

Agilent 75000 SERIES C

Agilent E1445A Arbitrary Function Generator

Service Manual

Serial Numbers

This manual applies directly to instruments with serial numbers prefixed with 3144A.

Copyright© Agilent Technologies, Inc. 1992-2005

Manual Part Number: E1445-90011

Printed: November 2005 Edition 2 Printed in U.S.A. E1105

Download from Www.Somanuals.com. All Manuals Search And Download.

Contents

Chapter 1 - General Information

Introduction
Safety Considerations
Warnings and Cautions 10
Inspection/Shipping 12
Initial Inspection
Shipping Guidelines
Environment
AFG Description
AFG Specifications
AFG Options
AFG Serial Numbers 14
Recommended Test Equipment

Chapter 2 - Verification Tests

Introduction
Test Conditions/Procedures
Performance Test Record
Verification Test Examples
Command Coupling
Functional Verification
Self-Test
Ref In/Marker Out Test 20
Start Arm In Test 21
Start Arm In Test (cont'd) 22
Gate In Test
Output Relay Test
Operation Verification
Performance Verification
Test 2-1: DC Zeros
Test 2-2: DC Accuracy
Test 2-3: DC Offset
Test 2-4: AC Accuracy
Test 2-5: AC Flatness - 250 kHz Filter 49
Test 2-6: AC Flatness - 10 MHz Filter 52
Test 2-7: Frequency Accuracy 56
Test 2-8: Duty Cycle 60
Test 2-9: Total Harmonic Distortion 64
Test 2-10: Spurious/Non-Harmonic Distortion 69
Performance Test Record
AFG Test Limits
Measurement Uncertainty
Test Accuracy Ratio (TAR) 74

Chapter 3 - Adjustments

Introduction	33 33 83
Calibration Commands	83
Defeating Calibration Security	86
DC Adjustment Procedure	87
AC Flatness Adjustment Procedure - 250 kHz Filter	93
AC Flatness Adjustment Procedure - 10 MHz Filter	94
Skew DAC Adjustment Procedure	109

Chapter 4 - Replaceable Parts

Introduction	117
Exchange Assemblies	117
Ordering Information	117
Replaceable Parts List	117

Chapter 5 - Service

Introduction	121
Equipment Required	121
Service Aids	121
Troubleshooting Techniques	122
Identifying the Problem	122
Testing the Assembly	122
Disassembly	123
Removing BNC Connectors	124
Repair/Maintenance Guidelines	125
ESD Precautions	125
Soldering Printed Circuit Boards	125
Post-Repair Safety Checks	125

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

This Agilent Technologies product is warranted against defects in materials and workmanship for a period of three years from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other Agilent products. During the warranty period, Agilent Technologies will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent and Agilent shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent from another country.

Agilent warrants that its software and firmware designated by Agilent for use with a product will execute its programming instructions when properly installed on that product. Agilent does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

Limitation Of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. Agilent does not warrant the Buyer's circuitry or malfunctions of Agilent products that result from the Buyer's circuitry. In addition, Agilent does not warrant any damage that occurs as a result of the Buyer's circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. Agilent SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. Agilent SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Notice

The information contained in this document is subject to change without notice. Agilent Technologies MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Agilent Technologies, Inc. Agilent assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Agilent.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial computer software" as defined in DFARS 252.227-7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product involved.

Agilent E1445A Arbitrary Function Generator Service Manual Edition 2

Copyright © 1992-2005 Agilent Technologies, Inc. All Rights Reserved.

Printing History

The Printing History shown below lists all Editions and Updates of this manual and the printing date(s). The first printing of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct the current Edition of the manual. Updates are numbered sequentially starting with Update 1. When a new Edition is created, it contains all the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this printing history page. Many product updates or revisions do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual updates.

Edition 1 (Part Number E1445-90010)	September 1992
Edition 2 (Part Number E1445-90011).	September 1996

Safety Symbols

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer's Name:	Agilent Technologies, Incorporated
Manufacturer's Address:	815 – 14 th St. SW
	Loveland, Colorado 80537
	USA

Declares, that the product

Product Name:	Arbitrary Function Generator		
Model Number:	E1445Å		
Product Options:	This declaration covers all options of the above product(s).		

Conforms with the following European Directives:

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC (including 93/68/EEC) and carries the CE Marking accordingly.

Conforms with the following product standards:

EMC	Standard	Limit
	IEC 61326-1:1997+A1:1998 / EN 61326-1:1997+A1:1998	
	CISPR 11:1990 / EN 55011:1991	Group 1 Class A
	IEC 61000-4-2:1995+A1:1998 / EN 61000-4-2:1995	4kV CD, 8kV AD
	IEC 61000-4-3:1995 / EN 61000-4-3:1995	3 V/m, 80-1000 MHz
	IEC 61000-4-4:1995 / EN 61000-4-4:1995	0.5kV signal lines, 1kV power lines
	IEC 61000-4-5:1995 / EN 61000-4-5:1995	0.5 kV line-line, 1 kV line-ground
	IEC 61000-4-6:1996 / EN 61000-4-6:1996	3V, 0.15-80 MHz I cycle, 100%
	IEC 61000-4-11:1994 / EN 61000-4-11:1994	Dips: 30% 10ms; 60% 100ms Interrupt > 95% @5000ms
	Canada: ICES-001:1998	
	Australia/New Zealand: AS/NZS 2064.1	
	The product was tested in a typical configuration with Agilent T	echnologies test systems.
Safety	IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:1995 Canada: CSA C22.2 No. 1010.1:1992 UL 3111-1: 1994	

1 June 2001

Date

Ray Corson Product Regulations Program Manager

For further information, please contact your local Agilent Technologies sales office, agent or distributor. Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Strabe 130, D 71034 Böblingen, Germany

Download from Www.Somanuals.com. All Manuals Search And Download.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1 General Information

Introduction

This manual contains information required to test, troubleshoot, and repair the Agilent E1445A C-Size VXI Arbitrary Function Generator (AFG). See the *Agilent E1445A User's Manual* for additional information. Figure 1-1 shows the Agilent E1445A. This chapter includes the following sections:

- Introduction
- Safety Considerations
- Inspection/Shipping
- Environment
- AFG Description
- Recommended Test Equipment

Safety Considerations	This product is a Safety Class I instrument that is provided with a protective earth terminal when installed in the mainframe. The mainframe, AFG, and all related documentation should be reviewed for familiarization with safety markings and instructions before operation or service.
	Refer to the WARNINGS page (page 4) in this manual for a summary of safety information. Safety information for preventive maintenance, testing, and service follows and is also found throughout this manual.
Warnings and Cautions	This section contains WARNINGS which must be followed for your protection and CAUTIONS which must be followed to avoid damage to the equipment when performing instrument maintenance or repair.
WARNING	SERVICE-TRAINED PERSONNEL ONLY. The information in this manual is for service-trained personnel who are familiar with electronic circuitry and are aware of the hazards involved. To avoid personal injury or damage to the instrument, do not perform procedures in this manual or do any servicing unless you are qualified to do so.
	CHECK MAINFRAME POWER SETTINGS. Before applying power, verify that the mainframe setting matches the line voltage and that the correct fuse is installed. An uninterruptible safety earth ground must be provided from the main power source to the supplied power cord set.
	GROUNDING REQUIREMENTS. Interruption of the protective (grounding) conductor (inside or outside the mainframe) or disconnecting the protective earth terminal will cause a potential shock hazard that could result in personal injury. (Grounding one conductor of a two-conductor outlet is not sufficient protection.)
	IMPAIRED PROTECTION. Whenever it is likely that instrument protection has been impaired, the mainframe must be made inoperative and be secured against any unintended operation.
	REMOVE POWER IF POSSIBLE. Some procedures in this manual may be performed with power supplied to the mainframe while protective covers are removed. Energy available at many points may, if contacted, result in personal injury. (If maintenance can be performed without power applied, the power should be removed.)

USING AUTOTRANSFORMERS. If the mainframe is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to neutral (that is, the grounded side of the main's supply).
CAPACITOR VOLTAGES. Capacitors inside the mainframe may remain charged even when the mainframe has been disconnected from its source of supply.
USE PROPER FUSES. For continued protection against fire hazard, replace the line fuses only with fuses of the same current rating and type (such as normal blow, time delay, etc.). Do not use repaired fuses or short-circuited fuseholders.
Static electricity is a major cause of component failure. To prevent damage to the electrical components in the AFG, observe anti-static techniques whenever working on the AFG.

Inspection/ Shipping

Initial Inspection

This section describes initial (incoming) inspection and shipping guidelines for the AFG.

Use the steps in Figure 1-2 as guidelines to perform initial inspection of the AFG.

WARNING

To avoid possible hazardous electrical shock, do not perform electrical tests if there are signs of shipping damage to the shipping container or to the instrument.

Figure 1-2. Initial (Incoming) Inspection Guidelines

12 General Information

Shipping Guidelines

Follow the steps in Figure 1-3 to return the AFG to an Agilent Technologies Sales and Support Office or Service Center.

* We recommend that you use the same shipping materials as those used in factory packaging (available from Agilent Technologies). For other (commercially-available) shipping materials, use a double-wall carton with minimum 2.4 MPa (350 psi) test.

Environment

The recommended operating environment for the Agilent E1445A AFG is:

Environment	Temperature	Humidity
Operating	0°C to +55°C	<65% relative (0°C to +40°C)
Storage and Shipment	-40°C to +75°C	<65% relative (0°C to +40°C)

AFG Description	The Agilent E1445A Arbitrary Function Generator is a VXIbus C-size, message-based instrument. The AFG can operate in a C-size VXIbus mainframe using an Agilent E1405/E1406 Command Module and Standard Commands for Programmable Instruments (SCPI). The AFG has 13 bits of resolution (including sign). It uses a sequencer architecture, with 256K points of Segment storage and 32K points of
	Sequence storage. The AFG has two internal timebases, 40 MHz and (approximately) 42.9 MHz.
AFG Specifications	AFG specifications are listed in Appendix A of the <i>Agilent E1445A User's Manual</i> . These specifications are the performance standards or limits against which the instrument may be tested.
AFG Options	Arbitrary Waveform Generation Software for HP 9000 Series 300 computers can be ordered as Option 005.
AFG Serial Numbers	Figure 1-4 shows Agilent Technologies' serial number structure. AFG's covered by this manual are identified by a serial number prefix listed on the title page.
	Agilent Serial Numbers

14 General Information

Recommended Test Equipment

Table 1-1 lists the test equipment recommended for testing, adjusting, and servicing the AFG. Essential requirements for each piece of test equipment are described in the Requirements column.

Table 1-1. Recommended Test Equipment

Instrument	Requirements	Recommended Model	Use*
Controller, GP-IB	GP-IB compatibility as defined by IEEE Standard 488-1988 and the identical ANSI Standard MC1.1: SH1, AH1, T2, TE0, L2, LE0, SR0, RL0, PP0, DC0, DT0, and C1, 2, 3, 4, 5.	HP 9000 Series 300 or IBM Compatible PC with HP BASIC	F,O,P, A,T
Mainframe	Compatible with AFG	Agilent E1401B/T or E1421B	F,O,P, A,T
Command Module	10 MHz Clk Out TTL compatible Trig Out	Agilent E1405B or Agilent E1406A	F,O,P, A,T
Digital Multimeter	DCV, ACV, 4-wire ohms w/offset comp	Agilent 3458A	O,P,A
Power Meter	Frequency Range: 400 kHz - 10.8 MHz	Agilent 8902A	O,P,A
Power Sensor	Frequency Range: 400 kHz - 10.8 MHz	Agilent 11722A	O,P,A
Counter	Frequency Range: 100 Hz - 45 MHz	Agilent 5334A/B	O,P
Spectrum Analyzer	Frequency Range: 100 kHz - 150 MHz	Agilent 8566B	O,P,A
Oscilloscope	General Purpose Bandwidth: 20 MHz	Agilent 54111D	F
50 Ω feed-thru termination	50 ±0.10 Ω	Agilent 11048C	O,P,A

 * F = Functional Verification, O = Operation Verification Tests, P = Performance Verification Tests, A = Adjustments, T = Troubleshooting

Chapter 2 Verification Tests

Introduction	The three levels of test procedures described in this chapter are used to verify that the Agilent E1445A:
	 is fully functional (Functional Verification) meets selected testable specifications (Operation Verification) meets all testable specifications (Performance Verification)
WARNING	Do not perform any of the following verification tests unless you are a qualified, service-trained technician and have read the WARNINGS and CAUTIONS in Chapter 1.
Test Conditions/ Procedures	See Table 1-1 for test equipment requirements. You should complete the Performance Verification tests at least once a year. For heavy use or severe operating environments, perform the tests more often.
	Before performing these tests, allow the AFG to warm up for at least one hour. The temperature should be within $\pm 5^{\circ}$ C of T _{cal} (the temperature of the most recent calibration), and between 18°C and 28°C.
	The verification tests assume that the person performing the tests understands how to operate the mainframe, the AFG, and specified test equipment. The test procedures do not specify equipment settings for test equipment, except in general terms. It is assumed that a qualified, service-trained technician will select and connect the cables, adapters, and probes required for the test.
Performance Test Record	The results of each Performance Verification test may be recorded in Table 2-11, <i>Agilent E1445A Performance Test Record</i> . This form can be copied.
Verification Test Examples	Each verification test procedure includes an example program that performs the test. All example programs assume the following configuration:
	 Controller is an HP 9000 Series 200/300 computer Programming language is HP BASIC AFG address is 70910

Command Coupling	Many of the AFG SCPI commands are value-coupled. In order to prevent "Settings Conflict" errors, coupled commands must be sent contiguously by placing them in the same program line, or by suppressing the end-of-line terminator. (For more information on command coupling and syntax, see Chapter 1 of the <i>Agilent E1445A User's Manual</i>). In HP BASIC, the end-of-line terminator can be suppressed by linking the commands with a semi-colon (;) and a colon (:), as illustrated below: ROSC:SOUR INT1; :TRIG:SOUR INT1
	In the Example programs, these commands would appear as follows:
	OUTPUT 70910;"ROSC:SOUR:INT1;"; OUTPUT 70910;":TRIG:SOUR:INT1"
Functional Verification	The purpose of these tests is to verify that the AFG is functioning properly and that all front panel inputs and outputs are working. No attempt is made to verify that the AFG is meeting specifications. Functional Verification for the AFG includes the following tests:
	 Self-Test Ref In/Marker Out Test Start Arm In Test Gate In Test Output Relay Test
NOTE	For a quick functional check of the AFG, perform only the Self-Test.
	An example program that performs all of the Functional Verification tests is included at the end of this section. An Agilent E1405/E1406 Command Module is required for this program.
NOTE	Some of the tests use the "TRIG OUT" port of the Command Module. This port uses negative logic, i.e., the high voltage is a logical 0 and the low voltage is a logical 1.

Description

The AFG self-test performs the following internal checks:

- internal interrupt lines
- waveform select RAM
- segment sequence RAM
- waveform segment RAM
- DDS/NCO operation
- sine wave generation
- arbitrary waveform generation
- marker generation
- waveform cycle and arm counters
- sweep timer
- frequency-shift keying
- stop trigger
- DC analog parameters (amplitude, offset, attenuators, filters, calibration DACs)

Test Procedure

- 1. Remove any connections to the AFG front panel.
- 2. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

3. Execute the AFG self-test:

*TST?

Self-test command

4. Read the result. A "0" indicates that the test passed. A "1" indicates a failure. Read the error queue using the SYST:ERR? command until the error message is "No error".

Functional Verification: Ref In/Marker Out Test

Description

The purpose of this test is to check the Ref/Sample In and Marker Out ports. An external reference is connected to the Ref/Sample In port and sent to the Marker Out port.

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set up equipment as shown in Figure 2-1:

3. Set up the AFG to output the external reference to the "Marker Out" port:

ROSC:SOUR EXT MARK:FEED "ROSC" INIT:IMM External ref oscillator Marker source is ROSC Initiate

4. Verify that the scope shows a 10 MHz squarewave.

Functional Verification: Start Arm In Test

Description

The purpose of this test is to check the Start Arm In port. The "TRIG OUT" port of the Command Module is used to send a Start Arm signal to the AFG.

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set up equipment as shown in Figure 2-2:

Figure 2-2. Start Arm In Test Setup

3. Send the following commands to the Command Module to output 0 V to the "Trig Out" port:

*RST OUTP:EXT:STAT ON OUTP:EXT:SOUR INT OUTP:EXT:LEV 1

Functional Verification: Start Arm In Test (cont'd)

Test Procedure (cont'd)

4. Set up the AFG to output a 1 MHz sinewave, with an external Start Arm source:

FREQ 1E6; :VOLT 4VPP ARM:LAY2:SOUR EXT

INIT:IMM

Set freq to 1 MHz Set AFG amplitude External Start Arm source Initiate

5. Verify that no signal appears on the scope. Send the following command to the Command Module to provide a Start Arm signal to the AFG:

OUTP:EXT:LEV 0

6. Verify that a 1 MHz sinewave appears on the scope.

Functional Verification: Gate In Test

Description

The purpose of this test is to check the gating function. The "TRIG OUT" port of the Command Module is used to gate the output.

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set up the equipment as shown in Figure 2-3.

Figure 2-3. Gate In Test Setup

3. Send the following commands to the Command Module to enable the "Trig Out" port:

*RST OUTP:EXT:STAT ON OUTP:EXT:SOUR INT Test Procedure (cont'd)

4. Set up the AFG to output a 1 MHz sinewave with an external gate source:

TRIG:GATE:SOUR EXT; :TRIG:GATE:STAT ON; :FREQ 1E6; :VOLT 4VPP INIT:IMM External gate source Enable gate Set freq to 1 MHz Set AFG amplitude Initiate

5. Send the following command to the Command Module to set the level at the "Trig Out" port to 5 V. Verify that the scope shows a 1 MHz sinewave.

OUTP:EXT:LEV 0

6. Send the following command to the Command Module to set the level at the "Trig Out" port to 0 V. Verify that the scope shows a DC signal.

OUTP:EXT:LEV 1

Functional Verification: Output Relay Test

Description

The purpose of this test is to check the output relay.

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set up equipment as shown in Figure 2-4:

Figure 2-4. Output Relay Test Setup

3. Set up the AFG to output a 1 MHz sinewave:

FREQ 1E6;	Set freq to 1 MHz
:VOLT 4VPP	Set AFG amplitude
INIT:IMM	Initiate

- 4. Verify that a 1 MHz sinewave appears on the scope.
- 5. Disable the Output relay:

OUTP OFF

6. Verify that no signal appears on the scope.

Example Program

This program performs the Functional Verification Tests for the AFG. An Agilent E1405/E1406 Command Module is required for this test.

10! RE-STORE "FUNC_TEST" 20 COM @Afg,@Cmd_mod,INTEGER Done 30 ! 40 !----- Set up I/O paths ------50 ASSIGN @Afg TO 70910 60 ASSIGN @Cmd_mod TO 70900 70 ! 80 !------ Initialize AFG & Command Module ------90 Reset_afg 100 ! 110 !Set up Command Module 'TRIG OUT' port 120 OUTPUT @Cmd_mod;"*RST" 130 OUTPUT @Cmd_mod;"OUTP:EXT:STAT ON" 140 OUTPUT @Cmd_mod;"OUTP:EXT:SOUR INT" 150 ! 160 !----- Perform tests ------170 CLEAR SCREEN 180 PRINT "Agilent E1445A FUNCTIONAL VERIFICATION TESTS" 190 PRINT 200 ! 210 !Oscilloscope settings 220 PRINT "Set scope to: 2 V/div, .02 usec/div" 230 PRINT 240 Wait_for_cont 250 ! !Self-Test 260 CALL Self_test 270 CALL Ref_in !Ref In/Marker Out Test 280 ! 290 !Oscilloscope settings 300 CLEAR SCREEN 310 PRINT "Set scope to: 2 V/div, .2 usec/div" 320 PRINT 330 Wait_for_cont 340 ! **!Start Arm In Test** 350 CALL Start_arm 360 CALL Gate_in !Gate In Test 370 CALL Output_relay **!Output Relay Test** 380 ! 390 Quit: ! 400 Reset_afg 410 CLEAR SCREEN 420 DISP "Functional Tests completed." 430 END

Example Program (cont'd)

450	! Subprograms	
460	SUB Reset_afg	
470	COM @Afg,@Cmd_mod,INTEGER Done	
480	OUTPUT @Afg;"*RST;*CLS"	Reset AFG and clear Status register
490	WAIT 1	
500	SUBEND	
510	!	
520	SUB Self_test	
530	COM @Afg,@Cmd_mod,INTEGER Done	
540	DIM Message\$[255]	
550	!	
560	Reset_afg	
570	!	
580	CLEAR SCREEN	
590	PRINT "SELF-TEST"	
600	PRINT	
610	!	
620	!Test connections	
630	PRINT "Remove any connections from the E1445A from	it panel."
640	PRINT "Press 'Continue' to initiate Self-Test."	
650	PRINT	
660	Wait_for_cont	
670	!	
680	!Perform test	
690	OUTPUT @Afg;"*TST?"	!Self-test command
700	ENTER @Afg;Result	!Get result
710	!	
720	IF Result=0 THEN	
730	PRINT "Self-test passed."	
740	ELSE	
750	PRINT "Self-test failed."	
760	PRINT "The following error(s) occurred:"	
770	REPEAT	
780	OUTPUT @Afg;"SYST:ERR?"	!Check for errors
790	ENTER @Afg;Message\$	
800	PRINT " "&Message\$	
810	UNTIL POS(Message\$,"No error")	
820	END IF	
830	Wait_for_cont	
840	SUBEND	
850	!	
860	SUB Ref_in	
870	COM @Afg,@Cmd_mod,INTEGER Done	
880	!	

Example Program (cont'd)

890	Reset_afg	
900	!	
910	CLEAR SCREEN	
920	PRINT "REF IN/MARKER OUT TEST"	
930	PRINT	
940	!	
950	!Test connections	
960	PRINT "Connect Scope to 'Marker Out' on the E1445A.	"
970	PRINT "Connect Command Module 'Clk Out' to 'Ref/Sa	imple In' on the E1445A."
980	PRINT	
990	Wait_for_cont	
1000	!	
1010	!Perform test	
1020	OUTPUT @Afg;"ROSC:SOUR EXT"	External ref osc source
1030	OUTPUT @Afg;"MARK:FEED ""ROSC"""	!Marker source is 'ROSC'
1040	OUTPUT @Afg;"INIT:IMM"	!Initiate
1050	!	
1060	PRINT "Verify that the scope shows a 10 MHz squarev	vave."
1070	Wait_for_cont	
1080	SUBEND	
1090	!	
1100	SUB Start_arm	
1110	COM @Afg,@Cmd_mod,INTEGER Done	
1120	!	
1130	Reset_afg	
1140	!	
1150	CLEAR SCREEN	
1160	PRINT "START ARM TEST"	
1170	PRINT	
1180	!	
1190	!Test connections	
1200	PRINT "Connect Scope to the E1445A Output."	
1210	PRINT "Connect Command Module 'Trig Out' to 'Start	Arm In' on the E1445A."
1220	PRINT	
1230	Wait_for_cont	
1240	!	
1250	Set Command Module's 'TRIG OUT' to 0V (E1405 use	es neg logic)
1260	OUTPUT @Cmd_mod;"OUTP:EXT:LEV 1"	
1270	!	
1280	!Perform test	
1290	OUTPUT @Afg;"FREQ 1E6;";	!Set freq to 1 MHz
1300	OUTPUT @Afg;":VOLT 4VPP"	!Set amplitude
1310	OUTPUT @Afg;"ARM:LAY2:SOUR EXT"	Start Arm source is EXT
1320	OUTPUT @Afg;"INIT:IMM"	Initiate
1330	!	

Example Program (cont'd)

1340	PRINT "Verify that no signal appears on the scope."	
1350	PRINT "Press 'Continue' to send a START ARM."	
1360	PRINT	
1370	Wait for cont	
1380	!	
1390	Set 'TRIG OUT' to 5V	
1400	OUTPUT @Cmd mod:"OUTP:EXT:LEV 0"	
1410	!	
1420	PRINT "Verify that the scope shows a 1 MHz sinewa	ve."
1430	Wait for cont	
1440	SUBEND	
1450	!	
1460	SUB Gate_in	
1470	COM @Afg,@Cmd_mod,INTEGER Done	
1480	!	
1490	Reset_afg	
1500	!	
1510	CLEAR SCREEN	
1520	PRINT "GATE IN TEST"	
1530	PRINT	
1540	!	
1550	!Test connections	
1560	PRINT "Connect Scope to the E1445A Output."	
1570	PRINT "Connect Command Module 'Trig Out' to 'Sto	p Trig/FSK/Gate In' on the E1445A."
1580	PRINT	
1590	Wait_for_cont	
1600	!	
1610	!Perform test	
1620	OUTPUT @Afg;"TRIG:GATE:SOUR EXT;";	!Gate source is EXT
1630	OUTPUT @Afg;":TRIG:GATE:STAT ON;";	!Enable gate
1640	OUTPUT @Afg;":FREQ 1E6;";	Set freq to 1 MHz
1650	OUTPUT @Afg;":VOLT 4VPP"	!Set amplitude
1660	OUTPUT @Afg;"INIT:IMM"	Initiate
1670	!	
1680	PRINT "Verify that the signal displayed on the scope	toggles between"
1690	PRINT "a 1 MHz sinewave and a DC signal at 1 second	ond intervals."
1700	!	
1710	ON KBD ALL CALL Key_press	
1720	DISP "Press any key to continue"	
1730	!	
1740		
1750	Send pulses to 'TRIG OUT' BNC until a key is press	ed

Example Program (cont'd)

1760 REPEAT 1770 OUTPUT @Cmd_mod;"OUTP:EXT:LEV 1" 1780 WAIT 1 1790 OUTPUT @Cmd_mod;"OUTP:EXT:LEV 0" 1800 WAIT 1 1810 UNTIL Done 1820 OFF KBD 1830 SUBEND 1840 ! 1850 SUB Output_relay 1860 COM @Afg,@Cmd_mod,INTEGER Done 1870 ! 1880 Reset_afg 1890 ! 1900 CLEAR SCREEN 1910 PRINT "OUTPUT RELAY TEST" 1920 PRINT 1930 ! 1940 !Test connections 1950 PRINT "Connect Scope to the E1445A Output." 1960 PRINT 1970 Wait_for_cont 1980 ! 1990 !Perform test 2000 OUTPUT @Afg;"FREQ 1E6;"; !Set freq to 1 MHz 2010 OUTPUT @Afg;":VOLT 4VPP" !Set amplitude 2020 OUTPUT @Afg;"INIT:IMM" !Initiate 2030 ! 2040 PRINT "Verify that the scope shows a 1 MHz sinewave." 2050 PRINT "Press 'Continue' to disable the E1445A output." 2060 PRINT 2070 Wait_for_cont 2080 ! 2090 OUTPUT @Afg;"OUTP OFF" !Open Output relay 2100 PRINT "Verify that no signal appears on the scope." 2110 Wait_for_cont 2120 SUBEND 2130 !

Example Program (cont'd)

2140 SUB Key_press 2150 COM @Afg,@Cmd_mod,INTEGER Done 2160 Done=1 2170 DISP 2180 SUBEND 2190 ! 2200 SUB Wait_for_cont 2210 DISP "Press 'Continue' when ready" 2220 PAUSE 2230 DISP 2240 SUBEND

Operation Verification	Op foll	eration Ver ow. For th • DC Ac • AC Ac • Total H	rification is a subset of the Performance of the AFG, Operation Verification consists of curacy curacy Harmonic Distortion	Verification tests that of the following tests:
Performance Verification	The per Use inc. rest Per	e procedure formance u er's Manua oming insp ults of the I formance T formance N	es in this section are used to test the AFG using the specifications in Appendix A of a sthe performance standards. These te pection, troubleshooting, and preventive r Performance Verification tests should be Test Record (Table 2-11). Verification includes the following tests:	Y's electrical f the <i>Agilent E1445A</i> ests are suitable for maintenance. The recorded in the
		Test #	Test Name	
		2-1	DC Zeros	

DC Accuracy

AC Flatness - 250 kHz filter

AC Flatness - 10 MHz filter

Total Harmonic Distortion

Spurious/Non-harmonic Distortion

Frequency Accuracy

DC Offset AC Accuracy

Duty Cycle

2-2

2-3

2-4

2-5

2-6 2-7

2-8

2-9 2-10

Test 2-1: DC Zeros

Description

The purpose of this test is to verify that the AFG meets its specifications for DCV accuracy for an output of zero volts. An arbitrary waveform consisting of zeros is used. The amplitude is varied in order to test each attenuator.

Equipment Setup

- Connect equipment as shown in Figure 2-5
- Set DMM to: DCV, 100 mV range

Figure 2-5. Equipment Setup for Test 2-1 thru Test 2-4

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Delete all sequences and segments from memory:

LIST:SSEQ:DEL:ALL	Delete all sequences
LIST:SEGM:DEL:ALL	Delete all segments

Test Procedure (cont'd)

3. Create a user-defined waveform made up of zeros:

LIST:SEGM:SEL ZEROS LIST:SEGM:DEF 8 LIST:SEGM:VOLT 0,0,0,0,0,0,0

LIST:SSEQ:SEL DC_ZEROS LIST:SSEQ:DEF 1 LIST:SSEQ:SEQ ZEROS Select segment name # of segment points Segment list

Select sequence name # of segments Sequence list

4. Set up the AFG to output the waveform defined above:

ROSC:SOUR CLK10; :VOLT MAX; :OUTP:LOAD INF; :FUNC USER FUNC:USER DC_ZEROS INIT:IMM Select 10 MHz clock Set amplitude Infinite load Select user waveform Select sequence Initiate waveform

Perform steps 5 - 7 for each amplitude listed in Table 2-1:

5. Set the AFG output filter as specified in Table 2-1. Use the appropriate command(s) below:

OUTP:FILT OFF
or
OUTP:FILT:FREQ 250KHZ
OUTP:FILT ON
or
OUTP:FILT:FREQ 10MHZ
OUTP:FILT ON

6. Set the AFG output amplitude:

VOLT <amplitude>

Select 250 kHz filter

Disable filter

Enable filter

Select 10 MHz filter Enable filter

Set amplitude

where *<amplitude>* is the value specified in Table 2-1.

7. Trigger the DMM and record the reading in Table 2-11.
Test 2-1: DC Zeros (cont'd)

Test Procedure (cont'd)

Attenuation	Amplitude	Filter	Test Limits
(dB)	(volts)		(volts)
0 .99 1 2 4 8 13 14 30	10.23750 9.13469 9.12416 8.13192 6.45941 4.07560 2.29187 2.04263 0.32372	None None None None None None None None	$\begin{array}{c} 0 \pm 0.0220 \\ 0 \pm 0.0044 \\ 0 \pm 0.0044 \end{array}$
0	10.23750	250 kHz	$\begin{array}{c} 0 \pm 0.0220 \\ 0 \pm 0.0044 \\ 0 \pm 0.0044 \end{array}$
.99	9.13469	250 kHz	
1	9.12416	250 kHz	
2	8.13192	250 kHz	
4	6.45941	250 kHz	
8	4.07560	250 kHz	
13	2.29187	250 kHz	
14	2.04263	250 kHz	
30	0.32372	250 kHz	
0	10.23750	10 MHz	$\begin{array}{c} 0 \pm 0.0220 \\ 0 \pm 0.0044 \\ 0 \pm 0.0044 \end{array}$
.99	9.13469	10 MHz	
1	9.12416	10 MHz	
2	8.13192	10 MHz	
4	6.45941	10 MHz	
8	4.07560	10 MHz	
13	2.29187	10 MHz	
14	2.04263	10 MHz	
30	0.32372	10 MHz	

Table 2-1. DC Zeros Test Points

Test 2-1: DC Zeros (cont'd)

Example Program

This program performs the DC Zeros test. An arbitrary waveform, consisting of zeros, is used with various amplitudes to test a variety of attenuator and filter combinations.

10! RE-STORE "DC_ZEROS" 20 COM @Afg 30 DIM Attn(1:9),Vout(1:9) 40 ! 50 !----- Set up I/O path and reset AFG ------ASSIGN @Afg TO 70910 60 70 OUTPUT @Afg;"*RST;*CLS" !Reset AFG 80 ! 90 !----- Initialize variables ------100 DATA 0,.99,1,2,4,8,13,14,30 110 READ Attn(*) !Read in attenuations 120 ! 130 DATA 10.2375,9.13469,9.12416,8.13192,6.45941,4.0756 140 DATA 2.29187,2.04263,0.32372 150 READ Vout(*) 160 ! 170 !----- Set up DMM ------180 PRINT "Set up DMM:" 190 PRINT Function -- DCV" 200 PRINT " 210 PRINT " Range -- 100 mV" 220 PRINT 230 PRINT "Connect DMM HI and LO to AFG Output." 240 DISP "Press 'Continue' when ready" 250 PAUSE 260 CLEAR SCREEN 270 ! 280 !----- Set up AFG ------290 OUTPUT @Afg;"*RST" **!Reset AFG** 300 OUTPUT @Afg;"LIST:SSEQ:DEL:ALL" **!Delete all sequences** 310 OUTPUT @Afg;"LIST:SEGM:DEL:ALL" !Delete all segments 320 WAIT .5 330 OUTPUT @Afg;"ROSC:SOUR CLK10;"; 10MHZ clock 340 OUTPUT @Afg;":VOLT MAX;"; !MAX output 350 OUTPUT @Afg;":OUTP:LOAD INF;"; Infinite load 360 OUTPUT @Afg;":FUNC USER" !User waveform 370 ! 380 CALL Def_seq_zeros !Define waveform 390 OUTPUT @Afg;"FUNC:USER DC_ZEROS" !Select sequence 400 OUTPUT @Afg;"INIT:IMM" 410 ! 420 !----- Perform test ------430 PRINT "ATTEN", "FILTER", "AMPLITUDE"

Test 2-1: DC Zeros (cont'd)

Example Program (cont'd)

440	PRINT	
460	FOR Filter=0 TO 2	
470	SELECT Filter	
480	CASE 0	!No filter
490	OUTPUT @Afg;"OUTP:FILT OFF"	
500	Filter\$="NONE"	
510	CASE 1	!250KHZ filter
520	OUTPUT @Afg;"OUTP:FILT:FREQ 250KHZ"	
530	OUTPUT @Afg;"OUTP:FILT ON"	
540	Filter\$="250 kHz"	
550	CASE 2	!10MHZ filter
560	OUTPUT @Afg;"OUTP:FILT:FREQ 10MHZ"	
570	OUTPUT @Afg;"OUTP:FILT ON"	
580	Filter\$="10 MHz"	
590	END SELECT	
600	!	
610	FOR I=1 TO 9	Loop through atten's
620	OUTPUT @Afg;":VOLT "&VAL\$(Vout(I))	!Set AFG amplitude
630	PRINT Attn(I), Filter\$, Vout(I)	
640	!	
650	DISP "Record DMM reading, then press 'Continue'	n
660	PAUSE	
670	DISP	
680	NEXTI	Next attenuation
690	PRINT	
700	NEXT Filter	!Next filter
710	!	
720	OUTPUT @Afg;"*RST;*CLS"	!Reset AFG
730	END	
740	!	
750	SUB Def_seq_zeros	
760	COM @Afg	
770	OUTPUT @Afg;"LIST:SEGM:SEL ZEROS"	!Segment name
780	OUTPUT @Afg;"LIST:SEGM:DEF 8"	!Segment length
790	OUTPUT @Afg;"LIST:SEGM:VOLT 0,0,0,0,0,0,0,0"	!Voltage points
800	!	
810	OUTPUT @Afg;"LIST:SSEQ:SEL DC_ZEROS"	!Sequence name
820	OUTPUT @Afg;"LIST:SSEQ:DEF 1"	!# of segments
830	OUTPUT @Afg;"LIST:SSEQ:SEQ ZEROS"	!Segment list
840	SUBEND	

Test 2-2: DC Accuracy

Description

The purpose of this test is to verify that the AFG meets its specifications for DC accuracy.

Equipment Setup

- Connect equipment as shown in Figure 2-5
- Set DMM to DCV, autorange

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set up the AFG to output a DC signal:

FUNC DC; :OUTP:LOAD INF; :VOLT MAX Select DC waveform Infinite load Set amplitude

Perform steps 3 - 5 for each amplitude listed in Table 2-2:

3. Set up the AFG output filter as specified in Table 2-2. Use the appropriate command(s) below:

OUTP:FILT OFF	Disable filter
or	
OUTP:FILT:FREQ 250KHZ	Select 250 kHz filter
OUTP:FILT ON	Enable filter
or	
OUTP:FILT:FREQ 10MHZ	Select 10 MHz filter
OUTP:FILT ON	Enable filter

4. Set the AFG output amplitude:

VOLT <amplitude>

Set amplitude

where *<amplitude>* is the value specified in Table 2-2.

5. Trigger the DMM and record the reading.

Amplitude (volts)	Filter	Test Limits (volts)
10.2375 5.0 0.0 -5.0 -10.24 10.2375 -10.24 10.2375 -10.24	None None None 250 kHz 250 kHz 10 MHz 10 MHz	$\begin{array}{c} 10.2375 \pm 0.0512 \\ 5.0 \pm 0.0355 \\ 0.0 \pm 0.0205 \\ -5.0 \pm 0.0355 \\ -10.24 \pm 0.0512 \\ 10.2375 \pm 0.0512 \\ -10.24 \pm 0.0512 \\ 10.2375 \pm 0.0512 \\ 10.2375 \pm 0.0512 \\ 10.24 \pm 0.0512 \end{array}$

Table 2-2. DC Accuracy Test Points

Example Program

This program performs the DC Accuracy test.

```
10! RE-STORE "DC_LEVELS"
20
    DIM Vout(1:9), Filter(1:9)
30
    !
   !----- Set up I/O path and reset AFG ------
40
50 ASSIGN @Afg TO 70910
    OUTPUT @Afg;"*RST;*CLS"
                                                    !Reset AFG
60
70
    !
    !----- Initialize variables ------
80
     DATA 10.2375, 5.0, 0, -5.0, -10.24, 10.2375, -10.24, 10.2375, -10.24
90
100 READ Vout(*)
110
     1
120
     DATA 0,0,0,0,0,1,1,2,2
130 READ Filter(*)
140 !
150 !----- Set up DMM ------
160 CLEAR SCREEN
170 PRINT "Set up DMM:"
180
    PRINT
190 PRINT "
               Function -- DCV"
200 PRINT "
              Range -- AUTO"
210
     PRINT
220 PRINT "Connect DMM HI and LO to AFG Output."
230 DISP "Press 'Continue' when ready"
240 PAUSE
250 CLEAR SCREEN
```

Test 2-2: DC Accuracy (cont'd)

Example Program (cont'd)

270 280	! Set up AFG OUTPUT @Afg;"*RST"	!Reset AFG
290	WAIT .5	
300	OUTPUT @Afg;"FUNC DC;";	IDC function
310	OUTPUT @Afg;":OUTP:LOAD INF;";	Infinite load
320	OUTPUT @Afg;":VOLT MAX"	!MAX output
330	!	
340	! Perform test	
350	PRINT "FILTER","AMPLITUDE"	
360	PRINT	
370	!	
380	FOR I=1 TO 9	
390	SELECT Filter(I)	
400	CASE 0	
410	OUTPUT @Afg;"OUTP:FILT OFF"	!No filter
420	Filter\$="NONE"	
430	CASE 1	
440	OUTPUT @Afg;"OUTP:FILT:FREQ 250KHZ"	250kHz filter
450	OUTPUT @Afg;"OUTP:FILT ON"	
460	Filter\$="250 kHz"	
470	CASE 2	
480	OUTPUT @Afg;"OUTP:FILT:FREQ 10MHZ"	10MHz filter
490	OUTPUT @Afg;"OUTP:FILT ON"	
500	Filter\$="10 MHz"	
510	END SELECT	
520		
530	OUTPUT @Afg;"VOLT "&VAL\$(Vout(I))	!Set amplitude
540	PRINT Filter\$,Vout(I)	
550		
560	DISP "Record DMM reading, then press 'Continue'"	
570	PAUSE	
580	DISP	
590	NEXTI	
600		
610	OUTPUT @ATG;""RST;"CLS"	IKeset AFG
620	END	

Description		
	The purpose of this test is to verify that the AFG DC offset accuracy.	meets its specifications for
Equipment Setup		
	Connect equipment as shown in FigurSet DMM to DCV, autorange	e 2-5
Test Procedure		
	1. Reset the AFG:	
	*RST;*CLS	Reset AFG and clear status registers
	2. Delete all sequences and segments from m	emory:
	LIST:SSEQ:DEL:ALL LIST:SEGM:DEL:ALL	Delete all sequences Delete all segments
	3. Create a user-defined waveform made up of	of zeros:
	LIST:SEGM:SEL ZEROS LIST:SEGM:DEF 8 LIST:SEGM:VOLT 0,0,0,0,0,0,0,0	Select segment name # of segment points Segment list
	LIST:SSEQ:SEL DC_ZEROS LIST:SSEQ:DEF 1 LIST:SSEQ:SEQ ZEROS	Select sequence name # of segments Sequence list
	4. Set up the AFG to output the waveform de	fined above:
	ROSC:SOUR CLK10; :OUTP:LOAD INF; :VOLT MAX; :FUNC USER FUNC:USER DC_ZEROS INIT:IMM	Select 10 MHz clock Infinite load Set amplitude Select user waveform Select sequence Initiate waveform

Perform steps 5 - 7 for each offset listed in Table 2-3:

5. If necessary, change the AFG output amplitude:

VOLT:OFFS 0;	Set offset to 0
:VOLT <amplitude></amplitude>	Set amplitude

where *<amplitude>* is the value specified in Table 2-3.

6. Set AFG offset voltage:

VOLT:OFFS <offset>

Set offset

where *<offset>* is the value specified in Table 2-3.

7. Trigger the DMM and record the reading.

Table 2-3. DC Offset Test Points

Offset	Amplitude	Test Limits
(volts)	(volts)	(volts)
9.755 4.000 -4.000 -9.755 2.000 -2.000	2.29189 2.29189 2.29189 2.29189 0.40756 0.40756	$\begin{array}{c} 9.755 \pm 0.1196 \\ 4.0 \pm 0.0620 \\ -4.0 \pm 0.0620 \\ -9.755 \pm 0.1196 \\ 2.0 \pm 0.0244 \\ -2.0 \pm 0.0244 \end{array}$

Example Program

This program performs the DC Offset Test.

10! RE-STORE "DC_OFFSET" 20 COM @Afg 30 DIM Offset(1:6) 40 ! !----- Set up I/O path and reset AFG ------50 !AFG I/O path ASSIGN @Afg TO 70910 60 OUTPUT @Afg;"*RST;*CLS" !Reset AFG 70 80 1 !----- Initialize variables ------90 100 DATA 9.755,4.0,-4.0,-9.755,2.0,-2.0 !Read in offsets 110 READ Offset(*) 120 ! 130 Vout_old=0 !Initialize 140 ! 150 !----- Set up DMM ------160 CLEAR SCREEN 170 PRINT "Set up DMM:" 180 PRINT 190 PRINT " Function -- DCV" 200 PRINT " Range -- AUTO" 210 PRINT 220 PRINT "Connect DMM HI and LO to AFG Output." 230 DISP "Press 'Continue' when ready" 240 PAUSE 250 CLEAR SCREEN 260 ! 270 !----- Set up AFG -----**!Reset AFG** 280 OUTPUT @Afg;"*RST" 290 OUTPUT @Afg;"LIST:SSEQ:DEL:ALL" **!Delete all sequences** 300 OUTPUT @Afg;"LIST:SEGM:DEL:ALL" **!Delete all segments** 310 WAIT .5 320 OUTPUT @Afg;"ROSC:SOUR CLK10;"; 10MHz clock 330 OUTPUT @Afg;":OUTP:LOAD INF;"; Infinite load 340 OUTPUT @Afg;":VOLT MAX;"; **!MAX** output 350 OUTPUT @Afg;":FUNC USER" !User waveform 360 ! 370 CALL Def_seq_zeros Define sequence of zeros 380 OUTPUT @Afg;"FUNC:USER DC_ZEROS" **!Select sequence** 390 ! 400 !----- Perform test ------410 PRINT "AMPLITUDE"," OFFSET" 420 PRINT 430 !

Example Program (cont'd)

440	FOR I=1 TO 6	
450	IF I<=4 THEN	
460	Vout=2.2919	
470	ELSE	
480	Vout=.40756	
490	END IF	
500	!	
510	IF Vout<>Vout_old THEN	
520	Set offset to zero before changing amplitude	
530	OUTPUT @Afg;":VOLT:OFFS 0;";	
540	OUTPUT @Afg;":VOLT "&VAL\$(Vout)&";";	
550	END IF	
560	!	
570	OUTPUT @Afg;":VOLT:OFFS "&VAL\$(Offset(I))!Set	offset
580	PRINT Vout, Offset(I)	
590	!	
600	DISP "Record DMM reading, then press 'Continue'"	
610	PAUSE	
620	DISP	
630	Vout_old=Vout	
640	NEXTI	Next attenuation
650	!	
660	OUTPUT @Afg;"*RST;*CLS"	!Reset AFG
670	END	
680	!	
690	SUB Def_seq_zeros	
700	COM @Afg	
710	OUTPUT @Afg;"LIST:SEGM:SEL ZEROS"	!Segment name
720	OUTPUT @Afg;"LIST:SEGM:DEF 8"	Segment length
730	OUTPUT @Afg;"LIST:SEGM:VOLT 0,0,0,0,0,0,0,0"	!Voltage points
740	!	
750	OUTPUT @Afg;"LIST:SSEQ:SEL DC_ZEROS"	!Sequence name
760	OUTPUT @Afg;"LIST:SSEQ:DEF 1"	!# of segments
770	OUTPUT @Afg;"LIST:SSEQ:SEQ ZEROS"	!Segment list
780	SUBEND	

Description

The purpose of this test is to verify that the AFG meets its specifications for AC accuracy at 1 kHz.

Equipment Setup

- Connect equipment as shown in Figure 2-5
- Set DMM to ACV, autorange

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set up the AFG to output a 1 kHz sinewave:

FREQ 1E3; :VOLT MAX; :OUTP:LOAD INF CAL:STAT:AC OFF INIT:IMM Set freq to 1 kHz Set to max amplitude Infinite load AC corrections off Initiate waveform

Perform steps 3 - 5 for each amplitude and filter listed in Table 2-4:

3. Set up AFG output filter as specified in Table 2-4. Use the appropriate command(s) below:

OUTP:FILT OFF or OUTP:FILT:FREQ 250KHZ OUTP:FILT ON or OUTP:FILT:FREQ 10MHZ OUTP:FILT ON Disable filter

Select 250 kHz filter Enable filter

Select 10 MHz filter Enable filter

4. Set the AFG output amplitude:

VOLT <amplitude>VRMS

Set amplitude

where *<amplitude>* is the value specified in Table 2-4.

5. Trigger the DMM and record the reading.

	Table 2-4.	AC	Accuracy	Test	Points
--	------------	----	----------	------	---------------

Amplitude (volts rms)	Filter	Test Limits ±(dB)
7.2390 6.4500 5.7500 4.5660 2.8818 1.4444 0.2290 7.2390 7.2390	None None None None None 250 kHz 10 MHz	0.10 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Example Program

This program performs the AC Accuracy Test.

10! RE-STORE "AC_LEVELS" 20 DIM Vout(1:9), Filter(1:9) 30 ! 40 !----- Set up I/O path and reset AFG ------50 ASSIGN @Afg TO 70910 **!Reset AFG** 60 OUTPUT @Afg;"*RST;*CLS" 70 ! 80 !----- Initialize variables ------DATA 7.239,6.45,5.75,4.566,2.8818,1.4444,.229,7.239,7.239 90 100 READ Vout(*) 110 ! 120 DATA 0,0,0,0,0,0,0,1,2 130 READ Filter(*) 140 ! 150 !----- Set up DMM ------160 CLEAR SCREEN 170 PRINT "Set up DMM:" 180 PRINT 190 PRINT " Function -- ACV" 200 PRINT " Range -- AUTO" 210 PRINT 220 PRINT "Connect DMM HI and LO to AFG Output." 230 DISP "Press 'Continue' when ready" 240 PAUSE 250 CLEAR SCREEN 260 ! 270 !----- Set up AFG ------**!Reset AFG** 280 OUTPUT @Afg;"*RST" 290 WAIT .5 300 OUTPUT @Afg;"FREQ 1E3;"; !Set freq to 1 kHz 310 OUTPUT @Afg;":VOLT MAX;"; **!MAX** amplitude 320 OUTPUT @Afg;":OUTP:LOAD INF" Infinite load 340 OUTPUT @Afg;"CAL:STAT:AC OFF" !AC corrections off 350 OUTPUT @Afg;"INIT:IMM" Initiate! 360 WAIT .5 370 ! 380 !----- Perform test ------390 PRINT "FILTER", "AMPLITUDE" 400 PRINT 410 !

Test 2-4: AC Accuracy (cont'd)

Example Program (cont'd)

420	FOR I=1 TO 9	
430	SELECT Filter(I)	
440	CASE 0	
450	OUTPUT @Afg;"OUTP:FILT OFF"	!No filter
460	Filter\$="NONE"	
470	CASE 1	
480	OUTPUT @Afg;"OUTP:FILT:FREQ 250KHZ"	!250 kHz filter
490	OUTPUT @Afg;"OUTP:FILT ON"	
500	Filter\$="250 kHz"	
510	CASE 2	
520	OUTPUT @Afg;"OUTP:FILT:FREQ 10MHZ"	10 MHz filter
530	OUTPUT @Afg;"OUTP:FILT ON"	
540	Filter\$="10 MHz"	
550	END SELECT	
560	OUTPUT @Afg;":VOLT "&VAL\$(Vout(I))&"VRMS"	!Set amplitude
570	PRINT Filter\$,Vout(I)	
580	WAIT .5	
590	!	
600	DISP "Record DMM reading, then press 'Continue'"	
610	PAUSE	
620	DISP	
630	NEXTI	
640	!	
650	OUTPUT @Afg;"*RST;*CLS"	!Reset AFG
660	END	

Description

The purpose of this test is to verify that the AFG meets its specifications for AC flatness with the 250 kHz filter enabled.

Equipment Setup

- Connect equipment as shown in Figure 2-6
- Set DMM to ACV, autorange

Figure 2-6. Equipment Setup for Test 2-5 and Test 2-6

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set up the AFG to output a 24 dBm sinewave with the 250 kHz filter enabled:

VOLT 24DBM; :OUTP:LOAD 50 OUTP:FILT:FREQ 250KHZ OUTP:FILT ON INIT:IMM Set amplitude 50 ohm load 250 kHz filter Enable filter Initiate waveform

Test	Procedure	
(con	ťd)	

2	Sot the AEC out	put to the	roforonco	fraguanau	$(1 l_{2} U_{7})$.
э.	Set the AFG out	put to me	reference	frequency ($I K \Pi Z$).

FREQ 1000

Set frequency

4. Measure the amplitude with the DMM and convert the reading to dBm. Note the result for use in step 6:

Reference Level (dBm) = $20 \times \log |\text{Reading (volts)}| + 13.0103$

Perform steps 5 - 6 for each frequency listed in Table 2-5:

5. Set the AFG output:

FREQ <frequency>

Set frequency

where *<frequency>* is the value specified in Table 2-5.

6. Measure the amplitude with the DMM and convert the reading to dBm. Calculate and record the error relative to the reference level calculated in step 4:

Reading (dBm) = $20 \times \log |\text{Reading (volts)}| + 13.0103$

Error (dB) = Reading (dBm) - Reference Level (dBm)

Frequency (Hz)	Test Limits* ±(dB error)	z	Frequency (Hz)	Test Limits* ±(dB error)
1052	0.05 dB	•	14052	0.10 dB
10E3	0.05 0B		140E3	0.10 dB
20E3	0.05 dB		150E3	0.10 dB
30E3	0.05 dB		160E3	0.10 dB
40E3	0.05 dB		170E3	0.10 dB
50E3	0.05 dB		180E3	0.10 dB
60E3	0.05 dB		190E3	0.10 dB
70E3	0.05 dB		200E3	0.10 dB
80E3	0.05 dB		210E3	0.10 dB
90E3	0.05 dB		220E3	0.10 dB
100E3	0.05 dB		230E3	0.10 dB
110E3	0.10 dB		240E3	0.10 dB
120E3	0.10 dB		250E3	0.10 dB
130E3	0.10 dB			

Table 2-5. AC Flatness Test Points - 250 kHz Filter

* Error relative to 1 kHz

Example Program

See the AC Flatness Adjustment procedure (Chapter 3) for an example program that performs the AC Flatness Test (change line 180 to: Mode\$="M").

The purpose of this test is to verify that the AFG meets its specifications for AC flatness with the 10 MHz filter enabled.

Equipment Setup

- Connect equipment as shown in Figure 2-6
- Set DMM to ACV, autorange

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set up the AFG to output a 24 dBm sinewave with the 10 MHz filter enabled:

VOLT 24DBM;	Set amplitude
:OUTP:LOAD 50	50 ohm load
OUTP:FILT:FREQ 10MHZ	10 MHz filter
OUTP:FILT ON	Enable filter
INIT:IMM	Initiate waveform

3. Set AFG output to the reference frequency (1 kHz):

FREQ 1000

Set frequency

4. Measure the amplitude with the DMM, convert the reading to dBm, and note the reading for future reference:

Reference Level (dBm) = $20 \times \log |\text{Reading (volts)}| + 13.0103$

5. Set the AFG to the crossover frequency (lowest frequency that the Power Meter can measure):

FREQ 1E5

Set frequency

6. Measure the amplitude with the DMM and note the reading for future reference.

Test 2-6: AC Flatness - 10 MHz Filter (cont'd)

Test Procedure (cont'd)

7. Set up the Power Meter:

Units - Watts Power Range - auto Reference Oscillator - ON

NOTE

Follow the Power Meter manufacturer's instructions for performing an autocalibration and correcting for the power sensor.

8. Connect the equipment as shown in Figure 2-7:

9. Set the Power Meter expected frequency to the crossover frequency (100 kHz). Measure the AFG output power and convert the reading to volts:

Reading (volts) = ($\sqrt[\gamma]$ Reading (watts) | \times 50)

10. Calculate the correction factor that will be used to reference the Power Meter to the DMM:

 $Correction Factor = \frac{DMM \text{ reading at } 100 \text{ kHz (step 6)}}{Power \text{ Meter reading at } 100 \text{ kHz (step 9)}}$

Repeat 11 - 14 for each frequency in Table 2-6:

11. Set the AFG output to the frequency specified in Table 2-6. If the frequency is less than 10.8 MHz, use the following command:

FREQ <frequency>

where *<frequency>* is the value specified in Table 2-6. If the frequency is 10.8 MHz, use the following register commands to set the output frequency:

DIAG:POKE #HE000A1,8,0 DIAG:POKE #HE000A3,8,126 DIAG:POKE #HE000A5,8,95 DIAG:POKE #HE000A7,8,64 DIAG:POKE #HE0008D,8,0

- 12. Set the Power Meter expected frequency to the AFG output frequency.
- 13. Measure the amplitude with the Power Meter, convert the reading to volts, and multiply by the correction factor.

Reading (volts) = ($\sqrt[n]$ Reading (watts) | \times 50)

Corrected Reading (volts) = Reading (volts) \times C.F. (step 10)

14. Convert the reading to dBm. Calculate and record the error relative to the reference level calculated in step 4:

Reading (dBm) = $20 \times \log |$ Corrected Reading (volts)| +13.0103

Error (dB) = Reading (dBm) - Reference Level (dBm)

Frequency (Hz)	Test Limits* ±(dB error)	Frequency (Hz)	Test Limits* ±(dB error)
400E3	0.2 dB	6.0E6	0.2 dB
800E3	0.2 dB	6.4E6	0.2 dB
1.2E6	0.2 dB	6.8E6	0.2 dB
1.6E6	0.2 dB	7.2E6	0.2 dB
2.0E6	0.2 dB	7.6E6	0.2 dB
2.4E6	0.2 dB	8.0E6	0.2 dB
2.8E6	0.2 dB	8.4E6	0.2 dB
3.2E6	0.2 dB	8.8E6	0.2 dB
3.6E6	0.2 dB	9.2E6	0.2 dB
4.0E6	0.2 dB	9.6E6	0.2 dB
4.4E6	0.2 dB	10.0E6	0.2 dB
4.8E6	0.2 dB	10.4E6	0.2 dB
5.2E6	0.2 dB	10.8E6	0.2 dB
5.6E6	0.2 dB		

Table 2-6. AC Flatness Test Points - 10 MHz Filter

* Error relative to 1 kHz

Example Program

See the AC Flatness Adjustment procedure (Chapter 3) for an example program that performs the AC Flatness Test (change line 180 to: Mode\$="M").

Description

The purpose of this test is to verify that the AFG meets its specifications for frequency accuracy.

Equipment Setup

- Connect equipment as shown in Figure 2-8
- Set Counter to: Frequency, 50Ω input impedance

Figure 2-8. Equipment Setup for Test 2-7

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

Perform steps 2 - 6 for each entry listed in Table 2-7:

2. Abort the waveform if it has been previously initiated:

ABORT

Test 2-7: Frequency Accuracy (cont'd)

Test Procedure (cont'd)

3. Set reference oscillator to INT1 or INT2, as specified in Table 2-7:

ROSC:SOUR INT1 or ROSC:SOUR INT2

4. Set marker source to "ROSC" or "TRIG", as specified in Table 2-7:

MARK:FEED "ROSC" or MARK:FEED "TRIG" Set marker source to "ROSC" Set marker source to "TRIG"

Set ref osc to INT1

Set ref osc to INT2

5. If the marker source is "TRIG", use the following commands to output a squarewave (otherwise, skip this step):

FUNC SQU; :FREQ2 <frequency>; :TRIG:SOUR INT2 INIT:IMM Select squarewave Set AFG frequency Set trig source Initiate

where *<frequency>* is the value given in the "Squarewave Frequency" column of Table 2-7.

NOTE

If the marker source is "TRIG", the marker output frequency will be four times the frequency of the squarewave, since it takes four points to produce a squarewave. See Table 2-7 for the expected frequencies.

6. Measure frequency with the Counter and record the reading in Table 2-11.

Ref Oscillator	Marker	Squarewave	Test Limits
Source	Source	Frequency (Hz)	(Hz)*
INT1 INT2 INT2 INT2 INT2 INT2	"ROSC" "ROSC" "TRIG" "TRIG" "TRIG"	 5.0 E6 3.333 E3 76.294	$\begin{array}{c} 42.94967 \ \text{E6} \pm 0.005\% \\ 40 \ \text{E6} \pm 0.005\% \\ 20 \ \text{E6} \pm 0.005\% \\ 13.3333 \ \text{E6} \pm 0.005\% \\ 305.176 \pm 0.005\% \end{array}$

Table 2-7. Frequency Accuracy Test Points

*Add aging rate of ± 20 ppm/year

Example Program

This program performs the Frequency Accuracy Test.

```
10! RE-STORE "OSC_FREQ"
20 DIM Freq(1:5)
30 !
40 !----- Set up I/O path and reset AFG ------
50 ASSIGN @Afg TO 70910
60 OUTPUT @Afg;"*RST;*CLS"
                                                    !Reset AFG
70 !
80 !----- Initialize variables ------
90 DATA 42.94967E6,40E6,20E6,13.3333E6,305.176
100 READ Freq(*)
110 !
120 !----- Set up Counter ------
130 CLEAR SCREEN
140 PRINT "Set up Counter:"
150 PRINT
160 PRINT "
              Function -- Frequency"
170 PRINT "
              Input Impedance -- 50 ohms"
180 PRINT
190 PRINT "Connect the Counter to 'Marker Out' on the E1445A."
200 PRINT
210 DISP "Press 'Continue'"
220 PAUSE
230 CLEAR SCREEN
240
    1
```

Test 2-7: Frequency Accuracy (cont'd)

Example Program (cont'd)

250	! Set up AFG	
260	OUTPUT @Afg;"*RST"	!Reset AFG
270	WAIT .5	
280	!	
290	! Perform test	
300	FOR I=1 TO 5	
310	PRINT "Expected reading =";Freq(I)	
320	PRINT	
330	IF I=1 THEN	
340	OUTPUT @Afg;"ROSC:SOUR INT1"	!ROSC = INT1
350	OUTPUT @Afg;"MARK:FEED ""ROSC"""	!Marker source = ROSC
360	ELSE	
370	OUTPUT @Afg;"ABORT"	!Abort waveform
380	OUTPUT @Afg;"ROSC:SOUR INT2"	!ROSC = INT2
390	IF Freq(I)=4.0E+7 THEN	
400	OUTPUT @Afg;"MARK:FEED ""ROSC"""	!Marker source = ROSC
410	ELSE	
420	OUTPUT @Afg;":FUNC SQU;";	!Squarewave
430	!	
440	Square wave freq is 1/4 of marker freq	
450	OUTPUT @Afg;":FREQ2 "&VAL\$(Freq(I)/4)&";";	
460	OUTPUT @Afg;":TRIG:STAR:SOUR INT2"!TRIG	source = INT2
470	OUTPUT @Afg;"MARK:FEED ""TRIG"""	!Marker source = TRIG
480	END IF	
490	END IF	
500	!	
510	OUTPUT @Afg;"INIT:IMM"	!Initiate
520	WAIT 1	
530	!	
540	DISP "Record the Counter reading, then press 'Contin	ue'"
550	PAUSE	
560	DISP	
570	NEXT I	
580	!	
590	OUTPUT @Afg;"*RST;*CLS"	!Reset AFG
600	END	

Test 2-8: Duty Cycle

Description

The purpose of this test is to verify that the AFG meets its specifications for square wave duty cycle. Duty cycle is determined by measuring positive pulse width.

Equipment Setup

- Connect equipment as shown in Figure 2-9
- Set Counter to: Pulse Width, DC coupling, 50Ω input impedance

Figure 2-9. Equipment Setup for Test 2-8

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set the AFG to output a square wave:

FUNC	SQU;
:VOLT	MAX

Select squarewave Set to max amplitude

Perform steps 3 - 7 for each frequency listed in Table 2-8:

3. Abort the waveform if it has been previously initiated:

ABORT

60 Verification Tests

Test Procedure (cont'd) 4. Set the AFG frequency range as specified in Table 2-8: FREQ:RANG MAX Enable doubling or FREQ:RANG MIN Disable doubling 5. Set AFG output frequency: FREQ <frequency> Set frequency where *< frequency>* is the value specified in Table 2-8. 6. Initiate the waveform: INIT:IMM 7. Measure positive pulse width (average at least 10 periods) with the Counter and record the reading in Table 2-11. NOTE If a percentage result is desired, measure the period (average at least 10 periods. Duty Cycle (%) = 100 x (Positive Pulse Width/Period)

Table 2-8. Duty	v Cycle	Test Point	S
-----------------	---------	------------	---

Frequency	Frequency	Test Limits
(Hz)	Range	(sec)
1.0 E3	MIN	5.0E-3 ± 1.0E-6
2.0 E3	MAX	2.5E-4 ± 3.0E-5
2.5 E5	MIN	2.0E-7 ± 3.4E-9
5.0 E5	MAX	1.0E-7 ± 1.5E-8

Example Program

This program performs the Duty Cycle Test.

10! RE-STORE "DUTY_CYCLE" 20 DIM Freq(1:4),Range\$(1:4)[10] 30 40 !----- Set up I/O path and reset AFG ------50 ASSIGN @Afg TO 70910 !Reset AFG 60 OUTPUT @Afg;"*RST;*CLS" 70 ! 80 !----- Initialize variables ------90 DATA 1E3,2E3,2.5E5,5E5 100 READ Freq(*) 110 ! 120 DATA MIN, MAX, MIN, MAX !'MAX' enables doubling 130 READ Range\$(*) !'MIN' disables doubling 140 ! 150 !----- Set up Counter ------160 CLEAR SCREEN 170 PRINT "Set up Counter:" 180 PRINT " Function -- Pulse Width" 190 PRINT " Coupling -- DC" 210 PRINT " Input Impedance -- 50 ohms" 220 PRINT 230 PRINT "Connect Counter to AFG Output." 240 DISP "Press 'Continue' when ready" 250 PAUSE 260 CLEAR SCREEN 270 ! 280 !----- Set up AFG -----**!Reset AFG** 290 OUTPUT @Afg;"*RST" 300 OUTPUT @Afg;"FUNC SQU;"; !Squarewave 310 OUTPUT @Afg;":VOLT MAX" **!MAX** output 320 ! 330 !----- Perform test ------340 FOR I=1 TO 4 OUTPUT @Afg;"ABORT" 350 !Abort waveform OUTPUT @Afg;"FREQ:RANG "&Range\$(I)&";"; 360 !Freq doubling on/off OUTPUT @Afg;":FREQ "&VAL\$(Freq(I)) !Set frequency 370 OUTPUT @Afg;"INIT:IMM" 380 !Initiate 390 WAIT 1 400 1

Test 2-8: Duty Cycle (cont'd)

Example Program (cont'd)

410 !Take readings here PRINT "Output Frequency =";Freq(I);" Hz" 420 430 PRINT PRINT "Read positive pulse width (average at least 10 periods)." 440 450 INPUT "Enter positive pulse width (in sec):",Pos_width 460 I PRINT "Set Counter to measure period (average at least 10 periods)." 470 480 INPUT "Enter period (in sec):",Period 490 ! 500 !Calculate duty cycle Duty_cycle=(Pos_width/(Period))*100 510 520 Duty_cycle=PROUND(Duty_cycle,-2) 530 PRINT PRINT "Positive Pulse Width = "&VAL\$(Pos_width) 540 550 PRINT "Duty Cycle = "&VAL\$(Duty_cycle)&"%" 560 ! 570 DISP "Press 'Continue' when ready" 580 PAUSE 590 CLEAR SCREEN 600 NEXT I 610 ! 620 OUTPUT @Afg;"*RST;*CLS" !Reset AFG 630 END

Test 2-9: Total Harmonic Distortion

Description

The purpose of this test is to verify that the AFG meets its specifications for sine wave total harmonic distortion (THD).

Equipment Setup

- Connect equipment as shown in Figure 2-10
- Set Spectrum Analyzer to:

Ref Level = 25 dBm Freq Span = 1 kHz Resolution BW = 30 Hz Video BW = 30 Hz

NOTE

These are recommended settings only. Adjust your Spectrum Analyzer as necessary.

Figure 2-10. Equipment Setup for Test 2-9 and Test 2-10

Test Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Set the AFG to output a sinewave with the 10 MHz filter enabled:

VOLT 24DBM OUTP:FILT:FREQ 10 MHZ OUTP:FILT ON INIT:IMM Set AFG amplitude Set filter to 10 MHz Enable filter Initiate waveform

Perform steps 3 - 6 for each frequency listed in Table 2-9:

3. Set AFG output frequency:

FREQ <frequency>

Set frequency

where *<frequency>* is the value specified in Table 2-9.

- 4. Set the Spectrum Analyzer center frequency to the output frequency of the AFG. Measure the peak amplitude of the fundamental in dBm. Note the result for use in step 6.
- 5. Set the Spectrum Analyzer center frequency to the second harmonic ($2 \times fundamental frequency$). Measure the peak amplitude of the second harmonic in dBm.
- 6. Repeat step 5 for third through ninth harmonics. Calculate total harmonic distortion as shown below:

thd (dBc) =
$$20 \cdot \log \left(\sqrt{\text{result}_2^2 + \text{result}_3^2 + \dots + \text{result}_9^2} \right)$$

where

 $result_n \; (volts) = 10 \; [\; (n^{th} \; \text{Harmonic} \; (\text{dBm}) - \text{Fundamental} \; (\text{dBm}))/20 \;]$

Frequency	Test Limits*
(Hz)	(dBc)
100 E3	-60
250 E3	-60
1 E6	-48
4 E6	-36
10 E6	-36

Table 2-9. THD Test Points

* Through 9th harmonic

Example Program

This program performs the Total Harmonic Distortion Test.

```
10! RE-STORE "SINE_THD"
20 DIM Freq(1:5)
30 !
40 !----- Set up I/O path and reset AFG ------
50 ASSIGN @Afg TO 70910
                                                    !AFG I/O path
   OUTPUT @Afg;"*RST;*CLS"
                                                    !Reset AFG
60
70 !
80 !----- Initialize variables ------
90 Dbm_out$="24DBM"
                                                    !AFG output
100 !
110 DATA 100E3,250E3,1E6,4E6,10E6
                                                    !Read in freqs
120 READ Freq(*)
130 !
140 !----- Set up Spec Analyzer ------
150 CLEAR SCREEN
160 PRINT "Set up Spectrum Analyzer:"
170 PRINT
180 PRINT "
              Ref Level = 25 dBm"
190 PRINT "
              Span = 1 kHz"
200 PRINT "
              Resolution BW = 30 Hz"
210 PRINT "
              Video BW = 30 Hz"
220 PRINT
```

Test 2-9: Total Harmonic Distortion (cont'd)

Example Program (cont'd)

230 240	PRINT "Connect Spectrum Analyzer to AFG Output." DISP "Press 'Continue' when ready"			
250	PAUSE			
260				
270				
280	OUTPUT @AIG; "RST	Reset AFG		
290		Isot AEC output		
300		Sei Ard oulpui		
310				
320		Unitiato		
240				
340	Porform tost			
360	EOR 1-1 TO 5			
370	OLITPLIT @ Afg:"EPEO "&\/AI \$(Ereg(I))	ISet frequency		
380		Oet mequency		
390	CALL Meas thd(Freg(I) Thd)	IMeasure THD		
400	PRINT "Fundamental Frequency ="'Freq(I)			
410	PRINT "THD =":DROUND(Thd.4):"dBc"			
420	PRINT			
430	DISP "Press 'Continue' when ready"			
440	PAUSE			
450	DISP			
460	NEXTI			
470	!			
480	OUTPUT @Afg;"*RST;*CLS"	!Reset AFG		
490	END			
500	!			
510	!			
520	! Measurement subprogram			
530	SUB Meas_thd(Frequency,Thd)			
540	INTEGER Harmonic			
550	CLEAR SCREEN			
560	Harmonic=1			
570	!			
580	GOSUB Meas_fund	!Get fundamental amplitude		
590	!			

Test 2-9: Total Harmonic Distortion (cont'd)

Example Program (cont'd)

610 Sum_amp_sqr=0 620 FOR Harmonic=2 TO 9 630 GOSUB Meas_amp 640 Sum_amp_sqr=Sum_amp_sqr+10^(Result/10) !Sum of squared voltages 650 NEXT Harmonic 660 ! 670 Thd=20*LGT(SQRT(Sum_amp_sqr)) !Calculate THD In dBc 680 SUBEXIT 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Measure amplitude at the center freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 </th <th>600</th> <th>Measure harmonics 2-9</th> <th></th>	600	Measure harmonics 2-9				
620 FOR Harmonic=2 TO 9 630 GOSUB Meas_amp 640 Sum_amp_sqr=Sum_amp_sqr+10^(Result/10) !Sum of squared voltages 650 NEXT Harmonic 660 ! 670 Thd=20*LGT(SQRT(Sum_amp_sqr)) !Calculate THD In dBc 680 SUBEXIT 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Measure amplitude at the center frequency." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT "Measure amplitude at the center frequency." 820 PRINT "Measure amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND <td>610</td> <td>Sum_amp_sqr=0</td> <td></td>	610	Sum_amp_sqr=0				
630 GOSUB Meas_amp 640 Sum_amp_sqr=Sum_amp_sqr+10^(Result/10) !Sum of squared voltages 650 NEXT Harmonic 660 ! 670 Thd=20*LGT(SQRT(Sum_amp_sqr)) !Calculate THD In dBc 680 SUBEXIT 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Measure amplitude at the center frequency." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT "Measure amplitude at the center frequency." 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND	620	FOR Harmonic=2 TO 9				
640 Sum_amp_sqr=Sum_amp_sqr+10^(Result/10) !Sum of squared voltages 650 NEXT Harmonic 660 ! 670 Thd=20*LGT(SQRT(Sum_amp_sqr)) !Calculate THD In dBc 680 SUBEXIT 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "FUNDAMENTAL" 730 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Measure amplitude at the center frequency." 820 PRINT "Measure amplitude at the center frequency." 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND	630	GOSUB Meas_amp				
650 NEXT Harmonic 660 ! 670 Thd=20*LGT(SQRT(Sum_amp_sqr)) !Calculate THD In dBc 680 SUBEXIT 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND	640	Sum_amp_sqr=Sum_amp_sqr+10^(Result/10)	Sum of squared voltages			
660 ! 670 Thd=20*LGT(SQRT(Sum_amp_sqr)) !Calculate THD In dBc 680 SUBEXIT 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT 830 INPUT "Enter amplitude at the center frequency." 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND	650	NEXT Harmonic				
670 Thd=20*LGT(SQRT(Sum_amp_sqr)) !Calculate THD In dBc 680 SUBEXIT 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND	660	!				
 680 SUBEXIT 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND 	670	Thd=20*LGT(SQRT(Sum_amp_sqr))	!Calculate THD In dBc			
 690 ! 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT "Measure amplitude at the center frequency." 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND 	680	SUBEXIT				
 700 Meas_fund: ! 710 PRINT "FUNDAMENTAL" 720 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." 730 PRINT "Measure amplitude at the center frequency." 740 PRINT 750 INPUT "Enter amplitude (in dBm):",Baseline 760 RETURN 770 ! 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT "Measure amplitude at the center frequency." 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND 	690	!				
 PRINT "FUNDAMENTAL" PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT "Measure amplitude (in dBm):",Baseline INPUT "Enter amplitude (in dBm):",Baseline RETURN RETURN PRINT "HARMONIC =";Harmonic PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT "Measure amplitude at the center frequency." PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT "Measure amplitude (in dBm):",Reading Result=Reading-Baseline RETURN SUBEND 	700 N	Meas_fund: !				
 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT PRINT INPUT "Enter amplitude (in dBm):",Baseline RETURN RETURN ?70 ! PRINT "HARMONIC =";Harmonic PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Set Spectrum Analyzer Center frequency." PRINT "Measure amplitude at the center frequency." PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT "Measure amplitude (in dBm):",Reading INPUT "Enter amplitude (in dBm):",Reading Result=Reading-Baseline RETURN SUBEND 	710	PRINT "FUNDAMENTAL"				
 PRINT "Measure amplitude at the center frequency." PRINT PRINT INPUT "Enter amplitude (in dBm):",Baseline RETURN RETURN ! Meas_amp: ! PRINT "HARMONIC =";Harmonic PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT "Measure amplitude (in dBm):",Reading INPUT "Enter amplitude (in dBm):",Reading RETURN SUBEND 	720	PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency)&" Hz."				
 PRINT INPUT "Enter amplitude (in dBm):",Baseline RETURN RETURN ! Meas_amp: ! PRINT "HARMONIC =";Harmonic PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT "Measure amplitude at the center frequency." PRINT INPUT "Enter amplitude (in dBm):",Reading Result=Reading-Baseline RETURN SUBEND 	730	PRINT "Measure amplitude at the center frequency."				
 INPUT "Enter amplitude (in dBm):",Baseline RETURN RETURN ! Meas_amp: ! PRINT "HARMONIC =";Harmonic PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT "Measure amplitude (in dBm):",Reading INPUT "Enter amplitude (in dBm):",Reading Result=Reading-Baseline RETURN SUBEND 	740	PRINT				
 RETURN RETURN I Meas_amp: ! PRINT "HARMONIC =";Harmonic PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT "Measure amplitude (in dBm):",Reading Result=Reading-Baseline RETURN SUBEND 	750	INPUT "Enter amplitude (in dBm):",Baseline				
 ?70 ! ?80 Meas_amp: ! ?90 PRINT "HARMONIC =";Harmonic 800 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND 	760	RETURN				
 780 Meas_amp: ! 790 PRINT "HARMONIC =";Harmonic 800 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." 810 PRINT "Measure amplitude at the center frequency." 820 PRINT 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND 	770	!				
 PRINT "HARMONIC =";Harmonic PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT INPUT "Enter amplitude (in dBm):",Reading Result=Reading-Baseline RETURN SUBEND 	780 N	780 Meas_amp: !				
 PRINT "Set Spectrum Analyzer Center Freq to: "&VAL\$(Frequency*Harmonic)&" Hz." PRINT "Measure amplitude at the center frequency." PRINT INPUT "Enter amplitude (in dBm):",Reading Result=Reading-Baseline RETURN SUBEND 	790	PRINT "HARMONIC =";Harmonic				
 PRINT "Measure amplitude at the center frequency." PRINT INPUT "Enter amplitude (in dBm):",Reading Result=Reading-Baseline RETURN SUBEND 	800	PRINT "Set Spectrum Analyzer Center Freq to: "&VAL	\$(Frequency*Harmonic)&" Hz."			
 820 PRINT 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND 	810	PRINT "Measure amplitude at the center frequency."				
 830 INPUT "Enter amplitude (in dBm):",Reading 840 Result=Reading-Baseline 850 RETURN 860 SUBEND 	820	PRINT				
840 Result=Reading-Baseline850 RETURN860 SUBEND	830	INPUT "Enter amplitude (in dBm):",Reading				
850 RETURN 860 SUBEND	840	Result=Reading-Baseline				
860 SUBEND	850	RETURN				
	860	SUBEND				

Description		
	The purpose of this test is to verify that the AFG meets non-harmonic and spurious distortion.	s its specifications for
Equipment Setup		
	Connect equipment as shown in Figure 2-9Set Spectrum Analyzer to :	
	Ref Level = -5 dBm Resolution BW = 3 kHz Video BW = 3 kHz	
NOTE	These are recommended settings only. Adjust your Spectrum Analyzer as necessary.	
Test Procedure		
	1. Reset the AFG:	
	*RST;*CLS	Reset AFG and clear status registers
	2. Set the AFG to output a -5 dBm, 10 MHz sinewave with the 10 MHz filter enabled:	
	FREQ 1.0E7; :VOLT -5DBM OUTP:FILT:FREQ 10 MHZ OUTP:FILT ON INIT:IMM	Set AFG frequency Set AFG amplitude Set filter to 10 MHz Enable filter Initiate waveform

Test 2-10: Spurious/Non-Harmonic Distortion

Perform steps 3 and 4 for each frequency range listed in Table 2-10:

- 3. Set the Spectrum Analyzer start frequency and stop frequency to the values listed in Table 2-10.
- 4. Measure the amplitude (in dBm) of the highest peak. Subtract the amplitude of the fundamental (-5dBm) from the reading and record the result in Table 2-11:

result (dBc) = reading (dBm) - (-5 dBm)

Start Frequency (Hz)	Stop Frequency (Hz)	Test Limits (dBc)
100 E3	9.5 E6	-45
10.5 E6	19 E6	-45
21 E6	29 E6	-45
31 E6	39 E6	-45
41 E6	49 E6	-45
51 E6	75 E6	-45
75 E6	100 E6	-45
100 E6	125 E6	-45
125 E6	150 E6	-45

Table 2-10. Spurious/Non-Harmonic Test Points
Example Program

This program performs the Spurious/Non-harmonic Test.

10 ! RE-STORE "NON_HARM" 20 DIM Start_freq(1:9), Stop_freq(1:9), Max_ampl(1:9) 30 1 40 !----- Set up I/O path and reset AFG ------50 ASSIGN @Afg TO 70910 !AFG I/O path 60 OUTPUT @Afg;"*RST;*CLS" !Reset AFG 70 ! 80 !----- Initialize variables ------Freq_out=1.0E+7 !Freq = 10 MHz 90 100 Dbm_out\$="-5DBM" !Amplitude = -5dBm 110 ! 120 DATA 100E3,10.5E6,21E6,31E6,41E6,51E6,75E6,100E6,125E6 130 READ Start_freq(*) !Read start freqs 140 ! 150 DATA 9.5E6,19E6,29E6,39E6,49E6,75E6,100E6,125E6,150E6 !Read stop freqs 160 READ Stop_freq(*) 170 ! 180 !----- Set up Spec Analyzer ------190 CLEAR SCREEN 200 PRINT "Set up Spectrum Analyzer:" 210 PRINT 220 PRINT " Ref Level = -5dBm" 230 PRINT " Resolution BW = 3 kHz" 240 PRINT " Video BW = 3 kHz" 250 PRINT 260 PRINT "Connect Spectrum Analyzer to AFG Output." 270 DISP "Press 'Continue' when ready" 280 PAUSE 290 CLEAR SCREEN 300 ! 310 !----- Set up AFG ------320 OUTPUT @Afg;"*RST" !Reset AFG 330 WAIT 1 340 OUTPUT @Afg;"FREQ "&VAL\$(Freq_out)&";"; !Set frequency 350 OUTPUT @Afg;":VOLT "&Dbm_out\$!Set amplitude 360 OUTPUT @Afg;"OUTP:FILT:FREQ 10MHZ" !Enable 10MHz filter 370 OUTPUT @Afg;"OUTP:FILT ON" 380 OUTPUT @Afg;"INIT:IMM" !Initiate 390 !

Test 2-10: Spurious/Non-Harmonic Distortion (cont'd)

400	! Perform test
410	FOR I=1 TO 9
420	CLEAR SCREEN
430	PRINT "Set Spectrum Analyzer Start Freq to: ";Start_freq(I);"Hz"
440	PRINT "Set Spectrum Analyzer Stop Freq to: ";Stop_freq(I);"Hz"
450	PRINT "Measure the amplitude of the highest peak."
460	PRINT
470	INPUT "Enter amplitude (in dBm):",Peak_ampl
480	PRINT "Result =";VAL(Dbm_out\$)-Peak_ampl;"dBc"
490	DISP "Press 'Continue' when ready"
500	PAUSE
510	DISP
520	NEXTI
530	1
540	OUTPUT @Afg;"*RST;*CLS" !Reset AFG
550	END

Performance Test Record	Table 2-11, <i>Performance Test Record for the Agilent E1445A AFG</i> , is a form you can copy and use to record performance verification test results for the AFG. Table 2-11 shows AFG accuracy, measurement uncertainty, and test accuracy ratio (TAR) values.
AFG Test Limits	Test limits are defined using the specifications in Appendix A of the <i>Agilent E1445A User's Manual</i> . The specifications for Total Harmonic Distortion and Spurious/Non-harmonic Distortion are single-sided (i.e., there is an upper limit but no lower limit). In the Performance Test Record, the Minimum column will be blank.
Measurement	For the performance verification tests in this manual, the measurement

Uncertainty For the performance verification tests in this manual, the measurement uncertainties are based on the accuracy specifications for the following test equipment:

Performance Test	Test Equipment
1. DC Zeros	Agilent 3458A
2. DC Accuracy	Agilent 3458A
3. DC Offset	Agilent 3458A
4. AC Accuracy	Agilent 3458A
5. AC Flatness (250 kHz filter)	Agilent 3458A
6. AC Flatness (10 MHz filter)*	Agilent 3458A Agilent 8902A
7. Frequency Accuracy	Agilent 5334B
8. Duty Cycle	Agilent 5334B
9. Total Harmonic Distortion	Agilent 8566B
10. Spurious/Non-harmonic Distortion	Agilent 8566B

* Includes following uncertainties: 8902A Range linearity, 11722A Power Sensor Cal Factor uncertainty, 3458A accuracy at 100 kHz.

Test Accuracy
Ratio (TAR)Test Accuracy Ratio (TAR) for the E1445A is defined as: AFG
Accuracy/Measurement Uncertainty, i.e.,

TAR = Maximum – Expected Reading Measurement Uncertainty

For single-sided measurements, Test Accuracy Ratio is not defined, so 'NA' (Not Applicable) will appear in the TAR column. For TARs that exceed 10:1, the entry is '>10:1'.

Name	Report No.
	Tosted by
Model	Ambient temperature°C
Serial No	Relative humidity%
Options	Line frequency Hz (nominal)
Firmware Rev	
Special Notes:	

Table 2-11. Performance Test Record for the Agilent E1445A (Page 1 of 7)

Test Equipment Used: Description	Model No.	Trace No.	Cal Due Date
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
13			
14			
15.			
16			
17			
18			
19			
20			

Table 2-11. Performance Test Record for the Agilent E1445A (Page 2 of 7)

Report No.

76 Verification Tests

Model

Date

Test Description*	Minimum	Measured Reading	Maximum	Meas Uncert	TAR
Test 2-1. DC Zeros Test (Values in Vd	c)				
No Filter:					
10.2375V (0 dB atten)	-0.022		0.022	1E-6	>10:1
9.1347V (.99 dB atten)	-0.022		0.022	1E-6	>10:1
9.1241V (1 dB atten)	-0.022		0.022	1E-6	>10:1
8.1319V (2 dB atten)	-0.022		0.022	1E-6	>10:1
6.4594V (4 dB atten)	-0.022		0.022	1E-6	>10:1
4.0756V (8 dB atten)	-0.022		0.022	1E-6	>10:1
2.2918V (13 dB atten)	-0.022		0.022	1E-6	>10:1
2.0426V (14 dB atten)	-0.0044		0.0044	1E-6	>10:1
0.3238V (30 dB atten)	-0.0044		0.0044	1E-6	>10:1
250 kHz Filter:					
10.2375V (0 dB atten)	-0.022		0.022	1E-6	>10:1
9.1347V (.99 dB atten)	-0.022		0.022	1E-6	>10:1
9.1241V (1 dB atten)	-0.022		0.022	1E-6	>10:1
8.1319V (2 dB atten)	-0.022		0.022	1E-6	>10:1
6.4594V (4 dB atten)	-0.022		0.022	1E-6	>10:1
4.0756V (8 dB atten)	-0.022		0.022	1E-6	>10:1
2.2918V (13 dB atten)	-0.022		0.022	1E-6	>10:1
2.0426V (14 dB atten)	-0.0044		0.0044	1E-6	>10:1
0.3238V (30 dB atten)	-0.0044	<u> </u>	0.0044	1E-6	>10:1
10 MHz Filter:					
10.2375V (0 dB atten)	-0.022		0.022	1E-6	>10:1
9.1347V (.99 dB atten)	-0.022		0.022	1E-6	>10:1
9.1241V (1 dB atten)	-0.022		0.022	1E-6	>10:1
8.1319V (2 dB atten)	-0.022		0.022	1E-6	>10:1
6.4594V (4 dB atten)	-0.022		0.022	1E-6	>10:1
4.0756V (8 dB atten)	-0.022		0.022	1E-6	>10:1
2.2918V (13 dB atten)	-0.022		0.022	1E-6	>10:1
2.0426V (14 dB atten)	-0.0044		0.0044	1E-6	>10:1
0.3238V (30 dB atten)	-0.0044		0.0044	1E-6	>10:1

Table 2-11. Performance Test Record for the Agilent E1445A (Page 3 of 7)

Report No. _____ Date ___

* Since the arbitrary waveform consists of zeros, the expected reading is 0 V, regardless of the amplitude setting. The amplitude is changed in order to turn the various attenuators on and off.

Model _

Model	Report No		C)ate	
Test		Measured		Meas	
Description	Minimum	Reading	Maximum	Uncert	TAR
Test 2-2. DC Accuracy Test (Values	in Vdc)				
No Filter:					
10.2375V	10.1863		10.2887	4.9E-5	>10:1
5.0V	4.9645		5.0355	2.5E-5	>10:1
0.0V	-0.0205		0.0205	1.0E-6	>10:1
-5.0V	-5.0355		-4.9645	2.5E-5	>10:1
-10.24V	-10.2912		-10.1888	4.9E-5	>10:1
250 kHz Filter:					
10.2375V	10.1863		10.2887	4.4E-5	>10:1
-10.24V	-10.2912		-10.1888	2.3E-5	>10:1
10 MHz Filter:					
10.2375V	10.1863		10.2887	4.4E-5	>10:1
-10.24V	-10.2912		-10.1888	2.3E-5	>10:1
Test 2-3. DC Offset Test (Values in 13 dB attenuation:	Vdc)				
9.755V	9.6355		9.8746	4.7E-5	>10:1
4.0V	3.9380		4.0620	2.04E-5	>10:1
-4.0V	-4.0620		-3.9380	2.04E-5	>10:1
-9.755V	-9.8746		-9.6355	4.7E-5	>10:1
28 dB attenuation:					
2.0V	1.9756		2.0244	1.12E-5	>10:1
-2.0V	-2.0244		-1.9756	1.12E-5	>10:1
Test 2-4. AC Accuracy Test (Values in	n Vac)				
No Filter:					
7.239V (0 dB atten)	7.1561		7.3228	2.46E-3	>10:1
6.45V (1 dB atten)	6.3396		6.5624	2.3E-3	>10:1
5.75V (2 dB atten)	5.6516		5.8502	2.16E-3	>10:1
4.566V (4 dB atten)	4.4878		4.6455	1.9E-3	>10:1
2.881V (8 dB atten)	2.8317	<u></u>	2.9312	1.58E-3	>10:1
1.440V (14 dB atten)	1.4153	<u></u>	1.4651	1.29E-3	>10:1
0.229V (30 dB atten)	0.2251		0.2330	1.46E-4	>10:1
250 kHz Filter:					
7.239V (0 dB atten)	7.1561		7.3228	2.46E-3	>10:1

Table 2-11. Performance Test Record for the Agilent E1445A (Page 4 of 7)

10 MHz Filter: 7.239V (0 dB atten)

7.1561

7.3228

2.46E-3

>10:1

Table 2-11. Performance Test Record for the Agilent E1445A (Page 5 of 7)

Model

Report No.

Date	

Test Description	Minimum	Measured Reading	Maximum	Meas Uncert	TAR
Test 2-5. AC FlatnessTest - 250 kHz	Filter (Values in dB erro	or, relative to 1 kH	z))		
Amplitude at 24 dBm:					
10 kHz	-0.05		0.05	.002 dB	>10:1
20 kHz	-0.05		0.05	.002 dB	>10:1
30 kHz	-0.05		0.05	.0034 dB	>10:1
40 kHz	-0.05		0.05	.0034 dB	>10:1
50 kHz	-0.05		0.05	.0034 dB	>10:1
60 kHz	-0.05		0.05	.0077 dB	7:1
70 kHz	-0.05		0.05	.0077 dB	7:1
80 kHz	-0.05		0.05	.0077 dB	7:1
90 kHz	-0.05		0.05	.0077 dB	7:1
100 kHz	-0.05		0.05	.0077 dB	7:1
110 kHz	-0.10		0.10	.028 dB	4:1
120 kHz	-0.10		0.10	.028 dB	4:1
130 kHz	-0.10		0.10	.028 dB	4:1
140 kHz	-0.10		0.10	.028 dB	4:1
150 kHz	-0.10		0.10	.028 dB	4:1
160 kHz	-0.10		0.10	.028 dB	4:1
170 kHz	-0.10		0.10	.028 dB	4:1
180 kHz	-0.10		0.10	.028 dB	4:1
190 kHz	-0.10		0.10	.028 dB	4:1
200 kHz	-0.10		0.10	.028 dB	4:1
210 kHz	-0.10		0.10	.028 dB	4:1
220 kHz	-0.10		0.10	.028 dB	4:1
230 kHz	-0.10		0.10	.028 dB	4:1
240 kHz	-0.10		0.10	.028 dB	4:1
250 kHz	-0.10		0.10	.028 dB	4:1

Test Description	Minimum	Measured Reading	Maximum	Meas Uncert	TAF
Геst 2-6. AC FlatnessTest - 10 MHz	Filter (Values in dB errc	or, relative to 1 kH:	z)		
Amplitude at 24 dBm:					
400 kHz	-0.2		0.2	0.0478 dB	4:1
800 kHz	-0.2		0.2	0.0506 dB	4:1
1.2 MHz	-0.2		0.2	0.0506 dB	4:1
1.6 MHz	-0.2	<u></u>	0.2	0.0506 dB	4:1
2.0 MHz	-0.2		0.2	0.0506 dB	4:1
2.4 MHz	-0.2	<u></u>	0.2	0.0506 dB	4:1
2.8 MHz	-0.2	<u></u>	0.2	0.0506 dB	4:1
3.2 MHz	-0.2	<u> </u>	0.2	0.0506 dB	4:1
3.6 MHz	-0.2	<u> </u>	0.2	0.0506 dB	4:1
4.0 MHz	-0.2	<u> </u>	0.2	0.0506 dB	4:1
4.4 MHz	-0.2		0.2	0.0506 dB	4:1
4.8 MHz	-0.2	<u> </u>	0.2	0.0506 dB	4:1
5.2 MHz	-0.2	<u> </u>	0.2	0.0506 dB	4:1
5.6 MHz	-0.2	<u> </u>	0.2	0.0506 dB	4:1
6.0 MHz	-0.2	<u> </u>	0.2	0.0506 dB	4:1
6.4 MHz	-0.2	<u> </u>	0.2	0.0506 dB	4:1
6.8 MHz	-0.2		0.2	0.0536 dB	4:1
7.2 MHz	-0.2	<u> </u>	0.2	0.0536 dB	4:1
7.6 MHz	-0.2	<u> </u>	0.2	0.0536 dB	4:1
8.0 MHz	-0.2		0.2	0.0536 dB	4:1
8.4 MHz	-0.2	<u> </u>	0.2	0.0536 dB	4:1
8.8 MHz	-0.2		0.2	0.0536 dB	4:1
9.2 MHz	-0.2	<u> </u>	0.2	0.0536 dB	4:1
9.6 MHz	-0.2		0.2	0.0536 dB	4:1
10.0 MHz	-0.2		0.2	0.0536 dB	4:1
10.4 MHz	-0.2	<u> </u>	0.2	0.0536 dB	4:1
10.8 MHz	-0.2		0.2	0.0536 dB	4:1

Table 2-11. Performance Test Record for the Agilent E1445A (Page 6 of 7)

Model _____ Date _____

80 Verification Tests

Model	Report No		D	ate	
Test Description	Minimum	Measured Reading	Maximum	Meas Uncert	TAR
Test 2-7. Frequency Accuracy Test (V	alues in Hz) *				
Marker source is "ROSC":					
42.9497 MHz	42.9467E6		42.9527E6	8.0	>10:1
40.0 MHz	39.9972E6	<u> </u>	40.0028E6	8.0	>10:1
Marker source is "TRIG":					
20.0 MHz	19.9986E6		20.0014E6	5.0	>10:1
13.3333 MHz	13.3324E6		13.3342E6	3.8	>10:1
305.176 Hz	305.1546		305.1974	0.00305	7:1
Test 2-8. Duty Cycle Test (Values in n	sec)				
1 kHz, .5 msec pulse width	4.99E-4		5.01E-4	2.1E-9	>10:1
2 kHz, .25 msec pulse width	2.2E-4		2.8E-4	1.8E-9	>10:1
250 kHz. 2 usec pulse width	1.993E-6		2.007E-6	1.2E-9	6:1
500 kHz, 1 μsec pulse width	8.77E-7		1.123E-6	1.2E-9	>10:1
Test 2-9. Total Harmonic Distortion Te	st (Values in dBc) **				
24 dBm sinewave:					
100 kHz			-60 dBc	1.23 dB	NA
250 kHz			-60 dBc	1.23 dB	NA
1 MHz			-48 dBc	1.23 dB	NA
4 MHz			-36 dBc	1.23 dB	NA
10 MHz			-36 dBc	1.23 dB	NA
Test 2-10. Spurious/Non-harmonic Dis	tortion Test (Values in	dBc) **			
10 MHz, -5 dBm sinewave:					
100 kHz - 9.5 MHz			-45 dBc	1.23 dB	NA
10.5 MHz - 19 MHz			-45 dBc	1.23 dB	NA
21 MHz - 29 MHz			-45 dBc	1.23 dB	NA
31 MHz - 39 MHz			-45 dBc	1.23 dB	NA
41 MHz - 49 MHz			-45 dBc	1.23 dB	NA
51 MHz - 75 MHz			-45 dBc	1.23 dB	NA
75 MHz - 100 MHz			-45 dBc	1.23 dB	NA
100 MHz - 125 MHz			-45 dBc	1.23 dB	NA
125 MHz - 150 MHz			-45 dBc	1.23 dB	NA

Table 2-11. Performance Test Record for the Agilent E1445A (Page 7 of 7)

* Test limits assume 1 year of aging @ ±20 ppm/year

** Single-sided test -- Minimum is not applicable

Chapter 3 Adjustments

Introduction	 The procedures in this chapter show how to perform the following electronic adjustments for the AFG: DC Accuracy AC Flatness (250 kHz and 10MHz filters) Skew
NOTE	The DC adjustment procedure should be performed before the AC flatness adjustment procedures.
Required Equipment	See Table 1-1 for test equipment required for the procedures described in this chapter.
Recommended Environment	Before performing these procedures, allow the AFG to warm up for at least one hour. The temperature should be within $\pm 5^{\circ}$ C of T _{cal} (the temperature of the most recent calibration), and between 18°C and 28°C.

Calibration Commands

This section provides a brief description of commands that relate to calibration of the AFG. More information on these commands can be found in the Command Reference section of the *Agilent E1445A User's Manual*.

- **CALibration:COUNt?** returns the number of times that the AFG has been calibrated. Each adjustment procedure in this chapter increments the calibration number by 1.
- **CALibration:SECure:CODE** <**code**> sets the code that disables calibration security. The code is set at the factory to "E1445A". Calibration security must be disabled before changing the code.

Calibration Commands (cont'd)

- CALibration:SECure[:STATe] <mode>[,<code>] enables (<mode> = ON) or disables (<mode> = OFF) calibration security. The security code is required for CAL:SEC:STAT OFF, but the code is optional for CAL:SEC:STAT ON. The *RST command also enables calibration security.
- **CALibration[:DC]:BEGin** starts the DC calibration sequence and sets up the AFG for the first calibration point.
- **CALibration[:DC]:POINt? <value>** sends a value to the AFG so that the appropriate calibration constant(s) can be calculated. The AFG returns two numbers: (1) the current calibration point, and (2) an error code (see Appendix B of the *Agilent E1445A User's Manual* for more information about AFG errors). Any non-zero error code indicates a failure. This command also sets up the AFG for the next calibration point.
- CALibration:DATA[:DC] <block> transfers the DC calibration constants to the AFG. The DC calibration procedure described in this chapter should be used in place of this command. The query form returns the current DC constants in IEEE-488.2 definite block data format.
- CALibration:DATA:AC[1] <block> transfers the AC calibration constants that are used with the 250 kHz filter. The query form returns the current constants in IEEE-488.2 definite block data format. See the AC Flatness Adjustment procedures for more information on the use of this command.
- CALibration:DATA:AC2 <block> transfers the AC calibration constants that are used with the 10 MHz filter. The query form returns the current constants in IEEE-488.2 definite block data format. See the AC Flatness Adjustment procedures for more information on the use of this command.

Calibration Commands (cont'd)

- CALibration:DATA:FILTer
block> transfers the two calibration constants that are used to determine the frequency points that will be calibrated for the 10 MHz filter. The query form returns the current constants in IEEE-488.2 definite block data format. See the AC Flatness Adjustment procedure for the 10 MHz filter for more information on the use of this command.
- CALibration:DATA:SKEW <data> transfers the calibration constant that is used by the skew DAC to synchronize the AFG's DAC's. The query form returns the current constant in IEEE-488.2 definite block data format. See the Skew DAC Adjustment procedure for more information on the use of this command.

The CAL:DATA:FILT and CAL:DATA:SKEW commands are available only on units with firmware rev A.02.00 or higher (use the *IDN? command to determine the AFG's firmware revision).

- CALibration:STATe:AC <state> enables or disables AC corrections using the calibration constants. If <state> is ON, corrections will be used. If <state> is OFF, corrections will not be used.
- **CALibration:STATe:DC** <**state**> enables or disables DC corrections using the calibration constants. If <**state**> is ON, corrections will be used. If <**state**> is OFF, corrections will not be used.
- CALibration:STATe <state> enables or disables both AC and DC corrections using the calibration constants. If <state> is ON, corrections will be used. If <state> is OFF, corrections will not be used.
- ***PUD** <**data**>stores the specified data in non-volatile "protected user data" memory. The data must be sent in IEEE-488.2 definite or indefinite block format. The query form (***PUD?**) returns the current protected user data in IEEE-488.2 definite block format.

NOTE

Defeating Calibration Security

If the calibration security code is unknown, the security feature can be defeated by disassembling the AFG and moving the jumper on connector J104 (see Figure 3-1) to the unsecured position (left-most pins). To prevent accidental or unauthorized calibration, move the jumper back to the secured position (right-most pins) as soon as the security code has been set to the desired value (use the CALibration:SECure:CODE <code> command). Disassembly instructions can be found in Chapter 5.

Figure 3-1. Disabling Calibration Security (shown in secured position)

DC Adjustment Procedure

Description		
	A DC adjustment is performed on the AFG by reading a series of voltages and resistances output by the AFG, then entering those values back into the AFG. After all measurements have been completed, new calibration constants are calculated and stored in non-volatile memory. To ensure accuracy, perform the DC calibration procedure at one year intervals.	
	This procedure uses a firmware routine to adjust the AFG's DC calibration constants. The CALibration[:DC]:BEGin command starts the DC calibration sequence and the CALibration[:DC]:POINt? command steps the AFG to the next calibration point. All AFG settings are performed by the firmware routine.	
NOTE	If an error occurs at any time during the procedure, abort (*RST) and start over.	
 Equipment Setup Perform a complete autocalibration on the DMM (unless an autocal has been performed within the last 24 hours) Connect the equipment as shown in Figure 3-2 		
	HP 3458A gital Multimeter	

Figure 3-2. DC Adjustment Setup

Adjustment Procedure

1. Reset the AFG:

*RST;*CLS

Reset AFG and clear status registers

2. Enable calibration on the AFG:

CAL:SEC:STAT OFF, <security code> Cal security off

where <code> is the AFG's security code (factory-set to "E1445A").

3. Send the command to start the DC adjustment routine and wait for the command to complete:

CAL:DC:BEGIN *OPC?

The AFG will return a "1" when ready.

Repeat steps 4 through 6 for calibration points 1 - 44:

4. If the current calibration point is listed in Table 3-2, set up the DMM as specified. Otherwise, do not change the DMM settings. Note the special instructions for the following points:

Cal Point 31. Immediately after performing the DMM measurement for cal point 30 (and before sending the reading to the AFG) set the DMM range to 10 V. This will prevent an overload when the AFG sets itself for the next reading.

Cal Point 41. Immediately before setting up the DMM for cal point 41, take a reading using the DMM settings for cal point 40. This will provide a DC offset reading. Next, set up the DMM for cal point 41 as specified in Table 3-2. Then use the DC offset reading and Table 3-1 to determine the appropriate DMM range for subsequent calibration points.

Cal Point 43. Same instructions as cal point 41.

Test Procedure (cont'd)

- 5. Trigger the DMM and note the reading.
- 6. Send the reading to the AFG:

CAL:DC:POINT? <reading>

where *<reading>* is the DMM reading from step 5. The AFG will return, in order, the number of the current cal point and an error code. Any non-zero error code indicates a failure.

Table 3-1. DMM Range Setting for Cal Points 41 and 43

Absolute Value of DC Offset	DMM Range
Less than 10 mV	100 Ω
Between 10 mV and 100 mV	1000 Ω
Greater than 100 mV	Offset too high - abort cal

Table 3-2. DC Calibration Points

Cal	DMM Settings
Point	(changes only)
1	DCV, 10 V range, 10 NPLC
29	1 V range, 20 NPLC
31	10 V*
33	100 mV range
41	4-wire ohms, offset comp on*
43	4-wire ohms, offset comp on*

*See Step 4 of the "DC Adjustment Procedure" for special instructions.

Example Program

10 ! RE-STORE "DC_ADJUST" 30 !This program performs the firmware-guided DC adjustment procedure 40 Ifor the E1445A Arbitrary Function Generator. An 3458A DMM 50 !is required. 60 ! 70 DIM Results(1:44) 80 INTEGER Cal_point, Max_cal_point, Problem, Err_num 90 ! 100 !----- Set up I/O paths ------110 ASSIGN @Afg TO 70910 120 ASSIGN @Dmm TO 722 130 ! 140 !------ Initialize variables ------150 Max_cal_point=44 160 Cal_point=0 170 Problem=0 180 Secure_code\$="E1445A" 190 ! 200 !----- Initialize AFG and DMM ------210 OUTPUT @Afg;"*RST;*CLS" 220 OUTPUT @Dmm;"PRESET NORM" 230 ! 240 !----- Connections ------250 CLEAR SCREEN 260 PRINT "Connect the DMM to the AFG Output (4-wire connection)" 270 DISP "Press 'Continue' when ready" 280 PAUSE 290 CLEAR SCREEN 300 ! 310 !----- Setup AFG ------320 Cal point=1 330 OUTPUT @Afg;"CAL:SEC:STATE OFF,"&Secure_code\$!Disable cal security 340 OUTPUT @Afg;"CAL:DC:BEGIN" !Begin DC cal 350 OUTPUT @Afg;"*OPC?" !Wait for previous command to finish 360 ENTER @Afg;Not_busy 370 ! 380 !----- Start of loop ------390 REPEAT 400 DISP "DC Calibration in progress: Cal Point #"&VAL\$(Cal_point) 410 ! 420 GOSUB Setup_dmm !Change DMM settings, if necessary 430 GOSUB Read_dmm !Get reading 440 !

450 IF Cal_point=30 THEN !Special case -- set range now 460 OUTPUT @Dmm;"RANGE 10" 470 END IF 480 I OUTPUT @Afg;"CAL:DC:POINT? ";Reading !Send cal value to AFG 490 ENTER @Afg;This_point,Err_num 500 !Returns current point,err code 510 WAIT .5 520 1 530 Results(Cal_point)=PROUND(Reading,-5) Cal_point=Cal_point+1 540 !Increment Cal_point 550 UNTIL (Err_num<>0) OR (Cal_point>Max_cal_point) 560 ! 570 !----- End of loop ------580 !If error, print error number & cal point, else send PUD string 590 IF Err num=0 THEN 600 PRINT "Calibration Successful" 610 ! !Store cal information if desired - place desired data inside quotes 620 630 !in following line and remove !'s. Pud\$="63 CHARACTERS MAX" 640 ! !Change Pud\$ as desired 650 ! OUTPUT @Afg;"*PUD #0"&Pud\$;CHR\$(10);END 660 ELSE PRINT "Calibration Error Number "&VAL\$(Err_num)&" at Cal Point "&VAL\$(Cal_point-1) 670 680 END IF 690 DISP 700 ! 710 !----- Quit -----720 PAUSE 730 OUTPUT @Afg;"CAL:SEC:STATE ON" !Enable cal security 740 OUTPUT @Afg;"*RST" **!Reset AFG** 750 OUTPUT @Dmm;"RESET" 760 LOCAL @Dmm Return DMM to local control 770 ! 780 ASSIGN @Afg TO * 790 ASSIGN @Dmm TO * 800 STOP !End of main program 810 ! 820 !----- Subroutines ------830 ! 840 Setup_dmm: ! 850 SELECT Cal_point 860 CASE =1 !Cal point 1 870 OUTPUT @Dmm;"FUNC DCV;RANGE 10;NPLC 10;OCOMP OFF" 880 CASE =29 !Cal point 29 OUTPUT @Dmm;"RANGE 1;NPLC 1" 890

DC Adjustment Procedure (cont'd)

Example Program (cont'd)

900 CASE =31 !Cal point 31 910 OUTPUT @Dmm;"RANGE 10" 920 CASE =33 !Cal point 33 930 OUTPUT @Dmm;"RANGE .1" !Cal point 41,43 940 CASE =41,=43 OUTPUT @Dmm;"FUNC DCV;RANGE .1" 950 960 GOSUB Read dmm !Read voltage - this will 970 !Determine ohms range for 980 !Measurements that follow 990 L OUTPUT @Dmm;"FUNC OHMF;OCOMP ON" 1000 1010 1020 !Determine proper DMM range, using rdg from a few lines up 1030 SELECT ABS(Reading) !Use previous Rdg CASE <=1.0E-2 !If Rdg<=10mV, 1040 1050 OUTPUT @Dmm;"RANGE 100" 1060 CASE <=1.0E-1 !IF 10mV<Rdg<=100mV, 1070 OUTPUT @Dmm;"RANGE 1000" 1080 CASE ELSE !IF Rdg>100mV, Problem=1 !Something is wrong 1090 1100 END SELECT 1110 END SELECT 1120 RETURN 1130 ! 1140 Read_dmm: ! 1150 OUTPUT @Dmm;"TRIG SGL" 1160 ENTER @Dmm;Reading !Get reading 1170 Reading=PROUND(Reading,-10) 1180 RETURN 1190 ! 1200 END

AC Flatness Adjustment Procedure - 250 kHz Filter

Description

	This procedure adjusts the AC calibration constants for the 250 kHz filter. The AC Flatness Test for the 250 kHz filter (see Chapter 2) is performed with AC corrections disabled. The results are used to calculate new calibration constants, which are then transferred to non-volatile memory.
Preliminary Procedure	 Perform a complete autocalibration on the DMM (unless an autocal has been performed within the last 24 hours). Determine the calibration constants by performing Test 2-5 (see Chapter 2), with the following modification: After resetting the AFG (step 1), turn off AC corrections using the CAL:STAT:AC OFF command.
Adjustment Procedure	
	1. Disable calibration security on the AFG:
	CAL:SEC:STAT OFF, <security code=""> Cal security off</security>
	where <code> is the AFG's security code (factory-set to "E1445A").</code>
	2. Verify that the calibration constants determined in the Preliminary Procedure are acceptable (see SUB Valid_cons in the example program).
	3. Transfer the calibration constants to the AFG in arbitrary block data format:
	CAL:DATA:AC1 <data> Transfer cal constants</data>
NOTE	See SUB Adj_flat in the example program to see how step 3 is performed in Agilent BASIC.
Example Program	
	An example program that performs the AC flatness adjustment procedures for both filters is listed following the AC flatness adjustment procedure for

the 10 MHz filter.

AC Flatness Adjustment Procedure - 10 MHz Filter

Description

This procedure adjusts the AC calibration constants for the 10 MHz filter. The AC Flatness Test for the 10 MHz filter (see Chapter 2) is performed with AC corrections disabled. The results are used to calculate new calibration constants, which are then transferred to non-volatile memory.

Preliminary Procedure

- Perform a complete autocalibration on the DMM (unless an autocal has been performed within the last 24 hours).
- Follow the manufacturer's instructions for calibrating the Power Meter and correcting for the Power Sensor.
- Determine the calibration constants by performing Test 2-6 (see Chapter 2), with the following modification: After resetting the AFG (step 1), turn off AC corrections using the CAL:STAT:AC OFF command.

Adjustment Procedure

1. Disable calibration security on the AFG:

CAL:SEC:STAT OFF, <security code> Cal security off

where <security code> is the AFG's security code (factory-set to "E1445A").

- 2. Verify that the calibration constants determined in the Preliminary Procedure are acceptable (see SUB Valid_cons in the example program).
- 3. If the firmware revision is A.02.00 or higher (use the *IDN? command to determine the firmware revision), transfer the two constants (4 and 25000) that determine the frequencies to be calibrated:

CAL:DATA:FILT <data>

NOTE

See SUB Load_magic_num in the example program to see how step 3 is performed in Agilent BASIC.

AC Flatness Adjustment Procedure - 10 MHz Filter (cont'd)

Adjustment Procedure (cont'd)

NOTE	Rev A.02.00 (use the *IDN? command to determine allows the 10 MHz filter to be replaced with a filter frequency (the 10 MHz filter must be replaced at th MHz filter has been replaced, change the value for the example program to the new cutoff frequency. change the constants that are sent with the CAL:DAT 3 (see SUB Load_magic_num).	e the firmware revision) r that has a lower cutoff the factory). If the 10 Max_freq in line 570 of Changing Max_freq may TA:FILT command in step
	4. Transfer the calibration constants to the AFC format:	in arbitrary block data
	CAL:DATA:AC2 <data></data>	Transfer cal constants
NOTE	See SUB Adj_flat in the example program to see ho Agilent BASIC.	ow step 4 is performed in

Example Program

10! RE-STORE "AC_FLAT" 30 !This program performs the AC flatness adjustment procedure for 40 !the E1445A Arbitrary Function Generator. An 3458A DMM 50 !and an Agilent 8902A Measuring Receiver are required. 60 ! 70 !To perform the flatness measurements without adjustments, change 80 !Mode\$ to "M" below. 90 ! 100 COM @Afg, @Dmm, @Pwr_mtr, @Analyzer, Secure_code\$[12] 110 COM /Flat/ INTEGER Num_points,Max_con 120 CLEAR SCREEN 130 ! 140 !----- Set up I/O paths ------150 ASSIGN @Afg TO 70910 160 ASSIGN @Dmm TO 722 170 ASSIGN @Pwr_mtr TO 714 180 Mode\$="M" !'M' means measure, 'A' means adjust 190 Secure_code\$="E1445A" !Calibration security code 200 ! 210 CALL Flatness("250KHZ",Mode\$) 220 CALL Flatness("10MHZ",Mode\$) 230 ! 240 !----- QUIT -----250 !RESET INSTRUMENTS 260 OUTPUT @Afg;"*RST;*CLS" 270 OUTPUT @Pwr_mtr;"IP" 280 OUTPUT @Dmm;"RESET" 290 LOCAL @Dmm 300 LOCAL @Pwr_mtr 310 ! 320 !CLOSE I/O PATHS 330 ASSIGN @Afg TO * 340 ASSIGN @Dmm TO * 350 ASSIGN @Pwr_mtr TO * 360 STOP 370 ! 380 END 390 ! 410 !

420 Flatness:SUB Flatness(Filter\$,Mode\$) 430 COM @Afg,@Dmm,@Pwr_mtr,@Analyzer,Secure_code\$ 440 COM /Flat/ INTEGER Num_points,Max_con 450 INTEGER Filter, Ac_cal_int(1:2) 460 CLEAR SCREEN 470 I 480 !----- Initialize variables ------490 Ampl_dbm=24 !AFG max amplitude 500 ! !----- Main Program ------510 IF Filter\$="250KHZ" THEN 520 530 Num_points=25 !Number of test points 540 Max_freq=2.50E+5 550 ELSE !Else, 10M filter will be used !Number of test points 560 Num_points=27 570 Max_freq=1.08E+7 580 END IF 590 PRINT "FILTER = "&Filter\$ 600 L ALLOCATE Test_freq(1:Num_points),Results(1:Num_points) 610 620 ļ 630 **!Determine test frequencies** 640 Step_size=Max_freq/Num_points FOR I=1 TO Num_points 650 Test_freq(I)=Step_size*I 660 670 NEXT I 680 ! 690 GOSUB Setup_afg CALL Meas_flat(Test_freq(*),Results(*),Filter\$) 700 710 l 720 IF Mode\$="A" THEN 730 CALL Adj_flat(Results(*),Filter\$,Test_freq(Num_points)) 740 END IF 750 L 760 DEALLOCATE Test_freq(*),Results(*) 770 SUBEXIT 780 ! 790 Setup_afg: ! OUTPUT @Afg;"*RST;*CLS" 800 810 WAIT .5 820 !

830 840 850 860 870 880 890 900 910 920 930	OUTPUT @Afg;"FUNC SIN;"; OUTPUT @Afg;":VOLT "&VAL\$(Ampl_dbm)&"DBM;"; OUTPUT @Afg;":OUTP:LOAD 50 OUTPUT @Afg;"CAL:STATE:AC "&VAL\$(Mode\$="M") OUTPUT @Afg;"OUTP:FILT:FREQ "&Filter\$ OUTPUT @Afg;"OUTP:FILT ON" OUTPUT @Afg;"INIT:IMM" WAIT 1 RETURN	 !Sine !Set amplitude !50 ohm load !Turn AC corrections !On if meas mode, or !Off if adjust mode !Set filter
940 SU	UBEND	
950 ! 960 Me	as flat:SUB Meas flat(Test_freg(*) Results(*) Filter\$)	
970	COM @Afg.@Dmm.@Pwr_mtr.@Analyzer.Secure_co	de\$
980	COM /Flat/ INTEGER Num_points,Max_con	
990	INTEGER Dmm_setup,Pm_setup	
1000	!	
1010	! Initialize variables	
1020	Ref_freq=1000	Reference frequency
1030	Xover_freq=1.E+5	Crossover frequency
1040	Dmm_setup=1	
1050	Pm_setup=1	
1060		
1070	Get ref readings	
1080		
11090	Cot DMM reading at ref freq	
1110	OUTPUT @Afg:"EREO "&\/AI \$(Ref_freg)	
1120	CALL Dmm flat rdg(Ref freg Dmm ref Dmm setup)	
1130	PRINT "DMM REF READING =".Dmm_ref	
1140	!	
1150	If 10MHZ filter, get DMM & PWR MTR readings at cro	ossover freg
1160	IF Filter\$="10MHZ" THEN	•
1170	OUTPUT @Afg;"FREQ "&VAL\$(Xover_freq)	
1180	!	
1190	CALL Dmm_flat_rdg(Xover_freq,Dmm_xover,Dmm_	_setup)
1200	PRINT "DMM XOVER READING =";Dmm_xover	
1210	CALL Pm_flat_rdg(Xover_freq,Pm_xover,Pm_setup))
1220	Correct_factor=Dmm_xover/Pm_xover	
1230	PRINT "POWER METER XOVER READING =";Pm	_xover
1240	ELSE	
1250	Correct_factor=1	
1260	END IF	

1270 Offset_factor=Dmm_ref 1280 PRINT "CORRECTION FACTOR =";Correct_factor 1290 PRINT 1300 PRINT PRINTER IS CRT 1310 1320 1330 1340 !----- Perform measurements at test freqs ------1350 ! PRINT " FREQ READING (V) ERROR (dBm)" 1360 1370 PRINT " ----1380 PRINT 1390 1400 FOR I=1 TO Num_points 1410 !Set AFG to test freq 1420 IF Test_freq(I)>1.073741824E+7 THEN !SCPI can't do 10.8MHz 1430 GOSUB Max_afg_freq !so use register commands 1440 ELSE 1450 OUTPUT @Afg;"FREQ "&VAL\$(Test_freq(I)) 1460 END IF 1470 ! !Get reading 1480 IF Filter\$="250KHZ" THEN !lf 250K filter, 1490 1500 CALL Dmm_flat_rdg(Test_freq(I),Reading,Dmm_setup) 1510 ELSE !If 10M filter, 1520 CALL Pm_flat_rdg(Test_freq(I),Reading,Pm_setup) 1530 END IF 1540 Flat_result=Reading*Correct_factor !Adjust reading 1550 !Convert to dBm error 1560 Flat_error_dbm=PROUND((20*LGT(Flat_result)+13.0103)-(20*LGT(Offset_factor)+13.0103),-4) 1570 Results(I)=Flat error dbm !Store result in array 1580 I 1590 Freq\$=FNFormat_num\$(Test_freq(I),1.E+5,9,"M6D","MD.2DESZ") 1600 Result_v\$=FNFormat_num\$(Flat_result,1.E+3,9,"M2D.5D","MD.3DESZ") 1610 Result_dbm\$=FNFormat_num\$(Flat_error_dbm,10,9,"M2D.5D","MD.3DESZ") 1620 PRINT USING "9A,5X,9A,5X,9A";Freq\$,Result_v\$,Result_dbm\$ 1630 NEXT I !End of loop PRINT 1640 SUBEXIT 1650 1660 1670 Max_afg_freq: !Set AFG to 10.8MHz with register level commands 1680 OUTPUT @Afg;"FREQ MAX" !Get close with SCPI

1690	Use register commands to get to 10.8MHz	
1700	OUTPUT @Afg;"DIAG:POKE #HE000A1,8,0"	!PHASE_A1,0
1710	OUTPUT @Afg;"DIAG:POKE #HE000A3,8,126"	!PHASE_A2,126
1720	OUTPUT @Afg;"DIAG:POKE #HE000A5,8,95"	!PHASE_A3,95
1730	OUTPUT @Afg;"DIAG:POKE #HE000A7,8,64"	!PHASE_A4,64
1740	OUTPUT @Afg;"DIAG:POKE #HE0008D,8,0"	!LDSTBIND,0
1750	WAIT .1	
1760	RETURN	
1770 S	SUBEND	
1780 !		
1790 A	dj_flat:SUB Adj_flat(Results(*),Filter\$,Max_freq)	
1800	COM @Afg,@Dmm,@Pwr_mtr,@Analyzer,Secure_	code\$
1810	COM /Flat/ INTEGER Num_points,Max_con	
1820	INTEGER Cal_problem,Problem	
1830	!	
1840	Cal_problem=0	
1850	Scale_factor=1000	
1860	STATUS @Afg,3;Address	!Get path address
1870	!	
1880	ALLOCATE INTEGER Ac_cal_cons(1:Num_points)	
1900	FOR I=1 TO Num_points	
1910	Ac_cal_cons(I)=Results(I)*Scale_factor	Scale results array
1920	NEXTI	
1930	!	
1940	CALL Valid_cons(Results(*),Cal_problem)	!Make sure constants are within range
1960	I ransfer "magic numbers" if 10MHz filter	
1970	IF Filter\$<>"250KHZ" THEN	
1980	Load_magic_num(Max_freq,Problem)	
1990		
2000	PRINT "Problem occurred in Load_magic_num.	
2010		
2020		
2030		
2040	! IE NOT Cal, problem THEN	
2000		Abort wayoform
2000		
2070	: IStore cal constants into eenrom (format off)	
2000	OLITPLIT @ Afg: "CAL SEC STATE OFF "& Secure	code\$ [Enable cal
2000	ASSIGN @Afa TO Address FORMAT OFF	
2100	IF Filter\$-"250KH7" THEN	
2120	PRINT "Changed 250KHz Cal constants"	
2130	OUTPUT @Afg USING "# K"·"CAI ·DATA·AC1 :	#O"
2140	ELSE	
2150	PRINT "Changed 10MHz Cal constants"	
2160	OUTPUT @Afg USING "#.K":"CAL:DATA:AC2	#0"
2170	END IF	

2180 2190	OUTPUT @Afg;Ac_cal_cons(*) OUTPUT @Afg USING "#,K";CHR\$(10),END	!Load array !LF,EOI
2200	!	
2210	ASSIGN @Afg TO Address	Back to default attributes
2220	OUTPUT @Afg;"CAL:SEC:STATE ON"	!Disable cal
2230	!	
2240	PRINT "Flatness calibration constants stored to E	EPROM"
2250	ELSE	
2260	PRINT "Flatness calibration constants NOT stored	d to EEPROM"
2270	END IF	
2280	!	
2290	DISP "Press 'Continue' when ready"	
2300	PAUSE	
2310	DISP	
2320	!	
2330	DEALLOCATE Ac_cal_cons(*)	
2340 \$	SUBEND	
2350 !		_
2360 D	0mm_flat_rdg:SUB Dmm_flat_rdg(Freq,Rdg,INTEGER	Dmm_setup)
2370	COM @Afg,@Dmm,@Pwr_mtr,@Analyzer,Secure_	code\$
2380	COM /Flat/ INTEGER Num_points,Max_con	
2390	!	
2400	IF Dmm_setup IHEN	If true, set up DMM
2410		!otherwise, skip setup
2420	DISP "Connect DMM to AFG Output (with 500hm	termination), then press 'Continue'
2430	PAUSE	
2440		
2450	OUTPUT @Dmm;"PRESET NORM;FUNC ACV;S	ETACV SYNC;TRIG HOLD
2400	OUTPUT @DITIM, RANGE TU,DELAT .T	
2470		Clear flag as actus is asly performed as a
2400		Clear hag so setup is only performed once
2510		
2520	: OLITPLIT @Dmm:"&CBAND "&\/AL\$(Freg* 9)&" "&\/	(AL\$(Freq*1.1)
2520	WAIT 5	
2540	OUTPUT @Dmm·"TRIG SGI "	
2550	ENTER @Dmm.Rdg	
2560 \$	SUBEND	
2570 !		
2580 P	m flat rdg:SUB Pm flat rdg(Freg.Rdg.INTEGER Pm	setup)
2590	COM @Afg.@Dmm.@Pwr_mtr.@Analvzer.Secure	code\$
2600	COM /Flat/ INTEGER Num points.Max con	
2610	!	
2620	IF Pm_setup THEN	If true, then set up Power Meter
2630	- '	!otherwise skip setup

2640 DISP "Connect Power Meter to AFG Output, then press 'Continue'" 2650 PAUSE 2660 DISP 2670 OUTPUT @Pwr_mtr;"IP" Instrument preset OUTPUT @Pwr_mtr;"AU M4 WT" 2680 !Auto operation, RF power, watts 2690 WAIT .5 2700 Pm setup=0 !Clear flag so that setup 2710 lis only performed once 2720 END IF OUTPUT @Pwr_mtr;VAL\$(Freq/1.E+6)&"MHZ" 2730 !Expected frequency 2740 OUTPUT @Pwr_mtr;"T3" !Trigger Pwr Meter w/settling !Get reading 2750 ENTER @Pwr_mtr;Rdg 2760 2770 Rdg=SQRT(ABS(Rdg)*50) !Convert from watts to volts 2780 SUBEND 2790 ! 2800 Read_dc_cal_con:SUB Read_dc_cal_con(Cal_real(*)) COM @Afg,@Dmm,@Pwr_mtr,@Analyzer,Secure_code\$ 2810 COM /Flat/ INTEGER Num_points,Max_con 2820 2830 2840 Max_con=25 2850 ALLOCATE Scale(1:12), INTEGER Cal_reflect(1:Max_con) 2860 IF SIZE(Cal_real,1)<Max_con THEN PRINT "PASS PARAMETER NOT DIMENSIONED LARGE ENOUGH" 2870 2880 BEEP 2890 END IF 2900 1 2910 **!SET CAL CONSTANT SCALE FACTORS** 2920 DATA 7E6 ,7E6 ,1E7 ,1E7 ,1E6 2930 ! M_plus,M_minus,M_adj,M_off,M_cust 2940 DATA 1E6 ,1E6 ,1E10 , 1E6 , 1E4 2950 ! Vpwr ,Vbuf ,M_sub, B_sum, dB ERROR 2960 DATA 4 ,0 2970 ! P&N BASE 2980 READ Scale(*) 2990 OUTPUT @Afg;"CAL:SEC:STATE OFF,"&Secure_code\$ 3000 3010 3020 !Read cal constants back 3030 OUTPUT @Afg;"CAL:DATA?" 3040 ENTER @Afg USING "4A,34(W)";Dummy\$[1,4],Cal_reflect(*) 3050 3060 OUTPUT @Afg;"CAL:SEC:STATE ON" 3070 1

3080	FOR I=1 TO Max_con	
3090	Cal_real(I)=Cal_reflect(I)	
3100	IF I=1 THEN Cal_real(I)=Cal_reflect(I)/Scale(1)	! M_plus
3110	IF I=2 THEN Cal_real(I)=Cal_real(I)/Scale(11)	! P_base
3120	IF I=3 THEN Cal_real(I)=Cal_reflect(I)/Scale(2)	! M_minus
3130	IF I=4 THEN Cal_real(I)=Cal_reflect(I)/Scale(3)	! M_adj
3140	IF I=5 THEN Cal_real(I)=Cal_real(I)/Scale(11)	! N_base
3150	IF I>5 AND I<13 THEN Cal_real(I)=Cal_real(I)/Sca	le(10) !Filter and
3160		! ATTN gain errors
3170	IF I=13 THEN Cal_real(I)=Cal_reflect(I)/Scale(4)	! M_off
3180	IF I=14 THEN Cal real(I)=Cal reflect(I)/Scale(5)	! M cust
3190	IF I=15 THEN Cal_real(I)=Cal_reflect(I)/Scale(6)	! Vpwro
3200	IF I=16 THEN Cal real(I)=Cal reflect(I)/Scale(6)	! Vpwri
3210	IF I=17 THEN Cal real(I)=Cal reflect(I)/Scale(7)	! Vbuf
3220	IF I=18 THEN Cal real(I)=Cal reflect(I)/Scale(8)	!M sum
3230	IF I=19 THEN Cal real(I)=Cal reflect(I)/Scale(9)	! B sum
3240	_ () _ () ()	Z inc 0db (not scaled)
3250		Z inc 14db (not scaled)
3260	IF I>21 THEN Cal real(I)=Cal real(I)/Scale(10)	! Zout gain errors
3270	NEXTI	
3280	!	
3290	DEALLOCATE Scale(*).Cal reflect(*)	
3300	SUBEND	
3310		
3320 \	/alid cons:SUB Valid cons(Results(*),INTEGER Cal p	roblem)
3330	COM @Afg,@Dmm,@Pwr mtr,@Analyzer,Secure c	code\$
3340	COM /Flat/ INTEGER Num points, Max con	
3360	Max con=25	
3370	Cal_problem=0	
3380	!	
3390	ALLOCATE Cal_real(1:Max_con)	
3400	!	
3410	CALL Read_dc_cal_con(Cal_real(*))	
3420	CHECK FOR VALID CAL	
3430	M_plus=Cal_real(1)	! key cal constant
3440	P base=Cal real(2)	! +base
3450	M_minus=Cal_real(3)	! key cal constant
3460	M_adj=Cal_real(4)	! key cal constant
3470	N_base=Cal_real(5)	!-base
3480	!	
3490	Check that cal constants are reasonableif not. use	nominal values
3500	IF (M_plus<005 OR M_plus>003) THEN M plus=-	3.834E-3
3510	IF (M_minus<005 OR M_minus>003) THEN M mi	nus=-3.834E-3
3520	IF (M_adj<0012 OR M_adj>0009) THEN M_adj=	001021
2520		
JCCC	IF (P_base<3180 OR P_base>3889) THEN P base=	:3535
3540	IF (P_base<3180 OR P_base>3889) THEN P_base= IF (N_base<10 OR N_base>245) THEN N_base=128	-3535 3

3560	!Check for valid cal
3570	Max_filter_db=MAX(Cal_real(6),Cal_real(7),0)
3580	Min_filter_db=MIN(Cal_real(6),Cal_real(7),0)
3590	!
3600	Max_attn_db=0
3610	Min attn db=0
3620	FOR I=8 TO 12
3630	IF Cal_real(I)>0 THEN
3640	Max attn db=Max attn db+Cal real(I)
3650	ELSE
3660	Min_attn_db=Min_attn_db+Cal_real(I)
3670	ENDIF
3680	NEXTI
3690	!
3700	Max_zout_db=MAX(Cal_real(22),Cal_real(23),Cal_real(24),Cal_real(25),0)
3710	Min_zout_db=MIN(Cal_real(22),Cal_real(23),Cal_real(24),Cal_real(25),0)
3720	
3730	Max pos gain db=-1*MAX(Results(*),0)-(Max filter db+Max attn db+Max zout db)-1.02
3740	Min_pos_gain_db=-1*MIN(Results(*),0)-(Min_filter_db+Min_attn_db+Min_zout_db)-1.02
3750	!
3760	!Calculate P_inc's and N_inc's
3770	Max_p_inc=10*(10^((Max_pos_gain_db)/20)-1)/M_plus
3780	Min_p_inc=10*(10^((Min_pos_gain_db)/20)-1)/M_plus
3790	Max_n_inc=(Max_p_inc*(M_plus-M_minus))/M_adj
3800	Min_n_inc=(Min_p_inc*(M_plus-M_minus))/M_adj
3810	Max_gain_dac=P_base+Max_p_inc
3820	Min_gain_dac=P_base+Min_p_inc
3830	Max_to_dac=N_base+Max_n_inc
3840	Min_to_dac=N_base+Min_n_inc
3850	!
3860! "&VAL\$. PRINT "GAIN DAC EXTREMES: MAX,MIN = "&VAL\$(PROUND(Max_gain_dac,-1))&" , ;(PROUND(Min_gain_dac,-1))
3870 !	PRINT "TURNOVER DAC EXTREMES: MAX,MIN = "&VAL\$(PROUND(Max_to_dac,-1))&",
3880	
3800	: IF Max gain, dacs/1075 OR Min, gain, dac<20 THEN _ Lif out of range
3090	Cal problem-1
3010	
3020	
3030	
30/0	: IF Max to dac~247 OR Min to dac~8 THEN Lifout of range
3050	Cal problem=1
3060	
3070	
3080	
3000	DEALLOCATE Cal. real(*)
4000 9	
4010 1	

4020 SUB Syst_err(Address) 4030 COM @Afg,@Dmm,@Pwr_mtr,@Analyzer,Secure_code\$ 4040 COM /Flat/ INTEGER Num_points,Max_con 4050 DIM Message\$[256] 4060 REPEAT OUTPUT Address;"SYST:ERR?" 4070 4080 ENTER Address;Code,Message\$ PRINT Code, Message\$ 4090 4100 UNTIL NOT Code 4110 SUBEND 4120 ! 4130 Load_magic_num:SUB Load_magic_num(Max_freq,OPTIONAL INTEGER Problem) 4140 COM @Afg,@Dmm,@Pwr_mtr,@Analyzer,Secure_code\$ 4150 COM /Flat/ INTEGER Num_points, Max_con INTEGER Num_cal_points,N,Div 4160 4170 ALLOCATE Id\$[50], INTEGER Block(1:2), Ac_int(1:2) 4180 ! 4190 !Check firmware rev - if A.01.00 then exit 4200 OUTPUT @Afg;"*IDN?" 4210 ENTER @Afg;Id\$ 4220 IF POS(Id\$,"A.01.00") THEN SUBEXIT 4230 4240 STATUS @Afg,3;Address !Get path address 4250 L 4260 IF NPAR>1 THEN Problem=0 4270 Num_cal_points=27 4280 4290 Cal_step=Max_freq/Num_cal_points !Step size 4300 T 4310 !Calculate N N=INT(LGT(Cal_step/32768)/LGT(2))+1 4320 4330 N=MAX(N,1)4340 N=MIN(N,8)4350 4360 !Calculate Div 4370 Div=Cal_step/(2^N) 4380 Div=MAX(Div,1) 4390 Div=MIN(Div,32767) 4400 1 4410 IF Cal_step<>PROUND(((2^N)*Div),4) THEN 4420 IF NPAR>1 THEN Problem=1

4430	ELSE
4440	Block(1)=N
4450	Block(2)=Div
4460	!
4470	OUTPUT @Afg;"CAL:SEC:STATE OFF,"&Secure_code\$
4480	ASSIGN @Afg TO Address;FORMAT OFF
4490	OUTPUT @Afg USING "#,K";"CAL:DATA:FILTER #0"
4500	OUTPUT @Afg;Block(*)
4510	OUTPUT @Afg USING "#,K";CHR\$(10),END
4520	ASSIGN @Afg TO Address !Back to default attributes
4530	OUTPUT @Afg;"CAL:SEC:STATE ON" !Disable cal
4540	
4550	PRINT "MAGIC NUMBERS STORED: ";N,Div
4560	PRINT
4580	END IF
4590 8	UBEND
4600 !	
4610 R	ead_ac_cal_int:SUB Read_ac_cal_int(INTEGER Ac_cal_int(^))
4620	COM @Arg,@Dmm,@Pwr_mtr,@Analyzer,Secure_code\$
4630	COM/Flat/ INTEGER NUM_points, Max_con
4640	
4000	ALLOCATE Ida[ou]
4000	
4070	
4000	LINIER @Alg.ldø
4700	: IF POS(Id\$ "A 01 00") THEN
4710	Ac cal $int(1)-4$
4720	$Ac_{cal_{mt}}(1) = 4$
4730	SUBEXIT
4740	FND IF
4750	1
4760	Max con=2
4770	
4780 !	IF SIZE(Ac_cal_int,1)<>Max_con OR RANK(Ac_cal_int)<>1 THEN
4790	
4800	STATUS @Afg,3;Address
4810	!
4820	OUTPUT @Afg;"CAL:SEC:STATE OFF,"&Secure_code\$
4830	OUTPUT @Afg;"CAL:DATA:FILTER?"
4840	ASSIGN @Afg TO Address;FORMAT OFF
4850	ENTER @Afg USING "3A,2(W)";Dummy\$[1,3],Ac_cal_int(*)
4860	ASSIGN @Afg TO Address
4870	OUTPUT @Afg;"CAL:SEC:STATE ON"
4880	!
4890	PRINT Ac_cal_int(*)
4900 S	UBEND
```
4910 !
4920 SUB Security_code
4930
       COM @Afg,@Dmm,@Pwr_mtr,@Analyzer,Secure_code$
4940
       COM /Flat/ INTEGER Num_points, Max_con
4950
       CLEAR SCREEN
       OUTPUT @Afg;"*RST;*CLS"
4960
4970
       !
4980
       Valid=0
       REPEAT
4990
5000
         Secure_code$="E1445A"
5010
         INPUT "Enter your security code <default is 'E1445A'>",Secure_code$
         Secure_code$=TRIM$(Secure_code$)
5020
5030
         Check_sec_code(Valid)
5040
       UNTIL Valid
5050 SUBEND
5060 !
5070 !
5080 SUB Check_sec_code(Valid)
       COM @Afg,@Dmm,@Pwr_mtr,@Analyzer,Secure_code$
5090
       COM /Flat/ INTEGER Num_points,Max_con
5100
5110
       DIM Message<sup>$[255]</sup>
5120
       Valid=0
       CLEAR SCREEN
5130
5140
       DISP "Verifying security code..."
5150
       WAIT 1
5160
       OUTPUT @Afg;"CAL:SEC:STAT OFF,"&Secure_code$
5170
       OUTPUT @Afg;"SYST:ERR?"
5180
       ENTER @Afg;Code,Message$
5190
       DISP
5200
       I
       IF Code<>0 THEN
5210
5220
       BEEP 1000,.1
5230
         PRINT "Invalid security code -- try again"
5240
         OUTPUT @Afg;"*RST;*CLS"
5250
         DISP "Press 'Continue'"
5260
         PAUSE
5270
         SUBEXIT
5280
       ELSE
5290
         Valid=1
5300
         PRINT "Security code accepted"
5310
         WAIT 1
5320
         OUTPUT @Afg;"*RST;*CLS"
5330
       END IF
       CLEAR SCREEN
5340
5350 SUBEND
5360 !
5370 !
```

5380 Format_num:DEF FNFormat_num\$(Value,Not_exp_max,INTEGER Length,Not_exp_img\$,Exp_img\$) 5390 INTEGER Diff 5400 SELECT ABS(Value) 5410 CASE <1.E-9,>=1.E+10 5420 IF NOT POS(Exp_img\$,"ZZ") THEN 5430 OUTPUT String\$ USING Exp_img\$&"Z,#";Value 5440 ELSE 5450 OUTPUT String\$ USING Exp_img\$&",#";Value 5460 END IF 5470 CASE <1.E-4,>=Not_exp_max 5480 OUTPUT String\$ USING Exp_img\$&",#";Value 5490 CASE ELSE OUTPUT String\$ USING Not_exp_img\$&",#";Value 5500 5510 END SELECT 5520 ! 5530 Diff=Length-LEN(String\$) 5540 IF Diff>0 THEN String\$=RPT\$(" ",Diff)&String\$ 5550 RETURN String\$ 5560 FNEND 5570 ! 5580 !

Skew DAC Adjustment Procedure

Description

This procedure compensates for time delays between the AFG's two DACs. The skew setting which produces the lowest second harmonic amplitude is found and loaded into non-volatile memory.

Equipment Setup

- Connect the equipment as shown in Figure 3-3
- Set up the Spectrum Analyzer:

Center Frequency = 8 MHz Frequency Span = 3.2 kHz

Figure 3-3. Skew DAC Adjustment Setup

Adjustment Procedure

1. Reset the AFG:

*RST

Adjustment Procedure (cont'd)

2. Set up the AFG to output an 11 dBm, 4 MHz sinewave:

FUNC SIN; :VOLT 11 DBM; :FREQ 4E6 INIT:IMM

3. Load an initial value of 128 into the delay DAC:

DIAG:POKE #HE0000B,8,2 DIAG:POKE #HE0000D,8,128 DIAG:POKE #HE0000B,8,7 DIAG:POKE #HE0000D,8,8

- 4. With the Spectrum Analyzer, locate and center the second harmonic. Then, reduce the frequency span to 2 kHz.
- 5. Find the delay DAC setting that minimizes the amplitude of the second harmonic (see the example program).
- 6. Disable calibration security on the AFG:

CAL:SEC:STAT OFF, <security code> Cal security off

where <code> is the AFG's security code (factory-set to "E1445A").

7. Transfer the calibration constant (DAC setting) to the AFG in arbitrary block data format:

CAL:DATA:SKEW <data >

Transfer cal constant

NOTE

See the example program to see how step 7 is performed in BASIC.

8. Enable calibration security on the AFG:

CAL:SEC:STAT ON

Cal security on

Example Program

10 ! RE-STORE "SKEW_CAL" 20 COM @Afg,@Analyzer,Secure_code\$[20] 30 INTEGER Dac_bits, Dac_word, Min_word, Max_word, Step_size, Harmonic 40 INTEGER Loc_min,Cal_word,Search_loop,Max_search_loop,Filter,Skew_con 50 DIM Id\$[50] 60 ! 70 !----- Assign I/O paths ------80 ASSIGN @Afg TO 70910 90 ASSIGN @Analyzer TO 718 100 ! 110 !----- Check firmware rev ------120 !Rev A.01.00 does not support this cal procedure 130 OUTPUT @Afg;"*IDN?" 140 ENTER @Afg;Id\$ 150 ! 160 IF POS(Id\$,"A.01.00") THEN 170 PRINT "This rev does not support skew DAC calibration." 180 STOP 190 END IF 200 ! 210 !----- Initialize variables ------220 Secure_code\$="E1445A" !AFG security code 230 Harmonic=2 !Harmonic to be minimized 240 Filter=0 !No filter 250 Freq=4.E+6 !AFG frequency (Hz) 260 Amp_in_dbm=11 !AFG amplitude (dBm) 270 Search_span\$=VAL\$(Freq*Harmonic*4.00E-4) Initial Spec Analyzer span 280 Test_span\$="2000" !Span used for measurements 290 ! 300 Dac bits=8 310 Start_step_size=16 320 Step_size=Start_step_size 330 Max_search_loop=4 340 Dac_word=2^(Dac_bits-1) Initial Dac_word 350 Max_word=2^(Dac_bits) Initial max 360 Min_word=0 Initial min 370 ! 380 !----- Test connections ------390 PRINT "Connect Spectrum Analyzer to AFG Ouput." 400 DISP "Press 'Continue' when ready" 410 PAUSE 420 CLEAR SCREEN 430 !

440 !----- Perform cal ------450 OUTPUT @Afg;"*RST;*CLS;*OPC?" !Reset AFG 460 ENTER @Afg;Result 470 ! 480 !Set up Spec Analyzer 490 Setup_spec(VAL\$(Amp_in_dbm-2)&"DM",VAL\$(Freq*Harmonic),Search_span\$) 500 ! 510 !Set up AFG 520 OUTPUT @Afg;"FUNC SIN;"; 530 OUTPUT @Afg;":VOLT "&VAL\$(Amp_in_dbm)&"DBM;"; 540 OUTPUT @Afg;":FREQ "&VAL\$(Freq) 550 OUTPUT @Afg;"INIT:IMM" 560 Load_delay_dac(Dac_word) !Load constant into register 570 ! 580 !Capture and center 2nd harmonic 590 Get_2nd_harm(Test_span\$) 600 ! 610 !Begin cal search loop 620 Search_loop=1 630 REPEAT 640 ALLOCATE INTEGER Word_array(0:((Max_word-Min_word)/Step_size)) ALLOCATE REAL Meas_array(0:((Max_word-Min_word)/Step_size)) 650 660 Array_counter=0 670 L 680 PRINT "LOOP =";Search_loop 690 PRINT 700 PRINT "CONSTANT"," READING" PRINT "-----"," ------" 710 720 1 730 !Find constant that produces minimum 2nd harmonic FOR I=Min_word TO Max_word STEP Step_size 740 IF I=256 THEN 750 760 Dac word=255 770 ELSE 780 Dac_word=I 790 END IF Load_delay_dac(Dac_word) 800 !Load constant into register 810 Word_array(Array_counter)=Dac_word 820 I 830 !Measure 2nd harmonic, store in array 840 Meas_2nd_harm(Meas_array(Array_counter)) 850 PRINT Word_array(Array_counter), DROUND(Meas_array(Array_counter), 8) 860 Array_counter=Array_counter+1 870 NEXT I 880 !

890 !Set variables for next loop 900 MAT SEARCH Meas_array,LOC MIN;Loc_min !Get location of min rdg 910 Cal_word=Word_array(Loc_min) 920 Min_word=Word_array(MAX(0,Loc_min-1)) Max_word=Word_array(MIN((SIZE(Word_array,1)-1),Loc_min+1)) 930 940 Step_size=Step_size/INT(SQRT(Start_step_size)+.5) !Reduce step size 950 ! 960 PRINT PRINT 970 980 ! 990 DEALLOCATE Meas_array(*),Word_array(*) 1000 Search_loop=Search_loop+1 1010 UNTIL Step_size<1 1020 ! 1030 PRINT "CAL CONSTANT =";Cal_word 1040 PRINT 1050 Wrt_skew_con(Cal_word) !Write word to eeprom 1060 ! 1070 !----- Quit -----1080 OUTPUT @Afg;"*RST;*CLS" 1090 ASSIGN @Afg TO * 1100 ASSIGN @Analyzer TO * 1110 STOP 1120 END 1130 ! 1140 Load_delay_dac:SUB Load_delay_dac(INTEGER Delay_dac) COM @Afg,@Analyzer,Secure_code\$ 1150 1160 INTEGER Lower_8, Benign_chn1 1170 ! Benign_chn1=1 1180 1190 Lower_8=BINAND(Delay_dac,255) 1200 1 1210 OUTPUT @Afg;"DIAG:POKE #HE0000B,8,2" 1220 OUTPUT @Afg;"DIAG:POKE #HE0000D,8,"&VAL\$(Lower_8) 1230 OUTPUT @Afg;"DIAG:POKE #HE0000B,8,7" 1240 OUTPUT @Afg;"DIAG:POKE #HE0000D,8,"&VAL\$(Benign_chn1+7) 1250 WAIT .1 1260 SUBEND 1270 !

1280 Wrt_skew_con:SUB Wrt_skew_con(INTEGER Cal_word)	
1290 COM @Afg,@Analyzer,Secure_code\$	
1300 DIM Id\$[50]	
1310 !	
1320 !Check firmware rev	
1330 OUTPUT @Afg;"*IDN?"	
1340 ENTER @Afg;Id\$	
1350 !	
1360 IF POS(Id\$,"A.01.00") THEN	
1370 PRINT "This rev does not support skew DAC calibration."	
1380 CALL Abort_error	
1390 END IF	
1400 !	
1410 STATUS @Afg,3;Address !Get path address	
1420 !	
1430 OUTPUT @Afg;"CAL:SEC:STAT OFF,"&Secure_code\$	
1440 ASSIGN @Afg TO Address;FORMAT OFF	
1450 OUTPUT @Afg USING "#,K";"CAL:DATA:SKEW #0"	
1460 OUTPUT @Afg;Cal_word	
1470 OUTPUT @Afg USING "#,K";CHR\$(10),END	
1480 ASSIGN @Afg TO Address	
1490 OUTPUT @Afg;"CAL:SEC:STAT ON"	
1500 !	
1510 PRINT "Skew constant written to AFG."	
1520 SUBEND	
1540 Setup_spec:SUB Setup_spec(Amp_in_dbm\$,Center\$,Span\$)	
1550 COM @Afg,@Analyzer,Secure_code\$	
1560 OUTPUT @Analyzer;"IP;RB 100HZ;VB 100HZ" !Preset, set res & vid BW	
1570 OUTPUT @Analyzer;"RL "&Amp_in_dbm\$!Set ref level	
1580 OUTPUT @Analyzer;"SP "&Span\$&"HZ" !Set freq span	
1590 OUTPUT @Analyzer;"CF "&Center\$!Set center trequency	
1640 JUBEND	
1610 ! 1620 Cat and harm SUB Cat and harm (Teat anon [®])	
1620 Get_210_Natri.SOB Get_210_Natri(Test_spans)	
1640 OUTDUT @Analyzer;"S2:TS:E1"	
1640 OUTFUT @Analyzer, 52, 15, E1 Peak Search	
1660 OLITPLIT @Analyzer:"SP "&Teet span [©] & "H7" INarrow span	
1680 1	

1690 Me	eas_2nd_harm:SUB Meas_2nd_harm(Reading)	
1700	COM @Afg,@Analyzer,Secure_code\$	
1710	OUTPUT @Analyzer;"TS;E1"	!Find peak
1720	OUTPUT @Analyzer;"MA"	Measure amplitude
1730	ENTER @Analyzer;Reading	
1740 S	UBEND	
1750 !		
1760 Re	ead_skew_con:SUB Read_skew_con(INTEGER Skew_	_cal_con)
1770	COM @Afg,@Analyzer,Secure_code\$	
1780	ALLOCATE Id\$[50]	
1790	!	
1800	OUTPUT @Afg;"*IDN?"	
1810	ENTER @Afg;Id\$	
1820	IF POS(Id\$,"A.01.00") THEN	
1830	Skew_cal_con=128	
1840	SUBEXIT	
1850	END IF	
1860	!	
1870	STATUS @Afg,3;Address	
1880	!	
1890	OUTPUT @Afg;"CAL:SEC:STAT OFF,"&Secure_code	\$\$
1900	OUTPUT @Afg;"CAL:DATA:SKEW?"	
1910	ASSIGN @Afg TO Address;FORMAT OFF	
1920	ENTER @Afg USING "3A,1(W)";Dummy\$[1,3],Skew_	cal_con
1930	ASSIGN @Afg TO Address	
1940	OUTPUT @Afg;"CAL:SEC:STAT ON"	
1950 S	UBEND	

Chapter 4 Replaceable Parts

Introduction	This chapter contains information for ordering replaceable parts for the Agilent E1445A AFG.
Exchange Assemblies	Table 4-1 lists assemblies that may be replaced on an exchange basis (NEW/EXCHANGE ASSEMBLIES). Exchange assemblies are available only on a trade-in basis. Defective assemblies must be returned for credit. Assemblies required for spare parts stock must be ordered by the new assembly part number.
Ordering Information	To order a part listed in Table 4-1, specify the Agilent part number and the quantity required. Send the order to your nearest Agilent Technologies Sales and Support Office.

Replaceable Parts List	Table 4-1 lists the user-replaceable parts for the Agilent E1445A AFG. See Figure 4-1 for locations of user-replaceable parts. Table 4-2 lists the reference designators for the AFG. Table 4-3 is the code list of manufacturers.

Reference Designator	Part Number	Qty	Part Description	Mfr. Code	Mfr. Part Number
			NEW/EXCHANGE ASSEMBLIES		
	ME1445A E1445-66201	1 1	E1445A (NEW) E1445A (EXCHANGE)	28480 28480	ME1445A E1445-66201
			MECHANICAL PARTS		
HDL1 HDL2	E1400-45102* E1400-45101*	1 1	HANDLE-BOTTOM METAL INJECTION MOLDING HANDLE-TOP METAL INJECTION MOLDING	28480 28480	E1400-45102* E1400-45101*
HDW010 HDW011 HDW11-HDW15 HDW17-HDW21	0380-1858 2190-0004 2950-0054 3050-0604	2 2 5 5	STANDOFF-HEX .312-IN-LG 4-40-THD WASHER-LK INTL T NO. 4 .115-IN-ID NUT-HEX-DBL-CHAM 1/2-28-THD .125-IN-THK WASHER- 7/16 IN .5-IN-ID .75-IN-OD	05791 78189 28480 86928	ST9532-36 SF 1904-00 2950-0054 5710-94-16
MP1 MP2-MP5	8160-0686 E1450-01202	1 4	CLIP-RFI STRIP-FINGERS BE-CU SN-PL EMI STRIP	30817 28480	00786-185 E1400-01202
PNL1	E1445-00202*	1	FRONT PANEL	28480	E1445-00202*
SCR1-SCR8 SCR10 SCR13-SCR14 SCR17	0515-1135 0515-1135 E1400-00610* 0515-0430	9 2 1	SCREW- MACHINE M3 X 0.5 25MM-LG -HD SCREW- MACHINE M3 X 0.5 25MM-LG -HD SHOULDER SCREW ASSEMBLY SCREW- MACHINE M3 X 0.5 6MM-LG PAN-HD	28480 28480 28480 28480 28480	0515-1135 0515-1135 E1400-00610* 0515-0430
SHD1 SHD2 SHD3	E1445-00601 E1445-00602* E1445-00603	1 1 1	TOP SHIELD BOTTOM SHIELD FLEX SHIELD	28480 28480 28480	E1445-00601 E1445-00602* E1445-00603
			A1 PRINTED CIRCUIT ASSEMBLY		
A1 CR610-CR613 CR614 CR615 CR616	E1445-63501 1990-1448 1990-1364 1990-1448 1990-1507	1 5 1	PCA- DAC MAIN LED-LAMP ARRAY LUM-INT=1.5MCD, GREEN LENS LED-LAMP ARRAY LUM-INT=300UCD, RED-GREEN LENS LED-LAMP ARRAY LUM-INT=1.5MCD, GREEN LENS LED-LAMP LUM-INT=800UCD IF=20MA-MAX, RED LENS	28480 72619 72619 72619 72619	E1445-63501 553-0302 553-0321 553-0302 553-0301
F301-F305	2110-0699	5	FUSE-SUBMINIATURE 5A 125V NTD AX UL CSA	75915	R251005T1
J2-J3 J101-J104 J105 J106 J110-J113	1251-5150 1252-4568 1252-1201 1252-4568 1250-2012	2 5 1 4	CONNECTOR-POST TYPE .100-PIN-SPCG 12-CONTACT CONNECTOR-POST TYPE .100-PIN-SPCG 3-CONTACT CONNECTOR-RECT D-SUBMINIATURE 25-CONTACT CONNECTOR-POST TYPE .100-PIN-SPCG 3-CONTACT CONNECTOR-RF BNC FEM PC-W-STDFS 50-OHM	18873 18873 00779 18873 00779	67996-612 89602-603 748877-1 89602-603 227676-1
JM1-JM7	1258-0209	7	JUMPER-REMOVABLE 2 POSITION; .250 IN	00779	531220-2
SP301-SP302	3101-2243	2	SWITCH-DIP ROCKER 8-1A 0.05A 30VDC	81073	76YY22318S
			A2 PRINTED CIRCUIT ASSEMBLY		
A2 J901	E1445-63502 1250-2012	1 1	PCA- DAC ANALOG CONNECTOR-RF BNC FEM PC-W-STDFS 50-OHM	28480 00779	E1445-63502 227676-1
			A3 PRINTED CIRCUIT ASSEMBLY		
A3 U501 U502	E1445-63503 1813-0879 1813-0831	1 1 1	PCA- DIG TIMER CLOCK-OSCILLATOR-XTAL 40.0-MHZ 0.005% CLOCK-OSCILLATOR-XTAL 42.949672-MHZ	28480 28480 28480	E1445-63503 1813-0879 1813-0831

Table 4-1. Agilent E1445A Replaceable Parts

* These parts are not compatible with older versions of the E1445A that have plastic handles. To replace one of these parts on an older E1445A, you must order all five of the parts marked with a *.

Table 4-2. Agilent E1445A Reference Designators

E1445A Referen	nce Designators
A assembly CRdiode HDLhandle HDWhardware Jelectrical connector (jack) JMjumper Ffuse	MP mechanical part PNL panel SCRscrew SHDshield SPswitch Uintegrated circuit

Table 4-3. Agilent E1445A Code List of Manufacturers

Mfr. Code	Manufacturer's Name	Manufacturer's Address	Zip Code
00779	AMP INC	HARRISBURG, PA_US	17111
05791	LYN-TRON INC	BURBANK, CA US	91505
18873	DUPONT E.I. DE NUMOURS & CO	WILMINGTON, DE US	19801
28480	AGILENT TECHNOLOGIES		
30817	INSTRUMENT SPECIALTIES INC	DEL WATER GAP, PA US	18327
72619	DIALIGHT CORP	BROOKLYN, NY US	11237
75915	LITTELFUSE INC	DES PLAINES, IL US	60016
78189	ILLINOIS TOOL WORKS INC	ELGIN, IL US	60126
	SHAKEPROOF		
81073	GRAYHILL INC	LA GRANGE, IL US	60525
83486	ELCO INDUSTRIES INC	ROCKFORD, IL US	61125
86928	SEASTROM MFG CO	GLENDALE, CA US	91201

Figure 4-1. E1445A Replaceable Parts

Introduction	This chapter contains service information for the Agilent E1445A AFG, including troubleshooting guidelines and repair/maintenance guidelines.	
WARNING	Do not perform any of the service procedures shown unless you are a qualified, service-trained technician, and have read the WARNINGS and CAUTIONS in Chapter 1.	
Equipment Required	Equipment required for AFG troubleshooting and repair is listed in Table 1-1, <i>Recommended Test Equipment</i> . Any equipment that satisfies the requirements given in the table may be substituted. To avoid damage to the screw head slots, use T8 and T10 Torx drivers as described in the disassembly instructions later in this chapter.	
Service Aids	See Chapter 4 for descriptions and locations of Agilent E1445A replaceable parts. Service notes, manual updates, and service literature for the AFG may be available through Agilent. For information, contact your nearest Agilent Sales and Support Office.	

Troubleshooting Techniques

G To troubleshoot an Agilent E1445A problem, you should first identify the problem, and then isolate the cause to a user-replaceable part.

Identifying the Problem

AFG problems can be divided into three general categories:

- Operator errors
- Catastrophic failures
- Performance out of specification

Operator Errors

Apparent failures may result from operator errors. See Appendix B in the *Agilent E1445A User's Manual* for information on operator errors.

Catastrophic Failure

If a catastrophic failure occurs, see "Testing the Assembly" to troubleshoot the AFG.

Performance Out of Specification

If the AFG fails any of its Performance Tests, perform the adjustments described in Chapter 3, then repeat the Performance Tests.

Testing the
AssemblyYou can use the tests and checks in Table 5-1 to isolate the problem. See
Figure 4-1 in Chapter 4 for locations of user-replaceable parts.

Test/Check	Reference Designator	Check:
Heat Damage		Discolored PC boards Damaged insulation Evidence of arcing
AFG/Jumper Settings	A1BG0 - A1BG3 A1SP301 A1SP302	Bus Request level setting LADDR setting Servant Area setting
AFG PCAs	A1F301 - A1F305	Fuse continuity Damaged connectors

Table 5-1. Agilent E1445A Tests/Checks

Checking for Heat Damage

Inspect the AFG for signs of abnormal internally generated heat such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. If there is damage, do not operate the AFG until you have corrected the problem.

Checking Switches/Jumpers

Verify that the logical address setting is set correctly (factory set at 80). Verify that the bus request level and servant area settings are correct. See the *Agilent E1445A User's Manual* for information.

Checking the AFG PCAs

Check fuse continuity and inspect all connectors for bent pins or damaged contacts.

Disassembly Use the following procedure to disassemble the AFG (see Figure 5-1):

- 1. Remove the nine T10 Torx screws on the right side panel.
- 2. Remove the front panel handles using a T-8 TORX driver.
- 3. Remove the hex standoffs and washers from the front panel digital port connector.
- 4. Remove the nuts and washers from the front panel BNC's.

Figure 5-1. E1445A Disassembly

Removing BNC Connectors

Use the following steps to remove the AFG front panel BNC connectors (refer to Figure 5-2):

- 1. Unsolder wires
- 2. Remove the two T8 torx screws
- 3. Remove the BNC connector
- 4. Reverse the order to reinstall the connector

Figure 5-2. Removal of BNC Connectors

Repair/ Maintenance Guidelines	 This section provides guidelines for repairing and maintaining the Agilent E1445A AFG, including: ESD precautions Soldering printed circuit boards Post-repair safety checks
ESD Precautions	Electrostatic discharge (ESD) may damage static sensitive devices in the Agilent E1445A AFG. This damage can range from slight parameter degradation to catastrophic failure. When handling AFG assemblies, follow these guidelines to avoid damaging AFG components:
	• Always use a static-free work station with a pad of conductive rubber or similar material when handling AFG components.
	• If a device requires soldering, be sure the assembly is placed on a pad of conductive material. Also, be sure that you, the pad, and the soldering iron tip are grounded to the assembly.
Soldering Printed	When soldering to any circuit board, keep in mind the following guidelines:
Circuit Boards	• Avoid unnecessary component unsoldering and soldering. Excessive replacement can result in damage to the circuit board and/or adjacent components.
	• Do not use a high power soldering iron on etched circuit boards, as excessive heat may lift a conductor or damage the board.
	• Use a suction device or wooden toothpick to remove solder from component mounting holes. When using a suction device, be sure that the equipment is properly grounded.
Post-Repair Safety Checks	After making repairs to the Agilent E1445A AFG, inspect the AFG for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and correct the cause of the condition. Then perform the Self-Test described in Chapter 2 to verify that the AFG is functional.

Download from Www.Somanuals.com. All Manuals Search And Download.

Copyright © Agilent Technologies, Inc.1992-2005

E1445-90011

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com