Errata

Title & Document Type: 3311A Function Generator Operating and Service Manual

Manual Part Number: 03311-90001

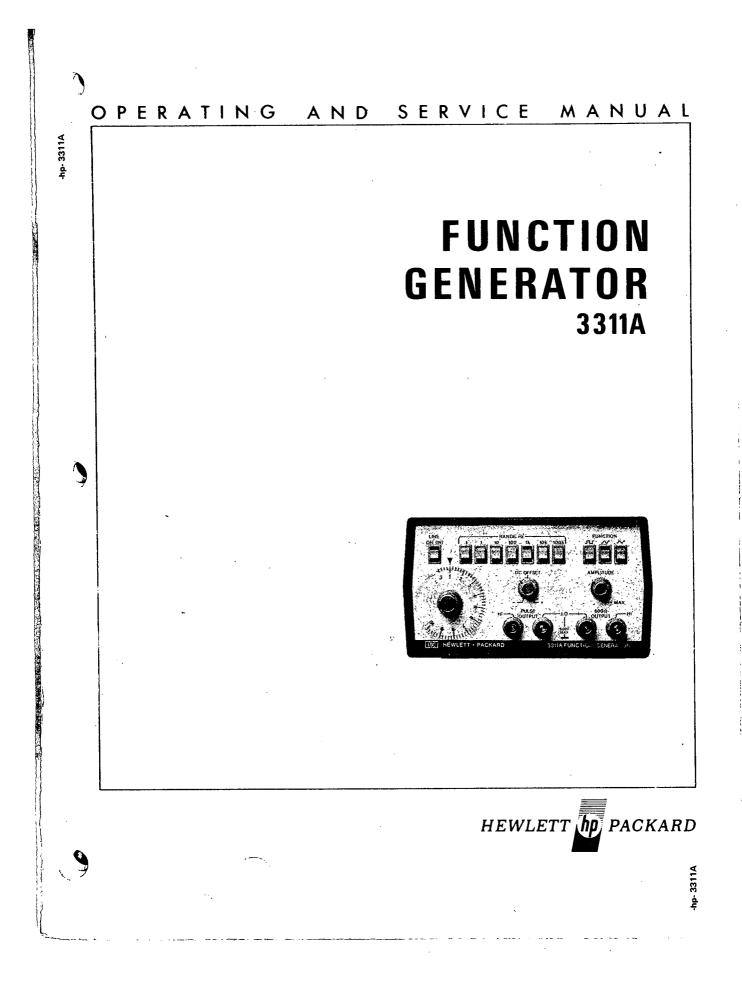
Revision Date: April 1974

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.


Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

Download from Www.Somanuals.com. All Manuals Search And Download.

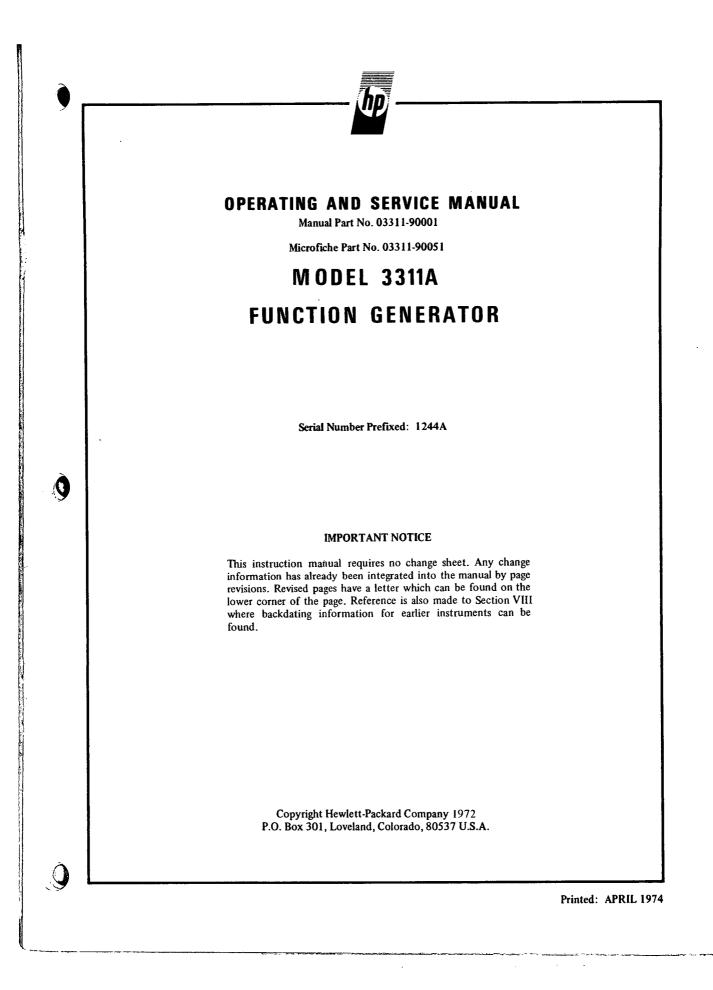


Table of Contents

Model 3311A

TABLE OF CONTENTS

Se v

Page Section GENERAL INFORMATION 1-1 ١. 1-1. Introduction I-I Specifications 1-1 1-3. 1-5. Description I-1 1-8. Instrument and Manual Identification 1-1 Page Section П. 2-3. Initial Inspection 2-1 2-5. Power Requirements 2-1 2-7. Grounding Requirements 2-1 2-9. Instrument Mounting 2-1 2-10. Bench Use 2-1 2-12. Rack Mounting 2-1 2-14. Repackaging for Shipment 2-1 2-18. Power Cords and Receptacles 2-2 Page Section III. 3-5. General Operating Information 3-1 3-7 3-9. 3-11. Operating Considerations 3-1 3-12. Floating Using External Sources 3-1 3-14. 3-17. Using the Pulse Output 3-2 Page Section IV. 4-1. General Description 4-1 Detailed Theory of Operation 4-1 4-6. 4-7. 4-9. 4-11. Sine Shaper (See Figure 4-2).....4-2 4-13. 4-15. Square Wave Generator 4-17 Output Amplifier (See Figure 7-2) 4-2 4-19.

	110	
ectio	n	Page
	MAIN	TENANCE
	5-1.	Introduction
	5-3.	Recommended Test Equipment 5-1
	5-5.	Test Record
	5-7.	Performance Tests 5-2
	5-9.	Sine Wave Amplitude Flatness Test 5-2
	5-10.	Square Wave Time Axis
		Symmetry Error Test 5-2
	5-11.	Pulse Duty Cycle Test
	5-12.	Dial Accuracy Test 5-3
	5-13.	Sine Wave Distortion Test 5-4
	5-14.	Square Wave and Pulse Response Test 5-4
	5-15.	Output Impedance Test
	5-16.	Maximum Signal Output and
		Amplitude Range Test
	5-17.	Pulse Output Amplitude Test
	5-18.	DC Offset Test 5-6
	5-19.	VCO Test 5-7
	5-20.	Triangle Linearity Test
		Adjustment Procedures
	5-21.	Adjustment Procedures
	5-23.	Triangle Amplifier Offset Adjustment . 5-10
	5-24.	Square Wave Time Axis
		Symmetry Adjustment
	5-25.	Frequency Dial Calibration
	5-26.	Sine Wave Distortion Adjustment 5-11
Secti	on	Page
VI.	REP	LACEABLE PARTS
	6-1.	
	6-4.	Ordering Information
	6-6.	Non-Listed Parts
	6-8.	Parts Changes 6-1
	6-10.	
Secti	ion	Page
VII.	CIRC	CUIT DIAGRAMS
• • • •	7-1.	Introduction
	7-3.	Troubleshooting
	7-6.	Troubleshooting Trees
	7-8.	Localizing the Malfunction
		Using Front Panel Checks

Page Figure 2-1. Rack Mount Kits 2-1 3311A Front and Rear Panel Features 3-2 3-1. 4-1 4-2. Amplitude Flatness 5-2 5-1. Dial Accuracy/Time Axis Symmetry Check 5-3 5-2. 5-3 54.

RAT	TIONS
Figur	e Page
5-5.	Transition Time Tests 5-5
5-6.	Triangle Linearity Check 5-8
5-7.	Adjustment Locator
5-8.	Symmetry Adjustment
7-1.	Sine, Square or Triangle Function Defective 7-3/7-4
7-2.	Power Supplies Defective
7-3.	Pulse Defective
7-4.	Functional Circuit Diagram 7-9
7-5.	Function Generator Circuit Diagram
	(p/o A1)
7-6.	Power Supply Circuit Diagram (p/o A1)7-13/7-14

LIST OF TABLES

Table	Pa Specifications		Page Triangle Linearity (Negative Slope)
	General Information		Dial Linearity
	Recommended Test Equipment	5-1 6.1	Replaceable Parts
	Triangle Linearity (Positive Slope)		Troubleshooting Trees

ii

LIST OF ILLUST F

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This section contains general information about the -hp- Model 3311A. Included is a paragraph regarding specifications, a description of the instrument and instrument identification information. Throughout this manual the instrument will be referred to as the "Model 3311A" or the "3311A".

1-3. SPECIFICATIONS.

1-4. Table 1-1 contains specifications for the Model 3311A. Table 1-2 contains general operating characteristics of the instrument. The information in Table 1-2 is provided for your convenience. It indicates how the instrument operates under typical operating conditions and should not be considered specifications.

1-5. DESCRIPTION.

1.6. The -hp- 3311A is a versatile Function Generator having sine, triangle, square and pulse outputs. The pulse output is a 0 to +5 V transition with a 10 to 20% duty cycle and is compatible with TTL circuits. The sine, square. and triangle functions have a maximum output voltage of 10 V peak open circuit or 5 V peak into 600 ohms. The signal-may be offset by + 10 V dc into open circuit or ± 5 V dc into 600 ohms.

1-7. The frequency range of the Model 3311A is .1 Hz to 1 MHz in 7 ranges. The frequency may be externally controlled in a 10:1 range by application of an external voltage to the VCO terminals.

1-8. INSTRUMENT AND MANUAL IDENTIFICATION.

1-9. Hewlett-Packard uses a two-section serial number. The first section (prefix) identifies a series of instruments. The last section (suffix) identifies a particular instrument within the series. If a letter is included with the serial number, it identifies the country where the instrument was manufactured. This manual is kept up-to-date with the instrument at all times with revised pages. If the serial prefix of your instrument differs from the one on the title page of this manual, refer to Section VIII for backdating information that will adapt this manual to your instrument. All correspondence with Hewlett-Packard should include the complete serial number.

Table 1-1. Specifications.

600 OHM OUTPUT	Square Wave Time Axis Symmetry: Error ± 2% error maximum to 100 kHz.		
Dial Accuracy: ± 5 % of full scale.			
 Maximum Output Amplitude: 20 V p-p open circuit; 10 V p-p into 600 Ω. Amplitude Control: continuously variable, > 30 dB range. D.C. Offset: Continuously adjustable over a range from ≥+10 V to ≤-10 V open circuit (range from ≥+5 V to ≤-5 V into 600 Ω, and independent of amplitude control. Output Impedance: 600 Ω ± 10 %. 	Square Wave Transition Time: < 100 nsec (10 to 90% points) PULSE OUTPUT Output Amplitude: > 3 V positive (open circuit) TTL cor patible. Duty Cycle: 10.0% to 20.0% of the total period. Transition Times: < 25 nsec (10 and 90% points).		
Sine Wave Amplitude Flatness: within ± 3% of 10 kHz refer- ence (maximum output amplitude) to 100 kHz, ± 6% to 1 MHz.			
Triangle Linearity: < 1% deviation from best straight line at 100 Hz (10 V peak). Sine Wave Total Harmonic Distortion: < 3% at maximum output amplitude, 10 Hz to 1 MHz.	VCO Range: > 10:1 on any frequency range. Input Requirement: With frequency dial set to 1.0, a linea		
Table 1-2. Gen	eral Information.		
Waveforms: Sinusoid, square, triangle, positive pulse.	VCO Input Impedance: $10 \text{ k}\Omega \pm 10\%$ shunted by < 60 pF.		
Frequency Range: 0.1 Hz to 1 MHz in seven decade ranges.	Power: 100/120/220/240 V -10% +5%, switchable, 48 1 440 Hz, ≤12 VA.		
Isolation: using an external supply, the outputs may be floated as much as ± 500 V relative to the instrument case (outer chassis ground).	Operating Temperature Range: 0°C to 55°C. Specification apply from + 15°C to + 35°C.		
Recommended Calibration Interval: 6 months.	Storage Temperature Range: - 40 ⁰ C to 75 ⁰ C.		
	1		

1-1

2-1. INTRODUCTION.

2-2. This section contains installation and shipping information for the Model 3311A.

2-3. INITIAL INSPECTION.

2-4. Each 3311A has been carefully inspected prior to shipment and should be in perfect electrical order and free of mars or scratches. To confirm this, the instrument should be inspected upon receipt for damage that might have occurred in transit, or for other deficiencies. If there is damage due to shipping, file a claim with the carrier; if there are electrical or mechanical deficiencies not attributable to shipping, then refer to the statement of Warranty on the back of the title page. Use the procedures of Section V to check the instrument's performance.

2-5. POWER REQUIREMENTS.

2-6. The Model 3311A may be operated from the four line voltages 100 V, 120 V, 220 V and 240 V rms + 5% - 10%, of 48 Hz to 440 Hz frequency. The two switches on the rear panel are positioned to select one of the four voltages. The power requirement is 12 VA maximum.

TO AVOID INSTRUMENT DAMAGE, THE REAR PAN-EL LINE VOLTAGESWITCHES MUST BE IN THE COR-RECT POSITION BEFORE THE POWER CORD IS PLUGGED IN.

2-7. GROUNDING REQUIREMENTS.

2-8. For the safety of operating personnel, a provision for grounding the instrument case has been provided as recommended by the National Electrical Manufacturer's Association (NEMA). The offset pin of the power cable grounds the instrument when plugged into the appropriate receptacle. If only a two-contact receptacle is available, then use a three-prong-to-two-prong adapter and connect the adapter ground lead to earth ground.

2-9. INSTRUMENT MOUNTING.

2-10. Bench Use.

2-11. The front of the 3311A may be elevated for operating convenience by lowering the tilt stand on the bottom shell of the instrument.

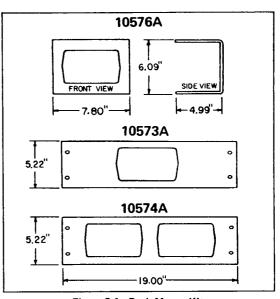


Figure 2-1. Rack Mount Kits.

2-12. Rack Mounting.

2-13. Figure 2-1 shows the available kits for rack mounting the 3311A.

2-14. REPACKAGING FOR SHIPMENT.

2-15. If the instrument is to be shipped to Hewlett-Packard for service or repair, attach a tag to the instrument describing the work to be accomplished and identifying the owner and instrument. Identify the instrument by serial number, model number, and name in any correspondence. If you have any questions, contact your local Hewlett-Packard Sales and Service Office. See Appendix B for office locations.

2-16. If the original shipping container is to be used, place the instrument in the container with appropriate packing material and seal the container well with strong tape or metal bands.

2-17. If an hp- container is not to be used, then use a heavy carton or wooden box with an inner container. Wrap the instrument with heavy paper or plastic and place cardboard strips across the face for protection before placing the instrument in the inner container. Use packing material around all sides of the inner container, and seal the outer container well with strong tape or metal bands. Mark the container with "DELICATE INSTRUMENT", or "FRAGILE".

2-1

Section II

2-2

2-18. POWER CORDS AND RECEPTACLES.

2-19. Figure 2-2 illustrates the power receptacle configurations that are used in many countries. The -hp- part number shown directly above each receptacle drawing is the part number for a 3311A power cord equipped with the appropriate mating plug for that receptacle. If the appropriate power cord is not included with the instrument, notify the nearest -hp- Sales and Service Office and a replacement cord will be provided.

8120-1689	8120-1369	8120-1351	8120-1348
TD + B + 2878		·	L

Figure 2-2. Power Receptacles.

Download from Www.Somanuals.com. All Manuals Search And Download.

Section III

SECTION III OPERATING INSTRUCTIONS

3-1. INTRODUCTION.

3-2. This section contains information necessary for proper operation of the Model 3311A Function Generator. Identification of controls, indicators, and connectors (i.e., panel features), turn-on procedures, and general operating information are included in this section. Information pertaining to operating considerations is also provided.

3-3. PANEL FEATURES.

3-4. Panel features for the Model 3311A are described in Figure 3-1. Each operating control, indicator and connector is identified by an associated number and described by a paragraph with the corresponding number.

3-5. GENERAL OPERATING INFORMATION.

Before connecting the Model 3311A to primary power ensure that the proper line voltage and fuse have been selected. The switches and fuse holder are located on the rear panel.

3-6. Apply primary power to the instrument by pressing the LINE switch.

3.7. Selecting the Desired Output.

NOTE

When using a cable on the 600 Ω OUTPUT terminals which has a characteristic impedance other than 600 ohms, the output signal will be distorted. The output cable should always be terminated in its characteristic impedance.

3-8. Select the function desired (④ of Figure 3-1). Set the RANGE switch ⑦ and the frequency dial ① to the desired settings. The output frequency of the 3311A equals the RANGE setting times the dial setting. Turn the AMPLITUDE control ④ to minimum and connect the load to the OUTPUT terminals ③. Connect an oscilloscope to the OUTPUT terminals ④. and adjust the AMPLITUDE control for the desired output level. If DC OFFSET is desired set the offset ④ to the desired level using a dc coupled oscilloscope. DC offset can be obtained on sine, square or triangle functions. The pulse cannot be dc offset.

NOTE

At frequencies below 1 Hz it may be desirable to use an X - Y plotter or similar device in place of the oscilloscope.

To use the PULSE OUTPUT connect the desired load across the pulse terminals.

3-9. Using the VCO Input.

3-10. Connect a negative voltage source to the VCO INPUT terminals. A 0 V to - 10 V waveform applied to the VCO INPUT will sweep the 3311A over a 10:1 frequency range when the frequency dial is set to "1". This waveform can be obtained from another 3311A by adjusting its DC OFFSET and AMPLITUDE controls. A smaller VCO drive voltage may be used to obtain smaller frequency deviations. When the frequency dial is set above "1" a smaller VCO drive voltage is required. The VCO drive voltage should always be negative. Frequency can be swept up from the dial setting; it cannot be swept below the dial setting.

3-11. OPERATING CONSIDERATIONS.

3-12. Using Internal DC OFFSET.

3-13. The \pm DC OFFSET may be used to provide an output signal superimposed on a dc level. A maximum open circuit offset voltage of \pm 10 V can be obtained. The peak voltage of the signal, including any dc offset, cannot exceed \pm 10 V into an open circuit. Voltages in excess of this will be clipped. When operating into a 600 ohm load the above mentioned voltages are halved. This means that the peak voltage, including dc offset, is \pm 5 V.

ECAUTION

DO NOT APPLY AN EXTERNAL VOLTAGE SOURCE > 30 V PEAK TO THE 600 Ω OUTPUT. TO DO SO MAY DAMAGE THE INSTRUMENT.

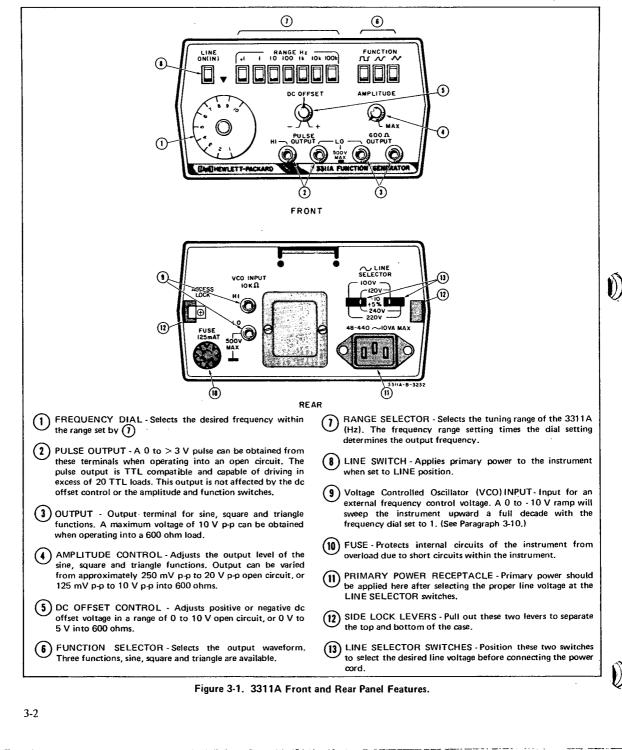
3-14. Floating Using External Sources.

3-15. The low terminal of the 3311A output can be referenced up to \pm 500 V dc above chassis (outer frame) ground.

3-16. If an external source is connected to the 3311A output it will add to the current flowing in the output. This will ordinarily not damage the instrument unless the source is connected directly across the output terminals. The maximum current which can be obtained from the 3311A output without clipping is 16.67 mA peak. This includes any current which may be contributed as a result of a source being connected in series with the output.

3-1

ŧ


Section III

3-17. Using the Pulse Output.

3-18. When using the pulse output it is recommended that the interconnecting cable, between the source and the load, be terminated at the load in its characteristic impedance; i.e., if 50 ohm cable is used it should be terminated in

50 ohms. This is necessary since the pulse output is designed to be TTL compatible and has a very low output impedance. *Reflection from a load not matched to the interconnecting cable will result in ringing.* Leads of any measuring instrument connected to the pulse output should be as short as possible to prevent rounding of the pulse.

SECTION IV THEORY OF OPERATION

4-1. GENERAL DESCRIPTION.

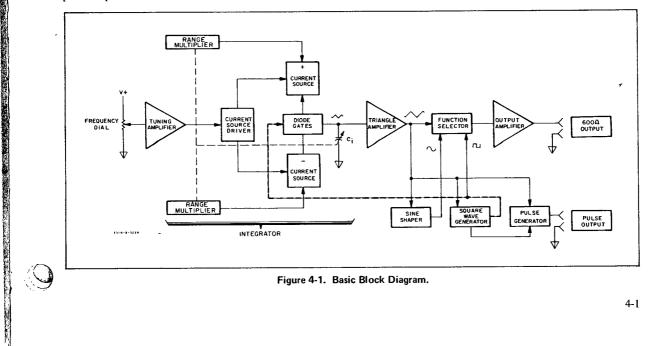
NOTE

The discussion in Paragraph 4-2 through 4-5 refers to Figure 4-1.

4-2. The Model 3311A generates a linear ramp by charging a capacitor from a constant current source. The capacitor is then discharged through another constant current source to generate a triangle waveform. The output frequency is determined by the charge time plus the discharge time of the integrator capacitor (C_i).

4-3. Output level of the Tuning Amplifier is controlled by the frequency dial setting. The Tuning Amplifier and the Range Multiplier control the magnitude of current from the current sources. The charge/discharge rate of C_i is directly proportional to the magnitude of this current. The diode gates are controlled by the Square Wave Generator and determine when C_i is charging and when it is discharging.

4-4. The Triangle Amplifier output is the signal source for the Sine Shaper, the Square Wave Generator, and the Pulse Generator. The Square Wave Generator and the Pulse Generator employ a level comparison technique similar to that of a Schmitt Trigger, to create the square wave and pulse outputs. 4-5. The Function Selector selects sine, square, or triangle function and connects the selected function to the Output Amplifier.


4-6. DETAILED THEORY OF OPERATION.

4-7. Triangle Generator (See Figure 7-1).

4-8. Feedback from the emitter of current source Q11 causes the voltage at TP8 to equal the voltage at the + input of the tuning amplifier. Transistor Q9 biases Q5 and Q11 so that they have equal collector currents (Ra is always equal to Rh). Current II flows through CR9 and into Ci and C6 during time interval T1 of the Square Wave Generator output. This causes the voltage of TP13 to rise. Also during T1 current 12 flows through CR1 from the output of the Square Wave Generator. When the level of the voltage at TP13 becomes +2V, the output of the Square Wave Generator switches to -7 V initiating time interval T2. Current I₂ is supplied by C_i and C₆ through CR5 during T2. This causes the voltage at TP2 to decrease. During T2 current I1 flows through CR3 to the output of the Square Wave Generator. When the voltage at TP13 reaches - 2 V, the output of the Square Wave Generator switches back to +7V.

4-9. VCO Input.

4-10. The voltage at the input to the Tuning Amplifier is determined by the setting of the frequency dial (R2), and any negative voltage applied to the VCO INPUT. To sweep

Section IV

the 3311A upward one full decade (10:1), the voltage at the + input of Tuning Amplifier must vary from approximately + 18 V to + 7 V. With no voltage applied to the VCO INPUT this voltage is controlled only by the frequency dial. When the frequency dial is set to 1 (full CW), a 0 to - 10 V ramp applied to the VCO INPUT will sweep the 3311A upward in a 10:1 range.

4-11. Triangle Amplifier.

4-12. The Triangle Amplifier provides a voltage gain of 2. Current flowing into the amplifier input is minimized by its FET input stage. This prevents non-linearity of the ramp at low frequencies.

4-13. Sine Shaper (See Figure 4-2).

4-14. The Sine Shaper is composed of two sections. The first section shapes the waveform near its crest. This is accomplished by diodes CR59 and CR61 which alternately conduct, providing a low dynamic impedance to ground. The point on the waveform at which the diodes conduct is set by R165 for the positive half of the waveform and by R163 for the negative half. The signal is then coupled through R149 to the second section of the Sine Shaper. The diodes in this section are selected to ensure a smooth sine shaped curve. This accounts for the good distortion characteristics of the Model 3311A.

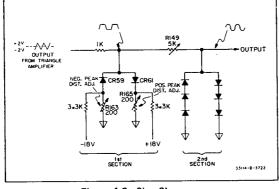


Figure 4-2. Sine Shaper.

415. Square Wave Generator (See Figure 4-3).

4-16. The Square Wave Generator output is switched between + 7 V and - 7 V. Operation of this circuit will be explained by following the circuit through one complete cycle of operation:

At to the voltage at (1) is - 1 V and increasing with time. The voltage at (2) is + 7 V, and the voltage at (3) is + 1 V. The output of U7 is + 2 V which causes Q31 and Q21 to be turned off and Q33 and Q19 to be active. Current flows through Q33 to ground. Current also flows through CR27, CR17, and Q19 to the + 18 V supply causing the voltage at point (2) to be + 7 V.

4-2

6

At T₁ the voltage at (1) has increased and is slightly larger than the voltage at (3) . This causes the output of U7 to change from + 2Vto -.5V which turns off Q33 and Q19 and allows Q31 and Q21 to become active. Current flows through Q31 to ground. Current also flows through CR29, CR19, and Q21 to the -18V supply causing the voltage at point (2) to be -7V. The voltage at point (3) now becomes -1V. The change in output level at point (2) switches the current sources in the integrator. This causes the triangle waveform to start in the negative direction.

At T_2 the voltage at (1) becomes slightly more negative than the voltage at (3) .This causes the output of U7 to switch, changing the states of Q33, Q31, Q21, and Q19. Accordingly, the integrator waveform changes directions becoming more positive with time.

4-17. Pulse Generator (See Figure 7-5).

4-18. The Pulse Generator compares the outputs of the Triangle Amplifier and the Square Wave Generator . When the proper comparison level is reached, a 0 to + 5 V pulse is generated. Diodes CR2, CR4, and CR6 protect the Pulse Generator against external voltages which may be applied to the output.

This circuit will not protect against continuous application of currents exceeding 1 ampere.

4-19. Output Amplifier (See Figure 7-5).

4-20. The Output Amplifier provides a gain of 20 for the signals from the Function Selector. Diodes CR31, CR33, CR35, and CR37 are output protection diodes which conduct if excessive voltage is applied to the output.

Do not apply an external source of > 30 V peak to the output. To do so may damage the instrument.

ł

 \mathcal{O}

9

Section IV

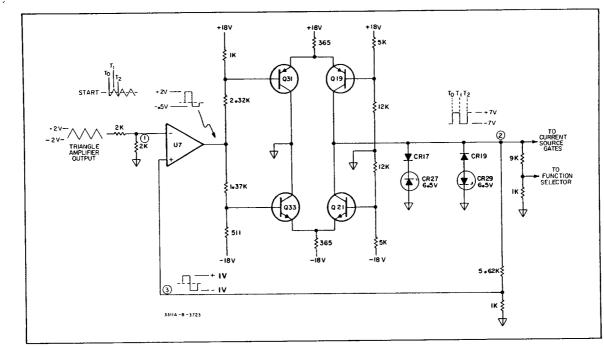


Figure 4-3. Square Wave Generator.

٠,

ł

1

Section V

SECTION V MAINTENANCE

5-1. INTRODUCTION.

5-2. This section contains information necessary for proper maintenance of the Model 3311A. Included are Performance Tests and Adjustment Procedures. The Performance Tests may be used for incoming inspection and prior to using the Adjustment Procedures. Specifications are given in Table 1-1. If your instrument does not meet its required specifications, refer to the Adjustment Procedures.

5-3. RECOMMENDED TEST EQUIPMENT.

5-4. The test equipment that is reommended for main-

taining the Model 3311A is listed in Table 5-1. If the recommended Model is not available, use an instrument that has specifications equal to or exceeding those listed.

5-5. TEST RECORD.

5-6. A Performance Test Record form is provided at the end of this section to record the results of the Performance Tests and their acceptable limits. The form may be removed from your manual and retained as a permanent record of the incoming inspection or routine maintenance performed on the instrument. It may be reproduced without written permission from Hewlett-Packard.

Table 5-1. Recommended Test Equipment.

Instrument Type	Required Specifications	Recommended Model
Electronic Counter	.1 Hz to 1 MHz with time interval capability	hp- Model 5245L with a Model 5262A Time Interval Plug-In
Oscilloscope	1 MHz bandwidth with dual channel (-hp- Model 1805A) and delay (-hp- Model 1821A) plug-ins	-hp- Model 180C/1805A/1821A with 10004A oscilloscope probe (an -hp- Model 1801A vertical amplifier may be used a Model 1805A is not available.)
Divider Probe	10 MΩ, 10:1 divider ≤10 pF shunt cap.	-hp- 100048
Distortion Analyzer	Distortion measurement range: 5 Hz to 600 kHz ± 0.1%	-hp- Model 333A/334A
Power Supply	Voltage Regulation: ± 4 mV Voltage Adjustment Range: 0 to - 12 V	-hp- Model 6215A
Resistors	R: fxd, 604 Ω ± 1% R: fxd, 51 Ω ± 1% R: fxd, 10 kΩ ± 1%	-hp- Part No. 0757-0161 -hp- Part No. 0683-5105 -hp- Part No. 0757-0442
Feedthru Terminating Resistance	Resistance: 50 $\Omega \pm 1\%$ Frequency Range: dc to 10 MHz	-hp- Model 11048C
Feedthru Terminating Resistance	Resistance: 600 Ω ± 1% Frequency Range: dc to 1 MHz	-hp- Model 11095A
Notch Filter (1 MHz)	C: fxd, 820 pF, 1 ea C: fxd, 300 pF, 2 ea L: fxd, 22 μ H, 1 ea R: fxd, 1200 $\Omega \pm 10\%$ R: var, 1 k $\Omega \pm 10\%$	0160-2009 0140-0225 9140-0179 0684-1221 2100-2291
AC Voltmeter	Frequency Range: 20 Hz to 4 MHz Voltage Range: 100 μV to 10 V	-hp- Model 400F/FL
Digital Voltmeter	10 mV sensitivity, 3 digits resolution, with sample-and-hold option, and dc measuring capability	-hp- Model 3480C/D/3484A with option 001 (sample-and-hold)
Function Generator	Output Frequency: 20 kHz Function: Square Wave, with triggering capability	-hp- Model 3300A/3302A
Function Generator	\pm 7 V peak square wave output 50 Ω output impedance	-hp- Model 3310A (recommended for troubleshooting)

Section V

PERFORMANCE TESTS

Model 3311A

5-7. PERFORMANCE TESTS.

5-8. The following tests verify that the Model 3311A is operating properly and meets the specifications listed in Table 1-1 of this manual. These tests should be completed before attempting to adjust the instrument.

5-9. Sine Wave Amplitude Flatness Test.

DESCRIPTION:

This test verifies the ability of the Model 3311A to maintain constant output amplitude within $\pm 3\%$ from 0.1 Hz to 100 kHz, and $\pm 6\%$ from 100 kHz to 1 MHz.

SPECIFICATION:

Sine Wave Frequency Response: \pm 3%, 0.1 Hz to 100 kHz; \pm 6%, 100 kHz to 1 MHz; 10 kHz reference (600 Ω termination).

NOTE

In the following procedure all interconnecting wires should be as short as possible.

RECOMMENDED TEST EQUIPMENT:

Oscilloscope, -hp- Model 180C with 1805A/1821A plug-ins 604 Ω resistor, -hp- Part Number 0757-0161

TEST PROCEDURE:

a. Connect the equipment as shown in Figure 5-1.

b. Set the Model 3311A controls for a 10 kHz sine wave. Set the AMPLITUDE control to the fully clockwise position. DC OFFSET should be set to minimum (control centered).

c. Using the oscilloscope, measure the peak to peak amplitude of the 3311A output. Multiply this value by 0.015 to determine maximum permissible deviation (Vdev) in volts. d. Set the oscilloscope vertical sensitivity to .2 V/div. Set the sweep time to .2 ms/Div.

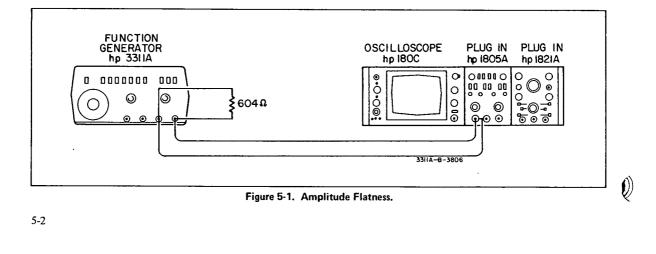
NOTE

The following procedure requires the oscilloscope display to be offset in order to view the top of the displayed waveform. This is accomplished with the vertical position and DC OFFSET controls of the Model 1805A Vertical Amplifier. If you have a Model 1801A Vertical Amplifier the DC Bal Control can be used to offset the waveform. The Model 1801A should be readjusted after this test is completed.

e. Using the vertical position and DC Offset controls of the oscilloscope, position the display so that the positive peaks of the signal just touch the horizontal center line of the graticule.

f. Check several frequencies from 0.1 Hz to 100 kHz. The positive peaks of the oscilloscope display should vary no more than the value of Vdev calculated in step c.

g. Check several frequencies between 100 kHz and 1 MHz. Maximum allowable deviation for these frequencies is twice Vdev.


5-10. Square Wave Time Axis Symmetry Error Test.

DESCRIPTION:

This test verifies that the positive and negative halves of the 3311A square wave output have equal periods within $\pm 2\%$ of each other.

SPECIFICATION:

Square Wave Time Axis Symmetry Error: <2% to 100 kHz.

Download from Www.Somanuals.com. All Manuals Search And Download

PERFORMANCE TESTS

Electronic counter, -hp- Model 5245L with 5262A Plug-In

a. Set the 3311A to square wave function and connect the output to the time interval input of an electronic counter as shown in Figure 5-2 (symmetry).

b. Set the 3311A frequency to 100 kHz and adjust the AMPLITUDE control to maximum.

c. Measure the period of the positive portion of the square wave and then the period of the negative portion.

d. Calculate symmetry error using the following formula:

$$E_{s} (\%) = \frac{T_{1} - T_{2}}{T_{1} + T_{2}} \times 100$$

Where:

 T_1 = Period of the positive portion of the waveform. T_2 = Period of the negative portion of the waveform. The value of E_s should not exceed 2%.

e. Measure the period of the positive and negative portion of the square wave at several other frequencies between 0.1 Hz and 100 kHz. Symmetry error should not exceed 2% for any frequency.

5-11. Pulse Duty Cycle Test.

DESCRIPTION:

This test verifies that the width of the pulse generated by Model 3311A is between 10 and 20% of the total period of one cycle.

SPECIFICATION:

Duty Cycle: 10.0% to 20.0% of the total period.

RECOMMENDED TEST EQUIPMENT:

Electronic counter, -hp- Model 5245L/5262A Plug-In

TEST PROCEDURE:

a. Connect the equipment as shown in Figure 5-2 for the symmetry test except connect the counter to the 3311A PULSE OUTPUT.

b. Set the 3311A frequency to 10 kHz and adjust the amplitude control to maximum.

c. Measure the period of the pulse and then the period of one cycle.

d. Divide the period of the pulse by the period measured for one cycle. This value should be between 0.1 and 0.2, i.e. 10% to 20%.

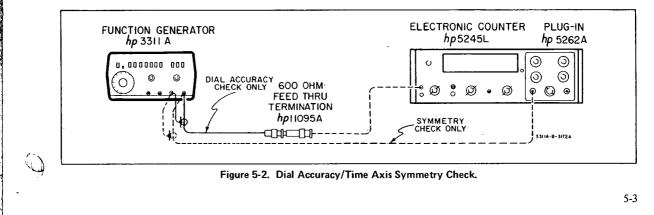
5-12. Dial Accuracy Test.

DESCRIPTION:

This test verifies that the dial setting of the Model 3311A coincides with the output frequency to within $\pm 5\%$ of maximum dial setting.

SPECIFICATION:

Dial Accuracy: ± 5% of full scale


RECOMMENDED TEST EQUIPMENT:

Electronic counter, -hp- Model 5245L/5262A \cdot Feed-Thru Termination (600 Ω), -hp- 11095A

TEST PROCEDURE:

a. Connect the equipment as shown in Figure 5-2 for the dial accuracy check.

b. Set the 3311A FUNCTION to square wave. Set the AMPLITUDE control Maximum.

Model 3311A

K)

Section V

c. Check the dial accuracy at the settings listed in Table 5-2. All readings should fall within the limits listed under "Counter Indication" in the Table.

3311A Control Settings					
Dial	Range	Counter Indication			
1	.1	6670 ms to 20000 ms			
5	.1	1820 ms to 2220 ms			
10	.1	950 ms to 1050 ms			
1	1	667 ms to 2000 ms			
5	1	182 ms to 222 ms			
10	1	96 msto 105 ms			
1	10	66.7 ms to 200 ms			
5	10	18.2 ms to 22.2 ms			
10	10	9.5 ms to 10.5 ms			
1	100	50 Hz to 150 Hz			
5	100	450 Hz to 550 Hz			
10	100	950 Hz to 1050 Hz			
1	1 K	500 Hz to 1500 Hz			
5	1 K	4500 Hz to 5500 Hz			
10	1 K	9500 Hz to 10.5 kHz			
1	10 K	5 kHz to 15 kHz			
5	10 K	45 kHz to 55 kHz			
10	10 K	95 kHz to 105 kHz			
1	100 K	50 kHz to 150 kHz			
5	100 K	450 kHz to 550 kHz			
10	100 K	950 kHz to 1050 kHz			

Table 5-2. Dial Accuracy Check.

5-13. Sine Wave Distortion Test.

DESCRIPTION:

This test verifies that the sine wave distortion of the Model 3311A is less than 3%; i.e. greater than 30 dB below the fundamental.

SPECIFICATION:

Distortion: <3% at maximum output amplitude, 10 Hz to 1 MHz.

See Chunge, 1

RECOMMENDED TEST EQUIPMENT:

600 Resistor (59-Ω), -hp- Part Number 0683-5105

Distortion Analyzer, -hp- Model 333A or 334A

Notch Filter, 1 MHz (See Table 5-1 for a list of components)

TEST PROCEDURE:

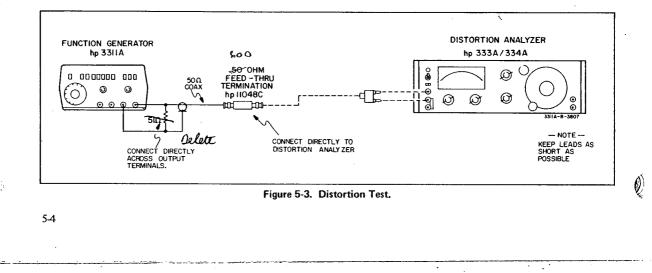
a. Connect the equipment as shown in Figure 5-3.

b. Set the 3311A FUNCTION to sine at a frequency of 10 Hz and measure the distortion. It should be more than 30 dB below the fundamental.

c. Measure distortion at several other frequencies from 10 Hz through 600 kHz. Distortion should be more than 30 dB below the fundamental for each frequency checked. $\rightarrow A_{0,vot}$ the 3811A sinc out for 400 mv Rms

d. Connect the equipment as shown in Figure 5-4. The components for the 1 MHz notch filter are listed in Table 5-1.

e. Set the 3311A frequency dial to the fully clockwise position on the 100 K RANGE. Adjust the AMPLITUDE control for a 0 dB indication on the voltmeter. This is the reference level.


f. Readjust the 3311A frequency to 1 MHz.

g. While monitoring the voltmeter, adjust the potentiometer in the 1 MHz filter and the 3311A frequency dial for the best null, This reading should be \geq 30 dB below the reference level noted in step e.

5-14. Square Wave and Pulse Response Test.

DESCRIPTION:

This test verifies that the square wave and pulse transition times (10 and 90% points) meet the specifications listed below.

K]

()

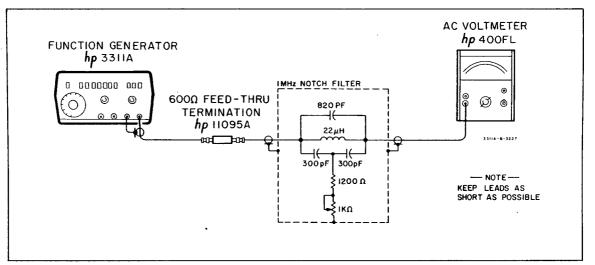


Figure 5-4. 1 MHz Distortion Test.

SPECIFICATION:

Square Wave Transition Time: <100 ns Pulse Transition Time: <25 ns RECOMMENDED TEST EQUIPMENT:

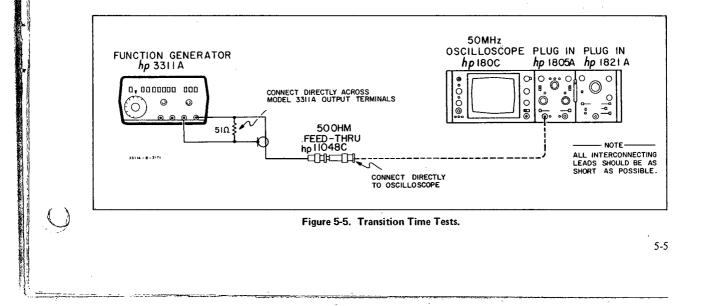
Oscilloscope, -hp- Model 180C/1805A/1821AResistor (51 Ω), -hp- Part Number 0683-5105 Feed-Thru Termination (600 Ω), -hp- 11095A

TEST PROCEDURE:

NOTE

Keep all interconnecting leads as short as possible.

a. Connect the 3311A as shown in Figure 5-5.


b. Set AMPLITUDE to maximum and the FUNCTION switch to square wave.

c. Set the 3311A frequency to 1 kHz and check the rise and fall times of the square wave. The time required for the transition between 10% and 90% of the square wave amplitude should be less than 100 ns.

d. Repeat step c for several other frequencies. The rise and fall times in each case should be less than 100 ns.

e. Disconnect the oscilloscope from the 600Ω OUT-PUT of the 3311A and connect it to the PULSE OUTPUT.

f. Measure the rise and fall times of the pulse at several frequencies. Time required for the transition between 10% and 90% of the pulse amplitude should be less than 25 ns.

Section V

5-15. Output Impedance Test.

DESCRIPTION:

This test verifies that the output impedance of the Model 3311A is $600 \Omega \pm 10\%$ at the 600Ω OUTPUT terminals.

SPECIFICATION:

Output Impedance: $600 \Omega \pm 10\%$

RECOMMENDED TEST EQUIPMENT:

AC Voltmeter, -hp- Model 3480C/D/3484A Feed-Thru Termination (600 Ω), -hp- 11095A

TEST PROCEDURE:

a. Set the Model 3311A for a 1 kHz sine wave.

b: Connect a true rms voltmeter to the 600 Ω OUTPUT. Adjust the Model 3311A for 6.00 V rms as observed on the voltmeter.

c. Remove the voltmeter and connect a 600 Ω terminating resistor (-hp- 11095A or equivalent) to the output.

d. Reconnect the voltmeter to the terminated output and note the voltmeter indication. It should indicate between 2.84 V and 3.16 V.

e. Repeat steps b through d for several other frequencies between 1 Hz and 1 MHz.

5-16. Maximum Signal Output and Amplitude Range Test.

DESCRIPTION:

This test measures the maximum output voltage from the 3311A for both open circuit and terminated conditions. The range of adjustment of the AMPLITUDE control is also checked.

SPECIFICATION:

Maximum Output Amplitude: 10 V p-p into 600 Ω, 20 V p-p into open circuit.

Amplitude Control: Continuously variable, > 30 dB range.

RECOMMENDED TEST EQUIPMENT:

AC Voltmeter, -hp- Model 3480C/D/3484A Feed-Thru Termination (600 Ω), -hp- 11095A

TEST PROCEDURE:

a. Terminate the 600 Ω OUTPUT of the Model 3311A with 600 chms and connect it to an ac voltmeter.

5-6

b. Set the 3311A to sine function at a frequency of 1 MHz. Set the DC OFFSET to minimum and the AMPLI-TUDE control to the fully clockwise position.

c. The voltmeter should indicate more than 3.53 V rms (10 V p-p).

d. Remove the 600Ω load and connect the Model 3311A directly to the voltmeter. The voltmeter should indicate greater than 7 V rms (20 V p-p). Note this value.

e. Turn the AMPLITUDE control to the fully ccw position and observe the meter. The indication should be less than 0.0316 times the voltage measured in step d. This verifies an amplitude control range of > 30 dB.

5-17. Pulse Output Amplitude Test.

DESCRIPTION:

This test verifies that the PULSE OUTPUT amplitude is greater than 3 V into open circuit.

SPECIFICATION:

Pulse Output: > 3 V positive (open circuit), TTL Compatible.

RECOMMENDED TEST EQUIPMENT:

Oscilloscope, -hp- Model 180C/1805A/1821A Divider Probe, -hp- Model 10004B

TEST PROCEDURE:

a. Connect an oscilloscope with a 10:1 divider probe to the 3311A PULSE OUTPUT. *The PULSE OUTPUT should have no load attached to it.*

b. Set the frequency of the Model 3311A to approximately 1 MHz.

c. Observe the oscilloscope and measure the peak-topeak amplitude of the pulse. It should be > 3 V. This verifies pulse output amplitude. Check pulse amplitude at several other frequencies.

5-18. DC Offset Test.

DESCRIPTION:

This test verifies the maximum plus and minus dc offset obtainable from the 3311A.

SPECIFICATION:

DC OFFSET: Continuously adjustable over a range from $\geq +10$ V to ≤ -10 V open circuit (range from $\geq +5$ V to ≤ -5 V into 600 Ω), and independent of amplitude control.

)

PERFORMANCE TESTS

Section V

RECOMMENDED TEST EQUIPMENT:

DC Voltmeter, hp-Model 3480C/D/3484A Feed-Thru Termination (600 Ω), hp-11095A

TEST PROCEDURE:

a. Set the Model 3311A AMPLITUDE control to minimum.

b. Terminate the signal output in 600 ohms and connect it to a dc voltmeter.

c. Turn the DC OFFSET control to the fully eounterclockwise position. A voltage of \rightarrow + 5 V should be observed on the dc voltmeter.

d. Turn the DC OFFSET control to the fully counterclockwise position. A voltage 5 V should be observed on the dc voltmeter.

e. Remove the 600 ohm, termination and repeat steps c and d except check for dc offset $\ge \pm 10$ V. This verifies the DC OFFSET specification.

5-19. VCO Test

DESCRIPTION:

ۇ با

経営を含めたいに

This test verifies the frequency range and voltage input requirement VCO INPUT.

SPECIFICATION:

VCO range: > 10:1 on any frequency range. Input Requirement: With frequency dial set to 1, a linear ramp of 0 V to $-10 V \pm 2 V$ will linearly increase frequency > 10:1.

RECOMMENDED TEST EQUIPMENT:

Oscilloscope, -hp- Model 180C/1805A/1821A DC Voltmeter, -hp- Model 3480A/3484A Power Supply, -hp- Model 6215A Electronic Counter, -hp- Model 5245L/5262A Resistor (10 k $\Omega \pm 1\%$), -hp- Part Number 0757-0442

TEST PROCEDURE:

a. Select the 100 K RANGE of the Model 3311A and set the frequency dial to 1.

b. Connect the 600 Ω OUTPUT of the Model 3311A to the input of a frequency counter. Note the reading of the counter.

c. Apply a negative voltage of less than 10 V from the power supply to the VCO INPUT terminals of the Model 3311A.

d. Observe the frequency counter and adjust the power supply so that the indication is ten times that noted in step b.

e. Check the power supply voltage with a dc voltmeter. It should indicate - $10 V \pm 2 V$.

f. Increase the power supply voltage slightly and note the counter indication. It should be more than 10 times the frequency observed in step b.

g. Repeat steps b through f for the 10 K and 1 K ranges.

h. Set the electronic counter to measure period.

i. Set the frequency dial of the 3311A to 1 and the RANGE to 100. Connect the 600 Ω OUTPUT to the counter and note its indication.

j. Apply a negative voltage of less than 10 V to the VCO INPUT terminals of the 3311A.

k. Observe the frequency counter and adjust the power supply so that the indication is 1/10 of that noted in step i.

l. Check the power supply voltage with a dc voltmeter. It should indicate - $10 V \pm 2 V$.

m. Increase the power supply voltage slightly and note the counter indication. It should be less than 1/10 of the period observed in step i. This verifies the VCO range and input requirement.

n. Repeat steps i through m except check the X.1 through X10 RANGES.

5-20. Triangle Linearity Test.

DESCRIPTION:

This test verifies that the linearity of the sloping sides of the triangle waveform generated by the Model 3311A does not deviate more than 1% from a mathematically determined "best straight line."

SPECIFICATION:

Linearity: Deviation <1% from best straight line at 100 Hz (10 V peak output amplitude).

RECOMMENDED TEST EQUIPMENT:

Sampling Voltmeter, -hp- Model 3480C/D/3484A Function Generator, -hp- Model 3300A/3302A Oscilloscope, -hp- Model 180C/1805A/1821A Electronic Counter, -hp- Model 5245L/5262A

Section V

PERFORMANCE TESTS

)

TEST PROCEDURE:

a. Set the 3311A frequency dial to 10 and select the X10 frequency RANGE. Using an electronic counter to monitor the 3311A output adjust the frequency dial for a period of 10.0 msec.

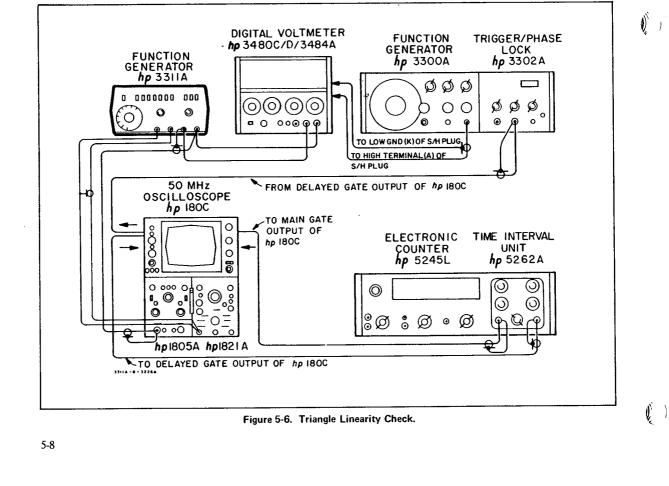
b. Set the 3480C/D/3484A Voltmeter to measure ac voltage. Connect the voltmeter to the 3311A 600 Ω OUTPUT and adjust the AMPLITUDE control for 5.78 V rms as indicated on the voltmeter.

c. Connect the equipment as shown in Figure 5-6.

d. Set the controls of the 3480C/D/3484A Voltmeter as follows:

FUNCTIONV dc
SAMPLE RATE HOLD
FILTEROUT
TERMINAL FRONT
RANGE 10

e. Set the MODE switch at the rear of the 3480C/D to the "ON" position and the DELAY switch to the "OFF" position.


f. Set the 5262A Time Interval unit to trigger on a +.3 V negative going transition in the START channel, and on a +.6 V negative going transition in the STOP channel. Set the 5245L FUNCTION switch to "REMOTE OR TIME INT." and use the 1 μ s TIME BASE.

g. Set the 3300A for a 20 kHz square wave triggered by the Model 180C DELAYED GATE OUTPUT. Set the channel B AMPLITUDE control of the 3300A to the fully clockwise position. Set the Model 3302A MODE to MULTIPLE, INPUT PHASE to -, and START/STOP PHASE to EXTERNAL.

h. Set the oscilloscope to trigger externally on the PULSE OUTPUT of the Model 3311A. The oscilloscope input should be dc coupled. Adjust the controls of the oscilloscope so that one cycle of the triangle wave occupies approximately the full length and height of the display area.

i. Set the oscilloscope delay time control to $5 \,\mu$ s/div.

j. Note the bright dot which appears on the trace and adjust the delay control on the oscilloscope so that the dot is precisely on the negative peak of the triangle wave. Adjust the 3311A DC OFFSET for a reading of -10 V as indicated on the voltmeter.

3480C/D/3484A

Voltage Reading (V)

- 9.00

- 7.00

- 5.00

- 3.00

- 1.00

+1.00

+3.00

+ 5.00

+ 7.00

+9.00

1'

1

Adjusted Maximum

5245L Indication

Relative Zero

(noted in step 1)

.505

1.009

1.514

2.019

2.523

3.028

3.532

4.037

4.542

k. Readjust the oscilloscope delay control so that the bright dot appears on the positive peak of the triangle wave. Note the indication of the voltmeter; it should be + 10.0 V. If it is not, readjust the 3311A DC OFFSET and repeat steps j and k until the voltages are equal to \pm 10 V.

NOTE

When checking linearity on the positive slope of the triangle waveform set the oscilloscope time/div to .5 ms. When checking the negative slope set the oscilloscope to 1 ms.

Table 5-3(a).	Triangle Linearity (P	ositive Slope).
0C/D/3484A	Adjusted Minimum	Adjusted Maxi

5245L Indication

Relative Zero

(noted in step 1) .495

.989

1.484

1.979

2.473

2.968

3462

3.957

4,452

1. Adjust the oscilloscope delay control until the 3480C/D/3484A Voltmeter reads - 9.00 V. Note the indication of the electronic counter. This reading is the "relative zero" and must be subtracted from subsequent indications to obtain the values listed in Table 5-3(a). The relative zero for Table 5(b) is measured at + 9.00 V.

m. Verify linearity by checking the instrument at each point indicated in Table 5-3. Each reading should be within the limits given. Be sure to subtract the relative zero from each measurement to obtain the adjusted minimum and maximum indications.

3480C/D/3484A	Adjusted Minimum	Adjusted Maximum
Voltage Reading (V)	5245L Indication	5245L Indication
+ 9.00 + 7.00 + 5.00 + 3.00 + 1.00 - 1.00 - 3.00 - 5.00 - 7.00 - 9.00	Relative Zero (noted in step 1) .493 .986 1.479 1.197 2.464 2.957 3.450 3.943 4.436	Relative Zero (noted in step 1) .503 1.006 1.509 2.011 2.514 3.017 3.520 4.023 4.526

Table 5-3(b). Triangle Linearity (Negative Slope).

IF use 3437A+ Delay so readings start at -10 and go to +10 IF use 3437A + Delay so readings start of -10 and go to the Start at -9 volue (say -9.02) and since this is relative Zero Add complement (+9.02) Toget Zero volue. use this offset To each actual voltage reading. Then devide the result by 4 Toget Halve for Toble. (ie -10 Totlo becomes 0 Totlo To scale 20 down to 5.0; by 4)

ADJUSTMENT PROCEDURES

5-21. ADJUSTMENT PROCEDURES.

5-22. Access to the 3311A adjustments is obtained as follows:

a. Remove the safety bracket which is over the left side lock lever.

b. Pull the two side lock levers at the back of the instrument to the rear and remove the bottom cover of the instrument.

This will expose the component side of the A1 assembly. Figure 5-7 shows the location of internal adjustments.

SOME OF THE MAINTENANCE AND SERVICING OPERATIONS DESCRIBED HEREIN ARE PERFORMED WITH POWER SUPPLIED TO THE INSTRUMENT WHILE PROTECTIVE COVERS ARE REMOVED. BE CAREFUL WHEN PERFORMING THESE OPERATIONS. LINE VOLTAGE IS ALWAYS PRESENT ON TERMINALS INCLUDING THE POWER INPUT CONNECTOR, FUSE-HOLDER AND POWER SWITCH.

5-9

Section V

ADJUSTMENT PROCEDURES

Model 3311A

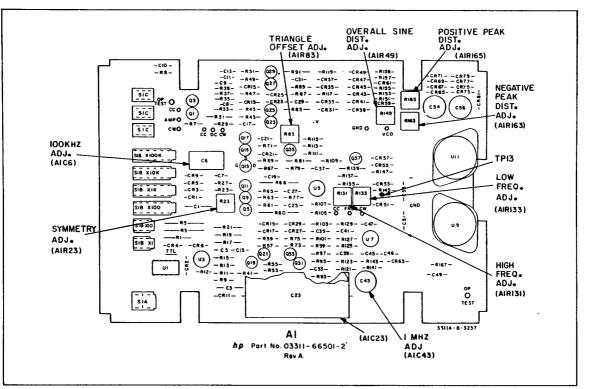


Figure 5-7. Adjustment Locator.

NOTE

Before proceeding set the DC OFFSET control for minimum offset. Also turn the AMPLITUDE control to the fully clockwise position.

5-23. Triangle Amplifier Offset Adjustment.

DESCRIPTION:

This adjustment minimizes the dc offset of the triangle amplifier.

RECOMMENDED TEST EQUIPMENT:

DC Voltmeter, -hp- Model 3480C/D/3484A

PROCEDURE:

- a. Connect a jumper in shunt with A1C23 (5 μ F).
- b. Select the .1 Hz RANGE.

c. Connect a dc voltmeter to the output of the Triangle Amplifier (A1TP13). Adjust A1R83 for 0 V \pm 200 mV.

d. Remove the jumper on A1C23.

5-10

5-24. Square Wave Time Axis Symmetry Adjustment.

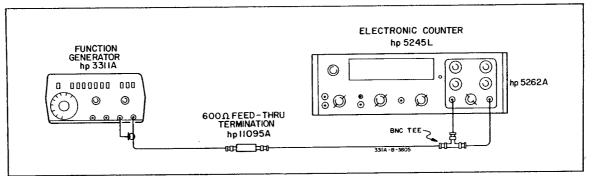
DESCRIPTION:

This adjustment minimizes time axis symmetry error of the Model 3311A output.

RECOMMENDED TEST EQUIPMENT:

Electronic Counter, -hp- Model 5245L/5262A 600 Ω Termination, -hp- 11095A

PROCEDURE:


a. Select the square wave FUNCTION of the Model 3311A and set the RANGE to 10 kHz. The frequency dial should be set to 1.

b. Terminate the 600 Ω output of the 3311A in 600 Ω .

c. Connect an electronic counter to the terminated output of the Model 3311A as shown in Figure 5-8. Alternately measure the periods of the positive and negative portions of the waveform and adjust A1R23 until these periods are equal.

s))

 $\left(\int_{U} \right)^{(j)}$

d. Calculate the symmetry error: It should not exceed 2% as determined by the following formula.

$$E_{s}(\%) = \frac{T_{1} - T_{2}}{T_{1} + T_{2}} X 100$$

Where:

(b)

(1)

 T_1 = period of positive portion of waveform. T_2 = period of negative portion of waveform.

5-25. Frequency Dial Calibration.

DESCRIPTION:

This adjustment sets the frequency dial accuracy of the Model 3311A.

RECOMMENDED TEST EQUIPMENT:

Electronic Counter, -hp- Model 5245L/5262L

PROCEDURE:

- a. High End Accuracy (10 Hz RANGE).
 - 1. Select the 10 Hz RANGE, and sine FUNCTION on the Model 3311A.
 - 2. Connect an electronic counter to the 3311A output and set its controls to measure period.
 - 3. Set the frequency dial to 10 and adjust A1R133 for a period of 10.00 msec.
- b. Low End Accuracy (10 Hz RANGE).
 - 1. Set the frequency dial to 1 (10 Hz RANGE) and adjust A1R131 for a period of 100.00 msec.
 - Repeat steps a and b until both extremes are as accurate as possible. The accuracy at both ends of the dial must be 5% of full scale, i.e. 10 ms ± .5 ms (high end), 100 ms ± 5 ms (low end).

c. Dial Linearity

Check frequency accuracy at the dial settings shown in Table 5-4. If the periods measured at these settings are not within tolerance repeat steps a through c. Adjust the tolerances in steps a and b to the high or low end as required to get the settings within the limits listed in Table 5-4.

Table 5-4. Dial Linearity.

Dial Setting	3	5	8
Measured Period(ms)	28.6 to	18.2 to	11.75 to
	40.0	22.2	13.30

- d. Low End Accuracy (100 kHz RANGE).
 - 1. Set the electronic counter to measure frequency and select the 100 kHz RANGE of the Model 3311A.
 - 2. Set the frequency dial to 1 and adjust A1C6 to 100 kHz. The frequency must be within ± 5 kHz of 100 kHz.
- e. High End Accuracy (100 kHz RANGE).
 - 1. With the Model 3311A on the 100 kHz RANGE set the dial to 10.
 - 2. Adjust A1C43 to 1 MHz as indicated on the counter. The frequency must be within ± 50 kHz of 1 MHz.

5-26. Sine Wave Distortion Adjustment.

DESCRIPTION:

This adjustment minimizes the distortion associated with the sine wave generated by the Model 3311A.

5-11

ADJUSTMENT PROCEDURES

RECOMMENDED TEST EQUIPMENT:

Distortion Analyzer, -hp- Model 333A/334A Feed-Thru Termination (600 Ω), -hp- 11095A

PROCEDURE:

5-12

Section V

a. Select the 1 kHz RANGE of the Model 3311A and set the frequency dial to 10.

b. Terminate the 3311A output in 600 Ω and select sine FUNCTION.

c. Set the 3311A AMPLITUDE to maximum.

d. Connect a distortion analyzer to the terminated output of the 3311A and tune it to the output frequency.

NOTE

The output voltage of the 3311A should be monitored while making the adjustments in step e. Resistor A1R149 can cause the voltage to fall below 10 V p-p. The resistors must be adjusted in such a way as to prevent the output from falling below 10 V p-p (3.53 V rms).

e. Set the distortion analyzer to measure distortion and adjust A1R149, A1R163, and A1R165 for minimum distortion. Reset each adjustment as necessary to obtain absolute minimum distortion. Maximum allowable distortion is > 30.0 dB below the fundamental.

1)))

PERFORMANCE TEST CARD

Hewlett-Packard Model 3311A FUNCTION GENERATOR

()

 \cdot ()

Tests performed by _____

Date ____

Serial Number_____

Paragraph		•		Reading	·
Number	Test		Minimum	Actual	Maximum
5-9	Sine Wave Amplitude	(1 Hz to 100 kHz	- V _{dev} X .015		V _{dev} X .015
	Flatness	100 kHz to 1 MHz	- V _{dev} X .030		V _{đev} X .030
5-10	Square Wave Time Axis Symmetry Error		- 2%		+ 2%
5-11	Puise Duty Cycle		.135		.165
5-12	Dial Accuracy	X.1 RANGE $\begin{cases} 1\\5\\10 \end{cases}$	6670 ms 1820 ms 950 ms		20000 ms 2220 ms 1050 ms
		X 1 RANGE $\begin{cases} 1\\5\\10 \end{cases}$	667 ms 182 ms 96 ms		2000 ms 222 ms 105 ms
		$X10 RANGE \begin{cases} 1\\5\\10 \end{cases}$	66.7 ms 18.2 ms 9.5 ms		200 ms 22.2 ms 10.5 ms
		$X100 \text{ RANGE} \begin{cases} 1\\5\\10 \end{cases}$	50 Hz 450 Hz 950 Hz		150 Hz 550 Hz 1050 Hz
		$X1K RANGE \begin{cases} 1\\5\\10 \end{cases}$	500 Hz 4500 Hz 9500 Hz		1500 Hz 5500 Hz 10.5 kHz
		$X10K RANGE \begin{cases} 1\\5\\10 \end{cases}$	5 kHz 45 kHz 95 kHz		15 kHz 55 kHz 105 kHz
		$X100K RANGE \begin{cases} 1 \\ 5 \\ 10 \end{cases}$	50 kHz 450 kHz 950 kHz		150 kHz 550 kHz 1050 kHz
5-13	Sine Wave Distortion		≥ 30 dB Below Fundamental		
5-14	Square Wave and Pulse Response	{ sq. wave } pulse			100 ns 25 ns
5-15	Output Impedance		2.84 V		3.16 V

5-12

- 7

. .

Download from Www.Somanuals.com. All Manuals Search And Download.

Paragraph				Reading	[
Number	Test		Minimum	Actual	Maximum
5-16	Maximum Signal Output and	{ terminated open circuit	3.53 V rms 7 V rms		
	Amplitude Range		.0316 X maximum voltage		
5-17	Pulse Output Amplitude		3 V		
5-18	DC Offset	f terminated	<- 5 V ≤- 10 V		≥+ 5 V ≥+ 10 V
5-19	VCO Requirement:				
	Range Input Requirement		> 10:1		- 10 V ± 2 V
5-20	Triangle Linearity				
		Voltage			
		- 9.00 - 7.00 - 5.00	Relative zero .495 .989		Relative zero
		- 3.00	1.484		1.009 1.514
	Positive Slope	- 1.00 +1.00	1.979 2.473		2.019 2.523
1	Siope	+ 1.00	2.968		3.028
		+ 5.00	3.462		3.532
		+7.00	3.957		4.037
		+9.00	4.452		4.542
		Voltage			
		+ 9.00	Relative zero	<u> </u>	Relative zero
		. (+7.00	.493	·····	.503
		+ 5.00	.986		1.006
		+ 3.00	1.479	<u></u>	1.509
	Negative	/ +1.00	1.197		2.011
	Slope	- 1.00	2.464		2.514
		- 3.00	2.957		3.017
		- 5.00	3.450		3.520
		- 7.00	3.943	···· . <u></u>	4.023
		- 9.00	4.436		4.526

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphameric order of their reference designators and indicates the description, -hp-Part Number of each part, together with any applicable notes, and provides the following:

a. Total quantity used in the instrument (Qty column). The total quantity of a part is given the first time the part number appears.

b. Description of the part. (See list of abbreviations below.)

c. Typical manufacturer of the part in a five-digit code.

(See Appendix A for list of manufacturers.) d. Manufacturers part number.

6-3. Miscellaneous parts are listed at the end of Table 6-1.

6-4. ORDERING INFORMATION.

6-5. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office. (See Appendix B for list of office locations.) Identify parts by their Hewlett-Packard part numbers. Include instrument model and serial numbers.

6-6. NON-LISTED PARTS.

- 6-7. To obtain a part that is not listed, include:
 - a. Instrument model number.
 - b. Instrument serial number.
 - c. Description of the part.
 - d. Function and location of the part.

6-8. PARTS CHANGES.

6-9. Components which have been changed are so marked by one of three symbols; i.e. Δ , Δ with a letter subscript, e.g. Δ_a , or Δ with a number subscript e.g. Δ_{10} . A Δ with no subscript indicates the component listed is the preferred replacement for an earlier component. A Δ with a letter subscript indicates a change which is explained in a note at the bottom of the page. A Δ with a number subscript indicates the related change is discussed in backdating (Section 8). The number of the subscript indicates the number of the change in backdating which should be referred to.

6-10. PROPRIETARY PARTS.

6-11. Items marked by a dagger (†) in the reference designator column are available only for repair and service of Hewlett-Packard instruments.

			ABBREV	ATIONS					
Agsilver	H7	harty (cycle(s) per second)		necativ	e positive zero	d		
Al			cycle(a) per accord?		Izero temperatu				inde-oole double-ti
			inside diameter	a					single-pole single-ti
Aampere(s)							3531	••••••	sugarboa sugaro
Au			impregnated	nsr	not separate	ely replaceable	-		
	incd		incandescent						
C capacitor	ins		insulation(ed)	Ω		ohm{s)	тс		temperature coeffi
cer				obd bdo	order	by description	TiO ₂		titanium die
coef coefficient	*Ω	kilo	hm(s) = 10 ⁺³ ohms	OD	04	txide diameter	tog .		
com	kity.	kil/	ohertz = 10 ⁺³ hertz						toler
como						o a a b			trin
comp			inductor	P		-lana			trans
conn							1310		••••••••••••••••••••••••••••••••••••••
			, linear taper						
depdeposited	iog		. logarithmic taper		picofaradi				
DPDT double-pole double-throw				piv	peak	inverse voltage	VBCW	alternating	current working vo
OPST double-pole single-throw	mA	milliamper	e(s) = 10 ⁻³ amperes	p/o		part of	var		
	MHz	men	ahertz = 10+6 hertz	005		onsition(s)	unicus.	direct	current working vo
elect			ohm(s) - 10+6 ohms						
			metal film	port			w		
encapencapsulated									••••••
			manufacturer						
F	ms		millisecond	ppm					working inverse vo
FETfield effect transistor	mtg		mounting	prec	recision (tempera	iture coeffient,	w/o.		wit
fxdfixed	mV	mill	ivolt(s) = 10 ⁻³ volts	long	term stability and	d/or tolerance)	www .		wirew
			microfarad(s)	•					
GaAs			microsecond(s)	8		resistor			
			ovolt(s) = 10 ⁻⁶ volts						
GHzgigahertz = 10 ⁺⁹ hertz							•	ontimum	alue selected at fac
gd	my		Mylar®						n (part may be omi
Gegermanium				rot		rotary			
andaround(ed)	nA	nanoampe	re(s) = 10 ⁻⁹ amperes					, no standar	rd type number assi
	NC		normally closed	Se		setenium			selected or special
H henry (ies)	No			sect					-
									R) Dupont de Nen
Ma maraja	NO		normally open	Si		silicon			
Hg mercury	NO		normally open		• • • • • • • • • • • • • • • • • • • •	silicon		e	-
Hg mercury	NO			Si				ų	-
Hgmercury	NO Prefix	Symbols			Symbo Is	silicon Multiplier		ų	-
Hgmercury			DECIMAL N	NULTIPLIERS				ų	-
Hg	Prefix	Symbols T	DECIMAL N Multipliar 10 ¹²	IULTIPLIERS Prefix centi	Symbols C	Muttiplier		ų	-
Hgmercury	Prefix	Symbols T G	DECIMAL N Multiplier 10 ¹² 10 ⁹	IULTIPLIERS Prefix centi milli	Symbols c m	Muttiplier 10:2 10:3		ų	-
Hgmercury	Prefix	Symbols T	DECIMAL N Multipliar 10 ¹²	IULTIPLIERS Prefix centi	Symbols C	Muttiplier 10 ⁻² 10 ⁻³ 10 ⁻⁶		e	-
Hgmercury	Prefix tera giga mega	Symbols T G M or Meg	DECIMAL N Multiplier 10 ¹² 10 ⁹ 10 ⁶	AULTIPLIERS Prefix centi milli micro	Symbols c m	Muttiplier 10 ⁻² 10 ⁻³ 10 ⁻⁶		e	-
Hgmercury	Prefix tera giga mega kilo	Symbols T G M or Meg K or k	DECIMAL N Multiplier 10 ¹² 10 ⁹ 10 ⁶ 10 ³	AULTIPLIERS Prefix centi milli micro nano	Symbols c m µ a	Muttiplier 10 ⁻² 10 ⁻³ 10 ⁻⁶ 10 ⁻⁹		e	-
Hgmercury	Prefix tera giga mega	Symbols T G M or Meg	DECIMAL N Multiplier 10 ¹² 10 ⁹ 10 ⁶	AULTIPLIERS Prefix centi milli micro	Symbols c m µ	Muttiplier 10-2 10-3 10-6 10-9 10-12		e	-
Hgmercury	Prefix tera giga mega kilo	Symbols T G M or Meg K or k	DECIMAL N Multiplier 10 ¹² 10 ⁹ 10 ⁶ 10 ³	AULTIPLIERS Prefix centi milli micro nano	Symbols c m µ a	Muttiplier 10 ⁻² 10 ⁻³ 10 ⁻⁶ 10 ⁻⁹		e	-
Hgmercury	Prefix tera giga mega kilo hecto deka	Symbols T G M or Meg K or k h da	DECIMAL N Multipliar 10 ¹² 10 ⁹ 10 ⁶ 10 ³ 10 ² 10	AULTIPLIERS	Symbols c m µ a p f	Muttiplier 10-2 10-3 10-6 10-9 10-12 10-15		e	-
Hg	Prefix tera giga mega kilo hecto	Symbols T G Mar Meg Kar k ħ	DECIMAL N Multiplier 10 ¹² 10 ⁹ 10 ⁶ 10 ³ 10 ² 10 10 ⁻¹	AULTIPLIERS	Symbols c m µ n p	Muttiplier 10-2 10-3 10-6 10-9 10-12		e	STD-A
	Prefix tera giga mega kilo hecto deka deci	Symbols T G Mar Meg Kar k h da d	DECIMAL M Multiplier 10 ¹² 10 ⁹ 10 ⁶ 10 ³ 10 ² 10 10 10 ⁻¹ DESIG	AUL TIPLIERS Prefix centi milli micro nano pico femto atto NATORS	Symbols c m µ n p f f	Muttiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-18		e	
A	Prefix tera giga mega kilo hecto deka deci FL	Symbols T G Mor Meg Kor k h da d	DECIMAL N Multiplier 1012 109 106 103 102 10 102 10 10-1 DESIG (liter	AUL TIPLIERS Prefix centi milli micro nano pico femto atto NATORS Q	Symbols c m µ a p f a	Muttiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-18 transistor			termina
	Prefix tera giga mega tilo hecto deka deci FL HR	Symbols T G Mor Meg Kor k h da d	DECIMAL N Multiplier 1012 109 106 103 102 10 10 10 0 10 10 10 10 10 10	AULTIPLIERS	Symbols c m µ n p f s	Muttiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-18 	υ.,		
A	Prefix tera giga mega tilo hecto deka deci FL HR	Symbols T G Mor Meg Kor k h da d	DECIMAL N Multiplier 1012 109 106 103 102 10 102 10 10-1 DESIG (liter	AULTIPLIERS	Symbols c m µ a p f a	Muttiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-18 	υ.,		termina
A	Prefix tera giga mega kilo hecto deka deci FL HR	Symbols T G M or Meg K or k h da d	DECIMAL N Mutipilar 1012 109 106 103 102 10 10-1 DESIGI filter 	AULTIPLIERS Prefix centi micro nano pico fento atto VATORS Q QCR	Symbols c m µ n p f s	Muttiplier 10-2 10-3 10-6 10-9 10-12 10-12 10-15 10-18 transistor reasistor diode resistor	U V	, vacuum tube, i	
A	Prefix tera giga mega kilo hecto deka deci FL HR J	Symbols T G M or Meg K or k h da d	DECIMAL N Muttipliar 1012 109 106 103 102 10 107 107 107 107 107 107 107	AULTIPLIERS Prefix centi milli micro pico femto femto femto etto VATORS Q.CR RT	Symbols c m µ f f s	Multiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-18 	V V	vacuum tube,	termina microc
A	Prefix tera giga mega kilo hecto deka deci FL HR J K	Symbols T G M or Meg K or k h da d	DECIMAL N Muttipiler 10 ¹² 10 ⁹ 10 ⁶ 10 ³ 10 ² 10 ⁻¹ DESIG 	AULTIPLIERS Prefix centi micro nano pico fento atto VATORS Q QCR R R T S	Symbols c m µ n p f t s	Multiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-18 transistor reasistor transistor transistor 	U V W X	, , vacuum tube, I	termina microc neon bulb,photocel
Aassembly B	Prefix tera giga mega kilo hecto deka deci FL HR J L	Symbols T G Mor Meg K or k h ds d	DECIMAL N Mutipular 1012 109 106 103 102 10 10 10 10 10 10 10 10 10 10	AULTIPLIERS Prefix centi milli micro pico femto femto atto VATORS Q.CR RT S T	Symbots c m µ n p f	Multiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-18 transistor transistor diode transformer	U V W X	vacuum tube, I	termina microc neon bulb,photocel
A	Prefix tera gigo mega kilo hecto deka deka deka fL J K K K	Symbols T G M or Meg K or k h ds d	DECIMAL N Muttipiler 10 ¹² 10 ⁹ 10 ⁶ 10 ³ 10 ² 10 ⁻¹ DESIG 	AULTIPLIERS	Symbols c m µ f t	Multiplier 10-2 10-3 10-6 10-9 10-12 10-12 10-18 transitor reasistor diode transitor terminal baard	V W XDS XF	, , vacuum tube, i	termina microc neon bulb,photocel
A	Prefix tera giga mega kilio hecto deka deci FL HR L MP	Symbols T G Mor Meg Kor k h ds d	DECIMAL N Mutipular 1012 109 106 103 102 10 10 10 10 10 10 10 10 10 10 10 10 10	AULTIPLIERS	Symbots c m µ n P f s	Multiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-15 10-18 transistor transistor diode resistor 	V W XDS XF Y	, vacuum tube, i	termina micro neon bulb photocel iampi iampi
A	Prefix tera giga mega kilio hecto deka deci FL HR L MP	Symbols T G Mor Meg Kor k h ds d	DECIMAL N Muttipiler 10 ¹² 10 ⁹ 10 ⁶ 10 ³ 10 ² 10 ⁻¹ DESIG 	AULTIPLIERS	Symbols c m µ f t	Multiplier 10-2 10-3 10-6 10-9 10-12 10-15 10-15 10-18 transistor transistor diode resistor 	V W XDS XF Y	, vacuum tube, i	termina microc neon bulb,photocel

}

;

,

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
A1 A1C1	03311-66501 0160-0554	1 2	PC ASSY: MAIN CAPACITOR (5 UF PART OF C1 AND C23 MATCHED SET)	28480 28480	03311-66501 0160-0554
A1C3 A1C5	0160-0174 0150-0093	1 15	C: FXD CER 0.47 UF +80% -20% 25 VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	56289 72982	5C1187S-CML 801K800011
A1C6 A1C7 A1C8 A1C9	0121-0481 0140-0200 0150-0093 0150-0022	1 1 1	C:VAR 16-150 PF C:FKD HICA 390 PF 5% C:FKD CER 0.01 UF +80-20% 100VDCW C:FKD TI 3.3 PF 10% 500VDCW C:FKD CER 5000 PF 20% 250WVAC	28480 72136 72982 78488 28480	0121-0481 RDM15F391-J3C 801-K800011 GA 0160-3333
A1C10 A1C11 A1C13 A1C15 A1C15 A1C17 A1C19	0160-3333 0150-0093 0150-0093 0150-0093 0150-0093 0160-2202	1	C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD KICA 75 PF 5%	72982 72982 72982 72982 72982 28480	801-K800011 801-K800011 801-K800011 801-K800011 0160-2202
A1C21 A1C23 A1C25 A1C27 A1C27 A1C29	0150~0093 0160-0554 0140-0204 0150-0093 0150-0093	1	C:FXD CER 0.01 UF +80-203 100VDCW CAPACITOR SET (0.0045 UF P/O C1& C23 MATCHED SET) C:FXD MICA 47 PF 53 NPO 500VDCW C:FXD CER 0.01 UF +80-203 100VDCW C:FXD CER 0.01 UF +80-203 100VDCW	72982 28480 14655 72982 72982	801-K800011 0160-0554 RDM15E470J5C 801-K800011 801-K800011
A1C31 A1C33 A1C35 A1C35 A1C37 A1C39	0150-0093 0150-0093 0150-0093 0150-0093 0150-0093 0160-2204	2	C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD WICA 100PF 5%	72982 72982 72982 72982 72982 72136	801-K800011 801-K800011 801-K800011 801-K800011 RDM15F101J3C
A1C41 A1C43 A1C45 A1C45 A1C46 A1C47	0160-2204 0121-0046 0150-0093 0140-0145 0150-0093	4 , 1	C:FXD MICA 100PF 5% C:VARI CER 9-35 PF C:FXD CER 0-01 UF +80-20% 100VDCW C:FXD MICA 22 PF 5% C:FXD CER 0-01 UF +80-20% 100VDCW	72136 28480 72982 28480 72982	RDM15F101J3C 0121-0046 801-K800011 0140-0145 801-K800011
A1C49 A1C51 A1C53 A1C54 ∆a	0160-3333 0150-0096 0150-0096 0180-0547	2 2`	C:FXD CER 5000 PF 20% 250WVAC C:FXD CER 0.05 UF +80-20% 100VDCH C:FXD CER 0.05 UF +80-20% 100VDCH C:FXD ELECT 200 UF 50VDCH	28480 91418 91418 28480	0160-3333 TA TA 0180-0547
A1C56 Δ ₈ A1CR1 Δ b A1CR2 A1CR3 Δ b A1CR4	0180-0547 1901-0518 1901-0040 1901-0518 1901-0518	15	C:FXD ELECT 200 UF 50VDCW DIDDE:HOT CARRIER DIDDE:SILICON 50 MA 30 WV DIDDE:SILICON 50 MA 30 WV DIDDE:SILICON 50 MA 30 WV	28480 28480 07263 28480 07263	0180-0547 1901-0518 FDG1088 1901-0518 FDG1088
A1CR5 Δ b A1CR6 Δ A1CR9 Δ b A1CR11 A1CR13	1901-0518 1902-0049 1901-0518 1902-3183 1901-0040	2 1	DIODE:HOT CARRIER DIODE:BREAKDOWN 8.19V 5% DIODE:HOT CARRIER DIODE:REAKDOWN 12.1V 2% 400MW DIODE:SILICON 50 MA 30 WV	28480 04713 28480 28480 07263	1901-0518 SZ10939-122 1901-0518 1902-3183 F0G1088
A1CR15 A1CR17 A1CR19 A1CR21 A1CR21 A1CR23	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE:SILICON 50 MA-30 WV DIODE:SILICON 50 MA-30 WV DIODE:SILICON 50 MA-30 WV DIODE:SILICON 50 MA-30 WV DIODE:SILICON 50 MA-30 WV	07263 07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FDG1088 FDG1088 FDG1088
A 1CR25 A1CR27 A1CR29 A1CR31 A1CR33	1901-0040 1902-0057 1902-0057 1901-0045 1902-0594	2 10 2	DIODE:SILICON 50 MA 30 WV DIODE BREAKDOWN:6.49V DIODE BREAKDOWN:6.49V DIODE:SILICON 0.75A 100PIV DIODE BREAKDOWN:18.2V 5% 1W	07263 28480 28480 04713 04713	FDG1088 1902-0057 1902-0057 SR1358-7 SZ1121 3- 215
A1CR35 A1CR37 A1CR39 A1CR49 A1CR41 A1CR43	1901-0045 1902-0594 1910-0016 1910-0016 1910-0016	6	DIODE:SILICON 0.75A 100PIV DIODE BREAKDOWN:18.2V 5% 1W DIODE:GE 60 WIV DIODE:GE 60 WIV DIODE:GE 60 WIV	04713 04713 28480 28480 28480 28480	SR1358-7 SZ11213-215 1910-0016 1910-0016 1910-0016
A1CR45 A1CR47 A1CR49 A1CR51 A1CR51 A1CR53	1910-0016 1910-0016 1910-0016 1902-3190 1902-3062	1	DIODE:GE 60 WIV DIODE:GE 60 WIV DIODE:GE 60 WIV DIODE BREAKDOWN:13.0V 5% 400 MW DIODE BREAKDOWN:3.92V 5% 400 MW	28480 28480 28480 28480 28480 28480	1910-0016 1910-0016 1910-0016 1902-3190 1902-3062
A1CR55 A1CR57 A1CR59 A1CR61 A1CR63	1901-0025 1901-0025 1901-0040 1901-0040 1902-0049	2	DIODE:SILICON LOOMA/1V DIODE:SILICON 100MA/1V DIODE:SILICON 50 MA 30 WV DIODE:SILICON 50 MA 30 WV DIODE:BREAKDOWN 6.19V 53	07263 07263 07263 07263 07263 04713	FD 2387 FD 2387 FDG1088 FDG1088 SZ10939-122
A1CR65 A1CR67 A1CR69 A1CR71 A1CR71 A1CR73	1901-0045 1901-0045 1901-0045 1901-0045 1901-0045 1901-0045		DIODE:SILICON 0.75A LOOPIV DIODE:SILICON 0.75A LOOPIV DIODE:SILICON 0.75A LOOPIV DIODE:SILICON 0.75A LOOPIV DIODE:SILICON 0.75A LOOPIV	04713 04713 04713 04713 04713 04713	SR1358-7 SR1358-7 SR1358-7 SR1358-7 SR1358-7 SR1358-7

Table 6-1. Replaceable Parts

i 1

1

ł

Download from Www.Somanuals.com. All Manuals Search And Download.

j,

11

1

Table 6-1. Replaceable Parts(Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numb
					1
A1CH75 A1CR77 A1CR79 A1CR81 A1C1	1901-0045 1901-0045 1901-0045 1901-0033 1854-0071	1	DIODE:SILICON 0.75A 100PIV OIODE:SILICON 0.75A 100PIV DIODE:SILICON 0.75A 100PIV OIODE:SILICON 100AA 180WV TSTR:SI NPN/SELECTED FROM 2N3704)	04713 04713 04713 07263 28480	SR1358-7 SR1358-7 SR1358-7 FD3369 1854-0071
A 1Q3 A 1Q5 A 1Q5 A 1Q1 A 1Q11 A 1Q13	1854-0071 1854-0409 1853-0086 1853-0086 1855-0081	1 2 1	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN TSTR:SI PNP TSTR:SI PNP TSTR:SI FET TSTR:SI FET	28480 80131 80131 80131 80131 80131	1854-0071 2N5210 2N5087 2N5087 2N5245
AlQ15 AlQ17 AlQ19 AlQ21 AlQ23	1853-0020 1853-0020 1853-0020 1854-0215 1853-0020	6 5	TSTR:SI PNPISELECTED FROM 2N3702) TSTR:SI PNPISELECTED FROM 2N3702) TSTR:SI PNPISELECTED FROM 2N3702) TSTR:SI PNP TSTR:SI PNPISELECTEN FROM 2N3702)	28480 28480 28480 80131 28480	1853-0020 1853-0020 1853-0020 283904 1853-0020
A 1025 A 1027 A 1029 A 1031 A 1033	1854-0215 1854-0215 1853-0020 1853-0020 1854-0215		TSTR:SI NPN TSTR:SI NPN TSTR:SI PAP(SELECTED FROM 2N3702) TSTR:SI PAP(SELECTED FROM 2N3702) TSTR:SI NPN	80131 80131 28480 28480 80131	2N3904 2N3904 1853-0020 1853-0020 2N3904
A1Q35 A1Q37 A1R1 A1R3 A1R3 A1R5	1854-0215 1854-0071 0698-8395 0698-8394 0698-8394	2 2	TSTR:SI NPN TSTR:SI NPN(SELECTED FRON 2N3704) R:FXD FLM 50K OHM 0.1% 1/4W R:FXD FLM 5K OHM 0 1% 1/2W R:FXD FLM 5K OHM 0 1% 1/2W	80131 28480 28480 28480 28480 28480	2N3904 1854-0071 0698-8395 0698-8394 0698-8394
ALP7 A1R8 A1R1 AIR12 AIR12 AIR13 AIR15 AIR15 A1R15 A1R19 A1R21 AIR21 AIR23	0684-1011 0684-1021 0757-0283 0757-0283 0757-0283 0757-0472 0898-4436 0698-4396 0698-8396 0698-8395 2100-3210	5 2 5 1 1 2 2	R:FXD COMP 100 OHM 10% 1/4M R:FXD COMP 100 OHM 10% 1/4M R:FXD COMP 1800 OHM 10% 1/4W R:FXD MET FLM 2.00K OHM 1% 1/8W R:FXD MET FLM 200 K OHM 1% 1/8W R:FXD MET FLM 45.3 K OHM 1% 1/8W R:FXD FLM 50.4 OHM 0.1% 1/4M R:FXD FLM 500K OHM 0.1% 1/4M R:FXD FLM 500K OHM 0.1% 1/4M R:FXD FLM 500K OHM 0.1% 1/4M R:FXD FLM 500 K OHM 0.1% 1/4M R:FXD FLM 500 K OHM 0.1% 1/4M	01121 01121 01121 28480 28480 28480 28480 28480 28480 28480 28480	C8 1011 C8 1001 C8 1821 0757-0283 0757-0472 0698-4436 0698-4436 0698-4336 0698-8396 0698-8396 0698-8395 2100-3210
A1R25 A1R27 A1R29 A1R31 A A1R33	0684-0271 0698-8062 0698-5102 0686-1525 0698-4480	1 1 1 1	R:FXD CONP 2.7 OHN 103 1/4W R:FXD CONP 4.7 OHN 103 1/4W R:FXD CONP 1.2 MEGOHM 103 1/4W R:FXD CONP 1500 OHN 53 1/2W R:FXD MET FLM 15.8K OHM 13 1/8W	01121 01121 01121 01121 28480	CB 27G1 CB47G1 CB 1251 EB 1525 0698-4480
A1R35 A1R37 A1R39 A1R41 A1R43	0698-7514 0757-0415 0757-0442 0684-1011 0757-0401	3 1 1 2	Ř:FXD COMP 15 OHM 10% 1/4W R:FXD HET FLM 475 OHM 13 1/8W R:FXD HET FLM 10.0K OHM 1x 1/8H R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 100 OHM 13% 1/8W	01121 28480 28480 01121 28480	CB 1561 0757-0415 0757-0442 CB 1011 0757-0401
A1R45 A1R47 A1R49 A1R51 A1R51 A1R53	0757-0410 0698-3136 0757-0410 0757-0277 0684-1011	2 2 1	R:FXD MET FLM 301 OHM 1X 1/8W R:FXD MET FLM 17.8K OHM 1X 1/8W R:FXD MET FLM 301 OHM 1X 1/8W R:FXD MET FLM 49.9 OHM 1X 1/8W R:FXD COMP 100 OHM 10X 1/4W	28480 26480 28480 28480 01121	0757-0410 0698-3136 0757-0410 0757-0277 CB 1011
A1R55 A1R57 A1R59 A1R60 A1R61	0684-1011 0757-0200 0757-0288 0698-8063 0757-0465	1 2 2 2	R:FXD COMP 100 OHM 103 1/4W R:FXD MET FLM 5.62K OHM 13 1/8W R:FXD MET FLM 9.09K OHM 13 1/8W R:FXD MET FLM 10.013 1/2W R:FXD MET FLM 100K OHM 13 1/8W	01121 28480 28480 28480 28480 28480	CB 1011 0757-0200 0757-0288 0698-8063 0757-0465
A1R63 A1R65 A1R66 A1R67 A1R67 A1R69	0757-0465 0684-3341 0698-8063 0757-0283 0684-8221	1	R:FXD MET FLM 100K 0HM 1% 1/8W R:FXD CONP 330K 0HM 10% 1/4W R:FXD FLM 1K 0HM 0.1% 1/2W R:FXD MET FLM 2.00K 0HM 1% 1/8W R:FXD COMP 8200 0HM 10% 1/4W	2848C 01121 28480 28480 01121	0757-0465 CB 3341 0698-8063 0757-0283 CB 8221
A 1871 A 1873 A 1875 A 1877 A 1877 A 1879	0684-3311 0757-0280 0757-0280 0684-1521 0757-0283	1 5 1	R:FXD COMP 330 OHM 10% 1/4W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD COMP 1500 OHM 10% 1/4W R:FXD MET FLM 2.00K OHM 1% 1/8W	01121 2648C 28480 01121 28480	CB 3311 0757-0280 0757-0280 CB 1521 0757-0283
A 1881 A 1883 A 1885 A 1887 A 1889	0687-2221 2100-3211 0686-5115 0684-2201 0684-2201	1 2 2 2	R:FXD COMP 2200 OHM 10% 1/2W R:VAR CER 1K OHM 10% LIN 1/2W R:FXD COMP 510 OHM 5% 1/2W R:FXD COMP 22 OHM 10% 1/4W R:FXD COMP 22 OHM 10% 1/4W	01121 28480 01121 01121 01121	EB 2221 2100-3211 EB 5115 CB 2201 CB 2201
A1R91 A1R93 A1R95 A1R97 A1R97 A1P99	0686-5115 0684-1011 0698-3264 0698-3279 0698-3279	2 2	R:FXD COMP 510 OHM 5% 1/2W R:FXD COMP 100 OHM 10% 1/4W R:FXD FLM 11_8K OHM 1% 1/8W R:FXD MET FLM 4990 OHM 1% 1/8W R:FXD MET FLM 4990 OHM 1% 1/8W	01121 01121 28480 28480 28480 28480	E8 5115 C8 1011 0698-3264 0698-3279 0698-3279

△ Use for all replacement

See introduction to this section for ordering information

6-3

Section VI

6-4

Card and

Model 3311A

Table 6-1. Replaceable Parts(C	Cont'd)	
--------------------------------	---------	--

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
A1R101 A1R103 A1R105 A1R107 A1R107 A1R109	0757-0412 0699-3264 0684-1221 0698-4307 0757-0280	2	R:FXD MET FLM 365 DHM 1% 1/8M R:FXD FLM 11.8K DHM 1% 1/8W R:FXD COMP 1.2K DHM 10% 1/6W R:FXD FLM 14.3K DHM 1% 1/8W R:FXD MET FLM 1K DHM 1% 1/8W	28480 28480 01121 28480 28480	0757-0412 0698-3264 CB 1221 0698-4307 0757-0280
A1R111 A1R113 A1R115 41R117 A1R117 A1R119	0687-6811 0684-1821 0757-0401 0684-2731 0684-2731	1 2	R:FXD COMP 680 DHW 10% 1/2W R:FXD COMP 1800 DHW 10% 1/4W R:FXD MET FLM 100 DHM 1% 1/8W R:FXD COMP 27K DHW 10% 1/4W R:FXD COMP 27K DHW 10% 1/4W	01121 01121 28480 01121 01121	EB 6811 CB 1821 0757-0401 CB 2731 CB 2731
A1R121 A1R123 A1R125 A1R125 A1R127 A1R129	0757-0280 0757-0412 0698-4434 0698-4423 0757-0416	1	R:FXD MET FLM 1K OHM 1% 1/0W R:FXD MET FLM 365 OHM 1% 1/0W R:FXD FLM 2.32K OHM 1% 1/0W R:FXD FLM 1.37K OHM 1% 1/0W R:FXD MET FLM 511 OHM 1% 1/0W	28480 28480 28480 28480 28480 28480	0757-0280 0757-0412 0698-4434 0698-4423 0757-0416
A1R131 A1R133 A1R135 A1R137 A1R139	2100-3211 2100-3210 0757-0288 0757-0430 0687-1521	1	R:VAR CER 1K OHM 10% LIN 1/2W R:VAR CER 10K OHM 10% LIN 1/2W R:FXD NET FLN 9.09K OHM 1% 1/8W R:FXD NET FLN 2.21K OHM 1% 1/8W R:FXD COMP 1500 OHM 10% 1/2W	28480 28480 28480 28480 28480 01121	2100-3211 2100-3210 0757-0288 0757-0430 E8 1521
A1R141 A1R143 A1R145 A1R147 A1R149	0757-0283 0757-0283 0687-2211 0698-3136 2100-3252	1	R:FXD MET FLM 2.00K OHM 1% 1/8W R:FXD MET FLM 2.00K OHM 1% 1/8W R:FXD COMP 220 OHM 10% 1/2W R:FXD COMP 220 OHM 10% 1/8W R:FXD MET FLM 17.8K OHM 10% TYPE H 1/2W	28480 28480 01121 28480 28480	0757-0283 0757-0283 EB 2211 0698-3136 2100-3252
A1R151 A1R153 A1R155 A1R157 A1R159	0698-7514 0684-3321 0757-0280 0698-7514 0684-3321	2	R:FXD COMP 15 OHM 10% 1/4W R:FXD COMP 3300 OHM 10% 1/4W R:FXD NET FLM 1K OHM 1% 1/8W R:FXD COMP 15 OHM 10% 1/4W R:FXD COMP 3300 OHM 10% 1/4W	01121 01121 28480 01121 01121	CB 1561 CB 3321 0757-0280 CB 1561 CB 3321
A1R163 A1R165 A1R167 A1S1	2100-3212 2100-3212 0684-1001 3101-1814	2	R:VAR CER 200 OHM 10% LIN 1/2W R:VAR CER 200 OHM 10% LIN 1/2W R:FAD COMP 10 OHM 10% 1/4W SWITCH:PUSHBUTTON ASSY INCLUDES:	28480 28480 01121 28480	2100-3212 2100-3212 C0 1001 3101-1814
	3101-1720 3101-0600 3101-0601 3101-0611 3101-0611 3101-0611 3101-0601 3101-0600 3101-0600	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SWITCH: LINE PUSH-PUSH SWITCH: XI RANGE 2-POLE SWITCH: X10 RANGE 2-POLE SWITCH: X100 RANGE 4-POLE SWITCH: X1K RANGE 4-POLE SWITCH: X10K RANGE 4-POLE SWITCH: X100K RANGE 4-POLE SWITCH: FUNCTION 2-POLE SWITCH: FUNCTION 2-POLE SWITCH: FUNCTION 2-POLE	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	3101-1720 3101-0600 3101-0601 3101-0611 3101-0611 3101-0611 3101-0611 3101-0600 3101-0600 3101-0600
A1U1 A1U3 A1U5 A1U7 A1U9 A1U11	1820-0054 1820-0321 1826-0066 1820-0321 1826-0126 1826-0126	1 2 1 2	IC: TTL QUAD 2-INPUT NAND GATE IC: HI-SPEED COMPARATOR IC: LIN. OP AMPL. 25K OHM IC: HI-SPEED COMPARATOR IC: VOLTAGE REGULATOR IC: VOLTAGE REGULATOR	01295 01295 07263 01295 01295 01295 01295	SN7400N SN72 710L U587777312 SN72 710L LM309 LM309
A1XA1	1200–0424	1	SOCKET: IC BLK 14 CONTACT	23880	CSA2900-148
<u></u>					

Download from Www.Somanuals.com. All Manuals Search And Download.

and the second sec

.

Ξ.

Real of

11

.

Section VI

Table 6-	l. Rep	laceable	Parts(Cont'd)
----------	--------	----------	---------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Num
			CHASSIS MOUNTED COMPONENTS		
C 1 C 2	0160-3333 0160-3333		C:FXD CER 5000 PF 20% 250WVAC C:FXD CER 5000 PF 20% 250WVAC	28480 28480	0160-3333 0160-3333
F1 J4 R2 R4 R6	2110-0318 1251-2357 2100-2357 0686-1035 2100-0546	1 1 1 1	FUSE:0.125 AMP SLON-BLOM Socket:3-Pin Male Pomer Receptacle R:VAR Jok OHM 103 R:FX0 COMP Jok OHM 53 1/2m R:VAR COMP 2k OHM 103 10 Cm Log	71400 82389 28480 01121 01121	MDL 108 EAC-301 2100-3348 EB 1035 WA4G040S20ZAA
RB R13 S2 T1 W1 XF1	2100-2488 0698-8434 3101-1609 9100-3300 8120-1348 2110-0359	1 1 1 1 1	R:VAR COMP 10K OHM 20% LIN 1/2M R:FX0 FLM 600 OHM 1.0% 1/2M SHITCH:SLIDE 2-OPDT TRANSFORMER, POWER CABLE ASSY:POWER, DETACHABLE FUSEHOLDER:EXTRACTOR POST TYPE	28480 28480 82389 28480 70903 28480	2100-2488 069.8-8434 11E-1036 9100-3300 KHS:7041 2110-0359
			MISCELLANEOUS PARTS	·	
	03311-00201 03311-02001	1	PANEL:FRONT CASE:TOP	28480 28480	03311-00201 03311-02001
	03311-60202 03311-90001	1 1	PANEL ASSY #REAR MANUAL (LOOSE LEAF PAGES ONLY)	28480 28480	03311-60202 03311-90001
	0340-0732 0340-0782 0370-0914 0370-1005 0370-2486	12 2 11 2 11	INSULATOR:BINDING POST, JADE GRAY INSULATOR:TRANSISTOR (FOR U9 AND U11) Bezel:Pushbutton KNDB, JADE GREY KNDB:JADE GREY KNDB:USHBUTTON, JADE GRAY	28480 28480 28480 28480 28480 28480	0340-0732 0340-0782 0370-0914 0370-1005
	03311-67401 5020-8315 05300-40004 05301-40001 1460-1357	1 8 1 1	KND8 CASE GUIDE:SLIDE FOOT STAND:TILT	28480 28480 28480 28480 28480 28480	03311-67401 5020-8315 05300-400004 05301-40001 1460-1357
	1510-0084 2950-0131 5040-6000 5040-7001 5040-7032	6 1 1 1	BINDING POST NUT:HEX NYLON, BLACK CATCH:LEFT SIDE CATCH:RIGHT SIDE FOOT	28480 00000 28480 28480 28480 28480	1510-0084 OBD 5040-6000 5040-7001 5040-7032
	7122-0058 03311-00202 14600-1311 1600-0429	1 1 1	PLATE:SERIAL PANEL:REAR SPRING:GROUND	28480 28480 00000	7122-0058 03311-00202 080
	0590-0025 2360-0119	1 1	SLIDE LOCK SAFETY BRACKET BRACKET LOCK NUT BRACKET SCREW	28480 28480 00000	1600-0429 0590-0025 OBD
				,	
		See intro	duction to this section for ordering informatio	n	

Section VII

ASSEMBLY REFERENCE DESIGNATIO ASSEMBLY PART NUMBER (INCLUDES AZAI SUBASSEMBLY) ASSEMBLY ~~~~ A2 POWER SUPPLY (OOXXX-6650I) JACK XA2 IS MOUNTED ON CHASSIS OR ANOTHER ASSEMBLY PLUG PI IS MOUNTED ON ASSEMBLY OR IS PART FOR THE ASSEMBLY BOARD (COMPLETE DESIGNATOR IS A2PI) DENOTES SIGNAL CONNECTION TEST VOLTAGE R3 PI IS NOT MOUNTED ON A2 ASSEMBLY (COMPLETE DESIGNATOR IS PI) PI\ +2.921 QI R4 COMPLETE DESIGNATOR IS A2R4 ١, DENOTES SCHEMATIC ON WHICH CONNECTION IS MADE SUBASSEMBLY OF A2 (COMPLETE DESIGNATOR IS A2AI) AI NUMBER INDICATES 6. MALE STANDOFF PIN CONNECTOR MAY OR MAY NOT BE NUMBERED Ł WIRE COLOR: COLOR CODE IS THE SAME AS THE RESISTOR COLOR CODE. FIRST WIREER INDICATES BASE COLOR, SECOND WHE THIRD INDICATES THE NARROWER THE THIRD INDICATES THE NARROWER STRIP. 1924, DENOTES WHITRED/YEL WIRE) ₹R2 RI MALE PIN NNECTOR WHT/RED FEMALE ON WIRE E CONTRACTOR 5. 19 Ī PARTIAL REFERENCE DESIGNATIONS ARE SHOWN: PREFIX WITH ASSEMBLY OR SUBASSEMBLY DESIGNATION(S) OR BOTH FOR COMPLETE DESIGNATION STD-8-2192

Model 3311A

1)

7-0

L#

. . . .

-7

1

Section VII

SECTION VII CIRCUIT DIAGRAMS

7-1. INTRODUCTION.

7-2. This section of the Operating and Service Manual contains troubleshooting information and circuit diagrams for the Model 3311A Function Generator.

7-3. TROUBLESHOOTING.

7.4. This troubleshooting procedure contains: (1) a method of localizing the malfunction to a particular section of the Model 3311A and (2) troubleshooting trees which pinpoint the specific circuit or source of the trouble.

7-5. To localize the trouble to a particular section of the instrument select the symptom (a-e listed in Paragraph 7-9) which defines how your instrument is operating. Then, using the waveforms and voltages given in the schematic diagram for that section, localize the trouble. If more specific help is required, use the troubleshooting trees.

7-6. Troubleshooting Trees.

7-7. Table 7-1 lists the troubleshooting trees for the Model 3311A.

Table 7-1. Troubleshooting Trees.

Figure	Troubleshooting Tree				
7-1	No. 1, Sine, Square, or Triangle Function Defective				
7-2	No. 2, Pulse Defective				
7-3	No. 3, Power Supplies Defective				

7-8. Localizing the Malfunction Using Front Panel Checks.

7-9. While monitoring the 600Ω OUTPUT, check each function and frequency range. Also check the PULSE

OUTPUT. Note the defective functions and/or frequency ranges. From the list below (steps a through e) select the symptoms your instrument exhibits. Go to the schematic indicated and isolate the trouble using waveforms and voltages shown there.

a. 600Ω OUTPUT sine, square, and triangle functions defective but pulse output is correct-troubleshoot the output amplifier (Schematic No. 1).

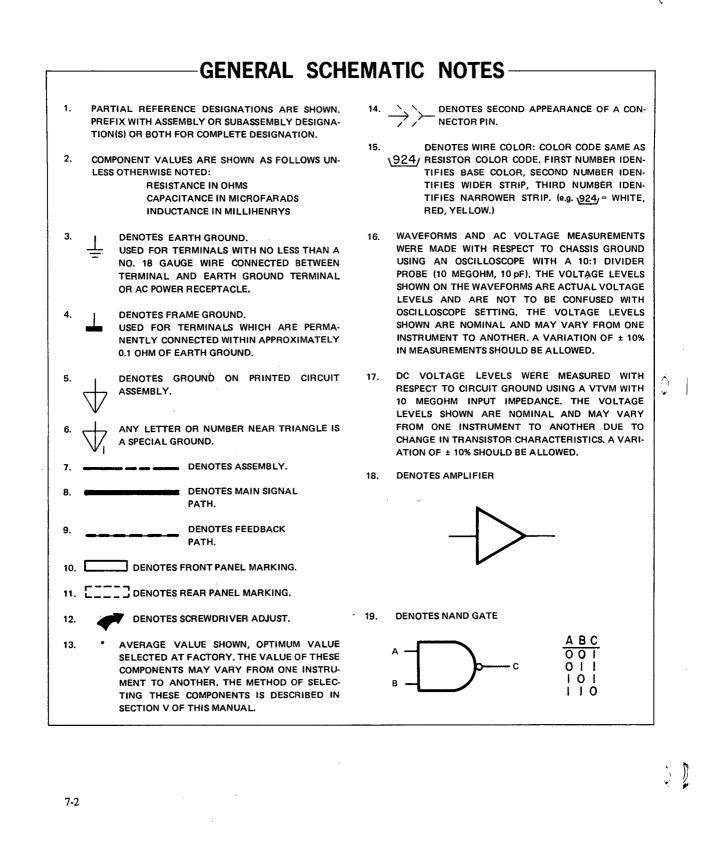
b. 600Ω OUTPUT sine function defective but triangle, square and pulse outputs correct-troubleshoot the sine shaper (Schematic No. 1).

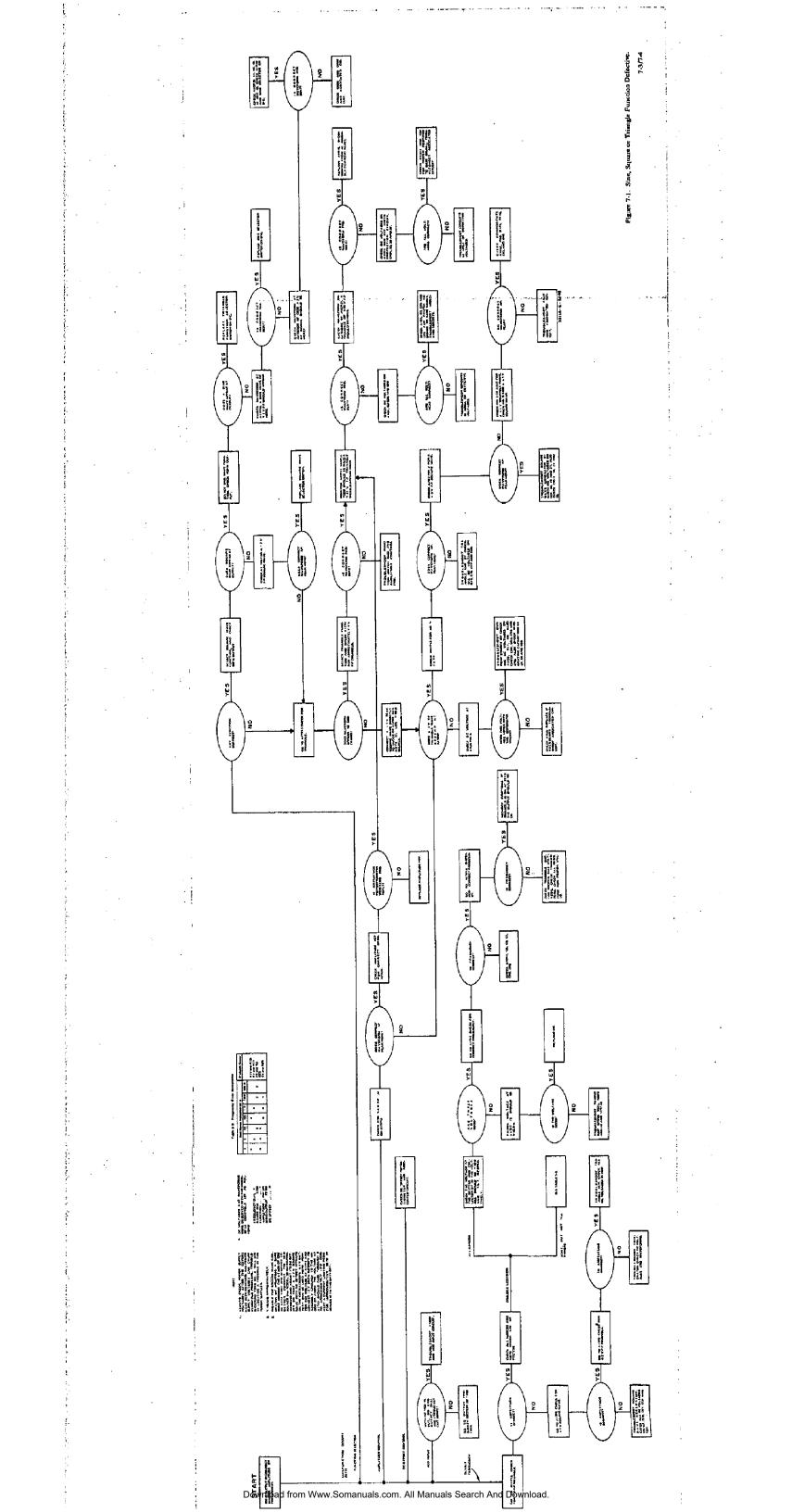
c. PULSE OUTPUT function defective but 600Ω OUT-PUT square wave correct-troubleshoot the pulse generator (Schematic No. 1).

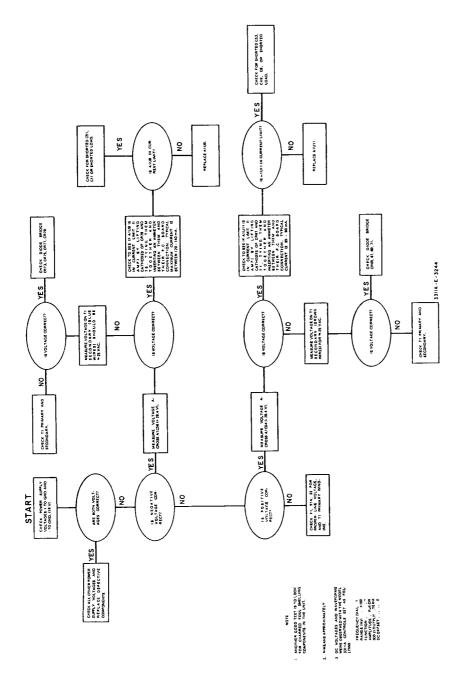
d. If outputs are present on all functions but frequency is incorrect-troubleshoot the tuning amplifier and integrator (Schematic No. 1).

e. If no output exists check the power supply voltage (Schematic No. 2). If the power supply voltages are good the malfunction could exist in the tuning amplifier, integrator, triangle amplifier or square wave generator. It may be necessary to use the troubleshooting trees to localize this type of problem.

NOTE


After the bottom cover of the instrument has been removed check for burned or loose components or any other condition which might be the source of trouble.

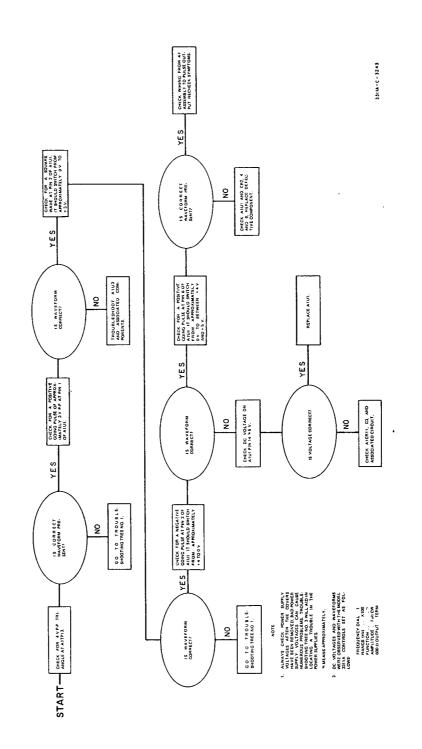

7-1



Section VII

Model 3311A

7

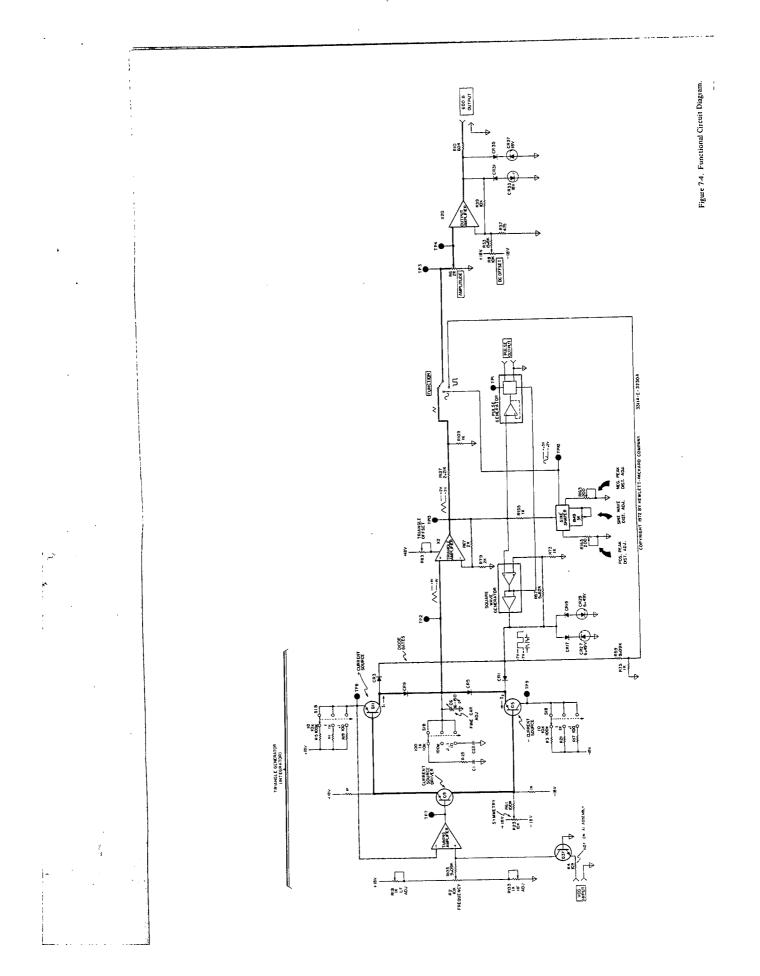

.

đ

\$

Download from Www.Somanuals.com. All Manuals Search And Download.

Contraction of the local sector of the local s

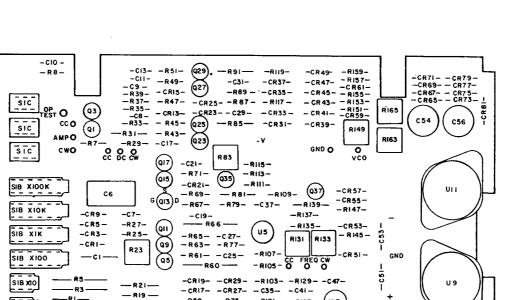

Figure 7-3. Pulse Defective. 7-7/7-8

Download from Www.Somanuals.com. All Manuals Search And Download.

,

• • •

. -



Download from Www.Somanuals.com. All Manuals Search And Download.

ł

ł

1

-R59 - - R75 - - RIQI - - RI27-

(031)

C 2 3

 $\begin{array}{c} -R73 - -R99 - -R125 - \\ \hline 033 & -R97 - -C39 - \\ \hline -R97 - -C39 - \\ \hline 033 & -R97 - -R123 - \\ \hline 033 & -R97 - \\ \hline 033 & -R9$

- R93-

07

-- R167 --

3311A-8-3228

op O

TEST

- C 49 -

-R97- -C39- -C45--C46-

-R95- - R123- - R143- - CR63--C33- - R121- - R141-

C43

AI hp Part No. 03311-66501-2 Rev.A

- 857 -(21)

-R55-

(19)

R 41 ----

-RI-

UI

- 63 -

-CR4- -CR6-

03 - CR2 -

-R17-

-RI5-

- 813-

-- R 12 --

- RII-

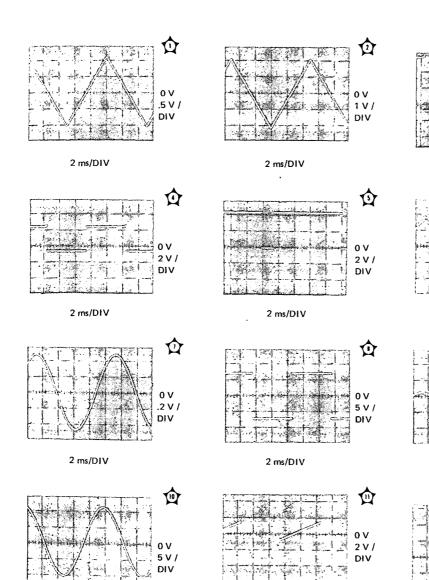
-R9-

- c 5 - ci5-

SIB XI

- 1 -

S I A


7-10

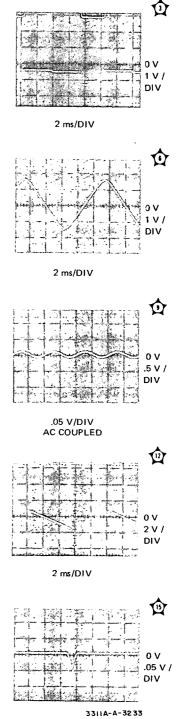
Download from Www.Somanuals.com. All Manuals Search And Download.


0

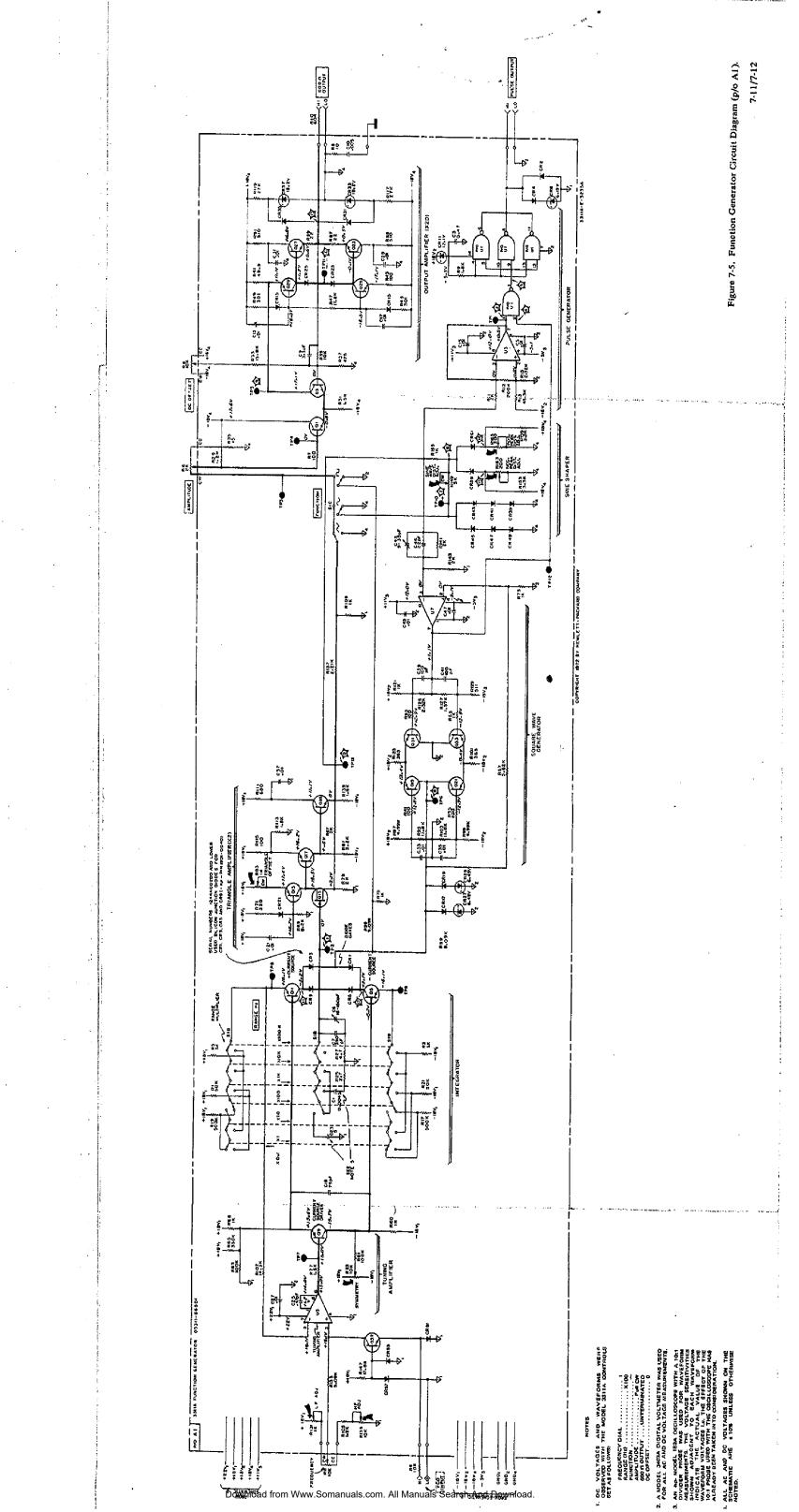
ç

0

2 ms/DIV



2 ms/DIV



2 ms/DIV AC COUPLED

ł,

2 ms/DIV AC COUPLED

Ó 1 DITAMBHOR OT -+18VI -+18V2 +224 + 1814 GND I GND 2 GND 4 - 18V2 - 5/3 - 1874 - 184 :+!!V3 1 ₩ • • COPYRIGHT 1972 BY HEWLETT-PACKARD COMPANY 3311A-C-3231A 50 Å ₽ CRé3 6.I9V +18±.9V C055 **RI57** 2 -18±•9V 5 2 2 2 2 CR51 Ð CR53 3.92V +22.01 €51 •05 -<u>6</u>53-0 18 v Regulator Ut I - IBV Regulator 220 220 C 56 80 +28.41 •7VAC Ripple CR75 **CR67** . 53 VAC Ripple ŝ R65 R73 CR65 25VAC CR71 25VAC ୢୄ ÷ Ę 1 200 NOTE INSTRUMENT IS SHOWN WITH IZOV LINE SELECTED ŝ 9 ો ł C LINE SELECTOR S2 ŧ SIA LINE مر (<u>18)</u> ر † cl † 005 •125A 6 •005 3 A washoofi kako GCLIGGEF WITH A D. DUIGEN PROLE WAS GCLIGGEFE WITH A D. MEASUREKKIT. THE VULCE RESURVITIES SHOWN DAACENT TO EACH WAVEFORM INDICATE THE ACTUAL VALUE OF THE WAVEFORM VOLTAGES I. THE FFFETO F THE WAVEFORM VOLTAGES I. THE FFFETO F THE LIGHT PROLE USED FOR THE THE OUT PROLE VIEW ALTELAT FEEN TAKEN HITO CONSIDERATION. 1. DC VOLTAGES AND WAVEFORMS WERE OBSERVED WITH THE MODEL 3311A CONTROLS SET AS FOLLOWS: 2. A MODEL 3403A DIGITAL VOLTMETER WAS USED FOR ALL AC AND DC VOLTAGE MEASUREMENTS. ALL AC AND DC VOLTAGES SHOWN ON THE SCHEMATIC ARE # 10% UNLESS OTHERWISE NOTED. 68) Ð \$(Q P ç q Ŷ NOTES ≩(δ Æ

PO AL 3311A FUNCTION GENERATOR 03311-66501

ļ

Figure 7-6. Power Supply Circuit Diagram (p/o A1). 7-13/7-14 Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com