provided about the newer, less traditional features
of the iSeries such as the integrated files system (IFS), Qshell, Java, and WebSphere.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Yessong Johng is an IBM Certified IT Specialist at the IBM International Technical Support
Organization, Rochester Center. He specializes in WebSphere and Domino implementation
on iSeries, with a focus on their integration. Recently Yessong expanded his expertise to
include Linux and its solutions on the iSeries server.

Colin Brown is a Senior Software Architect at Geac United Kingdom (UK). He has 15 years
of experience in software design and implementation. He holds a degree in computer
science. His area of expertise includes Enterprise JavaBean (EJB) component development.

Jim Hirsch is a Test Manager at Geac UK. He has 20 years of experience in various IT
disciplines. He holds a degree in math from London University. His areas of expertise include
AS/400, iSeries, and Geac System21.

John Lawler is a Technical Consultant at Geac UK. He has 18 years of experience in IT. He
holds a degree in mathematics from Oxford University. His areas of expertise include AS/400,
iSeries, UNIX, Windows NT, RPG, C, Java, and WebSphere.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.
© Copyright IBM Corp. 2002. All rights reserved. ix

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829
x Geac System21 commerce.connect: Implementation on the iSeries Server

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. The .connect applications

This redbook covers the two Geac .connect applications:

� call.connect
� vendor.connect

This chapter introduces you to these two applications.

Geac also offers the following applications, which provide security, process control and
messaging, and integration with System21:

� secure.connect
� process.connect
� inter.connect

These are part of the commerce platform. commerce.platform is the element of
commerce.connect that supports the integration of applications and processes with
System21. commerce.platform includes:

� The process.connect business modeling tool and workflow engine to define and automate
business processes

� Secure.connect to manage and control user access to information and processes

� A series of components that contain the business rules and connections needed to
integrate System21 with external applications

To learn how vendor.connect uses process.connect and inter.connect, see Chapter 2,
“Architecture of the commerce.connect products” on page 7.

1

© Copyright IBM Corp. 2002. All rights reserved. 1

1.1 call.connect
Geac call.connect fills two roles. First, it is a telesales-oriented product. It is intended to help
call center personnel actively sell to the customer and create and foster personal
relationships.

To support this type of active sales, call center personnel need instant access to all relevant
information for the calling customer. Typical information includes order history, account
information, and product information. The ability to quickly enter an order (complete with stock
allocation, customer pricing, and credit checking) while the customer is still on the telephone
is paramount. This should be backed up by the ability to script the conversation to highlight
selling and promotion opportunities.

Companies need to classify their markets and customers and determine their policy in
satisfying conflicting priorities and supplies. Geac call.connect is a customer service and
order taking application that is designed to be deployed in this fast moving and complex
environment to meet these requirements.

call.connect is a component-based order capture application. This component-based
approach allows the Geac Professional Services Organization to build solutions that optimize
the order capture process for individual customers. Indeed, this component-based approach
allows Geac consultants to build new order capture solutions for sales force automation or
mobile computing, for example.

Figure 1-1 shows a typical call.connect window. The top two-thirds of the window show the
Reactive Sales page. This contains products that are relevant to the particular customer to
which the operator is selling. These products may be ones that the customer buys on a
regular basis, ones that are on special promotion, or ones that are on the special price list for
the customer. The bottom third of this window shows a configurable set of tabs. These pages
contain information about the current customer, which may help the operator in the telesales
environment.
2 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 1-1 The call.connect buying list

call.connect is a flexible order capture process that includes the following facilities:

� Dynamic buying lists: The lists of products that the customer is likely to purchase is
created by combining a fixed list of products with a dynamic list, based on rules applied to
previous purchase history.

� Call management: Supervisors have access to a call-management application that allows
them to track the progress of calls and re-assign them to operators to ensure adequate
throughput. Operators can be assigned a skill level to aid the allocation of customer calls
to operators.

� Stock allocation: Rule-based stock allocation and sourcing engine.

� Promotions: A rule-based promotions engine supports a variety of promotions (for
example, buy one get one free), special prices, discounts, and loyalty points.

� Active selling: Includes support for up-sell and cross-sell. Up-sell prompts the operator to
suggest a higher value product to appropriate customers. For example, when the operator
selects a 21-inch television, call.connect prompts an up-sell opportunity to sell a 25-inch
television. Cross-sell prompts the operator to offer associated products. For example,
when the operator selects a video recorder, call.connect suggests some blank tapes to go
with it.

� Order management: Includes standing orders, order copy, and the ability to “park” an
order for later completion. call.connect is a “front-office” order capture and customer
service application that integrates with System21 for order fulfilment processing (picking,
despatch, etc.). The component-based approach allows the application to be extended to
support, for example, integration with call-center telephone exchanges to provide efficient
call routing and improved customer responsiveness.
Chapter 1. The .connect applications 3

1.2 vendor.connect
Geac vendor.connect is a supplier self-service application. It is designed to support a
cooperative relationship between customers using System21 and their suppliers. It makes
information available, exchanges business documents, and allows controlled direct update
facilities.

vendor.connect improves supplier communication, aids planning, and reduces inventory
investment in the supply chain. Figure 1-2 shows an example of the vendor.connect
Replenishment page.

Figure 1-2 The vendor.connect Replenishment page

vendor.connect supports a number of supplier relationships. This includes vendor-managed
inventory, direct delivery to the end customer, and normal purchase orders. vendor.connect
provides:

� Web-based interfaces to System21 to support:

– Enquiries on orders, returns, and receipts
– Displays of relevant System21 information to the supplier
– New orders and changes to orders since the supplier last visited the site are

highlighted for convenience
– A search facility and rule-based exception notification

� Order transmission: In addition to the ability to print or fax orders, you can send orders to
the suppler as e-mail attachments. A Web page allows the supplier to acknowledge receipt
of the order and update the System21 purchase order appropriately.
4 Geac System21 commerce.connect: Implementation on the iSeries Server

� Supplier planning: An enquiry allows the supplier to view the stock status and demand for
products for which they are the preferred supplier. The demand enquiry includes relevant
information from System21 – unallocated sales orders, expected demand from Material
Requirements Planning (MRP), expected demand from Distributed Requirements
Planning (DRP), and a historical demand element based on sales and customer-specific
filters (for example, sales current year to date or previous year to date).

� Maintain blanket order delivery schedule: Allows the supplier to amend a blanket
purchase order to specify planned delivery dates and quantities.

� Promise date update: Allows the supplier to specify the date they plan to make the delivery.
For direct delivery orders, the supplier updates the promise date for the associated sales
order and e-mails the customer with the delivery notification.

� Create Advanced Shipping Notification (ASN): Allows the supplier to construct a shipment
from current order lines and amend quantities on the delivery as required.

� Support for entering packaging details to allow shipping documentation to be created.
Allows the customer to receive against the ASN. This reduces the time it takes to get
products into the warehouse.

� Delivery of direct customer orders: Allows the supplier to build the details of a direct
shipment to an end customer. They can use this as the start of an @ctive process to
initiate customer billing.

� Documentation print: Allows the supplier to print standard shipping documentation
(barcode labels, quality reports, etc.) to be sent with the shipment.
Chapter 1. The .connect applications 5

6 Geac System21 commerce.connect: Implementation on the iSeries Server

Chapter 2. Architecture of the
commerce.connect products

The products that make up the commerce.connect platform originate from a diverse
background. The challenge and vision is to bring these applications together into a single
coherent, product strategy. This requires an architecture that can encompass the entire
technology spectrum from the legacy applications to the leading-edge Enterprise Java
applications.

This chapter explains the key parts of the architecture, specifically the architecture of
call.connect and vendor.connect, which are the two applications that were designed and
developed from the ground up around an Enterprise JavaBean (EJB)/Java 2 Platform,
Enterprise Edition (J2EE) architecture. Both of these applications integrate with System21.
This chapter also highlights the key integration points.

2

© Copyright IBM Corp. 2002. All rights reserved. 7

2.1 The need for an architecture
Why is an architecture necessary? Can’t we simply write programs that deliver the function
that is required? The reasons for having an architecture are:

� Ever increasing demands are placed on systems in terms of security and availability.

� The need to extend the system to both customers and suppliers across the Internet is
growing rapidly. Applications need to have this capability “architected in”.

� The need to reduce the product development life-cycle, while delivering more complex
systems at the same time, means that Geac simply cannot develop its systems from
scratch or the infrastructure required.

� There is a need to connect different systems (both Geac and external systems) to provide
a viable, reliable, and robust solution.

To meet these requirements, Geac has to rely more and more on infrastructure or middleware
to provide these services. In turn, this means that Geac should clearly architect, develop, and
deploy its software to maximize the benefits that the chosen middleware offers.

Over two years ago, as part of the strategic alliance with IBM, Geac chose to base its new
e-business enterprise applications around WebSphere.

The WebSphere suite of products enables Geac to develop, deploy, and integrate
next-generation e-business applications. This includes such applications for
business-to-business e-commerce. Geac also supports business applications from simple
Web publishing through enterprise-scale transaction processing, extending applications to
incorporate mobile devices, etc.

The entire WebSphere philosophy allows Geac, as an Enterprise Application Developer, to
build, integrate, and deliver solutions more timely to market using WebSphere. WebSphere is
the cornerstone of IBM’s enterprise development strategy. There is little functional or time
availability differences between the release of WebSphere on the iSeries server and
WebSphere on Windows 2000. This allows Geac to deploy its J2EE applications on the
platform that is best suited to the particular customer.

Many of the middleware services provided by WebSphere form part of IBM’s implementation
of the J2EE specification. J2EE defines the standard for developing multi-tier enterprise
applications. J2EE simplifies enterprise applications by basing them on standardized,
modular components, providing a complete set of services to those components, and
handling many details of application behavior automatically, without complex programming.

However, it is true (from practical experience) that both the EJB specification and WebSphere
do not completely remove or absolve the implementor of the responsibility of using the above
services appropriately. Performance needs to be “designed” into the application. Key
architectural decisions still need to be made within the constraints and goals of the project
and these decisions need to be well documented and understood by everyone involved in the
project. This ensures a consistent and high quality approach when designing and
implementing a large-scale project.

2.1.1 Key Enterprise JavaBeans and WebSphere Application Server benefits
The Architectural Specification Geac follows is Enterprise JavaBeans 1.0 (EJB 1.0). As
discussed, the Application Server that Geac uses to implement this specification is IBM’s
WebSphere Application Server Advanced Edition. If the applications that Geac were
implementing were entirely PC-based, WebSphere Advanced Edition would not be
necessary, but this is not the case.
8 Geac System21 commerce.connect: Implementation on the iSeries Server

The EJB standard is a server-side Java-based component architecture for building multi-tier,
distributed, enterprise applications. WebSphere Application Server provides such services
as:

� Authentication and security services: Are provided either via the host operating system
or through Lightweight Directory Access Protocol (LDAP).

� Transaction management: Ensures integrity of data, not just within a single database,
but across the enterprise.

� Resource pooling: Allows more efficient use of valuable system resources. This is
especially important in a large Internet deployment scenario, where there may be
thousands rather than tens of users apparently concurrently using the system.

� Clustering and high availability: Enable scalability and ease the implementation of a
fault tolerant high availability system.

Developing EJBs and deploying within WebSphere offers other key benefits that are often
overlooked in the context of a single project, but that must be considered within the technical
strategy of the company.

For the first time in Geac’s System21 development history, they can deploy the
WebSphere-based Business Application (in the form of EJB components) that they develop
on almost any Enterprise Server where there is a business benefit. Currently Geac’s
requirements are restricted to iSeries and Windows NT or Windows 2000. But in the wider
Geac worldwide context, they could deploy onto OS/390 and most UNIX variants, including
Linux.

As the e-marketplace develops, a significant number of third-party EJB components will
become available. A simple example of this is be Secure Credit Card Authorization. Using a
common architecture across multiple components reduces the number of possible failure
points, simplifies deployment, and in this example, can actually guarantee true transaction
integrity.

2.1.2 The architecture moving forward
Java standards relating to the enterprise have evolved over the past couple of years. The
biggest push on standards by IBM, Sun, and others has been around J2EE. J2EE
encompasses all of the Java standards relating to middleware and enterprise application
development. The EJB specification is now part of the J2EE standard.

Geac’s architectural strategy is to follow, comply with, and implement J2EE solutions. For
example, in the short to medium term, Geac will:

� Use JMS as its messaging subsystem with MQSeries as the message transport layer
wherever possible. This allows for maximum flexibility and reliability between Java- and
non-Java-based systems.

� Ensure that the Geac’s infrastructure software, such as process.connect and
inter.connect, not only coexist on the same server as one of its WebSphere EJB-based
applications, but will take full advantage of the facilities offered by WebSphere.

� Implement and support the next generation of Web Technologies such as Universal
Description, Discovery, and Integration (UDDI). For more information, see:

http://www.uddi.org
Chapter 2. Architecture of the commerce.connect products 9

http://www.uddi.org

2.1.3 The development process
Geac uses a development process based around the Rational Unified Process, but heavily
modifies it. Development process refers to a process that starts at project inception and goes
all the way through deployment onto the customer’s site. Rational Software is the prime
contributor to the Rational Unified Process.

A key process difference to the normal Geac approach is that the process is iteration-based,
rather than traditional waterfall based. The process splits the project into several smaller
deliverables rather than one large deliverable at the end of the project. Therefore, a project
can consist of several smaller iterations each with identifiable, measurable objectives.
Another key difference is that the process focuses on risk elimination. The idea is that
identified high risks (for example, potential technical problems) are addressed early on in the
process to avoid large surprises later on. This reduces the risk of costly failures late in the
project. For more information, see:

http://www.rational.com

The architecture has a key role to play in the development process. Early in the process, any
requirements that may impact the architecture, such as the “user interface is going to be
Web-based and PC client-based“, are taken into account and the risk is assessed. When
there are high technical risks to a project, these risks are mitigated in an “elaboration phase”,
which attempts to develop a “proof of concept” deliverable that focuses on the specific risks.

A risk that Geac identified was the need to re-use the existing System21 RPG code base for a
specific business function. Geac saw this as a high risk area, because of the different
technologies involved and potential performance considerations. If a viable solution could not
be found, this would greatly increase the cost of the project because of the need to rewrite
large parts of existing business logic in Java.

2.1.4 Implementation
All software development is carried out under VisualAge for Java 3.5.4. Developers test and
deploy locally in the WebSphere Test Environment before testing on the iSeries server. The
database is always DB2 Universal Database (UDB) for iSeries. Geac uses a shared
VisualAge Repository for Source Code control.

2.1.5 The design methodology: Using Unified Modelling Language
Geac uses the Unified Modelling Language (UML) for both high-level and detailed design. It
uses Rational Rose as the design tool that supports UML.

Geac’s design methodology is more a component than strict object-oriented (OO)-based
design. It designs and implements course grained components based around business
subsystems. Each of these subsystems has one or more defined interfaces.
10 Geac System21 commerce.connect: Implementation on the iSeries Server

http://www.rational.com

Figure 2-1 shows an example of the primary relationship between the main SalesOrder
subsystem and its dependencies for call.connect.

Figure 2-1 SalesOrder subsystem dependencies

Supply

Pricing

Delivery
Planning

SalesOrder

Item

Customer
Chapter 2. Architecture of the commerce.connect products 11

For vendor.connect, Figure 2-2 shows the relationship between the controlling servlet and the
vendor.connect subsystems.

Figure 2-2 vendor.connect dependencies

call.connect components are designed to be extensible, reusable, and replaceable. This
means that the business functionality can be extended without needing to cut and paste
entire programs. This helps to reduce maintenance overhead and allows existing code to be
reused.

2.2 Messaging: Java Message Service and IBM WebSphere MQ
The term messaging refers to the sending of structured information between two or more
subsystems. Typically the message is sent asynchronously. That is that the sender can
continue to run without waiting for a reply from the receiver. Also, the sender and receiver
typically run as separate processes and possibly on physically separate machines.

2.2.1 call.connect
Both call.connect and vendor.connect use asynchronous messaging to meet specific
requirements:

call.connect uses messaging to meet two requirements:

� To send information back to the client user interface (UI) such as “the order has been put
on hold due to credit problems”, or “a given item is out of stock”

� To allow for time-consuming steps to be completed asynchronously, for example, order
completion when the order is actually committed into System21

contract

shipment

purchaseorder

Generic
Servlet

supplier

fulfillment
12 Geac System21 commerce.connect: Implementation on the iSeries Server

call.connect messaging is implemented using IBM’s implementation of the Java Message
Service (JMS), which itself uses MQSeries as the underlying messaging facility. You can
learn more about JMS at:

http://java.sun.com/products/jms/index.html

Figure 2-3 shows how call.connect uses messaging.

Figure 2-3 call.connect messaging usage

Adding a Sales Order Line scenario
This example explains what happens when an order line is added to a Sales Order by an
operator:

1. The SalesOrder EJB processes the addline in the normal way.

2. The Business Event Addline is published.

3. Control returns back to the client ready for further input.

4. The SalesOrder subscriber is a separate process that listens for SalesOrder events and
receives the Addline message.

5. The subscriber calls back into the SalesOrder EJB to perform a “check for unusual
quantity” request to see if the customer normally orders this amount of stock for the item
concerned.

6. If the quantity ordered is unusual, the SalesOrder subscriber notifies the PC client by
making a call back into the client. The client displays the notification text in the UI status
bar.

SalesOrder
Subscriber

WebSphere Application
Server

SalesOrderSalesOrder
EJBEJB

PC Client

Event
Queue

Client request

Order information

Call Business
Logic

Publish SalesOrder
Business Event
Chapter 2. Architecture of the commerce.connect products 13

http://java.sun.com/products/jms/index.html

2.2.2 vendor.connect
vendor.connect uses messaging in conjunction with process.connect. The main requirement
is to synchronize and respond to changes in System21 data such as purchase order updates.
Figure 2-4 shows how this is achieved.

Figure 2-4 vendor.connect messaging usage

MQSeries is used as the underlying message transport facility by process.connect.

Figure 2-5 shows the relationship between the .connect applications, the commerce.connect
platform, System21, and the IBM middleware-WebSphere and MQSeries application server.

Trigger
Handler

Trigger
Program

process.connect inter.connect

System21 Export
Connector

Export
Queue

@ctive Modular

Triggers
fired

Properties

Map Event Image
to XML BOD

inter.connect

Channel
Manager

WebSphere Application
Server

Purchase Order
EJB

vendor.connect
database

Update
DB update

via SQL

KeyKey

System21

commerce.connect

System21
Application

Application
Update

Event
Queue

Export
Queue

Message
Reader

System21
database

Upload
Triggers

BOD/Java
Method

Mappings

Events

Rules

Mapping
XSLT

Flow of Information to vendor.connect after System21 Update

vendor.connect

Trigger
Queue

Flow starts here
14 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 2-5 Relationship between the .connect applications

2.3 Overview of process.connect
process.connect provides a business modelling tool and workflow engine to define and
automate business processes. It delivers optimal business processes that electronically
improve the performance of mid-market companies. It integrates the commerce.platform and
the commerce.connect applications, @ctive Processes and @ctive Modeler, to deliver rapid
modelling, implementation, and execution of critical-business activities.

process.connect can also integrate the processes of the System21 organization with those of
its suppliers or customers. A process can interact with customers (or suppliers) by sending an

Web Browser
UI

PC Client Rich
Java Swing UI

vendor.
connect

Servlets/JSPs

vendor.connect
EJBs

call.connect
EJBs

Web server

EJB Container
secure.
connect

inter.
connect

process.
connect

System21 Business
Function

System21
Database

Send XML Document

Via Jacada Server

Send XML Document

WebSphere MQ

Database Triggers

Product Interaction Overview

SQL via JDBC

Authenticate/
Authorize

User

Call Business Function

HTML Web Pages

Call
Business
Function

.connect application

Middleware

commerce.connect

System21
Chapter 2. Architecture of the commerce.connect products 15

e-mail requesting information. The e-mail reply is then used to control the next step in the
process. For example, in an order fulfilment process, if an order cannot be fully allocated, the
process can e-mail the customer and ask if a part shipment is acceptable. Links in the e-mail
send a yes or no response back to the process, which continues appropriately.

2.4 Architectural representation
The deployment requirements (for example, must be able to run on a single iSeries machine)
considerably affect the overall architecture in terms of physical location of database, code,
etc. However, Geac ensures that the architecture is not constrained by these physical
limitations.

There is a logical view of the architecture that identifies each significant layer of the system
and shows how that layer maps onto a design and implementation tiered architecture. For
example, Geac can deploy the Business Logic for vendor.connect onto either the iSeries
server or Windows 2000.

2.4.1 Architectural goals and constraints
In an ideal world, the architecture allows and assists the product team to build the ultimate
system with infinite flexibility, scalability, ease of use, and installation. In the real world, each
interested stakeholder has their priorities for the system.

For a sales person, the system should be seen as infinitely flexible and expandable. In reality,
meeting these aspirations may lead to an architecture that is overly complex and
cumbersome for the main day-to-day running of the system. Therefore the architecture is a
trade-off between many requirements.

2.4.2 Non-functional architectural considerations
This section details the key requirements of the system that may significantly impact the
architecture:

� Compatibility with System21: The architecture needs to consider that all .connect
applications have a constraint that they must be compatible with System21.

� Performance and scalability: The system must meet specific volume and response time
requirements for the project where the product will be deployed.

� Re-usability: Both call.connect and vendor.connect were originally developed as part of
individual specific customer projects. The justification for the development of is that Geac
expects to have a significant amount of design and implementation re-use for future
projects. Therefore, the ability to re-use and extend the core business logic is vital to the
success of the product.

� The follow on to re-usability is supportability: Geac must be able to enhance and add
functionality to the product while supporting existing installations from the common design
and code base.

� e-commerce support: The call.connect EJB Business Logic components form the
back-end order entry system for the Geac e-commerce solution, web.connect. Therefore,
the architecture must support or be extendible to support the Web deployment model of
servlets, JavaServer Pages (JSPs), etc.

� Deployability: In the short term, where possible, both call.connect and vendor.connect
should be deployable on a single iSeries running alongside System21 on the same
physical hardware. Due to hardware and system software constraints, it may be necessary
16 Geac System21 commerce.connect: Implementation on the iSeries Server

to upgrade the hardware, software, or both. The minimum hardware requirements
obviously depend on the usage profile of the customer as well as the base WebSphere
Application Server requirements.

2.4.3 Functional architectural considerations
This section details current known functional requirements that may likely have a major
impact on the architecture of the system.

The deployment influence
Certain aspects of the architecture are strongly influenced by the targeted deployment
implementation platform of Java, WebSphere, and EJB.

What? No entity beans?
From previous architectural prototypes, and call.connect Release 1, and the current level of
EJB support within WebSphere, Geac chose not to use EJB entity beans for database
access. This was primarily on the grounds of performance, which was found to be significantly
slower than the equivalent hand-crafted Java Database Connectivity (JDBC) database
access.

There were also concerns over issues to do with legacy integration, specifically RPG
programs potentially accessing the same tables as those mapped by an entity bean. This was
an indication that there could be further performance problems.

Geac intends to re-evaluate the use of entity beans for the next release of call.connect. The
main benefits are of improved productivity and maintainability.

Session beans
The EJBs that contain the call.connect and vendor.connect Business Logic are designed and
deployed as stateless session beans. This means that they do not (directly) maintain any state
specific data (for example, Order Number) across method calls.

In theory (and proven in practice by using the WebSphere Performance Monitor), this allows
the EJB container (WebSphere) to pool session beans, thereby reducing the resource usage
on the system. Even if there are 75 telesales operators all entering orders into the system,
there may be only 10 instances of the Sales Order Session Bean actively running (and
consuming system resources) on the system.

2.5 Reusing and extending System21 business logic
This section details the options that are available when considering how to maximize the
reuse of existing legacy application logic.

2.5.1 Accessing System21 RPG business logic
The need to reuse existing System21 logic was identified early on in the original call.connect
project. The following technical options were available.

IBM Toolbox for Java (previously AS/400 Toolbox for Java)
This is an obvious candidate. This has many classes for accessing iSeries objects including
calling programs.
Chapter 2. Architecture of the commerce.connect products 17

There are two disadvantages:

� The first is primarily stylistic. Using Toolbox for Java would make Java look more iSeries
specific.

� The second is that Toolbox for Java would form its own connection independently of any
JDBC connection. This would mean that updates made by iSeries programs called in this
way could not easily be part of the same commit transaction as updates made through
JDBC.

The first objection is more apparent than real. Toolbox for Java is 100% Pure Java. Therefore,
its use does not restrict the portability of the Java code. The second objection is more
significant.

Java Native Interface (JNI)
Sun defines a technique for calling between Java and native code called the Java Native
Interface. By native, Sun means non-Java code supported by the underlying platform. All of
the Sun documentation discusses C and C++, but it is also possible with RPG on the iSeries.

At V4R4 and V4R5, it was quite difficult to integrate Java and RPG. At V5R1, it became much
easier. If V4R5 had to be supported, then the coding complexity would be an issue.

At V5R1, there was no longer an issue but another objection remained. JNI is a direct call and
the native code would have to be on the same system. This would force an element of Java
onto the iSeries and restrict the deployment options for the application. The entire application
would not have to be on the iSeries since some form of remote invocation could be used, but
would add a considerable degree of complexity.

Stored procedures
There are two forms of stored procedure on the iSeries server. They may be written in
Structured Query Language (SQL) or in most other supported languages for example, RPG
and CL.

Geac does the reverse of typical usage. It does not have a stored procedure and then decide
to write it in RPG. Instead, Geac already has RPG and creates a stored procedure, which
becomes the program. This stored procedure can then easily be called using JDBC from
Java. For a programmer who has learned basic SQL and JDBC, this is easy.

The choice
JNI is probably the best performing option. However, its restrictions on deployment options
eliminated it. Also V5R1 did not exist at the time that Geac made the choice, and the
complexity of JNI prior to V5R1 counted against it.

The performance of the IBM Toolbox for Java and stored procedure options is similar. The
coding complexity is similar but stored procedures have the advantage of similarity with other
SQL. The final decision was made based on the ability of stored procedures to share
connections and partake in transactions.
18 Geac System21 commerce.connect: Implementation on the iSeries Server

Chapter 3. Installing and setting up
call.connect

This chapter explains how to install and set up call.connect and vendor.connect. Prior to
reading this chapter, you must be familiar with the skills listed for each product and have
knowledge about System21 and its configuration.

Installing call.connect involves a number of steps on both the server and on each client.
Before starting, be sure to verify that all prerequisites are in place. Use care in following the
steps that are provided. Failure to do so can result in problems with the installation of these
products. Once these products are configured, they require little or no maintenance.

Throughout the installation instructions, you will see variables in italics. For each of these
variables, you need to provide a real name. For example, for the variable <iSeries>, you must
change it to the name of the machine you are using.

3

© Copyright IBM Corp. 2002. All rights reserved. 19

3.1 Skills and prerequisites for installing, running WebSphere
Application Server

This section outlines the skills you need for the installation and the prerequisites that must be
in place before you start.

3.1.1 Skills
You must be familiar with the workstation, particularly with the operation of the keyboard and
mouse. You should also be familiar with the following applications, which are used in the
call.connect configuration. Although instructions are provided at each stage, a complete
beginner may find the installation to be difficult and may need help from someone with more
experience.

� Windows NT Explorer
� Notepad and Wordpad or other tool to edit files (for example, .bat and .xml files)
� Client Access
� MS-DOS
� OS/400 commands
� A Web browser (for example, Internet Explorer)
� System21

In addition, you should also be familiar with:

� WebSphere Application Server
� CL programming on the iSeries
� SQL

For straightforward configurations, you may be able to proceed regardless of your familiarity
with these items.

3.1.2 Prerequisites
Before you install WebSphere Application Server, make sure that you have met all hardware
and software prerequisites. The following sections list the iSeries hardware requirements,
iSeries software requirements, workstation hardware requirements, and workstation software
requirements.

For more information, see:

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/doc.htm

iSeries hardware requirements
Any of the following servers (recommended minimums) are required:

� iSeries Model 170 with processor feature 2385
� iSeries Model 720 with processor feature 2062
� iSeries Model 270 with processor feature 2252
� iSeries Model 820 with processor feature 2396
� 1 GB of memory (recommended minimum)

Table 3-1 lists the disk requirements.

Note: You may use earlier systems than these recommended minimums in environments
that support a limited number of users and where longer server initialization times can be
tolerated.
20 Geac System21 commerce.connect: Implementation on the iSeries Server

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/doc.htm

Table 3-1 Disk space requirements

iSeries software requirements
The minimum software required for your iSeries includes:

� OS/400 Version 4 Release 4, or later (in an unrestricted state): To install and run
WebSphere Application Server Advanced Edition for iSeries on your iSeries server.

� iSeries user profile with *ALLOBJ authority: To install WebSphere Application Server
Advanced Edition for iSeries on your iSeries server.

� iSeries Developer Kit for Java (5769-JV1), Version 1.2 (option 3)

� OS/400 Qshell Interpreter (5769-SS1, option 30): For using the scripts that are included
with the product and for local installation (installing to your iSeries server from the
CD-ROM of your iSeries server).

� OS/400 Host Servers (5769-SS1, option 12): For remote installation (installing to your
iSeries server from the CD-ROM of another workstation). You can start the host servers by
using the Start Host Server (STRHOSTSVR) command. On the iSeries command line,
type:

STRHOSTSVR *ALL

The QSERVER subsystem must be running on iSeries.

� TCP/IP Connectivity Utilities for iSeries (5769-TC1): To configure and run WebSphere
Application Server. It is also needed if you are using remote installation (installing
WebSphere Application Server on your iSeries server from the CD-ROM of another
workstation). To start TCP/IP on iSeries, enter the Start TCP/IP (STRTCP) command on
the iSeries command line.

� HTTP Server for iSeries (5769-DG1): To support requests for servlets and JavaServer
Pages resources managed by WebSphere Application Server. It is also needed if you plan
to use Secure Sockets Layer (SSL) protocol. If you plan to deploy only enterprise beans,
HTTP Server for iSeries is not needed. call.connect optionally uses Sun’s Java Web Start
technology to allow dynamic updates of client applications. Java WebStart requires an
HTTP Server to service update requests. However, call.connect can be used without
enabling these features.

� DB2 Universal Database (UDB) for iSeries: Must be configured to work with WebSphere
Application Server for iSeries if you plan to connect to the local database. Optionally, this
database may be on a different machine than the iSeries server that is running
WebSphere Application Server. We recommend that you use the local iSeries database
during the initial WebSphere Administration Server setup.

� Entry in the relational database directory that points to *LOCAL: To run WebSphere
Application Server on iSeries.

To view the current settings, enter the Work with Relational Database Directory Entry
(WRKRDBDIRE) command. You can add a directory entry by entering the Add Relational
Database Directory Entry (ADDRDBDIRE) command.

The maximum number of jobs allowed for the iSeries SQL server jobs should be set to
*NOMAX. Use the Change Prestart Job Entry (CHGPJE) command to change the prestart
job entry for the SQL server jobs. For example, you would enter:

CHGPJE SBSD(QSYSWRK) PGM(QSQSRVR) MAXJOBS(*NOMAX)

Installation option During installation After installation

*BASE (client application development software only) 500 MB 250 MB

Option 1 (includes *BASE and WebSphere
Application Server environment)

650 MB 450 MB
Chapter 3. Installing and setting up call.connect 21

� DB2 Query Manager and SQL Development Kit for iSeries (5769-ST1): This is an
optional product that can be helpful in developing client applications.

� All necessary fixes: For a current list of fixes, see:

http://www.iSeries.ibm.com/WebSphere

When you reach this site, click PTFs.

Workstation hardware requirements
Workstations and software configurations, other than those in the following list, are capable of
running WebSphere. However, they are not included here because they have not been tested
running call.connect.

The capable workstations include any Intel-based personal computer capable of running any
of the following operating systems:

� Windows NT Server or Workstation V4.0
� Windows 2000 Server or Advanced Server
� Support for a communications adapter or an appropriate network interface
� 40 MB of free disk space (minimum)
� 96 MB of memory (minimum)
� CD-ROM drive

Workstation software requirements
The minimum software required an each workstation running call.connect includes:

� One of the following operating systems:

– Windows NT Server V4.0, SP 6A or later
– Windows 2000 Server or Advanced Server

� IBM Development Kit for Java: Windows NT IBM enhanced Java Development Kit, Version
1.2.2

3.1.3 System21 authorization code for Order Management (OM)
You must obtain an authorization code, from your Geac distributor, for the System21 Order
Management application (and all other System21 applications) before you can use it. You
must apply the code in the usual way.

3.2 Standard installation procedures
This section provides detailed instructions for installing call.connect. It includes sections on a
basic standard setup using the configuration supplied on the CD and a section on setting up
the new System21 application Order Management.

Note: These products are included on the WebSphere Application Server Advanced
Edition workstation CD-ROM:

� TCP/IP must be installed and running on your workstation
� A Web browser that supports HTML 4 and cascading style sheets (CSS)
� Client Access

You can install these products by selecting the IBM JDK 1.2.2 install option when you
install the Administrative Console.
22 Geac System21 commerce.connect: Implementation on the iSeries Server

http://www.iSeries.ibm.com/websphere

Checklist of the basic steps
Table 3-2 summarizes the steps required to install and configure call.connect. You can find
additional information on each step in the following sections. For full details, see the Geac
call.connect Installation Guide.

Table 3-2 Summary of the call.connect installation and configuration

3.2.1 Installing Order Management and call.connect
This section explains how to load the Order Management System21 application and the
call.connect IFS objects.

System21 base
To run call.connect, you need to load at least the following System21 applications at V3.5.2b
Service Pack 5:

� Application Manager
� Geac System21
� Advanced Order Entry (AO)
� Distribution Requirements Planning (DR)
� Inventory (IN)
� Order Entry (OE)
� Cash Management (CS)
� General Ledger (GL)
� Sales Ledger (SL)

You can obtain these applications from your Geac distributor.

System21 Order Management (OM)
In addition to the System21 applications, you must load the Order Management System21
module. This module is supplied on the call.connect CD. Follow these instructions:

Step Action Completed

1 Load System21, including standard applications and the Order Management
application

2 Load Java components and configuration files for call.connect

3 Install and configure WebSphere Application Sever

4 Set up journaling

5 Create stored procedures and run SQL scripts

6 Set up Java Message Service (JMS)

7 Create user profiles

8 Set up System21 data

9 Install Java Web Start

10 Back up the installation (for example, the entire configuration)

Note: This redbook does not provide instructions for installing System21. You can find
information on installing System 21 and current details regarding your installation scenario
in the Geac System21 Installation and Setup Guide.
Chapter 3. Installing and setting up call.connect 23

1. From the CD, load the Order Management module as explained in the readme file of the
CD. This installs the following libraries:

– OSLOMF3: Contains data files
– OSLOMD3: Contains all other Order Management objects

The source is available in the OSLOMS3 library, but this requires a special order and is not
normally shipped.

2. After you install the libraries, initialize the application with the following command:

AMINSAPP APSR(O) APPL(OM) RLSL(03) LIB(OSLOMD3)

3. Apply the authorization code for OM with the command:

STRIPGCF

4. Select option 4 and enter the codes that are provided next to the Order Management
application.

Java components and configuration files
All other components of call.connect are on the call.connect CD. You can load them by
following the instructions in the readme file.

The components are then loaded onto the iSeries in the /OrderManagement folder. This
folder contains the following subfolders:

� Cfg
� Log
� Deployed
� Client
� Mgr
� Stored procedures
� SQL scripts

3.2.2 WebSphere installation and configuration
This section explains how to start the WebSphere administration server, import the
configuration file, and start the application.

You can find complete instructions about how to install and configure WebSphere Application
Server on the WebSphere Application Server Web site at:

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/doc.htm

Starting the administration server
To start the administration server, follow these steps:

1. On the iSeries, enter the command:

STRSBS SBSD(QEJB/QEJBSBS)

This starts the QEJB Subsystem and two auto-start jobs QEJBADMIN and QEJBMNTR.

WebSphere cannot start until the administration server is ready.

2. To find out the status of the administration server, check the job log for job QEJBADMIN.
Enter the following command:

WRKACTJOB SBS(QEJBSBS)

3. Type 5 next to QEJBADMIN to view the job.
24 Geac System21 commerce.connect: Implementation on the iSeries Server

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/doc.htm

4. Select option 10 to view the job log. Wait until you see the message WebSphere
administration server QEJBADMIN ready. This may take several minutes. The first start
after the installation may be even slower.

Importing the configuration file

Run the import tool inside Qshell. Follow these steps:

1. Run the Start Qshell (STRQSH) command. After each command, wait for the dollar ($)
signs to appear.

2. Switch to the current directory within Qshell. Enter the following command (Figure 3-1):

cd /QIBM/ProdData/WebASAdv/bin

Figure 3-1 Importing the WebSphere configuration to an iSeries called homer

3. Import the Config.xml configuration file from OrderManagement/Config.

4. To use the delivered file to configure the default instance on an iSeries server, enter the
following command. Substitute your server name for iSeries. Enter:

XMLConfig -adminNodeName <iSeries> -import /OrderManagement/Config/Config.xml
-substitute
"nodename=<iSeries>;dir=/OrderManagement;appname=SalesOrder;container=SalesOrder"

The system may run for several minutes.

Important: To import the configuration file, the WebSphere instance must be running, but
the console must not be running.

Notes:

� Leave a space before each - sign, and leave a space after each keyword, for
example, -adminNodeName , -import , and -substitute .

� There is only one pair of quotes around the entire substitution string.
Chapter 3. Installing and setting up call.connect 25

The import includes:

� The node
� The SalesOrder application and all contents
� The JDBC driver required
� The datasource required.

The config.xml file contains the following variables, which are substituted on the import
command and replaced with real names:

� $NodeName$: This is the WebSphere node name. The node name in WebSphere is case
sensitive. This is relevant when you start the console with AdminClient and when you
specify an Internet Inter-ORB Protocol (IIOP) address for a Java Naming and Directory
Interface (JNDI) lookup (for example, within the batch files that start client programs). It is
also relevant to tools such as the XML export/import utility.

Usually the name is entirely in lowercase. On some systems, it is entirely in uppercase
and could, in theory, be a mixture of both.

If you find that the console fails to start with such messages as “Could not get
attributes” (similar to when the service/subsystem is not started), but the service is
started, then the problem may be that you are using the incorrect case on the name.

You can verify the required name by using the following SQL to look at a WebSphere table:

select NAME
from EJSADMIN/NODE_TABLE

This shows the node name exactly as WebSphere wants it to appear. Do not be tempted
to change the contents of this table. It is liable to make things worse rather than better.

� $AppName$: This is the application name that is typically SalesOrder for the default
instance.

� Dir: This is the root directory for the installation. This is the directory that contains the
subdirectories cfg, deployed, and log. For the default instance, this is usually
/OrderManagement.

� $ContainerName$: This is the container name that is typically the same as the
application name, but can be different.

Starting the application
To start the application, follow these steps:

1. Start a WebSphere console. In a command prompt, change the directory to:

..\WebSphere\appserver\bin

Note: You must have QSECOFR user authority to read this table.

Note: The application name should be less than 11 characters in length so that you can
clearly see it on the iSeries server when you use the WRKACTJOB SBS(QEJBSBS)
command. Longer names are allowed but must be truncated when viewed this way.

Note: This is a standard directory for a default installation of the console. However, you
can install the console in a different directory if necessary.
26 Geac System21 commerce.connect: Implementation on the iSeries Server

2. To start the console for the specified machine in the default environment, enter the
command:

adminclient <iSeries> <Port Number>

This may be quite slow. If an instance other than the default instance is required, enter the
port number. Otherwise, you may leave this blank.

3. Wait for the message “Console Ready” to appear in the console. The topology view
appears by default.

4. Open the node, application server, and container to display the beans. Click the
Application Server. Click Start and wait. The beans turn blue as they start. This may take
several minutes.

3.2.3 Journaling
Because WebSphere applications run under commitment control, files used by call.connect
must be journaled. There are many options to provide different levels of security.

Since files from different libraries must be journaled, the journal receiver and the journal must
be created in a new library rather than an existing System21 library. The following files must
be journaled to operate call.connect:

� All physical files in library OSLOMF3
� The following files in library OSLD1F3:

– INP40
– INP60
– OEP05
– OEP40
– OEP41
– OEP45
– OEP45E
– OEP55
– OEP56

However, merely journaling these files does not give the user the full advantages of journaling
such as extra security.

Performance improves if files are journaled to an auxiliary storage pool (ASP). You can use
the commands in the following sections with or without an ASP.

Journaling the files without an ASP
To journal these files without an ASP, complete the following steps. These are sample
commands only and may be varied as required.

1. Sign on as QSECOFR.

2. Create a new library for the journal receiver and journal, for example, OSLF3:

CRTLIB LIB(OSLF3) TEXT('OSL journal library')

3. Create a journal receiver:

CRTJRNRCV JRNRCV(OSLF3/OSL0001) THRESHOLD(50000) TEXT('System21 journal receiver.')

4. Create a journal:

CRTJRN JRN(OSLF3/OSL) JRNRCV(OSLF3/OSL0001) MNGRCV(*SYSTEM) DLTRCV(*YES) TEXT('System21
journal')
Chapter 3. Installing and setting up call.connect 27

Journaling the files with an ASP
To journal the files using an ASP, follow these steps:

1. Create a separate library for the journal receiver:

CRTLIB LIB(OSLF3R) TEXT('OSL journal receiver library')

2. Create a journal receiver:

CRTJRNRCV JRNRCV(OSLF3R/OSL0001) ASP(2) THRESHOLD(50000) TEXT('System21 journal
receiver.')

3. Create the journal:

CRTJRN JRN(OSLF3/OSL) JRNRCV(OSLF3/OSL0001) MNGRCV(*SYSTEM) DLTRCV(*YES) TEXT('System21
journal')

Journaling a single file
To journal a single file, such as OMP00, use the following command:

STRJRNPF FILE(OSLOMF3/OMP00) JRN(OSLF3/OSL) OMTJRNE(*OPNCLO)

Journaling multiple files within a library
To journal multiple files in a library, follow these steps:

1. Start the Programming Development Manager (PDM):

STRPDM

2. Select option 9 (Work with user-defined options).

3. You see the Specify Option File to Work With display (Figure 3-2). Press Enter to accept
the defaults (File QAUOOPT, Library QGPL, and Member QAUOOPT).

Figure 3-2 Working with user-defined options

4. On the next display, press F6 to create a new user-defined option.

5. On the Create User-Defined Option display (Figure 3-3), enter the following information for
the parameters listed:
28 Geac System21 commerce.connect: Implementation on the iSeries Server

– Option = SJ
– Command = STRJRNPF FILE(&L/&N) JRN(OSLF3/OSL) OMTJRNE(*OPNCLO)

Press Enter.

Figure 3-3 Creating a user-defined option

6. You return to the list of user-defined options. Press F3.

7. You return to the PDM menu. Select option 2 (Work with objects).

8. On the Work with Objects display, complete these tasks:

a. Enter the library that contains the files to journal for example, OSLOMF3.

b. Under object, set:

• Name: *ALL
• Type: *FILE
• Attribute: PF-DTA

Press Enter.

9. On the next display, type SJ next to each file that you want to journal. To journal all
physical files, type SJ on the first line and press F13.

3.2.4 Stored procedures and SQL
You can easily run the stored procedures and other SQL commands by using Client Access.
However, you can cut and paste the commands into an iSeries SQL session if required.

Stored procedures
Stored procedures link Java components with RPG programs. There are several of these
procedures that must be created using the SQL scripts in the /OrderManagement/Stored
Procedures folder. To create them, use the Client Access SQL tool, which is in iSeries
Operations Navigator.
Chapter 3. Installing and setting up call.connect 29

To run SQL scripts, follow these steps:

1. Open the /Ordermanagement/Stored Procedures folder in Windows Explorer and
double-click the script you want to run.

2. Sign on as a valid user, and the script opens.

3. Select Connection-> JDBC Setup (ODBC setup pre-release V4R5).

4. The Client Access Express ODBC Setup (32-bit) window (Figure 3-4) opens. Click the
Format tab.

5. Ensure that the system naming convention (*SYS) is selected.

Figure 3-4 Client Access setup for the naming convention

6. Click the Translation tab.

7. Ensure that Translate CCSID 65535 is set.

8. Click the Server tab (Figure 3-5).

9. Ensure that the correct library list is set. Set the default libraries as:

,oslomf3, oslomd3, osld1f3, osld2f3, oslslf3, oslglf3

Note: Do not forget to include the initial comma (,) in the list.
30 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 3-5 Client Access server setup

10.After you make all necessary changes, click Apply and then click OK.

As an alternative, you can perform these steps:

1. Open Operations Navigator.
2. Sign on as OMUSER.
3. Expand the iSeries.
4. Right-click the database and select Run SQL Scripts.
5. Open the /OrderManagement/Stored Procedures folder.
6. Double-click the script to select it.
7. Change the parameters as indicated in the previous set of instructions.

The scripts all start with a DROP PROCEDURE instruction. This removes any previously
installed stored procedures. However, this does not run the first time the scripts start. In this
case, position the cursor on the second line of the script. Then select Run-> From Selected.

Other SQL
Some static data must be set up. You achieve this by running the SQL scripts in the SQL
Scripts folder. Use the Client Access SQL tool as explained in the previous section and run all
the scripts in this folder.

3.2.5 Java Message Service
JMS is used to send messages from the server to the client. It is used when, for example,
there are supply problems or the order is suspended. It is also used to allow complex time
consuming steps to be completed asynchronously, for example when the order is written to
System21.

Ensure that WebSphere is started.
Chapter 3. Installing and setting up call.connect 31

The prerequisites include:

� WebSphere 3.5.5
� MQSeries 5.2
� MA88 MQSeries classes for Java and Java Message Service (requires V4R5 or later)

Setting up MQSeries
This section explains how to configure MQSeries on the iSeries to be used by call.connect.
Then it explains how to map the MQSeries queues onto JMS queues.

Creating a queue manager
First you must create a queue manager as explained here:

1. If the subsystem QMQM is not started (check by using the Work with Subsystem
(WRKSBS) command), enter the following command:

STRSBS QMQM/QMQM

2. Enter the Work with Message Queue Manager (WRKMQM) command.

3. Press F6 (Create queue manager).

4. On the Create Message Queue Manager display (Figure 3-6), complete the following
fields:

– Message Queue Manager Name: CALLCONNECTQM
– Text ‘description’: ‘Call Connect Queue Manager’
– Undelivered Message Queue: SYSTEM.DEAD.LETTER.QUEUE

Press Enter to create the message queue manager.

Figure 3-6 Create Message Queue Manager display

5. Start the queue manager.

6. On the Start Queue Manager display, enter option 14 next to CALLCONNECTQM and
press Enter.

7. Wait until the Status changes to Active. Then press F5 to refresh the display.

Note: You need to start the queue manager before you can create any queues.
32 Geac System21 commerce.connect: Implementation on the iSeries Server

Creating a queue
Now create a queue as explained here:

1. On the Start Queue Manager display, type 18 next to CALLCONNECTQM and press
Enter.

2. The Work with MQM Queues display appears. Press F6 to create the queue.

3. On the Create MQM Queue display (Figure 3-7), press F9 to display all parameters.

a. Complete the following fields as shown here:

• Queue Name: SALESORDER.QUEUE
• Queue Type: *LCL
• Text ‘description’: Sales Order Queue
• Default Message Persistence: *YES

Figure 3-7 Create MQM Queue display

b. Press Enter to create the message queue.

Granting authority
Next, you must grant authority for both the queue manager and queue:

1. Enter the Grant MQM Object Authority (GRTMQMAUT) command for your queue
manager.

2. On the Grant MQM Object Authority display (Figure 3-8), follow these steps:

a. Complete the fields as shown here:

• Object Name: CALLCONNECTQM
• Object Type: *MQM
• User Names: *PUBLIC (see note below)
• Authority: *ALL
• Message Queue Manager Name: CALLCONNECTQM

b. Press Enter to grant authority.
Chapter 3. Installing and setting up call.connect 33

Figure 3-8 Create MQM Object Authority display for your queue manager

3. Enter the GRTMQMAUT command again to grant MQM object authority to your queue.

4. On the Grant MQM Object Authority display (Figure 3-9), complete the following fields as
shown here:

– Object Name: SALESORDER.QUEUE
– Object Type: *Q
– User Names: *PUBLIC (see the following note)
– Authority: *ALL
– Message Queue Manager Name: CALLCONNECTQM

Press Enter to grant authority.

Figure 3-9 Grant MQM Object Authority display for your queue

Note: You do not need to give object authority to all users (*PUBLIC). But, you can give
it only to the appropriate accounts. QEJB needs full authority to these objects and the
user under whom the SalesOrderRecevier.sh runs. This user is currently OMUSER.
34 Geac System21 commerce.connect: Implementation on the iSeries Server

Additional files needed
You need the following files to configure and run your message receiver:

� JMSAdmin.sh: JMSAdmin tool executable from QSH
� JMSAdmin.config: Configuration file used by JMSAdmin
� SendTestMessage.sh: Enables test messages to be sent

You can find these programs in the /OrderManagement/mq directory on the iSeries server. If
these files are missing, map to the iSeries root directory using Windows Explorer, navigate to
the mq directory, and copy the missing files.

You may need to edit the JMSAdmin.config file. You can do this by using Windows Explorer.
Alter the line that starts with PROVIDER_URL…… so that it points to the correct port number on
your iSeries, for example:

PROVIDER_URL=iiop://localhost:900/

Creating the JNDI/MQ objects
Follow these steps to create the JNDI/MQ objects:

1. Use Qshell to create the objects. Enter the STRQSH command.

2. Change the directory, using cd directory name, to where you installed the JMSAdmin
files, for example:

cd /OrderManagement/Build/mq

3. Type the following command:

JMSAdmin.sh

Press Enter. The JMSAdmin tool creates the objects within the namespace stated in your
JMSAdmin.config file.

4. Type the following commands in the order shown in your qsh session. Press Enter after
you enter each command:

def ctx(geac)
change ctx(geac)
def qcf(CallConnectQueueManager) qmgr(CALLCONNECTQM)
def q(SalesOrderQueue) qmgr(CALLCONNECTQM) queue(SALESORDER.QUEUE)
end

You have now created your JNDI/MQ objects. Press F3 to exit Qshell.

Standard properties
Add the following properties to your standard.properties file either on the iSeries server or
client:

MQ.queue.manager=geac/CallConnectQueueManager
MQ.queue=geac/SalesOrderQueue
messaging=1

You can also add “fakeunusual=1” if you want to test unusual messages through JMS or
MQSeries.

Note: You must use the exact case as shown here.
Chapter 3. Installing and setting up call.connect 35

Additional WebSphere configuration
Add the following argument to the command line arguments within your application server.
This enables the Message Listener to start and close automatically with the enterprise beans.

-Dcom.ibm.ejs.sm.server.ServiceInitializer=
jba.rose.salesorder.messaging.SalesOrderListener

Testing the messaging
After call.connect is up and running, you can verify whether the messaging is working
correctly by testing it as explained here:

1. Run the call.connect product.

2. Open a call.

3. Create an order.

4. Enter an order line with the quantity of 10.

5. This should create a JMS message that should be delivered back to the client. If the JMS
message was not delivered, consult the error logs.

6. Your SalesOrderListener should now receive your message. Check your call.connect logs
to see your received message.

3.2.6 User profiles
This section explains how to set up user profiles on the iSeries server, in the call.connect user
directory and within System21.

Job description
The call.connect library list is set within a job description OSLOMD3/OMJOBD that is
supplied as already configured in the OSLOMD3 library. The library list should contain:
OSLOMF3, OSLD1F3, OSLD2F3, OSLSLF3, OSLGLF3, OSLCSF3, OSLOMD3, OSLOEP3,
OSLINP3, IPGAMF4, IPGCFF4, IPGAMP4, OSLOIF4, OSLOID4, OSLWTP3, OSLGLD3,
OSLSLD3, IPGCFP4, and OSLCSD3.

However, if you must use other .connect products or other products that use a workflow,
change the job description to include OSLWFF3 in its library list.

Creating iSeries user profiles
You must create iSeries user profiles for all call.connect users. To do this, sign on as QSECOFR
and create the profiles as required.

In addition, you must create a special user profile, normally OMUSER with password
OMUSER, to be used by JDBC connections. Be sure to use the job description within this
user profile. Set the profile with QUSER authority. Then set the CCSID accordingly as follows:

� United Kingdom: CCSID = 285
� United States: CCSID = 37
� Other countries (regions): Set as required

Note: You can also test whether messaging is working by using QSH (your enterprise
beans in WebSphere must be running). Type the following text into your QSH session:

. ./SendTestMessage.sh “now type your message here”

Press Enter.
36 Geac System21 commerce.connect: Implementation on the iSeries Server

Sign on as QSECOFR and create the profile as shown here:

CRTUSRPRF USRPRF(OMUSER) TEXT('call.connect user profile') JOBD(OSLOMD3/OMJOBD) CCSID(285)

Setting up call.connect users in the XML user directory
You must set up all call.connect users on the server in the XML file
/OrderManagement/log/UserDirectory.xml, with the same user IDs as those created on the
iSeries. Open this XML file in a notepad and copy the following section:

<entry dn="cn=John Smith, ou=eCommerce, ou=Studley,o=Geac,c=UK">
 <objectclass>
 <oc-value>top</oc-value>
 <oc-value>person</oc-value>
 <oc-value>organizationalPerson</oc-value>
 <oc-value>inetOrgPerson</oc-value>
 <oc-value>ePerson</oc-value>
 <oc-value>s21User</oc-value>
 </objectclass>
 <attr name="cn"><value>John</value></attr>
 <attr name="sn"><value>Smith</value></attr>
 <attr name="uid"><value>Operator1</value></attr>
 <attr name="userpassword">Teacup</value></attr>
 <attr name="mail"><value>-none-</value></attr>
 <attr name="s21username"><value>-none-</value> </attr>
 </entry>

Note the following explanation:

cn Common name
sn Surname
uid User ID for call.connect
userpassword Password for call.connect

You can edit the entries under dn (distinguished name), but they should be the same for all
entries:

ou Organizational unit
o Organization
c Country (region)

Amend the names and profiles as required. Most of this information is for memo purposes.
The only mandatory lines are the user ID and the password (uid and userpassword). The user
ID should not have spaces in it because this also needs to be a valid iSeries sign on.

Setting up System21 user profiles
All the users defined as call.connect users in the XML user directory must have a System21
user profile. They must also be defined as operators within the Order Management
application.

To set up a System21 user profile, follow these steps:

1. Sign on to the iSeries as a user with access to System21 common functions. When
delivered, QPGMR has the required authority.

2. Enter the following command to access the main functions:

STRIPGCF

3. Select option 1 from the menu and enter the user ID to maintain.

4. Press F17 and type option 1 next to each menu that begins with OM. Press Enter.
Chapter 3. Installing and setting up call.connect 37

5. On each display, press F15 to authorize the user to all options on that menu.

6. After all displays are presented, press F12 to return to the main user profile maintenance
display.

7. Select F19 and type 1 next to the OM 03 application. Press Enter.

8. Type 1 next to all companies that are valid for this user. Press Enter.

For more information, see Chapter 1 in the Geac System21 Administration Functions Active
Enterprise Framework manual.

Setting up an operator
This section explains how to set up an operator. It assumes that the user is authorized to the
OM menus as explained earlier and that the OM company profile is already configured.

1. Sign on to the iSeries server using the profile OMUSER.

2. Enter the command:

AM3

3. On the Option line, enter:

/OMM

This displays the OMM menu.

4. On the OMM menu, select option 1.

5. Add or maintain the operator codes as required. Now all users should have an iSeries
profile, an XML profile, and a System21 profile. They should also be set up as operators.
Figure 3-10 shows an example display of setting up an operator profile.

Figure 3-10 Operator setup display

For more information, see the System21 Setup for call.connect manual.
38 Geac System21 commerce.connect: Implementation on the iSeries Server

3.2.7 System21 data set up
System21 data setup is covered in the Basic System21 Setup for call.connect manual. You
must complete this setup in order for call.connect to operate successfully. This section
outlines the steps to configure the Order Management module (see Table 3-3). These steps
assume that other parts of System21, such as customers, items, depots, etc., are already
setup.

Table 3-3 System21 Order Management setup

3.2.8 Java Web Start
This section provides instructions for a straightforward way to configure a new iSeries. Two
HTTP Servers are available at different releases of the operating system:

� IBM HTTP Server for AS/400 (original): For V4R4 and earlier
� IBM HTTP Server for iSeries (powered by Apache): For V5R1 and later

V4R5 supports both original and powered by Apache.

Ensuring that the HTTP administrative server is ready
The following steps are the same for both servers:

1. Verify that the HTTP Server software is loaded. On the iSeries, type the following
command:

GO LICPGM

2. On the display that appears, select option 10 (Display). Check the suffixes. Look for DG1.
If you do not find it, load it before you proceed to the next step.

3. Start the HTTP Server. On the iSeries, run the command:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

Step Action Completed

1 Create a search family code

2 Create an Order Management company profile

3 Create buying lists

4 Create buying list rules

5 Create operator profiles

6 Create teams

7 Create OM customer details

8 Create OM customer contacts

9 Create outgoing call schedules

10 Create item sales details

11 Create supply rules and policies

12 Create supply points

13 Create customer and item attributes

14 Generate call lists
Chapter 3. Installing and setting up call.connect 39

4. Verify that the server is running. Enter the following command:

WRKACTJOB

5. Verify that ADMIN jobs are running in the QHTTPSVR subsystem.

Configuring the HTTP Server on the iSeries
To configure the HTTP Server on the iSeries server, follow these steps:

1. In a Web browser, type:

http://<iSeries>:2001

Enter your iSeries server name for iSeries. This is the port on which the administration of
HTTP is listening.

2. Sign on as QSECOFR.

3. The AS/400 Tasks page appears as shown in Figure 3-11. In this example, the pages are
for an iSeries called Needjava. Select IBM HTTP Server for AS/400.

Figure 3-11 HTTP Server configuration
40 Geac System21 commerce.connect: Implementation on the iSeries Server

4. The IBM HTTP Server for AS/400 page appears as shown in Figure 3-12. Select the
Configuration and Administration icon on the left.

Figure 3-12 HTTP Server configuration

From this point forward, the instructions are different depending on whether you are using
IBM HTTP Server (original) or IBM HTTP Server (powered by Apache).
Chapter 3. Installing and setting up call.connect 41

Configuring an HTTP Server for iSeries (original)
To configure an IBM HTTP Server (original) at V4R5 or earlier, follow these steps. First, you
should see the IBM HTTP Server Configuration and Administration page (Figure 3-13). Click
the Configurations option on the left.

Figure 3-13 IBM HTTP Server Configuration and Administration page

Next you need to create a new configuration and a new instance, based on the IBM-supplied
configurations and instances. This is explained in the following sections.
42 Geac System21 commerce.connect: Implementation on the iSeries Server

Creating a configuration
Follow these steps to create a configuration:

1. Under the Configurations option, select the Create configuration link.

2. The Create configuration page appears (Figure 3-14). Follow these steps:

a. Insert the name of the configuration, such as the iSeries name.
b. Select the Create based on existing configuration option and enter CONFIG.
c. Click Apply.

Figure 3-14 Create configuration page

3. Select the Request Processing option on the left and select the Request routing link.
Chapter 3. Installing and setting up call.connect 43

4. The Request routing page (Figure 3-15) appears. Insert the following actions, templates,
and replacement file paths. This allows the system to find actual files when the user logs
on to call.connect. Be sure to click the Insert after radio button:

Action URL template Replacement file path
Pass /callconnect/ /ordermanagement/client/index.html
Pass /callconnect/*.gif /ordermanagement/client/*.gif
Pass /callconnect/callconnect.jnlp /ordermanagement/client/callconnect.jnlp
Pass /callconnect/*.jar /ordermanagement/client/*.jar
Pass /callconnect/setup.exe /ordermanagement/client/setup.exe
Pass /callconnect/help/ /ordermanagement/client/help/introduction.htm
Pass /callconnect/help/*.gif /ordermanagement/client/help/*.gif

Click Apply.

Figure 3-15 Request routing page

5. Select the Languages and Encoding link on the left. Then select MIME types.
44 Geac System21 commerce.connect: Implementation on the iSeries Server

6. The MIME types page (Figure 3-16) appears. Enter the following information for the
system to recognize the .jnlp and .htm extensions. Be sure to click the Insert after radio
button:

– .jnlp extension

• File extension: .jnlp
• Content type/subtype: application/x-java-jnlp-file
• Encoding: 8 bit
• Quality: 1.0

– .htm extension

• File extension: .htm
• Content type/subtype: text/HTML
• Encoding: 8 bit
• Quality: 1.0
• Character Set: ISO-8859-1

Click Apply.

Figure 3-16 MIME types page
Chapter 3. Installing and setting up call.connect 45

Creating an instance
Now you must create a server instance:

1. On the left-hand panel, select Server Instances and then the Create server instance
link.

2. The Create server instance page (Figure 3-17) appears. Follow these steps:

a. Enter the server instance name, such as the iSeries name.
b. Enter the configuration that was just created.
c. Click Create.

Figure 3-17 Create server instance page

You see the message "Message The server instance was successfully created".

In WRKACTJOB SBS(QHTTPSVR), you now see ADMIN jobs and jobs with the name of the
instance that was just created. All should be in wait states.

Now follow the steps in “Configuring CallConnect.jnlp” on page 51.
46 Geac System21 commerce.connect: Implementation on the iSeries Server

Configuring an HTTP Server for iSeries (powered by Apache)
This section explains how to configure an HTTP Server for iSeries (powered by Apache) from
the point where Configuration and Administration was selecteda:

1. To begin, the Manage HTTP Servers page (Figure 3-18) should be displayed. Select
Administration (if it is not already selected) from the options across the top of the page.

2. Under HTTP Server Creation in the left-hand panel, select Create HTTP Server.

Figure 3-18 Manage HTTP Servers page
Chapter 3. Installing and setting up call.connect 47

3. The Create HTTP Server page (Figure 3-19) appears. Fill in the following information
when prompted on each page that appears next. Click Next on each page to advance.

– Type of server: HTTP Server (powered by Apache) – recommended
– Server name: Give a suitable name. Could be the iSeries name.
– Configure base on existing: No
– Server root: Select the default
– Document root: Select the default
– IP address and TCP/IP port: Select the default
– Logging: Combined

Click Finish on the last page.

Figure 3-19 HTTP Server configuration 2 (Apache)

4. At the top of the page, select Configuration.

5. Under Configuration structure, verify that HTTP Server Name global settings appears in
bold.

6. You should see the HTTP Server Name (HOMERA) global settings page (Figure 3-20).
Under Web Site Definition, select Serve New Directory wizard. Click Next.
48 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 3-20 HTTP Server name (HOMERA) global settings page

7. On the Serve New Directory wizard, complete the following tasks:

a. Select Static Web Pages and Files.

b. For Directory to Serve from, enter the client directory, such as
<iSeries>/OrderManagement/client.

c. For Alias, enter the name required on the browser, such as /callconnect/.

d. Click Finish.

8. Click the OrderManagement/client directory under Configuration structure to select it.
Chapter 3. Installing and setting up call.connect 49

9. On the Director /OrderManagement/client page (Figure 3-21), under Processing
Requests, click Content Negotiation.

Figure 3-21 Directory /OrderManagement/client page

10.On the Content Negotiation page, scroll about half way down the page to Additional Meta
(MIME) information (Figure 3-22). Then follow these steps:

a. Click Add.

b. Enter the following information:

• File Extension: .jnlp
• Type: content-type
• Value: application/x-java-jnlp-file

c. Click Add.

d. Enter the following information:

• File Extension: .jar
• Type: content-type
• Value: application/x-zip-compressed

e. Click Add.

f. Click Apply.
50 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 3-22 Additional Meta (MIME) information for file extensions section

11.At the top of the page, select Administration.

12.Click the Manage HTTP Servers link in the left-hand panel.

13.On the Manage HTTP Servers page (Figure 3-18 on page 47), stop the HTTP Server and
then start it.

Configuring CallConnect.jnlp
In Windows Explorer, modify the /ordermanagement/client/callconnect.jnlp file as follows to
reflect the alias that you previously set:

codebase="http://<iSeries>/callconnect/"

Change the server name. Also change the following line to point to the correct iSeries and
port number:

<property name="java.naming.provider.url" value="iiop://<iSeries>:900"/>

The default port number for the default instance of WebSphere is 900.

Configuring JWS.bat
After you set up the HTTP Server, configure JWS.bat as explained here:

1. In Windows Explorer, enter your iSeries name in the following line in the
/ordermanagement/client/JWS.bat file:

"C:\Program Files\Java Web Start\javaws" http://<iSeries>/callconnect/CallConnect.jnlp

Attention: For increased security, configure the aliases in a similar way to those
suggested for the original server.
Chapter 3. Installing and setting up call.connect 51

2. Launch Java Web Start for the first time. In a Web browser, go to:

http://<iSeries>/callconnect/

3. Click Install Java Web Start.

4. Select Run this program from its current location.

5. Select Yes to install and run setup.exe from the iSeries.

6. After this runs, select Launch call.connect to run the application. On the first time
through, when you reach the prompt “Do you want to install and run: call.connect?”, select
Start.

7. Enter the following information:

– Default User: User for call.connect
– Default Password: Password for user
– S21 Company: XX (the AR company to be used)

This creates a desktop icon to run call.connect. Future launches of call.connect
automatically access the latest updates to the client software. Furthermore, you only need
to enter your user ID and password.

3.2.9 Backup
After you have a satisfactory and working system, back up System21 and the integrated files
system (IFS) objects. For System21 backup, see Geac System21 Installation Guide.

To back up the IFS objects, use the SAV command on the iSeries. The following example
shows how to back up the /OrderManagement folder to tape:

SAV DEV('/qsys.lib/tap01.devd') OBJ(('/OrderManagement'))

3.3 call.connect housekeeping
call.connect requires little housekeeping after you set it up and start running it.

3.3.1 Daily backups
Back up the System21 file libraries as usual, including library OSLOMF3.

The buying lists displayed in call.connect display items that were ordered in the last six
weeks. To keep them up to date, run Generate Buying Lists, option 11/OMP, every night. You
can set this up as an auto day, end job in the System21 Machine manager.

Certain data is cached in WebSphere so users may want to stop and start WebSphere daily
or weekly as explained in the following sections.

3.3.2 Stopping WebSphere
This section offers helpful information for situations where the iSeries is powered down or you
want to stop and start WebSphere overnight.

Note: This user must be a valid user that is set up in the XML User Directory, defined to
System21, and set up as an operator in Order Management.
52 Geac System21 commerce.connect: Implementation on the iSeries Server

Under normal circumstances, the application (for example, SalesOrder) continues to run in
WebSphere when the admin job QEJBADMIN is stopped. This means that to stop the system
overnight, the easiest way is to end QEJBSBS by using the following command:

ENDSBS SBS(QEJBSBS) OPTION(*IMMED)

This is a standard, tested iSeries command. It has the advantage of ending the JMS jobs and
any extra WebSphere instances. Users who want to end the subsystem more gently, may
want to use *CNTRLD end with a time limit. If you do not specify a time limit, the subsystem
will never end, because the JMS jobs keep running.

As an alternative for stopping and starting jobs, use XMLConfig as in a WebSphere
configuration. However, keep in mind that this method has not yet been fully tested by Geac.

3.3.3 Starting call.connect
To start call.connect, assuming the SalesOrder application was left running, you must follow
the steps to start WebSphere using either a default instance or other instances as explained
in the following sections.

Starting WebSphere (default instance)
With a default instance, you simply start QEJBSBS by using the following command:

STRSBS SBSD(QEJB/QEJBSBS)

This starts QEJBADMIN, QEJBMNTR, and the SALESORDER application. It requires some
time, possibly several minutes to start.

Starting WebSphere (other instances)
If you need to start more than one instance of WebSphere, use the following command:

CALL PGM(OSLOMD3/STRWSSVR) PARM(TEST)

This starts the test instance. You may start other instances while the default instance is still
starting.

3.3.4 Restoring IFS objects
If for any reason you need to restore the IFS objects for call.connect, use the following
command. Keep in mind that the system must have been previously backed up as
recommended in 3.3.1, “Daily backups” on page 52:

RST DEV('/qsys.lib/tap01.devd') OBJ(('/OrderManagement'))

3.4 Troubleshooting
If you followed the installation instructions exactly, the installation should proceed smoothly.
The primary cause of problems, particularly for those not experienced in these areas, is any
errors in installation steps. Therefore, if the system does not start correctly, you must first
carefully recheck all the installation steps.

You may also find the points in the following sections to be helpful. They are based on
experiences gained from installations carried out over several months on different iSeries
servers.
Chapter 3. Installing and setting up call.connect 53

3.4.1 WebSphere node name
The node name in WebSphere is case sensitive. This is relevant when you start the console
with AdminClient and when you specify an IIOP address for a JNDI lookup (for example,
within the batch files which start client programs). It is also relevant to tools such as the XML
export or import utility.

Usually the name is entirely in lowercase. However, on some systems, it is entirely in
uppercase and could, in theory, be a mixture of both.

If you find that the console fails to start with such messages as "Could not get attributes"
(similar to when the service/subsystem is not started), but the service is started, then the
case of the name may be the problem.

You can verify the required name by using the following SQL to look at a WebSphere table:

select NAME
from EJSADMIN/NODE_TABLE

This shows the node name exactly as WebSphere wants it. Do not be tempted to change the
contents of this table. It is liable to make things worse rather than better. (You need to have
QSECOFR authority to read this table.)

3.4.2 Errors on starting the client
Verify that there are no tabs or spaces after any of the parameters in standard.properties,
particularly if using the CCClient method where these are set up manually.

With data errors, once you sign on to the call.connect GUI, verify that advanced pricing is
switched on for the company in use.

Also check that the search family code is set up in the OM company profile.

3.4.3 Errors when running the client
If pricing, tax, or discounting does not work correctly, check that the library list for the job
description used by OMUSER is correct.

If amended data does not appear, for example an OM item specification that is newly setup,
delete the .bl object in the log folder (see the following section). If you still have problems, stop
and start the beans in WebSphere to update the cached data.

3.4.4 Cached data and .bl and .cd files
To make call.connect as fast as possible, data from more stable files is cached in WebSphere.
If these files change, the new data will not be available to call.connect until the application
server is stopped and restarted. The following information is cached:

� User profiles as held in /OrderManagement/log/UserDirectory.xml
� System21 company profiles

In addition, buying list and customer data is held in files in the /OrderManagement/log folder.
These files are of type .bl and .cd respectively. These files are normally updated by the
System21 options on menu /OMP, Generate Buying Lists and Call List Generation. You may
delete the files if necessary, for example, for testing purposes.
54 Geac System21 commerce.connect: Implementation on the iSeries Server

3.4.5 Log files and debugging
There are log files for both the client and the server, where you can find output produced
while the applications are running. For normal running, it is more efficient to minimize the
output to these files. However, if an error arises without an obvious solution, it is a good idea
to check these log files, which may have information on the cause of the error.

In addition, varying the logging level in the configuration files can change the amount of
output to give more clues as to the cause of the problem. JMS and Pre Generate Buying Lists
also have log files, which you may view, although the level cannot be changed.

Setting up logging on the client
This section explains how to set up logging on the client.

Java Web Start
Output from the client, if using Java Web Start, is directed to the file c:\Winnt\Profiles\<signed
on user>\callconnect.log.

To change the logging level, go to the file C:\Winnt\Profiles\<signed on user>\log.cfg. Change
the following line:

log4j.rootCategory=ERROR, basic

Possible values instead of ERROR are WARN and DEBUG. DEBUG is the highest level. For
example, it produces the most output.

Manually configured client
If you are using a manual client configuration, then the logged output is in a file as directed in
log.cfg, which is in the CCClient folder (see 3.5.3, “Manual client installation” on page 61). In
the log.cfg file, find a line, as shown in the following example, to see where the logged output
will be:

log4j.appender.basic.File=C:\\callConnect\\CCClient\\callConnect.log

In addition, the following line shows the logging level:

log4j.rootCategory=ERROR, basic

You may change ERROR to WARN or DEBUG to produce more output.

Server
The server has three log files for output. The first two, called standard output (stdout) and
standard error (stderr), are defined in the application server in WebSphere. The logging level
cannot be changed. Remember, if they are in WebSphere with an exclamation mark in front of
them, for example !stdout, they are cleared every time WebSphere is restarted and logged
information is lost.

The third output file is defined in the /OrderManagement/cfg/log.cfg file in the following line:

log4j.appender.basic.File=/OrderManagement/log/OrderManagement.log

At the end of the log.cfg file, the following command defines the logging level:

log4j.rootCategory=ERROR, basic

As mentioned in the previous section, you may change ERROR to WARN or DEBUG to
increase the level of information output.
Chapter 3. Installing and setting up call.connect 55

Loadlog.bat
If the logging level on the server is changed, these changes do not normally take effect until
you stop and restart WebSphere. However, you can avoid this if you manually installed the
CCClient folder. The loadlog.bat file in the /OrderManagement/CCClient folder may be run.
You can change the logging level on the server to whatever is currently specified in the
/OrderManagement/cfg/log.cfg file. You must edit this file (right-click the file and select Edit)
as follows before you run it:

1. Set the path to the Callconnect folder:

set ROSEAO_PATH=C:\CallConnect

2. Set the server:

set SERVER=<iSeries>

3. Set the port number to the port required:

start javaw -Djava.naming.provider.url=iiop://%SERVER%:900…

PreGenerate Buying Lists
The PreGenerateBuyingLists.log file is out put when you run System21 option 11/OMP. It is in
the /OrderManagement/log folder by default. In test systems, you may modify the
OSLOMD3/OM311CLP program to direct the output somewhere else.

3.5 Manual configuration
The standard installation instructions assume that the user wants to install call.connect in the
easiest way. Since many variations are possible, this section includes extra information on
alternative setups.

3.5.1 Non-standard Order Management and call.connect installation
You may want to install to libraries and folders other than those used in the standard
installation. This section explains how to achieve this.

System21 and Order Management
All System21 applications may be installed in non-standard libraries. For more information,
see the Geac System21 Setup and Installation Guide.

If call.connect is installed in non-standard files on the server, the OSLOMD3/OM311CLP CL
program may be amended if required. It runs Buying List Generate 11/OMP in System21.

Java components and configuration files
You may install these components and configuration files anywhere on your iSeries server.
However, it is generally simpler to keep all the subfolders in one folder.

If you want to install them somewhere other than in /OrderManagement, then you must
amend the configuration files listed in the following sections. For each file, we assume that
call.connect was installed to /OrderManagement/test.

/OrderManagement/test/cfg/ejb_default
Open this file in a notepad, and change the following lines:

environment.dir=/OrderManagement/test/cfg
log.config=/OrderManagement/test/cfg/log.cfg
56 Geac System21 commerce.connect: Implementation on the iSeries Server

/OrderManagement/test/cfg/log.cfg
Open this file in a notepad, and change the following line:

log4j.appender.basic.File=/OrderManagement/log/OrderManagement.log

/OrderManagement/test/cfg/standard.properties
Open this file in a notepad, and ensure that the following parameters are set as shown here:

Datasource.stateless=as400Source
system21.currentcompany=<The company you want to use>
system21.user=OMUSER
system21.password=OMUSER
system21.glcompany=<The GL company you want to use>

/OrderManagement/test/client/PreGenerateBuyingLists.sh
Open this file in a notepad, and change the following line:

export ROSEAOHOME=/OrderManagement/test

You must also amend the following lines if a test instance of WebSphere is running (see 3.6,
“Alternative configurations” on page 62). In this example, port 902 is used to run an instance
of WebSphere called test:

echo java -Djava.naming.provider.url=iiop://localhost:902
java -Djava.version=1.2 -Djava.naming.provider.url=iiop://localhost:900

3.5.2 WebSphere manual configuration
If you are not using the XML import method to configure WebSphere, then proceed as
explained in this section. The instructions refer to the standard instance of WebSphere and
standard file structure. If you are using a test instance, vary the file paths accordingly.

Starting QEJBSBS on the iSeries
Follow these steps:

1. Sign on to the iSeries as QSECOFR.

2. Start the QEJBSBS subsystem as for the standard configuration.

3. Verify that QEJBADMIN and QEJBMNTR are active.

4. Check the job log of QEJBADMIN for the message “WebSphere administration servers
QEJBADMIN ready”. This may take a while, but do not proceed until you see this message in
the job log.

Starting the WebSphere console on a PC
Follow these steps:

1. In a command prompt, change the directory to:

..\WebSphere\appserver\bin

This is the standard directory for WebSphere installations. If it is somewhere else, amend
the path accordingly.

2. To start the console for the specified machine in the default environment, enter the
following command:

adminclient <iSeries>

This may take some time.

3. Wait for the message “Console Ready”. The WebSphere topology view appears by default
as shown in Figure 3-23.
Chapter 3. Installing and setting up call.connect 57

Figure 3-23 WebSphere console

Creating JDBC drivers
In the WebSphere console, create a Native JDBC driver as explained here:

1. Select the Types tab. On the Types page, select JDBC Drivers, right-click, and select
Create.

Alternatively, you can select the Topology tab. Select WebSphere Administrative
Domain, right-click, and select Create-> JDBC driver.

2. In the JDBC Drivers Create window, you can enter anything for Name, but “Native” is
conventional on an iSeries server. For Implementation class, select the one that ends
DB2Driver.

3. Wait for the message, “Create completed successfully”.

4. In the Topology page, right-click the driver and select Install. This is not necessary for a
native driver.

5. Select iSeries-> Browse for JAR file-> QIBM-> ProdData-> Java400-> ext->
db2_classes.jar.

6. Increase the number of connections. See Chapter 5, “Performance tuning” on page 107.

Creating DataSources
The call.connect software is delivered with the ejb_default file on both the client and server
set to use a data source called jt400. If you want to use another data source, then you need to
modify these files to reflect the new name.

On the iSeries, in the /OrderManagement/cfg folder, find ejb_default.cfg. Check the
standard.properties to ensure that the datasource.stateless name is the same as the
jndi.datasource parameter in ejb_default.cfg.
58 Geac System21 commerce.connect: Implementation on the iSeries Server

After you decide a name, create the data source as explained here:

1. Click the Types tab. On the Types page, select DataSource, right-click, and select
Create.

Alternatively, you can click the Topology tab. Right-click WebSphere Administrative
Domain and select Create-> DataSource.

2. Enter the following values in the Create a DataSource panel:

Data Source Name = jt400 (or as specified in ejb_default.cfg)
Database name = <iSeries>;naming=system;translate binary = true

If additional options are required, for example, jdbc trace, then add ;trace = true and so
on here.

3. Create and wait for the completion message.

Setting the node parameters
The Deployed JAR directory should be set to the folder that will contain the JAR files for
deployment. In a standard deployment, this is /OrderManagement/Deployed.

1. In WebSphere, select Topology. Click the iSeries node and in the Dependent Classpath.

2. Manually enter the names of all the “_logic” JAR files + jevServerSupport.jar + log4j.jar,
fully qualified using the naming system of the server machine, for example:

/OrderManagement/Deployed/application_logic.jar:/OrderManagement/Deployed/salesorder_log
ic.jar:…/OrderManagement/Deployed/jevServerSupport.jar:/OrderManagement/Deployed/
log4j.jar

3. Apply and wait for the completion message.

Creating the application server
To create the application server, follow these steps:

1. Click the Topology tab and the iSeries node. Right-click the node and select Create->
Application Server.

2. On the window that appears, for Name, type SalesOrder or anything that makes sense.
The name must be less than or equal to 10 characters in length because this name will
appear in the WRKACTJOB SBS(QEJBSBS) command.

3. For command line arguments, manually key the entry. The easiest way to do this is to
open a notepad session and create the following string. Then cut and paste it into
WebSphere:

-Xms512m -Djev.config=/OrderManagement/cfg/ejb_default.cfg -classpath
/OrderManagement/deployed/fixes.jar:/OrderManagement/deployed/log4j.jar:/OrderManagement
/deployed/xerces.jar:/OrderManagement/deployed/util.jar:/OrderManagement/deployed/
secman.jar:/OrderManagement/deployed/jevServerSupport.jar:/OrderManagement/deployed/
log4j-full.jar:/OrderManagement/deployed/enquiries_logic.jar:/OrderManagement/deployed/
security_logic.jar:/OrderManagement/deployed/core_application.jar:/OrderManagement/
deployed/core_technical.jar:/OrderManagement/deployed/roseao_logic.jar:/OrderManagement/
jms/openjms-0.5.jar:/OrderManagement/jms/openjms-rmi-0.5.jar:/OrderManagement/jms/
jms.jar:/OrderManagement/jms/exolabcore-0.1.jar:/OrderManagement/deployed/
salesorder_msg.jar:/OrderManagement/deployed/messaging_logic.jar:/OrderManagement/client
/roseao_client.jar

There are no spaces or line feeds after -classpath in this statement.

4. Set the working directory as /OrderManagement/log.

Note: ONLY LOGIC JARS HERE + jevServerSupport.jar + log4j.jar
Chapter 3. Installing and setting up call.connect 59

5. Use the WRKLNK / command to ensure that *PUBLIC has *RWX authority to this folder.

An exclamation mark (!) in front of the stdout and stderr files means that they will be
cleared each time WebSphere is restarted, which is recommended.

6. Create the application server and wait for a message.

7. Start the application server to ensure that it is configured correctly. If it turns blue, click OK
and then stop it. Otherwise investigate the problem and correct it before you proceed.

Creating an EJB container
Follow these steps:

1. On the application server that you just created, right-click and select Create EJB
Container.

2. For Name, enter anything sensible, such as SalesOrderContainer or the same name as
the application server.

3. Create the EJB container and wait.

4. Start the application server and EJB container to ensure that they are configured correctly.
If they turn blue, click OK and then stop them. Otherwise investigate the problem and
correct it before you proceed.

Creating enterprise beans
In the container that you just created, create the enterprise beans:

1. Right-click the container and select Create-> Enterprise Bean.

2. Browse for the JAR file. Be patient because this takes time. Do not double-click the file.

3. Drag the window with another IBM window behind to verify that it is working. If it is
processing, multiple images of the front window appear.

4. If the Deployed JAR directory is set correctly on the node, then the contents of this
directory appear by default, for example /OrderManagement/Deployed for a standard
configuration. If you did not set this correctly, change the “Look in” directory at the top of
the browse window.

5. Click the _deployed JAR file, for example RoseAO_deployed.jar, to select it.

6. A message appears about the number of beans being deployed. You may see a “Not yet
deployed” message. Click OK.

7. Do not enable workload management. Select No when a message about work
management appears.

8. Then one message appears for each bean. Click OK for each message them even though
it may seem like nothing has happened.

9. Start the application server, container, and beans to ensure that they are configured
correctly. If they turn blue, click OK, close the console, and leave them running. Otherwise
investigate any problems and correct them.

The console should look like the example in Figure 3-24.
60 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 3-24 WebSphere console after deployment

3.5.3 Manual client installation
For a simple setup for one or two users, it is possible and easier to configure each client
individually rather than using Java Web Start. However, configuring each client individually is
not as well controlled as Java Web Start. Each user has their own set of client software,
where with Java Web Start, only one set of software is installed on the server.

To install the client software manually, follow the instructions provided here. They assume that
you want to install the software to a folder, called callConnect, on your C drive. If you want to
install the software somewhere else, amend the path accordingly:

1. Copy the jre folder from /OrderManagement to the c:\callConnect folder on your client.

2. Copy the CCClient folder from CD to c:\callConnect\CCClient.

3. Verify that the files within c:\callConnect\CCClient are correctly configured as listed in the
following sections.

Ejb_default.cfg
The contents of this file are:

environment.dir=C:\\callConnect\\CCClient\\
jndi.as400Source=jdbc/jt400
log.config=C:\\callConnect\\CCClient\\log.cfg

Attention: You must maintain this structure. That is, the jre must be at the same level in
your file structure as in the client folder.
Chapter 3. Installing and setting up call.connect 61

Log.cfg
Check the following line:

log4j.appender.basic.File=C:\\callConnect\\CCClient\\callConnect.log

callConnect.bat
Verify that the ROSEAO_PATH is set as follows:

set ROSEAO_PATH=C:\callConnect
set SERVER=<iSeries>

Verify that the CLIENT_PATH is set as follows:

set CLIENT_PATH=%ROSEAO_PATH%\CCClient

If you are using a test instance, change the port number in the following line:

start javaw -Djava.naming.provider.url=iiop://%SERVER%:900 etc

Running the manually configured client
Create a desktop icon pointing to callConnect.bat. The first time you run this, it displays:

� Default User: User for call.connect
� Default Password: Password for user
� S21 Company: XX (the AR company to be used)
� S21 GL Company: XX (the GL company to be used)
� S21 User Name: OMUSER or user set up in 3.2.6, “User profiles” on page 36
� S21 Password: OMUSER
� Datasource: as400Source. This must be the JNDI name used in ejb_default. It is not the

name of the datasource set up in WebSphere.

After the first time, the system requests only the user and password to sign on. Remember,
users and passwords are case sensitive.

3.6 Alternative configurations
This section provides information about alternative configurations of WebSphere and
call.connect. It is useful to anyone who wants to set up testing facilities for example.

3.6.1 Setting up a test instance of WebSphere
The instructions in 3.2, “Standard installation procedures” on page 22, explain how to install
and configure call.connect using the default instance of WebSphere, which runs on port 900.
The call.connect software on the CD comes pre-configured to run this instance in a folder
named OrderManagement. However, it is often useful or necessary to set up other instances
of WebSphere. For example, this would allow you to test fixes in the form of new EJBs before
you move them to the live system. Users may want to use different System21 data for testing.
However, this alone does not require a different configuration of WebSphere. It merely
requires a different job description and a user profile to use that job description.

The steps outlined in Table 3-4 are required to configure a different instance of WebSphere.
62 Geac System21 commerce.connect: Implementation on the iSeries Server

Table 3-4 Steps required to configure a WebSphere instance

3.6.2 Setting up an iSeries server for a test system
This section explains how to set up a test system for the various parts of call.connect installed
on the iSeries server.

System21 data
To use a set of test data, you may set up a separate System21 environment. Normally, this
involves setting up alternative libraries with different data or a copy of live data. A frequently
used method is to change the name of the standard library OSLD1F3, OSLSLF3, etc. to
TSTD1F3, TSTSLF3, etc. Within System21, these test libraries are used in place of the live
libraries.

In the rest of this section, TST… is used to refer to test libraries and other variables, but you
can use other names. It is also possible to use different libraries for other object so that you
may also create such libraries as TSTOMD3, etc.

Journaling
Journal the test files. The minimum set of files is the same as for the standard configuration,
but in the TST libraries. You must set up new libraries TSTF3 and optionally TSTF3R for the
journal. You may optionally set up the receiver, if an ASP is used.

Job description
The default configuration comes with a preconfigured job description OMJOBD, with its library
list already set. This job description is used by a special user OMUSER to set the library lists
for JDBC connections.

To use the test libraries, you must create a test job description, such as TSTJOBD. This can
be held in the TSTF3 library. The job description library list should include TSTOMF3,
TSTD1F3, TSTD2F3, TSTSLF3, TSTGLF3, TSTCSF3, TSTOMD3, TSTOEP3, TSTINP3,
TSTGLD3, TSTSLD3, IPGAMF4, IPGCFF4, IPGAMP4, IPGCFP4. TSTOIF4, TSTOID4,
TSTWTP3, and TSTCSD3.

If any of these libraries are not created, then the previous list should show the corresponding
OSL version.

If other .connect products or other products that use a workflow are running, you must add
TSTWFF3 to the job description library list.

Step Action Completed

1 Set up test data in System21, including OM (optional)

2 Set up journaling

3 Set up a test job description

4 Set up a test user specifically for JDBC connections

5 Configure server

6 Run stored procedures and SQL scripts (optional)

7 Configure WebSphere

8 Configure JMS

9 Configure Java Web Start or install client software
Chapter 3. Installing and setting up call.connect 63

Test user
You must set up a test user profile, such as TSTUSR, for the JDBC connections for the test
instance. This user must use the job description created previously.

You do not need extra profiles for the test system in UserDirectory.XML or System21.

3.6.3 Server configuration
Copy the server objects into a new folder, such as /OrderManagement/test. This folder is
used in the examples throughout the following sections. Next, change the configuration files
listed in the following sections.

Server ejb_default.cfg
Change ejb_default.cfg to point to the correct place for environment.dir and log.config, for
example:

environment.dir=/OrderManagement/test/cfg
log.config=/OrderManagement/test/cfg/log.cfg

Server log.cfg
Edit log.cfg so that log4j.appender.basic.File points to the log folder, for example:

log4j.appender.basic.File=/OrderManagement/test/log/OrderManagement.log

Server standard.properties
Edit standard.properties as shown here:

� Datasource.stateless: <The datasource you want to use>
� system21.currentcompany: <The company you want to use>
� system21.user: <The test user defined previously>
� system21.password: <Password for this user>
� system21.glcompany: <The GL company you want to use>

See 3.6.4, “WebSphere administration” on page 65, for more information about the
datasource.

Client folder
Edit or view the file PreGenerateBuyingLists.sh in the client folder to ensure it points to the
correct files as follows:

export ROSEAOHOME=/OrderManagement/test

Amend the port number on the echo java and java commands at the end of this script to
point to the appropriate port depending on the instance of WebSphere used. The default is
900, so to use port 902 change:

localhost:902

Stored procedures
Create the stored procedures in the same way as for the default instance. However, be sure
that the library list is set as tstomf3, tstomd3, tstd1f3, tstd2f3, tstslf3, and tstglf3.

In addition, it is possible that the actual RPG programs (not just the data files) may be in test
libraries. In this case, create new copies of the scripts and amend them to point at the new
libraries (for example, TSTOMD3).
64 Geac System21 commerce.connect: Implementation on the iSeries Server

3.6.4 WebSphere administration
This section covers the topics related to WebSphere.

Starting the administration server
QEJBSBS must be running. If the default instance is not required, QEJBADMIN and
QEJBMNTR may be ended. Follow these steps:

1. Sign on as QSECOFR.

2. To start a WebSphere instance called test, call program STRWSSVR:

CALL PGM(OSLOMD3/STRWSSVR) PARM(TEST)

3. Jobs TESTADMIN and TESTMNTR should be displayed in the QEJBSBS subsystem.
Check the job log of TESTADMIN and wait for the message “WebSphere administration
server TESTADMIN ready”, similar to the default system.

WebSphere cannot start until the administration server is ready.

Importing the configuration file

Follow these steps:

1. The import tool needs to run within Qshell. Run the start Qshell command, and after each
command, wait for $ signs to appear.

STRQSH

2. Switch the current directory within Qshell:

cd /QIBM/ProdData/WebASAdv/bin

3. Import the configuration file Config.xml from OrderManagement/Config.

4. To use the delivered file to configure the test instance running on port 902 on an iSeries,
use the following command, substituting your server name for iSeries:

XMLConfig -adminNodeName <iSeries> -import /OrderManagement/test/Config/Config.xml
-instance test -nameServiceHost <iSeries> -nameServicePort 902

The config.xml file contains the following variables, which are substituted on the import
command and replaced with real names:

� $NodeName$: This is the WebSphere node name. It is usually the system name, but it is
case sensitive.

� dir: This is the root directory for the installation. This is the directory that contains the
subdirectories: cfg, deployed, and log. For an instance called test, this could be
/OrderManagement/test. The EJBs to be deployed are in
/OrderManagement/Test/Deployed.

Attention: To import the configuration file, the WebSphere instance must be running.
However, the console must not be running.

Notes:

� Leave a space before each - sign. Leave a space after each keyword, for example
-adminNodeName , -import , and -substitute .

� There is only one pair of quotes around the entire substitution string.
Chapter 3. Installing and setting up call.connect 65

� $appname$: This is the application name, such as SalesTest. It should be different from
the default application name so that they can be distinguished if they are both running
together.

� $container$: This is the container name, which is typically the same as the application
name, but it can be different.

Starting application server
Follow the steps to start the application server and its beans:

1. Start the application.

2. Start a WebSphere console.

3. In a command prompt, change the directory to:

..\WebSphere\appserver\bin

4. To start the console, enter the command:

adminclient <iSeries> <Port Number>

For this example, to start a console for the instance running on port 902, you may enter:

adminclient <iSeries 902>

5. Wait for message “Console Ready” to appear in the console. The topology view is
displayed by default.

6. Open the node, application server, and container to display the beans.

7. Click the application server. Click Start and then wait. The beans turn blue as they start.
This may take several minutes.

3.6.5 Manual client installation
For one or two test users, it may be easier to use a manually installed client rather than Java
Web Start. To change from live to test versions of Java Web Start, you must change the
configuration each time, although they are fairly simple. Details on both are included here.

For a simple setup for one or two users, it is possible to configure a client individually rather
than using Java Web Start. This is simpler than using JWS, but is not as well controlled. Every
user will have their own set of client software, whereas with JWS, only one set is installed on
the server.

To install the client software manually, follow the instructions provided here. They assume that
you want to install the software to a folder, called callConnect, on your C drive. If you want to
install the software somewhere else, amend the path accordingly:

1. Copy the jre folder from /OrderManagement/test to a folder c:\callConnect\test on your
client.

2. Copy the CCClient folder from /OrderManagement/test to c:\callConnect\test\CCClient.

Note: The application name should be less than 11 characters in length. This way you
can see it clearly on the iSeries using the WRKACTJOB SBS(QEJBSBS) command.
Longer names are allowed, but they are truncated when viewed this way.

Note: This is a standard directory after a default installation of the console, but you may
install it someplace else.
66 Geac System21 commerce.connect: Implementation on the iSeries Server

3. Verify that the files within c:\callConnect\CCClient are correctly configured as listed in the
following sections.

Ejb_default.cfg
Verify the contents of this file as they are shown here:

environment.dir=C:\\callConnect\\test\\CCClient\\
jndi.as400Source=jdbc/jt400
log.config=C:\\callConnect\\test\\CCClient\\log.cfg

Log.cfg
Check the following line:

log4j.appender.basic.File=C:\\callConnect\\test\\CCClient\\callConnect.log

callConnect.bat
Verify that the ROSEAO_PATH is set as follows:

set ROSEAO_PATH=C:\callConnect\test
set SERVER=<iSeries>

Verify that the CLIENT_PATH is set as follows:

set CLIENT_PATH=%ROSEAO_PATH%\CCClient

If using a test instance, change the port number in the following line to 902, for example:

start javaw -Djava.naming.provider.url=iiop://%SERVER%:900 etc

Running the manually configured client
Create a desktop icon pointing to callConnect.bat. The first time you run this, it displays:

� Default User: User for call.connect
� Default Password: Password for user
� S21 Company: XX (the AR company to be used)
� S21 GL Company: XX (the GL company to be used)
� S21 User Name: OMUSER or user set up in 3.2.6, “User profiles” on page 36
� S21 Password: OMUSER
� Datasource: as400Source. This must be the JNDI name used in ejb_default. It is not the

name of the datasource set up in WebSphere.

After the first time, the system requests only the user and password to sign on. Remember,
users and passwords are case sensitive.

Testing Java Web Start
Follow the steps for a standard configuration until you reach the create configuration step.
Then complete the steps in the following sections for your HTTP Server.

HTTP Server for iSeries (original)
Configure your IBM HTTP Server for iSeries (original) as explained in the following steps:

1. Under the Configurations option, select the Create Configuration link.

2. The Create Configuration page appears (see Figure 3-14 on page 43 for an example).
Follow these steps:

Important: You must maintain this structure. For example, the jre folder must be at the
same level in your file structure as the client folder.
Chapter 3. Installing and setting up call.connect 67

a. Insert the name of the configuration, such as the iSeries name.

b. Select the Create based on existing configuration option and enter CONFIG.

c. Click Apply.

3. Select the Request Processing option on the left and select the Request routing link.

4. The Request routing page (see Figure 3-15 on page 44 for an example) appears. Insert
the following actions, templates, and replacement file paths. Be sure to click the Insert
after radio button:

Index Action URL Template Replacement File Path
Pass /callconnect/test/ /ordermanagement/test/client/index.html
Pass /callconnect/test/*.gif /ordermanagement/test/client/*.gif
Pass /callconnect/test/callconnect.jnlp /ordermanagement/test/client/callconnect.jnlp
Pass /callconnect/test/*.jar /ordermanagement/test/client/*.jar
Pass /callconnect/test/setup.exe /ordermanagement/test/client/setup.exe
Pass /callconnect/test/help/ /ordermanagement/test/client/help/introduction.htm
Pass /callconnect/test/help/*.gif /ordermanagement/test/client/help/*.gif

5. Select the Languages and Encoding link on the left. Then select MIME types.

6. The MIME types page (see Figure 3-16 on page 45 for an example) appears. Enter the
following information for the system to recognize the .jnlp and .htm extensions. Be sure to
click the Insert after radio button:

– .jnlp extension

• File extension: .jnlp
• Content type/subtype: application/x-java-jnlp-file
• Encoding: 8 bit
• Quality: 1.0

– .htm extension

• File extension: .htm
• Content type/subtype: text/HTML
• Encoding: 8 bit
• Quality: 1.0
• Character Set: ISO-8859-1

Click Apply.

Now you create the instance:

1. On the left-hand panel, select Server Instances and then the Create server instance
link.

2. The Create server instance page (Figure 3-17) appears. Follow these steps:

a. Enter the server instance name, such as the iSeries name.
b. Enter the configuration that was just created.
c. Click Create.

You see the message “Message The server instance was successfully created”.

In WRKACTJOB SBS(QHTTPSVR), you now see ADMIN jobs and jobs with the name of the
instance that was just created. All should be in wait states.

HTTP Server for iSeries (powered by Apache)
Configure your IBM HTTP Server for iSeries (powered by Apache) as explained in the
following steps:
68 Geac System21 commerce.connect: Implementation on the iSeries Server

1. At the top of the page, select Configuration.

2. Under Configuration structure, verify that HTTP Server Name global settings appears in
bold.

3. You should see the HTTP Server Name (HOMERA) global settings page (see Figure 3-20
on page 49 for an example). Under Web Site Definition, select Serve New Directory
wizard. Click Next.

4. On the Serve New Directory wizard, complete the following tasks:

a. Select Static Web Pages and Files.

b. For Directory to Serve from, enter the client directory, such as
iSeries/OrderManagement/test/client.

c. For Alias, enter the name required on the browser, such as /callconnect/test/.

d. Click Finish.

5. Click the OrderManagement/client directory under Configuration structure to select it.

6. On the Director /OrderManagement/client page (Figure 3-21), under Processing
Requests, click Content Negotiation.

7. On the Content Negotiation page, scroll about half way down to Additional Meta (MIME)
information (Figure 3-22). Then follow these steps:

a. Click Add.

b. Enter the following information:

• File Extension: .jnlp
• Type: content-type
• Value: application/x-java-jnlp-file

c. Click Add.

d. Enter the following information:

• File Extension: .jar
• Type: content-type
• Value: application/x-zip-compressed

e. Click Add.

8. Click Apply.

9. At the top of the page, select Administration.

10.Click the Manage HTTP Servers link in the left-hand panel.

11.On the Manage HTTP Servers page (Figure 3-25), stop the HTTP Server and then start it.
Chapter 3. Installing and setting up call.connect 69

Figure 3-25 Manage HTTP Servers page: Stopping the server

Configuring CallConnect.jnlp
In Windows Explorer, modify the file /ordermanagement/test/client/callconnect.jnlp as follows
to reflect the alias that you previously set up:

codebase="http://<iSeries>/callconnect/test/"

Change the server name. Also change the following line to point to the correct iSeries and
port number:

<property name="java.naming.provider.url" value="iiop://<iSeries>:900"/>

The default port number for the default instance of WebSphere is 900. If you use the test
instance, as recommended in this chapter, you should change the port number to 902.

Configuring JWS.bat
In Windows Explorer, enter your iSeries name in the following line in the
/ordermanagement/test/client/JWS.bat file:

"C:\Program Files\Java Web Start\javaws" http://<iSeries>/callconnect/test/CallConnect.jnlp

Changing to another instance
If you want to change to another instance of WebSphere, such as test to default, then you
have to change the client configuration files as created by the Java Web Start installation.
Users may want to create two versions of these files and swap them as required.

These files are installed to C:\Winnt\Profiles\<signed on user>.
70 Geac System21 commerce.connect: Implementation on the iSeries Server

The files to modify are:

� ejb_default.cfg
� log.cfg
� standard.properties

See 3.6.5, “Manual client installation” on page 66.
Chapter 3. Installing and setting up call.connect 71

72 Geac System21 commerce.connect: Implementation on the iSeries Server

Chapter 4. Installing and setting up
vendor.connect

This chapter explains how to install and set up Geac’s vendor.connect product.

Throughout the installation instructions, you will see variables in italics. For each of these
variables, you need to provide a real name. For example, for the variable <iSeries>, you must
change it to the name of the machine you are using.

Keep in mind that all the required components are on the vendor.connect CD. However,
throughout this chapter, references are made to the Geac applications commerce.platform,
@ctive Modeler, and secure.connect. vendor.connect users may install these applications,
although they are not essential.

This chapter also refers to a folder named Jacada, which contains all the components of
Jacada that required for vendor.connect. You may obtain a Jacada server from your Geac
distributor, although one is not required for vendor.connect.

4

© Copyright IBM Corp. 2002. All rights reserved. 73

4.1 Preparing for the installation
This section discusses the activities and checks that are required before you begin installing
vendor.connect.

4.1.1 Skills required
You must be familiar with the workstation, particularly with the operation of the keyboard and
mouse. You should also be familiar with the following applications, which are used in the
vendor.connect configuration. Although instructions are provided at each stage, a complete
beginner may find the installation to be difficult and may need help from someone with more
experience.

� Windows NT Explorer
� Notepad and Wordpad or other tool to edit files for example, .bat and .xml files
� FTP
� Client Access
� MS-DOS
� OS/400 commands
� A Web Browser for example, Internet Explorer
� System21
� Qshell

In addition, you should also be familiar with the following products or tools:

� WebSphere Application Server.
� CL programming on the iSeries
� Shell scripts
� SQL
� @ctive modeler

For straightforward configurations, you may be able to proceed regardless of your familiarity
with these items.

4.2 Installing vendor.connect
This section explains how to install vendor.connect. It even explains a basic setup using the
configuration that is supplied on the CD.

Basic steps checklist
Table 4-1 summarizes the steps that are required to install and configure vendor.connect. You
can find additional information about each step in the sections that follow.

Table 4-1 vendor.connect installation checklist

Step Action Completed

1 Load System21, including distribution and finance applications, Advanced
Receiving (AG), Vendor Scheduling (VS), and Work Management

2 Load Java components and configuration files for vendor.connect

3 Restore extra libraries for vendor.connect

4 Install and configure WebSphere

5 Install and configure an HTTP Server
74 Geac System21 commerce.connect: Implementation on the iSeries Server

vendor.connect components
Several different types of objects are required for this installation such as iSeries library, JAR,
and configuration files. You can learn more about these in the following sections.

4.2.1 System21 base

To run vendor.connect, you need to load at least the following System21 applications at
V3.5.2b Service Pack 5:

� Application Manager
� Geac System21
� Work Management
� Inventory (IN)
� Order Entry (OE)
� Purchase Management (PM)
� Vendor Scheduling (VS)
� Advanced Receiving (AG)
� Cash Management (CS)
� General Ledger (GL)
� Sales Ledger (SL)
� Purchase Ledger (PL)

You can obtain these applications from your Geac distributor.

4.2.2 Java components and configuration files
All other components of vendor.connect are on the vendor.connect CD. To load them, follow
the instructions in the readme file.

6 Set up on the iSeries

7 Configure MQSeries

8 Install and configure the Work Management trigger handler

9 Active Architecture framework

10 Set up the Jconnects server

11 User IDs and security (LDAP or XML)

12 Set up database synchronization

13 Test the configuration

14 Back up the configuration

Step Action Completed

Note: This redbook does not provide instructions for installing System21. You can find
information on installing System 21 and current details regarding your installation scenario
in the Geac System21 Installation and Setup Guide.
Chapter 4. Installing and setting up vendor.connect 75

4.2.3 Restoring libraries
Three additional libraries are delivered in the AS400 folder. These are held as save files. To
restore them, use File Transfer Protocol (FTP) to copy them from your workstation to the
iSeries server. See the following steps for an example:

1. Open a DOS prompt and enter the following commands:

CD C:\AS400
FTP <iSeries>

2. Enter a user name and password for the iSeries.

3. Enter the following commands in the order shown:

Bin
Cd <the library where you want to put the Save File>
Put <Save File name>
Quit

Figure 4-1 shows an example of how this appears on the DOS prompt.

Figure 4-1 FTP commands to copy a Save File from N:\AS400 to QGPL on an iSeries called Needjava

4. The Save Files are called authsystem, oslvcf3, and oslvcd3. After they are on the iSeries,
use the Restore Library command to restore the libraries (of the same name).

4.2.4 Installing and configuring WebSphere
The instructions in the following section are specific to the vendor.connect installation. For
complete instructions on installing and configuring WebSphere Application Server, go to:

http://www-1.ibm.com/servers/eserver/iseries/software/WebSphere/wsappserver/docs/doc.htm

It is possible to use the default instance of WebSphere. However, you may want to create a
new instance, which may easily have an HTTP instance attached to it. To use the default
instance, start QEJBSBS as shown in the following example. Then stop the QEJBADMIN and
QEJBMNTR jobs and restart them, using the strwasinst command with the HTTP
parameter.

To create a new instance, start a Qshell session with the following command:

STRQSH
76 Geac System21 commerce.connect: Implementation on the iSeries Server

http://www-1.ibm.com/servers/eserver/iseries/software/WebSphere/wsappserver/docs/doc.htm

Wait for the $ sign to appear after each entry.

Creating a new instance
To create a new instance called VC on port 905, enter:

crtnewinst -instance VC -bootstrap 905 -lsd 9005

For full details, see the WebSphere Application Server documents on the Web at:

http://www-1.ibm.com/servers/eserver/iseries/software/WebSphere/wsappserver/docs/as400v35/
docs/doccntr.pdf

Starting the administration server
To start the administration server, follow these steps:

1. On the iSeries, enter the command:

STRSBS SBSD(QEJB/QEJBSBS)

This starts the QEJB subsystem and two autostart jobs QEJBADMIN and QEJBMNTR.

2. WebSphere cannot start until the administration server is ready. To find out the status of
the administration server, check the job log for the QEJBADMIN job. Enter the following
command:

WRKACTJOB SBS(QEJBSBS)

3. On the next display, type 5 next to QEJBADMIN to view the job.

4. Select option 10 to view the job log. Wait until the message “WebSphere administration
server QEJBADMIN ready.” appears. This may take several minutes.

Starting the instance
Once QEJBSBS is running, the instance created above may start. If the default instance is
not required for other purposes, QEJBADMIN and QEJBMNTR may be cancelled. To start the
new instance, go to Qshell and enter the following command:

strwasinst -instance VC -http VC

This command starts the WebSphere instance VC that uses an HTTP Server instance, which
is also called VC.

Importing the configuration file

The import tool needs to run within Qshell. Follow these steps:

1. Run the Start Qshell (STRQSH) command and after each command wait for $ signs to
appear.

2. Change the current directory within Qshell. Enter the following command:

cd /QIBM/ProdData/WebASAdv/bin

3. Import the config.xml configuration file from VendorConnect/Config.

4. To use the delivered file to configure the default instance on an iSeries server, use this
command, substituting your server name for iSeries:

XMLConfig -adminNodeName <iSeries> -import /VendorConnect/VC.xml
-substitute "nodename=<iSeries>;host=<iSeries+domain>;port=<port number>;IP=<IP
address>"

It may run for some minutes.

Important: To import the configuration file, the WebSphere instance must be running, but
the console must not be running.
Chapter 4. Installing and setting up vendor.connect 77

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/doc.htm

Figure 4-2 shows an example of an imported configuration.

Figure 4-2 Importing the WebSphere configuration to an iSeries called homer

The import includes:

� The node
� The data source and JDBC driver
� The applications required for vendor.connect

The config.xml file contains the following variables, which are substituted on the import
command and replaced with real names:

� $NodeName$: This is the WebSphere node name, which is case sensitive. This is
relevant when you start the console with AdminClient and when you specify an Inter-ORB
Protocol (IIOP) address for a Java Naming and Directory Interface (JNDI) lookup (for
example, within the batch files which start client programs). It is also relevant to tools such
as the XML export/import utility.

Usually the name is entirely in lowercase, However, on some systems, it is entirely in
uppercase, and in theory, could be a mixture of both. If you find that the console fails to
start with such messages as “Could not get attributes” (similar to when the
service/subsystem is not started) but the service is started, then problem may be the case
of the name.

You can verify the required name by using the following SQL to look at a WebSphere table:

select NAME
from EJSADMIN/NODE_TABLE

This shows the node name exactly as WebSphere wants it to appear. Do not be tempted
to change the contents of this table. It is liable to make things worse rather than better.

Notes:

� Leave a space before each - sign. Leave a space after each keyword, for example,
-adminNodeName , -import , and -substitute .

� There is only one pair of quotes around the entire substitution string.

QSH Command Entry

 $
 > cd /QIBM/ProdData/WebASAdv/bin
 $

 ===> XMLConfig -adminNodeName homer -import /VendorConnect/vc.xml -substitute "
nodname=homer;host=homer.jba.co.uk;port=85;IP=123.456.001.157"
_

 F3=Exit F6=Print F9=Retrieve F12=Disconnect
 F13=Clear F17=Top F18=Bottom F21=CL command entry
78 Geac System21 commerce.connect: Implementation on the iSeries Server

� $host$: This is the iSeries name and domain, such as needjava.jab.co.uk.

� $port$: This is the port for the WebSphere instance running vendor.connect.

� IP: This is the IP address of the iSeries server.

Starting the application
To start the application, follow these steps:

1. Start a WebSphere console. In a command prompt, change the directory to:

..\WebSphere\appserver\bin

2. To start the console for the specified machine in the default environment, enter the
command:

adminclient <iSeries> <Port Number>

This may be quite slow. If an instance other than the default instance is required, enter the
port number. Otherwise you may leave this blank.

3. Wait for the message “Console Ready” to appear in the console. The topology view
appears by default.

4. Open the node, application server, and container to display the beans and servlets. You
should see the application servers VennConn, VCSync, and Receiving. Click the
Application Server. Click Start and wait. The beans and servlets turn blue as they start.
This may take several minutes.

4.2.5 IBM HTTP Server for iSeries
vendor.connect is a Web-based application. For it to run, you must configure the HTTP Server
as explained in the following sections. Two HTTP Servers are available:

� IBM HTTP Server for AS/400 (original): For V4R4 and earlier
� IBM HTTP Server for iSeries (powered by Apache): For V5R1 and later

Ensuring that the HTTP Server is ready
The following steps are the same for both servers:

1. Verify that the HTTP Server software is loaded. On the iSeries, type the following
command:

GO LICPGM

2. On the display that appears, select option 10 (Display). Check the suffixes. Look for DG1.
If you do not find it, load it before you proceed to the next step.

3. Start the HTTP Server. On the iSeries, run the command:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

4. Verify that the server is running. Enter the following command:

WRKACTJOB

5. Verify that ADMIN jobs are running in the QHTTPSVR subsystem.

Note: You must have QSECOFR user authority to read this table.

Note: This is a standard directory for a default installation of the console. However, you
can install the console in a different directory if necessary.
Chapter 4. Installing and setting up vendor.connect 79

Configuring the HTTP Server on the iSeries
To configure the HTTP Server on the iSeries server, follow these steps:

1. In a Web browser, type:

http://<iSeries>:2001

Enter your iSeries server name for iSeries. This is the port on which the administration of
HTTP is listening.

2. Sign on as QSECOFR.

3. The AS/400 Tasks page appears as shown in Figure 4-3. In this example, the pages are
for an iSeries called Needjava. Select IBM HTTP Server for AS/400.

Figure 4-3 AS/400 Tasks page
80 Geac System21 commerce.connect: Implementation on the iSeries Server

4. The IBM HTTP Server for AS/400 page appears as shown in Figure 4-4. Select the
Configuration and Administration icon on the left.

Figure 4-4 IBM HTTP Server for AS/400 page

Configuring IBM HTTP Server for iSeries (original)
This section explains how to install IBM HTTP Server for iSeries (original) on an iSeries
server. The instructions to install IBM HTTP Server for iSeries (powered by Apache) are not
currently available. The following steps apply to a configuration using the original server on
V4R5 or earlier.
Chapter 4. Installing and setting up vendor.connect 81

After you select the Configuration and Administration icon, as stated in the previous section,
the IBM HTTP Server Configuration and Administration page appears as shown in Figure 4-5.
Select the Configurations link from the left-hand panel on the page.

Figure 4-5 IBM HTTP Server Configuration and Administration page

Now you need to create a new configuration and a new instance, based on the IBM-supplied
configurations and instances.

Creating a configuration
Follow these steps to create a configuration:

1. Under the Configurations option, select the Create configuration link.

2. The Create configuration page appears (Figure 4-6). Follow these steps:

a. Insert the name of the configuration, such as the iSeries name.
b. Select the Create based on existing configuration option and enter CONFIG.
c. Click Apply.
82 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 4-6 Create configuration page

Creating an instance
Now you must create a server instance:

1. On the left-hand panel, select Server Instances and then the Create server instance
link.
Chapter 4. Installing and setting up vendor.connect 83

2. The Create server instance page (Figure 4-7) appears. Follow these steps:

a. Enter the server instance name, such as the NEW in our example.
b. Enter the configuration that was just created, which is CC in this example.
c. Click Create.

Figure 4-7 Create server instance page

You see the message “Message The server instance was successfully created”.

In WRKACTJOB SBS(QHTTPSVR), you now see ADMIN jobs and jobs with the name of the
instance that was just created. All should be in wait states. The first one should be in a
CNDW wait state.

Setting up on the iSeries
This section explains how to set up journaling for certain files. It discusses special user
profiles for vendor.connect that use a specifically configured job description to give
vendor.connect its library list. This section also explains how to set up extra System21 data
and database triggers for the required files.

Journaling
Because WebSphere applications run under commitment control, you must journal files that
are used by vendor.connect. Since you must journal files from different libraries, you must
create the journal receiver and the journal in a new library rather than in an existing System21
library. You must journal the files listed on the following page to operate vendor.connect.
However, merely journaling these files does not give you full advantages of journaling such as
extra security.

Performance improves if files are journaled to an auxiliary storage pool (ASP). The following
steps provide commands for use with and without an ASP.
84 Geac System21 commerce.connect: Implementation on the iSeries Server

You must journal the following files at a minimum:

� All physical files in the OSLVCF3 library (except for files named XAPnn if they were there)
� The PMP02 and PMP09 files in the OSLD1F3 library
� The AGP00, AGP10, and AGP20 files in the OSLD2F3 library

To journal these files with no ASP, follow these steps:

1. Sign on as QSECOFR.

2. Create a new library for the journal receiver and journal such as OSLF3:

CRTLIB LIB(OSLF3) TEXT('OSL journal library')

3. Create a journal receiver:

CRTJRNRCV JRNRCV(OSLF3/OSL0001) THRESHOLD(50000) TEXT('System21 journal receiver.')

4. Create a journal:

CRTJRN JRN(OSLF3/OSL) JRNRCV(OSLF3/OSL0001) MNGRCV(*SYSTEM) DLTRCV(*YES) TEXT('System21
journal')

To journal the files using an ASP, follow these steps:

1. Create a separate library for the journal receiver:

CRTLIB LIB(OSLF3R) TEXT('OSL journal receiver library')

2. Create a journal receiver:

CRTJRNRCV JRNRCV(OSLF3R/OSL0001) ASP(2) THRESHOLD(50000) TEXT('System21 journal
receiver.')

3. Create the journal as shown in step 4 in the previous sequence of steps.

To journal a single file, such as ADDRESS, use the following command:

STRJRNPF FILE(OSLVCF3/ADDRESS) JRN(OSLF3/OSL) OMTJRNE(*OPNCLO)

To journal multiple files within a library, complete the following steps.

1. Start the Programming Development Manager (PDM):

STRPDM

2. Select option 9 (Work with user-defined options).

Note: The following commands are sample commands only. You may vary them as
required.

Note: This is the recommended method.
Chapter 4. Installing and setting up vendor.connect 85

3. The Specify Option File to Work With display (Figure 4-8) appears. Press Enter to accept
the defaults (File QAUOOPT, Library QGPL, and Member QAUOOPT).

Figure 4-8 Working with the user-defined options

4. On the next panel, press F6 to create a new user-defined option.

5. On the Create User-Defined Option display (Figure 4-9), enter the following information:

– Option: SJ
– Command: STRJRNPF FILE(&L/&N) JRN(OSLF3/OSL) OMTJRNE(*OPNCLO)

Press Enter.

6. You return to the list of user-defined options. Press F3.

Figure 4-9 Create User-Defined Option display

7. You return to the PDM menu. Select option 2 (Work with objects).

8. On the next display, enter the library that contains the files to journal for example, OSLOMF3.
Under object, set:

Specify Option File to Work With

 Type choices, press Enter.

 File QAUOOPT Name, F4 for list

 Library QGPL *LIBL, *CURLIB, name

 Member QAUOOPT Name

 F3=Exit F5=Refresh F12=Cancel

Create User-Defined Option

 Type option and command, press Enter.

 Option SJ Option to create

 Command STRJRNPF FILE(&L/&N) JRN(OMF3/OSL) OMTJRNE(*OPNCL
O)

 F3=Exit F4=Prompt F12=Cancel
86 Geac System21 commerce.connect: Implementation on the iSeries Server

– Name: *ALL
– Type: *FILE
– Attribute: PF-DTA

9. On the following display, type SJ next to each file that you want to journal. To journal all
physical files, type SJ on the first line and press F13.

User profiles
The vendor.connect library list is controlled by a job description attached to a special user
profile as defined here.

� Job description: The vendor.connect library list is set within a job description OSLVCF3
in the OSLVCF3 library that is supplied as already configured. If you must use other
.connect products, you must change this job description library list to include the extra
libraries.

� User profile: You must create a user profile. As a standard, this should be called OSLVCF3.
This user must have its job description set to OSLVCF3 as explained earlier. Set the current
library to OSLVCF3. To create a user profile, enter the following command:

CRTUSRPRF USRPRF(OSLVCF3) CURLIB(OSLVCF3) TEXT(vendor.connect) JOBD(OSLVCF3/OSLVCF3)

System21 data setup
Follow these steps to set up the System21 data:

1. Using Data File Utility (DFU) or SQL, check the PM company profile record
OSLD1F3/PMP10. Note the value of the RAVN10 field (Receiving Address Vendor
Number).

2. Set the RECEIVINGADDRESSVENDOR field in OSLVCF3/COMPANYPROFILE to the
value in RAVN10.

3. Set NEXTSHIPMENTNUMBER = 0 and update it.

4. Create a record in file OSLVCF3/UNIQUEIDENTIFIER for each company on PMP10 with
file UNIQUEID = 0.

5. Check file OSLWFF3/WFP98 to ensure that it contains the following record:

HOST98 blank
PTAP98 MQ
PMRF98 TRIGGER.OUT
PMIF98 WM.TRIGGER.OUT
PVL198 0
PVL298 0

Database triggers
You must add database triggers to the following files:

� In library OSLD1F3: PMP02, PMP03, PMP06, and PMP09
� In library OSLPLF3: PLP05

To add database triggers, there must not be any locks on the file. For each file, you must add
*INSERT, *UPDATE, and *DELETE triggers. Use the following command to add an *INSERT
trigger to PMP02. Change the TRGEVENT parameter to create the *UPDATE and *DELETE
triggers:

ADDPFTRG FILE(OSLD1F3/PMP02) TRGTIME(*AFTER) TRGEVENT(*INSERT) PGM(OSLWFF3/WF500A)
RPLTRG(*YES) ALWREPCHG(*YES) THDSAFE(*UNKNOWN) MLTTHDACN(*SYSVAL) TRGUPDCND(*ALWAYS)

The TRGUPDCND is only necessary for the *UPDATE trigger.
Chapter 4. Installing and setting up vendor.connect 87

4.2.6 MQSeries
This section explains how to set up MQSeries for vendor.connect.

Creating a queue manager
You must first create a queue manager:

1. Enter the following command:

WRKMQM

If a default queue manager doesn't already exist, create one using the following command:

CRTMQM MQMNAME(VCQM) TEXT('vendor.connect queue manager') DFTQMGR(*YES)

Alternatively, press F6 on the WRKMQM display. You must create your queue manager as
the default. You cannot change this at a later date. AIF database triggering only works with
the default. We recommend that you call the queue manager the same name as the
iSeries name, but it is not required.

2. Grant authorization to the MQSeries Manager by using the following command:

GRTMQMAUT OBJ(VCQM) OBJTYPE(*MQM) USER(*PUBLIC) AUT(*ALL)

3. On the WRKMQM display, select option 14 (Start the Work Queue Manager).

4. On the next display, select option 20 (Work with Channels).

5. On the Work with Channels display, create new channels with the following command:

CRTMQMCHL CHLNAME(WM.TRIGGER.CHL) CHLTYPE(*SVRCN) TRPTYPE(*TCP).
CRTMQMCHL CHLNAME(AIF.TRIGGER.CHL) CHLTYPE(*SVRCN) TRPTYPE(*TCP).

Alternatively, you can press F6 from the Work with Channels display.

6. Create new queues as follows:

CRTMQMQ QNAME(AIF.TRIGGER.OUT) QTYPE(*LCL) MQMNAME(*DFT)
CRTMQMQ QNAME(WM.TRIGGER.OUT) QTYPE(*LCL) MQMNAME(*DFT)
CRTMQMQ QNAME(WM.TRIGGER.OUT1) QTYPE(*LCL) MQMNAME(*DFT)

7. Grant authority to all the queues with the command:

GRTMQMAUT OBJ(queue name above) OBJTYPE(*Q) USER(*PUBLIC) AUT(*ALL) MQMNAME(*DFT)

Alternatively from WRKMQM, select option 18 (Work with queues) and press F6.

To ensure that MQSeries is automatically restarted if the machine is shut down for any
reason, change the machine’s IPL procedure to include the following commands:

STRSBS SBSD(QMQM/QMQM)
STRMQM
STRMQMCSVR
STRMQMLSR

Note that because the commerce.platform software currently only works with the MQSeries
queue manager set as the default queue manager, no parameters are needed for the
STRMQMxxx commands.

If all the subsystems are routinely taken down for backups, etc., then you must update the
subsystems restart to also execute the previous four commands.
88 Geac System21 commerce.connect: Implementation on the iSeries Server

4.2.7 Work Management Trigger Handler for the iSeries
The OSLVCD3/TRGRHNDLR CL program is provided to start the Work Management Trigger
Handler. The program runs a shell script, which is found in the vendorconnect folder on the
iSeries (trigger.sh). To run the CL program, enter:

CALL OSLVCD3/TRGRHNDLR

After the program runs, the following three jobs should be running within QEJBSBS:

� QP0ZSPWP
� QZSHSH
� VCTRIGGERS

These files may be identified because they will run under the user profile of whoever started
them. You should submit this program to run automatically as part of any day start routines or
after an IPL.

4.2.8 Active Architecture framework
The Active Architecture framework handles the processing of the triggers in two steps. The
publisher and the controller between them convert the triggers so that they are sent to the
correct Java processor.

Publisher
The publisher process picks up the raw database trigger messages placed on MQSeries.
TRIGGER.OUT queue by the OSLWFF3 and WF500A programs. Then it converts them to
XML messages and puts them on the AIF.TRIGGER.OUT queue.

Verifying whether folders have write authority
You should load the AEF, com, and com.geac.erp.system21.aef folders on the iSeries so that
they are directly off the root directory in the file structure. Use the WRKLNK command to
ensure that these folders are all writable:

WRKLNK '/<directory>'

Select option 9 to view authority. Assign *PUBLIC *RWX authority.

Checking the properties file
Check AEF/TriggerHandler.properties file to ensure that the MQSeries names correspond to
those that are set up in the MQSeries setup in 4.2.6, “MQSeries” on page 88.

Updating the event documents
There are events (XML documents under the com.geac.erp.system21.aef/xml folder) that
filter out any unwanted messages. To reduce the amount of data initially held in the
vendor.connect database, these events filter based on the suppliers that currently use
vendor.connect. This enables a vendor.connect user to gradually roll out the system to more
suppliers, until the majority are using it, at which time the Supplier Filter Rule (but not the
other rules, which are an integral part of the operation of the system) can be removed
completely.

These events are machine specific. Therefore, you must change the folder names to match
the same name as your iSeries server.

Changing the folder names
There are two folder names that you must change. One is under
com.geac.erp.system21.aef/xml/rules, and one is under
Chapter 4. Installing and setting up vendor.connect 89

com.Geac.erp.system21.aef/xml/maps. Inside these folders, there are additional folders that
represent the iSeries libraries where the System21 PMPxx and PLPxx tables reside. You
must also change these folder names to match your libraries (see Figure 4-10).

Figure 4-10 File structure for libraries named Xyz…

Updating the events rules
There are two ways to update these event rules:

� Edit the XML documents provided (preferably using Notepad). Do not use an editor that
reformats the XML, for example, one that adds carriage returns and formatting such as
XMLSpy.

� If you have @ctive Modeler, import the vendorconnect Business Process (found in the /bpr
directory) into @M. Click the Events bar in the Palette. If this is not visible, right-click the
Palette bar and select the Show WM Controls option.

Edit the relevant event (by double-clicking the event, double-clicking the rule,
double-clicking the VNDRxx test, and changing the list of suppliers and saving it), and
re-activate the changed event.

If you are editing the XML documents directly (option 1), proceed as explained here:

1. Change all the rules for PMP02, PMP03, and PMP09 (in
/com.geac.erp.system21.aef/xml/rules). There are nine events or XML files to edit or
reactivate in total.

2. In each event, edit the VNDR comparison test to specifically include the list of suppliers
that are in use.

3. Change the list of dummy suppliers abc, def, and ghi (see the following example) into the
real list of supplier IDs.

4. Change the VDNRxx reference to match the 02, 03, or 09 file to which the rule applies:

<tests>
 <test>

 <format>1</format>
 <format_string>COMPARISON</format_string>
 <field_id>DTLC02</field_id>
 <field_scope>1</field_scope>
 <field_scope_string>AFTER</field_scope_string>
 <diff_field_id />
 <diff_field_scope>1</diff_field_scope>

 <diff_field_scope_string>AFTER</diff_field_scope_string>
 <condition>1</condition>
 <condition_string>EQ</condition_string>
 <value>9999999</value>
90 Geac System21 commerce.connect: Implementation on the iSeries Server

 <value_format>1</value_format>
 <value_format_string>STATIC</value_format_string>
 <value_scope>1</value_scope>
 <value_scope_string>AFTER</value_scope_string>

 </test>
 <test>

 <format>1</format>
 <format_string>COMPARISON</format_string>
 <field_id>VNDR02</field_id>
 <field_scope>1</field_scope>
 <field_scope_string>AFTER</field_scope_string>
 <diff_field_id />
 <diff_field_scope>1</diff_field_scope>

 <diff_field_scope_string>AFTER</diff_field_scope_string>
 <condition>9</condition>
 <condition_string>IN</condition_string>
 <value>abc,def,ghi</value>
 <value_format>1</value_format>
 <value_format_string>STATIC</value_format_string>
 <value_scope>1</value_scope>
 <value_scope_string>AFTER</value_scope_string>

 </test>
 </tests>

Controller
This process reads the XML triggers from the AIF.TRIGGER.OUT queue and sends them to
the relevant Java processor, based on the header information contained in each XML
document.

1. Edit the /AEF/controller.properties file to reflect the iSeries name and the MQSeries
Manager that was setup earlier on the iSeries.

2. A shell script is provided to start the AIF controller (/vendorConnect/aifcntrlr.sh). On the
last line, insert your iSeries name and the port for the instance of WebSphere that you are
using:

java -Djava.naming.provider.url=iiop://<iSeries>:<port number>
-Djev.config=/VendorConnect/deployed/ejb_default.cfg

com.geac.erp.system21.aif.toolkit.Controller -p Controller.properties -v

3. Call the OSLVCD3/AIFCNTRLR CL program. The program runs the script. To run the CL
program, enter:

CALL OSLVCD3/AIFCNTRLR

When this has run, the following three jobs should be running within QEJBSBS:

� QP0ZSPWP
� QZSHSH
� AIFCNTRLR

They may be identified because the will be running under the user profile of whomever started
them.

You may want to schedule this job to stop and start daily or after power downs. However, note
that there should be a delay prior to starting this process to allow WebSphere to start the
various application servers first. You may achieve this by creating a CL program to start
WebSphere and then call AIFCNTRLR with a DLYJOB command in between. The delay may
need to be several minutes. You may have to experiment to see what is necessary.
Chapter 4. Installing and setting up vendor.connect 91

4.2.9 JConnects server
This links vendor.connect back in to System21. Copy the Jacada directory to the root of your
iSeries server. Make sure the files are writable by running the WRKLNK command as
explained earlier.

ConnectorManager.xml
Edit the /VendorConnect/deployed/ConnectorManager.xml file. Change the following entries
as appropriate to your iSeries setup:

 <company>Z1</company>
 <environment>XXX</environment>
.
.
.
 <host>your iSeries</host>
.
.
.
 <user>userid</user>
 <password>password</password>

The user here must have access to the 2/AG option within System21 for the company also
specified here. This option must be defined with a date format of D in Application Manager.

AIF .ini files
1. Open the /Jacada/SYS21AIF/classes/appls/SYS21AIF/server/resources/sys21aif.ini

file.

2. At the start of the file, ensure that the RtRootDir is correct:

RtRootDir=/JACADA/SYS21AIF/

3. At the end of the file, change the Host statement to have the correct iSeries name:

After [GUISys TN5250]
.
Host=<youriSeries>

4. Open the /Jacada/SYS21AIF/classes/jacadasv.ini file.

5. Ensure that the RtRootDir value is the same as above.

4.2.10 Setting up new vendor.connect user IDs and supplier IDs
There are two modes in which secure.connect can be run. The first holds the user details as
an XML file called /vendorconnect/deployed/UserDirectory.xml. The second holds the user
details in IBM’s version of Lightweight Directory Access Protocol (LDAP) called SecureWay.
Obviously, the latter method is the more secure, but it requires an additional process to run,
either on the workstation or on the iSeries.

SecurityManager.xml
You can configure the system to use either method by changing the
/vendorconnect/deployed/SecurityManager.xml file.

vendor.connect uses the authentication context named “DEFAULT” in the
SecurityManager.xml file. This default context, as shipped, is configured to use an LDAP
directory. However, you should verify the following settings:

<authentication_context id="DEFAULT">
<directory id="SecureWay" type="LDAP">
92 Geac System21 commerce.connect: Implementation on the iSeries Server

<property id="ldap_server" value="ldap://server.domain.co.uk/" />
<property id="ldap_base" value="ou=ges,o=geac,c=uk" />
<property id="ldap_bind_dn" value="cn=root" />
<property id="ldap_bind_password" value="password" />
<property id="authorization_group_type" value="businesscategory" />

</directory>
</authentication_context>

Change the ldap.server parameter to the name and domain of the iSeries that is running the
LDAP service. You may also change other LDAP properties if required, for example, LDAP
base.

XML security
If an LDAP server is not present, then you can configure the DEFAULT context to use
/vendorconnect/deployed/UserDirectory.xml as the user directory. Simply edit the following
settings in SecurityManager.xml:

<authentication_context id="XML">
<directory id="file" type="XML">

<property id="file" value="UserDirectory.xml" />
</directory>

</authentication_context>

<authentication_context id="DEFAULT">
<directory id="SecureWay" type="LDAP">

<property id="ldap_server" value="ldap://server.domain.co.uk/" />
etc.

Change the first authentication context id=“XML” to context id=“DEFAULT”. Since the context
ID must be unique within the file, change the second authentication context ID immediately to
anything other than DEFAULT as shown in the following example:

<authentication_context id="DEFAULT">
<directory id="file" type="XML">

<property id="file" value="UserDirectory.xml" />
</directory>

 </authentication_context>

<authentication_context id="XYZ">
<directory id="SecureWay" type="LDAP">

<property id="ldap_server" value="ldap://server.domain.co.uk/" />
etc.

Create the vcadmin user in UserDirectory.xml. Add the following section to this file, entering
the user password as required:

<entry dn="cn=vcadmin, ou=cad, ou=ges,o=geac,c=uk">
<objectclass>

<oc-value>top</oc-value>
<oc-value>person</oc-value>
<oc-value>organizationalPerson</oc-value>
<oc-value>inetOrgPerson</oc-value>
<oc-value>ePerson</oc-value>
<oc-value>s21User</oc-value>

</objectclass>
<attr name="cn"><value>vcadmin </value></attr>
<attr name="sn"><value>Administrator </value></attr>
<attr name="uid"><value>vcadmin</value></attr>
<attr name="userpassword"><value>anything</value></attr>

</entry>
Chapter 4. Installing and setting up vendor.connect 93

Using LDAP
If you are using LDAP, you must install an IBM SecureWay client to create the administrator
user account.

If you are using Geac’s commerce.platform, the following settings may already be configured,
but you should still check them. Edit the /vendorconnect/deployed/SecurityManager.xml file.
Check the authorization_context section:

<authorization_context id="DEFAULT">
<database id="author">

<property id="db_driver" value="com.ibm.as400.access.AS400JDBCDriver" />
<property id="db_url" value="jdbc:as400://<iSeries>/authsystem;trace=false" />
<property id="db_user" value="oslvcf3" />
<property id="db_password" value="oslvcf3" />

</database>
 </authorization_context>

Set the iSeries name and verify property id="db_user" and "db_password" is OSLVCF3.

To access the user maintenance display, you must create a user with a user ID of “vcadmin” in
the security directory. You must do this using the IBM SecureWay client if you are using LDAP,
or you can manually add it to the UserDirectory.xml file.

Configuring the LDAP server
You must have installed Client Access Express V4R5 or later on your workstation. To
configure the LDPA server, follow these steps:

1. In Operations Navigator, select the iSeries that is required and expand that node.

2. Sign on as security officer.

3. Select Network-> Servers and open the TCP/IP folder (Figure 4-11).

Figure 4-11 Operations Navigator view

4. Within TCP/IP, under Server Name, select Directory (these are not in alphabetical order),
right-click, and select Properties.
94 Geac System21 commerce.connect: Implementation on the iSeries Server

5. The Directory Properties window (Figure 4-12) opens. Complete these tasks:

a. Select the Start server when TCP is started box.
b. Set Administrator name as CN=root.
c. Click the Password button. Enter and confirm your password.

Figure 4-12 Directory Properties: General page
Chapter 4. Installing and setting up vendor.connect 95

6. Click the Databases/Suffixes tab (Figure 4-13).

a. Under Suffixes, enter a new suffix of:

ou=xxx,o=yyy,c=zzz,

Note the following explanation:

ou Organization unit
o Organization
c Country (region)

b. Click Add.

Figure 4-13 Directory Properties: Database/Suffixes page

Using IBM SecureWay
Follow these steps:

1. Open C:\Program Files\IBM\LDAP\etc\dmt.conf (assuming a standard install) using
Notepad.

2. Amend the following line to show your iSeries:

server1.url=ldap://<iSeries>:389

Note: Password protection is set to SHA by default. This means that it cannot be
decrypted. If a password is forgotten, it cannot be recovered. However, the security officer
can create a new one. You can change this to "crypt" by selecting the Network tab and
then selecting Advanced. In this case, you can view passwords. We recommend that you
do not set this to None.
96 Geac System21 commerce.connect: Implementation on the iSeries Server

If you don't do this and leave it set to localhost, you will receive a warning about attempting
to contact LDAP on local machine. You may ignore this message.

3. Select Start-> Programs-> IBM SecureWay Directory-> Directory Management Tool.
If this is the first time this has been used, you receive a warning message about the suffix
not containing any data. You may ignore this message.

4. Click the Add server button at the bottom of the left-hand panel. On the Add directory
server panel (Figure 4-14), complete these tasks:

a. Enter the server name (needjava in this example).
b. Leave the port as 389.
c. Enter a user DN and user password.
d. Click OK.

Figure 4-14 Add directory server panel
Chapter 4. Installing and setting up vendor.connect 97

5. In the left-hand panel, select Server-> Rebind. On the Rebind to server panel
(Figure 4-15) on the right-hand side, complete these tasks:

a. Select the Authenticated option.
b. Enter CN=root for User DN.
c. Enter the password you entered on the Add directory server display.
d. Click OK.

Figure 4-15 Rebind to server panel
98 Geac System21 commerce.connect: Implementation on the iSeries Server

6. Select Entries-> Add Entry in the left-hand panel. On the Add directory entry panel
(Figure 4-16) on the right-hand side, complete these tasks:

a. Leave the Parent DN field blank.
b. In Entry RDN, enter the full name of your suffix (for example, ou=ges,o=geac,c=uk).
c. Select the Organizational unit option.
d. Click Next.

Figure 4-16 Adding an entry

7. For ou, enter (again) the organizational unit (ges). Click Create.
Chapter 4. Installing and setting up vendor.connect 99

Creating the vcadmin user in IBM SecureWay
To create the vcadmin user, follow these steps:

1. Select Tree-> Browse tree from the left-hand panel. In the Browse directory tree panel
(Figure 4-17), complete these tasks:

a. Select the directory base (for example, “ou=ges,o=geac,c=uk”) so that it is highlighted.
b. Click the Add button at the top of the panel.
c. In the Entry RDN field, enter cn=vcadmin.
d. Click Next.

Figure 4-17 Creating the vcadmin user
100 Geac System21 commerce.connect: Implementation on the iSeries Server

2. In the create an LDAP User window (Figure 4-18), complete these tasks:

a. For Common name, enter vcadmin.
b. For Last name, enter Administrator.
c. Click the Business tab. Scroll down to the bottom of the page, and enter a password in

the userPassword field.
d. Click the Other tab. Scroll down and locate the uid field, and enter vcadmin.
e. Click Create.

Figure 4-18 Creating vcadmin detail showing the Other tab

Creating the authorization rule
The authorization rule is used by vendor.connect to match users with their authorized supplier
code. If Geac’s secure.connect is installed on the iSeries in the files that contain the rule, the
rule will already be located in the AUTHSYSTEM library. If secure.connect is not installed,
then you need to restore the AUTHSYSTEM library on the iSeries server. Refer to 4.2.3,
“Restoring libraries” on page 76, for instructions on restoring this library from its save file.

Use your preferred SQL console (for example, Client Access or on the iSeries) to execute the
statements in the VendorCreateRule.SQL file in the SQL folder. Make sure that the library
AUTHSYSTEM appears in the library list when running this.

1. Log on to the vendor.connect Web site:

http://<iSeries>/VendorConnect/logon.jsp

2. For all further user maintenance, log on to the Web site as user vcadmin as shown in
Figure 4-19.
Chapter 4. Installing and setting up vendor.connect 101

Figure 4-19 Logging on as vcadmin

3. Logging into the vendor.connect system as the vcadmin user takes you to the User
Maintenance functions, rather than the standard supplier’s Web site.

The initial user maintenance page shows any existing users. Clicking an existing entry
allows you to edit the user profile. Click Add to add a new user.

4. Enter a valid supplier code and address code, as well as the user ID, contact name,
surname, and password to add a user as shown in Figure 4-20. Then click Save.

Figure 4-20 Setting up a new user
102 Geac System21 commerce.connect: Implementation on the iSeries Server

4.2.11 Database synchronization from System21 to the vendor.connect
database

To set up the correct library lists needed for the database triggers to fire successfully, you
must set the library list. You can do this manually, for example, using the Edit Library List
(EDTLIBL) command. Or you can do this by selecting a System21 option that has the
workflow (OSLWFF3) library in its list (for example, 41/PMP). Leave the option, but stay in the
System21 menus and then use the STRSQL command.

If you are using Client Access SQL, follow these steps to set the library list:

1. Set the library list by connecting to the iSeries.

2. Select Connection-> JDBC Setup as shown in Figure 4-21.

Figure 4-21 Selecting JDBC Setup in Client Access

3. To set up a library list within the Client Access SQL tool, see the example in Figure 4-22.

Figure 4-22 Setting the library list in Client Access
Chapter 4. Installing and setting up vendor.connect 103

4. Run the set of SQL commands that are detailed in the following SQL example. They cause
triggers to be fired so that the System21 data will be synchronized into the VendorConnect
database. You can find the SQL in the SQL to sync dbs on initial load.txt file in the SQL
folder.

5. If the amount of data to be synchronized is large, you may need to edit the SQL to
sub-select the data. After messages in the MQSeries queues subside, you can run the
next sub-select.

Here is an example of SQL to be run for company Z1 and suppliers GS02 and FS03:

Planners:
update pmp06 set cono06 = 'Z1'
where cono06 = 'Z1'

Suppliers and Receiving Addresses:
update plp05 set cono05 = 'Z1'
where cono05 = 'Z1' and
supn05 in ('GS02','FS03', 'PMSUP')

Purchase Order Headers:
update pmp02 set cono02 = 'Z1'
where cono02 = 'Z1' and
dtlc02 = 9999999 and
ordn02 in
(select distinct ordn03
from pmp03 where cono03 = 'Z1' and
vndr03 in ('GS02','FS03') and
qtos03 > 0 group by ordn03)

Purchase Order Lines:
update pmp03 set cono03 = 'Z1'
where cono03 = 'Z1' and
dtlc03 = 9999999 and
bosn03 <> 99999 and
ordn03 in
(select distinct ordn03
from pmp03 where cono03 = 'Z1' and
vndr03 in ('GS02','FS03') and
qtos03 > 0 group by ordn03)

Purchase Order Transactions-Expected Receipts, Actual Receipts and Returns:
update pmp09 set cono09 = 'Z1'
where cono09 = 'Z1' and
ordn09 in
(select distinct ordn03
from pmp03 where cono03 = 'Z1' and
vndr03 in ('GS02','FS03') and
qtos03 > 0 group by ordn03)

Note: Remember to include the “dummy” receiving address supplier ID in the SUPN05 list,
usually ‘PMSUP’, because this file holds both supplier and receiving address details (see
“System21 data setup” on page 87).
104 Geac System21 commerce.connect: Implementation on the iSeries Server

4.2.12 Testing the vendor.connect Web site
You are now in a position to test the Web application. Launch Internet Explorer and enter the
following URL:

http://<iSeries>/VendorConnect/logon.jsp

4.2.13 Backing up the configuration components
If all is well, you should back up the configured components, so that they can be restored in
case of any emergency. Several folders must be saved (see the list of components to install in
4.2, “Installing vendor.connect” on page 74).

The following command shows how to back up the AEF and VendorConnect folders. You
need to extend the command to include all folders:

SAV DEV('/qsys.lib/tap01.devd') OBJ(('/AEF') ('/VendorConnect'))

4.3 Changing the iSeries on which the application is running
If you want to change the iSeries on which the vendor.connect application is running, change
the following files. You also need to change these files if you want to change the iSeries
username or password:

� /AEF/controller.properties
� /AEF/standard.properties
� /AEF/TriggerHandler.properties
� /VendorConnect/deployed/ConnectorManager.xml
� /VendorConnect/deployed/ejb_default.cfg
� /VendorConnect/deployed/SecurityManager.xml
� /VendorConnect/deployed/standard.properties

You must also change the database trigger rules folder name and maps folder name in the
/com.geac.erp.system21.aef/xml/rules and /com.geac.erp.system21.aef/xml/maps folders.

Also, go to the WebSphere Administrator’s Console, click the jt400BTT data source name,
and change the database name to the new iSeries ID.

You should also change the first two files above if you change your MQSeries setup (for
example, change the default queue manager name, or change the queue/channel names).

4.4 Housekeeping
Once vendor.connect is running, it requires little housekeeping. However, you may want to
consider the items that are explained in the following sections.

4.4.1 Daily
Back up the System21 files libraries as usual, including library OSLVCF3.

4.4.2 Stopping
This section offers helpful information for situations where the iSeries is powered down or you
want to stop and start WebSphere overnight.
Chapter 4. Installing and setting up vendor.connect 105

Under normal circumstances, the application (for example, VennConn) continues to run in
WebSphere when the admin job QEJBADMIN is stopped. This means that to stop the system
overnight, the easiest way is to end QEJBSBS by using the following command:

ENDSBS SBS(QEJBSBS) OPTION(*IMMED)

This is a standard, tested iSeries command. This has the advantage of ending the Trigger
Handler, AIF controller jobs, and any extra WebSphere instances. Users who want to end the
subsystem more gently, may want to use *CNTRLD end with a time limit. If you do not specify
a time limit, the subsystem will never end, because the Trigger Handler and AIF controller
jobs keep running.

As an alternative for stopping and starting jobs, use XMLConfig as in a WebSphere
configuration. However, keep in mind that this method has not yet been fully tested by Geac.

4.4.3 Starting
To start vendor.connect assuming the VennConn, VSSync, and Receiving applications are
still running, you must follow the steps to start WebSphere using either a default instance or
other instances as explained in the following sections.

Starting WebSphere (default instance)
With a default instance, you simply start QEJBSBS by using the following command:

STRSBS SBSD(QEJB/QEJBSBS)

This starts QEJBADMIN, QEJBMNTR, and the VennConn, VCSync, and Receiving
applications. It requires some time, possibly several minutes, to start.

Starting WebSphere (other instances)
If you need to start more than one instance of WebSphere, you may use the STRWSSVR
command. The following example starts an instance called VC:

CALL PGM(OSLOMD3/STRWSSVR) PARM(VC)

Starting the trigger handler and AIF controller
You may start the trigger handler and AIF controller with the following commands:

CALL PGM(OSLVCD3/TRGRHNDLR)
CALL PGM(OSLVCD3/AIFCNTRLR)

It is possible to run these jobs in Auto Day Start and Auto Day End under Machine Manager in
System21 or in some other automated scheduled way on the iSeries. If you do this, you must
allow sufficient time between starting WebSphere and starting the AIF controller. We
recommend that you wait at least 10 minutes. You can do this by submitting the commands
through a CL program and inserting the Delay Job (DLYJOB) command in between them.

4.4.4 Restoring the vendor.connect IFS objects
If for any reason you need to restore the IFS objects for vendor.connect, use the following
commands. In this example, only the AEF and VendorConnect folders are restored. You may
extend the command to restore other folders.

RST DEV('/qsys.lib/tap01.devd') OBJ(('/AEF')('/VendorConnect'))

This assumes that the system is backed up in a similar way.

Note: You may start other instances while the default instance is still starting.
106 Geac System21 commerce.connect: Implementation on the iSeries Server

Chapter 5. Performance tuning

This chapter covers performance tuning of Geac System21 products.

5

© Copyright IBM Corp. 2002. All rights reserved. 107

5.1 Hardware
When you tune your configuration and system for performance, always start with the
hardware requirements for the configuration. For applications that use Enterprise JavaBeans
(EJBs), as both call.connect and vendor.connect do, you must be running one of the following
models with the corresponding feature code:

� Model 170 feature 2385
� Model 720 feature 2062
� Model 270 feature 2252
� Model 820 feature 2396

For all models, we recommend that you meet the minimum memory requirement of 1 GB.

To check the processor model and feature and the memory of your iSeries, use the following
command:

WRKHDWRSC *PRC

Then the Work with Processor Resources display (Figure 5-1) appears. In this example, the
model is shown against the resource CEC01. The feature is against MP01. You may need to
add multiple memory cards. If necessary, page down to see the complete list. The system
shown is a Model 170, with feature 2385 and 2 GB of memory. This satisfies the processor
requirements and more than satisfies the memory requirements.

Figure 5-1 Work with Processor Resources display

You can also check the model by using the Display System Value (DSPSYSVAL QMODEL)
command and check the processor feature by using the DSPSYSVAL QPRCFEAT command.
To check the memory, use the Work with System Status (WRKSYSSTS) command, but be
sure to add the memory pools.

These requirements are simple, although they give no indication about how older models may
perform. In addition, they do not provide any information about how the level of usage affects
the requirements.

iSeries performance is usually measured by an IBM benchmark called Commercial
Processing Workload (CPW). It is interesting to look at the CPW of the systems mentioned
earlier in this section:

� Model 170 feature 2385 Processor CPW 460 Interactive CPW 50
� Model 720 feature 2062 Processor CPW 420 Interactive CPW 35
108 Geac System21 commerce.connect: Implementation on the iSeries Server

� Model 270 feature 2252 Processor CPW 950 Interactive CPW 0
� Model 820 feature 2396 Processor CPW 950 Interactive CPW 35

Notice the considerable variation in the processor CPW and the low interactive CPW. The
variation in processor CPW may be because, although CPW is a good indicator of RPG and
Cobol performance, it is not a good indicator of Java and WebSphere performance. Java
performance is significantly affected by processor features, such as L2 cache, which do not
affect the CPW rating as much.

There is a low interactive CPW is because WebSphere does not need interactive CPW. Little
dumb terminal work is required to manage a WebSphere application. The small amount that
is needed, such as starting the QEJBSBS subsystem, may be performed from the console.
Because of the single task exemption, this is possible even on a system with an interactive
CPW of 0. Of course, a call.connect or vendor.connect user may be running System21 on the
same system. This requires a certain amount of interactive CPW, but the WebSphere
applications do not add to this requirement.

In V5R1, IBM introduced a new benchmark called Compute Intensive Workload (CIW). This is
calculated differently than CPW. It depends more on such factors as the processor speed and
depends less on system services. It is hoped that this value will be a better indicator of the
likely performance of Java- and WebSphere-based applications. Unfortunately, IBM has only
published CIW figures for the new V5R1 models, which does not include any of the previously
mentioned systems. In the future, this new benchmark should be useful. If you are
considering an upgrade, then try to find the CIW of your current system and the ones to which
you are considering upgrading.

For systems below these recommended minimum specifications, IBM states that you may use
them in environments that support a limited number of users and where longer server
initialization times can be tolerated.

Geac’s experience is that a small installation may be successful if you are beneath the
recommended processor levels. However, Geac recommends that you do not go below the
recommended memory requirements. When there is insufficient memory, WebSphere
performance is severely impaired. If you are considering an upgrade to improve WebSphere
performance, then monitor your memory usage carefully. It may be more effective to upgrade
the memory rather than the processor.

Older AS/400 models, before the 170 and 720 ranges, are liable to give poor WebSphere
performance. Consider installing WebSphere on older AS/400 systems only if they are
particularly large. Even so, the performance may be disappointing. Geac ran call.connect on
a Model S30 with a CPW of 999, yet the performance was not much better than a 170-2385
with a CPW of only 460.

5.2 Operating System/400 (OS/400)
Several aspects of OS/400 configuration are important to WebSphere performance. These
aspects are explained in the following sections.

5.2.1 SQL server job configuration
WebSphere applications make substantial use of Java Database Connectivity (JDBC). On the
iSeries, there are two commonly used JDBC drivers:

� Toolbox driver: This is primarily used by Java applications that are not running on the
iSeries itself.
Chapter 5. Performance tuning 109

� Native driver: This driver may only be used by a Java application that is running on the
iSeries.

In most cases, if you are running WebSphere on the iSeries, the native driver offers better
performance. If you used the standard configuration, as described in Chapter 3, “Installing
and setting up call.connect” on page 19, then you will use the native driver.

Connections made by the native driver are serviced by jobs of the name QSQSRVR in the
QSYSWRK subsystem. These are prestart jobs. Prestart jobs are used by IBM to speed
connection times for many server jobs. Depending on the subsystem configuration, several
server jobs may start together with the subsystem. The jobs then wait for a connection
request. When a request is received, the jobs process the request. When a disconnect
request is received, the jobs usually return to the wait state and wait for the next connection.

The default configuration of the QSQSRVR job is unlikely to give good performance for
WebSphere applications. To check the configuration, follow these steps:

1. Sign on as QSECOFR.

2. Enter the following command:

DSPSBSD QSYSWRK

3. Figure 5-2 shows the Display Subsystem Description menu. Select option 10.

Figure 5-2 Display Subsystem Description menu

4. The Display Prestart Job Entries display (Figure 5-3) appears. Tab down to the program
name QSQSRVR, type 5 next to it, and press Enter.
110 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 5-3 Display Prestart Job Entries list

Figure 5-4 shows the Display Prestart Job Entry Detail for the program QSQSRVR,
highlighting the number of jobs. Note the following parameters for this example display:

� Start jobs parameter: The default is *NO. This means that the jobs do not start with the
subsystem. They only start when the first connection request is received. This causes
WebSphere to start slowly. This setting may be suitable if you rarely use WebSphere or
any other application that uses the native JDBC driver. Otherwise, we do not recommend
this setting.

� Initial number of jobs parameter: The default is 3. If the previous parameter is set to *NO,
then this is the number of jobs that start when the first request is received. If the previous
parameter is set to *YES, then this is the number of jobs that start when the subsystem is
started. The default 3 is insufficient since even the WebSphere administration job
QEJBADMIN uses five native JDBC connections.

� Threshold parameter: When the available jobs (those waiting) drop to this level, more
jobs will be started.

� Additional number of jobs parameter: This is the number of additional jobs that are
started when the threshold is reached.

� Maximum number of jobs parameter: IBM recommends that you set this parameter to
*NOMAX. You may notice that the pool identifier on your system is 1, rather than 2 as in
Figure 5-4. This is because the modification described in 5.2.3, “Subsystems and memory
pools” on page 115, was already applied to this system.

Figure 5-4 Display Prestart Job Entry Detail for QSQSRVR
Chapter 5. Performance tuning 111

You must coordinate the tuning of these server jobs with the tuning of the WebSphere
datasources. For the moment, we assume a simple default WebSphere setup:

� Only one instance of WebSphere is running.
� Only one application (for example, call.connect) is running.
� The datasource used by that application has not been modified.
� There is only a small number of users.

As mentioned earlier, the WebSphere administration job uses five connections. The default
datasource has a minimum size of 1 and a maximum size of 10.

One call.connect client commonly use two connections and occasionally use three
connections. This way even a few users may reach this maximum.

One vendor.connect Web session uses one or occasionally two connections. However, the
pooling performed by WebSphere means that unless the clients are extremely busy, the
number of connections will be significantly less than the number of clients. If the maximum is
likely to be reached, we recommend that your number of prestarted jobs is at least as large.
For this discussion, we assume that there are 15 connections. The Display Prestart Job Entry
Detail for this program would be:

� Start jobs: *YES
� Initial number of jobs: 20
� Threshold: 2
� Addition number of jobs: 2
� Maximum number of jobs: *NOMAX

If other Java applications are running on the iSeries that use the native JDBC driver, you must
allow for them as well. To make this change, follow these steps:

1. Sign on as QSECOFR.

2. Ensure that WebSphere is not running.

3. Ensure that no other Java applications are using native JDBC connections.

4. End the prestart jobs by using the following command:

ENDPJ SBS(QSYSWRK) PGM(QSQSRVR)

If no server jobs are running, then you receive the error message “End Prestart Jobs
command is not currently allowed”. You can ignore this message.

5. Change the server settings with this command:

CHGPJE SBSD(QSYSWRK) PGM(QSQSRVR) STRJOBS(*YES) INLJOBS(20) THRESHOLD(2) ADLJOBS(2)
MAXJOBS(*NOMAX)

6. Restart the prestart jobs:

STRPJ SBS(QSYSWRK) PGM(QSQSRVR)

7. Restart WebSphere and your application.

It is possible to view the server jobs in several ways. Look at the QSYSWRK subsystem:

WRKACTJOB SBS(QSYSWRK)

The results also show many other server jobs. Instead you can select a specific job name by
using the following command:

WRKACTJOB JOB(QSQSRVR)

In either case, you may find fewer jobs than you expect. If you check when WebSphere is not
active, then you may find none. This is because the Work with Active Jobs (WRKACTJOB)
112 Geac System21 commerce.connect: Implementation on the iSeries Server

command, by default, does not show prestart jobs that are waiting for a connection. However,
if you press F14, they are shown.

Figure 5-5 shows the QSQSRVR jobs in the Work with Active Jobs display. Look at the Status
column. PSRW indicates that the job is waiting for a connection. These are the jobs that were
not shown until you pressed F14. If you press F14 again, you hide these jobs. In this example,
F14 was pressed so jobs with status PSRW are shown as well as those with other status
indicators such as CNDW.

Using F14 is a convenient way to check whether any of the jobs are in use. If the jobs appear
in one view but not in the other, then they are started but not in use. If they do not appear in
either view, it is most likely that the Start jobs parameter is still set to *NO and the jobs have
not been used. Be sure to carefully check the spelling of the job name. If it is incorrect, you do
not receive any error message.

Figure 5-5 The WRKACTJOB command showing the QSQSRVR jobs

5.2.2 Toolbox JDBC driver
There are two versions of the Toolbox driver:

� The licensed program version
� The Open Source edition

Both version use the same server jobs. Therefore, you choice in version does not affect the
iSeries configuration.

The most likely reason for using the Toolbox driver is that you are running WebSphere and
System21 on different systems. If WebSphere is not on another iSeries server, then you use
the Toolbox driver. If WebSphere is on another iSeries server, then you use either driver.
However the Toolbox driver may be easier to use and perform better.

The configuration is slightly different depending on whether you are using V5R1 or V4R5. We
recommend that you do not use V4R4. However, if you were using it, then it would be the
same as V4R5.

Note that the number of potential users of the Toolbox driver is greater. The clients can be on
other systems, even ones that are not iSeries servers. The servers are shared by ODBC so
non-Java applications can be clients to these server jobs.
Chapter 5. Performance tuning 113

It is necessary to check carefully that the server jobs are not in use. You can check whether
the jobs are in use in a way that is similar to checking the QSQSRVR jobs. For example, you
use this command:

WRKACTJOB JOB(QZDASOINIT)

If some jobs appear immediately, then some clients are connected. Look at the job log (by
selecting option 5 and then option 10), and you should see the user name and the IP address
of the client. If no jobs appear, then press F14, and some in the status PSRW should appear.
These are idle jobs, which you may safely end. If no jobs appear in either view, then it may be
that none are started. Since this is unlikely, be sure to verify the spelling of the job name.

For V5R1, use the procedure in 5.2.1, “SQL server job configuration” on page 109, but
substitute the following commands:

DSPSBSD QUSRWRK
ENDPJ SBS(QUSRWRK) PGM(QZDASOINIT)
CHGPJE SBSD(QUSRWRK) PGM(QZDASOINIT) STRJOBS(*YES) INLJOBS(20) THRESHOLD(2) ADLJOBS(2)
STRPJ SBS(QUSRWRK) PGM(QZDASOINIT)
WRKACTJOB SBS(QUSRWRK)
WRKACTJOB JOB(QZDASOINIT)

Figure 5-6 shows the Display Prestart Job Entry Detail for the program QZDASOINIT, running
on a V5R1 system. Notice the numbers that are highlighted for the job.

Figure 5-6 Display Prestart Job Entry Detail for QZDASOINIT

V4R5 uses slightly different commands as listed here:

DSPSBSD QSERVER
ENDPJ SBS(QSERVER) PGM(QIWS/QZDASOINIT)
CHGPJE SBSD(QSERVER) PGM(QIWS/QZDASOINIT) STRJOBS(*YES) INLJOBS(20) THRESHOLD(2) ADLJOBS(2)
STRPJ SBS(QSERVER) PGM(QIWS/QZDASOINIT)
WRKACTJOB SBS(QSERVER)
WRKACTJOB JOB(QZDASOINIT)

Note: The commands are the same, but the parameters may be different.

Note: The library name is required in the PGM parameters.
114 Geac System21 commerce.connect: Implementation on the iSeries Server

5.2.3 Subsystems and memory pools
By default, WebSphere jobs run in the QEJBSBS subsystem in the base memory pool. In
addition, WebSphere applications, such as call.connect and vendor.connect, substantially
use the native JDBC server jobs that run in QSYSWRK. This is also in the base memory pool,
by default.

If your system runs no other significant applications, then this simple setup may be sufficient.
The resource usage of WebSphere applications is quite different from traditional interactive
and batch jobs. Therefore, if you also run these types of jobs, it may be preferable to use a
separate memory pool. A separate memory pool allows you control the resources allocated to
WebSphere applications. You can enhance WebSphere performance, possibly at the
expense of others jobs, by increasing its memory pool. Or you can reduce the impact on other
applications by reducing it.

You can set up separate pools for the QEJBSBS subsystem and the QSQSRVR jobs, but in
most cases, this is unnecessarily complicated to manage. If the two are combined, then you
must have a shared pool.

Ideally, you should know the configuration of your system and know which shared pools are
available. You can see if a shared pool is currently in use by using the WRKSYSSTS
command.

On the Work with System Status display (Figure 5-7), press F11 until you see the Pool
column. In this column, you will see such names as *MACHINE, *BASE, *INTERACT, and
maybe *SHRPOOL1, *SHRPOOL2, etc. You can also use the Work with Shared Pool
(WRKSHRPOOL) command. If the defined size and maximum active values are both zero,
then the pool may never have been used.

This example assumes shared pool 1, but any other can be substituted. In Figure 5-7, a
shared pool is already setup for WebSphere. Shared pool 2 was used.

Figure 5-7 WRKSYSSTS command showing the memory pool names

You need to specify the memory size and activity level. If possible, specify at least 500 MB
and better still, specify 1 GB. If your client will be busy, then set the activity level to
approximately the number of users. You can adjust both figures once the system is configured
and used.

To set up a shared pool for WebSphere and the SQL server jobs, follow these steps:

1. End any WebSphere applications, WebSphere itself, and any other Java applications that
are using the native JDBC driver.
Chapter 5. Performance tuning 115

2. End the QEJBSBS subsystem by using the following command:

ENDSBS QEJBSBS

3. View the shared pools with the WRKSHRPOOL command.

4. On the Work with Shared Pools display (Figure 5-8), choose an available pool, for
example, *SHRPOOL1, and enter your chosen size and maximum activity level.

Figure 5-8 WRKSHRPOOL command showing the pool defined for WebSphere

In this example, shared pool 2 is setup for use by WebSphere. In fact, this was done
before the previous WRKSYSSTS command was run. You can see that shared pool 1 is
also set, but no subsystems or jobs are using it since it did not appear on the
WRKSYSSTS display.

Alternatively, you can do this by using the CHGSHRPOOL command:

CHGSHRPOOL POOL(*SHRPOOL1) SIZE(500000) ACTLVL(20)

Note that the sizes shown by WRKSHRPOOL are in Mb, but the sizes used by
CHGSHRPOOL are in Kb. In addition, the CHRSHRPOOL command does not warn you
that the pool is already in use.

5. Add the storage pool to the QEJBSBS subsystem.

6. Check whether the QEJBSBS subsystem was already modified by using the following
command:

DSPSBSD SBSD(QEJB/QEJBSBS)

7. On the next display, select option 2 to see the pools.

8. On the Display Pool Definitions for QEJBSBS display (Figure 5-9), if there is a single entry
with a pool ID of 1 and a size of *BASE, then the subsystem was not yet modified in this
way. If it was modified, then determine why and how it was modified before you continue to
the next step.
116 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 5-9 The Display Pool Definitions display for QEJBSBS

In this example, the modification was already made using shared pool 2, so subsystem
pool 2 appears. Note that it is a coincidence that pool 2 of this subsystem happens to be
shared pool 2. If you enter the following command, the subsystem pool 2 will be shared
pool 1:

CHGSBSD SBSD(QEJB/QEJBSBS) POOLS((1 *BASE) (2 *SHRPOOL1))

For a more simplified method, you can enter:

CHGSBSD SBSD(QEJB/QEJBSBS) POOLS((1 *SHRPOOL1))

If you use this simpler method, you do not need to perform step 11. The advantage of the
previous way is that the subsystem monitor job still runs in the base pool and can be
segregated from the other jobs of the subsystem.

9. You may want to check the subsystem again using the following command:

DSPSBSD SBSD(QEJB/QEJBSBS)

10.On the next display, select option 2. The result should be similar to the example in
Figure 5-9, except that the shared pool will be *SHRPOOL1.

11.Change the routing entries so that the new pool is used. Enter the following command:

CHGRTGE SBSD(QEJB/QEJBSBS) SEQNBR(9999) POOLID(2)

You should omit this step if you used the simplified method from step 8. However, if you
used the original command, then it is essential that you perform this step. Otherwise, the
allocated memory will be wasted. You may want to check this step.

a. Enter the following command:

DSPSBSD SBSD(QEJB/QEJBSBS)

b. On the next display, select option 7 for routing entries.

c. You should see a single entry with sequence number 9999. Type 5 next to this entry
and press Enter.

The result should be similar to the Display Routing Entry Detail display example in
Figure 5-10.
Chapter 5. Performance tuning 117

Figure 5-10 Display Routing Entry Detail display

12.End the SQL server prestart jobs by entering the following command:

ENDPJ SBS(QSYSWRK) PGM(QSQSRVR)

13.Add the storage pool to the QSYSWRK subsystem.

14.Verify whether the QSYSWRK subsystem was already modified by entering the following
command:

DSPSBSD SBSD(QSYSWRK)

15.On the next display, select option 2 to see the pool.

16.On the Display Pool Definitions display (Figure 5-11), if there is a single entry with a pool
ID of 1 and a size of *BASE, then the subsystem was not yet modified in this way. If it was
modified, then determine why and how it was modified before you continue to the next
step.

If you want to continue with this modification, then change the pool ID (2 in this example)
to a number higher than the highest number that is currently in use. Note that this number
is the pool number relative to this subsystem and the system as a whole as shown by
WRKSYSSTS.

Figure 5-11 Display Pool Definitions display for QSYSWRK

Again, the modification was already made using shared pool 2. Therefore, subsystem pool
2 appears. In this case, the subsystem pool number is the same as for QEJBSBS, but this
is not necessary. When started a system pool number, as shown by WRKSYSSTS, will be
118 Geac System21 commerce.connect: Implementation on the iSeries Server

assigned but this could vary. However because both this entry and the QEJBSBS entry
above specify *SHRPOOL2, the two sets of jobs will share the same memory pool.

17.Change the SQL server prestart job to use the new pool:

CHGPJE SBSD(QSYSWRK) PGM(QSQSRVR) POOLID(2)

You may want to verify this step:

a. Use the following command:

DSPSBSD SBSD(QSYSWRK)

b. On the next display, select option 10 for prestart job entries.

c. On the next display, type 5 next the QSQSRVR entry and press Enter.

The result should be similar to the Display Prestart Job Entry Detail display (Figure 5-12)
for the QSQSRVR program, with the pool identifier highlighted.

Figure 5-12 Display Prestart Job Entry Detail for QSQSRVR

If you did not select option 2 in step 7 on page 116, then you should use the same number
again here.

18.Restart the prestart jobs by entering the following command:

STRPJ SBS(QSYSWRK) PGM(QSQSRVR)

19.Check whether the memory pool started.

20.Enter the WRKSYSSTS command.

21.You see that another line has appeared with your specified size and activity level. It may
be in the last line since it is newly created. But it may not always be there. Its position after
an IPL depends on the sequence that your subsystems are started.

Press F11 until you see the pool name. You should see *SHRPOOL1 or whichever one
you used. Note the system pool number of your new pool (this may change after an IPL). If
the size or activity level is not the one that you specified, then it may be the affect of the
performance adjuster. Figure 5-13 shows the Work with System Status display with the
pool names.
Chapter 5. Performance tuning 119

Figure 5-13 WRKSYSSTS display showing the memory pool names

As in the other images, shared pool 2 was used. It is not appearing as the last system
pool. That’s because the system was restarted since the configuration change was made,
and during the following start, QSYSWRK started before QINTER.

22.Check the QSQSRVR jobs by using the following command:

WRKACTJOB JOB(QSQSRVR)

23.On the Work with Active Jobs display (Figure 5-14), you may need to press F14 to see the
jobs, since at this stage, they may all be waiting. Press F11 to see the Pool column. The
QSQSRVR jobs should be using the new pool. Note that the number will not be 2 as
specified in step 9 through step 11 on page 117, but the system pool number as noted in
step 21. If the new pool is not being used, check that you followed step 9 through step 11
on page 117 correctly.

In this example, the QSQSRVR jobs use pool 3, which matches the system pool for
*SHRPOOL2 in Figure 5-13. Therefore, the QSQSRVR jobs use shared pool 2.

Figure 5-14 WRKACTJOB display showing the pool numbers for the QSQSRVR jobs

24.Start the WebSphere subsystem:

STRSBS SBSD(QEJB/QEJBSBS)

Notice that this starts the default instance of WebSphere.

25.Check the QEJBSBS subsystem:

WRKACTJOB SBS(QEJBSBS)
120 Geac System21 commerce.connect: Implementation on the iSeries Server

26.On the Work with Active Jobs display (Figure 5-15), press F11 to see the Pool column. All
the jobs, except the subsystem monitor QEJBSBS, should be running in your new pool
(the number noted in step 21). If the new pool is not being used, then verify that you
followed step 9 through step 11 on page 117 correctly.

Figure 5-15 WRKACTJOB command showing the pool numbers for the QEJBSBS jobs

As in Figure 5-13, the jobs are using pool 3. This matches the *SHRPOOL2 entry in the
earlier WRKSYSSTS display. Note that the subsystem job itself is still using system pool 2,
which is *BASE. This is because the simplification mentioned in step 8 on page 116 was not
taken. Note also that the default instance of WebSphere is not running. However, an
alternative instance TEST is running, and so is the application SALESTEST within it.

5.2.4 Automatic performance adjustment
You should verify whether automatic performance adjustment is active on your system. Check
the system value QPFRADJ by using the following command:

DSPSYSVAL SYSVAL(QPFRADJ)

Figure 5-16 shows the Display System Value display for QPFRADJ.

Figure 5-16 DSPSYSVAL command showing the QPFRADJ system value

If the setting is not 0, then some form of automatic performance adjustment is active.
Chapter 5. Performance tuning 121

If WebSphere is the only significant application on your system, then the performance
adjuster may do a reasonable job. In this case, there may not be any value to a dedicated
memory pool for WebSphere.

If WebSphere will run alongside more traditional interactive and batch applications, such as
System21, then the performance adjuster does not seem to do a good job. It appears to favor
interactive jobs and reduces the memory of the WebSphere subsystem so much that
WebSphere performs very poorly. This even happens when interactive performance is
satisfactory and does not seem to require more memory.

In an extreme case, if WebSphere is idle for an extended period, its memory may be reduced
so much that it struggles to restart when someone starts to use one of the WebSphere
applications.

Therefore, if you have a mixed WebSphere and traditional workload, you may need to turn the
performance adjuster off and use manual tuning. To turn the performance adjuster off, sign on
as QSECOFR and enter this command:

WRKSYSVAL SYSVAL(QPFRADJ)

Type 2 next to the QPFRADJ system value, press Enter, type 0 on the next display, and press
Enter again. Of course, you may have to watch your system performance, and if necessary,
make further manual adjustments.

5.2.5 Manual performance adjustment
Most aspects of manual performance tuning for WebSphere are the same as for any other
application. The most useful tool for basic tuning is the WRKSYSSTS command. Watch the
faulting level, the wait to ineligible, and active to ineligible rates in the new WebSphere pool.

5.3 Stateless and stateful connections, datasources,
connection pools, etc.

The call.connect application uses both stateless and stateful JDBC connections.

5.3.1 Stateful connections
call.connect uses the Advanced Pricing module of System21. This module is stateful. This
means that it retains data that is relevant to the client between calls. If you price an order with
multiple lines, the price of a line may be affected by preceding lines. Quantity discounts may
apply to a group of items. Therefore, several lines ordering different items from the same
group may qualify for a discount, even though one line could not qualify by itself.

Stateful connections are not commonly used in WebSphere. call.connect uses special
support. The beans are still stateless session beans, but stateful connections are obtained
using a connection manager within call.connect. These stateful connections are managed
using a client ID so that a client obtains the same connection on each call.

This means that every active call.connect client requires a connection. This connection is not
managed by WebSphere and you do not need to consider it when sizing WebSphere
connection pools. However, you need to consider it when you configure iSeries SQL server
jobs.

vendor.connect does not use stateful connections.
122 Geac System21 commerce.connect: Implementation on the iSeries Server

5.3.2 Stateless connections
The majority of call.connect beans and all vendor.connect beans are common stateless
session beans and use stateless connections. One method call (typically one interaction
between the client and the server) obtains a stateless connection from the WebSphere
datasource, performs the necessary work, and then returns the connection to the pool.

If all clients would execute a method at exactly the same time, then you would need one
connection per client. A single call.connect client sometimes obtains two independent
connections for reasons of transaction boundaries.

In an extreme case, the number of stateless connections required could be twice the number
of clients. However in practice, this is extremely unlikely. You should attempt to estimate the
likely number of simultaneous connections. Once the system is running, you can verify your
estimate with the WebSphere Resource Analyzer. If your value is too low, then clients will
have to wait for connections and response times may become unpredictable. If the value is
too high, then you will use more iSeries resources than required. If you are in doubt, err on
the high side, a small number of active but idle connections is unlikely to be a problem.

If call.connect and vendor.connect are on the same iSeries, then you can configure them to
use separate datasources or a common one. The pros and cons of the choice are complex. A
common source may reduce the number of connections required since it is unlikely that both
applications will reach their maximum usage levels at the same time. On the other hand,
sharing the connections means that all connections accumulate prepared statements from
each application. Therefore, they have a larger memory requirement per connection than if
they were separated. A simple setup uses a common pool. Unless you have a reason to do
otherwise, you should retain this.

The size of the datasource connection pool can be controlled using the WebSphere console.
Start the console and select the datasource used by your application. On the WebSphere
Console’s DataSource panel (Figure 5-17), select the Advanced tab. Note the Minimum
connection pool size and the Maximum connection pool size fields.

The maximum pool size has the most significant affect on performance. If it is insufficient,
then clients are forced to wait when they need a connection. In extreme cases, the application
can lock up. The ideal tuning technique is to use the WebSphere Resource Analyzer to
monitor actual use. A simpler approach is to make a high estimate and drop it down gradually
until it impacts performance. Except for extreme values, performance is not greatly affected
by this setting.

The minimum pool size is less significant but worth considering. This is the number of
connections that WebSphere will retain even if they are not in use. The default of 1 is
reasonable if there are extended periods in which WebSphere is not in use but other
applications are. However, if there will rarely be times when WebSphere is idle, or when
WebSphere and most other applications are idle, then a larger value is desirable. Larger
values should improve startup times after periods of inactivity. Try to estimate the lowest level
of WebSphere usage while other applications are busy. Ignore periods when WebSphere and
other applications are not busy.
Chapter 5. Performance tuning 123

Figure 5-17 The DataSource panel Advanced page of the WebSphere console

5.3.3 Total connections and SQL server jobs
If you estimated the number of stateful and stateless connections required by your
applications, then you can easily estimate the total number of connections. You should add
these two and the five connections used by the WebSphere administration server job
QEJBADMIN. If you are using multiple applications (for example, call.connect and
vendor.connect in different pools), then you should also add them. If you are running multiple
instances, then count each separately and then add them together. Each instance has its own
administration server job and, therefore, five connections.

It is important that sufficient SQL server jobs are available for these connections. See 5.2.1,
“SQL server job configuration” on page 109. If WebSphere attempts to use more connections
than the number of prestarted SQL server jobs, then performance may be poor.

Any time you adjust the size of your WebSphere connection pools, review the configuration of
your SQL server jobs. Remember that if you have other applications that use these server
jobs, then you should include them in the calculation of the number of server jobs required.
The normal server QSQSRVR jobs are only used by JDBC connections using the native
JDBC driver. Therefore, if do not have any other Java applications on your iSeries, then no
other applications are using these jobs. If you are using the Toolbox driver QZDASOINIT,
remember that Java applications running elsewhere and ODBC clients may use it.

5.4 Performance topics for Java virtual machine (JVM) settings
This section discusses performance-related topics regarding to JVM settings. You can specify
command line parameters for the application’s JVM using the WebSphere console. Simply
select the application and then select the General tab.
124 Geac System21 commerce.connect: Implementation on the iSeries Server

5.4.1 Initial Java heap size
–Xms is an important parameter that controls the initial Java heap size. It is followed by the
size, which is usually an integer followed by m (represents megabytes). The default is 32 Mb,
which would appear as –Xms32m.

Figure 5-18 highlights the Xms parameter on the WebSphere Console’s Application Server
panel.

Figure 5-18 Application Server panel of the WebSphere console showing the Xms parameter

If you have only a few users who will not be very busy, then this setting may be sufficient. If,
however, you have many users, especially active users, you may benefit from a larger value.

Increasing the value can affect the iSeries in two ways. First, the initial size of the Java heap
will be greater. This should speed the startup of the application. Second, it causes garbage
collection to run less frequently. The less frequently it runs, the better the average
performance should be. If it is too infrequent, then the impact may be significant when it runs.

5.4.2 Maximum Java heap size
It is also possible to specify a maximum Java heap size. The parameter is –Xmx and is
followed by a value in the same form as the –Xms parameter.

For the iSeries, we recommend that you do not set this parameter because we have not found
it to be useful. If you do not specify it, then the heap grows as required including beyond
physical memory.
Chapter 5. Performance tuning 125

5.4.3 Verbose garbage collection
The JVM has an option called verbose garbage collection. This means that the garbage
collector outputs statistics on its activity. To activate the option, add the parameter –verbosegc
to the command line arguments in the Properties window of the application server. You must
keep this option separate from other options by adding a space but the sequence is not
important.

The messages are sent to the standard output file, which was defined when the application
was created. You can verify this setting on the General tab of the application server settings.
The file name is specified in the standard output field. If it does not specify the directory, then
the file is in the working directory specified on the same tab. Note that if the standard output
file starts with an exclamation mark (!), then the file is overwritten at the time that the
application is started. Otherwise the file is appended to.

Figure 5-19 highlights the verbosegc and related parameters on the WebSphere Console’s
Application Server panel.

Figure 5-19 Application Server panel of the WebSphere console showing the -verbosegc parameter

In this example, the output goes to /OrderManagement/log/stdout.txt. Since the exclamation
mark (!) is placed at the beginning of the file name, it is rewritten when the application is
started. If you want to save the data from a previous run, then either do not use the !, or
rename the file before you restart the application.

The example in Figure 5-19 shows the page scrolled down slightly so that you can see all
three relevant fields. The command line arguments field is very long. In this case, the
–verbosegc parameter is at the end and appears only because the cursor was placed in the
field and the End key used to move to the end of the value. For a tip on editing the command
line arguments, see 5.4.4, “Static compilation” on page 127.
126 Geac System21 commerce.connect: Implementation on the iSeries Server

A simple way to view this file is to map a PC drive to the iSeries integrated file system (IFS)
and then use a PC editor. Another simple way to view this file is to use the OS/400 Edit File
(EDTF) command. An another less friendly but useful technique is to use the Qshell tail
command. You can learn more about each of these techniques in Chapter 6, “Tips and
techniques” on page 137.

The following example shows sample output produced by verbose garbage collection.

GC: initial heap(KB) 262144; maximum heap(KB) 0; virtual machine identifier
F246AFEE6B000048; heap identifier F246AFEE6B000048.…
GC 1: starting collection, threshold allocation reached.…
GC 1: live objects 149160; collected objects 1810659; collected(KB) 240977.…
GC 1: queued for finalization 0; total soft references 77; cleared soft references 49.…
GC 1: current heap(KB) 311328; current threshold(KB) 262144.…
GC 1: collect (milliseconds) 2106.…
GC 1: current cycle allocation(KB) 17133; previous cycle allocation(KB) 262172.…
GC 1: total weak references 6; cleared weak references 1.…
GC 1: total final references 516; cleared final references 47.…
GC 1: total phantom references 0; cleared phantom references 0.…
GC 1: total old soft references 0; cleared old soft references 0.…
GC 1: total JNI global weak references 0; cleared JNI global weak references 0.…

The first line is output once. It confirms the application settings. At the time this output was
run, the Xms setting was 256m, which is 262144 bytes. Xmx was not specified as indicated by
the maximum size of 0.

The lines that follow have a number after the GC. This is the cycle number, so all these lines
relate to the first garbage collection. Later a set of lines beginning with GC 2 appear and so on.

The value 240977 at the end of the second GC 1 line indicates how much heap was
recovered by the collection. The value 311328 on the fourth line indicates the size of the heap
after the collection. The other value on this line 262712 is the threshold, which specifies how
much the heap needs to grow before the next collection. This is based on the Xms parameter.
If the application was running for some time and this is a typical workload, then these figures
give a good indication of the ideal heap size. It varies between the size after collection
(311328 in this example) and this size, plus the threshold (311328 + 262144).

If you increase Xms, the threshold increases, so the collections occur less often. In general,
this improves performance. However if you increase it too much, then the collection has a
greater impact on performance when they do occur. Also if you let the heap grow too large,
then you may exceed real memory in the pool and cause faulting. On the other hand, if you
have insufficient real memory, you may improve performance by reducing Xms and keeping
the heap smaller to reduce faulting.

5.4.4 Static compilation
OS/400 offers the ability to statically compile Java classes and JAR files. This is done using
the Create Java Program (CRTJVAPGM) command. A service program (similar to a familiar
iSeries program but with multiple entry points) is created. Unlike traditional languages (for
example, RPG or Cobol), this program does not appear in any library. Instead, it is attached to
the Java class or JAR file. The iSeries class loader detects the presence of this service
program and uses it if it is present. This saves the overhead of Just In Time (JIT) compilation
and the level of optimization may be greater. This step used to be extremely valuable in the
early releases of Java on the iSeries, but it is less important now since the JIT compiler has
improved greatly.
Chapter 5. Performance tuning 127

If you have addressed most other performance issues, then you may want to try this
technique. At V5R1, the JIT compiler was greatly enhanced, although the benefit may not be
significant. Although some improvement in application startup may still be achieved.

Refer to Chapter 3, “Installing and setting up call.connect” on page 19, and Chapter 4,
“Installing and setting up vendor.connect” on page 73, for the names and locations of the JAR
files used by the application. These include ones that are described as “deployed” JAR files
that contain the EJB classes, “logic” JAR files that contain the application logic used by the
EJBs, and some utility JAR files.

You can check whether these JAR files already have a static program attached by using the
Display Java Program (DSPJVAPGM) command as shown in this example:

DSPJVAPGM CLSF('/OrderManagement/Deployed/roseao_deployed.jar')

Then you see the Display Java Program Information display (Figure 5-20). If you receive the
message “No Java program associated with the file”, then there is no hidden static
program and JIT compilation is used.

If some data is displayed, then look at the Optimization level. The highest level is 40. Also look
at the value for the Classes without current Java programs parameter.

Figure 5-20 The DSPJVAPGM command used with a compiled JAR file

If there is no static program, the optimization level is less than 40, or some classes do not
have Java programs, then the compile may be worth trying. Compilation is performed using
the CRTJVAPGM command as shown in this example:

CRTJVAPGM CLSF('/OrderManagement/Deployed/roseao_deployed.jar') OPTIMIZE(40)

This command can be slow, especially for large JAR files, and you may want to submit it to
batch. Repeat this command for all JAR files used by the application. You can use generic
names, for example, *.jar at the end of the path. If you compile all the JAR files in the
application directory at one time, then it will be very slow so then you certainly submit them to
batch. Check the job log periodically. You will see a message each time it completes a JAR
file so you can check the progress.

You can also apply this to individual class files but none that are used by call.connect or
vendor.connect at the moment.

Outside of WebSphere, this program would be detected and used with no further effort.
Unfortunately, WebSphere adds a complication. It may use its own custom class loader in
128 Geac System21 commerce.connect: Implementation on the iSeries Server

place of the OS/400 system class loader. This custom class loader does not detect the static
programs.

To enable the system class loader to load the classes and detect the static programs, you
must add the classpath parameter to the JVM settings. Do this in the Command line settings
field of the application server settings (the same field as the –Xms parameter) as shown in the
example in Figure 5-21. The parameter is –classpath followed by a space and the classpath
value. The classpath value is the fully qualified name of all the JAR files separated by colons
(:). There should not be any spaces in the value. It is similar to the Dependant classpath
parameter in the application node settings except that it includes the deployed JAR files.
Notice that the slashes in the qualified names are forward slashes (UNIX rather than
Windows NT style) and that the separator is a colon rather than a semi-colon (;) (again UNIX
rather than Windows NT style).

Figure 5-21 Application Server panel of the WebSphere console showing the classpath

It is possible that the parameter is too long and will be difficult to edit directly in the field of the
dialog. Therefore, copy the parameter to an editor and modify it there. To copy the entire
parameter, follow these steps:

1. Place the cursor in the field, and press the Home key to ensure that you are at the
beginning of the field.

2. Press and hold the Shift key and then press the End key to select the entire field.

3. Press Ctrl+C to copy the field to the clip board and then press Ctrl+V to paste the
parameter into a text editor (for example, Windows Notepad).

Since the line may be long, check how the editor handles word wrap. Some editors insert line
feeds into long lines of text, which may be a problem. In our example, we turned off word wrap
because the line is too long. To turn off word wrap in Notepad, select Format-> Word Wrap if
a checkmark precedes the option. If there is no checkmark in front of the Word Wrap option,
then Word Wrap is already turned off.
Chapter 5. Performance tuning 129

If you have a powerful editor, you may be able to replace all the colons with line feeds. This
makes the parameter much easier to edit. You would rejoin the lines with the colons between
each entry.

You may also want to consider starting a Windows command prompt, navigate to the
directory that contains the JAR files (using a mapped drive), list the JAR files using the DIR
command, and output the result to a file using redirection. he following command creates a
file called jars.txt in the c:\temp directory with the names of the JAR files. The /b option
suppresses all data (for example, size and date) except the names (which is convenient).

dir *.jar /b > c:\temp\jars.txt

You can then edit this file, preferably in a second session alongside the previous edit session
as explained here:

1. Add the qualification, for example, /OrderManagement/deployed/ to the beginning of each
line (copy and paste or possibly scan and replace).

2. Add a colon to the end of each line, except the last.

3. Delete the line feeds to join all the lines into one long line and copy the resulting long line
to the clipboard.

Return to the editor session with the parameter copied from the console, add the parameter
name –classpath and a space at the end of the current settings, and paste the list of JAR files
from the other editor session.

An editor more powerful than Notepad is desirable, but even using Notepad is a lot easier
than editing the field in the WebSphere console.

Figure 5-22 shows a command prompt and two Notepad sessions.

Figure 5-22 Using a command prompt and two Notepad sessions to edit the classpath
130 Geac System21 commerce.connect: Implementation on the iSeries Server

In this example, we completed the following tasks:

1. The command line arguments were copied to one Notepad session and the parameter
name –classpath and a space were added at the end.

2. A file with a list of the JAR files was created and opened in another Notepad session.

3. The qualification was added to the beginning of the first line and the colon was added to
the end.

The lines that follow should be amended in the same way (no colon on the last), the lines
joined into one long line with no spaces, and then copied to the clipboard. Finally the long
string should be pasted into the other session after –classpath.

An alternative technique is not to run the CRTJVAPGM command, but to add the following
line to the command line arguments:

-Dos400.optimization=40

This sets the default optimization level to 40. If there are no attached Java programs, then
they are created the next time the application is started. This technique means that the next
application start will be slow, possibly so slow that it times out. But if the Java programs are
created, then it confirms that your configuration was correct and they will be used.

You can verify whether the Java programs exist by using the DSPJVAPGM command. If the
programs exist and you want to use this technique, then delete them by using the Delete Java
Program (DLTJVAPGM) command. Note that this command does not delete the Java class
file, but the hidden statically compiled program associated with it.

Enterprise bean settings
Similar to connections, beans are pooled. The default minimum pool size is 2, and the
maximum is 100. Unless you have an extremely large installation, these values should work.
Even if you had hundreds of clients, you would need more than 100 beans only if they were all
active and more than 100 were frequently using the same bean at the same time.

However, on a moderately busy system, you may improve performance by increasing the
minimum pool size and possibly by reducing the maximum. Ideally you would watch usage by
using the Resource Analyzer.

These settings are controlled on the Advanced page of a bean’s settings as shown in
Figure 5-23.
Chapter 5. Performance tuning 131

Figure 5-23 Advanced tab of the Enterprise Bean panel

Performance requirements
We have not yet determined precise guidelines for sizing these applications. Our standard
tests normally use a test harness that emulates a specified number of users entering orders.
A 20 second think time is used. For example, the simulated users wait for 20 seconds
between creating the order header and the first line, then wait another 20 seconds between
this line and the next, etc. You need to estimate whether this is similar to your usage or
whether your users are likely to be enter data faster or slower than this.

For our simulated users, approximately 8 CPW is required per user. For 30 such users, a
CPW of 240 is required. This assumes that sufficient memory is available. Insufficient
memory constrains performance so that a system with insufficient memory may not support
as many users as its CPW would imply.

Constrained performance
WebSphere has many time limits that are intended to detect and clear up failed transaction
and applications. If the system can cope with the workload and it is tuned reasonably, then the
default settings are normally acceptable. However if performance is poor, then there is a
danger that a transaction or application exceed a time limit and be cancelled even if it has not
failed.

Application settings
These limits are specified on the Advanced page of the Application Server panel.

Transaction time out
This parameter defaults to 120 seconds, that is two minutes. This means that if a transaction
(one method call) has not completed in two minutes, it is cancelled by WebSphere.
132 Geac System21 commerce.connect: Implementation on the iSeries Server

If transactions fail for this reason, then the client receives such messages as JTA Transaction
Aborted. If you see this message on the client or transactions fail, but you have not
determined why, then you may want to increase this value. If you prefer long waits to failures,
then it is worth it to try a large increase such as adding a zero (multiplying by 10).

Transaction inactivity time out
This is another WebSphere timing parameter that can stop a long running transaction. The
default is 60000, which seems large. But unlike the other timers, it is measured in
milliseconds and is, therefore, only one minute. You may want to increase this for similar
reasons as the previous setting.

Figure 5-24 shows Transaction time out and Transaction inactivity time out parameters in the
top half of the Advanced page of the Application Server panel.

Figure 5-24 Advanced page of the Application Server panel

Ping interval and timeout
The administrative server pings your application regularly to check whether it is still operating.
If it fails, then it is ended and restarted. The ping interval controls how often this is performed.
The ping timeout controls how long the administrative server waits before it assumes failure.
The ping initial timeout is similar to ping timeout except that it covers the initial ping after the
application is started. It is usual to use a larger value for the initial time out.

If performance is poor, then increase all of these parameters to avoid a slow application being
mistaken for a failed application. If your application server is periodically ended and restarted,
then this may explain the poor performance. A “SIGKILL received” message in the job log
would be normal in this case.

When performance is poor, consider simply adding a zero to the timeout values. Note that the
time out values are most important. However, there is no point in frequent pings if the time out
is large. Therefore, increase the ping interval as well.
Chapter 5. Performance tuning 133

“Ping” in this context refers to sending a simple test message, which requires only a simple
acknowledgement. It is a similar idea to the network command PING, which can be used to
test a TCP/IP network.

Figure 5-25 shows the Ping interval, Ping timeout, and Ping initial timeout parameters at the
bottom half of the Advanced page of the Application Server panel.

Figure 5-25 Advanced tab of the Application Server panel showing the ping settings

Datasource settings
The datasource settings are controlled using the WebSphere console. To access these
settings, select the datasource and then select the Advanced tab.

Refer to 5.3.2, “Stateless connections” on page 123, to learn about the important datasource
settings of minimum and maximum connection pool sizes.

Other settings are occasionally useful, especially when the system is performing poorly, as
explained in the following sections.

Figure 5-26 shows the Advanced page of the DataSource panel.
134 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 5-26 The Advanced page of the DataSource panel

Connection time out
This is the maximum time that WebSphere waits for a connection when all the connections in
the pool are in use.

If you frequently encounter connection time outs, then consider increasing the size of the
connection pool. See 5.3.2, “Stateless connections” on page 123, and 5.3.3, “Total
connections and SQL server jobs” on page 124, for more information.

If the problem occurs only occasionally during extremely busy periods and you do not want to
use additional SQL server jobs, then increase this limit. In general, the problem is better
addressed by increasing the pool size.

Idle time out
If the current size of the connection pool is above the minimum size, then connections are
released after they are idle for this time. They then return to the OS/400 pool. See 5.2.1, “SQL
server job configuration” on page 109, and 5.3.3, “Total connections and SQL server jobs” on
page 124, for more information. Depending on the SQL server job configuration, they may
then be as idle prestart jobs or released later in a similar way.

If there are times when WebSphere and non-WebSphere applications are busy, then setting
the minimum pool size less than peak usage may improve the performance of other
applications when WebSphere is below its peak. However, if WebSphere usage is fairly
constant or when it is idle and so are other applications, performance may be better with a
larger minimum pool size. Then this parameter will not be so important.

Orphan time out
This is the maximum amount of time that a transaction can hold a transaction. If it is
exceeded, then the connection is returned to the pool anyway. This is designed to prevent
failed or hung transacting monopolizing connections. However, if performance is poor, then a
valid transaction may have its connection removed and when it tries to use it the next time. It
Chapter 5. Performance tuning 135

receives an exception indicating that the connection was pre-empted. If valid transactions
suffer from this problem, then you may want to increase this setting.
136 Geac System21 commerce.connect: Implementation on the iSeries Server

Chapter 6. Tips and techniques

This chapter offers various tips and techniques for using Geac System21 products.

6

© Copyright IBM Corp. 2002. All rights reserved. 137

6.1 The iSeries integrated file system
Several releases ago, IBM reorganized considerably the file system of the iSeries server. A
new UNIX- or Windows NT-like file system called the integrated file system (IFS) was
introduced. The original file system, for example QSYS, other libraries, and their contents
became part of this new system.

Files in new areas of the IFS are quite different than the familiar database files of the iSeries.
They do not have fixed length records. In fact, they do not have a structure known to the
operating system. They are simply stored bytes. The data may be readable text in ASCII,
EBCDIC or Unicode. It could be Java byte code, PC executable code, or many other types.
Some may be suitable for viewing and others may not be. You need to know which programs
are intended to read and write these files. The extension (the portion of the name after the
dot) often suggests the nature of the contents but it is not exact. A file whose name ends in
.java may be Java source code, but it could be anything.

When necessary, these files are called stream files to distinguish them from database files.
They are also commonly called IFS files. To a UNIX or Windows NT user, they are simply files
even if they contain executable program code.

WebSphere and its applications make considerable use of stream files. Java source and byte
code is stored in stream files. The source code is in ASCII, and the byte code is not humanly
readable. Configuration and log files used by these applications are typically stream files,
which are usually ASCII, but may be EBCDIC.

Many experienced iSeries users are not familiar with these stream files, so we added a
number of topics that deal with them in this section.

The IFS is similar to UNIX, except that in general, file names are not case sensitive. The
system remembers the case that is used when the file is created, but it can be addressed
later using a different case. Although this is not always true, we recommend that you use
consistent case. (Some UNIX knowledge will be valuable for installing and managing a
WebSphere application.) The IFS even supports links, both hard and soft, but they are not
used by System21 applications.

The IFS is similar to the file system of Windows NT, but less so than UNIX. Here are some
significant differences from Windows NT:

� Although the iSeries has disk drives, they are not reflected in file naming so there is no C:
drive, D: drive, etc.

� The directory separator is / rather than \.

� The root directory is called /, not C:\. All iSeries storage is somewhere within this directory.

One aspect in which the IFS is more like Windows NT than UNIX is regard to case. Outside
the special directory QOpenSys (see the following list), file names are not case sensitive. For
example, FRED, Fred, and fred all refer to the same file. Like Windows NT, the IFS
remembers the case but allows access through names with different cases.

Certain top-level directories have special properties, which include:

� QDLS: The old folder / document file system. This exists only for compatibility. This is not
used by System21 applications and we do not recommend using it.

� QOpenSys: Within this directory, names are case sensitive. This is intended for porting
UNIX applications. It is not used by System21 applications.

� QOpt: Optical storage, such as CD drives. This is used during WebSphere installation.
138 Geac System21 commerce.connect: Implementation on the iSeries Server

� QIBM: This directory does not have any special property, but most IBM supplied files are
within this directory. Two important subdirectories are ProdData and UserData. Within
each of these, there is usually a directory for each IBM product that uses stream files.

For example, both contain a directory called WebASAdv. ProdData normally contains files
that would not change in normal usage. UserData contains files that may change during
normal usage. If the product is deleted, then the directory within ProdData is deleted, but
the one within UserData is not deleted. If you want to completely remove the product, then
you need to manually delete. Be sure to first back it up.

� QNTC: This directory enables the iSeries to be a client of Windows NT file shares. It may
contain subdirectories named after Windows NT servers. Within these directories, you
may see directories named after shares offered by that system. And within these
directories, you may see files from the Windows NT system. This feature is not used by
System21 applications.

� QSYS.LIB: All traditional AS/400 objects are within this directory. If you explore this
directory, you will find all your familiar libraries, files, programs, etc. but with new style
names. In general, it is better to use the traditional commands to deal with objects in this
area of the file system.

There are additional special Q directories with special properties. With each release, IBM
may add more of these directories.

Files directly in the root or in normal directories should be quite UNIX or Windows NT like.

6.1.1 Using File Transfer Protocol (FTP) with the iSeries IFS
If you configured FTP on your iSeries, then you may want to use it to transfer files to and from
other systems. FTP on the iSeries is similar to FTP on most systems, except for the naming
systems of the iSeries. That is FTP was introduced to the iSeries before the IFS, so it has two
naming modes. One mode attempts to match UNIX-type names to the original file system,
and the other mode uses the IFS names.

The iSeries defaults to the older non-IFS mode. In the older non-IFS mode, only a few object
types, such as physical files, may be accessed. A source physical file is accessed with a
name of this form:

library/file.member

For a typical data physical file with one member, the member may be omitted. It is unlikely
that you need to use this form of naming when you deal with the .connect applications.

It is more likely that you will want to access stream files outside the traditional file system
using the IFS names. To switch to the new naming mode, use the following command:

quote site namefmt 1

Some FTP clients may need a slightly different command.

Alternatively if you use cd to change directory to an IFS type name beginning with /, then the
mode is switched. For example, you can use the following command to switch to IFS names
and the root directory:

cd /

If you ever need to send a save file to or from an iSeries, you must switch the transfer mode to
binary first. Otherwise, the file will be corrupted. Use the following command:

bin
Chapter 6. Tips and techniques 139

6.1.2 Mapping a PC drive to the iSeries IFS
An easy way to explore and view the IFS is to map a PC drive to some or all of the IFS and
use PC tools such as Windows Explorer. To do this, you must set up a Windows-style file
share on the iSeries. You must also install Operations Navigator and create a connection to
the appropriate iSeries server.

To create a share, follow these steps:

1. Start Operations Navigator.

2. Expand the system you need. Log on if necessary.

3. Expand File Systems, and select File Shares.

4. Several IBM default shares may be displayed. These map to portions of the IFS. You may
use these immediately if you prefer or you can add more. You may find it useful to create a
share that allows access to the IFS directories containing the System21 applications.

The simplest share is one that mapped to the root of the IFS. This allows access to the
entire IFS from the PC (subject to authority), but this can be a security exposure. Only do
this if you are quite familiar with iSeries and Windows NT security.

Right-click File Shares in the left panel of Operations Navigator and select Open AS/400
NetServer.

5. The AS/400 NetServer window opens. In the new window, right-click the Shared Objects
item and select New-> File.

6. The AS/400 NetServer File Share window (Figure 6-1) opens.

a. Enter a share name. If the share is to the root of the IFS, then use the name ROOT.

b. Enter a description (optional).

c. Set the access to Read only or Read/Write depending on your intended usage. A
Read/Write share to the root can be a significant security exposure. Read only is safer
to use, but remember that it may still allow viewing of confidential data.

d. Set the maximum number of users (optional).

e. Enter the path name as /.

f. Click OK.
140 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 6-1 Creating a file share

To create a more specific share, use a different name and select an appropriate directory
in the path name field. You can find this directory using the Browse button. You may want
to create a share to the /OrderManagement directory of the application. A logical name is
to use OrderManagement.

Mapping a PC drive to one of these shares is like mapping a drive to a share on a Windows
NT server. Successfully accessing the iSeries by name from Windows Explorer is quite
sensitive to the configuration of your iSeries and PC. One problem we found is that if you do
not have a WINS server configured, then you may be unable to address the iSeries by name
in Windows Explorer. In most cases, you can address the iSeries by its IP address even if you
cannot address it by name.

You may need to log onto the iSeries server. You can avoid this if your Windows NT and
iSeries users and passwords are the same. If you do not log on as QSECOFR, then you may
find that your access to certain files and directories is restricted. Consequently, it is tempting
to log on as QSECOFR. If you do, then be careful since it is easy to accidentally delete, move,
or even damage important files.

If you are using a share that maps to a directory other than the root, for example,
/OrderManagement, then the name of this directory does not appear in Windows Explorer.
The root of the mapped drive is the contents of the directory on the iSeries. The immediate
subdirectories of the iSeries directory appear to be top-level directories in the PC drive.
Chapter 6. Tips and techniques 141

6.1.3 Editing an iSeries stream file using a PC editor
If you exposed some or all of your iSeries IFS using a file share, then you can edit many
configuration, log, and source files with a PC editor. Remember that not all stream files
contain readable text. If you accidentally open one and it is not readable text, then be sure to
exit without saving. If you save the file, you may corrupt it even though you did not make any
deliberate changes.

You must use the editor with care. Ensure that it can read and write simple ASCII files. Word
processors may not be suitable or may only be suitable with care.

Notepad (in the Windows Accessories folder) is suitable for some files, but not all files. Some
iSeries files use the UNIX convention of a line feed between lines rather than the DOS
convention of using a carriage return and line feed. Notepad does not understand these files
and presents them in an incorrect way. An advantage of Notepad is that it can open a file that
is in use but cannot save that file while it is in use.

Wordpad (another Windows accessory) may also suitable for some files. Wordpad can save
in Word document format (be careful not to use this option). It copes with the UNIX style line
feeds that some iSeries files use. However, it cannot open files that are in use.

The best option may be to use a PC editor that is intended for programmer use. There are
may available. Whichever editor you use, you may find that some files that you expect to be
text are unreadable. Be careful to exit these files without saving. If the file contains many @
symbols, then it is possible that it is a text file, but in EBCDIC. For more information, see the
following section.

6.1.4 Stream files and CCSID
CCSIDs are labels for a file and some other objects. They indicate the code page of the data
within them. When database or stream files are labelled with an appropriate CCSID, OS/400
performs any necessary conversion when the file is read or written by OS/400 programs.

If a stream file is created on the PC, for example, by creating a new text file in Windows
Explorer, it is given an ASCII CCSID. Most OS/400 software can use this. That is, although
the software may expect EBCDIC, the operating system can convert the data as required.

If the file is created by Java on the iSeries server, it also gets an ASCII CCSID so you should
be able to read it on both the PC and the iSeries (if it is a text file). However, if the file is
created on the iSeries by something other than Java, it may get an EBCDIC CCSID. This is
usable by OS/400 software but not by PC software as mentioned in the previous section. You
are likely to see many @ characters because the EBCIDC code for space is the same as the
ASCII code for @. A situation in which this may occur is when a file is created using
redirection from a Qshell command.

You can create an ASCII file in the Qshell on the iSeries server by using the touch command.
This command can be useful in scripts. If the file is created with an ASCII CCSID, then data
written to it by following iSeries software should be translated. The result should be readable
from a PC.

It is possible to change the CCSID of a stream file after it is created without changing the data
already in the file.

If it is easy to recreate the file, then the easiest approach may be to delete the file, create it
again with an ASCII CCSID, and run the application again. You should now be able to view
the file from a PC. To create the file with an ASCII CCSID, either create it from a PC using a
mapped drive or by using the touch command.
142 Geac System21 commerce.connect: Implementation on the iSeries Server

If it is not easy to create the file again, then you can view it by using an OS/400 command,
such as Edit File (EDTF), or copy the file to a file with an ASCII CCSID using a command like
this example:

CPY OBJ(ebcdic-file-name) TOOBJ(ascii-file-name)
TOCCSID(819) DTAFMT(*TXT)

Here ebcdic-file-name is the name of the file that you cannot read on the PC and
ascii-file-name is a new name that does not yet exist. You may need to fully qualify both
names (unless you used the cd command first). If the file is text in EBCDIC, you should be
able to read the new file using a PC editor.

For more information about the touch and setccsid commands, see 6.2.2, “The touch and
setccsid commands” on page 149.

6.1.5 The cd command
An OS/400 job has a current directory in the same way that a Windows or UNIX session has
a current directory. This is a similar concept to the current library, but it is not linked. Unlike
Windows and UNIX, the current directory does not affect many things. Programs are still
found using the library list, which, like the current library, is independent of the current
directory.

Like Windows and UNIX, you can set the current directory with the cd command. You may
also use the more traditional name CHGCURDIR. Like UNIX, but not Windows, the directory
separator is / rather than \. Also like UNIX, but not Windows, there is no notion of drives. Only
/ is the root of all storage. Unlike UNIX or Windows, a qualified name (that is one that contains
a /) needs to be in single quotation marks as shown in this example:

cd '/OrderManagement/log'

An exception is / by itself, which does not need single quotation marks.

As in UNIX and Windows, you can use the special name .. to mean the parent of the current
directory.

A home directory is stored in your user profile. This is usually /home/user-name. If this
directory exists, then it is set as your current directory when you sign on. If it does not exist,
then your current directory is the root. You can change this home directory using the Change
Profile (CHGPRF) or Change User Profile (CHGUSRPRF) command.

6.1.6 Managing stream files with the OS/400 WRKLNK command
You can use the Work with Object Links (WRKLNK) command (Figure 6-2) to explore and
manage the IFS. It is a dumb terminal equivalent of Windows Explorer. For most purposes, it
is easier to use Windows Explorer against a mapped drive, although WRKLNK is occasionally
useful.

A time when WRKLNK is useful is when you do not have a share for the IFS directory in which
you are interested. In some cases, WRKLNK can be easier or perform better. It allows you to
control authority, which is not possible through Windows Explorer.

The WRKLNK command without parameters shows the contents of the current directory.
Alternatively, you may follow the command with a parameter that indicates which file or
directory to show. If you want to explore the entire file system and you have not set your
current directory, use the following command:

wrklnk /
Chapter 6. Tips and techniques 143

Like cd, qualified names, except for /, must be in single quotation marks.

Figure 6-2 The WRKLNK command showing the root directory

Option 5 (Display) is rather important. If you type it next to a file, the EDTF command is called
in display mode. If you type it next to a directory, the contents of that directory are shown. If
you enter a directory using option 5, then you can return to the parent directory by pressing
F12. Therefore, if you started with the root, you view the entire storage of the system (but it
can take a long time). If you go into the /QSYS.LIB directory, then you see all the traditional
objects, but this can be slow.

Option 2, which calls EDTF in edit mode, is also useful. Use this option only if you know that it
is appropriate to edit the file.

There are also options to copy, move, rename, and delete files and directories, but you must
use these options with caution. Although these options may be less friendly than the
equivalent options in Windows Explorer, they can be faster, especially with large files. If you
move or copy a stream file using Windows Explorer, then it sends the file down to your PC
and back. However, if you use the WRKLNK command, it moves only with the iSeries. In
some cases, it does not move the object but only updates the directories. If you move a Java
class or JAR file that has an associated static program, then it is retained if you use the
WRKLNK command, but not if you use Windows Explorer.

The option to delete a directory only deletes an empty directory.

Some options, among these of which is these option 9 to control authority, are not shown until
you press F23. See the following section to learn more about stream file authority.

For more information about using the EDTF command, see 6.1.9, “Editing an iSeries stream
file using the OS/400 EDTF command” on page 146.

6.1.7 Other stream file commands
There are many other stream file commands. Most of them are similar to traditional
commands that deal with objects in general. For a traditional command with OBJ in its name,
there is often a stream file command that is similar but that does not have OBJ. For example,
MOV, RNM, and SAV are commands to move, rename, and save stream files.

A few commands do not follow the pattern. For example, the command to delete a stream file
is RMVLNK, which may also be called DEL. The command to manage authority is WRKAUT.
144 Geac System21 commerce.connect: Implementation on the iSeries Server

The Save Object (SAV) command is slightly confusing since it does not want only the save
device name (for example, TAP01), but the name of its device description in the new IFS
syntax. An example is /qsys.lib/tap01.devd.

Figure 6-3 shows the Save Object display.

Figure 6-3 Using the SAV command to save the OrderManagement directory

You can create directories using the CRTDIR command, which may also be called MKDIR or
MD. And you may delete directories using the RMVDIR command, which may also be called
RMDIR or RD.

6.1.8 Stream file authority
Stream files and directories are subject to authority in a similar way to traditional objects. The
authority of a stream file or directory may be controlled using the WRKAUT command or by
finding it with WRKLNK and typing option 9 next to it.

The most important authorities are the data authorities. These are UNIX style authorities. For
each user, these may be a combination of R, W, and X. R indicates permission to read. W
indicates permission to write (update) to the file and also to delete the file. For UNIX, X
indicates execute permission, which is not relevant to the iSeries, since programs are not
stored in stream files. However, on both UNIX and the iSeries, X for a directory indicates
permission to set the directory as your current directory.

Lack of X permission to a directory does not prevent access to its contents. If a user has
permission to a file within the directory, then they can still access it using a qualified name.
Lack of R permission to a directory prevents access to its contents.

When a directory is created, its authority is the same as its parent. Therefore, if you create a
directory in the root, it has the same authority as the root directory. Before you change the
authority of the root directory, we recommend that you check the authority of your directory
after it is created. If the authority is inappropriate and you already created subdirectories, then
you must correct their authority as well. If the authority of the parent directory is changed after
the subdirectories are created, then its authority is not changed.

A common authority mistake is to fail to allow QEJB or OMUSER write authority to the log
directory and others in which they need to write files. QEJB is the user used by WebSphere
jobs. OMUSER is a typical user for jobs such as JMS. It can be particularly confusing if the
problem is lack of authority to the log directory since the application will be unable to log the
problem.
Chapter 6. Tips and techniques 145

Another common problem can be caused by inconsistent use of users. If you run jobs, such
as JMS as QSECOFR and then later as OMUSER, you may have an authority problem. It is
likely that the log files created when QSECOFR was used cannot be overwritten by the
normal user used later.

6.1.9 Editing an iSeries stream file using the OS/400 EDTF command
In most cases, the easiest way to edit a stream file is with a PC editor on a mapped drive. The
ETDF command is useful in a few circumstances:

� The file may be in a directory that is not accessible through any share.
� The file may be EBCDIC.
� It may simply be convenient, for example, using the WRKLNK command.

There are several ways to start EDTF. For example, one way is to enter the EDTF command
followed by the stream file name. If the name is not qualified, then the current directory is
searched. It is not common to set the current directory. Therefore, you may need to full qualify
the file name. As for most stream file commands, if the name is qualified, then you need to
add single quotation marks around it as shown here:

edtf '/OrderManagement/log/stdout.txt'

Another way is to enter the EDTF command followed by a directory name such as /. Then you
can explore the IFS in a way that is similar to the WRKLNK command. When you find the file,
type option 5 (display) or option 2 (edit). You may perform some operations on files from the
EDTF file selector. There is even an option that WRKLNK lacks, which is recursive delete.
This deletes a directory and its contents. The delete within WRKLNK deletes only an empty
directory. Of course, you must use recursive delete with caution.

You can also find the file using the WRKLNK command and type option 5 (display) or option 2
(edit) next to it the file.

EDTF is a simple dumb terminal editor that should be familiar to anyone who has used SEU
(the dumb terminal source editor on the iSeries). There are no sequence numbers but there
is an entry field at the left of each line into which SEU like commands may be typed.

If you do not make any changes, then press F3 or F12 to exit the editor. Unlike SEU, there is
no exit screen. If you make a change, when you press either key, you see a message
indicating that the file has changed. If you press F3 again, the file is saved and you exit. If you
press F12, then the file is not saved and you exit.

As for editing files with a PC editor, ensure that it is safe and appropriate to edit them. If you
start EDTF and the file is not readable or you do not understand its contents, then be careful
to exit without saving.

To use EDTF, you should be familiar with SEU and other OS/400 commands.

6.2 The Qshell
Java and other non-traditional iSeries software often requires programming techniques that
do not fit well into traditional iSeries facilities such as its structured commands and its
command entry screen. The UNIX or Windows NT equivalent of the command entry screen is
rather different.

The DOS command screen is probably familiar to most computer users. The output of simple
commands is sent back to the command screen and when the screen is full, it automatically
146 Geac System21 commerce.connect: Implementation on the iSeries Server

scrolls. There are few restrictions on commands and their parameters. The commands can be
rather inconsistent and help can be non-existent or very basic. On the other hand, there are
some useful features such as input and output redirection and piping.

A typical UNIX command screen, usually called a shell, is similar although the range of
commands and their syntax are not the same as DOS.

For the sake of software that expects commands or programming techniques of this sort, IBM
has added a utility called the Qshell to OS/400.

UNIX users will find Qshell very familiar. Experience of the DOS command screen helps but
not as much as UNIX experience helps. Qshell is not identical to either UNIX or DOS, mainly
due to limitations of the 5250 data stream that does not permit a scrolling effect like the UNIX
or DOS screens.

You can start Qshell from an ordinary OS/400 command entry display or menu by using either
the Start Qshell (STRQSH) or QSH command. Then you see the QSH Command Entry
display (Figure 6-4), which a mostly blank display with a line beginning with a $ and a large
entry field at the bottom. In our example, the pwd command was already executed.

This display is similar to the normal Command Entry (QCMD) display, but it recognizes a
completely different set of commands. You cannot use normal OS/400 commands in QSH,
and you cannot use QSH commands in the Command Entry. There are few commands
common to both (for example, CD and JAVA), but even in these cases they are not quite
identical.

Figure 6-4 The QSH Command Entry display

If you do not see a $ but instead another character such as ¢ or £, then you may have a code
page error in your terminal or emulator setup. Ensure that your emulator configuration and the
device description that you are using match your terminal. The problem may also be caused
by using a user profile or system value CCSID of 65535. If you only plan to execute simple
commands, then you may be able to ignore the problem. For anything more complex, we
recommend that you correct the problem.

The $ is called a prompt. It is output at the beginning of the session and after the completion
of each command. It indicates that the shell is ready for a command. In general, the keyboard
is not locked during the execution of a command. You may be able to type another command,
but it cannot not execute until the current command has completed. This can be confusing
since if the current command generates any output, because it follows the waiting command.
Be sure to wait for the $ prompt after each command. UNIX shells often also use $ as the
Chapter 6. Tips and techniques 147

prompt. DOS command screens commonly use the currently drive and directory name
followed by a >. You can usually type additional commands before the current one has
completed, but they may not appear until the current command has completed.

The Qshell has a current directory that is similar to that of UNIX and OS/400. A DOS
command session also has a current directory but one that Qshell does not have. The current
directory is controlled with the cd command. This is similar to the OS/400 CD command, but
you do not need the single quotation marks when you use qualified names. To check the
current directory, use the pwd command.

You can exit Qshell by pressing either F3 or F12. If you use F3, then your session is ended.
Then if you use QSH again, you start another session. If you use F12, then your session is
detached from the OS/400 job that started it and you can perform other OS/400 work. If you
use QSH later again from the same OS/400 job, you resume the session where you left it.

The STRQSH and QSH commands have an optional parameter. This can be a single Qshell
command or several commands separated by a semi-colon (;). This is of little use interactively
since it may be easier to start QSH normally and then type the command. However, it can be
useful if you want to execute some Qshell commands inside a CL program. If the series of
commands is not very simple, then it may be better to store them in a Qshell script and use
the QSH command to execute this script.

If you use the QSH command interactively with a parameter and the command generates
some output, the QSH command display appears. You need to press Enter to proceed. If the
command does not produce any output, then the screen is not shown. If you do not want QSH
to stop, then make sure that your command does not produce any output, possibly by using
redirection.

6.2.1 Managing stream files with Qshell commands
You can use many UNIX-like commands in Qshell. Not many of these are useful unless you
happen to be familiar with UNIX. In unusual circumstances, these commands can be useful.

One such case is if you accidentally create a file with a character that has a special meaning
to Windows but not to OS/400. Examples of such characters are the colon (:) and backslash
(\). You may create a file with these characters in its name, but and this file may be difficult to
access using Windows Explorer and even when using WRKLNK.

An example is if you accidentally specify the log file as
c:\OrderManagement\log\OrderManagement.log. This may cause a file of this name to be
created in whichever directory was current at the time (probably specified as the working
directory in the WebSphere application server properties).

You can see this file in Windows Explorer, but you cannot delete, move, or rename it. When
you try, you may see an error message telling you that the file does not exist. Worse still, you
may process a local PC file that happens to have this name.

The WRKLNK command also shows you the file but does not let you delete or process it. This
is more surprising since the characters do not have a special meaning to OS/400.

Note: QSH commands do not actually execute in your interactive job. When you start
QSH, a job called QZSHSH is started. The commands are sent to this job for execution
and the results are sent back. This job is ended by F3, but not by F12. Some commands
may cause further jobs to be used. Some of these jobs may send completion messages to
your user message queue. If this is set to break, they may interrupt your session.
148 Geac System21 commerce.connect: Implementation on the iSeries Server

Even Qshell may be confused by the unusual characters. However in this case, there is a
solution. That is you may quote the name. The easiest way to delete the problem file is to
navigate into its directory using cd and then delete it by using the rm command. Enter the file
name in double quotation marks to prevent Qshell being confused by any special characters,
for example:

rm “c:\OrderManagement\log\OrderManagement.log”

If you want to use the file, then you can use Qshell commands. It may be easier, however, to
rename it to a normal name and go back to familiar techniques. Oddly the UNIX command for
rename is mv (it is also the move command), for example:

rm “c:\OrderManagement\log\OrderManagement.log” OrderManagement.log

6.2.2 The touch and setccsid commands
These touch and setccsid Qshell commands are occasionally useful.

touch is a UNIX-like command. On UNIX, it simply sets the last update time of the stream file
to the current time. Or if the file does not exist, it creates a new empty stream file.

An OS/400 enhancement to the touch command makes it more useful. It has an optional
parameter –C that you can use to set the CCSID of the file. The option must be an uppercase
C, that should be followed by a space, the desired CCSID value, and the file name. The
following command creates the file jms.log in the directory /OrderManagement/log. The file
will be empty and have the ASCII CCSID 819.

touch –C 819 /OrderManagement/log/jms.log

Further data written to the file by OS/400 commands should be translated to the specified
code page. This should enable the data to be easily read on a PC using a mapped drive (if it
is textual data).

If the file already exists, then the code page is not changed. You can use the setccsid
command instead. But it may be appropriate to delete the file and create it again empty using
the touch command. You can delete the file by using the rm command.

The setccsid command changes the CCSID of a stream file to a specified value. Note that
the syntax is a little different. The command is followed by the desired code page and then the
file name as shown in this example:

setccsid 819 /OrderManagement/log/jms.log

This command does not translate any data already in the file. If the file already exists and
contains data that you cannot read on a PC, then this command will not help. In fact, it can
make the situation worse, since after the command, the data may be misinterpreted on the
iSeries server.

6.2.3 Viewing an iSeries stream file using the Qshell tail command
There are a number of Qshell commands for viewing files.

� cat: Displays the contents of the file in Qshell.
� head: Displays the first few lines of a file.
� tail: Displays the last few lines of a file.

These commands are rarely useful. However, there is an option in the tail command that
can be useful. If you specify the option –f between the tail command and the file name, then
you can see the last few lines of the file and then monitor the file for more lines being written.
Chapter 6. Tips and techniques 149

This can be useful for monitoring log files in real time. The session in which you use this
command remains in use. When you are finished, use System Request 2 to stop the
command as shown here:

tail –f /OrderManagement/log.stdout.txt

This command shows the last few lines of the standard output file of the Order Management
application. If more lines are written, they are output. This is mentioned in 5.4.3, “Verbose
garbage collection” on page 126.

6.2.4 Qshell scripts
It is possible to save Qshell commands in stream files for later execution. This is similar to
script programming in UNIX and to DOS batch files. The concept is similar to CL programs,
but the details are different.

This is a complex subject considering that there are some powerful programming techniques
available. We only briefly describe a few simple abilities. Familiarity with DOS batch file
programming can help, but there are quite a few differences.

Qshell scripts are stored in stream files in the IFS. You can create and edit them using any of
the editing techniques described earlier such as a PC editor against a mapped drive or the
OS/400 EDTF command. If you create the script with EDTF first, then it may be given an
EBCDIC CCSID and you won’t be able to edit it from the PC later.

The names, or even the extensions of the names, of scripts are not restricted as DOS batch
files are. There are two common conventions. Names without any extension may be used, for
example StartSalesApplication, but some PC editors and tools may have problems with such
files. The extension .sh is often used, but this is required when the script is executed, unlike
DOS where the .bat extension is not required when executing the file. The file names are not
restricted to 10 characters and may be very long. Unlike UNIX, case is not significant. It is
common to use all lowercase or all uppercase letters for the initial letter of each word of the
name to make it easier to read.

At their simplest, script files are one or more Qshell commands that are executed in
sequence. Each command should be typed on its own line. Lines that begin with # may be
used for comments. The scripts do not need to be compiled, which is like UNIX and DOS but
unlike CL.

You execute scripts from Qshell by typing their name. If an extension, for example, .sh, was
used, then you must include this as well. You should either be in the directory containing the
script, fully qualify its name, or use the PATH facility. You may also execute the script from an
OS/400 command display by using QSH with its optional parameter as shown in an example
later in this section.

The name of the script may be followed by one or more values that will be available to the
script as parameters. The parameters should be separated by spaces. If the parameter
values include spaces, then they should be enclosed in single quotation marks. The
parameters may be used inside the script using the special variables $1 for the first
parameter, $2 for the second, etc. This is similar to DOS, except that in DOS, the variables
are %1, %2, etc.

You can define additional variables within the program. A variable is set simply by choosing a
name and writing a line with that name followed by = and then by the desired value as shown
in the following example. If the value contains spaces or certain special characters, then it
should be in quotation marks.

DIRECTORY=/OrderManagement
150 Geac System21 commerce.connect: Implementation on the iSeries Server

This creates the variable DIRECTORY if necessary and set its value to /OrderManagement.
There are no types for variables. They are all strings, although some commands may attempt
to interpret the contents as numbers.

Names are case sensitive. The variable defined in the previous example is not the same as
Directory or directory. It is typical to use names entirely in uppercase, but this is not required.

You may reference a variable by using $ followed by its name. This is replaced by its current
contents. You can use this as a parameter to a command, part of a parameter, or even all or
part of the command name. Consider this example:

cd $DIRECTORY/log

This changes the current directory to the subdirectory log of the directory whose name was in
the variable DIRECTORY. This is similar to DOS, except that DOS would use %DIRECTORY%.

This is a typical example of use. It is common to need to refer to the directory of a product
multiple times within a large script. To avoid repeating the name and making it difficult to
change later, it is common to set the name once in a variable and then use that as required
later in the script.

If one script (the parent) executes another (the child), then the value of the variables of the
parent will not normally be available to the child. Also, if the child changes a variable, then the
change will not be seen by the parent.

If the parent uses the export command to set a variable, then it will be available to the child.

export DIRECTORY=/OrderManagement

A child script that is run later would see the variable DIRECTORY with the value set by its parent.
Nonetheless, if the child changes the variable, the parent will not see the change.

If the parent script executes the child script with the command . (dot), then the commands in
the child script will behave as if they were executed by the parent. In this case, variables set in
either way by the parent (export or not) are seen by the child and changes made by the child
are seen by the parent.

A useful feature of Qshell commands is redirection of standard output. Standard output is the
output from Qshell programs that is sent to the Qshell display. If you follow a command or
script with a > (greater than) sign and a file name, then output that would go to standard
output instead goes to that file. This can be useful for saving the output in a file as a log. It is
also useful if you are executing your script from a CL program using the QSH command and
you do not want the program to stop with a Qshell display. As mentioned earlier, if a command
is supplied to the Qshell as a parameter and it produces no output, the display is not shown
and the program proceeds without operator intervention. Redirecting output to a file is a way
to arrange that no output is produced.

myscript.sh > redirect.out

A second output stream is called standard error. This is similar to standard output and is
shown on the Qshell display by default. It is not affected by the redirection of standard output
but can be redirected in a similar way by using the operator 2> followed by a file name. The
ability to redirect error output separately can be useful. In testing, you may want to redirect
only normal output so that any error output is obvious. In production, you may want the error
output also to go to a log file. You may have errors if you attempt to redirect both standard and
error output to the same file, but you can solve this by using the unusual operator 2>&1. This
means that stream 2 (another name for standard error) should be merged with stream 1
(another name for standard output). Therefore, it is affected by the same redirection as
standard output.
Chapter 6. Tips and techniques 151

The following Qshell command runs the script myscript.sh and sends both standard output
and standard error to the file myscript.out:

myscript.sh > redirect.out 2>&1

If the file used for redirection already exists, then it is overwritten. If you want to append to the
file rather than to overwrite it, use >> or 2>>. The following command is similar to the previous
example, but appends the output to the file:

myscript.sh >> redirect.out 2>&1

If you want to run this script from a CL program or an OS/400 command line, then you can
use the following command:

QSH CMD(‘/mydirectory/myscript.sh >> redirect.out 2>&1’)

The script is qualified since it is usually easier in this context to do so rather than to set the
current directory. An alternative is to use:

QSH CMD(‘cd /mydirectory ; myscript.sh >> redirect.out 2>&1’)

This uses the QSH ability to take multiple commands separated by semi-colon (;). The output
of cd is not redirected in this example. The redirection only refers to the second command.
Redirection can be added to the cd command, but it does not produce standard output and
only produces error output if the directory is invalid (for example, does not exist, no authority
etc.).

6.3 Checking the QEJBSBS subsystem
WebSphere 3.5 jobs run in the QEJBSBS subsystem. You can use the WRKACTJOB
command to view this subsystem as shown here:

WRKACTJOB SBS(QEJBSBS)

On the Work with Active Jobs display (Figure 6-5), for each WebSphere instance, there is a
monitor and an administration job. There is one job for each application server that is stated in
the instance. There may be further jobs that are not part of WebSphere but that are closely
related to the application.

For the standard instance, the monitor job is called QEJBMNTR. It is the first job to start when
the subsystem is started. The administration job is called QEJBADMIN. It is started by
QEJBMNTR just after QEJBMNTR starts.

For any additional instances, there is another monitor and administration job. The names of
these jobs depend on how the instance was created, but it is common to use a short name for
the instance. An example is TEST followed by MNTR and ADMIN.

This example shows the standard instance and an additional instance called TEST running.
Two applications are also running.
152 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 6-5 WRKACTJOB command showing the subsystem QEJBSBS

6.3.1 Instance monitor jobs
If you want to confirm that a particular job, QEJBMNTR for example, is an instance monitor
and for which instance, look at its job log. To look at the job log, type 5 next to the job in the
WRKACTJOB display and then select option 10. If it is a monitor job, you see a call to the
QEJB/QEJBMNTR program. The second parameter to this call is the name of the
admin.properties file of the instance. The instance name is normally the name of the directory
between WebASAdv and properties. If you look at the job log of the default instance, you see
the following command:

CALL PGM(QEJB/QEJBMNTR)
PARM('-p' '/QIBM/UserData/WebASAdv/DEFAULT/properties/admin.properties')

You can press F10 for detailed messages. Then you see a message indicating that the
administration job was started, using its full name. Here is an example from the monitor of the
default instance:

WebSphere administration server job 033446/QEJB/QEJBADMIN started.

Occasionally you may see multiple messages indicating that the administration job was
stopped and started multiple times. This is usually because of time out problems caused by
poor performance. See “Constrained performance” on page 132 for more information.

6.3.2 Instance administration jobs
It is useful to look at the job log of an administration job, for example, QEJBADMIN. Type 5
next to it in the WRKACTJOB display and then select option 10.

On the Display Job Log display (Figure 6-6), near the top of the display, you see this
message:

WebSphere server started with JDK 1.2.

By itself, this does not confirm that this is an administration job since it also appears in
application server jobs. This message is typically followed by five messages, indicating that
SQL server jobs are being used. Here is an example:

Job 031345/QUSER/QSQSRVR used for SQL server mode processing.

After these messages, you should see:

WebSphere administration server QEJBADMIN ready.
Chapter 6. Tips and techniques 153

Figure 6-6 Job log of the QEJBADMIN job

This confirms that this is an instance administration job and that it is ready. You should now
be able to successfully connect a console to the instance. This message may be followed by
some more messages about SQL server jobs.

If you are using multiple instances, then you may need to check the TCP/IP port that the
instance is using. In the job log, position the cursor on the ready message and press F1 for
help. You see a message like this example:

Message : WebSphere administration server QEJBADMIN ready.
Cause : WebSphere administration server QEJBADMIN is ready to
 handle requests from the WebSphere administration console on port 900.
 Diagnostic information is controlled on port 36899.

Since this is a default instance and its configuration is not modified, the port for the console is
the default 900.

If you are familiar with the configuration of your system and need to quickly check which
instances are running, use the NETSTAT command. If you use the following command, you
will see the status of TCP/IP sockets on your system:

netstat *cnn

On the Work with TCP/IP Connection Status display (Figure 6-7), page down until you see
900 or your expected port number in the Local Port column. The ports are in numeric
sequence, but some well-known ports are replaced with the names of applications that
typically use them. To see the numbers in all cases, press F14. If you find the port for one of
your instances, look at the State column, in which you should see Listen. This is not proof that
this is a WebSphere administration server and that it is ready. However, if you are familiar with
your configuration and the system is generally reliable, then it is a good indication.
154 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 6-7 The NETSTAT command showing ports 900 and 902

If you have trouble connecting a console to the administration server, although the job says
that it is ready, then it may be a name problem. If a console is started, then you can find the
full name of the administration server job by selecting the node and looking for Process ID on
the General page.

The job log of the administration server job has messages that indicate when individual
application servers were started and stopped, for example:

WebSphere application server job 033456/QEJB/SALESORDER started.

If these messages do not correspond to an explicit start or stop request, then there may be a
time out problem. For more information, see “Constrained performance” on page 132.

6.3.3 Specifying ports
The WebSphere console and some other IBM tools, for example the Resource Analyzer, have
a special provision for alternative instances and ports. The console takes two parameters.
The first parameter is the name of the WebSphere server, and the second parameter is the
port. Both are optional. The first defaults to the current system and is never appropriate if you
are running WebSphere on the iSeries. The second defaults to 900 and may be omitted for
the standard instance.

If you are using an additional instance, you need to know the port that it is using and specify
this as the second parameter to the console.

Many clients may lack this explicit support for alternative instances. However, it is still
normally possible to attach the clients to an alternative instance. Using system:port in place of
the system name works with most clients.

6.3.4 Application server jobs
For each application server that is started by any instance, there is a job running in the
QEJBSBS subsystem. The name of the job is the name of the application if it is acceptable as
an OS/400 job name. If the name is too long, then it is truncated and unusual characters may
be omitted.

The name of the instance is not used as part of the job name. If you have the same
application server name in multiple instances, it is not obvious which job belongs to which
instance. To see the full name of the job (including its OS/400 job number), enter 5 next to it.
Chapter 6. Tips and techniques 155

Then look in the job log of the administration job of the instance where you will see the full
name of any application servers that it has started.

Alternatively, if you select the application server in the console and look on the General page,
you will see the process ID, which is the full ID of the job. However, the simplest method is to
choose application server names that give easily recognizable and unique job names, for
example, prefix applications within the Test instance with Test.

Looking for the application server job in the QEJBSBS subsystem is a quick check of whether
the application is running. If the job is missing, then the application is certainly not running. If
the job is running, then the application may be is running, but there is a chance that there is a
problem with it. The job log of these jobs is rarely useful. For further information about the
application, you need to start the console.

In the previous above, you can guess that SALESORDER is an application within the default
instance and SALESTEST is an application within the TEST instance. You can confirm these
guesses by looking at the job messages of the administration jobs or by using the console for
each instance.

Occasionally, an application server job may remain running, although the console indicates
that the application is stopped. In this case, the application is unlikely to start successfully
unless this job is ended.

6.4 WebSphere versions on the iSeries, your console system,
and clients

It is important that the exact release of WebSphere on the iSeries, the PC that you use for the
console, and any client PCs, are the same. For example, if you loaded Fix Pack 3.5.4 on the
iSeries, then you should also load it onto your console system and update the WebSphere
files (for example, ujc.jar and ejs.jar) on your client systems. A mismatch in either direction,
server above client or server below client, may cause a problem.

In some cases of a mismatch, the console and applications may work correctly but this is rare.
In other cases, the console and applications will work to some extent but not completely.
Even if your application appears to work despite a mismatch, it is not advisable to do so.

A common symptom of a release mismatch between the WebSphere release on the iSeries
and your console PC is that the console window appears and the message Loading …
appears but the Console Ready message never appears. Another symptom is that simple
operations, such as starting and stopping applications, work but more complex ones, such as
creating an EJB, do not.

6.4.1 Checking the WebSphere PTF level on the iSeries
There are two ways to check the PTF level of WebSphere on the iSeries.

The first way (usual way) is to check OS/400 group PTFs. The group PTF for WebSphere 3.5
on V5R1 is SF99147, and on V4R5 it is SF99138. In all cases, including V4R4, the data area
that indicates the PTF level is in the QEJB library. You can find it by using the following
command:

WRKDTAARA QEJB/SF*

Then you see the Work with Data Areas display (Figure 6-8). If you do not see a data area,
then you have not applied any group PTFs and your WebSphere level is 3.5.0. We
recommend that you do an upgrade since many important fixes have been issued since then.
156 Geac System21 commerce.connect: Implementation on the iSeries Server

Figure 6-8 The WRKDTAARA command showing the SF99147 data area

If you see a data area, type 5 next to it to display its contents. The Display Data Area display
in Figure 6-9 shows a typical result.

Figure 6-9 Option 5 within the WRKDTAARA command showing data area contents

The PTF level is indicated in two ways:

� The number after the PTF ID
� 3.5.x number at the end

Also, verify that the OS/400 release level (V5R1M0 in this case) matches your current release
level. If it does not, then this data area remains from before an OS/400 upgrade.

Another way to check the PTF level is to view the stream file
/QIBM/ProdData/WebASAdv/properties/com/ibm/WebSphere/product.xml. You can view this
in any of the ways described earlier. The contents are similar to those of the equivalent
Windows NT file.

6.4.2 Checking the WebSphere PTF level on a PC
The simplest way to check the PTF level on the console system is to start the console and
select the About option on the Help menu. This clearly shows the WebSphere version for
example, 3.5.4.
Chapter 6. Tips and techniques 157

An alternative way is to view the product.xml file. If you used the default directory for your
WebSphere installation, then this is
C:\WebSphere\AppServer\properties\com\ibm\WebSphere\product.xml. However, the C:
drive and the initial directories \WebSphere\AppServer may be overridden while installing
WebSphere on your PC. If you know how to start the console, then check from where the
console is running. The default location of the console command is
C:\WebSphere\AppServer\bin\adminclient.bat. The prefix of the directory is the same. This
file is an XML file, but even if you do not understand XML, it is easy to read. You should see
the version quite clearly on a line as shown in Figure 6-10.

Figure 6-10 WordPad editor showing the Product.xml file

Note that this file was opened with WordPad rather than Notepad. This is because it contains
UNIX-style line feed only between lines, Notepad does not cope with.

6.5 Common problems with commerce.connect on iSeries
This section covers some common problems when running commerce.connect application on
the iSeries server.

6.5.1 Problems connecting the console to WebSphere on the iSeries
If you see a message saying that the Admin Client failed to connect to the Admin Server, then
you should perform the checks that are explained here.

Check that WebSphere is started on the iSeries. Check whether the instance administration
job is running, that it is ready, and on which port it is listening.
158 Geac System21 commerce.connect: Implementation on the iSeries Server

Check that you specified the correct system name and port when you started the console. If
you start the console from the command line, then it takes two parameters. The first is the
system name, and the second is the port.

If you start the console using a menu item, desktop icon, or batch file, then look into the
definition of the item to ensure that the system name and port are correct. As a diagnostic
step, you can try to run the console from a Windows command prompt:

1. Start a command prompt.

2. Switch to the drive and directory in which you installed WebSphere. By default, this is
C:\WebSphere\AppServer, but you may have overridden it during the WebSphere
installation.

3. Switch to the bin directory within this directory.

4. Use the adminclient command followed by the system name and the port.

If this still fails, check the system name more carefully as explained in the following section.

You should also check if the version of WebSphere on your console system and the iSeries
match. However, if the system name and port are correct but the version is wrong, the
console normally fails at a later point.

6.5.2 Checking the iSeries name as required by WebSphere
WebSphere uses the TCP/IP name of the system. Typically this is the same as the normal
system name (as shown by the sign-on screen), but it can be different. The TCP/IP name is
the one you would use for commands such as PING, TELNET, FTP, etc. Check whether you
can ping the iSeries from the console PC. If you cannot, then you need to check your network
and maybe your TCP/IP configuration. If you are sure of the TCP/IP name of your iSeries then
continue.

WebSphere adds an extra complication. It treats the system name as case sensitive, although
TCP/IP does not. Therefore, even if you can ping the iSeries successfully, you may not be
using the correct name for WebSphere. Usually the WebSphere name is entirely lowercase,
but occasionally it is entirely uppercase.

The easiest way to check the system name as required by WebSphere is to view one of its
configuration tables. The configuration tables for the default instance are in the EJSADMIN
library. For other instances, the library name was chosen when the instance was created. A
typical name is TESTADMIN. The following example assumes the default instance and that
the SQL tool in Operations Navigator is being used. If you are using an alternative instance,
then you need to amend the library name. If you are using interactive SQL (for example, the
STRSQL command) or you changed your naming convention in the Operations Navigator
tool, then you have to change the qualifier separator.

Sign on as QSECOFR and run this SQL statement:

select NAME
from EJSADMIN.NODE_TABLE

This shows the node name as expected by WebSphere. Do not change this value. This does
not cause WebSphere to accept a different system name and may cause problems that are
more serious. Do not make any other changes to this table or any other table in the
WebSphere libraries.
Chapter 6. Tips and techniques 159

6.5.3 Checking the iSeries database name
In a few contexts, the name of the DB2 database on the iSeries server is required rather than
the system name. Two such contexts are creating a datasource and specifying the database
for stateful connections.

The database name is normally the same as the system name, but it can be different. It is
even possible that it is not set at all. If the database name was not set, then SQL software
may fail, but RPG or Cobol software that did not use SQL would still work.

To check the database name, use the following command:

WRKRDBDIRE

In the Work with Relational Database Directory Entries display (Figure 6-11), look for a line
with *LOCAL in the Remote Location column. The entry in the Relational Database column of
this line is the name of the database on the system. There may be other lines with entries
other than *LOCAL in the location column. You can ignore these for a simple setup.

Figure 6-11 The WRKRDBDIRE command file

If there is no line with *LOCAL in the location column, then you need to add one. Type 1 in the
Option column of the first line and your desired database name in the name column (we
recommend that you name the database the same as the system itself), and press Enter. On
the next display, enter the remote location as *LOCAL and leave the other fields alone. Press
Enter and the database should now be setup correctly.

If you are running WebSphere on the same system as the database, then you can usually
enter the database name as *LOCAL to avoid problems with database naming. This may be
done in a datasource and in the configuration of stateful connections.

Attention: Verify the local database before you install WebSphere.
160 Geac System21 commerce.connect: Implementation on the iSeries Server

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 161.

� Geac System21 Implementation for AS/400, SG24-5967

Other resources
These publications are also relevant as further information sources:

� OS/400 Work Management, SC41-5306

� Backup and Recovery, SC41-5304

The following publications are available through Geac:

� Geac call.connect Installation Guide

� Geac System21 Installation and Setup Guide

� Geac System21 Administration Functions Active Enterprise Framework

� System21 Setup for call.connect

� Basic System21 Setup for call.connect

� Geac System21 Installation Guide

Referenced Web sites
The Geac Web site is also relevant as a further information source:

http://www.geac.com/

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for Redbooks at the
following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM images) from
that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.
© Copyright IBM Corp. 2002. All rights reserved. 161

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.geac.com/

162 Geac System21 commerce.connect: Implementation on the iSeries Server

Index

Symbols
150
$ 147, 151
$ prompt 147
$1 150
$2 150
*BASE 115
*INTERACT 115
*LOCAL 160
*MACHINE 115
*SHRPOOL1 115
*SHRPOOL2 115
. (dot) 151
.connect applications 1
> 151
@ 142
@ctive Modeler 15, 73
@ctive Processes 15
¢ 147
£ 147

Numerics
100% Pure Java 18
2> 151
2>&1 151
5769-DG1 21
5769-JV1 21
5769-SS1 21
5769-ST1 22
5769-TC1 21

A
active selling 3
Additional number of jobs parameter 111
adminclient 159
administration server 77
Advanced Pricing module 122
Advanced Shipping Notification (ASN) 5
AIF .ini files 92
Apache 39, 41, 79
application settings 132
architectural representation 16
architecture

concept 8
goals and constraints 16
non-functional considerations 16

ASCII 138
ASCII CCSID 142
ASN (Advanced Shipping Notification) 5
ASP for journaling 28
asynchronous messaging 12
authentication services 9
authorization rule 101
© Copyright IBM Corp. 2002. All rights reserved.
automatic performance adjustment 121

B
base memory pool 115
bin 139
blanket order delivery schedule 5
blanket purchase order 5

C
C 18
C++ 18
Cached data 54
cached data 54
call center 2
call management 3
call.connect 12

Advanced Pricing module 122
installation 19
introduction 2
non-standard installation 56
roles 2
typical screen 2

call.connect library list 36
callConnect.bat 67
CallConnect.jnlp 51

configuring 70
case sensitive 159
cat 149
CCSID 142
CCSID 65535 30
cd command 148
CIW (Compute Intensive Workload) 109
CL 18
clustering 9
commerce.connect 1
commerce.platform 1, 73
Commercial Processing Workload (CPW) 108, 132
Compute Intensive Workload (CIW) 109
Config.xml 25
configuration files 138
configuring HTTP Server 40, 80
configuring the LDAP server 94
connection time out 135
ConnectorManager.xml 92
console 155
constrained performance 132
Content Negotiation 50, 69
controller 91
CPW (Commercial Processing Workload) 108, 132
Create Java Program (CRTJVAPGM) command 127
creating a new instance 77
creating a queue 33
creating a queue manager

vendor.connect 88
 163

creating an EJB container 60
creating DataSources 58
creating enterprise beans 60
creating JDBC drivers 58
creating the application server 59
cross-sell 3
CRTJVAPGM (Create Java Program) command 127
crtnewinst 77
current directory 148
custom class loader 128

D
database files 138
database name 160
database synchronization 103
database triggers 87
datasource settings 134
DB2 Universal Database (UDB) 21
DEL 144
Delete Java Program (DLTJVAPGM) command 131
development process 10
direct call 18
Display Java Program (DSPJVAPGM) command 128
Distributed Requirements Planning (DRP) 5
DLTJVAPGM (Delete Java Program) command 131
DRP (Distributed Requirements Planning) 5
DSPJVAPGM (Display Java Program) command 128
dynamic buying lists 3

E
EBCDIC 138, 142
EBCDIC CCSID 142
e-commerce 16
EDTF 146
EJB 1.0 (Enterprise JavaBeans 1.0) 8
EJB container 17
Ejb_default.cfg 67
EJSADMIN 159
e-mail 16
Enterprise Bean dialog 131
enterprise bean settings 131
Enterprise JavaBeans 1.0 (EJB 1.0) 8
entity beans 17
event documents 89
events rules 90
export command 151

F
fakeunusual=1 35
files must be journaled 27, 85
front-office 3

G
Geac development process 10
Generate Buying Lists 52
granting authority for queue manager and queue 33

H
head command 149
high availability 9
HTTP Server

original 42
powered by Apache 39, 41, 79
powered by Apache server configuration

additional Meta (MIME) information 50, 69
Content Negotiation 50, 69
HTTP Server Name global settings 48, 69
Static Web Pages and Files 49

HTTP Server configuration
creating an instance 46
Languages and Encoding 44, 68
MIME types 44, 68
original

Create Configuration 43, 67, 82
Request Processing 43, 68
Request Routing 43, 68

powered by Apache 47
Static Web Pages and Files 69

I
IBM SecureWay 96
idle time out 135
IFS (integrated file system) 138
IFS files 138
importing the configuration file 65
initial Java heap size 125
Initial number of jobs parameter 111
Install Java Web Start 52
instance 77
instance administration jobs 153
instance monitor jobs 153
integrated file system (IFS) 138
inter.connect 1
interactive CPW 109
iSeries command

ADDRDBDIRE 21
CHGPJE 21
CRTJRN 27
CRTJRNRCV 27
CRTLIB 27
STRJRNPF 28
STRSBS 24
WRKRDBDIRE 21
XMLConfig 25

iSeries database name 160
iSeries setup for a test system 63

J
J2EE (Java 2 Platform, Enterprise Edition) 7–8
Jacada 73
Java 2 Platform, Enterprise Edition (J2EE) 7–8
Java byte code 138
Java classes 32
Java Native Interface (JNI) 18
Java source 138
Java Web start 39
164 Geac System21 commerce.connect: Implementation on the iSeries Server

Java Web Start in test 67
JConnects server 92
JDBC database access 17
JIT compiler 128
JMS 9, 12
JNDI/MQ objects 35
JNI (Java Native Interface) 18
job description 87
journal

files must be journaled 27, 85
must files list 27

journaling a single file 28
journaling multiple files 28
journaling with an ASP 28
JTA Transaction Aborted message 133
JVM settings 124
JWS.bat 51

configuring 70

L
Languages and Encoding 44, 68
LDAP 9, 94
library/file.member 139
Loadlog.bat 56
log files 138
Log.cfg 67

M
MA88 MQSeries classes 32
manual client installation 61
manual performance adjustment 122
mapping a PC drive to the iSeries IFS 140
Material Requirements Planning (MRP) 5
maximum Java heap size 125
Maximum number of jobs parameter 111
messaging 12

call.connect 12
vendor.connect 14

MIME information 50, 69
MIME types 44
minimum pool size 131
Model 170 108
Model 270 108
Model 720 108
Model 820 108
MOV 144
MQ 12
MQSeries 9

classes for Java 32
setting up for vendor.connect 88

MRP (Material Requirements Planning) 5

N
NETSTAT 154
new instance 77
NODE_TABLE 159
Notepad 142

O
OM (Order Management) 22
Operations Navigator 140
operator setup 38
optimization level 128
order capture application 2
order management 3
Order Management (OM) 22
order transmission 4
orphan time out 135
os400.optimization 131

P
PC drive 140
PC editor 142
PC executable code 138
performance requirements 132
ping initial timeout 133
ping interval 133
Ping interval and timeout 133
ping timeout 133
pool session beans 17
port number 900 154
powered by Apache 39, 41, 79
pre-empted 136
Pre-Generate Buying Lists 56
process.connect 1

overview 15
processor CPW 109
processor feature 108
product.xml 157–158
promotions 3
properties file 89
PSRW 113
PTF level 156

Q
QDLS 138
QEJBADMIN 24, 152–153
QEJBMNTR 24, 152–153
QEJBSBS 115
QEJBSBS subsystem 152
QIBM 139
QNTC 139
QOpenSys 138
QOpt 138
QPFRADJ 121
QSH 147
Qshell 25, 146–147
Qshell commands 149
Qshell prompt 147
Qshell scripts 150
Qshell tail command 127
Qshell touch command 142
QSQSRVR 110
QSYS.LIB 139
QSYSWRK 110
queue 33
queue manager 32
 Index 165

quote site namefmt 1 139
QZDASOINIT 114

R
Rational Rose 10
Rational Unified Process 10
recursive delete 146
Redbooks Web site 161

Contact us x
redirection 151
remote invocation 18
Request Processing 43, 68
Request Routing 43, 68
Resource Analyzer 155
resource pooling 9
restoring libraries 76
rm command 149
RMVLNK 144
RNM 144
RPG 18

S
S30 109
SalesOrder subsystem dependencies 11
SAV 144
scripts 150
secure.connect 1, 73
SecureWay 96
security services 9
SecurityManager.xml 92
SendTestMessage 36
separate memory pool 115
server ejb_default.cfg 64
server job view 112
server log.cfg 64
server Standard.properties 64
service program 127
session beans 17
setccsid 149
SEU 146
shared pool 115
shell 147
SIGKILL received 133
sourcing engine 3
SQL 18

system naming convention 30
SQL server jobs 124
standard error 151
standard error (stderr) 55
standard output 151
standard output (stdout) 55
standard.properties 35
Start jobs parameter 111
starting the trigger handler and AIF controller 106
starting WebSphere

default instance 106
other instances 106

stateful connection 122
stateless connection 123

stateless session beans 17, 122
static compilation 127
static program 128
static Web pages and files 49
stock allocation 3
stop and start WebSphere overnight 52, 105
stored procedures 18, 29, 64
stream file authority 145
stream files 138
STRQSH 147
strwasinst 77
supplier ID 92
supplier planning 5
supplier self-service application 4
system class loader 129
system name 159
system naming convention 30
System21 data setup 39

vendor.connect 87
System21 user profiles 37

T
tail 149
tail command 127
telesales orientated product 2
test instance of WebSphere 62
test user 64
Threshold parameter 111
Toolbox JDBC driver 113
total connections 124
touch command 142, 149
transaction inactivity time out 133
transaction management 9
transaction time out 132
translate CCSID 65535 30

U
UDB (Universal Database) 21
UDDI (Universal Description, Discovery and Integration)
9
UML (Unified Modelling Language) 10
Unicode 138
Unified Modelling Language (UML) 10
Universal Database (UDB) 21
Universal Description, Discovery and Integration (UDDI)
9
up-sell 3
user ID 92
user profile 87
user profiles 36, 87

V
vcadmin user in IBM SecureWay 100
vendor.connect 14

database triggers 87
introduction 4
job description 87
setting up MQSeries 88
166 Geac System21 commerce.connect: Implementation on the iSeries Server

stateful connection 122
supplier ID 92
System21 data setup 87
user ID 92
user profile 87
user profiles 87

verbose garbage collection 126
viewing the server jobs 112

W
WebSphere 8

errors on starting the client 54
errors when running the client 54
manual configuration 57
node name 54

WebSphere Application Server Advanced Edition 8
WebSphere MQ 12
WebSphere Resource Analyzer 123
Windows Explorer 140
word processors 142
Wordpad 142
Work Management Trigger Handler 89
write authority 89
WRKDTAARA QEJB/SF* 156
WRKLNK 143
WRKRDBDIRE 160
WRKSHRPOOL 116
WRKSYSSTS 115

X
XML security 93
XML user directory 37
 Index 167

168 Geac System21 commerce.connect: Implementation on the iSeries Server

(0.2”spine)
0.17”<->

0.473”
90<->

249 pages

Geac System
21 com

m
erce.connect: Im

plem
entation on the IBM

 ~
 iSeries Server

®

SG24-6526-00 ISBN 0738424005

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Geac System21
commerce.connect
Implementation on the IBM iSeries Server

Gain useful insights
through the product
overview

Follow the step-by-step
guide to install
commerce.connect

Learn helpful usage and
performance tips and
techniques

This IBM Redbook introduces the new Geac commerce platform
.connect applications – the call.connect and vendor.connect
applications. These applications extend and enhance the
capabilities of Geac System21 into the intranet and Internet.

This redbook targets consultants or customers who work with
these .connect applications. It explains how to install, maintain,
integrate, and manage these applications on the IBM
iSeries server. It also helps you to understand the architecture
and middleware used by the applications.

Prior to reading this book, you must be familiar with the basic,
traditional use of the iSeries or AS/400 and System21. For
example, you should know how to enter simple commands and
understand such concepts as the library list. Similarly for
System21, you should be familiar with the menus and such tasks
as defining a System21 user.

As necessary throughout the book, detail is provided about the
newer, less traditional features of the iSeries such as the
integrated files system (IFS), Qshell, Java, and WebSphere.

Back cover

Free Manuals Download Website
http://myh66.com

http://usermanuals.us
http://www.somanuals.com

http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com

http://aubethermostatmanual.com
Golf course search by state

http://golfingnear.com
Email search by domain

http://emailbydomain.com
Auto manuals search

http://auto.somanuals.com
TV manuals search

http://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. The .connect applications
	1.1 call.connect
	1.2 vendor.connect

	Chapter 2. Architecture of the commerce.connect products
	2.1 The need for an architecture
	2.1.1 Key Enterprise JavaBeans and WebSphere Application Server benefits
	2.1.2 The architecture moving forward
	2.1.3 The development process
	2.1.4 Implementation
	2.1.5 The design methodology: Using Unified Modelling Language

	2.2 Messaging: Java Message Service and IBM WebSphere MQ
	2.2.1 call.connect
	2.2.2 vendor.connect

	2.3 Overview of process.connect
	2.4 Architectural representation
	2.4.1 Architectural goals and constraints
	2.4.2 Non-functional architectural considerations
	2.4.3 Functional architectural considerations

	2.5 Reusing and extending System21 business logic
	2.5.1 Accessing System21 RPG business logic

	Chapter 3. Installing and setting up call.connect
	3.1 Skills and prerequisites for installing, running WebSphere Application Server
	3.1.1 Skills
	3.1.2 Prerequisites
	3.1.3 System21 authorization code for Order Management (OM)

	3.2 Standard installation procedures
	3.2.1 Installing Order Management and call.connect
	3.2.2 WebSphere installation and configuration
	3.2.3 Journaling
	3.2.4 Stored procedures and SQL
	3.2.5 Java Message Service
	3.2.6 User profiles
	3.2.7 System21 data set up
	3.2.8 Java Web Start
	3.2.9 Backup

	3.3 call.connect housekeeping
	3.3.1 Daily backups
	3.3.2 Stopping WebSphere
	3.3.3 Starting call.connect
	3.3.4 Restoring IFS objects

	3.4 Troubleshooting
	3.4.1 WebSphere node name
	3.4.2 Errors on starting the client
	3.4.3 Errors when running the client
	3.4.4 Cached data and .bl and .cd files
	3.4.5 Log files and debugging

	3.5 Manual configuration
	3.5.1 Non-standard Order Management and call.connect installation
	3.5.2 WebSphere manual configuration
	3.5.3 Manual client installation

	3.6 Alternative configurations
	3.6.1 Setting up a test instance of WebSphere
	3.6.2 Setting up an iSeries server for a test system
	3.6.3 Server configuration
	3.6.4 WebSphere administration
	3.6.5 Manual client installation

	Chapter 4. Installing and setting up vendor.connect
	4.1 Preparing for the installation
	4.1.1 Skills required

	4.2 Installing vendor.connect
	4.2.1 System21 base
	4.2.2 Java components and configuration files
	4.2.3 Restoring libraries
	4.2.4 Installing and configuring WebSphere
	4.2.5 IBM HTTP Server for iSeries
	4.2.6 MQSeries
	4.2.7 Work Management Trigger Handler for the iSeries
	4.2.8 Active Architecture framework
	4.2.9 JConnects server
	4.2.10 Setting up new vendor.connect user IDs and supplier IDs
	4.2.11 Database synchronization from System21 to the vendor.connect database
	4.2.12 Testing the vendor.connect Web site
	4.2.13 Backing up the configuration components

	4.3 Changing the iSeries on which the application is running
	4.4 Housekeeping
	4.4.1 Daily
	4.4.2 Stopping
	4.4.3 Starting
	4.4.4 Restoring the vendor.connect IFS objects

	Chapter 5. Performance tuning
	5.1 Hardware
	5.2 Operating System/400 (OS/400)
	5.2.1 SQL server job configuration
	5.2.2 Toolbox JDBC driver
	5.2.3 Subsystems and memory pools
	5.2.4 Automatic performance adjustment
	5.2.5 Manual performance adjustment

	5.3 Stateless and stateful connections, datasources, connection pools, etc.
	5.3.1 Stateful connections
	5.3.2 Stateless connections
	5.3.3 Total connections and SQL server jobs

	5.4 Performance topics for Java virtual machine (JVM) settings
	5.4.1 Initial Java heap size
	5.4.2 Maximum Java heap size
	5.4.3 Verbose garbage collection
	5.4.4 Static compilation

	Chapter 6. Tips and techniques
	6.1 The iSeries integrated file system
	6.1.1 Using File Transfer Protocol (FTP) with the iSeries IFS
	6.1.2 Mapping a PC drive to the iSeries IFS
	6.1.3 Editing an iSeries stream file using a PC editor
	6.1.4 Stream files and CCSID
	6.1.5 The cd command
	6.1.6 Managing stream files with the OS/400 WRKLNK command
	6.1.7 Other stream file commands
	6.1.8 Stream file authority
	6.1.9 Editing an iSeries stream file using the OS/400 EDTF command

	6.2 The Qshell
	6.2.1 Managing stream files with Qshell commands
	6.2.2 The touch and setccsid commands
	6.2.3 Viewing an iSeries stream file using the Qshell tail command
	6.2.4 Qshell scripts

	6.3 Checking the QEJBSBS subsystem
	6.3.1 Instance monitor jobs
	6.3.2 Instance administration jobs
	6.3.3 Specifying ports
	6.3.4 Application server jobs

	6.4 WebSphere versions on the iSeries, your console system, and clients
	6.4.1 Checking the WebSphere PTF level on the iSeries
	6.4.2 Checking the WebSphere PTF level on a PC

	6.5 Common problems with commerce.connect on iSeries
	6.5.1 Problems connecting the console to WebSphere on the iSeries
	6.5.2 Checking the iSeries name as required by WebSphere
	6.5.3 Checking the iSeries database name

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

